Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Phytogeocoenoses of a coastal lowland ecosystem, Devon island, N.W.T. Barrett, Paul Edward 1972

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1972_A1 B37.pdf [ 34.32MB ]
Metadata
JSON: 831-1.0101177.json
JSON-LD: 831-1.0101177-ld.json
RDF/XML (Pretty): 831-1.0101177-rdf.xml
RDF/JSON: 831-1.0101177-rdf.json
Turtle: 831-1.0101177-turtle.txt
N-Triples: 831-1.0101177-rdf-ntriples.txt
Original Record: 831-1.0101177-source.json
Full Text
831-1.0101177-fulltext.txt
Citation
831-1.0101177.ris

Full Text

• wzoz PHYTOGEOCOENOSES OF A COASTAL LOWLAND ECOSYSTEM, DEVON ISLAND, N.W.T. by P a u l Edward B a r r e t t B*Se. U n i v e r s i t y of New Hampshire, 1964 M.Sc. U n i v e r s i t y of New Hampshire, 1966 A t h e s i s submitted i n p a r t i a l , f u l f i l l m e n t of the requirements f o r the degree of Doctor of P h i l o s o p h y In the Department of Botany We accept t h i s t h e s i s as conforming t c the r e q u i r e d standard U n i v e r s i t y of B r i t i s h Columbia In present ing th i s thes is in p a r t i a l f u l f i l m e n t o f the requirements fo r an advanced degree at the Un ive rs i t y of B r i t i s h Columbia, I agree that the L i b r a r y sha l l make i t f r e e l y a v a i l a b l e for reference and study. I fu r the r agree that permission for extensive copying of th i s thes i s for s c h o l a r l y purposes may be granted by the Head of my Department or by h is representat i ves . It is understood that copying or p u b l i c a t i o n of th i s thes is fo r f i n a n c i a l gain sha l l not be allowed without my wr i t ten permiss ion . Department of The Un ivers i t y of B r i t i s h Columbia Vancouver 8, Canada Date T h i s d i s s e r t a t i o n i s d e d i c a t e d to the memory of Sarah Madoc-Jones, an e c o l o g i s t and a f r i e n d . 11 ABSTRACT During the summer p e r i o d s of 1967-1969 f i e l d s t u d i e s were undertaken a t a C o a s t a l Lowland ecosystem, on the n o r t h c o a s t of Devon I s l a n d , N.W.T. Canada (75° 41» N; 84° 33* W). The study a r e a Is a n a t u r a l l y d e l i n e a t e d s t r a n d f l a t r o u g h l y s i x t e e n square m i l e s l n s i z e . I t Is segregated from the I n t e r i o r r e g i o n s o f the I s l a n d by a v e r t i c a l escarpment, which r i s e s s h a r p l y from the e a s t e r n border of the lowland to an e l e v a t i o n of a pproximately 1000 f e e t . The remaining borders are surrounded by the waters of Jones Sound. Such lowland ecosystems appear markedly d i s t i n c t from the more e x t e n s i v e Inland p l a t e a u r e g i o n s . B o t a n i c a l l y they are r e l a t i v e l y v e r y r i c h . I n t e n s i v e f l u v i o - g l a c l a l a c t i v i t y com-bined w i t h a d i v e r s i t y of parent rock p r o v i d e s a number of d i s -t i n c t i v e environments f o r p l a n t c o l o n i z a t i o n . N i n e t y - t h r e e s p e c i e s of v a s c u l a r p l a n t s have been c o l l e c t e d w i t h i n t h i s l i m i t e d area, and c l o s e d stands of v e g e t a t i o n are common. T h i s Is In sharp c o n t r a s t to most of the Canadian h i g h a r c t i c where p o l a r d e s e r t c o n d i t i o n s p r e v a i l over the g r e a t e r p o r t i o n of the landscape and v e g e t a t i o n i s n o r m a l l y sparse. Seventy-three stands were s e l e c t e d from the v e g e t a t i o n a l mosaic f o r a n a l y s i s u s i n g standard European p h y t o s o c i o l o g i c a l t e c h n i q u e s . S o i l e x c a v a t i o n s were made a t each l o c a t i o n and samples from a l l g e n e t i c h o r i z o n s r e t u r n e d to the l a b o r a t o r y f o r p h y s i c a l and chemical a n a l y s i s . Stands from v a r i o u s vege-t a t i o n types were a l s o monitored f o r selected, environmental i i i measurements throughout the growing season. Measurements i n c l u d e d s o i l temperature, s o i l moisture and a c t i v e l a y e r de-velopment. S y n t h e s i s o f f l o r i s t i c and environmental d a t a from these stands r e s u l t e d i n the c o n s t r u c t i o n o f a h i e r a r c h i c a l scheme o f phytogeocoenotic c l a s s i f i c a t i o n f o r the lowland system. U n i t s were named i n accordance w i t h s t a n d a r d Braun-Blanquet terminology. Seven s y n s y s t e m a t i c o r d e r s , seven a l l i a n c e s and nin e p l a n t a s s o c i a t i o n s are d i s c u s s e d o f which three o r d e r s , s i x a l l i a n c e s and a l l nine p l a n t a s s o c i a t i o n s are newly d e s c r i b e d . The o r d e r C a r l c e t a l i a fuscae dominates the study a r e a and imparts to the lowland system as a whole the c h a r a c t e r of a wet graminoid meadow. The P h y l l o d o c o - C a s s i o p e t a l i a i s a l s o an ex-t e n s i v e l y developed s y n s y s t e m a t i c o r d e r w i t h i n the lowland r e g i o n . Maximum p l a n t a s s o c i a t i o n d i v e r s i t y develops w i t h i n the or d e r D r y a d e t a l l a . While occupying a s m a l l e r p r o p o r t i o n o f the l a n d -scape i t i s i n t h i s o r d e r t h a t the z o n a l a s s o c i a t i o n s o f the low-l a n d are found. The A l e c t o r i e t a l i a , P e t a s i t e t a l i a f r i g i d ! , S a l l -c e t a l i a a r c t i c a e and A r a b i d e t a l i a o r d e r s , w h i l e l e s s e x t e n s i v e l y developed, are n e v e r t h e l e s s d i s t i n c t i v e u n i t s . A l l major a r c t i c s o i l groups r e c o g n i z e d In Tedrow's c l a s s i -f i c a t i o n s scheme are p r e s e n t i n the area. S t r o n g c o r r e l a t i o n e x i s t s between v e g e t a t i o n and u n d e r l y i n g s o i l type. The most common s o i l s are the g l e y s o l i c Meadow Tundra s o i l s which u n d e r l i e the Caricetum s t a n t i s . An o b j e c t i v e c l a s s i f i c a t i o n o f the 73 stands was generated from the f l o r i s t i c d a t a . S^renson's index was used to calculate i v a complete m a t r i x o f i n t e r s t a n d s i m i l a r i t y v a l u e s . These were then s u b j e c t e d to c l u s t e r i n g techniques and i l l u s t r a t e d i n the form o f a two-dimensional dendrogram. C l u s t e r s generated i n t h i s f a s h i o n are i d e n t i c a l , a t the a s s o c i a t i o n l e v e l , to those c o n s t r u c t e d by the s y n t h e s i s techniques of the Braun-Blanquet method. At h i g h e r l e v e l s o f i n t e g r a t i o n ( o r d e r and a l l i a n c e ) no a s s o c i a t i o n s were c l u s t e r e d o u t s i d e the s u b j e c t i v e l y d e r i v e d h i e r a r c h y . I n d i v i d u a l dendrograms were generated i n the same f a s h i o n u t i l i z i n g o n l y s e l e c t e d components o f the f l o r i s t i c ma-t r i x . S t r o n g s i m i l a r i t i e s e x i s t between the phytogeocoenoses of the Devon I s l a n d lowlands and those of o t h e r tundra l o c a t i o n s , p a r t i c u l a r l y the Dryadion ( o c t o p e t a l a e ) d e s c r i b e d from S v a l b a r d . T h i s supports the view t h a t p l a n t communities as w e l l as i n d i v i d -u a l s p e c i e s may be c i r c u m p o l a r i n nature. S h a r p l y d e f i n e d ecotones, homogeneous environmental c o n d i -t i o n s and the presence of the c h a r a c t e r i s t i c s p e c i e s combinations occur i n the n i n e phytogeocoenoses d e s c r i b e d . T h i s supports the t h e s i s t h a t n a t u r a l assemblages o f v e g e t a t i o n may be s e l e c t e d and d e s c r i b e d from the t u n d r a mosaic without r e c o u r s e to " s p e c i a l " s y n e c o l o g l c a l techniques as has been suggested. Table o f Contents A b s t r a c t Table o f Contents L i s t o f T a b l e s L i s t o f F i g u r e s Acknowledgements I n t r o d u c t i o n P h y t o s o c l o l o g i c a l Methods and U n i t s Methods U n i t s of C l a s s i f i c a t i o n Methods of Environmental Measurement S o i l Sampling S o i l Chemical A n a l y s i s S o i l P h y s i c a l A n a l y s i s Climate and M i c r o c l i m a t e The Study Area L o c a t i o n Geology Physiography C l i m a t e of the Lowland S o i l s o f the Lowland P h y t o s o c l o l o g i c a l C l a s s i f i c a t i o n o f the S t u d i e d Devon I s l a n d Phytogeocoenoses I. A l e c t o r l e t a l i a 1. Dryado - A l e c t o r i o n (1) Nardino - Dryado - A l e c t o r i e t u m v i I I . Dryadetalia (octopetalae - i n t e g r i f o l i a e ) 5 ^ 2 . Dryadlon i n t e g r i f o l i a e 55 ( 2 ) Tetragono - Dryadetum I n t e g r i f o l i a e 58 ( 3 ) Pedlcularo - Dryadetum i n t e g r i f o l i a e 83 (h) Rhacomitrio - Oxyrio — Dryadetum 101 i n t e g r l f o l i a e I I I . S a l i c e t a l i a a rcticae 117 3 . Luzulo - S a l i o l o n a r c t i c a e 118 ( 5 ) Pogonato - Luzulo - Salicetum.arcticae 119 IV. Phyllodoco - Casslopetalia 135 4 . Cassiopion tetragonae 137 ( 6 ) Sphaerophoro - Rhacomitrio - Cassiopetum tetragonae 138 V. C a r l c e t a l i a fuscae 153 5 . Carlclon a q u a t l l i s 154 ( 7 ) Cariceturn s t a n t i s 155 subass. caricetosum membranacei 158 subass. caricetosum s t a n t i s 156 VI. P e t a s i t e t a l l a f r l g l d i 178 6 . Arctagrostidion l a t i f o l i a e 179 ( 8 ) Eriophoro - S a l i c o - Arctagrostldetum l a t i f o l i a e 180 VII. A r a b i d e t a l l a 190 7 . Phippsion algidae 190 ( 9 ) Catoscopio - Ranunculo - Phippsietum algidae 192 C o e f f i c i e n t s of S i m i l a r i t y and Dendrogram Analysis 201 Summary 212 L i t e r a t u r e Cited 218 Appendices Appendix A - Subsurface Temperatures of Selected Phytogeocoenoses 227 Appendix B - Hygrothermograph Data Basecamp Station 275 Appendix C - Checklist of plant species 280 v i i Table L i s t of Tables Page 1 Contrasting Features of the In t e r i o r Plateau and Coast Lowland Ecosystems 25 2 Sunshine Data - Lowland 26 3 P r e c i p i t a t i o n - Lowland 28 4 A i r Temperatures - Lowland 29 5 Wind Speed and Direction - Lowland 31 6 Phytosociological C l a s s i f i c a t i o n of Devon Island Phytocoenoses 35 7 Pebble Analysis N - D - A 38 8 F l o r i s t i c Synthesis N - D - A 40 8a S o i l Synthesis N - D - A 4 l 9 Average Wind Speed Over Three Adjacent Associations 44 10 F i e l d Moisture Determinations N - D - A 49 11 Calculated Available Water N - D - A 51 12 Pebble Analysis T - Dl 59 13 F i e l d Moisture Determinations T - Di 66 14 Calculated Available Water T - Di 68 15 F l o r i s t i c Synthesis T - Di 70 15a S o i l Synthesis T - Di 71 16 Snow Depth Transects T - Di 72 17 Snow Melt Patterns T - Di 73 18 S o i l Temperatures - Hummock and Depression Topography 81 19 Pebble Analysis P - Di 85 20 F l o r i s t i c Synthesis P - Di 86 20a S o i l Synthesis P - Dl 87 v i l i Table Page 21 F i e l d Moisture Determinations P - Di 96 22 Calculated Available Water P - Di 9 7 -23 Pebble Analysis R - 0 - Dl 102 24 F l o r i s t i c Synthesis R - 0 - Di 108 24a S o i l Synthesis R - 0 - Di 109 25 F i e l d Moisture Determinations R - 0 - Dl 110 26 Calculated Available Water R - 0 - Di 110 27 Snow Melt Pattern R - 0 - Di 112 28 S o i l Temperatures R - 0 - Di 113 29 F l o r i s t i c Synthesis P - L - Sa 121 29a S o i l Synthesis P - L - Sa 122 30 F i e l d Moisture Determinations P - L - S a 130 31 Pebble Analysis S - R - Ct 14-1 32 F l o r i s t i c Synthesis S - R - Ct 142 3 2 a S o i l Synthesis S - R - Ct 143 33 Snow Melt Pattern S - R - Ct 146 3 ^ F i e l d Moisture Determination S - R - Ct 14? 35 Calculated Available Water S - R - Ct 148 36 F l o r i s t i c Synthesis Cs - cs 157 37 F l o r i s t i c Synthesis Cs - cm 159 38 S o i l Synthesis Cs- 165 39 F l o r i s t i c Synthesis E -.S - A l 181 39a S o i l Synthesis E - S - A l 182 40 Calculated Available Water E - S - A l 188 41 Pebble Analysis C - R - Pa 193 42 F l o r i s t i c Synthesis C - R - Pa 199 S o i l S y n t h e s i s C - R - Pa F l o r i s t i c S e p a r a t i o n of A l l Phytocoenoses Comparative S o i l Temperatures by A s s o c i a t i o n X L i s t o f Figures Figure Page 1 A e r i a l Photograph Coastal Lowland Study Area 13 2 Location Map o f the Study Area 14 3 Plateau Surface From the A i r 20 4 Earth Debris Island Formed on Talus 20 5 Fines Washed to Escarpment Base 21 6 Well Developed Patterned Ground 21 7 View o f the Lowland Toward Jones Sound 22 8 Advection Fogs 22 9 Non-Sorted Stripes 23 10 Newly Emergent Beach Crest at Present Shore Line 42 11 Older Beach S i t e i n the Lowland I n t e r i o r 42 12 Polar Desert S o i l Underlying N - D - A 47 13 P r o f i l e of Beach Foreshore 47 14 Landscape P o s i t i o n of the T - Dl 60 15 Pronounced Hummock and Depression M i c r o r e l i e f 60 16 A r c t i c Brown (Shallow Phase) S o i l , Plot 52 62 17 A r c t i c Brown S o i l , P l o t 31 62 18 Typical Snowpack Following Beach Slope 75 19 Late Snow on Low Beach with Southern Aspect 75 20 Wind Blown Detritus C o l l e c t i n g Along Beach Foreslope 76 21 Active Layer Development T - Dl 77 22 Active Layer Development T - Dl 78 23 D i s t r i b u t i o n of Plants i n Relation to Hummock Depression Topography and 80 24 View of the P - Dl 90 F i g u r e Page 25 S o i l P i t No. 39 90 26 Non-Sorted C i r c l e P l o t No. 6 91 2? Non-Sorted C i r c l e P l o t No. 4 l 91 28 A c t i v e Layer Development P - D i 99 29 A c t i v e Layer Development P - D i 100 30 H a b i t a t o f the R - 0 - D i 106 31 Close-up S u r f a c e R - 0 - D i 106 32 A r c t i c Brown S o i l P r o f i l e Beneath the R - 0 - D i 107 33 A c t i v e Layer Development R - 0 - D i 115 34 A c t i v e Layer Development R - 0 - D l 116 35 S p r i n g Emergence o f Ice Wedge Polygons 124 36 Exposure o f Ground Ice i n the Area o f P l o t 7 124 37 S o i l P r o f i l e P l o t 3 127 38 S o i l P r o f i l e P l o t 7 127 39 P o l y g o n a l Shape of Pond Base M a t e r i a l 128 4o P i t Base, P l o t 3t Showing I n c i p i e n t Ice Wedge Forming 129 4 1 A c t i v e Layer Development P - L - Sa 132 42 A c t i v e Layer Development P - L - Sa 133 43 A c t i v e Layer Development P - L - Sa 134 4 4 Landscape P o s i t i o n S - R - Ct 140 ^ 5 P l o t 89 S - R - Ct 140 46 Snowpack In the Pre-Cambrian Outcrop 149 47 L i t h o s o l i c S o i l s a t P l o t 25 149 48 Emerging Beach Ridge 160 49 P l o t 27 Cs - cs 161 50 P l o t 63 Cs - cm 161 x i i F i g u r e Page 51 A c t i v e Layer Development 162 52 Ecotones o f Cs - cs and Cs - cm 166 53 Hummock and Dep r e s s i o n Topography o f the S u b a s s o c i a t i o n c a r i c e t o s u m membranacel 166 54 E a r l y Hummock Emergence from the Winter Snowpack 167 55 A c t i v e Layer Development Cs - cm 168 56 A c t i v e Layer Development Cs - cs 169 57 G l e y s o l i c Meadow Tundra S o i l P l o t 28 173 58 S i t e s o f Sampling o f S o i l B l o c k s 174 59 S i t e s o f Sampling o f S o i l B l o c k s 174 60 S o i l B l o c k s from Hummock and D e p r e s s i o n L o c a t i o n s P l o t 6 l 175 61 Landscape P o s i t i o n E - S - A l I 8 5 62 Weakly Developed Non-Sorted C i r c l e s E - S - A l 186 63 Wet Tundra S o i l s P l o t 18 . 187 6 4 Upland Tundra S o i l P l o t 58 I 8 7 65 E l e v a t e d Limestone B l o c k s R e s u l t i n g i n a Snow Bed L o c a t i o n 194 66 P l o t 69 C - R - Pa 195 67 P l o t 70 C - R - Pa 195 68 Dendrogram, A l l F l o r i s t i c Components 206 69 Dendrogram, V a s c u l a r P l a n t s 207 70 Dendrogram, L i c h e n s 208 71 Dendrogram, Bryophytes 209 x i i i ACKNOWLEDGMENTS The author wishes to g r a t e f u l l y acknowledge the guidance and help of Dr. V. J . Krajina, research supervisor, i n a l l facets of the present study. I am p a r t i c u l a r l y g r a t e f u l f o r his help i n the naming of the higher units of the present c l a s s i f i c a t i o n and his most h e l p f u l suggestions on the f i n a l form of the d i s s e r t a t i o n . I am also p a r t i c u l a r l y g r a t e f u l to a number of people who assis t e d i n i d e n t i f y i n g and annotating the numerous plant c o l -l e c t i o n s made during the study: Dr. J . Maze (Gramlneae), Dr. A. E. P o r s i l d (Draba sp.), Dr. K. Beamish (Saxlfraga sp. and Ranunculus sp.). Dr. W. B. Schofield (Mosses), Dr. K. Damsholt (Liverworts), Dr. I. M. Lamb (Stereocaulon sp.), and Dr. J . Thomson (Lichens). Without t h e i r help the study would have been f a r l e s s complete. I would l i k e to thank Drs. L. Lavkullch and M. K. Wall f o r th e i r very h e l p f u l discussions and suggestions concerning the s o i l s portions of the d i s s e r t a t i o n . My thanks also to Mr. Bernard Von Splndler of the Department of S o i l Science, University of B r i t i s h Columbia, for his help i n ce r t a i n s o i l chemical determinations. My thanks also to Mr. Barry Ryan, Department of Geology, University of B r i t i s h Columbia, for determination of mineral samples. Messrs. Harold Strub and Christopher Walsn provided excellent assistance i n the f i e l d , frequently under conditions which were x i v not p a r t i c u l a r l y p l e a s a n t . Without t h e i r h e l p the p r e s e n t d i s s e r t a t i o n would have been q u i t e i m p o s s i b l e . Heather Hockin and Mamie Waska spent many hours l n t r a n s -p o s i n g and o r g a n i z i n g f i e l d d a t a f o r which I am most a p p r e c i a -t i v e . Mrs. Andrea Carnevale and Mrs. E m i l y Krauz enjoy my g r e a t e s t a d m i r a t i o n f o r t y p i n g a f r e q u e n t l y undecipherable t e x t most ex-c e l l e n t l y . My thanks a l s o to Mr. Steven Borden f o r a l l the computerized work i n the d i s s e r t a t i o n . Many ecology students and f a c u l t y a t the U n i v e r s i t y of B r i t -i s h Columbia c o n t r i b u t e d i n d i r e c t l y to the t h e s i s by p r o v i d i n g an e x c i t i n g and i n t e l l e c t u a l l y s t i m u l a t i n g c l i m a t e i n which to c a r r y on graduate study. To a l l of them I am g r a t e f u l , I should mention p a r t i c u l a r l y Drs. John Lambert and J . R. MacKay whose ex-p e r i e n c e s and suggestions on working i n the n o r t h proved i n v a l u -a b l e . F i n a n c i a l a s s i s t a n c e f o r the p r e s e n t study was s u p p l i e d by the A r c t i c I n s t i t u t e o f North America and the A r c t i c - A l p i n e Commit-tee of the U n i v e r s i t y of B r i t i s h Columbia through g r a n t s - i n - a i d to Dr. V. J . K r a j i n a . The author was a l s o a s s i s t e d by a N a t i o n a l Research C o u n c i l S c h o l a r s h i p d u r i n g h i s graduate student tenure at the U n i v e r s i t y of B r i t i s h Columbia. L a s t , my p a r t i c u l a r g r a t i t u d e to my w i f e , Kathleen, not o n l y f o r her p h y s i c a l h e l p on many o c c a s i o n s , but f o r her con-t i n u e d buoyant p e r s o n a l i t y which always sees us over the rough sp o t s , t o g e t h e r o r a p a r t . x i v not p a r t i c u l a r l y pleasant. Without t h e i r help the present d i s s e r t a t i o n would have been quite impossible. Heather Hockin and Marnie Waska spent many hours i n trans-posing and organizing f i e l d data f o r which I am most appreciative. Mrs. Andrea Carnevale and Mrs. Emily Krauz enjoy my greatest admiration f o r typing a frequently undecipherable text most e x c e l l e n t l y . My thanks also to Mr. Steven Borden for a l l of the com-puterized work l n the d i s s e r t a t i o n . Many ecology students and fac u l t y at the University of B r i t i s h Columbia contributed i n d i r e c t l y to the thesis by pro-vidi n g an e x c i t i n g and i n t e l l e c t u a l l y stimulating climate i n which to carry on graduate study. To a l l of them I am g r a t e f u l . I should mention p a r t i c u l a r l y Drs. John Lambert and J . R. MacKay whose experiences and suggestions on working i n the north proved invaluable. Last, my p a r t i c u l a r gratitude to my wife, Kathleen, not only for her physical help on many occasions, but for her con-tinued buoyant personality which always sees us over the rough spots, together or apart. 1 I n t r o d u c t i o n The Canadian A r c t i c A r c h i p e l a g o , a l a n d a r e a o f a p p r o x i -mately 549,000 square m i l e s ( P o r s l l d 1964) remains one o f the l e a s t s t u d i e d a r c t i c r e g i o n s from the s t a n d p o i n t of p l a n t e c o l o g y . While there i s a r e a l need f o r the c o n t i n u a t i o n of b a s i c i n v e n t o r i e s i n many p o r t i o n s o f the Canadian a r c t i c (Benninghoff 1963) there e x i s t s , i n terms o f f l o r i s t i c works, an e x c e l l e n t core of r e l a t i v e l y r e c e n t l y p u b l i s h e d m a t e r i a l ( c . f . P o r s i l d 1 9 6 4 ; P o l u n i n 1940, 1947; S a v i l e 1 9 5 9 , 196I; B r a s s a r d 1967a, 1967b; S t e e r e 1939, 19^7, 1951, 1955; B r a s s a r d and S t e e r e 1967; S c h u s t e r , S t e e r e and Thomson 1959; Lynge 1947; S c h o f i e l d and Cody 1955? B r a s s a r d and B e s c h e l 1968; and o t h e r s ) . These p a s t works, i n combination w i t h s i m i l a r s t u d i e s from the low a r c t i c r e g i o n s of Canada sh o u l d p r o v i d e a sound base f o r d e t a i l e d s t u d i e s of a p h y t o s o c l o l o g i c a l and e c o s y s t e m a t l c nature. A review o f the l i t e r a t u r e however shows t h a t work of t h i s type i s l a c k i n g i n the Canadian High A r c t i c . Indeed u n t i l the work of Lambert and K r a j i n a i n the R i c h a r d s o n and B r i t i s h Mountains of the extreme northwest mainland, d e t a i l e d c o m p o s i t i o n of p l a n t communities i n the c l a s s i c a l sense were e n t i r e l y l a c k i n g from t h i s r e g i o n . The reasons f o r the conspicuous absence o f s t u d i e s of t h i s n a t u r e are undoubtedly complex. There are however two c o n t r i b -u t i n g f a c t o r s which appear to be r e s p o n s i b l e , i n p a r t a t l e a s t , f o r t h i s s i t u a t i o n . The f i r s t i s the o c c u p a t i o n of North American, p l a n t e c o l o g i s t s w i t h the f u n c t i o n a l approach to 2 s t u d i e s of v e g e t a t i o n l n the a r c t i c (as elsewhere). The second was the apparent f r u s t r a t i o n of e a r l i e r workers ( G r i g g 1 9 3 4 ) to transpose c l a s s i c a l methods of v e g e t a t i o n and p h y t o s o c i o l o g l c a l study, as p r a c t i c e d i n the temperate r e g i o n s of many a r e a s , to the h i g h e r l a t i t u d e s . The f u n c t i o n a l ( p h y s i o l o g i c a l ) approach to problems of a r c t i c v e g e t a t i o n has y i e l d e d i n t e r e s t i n g and I nformative r e s u l t s ( B i l l i n g s and Mooney 1 9 6 8 ) . I t Is becoming i n c r e a s i n g l y c l e a r however t h a t c o r r e l a t i v e synecology and p h y t o s o c l o l o g y can p r o v i d e a g e n e r a l i z i n g i n f l u e n c e on e c o p h y s l o l o g i c a l d a t a ^ c f . Major's comment E c o l . 5 K l ) * l 6 6 7 and a sound b a s e l i n e f o r s t u d i e s of an a u t e c o l o g i c a l nature and the f i e l d t e s t i n g of a u t e c o l o g i c a l hypotheses. The r e j e c t i o n of the 'community-unit 1 theory (sensu Whittaker, 1 9 6 7 ) or the c l a s s i c a l " a s s o c i a t i o n " concept of Braun-Blanquet has been a predominant theme o f many r e s e a r c h e r s i n the North American a r c t i c a l p i n e l i t e r a t u r e . One of the e a r l i e s t and perhaps the most c r i t i c a l r e j e c t i o n s o f t h i s approach came from Robert G r i g g s ( 1 9 3 4 ) who c a l l e d f o r a working out of a r c t i c e c o l o g y on an e n t i r e l y d i f f e r e n t b a s i s than had been produced i n the temperate r e g i o n s . More r e c e n t l y S a v i l e ( i 9 6 0 ) has a l s o r e j e c t e d the i d e a of d i s t i n c t a r c t i c p l a n t a s s o c i a t i o n s . Others who have taken a more or l e s s i n d i v i d u a l -i s t i c approach to a r c t i c v e g e t a t i o n , p r i n c i p a l l y w i t h r e g a r d to h a b i t a t i n s t a b i l i t y due to c o n g e l i t u r b a t l o n , are Raup ( 1 9 5 1 ) , S i g a f o o s ( 1 9 5 2 ) and Drury ( 1 9 6 2 ) . 3 In c o n t r a s t to t h i s are the works of Nordhagen ( 1 9 5 5 ) , Running ( 1 9 6 5 . 1 9 6 9 ) , G e l t i n g ( 1 9 5 5 ) , G J a e r v o l l (195*0. Aleksandrova ( i 9 6 0 ) and Acock ( 1 9 4 0 ) , tundra s p e c i a l i s t s who have s a t i s f a c t o r i l y u t i l i z e d a community u n i t theory f o r the study of v e g e t a t i o n i n a wide a r e a of the S c a n d i n a v i a n and S o v i e t a r c t i c . A l s o i n the analogous a l p i n e areas of North America and S c a n d i n a v i a , Bamberg and Major ( 1 9 6 8 ) , B l i s s ( I 9 6 3 ) , Dahl ( 1956) and Marr ( I 9 6 ? ) have a l l to some ex t e n t s a t i s f a c -t o r i l y u t i l i z e d the community-unit theory i n the d e s c r i p t i o n and i n t e r p r e t a t i o n of v e g e t a t i o n . Indeed Bamberg and Major (1968) have suggested t h a t the o f t e n quoted " t r o u b l e " i n the d e s c r i p t i o n of a r c t i c v e g e t a t i o n types i n a c l a s s i c a l manner can be a t t r i b u t e d to i n e x p e r i e n c e w i t h the v e g e t a t i o n a l types and t h e i r ecology, and an overemphasis of the a c t u a l r o l e which c o n g e l i t u r b a t i o n p l a y s i n the d i s t r i b u t i o n and environment of a r c t i c - a l p i n e v e g e t a t i o n . More d e t a i l e d i n f o r m a t i o n accumulated w i t h r e s p e c t to the s t r u c t u r e and ecology of a r c t i c v e g e t a t i o n s h o u l d f a c i l i t a t e the g e n e r a t i o n of v a l i d comparisons and e c o l o g i c a l i n t e r p r e t a -t i o n s w i t h i n the c l r c u m p o l a r r e g i o n s . Nowhere i s the need f o r i n f o r m a t i o n of t h i s s o r t more c r i t i c a l l y p o i n t e d out than i n Bocher's ( 1 9 5 D e x c e l l e n t r e I n t e r p r e t a t i o n of the causes of b i c e n t r i c d i s t r i b u t i o n a l p a t t e r n s i n c e r t a i n c l r c u m p o l a r s p e c i e s . Drury ( 1 9 6 2 ) has p o i n t e d out the e x i s t i n g s i m i l a r i t y o f p a t t e r n shown i n the p u b l i s h e d work of tundra r e g i o n s . Running ( 1 9 6 5 ) has even suggested the c l r c u m p o l a r nature of the Dryadlon a l l i a n c e on the b a s i s of h i s a n a l y s i s of the e x i s t i n g l i t e r a t u r e from S c a n d i n a v i a , A r c t i c R u s s i a , A l a s k a , Greenland, I c e l a n d and h i s own s t u d i e s i n S v a l b a r d . There remains however a r e a l need f o r the r e p l i c a t e d d e s c r i p t i o n of v e g e t a t i o n and environment, which the community-unit theory p r o v i d e s , b e f o r e we achieve the p r e d i c t i v e q u a l i t i e s to which a s c i e n c e of a r c t i c v e g e t a t i o n should a s p i r e . A t the onset o f t h i s study t h e r e f o r e , two broad g o a l s became apparent. The f i r s t was to t e s t the u t i l i z a t i o n of the community-unit theory i n a Canadian h i g h a r c t i c s i t u a t i o n , i n an attempt to demonstrate i t s p r a c t i c a b i l i t y i n comparison to o t h e r areas of the a r c t i c biome where i t has been s u c c e s s f u l l y u t i l i z e d . The second was the accumulation of v e g e t a t i o n a l and environmental data which c o u l d be s t r u c t u r e d Into an ecosystem-a t l c framevrork which both d e s c r i b e d the a r e a and was comparable w i t h o t h e r a r c t i c r e g i o n s . I t i s b e l i e v e d t h a t the f o l l o w i n g d i s s e r t a t i o n has a c h i e v e d these g o a l s , and t h a t new i n f o r m a t i o n has been c o n t r i b u t e d on the s t r u c t u r e and environmental r e l a t i o n s h i p s of v e g e t a t i o n l n a Canadian h i g h a r c t i c ecosystem. P h y t o s o c i o l o g l c a l Methods and U n i t s Methods: As Dahl ( 1 9 5 6 ) has p o i n t e d out the e x p l i c a t i o n of method-olo g y i s important f o r Judging p h y t o s o c i o l o g l c a l works. V a r i o u s " s c h o o l s " of thought have e v o l v e d which approach the study of 5 v e g e t a t i o n i n v a r i o u s ways (Whittaker 1 9 6 2 ) . O c c a s i o n a l l y i n d i -v i d u a l s t u d i e s combine s e v e r a l approaches In an attempt to meet the s p e c i f i c needs o f a g i v e n a r e a ; t h i s has been done i n the p r e s e n t study. The b a s i c approach to v e g e t a t i o n a n a l y s i s used here i s t h a t of the Z u r i c h - M o n t p e l l i e r s c h o o l of p h y t o s o c i o l o g y . Cer-t a i n m o d i f i c a t i o n s have been u t i l i z e d , which i t was f e l t adapted the b a s i c approach to more c l o s e l y f i t the s i t u a t i o n . The Domln s c a l e of s p e c i e s s i g n i f i c a n c e as developed and u t i l i z e d by K r a j i n a ( 1 9 3 3 ) has been chosen f o r e s s e n t i a l l y those reasons Dahl has expressed i n h i s study i n Rondane ( 1 9 5 6 ) . One l a r g e sample ( p l o t ) has been a n a l y z e d w i t h i n each stand r a t h e r than a number of subsamples as p r a c t i c e d i n many S c a n d i n a v i a n s t u d i e s ( c f . R u n n i n g 1 9 6 5 ? Nordhagen 1 9 5 5 ) • P l o t s i z e f o r the most p a r t i s e i t h e r lOOnr or 25m , g e n e r a l l y l a r g e r than those p r e v i o u s l y u t i l i z e d I n s i m i l a r s t u d i e s , and f o r t h i s reason i t i s assumed t h a t t h i s i s l a r g e r than the minimal a r e a f o r any g i v e n type. P l o t s i z e f o r any g i v e n s t a n d Is s t a t e d i n the treatment of v e g e t a t i o n . The mosaic nature of a r c t i c v e g e t a t i o n Is w e l l known to f i e l d workers i n t h a t r e g i o n ( B l i s s 1 9 6 2 ) . The lowland system i n which the p r e s e n t work was c a r r i e d out i s no e x c e p t i o n . Mixed a s s o c i a t i o n s (sensu Braun-Blanquet and F u r r e r 1 9 1 3 ) or e c o t o n a l areas occupy s i g n i f i c a n t p o r t i o n s of the landscape. Where a p p r o p r i a t e the p e n e t r a t i o n of s p e c i e s Into a d j a c e n t a s s o -c i a t i o n s was noted and w i l l be commented upon i n the d e t a i l e d treatment of v e g e t a t i o n . The o v e r l y i n g p h i l o s o p h y of the study 6 however was not, to paraphrase Braun-Blanquet and P u r r e r ( 1 9 1 3 ) , to i n v e n t o r y the t o t a l a r e a l landscape s u r f a c e , but r a t h e r to d e l i n e a t e r e p l i c a t i n g v e g e t a t l o n a l u n i t s and t h e i r a s s o c i a t e d environmental c o n d i t i o n s , which c o u l d serve as a b a s i s f o r f u t u r e r e s e a r c h l n comparative e c o l o g i c a l s t u d i e s . I take t h i s d e l i n e a t i o n to be e s s e n t i a l l y e q u i v a l e n t to the"nodal"concept o f Poore ( 1 9 5 5 b ) . U n i t s o f c l a s s i f i c a t i o n : The b a s i c u n i t o f v e g e t a t i o n of the 2 u r l c h - M o n t p e l l i e r s c h o o l i s the a s s o c i a t i o n . T r a d i t i o n a l l y t h i s Is a f l o r i s t i c u n i t b a s i n g i t s d e l i n e a t i o n mainly on c h a r a c t e r i s t i c o r d i f f e r -e n t i a l s p e c i e s (Braun-Blanquet and F u r r e r 1 9 1 3 ; K r a j i n a 1 9 3 3 ; Dahl 1 9 5 6 ) . In areas poor l n s p e c i e s composition, as i n the a r c t i c , the success of r e s t r i c t i n g the d e l i n e a t i o n of the a s s o -c i a t i o n to t h i s framework alone i s q u e s t i o n a b l e . Dahl ( 1 9 5 6 ) has shown the d e s i r a b i l i t y of employing both dominants and d i f -f e r e n t i a l s p e c i e s to the c h a r a c t e r i z a t i o n of v e g e t a t i o n l n Rondane. Other workers ( O o s t i n g 1 9 4 8 ; M u l l e r 1 9 5 2 ) have shown the importance of the s h i f t i n g o f dominance p a t t e r n r a t h e r than f l o r i s t i c c omposition i n the study of s u c c e s s i v e stages i n tundra v e g e t a t i o n . The p r e s e n t study u t i l i z e s the concept of c h a r a c t e r i s t i c combinations of s p e c i e s as used by K r a j i n a ( 1 9 3 3 ) and h i s students i n the c h a r a c t e r i z a t i o n of the p l a n t a s s o c i a t i o n . The f l e x i b i l i t y o f t h i s system a l l o w s one to d e l i n e a t e u n i t s not on l y on the c h a r a c t e r i s t i c presence of d i f f e r e n t i a l s but a l s o on t h e i r c h a r a c t e r i s t i c absence or obvious changes In p a t t e r n s of s p e c i e s s i g n i f i c a n c e . 7 Moore (1962) has pointed out the trend of continental phytosociologists to u t i l i z e the term "presumed Kennart" (presumed f a i t h f u l species) where work i s car r i e d out i n poorly understood regions. Because of my l i m i t e d experience i n the Canadian A r c t i c and the lack of accumulated phytosoclological data from t h i s area, I have continued t h i s trend and used the heading "presumed c h a r a c t e r i s t i c combination of species" i n the synthesis Tables. The units of higher phytosoclological i n t e -gration remain those of the Zurich-Montpellier school, the a l l i a n c e , order and c l a s s . Since a number of l i t h o l o g i c parameters have been determined for each releve, I have chosen to term the f i n a l units derived from the study phytogeocoenoses (sensu Sukachev 1944). While i t i s r e a l i z e d that numerous parameters of an ecologlc and geo-graphic nature may be u t i l i z e d i n the characterization of the Zurich-Montpellier association ( c f . quote of Braun-Blanquet i n Moore 1962) i t s e s s e n t i a l d i s t i n g u i s h i n g c h a r a c t e r i s t i c s remain f l o r i s t i c and the environmental parameters described remain variable i n both extent of measurement and choice of parameter. The term phytogeocoenosls emphasizes suc c i n c t l y the primary avenues of invest i g a t i o n undertaken and the empirical values, u t i l i z e d i n the f i n a l synthesis of e c o l o g i c a l units i n t h i s study. As Sukachev has shown the biogeocoenosis i s a concrete landscape u n i t composed c h i e f l y of two d i v i s i o n s , an ecotope (physical environment) and a biocoenose ( l i v i n g organisms), the blocoenose being further subdivided into the phytocoenose (vegetation), zoocoenose (animal populations) and microbocoenose (microorganisms). I t i s c l e a r t h a t Sukachev c o n s i d e r e d the p l a n t a s s o c i a t i o n e q u i v a l e n t o n l y to the p h y t o c o e n o s i s ( 1 9 4 4 ) . A l s o e x p l i c i t i s Sukachev 1s b e l i e f t h a t the b i o c o e n o s l s be d e f i n e d s o l e l y i n b i o l o g i c f e a t u r e s . Only when d e f i n i t e l a n d -scape homogeneity i s i n t r o d u c e d does the study become b l o g e o c o e n o t i c . "Although the p o i n t has not y e t been c l a r i f i e d , landscape study and biocoenology have a common meeting ground o n l y In the b i o g e o c o e n o s l s " (Sukachev 1 9 4 4 ) . U n f o r t u n a t e l y there does not e x i s t a t p r e s e n t a s t a n d a r d i z e d procedure f o r the naming of a phytogeocoenosis or any i n d i c a -t i o n of how many e c o t o p i c parameters must be measured b e f o r e the study may be c o n s i d e r e d b l o g e o c o e n o t i c . F o r t h i s r e a s on standard l a t i n i z e d endings a p p l i e d to the a s s o c i a t i o n names i n the Z u r i c h - M o n t p e l l i e r t r a d i t i o n head the v a r i o u s s e c t i o n s w i t h i n the d i s s e r t a t i o n . I t s h o u l d be kept i n mind however t h a t a c l u s t e r of l i t h o l o g l c and f l o r i s t i c parameters, as w e l l as l a n d -scape p o s i t i o n , were c o n s i d e r e d i n the f i n a l c h o i c e o f the s y n t h e s i z e d " u n i t s , " and hence the c h o i c e o f the d i s s e r t a t i o n t i t l e . Methods of Environmental Measurement: S o i l Sampling: S o i l p i t s were excavated to the base o f the a c t i v e l a y e r a t each r e l e v e . Samples were c o l l e c t e d from a l l r e c o g n i z a b l e 9 h o r i z o n s . Where a p p r o p r i a t e samples were a l s o c o l l e c t e d from pockets, i n t r u s i o n s o r any non-horizon m a t e r i a l exposed by the e x c a v a t i o n . F i e l d measurements of depth and t h i c k n e s s o f h o r i -zons, boundaries, s t r u c t u r e and c o l o r were taken i n the f i e l d . Because of space l i m i t a t i o n s o f the f i e l d s t a t i o n , i t was i m p o s s i b l e to dry a l l s o i l s i n the f i e l d . When t h i s o c c u r r e d the samples were s t o r e d i n an unheated b u i l d i n g and a i r d r i e d upon r e t u r n to B r i t i s h Columbia. A l l samples were passed through a 2-mm s i e v e b e f o r e a n a l y s i s . Where p o s s i b l e a random sample of p a r e n t m a t e r i a l was c o l l e c t e d from the base of each s o i l p i t . T h i s was r e t u r n e d to the geology department a t the U n i v e r s i t y of B r i t i s h Columbia f o r m i n e r a l a n a l y s i s . S o i l Chemical A n a l y s i s : S o i l r e a c t i o n was measured i n both a 1 : 2 soil-.water r a t i o ( H i s s i n k 1 9 3 0 ) and a 1 : 2 s o i l : 0 . 0 1 M C a C l 2 s o l u t i o n ( S c h o f i e l d and T a y l o r 1955)* A l l measurements were r e a d on a Radiometer model 24. Q u a n t i t a t i v e carbon d e t e r m i n a t i o n s were made u t i -l i z i n g a Leco T o t a l Carbon A n a l y z e r . T o t a l n i t r o g e n was done by the semimicro K J e l d a h l method a f t e r Bremmer ( i 9 6 0 ) . Phos-phorus was determined by Dickman and Bray's c h l o r o s t a n n o u s -molybdopho3phorlc blue c o l o r method i n h y d r o c h l o r i c a c i d (Jackson 1 9 5 8 ) * Percent t r a n s m i s s i o n was r e a d a t 6 6 0 0 A on a Bausch and Lamb S p c c t r o n i c 2 0 . R e p l a c e a b l e c a t i o n s (Ca, K, Mg, Na) were measured as f o l l o w s : 10 grams o f a i r dry s o i l were shaken f o r 24 hours i n 6 0 mis of IN ammonium a c e t a t e a t pH 7 . 0 + 0 . 2 . T h i s was then f i l t e r e d and washed w i t h two 2 0 ml. a l i q u o t s o f ammonium a c e t a t e and "brought to volume. C a t i o n s were then measured on a Perkin-Elmer Atomic a b s o r p t i o n s p e c t r o -photometer model 3 0 3 . S o i l P h y s i c a l A n a l y s i s ; S o i l c o l o r , dry and i n the f i e l d , was measured w i t h standard M u n s e l l c o l o r n o t a t i o n s ( B a l t i m o r e ) . P a r t i c l e s i z e measurements were determined by the hydrometer method (Bouyoucos 1 9 5 1 ) a f t e r d i s p e r s i o n by r e c i p r o c a l shaking w i t h a 2% s o l u t i o n o f Calgon f o r 24 hours. S i z e f r a c t i o n l i m i t s are those o f the U.S.D.A. ( 1 9 5 1 ) * S o i l moisture r e t e n t i o n v a l u e s a t 1 / 3 and 1 5 atmos. were o b t a i n e d w i t h ceramic p l a t e e x t r a c t o r s ( S o i l m o i s t u r e E q u i p . Co.) and a v a i l a b l e water c a l c u l a t e d as the d i f f e r e n c e between these v a l u e s . Climate and M i c r o c l i m a t e : The basecamp weather s t a t i o n housed the f o l l o w i n g i n s t r u -ments d u r i n g the 1 9 6 8 and 1 9 6 9 f i e l d seasons: 1 C a s e l l a hygrothermograph 1 T a y l o r Maximum-Minimum Thermometer 1 R a i n Gauge ( S c i e n c e A s s o c i a t e s # 5 1 0 ) With the h e l p of the basecamp p e r s o n n e l an attempt was made to r e c o r d a t l e a s t twice d a i l y , e s t i m a t e d c l o u d cover ( 1 0 t n s ) , wind speed ( B e a u f o r t ) and d i r e c t i o n . S i x m i c r o c l i m a t i c s t a t i o n s were a l s o e s t a b l i s h e d l n v a r i o u s l o c a t i o n s i n both I 9 6 8 and 1 9 6 9 . Each s t a t i o n housed the f o l l o w i n g : T a y l o r Maximum-Minimum Thermometer Tempscribe remote r e c o r d i n g thermographs f o r continuous r e a d i n g of s o i l temperature a t v a r i o u s depths. The tempscribe u n i t s were s e r v i c e d weekly and a t t h a t time r e p l i c a t e d s o i l cores were taken f o r the g r a v i m e t r i c determina-t i o n o f s o i l moisture and maximum, minimum and p r e s e n t tempera-t u r e r e c o r d e d a t the h e i g h t of the v e g e t a t i o n . A number of YSI s e r i e s 1 0 0 t h e r m i s t e r s were i n s t a l l e d i n 1 9 6 8 to measure s o i l temperature under v a r i o u s v e g e t a t i o n a l regimes. These were l e f t over w i n t e r and u t i l i z e d a g a i n i n 1 9 6 9 . Thus, d u r i n g the l a t t e r season a number of s o i l tempera-t u r e s were o b t a i n e d p r i o r to snow melt and a c t i v e l a y e r thawing. A group o f t h e r m l s t e r probes were a l s o s e t out i n a hummock r e l i e f d u r i n g 1 9 6 9 , to a s s e s s the e f f e c t o f s m a l l t o p o g r a p h i c changes on s o i l temperatures. Other s p e c i a l i z e d probes were u t i l i z e d t o r e c o r d spot r e a d i n g s of temperature i n v a r i o u s l o c a -t i o n s and s i t u a t i o n s a t the s o i l s u r f a c e and w i t h i n snow p r o f i l e s Snow depth and thaw were measured d a i l y a l o n g staked t r a n -s e c t s i n v a r y i n g l o c a l i t i e s d u r i n g both the 1 9 6 8 and 1 9 6 9 seasons. Wooden probes were used to measure the r a t e and depth of thaw of the a c t i v e l a y e r under v a r i o u s v e g e t a t i o n c o v e r s . Ten probes were used per v e g e t a t i o n type and each type was r e p l i c a t e d a t l e a s t t w i c e . Where microtopography or s u r f a c e f e a t u r e s were heterogeneous (e.g. p a t t e r n e d ground) equal num-bers o f probes were p l a c e d on each s u r f a c e . A l l probes were d r i v e n to p o i n t of r e f u s a l and measured weekly. T h i s technique was used o n l y where i t c o u l d be re a s o n a b l y assumed t h a t the p o i n t o f r e f u s a l corresponded to the p r e s e n t zero degree i s o -therm. S i t e s o f a very rocky nature as the r a i s e d beaches or Pre-Cambrlan r o c k outcrops were o m i t t e d . T h i s b a s i c technique has been used w i t h success l n s i m i l a r s t u d i e s i n tundra r e g i o n s ( B l i s s 1 9 5 6 ; Mackay I 9 6 3 ; Brown and R i c k a r d 1 9 6 9 ) . Other m i s c e l l a n e o u s r e c o r d i n g s or o b s e r v a t i o n s noted d u r i n g the course o f the study w i l l be commented on where a p p r o p r i a t e w i t h i n the t e x t . The Study A r e a L o c a t i o n : The study was undertaken on Devon I s l a n d , second l a r g e s t and southeasternmost of the Queen E l i z a b e t h I s l a n d s . The e a s t e r n t h i r d of Devon supports the a r c h i p e l a g o ' s t h i r d l a r g e s t g l a c i e r i z e d a r e a ( 1 6 , 5 7 5 sq. km.) which r i s e s to an e l e v a t i o n o f approximately 1 , 8 9 0 m. ( B i r d 1 9 6 7 ) . More s p e c i f i c a l l y the study a r e a i t s e l f was an approximate s i x t e e n square m i l e a r e a of c o a s t a l lowland a t 75° 41 »N; 84° 33'W. ( P i g . 1 ) . The a r e a i s known l o c a l l y as the "Basecamp" lowland due t o the presence of the A r c t i c I n s t i t u t e o f North America f i e l d s t a t i o n e r e c t e d i n 3-961. The lowland i s the southern most of t h r e e r a t h e r n a t u -r a l l y d e l i n e a t e d lowlands which form a low l a n d complex from "Truelove I n l e t " to Cape Sparbo i n the n o r t h . The lowland a r e a / P i g . 1 A e r i a l photograph of the c o a s t a l lowland study a r e a . See t e x t f o r o r i e n t a t i o n . F i g . 2 L o c a t i o n map of the study a r e a ( c o u r t e s y o f Tom Booth). 1 5 i s bounded on three s i d e s by water and on the e a s t e r n s i d e by a l a r g e v e r t i c a l escarpment. K i n g ( 1 9 6 8 ) has summarized much of the e x i s t i n g meteroro-l o g l c a l and geomorphological work undertaken i n t h i s a r e a i n h i s study of the p e r i g l a c i a l environment. Much of the d e s c r i p t i o n t h a t f o l l o w s i s taken from t h i s work. Geology: G l e n i s t e r ( 1 9 6 3 ) r e p o r t s the bedrock of the a r e a from the Sverdrup I n l e t to Cape Sparbo i s composed c h i e f l y of a P r e -Cambrian basement complex unconformably o v e r l a i n by carbonate and c l a s t i c sedimentary beds. Cowie ( r e p o r t e d by K i n g 1 9 6 8 ) has e s t i m a t e d the lower sedimentary beds of sandstone to be lower Cambrian l n age on the b a s i s of observed f o s s i l fauna and equates t h i s s e c t i o n w i t h the lower Cambrian R a b b i t P o i n t Formation. T h i s f o r m a t i o n i s e s t i m a t e d to be t h i r t y f e e t i n t h i c k n e s s . O v e r l y i n g t h i s i s a s e r i e s of dolomite sedimentary beds approximately f o u r hundred and f o r t y f e e t l n t h i c k n e s s f o l l o w e d by an inter-bedded s e r i e s of d o l o m i t e s , b r e c c i a , conglomerates and sandstone. The t o t a l e s t i m a t e d t h i c k n e s s of the sedimentary s e r i e s above the basement complex i s seven hun-dred and seventeen f e e t . The unconformity between the basement complex and the over-l y i n g s e d i m e n t a r l e s can be seen s t r i k i n g l y from the basecamp lowlands. The escarpment b o r d e r i n g the e a s t e r n p o r t i o n of the lowlands i s c h i e f l y sedimentary m a t e r i a l w i t h basement exposure i n the n o r t h e a s t e r n p o r t i o n showing a g e n t l e d i p to the south 1 6 west. The escarpment to the south of the lowland a c r o s s "Truelove I n l e t " however i s c h i e f l y Pre-Cambrian m a t e r i a l capped by a t h i n l a y e r o f sedimentary m a t e r i a l . Basement hi g h s o c c u r throughout the lowland complex and form l a r g e numbers of o f f s h o r e i s l a n d s . Pre-Cambrian outcrops are common i n the basecamp lowland and are c o n c e n t r a t e d c h i e f l y i n the n o r t h e r n p o r t i o n . Pre-Cambrian m a t e r i a l i s a l s o widely exposed i n the v a l l e y systems (King 1 9 6 8 ) and has been shown by G l e n l s t e r ( 1 9 6 3 ) to f o l l o w major r i v e r systems i n l a n d f o r twenty-f i v e m i l e s . I t i s apparent from G l e n l s t e r ( 1 9 6 3 ) t h a t the basecamp lowland l i e s i n the t r a n s i t i o n zone o f a change between the dominant sedimentary s u r f a c e o f the western p o r t i o n o f Devon and the s u r f a c e exposure o f Pre-Cambrian m a t e r i a l to the e a s t , as r e p o r t s o f Pre-Cambrian o u t c r o p p i n g are unknown west of e Longitude 8 6 40'W but dominate e a s t of Cape Sparbo. From the s t a n d p o i n t o f the p l a n t e c o l o g l s t the b a s i c geology of t h i s a r e a i n i t s e l f should p r o v i d e i n t e r e s t i n g p arent m a t e r i a l changes and subsequent s u b s t r a t e and h a b i t a t d i f f e r e n c e s . Com-bin e d w i t h g l a c i a l and f l u v i a l geomorpholglc changes and subse-quent c o n g e l i t u r b a t i o n so common i n the per m a f r o s t r e g i o n s , one should expect a mosaic o f complex h a b i t a t s t o emerge. As we s h a l l see t h i s i s i n f a c t the case. Physiography: I t i s apparent t h a t e x c l u d i n g the i c e c a p s u r f a c e two d i s -t i n c t p h y s i o g r a p h i c p r o v i n c e s e x i s t In the a r e a under study. These w i l l be d e s i g n a t e d as the c o a s t a l lowlands and the I n t e r i o r 17 p l a t e a u throughout the r e s t o f the d i s s e r t a t i o n . F o r b i o l o g i -c a l as w e l l as l o g i s t i c reasons the study was r e s t r i c t e d to a c o a s t a l lowland a r e a . However a comparison o f the two i s i n t e r -e s t i n g , f o r the v e g e t a t i o n regimes i n each are e x c e e d i n g l y d i f f e r e n t and t h e i r contiguous nature i m p l i e s a t l e a s t some mutual e f f e c t s of one upon the o t h e r . The I n t e r i o r p l a t e a u r i s e s a b r u p t l y from the lowlands to a h e i g h t of approximately 7 0 0 to 9 0 0 f e e t above sea l e v e l (ASL) and then r i s e s g r a d u a l l y i n l a n d to a h e i g h t of approximately 3 0 0 0 f e e t ASL near the i c e c a p margin. As has been p o i n t e d out i t s s u r f a c e Is u n i f o r m l y covered w i t h limestone and c l a s t i c sedimentary m a t e r i a l and appears to r e p r e s e n t a u n i f o r m e r o s i o n a l s u r f a c e o f l a t e T e r t i a r y age which has been l i t t l e m o d i f i e d by subsequent g l a c i a l a c t i v i t y ( K i n g 1 9 6 8 ) . The s u r f a c e i s n e a r l y d e v o i d of v e g e t a t i o n . Nowhere are c l o s e d stands e v i d e n t and i n many ar e a s vegeta-t i o n i s l a c k i n g completely. P a t t e r n e d ground i s apparent and i s v i r t u a l l y a l l s o r t e d ( K i n g 1 9 6 8 ; H u s s e l l 1 9 6 9 ) . S o r t e d s t r i p s are common near the basecamp margin o f the p l a t e a u ' s s u r f a c e and K i n g r e p o r t s s o r t e d n e t s , c i r c l e s and s t r i p e s from v a r i o u s areas of the p l a t e a u . C l i m a t i c data f o r the p l a t e a u s u r f a c e are s c a n t , but t h e r e are i n d i c a t i o n s t h a t , from the s t a n d p o i n t o f p l a n t growth a t l e a s t , c o n d i t i o n s are h a r s h e r than i n the a d j o i n i n g lowlands ( c f . King's comparative temperature d a t a ) . That s p r i n g snow melt i s l a t e r than In the lowland areas i s apparent from o b s e r v a t i o n , a l t h o u g h q u a n t i t a t i v e measurements are l a c k i n g . L a t e r snow melt, l a c k of t r a n s p i r a t i o n and a h i g h percentage o f f i n e g r a i n e d m a t e r i a l Insure s a t u r a t i o n o f the s u r f a c e o f the p l a t e a u i n s p r i n g . S o l i f l u c t l o n and mass-wasting are a c t i v e and everywhere apparent (King 1 9 6 8 ) . A e r i a l views of the a r e a taken i n e a r l y J u l y show prominent s o l i f l u c t l o n streams c o v e r i n g r e l a t i v e l y l a r g e areas o f the p l a t e a u s u r f a c e ( F i g . 3 ) « The movement of f i n e g r a i n sedimentary m a t e r i a l i s not r e s t r i c t e d to the h o r i z o n t a l s e p a r a t i o n o f f i n e s i n p a t t e r n e d ground or downslope s u r f a c e movement. V e r t i c a l movement of f i n e m a t e r i a l from the p l a t e a u to the lowland a r e a i s r e f l e c t e d i n v a r i o u s ways both on the escarpment's lower f a c e and a t i t s base. E a r t h d e b r i s i s l a n d s b e a r i n g v e g e t a t i o n ( F i g . 4 ) , s o l i f l u c t l o n l o b e s , and l o c a l i n u n d a t i o n o f v e g e t a t i o n by s a t u -r a t e d f i n e m a t e r i a l ( F i g . 5 ) have been noted a t the base of the escarpment b o r d e r i n g the e a s t e r n p o r t i o n o f the lowlands. E s t i -mates of the impact t h a t the t r a n s f e r r a l o f such m a t e r i a l has on the lowland system as a whole w i l l r e q u i r e f u r t h e r study. I n c o n t r a s t , the c o a s t a l lowland p r e s e n t s a s t r i k i n g l y d i f f e r e n t p i c t u r e ( F i g . 7 ) . The lowland complex r e p r e s e n t s an e l e v a t e d s t r a n d f l a t which has been c o n s i d e r a b l y m o d i f i e d by g l a c i a l and marine I n f l u e n c e s . From the c o a s t , the lowland r i s e s g r a d u a l l y to approximately 1 5 0 f e e t ASL a t the escarpment base. Dur i n g g l a c i a t i o n the lowlands were depressed and subse-quent r e t r e a t o f the g l a c i e r s a l l o w e d the a r e a to be inundated by the e u s t a t l c r i s e o f the sea. King has pres e n t e d evidence t h a t the marine l i m i t found i n nearby T r u e l o v e v a l l e y l i e s a t approximately 246 f e e t ASL. During t h i s p e r i o d o f submersion the lowland areas were s u b j e c t e d to v a r i o u s marine e r o s i o n a l 19 and deposltlonal processes with r e s u l t i n g changes i n the landscape. Following the r e t r e a t of ice from the lowland, i s o s t a t i c u p l i f t r e s u l t e d i n the emergence of the area from the sea. Elevated strandlines covering the lowland from the present coast to the escarpment base a t t e s t to t h i s emergence. Muller and Barr ( 1 9 6 6 ) and more recently Barr ( c i t e d In King 1 9 6 8 ) have attempted dating the I s o s t a t i c u p l i f t of the lowlands u t i l i z i n g i n s i t u organic material from the beaches i n combination with r e l i e f measurements. Their most recent data indicate a rapid i n i t i a l emergence p r i o r to 9 ^ 5 0 years B.P. ( 8 . 3 feet/century) followed by a decrease between 8,860 and 7,000 years B.P. ( 2 . 8 feet/century). In the l a s t 5 0 0 0 years emergence has decreased considerably (~0.6 feet/century) and i n d i c a t i o n s are that i s o s t a t i c equilibrium has been attained. Unlike the i n t e r i o r plateau, the various patterned ground features found throughout the lowlands are a l l of the non-sorted types. I found no evidence of sorted features i n the basecamp lowlands, nor apparently did King ( 1 9 6 8 ) . Though a v a r i e t y of forms e x i s t (King 1 9 6 8 ) and were noted (Figs., 4 , 6 , 9 ) , only four forms appear to be Important from a vegetatlonal standpoint, ice wedge polygons, non-sorted nets and c i r c l e s (these seem to lntergrade even on a given s i t e ) and t u r f hummocks. Other types appear too l o c a l i n occurrence to have major landscape s i g n i f i c a n c e . The va r i e t y of r e l i e f features also contrasts with the u n i -formity of the plateau surface (King 1 9 6 8 ) . F l u v i a l erosion, F i g . 3 P l a t e a u s u r f a c e from the a i r showing l a r g e areas of s o l i f l u c t l o n . S a t u r a t e d f i n e t e x t u r e d m a t e r i a l of p l a t e a u s u r f a c e i s s u s c e p t i b l e to a c t i v e c o n g e l l t u r b a t i o n (photo J u l y 1 0 , 1 9 6 7 ) . F i g . 4 E a r t h d e b r i s i s l a n d formed on t a l u s of steep escarpment b o r d e r i n g the e a s t e r n p o r t i o n of the lowlands. F i n e s moving downward.from the p l a t e a u s u r f a c e are extruded i n l o c a l i z e d spots on the t a l u s (photo June 2 1 , 1 9 6 7 ) , 20 F i g . 5 T h i s photograph was taken a t the escarpment base. F i n e s are c o n t i n u o u s l y washed down-ward toward the lowland from weathered sedimentary m a t e r i a l . L o c a l i z e d areas of v e g e t a t i o n near the escarpment a r e inundated w i t h the s a t u r a t e d m a t e r i a l . F i g . 6 W e l l developed p a t t e r n e d ground i s e v i d e n t i n the lowland. W e l l formed n o n - s o r t e d c i r c l e s as these, however, are found o n l y i n v ery l o c a l i z e d a r e a s . More commonly c i r c l e s are found i n more mesic a r e a s than t h i s and o f t e n the p a t t e r n i s n o t so d i s -t i n c t i v e l y c i r c u l a r but merges w i t h stone covered nets as In the P e d l c u l a r o - Dryadetum I n t e g r i f o l i a e . F i g . 7 View of the lowland l o o k i n g toward Jones Sound (North west). The c o n c e n t r a t i o n of Pre-Cambrian outcrop can be seen i n the upper r i g h t (Northern l o w l a n d ) . R a i s e d beaches and a s s o c i a t e d f r e s h water ponds are apparent. F i g . 8 A d v e c t i o n fogs from the ocean o f t e n b l a n k e t the lowland throughout the summer. T h i s f o g i s l y i n g over T r u e l o v e i n l e t which borders the southern lowland. The c r e s t of the southern escarpment can be seen above the f o g . F i g . 9 Non-sorted s t r i p e s are here seen on an i n a c t i v e s o l i f l u c t l o n s l o p e of coarse t e x t u r e d t i l l . T h i s was the o n l y l o c a t i o n where s t r i p e s o f any k i n d were noted i n the lowland proper, a l t h o u g h s o r t e d s t r i p e s a re common on the p l a t e a u s u r f a c e . 