UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Two causality correlation techniques applied to jet noise Rackl, Robert 1973

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1973_A1 R32.pdf [ 5.61MB ]
Metadata
JSON: 831-1.0101154.json
JSON-LD: 831-1.0101154-ld.json
RDF/XML (Pretty): 831-1.0101154-rdf.xml
RDF/JSON: 831-1.0101154-rdf.json
Turtle: 831-1.0101154-turtle.txt
N-Triples: 831-1.0101154-rdf-ntriples.txt
Original Record: 831-1.0101154-source.json
Full Text
831-1.0101154-fulltext.txt
Citation
831-1.0101154.ris

Full Text

. ' 1 5 1 ' K f TWO CAUSALITY CORRELATION TECHNIQUES APPLIED TO JET NOISE by ROBERT RACKL D i p l . Ing., Technische Hochschule Graz, A u s t r i a , 1969 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY i n the Department of Mechanical E n g i n e e r i n g We accept t h i s t h e s i s as conforming to the r e q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA A p r i l , 1973 In presenting t h i s thesis i n p a r t i a l f u l f i l m e n t of the requirements for an advanced degree at the University of B r i t i s h Columbia, I agree that the Library s h a l l make i t f r e e l y available for reference and study. I further agree that permission for extensive copying of t h i s thesis for scholarly purposes may be granted by the Head of my Department or by hi s representatives. It i s understood that copying or publication of t h i s thesis for f i n a n c i a l gain s h a l l not be allowed without my written permission. Department of H e ^ a m ( i'd^Tl'naj The University of B r i t i s h Columbia Vancouver 8, Canada Date MrSU^ (O. /<?73 i S u p e r v i s o r : Dr. Thomas E. Siddon ABSTRACT The t h e s i s d e s c r i b e s two techniques f o r i n v e s t i g a t i n g e x p e r i m e n t a l l y the g e n e r a t i o n of noise by t u r b u l e n t j e t s u s i n g a r e c e n t l y developed method of c r o s s c o r r e l a t i o n (Siddon, 7th ICA, Budapest 1971), The work i s motivated by the need t o reduce f u r t h e r the exhaust no i s e of modern j e t t r a n s p o r t a i r c r a f t . The aim i s to p r o v i d e new i n f o r m a t i o n on n o i s e g e n e r a t i o n mechanisms, to s t i m u l a t e f u t u r e t h e o r e t i c a l r e s e a r c h by f i n d i n g the d i s t r i b u t i o n and c h a r a c t e r of n o i s e s o u r c e s , and to p r o v i d e d i a g n o s t i c t o o l s f o r making n o i s e surveys of t u r b u l e n t f l o w s i n g e n e r a l . Experiments were conducted i n an anechoic chamber u s i n g a c o l d model a i r j e t at a Mach number of about 0.32. The f i r s t method used, the image technique, c r o s s c o r r e l a t e s the p r e s s u r e on a s u r f a c e c l o s e to the j e t with the r a d i a t e d sound i n the f a r f i e l d . T h i s enables the deduction of the a c o u s t i c source s t r e n g t h per u n i t s u r f a c e area which i n t u r n g i v e s an i n d i c a t i o n o f the approximate l o c a t i o n of the sound s o u r c e s i n the j e t . The method i s shown to be s e l f c o n s i s t e n t . The technique can be used i n t h e i n v e s t i g a t i o n of s u p e r s o n i c j e t s as w e l l ; t h i s i s where i t s r e a l power may l i e . The second method d i r e c t l y c r o s s c o r r e l a t e s the hydrodynamic. pressure f l u c t u a t i o n i n the t u r b u l e n t j e t flow with the f a r f i e l d sound a l l o w i n g the ded u c t i o n of the l o c a l a c o u s t i c source s t r e n g t h per u n i t volume and the a s s o c i a t e d power s p e c t r a l d e n s i t y . A s p e c i a l l y designed f o i l type sensor i s used to measure the pressure f l u c t u a t i o n s . A d i s t r i b u t i o n of source s t r e n g t h over the j e t f o r r a d i a t i o n at 45° to the j e t a x i s i s o b t a i n e d , and i s . i i not unexpectedly, s i m i l a r to the d i s t r i b u t i o n of mean v e l o c i t y shear. The a x i a l d i s t r i b u t i o n from a " s l i c e " of the j e t r e s u l t s by r a d i a l l y i n t e g r a t i n g the source s t r e n g t h s ; i t i s i n q u a l i t a t i v e agreement with the r e s u l t s of other r e s e a r c h e r s . However, d i f f i c u l t i e s are encountered i n making the method s e l f c o n s i s t e n t , i . e . , the r a d i a t e d sound as p r e d i c t e d by i n t e g r a t i n g over a l l the sources i n the j e t d i f f e r s widely from the d i r e c t l y measured sound. Reasons f o r t h i s d i s c r e p a n c y are given and s o l u t i o n s to overcome i t are proposed. A F o u r i e r transform technique a l l o w s the deduction of the c o n t r i b u t i o n to the spectrum of the r a d i a t e d pressure from a u n i t volume of t u r b u l e n c e . Thus, the s p e c t r a l c h a r a c t e r of the sound sources i n the j e t i s obtained, although the above d i f f i c u l t i e s are r e f l e c t e d here as w e l l . The- number of independent a c o u s t i c sources i n the j e t was estimated by c a l c u l a t i n g the average c o r r e l a t i o n v o l u m e . The number t u r n s out to be of the order of 100 to 200; t h i s l i e s between two widely d i f f e r e n t e s t i m a t e s of about 3 and about 2500 giv e n by other r e s e a r c h e r s . i i i ACKNOWLEDGEMENTS T h i s work was undertaken at the s u g g e s t i o n and under the s u p e r v i s i o n of Dr. T.E. Siddon who guided the r e s e a r c h with p a t i e n c e and on whose experi e n c e the author o f t e n h e a v i l y r e l i e d . Thanks go to summer stu d e n t s N. M i c h a i l o f f f o r h e l p i n g c o n s t r u c t the anechoic f a c i l i t y , and to R. Sanson and K.F. Phoon f o r h e l p i n g with the data a c q u i s i t i o n . Thanks a l s o t o Mr. John Smith of Richmond, BC, f o r f i b r e g l a s s i n g the j e t n o z z l e . T h i s r e s e a r c h was sponsored by the N a t i o n a l Research C o u n c i l of Canada, under Grant No. 67-7106. The development of the p r e s s u r e sensor r e c e i v e d support by the Defense Research Board of Canada under Grant No. 66-9603. i v N O T A T I O N ( S p e c i a l n o t a t i o n s of the appendices are not included) A a x i a l flow e r r o r c o e f f i c i e n t B c r o s s flow e r r o r c o e f f i c i e n t c D ambient speed of sound Cp s t a t i c p r e s s u r e e r r o r c o e f f i c i e n t C P u C p f o r u-component only C probe contamination r a t i o D n o z z l e diameter db d e c i b e l s h d i s t a n c e j e t a x i s to s u r f a c e S L i n t e g r a l l e n g t h s c a l e /j u n i t v e c t o r p e r p e n d i c u l a r to s u r f a c e S m meters mm m i l l i m e t e r s H Mach number n number of i n c o h e r e n t sources i n the j e t P t o t a l s t a t i c pressure ( s u b s c r i p t s have same meaning as below f o r lower case p's) p f l u c t u a t i n g part of s t a t i c pressure p o ambient p r e s s u r e pco) II pseudosound" pressure p ( i ) a c o u s t i c a l l y propagating part of the p r e s s u r e p P m measured pressure Pj t r u e p r e s s u r e p^ s u r f a c e pressure p s t a t i c p r e s s u r e at j e t e x i t V r r = | x - y j ; or r a d i a l d i s t a n c e from j e t c e n t e r l i n e rms r o o t mean square = J4 2 \ 5 s u r f a c e Sj imaging s u r f a c e S U A source s t r e n g t h per u n i t area S y V source s t r e n g t h per u n i t volume t time \. r e t a r d e d time Tjj L i g h t h i l l ' s s t r e s s tensor u component of v e l o c i t y i n a x i a l d i r e c t i o n Uj v e l o c i t y v e c t o r U 0 n o z z l e e x i t v e l o c i t y 6 mean v e l o c i t y V volume of source r e g i o n V. c o r r e l a t i o n volume Vj ef volume of sound producing j e t t u r b u l e n c e v,w components of v e l o c i t y p e r p e n d i c u l a r t o a x i s of probe x x=|x| Xj,x space c o o r d i n a t e (often i n d i c a t i n g the p o i n t of sound d e t e c t i o n i n the f a r f i e l d ) x Q d i s t a n c e from nozzle e x i t to f a r f i e l d microphone y. space c o o r d i n a t e ( u s u a l l y used i n the source r e g i o n 1 and/or as i n t e g r a t i o n v a r i a b l e ) 8.. Kronecker D e l t a •J 6 angle between j e t a x i s and f a r f i e l d d i r e c t i o n v frequency p d e n s i t y po ambient d e n s i t y T time delay t r e t a r d e d time delay v i T.. v i s c o u s s t r e s s t e n s o r •J £ s p a c e s e p a r a t i o n v e c t o r (£j,£ 2,£ 3) V 2 a 2 / a y 2 o r d % x 2 • a d o t o n a q u a n t i t y i n d i c a t e s d e r i v a t i o n w i t h r e s p e c t t o r e a l t i m e a n o v e r b a r d e n o t e s t i m e a v e r a g i n g [ . . . ] r e p l a c e i n t h e e x p r e s s i o n w i t h i n t h e b r a c k e t s t b y t = t -r / c Q , o r T b y f = T + r / c o f w h i c h e v e r i s a p p r o p r i a t e . The j e t S t r o u h a l number i s d e f i n e d by i/D/U o v i i TABLE OF CONTENTS I. Foreword and H i s t o r i c a l Background ..... 1 I I . Present Trends and I n t r o d u c t i o n to S e c t i o n s I I I and IV ..10 I I I . Image Technique .........16 3.1 Imaging System ..16 3.2 Cross C o r r e l a t i o n Formalism ......19 3.3 Experiments 21 3.4 N o n d i m e n s i o n a l i z a t i o n 23 3.5 R e s u l t s .-24 3.6 Check 29 IV. C a u s a l i t y C o r r e l a t i o n Technique ........31 4.1 I n t r o d u c t i o n .............31 4.2 Theory ...32 4.2.1 F l u i d D i l a t a t i o n s 32 4.2.2 C a u s a l i t y C o r r e l a t i o n s ........... 35 4.2.3 L o c a l Source S t r e n g t h and Spectrum ................. 37 4.2.4 C o r r e l a t i o n Volume 38 4.3 Development of the Pressure Sensor ......42 4.3.1 L i m i t a t i o n s on C o n v e n t i o n a l C y l i n d r i c a l Probes ........... 42 4.3.2 A i r f o i l Probe 44 4.3.3 S t a t i c P r e s s u r e C a l i b r a t i o n ......47 4.3.4 The Complete Pressure Sensor .....50 4.4 Experiments ..............51 4.4.1 A i r Supply, S e t t l i n g Chamber, and Nozzle ..51 4.4.2 The Far F i e l d Microphone 51 4.4.3 S i g n a l P r o c e s s i n g .....52 4.5 Data Reduction ..........53 4.5.1 Source Strength D i s t r i b u t i o n .....53 4.5.2 Check, C l o s u r e D i f f i c u l t y .55 4.5.3 S p e c t r a 58 4.5.4 Number of Incoherent Sources 60 V. Summary C o n c l u s i o n s , Recommendations ...63 References .66 App. A: Mathematical D e t a i l s Concerning Eq.(4.7) Through Eq. (4.11) ...71 v i i i App. B: N o n d i m e n s i o n a l i z a t i o n of C o r r e l a t i o n F u n c t i o n s . . . 7 4 App. C: P r e d i c t i o n of the Shape of the Cross C o r r e l a t i o n F u n c t i o n 77 App. D: Probe Contamination R a t i o 83 F i g u r e s . . 90 ix FIGURES F i g . 3 - 1 Image geometry F i g . 3 - 2 J e t n o i s e spectrum with and without a d j a c e n t s u r f a c e F i g . 3 - 3 Mounting of 1/4-inch microphone i n sheet of 1/2-in c h p l e x i g l a s s F i g . 3 - 4 T y p i c a l c r o s s c o r r e l a t i o n between s u r f a c e pressure and r a d i a t e d p r e s s u r e ; a l s o showing p r e c u r s o r F i g . 3 - 5 R e l a t i o n s h i p between s u r f a c e pressure and e x i t v e l o c i t y F i g . 3 - 6 D i s t r i b u t i o n of source s t r e n g t h over s u r f a c e ; r e f l e c t i o n path. 0 F i g . 3 - 7 Equal source s t r e n g t h contours f o r 0=90° F i g . 3 - 8 Equal source s t r e n g t h contours f o r 0=60° F i g . 3 - 9 Zone of i n f l u e n c e F i g . 3 - 10 3 t y p i c a l p s p (r) F i g . 3 - 11 D i s t r i b u t i o n of root mean squared s u r f a c e pressure F i g . 3 - 12 " S l i c e w i s e " i n t e g r a t e d source s t r e n g t h F i g . 4 - 1 Experimental setup of C a u s a l i t y C o r r e l a t i o n Technique F i g . 4 - 2 Geometry F i g . 4 - 3 D e f i n i t i o n of c o r r e l a t i o n l e n g t h F i g . 4 - 4 C l a s s i c a l c y l i n d r i c a l probe c o n f i g u r a t i o n F i g . 4 - 5 C o r r e l a t i o n f u n c t i o n contaminated by d i p o l e n c i s e F i g . i t - 6 P r i n c i p l e of a r r a n g i n g f o i l probe i n the flow F i g . it- 7 L o c a t i o n of pressure sensing holes on a i r f o i l F i g . 4 - 8 Press u r e d i s t r i b u t i o n on subsonic a i r f o i l F i g . 4 - 9 Contaminated and uncontaminated c o r r e l a t i o n f u n c t i o n s and t h e i r F o u r i e r transforms F i g . 4 - 10 V e l o c i t y v e c t o r s on a i r f o i l F i g . 4 - 11 Probe shapes t r i e d out but d i s c a r d e d F i g . 4 - 12 The f o i l type pressure sensor F i g . 4 - 13 S t a t i c p r e s s u r e c a l i b r a t i o n s F i g . 4 - 14 P r e s s u r e d i s t r i b u t i o n over f o i l with dip near t r a i l i n g edge F i g . 4 - 15 F o i l type sensor mounted on p r e a m p l i f i e r F i g . 4 - 16 Frequency response of f o i l type sensor F i g . 4 - 17 Schematic of experimental setup F i g . 4 - 18 V a r i a t i o n of pressure f l u c t u a t i o n with d i s t a n c e from j e t F i g . 4 - 19 S i g n a l flow F i g . 4 - 20 D i s t r i b u t i o n of source s t r e n g t h i n a subsonic j e t f o r 45° to the j e t a x i s F i g . 4 - 21 " S l i c e w i s e " d i s t r i b u t i o n of source stren.gth; comparison with other r e s u l t s F i g . 4 - 22a Some t y p i c a l c r o s s c o r r e l a t i o n f u n c t i o n s p<o)p F i g . 4 - 22b Some t y p i c a l c r o s s s p e c t r a ( F o u r i e r transforms of f u n c t i o n s shown i n Fig.4-22a) F i g . 4 - 23 Peak f r e q u e n c i e s versus downstream p o s i t i o n F i g . 4 - 24 Cross c o r r e l a t i o n p<o>p and f i t t e d to i t the p r e d i c t e d f u n c t i o n F i g . 4 - 25 Sears* f u n c t i o n F i g . 4 - 26 E f f e c t i v e c h o r d l e n g t h on c y l i n d r i c a l pressure probe F i g . 4 - 27 S p e c t r a l d e n s i t y of the "pseudosound" p<o) at 4D X Fig.4-28 The d i r e c t l y measured and the i n t e g r a t e d spectrum at 45° i n the f a r f i e l d Fig.B-1 Image geometry to s c a l e 1 I. FOREWORD AND HISTORICAL BACKGROUND In t h i s s e c t i o n , a b r i e f review of aerodynamic noise r e s e a r c h with emphasis on subsonic j e t n o i s e w i l l l e a d up to the present work. S e c t i o n I I w i l l say more on why the present work was undertaken and e s t a b l i s h i t s proper p l a c e i n the o v e r a l l r e s e a r c h e f f o r t . As with most d i s c i p l i n e s of s c i e n c e , theory and experiments go hand i n hand. Here, f o r reasons of c l a r i t y i n the h i s t o r i c a l development, they are sep a r a t e d . I t was p r i m a r i l y the advent of new, very n o i s y p r o p u l s i o n methods at the end of World War I I - the j e t engine and the r o c k e t - t h a t s t i m u l a t e d the development of a new d i s c i p l i n e , the study of sound generated a e r o d y n a m i c a l l y . In h i s book " A c o u s t i c s of a Nonhomogeneous Moving Medium," B l o k h i n t s e v (1946) gave a thorough account of the i n t e r r e l a t i o n s h i p between a c o u s t i c and aerodynamic motions of a f l u i d . References to t h i s work are r a r e i n the E n g l i s h l i t e r a t u r e , probably because i t was t r a n s l a t e d i n t o E n g l i s h only 10 years a f t e r i t was f i r s t p u b l i s h e d i n Russian. L i g h t h i l l (1952) combined the b a s i c equations of f l u i d dynamics ( c o n s e r v a t i o n of mass and momentum) i n such a way as t o show how to formulate an inhomogeneous form of the wave equation f o r the case o f f l u i d s d i s t u r b e d by l a r g e r than a c o u s t i c p e r t u r b a t i o n s : where: p = d e n s i t y , t=time, c c=speed of sound, X j = s p a c e v a r i a b l e , T-,j = a tensor r e p r e s e n t i n g e x t e r n a l l y a p p l i e d s t r e s s e s ( e x t e r n a l from the p o i n t of view of the a c o u s t i c i a n ) . The s o l u t i o n to Eg. (1.1) i s i n the form of r e t a r d e d p o t e n t i a l s [ s e e Eq. (1 . 2 ) ] . L i g h t h i l l h i m s e l f and then many other workers a p p l i e d , enlarged and s i m p l i f i e d the theory: L i g h t h i l l found t h a t the sound i n t e n s i t y from a f r e e aerodynamic flow should vary with the e i g h t h power of some c h a r a c t e r i s t i c v e l o c i t y and the square of some c h a r a c t e r i s t i c dimension (U 8D 2-Law). He co n s i d e r e d t u r b u l e n c e as a source of noise and suggested a model f o r j e t noise i n terms of convected a c o u s t i c guadrupoles, r e p l a c i n g the s t r e s s e s i n the f l u i d , i n an ambient f l u i d a t r e s t ( L i g h t h i l l 1954). Proudman (1952) estimated the p r o p e r t i e s of no i s e generated by i s o t r o p i c t u r b u l e n c e , mainly assuming Gaussian models f o r the s t o c h a s t i c processes. T h i s i s , however, an o v e r s i m p l i f i e d model f o r sub s o n i c j e t n o i s e because the tu r b u l e n c e i n the mixing r e g i o n , f a r from being i s o t r o p i c (see f o r i n s t a n c e Ribner 1965 or Fuchs 1972), i s c h a r a c t e r i z e d by a l a r g e mean v e l o c i t y g r a d i e n t . Proudman was a l s o the f i r s t t o show t h a t the f a r f i e l d noise from any flow can be viewed as being generated by the components of the v e l o c i t y f l u c t u a t i o n s i n the d i r e c t i o n of o b s e r v a t i o n . C u r i e (1955) i n c l u d e d the e f f e c t of s u r f a c e s i n the flow; such s u r f a c e s could be r e a l or j u s t 3 h y p o t h e t i c a l (e.g., so as to exclude an u n i n t e r e s t i n g or e x c e s s i v e l y c o m p l i c a t e d r e g i o n from the f i e l d ) . He obtained the most g e n e r a l s o l u t i o n of Eg. ( 1 . 1 ) : d P u n dS(y) I a r r l d S ( y ) l d2 r r i d V ( y + ——<r 1 — r - J T.. — - (1.2) where: x p o i n t s to the p o i n t of o b s e r v a t i o n , po=ambient d e n s i t y , S=surface, =vector p e r p e n d i c u l a r to S a t y, y=space v a r i a b l e i n the source r e g i o n , r=|x-2l# U j = v e l o c i t y , p=pressure, T j j =viscous s t r e s s t e n s o r , V=volume of sound ge n e r a t i n g flow, [...] means r e p l a c e time t by the e a r l i e r time t - r / c c . Many aerodynamic sound problems can be s o l v e d approximately by s t r a i g h t f o r w a r d a p p l i c a t i o n of Eg. (1.2) i f s i m p l i f y i n g assumptions are a d m i s s i b l e . Such may be: the r e c e i v e r i s many t y p i c a l wavelengths away from the source; the r e c e i v e r i s many t y p i c a l source dimensions away; the motions a t the source are "coherent", i . e . , the p a r t i c l e s move i n unison over a c e r t a i n r e g i o n ; heat conduction and v i s c o s i t y are n e g l i g i b l e ; the flow i s qu a s i i n c o m p r e s s i b l e . In the g e n e r a l case, however, Eq. (1.2) i s an i n t e g r a l e q u a t i o n which has not been s o l v e d I n c l o s e d form. A d d i t i o n a l d i f f i c u l t i e s a r i s e from the i n d e t e r m i n i s t i c , random c h a r a c t e r of t u r b u l e n c e . Powell (1964) suggested a d i f f e r e n t model f o r aerodynamic n o i s e g e n e r a t i o n : A vortex flow and an a c o u s t i c d i p o l e have a s i m i l a r s t r e a m l i n e p a t t e r n . He r e p l a c e s the flow f i e l d by an e q u i v a l e n t d i p o l e f i e l d . Although t h i s theory seems a t t r a c t i v e i n view of T a y l o r ' s i n t e r a c t i n g v o r t i c e s model of t u r b u l e n t t r a n s f e r mechanisms (Tennekes 5 Lumley 1972, s e c t i o n 3.3), i t has not had a s i g n i f i c a n t impact on j e t n o i s e r e s e a r c h . Perhaps the s i m p l e s t concept of flow noise was developed by Ribner (1962), a t f i r s t i n 1958, e l a b o r a t i n g on i d e a s a l s o b y a r r i v e d at i n d e p e n d e n t l y Heecham & Ford (1958): The flow f i e l d i s regarded as an a r r a y of d i l a t i n g and compressing eddies bumping i n t o each other. The pressure i s separated i n t o three p a r t s , the f i r s t r e p r e s e n t i n g the ambient p r e s s u r e independent of time, the second the hydrodynamic pressure f l u c t u a t i o n (or the "pseudosound"), the t h i r d the pressure d i s t u r b a n c e due to a c o u s t i c waves t r a v e l i n g through the f l u i d . Ribner shows t h a t : where p i s the f a r f i e l d r a d i a t e d sound and p<°> i s the second time d e r i v a t i v e of the pseudosound pre s s u r e . Although i t may not be e v i d e n t a t f i r s t s i g h t , t h i s theory of "Sound from F l u i d D i l a t a t i o n s " i s c o n s i s t e n t with the guadrupole concept and has been acknowledged as such (Appendix B of L i g h t h i l l 1963). A monopole type of source n e c e s s a r i l y changes i t s volume when r a d i a t i n g sound, a guadrupole does not. In a f r e e t u r b u l e n t flow the net change i n volume of a l l monopoles combined i s zero, the 5 net radia'tion i s not. Thus, f o u r n e i g h b o u r i n g monopoles can be thought o f as making up a quadrupole. At moderate subsonic Kach numbers the pseudosound i s very w e l l