UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Dynamic measurement of hydrologic characteristics of a layered soi l during drainage, evaporation and… Chow, Thien Lien 1973

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1973_A1 C45_6.pdf [ 17.71MB ]
Metadata
JSON: 831-1.0100938.json
JSON-LD: 831-1.0100938-ld.json
RDF/XML (Pretty): 831-1.0100938-rdf.xml
RDF/JSON: 831-1.0100938-rdf.json
Turtle: 831-1.0100938-turtle.txt
N-Triples: 831-1.0100938-rdf-ntriples.txt
Original Record: 831-1.0100938-source.json
Full Text
831-1.0100938-fulltext.txt
Citation
831-1.0100938.ris

Full Text

of DYNAMIC MEASUREMENT OF HYDROLOGIC CHARACTERISTICS OF A LAYERED SOIL DURING DRAINAGE, EVAPORATION AND SUBSEQUENT WETTING by THIEN LIEN CHOW .Sc., National Chung-Hsing University, Taiwan, 1967 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of Soil Science (Soil Physics) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA September, 1973 In presenting this thesis i n p a r t i a l f u l f i l m e n t of the requirements for an advanced degree at the University of B r i t i s h Columbia, I agree that the Library s h a l l make i t f r e e l y available for reference and study. I further agree that permission for extensive copying of t h i s thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It i s understood that copying or publication of t h i s thesis for f i n a n c i a l gain s h a l l not be allowed without my written permission. Department of The University of B r i t i s h Columbia Vancouver 8, Canada Date i i ABSTRACT Instrumentation and methodology were developed and used for dynamic measurement of hydrologic characteristics of an undisturbed layered s o i l column over the s o i l water matric potential range between -0.1 and -90 bars. This instrumentation included the gamma radiation attenuation technique to measure water content and the tensiometer-pressure transducer and the three-terminal double loop thermocouple psychrometer techniques to measure water potential. The thermal s t a b i l i t y of this psychrometer i s approximately 40 times better than that of the two-terminal psychrometer (Spanner type) for ambient temperature fluctuations with a time rate of change greater than 0.2°C/min. Water potential measurements carried out with this psychrometer on s i l t y clay and s i l t loam s o i l samples were within + 0.4 bar of the porous plate extractor equilibrium values. Water content and the corresponding water potential of an undisturbed layered s o i l were measured simultaneously with this instrumentation as a continuous function of time and depth for the s o i l water matric potential between -0.1 and -90 bars. These measurements were carried out during water flow induced by drainage and evaporation, followed by rewetting. Water retention and flow characteristics were then calculated from these measurements. The same properties were also determined for the top layer separately. None of these properties showed system dependence. Both water retention, w( t ^ ) , and unsaturated hydraulic conductivity-matric potential function, K ( ^ ) , showed hysteresis effects at soi l water matric potential (^ )^ between -0.1 and -3.0 bars, w(^^) showed no hysteresis at ^ > -3.0 bars, whereas K(ipjy[) showed inconclusive hysteresis in this range. The unsaturated hydraulic conductivity-water content function, K(w), and diffusivity-water content function, D(w), displayed inconclusive hysteresis. Propagated errors in both unsaturated hydraulic conduc-t i v i t y and d i f f u s i v i t y were estimated to be + 7.8 to + 20.07o and + 8.1 to + 38.2% respectively. iv TABLE OF CONTENTS ABSTRACT i TABLE OF CONTENTS iv LIST OF TABLES : ix LIST OF FIGURES x LIST OF IMPORTANT SYMBOLS xiv ACKNOWLEDGEMENTS xvi INTRODUCTION 1 CHAPTER I - HYDROLOGIC BEHAVIOUR OF SOILS 7 Abstract 7 Introduction 8 (1) The Flow Equation 9 (2) Solutions of the Flow Equation 12 (3) Applications of the Flow Equations to obtain K(w) and D(w) .....13 (4) Methods of Measuring of w(ij^) 15 (A) Static equilibrium methods 16 (B) Transient state methods 17 (5) Methods of Measuring of K(w) and D(w) 18 (A) Steady-state methods 18 (i) Steady-state upward flow methods...19 ( i i ) Steady-state downward flow methods.20 (B) Transient state methods 22 (i) Transient outflow method 22 ( i i ) Transient inflow method 23 ( i i i ) Instantaneous profile method 24 (a) Laboratory measurements...... V (b) In situ measurements 26 (iv) Unity gradient method 26 (6) Problems Related to the Measurement of Hydrologic Properties of Soil 27 (A) Validity of Darcy's equation and the diffusion equation 27 (B) Hysteresis 28 (i) w(^M) functions.. 28 ( i i ) K(w) and D(w) functions 29 (C) Process and system dependence of hydrologic properties of soils 30 (7) Conclusions 32 CHAPTER II - DYNAMIC MEASUREMENT OF HYDROLOGIC PROPERTIES OF A LAYERED SOIL DURING DRAINAGE AND EVAPORATION, FOLLOWED BY WETTING 34 Abstract 34 Introduction 35 Experimental Materials and Methods ....37 The s o i l column and the measurement sequences 37 Measurement of w(z,t) 41 Measurement of T/J (z,t) 42 Calculation of w(ip M) , K( ^ ) a n d D(w) 43 Results and Discussion 46 Texture and bulk density 46 v i Water content and potential as function of time and depth 46 Water retention curves w(^) 54 The di f f u s i v i t y function D(w) 56 Hydraulic conductivity functions, K ( ^ ) and K(w) 56 Error Analysis 62 Water content, water content gradient and flux 62 Water potential and potential gradient 63 Conductivity and di f f u s i v i t y 64 CHAPTER III - DYNAMIC MEASUREMENT OF SOIL AND LEAF WATER POTENTIAL WITH A DOUBLE LOOP PELTIER TYPE THERMOCOUPLE PSYCHROMETER 68 Abstract 68 Introduction 69 Materials and Methods 70 Results and Discussion 76 Thermal s t a b i l i t y 76 Response characteristics... 82 Calibration 88 Dynamic and continuous measurement of so i l water potential 90 In situ measurement of leaf water potential 94 v i i SUMMARY AND CONCLUSIONS 98 REFERENCES 102 APPENDIX I - Water content as a function of time at various depths for drying induced by drainage and evaporation of the layered s o i l column I l l APPENDIX II - Total water potential as a function of time at various depths for drying induced by drainage and evaporation of the layered s o i l column 124 APPENDIX III -Water content as a function of time at various depths for wetting of the layered s o i l column 138 APPENDIX IV - Total water potential as a function of time at various depths for wetting of the layered s o i l column 144 APPENDIX V - Water content as a function of time at various depths for drying induced by drainage and evaporation of the non-layered s o i l column 152 APPENDIX VI - Total water potential as a function of time at various depths for drying induced by drainage and evaporation of the non-layered s o i l column 159 APPENDIX VII -Water content as a function of time at various depths for wetting of the non-layered s o i l column 171 v i i i APPENDIX VIII - Total water potential as a function of time at various depths for wetting of the non-layered s o i l column 177 ix LIST OF TABLES Table Page Chapter I Chapter II 1 Successive controlled boundary conditions for the layered s o i l (a) drying induced by drainage and evaporation, (b) rewetting 40 2 Percent sand, s i l t and clay, texture and bulk density as a function of column depth 46 3 Estimated standard deviation on flux, water potential gradient and water content gradient for eight randomly selected measurements.. 65 4 The precision taken as 3 standard deviation and percentage error on K and D ...67 X LIST OF FIGURES Figure Page Chapter I Chapter II 1 Diagram of the layered s o i l column and measurement equipment 38 2 Change of water content and water potential with time during drainage followed by evaporation and wetting (a) In the tensiometer range at z = 1.6 cm; (b) In the psychrometer range at z = 1.6 and 3.6 cm 47 3a Water content profiles with time in minutes as the parameter for drying induced by drainage and evaporation 49 3b Water potential profiles with time in minutes as the parameter for the drying induced by drainage and evaporation 50 4a Water content profiles with time in minutes as the parameter for wetting 51 4b Water potential profiles with time in minutes as the parameter for wetting 52 5 Water content vs matric potential for a l l runs and for the layered and the non-layered s o i l shown together with equilibrium values 55 6 Diffusivity vs water content data for a l l runs for the layered and non-layered s o i l ..57 Figure X 1 P age 7 Hydraulic conductivity vs matric potential data for a l l runs, for the layered and the non-layered s o i l by two methods of calculation 58 8 Hydraulic conductivity vs water content data for a l l runs, for the layered and the non-layered s o i l by two methods of calculation 60 Chapter III 1 Jig and power supply for constructing welded thermocouple: (1) 1/16 in acrylic p l a s t i c , 2 cm x 3 cm; (2) tape; (3) thermocouple wires, chromel and constantan; (4) copper post negative electrode; (5) twisted junction; (6) nitrogen i n l e t ; (7) copper post positive electrode; (8) acrylic plastic box 5 cmx 5 cm x 4 cm; (9) cover (A,B) leads between the j i g and the power supply...71 2 Three-terminal double loop psychrometer probe: (1) porous bulb; (2) chromel wires: (3) constantan wires; (4) teflon plug; (5) copper wires; (6) elec t r i c a l resin; (7) tapped nylon rod, % x 20; (8) nut, % x 20; (9) set screw; (10) 3 leads copper wire; (11) s o i l container wall 74 3 Cooling and measuring c i r c u i t shown in cooling position for the single loop (SW1 closed) and double loop (SW1. open) Peltier type psychrometer: (1) cooling; (2) measuring; (3) off 75 x i i Figure Page 4 Circuits of stepping switch and i t s timer/ driver shown in cooling position. The cooling period is adjusted by varying the 10 M ohms variable resister 77 5 Psychrometer chamber used for in situ leaf water potential measurement: (1) upper lead block; (2) leaf; (3) bottom lead block; (4) cavity; (5) thermocouple junctions; (6) set screw mechanism; (7) three leads copper wire 78 6 Psychrometer output characteristics in response to ambient temperature fluctuations: (a) two-terminal psychrometer; (b) three-terminal psychrometer 80 7a Response behaviour of a bare unshielded psychrometer, a f r i t t e d glass bulb psychrometer and a ceramic bulb psychrometer for vapour phase equilibrium 84 7b Output behaviour of a f r i t t e d glass bead bulb psychrometer and a ceramic bulb psychrometer in response to the movement of a wetting front past the point of measurement 87 8 Typical calibration curves for a three-terminal psychrometer at 20°C, 25°C and 30°C 89 9 Water retention curves obtained with the porous plate extractor and with the psychrometer for s i l t y clay and s i l t loam 91 X l l l Figure Page 10 Water potential versus elapsed time for an undisturbed layered s o i l column at three depths for evaporation followed by wetting 93 11 Leaf water potential shown together with ambient temperature as a function of time for snap bean under various environmental conditions 96 xiv LIST OF IMPORTANT SYMBOLS D di f f u s i v i t y of so i l water (Lz/T) D(w) relationships between s o i l water d i f f u s i v i t y and water content I rate of irrigation (L/T) Iw-^ s standardized count rate at water content w^  K hydraulic conductivity of s o i l (L/T) K(w) relationships between hydraulic conductivity and so i l water content K(iJ^) relationships between hydraulic conductivity and so i l water matric potential P rate of precipitation (L/T) s length of s o i l (L) t time (T) v s o i l water flux (L/T) w volumetric water content (L /L ) w^  i n i t i a l water content ws water content at saturation W(I|J ) water retention characteristic M e maximum possible error in water content Uw attenuation coefficient for water (L /M) Pw density of water (M/L ) a standard deviation o"tt standard deviation of water content due to random w emmission of C s ^7 source XV total s o i l water potential (cm of water or bar) ^ matric potential ^z gravitational potential xvi ACKNOWLEDGEMENTS I would like to express my gratitude to Dr. J . de Vries for his valuable guidance, encouragement and constructive criticisms during the course of this study as well as in the preparation of this manuscript. I would also like to extend my thanks To Dr. T. A. Black for his valuable suggestions in instrumentation in conjunction with this study which have made this work possible. To Dr. C. A. Rowles, Dr. M. Miyake and Dr. R. G. Campanella for acting as members of my Graduate Committee and for their helpful criticisms during the writing phase of this thesis. To the staff in the Department of Soil Science, especially Mr. B. Von Spindler for their assistance. To the National Research Council (Canada) and the University of British Columbia for financial support of this work and my graduate studies. At last but not least, to my wife, Carol for her continuous patience, understanding and encouragement at a l l stages of this study have led to the completion of this research. INTRODUCTION The prediction of the hydrologic behaviour of a landscape in response to hydrologic events is of great significance in fields such as agriculture, forestry, hydrology and s o i l engineering. A landscape is composed of a mosaic of landforms, which have characteristic shapes and parent materials, and in a given climatic region are characterized by a unique kind of so i l and vegetation. The s o i l areas that make up a landscape can thus be identified with particular landforms, and knowledge of their hydrologic characteristics can aid in the prediction of their hydrologic behaviour. By integrating over the entire landscape i t may then be possible to predict the hydrologic behaviour of the landscape as a whole in response to hydrologic events. Examples of hydrologic events are rainstorms, melting of snow accumulations, i r r i g a t i o n , subsurface discharge of waste water through septic tank drainfields, and loss of water from the s o i l through evapotranspiration. By hydrologic behaviour in response to hydrologic events is meant the partitioning of precipitation between surface runoff and i n f i l t r a t i o n upon interception by the s o i l surface, the fate of water in the so i l in terms of the amount remaining in the s o i l by storage, and movement of water in the so i l in terms of rates and direc-tions of flow, and loss of water from the s o i l by evapotranspira-tion. Hydrologic behaviour may also include the development of perched water tables and the occurrence of lateral flow. -2-Through knowledge of the hydrologic characteristics of a s o i l , i t i s possible to predict i t s hydrologic behaviour. For example, the water retention characteristic determines the ab i l i t y of a s o i l to store water, and the water flow characteris-t i c determines the a b i l i t y of a s o i l to conduct water, which in turn, together with the magnitude of the corresponding driving forces, determine the rate and the direction of water flow. Until recently, the determination of the hydrologic characteristics of s o i l has been mainly restricted to the laboratory using undisturbed core samples under steady-state conditions. D i f f i c u l t i e s associated with obtaining long undisturbed samples representing the entire profile due to roots and gravel, necessitates taking individual undisturbed 3 i n . x 3 i n . cores from each of the horizons and layers that make up the so i l p r o f i l e . The retention and flow characteristics are then determined for each individual core sample. The prediction model describing the hydrologic behaviour of the entire profile is based on the assumption that the hydrologic behaviour of the p r o f i l e , as a whole, is an integrated effect of the hydrologic characteristics of the individual successive horizons and layers that make up the p r o f i l e . For example, Bybordi(1968) proposed a method of predicting s o i l water content. profiles in st r a t i f i e d laboratory column under steady-state downward flow of water by integrating Darcy's equation between each successive layer where the retention and flow characteris-tics are determined individually. The validity of the -3-application of Bybordi's analysis to f i e l d soils seems doubtful because of evidence that the hydrologic behaviour of a s o i l is a function of the nature of the entire profile as an integral part of the environment, in terms of the successive horizons and layers that make up the p r o f i l e , and discontinuities with regard to pore size distribution between the horizons and layers. Evidence of this system dependence in hydrologic behaviour has been found by Watson and Whisler(1968) and Vachaud et al.(1972b) using s t r a t i f i e d sand columns. Furthermore, Bybordi's analysis has not been applied to transient-state conditions which tend to predominate in the f i e l d . Work of Topp et aL(1967), Watson(1968a), Smiles et al.(1971) and Vachaud et al.(1972a) gives evidence that at least for the drainage range water retention characteristics obtained by simultaneous measurement of s o i l water potential and the water content during transient-state flow is different from that determined by measur-ing the static equilibrium water content following each imposed increment in water potential. The difference is associated with the magnitude of the imposed potential, the greater the imposed potential step, the greater the water content corresponding to a particular potential within the step during transient flow. In view of the uncertainties in the quantitative predict-ion of the hydrologic behaviour of f i e l d soils based upon hydrologic characteristics measured in the laboratory, i t is desirable to measure hydrologic characteristics in s i t u . -4-Philip(1957b) expressed the desirablity of measuring hydrologic properties directly in the f i e l d or on undisturbed samples by stating prophetically. " i t is f e l t that this (theoretical) work may foreshadow a stage when our understanding of microhydrology is such that the water properties of soils are determined by measurements of \p and K functions (and, possibly, certain thermal properties) in the f i e l d or on "undisturbed" samples, a l l other properties of interest being simply computed from this basic information. Obviously much improvement in present techniques, especially of determining K, w i l l be needed before this would be possible." A number of techniques are now available that f a c i l i t a t e the measurement of s o i l water content and potential in sit u and under dynamic conditions. These include the gamma radiation technique(Ferguson and Gardner, 1962; Gurr, 1962) to measure water content and the tensiometer-pressure transducer technique (Klute and Peters, 1962,1966; Watson, 1965) and the thermocouple psychrometer technique (Rawlins and Dalton, 1967) to measure water potential. The soil's water retention and flow characteri-stics are then calculated from these measurements through Darcy's equation and the diffusion theory. The objective of the study reported in this thesis was to develop instrumentation and methodology for simultaneous measurement of water content and the corresponding water potential from 0 to -90 bars in an undisturbed layered medium textured s o i l column as continuous functions of time and depth -5-during water flow induced by drainage and evaporation, followed by rewetting. The retention and flow characteristics were then calculated from these measurements through Darcy's equation and the diffusion theory. The study is comprised of three Chapters: Chapter 1. A review is presented of the classical theory of s o i l water movement, including the solutions and applications of the flow equation to both horizontal and vertical flow in homogeneous s o i l s . This theory would form one of the p i l l a r s of a prediction model for the hydrologic behaviour of a land-scape. Methods of measuring hydrologic characteristics both in the laboratory and in the f i e l d under steady-state and transient-state flow are described. The va l i d i t y of Darcy's law and the diffusion theory, as well as the nonuniqueness of the hydrologic characteristics in terms of complications due to hysteresis and system and process dependence are summarized. Chapter 2. A system employing gamma-radiation attenua-tion, tensiometer-pressure transducer and psychrometer techniques for determination of water content and the corresponding water potential ranging from 0 to -90 bars as a continuous function of time and depth is described. Hydrologic characteristics w(^M), D(w), K(i^M) and K(w) for an undisturbed layered s o i l for water potentials between -0.1 and -90.0 bars are calculated from these measurements. The measurements were carried out during water flow induced by drainage and evaporation, followed by rewetting. The same properties were also determined for the top layer separately. None of these properties showed -6-system dependence. Both w(^M) and K(i|>M) showed hysteresis at ^M between -0.1 and -3.0 bars, w(i^) showed no hysteresis at ^M<-3.0 bars, whereas K(^M) showed inconclusive hysteresis in this range. K(w) and D(w) displayed inconclusive hysteresis. Propagated errors in both K and D were estimated to be + 7.8 to + 20.0% and + 8.1 to + 38.2% respectively. Chapter 3. Details on the construction, calibration and performance of a three-terminal double loop thermocouple psychrometer are given. The thermal s t a b i l i t y of this psychro-meter i s about 40 times better than that of the two-terminal psychrometer for ambient temperature fluctuations with a time rate of change greater than 0.2uC/min. The response behaviour of a f r i t t e d glass bulb and a ceramic bulb psychrometer was tested for vapour phase and li q u i d phase water movement. For vapour phase flow, the f r i t t e d glass bulb psychrometer exhibited a shorter response time than the ceramic bulb psychrometer, whereas the reverse was true when water movement was predominantly in the liquid phase. Water potential measurements carried out on s i l t y clay and s i l t loam s o i l samples were within +0.4 bar of the porous plate extractor equilibrium values. A system that f a c i l i t a t e s automatic and continuous in situ measurement of s o i l water potential using the three-terminal psychrometer is described. -7-CHAPTER I HYDROLOGIC BEHAVIOUR OF SOILS Abstract A review i s presented of the classical theory of s o i l water movement, including the solutions and applications of the flow equation for both horizonal and vertical flow in homogeneous s o i l s . This theory would form one of the p i l l a r s of a prediction model for the hydrologic behaviour of a land-scape. Methods of measuring hydrologic characteristics both in the laboratory and in the f i e l d under steady-state and transient-state flow are described. The validity of Darcy's law and the diffusion theory, as well as the possible nonuniqueness of the hydrologic characteristics in terms of complications due to hysteresis and system and process dependence are summarized. -8-Introduction The hydrologic behaviour of a landscape in response to hydrologic events in part is determined by the retention and flow characteristics of the soils that make up the landscape. Knowledge of the flow process expressed in mathematical form is essential in the prediction of hydrologic behaviour. More sp e c i f i c a l l y , water content profiles (w(z)t) and water poten-t i a l profiles ( K z ) t ) in a given flow system can be predicted through the use of the flow equation with associated boundary conditions. Quantitative