23 i c e wedge fo r m a t i o n , g l a c i a l d e p o s i t i o n , basement ou t c r o p s and the s p i t and lagoon f o r m a t i o n a s s o c i a t e d w i t h p o s t g l a c i a l r a i s e d beach f o r m a t i o n have a l l combined to g i v e the lowland complex a v a r i e t y of t o p o g r a p h i c f e a t u r e s which p l a y a f u n c t i o n a l r o l e l n the p a t t e r n of v e g e t a t i o n d i s t r i b u t i o n . U n l i k e the a c t i v e mass wasting and s o l i f l u c t i o n o c c u r r i n g on the p l a t e a u the m a j o r i t y of p e r i g l a c i a l f e a t u r e s noted by K i n g ( 1 9 6 8 ) In the lowlands appear to be r e l i c t i n n a t u r e . King a t t r i b u t e s t h i s to the r e l a t i v e b r i e f n e s s of the p o s t g l a c i a l p e r i o d a i d e d by the weakness of contemporary p e r i g l a c i a l p r o -cesses p r e s e n t l y a c t i v e i n the a r e a . K i n g has c a r r i e d out much of h i s work on s o l i f l u c t i o n l o b e s . As w i l l be noted i n more d e t a i l f u r t h e r on, my own data, c o n c e r n i n g the v e g e t a t i o n of non-sorted n e t s and c i r c l e s tends to support King's h y p o t h e s i s . Perhaps the most s t r i k i n g and, from the s t a n d p o i n t of the p r e s e n t study, the most n o t i c e a b l e c o n t r a s t between the p l a t e a u and lowland a r e a s i s the nature of the v e g e t a t i v e cover. The lowland a r e a has been r e c o g n i z e d as p a r t i c u l a r l y r i c h by High A r c t i c standards s i n c e as e a r l y as 1 9 3 5 (see P o l u n i n 1 9 4 8 , page 3 8 ) . C l o s e d stands of v e g e t a t i o n occupy l a r g e p o r t i o n s of the lowlands and even c u r s o r y o b s e r v a t i o n shows s h i f t s of dominant s p e c i e s from one h a b i t a t to another. A l t h o u g h the a r e a s t u d i e d i s s m a l l , there i s w i t h i n i t a m a j o r i t y of the p l a n t h a b i t a t s d e s c r i b e d f o r o t h e r areas o f the Queen E l i z a b e t h I s l a n d s ( B r a s s a r d 1 9 6 8 a ; P o l u n i n 1 9 4 8 ; S a v l l e 1 9 6 1 ) . The p o l y -g e n e t i c nature of the landscape s u r f a c e r e s u l t s l n a mosaic of v e g e t a t i o n t y p e s . Wet meadows and wet mesic heath v e g e t a t i o n A summary of the c o n t r a s t i n g f e a t u r e s of the i n t e r i o r p l a t e a u and c o a s t a l lowland p r o v i n c e s are p r e s e n t e d i n T a b l e 1 . T a b l e 1 Summary of c o n t r a s t i n g p h y s i o g r a p h i c f e a t u r e s of the I n t e r i o r P l a t e a u and the C o a s t a l Lowland Systems Lowlands P l a t e a u A. G l a c i a l m o d i f i c a t i o n A. apparent B. Marine I n f l u e n c e on geo- B. morphology s t r o n g e r i n e r o s i o n and d e p o s i t i o n C. S u r f a c e w i t h numerous C. r e l i e f f e a t u r e s D. Pre-Cambrian basement out- D. crop and Cambrian sedimen-t a r y m a t e r i a l s I n t e r m i n g l e E. P a t t e r n e d ground non-sorted E. P. E l e v a t e d s t r a n d f l a t , ex- F. posed by i s o s t a t i c u p l i f t d u r i n g p o s t g l a c i a l times G. V e g e t a t i o n continuous, w i t h G. c l o s e d stands apparent H. Animal a c t i v i t y apparent, H. abundant d u r i n g summer months I. S o l i f l u c t i o n and mass-wastingl. mainly r e l i c t J . E l e v a t i o n 0 - 1 5 0 ' ASL J . The Climate o f the Lowlands: Much of the m e t e o r o l o g i c a l i n f o r m a t i o n c o l l e c t e d d u r i n g the course of the 1 9 6 1 - 6 2 e x p e d i t i o n remains to be assembled. King ( 1 9 6 8 ) , however, has summarized some of the more p e r t i n e n t m a c r o c l i m a t i c d a t a . The a r e a has a d e c i d e d l y p o l a r c l i m a t e (ET of Koppen). The p r o x i m i t y o f Jones Sound to the n o r t h and the i c e cap to the e a s t cause the lowland to experience v a r i o u s c l i m a t i c m o d i f i c a t i o n s . G l a c i a l l y l i t t l e m o d i f i e d L i t t l e marine i n f l u e n c e on geomorphology S u r f a c e r e l a t i v e l y u n iform Uniform s u r f a c e of Cambrian sedimentary m a t e r i a l s P a t t e r n e d ground s o r t e d A u n i f o r m e r o s i o n a l s u r f a c e of T e r t i a r y age V e g e t a t i o n scant, l n many areas l a c k i n g Animal a c t i v i t y r e s t r i c t e d , low d u r i n g e n t i r e year S o l i f l u c t i o n and mass-wasting a c t i v e E l e v a t i o n 7 0 0 - 3 0 0 0 ' ASL 26 The A r c t i c Ocean has i t s p r i n c i p a l e f f e c t s on the amount of r a d i a t i o n reaching the ground as sunlight and on temperature. I t i s well documented (Rae 1 9 5 1 ) that the summer and f a l l months show higher percentages of cloud cover here than elsewhere i n the archipelago. P o r s i l d ( 1 9 6 4 ) has commented on the possible e f f e c t s of t h i s on the vegetation. Data from the basecamp low-lands showing the percent of sunshine received as a percentage of the t o t a l t h e o r e t i c a l l y possible point out t h i s characteris-t i c phenomenon (Table 2). Table 2 Sunshine Data—Basecamp Lowlands, 1 9 6 1 - 6 2 ( a f t e r King 1 9 6 8 ) Sunshine as % of Month Theoretical Possible 1 9 6 1 May 71.8 June , 3 8 . 1 July 28 . 3 Aug-ust 2 1 . 9 September. . 1 2 . 3 October 11.2 November December 1 9 6 2 January. . . — February 2 7 . March. 5 0 . A p r i l 56.8 May 3 9 . 1 June 5 3 . 3 July 5 6 . 5 August . . . . . . 2 7 . 5 September 11.8 While much of t h i s can be att r i b u t e d to cloud cover, a re l a t e d phenomenon which frequently occurs i s advection fog, r e s u l t i n g from the open coastal water in summer. The cool a i r masses from the ocean meeting the warm a i r over the lowland frequently bring about r a p i d b l a n k e t i n g of the a r e a w i t h low l y i n g a d v e c t l o n f o g ( F i g . 8 ) . T h i s i s p a r t i c u l a r l y t r u e of the a r e a near Truelove I n l e t . Rapid drop i n temperature and i n c r e a s e i n r e l a t i v e h u midity are a s s o c i a t e d w i t h these as may be seen i n the hygrothermograph data c o l l e c t e d and p r e s e n t e d as an Appendix of the p r e s e n t work. P r o x i m i t y to the ocean i s a l s o r e s p o n s i b l e f o r the a m e l i o r a t i o n o f a i r temperatures w i t h i n the lowlands. King ( 1 9 6 8 ) has compared the temperature anomaly of the basecamp 'lowlands w i t h t h a t of Eureka and R e s o l u t e Bay. The c a l c u l a t e d temperature anomaly from Eureka (80 00'N) i s a n e g a t i v e J.k F, and from R e s o l u t e Bay (74° 4-3*N) n e g a t i v e 3 . 2 F°, while the base-camp lowlands ( 7 5 ° 4 l'N) i s n e g a t i v e 1 . 1 F°. The d i f f e r e n c e i s a t t r i b u t e d to the warming marine i n f l u e n c e . The presence of the Devon i c e c a p a l s o somewhat i n f l u e n c e s the c l i m a t e o f the lowlands. High accumulation on the south-e a s t e r n Icecap margin i s I n t e r p r e t e d as a t r a p p i n g o f p r e c i p i -t a t i o n t h a t would otherwise move n o r t h e a s t a c r o s s the i s l a n d to the lowland a r e a . F u r t h e r evidence f o r t h i s "rainshadow" e f f e c t may be noted i n comparisons of p r e c i p i t a t i o n of the basecamp a r e a w i t h t h a t of C r a i g Harbor which l i e s to the n o r t h e a s t a c r o s s Jones Sound ( 7 6 ° 1 2'N, 7 9 ° 3 5'W). C r a i g Harbor r e c o r d s means of 6 4 . 9 inches o f snow and 3 » 2 5 inches of r a i n , w h i l e the basecamp a r e a r e c o r d e d o n l y 2 7 . 1 inches of snow and 2 . 5 2 inches of r a i n d u r i n g the 1 9 6 1 - 6 2 p e r i o d . The i c e c a p a l s o i n f l u e n c e s temperature through pronounced foehn e f f e c t s d u r i n g the summer months (see Appendix). These are g e n e r a l l y o f s h o r t d u r a t i o n ; however t h e i r e f f e c t on vege-t a t i o n a t l e a s t f o r a s h o r t time, i s presumably s i g n i f i c a n t . The extremely h i g h winds sometimes a s s o c i a t e d w i t h foehn phenomena, undoubtedly a r e as e f f e c t i v e f o r the d i s p e r s a l of a r c t i c p l a n t d i s s e m l n u l e s as has r e c e n t l y been demonstrated f o r a l p i n e s p e c i e s (Sonde 1 9 & 9 ) and suggested by S a v i l e ( I 9 6 I ) f o r a r c t i c a r e a s . Long term p r e c i p i t a t i o n data p r e s e n t e d i n King's work ( 1 9 6 8 ) are i n d i c a t i v e of the s c a n t v a l u e s t y p i c a l f o r the e a s t e r n p o r t i o n of the a r c h i p e l a g o (Table 3 ) • T a b l e 3 Summary o f p r e c i p i t a t i o n measurements Basecamp lowland, May 14, 1961-May 1 3 , 1 9 6 2 , water e q u i v a l e n t i n Inches T o t a l number T o t a l days T o t a l o f days w i t h w i t h more T o t a l T o t a l P r e c i p i t a t i o n t r a c e than t r a c e R a i n f a l l S n o w f a l l 5 . 2 3 1 3 3 3 3 2 . 5 2 2 . 7 1 Of the t o t a l r e c o r d e d r a i n f a l l , 2 . 3 5 inches f e l l d u r i n g the summer months o f June, J u l y and August. T h i s v a l u e c o r r e -sponds w e l l w i t h the mean summer r a i n f a l l i s o p l e t h r e p o r t e d i n Thomas ( 1 9 5 3 ) . While s n o w f a l l i s somewhat s h o r t of the r e p o r t e d kO i n c h i s o p l e t h v a l u e , t h i s may be a t t r i b u t e d to the c o n s i d e r -a b l e y e a r to year v a r i a b i l i t y o f s n o w f a l l c h a r a c t e r i s t i c o f the a r c h i p e l a g o r e g i o n s (Thomas 1 9 5 3 ) . The e f f e c t s of such low p r e c i p i t a t i o n on v e g e t a t i o n are a m e l i o r a t e d by the continuous u n d e r l y i n g p e r m a f r o s t which holds ? 9 water near the ground s u r f a c e and g i v e s the lowland the g e n e r a l appearance o f a wet f e n . As demonstrated l a t e r a more Important c h a r a c t e r i s t i c o f s n o w f a l l , from a v e g e t a t l o n a l s t a n d p o i n t , i s i t s d i f f e r e n t i a l movement and d e p o s i t i o n . Recorded a i r temperatures from the lowlands show v a l u e s s i m i l a r to those from nearby High A r c t i c s t a t i o n s (Rae 1 9 5 1 ) . Temperature maxima occur i n J u l y and the mean y e a r l y temperature o f 3 . 4 F* corresponds to the l o c a t i o n o f the a r e a between the 0° and 5 F * i s o t h e r m r e c o r d e d l n Thomas ( 1 9 5 3 ) (Table 4 ) . T a b l e 4 A i r Temperature r e c o r d e d i n Standard Stevenson Screen Basecamp Lowland 1 9 6 1 - 6 2 Average Monthly Month Days Temperature F° Maximum Minimum Range May 18 1 4 , 8 4 2 . 0 - 4 . 2 4 6 . 2 June 3 0 3 1 . 8 4 6 . 3 1 1 . 9 3 4 . 4 J u l y 31 4 2 . 6 6 3 . 6 3 2 . 0 2 8 . 3 3 1 . 6 August 3 1 3 6 . 3 5 1 . 0 2 2 . 7 September 3 0 2 1 . 6 3 6 . 3 1 . 0 3 5 . 3 October 3 1 6 . 6 3 5 . 4 - 1 3 . 4 4 8 . 8 November 3 0 - 7 - 5 1 4 . 9 - 2 9 . 0 4 3 . 9 December 3 1 - 1 4 . 0 2 2 . 8 - 4 3 . 5 6 6 . 3 J anuary 31 - 2 8 . 8 - 9 - 5 - 5 1 . 0 4 1 . 5 February 28 - 3 5 - 4 - 1 3 . 8 - 5 1 . 2 3 7 . 4 March 31 - 1 7 - 8 1 2 . 2 - 3 7 . 0 4 9 . 2 A p r i l 3 0 - 7 * 5 2 0 . 7 - 3 9 . 9 6 0 . 6 May 3 1 1 2 . 4 3 7 . 2 - 1 3 . 3 5 0 . 5 June 3 0 3 6 . 1 5 2 . 8 2 1 . 2 3 1 . 6 J u l y 3 1 4 3 . 4 6 4 . 4 2 9 . 0 3 5 . 4 August 3 1 3 8 , 0 5 3 . 3 2 5 . 5 2 7 . 8 September 2 9 2 S . 7 4 l . o 4 2 . 0 3 6 . 8 3 0 A summary of wind d a t a from the a r e a show a n o t a b l e absence o f winds g r e a t e r than 3 3 m.p.h. (Tab. 5) ( l e s s than 0 . 1 $ ) . Recorded calms account f o r 21% o f the o b s e r v a t i o n s and calms p l u s winds o f l e s s than 8 m.p.h. account f o r 7 8 $ of o b s e r v a t i o n s . S t r o n g winds are r e c o r d e d c h i e f l y i n s p r i n g and autumn. Wind d i r e c t i o n shows se a s o n a l s h i f t s (Tab. 5 ) w i t h w i n t e r winds coming markedly from the e a s t and summer winds showing a s t r o n g western and southwestern components (King 1968). Warren Wilson ( 1 9 5 9 ) has demonstrated the importance of wind on the growth of a r c t i c s p e c i e s i n the f i e l d . Wind may a l s o be important however through i t s i n d i r e c t e f f e c t s i n the m o d i f i c a t i o n o f the p l a n t s environment. On Devon t h i s was noted c h i e f l y through the removal and r e d e p o s i t l o n o f snow and s u r f a c e d e t r i t u s . T h i s w i l l be commented on l a t e r on where a p p r o p r i a t e . S o i l s o f the lowland: P r i o r to the n l n e t e e n - f o r t l e s i n f o r m a t i o n on s o i l c l a s s i f i -c a t i o n and g e n e s i s from the p o l a r r e g i o n s was sparse and came c h i e f l y from a r c t i c R u s s i a (Tedrow 1 9 6 8 ) . S i n c e t h a t time how-ever a number of p u b l i c a t i o n s have appeared p r e s e n t i n g new i n f o r m a t i o n on a r c t i c pedogenesis and c l a s s i f i c a t i o n and among them are a n o t a b l e number from a r c t i c North America, Tedrow and h i s s t u d e n t s a t Rutgers U n i v e r s i t y have been prominent i n the o v e r a l l c l a s s i f i c a t i o n and d e s c r i p t i o n o f p o l a r s o i l p r o c e s s e s (Tedrow e t a l . 1958; Tedrow and C a n t l o n 1 9 5 8 ; Tedrow 1 9 6 3 ; Tedrow 1 9 6 6 ; Douglas and Tedrow i 9 6 0 ; Tedrow and Douglas 1 9 6 4 ) . S i n c e these i n i t i a l works, c o r r o b o r a t i n g f i e l d s t u d i e s i n Table 5 Seasonal V a r i a t i o n i n Wind Speed and D i r e c t i o n : Basecamp Lowland 1961-62 Season M.P.H. N NNE NE ENE E ESE SE SSE S SSW SW WSW W . WNW NW NNW S p r i n g 1-18 3.3 2.8 4.0 1.4 10.0 2.1 7.2 3.6 3.1 2.8 3.1 1.7 6.8 1.7 0.9 0.3 (Apr. -May) 9-16 0.7 0.7 0.3 0.3 0.5 3.7 1 . 9 4.0 1 .9 0.3 17-24 0.9 0.3 0.3 0.7 1.2 0.5 25-32 0.5 0.3 0.7 33-40 0.3 Summer .1-8 5.1 4.2 2.9 5.0 6.7 0.2 0.3 0.8 1 . 6 3.3 3.7 2.3, 13.6 3.3 3.9 1 . 6 (June-Aug.) 9-16 0.4 1.6 1.6 0.2 0.3 0.1 0.2 0.7 1.7 2.9 3.2 7.8 0.8 0.1 0.1 17-24 0.2 0.4 0.9 0.2 0.1 0.6 0.7 0.1 0.2 0.6 25-32 0.1 0.1 0.4 0.1 0.1 0.1 33-40 0.1 Autumn 1-8 1.5 1.2 3.5 0.5 9.4 1 .9 13.1 7.5 8.0 6.1 7.1 1.0 3.8 0.3 0.7 (Sept.- 9-16 0.3 0.3 1.9 0.3 1.5 1.2 1.2 5.6 7.3 0.3 1.4 Oct.) 17-24 0.3 0.5 0.3 0.5 1 . 9 1.2 0.5 0.3 25-32 33-40 0.3 Winter 1-8 2.3 1 .6 3.5 2.7 27.0 6.4 10.0 3.3 4.7 3.3 2.2 0.9 2.8 0.1 0.7 0.6 (Nov.- 9-16 0.2 0.3 0.1 0.1 0.6 0.1 0.3 2.2 3.1 0.7 1.8 0.1 0.1 March) 17-24 0.2 0.2 1.2 0.8 0.2 25-32 0.1 0.1 0.1 0.1 33-40 32 o t h e r areas have shown the u s e f u l n e s s of the concepts developed, both i n g e o g r a p h i c a l c o n t i n u i t y ( U g o l l n i 1 9 6 5 ) and d e s c r i p t i v e u n i f o r m i t y ( R e t z e r 1 9 6 5 ) . P e d o l o g l c a l i n v e s t i g a t i o n l n the A r c h i p e l a g o remains s c a n t . F e u s t e l , D u t l l l y and Anderson ( 1 9 3 9 ) were among the f i r s t to r e p o r t chemical and p h y s i c a l parameters f o r s o i l s o f the area.McMil-l a n ( i960) c a r r i e d out c u r s o r y work i n t h r e e l o c a t i o n s and i n 1 9 6 4 Tedrow and Douglas undertook the d e t a i l e d d e s c r i p t i o n and c l a s -s i f i c a t i o n o f a number o f s o i l s on Banks I s l a n d l n the western s e c t o r of the Queen E l i z a b e t h I s l a n d s . K i n g ( 1 9 6 8 ) has undertaken d e t a i l e d p e d o l o g l c a l i n v e s t i -g a t i o n s of the s o i l s of the basecamp lowland and p a r t i c u l a r l y the p o l a r d e s e r t s o i l s of the beach r i d g e s . He has I d e n t i f i e d w i t h i n the lowlands the f o l l o w i n g s o i l s : Regosols, A r c t i c brown, Hummock s o i l s ( r e l a t e d to the Bernard s e r i e s d e s c r i b e d from Banks I s l a n d ) , P o l a r d e s e r t s o i l s , t undra s o i l s , H a l f bog s o i l s , L i t h o s o l s , Ravi Tundra (Rawmark o f Kubiena), and Tundra r a n k e r s . Topographic l o c a t i o n of s o i l types are p l o t t e d and a s o i l map o f the lowland a r e a i s presented. N e a r l y a l l of the major s o i l groups d e s c r i b e d thus f a r by Tedrow e t a l . from the tundra r e g i o n s are p r e s e n t w i t h i n the lowland a r e a . A review of the above work r e v e a l s two areas where funda-mental problems remain t o be s t u d i e d . The f i r s t r e l a t e s to c l a s s i f i c a t i o n and morphology. To date work i n a r c t i c s o i l s c l a s s i f i c a t i o n has concerned i t s e l f c h i e f l y w i t h d e s c r i p t i o n a t the g r e a t s o i l group and s e r i e s l e v e l s o f i n t e g r a t i o n . While i t i s becoming i n c r e a s i n g l y c l e a r t h a t a t the g r e a t group l e v e l r e l a t i v e l y uniform p r o c e s s e s of s o i l g e n e s i s e x i s t w i t h i n the a r c t i c r e g i o n s as a whole, there remains the problem of des-c r i b i n g and c l a s s i f y i n g the v a r i a b i l i t y which e x i s t s w i t h i n each g r e a t group between v a r i o u s c l i m a t i c subzones o f the a r c t i c . Tedrow and Douglas ( 1 9 6 4 ) have r e c o g n i z e d t h i s problem i n s t u d i e s o f Banks I s l a n d m a t e r i a l . The s u g g e s t i o n t h a t the a r c t i c brown type on Banks I s l a n d may not r e p r e s e n t a weak p o d z o l i z a t l o n as i t a p p a r e n t l y does i n A r c t i c A l a s k a , and t h a t s e r i o u s c o n s i d e r a t i o n should be g i v e n to the q u e s t i o n of the g e n e t i c a f f i n i t y of the Banks I s l a n d a r c t i c brown and the pedocals of the p o l a r steppe r e g i o n s , serve to emphasize the need f o r more i n f o r m a t i o n from the High A r c t i c r e g i o n s . A second and r e l a t e d problem i s the d e t e r m i n a t i o n of the r o l e t h a t v a r i o u s v e g e t a t i v e covers p l a y i n the g e n e s i s of the a r c t i c s o i l p r o f i l e . S i n c e many of the p r o t o t y p e s o i l s of the p r e s e n t l y a c c e p t e d system r e l y h e a v i l y on the nature of the o r g a n i c s u r f a c e h o r i z o n s f o r placement i n the scheme, i t i s Imperative t h a t a d e t a i l e d knowledge of the r e l a t i o n s h i p s between changing v e g e t a t i o n covers and s u r f a c e h o r i z o n s be under-stood. J u s t as changes i n p a r e n t m a t e r i a l b r i n g about d i s t i n c -t i v e changes i n the chemical make-up of the p r o f i l e w i t h i n a g r e a t group (Tedrow and Douglas 1 9 6 4 ) , so too should we expect a c e r t a i n p r o p o r t i o n o f v a r i a b i l i t y to be e x p l a i n e d by a change of the o v e r l y i n g v e g e t a t i o n a i type. I f models of tundra ecosystems, a s e n v i s i o n e d by Johnson ( I 9 6 9 ) , are to be t r u l y u n i v e r s a l i n t h e i r f o r e c a s t e d p r e d i c t i v e a b i l i t y as w e l l as p r a c t i c a l In t h e i r l a n d management c a p a b i l i t i e s , they must g i v e i n d i c a t i o n s o f the impact t h a t e c o s y s t e m a t i c changes w i l l b r i n g to v a r y i n g tundra " t y p e s " a c r o s s the biome. U n l e s s more In f o r m a t i o n becomes a v a i l a b l e than i s now p r e s e n t f o r the s t r u c t u r a l c h a r a c t e r i z a t i o n of "major t y p e s , " the v a r i a t i o n o f component i n t e r a c t i o n s w i t h i n and between types as mentioned above, and the accessment o f v a r i a t i o n of each a c r o s s subzones of the biome, there w i l l be l i t t l e g ained by s a c r i f i c i n g o b s e r v a t i o n a l s t u d i e s f o r e x p e r i -mental m a n i p u l a t i o n In f u t u r e f i e l d s t r a t e g i e s . I n the p r e s e n t study sampling areas were chosen p r i m a r i l y on the b a s i s of f l o r i s t i c homogeneity r a t h e r than pedogenic c r i t e r i a . I t i s hoped t h a t our p r e s e n t knowledge o f a r c t i c s o i l s w i l l be expanded, p a r t i c u l a r l y i n the a r e a of s o i l - p l a n t i n t e r a c t i o n s and the r o l e t h a t s o i l s p l a y l n the d i s t r i b u t i o n a l p a t t e r n of s p e c i f i c p l a n t a s s o c i a t i o n s . Table 6 Phytosociologlcal C l a s s i f i c a t i o n of the Studied Devon Island Association A l l i a n c e (1) Nardino - Dryado - Alectorietum (N - D - A) (2) Tetragono - Dryadetum i n t e g r i f o l i a e (T - Di) (3) Pedicularo - Dryadetum i n t e g r i f o l i a e (P - Di) (M) Rhaccmitrio - Oxyrio -i n t e g r i f o l i a e (R - 0 - Di) Dryadetum ) 1. Dryado - Alectorion ) . . (D - A) ) ) ) !. Dryadion i n t e g r i - ) f o l i a e ) (Di) ) (5) Pogonato - Luzulo - Salicetum arcticae (P - M - Sa) (6) Sphaerophoro - Rhacomitrio -Cassiopetum tetragonae (S - R - Ct) (7) Caricetum stantis (Cs) subass. caricetosum membranacei (cm) subass. caricetosum stantis (cs) (8) Eriophoro - Salico detum l a t i f o l i a e (E - S - Al) (9) Catoscopio - Ranunculo -Phippsietum algidae (C - R - Pa) Arctagrosti-II Phytogeocoenoses Order A l e c t o r i e t a l l a (A) Dryadetalia (octopetalae i n t e g r i f o l i a e ) (D) Luzulo - S a l i c i o n ) I I I . arcticae ) (L - Sa) Cassiopion ) IV. tetragonae ) (Ct) 5. Caricion a q u a t i l i s ) V. (Ca) 6. Arctagrostidion ) l a t i f o l i a e ) (Al) VI, 7. Phippsion algidae ) VII, (Pa) S a l i c e t a l i a arcticae (Sa) Phyllodoco -Cassiopetalia (P - C) C a r i c e t a l i a fuscae (Cf) P e t a s i t e t a l i a f r i g i d i (Pf) A r a b i d e t a l i a (AR) . A l e c t o r i e t a l l a (A) B a r r e t t and K r a j i n a T h i s newly proposed o r d e r i s composed o f l i c h e n dominated p l a n t a s s o c i a t i o n s which are formed on w e l l d r a i n e d P o l a r D e s e r t s o i l s . The x e r i c n ature of these s u b s t r a t a p r e c l u d e the e s t a b l i s h m e n t of a dense cover of e i t h e r v a s c u l a r p l a n t s or bryophytes. The o r d e r i s b e s t developed on non-calcareous s o i l s but may a l s o be found on c a l c a r e o u s or d o l o m i t l c s o i l s i f d rainage i s very e f f i c i e n t (as i n the p r e s e n t study a r e a ) . A l e c t o r i e t a l l a have been observed from both the Subalplne and A l p i n e zones i n the Canadian Low A r c t i c and a l s o from Banks I s l a n d i n the High A r c t i c (V. J . K r a j i n a p e r s o n a l communication). Much work remains to be done l n the f i e l d on the d e t a i l e d d i s -c r i p t i o n of i n d i v i d u a l p l a n t a s s o c i a t i o n s of t h i s o r d e r . The s i n g l e p l a n t a s s o c i a t i o n from t h i s o r d e r , d e s c r i b e d f u r t h e r on, w i l l be noted to have c e r t a i n a f f i n i t i e s to the Nardino - Dryadetum o f the S e s l e r i e t a l i a (= D r y a d e t a l i a i n the p r e s e n t work) as summarized by R u n n i n g ( 1 9 6 5 ) from S v a l b a r d . P r e s e n t f l o r i s t i c a n a l y s i s ( p a r t i c u l a r l y the q u a n t i t a t i v e r e s u l t s of c l u s t e r a n a l y s i s presented f u r t h e r o n ) and s t r o n g edaphic s e p a r a t i o n , however, make t h i s s y n s y s t e m a t i c u n i t s u f f i c i e n t l y d i s t i n c t i v e to warrant the e s t a b l i s h m e n t of both a new o r d e r and a l l i a n c e which r e f l e c t more a c c u r a t e l y these e c o s y s t e m a t i c d i s t i n c t i o n s . A s i n g l e a l l i a n c e o f t h i s o r d e r was r e c o g n i z e d w i t h i n the study a r e a , the Dryado - A l e c t o r i o n . 37 1 . Dryado - A l e c t o r i o n (D - A) B a r r e t t and K r a j i n a That t h i s a l l i a n c e has c e r t a i n r e l a t i o n s h i p s to both the D r y a d e t a l i a and S a l i c e t a l l a a r c t i c a e which w i l l be e a s i l y noted f u r t h e r on. The h i g h percentage of l i c h e n s p e c i e s p r e s e n t l n Devon p l a n t communities, p a r t i c u l a r l y s p e c i e s of A l e c t o r l a , are i n sharp c o n t r a s t to p l a n t a s s o c i a t i o n s of the D ryadion i n t e g r i f o l l a e p r o p er which occur i n more mesic l o c a t i o n s . A r e l a t e d a l l i a n c e , the A l e c t o r i o n ochroleucae has been noted i n the R i c h a r d s o n Mountains by K r a j i n a ( p e r s o n a l communi-c a t i o n ) . A s i n g l e a s s o c i a t i o n i s r e c o g n i z e d from the Devon I s l a n d a r e a , the Nardino - Dryado - A l e c t o r i e t u m . ( 1 ) Nardino - Dryado - A l e c t o r i e t u m (N - D - A) B a r r e t t and K r a j i n a F i g s . 1 0 - 13 Tab. 7 - H The environment of the Nardino - Dryado - A l e c t o r i e t u m i s the h a r s h e s t of any p l a n t a s s o c i a t i o n i n the lowland. Nodal communities are developed c h i e f l y on the c r e s t s o f e l e v a t e d s t r a n d beaches ( F i g s . 1 0 , 1 1 ) . T h i s e l e v a t e d p o s i t i o n above the g e n e r a l r e l i e f of the lowlands r e s u l t s i n f r e q u e n t exposure of the s i t e d u r i n g the w i n t e r months. In e a r l y June, p r e c e d i n g the major snow melt, the d i s t i n c t i v e p a t t e r n of the beach c r e s t s was s h a r p l y o u t l i n e d by the w i n t e r snowpack. T h i s t o p o g r a p h i c i n f l u e n c e i s w e l l r e f l e c t e d by the depauperate nature of the p l a n t communities which develop here. 3 8 The most r e c e n t l y u p l i f t e d beaches on o r near the c o a s t -l i n e have a s u r f a c e pavement p r i m a r i l y o f cobble s i z e d l i m e s t o n e . L i t t l e weathering has taken p l a c e and o n l y fragmentary a s s o c i a -t i o n s are developed i n these l o c a t i o n s ( F i g . 1 0 ) . F u r t h e r i n l a n d the s u r f a c e t e x t u r e of the pavement changes to w e l l rounded pebbles of mixed composition and f l u v i o g l a c i a l o r i g i n ( B a r r 1 9 6 5 ) . I t i s on t h i s t y p i c a l " P o l a r D e s e r t " pavement t h a t the Nardino - Dryado - A l e c t o r i e t u m i s b e s t developed ( F i g . 1 1 ) . Pebble a n a l y s i s from the base of seven sampled s o i l p i t s i n d i c a t e s mixtures of dolomite, g r a n o d i o r i t e and g r a n i t e p r e -dominate. L e s s e r amounts of monzonlte are o c c a s i o n a l l y p r e s e n t (Table 7 ) . The u n d e r s u r f a c e s o f the limestone fragments are t y p i c a l l y coated w i t h veneers of c a l c i u m carbonate, a s i t u a t i o n common to limestone t e r r a i n i n the n o r t h , p a r t i c u l a r l y on e l e v a t e d s t r a n d l i n e s (Tedrow e t . a l . 1 9 6 8 ; B i r d 1 9 6 7 ) . Table 7 Pebble A n a l y s i s from S o i l P i t s o f the Nardino - Dryado - A l e c t o r i e t u m P l o t number M a t e r i a l P r e s e n t i n Sample (As 8 t h of T o t a l ) 12 50 51 $3 6 6 Dolomite 3 2 5 3 3 B i o t i t e G r a n o d i o r i t e 2 1 2 1 3 Pink G r a n i t e / B i o t i t e G r a n i t e 1 2 3 1 2 Monzonite 2 2 Gabbro/Micro Gabbro T T 1 B i o t i t e D i o r i t e T T = s m a l l e r amounts than 1/8 The r a i s e d beaches are u n i f o r m l y spaced from the c o a s t -l i n e to the base o f the e a s t e r l y p l a t e a u but appear more d i s t i n c t l y developed toward the southern p o r t i o n o f the lowland near T r u e l o v e I n l e t ( P i g . 1 ) . The v e g e t a t i o n o f Nardino - Dryado - A l e c t o r i e t u m Is sparse i n comparison w i t h a l l o t h e r a s s o c i a t i o n s of the lowland ( T a b . 8 ) . The average v a s c u l a r p l a n t cover f o r e l e v e n examined stands i s o n l y 19% w h i l e t h a t f o r l i c h e n s (most o f which are c l u s t e r e d near the bases of Carex n a r d l n a ) i s 31%. Bryophytes occur o n l y i n t r a c e amounts under the p r o t e c t i o n of r o c k s or c l u s t e r e d stems o f S a l l x a r c t l c a , which i s c h a r a c t e r i s t i c f o r the S a l i c e t a l l a a r c t i c a e . The major v a s c u l a r p l a n t component i s composed of o n l y f o u r s p e c i e s : Dryas i n t e g r i f o l i a . S a l l x a r c t l c a . S a x l f r a g a  o p p o s l t l f o l l a and Carex n a r d l n a . Draba s u b c a p l t a t a . a s m a l l cushion p l a n t , has a l s o been chosen as a c h a r a c t e r s p e c i e s c h i e f l y on the b a s i s of i t s apparent f i d e l i t y t o the a s s o c i a t i o n . L i c h e n s form the major component of the a s s o c i a t i o n both i n terms o f s p e c i e s d i v e r s i t y and s i g n i f i c a n c e . They are f o l i o s e c r u s t o s e or f r u i t i c o s e , the l a t t e r mainly A l e c t o r l a s p e c i e s . Wind p r o f i l e measurements were re c o r d e d d u r i n g the summer of 1 9 6 9 . A s e r i e s of anemometers were l o c a t e d on the c r e s t of a r a i s e d beach (N-D-A) on the f o r e s l o p e (T-Di) and i n the low sedge meadow (Cs) which t y p i c a l l y forms l n the back shore s i d e . Measurements of the amount of wind p a s s i n g over each s i t e (Tab. 9 ) i n d i c a t e t h a t even d u r i n g the r e l a t i v e l y calm summer p e r i o d 40 Tabl e 8 H a r d i n c — D r j a d o - A l e c t o r i e t u a PLOT NO. 8 10 1? 15 19 50 51 53 5» 57 66 DATE ANALTSED 6/20/67 6/23/67 6/26/67 6/28/67 7/13/67 7/26/68 7/26/68 7/28/68 7/29/68 8/2/68 8/10/ HEHBACOUS COVER % 10 15 2 5 15 15 10 13 15 15 23 2 5 BOSS COVER * <1 <1 <1 <1 < l <1 <1 -31 <1 <1 « U LICHEN COVER * 15 35 2 5 2 5 25 2 5 37 » 5 »5 »5 20 TOTAL SPECI£3 BO. 33 38 5 7 =, 27 57 «3 39 , 3 " » 5 39 PLOT SIZE FHESDHEDCflAflACTERISTIC OOKBIHATIQH QF SPECIES Draba eubcapitata A l a c t o r i a ninuscula U e e t o r i a c h a l y b e i f o r a i a A l e c t o r i e ochroleuca Ochxoleehia u p a a l i e n a i a L e c i d e a atigBatea Stereocaulon r i r u l o r u n C a n d e l a r i e l l a a u r a l i e P e r t u a a r i a aubobduceoa OTHER SPECIES brj a a i n t e g r i f o l i a S a l l x a r c t i c * Saxifr&ga o p p o a i t i f o l i a S i l e n e e c a u l i a K i a u a r t i a r u b e l l a P0I7gonna y i v i parua P e d i c u l a r i * l a a e t a C e r a a t i u a alpinua Caxex r u p e e t r i a FapaTer r a d i c a t u a K a l a n d r i u a a f f i n e Colpodiun Tabliaaua Draba b e l l i ! Dreba a l p i n a Encalypta rhabdocarpa D i a t i c h i u n c a p i l l a c e u n floium orthorrbjnchum T o r t e l l a f r a g i l i a H j u r e l l a Julacaa Enealypta v u l g a r i s Timaia a u s t r i a c a T o r t e l l a tortuoaa Enealypta c i l i a t a Rhisocarpoo geo^raphicus Agyrophora ly n g e i Lecanora epibryoa Eypogymnia aubobacura T h a a n o l i a v e r o i c u l a r i a Parmelia separata SbixocarpoD c o p e l a n d i l Xanthoria elegana Lecanora p o l j t r o p a U n b i l i c a r i a a r c t i c a B u e l l i a a t r e t a P a r a e l i a incurve C e t r e r i a a i v a l i a C a l o p l a c a t i r o l i e a a i a S o l o r i n e bispore RMaocarpoo r i t t o k e n s e Haematomsa Iepponicum Rhiiocarpon ehionophiluo Lecidea l a p i e i d a Lecanora f r u a t u l o e a Lecidea pantherina • Lecidea v e m a l i s Parmelia oopbalodaa P a m e l i a dia.iuncta Placynthiura a a p a r a t i l a P e r t u a a r i a d a c t y l i n a Lecanora m u t a b i l i a P e r t u a a r i a c o r i a c e a A l e e t o r i a pubeacena Cal o p l a c a holocarpa B u e l l i a p a p i l l a t e C l a d o c i e pyxidata L e c i d e a etroeftrginata Lecidea l u l e n s i a C c b r o l e c b i a f r i g i d a P e r t u s a r i a panyrga Ebixocarprn J a m t l a n d i c u B V e r r u c a r i a d e v e r a a L e c i d e a macrocarpa C a l o p l a c a a t i l l i c i d i o r u m B inodina n i l v i n a Rhisocarpon c r y a t a l l i g e n u m Lecanora c a n p e s t r i s LecioFhyama finmarlticuin U m b i l i c a r i a proboacidee P b j s c i a c a e e i a O c h r o l e c h i a inaequatule Fhyseia a c i a e t r a L e c i d e a T o r t i c o a a S o l o r i c e eaccata Lecidea g l a u c o p h a e a L a c i d e a dic'j a o n i i Lecanora d i a p e r s * S p o r a s t a t i a teatudinea C e t r a r i a c u c u l l a t a Hjpogjatiie pf-jaodea (AVE. FBESEHCE 1 5 k 5 5 5 3 5 4 4 7 2.9 • . 11 0.2 2 3 4 3 4 a 4 * 4 4 4 T 3.6 3 4 1 2 3 a * 4 3 3 T 2.8 2 2 2 2 2 2 2 a 4 3 3 V 2.5 3 3 3 3 1 2 1 3 3 3 V 2.3 1 2 2 1 1 + 3 1 2 2 2 T 1.6 « 1 1 2 1 2 2 2 2 ¥ 1.2 i 1 + , • + 2 + + 1 T 0.6 3 3 2 2 4 3 3 IV 2.0 3 4 4 4 4 4 4 ¥ *.3 3 3 3 3 3 3 3 V 2.5 4 2 3 3 3 4 4 T 3.« . > 2 2 2 2 . IV 1.0 2 III 0.5 i + III 0.3 • II 0.2 * 11 0.1 i I 0.1 I I 0.1 I I 0.1 • • • • < I 0.1 I • • • 1 I V 0.7 * • • • 1 I V 0.5 * • > III 0.3 i + + II 0.2 + • I 0.1 • I -I I — • • • X -2 5 3 3 4 4 3 1 2.8 * 2 3 4 4 2 1 2.8 2 2 2 2 2 3 3 1 2.6 4 1 3 2 1 3 3 V 2.3 1 1 2 1 2 3 3 » 1.9 2 2 3 2 1 3 V 1.8 1 1 3 3 2 2 V 1.5 2 2 2 1 1 • T 1.3 • • • • + * IV 0.4 * 4 4 1 III 1.3 1 2 2 2 I III 1.0 i 2 1 1 III 0.5 • • • l III 0.4 + • 1 III 0.3 III 0.3 2 3 I II 0.6 • II 0.5 3 II 0.5 • II 0.3 II 0.2 II 0.2 • + II 0.2 • + II 0.2 1 . II 0.2 • • • + II 0.2 • • + II 0.1 + II 0.1 * 3 I 0.5 • I 0.2 I 0.1 • • * I 0.1 * • * I 0.1 * • • I 0.1 • • • I 0.1 * • I 0.1 • * • I 0.1 * • • I 0.1 * I 0.1 * I 0.1 I 0.1 I • • I _ • + I • • • • I * • • I _ • • I • * I * I _ I * • • I » • • I * • • I _ • • • • I _ • • • • • I • • • • I _ * * • I _ Table 8a Nardino - Dryado - A l e e t o r l e t u a - Soils PLOT RO. DATE SAMPLED DEPTH TO PROZEN MATERIAL (IHOHES) SOIL CLASSIFICATION PHYSICAL/CHEMICAL AHALISIS BoriBon I depth (inches) color, dry color, wet pB - CCaCl,) pB - (H20)d a and j* s i l t % clay * carbon # nitrogen 5S total P ' p.p.m. Exchangeable Cationa He/lOOgm K Ca Mg Na Sum 8 1 0 12 1 5 1 9 5 0 5 1 5 3 7/6/67 7/29/68 8/19/68 6/28/67 7/1V67 7/26/68 • 7/26/68 7/28/68 2 * 27 30 28 3 4 5 5 JO JO • ....... Polar Deaert.. .12 10.8 5.4 .14 16.5 5 * 5 7 7/29/68 8/2/68 30 2 7 ..Polar Deaert..... 66 8/10/68 28 0 - 3 0 - 6 0-4 0 - 6 0-8 0 - 6 0 - 7 0-7 0 - 5 0 - 9 0-4 5 T R V 3 1 0 Y R 3 / 3 IOTP. 5/4 1OTR5/4 10YR4/3 10YR4/3 10YR5/3 10YR3/4 10YRJ/3 1 0 T R 3 / 3 1 0 T R 3 / 2 NM 1 0 T H 2 / 2 7 . 5 Y R 3 / 2 1 0 I R 3 / 2 NM 10TR3/4 10YR5/4 7 . 5 Y R 3 / 2 1 0 I R 2 / 2 7 . 5 T R 3 / 2 10TR3/4 7 . 2 7 . 5 7.4 7 . 6 7 . 6 7 . 5 7 .3 7 .3 7 . 5 7 .3 7.4 7 . 9 7 . 5 8 .0 8 .1 94.0 8 .2 8 . 0 , 7.8 7.7 7 . 6 7 . 5 7 . 5 NM 9 3 . 2 92.8 NM 92.4 96.4 97.2 94.0 94.0 98.2 NM 4.8 3.4 2 . 0 NM 4 . 6 1 . 6 0.6 3 . 6 4.4 1 . 2 NM 2 . 0 3.8 4 .0 NM 3 . 0 2 . 0 2 . 2 2.4 1 .6 0.4 • I O . J 2 . 5 2 . 5 2.4 4 . 2 2 . 0 4 . 0 1 .9 3.6 2 . 3 1.8 0.80 0.18 0 . 3 5 0 . 1 2 0.26 0.18 0.24 0 . 3 * 0.31 0 . 3 6 0.30 6 3 3 1 0 8 7 5 8 6 1 3 . 0 7 4.4 1.8 .14 6.4 . 0 7 4.6 3 . 7 . 1 3 8 . 5 .07 5.6 1.5 .14 7.3 .06 » . 3 3 . 3 .14 7.8 . 0 7 . 5 . 0 1 . 9 . 1 7 7 . 1 . 0 9 4 . 9 3 . 3 .14 8.4 . 0 7 3 . 7 2 . 3 .14 6 . 2 .10 5 . 2 3 . 2 . 1 3 8.6 2 . 9 ..14 7 . 5 . 0 7 4 .3 3 . 3 .14 7 . 8 Horizon II depth color, dry color, wet pH - (CaCl,) pH - (H-O)* a and a i l t clay carbon nitrogen P Exchangeable Cationa K Ca . Mg HR °1 C l C l ° 1 C l °1 °1 C l c l C l C l 3-24 6-18 4 - 3 0 6-28 8 - 2 3 6-21 7-18 7-20 5-13 9-16 4-20 10IR4/5 10TR5/4 10IR4/3 10YR5/3 10YR5/2 10YR5/3 10YR5/3 10YR5/3 10YR5/3 10YR5/3 10YR4/3 NM 10YR5/4 10TR3 / 3 NM NM 10YR5/4 10YR5/4 10YR4/3 10YR4/4 10YR4/3 10YR4/4 7 .3 7.5 7.4 7.7 7.7 7.6 7.5 7.5 7.5 7.4 7.4 8.0 7.7 8 .1 7.9 8.2 7.9 7.8 7.5 8.0 7.4 7.6 NM 99.6 97.6 97.6 NM 100 93.8 98.0 99.8 95.8 96.0 NM 0.0 2.0 2.0 NM 0 6.2 2.0 0.2 4.2 4.0 NM • 0.6 0.4 0.4 NM 0 0 0 0 0 0 7.6 2.4. 2 .3 2 .3 3.0 1.6 2 .3 1.0 2.9 2.0 1.4 . 0 5 . 0 3 .02 .01 .02 .02 .04 . 0 3 • .06 .02 .02 0 0 0 0 1 2 0 0 0 0 0 0.4 3.7 1.7 .1} 5.9 0.4 2.1 2.1 .U 0.4 4.0 1.2 .It 5.7 0.5 2.5 2.3 0 . 3 3 . S 2 , 0 .13 6.0 0.4 4.8 1.1 6 . 5 0.4 4.0 1.6 6:17 0.4 2 . 7 1.7 .16 5.0 0 . 4 3.9 1. * a* 5.6 0 . 3 2 . 4 1 . a . 1 3 4 * 6 0 . 3 2.7 1.8 Hori son III depth color, dry color, wet pH - (CaClO pH - (HpOr sand a i l t clay carbon nitrogen P Exchangeable Cation? Ca Mg Na v2 8-24 10YR5/3 NM 7.6 8.1 NM NM NM 7.0 .01 1 "2 18-27 10YR5/3 10YR3/3 7.6 7.7 99.8 0 . 2 0 2.6 .01 0 " 2 Ab8ent " 2 Absent C 2 ° 2 C 2 ° 2 C 2 ° 2 ° 2 2 3 - 3 * 2 1 - 3 5 18-30 2 0 - 5 0 18-21 16-27 20-28 10YR5/2 10YR5/2 10TR5/4 10TR5/3 1 0 T R 5 / 3 10IR5/3 10TR4/3 NM 10YR4/4 10YR4/3 10YR4/4 10TR5/4 10YR5/4 10YR4/3 7.5 7.6 7 .5 7 .5 7 .5 7 .5 7 .5 8.0 8.0 7.7 7.8 7.8 7.6 7.7 NM 100 97.6 97.0 97.2 97.4 97.8 NM 0 2 . 2 3 . * 0.8 2.6 2 . 2 NM 0 0 .2 0 0 0 0 2.8 1.6 1.8 1.0 2.6 2 . 1 2.1 . 0 1 . 0 2 . 0 2 .04 . 0 1 . 0 1 . 0 2 0 0 0 0 1 1 0 .02 . 0 3 . 0 5 . 0 5 .04 .04 .04 2 .5 2.8 5 . 6 4 .1 3.2 3.0 3 - 5 1.0 1 . 6 2.8 0 .7 2.2 1 . 3 1.0 . 1 3 . 1 1 . 3 2 . 1 5 . 1 7 . 1 3 .14 3 . 6 4 .5 •8.8 5.0 5 . 6 * . 5 4.7 .04 3.0 1.3 . 1 5 4 . 5 . 0 3 2 . 0 1 . 6 . 1 3 3 . 8 F i g . 1 0 Newly emergent "beach c r e s t a t the p r e s e n t shore l i n e . Note the d i f f e r e n t i a l depo-s i t i o n of m a t e r i a l on the f o r e and back-shores and the coarse t e x t u r e d nature of the s u r f a c e pavement (photo J u l y 24, I 9 6 9 ) . F i g . 1 1 O l d e r beach s i t e i n the lowland i n t e r i o r ( P l o t No. 5 3 ) . Note the f i n e r t e x t u r e d pavement. The g r e y e r s u r f a c e c o l o r i s due to l a r g e r m ixtures of g r a n i t e and o t h e r a c i d i c r o c k s i n the pavement make-up (photo J u l y 2 8 , 1 9 6 8 ) . 42 • 0 4 3 the beach c r e s t s are s u b j e c t to g r e a t e r wind passage than a d j a c e n t h a b i t a t s . F r a s e r ( 1 9 6 4 ) i n a study of winds and blow-i n g snow i n the Canadian A r c t i c has shown t h a t on nearby C o r n w a l l l s I s l a n d ( 7 4 4 l » N - 9 4 54'W) peak frequency of s t r o n g winds ( 3 0 m.p.h. and above) occur d u r i n g January. I f t h i s proves true over l o n g p e r i o d s f o r the Devon r e g i o n , these ex-posed s i t e s are most p r o b a b l y s u b j e c t e d to c o n s i d e r a b l e snow s c o u r i n g which would i n h i b i t o p t i m a l development of the more e r e c t f r u i t i c o s e forms o f l i c h e n s . Two prominent c r u s t o s e l i c h e n s which are c h a r a c t e r i s t i c of the a s s o c i a t i o n are O c h r o l e c h l a u p s a l l e n s l s and P e r t u s a r l a  -subobducens. These occur c h i e f l y as t i g h t c r u s t s on the t u s s o c k - l i k e bases o f Carex n a r d l n a . Other s p e c i e s of P e r t u s a r l a are admixed, however the b u l k of sample c o l l e c t i o n s are dominated by these t a x a . L e c l d e a stigmatea and C a n d e l a r l e l l a  a u r e l l a are a l s o important c r u s t o s e components found w i d e l y s c a t t e r e d on s u r f a c e r o c k s and p e b b l e s . S t e r e o c a u l o n r l v u l o r u m a l s o appears o p t i m a l l y i n t h i s a s s o c i a t i o n and i s thus l i s t e d as a c h a r a c t e r i s t i c s p e c i e s . In s t u d i e s on the l i c h e n s of B a f f i n I s l a n d , Hale ( 1 9 5 4 ) mentions the d i f f i c u l t y of s e p a r a t i n g S t e r e o c a u l o n r l v u l o r u m from S. pas c h a l e i n the absence o f f e r t i l e m a t e r i a l . On Devon the two (ours = S. alplnum, c o n s i d e r e d by Hale as a v a r i e t y of S. paschale) appear to segregate on the b a s i s of a s s o c i a t i o n p r e f e r e n c e , the former o c c u r r i n g c h i e f l y i n the Nardino - Dryado - A l e c t o r i e t u m , the l a t t e r r e s t r i c t e d to the Sphaerophoro - Rhacomitrio - Cassiopetum tetragonae. Other a s s o c i a t i o n c h a r a c t e r i s t i c l i c h e n s o c c u r r i n g . h e r e Include A l e c t o r i a mlnuscula. A. c h a l y b e f o r m l s and A. o c h r o l e u c a . U m b l l i o a r i a a r c t l c a , r e p o r t e d by Hale ( 1 9 5 4 ) as r a r e I n North America Is w e l l r e p r e s e n t e d i n the p r e s e n t c o l l e c t i o n s and i s undoubtedly more common i n the a r c t i c than has been p r e v i o u s l y supposed ( i t a l s o o c c u r s w i t h r e l a t i v e l y h i g h abundance i n the Sphaerophoro - Rhacomitrio - Cassiopetum t e t r a g o n a e ) . Table 9 Average Wind S i n c e P r e v i o u s Day (m.p.h.) Over Three A d j a c e n t A s s o c i a t i o n s Date Time N-D-A (Beach C r e s t ) T-Dl (Beach Slope) Cs (Meadow) 7 / 6 1 8 0 5 7 . 8 6 . 6 6 . 6 7 1 5 3 0 1 1 . 3 9 - 2 9 - 3 8 1 7 0 5 5 . 3 4 . 9 4 . 7 9 1 7 3 0 5 . 7 5 . 2 5 . 2 1 0 1 7 0 5 8 . 8 8 . 3 8 . 1 1 1 1 6 5 5 6 . 1 5 . 7 5 . 5 12 1800 9 . 0 7 - 5 7 - 5 13 1800 2 . 9 2 . 5 2 . 5 14 1 7 3 5 1.9 1 . 6 1 . 6 1 5 1 7 4 0 1 . 8 1 . 6 1 . 6 1 6 1 7 3 5 2 . 5 2 . 2 2 . 2 17 1 7 5 0 2 . 8 2 . 6 2 . 5 18 1 6 4 5 2 . 6 2 . 2 2 . 3 19 1820 7 . 0 6 . 4 6 . 3 2 0 1 8 3 5 4 . 8 4 . 4 4 . 2 2 1 1820 5 . 8 5 - ^ 5 . 3 2 2 1 6 2 0 9 . 1 7 - 6 7 . 2 2 3 1 9 0 0 3 . 5 2 . 9 2 . 9 24 1 8 2 5 4 . 1 3 . 7 3 . 7 2 5 1 8 0 0 4 . 8 4 . 4 4 . 3 2 6 1800 2 . 2 1 . 8 1 . 9 2 7 1 9 3 5 1 5 . 4 1 2 . 5 1 2 . 2 28 1 7 3 0 1 1 . 5 9 . 2 8 . 9 2 9 1 7 4 5 7 . 9 6 . 5 6 . 4 3 0 1 7 3 5 8 . 0 6 . 7 6 . 2 3 1 1 7 4 5 1 3 . 3 2 . 9 2 . 7 4 5 Date Time N--D-A (Beach C r e s t ) T-Di (Beach Slope) Cs (Meadow) 8 / 1 1 8 3 5 4 . 1 3 . 7 3 . 5 2 1 9 0 0 2 . 1 1 . 8 1 . 8 3 1 8 1 5 2 . 5 2 . 0 2 . 1 4 1 7 4 0 5 . 7 ^ . 5 4 . 8 5 1 9 0 0 4 . 7 4 . 1 3 . 9 6 1 8 0 5 2 . 5 2 . 0 2 . 2 7 1 9 1 0 3 . 1 2 . 6 2 . 6 8 1 6 5 5 6 . 0 5 . 5 5 . 2 9 1 8 0 5 2 . 6 2 . 2 2 . 2 1 0 1 7 3 0 3 . 0 2 . 4 2 . 5 1 1 1 7 2 0 2 . 0 1 . 7 1 . 6 1 2 1 7 4 0 3 . 2 2 . 7 2 . 7 1 3 1 7 1 0 2 . 0 1 . 6 1 . 5 1 4 1 7 1 0 3 . 6 3 . 3 3 . 2 1 5 1 7 4 5 9 . 2 8 . 7 8 . 2 1 6 1 7 5 0 4 . 0 3 . 7 3 . 4 1 7 1 4 3 5 2 . 1 1 . 6 1 . 6 The o n l y bryophytes which occur f r e q u e n t l y a r e E n c a l y p t a rhabdocarpa and D l s t l c h l u m c a p l l l a c e u m . These s p e c i e s are u b i -q u i t o u s , o c c u r r i n g w i d e l y i n a l l a s s o c i a t i o n s of the lowland system. The Nardino - Dryado - A l e c t o r i e t u m develops u n i f o r m l y over coarse t e x t u r e d r e g o s o l l c - l i k e s o i l s which are p l a c e d i n t o Tedrow's " P o l a r D e s e r t " c l a s s i f i c a t i o n . In morphology and chemical c o m p o s i t i o n the Devon s o i l s are l i k e those p r e v i o u s l y d e s c r i b e d f o r the B e a u f o r t f o r m a t i o n on P r i n c e P a t r i c k I s l a n d and the r e g i o n a l l y dominant s o i l s of I n g l e f i e l d l a n d i n Greenland (Tedrow 1 9 6 6 , 1 9 6 8 ) . G e n e r a l l y the s u r f a c e Is covered w i t h a pavement of sub-a n g u l a r rock fragments. D i r e c t l y beneath t h i s develops a sha l l o w Ah h o r i z o n ( F i g . 1 2 , Tab. 8 a ) . The exposure of the s i t e and the s m a l l amount of v e g e t a t i o n supported p r e c l u d e s the g e n e s i s of a w e l l developed Ah h o r i z o n . The o r g a n i c m a t e r i a l which i s trapped i n the s u r f a c e pavement i s o n l y weakly i n c o r -p o r a t e d i n t o the upper s o i l l a y e r s . Carbon measurements of the upper h o r i z o n s are the lowest o f any a s s o c i a t i o n w i t h the e x c e p t i o n of the completely non-vegetated p o r t i o n s of the P e d i c u l a r o - Dryadetum i n t e g r i f o l i a e , where h o r i z o n development i s t o t a l l y absent and "raw" s o i l s predominate. Beneath these weakly developed s u r f a c e h o r i z o n s are coarse t e x t u r e d m i n e r a l l a y e r s showing l i t t l e i f any m o r p h o l o g i c a l d i f f e r e n t i a t i o n or g e n e t i c h o r i z o n development, a s i t u a t i o n c h a r a c t e r i s t i c of P o l a r d e s e r t s o i l s . T y p i c a l l y the subsurface m a t e r i a l s are homogenous mixtures of r o c k and sand ( F i g . 1 2 ) . O c c a s i o n a l l y however mass s o r t i n g i s e v i d e n t , r e s u l t i n g i n d i s t i n c t i v e a l t e r n a t i n g bands of f i n e s and coarse rock fragments. Such s o r t i n g i s probably a r e f l e c t i o n of the d e p o s i t l o n a l h i s t o r y of the beach d u r i n g p e r i o d s of i n t e n s i v e g l a c i o - f l u v i a l a c t i v i t y . D u r i n g the e x c a v a t i o n of one beach s i t e a t h i n but d i s -t i n c t i v e b u r i e d o r g a n i c h o r i z o n was d i s c o v e r e d r a n g i n g between 2 7 and 3 5 inches below the s u r f a c e pavement ( F i g . 1 3 ) . The m a j o r i t y of the h o r i z o n appears to have been d e p o s i t e d on the f o r e s h o r e of the o r i g i n a l beach beneath an A r c t i c Brown ( s h a l l o w phase) s o i l . The occurrence of b u r l e d o r g a n i c h o r i z o n . i s a commonly documented phenomenon i n tundra s o i l s and a number of e x p l a n a t i o n s c o n c e r n i n g t h e i r o r i g i n s have been put forward (MacKay 1 9 5 8 ; Brown I 9 6 9 ; Tedrow 1 9 6 2 ) . M a t e r i a l c o l l e c t e d f o r a n a l y s i s from t h i s h o r i z o n r e v e a l e d the presence of w e l l -p r e s e r v e d a l g a l s t r u c t u r e s which were a p p a r e n t l y d e p o s i t e d F i g . 12 P o l a r Desert S o l i u n d e r l y i n g the Nardino -Dryado - A l e o t o r l e t u m ( P l o t 5 3 ) . Note the water t a b l e and dark c o l o r e d w e t t i n g f r o n t a t the 9 i n c h mark (photo J u l y 2 9 , 1 9 6 8 ) . F i g . 13 P r o f i l e o f beach f o r e s h o r e . Beach c r e s t and P o l a r Desert s o i l s l i e to the r i g h t . B u r l e d a l g a l l a y e r seen as prominent band running d i a g o n a l l y from l e f t to r i g h t . Note the i n c r e a s i n g o r g a n i c s u r f a c e h o r i z o n as one moves down the f o r e s l o p e of the beach. 4 8 d u r i n g the emergence of the beach d u r i n g i s o s t a t i c u p l i f t f o l l o w i n g g l a c l a t i o n . D e t e r m i n a t i o n of t h i s m a t e r i a l * i n c l u d e d the f o l l o w i n g i d e n t i f i a b l e genera and s p e c i e s : L a m i n a r l a sp.. S p h a c e l a r l a sp., C h a e t o p t e r l s plumosa. C h l o r o c h y t r l u m derma-toco l a x , Desmarestla a c u l e a t a , Chaetomorpha sp., S t i c t y o s l p h o n  t o r t i l l s (?) and e i t h e r an U l v a o r Monostroma s p e c i e s . These taxa are a l l p r e s e n t l y found i n n o r t h e r n l a t i t u d e s . T h i s p r o f i l e (not I n c l u d e d i n the r e p o r t e d r e l e v e s ) was the o n l y r a i s e d beach s i t e a t which subsurface o r g a n i c h o r i z o n s were noted. C h e m i c a l l y , the P o l a r Desert s o i l s o f Devon are s i m i l a r to those r e p o r t e d from s i m i l a r areas o f A r c t i c North America and Greenland (Tedrow 1 9 6 6 , 1 9 6 8 ) . S o i l r e a c t i o n i s t y p i c a l l y h i g h i n a l l h o r i z o n s . S u r f a c e h o r i z o n s never f e l l below a pH of 7 - 5 measured i n water or 7 . 2 i n c a l c i u m c h o r i d e and t h e r e i s l i t t l e q u e s t i o n about the c a l c l c o l o u s nature o f the environment. T o t a l exchange-a b l e c a t i o n s are low, a r e f l e c t i o n of the s m a l l c l a y and o r g a n i c f r a c t i o n s of these s o i l s . Values f o r exchangeable magnesium and c a l c i u m are h i g h e r than r e p o r t s from P o l a r Desert s o i l s i n Greenland. T h i s i s due no doubt to the hig h percentage o f dolomite i n the parent m a t e r i a l s o f the lowland. The t i l l - l i k e t e x t u r e o f the s o i l s , low percentages o f c l a y and o r g a n i c matter and e l e v a t e d p o s i t i o n above the water t a b l e combine to make these s o i l s the most x e r i c o f the lowland system. G r a v i m e t r i c s o i l moisture d e t e r m i n a t i o n s were made on a s i n g l e * I d e n t i f l c a t i o n s made by Dr. Robert W i l c e , Botany Department, U n i v e r s i t y of Massachusetts. beach d u r i n g 1 9 6 8 and on two beaches d u r i n g 1 9 6 9 (Table 1 0 ) . I t i s i n t e r e s t i n g to compare the moisture p a t t e r n s of beaches A and B d u r i n g 1 9 6 9 . Beach A had s m a l l i n t e r m i t t e n t patches o f snow i n some spots but was e s s e n t i a l l y snow f r e e a t the s t a r t o f the measurement. Beach B, lower i n e l e v a t i o n than A, and having a con c o m i t a n t l y h e a v i e r snow cover, was f u l l y exposed some 6 to 7 days l a t e r . Both s i t e s show a r a p i d decrease i n moisture content a f t e r exposure, but beach B maintained a mois-tu r e advantage through the remainder of the season, p r i m a r i l y because of the more s l o w l y developed a c t i v e l a y e r and r e s u l t i n g water r e l e a s e . In g e n e r a l the lower beaches tend to support h i g h e r percentages of t o t a l p l a n t coverage than more e l e v a t e d ones. A more f a v o r a b l e moisture regime Is pro b a b l y a c o n t r i b -u t i n g f a c t o r to t h i s e f f e c t / i n r e c o r d e d releve's, p l o t 8 appeared s u b j e c t i v e l y to be the l e a s t e l e v a t e d beach s i t e o f those measured/. Tab l e 1 0 F i e l d Moisture Determinations {% by weight) - N-D-A S o i l s P e r c e n t Moisture a t I n d i c a t e d S o i l Depth Date Measured 3 Inches 9 inches 15 Inches 1 9 6 8 6 / 2 8 8 . 4 4 . 9 6 . 3 3 . 8 4 . 0 4 . 3 4 . 7 1.1 2 . 5 2 . 1 2 . 4 2 . 2 1 . 9 2 . 1 2 . 1 1 . 7 1 . 3 2 . 8 2 . 9 2 . 1 7 / 3 7 / 1 1 7 / 1 7 7 / 2 4 7 / 3 1 8 / 7 8 / 1 4 1 . 6 1 . 6 J U 9 50 Percent M o i s t u r e a t I n d i c a t e d S o i l Depth Date Measured 3 inches 9 inches 1 5 Inches 1 9 6 9 Beach Beach Beach Beach Beach Beach A B A B A B A B 6 / 1 4 1 2 . 7 Snow 5 . 1 F r o z e n Frozen 6 / 1 7 9 . 2 Snow 3 . 6 — n it 6 / 2 2 6 / 2 5 7 . 2 2 0 . 8 3 . 2 5 - 3 it 1  6 / 2 6 6 / 2 7 7 . 9 8 . 7 3 . 7 8 . 8 5 . 0 11 7 / 1 7 / 1 8 . 6 1 0 . 8 3 . 1 7 . 9 3 - 8 it 7 / 9 7 / 8 7 . 4 7 . 9 4 . 1 5 . 0 4 . 4 9 . 0 7 / 1 6 7 / 1 5 1 8 . 1 1 2 . 4 3 . 8 5 - 9 5 . 6 5 . 0 7 / 2 4 7 / 2 2 1 2 . 0 1 4 . 6 4 . 5 4 . 0 4 . 7 3 . 8 7 / 3 0 7 / 2 9 1 6 . 6 1 7 . 7 4 . 1 3 . 8 4 . 8 8 / 6 8 / 5 1 5 . 6 2 5 . I 4 . 4 4 . 3 4 . 4 3 . 9 8 / 1 3 8 / 1 2 1 1 . 5 1 6 . 9 5 . 2 5 . 8 4 . 1 4 . 1 8 / 1 7 8 / 1 7 1 0 . 2 1 9 . 6 3 . 6 4 . 0 3 . 9 x = l l . 4 x= = 1 5 . 4 x= 4 . 1 x= 5 . 4 x = 4 . 3 x = 4 . 9 A comparison of T a b l e s 10 and 1 1 i n d i c a t e s t h a t d u r i n g the summer s u r f a c e s o i l s o c c a s i o n a l l y may be d r i e d to below standard 1 5 Bar a v a i l a b i l i t y v a l u e s . S i n c e f i e l d m o i sture was re c o r d e d here as t o t a l moisture i n the sample, r e g a r d l e s s of phase s t a t e , i t appears j u s t i f i a b l e to suspect moisture s t r e s s as a f a c t o r l i m i t i n g p l a n t c o l o n i z a t i o n on these s i t e s . Tedrow ( 1 9 6 8 ) has expressed a s i m i l a r b e l i e f f o r the P o l a r D e s e r t s o i l s o f Greenland. P l a n t s not adapted t o s u s t a i n h i g h s t r e s s s i t u a t i o n s may s u r v i v e here by being deep r o o t e d s i n c e the pe r m a f r o s t t a b l e o f t e n h o l d s water a t lower l e v e l s near the g e n e r a l s u r f a c e of the lowland, which i n t h i s case would o f t e n be w e l l w i t h i n p o s s i b l e r o o t i n g c a p a b i l i t i e s of some beach p l a n t s (see e.g. F i g . 1 1 ) . A t one beach l o c a t i o n a s m a l l Draba sp. l e s s than one i n c h In h e i g h t had a tap r o o t measuring 2 8 inches i n l e n g t h before i t was severed i n e x c a v a t i o n . F r e q u e n t l y a w e t t i n g f r o n t was noted moving v e r t i c a l l y from the water t a b l e s i x or more inches toward the s u r f a c e , r e s u l t i n g i n moist subsurface h o r i z o n s beneath a very much d r i e r s u r f a c e . These f r o n t s c o u l d be e a s i l y e x p l o i t e d by s i m i l a r deep r o o t i n g s p e c i e s . Table 1 1 C a l c u l a t e d A v a i l a b l e Water - N-D-A S o i l s M o i s t u r e } I by Weight A v a i l a b l e P l o t No. H o r i z o n @ Bar @ 1 5 Bars <V3 -1 0 Ah 7 . 8 2 . 5 5 . 3 C l 1 . 9 0 . 9 1 . 0 C 2 1 . 3 0 . 3 1 . 0 1 5 Ah 5 - 6 1 . 3 4 . 3 C l 0 . 5 0 . 8 0 . 0 5 0 Ah 6 . 0 1 . 9 4 . 1 C l 1 . 7 1 . 0 0 . 7 5 1 Ah 1 0 . 0 3«2 6 . 8 C l 0 . 7 0 . 0 0 . 7 c2 1 . 1 0 . 5 0 . 6 5 4 Ah 1 1 . 7 3 . 6 8 . 1 Bm 3 . 7 0 . 5 3 . 2 Bm 0 . 9 0 . 6 0 . 3 C l 0 . 7 0 . 3 0 . 4 57 Ah 9 . 4 3 - 5 5 - 9 C l 1 . 9 0 . 9 1 . 0 C 2 0 . 9 0 . 0 0 . 9 6 6 Ah 9 . 6 2 . 3 ? - 3 C l 0 . 9 0 . 6 0 . 3 c2 0 . 9 0 . 8 0 . 1 52 E a r l y or t o t a l exposure - from the c o v e r i n g of w i n t e r snowpack and a s m a l l v e g e t a t i v e i n s u l a t i o n r e s u l t s i n g e n e r a l l y warmer s o i l s and a more deeply developed a c t i v e l a y e r compared w i t h o t h e r lowland phytogeocoenses. T h e r m l s t e r measurements from f o u r t y p i c a l lowland stands (Table 4 4 ) I n d i c a t e the e a r l y warming t r e n d of the Nardino - Dryado - A l e c t o r i e t u m . Snowfree by e a r l y June, s o i l s a t the 3 i n c h l e v e l c r o s s the zero degree isotherm by June 1 4 , w h i l e other measured s i t e s remained f r o z e n a t t h i s l e v e l . . C o n t i n u o u s l y r e c o r d e d s o i l temperatures from m i c r o c l i m a t i c s t a t i o n s a l s o a t t e s t to the warmer nature of these s o i l s . A l s o apparent from continuous r e c o r d i n g c h a r t s i s the pronounced d i u r n a l f l u c t u a t i o n of s o i l temperatures i n t h i s environment (Appendix A ) . Coarse t e x t u r e d m a t e r i a l p r o h i b i t e d the use of probes to measure a c t i v e l a y e r development. Prom temperature measurements, however, i t can be assumed rea s o n a b l y t h a t the thaw r a t e on the beach areas i s r e l a t i v e l y r a p i d i n comparison w i t h o t h e r e n v i -ronments. In the m a j o r i t y of s o i l p i t e x c a v a t i o n s pronounced i c e content of the s o i l was v i s u a l l y e v i d e n t and i n g e n e r a l the depth of the s o i l p i t can be c o n s i d e r e d a reasonable a p p r o x i -mation of the base of the a c t i v e l a y e r f o r t h a t date. Dry f r o s t , however, was encountered i n one l o c a t i o n . On June 1 9 , 1 9 6 8 , w h i l e e x c a v a t i n g a p i t f o r p r o f i l e examination, spot checks of temperature w i t h t h e r m l s t e r s r e s u l t e d i n the f o l l o w i n g p r o f i l e : L o c a t i o n Temperature C° A i r a t ground s u r f a c e 8 . 3 S u r f a c e pavement $.2 L o c a t i o n Temperature C S o i l , 1 Inch 8 . 3 S o i l , 3 Inches 7.9 S o i l , 2 3 . 5 inches 0.0 S o i l , 26 inches -1 . 5 I n s p e c t i o n of the p r o f i l e r e v e a l e d no v i s i b l e i c e c r y s t a l s . Nor were the cementing e f f e c t s of f r o z e n water e v i d e n t a t the v a t l o n became impeded f o r the f i r s t time, was i c e v i s u a l l y e v i d e n t . I t Is thus assumed t h a t dry f r o s t i s p o s s i b l e i n such s o i l s . B r i e f l y , the Nardino - Dryado - A l e c t o r i e t u m r e p r e s e n t s an extreme among the lowland system phytogeocoenoses. E x c l u s i v e development i n such an exposed to p o g r a p h i c p o s i t i o n r e s u l t s i n a sparse and e a s i l y d e f i n e d v e g e t a t i o n assemblage. A comple-ment c h a r a c t e r i s t i c s p e c i e s a l l o w s t h i s phytocoenosls to be an e a s i l y r e c o g n i z e d u n i t i n the f i e l d . Geomorphic h i s t o r y o f , these l o c a t i o n s a l s o r e s u l t s In the f o r m a t i o n of a u n i f o r m s e t of g e o c o e n o t i c c h a r a c t e r i s t i c s which d e v e l o p i n g c o n c o m i t a n t l y w i t h the v e g e t a t i o n l e n d an e c o s y s t e m a t l c u n i f o r m i t y to the u n i t as a whole. Due to the d i s t i n c t i v e f l o r i s t i c and environmental p o s i t i o n of t h i s phytogeocoenosis, a new a l l i a n c e (Dryado -A l e c t o r l o n ) and o r d e r ( A l e c t o r i e t a l i a ) are proposed. zero degree depth. Only near the base of the p i t , where exca-5 4 I I . D r y a d e t a l i a ( o c t o p e t a l a e - I n t e g r i f o l i a e ) (D) B a r r e t t and K r a j i n a The r e c e n t l y d e s c r i b e d Dryadion a s s o c i a t i o n s o f S v a l b a r d (Running 1 9 6 5 ) are grouped under the prominent European order S e s l e r i e t a l i a ( S e s l e r i e t a l i a c a l c a r i a e , Kka. 1 9 4 4 ; S e s l e r i e t a l i a c o e r u l e a e , Br. B l . 1 9 2 6 ; S e s l e r i e t a l i a v a r i a e , S z a f e r 1 9 6 6 ) . These are C e n t r a l and South European h i g h mountain a s s o c i a t i o n s of c a l c a r e o u s h a b i t a t s , and i t appears to be t h i s s u b s t r a t e c h a r a c t e r i s t i c on which Running has p r i m a r i l y based h i s group-i n g . E xamination of the c h a r a c t e r i s t i c s p e c i e s of e i t h e r the S e s l e r i o n c a l c a r i a e o r S e s l e r i o n t a t r a e ( p r i n c i p a l a l l i a n c e s i n the order) r e v e a l o n l y two s p e c i e s , one i n each a l l i a n c e , t h a t are a l s o Important components of the hig h a r c t i c Dryadion. These are Carex r u p e s t r l s and S l l e n e a c a u l i s ( K l i k a 1 9 5 5 ; S z a f e r 1 9 6 6 ) . I t would appear t h a t s i n c e new and more d e t a i l e d i n f o r -mation i s now a v a i l a b l e f o r the a r c t i c r e g i o n s , a reassessment of the a r c t i c Dryadion i n the h i g h e r p h y t o s o c l o l o g i c a l u n i t s i s perhaps i n o r d e r . Dryas i s a prominent c l r c u m p o l a r genus; examination of the l i t e r a t u r e r e v e a l s t h a t i t i s p r e s e n t i n a l l but the we t t e s t mire communities and a dominant on c a l c a r e o u s s i t e s . B e s c h e l c o n s i d e r s i t of such importance to a s s i g n i t as a z o n a l i n d i -c a t o r i n the Canadian A r c t i c ( B e s c h e l 1 9 7 0 , 1 9 6 9 ) . In the European S e s l e r i o n a s s o c i a t i o n s however Dryas appears to become an important s p e c i e s o n l y i n the Caricetum firmae Kka. (sDryadeto-Flrmetum S i l l , 1 9 3 3 ) . A second f l o r i s t i c d i f f e r e n c e l i e s i n the r o l e t h a t g r a s s e s p l a y i n the two o r d e r s . The European S e s l e r i e t a l i a has as components of i t s p r i n c i p a l community types many important Gramlneae i n c l u d i n g v a r i o u s -s p e c i e s of S e s l e r l a . F e s t u c a and C a l a m a g r o s t l s . By comparison g r a s s e s appear to p l a y a s m a l l r o l e I n the a r c t i c D ryadion com-m u n i t i e s . In h a b i t a t s where g r a s s e s do become community domi-nants they g e n e r a l l y are members of o t h e r a s s o c i a t i o n s , p r i n c i p a l l y meadow communities. The a r c t i c Dryadion i n t e g r i f o l i a e communities a r e b e s t developed over c a l c a r e o u s s u b s t r a t e s as are the S e s l e r i e t a l i a p l a n t communities. Most of the d e s c r i b e d Dryadion communities however are o f t e n found w e l l w i t h i n the zone of continuous permafrost, a c h a r a c t e r i s t i c not shared w i t h the European S e s l e r i o n u n i t s . The importance of t h i s r e g i o n a l l y unique ma-t e r i a l to the s u r f a c e communities i s w e l l documented (Benninghoff 1952; T y r t i k o v 1959; Brown 1963; B r l t t o n 1966; V l e r e c k 1965; Raup 1969; R u n n i n g 1969). Indeed i n the a r c t i c r e g i o n s the c h a r a c t e r i s t i c s of the a c t i v e l a y e r and u n d e r l y i n g permafrost f o r c e r t a i n communities a t l e a s t , appears to p l a y a more impor-t a n t r o l e i n community development than the n u t r i e n t regimen of the s u b s t r a t e . I t i s f o r the above reasons t h a t the High A r c t i c Dryadion i n t e g r i f o l i a e are here p l a c e d i n t o a new o r d e r , the D r y a d e t a l l a o c t o p e t a l a e - i n t e g r i f o l i a e . 