Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Distributional ecology of the calanoid copepod Pareuchaeta elongata esterly Evans, Marlene Sandra 1973

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1973_A1 E93.pdf [ 6.25MB ]
Metadata
JSON: 831-1.0101110.json
JSON-LD: 831-1.0101110-ld.json
RDF/XML (Pretty): 831-1.0101110-rdf.xml
RDF/JSON: 831-1.0101110-rdf.json
Turtle: 831-1.0101110-turtle.txt
N-Triples: 831-1.0101110-rdf-ntriples.txt
Original Record: 831-1.0101110-source.json
Full Text
831-1.0101110-fulltext.txt
Citation
831-1.0101110.ris

Full Text

»S 1.14-  THE DISTRIBUTIONAL ECOLOGY OF THE CALANOID COPEPOD PAREUCHAETA ELONGATA ESTERLY  by Marlene Sandra Evans  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY  i n t h e Department o f Zoology and  I n s t i t u t e o f Oceanography  We accept t h i s t h e s i s as conforming t o t h e r e q u i r e d s t a n d a r d  THE UNIVERSITY OF BRITISH COLUMBIA J a n u a r y , 1973  In p r e s e n t i n g an the  advanced degree at Library  I further for  this thesis  shall  the  of  this thesis  written  University  of B r i t i s h  permission  s c h o l a r l y p u r p o s e s may his  f u l f i l m e n t of  make i t f r e e l y a v a i l a b l e  agree t h a t  by  in partial  representatives.  be  permission.  Department  of  The U n i v e r s i t y o f B r i t i s h V a n c o u v e r 8, Canada  the  Columbia  s h a l l not  Columbia, I agree and  copying of Head o f my  It i s understood that  for f i n a n c i a l gain  requirements  for reference  for extensive  g r a n t e d by  the  be  that  study.  this  thesis  Department  copying or  for  or  publication  allowed without  my  ABSTRACT  Many f i e l d  and l a b o r a t o r y s t u d i e s t e s t i n g the growth o f  p h y t o p l a n k t o n and the s u r v i v a l o f the e a r l y developmental stages o f zooplankton and b e n t h i c organisms have shown t h a t sea waters t h a t are a l i k e i n s a l i n i t y and temperature are n e v e r t h e l e s s d i f f e r e n t i n other p r o p e r t i e s ( q u a l i t i e s ) .  These d i f f e r e n c e s i n q u a l i t y may be  associated with v a r i a t i o n s i n the concentrations elements and o r g a n i c s .  o f dissolved trace  The c o n c e n t r a t i o n o f a t r a c e element o r o r -  g a n i c may have b e n e f i c i a l o r h a r m f u l e f f e c t s on marine o r g a n i s m s . Bary (1963) suggested t h a t , i n c e r t a i n a r e a s , these v a r i a t i o n s i n t h e p r o p e r t i e s o f s e a waters may be s u f f i c i e n t l y g r e a t , and t h e t o l e r a n c e , o f zooplankton s u f f i c i e n t l y s m a l l , .for s p e c i e s to be r e s t r i c t e d t o various waters.  These w a t e r s , c a l l e d water b o d i e s , were d e s c r i b e d  by t h e i r temperature and s a l i n i t y c h a r a c t e r i s t i c s and t h e d i s t r i b u t i o n o f s p e c i e s was d e s c r i b e d i n r e l a t i o n t o these water b o d i e s . Many o f the s p e c i e s Bary.(1963) s t u d i e d were a t t h e n o r t h e r n ' most o r southern-most boundaries o f t h e i r geographic r a n g e s .  I t was  the purpose o f t h i s study t o i n v e s t i g a t e whether o r n o t , w i t h i n t h e g e o g r a p h i c range o f an organism, v a r i a t i o n s i n water q u a l i t y are an important environmental v a r i a b l e i n d e t e r m i n i n g and  distribution.  a s p e c i e s '• abundance  The study organism was the c a l a n o i d copepod  Pareuchaeta e l o n g a t a .  Lewis and Ramnarine (1969) had shown t h a t , i n  the l a b o r a t o r y , the egg and the p r e f e e d i n g n a u p l i a r stages were s e n s i t i v e t o v a r i a t i o n s i n water q u a l i t y .  The The  b i o l o g i c a l p o r t i o n o f t h i s study c o n s i s t s o f t h r e e p a r t s .  f i r s t p a r t i s the r e s u l t s o f t h r e e survey  c r u i s e s o f t h e waters  o f the i n l e t s o f the B r i t i s h Columbia m a i n l a n d , .the west coast o f Vancouver I s l a n d , the c o n n e c t i n g p a s s a g e s , and t h e P a c i f i c Ocean. S i x groups o f water were i d e n t i f i e d on the b a s i s o f the s i m i l a r i t y i n the t e m p e r a t u r e - s a l i n i t y c h a r a c t e r i s t i c s o f t h e i r s u b s u r f a c e The  results  i n d i c a t e t h a t P. e l o n g a t a i s capable o f b r e e d i n g  waters.  in all  the waters s t u d i e d , thus s u g g e s t i n g t h a t v a r i a t i o n s i n . t h e s p e c i e s ' abundance a r e u n r e l a t e d t o v a r i a t i o n s i n water q u a l i t y .  Variables  which may a f f e c t the s p e c i e s ' abundance were suggested as b e i n g  asso-  c i a t e d w i t h t h e p r i m a r y p r o d u c t i o n o f t h a t a r e a , and t h e o r i g i n and the r e s i d e n c e time o f the water i n t h a t The  area.  one-year l a b o r a t o r y s t u d y , t e s t i n g P.',elongata  egg c l u s t e r s  i n v a r i o u s n a t u r a l sea w a t e r s , . i n d i c a t e d t h a t t h e r e were d i f f e r e n c e s i n the s u r v i v a l among egg c l u s t e r s from v a r i o u s a r e a s .  I t was a l s o  shown, by t e s t i n g egg c l u s t e r s from one area i n a number o f seawaters o f s i m i l a r s a l i n i t i e s , - t h a t t h e r e were v a r i a t i o n s i n t h e q u a l i t y - o f these w a t e r s . Egg  c l u s t e r s were c o l l e c t e d from G.S.-l  ( i n the S t r a i t o f  Georgia) and I n d i a n Arm, and were t e s t e d i n t h e i r home water once a month over a 12-month p e r i o d .  F i e l d c o l l e c t i o n s were made a t these  two s t a t i o n s over a 29-month p e r i o d .  The l a b o r a t o r y d a t a were e v a l u a -  t e d i n terms o f t h e f i e l d d a t a . . The number o f n a u p l i i i n t h e water was c o r r e l a t e d w i t h the number o f eggs i n the w a t e r , and was a p p a r e n t l y not s i g n i f i c a n t l y a f f e c t e d by v a r i a t i o n s i n t h e s u r v i v a l o f t h e egg  iii-  i n i t s home water (as measured i n the l a b o r a t o r y ) . . T h i s l a c k o f any s i g n i f i c a n t e f f e c t o f v a r i a t i o n s i n s u r v i v a l was p r o b a b l y due t o the v e r y l a r g e e f f e c t o f v a r i a t i o n s ; i n egg p r o d u c t i o n .  There was a  h i g h m o r t a l i t y from the hatched n a u p l i u s t o the a d u l t . ( a p p r o x i m a t e l y 9 7 % ) , i n d i c a t i n g t h a t the m o r t a l i t y o f the egg due t o i t s i n t e r a c t i o n with the water had a small r o l e i n d e t e r m i n i n g t h e f i n a l p o pulation size.  The data suggested  t h a t v a r i a b l e s , isuch as p r e y  a v a i l a b i l i t y , and predation;/, a r e p r o b a b l y the most e f f e c t i v e  variables  i n r e g u l a t i n g t h e abundance o f t h e s p e c i e s i n t h e s e two a r e a s . In c o n c l u s i o n , w h i l e t h e d a t a showed t h a t the s p e c i e s was more abundant i n some areas than o t h e r s , t h e s e d i f f e r e n c e s c o u l d be exp l a i n e d by c o n s i d e r i n g the p r i m a r y p r o d u c t i o n o f the a r e a , and the o r i g i n and r e s i d e n c e time o f t h e w a t e r .  Although seawaters w i t h i n the  study a r e a may vary i n q u a l i t y , t h e s e v a r i a t i o n s p r o b a b l y do not s i g n i f i c a n t l y a f f e c t the abundance and d i s t r i b u t i o n o f t h e s p e c i e s .  iv TABLE OF CONTENTS Page ABSTRACT  . . . . . I.i  TABLE OF CONTENTS  .....  LIST OF TABLES  ..... v i  LIST OF FIGURES  l i v  viii  ACKNOWLEDGEMENTS  ..... ix  INTRODUCTION  .....  1  ..... •  2 7  ( i ) The concept o f v a r i a t i o n s i n t h e q u a l i t y o f s e a water ( i i ) The d i s t r i b u t i o n a l b i o l o g y o f P_. e l o n g a t a CHAPTER I: P h y s i c a l ' Oceanography o f t h e Study A r e a INTRODUCTION M a t e r i a l s and Methods ( i ) Survey C r u i s e s ( i i ) The 2-Year Study Results • . ( i ) The Survey C r u i s e s ( i i ) The 2-Year Study Summary CHAPTER I I : P_. e l o n g a t a T e m p e r a t u r e - S a l i n i t y A s s o c i a t i o n s as Determined by t h e Three Survey C r u i s e s INTRODUCTION M a t e r i a l s and Methods (i) F i e l d Procedures. ( i i ) Treatment o f t h e P. e l o n g a t a f i e l d Data Results ( i ) The abundance o f P_. e l o n g a t a i n t h e S i x Groups o f Waters ( i i ) The T e m p e r a t u r e - S a l i n i t y A s s o c i a t i o n y o f the Developmental Stages o f P. e l o n g a t a ( J u l y 1970) Discussion Conclusions CHAPTER I I I : The L a b o r a t o r y Study-An Examination o f the H a t c h i n g Success o f P_. e l o n g a t a egg c l u s t e r s i n v a r i o u s n a t u r a l s e a waters INTRODUCTION  10 . . . . . 11 11 14 . . . . . 15 15 . 18 . . . . '. • 22  ..... ..... ..... ..... .. .'. .  24 24 2525 26 28 28  . . . ./.  34 37 . . . . . 41  43 43  V T a b l e o f Contents  (cont'd)  M a t e r i a l s and Methods Tests Results ( i ) V a r i a t i o n s i n the c o n c e n t r a t i o n s o f d i s s o l v e d z i n c , manganese, c o p p e r , and n i c k e l ( i i ) F l u c t u a t i o n s i n the s u r v i v a l o f G.S.?1 and I n d i a n Arm egg c l u s t e r s i n Indian Arm, G . S . - l , and Juan de Fuca deep waters ( i i i ) S u r v i v a l o f P a c i f i c Ocean egg c l u s t e r s i n f o u r n a t u r a l sea waters ( i v ) B u t e , A l b e r n i , and Seymour Experiments (v) G.S.-l 20-meter water Summary CHAPTER IV: An e v a l u a t i o n o f the r o l e o f v a r i a t i o n s i n water q u a l i t y i n the d i s t r i b u t i o n o f P_. e l o n g a t a at I n d i a n Arm and G.S.-l INTRODUCTION M a t e r i a l s and Methods Results ( i ) The v e r t i c a l d i s t r i b u t i o n o f the n a u p l i u s and the t h i r d c o p e p o d i t e (October 1970 t o October 1971) ( i i ) Temporal v a r i a t i o n s i n the abundance o f the developmental s t a g e s ( i i i ) C o r r e l a t i o n between the number o f n a u p l i i and ( i ) the s u r v i v a l of t h e egg, and ( i i ) the number o f eggs ( i v ) The e s t i m a t e d mean m o r t a l i t i e s o f the d e v e l o p mental stages '(v) S t a b i l i t y A n a l y s i s Conclusions  Page  ..... ..... .....  44 46 48  .....  48  .....  51  .....  .....  58 61 65 >65  ..... ..... .....  70 70 72 76  .  76  .....  78  79 81 -83j . .'... • 86  BIBLIOGRAPHY  .....  APPENDIX  ...... 1.99  The s p e c i e s and g e n e r i c name o f the study organism An e x a m i n a t i o n o f P a t t e n ' s a n a l y s i s o f s t a b i l i t y  89  99 106  vi  LIST OF TABLES Page TABLE 1  TABLE 2.  TABLE 3.  TABLE 4.  TABLE 5.  TABLE 6.  The depth o f t h e water column, t h e depth o f the deepest sample, and the month o f sampling f o r the s t a t i o n s o c c u p i e d d u r i n g the t h r e e survey c r u i s e s .  . . . . . 13  The estimated number o f developmental stages o f P_. e l o n g a t a i n a l-m^ column o f water at t h e s t a t i o n s o c c u p i e d d u r i n g the May 1970 survey c r u i s e .  . . . . . 29  The e s t i m a t e d number o f the.developmental stages o f P_. e l o n g a t a i n a l-m^ column o f water a t the v a r i o u s s t a t i o n s o c c u p i e d d u r i n g t h e JuGiy 1970 survey c r u i s e .  . . . . . 30  The e s t i m a t e d number o f the developmental stages o f P_. e l o n g a t a i n a l-m^ column o f water a t the v a r i o u s s t a t i o n s o c c u p i e d d u r i n g t h e February 1971 survey c r u i s e .  ...... 31  R e s u l t s and t h e a n a l y s i s o f v a r i a n c e o f the p e r c e n t a g e h a t c h i n g o f . I n d i a n Arm egg c l u s t e r s i n I n d i a n Arm 200-m w a t e r , Juan de Fuca 200-m, w a t e r , and d i l u t e d Juan de Fuca 200-m w a t e r . • R e s u l t s and the a n a l y s i s o f v a r i a n c e o f the p e r c e n t a g e h a t c h i n g o f G.S.-l and I n d i a n Arm egg c l u s t e r s i n I n d i a n Arm 200-m water and G.S.-l 350-m w a t e r .  53  . . . . . 56  TABLE 7.  A n a l y s i s o f v a r i a n c e o f (a) t h e s u r v i v a l of I n d i a n Arm egg c l u s t e r s i n I n d i a n Arm water and G.S.-l water. (b) The s u r v i v a l o f G.S.-l egg c l u s t e r s i n I n d i a n Arm water and G.S.-l w a t e r , and (c) the s u r v i v a l o f G.S.-l egg c l u s t e r s i n I n d i a n Arm w a t e r , G . S . - l , and Juan de Fuca w a t e r . . . . . . 57  TABLE 8.  R e s u l t s and the a n a l y s i s o f v a r i a n c e o f the percentage h a t c h i n g o f Pac-6 egg c l u s t e r s i n four d i f f e r e n t sea waters.  . . . . . 59  vii  L i s t o f T a b l e s ' (cont'd) Page  TABLE 9.  TABLE 10.  TABLE 11.  TABLE 12.  TABLE 13.  TABLE 14.  TABLE 15.  TABLE 16.  TABLE 17.  R e s u l t s and t h e a n a l y s i s o f v a r i a n c e o f the p e r c e n t a g e h a t c h i n g o f Pac-8 egg c l u s t e r s i n f o u r d i f f e r e n t sea w a t e r s .  . . . . . 60  R e s u l t s and t h e a n a l y s i s o f v a r i a n c e o f the percentage h a t c h i n g o f Bute I n l e t . egg c l u s t e r s i n Bute water and G.S.-l w water.  . . . . . 62  R e s u l t s and t h e a n a l y s i s o f v a r i a n c e o f the p e r c e n t a g e h a t c h i n g o f A l b e r n i I n l e t egg c l u s t e r s i n A l b e r n i water and Juan de Fuca water.  63  R e s u l t s and the a n a l y s i s o f v a r i a n c e o f the p e r c e n t a g e h a t c h i n g o f Seymour I n l e t and I n d i a n Arm egg c l u s t e r s i n water c o l l e c t e d from t h e s e two a r e a s .  . . . . . 64  R e s u l t s o f the percentage h a t c h i n g o f G.S.-l and I n d i a n Arm egg c l u s t e r s i n G.S.-l n e a r - s u r f ace f20-m) water and G.S.-l deep (350-m) water.  . . . . . 66  The e s t i m a t e d mean time spent by P. e l o n g a t a i n t h e e g g , the s i x n a u p l i a r s t a g e s , and the s i x copepodites s t a g e s .  . . . . . 7.4  The mean number o f developmental stages at G.S.-l and I n d i a n Arm i n a 1-m^ c o l umn o f w a t e r , and t h e estimated betweenstage and cumulative m o r t a l i t i e s .  82  The a n a l y s i s o f t h e s t a b i l i t y o f t h e b i o l o g i c a l , c h e m i c a l , and p h y s i c a l v a r i a b l e s measured at G . S . - l .  . . . . . 84  The a n a l y s e s o f t h e s t a b i l i t y o f t h e b i o l o g i c a l , c h e m i c a l , and p h y s i c a l v a r i a b l e s measured at Indian Arm.  . . . . . 85  viii LIST OF FIGURES  Page FIGURE 1.  FIGURE 2;  FIGURE 3;  FIGURE 4:  FIGURE 5.  The study area showing t h e p o s i t i o n s o f the s t a t i o n s .  12  The t e m p e r a t u r e - s a l i n i t y curves f o r t h e s i x groups o f s t a t i o n s s t u d i e d d u r i n g t h e J u l y 1970 survey c r u i s e .  17  The t e m p e r a t u r e , s a l i n i t y , and d i s s o l v e d oxygen c o n c e n t r a t i o n s o f t h e water at Juan de Fuca S t r a i t , Haro S t r a i t , Boundary Passage, G.S.-l ( i n the S t r a i t o f Georgia) and I n d i a n Arm d u r i n g the study p e r i o d .  •  The t e m p e r a t u r e - s a l i n i t y a s s o c i a t i o n s o f the developmental stages o f . P_. e l o n g a t a d u r i n g the J u l y 1970 survey c r u i s e .  • •  The c o n c e n t r a t i o n s o f d i s s o l v e d z i n c , manganese, c o p p e r , and n i c k e l i n Juan de F u c a , G.S.-l and I n d i a n Arm deep waters  FIGURE 6. • The mean percentage h a t c h i n g o f P_. e l o n g a t a egg c l u s t e r s c o l l e c t e d from G.S.-l and I n d i a n Arm i n Juan de F u c a , G . S . - l , and I n d i a n Arm deep waters (March 1971 t o February 1972) . FIGURE. 7.  FIGURE 8.  FIGURE 9.  •.  20  35  49  , 5 2  The v e r t i c a l d i s t r i b u t i o n o f the n a u p l i i and o f t h e t h i r d copepodites at G.S.-l and Indian Arm (October 1970 t o October 1971).  .....  77  The estimated number o f the developmental stages o f P_. e l o n g a t a i n a l-m^ column o f water a t G.S.-l and a t I n d i a n Arm d u r i n g , the study p e r i o d .  .....  ,80  A h y p o t h e t i c a l system i n which t h e measured v a r i a b l e has p h y s i c a l s t a b i l i t y .  ^l'l'O  ACKNOWLEDGEMENTS  I would l i k e to thank my s u p e r v i s o r , D r . A.G. .'Lewis, f o r his  constant w i l l i n g n e s s to guide 'and h e l p me throughout my  study.  Thanks a r e a l s o extended t o Dr; B. McK. B a r y , who suggested many i n t e r e s t i n g ideas d u r i n g the e a r l y p a r t o f my s t u d y , and t o my committee who p r o v i d e d v a l u a b l e c r i t i c i s m s o f t h e f i r s t  draft of  the t h e s i s . • The  h e l p o f Mr. A. Ramnarine was v e r y much a p p r e c i a t e d  both at s e a and i n the l a b o r a t o r y . . Without h i s a s s i s t a n c e , t h e c o l l e c t i o n o f the data' would have been c o n s i d e r a b l y l e s s Mr. M. Storm p r o v i d e d  enjoyable.  good i n s t r u c t i o n i n t h e , . c o l l e c t i o n o f  oceanographic d a t a d u r i n g t h e e a r l y p a r t o f my s t u d y , was o f g r e a t a s s i s t a n c e i n many o f the s u r v e y c r u i s e s , and was r e s p o n s i b l e f o r performing for  most o f t h e s a l i n i t y  estimates.  I a l s o wish t o thank him  the many times he went out o f h i s way to h e l p me, .often without  my a s k i n g . The  a s s i s t a n c e o f Mr. G.. Bromley, Mr. U. Borgmann, and Mr.  G. Gardner a t s e a was v e r y much a p p r e c i a t e d .  S p e c i a l thanks a r e  extended t o Mr: G. Gardner f o r c o l l e c t i n g s e a water and egg c l u s t e r s d u r i n g the autumn and w i n t e r  o f 1971-72, and f o r making a v a i l a b l e  the oceanographic d a t a he c o l l e c t e d d u r i n g these  cruises.  I am a l s o  g r a t e f u l t o D r . P.H. LeBlond who conducted a c r u i s e f o r my b e n e f i t . I would l i k e t o thank D r . E.V. G r i l l and Mr. F.A. Whitney who r a n a l l the a n a l y s e s  o f the t r a c e element c o n c e n t r a t i o n s ,  Mr.  B. de Lange Boom who wrote the computer program f o r t h e  a n a l y s i s o f s t a b i l i t y and Mr. P.H. W h i t f i e l d who drew the i l l u s t r a tions.  The h e l p and s u g g e s t i o n s  g i v e n by D r . T.R. Parsons d u r i n g  the l a t t e r p a r t o f my s t u d i e s were v e r y much a p p r e c i a t e d . I would a l s o l i k e t o thank the Department o f Zoology f o r p r o v i d i n g me w i t h a t e a c h i n g a s s i s t a n t s h i p d u r i n g my f i r s t and  s p r i n g s e s s i o n , D r . B. McK. Bary f o r p r o v i d i n g me w i t h  winter support  d u r i n g my second s e s s i o n , and t h e I n s t i t u t e o f Oceanography f o r p r o v i d i n g me with support d u r i n g my f i r s t The  two summer s e s s i o n s .  a s s i s t a n c e , c o - o p e r a t i o n , and c o u r t e s y extended t o me  by t h e o f f i c e r s  and men o f the r e s e a r c h v e s s e l s C.S.S. V e c t o r , and  C.N.A.V. Laymore and Endeavour d u r i n g the course o f my study was v e r y much a p p r e c i a t e d . I wish to thank a l l the remaining  p e o p l e w i t h whom I have  been a s s o c i a t e d d u r i n g my s t u d y , and who have h e l p e d  o r a d v i s e d me i n  a v a r i e t y o f ways. F i n a l l y , I wish t o extend my s i n c e r e g r a t i t u d e t o my p a r e n t s for,  i n my e a r l y l i f e , p r o v i d i n g me w i t h t h e o p p o r t u n i t i e s t o c o n -  t i n u e my e d u c a t i o n , and f o r t h e i r encouragements which they w i l l i n g l y o f f e r e d throughout my s t u d i e s .  1 INTRODUCTION  A p l a n k t o n i c organism i s c a r r i e d by the water i n which i t l i v e s from one a r e a t o a n o t h e r , and i s i n c a p a b l e o f swimming a g a i n s t this current.  Because t h e range o f such organisms i s , by n e c e s s i t y ,  dependent upon c u r r e n t s , d e s c r i p t i o n s o f a s p e c i e s ' range have  fre-  q u e n t l y been made i n terms o f some o f t h e p h y s i c a l c h a r a c t e r i s t i c s ' o f t h e water i n which i t l i v e s . •  These p h y s i c a l c h a r a c t e r i s t i c s  have  been d e s c r i b e d from measurements o f temperature and s a l i n i t y , and d e f i n i t i o n has been g i v e n t o water masses, domains, and t h e v a r i o u s mechanisms which t r a n s p o r t water from one a r e a t o a n o t h e r . S p e c i e s may be a s s o c i a t e d w i t h p a r t i c u l a r water masses 1959; K r i s s  (Bieri  1960; K r i s s ejt . a l . 1960a, 1960b; McGowan 1960; B r i n t o n  1962; Fager and McGowan 1963; Johnson and B r i n t o n 1963)... They may a l s o be a s s o c i a t e d w i t h s m a l l e r volumes o f w a t e r , and the c u r r e n t s adjacent t o coasts  ( R u s s e l l 1935, 1936, 193.7, 1939; F r a s e r 1937,  1939, 1952; Marumo 1957; Sheard 1965). Marine organisms p o s s e s s a range o f t o l e r a n c e s f o r temperature and s a l i n i t y  (Kinne 1963, 1964).  W i t h i n the o c e a n i c environment,  s a l i n i t y i s p r o b a b l y not l i m i t i n g to o c e a n i c p l a n k t o n a l t h o u g h i t may be l i m i t i n g i n e s t u a r i e s  (Hopper  (Gunter 1961).  1960),  Temperature  may l i m i t t h e v i a b i l i t y or f e c u n d i t y o f zooplankton . (Hutchins  1947),  and i s l i m i t i n g t o c e r t a i n s p e c i e s c a r r i e d from warm t r o p i c a l waters i n t o the c o l d e r temperate and p o l a r r e g i o n s R e i d 1961; Woodhouse 1971).  (Somme 1929; Berner and  However, w h i l e temperature and s a l i n i t y  may l i m i t a p l a n k t o n i c s p e c i e s a t the b o u n d a r i e s o f i t s r a n g e , i t i s  less  l i k e l y t h a t temperature and s a l i n i t y v a r i a t i o n s , p e r s e . a r e  s i g n i f i c a n t v a r i a b l e s i n d e t e r m i n i n g a s p e c i e s ' abundance w i t h i n its  range.  ( i ) The concept of• v a r i a t i o n s i n the ' q u a l i t y ' o f sea waters Sea waters o f s i m i l a r s a l i n i t i e s may\have d i f f e r e n t  concen-  t r a t i o n s o f the minor e l e m e n t s , a l t h o u g h the e l e v e n major e l e m e n t s , which account f o r 99.9%  (by weight) o f the s a l t i n o c e a n i c w a t e r s ,  occur i n c o n s t a n t p r o p o r t i o n s  (Sverdrup.et a l . , ,1942).  Many o f  these minor elements are i n v o l v e d i n the more important i n o r g a n i c , and b i o c h e m i c a l r e a c t i o n s i n the marine environment These r e a c t i o n s may  (Goldberg 1965).  be important i n d e t e r m i n i n g the c o n c e n t r a t i o n s  of these d i s s o l v e d elements.  The c o n c e n t r a t i o n s o f d i s s o l v e d  nitrogen  and phosphorous i n the e u p h o t i c . z o n e a r e l a r g e l y dependent upon t h e s e r e a c t i o n s , and l a r g e l y independent o f v a r i a t i o n s i n s a l i n i t y . c o n c e n t r a t i o n s o f d i s s o l v e d copper ( A t k i n s 1953), s i l i c o n e 1954), i r o n  The  (Armstrong  (Armstrong 1959), and d i s s o l v e d o r g a n i c c a r b o n , n i t r o g e n  and phosphorous  (Duursma 1961) v a r y s e a s o n a l l y i n c e r t a i n w a t e r s .  Many o f the elements p r e s e n t i n sea water are c o n c e n t r a t e d by marine organisms  (Goldberg 1957; Bowen.1966), and have known f u n c t i o n s  (Lehninger 1950; W i l l i a m s 1953).  N i t r o g e n and phosphorous a r e the  g e n e r a l l i m i t i n g f a c t o r s to growth i n the sea ( R e d f i e l d 1958), and have been s t u d i e d at v a r i o u s l e v e l s i n the marine ecosystem  (Clowes  1938; M a r s h a l l and O r r 1927; King and Demond 1953; S e t t e 1955; Holmes et a l .  1957; Steeman and Jensen 1957; Bogorov 1958; H e i n r i c h  1962;  3  R e i d "19.62).  However, i n c e r t a i n a r e a s , o t h e r t r a c e elements  l i m i t p h y t o p l a n k t o n growth, both i n lakes 1961)  and i n the marine environment  G u i l l a r d 1959; J o h n s t o n 1963). may  may  (Lund 1950; Goldman  1960,  (Harvey 1947; Ryther and  The c o n c e n t r a t i o n o f d i s s o l v e d copper  be important t o the s e t t i n g o f o y s t e r l a r v a e  (Prytherch  1934).  D i s s o l v e d o r g a n i c s may  have s e v e r a l e f f e c t s upon the b i o t a  the marine environment  (Lucas 1938, 1947, 1949, 1961), b e i n g t o x i c  ( B a i n b r i d g e 1953; Gunter et a l . , 1948; P r o c t e r 1957),or (Chu 1946, C o l l i e r e t a l . ,  within  beneficial  1953; Rodhe 1955; P f o v a s o l i 1963;  Stephen  e i a l . . : 1961; Barber and Ryther 1969). Johnston salinities  (1963, 1964)  i n d i c a t e d t h a t sea w a t e r s ' o f s i m i l a r  (and temperatures) may  vary i n q u a l i t y , t h i s  quality  b e i n g a s s o c i a t e d w i t h the a v a i l a b i l i t y o f d i s s o l v e d t r a c e elements. He determined t h e s e v a r i a t i o n s  i n q u a l i t y by examining the growth o f  p h y t o p l a n k t o n i n s e v e r a l sea waters c o l l e c t e d from d i f f e r e n t areas and at d i f f e r e n t t i m e s .  W i l s o n (1951) and W i l s o n and Armstrong  (1952,  1954, 1958, 1961) a l s o i n d i c a t e d t h a t t h e r e were v a r i a t i o n s i n t h e q u a l i t y o f sea waters c o l l e c t e d from d i f f e r e n t a r e a s . were unable t o determine the s o u r c e o f v a r i a t i o n .  However, t h e y  Gilfillan  showed t h a t the z o o p l a n k t e r Euphausia p a c i f i c a . c o l l e c t e d  from  (1970) two  a r e a s , e x h i b i t e d d i f f e r e n t r e s p i r a t i o n r a t e s i n waters o f s i m i l a r temperatures and s a l i n i t i e s .  Few. s t u d i e s have, however, i n v e s t i g a t e d  the r o l e o f v a r i a t i o n s i n t h e q u a l i t y o f n a t u r a l sea waters i n t h e d i s t r i b u t i o n a l e c o l o g y of z o b p l a n k t o n ; a "notable; e x c e p t i o n has been the work o f Bary- (1963).  4  Bary  (1963) surveyed t h e s u r f a c e waters around Great  and s u b d i v i d e d them i n t o  'water b o d i e s ' on t h e b a s i s o f t h e i r  ature-salinity characteristics.  Britain, temper-  C e r t a i n s p e c i e s o f zooplankton were  a s s o c i a t e d w i t h p a r t i c u l a r water b o d i e s , e.g., Pareuchaeta n o r v e g i c a was  a s s o c i a t e d w i t h t h e Gold  ( N o r t h e r n ) - T r a n s i t i o n a l water b o d i e s but  not w i t h t h e Warm (Southern) water body.  S p e c i e s have been shown t o  be a s s o c i a t e d w i t h p a r t i c u l a r waters many times i n the l i t e r a t u r e , and from t h e s e a s s o c i a t i o n s a r o s e t h e concept o f i n d i c a t o r However, v e r y l i t t l e  species.  o f the .work on i n d i c a t o r s p e c i e s has attempted :  to e x p l a i n why an organism i s a s s o c i a t e d w i t h one water and n o t another . Bary  (1963) s t a t e d t h a t zooplankton-water body a s s o c i a t i o n s were  due, not t o v a r i a t i o n s i n the temperature  and s a l i n i t y o f t h e water  b o d i e s , but t o v a r i a t i o n s i n the o t h e r p r o p e r t i e s o f the w a t e r s .  