Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Phytogeocoenoses of a coastal lowland ecosystem, Devon island, N.W.T. Barrett, Paul Edward 1972

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1972_A1 B37.pdf [ 34.32MB ]
Metadata
JSON: 831-1.0101177.json
JSON-LD: 831-1.0101177-ld.json
RDF/XML (Pretty): 831-1.0101177-rdf.xml
RDF/JSON: 831-1.0101177-rdf.json
Turtle: 831-1.0101177-turtle.txt
N-Triples: 831-1.0101177-rdf-ntriples.txt
Original Record: 831-1.0101177-source.json
Full Text
831-1.0101177-fulltext.txt
Citation
831-1.0101177.ris

Full Text

• wzoz  PHYTOGEOCOENOSES OF A  COASTAL LOWLAND  ECOSYSTEM, DEVON ISLAND, N.W.T.  by  P a u l Edward  A  Barrett  B*Se. U n i v e r s i t y  o f New  Hampshire,  1964  M.Sc.  University  o f New  Hampshire,  1966  thesis  submitted  i n partial, fulfillment  the requirements Doctor  In  f o r the degree  of  of Philosophy  the  Department of Botany  We  a c c e p t t h i s t h e s i s as conforming t c the r e q u i r e d standard  University  of B r i t i s h  Columbia  of  In p r e s e n t i n g t h i s  thesis  an advanced degree at the L i b r a r y I further for  of  this  freely  available  for  thesis  of  the  requirements  Columbia,  I agree  r e f e r e n c e and copying o f  this  for  It  financial  i s understood that gain s h a l l  of  The U n i v e r s i t y o f B r i t i s h Vancouver 8, Canada  Columbia  not  copying or  for  that  study. thesis  purposes may be g r a n t e d by the Head of my Department  written permission.  Date  British  agree t h a t p e r m i s s i o n f o r e x t e n s i v e  representatives.  Department  fulfilment  the U n i v e r s i t y of  s h a l l make i t  scholarly  by h i s  in p a r t i a l  or  publication  be allowed without my  This dissertation the an  i s dedicated  memory o f S a r a h ecologist  and a  to  Madoc-Jones, friend.  11 ABSTRACT During  summer p e r i o d s o f 1 9 6 7 - 1 9 6 9 f i e l d  the  u n d e r t a k e n a t a C o a s t a l L o w l a n d e c o s y s t e m , on of  Devon I s l a n d , N.W.T. C a n a d a  study  area  square  Is a n a t u r a l l y  miles  ln size.  r e g i o n s o f the sharply  I t Is s e g r e g a t e d  eastern border 1000  approximately  by  the waters o f Jones Sound. Such lowland  33*  84°  feet.  from the  lowland  remaining  Inland plateau regions.  very r i c h .  Botanically  polar desert conditions prevail landscape  and  stands  mosaic f o r a n a l y s i s u s i n g techniques.  over  Soil  standard  excavations  p h y s i c a l and  tation  chemical  common.  where the  sparse. the v e g e t a t i o n a l  European p h y t o s o c i o l o g i c a l  were made a t e a c h l o c a t i o n returned  analysis.  t y p e s were a l s o m o n i t o r e d  This  g r e a t e r p o r t i o n of  were s e l e c t e d f r o m  samples from a l l g e n e t i c h o r i z o n s for  the  dis-  this  Canadian h i g h a r c t i c  vegetation i s normally  Seventy-three  com-  Ninety-three  of v e g e t a t i o n are the  the  are  r o c k p r o v i d e s a number o f  area,  c o n t r a s t t o most o f  from  activity  limited  In sharp  surrounded  they  o f v a s c u l a r p l a n t s have b e e n c o l l e c t e d w i t h i n  Is  rises  are  species  c l o s e d stands  sixteen  Interior  borders  environments f o r p l a n t c o l o n i z a t i o n .  and  The  t o an e l e v a t i o n  Intensive f l u v i o - g l a c l a l of parent  coast  roughly  escarpment, which  of the  The  W).  ecosystems appear markedly d i s t i n c t  bined with a d i v e r s i t y tinctive  N;  the n o r t h  delineated strand f l a t  of  relatively  41»  I s l a n d by a v e r t i c a l  from the  more e x t e n s i v e  (75°  s t u d i e s were  to  the  laboratory  Stands from v a r i o u s  f o r selected,  and  vege-  environmental  iii measurements t h r o u g h o u t included  soil  the growing season.  temperature,  soil  moisture  Measurements  and a c t i v e  l a y e r de-  velopment. Synthesis stands  of floristic  resulted  and e n v i r o n m e n t a l  i n the c o n s t r u c t i o n o f a h i e r a r c h i c a l  of phytogeocoenotic  classification  U n i t s were named i n a c c o r d a n c e terminology.  d a t a from  f o r the lowland  with  Seven s y n s y s t e m a t i c  standard  The imparts  t o the lowland meadow.  orders, seven  fuscae dominates  system as a whole  The P h y l l o d o c o  t e n s i v e l y developed  scape land  synsystematic  While  occupying  i ti s i n this order a r e found.  cetalia  arcticae  developed, All  An from  an exregion.  a smaller p r o p o r t i o n o f the land-  t h a t the z o n a l a s s o c i a t i o n s o f t h e l o w Petasitetalia  i n the area.  are the g l e y s o l i c  frigid!,  Sall-  less extensively  units.  groups r e c o g n i z e d  scheme a r e p r e s e n t  Caricetum  i s also  w i t h i n the order  and A r a b i d e t a l i a o r d e r s , w h i l e  soil  a r e a and  t h e c h a r a c t e r o f a wet  I n Tedrow's  Strong  e x i s t s between v e g e t a t i o n and u n d e r l y i n g s o i l  the  orders,  o r d e r w i t h i n the lowland  are nevertheless d i s t i n c t i v e  common s o i l s  three  - Cassiopetalia  The A l e c t o r i e t a l i a ,  major a r c t i c  fications  a l l i a n c e s and  the study  Maximum p l a n t a s s o c i a t i o n d i v e r s i t y d e v e l o p s Dryadetalla.  system.  and a l l n i n e p l a n t a s s o c i a t i o n s a r e n e w l y d e s c r i b e d .  order C a r l c e t a l i a  graminoid  scheme  Braun-Blanquet  nine p l a n t a s s o c i a t i o n s are d i s c u s s e d o f which six alliances  these  classi-  correlation  type.  Meadow T u n d r a s o i l s  The most which u n d e r l i e  stantis.  objective classification  the f l o r i s t i c  data.  o f t h e 73 s t a n d s  S^renson's  was  i n d e x was u s e d  generated  t o calculate  iv a complete m a t r i x then subjected  of  interstand similarity  to c l u s t e r i n g  techniques  form o f a t w o - d i m e n s i o n a l dendrogram. this  f a s h i o n are  identical,  constructed  by  method.  higher  no  At  the  a t the  and  illustrated  association level,  synthesis  techniques  levels  i n t e g r a t i o n ( o r d e r and  of  of  the  the  only  in  to  the in  those  Braun-Blanquet alliance)  subjectively derived  I n d i v i d u a l d e n d r o g r a m s were g e n e r a t e d  fashion u t i l i z i n g  T h e s e were  C l u s t e r s generated  a s s o c i a t i o n s were c l u s t e r e d o u t s i d e  hierarchy.  values.  s e l e c t e d components o f  the  i n the  same  floristic  ma-  trix. Strong the  similarities  Devon I s l a n d l o w l a n d s and  particularly This ual  e x i s t between the  supports  the the  s p e c i e s may Sharply  occur  i n the n i n e  (octopetalae)  circumpolar  defined  and  of other  ecotones,  p r e s e n c e o f the  in  from the  synecologlcal  techniques  locations,  from  Svalbard.  as w e l l as  homogeneous e n v i r o n m e n t a l characteristic  species  phytogeocoenoses d e s c r i b e d .  tundra  mosaic without as has  of  individ-  nature.  t h a t n a t u r a l assemblages o f v e g e t a t i o n  described  tundra  described  view t h a t p l a n t communities  be  tions  thesis  the  Dryadion  those  phytogeocoenoses  been  This  condi-  combinations supports  the  may  be  selected  recourse  to  "special"  suggested.  and  Table of  Contents  Abstract Table of  Contents  List  of Tables  List  of Figures  Acknowledgements Introduction P h y t o s o c l o l o g i c a l M e t h o d s and  Units  Methods Units  of  Classification  Methods o f E n v i r o n m e n t a l  Measurement  Soil  Sampling  Soil  Chemical  Analysis  Soil  Physical  Analysis  C l i m a t e and M i c r o c l i m a t e The  Study  Area  Location Geology Physiography C l i m a t e o f the Soils  o f the  Lowland  Lowland  P h y t o s o c l o l o g i c a l C l a s s i f i c a t i o n o f the S t u d i e d Devon I s l a n d Phytogeocoenoses I.  Alectorletalia 1.  Dryado - A l e c t o r i o n (1) N a r d i n o - Dryado - A l e c t o r i e t u m  vi II.  Dryadetalia (octopetalae - i n t e g r i f o l i a e ) 2.  III.  IV.  VI.  VII.  55 58 83 101  Salicetalia arcticae  117  3.  118 119  Luzulo - S a l i o l o n a r c t i c a e (5) Pogonato - L u z u l o - S a l i c e t u m . a r c t i c a e  135  Phyllodoco - C a s s l o p e t a l i a 4.  V.  Dryadlon i n t e g r i f o l i a e (2) Tetragono - Dryadetum I n t e g r i f o l i a e (3) P e d l c u l a r o - Dryadetum i n t e g r i f o l i a e (h) Rhacomitrio - Oxyrio — Dryadetum integrlfoliae  5^  C a s s i o p i o n tetragonae (6) Sphaerophoro - Rhacomitrio tetragonae  137 -  Cassiopetum  138  C a r l c e t a l i a fuscae  153  5.  154 155 158 156  Carlclon aquatllis (7) Cariceturn s t a n t i s subass. c a r i c e t o s u m membranacei subass. c a r i c e t o s u m s t a n t i s  Petasitetalla frlgldi  178  6.  179  Arctagrostidion latifoliae (8) Eriophoro - S a l i c o - Arctagrostldetum latifoliae  180  Arabidetalla  190  7.  190  Phippsion algidae (9) Catoscopio - Ranunculo -  Phippsietum  algidae  192  C o e f f i c i e n t s of S i m i l a r i t y and Dendrogram A n a l y s i s  201  Summary  212  Literature Cited  218  Appendices Appendix A - Subsurface Temperatures of S e l e c t e d Phytogeocoenoses Appendix B - Hygrothermograph Data Basecamp Station Appendix  C - C h e c k l i s t of p l a n t s p e c i e s  227 275 280  vii L i s t of Tables Table 1  Page C o n t r a s t i n g F e a t u r e s of the I n t e r i o r P l a t e a u and Coast Lowland Ecosystems  25  2  Sunshine  Data - Lowland  26  3  P r e c i p i t a t i o n - Lowland  28  4  A i r Temperatures - Lowland  5 6  Wind Speed and D i r e c t i o n - Lowland P h y t o s o c i o l o g i c a l C l a s s i f i c a t i o n o f Devon I s l a n d Phytocoenoses  35  7  Pebble A n a l y s i s N - D - A  38  8  F l o r i s t i c Synthesis N - D - A  40  8a  S o i l Synthesis N - D - A  4l  9  Average Wind Speed Over Three Associations  29  Adjacent  31  44  10  F i e l d Moisture Determinations N - D - A  49  11  C a l c u l a t e d A v a i l a b l e Water N - D - A  51  12  Pebble A n a l y s i s T - D l  59  13  F i e l d Moisture Determinations T - D i  66  14  C a l c u l a t e d A v a i l a b l e Water T - D i  68  15  F l o r i s t i c Synthesis T - Di  70  15a  S o i l Synthesis T - Di  71  16  Snow Depth T r a n s e c t s T - D i  72  17  Snow M e l t P a t t e r n s T - D i  73  18  S o i l Temperatures - Hummock and D e p r e s s i o n Topography  81  19  Pebble A n a l y s i s P - D i  85  20  F l o r i s t i c Synthesis P - Di  86  20a  S o i l Synthesis P - D l  87  vili Table  Page 96  21  F i e l d Moisture Determinations  22  C a l c u l a t e d A v a i l a b l e Water P - D i  23  Pebble A n a l y s i s R - 0 - D l  102  24  Floristic  108  24a  Soil  25  F i e l d Moisture Determinations  26  C a l c u l a t e d A v a i l a b l e Water R - 0 - D i  110  27  Snow Melt P a t t e r n R - 0 - D i  112  28  Soil  113  29  Floristic  29a  Soil  30  F i e l d Moisture Determinations  31  Pebble A n a l y s i s S - R - Ct  14-1  32  Floristic  142  32a  Soil  33  Snow Melt P a t t e r n S - R - Ct  3^  F i e l d Moisture Determination  35  C a l c u l a t e d A v a i l a b l e Water S - R - Ct  148  36  Floristic  S y n t h e s i s Cs - cs  157  37  Floristic  S y n t h e s i s Cs - cm  159  38  Soil  39  Floristic  39a  Soil  40  C a l c u l a t e d A v a i l a b l e Water E - S - A l  188  41  Pebble A n a l y s i s C - R - Pa  193  42  F l o r i s t i c S y n t h e s i s C - R - Pa  199  P - Di  97-  Synthesis R - 0 - Di  Synthesis R - 0 - D i  109 R - 0 - Dl  Temperatures R - 0 - D i S y n t h e s i s P - L - Sa  110  121  S y n t h e s i s P - L - Sa  122 P - L - S  S y n t h e s i s S - R - Ct  S y n t h e s i s S - R - Ct  a  130  143 146 S - R - Ct  S y n t h e s i s CsS y n t h e s i s E -.S - A l  Synthesis E - S - A l  14?  165 181 182  Soil  Synthesis  Floristic  C - R - Pa  Separation  Comparative  Soil  of A l l Phytocoenoses  Temperatures  by  Association  X  L i s t o f Figures Figure  Page  1  A e r i a l Photograph C o a s t a l Lowland Study A r e a  13  2  L o c a t i o n Map o f the Study A r e a  14  3  P l a t e a u S u r f a c e From the A i r  20  4  E a r t h D e b r i s I s l a n d Formed on T a l u s  20  5  F i n e s Washed t o Escarpment Base  21  6  W e l l Developed P a t t e r n e d Ground  21  7  View o f the Lowland Toward Jones Sound  22  8  A d v e c t i o n Fogs  22  9  Non-Sorted S t r i p e s  23  Newly Emergent Beach C r e s t a t P r e s e n t Shore Line  42  11  O l d e r Beach S i t e i n the Lowland I n t e r i o r  42  12  Polar Desert S o i l Underlying N - D - A  47  13  P r o f i l e o f Beach Foreshore  47  14  Landscape P o s i t i o n o f the T - D l  60  15  Pronounced Hummock and D e p r e s s i o n M i c r o r e l i e f  60  16  A r c t i c Brown (Shallow Phase) S o i l ,  17  A r c t i c Brown S o i l , P l o t 3 1  62  18  T y p i c a l Snowpack F o l l o w i n g Beach Slope  75  19  Late Snow on Low Beach w i t h Southern A s p e c t  75  20  Wind Blown D e t r i t u s C o l l e c t i n g A l o n g Beach Foreslope  76  21  A c t i v e Layer Development T - D l  77  22  A c t i v e Layer Development T - D l  78  23  D i s t r i b u t i o n o f P l a n t s i n R e l a t i o n to Hummock and D e p r e s s i o n Topography  80  24  View o f the P - D l  90  10  P l o t 52  62  Figure  Page  90  P i t No. 39  25  Soil  26  Non-Sorted C i r c l e P l o t  No. 6  91  2?  Non-Sorted  No. 4 l  91  28  Active  Layer Development P - D i  99  29  Active  L a y e r Development P - D i  100  30  Habitat of the R - 0 - D i  106  31  Close-up Surface R - 0 - D i  106  32  Arctic  Brown S o i l  33  Active  L a y e r Development R - 0 - D i  115  34  A c t i v e L a y e r Development R - 0 - D l  116  35  S p r i n g Emergence o f I c e Wedge P o l y g o n s  124  36  Exposure  37  Soil  Profile Plot  3  127  38  Soil  Profile Plot  7  127  39  P o l y g o n a l Shape o f Pond B a s e  4o  P i t Base, P l o t Forming  41  Active  L a y e r Development P - L - Sa  132  42  Active  L a y e r D e v e l o p m e n t P - L - Sa  133  43  Active  L a y e r Development P - L - Sa  134  44  Landscape P o s i t i o n  ^5  Plot  46  Snowpack I n t h e P r e - C a m b r i a n O u t c r o p  47  Lithosolic  48  Emerging Beach Ridge  160  49  Plot  27 Cs - c s  161  50  Plot  63 Cs - cm  161  Circle Plot  P r o f i l e B e n e a t h t h e R - 0 - D i 107  o f Ground I c e i n t h e A r e a o f P l o t  3t  Showing  Material  Incipient  S - R - Ct  I c e Wedge  124  128 129  140 140  89 S - R - C t  Soils at Plot  7  25  149 149  xii Figure  Page  51  Active  L a y e r Development  162  52  E c o t o n e s o f Cs - c s a n d Cs - cm  166  53  Hummock a n d D e p r e s s i o n T o p o g r a p h y o f t h e S u b a s s o c i a t i o n c a r i c e t o s u m membranacel  166  54  Early  Hummock Emergence  from the W i n t e r  Snowpack  167  55  A c t i v e L a y e r D e v e l o p m e n t Cs - cm  168  56  A c t i v e L a y e r D e v e l o p m e n t Cs - c s  169  57  G l e y s o l i c Meadow T u n d r a S o i l  58  Sites  59 60  S i t e s o f Sampling o f S o i l Blocks S o i l B l o c k s f r o m Hummock a n d D e p r e s s i o n Locations Plot 6 l  174  61  Landscape  I85  62  Weakly Developed Non-Sorted  63  Wet T u n d r a S o i l s  64  Upland Tundra S o i l  65  E l e v a t e d Limestone Blocks R e s u l t i n g  o f Sampling o f S o i l  Plot  173  28  174  Blocks  Position E - S - A l  Plot  Circles E - S - A l  186 . 187  18  Plot  175  58  Bed L o c a t i o n  I87 i n a Snow 194  66  Plot  69 C - R - P a  195  67  Plot  70 C - R - P a  195  68  Dendrogram, A l l F l o r i s t i c Components  206  69  Dendrogram, V a s c u l a r P l a n t s  207  70  Dendrogram, L i c h e n s  208  71  Dendrogram, B r y o p h y t e s  209  xiii ACKNOWLEDGMENTS The author wishes t o g r a t e f u l l y acknowledge the guidance and h e l p o f Dr. V. J . K r a j i n a , r e s e a r c h s u p e r v i s o r , i n a l l f a c e t s o f the p r e s e n t study.  I am p a r t i c u l a r l y g r a t e f u l f o r  h i s h e l p i n the naming o f the h i g h e r u n i t s o f the p r e s e n t c l a s s i f i c a t i o n and h i s most h e l p f u l s u g g e s t i o n s on the f i n a l form o f the d i s s e r t a t i o n . I am a l s o p a r t i c u l a r l y g r a t e f u l to a number o f people who a s s i s t e d i n i d e n t i f y i n g and a n n o t a t i n g the numerous p l a n t c o l l e c t i o n s made d u r i n g the study: Dr. A. E . P o r s i l d  (Draba  Dr. J . Maze (Gramlneae),  s p . ) , Dr. K. Beamish ( S a x l f r a g a sp.  and Ranunculus s p . ) . Dr. W. B. S c h o f i e l d  (Mosses),  Dr. K. Damsholt  ( L i v e r w o r t s ) , Dr. I . M. Lamb ( S t e r e o c a u l o n s p . ) , and Dr. J . Thomson ( L i c h e n s ) . been f a r l e s s  Without t h e i r h e l p the study would have  complete.  I would l i k e to thank Drs. L. L a v k u l l c h and M. K. W a l l f o r t h e i r very h e l p f u l d i s c u s s i o n s and s u g g e s t i o n s s o i l s p o r t i o n s o f the d i s s e r t a t i o n .  concerning the  My thanks a l s o to Mr. Bernard  Von S p l n d l e r o f the Department o f S o i l S c i e n c e , U n i v e r s i t y o f B r i t i s h Columbia, f o r h i s h e l p i n c e r t a i n s o i l  chemical  determinations. My thanks a l s o to Mr. Barry Ryan, Department o f Geology, U n i v e r s i t y o f B r i t i s h Columbia, f o r d e t e r m i n a t i o n o f m i n e r a l samples. Messrs. Harold S t r u b and C h r i s t o p h e r Walsn p r o v i d e d e x c e l l e n t a s s i s t a n c e i n the f i e l d ,  f r e q u e n t l y under c o n d i t i o n s which were  xiv not  particularly  pleasant.  Without  d i s s e r t a t i o n w o u l d have b e e n q u i t e H e a t h e r H o c k i n and posing  and  organizing  t h e i r help  the  present  impossible.  M a m i e Waska s p e n t many h o u r s  field  data  f o r w h i c h I am  most  ln  trans-  apprecia-  tive . Mrs.  Andrea Carnevale  admiration  and  Mrs.  Emily  K r a u z e n j o y my  f o r typing a frequently undecipherable  greatest  t e x t most  ex-  cellently. My  thanks a l s o  t o Mr.  S t e v e n B o r d e n f o r a l l the  computerized  work i n t h e d i s s e r t a t i o n . Many e c o l o g y ish an  students  Columbia c o n t r i b u t e d e x c i t i n g and  carry  on  study.  mention p a r t i c u l a r l y and  f a c u l t y at  indirectly  intellectually  graduate  periences  and  Drs.  suggestions  To  to  the  the  U n i v e r s i t y of  t h e s i s by  stimulating climate  a l l of  them I am  J o h n L a m b e r t and on w o r k i n g i n t h e  providing  i n which  grateful,  J . R.  Brit-  I  to should  MacKay whose  north  proved  ex-  invalu-  able. Financial  assistance  f o r the  present  the  Arctic  I n s t i t u t e o f N o r t h A m e r i c a and  tee  of  U n i v e r s i t y of B r i t i s h  t o Dr.  the V.  J. Krajina.  Research C o u n c i l the  my  f o r her  during  together  or  apart.  by  A r c t i c - A l p i n e Commitgrants-in-aid  a l s o a s s i s t e d by  h i s graduate  t o my  wife,  a  student  on many o c c a s i o n s ,  Kathleen, but  t i n u e d b u o y a n t p e r s o n a l i t y w h i c h a l w a y s s e e s us spots,  supplied  National tenure  Columbia.  particular gratitude p h y s i c a l help  the  Columbia through  a u t h o r was  Scholarship  U n i v e r s i t y of B r i t i s h Last,  only  The  s t u d y was  f o r her  o v e r the  not conrough  at  xiv not p a r t i c u l a r l y p l e a s a n t .  Without  t h e i r help the p r e s e n t  d i s s e r t a t i o n would have been q u i t e i m p o s s i b l e . Heather  Hockin and Marnie Waska spent many hours  i n trans-  p o s i n g and o r g a n i z i n g f i e l d data f o r which I am most appreciative. Mrs. Andrea Carnevale and Mrs. E m i l y Krauz enjoy my greatest admiration f o r typing a f r e q u e n t l y undecipherable t e x t most e x c e l l e n t l y . My thanks a l s o to Mr. Steven Borden f o r a l l o f the comp u t e r i z e d work l n the d i s s e r t a t i o n . Many ecology students and f a c u l t y a t the U n i v e r s i t y o f B r i t i s h Columbia  contributed i n d i r e c t l y  to the t h e s i s by p r o -  v i d i n g an e x c i t i n g and i n t e l l e c t u a l l y s t i m u l a t i n g c l i m a t e i n which to c a r r y on graduate  study.  To a l l o f them I am g r a t e f u l .  I should mention p a r t i c u l a r l y Drs. John Lambert and J . R. MacKay whose e x p e r i e n c e s and s u g g e s t i o n s on working  i n the n o r t h proved  invaluable. L a s t , my p a r t i c u l a r g r a t i t u d e to my w i f e , Kathleen, n o t only f o r her p h y s i c a l h e l p on many o c c a s i o n s , but f o r her cont i n u e d buoyant p e r s o n a l i t y which always sees us over the rough spots, together o r a p a r t .  1  Introduction  The  549,000 s q u a r e  mately least  Canadian A r c t i c A r c h i p e l a g o , a l a n d area of miles  studied arctic  ecology. basic  While  (Porslld  r e g i o n s from  there  is a real  the  1963)  an e x c e l l e n t  core of r e l a t i v e l y  (c.f.  Porsild  need f o r the  there e x i s t s ,  1964;  Steere  Schofield  1967; and  Schuster,  Cody 1955?  These p a s t works, t h e low  arctic  Steere  1947;  1939,  Steere  and  B r a s s a r d and  i n combination  19^7,  1951,  of  the  plant from  nature uting for  i n the  Beschel  1947;  and o t h e r s ) . studies  i n the  ecosystematlc  from  nature.  h o w e v e r shows t h a t work o f t h i s  Canadian High A r c t i c .  Indeed u n t i l and  mainland,  detailed  classical  sense  British  the  type work  Mountains  composition  were e n t i r e l y  of lacking  region. reasons  f o r the  are undoubtedly  conspicuous  complex.  situation.  The  first  absence o f s t u d i e s of  T h e r e a r e h o w e v e r two  f a c t o r s w h i c h a p p e a r t o be  this  Brassard  Lynge  1968;  with s i m i l a r  K r a j i n a i n the R i c h a r d s o n  communities  The  1955;  r e g i o n s o f Canada s h o u l d p r o v i d e a sound base f o r  extreme northwest  this  works,  196I;  Thomson 1959;  o f the l i t e r a t u r e  Lambert and  1959,  Savile  A review  of  arctic  recently published material  s t u d i e s o f a p h y t o s o c l o l o g i c a l and  lacking  the  continuation of  Canadian  detailed  is  of  i n terms o f f l o r i s t i c  P o l u n i n 1940,  1967a, 1967b;  Brassard  r e m a i n s one  standpoint of p l a n t  i n v e n t o r i e s i n many p o r t i o n s o f t h e  (Benninghoff  and  1964)  approxi-  contrib-  responsible, in part at  i s the  American, p l a n t e c o l o g i s t s w i t h t h e  occupation of  North  f u n c t i o n a l approach  this  to  least,  2 studies  of vegetation  was  apparent  the  l n the  arctic  f r u s t r a t i o n of  (as  elsewhere).  e a r l i e r workers  transpose  c l a s s i c a l methods o f v e g e t a t i o n  study,  practiced  the  as  temperate r e g i o n s  arctic  functional  1934)  (Grigg  to  phytosociologlcal o f many a r e a s ,  has  yielded  (Billings  and  Mooney 1 9 6 8 ) .  c l e a r however t h a t can  ( p h y s i o l o g i c a l ) approach to problems  vegetation  results  to  o f an  autecological The  5Kl)*l667  1967)  or  the  and  the  classical  arctic  been produced (i960)  has  p e r h a p s the  i n the  also  an  alpine  rejected  Sigafoos  testing  instability (1952)  and  due  theory  for  of  (1934)  idea  of  vegetation,  Drury  concept  One  rejections of who  (1962).  researchers of  the  this  distinct  arctic  working  than  More r e c e n t l y  had  Savile  plant  less individual-  principally  congeliturbatlon,  of  called for a  have t a k e n a more o r  to  (sensu  entirely different basis  the  O t h e r s who  1  literature.  temperate r e g i o n s .  approach to a r c t i c  habitat  field  theme o f many  most c r i t i c a l  e c o l o g y on  associations. istic  data  sound b a s e l i n e  "association"  been a predominant  a p p r o a c h came f r o m R o b e r t G r i g g s of  a  the  'community-unit  North American a r c t i c  earliest  phytosoclology  hypotheses.  B r a u n - B l a n q u e t has the  increasingly  ecophyslological  and  a u t e c o l o g i c a l n a t u r e and  r e j e c t i o n of  Whittaker,  on  of  Informative  I t Is becoming  influence  M a j o r ' s comment E c o l .  studies  i n t e r e s t i n g and  c o r r e l a t i v e s y n e c o l o g y and  provide a generalizing  ^cf.  out  second  higher l a t i t u d e s . The  in  i n the  and  The  are  with regard Raup  (1951),  to  3 In  c o n t r a s t to t h i s are  Running  (1965.  1969), Gelting (1955),  (i960)  Aleksandrova  and  utilized  study  i n a wide a r e a  Soviet arctic. A m e r i c a and (1956)  Dahl  torily and  Also  i n the  Scandinavia, and  utilized  the  t h a t the  d e s c r i p t i o n of a r c t i c can  be  a t t r i b u t e d to  and  their  ecology,  congeliturbation plays arctic-alpine  theory  types  the  the  ecology  generation  bicentric Drury  clrcumpolar  this  on  which  environment  has  of  pointed  the  patterns out  the  work o f  to  facilitate  Nowhere i s t h e pointed  out  the  need f o r than  causes  existing  clrcumpolar  similarity  regions.  nature  b a s i s of h i s a n a l y s i s of  of the  the  of  Running  in of  i n c e r t a i n clrcumpolar  tundra  the  ecological interpreta-  s o r t more c r i t i c a l l y  published  the  regions.  respect  should  e x c e l l e n t r e I n t e r p r e t a t i o n of  even suggested  alliance  types  the a c t u a l r o l e  vegetation  c o m p a r i s o n s and  distributional  shown i n t h e has  of  (195D  (1962)  the  manner  vegetational  d i s t r i b u t i o n and  of a r c t i c  of v a l i d  t i o n s w i t h i n the  Bocher's  Major  vegetation.  and  information  (I963),  "trouble" i n  More d e t a i l e d i n f o r m a t i o n a c c u m u l a t e d w i t h structure  North  i n the d e s c r i p t i o n  overemphasis of  i n the  and  satisfac-  in a classical  with  the  Bliss  I n d e e d Bamberg and  inexperience an  of  (1968),  Major  who  for  the S c a n d i n a v i a n  o f t e n quoted  vegetation  and  of  have a l l t o some e x t e n t  community-unit  have s u g g e s t e d  specialists  analogous a l p i n e areas  i n t e r p r e t a t i o n of vegetation.  (1968)  tundra  a community u n i t t h e o r y  Bamberg and  (I96?)  Marr  (195*0.  GJaervoll  (1940),  Acock  have s a t i s f a c t o r i l y of v e g e t a t i o n  (1955),  the works of Nordhagen  species. pattern (1965)  Dryadlon  existing  literature  from S c a n d i n a v i a ,  A r c t i c Russia, Alaska,  his  own  studies i n Svalbard.  for  the  replicated  which the  Greenland,  T h e r e r e m a i n s however a r e a l  d e s c r i p t i o n o f v e g e t a t i o n and  community-unit  predictive qualities  Iceland  and need  environment,  t h e o r y p r o v i d e s , b e f o r e we  to which a s c i e n c e of a r c t i c  achieve  the  vegetation  should a s p i r e . At  the  onset  of  became a p p a r e n t . community-unit an attempt  theory  the u t i l i z a t i o n  i n a Canadian high a r c t i c  of  in to  been  The  s e c o n d was  the a c c u m u l a t i o n  d a t a w h i c h c o u l d be which both  other a r c t i c  s t r u c t u r e d Into an was  and  ecosystemcomparable  regions.  i s b e l i e v e d t h a t the  g o a l s , and  successfully  of v e g e t a t i o n a l  d e s c r i b e d the a r e a and  the  situation,  biome where i t has  with  a  to t e s t  goals  o f the a r c t i c  framevrork  the  was  broad  i n comparison  atlc  these  first  t h e r e f o r e , two  its practicability  environmental  It  The  study  to demonstrate  other areas utilized.  this  t h a t new  s t r u c t u r e and  f o l l o w i n g d i s s e r t a t i o n has  i n f o r m a t i o n has  environmental  Canadian high a r c t i c  achieved  been c o n t r i b u t e d  relationships  on  of v e g e t a t i o n l n  ecosystem.  P h y t o s o c i o l o g l c a l M e t h o d s and  Units  Methods: As ology  Dahl  (1956)  i s important  has  p o i n t e d out  f o r Judging  " s c h o o l s " of thought  the  explication  o f method-  p h y t o s o c i o l o g l c a l works.  have e v o l v e d w h i c h a p p r o a c h t h e  Various  study  of  5 vegetation vidual the  i n various  1962).  ways ( W h i t t a k e r  s t u d i e s combine s e v e r a l a p p r o a c h e s  specific  present  needs o f a g i v e n a r e a ;  this  b a s i c approach to v e g e t a t i o n  t h a t of the  Zurich-Montpellier school  t h e b a s i c a p p r o a c h t o more c l o s e l y of species (1933)  Krajina D a h l has  is  s i g n i f i c a n c e as  has  t o meet  b e e n done i n  the  ( p l o t ) has  i n h i s study  subsamples as  Running 1965?  In  f i t the  i t was  similar  those  (1956).  by  One  large  rather  than  p r a c t i c e d i n many S c a n d i n a v i a n Plot size  s t u d i e s , and  for this  f o r the  that  this  i s l a r g e r than the minimal a r e a  Plot  size  f o r any  stand  reason  studies  most  part  previously  i t i s assumed  f o r any  Is s t a t e d i n the  Domln  reasons  , g e n e r a l l y l a r g e r than those  given  adapted  The  utilized  w i t h i n each stand  Cer-  felt  situation.  d e v e l o p e d and  Nordhagen 1 9 5 5 ) •  e i t h e r l O O n r o r 25m  utilized  which  i n Rondane  been a n a l y z e d  is  of phytosociology.  been chosen f o r e s s e n t i a l l y  expressed  a number o f (cf.  has  attempt  a n a l y s i s used here  t a i n m o d i f i c a t i o n s have b e e n u t i l i z e d ,  sample  In an  indi-  study.  The  scale  Occasionally  given  type.  treatment  of  vegetation. The field  mosaic nature  workers  i n w h i c h the  of a r c t i c  i n that region present  ecotonal  areas  the  n o t e d and  out  I s w e l l known The  i s no  B r a u n - B l a n q u e t and portions of  penetration of will  treatment of v e g e t a t i o n .  1962).  carried  occupy s i g n i f i c a n t  Where a p p r o p r i a t e c i a t i o n s was  (Bliss  work was  Mixed a s s o c i a t i o n s (sensu  vegetation  be  The  species  lowland  to  system  exception.  Furrer the  1913)  or  landscape.  Into adjacent  asso-  commented u p o n i n t h e d e t a i l e d overlying philosophy  of  the  study  6 however was n o t , t o p a r a p h r a s e B r a u n - B l a n q u e t a n d P u r r e r to  inventory  delineate  the t o t a l a r e a l landscape surface,  replicating  future  research  delineation  but rather to  v e g e t a t l o n a l u n i t s and t h e i r  environmental c o n d i t i o n s , which could l n comparative  t o be e s s e n t i a l l y  serve  associated  as a b a s i s f o r  ecological studies. equivalent  (1913),  to  I take  this  the"nodal"concept  (1955b).  of Poore  Units of c l a s s i f i c a t i o n : The school  basic unit of vegetation  i s the a s s o c i a t i o n .  unit basing ential  In areas  the success  ciation  to this  poor  framework a l o n e  ferential  species  Rondane.  Other workers  tundra  vegetation.  h i s students  The  flexibility  composition,  as i n the  the d e l i n e a t i o n o f the asso-  i s questionable.  (Oosting  1948; Muller  Dahl  (1956)  The p r e s e n t  1 9 5 2 ) have  dif-  shown  o f dominance p a t t e r n r a t h e r  i n the study  of successive  study  utilizes  than  stages i n  the concept o f (1933)  i n the c h a r a c t e r i z a t i o n of the p l a n t a s s o c i a t i o n . of this  system a l l o w s  on t h e c h a r a c t e r i s t i c characteristic  of species  or d i f f e r -  combinations o f s p e c i e s as used by K r a j i n a  and  their  floristic  to the c h a r a c t e r i z a t i o n of v e g e t a t i o n l n  composition  characteristic  only  Is a  o f employing both dominants and  importance o f the s h i f t i n g  floristic  on  l n species  of r e s t r i c t i n g  shown t h e d e s i r a b i l i t y  the  this  (Braun-Blanquet and F u r r e r 1 9 1 3 ; K r a j i n a 1 9 3 3 ;  arctic,  has  Traditionally  2urlch-Montpellier  i t s d e l i n e a t i o n m a i n l y on c h a r a c t e r i s t i c  species  Dahl 1 9 5 6 ) .  of the  significance.  one t o d e l i n e a t e u n i t s n o t  presence of d i f f e r e n t i a l s  absence o r obvious changes  but also  In p a t t e r n s  7 Moore (1962) has p o i n t e d out the t r e n d o f c o n t i n e n t a l p h y t o s o c i o l o g i s t s t o u t i l i z e the term "presumed Kennart" (presumed  f a i t h f u l s p e c i e s ) where work i s c a r r i e d out i n p o o r l y  understood r e g i o n s .  Because o f my l i m i t e d e x p e r i e n c e i n the  Canadian A r c t i c and the l a c k o f accumulated p h y t o s o c l o l o g i c a l d a t a from t h i s area, I have c o n t i n u e d t h i s t r e n d and used the heading "presumed c h a r a c t e r i s t i c combination o f s p e c i e s " i n the synthesis Tables.  The u n i t s o f h i g h e r p h y t o s o c l o l o g i c a l  inte-  g r a t i o n remain those o f the Z u r i c h - M o n t p e l l i e r s c h o o l , the a l l i a n c e , o r d e r and  class.  S i n c e a number o f l i t h o l o g i c parameters have been determined f o r each r e l e v e , I have chosen to term the f i n a l u n i t s d e r i v e d from the study phytogeocoenoses it  (sensu Sukachev 1944).  While  i s r e a l i z e d t h a t numerous parameters of an e c o l o g l c and  g r a p h i c n a t u r e may  be u t i l i z e d  geo-  i n the c h a r a c t e r i z a t i o n o f the  Z u r i c h - M o n t p e l l i e r a s s o c i a t i o n ( c f . quote o f Braun-Blanquet i n Moore 1962)  i t s e s s e n t i a l d i s t i n g u i s h i n g c h a r a c t e r i s t i c s remain  f l o r i s t i c and the environmental parameters d e s c r i b e d remain v a r i a b l e i n both e x t e n t of measurement and c h o i c e o f parameter. The term phytogeocoenosls emphasizes  s u c c i n c t l y the primary  avenues of i n v e s t i g a t i o n undertaken and the e m p i r i c a l values, utilized study.  i n the f i n a l s y n t h e s i s o f e c o l o g i c a l u n i t s i n t h i s As Sukachev has shown the b i o g e o c o e n o s i s i s a c o n c r e t e  landscape u n i t composed c h i e f l y o f two d i v i s i o n s , an ecotope ( p h y s i c a l environment) and a biocoenose ( l i v i n g organisms), the blocoenose b e i n g f u r t h e r s u b d i v i d e d i n t o the phytocoenose ( v e g e t a t i o n ) , zoocoenose  (animal p o p u l a t i o n s ) and  microbocoenose  (microorganisms).  I t i s c l e a r t h a t Sukachev c o n s i d e r e d  plant association equivalent Also  explicit  defined  only  to the  i s Sukachev s b e l i e f 1  solely  in biologic  scape homogeneity  features.  i s introduced  (1944).  phytocoenosis  t h a t the  the  biocoenosls  be  O n l y when d e f i n i t e  does the  study  land-  become  blogeocoenotic. " A l t h o u g h the p o i n t has not y e t been c l a r i f i e d , l a n d s c a p e s t u d y and b i o c o e n o l o g y h a v e a common m e e t i n g ground o n l y In the biogeocoenosls" (Sukachev 1 9 4 4 ) . Unfortunately  there  procedure f o r the tion the  o f how study  standard  does n o t  exist  many e c o t o p i c p a r a m e t e r s must be  may  be  considered  latinized  blogeocoenotic.  e n d i n g s a p p l i e d to the  Zurich-Montpellier tradition  the  dissertation.  I t should  of l i t h o l o g l c  and  be  " u n i t s , " and  head kept  floristic  s c a p e p o s i t i o n , were c o n s i d e r e d synthesized  a  standardized  naming o f a p h y t o g e o c o e n o s i s o r any  the  cluster  at present  the  measured  before  For  reason  this  a s s o c i a t i o n names i n various  sections  i n m i n d however t h a t p a r a m e t e r s , as w e l l as  i n the  hence the  indica-  final  choice  choice  of  within a land-  the  of  the  dissertation  base o f  the  active layer  title.  Methods o f E n v i r o n m e n t a l  Soil  Measurement:  Sampling: Soil  p i t s were e x c a v a t e d  a t each r e l e v e .  to the  S a m p l e s were c o l l e c t e d  from a l l r e c o g n i z a b l e  9 horizons.  Where a p p r o p r i a t e  pockets,  i n t r u s i o n s o r any  excavation.  s a m p l e s were a l s o c o l l e c t e d  non-horizon  s t r u c t u r e and  Because o f space l i m i t a t i o n s impossible the  m a t e r i a l e x p o s e d by  F i e l d measurements o f d e p t h and  zons, boundaries,  to dry a l l s o i l s  i n the  s a m p l e s were s t o r e d i n a n  upon r e t u r n t o B r i t i s h t h r o u g h a 2-mm  thickness of  c o l o r were t a k e n  o f the  field  station,  field.  A l l s a m p l e s were  from the base o f each s o i l  geology  for  mineral analysis.  department a t  r e a c t i o n was  (Hissink 1930)  and  T a y l o r 1955)*  m o d e l 24.  pit.  field. was  occurred a i r dried  passed  material  was  T h i s was  returned  the U n i v e r s i t y of B r i t i s h  Columbia  a 1:2  soil:0.01M  CaCl  s e m i m i c r o K J e l d a h l method a f t e r  p h o r u s was  d e t e r m i n e d by D i c k m a n a n d  molybdopho3phorlc blue 1958)*  B a u s c h and Na)  solution on  Q u a n t i t a t i v e carbon determinations  by  (Jackson  2  soil-.water  A l l m e a s u r e m e n t s were r e a d  a Leco T o t a l Carbon A n a l y z e r .  the  a 1:2  measured i n both  lizing  Mg,  hori-  to  Chemical A n a l y s i s : Soil  and  the  sieve before a n a l y s i s .  the  Soil  i t  When t h i s  Where p o s s i b l e a random sample o f p a r e n t collected  i n the  u n h e a t e d b u i l d i n g and  Columbia.  from  (Schofield Radiometer  were made  uti-  T o t a l n i t r o g e n was Bremmer  Bray's  done  (i960).  Phos-  chlorostannous-  c o l o r method i n h y d r o c h l o r i c a c i d  Percent  t r a n s m i s s i o n was  Lamb S p c c t r o n i c 2 0 .  were m e a s u r e d a s  were s h a k e n f o r 24  a  ratio  hours  read  Replaceable  at 6600 A  cations  (Ca,  follows:  10  i n 60 mis  o f IN ammonium a c e t a t e  grams o f  a i r dry  on K,  soil at  a  pH 7 . 0 + 0 . 2 .  T h i s was t h e n  f i l t e r e d a n d washed w i t h  a l i q u o t s o f ammonium a c e t a t e a n d "brought were t h e n m e a s u r e d o n a P e r k i n - E l m e r  two 2 0 m l .  t o volume.  Cations  Atomic a b s o r p t i o n s p e c t r o -  photometer model 3 0 3 .  Soil  Physical Analysis; Soil  color,  d r y a n d i n t h e f i e l d , was m e a s u r e d  standard Munsell  color notations (Baltimore).  m e a s u r e m e n t s were d e t e r m i n e d 1951) of  f o r 24 h o u r s .  t h e U.S.D.A. ( 1 9 5 1 ) * 15  Soil  (Soilmoisture Equip.  ceramic  size  (Bouyoucos  s h a k i n g w i t h a 2% s o l u t i o n  Size fraction limits  moisture  a t m o s . were o b t a i n e d w i t h  Particle  b y t h e h y d r o m e t e r method  a f t e r d i s p e r s i o n by r e c i p r o c a l Calgon  with  a r e those o f  r e t e n t i o n v a l u e s a t 1/3 and plate extractors  Co.) a n d a v a i l a b l e w a t e r c a l c u l a t e d a s t h e  d i f f e r e n c e between these  values.  Climate and M i c r o c l i m a t e : The  basecamp w e a t h e r s t a t i o n h o u s e d t h e f o l l o w i n g i n s t r u -  ments d u r i n g t h e 1 9 6 8 a n d 1 9 6 9 f i e l d  seasons:  1  Casella  1  T a y l o r Maximum-Minimum Thermometer  1  R a i n Gauge ( S c i e n c e A s s o c i a t e s # 5 1 0 )  hygrothermograph  W i t h t h e h e l p o f t h e basecamp p e r s o n n e l a n a t t e m p t  was made t o  record  (10  speed  at least  twice d a i l y ,  estimated  cloud cover  t n  s),  wind  ( B e a u f o r t ) and d i r e c t i o n . Six  m i c r o c l i m a t i c s t a t i o n s were a l s o e s t a b l i s h e d l n  various locations  i n both  I968  and 1 9 6 9 .  Each s t a t i o n  housed  the  following: T a y l o r Maximum-Minimum Thermometer Tempscribe  remote r e c o r d i n g  thermographs f o r  continuous reading of s o i l various The  depths.  t e m p s c r i b e u n i t s were s e r v i c e d w e e k l y  replicated  soil  tion of soil  temperature a t  and a t t h a t  c o r e s were t a k e n f o r t h e g r a v i m e t r i c  time determina-  m o i s t u r e a n d maximum, minimum a n d p r e s e n t  tempera-  ture recorded a t the height of the v e g e t a t i o n . A number 1968  o f YSI s e r i e s  t o measure s o i l  regimes. 1969.  1 0 0 t h e r m i s t e r s were  temperature under v a r i o u s  T h e s e were l e f t  s e a s o n a number  during 1969,  changes on s o i l utilized  to record  spot r e a d i n g s of temperature  i n varying  seasons. of  localities  snow  at least  f e a t u r e s were h e t e r o g e n e o u s b e r s o f p r o b e s were p l a c e d  profiles  along staked  l a y e r under v a r i o u s v e g e t a t i o n  twice.  loca-  tran-  d u r i n g b o t h the 1 9 6 8 and 1 9 6 9  T e n p r o b e s were u s e d p e r v e g e t a t i o n replicated  i n various  Wooden p r o b e s were u s e d t o m e a s u r e t h e r a t e  thaw o f t h e a c t i v e  thawing.  p r o b e s were  s u r f a c e and w i t h i n  Snow d e p t h a n d thaw were m e a s u r e d d a i l y sects  layer  of small topographic  Other s p e c i a l i z e d  t i o n s and s i t u a t i o n s a t t h e s o i l  tempera-  s e t o u t i n a hummock  t o a s s e s s the e f f e c t  temperatures.  again i n  of s o i l  t o snow m e l t a n d a c t i v e  A g r o u p o f t h e r m l s t e r p r o b e s were a l s o relief  vegetational  o v e r w i n t e r and u t i l i z e d  Thus, d u r i n g t h e l a t t e r  t u r e s were o b t a i n e d p r i o r  installed i n  and d e p t h covers.  type and each t y p e  was  Where m i c r o t o p o g r a p h y o r s u r f a c e ( e . g . p a t t e r n e d g r o u n d ) e q u a l numon each s u r f a c e .  A l l p r o b e s were  driven  t o p o i n t o f r e f u s a l and measured weekly.  was u s e d point  Sites  corresponded  to the present  of a very rocky nature  been used  (Bliss  1956;  Other the course  with success Mackay I 9 6 3 ;  zero degree  as the r a i s e d  P r e - C a m b r l a n r o c k o u t c r o p s were o m i t t e d . has  technique  o n l y where i t c o u l d be r e a s o n a b l y assumed t h a t t h e  of refusal  therm.  This  l n similar  beaches o r  This basic  technique  studies i n tundra  Brown a n d R i c k a r d  iso-  regions  1969).  miscellaneous recordings or observations noted o f the study w i l l  be commented  during  o n where a p p r o p r i a t e  w i t h i n the t e x t .  The  Study  Area  Location: The and  s t u d y was u n d e r t a k e n  southeasternmost  eastern third  o n Devon I s l a n d ,  o f t h e Queen E l i z a b e t h  o f Devon s u p p o r t s  glacierized area  (16,575  of approximately  1 , 8 9 0 m.  which r i s e s  1967).  study area  itself  of  l o w l a n d a t 75° 41 »N; 84° 33'W.  coastal  known l o c a l l y the A r c t i c 3-961. rally  was a n a p p r o x i m a t e  The l o w l a n d  o f North America  Inlet"  to an  largest  elevation  sixteen  square  ( P i g .1 ) .  mile  the area  The a r e a i s  due t o t h e p r e s e n c e  field  station  of  erected i n  i s t h e s o u t h e r n most o f t h r e e r a t h e r n a t u -  d e l i n e a t e d lowlands  "Truelove  The  More s p e c i f i c a l l y  a s t h e "Basecamp" l o w l a n d  Institute  Islands.  largest  the a r c h i p e l a g o ' s t h i r d  s q . km.) (Bird  second  which form  t o Cape S p a r b o  a lowland  i n the n o r t h .  complex  from  The l o w l a n d  area  /  Pig.  1  A e r i a l photograph coastal See  text  lowland  of  study  the area.  for orientation.  Fig.  2  L o c a t i o n map area  of the  (courtesy  study  o f Tom  Booth).  15 i s b o u n d e d on  t h r e e s i d e s by w a t e r  a large v e r t i c a l  loglcal  and  has  s u m m a r i z e d much o f t h e e x i s t i n g  g e o m o r p h o l o g i c a l work u n d e r t a k e n  study o f the p e r i g l a c i a l that  on the e a s t e r n s i d e  follows  by  escarpment.  (1968)  King  and  environment.  i s taken from  this  meteroro-  in this  Much o f t h e  area  in his  description  work.  Geology: (1963)  Glenister Sverdrup  Inlet  reports  t o Cape S p a r b o  the bedrock  i s composed c h i e f l y  C a m b r i a n basement complex u n c o n f o r m a b l y and  clastic  sedimentary  has  e s t i m a t e d the lower  lower Cambrian equates  this  l n age  beds.  Cowie  This  thickness.  Overlying  f o l l o w e d by a n conglomerates  on  the b a s i s  this  and  lowlands in  by K i n g  and  The  forty  feet  of dolomites, total  to  and  feet  in  sedimentary  breccia,  estimated t h i c k n e s s of i s seven  hun-  feet.  escarpment  is chiefly  be  fauna  u n c o n f o r m i t y b e t w e e n t h e basement complex and  The  1968)  l n thickness  s e r i e s a b o v e t h e basement complex  seventeen  Pre-  Point  thirty  of dolomite  the  carbonate  of observed f o s s i l  i s a series  sandstone.  s e d i m e n t a r l e s c a n be  lowlands.  (reported  f o r m a t i o n i s e s t i m a t e d t o be  inter-bedded s e r i e s  the sedimentary  lying  o v e r l a i n by  sedimentary beds of sandstone  beds a p p r o x i m a t e l y f o u r hundred  The  of a  s e c t i o n w i t h the lower Cambrian R a b b i t  Formation.  d r e d and  of the a r e a from  seen  strikingly  from  the  the  basecamp  b o r d e r i n g the e a s t e r n p o r t i o n of  s e d i m e n t a r y m a t e r i a l w i t h basement  the n o r t h e a s t e r n p o r t i o n  showing  over-  the  exposure  a g e n t l e d i p to the  south  16 west.  The e s c a r p m e n t t o t h e s o u t h  "Truelove by  Inlet"  of the lowland  however i s c h i e f l y  a t h i n l a y e r o f sedimentary Basement h i g h s  occur  P r e - C a m b r i a n m a t e r i a l capped  material.  throughout  the lowland  f o r m l a r g e numbers o f o f f s h o r e i s l a n d s . are in  common i n t h e basecamp l o w l a n d the northern p o r t i o n .  exposed  i n the v a l l e y  Glenlster five  (1963)  miles.  systems  and  outcrops chiefly widely  ( K i n g 1 9 6 8 ) a n d h a s b e e n shown b y systems  inland  from G l e n l s t e r ( 1 9 6 3 )  i n the t r a n s i t i o n  the dominant sedimentary  Pre-Cambrian  and a r e c o n c e n t r a t e d  t o f o l l o w major r i v e r  lies  complex and  Pre-Cambrian m a t e r i a l i s a l s o  I t i s apparent  basecamp l o w l a n d  across  f o r twenty-  that the  zone o f a change b e t w e e n  s u r f a c e o f t h e w e s t e r n p o r t i o n o f Devon  the s u r f a c e exposure o f Pre-Cambrian m a t e r i a l t o the east,  as r e p o r t s o f Pre-Cambrian o u t c r o p p i n g  a r e unknown w e s t o f  e Longitude  8 6 40'W b u t d o m i n a t e e a s t o f Cape  From t h e s t a n d p o i n t of t h i s area  in itself  changes and subsequent bined with quent  o f the p l a n t e c o l o g l s t  should provide  the b a s i c  interesting  parent  expect see t h i s  geology material  s u b s t r a t e and h a b i t a t d i f f e r e n c e s .  and f l u v i a l  r e g i o n s , one  a m o s a i c o f complex h a b i t a t s t o emerge. i s i n fact  Com-  g e o m o r p h o l g l c changes and subse-  c o n g e l i t u r b a t i o n s o common i n t h e p e r m a f r o s t  should shall  glacial  Sparbo.  A s we  the case.  Physiography: It tinct  i s apparent  physiographic  These w i l l  t h a t e x c l u d i n g t h e i c e c a p s u r f a c e two d i s provinces  be d e s i g n a t e d  exist  In the a r e a under  as the c o a s t a l lowlands  study.  and the I n t e r i o r  17 plateau  throughout  c a l as w e l l as  the r e s t  logistic  o f the d i s s e r t a t i o n .  reasons  t h e s t u d y was  coastal  lowland area.  esting,  f o r the v e g e t a t i o n regimes  different  and  their  mutual e f f e c t s The  However a c o m p a r i s o n  contiguous nature  o f one  upon t h e  then r i s e s  3 0 0 0 f e e t ASL its  the  o f the are  two  surface of late  the  to a h e i g h t of  subsequent devoid  glacial  age  activity  i s lacking  is virtually are  closed  As  inter-  some  lowlands  to  has  been p o i n t e d  been l i t t l e  (King 1 9 6 8 ) .  The  (ASL)  approximately out  clastic  to represent a uniform  w h i c h has  stands  completely.  erosional  modified  by  surface i s nearly  Hussell  scant, but  there are  i n the a d j o i n i n g lowlands  i s apparent are l a c k i n g .  spring from  i s apparent  1969).  circles  Climatic  and  Sorted  stripes  that,  is later  comparative than  In the  observation, although quantitative  L a t e r snow m e l t ,  from  from  the  conditions are harsher  ( c f . King's  snow m e l t  and  data f o r the p l a t e a u  indications  o f p l a n t growth a t l e a s t ,  That  vegeta-  t h e basecamp m a r g i n o f t h e p l a t e a u ' s  King reports sorted nets,  surface are  i n many a r e a s  P a t t e r n e d ground  v a r i o u s a r e a s o f the p l a t e a u .  standpoint  e v i d e n t and  a l l sorted (King 1968;  common n e a r  s u r f a c e and  data).  a  of vegetation.  Nowhere a r e  strips  appears  Tertiary  is  t o 9 0 0 f e e t above s e a l e v e l  icecap margin.  m a t e r i a l and  to  exceedingly  implies at least  a b r u p t l y from  gradually inland near  restricted  s u r f a c e I s u n i f o r m l y c o v e r e d w i t h l i m e s t o n e and  sedimentary  tion  700  biologi-  other.  Interior plateau rises  a height of approximately and  i n each  For  than  temperature lowland  areas  measurements  l a c k o f t r a n s p i r a t i o n and  a  high  percentage o f f i n e surface are  grained  o f the plateau  material  i n spring.  not  3)«  (King  relatively  large areas  and mass-wasting  1968).  t a k e n i n e a r l y J u l y show p r o m i n e n t  streams c o v e r i n g (Fig.  s a t u r a t i o n o f the  Solifluctlon  a c t i v e and everywhere a p p a r e n t  of the area  Insure  Aerial  views  solifluctlon  o f the p l a t e a u  surface  The movement o f f i n e g r a i n s e d i m e n t a r y m a t e r i a l i s  restricted  to the h o r i z o n t a l separation of f i n e s i n patterned  g r o u n d o r d o w n s l o p e s u r f a c e movement. m a t e r i a l from  the plateau  V e r t i c a l movement o f f i n e  t o the lowland  area  i s reflected i n  v a r i o u s ways b o t h on t h e e s c a r p m e n t ' s l o w e r f a c e a n d a t i t s base.  Earth  debris  islands bearing  solifluctlon  lobes,  and l o c a l  rated  mates o f t h e i m p a c t the lowland  inundation  the eastern  elevated glacial  that the t r a n s f e r r a l  system a s a whole w i l l  rises base.  picture (Fig. 7 ) . strand f l a t  and marine  gradually During  glaciation  the marine l i m i t  approximately the  lowland  a  strikingly  complex r e p r e s e n t s  the  allowed  o f the s e a . found  King  the area  During  t o be  has presented  i n nearby Truelove  were s u b j e c t e d  an  by  lowland  150 f e e t ASL a t the escarpment  t h e l o w l a n d s were d e p r e s s e d  246 f e e t A S L . areas  presents  From t h e c o a s t ,  to approximately  Esti-  study.  which has been c o n s i d e r a b l y m o d i f i e d  Influences.  the e u s t a t l c r i s e  that  by s a t u -  o f such m a t e r i a l has  require further  The l o w l a n d  quent r e t r e a t o f the g l a c i e r s by  of vegetation  p o r t i o n o f the lowlands.  In contrast, the c o a s t a l lowland different  (Fig. 4 ) ,  ( F i g . 5 ) have been n o t e d a t t h e base o f t h e  fine material  escarpment b o r d e r i n g  on  vegetation  valley  and subseinundated evidence lies at  t h i s p e r i o d o f submersion  to v a r i o u s marine e r o s i o n a l  19  and d e p o s l t l o n a l p r o c e s s e s w i t h r e s u l t i n g changes i n the landscape. F o l l o w i n g the r e t r e a t of i c e from the lowland,  isostatic  u p l i f t r e s u l t e d i n the emergence of the a r e a from the sea. E l e v a t e d s t r a n d l i n e s c o v e r i n g the lowland from the p r e s e n t c o a s t t o the escarpment base a t t e s t to t h i s emergence. Barr ( 1 9 6 6 ) attempted  M u l l e r and  and more r e c e n t l y B a r r ( c i t e d In K i n g 1 9 6 8 )  d a t i n g the I s o s t a t i c u p l i f t o f the lowlands  have  utilizing  i n s i t u o r g a n i c m a t e r i a l from the beaches i n combination r e l i e f measurements.  with  T h e i r most r e c e n t d a t a i n d i c a t e a r a p i d  i n i t i a l emergence p r i o r to 9 ^ 5 0 years B.P.  ( 8 . 3 feet/century)  f o l l o w e d by a decrease between 8,860 and 7,000 y e a r s B.P. feet/century).  In the l a s t 5 0 0 0 years emergence has  c o n s i d e r a b l y (~0.6  f e e t / c e n t u r y ) and  (2.8  decreased  i n d i c a t i o n s are t h a t  i s o s t a t i c e q u i l i b r i u m has been a t t a i n e d . U n l i k e the i n t e r i o r p l a t e a u , the v a r i o u s p a t t e r n e d f e a t u r e s found throughout types.  the lowlands are a l l of the non-sorted  I found no evidence of s o r t e d f e a t u r e s i n the basecamp  lowlands, nor a p p a r e n t l y d i d K i n g ( 1 9 6 8 ) . forms e x i s t  (King 1 9 6 8 ) and were noted  f o u r forms appear  t o be  Important  Though a v a r i e t y of  (Figs., 4 ,  6,  9),  only  from a v e g e t a t l o n a l s t a n d p o i n t ,  i c e wedge polygons, non-sorted nets and  circles  (these seem to  l n t e r g r a d e even on a g i v e n s i t e ) and t u r f hummocks. appear  ground  Other  types  too l o c a l i n occurrence to have major landscape  significance. The v a r i e t y of r e l i e f f e a t u r e s a l s o c o n t r a s t s w i t h the u n i f o r m i t y of the p l a t e a u s u r f a c e ( K i n g 1 9 6 8 ) .  F l u v i a l erosion,  Fig.  3  Plateau  surface  large areas fine is  of s o l i f l u c t l o n .  4  Saturated  textured material of plateau  surface  s u s c e p t i b l e to a c t i v e c o n g e l l t u r b a t i o n  (photo J u l y 1 0 ,  Fig.  from the a i r showing  1967).  Earth  debris  steep  escarpment b o r d e r i n g  portion  island  f o r m e d on t a l u s o f  of the lowlands.  downward.from t h e p l a t e a u extruded  in localized  (photo June 2 1 ,  1967),  the Fines  eastern moving  surface  spots  are  on the t a l u s  20  5  Fig.  T h i s photograph base.  was  taken a t the  escarpment  F i n e s a r e c o n t i n u o u s l y w a s h e d down-  ward toward  the lowland  sedimentary  material.  vegetation near  from  weathered  Localized  the escarpment  areas  are  of  inundated  w i t h the s a t u r a t e d m a t e r i a l .  Fig.  6  Well developed in  p a t t e r n e d ground  the lowland.  circles  as  W e l l formed  non-sorted  t h e s e , however, a r e f o u n d  i n very l o c a l i z e d  areas.  circles  i n more m e s i c  this  and  are  i s evident  found  More  commonly areas  o f t e n the p a t t e r n i s n o t  tinctively  circular  covered n e t s as Integrifoliae.  only  so  b u t merges w i t h  than dis-  stone  In the P e d l c u l a r o - Dryadetum  Fig.  7  View o f the l o w l a n d Sound  (North west).  the upper  (Northern lowland).  right  associated  the ocean  blanket  throughout  inlet The  the lowland  be  This fog i s lying  which borders  crest  seen  in  fresh  apparent.  A d v e c t i o n f o g s from  summer.  Jones  The c o n c e n t r a t i o n  o u t c r o p c a n be  water ponds a r e  8  toward  of Pre-Cambrian  R a i s e d b e a c h e s and  Fig.  looking  often the  over  the s o u t h e r n  Truelove lowland.  of the s o u t h e r n escarpment  seen above the f o g .  can  Fig.  9  Non-sorted s t r i p e s  a r e h e r e s e e n on an  inactive  solifluctlon  textured  till.  slope  T h i s was  l o c a t i o n where s t r i p e s were n o t e d although on  the p l a t e a u  stripes surface.  coarse  the only  o f any k i n d  i n the lowland  sorted  of  proper,  a r e common  23  i c e wedge f o r m a t i o n , the  spit  and  lagoon  beach f o r m a t i o n  glacial formation  the  on  the  King  the  plateau  (1968)  attributes  cesses  solifluction  nets  study,  lowland  lowland Arctic  area  of  the  data,  circles  been r e c o g n i z e d s i n c e as stands  i s small,  (Brassard  genetic nature  As  of  types.  Wet  Polunin  landscape  particularly 1935  of  hypothesis.  1948; surface wet  rich  occupy l a r g e  the  of  of  the  plateau  cover.  The  by  High  1948, portions  shows s h i f t s Although of  much  i n more  (see P o l u n i n  i t a majority  meadows and  out  standpoint  vegetative  observation  areas  noted  King's  h a b i t a t to another.  f o r other  the  the  as  e a r l y as  carried  pro-  the v e g e t a t i o n  from the  King  postglacial  c o n t r a s t between the  of  is within  1968a;  be  by  i n nature.  the  has  will  concerning  even c u r s o r y  there  King  of vegetation  f r o m one  relict  tends to support  has  l o w l a n d s and  vegetation  lobes.  i s the n a t u r e  habitats described Islands  area.  areas  dominant s p e c i e s studied  own  occurring  contemporary p e r i g l a c i a l  most s t r i k i n g and,  Closed  complex  features noted  b r i e f n e s s of  t h e most n o t i c e a b l e  standards  page 3 8 ) .  