application of the flow equation to f i e l d or to laboratory flow systems requires knowledge of the hydraulic conductivity and water retention characteristics of the soils involved. The success of the use of the prediction model to predict hydrologic response depends upon the under-standing of flow mechanisms and the a v a i l a b i l i t y of measured hydrologic characteristics of s o i l . If the flow equations and it s parameters for a given flow system are defined, i t is possible to determine the hydrologic response as solution of these equations with the use of a computer. In the past the theoretical approach to the solution of water flow problems in s o i l has been mainly restricted to Darcian flow in isotropic s o i l s . Although this idealization is rarely a true representation of f i e l d s o i l , i t does contribute to a basic understanding of s o i l water movement and can be looked upon as a starting point for study under more complex f i e l d conditions. The current state of knowledge of -9-this understanding and methods of determining hydrologic characteristics are summarized and discussed in broad terms below. (1) The flow equations The general relationships governing the flow of water through saturated porous media was f i r s t established by Darcy (1856) as a result of his experiments on the f i l t r a t i o n of water through sand f i l t e r s . Richards(1928) was the f i r s t to point out that Darcy's equation is applicable to the flow of water in saturated s o i l s . The va l i d i t y of this equation for unsaturated flow in porous media was f i r s t demonstrated by Childs and Collis-George(1950). For single phase water movement Darcy's equation may be written as: v = -K V> (1) where v is a flux (cm/sec), the volume of water moving across unit surface area normal to the direction of flow in unit time. K is the saturated hydraulic conductivity (cm/sec) and $\\) is the potential gradient or driving force exerted on the water (Slichter, 1899). For unsaturated flow, K is replaced by K(w). A number of driving forces contribute to the movement of s o i l water. These are matric, gravitational and osmotic potential gradients. In addition, thermal gradients may also cause water movement. Due to anisotropy and various driving forces in a f i e l d s o i l , within a s o i l pedon three dimensional flow can occur simultaneously resulting in a complex pattern -10-of water movement. In isothermal flow of water in salt free s o i l , the potential gradient is the sum of both matric and gravitational gradients. The total water potential (ty) can be written as: where ty^ and tyz are matric and gravitational potential respectively. In saturated flow, where a l l the pores are f i l l e d with water, the saturated conductivity depends only upon pore geometry and continuity. The unsaturated conductivity depends upon the geometry of the water channels within the frame-work of the s o i l . A rapid drop in conductivity occurs as the s o i l water content decreases due to the water draining from the macropores and resulting in a reduction in water film thickness which in turn increases the tortuosity of the flow path. The partial differential equation describing water movement in porous media is obtained by combining equation (1) with the equation of continuity - d i v v = (3) yielding | ^ = d iv (K(w)v^) (4) where ty and K are unique functions of water content (Richards, 1931). -11-In isotropic horizontal flow, z = 0 and equation (4) dz may be written as: 9 w - div (K(w)V>M) (5) 9t w v ' rM Similarly, for vertical flow, where d z- = - div (K(w)V^M) + — ^ (6) where z i s the vertical ordinate, positive upward (Phil i p , 1955a). In order to express the diffusion coefficient of s o i l water in a form analogous to that of thermal dif f u s i v i t y , the water -> potential gradient (V^M) can be s p l i t into the reciprocal of water capacity (g^—) and water content gradient (Vw). Equation (5) then becomes | ^ = div (D(w)Vw) (7) where d^M D(w) = K(w)^l (8) dw is defined as the d i f f u s i v i t y and is a unique function of water content (Collis-George, 1950). Using the same approach, equation (6) for vertic a l flow of water becomes •zrzr = div (D(w)Vw) + —•* ( 9 ) d t o z -12-Flow equation expressed in various forms solved for the appropriate boundary and i n i t i a l conditions describe the s o i l water movement in terms of w(z,t) and ^ ( z , t ) . On the other hand, i f w(z,t) and <Kz,t) are known, K(w) and D(w) can be obtained through the flow equation. The K(w) and D(w) are properties of s o i l , characterizing the a b i l i t y of the s o i l to transmit water. (2) Solutions of the flow equations The solution of equation(7) is d i f f i c u l t even in unidimensional flow because K(w) and D(w) are not constant and cannot be expressed in a simple analytical form, although K(w) and D(w) may be considered to be unique functions of water content. Therefore some analytical or numerical methods should be applied. For wetting of a horizontal homogeneous column of s o i l with constant i n i t i a l water content, equation (7) becomes 3t " 3x" ( D ( w )3 x) ( 1 0 ) subject to the conditions > 0 (11) w = w^  at t = 0 and x— w = wg at t |> 0 and x = 0 where w^  and ws are the i n i t i a l water content and the water content at saturation respectively. The solution of equation (10) subject to the condition (11) has the general -13-property that the rate of advance of a plane of constant water content is proportional to t ~ ^ (Miller and Klute, 1967). The flow equation for water movement in a vertical homogeneous s o i l column may be written as: The solution of equation (12) used for an. i n f i l t r a t i o n test was given by Philip(1957a) with the solution in the form of a power series in t . z = \t* + xt + 4>t3/2 + wt2 .... (13) where A, x> 4>» w, ••••••• are single value functions of water content. The function A is given in the solution of the horizontal flow equation. x> 4>» in the solutions of approximate residual equation and are obtained by considering the residual after each term in the series. Good agreement between the solution of the equation (12) with those from i n f i l t r a t i o n experiments was found by Youngs(1957). (3) Application of the flow equations to obtain K(w) and D(w) For the d i f f u s i v i t y and the conductivity functions, D(w) and K(w) to have practical use requires that the functions be measurable. If w(x,t) for wetting up of a horizontal column are known, one can use a numerical method to calculate D(w). In addition, i f ijj(x,t) is known, K(w) could be obtained. A numerical method developed by Barrer(1941) and introduced into s o i l work by Bruce and Klute(1956) has been -14-used commonly in s o i l water movement studies. This method made use of the Boltzmann transformation X = xt"1^ ( 1 4 ) where X i s assumed to be a unique function of water content and x is a position of a plane of constant water content, Substituting equation (14) into equation (10), reduces equation (10) to an ordinary d i f f e r e n t i a l equation with the d i f f u s i v i t y function determined at a particular water content w and time t to be D(w)t = - T ^ T ( ^ ) / x dw (15) This method has been used by Nielsen et a l . (1962a) Jackson (1964), Selim et a l . (1970) and other workers. The applicability of this solution depends on the val i d i t y of the assumption that the Boltzmann transformation applies to water flow in s o i l . Rose(1968) found that this solution is also true for vertical flow at water contents lower than f i e l d capacity. A similar method has been developed by Philip(1955b). Another method given by Crank(1956), has been used by Ferguson(1959) and Stewart(1962) to calculate D(w) from w(x,t) measurement. This solution which can be obtained by the differentiation and intergration of equation (10) by parts /x. . gives 3 / t i W d x D ( w )t = —3w7 ( 1 6 ) w, t -15-t i 3 wdx represents the time rate of change of the flux through a plane at position xt, which is the position 3t ^xt where a horizontal line at water content w intersects the water content profile curve for time t . xt^ is the position where the i time water content profile curve intersects the horizontal line of the i n i t i a l water content. The flux through the plane at position x^ is found by either numerically integrating between two closely spaced water content profile curves and dividing by the time interval, or plotting the i n t e g r a l J wdx as a function of time for each wt at which xt D(w). is desired, with the slope of the curve at time t being 3 / "xt i the time d i f f e r e n t i a l , ^ J wdx. xt Equation (15) and (16) are simply diffusion equations written in di f f e r e n t i a l form. If ip(x,t) i s known, K(w) could be computed by replacing ( — ) | by (4^)1 in equation (16), dx w,t a x w>t or by using equation (8) with an appropriate retention curve (w(ipM)). (4) Methods of measuring of w(ifr^) Any method that is capable of measuring s o i l water content and s o i l water potential may be used for w(^M) function determination. In general, the methods of measuring of w(^) can be cla s s i f i e d into those which are performed under static equilibrium and those that are performed under transient state conditions. -16-(A) Static equilibrium methods This method has been mainly restricted to laboratory s o i l samples where the s o i l sample is allowed to equilibrate with a known imposed pressure. After the establishment of equilibrium, the water content i s measured gravimetrically or is inferred from the accumulated outflow or inflow corresponding to the imposed pressure. Two commonly used methods of obtaining the imposed pressure are: (1) Haines(1930) method, in which a so i l sample resting on a porous plate i s exposed to the atmosphere while the pressure in the water below the porous plate is kept below the atmospheric pressure by using a hanging water column, with the vertical distance between the s o i l sample and the free water surface in the manometer equal to the imposed water potential. (2) Richards(1949) method, in which water beneath the pressure plate i s kept at atmospheric pressure while the a i r pressure acting on the sample is increased by using a regulated a i r pressure source. In this case the imposed potential i s equal to the difference between the imposed a i r pressure and the atmospheric pressure. In general, Haines method i s commonly used in the higher water potential range and the Richards method is used in the lower water potential range. At water potential lower than -20 bars, wOfj^) may be obtained by placing the sample in a system which contains a known concentration of salt solution and the sample is allowed to equibrate with the relative vapour pressure produced by the salt solution. After the establishment of equilibrium, water -17-content of the sample is determined gravimetrically. Both of these methods can be used for drying and wetting. The data obtained from these methods may not suitable for the prediction of hydrologic behaviour under f i e l d conditions due to the small size of the sample and a certain degree of disturbance. (B) Transient state methods With the development of gamma-radiation attenuation and tensiometer-pressure transducer techniques, the simultane-ous measurement of water content and water potential as continu-ous functions of time and depth is possible. Thus, the W(IJJ ^ ) function at various depths can be obtained. This method has been successfully used for a laboratory column by Topp e_t a l . (1967), Watson(1966), Rogers and Klute(1971), Vachaud and Thony (1971) and other workers. A similar technique has been extended for the in situ determination of w(^w) except a tensiometer-— M manometer technique was used to measure t|>" (de Vries, 1969). M In addition, a tensiometer-manometer technique in conjunction with the neutron technique has been used for in situ measuring of w(ij; ) by Rose et a l . (1965), Nielsen et a l . (1962b) and M — — Van Bavel _et .aj.. (1968). When a tensiometer-manometer technique is used for in situ measurement of water potential, error resulting from the long response time of the tensiometer-manometer system must be taken into consideration. In addition, the tensiometer technique is only capable of measuring water potential above -0.8 bar due to the low a i r intrustion value of the tensiometer and nucleation of bubbles of dissolved a i r . J_n situ measurement of water potential -18-lower than -1 bar with a psychrometer has been proposed by Rawlins and Dalton (1967), however, no data is available. (5) Methods of measuring of K(w) and D(w) Methods of measurement of the hydraulic conductivity of s o i l may be cla s s i f i e d into those which are performed under steady-state flow and those which are performed under transient-state flow. These methods include the measurement of K(w) in laboratory columns and under f i e l d conditions. Various available methods for the determination of K(w) under steady-state and transient-state flow conditions are discussed as follows: (A) Steady-state methods In the case of steady-state flow, a constant velocity of water flow is maintained through a s o i l column with = dz a t1z =0, the outflow equalling the inflow. The water potential gradient i s measured by either tensiometer-manometer or tensiometer-pressure transducer systems and the volumetric flux is taken as the constant flow rate. The hydraulic conductivity is then obtained through the use of Darcy's equation and is associated with the matric potential and water content at the position where the flux and gradient were measured. This method may be subdivided into those which are performed with a long column and those with a short column depending on how the steady-state flow is established. The long column version uses a column length in the order of 50 to 200 cm which is subjected to a steady-state upward flow or a steady-state downward flow. -19-(i) Steady-state upward flow methods Moore(1939) obtained a constant upward flow by main-taining a water table at the bottom of the column while allowing evaporation at the top. After the establishment of a steady-state, the flux is given by the evaporating rate. Good agreement between the experimental data and the theoretical solution of the steady-state unsaturated flow equation was found by Gardner and Fireman(1958). A modified technique was demonstrated by Nielsen e t _ a l . (1960) and Gardner and Miklich(1962), in which the water table was replaced by a unconsolidated glass bead porous plate in turn connected to a constant head water reservoir. The amount of water evaporated in the steady flow was measured in a graduate cylinder and the matric potential of the s o i l was varied by changing the suction applied to the s o i l column. de Vries(1967) used a similar arrangement to obtain a steady-state upward flow in a rather short homogeneous s o i l column. After the establishment of a steady-state flow, the water content distribution was obtained with gamma-ray attenuation technique and the flux was equal to the evaporating rate. D(w) at various water contents were calculated through the flux and different — obtained from the water content distribution p r o f i l e , dz By assuming the s o i l is homogeneous throughout the column, D(w) at various water contents may be obtained with a single experiment. In general, the steady-state upward flow methods are d i f f i c u l t to apply due to the steepness of both the water content and the water potential gradients which w i l l be found in the -20-upper part of the column. ( i i ) Steady-state downward flow methods This method was f i r s t proposed by Childs and Co l l i s -George (1950) who obtained a constant flux by immersing the lower end of a long homogeneous s o i l column below a water surface with the flow to the upper end being controlled by glass siphons from a constant-head water reservoir. At steady-state flow, the matric potential and water content are uniform throughout most of the column with the flux equal to the hydraulic conductivity corresponding to the matric potential in the constant matric potential portion of the s o i l column. By starting at saturation and proceeding through a series of progressively decreasing fluxes, the conductivity as functions of matric potential or water content may be obtained. A similar technique has been used.by Poulovassilis(1962), except the water content corresponding to a certain conductivity was determined dir e c t l y . More recently, this technique has been used by Black et a l . (1969) and Plamondon(19 72) using a small chromatography pump to maintain a constant input of water to the top of a column. The necessity of having a long column to obtain a constant water content distribution throughout the column can be overcome by appling suction at the lower interface (Wesseling and Wit, 1968). In the aforementioned methods, K(w) is measured at matric potential higher than -1 bar. At lower water potential, the -21-measurement of K(w) by using these methods is very, d i f f i c u l t because of the long time periods required to establish steady state due to low conductivity. In the short column version of steady-state flow method, a s o i l is packed into a specially designed apparatus between two ceramic porous plates (Richards, 1931). Water content and the corresponding matric potential of the s o i l may be varied by applying either appropriate suctions to the porous plates by means of a hanging water column or applying a i r pressure to the s o i l . The inflow and outflow are measured volumetrically by using constant head devices and the potential gradient is measured with tensiometer-manometer systems. This technique was modified for pressure control by Richards and Moore(1952). Nielsen and Biggar(1961) replaced the ceramic porous plates with f r i t t e d glass porous plates and used f r i t t e d glass f i l t e r funnels as tensiometers. In addition, the porous plates were located in such a way that the water flow is horizontal. Elrick and Bowman(1964) also modified this method by using cellulose acetate f i l t e r s of negligible impedance as porous membranes.to eliminate the need for tensiometers and a perforated cylinder to permit the easy entry of a i r uniformly throughout the sample as the water content decreases. The apparatus is designed to receive undisturbed s o i l cores. More recently, this method has been used by Talsma(1970) and other investigators. -22-In general, the steady state methods have the dis-advantage of requiring a relatively long time to establish steady-state flow. During this time, the hydraulic properties of the sample and the porous plate may change due to biological a c t i v i t y . This method has been mainly operated in disturbed laboratory columns at matric potential higher than -0.2 bar. (B) Transient state methods (i) Transient outflow method The use of the steady-state method to determine K(w) and D(w) has limited the range of water contents and corresponding matric potentials due to the low bubbling pressure of tensiometers. In the lower water content range, a transient outflow method for the determination of K(w) and D(w) was introduced by Gardner (1956) who solved equation (4) for the special case of the out-flow of water from a sample of f i n i t e thickness in the pressure plate or pressure membrane apparatus. It is assumed that during the outflow process, K(^M) is approximately constant and w(^M) is linear over a sufficiently small pressure increment which causes the outflow. The determination involves the measurement of instantaneous outflow and matching the outflow data to theore-t i c a l curves. This technique has been refined by Mi l l e r and Elrick(1958) by taking account of the membrane impedance and has been further modified by Rijtema(1959) including contact impedance between plate and s o i l , as well as membrane impedance to eliminate a separate experimental estimate of impedance. This method has been further extended and used by Kunze and -23-Kirkham(19 62) and Richards(1965) to reduce the number of outflow steps required to compute D(w) and overcome evaporation arising in samples that are slow to equilibrate. matching was proposed by Gardner(1962) and has been used by Doering(1965) by assuming negligible membrane impedance. Co l l i s -George and Rosenthal(1966) introduced a similar technique which included membrane impedance but which does not involve curve matching. ( i i ) Transient inflow method homogeneous column with constant i n i t i a l water content during horizontal flow (Bruce and Klute, 1956). During wetting the spatial distribution of water content at a fixed time was measured and the d i f f u s i v i t y functions were obtained through the use of equation (15). This method has been used by Nielsen et al.