2. D r y a d i o n i n t e g r i f o l i a e ( Di) B a r r e t t and Krajina A summary of the development of the Dryadion as a h i g h e r p h y t o s o c l o l o g i c a l u n i t Is g i v e n by R u n n i n g (1965). I t i s appar-ent from a comparison of the d a t a from h i s S v a l b a r d communities, and those of Devon I s l a n d , t h a t we are d e a l i n g , on the whole, w i t h s i m i l a r v e g e t a t i o n assemblages and t h a t the Dryadlon a l l i -ance i s indeed a prominent a l l i a n c e of the High A r c t i c as R u n n i n g has suggested. The f o l l o w i n g s p e c i e s are l i s t e d as Important i n the S v a l b a r d Dryadion ( o c t o p e t a l a e ) : C h a r a c t e r i s t i c s p e c i e s : Carex n a r d l n a Carex r u p e s t r l s Cassiope t e t r a g o n a Dryas o c t o p e t a l a P r e f e r e n t i a l s p e c i e s : P e d l c u l a r l s dasyantha  P e d l c u l a r l s h l r s u t a Poa a r c t l c a Carex mlsandra  Draba a l p l n a  Draba s u b c a p i t a t a  Equisetum varlegatum L u z u l a n i v a l i s M l n u a r t i a b i f l o r a M i n u a r t i a r u b e l l a Polygonum v l v l p a r u m S a x l f r a g a o p p o s l t l f o l i a S l l e n e a c a u l l s S t e l l a r l a c r a s s i p e s Papaver dahlianum Of the above ( p o s s i b l y the Dryadion o c t o p e t a l a e ) , o n l y f o u r are not found i n the Dryadion of Devon and a l l o f these f o u r have congenetlc s p e c i e s which a r e s u b s t i t u t e d w i t h i n the Devon I s l a n d u n i t s . I t i s c l e a r from Running's t e x t ( 1 9 6 5 ) t h a t the f i r s t f o u r s p e c i e s are intended to be c h a r a c t e r i s t i c a t the a s s o c i a t i o n l e v e l : 57 In o r d e r to b r i n g out the d i f f e r e n t i a t i o n w i t h the S v a l b a r d Dryadion i t i s n e c e s s a r y to c l a s s i f y I t a t a lower l e v e l than the a l l i a n c e (p. 14). Thus c h a r a c t e r i s t i c s p e c i e s of the a l l i a n c e are o m i t t e d by Running. I t i s t r u e t h a t d i f f e r e n t i a l s of the a l l i a n c e a r e d i f f i c u l t t o a s s e s s w i t h so few d a t a . The Dryadion however i s p r o b a b l y the most completely s t u d i e d n o r t h e r n s y n e c o l o g i c a l a l l i a n c e to d a t e . I t would seem t h a t both from the p r e s e n t work and t h a t of Running on S v a l b a r d t h a t o n l y two genera of v a s c u l a r s p e c i e s would be s u i t a b l e f o r a l l i a n c e d i f f e r e n t i a l s ; Dryas and S a x l f r a g a . Dryas i s without a doubt the b e s t i n d i c a t o r of the a l l i a n c e . While the s p e c i e s changes from Dryas i n t e g r i f o l l a ( i n the Canadian, A l a s k a n and western Greenland r e g i o n s ) to Dryas  o c t o p e t a l a ( I n the e a s t e r n Greenland, S c a n d i n a v i a n , A r c t i c R u s s i a and e a s t e r n A l a s k a r e g i o n s ) Running b e l i e v e s there i s l i t t f l e d i f f e r e n c e i n the main f e a t u r e s of t h e i r e c o l o g y . T h i s remains to be v e r i f i e d . As can be seen from the Devon Dryadion i n t e g r i f o l i a e , nowhere i n the a s s o c i a t i o n s o f the a l l i a n c e does the average s p e c i e s s i g n i f i c a n c e of Dryas i n t e g r l f o l i a f a l l below 4.1, w h i l e i n the o t h e r a s s o c i a t i o n s o f the a r e a i t Is g e n e r a l l y below 2 and o n l y once r i s e s to 3*3 i n the Pogonato -L u z u l o - S a l i c e t u m a r c t i c a e . I t should a l s o be remembered t h a t on the Domln-Krajina s c a l e a d i f f e r e n c e o f 2 to 4 i n spe-c i e s s i g n i f i c a n c e i s s u b s t a n t i a l as the + to 3 c a t e g o r i e s d e a l c h i e f l y vrlth the abundance of p l a n t s having v e r y s m a l l cover v a l u e s . 5 8 The s i t u a t i o n i s much the same f o r S a x i f r a g a o p p o s i t l f o l l a . a l l o f i t s h i g h e s t mean v a l u e s l y i n g l n the Dryadion p l a n t communities. Three a s s o c i a t i o n s of the a l l i a n c e have been r e c o g n i z e d i n the a r e a under study: Tetragono - Dryadetum i n t e g r i f o l i a e P e d i c u l a r o - Dryadetum i n t e g r i f o l i a e R h a c o m i t r i o - Oxyrio - Dryadetum i n t e g r l f o l i a e ( 2 ) Tetragono - Dryadetum i n t e g r l f o l i a e (T-Di) B a r r e t t and K r a j i n a F i g s . 1 4 - 2 2 Tab. 1 2 - 1 8 The Tetragono - Dryadetum i n t e g r l f o l i a e develops p r i n c i p a l l y on g e n t l y s l o p i n g f o r e s h o r e s ( 3 - 9 p e r c e n t s l o p e ) o f the r a i s e d beaches. The community a s p e c t i s g e n e r a l l y west, f a c i n g Jones Sound, s i n c e many o f the beaches l i e i n a n o r t h - s o u t h d i r e c t i o n . W e l l developed tundra e a r t h hummocks (= Non-sorted Nets, Washburn 1 9 5 6 ) c o n s t i t u t e a prominent m i c r o - r e l i e f f e a t u r e o f the landscape s u r f a c e ( F i g s . 1 4 , 1 5 ) . Sharp ( 1 9 4 2 ) has commented on the l o c a l i z e d development of these s t r u c t u r e s on s l o p e s i n the S t . E l l a s r e g i o n of A l a s k a . H i s o b s e r v a t i o n s t h a t hummocks forming.on s l o p e s of l e s s than 5 degrees m a i n t a i n a c r u d e l y h e m i s p h e r i c a l shape a p p l i e s i n the pr e s e n t a r e a . Sharp a l s o noted a r e s t r i c t i o n of hummock development on s l o p e s of more than 2 0 degrees I n c l i n e . Here a g a i n a t o t a l absence of t h i s community was noted wherever an e l e v a t e d beach l a c k e d the g r a d u a l slope o f a foreshore,, and i n s t e a d , dropped a b r u p t l y to the g e n e r a l l e v e l o f the sur r o u n d i n g landscape. Pebble a n a l y s i s from e x c a v a t i o n s shows a not unsuspected s i m i l a r i t y o f parent m a t e r i a l s w i t h the p r e v i o u s l y d e s c r i b e d Nardino - Dryado - A l e c t o r i e t u m (Tab. 12). S l i g h t l y h i g h e r amounts of dolomite and t r a c e s of a r g i l l l t e and b a s a l t are p r e s e n t . F u n c t i o n a l l y , however, the two coenoses are e q u i v a -l e n t i n terms of composition o f s o i l p a r e n t m a t e r i a l s . Table 1 2 Pebble A n a l y s i s from S o i l P i t s o f the Tetragono - Dryadetum i n t e g r l f o l i a e P l o t Number M a t e r i a l P r e s e n t l n Sample (As 8 t h of T o t a l ) 29 30 3 1 3 3 3 6 4 6 52 8 1 Dolomite 4 3 4 3 3 5 2 7 B i o t i t e G r a n o d i o r l t e 2 3 1 1 Pink G r a n i t e / B l o t l t e G r a n i t e T 1 2 1 3 Monzonite 2 1 3 3 Gabbro/Micro Gabbro 1 3 3 B a s a l t 1 A r g i l l l t e T The v e g e t a t i o n o f the Tetragono - Dryadetum i n t e g r l f o l i a e however i s composed of numerous s p e c i e s found u b i q u i t o u s l y throughout the lowland i n meslc s i t u a t i o n s . C h a r a c t e r i s t i c here i s Casslope t e t r a g o n a . co-dominating w i t h an. average spe-c i e s s i g n i f i c a n c e of 5*1 ( 1 5 - 2 0 p e r c e n t c o v e r ) . T h i s s p e c i e s i s found as a dominant i n o n l y one e t h e r u n i t , the Sphaerophoro - Rhacomltrio - Cassiopetum t e t r a g o n a e , where i t P i g . 14 The landscape p o s i t i o n of the Tetragono -Dryadetum l i e s g e n e r a l l y on g r a d u a l s l o p e s ' "between the beach c r e s t s of the Nardino -Dryado - A l e c t o r i e t u m ( t o the r i g h t ) and the Caricetum s t a n t i s ( l e f t ) . F i g . 1 5 The pronounced hummock and d e p r e s s i o n r e l i e f o f the s u r f a c e of the Tetragono Dryadetum. Note the shading o f the a d j a c e n t d e p r e s s i o n s (photo Aug. 1 3 1 1 9 6 7 ) . 60 6 l o c c u r s without the a s s o c i a t e d h i g h cover v a l u e s o f Dryas  I n t e g r i f o l l a . T y p i c a l o f the Dryadion u n i t s , S a l l x a r c t l c a , S a x l f r a g a o p p o s l t i f o l l a and Dryas I n t e g r i f o l i a a l l show h i g h s p e c i e s s i g n i f i c a n c e v a l u e s . The l a t t e r i s e x c e e d i n g l y v i g o r o u s here and i s matched i n t o t a l coverage o n l y i n the P e d i c u l a r o -Dryadetum i n t e g r i f o l i a e . Comparison of the s y n t h e s i s t a b l e s of the Tetragono -Dryadetum w i t h the Sphaerophoro - Rhacomitrio - Casslopetum tetragonae shows a number of s p e c i e s w i t h b i c o e n o t i c d i s t r i b u t i o n p a t t e r n s s i m i l a r to Casslope t e t r a g o n a . A second v a s c u l a r p l a n t i s Carex r u p e s t r l s . Cryptogams i n c l u d e the l i c h e n s D a c t y l i n a  a r c t l c a , D. ramulosa. P a r m e l l a omphalodes and C e t r a r l a d e l l s e l . The l a t t e r appears to be c l o s e l y a s s o c i a t e d w i t h snowpatch ar e a s . Bryophytes i n c l u d e Tlmmla a u s t r l a c a and, not as pronounced, Rhacomltrium lanuglnosum and Mnlum marginatum. The d i s t r i b u t i o n s i m i l a r i t y of the above noted s p e c i e s suggests a c e r t a i n degree of e c o l o g i c a l a f f i n i t y between the two coenoses. C o n s i d e r i n g the c o n t r a s t i n g l i t h o l o g i c c h a r a c t e r i s t i c s i t seems more l i k e l y a t t r i b u t a b l e to the m u l t i p l e e f f e c t s of a s l o w l y m e l t i n g snow cover. In t u r n , a second c o n s t e l l a t i o n of s p e c i e s segregates t h i s c o e n o s l s d i s t i n c t l y from the Casslopetum. Most are n o t a b l e c a l c l p h i l e s . One l i c h e n , L e c i d e a ramulosa, has a pronounced t r i c o e n o t i c d i s t r i b u t i o n b e i n g found mainly i n the moist coenoses of the c a l c a r e o u s D r y a d e t a l l a . I t i s absent from the x e r i c , c a l c a r e o u s Nardino - Dryado - A l e c t o r i e t u m , and o n l y In t r a c e q u a n t i t i e s i n the mesic, a c i d o p h i l o u s Casslopetum. T - D l F i g . 1 6 A r c t i c Brown (shallow phase) s o i l s "beneath p l o t 5 2 . Note the h u m i f i e d core e v i d e n t i n the hummock (photo J u l y 2 8 , 1 9 6 8 ) . F i g . 1 7 A r c t i c Brown s o i l beneath p l o t 3 1 . Note the I r r e g u l a r nature of the h o r i z o n boundaries (photo J u l y 2 0 , 1 9 6 8 ) . D i s t i n g u i s h i n g bryophytes Include A r n e l l l a f e n n l c a . con-s i d e r e d a " c h a r a c t e r i s t i c a r c t i c c a l c i p h i l e " ( S c h u s t e r 1 9 5 9 ) and Dldymodon a s p e r i f o l l u s . c o l l e c t e d by S c h u s t e r almost e x c l u s i v e l y from c a l c a r e o u s s u b s t r a t e s on Northern E l l e s m e r e I s l a n d . V a s c u l a r p l a n t s Include P e d l c u l a r l s l a n a t a , a s p e c i e s found here o n l y In the Dryadetum, and M i n u a r t l a r o s s i i , a s p e c i e s r e s t r i c t e d a g a i n , here a t l e a s t , to wet c a l c a r e o u s l o c a t i o n s and a l s o an important component o f the S v a l b a r d Tetragono - Dryadetum ( R u n n i n g 1 9 6 9 ) . I n t h i s c omparatively s h e l t e r e d l o c a t i o n , f o l i o s e l i c h e n s are found w i t h much h i g h e r frequency than i n the p r e v i o u s l y d e s c r i b e d Nardino - Dryadetum. P a r t i c u l a r l y conspicuous i s the genus C e t r a r l a . Two taxa, C e t r a r l a c u c u l l a t a and C. n i v a l i s , are s e l e c t e d as c h a r a c t e r i s t i c of the phytocoenosls s i n c e I t i s here t h a t they a c h i e v e t h e i r h i g h e s t s p e c i e s s i g -n i f i c a n c e . I t i s I n t e r e s t i n g to note t h a t i n s i m i l a r s t u d i e s _C. n i v a l i s has p r e v i o u s l y been c o n s i d e r e d an i n d i c a t o r of chlonophobic environments (Dahl 1 9 5 & ; P o l u n i n 1 9 4 8 ) . The Tetragono - Dryadetum i n t e g r i f o l i a e w i l l be p r e s e n t l y shown t o be a t r u e "snowpatch" u n i t and thus by d e f i n i t i o n p l a n t s found here should a t l e a s t be snow t o l e r a n t i f not t r u l y c h i o n o p h i l o u s . John Thomson of the U n i v e r s i t y of Wisconsin, has i n d i c a t e d ( p e r s o n a l correspondence) t h a t h i s experience has not shown C. n i v a l i s to be excluded from snowpatch areas, and to the con-t r a r y the s p e c i e s appears to show a g r e a t e r l u x u r i a n c e of growth where there i s some accumulation of snow. Thomson f e e l s perhaps S c a n d i n a v i a n workers may be c o n s i d e r i n g i t s absence from o n l y the v e r y l a t e s t snow s i t e s . These would be comparable to P o r s i l d ' s "snowbed" l o c a t i o n s where numerous s p e c i e s are ex-c l u d e d , r a t h e r than the e a r l i e r m e l t i n g "snowpatch" environments. Prominent bryophytes here i n c l u d e many found commonly i n o t h e r coenoses. Some of the more conspicuous Include D l s t i c h l u m  c a p l l l a c e u m . T o r t u l a r u r a l i s . Orthotheclum chryseum and the dominating Tomenthypnum n l t e n s . The s o i l s of the Tetragono - Dryadetum i n t e g r i f o l l a e are a l l c l a s s i f i e d as A r c t i c Brown types w i t h f o u r b e i n g p l a c e d Into the weakly developed A r c t i c Brown shallow phase ( p l o t s 3 0 , 4-5, 5 2 , 8 1 ) . The l a t t e r show c h a r a c t e r i s t i c a l l y w e l l developed humus h o r i z o n s d i r e c t l y o v e r l y i n g coarse t e x t u r e d m i n e r a l (C) h o r i z o n s ( F i g . 1 6 ) . The former ( F i g . 1 7 ) show weakly a l t e r e d m i n e r a l h o r i z o n s ( B m h o r i z o n s ; here = A 2 of Tedrow 1958) d e v e l -oping between the s u r f a c e and lower C h o r i z o n s . These were noted i n the f i e l d c h i e f l y by s l i g h t c o l o r changes, t e x t u r a l d i f f e r -ences b e i n g absent. The c l o s e r e l a t i o n s h i p of p l a n t cover to s o i l p r o f i l e development may be noted by comparing t h i s u n i t w i t h the a d j a -cent Nardino - Dryado - A l e c t o r i e t u m . P r e s e n t i n t e r p r e t a t i o n i n d i c a t e s the A r c t i c Brown p r o f i l e i s a mature z o n a l type, d e v e l o p i n g i n w e l l d r a i n e d l o c a t i o n s w i t h i n the a r c t i c r e g i o n s ( U g o l i n i 1 9 6 5 ; Tedrow and H i l l 1 9 5 5 ) . The g e n e s i s of such a p r o f i l e may occur here o n l y where adequate drainage, s u b s t r a t e t e x t u r e and s i t e s t a b i l i t y occur s i m u l t a n e o u s l y ( U g o l i n i 1 9 6 5 ) . U g o l i n i has a l s o touched upon the Importance of i n c r e a s e d r o o t p e n e t r a t i o n i n the development of A r c t i c Brown s u r f a c e h o r i z o n s i n Greenland. As we have noted p r e v i o u s l y , the s o i l s of the Nardino -Dryado - A l e c t o r i e t u m are both warm and e a r l y f r e e of snow. T h e i r coarse t e x t u r e and deep a c t i v e l a y e r development i n d i c a t e adequate drainage c o n d i t i o n s . The x e r i c nature of the h a b i t a t , however, and co n c o m i t a n t l y low v e g e t a t i v e cover, p r e c l u d e the development of a mature A r c t i c Brown s o i l on these s i t e s , s i n c e a combination of adequate l e a c h i n g and humus accumulation are not r e a l i z e d . The Tetragono - Dryadetum i n t e g r l f o l i a e on the o t h e r hand, while both c o l d e r (Tab. 4 4 ) and snow f r e e l a t e r ( F i g s . 18, 1 9 ) , p r o v i d e s the i n c r e a s e d v e g e t a t l o n a l cover and l e a c h i n g c a p a b i l i t i e s n ecessary f o r the ge n e s i s of t h i s s o i l type. Subsurface s o i l t e x t u r e s are coarse and combined w i t h s l o p e p o s i t i o n , permit r a p i d movement of water through the a c t i v e l a y e r as the o v e r l y i n g snow pack m e l t s . The term A r c t i c Brovm s o i l has been a p p l i e d b r o a d l y and has h e r e t o f o r e been d e f i n e d c h i e f l y on the b a s i s of morphology alone (Tedrow 1 9 6 8 a ) . Tedrow ( i b i d . ) has s t a t e d t h a t as i n f o r -mation accrues, i t i s l i k e l y t h a t the chemical makeup of t h i s s o i l type w i l l be shown to vary from one p o l a r r e g i o n to another. The data gathered from p r e s e n t s o i l i n v e s t i g a t i o n s , however, show a h i g h degree of s i m i l a r i t y to those r e p o r t e d r e c e n t l y from Greenland (Tedrow 1 9 6 8 ) and a l s o those r e p o r t e d by Running ( 1 9 6 5 , 1 9 6 9 ) f o r the Tetragono - Dryadetum of S v a l b a r d . The heavy I n c o r p o r a t i o n of humus noted i n the s u r f a c e h o r i z o n s o f the Tetragono - Dryadetum of S v a l b a r d (Running 1 9 & 5 . 1 9 6 9 ) was a l s o apparent l n the Devon u n i t s . Two s u r f a c e h o r i -zons show o r g a n i c matter contents o f over 3 0 p e r c e n t ( 1 . 7 x % carbon) and are d e s i g n a t e d as H h o r i z o n s ( p l o t s 3 0 and 8 1 ) . The wide range o f o r g a n i c matter content r e p o r t e d from S v a l b a r d s o i l s ( 1 . 2 $ - 5 3 . 0 # ) was a l s o i n evidence here ( 4 . 8 $ - 3 1 . 6 $ ) . S o i l r e a c t i o n i s a g a i n c h a r a c t e r i s t i c a l l y b a s i c , even i n the s u r f a c e h o r i z o n s . Exchangeable c a t i o n s a re c o n t r i b u t e d c h i e f l y by c a l c i u m and magnesium. T o t a l exchange v a l u e s are s i m i l a r to those r e p o r t e d by both Tedrow ( 1 9 6 8 ) and R u n n i n g ( 1 9 6 9 ) . Here a g a i n h i g h e r amounts of magnesium are r e l a t e d t o the presence of d o l o m i t e . Measurement of s o i l moisture i s made d i f f i c u l t by the i r r e g u l a r nature of the h o r i z o n boundaries i n the upper p o r t i o n s of the s o i l p r o f i l e . In f a c t moisture d e t e r m i n a t i o n s from shallow depths may i n a c t u a l i t y be r e c o r d e d from s o i l s of widely t e x t u r a l c l a s s e s and thus moisture h o l d i n g a b i l i t y . The f i e l d m oisture d e t e r m i n a t i o n s r e p o r t e d here were taken from p l o t 36. T a b l e 13 F i e l d Moisture Determinations {% by weight) - T-Di S o i l s P e r c e nt Moisture a t I n d i c a t e d Depth Date Measured 3 inches ^..hummock 3 i n c h e s , interhummock 1 9 6 8 7/11 7/17 7/24 7 / 3 1 8 / 7 8/14 1 2 7 . 3 7 6 . 3 102 .6 7 2 . 3 82.0 - J 2 l i 4 6 6 . 5 6 3 . 5 1 0 3 , 4 1 1 5 . 1 8 9 . 4 1 0 7 . 9 X = 8 5 . 7 x = 9 1 . 0 Percent Moisture at Indicated Depth-Date Measured 3 Inches, hummock 3 Inches, lnterhummock 1 9 6 9 6/24 60.2 frozen tt 6 / 2 6 6 7 . 3 7 / 1 5 1 . 1 5 7 . 0 7 / 9 5 5 . 1 5 4 . 7 7 / 1 6 8 9 . 9 7 2 . 1 7/24 6 2 . 6 3 7 . 7 7 / 3 0 7 9 . 3 82 . 1 8 / 6 6 3 . 8 48 . 7 8 / 1 3 1 2 2 . 1 8 8 . 9 8 A 7 6 8 . 8 5 7 . 2 X = 7 2 . 0 X « 6 2 . 3 Comparison of f i e l d moisture with calculated a v a i l a b l e water values indicate that the s o i l s are r a r e l y without adequate moisture f o r plant growth. Though adjacent to the x e r i c Nardino -Dryado - Alectorietum t h i s u n i t i s best considered a mesic or i n some instances a wet-mesic (subhygric) coenosis. Probe analysis of active layer development (Figs. 21, 22) indicates a moderate rate of thaw r e l a t i v e to other u n i t s of the Dryadetalia. Maximum thaw depths correspond c l o s e l y to values measured i n s o i l p i t excavations (Tab. 1 5 a ) , averaging approximately 17 inches. The in s u l a t i n g q u a l i t i e s of a promi-nent vegetational cover and cooling e f f e c t s from a l a t e l y i n g snowpack somewhat Inh i b i t the development of the active layer to the lower depths that have been recorded In the more exposed Nardino - Dryado - Alectorietum or Pedicularo - Dryadetum i n t e g r l f o l i a e coenoses. Two factors which play s i g n i f i c a n t roles i n ecology of the coenosis are snow cover and the hummock and depression 6 8 topography of the s u r f a c e . T a b l e 1 4 C a l c u l a t e d A v a i l a b l e Water - T-Di S o i l s P l o t No. H o r i z o n Moisture ) t by Weight A v a i l a b l e Water @ ^ Bar @ 1 5 Bars ( V 3 - 1 5 ) 2 9 Ah 3 8 . 8 3 1 . 3 7 . 5 Bm 4 . 3 1 . 7 2 . 6 - 3 0 H 5 3 . 2 4 5 . 0 8 . 2 C 9 . 6 5 . 4 4 . 2 3 1 Ah 5 2 . 4 3 7 . 8 1 4 . 6 Bm 7 . 2 4 . 3 2 . 9 C 1 . 4 1 . 4 0 . 0 3 3 Ah 3 3 . 5 2 4 . 7 8 . 8 Bm 4 . 3 1 . 2 3 . 1 C 1 . 2 0 . 8 0 . 4 3 6 Ah 4 0 . 4 2 9 . 3 1 1 . 1 Bm 7 . 1 4 . 7 2 . 4 C 2 . 4 1 . 3 1 . 1 4 6 Ah 6 2 . 0 4 7 . 8 1 4 . 2 C 5 . 0 3 . 0 2 . 0 52 Ah 3 6 . 0 2 1 . 9 1 4 . 1 C 5 - 7 1 . 9 3 . 8 8 1 H 8 4 . 3 6 1 . 9 2 2 . 4 The c l o s e a s s o c i a t i o n of Casslope t e t r a g o n a w i t h chiono-p h l l o u s or snowpatch environments i s w e l l documented ( P o l u n i n 1 9 4 8 ; P o r s i l d 1 9 6 4 ; R u n n i n g 1 9 6 5 ; Lambert 1 9 6 8 ) . A s t r i k i n g correspondence i s e a s i l y evidenced i n the Devon lowland system. Indeed the c o r r e l a t i o n between the two appears so s t r o n g t h a t fragmentary coenoses develop anywhere i n the loitfland where 6 9 s m a l l d e p r e s s i o n s permit some snow accumulation. T h i s may be seen most r e a d i l y where defor m a t i o n c r a c k s t r a n s e c t the Nardino -Dryado-Alectorietum on the 'beach crests. While many are only two to three inches deep, accumulation of snow i s s u f f i c i e n t l y Increased t h a t fragments of t h i s c o e n o s i s t r a v e r s e the beach r i d g e s r e g u l a r l y a l o n g t h e i r l e n g t h . T h i s was a l s o noted by Drury ( 1 9 6 2 ) on nearby B y l o t I s l a n d . Where the nodal Tetragono - Dryadetum develops, the w i n t e r r e d i s t r i b u t i o n of snow i s p a r t i c u l a r l y s t r i k i n g ( F i g s . 1 8 , 1 9 ) . R e g a r d l e s s o f aspe c t , Increased depth o f the snowpack occurs on n e a r l y every beach slope throughout the lowland. As mentioned p r e v i o u s l y , t o t a l w i n t e r snow accumulation i s l i g h t , g e n e r a l l y l e s s than 40 inches (Thomas 1 9 5 3 ; K i n g 1 9 6 8 ) . T r a n s e c t s e s t a b -l i s h e d i n June, 1 9 6 8 , from f i v e random beaches, i n d i c a t e c l e a r l y however, t h a t i n f o r e s l o p e p o s i t i o n s the depth of the snowpack may be i n c r e a s e d f i v e - f o l d i n comparison to a d j a c e n t l o c a t i o n s . T able 16 shows q u a n t i t a t i v e l y the r e s u l t s of these measurements. A l l t r a n s e c t s s t a r t 1 meter from the e x i s t i n g snowline on the beach c r e s t s . (See F i g . 1 8 , the l o c a t i o n of t r a n s e c t No. 2 f o r o r i e n t a t i o n ) . Measurements of snow depth were then taken a t I n t e r v a l s o f e i t h e r 2 or 5 meters, p e r p e n d i c u l a r to the beach and out onto the l e v e l meadows^ (Caricetum s t a n t i s ) . In a l l cases the l a s t two r e a d i n g s r e p r e s e n t measurements away from the s l o p e and onto the meadow. Table 15 Tetragono-Dryedetua In t e g r l f o l i a e PLOT RO. 29 30 31 33 36 46 52 81 DATE ANALYSED 8/8/67 8/12/67 8/1J/67 8/16/67 8/22/67 7/22/68 7/26/68 7/10/ KEPBACOl'3 COVER % 60 85 80 80 75 85 85 60 M0S3 COVER S 8 15 15 10 30 20 18 3 LICHEN COVER * 33 AO 30 35 3! 30 25 20 ASPECT w H . tf V H a s 8 SLOPS « J 4 5 4 8 9 7 TOTAL SPECIES NO. S» 32 36 28 , 39 39 47 39 PLOT SIZE . . . 7 . PRESUMED CHARACTERISTIC COHBIWATIQH OF SPECIES Ceeeiope tetragon* Cetraria cucullete Catraria n i v a l l e 5.1 5.S 3.8 Saxifrage o p p o a i t i f o l i a OTHER SPECIES Carex niaandre Oxyria digyna Juneua bigluroia Papaver redicaturn Pedicularia hirauta Luzula arctica S t e l i a r i a lon^ipea Hinuartia r o a a i i Carex rujieatria Pedlcularls 1 an at a Polygonum viviparuo Aretagroatis l a t i f o l i a Silena ecaulia Colpodium vahlianun Eriophorum t r i a t e Carex atana Carex nardice P u c c i n e i l i a andaraonii Draba b e l l i i Ranuculua aulphureua Draba oblongata Cereetiun r e g e l i i 0.7 0.6 0.6 0.9 0.6 0 .5 0 .5 0.2 0.2 0.4 0.1 Tomentoypnua nitons Ditrichum flexicaule Tortula r u r a l i s Diatichium capillaceun Ortbothecium chryseun Didymodon asperifoliua Blepharostona triciiopbyllui Drepanocladua uncinatua Cinclidium arcticum Mniuo hytaenophyllum Knium orthorrhynchum Aulacomnium turgidum Pogonatun alpinun Tetraplodon mnioidea Ar n e l l i o fennica Kyurella tanerrima Hyurella julacea Tinttnia auatriaca Dicranoweiaia criapula Rhacotnitrium lanuginosun Enealypta rbafcdocarpa V o i t i e n i v a l i s Bypnum bambefseri T o r t e l l a tortuoaa Drepanocladua revolTena Bypnum revolutun Bylocoaiutn aplendena Mniun hymenophylloidea Mnium oarginatun Pbilonotia fontana Orthotaeciun strictum Dicranuc acoparium Barbula f a l l a x Meeaia uliginoaa Ab i e t i n e l l a abietina Bryun anguatlrate RoacofDitriun: heteroaticnun var. sudeticun Lophosie wa n z t l i i Diatichiun hagenii Barbula icnedopbila DicranuD elonjjatun Aneura pinguis P t i l i d i u n c i l i a r e S a l i g e r i a polaria Ceratodon purpureaa Cephaloziella arc t i c a Lophoaia leunzeana Odontoschism* taacounii I I I I I I I I I I I I 2.1 2.1 2.0 0.4 2.1 1.1 1.1 0.9 0.9 0.9 0.7 0.6 0.3 0.3 0.3 0.9 0.9 0.6 0.2 0;7 0.6 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 Catraria cucullata Catraria n i v a l i n Lecanora epibryon Thamnolia veroieularis Lecidea ream Iona Eypogycnie aubobaeura Cladonia pyxidnta Alectoria nigricana Pbyscia ouacigena Cetraria ialandica Dactylina oretice Dactylina raauloae Alectoria ochroleuca Lecidea vernalla Caloplaca t i r o l i e n s i a Ochrolechia f r i g i d a Pertuaaria coriacea Parmelia ompt.alodea Cetraria d e l i e e i Plecynthiuo aspratile Solorina biapora Ochrolechia upaalieasia Toninia lobulate Rhizocarpon geogropbicum Comlcuiaria aculeate Stereocaulon elpinua Peltigera ephthooa Cornicularia divergena Solorina saccate Alectoria n i t i d u l e Alectoria cnalybeiforraia Pannoria bookeri Pert'iaaria bryontha Alectoria ainijacula Caloplaca cinnamonee Ptiyscla ceesia Fulgenala bracteata Umblllcerla arc t i c a Lecidea dickaonil Parmelia separate Xanthoila elegens Agyrophora lyngei Rtiizocarpon rittokenae Pernella diajuncta C e t r a r i a nigricana Alectoria eubdlvergena Alectoria tenuis Candelariella aurella Polyblaatia hyporborea B u e l l i a p a p i l l a t e Lecanora fruatuloea Lecidea Inplcida Lecidea apalrea Pertuaaria panyrga Rhiiocarpon potycarpon Polyblaatia Uieleodea Rhizocarjon dlaporum UmbllIceria havaanlt Umbllioarle hyperboree 3-8 3.8 3.6 3.4 3.3 2.6 2.3 2.0 1.8 1.8 1.6 1.4 1.0 0.9 0.7 0.6 1.8 1.5 1.3 1.1 1.0 0.8 0.5 0.7 0.6 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.1 0.1 0.1 0.3 0.3 0.3 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 71 T a b l e 15a Tetragono—Dryadetum integrifoliae - Soils PLOT RO. DATE SAMPLED DEPTH TO FROZEN MATERIAL (inches) SOIL CLASSIFICATION1 PHYSICAL/CHEMICAL ANALYSIS Horizon I depth (inches) color, dry color, vet pH (CaCl,) pH (HjOr carbon 56 nitrogen % total P p.p.m. Exchangeable Cations Me/lOOgm E Ca Mg Ha 29 7/21/68 12 30 7/21/68 15 ..(sp)... 31 7/21/68 16 33 36 46 5 2 81 7/22/68 7/20/6S 7/22/68 7/28/68 7/10/69 16 16 , 1 1 18 9 'Arctic Brown......J...• .(sp).......(sp) ..(sp).. Ah H Ah VARIABLE2 - RANGE 0 - 2 to 0 - 1 1 Ah Ah Ah Ah H 5 Y R 2 / 2 5 Y R 2 / 2 5 Y R 2 / 2 5 Y R 2 / 5 5 Y R 2 / 2 5 Y E 2 / 2 5 Y R 2 / 2 5YR2/2 5YR2/1 5YR2/1 5YR2/1 5TR2/1 5YR2/1 5YR2/1 5YR2/1 5YR2/1 6 . 9 7 . 1 6 . 7 7 . 0 7 . 1 6 . 7 7 . 0 6 . 6 7.3 7 . 7 7 . 1 7 . 2 7 . 6 7 . 6 7 . 1 7 . 1 9 . 3 18.7 2 . 9 8.4 8 . 0 1 1 . 2 7.8 1 7 . 6 1.84 2.70 1 . 1 1 1 . 7 7 1.48 2 . 1 0 1 . 3 1 0.87 11 8 12 4 18 17 12 18 .08 12.1 8.1 .18 20.5 . 1 7 1 5 . 0 11.2 . 2 9 26.7 . 0 9 12.8 9 . 3 .26 22.4 .06 11.4 7.2 .19 18.8 .09 12.9 8.9 .20 22.1 .08 14.9 10.3 .38 2 5 . 7 .06 11.0 6.2 .16 17.4 . 0 7 42.4 22.2 .92 65.6 Horizon II depth color, dry color, wet pH (CaCl,) PH (HpOr sand s i l t $ clay # carbon nitrogen P Exchangeable Cations K Ca Kg Na Sum £m C ..VARIABLE - RANGE 10YR4/5 7.5YR3/2 7.5YR3/2 7 .5 7.6 9 4 . 2 4 . 8 1 . 0 2 . 3 0 . 1 9 2 . 0 3 2 . 7 2 . 1 . 1 3 5 . 0 7 . 5 Y R 3 / 2 7 . 5 7 . 8 9 2 . 4 7 . 6 0 . 0 3 . 2 0 . 3 9 5 .04 4.9 2.7 . 1 5 7.8 Bm -10 to 10-13. 7.5YR3/2 7.5YR3/2 7.2 8.0 94.4 5.6 0.0 1.0 0 . 2 3 3 . 0 3 3 . 9 2 . 0 .16 6.1 Bm (?) 10YR4/3 5 Y R 2 / 2 7.4 7 . 5 98.8 1.6 0 . 0 2 . 0 0 . 1 1 0 .03 2.4 1.7 .14 4.3 7.5YR3/2 5YR2/2 7.4 7.8 94.4 5.6 0.0 2. 0. 3 2 5 .04 3 . 5 2 . 5 . 1 5 6.2 10YR3/4 7.5YR3/2 7.3 7.7 94.4 5 . 6 0.0 2.3 0.14 0 . 0 3 3.1 2.2 .14 5.5 10YR3/4 7.5YB5/2 7.5 7.8 96.8 3 . 2 0 . 0 2.8 0 . 1 3 1 .04 3 . 7 2.2 . 1 7 5 . 1 Horizon III depth color, dry color, wet pH (CaCl,) pH (H 2or sand s i l t clay carbon nitrogen P c C C c 9 - 1 2 10-16 12-16 11-16 10YR5/3 10YR5/3 10YR5/3 10YS4/3 7 . 5 Y R 4 / 2 7 . 5 Y R 4 / 2 10IR4/2 7 . 5 Y R 3 / 2 7.7 7.6 7.6 7.5 ' 7.7 8 . 0 8 .1 7.7 NM 98.4 98.4 96.4 NM 1 . 6 1.6 3.6 NM 0 . 0 0 . 0 0 . 0 2 . 5 1.8 3 .2 2.3 0 . 0 5 0 . 0 9 0.04 0.08 0 0 0 2 Exchangeable Cations K Ca KB Na . 0 3 2.4 1.2 .12 3.7 .08 1 . 9 115 . 1 3 3 . 6 1 sp • shallow phase of Arctic Brown soi l type. 2 Boundaries of horizons I and II exceedingly wavy due to hummock topography. .02 2.0 1.2 .12 3 . 3 . 0 3 2 . 0 2 . 0 .14 4.2 72 Table 1 6 Snow Depth Transects from Snowline at Beach Crest to Meadow Snow Depth i n Inches Transect Date No. Beaches Meadow 1M 6M 11M 16M 21M 26M 31M 36M 4lM 46M 6 / 2 5 / 6 8 1 5 . 5 4 3 . 5 3 7 . 7 24 . 5 29.2 20.0 13 . 5 12.0 13.0 6 . 5 6/26/68 2 8.0 42.0 40.0 3 4 . 5 12.0 4.0 6 / 2 7 / 6 8 3 7 . 6 2 7 . 3 33.O 1 3 . 3 14 . 6 1M 3M 5M 7M 9M 11M 13M 15M 17M  6 / 3 0 / 6 8 4 14 . 7 1 5 . 5 15.0 13 . 7 H.2 10.0 11.0 5 - 7 2.0 6 / 2 9 / 6 8 5 8 . 5 12.0 16.0 18.0 11 . 5 10.0 8.0 5.2 4.2 The duration of the snowpack i n these locations i s dependent upon both the depth of the pack and seasonal temperature v a r i a -tions during the melt period. Two rather t y p i c a l examples of snow melt patterns along transects run s i m i l a r l y to those above are shown l n Tab. 17« Although the 1 9 6 8 season was believed to be a t y p i c a l l y l a t e l n terms of timing of spring melt, the pat-tern of melt remains consistent. As i s indicated, the foreslope habitats of the Tetragono - Dryadetum remain snow covered up to \\ weeks longer than the adjacent meadows (Caricetum st a n t i s ) and from i f to 3 weeks longer than the Nardino - Dryado - Alectorietum. In a region where the e f f e c t i v e growing season i s so reduced, these timing differences, with regard to habitat emer-gence from winter snow, are l i k e l y to have a c r i t i c a l influence on both the f l o r i s t i c composition of a coenosis as well as the 1968 BeaclT" Stake Ko i — Table 17! Snow Kelt Transects (50 meters) Prom Beach Oreat (stake 1) to Figures Equal Depth of Snow in Inches at Indicated Date 6/16 6/17 6/16 6/19 6/20 6/22 6/23 6/24 Foreslope Beach foreslope 2 3 4 5 6 7 6 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 » 5 6 7 e 9 10 11 12 _6/l| 5^ 5 10.0 25.0 26.5 26.0 23.5 20.5 18.0 14.0 .2 9.2 21.5 25.5 25.5 22.5 19.2 16.5 13.5 I f ' . ? .. XT 3.5 9.0 21.0 25.0 24.7 22.2 18.5 16.0 13.0 15-5 . TT5-1.5 8.2 20.5 24.5 24.0 21.5 17.5 15.0 12.5 »-? 1.5 B.O 20.5 24.0 24.0 21.2 17.5 15.0 12.5 l"-5 , 0.2 7.0 19.5 23.2 23.0 20.5 16.5 14.2 11.5 13.5.. Meadow 6/25 6/26 6.7 19.5 22.7 22.5 20.0 16.0 14.0 11.2 13.2 5.0 17.5 21.0 20.5 17.7 14.2 12.2 9.7 11-5 5.0 17.2 20.5 20.5 17.5 13.7 11.7 9.5 11.0 4.0 16.7 19.5 19.5 17.0 13.5 U.2 9.0 10.0 4.0 16.5 19.2 19.2 16.5 13.0 10.7 8.5 10.2 3.7 16.5 19.5 19.5 16.7 13.0 11.0 8.7 10-5 6/27 6/28 6/29 6/30 7/1 7/3 7/4 7/5 7/6 3.7 16.5 19.0 19.5 16.5 13.0 10.7 8.5 1° . ? 7/8 7/9 7/10 7/11 7/12 3.7 16.5 19.5 19.5 16.5 12.7 11.0 9.2 10.5 1.5 i3.7 17.2 17.5 15.0 10.7 8.5 7.2 8,5 13.2 16.2 16.5 13.7 10.0 7.5 7.0 8.5,., 12.0 14.5 15.5 13.0 9.2 6.7 6.5 7-5 10.7 13.7 14.2 12.2 8.5 6.0 5.7 7.0 9.2 12.2 13.0 10.5 6.7 4.5 4.7 6.0 8.7 11.5 12.0 9.2 6.5 3.7 4.5 4.7 7.7 10.7 10.5 7.0 5.7 3.0 3.7 4.5 6.2 5.7 4.5 3.7 _ m 9.5 9.5 6.5 5.0 4.2 3.5 5.0 9.5 9.0 7.2 6.5 5.2 4.0 2.5 5.7 5.5 5.2 4.0 2.5 • 4.5 3.7 2.0 - • • • • " • 4.0 ?-2 2.5 z r Poreslop. 6/11 TOT" 19.5 19.7 17.7 17.0 21.5 21.5 17.0 14.0 12.5 9-7 6/12 I B . « 3-50 16.00 14.50 9.75 9.75 16.75 17.75 17.50 12.50 11-75 6/12 '16.0 19.2 19.5 17.5 16.2 21.5 21.5 17.0 14.0 12.5 9.5 6/14 18.5 18.7 16.2 15.5 20.5 20.5 16.0 13.0 10.7 8-7 6/16 •T477-18.0 17.5 17.5 15.5 19.7 20.2 15.2 12.5 10.5 9.2 17.5 17.0 16.7 14.5 18.5 19.5 14.0 11.5 9.2 8.5 6/ia 14.0 17.0 16.7 16.7 14.0 18.0 19.0 13.7 11.0 8.5 8.5 m-16.2 16.2 15.7 14.0 17.0 18.7 13.2 10.7 8.5 8.2 6/14 in.25 15.75 14.25 9.00 9.75 16.75 17.00 16.75 11.50 11.50 15.0 15.5 15.0 13.0 16.5 17.5 12.5 9.5 7.0 6/22 10.0 12.5 13.5 12.5 10.0 15.0 15.2 11.0 8.5 7.0 -ZiO-12.0 13.0 12.2 10.0 14.5 15.0 9.5 8.0 6.2 -6^-6/26 12.0 12.5 12.0 9.5 12.5 15.0 8.5 7.5 6.0 -6*2_ 11.0 12.2 11.5 9.0 12.5 14.0 8.7 7.2 5.5 -4±2_ %%%% %% %% %% y» y> 7 2 " 11.2 12.2 11.5 9.0 12.5 14.0 9.7 7.0 5.5 4.S 6/28 12.5 13.5 12.5 8.7 12.5 14.5 9.7 7.7 5.5 • «•? -1072-14.0 13.7 12.7 10.5 15.0 15.2 9.7 7.5 5.2 4.2 12.7 13.2 11.0 9.2 12.5 13.0 8.5 5.5 5.2 4.0 10.0 11.2 9.5 7.7 11.0 11.2 7.2 5.0 3.5 3-0 3 ~ 7.5 10.0 8.5 6.7 10.5 10.5 6.7 5.0 3.0 2-5 7/2 -2/2 7/5 7/6 7/7 7/8 7/1° 6.5 a.5 6.5 5.7 8.7 9.0 4.2 5.0 6.2 5.5 5.0 4.5 1.5 1.5 8.0 7.0 6.0 5.2 3.5 2.7 a 6.0 5.0 4.2 5.5 2.5 • 5.5 5.0 4.7 4.0 3.0 3.0 a • 8.5 8.5 7.5 7.0 6.0 6.0 5.2 4.0 8.5 7.5 6.0 5.7 5.2 _ a 4.0 3.5 3.5 _ a 5.0 4.2 • - > m * • • • • - m • 15.75 14.00 9.00 9.25 16.50 17.00 16.25 11.25 " .25 15.50 15.00 14.00 13.50 8.50 7.00 9.25 9.00 16.50 15.75 17.00 16.25 15.75 14.75 11.00 10.00 11-25 10.75 14.00 12.50 6.50 8.25 15.00 15.00 13.50 9.00 9.75 13.50 12.00 5.75 8.00 14.50 14.50 13.00 8.50 9.00 12.25 10.75 4.50 7.00 13.50 13.50 11.75 7.75 7-50 11.75 10.00 4.50 6.75 13.25 13.25 11.00 6.50 7iQ° _ • 8.75 4.50 a 7.00 3.25 m 2.50 a 5.00 • a 11.00 8.25 4.50 11.00 7.25 3.50 9.00 4.00 • a, 4.7? - a 7 4 f u n c t i o n i n g of I t s component members. The c o r r e l a t i v e a s p e c t s of community d i s t r i b u t i o n and z o n a t i o n w i t h r e s p e c t to snow cover have been w e l l documented ( R u n n i n g 1 9 6 5 ; B i l l i n g s and B l i s s 1 9 5 9 ; G j a e r e v o l l 1 9 5 6 ) . There a l s o e x i s t s l i m i t e d i n f o r -mation on the response of p l a n t s to the snow pa t c h environment ( B i l l i n g s and B l i s s 1 9 5 9 )• Remaining however i s the need f o r c r i t i c a l e x p e r i m e n t a l work on the comparative a u t e c o l o g y of p o p u l a t i o n s of s p e c i e s whose d i s t r i b u t i o n s are not l i m i t e d to the snow patch environment. In the Tetragono - Dryadetum, f o r example, are a number of s p e c i e s found i n v a r i o u s coenoses throughout the lowland system. Has the s e l e c t i v e p r e s s u r e of a l a t e m e l t i n g snow pack been s u f f i c i e n t to a l l o w the segrega-t i o n of ecotypes r e s p o n s i v e to these p r e s s u r e s , or i s phenotyplc p l a s t i c i t y wide enough to encompass observed d i f f e r e n c e s i n s p e c i e s response? Recent work by T e e r l ( p e r s o n a l communication) i n d i c a t e s t h a t f o r a t l e a s t one s p e c i e s , the former i s the case. Working w i t h S a x l f r a g a o p p o s l t l f o l l a , T e e r l has observed gene based v a r i a b i l i t y i n beach c r e s t (Nardino - Dryado - A l e c t o r i e t u m ) and f o r e s l o p e (Tetragono - Dryadetum) p o p u l a t i o n s i n the Devon I s l a n d lowland system. Continued d i s c o v e r i e s of t h i s n ature w i l l undoubtedly l e n d support to the u t i l i z a t i o n o f c l u s t e r s of environmental as w e l l as f l o r i s t i c parameters i n the d e l i n e a -t i o n of s y n s y s t e m a t i c u n i t s . T h i s w i l l be p a r t i c u l a r l y Impor-t a n t i n the p o l a r r e g i o n s where the v e g e t a t i o n mosiac Is composed of combinations s e l e c t e d from a f l o r a of such l i m i t e d d i v e r s i t y , a f a c t r e c o g n i z e d some time ago by S^rensen ( 1 9 4 1 ) . T - D l F i g . 18 Typical snow pack following the beach slope. The aspect here i s west. The beach crest l i e s exposed to the l e f t , the sedge meadows to the r i g h t (photo Jul y 4, 1968). F i g . 19 Even on low beaches with a southern aspect l a t e snow patch environments p e r s i s t (photo June 3 0 , I 9 6 8 ) . 75 T - D l F i g . 20 Wind blown d e t r i t u s c o l l e c t i n g a l o n g the f o r e s l o p e o f a r a i s e d beach. 76 T - D l F i g . 2 1 P l o t of a c t i v e l a y e r development ( i n c h e s thawed) w i t h time (month and day) on p l o t 3 6 d u r i n g 1 9 6 8 (above) and 1 9 6 9 (below).. H = p l o t o f a c t i v e l a y e r development measured as mean of f i v e probes p l a c e d on tundra e a r t h hummocks. F = p l o t of a c t i v e l a y e r development measured as mean of f i v e probes p l a c e d i n the de p r e s s i o n s between hummocks. A = mean a c t i v e l a y e r development of a l l probes (H and F, 10 p r o b e s ) . 77 V T - D i F i g . 2 2 P l o t o f a c t i v e l a y e r development w i t h time. Above, p l o t 3 3 . 1 9 6 8 . Below, p l o t 3 1 . 1 9 6 9 . 7 8 79 The pronounced hummock and d e p r e s s i o n topography mentioned p r e v i o u s l y a l s o shows a d i s t i n c t c o r r e l a t i o n w i t h the m i c r o d i s -t r i b u t l o n o f c e r t a i n s p e c i e s w i t h i n the c o e n o s i s . Mapped r e c -t a n g l e s from i n d i v i d u a l p l o t s ( P i g . 2 3 ) show a d i s t i n c t p r e f e r -ence by c e r t a i n s p e c i e s f o r p o s i t i o n w i t h r e s p e c t to hummock or interhumraock l o c a t i o n . In a r e c e n t review of t u r f hummock f o r m a t i o n i n the Mesters V i g D i s t r i c t of Northeast Greenland, Raup ( 1 9 6 5 ) s t a t e s t h a t there are b a s i c a l l y two types of A r c t i c t u r f hummocks, each b e i n g " c o n d i t i o n e d i f n ot determined by the k i n d s of p l a n t s t h a t form them." One type i s made up of c a e s p l t o s e s p e c i e s of the Cyperaceae ( o r o c c a s i o n a l l y Gramlneae), the second composed b a s i c a l l y of mosses. In the Tetragono - Dryadetum of the Devon I s l a n d lowland, t h i s i s d e c i d e d l y not the case. The major tussock forming s p e c i e s here appears to be c o n s i s t e n t l y Dryas I n t e g r i f o l l a ( F i g . 2 3 ) . Hummock h e i g h t may var y between three to nine inches above the ground s u r f a c e . Most are roughly h e m i s p h e r i c a l and appear u n i -f o r m l y d i s t r i b u t e d over the s u r f a c e of a r e a . Samples taken from numerous hummocks f o r d e t e r m i n a t i o n o f s o i l moisture content i n d i c a t e t h a t a l l have cores of w e l l decomposed humic m a t e r i a l (see e.g. F i g . 16 and carbon d e t e r -minations of Ah h o r i z o n s . Table 1 5 a ) . S p e c i e s w i t h a marked p r e f e r e n c e f o r moist environments (bryophytes) o r snow patch l o c a t i o n s (Cassiope tetragona) are more c o n s i s t e n t l y found i n the lnterhummock p o s i t i o n s . S a x i f r a g a o p p o s l t l f o l i a and Carex mlsandra, p l a n t s which are found w i d e l y i n a number of coenoses, may appear i n e i t h e r T - Di F i g . 23 D i s t r i b u t i o n of p l a n t s i n r e l a t i o n t o hummock and d e p r e s s i o n topography. (200 cm x kO cm) A = l o c a t i o n of hummocks. T r i a n g l e s r e p r e s e n t the h i g h e s t p o i n t on the hummock. B = p a t t e r n of Dryas l n t e g r l f o l l a C = p a t t e r n o f Casslope t e t r a g o n a D =» p a t t e r n of t o t a l bryophyte cover E = p a t t e r n of S a x l f r a g a o p p o s l t i f o l i a F = p a t t e r n of Carex misandra 8 1 hummock o r d e p r e s s i o n l o c a t i o n s ( F i g . 2 3 ) . S u p e r f i c i a l l y the m i c r o d l s t r i b u t i o n o f these s p e c i e s w i t h i n the coenosis appears to correspond r e a s o n a b l y w e l l w i t h t h e i r m a c r o d i s t r l b u t l o n p a t t e r n s between coenoses. The c a u s a l r e l a t i o n s h i p between p a t t e r n and environment e f f e c t s , however, i s by no means c l e a r . F o r example, one might assume t h a t lnterhummock l o c a t i o n s would be m o i s t e r than hummock p o s i t i o n s , thus c r e a t i n g a more f a v o r -a b l e environment f o r snow patch o r wet-mesic s p e c i e s such as are noted here. The data p r e s e n t e d i n Tab. 1 3 , however, show t h a t t h i s i s not always the case. From J u l y 1 , 1 9 6 9 to August 1 7 , 1 9 6 9 e i g h t samplings f o r s o i l moisture d e t e r m i n a t i o n were taken In both hummock and d e p r e s s i o n l o c a t i o n s . Each f i g u r e ( f o r 1 9 6 9 ) r e p r e s e n t s the mean o f two r e p l i c a t e cores taken a t the time of sampling. D u r i n g s i x of the e i g h t weeks the hummock s o i l s showed h i g h e r percentages of a b s o l u t e moisture than the lnterhummock a r e a s . T h i s may be r e l a t e d to the t e x t u r a l d i f -f e r e n c e s a l l u d e d to e a r l i e r . A second e x p l a n a t i o n however may be p o s s i b l e . The s u r f a c e thermal regime o f t h i s type o f topography i s extremely v a r i a b l e over s m a l l areas. Tab. 18 i l l u s t r a t e s tem-p e r a t u r e s r e c o r d e d on August 2 1 , 1 9 6 8 a t one l o c a t i o n a t p l o t 3 6 . Table 18 Temperature ( C e ) a t I n d i c a t e d Depth ( i n c h e s ) D e p r e s s i o n i n Sun De p r e s s i o n i n Shade Hummock Center 6 . 7 2.4 4 . 3 2 . 2 0 . 9 9 . 7 8 . 3 7 . 1 Temperatures were r e c o r d e d w i t h a YSI Telethermometer and Th e r m i s t e r probe. The hummock on which the temperatures were taken was r o u g h l y f o u r i nches i n h e i g h t , s i x to e i g h t inches i n diameter, and dominated by Dryas. Readings were taken a t 1 6 : 3 0 . During the l a t t e r p o r t i o n of the summer s o l a r a t t i t u d e i s low, ca u s i n g a pronounced shading of some lnterhummock areas ( F i g . 1 5 ) . In a d d i t i o n to temperatures r e c o r d e d from the hummock cen t e r , r e c o r d i n g s were a l s o made i n the a d j a c e n t d e p r e s s i o n s , one i n the sun and one shaded. P l a n t s i n the s u n l i t d e p r e s s i o n Included S a x I f r a g a o p p o s l t l f o l i a , Juncus b l g l u m i s and L e c i d e a  ramulosa. The shaded d e p r e s s i o n was dominated by Orthotheclum  chryseum. Such l o c a l i z e d c o n t r a s t i n g temperature g r a d i e n t s suggest t h a t the t i m i n g of r e l e a s e of moisture from thawing of the a c t i v e l a y e r must be a l o c a l l y v a r i a b l e phenomenon w i t h i n the c o e n o s i s . T h i s i s borne out by o b s e r v a t i o n s of s m a l l patches of ground i c e i n lnterhummock l o c a t i o n s d u r i n g the l a t t e r por-t i o n of August. F i e l d notes i n d i c a t e the presence of f r o z e n o r g a n i c matter a t a depth of three inches on August lk a t p l o t 3 6 . In summary, the Tetragono - Dryadetum develops on g e n t l e s l o p e s cn the f o r e s h o r e s of r a i s e d beaches. Pronounced develop-ment of tundra e a r t h hummocks, formed mainly by Dryas i n t e g r i f o l i a cover the landscape s u r f a c e . C h a r a c t e r i z i n g s p e c i e s i n c l u d e Casslope t e t r a g o n a and- an abundance of C e t r a r i a n i v a l i s and C. c u c u l l a t a . Other prominent f o l i o s e l i c h e n s are pr e s e n t , i n c o n t r a s t to the a d j a c e n t beach c r e s t of the Nardino >-Dryado - Alectorietum. The coenosis i s b e s t c o n s i d e r e d as a mesic o r wet mesic u n i t . S o i l g e n e s i s here l e a d s to the f o r m a t i o n o f e i t h e r an A r c t i c Brown o r A r c t i c Brown shallow phase p r o f i l e . The l o c a t i o n of t h i s c o e n o s i s r e s u l t s i n heavy accumulations of snow d u r i n g w i n t e r r e d i s t r i b u t i o n . T h i s i s r e f l e c t e d i n the composition of the v e g e t a t i o n . T y p i c a l "snowpatch" i n d i c a t o r s , such as Casslope t e t r a g o n a and C e t r a r l a d e l l s e l , are abundant here. A number of b i c o e n o t i c d i s t r i b u t i o n p a t t e r n s o f s p e c i e s found both here and i n the a c i d i c Sphaerophoro - Rhacomitrio -Casslopetum tetragonae were noted. The development of the a c t i v e l a y e r i s o n l y moderately r a p i d r e l a t i v e to o t h e r u n i t s of the D r y a d e t a l i a . Average thaw depth i s approximately 17 Inches. The hummock and d e p r e s s i o n topography of the s u r f a c e r e s u l t s i n a markedly v a r i a b l e thermal regime over s m a l l d i s -t a n c e s . T h i s , i n I n t e r a c t i o n w i t h o t h e r f a c t o r s , no doubt p l a y s a r o l e i n the m i c r o d i s t r i b u t i o n of c e r t a i n s p e c i e s noted w i t h i n the c o e n o s i s . The coenosis i s s i m i l a r both f l o r l s t i c a l l y and e n v i r o n m e n t a l l y to the Tetragono - Dryadetum d e s c r i b e d by Running ( 1 9 6 9 a ) from the i n n e r f i o r d r e g i o n s o f S v a l b a r d . (3) P e d l c u l a r o - Dryadetum i n t e g r i f o l i a e (P - Dl) B a r r e t t and K r a j i n a F i g s . 2k - 2 9 Tab. 19 - 2 2 The P e d l c u l a r o - Dryadetum i n t e g r i f o l i a e covers a very s m a l l area o f the lowland system. The c o e n o s i s o c c u r s on f l a t a reas as I s o l a t e d patches, g e n e r a l l y surrounded by h y d r i c sedge meadow communities. The ground s u r f a c e appears v i s u a l l y to be 84 s l i g h t l y convex from the center of a given area to the margin. Observations at three plo t locations on the twenty-second of June, 1 9 6 9 . showed a l l three units emergent from the snow pack e a r l i e r than the surrounding meadow s i t e s . V i s u a l l y the most delineating feature of the coenosis i s the presence of well developed non-sorted c i r c l e s (Washburn 1 9 5 6 ) . These generally cover between 2 0 and 3 0 percent of the ground surface f o r any given p l o t (Pig. 2k). The c i r c l e s are variable i n size and often grade into a more net-like pattern (Washburn 1 9 5 6 ) . On one p l o t , 40, measured c i r c l e diameters ranged between 12 and 3 3 inches and at three s o i l excavations the measurement of pairs of c i r c l e diameters on each side of a vegetation band were 2 3 and Ik inches, 2 0 and 18 inches, and 14 and 1 ? inches. The c i r c l e s are normally devoid of vascular plant cover, although lichens may invade some c i r c l e s . Many lack plant cover. Uniformly scattered over the surface are various sized stones and mollusk s h e l l fragments, presumably r a i s e d from lower l e v e l s during periods of active formation. The covering of these materials may be quite var i a b l e . At p l o t 41, f o r example, f i e l d notes indicate some c i r c l e s have a 5 0 to 7 0 percent covering of stone and s h e l l s while others have only 5 percent (Pigs. 2 6 , 2 7 ) . Vegetation here i s r e s t r i c t e d to the borders of the c i r c l e s , r e s u l t i n g i n a d i s t i n c t i v e r e t i c u l a t e pattern (Fig. 24). The width of the vegetation bands between c i r c l e s i s also v a r i a b l e . Measured at four locations the width of the organic band between two a d j a c e n t c i r c l e s (measured j u s t below the s u r f a c e ) was 5 . 1 5 , 18 and 8 i n c h e s . Pebble a n a l y s i s from f o u r l o c a t i o n s shows a dominance of dolomite parent m a t e r i a l s . The abnormal h i g h v a l u e s of grano-d i o r i t e from p l o t 6 are almost s u r e l y a m i s r e p r e s e n t a t i o n , s i n c e s o i l a n a l y s i s i n d i c a t e s a d o l o m i t i c o r i g i n s i m i l a r to the other p l o t s . T h i s p l o t i s , however, the o n l y one l o c a t e d a d j a c e n t to an outcrop of Pre-Cambrian m a t e r i a l . T a b l e 19 Pebble A n a l y s i s from S o i l P i t s of the P e d l c u l a r o - Dryadetum I n t e g r i f o l i a e M a t e r i a l P r e s e n t i n Sample (as 8th of T o t a l )  P l o t 40 41 42 Dolomite B i o t i t e G r a n o d i o r i t e / G r a n o d i o r i t e Pink G r a n i t e B i o t i t e D l o r i t e Hornblend D l o r i t e B i o t i t e q u a r t z monzonite 1 6 1 6 1 1 T 2 L i k e the P o l a r 1 - Dryadetum from S v a l b a r d ( R u n n i n g 1 9 6 5 ) , the p l o t s of t h i s u n i t are u n i t e d as much by the n e g a t i v e char-a c t e r of s p e c i e s absence as the presence of a c h a r a c t e r i s t i c s p e c i e s component. Carex n a r d l n a , Casslope t e t r a g o n a , O x y r l a d l g y n a and Rhacomltrlum heterostlchum v a r . sudetlcum are a l l completely absent here (Tab. 20). The a b s o l u t e dominants are Table 20 86 Pedicularo-Dryadetum i n t e g r i f o l i a e PLOT NO. DATE ANALYSED HERBACOUS COVER % MOSS COVER % LICHEN COVER % TOTAL SPECIES NO. PLOT SIZE PRESUMED CHARACTERISTIC COMBINATION OF SPECIES P e d i c u l a r i s l a n a t a V e r r u c a r i a deversa ORDER AND ALLIANCE CHARACTERISTIC SPECIES Dryas i n t e g r i f o l i a S a l i x a r c t i c a S a x i f rage o p p o s i t i f o l i a OTHER SPECIES Carex misandra Juncus biglurais Draba b e l l i i S t e l l a r i a longipes Papaver radicatum A r c t a g r o a t i s l a t i f o l i a Draba a l p i n a Colpodium vahlianum Polygonum viviparum P e d i c u l a r i s h i r s u t a Braya purpurascens Eutrema edwardsii Carex r u p e s t r i s Tomenthypnum n i t e n s T o r t u l a r u r a l i s D itrichum f l e x i c a u l e D i s t i c h i u m capillaceum Encalypta rhabdocerpa Hypnum revolutura Mnium orthorrhynchum •Voitia n i v a l i s BlepharoEtoma trichophyllum T o r t e l l a t o r t u o s a Aulacomnium turgidum Hypnum bambergeri Bypnum procerrimum" Barbula icmadophila P l a t y d i c t y a jungermannioides Drepanocladus uncinatus Tetraplodon mnioides H y u r e l l a j u l a c e a Timmia a u s t r i a c a Amblys^egiura juratzkanum Brachytheciura a l b i c a n s C i r r i p h y l l u m cirrosum A m e l l i a f e n n i c a Campylium hispidulum Haplodon wormskooldii Drepanocladus revolvens Lecanora epibryon Thamnolia v e r m i c u l a r i a Physciamuscigena Lec i d e a ranulosa Cledonia pyxidata P e r t u a a r i a c o r i a c e a C e t r a r i a n i v a l i s C e t r a r i a i s l a n d i c a Xanthoria elegans F u l g e n s i a b r a c t e a t a C e t r a r i a c u c u l l a t a Rinodina r o s c i d a Rhisocarpon geographicum Cal o p l a c a t i r o l i e n s i s L e c i d e a v e m a l i s P e l t i g e r a canina D a c t y l i n a ramulosa S o l o r i n a b i s p o r a O c h r o l e c b i a u p s a l i c n s i s O c b r o l e c h i a f r i g i d a S o l o r i n a saccata A l e c t o r i a n i g r i c a n s Stereocaulon rivulorum C a l o p l a c a s t i l l i c i d i o r u m Hypogymnia subobscura T o n i n i a l o b u l a t a Physcia c a e s i a Placynthium e s p r a t i l e A l e c t o r i a subdivergens O c h r o l e c b i a androgyne Och r o l e c h i a geniinipara O c h r o l e c h i a gonatodes Spilonema revertens Agyrophora l y n g e i Rhizocarpon disporum L e p r a r i a nep;lecta A l e c t o r i a ochroleuca A l e c t o r i a n i t i d u l a Cande?.ariella a u r e l l a Lecanora verrucosa Lecanora d i s p e r s a Lecidaa stigraatea L e c i d e a l a p i c i d a l e c i d e a atromarginata C o r n i c u l a r i a aculeate P e r t u s a r i a panyr^a P o l y b i a s t i o theleodes Leciophysms finaarkicum Lecanora proserpens Lecanora Candida P r o b l a s t e n i a r u p e s t r i s 6 6/19/67 *5 15 3 28 39 7/11/68 45 15 25 41 40 7/12/68 50 10 15 52 41 7/1V68 50 10 15 o 50 42 7/1V68 30 10 15 43 82 7/10/69 45 5 15 37 (AVE. SPECIES) PRESENCE SIGNIFICANCE 1 + 1 2 + V 0.8 • • + + + + IV 0.3 6 6 7 7 7 7 V 6.7 3 3 3 4 4 3 V 3.3 5 4 4 4 4 3 V 4.0 3 2 2 2 3 4 V 2.7 • + + 1 IV 0.4 1 1 III 0.4 + + 1 ' III 0.3 + + III 0.2 2 2 II 0.7 + * II 0.2 • II 0.2 2 I 0.3 2 • I 0.3 2 I 0.3 1 • I 0.2 • • • • • • I -4 4 4 4 4 4 V 4.0 3 - 2 3 3 3 2 V 2.7 2 2 4 3 1 2 V 2.3 2 2 + + 1 2 V 1.3 3 a 3 + 1 IV 1.3 3 1 3 1 IV 1.3 • + 1 1 III 0.4 • + + III 0.3 • • + + • + III 0.3 • • 1 • • II 0.5 • 1 • • II 0.5 • • • • I 0.3 • 1 I 0.2 • 1 I 0.2 • • 1 • I 0.2 • . 1 I 0.2 • • 1 I 0.2 • • + I -• • + • # I _ • • + I -• + I -• • • + I -• + I _ • • • + I -• • • I • • + • • • I -2 4 4 4 4 3 V 3 3 2 3 4 4 V 3.2 + 4 4 * 3 1 V 2.8 1 4 4 4 3 V 2.8 2 1 2 3 2 3 V 2.2 • 3 3 3 1 3 V 2.2 • " 2 1 3 2 2 V 1.7 • 2 '+ 2 2 1 V 1.3 • 1 1 2 2 + V 1.1 + 1 1 1 i V 1.1 • 2 1 2 1 + V 1.1 + + + + V 0.4 • 1 1 1 IV 0.7 • 1 2 1 + IV 0.6 • + . + + IV 0.3 • + 2 3 III 0.9 • + • III 0.5 • • 2 III 0.7 • + 2 + III 0.5 • + + + III 0.3 • 1 2 • II 0.5 • • • 1 II 0.3 • * • II 0.3 • + - II 0.2 • • + + II 0.2 • • + II 0.2 • • + > + II 0.2 • + • II 0.2 * + • II 0.2 • • • I 0.3 • • • 1 - I 0.2 • • • 1 I 0.2 • • • 1 I 0.2 • • • I 0.2 • • • I 0.2 • • • 1 I 0.2 * • • • 1 I 0.2 * • • • I 0.2 * • • - I 0.1 * • • I 0.1 * • • I 0.1 * • • I 0.1 * * • • I 0.1 • • • I 0.1 * • • I 0.1 * • I 0.1 • • • • I 0.1 • • • I 0.1 * * • • + I 0.1 * • • • - + I 0.1 * • + • I . 0.1 Table 20a PLOT NO. DATS SAMPLED DEPTH TO FROZEN MATERIAL (inches) SOIL CLASSIFICATION! PHYSICAL/CHEMICAL ANALYSIS Horizon I depth (inches) color dry-color wet pH (CaCl?) pH (K20) carbon % nitrogen % total P p.p.m. Exchangeable Cations Me/lOOgm. K Ca Mg Na Sum Pedlcularo - Dryadetura integrif oliae 6 39 40 41 42 82 7/19/67 7/11/68 7/12/68 7/14/68 7/1V68 7/10/68 14 • 15 16 15 16 15 Regosol-Organic Complex 0-8 10YR3/2 5YR2/2 7.2 7.6 13.2 2.00 13 . 1 7 13.4 12.5 . 2 7 26.3 .Surface Organic. 0-6 5YR2/2 5YR2/2 7.8 7.8 22.9 3.16 26 . 2 3 1 9 . 7 2 0 . 7 .45 41.1 0-14 5YR2/2 . 5YR2/2 7 . 3 7 . 7 22.7 3.44 21 .26 20.6 19.2 .64 40.7 0-14 5YR2/2 2.5YR2/2 7.4 7.8 24.2 4.00 18 .36 21.5 ' 20.6 .58 43.0 0 - 9 5YR2/2 5YR2/2 7 . 5 7 . 7 1 7 . 3 2 .85 12 . 3 2 1 9 . 5 1 5 . 7 .46 36.0 0-9 5YR2/2 10YR2/1 7 . 3 7 . 7 15.0 0.58 19 .18 40.8 24.2 .80 66.0 Horizon II Surface Mineral depth 0-14 0-15 0-16 0 - 1 5 0-16 0 - 1 5 color dry 2.5Y6/4 2.5Y6/4 5Y7/3 5Y7/3 5*7/3 2.5Y6/4 color wet 10YR4/3 2.5Y5/4 5Y5/3 5Y5/3 2.5Y5/2 2.5Y5/4 pH (CaCl?) 7.6 7 . 7 • 7 . 7 7 . 7 ' 7-6 7.6 pH (H 2or 8.2 8.2 8.2 8.4 8.2 8 . 1 sand • % 3 8 . 6 60.6 49.0 28.4 36.4. NM si l t % 47.4 31.0 36.4 51.2 37.0 NM clay % 14.0 8.'4 14.6 20.4 26.6 NM carbon 1.7 1.9 2.4 2.3 2 . 0 1 . 7 nitrogen 0 . 2 7 0 .05 0.06 0.06 0.09 0 . 1 1 P 3 2 1 1 4 3 ihangeable Cations E .22 . 1 0 .14 .22 . 2 3 . 0 7 Ca 7.1 4.1 3.6 6.1 4.9 7.6 Mg 5 . 8 3.5 5.2 4.8 6.7 3.1 Na .14 ' .14 .22 .24 .17 .21 Sum 13.2 7 . 8 9.2 11.4 12.0 1 1 . 0 See text for explanation. 00 -o 88 S a l l x a r c t l c a . S a x l f r a g a o p p o s l t l f o l l a and Dryas I n t e g r i f o l l a . a g a i n , s i m i l a r to the P o l a r i - Dryadetum of S v a l b a r d . The l a t t e r s p e c i e s a c h i e v e s i t s h i g h e s t s i g n i f i c a n c e v a l u e s here. Two s p e c i e s d e s i g n a t e d as t e n t a t i v e c h a r a c t e r s p e c i e s are P e d l c u l a r l s l a n a t a and the l i c h e n V e r r u c a r l a deversa. Both show t h e i r h i g h e s t presence v a l u e s i n t h i s c o e n o s i s . I t i s i n t e r e s t i n g t h a t both are a l s o s e c o n d a r i l y p r e f e r e n t i a l to the Nardino - Dryado - A l e c t o r i e t u m , which appears i n some r e s p e c t s e n v i r o n m e n t a l l y s i m i l a r to the P e d l c u l a r o - Dryadetum. Prominent bryophytes of the coe n o s i s are Tomenthypnum  n i t e n s and T o r t u l a r u r a l i s , both of which occur i n r e l a t i v e l y pure t u f t s . These same s p e c i e s are a l s o two of the more promi-nent bryophytes of the P o l a r i - Dryadetum ( R u n n i n g 1 9 6 5 ) . The problem of s o i l c l a s s i f i c a t i o n i n areas w i t h p a t t e r n e d ground f e a t u r e s i s w e l l known to students o f a r c t i c s o i l s (Tedrow and Ca n t l o n 1 9 5 8 ; Tedrow 1 9 6 2 ) . In areas o f c i r c l e s , n e t s , s t r i p e s , e t c . p h y s i c a l displacement o f s o i l s r e s u l t s i n a h o r i z o n t a l d i s c o n t i n u i t y of m a t e r i a l s and an absence of g e n e t i c s o i l h o r i z o n development. Present systems of s o i l c l a s s i f i c a t i o n are inadequate f o r c a t e g o r i z a t i o n of these areas as s i n g l e d i s t i n c t i v e types. G e n e r a l l y , each m i c r o - r e l i e f f e a -t u r e i s d e s c r i b e d i n d i v i d u a l l y . In areas such as the P e d i c u l a r o Dryadetum t h i s i s extremely a r t i f i c i a l , s i n c e the i n t e r a c t i o n of s o i l forming f a c t o r s work t o g e t h e r to produce a pronounced and e a s i l y d e l i n e a t e d landscape f e a t u r e which i n my o p i n i o n , i s b e s t regarded as a s i n g l e e c o l o g i c a l u n i t . S i m i l a r arguments may be made f o r other p a t t e r n e d ground f e a t u r e s such as tundra polygons ( h i g h and low centered) and s t r i p e s , both s o r t e d and non-sorted. These forms are complexes, wi t h d i s t i n c t i v e p a t -t e r n s , n o r m a l l y symmetrical, r e s u l t i n g from the s e g r e g a t i o n o f d i s s i m i l a r components. To c l a s s i f y each s o i l component as a p e d o g e n l c a l l y i s o l a t e d s o i l type i s to negate the u n i f o r m i t y and i n t e r a c t i o n of c o n d i t i o n s which r e s u l t e d In the ge n e s i s of the complex as a whole. In the absence of a nomen c l a t u r a l category f o r the u n i t as a whole, I have l a b e l e d the s o i l s o f t h i s coenosis a Regosol - Organic complex. The use of the term "complex" as a standar d mapping u n i t i s common where taxonomic e n t i t l e s are so g e o g r a p h i c a l l y i n t e r m i x e d t h a t i t i s u n d e s i r a b l e or imprac-t i c a l to separate them (Buckman and Brady 1 9 6 9 ) * K i n g ( 1 9 6 8 ) has c l a s s i f i e d the s o i l s of nets s e p a r a t e l y as Raw s o i l s (net c e n t e r s ) and Hummock s o i l s ( a d j a c e n t v e g e t a t e d a r e a s ) . In my o p i n i o n hummock f o r m a t i o n here i s not d i s t i n c t i v e enough to warrant the l a t t e r term. T h i s i s p a r t i c u l a r l y t rue i f the same term i s u t i l i z e d f o r s o i l s forming on the s l o p e s of the beaches. I have a l s o u t i l i z e d the term Regosols f o r s o i l s of the c i r c l e areas as t h i s i n my o p i n i o n i s a more stand-a r d i z e d term i n North America f o r s o i l s l a c k i n g g e n e t i c h o r i z o n s which develop from u n c o n s o l i d a t e d s o f t m i n e r a l d e p o s i t s (Buckman and Brady 1 9 6 9 ) . I n t e r - c i r c l e (vegetated) s o i l s o f the P e d i c u l a r o -Dryadetum appear most c l o s e l y a l l i e d to Tedrow's Half-Bog d e s i g n a t i o n (Tedrow e t a l . 1 9 5 8 ) . I t should be p o i n t e d out t h a t t h i s category, as u t i l i z e d i n the p o l a r r e g i o n s , i s not F i g . 24 View of the P e d l c u l a r o - Dryadetum i n t e g r i f o l i a e . Permafrost probes are i n s e r t e d i n t o v e g e t a t i o n and c i r c l e s . Note abrupt ecotone to a d j a c e n t Carex meadow (photo J u l y 1 1 , 1 9 6 8 ; p l o t 3 9 ) . F i g . 2 5 View of s o i l p i t No. 3 9 * Note the d i f f e r e n t i a l thawing i n the a c t i v e l a y e r (photo J u l y 1 1 , 1 9 6 8 ) . 90 P - D i F i g . 26 Non-sorted c i r c l e a t p l o t No. 6. Note low c o n c e n t r a t i o n of s u r f a c e r o c k . F i g . 27 Non-sorted c i r c l e a t p l o t No. 4-1. Note heavy s u r f a c e cover of r o c k and s h e l l fragments. r e s t r i c t e d to h y d r i c environments but may span a wide g r a d i e n t of moisture l e v e l s (Tedrow and C a n t l o n 1 9 5 8 ) . Diagrammatic r e p r e s e n t a t i o n of the p r i n c i p a l s o i l sequences found on the A r c t i c Slope of n o r t h e r n A l a s k a (Tedrow et a l . 1 9 5 8 ) p i c t u r e H a l f Bog s o i l s as a continuous o r g a n i c phase i n the a c t i v e l a y e r u n d e r l a i n by permanently frozen mineral or organo-mineral mixtures (Tedrow e t a l . 