my  and  Perhaps the  and  relative  p r e s e n t l y a c t i v e i n the  non-sorted  present  of p e r i g l a c i a l  the weakness o f  f u r t h e r on,  lowland  solifluction  l o w l a n d s a p p e a r t o be  to the  by  o f h i s work on detail  the m a j o r i t y  this  the  distribution.  a c t i v e mass w a s t i n g and  In the  period aided  to give  f e a t u r e s which play a f u n c t i o n a l r o l e  p a t t e r n of vegetation  Unlike  and  associated with p o s t g l a c i a l r a i s e d  have a l l c o m b i n e d  a v a r i e t y of topographic ln  d e p o s i t i o n , basement o u t c r o p s  the  of  the  area  plant  Queen E l i z a b e t h  Savlle 1961). results  The  poly-  l n a mosaic  mesic heath  of  vegetation  A  summary o f  plateau  and  the  c o n t r a s t i n g f e a t u r e s of the  c o a s t a l lowland  provinces  Table  are  interior  presented  i n Table  1.  1  Summary o f c o n t r a s t i n g p h y s i o g r a p h i c f e a t u r e s of the I n t e r i o r P l a t e a u and t h e C o a s t a l L o w l a n d S y s t e m s Lowlands A.  Plateau  J.  Glacial modification A. apparent M a r i n e I n f l u e n c e on geoB. morphology s t r o n g e r i n e r o s i o n and d e p o s i t i o n S u r f a c e w i t h numerous C. r e l i e f features P r e - C a m b r i a n basement o u t D. c r o p and C a m b r i a n s e d i m e n tary materials Intermingle P a t t e r n e d ground non-sorted E. E l e v a t e d s t r a n d f l a t , exF. p o s e d by i s o s t a t i c u p l i f t during p o s t g l a c i a l times Vegetation continuous, with G. closed stands apparent Animal a c t i v i t y apparent, H. a b u n d a n t d u r i n g summer months S o l i f l u c t i o n and m a s s - w a s t i n g l . mainly r e l i c t E l e v a t i o n 0 - 1 5 0 ' ASL J.  The  Climate  B. C. D. E. P.  G. H. I.  of  Much o f the King  course  the  of  (1968),  The  proximity  the  east  1961-62  however, h a s  area  cause  modifications.  little  modified  L i t t l e marine i n f l u e n c e on g e o m o r p h o l o g y Surface  relatively  uniform  U n i f o r m s u r f a c e of Cambrian sedimentary m a t e r i a l s P a t t e r n e d ground s o r t e d A uniform e r o s i o n a l surface o f T e r t i a r y age V e g e t a t i o n s c a n t , l n many areas l a c k i n g Animal a c t i v i t y r e s t r i c t e d , low d u r i n g e n t i r e y e a r S o l i f l u c t i o n and masswasting a c t i v e Elevation 700-3000' ASL  Lowlands:  meteorological  the  macroclimatic The  the  Glacially  information  collected  e x p e d i t i o n r e m a i n s t o be summarized  some o f  the  during  assembled.  more p e r t i n e n t  data. has  a decidedly  o f J o n e s Sound the  lowland  polar climate to the  north  to experience  (ET  and  of  the  various  Koppen). i c e cap  climatic  to  26 The A r c t i c Ocean has i t s p r i n c i p a l e f f e c t s on the amount o f r a d i a t i o n r e a c h i n g the ground as s u n l i g h t and on temperature. I t i s w e l l documented (Rae 1 9 5 1 )  t h a t the summer and f a l l months  show h i g h e r percentages of c l o u d cover here than elsewhere i n the a r c h i p e l a g o .  Porsild  ( 1 9 6 4 ) has commented on the p o s s i b l e  e f f e c t s o f t h i s on the v e g e t a t i o n . lands showing  Data from the basecamp  low-  the p e r c e n t o f sunshine r e c e i v e d as a percentage  of the t o t a l t h e o r e t i c a l l y p o s s i b l e p o i n t out t h i s  characteris-  t i c phenomenon (Table 2 ) .  Table 2 Sunshine Data—Basecamp Lowlands, 1 9 6 1 - 6 2 ( a f t e r King 1 9 6 8 ) Sunshine as % o f Theoretical Possible  Month 1961  1962  71.8 38.1 28.3 21.9 . 12.3 11.2  May June , July Aug-ust September. October November December January. . . February March. April May June July August September  — 27. 50. 56.8 39.1  . . . . . .  53.3 56.5 27.5 11.8  While much of t h i s can be a t t r i b u t e d to c l o u d cover, a r e l a t e d phenomenon which f r e q u e n t l y o c c u r s i s a d v e c t i o n f o g , r e s u l t i n g from the open c o a s t a l water  i n summer.  The c o o l a i r masses from  the ocean meeting the warm a i r over the lowland f r e q u e n t l y  bring  about r a p i d 8).  (Fig. Inlet.  b l a n k e t i n g o f t h e a r e a w i t h low This  Rapid  humidity  is particularly  drop  hygrothermograph data the p r e s e n t  collected  'lowlands  to the ocean i s a l s o  compared t h e  with  temperature and  from  the  tation  (75°4l'N)  presence  as an A p p e n d i x  be  area.  noted  area with  lowlands.  anomaly o f the  00'N)  1.1  The  basecamp calculated  3.2 F°.  F°, w h i l e The  High  area recorded  only 27.1  3»25  F, baseis  somewhat i n f l u e n c e s  accumulation  for this  i n comparisons of p r e c i p i t a t i o n  i n c h e s o f snow and  the  difference  on  the  move n o r t h e a s t a c r o s s t h e  79°35'W).  J.k  influence.  Further evidence  (76°12'N,  King  i s a negative  t h a t of C r a i g Harbor which l i e s  J o n e s Sound  of  r e s p o n s i b l e f o r the  o f t h e Devon i c e c a p a l s o  t h a t would o t h e r w i s e  may  southprecipiisland  "rainshadow" of the  to  effect  basecamp  to the n o r t h e a s t  across  C r a i g H a r b o r r e c o r d s means o f  inches of r a i n ,  i n c h e s o f snow and  while  2.52  the  basecamp  inches of  rain  the 1 9 6 1 - 6 2 p e r i o d .  The foehn  i n the  Icecap margin i s I n t e r p r e t e d as a t r a p p i n g o f  lowland  during  (80  i s negative  t o t h e warming m a r i n e  the  64.9  presented  (74° 4-3*N) n e g a t i v e  Bay  c l i m a t e of the lowlands.  eastern  seen  a n d R e s o l u t e Bay.  anomaly from Eureka  camp l o w l a n d s  The  be  w i t h i n the  temperature  that of Eureka  Resolute  attributed  and  Truelove  increase i n r e l a t i v e  t h e s e a s may  a m e l i o r a t i o n of a i r temperatures has  and  fog  work.  Proximity  (1968)  t r u e o f the a r e a near  i n temperature  are a s s o c i a t e d with  lying advectlon  icecap also  effects  i n f l u e n c e s temperature  d u r i n g the  through  pronounced  summer months ( s e e A p p e n d i x ) .  These  are  generally of  tation The  at least  short duration; for a short  however t h e i r  time,  effect  i s presumably  as  plant dissemlnules  alpine  species  (Sonde 1 9 & 9 )  arctic  areas.  Long term p r e c i p i t a t i o n d a t a  (1968)  are  and  indicative  eastern p o r t i o n of  the  has  f o r the  arctic  work  as  effective  of  vege-  significant.  e x t r e m e l y h i g h winds sometimes a s s o c i a t e d w i t h  phenomena, u n d o u b t e d l y a r e  on  foehn  d i s p e r s a l of  r e c e n t l y been demonstrated Savile (I96I)  s u g g e s t e d by  the  scant  archipelago  presented  values  for for  i n King's  typical  for  the  3)•  (Table  3  Table  Summary o f p r e c i p i t a t i o n m e a s u r e m e n t s Basecamp l o w l a n d , May 14, 1961-May 1 3 , 1962, water e q u i v a l e n t i n Inches T o t a l number o f days w i t h trace  Total Precipitation 5.23  Of the  Total Rainfall  Total Snowfall  33  2.52  2.71  133  the  total  recorded  rainfall,  summer months o f J u n e , J u l y and  sponds w e l l w i t h Thomas ( 1 9 5 3 ) . kO  T o t a l days w i t h more than trace  While  snowfall  year  to year  archipelago The  regions  effects  ameliorated  by  of  the  (Thomas s u c h low continuous  fell  of  be  corre-  isopleth reported the  a t t r i b u t e d to the  snowfall  during  This value  i s somewhat s h o r t o f  t h i s may  variability  inches  August.  t h e mean summer r a i n f a l l  inch i s o p l e t h value,  able  2.35  in  reported  consider-  characteristic  of  the  1953). p r e c i p i t a t i o n on underlying  vegetation  permafrost  which  are holds  ?9 water near the ground appearance  the lowland the g e n e r a l  o f a wet f e n .  As demonstrated snowfall,  s u r f a c e and g i v e s  l a t e r a more  from a v e g e t a t l o n a l  movement a n d  Important  standpoint,  characteristic of  is i t s differential  deposition.  R e c o r d e d a i r t e m p e r a t u r e s f r o m t h e l o w l a n d s show v a l u e s similar  t o those from nearby High A r c t i c  Temperature  stations  (Rae  maxima o c c u r i n J u l y a n d t h e mean y e a r l y  1951).  temperature  o f 3 . 4 F* c o r r e s p o n d s t o t h e l o c a t i o n o f t h e a r e a b e t w e e n t h e 0° and  5 F * i s o t h e r m r e c o r d e d l n Thomas ( 1 9 5 3 )  Table  (Table  4).  4  A i r Temperature r e c o r d e d i n Standard Stevenson Screen Basecamp L o w l a n d 1 9 6 1 - 6 2 Month May June July August September October November December J anuary February March April May June July August September  Days  Average Monthly Temperature F°  18  14,8 31.8  30  31 31 30 31 30 31  31 28 31  30 31 30 31 31 29  42.6 36.3 21.6 6.6 - 7-5  -14.0 -28.8 -35-4  -17-8 -  7*5 12.4 36.1 43.4 38,0 2S.7  Maximum 42.0 46.3 63.6 51.0 36.3 35.4 14.9 22.8 - 9-5  -13.8  12.2 20.7 37.2 52.8 64.4 53.3 4l.o  Minimum -  4.2 11.9 32.0 28.3 1.0 -13.4 -29.0 -43.5 -51.0 -51.2 -37.0 -39.9 -13.3 21.2 29.0 25.5 42.0  Range 46.2 34.4 31.6 22.7 35.3  48.8 43.9 66.3 41.5 37.4 49.2 60.6 50.5 31.6 35.4 27.8 36.8  30  A of  summary o f w i n d  d a t a from  t h e a r e a show a n o t a b l e  w i n d s g r e a t e r t h a n 3 3 m.p.h. ( T a b . 5 )  Recorded  calms  a c c o u n t f o r 21%  p l u s winds o f l e s s  coming  w e s t e r n and  southwestern  also  be  i m p o r t a n t however t h r o u g h  m o d i f i c a t i o n o f the p l a n t s chiefly  Soils  This w i l l  be  the  importance  i t s indirect On  commented on l a t e r  of  Wind  effects  may  i n the  D e v o n t h i s was  redepositlon  to the n l n e t e e n - f o r t l e s  c a t i o n and g e n e s i s f r o m chiefly  o f snow and  o n where  i n f o r m a t i o n on  t h e p o l a r r e g i o n s was  f r o m a r c t i c R u s s i a (Tedrow 1 9 6 8 ) .  noted  surface  appropriate.  i n f o r m a t i o n on a r c t i c  p e d o g e n e s i s and  them a r e a n o t a b l e number f r o m a r c t i c students a t Rutgers U n i v e r s i t y  overall  c l a s s i f i c a t i o n and  new  c l a s s i f i c a t i o n and North America,  soil  Tedrow 1 9 6 6 ;  a n d Tedrow i 9 6 0 ; Tedrow a n d  Cantlon 1958;  works, c o r r o b o r a t i n g  field  Tedrow  among  Tedrow  have b e e n p r o m i n e n t  description of polar  came  t i m e how-  presenting  Tedrow a n d  these i n i t i a l  classifi-  s p a r s e and  (Tedrow e t a l . 1958; Douglas  soil  Since that  e v e r a number o f p u b l i c a t i o n s h a v e a p p e a r e d  Since  strong  of the lowland: Prior  his  a  1968).  i n the f i e l d .  environment.  t h r o u g h the r e m o v a l and  detritus.  (King  species  Wind  w i t h w i n t e r winds  has demonstrated  of a r c t i c  autumn.  summer w i n d s s h o w i n g  components  Warren W i l s o n ( 1 9 5 9 ) on t h e growth  i n s p r i n g and  (Tab. 5)  f r o m t h e e a s t and  wind  calms  t h a n 8 m.p.h. a c c o u n t f o r 7 8 $ o f o b s e r v a t i o n s .  shows s e a s o n a l s h i f t s  markedly  0.1$).  than  o f t h e o b s e r v a t i o n s and  S t r o n g winds a r e r e c o r d e d c h i e f l y direction  (less  absence  and  i n the  processes 1963;  Douglas  studies i n  1964).  Table  and  Season  S e a s o n a l V a r i a t i o n i n Wind S p e e d Direction: Basecamp L o w l a n d 1961-62  N  NNE  NE  ENE  1-18 9-16 17-24 25-32 33-40  3.3  2.8 0.7  4.0 0.7 0.9 0.5  1.4 0.3  Summer (June-Aug.)  .1-8 9-16 17-24 25-32 33-40  5.1 0.4 0.2 0.1  4.2 1.6 0.4 0.1  2.9 1.6 0.9 0.4 0.1  5.0 0.2 0.2 0.1  6.7 0.3 0.1  0.2  Autumn (Sept.Oct.)  1-8 9-16 17-24 25-32 33-40  1.5 0.3  1.2 0.3 0.3  3.5 1.9 0.5  0.5 0.3 0.3  9.4  1.9  1-8 9-16 17-24 25-32 33-40  2.3 0.2  Spring ( A p r . -May)  Winter (Nov.March)  M.P.H.  5  E 10.0  ESE  SE  SSE  S  SSW  SW  WSW  W  . WNW  2.1  7.2  3.6 0.3  3.1  2.8 0.5 0.7  3.1 3.7 1.2  1.7  6.8 4.0  13.6 7.8 0.6  0.3 0.7 0.3  0.3  0.3  1.9  NNW  1.7  1.9  0.9 0.3  0.3  3.3 0.8  3.9 0.1  1.6  0.3  0.7  0.7 0.1  0.6  0.5  0.3 0.1  0.8 0.2  1.6 0.7 0.6 0.1  3.3 1.7 0.7 0.1  3.7 2.9 0.1  2.3, 3.2 0.2  13.1 1.5 0.5  7.5 1.2  8.0 1.2 1.2  6.1 5.6 0.5  7.1 7.3 0.3  1.0 0.3  3.8 1.4  2.2 0.7 0.8  0.9 1.8  2.8  1.9  NW  0.1  0.3  1.6 0.3  3.5 0.1 0.1  2.7  27.0 0.1  6.4 0.6  10.0 0.1 0.2 0.1  3.3 0.3  4.7 2.2 0.2 0.1  3.3 3.1 1.2  0.2 0.1  0.1 0.1  32 o t h e r a r e a s h a v e shown t h e u s e f u l n e s s o f t h e c o n c e p t s both  i n geographical continuity  uniformity  (Retzer  Pedologlcal Feustel, report  Dutllly  investigation  (1939)  and A n d e r s o n  o f a number o f s o i l s  undertook  the d e t a i l e d  s e c t o r o f t h e Queen E l i z a b e t h has  the lowlands  Lithosols, Topographic  on B a n k s I s l a n d  detailed  of the beach  the f o l l o w i n g  (related  location  mental  He  of s o i l  tundra s o i l s ,  studied.  c l a s s i f i c a t i o n and morphology. c l a s s i f i c a t i o n has at  the g r e a t s o i l  it  i s becoming  concerned group  and  increasingly  To  has  clear  Identified  and  H a l f bog Tundra  brown,  soils,  rankers.  a soil  the  map soil  tundra  area.  The  a r e a s where first  chiefly with levels  funda-  relates  d a t e work i n a r c t i c  itself series  investi-  N e a r l y a l l of the major  the lowland  t o be  western  particularly  t y p e s a r e p l o t t e d and  o f t h e a b o v e work r e v e a l s two  problems remain  clas-  s e r i e s d e s c r i b e d from  d e s c r i b e d t h u s f a r b y Tedrow e t a l . f r o m  review  1964  in  Regosols, A r c t i c  (Rawmark o f K u b i e n a ) ,  regions are present w i t h i n A  ridges.  to the Bernard  Polar desert soils,  Ravi T u n d r a  l n the  pedologlcal  soils:  of the lowland a r e a i s presented. groups  area.McMil-  d e s c r i p t i o n and  o f t h e basecamp l o w l a n d and  the p o l a r d e s e r t s o i l s  Banks I s l a n d ) ,  o f the  to  Islands.  undertaken  gations of the s o i l s  Hummock s o i l s  for soils  scant.  first  o u t c u r s o r y work i n t h r e e l o c a t i o n s and  sification  within  were among t h e  p h y s i c a l parameters  Douglas  (1968)  descriptive  l n the A r c h i p e l a g o remains  Tedrow a n d  King  and  1965).  c h e m i c a l and  l a n (i960) c a r r i e d  1965)  (Ugollni  developed,  to  soils  description  of integration.  t h a t a t the g r e a t group  While level  relatively arctic  uniform  regions  c r i b i n g and  as  processes  of s o i l  a whole, t h e r e  classifying  the  Tedrow and  variability  within  problem of  which e x i s t s  climatic  (1964)  Douglas  exist  remains the  each g r e a t group between v a r i o u s arctic.  genesis  The  suggestion  arctic  not  represent  p o d z o l i z a t l o n as serious  on  B a n k s I s l a n d may  i t apparently  pedocals  of the  of  p o l a r steppe  regions,  role  s e c o n d and  related  arctic  soil  presently organic  profile.  accepted  Since  Imperative  that a detailed  tive  J u s t as  g r e a t group a  covers  changes i n p a r e n t  changes i n the  chemical  (Tedrow and  and  tundra  make-up o f  are  ability  as w e l l as p r a c t i c a l  truly  the so  t o be  the  of  the  i t is  profile  too  we by  under-  distinc-  within  should  explained  be  a  expect a  change  type.  ecosystems, as  (I969),  t o be  scheme,  of  the  surface horizons  Douglas 1 9 6 4 ) ,  overlying vegetationai  I f models of  of  m a t e r i a l b r i n g about  c e r t a i n proportion of v a r i a b i l i t y  of the  soils  the  knowledge o f the r e l a t i o n s h i p s  between c h a n g i n g v e g e t a t i o n stood.  of  genesis  the n a t u r e  i n the  the  regions.  i n the  h e a v i l y on  f o r placement  the  determination  play  that the  to emphasize  many o f t h e p r o t o t y p e  system r e l y  surface horizons  i s the  covers  and  brown and  the H i g h A r c t i c  problem  that various vegetative  serve  the  a weak  the q u e s t i o n o f  the Banks I s l a n d a r c t i c  n e e d f o r more i n f o r m a t i o n f r o m A  given to  problem  that  does i n A r c t i c A l a s k a ,  c o n s i d e r a t i o n s h o u l d be  genetic a f f i n i t y  the  this  i n s t u d i e s o f Banks I s l a n d m a t e r i a l . brown t y p e  des-  within  subzones o f  have r e c o g n i z e d  the  e n v i s i o n e d by  universal in their In t h e i r  Johnson  forecasted predictive  l a n d management  capabilities,  t h e y must g i v e i n d i c a t i o n s o f t h e  ecosystematic  changes w i l l  across than  the  biome.  i s now  and  f o r the  structural  little  "types" available  t h e v a r i a t i o n o f component  of  interactions within the accessment  of  o f e a c h a c r o s s s u b z o n e s o f t h e biome, t h e r e w i l l  gained  by  sacrificing  mental manipulation I n the p r e s e n t  study  sampling  strategies. a r e a s were c h o s e n  homogeneity r a t h e r than  criteria.  I t i s hoped t h a t o u r  soils  be  interactions  present  expanded, p a r t i c u l a r l y and  the r o l e  p a t t e r n of s p e c i f i c  plant  be  observational studies for experi-  In f u t u r e f i e l d  the b a s i s of f l o r i s t i c  will  that  characterization  between t y p e s as mentioned above, and  variation  on  b r i n g to v a r y i n g tundra  U n l e s s more I n f o r m a t i o n becomes  present  "major t y p e s , "  impact  that s o i l s  pedogenic  knowledge o f  i n the a r e a o f p l a y l n the  associations.  primarily  arctic soil-plant  distributional  Table 6 Phytosociologlcal  Classification  Association (1) Nardino  I s l a n d Phytogeocoenoses  Alliance  - Dryado - A l e c t o r i e t u m (N - D - A)  (2) Tetragono - Dryadetum (T - Di)  of the S t u d i e d Devon  ) 1. Dryado - A l e c t o r i o n . . (D - A)  integrifoliae  (3) P e d i c u l a r o - Dryadetum i n t e g r i f o l i a e (P - Di) (M) R h a c c m i t r i o - Oxyrio - Dryadetum integrifoliae (R - 0 - Di)  !. Dryadion i n t e g r i foliae (Di)  Order )  ) ) ) ) ) )  Alectorietalla (A)  II  Dryadetalia (octopetalae integrifoliae) (D)  (5) Pogonato - Luzulo - S a l i c e t u m arcticae (P - M - Sa)  Luzulo - S a l i c i o n arcticae (L - Sa)  ) III. Salicetalia (Sa) )  (6) Sphaerophoro - Rhacomitrio Cassiopetum tetragonae (S - R - Ct)  Cassiopion tetragonae (Ct)  ) )  arcticae  IV. P h y l l o d o c o Cassiopetalia (P - C)  (7) Caricetum s t a n t i s (Cs) subass. caricetosum membranacei (cm) subass. caricetosum s t a n t i s (cs)  5. C a r i c i o n a q u a t i l i s (Ca)  )  Arctagrosti(8) E r i o p h o r o - S a l i c o detum l a t i f o l i a e (E - S - A l )  6. A r c t a g r o s t i d i o n latifoliae (Al)  ) )  (9) C a t o s c o p i o - Ranunculo Phippsietum a l g i d a e (C - R - Pa)  7. P h i p p s i o n a l g i d a e (Pa)  ) VII, A r a b i d e t a l i a (AR)  V. C a r i c e t a l i a (Cf)  VI,  fuscae  Petasitetalia (Pf)  frigidi  . Alectorietalla  (A) B a r r e t t  T h i s newly proposed plant  order  i s composed o f l i c h e n  soils.  The  the e s t a b l i s h m e n t or bryophytes. soils  but  may  drainage  xeric  nature  also  order be  i n the High A r c t i c  The  from  both  Arctic  and  done l n t h e  field  single will  p l a n t a s s o c i a t i o n from  - Dryadetum o f the S e s l e r i e t a l i a  p r e s e n t work) a s Present  be n o t e d  also  from  on  floristic  analysis  of c l u s t e r  edaphic  s e p a r a t i o n , however, make t h i s  sufficiently  analysis presented  distinctive  o r d e r and  ecosystematic single  to warrant  the d e t a i l e d d i s order. described  (1965)  from  to  the  the  f u r t h e r on)  Svalbard. quantitative and  synsystematic  the e s t a b l i s h m e n t  a l l i a n c e which r e f l e c t  Banks  (= D r y a d e t a l i a i n t h e  (particularly  results  and  communication).  t o have c e r t a i n a f f i n i t i e s  s u m m a r i z e d by R u n n i n g  area).  the Subalplne  this order,  Nardino  area,  study  i n d i v i d u a l p l a n t a s s o c i a t i o n s of t h i s  on,  A  non-calcareous  (V. J . K r a j i n a p e r s o n a l  further  a new  on  (as i n the p r e s e n t  C a n a d i a n Low  Much work r e m a i n s t o be  of e i t h e r v a s c u l a r p l a n t s  calcareous or dolomitlc s o i l s  have b e e n o b s e r v e d  Island  of  on  i s very e f f i c i e n t  zones i n the  substrata preclude  i s best developed  found  Alpine  cription  of these  of a dense c o v e r  The  Alectorietalla  study  dominated  a s s o c i a t i o n s w h i c h a r e f o r m e d on w e l l d r a i n e d P o l a r  Desert  if  and K r a j i n a  strong unit of  both  more a c c u r a t e l y t h e s e  distinctions. alliance  of this  o r d e r was  the Dryado - A l e c t o r i o n .  recognized within  the  37 1.  Dryado - A l e c t o r i o n That  and  f u r t h e r on. Devon p l a n t sharp  noted  high  and  Krajina  a r c t i c a e which w i l l  percentage of  to p l a n t  associations  proper which occur  r e l a t e d a l l i a n c e , the  be  l i c h e n species  communities, p a r t i c u l a r l y s p e c i e s  contrast  i n the  Barrett  c e r t a i n r e l a t i o n s h i p s to both  Salicetalla  The  integrifollae A  - A)  t h i s a l l i a n c e has  Dryadetalia  in  (D  of  R i c h a r d s o n M o u n t a i n s by  e a s i l y noted present  the  are  Dryadion locations.  o c h r o l e u c a e has  Krajina  ln  of A l e c t o r l a ,  i n more m e s i c  Alectorion  the  (personal  been communi-  cation) . A area,  (1)  single association the  Nardino  Nardino  i s recognized  - Dryado -  from the  Devon  Island  Alectorietum.  - Dryado - A l e c t o r i e t u m  (N  - D  - A)  Barrett  and  Krajina Figs. The the  of  communities are  the of  beaches  general the  -  13  site  any  the  plant  developed (Figs. 10,  relief  of  during  the  the  m a j o r snow m e l t ,  the  was  sharply  by  influence plant  is well  N a r d i n o - Dryado - A l e c t o r i e t u m  association chiefly 11).  on  This  i n the the  lowland.  crests of  elevated  distinctive the  w i n t e r snowpack.  r e f l e c t e d by  communities which d e v e l o p  the  of  the  This  exposure preceding  beach  crests  topographic  depauperate nature  here.  Nodal  p o s i t i o n above  In e a r l y June, pattern  is  elevated  lowlands r e s u l t s i n frequent  w i n t e r months.  the  outlined  7 - H  Tab.  environment of  harshest  strand  10  of  the  38 The line  most r e c e n t l y u p l i f t e d  have a  Little  inland  s u r f a c e pavement p r i m a r i l y o f  w e a t h e r i n g has  t i o n s are  developed  the  b e a c h e s on  surface  taken place  of  the  the  I t i s on  this  typical  Pebble a n a l y s i s from the  The  to  Further well  g r a n o d i o r i t e and  amounts o f m o n z o n l t e a r e  pavement  developed  seven sampled  origin that  (Fig.  soil  pits  granite  pre-  occasionally  11).  present  7).  (Table  coated  associa-  fluvioglacial  i s best  base of  i n d i c a t e s mixtures of dolomite, Lesser  and  limestone.  fragmentary  "Polar Desert"  N a r d i n o - Dryado - A l e c t o r i e t u m  dominate.  only  coast-  sized  pavement c h a n g e s t o  rounded p e b b l e s of mixed c o m p o s i t i o n (Barr 1 9 6 5 ) .  cobble  locations (Fig. 10).  i n these texture  and  o r n e a r the  undersurfaces  with  limestone  strandlines  o f the  veneers of terrain  limestone  calcium  fragments are  carbonate,  i n the n o r t h ,  (Tedrow e t . a l . 1 9 6 8 ;  a situation  particularly Bird  on  typically common  elevated  1967).  7  Table  Pebble A n a l y s i s from S o i l P i t s o f the N a r d i n o - Dryado - A l e c t o r i e t u m Plot M a t e r i a l P r e s e n t i n Sample (As 8 t h o f T o t a l )  12  50  51  3  2  5  2  1  Dolomite Biotite Pink  Granodiorite  Granite/Biotite Granite  1  Biotite  66  $3 3 2  1  3  2  3  1  2  Monzonite Gabbro/Micro  number  Gabbro  T  T = smaller  1 T  amounts t h a n  1/8  2 2  T  Diorite  3  The line  r a i s e d beaches are  to the  distinctly  base o f developed  near Truelove The sparse (T b.  The  i s only  toward  clustered  clustered  southern  but  coast-  a p p e a r more  p o r t i o n o f the  lowland  1).  (Pig.  o f N a r d i n o - Dryado  while  near the  only  the  a l l other  - Alectorietum  Is  a s s o c i a t i o n s of the  average v a s c u l a r p l a n t 19%  spaced from the  easterly plateau  i n comparison with  stands  occur  Inlet  vegetation  8).  a  the  uniformly  cover  f o r eleven  lowland examined  t h a t f o r l i c h e n s (most o f w h i c h  bases of  i n t r a c e amounts u n d e r t h e stems o f S a l l x  i s 31%.  Carex n a r d l n a )  arctlca,  are  Bryophytes  p r o t e c t i o n of rocks  which  is characteristic  or for  the S a l i c e t a l l a a r c t i c a e . The  major v a s c u l a r p l a n t  four species:  component  Dryas i n t e g r i f o l i a .  o p p o s l t l f o l l a and  Carex n a r d l n a .  cushion  p l a n t , has  chiefly  on  the  Sallx  arctlca.  a  character  i t s apparent f i d e l i t y  to  only  Saxlfraga  Draba s u b c a p l t a t a .  a l s o been chosen as  b a s i s of  i s composed o f  a  small  species  the  association. Lichens i n terms o f foliose  form  t h e m a j o r component o f  species d i v e r s i t y  crustose  or  and  fruiticose,  the a s s o c i a t i o n b o t h  significance.  the  They  l a t t e r mainly  are  Alectorla  species. Wind p r o f i l e of 1969.  A  during  s e r i e s o f anemometers were l o c a t e d on  a r a i s e d beach  (N-D-A) on  s e d g e meadow ( C s ) Measurements o f 9)  m e a s u r e m e n t s were r e c o r d e d  the  fore slope  which t y p i c a l l y  the  (T-Di)  forms l n the  amount o f w i n d p a s s i n g  i n d i c a t e t h a t even d u r i n g  the  relatively  the  the  and  summer  c r e s t of  i n the  low  back shore  side.  over each s i t e  (Tab.  c a l m summer p e r i o d  40  Table  8  Hardinc—Drjado-Alectorietua PLOT NO. DATE ANALTSED HEHBACOUS COVER % BOSS COVER * LICHEN COVER * TOTAL SPECI£3 BO. PLOT S I Z E  FHESDHEDCflAflACTERISTIC OOKBIHATIQH QF SPECIES Draba e u b c a p i t a t a A l a c t o r i a ninuscula U e e t o r i a chalybeiforaia A l e c t o r i e ochroleuca Ochxoleehia upaalienaia Lecidea atigBatea Stereocaulon r i r u l o r u n Candelariella auralie P e r t u a a r i a aubobduceoa OTHER SPECIES brjaa i n t e g r i f o l i a Sallx arctic* Saxifr&ga o p p o a i t i f o l i a Silene ecaulia Kiauartia rubella P0I7gonna y i v i parua Pediculari* laaeta Ceraatiua alpinua Caxex r u p e e t r i a FapaTer r a d i c a t u a Kalandriua affine Colpodiun Tabliaaua Draba b e l l i ! Dreba a l p i n a E n c a l y p t a rhabdocarpa Diatichiun capillaceun floium o r t h o r r b j n c h u m Tortella fragilia H j u r e l l a Julacaa Enealypta vulgaris Timaia a u s t r i a c a T o r t e l l a tortuoaa Enealypta c i l i a t a Rhisocarpoo geo^raphicus Agyrophora l y n g e i Lecanora epibryoa Eypogymnia aubobacura Thaanolia veroicularia Parmelia separata SbixocarpoD c o p e l a n d i l Xanthoria elegana Lecanora p o l j t r o p a Unbilicaria arctica Buellia atreta Paraelia incurve Cetreria a i v a l i a Caloplaca tirolieaaia Solorine bispore RMaocarpoo rittokense Haematomsa Iepponicum Rhiiocarpon ehionophiluo Lecidea l a p i e i d a Lecanora f r u a t u l o e a Lecidea pantherina • Lecidea v e m a l i s P a r m e l i a oopbalodaa P a m e l i a dia.iuncta Placynthiura a a p a r a t i l a Pertuaaria dactylina Lecanora mutabilia Pertuaaria coriacea A l e e t o r i a pubeacena Caloplaca holocarpa Buellia papillate Cladocie pyxidata Lecidea etroeftrginata Lecidea lulensia Ccbrolecbia f r i g i d a P e r t u s a r i a panyrga Ebixocarprn J a m t l a n d i c u B Verrucaria deveraa L e c i d e a macrocarpa Caloplaca a t i l l i c i d i o r u m Binodina n i l v i n a Rhisocarpon cryatalligenum Lecanora c a n p e s t r i s L e c i o F h y a m a finmarlticuin U m b i l i c a r i a proboacidee Pbjscia caeeia Ochrolechia inaequatule Fhyseia aciaetra Lecidea T o r t i c o a a S o l o r i c e eaccata Lecidea g l a u c o p h a e a Lacidea dic'jaonii Lecanora d i a p e r s * Sporastatia teatudinea Cetraria cucullata H j p o g j a t i i e pf-jaodea  8 6/20/67 10 <1 15 33  10 6/23/67 15 <1 35 38  1? 6/26/67 25 <1 25 5 7  1  5  2  2  4 4 2  «1  2 1 +  2  1  i  3 3 3 2 3  k  3 3  =,  15 6/28/67 15 <1 25 27  5 3  1 2  3  1  19 7/13/67 15 < l 25  5  4 2 2  3  1 1 ,  3 3  4  .  50 7/26/68 10 <1 25 57  51 7/26/68 13 <1 37 «3  5  3  a  3 2 1 + 2 • 2 4  3 2>  i  4 a  2 2 3 1 + 2  4  3 3 2  53 7/28/68 15 -31 »5 39  * * a  1 1 2 2 4  3 3 2  •  •  2 24 1 21 2• *  *  3 2 2+ 4 4  3 3 2  4 • 4  66 8/10/ 25 «U 20 39  4  .  4  • • •  • •  • •  i  +  +  5 2 2 1 1 2 1 2• 4  1 •  •  *  3 3 2 3 2 3 2•  3 2 2 1 2 3 •1  i  2 2•  4  +  4  ¥  4  4  3  V  3 2  2.  •  <  •  I I  +  •  2• •  • •  • •  *  •  • • *  *  • * *  • *  •  *  • •  *  •  • •  • •  • *  *  *  •  2 1  »  • • *  • •  • • • •  *  • • • • • •  2 *  1I l 1  3 3  I  1 .  + + +  *  • • • • •  3 2 3 3 3  • •  •  •  + •  *  •  *  • •  3 3 3 3 •2  3  *  •  4 4  + +  • • •  >  •  2 1  T  4  1 1  2 1 2 1 3 1 +  7  11T  3 3 3 2 2 1 3  •  4 4  (AVE. FBESEHCE  3 3 3 2 2+ 3  i  •  •  5  4 4 4  57 8/2/68 23 <1 »5 »5  +  *  I *  5» 7/29/68 15 <1 »5 ,3"  • • •  • •  V V T  ¥ T  IV  T  IV III III II  11I I I I I I V V  III II I I I I  X  1 1 1 V  »V V T  IV III III III III III III II II II II II II II II II II II II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I  2.9  0.2 3.6 2.8 2.5 2.3 1.6 1.2 0.6 2.0  *.3 2.5 3.« 1.0 0.5 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.7 0.5 0.3 0.2 0.1  -— -  2.8 2.8 2.6 2.3 1.9 1.8 1.5 1.3 0.4 1.3 1.0 0.5 0.4 0.3 0.3 0.6 0.5 0.5 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.5 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 _ _ _  _ _ _ _  Table  8a  Nardino - Dryado - A l e e t o r l e t u a - Soils PLOT RO. DATE SAMPLED DEPTH TO PROZEN MATERIAL (IHOHES) SOIL CLASSIFICATION  8 7/6/67 2* •  10 7/29/68 27  PHYSICAL/CHEMICAL AHALISIS BoriBon I depth (inches) color, dry color, wet pB - CCaCl,) pB - (H 0) a and j* silt % clay * carbon # nitrogen 5S total P ' p.p.m.  0-3 5TRV3 NM 7.2 7.9 NM NM NM IO.J 0.80 6  0-6 10YR3/3 10TH2/2 7.5 7.5 93.2 4.8 2.0 2.5 0.18 3  d  2  Exchangeable Cationa K Ca Mg Na Sum Horizon II depth color, dry color, wet pH - (CaCl,) pH - (H-O)* a and ailt clay carbon nitrogen P Exchangeable Cationa K Ca . Mg HR  Hori son III depth color, dry color, wet pH - (CaClO pH - (HpOr sand ailt clay carbon nitrogen P Exchangeable Cation? Ca Mg Na  12 15 19 8/19/68 6/28/67 7/1V67 30 28 34 ....... Polar Deaert..  0-4 IOTP. 5/4 7.5YR3/2 7.4 8.0 92.8 3.4 3.8 2.5 0.35 3  0-6 0-8 1OTR5/4 10YR4/3 10IR3/2 NM 7.6 7.6 8.1 8.2 94.0 NM 2.0 NM 4.0 NM 2.4 4.2 0.12 0.26 1 0  50 51 7/26/68 • 7/26/68 55 JO  53 7/28/68 JO  0-6 10YR4/3 10TR3/4 7.5 8.0, 92.4 4.6 3.0 2.0 0.18 8  0-7 10YR3/4 7.5YR3/2 7.3 7.7 97.2 0.6 2.2 1.9 0.3* 5  0-7 10YR5/3 10YR5/4 7.3 7.8 96.4 1.6 2.0 4.0 0.24 7  5* 57 7/29/68 8/2/68 30 27 ..Polar Deaert.....  0-5 10YRJ/3 10IR2/2 7.5 7.6 94.0 3.6 2.4 3.6 0.31 8  0-9 10TR3/3 7.5TR3/2 7.3 7.5 94.0 4.4 1.6 2.3 0.36 6  He/lOOgm .12 10.8 5.4 .14 16.5  .07 4.4 1.8 .14 6.4  °1 3-24 10IR4/5 NM 7.3 8.0 NM NM NM 7.6 .05 0  l 6-18 10TR5/4 10YR5/4 7.5 7.7 99.6 0.0 • 0.6 2.4. .03 0  0.4 3.7 1.7 .1} 5.9  C  0.4 2.1 2.1 .U  2 8-24 10YR5/3 NM 7.6 8.1 NM NM NM 7.0 .01 1  "2 18-27 10YR5/3 10YR3/3 7.6 7.7 99.8 0.2 0 2.6 .01 0  .02 2.5 1.0 .13 3.6  .03 2.8 1.6 .11 4.5  v  .07 4.6 3.7 .13 8.5 l 4-30 10IR4/3 10TR3/3 7.4 8.1 97.6 2.0 0.4 2.3 .02 0 C  0.4 4.0 1.2 .It 5.7 "2 Ab8ent  .07 5.6 1.5 .14 7.3 °1 6-28 10YR5/3 NM 7.7 7.9 97.6 2.0 0.4 2.3 .01 0 0.5 2.5 2.3  "2 Absent  .06 ».3 3.3 .14 7.8  .07 .5.0 1.9 .17 7.1  .09 4.9 3.3 .14 8.4  .07 3.7 2.3 .14 6.2  .10 5.2 3.2 .13 8.6  2.9 ..14 7.5  66 8/10/68 28  0-4 10TR3/2 10TR3/4 7.4 7.5 98.2 1.2 0.4 • 1.8 0.30 13 .07 4.3 3.3 .14 7.8  l 8-23 10YR5/2 NM 7.7 8.2 NM NM NM 3.0 .02 1  °1 6-21 10YR5/3 10YR5/4 7.6 7.9 100 0 0 1.6 .02 2  °1 7-18 10YR5/3 10YR5/4 7.5 7.8 93.8 6.2 0 2.3 .04 0  l 7-20 10YR5/3 10YR4/3 7.5 7.5 98.0 2.0 0 1.0 .03 • 0  l 5-13 10YR5/3 10YR4/4 7.5 8.0 99.8 0.2 0 2.9 .06 0  l 9-16 10YR5/3 10YR4/3 7.4 7.4 95.8 4.2 0 2.0 .02 0  l 4-20 10YR4/3 10YR4/4 7.4 7.6 96.0 4.0 0 1.4 .02 0  0.3 3.S 2,0 .13 6.0  0.4 4.8 1.1  0.4 4.0 1.6  0.4 2.7 1.7 .16 5.0  0. 4 3.9 1. *  0. 3 2.4 1.a .13 4*6  0.3 2.7 1.8  C  6.5  :1  7  6  C  c  a* 5.6  C  C  2 23-3* 10YR5/2 NM 7.5 8.0 NM NM NM 2.8 .01 0  °2 21-35 10YR5/2 10YR4/4 7.6 8.0 100 0 0 1.6 .02 0  2 18-30 10TR5/4 10YR4/3 7.5 7.7 97.6 2.2 0.2 1.8 .02 0  °2 20-50 10TR5/3 10YR4/4 7.5 7.8 97.0 3.* 0 1.0 .04 0  2 18-21 10TR5/3 10TR5/4 7.5 7.8 97.2 0.8 0 2.6 .01 1  °2 16-27 10IR5/3 10YR5/4 7.5 7.6 97.4 2.6 0 2.1 .01 1  °2 20-28 10TR4/3 10YR4/3 7.5 7.7 97.8 2.2 0 2.1 .02 0  .05 5.6 2.8 .32 •8.8  .05 4.1 0.7 .15 5.0  .04 3.2 2.2 .17 5.6  .04 3.0 1.3 .13 *.5  .04 3-5 1.0 .14 4.7  .04 3.0 1.3 .15 4.5  .03 2.0 1.6 .13 3.8  C  C  C  Fig.  10  Newly e m e r g e n t "beach shore l i n e . sition  on  11  O l d e r beach ( P l o t No. pavement. due  site  53). The  back-  ( p h o t o J u l y 24,  i n the lowland  of I969).  interior  Note the f i n e r t e x t u r e d greyer surface color i s  to l a r g e r mixtures of granite  other a c i d i c up  the f o r e and  depo-  the coarse textured nature  t h e s u r f a c e pavement  Fig.  a t the present  Note the d i f f e r e n t i a l  of m a t e r i a l  s h o r e s and  crest  rocks  (photo J u l y 2 8 ,  and  i n t h e pavement make1968).  42  • 0  43 the  beach c r e s t s are  adjacent ing  habitats.  snow i n t h e  (30  proves posed  Canadian A r c t i c  m.p.h. and  true over s i t e s are  of the  subjected optimal  a u r e l l a are scattered  these  chiefly  taxa.  a l s o important  on  surface rocks  Baffin  I s l a n d , Hale  Stereocaulon material. Hale as  in  as  crustose and  On  species. (1954)  rlvulorum Devon t h e  a variety  o f S.  tight  ex-  snow  the  more  characteristic  two  bulk  c r u s t s on  o f sample  stigmatea  pebbles.  mentions the paschale  ( o u r s = S.  of a s s o c i a t i o n preference,  Sphaerophoro - Rhacomitrio  Other a s s o c i a t i o n c h a r a c t e r i s t i c  of collections  and C a n d e l a r l e l l a  the  alplnum,  of  fertile  considered  latter  - Cassiopetum  separating  absence o f  former o c c u r r i n g the  listed  l i c h e n s of  difficulty i n the  rlvulorum  i s thus  appear to segregate the  widely  Stereocaulon  a s s o c i a t i o n and  paschale)  the  components f o u n d  I n s t u d i e s on  f r o m S.  Pertusarla  Other species  the N a r d i n o - Dryado - A l e c t o r i e t u m ,  to the  this  these  development of  Lecldea  a l s o appears o p t i m a l l y i n t h i s characteristic  strong  to c o n s i d e r a b l e  l i c h e n s which are  admixed, however t h e  d o m i n a t e d by  If  Devon r e g i o n ,  bases o f Carex n a r d l n a .  P e r t u s a r l a are  basis  during January.  of  lichens.  crustose  These occur  tussock-like  as a  peak f r e q u e n c y  f o r the  blow-  nearby  a s s o c i a t i o n a r e O c h r o l e c h l a u p s a l l e n s l s and  -subobducens.  are  inhibit  than  o f w i n d s and  shown t h a t on  54'W)  above) o c c u r  forms o f  prominent  i n a study  has  - 94  most p r o b a b l y  fruiticose Two  4l»N  long periods  s c o u r i n g which would erect  (1964)  Fraser  I s l a n d (74  Cornwallls winds  s u b j e c t to g r e a t e r wind passage  on  by  the  chiefly  restricted  tetragonae.  lichens occurring.here  Include  Alectoria  mlnuscula.  Umbllioaria America  A. c h a l y b e f o r m l s  a n d A.  ochroleuca.  a r c t l c a , r e p o r t e d by Hale  (1954)  as r a r e I n North  Is w e l l represented  i n the present  collections  and i s  u n d o u b t e d l y more common i n t h e a r c t i c t h a n h a s b e e n p r e v i o u s l y supposed  ( i t also  occurs with  Sphaerophoro - Rhacomitrio  r e l a t i v e l y h i g h abundance i n t h e  - Cassiopetum  Table  tetragonae).  9  A v e r a g e Wind S i n c e P r e v i o u s Day (m.p.h.) Over Three A d j a c e n t A s s o c i a t i o n s Date  Time  7/6 7 8 9 10  1805 1530 1705 1730 1705  7.8 11.3 5.3 5.7 8.8  6.6 9-2 4.9 5.2 8.3  6.6 9-3 4.7 5.2 8.1  11 12  1655  1800 1800  6.1 9.0 2.9  1735 1740  1.9 1.8  5.7 7-5 2.5 1.6 1.6  5.5 7-5 2.5 1.6 1.6  1735 1750 1645  2.5 2.8 2.6 7.0 4.8  2.2 2.6 2.2 6.4 4.4  2.2 2.5 2.3 6.3 4.2  13 14 15 16 17  18 19  N-D-A  (Beach C r e s t ) T - D l (Beach Slope)  1820  Cs (Meadow)  20  1835  21 22 23  1820  5.8 9.1 3.5 4.1 4.8  5-^ 7-6 2.9 3.7 4.4  5.3 7.2 2.9 3.7 4.3  1800  2.2 15.4 11.5 7.9 8.0 3.3  1.8 12.5 9.2 6.5 6.7 2.9  1.9 12.2 8.9 6.4 6.2 2.7  24  25  26 27  28 29 30 31  1620 1900 1825 1800  1935 1730 1745 1735 1745  1  45 N--D-A  Date  Time  8/1 2 3 4 5  1835 1900 1815 1740 1900  4.1 2.1 2.5 5.7 4.7  3.7 1.8 2.0 ^.5 4.1  3.5 1.8 2.1 4.8 3.9  6 7 8 9 10  1805 1910 1655 1805 1730  2.5 3.1 6.0 2.6 3.0  2.0 2.6 5.5 2.2 2.4  2.2 2.6 5.2 2.2 2.5  11 12 13 14 15  1720 1740 1710 1710 1745  2.0 3.2 2.0 3.6 9.2  1.7 2.7 1.6 3.3 8.7  1.6 2.7 1.5 3.2 8.2  16 17  1750 1435  4.0 2.1  3.7 1.6  3.4 1.6  The  (Beach C r e s t )  only bryophytes which  r h a b d o c a r p a and quitous,  Dlstlchlum  occurring widely  T-Di (Beach  occur frequently  caplllaceum.  Cs  Slope)  (Meadow)  are Encalypta  These s p e c i e s are  i n a l l a s s o c i a t i o n s of  the  ubi-  lowland  system. The  Nardino - Dryado - A l e c t o r i e t u m  over coarse  textured  regosollc-like  Tedrow's " P o l a r D e s e r t " chemical  composition  described and  the  f o r the  regionally  Generally angular  rock  shallow  Ah  and  the  horizon  the  Devon s o i l s formation  dominant s o i l s  are on  of  uniformly  which are  placed  In morphology like  those  into  and  previously  Prince Patrick Island  Inglefield  land  in  1968).  surface  fragments.  soils  classification.  Beaufort  (Tedrow 1 9 6 6 ,  Greenland  site  the  develops  Is covered  Directly  ( F i g . 12,  Tab.  with  a pavement o f  beneath t h i s 8a).  s m a l l amount o f v e g e t a t i o n  The  develops  exposure of  supported  suba the  precludes  the  genesis which  of a w e l l developed  i s trapped  porated  into  are  of the  the  - Dryadetum  is  absent  totally  weakly developed layers  layers.  lowest  completely  Pedicularo  and  soils.  mixtures sorting  o f r o c k and  the  soils  i s evident,  the  resulting  where h o r i z o n  predominate. are  coarse  morphological situation  subsurface  (Fig. 12).  sand  rock  a reflection  of the  depositlonal history  During tinctive 27  and  35  the  excavation  buried organic inches  majority of foreshore  fragments.  intensive glacio-fluvial  the  (MacKay 1 9 5 8 ; analysis preserved  The  m a t e r i a l s are  of  Brown I 9 6 9 ;  from t h i s  of  Polar  homogenous  alternating is  bands  probably  the beach  a  during  t h i n but  discovered ranging (Fig. 13).  beach b e n e a t h an A r c t i c  their  or  activity.  s u r f a c e pavement  occurrence  concerning  algal  mineral  h o r i z o n a p p e a r s t o have b e e n d e p o s i t e d original  these  characteristic  Such s o r t i n g  Brown  disbetween The on  the  (shallow  of burled organic h o r i z o n . i s a  commonly documented phenomenon i n t u n d r a explanations  Beneath  differentiation  beach s i t e  h o r i z o n was  below the  of the  phase) s o i l .  o f one  development  textured  in distinctive  coarse  of  the  O c c a s i o n a l l y however mass  o f f i n e s and  periods  i s o n l y weakly i n c o r -  non-vegetated p o r t i o n s of  i f any  Typically  material  the  surface horizons  showing l i t t l e  organic  association with  integrifoliae, "raw"  The  Carbon measurements o f  o f any  g e n e t i c h o r i z o n development, a desert  horizon.  s u r f a c e pavement  the upper s o i l  upper h o r i z o n s exception  i n the  Ah  origins  and  have b e e n p u t  Tedrow 1 9 6 2 ) .  horizon revealed  soils  a number forward  Material collected  the presence of w e l l -  s t r u c t u r e s w h i c h were a p p a r e n t l y  of  deposited  for  Fig.  12  Polar Desert  S o l i underlying  Dryado - A l e o t o r l e t u m  (Plot  the Nardino 53).  the water t a b l e and d a r k c o l o r e d f r o n t a t t h e 9 i n c h mark  Note wetting  (photo J u l y 2 9 ,  1968).  Fig.  13  Profile and  o f beach f o r e s h o r e .  Polar Desert  Burled running  algal  soils  Beach c r e s t  l i e to the r i g h t .  l a y e r seen as prominent  d i a g o n a l l y from l e f t  Note t h e i n c r e a s i n g o r g a n i c  band  to right. surface  h o r i z o n a s one moves down t h e f o r e s l o p e of  the beach.  -  48 during  t h e emergence o f t h e b e a c h d u r i n g  following glaclation. the  Determination  following identifiable  Sphacelarla  isostatic  of this material* included  genera and s p e c i e s :  sp., Chaetopterls  Laminarla sp..  plumosa. C h l o r o c h y t r l u m  toco lax,  D e s m a r e s t l a a c u l e a t a , Chaetomorpha sp.,  tortills  (?) and e i t h e r an U l v a  taxa a r e a l l p r e s e n t l y found (not  Included  site  a t which subsurface  those  reported  in  o r g a n i c h o r i z o n s were soils  from s i m i l a r areas  horizons  1968).  This  profile beach  noted.  o f Devon a r e s i m i l a r t o  of Arctic  Soil  N o r t h America and  reaction i s typically  high  about able  b e l o w a pH o f 7 - 5 m e a s u r e d i n  never f e l l  water o r 7 . 2 i n calcium  choride  the c a l c l c o l o u s nature  and there  of these  calcium  Greenland. dolomite The  soils.  are higher This  Values  than  islittle  o f the environment.  c a t i o n s a r e low, a r e f l e c t i o n  fractions  and  latitudes.  These  a l l horizons. Surface  and  Stictyoslphon  r e l e v e s ) was t h e o n l y r a i s e d  the P o l a r Desert  (Tedrow 1 9 6 6 ,  Greenland  derma-  o r Monostroma s p e c i e s .  i n northern  i n the reported  Chemically,  uplift  question  T o t a l exchange-  of t h e s m a l l c l a y and o r g a n i c f o r exchangeable  r e p o r t s from P o l a r  magnesium  Desert  soils i n  i s due no d o u b t t o t h e h i g h p e r c e n t a g e o f  i n the parent till-like  m a t e r i a l s o f the lowland.  texture o f the s o i l s ,  low p e r c e n t a g e s  of clay  o r g a n i c m a t t e r and e l e v a t e d p o s i t i o n above t h e w a t e r  combine t o make t h e s e Gravimetric  soil  soils  moisture  t h e most x e r i c  determinations  table  o f the lowland  were made o n a  * I d e n t i f l c a t i o n s made by D r . R o b e r t W i l c e , Department, U n i v e r s i t y o f M a s s a c h u s e t t s .  Botany  system.  single  b e a c h d u r i n g 1 9 6 8 a n d on two b e a c h e s d u r i n g 1 9 6 9 ( T a b l e 1 0 ) . It  i s interesting  t o compare t h e m o i s t u r e  A and B d u r i n g 1 9 6 9 .  Beach A had s m a l l i n t e r m i t t e n t patches  snow i n some s p o t s b u t was e s s e n t i a l l y of  t h e measurement.  B e a c h B, l o w e r  having a concomitantly  content  Both s i t e s  a f t e r exposure,  ture advantage through  i n elevation  show a r a p i d  active  water r e l e a s e .  beaches tend  In g e n e r a l the lower  ones. uting  p l a n t coverage  A more f a v o r a b l e m o i s t u r e factor  appeared those  of t o t a l  to this  subjectively  exposed  decrease i n  o f the season,  b e c a u s e o f t h e more s l o w l y d e v e l o p e d  higher percentages  t h a n A, a n d  but beach B maintained  the remainder  regime  a mois-  primarily  l a y e r and r e s u l t i n g to support  t h a n more e l e v a t e d  Is probably  e f f e c t / i n recorded t o be t h e l e a s t  of  snow f r e e a t t h e s t a r t  h e a v i e r snow c o v e r , was f u l l y  some 6 t o 7 d a y s l a t e r . moisture  p a t t e r n s o f beaches  a  contrib-  releve's, p l o t  8  e l e v a t e d beach s i t e o f  measured/.  Table  10  F i e l d Moisture Determinations {% by w e i g h t ) - N-D-A S o i l s Percent Date 1968  Measured 6/28 7/3 7/11 7/17 7/24 7/31 8/7 8/14  3  Inches 8.4 4.9 6.3 3.8 4.0 4.3 4.7  1.1  Moisture 9  at Indicated S o i l inches 2.5 2.1 2.4 2.2 1.9 2.1 2.1 1.7  15  Depth Inches 1.3 2.8 2.9 2.1 1.6 1.6 JU9  50 Percent 3  Date Measured 1969  A  B  Moisture  a t Indicated  9  inches  Soil  inches  Beach B Snow Snow 20.8 8.7 10.8  5.1 3.6 3.2 3.7 3.1  5-3 8.8 7.9  Beach A  Inches  15  Beach A  Beach B  Depth  Beach A  Beach B  Frozen  Frozen  6/14 6/17 6/22 6/26 7/1  6/25 6/27 7/1  12.7 9.2 7.2 7.9 8.6  7/9 7/16 7/24 7/30 8/6  7/8 7/15 7/22 7/29 8/5  7.4 18.1 12.0 16.6 15.6  7.9 12.4 14.6 17.7 25.I  4.1 3.8 4.5 4.1 4.4  5.0 5-9 4.0 3.8 4.3  4.4 5.6 4.7 4.4  9.0 5.0 3.8 4.8 3.9  8/13 8/17  8/12 8/17  11.5 10.2  16.9 19.6  5.2  5.8 3.6  4.1 4.0  4.1 3.9  x=ll. 4  x== 1 5 . 4  x=4.1  A  summer s u r f a c e  soils  15 Bar a v a i l a b i l i t y here as t o t a l it  T a b l e s 10 a n d 1 1  comparison of  appears  limiting  values.  moisture  to suspect  Plants  may s u r v i v e  h e r e by b e i n g  often holds  Fig. one  11). inch  x=4.9  x=4.3  m o i s t u r e was  regardless  moisture sites.  f o r the Polar  deep r o o t e d  i n this  recorded  o f phase  Tedrow  ( 1 9 6 8 ) has  soils of stress situations  the permafrost  near the general  c a s e w o u l d o f t e n be w e l l o f some b e a c h p l a n t s  A t one b e a c h l o c a t i o n a s m a l l  state,  s t r e s s as a f a c t o r  Desert  since  water a t lower l e v e l s  rooting capabilities  In height  x=5.4  not adapted t o s u s t a i n high  the lowland, which  possible  5.0 3-8  i n d i c a t e s that during the  field  c o l o n i z a t i o n on t h e s e  Greenland.  of  Since  i n t h e sample,  expressed a s i m i l a r b e l i e f  table  it 11 11 it  o c c a s i o n a l l y may be d r i e d t o b e l o w s t a n d a r d  justifiable  plant  n it  —  surface  within  (see e.g.  Draba sp. l e s s  had a t a p r o o t measuring 2 8 inches  than  i n length  before  i t was  f r o n t was  noted  more i n c h e s horizons be  easily  severed  i n excavation.  moving v e r t i c a l l y  toward the  by  from  Calculated Available  surface.  10  Horizon  W a t e r - N-D-A  <V 3  1.9  0.9  1.0  2  1.3  0.3  1.0  Ah  5-6  1.3  4.3  l  0.5  0.8  0.0  Ah  6.0  1.9  4.1  1.7  1.0  0.7  10.0  3«2  6.8  0.7  0.0  0.7  1.1  0.5  0.6  11.7  3.6  8.1  l  Ah l  c  2  Ah Bm  3.7  0.5  3.2  Bm  0.9  0.6  0.3  l  0.7  0.3  0.4  Ah  9.4  3-5  5-9  1.9  0.9  1.0  2  0.9  0.0  0.9  Ah  9.6  2.3  ?-3  0.9  0.6  0.3  0.9  0.8  0.1  C  C  C  66  Bars  l  C  57  @ 15  5.3  C  54  Bar  Available  2.5  C  51  @  Weight  Soils  7.8  C  50  These f r o n t s  Ah C  15  subsurface  11  M o i s t u r e }I by No.  i n moist  s i x or  s i m i l a r deep r o o t i n g s p e c i e s .  Table  Plot  wetting  the water t a b l e  surface, resulting  b e n e a t h a v e r y much d r i e r exploited  Frequently a  C  l  l  c  2  could  52 Early  or t o t a l  exposure - from  the  c o v e r i n g of  snowpack and  a small vegetative insulation results  warmer s o i l s  and  a more d e e p l y  with other lowland from  by  phytogeocoenses.  four typical  warming t r e n d o f e a r l y June,  lowland  this  level..  microclimatic soils.  stations  A l s o apparent  environment Coarse  beach areas  frost, 1968, of  attest  soil  rapid  was  p i t c a n be  remained  temperatures  temperatures  in  t h a t the  frozen from of  these  this  S u r f a c e pavement  of probes  to  measurements,  thaw r a t e on  the  i n comparison w i t h other e n v i p i t excavations e v i d e n t and  pronounced  i n general  l a y e r f o r that date. i n one  location.  thermlsters resulted  a t ground s u r f a c e  the use  considered a reasonable  encountered  Location Air  degree  r e c o r d i n g c h a r t s i s the  while excavating a p i t f o r p r o f i l e with  Snowfree  zero  Prom t e m p e r a t u r e  visually  the base o f the a c t i v e  temperature  early  A).  soil  however, was  I n d i c a t e the  t o t h e warmer n a t u r e  assumed r e a s o n a b l y  o f the  compared  measurements  c r o s s the  soil  continuous  In the m a j o r i t y of s o i l  o f the  mation of  from  is relatively  content  depth  also  recorded  l a y e r development.  i t c a n be  ronments.  inch level  textured material prohibited  measure a c t i v e however,  Thermlster  f l u c t u a t i o n of s o i l  (Appendix  layer  o t h e r measured s i t e s  Continuously  pronounced d i u r n a l  ice  while  in generally  - Dryado - A l e c t o r i e t u m .  a t the 3  soils  active  (Table 44)  stands  the N a r d i n o  i s o t h e r m by J u n e 1 4 , at  developed  winter  examination, i n the  Temperature 8.3 $.2  On  the  approxiDry June spot  19, checks  following profile: C°  Location  Temperature  Soil,  1  Inch  8.3  Soil,  3  Inches  7.9  Soil,  23.5  Soil,  26  0.0  inches  inches  -1.5  I n s p e c t i o n of the p r o f i l e Nor  were t h e  cementing e f f e c t s  zero degree depth.  Only  near  r e v e a l e d no v i s i b l e  ice  crystals.  of f r o z e n water e v i d e n t a t t h e b a s e o f t h e p i t , where  v a t l o n became impeded f o r t h e f i r s t evident.  C  time,  I t I s t h u s assumed t h a t d r y  was  frost  the exca-  ice visually  i s possible in  such  soils.  Briefly, an  e x t r e m e among t h e  development a  the Nardino  s p a r s e and  these of  easily  species allows this i n the f i e l d .  locations also results  position  Due  of t h i s  A l e c t o r l o n ) and  In the  characteristics  the v e g e t a t i o n l e n d an  as a whole.  system phytogeocoenoses.  d e f i n e d v e g e t a t i o n assemblage.  recognized unit  geocoenotic  with  lowland  Exclusive  i n such an exposed t o p o g r a p h i c p o s i t i o n r e s u l t s  ment c h a r a c t e r i s t i c easily  - Dryado - A l e c t o r i e t u m r e p r e s e n t s  complet o be  Geomorphic h i s t o r y  (Alectorietalia)  set  concomitantly  u n i f o r m i t y to the  f l o r i s t i c and a new  alliance  are  an  of ,  formation of a uniform  ecosystematlc  phytogeocoenosis, order  phytocoenosls  which d e v e l o p i n g  t o the d i s t i n c t i v e  A  in  unit  environmental (Dryado  proposed.  -  54 II.  Dryadetalia  The  (octopetalae  recently  - I n t e g r i f o l i a e ) (D) B a r r e t t  described  Dryadion associations  of  and K r a j i n a  Svalbard  (Running 1 9 6 5 ) a r e g r o u p e d u n d e r t h e p r o m i n e n t E u r o p e a n Seslerietalia coeruleae,  (Seslerietalia  Br. B l . 1926; S e s l e r i e t a l i a  These a r e C e n t r a l of  c a l c a r i a e , Kka. 1 9 4 4 ;  calcareous  and South European h i g h  habitats,  characteristic  variae,  Seslerietalia  Szafer  mountain  a n d i t a p p e a r s t o be t h i s  order  1966).  associations substrate  o n w h i c h Running h a s p r i m a r i l y b a s e d h i s g r o u p -  ing. Examination o f the c h a r a c t e r i s t i c species Seslerion in  calcariae or Seslerion  the order) r e v e a l  that  are also  only  tatrae  two s p e c i e s ,  I t would appear t h a t  the a r c t i c  perhaps  Dryadion  since  regions,  Szafer infor-  a reassessment units i s  reveals  that  c l r c u m p o l a r genus; e x a m i n a t i o n o f t h e  i t i s present  i t o f such  importance  i n a l l but the wettest  to assign  i n the Canadian A r c t i c (Beschel  European S e s l e r i o n a s s o c i a t i o n s important  species  only  i n the r o l e that  sites.  Beschel  i t as a zonal  1970, 1969).  indi-  In the  however Dryas a p p e a r s  t o become  i n t h e Caricetum f i r m a e Kka.  (sDryadeto-Flrmetum S i l l , 1 9 3 3 ) . lies  (Klika 1955;  new a n d more d e t a i l e d  c o m m u n i t i e s a n d a d o m i n a n t on c a l c a r e o u s  considers  an  Dryadion.  i n order.  literature  cator  arctic  i n the higher p h y t o s o c l o l o g i c a l  Dryas i s a prominent  mire  one i n e a c h a l l i a n c e ,  acaulis  m a t i o n i s now a v a i l a b l e f o r t h e a r c t i c of  (principal alliances  I m p o r t a n t components o f t h e h i g h  These a r e Carex r u p e s t r l s and S l l e n e 1966).  of e i t h e r the  A second f l o r i s t i c  grasses play  i n t h e two  difference  orders.  The  European  Seslerietalia  has  as  components o f i t s p r i n c i p a l  community t y p e s many i m p o r t a n t G r a m l n e a e i n c l u d i n g v a r i o u s species  of S e s l e r l a .  grasses appear munities. nants  F e s t u c a and  Calamagrostls.  to p l a y a s m a l l r o l e  arctic  developed plant  integrifoliae  permafrost, a c h a r a c t e r i s t i c  1952;  1959;  importance  Brown 1963;  1969; R u n n i n g 1969).  characteristics for  The  not  to the s u r f a c e communities Tyrtikov  certain  tant r o l e  domi-  communities a r e b e s t Seslerietalia  Most o f t h e d e s c r i b e d D r y a d i o n  however a r e o f t e n f o u n d w e l l w i t h i n  terial  com-  associations,  over c a l c a r e o u s s u b s t r a t e s as a r e the  Seslerion units.  Dryadion  communities.  Dryadion  communities.  comparison  become community  t h e y g e n e r a l l y a r e members o f o t h e r  The  Raup  I n the a r c t i c  I n h a b i t a t s where g r a s s e s do  p r i n c i p a l l y meadow  By  Indeed  of the a c t i v e  the  continuous  shared w i t h the  European  of t h i s r e g i o n a l l y unique i s w e l l documented 1966;  Brltton  i n the a r c t i c  l a y e r and  communities a t l e a s t ,  zone o f  communities  ma-  (Benninghoff 1965;  Vlereck  r e g i o n s the  underlying permafrost  appears  t o p l a y a more  i n community d e v e l o p m e n t t h a n t h e n u t r i e n t  impor-  regimen  of  the s u b s t r a t e . It  i s f o r the above r e a s o n s  integrifoliae octopetalae  2.  Dryadion A  -  are here  that  the High A r c t i c  p l a c e d i n t o a new  order, the  Dryadion  Dryadetalla  integrifoliae.  integrifoliae  (Di) Barrett  and  Krajina  summary o f t h e d e v e l o p m e n t o f t h e D r y a d i o n a s a h i g h e r  phytosoclological unit ent from  a comparison  I s g i v e n by R u n n i n g  (1965).  of the d a t a from h i s S v a l b a r d  I t i s apparcommunities,  and  t h o s e o f Devon I s l a n d ,  t h a t we  are  with  similar vegetation  ance  i s indeed a prominent a l l i a n c e of  R u n n i n g has The  a s s e m b l a g e s and  that the  on  the  the  whole,  Dryadlon  High A r c t i c  alli-  as  suggested.  following species  Svalbard  dealing,  Dryadion  listed  as  Important  in  the  (octopetalae):  Characteristic Carex  are  species:  nardlna  Carex r u p e s t r l s Cassiope Dryas  tetragona  octopetala  Preferential  species:  Pedlcularls  dasyantha  Carex  mlsandra  Pedlcularls  hlrsuta  Draba  alplna  Poa  Draba  arctlca  subcapitata  Polygonum  vlvlparum  Equisetum  Saxlfraga  opposltlfolia  Luzula  Sllene  acaulls  Stellarla  crassipes  nivalis  Mlnuartia  biflora  Minuartia  rubella  Papaver Of not  the  above  found  ( p o s s i b l y the  i n the  congenetlc  dahlianum  Dryadion octopetalae),  D r y a d i o n o f Devon and  species  varlegatum  which are  a l l of  only  four  these four  substituted within  the  are  have  Devon  Island  units. It species level:  i s c l e a r from Running's t e x t are  intended  t o be  (1965)  characteristic at  that the  the  first  four  association  57 In o r d e r to b r i n g out the d i f f e r e n t i a t i o n w i t h the S v a l b a r d D r y a d i o n i t i s n e c e s s a r y to c l a s s i f y I t a t a lower l e v e l than the a l l i a n c e (p. 14). Thus c h a r a c t e r i s t i c  Running.  s p e c i e s of the a l l i a n c e are omitted  I t i s true that d i f f e r e n t i a l s  difficult  to assess with  s o few  probably  t h e most c o m p l e t e l y  alliance  to date.  work a n d  that of  of the a l l i a n c e  data.  The  Dryadion  v a s c u l a r s p e c i e s w o u l d be  are  however i s  studied northern synecological  I t w o u l d seem t h a t b o t h  Running  by  from  the  on S v a l b a r d t h a t o n l y two suitable  for alliance  present genera  of  differentials;  D r y a s and S a x l f r a g a . Dryas While  i s without  a doubt the b e s t  the s p e c i e s changes from  Canadian,  Alaskan  and  western  Dryas  integrifolla  Greenland  octopetala  ( I n the e a s t e r n Greenland,  R u s s i a and  eastern Alaska regions)  littfle  difference  r e m a i n s t o be integrifoliae, the average b e l o w 4.1,  Scandinavian,  Running  verified.  As  c a n be  seen  from  while  on  cies  significance  Arctic  ecology.  the Devon  o n l y once r i s e s  integrlfolia  the Domln-Krajina  t o 3*3  Dryadion does  fall i t Is  i n the Pogonato  I t s h o u l d a l s o be  -  remembered  s c a l e a d i f f e r e n c e of 2 to 4  i s s u b s t a n t i a l as  This  the a l l i a n c e  in  spe-  the + t o 3 c a t e g o r i e s d e a l  c h i e f l y vrlth the abundance o f p l a n t s h a v i n g v e r y values.  Dryas  i n the o t h e r a s s o c i a t i o n s o f the a r e a  - Salicetum arcticae.  that  of Dryas  alliance.  b e l i e v e s there i s  nowhere i n t h e a s s o c i a t i o n s o f  species significance  the  ( i n the  regions) to  i n the main f e a t u r e s of t h e i r  g e n e r a l l y below 2 and Luzulo  i n d i c a t o r of  small  cover  58 The all  situation  i s much t h e same f o r S a x i f r a g a  o f i t s h i g h e s t mean v a l u e s l y i n g  oppositlfolla.  