(1962a), Jackson(1964), Selim et a l . (1970) and other workers.A similar technique developed by Whisler et a l . (1968) in which water content as a function of time at a fixed position was measured. In this case, the d i f f u s i v i t y functions were obtained by using the relation A similar outflow method that does not involve curve These methods are based on the use of a semi-infinite D(w) ( 1 7 ) where x is the position at which iih is measured. dw The experimental method based on equation (17) is more -24-convenient for use with the V-radiation attenuation technique for the measurement of water content while the method based on equation (15) is more convenient for gravimetric water content determination. The conductivity functions may be obtained from D(w) through equation (8) whe re ^ | must be M obtained from a water retention curve measured on another sample, ( i i i ) Instantaneous profile method This method involves one of the three following proce-dures during the transient flow process: (a) w(z,t) and ty(z,t) are both measured, (b) w(z,t) is measured and^ (z,t) inferred from the appropriate water retention characteristics, and (c) K z , t ) is measured and w(z,t) inferred from the water retention characteristics. Of course, the measurement of both w(z,t) and ^ (z,t) is the best since no question arises as to the applicabi-l i t y of w(^M) obtained on separate samples. The K(w) and D(w) are obtained from these measurements by using the Darcy's equation and the diffusion equation such as that given in equation (16). Darcy's equation written in di f f e r e n t i a l form K ( w ) = _ J - ± i ° ( 1 8 ) «S4> has been commonly used (Watson, 1966), where Z V _ Q i s a plane where flux v is equal to zero and z^ i s a plane at which is evaluated. Another equation which includes the rate -25-of precipitation (P), the rate of irrigation (I) and the evaporation rate (E) has been described and used by Rose e_t a l , (1965). n KCw) = <y / (P + I - E -J^ %± d z ) d t X ( ^ ) + 1)|ZT)"1 - (19) where T is equal to t2 "ti< The instantaneous profile method may be carried out in laboratory or in s i t u . (a) Laboratory measurements Richards and Weeks(1953) were the f i r s t to apply this method for hydraulic conductivity determination in a horizontal column of loam s o i l by measuring water potential profiles with a tensiometer-mercury manometer system during drainage and inferred water content profiles from drainage water retention data obtained on separate samples. The flux at a given value of x was obtained from the change in water content of the column beyond the given position x and the hydraulic conductivity was then calculated from the flux and the water potential gradient through Darcy's equation. Staple and Lehane(1954) measured the water content distribution in a clay loam column gravimetrically by sp l i t t i n g the column into sections and obtained the flux from the area bounded by any pair of w(z)t curves above a chosen level x and the time interval represented by the bounding curves. The water potential gradients used for K(w) calculation were inferred from water retention data. Vachaud(1967) and Thames and Evans(1968) used water content obtained with a gamma attenuation technique to calculate K(w) for horizontal i n f i l t r a t i o n in a homogeneous column. The recent technique involving gamma attenuation and tensiometer-pressure transducer system has been used by Watson(l966) for fine sand -26-over the range of matric potential from 0 to -50 cm of water tension. A similar technique has been used by Vachaud and Thony (1971) and Rogers and Klute(1971) to obtain w(^M) and K(w) for coarse materials at matric potential higher than -100 cm of water, (b) In s i t u measurements The method similar to that used by Staple and Lehane(1954) has been modified and used for in situ measurement of K(w) by Richards et a l . (1956) and Ogata and Richards(1957) using tensio-meter and gravimetric water content data to calculate K(w). A similar technique has been used by Nielsen et a l . (1962b), Rose et a l . (1965) and Van Bavel et a l . (1968) except water content was measured with a neutron technique. More recently, a tensio-meter-pressure transducer system was used in conjunction with neutron meter for in s i t u measurement by Willington(1971). (iv) Unity gradient method This method is based on the fact that during drainage in a uniform s o i l profile and in the absence of a shallow water table, the water potential gradient is often close to one, and the water content is a function of time and nearly independent of depth. In this case, d i f f u s i v i t y may be estimated from D(w) = - L * ^ (20) dt where w is the average water content above the depth L. (Gardner, 1970). Black et a l . (1969) and Davidson et a l . (1969) have used the unity gradient method to estimate drainage from a wetted s o i l p r o f i l e , and have shown i t works quite well -27-in soils that are uniform. (6) Problems related to the measurement of hydrologic properties  of s o i l (A) Validity of Darcy's equation and the diffusion equation. According to the assumption made in Darcy's flow theory, K(w) is a unique function of water content, indepentent of water potential gradient (^) and the state of flow. The v a l i d i t y of this theory in both saturated and unsaturated flow can be tested by plotting the velocity of flow as a function of water potential gradient at a given water content. If a linear relationship is obtained, the Darcy's equation is considered to be valid with the slope being equal to the hydraulic conductivity. In unsaturated steady-state flow, a linear relationship between flux and potential gradient was f i r s t reported by Childs and Collis-George(1950) for medium and coarse sands. Similar results have been also found by Youngs(1964) and Olsen and Swartzendruber(1968). However, deviation from a linear relation-ship between flux and potential gradient has been observed by Swartzendruber(1963), Hadas(1964) and Youngs(1964) for different kinds of s o i l and ranges of water content. In non-steady state unsaturated flow, a direct propor-tionality between any instantaneous flux and the corresponding potential gradient has been found by Watson(1966) in a uniform column of sand for gradients up to 14 cm of water/cm. Vachaud (1967) also observed a linear relationship in two s i l t materials for gradients ranging from 2 to 500 cm of water/cm. However, -28-a non-linear relationship between the instantaneous flux and the corresponding potential gradient was found by Thames and Evans(1968) with gradients up to 100 cm of water/cm. The solution of the diffusion equation for horizontal movement of water in a semi-infinite column of homogeneous s o i l is based on the assumption that the progression of a plane of constant water content (xlw) is directly proportional to the square root of the elasped time ( t2) of i n f i l t r a t i o n . If the assumption is applicable, then D(w) should be a function of only the water content, and should be independent of either time or distance (x). The va l i d i t y of this assumption can be tested by plotting x| as a function of t2. If the data f a l l s on a w straight l i n e , the assumptions made in the theory may be consider-ed v a l i d . A non-linear relationship between x| and t2 has been r 1 w reported by Nielsen et a l . (1962a), Davidson et a l . (1963), Ferguson and Gardner(1963), Rawlins and Gardner(1963), Swartzen-druber(1963) and Christenson and Ferguson(1966). However, data reported by Stockinger et a l . (1964) and Vachaud(1967) show no significant deviations. (B) Hysteresis (i) w(ip^) functions. Hysteresis in the water retention characteristic has been widely recognized, where water content at a particular matric potential is higher for drying than for wetting. Because of hysteresis, water content is no longer a unique function of matric potential but depends on the past history -29-of wetting and drying of the s o i l , and thus, this must be taken account of in solutions of the flow equation. To avoid the problem of hysteresis, some workers used retention data obtained from wetting for i n f i l t r a t i o n and those obtained from drying for drainage and evaporation. In order to study hysteresis quantitatively and to incorporate hysteresis in the solution of the flow equation, an independent domain theory was presented by Poulovassilis (1962) for sintered glass bead mixtures. A similarity hypothesis was proposed by Philip(1964). Poor agreement between experimen-tal scanning curves and independent domain results has been reported by Topp and Miller(1966) for glass bead media and Topp (1969) for sandy loam. ( i i ) K(w) and D(w) functions The distribution of water in porous media is not identi-cal for both wetting and drying states (Poulovassilis, 1962). Ithas been suggested that the conductivity and d i f f u s i v i t y functions may also not be unique functions of water content and matric potential. Different results have been reported for the hystere-sis in the K(w) function. Collis-George and Rosenthal(l966) and Poulovassilis(1962, 1969 and 1970) found higher K(w) for drying than the corresponding K(w) for wetting. On the other hand, data reported by Elrick and Bowman(1964), Youngs(1964) and Staple (1965) show K(w) of the wetting state to be higher than that of the drying state. Similar results were observed by Rose(1971) for vapour phase water movement. Others(Topp and M i l l e r , 1966; Talsma, 1970; Topp, 1969; Vachaud and Thony, 1971; Green et a l . -30-1964; Watson, 1967 and Rogers and Klute, 1971) found a negligible effect of hysteresis in the K(w) function. Topp and Miller(1966) and Vachaud and Thony(1971) found larger hysteresis in hydraulic conductivity with matric potential than with water content. Hysteresis in d i f f u s i v i t y has been observed by Gardner (1959) for sandy loam, and Staple(1965) for s i l t loam with the d i f f u s i v i t y of the wetting state several times larger than the corresponding one for wetting. However, Green et a l . (19 64) found l i t t l e evidence of hysteresis in D(w) for undisturbed f i e l d cores of s i l t loam. (C) Process and system dependence of hydrologic properties of soils Although the hysteresis complication is well recognized in the w(u>w) function, i t is s t i l l considered to be unique for M either wetting or drying. The wOl> ) function is also considered to be independent of the state of flow in terms of steady-state flow and transient-state flow, and the nature of any particular flow system. By the nature of the flow system is meant the horizons and layers and the discontinuities between the horizons and layers. With the development of fast response techniques for simultaneous measurement of water content and water potential, some deviation has been found between w(^ ) measured with M transient-state and steady-state methods. The W(I|J ,) function M determined during transient-state flow appears to be different from that determined by measuring the static equilibrium water content following each imposed increment in the water potential -31-(Topp, et a l . 1967; Watson, 1968; Smiles et a l . 1971 and Vachaud et a l . 1972). The available information suggests that for drainage the greater the imposed potential step, the greater the water content corresponding to a particular potential within the step during transient flow. In the static equilibrium method, Davidson et a l . (1966) observed that the equilibrium water content depends upon the number of imposed pressure steps used in reaching a desired water potential for a homogeneous s i l t loam column. Two static equilibrium methods have been used to measure w(if> ) . Pressure is used in one (Richards, 1949) M and suction is used in the other (Haines, 1930). de Backer r and Klute(1967) found no significant difference between the suction and pressure methods for i n i t a l l y unsaturated samples. In contrast, Chahal and Yong(1965) found that after a i r entry, the suction method measured correspondingly higher water potential in comparsion with the pressure method at the same water content and both methods converged at lower water content. Chahal(1966) reported similar results. No relationships between the K(w) function and the rate of change in water content has been reported by Rogers and Klute(19 71) for fine sand column under transient state flow. System dependence in the w^^j) function has been reported by Watson and Whisler(1968) during drainage of a coarse sand overlain by a layer of fine sand. The w(ij/ ) function of the M coarse sand measured during drainage of this s t r a t i f i e d sand column -32-was different from that measured during drainage of a uniform column of coarse sand. This difference in w(^M) of the s t r a t i -fied sand column resulted from a decrease in the pore a i r pressure in the coarse material due to limited a i r access across the interface (Watson, 1968). Vachaud et a l . (1972b) found similar results and suggested that the water flow depends not only on the boundary conditions in terms of water content and potential, but also is strongly dependent on s o i l a i r pressure conditions. (7) Conclusions The prediction of the hydrologic behaviour of a land-scape in response to r a i n f a l l events is one of the ultimate major objectives of s o i l physics research. The current state of knowledge in terms of a prediction model that is applicable to f i e l d conditions s t i l l seems doubtful due to non-uniqueness of the hydrologic characteristics. In addition to these problems, the validity of the Darcy's equation and the diffusion equation also have been questioned. In order to establish an effective prediction model, in recent years research workers have focussed on two major study areas: (1) verification and examination of the va l i d i t y of the flow equations and testing the uniqueness of the hydrologic characteristics, (2) prediction of the hydrologic behaviour under f i e l d conditions. The f i r s t objective can be met by the determination of the hydrologic characteristics in the laboratory under dynamic conditions and on relatively small samples. If the objective is the prediction of hydrologic -33-response in the f i e l d , the measurement preferably should be performed in s i t u . From the literature i t appears that research on the uniqueness of s o i l hydrologic characteristics has been largely restricted to laboratory measurements on disturbed s o i l materials and to matric potential higher than -0.2 bar. In the two chapters that follow the emphasis is placed on instrumentation and methodology that allow the measurement of s o i l hydrologic characteristics of an undisturbed layered s o i l under dynamic conditions for drying and subsequent wetting, over the matric potential range between 0 and -90 bars. Some conclusions are drawn with respect to the uniqueness of s o i l hydrologic characteristics. -34-CHAPTER II DYNAMIC MEASUREMENT OF HYDROLOGIC PROPERTIES OF A LAYERED SOIL DURING DRAINAGE AND EVAPORATION, FOLLOWED BY WETTING1 Abstract A system is described employing gamma radiation, tensiometer-pressure transducer and psychrometer techniques for determination of water content and the corresponding water potential ranging from -0.1 to -90 bars as a continuous function of time and depth. Soil hydrologic properties w(^M), D(w), K(^M) and K(w) for an undisturbed layered s o i l for water matric potential between -0.1 and -90 bars were calculated from these measurements during water flow induced by drainage and evaporation, followed by rewetting. The same properties were also determined for the top layer separately. None of these properties showed system dependence. Both wC^ )^ and KC^) showed hysteresis effect at ^ between -0.1 and -3.0 bars. w( ^ ) showed no hysteresis at i|>^< -3.0 bars, whereas K ( ^ ) showed inconclusive hysteresis in this range. K(w) displayed inconclusive hysteresis. Propagated errors in both K and D were estimated to be + 7.8 to + 20% and + 8.1 to + 38.2% respectively. This chapter was presented as a paper at the IAHR-ISSS 2 Symposium on Fundamentals of Transport Phenomena in Porous Media, Aug. 7-11, 19 72:443-460. -35-Introduction Water retention and flow properties of s o i l s , also called hydrologic properties, are of great significance in agriculture, forestry, hydrology and engineering. A soil's water retention properties determine i t s a b i l i t y to retain water against gravity for subsequent plant use. A soil's water flow properties determine i t s a b i l i t y to conduct water in flow processes such as drainage, upward movement of water in response to evaporation, and the important process of flow of water to plant roots. Although the desirability of measuring the hydrologic properties in situ or on "undisturbed" samples has been recognized for a number of years (Philip,1957b)> their measure-ment has been mainly limited to the laboratory using disturbed samples and steady state methods (Richards, 1931; Nielsen and Biggar, 1961; Elrick and Bowman, 1964). However, i t is desirable to measure s o i l hydrologic properties in situ and under dynamic conditions employing rapid response methods (Watson,1968b; Topp, et a l . 1967; Vachaud and Thony, 1971). The reason for this is evidence that the s o i l hydrologic properties depend on the characteristics of the s o i l p r ofile as a whole in terms of texture and structure, and discontinuities in texture and structure, and the dynamic nature of hydraulic processes in the soil-plant-atmosphere system. The development of gamma radiation attenuation technique -36-(Ferguson and Gardner, 1962; Gurr, 1962) f a c i l i t a t e s the measurement of water content in situ and under dynamic condi-tions. Similarly, the use of tensiometers in conjunction with strain-gauge pressure transducers f a c i l i t a t e s the accurate measurement of matric potential down to -0.8 bar, with a short response time (Klute and Peters, 1962, 1966; Watson, 1965). Furthermore, water potentials in the range between -1 bar and -90 bars can be measured with thermocouple vapour pressure psychrometers within a permissible range of error (Rawlins and Dalton, 1967). These methods f a c i l i t a t e the simultaneous measurement of the water content (w) and the corresponding matric water potential (i|^ ) as continuous functions of time (t) and depth (z) during flow processes such as drainage, evaporation and wetting. The water retention and flow properties can then be calculated from w(z,t) and ^ ( z , t ) . Retention and flow property measurements have largely been restricted to the laboratory using coarse materials or disturbed soils at matric water potentials higher than -1 bar (Topp and M i l l e r , 1966; Topp, et a l . 1967; Watson and Whisler, 1968; Rogers and Klute, 1971). The exceptions have been a few cases in which water content was measured in situ using a neutron probe with matric potential being either measured with a tensio-meter system or inferred from the water retention curve which was determined in the laboratory (Van Bavel et a l . 1968, Rose et a l . 1965, Nielsen et a l . 1962 and Willington, 1971). In addition, a partial water retention curve has been determined in situ for -37-the 1-cm thick surface layer of a f i e l d s o i l by simultaneous measurement of s o i l water content with a f i e l d gamma radiation device and matric potential with a tensiometer-manometer system (de Vries, 1969). While hysteretic behaviour has been observed in both the water retention and flow characteristics of coarse materials at high matric potentials (Topp and M i l l e r , 1966; Poulovassilis, 1969; Talsma, 1970), no such information is available for undisturbed layered medium and fine textured soils over the matric potential range between 0 and -90 bars. The objectives of this study were (1) to develop and use a dynamic method of simultaneous measurement of water content and water potential in an undisturbed s o i l column as functions of time and depth during water flow induced by drainage and evaporation followed by wetting and to infer the water retention and flow characteristics from these measurements, (2) to study the uniqueness of w ( ^ ) , D(w), K ( ^ ) and K(w) in terms of hysteresis and system dependence. Experimental Materials and Methods The Soil Column and The Measurement Sequences A diagram of the layered s o i l column that was used in this study is shown in Fig. 1, together with instrumentation designed to carry out simultaneous, continuous and automatic measurements of s o i l water content and water potential as -38-PRESSURE TRANSDUCER BOX AUTOMATIC COOLING MICROVOLTMETER CURRENT SUPPLY a a MEASUREMENT SYSTEM RECORDER 1--Diagram of the layered s o i l column and measu equipment. -39-functionsof time and depth during flow induced by drainage from saturation followed by evaporation down to a potential of -90 bars, and re-wetting to saturation. The experiments were performed on an undisturbed layered column of s o i l taken from a Monroe s o i l p r o f i l e . The Monroe s o i l i s a Regosol derived from floodplain deposits, and is found in the Lower Fraser Valley of British Columbia. The column consisted of 7.6 cm of s i l t loam, over 4.5 cm of loamy fine sand, over 7.9 cm of fine sand, and was held in an acrylic plastic box which was 10 cm x 20 cm in cross section and 20 cm high, with a 0.6 cm wall thickness. The s o i l was supported by an unconsolidated glass bead porous plate which formed the bottom of the box and f a c i l i t a t e d control of boundary conditions during the drainage and wetting measurement sequences by varying the length of the hanging water column. The s o i l was f i r s t saturated and submitted to the following successive controlled flow conditions, (1) drainage from saturation followed by evaporation u n t i l air-dry at the s o i l surface and (2) re-wetting to saturation. The column was covered to prevent evaporation during the drainage and wetting cycles. During the evaporation cycle both the cover and the porous plate were removed and a fan was placed 5 cm above the surface of the s o i l to provide a i r circulation (Fig. 1). When the evaporation cycle was completed, the porous plate was reinstalled and the column was subjected to wetting. The controlled boundary conditions for the measurement sequences are shown in Table 1. After separating the s i l t loam layer from the layered s o i l i t was subjected to -40-the same controlled hydraulic sequences with the objective of studying system dependence of the hydrologic properties. These experiments were conducted in the laboratory at a i r temperature of 20 + 2°C. Time interval (min) Length of the hanging water column (cm of water) (a) 0 0 0-185 20 185 - 740 40 740 - 1315 50 1315 - 2002 63 2002 - 2827 80 2827 - 3333 95 3333 - 4140 125 4140 - 4858 140 >4858 Evaporation (b) 0 120 1350 2861 120 1350 2861 4380 90 60 40 0 Table 1: Successive controlled boundary conditions for the layered s o i l (a) drying induced by drainage and evaporation, (b) rewetting -41-Measurement of w(z,t) Soil water content as a function of time and depth was measured by continuous scanning of the s o i l column with a collimated gamma beam during both drying and wetting cycles (Fig. 1). The column was scanned by subjecting i t to continuous up and down motion through a collimated beam of 0.661 Mev. gamma photons. The up and down motion was provided by a platform driven by an electric motor with a reduction mechanism and control circ u i t r y permitting continuous and automatic ve r t i c a l movement at controlled speed and interval. The control cir c u i t r y consist-ed of a time delay c i r c u i t connected to two DPDT relays, the objective being to reverse the motor direction instantaneously as the platform made contact with the upper or lower reversing switch. A third power relay located between the power source and the motor was used to protect the contact points of the two reversing relays. The gamma radiation attenuation device consisted of a s c i n t i l l a t i o n detector with a thallium-activated sodium iodide crystal and a photomultiplier tube connected to preamplifier, discriminator and scaler-ratemeter. The mi l l i v o l t output of the ratemeter was recorded with a two-pen strip chart recorder. The collimated beam of 0.661 Mev. gamma photons originated from -42-a 300-mc cesium-137 source. Resolution was controlled by adjusting both the scanning speed and the s l i t width of the collimators that were located at the source and detector side of the s o i l . Both collimator s l i t s were 5.0 cm high, 7.5 cm long and were set at a height of 0.1 cm. The scanning speed was adjusted to 1.2 cm min"1. At this speed gamma photons passing through the 20 cm length of s o i l gave accumulated counts ranging from approximately 50,000 counts cm-1 for the saturated s o i l to 85,000 counts cm-1 for the air-dry s o i l . The average water content over a depth of 1 cm was calculated from the average voltage output recorded over that interval using the gamma radiation attenuation equation (de Vries, 1969) Iw«s wn - w0 = In T (1) 1 2 u p s Iw,s ww 1 3 -3 where w^  and vi^ are the volumetric water contents (cm cm ) at matric potentials ty^and ty^ bar, Iw^s and Iw^s are the standardized count rates at water contents w and w1, u =0.0835 2 J- w 2 -1 cm gm , the attenuation coefficient for s o i l water for the particular collimation-counting system that is used, is the density of water (gm cm" ) and S=20.0 cm, the length of the s o i l . To minimize errors due to d r i f t in the counting equipment, a plastic standard placed on the platform was scanned over a depth interval of 1.2 cm in conjunction with each measurement sequence. Measurement of ty(z,t) Soil water matric potentials in the range between 0 and -0.7 bar were measured with tensiometer-pressure transducer -43-systems (Chow and de Vries, 1973a). The tensiometers were located at about 2 cm intervals, with the top tensiometer at a depth of 1.6 cm (Fig. 1). To minimize output d r i f t due to ambient temperature variation, the pressure transducers were placed in a temperature-controlled box which was set at 37 + 0.05°C. This box travelled along with the platform to prevent changes in the transducer output due to changes in elevation of the transducers relative to the elevation of the tensiometers. A 26 channel, 2 pole stepping switch with timer/driver was used to scan the transducer outputs which were recorded simultaneously with the ratemeter output on a two pen strip chart recorder. Water potentials in the range between -1 bar and -90 bars were measured with three terminal double loop thermocouple psychrometers (Chow and de Vries, 1973b) which were located at the same depths as the tensiometers (Fig. 1). The psychrometer consists of two constantan-chromel thermocouple.junctions; one used as a sensing junction and the other as reference junction. The thermal s t a b i l i t y of the psychrometer has been maximized by thermally isolating the sensing and reference junctions and by locating them in the same thermal environment relative to the inside wall of the porous bulb. A ci r c u i t was designed to f a c i l i t a t e automatic and continuous measurement of water potential with a thermocouple psychrometer while the drying front and later the wetting front passed the point of measurement. Calculation of W(^M)> K(W ) and D(w) Water contents (w) and water potentials (ty) were -44-calculated and plotted as functions of time for the depths of the tensiometers and psychrometers similar to the curves for z = 1.6 cm depth shown in Fig. 2. Water retention curves, w(i|;M)_, water content profiles w(z) , and water potential pro-M z t f i l e s Ui(z). were inferred from these w(t) and ty(t) curves t ^ Z plotted on a large scale. The reference level z = 0 was set at the s o i l surface, with the positive z direction downward. The unsaturated hydraulic conductivities K(w) were determined by graphical analysis of the water content and the water potential profiles at various times by applying Darcy's law using an identical method to that of Rose, et a l . (1965) K(w) = VV° (2) where Z V = Q is a plane where the flux v is equal to 0 either at the surface or at the bottom of the s o i l column depending on the condition of flow. The average flux / / J . T / / S d z d t/cw tl '; zv = 0 is determined by numerical integration between two water content profiles at t., and t from z to z . For drainage and wetting * 1 2 v=0 I cycles the column was covered to prevent evaporation, therefore, the interval of integration was from the surface of the s o i l to z^. The interval of integration for the evaporation cycles was from the bottom of the s o i l to z^, since the water source was removed and water was lost only by evaporation. The corresponding water potential gradient (dty/dz)\^ was obtained by graphical -45-differentiation on large scale plots of water potential p r o f i l e s . D i f f u s i v i t i e s D(w) were calculated from the same fluxes that were used in the hydraulic conductivity calculation and water content gradients (dw/dz)!