1 9 5 8 ) . These are a p p a r e n t l y d i s t i n g u i s h e d from F u l l - B o g s o i l s on the b a s i s of the depth of the o r g a n i c compo-nent. Half-Bog s o i l s have o r g a n i c matter accumulations between 6 and 12 i n c h e s , o c c a s i o n a l l y r e a c h i n g 18 i n c h e s . F u l l - B o g s o i l s may exceed 4 f e e t i n depth. I n t e r - c i r c l e s o i l s of the P e d l c u l a r o - Dryadetum i n t e g r i -f o l l a e range from 6 to 1 4 Inches i n depth (measured to f r o z e n m a t e r i a l ) and 2 2 p e r c e n t to 4 0 p e r c e n t o r g a n i c matter content. In o n l y one case was m i n e r a l s o i l noted beneath v e g e t a t i o n i n any e x c a v a t i o n . S o i l pH i s d e c i d e d l y b a s i c and shows l i t t l e v a r i a b i l i t y between p l o t s . T o t a l exchangeable c a t i o n s are h i g h here. Exchange v a l u e s of Mg are d i s t i n c t i v e l y h i g h e r here than i n any o t h e r u n i t of the D r y a d e t a l i a . T h i s i s expected c o n s i d e r i n g the h i g h percentage of dolomite i n the m i n e r a l component under-l y i n g the c o e n o s i s . The l i g h t c o l o r e d s o i l s of the a d j a c e n t c i r c l e s and nets show even h i g h e r pH v a l u e s , none f a l l i n g below 8 . 0 i n water. Organic matter i s extremely low, r a n g i n g between 2 . 9 and 4 . 1 p e r c e n t . T h i s might not be as low as expected, however, when compared to the v a l u e s from the somewhat vegetated Nardino -Dryado - A l e c t o r i e t u m . Here f o r the f i r s t time s o i l s c o n t a i n s i g n i f i c a n t percentages of s i l t and c l a y . These v a l u e s are n o n e t h e l e s s i n d i c a t i v e of a low i n t e n s i t y of weathering p r o c e s s e s . N i t r o g e n i s d r a s t i c a l l y reduced here, f a l l i n g below the v a l u e s f o r even the Nardino - Dryado - A l e c t o r i e t u m . Exchangeable c a t i o n s are a l s o low, r e f l e c t i n g the reduced exchange complex, norm a l l y p r e s e n t i n the more abundant o r g a n i c component of other lowland s o i l s . The o n l y r e c o g n i z a b l e s o i l s t r u c t u r e noted i n any l o c a t i o n o c c u r r e d here. A f i n e p l a t y s t r u c t u r e was noted a t 12 inches on p l o t 42. The p a t t e r n of o r g a n i c s o i l s conforms s t r i c t l y i n d i s t r i -b u t i o n to the o v e r l y i n g p a t t e r n of v e g e t a t i o n ( F i g . 2 5 ) . No b u r l e d h o r i z o n s or marked churning of o r g a n i c s o i l m a t e r i a l s were apparent i n any e x c a v a t i o n . In o n l y one s o i l p i t ( 3 9 , F i g . 2 5 ) was the l a t e r a l movement of o r g a n i c matter noted. Here two t h i n "wings" s t r e t c h e d from the main v e r t i c a l band ten and turelve inches l a t e r a l l y to e i t h e r s i d e . K i n g ( 1 9 6 8 ) has s t a t e d h i s b e l i e f t h a t most p a t t e r n e d ground f e a t u r e s now found i n the basecamp lowland are p r e s e n t l y i n a c t i v e or o n l y weakly a c t i v e . The morphology of these s o i l s appears to support t h i s view. While the t o t a l depth of the o r g a n i c component was not measured, i t i s u n l i k e l y t h a t the depths or p a t t e r n s r e c o r d e d would form on s i t e s of p e r e n n i a l l y a c t i v e c o n g e l l t u r b a t i o n . I t i s thus concluded t h a t the u n i t Is more or l e s s stable under p r e s e n t c o n d i t i o n s and t h a t the p a t t e r n found here was p r o b a b l y formed a f t e r e a r l y i s o s t a t i c emergence. 9 4 The moisture regime of the P e d i c u l a r o - Dryadetum i n t e g r l f o l i a e (Tab. 2 1 ) i s i n t e r e s t i n g , p a r t i c u l a r l y from the s t a n d p o i n t of p l a n t c o l o n i z a t i o n . Organic s o i l s beneath the v e g e t a t i o n bands are q u i t e moist d u r i n g the e n t i r e growing season, showing v a l u e s f a r i n excess of s o i l s a t s i m i l a r depths i n e i t h e r the Tetragono - Dryadetum i n t e g r l f o l i a e or the R h a c o m i t r i o - Oxyrio - Dryadetum l n t e g r i f o l i a e . Although a c t i v e l a y e r development i s s i m i l a r , l a c k of s l o p i n g t e r r a i n and coarse t e x t u r e d subsurface m a t e r i a l a p p a r e n t l y r e t a r d s drainage s u f f i c i e n t l y to produce the m o i s t e r s o i l s found here. Increased c o n c e n t r a t i o n s of o r g a n i c matter a l s o c o n t r i b u t e to t h i s e f f e c t . S o i l s o f the a d j a c e n t c i r c l e s are by c o n t r a s t much d r i e r (Tab. 2 1 ) , approximating the v a l u e s found i n the x e r l c Nardino -Dryado - A l e c t o r i e t u m . Moisture r e t e n t i o n v a l u e s (Tab. 22 ) i n d i c a t e t h a t measured s o i l s d i d not f a l l below 1 5 bar e x t r a c -t i o n v a l u e s i n the f i e l d . I t s h o u l d be p o i n t e d out here, however, t h a t a l l measurements were taken a t a depth of 3 inches and i t i s probable t h a t s u r f a c e h o r i z o n s may f r e q u e n t l y dry below these v a l u e s i n the f i e l d . O b s e r v a t i o n a l evidence f o r t h i s i s t w o - f o l d . As the growing season p r o g r e s s e s a n o t a b l e d i f f e r e n c e In the s u r f a c e of the c i r c l e s becomes apparent. E a r l y i n the season these areas have a mud-like c o n s i s t e n c y , b e i n g s t i c k y to the touch. As the season p r o g r e s s e s the tops of the c i r c l e s become hard forming a c r u s t - l i k e cap and one can o f t e n walk on the s u r f a c e without n o t a b l e d e p r e s s i o n s being formed. T h i s was a l s o e v i d e n t i n s u b s u r f a c e samples which were extracted and l e f t l y i n g on the surface. On r e v i s i t i n g the s i t e these blocks of s o i l had often hardened so that i t was d i f f i c u l t to break them apart. A second i n d i c a t i o n of severe surface drying i s the f o r -mation of desiccation cracks which are frequently noted trav-ersing the surface of the c i r c l e s (Figs. 26. and 2?). These are shallow cracks which do not extend v e r t i c a l l y to an appreciable depth. Surface evaporation and subsequent hardening apparently help retard further drying of the lower depths. Moisture con-tents at three and nine inches In the c i r c l e s (Tab. 2 1 ) show l i t t l e appreciable difference from the f i r s t of July through mid-August, 1 9 6 9 . The hardened surface, low moisture values and surface cracking no doubt work i n combination to l i m i t plant e s t a b l i s h -ment on the c i r c l e s . Only one p l o t ( 6 ) had a vascular plant invading these areas. This was Braya purpurascens, a plant found throughout the archipelago c h i e f l y on calcareous clays ( P o r s i l d 1 9 5 8 ) « I t i s i n t e r e s t i n g that the mineral s o i l s from p l o t 6 showed the highest calculated a v a i l a b l e water values. Thaw rates of the active layer here appear s i m i l a r to those of the Rhacomitrio - Oxyrio - Dryadetum. Three plots ( 3 9 . 40, 41) measured during I 9 6 9 showed t o t a l thaw depths i n excess of 2 0 inches, and a single plo t ( 3 9 ) measured i n 1 9 6 8 averaged 19 inches. Depth of thaw beneath the cover of vege-t a t i o n was less than i n the exposed c i r c l e s ( F i g s . 2 5 , 28, 2 9 ) . This i s due to the lower thermal conductivity of the organic Table 21 F i e l d M o i s t u r e Determinations {% by Weight) P - D i S o i l s P e r c e nt M o i s t u r e a t Date Measured 1 9 6 8 7 / 1 0 7 / 1 7 7/24 7 / 3 1 8 / 7 8/14 1 9 6 9 6 / 2 2 6/24 6 / 2 6 7 / 1 7 / 9 7 / 1 6 7/24 7 / 3 0 8 / 6 8 / 1 3 8 / 1 7 3 inches 3 inches Organic Regosol 311.3 1 5 . 8 119.3 14.8 2 0 3 . 2 14.1 2 3 3 . 7 1 1 . 5 2 2 1 . 0 1 6 . 1 124.0 1 0 . 7 X = 2 0 2 . 0 x = 1 3 . 8 3 inches 3 inches 9 inches Organic Regosol Regosol 1 7 6 . 7 1 6 . 5 Frozen 2 2 0 . 8 1 1 . 8 F r o z e n 199.4 14.7 F r o z e n 2 0 2 . 7 1 1 . 9 12.il-2 0 8 .3 1 3 . 8 1 3 . 0 3 3 1 . 0 1 6 . 6 I 6 . 5 3 2 2 . 6 1 5 . 0 1 5 . 7 342.4 1 3 . 5 14.2 3 7 0 . 9 1 5 . 1 1 6 . 3 315.4 16.4 1 5 . 9 2 9 7 , 8 1 7 . 9 1 3 . 3 x = 2 7 1 . 6 X = 14.8 X =14 .6 97 Table 22 C a l c u l a t e d A v a i l a b l e Water - P-Di S o i l s P l o t No. L o c a t i o n Moisture j @ Bar t by Weight @ 1 5 Bars A v a i l a b l e Water ( V 3 - I 5 ) 6 Organic 7 5 . 7 4 7 . 6 2 8 . 1 Regosol 2 1 . 9 9 . 0 1 2 . 9 4 0 Organic 1 4 3 . 2 9 3 . 6 4 9 . 6 Regosol 1 1 . 9 4 . 8 7 . 1 4 1 Organic 1 3 3 - 3 1 1 5 . 8 1 7 . 5 Regosol 1 6 . 4 7 . 0 9 . 1 4 2 Organic 1 0 1 . 4 7 9 . 3 2 2 . 1 Regosol 1 4 . 8 7 . 8 7 . 0 s o i l s as w e l l as the i n s u l a t i n g q u a l i t i e s of a v e g e t a t i o n cover (Brown and R i c k a r d 1 9 6 9 ; T y r t i k o v 1 9 6 4 ) . With the p a s s i n g of the summer these d i f f e r e n c e s p r o g r e s s i v e l y d e c r e a s e d and thaw depths from each l o c a t i o n tended toward convergence i n August. J u s t as v e g e t a t i o n and o r g a n i c s o i l s tend to r e t a r d warming d u r i n g e a r l y summer, they a l s o I n h i b i t c o o l i n g d u r i n g f a l l ( T y r t i k o v 1 9 6 4 ) . Thus, as the a c t i v e l a y e r tends to approach the permafrost t a b l e d u r i n g the l a t e r p o r t i o n of the summer, the m i n e r a l s o i l s of the c i r c l e s l o s e heat more r a p i d l y than the l e s s deeply thawed o r g a n i c s o i l s r e s u l t i n g i n a convergence of thaw depth measurements. As mentioned e a r l i e r the P e d l c u l a r o - Dryadetum i n t e g r i f o l i a e i n a number of r e s p e c t s i s s i m i l a r to the p r e -v i o u s l y d e s c r i b e d P o l a r i - Dryadetum from S v a l b a r d . A compari-son of s p e c i e s l i s t s from the two u n i t s shows a c l o s e s i m i l a r i t y i n both the dominant v a s c u l a r and bryophyte components ( R u n n i n g 1 9 6 5 ) . R u n n i n g a l s o mentions t h a t the S v a l b a r d u n i t i s " p a r t i c u -l a r l y common i n p l a c e s where there i s polygon s o i l and f r o s t a c t i o n " and a number of h i s s o i l d e s c r i p t i o n s i n d i c a t e a l a c k of g e n e t i c h o r i z o n development ( 5 of the 13 d e s c r i b e d p l o t s note s p e c i f i c a l l y the l a c k of h o r i z o n t a l " s t r a t i f i c a t i o n " of s o i l m a t e r i a l s ) . The homogeneous nature of the p a t t e r n e d ground f e a t u r e s found i n the Devon I s l a n d u n i t s have, however, prompted the s e p a r a t i o n of t h i s c o e n o s i s from the S v a l b a r d a s s o c i a t i o n . Many of the l o c a t i o n s d e s c r i b e d by R u n n i n g are on e l e v a t e d ground or r i d g e s w i t h coarse t e x t u r e d s u b s o i l s , a s i t u a t i o n q u i t e u n l i k e the Devon I s l a n d p o s i t i o n s . The s u r f a c e s o i l r e a c t i o n of the S v a l b a r d u n i t s a l s o appears s l i g h t l y more a c i d i c than the Devon I s l a n d s o i l s , In t h a t s i x measurements f e l l below pH 7.0. U n t i l f u r t h e r f i e l d a n a l y s i s from o t h e r p o l a r r e g i o n s accumulates I have chosen to m a i n t a i n a s e p a r a t i o n of the two, r e c o g n i z i n g t h e i r s i m i l a r i t y and the p o s s i b i l i t y of t h e i r con-s o l i d a t i o n l n the f u t u r e . In summary, the P e d i c u l a r o - Dryadetum i n t e g r l f o l i a e , w h i l e c o v e r i n g a l i m i t e d a r e a i n the lowland, i s an e a s i l y d i s t i n g u i s h e d phytogeocoenosis forming on f l a t a r e a s . The s u r -f a c e i s composed of a r e t i c u l a t e p a t t e r n of v e g e t a t i o n surround-i n g w e l l developed, non-sorted c i r c l e s and n e t s . F l o r i s t i c a l l y the c oenosis i s c h a r a c t e r i z e d by an absence of s p e c i e s charac-t e r i s t i c of o t h e r Dryadetum u n i t s and an a b s o l u t e dominance of Dryas i n t e g r i f o l i a , S a x l f r a g a o p p o s l t l f o l i a and S a l l x a r c t l c a . P - D l F i g . 28 P l o t of a c t i v e l a y e r development ( i n c h e s thawed) w i t h time (month and day) a t p l o t 3 9 . 1 9 6 8 above and I 9 6 9 below. M = p l o t o f a c t i v e l a y e r development measured as mean of f i v e probes p l a c e d i n m i n e r a l s o i l s of c i r c l e s o r n e t s . V = p l o t of a c t i v e l a y e r development measured as mean of f i v e probes p l a c e d i n v e g e t a t i o n . A = Mean a c t i v e l a y e r development of a l l probes (V and M, 10 p r o b e s ) . P - D l F i g . 29 P l o t of a c t i v e l a y e r development w i t h time. Above, p l o t 4 l , 1 9 6 9 . Below, p l o t 40, 1 9 6 9 . Dominating bryophytes are Tomenthypnum nltens and Tortula  r u r a l l s . Presumed c h a r a c t e r i s t i c species, P e d l c u l a r l s lanata and Verrucarla deversa show a preference f o r t h i s coenosis. The l a t e r a l displacement of contrasting s o i l material r e s u l t s i n a s o i l complex with contrasting thermal and moisture regimes. The former r e s u l t s i n unequal development of the a c t i v e layer while the l a t t e r most probably i s an important f a c t o r i n l i m i t i n g current invasion of vascular plants on the c i r c l e s . The uni t i s decidedly s i m i l a r to the P o l a r i - Dryadetum des-cribed from Svalbard but i s maintained as a d i s t i n c t i v e e n t i t y c h i e f l y on the basis of environmental d i s s i m i l a r i t y . (4) Rhacomitrio - Oxyrlo - Dryadetum i n t e g r i f o l i a e (R - 0 - Dl) Barrett and Krajina Pigs. 30 - 3 4 Tab. 2 3 - 28 The Rhacomitrio - Oxyrio - Dryadetum i n t e g r i f o l i a e occurs on gentle slopes (4 - $%) as the Tetragono - Dryadetum i n t e g r i f o l i a e . Here, however, the coenosis Is not intimately connected with beach ridges, but may be found i n a v a r i e t y of locations within the lowland system. Slope aspect i s often westerly, as i s the aspect of the lowland system i n general. The surface of the coenosis lacks e i t h e r pattern ground or d i s t i n c t i v e m l c r o r e l l e f features. Ecotonal boundaries however are r e l a t i v e l y d i s t i n c t , and the community i s e a s i l y recognized on the landscape by a d i s t i n c t i v e o v e r a l l black cast, imparted by the dominating cover of Rhacomltrlum heterostichum var. sudetlcum ( F i g . 3 0 ) . Pebble a n a l y s i s from the base of n i n e s o i l e x c a v a t i o n s i n d i c a t e p a r e n t m a t e r i a l s of s i m i l a r p r o p o r t i o n as the Nardino -Dryado - A l e c t o r i e t u m . Mixtures of dolomite and g r a n o d i o r i t e predominate w i t h s m a l l e r amounts of g r a n i t e and monzonite p r e s e n t . One p l o t (48) showed p a r t i c u l a r l y h i g h amounts of q u a r t z monzonite. T h i s may simply r e f l e c t the random nature of pebble c o l l e c t i o n . T a b l e 23 Pebble A n a l y s i s from S o i l P i t s of the Rhac o m l t r i o - Oxyrio - Dryadetum i n t e g r l f o l i a e M a t e r i a l P r e s e n t i n Sample P l o t (as 8th of T o t a l ) 43 44 4 7 4 8 49 55 56 6 4 72 Dolomite 3 5 2 1 4 3 3 2 2 B i o t l t e G r a n o d i o r i t e 3 2 4 2 3 2 Pink G r a n i t e / B i o t i t e G r a n i t e 1 2 T 2 1 4 Monzonite 2 2 1 2 Gabbro/Micro Gabbro 1 B i o t l t e hornblend Quartz Monzonite 5 Subsurface m i n e r a l m a t e r i a l l n a l l cases appears to be f l u v i o - g l a c i a l t i l l . No mass s o r t i n g was r e c o r d e d i n any p r o f i l e . The v e g e t a t i o n of t h i s c o enosis (Tab. 2k) i s co-dominated by v a s c u l a r p l a n t s (mean cover 4 7 $ ) and bryophytes (mean cover 3 9 $ ) . L i c h e n s are unimportant l n terms of t o t a l cover (mean cover 6%), a r e f l e c t i o n of the moist nature of the ground s u r f a c e Clumps of Dryas i n t e g r l f o l l a . Saxlfraga o p p o s i t l f o l l a and Carex mlsandra appear uniformly d i s t r i b u t e d throughout the coenosis ( F i g . 3 1 ) . Here Oxyrla digyna has i t s highest species s i g n i f i c a n c e values and i s designated as a c h a r a c t e r i s t i c spe-cies of the un i t . While numerically abundant, Oxyrla digyna appears as an extremely diminutive growth form, compared to i t s performance i n other locations. This was also noted f o r the less abundant Papaver radleaturn and S t e l l a r l a longlpes. SaxIfraga hlrc u l u s , while high i n constancy, i s seldom found i n flower and i s frequently represented by only 3 or 4 very reduced leaves. The same i s true f o r Saxifraga f o l l o l o s a . The most conspicuous bryophyte i s Rhacomltrlum heterostichum var. sudetlcum. In only one p l o t i s i t s species s i g n i f i c a n c e below that of other bryophyte species. This taxon i s highly f l d e l to the unit and i s u t i l i z e d as a c h a r a c t e r i s t i c species. Other species with r e l a t i v e l y high s i g n i f i c a n c e values include Dlcranowelsla orispula, Dltrichum f l e x l c a u l e and Drepanocladus  revolvens. The l a t t e r Is a dominating and highly productive species of the hydric Caricetum s t a n t i s , where i t often e x i s t s as pure mats. Here It i s generally admixed with other species and. i n a much reduced form. Its importance i n the coenosis again r e f l e c t s the surface moisture conditions found here, which w i l l be commented upon l a t e r on. Relative to other coenoses of the Dryadetalia, lichens are conspicuously absent from t h i s u n i t . Lecanora verrucosa appears i n o0% of the plots examined. Its apparent f i d e l i t y to the coenosis has prompted i t s use as a tentative c h a r a c t e r i s t i c species. Habitat descriptions of c o l l e c t i n g l o c a l i t i e s i n the Great Slave Lake region (over humus and moss i n calcareous s o i l s ) conform with i t s apparent r e s t r i c t i o n to the Rhacomltrio - Oxyrio - Dryadetum i n t e g r l f o l i a e on Devon Island (Thomson et a l . 1 9 6 9 ) . S o i l development beneath t h i s coenosis leads always to the formation of an A r c t i c Brown p r o f i l e (Fig. 3 2 , Tab. 24a). In a l l locations at l e a s t three horizons were detected and at one plo t (49) s l i g h t color changes indicated the presence of four d i s t i n c t horizons. Here, as i n the Tetragono - Dryadetum i n t e g r l f o l i a e , horizon recognition i n the f i e l d was based mainly on color changes. No surface horizons showed organic matter content of over 30%. Surface reaction here i s s l i g h t l y more a c i d i c than i n the Tetragono - Dryadetum i n t e g r l f o l i a e . Mean reaction values mea-sured i n calcium chloride were very weakly a c i d i c ( 6 . 5 ) . those l n water neutral ( 7 . 0 ) . Chemical gradients i n subsurface mineral horizons are only weakly developed. The most notable Is the decline of nitrogen from the Bm to C horizons. Here, as l n the previous coenosis, these s o i l s appear to conform with s i m i l a r descriptions of A r c t i c Brown types from other polar locations. During seasons of normal summer p r e c i p i t a t i o n and spring run-off, the ground surface may remain saturated with water for some time a f t e r snow melt. Comparison of snow melt data from 1 9 6 9 transects (Tab. 17 and 2 7 ) and active layer development curves (Figs. 21, 22 and 33. 3*0 indicate a s i m i l a r i t y between 1 0 5 t h i s c o e n o s i s and the Tetragono - Dryadetum i n t e g r l f o l i a e . Snow depths and t i m i n g of s i t e emergence from the snowpack are s i m i l a r . S o i l moisture v a l u e s are a l s o comparable (Tabs. 13 and 2 5 ) . I t i s i m p o s s i b l e on the b a s i s of s h o r t - t e r m measure-ment, to i n t e r p r e t the c o n s i s t e n c y or v a r i a b i l i t y of t h i s environmental s i m i l a r i t y . I t would seem d o u b t f u l , c o n s i d e r i n g i t s more exposed landscape p o s i t i o n , t h a t t h i s c o e n o s i s i s sub-j e c t e d as c o n s i s t e n t l y to the heavy c o v e r i n g of snow so p r o -nounced i n the Tetragono - Dryadetum i n t e g r l f o l i a e . More l i k e l y the s i m i l a r i t y l n the thermal regimes may be a t t r i b u t e d to the I n f l u e n c e of the moss mat found here. R u s s i a n g e o c r y o l o g i s t s have shown the s t r o n g e f f e c t t h a t moss co v e r may have on the development of the a c t i v e l a y e r . Sumgin ( i n T y r t i k o v 1 9 5 9 ) has shown t h a t the presence of a moss cover as a r u l e decreases the depth of the s e a s o n a l thawed l a y e r by 2 or 3 times. One p o s t u -l a t e d e x p l a n a t i o n f o r t h i s phenomenon i s t h a t l a r g e q u a n t i t i e s of water evaporated by the moss mat reduces the amount of heat t h a t can be u t i l i s e d i n thawing the u n d e r l y i n g s o i l s (Kudryavtsev 1 9 5 4 i n T y r t i k o v 1 9 5 9 ) . A second e x p l a n a t i o n (Myshkovskaya 1 9 1 3 i n T y r t i k o v 1 9 5 9 ) i s t h a t a l a y e r of low thermal c o n d u c t i v i t y i s formed by the r a p i d d r y i n g of o n l y the t i p s of the moss. T h i s p r o t e c t s the u n d e r l y i n g p o r t i o n s of the moss as w e l l as the s o i l s from f u r t h e r r a p i d moisture l o s s , which i n t u r n i n h i b i t s r a p i d thawing. In the u n i t here c o n s i d e r e d , the dark p i g m e n t a t i o n of the moss mat may be an a d d i t i o n a l f a c t o r to c o n s i d e r l n the r e s t r i c -t i o n of heat flow to the s o l i s u r f a c e . F i g . 30 H a b i t a t of the Rhacomitrio - O x y r l o -Dryadetum i n t e g r i f o l i a e . The dark c o l o r a t i o n of the community c o n t r a s t s s h a r p l y w i t h the borders of the a d j a c e n t sedge meadows (photo J u l y 1 7 , 1 9 6 9 ) . F i g . 3 1 Close-up of t h e Rhacomitrio - Oxyrlo -Dryadetum i n t e g r i f o l i a e . Note the r e l a t i v e l y u n iform s p a c i n g of Dryas  i n t e g r l f o l l a . S a x l f r a g a o p p o s l t i f o l l a and Carex mlsandra ( l i g h t c o l o r e d t u f t s ) . Carex membranacea i s seen i n the lower l e f t foreground (photo J u l y 2k, 1 9 6 9 ) . 1 0 6 P i g . 32 A r c t i c Brown s o i l p r o f i l e beneath the Rhacomitrio - Oxyrlo - Dryadetum I n t e g r l f o l i a e (photo J u l y 1 6 , 1 9 6 8 ) . 107 108 Tabl e 24 Rhacomitrio-Oxyrio-Dryadetua integrifoliae PLOT no. *3 44 *5 47 48 «9 55 56 64 72 DATE ANALYSED 7/15/68 7/15/68 7/16/68 7/25/68 7/23/68 7/25/68 7/30/6S 7/30/68 8/9/68 8/20/68 HERBACOUS COVER % . 55 55 . 50 55 50 45 30 35 *5 ' 50 HOS3 COVER * 40 26 40 40 30 30 55 29 63 40 LICHEN COVER * 3 3 1 6 15 12 4 8 5 4 ASPECT V • V SV V W VNW W E VBW V SLOPE % 5 4 6 9 5 9 5 4 5 6 TOTAL SPECIES HO. 32 29 36 46 2 4 2 39 39 37 41 PLOT SIZE 25n PRESUMED CHARACTERISTIC (AVE. SPECIES) COMBINATION OP SPECIES PRESENCE s i G N i r r c Oxyria dlgyna 3 3 4 4 3 4 4 4 4 3 V 3.6 Rhacomitriun heteroatichum 4.9 var. sudeticuo 6 5 • 5 5 4 5 4 4 5 6 V Solorina octospora 1 1 2 1 1 1 3 I V 1.0 Lecanora verrucosa + • i + + 1 1 • • I I I 0.5 ORDER AND ALLIANCE CHARACTERISTIC SPECIES Dryas integrifolia 5 4 5 ' 6 3 2 3 5 3 5 V 4.1 Salix arctica 4 4 4 4 4 4 4 4 4 4 ? 4.0 Saxifrage oppositifolia 5 6 4 5 6. 6 4 5 6 4 V 5.1 OTHER SPECIES Carex niaandra 4 4 4 4 4 4 4 4 4 4 V 4.0 Polygonum viviperum 2 2 3 3 5 3 2 3 3 3 V 2.7 Lutula arctica 1 1 1 2 1 3 2 1 1 1 V 1.4 Saxifrage Mrcalus + 1 1 1 1 2 + + 1 2 V 1.0 Pepever redicatum . • 2 1 . 1 + 1 V 0.8 Juncua bigluoia i 1 1 + 1 + 1 1 V 0.8 Saxifraga folioloea • 1 1 1 1 + + V 0.6 Draba lectea + 1 1 + • + V 0.5 Cerastium elpinun • • + 1 . • • + V 0.5 Stellaria longipes • 4 + + V 0.4 Silone acaulia * 1 1 2 1 I V 0.6 Pedicularis hirsute 1 + 1 1 2 1 I V 0.6 Hinuartia rcsaii • • 1 • + rv 0.4 Draba oblongata 1 . • 1 • • I V 0.4 Cassiope tetragona 2 3 3 4 3 i n 1.5 Carex membranacea 1 3 + u i 0.7 Cerastium regelii . • + i n 0.2 Carex rupestris 3 I I 0.7 Poa arctica 1 1 I I 0.2 Cardamine b e l l i d i f o l i a + I I 0.1 Saxifrage caeapitoaa i + I I 0.1 Saxifraga cernua + I I 0.1 Eriophoruo triate i 0.3 Pedicularis lanata m i 0.1 Pedicularis capitata r 1 i 0.1 Hierochloe peuciflora a i Draba b e l l i i + # i Hinuartia rubella i Featuca brachyphylla • • • • * I i -Dicranoveiaia criapula 3 Drepanocladua reTolvena 4 Dltricbum flexicaule 3 Diatiebiun capillaceum 1 Fogonatum alpixum 1 Hyurella julaeea + Tonentbypnum nitena 1 Encalypta rhabdocarpa • Hniun orthorrtaynchum Ortbotbecium ebryseuji Tortula ruralia Hnium bymenopbylloidea Amblyategiuci juratzxanum Tortelle tortuoaa Myurella teaerrioa Bjpnum baabergeri Blepharoatoma tricbopbyllua OrthGtbeciuia rufeacena Polytriebuc Juniperinum Aulacomnium turgidua Coaostocua tetragonum Didy~ouoa asperiloliua Fiaaidena arcticua Seorpidium t u r g e 9 c e b . Hypnum r«volutum Capbaloxi.lla rubella Cladonia pyxidata • L.canora apibryon 3 Lecidea rasiuloaa 3 Fhyeci.muacigana Toninia lobulata Caloplaca tirolienaia BinodiQa roacida Tbajacolia veraicularia Peltlgera canina Solorina aaccata Pertuooria corlacea Feltigara apbthoaa Steroocaulon rivulorvua Cetraria cucullaca Gyalecta peaiaa Lepraria neglecta 7 IT IV IV III III III II II II V V V III III III III 3.9 5.0 2.6 1.* 1.3 0.5 1.1 O.S 0.1 0.6 0.5 0.« 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 2.4 2.4 2.2 0.8 0.4 0.2 0.2 0.4 0.4 0.3 0.2 0.1 Table 24a Rhecomitrio-Oxyrio-T>ryadetuir. integrifoliae - Soila PLOT NO. DATE SAMPLED DEPTH TO FROZEN MATERIAL SOIL CLASSIFICATION PHYSICAL/CHEMICAL ANALYSIS Horizon I . depth color, dry color, wet pH (CaCl,) pH {&2oy carbon % . nitrogen % total P p.p.m. Exchangeable cationa He/lOO gm K Ca Mg Na "5 44 45 47 48 7/16/68 7/15/68 7/16/68 7/25/68 7/25/68 18 19.5 ? 19 21 -• • Arctic Brown. .10 16.9 7.7 .26 25.0 49 7/25/68 2? 55 7/30/68 18 56 7/30/68 22 .09 19.4 9.2 .35 29.0 .09 18.6 9.5 .29 28.5 .09 18.8 7.3 .32 26.5 .08 17.7 8.3 .29 26.4 .09 15.6 7.2 .28 23.2 .08 8.8 3.7 .22 12.8 .06 10.2 6.2 .20 16.7 64 8/9/68 15 .12 18.3 8.6 \ .30 27.3 72 8/20/68 19 0-6 0-B 0-7 0-5 0-5 0-5 0-6 0-6 0-5 0-5 5YR2/2 5YR2/2 5YR2/2 5YR2/2 5YR2/2 5YR2/2 10TR2/2 10YR3/2 5YR2/2 5YR2/2 5YR2/1 5IR2/1 5YR2/1 5YR2/1 5YR2/1 5YR2/1 5YR2/1 5YR2/1 5YR2/1 5YR2/1 6.6 6.7 6.6 6.3 6.4 6.1 6.1 7.0 6.6 6.4 7.0 7.1 7.2 6.8 7.2 6.5 6.7 7.5 6.9 6.7 15.0 11.2 13.1 10.5 9.0 8.9 4.1 6.1 9.0 12.7 1.83 2.39 2.01 1.71 1.71 2.23 1.12 1.34 2.07 1.76 16 19 18 20 8 12 17 21 18 8 ' .09 16.1 7.2 .29 23.7 D r i z o n II Bm Bm Bm Bm Bm Bm1 Bm Bm , Bm Bm d e p t h 6-12 8-12 7-14 5-14 5-11 6-13 6-12 6-14 5-10 5-9 color, d r y 10YR3/4 IOYR4/5 10YR3/4 10YR3/4 7.5YR3/2 7.5YR3/2 10YR4/4 10YR3/4 7 .5YR3/2 7.5YR5/2 color, wet pH (CaC12) 10YR3/4 10YR3/4 7.5YR3/2 7.5YR3/2 5YR2/2 7.5YR3/2 10YR3/4 7.5YR3/2 7.5YR3/2 5YR2/2 7.3 7.5 7.2 6.7 6.6 6.1 7.1 7.3 7.1 6.8 pH (H2O) 7.6 8.0 7.8 7.3 7.1 7.0 7 . 4 7.5 7.4 7.3 Band 90.0 95.6 95.6 97.6 97.6 95.6 99.8 93.8 97.2 96.2 a i l t 8.2 4.8 3.2 0.4 2.2 4.4 0.2 5.8 2.8 3.2 clay 1.8 0.0 1.2 2.0 0.2 0.0 0.0 0.4 0.0 0.6 carbon 2.7 0.9 1.3 0.8 1.7 0.9 1.2 1.6 1.1 1.6 n i t r o g e n 0.39 0.15 0.17 0.16 0.27 0.19 0.08 0.24 0.13 0.46 P 4 5 1 2 7 2 0 3 4 5 Exchangeable cations ' K .05 .03 .03 .04 .04 .04 .04 .03 .04 .03 S° 7.1 3.0 3.7 3.6 4.7 4.2 3.4 4.6 3.1 3.2 fs 3.2 1.7 2.0 1.2 1.7 1.4 1.7 2.4 1.2 1.2 -18 .19 .17 .19 . 20 . 22 .17 .19 . 20 .16 S u m 10.5 4.9 5.9 5,o 6.6 5.9 5.5 7.2 4.5 3.6 Horizon III depth color, dry color, wet pH (CaCl2) PH (H20) sand s i l t clay carbon nitrogen P Exchangeable cationa K Ca Mg Na Sum 12-18 12-19.5 10YR4/3 10YR5/4 NM NM 7.4 7.4 7.7 7.7 95.6 97.0 4.2 3.0 0.2 0.0 2.3 1.6 0.06 0.04 0 0 .03 4.6 1.9 .18 6.7 .03 2.7 1.4 .18 4.3 C C 14-19 11-21 10YR4/3 10YR4/3 NM NM 7.2 7.1 7.5 7.5 95.6 97.6 4.2 2.4 0.2 0.0 1.4 0.7 0.07 0.06 0 0 .03 .03 3.2 2.1 1.9 1.5 .19 .18 5.3 3.8 13-18 10YR4/4 10YR3/4 6.6 7.3 99.8 0.2 0.0 0.2 0.06 0 . 0 3 1.2 0 . 7 .18 1.5 c C c C 12-18 14-22 10-15 9-19 10TR4/3 10YH4/3 10YR4/3 10YR3/4 10YR4/4 NM NM 5YR3/3 7.1 7.3 7.1 6.8 7.4 7.5 7.4 7.3 96.0 95.2 93.4 9 5 . 6 3.0 4.4 6.0 4.0 0.4 0.4 0.6 0.4 2.0 1.9 1.5 2.0 0.07 0.09 0 . 0 5 0.18 0 2 0 B .04 .03 .04 . 0 3 3.1 3.0 2.7 5.0 1.7 1.9 1.6 2.5 .19 .18 .18 .18 5.0 5.1 4.5 7.7 C horizon of plot 49, depth, 18-23: color dry, 10YR4/3, color wet 2.5Y4/4; p H (CBCX,), 7.5; pH <H,0), 7.6; sand. 96.0; s i l t , 4.0; Slay, 0.0; nitrogen, 0 .05; P, 0; K, . 0 3 ; Ca, 2.6; K13, 2.1; Na, .22 1 1 0 Table 2 5 F i e l d M o isture Determinations {%) R - 0 -D i S o i l s P e r c e nt Moisture a t I n d i c a t e d Depth Date Measured 3 inches 9 lnches 15 inches 1 9 6 9 7 / 1 5 3 . 7 f r o z e n f r o z e n 7 / 9 6 0 . 6 11 it 7 / 1 5 2 5 . 6 » it 7 / 2 2 3 2 . 6 1 0 . 7 ti 7 / 2 9 1 0 7 . 4 1 7 - 0 s a t u r a t e d 8 / 5 6 5 . 4 1 3 . 3 s a t u r a t e d 8 / 1 2 3 1 . 0 8 . 6 1 0 . 4 8 / 1 7 3 6 . 9 8 . 4 £ . 2 x = 5 1 . 6 X = 1 1 . 6 x = 7 . 8 T a b l e 2 6 C a l c u l a t e d . A v a i l a b l e Water - R-0-D1 S o i l s M o i sture % by Weight A v a i l a b l e Water P l o t No. H o r i z o n @ ^ Bar @ 1 5 Bars ( V , - 1 5 ) 4 3 Ah 5 2 . 1 3 2 . 3 1 9 . 8 Bm 1 4 . 2 4 . 3 9 . 9 C 5 . 3 1 . 3 4 . 0 4 4 Ah 5 7 . 2 4 0 . 3 1 6 . 9 Bm 3 - 6 2 . 1 1 . 5 C 1 . 5 1 . 3 0 . 2 4 5 Ah 6 2 . 5 5 4 . 0 8 . 5 Bm 5 . 7 1 . 8 3 . 9 4 7 Ah 6 1 . 4 4 3 . 2 1 8 . 2 Bm 6 . 2 1 . 7 4 . 5 C 4 . 4 0 . 6 3 . 8 48 Ah 6 6 . 3 5 2 . 3 1 4 . 0 Bm 7 . 7 2 . 8 4 . 9 C 2 . 3 0 . 0 2 . 3 I l l P l o t No. Ho r i z o n Moisture % by Weight @ Bar @ 1 5 B a r s A v a i l a b l e Water ( V 3 - 1 5 ) 4 9 Ah 5 3 . 6 4 5 . 0 8 . 6 Bml 7 . 9 3 . 5 4 . 4 C 2 . 2 0 . 6 1 . 6 5 5 Ah 2 6 . 6 1 7 . 5 9 . 1 Bm 5 . 5 2 . 5 3 . 0 C 5 . 1 1 . 0 4 . 1 5 6 Ah 2 4 . 9 1 6 . 8 8 . 1 Bm 9 - 0 2 . 6 6 . 4 C 6 . 0 1 . 0 5 . 0 6 4 Ah 6 1 . 5 3 8 . 6 2 2 . 9 Bm 4 . 6 2 . 3 2 . 3 C 6 . 4 1 . 9 4 . 5 7 2 Ah 4 8 . 9 3 7 . 9 1 1 . 0 Bm 8 . 1 3 . 3 4 . 8 C 6 . 9 1 . 6 5 . 3 While r a t e s of a c t i v e l a y e r development are s i m i l a r to those of the Tetragono - Dryadetum i n t e g r i f o l i a e , the t o t a l depth o f thaw here i s g r e a t e r , b e i n g g e n e r a l l y over 2 0 inches a t maximum thaw. I t s hould be noted here t h a t the s p o r a d i c i n v a s i o n of Casslope t e t r a g o n a o c c u r s i n t h i s c o e n o s i s . The p e r s i s t e n c e here of t h i s s p e c i e s , even w i t h such low presence and s i g n i f i -cance i s i n d i c a t i v e of the o v e r l a p p i n g environmental t i e s t h a t t h i s u n i t shares w i t h the Tetragono - Dryadetum. S o i l temperature measurements from both t h e r m i s t e r probes (Tpb. 28) and continuous r e c o r d i n g thermographs (Appendix A) a g a i n p o i n t out the r e l a t i o n s h i p of t h i s c o e n o s i s to the Tetragono - Dryadetum. While not as warm as s o i l s of the Nardino - Dryado - A l e c t o r i e t u m , both of these s o i l s do show Table 27 Snow M e l t T r a n s e c t (70 meters) on R-O-Di S l o p e , 1969 F i g u r e s E q u a l Depth of Snow i n Inches at I n d i c a t e d Date Stake 6/13 6/14 6/15 6/16 6/17 6/18 6/20 6/21 6/23 6/25 1 10.00 9.75 9.75 9.25 8.75 7.75 7.00 5.00 2.50 0 2 10.50 9.25 9.00 9.00 8.00 7.25 6.75 4.75 0 0 3 10.00 9.50 9.50 9.25 8.25 7.25 6.00 4.75 0 0 4 7.75 7.50 7.25 7.25 7.00 6.25 5.75 4.50 0 0 5 10.50 10.00 10.00 10.00 9.00 7.75 6.50 3.75 0 0 6 9.75 9.75 9.50 9.25 8.75 8.75 7.00 6.00 3.50 0 7 16.50 16.25 16.00 15.50 14.50 13.50 12.50 11.25 9.00 4.75 8 15.25 14.75 14.50 14.25 13.00 12.25 11.00- 10.00 7.50 2.75 9 14.25 14.25 14.00 14.00 13.50 12.25 11.25 10.25 8.25 3.25 10 12.25 12.00 11.75 11.75 11.00 9.50 8.50 7.50 4.50 0 11 10.75 10.50 10.25 10.00 9.25 8.75 7.75 6.50 4.00 0 12 13.00 12.75 12.50 12.50 12.00 11.25 10.50 9.50 6.75 0 13 13.50 13.50 13.50 13.00 12.00 11.25 9.25 8.75 5.75 0 li+ 10.00 9.75 9.50 9.75 8.75 8.25 7.50 6.75 5.75 0 15 9.25 9.25 9.00 9.00 8.50 8.00 7.25 6.75 4.25 0 113 thawing (Tab. 28) beyond the 1 5 i n c h l e v e l and s i m i l a r t i m i n g of h o r i z o n m e l t i n g . Table 28 S o i l Temperatures (C°) R-0-D1 - 1 9 6 9 Depth i n Inches: 1 3 9 15 Date Time 6/13 1430 snow -6.8 -8.8 -10.1 6/17 1800 snow -2.8 -5.8 - 8.1 6/20 1140 snow -0.9 -3.9 - 6.3 6/21 1735 snow f r e e 0.1 -1.2 - 3.7 6 / 2 3 1245 - 0.4 -1.9 - 3.7 6 / 2 5 1530 - . 3.2 -0.9 - 2.2 6/2? 1400 8.3 4.7 -0 .6 - 1.9 7/24 1 2 5 5 11.0 5-9 2.1 0.9 8/2 1710 11.1 6.7 3.2 1.7 8/7 1758 6.2 5-5 3.1 2.7 8/16 1 7 5 5 9.1 5.8 2.2 1.0 While most u n i t s of the Devon I s l a n d D r y a d e t a l l a have been d e s c r i b e d from o t h e r p o l a r areas (Running 1965) the Rhacomitrio -Oxyrlo - Dryadetum i n t e g r i f o l i a e appears to have no c o u n t e r p a r t i n the e x i s t i n g l i t e r a t u r e . The complete absence of Rhacomltrlum heterostlchum v a r . sudetlcum from the s p e c i e s l i s t s of the S v a l b a r d D r y a d e t a l l a i s noteworthy, s i n c e such c l o s e s i m i l a r i t y o ccurs w i t h o t h e r u n i t s of the a l l i a n c e . 114 In summary the Rhacomitrio - Oxyrlo - Dryadetum i n t e g r i -f o l i a e i s here d e s c r i b e d from the n o r t h e r n r e g i o n s f o r the f i r s t time. I t s f l o r i s t i c and environment l i m i t s p l a c e i t u n q u e s t i o n a b l y i n the c l r c u m p o l a r Dryadion a l l i a n c e as i t i s p r e s e n t l y understood. The u n i t occurs on g e n t l e s l o p e s over coarse t e x t u r e d f l u v i o - g l a c i a l t i l l s . The u n i t i s co-dominated by v a s c u l a r p l a n t s and bryophytes. O x y r l a d i g y n a has i t s h i g h -e s t s p e c i e s s i g n i f i c a n c e v a l u e s i n t h i s u n i t and i s chosen as a c h a r a c t e r i z i n g s p e c i e s . Rhacomltrlum hetero3tichum v a r . sudeticum dominates the bryophyte component. I t s b l a c k c o l o r a -t i o n h e l p s to d e l i n e a t e the boundaries of t h i s c o e n o s i s on the landscape. The ground s u r f a c e here f r e q u e n t l y remains s a t u r a t e d a f t e r snow melt. In a c t i v e l a y e r development and moisture regime t h i s u n i t appears s i m i l a r to the l a t e snow p a t c h environment of the Tetragono - Dryadetum i n t e g r i f o l i a e . T h i s s i m i l a r i t y may be e x p l a i n e d i n p a r t by the prominence o f the dark pigmented moss mat which no doubt h e l p s to reduce r a p i d thawing of the s o i l s u r f a c e . S o i l development l e a d s to the f o r m a t i o n of an A r c t i c Brown p r o f i l e In a l l cases. The d i f f e r e n t i a t i o n of t h r e e h o r i z o n s i s noted i n the f i e l d mainly by s l i g h t c o l o r changes w i t h depth. Chemical a n a l y s i s shows o n l y weakly developed sub-s u r f a c e h o r i z o n d i f f e r e n t i a t i o n , the most n o t a b l e b e i n g changes i n n i t r o g e n c o n t e n t . S o i l s here are r e l a t i v e l y warm, showing thaw below the 15 i n c h l e v e l p r i o r to J u l y Zh and t o t a l thaw depths of g r e a t e r than 2 0 inches i n a l l measured l o c a t i o n s . H - 0 - D i F i g . 33 P l o t of a c t i v e l a y e r development (Inches thawed) with time (month and day) on p l o t 4 5 d u r i n g 1 9 6 8 (above) and p l o t 4 4 d u r i n g I 9 6 8 (below). Note the marked s i m i l a r i t y of the curves. 1 1 5 30+ 6/15 6/25 7/5 7/15 7/25 8/4 8(14 8/24 R - 0 - D i F i g . 3 4 P l o t o f a c t i v e l a y e r development w i t h time a t p l o t 4 5 d u r i n g 1 9 6 9 (above) and p l o t 72 d u r i n g 1 9 6 9 (below). 117 I I I . S a l i c e t a l i a a r c t i c a e (Sa) B a r r e t t and K r a j i n a T h i s newly e s t a b l i s h e d order Includes p l a n t communities which may occur on submesic, mesic and s u b h y g r i c non-calcareous s o i l s ( f r e q u e n t l y w i t h h i g h centered polygons) l n both the High A r c t i c and A l p i n e zones of the Canadian Low A r c t i c . In the n o r t h e r n p o l a r c l i m a t e s where p r e c i p i t a t i o n i s low, t h i s order, very s i g n i f i c a n t l y , develops o n l y over non-calcareous s u b s t r a t a . In wetter c l i m a t e s , however, i t may become e s t a b l i s h e d on mesic leached s o i l s (even over c a l c i u m r i c h s u b s t r a t a ) p a r t i c u l a r l y on n o n - g l a c i a t e d s o i l s (V. J . K r a j i n a p e r s o n a l communication). W i t h i n the p r e s e n t study a r e a , non-calcareous environments are r e s t r i c t e d to two l o c a t i o n s , h i g h c e n t e r e d i c e wedge p o l y -gons on which develop the S a l i c e t a l i a a r c t i c a e and Pre-Cambrian ou t c r o p p i n g s on which develop the P h y l l o d o c o - C a s s i o p e t a l i a . A s l i g h t r e l a t i o n s h i p between the two o r d e r s i s r e f l e c t e d by the b l c o e n o t i c d i s t r i b u t i o n of c e r t a i n s p e c i e s (e.g. L u z u l a  confusa, S t e l l a r l a l o n g l p e s , C l a d o n l a c o c c i f e r a and C a l o p l a c a  clnnaniomea) which show h i g h mean importance v a l u e s o n l y i n these u n i t s . The s t r o n g I n f l u e n c e of o t h e r environmental f a c t o r s such as snow d u r a t i o n and s u r f a c e physiognomy i s expressed by the v e r y d i f f e r e n t dominant dwarf shrubs i n each o r d e r . S a l l x  a r c t l c a dominates the S a l i c e t a l i a a r c t i c a e and has i t s h i g h e s t average s p e c i e s s i g n i f i c a n c e i n the p l a n t community of t h i s o r d e r . I t s importance i s g r e a t l y reduced i n the P h y l l o d o c o -C a s s i o p e t a l i a where the dwarf shrub evergreen Casslope  t e t r a g o n a dominates. Other s t r o n g f l o r i s t i c d i f f e r e n c e s , which 1-18 w i l l become apparent i n the d e s c r i p t i o n of the p l a n t a s s o c i a -t i o n s , serve to f u l l y d i s t i n g u i s h t h i s o r d e r from any o t h e r h i g h e r s y n s y s t e m a t i c u n i t on the Devon I s l a n d lowland. Because of the p r e v a l e n c e of c a l c a r e o u s s u b s t r a t a , the S a l i c e t a l i a a r c t i c a e are not w e l l developed i n t h i s a r e a . On Banks I s l a n d , i n the western Canadian High A r c t i c , the S a l i c e t a l i a a r c t i c a e are w e l l r e p r e s e n t e d by s e v e r a l p l a n t communities which become dominant on n o n - g l a c i a t e d s o i l s and g l a c i a l t i l l of p r e v a i l i n g l y non-calcareous m a t e r i a l (V. J . K r a j i n a p e r s o n a l communication). A s i n g l e a l l i a n c e i s r e c o g -n i z e d on Devon I s l a n d , the Luzulo - S a l l c i o n a r c t i c a e . 3. L u z u l o - S a l l c i o n a r c t i c a e (L - Sa) B a r r e t t and K r a j i n a The d i s t i n g u i s h i n g f e a t u r e s of the order a l s o serve to separate t h i s a l l i a n c e . The choice of a c h a r a c t e r i s t i c s p e c i e s complex f o r the a l l i a n c e i s d e f e r r e d u n t i l p h y t o s o c i o l o g i c a l data are gathered from more e x t e n s i v e s t u d i e s i n the r e g i o n . L u z u l a confusa was chosen i n naming the a l l i a n c e s i n c e i t shows i t s s t r o n g e s t Importance v a l u e s i n t h i s u n i t (ave. s p e c i e s presence V; ave. s p e c i e s s i g n i f i c a n c e 4.1). T h i s s p e c i e s noted i n o n l y one o t h e r p l a n t a s s o c i a t i o n sampled w i t h i n the lowland (Sphaerophoro - Rhacomitrio - Casslopetum t e t r a g o n a e ) . Here i t s average s i g n i f i c a n c e value drops by n e a r l y h a l f (2.1). I t s h o u l d a l s o be noted t h a t i n the l a t t e r u n i t L. confusa i s n e a r l y always a s s o c i a t e d w i t h L. a r c t l c a , a s p e c i e s noted by P o r s i l d (1964) as a f r e q u e n t companion of Casslope t e t r a g o n a . The a s s o c i a t i o n of these two s p e c i e s i n the p r e s e n t a l l i a n c e , .119 however, i s not so pronounced. I t i s l i k e l y t h a t f u r t h e r a l l i a n c e s of t h i s o r d e r w i l l be d e s c r i b e d from Low A r c t i c Canada i n the f u t u r e . On Devon I s l a n d the s i n g l e p l a n t a s s o c i a t i o n o f t h i s a l l i a n c e i s the Pogonato - Lu z u l o - S a l i c e t u m a r c t i c a e . ( 5 ) Pogonato - L u z u l o - S a l i c e t u m a r c t i c a e (P - L - Sa) B a r r e t t and K r a j l n a P i g s . 3 6 - 4 3 Tab. 2 9 - 3 0 Ice wedge polygons were sampled as s i n g l e landscape u n i t s . F i v e areas of polygon topography were l o c a t e d . A l l were h i g h c e n t e r e d polygons ("Type F" of Drew and Tedrow 1 9 6 2 ) . Three s e t s ( p l o t s 2 0 , 2 1 , 2 2 ) were r e l a t i v e l y weakly developed. P o l y g o n a l c e n t e r s were o n l y moderately h i g h and the troughs between the r a i s e d p o r t i o n s shallow. No ground i c e was exposed and slumping a t polygon margins was absent. Three o t h e r s ( p l o t s 1 , 3 and 3 2 ) were more s t r o n g l y d e f i n e d . The c e n t e r s were markedly e l e v a t e d and some had tundra e a r t h hummocks form-i n g on the r a i s e d p o r t i o n s o f the polygons ( F i g . 3 8 ) . Channels were deeper but no exposure of ground i c e was noted. Polygon c e n t e r s showed s l i g h t m a r g i n a l e r o s i o n and slumping. A s i n g l e s e t ( p l o t 7 ) appeared o l d e r than the o t h e r s and In a s t a t e of a c t i v e d e t e r i o r a t i o n . Polygon c e n t e r s were w e l l d e f i n e d and troughs v e r y deep. The surfaces of a number of polygon c e n t e r s were low i n t o t a l v e g e t a t i o n coverage ( F i g . 3 5 ) . The exposure o f massive ground i c e was apparent here and slumping of l a r g e segments of the margins had o c c u r r e d ( F i g . 3 6 ) . Pronounced 1 2 0 e a r t h hummocks were p r e s e n t on the s u r f a c e of the polygons ( F i g . 3 7 ) . Measurement of diameters of 9 polygons In 2 l o c a t i o n s ( p l o t s 7 and 3 ) showed a range between 13 and 2 7 f e e t . Trough width between polygons ranged from 4 to 8 f e e t . In a number of r e s p e c t s t h i s c o e n o s i s i s a heterogeneous u n i t , both f l o r i s t i c a l l y and e n v i r o n m e n t a l l y . Polygon c e n t e r s , f o r example, are one of the e a r l i e s t s i t e s to emerge from the snowpack, while the troughs may remain snow f i l l e d u n t i l some weeks l a t e r ( F i g . 3 5 ) . Some polygons have an almost complete cover of v e g e t a t i o n , while a d j a c e n t areas are n e a r l y d e v o i d of p l a n t cover ( F i g . 3 5 ) . M a r g i n a l slumping produces d i s t u r b e d areas f o r c o l o n i z a t i o n w h i l e the polygon c e n t e r s remain r e l a -t i v e l y s t a b l e . D e s p i t e t h i s apparent v a r i a b i l i t y , when con-s i d e r e d as a s i n g l e u n i t , these p o l y g o n a l areas p r o v i d e a s e r i e s of v e g e t a t i o n a l and environmental s i m i l a r i t i e s which u n i t e the sampled r e l e v e s i n t o a d i s t i n c t i v e phytogeocoenotic e n t i t y . S a l l x a r c t i c a a c h i e v e s I t s h i g h e s t s i g n i f i c a n c e v a l u e s i n t h i s phytogeocoenosis, dominating the shrub l a y e r w i t h a mean value of 5 . 6 (Tab. 2 9 ) . More s p e c i e s of g r a s s e s are r e c o r d e d from t h i s c o e n o s i s than any o t h e r ( 6 genera and 8 s p e c i e s ) a l t h o u g h s i g n i f i c a n c e v a l u e s remain low. Alopecurus a l p l n u s appears p r e f e r e n t i a l l y and i s thus chosen as a c h a r a c t e r i s t i c s p e c i e s of the p l a n t a s s o c i a t i o n . The genus L u z u l a i s a l s o found In abundance here. L u z u l a confusa shows i t s h i g h e s t s i g n i f i c a n c e here and i s a l s o chosen as a c h a r a c t e r i s t i c s p e c i e s . A d i c o t y l e d o n o u s s p e c i e s Table 29 121 PLOT HO. BATE ANALYSED HERBACEOUS COVER % MOSS COVER * LICHEN COVER * TOTAL SPECIES SO. PLOT SIZE PRESUMED CHARACTERISTIC COMBINATION OP SPECIES Salix a r c t l c a Lusola confusa B t e l l a r i a longipea Pedicularia blrsuta Alopecurus alpinus Pogonatum alpiouD Psllopilum eavifolium Oaloplaca cinnamomea OTHER SPECIES Carex oisandra Dryas i n t e g r i f o l i a Polygonum viviparun Axctagroatis l a t i f o l i a Juncuo biglunie Oxyrla digyna Papaver r a d i c a t u m Draba b e l l i ! Draba l a c t e e Poa arctica S a x l f r a g a o p p o s i t i f o l i a S a x i f r a g a cernua F e s t u c a b r a c h y p h y l l a Draba ob l o n g a t a C e r a s t i u m alpinum P o t e n t i l l e h y p a r c t i c a L u z u l a a r c t i c a Poa e b b r e v i a t a F c a t u c a b a f f i n e n a i s C e raatium r c g e l i i Helandrium a p e t a l u a H i n u a r t i a r u b e l l a S a x i f r e g a f o l i o l o s a C a r e x ^ r u p e s t r i s C arex* at ro fuse a Eriophorum t r i a t e Draba a l p i n a B raya purpuraacena P o t e n t i l l a r u b r i c a u l i a P h i p p s i a e l g i d a S a x i f r a g a n i v a l i s P u c i n e l l i a v a g i n a r a Carex stana Cerdamine b e l l i d i f o l i a K o b r e s i a nyoouroides uitrichum f l e x i c a u l e O rthothecium chryaeura T o r t u l a r u r a l i s Drepanocladus u n c i n a t u a M y u r e l l a t e n e r r i n a A u l a c o o n i u n turgidum D i a t i c h i u m c a p i l l a c e u m T o r t e l l a t o r t u o s a Orthothecium s t r i c t u m M y u r e l l a j u l o c e a T o r t e l l a f r a ^ i l i s P o h l i a crudfl E n c a l y p t a rhabdocarpa Mniuo o r t h o r r y n c h u n D i e r a n o w e i a i a c r i 3 p u l a Hypnum b a n b e r g e r i Hypnum c u p r e s s i f o r m e T i n n i a a u s t r i a c a E n c a l y p t a c i l i a t a C i r r i p h y l u m c i r r o s u m Kniura hymenophylloides Drepanocladua revolvens Dicranum elongatum Rhacomitrium lanuginosum C l a d o n i a p y x i d a t a T h a i c n o l i a v e r n i c u l a r i a Phyacia muscigena Le c a n o r a e p i b r y o n C a l o p l a c a t i r o l i e n s i a C e t r a r i a n i v a l i a L e c i d e a v e r n a l i a C l a d o n i a c o c c i f e r a F u l g e n s i a b r a c t e a t a C e t r a r i a i s l a n d l c a C a l o p l a c a s t i l l i c i d i o r u r a L e c i d e a r a c u l o s a O c h r o l e c h i a f r i g i d a T o n i n i a l o b u l a t a Mycoblaatus s a j i g u i n a r i u s A l e c t o r i a o c h r o l e c h i a X a n t h o r i a elegar . 3 L e p r a r i a c e g l e c t a S o l o r i n a s a c c a t a L e c i d e a a s s i n i l a t a P e l t i g e r a malacea P e l t i g e r a aphthosa C e t r a r i a c u c - j l i a t a Hypo~jfiania aubobscura P e r t u 3 a r i a c o r i a c e a C o m i c u l a r i a d i v e r g e n a A l e c t o r i a n i t i d u l a A l e c t o r i a c h e l y b e i f o r n i a D a c t y l i n a ramulosa L e c i d e a p a n t h e r i n a S o l o r i n a b i s p o r a P a r h e l i a o^ p r i L l c d e s P e l t i g s r a c a n i n a Pertusaria l i a c t y l i n a R hixocarpon g e o r r a p h i c u a Rhizocarpor: r i t t o k e n s e S t e r e o c a j l o r . alpir.u= Clador.ia c o r n u t a l e c a n o r a b c h r i n g i i R l m d i n a r.icbosa O c h r o l e c h i a androgyne . Pogonato-Luzulo-Salieetum arcticae 1 J ? 20 21 22 32 6/15/6? 6/16/67 6/20/67 7/20/67 7/20/67 7/25/67 8/1/68 JO 50 65 60 75 60 85 10 5 2 5 20 2? v 2 0 25 5 8 4 9 7 10 15 *3 43 47 56 P *4 50 55 lOOnT. ^ 4 6 6 3 6 4 . 3 2 2 2 1 2 2 1 . , 3 2 (*VE. PRESENCE SPECIES) SIGNIFICANCE 6 6 6 V 5.6 7 6 4 V 4.1 3 2 • . V 2.1 1 1 2 V 1.4 . . 4 III 1.3 4 4 4 V 3.6 1 1 . ' III 0.4 2 2 IV 1.1 > ¥ 3.7 V 3.3 S V 3.0 l V 2.8 3 V 1.7 V 1.4 l V 1.0 V 0.8 + V 0 . 7 2 IV 1.8 IV 1.1 > IV 0 . 6 I I I 1 . 0 + I I I 0.4 • I I I 0.4 • I I I 0.4 I I 1 . 0 I I 0 . 6 I I 0.4 I I 0 . 5 I I 0 . 5 I I 0.2 I I 0 . 1 I 0 . 6 I 0.4 I 0.3 I 0 . 1 I 0 . 1 I 0 . 1 I -I -I I I -I -4 V 2 . 1 3 V 1.9 3 V 1.4 4 IV 1.6 IV 0 . 5 3 I I I 1.2 3 I I I 1.1 I I I 0 . 6 . I I I O.S I I I 0.2 I I 0.4 I I 0.3 I I 0.2 I 0.3 I 0.3 I 0.3 I 0.3 I 0 . 1 I 0 . 1 I 0 . 1 I 0 . 1 I I _ • I -4 V 3.1 3 V 2 . 0 2 V 1 . 6 2 V 1 . 6 1 V 0.8 + V 0 . 6 3 IV 1 . 0 1 IV 1.0 2 IV 0 . 7 2 IV 0 . 6 , IV 0.4 3 I I I 0 . 6 + I I I 0 . 6 + I I I 0 . 5 I I I 0.4 1 I I I 0.4 . I I I 0.3 3 I I 0 . 6 1 I I 0.4 . I I 0.4 1 I I 0 . 5 I I 0.2 + I I 0 . 1 + I I 0.1 4 I 0 . 6 2 I 0.3 I 0 . 1 I 0 . 1 + I 0 . 1 I 0 . 1 I 0 . 1 I 0 . 1 I 0 . 1 I 0 . 1 I 0 . 1 I 0 . 1 I 0 . 1 - I 0 . 1 I 0 . 1 I 0 . 1 + I 0 . 1 Table 29a Pogonato - Luzulo - Sallcetum - Soils PLOT NO. DATE SAMPLED DEPTH TO FROZEN MATERIAL (inches) SOIL CLASSIFICATION PHYSICAL/CHEMICAL ANALYSIS Horizon I depth (inches) color, dry color, wet •,H (CaClp) pH (H20) carbon % nitrogen % total P p.p.m. Exchangeable Cations Me/100 gm K Ca Mg Na Sum 1 3 7 ' ' 20 21 22 52 7/20/68 7/20/68 7/20/68 7/21/68 7/21/68 7/21/68 8/1/68 7 8 8 8 8 9 7 Bog H 0-4 0-8 0-6 0-8 0-8 0-9 0-7 5YR2/2 5YR2/2 5YR2/2 5YR2/2 5YR2/2 5YR2/2 5YR2/2 5YR2/1 5YR2/2 5YR2/1 5YR2/2 5YR2/1 5YR2/2 10YR2/1 5.4 5-5 5-5 '6.0 4.9 <- 4.7 6.1 5.9 6.3 6.0 6.6 5.4- 4.7 6.6 37.5 32.6 26.9 26.3 36.8 30.9 35.1 6.90 5.63 5-10 6.90 6.69 5-38 6.60 12 16 12 20 20 18 18 .10 37.6 • 17-2 2.70 57.6 .06 33.6 l'!-.4 .88 48.9 .23 28.6 24.2 1.56 54.6 .06 4-0.2 16.8 1.08 58.1 .09 34.2 10.6 1.24 4-6.1 .08 29.8 7.6 1.06 38.5 .18 4-8.S 27.6 1.4-2 34.0 Horizon II Np Ah(?) H2(?) Np Np Np Np , depth color, dry color, wet pH (CaClp) pH (H 2 or carbon % nitrogen P 1-6 10YR3/2 10YR3/4 4.2 4.7 9.5 1.86 10 6-11 . 2.5Y3/2 10YR3/3 ' 6.5 7.4 23.9 4.84 9 Exchangeable Cations K Ca Mg Na Sum 0.4 8.4 3.5 • 33 12.6 .32 16.0 15.6 1.01 32.9 ro ro chosen f o r the same reason Is S t e l l a r l a l o n g l p e s . The bryophyte component becomes more mesophytlc l n n a t u r e . Two taxa of the P o l y t r i a c e a e are important, Pogonatum alplnum which f i n d s i t s g r e a t e s t abundance here and P s i l o p l l u m  c a v l f o l l u m , which appears r e s t r i c t e d to t h i s c o e n o s i s . The former s p e c i e s , while found i n o t h e r coenoses, has mature sporophytes o n l y i n t h i s u n i t . L i c h e n s found here i n c l u d e a number of u b i q u i t o u s s p e c i e s such as C l a d o n l a p y x l d a t a , Thamnolla v e r m l c u l a r i s and Lecanora  e p l b r y o n . C a l o p l a c a clnnamomea was o f t e n noted i n prominent patches on the s o i l s u r f a c e . Because of i t s r e l a t i v e l y h i g h s i g n i f i c a n c e and presence v a l u e s i t has been s e l e c t e d as a c h a r a c t e r i z i n g s p e c i e s . The s o i l s u n d e r l y i n g t h i s c o e n o s i s are a l l o r g a n i c s o i l s and are c l a s s i f i e d as Bog s o i l s (Tedrow e t a l . 1 9 5 8 ) . The concurrence of Bog s o i l s w i t h h i g h centered ice-wedge polygons has been d e s c r i b e d p r e v i o u s l y from P o i n t Barrow, A l a s k a (Drew and Tedrow 1 9 6 2 ) and the Mould Bay a r e a of P r i n c e P a t r i c k I s l a n d i n the extreme western a r c t i c a r c h i p e l a g o (Tedrow e t a l . 1 9 6 8 ) . D e s c r i p t i o n s and I l l u s t r a t i o n s from the l a t t e r a r e a appear to be i d e n t i c a l w i t h those from Devon I s l a n d . Cores e x t r a c t e d from h i g h centered polygons have been shown to c o n t a i n o r g a n i c s o i l s t o depth ( B a r r , p e r s o n a l communication). A l l a n a l y s e s from p r e s e n t s o i l i n v e s t i g a t i o n s show h i g h carbon and n i t r o g e n v a l u e s a s s o c i a t e d w i t h o r g a n i c s o i l s (Tab. 2 9 a ) . S o i l r e a c t i o n l n t h i s c o enosis i s f o r the f i r s t time d e c i d e d l y a c i d i c w i t h two samples f a l l i n g below pH 5 * 0 ' P - L - Sa Fig« 3 5 S p r i n g emergence of ice-wedge polygons a t p l o t 7 . The s u r f a c e of these polygons are f r e e of snow while the troughs between r e -mained snow f i l l e d f o r one to two weeks l a t e r . Polygons l n the foreground are low i n v e g e t a t i v e cover. Polygons b a r e l y v i s i b l e l n the background had c l o s e d stands of v e g e t a t i o n on the s u r f a c e (photo June 1 2 , 1 9 6 7 ) . F i g . 3 6 Exposure of ground Ice i n the a r e a of p l o t 7 . M e l t i n g of exposed i c e keeps many troughs f i l l e d w i t h water d u r i n g the summer. Note the slumping o f o v e r l y i n g s o i l s . M i c r o s c o p i c examination of s t a i n e d i c e r e v e a l e d numerous diatoms and p r o t i s t s (photo J u l y 2 7 , 1 9 6 7 ) . 124 125 P r o f i l e exposures showed dark f i b r o u s m a t e r i a l throughout the a c t i v e l a y e r . S o i l s a t the f r e e z i n g plane were observed to have h i g h i c e contents which f r e q u e n t l y o c c u r r e d as d i s t i n c t i v e bands a c r o s s the base of the s o i l p i t ( F i g . 3 8 ) . Two p r o f i l e s r e v e a l e d d i s t i n c t i v e subsurface f e a t u r e s . P i t 3 » shown i n F i g . 3 7 » showed a p a t t e r n of o r g a n i c movement i d e n t i c a l to t h a t d e s c r i b e d by MacKay ( 1958) from the western a r c t i c . C o n c e n t r a t i o n s of o r g a n i c m a t e r i a l s c o l l e c t i n the d e p r e s s i o n between two tundra e a r t h hummocks. Subsequent l e a c h e d humic c o n s t i t u e n t s move v e r t i c a l l y u n t i l r e a c h i n g the permafrost t a b l e , where they then move h o r i z o n t a l l y a c r o s s the f r o z e n s u r f a c e . S o i l s from the upper cores of these hummocks showed very d i f f e r e n t p r o p e r t i e s from other samples measured i n t h i s u n i t . C o l o r s appear dark i n the f i e l d (10 y r 3 / 4 ) and are greasy to the touch. Carbon contents are low as are exchange-a b l e c a t i o n s (Tab. 2 9 a ) . The o r i g i n of t h i s m a t e r i a l Is unknown; however, m a t e r i a l s of a s i m i l a r c omposition have been noted b o r d e r i n g c e r t a i n l a k e s i n the lowland ( F i g . 3 9 )• I t may be t h a t t h i s m a t e r i a l formed the core of these polygons which were l a t e r capped w i t h o r g a n i c matter from e s t a b l i s h e d v e g e t a t i o n . P r o f i l e 7 ( F i g , 3 8 ) a l s o showed o r g a n i c l e a c h i n g . Here, however, the core of the hummocks was composed of humic m a t e r i a l and l e a c h i n g produced a banded p a t t e r n beneath the cores r a t h e r than i n the d e p r e s s i o n s between hummocks. The s u b s u r f a c e l a y e r s appeared l i g h t e r c o l o r e d l n the f i e l d ( 2 . 5 y 3 / 2 ) but on d r y i n g turned dark (10 y r 3 / 3 ) . I t was assumed t h a t t h i s 1 2 6 m a t e r i a l was s i m i l a r l n o r i g i n to t h a t found i n p l o t 3 as i t was a l s o greasy on compression l n the f i e l d . Chemical a n a l y s i s , however, shows h i g h e r carbon contents and c o n c e n t r a t i o n s of exchangeable c a t i o n s (Tab. 2 9 a ) . F i e l d moisture d e t e r m i n a t i o n s show the h i g h moisture r e t a i n i n g c a p a c i t i e s of these o r g a n i c s o i l s (Tab. 3 0 ) . I t i s u n l i k e l y t h a t s o i l s below the v e r y s u r f a c e dry to the p o i n t t h a t they l i m i t growth In e s t a b l i s h e d p l a n t s . The a b s o l u t e s u r f a c e however, as i n the P e d i c u l a r o - Dryadetum I n t e g r l f o l i a e , was observed d u r i n g the summer to become dry and c r u s t - l i k e i n some l o c a t i o n s . T h i s was p a r t i c u l a r l y n o t i c e a b l e where vegeta-t i o n was sparse or absent. The i n s u l a t i n g q u a l i t i e s of t h i s s u r f a c e d r y i n g , combined w i t h a shallow permafrost t a b l e , no doubt work i n combination to keep these s o i l s a t such a h i g h moisture l e v e l d u r i n g the thawing p e r i o d . A s i m i l a r s i t u a t i o n has been observed a t P o i n t Barrow, A l a s k a (Drew e t a l . 1 9 5 8 ) . A h i g h heat c a p a c i t y and low thermal c o n d u c t i v i t y r e s u l t s i n Bog s o i l s b e i n g the s h a l l o w e s t thawing o f any i n the lowland. A n a l y s i s of probe d a t a ( F i g s . 4/1, kZ, 4 3 ) shows an extremely slow thaw r a t e . Deeper thawing appears to take p l a c e toward the margins of the polygons ( 7 - 1 2 i n c h e s ) . The s h a l l o w e s t thawing occurs i n the troughs ( 6 - 8 i n c h e s ) . S o i l temperatures c o n f i r m these r e s u l t s (Tab. 4 4 ) . S o i l s a t a depth o f nine inches f a i l e d to thaw u n t i l e a r l y August and then were o n l y s l i g h t l y above f r e e z i n g , remaining the c o l d e s t of any measured a t t h a t depth. Shallower measurements, however, were comparable w i t h s u r f a c e s o i l s of o t h e r u n i t s . P - X - Sa F i g . 37 S o i l p r o f i l e a t p l o t 3. Note the v e r t i c a l band of darker m a t e r i a l between the hummocks and i t s l a t e r a l movement al o n g the permafrost t a b l e (photo J u l y 2 0 , 1 9 6 7 ) . F i g . 38 S o i l p r o f i l e a t p l o t ?. Note the darke r humic cores and h o r i z o n t a l banding beneath each hummock. Dark banding a t the base of the p i t i s i c e (photo J u l y 2 0 , 1 9 6 7 ) . P - L - Sa P i g . 39 P o l y g o n a l shape o f pond base m a t e r i a l . T h i s m a t e r i a l i s g r a n u l a r , spongy and has a greasy f e e l on com-p r e s s i o n . I t i s b e l i e v e d t h a t s i m i l a r m a t e r i a l may u n d e r l i e polygons a t p l o t no. 3« 128 I I P - L - Sa F i g . 40 P i t base a t p l o t 3 showing i n c i p i e n t i c e wedge forming as d e s c r i b e d by Lachenbruch ( 1 9 6 2 ) (photo J u l y 20, 1 9 6 7 ) . 129 Table 30 F i e l d M o isture Determinations {%) - P-L-Sa S o i l s P e r c e n t Moisture by Date Measured a t I n d i c a t e d Depth 1 9 6 8 3 inches 6 / 2 8 1 2 3 . 7 7 / 3 1 5 7 . 0 7 / 1 0 1 3 8 . 7 7 / 1 7 1 1 9 . 9 7 / 2 4 1 4 9 . 5 7 / 3 1 1 0 4 . 4 8 / 7 1 4 0 . 9 8 / 1 4 1 2 6 . 3 x = 1 3 2 . 5 3 inches 3 inches 1 9 6 9 Hummock Dep r e s s i o n 6 / 2 1 1 8 9 . 9 1 3 4 . 6 6 / 2 6 1 6 9 . 9 1 4 3 . 6 7 / 1 1 4 2 . 5 9 1 . 6 7 / 8 1 4 6 . 6 1 0 1 . 7 7 / 1 5 1 7 7 . 0 1 3 2 . 8 7 / 2 2 1 8 8 . 3 1 2 9 . 2 7 / 2 7 1 3 5 . ^ 1 4 8 . 2 8 / 5 1 5 4 . 0 1 7 9 . 5 8 / 1 2 1 5 4 . 5 1 4 0 . 3 8 / 1 7 1 8 1 . 2 2 1 2 . 9 x = 1 6 3 . 9 X = 1 4 1 . 