approximated by the s t a t i c p r e s s u r e f l u c t u a t i o n s w i t h i n the t u r b u l e n c e . I f the l a t t e r c o u l d be measured. Eg. (1.3) c o u l d be e v a l u a t e d . S e c t i o n IV of t h i s paper d e s c r i b e s such an attempt. L i g h t h i l l ' s U 8D 2-Law has been e x p e r i m e n t a l l y confirmed f o r t u r b u l e n t j e t s over a wide range of subsonic Hach numbers. Other s e m i - e m p i r i c a l laws d e a l i n g w i t h j e t n o i s e (Ribner 1958; L i l l e y 1958; Powell 1958) were d e r i v e d using the s e l f p r e s e r v a t i o n p r o p e r t i e s of the t u r b u l e n c e i n the mixing r e g i o n (the f i r s t 4 to 5 diameters downstream of the nozzle) and of the f u l l y developed flow f u r t h e r downstream, (The extent of the t r a n s i t i o n between these two r e g i o n s i s not yet c l e a r l y d e f i n e d ) . Thus i t was p r e d i c t e d t h a t the power s p e c t r a l d e n s i t y of the f a r f i e l d p r e s s u r e should f i r s t i n c r e a s e with the square and then decrease with the i n v e r s e square of frequency; measured s p e c t r a show a s i m i l a r shape and l o c a t e the peak S t r o u h a l number (based on e x i t v e l o c i t y , e x i t diameter and frequency) between 0.2 and 0.3 ( M o l l o - C h r i s t e n s e n , K o l p i n & K a r t u c e l l i 1963, s e c t i o n 5 ) , depending on the d i r e c t i o n of r a d i a t i o n . With r e s p e c t to the s p a t i a l d i s t r i b u t i o n of sound sources i t was p r e d i c t e d t h a t the a c o u s t i c source s t r e n g t h of " s l i c e s " of the j e t remains approximately c o n s t a n t i n the mixing r e g i o n and f a l l s o f f very r a p i d l y with the i n v e r s e seventh power of a x i a l d i s t a n c e i n the f u l l y developed r e g i o n . Although there i s some su p p o r t i n g evidence, (see d i s c u s s i o n i n s e c t i o n IV) c o n c l u s i v e experimental c o n f i r m a t i o n i s l a c k i n g . The p r e s e n t r e s e a r c h not only attempts 6 to make t h i s c o n f i r m a t i o n but w i l l go one step f u r t h e r and show a way to measure the l o c a l a c o u s t i c source s t r e n g t h d i s t r i b u t i o n over the j e t volume. In the e x p e r i m e n t a l f i e l d 1 e f f o r t s c o n c e n t r a t e d f i r s t on s u r v e y i n g the r a d i a t e d sound f i e l d from t u r b u l e n t j e t s . I t was found t h a t lower frequency sound i s r a d i a t e d more or l e s s o m n i d i r e c t i o n a l l y and t h a t higher f r e q u e n c i e s f o l l o w a heart shaped p a t t e r n with the d i p on the downstream a x i s - the higher the frequency the more pronounced the d i p of the h e a r t . P a r a l l e l to t h a t , the p r o p e r t i e s of the j e t t u r b u l e n c e were s t u d i e d i n d e t a i l , such as mean v e l o c i t i e s , t u r b u l e n c e i n t e n s i t i e s , and c o r r e l a t i o n l e n g t h s , with the aim of p r e d i c t i n g the n o i s e r a d i a t i o n from t h i s data. The p r o p e r t i e s of s e l f p r e s e r v a t i o n mentioned above were d i s c o v e r e d , but a q u a n t i t a t i v e n o i s e p r e d i c t i o n was not p o s s i b l e to an a c c e p t a b l e degree of c o n f i d e n c e . Although t h e o r e t i c a l formalisms r e l a t i n g the t u r b u l e n c e p r o p e r t i e s to the r a d i a t e d sound abound, very few experimenters have t r i e d to v e r i f y those t h e o r i e s . Chu's (1966) work was p i o n e e r i n g . Using the t h i r d i n t e g r a l of Eq. (1.2) he was able to convert i t i n t o a form such t h a t the mean squared r a d i a t e d p r e s s u r e i n the f a r f i e l d depended on the f o u r t h d e r i v a t i v e of a v e l o c i t y space-time c o r r e l a t i o n . He measured t h i s c o r r e l a t i o n a t * A l i s t of r e f e r e n c e s of e a r l y experimental and t h e o r e t i c a l work can be found i n L i g h t h i l l (1962) or Ribner (1964). The l i s t of r e f e r e n c e s of the present paper attempts to i n c l u d e many of the experimental papers p u b l i s h e d s i n c e 1963 i n the open E n g l i s h l i t e r a t u r e ; the c i t a t i o n s are preceeded by a M * " . A more rec e n t l i s t of r e f e r e n c e s of t h e o r e t i c a l • work can be found i n Doak (1972). 7 a p o i n t 4 diameters downstream f o r d i f f e r e n t a n g l e s of sound r a d i a t i o n and estimated the o v e r a l l mean squared a c o u s t i c p r e s s u r e ; the agreement was reasonable but not t o t a l l y s a t i s f y i n g f o r two reasons: 1) I t would have been p r o h i b i t i v e l y time consuming to survey the complete j e t (modern m u l t i channel c o r r e l a t o r s were not a v a i l a b l e a t the t i m e ) ; 2) t a k i n g the f o u r t h d e r i v a t i v e of an e x p e r i m e n t a l l y o b t a i n e d f u n c t i o n was s u b j e c t to a c o n s i d e r a b l e degree of u n c e r t a i n t y , as the r e s u l t s v a r i e d with the method of curve f i t t i n g used. More r e c e n t l y , Siddon has i n t r o d u c e d a means f o r t y i n g t o g e t h e r the f a r f i e l d and t u r b u l e n c e p r o p e r t i e s by implementing the " c a u s a l i t y c o r r e l a t i o n t e c h n i q u e " (Siddon 1970, 1971b). Any s o u r c e f l u c t u a t i o n appearing i n Eq. (1.2) or (1.3) can be viewed as the b a s i c sound generator. I f i t can be measured and the r e s u l t i n g sound i n the f a r f i e l d i s monitored s i m u l t a n e o u s l y , the two s i g n a l s may be c r o s s c o r r e l a t e d ; i n t h i s manner, the a c o u s t i c s t r e n g t h of the sources can be deduced q u a n t i t a t i v e l y . The word " c a u s a l i t y " i s used because the process of the cause (the source f l u c t u a t i o n ) g i v i n g r i s e to the e f f e c t (the r a d i a t e d sound) p r o v i d e s the b a s i s f o r the measurement. The technique has been a p p l i e d to the a c o u s t i c r a d i a t i o n from s m a l l a i r f o i l s embedded i n a flow (Clarke & Ribner 1969; Siddon 1970, 1973a) and to j e t 9 n o i s e by Lee (1971) and the present work (see f u r t h e r d i s c u s s i o n i n s e c t i o n I I ) . Although the mathematical t h e o r i e s have not been a b l e to g i v e c l e a r c u t guidance f o r d e s i g n i n g q u i e t j e t engines, s u b s t a n t i a l n o i s e r e d u c t i o n s have been achi e v e d , mainly by a p p l y i n g the U 8D 2-Law. Reductions of the j e t e x i t v e l o c i t y with 8 c o r r e s p o n d i n g i n c r e a s e of the n o z z l e diameter and mass flow l e d to the e v o l u t i o n of high bypass r a t i o fan engines. S i g n i f i c a n t n o i s e r e d u c t i o n s with i n c r e a s e d e f f i c i e n c y of performance r e s u l t e d . A very l a r g e number of p a s s i v e n o i s e s u p p r e s s i o n d e v i c e s were proposed and t r i e d out. In many cases the i n s e r t i o n of a suppressor decreased the nois e from the j e t t u r b u l e n c e but not the o v e r a l l n o i s e . The i n t e r a c t i o n of the flow with the d e v i c e generated a d d i t i o n a l d i p o l e n o i s e such that minimal net n o i s e r e d u c t i o n r e s u l t e d . Only two suppressor c o n f i g u r a t i o n s were found to be a c c e p t a b l e , i n terms of t h e i r a c o u s t i c b e n e f i t / aerodynamic p e n a l t y r a t i o . These are the c o r r u g a t e d n o z z l e and the multitube n o z z l e . Even these, however, produce l e s s than the expected noise r e d u c t i o n , i f one d e f i n e s n o i s e i n terms of s u b j e c t i v e l y weighted i n d i c e s such as PNdb or dbA. They are designed with the n o t i o n of r e d u c i n g the i n t e n s i t y of t u r b u l e n c e or the amount of v e l o c i t y shear, i . e . , to make the mixing process smoother, mainly by e n t r a i n i n g a i r not onl y on the o u t s i d e but a l s o on the i n s i d e thereby breaking up the mixing r e g i o n . T h e i r exact f u n c t i o n i n g i s s t i l l s u b j e c t to s p e c u l a t i o n . I t i s f e l t t h a t r e f r a c t i v e s h i e l d i n g may play a s i g n i f i c a n t r o l e i n t h e i r a c o u s t i c a l behaviour as w e l l . The two methods presented i n t h i s paper may be used as t o o l s both t o f u r t h e r our understanding of the n o i s e g e n e r a t i o n process and as a i d s i n the design and improvement of such n o i s e s u p p r e s s i o n d e v i c e s . 9 Although the n o i s e from commercial j e t t r a n s p o r t a i r c r a f t has been reduced by s l i g h t l y more than 2 0 PNdb i n the past two decades people c o n t i n u e t o be annoyed i n the v i c i n i t y of a i r p o r t s as the number of f l y o v e r s i n c r e a s e s . We can expect t h i s i n c r e a s e to c o n t i n u e and t h e r e f o r e cannot s t o p t r y i n g to reduce j e t n o i s e . 10 I I . PRESENT TRENDS AND INTRODUCTION TO SECTIONS I I I AND IV. Present t h e o r e t i c a l e f f o r t s seem to be guided by the f i n d i n g s of the Aerodynamic Noise Symposium at Loughborough i n September 1970 ( F i s h e r & Lowson 1971; Lowson 1971). E f f e c t s of c o n v e c t i o n of the s o u r c e s on the r a d i a t e d sound f i e l d are adequately understood and can be c a s t i n t o mathematical form. E f f e c t s of r e f r a c t i o n are more d i f f i c u l t to d e a l with: We have to t r y to understand the mechanisms of sound g e n e r a t i o n and p r o p a g a t i o n i n and through a shear l a y e r . The reader i s r e f e r r e d to Doak*s e x c e l l e n t review a r t i c l e (1972) i n which new approaches are suggested: He i n f e r s t h a t L i g h t h i l l ' s theory was a b i g step forward, but "... was s p e c i f i c a l l y designed to d e l i b e r a t e l y a v o i d a l l q u e s t i o n s of the i n t e r d e p e n d e n c i e s among a c o u s t i c , t u r b u l e n t and thermal types of motion ...".Recent t h e o r i e s by Crow, Doak and L i l l e y (among others) are d i s c u s s e d t h a t go back to the o r i g i n s of a c o u s t i c s and aerodynamics, i . e . , the works of Stokes, K i r c h h o f f and R a y l e i g h . In Doak's o p i n i o n , a combination of these t h e o r i e s w i l l take us another b i g s t e p forward. The Loughborough Symposium a l s o concluded "... i t appears t h a t the e x i s t e n c e of a s i g n i f i c a n t degree of order i n j e t t u r b u l e n c e i s confirmed ..." ( F i s h e r & Lowson 1971, p. 594). T h i s statement was based on e x p e r i m e n t a l evidence presented at the Meeting by Lau, F i s h e r & Fuchs, and by Crow & Champagne. However, o p i n i o n s s t i l l d i v e r g e widely on t h i s s u b j e c t . The s u p p o r t e r s of 11 the o r d e r l y s t r u c t u r e h y p othesis are making a s t r o n g case f o r t h e i r view by p u b l i s h i n g s u b s t a n t i a l amounts of e x i s t e n t i a l evidence (Crow C Champagne 1971; Davis 1971; Lau, F i s h e r S Fuchs 1972; Fuchs 1972; Fuchs S Michalke 1971). V i s u a l i z a t i o n techniques and space c o r r e l a t i o n s indeed seem t o i n d i c a t e that coherent l a r g e s c a l e s t r u c t u r e s convect f o r many diameters downstream i n the j e t before l o s i n g t h e i r i d e n t i t i e s . T h i s coherence i s e a s i l y r e c o g n i z a b l e a t s m a l l Reynolds numbers ( a f t e r t r a n s i t i o n from the laminar shear l a y e r ) ; i t i s not so well r e c o g n i z a b l e as the Reynolds number i n c r e a s e s but shows a l s o f o r Reynolds numbers over 2*10 5 which i s of the o r d e r of the Reynolds number i n the experiments d e s c r i b e d i n t h i s paper. By analogy, one may c o n s i d e r the t u r b u l e n c e s t r u c t u r e i n a wake behind a b l u f f c y l i n d e r : At moderate Reynolds numbers the Karmann Vortex S t r e e t develops, r e s u l t i n g i n a s t r o n g p e r i o d i c c o n t r i b u t i o n to the spectrum. When the Reynolds number i s i n c r e a s e d t h i s p e r i o d i c i t y gets b u r i e d i n a broad band spectrum, c h a r a c t e r i s t i c of a wide range of t u r b u l e n c e s c a l e s . The t u r b u l e n c e i n a j e t may behave s i m i l a r l y ; the shape of the p r e s s u r e spectrum (Fig.4-27) does not show a d i s c r e t e p e r i o d i c component, but a b r o a d l y peaked energy d i s t r i b u t i o n i s e v i d e n t . Even though . t h e r e may e x i s t an o r d e r l y s t r u c t u r e i n j e t t u r b u l e n c e i t i s not n e c e s s a r i l y of d i r e c t consequence to the r a d i a t e d n o i s e . I t i s w e l l e s t a b l i s h e d t h a t i t i s the r a t e of decay of the c o n v e c t i n g v e l o c i t y s t r u c t u r e (whether t u r b u l e n t or p e r i o d i c ) t h a t c o n t r o l s the n o i s e e m i s s i o n . In f a c t , the r a d i a t i o n depends on the second time d e r i v a t i v e of the source f l u c t u a t i o n q u a n t i t y and i s thereby biased to h i g h e r frequency 12 content than the t u r b u l e n c e proper. In Lee's (1971) and the present work, f o r low speed j e t s , not only was no evidence d i s c o v e r e d of an o r d e r l y s t r u c t u r e p e r t i n e n t to the j e t n o i s e r a d i a t i o n , but the r e s u l t s p o i n t to a c o n t r a r y h y p o t h e s i s of a l a r g e number of i n d e p e n d e n t l y r a d i a t i n g s o u r c e s . A "Simple P r e s s u r e Source Model of J e t Noise" has been put forward by Scharton 5 White (1972). While the i d e a of more or l e s s independent sources i s r e t a i n e d the paper a l s o draws some support from the o r d e r l y s t r u c t u r e h y p o t h e s i s by p o s t u l a t i n g a s m a l l number of l a r g e s c a l e p r e s s u r e sources (of the order of 3). These are presumed t o develop c l o s e to the n o z z l e e x i t , then f l u c t u a t e and convect downstream. The present author f e e l s that the r e s u l t i n g e m p i r i c a l model may be s u i t e d f o r p r e d i c t i o n of the o v e r a l l j e t n o i s e r a d i a t i o n , but t h a t i t does not p r o v i d e d e t a i l e d i n f o r m a t i o n on the n o i s e generating mechanisms. A more thorough c r i t i q u e can be found i n s e c t i o n IV. The c a u s a l i t y c o r r e l a t i o n technique as implemented by Lee (1971, a l s o Lee S Ribner 1972) uses the v e l o c i t y f l u c t u a t i o n s as the b a s i c e m i t t e r of sound. The v e l o c i t y was measured with a hot f i l m anemometer whose frequency dependent phase response was suspected to be q u i t e d i f f e r e n t from t h a t of the microphone measuring the sound i n the f a r f i e l d . I t was t h e r e f o r e necessary to perform the c r o s s c o r r e l a t i o n s i n narrow frequency bands i n s t e a d of i n a broad band c o v e r i n g a l l f r e q u e n c i e s of i n t e r e s t , thus i n c r e a s i n g s u b s t a n t i a l l y the amount of experimental work. C i t i n g from the a b s t r a c t of Lee S Ribner (1972): (Their work) "... y i e l d e d the r e l a t i v e i n t e n s i t y and spectrum of the n o i s e o r i g i n a t i n g from u n i t volume of a j e t (35 l o c a t i o n s ) and r e c e i v e d 13 at a f a r f i e l d p o i n t (r=96D, Q =40°); t h i s i n t u r n l e d to the r e l a t i v e e m ission of s u c c e s s i v e " s l i c e s " of a j e t versus a x i a l d i s t a n c e x over the measurement range (1D<x<7D). Q u a l i t a t i v e agreement was found with Ribner's x°-Law, and the s p e c t r a l peaks f o r each s l i c e were l o c a t e d i n frequency e s s e n t i a l l y as p r e d i c t e d by Powell (1959)." I t was a l s o r e p o r t e d that the t o t a l e f f e c t i v e number of u n c o r r e l a t e d n o i s e - p r o d u c i n g eddies i s on the order of 2500, i n sharp c o n t r a s t to the number 3 r e p o r t e d by Scharton 5 White (1972). In s e c t i o n IV of the present paper the number of i n c o h e r e n t s o u r c e s i s estimated to be on the o r d e r of 100 to 200. There, i t i s a l s o d i s c u s s e d how extraneous a c o u s t i c or e l e c t r o n i c n o i s e and bandwidth can s u b s t a n t i a l l y i n c r e a s e or decrease the apparent v a l u e of t h i s number, i n t r o d u c i n g a source o f ambiguity. L i t t l e r e c e n t p r o g r e s s has been made i n the area of n o i s e s u p p r e s s i o n d e v i c e s . Arndt (Barefoot & Arndt 1972) i s experimenting with s c r e e n s p e r t u r b i n g the j e t and Scharton 6 White (1972) have t e s t e d a suppressor c o n s i s t i n g of f i v e s taggered c o n c e n t r i c tubes f i l l i n g the p o t e n t i a l core of the j e t . In both cases some n o i s e r e d u c t i o n i s r e p o r t e d , however, the a s s o c i a t e d performance penalty (e.g. t h r u s t r e d u c t i o n ) i s not w e l l documented, and indeed i s expected to be r a t h e r h i g h . The t e c h n i q u e s presented here do not have as t h e i r o b j e c t i v e n o i s e r e d u c t i o n as such. Rather, the aim i s on the one hand to i n c r e a s e the knowledge of n o i s e g e n e r a t i n g mechanisms i n t u r b u l e n t flows and maybe provide some s t i m u l a t i o n f o r f u t u r e t h e o r e t i c a l work; on the other hand the techniques developed can be used as d i a g n o s t i c t o o l s i n s u r v e y i n g more complicated flow n o i s e phenomena and i n d e s i g n i n g and o p t i m i z i n g noise 14 s u p p r e s s o r s . The image technique d e s c r i b e d i n s e c t i o n I I I c r o s s c o r r e l a t e s the pressure on a s u r f a c e c l o s e t o the j e t with the f a r f i e l d n oise a l l o w i n g the deduction of the s u r f a c e source s t r e n g t h d i s t r i b u t i o n . T h i s i n t u r n g i v e s an i n d i c a t i o n of the approximate l o c a t i o n of the a c o u s t i c a l sources i n the j e t r a t l e a s t i n an a x i a l sense. The advantage of having the flow u n d i s t u r b e d by a probe i s traded o f f a g a i n s t a l o s s of s p a t i a l r e s o l u t i o n . The technique i s shown to be s e l f c o n s i s t e n t and may have a p p l i c a t i o n s as a quick and easy to use t o o l i n the design of n o i s e s u p p r e s s o r s . A l s o , i t i s not l i m i t e d to c o l d , subsonic f l o w s and can be used i n the i n v e s t i g a t i o n of hot and/or s u p e r s o n i c flows where i t i s q u i t e d i f f i c u l t i f not i m p o s s i b l e to i n s e r t a probe. The c a u s a l i t y c o r r e l a t i o n technique d e s c r i b e d i n s e c t i o n IV forms the main body of t h i s t h e s i s . I t complements and extends Lee's (1971) work. Instead of the t u r b u l e n t v e l o c i t y f l u c t u a t i o n s the f l u c t u a t i n g t u r b u l e n t p r e s s u r e s are taken as the b a s i c noise e m i t t e r s . P r e s s u r e , being a n o n d i r e c t i o n a l s c a l a r q u a n t i t y , i s i n p r i n c i p l e more a t t r a c t i v e to the experimenter than v e l o c i t y . D i f f i c u l t i e s a r i s e when one t r i e s to measure t u r b u l e n t pressure f l u c t u a t i o n s as the l o c a l v e l o c i t y f i e l d produces a d d i t i o n a l p r e s s u r e s at the probe, thus c r e a t i n q a p r e s s u r e e r r o r . The development of a unique a i r f o i l type pressure sensor as a means of a v o i d i n g those e r r o r s i s r e p o r t e d . The sensor i s then used to perform the pressure c a u s a l i t y c o r r e l a t i o n s by scanning the j e t r a d i a l l y at d i f f e r e n t downstream l o c a t i o n s . Thus the l o c a l source s t r e n g t h per u n i t volume and the a s s o c i a t e d power s p e c t r a l 15 d e n s i t y a r e d e d u c e d . T h e c o r r e l a t i o n s a r e d o n e i n b r o a d b a n d a s b o t h t r a n s d u c e r s a r e c o n d e n s e r m i c r o p h o n e s w i t h m a t c h e d p h a s e c h a r a c t e r i s t i c s . D i f f i c u l t i e s a r e e n c o u n t e r e d i n m a k i n g t h e t e c h n i q u e s e l f c o n s i s t e n t , a l t h o u g h r e s u l t s a g r e e q u a l i t a t i v e l y w i t h t h e r e s u l t s o f L e e ( 1 9 7 1 ) a n d o t h e r w o r k e r s . T h e t h e s i s h o p e s t o e s t a b l i s h t h a t t h e t w o m e t h o d s p r e s e n t e d h a v e e x p e r i m e n t a l a d v a n t a g e s a l l u d e d t o a b o v e a n d a r e w o r t h w h i l e t o b e f u r t h e r d e v e l o p e d . 