^, calculated from the w(z)|^ curves, for both the layered and non-layered s o i l s . % dzdt/(t2-t1) - K(w) DCw) = 1 = 1 Z v = ° . ( 3 ) The porous plate at the bottom of the s o i l column remained f i l l e d with water during the drainage cycle. The total accumulated outflow collected from the s o i l at the end of the drainage cycle, divided by the total volume of the s o i l and multiplied by the depth of the column was compared with the values obtained from the numerical integration for the total column. The accumulated outflow was within 6.0 percent of that calculated by numerical integration of the water content p r o f i l e s . Upon conclusion of the experimental sequences both parts of the column were oven dried at 105°C for one week. After scanning both oven dry layers with the gamma radiation attenua-tion device to determine bulk density they were cut into 2 cm thick sections for determination of equilibrium water retention properties using a porous plate extractor and determination of texture with the hydrometer method. -46-Results and Discussion Texture and Bulk Density Sand, s i l t and clay contents, texture and bulk density are shown as a function of column depth in Table 2. Changes in bulk density during the drying and wetting cycles appeared to be small since the depth of the s o i l column remained nearly constant. Texture Bulk Density Depth % Sand % S i l t % Clay U.S.D.A. gm cm 1.60 28.0 64.0 8.0 S i l t loam 1.40 3.60 35.4 57.6 7.0 S i l t loam 1.40 5.60 38.6 54.5 6.8 S i l t loam 1.37 7.60 36.5 56.9 6.8 S i l t loam 1.35 10.10 82.6 16.7 0.7 Loamy sand 1.23 12.10 85.0 14.4 0.6 Loamy sand 1.27 14.10 88.3 11.3 0.4 Sand 1.30 16.10 88.9 10.8 0.3 Sand 1.32 Table 2-- Precent sand, s i l t and clay, texture and bulk density as a function of column depth. Water Content and Potential as Functions of Time and Depth Water content w and water potential at depth z = 1.6 cm and z =3.6 cm for the non-layered s o i l and for both drying and wetting cycles are plotted against time in Fig. 2a,b. By layered s o i l is meant the s o i l column as a whole (20cm deep consisting of 7.6 cm of s i l t loam, over 4.5 cm of loamy fine sand over 7.9 cm of fine sand). By non-layered s o i l is meant the 7.6 cm deep s i l t loam layer alone. In order to show the characteristics of the w(t) and ^(t) curves for both drying and wetting in the water potential range between 0 and 0.7 bar, w and are plotted on an expanded water potential scale in Fig. 2a relative to the water potential scale used for evaporation -47-cc UJ r-< E o Ul H O Q. CC UJ < r-O < CQ < UJ H O CL. CC LU H < < o 0 -100 -200 -300 -400 -500 -600 -700 TIME (x lO 3 ) (MINUTES) WETTING 0.0 1.0 2.0 3.0 4.0 1 l j . . „ . . 1 J " — I 1 W & DRAINAGE /" START EVAPORATION • 1 * ^ O p O O o D O O i ro i E <_> 5.0 ro E o 0.6 £ UJ 0.5 § o 0.4 cc UJ 0.2 § l-UJ 0.1 0.0 > ZD _J O 0.0 1.0 2.0 3.0 4.0 TIME (x lO 3 ) (MINUTES) DRYING — 5.0 4.46 5.26 6.06 6.86 776 8.46 9.26 10.06 -100 ~>—:*i 1 r 0.5 0.4 0.3 0.2 r o E o t o E O O CC UJ I-< cc H UJ 0.0 0.2 0.4 0.6 0.8 1.0 1.2 TIME (x lO 3 ) (MINUTES) WETTING 0.0 o > F i g . 2--Change of water content and water potential with time during drainage followed by evaporation and wetting (a) In the tensiometer range at z = 1.6 cm, (b) In the psychrometer range at z = 1.6 and 3.6 cm. -48-in Fig. 2 b. The stepwise reduction in \\i during the drainage cycle corresponds to the stepwise increase in the length of hanging water column. The lower limit of the range of the tensiometer located at z = 1.6 cm was about -680 cm of water. The drainage curves of Fig. 2a continue as evaporation curves in Fig. 2b. Two time scales are used in Fig. 2b, the upper time scale for the evaporation cycle and the lower time scale for the wetting cycle because drying by evaporation was a much slower process than wetting. The relative smoothness in terms of the degree of scatter of the data points in the iKt) curves for the evaporation cycle suggests that the double loop psychrometer i s capable of yielding satisfactory water potential data for water potential between -1 to -90 bars. The iKt) curves for evaporation of Fig. 2b show that the time rate of change of at z = 1.6 cm was much greater than that z = 3.6 cm. indicating a reduction in the evaporation rate with time as the drying front advanced into the s o i l . This reduction i s due to the rapid drop in the d i f f u s i v i t y with decreasing water content (Fig. 4). As drying progressed the upper layer of the sdil began to act more and more lik e a buffer zone retarding water loss due to evaporation. This hydraulic behaviour in response to evaporation is similar to that observed by Gardner and Fireman (1958). Water content and corresponding potential profiles for the layered s o i l with time in minutes as the parameter are shown in Fig. 3 for drying induced by drainage and evaporation and in Fig. 4 for wetting. For the sake of c l a r i t y , the w(z) and -49-WATER CONTENT (c m%m3) Q 0 . 0 . 0 5 .10 .15 . 2 0 . 2 5 . 3 0 . 3 5 . 4 0 . 4 5 3a- - Water content profiles with time the parameter for drying induced evaporation. in minutes as by drainage and -50-M i l l i — r — I I I I I I I— r " - r m -111 I I I I — I 1~ oo o o o oo o o o ^ tO (M — O Hit | i i i < '22 ooooo • O O O O O ' \ -2<i ! I f I ' ^ \ \ \ \ i " * 1 » * » 1 1'!' !i •5s>\\\\ \ isirff: '^v.V-'llii1.!! v A v - . v . u i i a u '1 ' 1 • H 9 I > H12 His -IO' -IO4 -IO3 -IO2 WATER POTENTIAL (cm of w a t e r ) -10' Fig. 3b--Water potential profiles with time in minutes as the parameter for the drying induced by drainage and evaporation. ! -51-.0.0 .05 .10 WATER CONTENT ( c m%m3) .15 .20 .25 .30 .35 40 .45 .50 Fig. 4a--Water content profiles with the parameter for wetting. time in minutes as -52-111 • 1 i "1 • *» >£ G °! g °! a 2 «. f-n 3 — ^ M x i -o . UJ Q 12 15 ' J j 10 10 10 10" WATER POTENTIAL (cm of water) 10' Fig. 4b--Water potential profiles with time in minutes as the parameter for wetting. -53-i>(z) data points are joined by straight lines. When considering Fig. 3 and Fig. 4, i t should be kept in mind that during the drying cycle induced by drainage and the wetting cycle, the change in s o i l water potential was induced by stepwise change in the length of the hanging water column. Fig. 3a shows that during drainage, the s i l t loam surface layer released only a relatively small amount of water because of i t s relatively low a i r entry value and the low hydraulic conductivity of the bottom sandy layer at water potentials below i t s ai r entry value. In contrast, pores in the sandy layer(see Table 2) released most of their water during this period, because of their relatively large pore size and high corresponding air entry value. Fig. 3b shows more clearly that during the drainage period, water potential decreased with depth, indicating a downward flux. The anomalous water potential gradients over the 5.6 to 7.6 cm depth interval and 0 to 4000 min period during the drainage cycle probably are related to some systematic errors in the transducer outputs. This error tends to get relatively smaller as the water potential decreases. Similar anomalous water potential gradients can be observed in Fig. 4b during the later stages of the wetting cycle. In contrast, during the evaporation and wetting period (Fig. 4b) water potential increased with increasing depth, indicating an upward flux. Fig. 4 shows the water content and the corresponding water potential profiles for the wetting period. In the time inter-val between 120-1350 min, the column was allowed to rewet at a tension of 60 cm of water. During this period, the water potentials of the sandy layer reached equilibrium within about 8 hours and the time required to reach equilibrium for the surface s i l t loam layer is more than 22 hours. This indicates a relatively higher resistance -54-to water flow in the dryer surface layer. Water Retention Curves w(^M) Water retention curves w(<l> ), from saturation to -90 bars M at z = 1.6 cm for both drying and wetting are shown in Fig. 5 for both the layered and non-layered s o i l . They are presented together with equilibrium water contents at ^ =-.3, -L -4 and -15 bars deter-M mined with a porous plate extractor on disturbed samples taken from the 1 to 2 cm depth interval. When considering Fig. 5, i t should be kept in mind that both the layered and non-layered s o i l for both drying and wetting are obtained from the same column at the same depth. Fig. 5 indicates reproducible agreement between water content and potential for both the layered and the non-layered s o i l , indicate ing that tensiometer-pressure transducer, psychrometer and Y -beam attenuation are effective techniques of measuring ^ and w under dynamic conditions. Fig . 5 shows that at matric potential below -2 bars, the equilibrium water contents tend to be lower than the corresponding values that were determined In s i t u during the flow processes. This suggests that the pore size distribution of the s o i l had been altered by the pre-treatment for the pressure plate extractor method. The alteration was such as to decrease the number of large pores and fine pores but concentrate the majority in some mid-range size. This trend is similar to that reported by Elrick and Tanner (1955) who showed that disturbed samples retained less water than undisturbed samples in the matric potential range between -1 and -10 bars. The w(i|^) function of Fig. 5 displays no system dependence because they are approximately the same for the layered and the non-layered s o i l . However, they do display considerable hysteresis at -55-Fig. 5--Water content vs matric potential for a l l runs and for the layered and the non-layered s o i l shown together with equilibrium values. -56-IJJ^>-3 bars, with higher water contents for drying than the corres-ponding water contents for wetting. The hysteresis in ) at high matric potential corresponds to that reported by Topp and Miller (1966) who measured w ( i j ^ ) on glass beads and a sand under dynamic conditions. A similar hysteretic trend in w ( i | ^ ) has been reported by others, including Staple (1962, 1965), Collis-George and Rosenthal (1966) and Talsma (1970). The Diffusivity Function D(w) Diffusivity functions D(w) for drying and wetting are shown in Fig. 6 for both the layered and non-layered s o i l at a depth z = 3.0cm. D(w) exhibits inconclusive hysteresis over the entire range of water contents, with higher d i f f u s i v i t i e s for drying than for wetting. This result is different from that previously reported by Gardner (1959) and Staple (1965) who found higher d i f f u s i v i t i e s for wetting than for drying over a wide range of water contents for a uniform column of disturbed s o i l . On the other hand Green, e_t a l . (1964). found very l i t t l e or no hysteresis in D(w) for cores of undisturbed s o i l . There appears to be no significant difference between the D(w) curves for the layered and for the non-layered s o i l , indicating no system dependence in D(w). Hydraulic Conductivity Functions K ( ^) and K(w) Hydraulic conductivity functions K ( ^ ) for drying and wetting for both the layered and non-layered s o i l at a depth z = 3.0 cm are shown in Fig. 7a,b. Two sets of K(^ ) curves are presented, one set calculated from the flux v and the water potential gradient do>/dz by use of Darcy's law, and the other set calculated from D(w) and specific water capacities dw/d^ -57-io3 _^ io2 < E o > GO £ 10' u. o 10 « NON-LAYERED . LAYERED o NON-LAYERED • LAYERED i | DRYING WETTING *oo o Atf>° * • O OOC^p" JL I _L 0.15 0.19 0.23 0.27 0.31 VOLUMETRIC WATER CONTENT (cm 3 crrr3) Fig. 6--Diffusivity vs water content data for a l l runs for the layered and non-layered s o i l . -58-J i M I I i — I p i n i i i — I 1n111 I i—r-a DRYING ] FROM o WETTING J DARCY'S LAW & DRYING ] FROM 6 WETTING J D(w)^jj LAYERED o A.& In 111 A A ^ O J - 10" 10" (a) 11111111 10" io-III11 I I—I 1111 I I I I a DRYING 1 FROM o WETTINGj DARCY'S LAW A DRYING ] FROM _ 6 WETTINGj D(W)-^^ A ^ f f IO"3 r NON-LAYERED IO"5 u IO*4 -I0*5-| i 111 I i I—I e . -IO2 -10' -10° -IO"1 MATRIC POTENTIAL (BARS) io-' "IO2 <b o A o 6 * A -A (b)-" I " I l _ -IO1 -10° MATRIC POTENTIAL (BARS) -io-' Fig. 7--Hydraulic conductivity vs matric potential data for a l l runs, for the layered and the non-layered s o i l by two methods of calculation. -59-taken from appropriate water retention curves wOj;^  ) , by use of the relationship K(w) = D(w) (4) Corresponding K(w) function, inferred from the appropriate K(<!-]vj) and w(^M) functions are shown in Fig. 8. The data of Fig. 7a,b and 8a,b show considerable scatter in K(-j-j^ ) and K(w) data points. However, they have a number of significant features in common, which w i l l be discussed below and w i l l be related to the functions of F i g . 5. When considering the features of K ( ^ ) and K(w) i t should be kept in mind that the data for the layered and non-layered s o i l were obtained in separate experimental runs. The w(^M) functions of Fig. 5 show considerable separa-tion at -^yj>-3 bars, with higher water contents for drying than the corresponding water contents for wetting. The K(^M) functions of Fig. 7a,b show that these higher water contents resulted in consistently higher corresponding hydraulic conductivities for drying than for wetting. The corresponding K(w) functions of Fig. 8a,b show no 3 - 3 separation at w>0.26 cm cm ( ^M>-0.5 bar, Fig. 8a) and w>0.23 3 - 3 cm cm ( i|>M>0.6 bar, Fig. 8b) and inconclusive separation down to a water content of about 0.18 cm~cm , with higher conductivi-3 -3 ties for wetting, and no separation at w<0.18 cm cm -60-LAYERED 9 A i f » DRYING | F R O M o WETTING I D A R C Y S L A * * DRYING ] F R O M • W E T T I N G j 0 w ^ _i i i i_ (a) 10" 10 ' IO-IE 10-2 r •8 E IO"3 | P o z> a z .-4 © ,-5 10 IO'1 o _ i < CE o >-X 0.15 0.19 0.23 0.27 0.31 VOLUMETRIC WATER CONTENT fcm3 cm"3) 10' ,-3 -10 o 10' ,-4 10" : 10 4 o » • . NON-LAYERED 4»,>a ° «* ° ° : 4 o a * » DRYING 1 F R O M SWETTINGJDARCY'S L A V I ^ 1 DRYING 1 FROM 6WETTINGJD<W)!|* .(b) 0.15 0.19 0.23 0.27 031 VOLUMETRIC WATER CONTENT fcm3 cm3) Fig. 8--Hydraulic conductivity vs water content data for a l l runs, for the layered and the non-layered s o i l by two methods of calculation. -61-Hysteresis in K(i];M) at high matric potential, with higher conductivities for drying than for wetting, and the absence of hysteresis in K(w) at high corresponding water contents, has been reported by Topp and Mil l e r (1966) and Vachaud and Thony (1971), who carried out dynamic measurements on glass beads and medium sand respectively. Similar results have been reported by Talsma (1970) who carried out steady state experiments on fine to medium sand. Hysteresis in K(w), with higher conductivities for drying than for wetting in steady state flow, has been reported by Col l i s - George and Rosenthal (1966) for 80-mesh aluminum oxide and sand in the water content range between 0.025 and 0.12 cm -3 cm , and by Poulovassilis (1969) for sand in the water content 3 -3 range between 0.1 and 0.4 cm cm . Poulovassilis (1969) explain-ed hysteresis in K(w) on the basis of the more complex structure of water films during wetting than during drying, resulting in a higher tortuosity and resistance to water flow as expressed by a lower hydraulic conductivity. In contrast, Youngs (1964), who worked with a uniform column of slate dust under transient conditions in the water 3 -3 content range between 0.15 to 0.42 cm cm , and Staple (1965), who worked with a s i l t loam in both steady and non-steady state 3 experiments in the water content range between 0.25 to 0.48 cm _ 3 cm , consistently observed higher conductivities for wetting than for drying in the K(w) function. -62-Error Analysis Water Content, Water Content Gradient and Flux Curves were sketched through w(t) data points. The deviation from the best f i t w(t) curve was + 0.015 cm^cm"^. This deviation was the largest deviation for a l l runs that could be found and was considered to be the maximum possible error in water content related to the random emmission of the gamma source, recording system and the computing procedure by assuming no error in attenuation coefficients and s o i l column thickness measurements. The gamma photons passing through the 20 cm length of s o i l with a scanning speed of 1.2 cm/min gave accumulated counts ranging from approximately 50,000 counts/cm for the saturated s o i l to 85,000 counts/cm for the a i r dry s o i l . Standard deviations of water 137 content due to random emission of Cs source were calculated by use of the equation: a w (5) y s / I t w w where t is the counting time in minutes. The standard deviations are 0.0028 for the saturated s o i l and 0.0021 for the a i r dry s o i l . The corresponding precision in water content taken as 3 standard deviations are + 0.005 cm^ /cm^  and + 0.003 cm^ /cm^  respectively. This indicates that error resulting from the recording system and the computing procedure contribute deviations in the range from + 0.01 to + 0.012 cm^/cm^. Other sources of error such as those resulting from an uneven wetting front and differences in entrapped a i r between runs are not included in this analysis. Water content gradients (^w.) were obtained by graphical dz -63-differentiation of large scale plots of water content profiles (w ( z ) . ) . Error in 4^ w a s estimated from the slope of ((w+e) c dz — ( z ) )t curves where £ is the maximum possible error in w(t), assuming no error in the measurement of depth ( z ) . In addition, error caused by sketching w(z)^_ curves was small in comparison to the error in 4^ a s 10 data points were obtained over a 18 cm dz interval. Based on these error estimates, the error in water content may result in an error of 7 to 407o in — . dz Five replicate integrations using the same integration proceduce as was used in this study yielded an error of + 2.5% in the flux (v). Therefore, the resultant error in the flux due to error in water content and integration procedure varied from + 4.6 to + 10% of flux depending upon degree of wetness of s o i l . Water Potential and Potential Gradient Owing to the high sensitivity and the short response time of the tensiometer-pressure transducer system, tha accuracy of the water potential reading was better than + 2.0 cm of water in the range between 0 and ^ = -0.7 bar. This maximum possible error is related to both the ele c t r i c a l and thermal effect of the pressure transducer and recording system. In addition, ambient temperature fluctuations may result in expan-sion and contraction of water and tubing, causing error in the transducer reading. Water potential below -1 bar was measured with a three-terminal double loop psychrometer yielding a possible error of about +0.5 bar (Chow and de Vries, 19 73b). -64-The water potential gradient over a 2 cm s o i l interval calculated from the transducer and the psychrometer measurements may cause an error of about + 1 cm cm ^ and + 250 cm cm-^ respectively. Conductivity and Diffusivity A s t a t i s t i c a l technique (Parratt, 1961) was used to obtain a more meaningful estimate of error in unsaturated conductivity and di f f u s i v i t y than that obtained by estimating the maximum possible error. Only one measurement was obtained of w(z,t) and 4>(z,t) due to the transient behaviour of the experiment. Considering + 3 standard deviation (a) to be synonymous with the range, a reasonable estimate of the standard deviation could be obtained by dividing the maximum error range by 3. Then, the standard deviation in K and D can be obtained by use of the equations ° K 2 - <§£>2A ,2 + <77^>2 °3*2 < « d Z d Z V = <^ >2 %2 • <^f%>2 °J respectively. The partial derivative of K with respect to v and-P- i s taken with one of the variables held constant. au2, 0 d Z 0 v °d\b a3w y| and -g^  represent of square of the standard deviation of the respective variables v, and 4^. d Z d Z By using the method disscussed above, the estimated standard deviation (a) of v, -|^and for 8 randomly selected me surements re shown in T able 3. The corresponding pr ision Table 3. Estimated standard deviation on f l u x , water po t e n t i a l gradient and water content gradient for eight randomly selected measurements Wv 3 . 3 i /cm M bars Flux v cm/day 3if> 3z cm/cm xlO" 3w 3z 3 -cm 1 a v xlO" 3 dip dz ° 3w x l O- 4 . 347 -.142 .792 ±.053 5.50 ±1.0 8.3 ± . 13 17. 6 0.33 0.43 . 308 -.296 .657 ±.050 42.5 + 1.0 7.8 + 23 17. 6 0.33 0 .77 .264 -. 396 . 727 ±.059 82.4 + 1.0 10. 8 ± . 85 19. 7 0.33 2.80 .255 -.522 . 783 ±.065 174.5 ±1.0 19. 2 ±1. 6 21. 7 0.33 5. 30 . 193 -1.90 .144 ±.015 2798 ±250 11. 3 ±2. 2 4. 9 83.3 7. 30 . 182 -7.0 . 094 ±.010 4382 ±250 11. 5 ±1. 7 3. 3 83. 3 5.60 .168 -20.0 .035 + .004 14206 ±250 11.2 ±1. 5 1. 3 83. 3 5.00 .166 -25.0 . 062 ±.007 29714 ±250 4.4 ±2 . 1 2. 