4 131 In summary, the Pogonato - Luzulo - S a l l c e t u m a r c t i c a e i s a mesic u n i t r e l a t e d to S a l l x dominated a s s o c i a t i o n s noted from Banks I s l a n d l n Western High A r c t i c Canada. I t s develop-ment on h i g h centered ice-wedge polygons r e s u l t s i n a somewhat heterogeneous u n i t . When c o n s i d e r e d as a whole, however, these environments show c e r t a i n u n i f y i n g c h a r a c t e r i s t i c s which j u s t i f y t h e i r s t a t u s as an i n d i v i d u a l phytogeocoenosis. The v e g e t a t i o n i s dominated by S a l l x a r c t l c a . A d i v e r s e a r r a y o f gras s e s and a h i g h cover of L u z u l a p r o v i d e the coe n o s i s w i t h a d i s t i n c t i v e c h a r a c t e r . The h i g h l y o r g a n i c bog s o i l s which develop here r e s u l t i n an a c i d i c environment. These s o i l s show h i g h moisture r e t e n t i o n throughout the summer and extremely slow r a t e s o f thawing. S e v e r a l s o i l p r o f i l e s show h i g h i c e contents a t the permafrost t a b l e . The pr e v a l e n c e of c a l c a r e o u s m a t e r i a l i n t h i s a r e a does not a l l o w f o r o p t i m a l development of the S a l i c e t a l i a a r c t i c a e , the o r d e r to which t h i s u n i t b elongs. P - L - Sa F i g . 41 P l o t of a c t i v e l a y e r development ( i n c h e s thawed) w i t h time (month and day) on p l o t 1 d u r i n g 1 9 6 8 (above) and 1 9 6 9 (below). CR = p l o t of a c t i v e l a y e r development measured as mean of three probes l o c a t e d i n trough p o s i t i o n s . CE s p l o t of a c t i v e l a y e r development measured as mean of f o u r probes l o c a t e d i n polygon c e n t e r s . E = p l o t o f a c t i v e l a y e r development measured as mean of three probes l o c a t e d a t polygon margins. A = mean a c t i v e l a y e r development of a l l probes (CR, CE, E, 10 p r o b e s ) . P - L - Sa F i g . 42 Plot of active layer development with time, plo t 3 . Above 1 9 6 8 , mean of ten probes. Below 1 9 6 9 , symbols as i n F i g . 41. P - L - Sa F i g . 4 3 P l o t o f a c t i v e l a y e r development w i t h time, p l o t ?. Above 1 9 6 8 , T = probes p l a c e d i n tundra e a r t h hummocks, polygon c e n t e r s . F = probes p l a c e d i n d e p r e s s i o n s between hummocks, polygon c e n t e r s . Below, 1 9 6 9 ; symbols as i n F i g . 4 1 . 134 IV. P h y l l o d o c o - C a s s i o p e t a l i a (P - C) Brooke, P e t e r s o n and K r a j l n a 1 9 7 0 A r c t i c heath communities where Dryas sp. and Cassiope sp. co-dominate have been h e r e t o f o r e p l a c e d by most workers Into the s i n g l e a l l i a n c e Dryadion (Running 1 9 6 5 ) . A s mentioned p r e -v i o u s l y the n o r t h e r n a s s o c i a t i o n s of t h i s a l l i a n c e are c a l c l c o l o u s communities w i t h Dryas dominating. The p r e s e n t study area l i e s near a c o n t a c t between s e d i -mentary m a t e r i a l composed c h i e f l y of dolomite and sandstone and Pre-Cambrian m a t e r i a l p r i m a r i l y of g r a n o d i o r i t e , g r a n i t e s and monzonite. A comparable s i t u a t i o n e x i s t e d i n S v a l b a r d s t u d i e s where young sedimentary m a t e r i a l s covered e x t e n s i v e p o r t i o n s of the i s l a n d , w i t h c o n c e n t r a t e d g r a n i t e o c c u r r i n g p r i m a r i l y i n the northwest s e c t i o n (Running 1 9 6 5 ) . I t i s c l e a r from R^nningte comments t h a t a l l p l a n t a s s o c i a t i o n s of the D r y a d e t a l l a proper seldom become e s t a b l i s h e d over g r a n i t i c p a r e n t m a t e r i a l s : "Except i n the areas mentioned as having g r a n i t e r o c k s , a l l the o t h e r rocks p r o v i d e good p o s s i -b i l i t i e s f o r the development of a Dryas community" (Running 1 9 6 5 ) . On the o t h e r hand, Bamberg and Major ( 1 9 6 8 ) i n an exten-s i v e review of Dryas communities i n g e n e r a l , c i t e s t u d i e s both from S c a n d i n a v i a and a l p i n e r e g i o n s i n Western North America where Dryas communities have developed over a c i d i c s o i l s and a wide v a r i e t y of s o i l c o n d i t i o n s . K r a j i n a has noted t h i s a l s o i n the d r i e r a l p i n e zone of the Canadian Rockies ( p e r s o n a l communication). W i l l a r d ( 1 9 & 3 ) n a s suggested t h a t low c a l c i u m 1 3 6 r e q u i r i n g ecotypes of Dryas octopetala ssp. hookerlana may e x i s t l n the southern Rocky Mountain region. The optimal habitats of northern species of Casslope appear to be the reverse of Dryas. In areas of the Canadian Eastern A r c t i c profuse stands of Casslope tetragona are developed over quartz monzonite (cf. Polunin 1948 plate LX) and frequently mixtures of Casslope tetragona and Dryas I n t e g r i f o l i a are found. Unfortunately associated s o i l analyses are lacking, however Polunin states: "...Under favorably sheltered and damp condi-tions, the vegetation i s rather s i m i l a r , whether the substratum be a c i d weathering rock or c r y s t a l l i n e limestone" (Polunin 19^8). The l o c a t i o n of the study area afforded an excellent opportunity to compare f l o r i s t i c d i f f e r e n t i a t i o n where admixtures of Casslope tetragona and Dryas i n t e g r l f o l l a occur over d i s s i m i l a r parent materials. On f i r s t analysis i n the f i e l d It appeared that the two associations involved /Sphaerophoro - Rhacomitrio - Cassiopetum tetragonae, and Tetragono - Dryadetum i n t e g r i f o l i a e / would be placed into the single order Dryadetalia as In previous studies. Further analysis of the data however Indicates d i s t i n c t i v e differences which warrant separation at the order l e v e l . These d i s t i n c t i o n s w i l l become obvious l n the d e s c r i p t i o n of the associations; b r i e f l y , however, they Include a) a reversal of the average species si g n i f i c a n c e values for Dryas i n t e g r l f o l l a and Casslope tetragona from one association to the other, b) change i n the composition of the underlying parent materials and surface s o i l reaction, and c) a d i s t i n c t i v e difference In the c h a r a c t e r i s t i c s p e c i e s complex. The order, P h y l l o d o c o - C a s s i o p e t a l i a , was d e s c r i b e d by Brooke, P e t e r s o n and K r a j i n a ( 1 9 7 0 ) from the Pa r k l a n d subzone of the Suba l p i n e Mountain Hemlock Zone of B r i t i s h Columbia. The order i n c l u d e s moderately c h i o n o p h i l o u s p l a n t communities dominated by h e a t h - l i k e o r low shrub s p e c i e s of mesic to h y g r i c h a b i t a t s . Snow d u r a t i o n here g e n e r a l l y averages between 8 and 9 months. Dark raw humus of a c i d i c r e a c t i o n c h a r a c t e r i s t i c a l l y forms a w e l l d e f i n e d o r g a n i c l a y e r over s l i g h t l y to moderately p o d z o l i z e d s o i l s . The physiognomic and environmental s i m i l a r i t y o f the Devon I s l a n d p l a n t community w i t h order d e s c r i p t i o n p r e s e n t e d by Brooke e t a l . ( 1 9 7 0 ) l e a v e l i t t l e doubt t h a t Devon I s l a n d u n i t i s more c l o s e l y a l l i e d to the P h y l l o d o c o -C a s s i o p e t a l i a than the D r y a d e t a l l a . The order has one a l l i a n c e here, the C a s s i o p i o n tetragonae. 4. C a s s i o p i o n tetragonae (C - T) B a r r e t t and K r a j i n a Cassiope t e t r a g o n a i s widespread throughout the North American a r c t i c . I t occurs w i t h h i g h frequency i n n e a r l y a l l of the a r c t i c a r c h i p e l a g o i s l a n d s of Canada w i t h the e x c e p t i o n of a s m a l l group i n the northwest which Young ( 1 9 7 1 ) t r e a t s as a d i s t i n c t f l o r i s t i c zone and S a v i l e has commented upon ( 1 9 6 l ) . I t i s the o n l y e r i c a c i o u s s p e c i e s which i s found w i d e l y i n the more n o r t h e r n i s l a n d s such as M e l l v i l l e , B a t h u r s t , Devon, A x e l H e i b e r g and E l l e s m e r e and the n o r t h e r n coast o f Greenland. While d e t a i l e d p h y t o s o c l o l o g i c a l data are l a c k i n g f o r t h i s r e g i o n i t i s none t h e l e s s apparent t h a t a number of communities are dominated by the s p e c i e s . B r a s s a r d and B e s c h e l ( 1 9 6 9 ) r e p o r t t h a t i t dominates l a t e snow hummock communities on n o r t h e r n E l l e s m e r e I s l a n d . P o l u n i n ( 1 9 4 8 ) showed i t as an important dominant i n many of h i s r e l e v e s . Lambert ( 1 9 6 8 ) has segregated out one s u b a s s o c i a t i o n of h i s S a l i c e t u m p u l c h r a e where Cassiope i s a dominant i n the low a r c t i c . The l a t t e r Is i n t e r e s t i n g l n the f a c t t h a t the v a s c u l a r cover i s q u i t e d i s -t i n c t i v e i n comparison w i t h the h i g h a r c t i c Casslope communities from Devon, w h i l e the bryophyte component remains remarkably s i m i l a r . I t i s e v i d e n t t h a t Lambert's d e s c r i p t i o n shows a c l o s e r e l a t i o n s h i p to our p l a n t a s s o c i a t i o n . As more data accumulate new Casslope dominated a s s o c i a t i o n s w i l l undoubtedly emerge. The c r e a t i o n of a new order a l s o n e c e s s i t a t e s the c r e a t i o n o f a new a l l i a n c e f o r these h i g h a r c t i c assemblages. Because of the obvious r o l e t h a t Casslope p l a y s i n both an e c o l o g i c a l and f l o r i s t i c sense the p r o p o s a l i s made here to term t h i s u n i t the C a s s l o p l o n tetragonae. One a s s o c i a t i o n i s here d e s c r i b e d f o r Devon I s l a n d , the Sphaerophoro - Rhacomitrio - Cassiopetum tetragonae. ( 6 ) Sphaerophoro - Rhacomitrio - Cassiopetum tetragonae (S - R - Ct) B a r r e t t and K r a j i n a F i g s . 4 4 - 4 ? Tab. 3 1 - 3 5 The e x t e n s i v e exposures of Pre-Cambrlan basement found c h i e f l y i n the n o r t h e r n p o r t i o n s of the lowland p r o v i d e a d i s -t i n c t i v e environment f o r the f o r m a t i o n of one of the lowland's 1 3 9 most i n t e r e s t i n g coenoses, the Sphaerophoro - Rhacomitrio -Casslopetum tetragonae ( F i g . 4 4 ) . W i t h i n the c i r c u m s c r i p t i o n o f these geomorphlc f e a t u r e s i s a heterogeneous assemblage of m i c r o h a b i t a t s . In the space of a few f e e t environmental con-d i t i o n s may v a r y from x e r i c to h y d r i c In moisture regime, chionophobic to c h i o n o p h i l o u s i n snow c o n d i t i o n s and fragmentary l l t h o s o l s to deep pockets of o r g a n i c s o i l . Taken as a s i n g l e phytogeocoenotlc u n i t , however, t h i s complex p r o v i d e s e x t e n s i v e areas of v e g e t a t i o n and l i t h o l o g y which are r e p e a t e d l y d u p l i c a t e d over the landscape. In many r e s p e c t s the unique geomorphlc circumstances of these s i t e s r e s u l t s i n a coenosis which, w h i l e complex, Is the most e a s i l y d e l i n e a t e d of any i n the lowland. The s u r f a c e of t h i s u n i t i s d i s t i n g u i s h e d by the presence of e x t e n s i v e b o u l d e r f i e l d s . These are composed of angular and subangular c r y s t a l l i n e r o c k s which p r o v i d e a v e r t i c a l s y n u s i a l a c k i n g i n a l l o t h e r coenoses ( F i g . 45). The coenosis may be l o c a t e d on s l o p i n g ground w i t h any a s p e c t or on l e v e l areas w i t h i n the outcrop. Pebble a n a l y s i s from the base of 12 s o i l e x c a v a t i o n s shows the n e a r l y complete absence of dolomite m a t e r i a l s i n these areas (Tab. 3 D • Predominant parent m a t e r i a l s are g r a n i t e , g r a n o d i o r i t e and q u a r t z monzonite. F l o r l s t i c a l l y , t h i s c o enosis i s the most d i v e r s e of the lowland ecosystem. A l l r e l e v e s r e c o r d over 9 0 s p e c i e s of p l a n t s and 5 p l o t s had 1 0 0 or more s p e c i e s p r e s e n t . The f l o r i s t i c r i c h n e s s of these areas i s a r e f l e c t i o n of the d i v e r s e n i c h e p o s s i b i l i t i e s p r e s e n t e d over such a r e l a t i v e l y s m a l l area. F i g . 4 4 Landscape p o s i t i o n of the Sphaerophoro -Rhacomitrio - Casslopeturn tetragonae. The photograph shows the northern portion of the lowland with extensive outcropplngs of Pre-Cambrian material. Cape Skogan i s i n the background (photo July 18, 19&9). F i g . 4 5 Plot 8 9 . The brown plant i s Casslope  tetragona, the l i g h t colored t u f t s are cushions of Rhacomltrium lanuglnosum (photo July 2 1 , 1 9 6 9 ) . 141 T a b l e 3 1 Pebble A n a l y s i s from S o i l P i t s of the Sphaerophoro - Rhac o m i t r i o - Cassiopetum tetragonae M a t e r i a l Present i n Sample (as 8 t h of T o t a l ) 24 2 5 26 34 8 3 8 4 8 5 8 6 87 88 89 9 0 Dolomite 1 3 Sandstone 1 B i o t l t e G r a n o d i o r i t e 8 3 3 4 P i n k G r a n i t e / B i o t i t e G r a n i t e 5 1 5 2 3 3 2 3 2 . 5 Hornblend D l o r i t e 5 B i o t l t e Quartz Monzonite 7 8 6 8 5 5 2 . 5 The dominating v a s c u l a r s p e c i e s o f the u n i t i s Cassiope  t e t r a g o n a (Tab. 3 2 ) . I t s average s p e c i e s s i g n i f i c a n c e here i s 6 . 4 , i n comparison to a va l u e of 5 « 1 i n the Tetragono -Dryadetum. In c o n t r a s t , Dryas i n t e g r l f o l l a drops to a mean val u e of 1 . 4 here, as opposed to a value of 6 , 8 In the Dryadetum c o e n o s i s . T h i s marked r e v e r s a l of dominance, c l e a r l y c o r r e l a t e d w i t h h a b i t a t d i f f e r e n c e , supports the s e p a r a t i o n of these coenoses a t the h l g e r l e v e l s of I n t e g r a t i o n suggested. A l s o dominating the coenosis i s the bryophyte Rhacomltrlum  lanuglnosum. Found on l y s p o r a d i c a l l y i n o t h e r u n i t s , i t s average s i g n i f i c a n c e value here i s 5 * 8 . T h i s dominance combina-t i o n has been noted on o t h e r areas of the North American A r c t i c ( P o l u n i n 1 9 4 8 ) . In a d d i t i o n a l a r g e c o n s t e l l a t i o n o f c h a r a c t e r i z i n g s p e c i e s are p r e s e n t , many showing a r e s t r i c t i o n to t h i s c o e n o s i s e n t i r e l y (T«b. 3 2 and 4 3 ) . T h i s i s p a r t i c u l a r l y n o t a b l e i n Table 32 Sphaerophoro-Rhacomitrio-Caasiopeturn tetragonae PLOT NO. DATE ANALYSED HERBAGE COVER % MOSS COVER * LICHEN COVER % TOTAL SPECIES NO. PLOT SIZE PRESUMED CHARACTERISTIC COMBINATION OF SPECIES Caaaiope tetragona Cardamine b e l l i d i f o l i a Huperzia selago Saxifraga caeapitosa Rhacomitrium lanuginosum Rylocomium splendens Ptilidium c i l i a r e Anaatrophyllum minutum Rhacomitrium caneacens Gymnomitrion corralloidea Andreaea rupeatris Stereocaulon alpinum Umbilicaria proboacidea Parmelia disjuncta Sphaerophorua globoaus Pannaria hookeri Psoroma hypnorum Parmeiia aulcata Cladina mitia Stereocaulon botryosum Lecidea melinodes Pertusaria panyrga Placopais gelida Veatergrenopsia i s i d i a t a Parmelia centrifuge Cladonia g r a c i l i s Ochrolechia inaequatule Stereocaulon rivulorum OTHER SPECIES Saxifraga o p p o s i t i f o l i a Carex misandra Luzula confuaa Oxyria digyna Salix arctica Poa arctica Saxifraga cernua Papaver radicatum Saxifraga n i v a l i s S t e l l a r i a longipea Cerastium alpinum Silene acaulis Luzula arctica Carex rupeatris Dryas i n t e g r i f o l i a Polygonum viviparum P o t e n t i l l a hyparctica Draba lactea Saxifraga f o l i o l o a a Festuca brachyphylla Draba b e l l i i Draba oblongata Pedicularis hirsute Arctegrostis l a t i f o l i a Carex nardina Minuartia rubella Carex membranaceae Ranunculus sulphurous Juncus biglumis Melandrium affine Draba alpina Pedicularis cavitata Hierochloe alpina Melandrium apetalum Saxifraga r i v u l a r i s Aulacomnium turgidum Dicranum elongatum Pogonatum alpmum Tomenthypnum nitons Ditrichum flexicaule Drepanocladus uncinatus Tortula r u r a l i a Timmia austriaca Tritomarie quinquedentata Dicranoveisia crispula Grimmia apocarpa Hypnum revolutum Distichium capillaceum Mnit'->_b,ymftnophTilum 24 25 26 3" 83 8" 85 86 87 88 09 90 7/29/67 7/30/67 7/30/67 8/18/67 7/11/69 7/14/69 7/15/69 7/1^/69 7/18/69 7/20/69 7/21/69 " 7/25/69 60 50 55 to ' 43 50 55 53 27 32 44 60 60 75 75 63 35 35 '18 40 41 37 40 20 25 25 35 12 40 32 "3 43 31 26 35 92 91 88 118 97 92 . 2 V> 94 114 110 100 100 urtuuthecium cni^ Orthotrichum speciosum - Mnium orthorrhynchum Encalypta rhabdocarpa Blepharoatoma trichophyllum Mnium marginatum Conostomum tetregonum Myurella tenerrima Myurella julacsa Orthothecium rufescens Didymodon asperifolius Leiocolaa heterocolpos Polytrichum juniperinum Scapania simonsii To r t e l l a tortuosa Hypnum bambergeri Cempylium stellatura Bartramia ithyphylla Polytrichum piliferum Lophosia hatcheri Lophosia barbata T o r t e l l a f r a g i l i s Cinclidium arcticum Dicranum fuscescena Brachythecium turgidum V o i t i a n i v a l i s Drepanocladus revolvens Cnestrum s c h i a t i Hypnum callichroum Philonotia fontana Aneura pinguis Oncopborua wablenbergii Tetraplodon mnioidea Pohlia crude Ceratodon purpureus Grimmia al p i c o l a Lophosia quadriloba Lophosia xunseana Lophosia c e v i f o l i a Rbizocarpon geographicum 2 Agyropbora lyngei 3 Fulgensia braetoata 3 Cetraria cucullata 2 Themnolia vermicularis 3 Rhisocexpon copelandii . Umbilicaria a r c t l c a . Dactylina a r c t i c a 2 Cetraria n i v a l i s 2 Cetraria d e l i s e i 2 Alectoria ochroleuca 2 Pertusarla coriacea Dactjjina ramulosa 2 Pertuseria dactylina 2 Hypogymnia subobscura 2 Ochrolechia f r i g i d a 2 Cladonia pyxidata 2 Haematooma lapponicum 2 Placyntbiun aspratile 1 Lecanora epibryon 1 lanthoria elegans 1 Caloplaca t i r o l i e n s i s • Permelia incurve Parmelia omphalodea . Peltigera aphthoaa Alectoria minuscula , Phyacia muscigena 3 Solorina bispora 1 Ochrolechia upsalienaia Lecanora polytropa • Alectoria nigricans 2 Alectoria chalybeiformia Permelia separata 3 Comicularis aculeate Phyacie caesia 1 Cladonia coccifera 1 Caloplaca cinnamomea 1 Candelariella canadensis Lecidea vernalia Lecidea assimileta Lopadium pezizoideum Alectorie n i t i d u l a Buellie strata Sporastetia testudinoa Comicularia divergena Phyacia intermedia Caloplaca a t i l l i c i d i o r u m Leprarie neglecta Peltigera cenina Lecidea rubiformis Rinodina turfacea Placyntbium nigrum Cladonia amaurocreee Umbilicaria havaasil Rbizocarpon cnionopbiluo Parmelia s a x a t i l i e Ombilicerie byperborea Umbilicaria vellea Rbizocarpon disporum Physcie constipate Permelia exasperetula Mycoblastua sangulnerius Alectoria subdivergens Parmeliella praetennissa Peltigera malacea Parmelia infumata Gyalecta foveolaris Cledonie b e l l i d l f l o r a Peltigera scabrosa Bpilonema revertena Pyrenopsifl pulvinate Candelariella arctica Rhizocarpon rittokenae PertuBaria bryontba Toninia lobulate Solorine saccata Lecidea dicksonii Lecidea ramulosa Lecanora fruatulose Buellie papillate Alectoria pubescens Gyalecta peziza Lecanora rupicola Lecanora verrucosa Lecidea pantherina Lecidea lulensis Pertuseria subobducena Lecanora cempestris Leciophysma finmarkicum Lecidelle wulfenii Mycoblastua alpinua Baeomycea cameus Lecidea craaaipes Lecanora badia ' Lecidea armeniaca Lecanora caatanea Caloplaca tetraspora Ochrolechia gonatodas Nephroma expallidum Parmelia fraudans Racodium rupestre Lecidea auriculata Lecanora atra Pertuseria octomela Lecidea tesselata 7 7 7 6 7 6 6 7 5 5 6 ' 7 1 1 1 • + • + 1 1 1 1 + • 1 2 i i + . + + i 6 6 7 7 6 5 6 5 6 5 5 5 4 5 5 4 4 4 4 3 4 4 4 4 4 4 3 4 4 4 4 3 3 3 3 3 4 4 4 3 4 3 3 3 2 2 3 1 1 2 3 2 2 2 . i i + + . + 1 + i + # + + + 3 2 3 2 3 5 3 3 3 3 i 3 3 2 1 4 3 3 4 5 2 3 3 2 2 2 3 2 3 2 3 3 5 2 3 2 2 3 3 3 2 3 3 2 2 1 1 2 3 1 5 2 2 1 2 2 2 1 1 1 2 2 1 1 2 1 2 2 2 1 2 1 3 . 3 3 1 3 3 1 1 2 2 + 1 i 2 2 1 1 + + 1 1 + 1 1 1 1 1 1 1 1 1 + + 1 1 1 1 1 i + + 1 + + . + + 1 1 + + 2 2 i + 1 + 1 1 1 1 + 1 + + + + + + * * • + 1 * + 2 \ 3 3 4 3 2 i 3 2 2 3 3 / 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 5 3 3 4 3 3 3 3 3 3 1 1 3 2 2 3 2 2 2 1 2 3 2 2 2 2 3 3 2 3 + 2 2 2 1 1 2 1 2 1 + . 2 3 3 2 1 1 2 2 1 2 1 3 + 2 1 1 + 1 2 1 + 1 + 1 1 * + + + 2 3 3 3 3 2 2 3 3 2 2 2 + 1 1 1 2 1 1 1 + * • + * 2 J 2 2 + 1 2 + + * + + * + 2 + • • (AVE. SPECIES) V 6.4 V O.B II 0.3 III 0.3 V 5.8 V 3.8 V 3.6 V 3.2 IV 1.3 IV 0.4 III 0.3 V 2.7 V 2.6 V 2.5 V 2.1 V 1.8 V 1.4 IV 1.3 IV 1.2 IV 0.8 IV 0.8 IV 0.5 IV 0.5 IV 0.4 • III 0.7 III 0.5 III 0.3 III 0.3 V 2.6 V 2.3 V 2.1 V 2.0 V 1.4 V 1.3 V 1.2 V 1.1 V 0.9 V 0.9 V 0.7 V 0.6 IV 1.7 IV 1.6 IV 1.4 IV 1.0 IV 0.8 IV 0.4 IV 0.3 III 0.6 III 0.5 III 0.3 III 0 .5 II 0.3 II 0.3 11 0.2 II 0.2 II 0.1 I -I -I -I -I -I -I -V 3.2 V 2.4 V 2.1 V 2.1 V 1.8 V 1.5 V 1.1 V 0.8 V 0.4 IV 1.0 IV 0.8 III 1.2 III 0.8 III 0.8 III 0.7 III 0.5 III 0.4 III 0.3 III 0.3 II 0.5 II 0.4 II 0.2 II 0.2 II 0.2 II 0.2 II 0.1 I 0.5 I 0.4 I 0.3 I 0.5 I 0.3 I 0.3 I 0.3 I 0.2 I 0.2 I 0.1 I 0.1 I 0.1 I 0.1 I -I -I -I I -I -I -I -I -I I -I — I — I -V 3.0 V 2.8 V 2.8 V 2.8 V 2.7 V 2.6 V 2.4 V 2.3 V 2.1 V 2.0 V 2.0 V 1.9 V 1.8 V 1.8 V 1.6 V 1.6 V 1.5 V 1.4 V 1.2 V 0.8 V 0.8 V 0.4 IV 2.1 IV 1.6 IV 1.4 IV 1.3 IV 1.1 IV 0.5 IV 0.5 IV 0.3 III 1.0 III 0.8 III 0.8 III 0.5 III 0.5 III 0.4 III 0.4 III 0.5 III 0.3 III 0.3 III 0.3 II 0.6 11 0.4 II 0.3 II 0.3 II 0.3 II 0.2 II 0.2 II 0.2 II 0.2 II 0.1 I 0.3 I 0.3 I 0.3 I 0.3 I 0.3 I 0.2 1 0.2 I 0.2 I 0.2 1 0.2 I 0.2 I 0.2 I 0.1 I 0.1 I 0.1 I 0.1 I 0.1 I 0.1 I 0.1 I 0.1 I 0.1 I 0.1 I 0.1 I 0.1 I 0.1 I 0.1 I 0.1 I 0.1 I 0.1 I 0.1 I -142 Table 32 Table 32a Spheerophoro-Rhaconitrio-Casai'opetuin tetragonae - Soils PLOT NO. DATE SAMPLED DEPTH TO FROZEN MATERIAL (inches) SOIL CLASSIFICATION PHYSICAL/CHEMICAL ANALYSIS Horizon I depth (incheo)^ color, dry color, wet pH fCaCl 2) pH (H20) carbon f> nitrogen % P p.p.in. Exchangeable Cations Me/lOOgm K Ca Mg No Sun 24 7/20/68 25 7/20/63 26 8/12/68 34 8/18/67 85 7/11/69 84 7 / 1 V 6 9 85 86 87 8/15/69 7/17/69 7/18/69 Highly Variable Lithosol-Bog Complex... 88 7/20/69 89 7/21/69 .17 29.* 12.2 .60 42.4 .25 52.0 15.6 .74 48.5 .07 21.8 9.8 .40 52.1 .09 17.0 6.0 .60 25.7 90 7/25/69 H H Ah H H H H H H H H Ah 0-7 0-4 0-6 0-8 0-6 0-6 0-7 0-4 0-4 0-7 0 - 6 0 - 5 . 5 5YR2/2 5YR2/2 10YRJ/5 5YR2/2 5YR2/2 5YR2/2 5YR2/2 5YR2/2 5YR2/2 5YR2/2 5YR2/2 5 Y R 2 /2 5YR2/1 5YR2/1 10YR2/2 10YR2/1 10YR2/1 10YR2/1. 5YR2/1 5YR2/1 5YR2/1 5YR2/1 5YR2/1 10YR2/1 5.5 5.4 6.5 5.1 5.4 4.5 5.2 4.9 5.8 5.9 5.0 5.7 5.9 5.8 6.7 5.7 6.2 4.9 5.6 5.4 6.5 6.5 5.5 6.5 24.7 24.7 7.0 17.4 26.6 NM 25.0 25.5 52.2 52.1 17.2 9.4 5.60 5.68 1.09 2.95 5.52 4.10 1.98 5.76 5.21 5.85 1.55 1.05 18 25 7 11 51 28 20 56 28 55 21 11 .15 .16 .17 .22 .14 .15 .11 .08 50.8 19.2 27.4 28.6 50.0 44.8 21.0 2 2 . 0 15.6 11.8 19.0 13.8 28.2 25.8 7.0 7 . 0 .86 .66 .80 .74 .46 .60 .58 .46 47.4 51.8 47.4 45.4 78.8 69.5 28.7 2 9 . 5 Np Np Np C C C Np C 10YR5/5 10YR5/4 10YR5/4 10YR5/3 10YR5/2 5YR5/2 2.5YR2/2 5YR2/2 5.0 6.7 6.8 6.5 5.7 7.1 7.4 , 7 .5 5.8 2.4 2.5 1.2 0.20 0.18 0.31 0.16 9 S 11 5 Horizon II depth color, dry color, wet pH (CaClp) .pH (H20) carbon nitrogen P Exchangeable Cations K Ca Mg Na Sum 10YR5/3 7.5YR3/2 5-3 5.8 1.3 0.18 C Np .Variable as Pockets of Material. .02 3-4 1.3 .24 5.0 10YR5/4 7.5YH3/2 6.2 6.5 1.1 0.25 4 .05 5.6 2.5 .42 8.5 10YR4/3 5YR2/2 5.1 5.9 1.6 0.51 3 .05 3.9 1.9 .24 6.1 .05 8 . 9 4.1 .30 15.5 .05 10.2 4.4 .28 14.9 .05 7.9 2.9 .19 11.0 .02 5.3 1.9 .26 7.5 *A11 surface horizon boundaries very irregular. Numbers here reported equal the deepest pockets of organic material found. Np - not present. both the bryophyte and l i c h e n components. A number of l i v e r w o r t s are abundant here, P t l l l d l u m c l l i a r e and A n a s t r o p h y l l u m mlnutum be i n g the most conspicuous. Gymnomltrlon c o r r a l l o l d e s . w h i l e l e s s abundant, i s an i n d i c a t o r of the l a t e snow melt c o n d i t i o n s p r e s e n t over much of the s u r f a c e . T h i s s p e c i e s was f r e q u e n t l y noted where patches of i c e p e r s i s t e d u n t i l l a t e i n the season. However, Andreaea r u p e s t r i s and Rhacomltrlum canescens, s p e c i e s n o r m a l l y a s s o c i a t e d w i t h rock f a c e s , are a l s o c h a r a c t e r i s t i c here. The e x t e n s i v e a r e a a v a i l a b l e f o r l i c h e n c o l o n i z a t i o n r e s u l t s i n a r i c h l i c h e n f l o r a . Seventeen s p e c i e s of l i c h e n s alone are e i t h e r p r e f e r e n t i a l or r e s t r i c t e d to t h i s u n i t and are Included i n the c h a r a c t e r i s t i c s p e c i e s combination (Tab. 3 2 ) . F i f t e e n s p e c i e s of l i c h e n s have an average s p e c i e s s i g n i f i c a n c e of 2 or g r e a t e r . The more abundant c h a r a c t e r i z i n g s p e c i e s are Sphaerophorus globosus, P a r m e l i a d l s j u n c t a , U m b l l l c a r l a  p r o b o s c i d e a and S t e r e o c a u l o n alplnum. Other l i c h e n s w i t h high cover v a l u e s here are Rhlzocarpon geographleum, R. c o p e l a n d l l . Agyrophora l y n g e l , F u l g e n s l a b r a c t e a t a , A l e c t o r i a o c h r o l e u c a . Thamnolia v e r m i c u l a r i s , U m b l l l c a r l a a r c t l c a , D a c t y l i n a a r c t l c a , C e t r a r i a c u c u l l a t a , C. n i v a l i s and C. d e l l s e i . The nature of the s u r f a c e of the c o e n o s i s r e s u l t s l n an uneven r e d i s t r i b u t i o n of snow d u r i n g the w i n t e r . T h i s may be most c l e a r l y noted from data c o l l e c t e d i n 1 9 & 9 a l o n g a 7 5 meter snow melt t r a n s e c t e s t a b l i s h e d i n t h i s u n i t (Tab. 3 3 ) . In a d d i t i o n numerous s i n g l e o b s e r v a t i o n s of t h i s phenomenon were noted ( F i g . 4 6 ) d u r i n g the 3 f i e l d seasons i n which the study was undertaken. The snow melt t r a n s e c t r a n from the c r e s t of an outcrop down a g e n t l e s o u t h - f a c i n g slope 7 5 meters to the outcrop margin. The f i r s t measurements of snow depth were made on June 1 3 . Snow cover a t the 16 s t a t i o n s measured was highly-v a r i a b l e a t t h a t time ( 5 i-29 i n c h e s ) . By the 2 5 t h of June 7 probes were completely exposed, w h i l e snow depths a t the remaining l o c a t i o n s v a r i e d between 3 and 18 i n c h e s . The mosaic nature of t h i s snow melt p a t t e r n r e s u l t s i n a unique moisture regime i n the coenosis as a whole. G e n e r a l l y , adequate pockets of l a t e snow e x i s t to p r o v i d e c o l d melt water to the s u r f a c e of a s i g n i f i c a n t p o r t i o n of the landscape. L i m i t e d s o i l moisture d e t e r m i n a t i o n s i n 1968 show t h i s most c l e a r l y (Tab. 3 4 ) . Measurements were taken i n a l o c a l i z e d pocket of o r g a n i c s o i l beneath a Casslope cover. No snow was p r e s e n t i n the a r e a from the time of the f i r s t measure-ment. S o i l s remained h i g h i n moisture content through J u l y and e a r l y August. Comparison of s o i l moisture v a l u e s w i t h the Bog s o i l s o f the Pogonato - Luzulo - S a l l c e t u m a r c t i c a e f o r this same p e r i o d . i s i n d i c a t i v e of the probable recharge of water r e c e i v e d by these s o i l s from l a t e snow melt. The e f f e c t of t h i s snowpatch mosaic i s r e f l e c t e d i n the s p e c i e s composition of the c o e n o s i s . In a d d i t i o n to the promi-nent Casslope t e t r a g o n a , Gymnomltrlon c o r r a l o i d e s and C e t r a r i a  d e l l s e l , p l a n t s which i n the lowland areas are n o r m a l l y a s s o c i a t e d w i t h l a t e m e l t i n g snow, s p o r a d i c occurrences of p l a n t s n o r m a l l y a s s o c i a t e d w i t h h y d r i c environments are noted. Some of these i n c l u d e Melandrlum apetalum, Juncus b l g l u m l s , Draba l a c t e a , and Aneura p l n g u l s . Table 33 Snow Melt Transect (75 meters) S-R-Ct Slope, 1969 Figures Equal Depth of Snow i n Inches at Indicated Date Stake 6/13 6/14 6/15 6/16 6/17 6/18 6/20 6/21 6/23 6/25 6/27 1 16,50 15.75 15 r00 14.50 13.50 12.25 11.00 10.00 9.00 6.25 0 2 11.25 10.00 9.50 9.50 8.50 7.50 5.50 5.00 3.25 0 0 3 7.00 6.50 6.00 6.00 4.25 0 0 0 0 0 0 4 13.50 13.25 12.75 12.75 12.00 11.25 10.25 9.75 9.00 6.50 0 5 10.00 8.75 8.25 8.25 7.25 6.00 5.00 4.00 0 0 0 6 29.00 28.25 27.50 27.25 26.00 24.75 23.25 22.25 11.00 18.00 11.50 7 5.25 4.75 4.25 4.25 3.50 0 0 0 0 0 0 8 17.50 17.00 16.75 16.50 15.75 14.50 13.25 12.25 11.75 7.50 0 9 17.25 16.50 16.00 15.75 15.00 13.50 12.75 11.75 10.75 8.00 0 10 9.50 8.50 8.00 8.00 7.25 6.50 5.50 4.50 3.75 0 0 11 12.00 11.25 . 10.75 10.75 10.00 9.00 7.50 6.75 5.75 3.00 0 12 15.50 14.50 14.00 14.00 13.00 10.50 0 0 0 0 0 13 17.50 16.50 16.25 16.25 15.50 14.25 12.00 10.50 9.00 0 0 14 13.50 12.50 12.00 11.75 11.00 10.0.0 8.50 7.50 6.75 5.00 0 15 18.75 18.00 17.75 17.75 16.75 15.75 14.00 13.00 11.50 9.25 2.25 16 22.75 22.25 22.00 21.75 21.00 20.00 18.25 17.50 16.75 14.50 8.75 XT 1 4 7 Table 3 4 F i e l d Moisture Determinations {% by Weight) s-R-Ct S o i l s Date Measured 1 ^ 6 8 Percent Moisture a t I n d i c a t e d Depth 3 Inches  7 / 1 0 3 4 5 . 6 7 / 1 7 2 9 4 . 7 7 / 3 1 2 4 3 . 9 8 / 7 2 1 2 . 5 X = 2 7 4 . 1 C e r t a i n x e r i c s p e c i e s are a l s o p r e s e n t where l o c a l m i c r o -h a b i t a t s o f s h a l l o w l l t h o s o l i c s o i l s o r g r a v e l s occur, or near the summits of the o u t c r o p p i n g , where d r i e r t u r f y c o n d i t i o n s e x i s t . Two of the more no t a b l e are Carex n a r d l n a and F e s t u c a  b r a c h y p h y l l a , s p e c i e s commonly found on the x e r i c g r a v e l s of the r a i s e d beaches. C a l c u l a t e d a v a i l a b l e water (Tab. 3 5 ) I n d i c a t e s t h a t s o i l s from the sampled areas p r o b a b l y do not f a l l below w i l t i n g d u r i n g the summer months. I t s h o u l d be remembered here, however, t h a t these samples are o n l y l o c a l i n o c c u r r e n c e . The heterogenous nature of the s o i l complex here p r e c l u d e s g e n e r a l i z a t i o n s and the importance of the m i c r o s i t e becomes paramount. I t i s i n t e r e s t i n g to note the e f f e c t t h a t the l o s s of o r g a n i c matter has on the moisture r e t a i n i n g c a p a c i t y of s u r f a c e s o i l s i n p l o t s 2 6 and 9 0 . 148 Table 3 5 Calculated Available Water S-R-Ct S o i l s Moisture % by Weight Available Water Pl o t No. Horizon @ ^ Bar @ 1 5 Bars - 1 5 ) 24 H 104 .9 7 6 . 6 28 . 3 C 6 . 9 3 . 1 3 . 8 2 5 H 1 1 1 . 5 8 9 . 5 2 2 . 0 C 1 2 . 1 3 . 7 8 . 4 2 6 Ah 48 . 7 24 . 4 24 . 3 3 4 H 7 3 - 8 5 2 . 3 21.-5 C 9 . 0 2 . 8 6 . 2 8 3 H 1 1 1 . 0 7 7 . 7 3 3 . 3 84 H 1 1 1 . 3 8 9 - 7 2 1 . 6 8 5 H 1 2 1 . 8 9 6 . 8 2 5 . 0 8 6 H 1 2 0 . 2 9 5 . 9 24 . 3 C 3 0 . 0 14 . 6 1 5 . 4 8 7 H 1 8 1 . 1 1 2 1 . 1 6 0 . 0 C 18 . 3 7 . 9 1 0 . 4 8 8 H 1 6 7 . 6 1 0 9 . 8 5 7 . 8 C 1 5 . 2 5 . 9 9 - 3 8 9 H 8 1 . 2 5 5 . 6 2 5 . 6 9 0 Ah 5 5 . 0 3 0 . 5 24 . 5 C 9 . 5 3 . 2 6 . 3 The s o i l s of t h i s coenosis have been c l a s s i f i e d as a Lithosolic-Bog Complex (Tab. 3 2 a ) . C l a s s i c a l l y l i t h o s o l s (or rankers) are azonal s o i l s which lack a well developed s o i l morphology and consist of imperfectly weathered rock fragments, generally of a harder mineralogical nature than those which give r i s e to regosolic s o i l s . These have been noted i n the S - R - Ct F i g . 4 6 Snow pack i n the Pre-Cambrian ou t c r o p s . Note the bare l o c a t i o n s i n the r i g h t f oreground and l e f t background. Depth of snow a t the probe was 7 . 5 inches (photo June 2 9 , 1 9 6 8 ) . F i g . 4 7 L l t h o s o l i c s o i l a t p l o t 2 5 . Note pockets of o r g a n i c accumulation between bo u l d e r s (photo J u l y 3 0 , 1 9 6 7 ) . 1 149 mountainous r e g i o n s of a r c t i c A l a s k a (Tedrow e t a l . 1 9 5 8 ) but knowledge of t h e i r g e n e s i s and c l a s s i f i c a t i o n from the p o l a r r e g i o n s remains o n l y fragmentary. In the Sphaerophoro - Rhacomitrio - Casslopetum tetragonae " s o i l s " may range from an extremely t h i n veneer of brown c r u s t over the s u r f a c e of exposed bedrock to deep pockets of h i g h l y o r g a n i c s o i l s . A t y p i c a l exposure i s seen i n F i g . 4?. The s u r f a c e i s v e r y i r r e g u l a r w i t h pockets of humic m a t e r i a l s form-i n g between l a r g e b o u l d e r s . In most cases the o r g a n i c matter component of these s u r f a c e s o i l s Is over 30%, c o l o r s are dark and the s o i l r e a c t i o n i s d e c i d e d l y a c i d i c . I t i s d i f f i c u l t , r e a l i z i n g the moisture content and depths o f some of these o r g a n i c pockets, to c o n s i d e r them a n y t h i n g o t h e r than H a l f Bog s o i l s i n Tedrow's scheme. I t Is from i s o l a t e d pockets such as these t h a t the v a l u e s p r e s e n t e d f o r H o r i z o n I i n Tab. 3 2 a have been d e r i v e d . More commonly, however, dark o r g a n i c c r u s t s of 1 i n c h or l e s s are found over an u n d e r l y i n g l a y e r of c r y s t a l l i n e rock. These are c l o s e r to the true l i t h o s o l s of Tedrow and the l i t h o l o g y of the u n i t as a whole i s b e t t e r r egarded as a l i t h o s o l complex. In 7 of the examined s o i l exposures i s o l a t e d pockets of d i s t i n c t i v e s u b s u rface h o r i z o n development were noted. These were sampled as separate h o r i z o n s , although h o r i z o n t a l con-t i n u i t y of these l a y e r s was absent i n a l l l o c a t i o n s . G e n e r a l l y where these were noted, l a r g e amounts of f r o s t s h a t t e r e d rock was p r e s e n t i n the sample. These pockets are d i s t i n c t l y m i n e r a l 1 5 1 i n nature (Tab. 3?a). Exchangeable c a t i o n s are low as are carbon and n i t r o g e n v a l u e s . The nature of the s o i l s here p r e c l u d e d the use o f probes f o r d e t e r m i n i n g a c t i v e l a y e r development i n t h i s u n i t . S i n c e the permafrost t a b l e Is a r e f l e c t i o n o f s u r f a c e c o n d i t i o n s i t i s no doubt e x c e e d i n g l y i r r e g u l a r here, as i s the m i r r o r i n g a c t i v e l a y e r . S o i l temperatures from continuous r e c o r d i n g instruments show warm s u r f a c e temperatures i n the upper h o r i z o n s d u r i n g 1968 measurements (Appendix A ) . The o n l y warmer summer mean temperature r e c o r d e d from an equal depth was a t the Nardino - Dryado - A l e c t o r i e t u m on the r a i s e d beach c r e s t s . I t i s l i k e l y t h a t the dry exposed boulder s u r f a c e s are r e s p o n s i b l e f o r c onductive h e a t i n g of the s u r r o u n d i n g s o i l s . In summary the Sphaerophoro - Rhacomitrio - Casslopetum tetragonae i s both a complex and a homogeneous u n i t . F l o r l s t i -c a l l y i t Is the most d i v e r s e c o e n o s i s i n the lowland, s t r o n g s p e c i e s components of v a s c u l a r p l a n t s , bryophytes and l i c h e n s r e f l e c t the d i v e r s i t y of m l c r o h a b l t a t s to be found i n a r e l a -t i v e l y s m a l l a r e a . I t s unique c o n s t e l l a t i o n of environmental f a c t o r s , combined w i t h t h i s d i v e r s i t y of s p e c i e s r e s u l t s i n a l a r g e complement of c h a r a c t e r i z i n g s p e c i e s , many of which are r e s t r i c t e d to t h i s c o e n o s i s . E x t e n s i v e b o u l d e r f i e l d s of P r e -Cambrian g r a n i t e s cover the s u r f a c e of the c o e n o s i s . These l a r g e angular b o u l d e r s p r e s e n t a v e r t i c a l s y n u s l a , l a r g e l y e x p l o i t e d by l i c h e n s , which o t h e r lowland coenoses l a c k . The broken nature of the ground s u r f a c e r e s u l t i n g from these outcrops r e s u l t s , i n an uneven w i n t e r r e d i s t r i b u t i o n of snow. T h i s i n t u r n r e s u l t s In a mosaic snow melt p a t t e r n w i t h i n the c o e n o s i s . A s i g n i f i c a n t p o r t i o n of the landscape r e c e i v e s water from l a t e m e l t i n g snow and the u n i t has a number of char-a c t e r i s t i c s of a l a t e snow patch environment. A t the same time x e r i c m i c r o h a b i t a t s e x i s t where s p e c i e s g e n e r a l l y l i m i t e d to d r i e r coenoses may be found. S o i l s here are predominantly shallow l i t h o s o l s i n t e r s p e r s e d w i t h pockets of o r g a n i c s o i l r e m i n i s c e n t o f H a l f Bog s o i l s . T h i s u n i t i s one of the two a c i d o p h i l o u s u n i t s on the lowland. S o i l temperatures from shallow depths are r e l a t i v e l y warm. T h i s may be a t t r i b u t e d i n p a r t to conductive h e a t i n g from the rocky s u r f a c e . C a r l c e t a l i a f u s c a e (Cf) Koch ( 1 9 2 8 ) emend. K l l k a ( 1 9 3 4 ) As Dahl ( 1 9 5 6 ) has p r e v i o u s l y shown a h i e r a r c h i c a rrange-ment of mire communities i s d i f f i c u l t due t o the complexity of environmental f a c t o r s o p e r a t i n g w i t h i n any g i v e n h a b i t a t . The C a r l c e t a l i a f u s c a e /= D r e p a n o c l a d e t a l i a e x a n n u l a t i K r a j . 1 9 3 3 ; C a r l c e t a l i a Goodenoughil Nord. 1 9 3 6 7 are bog and mire a s s o c i a -t i o n s . The mire a s s o c i a t i o n s of Devon I s l a n d conform w e l l w i t h the d e s c r i b e d c h a r a c t e r i s t i c s of the order as pres e n t e d by Dahl ( 1 9 5 6 ) : mire v e g e t a t i o n w i t h Drepanocladus sp. and C a l l l e r g o n sp. p l a y i n g important r o l e s i n the bryophyte component of the community, some w i l l o w shrubs p r e s e n t and a c a l c l c o l o u s v egeta-t i v e cover. Meesla t r l f a r i a , l i s t e d as a c h a r a c t e r i s t i c s p e c i e s of the order by some authors ( K l l k a 1 9 5 5 ) i s a l s o a conspicuous component of Devon I s l a n d a s s o c i a t i o n s . While the complete c l u s t e r of order c h a r a c t e r i s t i c s p e c i e s are not pr e s e n t , there are p r e s e n t many e c o l o g i c a l e q u i v a l e n t s and common genera. T h i s o r d e r has r e c e n t l y been u t i l i z e d by Lambert and K r a j i n a ( 1 9 6 8 ) i n grouping two low a r c t i c a l l i a n c e s , the C a r i c l o n a q u a t i l l s and E r i p h o r i o n a n g u s t l f o l i i . A comparison l e a v e s l i t t l e q u e s t i o n t h a t the C a r i c l o n communities of Devon are f l o r i s t i c a l l y and e n v i r o n m e n t a l l y r e l a t e d t o Lambert's mire communities i n the western r e g i o n of a r c t i c Canada. S i n c e t h i s i s the case the C a r i c l o n a s s o c i a t i o n s of Devon I s l a n d are a l s o p l a c e d i n the order C a r l c e t a l i a f u s c a e . One a l l i a n c e i s r e c o g n i z e d : the C a r i c l o n a q u a t i l l s . 1 5 4 5 . C a r l c l o n a q u a t l l l s (Ca) Lambert and K r a j i n a ( 1 9 6 8 ) As one moves from the low a r c t i c n o r t h i n t o the h i g h a r c t i c r e g i o n s Carex a q u a t l l l s i s g r a d u a l l y r e p l a c e d by Carex s t a n s . The taxonomic s t a t u s of these two e n t i t i e s i s somewhat u n s e t t l e d . H u l t e n ( 1 9 6 8 ) and P o l u n i n ( 1 9 5 9 ) c o n s i d e r the l a t t e r merely a s u b s p e c i e s of the low a r c t i c p l a n t . P.orsild ( 1 9 6 4 ) , however, t r e a t s i s as a "good" s p e c i e s , c h a r a c t e r i s t i c of the h i g h a r c t i c r e g i o n s . R e g a r d l e s s of I t s e v e n t u a l taxonomic p o s i -t i o n i t i s c l e a r t h a t each f i l l s a s i m i l a r n i c h e i n the semi-t e r r e s t r i a l wet meadow communities of the Canadian a r c t i c . The C a r l c l o n a q u a t l l l s a l l i a n c e has been d e s c r i b e d by Lambert ( 1 9 6 8 ) i n the low a r c t i c s u b a l p i n e zone of Western Canada. The dominance of Carex a q u a t l l l s and i t s c o n s i s t e n t l y h i g h constancy v a l u e s are Important f e a t u r e s l n the c h a r a c t e r i -z a t i o n of the a l l i a n c e . C h a r a c t e r i s t i c s p e c i e s however remain to be d e f i n e d and i t i s probably unwise to s p e c u l a t e on these u n t i l many more a s s o c i a t i o n s of t h i s a l l i a n c e are d e s c r i b e d i n d e t a i l from the f i e l d . Lambert's C a r l c l o n a q u a t l l l s covers l a r g e areas of former lake beds and drainage pathways, a landscape p o s i t i o n not u n l i k e the C a r l c l o n communities found on Devon I s l a n d . While d e t a i l e d r e l e v e s are l a c k i n g from o t h e r a r c h i p e l a g o l o c a t i o n s i t i s apparent l n the f l o r i s t i c works now a v a i l a b l e t h a t the nature of the C a r l c l o n communities as d e s c r i b e d i n t h i s study are r e p e a t e d i n o t h e r l o c a t i o n s . S t r i k i n g l y s i m i l a r are B r a s s a r d ' s d e s c r i p t i o n s of " f l a t wetland" h a b i t a t s a t Tanquary F i o r d on n o r t h - c e n t r a l E l l e s m e r e I s l a n d ( 1 9 6 8 ) . Here wetland 1 5 5 communities dominated by Carex stans are found over e x t e n s i v e areas and B r a s s a r d ' s l i s t of a s s o c i a t e d s p e c i e s r e s t r i c t e d to these h a b i t a t s w i l l be shown to be remarkably s i m i l a r to those o f the Devon communities. One a s s o c i a t i o n of the a l l i a n c e Is r e c o g n i z e d on Devon I s l a n d , the Caricetum s t a n t i s , which i s s u b d i v i d e d i n t o the s u b a s s o c i a t i o n s c aricetosum s t a n t i s and c a r i c e t o s u m membranacei. ( 7 ) Caricetum s t a n t i s (Cs) B a r r e t t and K r a j i n a F i g s . 4 8 - 6 0 Tab. 3 6 - 38 The Caricetum s t a n t i s i s perhaps the most Important g e o c o e n o t i c u n i t of the c o a s t a l lowland system. I t dominates the landscape and thus i s r e s p o n s i b l e more than any o t h e r c o e n o s i s f o r the c h a r a c t e r of lowland system as a whole. I t s g e n e s i s Is i n t i m a t e l y r e l a t e d to post g l a c i a l emergence and f o r m a t i o n of the r a i s e d beach systems noted e a r l i e r . As beaches were s u c c e s s i v e l y formed and I s o l a t e d , t h e r e were l e f t on the backslopes l a r g e lagoons and a s s o c i a t e d o u t l e t channels. F i g . 48. shows such a r e c e n t l y formed system a t the p r e s e n t s h o r e l i n e on the western border of the lowland. With time these areas p r o v i d e d the f r e s h water ponds and h y d r l c h a b i t a t s now occupied by the Caricetum s t a n t i s . Only one s p e c i e s o f v a s c u l a r p l a n t p r e s e n t l y found on the lowland a c t i v e l y invades e x t a n t ponds or r e c e n t l y d r a i n e d pond s i t e s , t h i s i s Carex s t a n s , the dominant s p e c i e s of the u n i t . Due to shallow depths of a c t i v e l a y e r f o r m a t i o n the c o l l e c -t i o n of r e p r e s e n t a t i v e pebble samples from p l o t l o c a t i o n s was h i n d e r e d . Where thaw depth d i d a l l o w the exposure of subsurface 156 rock fragments, the u n d e r l y i n g m a t e r i a l appeared to be predomi-n a n t l y dolomite. The Caricetum s t a n t i s i s dominated completely by bryophytes and v a s c u l a r p l a n t s . F l o r i s t i c d i f f e r e n t i a t i o n of two s u b u n i t s i s r e c o g n i z e d and each Is a s s i g n e d the s t a t u s of a s u b a s s o c l a -t i o n a f t e r the system of Braun-Blanquet. V a s c u l a r p l a n t s which u n i t e the C a r l c e t u m s t a n t i s are Carex stans the a b s o l u t e domi-nant, Erlophorum a n g u s t l f o l l u m , P e d i c u l a r i s s u d e t l c a , and S a x i f r a g a h i r c u l u s . Bryophytes are C l n c l l d l u m a r c t l c u m and Meesla t r i f a r l a ( T a b . 43). S u b a s s o c i a t i o n caricetosum s t a n t i s (Cs - cs) T h i s s u b a s s o c i a t i o n r e p r e s e n t s the most h y d r i c t e r r e s t r i a l u n i t i n the lowlands. I t s a r e a l coverage on the landscape i s l i m i t e d . I t . i s found e i t h e r a t the margins of ponds and l a k e s ( p l o t s 27 and 28) or immediately below o u t l e t channels where s e a s o n a l melt water passes through r a i s e d beach areas ( p l o t s 37f 6 5 , 6 7 ) . These l o c a t i o n s are covered w i t h water even dur-in g the d r i e s t summers evidenced. The ground s u r f a c e i s f l a t w i t h no evidence of m i c r o r e l i e f or p a t t e r n e d ground f e a t u r e s ( F i g . 4 9 ) . F l o r i s t l c a l l y the u n i t i s the p o o r e s t i n s p e c i e s d i v e r s i t y of any here c o n s i d e r e d (Tab. 3 6 ) . The v e g e t a t i o n i s dominated by o n l y 6 s p e c i e s , 5 of which are bryophytes. Carex stans dominates the herbaceous s t r a t a w i t h an average s p e c i e s s i g n i -f i c a n c e of 7.4 ( 5 0 - 7 5 percent c o v e r ) . S a x i f r a g a cernua i s a c h a r a c t e r i s t i c s p e c i e s of the s u b a s s o c i a t i o n . 1 5 7 Table 3 6 Caricetum stantis PLOT HO. DATE ANALYSED HERBACOUS COVER # MOSS COVER # LICHEN COVER f> TOTAL SPECIES NO. PLOT SIZE PRESUMED CHARACTERISTIC COMBINATION OF SPECIES -ASSOCIATION-Saxifraga hirculus Pedicularis sudetica Carex stans Eriophoruo angustifolium Cinclidium arcticum Meesia t r i f a r i a -SUBASSOCIATION-Saxifraga cernua Calliergon giganteum OTHER SPECIES Salix a r c t i c a Eriophorum scheuchzeri Polygonum viviparum Arctagrostis l a t i f o l i a Cardamine pratensis Hippuris vulgaris S t e l l a r i a longipes Ranunculus hyperboreus Carex amblyorhyncha Saxifraga f o l i o l o s a Dupontia f i s h e r i Pleuropogon sabinei Juncus biglumis Hierochloe pauciflora Carex merabranacea Alopecurus alpinus Cerastium r e g e l i i Kobresia sirr.pliciuscula Drepanocladus revolvens Mnium hymenophylloides Campylium stellatum Orthotheciura chryseua Splachnum vasculosum Tiraraia austriaca Haplodon wornskjoldii Ditrichum f l e x i c a u l e Aneura pinguis Lojhozia rutheana Subass. - caricetosum stantis 27 28 37 65 67 8/ V 6 7 8/4/67 8/2V67 8/10/68 8/12/68 85 75 85 50 70 95 95 95 95 95 » # • • • 15 23 2 19 19 (AVE. SPECIES) PRESENCE SIGNIFICANCE 2 2 3 3 3 V 2.6 1 1 1 • + V 0.7 7 7 8 7 8 V 7.4 4 4 2 1 V 2.2 5 5 5 4 V 4.6 3 8 7 IV 3.6 1 + 3 3 V 1.5 7 7 8 6 6 V 6.8 2 2 2 2 3 V 2.2 1 2 2 2 + V 1.5 . 1 1 . + 3 V 1.1 m 4 1 IV 1.3 1 2 III 0.6 1 III 0.6 # 1 + III 0.3 + III 0.3 # # # II 0.6 m 2 m II 0.4 2 II 0.4 2 II 0.4 m 1 II 0.2 # 1 II 0.2 # • 1 II 0.2 # + II 0.1 # + II 0.1 + • • • • II 0.1 7 7 7 4 6 V 6 .2 5 6 4 3 5 V 4.6 1 1 3 1 3 V 1.8 3 + III 0.7 # i II 0.2 + II 0.1 + II 0.1 m + II 0.1 + II 0.1 • + II 0.1 The major plant biomass i s composed of bryophytes. A nearly s o l i d mat of moss cover l i e s beneath the herbaceous layer, the bulk of which i s composed of only f i v e species. V e r t i c a l l y the mat changes from a surface l a y e r of l i v e material to a dark layer of undecomposed moss which grades into the organic s o i l surface. The depth of t h i s mat appears variable at any single l o c a l i t y . The deepest single mat measured was at p l o t 37 where a melt stream channel exposed the v e r t i c a l p r o f i l e of the mat to the base of the streambed. Here measure-ments of 13 inches of undecomposed mosses were noted and i t i s suspected that t h i s may be deeper l n some loca t i o n s . The p r i n c i p a l species of the bryophyte s t r a t a are Drepanocladus revolvens, Cinclldlum arcticum, Meesia t r l f a r l a , C a l l l e r g o n glganteum and Mnium hymenophylloldes. C a l l l e r g o n  glganteum Is a c h a r a c t e r i s t i c of the subassociation. As was mentioned previously, three of these genera are order charac-t e r i s t i c species i n European c l a s s i f i c a t i o n l i s t i n g s . As i s expected from surface conditions, both rate and depth of thaw of the active layer are reduced i n r e l a t i o n to the mesic units previously described ( F i g . 5 D « T o t a l thaw depth never exceeded 12 inches i n f i v e s i t e s where s o i l excavations were made and on one plot ( 3 7 ) where premafrost probes were located during both 1 9 6 8 and 1 9 6 9 , thawing did not exceed 10 Inches. Subassociation caricetosum membranacel (Cs - cm) The caricetosum membranacel i s the most commonly encountered subassociation of the Caricetum s t a n t i s . I t i s immediately 159 Table 3 7 Caricetum s t a n t i s c a r i c e t o s u m membranacei PLOT NO. DATE ANALYSED HERBACOUS COVER % MOSS COVER * LICHEN COVER % TOTAL SPECIES NO. PLOT SIZE PRESUMED CHARACTERISTIC COMBINATION OF SPECIES -ASSOCIATION-23 59 60 61 62 63 7 / 2 V 6 7 8/6/68 8/10/68 8/8/68 8/8/68 8/10/68 75 85 75 80 75 75 75 75 60 55 60 62 «il «»1 <1 1 ol <\ 2* 30 27 5* 2 43 27 73 8/20/68 60 35 -*1 27 »SUBASSOCIATION-. Carex membranacea Equisetum variegatum Melandriura apetalum Orthotheciura chryseum Catoacopiura n i g r i t u m Tonenthypnum n i t e n s Pogonatura alpinum Aulacomnium turgidum OTHER SPECIES S a l i x a r c t r i c a Polygonum v i v i p a r u m Carex mi3andra A r c t a g r o e t i s l a t i f o l i a Draba l a c t e a P e d i c u l a r i s h i r s u t a Dryas i n t e g r i f o l i a Eriophorum s c h e u c h z e r i Juncus b i g l u n i s S a x i f r a g a f o l i o l o s a S a x i f r a g a o p p o s i t i f o l i a S t e l l a r i a l o n g i p e s Eriophorum t r i s t e L u z u l a a r c t i c a Dupontia f i s h e r i P e d i c u l a r i s c a p i t a t e Cerastiuni r e g e l i i M i n u a r t i a r o s s i i Equisetum arvense B r a y a purpurascens Cardamine b e l l i d i f o l i a S a x i f r a g a cernua H i e r o c h l o e p a u c i f l o r a Eutrema e d w a r d s i i Drepanocladus r e v o l v e n s Hnium bymenophylloide3 Campylium s t e l l a t u m C a l l i e r g o n giganteum D i t r i c h u m f l e x i c a u l e D i a t l c h i u m c a p i l l a c e u m Aneura p i n g u i s P b i l o n o t i s f o n t a n a Oticophorus w a h l e n t o r g i i Haplodon v o r m s k j o l d i i T e t r a p l o d o n mnioides C a l l i e r g o n t r i f a r i u m Meaoptychia s e h l b e r g i i M y u r e l l a t e n e r r i m a M y u r e l l a j u l a c e a T o r t u l a r u r a l i e B r a c h y t h e c i u a a l b i c a n s Bracfcythecium turgidum Blcpharostoma t r i c h o p h y l l u m P o h l i a c r u d a l a n t h o r i a elegans C l a d o n i a p y x i d a t a L e c a n o r a e p i b r y o n (AVE. PRESENCE SPECIES) SIGNIFICANCE Carex stans 5 8 7 7 8 8 5 V 6.8 S a x i f r a g a h i r c u l u s 1 2 2 2 2 , 2 2 V 1.8 P e d i c u l a r i s s u d e t i c a 2 2 2 2 2 2 2 V 2.0 Eriophorum a n g u s t i f o l i u m 3 2 1 • 2 4 rv 1.7 C i n c l i d i u m a r c t i c u m 3 6 4 4 3 3 V 3.9 Meeaia t r i f a r i a 3 4 4 4 5 4 4 V 4.0 5 5 4 5 ? 4 5 V 4.1 2 1 2 1 2 3 3 V 2.3 + •# 1 + 1 1 . IV 0.6 6 6 5 5 5 4 5 V 5.1 + 4 4 4 4 4 4 V 3.5 3 4 3 1 4 4 V 2.7 2 2 3 3 2 2 V 2.0 • • 2 3 2 2 • IV 1.3 4 4 4 4 4 4 5 V 4.1 2 3 2 1 2 3 3 V 2.3 2 1 3 1 3 3 V 1.8 4 2 2 1 3 1 V 1.8 1 + 1 + 2 . rv 0.9 1 1 + 1 1 IV 0.6 1 3 3 2 i n 1.3 • 2 2 1 i n 0.7 2 1 + i n 0.6 2 1 + i n 0.5 . + 1 i n 0.3 + + + a i n 0.2 3 1 . i i 0.6 1 1 i i 0.3 1 • II 0.3 . 1 II 0.3 1 II 0.2 . + I I 0.1 2 • i 0.3 1 # • i 0.1 1 • i 0.1 + • i -• + • i -• • • + • • i -5 5 5 4 5 4 5 V 4.7 3 4 3 3 1 3 3 V 2.9 6 3 3 4 3 rv 2.7 • 2 3 • 2 i n 1.0 - + • • + i i n 0.3 + • • + i i n 0.3 « + • • + B I I 0.1 • • • 3 i 0.4 • • • 3 m i 0.4 • • i 0.3 • • • i i 0.1 • • • 1 i 0.1 • • i i 0.1 • • + i _ • • • + i -• • • • > i _ • • • • m I _ • • + 9 i _ • • + m i _ • + • • • • • • i -+ + + 1 i n 0.4 • • • + • i 0.1 * • • • i 0.1 F i g . 48 Emerging beach ridge on the west coast of the Basecamp lowland. Note lagoon forming on backshore and outlet channel i n the foreground. 160 Cs F i g . 4 9 caricetosum s t a n t i s . Note the f l a t appearance of the surface. Strings show boundaries of p l o t 2 7 (photo Aug. 4 , 1 9 6 7 ) . F i g . 50 caricetosum membranacel (plot 6 3 ) . Note the d i s t i n c t i v e m l c r o r e l l e f as contrasted to the above (photo Aug. 9 , 1 9 6 8 ) . 1 6 1 F i g . 51 Active layer development (inches) with time, caricetosum s t a n t i s ( s i t e not included i n described releves). Above 1968, below 1969. 1 6 3 d i s t i n g u i s h e d from the c a r i c e t o s u m s t a n t i s Tby pronounced micro-r e l i e f s i m i l a r l n p a t t e r n to the " s t r i n g bogs" found developed over the K e l l e t t s o i l s o f northwestern Banks I s l a n d (Tedrow and Douglas 1 9 6 4 ) . These e l e v a t e d hummock-like areas vary e x t e n s i v e l y i n shape and s i z e ( F i g s . 5 0 , 5%» 5 3 ) . Some are rou g h l y h e m i s p h e r i c a l , many are elongate andL form s h o r t low r i d g e - l i k e systems. There appears to be no p a r t i c u l a r d i r e c t i o n i n which these forms l i e . The u n i t i n g e n e r a l i s a h y d r i c one, a l t h o u g h d u r i n g dry seasons the s u r f a c e areas between hummocks may be f r e e from s t a n d i n g water of any a p p r e c i a b l e depth. D u r i n g p e r i o d s o f normal s u r f a c e r u n - o f f and p r e c i p i t a t i o n , t h e r a i s e d areas l i e above the s t a n d i n g water of the d e p r e s s i o n s ((Fig. 5 3 ) * Even l n the d r i e s t years the low p o i n t s are no doiubt s a t u r a t e d f o r a t l e a s t a s h o r t time a f t e r snow melt. The (elevated p o r t i o n s a r e f r e e o f snow e a r l i e r than the d e p r e s s i o n s , p r o v i d i n g both warmer and d r i e r m i c r o s i t e s f o r c o l o n i z a t i o n o f p l a n t s ( F i g . 5 4 ) . T h i s s u r f a c e r e l i e f p a t t e r n i s r e f l e c t e d l n v e g e t a t i o n a n a l y s i s (Tab. 3 7 ) . While t o t a l herbaceous* ©over remains s i m i l a r to the s u b a s s o c i a t i o n c a r i c e t o s u m sfcantls the moss cover decreases s i g n i f i c a n t l y and f r e q u e n t l y a r e a s of raw humus are noted on the s u r f a c e . The s p e c i e s composition a l s o changes markedly. S a x i f r a g a  cernua and C a l l l e r g o n glganteum are reduced I n importance. In most cases a second sedge s p e c i e s , Carex mensibranacea i s found co-dominating w i t h C. s t a n s . In a d d i t i o n a group o f mesic and wet mesic s p e c i e s are now p r e s e n t which were absent o r prese n t o n l y r a r e l y l n the s u b a s s o c i a t i o n c a r i c e t o s u m s t a n t i s . These i n c l u d e Equisetum varlegatum (ver y reduced forms), Melandrlum  apetalum, Carex mlsandra, P e d l c u l a r l s h l r s u t a , Orthotheclum  chryseum. Tomenthypnum n l t e n s , Pogonatum alplnum, Aulacomnlum  turgidum and Catoscopium n l g r l t u m . Other mesic s p e c i e s common to both u n i t s i n c r e a s e t h e i r s i g n i f i c a n c e v a l u e s here, e.g. S a l l x a r c t i c a and Polygonum v l v l p a r u m . Most of these s p e c i e s are found as expected, e i t h e r r e s t r i c t e d t o , or most f r e q u e n t l y on, the e l e v a t e d p o r t i o n s of the landscape where the environment s h i f t s to a warmer and d r i e r s i t u a t i o n . A c t i v e l a y e r development here was measured from both e l e -v a t e d and depressed l o c a t i o n s ( F i g s . 5 5 and 5 6 ) . Superimposing curves o f the s u b a s s o c i a t l o n s c a r i c e t o s u m s t a n t i s and cari c e t o s u m membranacel show n e a r l y I d e n t i c a l thaw r a t e s and depths i n curves from d e p r e s s i o n l o c a t i o n s . Depth o f thaw measured from e l e v a t e d l o c a t i o n s i n c r e a s e s the average thaw depth f o r the u n i t as a whole. S o i l s of the Caricetum s t a n t i s are c l a s s i f i e d i n the Meadow Tundra grouping d e s c r i b e d by Tedrow (Tab. 3 8 ) (Tedrow e t a l . 1 9 5 8 ; Tedrow and C a n t l o n 1 9 5 8 ; Douglas and Tedrow i 9 6 0 ) . The c h i e f pedogenlc process i n v o l v e d i n Tundra s o i l f o r m a t i o n i s low temperature g l e i z a t i o n . S m a l l amounts o f l e a c h i n g g e n e r a l l y produce weakly a c i d i c c o n d i t i o n s a t the s u r f a c e h o r i z o n s a l t h o u g h e x t e n s i v e areas of Tundra s o i l s a re h i g h l y c a l c a r e o u s (Tedrow e t a l . 1 9 5 8 ) . I d e a l i z e d p r o f i l e morphology i n c l u d e s a s u r f a c e h o r i z o n o f dark, p a r t i a l l y h u m i f i e d o r g a n i c matter Table 3 8 Caricetum stantis - S o i l s PLOT NO. DATE SAMPLED DEPTH TO FROZEN MATERIAL (inches) SOIL CLASSIFICATION PHYSICAL/CHEMICAL ANALYSIS Horizon I .depth ( i n c h e s ) 1 color, dry color, wet pH (CaCl,) pH (H ,or carbon % nitrogen % t o t a l P p.p.m. Exchangeable Cations Me/100 gm K Ca Mg Na .22 17.2 9.8 .52 27.7 caricetosum stantis caricetosum membranacei 27 28 37 65 67 8/4/67 8/11/68 8/10/68 8/10/68 8/12/68 12 12 9 9 12 .Meadow Tundra.................... 2 J 59 60 61 62 • 6? 73 8/19/68 8/6/68 8/6/68 8/8/68 8/8/68 8/10/68 8/20/68 13.5 U.5 8 10 14 9 9 • Meadow Tundra • .••••••»•••• 0-6 0-4 0-8.5 0-9 0-12 0-6 0-12 0-8 0-10 0-14 0-9 10YR2/2 10YR3/2 5YR2/2 5YR2/2 5YR2/2 5YR2/2 5YR2/2 5YR2/2 5YR2/2 5YR2/2 5YR2/2 10YR2/1 10YS2/1 5YR2/1 5YR2/1 5YR2/1 5YR2/1 5YR2/1 5YR2/1 5YR2/1 5YR2/1 5YR2/1 5.4 6.7 5.2 5.7 4.4 6.7 5.9 5.0 6.3 6.4 5.0 6.7 7.6 5.9 6.4 4.4 7.6 6.8 5.6 6.8 7 . 5 5 .5 21.2 1 9 . 5 51 .5 15.5 53.0 21.3 23.7 16.0 31.8 50.4 20.2 4.37 6.15 4.80 4 .91 5 .57 3.40 5.02 5.82 5.76 1 .31 4.03 18 6 9 12 12 18 19 16 . 15 22 19 .24 17.6 16.0 .40 54.2 .28 10.6 9.2 .54 20.6 .18 19.2 13.7 .58 35.7 .28 8.2 18.7 1.2 28.4 NM • NM NM NM .16 20.6 13.5 .54 34.8 .28 17.4 9.2 .58 27.5 -.48 19.8 1 3 . 0 .56 33.8 .34 20.2 14.8 .66 36.0 .20 10.5 8.7. .48 19.9 0 - 9 3 5YR2/2 5YR2/1 6 .9 7.2 51 .1 5 . 5 0 25 . 5 1 5 6 . 2 19.8 .46 56.8 (b) 5YR2/2 5YR2/1 5.6 6.1 14.3 2.80 24 .06 18.2 9 . 7 .54 28.5 orizon II C s Cg depth 1 6-12 4-12 color, dry 2.5Y5/2 • 2.5Y5/2 color, wet 5Y4/1 5Y4/1 pH (CaCl ?) 6.5 7 . 3 ' pH (H-,0) 7 . 7 8.0 sand % NM 62.2 s i l t i NM 16.2 clay % NM 21.6 carbon 6.0 5.1 nitrogen 0 . 71 0 .51 P 5 2 Exchangeable Cations K Ca Mg Na Sum .18 7 . 5 5.8 . 1 9 1 5 . 7 . 2 1 7.4 7 . 5 . 2 5 15 .1 Cs Cg Cg Cg Cg Cg 12+ 2-20 0-12 0-8 0-10 0-9+ 2.5Y6/2 2.5Y6/2 5Y5/5 2.5Y5/4 2.5Y4/4 2.5Y6/4 5Y4/1 2.5Y4/2 5Y4/1 5Y4/2 2.5Y4/2 5Y4/1 7.0 7-5 7.5 7.0 6.7 7 . 5 8.0 8.1 7.8 7 . 9 7 . 5 7 . 9 57.4 69.6 75.4 78.2 55.8 45.0 27.0 17.2 14.4 58.6 17.6 5.4 7.4 7.4 5.6 5.0 2.5 5 . 3 1.4 1.1 5.2 0.28 0.12 0 . 0 5 0.10 0 . 1 5 0.12 2 4 0 5 5 2 . 2 0 4 . 3 5-5 . 3 2 1 0 . 3 NM NM NM NM .06 2.2 3.4 . 17 5.8 .06 2.7 3.0 .14 5.9 .04 2 . 1 2 . 1 . 1 5 4.4 .06 3.4 4.8 .14 8.4 Cg 9-12 10YR4/3 5YR2/2 6.5 7.5 NM NM NM 2 . 2 0 . 5 5 0 .06 2.8 2.0 . 15 5.0 'Horizon boundaries i n a l l cases very wavy. In interhummock positions gley materials often were at the siirface. j 'Not sampled as below permafrost table—most l i k e l y present throughout a l l examples of these associations. '(a) S o i l from hummock position, see (b) f o r comparitive s o i l from i n t e r -hummock area. P i g . 5-2 ( L e f t ) Ecotone of the s u b a s s o c i a t i o n s c a r i c e t o s u m s t a n t i s and caricetosum membranacei (photo Aug. 11, 1968). F i g . 