A  s p e c i e s such as Pareuchaeta n o r v e g i c a s u r v i v e d i n i t s n a t i v e water body because i t was t o l e r a n t o f the p r o p e r t i e s o f t h a t water.  Converse-  l y , i t was n o t a s s o c i a t e d w i t h t h e o t h e r water b o d i e s because i t was i n t o l e r a n t o f t h e p r o p e r t i e s o f t h a t water.  The e a r l i e r work o f  W i l s o n and Armstrong had shown t h a t v a r i a t i o n s d i d o c c u r i n t h e q u a l i t y of t h e s e w a t e r s , and the l a t e r work o f Johnston c o n f i r m e d  this.  Bary's c o n t r i b u t i o n was t o h y p o t h e s i z e t h a t t h e s e v a r i a t i o n s were s u f f i c i e n t l y g r e a t , and t h e t o l e r a n c e s o f zooplankton s u f f i c i e n t l y s m a l l , f o r the s p e c i e s t o bbe l i m i t e d t o c e r t a i n  waters.  S e v e r a l c r i t i c i s m s may be made o f Bary's work o f the s p e c i e s he examined were a t t h e northern-most  (1963).  Many  or southern-  5  most boundaries of t h e i r geographic r a n g e s ; a t t h e s e b o u n d a r i e s temperature may  have been l i m i t i n g .  Bary b e l i e v e d t h a t t h i s  was  not the v a r i a b l e l i m i t i n g zooplankton to t h e i r n a t i v e water b o d i e s , because,.over  the y e a r , the s p e c i e s e x p e r i e n c e d f l u c t u a t i o n s i n tem-  p e r a t u r e and s a l i n i t y which were g r e a t e r than the v a r i a t i o n s between water b o d i e s .  As the n a t i v e water body v a r i e d s e a s o n a l l y i n tempera-  t u r e a n d . s a l i n i t y , the. zooplankton a s s o c i a t e d w i t h t h e s e waters must have had a wide temperature However, G i l f i l l a n  a n d . s a l i n i t y t o l e r a n c e over the y e a r .  (1970) showed t h a t the temperature and  salinity  t o l e r a n c e s o f the z o o p l a n k t e r Euphausia p a c i f i c a ..varied through the y e a r , w i t h the r e s u l t t h a t the t o l e r a n c e s o v e r the year were g r e a t e r than the t o l e r a n c e s i n any one  month.  An a l t e r n a t i v e e x p l a n a t i o n o f  Bary's d a t a . i s t h a t a l t h o u g h the zooplankton s p e c i e s he examined were a b l e t o t o l e r a t e changes i n . temperature and s a l i n i t y d u r i n g the y e a r , t h i s a b i l i t y t o t o l e r a t e changes.was not the same at a l l times o f the y e a r . • Because o f t h i s , temperature  and s a l i n i t y v a r i a t i o n s ,  between water b o d i e s c o u l d have been l i m i t i n g , e i t h e r because the v a r i a t i o n s were l e t h a l to the s p e c i e s , or because the s p e c i e s a v o i d e d the s u r f a c e l a y e r . a n d remained  deeper i n the water column.  Another, c r i t i c i s m o f Bary's work was  t h a t he examined o n l y  one depth i n the water column and, by t h i s . , f a i l e d t o d e s c r i b e adeq u a t e l y the dimensions o f the water b o d i e s ; the events o c c u r r i n g i n the zone o f m i x i n g between water b o d i e s , and the v e r t i c a l o f the s p e c i e s w i t h i n the water b o d i e s .  distribution  Therefore, while h i s data  6.  are open t o the i n t e r p r e t a t i o n t h a t s p e c i e s a r e a s s o c i a t e d  with  c e r t a i n water b o d i e s because o f t h e i r t o l e r a n c e s t o the p r o p e r t i e s o f these waters, the data are i n c o n c l u s i v e .  A l s o , as h i s s t u d i e s  were n o t conducted w e l l w i t h i n t h e geographic range o f most, o f the s p e c i e s he s t u d i e d , he f a i l e d t o g i v e a good evidence t h a t a s p e c i e s i s a f f e c t e d by v a r i a t i o n s i n t h e p r o p e r t i e s o r q u a l i t y o f t h e water within i t s range. The  purpose o f t h i s s t u d y i s t o t e s t Bary's. h y p o t h e s i s by  i n v e s t i g a t i n g whether o r n o t t h e c a l a n o i d copepod Pareuchaeta  elongata  i s a f f e c t e d by temporal and s p a t i a l v a r i a t i o n s i n the . p r o p e r t i e s o f water b o d i e s .  T h i s s p e c i e s i s an i d e a l s t u d y organism f o r many r e a -  s o n s . , Lewis and Ramnarine  (1969) showed t h a t t h e egg c l u s t e r was  s e n s i t i v e t o v a r i a t i o n s i n water q u a l i t y .  These c l u s t e r s were r e a r e d  i n t h e i r n a t i v e w a t e r , and experiments conducted once a month over a 12-month p e r i o d i n d i c a t e d t h a t t h e r e were temporal v a r i a t i o n s i n t h e s u r v i v a l o f the eggs.  T h i s suggested t h a t t h e r e were temporal v a r i a -  t i o n s i n the q u a l i t y o f sea water.  S u r v i v a l c o u l d be enhanced a t  c e r t a i n times o f the y e a r by the a d d i t i o n o f t r a c e elements o r t h e s y n t h e t i c c h e l a t o r EDTA t o t h e s e a water. U n l i k e Euphausia p a c i f i c a , which G i l f i l l a n  (1970) showed t o  be s e n s i t i v e t o water q u a l i t y , P ar euchacta e1on gat a breeds a l l year round.  I t i s p o s s i b l e t o c o l l e c t a l l t h e developmental s t a g e s . e a c h  month, and t o observe changes i n t h e i r d i s t r i b u t i o n . e l o n g a t a has been c a p t u r e d  A l t h o u g h P_.•  i n many areas i n t h e open and c o a s t a l  North P a c i f i c , i t has g e n e r a l l y been captured, i n v e r y  low numbers;  7  c o n v e r s e l y , t h e s p e c i e s o c c u r r e d i n l a r g e numbers i n t h e S t r a i t o f Georgia. bodies  T h i s suggested t h a t P_. e l o n g a t a s u r v i v e s best i n water  such as those a s s o c i a t e d w i t h the S t r a i t o f G e o r g i a , and i s  l e s s able t o s u r v i v e i n water b o d i e s w i t h a c l o s e r g e o g r a p h i c and oceanographic c o n n e c t i o n w i t h the open waters o f t h e ' . P a c i f i c Ocean. ,  ( i i ) The d i s t r i b u t i o n and b i o l o g y o f P. e l o n g a t a Very l i t t l e of  i s known about t h e b i o l o g y o f P. e l o n g a t a .  the f i e l d work has c o n s i s t e d . o f s t a t i n g i t s o c c u r r e n c e  Most  i n various  a r e a s , and most o f the d e s c r i p t i o n s have been i n oceanographic r a t h e r than g e o g r a p h i c terms.  Few s t u d i e s have d e s c r i b e d t h e v e r t i c a l  dis-  t r i b u t i o n o f t h e . s p e c i e s and t h e temperature and s a l i n i t y o f the water i n which the s p e c i e s was f o u n d . The  s p e c i e s has been d e s c r i b e d by v a r i o u s authors  e l o n g a t a , P_. japoriica,- Eiichaeta e l o n g a t a , and E_. j a p o r i i c a .  as Pareuchaeta A litera-  t u r e s e a r c h was made t o determine the b a s i s f o r the g e n e r i c and s p e c i e s names, a n d , from t h i s , i t i s d e c i d e d t h a t t h e name Pareuchaeta is correct.  elongata  The r e s u l t s o f t h i s l i t e r a t u r e s s e a r c h a r e r e p o r t e d i n the  appendix. P_. e l o n g a t a has been c a p t u r e d  from the B e r i n g S e a , the Sea o f .  Okhotsk (Brosky  1950), the Sea o f Japan  (Marukawa, 1921), t h e I z u  r e g i o n o f Japan  (Tanaka and Omori 1968), the s u b a r c t i c P a c i f i c Ocean,  w i t h s m a l l e r numbers i n the t r a n s i t i o n zone between the s u b a r c t i c and s u b t r o p i c a l N o r t h P a c i f i c Ocean ( M o r r i s 1970), t h e A l a s k a n  Peninsula  8  (Davis 1949), t h e Queen C h a r l o t t e I s l a n d r e g i o n (Cameron 1957), the S t r a i t , o f G e o r g i a 1971)  which l i e s  (Campbell 1929,  1934)  east o f the s t r a i t , and  and Howe Sound  (Pandyan  the San Diego r e g i o n  ( E s t e r l y 1913) . The  l i f e h i s t o r y o f P_. e l o n g a t a c o n s i s t s o f an egg  (retained  i n a c l u s t e r o f 8 to 24 eggs; Lewis and Ramnarine 1969), s i x n a u p l i a r s t a g e s , and  s i x copepodite  are n o n f e e d i n g ,  stages.  and the r e m a i n i n g  The  f i r s t two  n a u p l i a r stages  four are herbivorous.  The  copepo-  d i t e s a r e p r i m a r i l y c a r n i v o r o u s , w i t h the e x c e p t i o n o f the a d u l t male, which i s . h e r b i v o r o u s (Pandyan 1971). mental stages has  been d e s c r i b e d - b y  This t h e s i s presents 1) Two  The morphology o f t h e  Campbell  (1934). •  the r e s u l t s o f f o u r s t u d i e s .  p h y s i c a l oceanography s t u d i e s .  develop-  The  first  These a r e :  c o n s i s t e d of  t h r e e survey c r u i s e s o f a number o f s t a t i o n s i n the waters o f the west c o a s t o f Vancouver I s l a n d the B r i t i s h Columbia m a i n l a n d , the n e c t i n g p a s s a g e s , and  the P a c i f i c Ocean.  The  second was  con-  a two-year  study at Juan de Fuca S t r a i t , Haro S t r a i t , Boundary Passage, G.S.-l (in  the S t r a i t , o f G e o r g i a ) , and 2)  The  Indian  Arm.  study o f t h e t e m p e r a t u r e - s a l i n i t y a s s o c i a t i o n s o f t h e  developmental stages  o f P_. e l o n g a t a as determined by the t h r e e  survey  cruises. 3) egg  A 1-year l a b o r a t o r y s t u d y o f the r e s p o n s e s . o f  c l u s t e r s c o l l e c t e d from G.S.-l and  sea w a t e r s , and other  areas.  I n d i a n Arm  f i v e s h o r t e r s t u d i e s u s i n g egg  P.  elongata  to various natural  c l u s t e r s c o l l e c t e d from  9  4)  A study o f the temporal  f l u c t u a t i o n s i n the  o f the developmental stages o f P. e l o n g a t a at G.S.-l and and  an e v a l u a t i o n o f t h i s  distribution Indian  i n terms o f the l a b o r a t o r y d a t a and  Arm,  the  temperature-salinity data. In o r d e r t o m a i n t a i n c l a r i t y and t o b e t t e r i l l u s t r a t e  trends,  the f o u r s e c t i o n s are p r e s e n t e d s e p a r a t e l y w i t h an i n t r o d u c t i o n , a m a t e r i a l s and methods s e c t i o n , a r e s u l t s s e c t i o n ^ a n d a d i s c u s s i o n o r summary.  10  CHAPTER I (!) PHYSICAL OCEANOGRAPHY OF THE STUDY AREA INTRODUCTION  A p r e r e q u i s i t e f o r a s u c c e s s f u l study o f t h e temperatures a l i n i t y a s s o c i a t i o n s o f an o r g a n i s m , i s t h e . e x a m i n a t i o n o f a comp r e h e n s i v e range o f waters w i t h d i f f e r e n t temperatures and s a l i n i t i e s . The a r e a c o n s i s t i n g o f t h e i n l e t s , and t h e i n s i d e passage between 1 Vancouver I s l a n d and t h e B r i t i s h Columbia m a i n l a n d , and t h e P a c i f i c Ocean i s i d e a l f o r such a s t u d y .  The waters w i t h i n t h i s a r e a p o s s e s s  d i s t i n c t t e m p e r a t u r e - s a l i n i t y c h a r a c t e r i s t i c s and a r e , on t h i s d i v i s i b l e i n t o a number o f groups and domains Dodimead e t _ a l .  basis,  ( P i c k a r d 1961, 1963;  1963; H e r l i n v e a u x and Giovando-(1969).  T h i s area i s  a l s o i d e a l because t h e r e . i s a c o n t i n u a l exchange o f water between the i n s h o r e and o f f s h o r e e n v i r o n m e n t s , so t h a t a study conducted over a 1-year p e r i o d s h o u l d r e v e a l whether o r not a s p e c i e s i s l i m i t e d t o a - p a r t i c u l a r water.  T h i s would be i n d i c a t e d i f t h e s p e c i e s were a s s o -  c i a t e d . w i t h one w a t e r , .and d i s a p p e a r e d as t h i s water was t r a n s p o r t e d i n t o another a r e a . W i t h i n the study a r e a , the dominant p r o c e s s by which o c e a n i c water i s t r a n s p o r t e d t o the i n s h o r e environment and f r e s h water t o the o f f s h o r e environment i s e s t u a r i n e c i r c u l a t i o n .  Estuarine  circu-  l a t i o n c o n s i s t s o f a 3 - l a y e r e d system with a s u r f a c e l a y e r o f f r e s h and l o w - s a l i n i t y water moving out towards the o c e a n , a n d : a d e e p e r , h i g h -  11  salinity  l a y e r moving i n s h o r e .  Between'the  s u r f a c e and.deep  layers,  i s an i n t e r m e d i a t e l a y e r where t h e d e e p e r , h i g h - s a l i n i t y water i s mixed upwards i n t o t h e l o w e r - s a l i n i t y water and c a r r i e d seaward.  The  lower l i m i t o f t h e h a l o c l i n e r e p r e s e n t s the p o i n t o f no n e t t r a n s f e r ( T u l l y 1958). A second p r o c e s s by .which .subsurface P a c i f i c Ocean water i s transferred  t o the inshore.environment i s u p w e l l i n g .  i s moved i n s h o r e , g e n e r a l l y and t i d a l c u r r e n t s  Upwelled water  i n t h e summer, by e s t u a r i n e c i r c u l a t i o n  ( T u l l y 1958; T u l l y and Barber 1960; Lane 1962, 1963).  Materials  and Methods  ( i ) Survey C r u i s e s The t h r e e s u r v e y c r u i s e s , were conducted i n May and J u l y 1970, and i n F e b r u a r y 1971, where 22, 26 and 18 s t a t i o n s r e s p e c t i v e l y were examined; F i g u r e 1 shows the p o s i t i o n s  o f the s t a t i o n s .  Not a l l t h e  s t a t i o n s were o c c u p i e d d u r i n g each c r u i s e e i t h e r due t o the d e s i g n o f the  c r u i s e o r t o t h e weather.  Table 1 l i s t s  the s t a t i o n s  occupied  d u r i n g each c r u i s e ; t h e depth o f the water column, and t h e g r e a t e s t depth t o which p l a n k t o n and water samples were made., The d a t a , i n cluding  the c o - o r d i n a t e s o f t h e s t a t i o n s  and t h e time o f s a m p l i n g , a r e  r e p o r t e d i n the I n s t i t u t e o f Oceanography Data Reports (1971', 1972). Measurements o f temperature and t h e c o l l e c t i o n o f water samples  f o r s a l i n i t y a n a l y s i s were made by u s i n g NIO b o t t l e s equipped  with reversing bucket.  thermometers.  A s u r f a c e sample was c o l l e c t e d w i t h a  12  F i g u r e 1.  The study area and the p o s i t i o n of the s t a t i o n s o c c u p i e d d u r i n g the t h r e e survey c r u i s e s # , the two y e a r s t u d y ® , and two s h o r t c r u i s e s i n the P a c i f i c Ocean A .  13  TABLE 1.  Station  The depth o f the water column, the depth o f t h e deepest sample, and"the month o f sampling f o r the s t a t i o n s o c c u p i e d d u r i n g the t h r e e survey c r u i s e s .  Depth o f Water Column (meters) ,  Howe Sound (How) 248 G e o r g i a 6 (Geo 6) 132 M a l a s p i n a S t r a i t (Mai) 402 G e o r g i a 10 (Geo 10) 143 G e o r g i a 11 (Geo 11) 358 J e r v i s I n l e t (Je) 677 P e n d r e l l Sound (Pe) 431 Bute I n l e t (Bu) 658 Nodales Channel (Nod) 333 Loughborough I n l e t (Lo) 256 Johnstone S t r a i t (Jo) 483 Knight I n l e t (Knight) 527 Kingcome I n l e t (Kin) 475 Seymour I n l e t (Se) 490 B e l i z e I n l e t (Be) 388 Smith I n l e t (Sm) 358 Queen C h a r l o t t e S t r a i t ( Q C O S t r ) 3 7 3 Queen Sound (QC snd„) 298 K a s h u t l I n l e t (KAS). 256 Muchulat I n l e t (MUC) 358 A l b e r n i I n l e t (ALB) 311 Pac 1 1,902 Pac 2 1,390 Pac 3 1,792 Pac 3-1 227 Pac 4 274 Pac 5 2,578  M = May;  J = J u l y ; F = February  Depth o f Deepest Sample (meters) 225 100 340 100 325 600 400 600 275 220 450 475 450 450 375 340 340 250 200 340 275 1,000 1,000 1,000 150 250 1,000  Months Sampled  M J J M J J M J M J M J M J M J M J M J J M J M J M J M J M J M J M J M J M J M J M J M J M J M J  F F F F F F F F F F  F F F F F F F . F F F  Temperature was r e a d at s e a w i t h an a c c u r a c y o f ± 0 . 0 1  C.  Samples f o r s a l i n i t y a n a l y s i s were drawn from the NIO b o t t l e s , and the s a l i n i t y was MK3  Auto-Lab  e s t i m a t e d i n . t h e l a b o r a t o r y by u s i n g t h e Model 601  I n d u c t i v e l y Coupled S a l i n o m e t e r  For s a l i n i t i e s  (Extended Range M o d e l ) .  above 28%o, the s a l i n o m e t e r has a r e p o r t e d a c c u r a c y  o f ± 0 . 0 0 3 % o ( I n s t i t u t e o f Oceanography  Data R e p o r t , 1970).  A bathythermograph was used b e f o r e . t h e b o t t l e c a s t a t a l l the s t a t i o n s o c c u p i e d d u r i n g the t h r e e s u r v e y c r u i s e s , and a t a l l the f i v e s t a t i o n s o c c u p i e d d u r i n g the second y e a r o f sampling (October 1970 t o O c t o b e r 1971). o f the 2-year s t u d y .  Also, additional  were drawn from the water b o t t l e s , and the d i s s o l v e d oxygen  samples concentra-  t i o n was measured, at s e a , by u s i n g t h e W i n k l e r method as m o d i f i e d by C a r r i t t and C a r p e n t e r (1966).  ( i i ) The 2-Year Study F i v e s t a t i o n s were s t u d i e d from October 1969 t o October  1971  i n c l u s i v e , w i t h each s t a t i o n b e i n g o c c u p i e d once a month. . These  sta-  t i o n s were i n Juan de Fuca S t r a i t , Haro S t r a i t , Boundary Passage, the S t r a i t of Georgia  ( G . S . - l ) , and I n d i a n Arm;  t i o n s o f the s t a t i o n s . Oceanography  F i g u r e 1 shows the p o s i -  The d a t a are r e p o r t e d i n the I n s t i t u t e o f  Data Reports (1970, 1971,and 1972).  The methods used  at each s t a t i o n are as d e s c r i b e d above f o r the s u r v e y c r u i s e s . The s t a t i o n  ( 4 8 ° 23'N,  1 2 4 ° 21'W)  i n Juan de Fuca S t r a i t  l o c a t e d i n the c o a s t a l seaways domain (Herlinveaux and Giovando  was 1969),  i n a trough a p p r o x i m a t e l y 230 m deep communicating w i t h Juan de Fuca  15  canyon which runs a c r o s s the c o n t i n e n t a l s h e l f .  The p h y s i c a l  oceanography o f t h i s s t r a i t has been d e s c r i b e d by H e r l i n v e a u x and T u l l y ,(1961).  The s t a t i o n i n Haro S t r a i t  ( 4 8 ° 29*N, 1 2 3 ° 9*W)  l o c a t e d i n a narrow d e p r e s s i o n a p p r o x i m a t e l y 300 m deep. dary Passage s t a t i o n  ( 4 8 ° 50'N, 1 2 2 ° 59'W)  was  The Boun-  l o c a t e d a t the j u n c -  t i o n o f Boundary Passage w i t h the S t r a i t o f G e o r g i a , and was f l a t p l a i n a p p r o x i m a t e l y 220 m deep.  was  Both t h e Haro S t r a i t  over a  station  and the Boundary Passage s t a t i o n were l o c a t e d w i t h i n the s o u t h e r n homogeneous domain  (Herlinveaux and Giovando  1969).  The s t a t i o n i n the S t r a i t o f G e o r g i a was  l o c a t e d i n t h e c e n t e r of a Y-shaped  a p p r o x i m a t e l y 420 m deep.  ( 4 9 ° 24'N, 1 2 2 ° 53'W)  the water column was  t r o u g h ; the water column  was  The p h y s i c a l oceanography o f the S t r a i t o f  G e o r g i a has been d e s c r i b e d by.Waldichuk tion  ( 4 9 ° 17'N, 1 2 3 ° 51*W)  was  (1957).  The I n d i a n Arm  sta-  l o c a t e d i n the middle o f the i n l e t ;  a p p r o x i m a t e l y 220 m deep.  The p h y s i c a l  oceano-  graphy o f t h i s i n l e t has p r e v i o u s l y been d e s c r i b e d by G i l m a r t i n  (1962)i  Results ( i ) Survey C r u i s e s Although the temperature and s a l i n i t y o f the upper 150 m o f water at the s t a t i o n s were d i f f e r e n t d u r i n g the t h r e e times they, were s t u d i e d , the deep waters were s i m i l a r i n t h e s e c h a r a c t e r i s t i c s .  Second-  l y , the r e l a t i v e abundance o f the developmental stages o f Pareuchaeta e l o n g a t a among the s t a t i o n s was  s i m i l a r d u r i n g the t h r e e  cruises.  16  Because o f t h e s e o b s e r v a t i o n s , the r e s u l t s o f o n l y one s u r v e y c r u i s e are p r e s e n t e d .  The J u l y 1970 s u r v e y c r u i s e was  t a t i o n because i t was  chosen f o r r e p r e s e n -  the most e x t e n s i v e .  The s t a t i o n s were d i v i d e d i n t o s i x groups on the b a s i s o f the temperature-salinity c h a r a c t e r i s t i c s of t h e i r subsurface waters. c l a s s i f i c a t i o n s of Pickard Giovando  (1961, 1963)  The  f o r the i n l e t s , H e r l i n v e a u x and  (1969) f o r the waters o f the i n s i d e p a s s a g e , and Dodimead  e_t a l . ., (1963) f o r the s u b - a r c t i c P a c i f i c Ocean were r e f e r r e d t o , and with s l i g h t m o d i f i c a t i o n s , used.  The g r o u p s . a r e : ( i ) l o w - s a l i n i t y  'southern' waters, ( i i ) southern waters, ( i i i ) t h e r n w a t e r s , ( i v ) west c o a s t i n l e t s ,  i n t e r m e d i a t e and n o r -  (v) c o a s t a l seaway w a t e r s , and  ( v i ) s u b - a r c t i c P a c i f i c Ocean w a t e r s . F i g u r e 2 shows the t e m p e r a t u r e - s a l i n i t y curves f o r the s i x groups o f s t a t i o n s s t u d i e d d u r i n g t h e J u l y 1970 s u r v e y c r u i s e .  In the  summer, s u r f a c e waters are g e n e r a l l y warmer and lower i n s a l i n i t y than deep water; t h e r e f o r e , the upper l e f t p o r t i o n o f each c u r v e r e p r e s e n t s the n e a r - s u r f a c e w a t e r , and t h e lower r i g h t p o r t i o n r e p r e s e n t s the deep water.  A l l the t e m p e r a t u r e - s a l i n i t y d a t a c o l l e c t e d from  10-m  to the deepest water sample were used i n drawing the c u r v e s ; temperat u r e - s a l i n i t y p o i n t s where h o r i z o n t a l p l a n k t o n samples were c o l l e c t e d are i n d i c a t e d by symbols on each c u r v e . The - t e m p e r a t u r e - s a l i n i t y curves c o n f i r m the d i f f e r e n c e s i n the deep water c h a r a c t e r i s t i c s as d i s c u s s e d by P i c k a r d H e r l i n v e a u x and Giovando was  (1961, 1963),  (1969), and Dodimead et a l . , . (1963).  There  a g r a d i e n t o f s a l i n i t y and temperature from tne warm, l o w - s a l i n i t y  . 17  F i g u r e 2.  The t e m p e r a t u r e - s a l i n i t y curves f o r the s i x groups o f s t a t i o n s s t u d i e d d u r i n g the J u l y 1970 c r u i s e (with the e x c l u s i o n o f the 0-meter d a t a ) . (a) low s a l i n i t y 'southern' w a t e r s , (b-1,2) southern w a t e r s , (c) i n t e r m e d i a t e and n o r t h e r n w a t e r s , (d) west c o a s t i n l e t s w a t e r s , (e) c o a s t a l seaway w a t e r s , ( f ) s u b - a r c t i c P a c i f i c Ocean waters ( a b b r e v i a t i o n s as i n T a b l e 1 ) . The m i s s i n g 10-m (*) d a t a f o r the southern i n l e t s a r e : Inlet  Temperature °C  Howe Mai Geo 6 Geo 10 Geo 11 Je Pe Bu  13.6 15.2 12.7 15.7 15.9 15.0 13.7 9.5,  Salinity  %. 27.0 26.8 28.2 26.9 27.1 26.3 28.1 28.5  17i  18  southern waters through waters.  t o t h e c o l d , h i g h - s a l i n i t y west c o a s t  inlet  The c o a s t a l seaway waters were h i g h e r i n s a l i n i t y and c o o l e r  i n d i c a t i n g l e s s d i l u t i o n o f o c e a n i c water by t h e warm, l o w - s a l i n i t y surfacewaters  from the i n l e t s and the i n n e r  straits.  ( i i ) The 2-Year Study F i g u r e 3 shows the f l u c t u a t i o n s i n t e m p e r a t u r e ,  s a l i n i t y , and  d i s s o l v e d oxygen c o n c e n t r a t i o n which o c c u r r e d d u r i n g t h e 2-year study p e r i o d a t Juan.de Fuca S t r a i t , H a r o . S t r a i t , Boundary Passagej t h e S t r a i t o f Georgia  ( G . S . - l ) , and I n d i a n Arm.  November 1971 t o February  1972 f o r I n d i a n Arm.and G.S.-l are from  Mr. G. Gardner ( p e r s . comm.). u n c e r t a i n data p o i n t s .  The d a t a f o r the p e r i o d  Broken l i n e s on t h e f i g u r e s  indicate  The sampling depths a r e i n d i c a t e d on each  graph;, h o r i z o n t a l p l a n k t o n samples were c o l l e c t e d from t h e same depths w i t h t h e e x c l u s i o n o f 0 and 20 m e t e r s . Temperatures o f the s u r f a c e waters a t a l l f i v e s t a t i o n s were lowest i n the w i n t e r and e a r l y s p r i n g , and h i g h e s t i n the l a t e summer and autumn.  The lowest s a l i n i t i e s o c c u r r e d from t h e l a t e s p r i n g t o  the l a t e summer a s s o c i a t e d w i t h t h e i n c r e a s e d d i s c h a r g e o f r i v e r s  such  as the F r a s e r (Water Survey o f Canada 1971, u n p u b l i s h e d d a t a f o r 1971). A second p e r i o d o f low s a l i n i t y o c c u r r e d i n the l a t e w i n t e r ; and was a s s o c i a t e d w i t h t h e p e r i o d i n which d i r e c t p r e c i p i t a t i o n was g r e a t e s t . The  d i s s o l v e d oxygen c o n c e n t r a t i o n s o f the n e a r - s u r f a c e waters were  h i g h i n the e a r l y s p r i n g and w i n t e r , and low from t h e l a t e summer t o October o r November.  19  The deep water i n Juan de Fuca S t r a i t was saline  from A p r i l t o October o r November.  c o l d e s t and most  T h i s was because u p w e l l e d  s u b s u r f a c e P a c i f i c Ocean water was p r e s e n t i n the s t r a i t "at t h i s t i m e . D u r i n g the l a t e summer, when u p w e l l i n g c e a s e d , t h i s o c e a n i c water was  g r a d u a l l y , mixed i n t o the o v e r l y i n g warmer, l e s s - s a l i n e  waters.  T h i s m i x i n g c o n t i n u e d through the autumn and w i n t e r , at which time the  deep waters reached t h e i r lowest s a l i n i t i e s and h i g h e s t  tures.the  tempera-  S i m i l a r l y , the d i s s o l v e d oxygen c o n c e n t r a t i o n s were low from  s p r i n g t o the l a t e summer when the u n d i l u t e d , low-oxygen  Pacific  Ocean s u b s u r f a c e water was p r e s e n t i n the- s t r a i t , and i n c r e a s e d through the  autumn and w i n t e r as t h i s water was mixed w i t h t h e o v e r l y i n g ,  higher-oxygen water. The deep water i n Haro S t r a i t was most s a l i n e to the l a t e autumn.  In' 1970, the deep water reached i t s maximum s a l i n i -  t y and lowest temperature i n ' September the  from the s p r i n g  a l t h o u g h , i n Juan de Fuca S t r a i t ,  maximum s a l i n i t y and minimum temperature were r e a c h e d i n J u l y .  From t h i s i t i s e s t i m a t e d t h a t the deep water i n Juan de Fuca S t r a i t takes one t o two months t o r e a c h Haro S t r a i t .  The d i s s o l v e d  c o n c e n t r a t i o n o f the deep water i n Haro S t r a i t was  oxygen  lowest i n the l a t e  summer and e a r l y autumn, when the low-oxygen s u b s u r f a c e P a c i f i c Ocean water was mixed i n t o  the waters o f the San Juan A r c h i p e l a g o .  Values  were h i g h e r d u r i n g t h e r e s t o f t h e y e a r , b e i n g g r e a t e s t i n the w i n t e r when i n t e n s i v e m i x i n g o f the water column o c c u r r e d as e v i d e n c e d by the  water b e i n g almost c o m p l e t e l y i s o t h e r m a l and  isohaline.  20  F i g u r e 3.  The temperature,, s a l i n i t y , and d i s s o l v e d oxygen c o n c e n t r a t i o n s ' o f the water at ( i ) Juan de Fuca S t r a i t , ( i i ) Harp S t r a i t , ( i i i ) Boundary P a s s a g e , ( i v ) G.S.-l i n the S t r a i t o f G e o r g i a , and (v) I n d i a n Arm d u r i n g the study p e r i o d . Dashed l i n e s i n d i c a t e u n c e r t a i n o r m i s s i n g dataim p o i n t s . The depths a t which samples were c o l l e c t e d are i n d i cated by d o t s .  c: > O  U>  a> D>  x  Q. CD  — 3  o >  3 *p O -  GO — I  o O  ©  ©  ©  o  ©  o  O  09  23 >  0>  & O  N> O  O  21  The deep water o f Boundary Passage was h i g h e s t i n s a l i n i t y from the l a t e s p r i n g t o t h e l a t e autumn. deep water was lowest i n the w i n t e r .  