3 83.8 5.67 -66-taken as 3 standard deviation and percent error in both K and D are shown in Table 4. The data in column 5 and 8 of Table 4 show the propagated errors, in K and D for 8 randomly selected measurements to be + 8.2 to + 20.0% and + 8.1 to + 38.2% respectively. In considering only the K calculated from Darcy's equation in Fig. 7 plotted as function of ^  and Fig. 8 plotted as function of w, the scatter in the data tends to appear as an error of approximately the same magnitude as the estimated values. The scatter in the data in the aforementioned Fig. 7 and 8 are related to error in K and and K and w respectively. Error in D tends to show similar result. The error in K calculated from the di f f u s i v i t y and ^ JjL. is quite possibly greater than that calculated from Darcy's equation and d i f f u s i v i t y , since i t includes error in both D and ^iL. . No error analysis is presented for the computation of K using the d i f f u s i v i t y and the appropriate due to the d i f f i c u l t y associated with evaluating the error in as both d^M w and ty^ measurements involve a certain amount of error. Table 4. The precision taken as 3 standard deviation and percentage error on K and D Wv 3 , 3 i /cm m bars K cm/day 3 aK % error D cm2/day 3 aD % error . 347 -.142 1.5 X IO"1 3. 0 x IO"2 + 20.0 96.0 12 . 0 + 12 . 5 . 308 -.296 1.5 x IO"2 1. 2 x IO"3 + 7.8 84.6 6.9 + 8.1 .264 -. 396 8.8 X IO"3 7. 2 x io'4 + 8.2 67.3 7.6 ±11. 2 .255 -.522 4.5 X IO"3 3. 7 x io"4 + 8.3 40. 8 4.8 ±11. 8 .193 - 1.9 5.0 X IO"5 5. 8 x io"6 ±11. 6 12. 8 2.8 + 21.9 .182 - 7.0 2.1 X IO"5 2. 6 x io"6 + 12.1 8.1 1.4 ±17. 7 .168 -20'. 0 2.4 X io-6 2. 8 x io"7 ±11. 5 3.1 0.5 ±17. 4 .166 -25.0 2.0 X IO"6 2. 3 x IO"7 ±11. 7 14.2 5.4 ±38.2 -68-CHAPTER III DYNAMIC MEASUREMENT OF SOIL AND LEAF WATER POTENTIAL WITH A DOUBLE LOOP PELTIER . TYPE THERMOCOUPLE PSYCHROMETER1 Abstract Details on the construction, calibration and performance of a three-terminal double loop thermocouple psychrometer are given. The thermal s t a b i l i t y of this psychrometer is about 40 times better than that of the two-terminal psychrometer (Spanner type) for ambient temperature fluctuations with a time rate of change greater than 0.2°C/min. The response behaviour of a fr i t t e d glass bulb and a ceramic bulb psychrometer was tested for vapour and for liquid phase water movement. For vapour phase flow the f r i t t e d glass bulb exhibited a shorter response time than the ceramic bulb psychrometer, whereas the reverse was true when water movement was predominantly in the liq u i d phase. Water potential measurements carried out on s i l t y clay and s i l t loam s o i l samples were within +0.4 bar of the porous plate extractor equilibrium values. A system that f a c i l i t a t e s automatic and continuous in situ measurement of s o i l water potential using the three-terminal psychrometer is described. 1 This chapter was submitted as a paper to Soil Science Society of American Proceeding v o l . 37:181-188. -69-Introduction The measurement of the energy state of water in s o i l -plant-atmosphere systems is of great significance. Knowledge of the water potential f a c i l i t a t e s calculation of water potential gradients, prediction of the direction of water movement, and when flow resistances are known, the magnitude of water fluxes. Because of the dynamic nature of soil-plant-atmosphere systems, water potential measurements should be carried out in situ and preferably on a continuous basis. The development of thermocouple psychrometers has made these measurements possible(Spanner, 1951). The usefulness of the single loop Peltier type psychrometer for in situ measurements has been limited due to the considerable temperature dependence of the measurement (Klute and Richards, 1962). The temperature dependence has been explained on the basis of the unfavourable geometry and symmetry of the single loop psychrometer, in that the sensing and reference junctions are not located in the same thermal environment (Rawlins and Dalton, 1967), or, are located in the same environment, but with the reference junctions in direct thermal contact with the copper leads (Wiebe et a l . 1970). Thus, changes in ambient temperature during a measurement sequence may cause temperature differences between the junctions other than that due to evaporative cooling of the sensing junction. A second disadvantage of the single loop psychrometer is heating of the reference -70-juncti'ons during the cooling phase of the measurement sequence, although this problem has been largely eliminated by the use of suitable heat sinks (Dalton and Rawlins, 1968). The temperature dependence of psychrometric water potential measurements has been greatly reduced through two recent developments. In the four-terminal psychrometer the thermal isolation of the reference junction relative to the copper lead has been increased, and heating of the reference junctions during the cooling phase of the measurement sequence has been eliminated by the use of separate thermocouples for cooling and sensing (Millar, Lang and Gardner, 1970). Also, a temperature-compensated psychrometer has been developed which consists of two identical thermocouples which are connected in opposite polarity (Hsieh arid Hungate, 1970). This paper describes the construction, calibration, thermal behaviour and response characteristics of a three-terminal double loop thermocouple psychrometer which displays a tempera-ture dependence as small as or smaller than that of the four-terminal type psychrometer. A system is described that f a c i l i t a t e s automatic and continuous in situ measurement of s o i l water potential with the psychrometer. Materials and Methods A modified welding technique (Campbell, T r u l l and Gardner, 1968) was used to construct the psychrometers as shown in Fig. 1 -71-9 Fig. 1. J i g and power supply for constructing welded thermocouple: (l) 1/16 in acrylic p l a s t i c , 2 cm x 3 cm; (2) tape; (3) thermocouple wires, chromel and constantan; (4) copper post negative electrode; (5) twisted junction; (6) nitrogen in l e t ; (7) copper post positive electrode; (8) acrylic plastic box, 5 cm x 5 cm x 4 cm; (9) cover; (A,B) leads between the j i g and the power supply. -72-Two 10 cm lengths of chromel and constantan wire (0.0025 cm in diameter) are taped parallel and 1 cm apart on a small piece of acrylic p l a s t i c . The thermocouple wire ends are twisted together several times to form a junction and the free ends of the twisted portion are cut of f . The acrylic plastic is used to f i x the position of the thermocouple wire and also to act as a weight to f a c i l i t a t e tightening of the twisted end against a copper post which forms one of the welding electrodes. The junction is welded by touching the end of the twisted thermo-couple wires with a copper wire connected to the other terminal of the welding power source. Welding is continued u n t i l a bead of fused metal has formed. The unfused portion of the twisted wires is then straightened with a pair of tweezers. The welding process is carried out under a microscope and in an oxygen free atmosphere, which is achieved by passing nitrogen through the chamber that contains the welding j i g . After constructing two thermocouples, the wires are cut to a length of about 2 cm. Three holes, slightly smaller than the copper wire which is to be used for the leads, are punched in a 0.5 cm length of teflon rod (0.475 cm diameter). The two constantan terminals are inserted in the center hole and the two chromel terminals in each outer hole. A three conductor shielded cable (26 AWG) is used with one lead pressed into each hole, ensuring good elect r i c a l contact by wedging the thermocouple wires in ti g h t l y . After covering the bare copper wires vjzith electrical resin, the completed psychrometer is cleaned by rinsing with acetone and -73-boiling in d i s t i l l e d water. A diagram of a double loop thermo-couple psychrometer probe is shown in Fig. 2. The porous bulbs are constructed either from f r i t t e d 29 micron glass beads or from ceramic material, and have a diameter of 0.8 cm and are 1.5 cm long, with a wall thickness of approximately 0.6 mm. A diagram of a circuit'" that was used to cool the sensing junction and to measure the net thermal emf between the sensing junction and reference junctions is shown in Fig. 3. This circuit could be used for either the single loop psychrometer (with SW1 closed) or the double loop psychrometer (with SW1 open). A 4 pole 3 threw, make before break rotory switch was used to prevent the occurrence of a momentary open c i r c u i t which would cause the meter to d r i f t off scale while switching from 2 the cooling position to the measuring position when a Keithley Model 155 Microvoltmeter was used. This feature was not required when a Keithley Model 150B Microvolt Ammeter was used. To carry out a water potential measurement, a small quantity of water is condensed on the sensing junction by cooling i t to the dewpoint. This is accomplished by passing a small current through the loop containing the sensing junction in the direction from constantan to chromel (Fig 3, position 1). Next, with the circ u i t switched to the measuring position (Fig. 3, position 2), the output of the psychrometer containing both the sensing and the reference junctions is measured. The output is determined ^"Modified from Dr. W.H. Gardner, Department of Agronomy, Washington State University, Pullman, Washington, U.S.A. 2 Keithley Instruments, Inc., 28775 Aurora Road, Cleveland 6, Ohio 44139. -74-Fig. 2. Three-terminal double loop psychrometer probe: (1) porous bulb; (2) chromel wires; (3) constantan wires; (4) teflon plug; (5) copper wires; (6) electrical resin; (7) tapped nylon rod, % x 20; (8) nut, % x 20; (9) set crew; (10) 3 conductor shielded cable; (11) s o i l container wall. -75-DPDT switch Double loop psychrometer < Single loop psychrometer Fig. 3. Cooling and measuring ci r c u i t shown in cooling position for the single loop (SWl closed) and double loop (SWl open) Peltier type psychrometer: (1) cooling; (2) measuring; (3) o f f . -76-by the wet bulb temperature depression. In the temperature compen-sated type psychrometer, the cooling current is passed through both the sensing and reference junctions. The disadvantage of this is that during the cooling phase of the measurement, the sensing junction is cooling whereas the reference junction is heating(Hsieh and Hungate, 1970). An automatic measuring system involving a 26 position, two channel stepping switch and stepping switch timer/ driver1is shown in Fig. 4. The system provides the cooling current to the sensing junction and then switches to the measuring cir c u i t consisting of an amplifier, Keithley 150B Microvolt Ammeter and a recorder to measure the overall psychrometer output. The system was used to carry out in s i t u psychrometric measurement of s o i l water .potential automatically and continuously while an undisturbed column of a layered s o i l was being subjected to an evaporation cycle followed by a wetting cycle. A leaf psychrometer chamber, constructed to f a c i l i t a t e water potential measurements on intact leaves, is shown in Fi g . 5. The chamber consists of two lead blocks, 2.0 cm x 2.5 cm x 1.5 cm and 2.0 cm x 2.5 cm x 0.5 cm, held in place with a low pressure clamp, sandwiching the leaf in between. The psychrometer is located in the thicker bottom block within a cavity 1 cm deep and 0.5 cm in diameter, slightly larger than the teflon plug. Results and Discussion Thermal Stability An experiment was carried out to compare the output characteristics of the two-terminal single loop and the three--'•Developed by Mr. Paul A. Wk. Tang, Research Assistant in the Department of Soil Science, University of B r i t i s h Columbia, Vancouver. -77-A B 1 Stepping switch, C P . Clare 8 Co. - Model 2 6 - 2 4 0 2 Fig. 4. Circuits of stepping switch and i t s timer/driver shown in cooling position. The cooling period i s adjusted by varying the 10 K ohms variable resistor. -78-Fig. 5. Psychrometer chamber used for in situ leaf water potential measurement: (1) upper lead block; (2) leaf; (3) bottom lead block; (4) cavity; (5) thermocouple junctions; (6) set screw mechanism; (7) three leads copper wire. -79-terminal double loop psychrometers with both junctions dry in response to ambient temperature fluctuations. After mounting the psychrometer in a sample changer (Campbell, Zollinger and Taylor, 1966) and equilibrating i t with a 0.114 molar KC1 solution, the complete assembly was exposed to temperature variation produced by currents of cold and warm a i r . Ambient temperature was measured 0.5 cm away from the sample changer with a diode thermometer (Sargeant, 1965) and recorded simul-taneously with the psychrometer output on a two pen recorder. The output traces of both psychrometer types together with the ambient temperature variations are shown in Fig. 6. At thermal equilibrium, with both the sensing junction and reference junctions at the same termperature, the psychrometer output is zero. However, this condition seldom exists especially under in situ conditions. In additions, the parasitic emf's at the terminal connection of the measuring circuit- cause the base line of the output to deviate from zero, as shown in Fig. 6. The three-terminal type and the two-terminal type psychrometers displayed an output variation of approximately 0.2 and 8.0 uV/°C change in ambient temperature respectively. In comparison, M i l l a r , Lang and Gardner (1970) found the output variation at the four-terminal type and the two-terminal type psychrometers to be 0.5 to 1.0 and 13.0 uV/°C respectively, and Hsieh and Hungate (1970) found the output variation of the temperature-compensated and two-terminal type psychrometers to be 1.5 and 6.0 uV/°C respectively. A l l three sets of data were obtained for ambient -80-6. Psychrometer output characteristics in response to ambient temperature fluctuations: (a) two-terminal psychrometer; (b) three-terminal psychrometer. -81-temperature fluctuations with a time rate of change of approximately 0.2°C/min. While i t is realized that the tests were carried out with different experimental conditions, the results indicate that the thermal s t a b i l i t y of the two-terminal psychrometer is about 1/40 of that displayed by the three-terminal type, 1/17 of that displayed by the four-terminal type, and about 1/4 of that displayed by the temperature-compensated type. Thus, the thermal s t a b i l i t y of the three-terminal type compares favourably with that of the four-terminal and theQtemperature-compensated types. The improvement in thermal st a b i l i t y of the three-terminal double loop psychrometer relative to the two-terminal type can be explained as follows: Two separate constantan-chromel junctions are used, one serving as a sensing junction and the other as a reference junction. Both of these junctions are located in the same thermal environment and are positioned symmetrically relative to the wall of the psychrometer chamber, as well as in the same thermal isolation with regard to the copper leads. The chromel-copper and constantan-copper junctions are within the teflon plug in thermal contact with the copper leads and are subjected to the same ambient temperature fluctuations. These junctions produce opposing thermal emfTs which cancel each other with very l i t t l e or no effect on the overall psychrometer output. In addition, the large copper leads serve as heat sinks minimizing differential heating or cooling due to sensible heat reaching the junctions within the teflon plug. -82-The lower thermal s t a b i l i t y of the four-terminal type compared to that of the three-terminal type may be due to the lack of symmetry of the sensing and reference junctions relative to the wall of the psychrometer chamber. As a result, fluctuations in ambient temperature may cause varying heat flow to the sensing and reference junctions, giving rise to output fluctuations. In addition, the difference in thermal isolation between the sensing and reference junctions with respect to the copper leads may also contribute to output variation. The lower thermal s t a b i l i t y of the temperature compensated type may be related to poor geometric and thermal match-ing between the sensing and the reference junctions. Response Characteristics The response behaviour of the psychrometer to water potential change depends on the nature of the psychrometric measurement system. In terms of the psychrometer i t s e l f , both the resistance to water flow across the porous cup and the volume of the psychrometer chamber influence the response time of the psychrometer (Brown, 1970; Rawlins and Dalton, 1967). A perfect psychrometric system should offer no resistance to water and heat movement and have no adsorption of vapour within the system. A porous bulb is needed in order to f i x the location of the psychrometer in the s o i l and to protect the junctions. Because a l l the psychrometer bulbs offer some resistance to water and heat flow, the establishment of water potential e q u i l i -brium between the s o i l water and the vapour within the bulb w i l l require a certain length of time. The error resulting from this time lag may be reduced by selecting the proper type of psychrometer bulb material. -83-An experiment was carried out to compare the response characteristics of a bare unshielded psychrometer, a f r i t t e d glass bulb psychrometer and a ceramic bulb psychrometer. The same psychrometer was used throughout the experiment and both the f r i t t e d glass and ceramic bulbs were a i r dried prior to use. The psychrometer was mounted in an acrylic plastic chamber 1.9 cm in diameter and 2.5 cm in length. The inside wall of the chamber was lined with f i l t e r paper. 0.8 ml of a 0.4 molar KC1 solution with corresponding osmotic potential of -17.8 bars was stored i n a hypodermic syringe with the needle passed through a rubber septum f a c i l i t a t i n g injection into the chamber. The chamber and the syringe were then placed in a constant tempera-ture bath at 24°C. After the establishment of thermal equili-brium, the KC1 solution was injected into the chamber moistening the f i l t e r paper, and leaving some excess solution at the bottom of the chamber. A plot of psychrometer output versus elapsed time is shown in Fig. 7a. Zero time is taken when the standard solution was injected into the cylinder. Within the chamber water moved through the bulb wall by vapour diffusion. A similar condition would exist in a dry s o i l when water movement is predominantly in the vapour phase. The time rate of increase in water potential within the psychrometer chamber is mainly deter-mined by the resistance to vapour diffusion across the bulb. Fig. 7a shows that the relative time required for the establish-ment of vapour equilibrium for the bare unshielded psychrometer was approximately 40 minutes. The f r i t t e d glass bulb psychrometer -84-100 ISO TIME (Minut.t) Fig 7a. Response behaviour of a bare unshielded psychrometer, a f r i t t e d glass bulb psychrometer and a ceramic bulb psychrometer for vapour phase equilibration. -85-reached equilibrium in approximately 100 minutes. The response curve for the ceramic bulb psychrometer leveled off after about 20 hours. At the beginning of the ceramic bulb psychrometer equilibrium period, water potentials in the chamber were less than -90 bars, beyond the ranges of the psychrometer. This is indicated by the dashed section of the response curve for the ceramic bulb. Brown (1970) found that the time required for the ceramic bulb psychrometer to reach vapour equilibrium was approximately 7 times longer than that of the bare unshielded psychrometer. It can thus be seen that the f r i t t e d glass bulb offers a significantly smaller resistance to vapour diffusion and responds more quickly to change in water potential under conditions where water movement is predominantly in the vapour phase. The fact that the a i r intrusion values of the f r i t t e d glass bulb i s in the range of 100 to 150 cm of water, compared to approximately 800 cm of water for the ceramic bulb accounts for the shorter response time of the f r i t t e d glass bulb psychrometer. A second experiment was carried out to determine the response behaviour of the f r i t t e d glass bulb and ceramic bulb psychrometers under conditions where movement of water is predominantly in the liquid phase. Two psychrometers with approximately identical calibration characteristics were inserted into a f r i t t e d glass bulb and a ceramic bulb respectively and mounted side by side 1 cm apart in an acrylic plastic box similar to that shown in F i g . 