53 Hummock and d e p r e s s i o n topography of the s u b a s s o c i a t i o n caricetosum membranacei. Depressions remain s a t u r a t e d throughout the season d u r i n g p e r i o d s of normal r u n - o f f (photo J u l y 19, 1969). 166 F i g . 5 4 E a r l y emergence from the w i n t e r snowpack r e s u l t s i n warmer, d r i e r environments f o r hummocks of the s u b a s s o c i a t i o n c aricetosum membranacel (photo June 2 0 , 19&9)* 1 6 7 F i g * 5 5 A c t i v e l a y e r development a t two l o c a t i o n s o f the s u b a s s o c i a t i o n c a r i c e t o s u m membranacel d u r i n g 19&9- Above p l o t not i n c l u d e d i n a n a l y s i s . Below p l o t 7 3 -T = measurements from 5 probes i n hummock l o c a t i o n s . F = measurements from 5 probes i n d e p r e s s i o n l o c a t i o n s . A = mean of a l l (10) probes. 1 6 8 F i g . 5 6 A c t i v e l a y e r development i n meadow of p l o t 3 7 . s u b a s s o c i a t i o n c a r icetosum s t a n t i s . 30i 20, 1 7 0 o v e r l y i n g g l e y e d subsurface s o i l s of s i l t o r s i l t loam t e x t u r e which are g e n e r a l l y grey o r o l i v e brown i n c o l o r (Tedrow 1 9 6 8 ; Tedrow e t a l . 1 9 5 8 ) . Tundra s o i l s a re d i v i d e d i n t o two subgroups which occupy the extremes of a catena. Upland Tundra s o i l s develop i n the d r i e r p o r t i o n s o f the landscape. As a r e s u l t c o n d i t i o n s f o r o x i d a t i o n are more f a v o r a b l e and s o i l h o r i z o n s are f r e q u e n t l y m o t t l e d o r c o l o r e d h e a v i l y w i t h y e l l o w s or browns. S u r f a c e c o n c e n t r a t i o n s o f o r g a n i c matter are g e n e r a l l y lower here than a t the wetter p o r t i o n s o f the catena. In c o n t r a s t , Meadow Tundra s o i l s occupy the most h y d r i c p o r t i o n s of the catena. Organic accumulation i n s u r f a c e h o r i z o n s i s i i l g h e r . Reducing c o n d i t i o n s i n subsurface h o r i z o n s r e s u l t s i n l i t t l e m o t t l i n g and prominent grey or bl u e - g r e y c o l o r s . A l l but three o f the s o i l s o f the Caricetum s t a n t i s show meadow tundra p r o f i l e s (Tab. 3 8 ) . P l o t s 3 ? » 6 5 and 6 3 l a c k c h a r a c t e r i s t i c u n d e r l y i n g g l e y h o r i z o n s most l i k e l y because they l i e below the a c t i v e l a y e r depths to which sampling was l i m i t e d . I t Is so u n l i k e l y t h a t these t h r e e l o c a t i o n s are f u l l y o r g a n i c s o i l s to depth, t h a t they have been i n c l u d e d i n the Meadow Tundra category. A t a l l l o c a t i o n s the water t a b l e l a y a t or near the s u r f a c e of the ground, making e x c a v a t i o n s of p i t s i m p o s s i b l e . Sampling i n a l l cases was from b l o c k s cut and removed, from the a c t i v e l a y e r . F i g . 57 shows such a b l o c k i n a Meadow Tundra s o i l beneath p l o t 28. 171 A l l surface horizons are high i n carbon and nitrogen and are c l e a r l y humic horizons. Surface reaction i s weakly a c i d i c to a c i d i c , or i n some measurements i n water, neutral. The calcareous nature of the subsurface horizons indicates that bases must be flushed from the surface p e r i o d i c a l l y , probably during spring run-off. The humic horizons of the caricetosum membranacei are variable i n depth ( 6 to 14 inches) and are most deeply developed beneath the hummock-like elevated areas. Figs. 5 8 - 6 0 i l l u s t r a t e the i n t e r a c t i o n that microtopography, vegetation and moisture conditions have on the development of these Meadow Tundra s o i l s . Both samples were taken from p l o t 6 l . One block was taken from the center of a well-developed elevated r i d g e - l i k e l o c a t i o n ( Fig. 5 8 ) , the second from a depression with standing water on the surface (Fig. 5 9 ) . The two blocks are shown i n F i g . 6 0 . Beneath the ridge the humic surface horizon extends to the base of the active layer. In the depression the humic horizon i s merely fragmentary and the gleyed s i l t s of the normal subsurface s o i l s l i e d i r e c t l y beneath the immediate surface. While i n much of the area a more normal horizon sequence i s maintained, t h i s does demonstrate how sharply s o i l types may change i n response to microtopographic and vegetational influences. Comparative physical and chemical analysis from two humic horizons from each l o c a t i o n were also undertaken with samples from p l o t 7 3 (see Tab. 3 8 ) . S o i l s from the depressions were d i s t i n c t l y more a c i d i c , had lower l e v e l s of both carbon and nitrogen, and were lower i n amounts of a l l exchangeable cations. 1 72 Here a s i n g l e s o i l h o r i z o n i s seen to a c q u i r e q u i t e d i s t i n c t i v e p r o p e r t i e s depending upon i t s p o i n t of o r i g i n w i t h the c o e n o s i s . Subsurface h o r i z o n s are a l l l i g h t c o l o r e d and f i n e t e x t u r e d . Mechanical a n a l y s i s (Tab. 38) i n d i c a t e s h i g h percentages of s i l t and lower, but s i g n i f i c a n t , percentages of c l a y . Both subsurface s o i l s from the c a r i c e t o s u m s t a n t i s were grey w i t h no evidence of m o t t l i n g . S o i l s from the c a r i c e t o s u m membranacel, however, showed s l i g h t l y d arker c o l o r s (compare P i g s . 57 and 6 0 ) . S l i g h t m o t t l i n g was o c c a s i o n a l l y evidenced, b e i n g r e s t r i c t e d p r i m a r i l y to r o o t channels. No a c t i v e c o n g e l i t u r b a t i o n was apparent i n any l o c a t i o n . S o i l temperatures show these s o i l s to be one of the c o l d e s t of those measured (Tab. 44). A t depths of o n l y nine inches, s o i l s may remain f r o z e n u n t i l mid-August and d u r i n g some seasons may remain c o n t i n u a l l y f r o z e n . No thawing was r e c o r d e d a t 1 5 inches i n 1 9 6 8 or 19&9 measurements. S o i l temperatures a t the 1 i n c h l e v e l , however, are comparable w i t h o t h e r u n i t s . Com-p a r i n g f o r example, I 9 6 9 measurements w i t h the Tetragono -Dryadetum i n t e g r l f o l i a e shows s i m i l a r temperatures a t the 1 i n c h l e v e l from J u l y 4 to August 1 6 and comparison w i t h the Nardino - Dryado - A l e c t o r i e t u m shows o n l y s l i g h t l y c o l d e r s u r f a c e temperatures here. D e s c r i p t i o n s of s i m i l a r s i t u a t i o n s I n d i c a t e t h a t t h i s p hytcgeocoenosls may extend a t l e a s t through o t h e r h i g h a r c t i c l o c a l i t i e s i n Canada and Greenland. In I n g e l f l e l d l a n d , Greenland, Tedrow ( 1 9 6 8 ) d e s c r i b e s a s i n g l e Meadow Tundra s i t e as: Cs - cs F i g . 5 7 G l e y s o l i c Meadow Tundra s o i l o f p l o t 28. Note the b l u e - g r e y c o l o r of the subsurface h o r i z o n s and l a c k of o x i d a t i o n m o t t l e s . 173 Cs - cm F i g s . 58 ( L e f t ) 5 9 . S i t e s of sampling of s o i l b l o c k s shown i n F i g . 6 0 . Note t h a t a p o r t i o n of the hummock system l i e s above the water t a b l e ( F i g . 5Q) w h i l e i n d e p r e s s i o n l o c a t i o n s the water t a b l e l i e s a t the ground s u r f a c e . Note a l s o the v a r i a t i o n s i n herbaceous cover on the s u r f a c e . 1 7 4 Cs - cm F i g . 6 0 S o i l b l o c k s from hummock and d e p r e s s i o n l o c a t i o n s a t p l o t 6 l (see F i g s . 5 8 and 5 9 ) . Compare the r e d d i s h c a s t on t h i s b l o c k w i t h t h a t shown In F i g . 5 7 • 176 S i m i l a r to Upland Tundra s o i l s but... occupying wetter p o s i t i o n s . V e g e t a t i o n c o n s i s t s o f Carex stans and A r c t a g r o s t l s  l a t i f o l i a , w i t h the hummocks c o l o n i z e d Dryas and C l a d o n l a . A s t r i k i n g l y s i m i l a r u n i t i s d e s c r i b e d by B r a s s a r d on E l l e s m e r e I s l a n d : The f l a t permanently wet areas a r e always dominated by sedges, mainly Carex stans and Eriophorum s p e c i e s , and a q u a t i c mosses such as Drepanocladus s p e c i e s and C a l l l e r g o n glganteum...In most of these wet meadows the p l a n t cover i s 100$, w i t h the mosses making up h a l f of the p l a n t cover. Many of the l a r g e r f l a t wetlands have one or more ponds, which do n o t dry out d u r i n g the growing season. The number of s p e c i e s found i n t h i s h a b i t a t i s u s u a l l y r a t h e r low, but s p e c i e s t h a t are p r e s e n t are abundant. Some of the Tanquary a r e a s p e c i e s r e s t r i c t e d to t h i s h a b i t a t are P e d l c u l a r l s s u d e t l c a , Melandrlum apetalum ssp. arctloum, S a x i f r a g a h l r c u l u s v a r . proplnqua, S a x i f r a g a f o l l o l o s a and Juncus  a l b e s c e n s . There can be l i t t l e doubt from the above d e s c r i p t i o n s t h a t t h i s i s I d e n t i c a l to the Caricetum s t a n t i s d e s c r i b e d from Devon I s l a n d . E x t e n s i v e Carex stans meadows are a l s o known to occur on nearby B a t h u r s t I s l a n d (S. MacDonald, p e r s o n a l communication), as w e l l as Banks I s l a n d (V. J . K r a j i n a , p e r s o n a l communication). The importance of these meadows to the lowland ecosystems i s a t prese n t i n a d e q u a t e l y known. Answers t o such important q u e s t i o n s as the growth of p l a n t s l n c o l d wet s o i l s , meadow u t i l i z a t i o n by animal p o p u l a t i o n s and the p h y s i o l o g y of meadow p l a n t s i n extreme environments w i l l no doubt depend on f u r t h e r study of these areas. 1 7 7 I n summary, the s u b a s s o c i a t i o n c a r i c e t o s u m s t a n t i s Is the most widespread phytogeocoenosis of the lowland ecosystem. I t forms In c o l d h y d r l c h a b i t a t s and i t s dominance on the landscape imparts the c h a r a c t e r of a wet graminoid meadow to the lowland system i n g e n e r a l . Two s u b a s s o c i a t l o n s (sensu Braun-Blanquet) are r e c o g n i z e d : the c aricetosum s t a n t i s and the c a r i c e t o s u m membranacei. The former i s the more h y d r i c s u b u n i t , o c c u r r i n g a t pond margins and o u t l e t channels or r u n - o f f streams; environments which are p r e d i c t a b l y s a t u r a t e d . The v e g e t a t i o n i s dominated by o n l y s i x s p e c i e s , Carex stans, C l n c l l d i u m a r c t l c u m , Meesla t r l f a r i a , Drepanocladus r e v o l v e n s and Mnium hymenophylloides. The l a t t e r s u b u n i t occurs where d i s t i n c t i v e m i c r o r e l i e f i n the form of e l e v a t e d hummocks and r i d g e s p r o v i d e f o r c o l o n i -z a t i o n of more mesic s p e c i e s . Carex membranacea co-dominates w i t h Carex s t a n s . The Caricetum s t a n t i s o ccurs p r e d i c t a b l y over g l e y s o l l c Meadow Tundra s o i l s . A c t i v e l a y e r development here i s slow and thaw depths shallow. No I n d i c a t i o n of I n t e n s i v e c o n g e l l t u r b a -t i o n was noted a t any s i t e . I t appears from the l i t e r a t u r e t h a t t h i s c o e n o s i s may occur i n o t h e r h i g h a r c t i c l o c a t i o n s In both N o r t h America and Greenland. The importance of these c o l d meadows to the biome has y e t to be e v a l u a t e d . 1 ? 8 VI. P e t a s i t e t a l i a f r i g i d i (Pf) Lambert and K r a j i n a T h i s o r d e r was d e s c r i b e d , w i t h q u a l i f i c a t i o n s , f o r the f i r s t time by Lambert and K r a j i n a ( 1 9 6 8 ) i n the Low A r c t i c . The u n i t groups together h i s S a l i c e t u m p u l c h r a e and S a l i c e t u m chamissonis a s s o c i a t i o n s which i n t u r n belong to the s i n g l e a l l i a n c e E q u i s e t o - P e t a s i t i o n f r l g l d l . That the o r d e r i s v a r i a b l e i s apparent from Lambert's comments / s i x v a r i a t i o n s of the S a l i c e t u m chamissonis are recognized . 7 . As more i n f o r -mation becomes a v a i l a b l e i t i s u n l i k e l y t h a t t h i s o r d e r w i l l remain so heterogeneous. A t p r e s e n t however there remains no d e s c r i b e d c o u n t e r p a r t i n the European or A s i a n r e g i o n s and there e x i s t c e r t a i n common f e a t u r e s which f o r the p r e s e n t w i l l serve to u n i t e v a r i o u s communities d e s c r i b e d w i t h i n the o r d e r . In the Canadian Western Low A r c t i c the o r d e r i s chlono-p h i l o u s and of l i m i t e d d i s t r i b u t i o n . One s p e c i e s w i t h h i g h constancy which u n i t e s Lambert's two S a l i c e t u m a s s o c i a t i o n s l n t h i s o r d e r Is A r c t a g r o s t l s l a t l f o l i a (Constancy V and IV throughout both a s s o c i a t i o n s ) . One r e l e v e of the S a l i c e t u m chamissonis i s so dominated by t h i s g r a s s t h a t Lambert has s e p a r a t e d i t out as a v a r i a n t ( a r c t a g r o s t i d o s u m l a t i f o l i a e ) . T h i s v a r i a n t i s r e p o r t e d as b e i n g not as l a t e thawing as the nodal s a l i c o s u m chamissonis (snow cover estimated to be gone about one month e a r l i e r ) , d e v e l o p i n g over f i n e - t e x t u r e d s o i l s s t r a t i f i e d by wind-blown s e d i m e n t a t i o n and having a moisture regime which i s wet but never f u l l y waterlogged as i n the t r u e s e m i - t e r r e s t r i a l communities. The above three c o n d i t i o n s are 1 7 9 s t r i k i n g l y s i m i l a r to the A r c t a g r o s t l s dominated meadow com-mu n i t i e s o f the p r e s e n t study as w i l l be shown f u r t h e r on. For these reasons then we have t e n t a t i v e l y p l a c e d the A r c t a g r o s t l s -S a l l x dominated meadow communities i n t o the P e t a s i t e t a l i a f r i g i d ! . One a l l i a n c e i s r e c o g n i z e d on Devon: A r c t a g r o s t i d i o n l a t i f o l i a e . 6. A r c t a g r o s t i d i o n l a t i f o l i a e ( A l ) B a r r e t t and K r a j i n a A r c t a g r o s t l s l a t l f o l l a i s a s t o l o n i f e r o u s grass which i s u b i q u i t o u s i n meadow v e g e t a t i o n and f u l l y c l r c u m p o l a r i n d i s -t r i b u t i o n ( P o r s i l d 1 9 5 7 ; P o l u n i n 1 9 5 9 )• As mentioned p r e v i o u s l y i t i s an important element of d e s c r i b e d communities from the western low a r c t i c . P o l u n i n ( 1 9 4 8 ) mentions i t as a component of n e a r l y every meadow community examined i n the Canadian e a s t e r n a r c t i c , p a r t i c u l a r l y m a r s h - l i k e sedge meadows and the more mesic h i g h centered icewedge polygons. A r c t a g r o s t l s  l a t l f o l l a i s a l s o an important component of a t l e a s t two a s s o c i a -t i o n s i n the Devon I s l a n d lowland a r e a . Because of the d i s t i n c t i v e importance of t h i s s p e c i e s i n a t l e a s t three A r c t a g r o s t l s - S a l l x dominated a s s o c i a t i o n s now d e s c r i b e d from the North American a r c t i c and because of the environmental s i m i l a r i t y between these, a new order i s here o t e n t a t i v e l y proposed, the a r c t a g r o s t i d i o n l a t i f o l i a e . A ch o i c e of c h a r a c t e r i s t i c s p e c i e s of the order must be d e f e r r e d u n t i l more da t a are r e c e i v e d on the p h y t o s o c l o l o g y of a r c t i c meadow communities. 180 One a s s o c i a t i o n of the a l l i a n c e i s r e c o g n i z e d l n the study area: E r l o p h o r o - S a l i c o - A r c t a g r o s t l d e t u m l a t i f o l i a e (8) E r i o p h o r o - S a l i c o - A r c t a g r o s t l d e t u m l a t i f o l i a e (E - S -A l ) B a r r e t t and K r a j i n a F i g s . 6 1 - 6k Tab. 3 9 - 40 The E r l o p h o r o - S a l i c o - A r c t a g r o s t l d e t u m l a t i f o l i a e g e n e r a l l y o c c u r s as s m a l l mosaic patches among the Caricetum s t a n t i s . The e c o t o n a l boundaries are d i s t i n c t i v e s i n c e the p u r p l e c o l o r a t i o n of the dominant A r c t a g r o s t l s c o n t r a s t s s h a r p l y w i t h the greener Caricetum s t a n t i s meadows ( F i g . 6 l ) . While a h y d r l c u n i t , the s u r f a c e here i s o f t e n not s a t u r a t e d , a s i t u a -t i o n s i m i l a r to t h a t found i n the Mackenzie D e l t a r e g i o n (Lambert 1 9 6 8 ) . The ground s u r f a c e f r e q u e n t l y shows weakly developed non-sorted c i r c l e s ( F i g s . 6 l and 6 2 ) which occur i n i s o l a t e d spots r a t h e r than forming an e x t e n s i v e p a t t e r n over the u n i t as a whole. The coenosis i s not e x t e n s i v e l y developed i n the lowland system. In a d d i t i o n to the f o u r l o c a l i t i e s s t u d i e d , however, fragmentary u n i t s were f r e q u e n t l y noted as t r a n s i t i o n a l bands d e v e l o p i n g i n mesic l o c a l i t i e s between the Tetragono - Dryadetum of the beach s l o p e s and the h y d r i c Caricetum s t a n t i s . The v e g e t a t i o n o f t h i s u n i t i s most s i m i l a r to t h a t of the Caricetum s t a n t i s . In response to a d r i e r environment, however, the t o t a l bryophyte cover decreases s i g n i f i c a n t l y (Tab. 3 9 ) • V a s c u l a r p l a n t cover, f o r the most p a r t remains h i g h w i t h a n o t a b l e r e v e r s a l i n the s i g n i f i c a n c e v a l u e s o f A r c t a g r o s t l s Table 39 1 8 1 Eriophoro-Salico-Arctagrostidetum l a t i f o l i a e PLOT NO. DATE ANALYSED HERBACOUS COVER % MOSS COVER % LICHEN COVER <f> TOTAL SPECIES NO. PLOT SIZE PROPOSED CHARACTERISTIC COMBINATION OF SPECIES Arctagrostis l a t i f o l i a Eriophorum t r i s t e Eutrema edWardsii Dupontia f i s h e r i OTHER SPECIES Salix arctica Carex misandra Carex stans Polygonum viviparum Dryas i n t e g r i f o l i a Juncus biglumis Saxifraga oppositifolia Pedicularis hirsuta Equisetum variegatum Pedicularis sudetica Carex atrofusca Saxifraga hirculus Hierochloe pauciflora Colpodium vahlianum Equisetum arvense Eriophorum scheuchzeri Poa hartzii Melandrium apetalum Carex rupestris St e l l a r i a longipes Draba alpina Drepanocladus revolvens Campylium stellatum Ditrichum flexicaule Distichium capillaceum Tomethypnua nitens Mnium hymenophyllum Encalypta rhabdocarpa Tortula ruralis Orthothecium chryseum Cinclidium arcticum Hypnum bambergeri Pogonatum alpinum Timmia austriaca Encalypta c i l i a t a Aulacomnium turgidum Didymodon asperifolius Myurella julacea Blepharostoma trichophyllum Aneura pinguis Xanthoria elegans Solorina saccata Mycoblastua sanguinarius Plrcynthium aspratile Cladonia pyxidata Pertuaaria coriacea Tharanolia vermicularis Caloplaca t i r o l i e n s i s 17 7/12/67 80 30 <1 25 18 58 7/13/67 8/3/68 80 85 30 37 <il <\ 29 P 29 lOOm^ 71 8/18/68 55 25 <1 - 28 (AVE. SPECIES) 6 6 7 6>- V 6.2 3 2 5 4 V" 3.5 1 2 3 • IV 1.5 • • 1 III 1.2 5 5 7 5 V 5.5 4 4 3 4 V 3.2 4 3 3 + V 2.6 3 3 3 1 V 2.5 + 1 2 4 V 1.9 1 2 1 3 V 1.7 1 1 1 2 V 1.2 1 1 . 2 + V 1.2 2 2 2 IV 1.5 2 1 • 2 IV 1.2 4 4 • III 2.0 1 2 « m III 0.7 3 m 0 m II 0.7 # II 0.7 2 m II 0.5 m II 0.2 m 1 II 0.2 m + II -II -# + II -• + • - II -5 5 5 5 V 5.0 3 5 3 3 V 3.5 2 2 3 2 V 2.3 2 2 2 2 V 2.0 4 5 IV 3.3 3 1 III 1.0 2 + III 0.6 3 II 0.8 3 II 0.8 3 II 0.8 2 # II 0.5 . 2 II 0.5 1 II 0.3 . 1 II 0.3 1 II 0.3 1 • II 0.3 + . • II 0.1 II 0.1 • • • + II 0.1 1 1 + V 0.9 + + III 0.3 + III 0.1 • 1 II 0.3 1 • • II 0.3 + • II 0.1 • + II 0.1 + • II 0.1 Table 39a 182 Eriophoro - Salico - Arctagrostldetum latifoliae - Soils PLOT NO. DATE SAMPLED DEPTH TO FROZEN MATERIAL (inches) SOIL CLASSIFICATION PHYSICAL/CHEMICAL ANALYSIS Horizon I depth (inches) color, dry color, wet pH (CaClp) PH (H 2 o r carbon % nitrogen % total P p.p.m. Exchangeable Cations Me/lOO gm K Ca Mg Na Sum 17 18 58 71 3/14/68 8/14/68 8/3/68 8/18/68 22 17 11 1 5 H H * H 0-1 0-4 0-1 0-13 0-11 0-1 5YR2/2 5YR2/2 10YR6/3 5YR2/2 5YR2/1 5YR2/1 - 10YR2/3 7 . 5 7.4- 7 . 3 7.2 8.0 7.9 7 .9 7 . 7 26.5 19.4 5.2 21.2 5 . 1 5 3 . 1 7 0 . 5 8 3 . 5 3 17 16 3 18 .38 .20 .18 . 2 7 19.1 19.1 7.2 18.8 14.4 7.6 5 . 7 15.4 . 9 5 . 5 8 .16 .42 34.8 27.5 13.2 3 4 . 9 Horizon II depth color, dry-color, wet pH (CaClp) pH (H 2 0) sand # s i l t % clay % carbon nitrogen P Exchangeable Cations K Ca Mg Na Sum Cg 0-22 2.5Y6/4 2.5Y4/4 7.6 8.4 46.0 40.2 13.8 3.4 .07 3 .20 6.1 3.5 .22 10.0 Cg 0-17 5Y7/3 5Y6/3 7.7 8.1 48.4 33.2 18.4 4.3 .08 4 . 1 7 9.4 2 . 5 . 2 1 1 2 . 3 intrusion 2.5Y5/2 5Y4/1 7.4 8.2 5 2 . 0 19.2 28.8 3.2 0 . 5 2 .26 8.9 3 . 5 .16 12.8 Cg 1-15 2.5Y6/4 2.5Y4/4 7 . 5 8 . 2 51.6 36.4 1 2 . 0 4.4 . 0 7 7 . 1 3 5.9 2.6 . 1 7 8.8 Horizon III Np Np Np A^  depth 10-14 color, dry 10YR3/1 color, wet pH (CaClp) 6.6 pH (H 2 o r 7.5 carbon - 22.4 nitrogen 2.46 Exchangeable Cations * '.17 Ca 14.5 MS 16.6 Na # 5 6 Sum 31.8 *See text for explanation. l a t l f o l l a and Carex s t a n s . Two v a s c u l a r s p e c i e s which appear to be p r e f e r e n t i a l to t h i s u n i t have been u t i l i z e d as charac-t e r i s t i c s p e c i e s : Eutrema e d w a r d s l l and Eriophorum t r i s t e . P o r s i l d ' s ( 1 9 5 7 ) d e s c r i p t i o n of the h a b i t a t p r e f e r e n c e of the l a t t e r s p e c i e s c o n t r a s t e d with those of E. a n g u s t l f o l l u m and E. s c h e u c h z e r l c o n f i r m i t s apparent s e g r e g a t i o n i n the lowland coenoses. Notable here are a number of graminoids. In a d d i t i o n to the dominant A r c t a g r o s t l s l a t l f o l i a ; Dupontia f i s h e r i , Colpodlum  vahllanum, Poa h a r t z l l and H l e r o c h l o e p a u c l f l o r a were found i n c e r t a i n r e l e v e s . The combination of these g r a s s e s w i t h the number of o t h e r monocot genera found here (Carex, Eriophorum, Juncus) are r e s p o n s i b l e f o r the "meadow" nature of the c o e n o s i s . The bryophyte component i s composed of s p e c i e s found i n h y d r i c to mesic coenoses and none i s c h a r a c t e r i s t i c of t h i s u n i t . The few l i c h e n s found here are r e s t r i c t e d mainly to r o c k s found on the s u r f a c e . A l l s o i l s of the c o e n o s i s have been c l a s s i f i e d t e n t a t i v e l y as Upland Tundra s o i l s a l t h o u g h a wide v a r i a t i o n may be seen i n p r o f i l e c h a r a c t e r i s t i c s . P r o f i l e s 58 and 71 show t h i n s u r -f a c e o r g a n i c h o r i z o n s and s u b s u r f a c e c o l o r s mentioned as d i s -t i n c t i v e c h a r a c t e r s of the Upland Tundra g r o u p i n g (Tab. 3 9 a ) . P l o t 58 shows an a s t o n i s h i n g s e r i e s of s u b s u r f a c e o r g a n i c bands ( F i g . 6k). A t l e a s t 12 bands were noted i n the p r o f i l e but sampling of each, without contamination, was i m p o s s i b l e . As a r e s u l t the a n a l y s i s p r e s e n t e d f o r t h i s s o i l r e p r e s e n t s a con-glomerate sample through the e n t i r e p r o f i l e . One s i l t - l i k e 1 8 4 i n t r u s i o n , showing the g r e y i s h c o l o r g e n e r a l l y a s s o c i a t e d w i t h Meadow Tundra s o i l s , was a l s o noted and sampled s e p a r a t e l y ( F i g . 6 4 ) . The causes of t h i s p r o f i l e development are unknown but may r e p r e s e n t a l t e r n a t e p e r i o d s of f l o o d i n g d u r i n g i n t e n s i v e f l u v i a l a c t i v i t y . P l o t 7 1 a l s o showed one very d i s t i n c t b u r i e d o r g a n i c h o r i -zon. T h i s was l o c a t e d 10 inches beneath the s u r f a c e and was 4 inches i n t h i c k n e s s . The h o r i z o n was dark b l a c k l n c o l o r but i n a l l o t h e r r e s p e c t s seemed s i m i l a r to the p r e s e n t s u r f a c e s o i l s . P r o f i l e s 1 7 and 18 r e p r e s e n t s o i l s b o r d e r i n g the d i v i s i o n between Upland and Meadow Tundra c a t e g o r i e s . These p r o f i l e s a re v e r y wet on e x c a v a t i o n , but the s u r f a c e of the water t a b l e i s g e n e r a l l y depressed i n comparison w i t h Meadow Tundra s i t e s ( F i g . 6 3 ) . The depth of the s u r f a c e h o r i z o n v a r i e s c o n s i d e r a b l y , p a r t i c u l a r l y a t p r o f i l e 18 (Tab. 3 9 a ) . Subsurface h o r i z o n s , however, show i n t e n s i v e m o t t l i n g to depth and f o r these reasons both s o i l s are c a t e g o r i z e d as Upland Tundra types. S u r f a c e s o i l s are h i g h l n o r g a n i c matter and d i s t i n c t l y b a s i c . No s u r f a c e h o r i z o n f e l l below pH 7 « 7 measured i n water. T h i s c o n t r a s t s to the weak a c i d i f i c a t i o n noted i n the Caricetum s t a n t i s s u r f a c e s o i l s . A l l s u b s u rface s o i l s are b a s i c i n r e a c t i o n and show h i g h percentages of both s i l t and c l a y . P l o t 58 shows, the. h i g h e s t c o n c e n t r a t i o n s of c l a y of any p r o f i l e measured i n the study, and s o i l m a t e r i a l s here are probably the most i n t e n s i v e l y weathered of any i n the lowland. F i g . 6 l The landscape p o s i t i o n of the E r l o p h o r o -S a l i c o - A r c t a g r o s t l d e t u m l a t i f o l i a e . In the background l i e s the greener Caricetum s t a n t i s . Prominent out-c r o p p i n g of Pre-Cambrian m a t e r i a l may be noted beyond. E - S - A l F i g . 62 Weakly developed non-sorted c i r c l e s s c a t t e r e d throughout the c o e n o s i s were found a t a l l s i t e s i n v e s t i g a t e d . Rule on the ground equals 1 meter. E - S - A l Fig« 6 3 Wet s o i l s a t p l o t 18 border between Upland and Meadow Tundra d e s i g n a t i o n . Note the e r r a t i c depth of the s u r f a c e h o r i z o n and d e p r e s s i o n of the water t a b l e . F i g . 6 4 Upland Tundra s o i l a t p l o t 5 8 . Note prominent banding of b u r i e d o r g a n i c h o r i z o n s and grey s i l t i n t r u s i o n to the l e f t . 1 8 8 A c t i v e l a y e r development i s deeper here than i n the more h y d r i c Caricetum s t a n t i s . The r a t e of development was not measured but depth to the f r o z e n l a y e r i n August a t s o i l exca-v a t i o n s i t e s averaged 16 Inches, w i t h a range of between 1 5 and 2 2 i n c h e s . C a l c u l a t e d a v a i l a b l e moisture i s p r e s e n t e d i n Tab. 4 0 , a l t h o u g h i t i s u n l i k e l y t h a t s o i l s here ever f a l l below f i e l d c a p a c i t y i n a l l but the d r i e s t seasons and then o n l y i n r e s t r i c t e d l o c a t i o n s . Table 4 0 C a l c u l a t e d A v a i l a b l e Water - E-S-Al S o i l s M o i sture % by Weight A v a i l a b l e Water P l o t No. H o r i z o n @ 1 / Bar @ 1 5 Bars i1/, - 1 5 ) 17 H 1 3 8 . 6 9 8 . 9 3 9 . 7 Cg 1 6 . 9 3 . 9 1 3 . 0 1 8 H 1 2 1 . 1 9 6 . 7 2 4 . 4 Cg 1 6 . 8 4 . 7 1 2 . 1 5 8 * 2 9 . 7 1 0 . 3 1 9 . 4 i n t r u s i o n 2 5 . 6 1 2 . 5 1 3 . 1 7 1 H 1 3 2 . 7 9 1 . 3 4 1 . 4 Cg 1 4 . 1 3 . 0 1 1 . 1 Ab 8 4 . 0 4 7 . 3 3 6 . 7 In summary, while t h i s c o e n o s i s i s not e x t e n s i v e l y developed i n the lowland system, i t i s an example of the s h i f t i n com-munity s t r u c t u r e which o c c u r s as one approaches the d r i e r p o r t i o n s of the Tundra s o i l catena. The most n o t a b l e are the marked r e d u c t i o n s i n the bryophyte component and the s h i f t from 189 a sedge dominated meadow to one dominated by the g r a s s , A r c t a g r o s t l s l a t l f o l l a . The depth to the water t a b l e i s depressed and thawing of the a c t i v e l a y e r i s deeper. S o i l g e n e s i s tends toward the development of Upland Tundra p r o f i l e s w i t h reduced Organic h o r i z o n s and heavy m o t t l i n g i n the g l e y e d subsurface l a y e r s . P a t t e r n e d ground f e a t u r e s are o n l y weakly developed here but n o n e t h e l e s s are c o n s i s t e n t i n t h e i r presence. B u r l e d o r g a n i c h o r i z o n s o c c u r r e d a t two l o c a t i o n s . The c o e n o s i s Is most c l o s e l y r e l a t e d to the A r c t a g r o s t i d o s u m l a t i f o l i a , a v a r i a n t of the S a l i c e t u m chamissonis d e s c r i b e d from the Mackenzie D e l t a r e g i o n (Lambert 1 9 6 8 ) . 1 9 0 V I I . A r a b l d e t a l i a (AR) Braun-Blanquet ( 1 9 4 8 ) I n both a l p i n e and a r c t i c tundras p l a n t communities may be c l a s s i f i e d a c c o r d i n g to the d u r a t i o n of the o v e r l y i n g snow-pack (Braun-Blanquet 1 9 6 4 ) . Those communities w i t h pronounced a f f i n i t i e s f o r l a t e l y i n g snow areas are termed c h l o n o p h i l o u s . Those areas of open r i d g e tops and o t h e r exposed l o c a t i o n s which are blown f r e e of snow ar e chlonophobic. S t r o n g p o s i t i v e c o r r e l a t i o n between snow cover and s p e c i f i c v e g e t a t i o n has been w e l l documented f o r numerous areas both i n the a r c t i c and a l p i n e r e g i o n s ( G j a e r e v o l l 1 9 5 0 ; Dahl 1 9 5 6 ; B i l l i n g s and B l i s s 1 9 5 9 ; R u n n i n g 1 9 6 5 ; Lambert 1 9 6 8 ) . C h l o n o p h i l o u s communities of the European a l p i n e r e g i o n s have been p l a c e d i n t o three d i s t i n c t i v e o r d e r s and a l l i a n c e s : the A r a b l d i o n c o e r u l e a e of the A r a b l d e t a l i a , the A n d r o s a c l o n a l p i n a e o f the A n d r o s a c e t a l i a a l p l n a e and the S a l l c i o n herbaceae o f the S a l i c e t a l i a herbaceae (Braun-Blanquet 1 9 4 8 ) . Of these the l a t t e r two a l l i a n c e s are a c i d o p h i l o u s (communities - pH 4 . 6 to 6 . 5 ) . Only the A r a b e d i t a l i a are found over c a l c a r e o u s p a r e n t m a t e r i a l s , b e i n g pronounced b a s i p h i l o u s communities. I t i s under these l l t h o l o g l c c o n d i t i o n s t h a t the t r u e l a t e snowbed communities of the Devon lowlands are found. ?. P h i p p s i o n a l g i d a e (Pa) B a r r e t t and K r a j l n a Braun-Blanquet ( 1 9 4 8 ) l i s t s two a s s o c i a t i o n s b e l o n g i n g to the a l l i a n c e A r a b l d i o n c o e r u l e a e ; the Arabidetum c o e r u l e a e and the S a l i c e t u m r e t u s a e - r e t i c u l a t a e . S z a f e r ( 1 9 6 6 ) has a l s o 1 9 1 p l a c e d Into the a l l i a n c e a l a t e snowbed a s s o c i a t i o n from the T a t r a s , the Saxlfragetum p e r d u r a n t l s . T h i s a s s o c i a t i o n i s r e p o r t e d as d e v e l o p i n g over li m e s t o n e , p a r t i c u l a r l y on wet g r a v e l s a t the base of rock f a c e s or on wet rock l e d g e s . A l o o k a t the c h a r a c t e r i s t i c s p e c i e s l i s t s o f the above a s s o c i a t i o n s r e v e a l s the f o l l o w i n g important genera, Bucegla, H u t c h I n s l a , A l c h e m l l l a , V e r o n i c a , Gnaphallum, S a x i f r a g a and S a l i x . Of these o n l y the l a t t e r two a r e important genera i n the Devon a r e a and n e i t h e r are important components of the l a t e snowbed community. Indeed i t i s one of the few communities where S a l l x a r c t l c a i s not a s t r o n g component. Thus while the o r d i n a l c h a r a c t e r s of physiognomy and h a b i t a t are u s e f u l i n c l a s s i f y i n g the h i g h a r c t i c c h i o n o p h i l i c s i t would appear, on f l o r i s t i c grounds, t h a t the a l l i a n c e h e r e t o f o r e u t i l i z e d i s u n s a t i s f a c t o r y s i n c e so few c h a r a c t e r i s t i c genera are p r e s e n t l n the communities which p r e s e n t l y comprise t h i s a l l i a n c e . From the a l p i n e r e g i o n s of n o r t h e r n S c a n d i n a v i a F r i e s ( 1 9 1 3 ) has d e s c r i b e d a l a t e snowbed a s s o c i a t i o n , P h l p p s l a a l g l d a . While mentioned b r i e f l y i n B r aun-Blanquet 1s e a r l y work ( 1932) i t i s not i n c l u d e d i n h i s l a t e r t e x t ( 1 9 6 4 ) . In the Canadian A r c t i c P h l p p s l a Is w e l l known as a p l a n t of l a t e snowbed areas ( P o l u n i n 1 9 4 8 ; P o r s i l d 1 9 6 4 ) . On the Devon I s l a n d lowlands P h l p p s l a Is a l s o c h a r a c t e r i s t i c of the t r u e snowbed community which here, as w i t h o t h e r A r a b l d e t a l i a , develops over f i n e g r a i n e d c a l c a r e o u s s u b s o i l s . S i n c e the snowbed nature of P h l p p s l a a l g l d a i s w e l l known f o r the f a r n o r t h , and the l i t e r a t u r e I n d i c a t e s t h a t w e l l 1 9 2 d e f i n e d communities may e x i s t i n other a r c t i c r e g i o n s , the new a l l i a n c e P h l p p s i o n a l g i d a e i s proposed. One a s s o c i a t i o n i s r e c o g n i z e d on Devon I s l a n d : C a t o s c o p i o - Ranunculo - Phippsletum a l g i d a e . ( 9 ) Catoscopio - Ranunculo - Phippsletum a l g i d a e (C - R - Pa) B a r r e t t and K r a j i n a F i g s . 6 5 - 6 ? Tab. 4 1 - 4 2 The true snowbed environments o f the Devon I s l a n d lowlands are bryophyte dominated communities ( F i g . 6 5 ) . Most are l o c a t e d a t the c o n t a c t between some d i s t i n c t i v e r e l i e f f e a t u r e and a d j a -cent l e v e l topography. In c e r t a i n l o c a t i o n s ( F i g s . 1 and 6 5 ) p e r s i s t e n t snowpack remains through the e n t i r e summer. More o f t e n these areas are n e a r l y f r e e o f snow by l a t e J u l y and enjoy a t l e a s t a s h o r t snow-free p e r i o d d u r i n g the l a t t e r p o r t i o n s of the summer. Due to the d i v e r s e l o c a t i o n s In which l a t e snow beds may p e r s i s t , c o e n o s i s development i s p a r t i c u l a r l y heterogeneous. Areas w i t h l a t e snow melt seldom e x h i b i t r e p e a t i n g c o n s t e l l a -t i o n s o f environmental o r f l o r i s t i c c o n d i t i o n s from one l o c a t i o n to another. One e x c e p t i o n to t h i s i s the c o n t a c t a r e a o f e l e -v a t e d beach r i d g e s and sedge meadows which o c c a s i o n a l l y p r o v i d e l i m i t e d snowbed environments ( F i g s . 6 6 and 6 7 ) . Three such areas are here d e s c r i b e d as the Cat o s c o p i o - Ranunculo -Phippsletum a l g i d a e . These areas are extremely l i m i t e d i n d i s t r i b u t i o n occupying narrow bands or patches i n the above mentioned l o c a t i o n s . Due 1 9 3 to t h i s l i m i t e d d i s t r i b u t i o n , p l o t s i z e here was n e c e s s a r i l y -i r r e g u l a r . D e s p i t e t h e i r fragmentary n a t u r e , the 3 r e l e v e s sampled showed a s u r p r i s i n g f l o r i s t i c and environmental homogeneity which I b e l i e v e j u s t i f i e s t h e i r e s t a b l i s h m e n t as a d i s t i n c t i v e phytogeocoenotic u n i t . Pebble a n a l y s i s from s o i l e x c a v a t i o n s i s p r e s e n t e d i n Tab. 4 l . Dolomite i s the predominant rock type w i t h s m a l l e r amounts o f g r a n i t e and monzonlte p r e s e n t . . I t i s i n t e r e s t i n g t h a t the r a t i o s of dolomite to c r y s t a l l i n e r o c k here are i n t e r m e d i a t e between the Tetragono - Dryadetum I n t e g r i f o l i a e and the Caricetum s t a n t i s , the u n i t s b o r d e r i n g e i t h e r s i d e on the landscape. T a b l e 41 Pebble A n a l y s i s from S o i l P i t s o f the C a t o s c o p l o - Ranunculo - Phlppsietum a l g i d a e P l o t M a t e r i a l P r e s e n t i n Sample (as 8 t h of T o t a l ) 68 6 9 7 0 Dolomite 6 4 5 P i n k G r a n i t e 1 0 . 5 Gabbro 0 . 5 B i o t i t e Quartz Monzonlte 2 3 2 A l l l o c a t i o n s are c o n s i d e r e d h y d r i c environments, being t h o r o u g h l y s a t u r a t e d w i t h melt water throughout the growing season. The c h a r a c t e r i z i n g v a s c u l a r p l a n t s of t h i s u n i t (Tab. 4 2 ) C - R - Pa F i g . 6 5 E l e v a t e d limestone b l o c k s f a c i n g n o r t h near the e a s t e r n margin o f the lowland. T h i s type of r e l i e f and a s p e c t r e s u l t s l n t h i c k w i n t e r snow accumulation which seldom i f ever completely melts (see F i g . 1 ) . T h i s a r e a i s u n d e r l a i n by an almost pure mat of bryophytes (photo J u l y 2 7 , 1 9 6 7 ) . 194 C - R - Pa F i g . 6 6 P l o t 6 9 . Note here, and i n the f i g u r e below, the l i m i t e d e x t e n t o f the c o e n o s i s . Note a l s o the d i s t i n c t i v e l y sharp e c o t o n a l boundary. White o u t l i n e shows p l o t boundaries (photo Aug. 1 7 , 1968). F i g . 6 ? P l o t 7 0 . T h i s shows the t y p i c a l landscape p o s i t i o n o f the c o e n o s i s ; s m a l l areas between r a i s e d beaches ( r i g h t ) and h y d r l c meadows ( l e f t ) (photo Aug. 1 7 , 1 9 6 8 ) . 195 have a l l been noted by P o r s i l d ( 1 9 5 7 ) a s o c c u r r i n g t y p i c a l l y i n s i t e s of l a t e snow melt. P h l p p s i a a l g l d a appears r e s t r i c t e d to these moss dominated s i t e s w i t h i n the lowland. Ranunculus  sulphureus may a l s o be found i n wet streamside l o c a t i o n s or i n moist moss cushions, around the base of e r r a t i c b o u l d e r s . Cerastlum r e g e l i l occurs as the p u l v i n a t e form, d e s c r i b e d by P o r s i l d ( 1 9 5 7 ) from wet c l a y l o c a l i t i e s . I t i s found s p o r a d i -c a l l y i n the Caricetum s t a n t i s as w e l l . Catoscoplum n i g r i t u m the dominating and c h a r a c t e r i s t i c bryophyte of the u n i t i s s u r p r i s i n g i n i t s abundance. Although p r e s e n t In a number of c o l l e c t i o n s from the Canadian a r c t i c ( S c h u s t e r e t . a l . 1 9 5 9 ; Wynne and S t e e r e 1 9 4 3 ; S t e e r e 1 9 5 1 ; Steere 1 9 3 9 ) , S t e e r e has d e s c r i b e d I t as a s p e c i e s found o n l y s p o r a d i c a l l y i n the a r c t i c but dominating more southern b o r e a l and s u b a r c t i c fens (Schuster e t a l . 1 9 5 9 ) . Other s p e c i e s p r e s e n t are those found t y p i c a l l y i n h y d r l c or wet mesic coenoses. Drepanocladus r e v o l v e n s and D l s t l c h l u m  c a p l l l a c e u m compose a s i g n i f i c a n t p o r t i o n of the bryophyte cover. L u z u l a a r c t l c a i s the o n l y v a s c u l a r p l a n t of the com-panion s p e c i e s w i t h an average s i g n i f i c a n c e v a l u e above 2.0. In a l l l o c a t i o n s s t u d i e d , s o i l s showed development of two d i s t i n c t g e n e t i c h o r i z o n s (Tab. 42a). S u r f a c e h o r i z o n s were dark c o l o r e d and n e u t r a l to b a s i c i n r e a c t i o n . Only p l o t 7 0 had an o r g a n i c matter content of over 3 0 $ . Summed va l u e s of exchangeable c a t i o n s are comparable w i t h both those of the h y d r i c Caricetum s t a n t i s and c h l o n o p h i l o u s Tetragono -Dryadetum i n t e g r i f o l i a e . Subsurface m i n e r a l h o r i z o n s are d e c i d e d l y b a s i c . A l l pH v a l u e s are 8.0 or h i g h e r measured In water. P a r t i c l e a n a l y s i s shows these s o i l s are s i m i l a r i n t e x t u r e to the p r e v i o u s l y d e s c r i b e d Meadow Tundra s o i l s o f the Caricetum s t a n t i s . S i g n i -f i c a n t percentages o f s i l t and s m a l l amounts of c l a y a re p r e s e n t . C o l o r s i n the f i e l d appear d a r k e r here however. A l l subsurface h o r i z o n s o f t h i s u n i t r e c o r d hue v a l u e s o f 10 y r w h i l e those o f the Caricetum s t a n t i s a re f o r the most p a r t 5 or 2.5 y. C o l o r change on d r y i n g , however, p o i n t s out the s i m i l a r i t y o f the two subsurface s o i l s . As can be expected l n t h i s environment, a c t i v e l a y e r d e v e l -opment i s shallow (Tab. 42a). A l l s o i l e x c a v a t i o n s reached f r o z e n m a t e r i a l above 12 inches even though a l l were sampled i n mid-August. In summary, snowbed coenoses as a whole are heterogeneous areas i n the lowland depending upon the l o c a t i o n o f the snow-pack. Where r a i s e d beaches abut h y d r i c meadows l i m i t e d snowbed environments are formed. The r e s u l t i n g c o e n o s i s which develops here appears homogeneous enough to j u s t i f y i t s d e s c r i p t i o n as a r e p l i c a t i n g landscape u n i t . These areas are snow f r e e by l a t e J u l y o r e a r l y August but remain s a t u r a t e d w i t h water through the e n t i r e season. The co e n o s i s i s dominated by bryophytes, the t o t a l cover of l i c h e n s and v a s c u l a r s p e c i e s being much reduced. Three v a s c u l a r s p e c i e s which c h a r a c t e r i z e the u n i t are P h l p p s l a a l g l d a . Ranunculus  sulphureus and the p u l v i n a t e form of Cerastlum r e g e l l i . A l l are known to c o l o n i z e areas near l a t e m e l t i n g snow banks l n the n o r t h e r n a r c h i p e l a g o r e g i o n s . The dominating bryophytes, Catoscopium n l g r l t u m and Drepanocladus r e v o l v e n s are a l s o s p e c i e s found t y p i c a l l y i n h y d r i c environments. The u n i t i s b a s i p h i l o u s w i t h s o i l g e n e s i s l e a d i n g to the development o f Meadow Tundra s o i l type. Table 42 199 Catoscopio-Ranunculo-Ptdppsietum algidae P L O T N O . 68 69 70 D A T E A N A L Y S E D 8/16/68 8/16/68 8/17/68 H E R B A C O U S C O V E R % 15 7 20 M O S S C O V E R % 55 75 65 L I C H E N C O V E R % 1 — — A S P E C T N N WNW T O T A L S P E C I E S N O . 36 29 28 PRESUMED CHARACTERISTIC COMBINATION OF SPECIES Phippsia algida Ranunculus sulphureus Cerastium regelii Catoscopium nigritum OTHER SPECIES Luzula arctica Saxifraga cernua Papaver radicatum Carex misandra Eriophorum triste Juncus biglumis Saxifraga hirculus Eutrema edwardsii Saxifraga nivalis Stellaria longipes Minuartia rossii Arctagrostis latlfolia Draba lactea Draba alpina Draba oblongata Cerastium alpinum Saxifraga caespitosa v.unifYra Salix arctica Saxifraga oppositifolia Draba b e l l i i Cardamine bellidifolia Drepanocladus revolvens Distichium capillaceum Orthothecium chryseum Ditrichum flexicax*le Aneura pinguis Campylium stellatum Cinclidium arcticum Tortula ruralis Mnium hymenophylloides Scorpidium turgescens Haplodon wormskjoldii Pogonatum alpinum Campylium polygamum Barbula icmadophila Meesia trifaria Hypnum revolutum Encalypta rbabdocarpa Mnium medium Blepharostoma trichophyllum Cetraria nivalis Thamnolia vermicularis Cladonia pyxidata Lecidea lapicida Lecidea ramulosa Xanthoria elegans 4 3 3 5 4 1 3 6 3 3 1 7 ( A V E . P R E S E N C E V V V V SPECIES) SIGNIFICANCE 3.7 2.3 2.3 6.0 3 2 2 V 2.3 + 2 1 V 1.7 2 1 1 V 1.3 2 + + V 1.0 1 1 1 V 1.0 1 + 1 V 0.8 1 2 • I V 1.0 1 1 I V 0.7 + 1 I V 0.5 + 1 rv 0.5 • + I V 0.3 • 2 I I 0.7 m 1 • I I 0.3 # 1 • I I 0.3 1 I I 0.3 # 1 I I 0.3 # 1 I I . 0.3 + # • I I 0.2 + • I I 0.2 + • I I 0.2 + • • I I 0.2 4 4 4 V 4.0 4 5 2 V 3.6 3 1 4 V 2.6 3 3 2 V 2.6 + 3 2 V 1.8 + + + V 0.5 • 3 3 rv 2.0 3 • 1 I V 1.3 • 1 1 I V 0.6 + + - # I V 0.3 • 3 I I 1.0 2 • I I 0.6 1 • I I 0.3 1 • I I 0.3 • 1 I I 0.3 1 • I I 0.3 • • • I I 0.2 + • I I 0.2 + • • I I 0.2 + + I V 0.3 + + . - rv 0.3 + • I I 0.2 + • I I 0.2 + • I I 0.2 + • • I I 0.2 200 Table 42a Catoscopio-Ranunculo-Phippsietum algidae - Soi l s PLOT NO. DATE SAMPLED DEPTH TO FROZEN MATERIAL (inches) SOIL CLASSIFICATION PHYSICAL/CHEMICAL ANALYSIS v Horizon I depth (inches) color, dry color, wet pH (CaClo) pH (H 20) carbon # nitrogen # t o t a l P p.p.m. Exchangeable Cations Me/100 gm K Ca Mg Na Sum 68 69 70 8/16/68 8/17/68 8/17/68 9 11 11 ........Meadow Tundra. Ah Ah H 0-9 0-5 0-7 5 Y R 2 / 2 5 Y R 2 / 2 7 . 5 Y R 2 / 2 5 Y R 2 / 2 1 0 Y R 2 / 1 1 0 Y R 2 / 1 7 . 0 6.7 7 . 0 7.8 7 . 4 7.7 14.5 17 . 2 2 1 . 2 1.9^ . 5.18 4.07 1 2 7 16 .18 .14 .14 19.8 14 . 5 16.4 15.6 11.9 14. 4 . 5 0 ' . 4 7 . 3 2 3 6 . 0 2 7 . 0 3 1 . 3 Horizon II depth 0-9 5-H 7-11 color, dry 2.5Y6A 2.5Y5/2 10YR6/3 color, wet 10YR4/4 10YR3/1 10YR4/2 pH (CaClp) pH (H 20) 7.4 7.4 7.2 8.1 8.0 8.0 sand # 64.6 70.8 81.4 s i l t # 32.2 24.4 15.6 clay # 3.2 4.8 3.0 carbon 2.0 1.6 1.2 nitrogen 0 . 2 3 0.20 0 . 0 7 P 3 1 0 Exchangeable Cations K Ca Mg Na Sum .12 5.5 5.5 .19 11.3 .16 4.2 4.6 .18 9.1 .06 2.4 '3.7 .42 6.6 2 0 1 C o e f f i c i e n t s o f S i m i l a r i t y and Dendrogram A n a l y s i s The d e s i r a b i l i t y o f n u m e r i c a l l y e x p r e s s i n g the s i m i l a r i t y between i n d i v i d u a l r e l e v e s o f a g i v e n p h y t o s o c i o l o g l c a l study has been w e l l argued by West ( 1 9 6 6 ) . A compa r a t i v e l y simple and e a s i l y v i s u a l i z e d method of a c h i e v i n g t h i s has been to c a l -c u l a t e s i m i l a r i t y c o e f f i c i e n t s between a l l releve's and express these n u m e r i c a l r e l a t i o n s h i p s g r a p h i c a l l y i n the form o f a dendrogram (West 1 9 6 6 ; Moore e t a l . 1 9 7 0 ) . Numerous formulas have been developed f o r e s t a b l i s h i n g s i m i l a r i t y c o e f f i c i e n t s between v e g e t a t i o n samples (Ceska 1 9 6 8 ) . Recent work by Moore e t a l . ( 1 9 7 0 ) has shown t h a t f i n a l den-drogram form may be i n f l u e n c e d by the choice of formula s e l e c t e d f o r s i m i l a r i t y c a l c u l a t i o n s . A t pr e s e n t , however, t h e r e i s no method o f s e l e c t i n g which formula Is "best" f o r any g i v e n study (Moore e t a l . 1 9 7 0 ) . One formula i n common use i n p h y t o s o c i o -l o g l c a l work Is Sjzfrenson's s i m i l a r i t y c o e f f i c i e n t (S^renson 1948). The formula f o r t h i s c a l c u l a t i o n i s A 2 ™ B x 1 0 0 , where A i s the sum o f a l l measures i n one stand, B the sum o f a l l measures f o r an a l t e r n a t e stand, and W the sum of the lowest measure which i s common to both stands. S i n c e t h i s formula has been p r e v i o u s l y u t i l i z e d i n s i m i l a r s o r t s of v e g e t a t i o n (Dahl 1 9 5 6 ; Lambert 1 9 6 8 ) , i t was chosen f o r use here so t h a t r e s u l t s might be comparable. Values were computed u t i l i z i n g a program d e s c r i b e d by Ream ( 1 9 6 2 ) and m o d i f i e d by Borden ( U n i v e r s i t y o f B r i t i s h Columbia). . When s i m i l a r i t y c o e f f i c i e n t s a re c a l c u l a t e d between a l l releve's they may then be s u b j e c t e d to c l u s t e r a n a l y s i s . T h i s 2 0 2 technique e s s e n t i a l l y scans a matrix of l n t e r - r e l e v e s i m i l a r i t y c o e f f i c i e n t s and s u c c e s s i v e l y l i n k s u n i t s or groups of u n i t s w i t h the m u t a l l y h i g h e s t c o e f f i c i e n t s . T h i s c o n t i n u e s u n t i l a l l u n i t s are j o i n e d a t some l e v e l between 0 and 1 0 0 $ s i m i l a r i t y . One commonly used method f o r c l u s t e r i n g i s the "weighted p a i r group method" of S o k a l and Sneath ( S o k a l and Sneath 1 9 6 3 ; West 1 9 6 6 ; Moore e t a l . 1 9 7 0 ; Lambert I 9 6 8 ) . The n u m e r i c a l r e s u l t s o f t h i s grouping may then be p r e s e n t e d g r a p h i c a l l y i n the form o f a dendrogram (West 1 9 6 6 ; Lambert 1 9 6 8 ; Moore e t a l . 1 9 7 0 ) . Dendrograms c o n s t r u c t e d i n t h i s f a s h i o n from f i e l d d ata on v e g e t a t i o n i n the Devon I s l a n d lowland system are p r e s e n t e d i n F i g s . 68 through 71. In a d d i t i o n to the dendrogram of the t o t a l v e g e t a t i o n matrix ( F i g . 6 8 ) i n d i v i d u a l dendrograms have been c o n s t r u c t e d f o r the l i c h e n , bryophyte and v a s c u l a r p l a n t com-ponents s e p a r a t e l y ( F i g s . 6 9 , 7 0 , 7 1 ) . In each case the v a l u e s u t i l i z e d i n the Sfrfrenson formula were the Domin-Krajina s p e c i e s s i g n i f i c a n c e v a l u e s presented i n the e a r l i e r s y n t h e s i s t a b l e s o f each c o e n o s i s . F i g . 6 8 shows the r e s u l t s a c h i e v e d u t i l i z i n g the e n t i r e v e g e t a t i o n m a t r i x . A l l coenoses c l a s s i f i e d by standard Braun-Blanquet methods have been separated a t the 50$ s i m i l a r i t y v alue and many a t v a l u e s s u b s t a n t i a l l y h i g h e r than t h i s . No s i n g l e p l o t f a l l s o u t s i d e i t s s u b j e c t i v e c o e n o t i c d e s i g n a t i o n and the coherence of the ten e s t a b l i s h e d phytogeocoenoses appears sub-s t a n t i a t e d . The most cohesive u n i t i s the Rhacomitrio - Oxyrlo -Dryadetum i n t e g r l f o l i a e , where a l l 12 sampled stands c l u s t e r above a 7 0 $ s i m i l a r i t y v a l u e . 2CQ A l l h i g h e r l e v e l s of i n t e g r a t i o n l n the c l a s s i f i c a t i o n h i e r a r c h y are s e p a r a t e d a t s l i g h t l y above the k0% s i m i l a r i t y v a l u e . T h i s i s i n t e r p r e t e d as s u p p o r t i n g the proposed a l l i a n c e and o r d e r d e s i g n a t i o n s , p a r t i c u l a r l y the s e p a r a t i o n o f Nardino -Dryado - A l e c t o r i e t u m from the o r d e r D r y a d e t a l i a ( o c t o p e t a l a e -I n t e g r l f o l i a e ) . T h i s u n i t remains u n c l u s t e r e d w i t h a l l o t h e r coenoses u n t i l below a 25% s i m i l a r i t y v a l u e , w h i l e the three p l a n t a s s o c i a t i o n s o f the D r y a d e t a l i a are l i n k e d a t approximately a k2% s i m i l a r i t y ( F i g . 6 8 ) . A broad s e p a r a t i o n a l s o appears a t the 2$% s i m i l a r i t y . The f i r s t u n i t on the dendrogram (N - D - A) i s the o n l y t r u l y x e r i c u n i t s t u d i e d w i t h i n the lowland system. The l a t t e r k u n i t s (Cs - cm, C s - c s , E - S - A l , C - R - Pa) are a l l h y g r i c w h i l e the remaining groups are r e l a t i v e l y mesic. The s e p a r a t i o n o f these three h y g r o t r o p l c groupings has been maintained u n t i l the f i n a l c l u s t e r i n g c y c l e s . One f i n a l p o i n t c o n c e r n i n g F i g . 68 i s worthy of note. The lower numbered r e l e v e s (e.g. 1, 6 and 8) are those e s t a b l i s h e d d u r i n g the i n i t i a l stages o f the study. I t can be seen t h a t these p l o t s are f r e q u e n t l y c l u s t e r e d w i t h i n t h e i r c o e n o s i s a t the lowest s i m i l a r i t y i n d i c e s . I i n t e r p r e t t h i s as a j u s t i f i -c a t i o n of accepted Braun-Blanquet axloma: there i s no s u b s t i -t u t e f o r experience i n f i e l d work. F i g . 69 shows a dendrogram c o n s t r u c t e d u s i n g o n l y v a s c u l a r p l a n t data. Some no t a b l e changes i n dendrogram form are apparent. Here the N - D - A i s l i n k e d to the P - D l and one p l o t (8) Is l i n k e d out of i t s c o e n o t l c grouping. I t i s i n t e r -e s t i n g t h a t t h i s l a t t e r r e l e v e / f e l l s l i g h t l y o f f the c r e s t of a v e r y low r a i s e d beach and f i e l d notes i n d i c a t e i t t e n d i n g toward a more mesic l o c a t i o n on the beach s l o p e . S i m i l a r i t i e s mentioned e a r l i e r between the T - D i and R - 0 - D i u n i t s are expressed most s t r o n g l y i n the v a s c u l a r f l o r a , the two u n i t s b e i n g l i n k e d above 55% s i m i l a r i t y . Of i n t e r e s t a l s o i s the e x c l u s i o n of the snowbed u n i t from a l l but the f i n a l linkage.. I t appears t h a t h y d r i c u n i t s w i t h low f l o r -i s t i c d i v e r s i t y o r s m a l l t o t a l coverage a r e the l e a s t cohesive l n terms of v a s c u l a r f l o r a . F i g . 70 shows dendrogram c o n s t r u c t i o n u t i l i z i n g l i c h e n d ata o n l y . Of I n t e r e s t here i s the segregated l i n k i n g of the two l i c h e n r i c h coenoses (N - D - A and S - R - C t ) . . These two u n i t s are l o c a t e d i n the o n l y environment where e x t e n s i v e r ock exposures are a v a i l a b l e f o r l i c h e n c o l o n i z a t i o n . The f o u r mesic coenoses remaining (T - D i , P - D l , P - L -Sa and R - 0 - D i ) show a number of i n d i v i d u a l p l o t o v e r l a p s between u n i t s (N.B. p l o t s 3 2 , 1 and 6 which a r e a l l l i n k e d w i t h o t h e r coenoses from those assigned) although, as a whole, the p r e v i o u s s u b j e c t i v e g rouping remains r e a s o n a b l y c o h e s i v e . In h y g r i c environments i n d i v i d u a l stands are p a r t i c u l a r l y d i s s i m i -l a r . T h i s i s to be expected s i n c e o n l y fragmentary amounts o f l i c h e n m a t e r i a l are p r e s e n t and the i n c l u s i o n of o n l y one or two s p e c i e s may reduce a s i m i l a r i t y v alue s u b s t a n t i a l l y . Con-s i d e r i n g the diagram as a whole, s i m i l a r i t y decreases from l e f t to r i g h t ( o r x e r i c to h y g r i c ) a c r o s s the dendrogram, a s i t u a t i o n 2 0 5 which c o u l d be expected as one moves from l i c h e n r i c h to l i c h e n poor environments. The bryophyte component of the c o e n o s i s shows a g a i n the h y g r o t o p i c p a r t i t i o n i n g between 3 major c o e n o t l c segments. Here the x e r i c community shows an almost complete d i s s i m i l a r i t y w i t h a l l o t h e r u n i t s . The s u b j e c t i v e c l a s s i f i c a t i o n h i e r a r c h y remains f o r the most p a r t i n t a c t a l t h o u g h some r e l e v e s , a g a i n the heterogeneous i c e wedge polygons, show some i n t e r c o e n o t i c o v e r l a p p i n g . Of p a r t i c u l a r I n t e r e s t i n the h y d r i c grouping i s the s e p a r a t i o n of .the s u b a s s o c i a t l o n s of the Caricetum s t a n t i s . T h i s i s caused by the a d d i t i o n o f a number of bryophytes i n v a d i n g the d r i e r hummock p o r t i o n s of the c o e n o s i s , a p o i n t mentioned p r e v i o u s l y . ON 09 ON vO lOZ 802 2 0 9 5U> in 2 I O I (ft I <" |< I UJ I X r -3" I in O < 1 9 I > 5=7 IH o O O CD o •J3 o O O 8 J.N3N0dW03 31AHd0Ayg-AllWV"llWIS 3AI1V13U Table kj PLoaisTic oirriasMTUTiON or S T U D I E D LOWLAND SXSTEM PEXTOCOENOSES Care* nard1n» Draba B u b c a p l t a t a A l e c t o r i a miauacula A l e c t o r i a c r t a l y b e i f o r a A a A l e c t o r i a o c h r o l t u o a O c h r o l e c h i a u p a a l l a n a l a L e c i d e a a t l g t a t e a j i e r e o c a u l o n r l v u l o r u a C a n d o l a r i a l l a a u r e l l a P e r t u a a r l a aubobducena Gaaalop« t o t r a g o i a C e t r a r l a c u c - j l l a t * C e t r a r l a n l r a l l a A r n e l l l a fer.nlea Gxjrrla digyna R h a c o a l t r i ' j s h e t a r o a t l c h u a v a r . a u d e t l c u a Lecanora verrucoaa 8 10 12 15 10 50 51 53 9* 57 66 29 JO 31 33 3* 46 5* 61 <»3 W* " 5 <•? 46 >*9 55 9> 64 72 6 39 M *1 *2 8! Ca - ca Ca - oa 23 59 60 61 62 63 73 27 26 37 65 67 3 2 2 2 2 1 3 1 3 3 k t 3 4 i» it 6 5 5 5 4 5 1 * 4 J> - L - A * 1 3 7 20 21 22 32 K - 3 - Al 17 19 5« 71 1 • 1 • • 1 3 1 3 1 1 3 - H - Ct 24 25 26 y* 83 8*» 6 5 8 6 87 1 C - H - Pa I 89 90 68 69 7 0 7 7 6 7 6 6 7 5 5 * 3 3 3 3 Caret atana 3ailfr»fa h l r c u l . a P e d i c u l a r l a s u d e t l e a E r l o p h o r u a »n<j^»tlfollua C l n c L l J l u i a r e t i e u a Meeal* t r l f a r l a Care 1 xestiranacea i q 11* t u t va.'laqatua f W a n d r l u a a p e t a l u * Cfthotnecl - J3 chryae-jn C * i c e c o p l u x n l f t r l t u a l o s'r.tnjpnua nlter.a ropon«tua alplnum *u]aeoanlu= t u r a l d u a C a l l l e r a o n glgantaua S a i l * a r c t l c a l u x u l a confusa S t e l l a r l a l o n g l p e a F e d i c u l a r l a M r a u t * »lopecurua a l p i n n a Pofor.attim s l p l n u a F a l l o p l l u n c a v i r o l l u a i C a l o p l a c a cn;r.a»,oi.ea A r c t a r r o a f i a l a t l f c l l a E u t r r s a «<fvar-*.!ill t r l o p h o r u a i t l a t a C a r l a s l n e \y. H I S 1 f o l l a i ^ i l f r a . c a c a e a p l t o a a s t e r e o c a u l o n a l p l n u a 'Jttfcl 1 l e a r l a proboacldaa Farce H a d l a j u n c t a Spnaerophorua ^loboaua Panr.arla hooker i l Paoroca hypnoru» Cladlr.a m l t l n P a r a e l l a s u l c a t a S t e r e o c a u l o n t o t r j o a u a f. comgeatus L e c i d e a ne11nodea P l a c o p s l a j j e l i d a P e r t u a a r l a par.yi *a Veater*rreiiop«la l a l d l a U P a r e e l l a c * r . t r l f u ? a C l a d o n i a r r a c t l l * O c h r o l e c h i a l r n e q u t t u l a R h a c o o i t r l u K lanuglnoaua H y l o c c n l u n aplendena p t l l l d l u i c l l l a r e An»atrophyU\M «lnueu» ' R h a c o B t t r l u s caneacana G y K n o n l t r l o n c o r r a l l o l d a a Andreaea r u p a a t r l a P h l p p a l a a l g l d a Bonunculua a u l p h u r a u * C a t o a e o p l u a n l g r l t u a 1 1 1 1 2 • • 1 2 3 3 3 3 3 3 3 3 4 * 1 * 4 , 5 1 * 5 3 3 4 k ) 1 * 1 1 2 1 2 1 1 2 2 2 3 ; 1 5 • 2 1 2 t» I* 5 2 2 2 2 2 3 J 2 ro »•-' o Table kk Comparative S o i l Temperatures (C°) by Association 1958-1969 ASSOCIATION DEPTH IN INCHES 1 3 .N-D-A 9 15 •T-Di. • P-L-Sa .. 1 3 9 -15 1 3 9 15 1 3 9 l r TIME 7/6 1900 7.2 4 .1 1.5 lw? 0.4 - 0 . 2 4.8 - 0 . 5 - 2 . 0 - 0 . 2 - 2 . 2 - 3 . 3 7/8 1125 7.1 3.4 1.6 4.8 0.2 -1 .0 3.2 - 0 . 2 -1.7 0.4 -1 .9 - 3 . 2 7/9 13*0 11.9 5.1 1.8 8.1 1.4 -1 .0 8.4 0.0 -1 .5 3.6 -1.8 -2.8 7/10 1404 12.2 6 .3 2.5 8 .1 2.2 " - 0 . 7 8.8 0.0 -1.6 6.7 -1.6 -2.6 7/17 1533 7.1 3.7 1.8 5.8 1.6 - 0 . 2 5.3 0 .0 -1 .2 4 .2 -1 .5 -0.6 7/18 1828 5.2 3.5 1.7 4 .2 1.8 - 0 . 1 3.7 0 .0 -1 .2 3.0 -0.8 -1.8 7/24 1553 9.5 5.5 2.8 7-1 3.0 0.4 7.2 0.2 -1.1 3.1 - 0 . 3 -1 .3 7/30 2010 7.0 4 .9 2.5 5 . * 2.8 0.7 5.4 0.1 - 0 . 9 2.8 -0.8 -1.1 8/1* 1705 9.7 5.0 2.3 7.2 2.8 0.6 7.8 - 0 . 1 - 0 . 7 1.8 - 0 . 1 - 0 . 9 1969 6/12 1245 S -4.1 -6 .3 -8.5 S -9.5 -10.8 -11.6 6/14 1307 0.1 -2.5 -5.5 S -8.0 -9.8 -11.0 6/17 1615 7.0 0.2 -7.2 S -5.6 -8.0 - 9 .5 6/19 1350 8.4 2.2 -0.9 S -1.5 -4.9 - 7.8 6/20 1700 8.8 3.6 -0.3 -0.9 -3.9 -6.2 6/21 1415 11.0 8.0 2.8 -0.1 -0.7 -3.6 -5.8 6/22 1320 9.0 5.4 2.2 0.4 2.0 -0.1 -3.2 -5.2 6/23 1555 9.6 8.3 3-9 0.4 5.9 5.5 0.1 -2.2 6/24 1325 16.0 10.5 3.6 0.4 11.2 7.4 -0.1 -2.2 6/26 1405 14.6 8.6 3.3 0.9 10.7 6.2 0.1 -1.8 6/28 1311 10.1 7.1 3.7 1.2 7.7 5.5 0.8 -1.1 6/29 1403 7.1 6.1 3.2 1.1 6.5 5.2 0.9 -1.0 6/30 1851 8.6 6.7 3-4 1.1 7.6 5.5 0.9 -1.2 7/1 1213 8.9 6.2 3.3 1.2 8.4 5.9 1.0 - 0 . 9 7/3 1210 10.2 6.8 2.7 0.9 9.8 5.9 0.9 -0.8 7/4 1233 10.0 4.9 1.7 11.1 8.0 1.9 -0.8 7/5 1500 10.1 8.7 5.1 2.0 7.9 6.6 2.1 -0.4 7/7 2025 5.1 4.7 3.2 1.5 4.7 3.9 1.4 - 0 . 1 7/8 1310 8.1 7.2 4.1 1.5 7 .5 6.2 2.1 - 0 . 1 7/9 1203 4.3 2.8 1.5 4.5 3.1 1.0 -0.1 7/15 1710 8.0 6.9 4.0 2.0 7.0 5.6 2.2 0.2 7/16 1710 6.0 5.8 3.5 1.9 5.4 4.8 . 