The temperature o f the  The d i s s o l v e d oxygen concen-  t r a t i o n s were low from t h e l a t e s p r i n g t o the l a t e autumn, presumably owing t o the low-oxygen P a c i f i c Ocean s u b s u r f a c e water b e i n g mixed i n t o the waters o f Boundary P a s s a g e .  V a l u e s were h i g h d u r i n g the  w i n t e r and e a r l y s p r i n g when there was i n t e n s i v e mixing o f t h e water. The temperature and s a l i n i t y o f the deep water a t G.S.-l i n the  S t r a i t o f G e o r g i a , ,were lowest i n the e a r l y s p r i n g and h i g h e s t  i n t h e l a t e autumn.  B e g i n n i n g i n the l a t e summer, t h e bottom water  o f t h e S t r a i t o f G e o r g i a was r e p l a c e d by t h e warmer, h i g h e r - s a l i n i t y water which was formed i n t h e San Juan A r c h i p e l a g o .  T h i s water was  formed from the m i x i n g o f s u b s u r f a c e Juan de Fuca S t r a i t w a t e r , and s u r f a c e water from areas such as the S t r a i t o f G e o r g i a and Puget Sound.  The replacement o f t h e bottom water o f t h e S t r a i t o f G e o r g i a  c o n t i n u e d u n t i l October o r November, a f t e r which the 'new* water was g r a d u a l l y eroded away and mixed i n t o t h e o v e r l y i n g c o l d e r , water.  less-saline  The d i s s o l v e d oxygen c o n c e n t r a t i o n o f the deep water a t G.S.-l  was lowest i n the, late.autumn when the low-oxygen water from t h e San Juan A r c h i p e l a g o r e p l a c e d t h e bottom w a t e r . the  In the w i n t e r and s p r i n g  v a l u e s i n c r e a s e d as t h e higher-oxygen water formed i n t h e San  Juan A r c h i p e l a g o i n t r u d e d i n t o t h e S t r a i t o f G e o r g i a a t i n t e r m e d i a t e d e p t h s , and eroded away and mixed i n t o  the low-oxygen  water.  22  In I n d i a n Arm,  the deep, water was  most s a l i n e from the  autumn t o the e a r l y s p r i n g when the water was o f more s a l i n e water.  This  'new'  water was  r e p l a c e d by an  only s l i g h t l y  with  The  deep w a t e r , was. r e l a t i v e l y i s o t h e r m a l  influx  eroded  away and mixed i n t o the o v e r l y i n g , l e s s - s a l i n e water d u r i n g summer.  late  the  through the  changes o c c u r r i n g a t the time o f deep water r e p l a c e m e n t .  year The  d i s s o l v e d oxygen c o n c e n t r a t i o n was. h i g h e s t when the deep water was r e p l a c e d by sill  '  the higher-oxygen water formed i n the v i c i n i t y o f the  at the mouth of the i n l e t .  l a t e summer and  Oxygen v a l u e s decreased through  the  e a r l y autumn.  Summary (1) The  t h r e e survey c r u i s e s o f a number o f i n l e t s o f  B r i t i s h Columbia mainland and connecting  p a s s a g e s , and  the west c o a s t . o f Vancouver I s l a n d , the  the P a c i f i c Ocean examined a wide range o f  waters with d i s t i n c t t e m p e r a t u r e - s a l i n i t y c h a r a c t e r i s t i c s . s t a t i o n s c o u l d be s u b d i v i d e d . i n t o  These  s i x groups on the b a s i s o f the tem-  p e r a t u r e - s a l i n i t y , c h a r a c t e r i s t i c s o f the s u b s u r f a c e (2) The  the  waters.  s u r v e y c r u i s e s , because they covered an  range o f waters w i t h d i s t i n c t t e m p e r a t u r e - s a l i n i t y  extensive  characteristics,  were i d e a l f o r d e t e r m i n i n g the t e m p e r a t u r e - s a l i n i t y a s s o c i a t i o n s of' Pareuchaeta e l o n g a t a , and  d e t e r m i n i n g whether or not the  r e s t r i c t e d to v a r i o u s w a t e r s .  species  was  23  (3) The 2-year study a t Juan de Fuca S t r a i t , Haro  Strait,  Boundary Passage, G . S . - l ( i n t h e S t r a i t o f G e o r g i a ) , and I n d i a n Arm observed t h e t r a n s f e r o f s u b s u r f a c e  P a c i f i c Ocean water . i n s h o r e , and  the t r a n s f e r o f f r e s h and low s a l i n i t y water t o t h e o f f s h o r e e n v i r o n ment. (4) The 2-year study,, w h i l e c o v e r i n g a l e s s e x t e n s i v e range o f waters than t h e t h r e e survey  c r u i s e s , was i d e a l f o r showing whe-  t h e r o r not temporal v a r i a t i o n s  i n t h e d i s t r i b u t i o n o f P\  elongata  i n an a r e a were a s s o c i a t e d . w i t h changes i n the water o f t h a t  area.  24  CHAPTER I I • P. ELONGATA TEMPERATURE-SALINITY ASSOCIATIONS AS DETERMINED BY THE THREE SURVEY CRUISES  INTRODUCTION Pandyan  (1971) showed t h a t , i n Howe Sound, t h e n a u p l i a r and  f i r s t c o p e p o d i t e stages o f P. e l o n g a t a were found  i n the deep w a t e r ,  w h i l e the l a t e r stages were found h i g h e r up i n the water column. S e c o n d l y , she i n d i c a t e d t h a t t h e t h i r d t o s i x t h c o p e p o d i t e  stages  were found n e a r e r t h e s u r f a c e a t n i g h t than d u r i n g the d a y , although t h e y were always found throughout a l a r g e p o r t i o n o f t h e water column. T h i s suggests  t h a t these stages e x h i b i t d i e l v e r t i c a l m i g r a t i o n , a l -  though t h e v e r t i c a l m i g r a t i o n i s l e s s pronounced than t h a t o f zobp l a n k t o n such as Euphausia  p a c i f i c a , which a r e found  a t more d i s c r e t e  depths d u r i n g the day and n i g h t . In Howe Sound, t h e v e r t i c a l d i s t r i b u t i o n o f P_. e l o n g a t a a p peared and  t o be a f u n c t i o n o f t h e s t a g e o f development o f t h e organism,  the variables a f f e c t i n g d i e l migration.  What was n o t known f o r  Howe Sound o r . f o r any o t h e r a r e a , was t h e r o l e o f t e m p e r a t u r e , s a l i n i t y and t h e o t h e r p r o p e r t i e s o f sea waters i n d e t e r m i n i n g t h e d i s t r i b u t i o n o f P_. e l o n g a t a . The purpose o f the t h r e e survey c r u i s e s was t o i n v e s t i g a t e the q u a l i t a t i v e  and q u a n t i t a t i v e d i s t r i b u t i o n o f t h e d e v e l o p -  mental stages o f P_. e l o n g a t a i n a number o f groups o f waters with, distinct temperature-salinity characteristics. f o l l o w i n g were i n v e s t i g a t e d :  In p a r t i c u l a r , t h e  25  (1) Is P_. e l o n g a t a c a p a b l e o f s u r v i v i n g a c r o s s the range o f waters which c o n s t i t u t e the o c e a n i c and c o a s t a l  environments?  (2) Is P_. e l o n g a t a capable o f r e p r o d u c i n g a c r o s s the range o f waters which c o n s t i t u t e the o c e a n i c a n d . c o a s t a l environments? (3) Is the v e r t i c a l . d i s t r i b u t i o n o f P_. e l o n g a t a throughout i t s range a f u n c t i o n o f temperature and s a l i n i t y , o r i s t h e v e r t i c a l d i s t r i b u t i o n s i m i l a r b o t h i n t h e o c e a n i c and c o a s t a l  environment?  (4) What o t h e r environmental v a r i a b l e s might account f o r p o p u l a t i o n s o f P., e l o n g a t a b e i n g r e l a t i v e l y s m a l l i n the P a c i f i c Ocean, and r e l a t i v e l y l a r g e i n areas such as the S t r a i t o f Georgia?  M a t e r i a l s and Methods ( i ) F i e l d Procedures F i g u r e 1 shows the p o s i t i o n s o f the s t a t i o n s o c c u p i e d d u r i n g the t h r e e s u r v e y c r u i s e s , and T a b l e 1 shows the s t a t i o n s o c c u p i e d d u r i n g each c r u i s e , ' and the maximum depth o f p l a n k t o n and water s a m p l i n g . The t e c h n i q u e s employed at each s t a t i o n were t h e same.  Horizontal  p l a n k t o n tows were made, and t h e t e m p e r a t u r e , s a l i n i t y , and  dissolved  oxygen c o n c e n t r a t i o n o f t h e water were measured at a number o f d e p t h s . P l a n k t o n samples were made a t t h e same depths as the water  samples,  w i t h t h e e x c l u s i o n o f 0 and 20 m e t e r s . D i s c r e t e h o r i z o n t a l p l a n k t o n samples were c o l l e c t e d by u s i n g the opening arid c l o s i n g Clarke-Bumpus samplers equipped w i t h a number 2 mesh (approximate pore s i z e - 3 6 0 u ) .  The samplers had a mouth diame-  t e r o f 12-cm, and were each mounted w i t h a flowmeter.  The samplers  26  had to six  e a r l i e r been c a l i b r a t e d t h e r e b y a l l o w i n g ' q u a n t i t a t i v e ' samples be c o l l e c t e d .  Two p l a n k t o n tows were made at each s t a t i o n , w i t h  samplers b e i n g used f o r t h e f i r s t tow, and a v a r i a b l e number o f  up t o s i x d u r i n g the second tow. formalin-sea-water  A l l samples were p r e s e r v e d i n a 10%  s o l u t i o n b u f f e r e d with b o r a x .  ( i i ) Treatment o f the P. e l o n g a t a F i e l d Data The d a t a c o l l e c t e d d u r i n g t h e t h r e e survey c r u i s e s were examined i n two ways.  There were: 2  (1) The t o t a l number o f animals of  a t each stage i n a 1-m  water was e s t i m a t e d f o r each s t a t i o n .  d e t e r m i n i n g the c o n c e n t r a t i o n o f animals  column  T h i s was accomplished by caught a t each d e p t h , c a l c u -  l a t i n g t h e mean between two s u c c e s s i v e d e p t h s , and then  multiplying  t h i s . v a l u e by t h e d i s t a n c e between t h e two sampling d e p t h s .  T h i s was  done f o r a l l sample, d e p t h s , and t h e v a l u e s summed t o g i v e t h e t o t a l f o r the water column. (2) A second method was t o draw t h e standard  temperature-sa-  l i n i t y - p l a n k t o n graphs t o show t h e o c c u r r e n c e s o f P. e l o n g a t a w i t h water t y p e s .  The most common method has been t o use v a r i o u s s i z e d  symbols t o r e p r e s e n t the numbers o r the c o n c e n t r a t i o n s o f animals at  various temperature-salinity values  disadvantages  (Bary 1963).  to u s i n g t h i s t e c h n i q u e i n t h i s  modified s l i g h t l y .  caught  There were s e v e r a l  s t u d y , and so i t was  The f i r s t d i s a d v a n t a g e was t h a t u n l e s s a l l t h e  t e m p e r a t u r e - s a l i n i t y v a l u e s were shown on t h e g r a p h , z e r o - v a l u e s f o r c a p t u r e s d i d n o t appear.  A second problem o c c u r r e d because few samples  were t a k e n i n water i n which t h e temperature and s a l i n i t y  changes w i t h  27  depth were g r e a t  ( i . e . t h e upper 30-m), and many samples were taken .  at depths i n which the temperature and s a l i n i t y v a r i e d o n l y  slightly.  I t was d i f f i c u l t t o p r e s e n t a l l t h e datan; p o i n t s on the temperatures a l i n i t y - p l a n k t o n graphs f o r t h o s e . a r e a s i n which temperature and s a l i n i t y v a r i e d o n l y s l i g h t l y . , A l s o , i t was f e l t t h a t p r e s e n t i n g t h e d a t a i n t h i s f a s h i o n would p l a c e a b i a s on i n t e r p r e t i n g t h e r e s u l t s ; i f t h e animals, were u n i f o r m l y d i s t r i b u t e d throughout the water column, the graph would have a tendency t o suggest t h a t t h e y were more concent r a t e d i n the r e l a t i v e l y homogeneous zone s i m p l y because more, symbols appeared t h e r e . In o r d e r t o circumvent t h e s e p r o b l e m s , the mean c o n c e n t r a t i o n o f organisms i n t e m p e r a t u r e - s a l i n i t y areas temperature-salinity-plankton t i o n s had e a r l i e r  (0.25 C° X 0.25%») on the  graph were c a l c u l a t e d .  (Chapter I) been d i v i d e d i n t o s i x groups on t h e  basis of the s i m i l a r i t i e s of the t e m p e r a t u r e - s a l i n i t y of t h e i r subsurface graph  The s t u d y s t a -  waters.  characteristics  F o r each group, the t e m p e r a t u r e - s a l i n i t y  ( F i g u r e 2) was d i v i d e d i n t o r e c t a n g l e s 0.25 C° X 0.25%* A l l  the p l a n k t o n  d a t a were examined, and each sample was a s s i g n e d  to i t s  p a r t i c u l a r t e m p e r a t u r e - s a l i n i t y r e c t a n g l e on a master s h e e t .  When  a l l t h e d a t a f o r each stage had been entered  sheet,  the mean v a l u e  onto the master  f o r each r e c t a n g l e was c a l c u l a t e d .  On t h e f i n a l  graph,  the t e m p e r a t u r e - s a l i n i t y r e c t a n g l e s f o r which t h e r e were p l a n k t o n p l e s were drawn, and t h e mean c o n c e n t r a t i o n r e c t a n g l e was w r i t t e n i n s i d e .  sam-  o f organisms f o r each  By r e f e r r i n g back t o the temperature-  28  salinity-curves determine how  ( F i g u r e 2) f o r the s i x groups o f s t a t i o n s , one  can  many sample p o i n t s were used to c a l c u l a t e the mean.  Results ( i ) The  Abundance o f P. e l o n g a t a i n the S i x Groups o f Waters Tables  2, 3, and  4 show, f o r each s t a t i o n , the e s t i m a t e d number  o f P. e l o n g a t a at each developmental stage are combined), and  (the s i x n a u p l i a r stages  the e s t i m a t e d mean c o n c e n t r a t i o n o f animals between  10 m and the deepest h o r i z o n t a l p l a n k t o n sample. c o m p a r i s o n , the c a l c u l a t i o n s f o r I n d i a n Arm,  For the purposes o f  G.S.-l  ( i n the S t r a i t o f  G e o r g i a ) , Boundary Passage, Haro S t r a i t , and Juan de Fuca S t r a i t i n c l u d e d i n the  are  tables.  Although the number at each s t a t i o n v a r i e d from one  cruise to  the n e x t , the r e l a t i v e abundance o f P. e l o n g a t a w i t h i n the s i x groups o f s t a t i o n s was l y , t h e r e was  s i m i l a r d u r i n g the. t h r e e time p e r i o d s s t u d i e d .  Second-  no c o n s i s t e n t p a t t e r n f o r the p a r t i c u l a r stages t o  more numerous d u r i n g one  c r u i s e than d u r i n g  Complete p o p u l a t i o n s  be  another.  o f P. e l o n g a t a , c o n s i s t i n g o f a l l the  developmental s t a g e s , were a s s o c i a t e d w i t h t h e l o w - s a l i n i t y .'southern' w a t e r s , although  Seymour and  B e l i z e I n l e t s had r e l a t i v e l y s m a l l popu-  l a t i o n s i n comparison w i t h I n d i a n '.Arm, and populations  i n adjacent  i n comparison w i t h  i n l e t s such as Smith and  the  Kingcome. : Complete  p o p u l a t i o n s o f P_. e l o n g a t a were a l s o a s s o c i a t e d with southern  waters,  29 TABLE 2.  The e s t i m a t e d number o f the developmental s t a g e s o f P. e l o n g a t a in- a column (1-m^) o f water between 10 meters and the deepest p l a n k t o n sample.* (1) l o w - s a l i n i t y 'southern' waters; (2~) s o u t h e r n w a t e r s , (3) i n t e r m e d i a t e and n o r t h e r n w a t e r s , (4) west c o a s t i n l e t w a t e r s , (5) c o a s t a l seaway w a t e r s , and (6) s u b - a r c t i c P a c i f i c Ocean waters. May  Station Type*  and  Maximum Egg Sample Depth . (m)  1970  Cruise  N  c-i  C-2  C-3.  C-4  C-5  Seymour (1) B e l i z e (1)  475 240  3 4  75 25  55:'7 40  42 67  3 3  22 5  23 0  Howe (2) Mai. (2) J e r v i s (2) Geo-11 (2) P e n d r e l l . (2) Bute (2) Nodales (2) Lough. (2)  225 340 600 325 400 600 275 220  10 44 25 50 18 105 0 0  268 586 613 89 815 870 0 5  103 375 1006 127 670 737 0 28  103 639 1589 478 1202 1475 0 27  88 246 472 299 518 755 0 48  98 . 112 385 156 60 263 0 39  84 88 120 53 24 447 0 18  John.(3) King.(3) Smith (3)  450 • 400 325  0 23 36  0 152 774  49 201 764  0 237 697  K a s h u t l (4) Much.- (4) A l b . (4) ,  200 340 275  13 83 23  49 ' 425 1158  43 413 745  137 722 1006  Q.C. S t r . (5) Q.C. Snd.(5) Pac 4 (5)  340 250 250  0 0 0  0 0 13  0 0 0  0 44 13  0: 0 0  0 12 78  0 181 205  7 92 117  1423 630 0 0 10  530 588 0 0 0  286 678 2 0 4  Pac 1***(6) Pac 2***(6) Pac 3***(6) Ind (1) G.S.-l (2) Bound. (2) Haro (3) J . F . S t r . (5)  750 1000 1000 200 390 200 250 215  18 23 0 0 0  * * e x c l u d i n g the egg c l u s t e r  C-6  13' 8  ** ** Total Total Depth  235 148  0.49 0.61  23 103 109 141 159 642 0 27  767 2149 4294 1343 3448 5189 0 192  3.41 6.32 7.16 4.13 8.62 8.65 0.00 0.87  0 326 175  0 86 61  96 1354 2995  0.21 3.39 9.22  0 138 . 271  47 . 213 253  71 309 481  9 133 68  30 41 63  .:30 159 124  369 2202 3645  1.85 6.48 13.25  7 0 6  0 0 14  0 0 15  7 44 84  0.02 0.18 0.34  28 54 130  7 23 45  0 30 45  0 4 0  42 396 620  0.05 0.40 0.62  175 349 2 0 66  32 198 1 0 55  11 159 0 0 24  51 109 0 0 0  2508 2711 5 0 159  12.54 6.95 0.03 0.00 0.74  0' 0 23  * * * s h a l l o w e s t sample was  at 25 meters  30  TABLE 3.  The e s t i m a t e d number o f the developmental s t a g e s o f P_. e l o n g a t a i n a 1-m column o f water between 10 meters and t h e deepest p l a n k t o n sample* (1) l o w - s a l i n i t y 'southern' w a t e r s , (2) southern w a t e r s , (3) i n t e r m e d i a t e and n o r t h e r n w a t e r s , (4) west c o a s t i n l e t w a t e r s , (5) c o a s t a l seaway w a t e r s , and (6) s u b - a r c t i c P a c i f i c Ocean w a t e r s . July. 1970  Station Type*  and  Maximum Egg Sample Depth (mY 0 3  Cruise  N  C-l  C-2  - C-3  C-4  C-5  C-6  Total **  Total Depth**  85 47  59 72  74 77  43 30  24 53  16 36  15 3  316 318  99 1 682 1004 0 271 1203 723 0 52  97 29 459 964 12 151 1360 1042 2 48  122 35 354 396 11 191 566 1000 2 32  190 0 132 390 91 316 61 72 2 6  44 0 37 98 229 309 64 0 0 27  .86 0 82 93 22 142 23 53 0 6  880 65 2764 3527 365 1746 3881 3454 6 270  3. 91 0. 65 8. 13 . 5. 88 3. 65 5. 37 9. 70 5. 76 0. 02 1. 23  Seymour (1) B e l i z e (1)  450 275  Howe (2) Geo-6 (2) Mai. (2) J e r v i s (2) Geo-10 (2) G e o - i l (2) P e n d r e l l (2) Bute (2) Nodales (2) Lough.(2)  225 100 340 600 100 325 400 600 255 220  14 242 0 0 35 1018 5 582 0 0 34 366 17 604 38 564 0 0 0 99  John.(3) Knight (3) King. (3) Smith (3)  450 475 450 340  0 13 27 16  0 80 341 370  0 88 160 178  0 144 187 123  0 72 175 98  0 140 91 226  0 1076 212 194  0 157 98 86  0 1757 1264 1275  0. 00 3. 70 2. 81 3. 75  K a s h u t l (4) Much. (4) A l b . (4)  200 340 275  39 14 10  468 466 884  349 346 1175  578 336 758  836 273 315  460 363 458  1339 193 309  122 52 55  3152 2029 3954  15. 76 5. 70 14. 38  Q.C. S t r . ( 5 > Q.C. Snd. (5) Pac 3-1 (5) Pac 4 (5)  3,40 250 150 ' 250  0 3 0 0  0 0 0 0  0 0 0 5  0 3 51 12  0 13 29 38  0 14 14 18  8 16 •6 5  0 3 3 0  8 46 103 78  0. 02 0. 18 0. 69 0. 31  0 0 1  9 26 0  9 22 0  86 173 129  90 100 , 68  18 43 18  15 20 4  2 39 6  229 422 225  0. 23 0. 42 0. 90  148 535 0 0 0  148 476 0 0 16  120 402 0 9 76  76 132 4 27 72  160 50 15 29 17  109 870 92 . 2313 8 35 0 73 0 . 192  4. 35 5. 35 0. 18 0. 29 0. 89  Pac Pac Pac  1***(6) 1000 2***(6) 1000 3***(6) 250  Ind (1) G.S.-l (2) Bound. (2) Haro (3) J . F . S t r . (5)  200 390 200 250 215 .  8 25 3 0 0  163 626 0 8 1.  ** e x c l u d i n g the egg c l u s t e r * * * s h a l l o w e s t sample was at 25 m e t e r s . Pac 3 i s the r e s u l t o f o n l y one as the second m a l f u n c t i o n e d .  0. 70 1. 16  tow  31  TABLE 4.  The e s t i m a t e d number o f t h e developmental stages o f P. e l o n g a t a i n a 1-m^ column.of water between 10 meters and the deepest p l a n k t o n sample* (1) l o w - s a l i n i t y ' s o u t h e r n ' w a t e r s , (2) southern w a t e r s , (3) i n t e r m e d i a t e and n o r t h e r n w a t e r s , (4) west c o a s t , i n l e t w a t e r s , (5) c o a s t a l 5^fseaway w a t e r s , and (6) s u b - a r c t i c P a c i f i c Ocean w a t e r s . February 1971  Station Type*  and  Cruise  Maximum Sample Depth (m) '  Egg  N  C-l  C-2  C-3  C-4  C-5  C-6  Total **  200 340  3 17' 0 17 44 94 7  26 229 4 86 239 828 368  10 59 0 47 110 830 169  7 82 26 103 64 674 65  30 28 19 40 54 548 32  9 36 16 25 111 139 0  37 60 8 119 113 40 13  14 55 3 91 94 220 40  133 549 76 511 785 3279 687  0.67 1.61 0.51 1.57 2.09 5.47 3.12  Total Depth**  Howe (2) Mai. (2) J e r v i s (2) Geo-11 (2) P e n d r e l l (2) Bute (2) Lough. (2)  325 375 600 220  John.(3) Knight (3) King. (3) Smith (3)  450 475 450 330  0 53 15 466 3 234 106 176  16 386 265 51  7 672 176 128  0 89 39 5  4 7 11 11  7 42 9 0  0 75 26 126  87 1737 760 497  0.19 3.65 1.69 1.51  K a s h u t l (4) Much. (4) A l b . (4)  200 340 275  27 137 11 209 46 338  107 116 191  291 251 333  115 26 70  207 21 139  982 270 590  263 165 223  2104 1058 1884  10.52 3.11 6.85  0 10  0 0  76 61  0;22 0.27  166 168  0.17 0.17  611 1183 17 13 . 56  3.06 3.03 0.09 0.05 0.25  Q.C. S t r . ( 5 ) 340 Pac 4 (5) 225  0 0  21 8  18 0  16 15  7 23  14 5,  Pac Pac  0 0  27 0  38 112  91 56  10 0  1 0  0 0  1 0  8 348 48 338 0 0 0 0 0 0  225 128 2 0 5  75 177 3 0 4  5 148 6 0 4  0 88 3 5 16  0 101 0 8 17  33 203 3 0 10  3***(6) 1000 5***(6) 1000  Ind. (1) G.S.-I (2) Bound. (2) Haro (3) J . F . - S t r . (5)  200 390 200 250 220  E x c l u d i n g egg c l u s t e r S h a l l o w e s t sample was a t 25 meters One tow o n l y as the second m a l f u n c t i o n e d .  32  i n t e r m e d i a t e and n o r t h e r n w a t e r s , and west coast i n l e t waters with f o u r e x c e p t i o n s ; t h e s e were G e o r g i a 6, Georgia 10, Nodales  Channel,  and Johnstone S t r a i t . . Georgia 6 and G e o r g i a 10 were l o c a t e d i n s h a l l o w a d j a c e n t t o deeper areas  areas  (Howe Sound and Georgia 11, r e s p e c t i v e l y )  w i t h the purpose o f comparing the d i s t r i b u t i o n o f P. e l o n g a t a i n deep and s h a l l o w a r e a s . .. The n a u p l i a r and absent  from the two  f i r s t c o p e p o d i t e s t a g e s were  s h a l l o w a r e a s , w h i l e they were p r e s e n t i n the  a d j a c e n t deep a r e a s .  two  T h i s absence from the. s h a l l o w a r e a s . c o u l d be  due  to the f a c t t h a t these stages were.not t r a n s p o r t e d , by c u r r e n t s , from the a d j a c e n t deep a r e a s . t o the more s h a l l o w banks.  A second p o s s i b i l i t y  i s t h a t these stages c o u l d not s u r v i v e i n the waters a s s o c i a t e d w i t h these s h a l l o w a r e a s . Nodales Channel and Johnstone S t r a i t form p a r t o f the n o r t h e r n homogeneous domain.(Herlinveaux  and Giovando,,, 1969)  and,  dur-  i n g the t h r e e times s t u d i e d , had o n l y r e l a t i v e l y s m a l l p o p u l a t i o n s o f P. e l o n g a t a .  S i m i l a r l y , Haro S t r a i t and  Boundary P a s s a g e , which form  p a r t o f the s o u t h e r n homogeneous domain.(Herlinveaux 1969), had  and  s m a l l p o p u l a t i o n s o f -F_. e l o n g a t a ; t h i s was  observed d u r i n g the 2-year study p e r i o d .  The  Giovando  consistently  l a r g e s t e s t i m a t e d popula-  2 t i o n at Haro S t r a i t , i n a 1-m at Boundary Passage, was developmental  column o f w a t e r , was  122 organisms.  74 organisms  and,  However, because a l l the  stages have been c a p t u r e d i n the two homogeneous domains,  the s p e c i e s i s p r o b a b l y capable o f c o m p l e t i n g i t s development i n these waters. .  33  R e l a t i v e l y s m a l l p o p u l a t i o n s o f P. e l o n g a t a were a s s o c i a t e d w i t h the n o r t h e r n c o a s t a l seaway waters and Juan de Fuca S t r a i t .  These  low numbers were c o n s i s t e n t d u r i n g the 2-year study p e r i o d , w i t h the 2 l a r g e s t e s t i m a t e d p o p u l a t i o n i n a 1-m Fuca S t r a i t b e i n g 232 organisms.  column o f water o f Juan de  As a l l the developmental stages have  been captured i n c o a s t a l seaway; w a t e r s , the s p e c i e s i s p r o b a b l y c a p a b l e of  c o m p l e t i n g i t s development  i n these waters.  Complete p o p u l a t i o n s o f P. e l o n g a t a were g e n e r a l l y a s s o c i a t e d w i t h the waters o f the e a s t e r n s u b - a r c t i c P a c i f i c Ocean,.although the  c o n c e n t r a t i o n o f animals was  low.  A l l t h e developmental stages  have been c a p t u r e d i n t h e s e w a t e r s , which i n d i c a t e s t h a t P_. e l o n g a t a i s capable of completing i t s l i f e Loughborough (5 ml/1)  c y c l e i n s u b - a r c t i c P a c i f i c Ocean w a t e r .  I n l e t had h i g h d i s s o l v e d oxygen  throughout the water column i n May  1970.  concentrations  These v a l u e s were  comparable t o those f o r Johnstone S t r a i t and Nodales C h a n n e l , which suggests t h a t the i n l e t had been f l u s h e d at some e a r l i e r i n t e r v a l . • As the  s a l i n i t y o f the deep water was  i n t e r m e d i a t e to t h e h i g h - s a l i n i t y  water o f Johnstone S t r a i t and the l o w e r - s a l i n i t y water o f Nodales Channel, t h i s In was  May  'new'  water p r o b a b l y o r i g i n a t e d from Johnstone S t r a i t .  1970, t h e p o p u l a t i o n o f P_. e l o n g a t a was r e l a t i v e l y s m a l l and  comparable i n s i z e t o t h o s e a s s o c i a t e d w i t h the homogeneous  In  J u l y 1970, the p o p u l a t i o n was  in  February.1971.  domains.  l a r g e r , and r e a c h e d i t s l a r g e s t  Associated with t h i s :  was  size  a decrease i n the d i s s o l v e d  oxygen c o n c e n t r a t i o n o f the deep w a t e r , which suggests t h a t t h e deep w a t e r , which had been brought i n t o t h e i n l e t d u r i n g t h e s p r i n g (1970), remained i n the i n l e t w i t h l i t t l e r e p l a c e m e n t .  influx.  34  ( i i ) The t e m p e r a t u r e - s a l i n i t y a s s o c i a t i o n s o f the developmental stages o f P. e l o n g a t a ( J u l y 1970). F i g u r e 4 shows the t e m p e r a t u r e - s a l i n i t y a s s o c i a t i o n s o f egg, the  combined ( s i x ) n a u p l i a r s t a g e s , and  o f P_. e l o n g a t a .  the s i x c o p e p o d i t e  stages  These g r a p h s , w i t h the e x c e p t i o n o f t h a t f o r the  southern w a t e r s , were drawn on the same s c a l e . a s the t y curves  the  ( F i g u r e 2) f o r the s i x groups of w a t e r s .  the p o i n t s a t which p l a n k t o n  temperature-saliniOn t h e s e  curves,,  samples were taken are i n d i c a t e d by  symbols. Generally,, the egg o f the v a r i o u s h i g h e r up  c l u s t e r was  a s s o c i a t e d with  s t a t i o n s , a l t h o u g h o c c a s i o n a l egg  i n the water column.  The  the deep water  c l u s t e r s were found  temperature-salinity associations  o f the n a u p l i a r stages were s i m i l a r t o t h a t o f the egg the s t r o n g e s t a s s o c i a t i o n s were w i t h waters g r o u p , a few  the deep water.  n a u p l i i were captured  c l u s t e r , i n that In the  i n near-surface  southern  waters  (30'Jm).  D u r i n g the 2-year f i e l d s t u d y , n a u p l i i were u s u a l l y found below 100 a l t h o u g h o c c a s i o n a l samples c o l l e c t e d as shallow s m a l l number o f n a u p l i i .  T h i s , a l o n g w i t h the o b s e r v a t i o n t h a t  c l u s t e r s were o c c a s i o n a l l y .found i n n e a r - s u r f a c e a l t h o u g h egg of hatching  as 10 or 30 m had  a  egg  water suggests t h a t ,  c l u s t e r s n o r m a l l y hatched i n deep w a t e r s , t h e y were c a p a b l e i n near-surface  waters.  P l a n k t o n samples were c o l l e c t e d as deep as 1,000 P a c i f i c Ocean. subsurface  m,  T h e r e , the n a u p l i i were a s s o c i a t e d w i t h  water and  were most abundant between 500  and  m i n the P a c i f i c Ocean 750  meters.  35  F i g u r e 4.  