16 I I I . IMAGE TECHNIQUE T h i s technique was born from a d e s i r e to a v o i d i n s e r t i n g probes of any kind i n t o the flow. I n s t e a d , a r i g i d plane s u r f a c e i s p l a c e d i n the near f i e l d of the flow. I t w i l l be shown that the sound r e f l e c t e d from the s u r f a c e ' i s e x a c t l y e q u i v a l e n t to the n o i s e r a d i a t i o n from an i d e n t i c a l "image" flow behind the s u r f a c e i f t h i s s u r f a c e were removed. The d e r i v a t i o n f o l l o w s the i d e a s of A. Powell (1960) who developed the imaging p r i n c i p l e with boundary l a y e r noise i n mind. Here, i t i s a p p l i e d to j e t n o i s e . In a d d i t i o n , the present work employs the c a u s a l i t y p r i n c i p l e by c r o s s c o r r e l a t i n g the r a d i a t e d sound i n the f a r f i e l d with the p r e s s u r e on the imaging s u r f a c e . T h i s pressure i s thought of as a "cause" or source of the sound i n the sense t h a t i t i s r e p r e s e n t a t i v e of a c e r t a i n l i m i t e d r e g i o n i n the j e t flow, the e x t e n t of which w i l l be d i s c u s s e d . The a c o u s t i c source s t r e n g t h per u n i t s u r f a c e area w i l l be deduced. Looking at the " a c o u s t i c f o o t p r i n t " the flow l e a v e s on the s u r f a c e a l l o w s some c o n c l u s i o n on the d i s t r i b u t i o n of n o i s e sources i n the image flow behind the s u r f a c e . 3.1 Imaging. System^ He s t a r t with L i g h t h i l l ' s (1952) equation f o r aerodynamic noise [Eq. (1.1) r e w r i t t e n ] : 17 V p - — o — = p" 3 H— I 3 * c c 2 a t2 c 0 2 ay; aVj where -T,j = />Uj U j - T ;J . • ( p - c ^ ) 8 ;J Using the i s e n t r o p i c assumption P(x) = lpi*)-p0)cZ <3'2> (which i s good i n the a c o u s t i c f a r f i e l d and i n the source r e g i o n as w e l l , i f e n t r o p i c f l u c t u a t i o n s are not present) and n e g l e c t i n g at the s u r f a c e a l l but the pre s s u r e s t r e s s e s , the s o l u t i o n f o r the r a d i a t e d sound becomes: i J v s o I where the b r a c k e t s i n d i c a t e e v a l u a t i o n at the e a r l i e r time t - |x- H/c e The f i r s t i n t e g r a l i s the d i r e c t c o n t r i b u t i o n from the j e t ; the second i n t e g r a l r e p r e s e n t s the sound r e f l e c t e d from the s u r f a c e . P s i s the s u r f a c e p r e s s u r e . i s the outward normal to the s u r f a c e S( ( F i g . 3 - 1 ) . I f S( were v i b r a t i n g or t r a n s l a t i n g a t h i r d i n t e g r a l would appear [ a s i n d i c a t e d i n the more g e n e r a l Eg. ( 1 . 2 ) ], but t h i s i s not the case f o r the r i g i d w a l l assumed here. In order to e s t a b l i s h the image system we add a j e t which i s the exact i n s t a n t a n e o u s m i r r o r image of the f i r s t j e t ( F i g . 3 - 1 ) . The s u r f a c e S( i s the plane of symmetry. Whether S( i s a r e a l r i g i d s u r f a c e or a h y p o t h e t i c a l plane does not matter because the adding of the in s t a n t a n e o u s m i r r o r image with S, removed w i l l 18 produce e x a c t l y the same boundary c o n d i t i o n s by symmetry, as with S, i n plac e as a r e a l r i g i d boundary. T h e r e f o r e the sound f i e l d r a d i a t e d from the image j e t i s e x a c t l y equal to the sound f i e l d r e f l e c t e d from S, . With the q u a n t i t i e s a s s o c i a t e d with the image system denoted by primes we can w r i t e : I f x i s l a r g e ( f a r f i e l d approximation) terms l i k e aire r e p l a c e d by - - ^ 2 f [•"] (3*5) (see L i g h t h i l l 1952 or Ribner 1964) Eq. (3.3) becomes: vo ^1 where we can say that the second i n t e g r a l r e p r e s e n t s e i t h e r the sound r e f l e c t e d from the s u r f a c e S, , or [by Eq. (3.4) ] the sound r a d i a t e d from the image j e t . In what f o l l o w s i t i s shown how i n f o r m a t i o n on the noi s e sources i n the image j e t (approximate s p a t i a l d i s t r i b u t i o n and s p e c t r a l c h a r a c t e r ) can be o b t a i n e d . S i n c e the image j e t i s an i n s t a n t a n e o u s m i r r o r image the same i n f o r m a t i o n i s good f o r the r e a l j e t . However the r e s u l t s may not be i d e n t i c a l l y v a l i d f o r a s i n g l e i s o l a t e d j e t r a d i a t i n g i n t o unbounded space as the i n s e r t i o n of the s u r f a c e S, may s l i g h t l y change the s t r u c t u r e of the j e t (see second paragraph of s e c t i o n - ^ • / " M - l 19 3.2 Cross C o r r e l a t i o n Formalism. Equation (3.6) i s m u l t i p l i e d by the f a r f i e l d sound pressure p at a d i f f e r e n t time t 1 , and then a time average i s performed. Under the assumption of s t a t i s t i c a l s t a t i o n a r i t y the r e s u l t w i l l be independent of the a b s o l u t e time and depend only on the time delay T = t - t * ( C r a n d a l l & Hark 1963, s e c t i o n 1.5). The overbar denotes a time average: 4 . p p ( T ) = ^ / [ f ^ ] p d V ^ M ^ ] p d S ( 3 - 7 ) where, agai n , the second i n t e g r a l c o u l d be r e p l a c e d by the c o n t r i b u t i o n from the image. T h i s i s the part we are i n t e r e s t e d i n : pp <*>,„«,. ,„„ = -i—ril-A^}^ (3-9) where Xj / j = - x c o s 0 ( F i g . 3 - 1 ) . Use i s made of the f a c t that d i f f e r e n t i a t i o n with r e s p e c t to time under the time average can be converted i n t o d i f f e r e n t i a t i o n with r e s p e c t to time delay i f the p r ocesses are s t a t i s t i c a l l y s t a t i o n a r y ( C r a n d a l l & Mark, 1963, s e c t i o n 1.6)» The b r a c k e t s now mean e v a l u a t i o n a t the r e t a r d e d time delay (Siddon 1973a) X = T = l x - j j | / c 0 (3. 10) where y i n d i c a t e s the p o i n t where p g i s d e t e c t e d . Notice t h a t the L i g h t h i l l s t r e s s t e n s o r Tjj has disappeared. I t s c omplicated s t r u c t u r e does not concern us here. 20 W r i t i n g Eg. (3.9) i n d i f f e r e n t i a l form and s e t t i n g x=0: d p 2 -COSfl f d ——] #_ _ • Eq. (3.11) g i v e s the p o r t i o n of the r a d i a t i o n from the image j e t a s s o c i a t e d with a u n i t area of the s u r f a c e S, a t the p o i n t where p s i s d e t e c t e d . We can regard t h i s as a measure of the " l o c a l " a c o u s t i c source s t r e n g t h i n the image j e t . S e c t i o n IV w i l l d e s c r i b e a method of determining the a c t u a l d i s t r i b u t i o n of source s t r e n g t h i n the flow by measuring an approximation of T|j . Here we are content with a l o s s of s p a t i a l r e s o l u t i o n but g a i n t h r e e advantages: 1) I t i s not necessary to i n s e r t a probing d e v i c e i n t o the flow, a simple measurement of s u r f a c e pressure p s i s s u f f i c i e n t . 2) Only one time d e r i v a t i v e i s i n v o l v e d i n Eq.(3.11); Eg. (3.7) i n d i c a t e s two time d e r i v a t i v e s and the work of Chu (1966) r e q u i r e d t a k i n g a f o u r t h d e r i v a t i v e of a c o r r e l a t i o n . Numerical e r r o r s i n c r e a s e with the order of the d e r i v a t i v e whether the d i f f e r e n t i a t i o n i s done by analog c i r c u i t r y before the c o r r e l a t i n g process or a f t e r w a r d by d i g i t a l methods. 3) Ho f u r t h e r assumptions have been made about the nature of the flow, the i s e n t r o p i c assumption (3.2) p e r t a i n s only to the r a d i a t e d sound i n the f a r f i e l d . The method could t h e r e f o r e be used f o r i n s t a n c e i n the i n v e s t i g a t i o n o f n o i s e from hot and/or s u p e r s o n i c j e t s . At higher than low subsonic Hach numbers or with l a r g e d i f f e r e n c e s between the d e n s i t i e s of the source f l u i d and the ambient a i r , the f a r f i e l d microphone would have to be placed 21 such t h a t the sound r e f l e c t e d from the s u r f a c e towards the microphone would not pass aga i n through the flow f i e l d where i t would be r e f r a c t e d or even s h i e l d e d , as c o u l d be the case with s u p e r s o n i c j e t s . 3.3 Experiments. The experiments were conducted i n an anechoic room. The setup was a s t shown i n Fig . 3 - 1 . The j e t diameter was 38.1 mm (1.5 i n c h e s ) , the Mach number at the nozzle e x i t about 0.32. F i g . 3-2 shows s p e c t r a of the a c o u s t i c pressure i n the f a r f i e l d at #=45° to the j e t a x i s ; one f o r the j e t alone (a) , the other with the w a l l i n s t a l l e d behind the j e t (b). They peak at a S t r o u h a l number of about 0.2 (corresponding to about 700 Hertz) . The "bumpy" nature of (a) i s thought to be due to the room not being completely anechoic a t a l l f r e q u e n c i e s , (b) i s of course l a r g e r as i t r e p r e s e n t s both the d i r e c t and the r e f l e c t e d j e t n o i s e . That (b) c o n t a i n s more than one pronounced peak i s expected as the d i r e c t and the r e f l e c t e d sound waves w i l l depending on t h e i r frequency - tend t o enhance or c a n c e l each o t h e r . T h i s i s a w e l l known d i f f i c u l t y a r i s i n g when j e t engines are t e s t e d near a hard ground plane. The d i s t a n c e from the j e t c e n t e r l i n e to the s u r f a c e was a compromise between c o n f l i c t i n g requirements: On the one hand the s u r f a c e should be c l o s e to the flow i n order to i n c r e a s e the s p a t i a l r e s o l u t i o n . On the other hand the s u r f a c e has to be f a r enough away from the flow i n order to a v o i d the Coanda e f f e c t ; i . e . , the tendency of the j e t to a t t a c h to nearby s u r f a c e s because the f l u i d between the j e t and the s u r f a c e i s being dragged along by entrainment, d e c r e a s i n g the pressure and thereby 22 drawing the j e t towards the s u r f a c e . & very c l o s e s u r f a c e may a l s o i n t e r f e r e with the entrainment of a i r i n t o the j e t so that i t s developed s t r u c t u r e may d i f f e r s u b s t a n t i a l l y from t h a t of a s i n g l e i s o l a t e d j e t . Furthermore, d i r e c t i n t e r a c t i o n of the flow with the s u r f a c e must be avoided; t h i s would i n t r o d u c e unwanted n o i s e by v i o l a t i n g the assumption t h a t s u r f a c e shear s t r e s s e s are unimportant [ t h i s assumption i s i m p l i c i t i n Eg. (3.3) ]. In r e c o g n i t i o n of these l i m i t i n g f a c t o r s the d i s t a n c e between the s u r f a c e and the j e t c e n t e r l i n e was chosen to be 197 mm ( l i t t l e more than 5 n o z z l e d i a m e t e r s ) . Host of the s u r f a c e S( c o n s i s t e d o f a 0.5 i n c h t h i c k sheet of p l e x i g l a s s . The s u r f a c e pressure p s was measured u s i n g a B r u e l & Kjaer 1/4-inch microphone (type 4 136) connected t o the s u r f a c e by a s h o r t 0.020 i n c h diameter hole ( F i g . 3 - 3 ) . The resonant frequency of the Helmholtz reso n a t o r formed by the h o l e and the s m a l l c a v i t y i n f r o n t of the microphone diaphragm was s u f f i c i e n t l y high above the f r e q u e n c i e s of i n t e r e s t i n the j e t n o i s e . The f a r f i e l d microphone was placed f o r most of the experiments at 45° to the j e t a x i s at a d i s t a n c e of about 1.9 meters from the j e t o r i f i c e . Some data was a l s o obtained at 60° and 90°. The s u r f a c e pressure p s was measured a t many p o i n t s on the s u r f a c e and c r o s s c o r r e l a t e d with the s i g n a l from the f a r f i e l d . 23 The s i g n a l p r o c e s s i n g equipment and the anechoic room were the same as w i l l be d e s c r i b e d i n s e c t i o n 4.4. Fig.3-4 shows an example of a c o r r e l a t i o n f u n c t i o n p s p (T). Eq. (3.11) r e q u i r e s t a k i n g the d e r i v a t i v e of t h i s f u n c t i o n a t the delay time T = |x-yJ/c 0 which was done on a d i g i t a l computer. The curve a l s o e x h i b i t s a " p r e c u r s o r " the e x i s t e n c e of which i s e x p l a i n e d as f o l l o w s : , . The flow n o i s e r a d i a t e s i n a l l d i r e c t i o n s , i n c l u d i n g to the p o i n t where the f i e l d microphone i s l o c a t e d and to the p o i n t on the w a l l where p s i s measured; i n the v i c i n i t y of the time delay c o r r e s p o n d i n g to the d i f f e r e n c e i n sound t r a v e l times from the source flow to these two p o i n t s the s i g n a l s are somewhat coherent and a secondary c o r r e l a t i o n " b l i p " r e s u l t s , i n order to separate t h i s p r e c u r s o r from the pa r t of the c o r r e l a t i o n f u n c t i o n we are i n t e r e s t e d i n (the v i c i n i t y around T=|x-y|/c o) one must not put the s u r f a c e S, too c l o s e to the flow; the f u r t h e r the s u r f a c e i s from the flow the s m a l l e r the d i f f e r e n c e i n sound t r a v e l times, and the more the p r e c u r s o r i s moved to the l e f t on the time delay a x i s . However, the presence of the p r e c u r s o r does not v i o l a t e the theory and, i n p r i n c i p l e , can be ig n o r e d . 3.4 N o n d i m e n s i o n a l i z a t i o n . (See a l s o Appendix B) In order to make the r e s u l t s independent of the p a r t i c u l a r experimental setup chosen and to make them comparable with the r e s u l t s of other workers the measured q u a n t i t i e s are nondimensionalized using c h a r a c t e r i s t i c l e n g t h s , d e n s i t y , and v e l o c i t i e s . I t i s w e l l e s t a b l i s h e d ( L i g h t h i l l 1952) t h a t the f a r f i e l d a c o u s t i c pressure of a subsonic a i r • j e t i s s u i n g i n t o a medium of i d e n t i c a l gas 24 p r o p e r t i e s obeys the f o l l o w i n g dimensional s i m i l a r i t y : p CC yoU^Dc-Zx-1 (3. 12) T h e r e f o r e the a c o u s t i c pressure p was nondimensionalized by 2 (0. 5pU£) M2D/x (3.13) M i s the j e t exit Mach number, x i s the distance to the f i e l d point. Ps i s a near f i e l d pressure at the plane s u r f a c e ; i t s v a r i a t i o n with U 0 was determined by experiment. A p o i n t s i x j e t diameters downstream from the i n t e r s e c t i o n of the e x i t plane with the r i g i d s u r f a c e was chosen as r e p r e s e n t a t i v e . In Fig.3-5 H i s the dynamic head at the n o z z l e e x i t i n meters of water. H i s p r o p o r t i o n a l to U 2. At the chosen l o c a t i o n i t turned out t h a t p s v a r i e d as H 2 or U*, i . e . i t obeyed the same s i m i l a r i t y r e l a t i o n g i v e n i n Eq. (3. 12) as does p. T h e r e f o r e p s was nondimensionalized by the same q u a n t i t y (3.13) except that x was r e p l a c e d by h, the d i s t a n c e of the s u r f a c e from the j e t c e n t e r l i n e . Time was n o n d i m e n s i o n a l i z e d by D/0 o. More d e t a i l s are to be found i n Appendix B. 3.5 R e s u l t s ^ F i g . 3-6 shows the nondimensional source s t r e n g t h d i s t r i b u t i o n on the r i g i d s u r f a c e . The a c t u a l q u a n t i t y p l o t t e d i s : (for rationale see Appendix B) - c o s 4 5 ° [ a 7 P S P ] T - T S U A = _ S T T (3.14) { 2 ( 0 . 5 , u W } ^ f f The s t r o n g e s t sources appear to be c o n c e n t r a t e d i n an area 4 25 to 14 diameters downstream of the nozzle e x i t . I t would be convenient to be ab l e t o use the r e f l e c t i o n p r i n c i p l e from a c o u s t i c ray theory, as i n d i c a t e d i n Fig.3-9, i n order to t r a c e back where the sound has emanated from the j e t . S t r i c t l y speaking, the r e f l e c t i o n p r i n c i p l e can only be a p p l i e d i f the r e f l e c t i n g , s u r f a c e i s much l a r g e r than a t y p i c a l wavelength, i f i t i s t r u l y r i g i d , and i f the i n c i d e n t a c o u s t i c d i s t u r b a n c e has f a r f i e l d c h a r a c t e r ( i . e . , i f the wave f r o n t s are approximately p l a n e ) . The f i r s t two requirements are w e l l f u l f i l l e d by the present e x p e r i m e n t a l setup. The t h i r d i s not so w e l l f u l f i l l e d as the s u r f a c e p r e s s u r e s p s are measured i n the t r a n s i t i o n r e g i o n between near f i e l d and f a r f i e l d . (Fig.4-18 shows how the pr e s s u r e f l u c t u a t i o n s vary with d i s t a n c e from the j e t ce n t e r l i n e ; h~5D i s i n an area where the near f i e l d changes i n t o the f a r f i e l d . ) At 6 diameters, p s behaves q u i t e l i k e a f a r f i e l d p r e s s u r e , as mentioned before (Fig.3-5) , but there i s some s c a t t e r i n the data. Fig.3-7 and Fig.3-8 show equal source s t r e n g t h contours f o r angles 6 ( f a r f i e l d d i r e c t i o n to j e t axis) of 90° and 60°. T h i s data was taken e a r l y i n the r e s e a r c h before c e r t a i n refinements i n the e l e c t r o n i c s were i n t r o d u c e d . I t i s however u s e f u l i n a q u a l i t a t i v e way s u p p o r t i n g the ray a c o u s t i c argument: The l o c a t i o n of the s t r o n g e s t sources a p p a r e n t l y moves from 2 diameters to 12 diameters as 8 goes from 90° to 60°. Such a s h i f t i s what would be expected i f ray theory were a p p l i c a b l e . I t appears t h e r e f o r e t h a t one can "borrow" the ray a c o u s t i c s argument when d i s c u s s i n g the problems of s p a t i a l r e s o l u t i o n a f f o r d e d by the image method. Fig.3-9 i l l u s t r a t e s the 26 h y p o t h e t i c a l "zone of i n f l u e n c e " : the r e g i o n of the j e t that w i l l predominantly c o n t r i b u t e to the source s t r e n g t h on the s u r f a c e whare p s i s measured. The zone of i n f l u e n c e i s cone shaped; the angle of a p e r t u r e of the cone i s however l e f t to s p e c u l a t i o n . The angle w i l l be s m a l l e r f o r higher f r e q u e n c i e s s i n c e the r e f l e c t i o n argument becomes more and more v a l i d as the wavelength decreases. T h i s p e r t a i n s both to the r e f l e c t i o n mechanism i t s e l f and to the f a r f i e l d c o n d i t i o n . . The j e t n o i s e spectrum peaks a t about 700 H e r t z . T h i s corresponds to a wavelength of about 0.5m which i s l a r g e r than h=0.197m. For t h i s frequency one c o u l d t h e r e f o r e not expect a very narrow angle of a p e r t u r e . S u p e r s o n i c flows g e n e r a l l y produce much hi g h e r f r e q u e n c i e s . There, the r e f l e c t i o n argument should be much more a p p l i c a b l e . Using the r e f l e c t i o n argument r e g a r d l e s s of whether i t i s s t r i c t l y a p p l i c a b l e or not, the a c t u a l sound producing r e g i o n w i l l be found to be 2 t o 8 diameters downstream of the e x i t plane. T h i s i s c o n s i s t e n t with the f i n d i n g s of other r e s e a r c h e r s {Ribner 1958, Lee 1971, Dyer 1959, Powell 1959, L i l l e y 1958, et a l . ) . T h i s statement does not, however, add much new i n s i g h t i n t o the c h a r a c t e r of noise p r o d u c t i o n from t u r b u l e n t j e t s . The method d e s c r i b e d here i s presented i n order to show i t s f e a s i b i l i t y i n the study of flow n o i s e . In p a r t i c u l a r , as a l r e a d y mentioned above, the d e r i v a t i o n of the image system does not c o n t a i n any assumption about Mach number except an i m p l i c i t d i s r e g a r d of r e f r a c t i v e e f f e c t s due to temperature or v e l o c i t y g r a d i e n t s along the path of the sound. The method could t h e r e f o r e be used to study the noise g e n e r a t i o n from s u p e r s o n i c flows where i t i s s t i l l more d i f f i c u l t i f not i m p o s s i b l e to l o c a t e the n o i s e 27 sources by probing the j e t i t s e l f . M a e s t r e l l o & HcDaid (1970) have advanced a d i f f e r e n t image technigue f o r determining j e t n o i s e c h a r a c t e r i s t i c s . There, a means i s shown of l o c a t i n g sound sources by determining the d i r e c t i o n s where sound waves are coming from by a complex F o u r i e r a n a l y s i s of two p o i n t s p a c e - t i m e - c o r r e l a t i o n s of the s u r f a c e p r e s s u r e on a r i g i d s u r f a c e i n the v i c i n i t y of the j e t . The theory i s q u i t e c o m p l i c a t e d , and so are the computations to process the data. Some r e s u l t s are presented but not enough to enable a c o n c l u s i o n on the d i s t r i b u t i o n of sound sources. The paper reads as i f the authors f i r s t expected to o b t a i n d e t a i l e d i n f o r m a t i o n on sound source d i s t r i b u t i o n i n the j e t but l a t e r encountered problems of s p a t i a l r e s o l u t i o n s i m i l a r to the ones i n the present work. The f o l l o w i n g guote from the M a e s t r e l l o & McDaid paper (1970) e q u a l l y a p p l i e s to the technigue developed here: "... sound undergoes c o n v e c t i o n and s c a t t e r i n g between the time i t i s generated and the time i t l e a v e s the t u r b u l e n c e of the j e t . Thus the p o i n t of g e n e r a t i o n c o u l d be f a r t h e r upstream ..." Only a technigue probing the flow [such as Chu (1966), Lee (1971), s e c t i o n IV of the present paper] can shed more l i g h t on t h i s problem. A l l an image technique can determine at the most i s the d i r e c t i o n from where the sound waves are coming when they impinge on the r e f l e c t i n g s u r f a c e . An advantage of M a e s t r e l l o & McDaid's (1970) approach i s t h a t s p e c t r a l i n f o r m a t i o n i s not only obtained very e a s i l y , but i s i m p l i c i t i n the method. However, i n order t o gain some s i g n i f i c a n t i n s i g h t , the amount of experimental work r e q u i r e d i s q u i t e l a r g e . In the present approach one would t h i n k i t i s easy 28 to o b t a i n s p e c t r a l i n f o r m a t i o n by computing the F o u r i e r transform of E g . ( 3 . 