l n the Dryadion  plant  communities. Three a s s o c i a t i o n s o f the a l l i a n c e the a r e a under  study:  Tetragono  - Dryadetum  Pedicularo  Tetragono  - Oxyrio  - Dryadetum  Figs. The  14 -  Tetragono  on g e n t l y s l o p i n g beaches.  integrifoliae  - Dryadetum  Rhacomitrio  (2)  have b e e n r e c o g n i z e d i n  integrifoliae  - Dryadetum  integrlfoliae  integrlfoliae  22  Tab.  (T-Di) B a r r e t t  1 2 - 1 8  - Dryadetum i n t e g r l f o l i a e foreshores  ( 3 - 9 percent  The community a s p e c t  and K r a j i n a  develops  principally  slope) of the r a i s e d  i s g e n e r a l l y west, f a c i n g  Sound, s i n c e many o f t h e b e a c h e s l i e i n a n o r t h - s o u t h Well developed  tundra  Washburn 1 9 5 6 ) c o n s t i t u t e the landscape on  forming.on  hemispherical noted  region of Alaska.  Sharp  than 2 0 degrees  Nets,  h a s commented  s t r u c t u r e s on s l o p e s i n  H i s o b s e r v a t i o n s t h a t hummocks  than 5 degrees  maintain a crudely Sharp  also  o f hummock d e v e l o p m e n t o n s l o p e s o f more  Incline.  community was n o t e d  direction.  feature of  (1942)  shape a p p l i e s i n t h e p r e s e n t a r e a .  a restriction  gradual  14, 15).  development o f these  slopes of less  (= N o n - s o r t e d  a prominent m i c r o - r e l i e f  surface (Figs.  the l o c a l i z e d  the S t . E l l a s  e a r t h hummocks  Jones  Here a g a i n a t o t a l absence o f t h i s  wherever an e l e v a t e d beach l a c k e d t h e  s l o p e o f a foreshore,, and i n s t e a d , dropped a b r u p t l y to  the g e n e r a l l e v e l  o f the surrounding  landscape.  Pebble similarity Nardino  analysis  e x c a v a t i o n s shows a n o t u n s u s p e c t e d  of parent materials with the p r e v i o u s l y described  - Dryado - A l e c t o r i e t u m (Tab. 12).  amounts o f d o l o m i t e present. lent  from  Slightly  and t r a c e s o f a r g i l l l t e  Functionally,  however,  and b a s a l t a r e  t h e two c o e n o s e s  i n terms o f c o m p o s i t i o n o f s o i l  higher  are equiva-  parent materials.  Table 12 Pebble A n a l y s i s from S o i l P i t s o f the Tetragono - Dryadetum i n t e g r l f o l i a e Plot M a t e r i a l P r e s e n t l n Sample (As 8 t h o f T o t a l )  Number  29  30  31  33  36  46  52  Dolomite  4  3  4  3  3  5  2  Biotite Granodiorlte  2  1  1  1  3  Pink G r a n i t e / B l o t l t e  Granite  3 T  2  Monzonite Gabbro/Micro  1 1  Gabbro  1  2  3  3  3  3  Argilllte  T  v e g e t a t i o n o f the Tetragono  - Dryadetum  h o w e v e r i s composed o f numerous s p e c i e s f o u n d throughout  the lowland  here  i s Casslope  cies  significance  is  found  7  1  Basalt  The  81  i n meslc  situations.  tetragona. co-dominating o f 5*1  as a dominant  (15-20 percent  integrlfoliae  ubiquitously Characteristic  w i t h an. a v e r a g e  cover).  spe-  This species  i n o n l y one e t h e r u n i t , t h e  Sphaerophoro - Rhacomltrio  - Cassiopetum  t e t r a g o n a e , where i t  Pig.  14  The  landscape  Dryadetum l i e s '  Fig.  15  p o s i t i o n of  the  Tetragono  g e n e r a l l y on g r a d u a l  "between t h e b e a c h c r e s t s  ( t o the r i g h t )  the  Caricetum  (left).  The  p r o n o u n c e d hummock a n d  relief  of  the  Dryadetum. adjacent 1967).  stantis  depressions  and  depression  s u r f a c e of the  Note the  slopes  of the Nardino  Dryado - A l e c t o r i e t u m  shading  Tetragono of  (photo Aug.  the 131  -  -  60  6l occurs  without  Integrifolla.  the a s s o c i a t e d high  significance values.  here and i s matched Dryadetum  i n total  tetragonae  s  The  a l l show  high vigorous  i n the Pedicularo  to Casslope  - Rhacomitrio  tetragona.  Cryptogams  D. r a m u l o s a . P a r m e l l a  latter  t a b l e s of the Tetragono  shows a number o f s p e c i e s w i t h  similar  Bryophytes  -  similarity  -  - Casslopetum  bicoenotic  distribution  A second v a s c u l a r  plant  include the l i c h e n s D a c t y l i n a omphalodes and C e t r a r l a d e l l s e l .  a p p e a r s t o be c l o s e l y  associated with  snowpatch  areas.  i n c l u d e Tlmmla a u s t r l a c a and, n o t a s pronounced,  R h a c o m l t r i u m l a n u g l n o s u m a n d Mnlum m a r g i n a t u m . o f t h e above n o t e d  of e c o l o g i c a l a f f i n i t y the  arctlca,  i s exceedingly  coverage o n l y  the Sphaerophoro  Carex r u p e s t r l s .  arctlca,  o f Dryas  integrifoliae.  Dryadetum w i t h  i  Integrifolia  The l a t t e r  Comparison o f the s y n t h e s i s  patterns  values  T y p i c a l of the Dryadion u n i t s , S a l l x  S a x l f r a g a o p p o s l t i f o l l a and Dryas species  cover  characteristics  to the m u l t i p l e e f f e c t s  distribution  suggests a c e r t a i n degree  b e t w e e n t h e two c o e n o s e s .  contrasting lithologic  attributable  species  The  Considering  i t seems more  of a slowly melting  likely snow  cover. In t u r n , a second coenosls  distinctly  calclphiles. tricoenotic of  c o n s t e l l a t i o n of species  from the Casslopetum.  One l i c h e n ,  Lecidea  d i s t r i b u t i o n being  the calcareous  Dryadetalla.  calcareous  Nardino  quantities  i n the mesic,  found mainly I t i s absent  acidophilous  this  Most a r e n o t a b l e  ramulosa,  - Dryado - A l e c t o r i e t u m ,  segregates  has a pronounced i n the moist from  the x e r i c ,  and o n l y  Casslopetum.  coenoses  In trace  T - Dl Fig.  16  A r c t i c Brown ( s h a l l o w p h a s e ) "beneath p l o t  52.  Note the h u m i f i e d  c o r e e v i d e n t i n t h e hummock July  Fig.  17  28,  soils  (photo  1968).  A r c t i c Brown s o i l  beneath p l o t 3 1 .  Note the I r r e g u l a r  nature of the  horizon boundaries  (photo J u l y  1968).  20,  Distinguishing sidered a and  bryophytes  "characteristic  arctic  Dldymodon a s p e r i f o l l u s .  exclusively Island. found  from c a l c a r e o u s  Vascular  here only  Tetragono  are  found  again,  a l s o an  nivalis, since  (Running  are  frequency  has  chlonophobic  Cetrarla  achieve  - Dryadetum  be  " s n o w p a t c h " u n i t and  should  at  least  J o h n Thomson o f  integrifoliae  be  thus  nivalis  of  the  an  by  be  trary  the  1948).  Scandinavian  is  definition  w o r k e r s may  be  o f snow.  studies of  p r e s e n t l y shown t o plants  truly has  found  chionophilous.  indicated  has  from snowpatch a r e a s ,  some a c c u m u l a t i o n  sig-  The  not  and  shown  t o the  s p e c i e s a p p e a r s t o show a g r e a t e r l u x u r i a n c e  where t h e r e  C.  species  indicator  snow t o l e r a n t i f n o t  excluded  is  phytocoenosls  in similar  Polunin will  lichens  previously  c u c u l l a t a and  the U n i v e r s i t y of Wisconsin,  t o be  foliose  conspicuous  (personal correspondence) that h i s experience C.  Svalbard  their highest  195&;  (Dahl  Tetragono  here  Particularly  p r e v i o u s l y been c o n s i d e r e d  environments  a  calcareous  i n the  I t i s I n t e r e s t i n g to note t h a t  _C. n i v a l i s  a true  than  characteristic  t h a t they  species  1969).  sheltered location,  taxa,  s e l e c t e d as  I t i s here  nificance.  Two  Ellesmere  Minuartla r o s s i i ,  component o f t h e  - Dryadetum.  genus C e t r a r l a .  almost  Pedlcularls lanata, a  t o wet  con1959)  (Schuster  s u b s t r a t e s on N o r t h e r n  important  w i t h much h i g h e r  fennlca.  Schuster  here a t l e a s t ,  comparatively  described Nardino the  by  I n t h e D r y a d e t u m , and  - Dryadetum  In t h i s  calciphile"  collected  p l a n t s Include  species r e s t r i c t e d l o c a t i o n s and  Include A r n e l l l a  of  Thomson f e e l s  c o n s i d e r i n g i t s absence from  congrowth  perhaps only  the  very  latest  Porsild's cluded,  snow s i t e s .  T h e s e w o u l d be  r a t h e r than  coenoses.  caplllaceum. dominating The all  the  e a r l i e r melting  4-5,  soils  81).  mineral oping  as A r c t i c  The  directly  horizons  field  ences b e i n g The  (B  m  Arctic  Brown s h a l l o w  horizons;  slight  here = A  the  be  noted  by  30,  (plots  well  developed (C)  altered  o f Tedrow 1958)  devel-  T h e s e were  textural  Brown p r o f i l e  i n well drained Tedrow and  occur  Present  i s a mature  l o c a t i o n s w i t h i n the Hill  1955).  noted  differ-  profile  The  stability  occur  zonal  Importance  i n the development o f A r c t i c  of  adja-  type,  arctic  genesis  simultaneously  the  interpretation  of  h e r e o n l y where a d e q u a t e d r a i n a g e ,  a l s o touched upon the  Greenland.  to s o i l  comparing t h i s u n i t w i t h  Ugolini  penetration  2  are  placed  show w e a k l y  of p l a n t cover  site  in  Dlstichlum  textured mineral  c o l o r changes,  t e x t u r e and has  phase  lower C h o r i z o n s .  - Dryado - A l e c t o r i e t u m .  1965; may  four being  ( F i g . 17)  former  s u r f a c e and  the A r c t i c  developing  with  o v e r l y i n g coarse  close relationship  indicates  profile  in  absent.  Nardino  (Ugolini  Include  show c h a r a c t e r i s t i c a l l y  The  c h i e f l y by  d e v e l o p m e n t may cent  commonly  O r t h o t h e c l u m c h r y s e u m and  Brown t y p e s  latter  between the  the  environments.  o f the T e t r a g o n o - Dryadetum i n t e g r i f o l l a e  (Fig. 16).  horizons  i n c l u d e many f o u n d  t h e more c o n s p i c u o u s  the weakly developed 52,  "snowpatch"  ex-  Tomenthypnum n l t e n s .  humus h o r i z o n s  in  Some o f  Tortula ruralis.  classified  Into  to  "snowbed" l o c a t i o n s where numerous s p e c i e s a r e  Prominent bryophytes here other  comparable  regions such  a  substrate  (Ugolini increased  Brown s u r f a c e  1965). root  horizons  As  we h a v e n o t e d p r e v i o u s l y ,  the s o i l s  of the Nardino  D r y a d o - A l e c t o r i e t u m a r e b o t h warm a n d e a r l y Their  c o a r s e t e x t u r e a n d deep a c t i v e  adequate  drainage  conditions.  free  o f snow.  l a y e r development  The x e r i c  -  indicate  nature o f the h a b i t a t ,  however, a n d c o n c o m i t a n t l y l o w v e g e t a t i v e c o v e r , p r e c l u d e t h e development o f a mature A r c t i c a combination  o f adequate  not r e a l i z e d .  (Figs.  18, 1 9 ) ,  leaching  on these s i t e s ,  - Dryadetum  colder  integrlfoliae  ( T a b . 4 4 ) a n d snow f r e e  provides the increased v e g e t a t l o n a l  capabilities  since  l e a c h i n g a n d humus a c c u m u l a t i o n a r e  The T e t r a g o n o  o t h e r hand, w h i l e b o t h  Brown s o i l  on t h e later  c o v e r and  necessary f o r the genesis of t h i s  soil  type. Subsurface slope p o s i t i o n , active  term A r c t i c  snow p a c k m e l t s .  Brovm s o i l  (Tedrow 1 9 6 8 a ) .  mation  accrues,  type w i l l  another.  has been a p p l i e d  i ti s likely  that  The d a t a g a t h e r e d f r o m  by R u n n i n g  (1965,  b r o a d l y and o f morphology that  as  infor-  t h e c h e m i c a l makeup o f t h i s  be shown t o v a r y f r o m  from Greenland  on t h e b a s i s  Tedrow ( i b i d . ) h a s s t a t e d  however, show a h i g h d e g r e e recently  with  p e r m i t r a p i d movement o f w a t e r t h r o u g h t h e  h e r e t o f o r e been d e f i n e d c h i e f l y  alone  soil  t e x t u r e s a r e c o a r s e and combined  l a y e r as the o v e r l y i n g  The has  soil  one p o l a r r e g i o n t o  present s o i l  of s i m i l a r i t y  to those r e p o r t e d  (Tedrow 1 9 6 8 ) a n d a l s o  1969) f o r the Tetragono  investigations,  those r e p o r t e d  - Dryadetum of  Svalbard. The  heavy  I n c o r p o r a t i o n o f humus n o t e d  horizons o f the Tetragono  i n the surface  - Dryadetum o f S v a l b a r d (Running 1 9 & 5 .  1969)  was a l s o a p p a r e n t  l n t h e Devon u n i t s .  z o n s show o r g a n i c m a t t e r  contents  Two s u r f a c e  30 percent  o f over  (1.7 x %  3 0 and 8 1 ) .  carbon) and a r e d e s i g n a t e d as H h o r i z o n s  (plots  The  r e p o r t e d from  wide range o f o r g a n i c m a t t e r  soils Soil  (1.2$ reaction  53.0#)  Exchangeable  c a l c i u m a n d magnesium.  those  i n evidence  i s again c h a r a c t e r i s t i c a l l y  surface horizons. by  was a l s o  content  even  31.6$). i n the  exchange v a l u e s a r e s i m i l a r t o  (1968)  and R u n n i n g  (1969).  Here  t o the presence  dolomite. Measurement o f s o i l  i r r e g u l a r nature of  (4.8$-  basic,  a g a i n h i g h e r amounts o f magnesium a r e r e l a t e d of  Svalbard  cations are contributed chiefly  Total  r e p o r t e d b y b o t h Tedrow  here  hori-  the s o i l  moisture  i s made d i f f i c u l t  o f the h o r i z o n boundaries  profile.  In fact  moisture  s h a l l o w d e p t h s may i n a c t u a l i t y  c l a s s e s and thus moisture  moisture  determinations  determinations from  were t a k e n  from  soils  holding a b i l i t y .  r e p o r t e d here  Table  i n the upper p o r t i o n s  be r e c o r d e d  textural  by t h e  of widely  The f i e l d  from  plot  36.  13  F i e l d Moisture Determinations {% b y w e i g h t ) - T - D i S o i l s Percent Date 1968  Measured  7/11  7/17  3 i n c h e s ^..hummock 127.3 76.3  a t I n d i c a t e d Depth 3  inches,  interhummock  -J2li4  66.5 63.5 103,4 115.1 89.4 107.9  X = 85.7  x = 91.0  7/24  102.6  7/31 8/7  82.0  8/14  Moisture  72.3  P e r c e n t Moisture a t I n d i c a t e d Depth3 Inches,  Date Measured 1969  6/24  hummock  3 Inches,  60.2  6/26 7/1 7/9 7/16  7/24 7/30 8/6 8/13 8A7  X  lnterhummock frozen  tt  67.3 51.1 55.1 89.9 62.6 79.3 63.8 122.1 68.8  88.9 57.2  = 72.0  X «62.3  Comparison o f f i e l d moisture  57.0 54.7 72.1 37.7  82.1 48.7  with c a l c u l a t e d  available  water v a l u e s i n d i c a t e t h a t the s o i l s a r e r a r e l y without moisture  f o r p l a n t growth.  adequate  Though a d j a c e n t t o the x e r i c Nardino -  Dryado - Alectorietum t h i s u n i t i s b e s t c o n s i d e r e d a mesic o r i n some i n s t a n c e s a wet-mesic ( s u b h y g r i c ) c o e n o s i s . Probe a n a l y s i s o f a c t i v e l a y e r development ( F i g s . 21, 22) i n d i c a t e s a moderate r a t e o f thaw r e l a t i v e to o t h e r u n i t s o f the D r y a d e t a l i a .  Maximum thaw depths correspond  v a l u e s measured i n s o i l p i t e x c a v a t i o n s approximately  17 i n c h e s .  closely to  (Tab. 1 5 a ) , a v e r a g i n g  The i n s u l a t i n g q u a l i t i e s o f a promi-  nent v e g e t a t i o n a l cover and c o o l i n g e f f e c t s from a l a t e  lying  snowpack somewhat I n h i b i t the development o f the a c t i v e  layer  to  the lower depths t h a t have been r e c o r d e d  Nardino  In the more exposed  - Dryado - A l e c t o r i e t u m o r P e d i c u l a r o - Dryadetum  integrlfoliae  coenoses.  Two f a c t o r s which p l a y s i g n i f i c a n t r o l e s i n ecology o f the c o e n o s i s a r e snow cover and the hummock and d e p r e s s i o n  68 topography  of the  surface.  14  Table Calculated Available  Water - T-Di  M o i s t u r e )t by Plot  No.  Horizon  @  ^  Bar  Soils  Weight  @ 15  Available  ( V  Bars  3  Ah Bm  38.8 4.3  31.3 1.7  7.5 2.6  -30  H C  53.2 9.6  45.0 5.4  8.2 4.2  31  Ah Bm C  52.4 7.2 1.4  37.8 4.3 1.4  14.6 2.9 0.0  33  Ah Bm C  33.5 4.3 1.2  24.7 1.2 0.8  8.8 3.1 0.4  36  Ah Bm C  40.4 7.1 2.4  29.3 4.7 1.3  11.1 2.4 1.1  46  Ah C  62.0 5.0  47.8 3.0  14.2 2.0  52  Ah C  36.0 5-7  21.9 1.9  14.1 3.8  81  H  84.3  61.9  22.4  29  The  close  association  of Casslope tetragona w i t h  p h l l o u s o r snowpatch environments  i s w e l l documented  1948;  Lambert  P o r s i l d 1964;  correspondence Indeed  Running 1965;  i s e a s i l y evidenced  the c o r r e l a t i o n  fragmentary  coenoses  1968).  A  appears  -  15)  chiono(Polunin  striking  i n t h e Devon l o w l a n d  b e t w e e n t h e two  Water  system.  so s t r o n g t h a t  d e v e l o p anywhere i n t h e loitfland where  69 small depressions permit  some snow a c c u m u l a t i o n .  s e e n most r e a d i l y where d e f o r m a t i o n  T h i s may be  cracks transect  the Nardino  -  D r y a d o - A l e c t o r i e t u m on the 'beach crests. While many are o n l y two t o three i n c h e s deep, a c c u m u l a t i o n fragments along  of this  their  nearby  T h i s was a l s o  redistribution  nearly  less  Increased depth  (1962)  i n June,  1 9 6 8 , from  five  transects start  1 meter from  the depth  As mentioned  indicate  of these  (See F i g . 1 8 ,  orientation).  M e a s u r e m e n t s o f snow d e p t h were t h e n  and  o u t onto  cases the  measurements.  of transect  on t h e No. 2 f o r  taken a t  p e r p e n d i c u l a r to the beach  t h e l e v e l meadows^ ( C a r i c e t u m s t a n t i s ) .  the l a s t  Ina l l  two r e a d i n g s r e p r e s e n t measurements away  s l o p e and onto  t h e meadow.  clearly  locations.  snowline  beach c r e s t s .  o f e i t h e r 2 o r 5 meters,  estab-  o f t h e snowpack  to adjacent  the e x i s t i n g  the location  o c c u r s on  Transects  random b e a c h e s ,  the r e s u l t s  19).  i s light, generally  1968).  i n comparison  18,  (Figs.  the lowland.  i n foreslope positions  1 6 shows q u a n t i t a t i v e l y  Intervals  on  the winter  o f t h e snowpack  (Thomas 1 9 5 3 ; K i n g  may be i n c r e a s e d f i v e - f o l d  All  striking  t o t a l w i n t e r snow a c c u m u l a t i o n  however, t h a t  Table  by D r u r y  - Dryadetum d e v e l o p s ,  every beach slope throughout  t h a n 40 i n c h e s  lished  noted  o f snow i s p a r t i c u l a r l y  of aspect,  previously,  that  Island.  Where t h e n o d a l T e t r a g o n o  Regardless  Increased  c o e n o s i s t r a v e r s e the beach r i d g e s r e g u l a r l y  length.  Bylot  o f snow i s s u f f i c i e n t l y  from  Table  15  Tetragono-Dryedetua I n t e g r l f o l i a e PLOT RO. DATE ANALYSED KEPBACOl'3 COVER % M0S3 COVER S LICHEN COVER * ASPECT SLOPS « TOTAL SPECIES NO. PLOT SIZE  29 8/8/67 60 8 33  w J  S»  30 8/12/67 85  31 8/1J/67 80  AO H 4 32  30  10 35  5 36  4 28 ,  15  .  15  33  8/16/67 80  tf  36  8/22/67 75 30 3!  V 8  39  46 7/22/68 85 20 30 H 9 39  52  81 7/10/ 60  25 as  20  7/26/68 85 18 7 47  3  8  39 . ..7 .  PRESUMED CHARACTERISTIC COHBIWATIQH OF SPECIES Ceeeiope tetragon* Cetraria cucullete Catraria nivalle  5.1 5.S 3.8  Saxifrage o p p o a i t i f o l i a OTHER SPECIES Carex niaandre Oxyria digyna Juneua bigluroia Papaver redicaturn Pedicularia hirauta Luzula a r c t i c a S t e l i a r i a lon^ipea Hinuartia roaaii Carex rujieatria P e d l c u l a r l s 1 an at a Polygonum viviparuo Aretagroatis l a t i f o l i a Silena ecaulia Colpodium vahlianun Eriophorum t r i a t e Carex atana Carex nardice P u c c i n e i l i a andaraonii Draba b e l l i i Ranuculua aulphureua Draba oblongata Cereetiun r e g e l i i Tomentoypnua nitons Ditrichum f l e x i c a u l e Tortula r u r a l i s Diatichium c a p i l l a c e u n Ortbothecium chryseun Didymodon a s p e r i f o l i u a Blepharostona t r i c i i o p b y l l u i Drepanocladua uncinatua Cinclidium arcticum Mniuo hytaenophyllum Knium orthorrhynchum Aulacomnium turgidum Pogonatun alpinun Tetraplodon mnioidea A r n e l l i o fennica K y u r e l l a tanerrima Hyurella julacea Tinttnia auatriaca Dicranoweiaia c r i a p u l a Rhacotnitrium lanuginosun Enealypta rbafcdocarpa Voitie nivalis Bypnum bambefseri T o r t e l l a tortuoaa Drepanocladua r e v o l T e n a Bypnum revolutun Bylocoaiutn aplendena Mniun hymenophylloidea Mnium oarginatun P b i l o n o t i a fontana Orthotaeciun strictum Dicranuc acoparium Barbula f a l l a x Meeaia u l i g i n o a a Abietinella abietina Bryun anguatlrate RoacofDitriun: heteroaticnun var. sudeticun Lophosie w a n z t l i i D i a t i c h i u n hagenii Barbula icnedopbila DicranuD elonjjatun Aneura pinguis Ptilidiun ciliare Saligeria polaria Ceratodon purpureaa Cephaloziella arctica Lophoaia leunzeana Odontoschism* taacounii Catraria cucullata Catraria nivalin Lecanora epibryon Thamnolia v e r o i e u l a r i s Lecidea ream Iona Eypogycnie aubobaeura Cladonia pyxidnta Alectoria nigricana Pbyscia ouacigena Cetraria ialandica Dactylina oretice Dactylina raauloae A l e c t o r i a ochroleuca Lecidea v e r n a l l a Caloplaca t i r o l i e n s i a Ochrolechia f r i g i d a Pertuaaria coriacea Parmelia ompt.alodea Cetraria delieei Plecynthiuo a s p r a t i l e S o l o r i n a biapora Ochrolechia u p a a l i e a s i a Toninia lobulate Rhizocarpon geogropbicum C o m l c u i a r i a aculeate Stereocaulon elpinua P e l t i g e r a ephthooa C o r n i c u l a r i a divergena S o l o r i n a saccate Alectoria nitidule A l e c t o r i a cnalybeiforraia Pannoria bookeri Pert'iaaria bryontha A l e c t o r i a ainijacula Caloplaca cinnamonee Ptiyscla ceesia Fulgenala bracteata Umblllcerla arctica Lecidea d i c k a o n i l Parmelia separate Xanthoila elegens Agyrophora lyngei Rtiizocarpon rittokenae Pernella diajuncta C e t r a r i a nigricana A l e c t o r i a eubdlvergena A l e c t o r i a tenuis Candelariella aurella P o l y b l a a t i a hyporborea Buellia papillate Lecanora f r u a t u l o e a Lecidea I n p l c i d a Lecidea apalrea Pertuaaria panyrga Rhiiocarpon potycarpon P o l y b l a a t i a Uieleodea Rhizocarjon dlaporum UmbllIceria havaanlt U m b l l i o a r l e hyperboree  0.7 0.6 0.6 0.9 0.6 0.5 0.5 0.2 0.2 0.4 0.1  III III III III  2.1 2.1 2.0 0.4 2.1 1.1 1.1 0.9 0.9 0.9 0.7 0.6 0.3 0.3 0.3 0.9 0.9 0.6 0.2 0;7 0.6  0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 3-8 3.8 3.6 3.4 3.3 2.6 2.3 2.0 1.8 1.8 1.6 1.4 1.0 0.9 0.7 0.6 1.8 1.5 1.3 1.1 1.0 0.8 0.5 0.7 0.6 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.1 0.1 0.1 0.3 0.3 0.3 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  71  Table  15a  Tetragono—Dryadetum i n t e g r i f o l i a e - Soils PLOT RO. DATE SAMPLED DEPTH TO FROZEN MATERIAL (inches) SOIL CLASSIFICATION  29 7/21/68 12  1  PHYSICAL/CHEMICAL ANALYSIS Horizon I depth (inches) color, dry color, vet pH (CaCl,)  pH (HjOr  carbon 56 nitrogen % t o t a l P p.p.m. Exchangeable Cations Me/lOOgm E Ca Mg Ha  Horizon II depth color, dry color, wet pH (CaCl,)  PH (HpOr sand silt $ clay # carbon nitrogen P  30 7/21/68 15 ..(sp)...  31 7/21/68 16  33 36 46 52 7/22/68 7/20/6S 7/22/68 7/28/68 16 16 , 1 1 18 'Arctic Brown......J...• .(sp).......(sp)  K  Ah 0 - 2 to 0 - 1 1 5YR2/2 5YR2/1 6.7 7.1 2.9 1.11 12  Ah  Ah  Ah  Ah  H  5YR2/5 5TR2/1 7.0 7.2 8.4 1.77 4  5YR2/2 5YR2/1 7.1 7.6 8.0 1.48 18  5YE2/2 5YR2/1 6.7 7.6 11.2 2.10 17  5YR2/2 5YR2/1 7.0 7.1 7.8 1.31 12  5YR2/2 5YR2/1 6.6 7.1 17.6 0.87 18  .08 12.1 8.1 .18 20.5  .09 12.8 9.3 .26 22.4  .06 11.4 7.2 .19 18.8  .09 12.9 8.9 .20 22.1  .08 14.9 10.3 .38 25.7  .06 11.0 6.2 .16 17.4  .07 42.4 22.2 .92 65.6  10YR4/3 5YR2/2 7.4 7.5 98.8 1.6 0.0 2.0 0.11 0  7.5YR3/2 5YR2/2 7.4 7.8 94.4 5.6 0.0 2. 0.2 5 3  10YR3/4 7.5YR3/2 7.3 7.7 94.4 5.6 0.0 2.3 0.14 0  .03 2.4 1.7 .14 4.3  .04 3.5 2.5 .15 6.2  .03 3.1 2.2 .14 5.5  2  .17 15.0 11.2 .29 26.7  £m C ..VARIABLE - RANGE 10YR4/5 7.5YR3/2 7.5YR3/2 7.5YR3/2 7.5 7.5 7.6 7.8 94.2 92.4 4.8 7.6 1.0 0.0 2.3 3.2 0.19 0.39 2 5 .03 2.7 2.1 .13 5.0  Horizon I I I depth color, dry color, wet pH (CaCl,)  pH (H or 2  sand silt clay carbon nitrogen P  Exchangeable Cations K Ca  KB Na  Bm -10 to 10-13. 7.5YR3/2 7.5YR3/2 7.2 8.0 94.4 5.6 0.0 1.0 0.23 3  .04 4.9 2.7 .15 7.8  .03 3.9 2.0 .16 6.1  c 9-12 10YR5/3 7.5YR4/2 7.7 7.7 NM NM NM 2.5 0.05 0  C 10-16 10YR5/3 7.5YR4/2 7.6 8.0 98.4 1.6 0.0 1.8 0.09 0  .03 2.4 1.2 .12 3.7  .08 1.9 115 .13 3.6  1 sp • shallow phase of Arctic Brown s o i l type. 2  9  ..(sp)..  Ah H VARIABLE - RANGE 5YR2/2 5YR2/2 5YR2/1 5YR2/1 6.9 7.1 7.7 7.3 18.7 9.3 1.84 2.70 11 8  (?)  Bm 10YR3/4 7.5YB5/2 7.5 7.8 96.8 3.2 0.0 2.8 0.13 1  Exchangeable Cations Ca Kg Na Sum  81  7/10/69  Boundaries of horizons I and I I exceedingly wavy due to hummock topography.  C 12-16 10YR5/3 10IR4/2 7.6 8.1 98.4 1.6 0.0 3.2 0.04 0  .02 2.0 1.2 .12 3.3  c 11-16 10YS4/3 7.5YR3/2 7.5 ' 7.7 96.4 3.6 0.0 2.3 0.08 2  .03 2.0 2.0 .14 4.2  .04 3.7 2.2 .17 5.1  72 Table  16  Snow Depth T r a n s e c t s from Snowline at Beach C r e s t to Meadow Snow Depth i n Inches Date  Transect No. Beaches  Meadow  1M  6M  11M  16M  21M  26M  31M  36M  4lM  46M  29.2  20.0  13.5  12.0  13.0  6.5  17M  6/25/68  1  5.5  43.5  37.7  24.5  6/26/68  2  8.0  42.0  40.0  3 4 . 5 12.0  6/27/68  3  7.6  27.3  33.O  13.3  1M  3M  5M  7M  9M  11M  13M  15M  4.0  14.6  6/30/68  4  14.7  15.5  15.0  13.7  H.2  10.0  11.0  5-7  2.0  6/29/68  5  8.5  12.0  16.0  18.0  11.5  10.0  8.0  5.2  4.2  The d u r a t i o n of the snowpack i n these l o c a t i o n s i s dependent upon both the depth of the pack and s e a s o n a l temperature t i o n s d u r i n g the melt p e r i o d .  Two  varia-  r a t h e r t y p i c a l examples of  snow melt p a t t e r n s a l o n g t r a n s e c t s run s i m i l a r l y to those above are  shown l n Tab. 17«  be a t y p i c a l l y l a t e  A l t h o u g h the 1 9 6 8 season was  b e l i e v e d to  l n terms of t i m i n g of s p r i n g melt, the p a t -  t e r n of melt remains c o n s i s t e n t .  As  i s i n d i c a t e d , the f o r e s l o p e  h a b i t a t s of the Tetragono - Dryadetum remain snow covered up to \\ weeks l o n g e r than the a d j a c e n t meadows (Caricetum s t a n t i s ) and from i f to 3 weeks longer than the Nardino - Dryado - A l e c t o r i e t u m . In  a r e g i o n where the e f f e c t i v e growing  season i s so  reduced, these t i m i n g d i f f e r e n c e s , w i t h r e g a r d to h a b i t a t emergence from w i n t e r snow, are l i k e l y on both the f l o r i s t i c  to have a c r i t i c a l  influence  c o m p o s i t i o n of a c o e n o s i s as w e l l as the  Table 17! 1968 Stake Ko BeaclT" i — 2 3 Foreslope 4 5 6 7 6 9 10 Beach foreslope  11  1 2 3 4 5 6 7 8 9 10 11 1 2 Poreslop. 3 » 5 6 7 e 9 10 11  12  Snow Kelt Transects (50 meters) Prom Beach Oreat (stake 1) toMeadow Figures Equal Depth of Snow in Inches at Indicated Date 6/16 6/17 6/16 6/19 6/20 6/22 6/23 6/24 6/25 6/26 _6/l| XT TT5.2 3.5 1.5 1.5 5^5 0.2 9.0 10.0 9.2 8.2 B.O 7.0 5.0 5.0 4.0 4.0 6.7 3.7 25.0 19.5 19.5 21.5 21.0 20.5 20.5 17.5 17.2 16.7 16.5 16.5 25.0 26.5 23.2 25.5 24.5 24.0 21.0 19.5 19.2 22.7 20.5 19.5 24.7 26.0 23.0 22.5 25.5 24.0 24.0 20.5 19.5 19.2 20.5 19.5 23.5 20.5 17.7 17.0 16.5 22.5 22.2 21.5 21.2 20.0 17.5 16.7 18.5 20.5 16.5 13.5 13.0 16.0 14.2 19.2 17.5 17.5 13.7 13.0 16.0 18.0 14.2 12.2 U.2 10.7 14.0 16.5 15.0 15.0 11.0 11.7 14.0 11.5 11.2 13.5 13.0 12.5 12.5 9.0 9.7 9.5 8.5 8.7 11.0 10.0 I f ' . ? .. 15-5 . »-? l"-5 , 13.5.. 13.2 10.2 10-5 11-5 6/12 6/22 6/11 6/14 6/16 6/ia '16.0 10.0 14.0 TOT" 19.2 19.5 18.5 •T47712.5 17.5 16.2 15.0 12.0 12.0 11.0 17.0 18.0 17.0 19.5 19.7 18.7 13.5 16.2 15.5 13.0 12.5 12.2 16.7 17.5 16.7 17.5 17.7 16.2 12.5 15.0 15.7 12.2 12.0 11.5 16.7 17.5 16.2 17.0 15.5 10.0 14.5 13.0 10.0 9.5 9.0 15.5 14.0 14.0 21.5 20.5 21.5 15.0 16.5 14.5 12.5 12.5 19.7 18.5 18.0 17.0 21.5 20.5 21.5 15.2 19.5 17.5 15.0 15.0 14.0 20.2 19.0 18.7 17.0 17.0 16.0 11.0 12.5 9.5 8.5 8.7 15.2 14.0 13.7 13.2 14.0 14.0 13.0 8.5 9.5 8.0 7.5 12.5 11.5 7.2 11.0 10.7 12.5 10.7 12.5 7.0 7.0 6.2 6.0 10.5 9.2 5.5 8.5 8.5 9.5 9-7 8-7 -ZiO-6^- -6*2_ -4±2_ 9.2 8.5 8.2 8.5 6/12 6/14 IB.« in.25 _ • 3-50 a 14.00 13.50 12.25 11.75 16.00 15.75 15.75 15.50 15.00 4.50 8.75 14.50 14.25 14.00 14.00 13.50 12.50 12.00 10.75 10.00 m 7.00 3.25 9.00 9.00 8.50 7.00 9.75 a 6.50 5.75 4.50 4.50 2.50 9.75 9.75 8.00 a 8.25 6.75 7.00 5.00 9.25 9.25 9.00 • 16.75 16.75 16.50 16.50 15.75 15.00 14.50 13.50 13.25 11.00 4.50 8.25 17.75 17.00 17.00 17.00 16.25 15.00 14.50 13.50 13.25 11.00 7.25 3.50 15.75 14.75 17.50 16.75 16.25 13.50 13.00 11.75 11.00 9.00 12.50 11.50 11.25 11.00 10.00 a, 9.00 8.50 6.50 4.00 7.75 • 11-75 11.50 " . 2 5 11-25 10.75 9.00 a 9.75 7-50 7iQ° 4.7?  m-  %%%%  %% %% %% y» y>  6/27  6/28  6/29  3.7 16.5 19.0 19.5 16.5 13.0 10.7 8.5 1°.? 6/26 72" 11.2 12.2 11.5 9.0 12.5 14.0 9.7 7.0 5.5  3.7 16.5 19.5 19.5 16.5 12.7 11.0 9.2 10.5  1.5 i3.7 17.2 17.5 15.0 10.7 8.5 7.2 8,5  4.S  6/28 -107212.5 14.0 13.5 13.7 12.5 12.7 8.7 10.5 12.5 15.0 14.5 15.2 9.7 9.7 7.7 7.5 5.5 5.2 • «•? 4.2  6/30  7/1  7/3  7/4  7/5  7/6  13.2 16.2 16.5 13.7 10.0 7.5 7.0 8.5,.,  12.0 14.5 15.5 13.0 9.2 6.7 6.5 7-5  10.7 13.7 14.2 12.2 8.5 6.0 5.7 7.0  9.2 12.2 13.0 10.5 6.7 4.5 4.7 6.0 7/2  8.7 11.5 12.0 9.2 6.5 3.7 4.5 4.7  7.7 10.7 10.5 7.0 5.7 3.0 3.7 4.5  12.7 13.2 11.0 9.2 12.5 13.0 8.5 5.5 5.2 4.0  10.0 11.2 9.5 7.7 11.0 11.2 7.2 5.0 3.5 3-0  3~  7.5 10.0 8.5 6.7 10.5 10.5 6.7 5.0 3.0 2-5  6.5 a.5 6.5 5.7 8.7 9.0 4.2 5.0  -2/2 6.2 8.0 6.0 5.5 8.5 8.5 4.0 5.0  •  5.5 7.0 5.0 5.0 8.5 7.5 3.5 4.2  7/8 6.2 9.5 9.5 5.7 4.5 •  5.7 9.5 9.0 5.5 3.7 •  7/9 4.5 6.5 7.2 5.2 2.0 "  7/10  7/11  3.7 5.0 6.5 4.0  4.2 5.2 2.5  -  4.0  ?-2  2.5  z  7/5 5.0 6.0 4.2 4.7 7.5 6.0 3.5  7/6 4.5 5.2 5.5 4.0 7.0 5.7  7/7 1.5 3.5 2.5 3.0 6.0 5.2  7/8 1.5 2.7  • •  -  •  •  3.0 6.0 _  _  -  3.5 4.0 • •  m  5.0 2.5 •  •  r 7/1° a  a • •  5.2  4.0  m m  *  _ >  7/12  a a  •  74 functioning of  of  I t s component members.  community d i s t r i b u t i o n a n d  c o v e r have been w e l l 1959;  Bliss mation  on  the response  (Billings critical  and  Bliss  1956).  (Running There  1965;  also  of p l a n t s to the  1959)•  correlative  Billings  exists  limited  snow p a t c h  t h e snow p a t c h e n v i r o n m e n t .  the  comparative  autecology  In the Tetragono  example, a r e a number o f s p e c i e s f o u n d lowland  system.  Has  of ecotypes  plasticity  indicates  coenoses  selective  pressure  the  Recent  work by T e e r l  for at least  one  based and  variability  i n beach c r e s t  f o r e s l o p e (Tetragono  Island  lowland  undoubtedly  system.  lend support  environmental  of  i s phenotyplc  differences  T e e r l has  i s the  observed  discoveries of  parameters  This w i l l  a fact  selected  from  r e c o g n i z e d some t i m e  a flora  ago  by  gene  be  clusters i n the  S^rensen  limited  (1941).  will  of  delinea-  particularly  of such  Devon  of t h i s nature  i n t h e p o l a r r e g i o n s where t h e v e g e t a t i o n m o s i a c  combinations  case.  - Dryado - A l e c t o r i e t u m )  to the u t i l i z a t i o n  as w e l l as f l o r i s t i c  in  ( p e r s o n a l communication)  (Nardino  Continued  of  segrega-  - Dryadetum) p o p u l a t i o n s i n the  t i o n of synsystematic u n i t s . tant  to a l l o w the  s p e c i e s , the former  Working w i t h S a x l f r a g a o p p o s l t l f o l l a ,  to  - Dryadetum, f o r  w i d e e n o u g h t o encompass o b s e r v e d  that  limited  responsive to these pressures, or  species response?  of  i n various  a l a t e m e l t i n g snow p a c k b e e n s u f f i c i e n t tion  infor-  environment  p o p u l a t i o n s o f s p e c i e s whose d i s t r i b u t i o n s a r e n o t  the  and  R e m a i n i n g however i s t h e n e e d f o r  e x p e r i m e n t a l work on  throughout  aspects  z o n a t i o n w i t h r e s p e c t t o snow  documented  Gjaerevoll  The  Is  Imporcomposed  diversity,  T - Dl  F i g . 18  Typical  snow pack f o l l o w i n g the beach  slope.  The aspect here i s west.  beach c r e s t the  The  l i e s exposed to the l e f t ,  sedge meadows to the r i g h t  (photo  J u l y 4, 1968).  Fig.  19  Even on low beaches w i t h a southern a s p e c t l a t e snow p a t c h environments persist  (photo June 3 0 , I 9 6 8 ) .  75  T - Dl Fig.  20  Wind blown the  detritus  foreslope  c o l l e c t i n g along  of a raised  beach.  76  T - Dl Fig.  21  Plot  of active  layer  development  thawed) w i t h t i m e (month plot  36 during  (inches  and day) on  1 9 6 8 (above) and 1 9 6 9  (below)..  H = plot of active as  mean o f f i v e  earth F  mean o f f i v e  probes placed  layer  measured  on t u n d r a  A = mean a c t i v e  development  probes placed  d e p r e s s i o n s between  probes  development  hummocks.  = p l o t of active as  layer  layer  i nthe  hummocks.  development  (H a n d F, 1 0  measured  probes).  of a l l  77  V  T - Di Fig.  22  Plot time. plot  of active  layer  Above, p l o t 31. 1969.  development w i t h  33.  1968.  Below,  78  79 The  p r o n o u n c e d hummock a n d d e p r e s s i o n t o p o g r a p h y  previously also  shows a d i s t i n c t  tributlon of certain tangles  from  interhumraock formation  location.  VigDistrict  (1965)  turf  hummocks, e a c h b e i n g  them."  t h e second  of Northeast  Most a r e r o u g h l y  formly d i s t r i b u t e d  over  Samples t a k e n from content  o f mosses.  forming  species  here  (Fig. 2 3 ) .  Integrifolla to nine  i n c h e s above t h e  h e m i s p h e r i c a l and appear  uni-  the surface of area. numerous hummocks f o r d e t e r m i n a t i o n o f  indicate  t h a t a l l have  cores of w e l l deter-  o f Ah h o r i z o n s . T a b l e 1 5 a ) .  S p e c i e s w i t h a marked p r e f e r e n c e (bryophytes)  o r snow p a t c h  more c o n s i s t e n t l y  found  Saxifraga opposltlfolia found  In the  this i s  decomposed h u m i c m a t e r i a l ( s e e e . g . F i g . 1 6 a n d c a r b o n minations  by  (or occasionally  The m a j o r t u s s o c k  t o be c o n s i s t e n t l y D r y a s  ground s u r f a c e .  of Arctic  i s made up o f  - Dryadetum o f t h e Devon I s l a n d l o w l a n d ,  moisture  prefer-  Greenland,  two t y p e s  One t y p e  composed b a s i c a l l y  Hummock h e i g h t may v a r y b e t w e e n t h r e e  soil  rec-  hummock  " c o n d i t i o n e d i f n o t determined  s p e c i e s o f the Cyperaceae  d e c i d e d l y not the case. appears  of turf  s t a t e s that there are b a s i c a l l y  the k i n d s o f p l a n t s t h a t form  Tetragono  ( P i g . 2 3 ) show a d i s t i n c t  In a recent review  Raup  Gramlneae),  Mapped  s p e c i e s f o r p o s i t i o n w i t h r e s p e c t t o hummock o r  i n the Mesters  caespltose  the microdis-  species w i t h i n the coenosis.  individual plots  ence by c e r t a i n  correlation with  mentioned  widely  locations  f o r moist (Cassiope  environments tetragona) are  i n t h e lnterhummock  positions.  and Carex mlsandra,  p l a n t s which a r e  i n a number o f c o e n o s e s ,  may a p p e a r  i n either  T - Di Fig.  23  Distribution  of plants  hummock a n d d e p r e s s i o n  (200 A  highest  Triangles  represent  p o i n t o n t h e hummock.  B = p a t t e r n o f Dryas  lntegrlfolla  C = p a t t e r n o f Casslope D =» p a t t e r n o f t o t a l  = p a t t e r n o f Carex  tetragona  bryophyte  E = pattern of Saxlfraga F  topography.  cm x kO cm)  = l o c a t i o n o f hummocks. the  i n relation to  cover  opposltifolia  misandra  81 (Fig. 23).  hummock o r d e p r e s s i o n l o c a t i o n s  m i c r o d l s t r i b u t i o n o f these s p e c i e s w i t h i n  S u p e r f i c i a l l y the  the coenosis  appears  to correspond reasonably w e l l w i t h t h e i r m a c r o d i s t r l b u t l o n p a t t e r n s between coenoses. p a t t e r n and environment F o r e x a m p l e , one m i g h t  The c a u s a l r e l a t i o n s h i p  effects,  however,  assume t h a t  between  i s b y no means  clear.  lnterhummock l o c a t i o n s  be m o i s t e r t h a n hummock p o s i t i o n s ,  thus  c r e a t i n g a more  would  favor-  a b l e environment  f o r snow p a t c h o r w e t - m e s i c s p e c i e s s u c h a s  are noted here.  The d a t a p r e s e n t e d  that 17,  this  i s n o t always  1969 eight  taken  the case.  samplings  f o rs o i l  i n T a b . 1 3 , however, From J u l y  moisture  1,  ( f o r 1 9 6 9 ) r e p r e s e n t s t h e mean o f two r e p l i c a t e  soils  o f sampling.  ferences alluded be  Each  figure  cores taken a t  D u r i n g s i x o f t h e e i g h t weeks t h e hummock  showed h i g h e r p e r c e n t a g e s  lnterhummock a r e a s .  1 9 6 9 to August  d e t e r m i n a t i o n were  I n b o t h hummock a n d d e p r e s s i o n l o c a t i o n s .  the time  show  of absolute moisture  T h i s may be r e l a t e d  to e a r l i e r .  A second  than the  to the textural  dif-  e x p l a n a t i o n however may  possible. The  extremely  s u r f a c e thermal regime variable  over  of this  small areas.  p e r a t u r e s r e c o r d e d on August  type o f topography i s  T a b . 18 i l l u s t r a t e s  2 1 , 1 9 6 8 a t one l o c a t i o n a t p l o t 3 6 .  T a b l e 18 Temperature ( C ) I n d i c a t e d Depth ( i n c h e s ) e  at D e p r e s s i o n i n Sun D e p r e s s i o n i n Shade Hummock C e n t e r  tem-  6.7 4.3 9.7  2.2 8.3  2.4 0.9 7.1  Temperatures  were r e c o r d e d w i t h a Y S I T e l e t h e r m o m e t e r  Thermister probe.  The hummock  t a k e n was r o u g h l y f o u r  the l a t t e r  In addition  center, one  by D r y a s .  Readings  were  inches i n  were t a k e n a t  16:30.  i s low,  s h a d i n g o f some lnterhummock a r e a s ( F i g .  t o t e m p e r a t u r e s r e c o r d e d f r o m t h e hummock  r e c o r d i n g s were a l s o made  i n t h e s u n a n d one s h a d e d .  The s h a d e d  i n the adjacent depressions,  Plants  Included SaxIfraga o p p o s l t l f o l i a , ramulosa.  s i x to eight  p o r t i o n o f t h e summer s o l a r a t t i t u d e  c a u s i n g a pronounced 15).  the temperatures  inches i n height,  diameter, and dominated During  on w h i c h  and  i n the s u n l i t depression  Juncus  b l g l u m i s and L e c i d e a  d e p r e s s i o n was d o m i n a t e d  by O r t h o t h e c l u m  chryseum. Such that  ground  This  i s borne  temperature  o f m o i s t u r e from  l a y e r must be a l o c a l l y  coenosis.  tion  contrasting  the timing of r e l e a s e  active  of  localized  gradients thawing  Field  of the  v a r i a b l e phenomenon w i t h i n t h e  o u t by o b s e r v a t i o n s o f s m a l l  i c e i n lnterhummock l o c a t i o n s d u r i n g  o f August.  notes  suggest  indicate  patches  the l a t t e r  por-  the presence of frozen  o r g a n i c m a t t e r a t a d e p t h o f t h r e e i n c h e s on A u g u s t  lk  at plot  36. In  summary, t h e T e t r a g o n o  - Dryadetum d e v e l o p s on g e n t l e  slopes cn the foreshores of r a i s e d  beaches.  ment o f t u n d r a e a r t h hummocks, f o r m e d integrifolia  include  nivalis  and C. c u c u l l a t a .  present,  develop-  m a i n l y by Dryas  cover the landscape s u r f a c e .  species  Pronounced  Characterizing  C a s s l o p e t e t r a g o n a and- a n a b u n d a n c e o f C e t r a r i a  i n contrast  Other prominent  t o t h e a d j a c e n t beach  foliose crest  lichens are  o f t h e N a r d i n o >-  Dryado - A l e c t o r i e t u m . o r wet m e s i c u n i t . e i t h e r an A r c t i c The  location  such  of this  both  here  Casslopetum active  layer  as a mesic  leads to the formation of  coenosis r e s u l t s  tetragona  considered  Brown s h a l l o w  phase  profile.  i n heavy a c c u m u l a t i o n s  This  Typical  i s reflected "snowpatch"  and C e t r a r l a d e l l s e l ,  and i n the a c i d i c  tetragonae  were n o t e d .  of  i n the  indicators,  a r e abundant  i s only moderately Average  This,  rapid  relative  thaw d e p t h  plays a role  i n Interaction with  environmentally (1969a)  The c o e n o s i s  -  to other units  i s approximately  17  topography o f the s u r f a c e regime over  other  factors,  i n the m i c r o d i s t r i b u t i o n of certain  the coenosis.  Running  - Rhacomitrio  The d e v e l o p m e n t o f t h e  i n a markedly v a r i a b l e thermal  tances.  within  Sphaerophoro  The hummock a n d d e p r e s s i o n  results  (3)  here  redistribution.  the Dryadetalia.  Inches.  and  i s best  A number o f b i c o e n o t i c d i s t r i b u t i o n p a t t e r n s o f s p e c i e s  found  of  genesis  of the vegetation.  as Casslope  here.  Soil  Brown o r A r c t i c  snow d u r i n g w i n t e r composition  The c o e n o s i s  small  dis-  no d o u b t species  i s s i m i l a r both  noted  florlstically  t o t h e T e t r a g o n o - D r y a d e t u m d e s c r i b e d by  from the i n n e r f i o r d  P e d l c u l a r o - Dryadetum  regions of Svalbard.  integrifoliae  (P - D l ) B a r r e t t and  Krajina Figs. The  2k - 2 9  P e d l c u l a r o - Dryadetum  small area o f the lowland areas  Tab. 19 -  as I s o l a t e d patches,  meadow c o m m u n i t i e s .  22  integrifoliae  system.  covers  The c o e n o s i s  g e n e r a l l y surrounded  The g r o u n d  a very  occurs  on f l a t  by h y d r i c sedge  surface appears v i s u a l l y  t o be  84 s l i g h t l y convex from the c e n t e r of a g i v e n a r e a t o the margin. O b s e r v a t i o n s a t three p l o t l o c a t i o n s on the twenty-second of June, 1 9 6 9 . showed a l l three u n i t s emergent from the snow pack e a r l i e r than the s u r r o u n d i n g meadow s i t e s . V i s u a l l y the most d e l i n e a t i n g f e a t u r e o f the c o e n o s i s i s the presence 1956).  o f w e l l developed  non-sorted  circles  (Washburn  These g e n e r a l l y cover between 2 0 and 3 0 p e r c e n t o f the  ground s u r f a c e f o r any g i v e n p l o t  ( P i g . 2k).  The c i r c l e s a r e  v a r i a b l e i n s i z e and o f t e n grade i n t o a more n e t - l i k e p a t t e r n (Washburn 1 9 5 6 ) . ranged  On one p l o t , 40, measured c i r c l e  between 1 2 and 3 3 inches and a t t h r e e s o i l  the measurement o f p a i r s o f c i r c l e diameters v e g e t a t i o n band were 2 3 and Ik  diameters excavations  on each s i d e o f a  i n c h e s , 2 0 and 1 8 i n c h e s , and  14 and 1 ? i n c h e s . The  c i r c l e s a r e n o r m a l l y devoid o f v a s c u l a r p l a n t cover,  a l t h o u g h l i c h e n s may invade some c i r c l e s .  Many l a c k p l a n t cover.  U n i f o r m l y s c a t t e r e d over the s u r f a c e a r e v a r i o u s s i z e d and mollusk s h e l l fragments,  presumably r a i s e d from lower  during periods of a c t i v e formation. m a t e r i a l s may be q u i t e v a r i a b l e . notes  stones levels  The c o v e r i n g o f these  A t p l o t 41, f o r example,  field  i n d i c a t e some c i r c l e s have a 5 0 to 7 0 p e r c e n t c o v e r i n g o f  stone and s h e l l s while o t h e r s have o n l y 5 p e r c e n t ( P i g s . 2 6 , 27).  V e g e t a t i o n here  i s r e s t r i c t e d to the b o r d e r s o f the c i r c l e s ,  r e s u l t i n g i n a d i s t i n c t i v e r e t i c u l a t e p a t t e r n ( F i g . 2 4 ) . The width o f the v e g e t a t i o n bands between c i r c l e s i s a l s o  variable.  Measured a t f o u r l o c a t i o n s the width o f the o r g a n i c band between  two  adjacent  circles  15,  18  inches.  and  8  Pebble dolomite diorite soil  j u s t below the  parent  materials. 6 are  The  almost  abnormal h i g h v a l u e s  This plot  of  similar  i s , however, t h e o n l y one  5.  of  grano-  surely a misrepresentation,  analysis indicates a dolomitic origin  outcrop  s u r f a c e ) was  a n a l y s i s f r o m f o u r l o c a t i o n s shows a d o m i n a n c e  from p l o t  plots. an  (measured  to the  since other  located adjacent  to  of Pre-Cambrian m a t e r i a l .  Table  19  Pebble A n a l y s i s from S o i l P i t s of the P e d l c u l a r o - Dryadetum I n t e g r i f o l i a e Plot M a t e r i a l P r e s e n t i n Sample (as 8th of T o t a l ) Dolomite  1  6  Biotite Granodiorite/Granodiorite  6  1  Pink  1  1  Granite  Biotite  Dlorite  Hornblend Biotite  quartz  a c t e r of  dlgyna  2  monzonite  the P o l a r 1  the p l o t s of  this  component.  completely  u n i t a r e u n i t e d a s much by the presence  Carex n a r d l n a ,  here  (Tab.  20).  The  var.  1965),  the n e g a t i v e  of a  Casslope  Rhacomltrlum heterostlchum absent  (Running  - Dryadetum from S v a l b a r d  s p e c i e s absence as  and  42  T  Dlorite  Like  species  41  40  char-  characteristic  tetragona, sudetlcum  absolute  Oxyrla  are a l l  dominants  are  Table  20  Pedicularo-Dryadetum  PLOT NO. DATE ANALYSED HERBACOUS COVER % MOSS COVER % LICHEN COVER % TOTAL SPECIES NO. PLOT S I Z E  6 6/19/67 *5 15 3  28  39  7/11/68 45  15 25  41  40  7/12/68 50 10 15 52  86  integrifoliae  41 7/1V68  o  50 10 15 50  42 7/1V68 30 10 15  43  82 7/10/69 45  5 15 37  PRESUMED CHARACTERISTIC COMBINATION OF SPECIES Pedicularis lanata V e r r u c a r i a deversa  (AVE. PRESENCE  1 •  •  SPECIES) SIGNIFICANCE  + +  +  1  2  +  + +  V IV  7 4 4  7 3 3  V V V  6.7 3.3 4.0  +  3  4 1  +  +  V IV III III III II II II I I I I I  2.7 0.4 0.4 0.3 0.2 0.7 0.2 0.2 0.3 0.3 0.3 0.2  V V V V IV IV III III III II II I I I I I I I I I I I I I I I  4.0 2.7 2.3 1.3 1.3 1.3 0.4 0.3 0.3 0.5 0.5 0.3 0.2 0.2 0.2 0.2 0.2  0.8  0.3  ORDER AND ALLIANCE CHARACTERISTIC SPECIES Dryas i n t e g r i f o l i a Salix arctica Saxifrage o p p o s i t i f o l i a OTHER SPECIES Carex misandra Juncus biglurais Draba b e l l i i S t e l l a r i a longipes Papaver radicatum Arctagroatis l a t i f o l i a Draba a l p i n a Colpodium vahlianum Polygonum v i v i p a r u m Pedicularis hirsuta Braya purpurascens Eutrema e d w a r d s i i Carex r u p e s t r i s Tomenthypnum n i t e n s Tortula ruralis Ditrichum f l e x i c a u l e Distichium capillaceum Encalypta rhabdocerpa Hypnum revolutura Mnium o r t h o r r h y n c h u m •Voitia n i v a l i s BlepharoEtoma t r i c h o p h y l l u m T o r t e l l a tortuosa Aulacomnium t u r g i d u m Hypnum bambergeri Bypnum procerrimum" Barbula icmadophila P l a t y d i c t y a jungermannioides Drepanocladus uncinatus Tetraplodon mnioides Hyurella julacea Timmia a u s t r i a c a Amblys^egiura j u r a t z k a n u m Brachytheciura a l b i c a n s C i r r i p h y l l u m cirrosum A m e l l i a fennica Campylium h i s p i d u l u m Haplodon w o r m s k o o l d i i Drepanocladus r e v o l v e n s Lecanora epibryon Thamnolia v e r m i c u l a r i a Physciamuscigena Lecidea ranulosa Cledonia pyxidata Pertuaaria coriacea Cetraria nivalis Cetraria islandica Xanthoria elegans Fulgensia bracteata Cetraria cucullata Rinodina r o s c i d a R h i s o c a r p o n geographicum Caloplaca t i r o l i e n s i s Lecidea v e m a l i s P e l t i g e r a canina D a c t y l i n a ramulosa Solorina bispora Ochrolecbia upsalicnsis Ocbrolechia f r i g i d a Solorina saccata Alectoria nigricans Stereocaulon rivulorum Caloplaca s t i l l i c i d i o r u m Hypogymnia s u b o b s c u r a Toninia lobulata Physcia caesia Placynthium espratile Alectoria subdivergens O c h r o l e c b i a androgyne O c h r o l e c h i a geniinipara O c h r o l e c h i a gonatodes Spilonema revertens Agyrophora l y n g e i Rhizocarpon disporum L e p r a r i a nep;lecta A l e c t o r i a ochroleuca Alectoria nitidula Cande?.ariella a u r e l l a Lecanora verrucosa Lecanora d i s p e r s a L e c i d a a stigraatea Lecidea lapicida l e c i d e a atromarginata C o r n i c u l a r i a aculeate P e r t u s a r i a panyr^a P o l y b i a s t i o theleodes Leciophysms finaarkicum Lecanora proserpens Lecanora Candida Problastenia rupestris  6  6  5  3  3 4  7 3 4  7 4 4  3  2  2  2  •  1 +  +  1 1 '  +  2  2  + * •  2 2 2 1  • •  •  •  •  •  •  •  4 3 2 2 3  4 2 2 2  4 3 4  4 3 3  4 3 1 1 1 1 1  4 2 2 2  a  3  +  3 1  •  +  •  +  •  •  •  •  •  1  •  •  1  •  • •  •  • • • • • • • •  • • •  • •  1 1  •  + +  • • •  •  +  2 3  • •  4 3 4 4 1 3 " 2 2 1  4 2 4 4 2 3 1  •  2  1 2  • •  • •  +  +  1 1  '+  1 1 1  +  1 2  2  1  2  •  *  •  •  •  •  •  •  •  • • *  • • • •  •  •  •  • • • •  *  •  * *  • •  2  + + •  + + • + + +  • •  * *  •  •  •  *  *  •  *  • *  4 3 3 3 2 2 1 2 +  • •  • • • *  •  •  •  3 4 1 3 3 2 1 +  i  + + + +  •  + +  •  1 •  -  + + >  • • •  •  •  •  4 4 3 3 2 1 2 2 2 1 1  3  • • • • •  #  1 1  1 1 1  * *  *  • •  * *  •  4 3  2  + +  •  • + + + + + •  •  • • •  •  •  .  + +  1  + + • • •  1  +  • •  • • •  1 1  .  •  +  3 + +  •  • •  + +  +  • •  1 1  • •  -  • • • •  •  •  • • •  • • •  -  +  • • + + •  V V V V V V V V V V V V IV IV IV III III III III III II II II II II II II II II I I I I I I I I I I I I I I I I I I I I I I.  -  -_ -_ -  3.2  2.8 2.8  2.2 2.2 1.7 1.3 1.1 1.1 1.1 0.4 0.7 0.6 0.3 0.9 0.5 0.7 0.5 0.3 0.5 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  Table  20a  Pedlcularo - Dryadetura i n t e g r i f o l i a e PLOT NO. DATS SAMPLED DEPTH TO FROZEN MATERIAL (inches) SOIL CLASSIFICATION! PHYSICAL/CHEMICAL ANALYSIS Horizon I depth (inches) color drycolor wet pH (CaCl?) pH (K 0) carbon % nitrogen % total P p.p.m. Exchangeable Cations Me/lOOgm. K Ca Mg Na Sum 2  Horizon II depth color dry color wet pH (CaCl?) pH ( H o r sand • % silt % clay % carbon nitrogen P ihangeable Cations E Ca Mg Na Sum 2  See text for explanation.  6 39 40 7/19/67 7/11/68 7/12/68 14 • 15 16 Regosol-Organic Complex  0-8 10YR3/2 5YR2/2 7.2 7.6  13.2  2.00  13  .17  13.4 12.5  .27  26.3  38.6  47.4 14.0  1.7  0.27  3  .22  7.1 5.8  .14 13.2  15  42 7/1V68 16  .Surface Organic. 0-6 0-14 0-14 5YR2/2 5YR2/2 5YR2/2 5YR2/2 . 5YR2/2 2.5YR2/2 7.8 7.4 7.3 7.8 7.8 7.7 22.9 24.2 22.7 3.16 3.44 4.00 26 21 18 .26 20.6  .23 19.7 20.7  19.2  .45 41.1  .64 40.7  Surface Mineral 0-14 0-16 0-15 2.5Y6/4 2.5Y6/4 5Y7/3 10YR4/3 2.5Y5/4 5Y5/3 7.6 8.2  41 7/14/68  7.7  8.2  60.6  31.0 8.'4 1.9 0.05  2  .10  4.1 3.5  ' .14 7.8  •  7.7  8.2  49.0 36.4 14.6 2.4 0.06 1  7.5 7.7 17.3  2.85  12  .32 19.5 15.7  0-15  0-16  5Y7/3 5Y5/3 7.7  8.4  .46 36.0  5*7/3  2.5Y5/2 '  7-6 8.2  28.4  36.4.  20.4 2.3 0.06 1  26.6  51.2  .22 6.1  .22  .24 11.4  9.2  5YR2/2 5YR2/2  .36 21.5 ' 20.6 .58 43.0  .14 3.6 5.2  0-9  4.8  37.0 2.0  0.09  4  .23  4.9 6.7  .17  12.0  82 7/10/68 15  0-9 5YR2/2 10YR2/1 7.3 7.7  15.0 0.58 19 .18 40.8 24.2 .80 66.0  0-15  2.5Y6/4 2.5Y5/4 7.6  8.1  NM NM NM  1.7 0.11  3 .07  7.6  3.1 .21  11.0  00  -o  88 Sallx  arctlca.  S a x l f r a g a o p p o s l t l f o l l a and Dryas  again,  similar  to the P o l a r i  latter  species  achieves  Two  Pedlcularls  Nardino  s i g n i f i c a n c e values  as t e n t a t i v e c h a r a c t e r  presence values  i n this  environmentally  similar  t o the P e d l c u l a r o  n i t e n s and T o r t u l a r u r a l i s ,  T h e s e same s p e c i e s  problem of s o i l  features  stripes,  soil  as  i n areas  1 9 5 8 ; Tedrow 1 9 6 2 ) .  h o r i z o n development.  single distinctive  ture  i s described  Dryadetum t h i s of s o i l and best  types.  of s o i l s  soils  of  circles,  results i n  Present  systems o f  soil  f o r c a t e g o r i z a t i o n of these Generally,  individually.  such as the P e d i c u l a r o  ground  the i n t e r a c t i o n  to produce a pronounced  as a s i n g l e e c o l o g i c a l u n i t . patterned  areas  each m i c r o - r e l i e f f e a -  In areas  f a c t o r s work t o g e t h e r  may be made f o r o t h e r  patterned  and an absence o f  e a s i l y d e l i n e a t e d landscape f e a t u r e which regarded  with  In areas  promi-  1965).  of a r c t i c  i s extremely a r t i f i c i a l , since  forming  in relatively  (Running  - Dryadetum  classification  are inadequate  respects  a r e Tomenthypnum  e t c . p h y s i c a l displacement  classification  to the  a r e a l s o two o f t h e more  a horizontal d i s c o n t i n u i t y of materials genetic  Itis  - Dryadetum.  i s w e l l known t o s t u d e n t s  (Tedrow a n d C a n t l o n nets,  Both  i n some  both o f which occur  nent bryophytes o f the P o l a r i  ground  species are  coenosis.  which appears  Prominent bryophytes o f the coenosis  The  here.  that both are a l s o secondarily p r e f e r e n t i a l  - Dryado - A l e c t o r i e t u m ,  pure t u f t s .  The  l a n a t a and the l i c h e n V e r r u c a r l a deversa.  show t h e i r h i g h e s t interesting  - Dryadetum o f S v a l b a r d .  i t s highest  species designated  Integrifolla.  i n my o p i n i o n , i s  S i m i l a r arguments  features  such as  tundra  polygons  ( h i g h and low centered)  non-sorted. terns,  and s t r i p e s ,  of d i s s i m i l a r  symmetrical,  components.  a pedogenlcally isolated and  interaction  the  complex a s a w h o l e .  resulting  To c l a s s i f y soil  type  as a whole,  each s o i l  I have l a b e l e d t h e s o i l s complex.  mapping u n i t  to separate King  (1968)  a s Raw s o i l s areas).  them  of this  (Buckman a n d B r a d y the s o i l s  the l a t t e r  term.  of  the beaches.  I have a l s o u t i l i z e d  which develop Brady  areas  i n North  as t h i s  America  or  imprac-  separately  (adjacent  vegetated  i s not d i s t i n c t i v e  i sparticularly  forming  true  on t h e s l o p e s  t h e term R e g o s o l s f o r  i n my o p i n i o n i s a more  f o rsoils  lacking  soft mineral  stand-  genetic  horizons  deposits  (Buckman  1969). (vegetated)  D r y a d e t u m a p p e a r most c l o s e l y designation this  f o rsoils  from u n c o n s o l i d a t e d  Inter-circle  that  "complex" a s  of nets  soils  This  i sutilized  term  a  1969)*  I n my o p i n i o n hummock f o r m a t i o n h e r e  t h e same t e r m  and  coenosis  that i ti s undesirable  has c l a s s i f i e d  of the c i r c l e  f o r the u n i t  i s common where t a x o n o m i c e n t i t l e s a r e  if  ardized  category  ( n e t c e n t e r s ) a n d Hummock  enough t o w a r r a n t  soils  In the genesis of  The u s e o f t h e t e r m  so g e o g r a p h i c a l l y i n t e r m i x e d tical  component a s  i s to negate the u n i f o r m i t y  o f c o n d i t i o n s which r e s u l t e d  - Organic  pat-  from the s e g r e g a t i o n  In the absence o f a nomenclatural  a standard  s o r t e d and  These forms a r e complexes, w i t h d i s t i n c t i v e  normally  Regosol  both  (Tedrow e t  category,  soils allied  a l . 1958).  as u t i l i z e d  o f the P e d i c u l a r o t o Tedrow's I t should  Half-Bog  be p o i n t e d o u t  i n the p o l a r r e g i o n s ,  i s not  Fig.  24  View o f the P e d l c u l a r o integrifoliae. inserted Note  Permafrost probes are  i n t o v e g e t a t i o n and  25  11,  1968;  View o f s o i l  p i t No.  39*  differential  thawing  i n the  layer  circles.  a b r u p t ecotone to a d j a c e n t Carex  meadow ( p h o t o J u l y  Fig.  - Dryadetum  (photo J u l y  11,  plot  Note  1968).  the  active  39).  90  P Fig.  26  Non-sorted N o t e low  -  Di  circle  at plot  concentration  of  No.  6.  surface  rock.  Fig.  27  Non-sorted  circle  Note h e a v y s u r f a c e and  shell  at plot cover  fragments.  No. of  4-1. rock  restricted of  to h y d r i c environments but  moisture  levels  r e p r e s e n t a t i o n of Arctic Half  Slope  Bog  (Tedrow and the p r i n c i p a l  soil  as a c o n t i n u o u s  span a wide  1958).  Cantlon  of northern Alaska  soils  may  gradient  Diagrammatic  sequences found  on  a l . 1958)  (Tedrow e t o r g a n i c phase  picture  i n the a c t i v e  u n d e r l a i n by permanently f r o z e n m i n e r a l o r o r g a n o - m i n e r a l a l . 1958).  (Tedrow e t Full-Bog nent.  soils  on  Half-Bog  6 and  12  soils  may  b a s i s of  soils  the  exceed 4 f e e t  I n o n l y one  soils  c a s e was  organic  inches.  compo-  depth.  of  the P e d l c u l a r o - Dryadetum Inches  i n depth  to 40 percent  mineral  soil  (measured  integri-  to  organic matter  noted  between  Full-Bog  in  22 percent  m a t e r i a l ) and  d i s t i n g u i s h e d from  depth o f the  18  layer  mixtures  have o r g a n i c m a t t e r a c c u m u l a t i o n s  range from 6 to 14  follae  apparently  inches, o c c a s i o n a l l y reaching  Inter-circle  any  the  These a r e  the  frozen content.  beneath v e g e t a t i o n i n  excavation. Soil  pH  i s d e c i d e d l y b a s i c and  between p l o t s .  Total  exchangeable  Exchange v a l u e s  o f Mg  are  other unit  of  lying  the The  percent. compared  This  of dolomite  variability  high  here.  h i g h e r here  i s expected  i n the m i n e r a l  than  in  any  considering  component  under-  coenosis. light  colored soils  show e v e n h i g h e r pH Organic  cations are  distinctively  the D r y a d e t a l i a .  the h i g h percentage  shows l i t t l e  matter  the a d j a c e n t  circles  v a l u e s , none f a l l i n g below 8 . 0  i s extremely  T h i s might not to the  of  values  be  low, as  from the  ranging  low  as  nets  i n water.  between 2 . 9  expected,  and  and  4.1  however, when  somewhat v e g e t a t e d  Nardino  -  Dryado - A l e c t o r i e t u m .  Here f o r the  significant  percentages  of  nonetheless  indicative  Nitrogen  silt  and  o f a low  is drastically  reduced  first  time s o i l s  clay.  These v a l u e s  intensity  of weathering  here,  falling  Alectorietum.  c a t i o n s are  the  normally lowland any at  present soils.  location 12  thin  was  here.  plot  the  i n any  excavation.  has  g r o u n d f e a t u r e s now inactive  organic  conforms s t r i c t l y  found  i n the  t h i s view. not  congellturbation.  emergence.  in  distri-  one  h e r e was  soil  materials  soil  p i t (39, Here  band ten  t h a t most  Fig. two  and  patterned  basecamp l o w l a n d The  While  measured,  I t i s thus  are  presently  morphology of these the  total  depth of  i t is unlikely  w o u l d f o r m on  probably  No  side.  stated his belief  component was  found  in  noted  (Fig. 25).  