The t e m p e r a t u r e - s a l i n i t y a s s o c i a t i o n s o f the egg c l u s t e r , n a u p l i u s , and the s i x c o p e p o d i t e stages o f P_. e l o n g a t a i n (a) l o w - s a l i n i t y 'southern' w a t e r s , (b) s o u t h e r n w a t e r s , (c) i n t e r m e d i a t e and n o r t h e r n w a t e r s , .(d) west c o a s t i n l e t w a t e r s , (e) c o a s t a l seaway w a t e r s , and ( f ) the s u b - a r c t i c P a c i f i c Ocean. The v a l u e i n s i d e each t e m p e r a t u r e - s a l i n i t y r e c t a n g l e i s the mean c o n c e n t r a t i o n of specimens (numbers/m ) a s s o c i a t e d w i t h t h a t r e c t a n g l e . The d a t a a r e from the J u l y 1970 s u r v e y c r u i s e .  35 i  CD  CD  egg clusters  CD  CD  CD  5tn  CO CD  CHI  CD  hO>l0 03lfl?>l  m CD S 3  '0 0  3  33  3.1  30  29  7/oc  d. CD  CD CD  en  CD  CD  CD  S %  32  S %o  0  35  CD CD  CD  CD CD  CD  CD rrrr  CD CD CD CD CD ED  CD  35 ij  21  LL  2 7  3<  b.  S T  CD  ED  naupli CO  CD  CO  co  CD  co ca  0  1 1 0 I 0 iB.Oil  30  S %  °  'OC  3.1  CD .  CD CD  CD  CD  CD  CD  3.3  34  e. CD  s7  3,2  3,3  / 0 C  CD CD CD  CD  CD  CD  CD CCD  CO CD CO CD CD CD  CO  0 0 0 0  l i t Sit (Ml 1.17 J i t I193| 0  35j i i  s%, to-  ca  rn CD  C-1  CO  CD  nil  co  CD G  pg  i  s7  3J  s7  co  CD CO  CO  s CD  CO  CO I'  '"'I  /o  ws ° ° y  3ll  e CO  JiL.  3,3  7 ° y  bS/ o  CO CO  co CO  CO  CO o  s  •  I I •f at  0  • • CO ft.Ot  1  CD CD CO CD  cq_p CD  CO  CO  35  S 28  iv  'oo  29  30  b. CD  CD  CD  CD CD  C-2  CD  m  m lomioiil  Q~l  I 0 ~ — — I < li-2ila.»il  I  ESI (h3  S%o 29  30  S %/oo c  31  3.3  3,4  33  34  c. CD CD  CD <_>  CD  9-  o  t-  m  8-  »mo.«i h.«ih.»l  S  ^o  3.3  e.  |o"itfl  3,4  en  CD CD  CD CD  CD  CD  10  CD 9  EH O  8-  CD CD CD  CD  E3  021 Dlf 017 OU 0  0.72 1  35 v s%,  cn CD CD  C-3  ED II  0  [0 3*1  EE s7 '00  JiL  s7  JiL CO CO  cn  cn  ED  Em 0.171 n.mo.8]lo.2)1 jo " I o I E  s7„. e  CD  Jrf_  s7  JiL  3,3  b  / 0  °  3,4  io»i  CD CO CO  CO  CD  CO  o°-«  EE  F5H  CO CD ED ED  CD  35vi s7  S  3,0  29  0 0  2t8  b,  29  lo n ~ iiisJ  CD C-4  CD  CD CD  ED  -Fbn  CD  ED iB.til 0 JB.1t  EH) ED 30  S  %  0  33  3.1  34  CD  CD CD  CD  CD  CD  m  10.10  1  1 »4.14 1-26  m  S %o  3,3  33  CD  CD  CD CD  CD  CD  CD G5) CD  CD  7-  PszP ESI CD  CD  35vfi  S  s %« /oo  'oo  2.9  30  28  lb.  a.  29  ^  CD  CD CD  CD  1H  CD  C-5 12'  11  O10-  FED  CD  m  G5D  CD  I o I » lull  '»  cn  i  CD S %o 29  30  3.3  CD  3J  CD CD  10-  O  CD  9-  CD  o  ~!-\ I • I • 1^]  8-  •sEa  cc  u o i-  7-  8-  S %o 3.3  1.4  35  33  e. CD  S % /oo  3.4  CD CD  CD  CD  CD  CD E E  <J 8  ESI CD CD  CD dm  EH) CD  2 13 2*5 0.13 o.Ji 0 012 2.1 S 0.1 7 0 07 0 2« 0.10 1.2 < 0.1 S O.'J 0J7 O.od 0.1 z  35 vi i i  S  %o b. CD  CD C-6  CD  CD CD  CD  m  m IQI.OII »  CD CD  CD pTj  I  [ B 1 B lOOi  s/ 0  3,0S%°  3.1  CD  CD  CD  CD  CD  CD  10 I? l o i f  S / 0  e.  CD  CD CD CD  CD  CD  CD  CD CDJ  CD CD CD CD  RY  "|_ I J~ R L ED  CD US)  CD  36  The t e m p e r a t u r e - s a l i n i t y a s s o c i a t i o n o f the f i r s t was to  copepodite  s i m i l a r to t h a t o f the n a u p l i a r stages i n t h a t they both be a s s o c i a t e d w i t h deep water.  The  second c o p e p o d i t e was  tended less  r e s t r i c t e d t o deep w a t e r , b e i n g found h i g h e r up i n the water column. The t e m p e r a t u r e - s a l i n i t y a s s o c i a t i o n s o f the t h i r d t o the s i x t h c o p e p o d i t e were s i m i l a r .  These stages were found throughout  the  water column a l t h o u g h t h e y o c c u r r e d i n h i g h e r c o n c e n t r a t i o n s i n t h e near-surface waters.  No apparent d i f f e r e n c e was  b u t i o n o f males and females  noted i n the  distri-  (which can be d i s t i n g u i s h e d b e g i n n i n g w i t h  the f o u r t h c o p e p o d i t e ) , and so the sexes were not p l o t t e d  separately.  Although i t i s not weld i n d i c a t e d by t h e g r a p h s , i t was  ob-  s e r v e d t h a t the t h i r d t o s i x t h c o p e p o d i t e s were found n e a r e r t o the s u r f a c e i n those s t a t i o n s o c c u p i e d at n i g h t , than those s t a t i o n s occup i e d d u r i n g the day.  For example, the p a r t i c u l a r l y h i g h v a l u e f o r . t h e .  3 f i f t h c o p e p o d i t e (65.18 animals/m ) was  from a sample c o l l e c t e d i n  Knight I n l e t at 0010-0025 PDT, J u l y 24, 1970 There was  an obvious d i s c r e p a n c y between the d i s t r i b u t i o n o f  the a d u l t female and the egg c l u s t e r . found throughout  A l t h o u g h a d u l t females were  the water column, the egg c l u s t e r s were g e n e r a l l y r e -  s t r i c t e d to the deep water. at  at 10 m d e p t h .  As egg c l u s t e r s were always c a p t u r e d w i t h  l e a s t as many f e m a l e s , females b e a r i n g egg c l u s t e r s must have been  a s s o c i a t e d w i t h the deep water.  Females without egg c l u s t e r s must have  been a s s o c i a t e d both w i t h deep and n e a r - s u r f a c e water.  37  Discussion  The r e s u l t s o f the t h r e e survey c r u i s e s i n d i c a t e t h a t P_. elongata.was r e s t r i c t e d n e i t h e r t o the o c e a n i c nor to the n e r i t i c water w i t h i n the study a r e a .  Throughout t h i s a r e a , the v e r t i c a l  t i o n remained s i m i l a r w i t h the egg, n a u p l i u s , and  early  distribu-  copepodite  stages b e i n g a s s o c i a t e d w i t h the deep water o f a l l s i x groups o f waters s t u d i e d , and t h e l a t e r stages b e i n g found i n deep and surface waters.  As the s i x groups o f waters had d i f f e r e n t  neartemperature-  s a l i n i t y c h a r a c t e r i s t i c s , the v e r t i c a l d i s t r i b u t i o n o f the s p e c i e s throughout the study area c o u l d not be a s s o c i a t e d w i t h and  s a l i n i t y , per S £ .  t i e s o f the surface  However, t h e r e may  Raters  be temperatures  (0 t o 20 m e t e r s ) ,  which  As t h e s p e c i e s i s capable o f b r e e d i n g i n a l l the b l e s o t h e r than water q u a l i t y may r e l a t i v e abundances o f Although  the  species  t h e r e are few  temperature and  salini-  the s p e c i e s a v o i d s .  waters  studied, varia-  account f o r the d i f f e r e n c e s i n the  within the  study  area.  e s t i m a t e s a v a i l a b l e f o r the primary, p r o -  d u c t i o n i n the areas s t u d i e d , the a v a i l a b l e d a t a i n d i c a t e t h a t t h e r e i s a good c o r r e l a t i o n between the t o t a l p r i m a r y p r o d u c t i o n o f some a r e a s , and t h e r e l a t i v e abundance o f P_. e l o n g a t a i n those a r e a s . t r a t i o n s o f P_. e l o n g a t a s u b - a r c t i c waters.  Low  concen-  were a s s o c i a t e d w i t h the e a s t e r n P a c i f i c Ocean  However, t h i s a r e a i s c h a r a c t e r i z e d by low  primary  2 p r o d u c t i o n , (43 to 78 gC/m  y e a r ; Anderson 1964).  The S t r a i t o f Georgia,  had h i g h e r c o n c e n t r a t i o n s o f P_. e l o n g a t a , and h i g h e r p r i m a r y p r o d u c t i o n  38  (120  gC/m  2  y e a r ; Parsons .et a l . , 1970).  I n d i a n Arm  had,  on the a v e r a g e ,  h i g h e r c o n c e n t r a t i o n s o f P_. e l o n g a t a than the S t r a i t o f G e o r g i a ,  and  2 higher primary production The  (609 gC/m  ..year; G i l m a r t i n 1964).  c o a s t a l seaways domains have low c o n c e n t r a t i o n s o f  e l o n g a t a p r o b a b l y because t h e waters i n these areas are w i t h s u r f a c e and  subsurface  continuous  P a c i f i c Ocean water which a l s o has  c o n c e n t r a t i o n s o f P_. e l o n g a t a .  P.  low  As the s u b s u r f a c e water i n Juan de  Fuca  S t r a i t and Queen C h a r l o t t e S t r a i t moves f u r t h e r i n s h o r e , i t mixes w i t h the l o w - s a l i n i t y waters from the i n l e t s and the r e g i o n s o f t u r b u l e n t m i x i n g i n the two a l s o , the p o p u l a t i o n s o f P. e l o n g a t a . a r e this  i s t h a t the two  the S t r a i t o f G e o r g i a i n homogeneous  small.  One  domainsHere  o f t h e reasons f o r  waters which c o n t r i b u t e t o the r e s u l t a n t water  both have c o m p a r a t i v e l y  s m a l l p o p u l a t i o n s o f P_. e l o n g a t a .  s u r f a c e P a c i f i c Ocean water has  The  sub-  s m a l l p o p u l a t i o n s o f P_. e l o n g a t a  pro-  b a b l y because o f the low p r o d u c t i o n o f the o c e a n i c environment.  The  s u r f a c e waters from the i n l e t s and the S t r a i t o f G e o r g i a have low popul a t i o n s because o f the c h a r a c t e r i s t i c s m i g r a t i o n and  'of the s p e c i e s ' d i e l v e r t i c a l  the e s t u a r i n e c i r c u l a t i o n o f these  areas.  In the B r i t i s h Columbia i n l e t s and the S t r a i t o f G e o r g i a , s u r f a c e l a y e r u s u a l l y extends o n l y as deep as 20 m Waldichuk 1957). this  P.. e l o n g a t a has  ( P i c k a r d 1961,  the 1963;  o n l y been found t o be a s s o c i a t e d w i t h  l a y e r from the t h i r d to the s i x t h  c o p e p o d i t e , and t h e n o n l y d u r i n g  the n i g h t * d u r i n g t h i s time they are c a r r i e d seaward.  However, d u r i n g  the day, these stages are a s s o c i a t e d w i t h the s u b s u r f a c e  l a y e r and  are c a r r i e d back towards the head o f the i n l e t or back i n t o the  so  Strait  39 of Georgia.  Because o f t h i s p a t t e r n o f d i e l v e r t i c a l m i g r a t i o n i n  r e l a t i o n t o the e s t u a r i n e c i r c u l a t i o n o f t h e s e a r e a s , P. e l o n g a t a i s 'conserved' w i t h i n the i n l e t s , and the S t r a i t o f G e o r g i a .  This  conser-  v a t i o n mechanism has p r e v i o u s l y been proposed f o r the p l a n k t o n i n inlets  (LeBrasseur  1955), and e s t u a r i e s : (Rogers 1940).  Therefore,  because o f t h i s c o n s e r v a t i o n mechanism, areas such as Haro S t r a i t , Boundary Passage, Nodales C h a n n e l , and Johnstone S t r a i t r e c e i v e a r e l a t i v e l y small, number o f immigrants from the i n l e t s and the S t r a i t  of  Georgia. In o r d e r f o r a p o p u l a t i o n to i n c r e a s e i n s i z e i n an  area  through r e p r o d u c t i o n , the r e s i d e n c e time o f t h e - p o p u l a t i o n i n the must be  l o n g e r than the time r e q u i r e d t o complete the l i f e  . t h e i n l e t s , the bottom water i s r e p l a c e d at i n t e r v a l s greater  ( P i c k a r d 1961,  1963), and  i t i s probably  cycle.  o f one year  only r a r e l y  major p o r t i o n of the i n l e t water i s r e p l a c e d by new  water.  area  that  In or the  It i s e s t i -  mated t h a t P_. e l o n g a t a r e q u i r e s a minimum o f s i x t o e i g h t months to complete i t s l i f e  c y c l e ( p e r s . o b s e r . ) . , Because o f the l o n g r e s i d e n c e  time o f t h e deep water i n the i n l e t s r e l a t i v e to the time r e q u i r e d f o r P. e l o n g a t a to complete i t s l i f e  c y c l e , i t i s p o s s i b l e f o r the  popula-  t i o n to i n c r e a s e through r e p r o d u c t i o n . Whether or not  a p o p u l a t i o n o f P_. e l o n g a t a w i l l i n c r e a s e i n  s i z e by r e p r o d u c t i o n i n an i n l e t o r the S t r a i t o f G e o r g i a w i l l depend upon s e v e r a l v a r i a b l e s . w a t e r , two deep w a t e r .  C o n s i d e r i n g o n l y the replacement of the deep  v a r i a b l e s , are the r a t e o f replacement and the o r i g i n o f the The west c o a s t , n o r t h e r n and  Seymour, B e l i z e ,  and  intermediate i n l e t s ,  and  Loughborough I n l e t s a l l open almost d i r e c t l y onto  40  the P a c i f i c Ocean o r to the waters i n the n o r t h e r n homogeneous domain. These l a t t e r areas have r e l a t i v e l y s m a l l p o p u l a t i o n s of P_. e l o n g a t a so t h a t an i n t r u s i o n o f water from t h e s e r e g i o n s i n t o an i n l e t might d i l u t e the r e l a t i v e l y l a r g e r e s i d e n t p o p u l a t i o n .  Whether i t does  should depend on the r a t e o f i n f l u x ; i f i t i s so r a p i d t h a t the s p e c i e s cannot r e t a i n i t s v e r t i c a l d i s t r i b u t i o n w i t h i n the i n l e t , and  i s car-  r i e d out with the o l d e r w a t e r , then t h e r e w i l l be a r e d u c t i o n i n the s i z e o f the p o p u l a t i o n .  Such an event may  I n l e t i n the s p r i n g o f 1970.  have o c c u r r e d i n Loughborough  However, i f the r a t e o f i n t r u s i o n i s  low,  and P_. e l o n g a t a can r e t a i n i t s v e r t i c a l p o s i t i o n i n the water column, then the p o p u l a t i o n s h o u l d not be a p p r e c i a b l y r e d u c e d .  The  southern  i n l e t s , w i t h deep s i l l s which open onto the S t r a i t o f G e o r g i a , are l i k e l y t o have t h e i r p o p u l a t i o n s reduced by an i n f l u x o f new s i n c e t h i s water o r i g i n a t e s i n t h e : S t r a i t o f G e o r g i a . g e n e r a l l y has  comparatively  less  water,  This l a t t e r  area  l a r g e p o p u l a t i o n s o f P_. e l o n g a t a a l l year  around. . The waters i n the areas o f t u r b u l e n t mixing have a v e r y s h o r t r e s i d e n c e t i m e , with water p a s s i n g through A r c h i p e l a g o i n one  o r two  months.  The  areas such as the San Juan  c u r r e n t s . i n t h i s area are  l e n t c u r r e n t s , . a n d P. e l o n g a t a i s p r o b a b l y  transported.through  areas at much the same r a t e as the water i n which i t l i v e s . i t takes o n l y one  o r two months  turbu-  these  Because  f o r the s p e c i e s to pass through  such  an a r e a , w h i l e i t r e q u i r e s a minimum o f s i x to e i g h t months to complete its  life  c y c l e , i t i s h i g h l y u n l i k e l y t h a t p o p u l a t i o n s o f P_. e l o n g a t a  w i l l d n c r e a s e s i g n i f i c a n t l y i n numbers i n these t u r b u l e n t  areas  41  through r e p r o d u c t i o n .  The  l o s s . o f the l a t e r developmental  stages  from the i n l e t s , the S t r a i t of G e o r g i a , and the P a c i f i c Ocean maybe more important  i n determining  the s i z e o f the p o p u l a t i o n s o f P_.  e l o n g a t a i n the r e g i o n s o f t u r b u l e n t mixing  i n the homogeneous  domains.  Conclusions (1) Breeding p o p u l a t i o n s o f P_. e l o n g a t a are a s s o c i a t e d w i t h all  s i x groups o f waters s t u d i e d , i . e . l o w - s a l i n i t y  'southern' waters,  s o u t h e r n w a t e r s , i n t e r m e d i a t e and n o r t h e r n w a t e r s , west c o a s t  inlet  w a t e r s , c o a s t a l seaways w a t e r s , and s u b - a r c t i c P a c i f i c Ocean w a t e r s . (2) The v e r t i c a l d i s t r i b u t i o n o f the developmental  stages  throughout the study area i s independent o f the temperature and  salini-  t y o f the s u b s u r f a c e w a t e r , but dependent upon the stage o f development o f the o r g a n i s m , and p o s s i b l y upon the f a c t o r s which a f f e c t vertical  diel  migration. (3) P o p u l a t i o n s , o f P_. e l o n g a t a i n . the P a c i f i c Ocean are  s m a l l because of the low p r o d u c t i o n o f t h i s  probably  environment.  (4) P o p u l a t i o n s o f P_. e l o n g a t a i n the c o a s t a l seaways are p r o b a b l y s m a l l because t h i s area i s s i m p l y . x a i i ^ J & e j ^ q p 0 f the  oceanic  environment. (5) The homogeneous domains are c h a r a c t e r i z e d by s m a l l t i o n s o f P_. e l o n g a t a .  The p o p u l a t i o n s are s m a l l , because  popula-  ( i ) the  two  waters which c o n t r i b u t e t o the f o r m a t i o n o f the water i n the homogeneous  42  domains both c o n t a i n s m a l l p o p u l a t i o n s o f P. e l o n g a t a , and  ( i i ) the  s h o r t r e s i d e n c e time of the water i n the homogeneous domains to the time r e q u i r e d f o r P_. e l o n g a t a to complete i t s l i f e a significant  cycle  i n c r e a s e i n the s i z e of the p o p u l a t i o n through  (6) The  relative  breeding.  r e l a t i v e l y l a r g e s i z e o f the p o p u l a t i o n s o f P.  a s s o c i a t e d w i t h the i n l e t s and to s e v e r a l f a c t o r s .  prevents  elongata  the S t r a i t of Georgia i s p r o b a b l y  Three o f these are  ( i ) the h i g h p r i m a r y  due-  production  o f these a r e a s , ( i i ) the l o n g r e s i d e n c e time o f the deep water r e l a t i v e to the time r e q u i r e d f o r P. e l o n g a t a t o complete i t s l i f e (iii)  the v e r t i c a l d i s t r i b u t i o n  to the c h a r a c t e r i s t i c s  cycle,  and  o f t h e developmental s t a g e s i n r e l a t i o n  of the e s t u a r i n e c i r c u l a t i o n i n these  areas.  43 CHAPTER I I I . . i j ' THE LABORATORY STUDY-AN EXAMINATION OF THE HATCHING SUCCESS OF P., ELONGATA EGG CLUSTERS IN VARIOUS NATURAL SEAWATERS INTRODUCTION I t was shown i n the p r e c e d i n g of P. e l o n g a t a  s e c t i o n that breeding  populations  a r e r e s t r i c t e d n e i t h e r t o the o c e a n i c n o r t o the n e r i t i c  water w i t h i n the study a r e a .  T h i s i m p l i e s t h a t t h e s p e c i e s e i t h e r has  a wide range o f t o l e r a n c e s f o r t e m p e r a t u r e , s a l i n i t y , and the o t h e r p r o p e r t i e s o f the waters o f i t s r a n g e , o r e l s e i s a b l e t o adapt t o i t s environment.  P h y s i o l o g i c a l variations within a species i n d i f f e r e n t  p a r t s o f i t s range have been d e m o n s t r a t e d . f o r responses t o temperature (Moore 1949, 1950; Stauber 1950; L o o s a n o f f and Nemejko 1951; Vernberg 1962;  Gilfillan  1962;  G i l f i l l a n 1970), and t o t h e . ' o t h e r ' p r o p e r t i e s o f sea-water  (Gilfillan  1970), t o s a l i n i t y  ( P r o s s e r .1955, G u i l l a r d and Ryther  1970).  Although P_. e l o n g a t a has been shown t o be r e s t r i c t e d to o c e a n i c nor t o n e r i t i c  neither  water w i t h i n the study a r e a t h i s does not  imply t h a t v a r i a t i o n s i n t e m p e r a t u r e , s a l i n i t y , and t h e . o t h e r  properties  o f the water w i t h i n t h e s p e c i e s ' range do not a f f e c t t h e organisms. S u b p o p u l a t i o n s o f the s p e c i e s may p o s s e s s a narrow range o f t o l e r a n c e s for  t e m p e r a t u r e , s a l i n i t y , and o t h e r p r o p e r t i e s o f s e a w a t e r s .  However,  i f the s p e c i e s can adapt t o i t s environment, then i t w i l l have a wider range than would be i n f e r r e d from d e t e r m i n i n g t h e t o l e r a n c e s o f a subp o p u l a t i o n c o l l e c t e d from one a r e a .  44 T h i s c h a p t e r p r e s e n t s - the r e s u l t s o f two (1) A study was  investigations:  conducted t o determine whether, o r not sea waters  w i t h s i m i l a r s a l i n i t i e s and temperatures have d i f f e r e n t o t h e r p r o p e r t i e s . The p r o p e r t i e s which were measured were the c o n c e n t r a t i o n s o f d i s s o l v e d z i n c , c o p p e r , n i c k e l , and manganese.  Lewis and Ramnarine  (1969)  i n d i c a t e d t h a t the s u r v i v a l o f P. e l o n g a t a egg c l u s t e r s c o l l e c t e d G.S.-l  ( i n the S t r a i t o f Georgia) was  from  a f f e c t e d by the a d d i t i o n o f t r a c e  elements t o the sea w a t e r . (2) A study was  conducted t o . d e t e r m i n e whether or not P_. e l o n g a t a  egg c l u s t e r s c o l l e c t e d from d i f f e r e n t areas and at d i f f e r e n t t i m e s , from waters o f s i m i l a r temperatures and s a l i n i t i e s , were d i s t i n c t i n t h e i r a b i l i t y t o s u r v i v e i n v a r i o u s n a t u r a l sea waters o f s i m i l a r salinity.  Experiments were a l s o conducted t o determine whether or not  P_. e l o n g a t a egg c l u s t e r s c o l l e c t e d from v a r i o u s areas w i t h l a r g e  differ-  ences i n s a l i n i t y were d i s t i n c t i n t h e i r a b i l i t y t o s u r v i v e i n waters with large d i f f e r e n c e s i n s a l i n i t y . The egg c l u s t e r was  t e s t e d because t h i s s t a g e i s f r e q u e n t l y the  most s e n s i t i v e stage i n the l i f e h i s t o r y o f an organism.  I t was  thought  t h a t t e s t i n g t h i s s t a g e would have a g r e a t e r p r o b a b i l i t y o f i n d i c a t i n g d i f f e r e n c e s between waters than t e s t i n g one o f the more hardy s t a g e s .  M a t e r i a l s and Methods Water f o r experiments was l u c i t e water s a m p l e r .  c o l l e c t e d w i t h a 96-L f i b r e g l a s s  and  The water was.passed through two t h i c k n e s s e s o f  45  a number-20 mesh net  (approximate pore s i z e - 6 4 u ) , and p l a c e d i n 5-  g a l l o n Nalgene c a r b o y s .  A p o r t i o n o f the water was  through a 0 . 4 5 u - m i l l i p o r e f i l t e r T h i s was  further f i l t e r e d  f o r d i s s o l v e d t r a c e element a n a l y s i s .  done o n l y f o r the water c o l l e c t e d from I n d i a n Arm,  Juan de Fuca S t r a i t .  In the l a b o r a t o r y , a l l sea water was  a n o n - i l l u m i n a t e d , cold-room at 8 ° C . Ocean was  G.S.-l  and  stored i n  Water c o l l e c t e d from the  Pacific  s t o r e d at 4 ° C .  Egg  c l u s t e r s were c o l l e c t e d w i t h a 1-m  pore s i z e - 7 0 0 u ) .  The p l a n k t o n  sample was  r i n g net. (approximate  placed i n p l a s t i c  along w i t h water c o l l e c t e d by the water sampler. . Egg  trays,,  c l u s t e r s and  egg-  c l u s t e r b e a r i n g females were examined, and .young, undamaged c l u s t e r s (and females) were t r a n s f e r r e d with, a l a r g e bore p i p e t t e t o a c o o l e d 4-L  i s o t h e r m c o n t a i n i n g sea water. • In the l a b o r a t o r y , the e g g , c l u s t e r s were s o r t e d under a b i n o -  c u l a r m i c r o s c o p e , and i n experiments. i n o l d e r egg  o n l y young egg  c l u s t e r s were s e t a s i d e f o r use  Young egg c l u s t e r s are a u n i f o r m b l u e I n . c o l o u r , , w h i l e  c l u s t e r s , the i n d i v i d u a l eggs are p o l a r i z e d , w i t h  one  p o l e b e i n g b l u e and the o t h e r w h i t e . Egg  c l u s t e r s were i n d i v i d u a l l y r e a r e d i n 1,000-ml Nalgene  Erlenmeyerr f l a s k s . o f 400  ml  These f l a s k s were r i n s e d t h r e e times w i t h a t o t a l  o f sea w a t e r , and  then 600  ml o f sea water was  added.  The  number o f eggs i n a c l u s t e r were counted-, and the egg c l u s t e r added t o a flask. Parafilm  The  mouth o f the f l a s k was  (American Can  then covered w i t h a p i e c e of  Company, Marathon Products)  to reduce  evaporation.  46  F l a s k s were m a i n t a i n e d i n the dark at 8°C i n a Psycrotherm (New Brunswick 40 rpm.  incubator  S c i e n t i f i c Company), and were h o r i z o n t a l l y r o t a t e d at  In supplementary  e x p e r i m e n t s , f l a s k s were m a i n t a i n e d i n t h e  dark i n a cold-room; f l a s k s m a i n t a i n e d i n t h e cold-room were not r o tated. Every t h r e e d a y s , the c o n t e n t s o f each f l a s k was,placed l a r g e f i n g e r b o w l , t h e number o f organisms and dead organisms were removed.  in a  at each stage were c o u n t e d ,  Each f l a s k was a g a i n r i n s e d w i t h a  t o t a l o f 400.-.ml o f s e a w a t e r , and 600 ml o f s e a water was added.  The  r e m a i n i n g l i v i n g organisms were r e p l a c e d , and the f l a s k was r e t u r n e d to  t h e i n c u b a t i n g chamber. Eggs were r e a r e d through t o the f i r s t  copepodite.  o n l y t h e h a t c h i n g success o f the egg was.used because m o r t a l i t y between the egg and the f i r s t  However,  ( i ) most o f the-  c o p e p o d i t e o c c u r r e d i n the egg  and the f i r s t two n a u p l i a r s t a g e s (Lewis and Ramnarine 1969), ( i i ) 90% of and  the eggs h a t c h d i r e c t l y i n t o the second n a u p l i u s (Borgmann 1971), ( i i i ) the m o r t a l i t y o f t h e hatched f i r s t  and second n a u p l i u s was  low, b e i n g l e s s than 5% ( W h i t f i e l d , p e r s . comm.; p e r s . o b s e r . ) .  Tests Of the f i v e s t a t i o n s s t u d i e d over t h e 2-year p e r i o d , o n l y I n d i a n Arm and G.S.-l had l a r g e , b r e e d i n g p o p u l a t i o n s o f P. e l o n g a t a ; t h e r e f o r e , the l a b o r a t o r y work was l a r g e l y r e s t r i c t e d t o t h e s e two populations.  The s p e c i f i c procedures were:  (1) Egg c l u s t e r s were c o l l e c t e d from I n d i a n Arm and G.S.-l  47 once a month, from March 1971 t o February 1972.  These egg c l u s t e r s  were t e s t e d i n t h r e e w a t e r s , i . e . ( i ) I n d i a n Arm 200-m w a t e r ,  (ii)  G.S.-l 350-m w a t e r , and ( i i i ) Juan de Fuca 200-m water u n t i l October 1971. A f t e r t h i s t i m e , t e s t s were made u s i n g o n l y I n d i a n Arm and G.S.-l water. run  F i v e r e p l i c a t e s were used f o r each t e s t , and a l l t e s t s were  i n the Pyscrotherm i n c u b a t o r . (2) Egg c l u s t e r s from I n d i a n Arm were c o l l e c t e d and t e s t e d  i n a second s e r i e s o f I n d i a n Arm 200-m w a t e r , and Juan de Fuca 200-m water  (April  1971).  A t h i r d water was made by d i l u t i n g t h e Juan de  Fuca water w i t h d i s t i l l e d w a t e r , so t h a t i t s s a l i n i t y was the same as the  I n d i a n Arm 200-m water.  F i v e r e p l i c a t e s were used f o r each t e s t ,  and t h e s e t e s t s were r u n i n an 8°C cold-room. (3) Egg c l u s t e r s w e r e . c o l l e c t e d from Pac^6 ( F i g u r e 1) i n May 1971, and t e s t e d i n Pac-6 750-m w a t e r , Juan de Fuca 200-m w a t e r , G.S.-l 350-m water j  and I n d i a n Arm 200-m water; the s a l i n i t i e s o f t h e s e waters  were 34.4%o, 33.8%^ 30.9%^ and 2 7 . 8 V r e s p e c t i v e l y .  F i v e r e p l i c a t e s were,  made f o r each t e s t , except f o r I n d i a n Arm where o n l y 3 r e p l i c a t e s were made.  A l l t e s t s were r u n i n a 4°C cold-room. (4) Egg c l u s t e r s were c o l l e c t e d from.Pac-8. ( F i g u r e 1 ) , i n  July  1971, and t e s t e d i n Pac-8 750-m w a t e r , Juan de Fuca 200-m w a t e r ,  G.S.-l 350-m w a t e r , and I n d i a n . Arm 200-m water; the s a l i n i t i e s o f t h e s e waters were  34.2%c,  33.9%*, 30.9%*, and 2 7 . 8 % » r e s p e c t i v e l y .  Five replicates  were used f o r each t e s t , and t h e t e s t s were r u n i n a 4 ° C cold-room. (5) Egg c l u s t e r s were c o l l e c t e d from Bute I n l e t i n June 1971, and t e s t e d i n Bute 600-m water  ( s a l i n i t y - 31.1%*) and G.S.