2. Air dried s i l t loam that had been passed through a 0.5 mm sieve was packed into the box to a bulk density of 1.1 gm/cm and allowed to wet from the bottom up at 70 cm of -86-water tension. The results obtained from two duplicate runs are shown in Fig. 7b. The good agreement between duplicate runs indicates that the effect of differences in bulk density and temperature on the output are small. Fig. 7b indicates that the f r i t t e d glass bulb exhibited a shorter response time at emf outputs greater than 10 uV, or at corresponding water potential less than approximately -25 bars, where water movement is predominantly in the vapour phase. However, at emf outputs less than 10 uV and water potential greater than approximately -25 bars, when liquid phase water movement predominates, the ceramic bulb showed a shorter response than the f r i t t e d glass bulb. This difference can be explained on the basis of the lower unsaturated hydraulic conductivity of the f r i t t e d glass bulb at water potential below i t s a i r intrusion value. Therefore, the response characteristics of the psychrometer depend on both the magnitude of the water potential gradient across the bulb, and the resistance to water flow across the bulb which in turn depends on the pore size distribution of the bulb material and the mechanism of water movement. At lower water potentials when vapour phase movement predominates, a psychrometer with a f r i t t e d glass bulb would have more favourable response characteristics, whereas at higher water potentials, when water movement is predominantly in the liquid phase, a ceramic bulb would yield better results. Calibration The sensitivity of each psychrometer i s a unique function of the size and geometry of the junctions and the el e c t r i c a l resistance across the junctions under isothermal conditions. -87-Fig. 7b. Output behaviour of a f r i t t e d glass bead bulb psychrometer and a ceramic bulb psychrometer in response to the movement of a wetting front past the point of measurement. -88-Calibration curves at three temperatures were obtained by mounting the psychrometer in a sample changer which f a c i l i t a t e d the rotation of the successive chambers into position beneath a single psychrometer (Campbell, Zollinger and Taylor, 1966). The sample chambers are lined with f i l t e r paper in contact with standard KC1 solutions yielding the desired range of water potentials. The osmotic potential of these solutions were obtained directly from tables (Gardner and Campbell, 1968). The complete calibration assembly was then immersed in a constant temperature bath for four hours to assure complete temperature and vapour pressure equilibrium. A 5 mA cooling current, passed through one of the thermocouple junctions in the direction from constantan to chromel for 10 seconds (water potential above -40 bars) or for 20 seconds (water potential below -40 bars), was found to be adequate for this type of psychrometer. The net emfTs of the sensing and reference junctions were measured by switching to the measuring c i r c u i t (Fig. 3). The longer cooling time was necessary for water potential below -40 bars in order to condense sufficient water on the sensing junction to generate a stable emf. Typical calibration curves for a three-terminal psychrometer plotted against osmotic water potential at 20°C, 25°C and 30°C are shown in Fig. 8. The sensitivity at 25°C was approximately 0.33 uV/bar and was found to increase with temperature in the same direction as the two-terminal psychrometer (Campbell and Gardner, 19 71). Water potential measurements were carried out on s o i l -89-Fig. 8. Typical calibration curves for a three-terminal psychrometer at 20°C, 25°C and 30°C. -90-samples that had been previously equilibrated at known water potentials in a porous plate extractor. Two s o i l s , a s i l t y clay and a s i l t loam were passed through a 2 mm sieve and placed in a porous plate extractor with the pressure settings at 1, 4 and 15 bars and equilibrated for one week. The samples were then separated into two portions, one for gravimetric water content determination and the other for measuring the correspond-ing water potential with a psychrometer by placing the s o i l in cylinders similar to those used for response characteristic tests. The cylinders were then placed in a constant temperature bath at 25°C. Water retention curves measured by two methods, the porous plate extractor and the psychrometer, are shown in Fig. 9. Good agreement is exhibited by these two independent methods for both the s i l t y clay and s i l t loam. Thus, i t is possible to obtain a water retention curve from psychrometer measurements on a s o i l by varying the water content. Considering the possible error resulting from varying bulk density and temperature of the samples used in the two methods, the water potentials obtained are close, being within +0.4 bar. The effect of temperature and bulk density on water potential measurement with a psychrome-ter was reported by Campbell and Gardner, 1971. Dynamic and Continuous Measurement of Soil Water Potential. The three-terminal double loop psychrometer was used in an experiment designed for dynamic and continuous measurement of water potential of an undisturbed column of a layered s o i l -91-Fig. 9. Water retention curves obtained with the porous plate extractor and with the psychrometer for s i l t y clay and s i l t loam. -92-consisting of a s i l t loam over a fine sand. The column was held in a box similar to the one shown in Fig. 2, and was supported by an unconsolidated glass bead porous plate to allow control of boundary conditions during the drainage and wetting measurement sequences by varying the length of a hanging water column. Three f r i t t e d glass bead bulb psychrometers, as shown in Fig. 2, were installed at 1.6 cm, 3.6 cm and 5.6 cm from the surface of the s o i l . Fritted glass bead bulbs were used because at the time of the experiment they were thought to be more suitable than ceramic bulbs. However, subsequent response behaviour tests showed that ceramic bulb psychrometers should have been used for water potential measurements in the range between -0.9 bars and -25 bars (Fig. 7B). The psychrometer lead wire was tightened with a set screw mechanism which permitted the removal of the psychrometer for checking and cleaning whenever necessary. The c i r c u i t shown in Fig. 4 was used to measure the water potential on a continuous basis while the column was submitted to an evaporation cycle followed by a wetting cycle. Plots of water potential against elapsed time for both drying and wetting cycles are shown in Fig. 10 for the three depths. Time zero was set at the commencement of the evaporation and wetting cycle respectively. -90 bars appeared to be the lower limit of the range of the psychrometer due to the excessive cooling required to condense sufficient water on the sensing junction at lower water potentials. The data of Fig. 10 show that the time rate of decrease in water potential decreased with increasing s o i l depth, indicating a reduction in the evaporation rate with time -93-TIME (minutetl-WETTING TIME (minuted-ORYING Fig. 10. Water potential versus elapsed time for an undisturbed layered s o i l column at three depths for evaporation followed by wetting. -94-as the drying front advanced into the s o i l . This reduction is related to the rapid drop in the d i f f u s i v i t y with, decreasing water potential. This experiment was conducted in the laboratory with daily temperature variation as great as 4°C. The water potential data do not appear to exhibit serious fluctuation associated with this temperature variation. In situ Measurement of Leaf Water Potential. The three-terminal double loop psychrometer was tested for the in situ measurement of leaf water potential on intact snap bean (Phaseolus vulgaris L.) leaf. The experiment was carried out in a growth chamber which provided a i r recirculation at a velocity of 50 to 100 surface feet per minute. Lighting was by a combination of both fluorescent and incandescent lamps resulting in light intensities of approximately 4,000 f t candles. Relative humidity measured with a hygrometer decreased from 44% to 2570 as temperature rose from 20°C to 30°C while the vapour pressure was approximately 10.5 mb. Variation in temperature was measured with a diode thermometer which was placed 5 cm beside the psychrometer chamber. The bean was planted in a polyethylene pot 10 cm in diameter and 10 cm deep containing a sandy loam s o i l and was watered 36 hours prior to the experiment with the s o i l water potential being approximately -2 bars at the time of the test. Leaf water potential was measured at approxi-mately 10 minute intervals. The results shown together with a i r -95-temperature are presented in Fig. 11. Elapsed time in minutes commenced when the psychrometer was clamped on the leaf. Water potentials were inferred from a 30°C calibration curve for a i r temperature above 27°C and 25°C calibration curve for a i r temperature below 27°C. The f i r s t portion of Fig. 11 indicates that the water potential increased rapidly due to the vapour diffusion from the leaf inside the psychrometer chamber with vapour and thermal equilibrium being established at approximately 55 minutes. The response time was mainly restricted by the cuticular resistance to vapour diffusion and adsorption of moisture within the chamber. However, Neumann and Thurtell (1971) have found that the leaf resistance can be greatly reduced by removing the wax on the leaf surface with xylene while the chamber surface adsorption can be minimized by coating the cavity with paraffin wax. After 75 minutes, the water potential declined from -8.0 bars to -9.5 bars as a result of water loss from the leaf. At time = 100 minutes, the growth chamber fans, lights and temperature control were switched off and the growth chamber door was opened subjecting the plant to room temperature fluctuations. In response to these new environmental conditions the water potential rose from -9.5 bars to approximately -4.0 bars. This increase was due to the reduction in transpiration rate in response to the closure of the leaf stomates and an increase in boundary layer resistance. At time = 180 minutes, when the lights were turned on, the water potential dropped from -5.0 to -8.0 bars. At time = 240 minutes, in order to stop the -96-Fig. 11. Leaf water potential shown together with ambient temperature as a function of time for snap bean under various environmental conditions. -97-water supply to the leaf, i t was severed at the base and the fans were turned on to reduce the boundary layer resistance which in turn increased the transpiration rate. Starting from about 20 minutes after the leaf was severed, the leaf water potential dropped from -8.0 to -30.0 bars over a 2 hours period. There was some fluctuation in leaf water potential immediately after the establishment of new environmental condi-tions. These fluctuations are probably due to disturbance of the thermal equilibrium and were particularly evident after the leaf was cut. The increase in water potential at time = 250 minutes may be due to the change in ambient temperature. However, at time = 185 minutes the decrease in psychrometer output i s not accompanied by any temperature fluctuation. During the experiment the ambient temperature fluctuated between 23°C and 30°C, with the time rate of change in temperature being as great as 0.6°C/min as a result of growth chamber cycling. However, the leaf water potential did not exhibit any serious variations associated with the temperature fluctuations. This favourable performance is due in part to the design and geometry of the psychrometer (Fig. 6), in addition to the high thermal conductivity and specific heat capacity of the psychrometer chamber which helped to minimize the temperature changes in the environment of the psychrometer. The results may be improved by using a brass leaf psychrometer chamber because of i t s more favourable thermal properties as compared to lead (Neumann and Thurtell, 1971). -98-SUMMARY AND CONCLUSIONS Knowledge of the retention and flow characteristics of a s o i l is essential for the prediction of the hydrologic behaviour of that s o i l in response to hydrologic events. The methods of determining these characteristics in the laboratory on disturbed samples and under steady state flow conditions for matric potential higher than -1 bar are well established. However, l i t t l e work has been done on undisturbed s o i l under transient state flow conditions over the matric potential range between 0 and -90 bars. Knowledge of the hydrologic characteristics over this range of water potential is essential for the prediction of hydrologic behaviour in both the drainage and evaporation ranges. The thrust of the research discussed in this thesis was to develop and use a dynamic method of simultane-ous measurement of water content and water potential of an undis-turbed s o i l column over the s o i l matric potential range between 0 and -90 bars as continuous functions of time and depth during water flow induced by drainage and evaporation followed by wetting. The water retention and flow characteristics are then inferred from these measurements. Furthermore, the data provide an opportunity to study the uniqueness of the water retention and flow characteris-tics of an undisturbed layered s o i l over this matric potential range in terms of hysteresis and system dependence. Soil water contents were measured by continuous scanning of the s o i l column with a collimated gamma beam. The average water content over a depth of 1 cm was calculated from the average voltage output recorded over the interval by use of a -99-gamma attenuation equation. Soil water matric potential in the range between 0 and -0.7 bar was measured with tensiometer-pressure transducer systems. Errors in the transducer output due to ambient temperature variation were minimized by locating the pressure transducers in a temperature-controlled box. A three-terminal double loop thermocouple psychrometer was constructed, tested, and used to measure water potential in the range between -1 bar and -90 bars. The thermal s t a b i l i t y of this psychrometer was found to be approximately 40 times better than that of the two-terminal psychrometer (Spanner type) for ambient temperature fluctuations with a time rate of change greater than 0.2"C/min. It was found that at lower water potentials, when vapour phase water movement predominates, a psychrometer with a f r i t t e d glass bulb exhibits a shorter res-ponse time than a psychrometer with a ceramic bulb, whereas the reverse is true when water movement is predominantly in the liquid phase. Water potential measurements carried out with this psychrometer on s i l t y clay and s i l t loam s o i l samples were within + 0.4 bar of the porous plate extractor equilibrium values. A system was developed and used for automatic and continuous in situ measurement of s o i l water potential with the psychrometer. The gamma radiation, tensiometer-pressure transducer and psychrometer outputs were recorded continuously and simultaneously with a strip chart recorder. The results suggest that the aforementioned instrumentation and methodology could be used as routine technique for in situ measurement of -100-s o i l hydrologic characteristics. However, the method has limitations with respect to measurement of the hydraulic con-ductivity with a high degree of accuracy at water potentials near saturation. For this range of water content, the deter-mination of the water potential gradient i s inaccurate due to a relatively small water potential gradient that is required to cause water flow. Thus, small errors in water potential measurement result in large errors in the corresponding water potential gradients. In addition, particularly in fine textured s o i l , the change in water content per unit change in the matric potential is small at high water potential. That i s , small errors in water content related to the gamma radiation measurement system may cause large errors in the flux. Similarly, for lower water potential, when water movement is predominately in the vapour phase, i t is d i f f i c u l t to determine hydraulic conductively accurately due to small change in water content. The method of calculating average water content from the average voltage output recorded on the strip chart provided a satisfactory degree of accuracy, but proved rather time-consuming. Therefore, accuracy may be improved i f the up and down motion of the s o i l column were stopped at desirable preset positions for a pre-determined time interval. During this time period, the accumulated voltage output corresponding to that position could be obtained. With this arrangement, the analysis of the water content data from the recorder chart would be simplified. However, reproducibility of the position at which -101-the gamma output is taken would then become c r i t i c a l . Results of the experiments indicate no system dependence for the layered s o i l that was tested. Both the water retention, WC^J^J), and the unsaturated hydraulic conductivity-matric poten-t i a l function, Kfy ^ ) , showed hysteresis effects at s o i l water matric potential between -0.1 and -3.0 bars, w(i^) displayed no hysteresis at matric potential lower than -3.0 bars, whereas K(^ jyj) showed inconclusive hysteresis in this range. The unsatu-rated hydraulic conductivity-water content function, K(w), and diffusivity-water content function, D(w), displayed incon-clusive hysteresis. The retention curves showed that the equilibrium water contents determined by porous plate extractor were lower than the corresponding values determined by the transient method during the flow processes. The difference between the static equilibrium and transient state retention curves suggest that the determination of hydrologic properties should be performed in the f i e l d to avoid the uncertainties in translating static equilibrium data to transient state f i e l d conditions. -102-REFERENCES Barrer, R.M., 1941. Diffusion in and through solids. Cambridge Univ. Press, London. Black, T.A., W.R. Gardner, and G.W. Thurtell, 1969. The prediction of evaporation, drainage, and s o i l water storage for a bare s o i l . Soil S c i . Soc. Amer. Proc. 33:655-660. Brown, R.W., 1970. Measurement of water potential with thermocouple psychrometers: construction and applications. USDA Forest Service Research Paper INT: 80. Bruce, R.R. and A. Klute, 1956. The measurement of s o i l moisture d i f f u s i v i t y . Soil S c i . Soc. Amer. Proc. 20:458-462. Bybordi, M., 1968. Moisture profiles in layered porous materials during steady state i n f i l t r a t i o n . Soil S c i . 105:379-383. Campbell, G.S. and W.H. Gardner, 1971. Psychrometric measurement of s o i l water potential: temperature and bulk density effects. Soil S c i . Soc. Amer. Proc. 36:8-12. Campbell, G.S., J.W.Trull and W.H. Gardner, 1968. A welding technique for Peltier thermocouple psychrometers. Soil S c i . Soc. Amer. Proc. 32:887-889. Campbell, G.S., W.D. Zollinger and S.A. Taylor, 1966. Sample changer for thermocouple psychrometers: construction and some applications. Agron. J . 58:315-318. Chahal, R.S., 1966. Effect of entrapped a i r and pressure on matric suction. Soil S c i . 102:131-134. Chahal, R.S. and R.N.yong, 1965. Validity of the s o i l water characteristics determined with the pressurized apparatus. Soil S c i . 99:98-103. Childs, E.C. and N. Collis-George, 1950. The permeability of porous materials. Roy. Soc. (London). Proc. A 201:392-405. Chow, T.L. and J . de Vries, 1973a. In situ measurement of s o i l water potential with a tensiometer-pressure transducer system. WSSS Meeting, June 11-14, 1973. (Salt Lake City, Utah). Chow, T.L.and J . de Vries, 19 73b. Dynamic measurement of s o i l and leaf water potential with a double loop Peltier type thermocouple psychrometer. Soil S c i . Soc. Amer. Proc. 37: 181-188. Christenson, D.R. and H. Ferguson, 1966. The effect of interactions of salts and clays on unsaturated water flow. -103-Soil S c i . Soc. Amer. Proc. 30:549-553. Collis-George, N. and M.J. Rosenthal, 1966. Proposed outflow method for the determination of the hydraulic conductivity of unsaturated porous materials. Aust. J . Soil Res. 4:165-180. Crank, J . , 1965. The mathematics of diffusion. Oxford: Clarendon Press. Dalton, F.N. and S.L. Rawlins, 1968. Design c r i t e r i a for Peltier-effect thermocouple psychrometers. Soil S c i . 105:12-17. Darcy, H., 1856. Les fontaines publiques de l a v i l l e de Dijon. Paris : Dijon. Davidson, J.M., D.R. Nielsen and J.W. Biggar, 1963. The measure-menr and description of water flow through Columbia s i l t loam and Hesperia sandy loam. Hilgardia 34:601-617. Davidson, J.M., D.R. Nielsen and J.W. Biggar, 1966. The depen-dence of s o i l water uptake and release upon the applied pressure increment. Soil S c i . Soc. Amer. Proc. 30:298-304. Davidson, J.M., L.R. Stone, D.R. Nielsen and M.E. Larue, 1969. Field measurement and use of s o i l properties. Water Resources Res. 5:1312-1321. de Backer, L. and A. Klute, 1967. Comparison of pressure and suction methods for soil-water content pressure-head determinations. Soil S c i . 104:46-55. de Vries, J . , 1967. The relative effect of energy status transmissibility of s o i l water on i t s a v a i l a b i l i t y to corn plants. Unpub. Ph.D. Thesis. Washington State Univ. Pullman, Washington. de Vries, J . , 1969. In situ determination of physical properties of the surface layer of f i e l d s o i l s . Soil S c i . Soc. Amer. Proc. 33:349-353. Doering, E.J., 1965. Soil water d i f f u s i v i t y by the one-step method. Soil S c i . 99:322-326. El r i c k , D.E. and D.H. Bowman, 1964. Note on an improved apparatus for s o i l moisture flow measurements. Soil S c i . Soc. Amer. Proc. 28:450-453. Elr i c k , D.E. and CB. Tanner, 1955. Influence of sample pretreatment on s o i l moisture retention. Soil S c i . Soc. Amer. Proc. 19:279-282. -104-Ferguson, A.H., 1959. Movement of so i l water as inferred from moisture content measurements by gamma-ray absorption. Unpub. Ph.D. Thesis. Washington State Univ., Pullman, Washington. Ferguson, A.H. and W.H. Gardner, 1962. Water content measure-ments in s o i l column by gamma-ray absorption. Soil S c i . Soc. Amer. Proc. 26:11-14. Ferguson, A.H. and W.H. Gardner, 1963. Diffusion theory applied to water flow data using gamma ray absorption. Soil S c i . Soc. Amer. Proc. 27:243-246. Gardner, W.H. and G.S. Campbell, 1968. Water content and water potential measurements in a closely controlled plant-soil system. Annual Planning Meeting of Research Workers program on the Application of Radiation Techniques to Water Use Efficiency Studies, FAO/IAEA Division of Atomic Energy in Food and Agriculture, Vienna, Austria, March 11, 1968. Gardner, W.R., 1956. Calculation of capillary conductivity from pressure plate outflow data. Soil S c i . Soc. Amer. Proc. 20:317-320. Gardner, W.R., 1959. Diffusivity of s o i l water during sorption as affected by temperature. Soil S c i . Soc. Amer. Proc. 23:406-407. Gardner, W.R., 1962. Note on the separation and solution of diffusion type equations. Soil S c i . Soc. Amer. Proc. 26:404. Gardner, W.R., 1970. Field measurement of s o i l water di f f u s v i t y . Soil S c i . Soc. Amer. Proc. 34:832-833. Gardner, W.R. and M. Fireman, 1958. Laboratory studies of evaporation from s o i l columns in the presence of water table. Soil S c i . 85:244-249. Gardner, W.R. and F.J. Miklich, 1962. Unsaturated conductivity and d i f f u s i v i t y measurements by a constant flux method. Soil S c i . 93:271-274. Green, R.E., R.J. Hanks and W.E. Larson, 1964. Estimates of f i e l d i n f i l t r a t i o n by numerical solution of the moisture flow equation. Ibid. 28:15-19. Gurr, C.G., 1962. Use of gamma-rays in measuring water content and permeability in unsaturated column of s o i l . Soil S c i . 94:224-229. Hadas, A., 1964. Deviation from Darcy's law for the flow of water in unsaturated s o i l s . Israel J . Agr. Res. 14(4): 159-168. -105-Haines, W.B., 1930. The studies in the physical properties of s o i l s . V.J. Agr. S c i . 20:97-116. Hsieh, J.C. and F.P. Hungate, 1970. Temperature compensated Peltier psychrometer for measuring plant and s o i l water potentials. Soil S c i . 110:253-257. Jackson, R.D., 1964. Water vapour diffusion in relatively dry s o i l : I. Theoretical considerations and sorption experiments. Soil S c i . Soc. Amer. Proc. 28:172-176. Klute, A., 1952a. A numerical method for solving the flow equation for water in unsaturated materials. Soil S c i . 73:105-116. Klute, A., 1952b. Some theoretical aspects of the flow of water in unsaturated s o i l s . Soil S c i . Amer. Proc. 16: 144-148. Klute, A. and D.B. Peters, 1962. A recording tensiometer with short response time. Soil S c i . Soc, Amer. Proc. 26:87-88. Klute, A. and L.A. Richards, 1962. Effect of temperature on relative vapour pressure of water in s o i l : apparatus and preliminary measurements. Soil S c i . 93:391-396. Klute, A. and D.B. Peters, 1966. Hydraulic and pressure head measurements with strain gauge pressure transducer. Symposium on Water in Unsaturated Zone (Wagenlingen). Kunze, R.J. and D. Kirkham, 1862, Simplified accounting for membrane impedance in capillary conductivity determinations. Soil S c i . Soc. Amer. Proc. 26:421-426. Mi l l a r , A.A., A,R.G. Lang and W.R. Gardner, 1970. Four-terminal Peltier type thermocouple psychrometer for measuring water potential in nonisothermal systems. Agron. J . 62:705-708. Mi l l e r , E.E. and D.E. El r i c k , 1958. Dynamic determination of capillary conductivity extended for non-negligible membrane impedance. Soil S c i . Soc. Amer. Proc. 26:421-426. Mi l l e r , E.E. and A. Klute, 1967. The dynamics of s o i l water, Part I: Mechanical forces. In I r r i . of Agr. Lands, Agronomy 11:209-244. Moore, R.E., 1939. Water conduction from shallow water tables. Hilgardia 12:383-426. Neumann, H.H. and G.W. Thurtell, 1972. A Peltier cooled thermocouple dewpoint hygrometer for in situ measurement -106-of water potentials. Symposium on Thermocouple psychrome-ters held at Utah University, March 17-19, 19 71. Nielsen, D.R. and J.W. Biggar, 1961. Measuring capillary conductivity. Soil S c i . 