of organic  I s more o r l e s s s t a b l e u n d e r p r e s e n t pattern  other  s t r u c t u r e noted  p l a t y s t r u c t u r e was  In only  to e i t h e r  depths or p a t t e r n s recorded active  component o f  the main v e r t i c a l  or o n l y weakly a c t i v e .  appears to support  complex,  movement o f o r g a n i c m a t t e r n o t e d .  laterally  (1968)  King  soils  o r marked c h u r n i n g  lateral  inches  fine  values  42.  "wings" s t r e t c h e d from  turelve  A  soil  processes.  Exchangeable  exchange  o v e r l y i n g p a t t e r n of v e g e t a t i o n  horizons  were a p p a r e n t 25)  only recognizable  pattern of organic  b u t i o n to the burled  The  on  reduced  i n t h e more a b u n d a n t o r g a n i c  occurred  inches The  reflecting  are  below the  f o r even the N a r d i n o - Dryado a l s o low,  contain  sites  concluded  the the  of p e r e n n i a l l y t h a t the  c o n d i t i o n s and  formed a f t e r  that  soils  early  that  unit the  isostatic  94 The  moisture  integrlfoliae standpoint  regime o f 21)  (Tab.  the P e d i c u l a r o - Dryadetum  i s interesting,  of p l a n t c o l o n i z a t i o n .  v e g e t a t i o n bands a r e q u i t e m o i s t season, in  the Tetragono  Rhacomitrio active and  - Oxyrio  drainage  - Dryadetum  of s o i l s  beneath  growing  or  lntegrifoliae.  Although terrain  to produce  the m o i s t e r  soils  also  found  here.  c o n t r i b u t e to  effect.  21),  (Tab.  o f the a d j a c e n t approximating  Dryado - A l e c t o r i e t u m . indicate  circles  a r e by  the v a l u e s found Moisture  t h a t measured s o i l s  tion values  i n the f i e l d .  c o n t r a s t much i n the x e r l c  retention values  d i d not  fall  I t s h o u l d be  i t i s probable  below 15  below these this  values  i n the  i s two-fold.  difference  In the  As  s u r f a c e of the  i n the  season  these  being  sticky  to the  touch.  circles  o f t e n w a l k on formed.  become h a r d the  T h i s was  areas As  circles  here, of 3  forming  surface without also  evident  progresses  have a m u d - l i k e the  season  a  a crust-like  for  notable  apparent. consistency,  progresses cap  the and  notable depressions  i n subsurface  inches  f r e q u e n t l y dry  becomes  -  extrac-  Observational evidence  the growing season  Early  the  field.  Nardino  bar  p o i n t e d out  t h a t s u r f a c e h o r i z o n s may  drier  ( T a b . 22 )  however, t h a t a l l m e a s u r e m e n t s were t a k e n a t a d e p t h  of  depths  the  l a c k of sloping  c o n c e n t r a t i o n s of o r g a n i c matter  Soils  and  the the  at similar  integrlfoliae  i s similar,  from  textured subsurface m a t e r i a l apparently retards  sufficiently  Increased  soils  d u r i n g the e n t i r e  - Dryadetum  l a y e r development  coarse  this  Organic  showing v a l u e s f a r i n excess  either  particularly  tops one  can  being  s a m p l e s w h i c h were  e x t r a c t e d and  l e f t l y i n g on the s u r f a c e .  these b l o c k s of s o i l had  On  r e v i s i t i n g the  o f t e n hardened so t h a t i t was  site  difficult  to break them a p a r t . A second i n d i c a t i o n of severe  s u r f a c e d r y i n g i s the  for-  mation of d e s i c c a t i o n cracks which are f r e q u e n t l y noted t r a v e r s i n g the s u r f a c e of the c i r c l e s shallow  ( F i g s . 26. and 2 ? ) .  c r a c k s which do not extend v e r t i c a l l y to an  These are appreciable  depth. Surface  evaporation  and  subsequent hardening  help r e t a r d f u r t h e r d r y i n g of the lower depths. t e n t s a t three and nine  inches  In the c i r c l e s  apparently Moisture  (Tab. 2 1 )  con-  show  l i t t l e a p p r e c i a b l e d i f f e r e n c e from the f i r s t of J u l y through mid-August, The  1969.  hardened s u r f a c e , low moisture v a l u e s and  surface  c r a c k i n g no doubt work i n combination to l i m i t p l a n t e s t a b l i s h ment on the c i r c l e s . i n v a d i n g these a r e a s .  Only one  plot  T h i s was  had a v a s c u l a r p l a n t  Braya purpurascens, a p l a n t  found throughout the a r c h i p e l a g o (Porsild 1958)«  (6)  c h i e f l y on c a l c a r e o u s  I t i s i n t e r e s t i n g t h a t the m i n e r a l  clays  soils  from  p l o t 6 showed the h i g h e s t c a l c u l a t e d a v a i l a b l e water v a l u e s . Thaw r a t e s of the a c t i v e l a y e r here appear s i m i l a r to those (39.  of the Rhacomitrio 40,  - Oxyrio  - Dryadetum.  Three p l o t s  41) measured d u r i n g I 9 6 9 showed t o t a l thaw depths i n  excess of 2 0 inches, and a s i n g l e p l o t averaged 19 t a t i o n was T h i s i s due  inches.  ( 3 9 ) measured i n 1 9 6 8  Depth of thaw beneath the cover of vege-  l e s s than i n the exposed c i r c l e s ( F i g s . 2 5 , to the lower thermal c o n d u c t i v i t y of the  28,  29).  organic  Table  21  F i e l d Moisture Determinations {% by W e i g h t ) P - D i S o i l s Percent Moisture at Date Measured  3 inches Organic  3 inches Regosol  1968  311.3 119.3  7/10 7/17 7/24 7/31 8/7 8/14  203.2 233.7 221.0  124.0  15.8  14.8 14.1 11.5 16.1 10.7  202.0  x = 13.8  3 inches Organic  3 inches Regosol  X =  9 inches Regosol  1969 6/22 6/24 6/26 7/1 7/9 7/16 7/24 7/30 8/6 8/13 8/17  176.7 220.8  16.5 11.8  199.4  14.7  202.7 208.3 331.0 322.6 370.9  11.9 13.8 16.6 15.0 13.5 15.1  297,8  17.9  342.4 315.4  x = 271.6  Frozen Frozen Frozen  12.il13.0 I6.5 15.7  14.2 16.3 15.9 13.3  16.4 X = 14.8  X  =14.6  97 Table Calculated Available  22 Water - P-Di  M o i s t u r e jt by Plot  soils  No.  Location  @  Available Water  Weight  @ 15  Bar  Soils  Bars  (V3-I5)  6  Organic Regosol  75.7 21.9  47.6 9.0  28.1 12.9  40  Organic Regosol  143.2 11.9  93.6 4.8  49.6 7.1  41  Organic Regosol  133-3 16.4  115.8 7.0  17.5 9.1  42  Organic Regosol  101.4 14.8  79.3 7.8  22.1 7.0  as w e l l as  the i n s u l a t i n g q u a l i t i e s  (Brown and R i c k a r d 1 9 6 9 ;  Tyrtikov  1964).  of a v e g e t a t i o n cover With  the p a s s i n g of  t h e summer t h e s e d i f f e r e n c e s p r o g r e s s i v e l y d e c r e a s e d and depths Just  from  each l o c a t i o n  a s v e g e t a t i o n and  during early (Tyrtikov  tended  organic s o i l s  summer, t h e y a l s o  1964).  thaw d e p t h As  warming  cooling during layer  tends to  o f the c i r c l e s  fall approach summer,  l o s e h e a t more r a p i d l y resulting  in a  than  convergence  measurements.  mentioned  integrifoliae  i n August.  d u r i n g the l a t e r p o r t i o n of the  t h e l e s s d e e p l y thawed o r g a n i c s o i l s of  convergence  tend to r e t a r d  Inhibit  Thus, as the a c t i v e  the permafrost t a b l e the m i n e r a l s o i l s  toward  thaw  earlier  the P e d l c u l a r o - Dryadetum  i n a number o f r e s p e c t s i s s i m i l a r  viously described Polari son of s p e c i e s l i s t s  from  to the p r e -  - Dryadetum from S v a l b a r d . t h e two  units  shows a c l o s e  A  comparisimilarity  i n both the 1965). larly  and  bryophyte  R u n n i n g a l s o mentions that common i n p l a c e s  action" of  dominant v a s c u l a r  and  genetic  where t h e r e  a number o f horizon  specifically  the  the  his  soil  lack of  Svalbard  unit  i s polygon s o i l  descriptions  (5  development  of  13  the  horizontal  (Running  components  is "particu-  and  frost  indicate a  described  "stratification"  lack  plots of  note  soil  materials). The found  homogeneous n a t u r e o f  i n the  separation of  the  of  units  with coarse  Devon I s l a n d  Svalbard Island  the  subsoils,  positions.  The  Until  In  that  a  analysis  recognizing  their similarity  In while  l n the  distinguished face  the  possibility  Pedicularo  l i m i t e d area  - Dryadetum  i n the  teristic Dryas  of  unlike the Devon  7.0.  of  of  the  two,  their  con-  i s characterized  circles by  o t h e r Dryadetum u n i t s  integrifolia,  Saxlfraga  an  integrlfoliae,  lowland,  p h y t o g e o c o e n o s i s f o r m i n g on  developed, non-sorted  coenosis  or  regions  separation  i s composed o f a r e t i c u l a t e p a t t e r n  ing well the  a  ground  r e a c t i o n of  b e l o w pH  Many  future.  summary, t h e  covering  soil  from o t h e r p o l a r  I have chosen to m a i n t a i n a  solidation  elevated  more a c i d i c t h a n t h e  accumulates  and  the  association.  on  s i x measurements f e l l  further f i e l d  features  situation quite  surface  u n i t s a l s o appears s l i g h t l y  soils,  ground  Svalbard  R u n n i n g are  by  textured  patterned  h a v e , however, p r o m p t e d  t h i s c o e n o s i s from  locations described  ridges the  Devon I s l a n d  the  i s an  flat of  and  an  areas.  vegetation nets.  absence of  and  easily sur-  surround-  Floristically  species  absolute  o p p o s l t l f o l i a and  The  charac-  dominance  of  Sallx arctlca.  P - Dl Fig.  28  Plot  of active  (inches  layer  thawed) w i t h  and d a y ) a t p l o t I969  M = plot  of active  placed  (month  3 9 . 1 9 6 8 above and  layer  development  a s mean o f f i v e  i n mineral  soils  probes of c i r c l e s  nets.  V = plot  of active  measured placed  layer  development  a s mean o f f i v e  probes  i n vegetation.  A = Mean a c t i v e all  time  below.  measured  or  development  layer  development o f  p r o b e s (V a n d M, 1 0  probes).  P - Dl Fig.  29  Plot  of active  l a y e r development  with time.  Above,  Below, p l o t  40,  plot  1969.  4 l , 1969.  Dominating bryophytes ruralls.  are Tomenthypnum n l t e n s and  Tortula  Presumed c h a r a c t e r i s t i c s p e c i e s , P e d l c u l a r l s l a n a t a  and V e r r u c a r l a deversa show a p r e f e r e n c e f o r t h i s c o e n o s i s . The  l a t e r a l displacement of c o n t r a s t i n g s o i l m a t e r i a l r e s u l t s  in a s o i l The  complex w i t h c o n t r a s t i n g thermal and moisture  former r e s u l t s i n unequal  development o f the a c t i v e  regimes. layer  w h i l e the l a t t e r most probably i s an important f a c t o r i n l i m i t i n g c u r r e n t i n v a s i o n of v a s c u l a r p l a n t s on the  circles.  The u n i t i s d e c i d e d l y s i m i l a r to the P o l a r i - Dryadetum desc r i b e d from S v a l b a r d but i s maintained as a d i s t i n c t i v e c h i e f l y on the b a s i s of environmental  (4)  dissimilarity.  Rhacomitrio - O x y r l o - Dryadetum i n t e g r i f o l i a e B a r r e t t and  (R - 0 - D l )  Krajina  Pigs. 30 - 3 4 The Rhacomitrio  Tab. 2 3 - 28  - Oxyrio - Dryadetum i n t e g r i f o l i a e  on g e n t l e s l o p e s (4 - $%) as the Tetragono integrifoliae.  entity  - Dryadetum  Here, however, the c o e n o s i s I s not  connected w i t h beach r i d g e s , but may l o c a t i o n s w i t h i n the lowland system.  occurs  intimately  be found i n a v a r i e t y of Slope a s p e c t i s o f t e n  w e s t e r l y , as i s the a s p e c t of the lowland system  i n general.  The s u r f a c e of the c o e n o s i s l a c k s e i t h e r p a t t e r n ground or distinctive mlcrorellef features.  E c o t o n a l boundaries however  are r e l a t i v e l y d i s t i n c t , and the community i s e a s i l y r e c o g n i z e d on the landscape by a d i s t i n c t i v e o v e r a l l b l a c k c a s t , by the dominating sudetlcum  cover of Rhacomltrlum  (Fig. 3 0 ) .  imparted  heterostichum var.  Pebble indicate  analysis  from  the base o f n i n e  soil  excavations  parent m a t e r i a l s of s i m i l a r p r o p o r t i o n as the Nardino  Dryado - A l e c t o r i e t u m . predominate present.  of dolomite  and g r a n o d i o r i t e  w i t h s m a l l e r amounts o f g r a n i t e a n d m o n z o n i t e  One p l o t  (48) showed p a r t i c u l a r l y  q u a r t z monzonite. of pebble  Mixtures  -  T h i s may  simply r e f l e c t  h i g h amounts o f t h e random  nature  collection.  23  Table  Pebble A n a l y s i s from S o i l P i t s o f the R h a c o m l t r i o - O x y r i o - Dryadetum i n t e g r l f o l i a e M a t e r i a l P r e s e n t i n Sample ( a s 8th o f T o t a l )  Plot  49  55  56  64  72  5  2  1  4  3  3  2  2  2  4  2  3  2  1  2  2  1  4  44  3 3  Dolomite Biotlte  47  48  43  Granodiorite  Pink G r a n i t e / B i o t i t e Granite  2  2  Monzonite  T  2  1  Gabbro/Micro Gabbro Biotlte  hornblend  Subsurface fluvio-glacial  1  Quartz  Monzonite  5  mineral material l n a l l till.  cases appears  No mass s o r t i n g was r e c o r d e d  t o be  i n any  profile. The  vegetation of t h i s  coenosis  ( T a b . 2k)  i s co-dominated  by v a s c u l a r p l a n t s (mean c o v e r 4 7 $ ) a n d b r y o p h y t e s 39$).  Lichens are unimportant  c o v e r 6%),  a reflection  l n terms o f t o t a l  of the moist  nature  (mean  cover  cover  (mean  o f the ground  surface  Clumps o f Dryas i n t e g r l f o l l a . S a x l f r a g a o p p o s i t l f o l l a and Carex mlsandra appear u n i f o r m l y d i s t r i b u t e d throughout the coenosis  (Fig. 31).  Here O x y r l a digyna has i t s h i g h e s t s p e c i e s  s i g n i f i c a n c e v a l u e s and i s d e s i g n a t e d c i e s o f the u n i t .  as a c h a r a c t e r i s t i c  While n u m e r i c a l l y abundant, O x y r l a  appears as an extremely  spe-  digyna  d i m i n u t i v e growth form, compared to i t s  performance i n other l o c a t i o n s .  T h i s was a l s o noted  f o r the  l e s s abundant Papaver radleaturn and S t e l l a r l a l o n g l p e s . S a x I f r a g a h l r c u l u s , w h i l e h i g h i n constancy,  i s seldom found i n  f l o w e r and i s f r e q u e n t l y r e p r e s e n t e d by o n l y 3 o r 4 very leaves. The  The same i s t r u e f o r S a x i f r a g a most conspicuous  v a r . sudetlcum.  reduced  follolosa.  bryophyte i s Rhacomltrlum  In o n l y one p l o t i s i t s s p e c i e s  below t h a t o f other bryophyte s p e c i e s .  heterostichum  significance  T h i s taxon  i s highly  f l d e l to the u n i t and i s u t i l i z e d as a c h a r a c t e r i s t i c s p e c i e s . Other s p e c i e s w i t h r e l a t i v e l y h i g h s i g n i f i c a n c e v a l u e s Dlcranowelsla revolvens.  o r i s p u l a , D l t r i c h u m f l e x l c a u l e and Drepanocladus  The l a t t e r Is a dominating  s p e c i e s o f the h y d r i c Caricetum as pure mats.  include  and h i g h l y p r o d u c t i v e  s t a n t i s , where i t o f t e n e x i s t s  Here I t i s g e n e r a l l y admixed w i t h o t h e r  and. i n a much reduced  form.  species  I t s importance i n the coenosis  a g a i n r e f l e c t s the s u r f a c e moisture  c o n d i t i o n s found  here,  which w i l l be commented upon l a t e r on. R e l a t i v e to other coenoses of the D r y a d e t a l i a , l i c h e n s are c o n s p i c u o u s l y absent  from t h i s u n i t .  appears i n o0% of the p l o t s examined.  Lecanora  I t s apparent  to the coenosis has prompted i t s use as a t e n t a t i v e  verrucosa fidelity  characteristic species. localities  H a b i t a t d e s c r i p t i o n s of  collecting  i n the Great S l a v e Lake r e g i o n (over humus and moss  i n c a l c a r e o u s s o i l s ) conform w i t h i t s apparent the Rhacomltrio  r e s t r i c t i o n to  - Oxyrio - Dryadetum i n t e g r l f o l i a e on Devon  I s l a n d (Thomson e t  a l . 1969).  S o i l development beneath t h i s coenosis l e a d s always to the f o r m a t i o n of an A r c t i c Brown p r o f i l e  (Fig. 3 2 ,  Tab.  24a).  In a l l l o c a t i o n s a t l e a s t three h o r i z o n s were d e t e c t e d and one p l o t  (49) s l i g h t c o l o r changes i n d i c a t e d the presence  four d i s t i n c t horizons. integrlfoliae,  at of  Here, as i n the Tetragono - Dryadetum  h o r i z o n r e c o g n i t i o n i n the f i e l d was  based  mainly  on c o l o r changes. No 30%.  s u r f a c e h o r i z o n s showed o r g a n i c matter content of  S u r f a c e r e a c t i o n here  over  i s s l i g h t l y more a c i d i c than i n the  Tetragono - Dryadetum i n t e g r l f o l i a e .  Mean r e a c t i o n v a l u e s mea-  sured i n c a l c i u m c h l o r i d e were v e r y weakly a c i d i c  (6.5).  those  l n water n e u t r a l ( 7 . 0 ) . Chemical  g r a d i e n t s i n subsurface m i n e r a l h o r i z o n s are o n l y  weakly developed. from the Bm  The most n o t a b l e Is the d e c l i n e of n i t r o g e n  to C h o r i z o n s .  Here, as l n the p r e v i o u s  coenosis,  these s o i l s appear to conform w i t h s i m i l a r d e s c r i p t i o n s of A r c t i c Brown types from other p o l a r l o c a t i o n s . D u r i n g seasons of normal summer p r e c i p i t a t i o n and s p r i n g r u n - o f f , the ground s u r f a c e may some time a f t e r snow melt. 1969  t r a n s e c t s (Tab. 17  curves  Comparison of snow melt data from  and 2 7 )  ( F i g s . 21, 22 and 33.  remain s a t u r a t e d w i t h water f o r  3*0  and a c t i v e l a y e r development i n d i c a t e a s i m i l a r i t y between  105 this  coenosis  and  Snow d e p t h s and similar. and  the  Tetragono - Dryadetum  timing  of  site  S o i l moisture values  25).  I t i s impossible  ment, t o  i n t e r p r e t the  are the  also  as  nounced  basis  of  or v a r i a b i l i t y  Influence  of  the  l n the  the  this  heavy c o v e r i n g  T e t r a g o n o - Dryadetum  similarity  short-term of  moss mat  this  considering  snow so  integrlfoliae.  t h e r m a l r e g i m e s may found here.  be  measure-  coenosis  of  are 13  (Tabs.  I t w o u l d seem d o u b t f u l ,  c o n s i s t e n t l y to  i n the  snowpack  comparable  more e x p o s e d l a n d s c a p e p o s i t i o n , t h a t  jected  the  emergence f r o m t h e  consistency  environmental s i m i l a r i t y . its  on  integrlfoliae.  i s subpro-  More  likely  a t t r i b u t e d to  Russian  the  geocryologists  h a v e shown t h e  strong  development of  the  shown t h a t  p r e s e n c e o f a moss c o v e r as  a  r u l e decreases  2 or  3  times.  depth of lated  the  the  e f f e c t t h a t moss c o v e r may  active layer.  seasonal  explanation  thawed l a y e r by  can  be  utilised  (Kudryavtsev 1954  conductivity  tips  the  moss as  which  moss. well  in turn In  moss mat  the may  t i o n of heat  moss mat  i n thawing the  as  the  protects soils  inhibits rapid  u n i t here be  an  flow  1959)  i s f o r m e d by  This  underlying A  underlying  soli  the  quantities heat  soils explanation  of  low  only  portions  the  of  from f u r t h e r r a p i d m o i s t u r e  loss,  thawing.  considered,  the  has  postu-  amount o f  rapid drying  the  dark pigmentation  a d d i t i o n a l f a c t o r to to  1959)  i s t h a t a l a y e r of  the the  second  the  One  large  r e d u c e s the  1959).  in Tyrtikov  thermal  the  the  in Tyrtikov  (Myshkovskaya 1913  of  ( i n Tyrtikov  f o r t h i s phenomenon i s t h a t  o f w a t e r e v a p o r a t e d by that  Sumgin  h a v e on  surface.  consider  l n the  of  the  restric-  F i g . 30  H a b i t a t of the Rhacomitrio Dryadetum  integrifoliae.  c o l o r a t i o n of the sharply with adjacent  - Oxyrlo The  -  dark  community c o n t r a s t s  the b o r d e r s  of  the  s e d g e meadows ( p h o t o  17,  July  1969).  Fig.  31  Close-up  of the Rhacomitrio  Dryadetum relatively  integrifoliae. uniform  integrlfolla. and  Carex  Carex left  membranacea foreground  Note  spacing of  Saxlfraga  mlsandra  - Oxyrlo  (light i s seen  -  the Dryas  opposltifolla colored i n the  (photo J u l y  2k,  tufts). lower  1969).  106  Pig.  32  Arctic  Brown s o i l  the Rhacomitrio Integrlfoliae  profile  - Oxyrlo  (photo J u l y  beneath - Dryadetum 16,  1968).  107  108  Table  24  Rhacomitrio-Oxyrio-Dryadetua i n t e g r i f o l i a e PLOT no. DATE ANALYSED HERBACOUS COVER % HOS3 COVER * LICHEN COVER * ASPECT SLOPE % TOTAL SPECIES HO. PLOT SIZE PRESUMED CHARACTERISTIC COMBINATION OP SPECIES Oxyria dlgyna Rhacomitriun heteroatichum var. sudeticuo Solorina octospora Lecanora verrucosa ORDER AND ALLIANCE CHARACTERISTIC SPECIES Dryas i n t e g r i f o l i a Salix arctica Saxifrage o p p o s i t i f o l i a OTHER SPECIES Carex niaandra Polygonum viviperum Lutula arctica Saxifrage M r c a l u s Pepever redicatum Juncua bigluoia Saxifraga f o l i o l o e a Draba lectea Cerastium elpinun S t e l l a r i a longipes Silone acaulia Pedicularis hirsute Hinuartia r c s a i i Draba oblongata Cassiope tetragona Carex membranacea Cerastium r e g e l i i Carex rupestris Poa arctica Cardamine b e l l i d i f o l i a Saxifrage caeapitoaa Saxifraga cernua Eriophoruo t r i a t e Pedicularis lanata Pedicularis capitata Hierochloe peuciflora Draba b e l l i i Hinuartia rubella Featuca brachyphylla Dicranoveiaia criapula Drepanocladua reTolvena Dltricbum flexicaule Diatiebiun capillaceum Fogonatum alpixum Hyurella julaeea Tonentbypnum nitena Encalypta rhabdocarpa Hniun orthorrtaynchum Ortbotbecium ebryseuji Tortula r u r a l i a Hnium bymenopbylloidea Amblyategiuci juratzxanum T o r t e l l e tortuoaa Myurella teaerrioa Bjpnum baabergeri Blepharoatoma tricbopbyllua OrthGtbeciuia rufeacena Polytriebuc Juniperinum Aulacomnium turgidua Coaostocua tetragonum Didy~ouoa asperiloliua Fiaaidena arcticua Seorpidium t u r g e 9 c e b . Hypnum r«volutum Capbaloxi.lla rubella Cladonia pyxidata L.canora apibryon Lecidea rasiuloaa Fhyeci.muacigana Toninia lobulata Caloplaca t i r o l i e n a i a BinodiQa roacida Tbajacolia veraicularia Peltlgera canina Solorina aaccata Pertuooria corlacea Feltigara apbthoaa Steroocaulon rivulorvua Cetraria cucullaca Gyalecta peaiaa Lepraria neglecta  *3  .  7/15/68  55  3  7/16/68  55 .  40  V  *5  44 7/15/68 •  50  26 3  40  29  SV 6 36  3  3  4  6 1  5 1  5 32  4  •  i  4  5  4 4 6  4 4  4  4  4  5  2  1  2 1 1  i  1  +  + •  .  •  9  46  5  •  +  5  3 1 1  •  1  •  +  55  40 6 V  1  V  47 7/25/68  •  2 1  3 3  .  30  30  12 VNW  15  W  5  9  25n  2  4  2  55  64 8/9/68 *5 63 5 VBW 5 37  72 8/20/68  39  56 7/30/68 35 29 8 E 4 39  7/30/6S  30 55 4 W  5  4  4  4  3  5 2  4  5 1 1  4  4  5 3 •  6  6 4  1  +  3  2  1 3  4 6  4 4  4  4  4  4  4  4 3 1  3 2 1 2  +  1 1 1  1 1 3  5 1 1 1  .  1 1  .  4  3 3 2 1 . 1 1 1  • •  1  + •  2 2 +  1  +  1  +  #  •  5  + +  1  • •  1  4 2 1  1  •  + •  +  •  3 4 6 4 3 1 1 + + +  1 2 •  V  4.9 1.0 0.5  5  V ? V  4.1 4.0 5.1  4 3 1 2 1 1  V  4.0 2.7 1.4 1.0 0.8 0.8 0.6 0.5 0.5 0.4 0.6 0.6 0.4 0.4 1.5 0.7 0.2 0.7 0.2 0.1 0.1 0.1 0.3 0.1 0.1  4 4  V V  V V V  V V  + + +  1  +  3  V V IV IV  rv IV  in u i in I I I I I  + +  *  (AVE. SPECIES) PRESENCE siGNirrc V 3.6 IV III  •  1  m r a  +  • 3 3  5  4 6.  +  •  1  5  1 i  •  40 4 V 6 41  4  3  • 3 4 3 1 1 + 1 •  ' 50  3  * •  7/25/68 45  50  4  +  '  «9  48 7/23/68  1  I  I I I I I  i i i i i i i  3.9 5.0  7 IT IV IV III III III II II II  V V V III III III III  2.6 1.* 1.3  0.5  1.1 O.S 0.1 0.6  0.5  0.« 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  2.4 2.4 2.2 0.8 0.4 0.2 0.2 0.4 0.4 0.3 0.2 0.1  Table 24a Rhecomitrio-Oxyrio-T>ryadetuir. integrifoliae - Soila PLOT NO. DATE SAMPLED DEPTH TO FROZEN MATERIAL SOIL CLASSIFICATION PHYSICAL/CHEMICAL ANALYSIS Horizon I depth color, dry color, wet pH (CaCl,)  pH {& oy 2  carbon % . nitrogen % total P p.p.m. Exchangeable cationa He/lOO gm K Ca Mg Na D r i z o n II depth color, d r y color, w e t pH (CaC12) pH (H2O) Band ailt clay carbon nitrogen P Exchangeable cations '  S° fs K  S u m  Horizon III depth color, dry color, wet pH (CaCl2) PH (H20) sand silt clay carbon nitrogen P Exchangeable cationa K Ca Mg Na Sum C horizon of plot 49,  44 7/15/68 19.5  45 7/16/68 ?  47 7/25/68 19  0-6 5YR2/2 5YR2/1 6.6 7.0 15.0 1.83 16  0-B 5YR2/2 5IR2/1 6.7 7.1 11.2 2.39 19  0-7 5YR2/2 5YR2/1 6.6 7.2 13.1 2.01 18  0-5 5YR2/2 5YR2/1 6.3 6.8 10.5 1.71 20  0-5 5YR2/2 5YR2/1 6.4 7.2 9.0 1.71 8  0-5 5YR2/2 5YR2/1 6.1 6.5 8.9 2.23 12  .10 16.9 7.7 .26 25.0  .09 19.4 9.2 .35 29.0  .09 18.6 9.5 .29 28.5  .09 18.8 7.3 .32 26.5  .08 17.7 8.3 .29 26.4  .09 15.6 7.2 .28 23.2  Bm 6-12 10YR3/4 10YR3/4 7.3 7.6 90.0 8.2 1.8 2.7 0.39 4  Bm 8-12  "5 7/16/68 18 ••  48 49 7/25/68 7/25/68 21 2? Arctic Brown.  56 7/30/68 22  64 8/9/68 15  72 8/20/68 19  0-6 10TR2/2 5YR2/1 6.1 6.7 4.1 1.12 17  0-6 10YR3/2 5YR2/1 7.0 7.5 6.1 1.34 21  0-5 5YR2/2 5YR2/1 6.6 6.9 9.0 2.07 18  0-5 5YR2/2 5YR2/1 6.4 6.7 12.7 1.76 8  .08 8.8 3.7 .22 12.8  .06 10.2 6.2 .20 16.7  55 7/30/68 18  .  .05 7.1 3.2 -18 10.5  IOYR4/5  10YR3/4 7.5 8.0 95.6 4.8 0.0 0.9 0.15 5 .03 3.0 1.7 .19 4.9  Bm 7-14 10YR3/4 7.5YR3/2 7.2 7.8 95.6 3.2 1.2 1.3 0.17 1  Bm 5-14 10YR3/4 7.5YR3/2 6.7 7.3 97.6 0.4 2.0 0.8 0.16 2  .03 3.7 2.0 .17 5.9  .04 3.6 1.2 .19  5,o C  Bm 5-11 7.5YR3/2 5YR2/2 6.6 7.1 97.6 2.2 0.2 1.7 0.27 7  Bm  1  6-13 7.5YR3/2 7.5YR3/2 6.1 7.0 95.6 4.4 0.0 0.9 0.19 2  Bm 6-12 10YR4/4 10YR3/4 7.1 7.4  99.8 0.2 0.0 1.2 0.08 0  .04 4.7 1.7 . 20 6.6  .04 4.2 1.4 . 22 5.9  .04 3.4 1.7 .17 5.5  c  Bm , 6-14 10YR3/4 7.5YR3/2 7.3 7.5 93.8 5.8 0.4 1.6 0.24 3  .12 18.3 8.6 \ .30 27.3 Bm 5-10 7.5YR3/2 7.5YR3/2 7.1 7.4 97.2 2.8 0.0 1.1 0.13 4  .03 4.6 2.4 .19 7.2  .04 3.1 1.2 . 20 4.5  c  12-18 10YR4/3 NM 7.4 7.7 95.6 4.2 0.2 2.3 0.06 0  12-19.5 10YR5/4 NM 7.4 7.7 97.0 3.0 0.0 1.6 0.04 0  14-19 10YR4/3 NM 7.2 7.5 95.6 4.2 0.2 1.4 0.07 0  C 11-21 10YR4/3 NM 7.1 7.5 97.6 2.4 0.0 0.7 0.06 0  13-18 10YR4/4 10YR3/4 6.6 7.3 99.8 0.2 0.0 0.2 0.06 0  12-18 10TR4/3 10YR4/4 7.1 7.4 96.0 3.0 0.4 2.0 0.07 0  C 14-22 10YH4/3 NM 7.3 7.5 95.2 4.4 0.4 1.9 0.09 2  10-15 10YR4/3 NM 7.1 7.4 93.4 6.0 0.6 1.5 0.05 0  .03 4.6 1.9 .18 6.7  .03 2.7 1.4 .18 4.3  .03 3.2 1.9 .19 5.3  .03 2.1 1.5 .18 3.8  .03 1.2 0.7 .18 1.5  .04 3.1 1.7 .19 5.0  .03 3.0 1.9 .18 5.1  .04 2.7 1.6 .18 4.5  depth, 18-23: color dry, 10YR4/3, color wet 2.5Y4/4; (CBCX,), 7.5; pH <H,0), 7.6; sand. 96.0; s i l t , 4.0; Slay, 0.0; nitrogen, 0 . 0 5 ; P, 0; K, . 0 3 ; Ca, 2.6; K13, 2.1; Na, .22 p  H  ' .09 16.1 7.2 .29 23.7 Bm 5-9 7.5YR5/2 5YR2/2 6.8 7.3 96.2 3.2 0.6 1.6 0.46 5 .03 3.2 1.2 .16 3.6  C 9-19 10YR3/4 5YR3/3 6.8 7.3 95.6 4.0 0.4 2.0 0.18 B .03 5.0 2.5 .18 7.7  110 25  Table Field  Moisture Determinations Percent  Date 1969  Measured  3  Moisture  9 lnches  53.7  frozen  7/1  Soils  at Indicated  inches  15  Depth inches  frozen  7/9  60.6  11  it  7/15  25.6  »  it  7/22  32.6  10.7  ti  7/29  107.4  17-0  saturated  8/5 8/12  65.4  saturated  31.0  13.3 8.6  8/17  36.9  8.4  x = 51.6  X =  C a l c u l a t e d .A v a i l a b l e  @  ^  £.2  x =  7.8  Water - R-0-D1 S o i l s  Moisture Horizon  11.6  10.4  26  Table  P l o t No.  R - 0 -D i  {%)  Bar  % by Weight @ 15  Bars  Available ( V ,  -  43  Ah Bm C  52.1 14.2 5.3  32.3 4.3 1.3  19.8 9.9 4.0  44  Ah Bm C  57.2 3-6 1.5  40.3 2.1 1.3  16.9 1.5 0.2  45  Ah Bm  62.5 5.7  54.0 1.8  8.5 3.9  47  Ah Bm C  61.4 6.2 4.4  43.2 1.7 0.6  18.2 4.5 3.8  48  Ah Bm C  66.3 7.7 2.3  52.3 2.8 0.0  14.0 4.9 2.3  Water 15)  Ill M o i s t u r e % by Weight @ 15  Available  ( V  P l o t No.  Horizon  49  Ah Bml C  53.6 7.9 2.2  45.0 3.5 0.6  8.6 4.4 1.6  55  Ah Bm C  26.6 5.5 5.1  17.5 2.5 1.0  9.1 3.0 4.1  56  Ah Bm C  24.9 9-0 6.0  16.8 2.6 1.0  8.1 6.4 5.0  64  Ah Bm C  61.5 4.6 6.4  38.6 2.3 1.9  22.9 2.3 4.5  72  Ah Bm C  48.9 8.1 6.9  37.9 3.3 1.6  11.0 4.8 5.3  While  rates  @  of active  those o f the Tetragono d e p t h o f thaw h e r e a t maximum It  species,  i s indicative  integrifoliae,  that  - 15)  the t o t a l  over 20 inches  the s p o r a d i c i n v a s i o n o f coenosis.  and s i g n i f i -  o f the o v e r l a p p i n g environmental t i e s  shares with the Tetragono  Soil  temperature  o u t the r e l a t i o n s h i p  - Dryadetum.  While  that  - Dryadetum.  measurements f r o m b o t h  ( T p b . 28) a n d c o n t i n u o u s r e c o r d i n g again point  The p e r s i s t e n c e  even w i t h such low p r e s e n c e  unit  Nardino  3  are similar to  being generally  tetragona occurs i n this  Tetragono  a  development  - Dryadetum  i s greater,  B rs  thaw.  here o f t h i s  this  layer  s h o u l d be n o t e d h e r e  Casslope  cance  Bar  Water  t h e r m i s t e r probes  thermographs  of this  (Appendix  A)  coenosis to the  n o t a s warm a s s o i l s  of the  - Dryado - A l e c t o r i e t u m , b o t h o f these s o i l s  do show  Table  27  Snow M e l t T r a n s e c t (70 m e t e r s ) on R-O-Di S l o p e , 1 9 6 9 F i g u r e s E q u a l D e p t h o f Snow i n I n c h e s a t I n d i c a t e d D a t e 6/13  6/14  6/15  6/16  6/17  6/18  6/20  6/21  6/23  6/25  1  10.00  9.75  9.75  9.25  8.75  7.75  7.00  5.00  2.50  0  2  10.50  9.25  9.00  9.00  8.00  7.25  6.75  4.75  0  0  3  10.00  9.50  9.50  9.25  8.25  7.25  6.00  4.75  0  0  4  7.75  7.50  7.25  7.25  7.00  6.25  5.75  4.50  0  0  5  10.50  10.00  10.00  10.00  9.00  7.75  6.50  3.75  0  0  6  9.75  9.75  9.50  9.25  8.75  8.75  7.00  6.00  3.50  0  7  16.50  16.25  16.00  15.50  14.50  13.50  12.50  11.25  9.00  4.75  8  15.25  14.75  14.50  14.25  13.00  12.25  11.00-  10.00  7.50  2.75  9  14.25  14.25  14.00  14.00  13.50  12.25  11.25  10.25  8.25  3.25  10  12.25  12.00  11.75  11.75  11.00  9.50  8.50  7.50  4.50  0  11  10.75  10.50  10.25  10.00  9.25  8.75  7.75  6.50  4.00  0  12  13.00  12.75  12.50  12.50  12.00  11.25  10.50  9.50  6.75  0  13  13.50  13.50  13.50  13.00  12.00  11.25  9.25  8.75  5.75  0  li+  10.00  9.75  9.50  9.75  8.75  8.25  7.50  6.75  5.75  0  15  9.25  9.25  9.00  9.00  8.50  8.00  7.25  6.75  4.25  0  Stake  113 thawing  ( T a b . 28)  beyond  the 15  i n c h l e v e l and s i m i l a r  timing  of horizon melting.  Table Soil Depth  in  1  Inches:  3  15  9  Date  Time  6/13  1430  snow  -6.8  -8.8  -10.1  6/17  1800  snow  -2.8  -5.8  - 8.1  6/20  1140  snow  -0.9  -3.9  -  6/21  1735  -1.2  - 3.7  6/23  1245  -  0.1 0.4  -1.9  - 3.7  6/25  1530  -  3.2  -0.9  - 2.2  6/2?  1400  8.3  4.7  -0.6  - 1.9  7/24  1255  11.0  5-9  2.1  0.9  8/2  1710  11.1  6.7  3.2  1.7  8/7  1758  6.2  5-5  3.1  2.7  8/16  1755  9.1  5.8  2.2  1.0  described Oxyrlo  snow  - Dryadetum  the e x i s t i n g  .  areas  integrifoliae  literature.  (Running 1965) appears  The c o m p l e t e  i s noteworthy,  occurs with other units  been  the Rhacomitrio -  t o h a v e no c o u n t e r p a r t absence o f  heterostlchum v a r . sudetlcum from  the S v a l b a r d D r y a d e t a l l a  similarity  free  6.3  o f t h e Devon I s l a n d D r y a d e t a l l a h a v e  from o t h e r p o l a r  Rhacomltrlum of  (C°) R-0-D1 - 1 9 6 9  Temperatures  W h i l e most u n i t s  in  28  the s p e c i e s  since  such  of the a l l i a n c e .  close  lists  114 In foliae first  summary t h e R h a c o m i t r i o i s here  time.  d e s c r i b e d from  Its floristic  unquestionably  i n the  by  a  characterizing  sudeticum  of  The  appears  be  soil  w h i c h no  surface.  Arctic  i s noted  with depth.  analysis  nitrogen c o n t e n t .  thaw b e l o w t h e  15  Soils  inch l e v e l  i t s highas  var.  Its black  colora-  c o e n o s i s on  snow p a t c h  to reduce  The  mainly  the  by  similarity  the dark  pigmented  thawing of  the  f o r m a t i o n of  differentiation slight  regime  environment  This  rapid  moisture  color  an  of  here  t h e most n o t a b l e are r e l a t i v e l y  prior  depths of g r e a t e r than 2 0 inches  to J u l y  Zh  and  i n a l l measured  being  warm,  three  changes  shows o n l y w e a k l y d e v e l o p e d  surface horizon differentiation, in  late  development l e a d s to the  Chemical  has  f r e q u e n t l y remains s a t u r a t e d  the prominence o f  i n the f i e l d  over  i s chosen  d e v e l o p m e n t and  In a l l cases.  i t is  i s co-dominated  and  of t h i s  integrifoliae.  doubt h e l p s  Soil  unit  component.  layer  - Dryadetum  Brown p r o f i l e  horizons  The  in this unit  to the  e x p l a i n e d i n p a r t by  moss mat  as  Rhacomltrlum hetero3tichum  In a c t i v e similar  place i t  alliance  Oxyrla digyna  ground s u r f a c e here  the Tetragono  may  values  the  on g e n t l e s l o p e s  tills.  bryophytes.  species.  snow m e l t . unit  occurs  to d e l i n e a t e the boundaries  landscape.  this  unit  dominates the bryophyte  t i o n helps  after  environment l i m i t s  textured f l u v i o - g l a c i a l  species significance  integri-  the n o r t h e r n r e g i o n s f o r  and  The  v a s c u l a r p l a n t s and  est  - Dryadetum  clrcumpolar Dryadion  p r e s e n t l y understood. coarse  - Oxyrlo  sub-  changes  showing  total  thaw  locations.  H Fig.  33  Plot  - 0 - Di  of active  thawed) w i t h plot  45  layer  time  (month and  d u r i n g 1968  44 during I968 similarity  development  of the  day)  ( a b o v e ) and  (below). curves.  Note  (Inches on  plot  the  marked  115  30+  6/15  6/25  7/5  7/15  7/25  8/4  8(14  8/24  R - 0 - Di Fig.  34  Plot  of active  time a t p l o t and p l o t  72  layer  development  45 during during  1969  1969  with  (above)  (below).  117 III.  Salicetalia  arcticae  (Sa)  B a r r e t t and  T h i s newly e s t a b l i s h e d order w h i c h may soils  on  and  northern  Alpine  leached  high  polygons) l n both  this  develops  only over  c l i m a t e s , however,  soils  outcroppings  (even  over  study  the  mesic  communication). environments  centered  i c e wedge p o l y -  Salicetalia  arcticae  and  the  between the of  Pre-Cambrian  Phyllodoco  - Cassiopetalia.  two  is reflected  orders  certain  longlpes, Cladonla  species  (e.g.  coccifera  and  by  Luzula Caloplaca  only  in  units. The  strong  Influence of other  snow d u r a t i o n and  very  substrata.  particularly  clnnaniomea) w h i c h show h i g h mean i m p o r t a n c e v a l u e s  as  order,  high  on w h i c h d e v e l o p  Stellarla  substrata)  High  the  become e s t a b l i s h e d on  area, non-calcareous  locations,  relationship  non-calcareous  (V. J . K r a j i n a p e r s o n a l  the present t o two  i t may  calcium r i c h  blcoenotic distribution  these  the  i s low,  gons on w h i c h d e v e l o p  confusa,  non-calcareous  p o l a r c l i m a t e s where p r e c i p i t a t i o n  are r e s t r i c t e d  the  subhygric  In  Within  slight  communities  Arctic.  on n o n - g l a c i a t e d s o i l s  A  centered  plant  z o n e s o f t h e C a n a d i a n Low  significantly,  In wetter  Includes  s u b m e s i c , m e s i c and  (frequently with  Arctic  very  occur  Krajina  different  arctlca  s u r f a c e physiognomy  dominant dwarf shrubs  dominates the S a l i c e t a l i a  average species s i g n i f i c a n c e order.  environmental  I t s importance  tetragona dominates.  i s expressed  i n each o r d e r .  a r c t i c a e and  has  dwarf shrub  by  such the  Sallx i t s highest  i n t h e p l a n t community o f  i s g r e a t l y reduced  C a s s i o p e t a l i a where t h e  factors  this  i n the P h y l l o d o c o  evergreen  Other strong f l o r i s t i c  -  Casslope d i f f e r e n c e s , which  1-18 will  become a p p a r e n t  tions,  serve  higher  synsystematic  to f u l l y  Because of Salicetalia  i n the d e s c r i p t i o n of distinguish unit  on  are not  order  f r o m any  t h e Devon I s l a n d  the p r e v a l e n c e  arcticae  this  the p l a n t a s s o c i a -  of  calcareous  w e l l developed  lowland. substrata,  arcticae  are w e l l represented  c o m m u n i t i e s w h i c h become d o m i n a n t on glacial  till  of p r e v a i l i n g l y  Krajina personal nized  3.  communication).  - Sallcion arcticae  The  distinguishing  separate  this alliance.  complex f o r t h e a l l i a n c e data are  gathered  Luzula  V;  confusa  i n o n l y one  ave.  average  ( L - Sa)  The  was  B a r r e t t and  Krajina  order a l s o serve  s t u d i e s i n the  - Rhacomitrio  (1964) a s  a s s o c i a t i o n of  species  in this unit 4.1).  since i t  (ave.  value  d r o p s by  a frequent two  latter  nearly half unit  arctlca,  L.  lowland Here It  is  a species noted  i n the p r e s e n t  noted  (2.1).  confusa  companion o f C a s s l o p e species  species  This species  - Casslopetum tetragonae).  t h a t i n the  these  to  region.  chosen i n naming the a l l i a n c e  n e a r l y a l w a y s a s s o c i a t e d w i t h L.  The  arcticae.  i s deferred u n t i l phytosociological  species significance  noted  J.  i s recog-  choice of a c h a r a c t e r i s t i c  Importance v a l u e s  significance  s h o u l d a l s o be  Porsild  the  and  m a t e r i a l (V.  o t h e r p l a n t a s s o c i a t i o n sampled w i t h i n the  (Sphaerophoro its  - Sallcion  f e a t u r e s of  several plant  single alliance  f r o m more e x t e n s i v e  shows i t s s t r o n g e s t presence  A  On  the  non-glaciated s o i l s  non-calcareous  on Devon I s l a n d , t h e L u z u l o  Luzulo  by  the  i n this area.  Banks I s l a n d , i n t h e w e s t e r n C a n a d i a n H i g h A r c t i c , Salicetalia  other  by  tetragona. alliance,  .119 however, It  i s n o t so is likely  be d e s c r i b e d Island  pronounced. that further alliances  f r o m Low A r c t i c  the s i n g l e  plant  of this  order  Canada i n the f u t u r e .  will  On Devon  association of this alliance  i s the  Pogonato - L u z u l o - S a l i c e t u m a r c t i c a e .  (5)  Pogonato - L u z u l o - S a l i c e t u m a r c t i c a e  (P - L - S a )  B a r r e t t and K r a j l n a Pigs.  36 -  43  Tab. 2 9 -  I c e wedge p o l y g o n s were s a m p l e d F i v e areas of polygon topography centered polygons sets  Polygonal  c e n t e r s were o n l y m o d e r a t e l y  slumping  (plots  1,  were d e e p e r  portions  active  Three  developed.  No g r o u n d  i c e was  Three  defined.  o f the polygons  b u t no e x p o s u r e  7)  A l l were h i g h  exposed  others  The c e n t e r s  e l e v a t e d and some h a d t u n d r a e a r t h hummocks  c e n t e r s showed s l i g h t (plot  units.  h i g h and the t r o u g h s  was a b s e n t .  3 a n d 3 2 ) were more s t r o n g l y  i n g on the r a i s e d  set  shallow.  a t polygon margins  were m a r k e d l y  landscape  were l o c a t e d .  2 2 ) were r e l a t i v e l y w e a k l y  between the r a i s e d p o r t i o n s and  as s i n g l e  ("Type F" o f Drew a n d Tedrow 1 9 6 2 ) .  20, 21,  (plots  30  appeared  older  Polygon  Polygon A  c e n t e r s were w e l l d e f i n e d  The s u r f a c e s o f a number v e g e t a t i o n coverage  of massive  i c e was  segments o f the m a r g i n s  Channels  single  than the o t h e r s and In a s t a t e o f  were low i n t o t a l ground  i c e was n o t e d .  m a r g i n a l e r o s i o n and s l u m p i n g .  deterioration.  t r o u g h s v e r y deep.  o f ground  (Fig. 38).  form-  and  of polygon centers  (Fig. 35).  The  a p p a r e n t h e r e and s l u m p i n g  had o c c u r r e d ( F i g . 3 6 ) .  exposure of large  Pronounced  120 e a r t h hummocks were p r e s e n t on  the s u r f a c e  of the  37).  (Fig.  Measurement o f d i a m e t e r s o f 9 p o l y g o n s 7 and  (plots  3)  In unit,  between 13  showed a r a n g e  w i d t h between p o l y g o n s  for  polygons  ranged  both f l o r i s t i c a l l y  example,  a r e one  snowpack, w h i l e t h e  environmentally.  t r o u g h s may  sites  remain  Some p o l y g o n s  locations feet.  Trough  feet.  coenosis i s a  of the e a r l i e s t  (Fig. 35).  weeks l a t e r  and  27  and  from 4 to 8  a number o f r e s p e c t s t h i s  In 2  heterogeneous Polygon  centers,  t o emerge f r o m  snow f i l l e d  until  have a n a l m o s t  the some  complete  cover of v e g e t a t i o n , while adjacent areas are n e a r l y devoid of plant  (Fig. 35).  cover  M a r g i n a l slumping  a r e a s f o r c o l o n i z a t i o n w h i l e the p o l y g o n tively  stable.  Despite this  produces  centers remain  apparent v a r i a b i l i t y ,  s i d e r e d as a s i n g l e  unit,  of  environmental s i m i l a r i t i e s  v e g e t a t i o n a l and  sampled r e l e v e s Sallx this  of 5.6  (Tab.  phytogeocoenotic  other (6  values remain and  low.  i s thus chosen  association.  The  series the  entity. values i n  t h e s h r u b l a y e r w i t h a mean  29).  More s p e c i e s o f g r a s s e s a r e r e c o r d e d f r o m t h a n any  con-  which u n i t e  achieves Its highest significance  phytogeocoenosis, dominating  value  when  rela-  these polygonal areas provide a  into a d i s t i n c t i v e  arctica  disturbed  g e n e r a and  this  8 species) although  Alopecurus a l p l n u s appears as a c h a r a c t e r i s t i c genus L u z u l a i s a l s o  found  c o n f u s a shows i t s h i g h e s t s i g n i f i c a n c e  chosen  as a c h a r a c t e r i s t i c  A  significance  preferentially  s p e c i e s o f the  Luzula  species.  coenosis  plant  I n abundance h e r e and  here.  i s also  dicotyledonous species  Table  121  29  Pogonato-Luzulo-Salieetum a r c t i c a e  PLOT HO. BATE ANALYSED HERBACEOUS COVER % MOSS COVER * LICHEN COVER * TOTAL SPECIES SO. PLOT S I Z E  1 6/15/6? JO 10 5 *3  J 6/16/67 50 5 8 43  20 7/20/67 60 20 9 56 lOOnT.  ? 6/20/67 65 25 4 47  P  22 7/25/67 60 v 10 50 2  0  32 8/1/68 85 25 15 55 (*VE. PRESENCE  PRESUMED CHARACTERISTIC COMBINATION OP SPECIES Salix arctlca L u s o l a confusa B t e l l a r i a longipea Pedicularia blrsuta Alopecurus a l p i n u s Pogonatum alpiouD Psllopilum eavifolium Oaloplaca cinnamomea  21 7/20/67 75 2? 7 *4  ^ 3 3 1  4 2  6 2 .  6  6  ,  4 2 2 3  . 2 1 2  6 7 3 1  6 6 2 1  4 1 2  4 1 2  .  .  6 4 •  2 4 4  .  OTHER SPECIES Carex o i s a n d r a Dryas i n t e g r i f o l i a Polygonum v i v i p a r u n Axctagroatis l a t i f o l i a Juncuo b i g l u n i e O x y r l a digyna Papaver radicatum Draba b e l l i ! Draba l a c t e e Poa arctica Saxlfraga oppositifolia Saxifraga cernua Festuca brachyphylla Draba oblongata Cerastium alpinum Potentille hyparctica Luzula arctica Poa e b b r e v i a t a Fcatuca b a f f i n e n a i s Ceraatium r c g e l i i Helandrium apetalua Hinuartia rubella Saxifrega foliolosa Carex^rupestris C a r e x * a t ro f u s e a Eriophorum t r i a t e Draba a l p i n a Braya purpuraacena Potentilla rubricaulia Phippsia elgida Saxifraga n i v a l i s P u c i n e l l i a vaginara Carex stana  >  S l 3 l +  2 > + • •  Cerdamine b e l l i d i f o l i a K o b r e s i a nyoouroides uitrichum f l e x i c a u l e O r t h o t h e c i u m chryaeura Tortula ruralis Drepanocladus uncinatua Myurella tenerrina Aulacooniun turgidum Diatichium capillaceum T o r t e l l a tortuosa Orthothecium s t r i c t u m Myurella julocea Tortella fra^ilis P o h l i a crudfl E n c a l y p t a rhabdocarpa Mniuo orthorrynchun Dieranoweiaia c r i 3 p u l a Hypnum b a n b e r g e r i Hypnum c u p r e s s i f o r m e Tinnia austriaca Encalypta c i l i a t a Cirriphylum cirrosum Kniura h y m e n o p h y l l o i d e s D r e p a n o c l a d u a revolvens Dicranum elongatum Rhacomitrium lanuginosum Cladonia pyxidata Thaicnolia v e r n i c u l a r i a Phyacia m u s c i g e n a Lecanora epibryon Caloplaca t i r o l i e n s i a Cetraria nivalia Lecidea vernalia Cladonia c o c c i f e r a Fulgensia bracteata Cetraria islandlca Caloplaca stillicidiorura Lecidea raculosa Ochrolechia f r i g i d a Toninia lobulata Mycoblaatus sajiguinarius Alectoria ochrolechia X a n t h o r i a elegar.3 Lepraria ceglecta Solorina saccata Lecidea a s s i n i l a t a P e l t i g e r a malacea P e l t i g e r a aphthosa Cetraria cuc-jliata Hypo~jfiania a u b o b s c u r a Pertu3aria coriacea C o m i c u l a r i a divergena Alectoria nitidula Alectoria chelybeifornia D a c t y l i n a ramulosa Lecidea pantherina Solorina bispora P a r h e l i a o^priLlcdes P e l t i g s r a canina Pertusaria l i a c t y l i n a Rhixocarpon georraphicua Rhizocarpor: r i t t o k e n s e S t e r e o c a j l o r . alpir.u= Clador.ia cornuta lecanora bchringii R l m d i n a r.icbosa O c h r o l e c h i a androgyne .  4 3 3  4 3 3  .  •  4 3 2 2 1 +  3 1 2 2 , 3 + +  1  3. 1 .1 + +  4 2 +  +  SPECIES) SIGNIFICANCE  V V . V V III V ' III IV  5.6 4.1 2.1 1.4 1.3 3.6 0.4 1.1  ¥ V V V V V V V V IV IV IV III III III III II II II II II II II I I I I I I I I I I I I  3.7 3.3 3.0 2.8 1.7  V V V IV IV III III III III III II II II I I I I I I I I I I I  2.1 1.9  V V V V V V IV IV IV IV IV III III III III III III II II II II II II II I I I I I I I I I I I I I - I I I I  3.1 2.0 1.6 1.6 0.8 0.6 1.0 1.0 0.7 0.6  1.4  1.0 0.8 0.7 1.8 1.1 0.6 1.0  0.4 0.4 0.4 1.0 0.6  0.4 0.5 0.5 0.2 0.1 0.6  0.4 0.3 0.1 0.1 0.1  -  1.4  1.6 0.5 1.2 1.1 0.6 O.S 0.2  0.4  0.3 0.2 0.3 0.3 0.3 0.3 0.1 0.1 0.1 0.1 _  -  0.4  0.6 0.6 0.5  0.4 0.4 0.3 0.6  0.4 0.4 0.5 0.2 0.1 0.1 0.6 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  29a  Table  Pogonato - Luzulo - Sallcetum  PLOT NO. DATE SAMPLED DEPTH TO FROZEN MATERIAL (inches) SOIL CLASSIFICATION PHYSICAL/CHEMICAL ANALYSIS Horizon I depth (inches) color, dry color, wet •,H (CaClp) pH (H 0) carbon % nitrogen % total P p.p.m. Exchangeable Cations Me/100 gm 2  K  Ca Mg Na Sum Horizon II depth color, dry color, wet pH (CaClp) pH ( H o r carbon % nitrogen P Exchangeable Cations K Ca Mg Na Sum 2  1 7/20/68 7  3 7/20/68 8  7 ' 7/20/68 8  ' 20 7/21/68 8  - Soils  21 7/21/68 8  22 7/21/68 9  52 8/1/68 7  0-8 5YR2/2 5YR2/1  0-9 5YR2/2 5YR2/2  Bog  5.9 37.5 6.90 12  0-8 5YR2/2 5YR2/2 5-5 6.3 32.6 5.63 16  0-6 5YR2/2 5YR2/1 5-5 6.0 26.9 5-10 12  .10 37.6 • 17-2 2.70 57.6  .06 33.6 l'!-.4 .88 48.9  .23 28.6 24.2 1.56 54.6  Ah(?) 1-6 10YR3/2 10YR3/4 4.2 4.7 9.5 1.86 10  H (?) 6-11 . 2.5Y3/2 10YR3/3 ' 6.5 7.4 23.9 4.84 9  0.4 8.4 3.5 • 33 12.6  .32 16.0 15.6 1.01 32.9  0-4  5YR2/2 5YR2/1 5.4  Np  2  H 0-8 5YR2/2 5YR2/2 '6.0 6.6 26.3 6.90 20  36.8 6.69 20  30.9 5-38 18  0-7 5YR2/2 10YR2/1 6.1 6.6 35.1 6.60 18  .06 4-0.2 16.8 1.08 58.1  .09 34.2 10.6 1.24 4-6.1  .08 29.8 7.6 1.06 38.5  .18 4-8.S 27.6 1.4-2 34.0  Np  Np  4.9 5.4-  <-  4.7 4.7  Np  Np ,  ro ro  chosen f o r the The Two  same r e a s o n  bryophyte  taxa of  Is S t e l l a r l a  longlpes.  component becomes more m e s o p h y t l c  the P o l y t r i a c e a e are  important,  w h i c h f i n d s i t s g r e a t e s t a b u n d a n c e h e r e and  Pogonatum  to t h i s  former s p e c i e s , while  coenoses, has  sporophytes  only  Lichens such as  in this  found  Cladonla  here  Caloplaca  p a t c h e s on  the  significance  and  characterizing The and  are  soil  coenosis.  The  mature  i n c l u d e a number o f u b i q u i t o u s T h a m n o l l a v e r m l c u l a r i s and  clnnamomea was surface.  o f t e n noted  Because of  presence values  i t has  species Lecanora  i n prominent  its relatively been s e l e c t e d as  classified  a s Bog  o f Bog  soils  this  coenosis  soils with  are a l l o r g a n i c  (Tedrow e t  high  centered  ice-wedge  polygons  and  Tedrow 1 9 6 2 )  and  t h e M o u l d Bay  extreme w e s t e r n a r c t i c  Descriptions  and  be  with  identical  Illustrations those  contain organic  All  analyses  and  nitrogen values  Soil  soils  from present  acidic  with  two  centered  to depth  (Tedrow e t  latter  area  a l . 1968). appear  to  soil  coenosis  p o l y g o n s h a v e b e e n shown  (Barr, personal  communication).  i n v e s t i g a t i o n s show h i g h  associated with  reaction ln this  of P r i n c e P a t r i c k I s l a n d  archipelago from the  (Drew  f r o m Devon I s l a n d .  Cores e x t r a c t e d from h i g h to  area  soils The  been d e s c r i b e d p r e v i o u s l y from P o i n t Barrow, A l a s k a  the  a  a l . 1958).  has  in  high  species.  soils underlying  concurrence  alplnum  unit.  pyxldata,  eplbryon.  i n other  nature.  Psilopllum  c a v l f o l l u m , which appears r e s t r i c t e d found  ln  organic  i s f o r the  s a m p l e s f a l l i n g b e l o w pH  soils  first 5*0'  (Tab.  time  carbon 29a).  decidedly  P Fig«  35  - L -  Sa  S p r i n g emergence o f plot  7.  free  o f snow w h i l e  mained  The  in  Polygons  these polygons  f o r one  are  t o two  weeks  l n the f o r e g r o u n d are Polygons  l n the background  v e g e t a t i o n on  at  the t r o u g h s between r e -  vegetative cover.  visible of  s u r f a c e of  snow f i l l e d  later.  ice-wedge p o l y g o n s  the  had  low  barely closed  stands  s u r f a c e (photo June  12,  1967).  Fig.  36  Exposure 7.  of ground  Ice  M e l t i n g of exposed  troughs summer.  filled  i n the a r e a of i c e k e e p s many  w i t h water d u r i n g the  Note the s l u m p i n g  of  overlying  soils.  Microscopic examination  stained  i c e r e v e a l e d numerous d i a t o m s  protists  plot  (photo J u l y  27,  1967).  of and  124  125 Profile the a c t i v e have h i g h  e x p o s u r e s showed d a r k f i b r o u s m a t e r i a l  layer.  i c e contents  bands a c r o s s Two 3»  Pit  Soils  the  arctic.  frozen surface.  tundra  where t h e y Soils  touch.  c a t i o n s (Tab.  i n the  Carbon contents  29a).  The  origin  are of  be  bordering  certain  l a k e s i n the  t h a t t h i s m a t e r i a l formed  were l a t e r  the  the  reaching  the  across  these  (10  low  the  hummocks  yr 3/4)  as a r e  and  Is  composition  have  ( F i g . 39)•  of these  in are  exchange-  this material  lowland  core  in  samples measured  field  unknown; however, m a t e r i a l s o f a s i m i l a r noted  of  p r o p e r t i e s from other  western  Subsequent  until  from the upper c o r e s  C o l o r s appear dark  to the  from the  t h e n move h o r i z o n t a l l y  this  able  (1958)  e a r t h hummocks.  different  unit.  features.  showed a p a t t e r n o f o r g a n i c movement  showed v e r y  greasy  subsurface  humic c o n s t i t u e n t s move v e r t i c a l l y table,  to  distinctive  of o r g a n i c m a t e r i a l s c o l l e c t  d e p r e s s i o n b e t w e e n two  permafrost  were o b s e r v e d  38).  p i t (Fig.  t h a t d e s c r i b e d by MacKay  Concentrations  leached  soil  revealed distinctive  shown i n F i g . 3 7 » to  f r e e z i n g plane  which f r e q u e n t l y o c c u r r e d as  base o f the  profiles  identical  a t the  throughout  polygons  been It  may  which  capped w i t h o r g a n i c m a t t e r from e s t a b l i s h e d  vegetation. 7  Profile however, and than  the  (Fig, 38)  core  o f the  a l s o showed o r g a n i c l e a c h i n g . hummocks was  composed o f h u m i c m a t e r i a l  l e a c h i n g p r o d u c e d a banded p a t t e r n b e n e a t h the i n the  depressions  layers  appeared  drying  turned  lighter  dark  (10  b e t w e e n hummocks. c o l o r e d l n the yr 3/3).  Here,  I t was  The  field  cores  rather  subsurface  (2.5  y 3/2)  assumed t h a t  this  but  on  126 m a t e r i a l was was  also  similar  greasy  on  ln origin  compression  however, shows h i g h e r c a r b o n exchangeable Field retaining unlikely  moisture  t h a t they  limit  observed  The  of these  or  insulating  thawing p e r i o d . Barrow, A l a s k a  A  soils  Analysis  particularly  qualities  occurs these  similar  results  t o thaw u n t i l  no  crust-like  in  vegeta-  situation  has  troughs  level  (7-12  (6-8  low  been observed  thermal  43)  kZ,  inches).  inches). Soils  e a r l y A u g u s t and the  during  at Point  conductivity results i n the  shows a n  to take p l a c e The  Soil  a t a depth  toward  shallowest  confirm  inches  t h e n were o n l y s l i g h t l y  c o l d e s t o f any  m e a s u r e m e n t s , however, were c o m p a r a b l e w i t h  the  thawing  temperatures of nine  lowland.  extremely  Shallower  units.  the  a l . 1958).  ( F i g s . 4/1,  44).  combined  combination  remaining  of other  point  absolute  freezing,  soils  It is  Integrlfoliae,  d o u b t work i n  Deeper thawing appears  (Tab.  The  t h e s h a l l o w e s t t h a w i n g o f any  the polygons  i n the  to the  surface drying,  a t such a h i g h moisture  of probe data  margins of  30).  (Tab.  n o t i c e a b l e where  of t h i s  table,  c a p a c i t y and  being  s l o w thaw r a t e .  organic s o i l s  moisture  absent.  (Drew e t  A h i g h heat i n Bog  show t h e h i g h  summer t o become d r y and  with a shallow permafrost soils  analysis,  concentrations of  i n the P e d i c u l a r o - Dryadetum  T h i s was  sparse  to keep these  and  below the v e r y s u r f a c e d r y  d u r i n g the  some l o c a t i o n s . t i o n was  contents  3 as i t  Chemical  growth In e s t a b l i s h e d p l a n t s .  s u r f a c e however, a s was  l n the f i e l d .  determinations  capacities  in plot  29a).  c a t i o n s (Tab.  that s o i l s  to t h a t found  failed  above  measured a t t h a t  depth.  surface  P - X - Sa Fig.  37  Soil  profile  vertical  at plot  3.  Note t h e  band o f d a r k e r m a t e r i a l  between  t h e hummocks a n d i t s l a t e r a l movement along  Fig.  38  the permafrost  July  20,  Soil  profile  table  (photo  1967).  at plot  ?.  Note t h e  d a r k e r humic c o r e s a n d h o r i z o n t a l banding  beneath  banding  a t the base o f the p i t i s i c e  (photo J u l y  20,  e a c h hummock.  1967).  Dark  P - L - Sa Pig.  39  P o l y g o n a l shape o f pond material.  This material  spongy and has a g r e a s y pression.  base i s granular, feel  I t i s believed  on  that  similar material  may  underlie  polygons a t p l o t  no.  3«  com-  128  I I  P F i g . 40  - L - Sa  P i t base a t p l o t  3 showing  incipient  i c e wedge f o r m i n g a s d e s c r i b e d Lachenbruch 1967).  (1962)  (photo J u l y  by 20,  129  Table Field  Date  30  Moisture Determinations  {%)  - P-L-Sa  Soils  P e r c e n t M o i s t u r e by a t I n d i c a t e d Depth  Measured 1968  3  inches  6/28  123.7  7/3  157.0  7/10  138.7  7/17  119.9  7/24  149.5  7/31  104.4  8/7  140.9  8/14  126.3  x =  132.5  1969  3 inches Hummock  6/21  189.9  134.6  6/26  169.9  143.6  7/1  142.5  91.6  7/8  146.6  101.7  7/15  177.0  132.8  7/22  188.3  129.2  7/27  135.^  148.2  8/5  154.0  179.5  8/12  154.5  140.3  8/17  181.2  212.9  x =  163.9  3 inches Depression  X = 141.4  131 I n summary, is  the Pogonato  a mesic u n i t r e l a t e d  - Luzulo  to S a l l x  - Sallcetum  arcticae  dominated a s s o c i a t i o n s noted  from Banks I s l a n d l n W e s t e r n H i g h A r c t i c  Canada.  I t s develop-  ment o n h i g h  results  i n a somewhat  centered  heterogeneous u n i t . environments their is  ice-wedge polygons  When c o n s i d e r e d a s a w h o l e , however,  show c e r t a i n u n i f y i n g  s t a t u s as an i n d i v i d u a l  dominated by S a l l x  a high  cover  character. result  phytogeocoenosis.  arctlca.  of Luzula provide  throughout  thawing.  Several s o i l  permafrost  table.  These  soils  show h i g h  The p r e v a l e n c e  a  distinctive  which develop  t h e summer a n d e x t r e m e l y profiles  The v e g e t a t i o n  the c o e n o s i s w i t h  environment.  retention  justify  A d i v e r s e a r r a y o f g r a s s e s and  The h i g h l y o r g a n i c b o g s o i l s  i n an a c i d i c  this area  c h a r a c t e r i s t i c s which  these  show h i g h  here moisture  slow r a t e s o f  i c e contents  a t the  of calcareous material i n  does n o t a l l o w f o r o p t i m a l development o f t h e  Salicetalia  arcticae,  the order  to which  this unit  belongs.  P Fig.  41  Plot  - L - Sa  of active  layer  thawed) w i t h t i m e plot  1 during  development  (inches  (month a n d d a y ) on  1 9 6 8 (above) and 1 9 6 9  (below).  CR = p l o t o f a c t i v e as  layer  development  mean o f t h r e e p r o b e s l o c a t e d  measured i n trough  positions. CE  s plot as  of active  layer  mean o f f o u r  development  probes l o c a t e d  measured  i n polygon  centers. E  = plot of active as  layer  development  measured  mean o f t h r e e p r o b e s l o c a t e d a t  polygon margins. A = mean a c t i v e probes  layer  development  (CR, CE, E , 1 0 p r o b e s ) .  of a l l  P - L - Sa F i g . 42  P l o t of a c t i v e l a y e r development w i t h time, p l o t 3 . ten probes. i n F i g . 41.  Above 1 9 6 8 , mean of Below 1 9 6 9 , symbols as  P Fig.  43  - L - Sa  P l o t o f a c t i v e l a y e r development time, p l o t  ?.  T = probes placed polygon F  with  Above 1 9 6 8 , i n tundra  earth  hummocks,  centers.  = probes placed  i n depressions  hummocks, p o l y g o n  between  centers.  Below, 1 9 6 9 ; s y m b o l s  as i n F i g . 4 1 .  134  IV. P h y l l o d o c o  - Cassiopetalia  (P - C) B r o o k e , P e t e r s o n a n d  Krajlna  1970 Arctic  h e a t h c o m m u n i t i e s where D r y a s s p . a n d C a s s i o p e s p .  c o - d o m i n a t e have b e e n h e r e t o f o r e the s i n g l e viously  alliance  p l a c e d by most w o r k e r s  D r y a d i o n (Running 1 9 6 5 ) .  the n o r t h e r n a s s o c i a t i o n s  calclcolous  study area  material  composed  lies  and m o n z o n i t e .  A  chiefly  comparable  s t u d i e s where y o u n g  o f d o l o m i t e and  situation  with  existed  concentrated  sedi-  sandstone granites  i n Svalbard  covered extensive granite  occurring  (Running 1 9 6 5 ) .  i n the northwest s e c t i o n  f r o m R^nningte comments t h a t a l l p l a n t  I t i s clear  associations  D r y a d e t a l l a p r o p e r s e l d o m become e s t a b l i s h e d parent  pre-  are  of granodiorite,  sedimentary m a t e r i a l s  of the i s l a n d ,  primarily  alliance  n e a r a c o n t a c t between  and P r e - C a m b r i a n m a t e r i a l p r i m a r i l y  portions  mentioned  s  communities w i t h Dryas d o m i n a t i n g .  