-l 350-m  48  water  ( s a l i n i t y - 30.8%,).. Nine r e p l i c a t e s were used f o r each t e s t ,  and t h e t e s t s were r u n i n an 8°C cold-room. (6) Egg c l u s t e r s were c o l l e c t e d from Seymour I n l e t , i n August 1971, and t e s t e d I n d i a n Arm 200-m water f o r each t e s t . tested  i n Seymour 450-m water  ( s a l i n i t y - 28.9%°) and  ( s a l i n i t y - 27.8%^); f i v e r e p l i c a t e s were used  Egg c l u s t e r s were a l s o  c o l l e c t e d from I n d i a n Arm and  i'n t h e two waters u s i n g f o u r r e p l i c a t e s f o r each t e s t .  The  t e s t s were r u n i n an 8°C cold-room. (7) Egg c l u s t e r s were c o l l e c t e d from A l b e r n i 1971, and r e a r e d i n A l b e r n i de Fuca 200-m water  I n l e t , i n September  250-m water  ( s a l i n i t y - 32.8%^ and i n Juan  ( s a l i n i t y - 33.9%o).  F i v e r e p l i c a t e s were used f o r  each t e s t , and the t e s t s were r u n i n an 8°C cold-room. (8) Egg c l u s t e r s were c o l l e c t e d from I n d i a n Arm and G . S . - l , and r e a r e d i n G.S.-l 20-m water  ( s a l i n i t y - 29.6%.) i n January 1972.  Five  r e p l i c a t e s were used f o r each t e s t , and t h e t e s t s were r u n i n t h e Psycrotherm i n c u b a t o r .  Results ( i ) V a r i a t i o n s i i i the C o n c e n t r a t i o n s o f D i s s o l v e d Z i n c , Manganese, Copper and N i c k e l F i g u r e 5 shows the c o n c e n t r a t i o n s o f t h e f o u r measured t r a c e elements d u r i n g t h e study p e r i o d . a t t h e t h r e e s t a t i o n s . are h i g h e r than v a l u e s p r e v i o u s l y  These v a l u e s  determined from o t h e r s t u d i e s , and  some c o n t a m i n a t i o n may have been i n t r o d u c e d e i t h e r d u r i n g the c o l l e c t i n g or t h e f i l t e r i n g o f the water  ( E . G r i l l , p e r s . comm.). • The d a t a were  49  F i g u r e 5.  The c o n c e n t r a t i o n s . o f d i s s o l v e d . z i n c , . m a n g a n e s e , c o p p e r , and n i c k e l i n Juan de Fuca 200-m water (——-r—), G.S.-l 350-m water (_____),, and I n d i a n Arm 200-m water ( • » » . • . ) . The d a t a f o r d i s s o l v e d n i c k e l , a r e incomplete as a n a l y s e s were not made every month.  49 i  50'  i n t e r p r e t e d by assuming t h a t t h e y were q u a l i t a t i v e l y  correct.  F i g u r e 5 shows t h e f l u c t u a t i o n s i n the c o n c e n t r a t i o n s o f d i s s o l v e d z i n c i n I n d i a n Arm 200-m w a t e r , G.S.-l . 350-m w a t e r , and Juan de Fuca 200-m water d u r i n g the p e r i o d o f t h e l a b o r a t o r y s t u d y . Concentrations  were g e n e r a l l y g r e a t e s t i n I n d i a n Arm w a t e r ,  interme-  d i a t e i n Juan de Fuca w a t e r , and lowest i n G.S.-l 350-m w a t e r .  There-  f o r e ; t h e c o n c e n t r a t i o n o f d i s s o l v e d z i n c was not d i r e c t l y r e l a t e d t o the s a l i n i t y o f the water.  S e c o n d l y , w h i l e the c o n c e n t r a t i o n s o f  d i s s o l v e d z i n c at t h e t h r e e s t a t i o n s f l u c t u a t e d w i t h t i m e , t h e r e was no apparent a s s o c i a t i o n w i t h changes i n the deep water as measured by temperature and s a l i n i t y  (Figure 3 ) .  F i g u r e 5 shows the f l u c t u a t i o n s i n . t h e c o n c e n t r a t i o n s o f d i s s o l v e d manganese, c o p p e r , and n i c k e l a t , t h e t h r e e s t a t i o n s .  Concentra-  t i o n s were g e n e r a l l y h i g h e s t at I n d i a n Arm, and lowest a t G . S . - l .  Again,  t h e r e was n o apparent r e l a t i o n s h i p between f l u c t u a t i o n s i n the concent r a t i o n o f an element and changes i n t h e temperature and s a l i n i t y o f the deep water.  While t h e c o n c e n t r a t i o n s o f the f o u r elements at each  s t a t i o n v a r i e d with t i m e , there was l i t t l e tions.  s i m i l a r i t y iii their  This implies that d i f f e r e n t processes  regulate the concentration  o f each element, r a t h e r than.one p r o c e s s r e g u l a t i n g a l l f o u r . processes  were p r o b a b l y  processes  not adequately  ments .  chemical  fluctua-  These  a n d ' b i o l o g i c a l , and o t h e r p h y s i c a l  d e s c r i b e d by temperature and s a l i n i t y measure-  51  ( i i ) F l u c t u a t i o n s i n the S u r v i v a l of I n d i a n Arm and G.S.-l Egg C l u s t e r s i n I n d i a n Arm, G . S . - l , and Juan de Fuca deep Waters F i g u r e 6a shows the f l u c t u a t i o n s i n the p e r c e n t a g e h a t c h i n g o f G.S.-l egg one  standard  t o 15%.  c l u s t e r s i n the t h r e e w a t e r s . d e v i a t i o n was  10 t o 30%,  With f i v e  and the s t a n d a r d  replicates, e r r o r was  5  A l t h o u g h t h e r e were l a r g e d i f f e r e n c e s i n the s a l i n i t i e s  the t h r e e w a t e r s , s u r v i v a l was  of  g e n e r a l l y goodr/\usually b e i n g above  60%. S u r v i v a l o f G.S.-l egg  c l u s t e r s i n I n d i a n Arm  water was  sig-  n i f i c a n t l y c o r r e l a t e d w i t h the c o n c e n t r a t i o n of d i s s o l v e d copper (r =..8;  p = .004), and  i n G.S.-l water w i t h the c o n c e n t r a t i o n o f  d i s s o l v e d manganese (r = -.68;  p = .04).  S u r v i v a l d i d not appear t o  be a s s o c i a t e d w i t h changes i n the temperature and s a l i n i t y o f the deep w a t e r , although J a n u a r y , and  s u r v i v a l was  lowest i n I n d i a n Arm  water i n December,  F e b r u a r y , when t h e deep water w a s . r e p l a c e d . ( F i g u r e  3).  F i g u r e 6b shows the f l u c t u a t i o n s i n the p e r c e n t a g e h a t c h i n g I n d i a n Arm  egg  c l u s t e r s i n the t h r e e w a t e r s .  d i s t i n c t from those o f G.S.-l egg h i g h e s t i n I n d i a n Arm  w a t e r , and  clusters.  These f l u c t u a t i o n s were S u r v i v a l was  generally  lowest i n Juan de Fuca water.  T a b l e 5 p r e s e n t s the r e s u l t s o f the experiments u s i n g Juan Fuca w a t e r , d i l u t e d . J u a n de Fuca w a t e r , and r e a r i n g medium f o r I n d i a n Arm  egg  of  clusters.  I n d i a n Arm  water as a  These r e s u l t s  t h a t the h i g h s a l i n i t y o f the Juan de Fuca water was f a c t o r i n p r e v e n t i n g the h a t c h i n g o f Indian Arm  egg  de  suggest  probably clusters.  the c a u s a l The  52  F i g u r e 6.  The mean p e r c e n t a g e h a t c h i n g o f (a) G.S.-l egg c l u s t e r s , and (b) I n d i a n Arm egg c l u s t e r s i n Juan de Fuca 200-m water ( . - - ) , G.S.-l 350-m water ( , ) , and I n d i a n Arm 200-m water ( .).  PERCENTAGE  HATCHING  PERCENTAGE HATCHING  53  TABLE 5.  R e s u l t s and the a n a l y s i s o f v a r i a n c e o f the s u r v i v a l o f I n d i a n Arm egg c l u s t e r s i n I n d i a n Arm 200-m w a t e r , Juan de Fuca 200-m w a t e r , and d i l u t e d Juan de Fuca 200-m water.  Percentage I n d i a n Arm Water 200-m Replicate Replicate Replicate Replicate. Replicate  1 2 3 4 5  Mean S u r v i v a l  Juan de Fuca Water 200-m  D i l u t e d Juan de Fuca Water 200-m  61.5 61.5 64.7 62.5 71.4  59.0 5.2 30.7 5.2 64.2  78.5 100 61.5 69.2 68.4  64.3  32.8  75.5  Sum o f Squares Category, means W i t h i n means , Total  Survival  0.489 0.416 0.905  Degrees o f Freedom 2 12 14  Mean sum o f Squares 0.245 0.035  A s i g n i f i c a n t d i f f e r e n c e i n the means a t t h e 99% c o n f i d e n c e  F-ratio  7.00  level.  54  a c t u a l f a c t o r may. have been a s s o c i a t e d w i t h the a b i l i t y o f t h e eggs t o osmoregulate i n h i g h - s a l i n i t y water.  Secondly, s u r v i v a l i n the d i l u t e d  Juan de Fuca water was h i g h e r than i n Indian Arm water i n d i c a t i n g  that  t h e r e were d i f f e r e n c e s i n the p r o p e r t i e s o f these two w a t e r s . The  s u r v i v a l o f I n d i a n Arm egg c l u s t e r s i n I n d i a n Arm water  and Juan de Fuca water i n the cold-room was h i g h e r than i n the d u p l i c a t e s e r i e s r u n i n the\ Psycrotherm i n c u b a t o r .  T h i s was noted s e v e r a l times  d u r i n g t h e . s t u d y when d u p l i c a t e s e r i e s were r u n ; t h e reason  f o r these  d i f f e r e n c e s i s not known. S u r v i v a l o f I n d i a n Arm egg'clusters i n the t h r e e waters was not s i g n i f i c a n t l y c o r r e l a t e d with the concentration of d i s s o l v e d z i n c , manganese, c o p p e r , or n i c k e l .  S i m i l a r l y , changes i n s u r v i v a l d i d n o t  appear t o be a s s o c i a t e d w i t h changes i n t h e temperature and s a l i n i t y o f the deep water  (Figure 3 ) .  The s m a l l e s t f l u c t u a t i o n s i n s u r v i v a l o f  I n d i a n Arm egg c l u s t e r s i n I n d i a n Arm and G.S.-l waters o c c u r r e d September 1971 t o February 1972,  from  and i t was d u r i n g t h i s p e r i o d t h a t t h e  deep water o f t h e s e two areas was r e p l a c e d . An a n a l y s i s o f v a r i a n c e was made by u s i n g the method o u t l i n e d i n S t e e l and T o r r i e bles.  (1960) f o r f a c t o r i a l experiments w i t h t h r e e  varia-  The d a t a a n a l y z e d were the s u r v i v a l o f Indian Arm and G.S.-l  egg c l u s t e r s i n I n d i a n Arm 200-m water and G.S.-l 350-m w a t e r .  Sur-  v i v a l i n Juan de Fuca 200-m water was excluded because i t was b e l i e v e d t h a t the f a i l u r e o f I n d i a n Arm egg c l u s t e r s t o hatch  i n t h i s water was  p r o b a b l y due t o an osmotic s t r e s s imposed on the eggs by the r e l a t i v e l y  55  h i g h s a l i n i t y o f the water.  S i n c e t h e purpose o f t h i s s e r i e s o f t e s t s  was t o examine d i f f e r e n c e s i n water o t h e r than s a l i n i t y , i t was d e c i d e d to e x c l u d e t h e Juan de Fiica d a t a from t h i s  analysis.  T a b l e 6 p r e s e n t s the r e s u l t s o f the a n a l y s i s o f v a r i a n c e . the 12-month p e r i o d , t h e r e was a s t a t i s t i c a l l y s i g n i f i c a n t  Over  difference  i n t h e p r o p e r t i e s o f Indian Arm and G.S.-l w a t e r s , and i n the s u r v i v a l o f I n d i a n Arm and G.S.-l egg c l u s t e r s .  S u r v i v a l o f the egg c l u s t e r s  i n t h e two waters v a r i e d over the 12-month p e r i o d , as d i d the p r o p e r t i e s o f the waters from t h e s e two a r e a s .  There was no s i g n i f i c a n t  i n t e r a c t i o n over the 12-month p e r i o d . The d a t a were f u r t h e r a n a l y z e d t o determine t h e s o u r c e o f variation.  Three a n a l y s e s o f v a r i a n c e were made, t e s t i n g  ( i ) the s u r -  v i v a l o f I n d i a n Arm egg c l u s t e r s i n the two waters over t h e 12-month p e r i o d , ( i i ) the s u r v i v a l o f G.S.-l egg c l u s t e r s i n the two waters over t h e 12-month p e r i o d , and ( i i i )  the s u r v i v a l o f G.S.-l egg c l u s t e r s  i n I n d i a n Arm, G.S.-l and Juan de Fuca water over the 8-month period.  test  The a n a l y s i s was made by u s i n g the method d e s c r i b e d i n Dixon  and Massey (1957) f o r two v a r i a b l e s :£of c l a s s i f i c a t i o n and r e p e a t e d measurements. T a b l e 7 shows t h e r e s u l t s f o r I n d i a n Arm egg c l u s t e r s ; t h e r e was a s i g n i f i c a n t d i f f e r e n c e i n t h e response o f the egg c l u s t e r s t o the two waters t e s t e d , and a s i g n i f i c a n t d i f f e r e n c e i n t h e response over the 12-month p e r i o d .  C o n v e r s e l y , t h e r e was no s i g n i f i c a n t  differ-  ence i n t h e response o f G.S.-l egg c l u s t e r s t o the two waters t e s t e d  56  TABLE 6.  Source  R e s u l t s o f the a n a l y s i s o f v a r i a n c e o f t h e p e r c e n t a g e h a t c h i n g o f Indian.Arm and G.S.-l egg c l u s t e r s i n I n d i a n Arm 200-m water and G.S.-l 350-m water (March 1971-February 1972).  df  Blocks 4 A (Popular tion) 1" B (Water) 1 . C (Time) 11 AB • 1 AC 11 11 BC ABC 11 Error 188  SS  MS  F ratio  0.399  0.099  2,475  0.510 0.323 0.739 0.491 1.401 0.870 0.410 7.650  0.510 0.323 0.067 0.491 0.127 0.079 0.037 0.040  12.750 8.075 1.675 12.275 3.175 1.975 0.925  Probability  > .05  < .005 .005 < .05 > < .005 .005 < .05 < .05  • >  57  TABLE 7.  A n a l y s i s o f v a r i a n c e o f (a) the s u r v i v a l o f Indian Arm egg c l u s t e r s i n Indian Arm 200-m water and G.S.-l 200m water (12 months), (b) the s u r v i v a l o f G.S.-l egg c l u s t e r s i n G.S.-l 350-m water and.Indian Arm 200-m water (12 months), (c) the s u r v i v a l o f G.S.-l egg c l u s t e r s i n I n d i a n Arm 200-m w a t e r , G.S.-l 350-m w a t e r , and Juan de Fuca 200-m w a t e r , (8 months).  Sum o f Squares  Degrees o f Freedom  Mean Sum o f Squares  F-ratio  p  Row means Column means Interaction Subtotal W i t h i n groups Total  0..322 1..'465 1..122 2..909 5..226 8..135  1 11 11 23 96 119  0. 322 0. 132 0. 102 0. 126 0. 054  5..919 2.,430 1..873  < 0. 025 025 < 0. 0. 05  Row means Column means Interaction Subtotal W i t h i n groups Total  0,.004 0..331 0..466 0..801 2..938 3,.739  1 11 11 23 96 119  0. 004 0. 030 0. 042 0. 035 0. 031  0..144 0..984 1..382  > 0. 05  C) Row means Column means Interaction Subtotal W i t h i n groups Total  0,.327 0..247 0,. 708 1..283 3..280 4..5.62  2 7 • 14 23 96 119  0. 164 0. 035 0. 051 0. 037 0. 034  4.,810 1,.035 1..481  >  > 0. 05  > 0. 05  <  0. 001  > 0. 05  > 0. 05  58  (Table 7 b ) , nor i n the responses  over the 12-month p e r i o d .  whether o r not t h e r e a r e s i g n i f i c a n t d i f f e r e n c e s i n the the  Indian Arm  Arm  o r G.S.-l egg  Therefore  'quality' of  or G.S.-l water t e s t e d depends on whether o r not c l u s t e r s are used as a b i o a s s a y .  Indian  T a b l e 7c shows the  r e s u l t s o f the a n a l y s i s o f G.S.-l egg c l u s t e r s i n the t h r e e w a t e r s . this  case t h e r e were s i g n i f i c a n t d i f f e r e n c e s i n the response t o the  t h r e e w a t e r s , a l t h o u g h t h e r e were no s i g n i f i c a n t t e m p o r a l Over t h e 8 - m o n t h t e s t p e r i o d , Juan de Fuca water was t o r y r e a r i n g medium f o r G.S.-l egg c l u s t e r s  (iii).  variations.  a less  (and I n d i a n Arm  t e r s ) than G.S;-1 w a t e r , g i v i n g a mean s u r v i v a l o f 57.9%  satisfacegg  S u r v i v a l o f P a c i f i c Ocean Egg C l u s t e r s i n Four N a t u r a l Waters o f D i f f e r e n t S a l i n i t i e s  v a l was  good i n a l l f o u r w a t e r s , a l t h o u g h  (43.8%).  Sea  Survi-  lower i n I n d i a n  Arm  T h i s i n d i c a t e s t h a t Pac-6 egg c l u s t e r s were t o l e r a n t o f  l a r g e v a r i a t i o n s i n s a l i n i t y , and with these waters.  o f the o t h e r p r o p e r t i e s a s s o c i a t e d  I t a l s o suggests  i n the P a c i f i c Ocean are.not o f the water a r e u n f a v o u r a b l e t h e . s t a t i o n was  i t was  clus-  v s . '65.6%.  T a b l e 8 p r e s e n t s the r e s u l t s o f the Pac-6 e x p e r i m e n t s .  water  In  t h a t the p o p u l a t i o n s o f P_. e l o n g a t a  r e l a t i v e l y s m a l l because the p r o p e r t i e s f o r the s u r v i v a l of the s p e c i e s .  c l o s e t o the c o a s t  Because  (50 m i l e s ) , i t i s p o s s i b l e t h a t a  s i g n i f i c a n t percentage of P_. e l o n g a t a o r i g i n a t e d from the n e r i t i c vironment.  T h i s c o u l d account f o r the t o l e r a n c e f o r low  salinities.  Table 9 p r e s e n t s the r e s u l t s of the.Pac-8 e x p e r i m e n t s . v i v a l was  en-  h i g h e s t i n Pac-8 w a t e r , h i g h e r i n Juan de Fuca w a t e r j  Surhigh  59  TABLE 8.  R e s u l t s and the a n a l y s i s o f v a r i a n c e o f the h a t c h i n g s u c c e s s o f Pac-6 egg c l u s t e r s i n f o u r d i f f e r e n t s e a waters.  Percentage H a t c h i n g Pac-6 750-m Water  J . F . 200-m Water  G.S.-l 350-m. Water  I n d . Arm 200-m Water  Replicate'1 Replicate 2 Replicate 3 Replicate 4 Replicate 5  89.4 31.8 83.3 23.5 57.1  52.9 76.1 65.4 94.4 83:3  82.3 47.3 75.0 31.1 55.5  20.0 50.0 65.2  Mean Survival  57.0  74.4  58.3  43.8  Sum o f Squares Category means Within means Total  Degrees o f Freedom  0.175  3  0.724 0.899  14 17  Mean Sum o f Squares  0.058 . 0.051  No s i g n i f i c a n t d i f f e r e n c e a t t h e 95% c o n f i d e n c e  level.  F-ratio  1.137  60  TABLE 9.  R e s u l t s and t h e a n a l y s i s o f v a r i a n c e o f the s u r v i v a l o f Pac-8. Egg c l u s t e r s i n f o u r d i f f e r e n t s e a w a t e r s .  Percentage H a t c h i n g Pac-8 750-m Water Replicate Replicate Replicate Replicate Replicate  1 2. 3 4 5  Mean s u r v i v a l  G.S.-l 350-m Water  Ind,. Arm 200-m Water  63.6 88.8 85.7 85.0 70.0  90.0 65.0 65i0 66.6 76.1  9.5 47.8 57.1 56.5 38.0  0 40.0 36.8 42.1 0  78.6  72.5  41.8  23.8  Sum o f Squares Category means: W i t h i n means Total  J . F . 200-m 'Water  1.005 0.437 1.442  Degrees o f Freedom 3 16 19  Mean Sum o f Squares 0.335 0.027  F-- r a t i o  12.41  A s i g n i f i c a n t d i f f e r e n c e i n the means a t t h e 99.95%c-confi:denee: T e v e l .  61  i n G.S.-l w a t e r , and low i n I n d i a n Arm w a t e r . cally significant difference level.  There was  a statisti-  i n the means a t the 99.95% c o n f i d e n c e  However, i t i s q u e s t i o n a b l e whether t h i s d i f f e r e n c e  to differences  due  i n the s a l i n i t y o f t h e f o u r waters which e x e r t e d an  osmotic s t r e s s on the eggs, o r due.to the other p r o p e r t i e s waters.  was  The s a l i n i t y f a c t o r , per s e ,  o f the  was p r o b a b l y more i m p o r t a n t ,  j u s t as t h i s f a c t o r was more, i m p o r t a n t i n c a u s i n g the low s u r v i v a l o f I n d i a n Arm  eggs i n Juan de Fuca deep w a t e r .  have been l e s s t o l e r a n t . o f  Pac-8 egg c l u s t e r s  l o w - s a l i n i t y water than Pac-6 egg  may  clusters  because t h e P. e l o n g a t a i n the former r e g i o n were more i s o l a t e d from the  neritic  environment  (80 m i l e s from the c o a s t ) , and had fewer immi-  g r a n t s from the c o a s t a l r e g i o n .  C o r r e s p o n d i n g l y , t h e r e may  have been  a l a r g e r p e r c e n t a g e o f the P. e l o n g a t a p o p u l a t i o n which had spent several  g e n e r a t i o n s i n t h e . o c e a n i c environment.  ( i v ) B u t e , A l b e r n i , and Seymour Experiments T a b l e 10 p r e s e n t s the r e s u l t s o f t h e s e r i e s t e s t i n g  Bute.egg  c l u s t e r s i n Bute water and G.S.-l water; there.were no s i g n i f i c a n t d i f f e r e n c e s i n the s u r v i v a l i n the two w a t e r s . s u l t s o f the s e r i e s t e s t i n g A l b e r n i  T a b l e 11 p r e s e n t s t h e r e -  egg c l u s t e r s  i n Alberni  water and  Juan de Fuca water; again t h e r e were no s t a t i s t i c a l l y s i g n i f i c a n t differences  i n the r e s u l t s .  T a b l e 12 p r e s e n t s t h e r e s u l t s o f t h e  s e r i e s t e s t i n g Seymour and I n d i a n Arm two a r e a s .  I n d i a n Arm  egg c l u s t e r s i n waters from the  egg c l u s t e r s s u r v i v e d e q u a l l y w e l l i n the two  62  TABLE 10.  R e s u l t s and the a n a l y s i s o f v a r i a n c e o f the s u r v i v a l o f Bute I n l e t egg c l u s t e r s i n Bute I n l e t water-and G.S.-l. water.  PresentagetHatching Bute 600-m Water Replicate Replicate Replicate Replicate Replicate Replicate Replicate Replicate Replicate  1 2 3 4 5 6 7 8 9  Mean S u r v i v a l  60.0 88.8 37.5 90.9 43.7 76.4 58.8 86.6 66:6  66.6 53.3 76.9 76.9 76.9 52.9 81.2 66.6 75.0  67.7  69.2  Sum o f Squares C a t e g o r y means W i t h i n means Total  0.001 0.338 0.039  G.S.-l 350-m Water  Degrees o f Mean Sum o f Freedom: ''': Squares 1 16 17  0.001 0.024  F-ratio  0.042  No s t a t i s t i c a l l y s i g n i f i c a n t d i f f e r e n c e i n t h e means a t t h e 95% confidence l e v e l .  63  TABLE 11.  R e s u l t s and the a n a l y s i s o f v a r i a n c e o f t h e s u r v i v a l o f A l b e r n i egg c l u s t e r s i n A l b e r n i water and Juan de Fuca wateri  Percentage H a t c h i n g A l b e r n i 250-m Water Replicate 1 Replicate 2 Replicate 3 Replicate 4 Replicate 5 Mean S u r v i v a l  Sum o f Squares C a t e g o r y means W i t h i n means Total  0.012 1.063 i:075  Juan de Fuca 200-m Water  75.0 83.3 100 93.7 60.0  64.7 82.3 72.2 94.1 73.3  70.4  77.3  Degrees o f Freedom 1 8  Mean Sum o f Squares 0.012 0.132  F-ratio  0.090  No s i g n i f i c a n t d i f f e r e n c e i n the means a t t h e 95% c o n f i d e n c e l e v e l .  64  TABLE 12.  R e s u l t s and the a n a l y s i s o f v a r i a n c e o f the h a t c h i n g success o f Seymour egg c l u s t e r s and I n d i a n Arm egg c l u s t e r s i n water c o l l e c t e d from t h e two i n l e t s .  Percentage  Hatching  Seymour egg c l . Seymour '450-m I n d . Arm 200-m  Replicate Replicate Replicate Replicate Replicate  1 2 3 4 5  Mean s u r v i v a l  84.2 78:9 63.1 5.2 72.2  61.9 55.5 50.0 0 28.5  94.4 80.9 71.4 35.2  61.1 95.0 57.8 78.9  60.7  39 .2  70.7  73.2  Sum o f Squares Category mean W i t h i n means Total  I n d i a n Arm egg c l . Seymour 450-m I n d . Arm 200-m  0.329 0.942 1.271  Degrees o f Freedom 3 14 17  Mean Sum o f Squares 0.109 0.067  No s i g n i f i c a n t d i f f e r e n c e i n the means a t t h e 95% c o n f i d e n c e  F-ratio  1.626  level.  65  waters.  Seymour egg c l u s t e r s had lower s u r v i v a l i n Seymour water  t h a n . I n d i a n Arm egg c l u s t e r s , and v e r y low s u r v i v a l i n I n d i a n Arm water.  T h i s suggests  t h a t t h e r e were d i f f e r e n c e s i n the egg c l u s t e r s  from t h e two a r e a s , and t h a t f o r Seymour egg c l u s t e r s , t h e two waters were q u a l i t a t i v e l y d i f f e r e n t .  However, t h e r e were no s t a t i s t i c a l l y  s i g n i f i c a n t d i f f e r e n c e s i n the results.-  (v) G.S.-l 20-m Water T a b l e 13 p r e s e n t s t h e r e s u l t s o f t h e s e r i e s t e s t i n g G.S.-l and I n d i a n Arm egg c l u s t e r s i n G.S.-l 20-m w a t e r .  S u r v i v a l o f t h e s e egg,;  c l u s t e r s i n G.S.-l 350-m water and I n d i a n Arm 200-m water i s shown on F i g u r e 6.  S u r v i v a l o f I n d i a n Arm egg c l u s t e r s i n G.S.-l 20-m water  was s l i g h t l y h i g h e r than i n G.S.-l 350-m water w h i l e the r e v e r s e was t r u e f o r G.S.-l egg c l u s t e r s .  There i s , from t h i s e x p e r i m e n t , no e v i -  dence t o suggest t h a t egg c l u s t e r s a r e i n c a p a b l e o f d e v e l o p i n g i n the near-surface water.  T h i s supports  t h e h y p o t h e s i s t h a t one o f t h e r e a -  sons n a u p l i i are u s u a l l y found o n l y i n deep water i s t h a t the f e m a l e s , which c a r r y the egg c l u s t e r s u n t i l the n a u p l i i h a t c h , n o r m a l l y  remain  i n deep w a t e r .  Summary The a n a l y s i s o f the c o n c e n t r a t i o n s o f d i s s o l v e d z i n c , manganese, c o p p e r , and n i c k e l i n Indian Arm 200-m w a t e r , G.S.-l '350-m w a t e r , and Juan de Fuca 200-m w a t e r , i n d i c a t e d t h a t the v a l u e s a s s o c i a t e d w i t h  66  TABLE 13.  R e s u l t s 'of the s u r v i v a l o f I n d i a n Arm and G.S.-l egg c l u s t e r s i n G.S.-l near s u r f a c e (20-m) and deep (350-m) water.  ' P ef c en t- age M a t c M ng Indian Arm egg c l u s t e r s G.S.-l 20-m  G.S.-l 350-m  G.S.-l egg c l u s t e r s G.S.-l 20-m  G.S.-l  350m  Replicate 1 Replieate2/2 Replicate 3 Replicate 4 Replicate 5  50.0 50.0 71.4 58.3 72.7  50.0 54.5 12.5 75.0 26.6  50.0 28.5 76.9 45.4 64.2  76.9 90.9 92.3 54.5 53.8  Mean s u r v i v a l  60.4  43.7  53.0  73.6  67  each water were n o t a . f u n c t i o n o f s a l i n i t y .  G.S.-l deep water  general-  l y had the lowest c o n c e n t r a t i o n s o f d i s s o l v e d t r a c e e l e m e n t s , and y e t was  i n t e r m e d i a t e i n s a l i n i t y t o the deep waters o f Juan de Fuca S t r a i t  and I n d i a n Arm.  There were,,;at each o f t h e t h r e e s t a t i o n s , temporal  v a r i a t i o n s i n the c o n c e n t r a t i o n s o f the f o u r measured t r a c e elements. While the s a l i n i t y o f the water a l s o v a r i e d , t h e r e was no  apparent  r e l a t i o n s h i p between the f l u c t u a t i o n s i n the s a l i n i t y • (and temperature) o f the w a t e r s , and f l u c t u a t i o n s i n the c o n c e n t r a t i o n s o f t h e d i s s o l v e d t r a c e elements.  T h i s suggests t h a t unmeasured b i o l o g i c a l and chemical  p r o c e s s e s , and p h y s i c a l p r o c e s s e s not a d e q u a t e l y d e s c r i b e d by measurements o f temperature and s a l i n i t y , were a f f e c t i n g the c o n c e n t r a t i o n s o f t h e s e t r a c e elements.  T h e r e f o r e , w i t h i n each o f the t h r e e areas  s t u d i e d , measurements o f temperature and s a l i n i t y by themselves would not g i v e a good i n d i c a t i o n o f t h e c o n c e n t r a t i o n s o f the t r a c e  elements  which would be a s s o c i a t e d w i t h t h a t w a t e r . The l a b o r a t o r y d a t a i n d i c a t e d t h a t the s u r v i v a l o f G.S.-l egg c l u s t e r s i n G.S.-l water was  s i g n i f i c a n t l y c o r r e l a t e d w i t h the concen-  t r a t i o n o f d i s s o l v e d manganese, and i n I n d i a n Arm water w i t h t h e c o n c e n t r a t i o n of d i s s o l v e d copper.  There were no o t h e r s i g n i f i c a n t  corre-  l a t i o n s between the s u r v i v a l o f egg c l u s t e r s i n a water and the concent r a t i o n s o f the d i s s o l v e d t r a c e e l e m e n t s . The l a b o r a t o r y d a t a a l s o i n d i c a t e d t h a t P_. e l o n g a t a egg ters collected  from d i f f e r e n t areas may  a s e r i e s : o f sea waters  clus-  e x h i b i t d i f f e r e n t responses t o  (when t e s t e d a t the same t e m p e r a t u r e ) .  The  68  f a c t o r to which the  egg  i t s other-properties. eggs and large  responds may For  be  the  example, i t was  s a l i n i t y o f the.water or shown t h a t both I n d i a n  Pac-8 eggs r e a c t e d d i f f e r e n t l y to a s e r i e s o f waters which  differences  in salinity  sponse were p r o b a b l y due t e s t waters per I t was  (28  to the  t o 34%^.  egg  These d i f f e r e n c e s  r e s p o n d i n g to the  s e , r a t h e r than to t h e i r o t h e r also  shown t h a t egg  egg  c l u s t e r s reacted d i f f e r e n t l y to  t h a t G.S.-l egg  Seymour I n l e t egg  and  c l u s t e r s may  Seymour deep w a t e r s . egg  I t was  I n d i a n Arm  G.S.-l deep w a t e r s , and  c l u s t e r may  As  the  in reof.the  r e a c t d i f f e r e n t l y to shown t h a t and  i t was  Indian  G.S.-l- deep.waters,  c l u s t e r s r e a c t e d d i f f e r e n t l y to' Juan de  than t o I n d i a n Arm  the  salinity  had  properties.  