9 ) r e s u l t i n g i n the c o n t r i b u t i o n to the o v e r a l l power s p e c t r a l d e n s i t y from a u n i t s u r f a c e area a t the p o i n t where the s u r f a c e pressure i s measured. U n f o r t u n a t e l y , the p r e c u r s o r ( d i s c u s s e d i n s e c t i o n 3.3 and shown i n F i g . 3 - 4 ) superposes i t s e l f on the c r o s s c o r r e l a t i o n f u n c t i o n and makes the F o u r i e r transform d i f f i c u l t to i n t e r p r e t : Eg. ( 3 . 1 1 ) g i v e s the c o n t r i b u t i o n from the image only. The p r e c u r s o r does not a f f e c t s i g n i f i c a n t l y the d e r i v a t i v e of p s p(T) at r = r / c 0 because i t l i e s f a r enough to the l e f t on the time delay a x i s . The o p e r a t i o n of F o u r i e r t r a n s f o r m i n g i n v o l v e s the complete r e c o r d of p g p (T ) , i n c l u d i n g the p r e c u r s o r . Attempts to perform t h i s F o u r i e r o p e r a t i o n showed t h a t the t r a n s f o r m became negative f o r some freguency ranges. T h i s occurs because of the c o n s t r u c t i v e and d e s t r u c t i v e i n t e r f e r e n c e e f f e c t s at c e r t a i n f r e q u e n c i e s as a l r e a d y d i s c u s s e d i n s e c t i o n 3 . 3 . In view of t h i s ambiguity ways of o b t a i n i n g q u a n t i t a t i v e s p e c t r a l i n f o r m a t i o n were not f u r t h e r e x p l o r e d i n the image technique. N e v e r t h e l e s s , some q u a l i t a t i v e s p e c t r a l i n f o r m a t i o n can be o b t a i n e d by i n s p e c t i n g the c r o s s c o r r e l a t i o n s : F i g . 3 - 1 0 shows how they change i n shape as one moves downstream i n the j e t . I t can be seen t h a t the c h a r a c t e r i s t i c f r e q u e n c i e s are higher c l o s e r to the n o z z l e e x i t (the c o r r e l a t i o n has high c u r v a t u r e s a t the peaks and the d i s t a n c e between zero c r o s s i n g s i s small) and becomes lower f u r t h e r downstream (lower c u r v a t u r e and l a r g e r d i s t a n c e between zero c r o s s i n g s ) . T h i s behaviour i s of course expected as the t u r b u l e n c e s c a l e s grow i n the downstream d i r e c t i o n . Fig.3-11 shows the d i s t r i b u t i o n of the r o o t mean squared 29 near f i e l d p ressure over the s u r f a c e . I t shows a peak i n the same area as Fig.3-6, but the t a i l s decrease much l e s s r a p i d l y , both i n the d i r e c t i o n of the j e t flow and p e r p e n d i c u l a r to i t . An attempt to i d e n t i f y sound sources t h a t way would be much l e s s s u c c e s s f u l . The zone of i n f l u e n c e on p s alone i s the whole hemisphere and not the narrow cone shaped r e g i o n of the image c r o s s c o r r e l a t i o n technique (which s o r t of " p o i n t s " to the source of sound). When the source s t r e n g t h per u n i t area i s i n t e g r a t e d over t r a n s v e r s e " s t r i p s " of the s u r f a c e , i . e . , i n the d i r e c t i o n p e r p e n d i c u l a r to the j e t a x i s at each a x i a l l o c a t i o n . Fig.3-12 r e s u l t s . I t has a pronounced peak. Using the r e f l e c t i o n argument, by t r a c i n g back from the peak l o c a t i o n of 10 diameters, the s t r o n g e s t a c o u s t i c s o u r c e s would be l o c a t e d between 4 and 5 diameters from the no z z l e e x i t . T h i s i s i n c l o s e agreement with other r e s u l t s (e.g. Ribner 1958, 1962; Dyer 1959). 3.6 Check. Eq.{3.9) can be used as a check of the method: When the " s t r i p w i s e " source s t r e n g t h of Fig.3-12 i s i n t e g r a t e d along the a x i s , the s u r f a c e i n t e g r a l of Eg. (3.9) can be e v a l u a t e d , f o r r=0. The l e f t hand s i d e i s c a l c u l a t e d from a d i r e c t measurement of the j e t noise without the r e f l e c t i n g s u r f a c e . In order Jco r e p r e s e n t the r a d i a t i o n from the image j e t a c o r r e c t i o n was made f o r the d i f f e r e n c e i n d i s t a n c e to the f a r f i e l d microphone between the r e a l and the image j e t . The i n t e g r a t i o n on the r i g h t hand s i d e was c a r r i e d out g r a p h i c a l l y . With the n o n d i m e n s i o n a l i z a t i o n done as i n d i c a t e d i n s e c t i o n 3.4 and i n Appendix B, the d i r e c t l y measured value ( l e f t hand side) becomes 30 - - y = 0.177 x I 0 ~ 5 (3.15) {2 (0.5^U o 2)M 2D/x} and the i n t e g r a t e d v a l u e ( r i g h t hand side) i s 0.147*10 _ s. T h i s corresponds to a d i f f e r e n c e of o n l y 0.8 db. Apart from numerical e r r o r s i n the computation of the c o r r e l a t i o n f u n c t i o n s and t h e i r d e r i v a t i v e s , s o u r ces of u n c e r t a i n t y are the f i n i t e e x t e n t of the s u r f a c e and i t s i m p e r f e c t r i g i d i t y ( r e c a l l i n g t h a t most of the s u r f a c e c o n s i s t s of a 0.5 i n c h t h i c k sheet of p l e x i g l a s s ) . T h i s check on i n t e r n a l c o n s i s t e n c y lends f u r t h e r c o n f i d e n c e i n the use of c a u s a l i t y c o r r e l a t i o n techniques to s p a t i a l l y r e s o l v e complex source d i s t r i b u t i o n s (see a l s o Siddon 1973a). 31 IV. CAUSALITY CORRELATION TECHNIQUE 4.1 I n t r o d u c t i o n -T h i s technique was developed i n order to probe_ the j e t flow i n such a way as to o b t a i n the s p a t i a l d i s t r i b u t i o n and c h a r a c t e r i s t i c s of the elementary a c o u s t i c sources. Use i s made of a r e c e n t l y developed c a u s a l i t y c o r r e l a t i o n technique (Siddon 1966, 1970, 1971b, 1973a; C l a r k e & Ribner 1969; Lee 1971; Lee S Ribner 1972; Siddon & Rackl 1971; Rackl 1972b). As mentioned i n s e c t i o n I the f l u c t u a t i n g p r e s s u r e s are taken as the b a s i c n o i s e e m i t t e r s . By computing the c r o s s c o r r e l a t i o n between these p r e s s u r e s and the r a d i a t e d a c o u s t i c pressure i n the f a r f i e l d q u a n t i t a t i v e i n f o r m a t i o n on the a c o u s t i c source d i s t r i b u t i o n can be o b t a i n e d . S e c t i o n 4.2 summarizes the u n d e r l y i n g theory and t r e a t s the concept of c a u s a l i t y c o r r e l a t i o n s , spectrum from a u n i t volume, and c o r r e l a t i o n volume. The experimental setup was as shown i n F i g . 4 - 1 : As i n s e c t i o n I I I , a c o l d , c i r c u l a r (1.5 i n c h d i a m e t e r ) , subsonic j e t (Hachnumber about 0.32) d i s c h a r g e d i n t o an anechoic room. The t u r b u l e n t p r e s s u r e s were measured by a s p e c i a l l y developed a i r f o i l type p r e s s u r e sensor ( d e s c r i b e d i n d e t a i l i n s e c t i o n 4.3). The f a r f i e l d p ressure was monitored by a 1/2-inch microphone. The c r o s s c o r r e l a t i o n s of the two s i g n a l s were computed on a h y b r i d s i g n a l c o r r e l a t o r . T y p i c a l c o r r e l a t i o n 32 f u n c t i o n s are shown i n Fig,4-22a. More d e t a i l s w i l l be found i n s e c t i o n 4.4. The remaining s e c t i o n s a f t e r 4.4 show how the data was reduced and d i s c u s s the r e s u l t s . Comparisons are made with r e s u l t s of o t h e r r e s e a r c h e r s . At l e a s t q u a l i t a t i v e agreement i s achieved. D i f f i c u l t i e s are encountered i n t r y i n g to make the method q u a n t i t a t i v e l y s e l f c o n s i s t e n t . P o s s i b l e e x p l a n a t i o n s are g i v e n . once the v i a b i l i t y of the method has been demonstrated i t becomes a d i a g n o s t i c t o o l f o r the i n v e s t i g a t i o n of o t h e r flows. I t c o u l d , f o r i n s t a n c e , be used i n the study of the e f f e c t i v e n e s s of v a r i o u s j e t q u i e t e n i n g d e v i c e s . 4.2 Theory. 4.2.1 F l u i d D i l a t a t i o n s ^ The theory i s based on Ribner's (1962) i d e a s on viewing the t u r b u l e n t flow as an a r r a y of a c o u s t i c monopoles generated by a q u a s i - i n c o m p r e s s i b l e and i s e n t r o p i c flow. For subsonic f l o w s , L i g h t h i l l ' s wave equation (1.1) can be r e - w r i t t e n i n the approximate form: C i a2p o - V2 p = d2 pu^ dy-, dy. ( 4 - 1 ) The r i g h t hand s i d e of Eq. (4.1) may be regarded as a f o r c i n g term of the wave equation f o r p. A c o u s t i c a l l y , i t r e p r e s e n t s a d i s t r i b u t i o n of a c o u s t i c quadrupoles embedded in, a medium at 33 r e s t . I t can be converted i n t o a co r r e s p o n d i n g monopole f i e l d ( " d i l a t a t i o n s " ) by s p l i t t i n g the pressure d i s t u r b a n c e i n t o two p a r t s : p - P o = p C 0 3 + p C 1 D (4.2) where: p = in s t a n t a n e o u s s t a t i c pressure P o = l o c a l time average s t a t i c pressure pco) i s d e f i n e d by _ V 2 CCO = d f U i U i ( U . 3 ) It has been shown t h a t p<o) x s the a c t u a l p e r t u r b a t i o n p r e s s u r e w i t h i n an e x a c t l y i n c o m p r e s s i b l e flow and i s a good approximation f o r M 2<<1 (see Kraichnan 1956 and Ribner 1962) . p<i> i s the p a r t of the pre s s u r e a s s o c i a t e d with the prop a g a t i o n (not the generation) of a c o u s t i c waves. The r e l a t i o n s h i p of p<o> and p<i> i s expressed i n the " d i l a t a t i o n e q u a t i o n " which . r e s u l t s a f t e r combining Eg. ( 4 . 1 ) , Eq. (4.2), Eq. (4.3) : 1 6 9 — v 2 P C D = - -V ^-V <^> c 2 a t 2 w c 2 at o o The r i g h t hand s i d e of Eq. (4.4) can be regarded as the f o r c i n g 34 term of the wave equation f o r the a c o u s t i c p r essure p<l>. The s o l u t i o n f o r the r a d i a t e d sound i n terms of K i r c h h o f f ' s r e t a r d e d p o t e n t i a l s becomes: p C O ( X i t ) = > d 3 y 47rc 0 2 Jy l x - y l L at2 Jt " where, again, the b r a c k e t s i n d i c a t e e v a l u a t i o n at the e a r l i e r time t = t - | x - y j / c 0 (See Fig.4-2 f o r geometry). In the geometric f a r f i e l d , and i f the o r i g i n i s chosen i n or c l o s e to the source r e g i o n . the term 1/|x-.Yj m a Y be approximated as 1/x = 1/1x|« Then: p C D(x,t) = - - — r J ——r—J. d y 4TTC 0 x v d\c Jt (4.6) In the a c o u s t i c f a r f i e l d (many t y p i c a l wavelengths away), p ( 1 > approximates the t o t a l p ressure f l u c t u a t i o n P ( x , t ) . Fig.4-18 shows the t y p i c a l v a r i a t i o n of the pressure f l u c t u a t i o n with d i s t a n c e from the j e t . S t a r t i n g at a p o s i t i o n on the c e n t e r l i n e 4 diameters downstream of the n o z z l e and moving a t r i g h t a n g l e s to the c e n t e r l i n e , the f a r f i e l d c o n d i t i o n of a 6 db drop i n the rms pressure per d o u b l i n g of d i s t a n c e i s reached at about 10 diameters (the c r o s s c o r r e l a t i o n measurements were made about 50 35 diameters away). The s t r a i g h t l i n e i n d i c a t i n g the 6 db drop per dou b l i n g of d i s t a n c e r e p r e s e n t s the v a r i a t i o n of p<*> alone. I f the l i n e i s extended backward i n t o the source r e g i o n one can estimate the magnitude of an e q u i v a l e n t p o i n t source r e p r e s e n t i n g the r a d i a t i o n of the whole j e t . As shown on Fig.4-18 i t s pressure f i e l d would be about 20 t o 40 db weaker than the a c t u a l measured j e t p r e s s u r e , i . e . , the approximation of p<°>. In f a c t , the j e t i s composed of many i n c o h e r e n t sources each of which w i l l of course be weaker than the s i n g l e e q u i v a l e n t p o i n t source. In the source r e g i o n t h e r e f o r e p<*> i s very much s m a l l e r than p<°>. T h i s means t h a t we do not expect the sound to have any s i g n i f i c a n t back r e a c t i o n on the flow or to d i s t u r b the measurement of p<o> which a r i s e s p u r e l y from i n c o m p r e s s i b l e t u r b u l e n t momentum exchanges. In order to o b t a i n the mean squared r a d i a t e d p r essure Ribner proceeds to square and time average Eg. (4.6), i n v o l v i n g a space-time c o r r e l a t i o n of p<o> under a double i n t e g r a l with f o u r time d e r i v a t i v e s . T h i s o p e r a t i o n i s s i m i l a r to the one employed by Chu (1966). 4.2.2 C a u s a l i t y C o r r e l a t i o n ^ In the present formalism, we o b t a i n the mean squared r a d i a t e d pressure by m u l t i p l y i n g both s i d e s of Eq. (4.6) by i t s l e f t hand s i d e , e v a l u a t e d a t a new time t+T. A f t e r time a v e r a g i n g : 36 p(x , t ) p(x,t + T) = - „ 1 2 / f p c w ( y , t ) l p(x,t+r) d 3 y ( 4 . 7 ) 4 T T C / X •(/ L - J ? p(x,t+r) can be taken under the i n t e g r a l s i g n because i t i s independent of j. A l s o , i n t h i s case time averaging and i n t e g r a t i o n over V are i n t e r c h a n g e a b l e o p e r a t i o n s . Under the assumption of s t a t i s t i c a l s t a t i o n a r i t y the l e f t hand s i d e i s a f u n c t i o n of r o n l y ; s i m i l a r l y on the r i g h t hand s i d e : P P ( * , T > ' = ~ A ' 2 / [ P C ° 3 ( y ) P ( x ) ] . d 3 y ( 4 . 8 ) ^ 7 1 C c X V T where f=t+r-t= t+r-t+ | x-y | /C D=T+ | x-y | / c G pz i s obtained by s e t t i n g T = O. The i n t e g r a n d i n Eg. ( 4 . 8 ) e s t a b l i s h e s the c a u s a t i v e r e l a t i o n s h i p between the source f l u c t u a t i o n and the r a d i a t e d sound. According to a p roperty of s t a t i o n a r y random v a r i a b l e s ( C r a n d a l l S Hark 1963) t h i s i n t e g r a n d can be w r i t t e n i n d i f f e r e n t ways: , 37 The second form turned out to be.the most convenient i n most of the experiments d e s c r i b e d h e r e i n . Fig.4-22a shows t y p i c a l c r o s s c o r r e l a t i o n s p<o)p. T h e i r shape i s very c l o s e to antisymmetric. Appendix C t r e a t s an e x t e n s i o n of the theory t h a t a l l o w s the p r e d i c t i o n of the shape of the c o r r e l a t i o n f u n c t i o n s ; good agreement i s achieved with a c t u a l measured f u n c t i o n s . Note t h a t o n l y one probe has to be i n s e r t e d i n t o the flow (Fig.4-1) i n s t e a d of two as have been normally employed i n the more c l a s s i c a l approach; only a s i n g l e i n t e g r a l i s to be e v a l u a t e d ; o n l y two time d e r i v a t i v e s are i n v o l v e d . 4.2.3 L o c a l Source Strength and Spectrum^ W r i t i n g Eg. (4.8) i n d i f f e r e n t i a l form g i v e s the r a d i a t i o n from u n i t volume: d V 4 T T C 0 2 X L ° T J T = T Again, the c o n t r i b u t i o n t o the t o t a l mean squared pressure from the p o i n t where p<o) i s d e t e c t e d i s obtained by s e t t i n g r=0. The c o n t r i b u t i o n t o the spectrum <&{v) of p(x,t) from the p o i n t of p<o^-detection i s obtained by t a k i n g the r e a l p a r t of the F o u r i e r Transform of Eq. (4.10): 38 03 — . . 0 0 C ° PP^T^ « i 2 7 r i / T . 1 f f 5 ~ C C 0 7 1 Q i 2 7 T i / T . 0 0 n 7 r ° o * - 0 0 ^{[Aw].} where means F o u r i e r Sine Transform. (See Appendix A f o r a more d e t a i l e d d e r i v a t i o n . ) 4.2.4 C o r r e l a t i o n Volume^ The c o r r e l a t i o n volume i s d e f i n e d by analogy t o the i n t e g r a l l e n g t h s c a l e i n t u r b u l e n c e . The l a t t e r i s d e f i n e d by CO L ( x ) = J ° u (x ) u(x+£) d£ (4.12) u 0 where u i s a v e l o c i t y component and £ i s a space s e p a r a t i o n v e c t o r . Fig.4-3 shows t h a t the i n t e g r a n d w i l l c o n t r i b u t e to the i n t e g r a l only over a c e r t a i n d i s t a n c e , the c o r r e l a t i o n l e n g t h L. L g i v e s an i n d i c a t i o n of the t y p i c a l l e n g t h s i n v o l v e d i n the t u r b u l e n t energy exchange. S i m i l a r l y , we would l i k e to d e f i n e a c o r r e l a t i o n volume g i v i n g an i n d i c a t i o n of the t y p i c a l s i z e s of volumes or eddies a s s o c i a t e d with the r a d i a t i o n of sound. To t h i s end we f o l l o w , f o r a moment, the more common method of s q u a r i n g and time averaging Eg. (4.6): 3 <£(»/) av 39 where t« = t - | x-y' I / c c and t«' = t - | x-jn | /c +f. The in t e g r a n d w i l l c o n t r i b u t e s i g n i f i c a n t l y to the i n n e r i n t e g r a l o n l y over the c o r r e l a t i o n volume V c. Thus Vc i s de f i n e d by v c = - = ! = - / [ ' P C O > ] . [ P £ 0 > ] » D 3 « «»•«> - c o 2 \> Jy L Jy where y_"=y'+£ and the time d e l a y T i s s e t t o zero. T h e r e f o r e , d i f f e r e n t i a t i n g Eg. (U. 13) with r e s p e c t to volume r e s u l t s i n the mean squared p r e s s u r e from u n i t volume: 5 V ,6 ,2 4 X 2 P '"•15' By a c o n s i d e r a t i o n s i m i l a r to the one i n Eg. (4.9) we can write down the a l t e r n a t i v e forms ;CCO ' a P C°V<"} = { f t P C ° V ° 5 } „ C.16) and use whichever form i s the most convenient. Combining Eg. (4.15) and Eq. (4.10) and using Eg. (4.16) we get 40 V r « 4TTC 0 2X — — 1 " r /°° (4-17) •CO)* The u s e f u l n e s s of t h i s c o r r e l a t i o n volume V. s u f f e r s s l i g h t l y i n t h a t i t i s dependent upon the c h o i c e of the d i r e c t i o n of x, the l o c a t i o n of d e t e c t i o n of the r a d i a t e d sound p. I t i n d i c a t e s the average s i z e of an eddy r a d i a t i n g i n the x-d i r e c t i o n . The j e t i s o f t e n thought of being composed by a number of i n c o h e r e n t s o u r c e s , i n essence t u r b u l e n t eddies, compressing and d i l a t i n g as they bump i n t o each o t h e r . I f V c i s evaluated a t a p o i n t such t h a t i t r e p r e s e n t s the average s i z e of a l l sound producing eddies i n the j e t , then a rough estimate of the number of eddies i n the whole j e t can be o b t a i n e d from the q u o t i e n t n=Vj e t/V c, where Vj e t i s the volume occupied by the j e t t u r b u l e n c e c o n t r i b u t i n g s i g n i f i c a n t l y to the n o i s e . S u b s t i t u t i n g Eq. (4.14) i n t o Eq.(4.13), with T=0 and V c=const, g i v e s : on the other hand, from Eq. (4.8), the f o l l o w i n g approximation r e s u l t s : 41 p 2(x) * A 1 2 [ / - p c 0 5 p l V j e t (4.19) 4 T T C 2 X L<3T Jf=r/c J o / o T h e r e f o r e , combining Eg. (4.18) and Eg. (4.19) g i v e s , as a rough e s t i m a t e : Vie. _ p W n = —^ - — - — (U.20) [ & P C 0 3 P. Here, n i s a c o a r s e measure of the number of i n c o h e r e n t s o u r c e s i n the j e t . I f the s p e c t r a are peaky [as they are for jet pressure (see Fig.4-27)]dif f e r e n t i a t i o n with r e s p e c t to time t or time d e l a y r can be approximated by m u l t i p l y i n g by a c h a r a c t e r i s t i c frequency 2irv: .ceo. n -p 2 ( 2 ™ ) 4 { p C C V ° 5 } r LP"'Pi 1--2 [ ( 2 7 T , ) 2 p C ( D p ] L PrmsPrms Eq. (4.21) shows that n can be roughly estimated by c a l c u l a t i n g t h e i n v e r s e square of the c o r r e l a t i o n c o e f f i c i e n t . 42 4.3 Development Of The Pressure Sensor.. 