The p r e s e n t mentary  of t h i s  A  Into  over  o f the granitic  materials: "Except i n the a r e a s mentioned as h a v i n g g r a n i t e r o c k s , a l l t h e o t h e r r o c k s p r o v i d e good p o s s i b i l i t i e s f o r the development o f a Dryas community" ( R u n n i n g 1 9 6 5 ) .  On  t h e o t h e r hand,  s i v e review of Dryas  Bamberg a n d M a j o r  communities  i n general,  from S c a n d i n a v i a and a l p i n e r e g i o n s where D r y a s c o m m u n i t i e s wide in  variety  the d r i e r  of s o i l alpine  communication).  (1968) cite  studies  n  soils  K r a j i n a has n o t e d t h i s  zone o f t h e C a n a d i a n R o c k i e s (19&3)  a  s  both  i n Western N o r t h America  have d e v e l o p e d o v e r a c i d i c  conditions.  Willard  i n an e x t e n -  suggested that  and  a  also  (personal low  calcium  136  r e q u i r i n g ecotypes of Dryas o c t o p e t a l a s s p . hookerlana  may  e x i s t l n the southern Rocky Mountain r e g i o n . The  o p t i m a l h a b i t a t s of n o r t h e r n s p e c i e s of  appear to be the r e v e r s e of Dryas.  In a r e a s of the Canadian  E a s t e r n A r c t i c p r o f u s e stands of Casslope over q u a r t z monzonite ( c f . P o l u n i n 1948 mixtures of Casslope  Casslope  t e t r a g o n a are  developed  p l a t e LX) and f r e q u e n t l y  t e t r a g o n a and Dryas I n t e g r i f o l i a are  found.  U n f o r t u n a t e l y a s s o c i a t e d s o i l a n a l y s e s a r e l a c k i n g , however Polunin states: "...Under f a v o r a b l y s h e l t e r e d and damp c o n d i t i o n s , the v e g e t a t i o n i s r a t h e r s i m i l a r , whether the substratum be a c i d weathering r o c k or c r y s t a l l i n e l i m e s t o n e " ( P o l u n i n 19^8). The  l o c a t i o n of the study a r e a a f f o r d e d an e x c e l l e n t o p p o r t u n i t y  to compare f l o r i s t i c d i f f e r e n t i a t i o n where admixtures Casslope  t e t r a g o n a and Dryas i n t e g r l f o l l a occur over  of dissimilar  parent m a t e r i a l s . On f i r s t a n a l y s i s i n the f i e l d  I t appeared  t h a t the  a s s o c i a t i o n s i n v o l v e d /Sphaerophoro - R h a c o m i t r i o tetragonae, and Tetragono  -  two  Cassiopetum  - Dryadetum i n t e g r i f o l i a e / would be  p l a c e d i n t o the s i n g l e order D r y a d e t a l i a as In p r e v i o u s s t u d i e s . F u r t h e r a n a l y s i s of the data however I n d i c a t e s d i s t i n c t i v e d i f f e r e n c e s which warrant  s e p a r a t i o n a t the o r d e r l e v e l .  d i s t i n c t i o n s w i l l become obvious  These  l n the d e s c r i p t i o n of the  a s s o c i a t i o n s ; b r i e f l y , however, they Include a) a r e v e r s a l of the average and Casslope  s p e c i e s s i g n i f i c a n c e v a l u e s f o r Dryas  integrlfolla  t e t r a g o n a from one a s s o c i a t i o n to the o t h e r ,  b)  change i n the composition of the u n d e r l y i n g parent m a t e r i a l s and  s u r f a c e s o i l r e a c t i o n , and c) a d i s t i n c t i v e d i f f e r e n c e  In  the  characteristic The  species  order, Phyllodoco  complex. - Cassiopetalia,  Brooke, P e t e r s o n and K r a j i n a ( 1 9 7 0 ) of The  the Subalpine order  from  was d e s c r i b e d b y  the Parkland  M o u n t a i n Hemlock Zone o f B r i t i s h  includes moderately  Columbia.  chionophilous plant  d o m i n a t e d b y h e a t h - l i k e o r low s h r u b  subzone  communities  species of mesic  to hygric  habitats. Snow d u r a t i o n h e r e months.  g e n e r a l l y averages  D a r k raw humus o f a c i d i c  reaction  forms a w e l l d e f i n e d o r g a n i c l a y e r podzolized of  soils.  Devon I s l a n d u n i t  The  the a r c t i c  a distinct  tetragona  While  allied  here,  doubt  that  to the Phyllodoco  the C a s s i o p i o n  (C - T) B a r r e t t  -  archipelago islands i n the northwest  islands  such  the North i n nearly a l l  o f Canada w i t h w h i c h Young  zone a n d S a v i l e  tetragonae.  and K r a j i n a  throughout  the e x c e p t i o n  (1971)  t r e a t s as  h a s commented u p o n  species which as M e l l v i l l e ,  and E l l e s m e r e and the n o r t h e r n  detailed  similarity  description  leave l i t t l e  i s widespread  i s the only e r i c a c i o u s  Heiberg  order  I t occurs with high frequency  floristic  more n o r t h e r n  moderately  the D r y a d e t a l l a .  Cassiopion tetragonae  of a s m a l l group  It  i s more c l o s e l y  than  American a r c t i c . of  a l . (1970)  o r d e r h a s one a l l i a n c e  Cassiope  to  The p h y s i o g n o m i c a n d e n v i r o n m e n t a l  by Brooke e t  Cassiopetalia  characteristically  slightly  t h e Devon I s l a n d p l a n t community w i t h  presented  4.  over  between 8 and 9  i s found  widely  (196l). i n the  B a t h u r s t , Devon, coast of  p h y t o s o c l o l o g i c a l data are lacking  Axel  Greenland. for this  region  i t i s nonetheless apparent  a r e d o m i n a t e d by t h e s p e c i e s . report  that  i t dominates l a t e  dominant  segregated  interesting tinctive from  i s a dominant  l n the f a c t  Devon, w h i l e  will  emerge.  the high a r c t i c  One  association  Sphaerophoro  Sphaerophoro (S - R - C t ) Figs. The  chiefly tinctive  new C a s s l o p e  44 -  remarkably shows a  dominated  associations also  f o r these  high  role  Casslope  sense  that  the p r o p o s a l i s  the C a s s l o p l o n tetragonae. d e s c r i b e d f o r Devon I s l a n d , t h e  - Cassiopetum  - Rhacomitrio Barrett  communities  o f a new o r d e r  and f l o r i s t i c  i s here  - Rhacomitrio  Casslope  tetragonae.  - Cassiopetum  tetragonae  and K r a j i n a  4?  e x t e n s i v e exposures  Tab. 3 1 o f Pre-Cambrlan  35 basement  found  i n the n o r t h e r n p o r t i o n s of the lowland p r o v i d e a environment  dis-  association.  Because o f the obvious  this unit  i s quite  Lambert's d e s c r i p t i o n  t h e c r e a t i o n o f a new a l l i a n c e  t o term  pulchrae  The l a t t e r I s  component r e m a i n s  The c r e a t i o n  i n both an e c o l o g i c a l  ( 1 9 6 8 ) has  Lambert  the v a s c u l a r cover  to our plant  assemblages.  made h e r e  (6)  with  more d a t a a c c u m u l a t e  necessitates  plays  that  I t i s evident that  undoubtedly  arctic  showed i t a s a n  i n t h e low a r c t i c .  the bryophyte  close relationship As  c o m m u n i t i e s on  i n many o f h i s r e l e v e s .  i n comparison  similar.  snow hummock  o u t one s u b a s s o c i a t i o n o f h i s S a l i c e t u m  where C a s s i o p e  (1969)  B r a s s a r d and B e s c h e l  Polunin (1948)  northern Ellesmere Island. important  t h a t a number o f c o m m u n i t i e s  dis-  f o r t h e f o r m a t i o n o f one o f t h e l o w l a n d ' s  139 most i n t e r e s t i n g Casslopetum of  coenoses,  tetragonae  the Sphaerophoro  (Fig. 44).  these geomorphlc f e a t u r e s  microhabitats. d i t i o n s may chionophobic llthosols  W i t h i n the  o f a few  t o deep p o c k e t s  of organic  the unique  geomorphlc  The  o f any  i n the  of extensive boulder f i e l d s . crystalline  i n a l l o t h e r coenoses  located  on  within  the  analysis  3D•  (Tab.  granodiorite  and  floristic  easily  the  presence  T h e s e a r e composed o f a n g u l a r  ( F i g . 45).  The  synusia  c o e n o s i s may  a s p e c t o r on  level  and  be  areas  t h e b a s e o f 12  from  soil  excavations  shows  absence of dolomite m a t e r i a l s i n these granite,  q u a r t z monzonite.  ecosystem. and  sites  I s t h e most  Predominant parent m a t e r i a l s are  Florlstically,  plants  I n many  of these  i s d i s t i n g u i s h e d by  g r o u n d w i t h any  the n e a r l y complete  lowland  lithology  the l a n d s c a p e .  complex,  this  outcrop.  Pebble  areas  however,  rocks which provide a v e r t i c a l  lacking  sloping  fragmentary  lowland.  surface of t h i s u n i t  subangular  unit,  circumstances  i n a c o e n o s i s which, w h i l e  con-  regime,  o f v e g e t a t i o n and over  of  soil.  phytogeocoenotlc  which are r e p e a t e d l y d u p l i c a t e d  delineated  environmental  to h y d r i c In moisture  complex p r o v i d e s e x t e n s i v e a r e a s  results  assemblage  t o c h i o n o p h i l o u s i n snow c o n d i t i o n s a n d  Taken as a s i n g l e  respects  feet  -  circumscription  i s a heterogeneous  In the space  v a r y from x e r i c  - Rhacomitrio  5 plots  this  coenosis  A l l r e l e v e s r e c o r d over had  100  90  presented  over  the  species of  o r more s p e c i e s p r e s e n t .  r i c h n e s s of these areas  niche p o s s i b i l i t i e s  i s t h e most d i v e r s e o f  is a reflection  The  of the d i v e r s e  such a r e l a t i v e l y  small area.  F i g . 44  Landscape p o s i t i o n of the Sphaerophoro Rhacomitrio - Casslopeturn t e t r a g o n a e . The photograph  shows the n o r t h e r n p o r t i o n  of the lowland w i t h e x t e n s i v e o u t c r o p p l n g s of Pre-Cambrian m a t e r i a l .  Cape Skogan i s  i n the background (photo J u l y 18,  Fig. 45  Plot 8 9 .  19&9).  The brown p l a n t i s Casslope  t e t r a g o n a , the l i g h t c o l o r e d t u f t s are cushions of Rhacomltrium (photo J u l y 2 1 ,  1969).  lanuglnosum  141 31  Table  Pebble A n a l y s i s from S o i l P i t s o f the Sphaerophoro - Rhacomitrio - Cassiopetum tetragonae M a t e r i a l P r e s e n t i n Sample 24 2 5 26 34 8 3 8 4 (as 8 t h o f T o t a l )  8 5 8 6 87  88  1  Dolomite  Pink  Granodiorite  Hornblend  Monzonite  coenosis.  I t s average  here,  dominating  the coenosis  lanuglnosum.  integrlfolla  supports  2. 5  significance  here  2. 5  5  i s Cassiope here i s -  o f 6 , 8 I n the Dryadetum clearly  correlated  of I n t e g r a t i o n suggested.  i s the bryophyte  value  5  the s e p a r a t i o n of these  i s 5*8.  on o t h e r a r e a s  Also  Rhacomltrlum  i n other units, i t s T h i s dominance  of the North  American  combinaArctic  1948).  In a d d i t i o n a large c o n s t e l l a t i o n present,  entirely  3  d r o p s t o a mean  o f dominance,  Found o n l y s p o r a d i c a l l y  t i o n has been noted  8  o f 5 « 1 i n the Tetragono  T h i s marked r e v e r s a l  coenoses a t the h l g e r l e v e l s  are  2  3  species significance  as opposed t o a v a l u e  habitat difference,  (Polunin  3  6  8  7  I n c o n t r a s t , Dryas  of 1.4  average  2  5  v a s c u l a r s p e c i e s o f the u n i t  (Tab. 3 2 ) .  Dryadetum.  with  1  5  i n comparison t o a value  value  4  3  5  Granite  dominating  tetragona 6.4,  3  Dlorite  Quartz  The  3  8  Granite/Biotite  Biotlte  90  1  Sandstone Biotlte  89  many s h o w i n g a r e s t r i c t i o n  (T«b. 3 2 and 4 3 ) .  This  of c h a r a c t e r i z i n g species to this  i s particularly  coenosis notable i n  32  Table  Sphaerophoro-Rhacomitrio-Caasiopeturn tetragonae PLOT NO. DATE ANALYSED HERBAGE COVER % MOSS COVER * LICHEN COVER % TOTAL SPECIES NO. PLOT SIZE  24 7/29/67 60 60 20 92  25 7/30/67  50  60  25  91  26 7/30/67  55 75 25  88  3" 8/18/67 to '  75  35 118  83 7/11/69 43 63 12 97  7/14/69 50 35 40 92  7  6  85 7/15/69 55 35  8"  32  .  2  V>  86 7/1^/69 '18  "3 94  87 7/18/69 53 40 43 114  88 7/20/69 27 41  31  110  09 7/21/69 "  32  37 26 100  90 7/25/69 44  40 35 100 (AVE.  PRESUMED CHARACTERISTIC COMBINATION OF SPECIES  7 1  Caaaiope tetragona Cardamine b e l l i d i f o l i a Huperzia selago Saxifraga caeapitosa Rhacomitrium lanuginosum Rylocomium splendens Ptilidium c i l i a r e Anaatrophyllum minutum Rhacomitrium caneacens Gymnomitrion c o r r a l l o i d e a Andreaea r u p e a t r i s Stereocaulon alpinum U m b i l i c a r i a proboacidea Parmelia d i s j u n c t a Sphaerophorua globoaus Pannaria hookeri Psoroma hypnorum Parmeiia a u l c a t a Cladina m i t i a Stereocaulon botryosum Lecidea melinodes P e r t u s a r i a panyrga Placopais g e l i d a Veatergrenopsia i s i d i a t a Parmelia c e n t r i f u g e Cladonia g r a c i l i s Ochrolechia inaequatule Stereocaulon rivulorum  i  6  4 4  3 3 i 3 3 2 2 1 1 2  7 1 i  6  5  4  7 1  4  .  i 3 1 2 2 2 3 +  .  2 1 *  •  • •  +  .  +  7 5  3 2 2 2 2 1 1 1 3  6  6  7  5  4 4  # 3 3 2 3 1 2 3  5  3 3 2 2 2 1 3 2 1 1  .  3 1  3 3 5 2  .  1 1 1 1  2 1 i  + +  2 1  +  i 1  +  +  3  5  +  6  1  i 5  '  7  +  5  4  3 3  3 3 2 1  3 2 2  3 2 2  3  3  3 3 2 1  3 3 1 2  3 2  i 3 2 2 2 2  3 3 3  2  + +  1 1 1 1  1 1  3 2 4  +  + +  4  + +  5  +  1 1  + +  *  OTHER SPECIES Saxifraga o p p o s i t i f o l i a Carex misandra Luzula confuaa Oxyria digyna Salix arctica Poa a r c t i c a Saxifraga cernua Papaver radicatum Saxifraga n i v a l i s S t e l l a r i a longipea Cerastium alpinum Silene acaulis Luzula a r c t i c a Carex r u p e a t r i s Dryas i n t e g r i f o l i a Polygonum viviparum P o t e n t i l l a hyparctica Draba l a c t e a Saxifraga f o l i o l o a a Festuca brachyphylla Draba b e l l i i Draba oblongata Pedicularis hirsute Arctegrostis l a t i f o l i a Carex nardina Minuartia rubella Carex membranaceae Ranunculus sulphurous Juncus biglumis Melandrium a f f i n e Draba a l p i n a Pedicularis cavitata Hierochloe a l p i n a Melandrium apetalum Saxifraga r i v u l a r i s Aulacomnium turgidum Dicranum elongatum Pogonatum alpmum Tomenthypnum nitons Ditrichum f l e x i c a u l e Drepanocladus uncinatus Tortula ruralia Timmia a u s t r i a c a T r i t o m a r i e quinquedentata Dicranoveisia crispula Grimmia apocarpa Hypnum revolutum Distichium capillaceum Mnit'->_b,ymftnophTilum urtuuthecium c n i ^ Orthotrichum speciosum - Mnium orthorrhynchum Encalypta rhabdocarpa Blepharoatoma trichophyllum Mnium marginatum Conostomum tetregonum Myurella tenerrima Myurella j u l a c s a Orthothecium rufescens Didymodon a s p e r i f o l i u s L e i o c o l a a heterocolpos Polytrichum juniperinum Scapania s i m o n s i i T o r t e l l a tortuosa Hypnum bambergeri Cempylium stellatura Bartramia i t h y p h y l l a Polytrichum p i l i f e r u m Lophosia h a t c h e r i Lophosia barbata Tortella fragilis C i n c l i d i u m arcticum Dicranum fuscescena Brachythecium turgidum Voitia nivalis Drepanocladus revolvens Cnestrum s c h i a t i Hypnum callichroum P h i l o n o t i a fontana Aneura pinguis Oncopborua wablenbergii Tetraplodon mnioidea P o h l i a crude Ceratodon purpureus Grimmia a l p i c o l a Lophosia quadriloba Lophosia xunseana Lophosia c e v i f o l i a Rbizocarpon geographicum Agyropbora l y n g e i Fulgensia braetoata Cetraria cucullata Themnolia v e r m i c u l a r i s Rhisocexpon c o p e l a n d i i Umbilicaria a r c t l c a Dactylina a r c t i c a Cetraria nivalis Cetraria delisei A l e c t o r i a ochroleuca Pertusarla coriacea D a c t j j i n a ramulosa Pertuseria dactylina Hypogymnia subobscura Ochrolechia f r i g i d a Cladonia pyxidata Haematooma lapponicum Placyntbiun a s p r a t i l e Lecanora epibryon l a n t h o r i a elegans Caloplaca t i r o l i e n s i s Permelia incurve Parmelia omphalodea P e l t i g e r a aphthoaa A l e c t o r i a minuscula Phyacia muscigena S o l o r i n a bispora Ochrolechia u p s a l i e n a i a Lecanora polytropa Alectoria nigricans A l e c t o r i a chalybeiformia Permelia separata C o m i c u l a r i s aculeate Phyacie c a e s i a Cladonia c o c c i f e r a Caloplaca cinnamomea C a n d e l a r i e l l a canadensis Lecidea v e r n a l i a Lecidea a s s i m i l e t a Lopadium pezizoideum Alectorie n i t i d u l a Buellie strata S p o r a s t e t i a testudinoa C o m i c u l a r i a divergena Phyacia intermedia Caloplaca a t i l l i c i d i o r u m L e p r a r i e neglecta P e l t i g e r a cenina Lecidea rubiformis Rinodina turfacea Placyntbium nigrum Cladonia amaurocreee U m b i l i c a r i a havaasil Rbizocarpon cnionopbiluo Parmelia s a x a t i l i e O m b i l i c e r i e byperborea Umbilicaria vellea Rbizocarpon disporum Physcie constipate Permelia exasperetula Mycoblastua sangulnerius A l e c t o r i a subdivergens P a r m e l i e l l a praetennissa P e l t i g e r a malacea Parmelia infumata Gyalecta f o v e o l a r i s Cledonie b e l l i d l f l o r a P e l t i g e r a scabrosa Bpilonema revertena Pyrenopsifl pulvinate Candelariella arctica Rhizocarpon rittokenae PertuBaria bryontba Toninia lobulate S o l o r i n e saccata Lecidea d i c k s o n i i Lecidea ramulosa Lecanora f r u a t u l o s e Buellie papillate A l e c t o r i a pubescens Gyalecta peziza Lecanora r u p i c o l a Lecanora verrucosa Lecidea pantherina Lecidea l u l e n s i s P e r t u s e r i a subobducena Lecanora cempestris Leciophysma finmarkicum Lecidelle wulfenii Mycoblastua alpinua Baeomycea cameus Lecidea craaaipes Lecanora badia ' Lecidea armeniaca Lecanora caatanea Caloplaca t e t r a s p o r a Ochrolechia gonatodas Nephroma expallidum Parmelia fraudans Racodium rupestre Lecidea a u r i c u l a t a Lecanora a t r a P e r t u s e r i a octomela Lecidea t e s s e l a t a  5 1  4  1  +  •  6  i  +  +  5  +  6  + +  1  +  5 1 2  + +  3  4  3 3 3 1 1 1 2 1  7 1 1  4 4  4 4  4  +  4 4 4  4  2  6  4  5  2 2 1 3 1 1 1 1  +  i 1 1  + + +  +  1 1  2 2 1 +  1 1  +  *  + +  SPECIES)  V V II III V V V V IV IV III V V V V V V IV IV IV IV IV IV IV III III III III  6.4 O.B 0.3 0.3 5.8 3.8 3.6 3.2 1.3 0.4 0.3 2.7 2.6 2.5 2.1 1.8 1.4 1.3 1.2 0.8 0.8 0.5 0.5 0.4 • 0.7 0.5 0.3 0.3  V V V V V V V V V V V V IV IV IV IV IV IV IV III III III III II II 11 II II I I I I I I I  2.6 2.3 2.1 2.0 1.4 1.3 1.2 1.1 0.9 0.9 0.7 0.6 1.7 1.6 1.4 1.0 0.8 0.4 0.3 0.6 0.5 0.3  V V V V V V V V V IV IV III III III III III III III III II II II II II II II I I I I I I I I I I I I I I I I I I I I I I I I I I I 2 3 3 2 3 . . 2 2 2 2 2 2 2 2 2 2 1 1 1 •  2 2  3 3 3 3 3 3  1  2 3 2  +  1 3 2 3  + +  \ i  /  3 3 2 3 3 3 4  3 3 2 2 3 2 2 +  2  1  +  1 1 1  +  +  , 3 1  3 2  +  • 2  1  •  3  2  .  1 1 1  2 3  +  3 2 3 3 3 2 3 3 2 2 2 3 2  1  .  1  2 2  3 2  1 2 2 2 2  1 1 1  1 1  3 2  1 1 *  3 2 2  3 3 2  1 1  1 1  +  *  2  2  2  +  *  *  1  3 2 2 3  1  2  J  3 3 3 3 3 3 3  2  +  1  +  2 3 3 3 5  +  3 2  +  4  1  + +  * +  2  +  •  •  V V V V V V V V V V V V V V V V V V V V V V IV IV IV IV IV IV IV IV III III III III III III III III III III III II 11 II II II II II II II II I I I I I I 1 I I 1 I I I I I I I I I I I I I I I I I I I I I  0.5  0.3 0.3 0.2 0.2 0.1  --  3.2 2.4 2.1 2.1 1.8 1.5 1.1 0.8 0.4 1.0 0.8 1.2 0.8 0.8 0.7  0.5  0.4 0.3 0.3  0.5  0.4 0.2 0.2 0.2 0.2 0.1  0.5  0.4 0.3  0.5  0.3 0.3 0.3 0.2 0.2 0.1 0.1 0.1 0.1  --— —  3.0 2.8 2.8 2.8 2.7 2.6 2.4 2.3 2.1 2.0 2.0 1.9 1.8 1.8 1.6 1.6 1.5 1.4 1.2 0.8 0.8 0.4 2.1 1.6 1.4 1.3 1.1 0.5 0.5 0.3 1.0 0.8 0.8 0.5 0.5 0.4 0.4  0.5  0.3 0.3 0.3 0.6 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.1 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1  -  142 Table  32  Table  32a  Spheerophoro-Rhaconitrio-Casai'opetuin tetragonae - S o i l s PLOT NO. DATE SAMPLED DEPTH TO FROZEN MATERIAL SOIL CLASSIFICATION  (inches)  24 7/20/68  25 7/20/63  26 8/12/68  34 8/18/67  85 7/11/69  84 7/1V69  85 8/15/69  86 87 7/17/69 7/18/69 Highly Variable Lithosol-Bog Complex...  88 7/20/69  89 7/21/69  90 7/25/69  PHYSICAL/CHEMICAL ANALYSIS  2  2  Exchangeable Cations K Ca Mg No Sun Horizon II depth color, dry color, wet pH (CaClp) .pH (H 0) carbon nitrogen P Exchangeable Cations 2  K Ca Mg Na  Sum  0-7 5YR2/2 5YR2/1 5.5 5.9 24.7 5.60 18  H 0-4 5YR2/2 5YR2/1 5.4 5.8 24.7 5.68 25  Ah 0-6 10YRJ/5 10YR2/2 6.5 6.7 7.0 1.09 7  H 0-8 5YR2/2 10YR2/1 5.1 5.7 17.4 2.95 11  0-6 5YR2/2 10YR2/1 5.4 6.2 26.6 5.52 51  H 0-6 5YR2/2 10YR2/1. 4.5 4.9 NM 4.10 28  0-7 5YR2/2 5YR2/1 5.2 5.6 25.0 1.98 20  H 0-4 5YR2/2 5YR2/1 4.9 5.4 25.5 5.76 56  H 0-4 5YR2/2 5YR2/1 5.8 6.5 52.2 5.21 28  0-7 5YR2/2 5YR2/1 5.9 6.5 52.1 5.85 55  H 0-6 5YR2/2 5YR2/1 5.0 5.5 17.2 1.55 21  0-5.5 5YR2/2 10YR2/1 5.7 6.5 9.4 1.05 11  .17 29.* 12.2 .60 42.4  .25 52.0 15.6 .74 48.5  .07 21.8 9.8 .40 52.1  .09 17.0 6.0 .60 25.7  .15 50.8 15.6 .86 47.4  .16 19.2 11.8 .66 51.8  .17 27.4 19.0 .80 47.4  .22 28.6 13.8 .74 45.4  .14 50.0 28.2 .46 78.8  .15 44.8 25.8 .60 69.5  .11 21.0 7.0 .58 28.7  .08 22.0 7.0 .46 29.5  H  Horizon I depth (incheo)^ color, dry color, wet pH fCaCl ) pH (H 0) carbon f> nitrogen % P p.p.in.  H  H  Ah  Me/lOOgm  C Np .Variable as Pockets of Material. 10YR4/3 10YR5/4 10YR5/3 5YR2/2 7.5YH3/2 7.5YR3/2 5.1 6.2 5-3 5.9 6.5 5.8 1.6 1.3 1.1 0.18 0.25 0.51 4 3 .02 3-4 1.3 .24 5.0  .05 5.6 2.5 .42 8.5  *A11 surface horizon boundaries very i r r e g u l a r . the deepest pockets of organic material found. Np - not present.  H  .05 3.9 1.9 .24 6.1  Numbers here reported equal  Np  Np  Np  C  C  C  10YR5/5 10YR5/2 5.0 5.7 5.8 0.20 9  10YR5/4 5YR5/2 6.7 7.1 2.4 0.18 S  10YR5/4 2.5YR2/2 6.8 7.4 2.5 0.31 11  .05 8.9 4.1 .30 15.5  .05 10.2 4.4 .28 14.9  .05 7.9 2.9 .19 11.0  Np  C  ,  10YR5/3 5YR2/2 6.5 7.5 1.2 0.16 5 .02 5.3 1.9 .26 7.5  both  the bryophyte  and  are abundant here, being  Ptllldlum  present  i s an  the of  of  the  surface.  associated with  and  rock  number o f l i v e r w o r t s  Anastrophyllum  mlnutum  corralloldes.while  late  snow m e l t  T h i s s p e c i e s was  ice persisted  However, A n d r e a e a r u p e s t r i s normally  and  A  Gymnomltrlon  indicator  o v e r much o f  where p a t c h e s  components. clliare  t h e most c o n s p i c u o u s .  l e s s abundant,  noted  lichen  until  late  Rhacomltrlum  conditions frequently  i n the  season.  canescens,  f a c e s , are a l s o  species  characteristic  here. The results alone are  extensive area available in a rich  are  either  Included  Fifteen  lichen  preferential  i n the  or r e s t r i c t e d  characteristic  The  and  Parmelia  Stereocaulon  values here  species combination average s p e c i e s  alplnum.  The  cucullata, nature  of the  uneven r e d i s t r i b u t i o n most c l e a r l y n o t e d snow m e l t  nivalis  dellsei.  the  coenosis  during  collected  observations  the  are  3 field  high  i n 19&9  of  l n an  T h i s may  a l o n g a 75  (Tab. 3 3 ) .  this  seasons  ochroleuca.  results  the w i n t e r .  transect established i n this unit  ( F i g . 46)  significance  Dactylina arctlca,  C.  snow d u r i n g  from data  a d d i t i o n numerous s i n g l e noted  and  surface of of  32).  g e o g r a p h l e u m , R. c o p e l a n d l l .  Fulgensla bracteata, Alectoria  C.  (Tab.  Other l i c h e n s with  Thamnolia v e r m i c u l a r i s , U m b l l l c a r l a a r c t l c a , Cetraria  and  dlsjuncta, Umblllcarla  are Rhlzocarpon  Agyrophora l y n g e l ,  to t h i s u n i t  more a b u n d a n t c h a r a c t e r i z i n g s p e c i e s  Sphaerophorus globosus, proboscidea  colonization  Seventeen s p e c i e s of l i c h e n s  s p e c i e s o f l i c h e n s have an  of 2 or greater.  cover  flora.  for lichen  be meter  In  phenomenon were  i n which the  study  was  undertaken.  The  snow m e l t  t r a n s e c t r a n from  a n o u t c r o p down a g e n t l e s o u t h - f a c i n g s l o p e 7 5 outcrop margin. on J u n e 1 3 . variable probes  The  Snow c o v e r a t t h e 16 (5i-29  locations varied  of t h i s  regime  i n the  meters to  inches).  the 2 5 t h  By  snow d e p t h s  b e t w e e n 3 and  snow m e l t p a t t e r n r e s u l t s  18  adequate pockets  Limited s o i l  t h i s most c l e a r l y  snow was ment.  pocket present  Soils  these The  of organic s o i l  of l a t e  i n a unique  snow e x i s t  high  soils  from  effect  dellsel,  beneath  moisture  of t h i s  measure-  the  and Bog  f o r t h i s same  of water r e c e i v e d  snow m e l t . snowpatch mosaic coenosis.  is reflected  In a d d i t i o n  p l a n t s which i n the lowland  i n c l u d e Melandrlum apetalum,  promi-  Cetraria  areas are normally a s s o c i a t e d  w i t h l a t e m e l t i n g snow, s p o r a d i c o c c u r r e n c e s a s s o c i a t e d w i t h h y d r i c environments  i n the  t o the  t e t r a g o n a , Gymnomltrlon c o r r a l o i d e s and  Aneura p l n g u l s .  No  July  values with  recharge  show  cover.  through  - Sallcetum arcticae  the  in a  o f the f i r s t  content  moisture  of the p r o b a b l e late  to provide  i n 1968  a Casslope  the time  i n moisture  Comparison of s o i l  indicative  Casslope  mosaic  p o r t i o n of  determinations  i n the a r e a from  s p e c i e s c o m p o s i t i o n o f the nent  The  M e a s u r e m e n t s were t a k e n  o f the Pogonato - L u z u l o  period.is by  moisture  (Tab. 3 4 ) .  remained  e a r l y August. soils  7  the  inches.  c o l d melt water to the s u r f a c e o f a s i g n i f i c a n t  localized  highly-  c o e n o s i s as a whole.  Generally,  landscape.  the  of June at  of  were made  s t a t i o n s m e a s u r e d was  were c o m p l e t e l y e x p o s e d , w h i l e  nature  crest  f i r s t measurements o f snow d e p t h  a t t h a t time  remaining  the  of plants normally  are noted.  Some o f  these  Juncus b l g l u m l s , Draba l a c t e a ,  and  Table 33 Snow M e l t Transect (75 meters) S-R-Ct S l o p e , 1969 F i g u r e s E q u a l Depth of Snow i n Inches a t I n d i c a t e d Date 6/13  6/14  6/15  6/16  6/17  6/18  6/20  6/21  6/23  6/25  6/27  1  16,50  15.75  15 00  14.50  13.50  12.25  11.00  10.00  9.00  6.25  0  2  11.25  10.00  9.50  9.50  8.50  7.50  5.50  5.00  3.25  0  0  3  7.00  6.50  6.00  6.00  4.25  0  0  0  0  0  0  4  13.50  13.25  12.75  12.75  12.00  11.25  10.25  9.75  9.00  6.50  0  5  10.00  8.75  8.25  8.25  7.25  6.00  5.00  4.00  0  0  0  6  29.00  28.25  27.50  27.25  26.00  24.75  23.25  22.25  11.00  18.00  11.50  7  5.25  4.75  4.25  4.25  3.50  0  0  0  0  0  0  8  17.50  17.00  16.75  16.50  15.75  14.50  13.25  12.25  11.75  7.50  0  9  17.25  16.50  16.00  15.75  15.00  13.50  12.75  11.75  10.75  8.00  0  10  9.50  8.50  8.00  8.00  7.25  6.50  5.50  4.50  3.75  0  0  11  12.00  11.25 . 10.75  10.75  10.00  9.00  7.50  6.75  5.75  3.00  0  12  15.50  14.50  14.00  14.00  13.00  10.50  0  0  0  0  0  13  17.50  16.50  16.25  16.25  15.50  14.25  12.00  10.50  9.00  0  0  14  13.50  12.50  12.00  11.75  11.00  10.0.0  8.50  7.50  6.75  5.00  0  15  18.75  18.00  17.75  17.75  16.75  15.75  14.00  13.00  11.50  9.25  2.25  16  22.75  22.25  22.00  21.75  21.00  20.00  18.25  17.50  16.75  14.50  8.75  Stake  r  XT  147 Table  34  F i e l d Moisture Determinations {% by W e i g h t ) s-R-Ct S o i l s Date  Percent Moisture at I n d i c a t e d Depth  Measured 1^68  3  7/10  345.6  7/17  294.7  7/31  243.9  8/7  212.5  X =  Certain xeric habitats the  of shallow  Two  the r a i s e d  from the  soils  or g r a v e l s occur,  are  s p e c i e s commonly f o u n d  the  do  sampled a r e a s p r o b a b l y  summer months.  I t s h o u l d be  samples a r e o n l y l o c a l of the  importance It  or  near  the x e r i c  Festuca  g r a v e l s of  beaches. (Tab.  nature  on  micro-  turfy conditions  Carex n a r d l n a and  C a l c u l a t e d a v a i l a b l e water  these  the  llthosolic  o f t h e more n o t a b l e  brachyphylla,  274.1  s p e c i e s a r e a l s o p r e s e n t where l o c a l  summits o f t h e o u t c r o p p i n g , where d r i e r  exist.  Inches  soil  Indicates that  fall  soils  below w i l t i n g  remembered h e r e ,  i n occurrence.  complex h e r e  The  during  however,  that  heterogenous  p r e c l u d e s g e n e r a l i z a t i o n s and  o f t h e m i c r o s i t e becomes p a r a m o u n t .  is interesting  organic matter  has  soils  2 6 and  i n plots  not  35)  on  to note  the  the moisture 90.  effect  t h a t the  retaining  loss  c a p a c i t y of  of surface  148 35  Table  C a l c u l a t e d A v a i l a b l e Water S-R-Ct S o i l s Moisture % by Weight Plot  No.  Horizon  24  @  ^  Bar  @ 15  A v a i l a b l e Water  Bars  -  H C  104.9  76.6 3.1  28.3  25  H C  111.5 12.1  89.5 3.7  22.0 8.4  26  Ah  48.7  24.4  24.3  34  H C  73-8 9.0  52.3 2.8  21.-5 6.2  83  H  111.0  77.7  33.3  84  H  111.3  89-7  21.6  85  H  121.8  96.8  25.0  86  H C  120.2 30.0  95.9  24.3  87  H C  181.1  18.3  121.1 7.9  60.0 10.4  88  H C  167.6 15.2  109.8 5.9  57.8 9-3  89  H  81.2  55.6  25.6  90  Ah C  55.0 9.5  30.5 3.2  24.5  The  6.9  14.6  15)  3.8  15.4  6.3  s o i l s of t h i s c o e n o s i s have been c l a s s i f i e d as a  L i t h o s o l i c - B o g Complex (Tab. 3 2 a ) .  Classically  lithosols  r a n k e r s ) are a z o n a l s o i l s which l a c k a w e l l developed morphology and  c o n s i s t of i m p e r f e c t l y weathered rock  (or  soil fragments,  g e n e r a l l y of a harder m i n e r a l o g i c a l nature than those which give r i s e  to r e g o s o l i c s o i l s .  These have been noted  i n the  S - R - Ct Fig.  46  Snow p a c k i n t h e P r e - C a m b r i a n o u t c r o p s . Note  the bare l o c a t i o n s  foreground of  47  background.  snow a t t h e p r o b e was  (photo  Fig.  and l e f t  June 2 9 ,  Llthosolic soil pockets boulders  i n the r i g h t  7.5  inches  1968).  at plot  25.  Note  of organic accumulation (photo  1  Depth  July  30,  1967).  between  149  a l . 1958)  mountainous r e g i o n s o f a r c t i c A l a s k a (Tedrow e t b u t knowledge o f t h e i r p o l a r r e g i o n s remains  g e n e s i s and only  classification  may  range  from an  extremely  o v e r the s u r f a c e o f exposed typical  bedrock  exposure  A  surface  i s very  i r r e g u l a r with pockets  the s o i l  realizing  reaction  organic pockets,  highly  i n F i g . 4?.  I s o v e r 30%,  c o n t e n t and  crust  The  o f humic m a t e r i a l s form-  i s decidedly acidic.  the m o i s t u r e  of  I n most c a s e s t h e o r g a n i c  component o f t h e s e s u r f a c e s o i l s and  i s seen  tetragonae  o f brown  to deep p o c k e t s  soils.  boulders.  - Casslopetum  t h i n veneer  organic  i n g between l a r g e  the  fragmentary.  In the Sphaerophoro - Rhacomitrio "soils"  from  depths  matter  c o l o r s are  dark  It is difficult, o f some o f  these  t o c o n s i d e r them a n y t h i n g o t h e r t h a n H a l f  soils  i n T e d r o w ' s scheme.  these  that  I t Is from  isolated  the values p r e s e n t e d f o r H o r i z o n I  pockets i n Tab.  Bog  such 3 a  as  have  2  been d e r i v e d . More commonly, however, d a r k less  are found  closer  lithology  o f the u n i t  to the  true l i t h o s o l s  as a whole  distinctive  rock.  the  i s b e t t e r r e g a r d e d as  a  exposures  isolated  pockets  s u b s u r f a c e h o r i z o n development were n o t e d .  were s a m p l e d a s  separate horizons, although h o r i z o n t a l  o f t h e s e l a y e r s was  where t h e s e were n o t e d , was  o f T e d r o w and  or  complex.  In 7 o f the examined s o i l  tinuity  of 1 inch  o v e r an u n d e r l y i n g l a y e r o f c r y s t a l l i n e  These are  lithosol  organic crusts  p r e s e n t i n the  absent  large  sample.  in a l l locations.  amounts o f f r o s t  These p o c k e t s  of  These conGenerally  shattered rock  are d i s t i n c t l y  mineral  151 i n nature  (Tab. 3?a).  c a r b o n and The  Exchangeable  nature  the p e r m a f r o s t  layer.  instruments  are  of the  table  soils  here  p r e c l u d e d the use  of  probes  in this unit.  Since  l a y e r development  Is a r e f l e c t i o n  of surface conditions i t  Soil  measurements  mean t e m p e r a t u r e Nardino  temperatures  (Appendix  r e c o r d e d from  an  that  A).  i s b o t h a complex and  reflect  the d i v e r s i t y  large  to t h i s  coenosis.  i n the  diversity  broken  by  nature  lichens,  Casslopetum Florlsti-  lowland, and  found of  strong lichens  in a  rela-  environmental  of s p e c i e s r e s u l t s  in a  s p e c i e s , many o f w h i c h  Extensive boulder f i e l d s  angular boulders present a v e r t i c a l  exploited  -  bryophytes  Cambrian g r a n i t e s cover the s u r f a c e of the large  crests.  soils.  constellation  complement o f c h a r a c t e r i z i n g  restricted  beach  the  surfaces are r e s p o n s i b l e  o f m l c r o h a b l t a t s t o be  combined w i t h t h i s  at  a homogeneous u n i t .  components o f v a s c u l a r p l a n t s ,  I t s unique  was  - Rhacomitrio  species  factors,  o n l y warmer summer  the r a i s e d  i t I s t h e most d i v e r s e c o e n o s i s  small area.  i n the upper h o r i z o n s  The  surrounding  I n summary t h e S p h a e r o p h o r o  tively  continuous r e c o r d i n g  the d r y exposed b o u l d e r  c o n d u c t i v e h e a t i n g o f the  tetragonae  i s the m i r r o r i n g  equal depth  - D r y a d o - A l e c t o r i e t u m on  is likely  cally  from  as  show warm s u r f a c e t e m p e r a t u r e s  1968  during  for  as  doubt e x c e e d i n g l y i r r e g u l a r here,  active  It  low  nitrogen values.  f o r determining active  i s no  c a t i o n s are  which other lowland  coenosis.  of  largely  coenoses  lack.  from  o u t c r o p s r e s u l t s , i n an u n e v e n w i n t e r r e d i s t r i b u t i o n  Pre-  These  synusla,  o f the ground s u r f a c e r e s u l t i n g  are  The  these o f snow.  This  i n t u r n r e s u l t s I n a mosaic  coenosis.  A significant  water from l a t e acteristics  melting  of a late  xeric microhabitats drier  lithosols  reminiscent acidophilous shallow part  p o r t i o n of the landscape  snow p a t c h  exist  environment.  where s p e c i e s Soils  interspersed with  of Half  Bog s o i l s .  d e p t h s a r e r e l a t i v e l y warm. heating  char-  A t t h e same  generally  time  limited to  here are predominantly pockets of organic  soil  T h i s u n i t i s one o f t h e two  u n i t s on t h e l o w l a n d .  to conductive  receives  snow a n d t h e u n i t h a s a number o f  c o e n o s e s may be f o u n d .  shallow  snow m e l t p a t t e r n w i t h i n t h e  Soil  temperatures  from  T h i s may be a t t r i b u t e d i n  from the rocky  surface.  Carlcetalia  As  fuscae  (1956)  Dahl  ment o f m i r e  emend. K l l k a  (1934)  h a s p r e v i o u s l y shown a h i e r a r c h i c  communities  environmental  (1928)  ( C f ) Koch  factors  is difficult  arrange-  due t o t h e c o m p l e x i t y o f  o p e r a t i n g w i t h i n any g i v e n h a b i t a t .  The  f u s c a e /= D r e p a n o c l a d e t a l i a e x a n n u l a t i K r a j . 1 9 3 3 ;  Carlcetalia  C a r l c e t a l i a Goodenoughil Nord. 1 9 3 6 7 a r e bog and mire a s s o c i a tions. the  The m i r e a s s o c i a t i o n s o f Devon I s l a n d c o n f o r m w e l l  described characteristics  (1956):  community,  of  by  Dahl  mire v e g e t a t i o n w i t h Drepanocladus s p . and C a l l l e r g o n  sp. p l a y i n g important  tive  of the order as presented  with  roles  some w i l l o w  cover.  i n the bryophyte  shrubs  Meesla t r l f a r i a ,  the order  by some a u t h o r s  present listed (Kllka  component o f t h e  and a c a l c l c o l o u s  vegeta-  as a c h a r a c t e r i s t i c 1955)  i s also a  species  conspicuous  component o f Devon I s l a n d a s s o c i a t i o n s . While t h e complete are not present, and  common  (1968)  aquatills little  of order  there are present  characteristic  many e c o l o g i c a l  species  equivalents  genera.  This order Krajina  cluster  has r e c e n t l y been u t i l i z e d i n grouping  two l o w a r c t i c  and E r i p h o r i o n a n g u s t l f o l i i .  question  floristically  that the C a r i c l o n  and e n v i r o n m e n t a l l y  by Lambert and alliances,  the C a r i c l o n  A comparison  leaves  c o m m u n i t i e s o f Devon a r e related  t o Lambert's  communities  i n the western r e g i o n of a r c t i c  is  t h e C a r i c l o n a s s o c i a t i o n s o f Devon I s l a n d a r e a l s o  t h e case  placed  i n the order C a r l c e t a l i a  One a l l i a n c e  i s recognized:  Canada.  mire  Since  fuscae. the C a r i c l o n  aquatills.  this  154 5.  Carlclon aquatllls As  one  regions The  moves f r o m  the  Carex a q u a t l l l s  taxonomic s t a t u s  unsettled.  Hulten  of  subspecies of  however,  t r e a t s i s as  high  arctic  regions.  tion  i t i s clear that  t e r r e s t r i a l wet The  these  Canada.  The  alliance. and  unlike  the  detailed it  nature of are  releves  repeated  are  on  semi-  by  Western  i t s consistently l n the  characteri-  however  to s p e c u l a t e  t h i s a l l i a n c e are  covers  large  l n the  f o u n d on  l a c k i n g from other floristic  on  remain these  described  areas of  in  i n other  locations. "flat  north-central Ellesmere  archipelago  locations  in this  Strikingly similar wetland" h a b i t a t s Island  While  a v a i l a b l e that  described  (1968).  former  not  Devon I s l a n d .  w o r k s now  C a r l c l o n communities as  Brassard's d e s c r i p t i o n s of Fiord  features  posi-  arctic.  zone o f and  the  field.  C a r l c l o n communities  the  i n the  d r a i n a g e pathways, a l a n d s c a p e p o s i t i o n  i s apparent  latter  (1964),  been d e s c r i b e d  i t i s p r o b a b l y unwise of  the  taxonomic  Canadian  subalpine  Lambert's C a r l c l o n a q u a t l l l s b e d s and  the  C h a r a c t e r i s t i c species  many more a s s o c i a t i o n s  lake  of  stans.  P.orsild  a s i m i l a r niche  Important  until  from the  consider  Its eventual  Carex a q u a t l l l s  defined  Carex  arctic  c h a r a c t e r i s t i c of  a l l i a n c e has  t o be  detail  plant.  arctic  are  by  high  i s somewhat  arctic  meadow c o m m u n i t i e s  dominance o f  the  replaced  "good" s p e c i e s ,  low  i n t o the  (1959)  each f i l l s  i n the  north  Polunin  low  (1968)  Krajina  entities  R e g a r d l e s s of  constancy values  z a t i o n of  arctic  two  and  Carlclon aquatllls (1968)  Lambert  low  the a  L a m b e r t and  i s gradually  (1968)  merely a  high  (Ca)  at  Here  the study  are Tanquary wetland  155 communities a r e a s and  dominated  o f t h e Devon  Island,  the Caricetum  shown t o be  The  geocoenotic u n i t the landscape  stantis,  stantis  Caricetum  -  (Cs) B a r r e t t  60  stantis  and  thus  large  the western  tion  Isolated,  lagoons  and  associated  stantis.  Only  system  system.  I t dominates other  as a whole. emergence  outlet  Its and  As on  channels.  a t the p r e s e n t  hydrlc  one  this  t h e r e were l e f t  With  time  these  habitats  now  beaches the Fig.  shoreline areas occupied  species of vascular plant  the l o w l a n d a c t i v e l y  i n v a d e s e x t a n t ponds  i s Carex  s t a n s , the  or  dominant  unit.  to shallow depths  of a c t i v e  of r e p r e s e n t a t i v e pebble  hindered.  Important  systems noted e a r l i e r .  and  r e c e n t l y d r a i n e d pond s i t e s , s p e c i e s o f the  38  system  formed  on  -  t h e most  border of the lowland.  the Caricetum  p r e s e n t l y found  36  lowland  f r e s h w a t e r p o n d s and  the  Krajina  to post g l a c i a l  formed  Devon  and  i s perhaps  beach  48. shows s u c h a r e c e n t l y  Due  those  c a r i c e t o s u m membranacei.  character of lowland  were s u c c e s s i v e l y  by  to  and  i s r e s p o n s i b l e more t h a n any  f o r m a t i o n of the r a i s e d  the  to  i s subdivided into  Tab.  Is i n t i m a t e l y r e l a t e d  provided  similar  I s r e c o g n i z e d on  which  of the c o a s t a l  coenosis f o r the  backslopes  over extensive  species restricted  remarkably  caricetosum s t a n t i s  F i g s . 48  on  of a s s o c i a t e d  a s s o c i a t i o n of the a l l i a n c e  Caricetum  genesis  be  stans are found  communities.  subassociations  (7)  Carex  Brassard's l i s t  these h a b i t a t s w i l l  One  by  Where thaw d e p t h  layer  f o r m a t i o n the  samples from p l o t  locations  d i d a l l o w the exposure  of  collecwas  subsurface  156 rock  fragments,  nantly  is  Caricetum  stantis  vascular plants. recognized  tion after unite  predomi-  dolomite.  The and  t h e u n d e r l y i n g m a t e r i a l a p p e a r e d t o be  the  and  the  i s dominated  Floristic  completely  differentiation  each Is a s s i g n e d  the  stantis  a  are  of  the  subunits  subassocla-  Vascular  Carex stans  bryophytes  two  s t a t u s of a  system of Braun-Blanquet.  C rlcetum  by  plants  absolute  nant, Erlophorum a n g u s t l f o l l u m , P e d i c u l a r i s s u d e t l c a , Saxifraga hirculus. Meesla  trifarla  Subassociation This unit  lowlands.  It.is  ( p l o t s 27  and  (Cs  or  -  cs)  t h e most h y d r i c  either  at  65,  67).  ing  the  driest  immediately  below o u t l e t  These l o c a t i o n s a r e summers e v i d e n c e d .  evidence  of m i c r o r e l i e f  the  terrestrial  landscape  t h e m a r g i n s o f p o n d s and  melt water passes through r a i s e d  37f  no  stantis  I t s a r e a l c o v e r a g e on  found  28)  and  43).  a  caricetosum  limited.  with  (T b.  domi-  and  Clnclldlum arctlcum  subassociation represents  i n the  seasonal  Bryophytes are  which  covered The  channels  is lakes  where  beach areas  (plots  w i t h water even  ground s u r f a c e  or patterned  ground  dur-  is flat  features  49).  (Fig.  Floristlcally here  the u n i t  of  any  considered  by  o n l y 6 s p e c i e s , 5 of  dominates the ficance  o f 7.4  characteristic  i s the p o o r e s t  (Tab. 3 6 ) . which are  herbaceous  The  i n species  vegetation  bryophytes.  strata with  an a v e r a g e  (50-75 percent  cover).  species of  subassociation.  the  diversity  i s dominated  Carex  stans  species  S a x i f r a g a cernua  signiis a  157  36  Table  Caricetum s t a n t i s Subass. - caricetosum PLOT HO. DATE ANALYSED HERBACOUS COVER # MOSS COVER # LICHEN COVER f> TOTAL SPECIES NO. PLOT SIZE  27 8/V67 85 95 »  stantis  37 8/2V67  8/10/68  8/12/68  15#  23  • 19  • 19  75 95  85 95 •  2  65  67  28 8/4/67  50 95  70 95  PRESUMED CHARACTERISTIC COMBINATION OF SPECIES  (AVE. SPECIES) PRESENCE SIGNIFICANCE  -ASSOCIATIONSaxifraga hirculus Pedicularis sudetica Carex stans Eriophoruo angustifolium C i n c l i d i u m arcticum Meesia t r i f a r i a  2 1 7  2 1 7  5  5  4  4  3 1 •  8  2 5 3  3  3  7  8  4 8  7  V V V V V IV V V  +  1  2.6 0.7 7.4  2.2  4.6 3.6  -SUBASSOCIATION-  1 7  7  8  6  6  Salix arctica Eriophorum scheuchzeri Polygonum viviparum Arctagrostis l a t i f o l i a Cardamine p r a t e n s i s Hippuris vulgaris S t e l l a r i a longipes Ranunculus hyperboreus Carex amblyorhyncha Saxifraga f o l i o l o s a Dupontia f i s h e r i Pleuropogon s a b i n e i Juncus biglumis Hierochloe p a u c i f l o r a Carex merabranacea Alopecurus a l p i n u s Cerastium r e g e l i i K o b r e s i a sirr.pliciuscula  2 1 . 1  2 2 1  2 2  2 2  3 +  m  2  +  •  •  •  •  Drepanocladus revolvens Mnium hymenophylloides Campylium s t e l l a t u m Orthotheciura chryseua Splachnum vasculosum Tiraraia a u s t r i a c a Haplodon w o r n s k j o l d i i Ditrichum f l e x i c a u l e Aneura pinguis L o j h o z i a rutheana  7  7  7  4  6  1  1  3 3  +  S a x i f r a g a cernua C a l l i e r g o n giganteum  +  3  3  1.5  6.8  OTHER SPECIES  1 1 #  # m  .  4  +  1  + +  #  #  2  m  2  2 m  •  #  #  5  1  1  #  6  #  4  #  +  m  + +  + •  3 1  + +  3 1  +  1  5 3 i  V V V IV III III III III II II II II II II II II II II  2.2 1.5 1.1 1.3  V V V III II II II II II II  6.2  0.6 0.6 0.3 0.3 0.6 0.4 0.4 0.4  0.2 0.2 0.2 0.1 0.1 0.1  4.6 1.8  0.7 0.2 0.1 0.1 0.1 0.1 0.1  The major p l a n t biomass  i s composed o f bryophytes.  A  n e a r l y s o l i d mat of moss cover l i e s beneath the herbaceous l a y e r , the b u l k o f which i s composed o f o n l y f i v e V e r t i c a l l y the mat changes  species.  from a s u r f a c e l a y e r o f l i v e  material  to a dark l a y e r o f undecomposed moss which grades i n t o the organic s o i l surface.  The depth o f t h i s mat appears  a t any s i n g l e l o c a l i t y .  variable  The deepest s i n g l e mat measured was  a t p l o t 3 7 where a melt stream channel exposed the v e r t i c a l p r o f i l e o f the mat to the base o f the streambed.  Here measure-  ments o f 1 3 inches o f undecomposed mosses were noted and i t i s suspected t h a t t h i s may be deeper l n some l o c a t i o n s . The p r i n c i p a l s p e c i e s of the bryophyte s t r a t a a r e Drepanocladus r e v o l v e n s , C i n c l l d l u m a r c t i c u m , Meesia C a l l l e r g o n glganteum and Mnium hymenophylloldes. glganteum  trlfarla,  Calllergon  Is a c h a r a c t e r i s t i c o f the s u b a s s o c i a t i o n .  As was  mentioned p r e v i o u s l y , t h r e e o f these genera a r e o r d e r c h a r a c t e r i s t i c s p e c i e s i n European c l a s s i f i c a t i o n  listings.  As i s expected from s u r f a c e c o n d i t i o n s , both r a t e and depth of thaw o f the a c t i v e l a y e r a r e reduced i n r e l a t i o n t o the mesic units previously described  (Fig. 5 D «  T o t a l thaw depth never  exceeded 1 2 inches i n f i v e s i t e s where s o i l e x c a v a t i o n s were made and on one p l o t  ( 3 7 ) where p r e m a f r o s t probes were l o c a t e d  d u r i n g both 1 9 6 8 and 1 9 6 9 , thawing d i d n o t exceed 1 0 Inches.  S u b a s s o c i a t i o n c a r i c e t o s u m membranacel (Cs - cm) The c a r i c e t o s u m membranacel i s the most commonly encountered s u b a s s o c i a t i o n o f the Caricetum s t a n t i s .  I t i s immediately  159 37  Table  Caricetum  stantis  caricetosum PLOT NO. DATE ANALYSED HERBACOUS COVER % MOSS COVER * LICHEN COVER % TOTAL SPECIES NO. PLOT SIZE  23  7/2V67  75 75  «il  2*  59  8/6/68 85 75  «»1 30  75  61 8/8/68 80  27  1 5* 2  60 8/10/68 60 <1  55  membranacei  62 8/8/68  63 8/10/68  75  75  60  62  <\ 27  ol  43  73  8/20/68 60 35  -*1 27  PRESUMED CHARACTERISTIC COMBINATION OF SPECIES  (AVE. PRESENCE  -ASSOCIATIONCarex stans Saxifraga hirculus Pedicularis sudetica Eriophorum a n g u s t i f o l i u m Cinclidium arcticum Meeaia t r i f a r i a  8 2 2 2 6 4  7 2 2 1 4 4  5  5  +  •  4 2 1  5  1 2 3 3 3  7 2 2 4  8 2 2  5  •  8 2 2 2  5  4  4  ?  4  5 3  4  »SUBASSOCIATION-. C a r e x membranacea Equisetum variegatum Melandriura apetalum Orthotheciura chryseum Catoacopiura n i g r i t u m Tonenthypnum n i t e n s Pogonatura a l p i n u m Aulacomnium t u r g i d u m  2 6 +  •  1 #  6 4  5  5  1  +  5  4  •  4 4 2 2  4  4  4  3  2  3 3 3  2 1  ,  3  3  2  1 4 4 4 2 2  4  4  5  4 1 3  V  2 2 4  V V  rv  3  V V  .  5  4 4  2 •  SPECIES) SIGNIFICANCE  6.8 1.8 2.0 1.7 3.9  4.0  V V IV V V V V IV  4.1 2.3 0.6 5.1 3.5 2.7 2.0 1.3  V V V V  4.1 2.3 1.8 1.8 0.9 0.6 1.3 0.7 0.6 0.5 0.3 0.2 0.6 0.3 0.3 0.3 0.2 0.1 0.3 0.1 0.1  OTHER S P E C I E S S a l i x arctrica Polygonum v i v i p a r u m Carex mi3andra Arctagroetis l a t i f o l i a Draba l a c t e a Pedicularis hirsuta Dryas i n t e g r i f o l i a Eriophorum scheuchzeri Juncus b i g l u n i s Saxifraga f o l i o l o s a Saxifraga oppositifolia S t e l l a r i a longipes Eriophorum t r i s t e Luzula arctica Dupontia f i s h e r i Pedicularis capitate Cerastiuni r e g e l i i Minuartia r o s s i i Equisetum arvense Braya purpurascens Cardamine b e l l i d i f o l i a S a x i f r a g a cernua Hierochloe p a u c i f l o r a Eutrema edwardsii Drepanocladus revolvens Hnium b y m e n o p h y l l o i d e 3 Campylium s t e l l a t u m C a l l i e r g o n giganteum Ditrichum f l e x i c a u l e Diatlchium capillaceum Aneura p i n g u i s P b i l o n o t i s fontana Oticophorus w a h l e n t o r g i i Haplodon v o r m s k j o l d i i Tetraplodon mnioides Calliergon trifarium Meaoptychia s e h l b e r g i i Myurella tenerrima Myurella julacea Tortula ruralie Brachytheciua albicans Bracfcythecium turgidum Blcpharostoma trichophyllum P o h l i a cruda  l a n t h o r i a elegans Cladonia pyxidata Lecanora epibryon  4  2 2 4  •  3  2 1 1 1  2 1 2  +  2 2 2  .  +  1 3 1 1 1 3 2 1 1  + +  3  .  •  • •  •  • •  •  +  +  +  •  • •  «  •  •  •  *  5  4  3 2 + + + •  4  3  4  • • • • • • • •  •  •  • • • •  .  rv  1 2  IV  in in in in in in ii ii  +  1  +  1 1 1  +  •  5 3 3 1  +  1  • • • • • • •  -  3 3 3 2 1 3  . a  1 •  +  5 1 3 2 +  • •  +  • 4  3  i i i i i i  • •  • •  5  V V  3  rv in in in  i i  + +  3 3 •  II II II II  1  #  •  5  1  +  • • 5 3 3 3 • • • • •  3 6 •  + +  . 1  2 1 •  2 1  II  B m  i  •  1  i  +  +  • •  • •  >  + +  m  •  •  m  + +  1 •  9  •  •  • •  i i i i i i i i i I  i i i in i i  4.7  2.9 2.7 1.0 0.3 0.3 0.1 0.4 0.4 0.3 0.1 0.1 0.1 _  _ _ _ _  -  0.4 0.1 0.1  Fig.  48  Emerging beach r i d g e on the west coast of the Basecamp lowland. lagoon forming on backshore o u t l e t channel i n the  Note  and  foreground.  160  Cs Fig. 49  caricetosum s t a n t i s .  Note the f l a t  appearance o f the s u r f a c e . show boundaries Aug.  F i g . 50  4,  of p l o t 2 7  Strings (photo  1967).  caricetosum membranacel  (plot 6 3 ) .  Note the d i s t i n c t i v e m l c r o r e l l e f contrasted 1968).  as  to the above (photo Aug. 9 ,  161  F i g . 51  A c t i v e l a y e r development ( i n c h e s ) w i t h time, caricetosum  stantis  ( s i t e not i n c l u d e d i n d e s c r i b e d releves).  Above 1968, below 1 9 6 9 .  163 distinguished relief over  similar  from  t h e c a r i c e t o s u m s t a n t i s Tby p r o n o u n c e d  l n p a t t e r n t o the " s t r i n g bogs" found  the K e l l e t t  soils  of northwestern  and D o u g l a s  1964).  extensively  i n shape a n d s i z e  Banks I s l a n d  developed (Tedrow  These e l e v a t e d hummock-like a r e a s 5 0 , 5%»  micro-  vary  53).  Some a r e  r o u g h l y h e m i s p h e r i c a l , many a r e e l o n g a t e andL f o r m  s h o r t low  ridge-like  systems.  There  (Figs.  appears  t o be no p a r t i c u l a r  direction  i n which these forms l i e . The seasons  unit  i n general i s a hydric  one, a l t h o u g h d u r i n g d r y  t h e s u r f a c e a r e a s b e t w e e n hummocks  may be f r e e  from  s t a n d i n g water o f any a p p r e c i a b l e depth.  During periods of  normal  the raised  s u r f a c e r u n - o f f and p r e c i p i t a t i o n ,  53)*  above t h e s t a n d i n g w a t e r o f t h e d e p r e s s i o n s ((Fig. ln  the d r i e s t  at  least  are  f r e e o f snow e a r l i e r  snow m e l t .  similar  (Tab. 3 7 ) .  f o r colonization of plants  pattern i s reflected  While  total  herbaceous*  significantly  and f r e q u e n t l y  areas  both  (Fig. 54).  l n vegetation  ©over  to the s u b a s s o c i a t i o n caricetosum sfcantls  decreases noted  surface r e l i e f  The (elevated p o r t i o n s  than the d e p r e s s i o n s , p r o v i d i n g  warmer a n d d r i e r m i c r o s i t e s  analysis  Even  y e a r s t h e low p o i n t s a r e no doiubt s a t u r a t e d f o r  a s h o r t time a f t e r  This  areas l i e  remains t h e moss  cover  o f raw humus a r e  on the s u r f a c e . The  species composition also  cernua and C a l l l e r g o n most c a s e s a s e c o n d co-dominating  glganteum  are reduced  sedge s p e c i e s ,  w i t h C. s t a n s .  changes m a r k e d l y .  Carex  Saxifraga  I n importance.  mensibranacea  I n a d d i t i o n a group  In  i s found  o f m e s i c and  wet  mesic  s p e c i e s a r e now p r e s e n t w h i c h were a b s e n t o r p r e s e n t  only rarely  l n the subassociation  caricetosum stantis.  include Equisetum varlegatum (very reduced forms), apetalum,  Carex mlsandra, P e d l c u l a r l s  chryseum.  Tomenthypnum n l t e n s ,  turgidum and Catoscopium  Other mesic  to both u n i t s  increase  Sallx  and Polygonum v l v l p a r u m .  arctica  significance  are found as expected, e i t h e r on,  Melandrlum  Orthotheclum  Pogonatum a l p l n u m ,  nlgrltum.  their  hlrsuta,  Aulacomnlum  species  t o , o r most  species frequently  t h e e l e v a t e d p o r t i o n s o f t h e l a n d s c a p e where t h e e n v i r o n m e n t  shifts  t o a warmer a n d d r i e r  Active  situation.  l a y e r development  h e r e was m e a s u r e d f r o m b o t h 55 and 5 6 ) .  v a t e d and d e p r e s s e d l o c a t i o n s  (Figs.  curves o f the subassociatlons  c a r i c e t o s u m s t a n t i s and  c a r i c e t o s u m m e m b r a n a c e l show  nearly  depths  i n curves from d e p r e s s i o n  measured from e l e v a t e d depth f o r the u n i t Soils  locations  Identical  locations. increases  Tedrow a n d C a n t l o n 1 9 5 8 ; D o u g l a s  chief  pedogenlc process involved  temperature g l e i z a t i o n .  Depth  o f thaw  the average  thaw  acidic  i n t h e Meadow et a l .  a n d Tedrow i 9 6 0 ) .  i n Tundra  soil  conditions a t the surface soils  a l . 1958).  profile  Idealized  a s u r f a c e h o r i z o n o f dark, p a r t i a l l y  The  formationi s  S m a l l amounts o f l e a c h i n g  although e x t e n s i v e areas o f Tundra et  thaw r a t e s a n d  ( T a b . 3 8 ) (Tedrow  b y Tedrow  1958;  (Tedrow  Superimposing  of the Caricetum s t a n t i s are c l a s s i f i e d  produce weakly  ele-  as a whole.  Tundra g r o u p i n g d e s c r i b e d  low  common  v a l u e s here, e.g.  Most o f t h e s e  restricted  These  generally  horizons  are highly  calcareous  morphology  humified organic  includes matter  Table  38  Caricetum s t a n t i s - S o i l s caricetosum PLOT NO. DATE SAMPLED DEPTH TO FROZEN MATERIAL ( i n c h e s ) SOIL CLASSIFICATION  stantis  caricetosum membranacei 2J 8/19/68 13.5  59 8/6/68 U.5  0-12 5YR2/2 5YR2/1 4.4 4.4 53.0 5.57 12  0-6 5YR2/2 5YR2/1 6.7 7.6 21.3 3.40 18  0-12 5YR2/2 5YR2/1 5.9 6.8 23.7 5.02 19  0-8 5YR2/2 5YR2/1 5.0 5.6 16.0 5.82 16  .28 8.2 18.7 1.2 28.4  NM • NM NM NM  .16 20.6 13.5 .54 34.8  .28 17.4 9.2 .58 27.5  Cg 2-20 2.5Y6/2 2.5Y4/2 7-5 8.1  Cg 0-12 5Y5/5 5Y4/1 7.5 7.8 69.6 27.0 5.4 5.3 0.05 0  Cg 0-8 2.5Y5/4 5Y4/2 7.0 7.9 75.4 17.2 7.4 1.4 0.10 5  27 8/4/67 12  28 37 65 67 8/11/68 8/10/68 8/10/68 8/12/68 12 9 9 12 .Meadow Tundra....................  0-6 10YR2/2 10YR2/1 5.4 6.7 21.2 4.37 18  0-4 10YR3/2 10YS2/1 6.7 7.6 19.5 6.15 6  0-8.5 5YR2/2 5YR2/1 5.2 5.9 51.5 4.80 9  0-9 5YR2/2 5YR2/1 5.7 6.4 15.5 4.91 12  .22 17.2 9.8 .52 27.7  .24 17.6 16.0 .40 54.2  .28 10.6 9.2 .54 20.6  .18 19.2 13.7 .58 35.7  •  60 8/6/68 8  61 62 • 8/8/68 8/8/68 10 14 Meadow Tundra  6? 73 8/10/68 8/20/68 9 9 • .••••••»••••  PHYSICAL/CHEMICAL ANALYSIS Horizon I .depth ( i n c h e s ) c o l o r , dry c o l o r , wet pH (CaCl,) pH ( H , o r carbon % nitrogen % t o t a l P p.p.m. 1  Exchangeable K Ca Mg Na  depth color, dry c o l o r , wet pH ( C a C l ) pH (H-,0) sand % silt i clay % carbon nitrogen P Exchangeable C a t i o n s 1  ?  Sum  Cs 6-12 2.5Y5/2 5Y4/1 6.5 7.7 NM NM NM 6.0 0.71 5  Cg 4-12 • 2.5Y5/2 5Y4/1 7.3' 8.0 62.2 16.2 21.6 5.1 0.51 2  Cs 12+ 2.5Y6/2 5Y4/1 7.0 8.0 57.4 45.0 17.6 5.0 0.28 2  .18 7.5 5.8 .19 15.7  .21 7.4 7.5 .25 15.1  .20 4.3 5-5 .32 10.3  'Horizon boundaries i n a l l cases very wavy. g l e y m a t e r i a l s o f t e n were at the s i i r f a c e .  j  0-9 5YR2/2 5YR2/1 5.0 5.5 20.2 4.03 19  0-9 5YR2/2 5YR2/1 6.9 7.2 51.1 5.50 25  -.48 19.8 13.0 .56 33.8  .34 20.2 14.8 .66 36.0  .20 10.5 8.7. .48 19.9  .51 56.2 19.8 .46 56.8  Cg 0-10 2.5Y4/4 2.5Y4/2 6.7 7.5 78.2 14.4 7.4 1.1 0.15 5  0-9+ 2.5Y6/4 5Y4/1 7.5 7.9 55.8 58.6 5.6 5.2 0.12 2  3  (b) 5YR2/2 5YR2/1 5.6 6.1 14.3 2.80 24  C a t i o n s Me/100 gm  orizon II  K Ca Mg Na  0-14 5YR2/2 5YR2/1 6.4 7.5 50.4 1.31 22  0-10 5YR2/2 5YR2/1 6.3 6.8 31.8 5.76 . 15  In interhummock p o s i t i o n s  'Not sampled as below permafrost t a b l e — m o s t l i k e l y present throughout a l l examples o f these a s s o c i a t i o n s . '(a) S o i l from hummock p o s i t i o n , see (b) f o r comparitive s o i l from i n t e r hummock a r e a .  2.5 0.12 4 NM NM NM NM  .06 2.2 3.4 .17 5.8  .06 2.7 3.0 .14 5.9  .04 2.1 2.1 .15 4.4  Cg  .06 3.4 4.8 .14 8.4  Cg 9-12 10YR4/3 5YR2/2 6.5 7.5 NM NM NM 2.2 0.55 0 .06 2.8 2.0 .15 5.0  .06 18.2 9.7 .54 28.5  P i g . 5-2  Fig.  53  (Left)  Ecotone o f the subassociations  caricetosum  stantis  and  membranacei  ( p h o t o Aug. 11,  Hummock a n d d e p r e s s i o n the  subassociation  membranacei. saturated during  periods  ( p h o t o J u l y 19,  1968).  topography of  caricetosum  Depressions  throughout  caricetosum  remain  the season  o f normal  1969).  run-off  166  Fig. 54  Early  emergence  snowpack  from  results  the winter  i n warmer,  drier  e n v i r o n m e n t s f o r hummocks o f t h e subassociation membranacel  caricetosum  (photo  June 2 0 ,  19&9)*  1 6 7  Fig*  55  Active  layer  locations  d e v e l o p m e n t a t two  o f the subassociation  m e m b r a n a c e l d u r i n g 19&9not  included  i n analysis.  Above  caricetosum plot  Below  plot 73T = measurements  from  5 probes  i n hummock  locations. F  = measurements  from 5 probes  locations. A = mean o f a l l ( 1 0 ) p r o b e s .  i n depression  168  F i g . 56  Active  l a y e r development  i n meadow  of p l o t 3 7 .  subassociation  caricetosum  stantis.  30i  20,  170 overlying gleyed subsurface which a r e g e n e r a l l y grey Tedrow e t  of s i l t  or olive  are divided  the extremes o f a catena.  into  Upland  two s u b g r o u p s w h i c h Tundra s o i l s As a r e s u l t  o x i d a t i o n a r e more f a v o r a b l e a n d s o i l  the wetter  Tundra s o i l s Organic  Surface than  o c c u p y t h e most h y d r i c p o r t i o n s o f t h e c a t e n a . i n surface horizons i siilgher.  grey  or blue-grey  but three o f the s o i l s  i nlittle  o f the Caricetum Plots  l a y e r depths  I t I s so u n l i k e l y  organic s o i l s  t h e Meadow T u n d r a  that  to depth,  stantis  these  that  the water t a b l e  was  included i n  l a y a t o r near  a l l c a s e s was f r o m  28.  sampling  they have been  in  plot  because  three locations are  t h e ground, making e x c a v a t i o n s o f p i t s  beneath  show  3?» 