c l u s t e r s may  a s e r i e s o f waters w i t h s i m i l a r s a l i n i t i e s . Arm  Arm  Fuca deep water  suggested t h a t  r e a c t d i f f e r e n t l y t o I n d i a n Arm  and  s a l i n i t i e s o f t h e s e waters were s i m i l a r ,  have been r e a c t i n g t o d i f f e r e n c e s  i n other proper-  t i e s o f these w a t e r s . Many o f the  tests indicated  t h a t egg  c l u s t e r s d i d not  d i f f e r e n t l y to sea waters w i t h s i m i l a r s a l i n i t i e s . ' had  s i m i l a r responses to I n d i a n Arm  egg  c l u s t e r s had  deep w a t e r s , I n d i a n Arm and  c l u s t e r s had egg  v i v a l i n Pac-6, Juan de T h i s s t u d y has  and  Juan de  Inlet  Fuca deep  similar survival  Pac-6 egg  F u c a , G . S . - l , and  c l u s t e r s had I n d i a n Arm  i n Indian  similar sur-  deep w a t e r s .  t h e r e f o r e shown t h a t sea waters w i t h  vary i n q u a l i t y .  clusters  s i m i l a r s u r v i v a l i n Bute and.G.S.-l  c l u s t e r s had  Seymour deep w a t e r s , and  s a l i n i t i e s may  G.S.-l w a t e r , A l b e r n i  similar survival i n Alberni  w a t e r s , Bute I n l e t egg  Arm  and  G.S.-l egg  react  Whether t h e s e d i f f e r e n c e s  similar are  69  b i o l o g i c a l l y d e t e c t a b l e depends l a r g e l y upon the t e s t organism which i s used as a b i o a s s a y . from d i f f e r e n t areas may  S e c o n d l y , F_. e l o n g a t a egg c l u s t e r s be d i s t i n c t i n t h e i r response t o  collected salinity,  and i n t h e i r response t o the o t h e r p r o p e r t i e s o f sea w a t e r s . o r not P_. e l o n g a t a l i v i n g i n areas such as I n d i a n Arm  Whether  and G.S.-l  are  s i g n i f i c a n t l y a f f e c t e d by v a r i a t i o n s i n water q u a l i t y w i l l be d i s c u s s e d i n the f i n a l s e c t i o n o f t h i s t h e s i s . . There are no d a t a t o suggest t h a t areas such as Juan de S t r a i t and the e a s t e r n s u b - a r c t i c P a c i f i c Ocean, which  Fuca  consistently  had r e l a t i v e l y s m a l l p o p u l a t i o n s o f P_. e l o n g a t a , have waters whose p r o p e r t i e s a r e u n f a v o u r a b l e f o r the s u r v i v a l o f the egg  (collected  from or near these a r e a s ) . . T h i s supports the r e s u l t s o f the s u r v e y cruises  ( s e c t i o n 3 ) , which i n d i c a t e d t h a t the r e l a t i v e l y s m a l l p o p u l a -  t i o n s i n t h e s e areas were p r o b a b l y a s s o c i a t e d w i t h low p r i m a r y tion.  produc-  70  CHAPTER IV ... AN EVALUATION OF THE ROLE OF THE VARIATION IN WATER QUALITY IN THE DISTRIBUTION OF P. ELONGATA AT INDIAN ARM AND G.S.-l  INTRODUCTION  The  d a t a i n Chapter II i n d i c a t e d  o f b r e e d i n g both i n the three survey c r u i s e s .  o c e a n i c and  such as varied  laboratory data  I n d i a n Arm,  the  Gilfillan was  that v a r i a t i o n s  As  a f f e c t the  determine the d i d not  abundance o f the egg  waters.  species i s , i n  clusters, local  variations  zooplankter Euphausia p a c i f i c a .  i n water q u a l i t y .  However, he  i n water q u a l i t y were p r o b a b l y not  indicated  a major l i m i t i n g  species.  W i l s o n and  showed, by u s i n g sea u r c h i n l a r v a e were v a r i a t i o n s  the  (1970) showed t h a t the  (1951) and  sea  abundance of l o c a l p o p u l a t i o n s .  f a c t o r i n the d i s t r i b u t i o n o f the Wilson  quality of natural  not  c l u s t e r s i n t h e i r home water  s u r v i v a l o f the  s e n s i t i v e to v a r i a t i o n s  species i s probably  the  (Chapter I I I ) i n d i c a t e d , t h a t w i t h i n areas  over a 12-month p e r i o d .  i n water q u a l i t y may  i n the  s u r v i v a l o f egg  p a r t , dependent upon the  capable  the n e r i t i c waters examined by  T h i s suggests t h a t the  l i m i t e d i n these areas'by v a r i a t i o n s However, the  t h a t P_. e l o n g a t a was  Armstrong (1952, 1954,  1958,  1961)  c o l l e c t e d near E d d y s t o n e , t h a t t h e r e  i n the q u a l i t y o f sea w a t e r s .  While they attempted  to  sources o f the v a r i a t i o n w i t h i n the t e s t w a t e r s , they  attempt to e v a l u a t e the  significance of this variation i n  e c o l o g y o f sea u r c h i n s near E d d y s t o n e . Eddystone gave poor s u r v i v a l over the  Sea  the  water c o l l e c t e d from  12-year study p e r i o d  (1948  to  71  1960)  and  yet t h e r e was  sea u r c h i n p o p u l a t i o n .  no apparent d e c l i n e i n the s i z e o f the Smith  (1972) e s t i m a t e d t o 1.6  adult  t h a t echinoderm popu-  l a t i o n s turnover  a t a range o f 0.1  per year.  An a p p l i c a t i o n  of t h i s estimate  to the sea u r c h i n p o p u l a t i o n h e a r Eddystone i n d i c a t e s  t h a t , o v e r the  12-year s t u d y p e r i o d , t h e p o p u l a t i o n was  to 9.2  As  tions  times.  replaced  1.2  the s i z e o f the p o p u l a t i o n d i d not d i m i n i s h , v a r i a -  i n the q u a l i t y o f sea water (or l a r v a l q u a l i t y ) at Eddystone  as determined i n the l a b o r a t o r y must have had i n g the  l o c a l abundance o f sea  a minor r o l e i n a f f e c t -  urchins.  T h i s s e c t i o n i n v e s t i g a t e s whether or not  v a r i a t i o n s i n water  q u a l i t y were a s i g n i f i c a n t f a c t o r i n d e t e r m i n i n g the abundance o f P_. e l o n g a t a i n G.S.-l and  I n d i a n Arm.  As temperature and  salinity  have been used t o d e s c r i b e water b o d i e s , f l u c t u a t i o n s i n the temperat u r e and i n the  s a l i n i t y o f the water i n an a r e a may  ' q u a l i t y ' o f the w a t e r .  be  i n d i c a t i v e o f changes  I f the s p e c i e s i s a f f e c t e d by v a r i a t i o n s  i n the q u a l i t y o f sea.water, then there, might be some r e l a t i o n s h i p between f l u c t u a t i o n s i n the species': d i s t r i b u t i o n and f l u c t u a t i o n s . i n the temperature and temperature and  s a l i n i t y o f the w a t e r .  T h i s does not  s a l i n i t y act d i r e c t l y on the s p e c i e s , but  t h a t these measurements may  imply t h a t rather,  be i n d i c a t i v e o f some f l u c t u a t i n g  environ-  mental v a r i a b l e (water q u a l i t y ) t h a t i s l e s s e a s i l y measured. This chapter might be and  important.in  Indian Arm.  a l s o attempts t o determine what o t h e r v a r i a b l e s r e g u l a t i n g the abundance o f P. e l o n g a t a  I t was  i n G.S.-l  shown, i n Chapter I I I , t h a t t h e r e were no  n i f i c a n t d i f f e r e n c e s i n the s u r v i v a l o f G.S.-l egg 350-m water o v e r the 12-month study p e r i o d .  sig-  c l u s t e r s i n G.S.-l  However, the f i e l d  data  72  indicated  t h a t t h e r e were pronounced f l u c t u a t i o n s  n a u p l i i i n the w a t e r . q u a l i t y may at t h i s  i n the number o f  T h i s suggests t h a t v a r i a b l e s  o t h e r than water  be more important i n r e g u l a t i n g the abundance o f n a u p l i i  station.  M a t e r i a l s and Methods The methods f o r the c o l l e c t i o n o f the f i e l d  d a t a have been  d e s c r i b e d e a r l i e r (Chapters I and I I ) , as have been the t e c h n i q u e s for  e s t i m a t i n g the abundance and v e r t i c a l d i s t r i b u t i o n o f the d e v e l o p -  mental stages  (Chapter I I ) . The f i e l d  d a t a were examined i n t h e  fol-  l o w i n g ways: (1) The v e r t i c a l d i s t r i b u t i o n o f the developmental were examined,.arid were s u b j e c t i v e l y temperature  stages  compared w i t h the changes i n the  and s a l i n i t y o f the water.  (2) The v a r i a t i o n i n the abundance o f the developmental  stages  were examined over the 29-morith s t u d y p e r i o d t o determine whether o r not the s p e c i e s was (3) The in  the water and  more abundant; at some times than o t h e r s .  correlation  c o e f f i c i e n t between the number o f n a u p l i i  ( i ) the s u r v i v a l o f the egg i n i t s home water as  determined i n the l a b o r a t o r y , and was  calculated.  ( i i ) the number o f eggs i n the  The e s t i m a t e o f the number o f eggs was  water,  o b t a i n e d by  2 multiplying  t h e number o f egg c l u s t e r s  i n a 1-m  column o f water  (Clarke-Bumpus sampler data) by the mean number o f eggs p e r ( l a b o r a t o r y data) .  cluster  73  (4) The mean percentage m o r t a l i t y o f t h e developmental  stages  was c a l c u l a t e d by e s t i m a t i n g the mean c o n c e n t r a t i o n o f each stage  over  the 29-month study p e r i o d , and comparing these estimates w i t h t h e mean number e x p e c t e d . . The mean number expected was c a l c u l a t e d by e s t i m a t i n g the p r o p o r t i o n o f t h e p o p u l a t i o n each s t a g e should r e p r e s e n t s i m p l y on the b a s i s o f t h e time spent i n t h a t stage r e l a t i v e t o t h e t o t a l of the l i f e  cycle.  time  The d a t a f o r t h e development, time o f t h e egg and  the s i x n a u p l i a r stages a r e from Borgmann (1971).  The f i r s t  and second  copepodites r e q u i r e t h r e e t o f o u r weeks t o complete development (Ramnarine, p e r s . comm.; p e r s . o b s e r . ) , and an e s t i m a t e o f t h r e e t o f o u r weeks can be used f o r t h e o t h e r t h r e e copepodite s t a g e s .  The  average time spent i n each o f these stages i s shown i n T a b l e 14. The l a b o r a t o r y s t u d i e s I n d i c a t e t h a t t h e a d u l t male and female  can s u r v i v e  f o r at l e a s t t h r e e months (Ramnarine, p e r s . comm.; p e r s . o b s e r . ) . these d a t a , t h e m o r t a l i t y between s t a g e s , and t h e cumulative from t h e egg t o t h e a d u l t can be c a l c u l a t e d .  From  mortality  The number o f n a u p l i i  and  s u c c e s s i v e stages expected were a l s o r e c a l c u l a t e d w i t h t h e assumption t h a t 30.5% o f the G.S.-l eggs and 38.5% o f t h e I n d i a n Arm eggs t o h a t c h owingc'to t h e i r i n t e r a c t i o n w i t h t h e i r home w a t e r .  This  failed esti-  mated mean m o r t a l i t y was o b t a i n e d from t h e l a b o r a t o r y s t u d y • (Chapter I I I ) . The r e c a l c u l a t i o n o f t h e s e d a t a a l l o w s t h e cumulative m o r t a l i t y from the egg t o t h e a d u l t t o be e s t i m a t e d w i t h an allowance b e i n g made f o r the m o r t a l i t y due t o the i n t e r a c t i o n between the egg and t h e w a t e r . These, c a l c u l a t e d m o r t a l i t i e s a r e t h e r e f o r e due t o o t h e r s t r e s s e s such as food l i m i t a t i o n and p r e d a t i o n .  environmental  74  TABLE 14. . NThe e s t i m a t e d mean time spent i n each o f the. d e v e l o p mental stages of P. e l o n g a t a , the p e r c e n t o f t h e t o t a l spent i n each s t a g e , and the time spent i n each s t a g e r e l a t i v e t o the time spent i n t h e egg and f i r s t nauplius.  Stage  ,  Egg + N - l N-2 t o N-6 C-l., C-2 C-3 C-4 C-5 C-6 Total  Time (days)  7 19 25 25 25 25 25 90 241  % of Total  2.9 7.,9 10.4 10.. 4 10.4 10.4 10.4 37.3  Relative to egg + N - l 1 2.7 3.6 3.6 3.6 3.6 3.6  75  (5) The  s t a b i l i t y of the measured b i o l o g i c a l , c h e m i c a l ,  p h y s i c a l v a r i a b l e s was i s stable i f i t returns  estimated.  Leigh  (1971) s t a t e s t h a t  to e q u i l i b r i u m when d i s t u r b e d ;  s y s t e m , the more q u i c k l y e q u i l i b r i u m i s r e s t o r e d . " w h i l e not for  the  the  and  "a system stabler  Patten  the  (1961, 1962),  formally d e f i n i n g s t a b i l i t y , obtained a q u a n t i t a t i v e value  s t a b i l i t y o f the system where n=l  E Stability =  det  P. 3  j = l: n=l  E  cs/x). 3  j=l s . i s the s t a n d a r d d e v i a t i o n f o r the  j  »  o f the  P. =  id  n  dd  Det  v a r i a b l e and  x i s the mean  variable,  and  and  i  '  P. = j The  di  which i s the m a t r i x o f transition probabilities for the j t n o f m v a r i a b l e s . For a s e r i e s o f measurements,  P^  = p r o b a b i l i t y o f an i n c r e a s e  followed  by  a,decrease.  P^  = p r o b a b i l i t y of an i n c r e a s e  followed  by  aniincrease  P^j = p r o b a b i l i t y o f a decrease followed  by  a decrease  P^  by  an  = p r o b a b i l i t y of a decrease followed  increase  ( P . , P.. - P.. P . . ) . id di i i dd' b i o l o g i c a l d a t a used i n the a n a l y s i s were the ;?;,"abundance o f  the  developmental stages o f P_. e l o n g a t a at Indian Arm  the  29-month study p e r i o d .  The  and  G.S.-l over  p h y s i c a l d a t a were the t e m p e r a t u r e 0  and  76  s a l i n i t y o f the water a t a number o f d e p t h s .  These were 0, 10, 75,  100, 150, and 200:.m a t I n d i a n Arm and G . S . - l , and 250 and 350>:m a t G.S.-l.  The chemical d a t a were t h e c o n c e n t r a t i o n s o f d i s s o l v e d  manganese, c o p p e r , and n i c k e l 350-m water.  zinc,  i n I n d i a n Arm 200-m water and G.S.-l  The a n a l y s i s was made by u s i n g t h e .IBM) l:l'30p.comp,uter.  Results ( i ) The v e r t i c a l d i s t r i b u t i o n . o f the n a u p l i u s and t h e t h i r d c o p e p o d i t e at I n d i a n Arm and G.S.-l from October 1970 t o October 1971  As t h e v e r t i c a l d i s t r i b u t i o n s  o f t h e developmental s t a g e s were  s i m i l a r over t h e s t u d y p e r i o d , o n l y t h e d a t a f o r the second y e a r o f the  s t u d y (October 1970 to October 1971) are p r e s e n t e d .  T h i s y e a r was  chosen because o f t h e g r e a t e r changes which o c c u r r e d i n t h e temperature and s a l i n i t y o f the deep water than i n t h e p r e c e d i n g y e a r . vertical  Only t h e  d i s t r i b u t i o n o f the n a u p l i u s and t h e t h i r d c o p e p o d i t e are  p r e s e n t e d as t h i s i s s u f f i c i e n t t o i l l u s t r a t e the t r e n d s . Figure  shows t h e v e r t i c a l d i s t r i b u t i o n o f the n a u p l i u s a t  G.S.-l and I n d i a n Arm.  A t each s t a t i o n , the n a u p l i i were found deep  and were seldom above 100 m e t e r s .  Over the years.,, the v e r t i c a l d i s -  t r i b u t i o n was e s s e n t i a l l y .the same (although t h e abundance v a r i e d ) , and was not a f f e c t e d by changes water the  (Figure 3 ) .  i n the temperature and s a l i n i t y o f t h e deep  Although t h e deep water a t b o t h s t a t i o n s was r e p l a c e d ,  v e r t i c a l d i s t r i b u t i o n o f t h e n a u p l i u s remained unchanged. The t h i r d c o p e p o d i t e was found through a l a r g e p o r t i o n o f t h e  water column, although i t was found n e a r e r t o the s u r f a c e a t G.S.-l  77  F i g u r e 7.  The v e r t i c a l d i s t r i b u t i o n o f the n a u p l i u s and the t h i r d copepodite at I n d i a n Arm (a) and at G.S.-l (b). Broken l i n e s i n d i c a t e an u n c e r t a i n datum p o i n t , (ns) i n d i c a t e s t h a t no sample was c o l l e c t e d from t h a t d e p t h .  00  77ji  <  78  than at I n d i a n Arm. d u r i n g the day, and As  However, the former s t a t i o n .was the l a t t e r was  the t h i r d c o p e p o d i t e  than d u r i n g the day may  may  be  always o c c u p i e d  (Pandyan 1971;  Nor was  salinity  p e r s . o b s e r . ) , these d i f f e r e n c e s  was  not  The  a f f e c t e d by  verti-  changes  (and o t h e r p r o p e r t i e s ) o f the w a t e r .  the v e r t i c a l d i s t r i b u t i o n a l t e r e d at the time o f deep water  replacement at both s t a t i o n s  (Figure 3 ) .  Temporal v a r i a t i o n i n the abundance o f the developmental o f P. e l o n g a t a at G.S.-1 and I n d i a n Arm. Figure $ presents  I n d i a n Arm  ( e x c l u d i n g the egg)  d u r i n g the study p e r i o d .  the s p r i n g , summer, and  stages  the d a t a showing the temporal v a r i a t i o n s i n  the t o t a l number o f P_. e l o n g a t a  was  d u r i n g the n i g h t .  be accounted f o r by c o n s i d e r i n g the time o f s a m p l i n g .  i n the temperature and  occupied  found n e a r e r to the s u r f a c e a t n i g h t  c a l d i s t r i b u t i o n of the t h i r d copepodite  (ii)  always  autumn, was  p o s s i b l y l e s s abundant i n 1971  The  at G.S.-l  s p e c i e s was  and  abundant^ d u r i n g  low i n numbers i n the w i n t e r , than i n 1970.  There i s no  and  evidence  t h a t the deep water replacement at e i t h e r G.S.-1 or I n d i a n Arm r e s u l t e d i n a marked r e d u c t i o n i n the number o f P_. e l o n g a t a . The  'new'  A r c h i p e l a g o , and  deep water at G.S.-l was this  formed i n the San Juan .  l a t t e r area i s c h a r a c t e r i z e d by r e l a t i v e l y  p o p u l a t i o n s o f P. elongata..  The  'new'  deep water at I n d i a n Arm  small was  formed from s u r f a c e and n e a r - s u r f a c e waters i n the v i c i n i t y o f the shallow s i l l  (26 m)  at the mouth of the i n l e t , and  t h i s area i s p r o b a b l y  a l s o c h a r a c t e r i z e d by r e l a t i v e l y , s m a l l p o p u l a t i o n s o f  elongata.  79  The f a i l u r e o f the p o p u l a t i o n s t o be reduced a t e i t h e r G.S.-l o r I n d i a n Arm  at the time o f deep water replacement s u p p o r t s the. h y p o t h e s i s  t h a t , w i t h i n these a r e a s , deep water replacement occurs a t a slow enough r a t e f o r the s p e c i e s t o r e t a i n i t s . v e r t i c a l p o s i t i o n i n the water umn,  col-  and so reduces the tendency f o r the s p e c i e s t o be l o s t from the  a r e a w i t h t h e o l d e r deep water. N a u p l i i and the f i r s t f o u r c o p e p o d i t e - s t a g e s were most abundant d u r i n g the s p r i n g , summer, and e a r l y autumn, and.were l e s s abundant d u r ing  t h e l a t e autumn and the w i n t e r .  t r e n d i n the abundance o f t h e f i f t h  There was no apparent s e a s o n a l and s i x t h c o p e p o d i t e s a t . G . S . - l .  At I n d i a n Arm, t h e s e stages were l e s s abundant i n the s p r i n g and  early  summer; The number o f egg c l u s t e r s v a r i e d throughout the y e a r , and were more numerous at G.S.-l d u r i n g the s p r i n g .  Egg c l u s t e r s were p o s s i b l y  more numerous at I n d i a n Arm d u r i n g the l a t e summer and autumn. The number o f eggs p e r c l u s t e r v a r i e d through the y e a r , w i t h c l u s t e r s c o n t a i n i n g the fewest eggs i n the w i n t e r and t h e most d u r i n g the  summer.  I n c r e a s e s i n the number o f eggs p e r c l u s t e r o c c u r r e d at  the  same time a t Indian Arm  and G . S ^ - l .  However,  c l u s t e r s tended t o have fewer eggs than G.S.-l egg  I n d i a n Arm  egg  clusters.  ( i i i ) C o r r e l a t i o n between t h e number o f n a u p l i i and ( i ) the s u r v i v a l of the e g g , and ( i i ) the number o f eggs i n the water The number o f n a u p l i i at G.S.-l was ted  not s i g n i f i c a n t l y  w i t h the s u r v i v a l o f G.S.-l eggs i n G.S.-l 350-m water  correla-  (r =  .25;  80  F i g u r e 8.  The e s t i m a t e d number o f t h e developmental stages o f P. e l o n g a t a i n . the water column at G.S.-l (10-390m) ( _ _ _ _ ) , and at I n d i a n Arm (10-200m) ( ) . The e s t i m a t e o f the t o t a l number, o f P_. e l o n g a t a i n c l u d e s o n l y t h e n a u p l i a r and copepodite s t a g e s . The d a t a f o r t h e mean number, o f eggs p e r c l u s t e r were c a l c u l a t e d from the l a b o r a t o r y d a t a .  NUMBERS  MEAN  m  o  NUMBER.  \  V  \  \  \  \\  /  v  >/  MOB  81  p>.l) but was s i g n i f i c a n t l y c o r r e l a t e d w i t h t h e number o f eggs (r = .76; p < . 0 0 5 ) .  S i m i l a r l y , the number o f n a u p l i i a t I n d i a n Arm  was not s i g n i f i c a n t l y c o r r e l a t e d w i t h t h e s u r v i v a l o f I n d i a n Arm eggs i n I n d i a n Arm 200-m water (r = -.17; p >.l) b u t was s i g n i f i c a n t l y c o r r e l a t e d with t h e n u m b e r o f eggs (r =.79; p < ^ 0 0 5 ) .  This indicates  t h a t t h e number o f n a u p l i i a t G.S.-l and a t I n d i a n Arm were not s i g n i f i c a n t l y a f f e c t e d by the i n t e r a c t i o n between the egg and the n a t i v e water (as measured i n the l a b o r a t o r y ) , but were a f f e c t e d , by p r o c e s s e s which a f f e c t egg p r o d u c t i o n .  T h i s may be because v a r i a t i o n s - i n t h e  s u r v i v a l o f eggs d u r i n g t h e study p e r i o d were v e r y much s m a l l e r than the v a r i a t i o n s i n the numbers o f eggs produced d u r i n g t h e study p e r i o d .  (iv)  The e s t i m a t e d mean m o r t a l i t i e s o f the developmental P. e l o n g a t a at G.S.-l and I n d i a n Arm  stages o f  T a b l e 15 shows, f o r G.S.-l and I n d i a n Arm, ( i ) t h e mean number of  t h e developmental  s t a g e s , ( i i ) the e s t i m a t e d mean m o r t a l i t y between  s t a g e s , ( i i i ) the e s t i m a t e d mean c u m u l a t i v e m o r t a l i t y from t h e egg t o the a d u l t , and ( i v ) the e s t i m a t e d mean cumulative m o r t a l i t y from t h e egg t o t h e a d u l t e x c l u d i n g the e s t i m a t e d m o r t a l i t y o f the egg due t o its at  i n t e r a c t i o n w i t h the water.  High m o r t a l i t y between s t a g e s o c c u r r e d  G . S . - l , between t h e egg and t h e f i r s t n a u p l i u s and the second t o  sixth nauplius and t h e f i f t h  ( 6 8 . 5 % ) , between the second and t h i r d c o p e p o d i t e s and s i x t h c o p e p o d i t e s  (76.3%).  made f o r t h e m o r t a i l i t y between t h e f i r s t  (52.4%),  No v a l i d e s t i m a t e was  and second c o p e p o d i t e s , and  82  TABLE 15.  The mean number o f t h e developmental s t a g e s d u r i n g t h e 29-month study p e r i o d i n a 1-m^ column o f water a t G.S.-l (10-390m) and a t I n d i a n Arm (10-200m), ( i i ) t h e . e s t i m a t e d mean m o r t a l i t y between s u c c e s s i v e s t a g e s , ( i i i ) '/the e s t i m a t e d mean c u m u l a t i v e m o r t a l i t y from the egg t o t h e a d u l t , and ( i v ) ' „ t h e e s t i m a t e d mean c u m u l a t i v e m o r t a l i t y from.the egg t o the a d u l t e x c l u d i n g the p o s s i b l e m o r t a l i t y due t o the i n t e r a c t i o n between t h e egg and t h e water.  Percentage M o r t a l i t y Stage  Mean Number  Between Stages  Cumulative (iii)  Cumulative (iv)  G.S.-l Egg + N - l N-2 t o N-6 C-l C-2 C-3 C-4 C-5 C-6  408 357 308 363 173 129 140 120  68.5 33.1 x 52.4 25.5 x 76.3  68.5 78.9 x 88.2 90.4 x 97.8  53.2 68:7 x 82.4 86.9 x 96.7  292 385 213 155 80 55 78 88  51.1 58.1 27.3 48.4 31.3 x 68.8  51.1 79.5 85.1 92.3 94.7 x 97.7  20.,2 66..5 75..6 87.;5 91 .4 x 96.2  I n d i an Arm Egg + N - l N-2 t o N-6 C-l C-2 C-3 C-4 C-5 C-6  83  the f o u r t h and  f i f t h copepodites.'  egg to the a d u l t was adult stage.  97.8%  The  c u m u l a t i v e m o r t a l i t y from the  w i t h o n l y 2.2%  o f the eggs m a t u r i n g  t o the  I f the m o r t a l i t y o f the egg due t o i t s i n t e r a c t i o n w i t h  the water i s removed from t h i s e s t i m a t e , 3.3%  o f the eggs which are  s u c c e s s f u l i n h a t c h i n g r e a c h the a d u l t s t a g e . T a b l e 15 a l s o shows the c a l c u l a t i o n f o r I n d i a n Arm.  High  e s t i m a t e d m o r t a l i t y between stages o c c u r r e d between the egg and  the  f i r s t n a u p l i u s and the second t o the s i x t h n a u p l i u s  ( 5 8 . 1 % ) , the •  second and t h i r d copepodites  and s i x t h  dites  (68.8%).  the f o u r t h and spent  (48.4%), and the f i f t h  No v a l i d e s t i m a t e was  copepo-  made f o r the m o r t a l i t y between  f i f t h c o p e p o d i t e s , p o s s i b l y because a l o n g e r time i s  i n the f i f t h c o p e p o d i t e  than e s t i m a t e d .  t a l i t y from the egg t o the a d u l t stage was the eggs r e a c h i n g the a d u l t .  T h i s was  97.7%  The  c u m u l a t i v e mor-  with o n l y 2.3%  of  s i m i l a r t o the e s t i m a t e f o r  the cumulative m o r t a l i t y from the egg t o t h e a d u l t at G . S . - l .  I f the  m o r t a l i t y o f the egg due t o the i n t e r a c t i o n w i t h the water i s removed from t h i s e s t i m a t e , 3.8%  o f the eggs which are s u c c e s s f u l i n h a t c h i n g  r e a c h the a d u l t s t a g e .  (v) S t a b i l i t y A n a l y s i s T a b l e s 16 and  17 p r e s e n t the d e t e r m i n a n t s , the mean v a r i a b i l i -  t i e s , and the s t a b i l i t y i n d i c e s f o r the b i o l o g i c a l , c h e m i c a l , and phys i c a l v a r i a b l e s measured a t G.S.-l and  I n d i a n Arm.  The p h y s i c a l  b l e s were g e n e r a l l y c h a r a c t e r i z e d by n e g a t i v e determinants  and  varia-  negative  84  TABLE 16. T h e a n a l y s i s o f s t a b i l i t y o f the b i o l o g i c a l , c h e m i c a l , and p h y s i c a l v a r i a b l e s measured a t G.S.-l  Variable  Determinant  Egg c l u s t e r s Nauplii C-l C-2 C-3 C-4 C-5 C-6 Total  -0.03 0.04 0.34 0.12 0.23 0.11 0.23. 0:26  Mean Variability  0077.3' 0.69 0.63 . 0.58 0.60 0.70 0.61 0.38  biological  Copper Nickel . Manganese Zinc  Total  0.04 0.06 0.54 0.21 0.38 0.16 0.38 0.63 0.24*  -0017 6.27 0.60 0.25  0.37 0.26 0.5.8 0.61  T o t a l chemical Temperature Salinity • Temperature Salinity Temperature Salinity Temperature Salinity Temperature Salinity Temperature Salinity Temperature Salinity  Stability Index  -0046 1.04 1.03 0.41 0.52*  0-m " 10-m " 75-m " 150-m " 200-m " 250-m " 350-m "  -0.35 -0.15 -0.38 0:00 -0.15 0.08 -0.14 -0.03' -0.28  -0:31 -0.12 -0.46 -0.07 -0.58  physical  0.40 0.14 0.25 0.06 0.09 •  o;oi 0.07 0.01 0.05 0.004 0.04 0.003 0.03 0.003  -0.88 : -1.07 -1.52 0.00 -1.67 8.00 -2.00 -3.00 -5.60 -77.50 -3.00 -153.53 -2.33 : -193.33 -2.53*  * 0 b t a i n e d by d i v i d i n g t h e sum o f the determinants by the sum o f t h e mean v a r i a b i l i t i e s (Patten 1963). An e x a m i n a t i o n o f P a t t e n ' s a n a l y s i s the a p p e n d i x .  of s t a b i l i t y i s presented i n  85  TABLE 17.  The a n a l y s i s o f the s t a b i l i t y o f t h e b i o l o g i c a l , and p h y s i c a l v a r i a b l e s measured a t I n d i a n Arm  Variable  Determinant  Egg C l u s t e r s Nauplii C-l C-2 C-3 C-4 C-5 C-6 Total  0.41 0.12 0.16 S01I7 0.12 0.28 0.20 0.04  physical  Stability Index  0.59 0.17 0.21 -0.17 0.10 0.23 0.24 0.06 0.17*  0.60 0.40 0.50. 0.60  0.51 0.41 0.57 0.64  chemical  Temperature Salinity Temperature Salinity Temperature Salinity Temperature Salinity Temperature Salinity Total  0.69 0.72 0.77 0.99 1.17 1.20 • 0.84 0.63  biological  Copper Nickel Manganese Zinc Total  Mean Variability  chemical,  1.17 0.98 0.88 0.94 0.99*  0-m " 10-m " 75-m " 150-m " 200-m, "  -0.18 • 0.60 -0.55 -0.31 -0.26 -0.48 -0.18 -0.10 0.14 -0.21  0.43 0.47 0.18 0.04 0.09 0.01 0.07 0.01 0.08 0.01  -0.42 1.28 -3.06 -7.75 -2.89 -48.00 -2.57 -10.00 1.75 -21.00 -1.10*  * 0 b t a i n e d by d i v i d i n g the sum o f t h e determinants by t h e sum o f t h e mean- v a r i a b i l i t i e s • (Patten 1963).  86  stability indices.  C o n v e r s e l y , the b i o l o g i c a l v a r i a b l e s were c h a r a c -  t e r i z e d by p o s i t i v e determinants  and p o s i t i v e s t a b i l i t y i n d i c e s  (with  the e x c e p t i o n o f the number o f egg c l u s t e r s a t G . S . - l , and the number o f second copepodites a t I n d i a n Arm).  