2.0 0.2 7/18 1106 10.2 7.2 3.1 1.6 9.2 6.7 1.8 0.2 7/24 1145 9.6 6.9 5.0 1.5 8.6 5-9 1.8 0.3 7/25 1735 " 8.4 7.2 4.2 2.1 8.0 6.1 2.4 0.8 7/26 1235 7.8 5.9 5.9 2.1 6.9 5.0 2.0 0.6 7/31 1200 12.2 9.7 5.4 3.1 11.7 8.8 3.7 1.4 8/1 1253 10.7 7.9 4.1 2.4 8.7 6.9 2.5 0.9 8/2 1840 10.1 8.7 5.1 2.9 10.3 7.9 3.3 1.2 8/5 1515 15.7 12.8 6.7 3.2 14.5 l l . l 4.8 1.7 8/6 1425 13.1 8.6 4.2 2.5 10.1 7.7 2.9 1.1 8/9 2100 9.1 8.8 6.2 3.2 8.1 7.6 4.6 1.9 8/10 1615 6.4 6.1 4.9 5.2 5.8 5-2 3.3 1.8 8/11 1835 10.2 8.9 5.8 5.2 9.6 8.2 4.2 1.8 8/16 1625 10.2 7.3 5.8 2.0 9.2 6.6 2.5 0.8 8/16 1945 7.3 7.2 4.7 2 .3 7.7 o. l 3.1 1.2 S _ -7.2 -8 .9 0.0 - 5 . 7 -7 .5 3.8 -3.6 -5.2 4 .9 -2.6 -4.5 5.1 -2.2 •»5.8 9.7 6 .1 -2.1 -5.8 8.3 3.4 -1.8 -5.4 7.8 5.8 -1.8 -3.2 15.0 7.2 -1.8 -5.1 12.8 6.1 -1.4 -2.8 9.2 5.4 -1.2 -2.6 8.2 5.2 -1.2 -2.4 9.7 5.8 -1.1 -2.5 9.9 5.4 -1.0 -2.2 13.7 5.3 -1.1 -2.5 14.0 8.0 -0 .9 -2.1 9.4 6.8 -0.8 -2.0 4 .9 3.7 -0.8 -1.8 8.0 6.0 -0.7 -1.7 5.2 2 .9 -0.8 -1.8 8 .5 5.9 -0.1 -1.4 6.0 4 .5 -0.1 -1.2 11.9 5.9 -0.2 -1.2 9.7 5.4 -0.2 -1.1 8.3 5.6 -0.1 -1.1 7.7 4.2 0.0 -1.0 11.8 7.3 0.0 -1.0 11.8 5.8 -0.1 -0 .9 10.0 7.4 0.0 .-0.9 14.8 10.8 0.1 -0 .9 9.9 9.4 0.5 -0.8 9.2 8 .7 0.2 -0.8 5.7 4 .9 0.1 -0.8 10.7 8 .7 0.2 -0.7 9.9 6.2 0.1 -0.7 8.1 7.0 0.2 -0.7 9.8 8.2 6.1 7.3 4 .6 7.1 5.5 8 .3 7.1 8.4 6.9 9-8 8 .6 9.7 15.8 9.8 11.2 7.5 10.3 9.3 8 .9 6.1 7.8 5.3 3.1 2.2 6.5 4.9 8.0 6.5 8.0 6.7 9.6 8. 9. 15. 6. 10. 7. 10. 9. -12.5 -12.1 -11.0 -8.9 -6. - 5 . -4. -5. -5. -5. - 2 . 8.4 -2.5 -2.2 -2.0 -1.8 -1.8 -1.4 -1.2 -1.1 -1.1 -0.8 -0.5 -0.6 -0.2 -0.2 0.2 -0.1 0.1 -0.1 0.1 0.1 0.8 0.8 0.8 0.7 0.8 -13.2 -12.8 -11.8 - 9 . 9 -8 .2 -7.1 -6 . 1 -5.4 - 5 . 0 -4.4 - 3 . 9 - 3 . 7 - 3 . 5 -5.1 - 2 . 9 - 2 . 9 -2.8 - 2 . 3 - 2 . 1 - 2 . 2 -1.8 -1 .5 -1 .6 -1 .2 -1 .2 -1 .2 -1 .0 - 0 . 9 -1.1 - 0 . 9 -0.8 - 0 . 7 - 0 . 7 - 0 . 7 - 0 . 5 - 0 . 6 212 Summary S y n t h e s i s o f f l o r i s t i c and environmental data from 7 3 stands, s e l e c t e d s u b j e c t i v e l y from the v e g e t a t i o n a l mosaic o f t h i s lowland tundra has r e s u l t e d i n the ordered scheme of l a n d -scape c l a s s i f i c a t i o n p r e s e n t e d above. The c l a s s i f i c a t i o n r e c o g n i z e s nine b a s i c phytogeocoenoses, which are comparable f l o r i s t l c a l l y to the p l a n t a s s o c i a t i o n s o f the Braun-Blanquet s c h o o l of p h y t o s o c i o l o g y . A l l of these u n i t s are d e s c r i b e d f o r the f i r s t time. These u n i t s have i n t u r n been c l a s s i f i e d i n t o seven a l l i a n c e s ( s i x newly d e s c r i b e d ) and seven o r d e r s (three-newly d e s c r i b e d ) , i n accordance w i t h s t a n d a r d European terminology. Only f u r t h e r u t i l i z a t i o n o f the proposed c l a s s i f i -c a t i o n , e i t h e r f o r management purposes or as a b a s e l i n e f o r f u r t h e r e c o l o g i c a l work, w i l l t e s t i t s v a l i d i t y and u s e f u l n e s s . The c l a s s i f i c a t i o n i t s e l f however generates a l a r g e r o v er-view which bears f u r t h e r d i s c u s s i o n . More s p e c i f i c a l l y the data p r e s e n t e d a l l o w i m p l i c a t i o n s to be made about the nature o f community c l a s s i f i c a t i o n i n temperate v e r s u s a r c t i c systems, the s t a t u s o f c i r c u m p o l a r communities and the nature o f lowland ecosystems w i t h i n the h i g h a r c t i c . The s y n t h e s i z e d u n i t s of c l a s s i f i c a t i o n appear by compari-son to be as s y s t e m a t i c a l l y s u b s t a n t i a l as those r e g u l a r l y d e s c r i b e d from the temperate r e g i o n s . Ecotones are i n most cases s h a r p l y d e f i n e d i n the f i e l d . V e g e t a t i o n a l u n i t s show s t r o n g c o r r e l a t i o n w i t h u n d e r l y i n g s o i l type and u n i t s g e n e r a l l y have c h a r a c t e r i s t i c combinations of s p e c i e s p r e s e n t . These f e a t u r e s c o n f i r m the n a t u r a l cohesiveness o f the suggested 2 1 3 u n i t s . F u r t h e r , comparisons o f s i m i l a r i t y m a t r i c e s and den-drograms, generated i n a s i m i l a r f a s h i o n f o r v e g e t a t i o n groups i n o t h e r r e g i o n s (Dahl 1 9 5 6 ; West I 9 6 6 ; Lambert 1 9 6 8 ; B e l l 1 9 7 0 ) shows the Devon I s l a n d u n i t s m a i n t a i n as h i g h , and i n some cases h i g h e r , u n i t I n t e g r i t y a t the a s s o c i a t i o n l e v e l . These r e s u l t s tend to negate the t h e s i s t h a t s p e c i a l p h y t o s o c l o -l o g i c a l techniques are r e q u i r e d f o r the d e l i n e a t i o n of a r c t i c v e g e t a t i o n . The c l r c u m p o l a r d i s t r i b u t i o n p a t t e r n s o f numerous a r c t i c p l a n t s are now w e l l e s t a b l i s h e d (Hulte'n 1 9 6 4 ) . R e c e n t l y the s u g g e s t i o n has been advanced t h a t p a r t i c u l a r p l a n t communities as w e l l may be c l r c u m p o l a r i n nature ( R u n n i n g 1 9 6 5 ) . The r e s u l t s of the p r e s e n t study.tend to support t h i s view. The s t r u c t u r e and environmental s i m i l a r i t i e s of the D r y a d e t a l l a of S v a l b a r d and Devon I s l a n d l e a v e l i t t l e doubt t h a t the a s s o c i a -t i o n s d i s c u s s e d are s i m i l a r enough to warrant t h e i r i n c o r p o r a -t i o n i n t o e s t a b l i s h e d c l a s s i f i c a t i o n h i e r a r c h i e s . In t h i s r e s p e c t I t i s i n t e r e s t i n g t h a t r e c e n t l y proposed a r c t i c f l o r i s -t i c zones show both western Devon I s l a n d and western S v a l b a r d l i e d i r e c t l y on the same f l o r i s t i c boundary (Young 1 9 7 1 ) . Both areas l i e a l o n g the margin of a sharp n o r t h e r n e x t e n s i o n of a n o r m a l l y more southern f l o r i s t i c zone. T h i s i s due, i n the case of Devon I s l a n d , to the presence of a group of s p e c i e s which are a t or near the n o r t h e r n l i m i t s of t h e i r d i s t r i b u t i o n and whose main c o n c e n t r a t i o n s l i e to the south i n the western por-t i o n o f the a r c h i p e l a g o (e.g., Woodsla a l p i n a . W. g l a b e l l a , C y s t o p t e r i s f r a g l l l s , K o b r e s l a s l m p l l c l u s c u l a , T o f l e l d l a 214 c o c o l n e a . S a l l x r e t i c u l a t a . Draba c l n e r e a . H l p p u r l s v u l g a r i s ) . As Young has shown, boundaries of a r c t i c f l o r i s t i c zones are b e s t c o r r e l a t e d w i t h aggregate summer warmth. As the t o t a l summer warmth i n c r e a s e s a c o r r e s p o n d i n g i n c r e a s e i n the f l o r i s -t i c d i v e r s i t y o f an a r e a p r e d i c t a b l y o c c u r s . In both the Devon I s l a n d and S v a l b a r d l o c a t i o n s , p r o x i m i t y to marine environments may h e l p to account f o r c l i m a t i c a m e l i o r a t i o n which i n t u r n a l l o w s the northward e x t e n s i o n of these s p e c i e s . Young has noted, the Inner F i o r d D i s t r i c t of S v a l b a r d supports some 50 taxa not found elsewhere on the I s l a n d . In the Canadian a r c t i c . t h i s n o r t h e r n e x t e n s i o n of s p e c i e s occurs a l o n g the e n t i r e e a s t e r n border of the a r c h i p e l a g o and a l s o a l o n g the western coa s t of Greenland as w e l l . S u r p r i s i n g l y , the h i g h e s t number of v a s c u l a r p l a n t s r e c o r d e d so f a r w i t h i n the a r c h i p e l a g o occurs on E l l e s m e r e I s l a n d , n o r t h o f a l i n e c o n n e c t i n g G r e e l y and A r c h e r F i o r d s . (143 s p e c i e s ; B r a s s a r d and B e s c h e l 1 9 6 8 ) . The second and t h i r d most d i v e r s e v a s c u l a r f l o r a s occur on e a s t e r n Devon I s l a n d ( 1 1 5 s p e c i e s ; B a r r e t t and T e e r i ) and B y l o t I s l a n d ( 1 0 1 s p e c i e s ; Drury I .962) r e s p e c t i v e l y . The f l o r i s t i c and v e g e t a t i o n a l s i m i l a r i t y of these two w i d e l y s e p a r a t e d areas argues f o r the prominent e f f e c t which p r e s e n t macroclimate p l a y s i n the ecology o f e x i s t i n g tundra communities. A p p a r e n t l y s u f f i c i e n t time has e l a p s e d s i n c e p o s t - g l a c i a l emergence not o n l y f o r the r e l n v a s i o n of p l a n t s p e c i e s , but f o r the s e g r e g a t i o n o f v e g e t a t i o n types which are i n e q u i l i b r i u m w i t h p r e s e n t c l i m a t i c and g e o l o g i c a l c o n d i t i o n s . T h i s s i m i l a r i t y a l s o opposes the o f t e n quoted o p i n i o n t h a t 2 1 5 f r o s t a c t i o n ( c o n g e l l t u r b a t l o n ) prevents the e s t a b l i s h m e n t o f e q u i l i b r i u m communities over the p r e s e n t tundra landscape (Raup 1 9 5 1 ; S l g a f o o s 1 9 5 2 ) . In t h i s r e s p e c t the r e s u l t s of t h i s study agree more c l o s e l y w i t h the r e c e n t i n t e r p r e t a t i o n o f B amberg and Major ( 1 9 6 8 ) . ...There are of course areas both i n a r c t i c and a l p i n e environments where f r o s t c hurning i s the dominant p e d o l o g i c a l process and where t h e r e f o r e no g e n e t i c s o i l p r o f i l e s i n the u s u a l sense can form, but such areas are an e x c e p t i o n i n the landscape sense. The most e x t e n s i v e l y developed communities on the Devon lowlands are those o v e r l y i n g w e l l developed s o i l p r o f i l e s w i t h l i t t l e evidence; of i n t e n s i v e f r o s t a c t i o n o r heave. I t Is u n l i k e l y t h a t such s t r u c t u r a l l y p a r a l l e l u n i t s would develop on a c l r c u m p o l a r b a s i s u n l e s s the m a j o r i t y o f the landscape enjoyed a reasonable amount of s t a b i l i t y f o r an extended time p e r i o d . The lowland area on which t h i s study was undertaken belongs to an e c o l o g i c a l system which appears to be r e s t r i c t e d s p a t i a l l y to a l i m i t e d p o r t i o n of the High A r c t i c . T h i s i s i m p l i e d i n the c u r r e n t l i t e r a t u r e , a lthough w i t h the e x c l u s i o n o f geology, l i t t l e landuse mapping has o c c u r r e d even a t the most elementary l e v e l . The major p o r t i o n of the Canadian High A r c t i c has been termed the " P o l a r D e s e r t Zone" i n r e f e r e n c e to the major g e n e t i c s o i l type found on the landscape (Tedrow 1 9 6 8 b ) . A l t h o u g h the term p o l a r d e s e r t has y e t to be adequately d e f i n e d i n terms of a r e g i o n a l system, i . e . b i o g e o c o e n o t l c a l l y , i t i s apparent from d e s c r i p t i o n s of those areas a v a i l a b l e a t p r e s e n t t h a t c o a s t a l a r e a s such as those d e s c r i b e d here f a i l to meet the i m p l i e d c r i t e r i a o f a p o l a r d e s e r t . The p r i n c i p a l s o i l types on the landscape are g l e y s o l i c s o i l s . V e g e t a t i o n I s r i c h and most communities are h y d r i c , h y g r i c or wet mesic i n n a t u r e . Con-v e r s e l y , i t would be presumptuous on the b a s i s of such l i m i t e d i n f o r m a t i o n as i s p r e s e n t l y a v a i l a b l e to suggest here a z o n a l c h a r a c t e r i z a t i o n of these lowland a r e a s . T h e i r e x t e n t and d i v e r s i t y w i t h i n the p o l a r r e g i o n s i s a t p r e s e n t i n a d e q u a t e l y known. Yet these areas c e r t a i n l y r e p r e s e n t a system l i n k e d by geomorphlc and b i o l o g i c a l f e a t u r e s which d i s t i n g u i s h them s h a r p l y from much o f the p o l a r landscape. I have chosen the more l o o s e l y u t i l i z e d term ecosystem to imply a systems coher-ence, which I b e l i e v e e x i s t s w i t h i n these c o a s t a l a r e a s . The c h o i c e a l s o suggests an i n t e r n a l homogeneity o f p r o c e s s e s and s t r u c t u r e which should serve to d i s t i n g u i s h these c o a s t a l systems when they are c o n t r a s t e d w i t h o t h e r r e g i o n a l p o l a r systems, as f o r example the p o l a r d e s e r t s p r o p e r . E c o l o g i c a l importance i s not n e c e s s a r i l y a f u n c t i o n o f landscape dominance. While r e s t r i c t e d g e o g r a p h i c a l l y the s i g -n i f i c a n c e of these c o a s t a l systems to the b i o l o g y o f the tundra biome remains to be a s s e s s e d . While q u a n t i t a t i v e data are a t p r e s e n t l a c k i n g , i t would seem reas o n a b l e to suggest t h a t h i g h e r p o r t i o n s of a v i a n and mammal p o p u l a t i o n s u t i l i z e the Devon I s l a n d lowlands areas f o r b r e e d i n g and f o r a g i n g purposes than the more e x t e n s i v e upland p l a t e a u r e g i o n s . Indeed P o l u n i n ( 1 9 4 8 ) o r i g i n a l l y suggested t h a t the h i g h numbers of Musk oxen (Ovibos moschatus) found i n these c o a s t a l a r e a s was a c a u s a t i v e agent i n t h e i r u n c h a r a c t e r i s t i c b o t a n i c a l l u x u r i a n c e . 217 I t can o n l y be r e g r e t t e d by any r e s p o n s i b l e b i o l o g i s t t h a t a t a p e r i o d i n time when important land-management d e c i s i o n s a r e to be made, which w i l l a f f e c t major segments of one o f the l e a s t man-disturbed biomes i n North America, t h a t our compara-t i v e knowledge of even the l a r g e r subzones w i t h i n the biome i s so l i m i t e d . I would suggest from the evidence o f the p r e s e n t study t h a t these c o a s t a l systems may r e p r e s e n t a r e a s of h i g h b i o l o g i c a l s i g n i f i c a n c e to the h i g h a r c t i c tundra. While l i m i t e d i n e x t e n t the b i o l o g i c a l d i v e r s i t y o f landscape u n i t s p r e s e n t and the apparent c o n c e n t r a t i o n s o f w i l d l i f e p o p u l a t i o n s which u t i l i z e t h i s a r e a argues t h a t more i n t e n s i v e e v a l u a t i o n of these c o a s t a l systems should be undertaken. On a comparative b a s i s t h e r e are few p o l a r landscape systems o f comparable d i v e r s i t y w i t h i n such a l i m i t e d g e o g r a p h i c a l a r e a . In f u t u r e l a n d management d e c i s i o n s t h e i r e c o l o g i c a l s i g n i f i c a n c e should not be u n d e r e s t i m a t e d . 218 LITERATURE CITED Acock, A. M. 194-0. V e g e t a t i o n of a c a l c a r e o u s i n n e r f j o r d r e g i o n i n S p i t s b e r g e n . J o u r . E c o l . 28:81 - 1 0 6 . Aleksandrova, V. i 9 6 0 . Some r e g u l a r i t i e s i n the d i s t r i b u t i o n of v e g e t a t i o n i n the a r c t i c tundra. A r c t i c 1 3:147 - 1 6 2 . Bamberg, S. and Major, J . 1 9 6 8 . Ecology of the v e g e t a t i o n and s o i l s a s s o c i a t e d w i t h carcareous p a r e n t m a t e r i a l i n t h r e e a l p i n e areas of Montana. Eco. Mono. 3 8 ( 2 ) : 1 2 6 - 1 6 7 . B e l l , C. I 9 6 9 . The p l a n t a s s o c i a t i o n s o f the C a r i b o o aspen -l o d g e p o l e p i n e - D o u g l a s - f i r p a r k l a n d zone. Ph.D. t h e s i s . Botany Dept., Univ. of B r i t i s h Columbia. Benninghoff, W. S. 1 9 5 2 . I n t e r a c t i o n of v e g e t a t i o n and s o i l f r o s t phenomena. A r c t i c 5(1)s 3 1-44. B e s c h e l , R. E. 1 9 6 9 . F l o r i s t i c r e l a t i o n s o f the N e a r a c t l c i s l a n d s . Botan. Zh. 5 4 : 8 7 2 - 8 9 1 . - 1 9 ? 0 . The d i v e r s i t y of tundra v e g e t a t i o n . In P r o d u c t i v i t y and C o n s e r v a t i o n i n N o r t h e r n Clrcumpolar Lands. I.V.C.N. P u b l . No. 16 New S e r i e s . B i l l i n g s , W. D. and B l i s s , L. C. 1 9 5 9 * An a l p i n e snowbank environment and i t s e f f e c t s on v e g e t a t i o n , p l a n t development and p r o d u c t i v i t y . E c o l . 4 0 ( 3 ) : 3 8 8 - 3 9 7 . and Mooney, H. A. 1 9 6 8 . The ecology of a r c t i c and a l p i n e p l a n t s . B i o l . Rev. 4 3 : 4 8 1 - 5 3 0 . B i r d , B. J . 1 9 6 7 . The physiography o f A r c t i c Canada. John Hopkins Press, 3 3 6 pp. B l i s s , L. C. 1 9 5 6 . A comparison of p l a n t development and microenvironment of the a r c t i c and a l p i n e tundras. E c o l . Mono. 2 6 ( 4 ) 0 0 1 - 3 3 7 . . 1 9 6 2 . A d a p t a t i o n s of a r c t i c arad a l p i n e p l a n t s to environmental c o n d i t i o n s . A r c t i c 1 5 ( 2 ) : 1 1 7-144. . I 9 6 3 . A l p i n e p l a n t communities of the P r e s i d e n t i a l Range, New Hampshire. E c o l . 44(4): 6 7 8 - 6 9 7 . Bocher, T. W. 1 9 5 1 . D i s t r i b u t i o n of p l a n t s i n the c l r c u m p o l a r a r e a i n r e l a t i o n to e c o l o g i c a l and h i s t o r i c a l f a c t o r s . J o u r . E c o l . 3 9 : 3 7 6 - 3 9 5 -Holmen, K., Jakobsen, K. 1968. The f l o r a of Greenland. P. Haase and Son. Copenhagen, 3 1 2 pp. 219 Bonde, E. K. 1 9 6 9 . P l a n t d i s s e m i n u l e s In wind-blown d e b r i s from a g l a c i e r i n Colorado. A r c t i c and A l p i n e Research. 1 ( 2 ) : 1 3 5 - 1 3 9 . Bouyoucos, G. J . 1951• A r e c a l i b r a t l o n o f the hydrometer method f o r making mechanical a n a l y s i s o f s o i l s . J o u r . Amer. Soc. Agron. 4 3 : 4 3 4 - 4 3 8 . B r a s s a r d , G. R. 1 9 6 7 a . New or a d d i t i o n a l mosses from E l l e s m e r e I s l a n d , N.W.T. B r y o l o g i s t 7 0 ( 2 ) : 2 5 1 - 2 5 6 . . 1 9 6 7 b . A c o n t r i b u t i o n to the b r y o l o g y of M e l v i l l e I s l a n d , N.W.T. B r y o l o g i s t 7 0 ( 3 ) : 3 4 7 - 3 5 1 . . 1 9 6 8 . The p l a n t h a b i t a t s o f the Tanquary Camp are a , E l l e s m e r e I s l a n d , N.W.T. Defense Research Board. Hazem 3 2 , Ottawa. and B e s c h e l , R. E. 1 9 6 8 . The v a s c u l a r f l o r a o f Tanquary F i o r d , n o r t h e r n E l l e s m e r e I s l a n d , N.W.T. Can. F i e l d . Nat. 8 2 : 1 0 3 - 1 1 3 -and Longton, R. E. 1 9 7 0 . The f l o r a and v e g e t a t i o n of Van Hauen Pass, northwestern E l l e s m e r e I s l a n d . Can. F i e l d . Nat. 8 4 : 3 5 7 - 3 6 4 . and S t e e r e , W. C. 1 9 6 7 . The mosses o f B a t h u r s t I s l a n d , N.W.T. Canada. Can. J o u r . Bot. 4 6 ( 4 ) : 3 7 7 - 3 8 3 . Braun-Blanquet, J . 1 9 3 2 . P f l a n z e n s o z l o l o g i e . T r a n s l a t i o n by F u l l e r and Conrad, 1 9 6 5 . Hafner Pub. Co., 439 PP« _ . 1 9 4 8 . Die P f l a n z e n g e s e l l s c h a f t e n R a t l e n s . V e g e t a t l o 1 : 3 2 - 3 4 . 1 9 6 4 . P f l a n z e n s o z l o l o g i e . S p r i n g e r -V e r l a g , 865 PP« • and F u r r e r , E. 1913* Remarques sur l ' e t u d e des groupements de p l a n t e s . B u l l . Soc. Languedocienne de Geog. 3 6 : 2 0 - 4 1 . Bremner, J . M. i 9 6 0 . D e t e r m i n a t i o n o f n i t r o g e n i n s o i l by K j e l d a h l method. Jou r . Agr. S c i . 5 5 : 1 - 2 3 . B r i t t o n , M. 1 9 6 6 . V e g e t a t i o n o f the A r c t i c Tundra. Oregon S t a t e Univ. P r e s s , 64 pp. Brooke, R. C , Peterson, E. B. and K r a j i n a , V. J . 1 9 7 0 . The su b a l p l n e mountain hemlock zone. E c o l . W.N.A. 2 : 1 4 7 - 3 4 9 . Brown, J . 1 9 6 9 . B u r l e d s o i l s a s s o c i a t e d w i t h permafrost. In Pedology and Quaternary Research. Symp. NRC and Univ. A l b e r t a . 2 2 0 Brown, J . and R i c k a r d , W. 1 9 6 9 . The thawing o f s o i l s a s s o c i a t e d w i t h Eriophorum t u s s o c k s . Prog. Rep. C.R.R.E.L. Hanover, N. H., 94 pp. Brown, R. J . E. 1 9 6 3 « R e l a t i o n between mean annual a i r and ground temperature i n the permafrost r e g i o n o f Canada. In Proceedings Permafrost I n t e r n a t i o n a l Conference. NAS-NRC Pub. No. 128?, Washington, D. C. Buckman, H. 0 . and Brady, N. C. 1 9 6 9 . The na t u r e and p r o p e r t i e s o f s o i l s . M a cMillan Co., 6 5 3 PP« Ceska, A. I 9 6 8 . A p p l i c a t i o n of a s s o c i a t i o n c o e f f i c i e n t s f o r e s t i m a t i n g the mean s i m i l a r i t y between s e t s of v e g e t a t i o n a l releve's. F o l i a Geobot. Phytotax 3:57-64. Dahl, E. 1 9 5 6 . Rondane: Mountain v e g e t a t i o n i n south Norway and i t s r e l a t i o n to environment. I. Kommlsjon Hos. H. Aschehoug & Co., O s l o . Douglas, L. A. and Tedrow, j . C. F. i 9 6 0 . Tundra s o i l s o f a r c t i c A l a s k a . Proc. 7th I n t . S o i l S c i . Cong. Comm. V., V o l . I V : 2 9 1 - 3 0 4 . Drew, J . V., Tedrow, J . C. F., Shanks, R. E. and Koranda, J . J. 1 9 5 8 . Rate and depth of thaw i n a r c t i c s o i l s . Trans. Amer. Geophys. Union 3 9 ( 4 ) : 6 9 7 - 7 0 1 . Drury, W. H. 1 9 6 2 . P a t t e r n e d ground and v e g e t a t i o n on Southern B y l o t I s l a n d , Northwest t e r r i t o r i e s , Canada. Contrb. Grey. Herb. No. 1 9 0 . Cambridge, Mass., I l l pp. F e u s t e l , I. C , D u t i l l y , A. and Anderson, M. S. 1 9 3 9 . P r o p e r t i e s o f s o i l s from North American a r c t i c r e g i o n s . S o i l S c i . 48 : 1 8 3 - 2 0 0 . F r i e s , T. C. E. 1 9 1 3 . Botanische Untersuchungen im N o r d l i c h e n Schweden. Uppsala and Sweden. G e l t i n g , P. 1 9 5 5 « A west Greenland Dryas l n t e g r l f o l l a community r i c h i n l i c h e n s . Svensk. Bot. T i d s k r . 4 9 : 2 9 3 -3 1 3 . G j a e r e v o l l , 0 . 1 9 5 0 . The snowbed v e g e t a t i o n i n the surround-ings of Lake T o r n e t r a s k , Swedish Lappland. Svensk. Bot. T i d s k r . 44:387-440. . 1 9 5 ^ . K o b r e s i e t o - D r y a d i o n In A l a s k a . N y t t . Mag. f o r Bot. 3 : 5 1 - 5 4 . . 1 9 5 6 . The p l a n t communities o f the Sca n d i n a v i a n a l p i n e snow-beds. D e t k g l . Norske. Vidensk. S e l s k a b s . Skr. 1 : 4 0 5 pp. 2 2 1 G l e n l s t e r , B. F. 1 9 6 3 * Sverdrup I n l e t to Cape Sparbo, R e g i o n a l Geology. Geo. Surv. Can. Mem. 320:184-188. Gr i g g s , R. F. 1 9 3 4 . The problem o f a r c t i c v e g e t a t i o n . J o u r . Wash. Acad, of S c i . 24(4): 1 5 3 - 1 7 5 . H i s s i n k , D. J . 1 9 3 0 . Report of the committee o f s o i l r e a c t i o n measurements of the I n t e r n a t i o n a l S o c i e t y of S o i l S c i e n c e . S o i l Res. 2 : l 4 l - l 4 4 . Hulten, E. 1 9 6 4 . The c l r c u m p o l a r p l a n t s . I. V a s c u l a r cryptogams, c o n i f e r s , monocotyledons. A l m q u i s t and W i s k e l l , Stockholm. . 1 9 6 8 . F l o r a o f A l a s k a and n e i g h b o r i n g t e r r i t o r i e s . S t a n f o r d Univ. P r e s s . H u s s e l l , D. 1 9 6 9 . P e r s o n a l Communication. Jackson, M. L. 1 9 5 8 . S o i l chemical a n a l y s i s . P r e n t i c e - H a l l , Inc., New J e r s e y , 4 9 8 pp. Johnson, P. L. 1 9 6 9 . A r c t i c p l a n t s , ecosystems and s t r a t e g i e s . A r c t i c 2 2 ( 3 ) : 3 4 l - 3 5 5 . King, R. 1 9 6 8 . P e r i g l a c i a l environment of Devon I s l a n d , N.W.T. Ph.D. t h e s i s . Geography Dept., Univ. o f Saskatoon, Saskachewan. K l l k a , J . 1 9 5 5 . Nauka o r o s l l i n n y c h s p o l e c e n s t v e c h . K r a j i n a , V. J . 1 9 3 3 . Die P f l a n z e n g e s e l l s h a f t e n des M l y n i c a - T a l e s i n den Vysoke* T a t r y (Hohe T a t r a ) . I. T e l l . B e i h . zum Bot. C e n t r a l - B l a t t . B. L. Abt. I I . H. 3 , S. 7 7 4 - 9 5 7 . I I . T e i l . IBID. B. L I . Abt. I I , S. 1-224. Lachenbruch, A. H. 1 9 6 2 . Mechanics of thermal c o n t r a c t i o n c r a c k s and i c e wedge polygons i n permafrost. G e o l . Soc. Amer. Spec. Paper No. 7 0 . Lambert, J . D. H. 1 9 6 8 . The ecology and s u c c e s s i o n a l trends of tundra p l a n t communities i n the Low A r c t i c s u b a l p i n e zone of the R i c h a r d s o n and B r i t i s h Mountains of the Canadian Western A r c t i c . Ph.D. t h e s i s . Botany Dept., Univ. of B r i t i s h Columbia. Lynge, B. 1 9 4 7 . L i c h e n e s , In Botany of the Canadian E a s t e r n A r c t i c . P a r t I I . N a t l . Museum of Can., B u l l . 9 7 : 2 9 8 -3 6 9 . Mackay, J . R. 1 9 5 8 . A subsurface o r g a n i c l a y e r a s s o c i a t e d w i t h permafrost i n the Western A r c t i c . Geogr. Branch. Tech. Paper No. 1 8 . Ottawa. 2 2 2 Mackay, J . R. 1 9 5 8 . The Anderson R i v e r Map-Area, N.W.T. Geogr. Branch, Mines and T e c h n i c a l Surveys, Ottawa, Memoir 5 , 1 3 7 pp. . 1 9 6 3 . The Mackenzie D e l t a A r e a , N.W.T. Geogr. Branch Mines and T e c h n i c a l Surveys, Ottawa, Memoir 8 , 2 0 2 pp. McMillan, N. J . i 9 6 0 . S o i l s o f the Queen E l i z a b e t h I s l a n d s (Canadian A r c t i c ) . J o u r . S o i l S c i . 1 1 : 1 3 1 - 1 3 9 . Marr, J . W. 1 9 ^ 7 . Ecosystems o f the east s l o p e o f the F r o n t Range i n Colorado. Univ. of Colorado S t u d i e s , Ser. i n B i o l . No. 8 . -Moore, J . J . 1 9 6 2 . The Braun-Blanquet system: a reassessment. J o u r . E c o l . 5 0 : 7 6 1 - 7 6 9 . , F i t z s i m o n s , S. J . P., Lamb, E. and White, J . 1 9 7 0 . A comparison and e v a l u a t i o n o f some p h y t o s o c i o -l o g l c a l t echniques. V e g e t a t l o 20 : 1-20. M u l l e r , C. H. 1 9 5 2 . P l a n t s u c c e s s i o n i n a r c t i c heath and tundra i n n o r t h e r n S c a n d i n a v i a . B u l l . T o r r . Bot. Club 7 9 ( 4 ) : 2 9 6 - 3 0 9 . M u l l e r , F. and Ban, W. 1 9 6 6 . P o s t g l a c i a l i s o s t a t i c movement i n n o r t h e a s t e r n Devon I s l a n d , Canadian A r c t i c A r c h i p e l a g o . A r c t i c 1 9 ( 3 ) : 2 6 3 - 2 6 9 . Nordhagen, R. 1 9 5 5 * K o b r e s i e t o - D r y a d i o n i n n o r t h e r n S c a n d i n a v i a . Svensk. Bot. T i d s k r . 4 9 : 6 1 - 8 7 . O o s t i n g , H. J . 1 9 4 8 . E c o l o g i c a l notes on the f l o r a of e a s t Greenland and Jan Mayen. In The Coast o f n o r t h e a s t Greenland. Amer. Geogr. Soc. Spec. P u b l . No. 3 0 : 2 2 5 - 2 6 9 . P o l u n i n , N. 1 9 4 8 . Botany o f the Canadian E a s t e r n A r c t i c . P a r t I I I V e g e t a t i o n and Eco l o g y . N a t l . Museum of Can. B u l l . No. 104. 1 9 5 9 * Circumpolar a r c t i c f l o r a . C laredon P r e s s , Oxford, 5 1 4 pp. Poore M. E. D. 1 9 5 5 a . The use of p h y t o s o c i o l o g l c a l methods In e c o l o g i c a l i n v e s t i g a t i o n s . P a r t I. The Braun-Blanquet system. J o u r . E c o l . 4 3 ( 1):226-244-. . 1 9 5 5 b . The use of p h y t o s o c i o l o g l c a l methods In e c o l o g i c a l i n v e s t i g a t i o n s . P a r t I I . P r a c t i c a l Issues Involved l n an attempt to app l y the Braun-Blanquet system. J o u r . E c o l . 4 3 ( 1 ) : 2 4 5 - 2 6 9 . 2 2 3 P o r s i l d , A. E. 1 9 6 4 . I l l u s t r a t e d f l o r a o f the Canadian A r c t i c A r c h i p e l a g o . N a t l . Museum of Can. B u l l . No. 1 4 6 . Rae t R. W. 1 9 5 1 * Climate of the Canadian A r c t i c A r c h i p e l a g o . Canada Dept. of T r a n s p o r t . Form 9 0 0 2 . Raup, H. M. 1 9 5 1 * V e g e t a t i o n and c r y o p l a n a t l o n . Ohio J o u r . S c i . 5 K 3 ) : 1 0 5 - 1 1 6 . . 1 9 6 5 . The s t r u c t u r e and development of t u r f hummocks i n the Mesters V i g D i s t r i c t , n o r t h e a s t Greenland Medd. 0 m . Gr^nland. l 6 6 ( 3 ) : 1 - 1 1 3 . . 1 9 6 9 a . The r e l a t i o n of the v a s c u l a r f l o r a to some f a c t o r s of s i t e i n the Mesters V l g D i s t r i c t , n o r t h e a s t Greenland. Medd. 0 m . Gr^nland. 1 7 6 ( 5 ) : 1 - 8 0 . . 1 9 6 9 b . O b s e r v a t i o n s on the r e l a t i o n of v e g e t a t i o n to mass-wasting processes i n the Mesters V i g D i s t r i c t , n o r t h e a s t Greenland. Medd. Om. G r ^ n l a n d . 1 ? 6 ( 6 ) : 1 - 2 1 6 . Ream, R. R. 1 9 6 2 . A standard computer program f o r d e t e r m i n i n g the index of s i m i l a r i t y among v e g e t a t i o n stands. A b s t r . B u l l . E c o l . Soc. Amer. 4 3 : 9 8 . R e t z e r , J . L. 1 9 6 5 « P r e s e n t s o i l - f o r m i n g f a c t o r s and p r o c e s s e s l n A r c t i c and A l p i n e r e g i o n s . S o i l S c i . 9 9 : 3 8 - 4 4 . Running, 0 . I . 1 9 6 5 . S t u d i e s on Dryadion o f S v a l b a r d . Norsk P o l a r i n s t . Skr. 1 3 4 , 52 pp. . 1 9 6 9 . F e a t u r e s of the ecology of some a r c t i c S v a l b a r d ( S p i t s b e r g e n ) p l a n t communities. A r c t i c and A l p i n e Research. l ( l ) : 2 9 - 4 4 . S a v l l e , D. B. 0 . 1 9 5 9 . The botany of Somerset I s l a n d , . D i s t r i c t of F r a n k l i n . Can. J o u r . Bot. 3 7 : 9 5 9 - 1 0 0 2 . . i 9 6 0 . L i m i t a t i o n s of the c o m p e t i t i v e e x c l u s i o n p r i n c i p l e . S c i e n c e 1 3 2 : 1 7 6 1 . • 1 9 6 1 . The botany of the 'Northwestern Queen E l i z a b e t h I s l a n d s . Can. J o u r . Bot. 3 9 : 9 0 9 - 9 4 2 . S c h o f i e l d , R. K. and T a y l o r , A. W. 1 9 5 5 « The measurement of s o i l pH. S o i l S c i . Soc. Amer. Proc. 1 9 : 1 6 4 - 1 6 7 . S c h o f i e l d , W. B. and Cody, W. J . 1 9 5 5 * B o t a n i c a l i n v e s t i g a t i o n s on c o a s t a l southern C o r n w a l l l s I s l a n d , F r a n k l i n D i s t r i c t , N.W.T. Can. F i e l d Nat. 6 9 ( 3 ) : l l 6 - 1 2 8 . 224 Schuster, R. M., Steere, W. C. and Thomson, J . W. 1 9 5 9 . The t e r r e s t r i a l cryptogams of Northern Ellesmere Island. Natl. Museum of Can. B u l l . 164. Sharp, R. P. 1 9 4 2 . S o i l structures i n the St. E l i a s Range, Yukon T e r r i t o r y . Jour. Geomorph. 5 : 2 7 4 - 3 0 1 . Slgafoos, R. S. 1 9 5 2 . Frost action as a primary physical factor i n tundra plant communities. E c o l . 3 3 * .480 - 4 8 7 . Sokal, R. R. and Sneath, P. H. A. 1 9 6 3 . P r i n c i p l e s of numerical taxonomy. Wilt Freeman. San Francisco, 3 5 9 PP« S^renson, T. 1941., Temperature r e l a t i o n s and phenology of the northeast Greenland flowering plants. Medd. Om. Grjrfnland. 1 2 5 ( 9 ) : I - 3 0 5 . , . 1 9 4 8 . A method f o r est a b l i s h i n g groups of equal amplitude i n plant sociology based on s i m i l a r i t y of species content and i t s a p p l i c a t i o n to analyses of the vegetation on Danish Commons. Det Kongelige danske vidensk, selsk. B i o l . Skr. B. V. Nr. 4 , 3 4 pp. Steere, W. C. 1 9 3 9 * Bryophyta of a r c t i c America I I . Species c o l l e c t e d by J . Dewey Sopea, p r i n c i p a l l y i n southern B a f f i n Island. Amer. Mid. Natur. 21(2): 3 5 5 - 3 6 7 . . 1 9 4 7 - Muscl. In Botany of the Canadian Eastern A r c t i c . Part I I . Thallophyta and Bryophyta. Natl. Museum of Canada. B u l l . 9 7 • . 1 9 5 1 ' Bryophyta of a r c t i c America IV. The mosses of Cornwallis Island. Bryologist 54(3):181-202. . 1 9 5 5 ' Bryophyta of a r c t i c America VI. A c o l l e c t i o n from Prince Patrick Island. Amer. Mid. Nat. 5 3 ( D:231-24l. Sukachev, V. N. 1 9 4 4 . On the p r i n c i p l e s of genetic c l a s s i f i c a t i o n i n biocoenology. Zh. Obshchei B i o l . 5:213 - 2 2 7 . Trans, by R. Raney, E c o l . 3 9(2):304 - 3 0 7 . ' and D y l i s , N. 1 9 6 4 . Fundamentals of Forest Biogeocoenology. Trans, by J . M. Maclennan. O l i v e r and Boyd. London. Szafer, W. 1 9 6 6 . The vegetation of Poland. Trans, from the Pol i s h ed. by W. H. Paryski. Pergamon. Tedrow, J . C. F. 1962. Morphological evidence of f r o s t action i n a r c t i c s o i l s . Biuletyn Peryglacjalny nr. 1 1 : 3 4 3 - 3 5 2 . Tedrow, J . C. F. 1 9 6 3 - A r c t i c s o i l s . In Proceedings Permafrost I n t e r n a t i o n a l Conference. NAG-NRC Pub. No. 1 2 8 7 Washington, D. C. . 1 9 6 6 . P o l a r D e sert s o i l s . S o i l S c i . Soc. of Amer. Proc. 3 0 ( 3 ) : 3 8 l - 3 8 7 -. 1 9 6 8 a . S o i l i n v e s t i g a t i o n s i n I n g l e f i e l d Land, Greenland. A r c t i c I n s t i t . o f North Amer. Research Report, 1 2 6 pp. _ _ . 1 9 6 8 b . Pedogenic g r a d i e n t s i n the p o l a r r e g i o n s . J o u r . S o i l S c i . 1 9 ( 1 ) : 1 9 7 - 2 0 4 . , Bruggemann, P. F., Walton, G. F. 1 9 6 8 . S o i l s o f P r i n c e P a t r i c k I s l a n d . A r c t i c I n s t i t . o f North Amer. Research Paper No. 4 4 . a n d Cantlon, J . E. 1 9 5 8 . Concepts of s o i l f o r m a t i o n and c l a s s i f i c a t i o n l n a r c t i c r e g i o n s . A r c t i c 1 1 ( 3 ) : 1 6 6 - 1 7 9 -and Douglas, L. A. 1 9 6 4 . S o i l I n v e s t i g a t i o n s on Banks I s l a n d . S o i l S c i . 9 8 ( 1 ) : 5 3 - 6 5 . , Drew, J . U., H i l l , D. E. and Douglas, L. A. 1 9 5 8 . Major g e n e t i c s o i l s of the a r c t i c s l o p e o f A l a s k a . J o u r . S o i l S c i . 9 ( 1 ) : 3 3 - ^ 5 . and H i l l , D. E. 1 9 5 5 . A r c t i c Brown s o i l . S o i l S c i . 8 0 : 2 6 5 - 2 7 5 . Thomas, M. K. 1 9 5 3 * C l l m a t o l o g l c a l a t l a s o f Canada. NRC No. 3 1 5 1 . 2 5 3 pp. Thomson, J . W. I 9 6 7 . The l i c h e n genus C l a d o n i a i n North America. Univ. Toronto P r e s s , 1 7 2 pp. , S c o t t e r , G. W., A h t i , T. I 9 6 9 . L i c h e n of the Great S l a v e Lake r e g i o n . Northwest T e r r i t o r i e s , Canada. B r y o l o g i s t 7 2 ( 2 ) - . 1 3 7 - 1 7 7 . T y r t i k o v , A. P. 1 9 5 9 - P r i n c i p l e s of geocryology, P a r t I, General geocryology, Chap. 1 2 , P e r e n n i a l l y f r o z e n ground and v e g e t a t i o n . N.R.C. Tech. Trans. No. II63. Trans, by R. J . E. Brown. U g o l i n l , F. C. I 9 6 5 . The r e c o g n i t i o n o f A r c t i c Brown s o i l s i n N o r t h e a s t Greenland. A r c t i c 1 8 ( 1 ) : 4 9 - 5 1 . U.S.D.A. S t a f f . 1 9 5 1 . S o i l survey manual. U.S.D.A. Handbook No. 18. 2 2 6 V i e r e c k , L. A. 1 9 6 5 * R e l a t i o n s h i p o f white spruce to l e n s e s of p e r e n n i a l l y f r o z e n ground, Mount McKinley N a t i o n a l Park, A l a s k a . A r c t i c 1 8 ( 4 ) : 2 6 2 - 2 6 7 . Warren Wilson , J . 1 9 5 9 ' Notes on wind and i t s e f f e c t s In a r c t i c - a l p i n e v e g e t a t i o n . Jour. E c o l . 4 7 : 4 1 5 - 4 2 7 . Washburn, A. L. 1 9 5 6 . C l a s s i f i c a t i o n of p a t t e r n e d ground and review of suggested o r i g i n s . B u l l . G e o l . Soc. Amer. 6 7 : 8 2 3 - 8 6 6 . West, N. 1 9 6 6 . M a t r i x c l u s t e r a n a l y s i s of montane f o r e s t v e g e t a t i o n of the Oregon Cascades. E c o l . 4 7 ( 6 ) : 9 7 5 - 9 8 O . Whittaker, R. H. 1 9 6 2 . C l a s s i f i c a t i o n of N a t u r a l Communities. Bot. Rev. 2 8 ( l ) : l - 2 3 9 . . 1 9 6 7 . G r a d i e n t a n a l y s i s o f v e g e t a t i o n . B i o l . Rev. 4 2 : 2 0 7 - 2 6 4 . W l l l a r d , B. E. 1 9 6 3 * P h y t o s o c i o l o g y of the a l p i n e tundra of T r a i l Ridge, Rocky Mountain N a t i o n a l Park, Colorado. Ph.D. t h e s i s . Botany Department, U n i v . of Colorado, B o u l d e r . Wynne, F. E. and S t e e r e , W. C. 1 9 4 3 * The bryophyte f l o r a of the e a s t c o a s t of Hudson Bay. B r y o l o g i s t 4 6 : 7 3 - 8 7 . Young, S. B. 1 9 7 1 . The v a s c u l a r f l o r a of S t . Lawrence I s l a n d , w i t h s p e c i a l r e f e r e n c e to f l o r i s t i c z o n a t l o n i n the a r c t i c r e g i o n s . Contrb. Gray Herb. No. 2 0 1 , 1 1 5 PP« 227 Appendix A r S T A T I O N INST . '•'.ONTH DAY YEAR NO. ;••! i ,\. i - , A X . A VG . byO_<> 4 . 5 6 15 69 4 32 33 52.50 0.5 7 WEEKLY VALUE 4 32 33 32.50 0.57 \ 5 6 16 69 8 31 33 31.67 0.99 b 6 17 69 a 31 33 32.12 0.83 4 5 6 IH 69 8 31 3 2 31.o2 0.51 4 ... 5 . ... 6 ... 19 . 69 . o . . . 31 34 32.5u . 1 . 4 1 4 5 6 - 20 69 6 33 35 34.00 0.92 4 5 6 21 69 8 33 5 4 5 3.50 0.53 4 5 6 22 69 4 3 3 33 33.00 0 . OU WEEKLY VALUE 52 31 35 32.63 1.1b . . . 4 . 5 v 6 . 22 69 4 33 34 33.50 0.5 7 4 5 6 23 69 8 34 35 34.37 0.51 4 b 6 24 69 8 3 4. 38 3 5.50 1.69 4 b 6 2b 69 b 35 37 36.37 0. 74 4 b 6 26 69 b 34 37 3 5.37 1.40 4 b 6 27 69 b 36 3 7 3O.50 .0.53 - 4 * . ..... . b . 6 ... . . . 23 69 8 ... 35 36 35. 12 0.35 4 5 6 29 69 8 3 4 34 34.00 0. 0 o ; WEEKLY V A L U E 60 3 3 38 3 5.20 1.2M 4 b 6 30 69 8 34 3 6 3 4.87 0.99 4 b 7 1 . 69 b 33 34 33.62 0.51 _ 4 b . 7 2 69 8 31 32 3 1.37 0.51 4 b 7 3 69 8 31 35 32.37 1.76 4 b 7 4 69 8 35 37 35.75 0.88 4 b 7 b 69 6 35 36 3 5.62 0.51 4 b 7 6 69 8 34 35 3 4.37 0.51 WEEKLY V A L U E 56 31 3 7 34.00 1.76 4 b 7 7 69 8 34 35 34.50 0.5 3 . . . . ... ..... 4 b 7 8 69 a 33 34 3 3.50 0.53 4 b . 7 9 69 a 32 34 3 3.12 0.83 4 b 7 10 69 8 32 34 3 3.00 J . 75 4 b 7 11 69 8 34 37 35.62 1.40 . . . . . . 4 b .. 7 . . 12 ... . 69 . . 8 34 36 . 35.37 0.91 4 b 7 13 69 u 32 3 3 32.50 0.53 WEEKLY V A L U E 56 32 37 3 3.94 1.39 4 b 7 14 69 6 32 34 33.00 0.92 4 b 7 15 69 e 33 34 33.50 0.53 4 ...... . 5 . 7 .... 16 69 . .. 6 ... 31 . 32. 31.37 . 0 . 5 1 4 5 7 17 69 8 3 0 32 31.25 0.68 4 b 7 Id 69 8 32 35 33.37 1.30 4 b 7 19 69 8 32 34 3 3.12 0.64 4 b 7 • 20 69 a 31 33 3 2.12 0.83 WEEKLY V A L U E 56 30 35 32.53 1.19 4 b 7 21 69 8 32 34 3 3.00 0.92 4 b 7 • 22 69 8 32 34 3 3.37 0 . 7 4 4 b 7 23 69 8 30 32 31.25 0 . c o 4 b 7 24 69 8 30 34 32.25 1. 75 4 b 7 25 69 0 33 34 3 3.37 0.51 ro . _ 4 . ..... 5 7 26 69 8 33 34 33.37 0.5 1 ro 4 b - 7 27 69 8 35 40 37. b7 • 2.23 CO WEEKLY V A L U E 56 30 4 0 33.50 2.27 r 4 7 23 69 8 4 0 41 40.7b 0.46 . . _ 1 T 4 0 7 29 • 69 6 39 4 J 39 . bo 0.b3 i 4 b 7 30 69 8" 37 3a 37.12 0.3b 4 7 31 69 8 3 b 37 36.2b 0.70 j 4 8 1 69 8 34 36 3b.12 0.99 I 4 5 3 2 69 8 35 36 35.12 0.3b 4 8 3 69 8 3b 38 3 6.50 1. 4 l WEEKLY VALUE b6 34 41 3 7.19 2. 14 4 5 " " 8 4 69 8 36 36 37.12 " 0.63" ' •• - - • — -4. 8 b 69 8 .34 37 3b.7b 1. 16 4 b 8 6 69 8 33 35 34.00 0.92 4 5 8 7 69 8 34 3b 34.37 O.bl 4 5 8 8 69 6 33 34 33.37 C . b l 4 b 8. 9 . . . 69 8 33 36 34.37 1.30 4 5 8 10 69 8 34 3b 34.7b 0.46 WEEKLY VALUE 56 33 38 34.62 1.42 4 8 11 69 8 34 36 3 4.87 0. 99 4 8 12 69 6 33 36 . 3b.00 1.19 ' 4 " ...8 13 69 8 33 33 33.00 0.00 4 b 3 14 69 8 32 33 32.12 0.3b 4 5 8 l b 69 B 30 31 30.12 0.3 D 4 b 8 16 69 8 29 31 2 9.87 0 . o 3 4 b 8 17 69 6 <i9 33 3 0 • b 0 1.64 WEEKLY VALUE b4 2 9 36 32.27 2. 2 0 . VALUE FOR SUMMER 506 2 9 41 34.02 2.23 ro ro STAT 1 I.\ST . •••lONTH DAY YEAR NO. r'.AX. AVG. s .0. 4 - \ b 6 l b 69 4 • 2 7 27 27 .00 0 .00 WEEKLY VALUE 4 27 27 27 .00 0 . 00 > 4 15 6 16 69 8 27 27 2 7 00 0 .00 s 4 15 6 17 69 8 27 27 2 7 . 0 0 0 .00 4 l b 6 16 69 6 26 26 26 .00 0 .00 ..4 . ... l b 6 ... 1 9 .. 69 ii <i6 ... 26 26 CO . 0 . 0 0 4 l b 6 20 69 8 26 27 26 62 0 . b l "" 4 1 b 6 21 69 6 27 27 27 00 0 . 00 u l b 6 22 69 O 27 29 27 ,50 0 . 7b WEEKLY VALUE b6 2 6" 29 26 73 0 .61 _. 4 . . ..lb.. . 6 . 23 . 69 8 28 30 26 .7b 0 . 7 0 4 l b 6 24 69 8 23 30 29 .00 0 .92 ' 4 l b 6 2b 69 8 •' 28 30 29 00 0 .53 4 1 ~> ft ?6 69 8 26 31 29 .2b 1 .26 4 lo 6 27 69 8 31 32 31 .12 0 .35 4 l b 6 23 69 6 30 31 30 .50 0 .54 ' . _ 4 l> ... 6 ....2 9 . .. . . 69 0 .. 100 0 0 00 0 . 0 0 WEEKLY VALUE 46 26 32 29 .56 1 .10 ' 4 l b 6 30 69 0 ' 100 0 0 00 0 . uo . 4 1 b 7 . 1 69 4 2 9 29 2 9 00 0 .00 4 l b 7 2 69 8 27 26 2 7- 3 7 0 .51 4 . . l b ... . 7 .. .. 3 69 . 8 2 7 30 27 7b 1 •16 4 l b 7 4 69 8 30 31 . 30 2b _* .46 4 l b • 7 . b 69 3 30 31 30 .67 0 .3b • 4 l b 7 6 69 8 30 31 30 12 0 .35 WEEKLY VALUE 44 27 31 2 V. 24 1 .49 .4 ... l b 7 .. 7 .. 69 .... o .... . 30 31 ... 30 . b 0 _ 0 . 5 3 • 4 l b 7 8 69 8 2 9 30 29 bO 0 .53 4 l b 7 9 69 8 29 2 9 2 9. 0 0 0 .00 4 1 b 7 10 69 8 29 29 29. 00 0 . Oo 4 1 b 7 11 69 6 29 29 2 9 00 0 .00 4 l b 7 12 69 8 30 31 30. 67 0 .35 - 4 . . . l b 7 ..... 13 . .. 69 .. 3 . .. 26 30 .. ... 28. 87 ...... o .99 WEEKLY VALUE 56 28 31 29. b3 0 . 6 9 4... 15 7 14 69 8 28 29 26. 2b 0 .46 4 l b 7 15 69 8 29 30 29 62 0 .51 4 l b 7 16 69 8 28 29 26 bO 0 .53 .4 .... l b 7 .. 17. 69 ...... 8. 2 3... .. 26._.. 28. 00, 0 • 00 4 l b 7 18 69 8 23 29 23. 12 0 .35 4 15 7 19 69 e 2 9 30 29 bO 0 .53 4 l b 7 20 69 8 23 29 28 3 7 0 .51 WEEKLY VALUE b6 23 30 26 62 0 .75 4 . .. 15 7 .... 21 . 69 .. 6 ... .... 29 29.. . .. 29 00 _ 0 .00 „ 4 l b 7 22 69 8 2 9 30 29 87 0 . 3 b 4 l b 7 23 69 6 29 30 29. 37 0 . b l 4 l b 7 24 69 8 27 28 27. 37 0 . b l 4 l b 7 2b 69 8 23 29 28. 7b 0 . 4 0 • 4 15 7 26 69 8 29 29 29. 00 0 .00 .4 .. 15. 7 .... 27 69 6 29 33 30. 12. 1 .55 - - - • WEEKLY VALUE 56 27 33 29. 0 7 1 . 05 O 4 l b 7 2 3 69 8 3 3 36 3b. 00 1 .06 15 7 29 69 8 36 3 8 36.87 0.83 15 7 30 69 8 33 35 3 3 . 0 I 0.64 15 7 31 69 8 32 33 32.37 0.51 15 8 1 69 -:. 8 30 32 30.87 0.64 4 15 a 2 69 8 31 31 31.00 0.00 \ 4 15 9 3 69 8 31 31 3 1.00 0.00 ' WEEKLY VALUE 56 30 38 33.00 2.2c 4 . 15 . . .... 8 . .4 69 4 32 ...... 33 32.75 0.50 4 15 8 5 69 8 33 34 33.37 0.51 4 15 8 6 69 8 31 34 3 2.37 1. 50 4 15 8 7 . 69 3 30 31 . 3 0.37 0.51 4 15 8 8 69 8 30 31 30.37 0.51 4 15 8 9 69 8 29 29 29.OJ 0 . UO 4 15 8 10 . 69 8 29 30 29.37 0.51 WEEKLY VALUE 52 29 34 3 0.96 1.74 4 15 8 11 69 8 30 30 30. 00 0 . UJ 4 13 8 12 69 8 30 32 3 1.00 1 .06 4 15 8 13 69 8 31 31 3 1.00 0.00 , 4. . 1 5 . 3 14 69 8 29 31 29.75 0.88 4 15 8 15 69 8 28 29 2 8.25 0.4o 4 15 8 16 69 . 8 27 28 27.50 0.53 4 15 8 17 69 6 28 2 9 28.16 0.40 WEEKLY VALUE 54 27 32 29.42 1.44 VALUE FOR SU!' MER 480 26 38 29.54 2.12 • ro S T A T I O N I .'-.ST . XCMTH DAY Y E A : ? MO. A V O . S. 0. 4 1 K 6 15 69 4 3 3 37 35.25 1.70 WEEKLY V A L U E 4 33 37 3 5.25 1.70 V 4 I t 6 16 69 8 31 39 3 4 . b 7 3. 04 4 12 6 17 69 8 33 41 3 6.75 3.05 4 18 6 13 69 8 34 39 36.50 2 . 00 „ , ...4 . - . • 15 6 .. IV . 69 ri 33 . 41. ... 37.62 3.24 4 6 20 69 8 35 43 39.00 3.46 4 lis 6 21 69 8 34 40 37.25 2.37 4 I t 6 22 69 8 3 3 38 35.37 1.92 WEEKLY VALUE 56 31 43 36.76 2.9 3 . 4 ... . . . I t 6 23 69 3 35 .. 3 8 ... 36.12 1.12 4 1 ^  6 24 69 8 3 4 46 40.25 5.03 4 1 6 25 69 8 37 44 40.62 2.5 5 4 i .• i .. 5 26 69 S 35 44 3 8.87 3.83 4 1 6 2 7 69 8 3 7 42 59.75 1 . 9 0 4 6 6v 35 39 37.37 1.18 4 ... u . . 6 .. 29 . . . 69 8 34 3d 3 6.00 1.7 7 WEEKLY VALUE 56 34 46 3 8.42 3.22 4 6 30 69 u 3 5 42 3 8.12 2.90 4 7 69 0 34 3 9 36.00 1.92 •4 7 2 69 S '33 ' 34 3 3.25 0.46 4 ..... i o 7 ... ..... ...... .69 . 8 3 3 • 43 3 7.50 4.40 4 1 ~ 7 4 69 8 3 3 43 40.50 "1.77 4 1t 7 5 69 8 33 43 4C.37 1.59 4 - l c 7 69 c> 35 3 8 3 6.50 0.7 5 WEEKLY V A L U E 56 33 43 3 7.46 3.24 _ 4 . i : .. . 7 ... ._ .... 7 ._ _. 69 . . .3 34 3 6. 3 6.00 1.51 4 1 c 7 3 6 9 8 3 3 39 35.75 2.4 3 4 7 y 69 Q 33 33 35.25 1.66 4 1 „ 7 10 69 8 3? 37 3 4.75 1.83 4 1 o 7 l l 69 s> 34 44 3 9.12 3.79 4 7 12 69 S 35 3 9 37.37 1.59 4 . . .It . . . . . . 7 _.. 13 69 .. o . 32 3 6 3 4.12 1.45 WEEKLY VALUE 56 32 44 3 6.05 2.6 0 4 7 14 69 0 3 3 3 9 36. 2-J 2.4 3 4 7 15 69 34 37 3 5.50 1.06 4 1 7 16 69 y 3 2 35 33.25 1.16 . 4.. 1.: . .. 7 ...17... .69 . 8 .. . 32 35 ..... 3 3.62 . 1.1? 4 I t 7 13 69 8 3 3 40 36.50 2.97 4 i , O 7 19 69 e 33 36 3 4.37 i . 3 0 4 l ••; 7 20 69 . 8 31 3 5 3 3 . 0 0 1 . 3 0 WEEKLY VALUE 56 31 4 0 3 4.64 2. 15 4 -. l J - 7  21 .. .69 . <_< 32 3 3 .... 35.12. 2.4 1 . . . 4 ' l b 7 22 69 8 34 37 3 5.00 0 . 9 2 4 I d 7 L .' ' 69 u 32 34 3 3.62 0 . 7 4 4 l . i '7 24 u 31 4 0 ' 35.75 3.4? 4 1 K 7 25 69 U 34 3 a 3 5.50 1.41 4 l:-. 7 26 69 S 3 4 3 3 3 5.75 1 . 6 6 4 ... ._ . . . 10 • 7 .. 2 7.... 69 o 3 8 47 4 3.62 3 , 7 7 t\> WEEKLY V A L U E 56 31 47 36.33 3.7;- V J J ro 4 1.-. 7 23 69 •3 46 4b 46.75 0.70 r 4 T_ 7 2 9 4 0 4 4 4 2.12 i . 5 5 4 1 - 7 •i * u J 9 3 9 3 9 • 0 0 0 . 0 0 4 i ••• 7 31 j t 35 41 i C • £ - 2.12 4 1:. Q 1 3 33 4 2 3 7.3 7 i . 4o 4 1 3 2 69 8 35 39 37.12 1.5 5 \ 4 l : : • 3 69 8 35 4 5 39.67 3.64 r W E E K L Y V A L U E 56 33 4 3 4 0.07 3. Hi 4 * i 5 4 (-• 9 8 3 6 42 3 9.12 2.03 4 _ — p 3 69 8 32 37 35.37 1.5 9 "" 4 13 0 6 69 8 31 41 3 6.67 3.90 4 I n 8 7 . 69 _ 3 3 36 • 3 4.57 0.99 4 16 8 6 69 e 31 37 3 4.2b 2.2b 4 1 J 3 9 69 s 32 43 37.87 4.12 . . 4 la ... 8 . . 10 69 8 35 36 3 5.62 0.51 W E E K L Y V A L U E 56 31 43 36.23 ~ 2 . 9 0 4 • 16 11 6J 3 24 40 3 7.00 2.39 4 1 3 e 12 69 8 3 5 36 3 6.62 0.91 4 16 8 13 69 8 •i C -J -> 33 36.37 1.30 4» 13 8 14 69 .6 3 2 34 33.25 0.70 4 16 8 15 69 6 30 3 3 31.50 " 1.19' " 4 13 e 16 69 8 28 36 31.87 3.09 4 16 8 17 69 6 2 9 39 33.66 4.67 W E E K L Y V A L U E 54 28 4 0 34.3b 3.06 V A L U E FOR SUMMER 506 28 48 36.70 3.51 -ro 10 1 6 23 6 9 4 32 33 32 .73 0 .50 1 i : 6 24 69 8 30 .3 4 3 2 12 i .55 1 1 o 6 25 69 8 29 34 3 1 3 7 . 06 S 1 10 6 2b 69 6 29 36 3 1. 67 2 6 5 / 1 10 6 27 69 6 21 3 5 32. 67 I 72 1 10 6 2 8 69 6 30 33 3 1. 3 7 1 Oo .... 1 ....10. . & . . . . . . . 2 9 _ 69 ...... 8 29 31 30 00 J 92 .... WEEKLY VALUE 52 29 36 3 1 6 9 1 . 66 1 10 6 3 0 69 8 2 9 31 30. 12 0 64 1 10 7 1 69 8 29 33 3 i 12 i 1 •10 7 2 69 8 30 3 0 30. 0 00 ...... ...... 1 . . 1 0 .. . .. 7 .... 3 ... ..... . 69 R 30 . . 3 9 2 4 12 3 .83 1 10 7 4 69 8 33 40 36. 37 2 .72 1 10 7 5 69 8 33 36 34 87 1 . 12 1 10 '7 6 69 8 32 33 32 3 7 0 .51 WEEKLY VALUE 56 29 40 32 .71 2 97 - - . • 1 . .... 1 0 . 7 7 .. _ 69 8 31 34 32 .75 1 . 16 . 1 10 7 3 69 8 30 35 32 .50 2 .07 1 10 7 9 69 . 6 30 33 3 1 37 1 . 30 1 1 0 7 10 69 6 30 33 3 1 2 5 1 .38 1 10 7 11 69 8 30 3 9 34 62 3 .62 1 10 7 12 69 8 31 35 33 37 1 .40 . I 10 . 7 ..... 13 69 ...... Q 29. 30 29 62 0 .51 WEEKLY VALUE 29 39 32 21 2 .33 1 10 7 14 69 6 3 0 33 31 62 1 .40 1 10 7 15 69 8 31 33 3 1 75 0 86 1 10 7 16 69 8 29 30 29 62 0 51 1 . . 10.. . 7 ....17 ..... _. .. . 69 .._ 8 .. 29 30 2 9 62 0 51 1 10 7 13 69 8 30 35 32 50 2 .20 1 10 7 19 69 6 30 31 30 50 0 .53 1 10 7 20 69 8 26 30 2 9 25 1 03 WEEKLY VALUE 56 26 35 30 69 1 61 - 1 . 10... .. 7 ., 21 ... 69 8 29 32 30 50 1. 4 1..; 1 10 7 - 22 69 8 31 31 3 1 00 0 00 1 10 7 23 69 8 30 30 30 0 0 0 .00 1 1 0 7 24 69 8 2 9 34 31 50 2 07 1 10 7 25 69 8 31 33 32 00 0 75 1 10 7 26 69 8 31 33 3 1 75 0 .66 .. 1 ......10... 7. 2 7 69 . 8 . .. . 33 .. 40 .. .. . 37 25 2. 91 . . WEEKLY VALUE 56 29 40 32 oo 2 .67 1 10 7 26 69 8 40 40 4 0 0 0 0 .00 1 10 7 29 69 8 35 36 36 . 5 0 1 .06 1 10 7 30 69 e 33 35 34. 00 0 53 1 . . .. 10 7 31 69 ... . . 8 32 .... ... 3 5 ..... . 33 50 1. 06 . ' . . 1 10 8 1 69 6 30 35 3 2 2 5 2. .05 1 10 8 2 69 8 31 34 32 25 1 03 1 10 8 3 69 8 30 37 3 3 87 2 65 WEEKLY VALUE 56 30 40 34 62 2 95 1 10 . .- . .. S '. . 4 69 8 32 35 34. 00 1. 41 ro 1 10 8 5 69 8 30 34 32. 00 1 51 1 10 8 & 69 S 29 34 31 .75 2 12 1 l o 8 7 69 6 30 32 3 1 25 0 70 WEEKLY VALUE 9~ 10 T79~ 69 30 JO 3 2 29 _3.1_ 35 33 35 3_C...2.5_ 3 2.75 3 2.12 32.01 _:J..46_ 2.37 0.3 3 1.77 10 11 69 31 35 32.H7 1.36 10 10 10 10 10 12 13 14 15 16 17 69 69 69 69 69 69 32 32 30 26 27 27 34 33 32 30 31 34 3 3 . 2 3 32.62 3 0.67 29.00 26.62 2 9.83 0.7 0 0.51 0.64 0.53 1.59 3.0b WEEKLY VALUE 54 27 35 3 1.05 2.27 VALUE FOR SUMMER 442 27 40 32.13 2.60 ro _• STATION INST « MONTH DAY YEAf? NO.. M I iU rtfl X . A V(j . . • . - S.D. 1 13 6 23 69 4 33 33 33 .00 0.00 . X 13 6 24 69 8 31 34 32 .50 1.19 1 13 6 25 69 8 31 33 3 1 87 0.83 1 13 6 26 59 0 30 34 32 .00 1.92 f 1 13 6 27 69 8 32 34 33 .00 0.75 1 13 6 28 69 8 30 32 3 1 .00 0.53 _ 1 .. 13 .._ 6 . . 29 69. .. .... 8 30 . . 31 .30 .50 0.53 WEEKLY VALUE 52 30 34 31 .90 1.31 1 13 6 30 , 69 8 31 32 ' 3 1 25 0.46 1 13 7 1 69 8 29 33 3 1 37 1.59 1 13 7 2 69 6 32 33 32 50 0.5 3 .. 1 13 . .7 3 69 6 . 3 2 36 34 25 1.48 1 13 7 4 69 8 34 36 34 7 5 0.88 1 13 7 5 69 8 31 33 32- 25 0.88 13 7 6 69 8 30 31 30 25 • 0.4o WEEKLY VALUE 56 29 36 32 3 7 1.79 1 » — 13 . .... . .7 . 7 69 8 30 31 30 50 0.53 1 13 7 8 69 8 30 33 3 1 50 1.19 1 13 7 9 . 69 8 30 32 30 87 0.83 1 1 3 7 10 69 8 30 31 30. 37 0.51 1 13 7 11 69 8 30 34 32 50 1.69 1 13 7 12 69 8 30 34 32. 50 1.41 .. 1 .13 .... 1 . 13 69 6 29 . 30 2 9 62 0.51 WEEKLY VALUE 56 29 34 31. 12 1.42 1 13 7 14 69 8 30 33 31 3 7 1.50 1 13 7 15 69 8 31 32 3 1 50 0.53 1 13 7 16 69 8 30 30 30. 0 0 0. 00 -. 1 13 7 17 69 8 30 30 30. 00 0. ou 1 13 7 18 69 8 3 3 31. 25 1. 16 1 13 7 19 69 8 30 31 3 0 12 0.3 5 1 13 7 20 69 8 29 30 29 37 0.51 WEEKLY VALUE 56 29 33 30. 51 1.07 -. 1 . 13 . ..7 . . . . 21 69 8 .... 29 31 30. 25 0.88 1 1 3 7 22 69 8 31 31 • 3 1 00 0.00 1 13 7 23 69 8 30 31 30. 12 0.35 1 13 7 24 69 S 29 33 31. 12 1.64 1 13 7 25 69 8 31 31 3 1. 00 0 . U 0 1 13 7 26 69 8 30 32 3 1 12 0.99 . 1 ...13 7 ... . 27 69 8 33 38 36 12 1.95 WEEKLY VALUE 56 29 38 3 1 53 2.19 1 13 7 28 69 8 38 39 38 75 0.46 1 13 7 29 69 8 36 37 36 37 0.51 1 13 7 30 69 8 34 33 34. 12 0.35 . 1 13 7 .. 31 69 8 .. . 3 2 34 3 3. 3 7 . .... 0.74 .. _ . . 1 13 8 1 69 8 30 34 32. 2 5 1 .48 1 13 8 2 69 8 31 32 3 1. 50 0.53 1 13 8 3 69 6 31 35 33. 12 1.64 WEEKLY VALUE 56 30 39 34. 21 2.52 - 1 13 . 8 . 4 69 8 33 35 34. 00 0.92 ro 1 13 e 5 69 8 31 34 32. 62 1.06 1 13 8 6 69 8 30 33 31. 50 1.41 ON >- 1 13 8 7 69 8 30 32 31. 00 0.53 WEEKLY VALUE 13 13 13 3 9~ 10 11 69 69 69 69 3 e 3 56 30 29 31 29 31 31 33 32 35 34 30.25 3 1.50 31.12 31.71 32.37 0.46 1.35 0.35 1.53 1.50 13 13 13 13 13 13 12 13 14 15 16 17 69 69 69 69 69 69 33 32 30 28 26 27 34 33 31 29 29 31 33.62 32.50 30.25 28.37 27.62 28.50 0.51 0.53 0.46 0.51 1.06 1.64 WEEKLY VALUE 54 26 34 30.53 2.41 VALUE FOR SUMMER 442 26 39 3 1.74 2.15 ^3 — ' — ' r STATIG.N I S 7 . •'ONTH DAY YEA:< iiQ. ;•! I i-i• ,-iAX. AVIS. — , -1 1(: 6 2 3 69 4 33 43 36.25 4.27 1 It- 6 •24 69 8 32 47 40.37 6.02 1 16 6 25 69 S 33 44 36.25 4.06 1 It, 6 26 69 6 32 45 37.87 4.91 1 16 6 27 69 8 35 42 38.12 2.99 1 16 6 28 69 8 33 39 35.75 1.73 . . 1 . .. 16 . .. 6 29 . . 69 .. 8 31 37 34.12 2.29 WEEKLY VALUE 52 31 4 7 3 7.48 4.21 1 16 6 30 . 69 8 3 3 39 3 5.87 2.2 9 1 1 6 7 1 69 8 32 39 35.75 2.43 1 16 7 2 69 8 31 35 32.87 1.24 . 1 . 1 6 7 3 69 8 33 44 36.25 4.66 A 16 7 4 69 8 37 46 41.50 3.96 1 16 ' 7 5 69 8 3.6 42 39. 12 2.29 1 16 7 6 69 6 35 38 36.25 1.03 WEEKLY VALUE 56 31 46 37.06 3.77 . 1 * .. . 16 . . 7 . . .. . 7 69 8 33 3 9 36.62 2.26 1 ll> 7 8 69 8 32 40 3 5.37 2.97 1 16 7 9 69 6 32 33 3 4.50 2.26 1 16 7 10 69 8 31 36 3 4.00 2.67 1 16 7 11 o9 8 3 3 46 3 t; . 6 7 4.91 1 16 7 12 69 8 33 40 37.37 2.55 _ 1 . .16 . .. 7 . . 1 3 69 8 3 0 36 33.12 2.03 WEEKLY VALUE 56 30 46 3 5.69 3.37 1 16 7 14 69 8 31 40 35.87 3.43 1 16 7 15 69 8 33 39 3 5.25 . 2.65 1 16 7 16 69 8 31 3 5 32.75 1.5 6 . 1 . . 16 .... 7 17 .. 69 . 8 30 35 33.12 1.95 1 K; 7 13 69 8 32 42 36.87 4.15 1 I t 7 19 69 3 32 36 34.00 1.51 1 16 7 20 69 8 31 35 32.67 1.64 WEEKLY VALUE 56 30 42 3 4.39 2.89 . 1 16 7 21 69 . 8 .. 30 39 . 34.50 3.66 1 16 7 22 69 8 34 35 34.37 0.51 1 16 7 23 69 8 30 34 32.50 1.41 1 16 7 24 69 8 30 40 35.37 3.96 1 16 7 25 69 8 32 36 34.25 1. 91> 1 16 7 26 69 8 33 3 9 35.62 2.55 1 16 ... 7 ... .2 7 . . . . 6 9 8 . 4 0 .. 50 4 5.73 .3.49 WEEKLY VALUE 56 30 50 3 6.U5 4. a 7 1 16 7 28 69 8 45 49 46.62 1.30 1 16 7 29 69 8 39 45 41.23 1.75 1 16 7 30 69 8 38 40 3 9.12 0.64 • 1 16 .... 7 31 ... 69 8 32 . .. 43 ... 37.50 .. 3.54 ... 1 16 8 1 69 8 30 42 36.00 4.59 1 16 8 2 69 8 33 41 36.50 2.92 1 16 8 3 69 8 33 47 39.12 5.38 WEEKLY VALUE 56 30 49 39.44 4.61 ... X 16 . .. .... .8 4 69 8 3 3 .. 41 37.50 3.07 ...... » . 1 16 8 5 69 8 30 35 34.12 1.80 V-O 1 16 8 6 69 8 29 41 35.87 4.85 00 1 16 e 7 69 8 30 35 33.00 1.51 1 1 WEEKLY VALUE 16 -T6" 16 16 S 8 8 S 9 10 11 69 69 69 69 8 • a 8 56 29 33 29 34 37 -4-ir 35 44 42 32.12 j 0.62 34.37 34.80 37.75 3 .04 5.75 0.74 3.69 3.15 1 1 1 1 1 16 16 .16. 16 16 JJL. 12 13 14. 15 16 17 69 69 .69 69 69 69 34 34 30 28 25 26 39 38 33 31 37 40 36, 35. 31. 29. 31. 32, 12 75 62 62 12 50 1.45 1.75 1.06 1.06 4.82 6.65 WEEKLY VALUE 54 25 42 33.53 4.22 VALUE FOR SUMMER 442 25 50 36.06 4.35 ro STATION 5 19 6 29 69 4 27 2 7 2 7 . 0 0 0.00 WEEKLY VALUE 4 27 27 2 7 . 0 0 0.00 V 5 19 6 30 69 8 27 28 2 7 . 3 7 0.51 / 5 19 7 1 69 8 26 26 2 7 . 3 7 0.91 5 19 7 2 69 3 26 26 2 6 . 0 0 0.00 5... -19 _ 7 ... _ _ . 3 69 ... 8.. 26 27 2 6.62 0.51 5 19 7 4 69 8 27 29 2 6 . 0 0 0.75 5 19 7 5 69 3 27 2 9 27 . 7 5 0.70 5 19 7 6 69 8 27 29 27.50 0.75 WEEKLY VALUE 56 26 29 27.23 0. 89 _ 5 19 7.._ 7 . 69 . . 8 28 29 28.25 0.46 5 19 7 8 69 8 27 28 . 27.50 0.53 . 5 19 7 9 69 8 27 29 2 7 .75 0. 70 5 19 7 10 69 8 27 29 2 7 . 7 5 • 0.88 5 19 7 11 69 6 28 30 29.12 0.B3 5 19 7 12 69 8 27 30 2 8.87 1.12 .. 5 v 19 7 ... 13 69 8 26 27 26.62 0.51 WEEKLY VALUE 56 26 30 27.98 1.07 5 19 7 14 69 8 27 29 2 8.12 0 . 9 9 5 19 7 15 69 3 28 29 2o.25 0.46 5 19 7 16 69 8 27 28 27.25 0.46 .. 5 .. ...... 19 _ -. _.. 7 . 17 69 8 27 28 2 7.62 0.51 5 19 7 13 69 8 28 31 2 9 . 0 0 1.06 5 19 7 19 . 69 8 27 28 2 7.50 0.53 5 19 7 20 69 8 26 26 26.67 0.83 WEEKLY VALUE 56 26 31 27.60 0.96 . 5 19 . . . . 7 . . 21 69 ........ 8 26 29 27.75 1.23 5 19 7 22 69 8 28 29 28.75 0.46 5 19 7 23 69 8 27 29 2 8 . 0 0 0.53 5 19 7 24 69 8 27 31 29.00 1.60 5 19 7 25 69 8 28 29 2o.62 0.51 5 19 7 26 69 8 23 30 28.62 0. 74 5 19 7 ... 27 .. . 69 8 .. . 31 34 32.67 1.35 WEEKLY VALUE 56 26 34 29.06 1.68 5 19 7 2 3 69 8 34 35 3 4.50 0 . 5 3 5 19 7 29 69 8 31 34 32.12 1.24 5 19 7 30 69 B 30 30 30.00 O.OU . 5 . ... .. 19 7 . 31 . 69 ... : .6 2 8 ... 31 29.62 1.06 5 19 8 1 69 6 23 31 2 9.37 1.30 5 19 6 2 69 8 29 31 29.50 0.75 5 19 8 3 69 6 29 32 30.62 1.40 WEEKLY VALUE 56 23 35 30.82 2 . 0 0 .. 5 . 19 ... 8 . 4 . .. 69 .. 8 . .. 29 .. 31 .. . 3 0.37 .0.91 _ _ . 5 19 8 5 69 a 2 3 31 29.62 1.06 5 19 8 6 69 8 27 . 31 29.00 1.30 5 19 8 7 69 8 28 29 2 8.87 0.35 5 19 8 3 69 8 27 29 28.00 0.75 5 19 8 9 69 8 27 31 29.37 1.34 5 . 19 . .. 8 . 10 ... 69 8 29 30 29.12 0 . 3 5 ro WEEKLY VALUE 56 27 31 29.19 5 .1.9. . . . . . 8 . 11 69 3 28 32 30. 12 1.60 r 5 19 8 12 69 . 8 30 3-2 31.37 0 .^ 7 4 5 19 8 13 ' 69 0 29 31 30.12 0.83 5 19 8 ' 14 69 8 28 29 28.67 0.35 5 IS 8 l b 69 8 27 2b • 27.37 0.51 5 19 8 16 69 8 26 28 26.50 0.75 s 5 19 8 17 69 6 25 29 26.83 1.47 WEEKLY VALUE 54 25 32 26.81 2.00 VALUE FOR SUMMER 394 25 35 28.68 l . b 5 ro STATION INST. MONTH DAY YEAR MO. Ml.M. MAX. AVG • S. U. 5 8 6 24 6 9 4- 3 1 3 3 3 2 . 5 0 1 . 0 0 5 H 6 25 6 9 8 2 9 3 6 3 2 . 1 2 2 . 7 4 5 8 6 2 6 6 9 8 2 7 3 6 3 1 . 0 0 3 . 7 4 V 5 u 6 2 7 6 9 8 3 1 3 5 3 3 . 6 2 1 . 5 0 f 5 8 6 23 6 9 . 8 3 1 3 3 3 1 . 3 7 0 . 3 3 5 8 6 2 9 6 9 a 2 9 3 3 3 1 . 2 5 1 . 7 5 —..WEEKLY—VALUE.. ••- • - •• - 4 4 . . . . . . . . . . 2 7 3 6 . 3 2 . 0 2 2 . 3 1 - - -5 8 6 3 0 6 9 8 3 1 3 4 3 2 . 1 2 1 . 3 5 r> o 7 1 6 9 8 3 1 3 4 3 2 . 5 0 1 . 1 9 5 8 7 2 6 9 8 3 0 3 2 3 0 . 5 2 0 . 7 4 5 6 7 3 6 9 8 3 0 3 7 3 3 . o 7 2 . 9 4 .- 5. ... .. 8 . . 7 . .. 4 6 9 8 3 4 3 9 3 7 . 1 2 2 . 1 0 5 8 7 5 6 9 8 3 3 3 6 3 4 . 6 2 1 . 0 6 5 8 7 6 6 9 8 3 2 3 3 3 2 . 3 7 0 . 5 1 WFFKlY VALUE 5 6 3 0 3 9 3 3 . 3 2 2 . 4 9 5 8 7 7 6 9 8 3 2 3 5 3 3 - 7 5 1 . 0 3 . 5 „ . . 8 7 . ... . 3 . . 6 9 8 3 1 3 6 3 2 . 7 5 1 . 8 3 5 3 7 9 6 9 8 3 1 3 3 3 1 . 8 7 0 . ; ( 3 5 a 7 1 0 6 9 8 3 0 3 3 3 1 . 1 2 1 . 1 2 7 1 1 6 9 8 3 1 3 9 3 5 . 2 5 3 . 4 5 5 8 7 1 2 6 9 8 3 3 3 6 3 4 . 6 2 1 . 0 6 5 6 7 1 3 6 9 3 2 9 3 3 3 1 . 0 0 1 . 6 0 — WEEKLY--VALUE.. . . 5 6 . 2 9 . . . . 3 9 . . . 3 2 . 9 1 2 . 2 9 - -5 3 7 1 4 6 9 3 3 1 3 6 3 3 . 7 5 2 . 3 7 5 3 7 1 5 6 9 8 3 2 3 5 3 3 . 3 7 1 . 0 6 5 8 7 1 6 6 9 8 3 U 3 2 3 1 . 0 0 0 . 9 2 5 8 7 . 1 7 6 9 8 3 0 3 3 3 1 . 2 5 1 . 1 6 5 . 3 . . . . 7 . . 1 3 6 9 . . . . 8 .. . 3 1 . 3 6 3 3 . 6 2 2 . 3 2 5 8 7 1 9 6 9 8 3 0 3 3 3 1 . 6 2 1 . 0 6 5 3 7 2 0 6 9 8 2 9 3 2 3 0 . 2 5 1 . 1 6 WFFK! Y V A L U F 5 6 2 9 3 6 3 2 . 1 2 1 . 9 8 5 6 7 2 1 6 9 8 2 9 3 4 3 1 . 6 2 2 . 3 8 C a 7 2 2 6 9 8 . . . 3 1 3 3 3 1 . 7 5 . .. 0 . 7 0 .. ... . . . 5 8 7 2 3 6 9 8 2 9 3 1 3 0 - 6 2 0 . 7 4 5 3 7 2 4 6 9 8 2 9 3 6 3 2 . 6 2 2 . B 7 H 7 2 5 6 9 8 3 1 3 4 3 2 . 3 7 0 . 9 9 5 8 7 2 6 6 9 8 3 2 3 5 3 3 . 1 2 1 . 2 4 5 8 7 2 7 6 9 8 3 6 4 4 4 0 . 8 7 3 . 1 3 - - WEEKLY—VALUE. .... .. . - ... . . 5 6 . . 2 9 4 4 . 3 3 . 3 5 . . . 3 . 7 0 5 8 7 2 3 6 9 6 4 1 4 4 4 2 . 5 0 . 1 . 0 6 5 8 7 2 9 6 9 8 3 6 4 0 3 8 . 7 3 1 . 2 3 5 c 7 3 0 6 9 6 3 5 3 6 3 5 . P O 0 • 'J 3 5 8 7 3 1 6 9 8 3 2 3 9 3 5 . 6 2 2 . 1 9 . 5 . 8 . 8 ... 1 6 9 . . 8 . . . 3 1 3 7 .. . 3 3 . 5 7 . . .. 2 . 3 3 _ _. ... _ 5 8 8 2 6 9 8 3 2 3 5 3 3 . 3 7 1 . 3 0 5 a 8 3 6 9 8 3 3 4 1 3 7 . 1 2 3 . 1 3 WEEKLY VALUE 5 6 3 1 4 4 3 6 . 6 7 3 . 4 4 5 6 8 4 6 9 6 3 4 3 6 3 5 . 3 7 0 . 9 1 5 . ... . . . o 8 . . .. 5 6 9 8 3 0 3 4 3 3 . 1 2 1 . 3 3 . . . r o 5 8 8 6 6 9 8 • 2 9 3 6 3 3 . 6 2 2 . 7 7 5 8 8 7 6 9 8 3 0 3 3 3 2 . 1 2 0 . 9 9 r o 5 8 8 8 6 9 8 2 9 3 2 3 0 . 1 2 1 . 3 5 b - 5 -WEEKLY VALUE 8 9 10 11 12 69 69 69 69 a 8 56 8 8 28 32 28 32 34 3-7 33 37 38 36 -3-3-.-0Q-32.75 32.87 34.62 35.00 -^ -.-7-4-0.46 2.38 2.72 0.75 5 5 _ 5 5 5 WEEKLY VALUE 13 14 15 16 17 69 69 69 69 69 8 6 8 6 54 33 30 23 26 27 26 36 32 29 33 36 33 34.37 31.75 28.62 29.62 31.66 32.25 1. 18 0.70 0.51 2.77 3.82 3.08 VALUE FOR SUMMER 434 26 44 33.23 3.10 ro r STATION INST . MONTH DAY YEAR NO. M I i\ . - MAX*- — AVG. - 3.0. . . . 5 11 6 29 69 4 25 26 25.25 0.50 WEEKLY VALUE 4 25 26 25.25 0.50 V 5 11 6 30 69 8 25 25 2 5 . 0 0 O.OU 5 11 7 1 69 8 24 25 24.62 0.51 5 1 1 7 2 69 8 24 24 2 4 . 0 0 0 . 0 0 -5 — .. - 11 . ._. 7 ... ...3 .... 69 8 .. 24 . 24 . ..... 2 4 . 0 0 0 . 0 0 5 11 7 69 8 24 25 24.75 0 . 4 6 5 11 7 5 69 8 24 25 . 24.37 0.51 5 1 1 7 6 • 69 8 24 . 26 24.62 0.74 WEEKLY VALUE 56 24 26 24.48 0 . 5 3 ... 5 . -.. _. . 11 ...... .7 7 . 69 . . . 8 . .. 25 26 2 5.50 0 . 5 3 5 11 7 8 69 8 25 25 2 5 . 0 0 0 • 0 0 5 11 7 9 69 8 25 25 2 5 . 0 0 O.UO 5 1 1 7 10 69 8 25 25 2 5 . 0 0 0 . 0 0 5 11 7 11 69 8 25 26 2 5.50 0 . 5 3 5 11 7 12 69 8 24 26 24.87 0.83 5 »• - -.. 11 . .. ..... .7. . .. .13 . . . 6 9 8 23 .23 .... 23.Oo O.OU WEEKLY VALUE 56 23 26 24.83 0.8o 5 1 1 7 14 69 8 23 24 2 3.50 0.53 5 11 7 15 69 8 24 25 24.37 0.51 5 11 7 16 69 S 24 24 2 4 . 0 0 0 . 0 0 - 5 - - 11 7 17 69 8 24 24 2 4 . 0 0 0 . 0 0 5 11 7 18 69 8 24 25 24.87 0.35 5 11 7 19 69 8 24 25 24. 12 0.35 5 11 7 20 69 8 24 25 2 4.25 0 . 4 b WEEKLY VALUE 56 23 25 24. 16 0.53 ... 5 . 11 . 7 21 69 8 .... .. . 2 5 26 25.37 C.51 5 1 1 7 22 69 8 26 26 2 6 . 0 0 O.Oo 5 11 7 23 69 8 24 26 2 5. 0 0 0 . 7 5 6 11 7 24 69 8 24 25 24.62 0 . 5 1 5 11 7 25 69 8 25 25 2 5 . 0 0 0 . 0 0 5 1 1 7 26 69 .8 25 25 2 5 . 0 0 0 . 0 0 .. 5 11 . 7 . 2 7 ... 69 8 27 29 26.37 0.91 WEEKLY VALUE 56 24 29 2 5.62 1.30 5 1 1 ' 7 78 69 8 29 30 29.62 0.51 5 11 7 2 9 69 8 28 29 23.50 0 . 5 3 5 11 7 30 69 8 27 28 2 7.12 0.35 . . . 5 .-..11 .. ..7 31 .... 69 8 ... 26 . . .. 27 . 26.87 . ... . 0.33 5 11 8 1 69 8 26 27 26.50 0 . 5 3 5 11 8 ? 69 8 26 26 2 6 . 0 0 O.Ou 5 1 1 8 3 69 8 26 2 9 27.25 1.26 WEEKLY VALUE 56 26 30 27.41 1 . 3 0 . .5- . •• . .11 . .8 4 69 3 . . 27 29 .. 28.12 .. 0.99 . 5 11 8 5 69 8 26 23 2 7.37 0. 74 5 11 6 6 69 8 26 27 26.50 0 . 5 3 5 11 8 7 69 8 26 26 . 2 6 . 0 0 0 . 0 0 5 11 8 8 69 6 25 26 2 5.50 0 . 5 3 5 11 8 9 69 8 25 28 26.62 1.40 . 5 11 .8 10 . 69 a 27 27 2 7 . 0 0 0 . 0 0 WEEKLY VALUE 56 25 29 26.73 1.08 5 11 S 11 69 8 27 28 27.37 0 . 5 1 11 11 11 11 11 13 14 1.5 16 17 69 69 69 69 69 -2-T-27 26 26 25 25 27 26 26 26 27 "2"7.i2 2 7.00 2 6.00 26.00 25.37 2 5.66 0.35 0 . ou o.oo o.oo 0.51 1.03 WEEKLY VALUE 54 25 28 26.3B U.85 VALUE FOR SUMMER 394 23 30 .65 1.49 ;-'.o.vTtf ~ * ~TE>A~Y , r ' V i-',A X)J~> , A • 0 • r r ; " - " " : > v ^ . ^ ^ 3 & 7 5 69 3 30 31 30 33 0 . 3 7 3 6 7 6 69 8 29 30 2 9 . 25 0 . 4 6 © WEEKLY VALUE 11 29 31 2 9 54 0 . 6 8 > 3 6 7 7 69 e 2 9 30 29 5u 0 .53 3 u 7 S 69 a 29 31 2 9 8 7 0 . 99 3 6 7 9 69 8 29 31 29 87 0 . 9 9 3 6 7 10 69 8 29 32 30 00 1 .19 3 6 7 11 69 a 30 33 3 2 50 2 . 2 0 © 3 6 7 12 69 8 30 33 32 12 1.12 3 6 7 13 69 6 . 2h 29 2 ii be O . D l WEEKLY VALUE 56 2 8 35 3 0 35 1 .74 3 6 7 14 69 8 29 31 2 9 8 7 0 . 9 9 3 6 7 15 69 8 30 31 30 12 0 .35 © 3 r. 7 16 69 8 2d 29 2b 62 0 .51 3 6 7 17 69 8 28 30 29 0 j 0 .92 3 6 7 18 . 59 8 30 34 3 1 62 1.59 © 3 6 7 19 69 . 6 29 31 30 2 5 0 . 7 0 3 6 7 20 69 8 28 30 28 U7 0 .83 © WEEKLY VALUE 56 28 • 34 29 76 1.30 3 6 7 21 69 29 32 30 5u 1.41 3 6 7 22 69 8 30 31 30 b7 0 .33 © 3 .. 0 7 23 69 8 29 30 29 7 5 0 .46 3 6 7 24 .'.9 8 2b 32 3 0 0 0 1.92 3 6 7 25 69 8 30 32 3 1 00 0 . 5 3 @ 1 5 7 26 69 8 30 3 1 3u 75 0 .4 j 3 6 7 27 69 8 32 39 3(. oo 3 .11 WEEKLY VALUE • 56 28 39 3 1 26 2 .40 3 5 7 20 69 8 39 39 39 0 0 0 . 0 0 3 6 7 29 69 8 38 36 25 1. 15 © 3 5 7 30 69 8 SI 3 5 3 3 37 0 . 