4.3.1 L i m i t a t i o n s on Co n v e n t i o n a l C y l i n d r i c a l Probes^ In order to e v a l u a t e e x p e r i m e n t a l l y Eg. (4.10) i t i s necessary to measure p<°>. As mentioned i n s e c t i o n 4.2.1 p<o) approximates the a c t u a l t o t a l p e r t u r b a t i o n pressure i n the flow f o r M2<<1. In the present experiments the Mach number at the e x i t was about 0.32. The Mach numbers of the c o n v e c t i n g e d d i e s w i l l be s m a l l e r ; of the order of 0.2. Th e r e f o r e the c o n d i t i o n H2<<1 appears to be well s a t i s f i e d . The d i f f i c u l t i e s i n h e r e n t i n the ac c u r a t e measurement of p r e s s u r e f l u c t u a t i o n s i n tur b u l e n c e are w e l l r e c o g n i z e d . For a probe of the c l a s s i c a l c y l i n d r i c a l c o n f i g u r a t i o n (Fig.4-4) the measured in s t a n t a n e o u s pressure p m i s g e n e r a l l y lower than the tr u e i n s t a n t a n e o u s pressure p^ ( i . e . f o r no probe i n the flow) by an amount which depends on the f l u c t u a t i n g components v and w of c r o s s flow normal to the a x i s of the probe (Siddon 1969). The e m p i r i c a l e q u a t i o n , p -p a:-Bp(v2 + w 2-v2-w2) (4.22) m t where B — 0.5 gi v e s a good approximation to the instantaneous e r r o r . Siddon (1971a) estimated t h a t the rms value of t h i s i n s t a n t a n e o u s e r r o r can be q u i t e l a r g e . In a t u r b u l e n t j e t (where t u r b u l e n c e i n t e n s i t i e s are t y p i c a l l y of the order of 0.2) t h i s rms ins t a n t a n e o u s e r r o r i s approximately 0.025 or higher when nondimensionalized by the dynamic pressure of the flow 0.5yo(J 2; the i n s t a n t a n e o u s e r r o r w i l l be l a r g e r , maybe of the order of 0.04. Although the rms value of the inst a n t a n e o u s e r r o r can be l a r g e , the d i f f e r e n c e between the rms values o f the tr u e and the 43 measured p r e s s u r e s o f t e n t u r n s out to be much s m a l l e r . In the present a p p l i c a t i o n where c r o s s c o r r e l a t i o n t e c h n i q u e s are employed i t i s the in s t a n t a n e o u s e r r o r we are concerned with. I t w i l l be necessary to s u b s t a n t i a l l y reduce i t as the measured pr e s s u r e f l u c t u a t i o n i n a t u r b u l e n t j e t a t t a i n s maximum v a l u e s of about 0.05 when nondimensionalized by 0.5^Uo2. T h e r e f o r e , using a c o n v e n t i o n a l c y l i n d r i c a l probe the in s t a n t a n e o u s e r r o r c o u l d be of the same magnitude as the pre s s u r e f l u c t u a t i o n i t s e l f . Siddon (1969) a l s o showed a way of b u i l d i n g an e r r o r compensating probe by measuring s i m u l t a n e o u s l y the pressure p m , and the v e l o c i t y components v and w, and i n s t a n t a n e o u s l y e v a l u a t i n g Eq.(4.22) thereby c o r r e c t i n g the measured pressure and a r r i v i n g at the tr u e p r e s s u r e p t . Even i f the accuracy c o u l d be improved i n t h i s way another problem appears. During the e a r l y p a r t of the r e s e a r c h i t was found t h a t c y l i n d r i c a l probes i n t e r a c t i n g with the t u r b u l e n c e generate s i g n i f i c a n t extraneous n o i s e as i n d i c a t e d i n Fig.4-5. Imagine a patch of t u r b u l e n c e c o n v e c t i n g past the probe. I n t e r a c t i n g with the nose of the probe a l o c a l i z e d f l u c t u a t i n g s i d e f o r c e i s induced, sending a d i p o l e pulse to the f i e l d microphone. A s h o r t time l a t e r the same patch of t u r b u l e n c e i n t e r a c t s with the stem of the probe sending o f f another d i p o l e p u l s e . These d i p o l e p u l s e s are coherent with the b a s i c source f l u c t u a t i o n and t h e r e f o r e make an extraneous c o n t r i b u t i o n to the c o r r e l a t i o n p<°>p. Because these p u l s e s leave the probe e a r l i e r and l a t e r than the t r u e s i g n a l , the r e s u l t i s a tendency f o r the c o r r e l a t i o n to be broadened i n a r a t h e r p e c u l i a r way near the c o r r e c t value of a c o u s t i c t r a v e l time | x - y j / c 0 . Shortening the 44 nose makes the t h r e e c o n t r i b u t i n g e f f e c t s even l e s s d i s t i n g u i s h a b l e as shown by the dashed l i n e on F i g . 4 - 5 . I t must be s t r e s s e d at t h i s p o i n t t h a t , although the o v e r a l l n o i s e i n the f a r f i e l d i n c r e a s e s by only one d e c i b e l or so when i n s e r t i n g the c y l i n d r i c a l probe, the e f f e c t on the c r o s s c o r r e l a t i o n i s very prominent because of the d i s c r i m i n a t o r y power of the method: I t s i n g l e s out the, c o n t r i b u t i o n to the o v e r a l l n o i s e from a very l o c a l i z e d r e g i o n i n the flow which i s more a p p r o p r i a t e l y c a l l e d ' c o r r e l a t i o n volume'. I f the o v e r a l l j e t noise a r i s e s from many independent ( s e p a r a t e l y c o r r e l a t e d ) source r e g i o n s , the extraneous d i p o l e e f f e c t can c o n t r i b u t e s u b s t a n t i a l l y to the apparent r a d i a t i o n from such a l o c a l i z e d source r e g i o n , without n o t i c e a b l y a l t e r i n g the o v e r a l l d e c i b e l v a l u e . 4.3.2 A i r f o i l Probe The best prospect f o r s u p p r e s s i n g the d i p o l e r a d i a t i o n r e s t s i n the p o s s i b i l i t y of red u c i n g the s u r f a c e area of the pressure sensor i n the d i r e c t i o n of the f i e l d microphone to something much s m a l l e r than the c o r r e l a t i o n area of the t u r b u l e n c e . A f l a t a i r f o i l - l i k e probe s a t i s f i e s t h i s requirement. I t i s i n s e r t e d i n t o the flow such t h a t the plane of the f o i l c o n t a i n s the d i r e c t i o n of the mean flow and of the r a d i a t i o n to the f a r f i e l d microphone as shown i n Fig.4-6. The t h i n s t r u c t u r e e n s u r e s ' t h a t d i p o l e r a d i a t i o n i n the plane of the f o i l i s v i r t u a l l y e l i m i n a t e d . In order to put the above statements on a more q u a n t i t a t i v e b a s i s i t i s h e l p f u l t o i n t r o d u c e the "Probe Contamination R a t i o " 45 C. C g i v e s the r a t i o between the mean squared a c o u s t i c pressure due t o d i p o l e r a d i a t i o n from the probe s u r f a c e and the mean squared a c o u s t i c p r e s s u r e due to quadrupole r a d i a t i o n from the eddy or c o r r e l a t i o n volume surrounding the probe. Of course we would l i k e to keep C as s m a l l as p o s s i b l e . Appendix D shows how C i s d e f i n e d mathematically, how i t can be estima t e d , and g i v e s some estimates of i n t e r e s t i n the present problem. I t would appear from these rough e s t i m a t e s t h a t the f o i l type pressure probe b u i l t d u r i n g the present r e s e a r c h has a s m a l l enough probe contamination r a t i o t h a t d i p o l e n o i s e should not be a problem. By g i v i n g the f o i l a c e r t a i n shape and s t r a t e g i c a l l y l o c a t i n g the pressure s e n s i n g h o l e s the probe can be made i n s e n s i t i v e to pressure e r r o r s of aerodynamic o r i g i n ( F i g . 4 - 7 ) . For example i n the subsonic case ( F i g . 4 - 8 ) , the p r e s s u r e d i s t r i b u t i o n s f o r a t h i n a i r f o i l suggest t h a t by l o c a t i n g the pr e s s u r e sensing holes c l o s e to the t r a i l i n g edge, the probe can be made almost i n s e n s i t i v e to angle of a t t a c k f l u c t u a t i o n s both normal to and along the span of the a i r f o i l . T h i s of course presupposes t h a t the s c a l e of the tu r b u l e n c e s t r u c t u r e i s l a r g e compared to the c h a r a c t e r i s t i c a i r f o i l dimensions. The c o r r e l a t i o n p l o t s on Fig.4-9 show th a t the e f f e c t s of extraneous d i p o l e r a d i a t i o n can be e l i m i n a t e d . Curve "a" i s a c r o s s c o r r e l a t i o n between p<o> (as measured by a f o i l shaped probe) and the r a d i a t e d sound p, while curve "b" was obtained by using a c y l i n d r i c a l BSK 1/8-inch microphone with a s h o r t nosecone, a l l other c o n d i t i o n s being kept the same as f o r curve "a". The microphone was mounted on a BSK type 2618 p r e a m p l i f i e r v i a an adaptor type UA0160 modified i n t o a r i g h t angle connector. 46 The i r r e g u l a r i t i e s i n curve "b" are a t t r i b u t e d to d i p o l e r a d i a t i o n from the c y l i n d r i c a l probe, p a r t i c u l a r l y the nosecone, and from the probe support. Curve " c " i s the F o u r i e r Sine transform of curve "a" or the cross-spectrum. Curve "d" r e p r e s e n t s the 'cross-spectrum as c a l c u l a t e d from curve "b". I t does not have as " n i c e " a shape as the one c a l c u l a t e d from curve "a", and even becomes ne g a t i v e f o r some f r e q u e n c i e s . A n e g a t i v e going c r o s s - s p e c t r a l d e n s i t y f u n c t i o n does not seem p o s s i b l e f o r a s i t u a t i o n wherein the source d i s t r i b u t i o n c o n s i s t s of a random a r r a y of u n c o r r e l a t e d phenomena: The power s p e c t r a l d e n s i t y from a u n i t volume of source flow should always be p o s i t i v e . I t i s , however, p o s s i b l e t o hypothesize s i t u a t i o n s where l o c a l i z e d s p e c t r a may e x h i b i t peaks and v a l l e y s a r i s i n g from c o n s t r u c t i v e and d e s t r u c t i v e i n t e r f e r e n c e at c r i t i c a l f r e g u e n c i e s i f s p a t i a l l y s e p a r a t e d sources are t o some degree coherent. Such a s i t u a t i o n was seen i n the image experiment ( s e c t i o n 3 . 3 ) . For the case of probe generated d i p o l e n o i s e , the d i p o l e source and the c o r r e s p o n d i n g t u r b u l e n t (eddy) source are somewhat coherent. They r a d i a t e a t d i f f e r e n t times, the d i f f e r e n c e being given by the c o n v e c t i o n speed and the d i s t a n c e from the nose of the probe to the s e n s i n g h o l e s . A f u r t h e r i n v e s t i g a t i o n of t h i s phenomenon i s l e f t f o r f u t u r e work. Great care was devoted to d e v e l o p i n g the f o i l type p r e s s u r e sensor. An e a r l y type with a sensing hole a t the t r a i l i n g edge of the wing t i p (Siddon S Rackl 1971) d i d not e x h i b i t s a t i s f a c t o r i l y low s e n s i t i v i t y to angle of a t t a c k f l u c t u a t i o n s i n the plane of the f o i l and to f l u c t u a t i o n s i n the chordwise d i r e c t i o n . To have low s e n s i t i v i t y to angles of a t t a c k i n the d i r e c t i o n normal to 47 the plane of the a i r f o i l i s d e s i r a b l e but not necessary i n the present a p p l i c a t i o n as the f o l l o w i n g argument w i l l show: i Remember t h a t the f i e l d microphone i s placed i n the same plane t h a t c o n t a i n s the f o i l probe ( F i g . 4 - 6 ) . The f a r f i e l d p r e s s u r e i n Proudman's ( 1 9 5 2 ) form i s p ( x , t = 2 ~ / f o H d 3 y ( 4 . 2 3 ) 4TTC 0 2 x if L at2 Jf (conf. F i g . 4 - 1 0 ) T h i s c l e a r l y shows t h a t only the v e l o c i t y component u x i n the d i r e c t i o n x of the f i e l d microphone c o n t r i b u t e s to p. P r e s s u r e measurement e r r o r s are due t o the t u r b u l e n t v e l o c i t i e s i n t e r a c t i n g with the probe. u x l i e s i n the plane of the f o i l probe. E r r o r s due to t u r b u l e n t v e l o c i t i e s u,v i n t h i s plane are minimized by the probe design. E r r o r s dependent on the v e l o c i t y component w p e r p e n d i c u l a r to t h i s plane w i l l not, i n p r i n c i p l e , c o n t r i b u t e to the c r o s s c o r r e l a t i o n pCo)p because w does not c o n t r i b u t e t o the r a d i a t i o n of p. 4.3.3 S t a t i c Pressure C a l i b r a t i o n ^ V a r i o u s c o n f i g u r a t i o n s of f o i l type pressure probes were t r i e d out, some t y p i c a l examples being shown i n F i g . 4 - 1 1 . They c o n s i s t of a s t a i n l e s s s t e e l tube embedded i n b a l s a wood with an a i r f o i l type c r o s s s e c t i o n . The end of the tube connects to the lower and upper s u r f a c e of the f o i l . P r e s s u r e e r r o r s due to changing i n c l i n a t i o n of the onset flow were determined s t a t i c a l l y i n the p o t e n t i a l core of a 1.5 i n c h diameter j e t about 0.5 diameter from 48 the e x i t plane, u s i n g a P i t o t s t a t i c tube as a r e f e r e n c e . The probe c o n f i g u r a t i o n t h a t gave the most s a t i s f a c t o r y performance i s the wedge shaped sensor of Fig.4-12. Fig.4-13 g i v e s the d e v i a t i o n s from t r u e s t a t i c p r e s s u r e , i n the form C p = (P-P*,) / (°-5p u£) • F o r angles of a t t a c k l e s s than ±12° ( e q u i v a l e n t to tu r b u l e n c e i n t e n s i t i e s l e s s than 0.2) the C p e r r o r i n the plane of the f o i l (v-component) v a r i e s by l e s s than .008. By way of comparison, the i n c i d e n c e e r r o r f o r a c y l i n d r i c a l probe i n 20% t u r b u l e n c e c o u l d a t t a i n an ins t a n t a n e o u s C p value of about 0.04 ( s e c t i o n 4.3.1). The out of plane e r r o r curve (w-direction) has a marked anti-symmetry. T h i s i s most probably due to one or both of 2 reasons: 1) the a i r f o i l s e c t i o n and the pr e s s u r e taps l a c k symmetry due to an i m p e r f e c t manufacturing p r o c e s s ; 2) the j e t flow development i t s e l f was i n f l u e n c e d by the probe not being on the c e n t e r l i n e a t d i f f e r e n t angles of a t t a c k . In order to minimize the s t a t i c p r e s s u r e measurement e r r o r due to f l u c t u a t i o n s i n the u-component ( d i r e c t i o n of mean flow) the se n s i n g holes are l o c a t e d i n a d i p , immediately forward of the t h i c k e n i n g t r a i l i n g edge. The r e s u l t i n g p r essure recovery o f f s e t s a tendency f o r ne g a t i v e C p due to the f i n i t e t h i c k n e s s ( F i g . 4 - 1 4 ) . The C p e r r o r due to u-component f l u c t u a t i o n s can be estimated from Fig.4-13. We d e f i n e : A = (P m-P e e)/(0.5 yoU|) (4.24) where P m i s the measured s t a t i c p r e s s u r e f o r 0° angle of a t t a c k , P^ , i s the s t a t i c pressure t h a t would occur without the probe i n 49 the flow. At 0° angle of a t t a c k , the d e v i a t i o n from the true p r e s s u r e i s shown to be C p =-0.006. However, P^ was not e x a c t l y known. By v a r y i n g the c o n f i g u r a t i o n of the f o i l probe and the r e f e r e n c e P i t o t s t a t i c tube i n the j e t i t was found that the u n c e r t a i n t y of where the C p = 0 - l i n e l i e s i s of the order of 0.003. In the worst case: , C p = -0.009 = (P m- poo)/(°- 5/> Uo) = A (4.25) I f , as d i s c u s s e d i n the next paragraph, the s t a t i c c a l i b r a t i o n remains v a l i d i n the t u r b u l e n t flow we can w r i t e (Siddon 1969): o In 20% t u r b u l e n c e u/U = 0.2. The C p u - e r r o r w i l l t h e r e f o r e be at the most -0.0036. The s u g g e s t i o n t h a t s t a t i c i n c i d e n c e c a l i b r a t i o n s remain v a l i d i n the r e a l , t i m e - v a r y i n g flow i m p l i e s a g u a s i - s t e a d y assumption. Such an assumption holds i f the sensor dimensions are s m a l l compared with the s c a l e s of the approaching f l o w . In other words, the r a t i o i/L/0 must be s m a l l , where L i s the c h a r a c t e r i s t i c chord l e n g t h of the f o i l . For the present probe L-10 mm. Thus the upper l i m i t i n g frequency w i l l be about -U/4L-2500 Hz i n a 100 m/sec flow. T h i s i s q u i t e a severe r e s t r i c t i o n . In the zone of maximum shear the mean v e l o c i t y i s even s m a l l e r (about 70 m/sec), and we are i n t e r e s t e d i n f r e q u e n c i e s up to about 5 kHz although the j e t noise peaks at 700 Hz ( F i g . 3 - 2 ) . We may t h e r e f o r e expect to run i n t o d i f f i c u l t i e s of 50 r e s o l u t i o n . T h i s may be one of the reasons why the f i n a l check ( s e c t i o n 4.5.2) does not work out. As t h i s i s the f i r s t p ressure probe of an a i r f o i l type i t should be looked upon as a prototype. I t i s hoped t h a t f u r t h e r development w i l l f o l l o w , i n p a r t i c u l a r with regard to m i n i a t u r i z a t i o n . 4.3.4 The Complete Pressure Sensor as shown i n Fig.4-12 and Fig.4-15 c o n s i s t s of the f o i l probe mounted to a BSK 1/8-inch microphone which i s connected v i a an adaptor type UA0160 to a type 2618 p r e a m p l i f i e r . The adaptor was f i l l e d with p a r a f f i n and the p r e a m p l i f i e r - a d a p t o r combination was coated with p a r a f f i n to e l i m i n a t e mechanical resonances. The c a v i t y c o nnecting the f o i l to the microphone combines with the s m a l l p r e s s u r e s e n s i n g holes to form a Helmholtz r e s o n a t o r . The r e s u l t i n g resonant response a t about 2500 Hz was damped out with a c o t t o n i n s e r t . . Fig.4-16 shows the r e s u l t i n g frequency response of the pr e s s u r e sensor. I t i s e s s e n t i a l l y f l a t at the f r e q u e n c i e s c o n t r i b u t i n g predominantly to the a c o u s t i c spectrum. 51 4.4 Experiments The experiments were conducted i n an anechoic chamber with dimensions 2. 7m*2.7m*1.8m (measured from the t i p of the wedges) with a lower c u t o f f frequency of about 300 Hz. The j e t n o z z l e was pl a c e d near one corner of the room; the n o z z l e e x i t diameter was 38.1mm (1.5 i n c h e s ) . i 4.4.1 A i r Supply^ S e t t l i n g Chamber^ and Nozzle^ ( Fig.4-17) A r e c i p r o c a t i n g compressor was used as the a i r supply. I t f e d i n t o a l a r g e r e c i e v i n g tank. The a i r then flowed through a f l e x i b l e hose to the s e t t l i n g chamber. Host of the s e t t l i n g chamber was packed with l o o s e f i b r e g l a s s of the type used f o r heat and sound i n s u l a t i o n . T h i s e l i m i n a t e d n o i s e propagation from upstream, e s p e c i a l l y from the va l v e and the e n t r y i n t o the s e t t l i n g chamber. Immediately upstream of the n o z z l e were p l a c e d a c o t t o n wool f i l t e r to r e t a i n dust and a s e t of screens with d i m i n i s h i n g mesh s i z e t o ensure a uniform v e l o c i t y d i s t r i b u t i o n at the no z z l e e n t r y . The no z z l e i t s e l f was designed such that a uniform v e l o c i t y d i s t r i b u t i o n would r e s u l t at the n o z z l e e x i t by analogy to the magnetic f l u x through a r i n g c u r r e n t (Smith S Wang 1944) . The shape of the nozzle was generated on a computer. The mould was produced on a numerical m i l l i n g machine, the no z z l e i t s e l f being made of f i b r e g l a s s using g e l c o a t as the f i r s t l a y e r to o b t a i n a smooth i n s i d e s u r f a c e . 4.4.2 The Far F i e l d Microphone.. A B&K 1/2-inch microphone was used as the f i e l d microphone l o c a t e d at 45° from the j e t a x i s a t a d i s t a n c e of about 50 diameters (1.9 meters) from the n o z z l e e x i t . That the f a r f i e l d 52 c o n d i t i o n was met i s shown i n Fig.4-18: I t pr e s e n t s the v a r i a t i o n of the rms p r e s s u r e f l u c t u a t i o n from i n s i d e the flow r e g i o n a c r o s s the near f i e l d to the f a r f i e l d (the l a t t e r being c h a r a c t e r i z e d by the 6 db drop f o r every d o u b l i n g of d i s t a n c e ) . The t r a v e r s e was done p e r p e n d i c u l a r to the j e t a x i s and s t a r t i n g at an a x i a l l o c a t i o n of 4 diameters from the no z z l e e x i t . 4.4.3 S i g n a l P r o c e s s i n g ^ (Fig.4-19) The s i g n a l p ( 0 > ( t ) from the p r e s s u r e sensor was a m p l i f i e d , f i l t e r e d (passband 270 - 22500 Hz), d i f f e r e n t i a t e d , and f e d i n t o channel A of a PAR Model 101 S i g n a l C o r r e l a t o r . The s i g n a l p(t) from the f a r f i e l d , measured by a 1/2-inch B6K microphone, was a m p l i f i e d , f i l t e r e d the same way, and fed i n t o channel B of the c o r r e l a t o r . An x-y p l o t t e r was used to r e c o r d the r e s u l t i n g c o r r e l a t i o n f u n c t i o n s p<o>p. The raw c o r r e l a t i o n f u n c t i o n s c o n t a i n e d some n o i s e from the s i g n a l c o r r e l a t o r and a c o u s t i c contamination from r e f l e c t i o n s o f f the probe support and t r a v e r s i n g mechanism. The l a t t e r m a n i f e s t s i t s e l f by weak secondary peaks o c c u r r i n g some time a f t e r the s o u r c e - r e c i e v e r d e l a y time r = r / c 0 . Some s u b j e c t i v e judgement was used i n e l i m i n a t i n g the a c o u s t i c contamination i n the t a i l s of the c o r r e l a t i o n f u n c t i o n s . T h i s measure a f f e c t s o n l y the c r o s s -s p e c t r a r e s u l t i n g from F o u r i e r T r a n s f o r m a t i o n of the complete c o r r e l a t i o n f u n c t i o n . The u n f i l t e r e d l o c a l source s t r e n g t h , equal to the d e r i v a t i v e at r = r / c 0 ( v e r t i c a l l i n e i n Fig.4-9, curve " a " ) , i s the p r i n c i p a l q u a n t i t y e x t r a c t e d from the data as i n d i c a t e d by Eq.(4.10). In order to process the data on a computer the p l o t t e d c o r r e l a t i o n f u n c t i o n s were d i g i t i z e d using a g r a p h i c a l d i g i t i z e r . The d e r i v a t i v e was c a l c u l a t e d by l e a s t 53 square f i t t i n g a polynomial to the c o r r e l a t i o n f u n c t i o n i n the v i c i n i t y of r = r / c 0 . The F o u r i e r Sine Transform a c c o r d i n g to Eg. (4.11) was estimated u s i n g a F o u r i e r transform u t i l i t y package (Rackl 1972a). (Fig.4-22a and Fig.4-22b). Keeping the f i e l d microphone always a t the same l o c a t i o n of 45° to the j e t a x i s the p r e s s u r e sensor was moved around i n the j e t on the s i d e o p p o s i t e to the microphone, i n order to minimize i n t e r f e r e n c e of the probe support with the sound f i e l d ( F i g . 4 - 1 ) . R a d i a l t r a v e r s e s were done at v a r i o u s downstream l o c a t i o n s . 