The o v e r a l l s t a b i l i t y o f t h e  measured b i o l o g i c a l system was g r e a t e r than t h a t o f the measured p h y s i c a l s y s t e m , s u g g e s t i n g t h a t t h e b i o l o g i c a l system was r e l a t i v e l y i n s e n s i t i v e t o the p h y s i c a l system.  Patten  (1961, 1962) a l s o measured  a h i g h e r s t a b i l i t y o f t h e b i o l o g i c a l system o v e r t h a t o f t h e p h y s i c a l system. The  chemical v a r i a b l e s were (with the e x c e p t i o n o f copper i n  G.S.-l 350-m water) j, c h a r a c t e r i z e d by p o s i t i v e determinants tive s t a b i l i t y indices}•  and p o s i -  The o v e r a l l s t a b i l i t y index was h i g h e r  than  t h a t f o r t h e p h y s i c a l system, a g a i n s u g g e s t i n g t h a t the measured chemic a l system was r e l a t i v e l y i n s e n s i t i v e t o the measured p h y s i c a l  system.  Conclusions There was no i n d i c a t i o n t h a t v a r i a t i o n s i n t h e temperature and  s a l i n i t y o f t h e deep w a t e r , and v a r i a t i o n s i n water q u a l i t y were  important  i n d e t e r m i n i n g the abundance o f P_. e l o n g a t a a t I n d i a n Arm  and G . S . - l .  At both s t a t i o n s , the number o f n a u p l i i i n t h e water was  s i g n i f i c a n t l y c o r r e l a t e d w i t h the number o f eggs p r e s e n t i n t h e w a t e r , but not w i t h the s u r v i v a l of t h e eggs due t o t h e i r i n t e r a c t i o n  with  the water. The e s t i m a t e d mean m o r t a l i t y from t h e egg t o t h e a d u l t s t a g e was 97.8% a t G.S.-l and 97.7% a t I n d i a n Arm.  I f the m o r t a l i t y o f t h e  : y87  egg due  t o the i n t e r a c t i o n between the egg  arid the water i s removed  from these e s t i m a t e s , the m o r t a l i t y from the egg to the a d u l t becomes 96.7%  at G.S.-l and  96.2%  at I n d i a n Arm.  This indicates that there  is. a l a r g e m o r t a l i t y (or l o s s ) o f the developmental stages n a u p l i u s h a t c h e s , and a g a i n suggests  The  and  and  the abundance  G.S.-l.  v e r t i c a l d i s t r i b u t i o n of the n a u p l i u s and  p o d i t e at I n d i a n Arm  the  t h a t the i n t e r a c t i o n between the  egg and the water has o n l y a minor r o l e i n d e t e r m i n i n g o f P. elorigata a t I n d i a n Arm  after  G.S.-l was  the t h i r d  cope-  s i m i l a r throughout the study p e r i o d .  T h i s would not be expected i f ( i ) v a r i a t i o n s i n the temperature  and  s a l i n i t y o f the deep water were a s s o c i a t e d w i t h v a r i a t i o n s i n the q u a l i t y o f the w a t e r , and  ( i i ) these v a r i a t i o n s i n the q u a l i t y of the  water a f f e c t e d the developmental  stages.  While the v e r t i c a l d i s t r i b u t i o n o f the developmental  stages  w a s . s i m i l a r throughout the study p e r i o d , t h e r e were pronounced t i o n s i n t h e i r abundance.  The  s p e c i e s was  s p r i n g , summer, and e a r l y autumn.  et a l . 1970).  o f P_. e l o n g a t a and  most abundant d u r i n g  ( G i l m a r t i n 1964)  and  i n c r e a s e s i n p r i m a r y p r o d u c t i o n suggest t h a t e n v i r o n be  i n r e g u l a t i n g the abundance of the s p e c i e s i n these two  areas.  predation.  at,G.S.-l  T h i s r e l a t i o n s h i p between i n c r e a s e s i n the number  mental v a r i a b l e s a s s o c i a t e d w i t h p r i m a r y p r o d u c t i o n may  v a r i a b l e s may  the  T h i s i s the p e r i o d i n which p r i m a r y  p r o d u c t i o n i s h i g h e s t both at. I n d i a n Arm (Parsons  fluctua-  important These  be a s s o c i a t e d w i t h the a v a i l a b i l i t y o f p r e y organisms  and  88  Many zooplankton production i s greatest.  breed a t those times o f the year when p r i m a r y The i n c r e a s e i n the p r i m a r y p r o d u c t i o n o f  the s u r f a c e water i n the S t r a i t o f Georgia, i s a l s o a s s o c i a t e d with an i n c r e a s e i n secondary p r o d u c t i o n  (Parsons  et al.1970).  This increase  i n secondary production.may p r o v i d e more p r e y organisms f o r t h e c a r n i vorous c o p e p o d i t e  stages o f P_. e l o n g a t a .  S e c o n d l y , t h e r e may-be a  r e d u c t i o n , o f the p r e d a t i o n p r e s s u r e on t h e n a u p l i i and t h e c o p e p p d i t e s , which a r e , i n t h e main, found below t h e s u r f a c e l a y e r , where the h i g h e s t p r i m a r y and secondary p r o d u c t i o n  occurs.  In t h e autumn and w i n t e r , t h e r e i s a r e d u c t i o n i n t h e p r i m a r y and secondary p r o d u c t i o n i n t h e s u r f a c e water (Parsons _£f a l . 1970) , and/ these times  the developmental stages may be f o o d l i m i t e d .  Secondly,  the p r e d a t i o n p r e s s u r e on t h e s e stages may be i n c r e a s e d i f p r e d a t o r s a r e no l o n g e r a b l e t o o b t a i n s u f f i c i e n t food i n t h e s u r f a c e l a y e r . There i s a l s o an i n c r e a s e i n the c o n c e n t r a t i o n o f c a r n i v o r o u s ton such as S a g i t t a elegans time  zooplank-  and Tomopteris s e p t e n t r i b n a l i s at t h i s  (Stephens et a l . 1969), which may a l s o i n c r e a s e the p r e d a t i o n  p r e s s u r e on t h e developmental stages o f P_. e l o n g a t a .  89  BIBLIOGRAPHY  A n d e r s o n , G.C. (1964). The s e a s o n a l and geographic d i s t r i b u t i o n o f p r i m a r y p r o d u c t i v i t y o f f the Oregon and Washington c o a s t s . L i m n o l . Oceanogr. 9_: 284-302. Armstrong, F.A.J. (1954). Phosphorous and s i l i c o n i n sea water o f f Plymouth d u r i n g the y e a r s 1950 to 1953. J . mar. b i o l . A s s . U.K. 33: 381-392. A r m s t r o n g , F.A.J. (1957). The i r o n content o f sea water. b i o l . A s s . U.K. 36: 509-517.  J.  A t k i n s , W.R.G. (1953). The s e a s o n a l v a r i a t i o n i n the copper o f sea water. J . mar. b i o l . A s s . U.K. 31_: 493-494.  mar.  content  B a i n b r i d g e , R. (1953). S t u d i e s on the i n t e r r e l a t i o n s h i p s o f zooplankton and p h y t o p l a n k t o n . J . Mar. b i o l . A s s . U.K. 3_2: 385-447. B a r b e r , R.T. and T.H. Ryther (1969). O r g a n i c c h e l a t o r s . F a c t o r s a f f e c t i n g p r i m a r y p r o d u c t i o n i n the Cromwell C u r r e n t u p w e l l i n g . J . exp. mar. B i o l . E c o l . .3: 191-199. B a r y , B. McK. (1963). D i s t r i b u t i o n s o f A t l a n t i c p e l a g i c organisms i n r e l a t i o n to s u r f a c e water b o d i e s . In: Marine D i s t r i b u t i o n s . (Ed.) M.J. Dunbar. Royal Soc. Canada Sp. P u b l . No. 5: 51-67. B e r n e r , L.D. and J . L . R e i d (1961). On the response t o changing tempera t u r e s o f t h e temperature l i m i t e d p l a n k t o n D o l i o l u m d e r i t i c u l a t u m Quoy and Gaimard 1835. L i m n o l . Oceanogr. 6_: 205-215. B i e r i , R. (1959). The d i s t r i b u t i o n o f p l a n k t o n i c chaetognaths i n the n o r t h P a c i f i c and t h e i r r e l a t i o n t o water masses. L i m n o l . Oceanogr. 4_: 1-28. Bogorov, B.G. (1958). B i o g e o g r a p h i c a l r e g i o n s o f the p l a n k t o n o f the Northwestern P a c i f i c Ocean and t h e i r i n f l u e n c e on the deep sea. Deep Sea Res; 5_: 149-161. Borgmann, U. (1971). The e f f e c t o f temperature on the n a u p l i a r d e v e l o p ment o f Euchaeta j a p o n i c a Marukawa and i t s e c o l o g i c a l i m p l i c a t i o n s . Honours T h e s i s , Z o o l . , U n i v . B r i t . C o l . 33 p. Bowen, H.J.M. (1966) 241 p.  T r a c e elements i n b i o c h e m i s t r y .  Academic P r e s s ,  90  B r i n t o n , E . (1962). The d i s t r i b u t i o n o f P a c i f i c E u p h a u s i i d s . B u l l . S c r i p p s I n s t . Oceanogr. 8^: .51-270. Brodsky,' K.A. (1950). C a l a n o i d a o f the Far E a s t e r n Seas and the P o l a r B a s i n o f t h e USSR. Z o o l . I n s t . Akad. Nauk., SSSR. 55. T r a n s l a t e d by the I s r a e l Program f o r S c i e n t i f i c T r a n s l a t i o n s . J e r u s a l e m . 440 p. Cameron, F. (1957). Some f a c t o r s i n f l u e n c i n g the d i s t r i b u t i o n o f p e l a g i c copepods i n the Queen C h a r l o t t e I s l a n d s a r e a . J . F i s h . Res.. Bd. Canada 14_: 165-202. C a m p b e l l , M.H. (1929). Island Region.  Some free-swimming copepods o f the Vancouver T r a n s . Roy. Soc. Canada 5_: 303-331.  Campbell, M.H. (1934). T h e - l i f e h i s t o r y and post-embryonic development o f the copepods,.Calanus tonsus Brady and Euchaeta j a p o r i i c a Marukawa. J . B i o l . E d . Canada 1_; 1-65. C a r r i t t , D.E. and J.H. Carpenter (1966). Comparison and e v a l u a t i o n o f c u r r e n t l y employed m o d i f i c a t i o n s i n t h e W i n k l e r method f o r d e t e r m i n i n g d i s s o l v e d oxygen i n sea water; a NASCO R e p o r t . J . mar. Res. 24;: 286-318. Chu, S.  (1946). The u t i l i z a t i o n o f o r g a n i c phosphorous by p h y t o p l a n k t o n . J . mar. b i o l . A s s . U.K. 26_:. 285-295.  C l o w e s , A . J . (1938). Phosphate and s i l i c a t e i n the s o u t h e r n ocean. D i s c o v e r y Rept. 19_: 1-120. C o l l i e r , A., S.M. Roy/kA-W. M a g n i t s k y , and J.O. B e l l (1953). Effect o f d i s s o l v e d o r g a n i c substances on o y s t e r s . U.S. F i s h and W i l d l i f e S e r v i c e F i s h . B u l l . 54: 167-185. D a v i s , C.C. (1949). The p e l a g i c Copepoda o f the N o r t h e a s t e r n P a c i f i c Ocean. U n i v . Wash. P u b l . B i o l . 14: 1-1.18. Deevy, G.B. (1966). Seasonal v a r i a t i o n s i n the l e n g t h o f copepods.in South P a c i f i c New Zealand w a t e r s . A u s t . J . mar. Freshwat. Res. 17: 155-168. D i x o n , W.J. and F . J . Massey, J r . (1957). A n a l y s i s . M c G r a w - H i l l . 488 p.  Introduction to  Statistical  Dodimead, A . J . ; F . F a v o r i t e , and T. H i r a n o (1963). Review o f Oceanography o f the S u b - A r c t i c P a c i f i c R e g i o n . I n t e r n a t i o n a l North P a c i f i c F i s h e r i e s Commission B u l l e t i n No. 13.  91 Dunbar, M.J. (1960). The e v o l u t i o n o f s t a b i l i t y i n marine environments, n a t u r a l s e l e c t i o n a t the l e v e l o f the ecosystem. Am. N a t u r a l i s t 94: 129-136. Duursma, E.K. (1961). D i s s o l v e d o r g a n i c c a r b o n , n i t r o g e n , and phosphorous i n the s e a . N e t h e r l a n d s J . Sea Res. _1: 1-147. E s t e r l y , C O . (1913). F o u r t h taxonomic r e p o r t on the Copepoda o f the San Diego r e g i o n . U n i v . C a l i f . P u b l . Z o o l . _1_1: 181-196. F a g e r , E.W. and J.A. McGowan (1963). Zooplankton s p e c i e s groups i n the North P a c i f i c . S c i e n c e 140: 453-460. F r a s e r , J.H. (1937). The d i s t r i b u t i o n o f Chaetognaths i n S c o t t i s h waters d u r i n g 1936 w i t h n o t e s on the S c o t t i s h i n d i c a t o r s p e c i e s . J . Coirs. I n t . E x p l o r . Mer ^2: 311-320. F r a s e r , J.H. (1939). The d i s t r i b u t i o n o f Chaetognaths i n S c o t t i s h waters i n 1937. J . Cons. I n t . E x p l o r . Mer Ik} 25-34. F r a s e r , J.H. (1952). The Chaetognatha and o t h e r z o o p l a n k t o n o f the S c o t t i s h a r e a and t h e i r t*alue as b i o l o g i c a l i n d i c a t o r s o f h y d r o l o g i c a l c o n d i t i o n s . Mar. Res. S c o t . 2^: 1-52. F u l t o n , J . (1968). A l a b o r a t o r y manual f o r the i d e n t i f i c a t i o n o f B r i t i s h Columbia marine z o o p l a n k t o n . F i s h . Res. Bd. Canada Tech. Rept. No 55, 141 p. G i l f i l l a n , E.S. (1970). The e f f e c t o f changes o f t e m p e r a t u r e , s a l i n i t y , and u n d e f i n e d p r o p e r t i e s of sea water on the r e s p i r a t i o n of Euphausia p a c i f i c a Hansen ( C r u s t a c e a ) i n r e l a t i o n t o the s p e c i e s ' e c o l o g y . Ph.D. t h e s i s , Z o o l . , U n i v . B r i t . C o l . 126 p. G i l m a r t i n , M. (1962). Annual c y c l i c , changes i n the p h y s i c a l oceanography of a B r i t i s h Columbia f j o r d . J . F i s h . Res. Bd. Canada 19.: 921-974. G i l m a r t i n , M. (1964). The p r i m a r y p r o d u c t i o n o f a B r i t i s h f j o r d . J . F i s h . Res. Bd. Canada 21: 505-538.  Columbia  G o l d b e r g , E.D. (1957). B i o g e o c h e m i s t r y o f t r a c e e l e m e n t s . I n ; T r e a t i s e i n Marine Ecology and P a l e c o l o g y , V o l . _1, E c o l o g y . (Ed.) J.W. Hedgepeth. G e o l . Soc. Amer. Memoirs _6_7: 345-358. G o l d b e r g , E.D. (1965). The minor elements i n s e a w a t e r . I n : Chemical Oceanography, V o l . 1, (Ed.) J . P . R i l e y and G. S k i r r o w . Academic P r e s s . Goldman, C.R. (1960). Molybdenum as a f a c t o r l i m i t i n g p r i m a r y p r o d u c t i v i t y i n C a s t l e L a k e , C a l i f o r n i a . S c i e n c e 132: 1016-0117.  92  Goldman, C.R. (1961). Primary p r o d u c t i v i t y and l i m i t i n g f a c t o r s ' i n Brooks1 Lakej A l a s k a . V e r h . i n t . V e r . L i m n o l . 14: 120-124. G u i l l a r d , R.R.L. and J.H. Ryther (1962). S t u d i e s o f marine d i a t o m s . Can. J . M i c r o b i o l . 8_: 229-239. G u n t e r , G. (1961). Some r e l a t i o n s o f e s t u a r i n e organisms L i m n o l . Oceanogr. 6_: 182-190.  planktonic  to s a l i n i t y .  G u n t e r , G., R.H. W i l l i a m s , C.C. D a v i s , and F.G. Walton Smith (1948) C a t a s t r o p h i c mass m o r t a l i t y i o f marine animals and c o i n c i d e n t p h y t o p l a n k t o n bloom on the west c o a s t o f . PEl-osida, November 1946-August 1947. E c o l . M o n o g r . l _ 8 : 311-324. Harvey, H.W. (1947). Manganese and the growth o f p h y t o p l a n k t o n . mar. b i o l . A s s . U.K. 26: 562-579. H e i n r i c h , A.K. (1962). The l i f e h i s t o r i e s o f p l a n k t o n animals s e a s o n a l c y c l e s o f p l a n k t o n communities i n the o c e a n s . Cons. I n t . E x p l o r . Mer 27: 15-24.  J.  and J.  H e r l i n v e a u x , R.H. and L.F. Giovando (1969). Some oceanographic f e a t u r e s o f the i n s i d e passage between Vancouver I s l a n d and t h e mainland o f B r i t i s h Columbia. F i s h . Res. Bd. Canada T e c h . R e p t . No. 142 48 p. H e r l i n v e a u x , R.H. and J . P . T u l l y (1961). Some oceanographic f e a t u r e s o f J u a n d e Fuca S t r a i t . J . F i s h . Res. Bd. Canada 1_8: 10271071. Holmes, R.W., M.B. S c h u e f e r , and B.M. Shimanda (1957). Primary product i o n , c h l o r o p h y l l , and z o o p l a n k t o n volumes i n the t r o p i c a l E a s t e r n P a c i f i c Ocean. B u l l . Inter-Am. t r o p . Tuna Commn. 2_: 129-156. Hopper, A.F. (1960). The r e s i s t a n c e o f marine z o o p l a n k t o n o f t h e C a r i b b e a n and the south A t l a n t i c to changes i n s a l i n i t y . Limnol. Oceanogr. 5_: 43-47. H u t c h i n s , L.W. (1947). The b a s i s f o r temperature z o n a t i o n i n g e o g r a p h i c d i s t r i b u t i o n . 1 E c o l . Monogr. 17: 325-335. I n s t i t u t e o f Oceanography (1970), U n i v e r s i t y o f B r i t i s h Columbia. R e p o r t . No. 30, 65 p. I n s t i t u t e o f Oceanography (1971). Report No. 32, 58 p.  U n i v e r s i t y o f B r i t i s h Columbia.  Data  Data  93  I n s t i t u t e o f Oceanography (1972). Data R e p o r t . In P r e s s .  University of B r i t i s h  Columbia.  J o h n s o n , M.W. and E B r i n t o n (1963). B i o l o g i c a l s p e c i e s , water masses, and c u r r e n t s . , i n : The. S e a , V o l . 2. M.N. H i l l "(Ed.) I n t e r s c i e n c e . 381-414. J o h n s t o n , R. (1963). Sea w a t e r , the n a t u r a l medium o f p h y t o p l a n k t o n . 1. General f e a t u r e s . J . mar. b i o l . A s s . U.K. 43: 427-456. J o h n s t o n , R. (1964). Sea w a t e r , the n a t u r a l medium o f p h y t o p l a n k t o n . 2. T r a c e metals and c h e l a t i o n , and g e n e r a l d i s c u s s i o n . J . mar. b i o l . A s s . U.K. 44: 87-109, K i n g , J . E . and J . Demond (1953). Zooplankton abundance i n the C e n t r a l P a c i f i c . U.S. F i s h and W i l d l i f e S e r v i c e , F i s h . B u l l . 5 4 : 111-144. K i n n e , 0. (1963). The e f f e c t o f temperature and s a l i n i t y i n marine and b r a c k i s h water a n i m a l s . I . Temperature. Oceanogr. Mar.. B i o l . Ann. Rev, 1_: 301-340. K i n n e , 0. (1964). The e f f e c t o f temperature and s a l i n i t y , i n marine and b r a c k i s h water a n i m a l s . I I . S a l i n i t y and temperatures a l i n i t y x o m b i n a t i o n s . Oceanogr. Mar. B i o l . Ann. Rev. 2_: 281-339. K r i s s , A.E. (1960). Micro-organisms as i n d i c a t o r s o f h y d r o b i o l o g i c a l phenomena i n seas and oceans. P a r t . I. Methods. Deep Sea Res. 6: 88-94. K r i s s , A.E.-, S.S. Abyzov, and I.N. M i t z k e v i c h (1960a). M i c r o - o r g a n isms as i n d i c a t o r s i n seas and oceans. Part 3. Distribution o f water masses i n . t h e c e n t r a l p a r t o f the P a c i f i c Ocean ( a c c o r d i n g t o m i c r o b i o l o g i c a l d a t a ) . Deep Sea Res. 6: 335345. K r i s s , A.E., M.N. Lebedevo, and I.N. M i t z k e v i c k (1960b). M i c r o organisms as i n d i c a t o r s o f h y d r o b i o l o g i c a l phenomena i n seas and o c e a n s . P a r t 2. I n v e s t i g a t i o n o f the Deep C i r c u l a t i o n o f t h e I n d i a n Ocean u s i n g m i c r o b i o l o g i c a l methods. Deep Sea R e s . 6 : 173-183. Lane, R.K. (1962). A review o f the temperature and s a l i n i t y s t r u c t u r e i n the approaches t o Vancouver: I s l a n d , B r i t i s h Columbia. J. F i s h . Res. Bd. Canada 19: 45-91.  94  L a n e , R.K. (1963). A model o f sea water s t r u c t u r e near the west c o a s t o f Vancouver I s l a n d , B r i t i s h Columbia. J . F i s h . Res. Bd. Canada 20: 939-967. L e B r a s s e u r , R.F. (1955). Oceanography o f the B r i t i s h Columbia M a i n l a n d I n l e t s . 6. P l a n k t o n d i s t r i b u t i o n . F i s h . Res. Bd. Canada, P a c . P r o g . Rept. _103: 19-21. L e h n i n e r , A.L. (1950). Role of m e t a l i o n s i n enzyme systems. P h y s i o l . Rev. 30: 393-429. L e i g h , A.L. (1971). A d a p t a t i o n and d i v e r s i t y . N a t u r a l h i s t o r y and the mathematics of e v o l u t i o n . Freeman, Cooper and Company. 288  p.  L e w i s , A.G., f'andZA?. Ramnarine (1969). Some c h e m i c a l f a c t o r s a f f e c t i n g the e a r l y developmental s t a g e s o f Euchaeta j a p o n i c a ( C r u s t a c e a : Copepoda: C a l a n o i d a ) i n the l a b o r a t o r y . J . F i s h . Res. Bd. Canada 26: 1347-1362. L o o s a n o f f , V.L. and C.A. Nomejko (1951). E x i s t e n c e of p h y s i o l o g i c a l l l y d i f f e r e n t races of o y s t e r s , Crassostrea v i r g i n i c a . B i o l . B u l l . Woods H o l e 101: 151-156. L u c a s , C.E. (1938). Some a s p e c t s of i n t e g r a t i o n i n p l a n k t o n communities. J . Cons. I n t . E x p l o r . Mer _13: 309-322. L u c a s , C.E. (1947). The e c o l o g i c a l e f f e c t o f e x t e r n a l m e t a b o l i t e s . B i o l . Rev. 22: 270-295. L u c a s , C.E. (1949). E x t e r n a l m e t a b o l i t e s and e c o l o g i c a l a d a p t a t i o n s . Symp. Soc. exp. B i o l , no 3. Growth: 336-356. L u c a s , C.E. (1961). On the s i g n i f i c a n c e of e x t e r n a l m e t a b o l i t e s i n e c o l o g y . Symp. Soc. exp. B i o l . no. 15. Mechanisms i n b i o l o g i c a l c o m p e t i t i o n : 190-206. L u n d , J.W.G. (1950). S t u d i e s on A s t e r i o n e l l a formosa H a s s . 2 N u t r i e n t d e p l e t i o n and the s p r i n g maxima. J . E c o l . 38_: 1-^35. M a r s h a l l , S.M. and A.P. O r r . ( 1 9 2 7 ) . The r e l a t i o n o f the p l a n k t o n to some c h e m i c a l and p h y s i c a l f a c t o r s i n the Clyde Sea A r e a . J . mar. b i o l . A s s . U.K. _14: 837-868. Marukawa, H. (1921). P l a n k t o n l i s t and some new s p e c i e s of Copepoda from the n o r t h e r n waters o f J a p a n . B u l l . I n s t . Oceanogr. Monaco 384: 1-15. McGowan, J.A. (1960). The r e l a t i o n o f the d i s t r i b u t i o n o f the p l a n k t o n i c worm Poebius meseres Heath, to the water masses of the North P a c i f i c . Deep Sea Res. _5: 125-139.  95  McLaren, I.A. (1963). E f f e c t s o f temperature on growth o f zooplankton and the a d a p t i v e v a l u e o f v e r t i c a l m i g r a t i o n . J . F i s h . Res.' Bd. Canada 20:. 685-727. McLaren., I.A. (1965). Some r e l a t i o n s h i p s between temperature and egg s i z e , body s i z e , development, r a t e , and. f e c u n d i t y , o f t h e copepod Pseudocalanus minutus. L i m n o l . Oceanogr. 10: 528-558. Moore, J.A. (1949). Geographic v a r i a t i o n o f a d a p t i v e c h a r a c t e r s i n Rana p i p i e n s . E v o l u t i o n 3_: 1-21. Moore, J.A. (1950). 247-254.  F u r t h e r s t u d i e s on Rana p i p i e n s . Amer. N a t u r . 84:  M o r r i s , B. (1970). C a l a n o i d copepods from midwater t r a w l s i n t h e N o r t h P a c i f i c along 160°W. J . F i s h . R e s . Bd. Canada 27: 2297-2321. Pandyan,.A.S. (1971). Food and t r o p h i c r e l a t i o n s h i p s o f t h e d e v e l o p mental stages o f Euchaeta j a p o n i c a Marukawa and Calanus plumchrus Marukawa. Ph.D. T h e s i s . Z o o l . , U n i v . o f B r i t . C o l . 195 p . P a r s o n s , T.R.., R . J . L e B r a s s e u r , and W.E. B a r r a c l o u g h (1970). L e v e l s o f p r o d u c t i o n i n the p e l a g i c environment i n t h e S t r a i t o f G e o r g i a , B r i t i s h Columbia: a r e v i e w . J . F i s h . Res. Bd. Canada 27: 1251-1264. P a t t e n , B.C. (1961). P r e l i m i n a r y method f o r e s t i m a t i n g s t a b i l i t y i n p l a n k t o n . S c i e n c e 134_: .1010-1011. P a t t e n , B.C. (1962). Improved method f o r e s t i m a t i n g s t a b i l i t y i n p l a n k t o n . L i m n o l . Oceanogr. 7_: 266-268. P i c k a r d , G.L. (1961). Oceanographic f e a t u r e s o f i n l e t s i n the B r i t i s h Columbia mainland c o a s t . J . F i s h . Res. Bd. Canada 1_8: 907-999. P i c k a r d , G.L. (1963). Oceanographic c h a r a c t e r i s t i c s o f i n l e t s o f Vancouver I s l a n d , B r i t i s h Columbia. J . F i s h . R e s . Bd. Canada 20: 1109-1144. P r o c t o r , V.W. (1957). S t u d i e s o f a l g a l a n t i b i o s i s u s i n g Haembtoccus and Chlamydomonas. L i m n o l . Oceanogr. 2_: 125-139. P r o s s e r , C L . (1955). 30: 229-262.  P h y s i o l o g i c a l v a r i a t i o n i n animals.  P r o v a s o l i , L . (1963).  Organic r e g u l a t i o n o f phytoplankton  In:  The Sea V o l . 2.M.N. H i l l ^ E a V ^ I n t ^  554p.  B i o l . Rev.  fertility.  96  P r y t h e r c h , H.F. (1934). The r o l e o f copper i n the s e t t i n g , metamorp h o s i s , and d i s t r i b u t i o n o f the American o y s t e r , O s t r e a virginica. E c o l . Monogr. 4_: 47-107. R e d f i e l d , A.C. (1958). The b i o l o g i c a l c o n t r o l o f chemical i n the environment. Am. S c i e n t i s t 46: 205-221.  factors  R e i d , J . L . (1962). On the c i r c u l a t i o n , phosphate-phosphorous content and zooplankton volumes i n the.Upper P a r t o f the P a c i f i c Ocean. L i m n o l . Oceanogr. 7_: 287-306. Rodhe, W. (1955). Can p l a n k t o n p r o d u c t i o n proceed d u r i n g w i n t e r darkness i n s u b a r c t i c . l a k e s ? V e r h . i n t . V e r . L i m n o l . 12: 122.  117-  R o g e r s , H.M. (1940).• Occurrence and r e t e n t i o n o f p l a n k t o n w i t h the e s t u a r y . J . F i s h . Res. Bd. Canada 5_: ,164-175. R u s s e l l , F.S. (1935). On the v a l u e o f c e r t a i n p l a n k t o n animals as i n d i c a t o r s o f Water Movements i n the E n g l i s h Channel and the North Sea. J . mar. b i o l . A s s . U.K. 20_:. 309-332. R u s s e l l , F.S. (1936). The importance o f c e r t a i n p l a n k t o n animals as i n d i c a t o r s of. water movements i n the Western End o f the E n g l i s h Channel. Rapp. Cons. I n t . E x p l o r . Mar. 100: 7-10. R u s s e l l , F.S. (1937). The s e a s o n a l abundance o f the p e l a g i c young o f T e l e o s t e a n F i s h e s i n the Plymouth a r e a . P a r t 4. The y e a r 1936 w i t h notes on the c o n d i t i o n as shown by the o c c u r r e n c e . o f p l a n k t o n i n d i c a t o r s . J . mar. b i o l . A s s . U.K. 21: 679-686. R u s s e l l , F.S. ,(1939). H y d r o g r a p h i c a l and b i o l o g i c a l c o n d i t i o n s i n t h e North Sea as i n d i c a t e d by P l a n k t o n Organisms. J . Cons. I n t . E x p l o r . Mer 14: 171-192. R y t h e r , J . H . and R.R.L. G u i l l a r d (1959). Enrichment experiments as a means o f s t u d y i n g n u t r i e n t s l i m i t i n g t o p h y t o p l a n k t o n p r o d u c tion. Deep Sea Res. 6_: , 65-69. S c o t t , A. (1909).. The copepoda o f the Siboga E x p e d i t i o n . P a r t I . Free-swimming, l i t o r a l , and s e m i - p a r a s i t i c copepoda. Siboga Exped. Monogr. 29a: 1-323. S e t t e , O.E. (1955). C o n s i d e r a t i o n o f mid-ocean f i s h p r o d u c t i o n as r e l a t e d t o o c e a n i c c i r c u l a t o r y systems. J . mar. Res; 14: 398-414.  97  S e w e l l , R.B.S. (1929). The Copepoda i n t h e I n d i a n Seas. Memoirs o f the I n d i a n Museum 10: 1-407. S h e a r d , K. (1965). S p e c i e s groups i n t h e zooplankton o f E a s t e r n A u s t r a l i a n s l o p e w a t e r s , 1938-1941. A u s t . J . mar. Freshwat. Res. 16: 219-234. ' S m i t h , S.V. (1972). P r o d u c t i o n o f c a l c i u m carbonate on the mainland s h e l f o f southern C a l i f o r n i a . Limnol.. Oceanogr,. 17: 28-41. Somme, I.D. (1929). Note on t h e n o r t h e r n l i m i t o f the d i s t r i b u t i o n o f Rhinocalanus riasutu G i e s b r e c h t . J . Cons. I n t . E x p l o r . Mer 4: 284-287. S t a u b e r , L.A. (1950). The problem o f p h y s i o l o g i c a l s p e c i e s w i t h s p e c i a l r e f e r e n c e to o y s t e r s and o y s t e r d r i l l s . E c o l o g y 31: 107-118. S t e e l , R..G.A. and J.H. T o r r i e (I960).. P r i n c i p l e s and Procedures o f S t a t i s t i c s . McGraw-Hill Book Co. L t d . 481 p . Steeman-Nielsen, E . and E . A. Jensen (1957). Primary o c e a n i c p r o d u c t i o n . The a u t o t r o p h i c p r o d u c t i o n o f o r g a n i c m a t t e r i n the oceans. G a l a t h e a R e p t . 1_: 49-136. Stephens, G.C. and R.A. S c h i n s k e (1961). Uptake o f amino a c i d s by marine i n v e r t e b r a t e s . . L i m n o l . Oceanogr. 6_: 175-181. Stephens, K., J.D. F u l t o n , and O.D. Kennedy (1969). Summary o f t h e b i o l o g i c a l o b s e r v a t i o n s i n t h e S t r a i t o f G e o r g i a . 1965-1968. F i s h . Res. Bd. Canada, T e c h . R e p t . 110. S v e r d r u p , H.V., M.W. Johnson and R.H. Fleming Prentice-Hall. 1087 p .  (1942).  The Oceans.  