74 3 & 7 31 69 8 3 3 34 3 3 50 0 .53 3 6 8 1 69 5 31 34 3 2 50 1 .41 3 6 2 69 8 ' 32 34 32 8 7 0 . 6 3 3 6 S 3 69 8 32 37 34 37 2. 13 WEEKLY VALUE 56 31 39 34 55 2 .42 3 <j s 4 69 8 34 36 35 3 r 0. 74 3 6 8 5 69 8 31 35 33 2 5 1 .48 3 . 6 — . a 6 69 . . 6 30 3 p 32 3 r 2 .13 3 6 7 69 t 31 34 32 30 l . O O 3 0 a n 69 8 <;9 32 30 23 1.03 © 3 6 8 9 69 8 30 34 32 CO 1 .92 3 6 9 10 69 8 32 33 32 75 0 . 4 6 WEEKLY VALUE 56 29 35 32 64 1 .93 3 6 9 11 69 8 31 34 32 75 1 .16 3 fa 8 12 69 6 33 34 3 3 75 0 . 4 5 3 6 3 13 69 8 3 3 33 3 3 00 C . 00 3 6 8 14 69 8 31 32 3 1 25 0 . 4 6 3 6 8 15 59 6 29 30 29 12 0 . 3 5 3 & 8 16 69 8 28 31 29 12 1.35 3 S 8 17 69 6 29 34 30 50 2 . 0 7 WEEKLY VALUE 54 23 34 3 1 3 8 2 .01 © '.72 V A L U E F O R S U ' ••'Cr< 345 28 39 31.59 2.54 r STATION INST. MONTH DAY YEAR NO. MIN. MAX. AVG. S.O. 6 2 6 14 69 2 30 31 30.50 0.70 6 2 6 •15 69 8 30 30 30.00 0. 00 . WEEKLY VALUE V 10 30 31 30.09 0.31 f 6 2 6 16 69 8 30 31 30.50 0.53 " 6 2 6 17 69 8 31 31 3 1.00 0.00 6 . ._ 2 .. . 6 18 .... 69 8 31 31 31.00 O.OU 6 2 6 19 69 8 31 33 32.00 0.92 6 2 6 20 69 8 32 34 33.12 0.99 6 2 6 21 69 g 31 34 3 2.50 1.19 6 2 6 22 69 8 31 33 3 1.62 0. 74 WEEKLY VALUE 56 30 34 3 1.67 1.12 6 2 6 23 69 8 32 ... ^ 3 3.25 1.28 — — -6 - i 6 24 69 8 52 37 34.37 1.92 (' 2 6 25 69 8 3 3 36 3 4.50 1.06 6 2 6 26 69 8 32 38 34.75 2.60 6 7. 6 27 69 8 34 37 3b.bO 1.19 - - 6 .. 6 .. . . . 2 8 ... 69 . . 8 33 34 3 3.75 0.46 6 2 6 29 69 8 31 34 3 2.87 1.12 WEEKLY VALUE 56 31 38 34.14 1.66 6 2 6 30 69 u 3 3 35 35.02 0.74 6 2 7 1 69 8 33 3b 3 3.7b 0.86 6 ... 2 . . _ 7 . 2 .. . 69 ... 8 32 33 32.25 0.46 6 2 7 3 69 8 32 37 34.2b 2.25 6 2 7 4 69 8 34 39 36.37 2.19 6 2 7 5 69 8 3 3 36 34.7b 1.16 6 2 7 6 69 8 33 33 33.00 0 . UO WEEKLY VALUE 56 32 39 3 4.00 1.77 6 2 7 7 69 8 33 34 33.62 " 0.31 • 6 2 7 8 69 e 32 3 7 3 4.37 1.6b 6 2 7 9 69 8 33 33 34.00 0.7b 6 • 2 7 10 69 a 33 34 33.50 0.53 6 2 7 11 69 8 33 39 3 6.00 2.44 . 6 -> t. 7. . 1 2 69 3 3 36 34.62 .0.91 6 2 7 13 59 b 31 33 32.25 0 . do WEEKLY VALUE 56 31 39 34.05 1.62 6 2 7 14 69 8 32 36 3 3.7b 1.58 6 2 7 15 69 8 33 35 33.75 0.70 - . -. - ..— 6 2 „ . 7 16 69 . . 6 32 33 3 2.50 0.53 6 2 7 17 69 8 32 34 33.OU 0.92 6 2 • 7 13 69 8 33 38 35.25 2.12 6 2 7 19 69 8 33 34 33.37 0.51 6 2 7 20 69 a 31 33 32.25 0 . bd WEEKLY VALUE 56 31 3 8 3 3.41 1.44 6 2 7 21 69 a 32 35 3 3.37 " 1.30 6 2 7 22 69 8 34 34 34.00 0.00 6 2 7 23 69 8 32 34 33.62 0.74 6 2 7 24 69 3 32 37 34.37 1.92 6 2 7 25 59 8 3 3 34 33.75 0.46 . . 6 . 2 . ...7 26 69 8 33 35 33.b7 0.99 6 2 7- 27 69 8 ' 35 40 38.00 2.07 WEEKLY VALUE 56 32 40 34.42 1.92 STATION INST. MONTH DAY YEAR NO. M I X . MAX. AVG. 8 . 1 ) . 6 2 6 14 69 2 30 31 30.50 0.7o 6 2 6 15 69 8 30 30 30.00 0.00 WEEKLY VALUE 10 30 31 30.09 0.31 6 2 6 16 69 8 30 31 30.50 0.53 6 2 6 17 69 e 31 31 3 1.00 0.00 6 2 . 6 18 69 8 31 31 31.00 0.00 6 2 6 19 69 8 31 33 32.00 0.92 6 2 6 20 69 8 32 34 33.12 0.99 6 2 6 21 69 g 31 34 32.50 1. 19 6 2 6 22 69 8 31 33 3 1.62 0. 74 WEEKLY VALUE 56 30 34 3 1.67 1.12 6 2 6 23 69 8 32 35 33.25 1.28 ---- -6 *) <_ 6 24 69 8 52 37 34.37 1.92 ft 2 6 25 69 8 3 3 36 34.50 1 .06 6 c 6 26 69 e 32 38 34.75 2.60 6 2 6 27 69 8 34 37 35.50 1.19 6 * _ 6 28 69 8 33 34 3 3.75 0.46 6 2 6 29 69 8 31 34 32.87 1.12 WEEKLY VALUE 56 31 38 34. 14 1.66 6 2 6 30 69 3 3 3 35 33.62 0.74 6 2 7 1 69 8 33 35 33.75 0.86 6 -_ . 2 7 2 69 8 32 33 32.25 0.46 6 2 7 3 69 8 32 37 34.25 2.25 6 2 7 4 69 8 34 39 36.37 2. 19 6 2 7 5 69 8 33 36 34.75 1.16 6 2 7 6 69 « 33 33 33.00 0 . OO WEEKLY VALUE 56 32 39 34.00 1.77 6 2 7 7 69 8 33 34 33.62 0.51 - - . — .. . 6 2 7 8 69 8 32 3 7 34.37 1.6a 6 2 7 9 69 8 33 35 34.00 0.75 6 2 7 10 69 8 J 3 34 33.50 0.53 6 2 7 11 69 8 33 39 36.00 2.44 6 2 7 12 69 a 33 36 34.62 0.91 6 2 7 13 69 a 31 33 32.25 0.8o WEEKLY VALUE 56 31 39 34.05 1.62 6 2 7 14 69 8 32 36 33.75 1.5a 6 2 7 15 69 8 33 35 33.75 0.70 .. . .. 6 .._ .. 2 ___7. 16 69 8 32 33 32.50 0.53 6 2 7 17 69 8 32 34 33.00 0.92 6 2 7 13 69 8 33 38 35.25 2.12 6 2 7 19 69 8 33 34 3 3.37 0.51 6 2 7 20 69 8 31 33 32.25 0. bd WEEKLY VALUE 56 31 38 33.41 1.44 6 2 7 21 69 8 32 35 33.37 1.30 6 2 7 22 69 8 34 34 34.00 0.00 6 2 7 23 69 8 32 34 33.62 0.74 6 2 7 24 69 8 32 37 34.37 1. 92 6 7 25 59 8 33 34 33.75 0.46 . . 6 2 7 26 69 8 33 35 33.o7 0.99 6 2 7 27 69 8 35 40 38.00 2.07 ( V WEEKLY VALUE 56 32 40 34.42 1.92 -N3 < 2 7 7 2 3 2 9 69 6 9 8 8 3 9 3 3 4 0 3 9 3 9 . 6 2 3 8 . 5 0 0 . 5 1 0 . 5 3 6 6 2 7 3 0 6 9 8 3 6 3 7 3 6 . 7 5 0 . 4 6 6 2 7 3 1 ' 6 9 8 3 4 38 3 6 . 5 0 1 . 3 0 6 2 8 1 6 9 8 3 3 3 8 3 5 . 3 7 1 . 9 2 \ 6 2 8 2 6 9 8 3 4 3 6 3 4 . 6 2 0 . 9 1 f 6 2 8 3 69 8 3 3 4 0 3 6 . 8 7 2 . 9 y W E E K L Y V A L U E 56 3 3 4 0 3 6 . 8 9 2 . 14 6 2 8 4 6 9 6 3 6 3 9 ' 3 7 . 6 2 1 . 4 0 — — • - — - •-6 2 8 5 69 8 3 4 3 8 3 5 . 6 2 1 . 5 0 6 2 8 6 69 6 32 3 9 3 5 . 5 0 2 . 6 1 6 2 8 7 69 8 35 3 6 3 5 . 3 7 0 . 5 1 6 c. 8 8 69 8 3 3 3 6 3 4 . 2 5 1 . 0 3 6 t. 8 9 69 8 3 3 3 9 3 5 . 7 5 2 . 5 4 6 2 8 1 0 6 9 8 3 4 3 6 3 5 . 0 0 0 . 5 3 W E E K L Y V A L U E 56 3 2 3 9 3 5 . 5 8 1 . 8 3 6 2 8 1 1 69 6 3 4 3 8 3 5 . 7 5 1 . 9 8 6 2 8 1 2 6 9 8 3 5 3 7 3 6 . 5 0 0 . 7 5 . 6 » . . . 6 2 2 8 8 13 14 6 9 69 8 9 3 5 3 4 3 7 3 5 • 3 5 . 7 5 3 4 . 1 2 0 . 8 8 " 0 . 3 5 - T 6 2 8 1 5 6 9 8 3 2 3 3 3 2 . 5 0 0 . 5 3 5 2 8 16 69 8 3 0 3 4 3 1 . 7 5 1 . 4 6 6 2 8 17 6 9 8 3 0 3 6 3 2 . 8 7 2 . 6 4 W E E K L Y V A L U E 56 3 0 3 8 3 4 . 1 7 2 . 2 1 6 2 8 1 8 6 9 2 3 4 3 4 3 4 . 0 0 0 . 0 0 ' " ~ • ' W E E K L Y V A L U E • 2 3 4 3 4 3 4 . 0 0 o . o o V A L U E . . . F O R SUMMER 5 1 6 30 4 0 3 4 . 1 8 2 . 2 6 - - • -- - - - - - - - 1  " - - " - " - - - - - - - • • - • -. ro -p-oo STATION" IN ST. MONTH DAY YEAR NO. M I N • M A X . A V G . S^IU ; _ •• 6 14 7 15 • 69 '3 28 29 28.66 0.57 6 14 7 _ 16 69 8 2 7 23 27.37 0.51 0 14 7 17 69 8 27 23 27.50 0.53 V ft 14 7 19 69 8 23 29 28.75 0.46 1 6 14 7 19 69 8 28 29 28.75 0.46 6 14 7 20 69 8 28 28 28.00 0.00 WEE.<LY_ VALUE - • - . . 43 .. . 2 7 . . 29 28.11 0.73 • • • - - • - • 6 14 7 21 69 8 28 29 28.62 0.51 6 14 7 22 69 8 2 9 29 29.00 0. Ull 6 14 7 23 69 8 27 29 28.00 0.75 6 14 7 24 69 8 27 23 27.50 0.53 6 14 . 7 ... . 25 69 8 28 28 28.00 0.00 6 14 7 26 69 8 2a 28 28.00 0. O o 6 14 7 27 69 8 28 29 2 8.75 0.46 WFFKLY V A I . U F 56 27 29 23.26 0.64 6 14 7 28 69 8 29 ' 30 29.75 0.46 . . 6 x . . . . 14 ... 7 .. . 29 69 . 8 29 30 2 9.50 0.53 6 14 7 30 69 8 28 29 2 8.87 0.35 6 14 7 31 69 8 27 28 2 7.75 0.46 6 14 8 1 69 8 27 28 27.75 .0.46 6 14 3 2 69 6 28 26 2 a . 00 0.00 6 14 a 3 69 8 27 29 28.00 0.75 WEEKLY VALUE 56 27 30 .28.51 0.91 • - - - — - - -6 14 8 4 69 8 23 29 28.87 0.35 6 14 fl 5 69 a 2 8 29 28.75 0. 46 6 14 8 6 69 8 28 28 26.00 0.00 6 14 8 7 69 8 28 28 28.00 0.00 -.- 6 14 .. . 8. . . . . 8 .. 69 8 2 3 ... 23 28.00 .0.00 6 14 8 9 69 3 28 28 2 8.00 0.00 6 14 8 10 69 8 28 29 23.12 0.3 5 WEEKLY VALUE 56 28 29 23.25 0.43 6 14 8 11 69 8 • 23 29 28.50 0.53 . 6 14 . .8 . . . .12 69 8 .... 29 29 2 9.00 . 0 . 0 0 6 14 8 13 69 8 28 29 2 8.60 0.53 6 14 8 14 69 a 23 28 2 8 . C O 0.00 ft 14 8 15 69 8 27 23 2 7.87 0.35 6 14 8 16 69 8 27 27 27.00 0. 00 6 14 8 17 69 8 27 28 27.50 0.53 -. - - WEEKLY. -VALUE. ... •- - .. 56 27 2 9 2 8.05 .... 0.72 • - --6 14 8 IS 69 2 28 28 28.00 0 . 00 WEEKLY VALUE 2 23 28 2 8.00 0. 00 VALUE FOR SUMMER 269 27 30 28.24 0.71 * -- • ro S T A T I O N 1i JST . ••'.ONTH DA_Y v r . A : < ^ILlt •/•A K . - I ' W ' J » $ . 0 . 2 1 7 6 2 3 6 9 3 3 0 3 2 3 1 . 0 0 1 . 0 0 2 1 7 6 2 6 69 8 3 0 3 8 3 3 . 6 2 3 . 1 5 2 1 7 6 2 7 69 8 3 3 3 7 3 5 . 0 0 1 . 6 0 • -- -S 2 1 7 6 2 8 69 8 32 3 4 3 3 . 2 5 0 . 7 0 ? 2 1 7 6 2 9 69 8 30 3 4 3 2 . 5 0 1 . 6 0 W E E K L Y V A L U E 3 5 3 0 3 8 3 3 . 3 7 2 . 1 4 «. 1 7 6 3 0 69 8 3 3 3 5 3 3 . 7 5 0 . 6 8 - • 2 1 7 7 1 6 9 8 3 3 3 4 3 3 . 6 2 0 . 5 1 2 i 7 7 2 • 69 8 32 32 ' 3 2 . 0 0 0 . 0 0 2 17 7 3 69 8 3 1 3 8 3 3 . 3 7 2 . 7 9 2 1 7 7 6 9 8 3 4 4 0 3 6 . 7 5 2 . 5 4 2 ... 1 7 . . . 7 5 6 9 8 3'+ 3 6 3 5 . 1 2 0 . 8 3 2 1 7 7 6 69 8 3 3 3 5 3 3 . 5 0 0 . 7 5 W E E K L Y V A L U E 5 6 3 1 4 0 3 4 . 0 8 2 . 0 1 2 17 7 7 6 9 8 3 4 3 5 3 4 . 5 0 0 . 5 3 2 1 7 7 8 6 9 8 3 3 3 6 3 4 . 1 2 1 . 3 5 2 v 17 7 9 69 8 3 3 3 4 3 3 . 2 5 0 . 4 6 2 1 7 7 10 69 8 3 1 3 4 3 2 . 6 2 1 . 3 0 2 l 7 7 1 1 69 8 3 3 39 3 5 . 8 7 2 . 6 9 2 1 7 7 69 8 32 3 6 3 5 . 1 2 1 . 4 3 2 1 7 7 1 3 69 8 3 1 32 3 1 . 3 0 0 . 5 3 W E E K L Y V A L U E 56 3 1 3 9 3 3 . 8 5 1 . 9 2 ~ " l 7 " ~~7 1 4 69 8 3 1 3 5 3 3 . 1 2 1 . 3 8 '• ' - • 2 1 7 7 1 3 69 6 3 3 3 5 3 3 . 7 5 0 . 7 0 2 17 7 1 6 69 3 3 1 3 3 3 1 . 8 7 0 . 6 4 2 1 7 7 1 7 69 8 31 3 3 3 2 . 1 2 0 . 9 9 2 1 7 7 1 3 6 9 8 3 3 37 3 4 . 7 5 1 . 7 5 2 1 7 7 . 1 9 69 8 32 3 4 3 2 . 6 2 0 . 7 4 2 1 7 7 2 0 6 9 u 3 1 32 3 1 . 5 0 0 . 5 3 W E E K L Y V A L U E 56 3 1 3 7 3 2 . 8 2 1 . 5 2 2 1 7 7 2 1 69 8 3 1 3 4 3 2 . 5 0 1 . 4 1 2 1 7 7 2 2 6 9 8 3 3 • 3 3 3 3 . 0 0 0 . 0 0 2 1 7 7 2 3 6 9 8 31 3 3 3 2 . 6 2 0 . 7 4 2 1 7 7 2 4 6 9 8 " ' 3 1 3 7 3 4 . 0 0 •" 2.3o 2 1 7 7 2 5 6 9 8 33 3 4 3 3 . 6 2 0 . 5 1 2 1 7 7 2 6 69 a 3 3 3 6 3 4 . 2 5 1 . 4 6 2 1 7 7 2 7 6 9 8 36 4 1 3 9 . 3 / 2 . Oo W E E K L Y V A L U E 5 6 31 4 1 3 4 . 1 9 2 . 6 3 .... i 7 - - -7" 2 8 69 8 4 0 4 1 4 0 . 8 7 0 . 3 5 • — 2 1 7 7 2 9 69 8 38 4 0 3 9 . 1 2 0 . 6 4 2 1 7 7 3 0 6 9 8 3 6 3 7 3 6 . 1 2 0 . 3 3 2 1 ! 7 3 1 69 8 3 5 3 9 3 6 . 6 2 1 . 3 0 2 1 7 8 1 69 8 3 3 4 0 3 6 . 0 0 2 . 8 2 2 .. 1 7 . .. 8 ... . 2 .. . 6 9 8 3 4 39 3 6 . 0 0 1 . 6 5 2 1 7 8 3 6 9 8 3 5 4 3 3 8 . 6 2 3 . 1 5 W E E K L Y V A L U E 5 6 33 4 3 3 7 . 6 2 2 . 5 0 2 1 7 8 4 69 8 3 6 4 0 3 8 . 2 5 1 . 9 0 2 1 7 8 5 69 6 3 5 3 9 3 6 . 3 7 1 . 5 0 2 . 1 7 . . 8 . . 6 69 . 8 32 4 0 3 5 . 3 7 . 3 . 4 2 --- - - fvj •• 2 1 7 8 7 69 8 3 5 3 8 3 5 . 6 2 1 . 0 6 2 1 7 8 5 69 8 32 3 3 3 3 . 5 0 1 . 1 9 O V- 2 17 e 9 69 8 32 3 9 3 5 . 12 3 . 1 3 17 10 _69 WEEKLY VALUE WEEKLY VALUE 56 0 3 3 32 100 40 j 6. 0 o 35.75 0.00 "CV5^ 2.37 0.00 2 17 3 11 69 8 35 39 36.25 1.63 2 17 8 12 69 8 36 39 37.75 0.88 2 17 8 13 69 8 35 37 3 5.50 0.75 _ 2 . .. . 17 . . .. 8.... . 14 69 ...... 8 33 34 33.12 0.35 2 17 8 15 69 e 31 32 31.50 0.5 3 2 17 3 16 69 8 29 36 3 2.00' 2.62 ? 17 8 17 69 8 30 38 33.75 3.49 WEEKLY VALUE 56 29 39 34.26 2.80 -.2 - - .17. . 8 . 18 69 . 2 . 34 34 34.00 0.00 WEEKLY VALUE 2 34 34 34.00 0.00 VALUE FOR SUMMER 429 29 43 34.55 2.67 ro STATION INST . MONTH DAY YEAR MO. MIN. MAX. _ . A V C S. 0. < 2 2 2 WEEKLY VALUE 7 7 7 6 6 6 27 23 29 69 69 69 4 3 3 20 33 32 30 30 34 33 34 34 33.75 32.50 3 1.87 32.50 0.50 0.5 3 1.55 1.23 2 2 ... 2 2 7 7 . 7 .. . 7 7 7 6 7 7 7 7 30 1 ... 2 3 4 . 69 69 69 69 69 8 8 8 8 8 32 33 31 32 33 36 34 32 34 34 33.37 33.50 31.62 32.67 33.50 1.50 0.53 0.51 0.99 0.53 :  2 2 WEEKLY .VALUE 7 7 7 7 5 6 69 69 8 8 b6 30 30 30 33 31 36 3 1.87 30. 12 32.41 0.83 0.35 1.42 2 2 7 7 7 7 7 8 69 69 8 8 30 30 31 31 30.37 30.25 0.51 0.46 2 2 2 -2 2 WEEKLY VALUE 7 7 _ 7 7 7 7 7 ..7 .. 7 7 9 10 11 12 13 69 69 69 69 69 6 8 8 8 8 56 30 • 30 30 29 23 28 30 30 32 32 29 32 3 0 • U U 30.00 3 1.00 30.87 28.37 30.12 0 • uu 0.00 0. 92 0.9 9 0.51 0.99 2 2 2 2 2 7 7 .. .. 7 7 7 7 7. ._. 7 7 7 14 l b 16 17 13 69 69 69 69 69 8 8 8 8 8 29 30 28 23 30 32 32 29 29 31 30.50 30.87 28.25 28.37 30.25 1.41 0.64 0.46 0.51 0.46 -- • 2 2 . WEEKLY_VALUE 2 2 7 7 7 7 19 20 69 69 8 8 56 29 28 28 30 29 32 29.25 28.62 29.44 0.4o 0.51 . 1 . 2 1 7 7 7 7 21 22 69 69 8 8 29 29 30 30 29.25 29.75 0.46 0.46 2 2 2 7 7 7 7 7 7 23 24 7b . 69 69 69 8 8 8 28 28 30 29 31 31 2 3.75 29.37 3 0.12 0.4b 1.40 0.35 2 2 WEEKLY VALUE 7 7 7 7 26 27 69 69 8 8 56 30 32 28 31 33 33 3 0.37 32.62 30.03 0.5 1 0.51 1.34 2 2 2 2 2 7 7 7 7 7 7 .....7 7 7 8 28 29 30 31 1 69 . 6 9 69 69 69 8 a 8 8 8 34 3 2 32 31 31 34 33 33 32 32 3 4.00 32.62 " 3 2 . 1 2 3 1.87 3 1.37 0.00 0.51 0.35 0.35 0.51 • 2 2 . WEEKLY..VALUE 7 7 . a S 2 3 69 69 8 8 56 31 32 31 32 34 34 3 1.62 32.87 32.35 o. -J l 0.9 9 0.9 8 2 2 7 7 8 8 4 b 69 69 8 8 3 3 32 34 34 33.62 32.87 0.51 0.99 s 2 2 . 2 .. 2 2 WEEKLY VALUE 7 7 .. 7 7 8 8 ...8 6 8 6 7 0 9 10 69 69 69 69 69 3 8 6 8 8 55 31 31 31 31 32 31 53 32 31 33 33 34 3 1.87 3 1.37 3 1.00 31.67 32. 12 32.17 0.83 0.35 0.00 0 . ii 3 0.35 0.99 ro ro i r 12 13 14 15 69 69 69 69 33 32 31 2 9 34 34 33 32 31 3 2.62 3 3.50 3 2.25 3 1.37 29.50 0.91 0.53 0 . 4o 0.51 0.73 2 2 ivEEKL-Y-VALUE... •.'KF:<I Y VAI ur 16 17 18 69 69 69 8 a 56 2 2 28 25 .23 31 31 29 31 . 34 2 8.37 29.25 .30.98 31 31 3 1 3 1 .00 .00 0.51 1.20 1.95 O.Ou 0.00 VALUE FOR SUV.XE?. 414 23 36 31.14 1.74 ro ® 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 9 0 o « ~* 2 5 4 • m 3 > •) -} : j "> i t- > o N r j r\j o o n n r- o r3 r-O SJ O .3 O r- J <-* in r-(O O O -J >o aj co a: r- i ) cr* O »•• . r- r- r- r-<*> ft* O f> rg rsl rg rg f j n !> "3 O O O 3 o - i o o o j o o r> > '3 .3 r-« ^ O .-^  <-j fsj rv -"V 3 o :3 v> ' J i PJ L.I 3 O 3 ,3 .3 3 r * j o r> r-i i r\j r>: r-j rv r« tv ; n m m m i o a r> o * 3 i n 33 IN i n co x> OJ cn -o o D oj crj u0 O B O .11 X) -1 X U ajj g> 30 co i ; io ; : O *0 -O O O •O C »" ifl >o i r\j m in • r- r- r- r- r- r- r~ r~ r- r- r- r- r- r- ! N r- co to a; J i d vT N f l ^ e i a) on c. cr: o"> o i r.i a] a) . g^ o <j i n i!> J l h cc i n o) a; ui to o: o. . rjs .> r> ; r>j rvi o j N r j • r> ^ ^ r,-v rg i v IN eg <\j r\j N < IM rg rg rv <M (N c*i rg rg rv rg r j rg rsj rg i • O t> r-* o-rg rg rvi rg r j STATION INST. MONTH DAY YEAR NO* MIN. MAX. AVG. S.D. 1 6 7 24 68 4 32 33 32.50 0.57 1 6 7 . 25 68 8 32 34 32.37 0.83 1 6 7 26 68 8 31 33 32.25 0.88 1 6 7 27 68 8 31 32 31.12 0.35 WEEKLY VALUE . 28 31 34 32.14 0.97 . 1 6 7 28 68 8 30 34 31.87 1.64 1 6 7 29 68 a 32 34 33. 12 0.83 1 6 7 30 68 a 33 34 33.12 0.35 1 6 7 31 68 a 31 34 32.37 1.18 1 b 8 1 68 a 33 34 33.62 0.51 1 6 8 2 68 8 33 34 33.75 0.46 1 6 . 8 3 68 8 32 34 32.75 0.70 WEEKLY VALUE 56 30 34 32.94 1.06 1 6 8 4 68 8 3 1 33 32.00 0.92 1 6 8 5 68 8 31 32 3 1.62 0.51 1 6 8 6 68 8 31 32 31.62 0.51 1 6 8 7 68 8 31 32 31.12 0.3 3 1 6 8 8 68 8 30 32 30.87 0.63 1 6 8 9 68 8 32 34 32.62 0.74 1 6 8 10 68 8 30 33 31.12 0.99 WEEKLY VALUE 56 30 34 31.57 0.89 1 6 8 11 68 a 29 31 30 .00 0.92 1 6 8 12 68 8 30 32 31.00 0.53 •1 6 8 13 68 8 30 31 30.50 0.53 1 6 8 14 68 a 29 32 30.25 1.23 1 6 8 15 68 a 30 31 30.12 0.35 1 6 8 16 68 a 29 31 29.75 0.88 1 6 8 17 68 8 29 30 29.50 0.53 WEEKLY VALUE 56 29 32 30.16 0.86 1 6 6 18 68 a 29 30' 29.25 0.46 1 6 8 19 68 8 29 31 29.62 0.91 1 6 8 20 68 a 29 30 29.12 0.35 1 6 a 21 68 a 28 29 28.50 0.53 1 6 . 8 22 68 8 28 29 • 28.50 0.53 1 6 8 23 68 5 29 29 29.00 0.00 WEEKLY VALUE 45 28 31 29.00 0.67 VALUE FOR SUMMER 241 28 34 31.14 1.67 © © © © © © © STAT I Uf4 IIN5T » HUN 1 rl UHT T CHH n vu » 1 10 7 10 68 4 36 39 3 7 . 7 6 1 .25 1 10 7 11 68 8 34 37 3 5 . 3 7 1 . 3 0 1 10 7 12 68 6 35 41 3 7 . 8 7 2 . 6 9 1 10 7 13 68 8 . 33 3t> 3 4 . 1 2 0 . 8 3 WEEKLY VALUE 28 33 41 3 6 . 0 7 2 . 3 0 1 10 7 11 68 8 31 30 3 3 . 1 2 l . b b 1 10 7 15 68 8 33 37 3 5 . 0 0 1 .69 1 10 7 16 68 8 34 38 3 5 . 6 2 1 . 4 0 1 10 7 17 68 8 34 35 3 4 . 5 0 0 . 5 3 1 10 7 IB 68 8 32 34 3 3 . 1 2 0 . 8 3 1 10 7 19 66 8 32 37 3 4 . 2 5 1 .83 I 10 7 20 68 8 32 34 3 3 . 2 5 0 . 7 0 WEEKLY VALUE 56 31 38 3 4 . 1 2 1 .59 1 10 7 21 68 8 31 30 3 3 . 0 0 2 . 0 7 1 10 7 22 68 8 33 A l 3 6 . 8 7 3 . 2 7 1 10 7 23 68 B 36 39 3 7 . 0 0 1 . 1 9 1 10 7 24 68 6 33 36 3 4 . 2 5 1 .28 1 10 7 25 68 8 33 37 3 4 . 5 0 1 . 6 0 1 10 7 26 68 8 33 37 3 4 . 7 5 1 . 4 8 1 10 7 27 68 8 33 3!) 3 3 . 3 7 0 . 7 4 WEEKLY VALUE 56 31 ' 41 3 4 . 8 2 2 . 2 6 1 10 7 28 68 8 32 36 3 3 . 7 5 1. 90 I 10 7 29 68 8 33 ' 39 3 5 . 6 2 2 . 6 1 1 10 7 30 68 8 34 36 3 5 . 0 0 0 . 9 2 1 10 7 31 68 8 32 36 3 3 . 7 5 1 .48 1 10 8 1 68 8 34 37 3 5 . 2 5 1 . 1 6 1 10 8 2 66 8 35 37 3 5 . 6 2 0 . 7 4 1 10 8 3 68 8 34 38 3 5 . 7 5 1 .75 WEEKLY VALUE 56 32 39 3 4 . 9 6 1 . 7 3 1 10 8 4 68 8 33 35 3 4 . 1 2 0 . 6 4 1 10 8 5 68 8 32 34 3 3 . 12 0 . 8 3 1 10 S 6 68 8 32 36 3 4 . 1 2 1 .45 1 10 8 7 68 8 32 38 3 4 . 5 0 2 . 2 6 1 10 8 8 63 8 31 36 3 3 . 6 2 1 . 7 6 1 10 8 9 68 8 33 36 3 4 . 6 2 1 . 0 6 1 10 8 10 6b 6 31 36 3 3 . 1 2 1 .95 WEEKLY VALUE 56 31 38 3 3 . 8 9 1 .55 1 10 8 11 68 8 30 34 3 2 . 0 0 1 . 6 9 1 10 8 12 68 8 31 37 3 3 . 8 7 2 . 3 5 1 10 8 13 68 8 33 36 3 4 . 1 2 1.12 1 10 8 14 68 6 31 3b 3 3 . 2 5 1 .90 1 10 8 15 68 8 31 34 3 2 . 6 2 1 . 0 6 1 10 8 16 68 8 31 35 3 2 . 7 5 1 .56 1 10 8 17 68 8 30 34 3 2 . 1 2 1 .45 WEEKLY VALUE 56 30 37 3 2 . 9 6 1 . 7 3 1 10 8 18 68 8 30 33 3 1 . 6 2 1.18 1 10 8 19 68 8 29 34 3 1 . 2 5 1 .83 1 10 8 20 68 8 29 32 3 0 . 3 7 1 .06 1 10 8 21 63 8 '28 33 3 0 . 12 2 . 0 3 • 1 10 8 22 68 8 29 31 3 0 . 0 0 1 . 0 6 1 10 8 23 68 5 30 31 3 0 . 4 0 0 . 5 4 WEEKLY VALUE 45 28 34 3 0 . 6 4 1 . 4 7 e © o © © © © © © © o © © © © © © © VALUE FCR SUMMER 353 28 41 33.85 2.32 ro °5v 5 I A I i U IN 1 1 1 1 WEEKLY VALUE 1 1 1 1 1 1 1 WEEKLY VALUE 1 1 1 1 1 1 1 WEEKLY VALUE WEEKLY VALUE 10 11 12 1 3 . 14 15 16 17 16 19 20 21 22 23 24 25 2 B 27 28 29 30 31 I 2 3 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 66 66 68 68 68 68 68 68 68 68 4 8 8 8 28 8 8 8 8 8 8 8 56 8 8 8 8 6 8 8 56 8 8 8 8 8 6 8 56 36 34 35 34 34 33 34 36 34 33 33 33 33 32 35 37 34 34 34 34 32 33 34 34 33 36 36 3 5-33 37 36 50 3f> 35 25 39 36 75 37 34 75 39 35 71 3D 33 67 3d 35 50 37 36 50 33 34 25 34 33 12 33 33 87 34 33 12 38 34 32 36 33 62 39 36 87 38 37 50 33 34 50 37 35 00 3r> 35 00 34 34 00 39 35 21 36 34 12 3d 35 62 3D 34 62 38 35 12 38 36 75 37 36 62 37 35 67 3d 35 53 1 1 8 4 68 8 34 36 34 87 0 83 1 1 8 5 68 8 34 33 34 25 0 46 1 1 8 6 68 8 33 33 34 00 0 75 1 1 8 7 68 8 33 36 34 12 1 12 1 1 8 8 68 8 33 33 33 87 0 83 1 1 a 9 68 6 34 3b 35 00 0 92 1 1 8 10 68 8 33 36 34 37 1 06 WEEKLY VALUE 56 33 36 34 35 0 92 1 1 8 11 68 8 33 33 33 ,62 0 .74 0 1 1 a 12 68 8 33 3o . 34 37 1 .18 1 1 8 13 68 6 33 34 33 62 0 51 •1 1 8 14 68 8 32 36 34 00 1 .51 © 1 1 8 15 68 8 33 34 33 50 0 .53 1 1 8 16 68 6 " 32 33 33 62 1 . 0 6 i ; 6 17 63 8 33 34 33 50 0 53 0 VALUE 56 32 36 33 7a 0 .93 1 1 8 18 66 8 33 34 33 25 0 46 © 1 1 8 19 68 8 32 34 33 00 0 .75 1 1 8 20 68 8 32 33 32 50 0 53 1 1 8 21 68 8 31 33 31 67 0 83 © 1 1 8 22 63 8 31 32 31 50 0 .53 1 1 8 23 68 4 32 32 32 00 0 . 0 0 VALUE 44 • 31 34 32 .38 0 86 © 57 88 48 16 38 99 51 53 46 35 99 35 41 76 88 53 53 19 92 00 74 12 68 74 95 88 51 63 46 e © © © © © 20 o VALUE F0f< SUMMER 352 31 39 3 4 . 4 4 1 . 6 3 ro •3 © © 1 16 7 10 68 4 39 45 42 25 3 20 1 16 7 11 68 8 36 41 38 87 1 95 1 16 7 12 68 8 37 48 41 87 4 .01 X 16 7 13 68. 8 33 38 36 12 1 45 WEEKLY VALUE 28 33 48 39 42 3 62 1 16 7 14 68 8 3" 41 35 12 3. 72 1 16 7 15 68 8 33 43 37 87 3 83 1 16 7 16 68 8 35 43 38 75 2 91 1 16 7 17 68 8 34 39 36 00 2 13 1 16 7 18 68 8 33 36 3 4 25 1 4b 1 16 7 19 68 8 33 42 36 75 3 41 1 16 7 20 68 8 33 37 34 37 1 59 WEEKLY VALUE 56 31 43 36 16 3 16 1 16 7 21 68 8 31 4 3 36. 87 4. 73 1 16 7 22 68 8 35 4 9 41, 75 5. 14 1 16 7 23 68 8 36 4 4 40. 50 2 77 1 16 7 24 68 8 34 39 36. 50 2 26 1 16 7 25 68 8 34 41 37. 37 2. 82 1 16 7 26 68 8 33 • 40 36. 50 2. 92 1 16 7 27 68 8 33 " 3b 34. 12 1 12 WEEKLY VALUE 56 31 ' 4 9 37. 66 4 00 1 16 7 28 68 8 33 M 36. 75 3. 19 1 16 7 29 68 8 33 45 38. 62 4 62 1 16 7 30 68 8 33 40 36 12 2 85 1 16 7 31 68 8 3 1 40 35. 50 3 42 1 16 8 1 68 8 34 42 37 75 2. 76 1 16 8 2 68 8 35 39 37 62 1 50 I 16 8 3 68 8 34 4 4 38 12 3 31 WEEKLY VALUE 56 31 45 37 21 3 21 1 16 8 4 68 8 33 39 35 37 2 26 1 16 8 5 68 8 32 36 33 75 1 28 » 1 16 8 6 68 8 31 3U 34 62 2 55 1 16 6 7 68 8 31 41 35 25 3 73 1 16 8 8 68 8 29 38 33. 87 3 35 1 16 8 9 68 8 32 4 0 36 50 2. 97 1 16 8 10 68 8 30 39 34 25 3 SO WEEKLY VALUc 56 29 41 34 80 2 95 1 16 8 11 68 8 28 38 32 50 3 58 1 16 8 12 68 8 29 40 34 25 4 09 1 16 8 13 68 8 30 38 34 00 3 11 1 16 8 14 68 8 28 41 34 25 4. 77 1 16 8 15 68 8 3 37 33 12 2 29 1 16 8 16 68 8 29 39 33 12 3 87 I ' 16 8 17 68 8 28 36 32 37 2 92 WEEKLY VALUE 56 28 41 33 37 3 48 1 16 8 18 68 8 30 3ft 32 50 2 32 1 16 8 19 68 8 28 36 32 37 3 11 1 16 8 20 68 8 29 34 30 87 2 .23 1 16 8 21 68 8 '28 3o 30 75 3 32 1 16 8 22 68 8 27 33 30 25 2 .37 1 16 S 23 68 4 29 31 29 75 0. 95 WEEKLY VALUE 44 27 36 31 20 2. 65 © © © 9 VALUE FOR SUMMER 352 27 49 35.54 4.05 9 © ro © © © © © © © 4 2 9 7 tt — s s — 2 ST! 30 30 00 0 00 2  7 11 68 a 29 31 30 25 0 . 70 2 V 7 12 68 8 28 29 28 75 0 . 46 2 9 7 13 . 68 8 28 29 28 50 0 . 53 WEEKLY VALUE 26 28 31 29 23 0 95 2 9 7 14 68 8 29 30 29 • 62 0 51 2 9 7 1$ 68 8 30 30 30 . 0 0 0 >oo 2 9 7 16 68 8 29 31 30 .12 0 64 2 9 7 17 68 8 29 30 29 . 5 0 0 53 2 9 7 18 68 8 29 30 29 37 0 51 2 9 7 19 68 8 28 29 28 87 0 35 2 9 7 20 68 8 28 30 28 . 5 0 0 75 WEEKLY VALUE 56 ' 28 31 29 42 0 .73 2 9 7 21 68 8 30 33 31 37 1 .18 2 9 7 22 68 8 33 34 33 .12 0 .35 2 9 7 23 68 8 31 33 32 12 0 99 2 9 ' 7 24 68 8 31 32 3 1 25 0 46 2 9 7 25 68 8 31 31 31 00 c 00 2 9 7 26 68 8 29 31 30 00 0 75 2 9 7 27 68 8 29 31 30 12 0 99 WEEKLY VALUE 56 29 ' 34 3 1 28 1 26 2 9 7 28 68 8 3 1 32 31 62 0 51 2 9 7 29 63 8 32 33 32 37 0 51 2 9 7 30 68 8 32 33 32 62 0 51 2 9 7 31 68 8 33 34 33 37 0 .51 2 9 8 1 68 8 33 .. 33 3 3 00 0 00 2 9 8 2 68 8 31 ' " 33 32 25 0 £8 2 9 8 3 68 8 30 31 30 62 0 51 WEEKLY VALUE 56 30 34 32 26 0 99 2 9 8 4 68 8 31 31 31 00 0 00 2 9 8 5 68 8 31 32 3 1 75 0 46 » 2 9 8 6 68 8 30 32 31 25 0 70 2 9 & 7 68 8 30 31 30 25 0 46 2 9 8 8 63 8 30 31 30 75 0 4b 2 9 8 9 68 8 28 29 28 87 0 35 2 9 8 10 68 8 28 29 28 25 0 46 WEEKLY VALUE 56 28 32 30 30 1 27 2 V 8 11 68 8 28 30 29 12 0 83 2 9 8 12 68 8 29 30 29 62 0 51 2 9 B 13 68 8 29 31 30 25 0 83 2 9 8 14 68 6 29 30 29 75 0 .46 2 9 8 15 68 8 29 29 29 00 0 00 2 9 8 16 68 8 29 29 29 00 0 00 2 9 8 17 68 8 28 28 28 00 0 00 WEEKLY VALUE 56 28 31 29 25 0 83 2 9 8 18 68 8 28 29 28 50 0 53 2 9 8 19 68 8 28 29 28 75 0 46 2 9 8 20 68 8 28 29 28 37 0 51 2 9 8 21 68 6 •2 8 28 28 00 0 00 WEEKLY VALUE 30 28 29 28 43 0 50 VALUE FOR SUMMER 336 28 34 3 0 . 2 2 1 . 5 8 © © © © © © © © © © © © e © © ro © © i I M l 1UI1 t r i a i • riwit i n MV • 2 7 7 i i 68 2 37 37 37.00 0.00 2 7 7 12 68 8 36 41 3 8.37 2.19 2 7 7 13 68 8 34 • 37 35.75 0 . 8 8 WEEKLY VALUE 18 "34 41 37.05 1.9 3 2 7 7 14 68 8 33 37 34.50 1.51 2 7 7 15 68 8 34 39 36.12 2.10 2 7 7 16 68 8 36 39 37. 12 1.35 2 7 7 17 68 8 36 38 36.75 0 . 6 6 2 7 7 18 68 8 34 36 35. 12 0.63 2 7 7 19 68 8 34 38 3 5.50 1.51 2 7 7 20 63 8 34 35 34.50 0.53 WEEKLY VALUE 56 33 39 35.66 1.59 2 7 7 . 21 68 6 33 39 • 35.25 2.43 2 7 7 22 68 8 34 41 37.75 2 . 6 6 2 7 7 23 68 8 38 41 39.00 1.06 2 7 7 24 68 8 35 37 36. 12 0.83 2 7 7 25 68 8 35 39 36.62 1.59 2 7 7 26 68 8 35 39 36.75 1.43 2 7 7 27 68 6 35 36 35.87 0.35 WEEKLY VALUE 56 33 41 36.76 2.00 2 7 7 28 68 8 34 39 36.50 2.07 2 7 7 29 68 8 35 40 37.37 1.99 2 7 7 30 68 8 36 39 37.25 1.03 2 7 7 31 68 8 34 39 36.75 1.83 2 7 8 1 68 8 37 40 36.00 1.19 2 7 8 2 68 6 38 39 38.37 0.51 2 7 8 3 68 6 36 39 37.62 1.06 WEEKLY VALUE 56 34 40 37.41 1.53 2 7 8 4 63 8 35 38 36.00 1.06 2 7 8 5 . 68 8 34 36 34.62 0.74 2 7 8 6 68 8 34 37 35.25 1.28 2 7 8 7 68 8 34 38 35.50 1.60 2 7 3 8 63 8 34 37 35.62 1.40 2 7 8 9 68 8 35 38 36.62 1.30 2 7 8 10 68 8 33 38 35.12 1.95 WEEKLY V A L U E 56 33 ' 38 35.53 1.43 2 7 8 11 68 8 33 37 34.62 1.68 2 7 8 12 68 8 34 39 36.12 2.03 2 7 8 13 68 6 35 36 36.25 1.38 2 7 8 14 68 6 34 39 35.75 1.98 2 7 8 15 68 8 34 37 •35.12 1.12 2 7 8 16 68 8 34 38 35.25 1.58 2 7 8 17 68 8 33 36 34.25 1.16 WEEKLY V A L U E 56 33 39 35.33 1.66 2 7 8 18 68 a 32 34 33. 12 0.64 2 7 8 19 68 6 32 34 33.00 0.92 2 7 8 20 68 8 32 34 32.50 0.75 2 7 8 21 68 8 31 34 32.50 1.41 2 7 8 22 66 6 32 34 32.83 0.96 WEEKLY VALUE 38 31 34 32.73 0.96 © © © © 9 9 O o © © © •2S © V A L U E FOR SUMMER 3 3 6 3 1 4 1 35.61 2.07 © © © © © © © » 1 , -p r STATION INST . MONTH 3 4 7 3 4 7 3 4 7 3 4 7 WEEKLY VALUE 3 4 7 3 4 7 3 4 7 3 4 7 3 4 8 3 4 8 3 4 8 WEEKLY VALUE 3 4 8 3 4 8 3 4 8 3 4 8 3 4 8 3 4 8 3 4 8 WEEKLY VALUE 3 4 8 3 4 8 3 4 8 3 4 8 WEEKLY VALUE VALUE FOR SUMMER DAY 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 YEAR NO. M I N . MAX. A V S . S . D . 68 2 32 32 3 2 . 0 0 0 . 0 0 68 6 32 33 3 2 . 8 7 0 . 3 5 68 6 33 33 3 3 . 0 0 0 . 0 0 68 8 33 33 3 3 . 0 0 0 . 0 0 26 32 3 3 3 2 . 8 8 0 . 3 2 68 8 33 34 3 3 . 2 5 0 . 4 6 68 8 34 35 3 4 . 2 5 0 . 4 6 68 8 34 35 3 4 . 12 0 . 3 5 68 8 33 34 3 3 . 2 5 0 . 4 6 66 8 34 35 3 4 . 6 2 0 . 5 1 63 8 35 33 . 3 5 . 0 0 0 . 0 0 63 8 34 33. 3 4 . 6 2 0 . 5 1 56 33 33 3 4 . 1 6 0 . 7 5 68 6 33 34 • 3 3 . 1 2 0 . 3 5 68 8 33 33 3 3 . 0 0 0 . 0 0 68 8 33 34 3 3 . 3 7 0 . 5 1 68 3 32 34 3 3 . 0 0 0 . 5 3 68 8 32 33 3 2 . 6 2 0 . 5 1 68 8 33 34 3 3 . 6 2 0 . 5 1 68 8 33 34 3 3 . 2 5 0 . 4 6 56 32 34 3 3 . 1 4 0 . 5 1 68 6 32 34 3 2 . 6 2 0 . 7 4 66 8 33 34 3 3 . 7 5 0 . 4 6 68 8 33 34 3 3 . 1 2 0 . 3 5 68 5 32 33 3 2 . 4 0 0 . 5 4 29 , .32 34 3 3 . 0 3 0 . 7 3 167 32 33 3 3 . 4 2 0 . 8 1 9 9 9 © © © © © o STATION INST. MONTH DAY YEAR NO. M I N . MAX. A V G . S . D . 3 17 7 8 68 3 34 37 3 5 . 3 3 1 .52 3 17 7 9 68 8 34 40 3 7 . 2 5 2 . 5 4 3 17 7 10 68 8 36 42 3 9 . 2 5 2 . 2 5 3 17 7 11 68 3 37 40 39*00 1 . 1 9 3 17 7 12 68 8 38 43 4 1 . 5 0 2 . 8 2 3 17 7 13 68 8 37 40 3 8 . 2 5 0 . 6 8 WEEKLY VALUE 43 34 43 3 8 . 7 9 2 . 5 5 © © © © % ON -4-1 • 1 . | I & 1 « 1 ° | e J ® © 5 I A 1 I'Jri 1N5 1 • KUN 1 M BAT YEAR NO. PIMA. n v SJ • 3 17 7 8 68 3 34 37 3 5 . 3 3 1 .52 3 17 7 9 63 8 34 40 3 7 . 2 5 2 . 5 4 3 17 7 10 68 8 36 42 3 9 . 2 5 2 . 2 5 3 17 7 11 . 68 8 37 40 3 9 . 0 0 1 . 1 9 3 17 7 12 68 8 38 45 4 1 . 5 0 2 . 8 2 3 17 7 13 68 8 37 40 3 8 . 2 5 0 . 8 8 W E E K L Y V A L U E 43 34 45 3 8 . 7 9 2 . 5 5 3 17 7 14 6S 8 • 35 39 3 6 . 7 5 1 .75 3 17 7 15 68 8 36 41 3 9 . 0 0 2 . 2 0 3 17 7 16 6b 8 39 41 3 9 . 8 7 0 . 9 9 3 17 7 17 68 8 36 39 3 7 . 5 0 1 . 1 9 3 17 7 18 68 8 36 37 3 6 . 6 2 0 . 5 1 3 17 7 19 63 8 36 40 3 7 . 7 5 1 . 7 5 3 17 7 20 68 8 36 38 ' 3 7 . 0 0 0 . 5 3 W E E K L Y V A L U E 56 35 41 3 7 . 7 8 1 . 7 5 3 17 7 21 68 8 34 40 3 6 . 6 2 2 . 4 4 3 17 7 22 68 8 37 43 3 9 . 6 2 2 . 4 4 3 17 7 23 68 8 40 42 4 0 . 6 2 0 . 7 4 3 17 7 24 6b 8 36 39 3 6 . 8 7 0 . 9 9 3 17 7 25 68 8 36 39 3 7 . 12 1 . 3 5 3 17 7 26 68 8 36 39 3 7 . 3 7 1 . 3 0 3 17 7 27 68 8 35 37 3 5 . 8 7 0 . 6 4 W E E K L Y V A L U E 56 34 43 3 7 . 7 3 2 . 1 9 3 17 7 28 68 8 35 38 3 6 . 5 0 1 . 4 1 3 17 7 29 68 8 35 39 3 7 . 1 2 1 . 4 5 3 17 7 30 68 8 35 36 3 5 . 6 2 0 . 5 1 3 17 7 31 68 8 34 37 3 4 . 7 5 1 . 1 6 3 17 8 1 68 8 3 5. 38 3 6 . 3 7 1 . 3 0 3 17 8 2 68 8 36 . 38 3 6 . 8 7 0 . 8 3 3 17 8 3 68 8 36 38 3 6 . 6 2 0 . 9 1 W E E K L Y V A L U E 56 34 39 3 6 . 2 6 1 . 3 1 3 17 8 4 68 8 34 3o 3 4 . 7 5 0 . 8 8 3 17 8 5 68 8 34 33 3 4 . 2 5 0 . 4 6 3 17 8 6 68 8 34 33 3 4 . 3 7 0 . 5 1 3 17 8 7 68 8 33 36 3 4 . 5 0 1 . 0 6 3 17 8 8 68 8 32 34 3 3 . 0 0 0 . 9 2 3 17 8 9 68 8 33 36 3 4 . 6 2 1 . 3 0 3 17 8 10 68 8 32 34 3 2 . 8 7 0 . 8 3 W E E K L Y V A L U E 56 32 36 3 4 . 0 5 1 . 1 1 3 17 8 11 68 8 30 34 3 1 .50 1 . 6 0 3 17 8 12 68 8 '31 35 3 2 . 8 7 1 . 4 5 3 17 8 13 68 8 32 34 3 3 . 1 2 0 . 8 3 3 17 8 14 68 8 31 35 3 2 . 2 5 1 . 8 3 3 17 8 15 68 8 31 33 3 2 . 2 5 0 . 7 0 3 17 8 16 68 8 31 34 3 1 . 8 7 1 .24 3 17 8 17 68 8 31 33 3 1 . 7 5 0 . 8 8 W E E K L Y V A L U E 56 30 35 3 2 . 2 3 1 . 3 3 3 17 6 18 68 8 31 33 3 1 . 5 0 0 . 7 5 3 17 8 19 68 8 31 34 3 2 . 1 2 1 .12 3 17 8 20 68 8 31 32 3 1 . 3 7 0 . 5 1 3 17 8 21 68 8 30 32 3 0 . 6 2 0 . 9 1 3 17 8 22 68 4 30 30 3 0 . 0 0 0 . 0 0 W E E K L Y V A L U E 36 30 34 3 1 . 2 5 1 . 0 2 V A L U E FOR S U M M E R 359 30 49 3 5 . 5 5 3 . 1 0 a © © o c © e © STATION 4 4 4 4 WEEKLY VALUE 4 4 4 4 4 4 4 WEEKLY VALUE 4 4 4 4 4 4 4 WEEKLY VALUE 4 4 . 4 4 m 4 ' 4 4 WEEKLY VALUE 4 4 4 4 4 4 4 WEEKLY VALUE 4 4 4 4 4 4 4 WEEKLY VALUE 4 4 4 4 4 4 4 INST i MONTH 6 6 6 6 DAY 26 27 28 2V 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 .AR NO. MIN. MAX. AVG. S.O. 68 4 39 41 40.00 0.81 68 a 36 38 36.25 0.70 68 8 34 36 35. 12 0.99 63 a 35 36 35.75 0.46 28 34 41 36.32 1.74 68 8 34 33 34.12 0.35 68 8 34 3D 36.12 1.38 68 6 35 37 36.25 0.68 68 8 34 36 35.25 0.86 68 8 35 38 36.37 1.50 68 8 36 38 37.12 0.83 68 a 36 37 36. 12 0.35 56 34 38 35.91 1.36 68 8 ' 34 39 36.25 1.98 68 8 35 37 36.25 0.86 68 8 36 39 37.62 1.30 68 8 38 40 39.00 0.92 66 8 38 39 38.50 0.53 68 8 39 41 39.87 0.99 68 8 36 4 0 37.62 1.30 56 34 41 37.87 1.70 68 8 33 . 36 34.50 1.19 68 8 34 38 36.25 1.46 68 8 36 38 36.87 0.64 68 8 34 37 35.37 1.06 68 8 34 3a 34.12 0. 35 68 8 33 34 33.62 0.51 68 8 33 34 33.62 0.51 56 33 38 34.91 1.48 68 8 32 36 33.62 1.59 68 8 35 4 0 37.62 1.92 68 8 38 39 38.50 0.53 68 8 36 38 36.37 0.74 68 8 35 3 / 36.00 0.75 68 8 36 37 36.62 0.51 68 8 36 37 36.25 0.46 56 32 40 36.42 1.74 68 a 35 37 35.87 0.99 68 8 37 39 37.87 0.99 68 8 37 38 37.25 0.46 68 8 34 38 36.00 1.77 68 8 37 38 37.25 0.45 68 8 37 3 8 37.62 0.51 68 U 36 37 36.62 0.51 56 34 39 3 6.92 1.14 68 8 36 37 36.37 0.51 68 6 34 36 3 4.8 3' 0.98 68 4 34 34 34.00 0.00 66 a 33 34 33.62 0.51 68 8 33 3a 33.62 0.91 68 8 34 37 35.50 1.19 68 a 33 3» 34. 12 0.63 WEEKLY VALUE 50 33 37 34.62 1.27 4 5 8 11 68 7 32 . 34 33.00 0.81 4 5 8 12 68 5 33 34 33.40 0.54 4 5 8 13 68 8 33 34 33.50 0.53 4 5 8 14 63 S 32 3b 33.25 1.03 4 5 8 15 68 8 33 33 33.00 0.00 4 5 8 16 68 8 32 34 33. 12 0.83 4 5 8 17 68 8 33 33 33.00 0.00 WEEKLY VALUE 52 32 3b 33.17 0.64 4 5 8 18 68 8 32 33 32.62 0.51 4 5 8 19 68 8 32 33 32.25 0.46 4 5 8 20 68 6 30 32 31.00 0.63 4 5 8 21 68 8 28 31 29.50 1.06 4 5 8 22 68 8 29 31 30.00 0.92 4 5 8 23 68 2 31 31 31.00 0.00 WEEKLY VALUE 40 28 33 31.07 1.42 VALUE FOR SUMMER 450 28 41 35.35 2.36 r o STATION INST. MONTH . DAY YEAR NO. MIN. MAX. AVG. S.D. 4 la 6 26 68 5 43 51 48.59 3.26 4 IS 6 27 68 8 39 42 40.12 1.35 4 l a 6 28 68 8 36 4 3 40.87 3.35 4 i s 6 29 68 8 38 42 40. 12 1.55 WEEKLY VALUE 29 36 51 41.79 3.94 4 18 6 30 68 8 36 42 38.87 2. 10 18 7 1 68 3 38 4 0 38.66 1.15 4 la 7 2 68 4 41 4S 43. 50 1.73 4 18 7 3 68 8 38 4 4 40.62 2.44 4 la 7 4 68 8 38 4 7 43.00 3.81 4 18 7 5 68 a 40 46 42.50 2.44 4 18 7 6 68 a 38 41 39.87 1.12 WEEKLY VALUE 47 36 4 7 41.04 2.35 4 16 7 7 68 8 37 47 42.00 4.10 4 18 7 8 68 8 35 43 38.87 2.94 4 18 7 9 68 a 39 47 43.25 3.19 4 la 7 10 68 8 41 49 45.37 2.97 4 18 7 11 68 8 41 4b 43.37 1.68 4 18 7 12 68 a 42 51 46.75 3.49 4 18 7 13 68 8 38 42 40.37 1.18 WEEKLY VALUE 56 35 51 42.85 3.77 4 18 7 14 68 8 36 4 4 39.37 3.02 4 18 7 15 63 8 37 43 41.50 3.38 .4 18 7 16 68 8 39 45 41.75 2.25 4 18 7 17 68 8 37 43 39.62 2.26 4 18 7 18 66 8 37 40 38.50 1.19 4 18 7 19 68 8 37 43 40.50 2.97 4 18 7 20 68 8 36 40 38.37 1.50 WEEKLY VALUE 56 36 4 3 39.94 2.66 4 18 7 21 63 8 34 4 4 39.25 4.13 4 18 7 22 68 8 38 4 9 43.87 4.25 4 18 7 23 68 a 41 4 7 43.62 2.19 4 18 7 24 68 8 39 42 40.62 1.30 4 18 7 25 68 a 39 4 4 41.50 2.07 4 18 7 26 68 8 39 4 4 41.12 1.95 4 18 7 27 . 6 3 8 37 39 ' 38.25 0.70 WEEKLY VALUE 56 34 4 9 41.17 3.19 4 18 7 28 68 8 36 42 39.37 2.66 4 18 7 29 68 8 37 46 42.00 3.46 4 18 7 30 68 8 38 42 40. 12 1.55 4 18 7 31 68 8 36 43 39.75 2.60 4 18 8 1 68 6 39 4 4 41.12 2.23 4 la 8 2 68 8 39 43 40. 75 1.28 4 18 8 3 68 8 38 4 4 40.87 2.29 WEEKLY VALUE 56 36 46 40.57 2.41 4 18 8 4 68 8 37 42 39.37 1.76 4 18 8 5 68 8 36 39 37.00 1.19 4 18 8 6 68 8 35 40 37.62 2.13 4 18 8 7 68 8 34 42 37.50 2.87 4 18 8 a 68 8 34 40 37.37 2.06 4 18 8 9 . 68 8 36 43 39.75 2.65 4 18 8 10 68 8 34 41 37.37 2.92 ro ON W t S M T ' V M L W t 56 34 43 38.00 2.40 4 18 8 11 68 8 33 4(3 35.87 2.64 4 18 8 12 68 8 34 42 38.12 3.31 4 IB 8 13 68 8 34 4 0 37.00 2.32 4 18 8 14 68 8 33 42 37.75 3.65 4 18 8 15 68 8 34 38 35.75 1.46 4 18 8 16 68 8 32 41 36.25 3.10 4 13 . 8 17 68 8 33 39 35.75 2.05 WEEKLY VALUE 56 32 k?. 36.64 2.75 4 18 8 18 66 8 33 37 35.12 1.35 4 18 8 19 68 8 31 37 34.00 2.00 4 18 8 20 68 6 3 1 33 32.75 1.28 4 18 8 21 68 8 29 36 31.87 2.74 4 18 8 22 68 6 29 35 32.25 2.37 4 18 a 23 68 5 32 37 33.80 2.16 WEEKLY VALUE 45 29 37 33.26 2.25 VALUE FOR SUMMER 457 29 51 39.45 3.99 N > O N O N STATION INST. MONTH DAY YEAR NO. MIN. MAX. AVG. S.D. 4 15 6 26 68 4 34 34 34.00 0.00 4 15 6 27 68 8 32 33 32.37 0.51 4 15 6 28 68 8 31 32 31.12 0.35 4 15 6 29 68 8 31 31 3 1.00 0.00 WEEKLY VALUE 28 31 34 31.85 1.11 4 15 6 30 68 8 31 32 31.12 0.35 4 15 7 1 68 8 32 33 32. 50 0.53 4 15 7 2 68 8 32 33 32.37 0.51 4 15 7 3 68 8 32 32 32.00 0.00 4 15 7 4 68 8 32 34 32.62 0.74 4 15 7 5 68 8 33 34 33.25 0.46 4 15 7 6 68 8 32 33 32.75 0.46 WEEKLY VALUE 56 31 34 32.37 0.77 4 15 7 7 68 8 31 32 3 1.50 0.53 4 15 7 ' 8 68 8 31 32 31.37 0.51 4 15 7 9 68 8 32 • 33 32.25 0.46 4 15 7 10 68 8 33 36 34.25 1.38 4 15 7 11 68 8 35 36 35.25 0.46 4 15 7 12 68 8 36 36 36.00 0.00 4 15 7 13 68 8 33 36 34.12 1.12 WEEKLY VALUE 56 3 1 36 33.53 1.86 4 15 7 14 68 8 32 32 32.00 0.00 4 15 7 15 68 8 32 33 32.50 0 .5 3 • 4 15 7 16 68 8 33 33 33.00 0.00 4 15 7 17 68 8 33 33 33.00 0.00 4 15 7 18 68 8 32 32 32.00 0.00 4 15 7 19 68 8 32 32 32.00 0.00 4 15 7 20 68 8 3 1 32 31.50 0.53 WEEKLY VALUE 56 31 33 32.28 0.59 4 15 7 21 68 8 30 33' 3 1.25 0.88 4 15 7 22 68 8 33 36 34.37 1.18 4 15 7 23 68 8 35 36 35.37 0.51 4 15 7 24 68 8 33 35 33.62 0.74 4 15 7 25 68 8 34 34 34.00 0.00 4 15 7 26 68 8 34 , 34 34.00 0.00 4 15 7 27 68 8 33 34 33.25 0.46 WEEKLY VALUE 56 30 36 33.69 1.34 4 15 7 28 68 8 32 34 32.62 0.74 4 15 7 29 68 8 34 35 34.25 0.46 4 15 7 30 68 6 34 35 34.62 0.51 4 15 7 31 68 8 34 34 34.00 0.00 4 15 e 1 68 8 34 35 34.50 0.53 4 15 8 2 68 8 35 35 35.00 0.00 4 15 8 3 68 6 34 35 34. 12 0.35 WEEKLY VALUE 56 32 35 34. 16 0.82 4 15 8 4 68 8 32 34 32.87 0.64 4 15 8 5 68 8 32 33 32.25 0.46 4 15 8 6 68 8 32 32 32.00 . 0.00 4 15 8 7 68 8 32 32 32.00 0.00 4 15 8 6 68 8 32 33 32.37 0.51 4 15 8 9 - 68 8 33 34 33.87 0.35 4 15 8 10 68 8 32 34 32.37 0.74 ro ON W E E K L Y V A L U c 4 4 4 4 4 4 4 W E E K L Y V A L U E 4 4 4 4 4 4 W E E K L Y V A L U E 15 15 15 15 15 15 15 15 15 15 15 15 15 11 12 13 14 15 16 17 18 19 20 21 22 23 68 68 68 68 68 68 68 68 68 68 68 68 68 56 8 8 8 8 8 8 8 56 8 8 8 8 8 5 45 32 31 31 32 32 32 32 31 31 31 31 30 29 29 30 29 34 32 32 32 33 33 32 32 33 31 31 31 29 29 30 31 32.53 31. 31. 32. 32. 32, 32, 12 87 00 37 37 00 31.50 31.89 31.00 31.00 30.87 29.00 29.00 30.00 30. 15 0.76 0.35 0.35 0.00 0.51 0.51 0.00 0.53 0.56 0.00 0.00 0.35 0.00 0.00 0.00 0.92 V A L U E FOR SUMMER 465 29 36 32*59 1.52 ro O N 00 S T A T I O N I N S ? . M O N T H D A Y Y E A R " N O . M I N . [ M A X . ' A V G . S . ' C " . 5 U 7 17 68 3 27 28 27.66 0.57 5 8 7 18 68 8 27 27 27.00 0.00 5 8 7 19 ' 68 8 27 28 27. 12 0.35 5 8 7 20 68 8 27 27 27.00 0.00 W E E K L Y V A L U E 27 27 2a 27.11 0.32 5 8 7 21 68 8 26 27 26.50 0.53 5 8 7 22 68 8 27 29 27.87 0.83 5 8 7 23 68 8 28 29 28.12 0.35 5 8 7 24 68 8 27 27 27.00 0.00 5 8 7 25 68 8 27 28 27.37 0.51 5 8 7 26 68 8 26 28 27.50 0.75 5 8 7 27 68 3 27 28 27.37 0.51 W E E K L Y V A L U E 56 26 29 27.39 0.73 5 8 7 28 68 8 . 27 29 28. 12 0.99 5 8 7 • 29 68 8 28 30 • 29.00 0.92 5 8 7 30 68 8 28 29 28.37 0.51 8 7 31 68 8 27 29 27.87 0.83 5 8 8 1 68 8 28 29 28.62 0.51 5 8 8 2 63 8 28 29 28.62 0.51 5 8 8 • 3 68 8 28 30 28.50 0.75 W E E K L Y V A L U E 56 27 30 28.44 0.78 5 8 8 4 68 6 27 28 27.62 0.51 5- 8 8 5 63 8 27 26 27.50 0.53 . 5 8 6 6 68 8 28 29 28.37 0.51 5 8 8 7 66 8 26 2(5 27.12 0 .64 5 8 8 8 68 8 26 26 26.87 0.83 5 8 8 9 68 8 27 29 27.87 0.83 5 6 8 10 68 8 27 28 27.37 C.51 W E E K L Y V A L U E 56 26 29 27.53 0.76 5 8 8 11 68 8 26 27 26.37 0.51 8 8 12 68 8 26 29 27.37 1.30 5 8 8 13 68 8 27 28 27.25 0.46 5 8 8 14 68 8 26 28 26.87 0.33 5 8 8 15 68 8 26 27 26.37 0.51 5 8 8 16 68 8 26 28 26.75 0.88 5 8 8 17 66 8 26 27 26.37 0.51 W E E K L Y V A L U E 56 26 29 26.76 0t63 5 8 8 ia 68 8 26 27 26.37 0.51 5 8 8 19 68 8 26 27 26.50 0.53 5 8 8 20 68 8 26 27 26.25 0.46 5 8 8 2.1 68 8 25 26 25.37 0.51 5 8 8 22 68 8 25 25 25.00 0.00-5 8 8 23 68 5 25 26 25.60 0.54 W E E K L Y V A L U E 45 25 27 25.86 0.72 V A L U E F O R S U M M E R 296 25 30 27.24 1.06 ro ON NO © ® © © © e © © © © WEEKLY 38 ON INST. MONTH DAY YEAR NO. M IN . MAX. AVG. S.O. 5 19 ' 7 10 68 4 3 1 34 32.50 1.29 5 19 7 11 68 8 30 33 31.87 0.99 5 19 7 12 68 8 31 36 33.00 1.92 19 7 13 68 . 8 29 31 29.75 0.88 v'ALLE 28 29 36 31.67 1.82 5 19 7 14 68 8 28 34 31*00 2.5U 5 19 7 15 68 8 30 36 32.87 2. 10 5 19 7 16 68 8 31 35 33.00 1.30 5 19 7 17 . 68 8 31 33 32.62 1.76 5 19 7 10 68 8 31 33 31.87 • 0.99 5 19 7 19 68 8 30 34 32.12 1.64 5 19 7 20 68 8 29 32 30.00 1.19 VALUE 56 28 36 31.92. 1.91 5 19 7 21 68 8 27 33 30.37 2.50 9 19 7 22 68 8 29 37 33.62 3.24 5 19 7 23 68 8 33 3U 34.62 2.06 5 19 . 7 24 68 8 30 34 32.25 1.48 5 19 7 25 68 8 31 34 32.87 1.35 5 19 7 26 68 8 . 30 34 32.50 1.60 5 19 7 27 68 8 30 33 31.75 1.03 VALUE 56 27 38 32.57 2.29 5 19 7 28 63 8 30 33 32.62 2.06 5 19 7 29 68 8 30 37 33.50 2.61 5 19 7 30 68 8 30 34 32.00 1.41 5 19 7 31 68 8 29 34 31.87 2.23 5 • 19 8 1 68 8 32 36 33.62 1.59 5 19 8 2 68 8 32 33 33.50 0.92 5 19 8 3 68 8 32 36 34.00 1.51 VALUE 56 29 37 33.01 1.91 5 19 8 4 68 8 30 34 32.00 1.30 5 19 8 5 68 8 30 33 31.62 1.06 5 19 8 6 68 8 - 31 33 32.75 1.48 5 19 8 7 68 8 29 34 31. 12 1.88 5 19 8 8 68 8 28 32 30. 12 1.88 5 19 8 9 68 8 29 34 32.00 1.85 5 19 8 10 68 8 28 33 30.25 1.90 VALUE 56 28 33 31.41 1. 80 5 19 8 11 68 8 26 30 28.50 1.60 S 19 8 12 68 8 28 34 3 1.00 2.67 5 19 8 13 68 8 28 34 31.00 2.39 19 8 14 68 8 28 33 30.25 2.18 5 19 8 15 68 8 27 31 29.37 1.59 5 19 8 16 68 8 23 33 29.87 1.95 5 19 8 17 68 8 28 31 29.25 1.28 VALUE 56 26 34 29.89 2.08 19 8 18 68 8 28 31 29.62 1.06 5 19 8 19 68 8 27 31 29.12 1.72 5 19 8 20 68 8 27 29 27.87 0.83 5 19 8 21 68 8 26 29 27.37 1.50 5 19 8 22 68 5 27 29 27.40 0.89 VALUE 37 26 31 28.35 1.53 VALUE FOR SUMMER 345 26 38 31.39 2.41 9 © © © © © © © © © 9 « © © 9 rot •3; I © I © ;j © I 1 * ! © © © © I © © © © © . 4 0 » 4 5 3 7 b 68 4 29 34 31 .50 2 >08 5 3 7 6 68 8 29 32 30 • 50 1 .19 VALUt 12 29 34 30 • 83 1 52 5 3 7 7 68 8 29 42 35 .37 5 39 3 3 ' 7 8 68 8 28 40 34 .37 5 .01 5 3 7 9 68 8 36 4f> 40 .87 4 .05 5 3 7 10 68 8 38 46 41 • 12 3 56 5 3 7 11 68 8 35 42 39 .00 2 67 5 3 7 12 68 8 40 51 44 .00 4 20 5 3 7 13 68 8 33 37 35 .62 1 30 VALUE 56 28 51 38 62 5. 03 5 3 7 14 • 68 a 3 1 4 3 36 00 4< 47 5 3 7 15 68 8 32 4!) 38 50 4 78 5 3 7 16 68 8 34 44 38 .75 4 02 5 3 7 17 68 8 33 41 • 35 62 2 92 5 3 7 18 68 8 32 37 34 .37 1 6B 5 3 7 19 68 8 33 4 4 37 25 4 46 5 3 7 20 68 8 32 37 34 37 1. 92 VALUE 56 31 • 4» 36 41 3. 85 5 3 7 21 68 8 31 45 37 50 5< 68 5 3 7 22 68 8 36 53 44 50 6 21 5 3 7 23 68 6 39 46 41 37 2. 87 5 3 7 24 68 8 35 41 37 25 2 43 5 3 7 25 68 8 34 41 38 00 2i 97 5 3 7 • 26 68 8 34 41 37 25 2. 81 5 3 7 27 68 8 31 34 32 37 1. 06 VALUE 56 3 1 53 38 32 5. 06 5 3 7 28 68 8 31 41 35 62 4. 34 5 3 7 29 68 8 33 4 8 39 75 5 b9 5 3 7 30 68 8 31 39 3 5 0 0 2. 92 5 3 7 31 68 8 31 45 36 50 4. 65 5 3 8 1 68 8 33 41 36 00 3. 29 5 3 8 2 68 8 33 37 35 25 1. 75 3 8 3 68 8 32 4 4 37 25 4. 49 VALUE 56 31 48 36 48 4. 16 5 3 8 4 68 8 31 39 34 25 2. 81 5 3 8 5 68 8 30 ' 33 '3 1 50 1 19 3 3 8 6 68 8 29 39 33 37 3. 99 5 3 8 7 68 8 29 42 34 25 5. 11 5 3 8 8 68 8 28 3 7 32 75 3 49 5 3 8 9 68 8 29 39 34 75 4. 09 5 3 8 10 68 8 27 41 33 75 5< 87 VALUE 56 27 42 . 33 51 3. 96 5 3 8 11 68 8 27 41 33 37 5. 42 5 3 8 12 68 8 29 42 35 25 5. 17 5 3 8 13 68 8 28 3d 33 12 4. 18 5 3 8 14 68 8 27 42 34 25 5. 94 5 3 8 15 68 8 27 36 31 50 3< 20 5 3 8 16 68 8 27 41 34i 00 5. 55 5 3 8 17 68 8 27 37 32. 37 3. 92 VALUE 56 27 42 33 41 4. 73 5 5 5 5 5 5 WEEKLY VALUE 18 19 20 21 22 23 68 68 68 68 68 68 8 8 8 8 8 5 45 28 26 26 24 25 26 24 36 36 34 38 32 34 38 31.62 30.25 29.25 29.75 28.12 29.20 29.73 3.33 3.95 3.01 5.75 2.94 3.27 3.81 9 © © © © © © © © © ro| -OK .ION _N 3 T k MONTH DAY YEAR NO. MIN. MAX. AVG. S.D. 6 14 7 17 . 68 5 32 32 3 2 . 0 0 0.00 6 14 7 . 18 63 8 31 32 31.12 0.35 6 14 7 19 68 8 31 31 3 1 . 0 0 0.00 6 14 7 20 68 8 30 31 30.25 0.46 WEEKLY VALUE 29 30 32 31.00 0.65 6 14 7 21 6e 8 30 30 3 0 . 0 0 0.00 6 14 7 22 68 8 30 32 3 1 . 0 0 0.75 6 14 7 23 68 8 30 31 30 .87 0.35 6 14 7 24 68 8 30 .30 3 0 . 0 0 0.00 6 14 7 25 68 8 30 30 3 0 . 0 0 0.00 6 14 7 26 68 8 30 31 30. 12 0.35 6 14 7 27 68 a 30 30 3 0 . 0 0 0.00 WEEKLY VALUE 56 30 32 30.28 0.52 6 14 7 28 68 8 30 31 30.37 0.51 6 14 7 • 29 68 a 3 1 32 3 1.62 0.51 6 14 7 30 68 8 31 32 31.12 0.35 6 14 7 31 68 8 31 32 31.37 0.51 6 14 8 1 68 8 32 34 32.62 0.74 6 14 a 2 68 6 34 34 3 4 . 0 0 0.00 6 14 8 3 68 8 31 33 3 2 . 0 0 0.75 WEEKLY VALUE 56 30 34 31.87 1.20 6 14 8 4 68 8 30 31 30. 12 0.35 6 14 8 5 68 6 30 30 3 0 . 0 0 0.00 . 6 14 8 6 68 6 30 30 3 0 . 0 0 0.00 6 14 8 7 68 8 30 30 3 0 . 0 0 0.00 6 14 8 8 66 8 30 31 30.25 0.46 6 14 8 9 68 8 31 32 3 1.50 0.53 6 14 8 10 68 8 29 31 3 0 . 0 0 0.53 WEEKLY VALUE 56 29 32 30.26 0.61 6 14 8 11 68 8 29 30 29.25 0.46 6 14 8 12 68 8 30 31 30.37 0.51 6 14 8 13 6 6 8 30 30 3 0 . 0 0 0.00 6 14 8 14 68 8 29 30 •• 29.37 0.51 6 14 8 15 68 8 28 29 28.75 0.46 6 14 8 16 68 8 29 30 29.75 0.46 6 14 8 17 68 6 29 30 29.75 0.46 WEEKLY VALUE 56 28 31 29.60 0.65 6 14 8 18 68 8 29 29 29.00 0.00 6 14 S 19 68 a 29 29 29.00 0.00 6 14 8 20 68 8 29 29 29.00 0.00 6 14 8 21 63 4 29 29 29.00 0.00 WEEKLY VALUE 28 29 29 29.00 0.00 VALUE FOR SUMMER 281 28 34 30.40 1.15 STATION I N S T . MONTH DAY YEAR NO. M I N . MAX, A V G . S . D . 6 2 6 19 68 4 33 34 33.75 0.50 6 2 6 . 20 68 8 31 33 32.12 0.63 6 2 6 21 68 8 31 32 31.75 0.46 6 2 6 22 68 8 31 32 31.37 0.51 WEEKLY VALUE 28 31 34 32.03 0.96 6 2 6 23 68 8 30 31 30.37 0.51 6 2 6 24 68 8 30 33 31.62 1.06 6 2 6 25 68 8 3 1 34 32.50 1.19 6 2 6 26 68 8 31 35 33.12 1.55 6 2 6 27 68 8 32 34 33. 12 0.64 6 2 6 28 68 8 32 35 33.62 1.30 6 2 6 29 68 6 33 35 34.12 0.83 WEEKLY VALUE 56 30 35 32.64 1.56 6 2 6 30 68 8 32 35 33.50 1.19 6 2 7 • 1 68 8 33 37 35.00 1.60 6 2 7 2 68 8 34 . 35 34.37 0.51 6 2 7 3 68 8 33 35 34.00 0.92 6 2 7 4 68 8 33 38 35.62 1.92 6 2 7 5 68 8 34 38 35.62 1.40 6 2 7 6 68 8 34 35 34.50 0.53 WEEKLY VALUE 56 32 38 34.66 1.40 6 2 7 7 68 8 33 39 35.87 2.23 6 2 7 8 68 8 33 37 35.00 1.30 . 6 2 7 9 68 8 35 39 36.75 1.90 6 2 7 10 68 8 35 39 36.87 1.24 6 2 7 11 68 8 35 37 36.25 • 0.68 6 2 7 12 68 8 36 41 38.50 2.20 6 2 7 13 68 8 35 38 36.12 0.83 WEEKLY VALUE 56 33 41 36.48 1.62 6 2 7 14 68 8 33 3tf 35.00 1.85 6 2 7 15 68 8 34 38 36.37 1.59 6 2 7 16 68 8 36 39 37.25 1.28 6 2 7 17 68 8 35 37 35.87 0.63 6 2 7 18 68 . 8 34 35 34.50 0.53 6 2 7 19 68 8 34 38 35.50 1.51 6 2 7 20 68 8 34 35 34.37 0.51 WEEKLY VALUE 56 33 39 35.55 1.53 6 2 7 21 68 8 32 38 34.87 2.23 6 2 7 22 68 8 35 41 37.75 2.60 6 2 7 23 68 8 37 4 0 38.75 . 1.03 6 2 7 24 68 8 34 35 34.62 0.51 6 2 7 25 68 8 34 36 35.50 1.69 6 2 7 26 68 8 34 38 35.62 1.59 6 2 7 27 66 8 34 35 34.87 0.35 WEEKLY VALUE 56 32 41 36.00 2.14 6 2 7 28 68 8 34 36 35s87 1.80 6 2 7 29 68 6 34 39 36.25 2.05 6 2 7 30 68 8 34 36 35.25 0.88 6 2 7 31 68 6 33 37 34.87 1.64 6 2 8 1 68 8 35 36 26.00 1.19 6 2 8 2 , 68 8 35 37 36.37 0.74 6 2 8 3 68 a 35 39 36.62 1.59 WiiEKLY VALUE 56 33 39 35.89 _ _ 1.52 6 2 a 4 66 8 34 3o 34.87 0.83 6 2 o • 5 68 8 33 35 34.25 0.70 6 2 8 6 68 ii 33 36 34.37 0.91 6 2 8 7 68 8 33 37 34.75 1.48 6 2 8 8 68 8 32 33 33.50 1.19 6 2 8 9 68 8 33 3o 34.87 1.12 ?*> 6 2 8 10 68 8 31 33 33.12 1.64 WEEKLY VALUE 56 31 37 34.25 1.28 6 2 8 11 68 0 30 33 32.37 1.92 6 2 8 12 68 b 32 36 33.75 1.58 6 2 8 13 68 8 32 33 33.50 1. 19 6 2 8 14 68 8 30 36 33. 12 2.41 6 2 8 15 68 8 3 1 34 32.25 1.03 6 2 8 16 68 8 30 34 32.00 1.69 6 2 8 17 68 8 31 33 31.75 0.66 WEEKLY VALUE 56 30 36 32.67 1. 68 •~> 6 2 8 16 68 8 31 33 31.87 0.99 6 2 8 19 68 8 30 33 31.37 1.30 6 2 8 20 68 8 29 31 30.37 0.74 6 2 8 21 68 6 29 31 29.75 0.68 6 2 8 22 68 8 29 31 29.87 0.99 6 2 8 23 68 4 30 31 30.25 0.50 WEEKLY VALUE 44 29 33 30.61 1.22 VALUE FOR SUMMER 520 29 41 34.27 2.39 TO 2?5 Appendix B r HUMI 0 I TY i-i I N . i ci'.Ht.i<A f Ui<:i i-,AX. AVb. S . u . > > _^ MAX. AVG. 5.0. ' WEEK ENDING 6/15/69 i > - 26. . ... 62 . . 95 81.34 .... 9.43 26 28. 40 33.19 2.3o WEEK ENDING 6/22/69 > ) ..... . 56. 7 5 . ... . 100 . 68.03 . . 5.28 . '6 . ' . . 28 38 32.3 3 1.94 '• • --WEEK ENDING 6/29/69 > > 56 „ 67 . 99 . 85.55 3.53 56 29 42 34.58 3.U0 .... •'•'ONTH 6/69 146 . .62 100 . . 85.95 7.79 146 2 8 42 33.54 2.6 7 ... . > WEEK ENDING 7/ 6/69 > 56 66 98 83.32 9. 15 56 3 0 4 8 3 6.71 3.8 2 -> WEEK ENDING 7/13/69 56 62 96 92.87 9.13 56 2 9 ... • 49 33.32 5.32 .. i WEEK ENDING 7/20/69 i . 56 . . . 62 . . ... 97 87.76 . ... .8.80 56 31 .41 33.76 1.93 WEEK ENDING 7/27/69 > 56 .52 96 .. 79.03 ..13.30 56 . . 31 . 64 39.73 H .69 I'. ONTH 7/69 > 248 52 93 . 82.12 11.52 24 8 29 64 37.99 7.51 ro ON 56 52 v, 98 78.39 12.46 56 33 63 45.05 8.35 r WEEK. ENDING 8/10/69 56 .. . 6 8 .. . 98 . 85.01 .9.40 i>6 32 51 33.67 4.67 WEEK ENDING 8/17/69 56 6 3 . 98. 86.58 . 7.91 56 33 44 38.42 3.34 . . . . . . . WEEK ENDING 8/16/69 2 v 84 . ..... 89 86.50 3.53 2 40 40 40.00 0.00 - - • • -MONTH 8/69 138 63 ....98 ...85*07 8.67 138 32 53 36.86 4.56 FOR THE SUMMER 532 ... ... .. 52 100 83.94 10.04 532 _ 26 64 37.00 6.19 . . .. . _ . . . . . . . ^ - - •• - - -;- ...... - - : - - .. - - - - • •• - - - - • • -•- • --. ro -.. ... HUMIDITY M-I-V* MA*. AV6«\ WEEK ENDING 6/15/68 37 67 100 84.37 WEEK ENDING 6/22/68 56 62 100 77.75 WEEK ENDING 6/29/68 56 72 100 86.17 MONTH 6/68 157 62 100 83.00 WEEK ENDING 7/ 6/68 56 70 100 88.21 WEEK ENDING 7/13/68 56 63 100 84.37 WEEK ENDING 7/20/68 56 60 99 87.46 WEEK ENDING 7/27/68 56 62 99 83.89 MONTH 7/68 248 60 100 85.04 TEMPERATURE NO. MIN* MAX. AVG. S.D. 37 24 38 30.56 2.87 56 28 41 32.87 2.33 56 2» 36 31.69 2.45 157 24 41 31.91 2.61 56 29 40 33.12 2.69 56 28 47 36.33 4.04 56 29 42 33.76 2.77 56 29 47 37.21 3.67 248 28 47 35.26 3.63 WEEK ENDING 8/ 3/68 56 62 96 83.92 WEEK ENDING 8/10/68 56 63 99 86.73 WEEK ENDING 8/17/68 56 54 100 78.16 WEEK ENDING 8/24/68 55 68 100 85.52 MONTH 8/63 191 54 100 84.18 FOR THE SOWER 596 54 100 84.22 56 32 42 35.73 2.20 56. 30 41 34.80 2.80 56 31 44 36.73 3.53 56 28 38 33.50 2.80 192 28 44 35.11 3.19 597 24 47 34.33 3.55 ro 280 Appendix G CHECKLIST OF PLANT SPECIES (Total Species Complement Collected on a l l Quadrats, Within the Study Area, by Alphabetical Order.) Vascular Plants 1 . Alopecurus alpinus L. 2 . A r c t a g r o s t l s l a t l f o l l a (R. Br.) Griseb. 3 . Braya purpurascens (R. Br.) Bunge 4. Cardamlne b e l l i d i f o l l a L. 5 . 9 C. pratensls L. 6 . Carex amblyorhyncha Krecz. 7 . C. atrofusca Schk. 8. C. membranacea Hook. 9 . C. mlsandra R. Br. 1 0 . C. nardlna Fr. 1 1 . C. r u p e s t r l s A l l . 1 2 . C. stans Drej. 1 3 . Cassiope tetragona (L.) D. Don 14. Cerastium alpinum L. 1 5 . C. r e g e l l l i Ostf. 1 6 . Colpodlum vahlianum (Liebm.) 1 7 . Draba a l p i n a L. 18. D. b e l l l l Holm 1 9 . D. lactea Adams 2 0 . D. oblongata R. Br. 2 1 . , D. subcapitata Slmm. 2 2 . Dryas i n t e g r i f o l l a M. Vahl 2 3 . Dupontia f i s h e r i R. Br. 282 2 4 . Eriophorum a n g u s t l f o l l u m Honck. 2 5 . E. s c h e u c h z e r i Hoppe 2 6 . E. t r l s t e (Th. F r . ) Hadac & Love 2 7 . Equisetum arvense L. 2 8 . E. variegatum S c h l e l c h . 2 9 . Eutrema e d w a r d s i l R. Br. 3 0 . F e s t u c a b a f f i n e n s i s P o l u n i n 3 1 . F. b r a c h y p h y l l a S c h u l t e s 3 2 . H i e r o c h l o e a l p i n a (Sw.) R. & S. 3 3 . H. p a u c i f l o r a R. Br. 3 4 . H i p p u r i s v u l g a r i s L. 3 5 . H u p e r z i a s e l a g o (L.) Bernh. ex Schrank & Mart. 3 6 . Juncus b i g l u m i s L. 3 7 . K o b r e s i a myosuroldes ( V i l l . ) F i o r i & P a o l . 3 8 . K. s i m p l i c i u s c u l a (Wahlenb.) Mack. 3 9 * L u z u l a a r c t l c a B l y t t . 4 0 . L. confusa L i n d e b . 4 1 . Melandrium a f f l n e ( J . Vahl) Hartm. 4 2 . M. apetalum (L.) F e n z l 4 3 . M i n u a r t l a r o s s i i (R. Br.) Graebn. 4 4 . M. r u b e l l a (Wbg.) Graebn. 4 5 . O x y r i a digyna (L.) H i l l 4 6 . Papaver r a d i c a t u m R o t t b . 4 7 . P e d i c u l a r i s c a p i t a t a Adams 4 8 . P. h i r s u t a L. 4 9 . P. l a n a t a Cham. & S c h l e c h t . 50. P. s u d e t i c a W i l l d . 5 1 . P h l p p s l a a l g l d a ( S o l . ) R. Br. 5 2 . Pleuropogon s a b l n e l R. Br. 5 3 . Poa a b b r e v i a t a R. Br. 5^-. P. a r c t i c a R. Br. 5 5 . P. h a r t z i i Gand. 5 6 . Polygonum v i v l p a r u m L. 5 7 . P o t e n t i l i a h y p a r c t i c a Malte 5 8 . P. r u b r l c a u l i s Lehm. 5 9 * P u c c i n e l l l a a n d e r s o n i i Swallen 6 0 . P. v a g i n a t a (Lge.) F e r n . & Weath. 6 1 . Ranunculus hyperboreus R o t t b . 6 2 . R. sulphureus S o l . 6 3 . S a l i x a r c t i c a P a l l . 6k. S a x i f r a g a c a e s p i t o s a L. 6 5 . S. cernua L. 6 6 . S. f o l i o l o s a R. Br. 6 7 . S. h l r c u i u s L. 6 8 . S. n i v a l i s L. 6 9 . S. o p p o s i t i f o l i a L. 7 0 . S. r i v u l a r i s L. 7 1 . S i l e n e a c a u l i s L. 7 2 . S t e l l a r i a l o n g l p e s G o l d i e Bryophytes 7 3 . A b i e t i n e l l a a b i e t l n a (Hedw.) F l e i s c h . 7 ^ . Amblystegium juratzkanum Schimp. 7 5 * A n a s t r o p h y l l u m minutum (Schreb.) S c h u s t . 7 6 . Andreaea r u p e s t r i s Hedw. 7 7 . Aneura p l n g u i s (L.) Dum. 7 8 . A r n e l l i a f e n n l c a (Gottsche) L i n d b . 7 9 « Aulacomnlum turgidum (Wahlenb.) Schwaegr. 284 8 0 . B a r b u l a f a l l a x Hedw. 8 1 . B. l c m a d o p h i l a Schimp. ex C. M u l l . 8 2 . B a r t r a m i a i t h y p h y l l a B r i d . 8 3 . Blepharostoma t r l c h o p h y l l u m ( L . ) Dum. 8 4 . Brachythecium a l b i c a n s (Hedw.) B.S.G. 8 5 . B. turgidum (C. J . Hartm.) Kindb. 8 6 . Bryum a n g u s t i r e t e Kindb. ex Mac. 8 7 . C a l l l e r g o n glganteum (Schimp.) Kindb. 8 8 . C. t r i f a r l u m (Web. & Mohr.) Kindb. 8 9 . Campylium h i s p l d u l u m ( B r i d . ) M i t t . 9 0 . C. polygamum (B.S.G.) C. J e n s . 9 1 . C. s t e l l a t u m (Hedw.) C. Je n s . 9 2 . Catoscopium n i g r i t u m (Hedw.) B r i d . 9 3 . C e p h a l o z i e l l a a r c t i c a Bryhn Sc. Douin ap. K. M u l l . 9 4 . C. r u b e l l a (Nees) Warnst. 9 5 . Ceratodon purpureus (Hedw.) B r i d . 9 6 . C i n c l l d l u m a r c t i c u m Schimp. 9 7 . C l r r i p h y l u m c i r r o s u m (Schwaegr. ex S c h u l t e s ) Grout 9 8 . Conostomum tetragonum (Hedw.) L i n d b . 9 9 . Cynodontium s c h i s t ! (Wahlenb.) L i n d b . 1 0 0 . D i c r a n o w e l s i a c r i s p u l a (Hedw.) L i n d b . ex M i l d e 1 0 1 . Dicranum elongatum S c h l e i c h . ex Schwaegr. 1 0 2 . D. f u s c e s c e n s Turn. 1 0 3 . D. scoparlum Hedw. 1 0 4 . Dldymodon a s p e r i f o l i u s ( M i t t . ) Crum, S t e e r e & Anderson 1 0 5 . D l s t i c h l u m c a p i l l a c e u m (Hedw.) B.S.G. 1 0 6 . D. h a g e n i i Ryan ex P h i l i b . 1 0 7 . D i t r l c h u m f l e x i c a u l e (Schwaegr.) Hampe 1 0 8 . Drepanocladus r e v o l v e n s (Sw.) Warnst. 1 0 9 . D. uncinatus (Hedw.) Warnst. 1 1 0 . D. vernicosus (Lindb. ex C. Hartm.) Warnst. 1 1 1 . Encalypta c i l i a t a Hedw. 1 1 2 . E. rhabdocarpa Schwaegr. 1 1 3 . E. vu l g a r i s Hedw. Ilk. Pissldens a r c t l c u s Bryhn 1 1 5 . Grimmia a l p l c o l a Hedw. 1 1 6 . G. apocarpa Hedw. 1 1 7 . Gymnomitrion c o r r a l l o i d e s Nees 118. Haplodon wormskjoldli (Hornem.) R. Br. 119. Hylocomlum splendens (Hedw.) B.S.G. 1 2 0 . Hypnum bambergeri Schimp. 1 2 1 . H. calllchroum Funck ex Br i d . 1 2 2 . H. cupressiforme Hedw. 1 2 3 . H. procerrimum Mol. 12k. H. revolutum (Mitt.) Lindb. 1 2 5 . Leiocolea heterocolpos (Thed.) Buck 1 2 6 . Lophozia barbata (Schmid.) Dumort 1 2 7 . L. c a v i f o l i a (Buck & S. Arn.) Schust. 128. L. hatcheri (Evans) Steph. 1 2 9 . L. kunzeana (Huben.) Evans 1 3 0 . L. quadriloba (Lindb.) Evans 1 3 1 . L. rutheana (Llmpr.) Howe 1 3 2 . L. wenzelii (Nees) Steph. 1 3 3 . Keesea t r i f a r i a Crum, Steere & Anderson 13«V. M. u l l g i n o s a Hedw. 1 3 5 . Mesoptychia s a h l b e r g l i (Lindb. & Arn.) Evans 1 3 6 . Mnium hymenophylloides Hub. 1 3 7 . M. hymenophyllum B.S.G. 286 1 3 8 . M. marginatum (VUth.) B r i d . ex P. Beauv. 1 3 9 « M. medium B.S.G. 1 4 0 . M. orthorrhynchum B r i d . 1 4 1 . M y u r e l l a j u l a c e a (Schwaegr.) B.S.G. 1 4 2 . M. t e n e r r l m a ( B r i d . ) L i n d b . 1 4 3 . Odontoschlsma macounii (Aust.) Underw. 1 4 4 . Oncophorus w a h l e n b e r g i i B r i d . 1 4 5 . Orthothecium chryseum (Schwaegr. ex S c h u l t e s ) B.S.G. 1 4 6 . 0 . r u f e s c e n s ( B r i d . ) B.S.G. 1 4 7 . 0 . s t r i c t u m L o r . 1 4 8 . O r t h o t r l c h u m speciosum Nees ex Sturm 1 4 9 . P h i l o n o t i s f o n t a n a (Hedw.) B r i d . 1 5 0 . P l a t y d i c t y a jungermannioides ( B r i d . ) Crura 1 5 1 . Pogonatum alplnum (Hedw.) Rohl 1 5 2 . P o h l i a cruda (Hedw.) L i n d b . 1 5 3 * P o l y t r i c h u m j u n l p e r i n u m Hedw. 1 5 4 . P. p l l i f e r u m Hedw. 1 5 5 . P s i l o p i l u m c a v i f o l i u m ( W i l s . ) I. Hag. 1 5 6 . P t l l l d i u m c l l l a r e (L.) Hampe 1 5 7 . Rhacomitrium canescens (Hedw.) B r i d . 1 5 8 . R. h e t e r o s t l c h u m (Hedw.) B r i d . 1 5 9 . R. lanuginosum (Hedw.) B r i d . 1 6 0 . S c a p a n i a s i m o n s l l Bryhn 1 6 1 . S c o r p l d i u m t u r g e s c e n s (T. Jens.) Loeske 1 6 2 . S e l i g e r i a p o l a r i s Berggr. 1 6 3 . Splacrtuum vasculosum Hedw. 1 6 4 . T e t r a p l o d o n mnlodes (Hedw.) B.S.G. 1 6 5 . Timmia a u s t r i a c a Hedw. 1 6 6 . Tomenthypnum nltens (Hedw.) Loeske 1 6 7 . T o r t e l l a f r a g i l i s (Hook, ex Drumm.) Llmpr. 1 6 8 . T. tortuosa (Hedw.) Llmpr. 1 6 9 . Tortula r u r a l i s (Hedw.) Gaertn., Meyer & Scherb. 1 7 0 . Tritomaria quinquedentata (Huds.) Buck 1 7 1 . V o i t l a n i v a l i s Hornsch. Lichens 1 7 2 . Agyrophora lyngei (Schol.) Llano 1 7 3 ' A l e c t o r i a chalybeiformis (L.) S. Gray l?k. A. minuscula Nyl. 1 7 5 * A. nigricans (Ach.) Nyl. 1 7 6 . A. n i t l d u l a (Th. Fr.) Vain. 1 7 7 » A. ochroleuca (Hoffm.) Mass. 1 7 8 . A. pubescens (L.) R. H. Howe 1 7 9 * A. subdlvergens Dahl 180. A. tenuis Dahl 181. Baeomyces carneus (Retz.) Florke 182. B u e l l i a a t r a t a (Sm.) Anzi 1 8 3 . B. p a p i l l a t a (Somm.) Tuck. 184. Caloplaca clnnamomea (Th. Fr.) O l i v . 1 8 5 . C. holocarpa (Hoffm.) Wade 1 8 6 . C. s t i l l i c i d i o r u m (Vahl) Lynge 1 8 7 . C. tetraspora (Nyl.) O l i v . 188. C. t i r o l l e n s i s Zahlbr. 1 8 9 . C a n d e l a r i e l l a a r c t i c a (Korb.) Sant. 1 9 0 . C. a u r e l l a (Hoffm.) Zahlbr. 1 9 1 . C. canadensis Magn. 1 9 2 . C e t r a r i a c u c u l l a t a ( B e l l . ) Ach. 1 9 3 . C. d e l i s e l (Bory ex Schaer.) Th. Fr. 194. C. i s l a n d l c a (L.) Ach. 195. C. nigricans (Retz.) Nyl. 196. C. n i v a l i s (L.) Ach. 197. Cladina m l t i s (Sandst.) Hale & W. Culb. 198. Cladonia amaurocraea (Florke) Schaer. 199. C. b e l l i d i f l o r a (Ach.) Schaer. 200. C. c o c c i f e r a (L.) W i l l d . 201. C. cornuta (L.) Hoffm. 202. C. g r a c i l i s (L.) W i l l d . 203. C. pyxidata (L.) Hoffm. 204. C o r n i c u l a r i a aculeata (Schreb.) Ach. 205. C. divergens Ach. 206. Dactylina a r c t i c a (Hook.) Nyl. 207. D. ramulosa (Hook.) Tuck. 208. Fulgensia bracteata (Hoffm.) Ras. 209. Gyalecta f o v e o l a r i s (Ach.) Schaer. 210. G. pezlza (Mont.) Anzi - " 211. Haematomma lapponlcum Ras. 212. Hypogymnia physodes (L.) W. Wats. 213. H. subobscura (Vain.) Poelt. 214. Lecanora atra (Huds.) Ach. 215. L. badia (Hoffm.) Ach. 216. L. b e r i n g l i Nyl. 217.. L. campestris (Schaer.) Hue 218. L. Candida (Anzi) Nyl. 219. L. castanea (Hepp) Th. Fr. 220. L. dispersa (Pers.) Somm. 221. L. epibryon (Ach.) Ach. 222. L. f r u s t u l o s a (Dicks.) Ach. 2 8 9 2 2 3 . L. m u t a b l l l s Somm. 2 2 4 . L. p o l y t r o p a (Ehrh.) Rabenh. 2 2 5 . L. proserpens N y l . 2 2 6 . L. r u p i c o l a (L.) Z a h l b r . 2 2 7 . L. v e r r u c o s a Ach. 2 2 8 . L e c i d e a armenlaca (DC.) F r . 2 2 9 . L. a s s i m i l a t a N y l . 2 3 0 . L. a t r o m a r g i n a t a Magn. 2 3 1 . L. a u r i c u l a t a Th. F r . 2 3 2 . L. c r a s s i p e s (Th. F r . ) N y l . 2 3 3 . L. c r u s t u l a t a (Ach.) Spreng. 2 3 4 . L. d l c k s o n i l (Gmel.) Ach. 2 3 5 * L» glaucophaea Korb. 2 3 6 . L. l a p i c l d a (Ach.) Ach. 2 3 7 . L. l u l e n s i s H e l l b . 2 3 8 . L. macrocarpa (DC.) Steud. 2 3 9 . I>» melinodes (Korb.) Magn. 2 4 0 . L. micacea Korb. 2 4 1 . L. p a n t h e r l n a (Hoffm.) Th. F r . 2 4 2 . L. ramulosa Th. F r . 2 4 3 . L. r u b i f o r m i s (Wahlemb. ex Ach.) Wahlenb. 2 4 4 . L. s p e i r a (Ach.) Ach. 2 4 5 . L. stigmatea Ach. 2 4 6 . L. t e s s e l l a t a (Ach.) F l o r k e 2 4 7 . L. v e r n a l i s (L.) Ach. 2 4 8 . L. v o r t i c o s a ( F l o r k e ) Korb. 2 4 9 . L e c l d e l l a w u l f e n l i (Hepp) Korb. 2 5 0 . Leciophysma flnmarklcum Th. F r . 2 5 1 . L e p r a r i a n e g l e c t a (Nyl.) L e t t . 2 5 2 . Lopadlum pezizoideum (Ach.) Korb. 2 5 3 . Mycoblastus a l p l n u s ( F r . ) K e r n s t . 2 5 4 . M. s a n g u i n a r i u s (L.) Norm. 2 5 5 . Nephroma e x p a l l l d u m (Nyl.) N y l . 2 5 6 . O c h r o l e c h i a androgyna (Hoffm.) A r n . 2 5 7 . 0 . f r l g i d a (Sw.) Lynge 2 5 8 . 0 . geminipara (Th. F r . ) V a i n . 2 5 9 . 0 . gonatodes (Ach,) Has. 2 6 0 . 0 . i n a e q u a t u l a (Nyl.) Z a h l b r . 2 6 1 . 0 . u p s a l l e n s l s (L.) Mass. 2 6 2 . P a n n a r l a h o o k e r l (3ou. ex Sm.) N y l . 2 6 3 . P a r m e l i a c e n t r i f u g a (L.) Ach. 2 6 4 . P. d l s j u n c t a E r i c h s . 2 6 5 . P. e x a s p e r a t u l a N y l . 2 6 6 . P. fraudans N y l . 2 6 7 . P.. i n c u r v a ( P e r s . ) F r . 2 6 8 . P. infuma N y l . -2 6 9 . P. omphalodes (L.) Ach. 2 7 0 . P. s a x a t i l i s (L.) Ach. 2 7 1 . P. s e p a r a t a Th. F r . 2 7 2 . P. s u l c a t a T a y l . 2 7 3 . P a r m e l i e l l a p r a e t e r m i s s a ( N y l . ) P. James 2 7 4 . P e l t i g e r a apthosa (L.) W l l l d . 2 7 5 . P. canina (L.) W i l l d . 2 7 6 . P. malacea (Ach.) Funck 2 7 7 . P. sca b r o s a Th. F r . 2 7 8 . P e r t u s a r l a bryontha (Ach.) N y l . 2 7 9 . P. c o r i a c e a (Th. F r . ) Th. F r . 280. P. d a c t y l i n a (Ach.) N y l . 281. P. octomela (Norm.) E r i c h s . 282. P. panyrga (Ach.) Mass. 2 8 3 . P. subobducens Nyl. 284. Physcla caesla (Hoffm.) Hampe 2 8 5 . P. constipata (Nyl.) N o r r l . & Nyl. 286. P. intermedia Vain. 2 8 7 . P. musclgena (Ach.) Nyl. 288. P. s c i a s t r a (Ach.) Du Rietz 289. Placopsis g e l i d a (L.) Linds. 2 9 0 . Placynthium a s p r a t i l e (Ach.) Henss. 2 9 1 . P. nigrum (Huds.) S. Gray 2 9 2 . P o l y b l a s t i a bryophila Lb'nnr. 2 9 3 . P. hyperborea Th. Fr. 2 9 4 . P. theleodes (Smrft.) Th. Fr. 2 9 5 . Protoblastenia r u p e s t r i s (Scop.) J . S t e i n . 2 9 6 . Psoroma hypnorum (Vahl) S. Gray 2 9 7 . Pyrenopsis pulvinata (Schaer.) Th. Fr. 2 9 8 . Racodlum rupestre Pers. 2 9 9 . Rhizocarpon chionophilum Th. Fr. 3 0 0 . R. copelandii (Korb.) Th. Fr. 3 0 1 . R. crystalllgenum Lynge 3 0 2 . R. dlsporum (Naeg. ex Hepp) Mull. Arg. 3 0 3 . R. geographicum (L.) DC. 3 0 4 . R. jemtlandicum Malme 3 0 5 . R. polycarpum (Hepp) Th. F r . 3 0 6 . R. rittokense (Hellb.) Th. Fr. 3 0 7 . Rinodina milvina (Wahlenb. ex Ach.) Th. Fr. 3 0 8 . R. nlmbosa (Fr.) Th. Fr. 3 0 9 . R. roscida (Somm.) A r n . 3 1 0 . R. t u r f a c e a (Wahlenb.) Korb. 3 1 1 . S o l o r i n a b l s p o r a N y l . 3 1 2 . S. o c t o s p o r a Am. 3 1 3 . S. s a c c a t a (L.) Ach. 3 1 4 . S. spongiosa (Sm.) A n z i 3 1 5 - Sphaerophorus globosus (Huds.) V a i n . 3 1 6 . Spilonema r e v e r t e n s N y l . 3 1 7 . S p o r a s t a t l a t e s t u d l n e a (Ach.) Mass. 3 1 8 . S t e r e o c a u l o n alplnum Laur. 3 1 9 . S. botryosum Ach. 3 2 0 . S.. r l v u l o r u m Magn. 3 2 1 . Thamnolia v e r m i c u l a r l s (Sw.) Ach. ex Schaer. 3 2 2 . T o n i n l a l o b u l a t a (Smrft.) Lynge 3 2 3 . U m b l l l c a r l a a r c t l c a (Ach.) N y l . 3 2 4 . U. h a v a a s i l L l a n o 3 2 5 . U. hyperborea (Ach.) Ach. 3 2 6 . U. p r o b o s c l d e a (L.) Schrad. 3 2 7 . U. v e l l e a (L.) Ach. 3 2 8 . V e r r u c a r i a deversa V a i n . 3 2 9 . V e s t e r g r e n o p s i s l s i d i a t a (Degel.) Dahl 3 3 0 . X a n t h o r l a elegans ( L i n k ) Th. F r . 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0101177/manifest

Comment

Related Items