6 5 and 63 l a c k  to which  of  F i g . 57  mottling  category.  At a l l locations  layer.  Reducing  colors.  38).  (Tab.  l i e below t h e a c t i v e  fully  here  I n c o n t r a s t , Meadow  c h a r a c t e r i s t i c u n d e r l y i n g g l e y h o r i z o n s most l i k e l y  limited.  i n the  conditions f o r  a r e g e n e r a l l y lower  p o r t i o n s o f the catena.  meadow t u n d r a p r o f i l e s  they  occupy  horizons are frequently  i n subsurface horizons r e s u l t s  prominent All  o f organic matter  accumulation  conditions and  develop  o r c o l o r e d h e a v i l y w i t h y e l l o w s o r browns.  concentrations at  loam t e x t u r e (Tedrow 1 9 6 8 ;  brown i n c o l o r  p o r t i o n s o f the landscape.  mottled  or silt  a l . 1958).  Tundra s o i l s  drier  soils  impossible.  b l o c k s c u t a n d removed, f r o m  shows s u c h a b l o c k  the surface Sampling  the a c t i v e  i n a Meadow T u n d r a  soil  171 A l l s u r f a c e h o r i z o n s are h i g h i n carbon and n i t r o g e n and are c l e a r l y humic h o r i z o n s .  S u r f a c e r e a c t i o n i s weakly  acidic  to a c i d i c , or i n some measurements i n water, n e u t r a l .  The  c a l c a r e o u s n a t u r e of the s u b s u r f a c e h o r i z o n s i n d i c a t e s  that  bases must be f l u s h e d from the s u r f a c e p e r i o d i c a l l y , p r o b a b l y during spring run-off.  The humic h o r i z o n s of the c a r i c e t o s u m  membranacei a r e v a r i a b l e i n depth ( 6 to 14 i n c h e s ) and are most deeply developed beneath the hummock-like e l e v a t e d a r e a s .  Figs.  5 8 - 6 0 i l l u s t r a t e the i n t e r a c t i o n t h a t microtopography, v e g e t a t i o n and moisture c o n d i t i o n s have on the development Tundra s o i l s . was  o f these Meadow  Both samples were taken from p l o t 6 l .  One  taken from the c e n t e r of a w e l l - d e v e l o p e d e l e v a t e d  block  ridge-like  l o c a t i o n ( F i g . 5 8 ) , the second from a d e p r e s s i o n w i t h s t a n d i n g water on the s u r f a c e ( F i g . 5 9 ) . Fig. 60 .  The two b l o c k s are shown i n  Beneath the r i d g e the humic s u r f a c e h o r i z o n extends  to the base of the a c t i v e l a y e r .  In the d e p r e s s i o n the humic  h o r i z o n i s merely fragmentary and the g l e y e d s i l t s of the normal s u b s u r f a c e s o i l s l i e d i r e c t l y beneath the immediate  surface.  While i n much of the a r e a a more normal h o r i z o n sequence i s maintained, t h i s does demonstrate how  sharply s o i l  types may  change i n response to m i c r o t o p o g r a p h i c and v e g e t a t i o n a l influences. Comparative p h y s i c a l and chemical a n a l y s i s from two humic h o r i z o n s from each l o c a t i o n were a l s o undertaken w i t h samples from p l o t 7 3 (see Tab. 3 8 ) .  S o i l s from the d e p r e s s i o n s were  d i s t i n c t l y more a c i d i c , had lower l e v e l s o f both carbon and n i t r o g e n , and were lower i n amounts of a l l exchangeable  cations.  172 Here a s i n g l e properties  soil  h o r i z o n i s seen  depending  to acquire q u i t e  upon i t s p o i n t  o f o r i g i n w i t h the c o e n o s i s .  Subsurface horizons are a l l l i g h t ( T a b . 38)  Mechanical analysis and  lower, but Both  significant,  subsurface s o i l s  percentages from  membranacel,  however, 60).  being r e s t r i c t e d  c o n g e l i t u r b a t i o n was Soil of  those measured  soils may  may  remain  remain  i n 1968  1  level,  inch  paring  o r 19&9  level  No  I969  one  of the  coldest  of only nine inches,  thawing Soil  d u r i n g some  was  seasons  shows s i m i l a r 16  temperatures  at  with other units.  temperatures  and  15  recorded at  comparison  - D r y a d o - A l e c t o r i e t u m shows o n l y s l i g h t l y  surface  temperatures  Com-  a t the with  the  1  the  colder  here.  of s i m i l a r  situations  extend a t l e a s t  localities  i n C a n a d a and  Greenland,  Tedrow  as:  evidenced,  active  Nardino  p h y t c g e o c o e n o s l s may  (compare  measurements w i t h t h e T e t r a g o n o  from J u l y 4 to August  Descriptions  were  the c a r i c e t o s u m  No  t o be  mid-August and  measurements.  Dryadetum i n t e g r l f o l i a e inch  A t depths  frozen.  silt  location.  however, a r e c o m p a r a b l e  f o r example,  from  occasionally  show t h e s e s o i l s  frozen u n t i l  of  clay.  channels.  i n any  (Tab. 4 4 ) .  continually  inches  to root  apparent  temperatures  fine textured.  darker colors  m o t t l i n g was  primarily  of  Soils  showed s l i g h t l y  Slight  and  the c a r i c e t o s u m s t a n t i s  evidence of mottling.  5 7 and  colored  i n d i c a t e s high percentages  g r e y w i t h no  Pigs.  distinctive  (1968)  Greenland.  Indicate  that  this  through other high In I n g e l f l e l d  arctic  land,  d e s c r i b e s a s i n g l e Meadow T u n d r a  site  Cs - c s Fig.  57  G l e y s o l i c Meadow T u n d r a s o i l 28.  Note  subsurface oxidation  the b l u e - g r e y horizons mottles.  color  and l a c k  of plot o f the of  173  Cs - cm Figs.  58 ( L e f t )  59.  S i t e s of sampling of shown i n F i g . 6 0 .  soil  blocks  that  a portion  lies  above  while  o f t h e hummock s y s t e m  the water  i n depression  water t a b l e Note a l s o  lies  table  ( F i g . 5Q)  locations  a t the ground  the v a r i a t i o n s  c o v e r on the  Note  surface.  the surface.  i n herbaceous  174  Cs Fig.  60  Soil  blocks  locations 59).  - cm  f r o m hummock a n d d e p r e s s i o n  at plot  6 l (see F i g s .  Compare t h e r e d d i s h  block with that  cast  shown I n F i g .  58 and on t h i s  57•  176 S i m i l a r t o Upland Tundra s o i l s b u t . . . occupying wetter p o s i t i o n s . Vegetation c o n s i s t s o f Carex s t a n s and A r c t a g r o s t l s l a t i f o l i a , w i t h t h e hummocks c o l o n i z e d Dryas and C l a d o n l a . A  strikingly  similar unit  i s d e s c r i b e d by B r a s s a r d on E l l e s m e r e  Island: The f l a t p e r m a n e n t l y wet a r e a s a r e always dominated by sedges, m a i n l y Carex s t a n s and Eriophorum s p e c i e s , and a q u a t i c mosses s u c h as D r e p a n o c l a d u s s p e c i e s and C a l l l e r g o n g l g a n t e u m . . . I n most o f t h e s e wet meadows t h e p l a n t c o v e r i s 100$, w i t h t h e mosses m a k i n g up h a l f o f t h e p l a n t cover. Many o f t h e l a r g e r f l a t w e t l a n d s have one o r more p o n d s , w h i c h do n o t d r y out d u r i n g the growing season. T h e number of species found i n t h i s h a b i t a t i s u s u a l l y r a t h e r low, b u t s p e c i e s t h a t a r e p r e s e n t a r e abundant. Some o f t h e T a n q u a r y a r e a species r e s t r i c t e d to this habitat are P e d l c u l a r l s s u d e t l c a , Melandrlum apetalum ssp. arctloum, Saxifraga h l r c u l u s v a r . proplnqua, S a x i f r a g a f o l l o l o s a and Juncus albescens. T h e r e c a n be l i t t l e this  i s Identical  doubt from the above  to the Caricetum s t a n t i s  descriptions  described  that  f r o m Devon  Island. E x t e n s i v e C a r e x s t a n s meadows a r e a l s o known t o o c c u r o n nearby Bathurst  Island  a s w e l l a s Banks I s l a n d The is  personal  (V. J . K r a j i n a ,  communication),  personal  communication).  i m p o r t a n c e o f t h e s e meadows t o t h e l o w l a n d e c o s y s t e m s  a t present  i n a d e q u a t e l y known.  q u e s t i o n s as t h e growth utilization plants  ( S . MacDonald,  Answers t o such i m p o r t a n t  of plants  l n c o l d wet s o i l s ,  meadow  by a n i m a l p o p u l a t i o n s  and t h e p h y s i o l o g y  o f meadow  i n extreme  environments w i l l  study of these areas.  no d o u b t depend  on f u r t h e r  177 I n summary, t h e s u b a s s o c i a t i o n  caricetosum stantis  Is the  most w i d e s p r e a d p h y t o g e o c o e n o s i s o f t h e l o w l a n d e c o s y s t e m . forms  In cold  imparts system  t h e c h a r a c t e r o f a wet  i t s d o m i n a n c e on t h e l a n d s c a p e  g r a m i n o i d meadow t o t h e l o w l a n d  i n general.  Two the  h y d r l c h a b i t a t s and  It  subassociatlons  caricetosum stantis  (sensu Braun-Blanquet) and  f o r m e r i s t h e more h y d r i c and o u t l e t predictably species,  Carex  stans,  recognized:  the c a r i c e t o s u m membranacei.  subunit,  channels or run-off saturated.  are  The  o c c u r r i n g a t pond  The  margins  streams; environments which  vegetation  i s dominated  Clnclldium arctlcum,  Meesla  are  by o n l y s i x  trlfaria,  D r e p a n o c l a d u s r e v o l v e n s and Mnium h y m e n o p h y l l o i d e s . The in  latter  s u b u n i t o c c u r s where d i s t i n c t i v e  the form o f e l e v a t e d  z a t i o n o f more m e s i c with  Carex The  species.  C a r e x membranacea  soils.  shallow.  n o t e d a t any  occurs predictably  Active No  layer  other high a r c t i c  Greenland.  The  development  over  gleysollc  here  I n d i c a t i o n of Intensive  i s slow  and  congellturba-  site.  I t appears from the l i t e r a t u r e in  co-dominates  stans.  Meadow T u n d r a  t i o n was  hummocks and r i d g e s p r o v i d e f o r c o l o n i -  Caricetum s t a n t i s  thaw d e p t h s  microrelief  locations  that  this  c o e n o s i s may  In both N o r t h America  occur  and  i m p o r t a n c e o f t h e s e c o l d meadows t o t h e biome  h a s y e t t o be e v a l u a t e d .  1?8 VI.  Petasitetalia  frigidi  T h i s o r d e r was first The  time  unit  by  L a m b e r t and  of  the S a l i c e t u m  counterpart  the  single  order  is  At present  As  that this  more  infor-  order  will  however t h e r e r e m a i n s  i n the European or A s i a n r e g i o n s  common f e a t u r e s w h i c h f o r t h e p r e s e n t  p h i l o u s and constancy  Arctic  of l i m i t e d d i s t r i b u t i o n .  both  chamissonis  associations).  i s so d o m i n a t e d by  i t out as  One  Salicetum  t h i s grass  nodal  (snow c o v e r  salicosum  stratified  chamissonis  month e a r l i e r ) , by  developing  as  r e g i m e w h i c h i s wet semi-terrestrial  but  never f u l l y  communities.  The  IV  Salicetum  and  has  latifoliae).  thawing as  estimated  over  wind-blown s e d i m e n t a t i o n  high  t h a t Lambert  late  order.  chlono-  V and  the  a variant (arctagrostidosum being not  will  associations ln  r e l e v e of  T h i s v a r i a n t i s r e p o r t e d as  is  species with  Is A r c t a g r o s t l s l a t l f o l i a (Constancy  throughout  a b o u t one  the o r d e r  One  w h i c h u n i t e s L a m b e r t ' s two  order  separated  C a n a d i a n W e s t e r n Low  no  and  to u n i t e v a r i o u s communities d e s c r i b e d w i t h i n the In the  this  Salicetum  frlgldl.  i t is unlikely  r e m a i n so h e t e r o g e n e o u s .  serve  and  to the  are recognized.7.  chamissonis  certain  Arctic.  i n turn belong That  the  f r o m L a m b e r t ' s comments / s i x v a r i a t i o n s  m a t i o n becomes a v a i l a b l e  there e x i s t  for  i n t h e Low  h i s Salicetum pulchrae  - Petasition  i s apparent  described  Krajina (1968)  a s s o c i a t i o n s which  alliance Equiseto  Krajina  described, with q u a l i f i c a t i o n s ,  groups together  chamissonis  variable  ( P f ) L a m b e r t and  t o be  the gone  fine-textured soils having  waterlogged above t h r e e  as  a  moisture i n the  true  c o n d i t i o n s are  179 strikingly  s i m i l a r to the A r c t a g r o s t l s  munities o f the present For  study as w i l l  t h e s e r e a s o n s t h e n we have  Sallx  d o m i n a t e d meadow combe shown f u r t h e r o n .  tentatively placed  d o m i n a t e d meadow c o m m u n i t i e s  the A r c t a g r o s t l s  into the P e t a s i t e t a l i a  frigid!. One  a l l i a n c e i s recognized  o n Devon:  Arctagrostidion  latifoliae.  6.  Arctagrostidion Arctagrostls  latifoliae  latlfolla  (Al) Barrett  i s a stoloniferous  ubiquitous  i n meadow v e g e t a t i o n  tribution  ( P o r s i l d 1957; Polunin  it  of n e a r l y eastern  1959)•  arctic,  latlfolla tions  Polunin  (1948)  centered  i s also  i n t h e Devon I s l a n d  l e a s t three  described  from  environmental  Arctagrostls  i n the Canadian  s e d g e meadows a n d t h e Arctagrostls  area.  importance  of t h i s species i n  - S a l l x dominated a s s o c i a t i o n s  the North American a r c t i c similarity  i t a s a component  component o f a t l e a s t two a s s o c i a -  lowland  Because o f the d i s t i n c t i v e  previously  communities from the  icewedge p o l y g o n s .  an important  in dis-  As mentioned  mentions  p a r t i c u l a r l y marsh-like  grass which i s  clrcumpolar  e v e r y meadow community e x a m i n e d  more m e s i c h i g h  at  and f u l l y  i s an important element o f d e s c r i b e d  w e s t e r n low a r c t i c .  and K r a j i n a  between t h e s e ,  now  and because o f the a new o r d e r  i s here  o tentatively of  proposed,  the a r c t a g r o s t i d i o n  c h a r a c t e r i s t i c species  more d a t a a r e r e c e i v e d communities.  latifoliae.  o f t h e o r d e r must be d e f e r r e d  on the p h y t o s o c l o l o g y  of a r c t i c  A  choice until  meadow  -  180 One a s s o c i a t i o n o f t h e a l l i a n c e study  (8)  area:  Erlophoro  Eriophoro Al)  - Salico  Barrett  - Arctagrostldetum  - Arctagrostldetum  Erlophoro  - Salico  stantis.  The e c o t o n a l b o u n d a r i e s  the greener  Caricetum  tion  to that found  (Lambert developed isolated  1968).  the u n i t as a whole. the lowland  studied,  While  an e x t e n s i v e p a t t e r n i s not extensively  In addition  bands d e v e l o p i n g  to the f o u r  u n i t s were f r e q u e n t l y n o t e d i n mesic l o c a l i t i e s  stantis. vegetation of this unit  Caricetum  stantis.  In response  the  bryophyte  cover  notable reversal  i s most s i m i l a r to a d r i e r  decreases  to that of the  environment,  significantly  as  between t h e  Caricetum  Vascular p l a n t cover,  over  localities  - Dryadetum o f t h e beach s l o p e s a n d t h e h y d r i c  total  situa-  developed  Tetragono  The  a  6 l and 6 2 ) w h i c h o c c u r i n  (Figs.  forming  however, f r a g m e n t a r y  transitional  (Fig. 6 l ) .  i s often not saturated, a  The c o e n o s i s  system.  contrasts sharply  s u r f a c e f r e q u e n t l y shows w e a k l y  circles  spots r a t h e r than  s i n c e the  i n the Mackenzie D e l t a r e g i o n  The g r o u n d  non-sorted  latifoliae  are d i s t i n c t i v e  s t a n t i s meadows  the s u r f a c e here  similar  (E - S -  among t h e C a r i c e t u m  c o l o r a t i o n o f the dominant A r c t a g r o s t l s  hydrlc unit,  in  latifoliae  - Arctagrostldetum  occurs as s m a l l mosaic patches  with  latifoliae  T a b . 3 9 - 40  6k  generally  purple  l n the  and K r a j i n a  61 -  Figs. The  - Salico  i s recognized  (Tab.  however, 39)•  f o r t h e most p a r t r e m a i n s h i g h w i t h a  i n the s i g n i f i c a n c e  values o f Arctagrostls  181  Table  39  Eriophoro-Salico-Arctagrostidetum PLOT NO. DATE ANALYSED HERBACOUS COVER % MOSS COVER % LICHEN COVER <f> TOTAL SPECIES NO. PLOT SIZE PROPOSED CHARACTERISTIC COMBINATION OF SPECIES Arctagrostis l a t i f o l i a Eriophorum t r i s t e Eutrema edWardsii Dupontia f i s h e r i OTHER SPECIES Salix arctica Carex misandra Carex stans Polygonum viviparum Dryas i n t e g r i f o l i a Juncus biglumis Saxifraga o p p o s i t i f o l i a Pedicularis hirsuta Equisetum variegatum P e d i c u l a r i s sudetica Carex atrofusca Saxifraga h i r c u l u s Hierochloe p a u c i f l o r a Colpodium vahlianum Equisetum arvense Eriophorum scheuchzeri Poa h a r t z i i Melandrium apetalum Carex rupestris S t e l l a r i a longipes Draba alpina Drepanocladus revolvens Campylium stellatum Ditrichum f l e x i c a u l e Distichium capillaceum Tomethypnua nitens Mnium hymenophyllum Encalypta rhabdocarpa Tortula ruralis Orthothecium chryseum Cinclidium arcticum Hypnum bambergeri Pogonatum alpinum Timmia austriaca Encalypta c i l i a t a Aulacomnium turgidum Didymodon a s p e r i f o l i u s Myurella julacea Blepharostoma trichophyllum Aneura pinguis Xanthoria elegans Solorina saccata Mycoblastua sanguinarius Plrcynthium a s p r a t i l e Cladonia pyxidata Pertuaaria coriacea Tharanolia vermicularis Caloplaca t i r o l i e n s i s  17 7/12/67 80 30 <1 25  18 58 7/13/67 8/3/68 80 85 30 37 <il <\ 29 29 lOOm^ P  latifoliae  71 8/18/68  55 25  <1 - 28  (AVE. SPECIES) 6  2 2  •  •  5  4 4  3  +  1 1 1 2 2  4  1 3  7 5 3  6  3 1  5  4  3 3 1 2 1 1 2 1  4  2 m  .  7 3 3 3 2 1 1 2 2  •  6>4 •  V V" IV III  6.2 3.5 1.5 1.2  5  V V V V V V V V IV IV III III II II II II II II II II II  5.5 3.2  1  4 +  1  4  3 2  +  2  • « 0  m m  #  2 1  m  +  m  #  •  +  5 3 2 2  5 5 2 2 3  3 2  + •  5 3 3 2 4 2 3  5 3 2 2 5 1 +  3  2  .  1  + .  • •  •  •  +  1  + + +  1  #  +  1 +  -  .  1 1  •  m m  • • + • •  1  1  • • +  2.6  2.5 1.9 1.7 1.2 1.2 1.5 1.2 2.0 0.7 0.7 0.7 0.5 0.2 0.2  --  -  V V V V IV III III II II II II II II II II II II II II  5.0 3.5 2.3 2.0 3.3 1.0  V III III II II II II II  0.9 0.3 0.1 0.3 0.3 0.1 0.1 0.1  0.6  0.8 0.8 0.8 0.5 0.5 0.3 0.3 0.3 0.3 0.1 0.1 0.1  Table  39a  182  Eriophoro - Salico - Arctagrostldetum l a t i f o l i a e - Soils  PLOT NO. DATE SAMPLED DEPTH TO FROZEN MATERIAL (inches) SOIL CLASSIFICATION PHYSICAL/CHEMICAL ANALYSIS Horizon I depth (inches) color, dry color, wet pH (CaClp) PH ( H o r carbon % nitrogen % total P p.p.m. Exchangeable Cations Me/lOO gm K Ca Mg Na Sum 2  Horizon II depth color, drycolor, wet pH (CaClp) pH ( H 0 ) sand # silt % clay % carbon nitrogen P Exchangeable Cations K Ca Mg Na Sum 2  Horizon III depth color, dry color, wet pH (CaClp) pH ( H o r carbon nitrogen 2  17  3/14/68 22  H  0-1 0-4 5YR2/2 5YR2/1 7.5  8.0  18  8/14/68 17  0-13  5YR2/2 5YR2/1  7.4-  19.4  5.15 17  3.17  16  .38  .20  19.1  14.4  19.1 7.6  34.8  27.5  .58  .95  Cg 0-22 2.5Y6/4 2.5Y4/4 7.6 8.4 46.0 40.2 13.8 3.4 3  .07  Cg 0-17 5Y7/3 5Y6/3 7.7 8.1 48.4 33.2 18.4 4.3 .08 4  0-11  0-1 5YR2/2 10YR2/3 7.2  10YR6/3  -  7.3  7.9 5.2  21.2  3  18  .18 7.2  18.8  0.58  5.7  .16  13.2  3.53  .27  15.4  .42 34.9 Cg  2.5Y5/2 5Y4/1 7.4 8.2  2.5Y6/4 2.5Y4/4  52.0  19.2 28.8 3.2 0.5  2  .16 12.8  Np  Np  Np  -  7.7  intrusion  2.5 .21 12.3  .17  15  H  .20 6.1 3.5 .22 10.0  9.4  71 8/18/68  *  H  0-1  7.9  26.5  58  8/3/68 11  .26  8.9 3.5  1-15  7.5 8.2  51.6  36.4  12.0  4.4 .07  7 .13  5.9 2.6  .17  8.8  A^ 10-14 10YR3/1 6.6 7.5 22.4 2.46  Exchangeable Cations  * Ca MS Na Sum *See text for explanation.  '.17 14.5 16.6 #  5  31.  6 8  latlfolla to  be  and  preferential  teristic  species: (1957)  Porsild's latter E.  Carex  stans.  Two  to t h i s u n i t  v a s c u l a r s p e c i e s which have b e e n u t i l i z e d  Eutrema e d w a r d s l l and d e s c r i p t i o n of  Eriophorum  the h a b i t a t  s p e c i e s c o n t r a s t e d with those  scheuchzerl confirm i t s apparent  as  appear charac-  triste.  preference of  the  o f E . a n g u s t l f o l l u m and s e g r e g a t i o n i n the  lowland  coenoses. Notable  h e r e a r e a number o f g r a m i n o i d s .  the dominant A r c t a g r o s t l s vahllanum,  Poa  hartzll  certain releves.  The  latlfolia;  and  combination  are r e s p o n s i b l e f o r the  The  bryophyte  hydric  to mesic  unit.  The  found  on  the  All  lichens  o f the  Tundra  profile  and  Plot  58  (Fig.  result  i s composed o f s p e c i e s f o u n d none  is  characteristic  are r e s t r i c t e d  soils  of  mainly  in  this to rocks  characteristics.  At  least  of each,  sample  tentatively  a l t h o u g h a w i d e v a r i a t i o n may Profiles  12  Tundra  series  71  seen  show t h i n  grouping  as  (Tab.  i n the p r o f i l e  c o n t a m i n a t i o n , was  the e n t i r e  be  surdis39a).  o f s u b s u r f a c e o r g a n i c bands  bands were n o t e d  without  through  58 and  s u b s u r f a c e c o l o r s mentioned  the a n a l y s i s p r e s e n t e d f o r t h i s  glomerate  the  Eriophorum,  c o e n o s i s have been c l a s s i f i e d  shows a n a s t o n i s h i n g  sampling  (Carex,  in  "meadow" n a t u r e o f t h e c o e n o s i s .  c h a r a c t e r s of the Upland  6k).  of these grasses with  found here  found here  f a c e o r g a n i c h o r i z o n s and tinctive  Colpodlum  surface.  soils  as Upland in  few  component  coenoses  fisheri,  to  H l e r o c h l o e p a u c l f l o r a were f o u n d  number o f o t h e r monocot g e n e r a Juncus)  Dupontia  In a d d i t i o n  soil  profile.  impossible. represents a One  but As con-  silt-like  a  184 intrusion,  showing the  Meadow T u n d r a s o i l s , 64).  (Fig. but  The  represent  fluvial  activity.  in  a l s o n o t e d and this  l o c a t e d 10  T h i s was  in thickness.  a l l other  profile  alternate periods  7 1 a l s o showed one  Plot  inches  was  causes of  may  zon.  greyish color generally associated  inches  The  respects  very  of  sampled  unknown  flooding during  intensive  buried organic  b e n e a t h the  seemed s i m i l a r  separately  development are  distinct  h o r i z o n was  with  s u r f a c e and  dark black  horiwas  ln color  to the p r e s e n t  4  but  surface  soils. 17  Profiles  and  b e t w e e n U p l a n d and are is  very  wet  on  18  63).  excavation,  The  particularly however,  This  No  stantis All  depth of the  are  surface to  surface  18  high  soil  39a).  These of  profiles  Meadow T u n d r a  t o d e p t h and  7«7  table sites  considerably, horizons,  f o r these  reasons  types.  m a t t e r and  b e l o w pH  division  the water  Subsurface  l n organic fell  the  horizon varies  t h e weak a c i d i f i c a t i o n  distinctly  measured  noted  i n the  i n water. Caricetum  soils. soils  percentages of both s i l t  and  surface  surface  (Tab.  horizon  subsurface  concentrations  the  c a t e g o r i z e d as U p l a n d Tundra  soils  contrasts  bordering  i n comparison with  at p r o f i l e  are  Surface basic.  but  show i n t e n s i v e m o t t l i n g  both s o i l s  soils  Meadow T u n d r a c a t e g o r i e s .  generally depressed  (Fig.  represent  of  and  here are  i n the  basic clay.  c l a y o f any  materials  w e a t h e r e d o f any  are  i n r e a c t i o n and P l o t 58  profile  probably  lowland.  high  shows, the. h i g h e s t  measured the  show  i n the  study,  most i n t e n s i v e l y  Fig.  6l  The  landscape  Salico In  position  of the E r l o p h o r o -  - Arctagrostldetum  the background  Caricetum  lies  stantis.  the  be  noted  beyond.  greener  Prominent  c r o p p i n g of Pre-Cambrian may  latifoliae.  out-  material  E Fig.  62  - S - Al  Weakly d e v e l o p e d n o n - s o r t e d scattered  throughout  the c o e n o s i s  were f o u n d a t a l l s i t e s R u l e on  the ground  circles  investigated.  e q u a l s 1 meter.  E Fig«  63  Wet  soils  Upland Note  - S - Al at plot  18 b o r d e r between  a n d Meadow T u n d r a  designation.  the e r r a t i c depth o f the  h o r i z o n and  depression  of the  surface water  table.  Fig.  64  Upland Tundra prominent horizons the  left.  soil  banding and  at plot of b u r i e d  grey s i l t  58.  Note  organic  intrusion  to  188 Active hydric  l a y e r development  Caricetum s t a n t i s .  measured but depth vation 22  and  sites  i s deeper  The  rate  to the f r o z e n  averaged  16  here  than  of development  layer  i n August  Inches, w i t h a range  a v a i l a b l e moisture  although  i t i s u n l i k e l y that  capacity  i n a l l but the d r i e s t  restricted  soils  not  at s o i l  15  o f between  40,  here  field  ever f a l l and  locations.  40 Soils  M o i s t u r e % by W e i g h t No.  below  then only i n  C a l c u l a t e d A v a i l a b l e Water - E - S - A l  Horizon  @  1  /  Bar  15  @  Available  Bars  i /, 1  -  17  H Cg  138.6 16.9  98.9 3.9  39.7 13.0  18  H Cg  121.1 16.8  96.7 4.7  24.4 12.1  29.7 25.6  10.3 12.5  19.4 13.1  132.7 14.1 84.0  91.3 3.0 47.3  41.4 11.1 36.7  *  58  intrusion H Cg Ab  71  In  summary, w h i l e t h i s  the l o w l a n d system,  munity  exca-  i s p r e s e n t e d i n Tab.  seasons  Table  in  was  inches.  Calculated  Plot  i n t h e more  s t r u c t u r e which  portions  o f the Tundra  coenosis i s not e x t e n s i v e l y  i t i s a n example o f t h e s h i f t o c c u r s a s one  approaches  soil  The  catena.  marked r e d u c t i o n s i n t h e b r y o p h y t e  Water 15)  developed  i n com-  the d r i e r  most n o t a b l e a r e  component and  the s h i f t  the from  189 a s e d g e d o m i n a t e d meadow t o one Arctagrostls depressed genesis with  latlfolla.  and  The  thawing of  tends toward the  reduced  subsurface  Organic  depth  the  grass,  to the water t a b l e i s  the a c t i v e l a y e r i s deeper.  Soil  development of Upland Tundra  profiles  horizons  and  heavy m o t t l i n g  i n the  gleyed  layers.  Patterned  ground f e a t u r e s are  but nonetheless  are  organic horizons most c l o s e l y v a r i a n t of  d o m i n a t e d by  the  consistent i n t h e i r presence.  occurred  related  only weakly developed  at  two  locations.  to the A r c t a g r o s t i d o s u m  Salicetum  Mackenzie D e l t a r e g i o n  chamissonis  (Lambert  The  1968).  Burled coenosis  latifolia,  described  here  from  the  a  Is  190 VII.  Arabldetalia  In be  (AR)  both  a l p i n e and  classified  pack  according  snow a r e a s  o f open r i d g e t o p s and  blown f r e e  o f snow a r e  1959;  regions Running  1965;  Chlonophilous have b e e n p l a c e d  alpinae of the the  latter  to 6 . 5 ) .  two Only  under these  herbaceae  o r d e r s and  the A r a b e d i t a l i a are  Phippsion algidae Braun-Blanquet  Bliss  the  alliances: Androsaclon  1948).  herbaceae  Of  found  over  these - pH  c o n d i t i o n s t h a t the  (Pa)  (1948)  are  two  retusae-reticulatae.  true late  It  snowbed  found.  B a r r e t t and lists  4.6  calcareous  pronounced b a s i p h i l o u s communities.  the a l l i a n c e A r a b l d i o n coeruleae; the S a l i c e t u m  and  are a c i d o p h i l o u s (communities  llthologlc  been  and  the S a l l c i o n  (Braun-Blanquet  communities o f the Devon l o w l a n d s  ?.  Billings  of the A r a b l d e t a l i a ,  alliances  positive  the European a l p i n e r e g i o n s  three d i s t i n c t i v e  parent materials, being is  i n the a r c t i c  o f the A n d r o s a c e t a l i a a l p l n a e and Salicetalia  Strong  v e g e t a t i o n has  1956;  Dahl  communities of  the A r a b l d i o n coeruleae  chlonophilous.  exposed l o c a t i o n s  specific both  pronounced  1968).  Lambert  into  termed  may  o v e r l y i n g snow-  chlonophobic.  and  1950;  (Gjaerevoll  are other  d o c u m e n t e d f o r numerous a r e a s  alpine  p l a n t communities  Those communities w i t h  c o r r e l a t i o n b e t w e e n snow c o v e r well  tundras  to the d u r a t i o n of the  f o r late l y i n g  Those a r e a s which are  arctic  1964).  (Braun-Blanquet  affinities  (1948)  Braun-Blanquet  Krajlna  associations belonging  the Arabidetum Szafer  (1966)  coeruleae has  also  to and  191 placed  Into  Tatras,  alliance  a late  the Saxlfragetum  reported  as  gravels at A  the  developing the  associations HutchInsla, Salix.  Of  perdurantls.  the  faces  t h e Devon a r e a  and  the  latter  n e i t h e r are  two  i t i s one  where S a l l x  i s not  a  characters  classifying floristic  the  unsatisfactory ln  the  arctic  s i n c e so  described  a late  i s not  Arctic  included  Phlppsla  Phlppsla  Is a l s o c h a r a c t e r i s t i c  Since for  the  the  1964).  Thus w h i l e  heretofore  utilized  genera are this  late  the  useful in on  is  present  alliance.  Scandinavia  Fries  In  a plant of l a t e  On of  the the  the  (1913)  snowbed  Devon I s l a n d true  (1932)  Canadian areas  lowlands  snowbed  community  other A r a b l d e t a l i a , develops over  fine  subsoils.  snowbed n a t u r e  f a r north,  in  i t would appear,  text (1964).  in his later  Porsild  calcareous  and  communities  1  1948;  grained  few  i n B r a u n - B l a n q u e t s e a r l y work  I s w e l l known a s  as w i t h  Bucegla,  genera  h a b i t a t are  of northern  (Polunin  which here,  above  snowbed a s s o c i a t i o n , P h l p p s l a a l g l d a .  While mentioned b r i e f l y it  the  characteristic  alpine regions  the  genera,  component.  alliance  few  of  components o f t h e  chionophilics  t h a t the  wet  ledges.  important  communities which p r e s e n t l y comprise  From t h e has  strong  of  o f p h y s i o g n o m y and  high  grounds,  are  important  Indeed  ordinal  lists  on  Gnaphallum, S a x i f r a g a  snowbed community. arctlca  rock  f o l l o w i n g important  Alchemllla, Veronica, only  wet  species  the  association is  particularly  o r on  characteristic  r e v e a l s the  these  This  over limestone,  base o f r o c k  look at  snowbed a s s o c i a t i o n f r o m  and  the  of P h l p p s l a a l g l d a i s w e l l  literature  Indicates  that  well  known  192 defined alliance  communities  Phlppsion algidae  One a s s o c i a t i o n Catoscopio  (9)  true  often  - Phippsletum algidae  65 -  6?  (C - R - Pa)  Tab. 4 1 - 4 2  dominated  o f t h e Devon I s l a n d  communities  topography.  In certain  snowpack r e m a i n s  (Fig. 65).  a short  snow-free  relief  locations  free  feature  (Figs.  and a d j a -  1 and 6 5 )  summer.  o f snow b y l a t e  period  lowlands  Most a r e l o c a t e d  through the e n t i r e  these areas a r e n e a r l y  least  Island:  algidae.  t h e c o n t a c t b e t w e e n some d i s t i n c t i v e  persistent  at  - Phippsletum  snowbed e n v i r o n m e n t s  are bryophyte  level  t h e new  and K r a j i n a  Figs.  cent  regions,  i s proposed.  C a t o s c o p i o - Ranunculo  The  i n other a r c t i c  i s r e c o g n i z e d o n Devon  - Ranunculo  Barrett  at  may e x i s t  July  during the l a t t e r  More and enjoy  portions  o f t h e summer. Due persist,  to the diverse  locations  c o e n o s i s development  Areas with l a t e  snow m e l t  In which  i s particularly  seldom  exhibit  tions of environmental or f l o r i s t i c to another. v a t e d beach limited  One e x c e p t i o n t o t h i s  (Figs.  snow b e d s may  heterogeneous.  repeating  conditions  constella-  f r o m one l o c a t i o n  i s the contact area o f e l e -  r i d g e s a n d s e d g e meadows w h i c h  snowbed e n v i r o n m e n t s  late  occasionally provide  66 and 6 7 ) .  Three  areas a r e here d e s c r i b e d as the C a t o s c o p i o - Ranunculo Phippsletum These  such -  algidae. areas are extremely l i m i t e d  narrow bands o r p a t c h e s  i n distribution  i n t h e above mentioned  occupying  locations.  Due  193 to  this  limited  distribution,  plot  size  here  was  necessarily-  irregular . Despite  their  fragmentary  showed a s u r p r i s i n g  floristic  which I b e l i e v e j u s t i f i e s phytogeocoenotic Pebble 4l.  o f g r a n i t e and ratios  their  environmental  homogeneity  e s t a b l i s h m e n t as a  from  soil  excavations  i s the predominant r o c k monzonlte p r e s e n t .  of dolomite  to c r y s t a l l i n e  between the Tetragono stantis,  and  the 3 r e l e v e s sampled  distinctive  unit.  analysis  Dolomite  nature,  - Dryadetum  type w i t h  rock here  are  Integrifoliae s i d e on  the  in  Tab.  s m a l l e r amounts  .It i s i n t e r e s t i n g  the u n i t s b o r d e r i n g e i t h e r  Table  i s presented  that  the  intermediate and  the  Caricetum  landscape.  41  Pebble A n a l y s i s from S o i l P i t s o f the Catoscoplo - Ranunculo - Phlppsietum a l g i d a e Plot M a t e r i a l P r e s e n t i n Sample (as 8 t h o f T o t a l ) Dolomite Pink  68  69  6  4  5  1  0.5  Granite  70  Gabbro Biotite  All  0.5 Quartz  locations  thoroughly  Monzonlte  are  2  2  3  considered h y d r i c environments,  saturated with melt  water throughout  the  being  growing  season. The  characterizing  v a s c u l a r p l a n t s of t h i s  unit  (Tab.  42)  C - R Fig.  65  Pa  Elevated limestone blocks f a c i n g  north  near  the e a s t e r n margin o f the  lowland.  This  type of r e l i e f  results  ln  thick winter  seldom i f ever Fig.  1).  an almost July  27,  1967).  aspect  snow a c c u m u l a t i o n completely melts  This area pure  and  mat  which  (see  i s u n d e r l a i n by of bryophytes  (photo  194  C - R - Pa Fig.  66  Plot  69.  below,  Note h e r e , and i n t h e f i g u r e  the l i m i t e d  coenosis.  extent of the  Note a l s o  the d i s t i n c t i v e l y  sharp e c o t o n a l boundary. shows p l o t b o u n d a r i e s  Fig.  6?  Plot  70.  position  White  outline  (photo Aug. 1 7 ,  T h i s shows t h e t y p i c a l  1968).  landscape  o f the coenosis; small areas  between r a i s e d  beaches ( r i g h t )  and h y d r l c  meadows ( l e f t )  (photo Aug. 1 7 ,  1968).  195  have a l l b e e n n o t e d by P o r s i l d in  sites  of l a t e  snow m e l t .  t o t h e s e moss d o m i n a t e d s u l p h u r e u s may  also  be  (1957)  Porsild  found  cally  i n the C a r i c e t u m  the dominating surprising  and  i n wet  from  occurring  typically  appears  the lowland.  restricted  Ranunculus  locations  the base o f e r r a t i c  boulders.  the p u l v i n a t e  clay  form,  localities.  stantis  Although  the Canadian  Catoscoplum  bryophyte  arctic  sporadinigritum  of the u n i t  is  p r e s e n t I n a number  (Schuster et. a l .  of  1959;  Wynne a n d  Steere 1943;  Steere 1 9 3 9 ) ,  Steere  has  described  I t as a s p e c i e s found o n l y s p o r a d i c a l l y  i n the  arctic  but dominating (Schuster et Other o r wet  caplllaceum  panion  more s o u t h e r n b o r e a l a n d  coenoses.  had  exchangeable hydric  studied,  of the  significance soils  to b a s i c  stantis  bryophyte  integrifoliae.  of the  v a l u e above  com2.0.  showed d e v e l o p m e n t o f  two  S u r f a c e h o r i z o n s were  in reaction.  Only  plot  70  Summed v a l u e s o f  comparable w i t h b o t h and  i n hydrlc  r e v o l v e n s and D l s t l c h l u m  content of over 3 0 $ .  cations are  Caricetum  Dryadetum  fens  typically  i s the o n l y v a s c u l a r p l a n t  and n e u t r a l  organic matter  found  portion  g e n e t i c h o r i z o n s (Tab. 4 2 a ) .  colored an  Drepanocladus  s p e c i e s w i t h an a v e r a g e  In a l l l o c a t i o n s  dark  those  compose a s i g n i f i c a n t  Luzula a r c t l c a  distinct  subarctic  a l . 1959).  s p e c i e s present are  mesic  cover.  Steere 1951;  or i n  d e s c r i b e d by  I t i s found  as w e l l .  characteristic  i n i t s abundance.  collections  s  streamside  occurs as  f r o m wet  a  Phlppsia alglda  sites within  m o i s t moss c u s h i o n s , a r o u n d Cerastlum r e g e l i l  (1957)  those of  chlonophilous Tetragono  -  the  Subsurface  mineral horizons are decidedly basic.  v a l u e s a r e 8.0 o r h i g h e r m e a s u r e d shows t h e s e  soils  are similar  d e s c r i b e d Meadow T u n d r a s o i l s ficant  percentages  of s i l t  Colors  i n the f i e l d  In water.  Particle  A l l pH analysis  i n texture to the p r e v i o u s l y o f the Caricetum  stantis.  Signi-  a n d s m a l l amounts o f c l a y a r e p r e s e n t .  appear darker here  however.  A l l subsurface  horizons of this  u n i t r e c o r d hue v a l u e s o f 10 y r w h i l e  of the Caricetum  s t a n t i s a r e f o r t h e most p a r t 5 o r 2.5 y .  Color  those  change o n d r y i n g , however, p o i n t s o u t t h e s i m i l a r i t y o f  t h e two s u b s u r f a c e As  soils.  c a n be e x p e c t e d  opment i s s h a l l o w  l n this  (Tab. 42a).  environment, A l l soil  active  excavations  layer develreached  f r o z e n m a t e r i a l a b o v e 12 i n c h e s e v e n t h o u g h a l l were s a m p l e d i n mid-August. I n summary,  snowbed c o e n o s e s  areas  i n the lowland  pack.  Where r a i s e d  depending  as a whole a r e  upon t h e l o c a t i o n  beaches abut  a r e formed.  here appears  homogeneous enough t o j u s t i f y landscape  The r e s u l t i n g  s a t u r a t e d with water through  coenosis and  coenosis which  i s d o m i n a t e d by b r y o p h y t e s ,  sulphureus  develops  i t s d e s c r i p t i o n as  July  o r e a r l y August but  the e n t i r e the t o t a l  v a s c u l a r s p e c i e s b e i n g much r e d u c e d .  which c h a r a c t e r i z e  snowbed  unit.  T h e s e a r e a s a r e snow f r e e by l a t e remain  o f t h e snow-  h y d r i c meadows l i m i t e d  environments  a replicating  heterogeneous  season.  cover of l i c h e n s  Three  vascular species  the u n i t are P h l p p s l a a l g l d a .  and the p u l v i n a t e form  a r e known t o c o l o n i z e a r e a s n e a r  of Cerastlum  The  Ranunculus  regelli.  A l l  l a t e m e l t i n g snow b a n k s l n t h e  northern archipelago regions. C a t o s c o p i u m n l g r l t u m and species  found t y p i c a l l y  basiphilous with s o i l Meadow T u n d r a  soil  The  dominating bryophytes,  Drepanocladus r e v o l v e n s are i n hydric  environments.  genesis leading  type.  The  also unit is  to the development  of  Table  199  42  Catoscopio-Ranunculo-Ptdppsietum algidae PLOT NO. DATE ANALYSED HERBACOUS COVER % MOSS COVER % L I C H E N COVER % ASPECT TOTAL SPECIES N O .  PRESUMED CHARACTERISTIC COMBINATION OF SPECIES Phippsia algida Ranunculus sulphureus Cerastium regelii Catoscopium nigritum OTHER SPECIES Luzula arctica Saxifraga cernua Papaver radicatum Carex misandra Eriophorum triste Juncus biglumis Saxifraga hirculus Eutrema edwardsii Saxifraga nivalis Stellaria longipes Minuartia rossii Arctagrostis l a t l f o l i a Draba lactea Draba alpina Draba oblongata Cerastium alpinum Saxifraga caespitosa v.unifYra Salix arctica Saxifraga oppositifolia Draba b e l l i i Cardamine b e l l i d i f o l i a  68 8/16/68 15 55 1  69 8/16/68  36  29  N  7  75 — N  70 8/17/68  20 65 —  WNW  28 (AVE. PRESENCE  4  3 3 5  3  +  2 2 1 1 1  4  1 3 6  3 3 1 7  V V V V  2 2 1  2 1 1  V V V V V V IV IV IV  +  1  +  2 1  + + • • m #  1 1  #  + + + +  Drepanocladus revolvens Distichium capillaceum Orthothecium chryseum Ditrichum flexicax*le Aneura pinguis Campylium stellatum Cinclidium arcticum Tortula ruralis Mnium hymenophylloides Scorpidium turgescens Haplodon wormskjoldii Pogonatum alpinum Campylium polygamum Barbula icmadophila Meesia t r i f a r i a Hypnum revolutum Encalypta rbabdocarpa Mnium medium Blepharostoma trichophyllum  4 4 3 3  Cetraria nivalis Thamnolia vermicularis Cladonia pyxidata Lecidea lapicida Lecidea ramulosa Xanthoria elegans  + + •  3  # #  +  1 1 •  1 1 1  •  1 1 1 • • • •  4 5 1 3 3  4 2 4 2 2  3 •  IV II II II II II II II II II II  2 •  •  +  rv  +  V V V V V V  +  rv  3 1 1  • • •  IV IV IV II II II II  • + +  • • • •  II II I I II II  + + + + + +  + + • • • •  • + •  2 1 1 •  1  1  +-  3  #  1 •  •  .-  •  IV  rv II II II II  SPECIES) SIGNIFICANCE 3.7 2.3 2.3  6.0  2.3 1.7 1.3 1.0 1.0 0.8 1.0 0.7 0.5 0.5 0.3 0.7 0.3 0.3 0.3 0.3 . 0.3 0.2 0.2 0.2 0.2 4.0  3.6 2.6 2.6  1.8 0.5 2.0 1.3  0.6  0.3 1.0  0.6  0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.3 0.3 0.2 0.2 0.2 0.2  200  Table  42a  Catoscopio-Ranunculo-Phippsietum a l g i d a e - S o i l s  PLOT NO. DATE SAMPLED DEPTH TO FROZEN MATERIAL (inches) SOIL CLASSIFICATION PHYSICAL/CHEMICAL ANALYSIS  68  8/16/68  69  8/17/68  9 11 ........Meadow Tundra.  70  8/17/68 11  v  Ah  Horizon I depth ( i n c h e s ) c o l o r , dry c o l o r , wet  pH (CaClo)  pH (H 0) carbon # nitrogen # t o t a l P p.p.m. 2  0-9  5YR2/2 5YR2/2 7.0  7.8  14.5  1.9^  12  Ah  0-5  5YR2/2 10YR2/1  6.7  7.4  17.2 . 5.18 7  H 0-7  7.5YR2/2 10YR2/1 7.0  7.7  21.2  4.07 16  Exchangeable Cations Me/100 gm K Ca Mg Na  .18  19.8 15.6 Sum  .14 14.5  11.9  .14 16.4 14. 4  .50 36.0  '.47 27.0  .32 31.3  0-9 2.5Y6A 10YR4/4 7.4 8.1 64.6 32.2 3.2 2.0  5-H 2.5Y5/2 10YR3/1 7.4 8.0 70.8 24.4 4.8 1.6 0.20 1  7-11 10YR6/3 10YR4/2 7.2 8.0 81.4  Horizon I I depth c o l o r , dry c o l o r , wet pH (CaClp) pH (H 0) sand # silt # clay # carbon nitrogen P Exchangeable Cations 2  K Ca Mg Na Sum  0.23  3  .12  5.5 5.5  .19 11.3  .16 4.2 4.6 .18 9.1  15.6  3.0 1.2  0.07  0  .06 2.4 '3.7 .42 6.6  201 Coefficients The  of Similarity  desirability  between i n d i v i d u a l  been w e l l argued  and  easily visualized similarity  of numerically expressing the s i m i l a r i t y  releves of a given phytosociologlcal  has  culate  a n d Dendrogram A n a l y s i s  b y West  coefficients  Recent  graphically  has been t o c a l -  i n t h e form  of a  a l . 1970).  have been d e v e l o p e d  for establishing  c o e f f i c i e n t s between v e g e t a t i o n samples  work b y Moore e t  simple  between a l l releve's and e x p r e s s  (West 1 9 6 6 ; Moore e t  Numerous f o r m u l a s similarity  A comparatively  method o f a c h i e v i n g t h i s  these numerical r e l a t i o n s h i p s dendrogram  (1966).  a l . (1970)  (Ceska  h a s shown t h a t  final  d r o g r a m f o r m may be i n f l u e n c e d b y t h e c h o i c e o f f o r m u l a for  similarity  calculations.  a l . 1970).  A  The f o r m u l a  One f o r m u l a  f o rthis  i s t h e sum o f a l l m e a s u r e s  measures f o r an a l t e r n a t e measure w h i c h  1956;  Lambert  1968),  m i g h t be c o m p a r a b l e .  British  study  coefficient is  2  A  ™  B  (S^renson x 1 0 0 , where  i n one s t a n d , B t h e sum o f a l l  s t a n d , a n d W t h e sum o f t h e l o w e s t stands.  i n similar  i t was c h o s e n  sorts  Since this  formula has  of v e g e t a t i o n (Dahl  f o r use here  so t h a t  V a l u e s were computed u t i l i z i n g  d e s c r i b e d b y Ream ( 1 9 6 2 )  selected  i n common u s e i n p h y t o s o c i o -  calculation  i s common t o b o t h  been p r e v i o u s l y u t i l i z e d  den-  I s " b e s t " f o r any g i v e n  l o g l c a l work I s Sjzfrenson's s i m i l a r i t y 1948).  1968).  A t p r e s e n t , however, t h e r e i s no  method o f s e l e c t i n g w h i c h f o r m u l a (Moore e t  study  and m o d i f i e d by Borden  results  a program  (University of  Columbia).  . When s i m i l a r i t y  coefficients  are calculated  r e l e v e ' s t h e y may t h e n be s u b j e c t e d t o c l u s t e r  between a l l  analysis.  This  202 technique  essentially  c o e f f i c i e n t s and with  scans  successively links  of  units  One  commonly u s e d  are  units  1966;  Moore e t  this  a l . 1970;  grouping  o f a dendrogram  Figs.  68  may  t h e n be  presented  71.  Lambert  In a d d i t i o n  ( F i g . 68)  vegetation matrix  f o r the  lichen,  ponents s e p a r a t e l y ( F i g s . utilized  results  i n the  values presented  form  al.1970).  Moore e t  field  data  system are presented  d e n d r o g r a m s have and  71).  on in  total  been  v a s c u l a r p l a n t com-  In each  case  the  i n the e a r l i e r  values species  synthesis tables  coenosis. 68  Fig.  shows t h e r e s u l t s  vegetation matrix. Blanquet  plot  numerical  to the dendrogram o f the  bryophyte 70,  pair West  f a s h i o n from  individual  69,  "weighted  Sneath 1963;  The  1968;  similarity.  i n t h e Sfrfrenson f o r m u l a were t h e D o m i n - K r a j i n a  significance of each  i s the  100$  graphically  i n t h e Devon I s l a n d l o w l a n d  constructed  until  Lambert I 9 6 8 ) .  (West 1 9 6 6 ;  through  This continues  ( S o k a l and  Dendrograms c o n s t r u c t e d i n t h i s vegetation  units  method f o r c l u s t e r i n g Sneath  similarity  or groups of  between 0 and  j o i n e d a t some l e v e l  g r o u p method" o f S o k a l and  and  lnter-releve  the m u t a l l y h i g h e s t c o e f f i c i e n t s .  all  of  a matrix  achieved u t i l i z i n g  A l l coenoses c l a s s i f i e d  methods have b e e n s e p a r a t e d a t t h e  many a t v a l u e s s u b s t a n t i a l l y falls  coherence  standard  50$  than  entire Braun-  similarity  this.  No  of the The  ten e s t a b l i s h e d phytogeocoenoses appears most c o h e s i v e u n i t  integrlfoliae,  above a 7 0 $  similarity  i s the R h a c o m i t r i o  where a l l 12  value.  sampled  stands  value  single  o u t s i d e i t s s u b j e c t i v e c o e n o t i c d e s i g n a t i o n and  stantiated. Dryadetum  higher  by  the  the sub-  - Oxyrlo  cluster  -  2CQ All  higher  h i e r a r c h y are value. and  This  order  Dryado  levels  of  separated  i n t e g r a t i o n l n the  at  slightly  i s i n t e r p r e t e d as  designations,  - Alectorietum  supporting  the  k0%  above the  particularly  from  classification  the  order  the  similarity  proposed  separation  Dryadetalia  alliance  of Nardino  (octopetalae  -  Integrlfoliae). T h i s u n i t remains u n c l u s t e r e d b e l o w a 25% of  the  value,  D r y a d e t a l i a are  A  broad  first  s e p a r a t i o n a l s o appears a t  u n i t on  the  dendrogram  unit studied within  units  (Cs  - cm,  while  the  remaining  these  the  three  final One  Cs-cs,  during these  the  three  coenoses  until  plant associations a k2%  similarity  p l o t s are  lowest  tute  Fig. plant  69  data.  apparent.  of  1, the  only  system.  The  latter  C-R-  Pa)  are  mesic.  truly k  a l l hygric  The  separation  been m a i n t a i n e d  F i g . 68  until  6 and  i s worthy of note.  8)  study.  are  indices.  I t can  in field  N  - D  there  seen  that  coenosis as  a  at  justifi-  i s no  substi-  work. constructed  using  only  changes i n dendrogram form - A  The  established  be  I interpret this  Braun-Blanquet axloma:  Some n o t a b l e  those  clustered within their  shows a d e n d r o g r a m  Here the  i s the  g r o u p i n g s has  (e.g.  stages  similarity  f o r experience  similarity.  - A)  relatively  concerning  frequently  c a t i o n of accepted  lowland  2$%  the  cycles.  point  initial  (N - D  E - S - A l ,  hygrotroplc  clustering final  the  groups are  l o w e r numbered r e l e v e s  the  the  l i n k e d at approximately  xeric  of  while  a l l other  68).  (Fig.  The  similarity  with  i s l i n k e d to the  vascular  are  P - D l and  one  plot  (8)  Is l i n k e d  esting  that  a very  low  out  of  this latter  i t s coenotlc  releve  r a i s e d b e a c h and  fell  /  field  t o w a r d a more m e s i c l o c a t i o n on Similarities R  - 0  - Di  flora,  the  interest the  ln  two  i s the  two  are  Of  and  four  R - 0  hygric lar.  - Di) (N.B.  i s t o be  hydric  (N  i s the - D  only  (or x e r i c  the  vascular Of  from a l l but  with  low  least  32,  utilizing  flor-  cohesive  and  S - R  - Ct)..  p r e s e n t and  d i a g r a m as  (T  - Di,  to h y g r i c )  P  - Dl,  individual plot 6 which are  only  the  similarity a whole,  two  rock  colonization.  1 and  since  the  These  e n v i r o n m e n t where e x t e n s i v e  i n d i v i d u a l stands are expected  lichen  l i n k i n g of  as  grouping remains reasonably  reduce a  to r i g h t  and  similarity.  those assigned) although,  two  the  - Di  i n the  segregated  - A  for lichen  plots  are  sidering  T  units  coverage are  show a number o f  lichen material may  i t tending  snowbed u n i t  mesic coenoses remaining  environments  species  here  i n the  subjective  This  the  of  slope.  between the  that  total  coenoses  coenoses from  previous  of  crest  flora.  available  between u n i t s other  beach  l i n k e d a b o v e 55%  exclusion  Interest  located  exposures are The  the  indicate  shows d e n d r o g r a m c o n s t r u c t i o n  lichen rich  units  being  small  terms of v a s c u l a r 70  notes  It is inter-  o f f the  e x p r e s s e d most s t r o n g l y  I t appears  d i v e r s i t y or  data only.  Sa  are  linkage..  Fig.  slightly  mentioned e a r l i e r  units  also  final  istic  units  grouping.  value  -  overlaps  a l l linked  with  a whole,  the  cohesive.  In  f r a g m e n t a r y amounts  i n c l u s i o n of  the  - L  particularly dissimi-  only  one  substantially.  similarity  across  P  decreases  dendrogram, a  from  of  or Conleft  situation  205 which could poor  bryophyte  hygrotopic Here the  one  moves f r o m l i c h e n r i c h  component o f  partitioning  a l l other  units.  shows a n  The  most p a r t  heterogeneous  the  coenosis  to l i c h e n  shows a g a i n  between 3 m a j o r c o e n o t l c  x e r i c community  remains f o r the the  e x p e c t e d as  environments. The  with  be  almost  subjective intact  segments.  complete  dissimilarity  classification  hierarchy  a l t h o u g h some r e l e v e s ,  i c e wedge p o l y g o n s ,  the  again  show some i n t e r c o e n o t i c  overlapping. Of  p a r t i c u l a r I n t e r e s t i n the  separation This  o f .the  i s c a u s e d by  invading mentioned  the  drier  subassociatlons the  hydric of  of  is  Caricetum  a d d i t i o n o f a number o f  hummock p o r t i o n s  previously.  the  grouping  the  the  stantis.  bryophytes  coenosis,  a  point  ON 09  ON  vO  lOZ  802  209  5U>  in  2  IO  I  (ft  I <" |<  I UJ I  X r-  I in  3"  O  < 19  I >  5=7  IH  o  O  O CD  o  •J3  o  O  J.N3N0dW03 31AHd0Ayg-AllWV"llWIS  O  3AI1V13U  8  Table  kj  PLoaisTic oirriasMTUTiON o r S T U D I E D LOWLAND SXSTEM PEXTOCOENOSES Ca 8 10 12 15 1 0 50 51 53  9*  57 6 6  29 JO 31 33 3* 46 5* 61  <»3 W* " 5 <•? 46  >*9  55  9>  64 72  6 39 M  *1 *2  8!23  ca  K - 3 - Al  J> - L - A *  Ca - oa  59 60 61 62 63 73 27 26 37 6 5 67  1  3 7 2 0 21 2 2 32  17 19 5« 71  C - H - Pa  3 - H - Ct 24 2 5 2 6  y*  83 8*» 6 5 8 6  7  6  7  87  1 I 8 9 90  6 8 69 7 0  C a r e * nard1n» Draba B u b c a p l t a t a A l e c t o r i a miauacula A l e c t o r i a crtalybeiforaAa A l e c t o r i a ochroltuoa Ochrolechia upaallanala Lecidea atlgtatea jiereocaulon r lvulorua Candolarialla aurella P e r t u a a r l a aubobducena Gaaalop« t o t r a g o i a Cetrarla cuc-jllat* Cetrarla n l r a l l a A r n e l l l a fer.nlea  1 •  Gxjrrla digyna Rhacoaltri'js hetaroatlchua var. audetlcua Lecanora verrucoaa  3  2  2  2  2  1  3  3 6  Caret atana 3ailfr»fa h l r c u l . a Pedicular la sudetlea E r l o p h o r u a »n<j^»tlfollua ClncLlJlui aretieua Meeal* t r l f a r l a Care 1 x e s t i r a n a c e a i q 11* t u t va.'laqatua fWandrlua apetalu* Cfthotnecl-J3 chryae-jn C*icecoplux nlftrltua l o s ' r . t n j p n u a nlter.a ropon«tua a l p l n u m *u]aeoanlu= turaldua Callleraon  1  k t  3 5  1  5  5  1  4  1  3  4  5  1  1 2  i» *  it  13  1  1 3  •  •  7  6  6  7  5  5 3 3  * 3 3  1 1  4  •  •  ;  1 2  2 1  1  5  • 2  glgantaua  Sail* arctlca l u x u l a confusa S t e l l a r l a longlpea Fedicularla Mraut* »lopecurua a l p i n n a Pofor.attim s l p l n u a Fallopllun cavirolluai C a l o p l a c a cn;r.a»,oi.ea  3  3  3  3  3  3  3  3  4 * 1 * 4 , 5 1 * 5  3 1 * 1 1 2 1  1  2  2  3  4  k  t»  )  I* 5  2  2 2  1 2 2 3  2  2  3 J  2  Arctarroafia l a t l f c l l a E u t r r s a «<fvar-*.!ill trlophorua it lata Carlaslne i^ilfra.ca  \y. H I S 1 f o l l a caeapltoaa  stereocaulon alplnua 'Jttfcl 1 l e a r l a proboacldaa Farce H a d l a j u n c t a Spnaerophorua ^loboaua Panr.arla hooker i l P a o r o c a hypnoru» Cladlr.a m l t l n Paraella sulcata Stereocaulon totrjoaua f. comgeatus L e c i d e a ne11nodea Placopsla jjelida P e r t u a a r l a par.yi * a Veater*rreiiop«la l a l d l a U Pareella c*r.trlfu?a Cladonia r r a c t l l * Ochrolechia lrnequttula RhacooitrluK lanuglnoaua H y l o c c n l u n aplendena ptllldlui clllare An»atrophyU\M «lnueu» ' R h a c o B t t r l u s caneacana GyKnonltrlon corralloldaa Andreaea r u p a a t r l a Phlppala alglda Bonunculua aulphurau* Catoaeoplua n l g r l t u a  ro »•-'  o  Table kk Comparative S o i l Temperatures (C°) by A s s o c i a t i o n  7/6 7/8  7/9 7/10 7/17  7/18 7/24  7/30 8/1* 1969  6/12 6/14  6/17  6/19 6/20 6/21 6/22  6/23 6/24 6/26 6/28  TIME  1533  1828  1553 2010 1705  1245 1307 1615  S  1415  11.0 9.0 9.6 16.0 14.6 10.1 7.1 8.6  1320 1555 1325  1405  1311  1403 1851  7/1 7/3 7/4 7/5 7/7 7/8 7/9  1213  7/16 7/18 7/24  7/25 7/26  7/31  8/1 8/2 8/5 8/6 8/9 8/10 8/11 8/16 8/16  1  1404  6/29 6/30  7/15  DEPTH IN INCHES  1900 1125 13*0  1350 1700  1210  1233 1500 2025  1310 1203 1710 1710 1106 1145  1735 1235  1200  1253  8.9 10.2 10.1 5.1 8.1 8.0 6.0 10.2 9.6 " 8.4 7.8 12.2  1840  10.7 10.1  1425 2100 1615 1835 1625 1945  13.1 9.1 6.4 10.2 10.2 7.3  1515  •T-Di.  •  3  9  -15  lw? 4.8  0.4  .N-D-A  ASSOCIATION  15.7  3  9  7.2 7.1 11.9 12.2 7.1 5.2 9.5 7.0 9.7  4.1  3.4  5.1 6.3 3.7 3.5 5.5 4.9 5.0  -4.1 - 6 . 3 0.1 -2.5 7.0 0.2 8.4 2.2 8.8 3.6 8.0 2.8 5.4 2.2 8.3 3-9 3.6 10.5 8.6 3.3 7.1 3.7 6.1 3.2 3-4 6.7  15  1  1.5  1.6 1.8  8.1 8.1  2.5  1.8  5.8  1.7  4.2 7-1 5.* 7.2  2.8  2.5 2.3  -8.5 -5.5 -7.2 -0.9 -0.3 -0.1 0.4 0.4 0.4 0.9 1.2 1.1 1.1  6.2 6.8 10.0 8.7 4.7 7.2 4.3 6.9 5.8 7.2 6.9 7.2 5.9 9.7  3.3 2.7 4.9 5.1 3.2 4.1 2.8 4.0 3.5 3.1 5.0 4.2 5.9 5.4  1.2 0.9 1.7 2.0 1.5 1.5 1.5 2.0 1.9 1.6 1.5 2.1 2.1 3.1  7.9 8.7 12.8 8.6 8.8 6.1 8.9 7.3 7.2  4.1 5.1 6.7 4.2 6.2 4.9 5.8 5.8 4.7  2.4 2.9 3.2 2.5 3.2 5.2 5.2 2.0  2.3  S S S S 2.0 5.9 11.2 10.7 7.7 6.5 7.6 8.4 9.8 11.1 7.9 4.7  7.5  4.5 7.0 5.4 9.2 8.6 8.0 6.9 11.7 8.7 10.3 14.5 10.1 8.1 5.8 9.6 9.2 7.7  1  1.0 5.9 5.9 0.9 8.0 1.9 2.1 6.6 1.4 3.9 6.2 2.1 1.0 3.1 2.2 5.6 4.8 . 2.0 1.8 6.7 1.8 5-9 2.4 6.1 2.0 5.0 8.8 3.7 2.5 3.3 4.8 2.9 4.6 3.3 4.2 2.5 3.1  -0.9  -0.8 -0.8 -0.4  -0.1 -0.1  -0.1 0.2  0.2  0.2 0.3 0.8 0.6 1.4 0.9 1.2 1.7 1.1 1.9 1.8 1.8 0.8 1.2  3  5.4 7.8 _  -7.2  -8.9  -3.6 -2.6 -2.2 -2.1 -1.8 -1.8 -1.8 -1.4 -1.2 -1.2 -1.1  -5.2 -4.5 •»5.8 -5.8 -5.4 -3.2 -5.1 -2.8 -2.6 -2.4 -2.5  3.2  5.3 3.7 7.2  9.7  8.3 7.8 15.0 12.8 9.2 8.2  9.7  9.9 13.7 14.0 9.4  4.9  8.0 5.2  8.5  6.0 11.9  9.7  8.3  7.7  11.8 11.8 10.0 14.8  9.9  9.2  5.7  10.7  9.9  8.1  15  -2.0 -1.7 -1.5  8.4 8.8  S  9 -0.5 -0.2 0.0 0.0 0.0 0.0 0.2 0.1 -0.1  4.8  0.6  -9.5 -10.8 -11.6 -8.0 -9.8 -11.0 -5.6 -8.0 - 9 . 5 -1.5 -4.9 - 7.8 -0.9 -3.9 -6.2 -0.7 -3.6 -5.8 -0.1 -3.2 -5.2 0.1 -2.2 5.5 7.4 -0.1 -2.2 6.2 0.1 -1.8 0.8 -1.1 5.5 5.2 0.9 -1.0 5.5 0.9 - 1 . 2  6.9 7.9 ll.l 7.7 7.6 5-2 8.2 6.6 o.l  P-L-Sa ..  -0.2 0.2 - 1 . 0 1.4 - 1 . 0 2.2 " - 0 . 7 1.6 - 0 . 2 1.8 - 0 . 1 3.0 0.4 2.8 0.7 2.8  1958-1969  0.0 3.8  4.9 5.1 6.1  3.4 5.8 7.2 6.1 5.4 5.2 5.8 5.4  5.3  8.0 6.8  3.7  6.0  2.9 5.9 4.5 5.9  5.4 5.6 4.2 7.3 5.8 7.4 10.8 9.4  8.7 4.9 8.7  6.2 7.0  -5.7  -1.0 -1.1 -0.9 -0.8 -0.8 -0.7 -0.8 -0.1 -0.1 -0.2 -0.2 -0.1 0.0 0.0  1  3 -0.2  0.4 3.6  6.7 4.2 3.0 3.1  -1.6  -1.2 -1.2 -1.1 -0.9 -0.7  2.8 1.8  -0.1 - 0 . 9 0.0 .-0.9 0.1 -0.9 0.5 -0.8 0.2 -0.8 0.1 -0.8 0.2 -0.7 0.1 -0.7 0.2 -0.7  -2.2 -1.9  -1.8 -1.6  -1.5  -0.8  -0.3  -0.8  -0.1  l  r  -3.3 -3.2  -2.8 -2.6 -0.6 -1.8  -1.3 -1.1 -0.9  -12.5 -13.2 -12.1 -12.8 -11.0 -11.8 -8.9 - 9 . 9  -7.5  -2.2 -2.5 -2.1 -2.0 -1.8 -1.7 -1.8 -1.4 -1.2 -1.2 -1.1 -1.1 -1.0 -1.0  9  -6.  -5. -4. -5. -5. -5.  -2.  -2.5 -2.2  9.8 8.2 6.1 7.3 4.6 7.1 5.5 8.3 7.1  9-8  6.1 7.8 5.3 3.1 2.2 6.5 4.9 8.0 6.5 8.0 6.7 9.6  8.6 9.7  8. 9.  8.4  6.9  15.8 9.8  11.2 7.5 10.3 9.3 8.9  15.  6.  10.  7.  10.  9. 8.4  -2.0 -1.8 -1.8 -1.4 -1.2 -1.1 -1.1 -0.8 -0.5 -0.6 -0.2 -0.2 0.2 -0.1 0.1 -0.1 0.1 0.1 0.8 0.8 0.8 0.7 0.8  -8.2  -7.1 -6.1  -5.4  -5.0  -4.4  -3.9 -3.7 -3.5  -5.1  -2.9 -2.9  -2.8  -2.3 -2.1 -2.2  -1.8  -1.5 -1.6 -1.2 -1.2 -1.2 -1.0 -0.9 -1.1 -0.9  -0.8  -0.7 -0.7 -0.7 -0.5 -0.6  212 Summary  Synthesis of f l o r i s t i c stands, this  selected  lowland  scape  and  subjectively  t u n d r a has  classification  environmental  from  resulted  presented  data  i n the o r d e r e d  above.  The  scheme o f  for  the  into  first  seven  time.  alliances  terminology. cation,  Only  either  ( s i x newly d e s c r i b e d ) and  f o r management p u r p o s e s  classification  view which bears data presented of the  further  allow  described cases strong  synthesized units as  or as  the  and  classifi-  usefulness.  a larger  t o be made a b o u t  communities and  the  the nature  arctic  the nature  over-  systems,  of  lowland  arctic. of c l a s s i f i c a t i o n  temperate r e g i o n s . field.  combinations  a p p e a r by  those  Ecotones  compari-  regularly are  i n most  Vegetational units  c o r r e l a t i o n with underlying s o i l  features  European  a baseline for  i n temperate v e r s u s  s h a r p l y d e f i n e d i n the  have c h a r a c t e r i s t i c  orders  More s p e c i f i c a l l y  s y s t e m a t i c a l l y s u b s t a n t i a l as  from  standard  however g e n e r a t e s  implications  status of circumpolar  t o be  classified  seven  its validity  discussion.  ecosystems w i t h i n the h i g h  son  test  itself  community c l a s s i f i c a t i o n  The  with  described  f u r t h e r u t i l i z a t i o n o f the proposed  f u r t h e r e c o l o g i c a l work, w i l l The  Braun-Blanquet  have i n t u r n been  (three-newly d e s c r i b e d ) , i n a c c o r d a n c e  land-  comparable  A l l of these u n i t s are  These u n i t s  of  classification  to the p l a n t a s s o c i a t i o n s o f the  school of phytosociology.  