4. 5 Data Reduction 4.5.1 Source S t r e n g t h D i s t r i b u t i o n . , The procedure d e s c r i b e d i n the p r e v i o u s s e c t i o n r e s u l t s i n the d i s t r i b u t i o n of source s t r e n g t h per u n i t volume shown i n Fig.4-20. N o n d i m e n s i o n a l i z a t i o n was e f f e c t e d as shown i n Appendix B. The nondimensionalized source s t r e n g t h p l o t t e d i s : s uv ~~ 2{0.5PU2)2MZ D/x 0 (U/D) 2 (4.27) where: nozzle e x i t v e l o c i t y . 0 o / c Q = ttach number. D n o z z l e e x i t diameter, x o d i s t a n c e n o z z l e e x i t - f i e l d microphone. I t i s not s u r p r i s i n g t h a t the d i s t r i b u t i o n of bears some s i m i l a r i t y t o the d i s t r i b u t i o n of mean shear i n a j e t . I t has t r a d i t i o n a l l y been argued t h a t sound g e n e r a t i o n from t u r b u l e n t flows should be s t r o n g e s t i n the r e g i o n s o f most i n t e n s e t u r b u l e n c e o c c u r r i n g where the g r a d i e n t s of mean v e l o c i t y are l a r g e s t . Thus, over the f i r s t few diameters, i s s t r o n g e s t h a l f a diameter from the j e t a x i s ; f u r t h e r downstream the peak s h i f t s toward the a x i s and decreases r a p i d l y i n amplitude. At t h i s p o i n t i t should be emphasized t h a t t h i s d i s t r i b u t i o n does not i n d i c a t e the sound power r a d i a t e d from u n i t volume, but the' c o n t r i b u t i o n t o the mean squared p r e s s u r e i n the f a r f i e l d a t 45° to the j e t a x i s . For each downstream l o c a t i o n the r a d i a l d i s t r i b u t i o n was i n t e g r a t e d r e s u l t i n g i n the d i s t r i b u t i o n of source s t r e n g t h from a " s l i c e " of the j e t : 00 Ssiice = / S u v 2 7 r r dr (4.28) r=0 F i g . 4-21 shows the p r e s e n t r e s u l t and compares i t q u a l i t a t i v e l y o n l y w i t h r e s u l t s of o t h e r workers (Lee & Ribner 197 2; Ribner 1958, 1962; Dyer 1959; Jones 1968; see a l s o Chu, L a u f e r & Kao 1972). The p r e s e n t and H.K. Lee's works use s i m i l a r t e chniques ( c a u s a l i t y c o r r e l a t i o n s ) ; Lee's d a t a were taken f o r a f a r f i e l d l o c a t i o n of 4 0° to the j e t a x i s and a t a Mach number of about 0.3. The other curves are not experimental data; they are based on s e m i - e m p i r i c a l t e c h n i q u e s and i n d i c a t e the sound power r a d i a t e d from a s l i c e , without c o n s i d e r a t i o n of d i r e c t i o n -a l i t y . I t i s known t h a t h i g h e r f r e q u e n c i e s are r a d i a t e d more 55 preferentially i n directions i n the v i c i n i t y of 45°, this being due to source c o n v e c t i o n and r e f r a c t i o n by the shear l a y e r a f f e c t i n g the h i g h e r f r e q u e n c i e s more than the lower ones. Higher f r e q u e n c i e s are generated c l o s e r to the e x i t than lower f r e q u e n c i e s : One might t h e r e f o r e expect the a x i a l source d i s t r i b u t i o n f o r 45° r a d i a t i o n to peak e a r l i e r ( i . e . between 2 and 3 diameters downstream) than would be expected f o r the o v e r a l l power d i s t r i b u t i o n . The r e s t r i c t i o n s d i s c u s s e d i n s e c t i o n 4.3.3 must however be born i n mind. The g e n e r a l trend i s to support Ribner's p r e d i c t i o n from s i m i l a r i t y c o n s i d e r a t i o n s except very c l o s e to the n o z z l e e x i t where the flow has to r e a d j u s t very r a p i d l y from a boundary l a y e r i n s i d e the n o z z l e to a f r e e l y growing shear l a y e r . One must a l s o p o i n t out t h a t i t i s not known a c c u r a t e l y where the assumptions of s i m i l a r i t y become v a l i d downstream of the p o t e n t i a l core, i . e . the a x i a l l o c a t i o n where the x~ 7-Law takes over i s u n c e r t a i n . 4.5.2 Cheeky C l o s u r e D i f f i c u l t y F u r t h e r i n t e g r a t i o n of S s ! j c e along the j e t a x i s should recover the p 2 as measured d i r e c t l y a t x, a c c o r d i n g to Eg. (4.8). T h i s p r o v i d e s a check of the procedure. However, the p 2 as obtained by i n t e g r a t i o n i s n e a r l y 10 times as l a r g e as the measured one. The p o s s i b i l i t y of a numerical mistake i s r u l e d out as the c a l c u l a t i o n s were checked many times, a l s o by d i f f e r e n t persons. Numerous p o s s i b i l i t i e s e x p l a i n i n g t h i s d i s c r e p a n c y were c o n s i d e r e d and many were d i s c a r d e d . Among the l a t t e r were: Vortex shedding from the probe t r a i l i n g edge (the shedding frequency i s of the order of 14 K i l o h e r t z ) , mechanical shaking of the microphone. P o s s i b l y v a l i d e x p l a n a t i o n s a r e : 56 X)_ The d e r i v a t i v e of p<o>p i S to be e v a l u a t e d a c c o r d i n g to Eg. (4.10) a t r = r / c o f the time delay t h a t corresponds to the t r a v e l time of the sound from the source to the f a r f i e l d microphone. T h i s " g e o m e t r i c a l " time delay i s i n f a c t not equal to the r e a l sound t r a v e l time as the.probe i s i n s e r t e d from the f a r s i d e of the j e t (Fig.4-1) and the sound must t r a v e l through the j e t flow where i t i s a c c e l e r a t e d and r e f r a c t e d . The " e f f e c t i v e " time delay i s t h e r e f o r e s l i g h t l y s m a l l e r . The t y p i c a l p<o>p shown i n Fig.4-24 i s q u i t e a n t i s y m m e t r i c a l . According to the g e o m e t r i c a l time delay the d e r i v a t i v e would have to be c a l c u l a t e d at a p o i n t s l i g h t l y t o the r i g h t of the p o i n t of symmetry (here c a l l e d the " c e n t e r " ) , but s t i l l on the p o r t i o n with p o s i t i v e s l o p e . The e f f e c t i v e time delay would move t h i s p o i n t toward the cen t e r where the s l o p e i s s t e e p e s t . Experimental evidence was c o l l e c t e d showing t h a t the e f f e c t i v e time delay should be s h o r t e r : Some experiments were performed with the pressure sensor i n s e r t e d from the near s i d e . In t h i s case the geometric time delay was very c l o s e to the " c e n t e r " as one would expect s i n c e the sound does not t r a v e l through the j e t exhaust stream. In another s e t of experiments, a p o i n t source with a diameter of about 0.1 inches was pl a c e d immediately under the pressure probe ( i n s e r t e d from the f a r side) and d r i v e n by random noise and by pure tones. The c r o s s c o r r e l a t i o n was computed i n the usual manner with and without the j e t flow. In the l a t t e r case a peak i n the c o r r e l a t i o n f u n c t i o n was observed very c l o s e to the c a l c u l a t e d g e o m e t r i c a l time d e l a y . When the j e t flow was turned on t h i s peak s h i f t e d to the l e f t toward a s h o r t e r time d e l a y . 57 T h i s s h i f t v a r i e d somewhat f o r random nois e and f o r pure tones of d i f f e r e n t frequency; i t was i m p o s s i b l e to determine the exact s h i f t with the simple setup used. A t h i r d experiment was performed on the computer o n l y : The F o u r i e r Sine transform was c a l c u l a t e d f o r a s e l e c t e d p<o>p "cen t e r e d " a t a v a r y i n g T, i . e . the amount of o r i g i n s h i f t on the T - a x i s ( i n d i c a t e d i n Eq. (4.11) by [...].£} before F o u r i e r t r a n s f o r m i n g was v a r i e d i n the v i c i n i t y of r = f = r / c 0 . As may be expected, when p<o>p w a s cen t e r e d on the point of symmetry a s i n e transform r e s u l t e d t h at remained p o s i t i v e f o r a l l f r e q u e n c i e s . I f centered before or a f t e r the p o i n t of symmetry the transform showed negative going p a r t s , which does not seem p o s s i b l e as a l r e a d y mentioned i n s e c t i o n 4.3.2. I t was t h e r e f o r e decided t o assume that the e f f e c t i v e time d e l a y i s given by the p o i n t of s t e e p e s t s l o p e . T h i s d e c i s i o n may not have been the best. The s l o p e a t the g e o m e t r i c a l time delay i s s m a l l e r and would r e s u l t i n a s m a l l e r i n t e g r a t e d p 2 , but the change would f a l l f a r s h o r t of accounting f o r the t o t a l observed d i s c r e p a n c y . 2]_ The c a l c u l a t i o n s i n Appendix D i n d i c a t e t h at d i p o l e n o i s e should not be a problem with the present pressure sensor. However, Appendix D d e a l s only with gross t u r b u l e n c e p r o p e r t i e s f o r x/D=4. Haybe one should g i v e more c o n s i d e r a t i o n to the s m a l l e r t u r b u l e n c e s c a l e s e s p e c i a l l y when they are of the order of the probe s i z e . T h i s w i l l be the case c l o s e r to the e x i t plane; t h e r e , d i p o l e n o i s e c o u l d indeed become dominant. 3)_ The i n s e r t i o n o f the probe i n t o the flow w i l l , of course, change the flow. The s m a l l e r the probe, the l e s s t h i s d i s t u r b a n c e . The d i s c u s s i o n of s e c t i o n 4.3.3 shows t h a t the probe may indeed 58 be too l a r g e to adequately r e s o l v e the t u r b u l e n t pressure a t a p o i n t i n the present j e t , e s p e c i a l l y f u r t h e r upstream ( c l o s e r than about 2 diameters from the e x i t ) where s c a l e s are s m a l l and f r e q u e n c i e s are h i g h . The q u a s i s t e a d y assumption f o r the pressure e r r o r would no longer be v a l i d . 4}_ I t was p o i n t e d out to the author t h a t there i s a s t r o n g mean v e l o c i t y g r a d i e n t a c r o s s the s u r f a c e of the probe when i t i s i n s e r t e d from the f a r s i d e as shown i n Fig.4-1. T h i s may l e a d to an a d d i t i o n a l flow d i s t o r t i o n and pressure e r r o r . However, when the probe was i n s e r t e d at a p o i n t 1/2 a diameter d i r e c t l y above the a x i s (not behind as i n Fig.4-1) where th e r e would h a r d l y be any v e l o c i t y g r a d i e n t a c r o s s the probe, the c o r r e l a t i o n p<o>p was not s i g n i f i c a n t l y d i f f e r e n t . 5\_ The dynamic c a l i b r a t i o n of the pressure sensor was done a c o u s t i c a l l y o n l y . I t may be t h a t flow over the pressure s e n s i n g h o l e s s u b s t a n t i a l l y a l t e r s the frequency response of the probe. 4.5.3 S p e c t r a . The upper p a r t of Fig.4-9 shows a t y p i c a l p a i r of c r o s s - f u n c t i o n s : 9a the e x p e r i m e n t a l l y obtained c r o s s c o r r e l a t i o n f u n c t i o n i n the time domain, 9c the c r o s s spectrum f u n c t i o n i n the frequency domain c a l c u l a t e d from 9a a c c o r d i n g to Eg. (4.11), i . e . , the s p e c t r a l d e n s i t y of the source s t r e n g t h per u n i t volume. Fig.4-22b shows some t y p i c a l c r o s s spectrum f u n c t i o n s f o r v a r i o u s downstream l o c a t i o n s . Again i n t e g r a t i n g r a d i a l l y one o b t a i n s the s p e c t r a from s l i c e s of the j e t . T h e i r peak f r e q u e n c i e s are p l o t t e d a g a i n s t downstream d i s t a n c e from the n o z z l e e x i t i n Fig.4-23 ( f u l l c i r c l e s ) t o gether with o t h e r r e s u l t s a v a i l a b l e . (Lee & Ribner 1972;' Chu, L a u f e r and Kao 1972). 59 The empty squares of Fig.4-23 were a r r i v e d a t by a very simple argument: We know that the r a d i a t e d sound depends on the second d e r i v a t i v e of the source f l u c t u a t i o n . Bearing t h i s i n mind, the s p e c t r a l d e n s i t y of p<o) a s measured with the s t a t i o n a r y f o i l probe (Fig.4-27)' was m u l t i p l i e d . by the square of frequency and the peak f r e q u e n c i e s entered i n t o Fig.4-23. Although t h i s does not account f o r d i r e c t i o n a l i t y and i s not amenable to * q u a n t i t a t i v e a n a l y s i s of source s t r e n g t h the curves f a l l c l o s e t o g e t h e r . I t i s i n t e r e s t i n g t o note t h a t none of the curves i n F i g . 4 -23 a t t a i n s the value of about 0.2 which corresponds to the peak S t r o u h a l number of the o v e r a l l n o i s e a t 45° from the j e t a x i s . Lee (1971) has commented t h a t t h i s i s "... due to the omitted c o n t r i b u t i o n of t h a t p a r t of the j e t extending beyond X=7D, which must dominate the low frequency sound e m i s s i o n . " In the present case the measurements were done as f a r downstream as 10 diameters; the curve s t i l l does not show much tendency to bend down to lower S t r o u h a l numbers. T h i s can be i n t e r p r e t e d i n d i f f e r e n t ways: 21 The low frequency sound i s emitted s t i l l f u r t h e r downstream. Looking at Fig.4-21 however, a l l a v a i l a b l e data suggests t h a t t h e r e i s h a r d l y any s i z a b l e c o n t r i b u t i o n to the j e t noi s e from r e g i o n s beyond 10 diameters. 2)_ The low frequency sound i s generated upstream of the e x i t p l a n e , i . e . i n the n o z z l e and the s e t t l i n g chamber a c t i n g as a c o u s t i c r e s o n a t o r s . I f t h i s were t r u e one may expect to see i n the spectrum a low frequency hump above the j e t n o i s e which would 60 vary markedly from one j e t to another; but t h i s i s not the case. 3}_ Some of the p o i n t s d i s c u s s e d i n s e c t i o n 4.5.2 w i l l , of course, be r e f l e c t e d i n the s p e c t r a . In p a r t i c u l a r p o i n t 2) : The s m a l l e r t u r b u l e n c e s c a l e s are a s s o c i a t e d with h i g h e r f r e g u e n c i e s . T h e r e f o r e , i f d i p o l e c o n t a m i n a t i o n were a problem i t would enhance the high frequency contents and thus make the s p e c t r a peak at higher S t r o u h a l numbers. In a d d i t i o n , f a r downstream, where s c a l e s are l a r g e , i n t e r a c t i o n of the flow with the stem of the probe may produce a s i g n a l which i s coherent with the measured pressure s i g n a l and again contaminate the c r o s s c o r r e l a t i o n . The d i r e c t l y measured sound spectrum i n the f a r f i e l d at 45° from the j e t a x i s and the one t h a t r e s u l t s by i n t e g r a t i n g a l l elementary s p e c t r a over the j e t volume should, t h e o r e t i c a l l y , be the same [Eq. (4.11) i n t e g r a t e d over volume]. As f o r the mean squared pressure t h i s check does not work out. Fig.4-28 compares the d i r e c t l y measured and the i n t e g r a t e d nondimensionalized s p e c t r a . The r e c o n s t r u c t e d spectrum a p p a r e n t l y i n c l u d e s an excess of high frequency energy. 4.5.4 Number of Incoherent Sources. The c o r r e l a t i o n c o e f f i c i e n t of Eg. (4.21) at a l o c a t i o n 3 • diameters downstream and 1/2 a diameter from the j e t a x i s turned out to be approximately 0.08. T h e r e f o r e , a rough estimate of the number of i n c o h e r e n t sources i n the j e t n i s n ~ (0.08) -2 ^ 150 It would appear reasonable to i n f e r from t h i s number that n i s of the order of 100 to 200. One must however i n v e s t i g a t e what 61 e x t e r n a l i n f l u e n c e s may i n c r e a s e or decrease the c o r r e l a t i o n c o e f f i c i e n t : 21 D i p o l e n o i s e o f f the probe can s i g n i f i c a n t l y i n c r e a s e the magnitude of the c o r r e l a t i o n f u n c t i o n and of the c o r r e l a t i o n c o e f f i c i e n t : In Eg. (4.21) both p<o)p and p r m s w i l l be a f f e c t e d by the d i p o l e r a d i a t i o n . However, p<o>p w i l l i n c r e a s e much more than Prms because prms ^ s t n e n o i s e coming from the whole j e t , while p<o)p r e p r e s e n t s the c o n t r i b u t i o n from the s m a l l volume where the probe i s i n s e r t e d . (This was a l r e a d y d i s c u s s e d i n s e c t i o n 4.3.1). Thus n may be c o n s i d e r a b l y underestimated. The low value of n«3 given by Scharton and White (1972) was a r r i v e d a t using a 1/8-i n c h microphone i n a 5/8-inch diameter j e t with Mach number egual to one. The probe contamination r a t i o (Appendix D) f o r t h i s c o n f i g u r a t i o n i s of the order of 1.8. T h i s high value would i n d i c a t e t h a t d i p o l e n o i s e from the probe not only p l a y s a s i g n i f i c a n t r o l e , but t h a t i t i s dominant. 2]_ F i l t e r i n g may have an i n f l u e n c e on the magnitude of the c o r r e l a t i o n c o e f f i c i e n t i f a s i g n i f i c a n t amount of the energy of one or both of the two s i g n a l s being c o r r e l a t e d i s f i l t e r e d out. In the present case, f o r i n s t a n c e , one may wish to i n c r e a s e the s i g n a l to n o i s e r a t i o by using an octave band f i l t e r c e n t r e d on the peak frequency of the j e t n o i s e spectrum. I f p < 0 ) ( t ) i s measured at a p o i n t i n the j e t where the spectrum of p<o> peaks i n the same octave band, the c o r r e l a t i o n p<o>p m a y be l e f t e s s e n t i a l l y u n i n f l u e n c e d by f i l t e r i n g . On the other hand, p(t) c o n t a i n s a s i g n i f i c a n t amount of energy o u t s i d e t h i s octave band which i s c o n t r i b u t e d from other p a r t s of the j e t . T h e r e f o r e the f i l t e r e d p r m s w i l l be s m a l l e r than the u n f i l t e r e d one, again 62 i n c r e a s i n g the c o r r e l a t i o n c o e f f i c i e n t and l e a d i n g to an u n d e r e s t i m a t i o n of n [ o c t a v e band f i l t e r i n g was employed by Scharton 5 White (1972) which may have c o n t r i b u t e d to t h e i r low value of n-3 ]. 3|_ E x t e r n a l a c o u s t i c n o i s e can s i g n i f i c a n t l y decrease the c o r r e l a t i o n c o e f f i c i e n t (but l e a v i n g the c o r r e l a t i o n f u n c t i o n u n a f f e c t e d ) : In Eg. (4.21), the a c o u s t i c pressure p r m s c a n c o n t a i n other s i g n a l s than the one r a d i a t e d from the j e t . T h i s would decrease the c o r r e l a t i o n c o e f f i c i e n t and thereby overestimate n. Care must t h e r e f o r e be taken to e l i m i n a t e e x t e r n a l noise sources. In the present work f o r i n s t a n c e , low frequency noise from the compressor s u p p l y i n g the a i r had to be f i l t e r e d out by a 4th order high pass f i l t e r with a c u t o f f frequency of about 270 Hz. 4)_ E l e c t r o n i c n o i s e may a l s o s u b s t a n t i a l l y decrease the c o r r e l a t i o n c o e f f i c i e n t by superposing i t s e l f on the p < 0 > ( t ) and p(t) s i g n a l s thereby i n c r e a s i n g p r m s and p ( 0 ) r m s i n Eq.(4.21). Again, n would be overestimated. E l e c t r o n i c noise has high freguency c h a r a c t e r and can u s u a l l y be e l i m i n a t e d by a s u i t a b l e low pass f i l t e r . Lee S Ribner (1972, p. 1289) roughly estimated n to be of the order of 2500. Although t h i s may come c l o s e t o the t r u t h i t i s not known i f i t may have been overestimated as d e s c r i b e d i n p o i n t s 3) and 4) above. 63 V. SUMMARY CONCLUSIONS^. RECOMMEND ATI ONS.. i i Two experimental techniques were developed with the aim of l e a r n i n g more about the d i s t r i b u t i o n of sound sources i n a t u r b u l e n t j e t . They both use the c a u s a l i t y p r i n c i p l e i n t h a t they measure a source f l u c t u a t i o n and r e l a t e i t to the r a d i a t e d sound by a c r o s s c o r r e l a t i o n method. In the image technique a r i g i d s u r f a c e i s put c l o s e to the j e t . The p r e s s u r e on the s u r f a c e i s taken as a f l u c t u a t i o n r e p r e s e n t a t i v e of a c e r t a i n l i m i t e d r e g i o n of the j e t . The r e s u l t i n g d i s t r i b u t i o n of source s t r e n g t h over the s u r f a c e a l l o w s some c o n c l u s i o n on the no i s e sources i n the j e t using the ray a c o u s t i c s r e f l e c t i o n p r i n c i p l e . For the low speed subsonic j e t used the s t r o n g e s t sources appear to be l o c a t e d between 4 and 6 diameters downstream. I f t h i s technique i s employed i n the f u t u r e i t would probably be of advantage to r e p l a c e the r i g i d s u r f a c e by a h y p o t h e t i c a l plane as the presence of the r e a l s u r f a c e i n f l u e n c e s the development of the flow (Siddon 1973b). I t may, however, be necessary to measure both v e l o c i t y and p r e s s u r e , as the boundary c o n d i t i o n of no normal v e l o c i t y on the s u r f a c e would then disappear [terms c o n t a i n i n g Uj i n the s u r f a c e i n t e g r a l s of Eg.