92:192-193. Nielsen, D.R., J.W. Biggar and J.M. Davidson, 1962a. Experimental consideration of diffusion analysis in unsaturated flow problems. Soil S c i . Soc. Amer. Proc. 26:107-111. Nielsen, D.R., J.M. Davidson, J.W. Biggar and R.J. M i l l e r , 1962b. Water movement through Panoche clay loam s o i l . Hilgardia 35:491-506. Nielsen, D.R., D. Kirkham and E.R. Perrier, 1960. Soil capillary conductivity: Comparsion of measured and calculated values. Soil S ci. Soc. Amer. Proc. 24:157-160. Ogata, G. and L.A. Richards, 1957. Water content changes following irrigation of bare-field s o i l that is protected from evaporation. Soil S c i . Soc. Amer. Proc. 21:355-356. Olsen, T.C. and D. Swartzendruber, 1968. Velocity-gradient relationships for steady-state unsaturated flow of water in non-swelling a r t i f i c a l s o i l s . Soil S c i . Soc. Amer. Proc. 32:457-462. Parratt, L.G., 1961. Probability and experimental errors in science. John Wiley and Sons: Chapter 3. P h i l i p , J.R., 1955a. The concept of diffusion applied to s o i l water. Proc. Nat. Acad. S c i . India 24A:93-104. Ph i l i p , J.R.j 1955b. Numerical solution of equations of the diffusion type with d i f f u s i v i t y concentration-dependent. Tran. Faraday Soc. 51:885-892. Phi l i p , J.R., 1957a. Numerical solution of equations of the diffusion type with d i f f u s i v i t y concentration-dependent I I . Austr. J . of Physics 10:29-42. Phi l i p , J.R., 1957b. The physical principles of s o i l water movement during the irrigation cycle. 3rd Congr. Intern. Comm. On I r r . and Drain., Quest. 8pp 8.125-8.154. Phi l i p , J.R., 1964. Similarity hypothesis for capillary hysteresis in porous matericals. J . Geophys. Res. 69:1553-1562. Plamondon, A.P., 1972. Hydrologic properties and water balance of forest floor of a Canadian west coast watershed. -107-Unpub. Ph.D. Thesis, Univ. of British Columbia. Poulovassilis, A., 1962. The effect of hysteresis of pore-water on the hydraulic conductivity. J . Soil S c i . 20:52-56. Poulovassilis, A., 1969. Hysteresis of pore water, an application of the concept of independent domains. Soil S c i . 93:405-412. Poulovassilis, A., 1970. Hysteresis of pore water in granular porous bodies. Soil S c i . 109:5-12. Rawlins, S.L. and F.N. Dalton, 1967. Psychrometric measurement of s o i l water potential without precise temperature control. Soil S c i . Soc. Amer. Proc. 31:297-301. Rawlins, S.L. and W.H. Gardner, 1963. A test of the validity of the diffusion equation for unsaturated flow of s o i l water. Soil S c i . Soc. Amer. Proc. 27:507-511. Richards, B.G., 1965. Determination of the unsaturated permeability and d i f f u s i v i t y functions from pressure plate outflow data with non-negligible membrane impedance. In "Moisture Equilibria and Moisture Changes in Soil Beneath Covered Areas: 47-54 (A Symposium at Butterworths:Sydney). Richards, L.A., 1928. Usefulness of capillary potential to so i l moisture and plant investigations. J . Agr. Res. Vol. 37: 719-742. Richards, L.A., 1931. Capillary conduction of liquids through porous medias. Physics 1:318-333. Richards, L.A., 1949. Methods of measuring s o i l moisture tension. Soil S c i . 68:95-112. Richards, L.A., W.R. Gardner and G. Ogata, 1956. Physical processes determining water loss from s o i l . Soil S c i . Soc. Amer. Proc. 20:310-314. Richards, L.A. and D.C. Moore, 1952. Influence of capillary conductivity and depth of wetting on moisture retention in s o i l . Trans. Amer. Geophys. Union 33:531-540. Richards, S.J. and L.V. Weeks, 1953. Capillary conductivity values from moisture yield and tension measurements on s o i l columns. S o i l . S c i . Soc. Amer. Proc. 17:206-209. Rijtema, P.E., 1959. Calculation of capillary conductivity from pressure plate outflow data with non-negligible membrane impedance. Neth. J . Agr. S c i . 7:209-215. -108-Rogers, J.S. and A. Klute, 1971. The hydraulic conductivity-water content relationship during non-steady flow through a sand column. Soil S c i . Soc. Amer. Proc. 35:695-700. Rose, C.W., W.R. Stern and J.E. Drummond, 1965. Determination of hydraulic conductivity as a function of depth and water content for s o i l in s i t u . Aust. J . Soil Res. 3:1-9. Rose, D.A., 1968. Determination of capillary conductivity and d i f f u s i v i t y . Internat'l. Assoc. Sci. Hyd. Vol. 82: 171-181. Rose , D.A., 1971. Water movement in dry s o i l s . I I . An analysis of hysteresis. J . Soil S c i . 22:490-507. Sargeant, D.H., 1965. Note on the use of junction diodes as temperature sensors. J . Appl. Meteorol. 4:644-646. Selim, H.M., D. Kirkham and M. Amemiya, 1970. A comparison of methods for determining s o i l water d i f f u s i v i t y . Soil S c i . Soc. Amer. Proc. 34:14-18. Slichter, C.S., 1899. U.S. Geol. Surv., Rep. 19-11:295-384. Smiles, D.E., G. Vachaud and M. Vauclin, 1971. A test of the uniqueness of the s o i l moisture characteristics during transient, non-hysteretic flow of water in ri g i d s o i l . Soil S c i . Soc. Amer. Proc. 35:534-539. Spanner, D.C., 1951. The Peltier effect and i t s use in the measurement of suction pressure. J . Exp. Bot. 2:145-168. Staple, W.J., 1962. Hysteresis effects in s o i l moisture movement. Can. J . Soil S c i . 42:247-253. Staple, W.J., 1965. Moisture tension, and conductivity of a loam s o i l during wetting and drying. Can. J . Soil S c i . 45:78-86. Staple, W.J., 1972. Transport phenomena controlling evaporation from s o i l . Proc. of the 2nd IAHR-ISSS Symposium of Fundamentals of Transport Phenomena in Porous Media 2:566-573. Staple, W.J. and J . J . Lehane, 1954. Movement of moisture in unsaturated s o i l s . Can. J . Agr. S c i . 34:329-342. Stewart, G.L., 1962. Water content measurement by neutron attenuation and applications to unsaturated flow of water in s o i l . Unpub. Ph.D. Thesis. Washington State Univ. Pullman, Washington. -109-Stokinger, K.R., E.R. Perrier and W.D. Fleming, 1964. Experimental relations of water movement in unsaturated s o i l s . Soil S c i . 100:124-129. Swartzendruber, D., 1963. Non-Darcy flow behaviour and the flow of water in unsaturated s o i l s . Soil S c i . Soc. Amer. Proc. 27:491-495. Talsma, T., 1970. Hysteresis in two sands and the independent domain model. Water Resour. Res. 6:964-970. Thamas, J.L. and D.D. Evans, 1968. An analysis of the vertical i n f i l t r a t i o n of water into s o i l column. Water Resour. Res. 4:817-828. Topp, G.C., 1969. Soil-water hysteresis measured in a sandy loam and compared with the hysteretic domain model. Soil S c i . Soc. Amer. Proc. 33:645-651. Topp, G.C., A. Klute and D.B. Peters, 1967. Comparison of water content-pressure head data obtained by equilibrium, steady state and unsteady state methods. Soil S c i . Soc. Amer. Proc. 31:312-314. Topp, G.C. and E.E. M i l l e r , 1966. Hysteretic moisture characteristics and hydraulic conductivities for glass-bead media. Soil S c i . Soc. Amer. Proc. 30:156-162. Vachaud, G., 1967. Determination of the hydraulic conductivity of unsaturated soils from an analysis of transient flow data. Water Resour. Res. 3:697-705. Vachaud, G. and J . Thony, 1971. Hysteresis during i n f i l t r a t i o n and distribution in a s o i l column at different i n i t i a l water content. Water Resour. Res. 7:111-127. Vachaud, G., M. Vauclin and M. Wakil, 1972a. A study of the uniqueness of the s o i l moisture characteristic during desorption by vertical drainage. Soil S c i . Soc. Amer. Proc. 36:531-532. Vachaud, G., M. Vauclin, M. Wakil and D. Khanji, 1972b. Effects of a i r pressure during water flow in an unsaturated st r a t i f i e d vertical column of s o i l . Proc. of the 2nd IAHR-ISSS Symposium of Fundamentals of Transport Phenomena in Porous Media 1:357-377. Van Bavel, C.H.M., G.B. Stirk and K.J. Brust, 1968. Hydraulic properties of a clay loam s o i l and the fields measurement of water uptaken by roots. I. Interpretation of water content and pressure p r o f i l e s . Soil S c i . Soc. Amer. Proc. 32:310-317. -110-Watson, K.K., 1965. Some operating characteristics of a rapid response tensiometer system. Water Resour. Res. 1:577-586. Watson, K.K., 1966. An instantaneous profile method for determining the hydraulic conductivity of unsaturated porous materials. Water Resour. Res. 2:709-715. Watson,K.K., 1968a. Water content-pressure head relationship. Soil S c i . Soc. Amer. Proc. 32:892. Watson, K.K., 1968b. Dynamic measurement of the hydrologic characteristic of unsaturated porous materials, Trans. 9th Int. Congr. Soil S c i . 1:283-290. Watson, K.K. and F.D. Whisler, 1968. System dependence of the water content-pressure head relationship. Soil S c i . Soc. Amer. Proc. 32:121-123. Wiebe, H.H., R.W. Brown, T.W. Daniel and E. Campbell, 1970. Water potential measurements in trees. Bioscience 20:225-226. Wesseling, J . and K.E. Wit, 1968. An i n f i l t r a t i o n method for the determination of the capillary conductivity of undisturbed s o i l cores. Int. Asso. S c i . Hydrology Vol. 82-83:223-234. Whisler, F.D., A. Klute and D.B. Peters, 1968. Soil water di f f u s i v i t y from horizontal i n f i l t r a t i o n . Soil S c i . Soc. Amer. Proc. 32:6-11. Willington, R.P., 1971. Development and application of a technique to evaluating root zone drainage. Unpub. Ph.D. Thesis, Univ. of British Columbia. Youngs, E.G., 1957. Moisture profiles during vertical i n f i l t r a t i o n . Soil S c i . 84:283-290. Youngs, E.G., 1964. An i n f i l t r a t i o n method of measuring the hydraulic conductivity of unsaturated porous materials. Soil S c i . 97:307-311. -111-APPENDIX I Water content as a function of time at various depths for drying induced by drainage and evaporation of the layered so i l column -112-Time(min) Depth(cm) q q w(cm /cm 1 0. 45 0.50 0.4 39 2 33.90 - - - 0..50- - - 0.4 4-3-0 80.20 0.50 0.4411 126.05 C. 5 0 0.4418 172.28 0.50 0.4 33 7 195.60 0.5 0 0.433 1 218. 57 0.5 0 0.4380 26 4.33 0.50 0 .4 250 310.14 0.50 0.4354 355.85 0.50 0.4217 44 7.40 0 .50 0.4239 538. 89 0.5 0 0.4253 630.42 0.50 0.4277 723.05 0.50 0.4 193 750. 67 0.50 0.4301 773.54 0.50 0.4310 819.32 C .50 0.4 163 888.42 0.5 0 0.4 197 980.99 0.50 0 .4312 1 09 5. 4-4 0.50 0.4114 1210.00 0.5 0 0.4217 1.32 5.00 0.50 0.4126 1347.87 0.50 0.42.20 1393.66 0.5 0 0.4111 1439.40 0 .50 0.4137 1508. 01 0.5 0 0.4144 1576.80 0.50 0 .4 148 1668.43 0.5 0 0.4 163 176 0.05 0. 50 0.4118 1874.48 0.50 0.4148 1966. 10 0. 50 0.4163 201 1 .90 0. 50 0.4018 2034.36 0.50 0.4 140 2057. 71 0.50 0.4055 2 108 .32 0.50 0.40 40 2155. 53 0.50 0.4089 2225.63 0. 50 0.405 1 2295.90 0 .50 0.4043 2388.90 0. 50 0.4073 2483.36 0.50 0.406? 2600.68 0.50 0.4095 2718.25 0.50 0.4037 2811.60 0.50 0.4077 2837. 71 0.5 0 0.4025 2861.60 0.5 0 0.3973 2908.92 0.50 C.4037 2955. 20 0.50 0.4 099 3024.38 0.50 0.4022 3116.25 0.50 0 .4068 3230.90 0.50 0.3 994 3299.68 0.50 0.4015 3367.12 0.50 0.4000 3390.06 0.50 0.4054 Time(min) Depth(cm) w(cnrVcm^) 3435.80 0.50 0.4032 3504.54 0.5 0 0.4000 3 59 6.20 0.5 0 0.4 095 3687.78 0.50 0.4078 3779.35 0.50 0.3 982 3893.95 0.50 0.394 1 3985. 65 0.50 0 .3934 4054.41 0. 5 0 0.3905 4 123.23 0.50 0.3858 4 150. 30 0.50 0.3029 4 173.67 0.50 0.3989 4 219.52 0.50 0 . 3869 4265. 36 0.5 0 0.3859 4334.45 0.50 0.3 8 80 4425. 72 0 .50 0.3945 4547. 32 0. 50 0.3867 4593.20 0.50 0 .3949 4639.00 0.50 0.3842 4707.79 0.50 0.3860 4 799.50 -0.50 - 0.3820 -4845. 52 0. 50 0.3860 5C95.80 0 . 5 0 0 . 3 ! 4 8 5 1 0 3 . 3 0 - 0 . 5 0 - 0 . 2 99 8 5 3 4 6 . 3 0 0 . 06 05 5 b 8 . 8 0 r r. n 0 . 8 0 t'•• 5632 . 0 5 0 . 5 0 0 . 2 3 5 6 •J /:>.!. 4 5 v . i ' " . . - I f . ' V 1 5 8 7 0 . 8 5 0 . 5 0 0 . 2 0 64 6 2 1 5 . 0 C 0 . 5 0 o .: o -w. 64 1 2 . 4 1 : 0 . 5 0 0. 2 0 0 6 6 49 1 . 2 5 0 . 5 0 0 . 1 9 5 7 6 5 3 0 . 8 5 C . 50 0 . 1 0 9 2 6fc 10. 9=> C . 'J ••) ('. 1 V 3 5 6 80 8 . 2 0 C . 5 '~ 0 . J. 8 2 9 7 0 4 4 . 8 0 0 .5 o. 0 . 1 8 4 b 7 2 4 1 . 9 4 0 . 5 0 0 . 17 8 3 7 4 4 0 . 2 0 < • . * • 0 . 176 0 7 55 8. 55 0 . 5 <" 0.172 8 i i 5. . y . t. . 5 ••) ':. : i i 8 r. <.-.• 0 . J ', 4 3 8 23 7. 70 o. r. •') 0 . 1 6 4 1 8 4 6 5 . 1 2 0 . 5 0 0 . 1 5 0 5 8 7 09.0 5 C . 5 0 0 . 1 8 7 9 8 54 8. 0 7 (. . ':• 0 0. ] f<-1 ti i-. o n 15 50 9 3 1 7. C 9 0 . 5 0 0 . 1 5 > ''• 9 4 1 6 . 8 0 0 . 5 r> 0 . 1 6 4 5 5 7 5 . 4 5 0 .50 0 . 1 4 .? 8 5 8 5 2 . 2 5 0 . 5 0 0 . 1 4 8 8 1C 0 8 9 . 3 5 C. 0 0 . 18 7 6 K 8 ^ 5 . 14 i' .5 •) 0 . 1 4 3 ? 10 56 1.30 0 . 5 0 0.1346 10797. 1 3 0 . 5 0 0 .13 2 5 -113-rime(min) Depth(cm) w(cm /cmJ 1 1 0 3 M . 0 4 0 .5 0 o . 1 3 7 4 1 1 2 7 7 . 2"5~ C . " 5 0 ~ " " !. i 4 7 5 . 75 0 . 5 0 0 . 1 3 3 4 11 / 1 6 . 5 (.; t • . •;• V o. 1 -1 2 ' - 0 7 . 3 0 C . 5 0 0 . 1 3 2 0 l 2 2 0 7 . 20 0 . 5 o 0 . 1 3 2 1 12 4 5 5 . 8 0 C . 5 0 0 . 1 2 0 7 1 26*5 1 . 5 1 I.-. 5 0 0 . 1 2 5 4 1 2 ' - ( : ! . 1 5 0 . 5 0 0 . 1 2 0 6 i 10 i , , 0 . 1 2 4 3 ] 3 A 8 2 . HO C . 5 0 '" ! . 1 1 8 2 1 3 7 1 9 . 6 4 • A r;;" \- « 1 0 . 0 7 >-, 9 13 5 9 4 . 7 0 c . 5 n 0 . 1 2 3 5 in 2 6 9 . 9 5 0 . 5 0 0 . 1 1 8 1 14 5 5 1 . 4 0 o . r o 0.1 1 6 0 J . 1 1.6 8 1 5 1 0 1 . 2 6 0 . 5 0 0 . 1 1 2 0 15 3 5 7 . 6 2 C . 5 0 C . 1 1 5 9 1 5 5 9 4 . 80 0 , 5 C 0 . 1 1 4 4 5 0 9 4 . 70 1 . 5 0 0 . 3 1 2 3 5 1 8 2 . 4 0 1 . 5 0 0 . 3 0 5 5 10.04 1.50 0.4237 33 .44 1.50. .... . . 0.42.4 8 . 79. 80 1.50 ' 0.4172 125.65 1.50 0.4306 171.87 1 .50 0.4 101 195. 18 1.50 0.4213 218.18 1 .50 0.4193 263.90 1.50 0.4104 309.70 1.50 0.4168 355.41 1 .50 0 .4097 447. 00 1.5 0 0.4064 538.48 1.50 0.4 041 630.00 1.5 0 0.4012 722.65 1.5 0 0.4101 750.25 1.50 0.4078 773.17 1 .50 0.4078 818.90 1. 50 0.4134 888.00 1.50 0.4049 980.55 1.50 0.4090 109 5.04 1.50 0.4097 1209.60 1.50 0.400 I 1 324. 60 1.50 0.3990 1347.48 .1 .50 0.4075 1 39 3.22 1.50 0 .3899 14.3 9. 00 1.50 0.3976 1507.60 1.50 0.3972 1 576. 39 1 .50 0 .3990 1668.00 1. 50 0.3917 1759.66 1 .50 0.3987 1874.05 1.50 0.3929 1965.67 1.50 0.4009 2011.50 1.50 0.395 1 2034. 47 1.50 . 0.4023 Tiaie(min) Depth(cm) ( 3 / 3 . w(cm /cm 2057.39 T7~5 0 " 0.4 CO 2 2107. 85 1.50 0.3926 2 15 5.12 1 . 50 0.3955 2 22 5.20 1 .5 0 0.39 17 2 29 5 . 43 1.50 0.3939 2 3 8 8 . 49 1.50 0.3886 2482.67 1 .5 0 0.3864 2 60 0.22 1.50 0.3924 2717.32 1.50 0.3839 2 811.20 1 .5 0 0.3940 2 837.26 1. 5 0 0.38 19 2 861.16 1.50 0.3831 2908. 48 1.50 0.3824 2954.80 1. 5 0 0.3828 3023.97 1.50 0.3819 3115.82 1.50 0.3810 3230.48 1.50 0.3895 3299.26 1.50 0.3 8 39 3 366.70 1.50 0.3 79 7 3 389 .66 1. 50 0 .3841 3435. 40 1.5 0 0.3863 3 504.15 1 . 50 0.3812 3595.80 1.50 0.3756 3687.36 1.50 0.3731 3778.95 1.50 0.3727 3 893.53 1 .50 0.3722 3985. 22 1.50 0.3733 4 054.00 1 .50 0.3618 4122.80 1 .50 0 .3648 4150.38 1.50 0.3700 4173.26 1.50 0.3716 ^ 421 9. 11 1.50 0.3635 4264.95 1. 50 0.3705 4333.66 1.5 0 0.3671 44 2 5 . 29 1.50 0.3 744 4546.90 1 .5 0 0.3710 4592.79 1 .50 0.3697 4 63 8.60 1.50 0.3686 4707.38 1 .50 0.3714 4 799. C8 1.50 0.3675 4845.12 1.50 C.3749 (, 3 4 5 ' . >:'G 1.50 o 5 4 6 8. 00 I . 5 0 o. 2 7 ;0 5 6 3 1 . i 0 1 • R- ") 0 . 2 5 0 9 57 90. 70 1 .5 ) 0 . 2 3 6 4 5 9 6 5.94 1.5 0 0.2237 6 2. 1 4 . 1 5 1.50 0.21 36 6 M i . -J 0 [ . 6 ' •'1 . 2 1 5 3 6490.4 5 1 . r'. 2 C 7 0 o [ 3 9 . 9 5 1 .50 0. ? C M 1. 6 6 1c.1n i . so 0.2 0 39 fc80 7.40 1 .50 0.2014 7 04 3 . 9 5 1 .50 0.1993 -114-T i m e ( m i n ) D e p t h ( c m ) w ( c m ^ / c m ^ ) 7 2 A 1. C 8 1.50 0.193 9 7 4 A 9 . 3 8 1.50 0 . 1 -v.-7 7 5 5 7.75 1 .50 0 . 1 .07 2 7 7 54.70 1.50 0. 1 >•  5 4 I 0 3 9 . 5 0 1 . 50 0 . 1 80 2 62 3 6.40 1.50 0.1762 < > 4 6 4•30 i ;• • , 0.1753 b" 708 .76 1 . 50 r' .17 17 8 04 7, 20 1 . 5 0 0. 1 6 87 5182.76 I. 5o 0. 16 8 2 <-: 3 1 6. 2 5 1 .50 0.1667 0 4 1 5. 03 1.50 0.18 06 5 5 7 4.60 1 . 0.]604 9 8 51.40 1.50 0.16^6 1. C C 8 8 . 4 5 1.50 0. 153 0 10 3 2 4.30 I . 50 0 , 1600 IC 5 6 0. 4 5 1 . 5 0 0.15 84 10 796.40 1.50 0. 152 7 110 3 3.18 1 .50 0. 15 16 1 127 6. 4 3 1.5 0 0 . 1. 5 5 8 11474.80 1.50 0.15 33 117 15.62 1 .50 0 . 1 5 17 1200 6. 40 1. 5 0 0. 1 507 1220 6.40 1. .5o 0. 150 9 12 454.95 1 .5 0 0.14 7 4 12 6 5 0. 6 8 1.50 0.1456 1 2 9 6 6 . 3 5 1 . 50 0.1448 132 04.2 5 1.50 0.1451 13 481.50 1. 50 0% 14 11 13718.75 1. 50 0.140 4 U553. 90 1.50 0.143 3 14 26 9.04 1 . 5 0 0.1394 145. 50. 52 1.50 0.1354 14 82 5. 40 1.50 0.13 53 15100.44 1.50 0 . 136 3 153 56.80 1 .5 0 0.1370 15bv3.vi 1. 5'.J 0.13 6 0 9 . 2 0 3 . 5 0 0 . 4 3 1 3 3 2 . 52 3 . 5 0 0 . 4 2 1 3 7 8 . 9 3 3 . 5 0 0 . 4 2 7 7 1 2 4 . 8 0 3 .50 0 . 4 198 1 7 1 . 01 3 . 50 0 . 4 2 4 4 1 9 4 . 2 7 3 . 5 0 0 . 4 1 4 9 2 1 7 . 2 8 3 . 5 0 0 . 4 1 2 2 263.05 3 . 50 0 . 4 0 6 3 3 0 8 . 8 4 3 . 5 0 0 . 4 0 5 6 3 5 4 . 6 0 3 . 5 0 0 . 4 019 4 4 6 . 15 3 . 5 0 0 . 4 0 1 9 5 3 7 . 6 1 3 . 5 0 0 . 4 0 7 1 6 2 9 . 1 7 3 . 5 0 0 . 4 0 1 9 T i m e ( m i n ) D e p t h ( c m ) w( cm-V cm--*) 7 2 1 . 7 9 3 . 5 0 0 . 4 0 6 7 7 4 9 . 3 9 3 . 5 0 0 . 3 97 2 7 7 2 . 27 3 . 5 0 0 . 4 1 08 8 1 8 . 0 3 3 . 5 0 0 . 4 0 16 8 8 7 . 1 3 3 . 5 0 0 . 4 0 3 4 9 7 9 . 7 1 3 . 5 0 0 . 3 9 9 8 1 0 9 4 . 2 0 3 . 5 0 0 . 4 0 3 8 1 2 0 8 . 72 3 . 5 0 0 . 3 98 3 1 3 2 3 . 7 3 3 . 5 0 0 . 4 06 3 1 3 4 6 . 6 1 3 . 5 0 0 . 3 9 0 4 1 3 9 2 . 3 9 3 . 5 0 0 . 3925 1 4 3 8 . ,14 3 . 5 0 _ _ _ . 0 . 3 8 86 1 5 0 6 . 75 3 . 5 0 0 . 3 8 2 2 1 5 7 5 . 5 4 3 . 5 0 0 . 3 897 1 6 6 7 . 1 6 3 . 5 0 0 . 3 3 7 5 1 7 5 8 . 8 0 3 . 5 0 0 . 3 9 1 9 18 7 3 . 2 0 3 . 5 0 0 . 3 9 5 8 1 9 6 4 . 81 3 . 5 0 0 . 3 93 0 2 0 1 0 . 6 1 3 . 5 0 0 . 3 39 7 2 0 3 3 . 6 0 .3 .50 0 . 3 90 8 2 0 5 6 . 4 2 3 . 5 0 0 . 3 8 6 0 2 1 0 6 . 9 8 3 . 5 0 0 . 3 8 1 3 2 1 5 4 . 2 2 3 . 5 0 0 . 3 78 9 2 2 2 4 . 5 5 3 . 5 0 0 . 3 7 8 7 2 2 9 4 . 5 8 3 . 5 0 0 . 3 7 7 0 2 3 8 7 . 6 3 3 . 5 0 0 . 3 7 7 4 2 4 8 1 . 8 0 3 . 5 0 0 . 3 7 8 0 2 5 9 9 . 3 6 3 . 5 0 0 . 3 8 4 6 2 7 1 6 . 9 5 3 . 5 0 0 . 3 756 2 8 1 0 . 3 2 3 . 5 0 0 . 3 8 3 1 2 8 3 6 . 3 8 3 . 5 0 0 . 3 6 3 8 2 8 6 0 . 26 3 . 5 0 0 . 3 66 0 2 9 0 7 . 6 4 3 . 5 0 0 . 3 7 8 9 2 9 5 3 . 93 3 . 5 0 0 . 3 76 3 3 0 2 3 . 1 0 3 . 5 0 0 . 3 743 3 1 1 4 . 9 8 3 . 5 0 0 . 3 7 8 7 3 2 3 9 . 61 3 . 5 0 0 . 3 6 7 2 3 2 9 8 . 4 0 3 . 50 0 . 3 7 1 7 3 3 6 5 . 8 4 3 . 5 0 0 . 3 7 5 6 3 3 8 8 . 7 9 3 . 5 0 0 . 3 7 8 2 3 4 3 4 . 5 2 3 . 5 0 0 . 3 7 2 4 3 5 0 3 . 2 7 3 . 5 0 0 . 3 7 0 9 3 5 9 4 . 9 5 3 . 5 0 0 . 3 6 4 7 3 6 8 6 . 5 2 3 . 5 0 0 . 3 702 3 7 7 8 . 0 7 3 . 5 0 0 . 3 6 1 8 3 89 2 . 6 5 3 . 5 0 0 . 3 6 79 3 9 8 4 . 3 9 3 . 5 0 0 . 3 5 5 7 40 5 3 . 16 3 . 5 0 0 . 3 596 4 1 2 1 . 9 8 3 . 6 0 0 . 3 6 4 3 4 1 4 9 . 5 3 3 . 5 0 0 . 3 5 4 0 -115-Time(min) Depth(cm) ( 3, 3 w{cm /cm 4 1 7 2 . 40 3 . 5 0 0 . 3 5 5 7 4 2 1 8 . 2 3 3 . 5 0 0 . 3 5 9 6 4 2 6 4 . 0 8 3 . 5 0 0 . 3 6 3 0 4 3 3 2 . 7 9 3 . 5 0 0 . 3 6 0 7 4 4 2 4 . 4 3 3 . 5 0 0 . 3 6 0 2 4 5 4 6 . 0 4 3 . 5 0 0 . 3 5 6 2 4 5 9 1 . 9 5 3 .5 0 0 . 3 6 0 6 4 6 3 7 - 7 3 3 . 5 0 0 . 3 6 2 3 4 7 0 6 . 50 3 . 5 0 0 . 3 573 4 7 9 8 . 2 1 3 . 5 0 0 . 3 6 1 8 48 4 4 . 2 5 3 . 5 0 0 . 3 5 7 9 5892.80 ',• c ~ • -J '_ 0.3236 5 180. 40 •': r, 1 -! » „. 0 .8200 5 344, 10 3.50 0.3 027 •5 466.^5 c; r\ 0.2 96" 5 6 2 9. 25 0.2 8 4 6 5 ft-H. 90 6 . 6 0 0.2714 5968 . 15 . ^  n 0.2621 6 212.40 3.50 0.2 53 5 6 4 0 5 .75 3 . 5 0 0.2498 6 4 9 3.70 i . 6 '?• 0.2467 6 5 3 8 . 20 3 . 5 0 0. 2 3 86 6 608 .40 t"; •' i 0' . 2 38 6 6 805.65 J • 5 l.> 2 3 7 6 7 042. 15 j 3.50 0.2331 7 2 89.37 ; 3.50 0 .2272 74 4 7. 6 2 3.50 0.2163 7555.98 3. 5 0 0.2130 t rrz .06 3 .5 8 0 .2 16 / 8037.75 0. 2 1 34 8235.07 3.50 0.2078 84 6 2.50 3.50 0.2 044 3707.00 3,50 0 .20r> 2 8 9 4 5.45 3.50' 0 . 1 9 5 1 9 18 1.00 3.50 0. 1 982 • 9314 .50 3.50 0.1912 94 14. 20 3.50 0. 2 07? 9 572.85 3. 50 0.1910 9 8 49.20 5 .5 0 0 . ]906 1 0 0 8 6. 7 C 3. 5 0 0. ] 9 0 3 iu .ide. 55 . • ' 0.1 H ':) '• > 10558.65 8.50 0.1857 10 794.56 3,50 0.18 26 110 31.44 3.50 0.180 1 112 74.62 3.50 0.1833 114 73.15 3. 5 0 0.182? i 1 / 1.3 . y4 j. :.<'.) -.i I >,: 12004.50 3. 5 0 0.175? 12204.64 3 . 5 0 0 . 174 7 12 453.20 3.50 0.1747 12 68 8. 94 3. 5 0 •'"'.17 7 7 1 2 9 6 4 . 5 5 3 . 5 ) 0 .17 3 7 I 3 202. DO 3 .5 •.-' 0.1 fl'! 1 3 4 7 9 . 7 5 3. 5 0 0. 170 7 1 3 7 1 7 . 0 0 3.50 0 . 160 9 Time(min) Depth(cm) w(cm3/cm^) 1 3c- 9 ? . C 7 0.!7?4 1 4 2 6 7 . 31 v •, ) •f\ 1 7 8 2 ! 4 3-'< ' . 7: 3 . ' . 1 6 4 7 1 h 2 •'•. o 2 • . ! 6 ' ;-> 160 0 i . o ? • * . r>. 1<> 37 15 3*5' . oi 0. 1 '••',9 1 I7 -5 9 2, .1 8 : . " 1 -:>2 8. 38 5 . 5 0 0 . 4 1 4 4 31 . 7 0 5 . 5 0 0 . 4 16 6 7 3 . 08 5 . 5 0 0 . 4 1 7 4 12 3 . 9 7 5 . 5 0 0 . 4 185 1 7 0 . 19 5 .5 0 0 . 4 2 0 8 .193. 40 5 . 5 0 0 . 4071 2 1 6 . 4 2 5 . 5 0 0 . 4 0 7 8 2 6 2 . 2 1 5 . 5 0 0 . 4 0 1 7 3 C 8 . 0 1 5 . 50 0 . 4 0 2 8 353 . 7 8 5 . 5 0 0 . 3 9 7 3 4 4 5 . 28 5 . 5 0 0.^021 5 3 6 . 7 9 5 . 5 0 0 . 3 9 8 6 6 2 8 . 3 2 5 . 5 0 0 . 3 99 2. 7 2 0 . 9 4 5 . 50 0 . 3 9 5 0 748 . 5 6 5 . 5 0 0 . 3 9 7 0 7 7 1 . 4 1 5 . 5 0 0 . 3 9 5 8 8 1 7 . 2 0 5 . 5 0 0 . 4 2 3 7 8 8 6 . 3 1 5 . 5 0 0 . 3 9 2 2 9 7 8 . 85 5 . 5 0 0 . 3 8 8 0 1 0 9 3 . 3 6 5 . 5 0 0 . 3 909 120 7 . 85 5 . 5 0 0 . 3 8 5 3 1 3 2 2 . 8 5 5 . 5 0 0 . 3 8 4 0 1 3 4 5 . 7 9 5 . 5 0 0 . 3 7 7 8 1 3 9 1 . 5 4 5 . 5 0 0 . 3 6 7 0 1 4 3 7 . 2 8 5 . 5 0 0 . 3 7 3 7 150 5 . 9 4 5 . 5 0 0 . 3 6 9 6 1 5 7 4 . 68 5 . 5 0 0 . 3 7 5 5 1 6 6 6 . 3 2 5 . 5 0 0 . 3 6 7 5 1 7 5 7 . 9 5 5 . 5 0 0 . 3 7 1 4 1 8 7 2 . 3 5 5 . 5 0 0 . 3 63 5 1 9 6 3 . 9 8 5 . 5 0 0 . 3 6 6 2 2 0 1 9 . 7 9 5 . 5 0 0 . 3 5 2 4 2 0 3 2 . 7 7 5 . 5 0 0 . 3 6 2 4 2 0 5 5 . 6 0 5 . 5 0 0 . 3 6 5 4 2 1 0 6 . 12 5 . 5 0 0 . 3 5 6 8 215 3 . 4 0 5 . 50 0 . 3 5 9 5 2 2 2 3 . 42 5 . 5 0 0 . 3 5 5 7 2 2 9 3 . 4 8 5 . 50 0 . 3 48 7 2 3 8 6 . 8 0 5 . 5 0 0 . 3 4 4 7 2 4 8 0 . 9 6 5 . 5 0 0 . 3 5 0 9 2 5 9 8 . 46 5 . 5 0 0 . 3 4 8 1 2 7 1 6 . 0 4 . 5 . 5 0 C . 3 4 8 0 2 8 0 9 . 4 8 5 . 5 0 0 . 3 5 5 1 2 8 3 5 . 48 5 . 5 0 0 . 3 3 9 9 2 8 5 9 . 3 9 5 . 5 0 0 . 3 4 0 5 2906 . 8 0 5 . 5 0 0 . 3 4 2 0 2953 . 1 8 5 . 50 0.3385 -116-Time(min) Depth(cm) w(cm /cmJ) 3 0 2 2 . 2 6 5 . 5 0 0 . 3 4 4 3 * 3 1 1 4 . 14 5 . 5 0 0 . 3 3 6 4 3 2 3 8 . 7 9 5 . 5 0 0 . 3 4 6 7 3 2 9 7 . 5 7 5 . 5 0 0 . 3 3 7 2 3 36 5 . 0 0 5 . 5 0 0 . 3 3 8 9 3 3 8 7 . 9 5 5 . 5 0 0 . 3 4 0 8 3 4 3 3 . 6 8 5 . 5 0 0 . 3 3 7 3 3 5 0 2 . 4 2 5 . 5 0 0 . 3 3 2 5 3 5 9 4 . 0 8 5 . 5 0 0 . 3 3 2 1 3 6 8 5 . 6 5 5 . 5 0 0 . 3 3 7 1 3 7 7 7 . 2 3 5 . 5 0 0 . 3 2 3 6 3 8 9 1 . 8 1 5 . 5 0 0 . 3 2 3 3 39 8 3 . 5 6 5 . 5 0 0 . 3 2 8 2 4 0 5 2 . 3 0 5 . 5 0 0 . 3 2 3 3 4 1 2 1 . 1 2 5 . 5 0 0 . 3 1 6 4 4 1 4 8 . 6 8 5 . 5 0 0 . 3 2 1 1 4 1 7 1 . 3 8 5 . 5 0 0 . 3 2 1 9 4 2 1 7 . 4 0 5 . 5 0 0 . 3 1 8 6 4 2 6 3 . 2 3 5 . 5 0 0 . 3 2 1 7 4 3 3 1 . 9 5 5 . 5 0 0 . 3 1 5 0 4 4 2 3 . 6 0 5 . 5 0 0 . 3 2 7 3 4 5 4 5 . 2 0 5 . 5 0 0.3 20 3 4 5 9 1 . 0 8 5 . 5 0 0 . 3 1 2 1 4 6 3 6 . 8 8 5 . 5 0 0 . 3 1 5 2 5 0 9 1 . 0 0 5 . 5 0 0 . ? P 4 3 5 1 7 8 . 9 0 5 . 5 0 0 . 2 9 9 7 6 J 4 Z . 4 u 6 . 6 0 0 . 2 9 2 1 5 4 6 4 . 4 0 5 . 5 0 0 . 2 7 9 7 5 6 2 7 . 8 5 5 . 5 0 0 . 2 8 0 0 5 7 8 7 . 0 5 5 . 5 0 0 . 2 6 8 4 5 9 6 6 . 3 0 5 . 5 0 0 . 2 6 2 3 62 1 0 . 6 5 5 . 5 0 0 . 2 4 - 9 9 < > 4 U 6 . U U 'J . 6 6 0 . 2 4 6 5 6 4 5 6 . 9 8 5 . 5 0 0 . 2 4 8 2 6 5 3 6 . 4 5 5 . 5 0 0 . 2 4 4 0 6 6 0 6 . 6 5 5 . 5 0 'j . 2 3 2 5 6 8 0 3 , 3 8 5 . 5 0 n o 3 <"•) "a 7 0 4 0 . 4 7 5 . 5 0 0 . 2 3 0 5 fZo i .Vi< 6 . 6 -j 0 . 2 2 6 6 7 4 4 5 . B O 5 . 5 0 0 . 22 0 8 7 5 5 4 . 2 5 5 . 5 0 0 . 2 2 0 7 7 7 9 1 . 2 5 5 . 5 0 0 . 2 1 5 fi 6 0 3 6 . 0 0 c, c 0 . 2 1 7 8 8 2 8 3 . 40 5 . 5 0 0 . 2 0 7 2 6 4 6 0 . 8 0 5 . 5 0 ~~" ' "6 " . 2 02 3 8 f 0 5 . 3 0 5 . 5 o. 0 . 2 0 2 7 r94 3 . 7 0 c; r, ,-j 0 . 1 9 9 4 5 1 7 9 . 3 0 5 . 5 0 0 . 1 9 7 9 9 3 1 2 . 30 5 . 5 0 0 . 1 9 5 1 9 4 1 2 . 4 7 5 . 5 0 0 . 2 0 7 4 5 5 7 1 . 1 5 5 . 5 0 C) . 1 9 2 0 9 8 4 7 . 9 6 5 . 5 0 0 . 1 9 0 9 I f C 8 4 . 9 8 5 . 5 0 0 . 1 9 1 8 Time(min) Depth(cm) w(cm /cm3) I f 8 2 0 . 9 0 6 . 6 : •. l 8 3 r 1 0 6 5 6 . V 5 1. u. ^ ' . ;• , : 01 K 7 9 2 . .) j 5.5-: * '•. 1 ' . ' ' '• 1 l u 3 . , . vo "J .  ;. ; . ) •< 11 2 7 2 . 4 2 • ' . 1 0 1 1 4 7 1. 4 4 . O 1:. 1 7 0 6 1 1 7 1 2 . " 0 0 . j. / - 7 1 2 0 0 2 . o r - . 3 ' ) 5 . 1 7 0 1.2 2 C 2 . 9 0 , 5 0, " . 1 7 4 12 4 5 1 . 4 6 1" . 0 • '' . i ' 6 7 12 6 8 7 . 16 r\ ~\ ) 0 . 1 7 9 6 12 9 6 2 . 0 0 5. 50 0 . 1 7 ,i 1 3 2 0 O . o O 5 .5 0 0 . ! 7 . 0 1 3 4 7 7 . 6 8 '-' t K. • j 0 , 1 7 2 5 1 3 7 1 5 . 3 0 . 5 0 0 . i i. 3 9 5 0 . 3 6 * ^ ' • . 1 7 1 1 14 2 6 5 . 5 4 5 . 5 0 0 . 