73  the v e g e t a t i o n a l mosaic  r e c o g n i z e s nine b a s i c phytogeocoenoses, which are floristlcally  from  t y p e and  units generally  of species present.  c o n f i r m the n a t u r a l c o h e s i v e n e s s  o f the  show  These  suggested  213 units.  Further,  comparisons o f s i m i l a r i t y m a t r i c e s  drograms, g e n e r a t e d in  other regions  1970)  in a similar  (Dahl 1956;  higher,  These r e s u l t s logical  tend  techniques  unit  West I 9 6 6 ;  Integrity  to negate  the  den-  fashion for vegetation Lambert  shows t h e D e v o n I s l a n d u n i t s m a i n t a i n  some c a s e s  and  as  1968;  groups  Bell  h i g h , and  in  a t the a s s o c i a t i o n l e v e l . thesis  that special  phytosoclo-  are r e q u i r e d f o r the d e l i n e a t i o n of  arctic  vegetation. The  clrcumpolar  distribution  p a t t e r n s o f numerous  p l a n t s a r e now  w e l l e s t a b l i s h e d (Hulte'n 1 9 6 4 ) .  s u g g e s t i o n has  been advanced  a s w e l l may  clrcumpolar  results  of  structure  be  the p r e s e n t and  S v a l b a r d and  into  respect  i n nature  study.tend  environmental  to support  similarities  similar  enough t o w a r r a n t  w e s t e r n D e v o n I s l a n d and  lie  directly  same f l o r i s t i c  l i e along  normally of  the  floristic  Devon I s l a n d , to the p r e s e n c e  a r e a t o r n e a r the n o r t h e r n  their  the a r c h i p e l a g o  Cystopteris  fragllls,  incorporaIn  limits  western  northern  zone.  this  This  of t h e i r south  i n the  case  and  i n the western W.  a  which  distribution  slmpllcluscula,  Both  extension of  i s due,  ( e . g . , Woodsla a l p i n a .  Kobresla  floris-  Svalbard  of a group of s p e c i e s  whose m a i n c o n c e n t r a t i o n s l i e t o t h e tion of  The  (Young 1 9 7 1 ) .  boundary  the margin o f a sharp  more s o u t h e r n  view.  t h a t r e c e n t l y proposed a r c t i c  z o n e s show b o t h on  The  doubt t h a t the a s s o c i a -  established classification hierarchies.  It i s interesting  communities  1965). this  the  o f the D r y a d e t a l l a o f  tic  areas  Recently  plant  (Running  Devon I s l a n d l e a v e l i t t l e  t i o n s discussed are tion  that particular  arctic  por-  glabella,  Tofleldla  214 cocolnea. As  Sallx  Young has  best  reticulata.  shown, b o u n d a r i e s  correlated with  aggregate  summer warmth i n c r e a s e s a tic  diversity  I s l a n d and may  help  o f an a r e a  Svalbard  to account  noted,  the  found  of  of  as w e l l .  vascular plants recorded  on E l l e s m e r e Archer  s e c o n d and  (143  third  Devon I s l a n d (101  Island, north  Fiords.  (115  widely  separated  present  and  areas  f o r the  similarity  Young  the  also along  f a r w i t h i n the  of a l i n e  i n the  and  has  some  50  entire  the  western number  archipelago  connecting  Greely  occurs  and  1968).  Beschel occur  T e e r i ) and  on  The  eastern  Bylot  only  segregation present  these  of  time has  existing elapsed  f o r the r e l n v a s i o n of of vegetation  climatic  a l s o opposes the  of  prominent e f f e c t  ecology  sufficient  species,  This  so  Devon  i n turn  S u r p r i s i n g l y , the h i g h e s t  a r g u e s f o r the  Apparently  equilibrium with  the  Canadian a r c t i c  along  vegetational similarity  emergence n o t  in  and  floris-  Island  I.962) r e s p e c t i v e l y .  post-glacial but  species occurs  total  environments  supports  In the  are  i n the  species.  Island.  species; Brassard  macroclimate plays  communities.  these  s p e c i e s ; B a r r e t t and  floristic  the  In both  most d i v e r s e v a s c u l a r f l o r a s  s p e c i e s ; Drury The  the  zones  to marine  of Svalbard  the a r c h i p e l a g o  of Greenland  increase  vulgaris).  a m e l i o r a t i o n which  of  Fiord District  of  As  predictably occurs.  extension  extension  eastern border coast  corresponding  e l s e w h e r e on  this northern  floristic  summer warmth.  for climatic  the n o r t h w a r d Inner  of a r c t i c  locations, proximity  allows  taxa not  Draba c l n e r e a . H l p p u r l s  and  types  two which  tundra since plant which  are  geological conditions.  often quoted  opinion  that  .  215 frost  action  ( c o n g e l l t u r b a t l o n ) p r e v e n t s the e s t a b l i s h m e n t o f  equilibrium  communities over  the present tundra  (Raup 1 9 5 1 ;  Slgafoos 1952).  In t h i s r e s p e c t the r e s u l t s  this of  s t u d y a g r e e more c l o s e l y  B mberg and  Major  a  w i t h the r e c e n t  landscape of  interpretation  (1968).  ...There a r e o f c o u r s e a r e a s b o t h i n a r c t i c a n d a l p i n e e n v i r o n m e n t s where f r o s t c h u r n i n g i s t h e d o m i n a n t p e d o l o g i c a l p r o c e s s and where t h e r e f o r e no g e n e t i c s o i l p r o f i l e s i n the u s u a l sense can form, but such a r e a s are an e x c e p t i o n i n the l a n d s c a p e sense. The  most e x t e n s i v e l y  lowlands are little  developed  those o v e r l y i n g w e l l  evidence; of i n t e n s i v e  unlikely  that  such  developed  frost  structurally  communities  on  soil  t h e Devon  profiles  a c t i o n o r heave.  parallel  I t Is  u n i t s would  on a c l r c u m p o l a r b a s i s u n l e s s the m a j o r i t y o f the e n j o y e d a r e a s o n a b l e amount o f s t a b i l i t y  with  develop  landscape  f o r an e x t e n d e d  time  period. The  l o w l a n d a r e a on w h i c h t h i s  to  an e c o l o g i c a l  to  a limited  system  level. termed  which appears  although with  l a n d u s e mapping has The the  undertaken  restricted  belongs  spatially  This i s implied  the e x c l u s i o n o f  o c c u r r e d e v e n a t t h e most  major p o r t i o n o f the Canadian  in  geology,  elementary  High A r c t i c  has  been  " P o l a r D e s e r t Zone" i n r e f e r e n c e t o the major g e n e t i c  soil  type  term  p o l a r d e s e r t has  a regional  t o be  p o r t i o n o f the High A r c t i c .  the c u r r e n t l i t e r a t u r e , little  s t u d y was  found  on  system,  descriptions a r e a s such as  the landscape  (Tedrow 1 9 6 8 b ) .  Although  y e t t o be a d e q u a t e l y d e f i n e d i n t e r m s  i.e. biogeocoenotlcally,  of those areas a v a i l a b l e those d e s c r i b e d here  i t i s apparent  at present that  fail  t o meet t h e  the of from  coastal  implied  criteria  of a polar desert.  landscape  are g l e y s o l i c  communities a r e h y d r i c , versely,  i t w o u l d be  i n f o r m a t i o n as  The  soils.  principal  types  Vegetation Is r i c h  h y g r i c o r wet  p r e s u m p t u o u s on  mesic  Yet  these areas  geomorphlc and  to suggest  lowland areas.  sharply  from  ence,  utilized  which I b e l i e v e  choice also  suggests  term  ecosystem  internal  system  importance  landscape  dominance.  nificance  of  biome r e m a i n s present  these  these  While  coastal  restricted  f o r b r e e d i n g and  originally  (Ovibos moschatus) found agent  that  i n these  in their uncharacteristic  and  polar  of sigtundra  the  that  Indeed  at higher  Devon  f o r a g i n g purposes  plateau regions.  suggested  The  data are  to suggest  Island  (1948)  coher-  coastal  quantitative  mammal p o p u l a t i o n s u t i l i z e  t h e more e x t e n s i v e u p l a n d  the  g e o g r a p h i c a l l y the  i t w o u l d seem r e a s o n a b l e  areas  them  systems to the b i o l o g y o f the While  by  proper.  p o r t i o n s o f a v i a n and lowlands  linked  i s not n e c e s s a r i l y a function  t o be a s s e s s e d .  lacking,  and  homogeneity o f processes  f o r example t h e p o l a r d e s e r t s  Ecological  zonal  coastal areas.  s y s t e m s when t h e y a r e c o n t r a s t e d w i t h o t h e r r e g i o n a l as  a  I have chosen  s t r u c t u r e which should serve to d i s t i n g u i s h  systems,  limited  to imply a systems  e x i s t s w i t h i n these an  Con-  inadequately  f e a t u r e s which d i s t i n g u i s h  much o f t h e p o l a r l a n d s c a p e .  more l o o s e l y  here  the  most  T h e i r extent  certainly represent a  biological  and  i n nature.  d i v e r s i t y w i t h i n the p o l a r r e g i o n s i s a t p r e s e n t known.  on  the b a s i s o f such  i s presently available  c h a r a c t e r i z a t i o n of these  soil  than  Polunin  t h e h i g h numbers o f Musk o x e n c o a s t a l a r e a s was  a causative  botanical luxuriance.  217 It at  can  o n l y be  a p e r i o d i n time  are  r e g r e t t e d by any when i m p o r t a n t  t o be made, w h i c h w i l l  affect  so  knowledge o f even the  m a j o r s e g m e n t s o f one America,  of  the  t h a t our  compara-  subzones w i t h i n the  biome i s  limited. I would  that  these  extent  evidence  of  the present  represent areas  to the h i g h a r c t i c diversity  tundra.  of high  While l i m i t e d  of landscape  concentrations of w i l d l i f e  study biological in  units present  p o p u l a t i o n s which  a r e a a r g u e s t h a t more i n t e n s i v e e v a l u a t i o n o f t h e s e  systems should few  from the  the b i o l o g i c a l  the apparent this  suggest  c o a s t a l s y s t e m s may  significance  a  larger  that  land-management d e c i s i o n s  l e a s t m a n - d i s t u r b e d biomes i n N o r t h tive  responsible biologist  be  undertaken.  p o l a r landscape  limited  their  a comparative  utilize coastal  basis there  systems o f comparable d i v e r s i t y w i t h i n  geographical area.  ecological  On  and  significance  are such  I n f u t u r e l a n d management d e c i s i o n s s h o u l d n o t be  underestimated.  218 LITERATURE A c o c k , A. M. region  CITED  194-0. Vegetation of a calcareous inner i n Spitsbergen. Jour. E c o l . 28:81-106.  A l e k s a n d r o v a , V. i960. Some r e g u l a r i t i e s i n t h e of v e g e t a t i o n i n the a r c t i c tundra. Arctic  fjord  distribution 13:147-162.  Bamberg, S. and M a j o r , J . 1968. E c o l o g y of the v e g e t a t i o n and s o i l s a s s o c i a t e d w i t h c a r c a r e o u s p a r e n t m a t e r i a l i n t h r e e a l p i n e a r e a s o f Montana. E c o . Mono. 3 8 ( 2 ) : 126-167. Bell,  C. I969. The p l a n t a s s o c i a t i o n s o f t h e C a r i b o o a s p e n l o d g e p o l e p i n e - D o u g l a s - f i r p a r k l a n d zone. Ph.D. thesis. Botany Dept., Univ. o f B r i t i s h Columbia.  B e n n i n g h o f f , W. S. 1952. I n t e r a c t i o n o f v e g e t a t i o n and f r o s t phenomena. A r c t i c 5 ( 1 ) s 3 1 - 4 4 . B e s c h e l , R. E . islands.  1969. Floristic relations Botan. Zh. 5 4 : 8 7 2 - 8 9 1 .  soil  o f the N e a r a c t l c  19?0. The d i v e r s i t y o f t u n d r a v e g e t a t i o n . I n P r o d u c t i v i t y and C o n s e r v a t i o n i n N o r t h e r n Clrcumpolar Lands. I.V.C.N. P u b l . No. 16 New Series. B i l l i n g s , W. D. and B l i s s , L. C. 1959* A n a l p i n e snowbank e n v i r o n m e n t and i t s e f f e c t s on v e g e t a t i o n , p l a n t d e v e l o p m e n t and p r o d u c t i v i t y . Ecol. 40(3):388-397. and  and Mooney, H. A. 1968. The e c o l o g y a l p i n e p l a n t s . B i o l . Rev. 4 3 : 4 8 1 - 5 3 0 .  of  arctic  Bird,  B. J . 1967. The p h y s i o g r a p h y H o p k i n s P r e s s , 3 3 6 pp.  Bliss,  L. C. 1956. A c o m p a r i s o n o f p l a n t d e v e l o p m e n t and microenvironment o f t h e a r c t i c and a l p i n e t u n d r a s . E c o l . Mono. 2 6 ( 4 ) 0 0 1 - 3 3 7 .  of A r c t i c  Canada.  John  . 1962. A d a p t a t i o n s o f a r c t i c arad a l p i n e p l a n t s to environmental c o n d i t i o n s . A r c t i c 1 5 ( 2 ) : 1 1 7 - 1 4 4 . . I963. A l p i n e p l a n t communities of the Range, New H a m p s h i r e . Ecol. 44(4):678-697. B o c h e r , T. W. 1951. D i s t r i b u t i o n of p l a n t s i n the a r e a i n r e l a t i o n to e c o l o g i c a l and h i s t o r i c a l Jour. Ecol. 39:376-395-  Presidential  clrcumpolar factors.  Holmen, K., J a k o b s e n , K. 1968. The f l o r a Greenland. P. Haase and Son. Copenhagen, 3 1 2 pp.  of  219 Bonde, E . K. 1 9 6 9 . P l a n t d i s s e m i n u l e s I n w i n d - b l o w n d e b r i s from a g l a c i e r i n C o l o r a d o . A r c t i c and A l p i n e Research.  1(2):135-139. B o u y o u c o s , G. J . 1 9 5 1 • A r e c a l i b r a t l o n o f t h e h y d r o m e t e r method f o r m a k i n g m e c h a n i c a l a n a l y s i s o f s o i l s . Jour. Amer. S o c . A g r o n . 4 3 : 4 3 4 - 4 3 8 . B r a s s a r d , G. R. 1 9 6 7 a . New o r a d d i t i o n a l m o s s e s f r o m I s l a n d , N.W.T. B r y o l o g i s t 7 0 ( 2 ) : 2 5 1 - 2 5 6 . . Melville  Ellesmere  1967b. A c o n t r i b u t i o n t o the bryology o f I s l a n d , N.W.T. B r y o l o g i s t 7 0 ( 3 ) : 3 4 7 - 3 5 1 .  . 1 9 6 8 . The p l a n t h a b i t a t s o f the Tanquary Camp a r e a , E l l e s m e r e I s l a n d , N.W.T. D e f e n s e R e s e a r c h Board. Hazem 3 2 , O t t a w a . and B e s c h e l , R. E . 1 9 6 8 . T h e v a s c u l a r f l o r a o f T a n q u a r y F i o r d , n o r t h e r n E l l e s m e r e I s l a n d , N.W.T. Can. F i e l d . N a t . 8 2 : 1 0 3 - 1 1 3 a n d L o n g t o n , R. E . 1 9 7 0 . T h e f l o r a a n d v e g e t a t i o n o f V a n Hauen P a s s , n o r t h w e s t e r n Ellesmere Island. Can. F i e l d . N a t . 8 4 : 3 5 7 - 3 6 4 .  Island,  a n d S t e e r e , W. C. N.W.T. C a n a d a . Can.  1 9 6 7 . T h e mosses o f B a t h u r s t Jour. Bot. 4 6 ( 4 ) : 3 7 7 - 3 8 3 .  Braun-Blanquet, J . 1932. P f l a n z e n s o z l o l o g i e . T r a n s l a t i o n by F u l l e r a n d C o n r a d , 1 9 6 5 . H a f n e r Pub. Co., 4 3 9 PP«  Vegetatlo Verlag, •  _. 1948. 1:32-34.  1964. 8 6 5 PP«  Die  Pflanzengesellschaften Ratlens.  Pflanzensozlologie.  and Furrer, E. d e s g r o u p e m e n t s de p l a n t e s . de Geog. 3 6 : 2 0 - 4 1 .  Springer-  1 9 1 3 * Remarques s u r l ' e t u d e B u l l . Soc. Languedocienne  B r e m n e r , J . M. i 9 6 0 . D e t e r m i n a t i o n o f n i t r o g e n i n s o i l by K j e l d a h l method. Jour. Agr. S c i . 5 5 : 1 - 2 3 . B r i t t o n , M. 1 9 6 6 . V e g e t a t i o n o f t h e A r c t i c S t a t e U n i v . P r e s s , 64 p p .  Tundra.  Oregon  B r o o k e , R. C , P e t e r s o n , E . B. a n d K r a j i n a , V. J . 1 9 7 0 . The s u b a l p l n e mountain hemlock zone. E c o l . W.N.A. 2 : 1 4 7 - 3 4 9 . Brown, J . 1 9 6 9 . B u r l e d s o i l s a s s o c i a t e d w i t h p e r m a f r o s t . In Pedology and Quaternary Research. Symp. NRC a n d Univ. A l b e r t a .  220 Brown, J . a n d R i c k a r d , W. 1 9 6 9 . The t h a w i n g o f s o i l s a s s o c i a t e d with Eriophorum tussocks. P r o g . Rep. C.R.R.E.L. H a n o v e r , N. H., 94 p p . Brown, R. J . E . 1 9 6 3 « R e l a t i o n between mean a n n u a l a i r a n d ground t e m p e r a t u r e i n t h e p e r m a f r o s t r e g i o n o f Canada. In P r o c e e d i n g s P e r m a f r o s t I n t e r n a t i o n a l C o n f e r e n c e . NAS-NRC P u b . No. 128?, W a s h i n g t o n , D. C. Buckman, H. 0 . a n d B r a d y , N. C. 1 9 6 9 . The n a t u r e a n d properties of soils. M a c M i l l a n Co., 6 5 3 PP« C e s k a , A. I 9 6 8 . Application of association coefficients f o r e s t i m a t i n g t h e mean s i m i l a r i t y between s e t s o f v e g e t a t i o n a l releve's. F o l i a G e o b o t . P h y t o t a x 3:57-64. D a h l , E . 1 9 5 6 . Rondane: M o u n t a i n v e g e t a t i o n i n s o u t h Norway and i t s r e l a t i o n t o e n v i r o n m e n t . I . K o m m l s j o n Hos. H. A s c h e h o u g & Co., O s l o . D o u g l a s , L . A. a n d Tedrow, j . C. F. i 9 6 0 . Tundra s o i l s o f arctic Alaska. P r o c . 7 t h I n t . S o i l S c i . Cong. Comm. V., V o l . I V : 2 9 1 - 3 0 4 . Drew, J . V., Tedrow, J . C. F., S h a n k s , R. E . a n d K o r a n d a , J . J . 1958. R a t e a n d d e p t h o f thaw i n a r c t i c s o i l s . Trans. Amer. G e o p h y s . U n i o n 3 9 ( 4 ) : 6 9 7 - 7 0 1 . D r u r y , W. H. 1 9 6 2 . P a t t e r n e d g r o u n d a n d v e g e t a t i o n on Southern B y l o t I s l a n d , Northwest t e r r i t o r i e s , Canada. C o n t r b . G r e y . H e r b . No. 1 9 0 . C a m b r i d g e , Mass., I l l pp. F e u s t e l , I . C , D u t i l l y , A. a n d A n d e r s o n , M. S. 1 9 3 9 . P r o p e r t i e s o f s o i l s from N o r t h A m e r i c a n a r c t i c r e g i o n s . S o i l S c i . 48:183-200. Fries,  T. C. E . Schweden.  1913. Botanische Untersuchungen U p p s a l a a n d Sweden.  im N o r d l i c h e n  G e l t i n g , P. 1955« A west G r e e n l a n d Dryas l n t e g r l f o l l a community r i c h i n l i c h e n s . Svensk. B o t . T i d s k r . 4 9 : 2 9 3 313. Gjaerevoll, 0. 1 9 5 0 . The snowbed v e g e t a t i o n i n t h e s u r r o u n d i n g s o f Lake T o r n e t r a s k , Swedish L a p p l a n d . Svensk. B o t . T i d s k r . 44:387-440. Mag.  . 195^. Kobresieto-Dryadion f o r Bot. 3 : 5 1 - 5 4 .  In Alaska.  . 1 9 5 6 . The p l a n t c o m m u n i t i e s o f t h e S c a n d i n a v i a n a l p i n e snow-beds. D e t k g l . Norske. V i d e n s k . S e l s k a b s . S k r . 1 : 4 0 5 pp.  Nytt.  221 G l e n l s t e r , B. F. 1963* Regional Geology.  S v e r d r u p I n l e t t o Cape S p a r b o , Geo. S u r v . Can. Mem. 320:184-188.  G r i g g s , R. F. 1934. The p r o b l e m o f a r c t i c v e g e t a t i o n . J o u r . Wash. A c a d , o f S c i . 2 4 ( 4 ) : 1 5 3 - 1 7 5 . H i s s i n k , D. J . 1930. R e p o r t o f the committee o f s o i l r e a c t i o n measurements o f t h e I n t e r n a t i o n a l S o c i e t y S o i l Science. S o i l Res. 2 : l 4 l - l 4 4 . Hulten, E. 1964. The c l r c u m p o l a r p l a n t s . cryptogams, c o n i f e r s , monocotyledons. W i s k e l l , Stockholm.  I. Vascular A l m q u i s t and  . 1968. F l o r a o f A l a s k a and n e i g h b o r i n g Stanford Univ. Press. Hussell,  D.  1969.  J a c k s o n , M. L . Inc., New  Personal  territories.  Communication.  1958. S o i l chemical a n a l y s i s . J e r s e y , 4 9 8 pp.  J o h n s o n , P. L . 1969. Arctic Arctic 22(3):34l-355.  of  plants,  Prentice-Hall,  ecosystems and  strategies.  K i n g , R. 1968. P e r i g l a c i a l e n v i r o n m e n t o f Devon I s l a n d , N.W.T. Ph.D. t h e s i s . Geography Dept., U n i v . o f S a s k a t o o n , Saskachewan. Kllka,  J.  1955.  Nauka o r o s l l i n n y c h  spolecenstvech.  K r a j i n a , V. J . 1933. D i e P f l a n z e n g e s e l l s h a f t e n des M l y n i c a - T a l e s i n d e n Vysoke* T a t r y (Hohe T a t r a ) . I. T e l l . B e i h . zum B o t . C e n t r a l - B l a t t . B. L . A b t . I I . H. 3 , S. 7 7 4 - 9 5 7 . I I . T e i l . I B I D . B. L I . A b t . I I ,  S. 1-224.  L a c h e n b r u c h , A. H. 1962. Mechanics of thermal c o n t r a c t i o n c r a c k s a n d i c e wedge p o l y g o n s i n p e r m a f r o s t . G e o l . S o c . Amer. S p e c . P a p e r No. 7 0 . L a m b e r t , J . D. H. 1968. The e c o l o g y a n d s u c c e s s i o n a l t r e n d s o f t u n d r a p l a n t c o m m u n i t i e s i n t h e Low A r c t i c s u b a l p i n e zone o f t h e R i c h a r d s o n and B r i t i s h M o u n t a i n s o f t h e Canadian Western A r c t i c . Ph.D. t h e s i s . Botany Dept., Univ. of B r i t i s h Columbia. Lynge,  B. 1947. L i c h e n e s , In Botany o f the Canadian E a s t e r n Arctic. P a r t I I . N a t l . Museum o f Can., B u l l . 9 7 : 2 9 8 369.  Mackay, J . R. 1958. A subsurface organic layer associated w i t h p e r m a f r o s t i n the Western A r c t i c . Geogr. Branch. T e c h . P a p e r No. 1 8 . Ottawa.  222 Mackay, J . R. 1 9 5 8 . The A n d e r s o n R i v e r Map-Area, N.W.T. Geogr. Branch, Mines a n d T e c h n i c a l S u r v e y s , Ottawa, Memoir 5 , 1 3 7 p p . .  1 9 6 3 . The M a c k e n z i e D e l t a A r e a , N.W.T. Geogr. B r a n c h Mines a n d T e c h n i c a l S u r v e y s , Ottawa, Memoir 8 , 2 0 2 p p . M c M i l l a n , N. J . i 9 6 0 . S o i l s o f t h e Queen E l i z a b e t h I s l a n d s (Canadian A r c t i c ) . Jour. S o i l S c i . 11:131-139. M a r r , J . W. 1 9 ^ 7 . Ecosystems o f t h e e a s t s l o p e o f the F r o n t Range i n C o l o r a d o . Univ. o f Colorado Studies, Ser. i n B i o l . No. 8 . Moore, J . J . 1 9 6 2 . The B r a u n - B l a n q u e t Jour. E c o l . 50:761-769.  system:  a reassessment.  , F i t z s i m o n s , S. J . P., Lamb, E . a n d W h i t e , J . 1970. A c o m p a r i s o n a n d e v a l u a t i o n o f some p h y t o s o c i o l o g l c a l techniques. Vegetatlo 20:1-20. M u l l e r , C. H. 1 9 5 2 . P l a n t s u c c e s s i o n i n a r c t i c h e a t h a n d tundra i n northern Scandinavia. B u l l . T o r r . Bot. Club 79(4):296-309. M u l l e r , F . a n d Ban, W. 1966. Postglacial isostatic i n n o r t h e a s t e r n Devon I s l a n d , C a n a d i a n A r c t i c Archipelago. Arctic 19(3):263-269.  movement  N o r d h a g e n , R. 1 9 5 5 * Kobresieto-Dryadion i n northern Scandinavia. Svensk. Bot. T i d s k r . 4 9 : 6 1 - 8 7 . O o s t i n g , H. J . 1 9 4 8 . E c o l o g i c a l n o t e s o n t h e f l o r a o f e a s t G r e e n l a n d a n d J a n Mayen. I n The C o a s t o f n o r t h e a s t Greenland. Amer. G e o g r . S o c . S p e c . P u b l . No. 3 0 : 2 2 5 - 2 6 9 . P o l u n i n , N. 1 9 4 8 . B o t a n y o f t h e C a n a d i a n E a s t e r n A r c t i c . P a r t I I I Vegetation and Ecology. N a t l . Museum o f C a n . B u l l . No. 104. Press,  1959* Circumpolar Oxford, 5 1 4 pp.  arctic  flora.  Claredon  P o o r e M. E . D. 1 9 5 5 a . T h e u s e o f p h y t o s o c i o l o g l c a l methods In e c o l o g i c a l i n v e s t i g a t i o n s . P a r t I . The B r a u n Blanquet system. J o u r . E c o l . 4 3 ( 1):226-244-. . 1955b. The u s e o f p h y t o s o c i o l o g l c a l methods In e c o l o g i c a l i n v e s t i g a t i o n s . Part II. Practical Issues I n v o l v e d l n a n attempt t o a p p l y the Braun-Blanquet system. Jour. Ecol. 4 3 ( 1 ) : 2 4 5 - 2 6 9 .  223 P o r s i l d , A. E . 1964. I l l u s t r a t e d f l o r a o f the Canadian Arctic Archipelago. N a t l . Museum o f C a n . B u l l . No. Rae  t  R. W. 1951* Climate of the Canada Dept. o f T r a n s p o r t .  Raup, H. M. 1951* Vegetation Sci. 5K3):105-116.  and  Canadian A r c t i c Form 9 0 0 2 . cryoplanatlon.  146.  Archipelago.  Ohio  Jour.  . 1965. The s t r u c t u r e and d e v e l o p m e n t o f t u r f hummocks i n t h e M e s t e r s V i g D i s t r i c t , n o r t h e a s t G r e e n l a n d Medd. 0 m . G r ^ n l a n d . l66(3):1-113. . 1969a. The r e l a t i o n o f t h e v a s c u l a r f l o r a t o some f a c t o r s o f s i t e i n t h e M e s t e r s V l g D i s t r i c t , northeast Greenland. Medd. 0 m . G r ^ n l a n d . 176(5):1-80. . 1969b. O b s e r v a t i o n s on t h e r e l a t i o n o f v e g e t a t i o n to mass-wasting p r o c e s s e s i n the M e s t e r s V i g D i s t r i c t , northeast Greenland. Medd. Om. G r ^ n l a n d . 1?6(6):1-216. Ream, R. R. 1962. A s t a n d a r d computer p r o g r a m f o r d e t e r m i n i n g t h e i n d e x o f s i m i l a r i t y among v e g e t a t i o n s t a n d s . Abstr. B u l l . E c o l . S o c . Amer. 4 3 : 9 8 . R e t z e r , J . L. 1965« P r e s e n t s o i l - f o r m i n g f a c t o r s and p r o c e s s e s l n A r c t i c and A l p i n e r e g i o n s . Soil Sci. 99: 38-44.  Running,  0 . I. 1965. P o l a r i n s t . Skr.  S t u d i e s on D r y a d i o n 134, 52 pp.  of Svalbard.  Norsk  . 1969. F e a t u r e s o f t h e e c o l o g y o f some a r c t i c S v a l b a r d ( S p i t s b e r g e n ) p l a n t communities. A r c t i c and A l p i n e Research. l(l):29-44. S a v l l e , D. B. 0 . 1959. The . D i s t r i c t of F r a n k l i n . . principle. • Elizabeth Schofield, soil  botany of Somerset I s l a n d , Can. J o u r . B o t . 3 7 : 9 5 9 - 1 0 0 2 .  i960. L i m i t a t i o n s of Science 132:1761.  the competitive  exclusion  1961. The b o t a n y o f t h e ' N o r t h w e s t e r n Queen Islands. Can. J o u r . B o t . 39:909-942.  R. K. a n d T a y l o r , A. W. 1955« pH. S o i l S c i . S o c . Amer. P r o c .  The measurement 19:164-167.  of  S c h o f i e l d , W. B. and Cody, W. J . 1955* Botanical investigations on c o a s t a l s o u t h e r n C o r n w a l l l s I s l a n d , F r a n k l i n D i s t r i c t , N.W.T. Can. F i e l d N a t . 69(3):ll6-128.  224 S c h u s t e r , R. M., S t e e r e , W. C. and Thomson, J . W. 1 9 5 9 . The t e r r e s t r i a l cryptogams o f N o r t h e r n E l l e s m e r e I s l a n d . N a t l . Museum o f Can. B u l l . 164. Sharp, R. P. 1 9 4 2 . S o i l s t r u c t u r e s i n the S t . E l i a s Range, Yukon T e r r i t o r y . J o u r . Geomorph. 5 : 2 7 4 - 3 0 1 . S l g a f o o s , R. S. 1 9 5 2 . F r o s t a c t i o n as a primary p h y s i c a l f a c t o r i n tundra p l a n t communities. E c o l . 33*.480-487. S o k a l , R. R. and Sneath, P. H. A. 1 9 6 3 . n u m e r i c a l taxonomy. W i l t Freeman.  P r i n c i p l e s of San F r a n c i s c o , 3 5 9 PP«  S^renson, T. 1941., Temperature r e l a t i o n s and phenology o f the n o r t h e a s t Greenland f l o w e r i n g p l a n t s . Medd. Om. Grjrfnland. 125(9):I-305. ,  .  1 9 4 8 . A method f o r e s t a b l i s h i n g groups o f equal amplitude i n p l a n t s o c i o l o g y based on s i m i l a r i t y of s p e c i e s content and i t s a p p l i c a t i o n to a n a l y s e s o f the v e g e t a t i o n on Danish Commons. Det Kongelige danske vidensk, s e l s k . B i o l . S k r . B. V. Nr. 4 , 3 4 pp.  S t e e r e , W. C. 1 9 3 9 * Bryophyta o f a r c t i c America I I . S p e c i e s c o l l e c t e d by J . Dewey Sopea, p r i n c i p a l l y i n southern B a f f i n I s l a n d . Amer. Mid. Natur. 2 1 ( 2 ) : 3 5 5 - 3 6 7 . . 1 9 4 7 - Muscl. In Botany o f the Canadian E a s t e r n A r c t i c . P a r t I I . T h a l l o p h y t a and Bryophyta. N a t l . Museum o f Canada. B u l l . 9 7 • . 1 9 5 1 ' Bryophyta o f a r c t i c America IV. The mosses o f C o r n w a l l i s I s l a n d . B r y o l o g i s t 54(3):181-202. . 1 9 5 5 ' Bryophyta o f a r c t i c America V I . A c o l l e c t i o n from P r i n c e P a t r i c k I s l a n d . Amer. Mid. Nat. 53(D:231-24l. Sukachev, V. N. 1 9 4 4 . On the p r i n c i p l e s o f g e n e t i c c l a s s i f i c a t i o n i n biocoenology. Zh. Obshchei B i o l . 5:213-227. Trans, by R. Raney, E c o l . 3 9 ( 2 ) : 3 0 4 - 3 0 7 . '  and D y l i s , N. 1 9 6 4 . Fundamentals o f F o r e s t Biogeocoenology. Trans, by J . M. Maclennan. O l i v e r and Boyd. London.  S z a f e r , W. 1 9 6 6 . The v e g e t a t i o n o f Poland. Trans, from the P o l i s h ed. by W. H. P a r y s k i . Pergamon. Tedrow, J . C. F. 1962. M o r p h o l o g i c a l evidence o f f r o s t a c t i o n in arctic soils. Biuletyn Peryglacjalny nr. 1 1 : 3 4 3 - 3 5 2 .  Tedrow, J . C. F. 1 9 6 3 - A r c t i c s o i l s . In Proceedings Permafrost I n t e r n a t i o n a l Conference. NAG-NRC Pub. No. 1 2 8 7 W a s h i n g t o n , D. C.  of  . 1 9 6 6 . Polar Desert s o i l s . Amer. P r o c . 3 0 ( 3 ) : 3 8 l - 3 8 7 -  Soil  Sci.  Soc.  . 1968a. Soil investigations i n Inglefield Land, G r e e n l a n d . A r c t i c I n s t i t . o f N o r t h Amer. R e s e a r c h R e p o r t , 1 2 6 pp. __. 1968b. Pedogenic gradients i n the p o l a r regions. Jour. S o i l S c i . 19(1):197-204. , Bruggemann, P. F., W a l t o n , G. F . 1 9 6 8 . Soils of Prince Patrick Island. Arctic Instit. of N o r t h Amer. R e s e a r c h P a p e r No. 4 4 . Cantlon, J . E. 1 9 5 8 . Concepts o f s o i l f o r m a t i o n and c l a s s i f i c a t i o n l n a r c t i c r e g i o n s . Arctic 11(3):166-179a  n  d  and D o u g l a s , L . A . 1964. Soil on Banks I s l a n d . Soil Sci. 98(1):53-65.  Investigations  , Drew, J . U., H i l l , D. E . a n d D o u g l a s , L . A . 1958. Major g e n e t i c s o i l s o f the a r c t i c s l o p e o f Alaska. Jour. S o i l S c i . 9 ( 1 ) : 3 3 - ^ 5 . Soil  a n d H i l l , D. E . S c i . 80:265-275.  1955.  Thomas, M. K. 1953* Cllmatologlcal No. 3 1 5 1 . 2 5 3 p p . Thomson, J . W. America.  Arctic  atlas  Brown  o f Canada.  soil. NRC  I967. The l i c h e n genus C l a d o n i a i n N o r t h U n i v . Toronto P r e s s , 1 7 2 pp.  , S c o t t e r , G. W., A h t i , T. I969. Lichen of the G r e a t S l a v e Lake r e g i o n . Northwest T e r r i t o r i e s , Canada. Bryologist 72(2)-.137-177. T y r t i k o v , A. P. 1 9 5 9 - P r i n c i p l e s of geocryology, Part I, G e n e r a l g e o c r y o l o g y , Chap. 1 2 , P e r e n n i a l l y f r o z e n g r o u n d and v e g e t a t i o n . N.R.C. T e c h . T r a n s . No. II63. T r a n s , by R. J . E . Brown. Ugolinl, in  F . C. I965. The r e c o g n i t i o n o f A r c t i c Brown Northeast Greenland. Arctic 18(1):49-51.  U.S.D.A. S t a f f . No. 18.  1951.  Soil  survey manual.  soils  U.S.D.A. Handbook  226 V i e r e c k , L . A. 1965* R e l a t i o n s h i p of white spruce to lenses o f p e r e n n i a l l y f r o z e n g r o u n d , Mount M c K i n l e y N a t i o n a l Park, A l a s k a . Arctic 18(4):262-267. Warren W i l s o n , J . 1959' N o t e s on w i n d a n d i t s e f f e c t s I n arctic-alpine vegetation. Jour. E c o l . 4 7 : 4 1 5 - 4 2 7 . Washburn, A. L . 1956. Classification and r e v i e w o f s u g g e s t e d o r i g i n s . Amer. 6 7 : 8 2 3 - 8 6 6 . West, N. 1966. vegetation Whittaker, Bot.  Rev.  ground Soc.  c l u s t e r a n a l y s i s o f montane f o r e s t Oregon Cascades. Ecol. 47(6):975-98O.  R. H. 1962. Classification Rev. 28(l):l-239. .  Biol.  Matrix of the  of patterned B u l l . Geol.  1967. Gradient 42:207-264.  of Natural  analysis of  Communities.  vegetation.  W l l l a r d , B. E . 1963* P h y t o s o c i o l o g y of the a l p i n e tundra of T r a i l Ridge, Rocky Mountain N a t i o n a l P a r k , C o l o r a d o . Ph.D. t h e s i s . Botany Department, U n i v . o f Colorado, Boulder. Wynne, F. E . and S t e e r e , W. C. 1943* The b r y o p h y t e f l o r a t h e e a s t c o a s t o f Hudson Bay. Bryologist 46:73-87.  of  Young, S. B. 1971. The v a s c u l a r f l o r a o f S t . L a w r e n c e I s l a n d , w i t h s p e c i a l r e f e r e n c e to f l o r i s t i c z o n a t l o n i n the a r c t i c regions. C o n t r b . G r a y H e r b . No. 2 0 1 , 1 1 5 PP«  227 Appendix A  r  A VG .  32 32  33 33  52.50 32.50  0.5 7 0.57  31 31 31 31 33 33 33 31  33 33 32 34 35 54 33 35  31.67 32.12 31.o2 32.5u 34.00 5 3.50 33.00 32.63  0.99 0.83 0.51 .1.41 0.92 0.53 0 . OU 1.1b  33 34 3 4. 35 34 36 35 34 33  34 35 38 37 37 37 36 34 38  33.50 34.37 3 5.50 36.37 3 5.37 3O.50 3 5 . 12 34.00 3 5.20  0.5 7 0.51 1.69 0. 74 1.40 .0.53 0.35 0. 0 o 1.2M  8 b 8 8 8 6 8 56  34 33 31 31 35 35 34 31  36 34 32 35 37 36 35 37  3 4.87 33.62 3 1.37 32.37 35.75 3 5.62 3 4.37 34.00  0.99 0.51 0.51 1.76 0.88 0.51 0.51 1.76  8  34 33 32 32 34 34 32 32  35 34 34 34 37 36 . 33 37  34.50 3 3.50 3 3.12 3 3.00 35.62 35.37 32.50 3 3.94  0.5 3 0.53 0.83 J . 75 1.40 0.91 0.53 1.39  34 34 32. 32 35 34 33 35  33.00 33.50 31.37 31.25 33.37 3 3.12 3 2.12 32.53  0.92 0.53 . 0 . 5 1 0.68 1.30 0.64 0.83 1.19  34 34 32 34 34 34 40 40  3 3.00 3 3.37 31.25 32.25 3 3.37 33.37 3 7 . b7 33.50  INST .  '•'.ONTH  DAY  YEAR  4.  5  6  15  69  4 4  5  6 6 6 6 6 6 6  16 17 IH 19 . 20 21 22  69 69 69 69 69 69 69  8 a 8 o 6 8 4 52  22 23 24  69 69 69 69 69 69 69 69  4 8 8 b b b 8 8 60  6  69 69 69 69 69 69 69  7 8 9 10 11 . 12 13  69 69 69 69 69 . 69 69  WEEKLY  b  4 4 ...  5 5 5 5 5  4 4  WEEKLY . . .  4 VALUE  4  5 5  4  b  4 4  b  4 .  4  b  *  .  .....  WEEKLY  WEEKLY  .  6. 6 6 6 6 6 6 6  ... -  2b  ... ..  26 27 . 23 29  .  VALUE 4 4 4  _  . b  5  4  ...  v  b  4 -  .  b b b  4 4  b  4  b  4  b  .  b  30 1 2 3 4  6 7 7 7 7 7 7  .  b  ;••! i ,\.  NO.  VALUE  \  ;  i-,AX.  STATION  VALUE  . . .  ...  byO_<>  ....  4  ....  . .  WEEKLY  4  b b  4  b  4  b  4  b  4  b  4  b  b  4  b  ...... . 5 . 5 b b  4  b  7 7 7 7 7 7 7 •  ....  14 15 16 17 Id 19 20  69 69 69 69 69 69 69  .  4 4  b b  4  b  4  b  4 . 4  VALUE  .  u  6  e . ..  6 8 8 8  a  56  VALUE  4  WEEKLY  ...  a  8 8 8 56  4  4 4 4  . _  ..  a  VALUE  4  WEEKLY  .  7 7 7 7 7 7 . 7  b  .....  5 b -  7 7 • 7 7 7 7 7  21 22 23 24 25 26 27  69 69 69 69 69 69 69  8 8 8 8 0  8 8 56  32 33 ... 31 . 30 32 32 31 30 32 32 30 30 33 33 35 30  0.92 0 . 74 0.c o 1. 75 0.51 0.5 1 • 2.23 2.27  ... .....  ro ro  CO  .  r  WEEKLY  4 4 4 4 4 4 4 VALUE  WEEKLY  4 4. 4 4 4 4 4 VALUE  WEEKLY  4 4 4 " 4 4 4 4 VALUE  T i I  0 b  5  7 7 7 7 8 3 8  23 29 30 31 1 2 3  b 5 5 b 5  "" 8 8 8 8 8 8. 8  4 b 6 7 8 9 10  b 5 b b  8 8 ...8 3 8 8 8  11 12 13 14 lb 16 17  5  69 • 69 69 69 69 69 69  69 69 69 69 69 . . . 69 69  69 69 69 69 69 69 69  8 6 8" 8 8 8 8 b6 8 8 8 8 6 8 8 56 8 6 8 8 B 8 6 b4  40 39 37 3b 34 35 3b 34  41 4J 3a 37 36 36 38 41  40.7b 39 . bo 37.12 36.2b 3b.12 35.12 3 6.50 3 7.19  36 .34 33 34 33 33 34 33  36 37 35 3b 34 36 3b 38  37.12 3b.7b 34.00 34.37 33.37 34.37 34.7b 34.62  36 36 . 33 33 31 31 33 36  3 4.87 3b.00 33.00 32.12 30.12 2 9.87 30 • b0 32.27  34 33 33 32 30 29 <i9 29  .  0.46 0.b3 0.3b 0.70 0.99 0.3b 1.4l 2. 14 "  ••  -  -  • —  '  .  VALUE  FOR  SUMMER  506  29  41  34.02  1  j  0.63" ' 1. 16 0.92 O.bl C.bl 1.30 0.46 1.42 0. 99 1.19 0.00 0.3b 0.3 D 0.o3 1.64 2. 2 0  _  2.23  ro ro  -  STAT 1  I.\ST .  •••lONTH  DAY  YEAR  NO.  \ b  6  lb  69  4 4  69 69 69 69 69 69 69  8 8 6  4 VALUE -  WEEKLY  4  >  s  4 4 ..4 4 4 u  WEEKLY  16 17 16 ... 1 9 .. 20 21 22  4 4 4 4 4 4 4 VALUE  . . ..lb.. lb lb 1 ~>  .  lb l>  ...  lb 1 b lb . . l b .... lb lb • lb  4 . .. 4 4 4 4 • 4 .4 .. WEEKLY VALUE  6 6 6  ft  lo  4... 4 4 .4 .... 4 4 4 VALUE  4  27 27 26 <i6 ... 26 27 27 2 6"  ii  8 6 O  b6  .4 ... 4 4 4 4 4 - 4 . . WEEKLY V A L U E  WEEKLY  6 6 6 6 6 6 6  VALUE  _. 4 4 4 4 4 4 . _ 4 WEEKLY VALUE  WEEKLY  15 15 lb . ... l b lb 1 b lb  • 27 27  6 6 6  . 23 . 24 2b ?6 27 23 ....2 9 . ..  6 7 7 7 7 7 . 7  30 .1 2 .. .. 3 4 b 6  lb lb lb 1 b 1b lb . lb  7 7 7 7 7 7 7  .. 7 .. 8 9 10 11 12 ..... 13 .  15 lb lb lb lb 15 lb  7 7 7 7 7 7 7  14  15 lb lb lb lb 15 15.  7 7 7 7 7 7 7 ....  69 69 69 69 69 69 69  lb  7  15 16 .. 17. 18 19 20  .... 21 22 23 24 2b 26 27  23  69 69 69 69 69 69 . . 69  .  8 8 8 8 8 6 0 46  .  69 .... 69 69 69 69 69 .. 69 ..  ..  100 29 27 27 30 30 30 27  0 ' 4 8 8 8 3 8 44  o .... . 30 8 29 29 8 29 8 6 29 8 30 26 3 . .. 28 56  69 69 69 69 ...... 69 69 69  8 8 8 8. 8 e 8 b6  69 .. 69 69 69 69 69 69  6 ... 8 6 8 8 8 6 56  69  28 23 •' 28 26 31 30 100 26  8  28 29 28 2 3... 23 29 23 23 ....  r'.AX.  AVG.  27 27  27 .00 27 .00  0 .00 0 . 00  27 27 26 26 27 27 29 29  2 7 00 2 7. 0 0 26 .00 26 CO . 26 62 27 00 27 ,50 26 73  0 .00 0 .00 0 .00 0. 0 0 0 . bl 0 . 00 0 . 7b 0 .61  30 30 30 31 32 31 0 32  26 29 29 29 31 30 0 29  .7b .00 00 .2b .12 .50 00 .56  0. 7 0 0 .92 ' 0 .53 1 .26 0 .35 0 .54 ' 0. 0 0 1 .10 '  0 29 26 30 31 . 31 31 31  0 00 2 9 00 2 7- 3 7 27 7b 30 2b 30 .67 30 12 2 V. 24  0 . uo . 0 .00 0 .51 1 •16 _* .46 0 .3b • 0 .35 1 .49  31 ... 30 29 29 29 31 30 .. ... 31  30 . b 0 29 bO 2 9. 0 0 2 9 . 00 2 9 00 30. 67 2 8 . 87 2 9 . b3  29 30 29 .. 26._.. 29 30 29 30  26. 29 26 28. 23. 29 28 26  s .0.  29.. . .. 29 00 29 87 30 2 9 . 37 30 2 7 . 37 28 2 8 . 7b 29 2 9 . 00 29 33 30. 12. 29. 0 7 33  33  36  3b. 00  •  0. 53 0 .53 0 .00 0 . Oo 0 .00 0 .35 .99 ...... o 0.69  _  0 .46 0 .51 0 .53 0 • 00 0 .35 0 .53 0 .51 0 .75  2b 62 bO 00, 12 bO 37 62  29 29 29 27 23 29 29 27  ""  _  0 .00 0.3b 0 .bl 0 .bl 0.40 0 .00 1 .55 1 . 05 1 .06  „  - - - •  O  \ '  WEEKLY  4 4 VALUE  15 15 15 15 15 15 15  WEEKLY  4 . 4 4 4 4 4 4 VALUE  15 13 15 1 5 15 15 15  WEEKLY  4 4 4 4. . 4 4 4 VALUE  VALUE  FOR SU!' MER  7 7 7 8  15 15 15 15 15 15  a  9  . .  .... 8 8 8 8 8 8 8  8 8 8 . 3 8 8 8  .  36.87 33.0I 32.37 30.87 31.00 3 1.00 33.00  0.83 0.64 0.51 0.64 0.00 0.00 2.2c  8 8 8 8 8 8 56  36 33 32 30 31 31 30  38 35 33 32 31 31 38  69 69 69 69 69 69 69  4 8 8 3 8 8 8 52  32 ...... 33 31 30 30 29 29 29  33 34 34 31 31 29 30 34  69 69 69 69 69 69 69  8 8 8 8 8 8 6 54  30 30 31 29 28 27 28 27  30 32 31 31 29 28 29 32  3 0 . 00 3 1.00 3 1.00 29.75 2 8.25 27.50 28.16 29.42  0 . UJ 1 .06 0.00 , 0.88 0.4o 0.53 0.40 1.44  480  26  38  29.54  2.12 •  29 30 31 1 2 3  69 69 69 69 69 69  .4 5 6 7 . 8 9 10 .  11 12 13 14 15 16 17  -. :  .  32.75 33.37 3 2.37 . 3 0.37 30.37 29.OJ 29.37 3 0.96  0.50 0.51 1. 50 0.51 0.51 0 . UO 0.51 1.74  ro  WEEKLY  V „  4 VALUE  4 4 4 . 4.. 4 4 4  MO.  6  15  69  4 4  33 33  6 6 6 6 6 6 6  16 17 13 .. IV . 20 21 22  69 69 69 69 69 69 69  8 8 8  31 33 34 33 35 34 33 31  23 24 25 26 2 7  ... u . .  6 6 6 5 6 6 6  69 69 69 69 69 6v 69  ..... i o 1 ~ 1t - lc  6 7 7 7 7 7 7  K  It 12 18 • 15 lis It  i .• i ..  1  4 4 •4 4 4 4 4 VALUE  _ 4 4 4 4 4 4 4 WEEKLY V A L U E  YEA:?  ...It 1 ^ 1  . 4 ... 4 4 4 4 4 4 WEEKLY VALUE  WEEKLY  DAY  1  4 4 4 , ...4 . - . 4 4 4 WEEKLY V A L U E  29  ..  30 2 ... 4  5  ...  ri  8 8 8 56 3 8 8 S 8 8 56 u  69 69 69 ..... ...... .69 . 69 69 69  35 34 '33 33 33 33 35 33  . i : 1c  .. .  1„  1o .  ..It... . .  7 ... ._ 7 7 7 7 7 . 7 _..  .... 7 ._ 3 y 10 ll 12 13  _. 69 . 69 69 69 69 69 69 ..  1 1.: . .. It i, O  l ••;  VALUE  WEEKLY  4 -. l J 4 ' lb 4 Id 4 l.i 4 1K 4 l:-. 4 ... ._ . . . 10 VALUE 1.-.  7  7 7 '7 7 7 • 7  7  14 15 16 ...17... 13 19 20  69 69 69 .69 . 69 69 69  21 .. 22  .69 . 69 69  L .'  24 25 26 .. 2 7....  23  '  69 69 69  69  39 41 39 . 4 1 . ... 43 40 38 43  34.b7 3 6.75 36.50 37.62 39.00 37.25 35.37 36.76  3. 04 3.05 2 . 00 3.24 3.46 2.37 1.92 2.9 3  3 8 ... 46 44 44 42 39 3d 46  36.12 40.25 40.62 3 8.87 59.75 37.37 3 6.00 3 8.42  1.12 5.03 2.5 5 3.83 1.90 1.18 1.7 7 3.22 2.90 1.92 0.46 4.40 "1.77 1.59 0.7 5 3.24  3 8.12 36.00 3 3.25 3 7.50 40.50 4C.37 3 6.50 3 7.46  34 33 33 3? 34 35 32 32  3 6. 39 33 37 39 36 44  3 6.00 35.75 35.25 3 4.75 3 9.12 37.37 3 4.12 3 6.05  33 34 32 32 33 33 31 31  39 37 35 35 40 36 35 4 0  3 6 . 2-J 3 5.50 33.25 ..... 3 3.62 . 36.50 3 4.37 3 3.0 0 3 4.64  3 3 .... 37 34 4 0 ' 3a 33 47 47  35.12. 3 5.00 3 3.62 35.75 3 5.50 3 5.75 4 3.62 36.33  2.4 1 0. 92 0. 74  S o 56  32 34 32 31 34 34 38 31  •3  46  4b  46.75  0.70  S 8 8 8 c>  .3 8 Q  8 s> S o  .  56 7 7 7 7 7 7 7  1.70 1.70  42 39 34 • 43 43 43 38 43  0  .  S. 0.  35.25 3 5.25  37 37  35 .. 34 37 35 3 7 35 34 34  56  WEEKLY  4  AVO.  XCMTH  I .'-.ST .  STATION  0  y 8 .. . 8  e  . 8 56 < _ < 8 u u U  '  44  1.51 2.4 3  1.66 1.83 3.79 1.59 1.45 2.6 0 2.4 3 1.06 1.16 1.1? 2.97  i. 30  1. 30 2. 15 ..  .  3.4? 1.41  1.66 3  ,  7  7  3.7;-  t\> V J J  ro  r  4  T_  1 -  4 4  i •••  4  1:. 1 l::  Q  * i  5 p  4 \ r  4 WEEKLY  .  _ —  •  13  0  4  In  8  4 4  16 1 J  8  la ...  . 4  u j  3 8  .  4 3 6 7 . 6 9 . 10  •  4 4» 4 4 4 VALUE  FOR  SUMMER  16 1 3 16 13 16 13 16  e 8 8 8  e  8  11 12 13 14 15 16 17  t  3 69 69  ( •9 69 69 69 69 69 69  VALUE  4  VALUE  31 1 2 3  3  4  4  WEEKLY  •i *  VALUE 4 4  WEEKLY  29  7 7 7  8  8 56 8 8  8 _  e s  8 56  35 33 35 35 33  44 39 41 42 39 45 43  36 32 31 33 31 32 35 31  42 37 41 36 37 43 36 43  32 30 28 29 28  40 36 33 34 33 36 39 40  3 7.00 3 6.62 36.37 33.25 31.50 " 31.87 33.66 34.3b  2.39 0.91 1.30 0.70 1.19' " 3.09 4.67 3.06  28  48  36.70  3.51  40 J9  6J  3  69 69 69 69 69 69  8  24 35  8  -J ->  .6 6 8  6 54  506  •i  C  4 2.12 39•00 i C • £ -  3 7.3 7 37.12 39.67 4 0.07 3 9.12 35.37 3 6.67 • 3 4.57 3 4.2b 37.87 3 5.62 36.23  i .55 0. 00 2.12 i . 4o 1.5 5 3.64 3. H i 2.03 1.5 9 "" 3.90 0.99 2.2b 4.12 0.51 ~ 2 . 9 0  -  ro  10  1 1 1  S  1  /  1  1 1 VALUE  .... WEEKLY  1 1 1 ...... 1  ......  1 1 1 VALUE  WEEKLY - - . •  1 . 1 1 1 1 1 .  I  WEEKLY  VALUE  WEEKLY  1 1 1 1 1 1 1 VALUE  - 1 1 1 1 1 1 .. 1 WEEKLY V A L U E  WEEKLY  i : 1o 10 10 10 ....10. .  10 10 •10 ..10 10 10 10  1  23 24 25  6 6 6  2b  &  . .  27 28 29  .....  6 7 7 .. . .. 7 7 7 '7  30 1 2 .... 3 4 5 6  _  69 69 69 69 69 69 69 ......  69 69 69 ... ..... . 69 69 69 69  69 69 69 69 69 69 69  . .... 1 0 . 10 10 1 0 10 10 10 .  7 7 7 7 7 7 7  7 .. _ 3 9 10 11 12 ..... 13  10 10 10 . . 10.. . 10 10 10  7 7 7 7 7 7 7  69 14 69 15 16 69 ....17 ....._. .. . 69 13 69 69 19 69 20  . 1 0 . . . .. 10 10 1 0 10 10 ......10...  1 1 1 1 . ... 1 1 1 VALUE 1 1 1  6 6 6  10 10 10 10 10 10 10  10 . 10 10 lo  .-  7 ., 7 7 7 7 7 7.  21 ... 22 23 24 25 26 27  69 69 69 69 69 69 69  7 7 7 7 8 8 8  26 29 30 31 1 2 3  69 69 69 69 69 69 69  4 5  69 69 69 69  . .. S '. 8 8 8  .  & 7  4 8 8 6 6 6 8 52  32 30 29 29 21 30 29 29  33 .3 4 34 36 35 33 31 36  32 .73 3 2 12 3 1 37 3 1.67 32. 67 3 1.3 7 30 00 3 1 69  0 .50 i .55 . 06 2 65 I 72 1 Oo J 92 .... 1 . 66  8 8 8  29 29 30 30 33 33 32 29  31 33 30 39 40 36 33 40  30. 12 3 i 12 30. 2 4 12 36. 37 34 87 32 3 7 32 .71  0 64 i 0 00 3 .83 2 .72 1 . 12 0 .51 2 97  31 30 30 30 30 31 29. 29  34 35 33 33 39 35 30 39  32 .75 32 .50 3 1 37 3 1 25 34 62 33 37 29 62 32 21  1 . 16 2 .07 1 . 30 1 .38 3 .62 1 .40 0 .51 2 .33  6 8 8 8 .. 8 6 8 56  30 31 29 29 30 30 26 26  33 33 30 30 35 31 30 35  31 3 1 29 29 32 30 29 30  62 75 62 62 50 50 25 69  1 0 0 0 2 0 1 1  8 8 8 8 8 8 . 8 . .. 56  29 31 30 29 31 31 . 33 29  32 31 30 34 33 33 .. 40 40  30 3 1 30 31 32 3 1 .. ...37 32  50 00 00 50 00 75 25 oo  1. 4 1..; 0 00 0 .00 2 07 0 75 0 .66 2. 91 2 .67  R  8 8 8 56 8 8 6 6 8 8  .  Q  ......  .._  ...  8 8 e . . 8 6 8 8 56  40 35 33 32 30 31 30 30  8 8 S 6  32 30 29 30  . .  ....  40 36 35 ... 3 5 ...... 35 34 37 40 35 34 34 32  .40 86 51 51 .20 .53 03 61  40 00 36 . 5 0 34. 00 33 50 3 2 25 32 25 3 3 87 34 62  0 .00 1 .06 0 53 1. 06 2..05 1 03 2 65 2 95  34. 00 32. 00 31 .75 3 1 25  1. 41 1 51 2 12 0 70  ..  . '  .  .  ro  9~ 10 WEEKLY  VALUE  VALUE  FOR  SUMMER  11 12 13 14 15 16 17  3_C...2.5_ 3 2.75 3 2.12 32.01  _ J..46_ 2.37 0.3 3 1.77  JO  32 29  _3.1_ 35 33 35  69 69 69 69 69 69 69 54  31 32 32 30 26 27 27 27  35 34 33 32 30 31 34 35  32.62 3 0.67 29.00 26.62 2 9.83 3 1.05  1.36 0.7 0 0.51 0.64 0.53 1.59 3.0b 2.27  442  27  40  32.13  2.60  VALUE 10 10 10 10 10 10  WEEKLY  30  T79~ 69  32.H7 33.23  :  ro _•  f  STATION  INST «  MONTH  DAY  1 X 1 1 1 1 _ 1 WEEKLY V A L U E  13 13 13 13 13 13 .. 13  6 6 6 6 6 6 .._ 6  23 24 25 26 27 28 . . 29  1 1 1 .. 1 1 1 WEEKLY  6 7 7 .7 7 7 7  69 69 69 59 69 69 69. ..  1 1 1 -. 1 1 1 1 WEEKLY V A L U E -. 1 1 1 1 1 1 . 1 WEEKLY V A L U E 1 1 1 . 1 1 1 1 WEEKLY V A L U E - 1 1 1 1  —  13 . .... 13 13 1 3 13 13 .13  13 13 13 13 13 13 13  . 13 1 3 13 13 13 13 ...13  . .7 . 7 7 7 7 7  .... 1 . 7 7 7 7 7 7 7  . ..7 . .. 7 7 7 7 7 7 ... .  33 31 31 30 32 30 30 . . 30  0  8 8 .... 8 52  X.  A V(j . . • . 33 .00 32 .50 3 1 87 32 .00 33 .00 3 1 .00 .30 .50 31 .90  33 34 33 34 34 32 31 34  25 37 50 25 75 25 25 37  - S.D. 0.00 . 1.19 0.83 1.92 0.75 0.53 0.53 1.31  31 29 32 . 3 2 34 31 30 29  7 8 9 10 11 12 13  69 69 69 69 69 69 69  8 8 8 8 8 8 6 56  30 30 30 30 30 30 29 29  31 33 32 31 34 34 . 30 34  30 3 1 30 30. 32 32. 29 31.  50 50 87 37 50 50 62 12  0.53 1.19 0.83 0.51 1.69 1.41 0.51 1.42  14 15 16 17 18 19 20  69 69 69 69 69 69 69  8 8 8 8 8 8 8 56  30 31 30 30 30 29 29  33 32 30 30 33 31 30 33  31 3 1 30. 30. 31. 30 29 30.  37 50 00 00 25 12 37 51  1.50 0.53 0. 00 0. ou 1. 16 0.3 5 0.51 1.07  . 21 22 23 24 25 26 27  69 69 69 69 69 69 69  8 .... 8 8 S 8 8 8 56  29 31 30 29 31 30 33 29  31 31 31 33 31 32 38 38  8 8 8 8 .. 8 8 6 56  38 36 34 32 30 31 31 30 33 31 30 30  .  28 29 30 31 1 2 3  69 69 69 69 69 69 69  13 . 13 13 13  8 .  4 5 6 7  69 69 69 69  8  4 8 8  rtfl  8 8 6 6 8 8 8 56  7 7 7 7 .. 8 8 8  8  M I iU  69 69 69 69 69 69 69  13 13 13 13 13 13 13  e  NO..  30 , 1 2 3 4 5 6  VALUE  1 » 1 1 1 1 1 .. 1 WEEKLY V A L U E  >-  13 13 13 13 . 13 13 13  YEAf?  8 8 8 8  .  32 33 33 36 36 33 31 36  ' 3 1 3 1 32 34 34 3230 32  •  0.46 1.59 0.5 3 1.48 0.88 0.88 0.4o 1.79  30. 25 3 1 00 30. 12 3 1 . 12 3 1.00 3 1 12 36 12 3 1 53  0.88 0.00 0.35 1.64 0 .U0 0.99 1.95 2.19  39 37 33 34 34 32 35 39  38 75 36 37 34. 12 3 3.3 7 . .... 32. 2 5 3 1.50 33. 12 34. 21  0.46 0.51 0.35 0.74 .. _ 1 .48 0.53 1.64 2.52  35 34 33 32  34. 32. 31. 31.  0.92 1.06 1.41 0.53  •  00 62 50 00  .  .  ro ON  13  WEEKLY  WEEKLY  VALUE  3  13  9~ 10  69 69 69  13 13 13 13 13 13 13  11 12 13 14 15 16 17  69 69 69 69 69 69 69  VALUE  VALUE  FOR  SUMMER  30 29 31 29  31 33 32 35  30.25 3 1.50 31.12 31.71  0.46 1.35 0.35 1.53  54  31 33 32 30 28 26 27 26  34 34 33 31 29 29 31 34  32.37 33.62 32.50 30.25 28.37 27.62 28.50 30.53  1.50 0.51 0.53 0.46 0.51 1.06 1.64 2.41  442  26  39  3 1.74  2.15  3  e 3 56  ^3  —'— r  I S 7 .  STATIG.N  •'ONTH  DAY  YEA:<  iiQ.  '  ,-iAX.  AVIS.  33 32 33 32 35 33 31 31  43 47 44 45 42 39 37 47  36.25 40.37 36.25 37.87 38.12 35.75 34.12 3 7.48  33 32 31 33 37  3 5.87 35.75 32.87 36.25 41.50 3 9 . 12 36.25 37.06  2.2 9  35 31  39 39 35 44 46 42 38 46  33 32 32 31 33 33 30 30  39 40 33 36 46 40 36 46  36.62 3 5.37 3 4.50 3 4.00 3 t; . 6 7 37.37 33.12 3 5.69  2.26 2.97 2.26 2.67 4.91 2.55 2.03 3.37  31 33 31 30 32 32 31 30  40 39 35 35 42 36 35 42  35.87 3 5.25 32.75 33.12 36.87 34.00 32.67 3 4.39  30 34 30 30 32 33 .40 30  39 35 34 40 36 39 .. 50 50  . 34.50 34.37 32.50 35.37 34.25 35.62 4 5.73 3 6.U5  2.55 .3.49 4. a 7  49 45 40 43 42 41 47 49  46.62 41.23 3 9.12 37.50 36.00 36.50 39.12 39.44  1.30 1.75 0.64 3.54 4.59 2.92 5.38 4.61  ;•! I i-i•  —  1(:  1 1 1 1 1 1  ..1 WEEKLY  .  1 . 1  A 1  1 1  1 1  1 _ 1  16 16 16 . 1 6 16  16 ' 16  . .  ..  6  30 .  7 7 7 7 7 7  1 2  69 69 69 69  3 4 5  69 69 69  6  69 69 69 69 o9 69 69  . . 7 . . .. . 7 8 7 9 7 7 10 7 11 12 7 . 1 3 . .. 7 .  1 . 1 1 1 1  .  7 7 7 .... 7 7 7 7  16 16 16 . 16  K; It 16  14 15 16 17 13 19 20  69 69 69 69 . 69 69 69  ..  1 1  1 1 1 1 VALUE  1 1 1 •1 1 1  1  16 16 16 16 16 16 16  ...  16 16 16 16 16 16 16  7 7 7 7 7 7 7 ...  7 7 7 .... 7  8 8 8  21  22 23 24 25 26 .2 7  28 29 30 31  1 2 3  . . .  ...  69 . 69 69 69 69 69 .69  69 69 69 69 69 69 69  1  8 8 6  8 8 8 8 8 8 8 8 8 3  8 8 .. 8 8 8 8  8 8 56 8 8 8 8  8 8 8 56  VALUE ... X 1 1  8 8 8 8 8 8 6  56  VALUE  .1  6 8 8 8  56  VALUE  1  WEEKLY  6 6 6 6  8 S  56  .. . 16 ll> 16 16 16 16 . .16  1  WEEKLY  •24 25 26 27 28 29  6  4  VALUE  . 1 *  WEEKLY  6  69 69 69 69 69 69 69  52  1  WEEKLY  23  VALUE  1 1  WEEKLY  It16 It, 16 16 .. 16 . ..  6  16 . .. 16  16 16  .... .8 8 8  e  4 5 6 7  69 69 69 69  8 8 8  8  3.6  45 39 38 32 . 30 33 33 30 3 3 .. 30 29 30  ..  41 35 41 35  ...  37.50 34.12 35.87 33.00  ,  -  4.27 6.02 4.06 4.91  2.99 1.73 2.29 4.21  2.43 1.24 4.66 3.96 2.29 1.03  3.77  3.43  . 2.65 1.5 6 1.95 4.15 1.51 1.64 2.89 3.66 0.51 1.41 3.96  1.  ..  91>  3.07 1.80 4.85 1.51  ... ......  ».  V-O 00  16 -T6" 16  1 1 WEEKLY  16 16 16 .16. 16 16  1 1  VALUE  S 9 10  69 69 69  VALUE  1 1  WEEKLY  S 8 8  1 VALUE  FOR  SUMMER  JJL.  11 12 13 14. 15 16 17  33 29  37 -4-ir 35 44  32.12 j 0.62 34.37 34.80  3 .04 5.75 0.74 3.69  54  34 34 34 30 28 25 26 25  42 39 38 33 31 37 40 42  37.75 36, 12 3 5 . 75 3 1 . 62 2 9 . 62 31. 12 32, 50 33.53  3.15 1.45 1.75 1.06 1.06 4.82 6.65 4.22  442  25  50  36.06  4.35  8  29  8 56  •a  69 69 69 .69 69 69 69  ro  STATION  WEEKLY V /  5 VALUE  19  6  29  5 5 5 5... 5 5 5 WEEKLY V A L U E  19 19 19 -19 _ 19 19 19  6 7 7 7 ... 7 7 7  30 1 2 __.3 4 5 6  _5 5 5 5 5 5 .. 5 v WEEKLY V A L U E  19 19 19 19 19 19 19  7.._ 7 7 7 7 7 7 ...  7 8 9 10 11 12 13  5 5 5 .. 5 .. 5 5 5 WEEKLY VALUE  19 19 19 ...... 19 _ -. 19 19 19  . 5 5 5 5 5 5 5 WEEKLY V A L U E 5 5 5 . 5 . 5 5 5 WEEKLY V A L U E .. 5 . 5 5 5 5 5 5 WEEKLY V A L U E 5  19 . 19 19 19 19 19 19  19 19 19 ... .. 19 19 19 19  ... 19 19 19 19 19 19 . 19 . ..  .1.9.  . ...  4 4  27 27  27 27  27.00 27.00  0.00 0.00  69 69 69 69 ... 69 69 69  8 8 3 8.. 8 3 8 56  27 26 26 26 27 27 27 26  28 26 26 27 29 29 29 29  27.37 27.37 26.00 2 6.62 2 6.00 27.75 27.50 27.23  0.51 0.91 0.00 0.51 0.75 0.70 0.75 0. 89  69 69 69 69 69 69 69  8 8 8 8 6 8 8 56  28 27 27 27 28 27 26 26  29 28 . 29 29 30 30 27 30  28.25 27.50 2 7.75 27.75 • 29.12 2 8.87 26.62 27.98  0.46 0.53 0. 70 0.88 0.B3 1.12 0.51 1.07  8 3 8 8 8 8 8 56  27 28 27 27 28 27 26 26  29 29 28 28 31 28 26 31  2 8.12 2o.25 27.25 2 7.62 29.00 2 7.50 26.67 27.60  0.99 0.46 0.46 0.51 1.06 0.53 0.83 0.96  8 8 8 8 8 8 8 .. . 56  26 28 27 27 28 23 31 26  29 29 29 31 29 30 34 34  27.75 28.75 28.00 29.00 2o.62 28.62 32.67 29.06  1.23 0.46 0.53 1.60 0.51 0. 74 1.35 1.68  34 31 30 2 8 ... 23 29 29 23  35 34 30 31 31 31 32 35  3 4.50 32.12 30.00 29.62 2 9.37 29.50 30.62 30.82  0.53 1.24 O.OU 1.06 1.30 0.75 1.40 2.00  .. 29 .. 23 27 28 27 27 29 27  31 31 . 31 29 29 31 30 31  3 0.37 29.62 29.00 2 8.87 28.00 29.37 29.12 29.19  .0.91 1.06 1.30 0.35 0.75 1.34  3 0 . 12  1.60  69  .  7 7 7 _.. 7 . 7 7 7  14 15 16 17 13 19 . 20  69 69 69 69 69 69 69  ... 7 7 7 7 7 7 7 ...  . . 21 22 23 24 25 26 27 ..  69 69 69 69 69 69 69  7 7 7 7 . 8 6 8  23 29 30 31 1 2 3  8 . 8 8 8 8 8 8 .  4 5 6 7 3 9 10  .8.  11  .  69 69 69 . 69 69 69 69  . ..  ...  69 69 69 69 69 69 69  69  . .  ........  8 8 B ... : .6 6 8 6 56 ..  8  a  8 8 8 8 8 56 3  .  28  32  .. .  0.35  .  _  _  ro  .  r  s WEEKLY  VALUE  5 5 5 5 5 5 VALUE  FOR  SUMMER  19 19 19 IS 19 19  8 8 8 8 8 8  '  12 13 14 lb 16 17  '  69 69 69 69 69 69  .8 0 8 8 8 6 54  394  30 29 28 27 26 25 25  3-2 31 29 2b • 28 29 32  31.37 30.12 28.67 27.37 26.50 26.83 26.81  0 .^7 4 0.83 0.35 0.51 0.75 1.47 2.00  25  35  28.68  l.b5  ro  STATION  V f  INST.  MONTH 6  24  69  4-  31  33  3 2 . 5 0  1.00  6  29  36  32.12  2.74  8 u  6  69 69  8  5 5  25 26  8  27  36  3  3.74  6  27  69  8  31  35  33.62  1.50  5 5  8 8  6 6  23 29  69 69  8  31 29  33 33  3 3  0.33 1.75  ....27  36  . 3 2 . 0 2  2.31 1.35  ••-  6  30  69  8  31  34  3 2 . 1 2  o 8 6  7 7  1  69  8  31  34  32.  2  69  8  30  7  3  69  8  30  32 37  3 0 . 5 2 33.o7  0. 2.  4  69  8  34  39  37.12  5  69  8  33  36  34.62  2.10 1.06  6  69  ... ..  8  . 7 . ..  „  7 7  8  5 VALUE  5  .  8  ..  7  8  7  8  7 . ...  3  7  5  a  5  8  5  6  5 WEEKLY--VALUE..  . 3  . .  9  50  74 94  8  32  3 3  3 2 . 3 7  0.51  30  3 9  3 3 . 3 2  2.49  69  8  32  35  3 3 - 7 5  1.03  69  31  36  3 2.75  1.83  69  8 8  31  33  3  0.;(3  1.87  7  10  69  8  3 0  33  3 1 . 1 2  7  11  69  8  31  39  3 5 . 2 5  1.12 3.45  7 7  12  69 69  8 3  33 29  36 33  34.62 3 1.00  1.06 1.60  56 .  29  13  ... .  3  2.29  . . . 3 2 . 9 1  9  3  7  14  69  3  31  36  3 3.75  3  7  15  69  8  35  3 3 . 3 7  1.06  5  8  7  69  8  32  3 1 . 0 0  5  8  16 .17  32 3U  5 .  3  69  5  8  7  13 19  69  3  7  20  69  5 VAL U F  7 .  . 7  ..  69  8 . . . .  8  ..  .  8 8 56  5 5 5 5 5 WEEKLY—VALUE.  33  3  1.25  31 30  .36  3  3.62  2.32  33  3  1.62  1 . 06  29  32  3 0 . 2 5  1. 16  29  36  3  2.12  1.98  1.62  29  34  3  33  3 1.75  8 8  29 29  31 36  30-62 3  7  21  69  8  69  8 .  8  7 7  69 69  ..  3  7  H  7  25  69  8  31  34  3 2 . 3 7  8  7  26  69  8  32  3 5  33.12  0.99 1.24  7  27  36  44  4  3.13  2 9  4 4  . 3 3 .  ..  .  69  8 .  ...  -  .  56  . .  2.62  0.87  8  7  23  69  6  41  44  4 2 . 5 0  8  7  29  69  8  36  4 0  38.73  1.23  5  c  7  30  69  6  35  36  3 5 . PO  0 • 'J 3  7  31  69  32  1 2 3  69 69 69  39 3 7  8  5 5  . 8 ... 8 8  .  8 8 8 56  VALUE  2.19  3 5 . 6 2 ..  .  3 3 . 5 7 3 3 . 3 7  . .  . . 3 1 32 33  ..  35 41  37.12  2.3 3 1.30 3.13  31  44  36.67  3.44 0.91  4  69  6  34  36  3 5 . 3 7  69  8  30  34  33.12  1.33  8  69  8 •  29  36  33.62  2.77  8  8  7  69  8  30  33  32.12  0.99  8  8  8  69  8  29  32  30.12  1.35  8 8  5 5 5  .. .. ..  .  ..  . . .  . 1 . 0 6  .. 5 6  6 o 8  5 5 .  8 .  ...  3.70  35...  5  . 8 8 a  ..  0.74 2.B7  5  5 5  -  2.38 0.70  . ..  22 23 24  8 ....  30  0.92 1. 16  31  6  a  -  2.37  5 5  ..  - - -  1.19  56  ..  C  WEEKLY  ......  8  5  .  a  44  -  1.37 1.25  >  5  -  ••  • -  .  1.00  5  .- 5.  -  S. U.  AVG •  8  5  WFFK! Y  MAX.  H  5  —  Ml.M.  MO.  5  r  .  YEAR  5  —..WEEKLY—VALUE..  WFFKlY  DAY  _  _. ...  . . .  _  ro ro  b WEEKLY  _  WEEKLY  VALUE  8  5-  9 10  69 69  11 12 13 14 15 16 17  69 69 69 69 69 69 69  VALUE  5 5 5 5 5 VALUE  FOR  SUMMER  28 32 28  3-7 33 37  -3-3-.-0Q32.75 32.87  -^-.-7-40.46 2.38  8 6 8 6 54  32 34 33 30 23 26 27 26  38 36 36 32 29 33 36 33  34.62 35.00 34.37 31.75 28.62 29.62 31.66 32.25  2.72 0.75 1. 18 0.70 0.51 2.77 3.82 3.08  434  26  44  33.23  3.10  a 8 56 8 8  ro  r  STATION  INST .  WEEKLY  5 VALUE  WEEKLY  5 11 5 11 5 1 1 -5 — .. - 11 11 5 5 11 5 1 1 VALUE  V  MONTH  DAY  YEAR  NO.  6  29  69  4 4  69 69 69 69 69 69 69  8 8 8 8 8 8 8 56  11  . ._.  6 7 7 7 7 7 7  ...  ...... .7 ... 5 . -.. _. . 11 5 11 7 11 7 5 7 5 1 1 5 11 7 11 7 5 11 . .. ..... .7. . 5 »• - -.. WEEKLY V A L U E 5 5 5 - 55 5 5 WEEKLY V A L U E  30 1 2 ...3 .... 5 6 •  ..  7 8 9 10 11 12 .13  69 69 69 69 69 69 . .. 6 9  .  . .  .  MI  ..  . 11 . 1 1 11 11 11 1 1 11 .  7 7 7 7 7 7 7  21 22 23 24 25 26 .27  ...  69 69 69 69 69 69 69  8 .... .. 8 8 8 8 .8 8 56  5 5 5 . ..5 5 5 5 WEEKLY V A L U E  11 11 11 .-..11 .. 11 11 1 1  '7 7 7 ..7 8 8 8  78 29 30 31 .... 1 ? 3  69 69 69 69 69 69 69  8 8 8 8 ... 8 8 8 56  5  . .8 8 6 8 8 8 .8  4 5 6 7 8 9 10 .  69 69 69 69 69 69 69  3 8 8 8 6 8  a  56 11  S  11  69  8  3.0. 0.50 0.50  25 24 24 24 . 24 24 24 . 24  25 25 24 24 . 25 25 26 26  2 5.00 24.62  O.OU 0.51  29 28 27 26 26 26 26 26 . . 27 26 26 26 25 25 27 25 27  24.00  ..... 2 4 . 0 0 24.75 . 24.37 24.62 24.48 2 5.50  26 25 25 25 26 26 . 2 3 .... 26  26 26 26 25 25 25 29 29  ... 5 5 5 6 5 5 .. 5 WEEKLY V A L U E  -  25.25 25.25  .25 26 24 24 25 25 27 24  8 8 S 8 8 8 8 56  AVG.  26 26  24 25 24 24 25 25 25 25  69 69 69 69 69 69 69  —  25 25  23 24 24 24 24 24 24 23  14 15 16 17 18 19 20  . .11 11 11 11 11 11 11  MAX*-  25 25 25 25 25 24 23 23  7 7 7 7 7 7 7  ..5-. •• 5 5 5 5 5 . 5 WEEKLY V A L U E  -  8 . .. 8 8 8 8 8 8 56  1 1 11 11 11 11 11 11  -  i\ .  30 29 28 . . .. 27 27 26 29 30 29 23 27 26 26 28 27 29 28  25.00 25.00  0 . 0 0  0.00  0.46 0.51 0.74 0.53 0.53 0•00 O.UO  2 5.00 2 5.50 24.87 23.Oo 24.83  0 . 0 0  2 3.50 24.37  0.53 0.51  24.00  0 . 0 0  24.00 24.87 2 4 . 12 2 4.25 2 4 . 16  0 . 0 0  25.37  C.51 O.Oo 0.75 0.51  26.00  0.53 0.83 O.OU 0.8o  0.35 0.35 0.4b 0.53  2 5. 0 0 24.62 2 5.00  0 . 0 0  25.00  0 . 0 0  26.37 2 5.62  0.91 1.30  29.62 23.50 2 7.12 . 26.87 . 26.50  0.51 0.53 0.35  26.00  27.25 27.41 ..  .  2 8 . 1 2 .. 2 7.37 26.50  ... . 0 . 3 3 0.53 O.Ou 1.26 1.30  0.99 . 0. 74 0.53  26.00  0 . 0 0  2 5.50 26.62  0.53 1.40  27.00  0 . 0 0  26.73  1.08  27.37  0.51  .  . .  11 11 11 11 11 WEEKLY  VALUE  VALUE  FOR  SUMMER  13 14 1.5 16 17  69 69 69 69 69 54  394  -2-T27 26 26 25 25 25  27 26 26 26 27 28  "2"7.i2 2 7.00 2 6.00 26.00 25.37 2 5.66 26.3B  23  30  .65  0.35 0 . ou  o.oo o.oo 0.51 1.03 U.85  1.49  ;-'.o.vTtf~ * ~TE>A~Y  i-',A  , r '  3 3  ©  &  7 7  6  5 6  ©  3 3  6 6  7  7 7 7 7 7 7  7 S 9  10 11 12 13  © © ©  3  r.  3 3 3 3  6 6 6 6  7 7 7 7  7 7 7  14 15 16 17 18 . 19 20  69 69 69 69 59 69 69  3 3 3 .. 3 3  ©  1  @  3  ©  3  3 3 3 3  7 7 7 7  6 6 0 6 6 5 6  7  7 7  21 22 23 24 25 26 27  69 69 69 .'.9 69 69 69 •  7 7 7 7  5 6 5  ©  3  3  3  3 3 3 WEEKLY VALUE  O.Dl  35  1.74  8 8 8 8 8 6 8 56  29 30 2d 28 30 29 28 28  31 31 29 30 34 31 30 34  29 30 2b 29 31 30 28 29  8 7 12 62 0 j 62 25 U7 76  0.99 0.35 0.51 0.92 1.59 0.70 0.83 1.30  8 8 8 8 8 8 56  29 30 29 2b 30 30 32 28  32 31 30 32 32 3 1 39 39  30 30 29 30 3 1 3u 3(. 3 1  5u b7 75 00 00 75  oo 26  1.41 0.33 0.46 1.92 0.53 0.4 j 3.11 2.40  39  39 38 35 34 34 34 37 39  39 36 3 3 33 32 32 34 34  00 25 37 50 50 87 37 55  0.00 1. 15 0 . 74 0.53 1.41 0.6 3 2. 13 2.42  & 6 6 6  8  <j  s  6 6 6 0 6 6  8  S  36 35  3 r 25 3 r 30 23 CO 75 64  0 . 74 1.48 2.13  75 75 00 25 12 12 50 38  69 69 69 69 69 69 69  8 8 8 8 5 8 8 56  4 5 6  69 69 69 69 69 69 69  8 8  1 2 3  —  . a a  7 n  8 9  9 10  9  11  WEEKLY V A L U E  3 3 3  be  20 29 30 31  WEEKLY V A L U E  3 3 3 . 3 3  87 00 50 12  0.53 0.99 0.99 1.19 2.20 1.12  a  WEEKLY VALUE  3 3  29  8 6 56  30 31 31 32 33 33 29 35  8 8  WEEKLY V A L U E  6  fa  6 6 6  & S  8 3 8 8 8 8  12 13 14 15 16 17  69 69 69 69 59 69 69  .  .  ;  29 29 29 29 30 30 . 2h 28  a  .  rr "-"" 0.37 0.46  e  WEEKLY VALUE  •0 •  30 33 2 9 . 25 2 9 54  8  69 69 69 69 69 69 69  A  31 30 31  11 6 u 6 6 6 6 6  ,  30 29 29  3  69 69  WEEKLY VALUE  3 3 3 3 3 3 3  X)J~>  V  SI  33 31 ' 32 32 31  •  5u  29 87 29 30 32 32 2 ii 30  8 8 8 56  34 31 30 31 <;9 30 32 29  3p 34 32 34 33 35  35 33 32 32 30 32 32 32  8 6 8 8 6 8 6 54  31 33 33 31 29 28 29 23  34 34 33 32 30 31 34 34  32 33 3 3 3 1 29 29 30 31  345  28  39  31.59  6 t  l.OO  1.03 1.92 0.46 1.93 1.16 0.45 C . 00 0.46 0.35 1.35 2.07 2.01  '.72  F O R S U ' ••'Cr<  >v ^  . ^  ^  0.68  ©  VALUE  :  2.54  >  INST.  MONTH  DAY  YEAR  NO.  MIN.  MAX.  AVG.  S.O.  2 2  6 6  14 •15  69 69  2 8 10  30 30 30  31 30 31  30.50 30.00 30.09  0.70 0. 00 0.31  2 2 2 .. . 2 2 2 2  6 6 6 6 6 6 6  16 17 18 19 20 21 22  69 69 .... 69 69 69 69 69  8 8 8 8 8 g 8 56  30 31 31 31 32 31 31 30  31 31 31 33 34 34 33 34  30.50 3 1.00 31.00 32.00 33.12 3 2.50 3 1.62 3 1.67  0.53 " 0.00 O.OU 0.92 0.99 1.19 0. 74 1.12  6 6  2  ('  2  6 6  7.  6 6 6 6 6 6 .. . .. . 6  23 24 25 26 27 2 8 ... 29  69 69 69 69 69 69 69  8 8 8 8 8 8 8 56  32 52 33 32 34 33 31 31  37 36 38 37 34 34 38  3 3.25 34.37 3 4.50 34.75 3b.bO 3 3.75 3 2.87 34.14  1.28 1.92 1.06 2.60 1.19 0.46 1.12 1.66  6 7 7 7 7 7 7  30 1 2 3 4 5 6  69 69 69 69 69 69 69  u  33 33 32 32 34 33 33 32  35 3b 33 37 39 36 33 39  35.02 3 3.7b 32.25 34.2b 36.37 34.7b 33.00 3 4.00  0.74 0.86 0.46 2.25 2.19 1.16 0 . UO 1.77  b 56  33 32 33 33 33 33 31 31  34 37 33 34 39 36 33 39  33.62 3 4.37 34.00 33.50 3 6.00 34.62 32.25 34.05  " 0.31 1.6b 0.7b 0.53 2.44 .0.91 0 . do 1.62  8 8 6 8 8 8 a 56  32 33 32 32 33 33 31 31  36 35 33 34 38 34 33 38  3 3.7b 33.75 3 2.50 33.OU 35.25 33.37 32.25 3 3.41  1.58 0.70 0.53 0.92 2.12 0.51 0 . bd 1.44  a 8 8 3 8 8 8 ' 56  32 34 32 32 33 33 35 32  35 34 34 37 34 35 40 40  3 3.37 34.00 33.62 34.37 33.75 33.b7 38.00 34.42  STATION  r  .  