(1.2) would not v a n i s h , but may be n e g l i g i b l y s m a l l i n some cases ]. In the d i r e c t t u r b u l e n c e probing technique the f l u c t u a t i n g 64 p r e s s u r e i s measured by an a i r f o i l type sensor and i s c r o s s c o r r e l a t e d with the f a r f i e l d r a d i a t e d sound. Using Ribner's (1962) d i l a t a t i o n theory l e a d s to a volume d i s t r i b u t i o n of a c o u s t i c source s t r e n g t h i n the j e t which l o o k s somewhat s i m i l a r to the d i s t r i b u t i o n of mean v e l o c i t y shear. R a d i a l i n t e g r a t i o n g i v e s the a c o u s t i c s t r e n g t h from " s l i c e s " of the j e t ; t h i s i s i n q u a l i t a t i v e agreement with r e s u l t s of other r e s e a r c h e r s . However, an attempt to r e g a i n the t o t a l r a d i a t e d pressure by i n t e g r a t i n g over a l l sources i n the j e t f a i l e d . Reasons f o r t h i s f a i l u r e are g i v e n . From these the f o l l o w i n g recommendations r e s u l t : XI To f u r t h e r develop the p r e s s u r e sensor: the shape of the present sensor was a r r i v e d at by "educated guessing". A t h e o r e t i c a l i n v e s t i g a t i o n i n the pressure d i s t r i b u t i o n over the f o i l s u r f a c e using a t h r e e dimensional theory [ f o r i n s t a n c e Smith's method (Smith 5 Hess 1967) ] should l e a d to an optimum f o i l shape which a l s o takes i n t o account the presence of the probe support. The a n a l y s i s c o u l d even be c a r r i e d f u r t h e r to i n c l u d e time v a r y i n g i n c i d e n t flow. However, the computing time r e q u i r e d using a modified Smith's method would be very l a r g e . -M i n i a t u r i z a t i o n of the pressure sensor i s very d e s i r a b l e both from the p o i n t of view of d i p o l e n o i s e contamination and of flow d i s t u r b a n c e . The f e a s i b i l i t y of using t r a n s d u c e r s o t h e r than condenser microphones should be e x p l o r e d . Such c o u l d be of the p i e z o e l e c t r i c type or K u l i t e semiconductors which could be embedded d i r e c t l y i n t o the a i r f o i l s u r f a c e . - The dynamic c a l i b r a t i o n should be done i n a known unsteady flow such as an i n c l i n e d r o t a t i n g n o z z l e which generates a flow with s i n u s o i d a l l y v a r y i n g angle of a t t a c k . 65 2)_ The l a r g e r the j e t and the s m a l l e r the probe, the l e s s problems w i l l a r i s e from extraneous d i s t u r b a n c e s . A l s o , t e s t s run at higher Mach numbers would not o n l y be more r e a l i s t i c models of j e t s used i n modern a i r c r a f t but reduce the probe contamination r a t i o i n p r o p o r t i o n to M - 2 as shown i n Appendix D, Eg. (D.12). 3]_ The u n c e r t a i n t y r e g a r d i n g the c o r r e c t time delay of the " c e n t e r " of the c a u s a l i t y c o r r e l a t i o n f u n c t i o n should be reduced [ s e c t i o n 4.5.2, p o i n t 1 ) ] : The exact sound t r a v e l time from the t r a n s d u c e r measuring the source f l u c t u a t i o n to the f a r f i e l d microphone has to be measured or c a l c u l a t e d i n some way. For i n s t a n c e , a p o i n t source of sound i n the j e t c o u l d be used at the l o c a t i o n of the t r a n s d u c e r , without the l a t t e r i n p l a c e . S i n c e i t i s next to i m p o s s i b l e to b u i l d a s t r o n g p o i n t source with a uniform phase response, t h i s phase response must 'at l e a s t be known and c o r r e c t e d f o r l a t e r . The t h e s i s e s t a b l i s h e d the f e a s i b i l i t y of e x p l o i t i n g Ribner's pressure source model of flow n o i s e using the c a u s a l i t y c o r r e l a t i o n technique. The d i f f i c u l t i e s i n h e r e n t i n the method were uncovered; some were s o l v e d , f o r o t h e r s v i a b l e s o l u t i o n s were proposed. S i n c e the c o r r e l a t i o n s can be performed i n the broad band i t i s an e f f i c i e n t method. In i t s present s t a t e i t g i v e s a good p i c t u r e of the r e l a t i v e source d i s t r i b u t i o n . I f the above recommendations are implemented h i g h l y a c c u r a t e q u a n t i t a t i v e measurements of the source d i s t r i b u t i o n should be p o s s i b l e . 66 REFERENCES ( A l p h a b e t i c a l l y a c c o r d i n g to the f i r s t author. A c i t a t i o n preceded by a "*" i n d i c a t e s an e x p e r i m e n t a l work p u b l i s h e d s i n c e 1963.) * J . A t v a r s , " R e f r a c t i o n of Sound by a J e t V e l o c i t y F i e l d , " M.A.Sc. T h e s i s (unpublished), UTIAS, 1964. D.I. B l o k h i n t s e v , " A c o u s t i c s of a Nonhomogeneous Moving Medium," i n Russian 1946. T r a n s l a t e d as NACA Tech. Memor. No. 1399 (1956). * A.J. Bowen, J.H. Dunmore, and D.C. Stevenson, "An I n v e s t i g a t i o n of the Noise F i e l d Produced Near a H a l f - I n c h Diameter Steam J e t , " J . Sound Vib . 5, 113 (1967). * P. Bradshaw, D.H. F e r r i s s , R.F. Johnson, "Turbulence i n the Noise Producing Region of a C i r c u l a r J e t , " J . F l u i d Mech. 19, p. 591, 1964. * W.T. Chu, "Turbulence Measurements Relevant to J e t Noise," UTIA S Report No. 119, November, 1966. * W.T. Chu, J . L a u f e r , and K. Kao, "Noise Source D i s t r i b u t i o n i n Subsonic J e t s , " I n t e r - N o i s e 72 Proceedings, p. 472. * P.J.F. C l a r k & H.S. Ribner, " D i r e c t c o r r e l a t i o n of F l u c t u a t i n g L i f t with Radiated Sound f o r an A i r f o i l i n T u r b u l e n t Flow," J . Acoust. Soc. Am. 46(3), p a r t 2, p. 802-805, 1969. S.H. C r a n d a l l & W.D. Mark, "Random V i b r a t i o n i n Mechanical Systems," Acad. Press N. Y. & London, 1963. * S.C. Crow & F.H. Champagne, " O r d e r l y S t r u c t u r e i n J e t Turbulence," J . F l u i d Mech. 48(3), pp. 547-591, 1971. N. C u r i e , "The I n f l u e n c e of S o l i d Boundaries Upon Aerodynamic Sound," Proc.Roy.Soc. A, 231, 505-514, 1955. * P.O.A.L. Davies, M.J. F i s h e r , M.J. B a r r a t , "The C h a r a c t e r i s -t i c s of the Turbulence i n the Mixing Region of a Round J e t , " J . F l u i d Mech. 15, pp. 337-367, 1963. * M.R. Davis, "Measurements i n a Subsonic T u r b u l e n t J e t Using a Q u a n t i t a t i v e S c h l i e r e n Technigue," J . F l u i d Mech. 46(4), pp.631-656, 1971. P.E. Doak, " A n a l y s i s of I n t e r n a l l y Generated Sound i n Continuous M a t e r i a l s : 2. A C r i t i c a l Review of the Conceptual Adequacy and P h y s i c a l Scope of E x i s t i n g T h e o r i e s of Aerodynamic Noise, with s p e c i a l Reference to Supersonic J e t Noise," 67 J . Sound Vib . 25(2), pp. 263-335, 1972. I. Dyer, " D i s t r i b u t i o n of Sound Sources i n a J e t Stream," J. Acoust. Soc. Am. 31, 1016 (1959). * H.J. F i s h e r & F.R. Krause, "The Crossed-Beam C o r r e l a t i o n Technique," J . F l u i d Mech. 28(4), pp. 705-717, 1967. H.J. F i s h e r & M.V. Lowson, "Aerodynamic Noise (Symposium at Loughborough U n i v e r s i t y , September 1970)," J . F l u i d Mech. 48 (3),pp. 593-603, 1971. H.V. Fuchs and A. Michalke, "Four I n t r o d u c t o r y L e c t u r e s on Aerodynamic Noise Theory," Deutsche L u f t - und Raurafahrt M i t t e i l u n g 71-20. 1971. * H.V. Fuchs, "Space C o r r e l a t i o n s of the F l u c t u a t i n g Pressure i n Subsonic Turbulent J e t s , " J . Sound Vib . 23(1), pp. 77-99, 1972. Ian S.F. Jones, " S c a l e s P e r t i n e n t t o Noise P r e d i c t i o n from the F i r s t Few Diameters of a J e t , " AFOSR-UTIAS Symposium on Aerodynamic Noise 1968, Book of A b s t r a c t s , p. 8. R.H. Kraichnan, "Pressure F i e l d w i t h i n Homogeneous A n i s o t r o p i c Turbulence," J . Acoust. Soc. Am., 28(1), pp. 64-72, January, 1956. * J.C. Lau, M.J. F i s h e r & H.V. Fuchs, "The I n t r i n s i c S t r u c t u r e of Tu r b u l e n t J e t s , " J . Sound Vib . 22(4), pp. 379-406, 1972. J.C. Laurence, " I n t e n s i t y , S c a l e and Spectra of Turbulence i n Mixing Region of Free Subsonic J e t , " Lewis F l i g h t Prop. Lab. Report # 1292, 1957. * H.K. Lee, " C o r r e l a t i o n of Noise and Flow of a J e t , " UTIAS Rep. 168 (1971); a l s o AFOSR-TR-71-2572 (1971). * H.K. Lee and H.S. Ribner, " D i r e c t C o r r e l a t i o n of Noise and Flow of a J e t " , J.Acoust.Soc.Am., V o l . 52, Number 5 (Part 1),p. 1280, 1972. A.W. Liepmann, "On the A p p l i c a t i o n of S t a t i s t i c a l Concepts to the B u f f e t i n g Problem," J . Aeron. Sc. 19 (12), December, 1952. M.J. L i g h t h i l l , "On Sound Generated Aerodynamically 1. General Theory," Proc.Roy.Soc. A, 211, 564-587, 1952. M.J. L i g h t h i l l , "On Sound Generated Aerodynamically, I I . Turbulence as a Source of Sound," Proc.Roy.Soc. A 222, 1-32;1954. M.J. L i g h t h i l l , "The Bakerian L e c t u r e , 1961, Sound Generated Aerodynamically," Proc.Roy.Soc. A, 267, 147-182, 1962. M.J. L i g h t h i l l , " J e t Noise," AIAA J o u r n a l , 1(7), pp. 1507-1517, J u l y , 1963. 68 G. M. L i l l e y , "On the Noise from A i r J e t s , " ARC 20, 376-N40-FM 2724 (Sept. 1958). H. V. Lowson, "Concluding D i s c u s s i o n a t the Aerodynamic Noise Symposium, Loughborough, September 1970," J . Sound Vib. 17 (1) , pp. 1-4, 1971. * P.A. Lush, "Measurement of Subsonic J e t Noise and Comparison with Theory," J . F l u i d Mech. 46(3), pp. 477-500, 1971. * L. M a e s t r e l l o S E. McDaid, " A c o u s t i c C h a r a c t e r i s t i c s of a High Subsonic J e t , " AlAA Paper No. 70-234, Jan. 1970. W.C. Meecham 6 G.W. Ford, " A c o u s t i c R a d i a t i o n from I s o t r o p i c Turbulence," J . Acoust. Soc. Am. 30(4), pp. 318-322, A p r i l 1958. * E. M o l l o - C h r i s t e n s e n , M.A. K o l p i n , and J.R. M a r t u c e l l i , " E x p e r i ments on J e t Flows and J e t Noise Far F i e l d S pectra and D i r e c t i v i t y P a t t e r n s , " J . F l u i d Mech. 18, pp. 285-301, 1964. * E. M o l l o - C r i s t e n s e n , " J e t Noise and Shear Flow I n s t a b i l i t y Seen from an Experimenter's Viewpoint," ASME J . of Appl. Mech. 34, pp. 1-7, 1967. * R.C. P o t t e r and J.H. Jones, "An Experiment to Locate the Acoust i c Sources i n a High Speed J e t Exhaust Stream," A b s t r a c t , 74th Meeting of the Acoust.Soc.Am., JJ4, 1967. A. Powell, " S i m i l a r i t y C o n s i d e r a t i o n s of Noise P r o d u c t i o n from T u r b u l e n t J e t s , Both S t a t i c and Moving," Douglas A i r c r a f t Company Rep. SM-23246 (July 1958) ; a l s o abridged i n J.Acoust.Soc.Am. 31, pp. 812-813 (1959). A. P o w e l l , "Aerodynamic Noise and the Plane Boundary," J.Acoust.Soc.Am. 32, p. 982, 1960. A. Powell, "Theory of Vortex Sound," J.Acoust.Soc.Am. 36, 177-195 , 1964. I. Proudman, "The Generation of Noise by I s o t r o p i c Turbulence," Proc.Roy.Soc. A, V o l . 214, p. 119, 1952. * R. Rackl and T.E. Siddon, " J e t Noise Study Using Image Technique," CANCAM 1971, C a l g a r y , Proceedings p. 473. R. Ra c k l , " C o r r e l a t i o n F u n c t i o n P r o c e s s i n g with F o u r i e r Transform," Dept. Mech. Eng., UBC, May 1972a. * R. R a c k l , " F u r t h e r S t u d i e s on Cross C o r r e l a t i o n s between F l u i d D i l a t a t i o n s and Flow Noise," 84th Meeting of Acoust. Soc. Am., paper XX8, 1972b. H.S. Ribner, "On the Str e n g t h D i s t r i b u t i o n of Noise Sources Along a J e t , " UTIA Rep. 51 ( A p r i l 1958); a l s o abridged i n J . Acoust. Soc. Am. 30, p. 879 (1958). 69 H.S. Ribner, "Aerodynamic Sound From F l u i d D i l a t a t i o n s , " UTIA Rep. No. 86,July 1962. Also AFOSR IN 3430. H.S. Ribner, "The Generation of Sound by Turbulent J e t s , " Advances i n Appl i e d Mechanics, V o l . 8, Academic Press Inc., New York, 1964. * T.D. Scharton and P.H. White, "Simple Pressure Source Model of J e t Noise," JASA V o l . 52, No 1 (Part 2) J u l y 1972, p. 399. * L.K. Schubert, "The Role of J e t Temperature and Sound Source P o s i t i o n i n R e f r a c t i o n of Sound from a P o i n t Source Placed i n an A i r J e t , " M.A.Sc. T h e s i s (unpublished), OTIAS, 1965. W.R. Sears, "Some Aspects of No n s t a t i o n a r y A i r f o i l Theory and i t s P r a c t i c a l A p p l i c a t i o n , " J . Aeron. Sc. 8(2), p. 104, February 1941. * T.E. Siddon, "On the Response of Pressure Measuring I n s t r u m e n t a t i o n i n Unsteady Flow," UTIAS Rep. No. 136, January 1969. Also AFOSR 68-2466. * T.E. Siddon, " C o r r e l a t i o n Study of Surface I n t e r a c t i o n N c i s e , " Trane Co. Research Dept. Report, La Cro s s e , Wise. , Dec. 1970. T.E. Siddon, " F l u c t u a t i n g Pressure Probe/Design and C a l i b r a t i o n , " B o l t , Beranek and Newman Report, J u l y 1971a. * T.E. Siddon 8 R. R a c k l , " C r o s s c o r r e l a t i o n A n a l y s i s of Flow Noise with F l u i d D i l a t a t i o n s as Source F l u c t u a t i o n " , H12, 82nd Meeting of ASA, Denver 1971. T.E. Siddon, "New C o r r e l a t i o n Method f o r Study of Flow Noise", 25 N 12, 7th ICA, Budapest 1971b. * T.E. Siddon, "Surface D i p o l e S t r e n g t h by Cross C o r r e l a t i o n Method", JASA V o l . 53 No.2, pp.619-633, Feb. 1973. Also a v a i l a b l e as Siddon 1970. 1973a. T.E. Siddon, "Noise Source D i a g n o s t i c s Using C a u s a l i t y C o r r e l a t i o n s , " a b s t r a c t submitted f o r S p e c i a l i s t s ' Meeting •Noise Mechanisms', AGARD F l u i d Dynamics P a n e l , Belgium, Sept., 1973b. A.M.O. Smith & J.L. Hess, " C a l c u l a t i o n of P o t e n t i a l Flow about A r b i t r a r y Bodies," Prog. Aeron. Sc., V o l 8, pp.1-138, 1967. R.H. Smith & C.T. Wang, " C o n t r a c t i n g Cones G i v i n g Uniform Throat Speeds," J.Aeron.Sc., Oct. 1944, p. 356. H. Tennekes 8 J . L. Lumley, "A F i r s t course i n Turbulence," The MIT Press, Cambridge, Massachusetts, and London, England, 1972. * R.B. Webster, " J e t Noise S i m u l a t i o n on Shallow Water," J . F l u i d Mech. 40(2), pp. 423-432, 1970. 7 0 APPENDICES 71 Appendix A Mathematical D e t a i l s Concerning Eg_._J4 .,7]_ Through Eg . J 4 . J . l L i Eg. (4 .7) i s repeated: where [ , . . ] ^ means: Replace the argument (t) by argument-|x-y|/c 0 ( t - | x - y | / c D ) . p (t) can be taken under the i n t e g r a l s i g n because independent, i n t e r c h a n g e a b l e o p e r a t i o n s . Dnder the assumption of s t a t i s t i c a l s t a t i o n a r i t y the time averages are f u n c t i o n s of the time delay r o n l y c The l e f t hand s i d e of Eg c (4 e 7)_ becomes the a u t o c o r r e l a t i o n of the f a r f i e l d sound pp ( r ) . The r i g h t hand s i d e can be put i n t o a more convenient form: p(t)p(t+r) = - 4TTC,fx (A.1) i t i s independent of y. Time ave r a g i n g and i n t e g r a t i o n over V are Consider: d d dr at ~ a r dt Put: t'=t+r -> [ p C 6 5 ( t , - r ) ] r p ( f ) (A. 2) where [...]£ again means: r e p l a c e the argument by 72 argument* | x-yj / c 0 ( f = T + | x-j£| / c Q ) . Eg. (4.7) t h e r e f o r e becomes i n d i f f e r e n t i a l form: app(r) I r a -av - V - [f P ( 0 3 P ] ^ CA.3) T T C „ X L dr J T /.-.. e,Z7rvTdr = ?{ ... } (A.4) Now take the F o u r i e r Transform 00 / - C O of Eq. (A.3). The r i g h t hand s i d e becomes: CO r.h.s. = — V - f\4- P C ° ' P L e i 2 ^ T d r (A.5) 4 T T C 2 X L 3 T J ? By p a r t i a l i n t e g r a t i o n : CO u . — l 2 m / f [ COD 1 \2ttvt . ,„ £. r.h.s = g — / | p " " p ] A e d r ( A . 6 ) 4 * * C o * -co T By d e f i n i t i o n , the r e a l p a r t of the F o u r i e r transform of the a u t o c o r r e l a t i o n app(r)/av i s the power s p e c t r a l d e n s i t y . T h e r e f o r e , t a k i n g the r e a l p a r t on both s i d e s r e s u l t s i n the s p e c t r a l d e n s i t y of p per u n i t volume: where T { . . . } = TC{ • • • } • i-% {• • • }» 3^ = c o s i n e transform, 3^= s i n e transform. When the F o u r i e r t r a n s f o r m i s . estimated by a numerical method i t i s u s u a l l y necessary t o c o r r e c t the r e s u l t 73 ("smoothing") because a numerical i n t e g r a t i o n cannot be extended t o i n f i n i t y . In the present case, however, the c o r r e l a t i o n f u n c t i o n s p<o>p decrease s u f f i c i e n t l y r a p i d l y to zero w i t h i n the le n g t h of the r e c o r d a v a i l a b l e so th a t such a c o r r e c t i o n was not made. -74 Appendix B N o n d i m e n s i o n a l i z a t i o n of C o r r e l a t i o n F u n c t i o n s There are two reasons f o r n o n d i m e n s i o n a l i z i n g data: 1) F l u c t u a t i o n s i n ambient c o n d i t i o n s . w i l l have l e s s degradating e f f e c t on the f i n a l data. 2) R e s u l t s are more g e n e r a l and e a s i e r to compare with r e s u l t s of other workers. Lengths are measured i n g e n e r a l i n meters [m], sometimes i n i n c h e s [ i n ] , p r e s s u r e s i n N/m2 (N=Newton), time i n m i l l i s e c o n d s [msec], and v o l t a g e s i n V o l t s [ V ] . B.1 C a u s a l i t y C o r r e l a t i o n Technique The s i g n a l flow i s shown i n Fig.4-19. The c o r r e l a t o r computes e^eg (T), where e A and eg are the v o l t a g e s a p p l i e d to the two i n p u t channels; the dimension of e A e g i s [ V 2 ] . The output C c ( T ) of the c o r r e l a t o r c o n s i s t s of v o l t a g e s the v a l u e s o f which are n u m e r i c a l l y i d e n t i c a l to the v a l u e s of e^eg. The s e n s i t i v i t y S c of the c o r r e l a t o r i s t h e r e f o r e S c = 1[1/V], What we are i n t e r e s t e d i n i s p<°>p. T r a c i n g through the e l e c t r o n i c s we get: e A ( t ) = RC G C A G M A S A p<o>( t) eg(t) = G Cg G Mg Sg p(t) where: RC = time constant of the d i f f e r e n t i a t o r [msec], 75 G Q = i n p u t g a i n of c o r r e l a t o r , G|Y| = g a i n of measuring a m p l i f i e r , S = microphone s e n s i t i v i t y [ V /N/m 2]. C c ( T ) i s recorded on an x - y - p l o t t e r ( s e n s i t i v i t y S x y [ V / i n ] ) , the p l o t t e d f u n c t i o n C (T) i s measured i n i n c h e s . Then: S x y C ( T ) = e A e Q S c , p ™ p ( r ) = S . „ C ( T ) < S A 6 M A R C G C A " S B G M B G C B ) S C N o n d i m e n s i o n a l i z a t i o n i s e f f e c t e d by d i v i d i n g the f a r f i e l d a c o u s t i c pressure by 2 (0.5^0-2) M 2D/x Q, the hydrodynamic pressure f l u c t u a t i o n by 0.5/3U2, time and time d e l a y by D/U Q. Using the second form of Eg. (4.9), Eg. (4.8) i s nond i m e n s i o n a l i z e d : p p ( r ) { 2 ( 0 . 5 ^ U 2 ) M 2 D / x o } 2 -PC0> (Uo/D) 2 r r a a ospu? P -I 3 4 T T C O 2 X o 2 M 2 D / X O Jy L a ( r ^ ) a(tuyD) { 2 ( 0 .5/>U 2)M 2D/x o } - y The nondimensional i n t e g r a n d [...]» i s e x t r a c t e d from the measured c r o s s c o r r e l a t i o n data. 76 B.2 Image Technigue The s i g n a l flow i s n e a r l y the same as i n Fig.4-19; we s u b s t i t u t e a q u a r t e r i n c h microphone f o r the f o i l p ressure sensor and omit the d i f f e r e n t i a t o r . Then: , , S x y C M p p( T ) = 1  S S A GMA GCA S B G M B G C B S C Sinc e i t was determined t h a t ps s c a l e s much the same way as p, p s i s n o n d imensionalized by the same q u a n t i t y (3.13) except that x G i s r e p l a c e d by h, the d i s t a n c e of the s u r f a c e from the j e t a x i s . Equation (3.10) becomes: 7 {2(0.5 PU o 2 ) M 2 D / x c } 4 cos 8 ( l l / D ) f \-A P§ P _ _ l d S J L.dfru/D) ?(0.5oU 2)M 2D/h 2(0.5 oM 2)M 2D/x k 4TTC OX h/xQ s (T  2 / 3U o 2) 2D/h 2(0.5 / 0U 2 )M 2D/H = 0.325 ( t y p i c a l ) , 8 - 55°, h/D = 5.17. (See Fig.B-1.) The nondimensional i n t e g r a n d [ ... ] ^ was e x t r a c t e d from the measured c r o s s c o r r e l a t i o n data by a computer program. The i n t e g r a t i o n was done by hand. 77 Appendix C Of The Shajse Of The Cross C o r r e l a t i o n Function^ The procedure i s s i m i l a r to the one o u t l i n e d by Siddon (1970, 1973a). Eg. (4.6) i s r e w r i t t e n : -Pc"(x,t') = - ~ i r - ' / ^ ( y ' . t ' - r ^ ) d 3 y ' ( c . i , Eg. (4.7) was o b t a i n e d by m u l t i p l y i n g both s i d e s of Eg. (4.6) by p ( x , t ) . Here, we are i n t e r e s t e d i n p r e d i c t i n g the shape of the f u n c t i o n P ( 0 ) p C n , so we m u l t i p l y Eq. (C. 1) by pt o > (j, t - r / c Q ) and time average. On the r i g h t hand s i d e the f a c t o r can be taken under the i n t e g r a l s i g n because the i n t e g r a t i o n i s with r e s p e c t to j ' : p c w ( y , t - r / c o ) p ( x , t ' ) = ( C 2 ) / p C W ( y , t - r / c J p C 0 V , t ' - r ' / c o ) d 3/ 4TTC O 2X V. Retarded time d i f f e r e n c e s due to r#r' can be neglected i n low speed f l o w s , s i n c e the a c o u s t i c wavelengths are g e n e r a l l y l a r g e compared with c o r r e l a t i o n s c a l e s ( L i g h t h i l l 1962), i . e . , we s e t r=r«. Assuming t h a t a l l v a r i a b l e s are s t a t i o n a r y random f u n c t i o n s and with T=t'-t we get: 78 p c 0 )(y,t-r/c o) p(x,f) = p""p (x,yir+r/c 0) CO). (C.3) p^(y,t-r/c 0) pC05(y' tt'-r>co) = pc0> p C 0 ?'(C ,y,r) , u , _ dr where £=y' ~ Y. Hence p < 0 , p U + r/c.) = - T - 1 ! - f-jj- P C 0 5 p C O 5 , ( C , y , T ) d 3 £ ( c . 