Tanaka, 0. (1958). The p e l a g i c copepods o f t h e Izu r e g i o n , middle Japan. S y s t e m a t i c A c c o u n t . V. F a m i l y E u c h a e t i d a e . P u b l . Seto Mar. B i o l . Lab. 6; 327-367. Tanaka, .0. and M. Omori (1968). A d d i t i o n a l r e p o r t on t h e c a l a n o i d copepods from t h e Izu r e g i o n . P a r t 1. Euchaeta and Paraeuchaeta. P u b l . Seto Mar. B i o l . Lab. 16_:. 219-261. T u l l y , J . P . (1958). On s t r u c t u r e ; e n t r a i n m e n t , and t r a n s p o r t i n e s t u a r i n e embayments. J . mar. Res.. 17_: 523-535. T u l l y , J . P . and F.G. Barber (1960). An e s t u a r i n e anology o f t h e suba r c t i c P a c i f i c Ocean. J . F i s h . Res. Bd. Canada 17: 91-112.  98  V e r v o o t , W. (1963). P e l a g i c Copepoda.- P a r t . 1 . Copepoda o f the f a m i l i e s C a l a n i d a e up t o an i n c l u d i n g E u c h a e t i d a e . A t l a n t i d a e R e p t . 7: 77-195. V e m b e r g , F . J . (1962). Comparative p h y s i o l o g y : l a t i t u d i n a l e f f e c t s on p h y s i o l o g i c a l p r o p e r t i e s o f animal p o p u l a t i o n s . Ann. Rev. P h y s i o l . 24_: 517-546. W a i l e s , G.H. (1929). The marine zooplankton o f B r i t i s h Vancouver Museum A r t Notes 4_: 159-165.  Columbia.  Waldichuk, M. (1957). P h y s i c a l oceanography o f the S t r a i t o f G e o r g i a , B r i t i s h Columbia. J . F i s h . Res. Bd. Canada 14_:. 321-486. Water Survey o f Canada (1971). S u r f a c e water d a t a , B r i t i s h - C o l u m b i a . Inland Waters Branch. Dept. E n v i r . , Ottawa, Canada. W i l l i a m s , R.J.P. (1953). M e t a l i o n s i n b i o l o g i c a l systems. Rev. 28_: 381-415.  Biol.  W i l s o n , D.P. (1951). A b i o l o g i c a l d i f f e r e n c e between n a t u r a l sea w a t e r s . J . mar. b i o ' l . A s s . U.K. 30;: 1-20. W i l s o n , D.P. and F . A . J . Armstrong (1952). F u r t h e r experiments on b i o l o g i c a l d i f f e r e n c e s between n a t u r a l sea w a t e r s . J . mar. b i o l . Ass.- U.K. 3_1_: 335-349. W i l s o n , D.P. and F . A . J . Armstrong (1954). B i o l o g i c a l d i f f e r e n c e s between sea w a t e r s ; experiments i n 1953: J . mar. b i o l . A s s . U.K. 3_3_: 347-360. W i l s o n , D.P. and F . A . J . Armstrong (1958). B i o l o g i c a l d i f f e r e n c e s between sea waters: experiments i n 1954 and 1955. J . mar. b i o l . Ass., U.K. 37: 331-348. Wilson,.,D.P. and F . A . J . Armstrong (1961). B i o l o g i c a l d i f f e r e n c e s b e tween- sea waters: experiments i n 1960. J . mar. b i o l . A s s . U.K. 41_: 663-681. Woodhouse, C.D. (1971). A study o f the e c o l o g i c a l r e l a t i o n s h i p s and. taxonomic s t a t u s o f two s p e c i e s o f the genus Calanus ( C r u s t a c e a : Copepoda). Ph.D. T h e s i s . Z o o l . , U n i v . B r i t . C o l . 175 p .  99 APPENDIX THE GENERIC.NAME AND SPECIES NAME. OF THE STUDY ORGANISM  I t was apparent, from the l i t e r a t u r e t h a t t h e r e i s some d i s agreement over t h e g e n e r i c and s p e c i e s name o f the study o r g a n i s m . is  It  the purpose o f t h i s appendix t o p r e s e n t an u n b i a s e d p i c t u r e o f t h e  arguments f o r . a n d a g a i n s t each name, and then t o g i v e t h e reasons why the  f i n a l name was chosen.  However, o n l y d e t a i l e d l a b o r a t o r y  studies  can determine whether or not the genus Pareuchaeta i s v a l i d , and whet h e r o r not the s p e c i e s e l o n g a t a and j a p o n i c a a r e so g e n e t i c a l l y  dis-  t i n c t as t o c o n s t i t u t e s e p a r a t e s p e c i e s .  (1) Genus Euchaeta o r Pareuchaeta? The  first  genus o f the f a m i l y E u c h a e t i d a e , Euchaeta marina  ( P r e s t a n d r e a ) , was e s t a b l i s h e d by P h i l l i p p i i n 1882 ( S c o t t 1909). the  In  f o l l o w i n g y e a r s , the genera V a l d i v e l l a , Pseudeuchaeta, and Pareuchaeta  have been added t o the f a m i l y  (Brodsky 1950).  There are a t l e a s t  e i g h t y - f i v e s p e c i e s , w i t h i n t h e f a m i l y , o f which one belongs t o the genus Pseudeuchaeta, genus E u c h a e t a ,  e i g h t t o t h e genus V a l d i v e l l a , n i n e t e e n t o t h e  and f i f t y - s e v e n to the genus P a r e u c h a e t a .  The genus Pareuchaeta  was e s t a b l i s h e d by S c o t t ' (1909) who  u s e d , as d i s t i n g u i s h i n g c h a r a c t e r i s t i c s , t h e armature o f t h e second m a x i l l a i n the a d u l t f e m a l e , and the s t r u c t u r e o f t h e f i f t h male.  leg i n the  In E u c h a e t a , some o f t h e s p i n e s on t h e apex o f t h e second  m a x i l l a a r e equipped w i t h l o n g s p i n u l e s ; i n P a r e u c h a e t a , the s p i n e s are  equipped w i t h s h o r t s p i n u l e s .  In t h e a d u l t male E u c h a e t a , t h e  100  t h i r d segment o f the e x o p o d i t e o f the l e f t f i f t h l e g i s l o n g and spinfprm; i n Pareuchaeta,  i,£ i s s h o r t and r u d i m e n t a r y .  Scott  (1909)  i d e n t i f i e d twelve s p e c i e s o f the genus Pareuchaeta and seven o f the genus Euchaeta by u s i n g these two Sars the  characteristics.  (1925, i n S e w e l l .1929) agreed with the e s t a b l i s h m e n t o f  genus P a r e u c h a e t a ,  and added a t h i r d d i s t i n g u i s h i n g  characteris-  t i c based on the s t r u c t u r e o f the a c c e s s o r y s e t a e o f the f u r e a l r a m i . In E u c h a e t a , these s e t a e are m o r e . s t r o n g l y developed than the o t h e r f u r c a l setae; i n Pareuchaeta, a  t h e s e s e t a e are q u i t e s l e n d e r , and  form  ' k n e e - j o i n t ' a s h o r t d i s t a n c e pasit t h e i r p o i n t o f o r i g i n . • Brodsky  the  (1950) and Tanaka  genus Pareuchaeta a l t h o u g h each used o n l y two o f the three, d i s t i n g -  uishing characteristics. left the  (1958) a l s o accepted t h e . v a l i d i t y o f  Brodsky  (1950)- used the s t r u c t u r e o f the  f i f t h l e g i n the male, and the caudal r a m i . s t r u c t u r e of the l e f t  Tanaka  (1958) used  f i f t h l e g i n . t h e male, and the second  While the above used o n l y two o f . t h e t h r e e d i s t i n g u i s h i n g  characteris-  tics,- they gave no i n d i c a t i o n t h a t t h e y c o n s i d e r e d the t h i r d Veervoot Pareuchaeta.  maxilla.  invalid.  (1963) d i d not accept the v a l i d i t y o f the s p e c i e s  He found t h a t i t was  e q u a l l y p o s s i b l e t o d i v i d e the  t h i r t e e n Euchaeta-Pareuchaeta s p e c i e s he examined i n t o  five-groups  which would p r o b a b l y not deserve any more than a s u b - g e n e r i c r a n k . However, t h r e e o f h i s groups c o n t a i n o n l y Euchaeta s p e c i e s , and the r e m a i n i n g two c o n t a i n o n l y Pareuchaeta s p e c i e s who  r e c o g n i z e the genus P a r e u c h a e t a ) .  ( a c c o r d i n g t o the above'  In e f f e c t , Veervoot used  certain  101  c h a r a c t e r i s t i c s t o d i v i d e the s p e c i e s i n t o two groups which c o u l d be further subdivided. Sewell genus Euchaeta groups).  (1929) a l s o found i t p o s s i b l e t o f u r t h e r s u b d i v i d e t h e ( i n t o two g r o u p s ) , and the genus Pareuchaeta  (into  four  S e c o n d l y , he acknowledged t h a t t h e r e was a t l e a s t one  s p e c i e s o f those.he examined which  wasji i n t e r m e d i a t e i n c h a r a c t e r t o  Euchaeta and P a r e u c h a e t a , but he b e l i e v e d t h a t t h i s s p e c i e s was a c o n n e c t i n g l i n k between the two g e n e r a .  I t i s probable that there are  s e v e r a l such i n t e r m e d i a t e s a n d , t h a t w i t h a thorough s t u d y o f t h e morphology o f t h e f a m i l y E u c h a e t i d a e , t h e i r r o l e i n the phylogeny o f the f a m i l y w i l l be b e t t e r u n d e r s t o o d . Veervoot examined t h i r t e e n o f the known s e v e n t y - s i x s p e c i e s o f Euchaeta and Pareuchaeta and concluded t h a t the s e p a r a t i o n o f t h e s p e c i e s i n t o two genera was n o t j u s t i f i e d . Sewell  (1929), Brodsky  Conversely, Scott  (1909),  (1950), and Tanaka and Omori (1968) examined  f i f t y - n i n e o f t h e known s e v e n t y - s i x s p e c i e s and concluded t h a t t h e s e p a r a t i o n was v a l i d .  As the l a t t e r group have examined a more r e p r e -  s e n t a t i v e sample o f t h e f a m i l y E u c h a e t i d a e , i t was d e c i d e d t o accept t h e i r c l a s s i f i c a t i o n o f Euchaetidae..  T h e r e f o r e , the genus Pareuchaeta  i s a c c e p t e d as b e i n g v a l i d . Brodsky  (1950) and Tanaka and Omori (1968) have both p l a c e d  the s t u d y organism i n t h e genus P a r e u c h a e t a .  The s t r u c t u r e o f the  second m a x i l l a  l e g (Campbell  (Campbell 1934), t h e male f i f t h  and the caudal f u r c i  1934),  ( p e r s . obser.) i n d i c a t e t h a t the s t u d y organism  belongs t o . t h e genus P a r e u c h a e t a , and t h a t i t i s not.an i n t e r m e d i a t e form.  102  (2) Species  japonica or elongata?  In 1913,  E s t e r l y i d e n t i f i e d a new s p e c i e s , Euchaeta  from the San Diego r e g i o n .  elongata,  The specimen, an a d u l t female 4.13 mm  i n l e n g t h , was c h a r a c t e r i z e d by t h e b l u n t p r o j e c t i o n on t h e s i d e o f the  l a s t t h o r a c i c segment, the. asymmetric g e n i t a l p r o t u b e r a n c e , and  the s t r u c t u r e o f the f i r s t and second p a i r s o f f e e t . In 1921,  Marukawa d e s c r i b e d a new s p e c i e s from t h e Sea o f  J a p a n , u s i n g the s a m e . i d e n t i f y i n g  c h a r a c t e r i s t i c s as E s t e r l y  However, the a d u l t females was l a r g e r , b e i n g named the s p e c i e s  8 mm i n l e n g t h .  (1913). Marukawa  japonica.  I t i s a p p a r e n t , from the l i t e r a t u r e , t h a t t h e s p e c i e s name j a p o n i c a has been a c c e p t e d by c e r t a i n authors over t h a t o f e l o n g a t a , and  y e t none o f the reasons g i v e n a r e s a t i s f a c t o r y .  Wailes  i d e n t i f i e d E_. j a p o n i c a from the S t r a i t o f G e o r g i a , but was unaware o f E s t e r l y 1 s o r i g i n a l d e s c r i p t i o n o f e l o n g a t a . captured  E_. j a p o n i c a from Deep C o v e , Rocky Bay,  Seaside Park.  (1929) apparently  Campbell  (1929)  S h e r i n g t o n , and  She noted t h a t h e r specimens d i f f e r e d t s l i g h t l y i n the  s t r u c t u r e o f the second f o o t from Marukawa's d e s c r i p t i o n s , and t h a t Vancouver I s l a n d r e g i o n specimens were o n l y 5 t o .6.3 mm i n l e n g t h . While she a s s i g n e d was  t h e s p e c i e s name j a p o n i c a t o h e r specimens, she  aware o f E s t e r l y ' s d e s c r i p t i o n arid c o n c l u d e d  seems t o have d e s c r i b e d the same s p e c i e s paper and  (Esterly  (as Marukawa)."  (1913) In a l a t e r  (1934), Campbell was l e s s c e r t a i n as t o whether o r n o t e l o n g a t a '  j a p o n i c a were, i n f a c t , two forms o f the same s p e c i e s .  103  Brodsky  (1959) noted the o c c u r r e n c e  o f a s p e c i e s which he  c a l l e d P.• j a p o n i c a i n the Sea o f Ohkotsk, and t h e Sea o f J a p a n , t h e B e r i n g S e a , and t h e northwest P a c i f i c Ocean. d e s c r i p t i o n and s t a t e d " t h i s s p e c i e s  He was aware o f E s t e r l y ' s  ( j a p o n i c a ) i s i d e n t i c a l t o P_.  elongata of E s t e r l y . " Tanaka and Omori (1968) noted t h e occurence o f P_. e l o n g a t a from the. I z u ^ r e g i o n o f J a p a n , and s t a t e t h a t E s t e r l y ' s e l o n g a t a and Marukawa's j a p o n i c a a r e synonomous.  Morris  (1970) c o l l e c t e d E_.'  e l o n g a t a from the s u b - a r c t i c P a c i f i c Ocean, and agrees t h a t and  j a p o n i c a a r e synonomous.species Davis  (1949) c a p t u r e d  elongata  ( p e r s . comm.).  specimens o f E . j a p o n i c a  from o f f t h e  mouth o f Juan de Fuca S t r a i t and from t h e P o r t l a n d C a n a l .  He  concluded  t h a t these specimens were d i s t i n c t from E s t e r l y ' s e l o n g a t a because o f q u a l i t a t i v e d i f f e r e n c e s i n the s p e c i e s .  H i s specimens were 5.4 t o 6.4  mm i n l e n g t h i n comparison t o 4.13 mm o f E s t e r l y ' s ; e l o n g a t a .  There  were a l s o q u a l i t a t i v e d i f f e r e n c e s i n t h e f r o n t a l p a p i l l a , and t h e c o n c a v i t y o f the b o r d e r  o f the exopod o f t h e f i r s t l e g .  The v a l i d i t y o f D a v i s ' arguments  (1949) a r e hard t o a c c e p t .  F i r s t , he b e l i e v e s t h a t h i s specimen's and E s t e r l y ' s are d i s t i n c t c i e s because they d i f f e r i n s i z e .  spe-  However, h i s specimens were i n t e r -  mediate i n s i z e t o Marukawa' s j aponica and E s t e r l y ' s e l o n g a t a , and so were s i m i l a r t o n e i t h e r h o l o t y p e s . I t i s w e l l documented i n t h e l i t e r a t u r e t h a t a s p e c i e s can mature t o d i f f e r e n t s i z e s .  Species  l i v i n g i n the same area may, f o r  example, e x h i b i t d i f f e r e n t s i z e s a t m a t u r i t y .  Campbell  (1929)  104  measured a d u l t female E.. j a p o n i c a as being Fulton  (1968) measured a d u l t females as b e i n g  arid Pandyan length.  5.0  to-6.3 mm 6.3  t o 6.5  (1971) measured a d u l t females as b e i n g 4.4  These specimens were a l l c a p t u r e d  or i t s s u r r o u n d i n g  i n length, mm  in length,  t o 5.99  from the S t r a i t o f  mm  in  Georgia  waters.  A s p e c i e s may  e x h i b i t d i f f e r e n t s i z e s at maturity  p a r t s o f i t s range (Deevy 1966;  McLaren 1965).  McLaren  in different  (1963,  1965)  showed t h a t Pseudocalanus minutus l i v i n g i n d i f f e r e n t a r e a s a t t a i n e d s i z e s at m a t u r i t y which c o u l d be c o r r e l a t e d w i t h the temperature o f the water i n which the s p e c i e s was g i c a l d i f f e r e n c e s w i t h i n the Davis  l i v i n g and w i t h p o s s i b l e p h y s i o l o -  species.  (1949) accepted the d i f f e r e n c e s i n the s t r u c t u r e o f  second f o o t between h i s specimens and Marukawa's, but  d i d not  the  accept  the d i f f e r e n c e s i n the s t r u c t u r e o f the f i r s t  f o o t and.the f r o n t a l  p a p i l l a between h i s specimens .and E s t e r l y ' s .  In both c a s e s , the  f e r e n c e s were q u a l i t a t i v e r a t h e r than q u a n t i t a t i v e . evidence i n the  v a r i a t i o n s w i t h i n two t h e i r range.  species of Euphausiids  Morphological  s t u d i e s can r e s o l v e t h i s .  species  (1962) observed m o r p h o l o g i c a l i n d i f f e r e n t parts  of  v a r i a t i o n w i t h i n a s p e c i e s does not mean,  a p r i o r i , t h a t the v a r i a n t s are d i s t i n c t s p e c i e s - o n l y  o f s t u d y has  There i s ample  l i t e r a t u r e of morphological v a r i a t i o n within a  i n d i f f e r e n t p a r t s o f i t s range.' B r i n t o n  dif-  In the  not been done, and  s i d e r i n g the s p e c i e s d i s t i n c t .  extensive  case o f e l o n g a t a - j a p o n i c a , t h i s  kind  so t h e r e i s no v a l i d r e a s o n f o r c o n As E s t e r l e y ' s (1913) d e s c r i p t i o n  was  105  the o r i g i n a l , h i s s p e c i e s name i s a c c e p t e d . the study organism s h o u l d be c a l l e d  I t i s concluded t h a t  Pareuchaeta e l o n g a t a .  106 AN EXAMINATION OF PATTEN'S ANALYSIS OF  STABILITY  P a t t e n ' s (1961, 1962) a n a l y s i s o f s t a b i l i t y  i s of i n t e r e s t  as i t attempts to q u a n t i t i z e f l u c t u a t i o n s i n the v a r i a b l e s o f an ecosystem. S e v e r a l c r i t i c i s m s can be made o f P a t t e n ' s  analysis.  The major c r i t i c i s m  can be  stems from the f a c t t h a t ' s t a b i l i t y '  d e f i n e d i n s e v e r a l ways, and so be a p p l i e d to q u i t e  different  systems. F o r the purposes o f t h i s d i s c u s s i o n , they w i l l be c a l l e d statistically  s t a b l e and p h y s i c a l l y s t a b l e systems.  A system i n which t h e measured v a r i a b l e does n o t f l u c t u a t e w i t h time i s a s t a t i c  system. A s t a t i s t i c a l l y  s t a b l e system i s  one i n which the measured v a r i a b l e r e m a i n s , i n t h e o r y , c o n s t a n t w i t h t i m e ^ b u t , due t o s a m p l i n g e r r o r , f l u c t u a t e s i n a random d i r e c t i o n about the mean v a l u e . F o r example, an experiment c o u l d be conducted i n which t h e same c o i n was t o s s e d one hundred times and the number o f 'heads' r e c o r d e d . T h i s c o u l d be r e p e a t e d  several  t i m e s , and the d a t a p l o t t e d w i t h t h e number o f 'heads' r e c o r d e d at  the end o f each experiment on the Y - a x i s , and the experiment  number on the X - a x i s . The d a t a would be d e s c r i b e d by the l i n e y=50, and the a c t u a l d a t a p o i n t s would be s c a t t e r e d  randomly  about t h a t l i n e . T h i s system i s s t a b l e i n t h a t the v a r i a b l e 'number o f heads' remains s t a t i s t i c a l l y the  c o n s t a n t w i t h t i m e , and  d a t a f l u c t u a t e s i n a random d i r e c t i o n about the mean v a l u e . C o n v e r s e l y , a system i n which the measured v a r i a b l e  i n a p r e d i c t a b l e and c y c l i c  fluctuates  d i r e c t i o n about the mean w i t h time  i s p h y s i c a l l y s t a b l e . F o r example, the swing o f a pendulum i s  107  a p h y s i c a l l y s t a b l e system. T h e r e f o r e , to s t a t e t h a t a system i s s t a b l e i s ambiguous u n l e s s the type o f s t a b i l i t y i s d e s c r i b e d . There i s a tendency among e c o l o g i s t s to c o n s i d e r a p h y s i c a l l y s t a b l e system as b e i n g e c o l o g i c a l l y i n s t a b l e , and a  statistically stable system  as b e i n g  ecologicallyiV stable.  For  example, Dunbar (1960), i n d i s c u s s i n g the s t a b i l i t y o f the marine environment, based h i s arguments on the premise t h a t " o s c i l l a t i o n s a r e bad f o r  any system  and t h a t v i o l e n t o s c i l l a t i o n s are o f t e n  l e t h a l . " I n t h i s p a p e r , he d i s c u s s e d the v a r i a b l e s which dampen oscillations  ( i e i n c r e a s e the t r e n d towards a s t a t i c o r  statistically  s t a b l e system) , and i n c r e a s e the e c o l o g i c a l s t a b i l i t y o f t h a t ecosystem. P a t t e n (1961, 1962)  f a i l e d t o d e s c r i b e what he meant be  ' s t a b i l i t y ' . From h i s 1961 p a p e r , i t i s suggested t h a t he  considered  a p h y s i c a l l y s t a b l e system to be e c o l o g i c a l l y i n s t a b l e , and a system which f l u c t u a t e s l e s s a b o u t t t h e mean over the same time i n t e r v a l to have a g r e a t e r e c o l o g i c a l s t a b i l i t y . However, P a t t e n f a i l e d to r e c o g n i z e t h a t the system w i t h the h i g h e s t  ecological  s t a b i l i t y i s a s t a t i s t i c a l l y s t a b l e system and, because o f t h i s , made s e v e r a l e r r o r s i n d e r i v i n g h i s i n d e x . P a t t e n (1961) d e r i v e d the s t a b i l i t y i n d e x e m p i r i c a l l y , and the assumption o f which he based the i n d e x i s i n c o r r e c t . P a t t e n s t a t e d " i f a l l the v a r i a b l e s o f an ecosystem were random v a r i a b l e s , randomly sampled), t h e n i e a c h v a r i a b l e might be regarded as most s t a b l e i f and when the p r o b a b l i t y f o r an i n c r e a s e i n v a l u e when low  108 and  f o r a decrease  i n v a l u e when h i g h were u n i t y . " T h i s i s  incorrect. In a s t a t i s t i c a l l y  (and e c o l o g i c a l l y ) s t a b l e system,  the p r o b a b i l i t y o f a low v a l u e f o l l o w e d by a h i g h i s 0.5, and the p r o b a b l i t y o f a low v a l u e f o l l o w e d by another  1'pw i s 0.5.  S i m i l a r l y , the p r o b a b i l i t y o f a h i g h v a l u e f o l l o w e d by another h i g h i s 0.5, and the p r o b a b i l i t y o f a h i g h v a l u e f o l l o w e d by a low i s 0.5. Patten  (1961) d e r i v e d a s t a b i l i t y measure, 0 , f o r the  determinant o f P, where  p  id  p  i i  P=  (as on page 75) P  When o>Q:itthe\-system, ecological  dd  p  i d  a c c o r d i n g t o P a t t e n , i s s t a b l e . The g r e a t e s t  s t a b i l i t y i s when a = l , i e , P^ < j = P ( _i = -'-»  a n  ^ Pii=Pdd=^*  Thus, a system i n which an i n c r e a s e i s f o l l o w e d by a d e c r e a s e , and then by an i n c r e a s e , e t c , i s s t a b l e .  However, t h i s i s a p h y s i c a l l y  s t a b l e system i n which f l u c t u a t i o n s i n d i r e c t i o n about the mean are c y c l i c and p r e d i c a t b l e . The system does n o t possess s t a b l i t y and i s t h e r e f o r e e c o l o g i c a l l y  statistical  instable.  When a=0, the s y s t e m , a c c o r d i n g t o P a t t e n , has n u l l s t a b i l i t y . T h i s v a l u e i s a p p l i c a b l e t o t h r e e systems. I n a s t a t i c system, P ^ ^ P _ j i = p. .=p, =0. I n a s t a t i s t i c a l l y s t a b l e s y s t e m , p . =p , .=p. .=p, =0.5. *ii dd i d dx IX dd P a t t e n p r e d i c t s t h a t both these systems have n u l l s t a b i l i t y , and a r e l e s s s t a b l e than the above system i n which t h e v a r i a b l e s  fluctuate  109  i n a l e s s random manner. T h i s i s incorrect,;) as the g r e a t e s t stability  ecological  occurs when t h e measured v a r i a b l e remains c o n s t a n t w i t h  time, or else  f l u c t u a t e s i n a random manner.  A n u l l s t a b l i t y i s a l s o o b t a i n e d i f the  measured  variable  i n c r e a s e s £(por decreases) c o n t i n u o u s l y w i t h t i m e , i e , p ^ = 1 . 0 , and p^=p^^=p^=g0.%>Tlius', P a t t e n s s t a b i l i t y  index f a i l s  to distinguish  between a system i n which t h e v a r i a b l e i s constant,-, o r v a r i e s i n a random manner, and between a system i n which the v a r i a b l e  increases  (or d e c r e a s e s ) c o n t i n u o u s l y w i t h t i m e . I t i s a l s o obvious t h a t a v a r i a b l e which does n o t approach an e q u i l i b r i u m v a l u e i s i n s t a b l e (both s t a t i s t i c a l l y and p h y s i c a l l y ) , arid does n o t possess a n u l l stability.  When a<0, t h e s y s t e m , a c c o r d i n g t o P a t t e n , i s i n s t a b l e . The g r e a t e s t instability  occurs when p^=p^->^,< arid P - j ^ P ^ i " ^ »  anc  *  This  t y p e o f system i s a p h y s i c a l l y s t a b l e system i n which t h e v a r i a b l e fluctuates  i n a c y c l i c and p r e d i c a t a b l e  d i r e c t i o n with time. A  c r i t i c a l examination of Patten's a n a l y s i s no  difference  indicates  that there i s  i n the s t a b i l i t y o f a system when a= 1,^-and a=-l f o r ,  i n b o t h s y s t e m s , t h e f l u c t u a t i o n s a r e c y c l i c and a r e predic.tajjies'^ i n d i r e c t i o n , rather  than b e i n g random.  A second l i m i t a t i o n t o P a t t e n ' s a n a y l s i s i s t h a t i t i s s e n s i t i v e to s a m p l i n g f r e q u e n c y . F i g u r e 9 shows a system i n which an e n v i r o n m e n t a l v a r i a b l e f l u c t u a t e s  i n a c y c l i c manner w i t h t i m e , i e  the system i s p h y s i c a l l y s t a b l e ^ C b u t e c o l o g i c a l l y i n s t a b l e ) .  110  F i g u r e 9. A h y p o t h e t i c a l system i n which the measured v a r i a b has p h y s i c a l s t a b i l i t y .  11CM  Time  in Depending on when t h e v a r i a b l e i s measured, a t l e a s t t h r e e d i f f e r e n t v a l u e s o f a c a n be o b t a i n e d . ( i ) i f measurements a r e made o n l y a t ! t = l , 5 , 9 , e t c , or  t=2,6,10, e t c , o r t = 3 , 7 , l l , e t c , then a=0:. A c c o r d i n g t o t h e a n a l y s i s ,  and w i t h the a v a i l a b l e d a t a , the system has n u l l  stability.  ( i i ) i f measurements a r e made o n l y a t t= 1,3,5,7,etc, t h e n a = l as P^(_=:P(_:j=-'-»  a n  d Pii=pdd=^"  A c c o r d i n g to the a n a l y s i s ,  the system i s s t a b l e ^ e c o l o g i c a l l y ) / . (iii) then as the sampling  i f many measurements a r e made d u r i n g each c y c l e , frequency i n c r e a s e s , a->-l, as P^-^P^d "*"-'-» a  n  d  P i d = P d i ^ 0 . A c c o r d i n g to the a n a l y s i s , t h e system i n i n s t a b l e ecologically. These problems c o u l d be avoided by choosing the sampling such t h a t i t c o i n c i d e d w i t h s e v e r a l s t a g e s i n the phases o f a v a r i a a b l e w h i c h v a r i e d c y c l i c a l l y . S e c o n d l y , i t might be b e t t e r to c o n s i d e r o n l y the a b s o l u t e v a l u e o f a . A s t a b l e system would be one i n which a=0, and a l e s s s t a b l e system would be one i n which |a|>0. Those systems i n which v a r i a b l e s i n c r e a s e d o r decreased w i t h time • would have to be e x c l u d e d from the a n a l y s i s i n i t s p r e s e n t  form.  P a t t e n (1962) 'improved' the s t a b i l i t y i n d e x by d i v i d i n g a by the mean v a r i a b i l i t y . S m a l l mean v a r i a b i l i t i e s  tend t o i n c r e a s e  the magnitude o f the s t a b i l i t y i n d e x , and l a r g e mean v a r i a b i l i t i e s decrease t h e magnitude o f t h e s t a b i l i t y i n d e x . However, i t i s u n l i k e l y t h a t an e c o l o g i c a l l y i n s t a b l e system w i t h a s m a l l mean variability  i s a c t u a l l y l e s s s t a b l e than an e c o l o g i c a l l y  i n s t a b l e system w i t h a l a r g e mean v a r i a b i l i t y .  Therefore, i f  P a t t e n ' s approach to s t a b i l i t y a n a l y s i s i s t o be r e t a i n e d , i t i s  112  p r o b a b l y b e s t to c o n s i d e r o n l y The values of  d a t a i n Tables  |c|.  16 and  17 were re-examined, and  the mean  \a\ f o r the b i o l o g i c a l , c h e m i c a l , and p h y s i c a l v a r i a b l e s  d e t e r m i n e d . These were; G.S.-l  Indian  Biological  0.1Z>  Chemical  0.32J  0.53  Physical  0.22  0.30  The b i o l o g i c a l system has  Arm  a h i g h e r e c o l o g i c a l s t a b i l i t y than  either  the p h y s i c a l o r c h e m i c a l system.However, the chemical system i s l e s s s t a b l e e c o l o g i c a l l y than the p h y s i c a l system w h i l e , i n the p r e v i o u s a n a l y s i s , i t was Patten's  more s t a b l e .  s t a b i l i t y measure t h e r e f o r e might be m o d i f i e d to  g i v e a b e t t e r index of s t a b i l i t y t h i s i n d e x , l i k e any i n d e x , has  than i t i t s p r e s e n t  l i m i t e d use i n d e s c r i b i n g ecosystem  p r o c e s s e s . A b e t t e r approach would be mathematical techniques  form. However,  to make use o f some o f the  used by p h y s i c i s t s , ime.tejtiologists, ^arid  astronomers i n time l a g s t u d i e s tqT'describe the dynamics of i n t e r a c t i o n s between the v a r i a b l e s w i t h i n a system.  the  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0101110/manifest

Comment

Related Items