WEEKLY  6 6 VALUE  WEEKLY  6 6 . ._ 6 6 6 6 VALUE  V  f  6  ...  -  -  .  -  -i  2  WEEKLY  6 .. 6 VALUE  WEEKLY  6 6 6 6 6 6 6 VALUE  ...  2  2 2 2. 2 2  2  2 2 2 • 2 2  6 6 . -. - ..— 6 6 6 6 6 WEEKLY V A L U E  2 2 2 2 2 2 2  6 6 6 6 6 6 . 6 VALUE  2 2 2  WEEKLY  _  2  6 6 6 6 6 . 6 6 WEEKLY V A L U E  .  .  ->  t.  2 2  2 2  „  .  .. .  7 8 9 10 11 . 1 2 13  69 69 69 69 69 69 59  7 7 7 7 • 7 7 7  14 15 16 17 13 19 20  69 69 69 69 69 69 69  7 7 7 7 7 . ...7 7-  21 22 23 24 25 26 27  69 69 69 69 59 69 69  7 7 7 7 7 7. 7  2  .  . .  8 ... 8 8 8 8 8 56 8 e 8 a 8  . .  ^  "  1.30 0.00 0.74 1.92 0.46 0.99 2.07 1.92  —  —  -  •  STATION  WEEKLY  WEEKLY  32 52 33 32 34 33 31 31  35 37 36 38 37 34 34 38  33.25 34.37 34.50 34.75 35.50 3 3.75 32.87 3 4 . 14  1.28 1.92 1 .06 2.60 1.19 0.46 1.12 1.66  33 33 32 32 34 33 33 32  35 35 33 37 39 36 33 39  33.62 33.75 32.25 34.25 36.37 34.75 33.00 34.00  0.74 0.86 0.46 2.25 2. 19 1.16 0 . OO 1.77  33 32 33  a 56  33 33 31 31  34 37 35 34 39 36 33 39  33.62 34.37 34.00 33.50 36.00 34.62 32.25 34.05  0.51 1.6a 0.75 0.53 2.44 0.91 0.8o 1.62  6 6 . 6  69 69 69 69 69 69 69  8  6 6 6  16 17 18 19 20 21 22  2  2  6 6 6 6 6 6 6  23 24 25 26 27 28 29  69 69 69 69 69 69 69  2 2 2 2 2 2 2  6 7 7 7 7 7 7  30 1 2 3 4 5 6  69 69 69 69 69 69 69  * < _)  2 c  2 _  -_ .  6  e 8 8 8 g 8 56 8 8 8  e  8 8 8 56  3 8 8 8 8 8  «  56  6 VALUE 6 6  . .  0.53 0.00 0.00 0.92 0.99 1. 19 0. 74 1.12  2 2 2 2 2 2 2  6 6  .._  8 8 8 8 8  M I X .  2 2 2 2 2 2 2  7 7 7 7 7 7 7  7 8 9 10 11 12 13  69 69 69 69 69 69 69  2 2 .. 2 2 2 2 2  7 7  7 7 7 7  14 15 16 17 13 19 20  69 69 69 69 69 69 69  8 8 8 8 8 8 8 56  32 33 32 32 33 33 31 31  36 35 33 34 38 34 33 38  33.75 33.75 32.50 33.00 35.25 3 3.37 32.25 33.41  1.5a 0.70 0.53 0.92 2.12 0.51 0. bd 1.44  7 7 7 7 7 7 7  21 22 23 24 25 26 27  69 69 69 69 59 69 69  8 8 8 8 8 8 8 56  32 34 32 32 33 33 35 32  35 34 34 37 34 35 40 40  33.37 34.00 33.62 34.37 33.75 33.o7 38.00 34.42  1.30 0.00 0.74 1. 92 0.46 0.99 2.07 1.92  ___7.  VALUE 6 6 6 6 6 6 6 VALUE  30.50 3 1.00 31.00 32.00 33.12 32.50 3 1.62 3 1.67  2 8 10  6 6 6 6 VALUE  6  31 31 31 33 34 34 33 34  69 69  6 6 6 6  WEEKLY  30 31 31 31 32 31 31 30  14 15  6 6 6 * 6 VALUE  6 6 6  0.7o 0.00 0.31  6 6  6 VALUE  .. . .. 6  30.50 30.00 30.09  2 2  ft  WEEKLY  31 30 31  NO.  6 6  WEEKLY  30 30 30  YEAR  6 6 VALUE  6 6 6  8.1).  DAY  6  WEEKLY  AVG.  MONTH  6 6 6 6 6  WEEKLY  MAX.  INST.  2 2 2 2 2 2  a  J3  ---- -  -- .  —  ( V  -N3  ..  <  69 69 69 '69 69 69 69  8 8 8 8 8 8 8 56  39 33 36 34 33 34 33 33  40 39 37 38 38 36 40 40  39.62 38.50 36.75 36.50 35.37 34.62 36.87 36.89  0.51 0.53 0.46 1.30 1.92 0.91 2.9y 2 . 14  6 6 6  WEEKLY  4 5 6 7 8 9 10  69 69 69 69 69 69 69  6 8 6 8 8 8 8 56  36 34 32 35 33 33 34 32  39 ' 38 39 36 36 39 36 39  3 7.62 35.62 35.50 35.37 34.25 35.75 3 5.00 35.58  1.40 1.50 2.61 0.51 1.03 2.54 0.53 1.83  69 69 69 69 69 69 69  6 8 8 9  2  8 8 8 8 8  11 12 13 14 15 16 17  8 8 8 56  34 35 35 34 32 30 30 30  38 37 37 35 33 34 36 38  35.75 36.50 • 35.75 34.12 32.50 31.75 32.87 34.17  1.98 0 . 75 0.88 " 0.35 0.53 1.46 2.64 2.21  2  8  18  69  2 2  34 34  34 34  34.00 34.00  0.00 o.oo  6 6 6  516  30  40  34.18  2.26  8  8  t.  8 8 8 8 8  2  8  2 2  8  c.  6 6  VALUE 6 6  . 6 »  . .  6  5 6 VALUE 6  VALUE  VALUE...FOR  8  2 2 2 2  .  6  WEEKLY  8  2 2 2 2  6  WEEKLY  7 7 8  VALUE 6  WEEKLY  7  7  2 2 2 2 2  6 6  \ f  23 29 30 31 1 2 3  2 6  •  SUMMER  -  -  - -  -  - -  - -  —  —  - —  •  -  •-  T  " ~  '  -  •  '  -  - •  -  1  -  -  "  -  - -  -  -  •  •  -  •  -  " - "  -  . ro -poo  STATION" 6 6 0 ft  V  1  IN S T .  6  6 WEE.<LY_ V A L U E  WFFKLY  . .  WEEKLY  .  - •  6 6 x .... 6 6 6 6 6 VALUE  14 14 ... 14 14 14 14 14  7 7 7 7 8 3  14  6 6 6 6  6 VALUE  FOR  14 14 14 14 14 14 14  SUMMER  14 14 14 14 14 14 ...  14  YEAR • 69 69 69 69 69 69  15 16 17 19 19 20  -  7 7 7 7 7 7 7  6 6 -. - - WEEKLY. -VALUE.  VALUE  7 7 _ 7 7 7 7  14 14 14 14 14 . 14 14  ft  WEEKLY  14 14 14 14 14 14  6 6 6 6 6 6 6 VAI.UF  6 6 6 6 -.- 6 6 6 WEEKLY V A L U E  DAY  MONTH  21 22 23 24 ... . 25 26 27  ..  .  a  4 5 6 7  8  fl 8 8 .. . 8. . . . 8 8  8 . .8 . 8 8 8 8 8 •-  28 29 30 31 1 2 3  . .  . 8 9 10  11 .12 13 14 15 16 17  ..  IS  '3 8 8 8 8 8 . . 43 .. .  MI  MAX .  AVG.  S^IU  28 27 27 23 28 28 27..  29 23 23 29 29 28 29  28.66 27.37 27.50 28.75 28.75 28.00 28.11  0.57 0.51 0.53 0.46 0.46 0.00 0.73  28.62 29.00 28.00 27.50 28.00 28.00 2 8.75 23.26  0.51 0. Ull 0.75 0.53 0.00 0. O o 0.46 0.64  29.75 2 9.50 2 8.87 2 7.75 27.75 2 a . 00 28.00 .28.51  0.46 0.53 0.35 0.46 .0.46 0.00 0.75 0.91  N •  69 69 69 69 69 69 69  8 8 8 8 8 8 8 56  28 29 27 27 28 2a 28 27  29 29 29 23 28 28 29 29  69 69 . 69 69 69 69 69  8 8 8 8 8 6 8 56  29 29 28 27 27 28 27 27  ' 30 30 29 28 28 26 29 30  69 69 69 69  8  69 69 69  8 3 8 56  69 69 69 69 69 69 69  -  8  NO.  69  a  8 8  23 28 28 28 2 3 ... 28 28 28  29 29 28 28 23 28 29 29  28.87 28.75 26.00 28.00 28.00 2 8.00 23.12 23.25  0.35 0. 46 0.00 0.00 .0.00 0.00 0.3 5 0.43  29 29 29 28 23 27 28 29  28.50 2 9.00 2 8.60 2 7.87 27.00 27.50 2 8.05  0.53 .0.00 0.53 0.00 0.35 0. 00 0.53 .... 0.72  8 8 8 .. 56  • 23 29 28 23 27 27 27 27  2 2  28 23  28 28  28.00 2 8.00  0 . 00 0. 00  269  27  30  28.24  0.71  8 8 .... 8 a  28.CO  ;  ••  _  •  •  •  • -  -  -  -  - —  •  *  -  • -  •  -  -  --  --  •  ro  -  1i JST  S T A T I O N  1  2 2 2  S ?  2  2 2 2 2 2 2  ...  17 17 17 17 l 17 17  v  7  2  2  2  2 2 2 2  ~"l7" 17 17 1 7 1 7 17 17  30 1 2 • 3  7 7 7 7  5 6  .7 7  1 7 1 7 17 17 17 17 17 ....  2  2 2 2 2  2  3'+ 33 31  35 34 32 38 40 36 35 40  3 3.75 33.62 32.00 3 3.37 36.75 3 5.12 33.50 34.08  0.68 0.51 0.00 2.7 9 2.54 0.83 0.75 2.01  8 8 8 8 8 8 8 56  34 33 33 31 33 32 31 31  35 36 34 34 39 36 32 39  3 4.50 34.12 33.25 32.62 35.87 35.12 3 1.30 33.85  0.53 1.35 0.46 1.30 2.69 1.43 0.53 1.9 2  8 6 3 8 8 8 u  31 33 31 31 33 32 31 31  35 35 33 33 37 34 32 37  33.12 33.75 3 1.87 32.12 3 4.75 32.62 3 1.50 3 2.82  1.38 0.70 0.64 0.99 1.7 5 0 . 74 0.5 3 1.52  34 33 33 37 34 36 41 41  32.50 3 3.00 3 2.62 3 4.00 33.62 34.25 39.3 / 34.19  1.41 0.00 0.74 2.3o 0.51 1.46  69 69 69 69 69 69 69  8 8 8 8 8 8 8 56  33 33 32 31 34  7 8 9 10 11 13  69 69 69 69 69 69 69  ~~7  14 13 16 17 13 19 20  69 69 69 69 69 69 69  7  7 7 7 7 7 7  i  7  -  - -  17 1 7 1 ! 17 .. 1 7 . 1 7  ..  7" 7 7 7 8 8 ... . 8  1 7 1 7 . 17. 17 17 17  .  8 8 8. 8 8 e  69 69 69 69 69 69 69  8 8 8 8 8 a 8 56  28 29 30 31 1 2 .. . 3  69 69 69 69 69 69 69  8 8 8 8 8 8 8 56  40 38 36 35 33 34 35 33  41 40 37 39 40 39 43 43  40.87 3 9.12 36.12 36.62 36.00 36.00 38.62 37.62  0.3 5 0.64 0.33 1.30 2.82 1.65 3.15 2.50  69 69 69 69 69 69  8 6  36 35 32 35 32 32  40 39 40 38 33 39  38.25 36.37 35.37 35.62 33.50 3 5 . 12  1.9 0 1.50 .3.42 1.06 1.19 3.13  .  4 5 6 7 5 9  . 8 8 8 8  31 33 • 31 " ' 3 1 33 33 36 31  '  21 22 23 24 25 26 27  V A L U E  2 2 2 2 2  1.00 3.15 1.60 0.70 1.60 2.14  30 30 33 32 30 30  V A L U E  2  3 1.00 33.62 35.00 33.25 32.50 33.37  3 8 8 8 8 35  7 7 7 7 7 7 7  7 7 7 7 7 . 7  32 38 37 34 34 38  69 69 69 69 69  56  2  V-  6  $.0.  ^ILlt  V A L U E  2 2 2 2 2 2  W E E K L Y  27 28 29  -I'W'J »  •/•A K .  r.A:<  V A L U E  2  W E E K L Y  26  v  V A L U E  2 2 2 2  W E E K L Y  23  6 6 6 6 6  17 17 i 7 17 17 17 . . 17  2  W E E K L Y  7  DA_Y  V A L U E  «.  W E E K L Y  ••'.ONTH  1 7 17 17 17  2  W E E K L Y  .  •"  • -- -  -  '•  •  '  -  •  2 . Oo 2.63 •  —  --- - -  fvj O  ••  17  10  _69  33  j 6. 0 o 35.75  "CV5^ 2.37  0.00  0.00  39 39 37 34 32 36 38 39  36.25 37.75 3 5.50 33.12 31.50 3 2.00' 33.75 34.26  1.63 0.88 0.75 0.35 0.5 3 2.62 3.49 2.80  34 34  34 34  34.00 34.00  0.00 0.00  29  43  34.55  2.67  WEEKLY  VALUE  56  32  WEEKLY  VALUE  0  100 35 36 35 33 31 29 30 29  2 2 2 _2 . 2 2  .. .  ? WEEKLY  WEEKLY  VALUE  17 17 17 17 17 17 17  . .  3 8 8 .. 8.... . 8 3 8  11 12 13 14 15 16 17  69 69 69 69 69 69 69  8 8 8 ...... 8 e 8 8 56  . 18  69  . 2 2  VALUE  -.2  VALUE  FOR  - -  SUMMER  .17. .  8  429  .  40  ro  STATION  WEEKLY  <  2 2 2 VALUE 2 2 2 2 7  ...  WEEKLY  2 2 .VALUE  WEEKLY  2 2 2 2 _ 2 2 2 VALUE  2 2 2 2 2 2 2 . WEEKLY_VALUE 2 2 2 2 2 2  WEEKLY  2 VALUE  2 2 2 2 2 2 2 . WEEKLY..VALUE  .  s  WEEKLY  2 2 2 2 2 .. 2 2 VALUE  AVC  S. 0.  34 33 34 34  33.75 32.50 3 1.87 32.50  0.50 0.5 3 1.55 1.23  32 33 31 32 33 30 30 30  36 34 32 34 34 33 31 36  33.37 33.50 31.62 32.67 33.50 3 1.87 3 0 . 12 32.41  1.50 0.53 0.51 0.99 0.53 0.83 0.35 1.42  8 8 6 8 8 8 8 56  30 30 30 • 30 30 29 23 28  31 31 30 30 32 32 29 32  30.37 30.25 30• UU 30.00 3 1.00 30.87 28.37 30.12  0.51 0.46 0 • uu 0.00 0. 92 0.9 9 0.51 0.99  MO.  MIN.  INST .  MONTH  DAY  YEAR  7 7 7  6 6 6  27 23 29  69 69 69  4 3 3 20  33 32 30 30  6 7 7 7 7 7 7  30 1 ... 2 3 4 . 5 6  69 69 69 69 69 69 69  8 8 8 8 8 8 8 b6  7 8 9 10 11 12 13  69 69 69 69 69 69 69  7 . 7 .. . 7 7 7 7 7  7 7 7 7 7 7 7  7 7 7 7 ..7 .. 7 7  MAX. _  .  7 7 .. .. 7 7 7 7 7  7 7. ._. 7 7 7 7 7  14 lb 16 17 13 19 20  69 69 69 69 69 69 69  8 8 8 8 8 8 8 56  29 30 28 23 30 29 28 28  32 32 29 29 31 30 29 32  30.50 30.87 28.25 28.37 30.25 29.25 28.62 29.44  1.41 0.64 0.46 0.51 0.46 0.4o 0.51 .1.21  7 7 7 7 7 7 7  7 7 7 7 7 7 7  21 22 23 24 7b . 26 27  69 69 69 69 69 69 69  8 8 8 8 8 8 8 56  29 29 28 28 30 30 32 28  30 30 29 31 31 31 33 33  29.25 29.75 2 3.75 29.37 3 0.12 3 0.37 32.62 30.03  0.46 0.46 0.4b 1.40 0.35 0.5 1 0.51 1.34 0.00 0.51 0.35 0.35 0.51 o.-Jl 0.9 9 0.9 8  7 7 7 7 7 7 7 .  7 7 7 7 .. 7 7  7 .....7 7 7 8 a S  28 29 30 31 1 2 3  69 . 6 9 69 69 69 69 69  8 a 8 8 8 8 8 56  34 32 32 31 31 31 32 31  34 33 33 32 32 32 34 34  3 4.00 32.62 "32.12 3 1.87 3 1.37 3 1.62 32.87 32.35  8 8 8 8 ...8 6 8  4 b 6 7  69 69 69 69 69 69 69  8 8 3 8 6 8 8 55  33 32 31 31 31 31 32 31  34 34 53 32 31 33 33 34  33.62 32.87 3 1.87 3 1.37 3 1.00 31.67 3 2 . 12 32.17  0  9 10  0.51 0.99 0.83 0.35 0.00 0 . ii 3 0.35 0.99  :  --  •  •  ro ro  ir  2 2 ivEEKL-Y-VALUE...  12 13 14 15 16 17  18  •.'KF:<I Y VAI ur VALUE  FOR  SUV.XE?.  69 69 69 69 69 69  69  33 32 31 29 28 25 .23  34 34 33 32 31 29 31 . 34  3 2.62 3 3.50 3 2.25 3 1.37 29.50 2 8.37 29.25 .30.98  0.91 0.53 0 . 4o 0.51 0.73 0.51 1.20  2 2  31 31  31 31  3 1 .00 3 1 .00  O.Ou 0.00  414  23  36  31.14  1.74  8 a 56  1.95  ro  ®  0  0  0  0  n  o  o  0  0  9  0  0  0  0  0  0  0  0  9  0  o  !> "3 O  n  O O  3  o  -i  o  o  o  j  o  o  r>  3 o  v>  3  PJ L.I  3  :3  O  3 , 3 .3  •  n r- o r3 r- r- J <-*  m  3  O  SJ O  .3 O (O O  O  in r-  > '3 .3  ' J  i  r-« ^ O .-^ <-j fsj rv -"V  •) -} : j ">  r  *j  o  r> r-i  i r\j r>: r-j rv r« tv  >  ;n  m m  o a r>  i  -J >o aj co a:  n  t- >  33  o  IN  x> OJ cn -o o  D  O •O  m  . r- r- r- r-r-r-  <*> ft*  N r j r\j  O f>  r g rsl rg rg f j  u0  O B O  .11 X) -1  X  U ajj g>  o  *3 i  30 co i ; i o ;  o"> o i r.i a] a)  i n co  : O *0 -O O  r- i ) cr* O »•• r\j  oj crj  m i  . g^  C »" ifl i J  in •  r- r- r- r- r~ r ~ r-  .  rjs  .> r>  ; r>j rvi o j N r j •  r- r- r- r- r- !  r> ^  o <j  >o  N  r- co to a;  i d vT N f l ^  e i a) on c. cr:  i n  cc  i n o) a; ui to o: o.  • O t> r-*  ^ r,-v  r g i v IN eg <\j r\j N <  i!> J l h  IM r g rg rv <M (N c*i  r g rg rv rg r j r g rsj  rg i  o-  r g r g rvi rg r j  «  ~*  254  DAY  YEAR  NO*  MIN.  MAX.  AVG.  S.D.  24 25 26 27  68 68 68 68  4 8 8 8 . 28  32 32 31 31 31  33 34 33 32 34  32.50 32.37 32.25 31.12 32.14  0.57 0.83 0.88 0.35 0.97  6 6  7 7 7 7 8 8 .8  28 29 30 31 1 2 3  68 68 68 68 68 68 68  8 a a a a 8 8 56  30 32 33 31 33 33 32 30  34 34 34 34 34 34 34 34  31.87 33. 12 33.12 32.37 33.62 33.75 32.75 32.94  1.64 0.83 0.35 1.18 0.51 0.46 0.70 1.06  STATION  INST.  MONTH  1 1 1 1  6 6 6 6  7 7 7 7  . 1  6 6 6 6  WEEKLY  .  VALUE  WEEKLY  1 1 1 1 1 1 VALUE  6 6 6 6 6 6 6  8 8 8 8 8 8 8  4 5 6 7 8 9 10  68 68 68 68 68 68 68  WEEKLY  1 1 1 1 1 1 1 VALUE  8 8 8 8 8 8 8 56  31 31 31 31 30 32 30 30  33 32 32 32 32 34 33 34  32.00 3 1.62 31.62 31.12 30.87 32.62 31.12 31.57  0.92 0.51 0.51 0.3 3 0.63 0.74 0.99 0.89  6 6 6 6 6 6 6  8 8 8 8 8 8 8  11 12 13 14 15 16 17  68 68 68 68 68 68 68  WEEKLY  1 1 •1 1 1 1 1 VALUE  a 8 8 a a a 8 56  29 30 30 29 30 29 29 29  31 32 31 32 31 31 30 32  30 .00 31.00 30.50 30.25 30.12 29.75 29.50 30.16  0.92 0.53 0.53 1.23 0.35 0.88 0.53 0.86  6 6 6 6 6 6  6 8 8 a . 8 8  18 19 20 21 22 23  68 68 68 68 68 68  WEEKLY  1 1 1 1 1 1 VALUE  a 8 a a 8 5 45  29 29 29 28 28 29 28  30' 31 30 29 29 29 31  29.25 29.62 29.12 28.50 28.50 29.00 29.00  0.46 0.91 0.35 0.53 0.53 0.00 0.67  241  28  34  31.14  1.67  VALUE FOR SUMMER  b  •  STAT I Uf4  ©  ©  WEEKLY  1 1 1 1 VALUE  10 10 10 10  WEEKLY  1 1 1 1 1 1 I VALUE  ©  UHT  T  n vu »  CHH  4  36  7 7 7 7  68 68 68 68  10 10 10 10 10 10 10  7 7 7 7 7 7 7  11 15 16 17 IB 19 20  68 68 68 68 68 66 68  8 8 8 8 8 8 8 56  10 10 10 10 10 10 10  7 7 7 7 7 7 7  21 22 23 24 25 26 27  68 68 68 68 68 68 68  WEEKLY  1 1 1 1 1 1 1 VALUE  8 8 B 6 8 8 8 56  10 10 10 10 10 10 10  7 7 7 7  28 29 30 31 1 2  68 68 68 68 68 66 68  WEEKLY  1 I 1 1 1 1 1 VALUE  10 10 10 10 10 10 10  8 8 S 8 8 8 8  4 5  68 68 68 68 63 68 6b  WEEKLY  1 1 1 1 1 1 1 VALUE  10 10 10 10 10 10 10  8 8 8 8 8 8 8  11 12 13 14 15 16 17  68 68 68 68 68 68 68  8 8 8 6 8 8 8 56  30 31  WEEKLY  1 1 1 1 1 1 1 VALUE  1 1 1 1 • 1 1 WEEKLY V A L U E  10 10 10 10 10 10  8 8 8 8 8 8  18 19 20 21 22 23  68 68 68 63 68 68  8 8 8 8 8  30 29 29 '28 29 30 28  ©  ©  HUN 1 rl  10 11 12 13  ©  ©  IIN5T »  8 8 8  3  6 7 8  9  10  8 6 8 28  34  39 37  . 33 33  41 3t> 41  31  30  35  33  34 34 32 32 32 31 31  33  36  33 33 33 33  37 38 35 34 37 34 38  30 Al 39 36 37 37  37.76 35.37 37.87 34.12 36.07 33.12 35.00 35.62 34.50 33.12 34.25 33.25 34.12 33.00 36.87 37.00 34.25 34.50 34.75  31  ' 41  3!)  33.37 34.82  8 8 8 8 8 8 8 56  32  36 39 36 36 37 37 38 39  33.75 35.62 35.00  8 8 8 8 8 8 6 56  33  35 34 36 38 36 36 36 38  34.12  5 45  33 ' 34 32 34 35 34 32  32 32 32 31  33  31 31  33  31 31 31 30 30  33.75 35.25 35.62 35.75 34.96  3 3 . 12  34.12 34.50  33.62 34.62 33.12 33.89  1.25 1.30 2.69 0.83 2.30  e  l.bb 1.69 1.40 0.53 0.83 1.83 0.70 1.59  o  2.07  ©  3.27 1.19 1.28 1.60 1.48 0.74 2.26  o  © ©  1.55  33.25 32.62 32.75 32.12 32.96  33  31.62 31.25 30.37 3 0 . 12 30.00 30.40 30.64  1.18 1.83 1.06 2.03 1.06 0.54 1.47  31 31 34  ©  0.64 0.83 1.45 2.26 1.76 1.06 1.95  1.69 2.35 1.12 1.90 1.06 1.56 1.45 1.73  33  ©  ©  32.00  34 32  ©  1. 90 2.61 0.92 1.48 1.16 0.74 1.75 1.73  34 37 36 3b 34 35 34 37  33.87 34.12  ©  © © © © ©  ©  © VALUE  FCR  SUMMER  353  28  41  33.85  2.32  ro °5v  5 I A I  i U IN 10 11 12 13.  68 68 68 68  WEEKLY  1 1 1 1 VALUE  4 8 8 8 28  36 34 35 34 34  37 3f> 39 37 39  36 50 35 25 36 75 34 75 35 71  57 88 48 16 38  14 15 16 17 16 19 20  68 68 68 68 68 68 68  WEEKLY  1 1 1 1 1 1 1 VALUE  8 8 8 8 8 8 8 56  33 34 36 34 33 33 33 33  3D 3d 37 33 34 33 34 38  33 67 35 50 36 50 34 25 33 12 33 87 33 12 34 32  99 51 53 46 35 99 35 41  21 22 23 24 25 27  68 68 68 68 66 66 68  WEEKLY  1 1 1 1 1 1 1 VALUE  8 8 8 8 6 8 8 56  32 35 37 34 34 34 34 32  36 39 38 33 37 3r> 34 39  33 36 37 34 35 35 34 35  62 87 50 50 00 00 00 21  76 88 53 53 19 92 00 74  28 29 30 31 I 2 3  68 68 68 68 68 68 68  8 8 8 8 8 6 8 56  33 34 34 33 36 36 3 533  36 3d 3D 38 38 37 37 3d  34 12 35 62 34 62 35 12 36 75 36 62 35 67 35 53  12 68 74 95 88 51 63 46  2B  WEEKLY  VALUE 1 1 1 1 1 1 1  8 8 8 8 8 a 8  4 5 6 7 8 9 10  68 68 68 68 68 68 68  WEEKLY  1 1 1 1 1 1 1 VALUE  8 8 8 8 8 6 8 56  34 34 33 33 33 34 33 33  36 33 33 36 33 3b 36 36  34 87 34 25 34 00 34 12 33 87 35 00 34 37 34 35  0 0 0 1 0 0 1 0  83 46 75 12 83 92 06 92  1 1 1 •1 1 1 i VALUE  1 1 1 1 1 1 ;  8  8 8 8 8 6  11 12 13 14 15 16 17  68 68 68 68 68 68 63  8 8 6 8 8 6 8 56  33 33 33 32 33 " 32 33 32  33 3o 34 36 34 33 34 36  33 , 6 2 . 34 37 33 62 34 00 33 50 33 62 33 50 33 7a  0 1 0 1 0 1 0 0  .74 .18 51 .51 .53 .06 53 .93  1 1 1 1 1 1 VALUE  1 1 1 1 1 1  8 8 8 8 8 8  18 19 20 21 22 23  66 68 68 68 63 68  8 8 8 8 8 4 44  33 32 32 31 31 32 • 31  34 34 33 33 32 32 34  33 25 33 00 32 50 31 67 31 50 32 00 32 . 3 8  0 0 0 0 0 0 0  46 .75 53 83 .53 .00 86  31  39  34.44  1.63  a  e ©  © © ©  0  © 0  © © ©  ©  20 o  VALUE  F0f<  SUMMER  352  ro  16 16 16 16  7 7 7 7  10 11 12 13  68 68 68 68.  4 8 8 8 28  39 36 37 33 33  45 41 48 38 48  42 38 41 36 39  25 87 87 12 42  3 20 1 95 4 .01 1 45 3 62  16 16 16 16 16 16 16  7 7 7 7 7 7 7  14 15 16 17 18 19 20  68 68 68 68 68 68 68  8 8 8 8 8 8 8 56  3" 33 35 34 33 33 33 31  41 43 43 39 36 42 37 43  35 12 37 87 38 75 36 00 3 4 25 36 75 34 37 36 16  3. 72 3 83 2 91 2 13 1 4b 3 41 1 59 3 16  1 1 1 1 1 1 1  16 16 16 16 16 16 16  7 7 7 7 7 7 7  21 22 23 24 25 26 27  68 68 68 68 68 68 68  8 8 8 8 8 8 8 56  31 35 36 34 34 33 • 33 " 31  43 49 44 39 41 40 3b ' 49  36. 87 41, 75 40. 50 36. 50 37. 37 36. 50 34. 12 37. 66  4. 73 5. 14 2 77 2 26 2. 82 2. 92 1 12 4 00  1 1 1 1 1 1  16 16 16 16 16 16 16  7 7 7 7 8 8 8  28 29 30 31 1 2 3  68 68 68 68 68 68 68  8 8 8 8 8 8 8 56  33 33 33 31 34 35 34 31  M 45 40 40 42 39 44 45  36. 75 38. 62 36 12 35. 50 37 75 37 62 38 12 37 21  3. 19 4 62 2 85 3 42 2. 76 1 50 3 31 3 21  1 1 1 1 1 1 1  16 16 16 16 16 16 16  8 8 8 6 8 8 8  4 5 6 7 8 9 10  68 68 68 68 68 68 68  8 8 8 8 8 8 8 56  33 32 31 31 29 32 30 29  39 36 3U 41 38 40 39 41  35 37 33 75 34 62 35 25 33. 87 36 50 34 25 34 80  2 26 1 28 2 55 3 73 3 35 2. 97 3 SO 2 95  1 1 1 1 1 1  16 16 16 16 16 16 16  8 8 8 8 8 8 8  11 12 13 14 15 16 17  68 68 68 68 68 68 68  8 8 8 8 8 8 8 56  28 29 30 28 3 29 28 28  38 40 38 41 37 39 36 41  32 34 34 34 33 33 32 33  50 25 00 25 12 12 37 37  3 58 4 09 3 11 4. 77 2 29 3 87 2 92 3 48  16 16 16 16 16 16  8 8 8 8 8  18 19 20 21 22 23  68 68 68 68 68 68  8 8 8 8 8 4 44  30 28 29 '28 27 29 27  3ft 36 34 3o 33 31 36  32 32 30 30 30 29 31  50 37 87 75 25 75 20  2 32 3 11 2 .23 3 32 2 .37 0. 95 2.65  1 1 1 •3  WEEKLY  ©  X VALUE  1 1 1 1 1 1 1 WEEKLY  WEEKLY  WEEKLY  © »  WEEKLY  WEEKLY  VALUE  VALUE  I VALUE  VALUc  I ' VALUE  1 1 1 1 1 1  WEEKLY  VALUE  S  ©  © ©  9  9 VALUE  FOR  SUMMER  352  27  49  35.54  4.05  © ro  2  ©  tt  7 7 7  11 12 13 .  WEEKLY  9 9 9 9 9 9 9  7 7 7 7 7 7 7  14 1$ 16 17 18 19 20  WEEKLY  2 2 2 2 2 2 2 VALUE  9 9 9 9 9 9 9  WEEKLY  2 2 2 2 2 2 2 VALUE  9 9 9 9 9  WEEKLY  2 2 2 2 2 2 2 VALUE  © »  ©  7  9 V 9  ©  ©  9  2 2 2 VALUE  2 2 2 2 2 2 2  — s s —  2  68 68 68  a 8 8 26  ST!  29 28 28 28  30 31 29 29 31  30 30 28 28 29  00 25 75 50 23  0 0. 0. 0. 0  00 70 46 53 95  68 68 68 68 68 68 68  8 8 8 8 8 8 8 56  29 30 29 29 29 28 28 28  30 30 31 30 30 29 30 31  29 30 30 29 29 28 28 29  • 62 .00 .12 .50 37 87 .50 42  0 0 0 0 0 0 0 0  51 >oo 64 53 51 35 75 .73  '  7 7 7 7 7 7 7  21 22 23 24 25 26 27  68 68 68 68 68 68 68  8 8 8 8 8 8 8 56  30 33 31 31 31 29 29 29  33 34 33 32 31 31 31 ' 34  31 33 32 3 1 31 30 30 3 1  37 .12 12 25 00 00 12 28  1 0 0 0 c 0 0 1  .18 .35 99 46 00 75 99 26  7 7 7 7 8 8 8  28 29 30 31 1 2 3  68 63 68 68 68 68 68  8 8 8 8 8 8 8 56  3 1 32 32 33 33 31 30 30  32 33 33 34 .. 33 ' " 33 31 34  31 32 32 33 33 32 30 32  62 37 62 37 00 25 62 26  0 0 0 0 0 0 0 0  51 51 51 .51 00 £8 51 99  9 9 9 9 9 9 9  8 8 8 8 8 8  4 5 6 7 8 9 10  68 68 68 68 63 68 68  8 8 8 8 8 8 8 56  31 31 30 30 30 28 28 28  31 32 32 31 31 29 29 32  31 3 1 31 30 30 28 28 30  00 75 25 25 75 87 25 30  0 0 0 0 0 0 0 1  00 46 70 46 4b 35 46 27  9 9  '  &  WEEKLY  VALUE V 9 9 9 9 9 9  8 8 B 8 8 8 8  11 12 13 14 15 16 17  68 68 68 68 68 68 68  WEEKLY  2 2 2 2 2 2 2 VALUE  8 8 8 6 8 8 8 56  28 29 29 29 29 29 28 28  30 30 31 30 29 29 28 31  29 12 29 62 30 25 29 75 29 00 29 00 28 00 29 25  0 0 0 0 0 0 0 0  83 51 83 .46 00 00 00 83  9 9 9 9  8 8 8 8  18 19 20 21  68 68 68 68  WEEKLY  2 2 2 2 VALUE  8 8 8 6 30  28 28 28 •2 8 28  29 29 29 28 29  28 50 28 75 28 37 28 00 28 43  0 0 0 0 0  53 46 51 00 50  ©  ©  ©  © © © ©  © © © © © ©  ©  e VALUE  4  FOR  SUMMER  336  28  34  30.22  1.58  © ©  ro  i  I M l 1UI1  tria i •  riwit i n  7 7 7  7 7 7  ii 12 13  68 68 68  7 7 7 7 7 7 7  7 7 7 7 7 7 7  14 15 16 17 18 19 20  68 68 68 68 68 68 63  7 7 7 7 7 7 7  7 . 7 7 7 7 7 7  21 22 23 24 25 26 27  7 7 7 7 7 7 7  7 7 7 7 8 8 8  7 7 7 7 7 7 7  8  7 7 7 7 7 7 7  8 8 8  2 2 2 WEEKLY  WEEKLY  ©  WEEKLY  68 68 68 68 68 68 68  6 8 8 8 8 8 6 56  33 34 38 35 35 35 35 33  39 • 41 41 37 39 39 36 41  35.25 37.75 39.00 36. 12 36.62 36.75 35.87 36.76  2.43 1.06 0.83 1.59 1.43 0.35 2.00  28 29 30 31 1 2 3  68 68 68 68 68 68 68  8  34 35 36 34 37 38 36 34  39 40 39 39 40 39 39 40  36.50 37.37 37.25 36.75 36.00 38.37 37.62 37.41  2.07 1.99 1.03 1.83 1.19 0.51 1.06 1.53  8  4 5 . 6 7 8 9 10  63 68 68 68 63 68 68  8 8 8 56  35 34 34 34 34 35 33 33  38 36 37 38 37 38 38 ' 38  36.00 34.62 35.25 35.50 35.62 36.62 35.12 35.53  1.06 0.74 1.28 1.60 1.40 1.30 1.95 1.43  8 8 3  8  8  11 12 13 14 15 16 17  68 68 68 68 68 68 68  8 8 6 6 8 8 8 56  33 34 35 34 34 34 33 33  37 39 36 39 37 38 36 39  34.62 36.12 36.25 35.75 •35.12 35.25 34.25 35.33  1.68 2.03 1.38 1.98 1.12 1.58 1.16 1.66  8  8 8 8  18 19 20 21 22  68 68 68 68 66  a 6 8 8 6 38  32 32 32 31 32 31  34 34 34 34 34 34  33. 12 33.00 32.50 32.50 32.83 32.73  0.64 0.92 0.75 1.41 0.96 0.96  35.61  2.07  VALUE  2 2 2 2 2 WEEKLY  34.50 36.12 37. 12 36.75 35. 12 3 5.50 34.50 35.66  VALUE  2 2 2 2 2 2 2  ©  37 39 39 38 36 38 35 39  1.51 2.10 1.35  56  33 34 36 36 34 34 34 33  VALUE  2 2 2 2 2 2 2 WEEKLY  37.00 3 8.37 35.75 37.05  VALUE  2 2 2 2 2 2 2 WEEKLY  37 41 • 37 41  VALUE  2 2 2 2 2 2 2 WEEKLY  37 36 34 "34  VALUE  2 2 2 2 2 2 2  VALUE  7 7 7 7 7  8 8 8  8  8  MV2 • 8 8 18 8 8 8 8 8 8  8  8  8 8 8 6 6 56 8 8 8  8  0.00 2.19  ©  0.88  1.9 3  © ©  0.66  0.63 1.51 0.53 1.59 2.66  © 9  9  O  o  © ©  © •2S ©  © VALUE  FOR SUMMER  3 3 6  3 1  4 1  ©  »1  ,  STATION  ©  ©  -p  INST.  r  MONTH  DAY  YEAR  MIN.  NO.  MAX.  A VS.  S.D.  4 4 4 4  7 7 7 7  24 25 26 27  68 68 68 68  WEEKLY  3 3 3 3 VALUE  2 6 6 8 26  32 32 33 33 32  32 33 33 33 33  32.00 32.87 33.00 33.00 32.88  0.00 0.35 0.00 0.00 0.32  4 4 4 4 4 4 4  7 7 7  7 8 8 8  28 29 30 31 1 2 3  68 68 68 68 66 63 63  WEEKLY  3 3 3 3 3 3 3 VALUE  8 8 8 8 8 8 8 56  33 34 34 33 34 35 34 33  34 35 35 34 35 33 33. 33  33.25 34.25 3 4 . 12 33.25 34.62 .35.00 34.62 34.16  0.46 0.46 0.35 0.46 0.51 0.00 0.51 0.75  4 4 4 4 4 4 4  8 8 8 8 8 8 8  4 5 6 7 8 9 10  68 68 68 68 68 68 68  WEEKLY  3 3 3 3 3 3 3 VALUE  6 8 8 3 8 8 8 56  33 33 33 32 32 33 33 32  34 • 33 34 34 33 34 34 34  33.12 33.00 33.37 33.00 32.62 33.62 33.25 33.14  0.35 0.00 0.51 0.53 0.51 0.51 0.46 0.51  4 4 4 4  8 8 8 8  11 12 13 14  68 66 68 68  WEEKLY  3 3 3 3 VALUE  6 8 8 5 29  32 33 33 32 .32  34 34 34 33 34  32.62 33.75 33.12 32.40 33.03  0.74 0 .46 0.35 0.54 0.73  32  33  33.42  0.81  ,  9  9 9  ©  ©  © VALUE  167  FOR SUMMER  ©  ©  ©  © © o  © © © © STATION  WEEKLY  3 3 3 3 3 3 VALUE  INST. 17 17 17 17 17 17  MONTH  DAY  YEAR  7 7 7 7 7 7  8 9 10 11 12 13  68 68 68 68 68 68  NO. 3 8 8 3 8 8 43  MIN. 34 34 36 37 38 37 34  MAX. 37 40 42 40 43 40 43  AVG.  S.D.  35.33 37.25 39.25 39*00 41.50 38.25 38.79  1.52 2.54 2.25 1.19 2.82 0.68 2.55  % ON  5 I A 1 I'Jri  -4-  1• 1 .  | I  |  J  YEAR  NO.  68 63 68 68 68 68  3 8 8 8 8 8 43  1.52 2.54 2.25 1.19 2.82 0.88 2.55  35 36 39 36 36 36 36 35  39 41 41 39 37 40 38 41  36.75 39.00 39.87 37.50 36.62 37.75 37.00 37.78  1.75 2.20 0.99 1.19 0.51 1.75 0.53 1.75  8 8 8 8 8 8 8 56  34 37 40 36 36 36 35 34  40 43 42 39 39 39 37 43  36.62 39.62 40.62 36.87 3 7 . 12 37.37 35.87 37.73  2.44 2.44 0.74 0.99 1.35 1.30 0.64 2.19  68 68 68 68 68 68 68  8 8 8 8 8 8 8 56  35 35 35 34 3 5. 36 36 34  38 39 36 37 38 38 38 39  36.50 37.12 35.62 34.75 36.37 36.87 36.62 36.26  1.41 1.45 0.51 1.16 1.30 0.83 0.91 1.31  4 5 6 7 8 9 10  68 68 68 68 68 68 68  8 8 8 8 8 8 8 56  34 34 34 33 32 33 32 32  3o 33 33 36 34 36 34 36  34.75 34.25 34.37 34.50 33.00 34.62 32.87 34.05  0.88 0.46 0.51 1.06 0.92 1.30 0.83 1.11  8 8 8 8 8 8 8  11 12 13 14 15 16 17  68 68 68 68 68 68 68  8 8 8 8 8 8 8 56  30 '31 32 31 31 31 31 30  34 35 34 35 33 34 33 35  3 1.50 32.87 33.12 32.25 32.25 31.87 31.75 32.23  1.60 1.45 0.83 1.83 0.70 1.24 0.88 1.33  6 8 8 8 8  18 19 20 21 22  68 68 68 68 68  8 8 8 8 4  31 31 31 30 30  33 34 32 32 30  31.50 32.12 31.37 30.62 30.00  0.75 1.12 0.51 0.91 0.00  36  30  34  31.25  1.02  359  30  49  35.55  3.10  17 17 17 17 17 17 17  7 7 7 7 7 7 7  14 15 16 17 18 19 20  6S 68 6b 68 68 63 68  WEEKLY  3 3 3 3 3 3 3 VALUE  8 8 8 8 8 8 8 56  17 17 17 17 17 17 17  7 7 7 7 7 7 7  21 22 23 24 25 26 27  68 68 68 6b 68 68 68  WEEKLY  3 3 3 3 3 3 3 VALUE  17 17 17 17 17 17 17  7 7 7 7 8 8 8  28 29 30 31 1 2 3  WEEKLY  3 3 3 3 3 3 3 VALUE  17 17 17 17 17 17 17  8 8 8 8 8 8 8  WEEKLY  3 3 3 3 3 3 3 VALUE  17 17 17 17 17 17 17  WEEKLY  3 3 3 3 3 3 3 VALUE  17 17 17 17 17  WEEKLY  VALUE  VALUE  FOR  SUMMER  •  35.33 37.25 39.25 39.00 41.50 38.25 38.79  WEEKLY  3 3 3 3 3  v SJ  37 40 42 40 45 40 45  8 9 10 11 12 13  ®  n  PIMA.  34 34 36 37 38 37 34  7 7 7 7 7 7  °  ©  BAT  17 17 17 17 17 17  &  e  KUN 1 M  3 3 3 3 3 3 VALUE  1 «  1  1N5 1 •  .  •  .  '  a  ©  © o c ©  e  ©  STATION  INST i  WEEKLY  4 4 4 4 VALUE  WEEKLY  4 4 4 4 4 4 4 VALUE  .AR  NO.  MIN.  MAX.  6  26 27 28 2V  68 68 68 63  4  39 36 34 35 34 34 34 35 34 35 36 36 34 ' 34 35 36 38 38 39 36 34  6 6 6  VALUE  WEEKLY  4 4 . 4 4 4 ' 4 4 VALUE m  4 4 4 4 4 4 4  30 1 2 3 4 5 6  68 68 68 68 68 68 68  10 11 12 13  68 68 68 68 66 68 68  14 15 16 17 18 19 20  68 68 68 68 68 68 68  21 22 23 24 25 26 27  68 68 68 68 68 68 68  28 29 30 31 1 2 3  68 68 68 68 68 68 68  4 5 6 7  68 68 68 66 68 68 68  VALUE 4 4 4 4 4 4 4  8 8 6 8 8 8  a 56  VALUE 4 4 4 4 4 4 4  a 8 a 28  9  WEEKLY  WEEKLY  DAY  7 8  4 4 4 4 4 4 4  WEEKLY  MONTH  8 9 10  8 8 8  8 8 8 8 56 8 8 8 8  8 8 8 56 8 8 8 8 8  8 8 56  a 8 8 8 8 8 U 56 8 6 4  a 8 8 a  AVG.  S.O.  41 38 36 36 41  40.00 36.25 3 5 . 12 35.75 36.32  0.81 0.70 0.99 0.46 1.74  33 3D 37 36 38 38 37 38  34.12 36.12 36.25 35.25 36.37 37.12 3 6 . 12 35.91  0.35 1.38 0.68 0.86 1.50 0.83 0.35 1.36  39 37 39 40 39 41 40 41  36.25 36.25 37.62 39.00 38.50 39.87 37.62 37.87  1.98 0.86 1.30 0.92 0.53 0.99 1.30 1.70  33 . 34 36 34 34 33 33 33  36 38 38 37 3a 34 34 38  34.50 36.25 36.87 35.37 34.12 33.62 33.62 34.91  1.19 1.46 0.64 1.06 0. 35 0.51 0.51 1.48  32 35 38 36 35 36 36 32  36 40 39 38 3 / 37 37 40  33.62 37.62 38.50 36.37 36.00 36.62 36.25 36.42  1.59 1.92 0.53 0.74 0.75 0.51 0.46 1.74  35 37 37 34 37 37 36 34  37 39 38 38 38 38 37 39  35.87 37.87 37.25 36.00 37.25 37.62 36.62 3 6.92  0.99 0.99 0.46 1.77 0.45 0.51 0.51 1.14  36 34 34 33 33 34 33  37 36 34 34 3a 37 3»  36.37 3 4.8 3' 34.00 33.62 33.62 35.50 3 4 . 12  0.51 0.98 0.00 0.51 0.91 1.19 0.63  WEEKLY  VALUE  WEEKLY  4 4 4 4 4 4 4 VALUE 4 4 4 4 4  WEEKLY  4 VALUE  VALUE FOR SUMMER  50  33  34.62  1.27  34 34 34 3b 33 34 33 3b  33.00 33.40 33.50 33.25 33.00 33. 12 33.00 33.17  0.81 0.54 0.53 1.03 0.00 0.83 0.00 0.64  5 5 5 5 5  8 8 8 8 8 8 8  11 12 13 14 15 16 17  68 68 68 63 68 68 68  7 5 8 S 8 8 8 52  32 33 33 32 33 32 33 32  5 5 5 5 5 5  8 8 8 8 8 8  18 19 20 21 22 23  68 68 68 68 68 68  8 8 8 8 2 40  32 32 30 28 29 31 28  33 33 32 31 31 31 33  32.62 32.25 31.00 29.50 30.00 31.00 31.07  0.51 0.46 0.63 1.06 0.92 0.00 1.42  450  28  41  35.35  2.36  5 5  6  .  37  ro  DAY  YEAR  NO.  MIN.  MAX.  6 6 6 6  26 27 28 29  68 68 68 68  5 8 8 8 29  43 39 36 38 36  18 18 la 18 la 18 18  6 7 7 7 7 7 7  30 1 2 3 4 5 6  68 68 68 68 68 68 68  8 3 4 8 8 a a 47  4 4 4 4 4 4 4 WEEKLY VALUE  16 18 18 la 18 18 18  7 7 7 7 7 7 7  7 8 9 10 11 12 13  68 68 68 68 68 68 68  4 4 .4 4 4 4 4 WEEKLY VALUE  18 18 18 18 18 18 18  7 7 7 7 7 7 7  14 15 16 17 18 19 20  68 63 68 68 66 68 68  STATION  INST.  4  la IS la is  4 4 4  MONTH .  WEEKLY VALUE 4  4 4 4 4 4 WEEKLY VALUE  4 4 4 4 4 4  4 WEEKLY VALUE 4 4 4 4 4  4 4  4 4 4 4 4 4  51 42 43 42 51  48.59 40.12 40.87 40. 12 41.79  3.26 1.35 3.35 1.55 3.94  36 38 41 38 38 40 38 36  42 40 4S 44 47 46 41 47  38.87 38.66 43. 50 40.62 43.00 42.50 39.87 41.04  2. 10 1.15 1.73 2.44 3.81 2.44 1.12 2.35  8 8 a 8 8 a 8 56  37 35 39 41 41 42 38 35  47 43 47 49 4b 51 42 51  42.00 38.87 43.25 45.37 43.37 46.75 40.37 42.85  4.10 2.94 3.19 2.97 1.68 3.49 1.18 3.77  8 8 8 8 8 8 8 56  36 37 39 37 37 37 36 36  44 43 45 43 40 43 40 43  39.37 41.50 41.75 39.62 38.50 40.50 38.37 39.94  3.02 3.38 2.25 2.26 1.19 2.97 1.50 2.66  8 8 a 8 a 8 8 56  34 38 41 39 39 39 37 34  44 49 47 42 44 44 39 ' 49  39.25 43.87 43.62 40.62 41.50 41.12 38.25 41.17  4.13 4.25 2.19 1.30 2.07 1.95 0.70 3.19  7 7 7 7 7 7 7  21 22 23 24 25 26 27  18 18 18 18 18 la 18  7 7 7 7 8 8 8  28 29 30 31 1 2 3  68 68 68 68 68 68 68  8 8 8 8 6 8 8 56  36 37 38 36 39 39 38 36  42 46 42 43 44 43 44 46  39.37 42.00 40. 12 39.75 41.12 40. 75 40.87 40.57  2.66 3.46 1.55 2.60 2.23 1.28 2.29 2.41  18 18 18 18 18 18 18  8 8 8 8 8 8 8  4 5 6 7 a 9 10  68 68 68 68 68 . 68 68  8 8 8 8 8 8 8  37 36 35 34 34 36 34  42 39 40 42 40 43 41  39.37 37.00 37.62 37.50 37.37 39.75 37.37  1.76 1.19 2.13 2.87 2.06 2.65 2.92  6 3  WEEKLY VALUE 4  S.D.  18 18 18 18 18 18 18  .  63 68 68 68 68 68  AVG.  ro ON  W t S M T '  VMLWt  18 18 IB 18 18 18 13  WEEKLY  4 4 4 4 4 4 4 VALUE  18 18 18 18 18 18  WEEKLY  4 4 4 4 4 4 VALUE  VALUE  FOR  SUMMER  .  56  34  43  38.00  2.40  8 8 8 8 8 8 8  11 12 13 14 15 16 17  68 68 68 68 68 68 68  8 8 8 8 8 8 8 56  33 34 34 33 34 32 33 32  4(3 42 40 42 38 41 39  k?.  35.87 38.12 37.00 37.75 35.75 36.25 35.75 36.64  2.64 3.31 2.32 3.65 1.46 3.10 2.05 2.75  8 8 8 8 8  18 19 20 21 22 23  66 68 68 68 68 68  8 8 6 8 6 5 45  33 31 31 29 29 32 29  37 37 33 36 35 37 37  35.12 34.00 32.75 31.87 32.25 33.80 33.26  1.35 2.00 1.28 2.74 2.37 2.16 2.25  457  29  51  39.45  3.99  a  N> ON ON  STATION  INST.  MONTH  DAY  YEAR  NO.  MIN.  MAX.  4 4 4 4 WEEKLY VALUE  15 15 15 15  6 6 6  26 27 28 29  68 68 68 68  4 8 8 8 28  34 32 31 31 31  4 4 4 4 4 4 4 WEEKLY VALUE  15 15 15 15 15 15 15  6  30 1 2 3 4 5  6  68 68 68 68 68 68 68  8 8 8 8 8 8 8 56  4 4 4 4 4 4 4 WEEKLY VALUE  15 15 15 15 15 15 15  7 7 7 7 7 7 7  7 8 9 10 11 12 13  68 68 68 68 68 68 68  4 4 • 4 4 4 4 4 WEEKLY VALUE  15 15 15 15 15 15 15  7 7 7 7 7 7 7  14 15 16 17 18 19 20  4 4 4 4 4 4 4 WEEKLY VALUE  15 15 15 15 15 15 15  7 7 7 7 7 7 7  4 4 4 4 4 4 4 WEEKLY VALUE  15 15 15 15 15 15 15 15 15 15 15 15 15 15  4 4 4 4 4 4 4  AVG.  S.D.  34 33 32 31 34  34.00 32.37 31.12 3 1.00 31.85  0.00 0.51 0.35 0.00 1.11  31 32 32 32 32 33 32 31  32 33 33 32 34 34 33 34  31.12 32. 50 32.37 32.00 32.62 33.25 32.75 32.37  0.35 0.53 0.51 0.00 0.74 0.46 0.46 0.77  8 8 8 8 8 8 8 56  31 31 32 • 33 35 36 33 31  32 32 33 36 36 36 36 36  3 1.50 31.37 32.25 34.25 35.25 36.00 34.12 33.53  0.53 0.51 0.46 1.38 0.46 0.00 1.12 1.86  68 68 68 68 68 68 68  8 8 8 8 8 8 8 56  32 32 33 33 32 32 31 31  32 33 33 33 32 32 32 33  32.00 32.50 33.00 33.00 32.00 32.00 31.50 32.28  0.00 0 .5 3 0.00 0.00 0.00 0.00 0.53 0.59  21 22 23 24 25 26 27  68 68 68 68 68 68 68  8 8 8 8 8 8 8 56  30 33 35 33 34 34 33 30  33' 36 36 35 34 , 34 34 36  3 1.25 34.37 35.37 33.62 34.00 34.00 33.25 33.69  0.88 1.18 0.51 0.74 0.00 0.00 0.46 1.34  7 7 7 7 e 8 8  28 29 30 31 1 2 3  68 68 68 68 68 68 68  8 8 6 8 8 8 6 56  32 34 34 34 34 35 34 32  34 35 35 34 35 35 35 35  32.62 34.25 34.62 34.00 34.50 35.00 34. 12 34. 16  0.74 0.46 0.51 0.00 0.53 0.00 0.35 0.82  8 8 8 8 8 8 8  4 5 6 7 6 9 10  68 68 68 68 68 - 68 68  8 8 8 8 8 8 8  32 32 32 32 32 33 32  34 33 32 32 33 34 34  32.87 32.25 32.00 32.00 32.37 33.87 32.37  0.64 0.46 . 0.00 0.00 0.51 0.35 0.74  6  7 7 7 7 7 7  '  ro  ON  WEEKLY  VALUc 15 15 15 15 15 15 15  11 12 13 14 15 16 17  WEEKLY  4 4 4 4 4 4 4 VALUE  15 15 15 15 15 15  18 19 20 21 22 23  WEEKLY  4 4 4 4 4 4 VALUE  VALUE  F O R SUMMER  56  32  34  32.53  0.76  68 68 68 68 68 68 68  8 8 8 8 8 8 8 56  31 31 32 32 32 32 31 31  32 32 32 33 33 32 32 33  31. 12 31. 87 32. 00 32. 37 32, 37 32, 00 31.50 31.89  0.35 0.35 0.00 0.51 0.51 0.00 0.53 0.56  68 68 68 68 68 68  8 8 8 8 8 5 45  31 31 30 29 29 30 29  31 31 31 29 29 30 31  31.00 31.00 30.87 29.00 29.00 30.00 30. 15  0.00 0.00 0.35 0.00 0.00 0.00 0.92  465  29  36  32*59  1.52  ro  ON  00  I N S ? .  S T A T I O N  5 5 5 5 5 5 5 55 5 5 5 5  5 5 5 5 5  27 27 27 27 27  28 27 28 27 2a  27.66 27.00 27. 12 27.00 27.11  0.57 0.00 0.35 0.00 0.32  8 8 8 8 8 8 8  7 7 7 7 7 7 7  21 22 23 24 25 26 27  68 68 68 68 68 68 68  8 8 8 8 8 8 3 56  26 27 28 27 27 26 27 26  27 29 29 27 28 28 28 29  26.50 27.87 28.12 27.00 27.37 27.50 27.37 27.39  0.53 0.83 0.35 0.00 0.51 0.75 0.51 0.73  8 8 8 8 8 8 8  7 7 • 7 7 8 8 8  28 29 30 31 1 2 • 3  68 68 68 68 68 63 68  8 . 8 8 8 8 8 8 56  27 28 28 27 28 28 28 27  29 30 29 29 29 29 30 30  28. 12 • 29.00 28.37 27.87 28.62 28.62 28.50 28.44  0.99 0.92 0.51 0.83 0.51 0.51 0.75 0.78  8 8 8 8 8 8 6  8 8 6 8 8 8 8  4 5 6 7 8 9 10  68 63 68 66 68 68 68  6 8 8 8 8 8 8 56  27 27 28 26 26 27 27 26  28 26 29 2(5 26 29 28 29  27.62 27.50 28.37 27.12 26.87 27.87 27.37 27.53  0.51 0.53 0.51 0 .64 0.83 0.83 C.51 0.76  8 8 8 8 8 8 8  8 8 8 8 8 8 8  11 12 13 14 15 16 17  68 68 68 68 68 68 66  8 8 8 8 8 8 8 56  26 26 27 26 26 26 26 26  27 29 28 28 27 28 27 29  26.37 27.37 27.25 26.87 26.37 26.75 26.37 26.76  0.51 1.30 0.46 0.33 0.51 0.88 0.51 0t63  8 8 8 8 8 8  8 8 8 8 8 8  ia 19 20 2.1 22 23  68 68 68 68 68 68  8 8 8 8 8 5 45  26 26 26 25 25 25 25  27 27 27 26 25 26 27  26.37 26.50 26.25 25.37 25.00 25.60 25.86  0.51 0.53 0.46 0.51 0.000.54 0.72  296  25  30  27.24  1.06  V A L U E  5 5 5 5 5 5  V A L U E  V A L U E  F O R  S.'C".  3 8 8 8 27  V A L U E  5  W E E K L Y  ' A V G .  68 68 ' 68 68  V A L U E  .  M A X .  17 18 19 20  V A L U E  W E E K L Y  M I N .  " N O .  7 7 7 7  V A L U E  W E E K L Y  W E E K L Y  YEAR  8 8 8  U  5 5 5 5 5 5 5  W E E K L Y  DAY  [  5 5 5 5 W E E K L Y  MONTH  SUMMER  ro  ON NO  MONTH  DAY  19 ' 19 19 19  7 7 7 7  10 11 12 13  5 5 5 5 5 5 5 VALUE  19 19 19 19 19 19 19  7 7 7 7 7 7 7  14 15 16 17 10 19 20  5 9 5 5 5 5 5 VALUE  19 19 19 19 19 19 19  7 7 7 . 7 7 7 7  5 5 5 5 5 • 5 5 VALUE  19 19 19 19 19 19 19  5 5 5 5 5 5 5 VALUE  ON  © ® © ©  © e  ©  © ©  5 5 5  WEEKLY v'ALLE  5 S 5 5 5 5 VALUE  ©  NO.  M IN .  MAX.  AVG.  S.O.  4 8 8 8 28  3 1 30 31 29 29  34 33 36 31 36  32.50 31.87 33.00 29.75 31.67  1.29 0.99 1.92 0.88 1.82  68 68 68 . 68 68 68 68  8 8 8 8 8 8 8 56  28 30 31 31 31 30 29 28  34 36 35 33 33 34 32 36  31*00 32.87 33.00 32.62 31.87 32.12 30.00 31.92.  21 22 23 24 25 26 27  68 68 68 68 68 68 68  8 8 8 8 8 8 8 56  27 29 33 30 31 . 30 30 27  33 37 3U 34 34 34 33 38  30.37 33.62 34.62 32.25 32.87 32.50 31.75 32.57  2.50 3.24 2.06 1.48 1.35 1.60 1.03 2.29  7 7 7 7 8 8 8  28 29 30 31 1 2 3  63 68 68 68 68 68 68  8 8 8 8 8 8 8 56  30 30 30 29 32 32 32 29  33 37 34 34 36 33 36 37  32.62 33.50 32.00 31.87 33.62 33.50 34.00 33.01  2.06 2.61 1.41 2.23 1.59 0.92 1.51 1.91  19 19 19 19 19 19 19  8 8 8 8 8 8 8  4 5 6 7 8 9 10  68 68 68 68 68 68 68  8 8 8 8 8 8 8 56  30 30 - 31 29 28 29 28 28  34 33 33 34 32 34 33 33  32.00 31.62 32.75 31. 12 30. 12 32.00 30.25 31.41  1.30 1.06 1.48 1.88 1.88 1.85 1.90 1. 80  19 19 19 19 19 19 19  8 8 8 8 8 8 8  11 12 13 14 15 16 17  68 68 68 68 68 68 68  8 8 8 8 8 8 8 56  26 28 28 28 27 23 28 26  30 34 34 33 31 33 31 34  28.50 3 1.00 31.00 30.25 29.37 29.87 29.25 29.89  1.60 2.67 2.39 2.18 1.59 1.95 1.28 2.08  19 19 19 19 19  8 8 8 8 8  18 19 20 21 22  68 68 68 68 68  8 8 8 8 5 37  28 27 27 26 27 26  31 31 29 29 29 31  29.62 29.12 27.87 27.37 27.40 28.35  1.06 1.72 0.83 1.50 0.89 1.53  INST.  5 5 5 5 VALUE  YEAR 68 68 68 68 .  2.5U 2. 10 1.30 1.76 • 0.99 1.64 1.19 1.91  9  © © ©  © © ©  ©  ©  ©  9  «  © ©  38 VALUE FOR SUMMER  345  26  38  31.39  2.41  9  rot  •3;  I ©  I © ;j  ©  I  1 *  !©  5 5 VALUt  3 3  7 7  b 6  68 68  4 8 12  29 29 29  34 32 34  31 .50 30 • 50 30 • 83  2 >08 1 .19 1 52  5 3 5 5 5 5 5 VALUE  3 3 3 3 3 3 3  7 '7 7 7 7 7 7  7 8 9 10 11 12 13  68 68 68 68 68 68 68  8 8 8 8 8 8 8 56  29 28 36 38 35 40 33 28  42 40 4f> 46 42 51 37 51  35 .37 34 .37 40 .87 41 • 12 39 .00 44 .00 35 .62 38 62  5 39 5 .01 4 .05 3 56 2 67 4 20 1 30 5. 03  5 5 5 5 5 5 5 VALUE  3 3 3 3 3 3 3  7 7 7 7 7 7 7  14 15 16 17 18 19 20  • 68 68 68 68 68 68 68  a 8 8 8 8 8 8 56  3 1 32 34 33 32 33 32 31 •  43 4!) 44 41 37 44 37 4»  5 5 5 5 5 5 5 VALUE  3 3 3 3 3 3 3  7 7 7 7 7 7 7  21 22 23 24 25 • 26 27  68 68 68 68 68 68 68  8 8 6 8 8 8 8 56  31 36 39 35 34 34 31 3 1  45 53 46 41 41 41 34 53  3 3 3 3 3 3 3  7 7 7 7 8 8 8  28 29 30 31 1 2 3  68 68 68 68 68 68 68  8 8 8 8 8 8 8 56  31 33 31 31 33 33 32 31  41 48 39 45 41 37 44 48  5 5 3 5 5 5 5 VALUE  3 3 3 3 3 3 3  8 8 8 8 8 8 8  4 5 6 7 8 9 10  68 68 68 68 68 68 68  8 8 8 8 8 8 8 56  31 30 29 29 28 29 27 27  39 ' 33 39 42 37 39 41 42 .  5 5 5 5 5 5 5 VALUE  3 3 3 3 3 3 3  8 8 8 8 8 8 8  11 12 13 14 15 16 17  68 68 68 68 68 68 68  8 8 8 8 8 8 8 56  27 29 28 27 27 27 27 27  5 5 5 5 5 5 VALUE  © © © I © © © ©  41 42 3d 42 36 41 37 42  36 00 38 50 38 .75 • 35 62 34 .37 37 25 34 37 36 41  4< 47 4 78 4 02 2 92 1 6B 4 46 1. 92 3. 85  37 44 41 37 38 37 32 38  50 50 37 25 00 25 37 32  5< 68 6 21 2. 87 2 43 2i 97 2. 81 1. 06 5. 06  35 39 35 36 36 35 37 36  62 75 00 50 00 25 25 48  4. 34 5 b9 2. 92 4. 65 3. 29 1. 75 4. 49 4. 16  34 25 '3 1 50 33 37 34 25 32 75 34 75 33 75 33 51  2. 81 1 19 3. 99 5. 11 3 49 4. 09 5< 87 3. 96  33 37 35 25 33 12 34 25 31 50 34i 00 32. 37 33 41  5. 42 5. 17 4. 18 5. 94 3< 20 5. 55 3. 92 4. 73  4  ©  © © © © © © © ©  © .40 »  9  5 5 5 5 5 5 WEEKLY VALUE  18 19 20 21 22 23  68 68 68 68 68 68  8 8 8 8 8 5 45  28 26 26 24 25 26 24  36 36 34 38 32 34 38  31.62 30.25 29.25 29.75 28.12 29.20 29.73  3.33 3.95 3.01 5.75 2.94 3.27 3.81  ro| -OK  .ION  _N 3 T k  MONTH  DAY  NO.  MIN.  MAX.  68 63 68 68  5 8 8 8 29  32 31 31 30 30  32 32 31 31 32  AVG.  S.D. 0.00 0.35 0.00 0.46 0.65  14 14 14 14  7 7 . 7 7  17 18 19 20  WEEKLY  6 6 6 6 VALUE  14 14 14 14 14 14 14  7 7 7 7 7 7 7  21 22 23 24 25 26 27  6e 68 68 68 68 68 68  WEEKLY  6 6 6 6 6 6 6 VALUE  8 8 8 8 8 8 a 56  30 30 30 30 30 30 30 30  30 32 31 .30 30 31 30 32  14 14 14 14 14 14 14  7 7 • 7 7  68 68 68 68 68 68 68  8 a 8 8 8  a 8  28 29 30 31 1 2 3  WEEKLY  6 6 6 6 6 6 6 VALUE  30 3 1 31 31 32 34 31 30  31 32 32 32 34 34 33 34  6 6 . 6  14 14 14 14 14 14 14  8 8 8 8 8 8 8  4 5 6 7 8 10  68 68 68 68 66 68 68  30 30 30 30 30 31 29 29  31 30 30 30 31 32 31 32  8 8 8 8 8 8 8  11 12 13 14 15 16 17  56  29 30 30 29 28 29 29 28  30 31 30 30 •• 29 30 30 31  29.37 28.75 29.75 29.75 29.60  0.46 0.51 0.00 0.51 0.46 0.46 0.46 0.65  8  18 19 20 21  8 a 8 4 28  29 29 29 29 29  29 29 29 29 29  29.00 29.00 29.00 29.00 29.00  0.00 0.00 0.00 0.00 0.00  281  28  34  30.40  1.15  6  WEEKLY  6 6 6 VALUE  14 14 14 14 14 14 14  WEEKLY  6 6 6 6 6 6 6 VALUE  14 14 14 14  WEEKLY  6 6 6 6 VALUE  VALUE  FOR SUMMER  8  S  8 8  9  .  YEAR  68 68 66  68 68 68 68 68 68 68 63  6  8 56 8 6 6  8 8 8 8 56 8 8 8 8 8 8 6  32.00  31.12 31.00  30.25 31.00 30.00 31.00  30 .87 30.00 30.00  30. 12 30.00  30.28 30.37 3 1.62 31.12 31.37 32.62 34.00 32.00  31.87 30. 12 30.00 30.00 30.00  30.25 3 1.50 30.00  30.26 29.25 30.37 30.00  0.00 0.75 0.35 0.00 0.00 0.35 0.00 0.52 0.51 0.51 0.35 0.51 0.74 0.00 0.75 1.20 0.35 0.00 0.00 0.00 0.46 0.53 0.53 0.61  STATION  INST.  MONTH  DAY  YEAR  NO.  MIN.  MAX,  AVG.  S.D.  2 2 2 2  6 6 . 6 6  19 20 21 22  68 68 68 68  WEEKLY  6 6 6 6 VALUE  4 8 8 8 28  33 31 31 31 31  34 33 32 32 34  33.75 32.12 31.75 31.37 32.03  0.50 0.63 0.46 0.51 0.96  2 2 2 2 2 2 2  6 6 6 6 6 6 6  23 24 25 26 27 28 29  68 68 68 68 68 68 68  WEEKLY  6 6 6 6 6 6 6 VALUE  8 8 8 8 8 8 6 56  30 30 3 1 31 32 32 33 30  31 33 34 35 34 35 35 35  30.37 31.62 32.50 33.12 3 3 . 12 33.62 34.12 32.64  0.51 1.06 1.19 1.55 0.64 1.30 0.83 1.56  2 2 2 2 2 2 2  6 7 7 7 7 7 7  30 1 2 3 4 5 6  68 68 68 68 68 68 68  WEEKLY  6 6 6 6 6 6 6 VALUE  8 8 8 8 8 8 8 56  32 33 34 . 33 33 34 34 32  35 37 35 35 38 38 35 38  33.50 35.00 34.37 34.00 35.62 35.62 34.50 34.66  1.19 1.60 0.51 0.92 1.92 1.40 0.53 1.40  2 2 2 2 2 2 2  7 7 7 7 7 7 7  7 8 9 10 11 12 13  68 68 68 68 68 68 68  WEEKLY  6 6 . 6 6 6 6 6 VALUE  8 8 8 8 8 8 8 56  33 33 35 35 35 36 35 33  39 37 39 39 37 41 38 41  35.87 35.00 36.75 36.87 36.25 38.50 36.12 36.48  2.23 1.30 1.90 1.24 • 0.68 2.20 0.83 1.62  2 2 2 2 2 2 2  7 7 7 7 7 7 7  14 15 16 17 18 19 20  68 68 68 68 68 . 68 68  WEEKLY  6 6 6 6 6 6 6 VALUE  8 8 8 8 8 8 8 56  33 34 36 35 34 34 34 33  3tf 38 39 37 35 38 35 39  35.00 36.37 37.25 35.87 34.50 35.50 34.37 35.55  1.85 1.59 1.28 0.63 0.53 1.51 0.51 1.53  2 2 2 2 2 2 2  7 7 7 7 7 7 7  21 22 23 24 25 26 27  68 68 68 68 68 68 66  WEEKLY  6 6 6 6 6 6 6 VALUE  8 8 8 8 8 8 8 56  32 35 37 34 34 34 34 32  38 41 40 35 36 38 35 41  34.87 37.75 38.75 34.62 35.50 35.62 34.87 36.00  2.23 2.60 . 1.03 0.51 1.69 1.59 0.35 2.14  2 2 2 2 2 2 2  7 7 7 7 8 8 8  28 29 30 31 1 2 3  68 68 68 68 68 68 68  8 6 8 6 8 8 a  34 34 34 33 35 35 35  36 39 36 37 36 37 39  35s87 36.25 35.25 34.87 26.00 36.37 36.62  1.80 2.05 0.88 1.64 1.19 0.74 1.59  6 6 6 6 6 6 6  •  ,  ?*>  WiiEKLY  VALUE 2 2  a o •  2 2 2  WEEKLY  6 6 6 6 6 6 6 VALUE  2  WEEKLY  6 6 6 6 6 6 6 VALUE  WEEKLY  6 6 6 6 6 6 VALUE  •~>  VALUE  FOR  SUMMER  8 8 8 8 8  4 5 6 7 8 9 10  66 68 68 68 68 68 68  2 2 2 2 2  8 8 8 8 8 8 8  11 12 13 14 15 16 17  68 68 68 68 68 68 68  2 2 2 2 2 2  8 8 8 8 8 8  16 19 20 21 22 23  68 68 68 68 68 68  2 2  2  56  33  39  35.89 _  8 8  34 33 33 33 32 33 31 31  3o 35 36 37 33 3o 33 37  34.87 34.25 34.37 34.75 33.50 34.87 33.12 34.25  0.83 0.70 0.91 1.48 1.19 1.12 1.64 1.28  b 8 8 8 8 8 56  30 32 32 30 3 1 30 31 30  33 36 33 36 34 34 33 36  32.37 33.75 33.50 3 3 . 12 32.25 32.00 31.75 32.67  1.92 1.58 1. 19 2.41 1.03 1.69 0.66 1. 68  8 8 8 6 8 4 44  31 30 29 29 29 30 29  33 33 31 31 31 31 33  31.87 31.37 30.37 29.75 29.87 30.25 30.61  0.99 1.30 0.74 0.68 0.99 0.50 1.22  520  29  41  34.27  2.39  ii  8 8 8 8 56  0  _  1.52  TO  2?5 Appendix  B  r  > >  HUMI 0 I TY MAX.  ^_ '  i  WEEK  -  AVG.  i-i I N .  5.0.  i ci'.Ht.i<A f Ui<:i i-,AX. AVb.  S.u.  ENDING 6/15/69 26. . ...  .  62  . 95  40  33.19  2.3o  38  32.3 3  1.94  29  42  34.58  3.U0  146  28  42  33.54  2.6 7  9. 15  56  30  48  3 6.71  3.8 2  9.13  56  2 9 ...  49  33.32  5.32  56  31  .41  33.76  1.93  64  39.73  H .69  64  37.99  7.51  26  8 1 . 3 4 ....  9.43  68.03 . .  5.28  85.55  3.53  56  85.95  7.79  98  83.32  96  92.87  28.  > WEEK  >  ..... .  ENDING  6/22/69 75 .  56.  ...  . 100 .  .  '6 .  ' . . 28  '• •  --  ) WEEK  >  ENDING 56  „  6/29/69 67  . 99  .  ....  > •'•'ONTH 6/69 146 .  100 . .  .62  ... .  >  WEEK  >  ENDING  56  7/ 6/69 66  -  >  WEEK  ENDING 56  7/13/69 62  •  ..  i WEEK  i  .  WEEK >  ENDING  7/20/69  56  . . . 62  ENDING  7/27/69  56  . .  ... 97  .52  96  52  93  87.76 . ... .8.80  .. 7 9 . 0 3  ..13.30  56  82.12  11.52  24 8  . . 31 .  I'. ONTH 7/69 >  248  .  29  ro ON  56  v,  WEEK. ENDING  r  56  WEEK  ..  ENDING  12.46  56  33  63  45.05  8.35  98 .  85.01  .9.40  i>6  32  51  33.67  4.67  98.  86.58  7.91  56  33  44  38.42  3.34  84  . ..... 89  86.50  3.53  2  40  40  40.00  0.00  63  ....98  ...85*07  8.67  138  32  53  36.86  4.56  100  83.94  10.04  532  _ 26  64  37.00  6.19  .68  .. .  8/17/69 .  63  ENDING 2  78.39  8/10/69  56  WEEK  98  52  .  . . . . . . .  8/16/69  v  - -  MONTH 8/69 138  FOR  THE  SUMMER  532  .  ... ...  .. 52  .  .. . _ .  - -  ••  --  -  . . . . . . ^  - -  ......  -;-  - •  •• -  -  -  -  -  -  •  •  -•- •  :  ..  - -  --  . ro ..  ...  • • -  M-I-V*  HUMIDITY MA*. AV6«\  NO.  MIN*  TEMPERATURE MAX. AVG.  S.D.  WEEK ENDING 6/15/68 37  67  100  84.37  37  24  38  30.56  2.87  100  77.75  56  28  41  32.87  2.33  72  100  86.17  56  2»  36  31.69  2.45  62  100  83.00  157  24  41  31.91  2.61  100  88.21  56  29  40  33.12  2.69  100  84.37  56  28  47  36.33  4.04  99  87.46  56  29  42  33.76  2.77  62  99  83.89  56  29  47  37.21  3.67  60  100  85.04  248  28  47  35.26  3.63  WEEK ENDING 6/22/68 56  62  WEEK ENDING 6/29/68 56  MONTH 6/68 157  WEEK ENDING 7/ 6/68 56  70  WEEK ENDING 7/13/68 56  63  WEEK ENDING 7/20/68 56  60  WEEK ENDING 7/27/68 56  MONTH 7/68 248  WEEK  ENDING  8/ 3/68  56  WEEK  ENDING  ENDING  ENDING  56  32  42  35.73  2.20  99  86.73  56.  30  41  34.80  2.80  100  78.16  56  31  44  36.73  3.53  68  100  85.52  56  28  38  33.50  2.80  54  100  84.18  192  28  44  35.11  3.19  54  100  84.22  597  24  47  34.33  3.55  63  8/17/68  56  WEEK  83.92  8/10/68  56  WEEK  96  62  54  8/24/68  55  MONTH 8 / 6 3 191  FOR  THE  SOWER  596  ro  280  Appendix  G  CHECKLIST OF PLANT SPECIES (Total Species Complement Collected on a l l Quadrats, Within the Study Area, by Alphabetical Order.)  Vascular Plants 1.  Alopecurus a l p i n u s L.  2.  A r c t a g r o s t l s l a t l f o l l a (R. Br.) G r i s e b .  3.  Braya purpurascens  4.  Cardamlne b e l l i d i f o l l a L .  5.  C. p r a t e n s l s L.  6.  Carex amblyorhyncha K r e c z .  7.  C. a t r o f u s c a Schk.  8.  C. membranacea Hook.  9.  C. mlsandra  (R. Br.)Bunge  9  R. B r .  10.  C. n a r d l n a F r .  11.  C. r u p e s t r l s A l l .  12.  C. stans D r e j .  13.  Cassiope t e t r a g o n a (L.) D. Don  14.  Cerastium alpinum L .  15.  C. r e g e l l l i O s t f .  16.  Colpodlum  17.  Draba a l p i n a L.  18.  D. b e l l l l  19.  D. l a c t e a Adams  20.  D. o b l o n g a t a R. B r .  21.  , D. s u b c a p i t a t a Slmm.  vahlianum  (Liebm.)  Holm  22.  Dryas i n t e g r i f o l l a  23.  Dupontia  M. V a h l  f i s h e r i R. B r .  282 24.  Eriophorum a n g u s t l f o l l u m H o n c k .  25.  E.  scheuchzeri  Hoppe  26.  E.  trlste  Fr.)  27.  Equisetum arvense  28.  E.  29.  Eutrema e d w a r d s i l  30.  Festuca  31.  F.  32.  Hierochloe  33.  H.  34.  H i p p u r i s v u l g a r i s L.  35.  Huperzia  36.  Juncus b i g l u m i s  37.  Kobresia  38.  K.  39*  Luzula  40.  L.  41.  Melandrium a f f l n e  42.  M.  43.  Minuartla r o s s i i  44.  M.  45.  Oxyria  46.  Papaver radicatum  47.  P e d i c u l a r i s c a p i t a t a Adams  48.  P.  hirsuta  49.  P.  l a n a t a Cham. &  50.  P.  sudetica  51.  P h l p p s l a a l g l d a ( S o l . ) R.  52.  Pleuropogon  (Th.  variegatum  Hadac &  Love  L.  Schlelch. R.  Br.  baffinensis Polunin  brachyphylla  Schultes  a l p i n a (Sw.)  pauciflora  R.  selago  R.  &  S.  Br.  ( L . ) B e r n h . ex  Schrank &  L.  myosuroldes  (Vill.)  Fiori  s i m p l i c i u s c u l a (Wahlenb.) Mack. arctlca  confusa  apetalum  rubella  Blytt.  Lindeb.  (L.)  ( J . Vahl)  Hartm.  Fenzl (R.  Br.)  Graebn.  (Wbg.) Graebn.  digyna  Mart.  (L.)  Hill Rottb.  L. Schlecht.  Willd.  s a b l n e l R.  Br.  Br.  &  Paol.  53.  Poa  5^-.  P.  a r c t i c a R.  55.  P.  h a r t z i i Gand.  56.  Polygonum v i v l p a r u m  57.  Potentilia hyparctica  58.  P.  59*  Puccinellla  60.  P.  61.  Ranunculus hyperboreus  62.  R.  63.  Salix  6k.  S a x i f r a g a c a e s p i t o s a L.  65.  S.  cernua  66.  S.  f o l i o l o s a R.  67.  S.  hlrcuius  68.  S.  nivalis  69.  S.  oppositifolia  70.  S.  r i v u l a r i s L.  71.  Silene acaulis  72.  S t e l l a r i a longlpes Goldie  a b b r e v i a t a R.  Br.  Br.  rubrlcaulis  L. Malte  Lehm.  a n d e r s o n i i Swallen  v a g i n a t a (Lge.)  F e r n . & Weath. Rottb.  sulphureus S o l . arctica  Pall.  L. Br.  L. L. L.  L.  Bryophytes 73.  Abietinella  7^.  Amblystegium  75*  Anastrophyllum  76.  Andreaea r u p e s t r i s  77.  Aneura p l n g u i s (L.)  78.  Arnellia  79«  Aulacomnlum  abietlna  (Hedw.)  juratzkanum minutum  fennlca  Fleisch.  Schimp.  (Schreb.)  Schust.  Hedw. Dum.  (Gottsche)  turgidum  Lindb.  (Wahlenb.) Schwaegr.  284 80.  Barbula  81.  B. l c m a d o p h i l a S c h i m p . ex  82.  Bartramia  83.  Blepharostoma  84.  Brachythecium a l b i c a n s  85.  B. t u r g i d u m  86.  Bryum a n g u s t i r e t e K i n d b .  87.  Calllergon  88.  C. t r i f a r l u m  89.  Campylium h i s p l d u l u m ( B r i d . )  90.  C. polygamum (B.S.G.) C. J e n s .  91.  C. s t e l l a t u m  92.  Catoscopium n i g r i t u m  93.  Cephaloziella  94.  C. r u b e l l a  95.  Ceratodon purpureus  (Hedw.)  96.  Cinclldlum  Schimp.  97.  Clrriphylum  98.  Conostomum t e t r a g o n u m  99.  Cynodontium  fallax  Hedw.  ithyphylla  C. M u l l .  Brid.  trlchophyllum  (L.)  Dum.  (Hedw.) B.S.G.  ( C . J . Hartm.) K i n d b .  glganteum  ex  Mac.  (Schimp.)  Kindb.  (Web. & Mohr.) K i n d b . Mitt.  (Hedw.) C. J e n s . (Hedw.) B r i d .  arctica  (Nees)  Bryhn  Sc. D o u i n  a p . K.M u l l .  Warnst.  arcticum cirrosum  schist!  Brid.  (Schwaegr.  ex  S c h u l t e s ) Grout  (Hedw.) L i n d b .  (Wahlenb.) L i n d b .  100.  Dicranowelsia  101.  Dicranum  102.  D. f u s c e s c e n s T u r n .  103.  D. s c o p a r l u m Hedw.  104.  Dldymodon a s p e r i f o l i u s  (Mitt.)  105.  Dlstichlum  (Hedw.) B.S.G.  106.  D. h a g e n i i R y a n ex  107.  Ditrlchum  108.  Drepanocladus  crispula  elongatum  (Hedw.) L i n d b . ex  Schleich.  capillaceum  flexicaule  ex  Milde  Schwaegr.  Crum, S t e e r e & A n d e r s o n  Philib. (Schwaegr.)  Hampe  r e v o l v e n s (Sw.) W a r n s t .  109.  D. u n c i n a t u s (Hedw.) Warnst.  110.  D. v e r n i c o s u s  111.  E n c a l y p t a c i l i a t a Hedw.  112.  E . rhabdocarpa Schwaegr.  113.  E . v u l g a r i s Hedw.  Ilk.  P i s s l d e n s a r c t l c u s Bryhn  115.  Grimmia a l p l c o l a Hedw.  116.  G. apocarpa Hedw.  117.  Gymnomitrion c o r r a l l o i d e s Nees  118.  Haplodon w o r m s k j o l d l i  119.  Hylocomlum  120.  Hypnum bambergeri Schimp.  121.  H. c a l l l c h r o u m Funck ex B r i d .  122.  H. c u p r e s s i f o r m e Hedw.  123.  H. procerrimum M o l .  12k.  H. revolutum ( M i t t . ) L i n d b .  125.  L e i o c o l e a h e t e r o c o l p o s (Thed.) Buck  126.  Lophozia b a r b a t a (Schmid.) Dumort  127.  L. c a v i f o l i a  128.  L. h a t c h e r i (Evans) Steph.  129.  L. kunzeana (Huben.) Evans  130.  L. q u a d r i l o b a  131.  L. rutheana (Llmpr.) Howe  132.  L. w e n z e l i i  133.  Keesea t r i f a r i a  13«V.  M. u l l g i n o s a Hedw.  135.  Mesoptychia s a h l b e r g l i  136.  Mnium hymenophylloides Hub.  137.  M. hymenophyllum  ( L i n d b . ex  C. Hartm.) Warnst.  (Hornem.) R. B r .  splendens (Hedw.) B.S.G.  (Buck & S. Arn.) S c h u s t .  (Lindb.) Evans  (Nees) Steph. Crum, S t e e r e & Anderson  B.S.G.  ( L i n d b . & Arn.) Evans  286 138.  M. m a r g i n a t u m  139«  M. medium B.S.G.  140.  M. o r t h o r r h y n c h u m  141.  Myurella  142.  M. t e n e r r l m a  143.  Odontoschlsma macounii  144.  Oncophorus w a h l e n b e r g i i  145.  Orthothecium  chryseum  146.  0 . rufescens  (Brid.)  147.  0 . strictum Lor.  148.  Orthotrlchum  149.  Philonotis  150.  Platydictya  151.  Pogonatum a l p l n u m  152.  Pohlia  153*  Polytrichum  154.  P. p l l i f e r u m  155.  Psilopilum  156.  Ptllldium  157.  Rhacomitrium  158.  R. h e t e r o s t l c h u m  159.  R. l a n u g i n o s u m  160.  Scapania  161.  Scorpldium  162.  Seligeria polaris  163.  Splacrtuum v a s c u l o s u m  Hedw.  164.  T e t r a p l o d o n mnlodes  (Hedw.) B.S.G.  165.  Timmia a u s t r i a c a  (VUth.) B r i d .  julacea  ex P. B e a u v .  Brid. ( S c h w a e g r . ) B.S.G.  (Brid.)  Lindb. ( A u s t . ) Underw.  ( S c h w a e g r . ex S c h u l t e s ) B.S.G. B.S.G.  speciosum  fontana  Brid.  Nees ex S t u r m  (Hedw.)  Brid.  jungermannioides  cruda  (Hedw.)  (Brid.)  Crura  Rohl  (Hedw.) L i n d b . junlperinum  Hedw.  Hedw.  cavifolium clllare  ( W i l s . ) I . Hag.  ( L . ) Hampe  canescens  (Hedw.)  Brid.  (Hedw.) B r i d .  (Hedw.) B r i d .  simonsll  Bryhn  turgescens  (T. Jens.)  Loeske  Berggr.  Hedw.  166.  Tomenthypnum n l t e n s (Hedw.) Loeske  167.  Tortella fragilis  168.  T. t o r t u o s a (Hedw.) Llmpr.  169.  Tortula r u r a l i s  170.  T r i t o m a r i a quinquedentata  171.  Voitla nivalis  (Hook, ex Drumm.) Llmpr.  (Hedw.) Gaertn., Meyer & Scherb. (Huds.) Buck  Hornsch. Lichens  172.  Agyrophora  173'  A l e c t o r i a c h a l y b e i f o r m i s (L.) S. Gray  l?k.  A. minuscula N y l .  175*  A. n i g r i c a n s  176.  A. n i t l d u l a  177»  A. o c h r o l e u c a (Hoffm.) Mass.  178.  A. pubescens (L.) R. H. Howe  179*  A. subdlvergens  180.  A. t e n u i s D a h l  181.  Baeomyces carneus  182.  Buellia atrata  183.  B. p a p i l l a t a  184.  C a l o p l a c a clnnamomea (Th. F r . ) O l i v .  185.  C. h o l o c a r p a (Hoffm.) Wade  186.  C. s t i l l i c i d i o r u m  187.  C. t e t r a s p o r a ( N y l . ) O l i v .  188.  C. t i r o l l e n s i s Z a h l b r .  189.  Candelariella arctica  190.  C. a u r e l l a  191.  C. canadensis Magn.  192.  Cetraria cucullata  193.  C. d e l i s e l  lyngei  (Schol.) Llano  (Ach.) N y l . (Th. F r . ) V a i n .  Dahl  (Retz.) F l o r k e  (Sm.) A n z i  (Somm.) Tuck.  (Vahl) Lynge  (Korb.)  Sant.  (Hoffm.) Z a h l b r .  ( B e l l . ) Ach.  (Bory ex Schaer.) Th. F r .  194.  C. i s l a n d l c a  (L.)  195.  C. n i g r i c a n s (Retz.) N y l .  196.  C. n i v a l i s  197.  Cladina mltis  198.  C l a d o n i a amaurocraea ( F l o r k e ) Schaer.  199.  C. b e l l i d i f l o r a  200.  C. c o c c i f e r a  201.  C. c o r n u t a  202.  C. g r a c i l i s  203.  C. p y x i d a t a (L.) Hoffm.  204.  C o r n i c u l a r i a a c u l e a t a (Schreb.)  205.  C. d i v e r g e n s  206.  Dactylina arctica  207.  D. ramulosa (Hook.) Tuck.  208.  F u l g e n s i a b r a c t e a t a (Hoffm.) Ras.  209.  Gyalecta f o v e o l a r i s  210.  G. p e z l z a (Mont.) A n z i  211.  Haematomma lapponlcum  212.  Hypogymnia physodes (L.) W.  213.  H. subobscura  (Vain.) P o e l t .  214.  Lecanora  (Huds.) Ach.  215.  L. b a d i a (Hoffm.) Ach.  216.  L. b e r i n g l i N y l .  217..  L. campestris  218.  L. C a n d i d a (Anzi)  219.  L. castanea  220.  L. d i s p e r s a ( P e r s . ) Somm.  221.  L. e p i b r y o n  222.  L. f r u s t u l o s a  (L.)  Ach.  Ach.  (Sandst.)  (Ach.)  Hale & W.  Culb.  Schaer.  (L.) W i l l d .  (L.) Hoffm. (L.) W i l l d .  Ach.  Ach.  atra  (Hook.) N y l .  (Ach.)  (Schaer.)  - " Ras.  Hue  Nyl.  (Hepp) Th. F r .  (Ach.) Ach. (Dicks.)  Schaer.  Ach.  Wats.  289  223.  L. m u t a b l l l s  Somm.  224.  L. p o l y t r o p a  ( E h r h . ) Rabenh.  225.  L. p r o s e r p e n s N y l .  226.  L. r u p i c o l a  227.  L. v e r r u c o s a Ach.  228.  Lecidea armenlaca  229.  L. a s s i m i l a t a N y l .  230.  L . a t r o m a r g i n a t a Magn.  231.  L. a u r i c u l a t a  232.  L. c r a s s i p e s  233.  L.  234.  L. d l c k s o n i l  235*  L»  236.  L. l a p i c l d a  (Ach.)  237.  L.  Hellb.  238.  L. macrocarpa  239.  I>» m e l i n o d e s  240.  L. micacea  241.  L. p a n t h e r l n a (Hoffm.)  242.  L. ramulosa Th. F r .  243.  L. r u b i f o r m i s  244.  L.  speira  245.  L.  stigmatea Ach.  246.  L.  tessellata  247.  L. v e r n a l i s  248.  L. v o r t i c o s a  249.  Lecldella wulfenli  250.  Leciophysma  251.  Lepraria neglecta  (L.) Zahlbr.  Fr.  Th. F r . (Th. F r . ) N y l .  crustulata  (Ach.)  Spreng.  (Gmel.) A c h .  glaucophaea  lulensis  (DC.)  Korb. Ach.  (DC.)  Steud.  ( K o r b . ) Magn.  Korb. Th. F r .  (Wahlemb. ex A c h . )  (Ach.)  Ach.  (Ach.)  Florke  (L.) Ach. (Florke)  Korb.  (Hepp) K o r b .  f l n m a r k l c u m Th. F r . (Nyl.) L e t t .  Wahlenb.  252.  Lopadlum  253.  Mycoblastus  254.  M.  255.  Nephroma e x p a l l l d u m  256.  Ochrolechia  257.  0.  frlgida  258.  0.  geminipara  259.  0.  gonatodes  260.  0.  inaequatula  (Nyl.)  261.  0.  upsallensls  ( L . ) Mass.  262.  Pannarla  hookerl  263.  Parmelia  centrifuga  264.  P.  dlsjuncta  265.  P.  exasperatula Nyl.  266.  P.  fraudans  267.  P.. i n c u r v a  268.  P.  infuma N y l .  269.  P.  omphalodes  270.  P.  saxatilis  271.  P.  separata  272.  P.  sulcata  273.  Parmeliella  274.  Peltigera  275.  P.  276.  P. m a l a c e a  277.  P.  278.  Pertusarla  279.  P.  coriacea  280.  P.  dactylina  pezizoideum alplnus  sanguinarius  canina  (Ach.)  Korb.  (Fr.) Kernst.  ( L . ) Norm. (Nyl.) N y l .  androgyna (Sw.)  (Hoffm.) A r n .  Lynge  (Th. F r . ) V a i n . (Ach,)  Has. Zahlbr.  ( 3 o u . ex  Sm.) N y l .  (L.) Ach.  Erichs.  Nyl. (Pers.) F r . -  (L.) Ach. (L.) Ach.  Th. F r . Tayl. praetermissa  ( N y l . ) P.  apthosa (L.) W l l l d . (L.) W i l l d . (Ach.)  scabrosa  Funck  Th. F r . bryontha  (Ach.) N y l .  (Th. F r . ) Th. F r . (Ach.) N y l .  James  281.  P. octomela (Norm.) E r i c h s .  282.  P. panyrga (Ach.) Mass.  283.  P. subobducens N y l .  284.  Physcla caesla  285.  P. c o n s t i p a t a  286.  P. i n t e r m e d i a V a i n .  287.  P. musclgena (Ach.) N y l .  288.  P. s c i a s t r a  289.  Placopsis gelida  290.  Placynthium a s p r a t i l e  291.  P. nigrum (Huds.) S. Gray  292.  P o l y b l a s t i a b r y o p h i l a Lb'nnr.  293.  P. hyperborea Th. F r .  294.  P. t h e l e o d e s (Smrft.) Th. F r .  295.  Protoblastenia r u p e s t r i s  296.  Psoroma hypnorum (Vahl) S. Gray  297.  P y r e n o p s i s p u l v i n a t a (Schaer.) Th. F r .  298.  Racodlum r u p e s t r e P e r s .  299.  R h i z o c a r p o n chionophilum Th. F r .  300.  R. c o p e l a n d i i  301.  R. c r y s t a l l l g e n u m  302.  R. dlsporum (Naeg. ex Hepp) M u l l . A r g .  303.  R. geographicum (L.) DC.  304.  R. jemtlandicum Malme  305.  R. polycarpum (Hepp) Th. F r .  306.  R. r i t t o k e n s e  307.  R i n o d i n a m i l v i n a (Wahlenb. ex Ach.) Th. F r .  308.  R. nlmbosa  ( F r . ) Th. F r .  309.  R. r o s c i d a  (Somm.) A r n .  (Hoffm.) Hampe (Nyl.) N o r r l . & N y l .  (Ach.) Du R i e t z (L.) L i n d s . (Ach.) Henss.  (Scop.) J . S t e i n .  (Korb.) Th. F r . Lynge  ( H e l l b . ) Th. F r .  310.  R.  311.  Solorina  312.  S.  octospora  313.  S.  saccata  314.  S.  spongiosa  315-  Sphaerophorus globosus  316.  Spilonema r e v e r t e n s  317.  Sporastatla  318.  Stereocaulon  319.  S.  320.  S.. r l v u l o r u m Magn.  321.  T h a m n o l i a v e r m i c u l a r l s (Sw.)  322.  Toninla  323.  Umblllcarla  324.  U.  havaasil Llano  325.  U.  hyperborea  326.  U.  proboscldea  (L.)  327.  U.  vellea  Ach.  328.  Verrucaria  329.  Vestergrenopsis  330.  Xanthorla  t u r f a c e a (Wahlenb.) Korb. blspora Nyl. Am.  (L.)  Ach.  (Sm.)  Anzi (Huds.)  Nyl.  testudlnea alplnum  botryosum  Vain.  (Ach.) Mass.  Laur.  Ach.  l o b u l a t a (Smrft.) arctlca  deversa  Ach. Schrad.  Vain.  lsidiata  elegans  Lynge  (Ach.) N y l .  (Ach.)  (L.)  A c h . ex  (Degel.) Dahl  ( L i n k ) Th.  Fr.  Schaer.  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0101177/manifest

Comment

Related Items