5 ) 477"C0 x v 0T We s e l e c t a f u n c t i o n a l form f o r the c o r r e l a t i o n p * 0 ^ * 0 * 1 which e x h i b i t s the property of c o n v e c t i n g decay as space s e p a r a t i o n and time delay are i n c r e a s e d : p c o y o ) . = pco>2 f l ^ - u ^ J / L ^ / L ^ ^ / L ^ r / T } (c.6) (the 1 - d i r e c t i o n i s the d i r e c t i o n of motion f o r the t u r b u l e n c e s t r u c t u r e with c o n v e c t i o n v e l o c i t y U c ) . The f u n c t i o n f has the p r o p e r t i e s : (1) f (|=0, T=0) = 1 (2) f # T ^ > 0 f o r arg —> 00 , s u f f i c i e n t l y r a p i d l y f o r o a r g a l l i n t e g r a l s to converge. (3) | f (arg=0) | > | f (| arg | >0) | (4) f (arg) = f (-arg) 79 (5) f and are continuous, d org where arg stands f o r any of the 4 arguments of f . Now put Xj = C / L j > ^ T / T , a = U C T / L | . T i s some s u i t a b l e time s c a l e of no f u r t h e r concern here. *t i s a nondimensional time delay, not the r e a l time. Eg. (C.'6) becomes: p « V w = f ( x , - a t , x 2, x 3, t) (C.7) The c o n v e c t i o n of the t u r b u l e n c e i s allowed f o r i n the X| -d i r e c t i o n which i s p a r a l l e l to the j e t a x i s . There i s a l s o some c o n v e c t i o n i n the x 2- and X j - d i r e c t i o n s due to spreading of the j e t ; t h i s e f f e c t i s very s m a l l and ne g l e c t e d here. Now c o n s i d e r : d t dr d t d r T at (C.8) d co) co}' I co} 2 d rf •>> Y\ - g - p t u V = p W J -jzz f ( x , - a t , x 2, x 3, t) (C.9) dr Put x,1 =x, - a t . In what f o l l o w s — — means p a r t i a l I I d org d i f f e r e n t i a t i o n with r e s p e c t to one of the 4 arguments of f , the o t h e r s being held c o n s t a n t . Then: 80 a f _ df_ dx]_ dj_ _dx^ dj_ d x ^ dj_ a r " ^ d T + tfx2 d T + </x3 d T + dT = - a ——•= + —773- (c. 10) tfx,1 d\ ddf d ( di ,df , , d , df ^di , a 2 . dtf dx] d\ d\ dx] d\ = a — T I . - 2 a + z ( C 11) I t i s mathematically convenient to assume that f i s separable: f = f,(x}) f 2 ( x 2 ) f 3(X 3) f 4 ( T ) (C.12) and d e f i n e : CO / f:dX; = F; -CO (C.13) Then : 81 ,2 L, U U F0 F, p c w p ( r + r / 0 = - p ( 0 ) H ; 2 ? ' 2 ' 5 X 4TT C„ x T ' V f , . . d f . °R d f, . d 2 f , 0 9 x { « 2 ^ / ^ dx, - 2 a ^ f / ^ j - dx,+ ^ / f t f j d x , } ( C U ) 1 - c o d x . ' d t - i ) d x 1 . ' d T -co' ' ' J The f i r s t i n t e g r a l i s zero by property (2) and (5). Because of p r o p e r t y (4) the second i n t e g r a l v a n i s h e s . With dx (=dx^ f i n a l l y 7 V r + r / 0 = - P L '  LlL 3 F 2 T F | ( C I S ) 4-TTC^XT* d t * p<°>p i s independent of c o n v e c t i o n f o r any f| s a t i s f y i n g p r o p e r t i e s ( 1 ) - ( 5 ) . I t depends very s t r o n g l y on T and the f u n c t i o n £4 which together d e s c r i b e the decay p r o p e r t i e s of the t u r b u l e n c e . For a nondecaying f r o z e n convected p a t t e r n £4 i s a c o n s t a n t ; no sound would be r a d i a t e d . For a flow to produce a c o u s t i c output i t i s necessary that p a t t e r n s are generated and then decay. I f we make the r a t h e r s p e c i a l assumption of a convected Gaussian f o r f : f = exp{-(x,-aT) 2 -xz - x f -T 2} (C.16) CO CO CO / f , d x , = / f 2 d x 2 = / f 3 d x 3 = J¥ (C.17) -CO -CO -CO 82 The t o t a l area under e~^ 2(1-2T 2) i s zero. T h i s means there i s no dc-component i n p<o>p as one might expect s i n c e p i s an a c o u s t i c p r e s s u r e . T h i s i s true f o r any f ^ s a t i s f y i n g p r o p e r t i e s ( D - ( 5 ) . The shape of the c r o s s c o r r e l a t i o n p<o>p can now e a s i l y be p r e d i c t e d : p - p = _ A p - p = _ £ pco> p £ T j T p c o ) 2 L, L 2 L 3 2 e - T 2 ( 3 T _ 2 T 3 } { C - i g ) 2 c c 2 x T Fig.4-24 shows a t y p i c a l measured c r o s s c o r r e l a t i o n p f C ) p and f i t t e d to i t by l e a s t squares a f u n c t i o n c f the type A e ( T> { 3 ( f ) - 2 ( f ) 3 } (C.20) I t appears t h a t the convected Gaussian f o r f i s a good assumption as the agreement i s good. Knowing the a p p r o p r i a t e c o e f f i c i e n t s from the f i t t e d f u n c t i o n one cou l d e m p i r i c a l l y estimate the r a d i a t i o n from u n i t volume. The F o u r i e r transform (equal to the c r o s s s p e c t r a l d e n s i t y ) could be obtained i n c l o s e d form without r e c o u r s e to numerical transform techniques. 83 Appendix C Probe Contamination Ratio When a probe i s i n s e r t e d i n t o a t u r b u l e n t flow the i n t e r a c t i o n of the flow with the probe s u r f a c e c r e a t e s n o i s e of a d i p o l e nature. I t superposes i t s e l f on the guadrupole sound r a d i a t e d from the flow i t s e l f . For the c r o s s c o r r e l a t i o n measurements u s i n g the c a u s a l i t y p r i n c i p l e i t i s necessary to minimize t h i s d i p o l e r a d i a t i o n . The reader may r e c a l l that d i p o l e s are more e f f i c i e n t e m i t t e r s than guadrupoles of s i m i l a r s t r e n g t h , i . e . , even a s m a l l probe s u r f a c e may be a b l e to c o n s i d e r a b l y d i s t o r t a c o u s t i c measurements. The probe contamination r a t i o C to be d e f i n e d here i s a number by which the a c o u s t i c a l performance of a probe i n a t u r b u l e n t flow with given p r o p e r t i e s can be e v a l u a t e d . D.1 R a d i a t i o n from One Coherent Eddy with c o r r e l a t i o n volume V c (no probe i n the f l o w ) . I t f o l l o w s from Eg. (4.15) and Eg. (4.23) t h a t : D. 2 Probe I n t e r a c t i o n Noise.. Assuming that the probe does 84 not move and that shear s t r e s s e s r a d i a t e n e g l i g i b l e sound (see s e c t i o n D.5), and using Eg.(3.2) and Eg.(3.5), only the second i n t e g r a l of Eq. (1.2) i s l e f t . I t becomes i n the f a r f i e l d : p. = - i f c V H p s ] ^ where the s u b s c r i p t "d" i n d i c a t e s d i p o l e type r a d i a t i o n , /? i s the angle between the normal t o the s u r f a c e S and the d i r e c t i o n of r a d i a t i o n , and p g i s the s u r f a c e normal pressure. A f t e r squaring and time averaging, and s e t t i n g cos/3 = 1 f o r the worst case, Eq. (D.2) becomes: I f the process i s s t a t i s t i c a l l y s t a t i o n a r y and the s u r f a c e i s s m a l l compared with a t y p i c a l wavelength, the brackets [..-] i n d i c a t i n g e v a l u a t i o n a t r e t a r d e d time can be dropped i n t h i s c a s e. Assuming t h a t p s i s w e l l c o r r e l a t e d ever the s u r f a c e of the probe ( i . e . i t i s at l e a s t c o n t a i n e d i n a c o r r e l a t i o n volume), the i n t e g r a l s i n Eg.(D.3) r e p r e s e n t nothing e l s e but the mean squared d e r i v a t i v e of the f l u c t u a t i n g l i f t f o r c e exerted on the probe. We can use unsteady a i r f o i l theory to estimate the l i f t L i f the d i s t u r b a n c e v e l o c i t i e s are s m a l l compared to the mean flow U, and i f the probe shape comes c l o s e to a s l e n d e r body shape. The requirements are not too s t r i n g e n t as the probe contamination r a t i o i s onl y a rough estimate designed to gain some f e e l i n g f o r the amount of d i p o l e " p o i s o n i n g " . C L i s the unsteady l i f t 85 c o e f f i c i e n t , a i s the in s t a n t a n e o u s angle of a t t a c k : L ( t ) 0 . 5 y O U 2 S p C L 0 . 5 / ) U 2 S p - ^ - a ( t ) (D.4) d C I t i s w e l l known t h a t the l i f t curve slope L- depends on the da wavenumber of the i n c i d e n t d i s t u r b a n c e [ S e a r s (1941) f u n c t i o n , see a l s o Liepmann' 1952, p. 796 ; and- see Fig.4-25]. Most probes can be g e n e r a l l y regarded as low aspect r a t i o f i n i t e wings f o r d Ci which the v a r i a t i o n of L with the wave number i s only moderate, as i n d i c a t e d t y p i c a l l y by the dashed l i n e i n Fig.4-25. k value of 2 i s t h e r e f o r e used f o r the l i f t curve s l o p e i n the subseguent c a l c u l a t i o n s . With a(t) ^ v ( t ) / U (C.5) (v i s the component of the v e l o c i t y d i s t u r b a n c e p e r p e n d i c u l a r to U i n the plane t h a t c o n t a i n s the d i r e c t i o n of r a d i a t i o n ) Eg.(D.4) becomes a f t e r d i f f e r e n t i a t i n g with r e s p e c t to time, s g u a r i n g , and time a v e r a g i n g : which i s an estimate of the product of the two i n t e g r a l s i n Eg. (D.3). T h e r e f o r e : pZ ~ , ^ 2 2 2 ( D * 7 )  d 16 7T 2 c 2 x 2 D.3 D e f i n i t i o n of Probe Contamination Ratio.. We now d e f i n e the probe contamination r a t i o as the r a t i o between the mean squared a c o u s t i c pressure due to d i p o l e type r a d i a t i o n from the probe s u r f a c e to the mean squared a c o u s t i c pressure due to guadrupole type r a d i a t i o n from the adjacent eddy of f l u i d : ' C = p j / p ^ ' (D.8) 86 Combining Eq.(D.1), Eq. (D.6) , and Eq. (B.7): , _ U _ f / p c 2 S P x-c (you/) 2c .2 -2 C 0 For low speed flows the d e n s i t y p can be regarded constant and then c a n c e l s out i n Eg. (D.9). D.4 Estimates f o r a Low Speed Turbulent J e t T h e p o i n t 4 diameters downstream and h a l f a diameter from the a x i s i s chosen as r e p r e s e n t a t i v e . There, the mean v e l o c i t y U i s about 0.6U o, where U „ i s the e x i t v e l o c i t y . I t i s assumed that v r m ( ? — u r__. — ° 1 rms rms 0.15U q, and th a t d i f f e r e n t i a t i o n with r e s p e c t to time can be r e p l a c e d by m u l t i p l y i n g by 2irv m 27r0.2U/L c, where L c i s the c o r r e l a t i o n l e n g t h , and i s qiven bv L_ — 0.13x (x i s measured i n diameters from the e x i t ) (from Laurence 1957). I f the c o r r e l a t i o n volume i s imagined as an e l l i p s o i d with minor axes 1/3 of the major then V c— L£. T h e r e f o r e Eq.(D.9) becomes: /0.6U o\2 4 S D 2 (277-i/)2 V 2 C - (-7-0) <V 5_ — = - (D.10) A l s o (from Siddon 1969): v* ^  2v"2 (D.11) (note t h a t f o r a Gaussian: v~* = 3v* ) S 2 c 4 " C * ( 0 . 6 M ) 2 \ ^ T = L ° (277-0.2 0.6U o /L c ) 2 2(0. l5U o ) 2 14 / Sp (-tV) M 2 * L c I f we d e s i r e t h a t C be l e s s than 0.1 f o r good accuracy, we must 87 r e q u i r e t h a t For x=4D, L. —D/2. Then we need S p < D2M/48 e In the experiments d e s c r i b e d i n t h i s t h e s i s : D=38.1 mm, M=0.32: S p < 9.7 mm2 (D.13) For c y l i n d r i c a l probes S p can be r e p l a c e d by an " e f f e c t i v e " area because the pressure f l u c t u a t i o n s due to the t u r b u l e n t c r o s s v e l o c i t i e s are c o n c e n t r a t e d near the nose of the probe as shown i n Fig.4-26. Assuming t h a t S p i s egual to 2 d 2 (where d i s the diameter of the probe) d would have to be 2.2 mm or l e s s , a very s m a l l s i z e f o r a dynamic pressure sensor. In a d d i t i o n , the 90° bend downstream of the s e n s i n g elements would c r e a t e a d d i t i o n a l n o i s e by flow s e p a r a t i o n and vortex shedding. The pressure probe d e s c r i b e d i n s e c t i o n IV of t h i s t h e s i s has a c r o s s s e c t i o n a l area of about 10 mm2, thus b a r e l y s a t i s f y i n g Eq. (D. 13). However, the c a l c u l a t i o n s here are done f o r x=4D. C l o s e r to the j e t e x i t the requirements become more s t r i n g e n t and the present probe may be r a d i a t i n g a s i g n i f i c a n t amount of d i p o l e n o i s e . D.5 Is the Skin F r i c t i o n Indeed Unimportant f o r the F o i l Probe? The r a d i a t e d sound due to s k i n f r i c t i o n or shear s t r e s s i s o b t a i n e d by c o n s i d e r a t i o n s s i m i l a r to the ones a r r i v i n g at Eq. (D.3) : 88 P.r = ,, 2 ' 2 2 I [+] d S / , [ T ] ' d S ' ' " " " I 16 7r c Q x s s [from the t h i r d term i n the second i n t e g r a l of Eg, (1.2) ] Tinder the same assumptions as f o r the l i f t f o r c e case the 2 i n t e g r a l s r e s u l t i n W2, the mean square d e r i v a t i v e of the drag f o r c e W. The Reynolds number Re i s based on the chord l e n g t h of the probe b=9.85 mm, the mean v e l o c i t y U=0.6Uo= 66 m/sec, and the kinema t i c v i s c o s i t y of the a i r at 20°C z>=14.9*10~6 m 2/sec: Re = bU/i/ = 4.36*10* < 5*10^ = Re f r (D. 15) where Re t r i s the Reynolds number f o r t r a n s i t i o n , i . e . the boundary l a y e r i s laminar. For a rough estimate of the quasi steady drag f l u c t u a t i o n we use B l a s i u s ' Law f o r the laminar s k i n f r i c t i o n c o e f f i c i e n t c w , although i t i s s t r i c t l y a p p l i c a b l e only t o a f l a t p l a t e : c w = 1.328//Re~ (D. 16) then, the i n s t a n t a n e o u s drag f o r c e becomes: W=CWS 0, 5/o (D + u) 2= 1 3 2 8 S 0.5/o(U2 + 20u+~0) (D. 17) f v Re pf where Sp^ i s now the upper s u r f a c e area of the f o i l ; u i s the v e l o c i t y f l u c t u a t i o n i n the mean flow d i r e c t i o n . Eg. (D.17) becomes a f t e r d i f f e r e n t i a t i n g , s q u a r i n g , and time a v e r a g i n g : -89 (1.328 S poU)^ — W 2 - f U 2 (D.18) Re We now d e f i n e the probe contamination r a t i o f o r s k i n f r i c t i o n f l u c t u a t i o n s by analogy to Eg. (D.8) : C f r = H /Pvc" ( D ' 1 9 ) Combining Eg. (D.19) and Eg. (D.1): _ (P^f u2 JL76_ 2 Q  c f r - IcJ I v c i ; — R e ( D ' 2 0 ) Assuming u 2 — v"2, using Eg. (D.9) , and p u t t i n g S p f — IOSp f o r the present probe: C„ - C ( D . 2 1 , Eg. (D.21) shows that the probe contamination r a t i o f o r s k i n f r i c t i o n i s very much s m a l l e r than the one f o r sound r a d i a t e d due to f o r c e s normal to the s u r f a c e . Shear s t r e s s e s are t h e r e f o r e unimportant i n the d i p o l e n o i s e c a l c u l a t i o n s a f f e c t i n g the present f o i l type pressure sensor. S i n c e C r^ i s about 2 o r d e r s of magnitude s m a l l e r than C, d i p o l e noise due to shear s t r e s s e s i s probably h a r d l y ever of any importance i n low speed t u r b u l e n t a i r flo w s . 90 F i g . 3 - 1 Image geometry 91 F i g . 3 - 2 Nondimensional spectrum o f j e t no i se at 45 to j e t a x i s , (a) i s o l a t e d j e t , (b) w i th su r face S 1 behind the j e t . (computer p l o t ) 92 F i g . 3 - 3 M i c r o p h o n e m o u n t i n g . 1: % - i n c h B r u e l & K j a e r m i c r o -phone, 2: b r a s s s l e e v e , 3: % - i n c h t h i c k p l e x i g l a s s p a n e l . 93 Fig. 3-4 T y p i c a l c ross c o r r e l a t i o n f u n c t i o n between su r f ace pressure p and f a r f i e l d p ressure p. D e r i v a t i v e to be e v a l u a t i d a t T= r / c 0 . No t i ce p recu rso r to the l e f t . F i g . 3 - 5 R e l a t i o n s h i p between s u r f a c e p r e s s u r e p $ and e x i t v e l o c i t y U Q. H = s e t t l i n g chamber p r e s s u r e i n meters o f w a t e r . U1 20 IS 12 8 4 F i g . 3 - 8 Equal s o u r c e s t r e n g t h c o n t o u r s f o r 6=60° VO, 98 far field F i g . 3 - 9 Zone o f I n f l u e n c e . A n g l e o f a p e r t u r e o f t h e dashed cone n o t known. 99 F i g . 3 - 1 0 3 t y p i c a l p ^ p ( x ) a t d i f f e r e n t downstream p o s i t i o n s x. D i s t a n c e j e t a x i s t o s u r f a c e i s 5.17D. p s measured d i r e c t l y o p p o s i t e o f j e t a x i s , p measured i n f a r f i e l d a t 45° t o j e t a x i s , (computer p l o t ) F i g . 3 - 1 2 " S l i c e w i s e " i n t e g r a t e d s o u r c e s t r e n g t h f o r 9=45° 102 F i g . 4 - 1 E x n e r i m e n t a l s e t u o o f c a u s a l i t y c o r r e l a t i o n t e c h n i q u e . P r e s s u r e s e n s o r measures p(°)(t), microphone i n t h e f a r f i e l d measures D U ) ( t ) . . I) = e x i t v e l o c i t y . origin F i g . 4 - 2 Geometry uu(i) 4 space separation £ F i g . 4 - 3 D e f i n i t i o n o f c o r r e l a t i o n l e n g t h L 104 F i g . 4 - 4 C l a s s i c a l c y l i n d r i c a l probe c o n f i g u r a t i o n . Upper p a r t : p r e s s u r e d i s t r i b u t i o n due t o c r o s s f l o w , f u l l l i n e : 40 < Reynolds number < 40000, dashed l i n e : p o t e n t i a l f l e w . Lower p a r t : V i n s t a n t a n e o u s v e l o c i t y v e c t o r , V a x i a l component, V c r o s s f l o w component, a n 105 F i g . 4 - 5 T y p i c a l c r o s s c o r r e l a t i o n between f l u c t u a t i n g p r e s s u r e i n t h e j e t p(°) and a c o u s t i c p r e s s u r e p, c o n t a m i n a t e d by d i p o l e n o i s e : T u r b u l e n c e i n d u c e s a f l u c t u a t i n g l i f t on t h e nose o f t h e c y l i n d r i c a l probe s e n d i n g o f f a d i -p o l e p u l s e . Dashed l i n e : e f f e c t o f s h o r t e n i n g nose p i e c e . P r i n c i p l e o f a r r a n g i n g f o i l probe i n t h e f l o w ( d i s t a n c e s and s i z e s n o t p r o p o r t i o n a t e ) : P l a n e o f f o i l c o n t a i n s mean f l o w d i r e c t i o n and d i r e c t i o n o f r a d i a t i o n toward f a r f i e l d m icrophone ( r i g h t ) . L o c a t i o n s o f p r e s s u r e s e n s i n g h o l e s on a i r f o i l : ( a) s u p e r s o n i c , (b) s u b s o n i c . The measured p r e s s u r e i s t h e average between t h e p r e s s u r e s on t h e upper and t h e l o w e r s u r f a c e . 108 Fig.4-8 S u b s o n i c a i r f o i l . Upper p a r t : f o i l c r o s s s e c t i o n and d i s t r i b u t i o n o f p r e s s u r e c o e f f i c i e n t due t o t h i c k n e s s . Lower p a r t : c p due t o t h i c k n e s s and a n g l e o f a t t a c k , c : upper s u r f a c e , c_,: l o w e r s u r f a c e . V o C o n t a m i n a t e d and u n c o n t a m i n a t e d c o r r e l a t i o n s and t h e i r F o u r i e r t r a n s f o r m s . p(°) d e t e c t e d a t x=3D, r=0.4D; p measured a t 45 t o j e t a x i s . C urve a: fi(°)p (p(°) measured by f o i l t y p e s e n s o r ) , c u r v e b D ( ° ) D (p(°) measured by 1 / 8 - i n c h m i c r o p h o n e w i t h s h o r t nose p i e c e . Curve c ? o u r ? e r t r a n s f o r m o f a , c u r v e d: F.T. o f b. T t i m e d e l a y , v f r e q u e n c y . F i g . 4 - 1 0 V e l o c i t y v e c t o r s on a i r f o i l probe 112 F i g . 4 - 1 2 D e t a i l e d d r a w i n g o f f o i l t y p e p r e s s u r e s e n s o r . 1 b a l s a l e a d i n g edge s e c t i o n , 2 s e n s i n g h o l e , 3 s t a i n l e s s s t e e l t u b i n g , 4 c o t t o n w o o l , 5 t e f l o n c o n n e c t o r , 6 1/8-inch B r u e l & K j a e r m i c r o p h o n e . 0.020" 0.010 ---.2 -./ w- component ./ ^ .2 tana -0.010 0.005 v- component -0.010  J-F i g . 4 - 1 3 S t a t i c p r e s s u r e c a l i b r a t i o n s o f f o i l t y p e p r e s s u r e s e n s o r shown i n F i g . 4 - 1 2 . cq = {?m - P t)/(0.5pU£). v-component: a n g l e o f a t t a c k a i n the p l a n e o f t h e f o i l , w-component: a p e r p e n d i c u l a r t o p l a n e o f f o i l . 114 location of pressure tap F i g . 4 - 1 4 E s t i m a t e d p r e s s u r e d i s t r i b u t i o n o v e r f o i l w i t h d i p n e a r t h i c k e n i n g t r a i l i n g edge. F i g . 4 - 1 6 Frequency r e s p o n s e o f f o i l t y p e p r e s s u r e s e n s o r . 117 compressor anechoic room S c h e m a t i c o f a u x i l i a r y equipment F i g . 4 - 1 8 V a r i a t i o n o f p r e s s u r e f l u c t u a t i o n w i t h d i s t a n c e from j e t , s t a r t i n g a t 4 d i a m e t e r s downstream i n t h e j e t and p r o c e e d i n g a t r i g h t a n g l e s t o the j e t a x i s . Channel A Channel B 119 preamplifieF p (o:>(t)[N/m2] p(t)[N/m2] ^ 2 1/8 "microphone i SA [v/N/m2] measuring amplif. gain 6MA differentiator, time constant RC CmsecJ SB [^N/m2J l measuring amplif. gain G^B i HP filter Cr(z)[v] input gains 'CA 'CB *A(t)[v] yB(»[v] CORRELATOR Sr[l/V] e7e^(v)LV2J A^B graphical deck of punched digitizer cards F i g . 4 - 1 9 S i g n a l f l o w 122 F i g . 4 - 2 2 a Some t y p i c a l n o n d i m e n s i o n a l i z e d c a u s a l i t y c o r r e l a t i o n f u n c t i o n s p ^ p a t h d i a m e t e r from t h e j e t a x i s , down-s t r e a m p o s i t i o n x v a r y i n g . P l o t t e d h i n c h above i s f i t t e d 7 t h o r d e r p o l y n o m i a l , ( c o m p u t e r p l o t ) 123 x = ID I O F i g . 4 - 2 2 b Some t y p i c a l c r o s s s p e c t r a ( S i n e t r a n s f o r m o f f u n c t i o n s shown i n F i g . 4 - 2 2 a , m u l t i p l i e d by f r e q u e n c y ) (computer p l o t ) 124 F i g . 4 - 2 3 Peak f r e n u e n c i e s v e r s u s downstream p o s i t i o n . F i g . 4 - 2 4 Measured c a u s a l i t y c o r r e l a t i o n p^ 'p ( c rosses ) and f i t t e d to i t the p r e d i c t e d f u n c t i o n . 126 k&(4 chordlengthsF' waven. k steady case F i g . 4 - 2 5 L i f t c u r v e s l o p e as a f u n c t i o n o f wave number (Se a r s f u n c t i o n ) '^^pressure distribution estimated effective chordlength ~2d F i g . 4 - 2 6 E f f e c t i v e c h o r d l e n g t h on c y l i n d r i c a l p r o b e . 127 -1 1 1 —t 1 g * — 0 0.5 1.0 1.5 vD/U0 F i g . 4 - 2 7 N o n d i m e n s i o n a l s p e c t r a l d e n s i t y o f t h e "pseudosound" p(°^ a t 4D downstream, %D from j e t a x i s , as measured w i t h f o i l t y p e s e n s o r . 128 F i g . 4 - 2 8 D i r e c t l y measured and i n t e g r a t e d s p e c t r u m a t 45 i n t h e f a r f i e l d . Comparison by shape o n l y . 129 Fig.B-1 Image geometry t o s c a l e 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0101154/manifest

Comment

Related Items