1 6 8 7 1 4 5 4 7 .1.0 5 . 5 0 0 . 1 6 8 2 14 3 2 1 . 9 4 5 . 5 0 0 . 16 7 4 15 2 . 9 6 . 0 4 ^ 1-: "1 0 . ] 6 5 C 15 3 5 3 . 3 0 c, > r; (-, 0 . 1 6 1 6 1 5 6 9 0 . 00 :>. 6 0 . 1 6 0 5 4 7 0 5 . 6 5 5 . 5 0 0 . 3 18 3 4 7 9 7 . 4 0 5 . 5 0 0 . 3 1 9 8 4 8 4 3 . 4 0 5 . 5 0 0 . 3 2 0 8 7 . 5 0 7 . 5 0 0 . 4 0 2 3 3 0 . 8 0 7 . 5 0 0 . 4 0 5 3 7 7 . 2 1 7 . 5 0 0 . 4 0 9 0 12 3 . 0 9 7 . 5 0 0 . 3 9 7 9 1 6 9 . 3 2 7 . 5 0 0 . 4 0 5 0 1 9 2 . 5 0 7 . 5 0 0 . 4 0 2 3 2 1 5 . 6 0 7 . 5 0 0 . 3 9 4 6 2 6 I . 38 7 . 5 0 0 . 3 9 9 4 3 0 7 . 17 7 . 5 0 0 . 3 9 8 3 3 5 2 . 8 8 7 . 5 0 0 . 3 9 0 6 4 4 4 . 4 1 7 . 5 0 0 . 3 9 7 2 5 3 5 . 9 3 7 . 5 0 0 . 3 9 9 7 6 2 7 . 4 7 7 . 5 0 0 . 3 8 9 2 7 2 0 . 1 0 7 . 5 0 0 . 3 9 0 3 7 4 7 . 6 9 7 . 5 0 0 . 3 8 0 5 7 7 0 . 5 8 7 . 5 0 0 . 3 9 2 5 8 1 6 . 3 6 7 . 5 0 0 . 3 8 3 1 8 8 5 . 4 4 7 . 5 0 0 . 3 8 2 4 9 7 3 . 0 0 7 . 5 0 0 . 3 7 6 5 1 0 9 2 . 5 0 7 . 5 0 0 . 3 7 9 3 1 2 0 7 . 0 1 7 . 5 0 0 . 3 7 3 4 1 3 2 2 . 0 1 7 . 5 0 0 . 3 6 1 0 1 3 4 4 . 9 2 7 . 5 0 0 . 3 4 7 8 1 3 9 0 . 6 7 7 . 5 0 0 . 3 4 8 5 1 4 3 6 . 4 1 7 . 5 0 0 . 3 4 3 8 1 5 0 5 . 0 2 7 . 5 0 0 . 3 3 5 1 1 5 7 3 . 8 1 7 . 5 0 0 . 3 3 6 2 -117-'imeCmin) Depth(cm) w(cm3/cm^) 166 5.46 7.50 0.3340 1757. 10 7. 5 0 0.3 2 84 1871.51 7.5 0 0.3351 1563.12 7.50 0.3345 2018.93 7.50 0.3224 2031.90 7.50 0.3147 2 0 54. 74 7 .5 0 0.3 14 3 2105.20 7.5 0 0.3017 2152.56 7.50 0.2979 2222.54 7.5 0 0.2942 2292.78 7.50 0.2 961 2385.97 7.50 0.2918 2480.LO 7.50 0.2999 2597.58 7 .50 0.2887 2715. 18 7.50 0.2878 2808 .61 7.5 0 0.2955 2834.60 7.5 0 0.2875 2858.48 7.50 0.2755 2905.95 7.50 0.2828 2952.21 7.5 0 0.2786 3021.40 7. 50 0.2765 3113.28 7.50 0.2810 3237.92 7. 50 0. 2709 3296.70 7.50 0.2726 3364.17 7 .50 0.2743 3387.08 7.50 0.2666 3432.82 7.5 0 0.2673 3501.59 7.50 0.2 6 27 3593.22 7.50 0.2598 3684.80 7.50 0.2566 3776.40 7.50 0.2532 3890 .98 7.5u 0.248 2 3582.68 7.50 0.2478 40 51.45 7.50 0.2425 4120.28 7.50 0.2445 4147. 81 7.5 0 0.2459 4170.92 7.50 0.2 521 4216.54 7.50 0.2425 4262.40 7.50 0.2439 4331 .10 7.50 0.2436 4422.75 7.50 0.2479 4544.37 7.5 0 0.2529 4 590.21 7 .50 0.2412 4636.03 7.50 0.2357 4704.80 7.50 0.2455 4796.53 7 .50 0.2419 4842. 56 7.5 0 0.2460 50 89.00 7 .50 ; 0.222^ 51 7 f:. 5 0 7 .5 0 0.2 34 3 5 340.OP 7. 5 0 0 . 2 1 9 5 5462.70 7 .50 0.2147 562 5. 45 7.50 0.2164 Time(min) Depth(cm) "5 "5 w(ctn /cm ) 7 . 1> • . ? '~- 1 9 5 9 6 4 . ( 0 7 . 5 0 " . 1 9 5''-62 (' 3. 9f. I. rM> 1 9 0 ° 6 4 •'•!':. 3<_- 7 . 5 0 0 . 1 0 <• 2 6495.20 7 . 5 •' .• . 1 - 0 0 0 5 04. 7C 7 . 5 : ' 0.18 5 4 < • ', 0 4 . W b / • ' 0 . 1 7 •.) 66C2.15 7.:>i r . 1. 7 0 8 704 8 . -Ai 7 . v 0 . i 7 7 ? 72 35 .0( 7 . 8<• 0.167? 74 4 4.0 8 7 . 5 0 %!'85 7552 . 5C 7 . 5 0 0. 10 5 5 / 1 : •:. b>. ! 0 .10 i '• 8 0 34.25 7 . 0. 1 5 82 8 2 3 1 . 57 7 , 5 0 0.1.485 8 460.05 / . 5 0 0.i 499 8 7 0 3 . 5 5 7. 5= 0 0.1495 8-41.95 "7 <r. r\ r • ..* ".' 0.14 3 6 017 7.53 7 . 5 0 0 . 1 4 3 1 9 3 10.98 7 . 5 0 0 . 1 3 V 3 10.70 7 . 5 (•• 0.1540 0 5 79.40 7.5'"; 0. 1. 4 ? 8 0 846.17 7 . 5 0. ] 19 1 10 0 8 3. 2.2 .7 . 50 0 .13 74 10 31 9 . r->3 7.50 • .> . 1 3 3 7 10 5 5 5.18 7 .5 0 0.1295 1070 1 . 14 7.50 0. 1. 2 9 0 I 10 ? 7 .9 5 7 0.13 .":• 7 112 71. 12 7 . 5 0; 0.1237 1146 0.02 7 . 5 r- 0. 1 2 7 4 11 ' 1 :.<>'< ! .50 ':>. 1 2;-.L; 120C0.80 7.50 0. 1 203 1220O.]8 7 .50 0,1 193 1 2 440. 70 7 .5 0 0.125 0 I 2 6 t 5 , 4 5 7.50 0.12 7 9 1 206 1 . 1.0 7 . 5 0 0.120 8 13200.08 ' •. i 2 1 0 13 4 7 6.27 7.50 0.l2 02 13 7 13.5? 7 . 50 0 .1 2 2 7 13 8 8 8.62 7. 5 0 0 . 1 ? 4 0 14 26.*.c- 2 7.50 0 . 1. 2 0 8 1 4 5 4 5 . 2 L 7 .5 0 0.10 5 7 148?!.'. 1 2 / . 5 '• • ' l . i 144 15 0 9 5.18 7.8- • '"' . 1 1 4 /-, 153 51.54 7 . 5 O 0.11 2 8 1 5 8 8 8 . 6 9 7. 5 0' 0.1108 6.41 10.00 0.4346 29. 70 10.00 0.4406 76. 19 10.00 0.4350 122.22 10 .00 0.43 7 2 168. 24 10.00 0.4347 191.38 10.00 0.4383 214.52 10.00 0.4383 -118 Time(min) Depth(cm) w(cm^/cm3) 260.30 . 10.00 0.4358 306.09 10.00 0 . 4 3 8 0 351.80 10 .00 0.4324 443. 29 10. 00 0. 43 72 534.86 10 .00 0.4416 6 2 6.40 10 .00 0.4 35 8 719. 10 10.00 0.4 36 5 746.62 10.00 0.4 30 6 769.51 10.00 0.4347 815.28 10 .00 0 .4303 884.40 10.00 0.4260 577.93 10.0 0 0.4 23 5 1091.41 10 .00 0 .4409 1205. 98 10. 00 0.4198 1320.96 10.00 0.4043 1343.86 10 .00 0 .3 968 138 9. 61 10.00 0. 3 866 14 35.39 10.00 0.3876 1504.00 10.00 0.3650 1572.77 10.00 0.3693 1664.40 10.00 0.3597 1 756. 02 10.00 0.3677 1870.43 10.00 0.3689 1962 .08 10.00 0.361 1 2017. 85 10.00 0.3448 2030.85 10.00 0.3178 2053.68 10 .00 0.3191 2104. 10 10.00 0-3093 2151.48 10 .00 0 .2999 22 21.42 10 .0 0 0 .2918 2 291.66 10.00 0.2938 2384.87 10 .00 0.2940 2 4 79. 02 10.00 0.2929 2596.45 10.00 0.2838 2714.05 10 .00 0.2891 2307. 56 10. 00 0.2907 2833.48 10 .00 0.2848 2857. 38 10. 00 0. 2 672. 2904.87 10.00 0.2627 2951.18 10 .00 0.2632 3020.34 10.00 0.2624 3 112.20 10.00 0.2629 3236.87 10 .00 0 .2594 3295.64 10.00 0.2632 3363.08 10.00 0.2 5 39 3386. 01 10.00 0.2507 3431.78 10.00 0.2530 3500.52 10.00 0.2 44 1 3592.17 10.00 0.2348 3 683. 76 10.00 0.0 139 3775.32 10.00 0.2316 3889.90 10.00 0.2273 3981.60 10.00 0 .2258 4050.40 L0.00 0.2299 Time(min) Depth(cm) w(cm3/cm3) 4 119.20 10.0 0 0.2225 4146 .77 10 . 0 0 0.225 1 4169.64 10 .00 0.2300 4215.48 10.0 0 0.2260 4 26 1. 33 1 0 . 0 0 0.2 299 4330.01 10. 00 0.222 5 44 2.1.68 1 0 . 0 0 0.226 1 4543.28 10 .00 0.2229 4 5 8 9.18 10. 00 0.2196 4634.98 10 . 0 0 0.2214 4703.77 10.00 0.2201 4795.45 10 .00 0.2166 4841.50 10 . 0 0 0.2265 51 0 6 . 7 3; 10 .00 0 . 2 0 6 4 5174. X ] 0 , • • •. 0.2076 6 3 3-.. 1 0 . .-' ••1 0 . 2 0 4 h 5 4 6 0 . 4 7 10 .'* 0 0 . 2 0 l 4 5623. 56 1. 0 . 0 0 0.2 03 1 5 7 8 3 . 0] 1 0 . 0 0 0. 1890 6 9 62.40 10 .00 0 . 18 00 (• 2 06.6 5 1 C . 0 0. 0.1712 6 4 6 4.16 J v.- .09 0 .17 3 3 6 4 93.00 U.:.0 0 0. 170O 6 5 3 2 . 5R- 1 0 , 0 - 0. 16 8 3 6 6 6 2.7 6 10.00 0 . 16 5 2 6760.90 1 0.0 0 0. 163 7 7 046.5 5 I 0 . 0 0 0. 16 ' 0 / 2 3 5. 1 3 i 0. * • 0 .1560 74 41.30 10.0 0 0 . 1 5 5 7 7550.oo 10.O 6 0 .15 3 a 7 7 8 7.50 10.00 0.1536 8032.03 1 0.00 0.1466 8 2.39 .40 10 .00 0 . 149 0 c4f 6. t i u 1',. 0. 150Q 870 1 . 37 1 0 .0 0 0.1504 6039.75 10.O 0 - . 1 4 3 1 9 175. 30 1 0 . O 0; 0.14 1 0 9 30 8. 8 0 10.00 (3.1425 9 4 f S. 5 0 10 . 0 0 . p-44 5 5 ( I. J. 6 l o . 00 0 .13/6 964 4 .96 1.0 .or O . ] •• '•: 1 11" o 8 1 . 00 10 .06 0 . 1. 6 4 i 0 3 1 6 . 0 0 I 0. 0 0 0. 1 •• •:• 1 10552 .95 IC .00. 0 .135 2 10 788. 90 1. 0 . \)0 0. 1 '-O] i 1 0 3 -J . 16 1'.) . 01 0. 1 3 5 2 i. 1 2 6 8 . •;) 6 1 O . O l ; . 1. 3 1 0 1 1 4c. 7. I 0. 0 0 0. 12 01 .1 1708. 1 8 10.0 0. 1.299 11 5 9 8. 8 0 10.01: 0 . .1 3 5 4 1 2 1 6 6 . 9 0 10. 0 0 0 . ] 3 'O 1 -119-q q Time(min) Depth(cm) w(cm /cmJ) ] 2^47. 50 i. 0 .0 0 0.13 50 12 6 8 3. 20 1 0. 0 0 0. 13 3 0 1 29 5 0.00 1 0 .0 O 0.12tt ? 10 2 0 6. 00 i .00 0 .1406 1 24 74 .Oo 1 0 . 0 0 0.12 75 1?7 1 1. .32 IO.O 0' ? 1 3 9 0 o. 4 3 10.0'; 0. 1 30 1 14261.56 10.00 0. 1280 14 343.02 10 .0 0 0.1248 14 0 17. 94 1 0 . 0 0 0.12 3 5 1 50 0?.96 10,00 0 . 1 2 6 5 15 5 4 9.39 1 0 . o c 0.1240 15506.40 1 0'. Ci •?. 122 0 5. 59 12.00 0.4361 28 .80 12.00 0.4332 7 5. 32 12 .0 0 0.4 26 6 121. 20 12. 00 0.4302 167.41 12.00 0.4425 190.50 12.00 0.4266 213.69 12.00 0.4350 259.42 12.00 0 .4332 305. 25 12. 00 0.4380 350.09 12.00 0.4295 442.35 12 .00 0.4314 534.02 12. 00 0.4321 625.53 . 12.00 0.4295 718. 19 12 .00 0.4314 745.80 12.00 0.4299 768.66 12.00 0 .4376 814.52 12.00 0.4325 883.54 12.00 0.4336 976.10 12.00 0.429 3 1090.59 12.00 0.4267 1205. 13 12.00 0.4310 1320.13 12.00 0.4216 1343. 01 12.00 0.4091 1388 .78 12.00 0 .3988 1434.34 12.00 0.3941 1503. 16 12.00 0.3883 1571.95 12.00 0.38 20 1663.57 12.00 0.3704 175 5.20 12. 00 0.3710 1869.60 12.00 0.3689 1961.21 12.00 0.3643 2017.02 12.00 0 .3453 2030.00 12.00 0.3217 2052.82 12.00 0.3117 2103.21 12 .00 0.2894 2150.65 12.00 0.2885 2220.54 12.00 0.2790 2290.79 12 .00 0.2748 2384.02 12.00 0.2721 2478.20 12 .00 0.2767 2595.58 12.00 0.2740 Time(mln) Depth(cm) w(cmJ/cm ) 2 713.18 12.00 0.274 1 2806. 72 l :>. o o 0.2800 2832 .60 12.00 0.2 650 2 85 6.50 12.00 0 .2502 2 904.02 12.00 0. 2403 29 50.33 12.00 0.2 396 3019.50 12 .0 0 0.2389 3111.38 12. 00 0.2474 3236.01 12.00 0.24 13 3294.80 12.00 0.2343 3362.22 12.00 0. 2.275 3385 . 19 12 .00 0.2 176 3430.94 12.00 0.2155 3 509.68 12.00 0.2130 3591.33 12 .00 • 0.2 09 2 3682.90 12.00 0.2032 3774.48 12.00 0.2020 3889.07 12 .00 0. 198 5 3980.69 12.00 0.1991 4049.55 12.00 0 -1998 4118.38 12.00 0. 1976 4145.92 12.00 0.1938 4168.81 12 .00 0 .1967 4214.63 12.00 0.1960 4260.48 12.00 0.1923 4329.19 12 .0 0 0. 1947 4420.83 12.00 0.1914 4542.43 12.00 0 .1932 4588.33 12.00 0.1918 4634.15 12.00 0. 1882 4702.92 12.00 0 . 1930 4794. 62 12.00 0.1847 4840.63 12.00 0.19 30 50 84.80 12.5 0 0 .18 4 4 5 172.OQ 1 2 . .or 0 . 1 77 3 5 3 36.60 12.00 0. 17 3 9 54 5 8 . 7 0 1 2 .0 0 0 . 1 7 4 2 5 6 2 1 . 2 0 12.03 o . i 752 5 7 8 1 .? 8 1 2 . • ' 0.1669 5 96 0.60 12.00 0.18 95 6 2 0 4. 5 5 12.00 o.1c04 8402. 40 !. ? . 0 '; . o . i 5 5 5 6 4 5 1.25 1 \ : it • •' •'" . 1 5 ? 2 8 531.78 !?.!" 1 <- 9 6 6 801.9b 1 d .>•'• 0 . i 4 o 5 679>3. 15 1 ? . o 0.146 0 70 4 4.7 0 12 . o o o . 14 a i 7?21 .90 12.00 •". .14 7 7 74 40. 18 1 2 . 0 0 o. 1 407 7 548.5C 1. ? . 0 . 0. 1 4 1 8 / / h . '8 l . • ' /•. 1 4 ,; 4 8 0 30.32 I ?. 0 0 •• 0. 13 5 5 8 2 37.60 1 8 .00 0 . 3 38 7 -120-Time(min) Depth(cm) 3 3 w(cm /cm ) 8465. G8 1 2 .0! 0 . 1 3 6 6 b 6 « ••'). 5 6 12. Oo 0. 124 0< 8938 .0(3 1 2 .0 o 0 . 13 U 5 1 73. :»': 10. L-I. 0.129 0 V3C7.0 0 12.00 0.1288 94 0c .78 12 .0 0 51 . 1 4 3 2 0 0 7 !:•. 4 5 1 2. O O 0.12 7 5 9 8 4,3. 20 1 2 . 0 o. 0.1316 10 0 7 9.25 12.0 o o .12 7 5 i. 0 3 10.18 12.00 0. 1.2 79 l i . 5 5 1 . 7 0 12.00 0 . 12oo 10 7-7.15 12.00 0.1271 1103 4.00 12.0 0 0. 12 7 3 112 6 7.63 i "> «\ • •. 0.12 40 1146 5.70 12.06 0. 12 68 11/06.43 1 2 . O- 1 0. 12 2 5 11996.62 1 2 .0 0 0.1219 12 19 7. 15 12. 00 .12 2 3 12 445.80 12.00 0.1258 12 631. 46 12 .00 0.1210 12557.13 12.00 0.1217 13 2 0 5.07 12.00 0.12 45 134 72. 3 5 12.00 0.1204 13 709.55 12.00 0. 3 20? 1.3984.63 12.00 0.12 3 6 14 2 55. 6 0 12.00 0. 122 6 14 54 1.30 1 2 . 0i 0 0. 120 6 14 816. 15 12 .00 0.1187 15G91 . 18 12.00 0. 119 3 1534 7.62 12.00 0 . 1225 155c:5. 75 12.00 0.1168 4. 76 14.00 0.4204 27. 90 14.00 14.00 0.4226 0.4153 120.35 14.00 0.4 190 166.52 14.00 0.4231 189.62 14.00 0.4175 212.85 14.00 0.4248 258.60 14.00 0.4117 304.40 14 .00 0.4230 350. 16 14.00 0.4135 441.68 14.00 0.4150 533.18 14 .00 0.4216 624.71 14.00 0.4175 717.34 14.00 0.4 114 744.97 14.00 0.4 124 767.81 14.00 0.4232 813.60 14 .00 0.4212 882.71 14. 00 0.4132 975.25 14.00 0.4118 1C89.75 14.00 0.4 168 1204.15 14. 00 0.4171 Time(min) Depth(cm) w( cm"V cm3) 1319.24 14.00 0.4139 1 342. 19 14. 00 0. 4049 138 7.96 14.00 0.8920 1433.68 14 .00 0.3 85 6 1502. 30 14. 00 0.3780 1571 .08 14.00 0 .370 6 166 2.72 14.00 0.3684 1754.38 14. 00 0.3673 1868.33 14.00 0 .3562 19 60.38 14. 00 0.3 56 9 20 16.18 14.00 0.3333 2029.17 14.00 0.3024 2052.00 14. 00 0. 2 856 2102. 32 14.00 0.2579 2149.80 14.0 0 0.256 1 2219.62 14. 00 0.2574 2 2 89 .90 14.00 0 .2483 2383. 20 14.00 0.2545 2 477.35 14.0 0 0.2515 2594.67 14.00 0.2516 2712. 26 14.00 0. 2 512 2305.88 14.00 0.2567 28 31.70 14 .00 0.2331 2855.60 14. 00 0. 2142 2 90 3.20 14.00 0 .2072 2949.48 14.00 0.2118 3018.65 14.00 0.2117 3110.53 14.00 0 .2078 3235. 19 14.00 0.2 03 3 3293.94 14.00 0.2041 3361.40 14.00 0 .1875 3384.33 14. 00 0.1873 3430.08 14.00 0.1853 3508. 81 14.00 0.1774 3590.49 14.00 0.148 3 3682.07 14.00 0.1720 37 73.62 14.00 0. 1691 3888.20 14.00 0.1609 3979.95 14.00 0. 166 1 4048. 68 14.00 0.163 0 4117.52 14.0 0 0.1671 414 5.08 14.00 0.1671 4167.97 14.00 0.1656 4213.80 14.00 0.1621 42 5 9.61 14.00 0.1621 4 32 8. 34 14.00 0.1594 44 20.00 14.00 0.1613 4541.60 14.00 0. 1587 4587.46 14.00 0.1570 4633.29 14.00 0. 1641 4 702. 05 14.00 0.1582 4793.79 14.00 0. 1536 4 33 9. 80 14 .00 0.1570 -121-Time(min) Depth(cm) w(cm-Vcm^) 5082.90 I4.ro 0 . 1 ,r> 5 1 l- 1 70 . 1 0 14 .00 0 .14 7 1 '•8 84. 80 14.'-; - 0. L4 / 0 58 5 0.9 0 It . 0 ' / 0 . 1 4 4 6 561 9. 30 1 4 . 0 0 o . !48 3 6770.95 1 4 . 0 0 0.139 6 5O C0.80 1 4 .0 9 0 . 1 3 8 3 6 20 3 . 15 14.00 0. 12 59 6 0 0 . 5 5 1 4. OM) 0.13 1 4 •..4 <:••  . 50 14 . 0 0 0 . L ? 8 'J 0 5 3'-:. 0 0 14. 0 0 0. I 8 84 6 6 0 9 . 15 14.'" 0 0.123o o706.45 14.0 0 0.12 50 7 0 4 2.58 1 4 . 0 5) 0 . !. 2 4 7 72 3 0 . 10 14.0 0 0 . 1 2 s 0 7 4 3 8.4 0 1 4.00 0.1.2OO 7546.80 I 4 . 0 0 0.1218 7 7 83. 77 1 4.0)0 0 . .1230 80 28.53 14.0 0 0. 116 5 8 235 .90 . 14.0 0 0 . 1 16 9 8 4£i. 82 J 4 . 0 0 0 . 1157 8 6 9 7.88 1.4. 0 0 0.1144' 89 36.2 5 1 4 .00 0.1122 0 1 7 1. 77 1 4. 0 0 0. 112 2 9 30 5.40 14 .00 0.1148 9 4 0 5 . 0' 0 14.0:0 0 .126 6 •-> 6 / 5 . / 0 I ' l . O ' 0 . 0 948 9 0 40.48 1 4 .0 0 0.1111 10077.50 14.00 0.1111 10 313.45 14. 00 0 . 1 1 2 0 10549.43 14.00 0.110 5 10 7 8 5.43 1 4 . 0 0 0.1090 1 10 32. 24 i 4 . o o 0 . 1 0 8 1 11265.4 0 14.0 0 0 .1092 114 63.0 5 14.00 0.1"6? 11704.20 14.00 0 . 10 6 ? 11994.73 14.0 0 0 . 12 19 5.43 14. 00 0. 1 0 5 1 1^:44-4 . 'j0 .1 4 . 0 iJ 0 . 1.09 8 12679.68 14.00 0.10 79 1205 5.40 14 .00 0.1051 13203.38 14 .0 0 0.1056 13470. 56 1 4. 0 0 0.104 1 13 707.82 1 4 . 0 0 0. 1.0 54 1.50 82. 04 14 .' ' ' ' 0 . 1 9 ;-; u 14 258.0 7 14. 00 0. 104 4 14539.53 14.0 0 0> . ]. 0 0 6 14814.44 14.00 0 . 1. 0 18 1.50 89. 46 14.0 0 0 . 1.020 15 345.85 1 4 . 0 0 0 . 1 0 8 2 16682.99 14 . 00 0.1C22 Time(min) Depth(cm) w( cnp/ cm"^ ) .. 3. 90 16.00 .__0. 4 042 27.02 1 6.00 6.402 7 7 3. 61 16. 00 0.4 02 7 119.50 16.00 0.3971 16 5. 74 16 .00 0.3975 16 8.75 16.00 0.3967 212 .00 16.00 0.40 29 257.79 16.0 0 0.4015 30.3.59 16.00 0.3982 35 9 .30 16 .00 0 . 3953 4 40. 84 16.0 0 0. 3 9.31 5 3 2.33 16.00 0.4019 6 2 3.35 16 .00 0.3986 716.50 16.00 0.4004 744.12 16.00 0.3997 766.99 16 .00 0.4082 812.96 16.00 0.4 041 881.86 16.00 0.4052 974.40 16.00 0.4027 108 8.90 16.00 0.3939 1203.41 16.00 0 .4068 1318.42 \ 16.00 0.3982 1341.32 16.00 0.3949 138 7.10 , 16.00 0.3825 1432.83 16.00 0. .3805 1501.47 16 .00 0 .3769 1 570. 21 16.00 0.3745 1661.85 16.00 0.3730 1753.30 16.00 0 .3668 1867. 92 16.00 0. 3601 1959.53 16.00 0.3621 2015.35 16 .00 0.3420 2028. 30 16.00 0. 2872 2051.17 16.00 0.2 79 5 2.101. 42 16 .00 0.2688 2148.96 16.00 0.2 49 3 2218.77 16.00 0.234 2 2289.01 16 .00 0.2 39 3 2 382. 36 16.00 0.2325 2476.50 16 .00 0.2 29 7 2593. 80 16.00 0.2 43 9 2711.39 16.00 0.2426 2805.03 16.00 0.2 39 2 2 8 30.82 16.00 0.2224 2854.70 16 .0 0 0.20 69 2902.34 16 .00 0.1822 2948.64 • 16.00 0.188 1 3017 .80 16.00 0.1875 3109.70 16.0 0 0.18 10 3234.33 16.00 0.1912 3293.12 16 .00 0.1855 3360.55 16. 00 0.1630 -122-3 o Time(min) Depth(cm) w(cm /cm ) 3383.50 16.00 0. 1549 3429.24 16 .00 0.1586 3507.99 16.00 0.1500 3589.62 16.00 0.1466 3681.20 16 .00 0.1434 3772.80 16. 00 0.1425 3 88 7.38 16.00 0.1417 39 79. 10 16. 00 0.140 0 404 7. 8 3. 16.00 0.1372 4116.68 16.00 0.1400 4 144.21 16.00 0.1410 4167. 10 16 .00 0. 1.37 1 4212. 96 16. 00 0.1334 4 25 8.79 16.00 0.1336 4327.50 16 .00 0.1352 44 19. 17 16. 00 0.1291 4540.77 16.00 0.1322 4586.62 16 .00 0.133 3 463 2.46 16.00 0.132 1 4701 .21 16 .00 0.1356 4792. 92 16.00 0. 1334 4838.97 16. 00 0.1309 508 1.15 1 6 . 0 (3 0.1319 516 8.20 16 .0 0 0.1302 5 3 3 3 . 0 0 1 6 . 0 0 0.1272 5 4 5 5 . 15 16.00 0 . 129 9 5 617.45 16.00 0. 12 69 5777.75 1 6 . r o 0.1228' 5957.60' 16.00 0.1 193 6 2 01.45 1 6 . 0 0 0. 1 1 5 9 6408 .90 16.00 0.1176 6 457.75 16.00 0.1158 6537.20 3 6 . 0 0 0.1127 6 6 07 .4 5 16 ,'\ 0 0 .115 5 6794.65 1. 6.00 0.1.120 704 1.20 16.00 0.1128 722 6.40 16.00 0.1113 7436.60 1 6 . 0 0 0 . 1 0 8° 7545.00 16.00 0. 106 1 7782.00 1 6 .0' 0 0.1090 8026.78 16.00 0.106 3 82 34.13 1 f .00 0 . ] o /, o 8 4 o 1 . 5 7 l o . O O 0.10 39 8696.07 16 .00 0.0 0O~ 8 ° 3 4 . 4 8 16 .0° 0.1039 9 1 7 0 . 68 i f : . - : . .; 0. 0987 9303.53 1 6 . •' 0 0.0972 9 40 3.2 5 16 . o f , 0,116 8 95 71. 90 3 6. 0 0 0. 0 0 8 1 9 8 3 8 . 7 0 16.00 0.0O7 2 100 75.72 L6 .00 0 .0097 10 3 11.60 16.0 0 0.09/0 10 547 .63 16 .00 0.0934 10 7 8 3.12 16.00 0.096 1 Time(min) Depth(cm) u(cm3/ cm3) 1 1030 . 4 0 1 • . : : •• 0 . " O 4 •;. 1 126 3 . 'Ov i.. . .• • '. 0 s '"> • > 1 1. 4 6 3 . 1 5 l 0 . 01 0, 0 7 1 1 0:3:. ••• 1 1992.96 ! • • , . • ' 1 i ' . . ' • : . •'"> (~' 6 12 1 0 6 j 5 . n 0 /, 4 12 4 4 2 . 2 6 1 :' . '5 0 0 . : 9 6 12 67 7. 06 15 .06 r\ 1 \ c ,-. I 2 9 5 3 . 6 7 I'-. 0 0 1 : 3o 1.53 it 1. . - ' ! 134 6 8 . 613 3 ( , 0 i': 5 . ; ' 0 * 5-1 3 70 6 . 0-4 1. L. * * 0 . " O O O 13981.11 i 6 , 3 '.' '' . 0 9 48 14 2 5 6.31 1 . 0 0 •->. 0 0 2 2 14 6 57 .76 J 6 . 0 0 0.087 9 14M \2.i-2 16.. '•. 1 0 . 0 9 rr, 15 08 7 . 6 7 16 .0 0 0 . 0 8 3 7 153 4 4.04 1 0 . 0 0 0.0 3 7 0 15 5 81.20 i 6 . 0 0 0 . o c ^ o 3.15 18.00 0.407 2 26. 14 . 13.00 0.4109 72.80 ' 18.00 0.3963 1 18.66 18.00 0.4054 164. 87 13.00 0. 4040 18 7.82 18 .00 0 .3985 211.16 13 .00 0.4003 2 56.93. 18.00 0.4058 30 2 .72 16.00 0 .4094 358.44 18.00 0.4061 440.00 18.00 0.4040 531.50 18.00 0.4047 623. 01 18.00 0.4040 715.65 18.00 0.3 943 74 3. 2 8 18.00 0.3963 766.15 1 8. 00 0.4062 811.90 18 .00 0.40 15 881.00 13.00 0.4055 973.58 18.00 0.3919 108 8.05 18 .00 0 .4066 1202. 60 18.00 0. 4036 1317.60 18.00 0.4018 1340.48 18 .00 0.3907 1386.22 13. 00 0. 391 0 143 2.00 13 .00 0.3837 1500.60 18.00 0.3854 1569.40 18.00 0. 3302 1661 .00 1 8.00 0 .3826 1752.65 18.00 0. 3 74 4 186 7.05 18.00 0.3712 19 58.68 18 .00 0.3732 2014.48 18.00 0.3568 2027.43 18.00 0.3077 20 50. 29 18.00 0.2904 2100. 54 18.00 0. 2806 -123-Time(min) Depth(cm) q q w(cm /cm ) 2148.12 "18.00 " 0.2637 2217.85 18 .CO 0.2522 2288.15 18.00 0. 2509 2 381 .50 18 .0 0 0 .2530 2475. 66 18.00 0.2511 2592.90 18. 00 0.2 5 72 2710.50 18.00 0.2559 2804.20 18. 00 0. 2 51 0 2 829.93 .18.00 0.2356 2 853. 82 18 .00 0.2 148 2901.51 18. 00 0.1960 2947.80 18.00 0 . 196 7 3016.97 18.00 0. 2 021 3 10 6. 82 18.00 0.1984 3233.48 18 .00 0.193 5 3292.27 18.00 0.1954 3359.70 18 .00 0.1648 3 382. 68 18.00 0.1565 3428.40 18.00 0.1539 3 507.16 18 .00 0.1499 3588. 80 13. 00 0. 1499 3680.38 18.00 0.1500 3771.96 18 .00 0.1413 3886. 53 18. 00 0. 144 5 3978.24 18 .00 0 .1414 404 7. 00 18 .00 0.148 2 4115.81 18.00 0.1488 4143.40 18.00 0 .1447 4166. 26 18.00 0.1414 4212. 11 18.00 0. 1356 4257.95 18.00 0.1356 4 3 26. 63 18. 00 0.1356 4418.30 18.00 0.1384 4539. 90 18 .00 0.1354 4585.80 18.00 0. 1312 463 1.60 13.00 0.130 8 4700. 40 18.00 0. 1354 4792.09 18.00 0.1332 4838.13 18.00 0 . 1331 5 C 79.3 5 1 8 . 0 0 o. 3. 42 2 5166.20 18 .0 0- 0 . 1 4 6 7 5831.20 !. O . '• ' ' ' 0 .1417 545 3.40 1 8. O-'l 0.1425 5 5 15.53 18 .00 0 . 1 4;pn 5 7 7^.95 1 8. 0 n 0.13 2 0 59 5 5.30 1 8.0 j 0.134 2 62 09.7 0 1 8 .0 0 . 1 3 30 64 C 7. 10 18.0 0 0. 1 3 51 6 4 96 .01 1 3 .(• 0 0.1280 8 53 5. 6 0 18.0 0 0. 1 3 0 5 6605.65 18.0 0 0. 126 7 6792.85 18.0 0 0 .12 51 7049.50 1 8. 00 0. 12 79 Time(min) Depth(cm) w(cm3/cm3) 7286 . 10 1. 0 , ! . '. o . 1 2 •; 3 7434. -,5 I 8 0 .IJ'oo 7543.37 l : '" • n.12 14 7 7 5 o . Oo l >•> '.1157 8 0.2 5 . 0 4 1 8 , o ••• '•. i 212 8 2 3 2.45 1 <• 0. ! l / o 90 1 • .12 12 6 6 9 4. 4 '.) 1 8 0'. 116 4 8932 . 00 L • . V ' • o . l l :.. 4 0 1. 6 8 . 4 C ! 0 '"'.1102 9 3 0 1 . 9>) 1 8 0 _•' 0. 113 8 0 40 1.5 3 10 0 , 1 3 10 0 5 / 0. 2 0 1 8. ''_''. j 0. i 1 6 9 8 37.On 1 ' • t 0 '3 o. 113 2 10 074.0 2 1 8 •  lJ ' j 0.1187 10 3 0 9. 9 5 1 8 0 0 0.1 119 10 5 4 6.( 0 l o . 00 0* ,112 2 10 781.00 ] 3 .'10 0.11 30 1102b.00 0 0' 0'. 1. 12 8 11261 . 0 7 18 • 0'"' 0- . 1 1 37 11460. 4 5 1 8 , o 0 o. 1 00 7 1170 1.20 l o , - 0.1071. 1199 1.10 18 » <. ' o 0.1084 12 19 1. 9 5 ] 8. '3 '3 0. 1. 07] 18 440.0 8 i 8. U.109 9 12 67 6. 2 5 18 0 0 0.11 1.0 12 9 5 1. 40 .1 3 , 0' 0 0.104 3 13200.80 1 8 0 0 0 . 1 0.9 9 1346 7.06 1 8 . 0> ! ) 0.10 7 3 1.3 7 04. 38 ] 8. 0' 0 0.100 2 1 59 f'-i .40 J. 8 ' 0 0^  '"• .10 99 142 54. 5 7 1 8. 0 0 0.1064 14 8 36.06 1 8. 0.106 4 14810.05 1 8. 0 0 0 . ]004 150 85.00 1 8. o.1064 15 342.40 1 8 0.10 43 1 5 5 / o. o ! i o . o.10 3 4 -124-APPENDIX II Total water potential as a function of time at various depths for drying induced by drainage and evaporation of the layered so i l column A l l water potential is given in cm of water unless otherwise noted -125-Time Depth (min) (cm) 3 .no 1 .60 -10.33 3 10. 60 1 .60 -22.396 26.10 1 .60 -24.432 54 .90 1 .60 -2 4.74 5 131.60 1. 60 -2 5. 372 182 .00 1 .60 -25.372 187.00 1 .60 -30.696 19 7.50 1.60 -3 8. 913 235.40 1 .60 -43.146 298.50 1 .60 -44. 32 1 392.80 1 .60 -44.791 511 .70 1 .60 -45 .104 632.80 1 . 60 -44.712 729.80 1 .60 -44.712 741.60 1 .60 -45.574 749. 10 1. 60 -48. 001. 7 76 .6 0 1 .60 -52.073 8 31.40 1.60 -53.717 920.00 1 .60 -54.030 1040.90 1 .60 -54.813 1161.80 1 . 60 -5 5. 04 3 1284.60 1 .60 -5 4.50 0 1317.20 1.60 -5 6. 3 01 1344.50 1 .60 -52.386 1384.20 1 .60 -63.113 1461.50 1.60 -6 5. 619 1572.70 1 .60 -67.028 1702.20 1 .60 -67.26 3 1322.20 1. 60 -67. 81 1 1997.50 1 .60 -67.890 2002.70 1.60 -67. 81 1 2010.30 1 .60 -67.890 2034.00 1 .60 -70 . 161 2068.10 1.60 -74.389 2078 .80 1 .60 -74.545 2136.40 1 .60 -77.521 2213.20 1. 60 -80. 496 2313.60 . 1 .60 -32.611 2436.10 1 .60 -33.942 2553.30 1 .60 -85.038 2677.40 1 .60 -85 .195 2823.50 1 . 60 -85.429 2828.70 1 .60 -85.429 2336.70 1 .60 -85.978 2 847.40 1. 60 -8 5. 66 4 2863.10 1 .60 -86. 212 2900.40 1 .60 -38.092 2960.80 1. 60 -9 1.302 3023.90 1 .60 -93.495 3125.70 . 1.60 -95.844 3244.80 1 .60 -98.036 3330.50- " 1 1 .60 -99.680 3335.50 1.60 -99.367 Time Depth (min) (cn) 4849.70 1.60 - 1 34. 52 8 48 9 5 .60 1.60 -141.25 9 4 908.40 1 .6 0 -16 3.18 3 49 25.70 1.60 -1 77. 904 49 4 5 .30 1 .60 -19 2.312 4 969.90 1.60 -2 0 5.466 50 21.50 1 . 60 - 23 4. 59 5 5 0 69 .60 1 .60 -254.327 5 16 9.00 1.60 -300. 2] 2 5 2 90.90 1 .60 -359.878 54 10 .90 1 .60 -246.65 3 5 5 87.40 1 . 60 - 540. 599 56 6 2.50 1.60 -638.947 5 7 80.00 1.60 -7 43.245 5917.90 1 . 60 -812.464 6045 .00 1 .60 -845.742 6171.40 1 .60 -366.727 6296.80 1 .60 -879.804 64 23 .90 1 .60 -838 .4.17 6551.20 1 . 60 -383. 71 9 6684 .00 1 . 60 -379.412 6 8 03 .50 1 .60 -872.757 6 9 35.50 1 . 60 - 86 7. 667 70 60 .50 1 .60 -8 6 2.577 7 186.30 1 .60 -858.662 7372.20 1. 60 -851.615 7 5 59.30 1 .60 -842 .219 7741.10 1.60 -833.997 8412 , 1.60 -7.13 bars 8433 1 .60 -9.83 v 8460 1 .60 -8.77 " 8497 1 .60 -9.91 " 8510 1 . 60 -9.99 " 8 56 5 1. 60 -8.36 " 3 5 35 1 .60 -8.43 " 86 87 1.60 -9.09 tt 8 70 7 1 .60 -8.77 n 8777 1 .60 -9.17 i» 8 30 8 1 . 60 -9.8 3 ti 8 830 1.60 -9.17 ti 8 8 52 1 .6 0 -9.2 2 ». 8 8 85 1.60 -8.93 »• 8 899 1 .60 -9.22 »' 891 1 1.60 -9.99 »i 3 9 24 1.60 -9.58 t. 8 9 36 1.60 -10.15 ti 8949 1. 60 -9.5 8 n 696 1 1. 60 -9.66 it 8974 I .60 -9.50 it 8936 1. 60 -8.36 i i 3999 1 .60 -7.75 .. 9011 1.6 0 -8.77 «i 90 2 3 1.60 -8.36 i« -126-Time Depth (min) (cm) 9036 1 .60 -8. 9 7 bai 9 04 9 1 .60 -8 .77 II 90 6 1 1 .60 -8.77 it 9074 1 .60 -8.77 it 9090 1. 60 -8.36 i i 9 107 1.60 -8.77 II 9 124 1 .6 0 -8.36 II 9141 1. 60 -8.97 II 9 159 1.60 - 8. 77 t i 91 75 1 .60 -8 .36 II 9191 1.60 -8. 7 7 t i 9208 1 .60 -9.09 tt 92 2 6 1.60 -8.77 t i 9 2 38 1.60 -8. 44 tt 9248 1 .60 -8.60 t i 9289 1. 60 -8.77 n 9 30 2 1.60 -8. 7 7 II 9 3 3 2 1 .60 -9.79 II . 9375 1. 60 -11.42 it 9388 1 .60 - 10.07 tt 9855 1 .60 -16 .72 tt 9 857 1 .60 -16.11 it 9909 1 .60 -14.07 tt 9971 1.60 -14.15 it 1000 7 1.60 -13. 2 5 it 10 135 1 .60 -13.99 t i 10161 1.60 -14.2 3 tt 10 20 4 1 .60 - J_5_._2.9. tt 10249 1 .60 -14.8 9 t i 10275 1.60 -15. 62 t i 10 317 1 .60 -16.07 tt 10655 1. 60 -15.42 tt 10 6 64 1 .60 - 13.54 tt 10691 1 .6 0 -15.29 tt 10 7 20 1. 60 -15.05 t i 10 7 63 1 .60 - 14. 19 t i 10871 1 .60 -15.95 tt 10920 1.60 -16. 6 8 tt 1 1339 1 .60 -22.19 tt 1 1399 1.60 -22.76 tt 1 1427 1 .60 -23. 53 tt 1 1467 1 .60 -23.41 t i 11505 1. 60 -23.29 ti 11524 1 .60 -23.25 it 11919 1 .6 0 -27.69 ti 1 1929 1. 60 -2 9.49 t i 1 1947 1.6 0 -2 7.94 it 12022 1 .60 -27 .94 tt 12073 1.60 -30.14 it 12130 1 .60 -30.3 9 t i 12372 1.60 -31 .37 it 12396 1 .60 -33.81 t i Time Depth (min) (cm) 12 425 ' 1 .60 -3 6.0 2bars .1 2 8 8 6 1. 60 -4] .65 " 1290 1 1 .60 -41.65 it 12 930 1 .60 -39.61 it 12968 1. 60 -3 9.81 " 130 4 L 1 .50 -33. 95 t i 13164 1 .60 -44.46 it 13211 1.60 -4 5.44 " 13 2 5 5 1 .60 -42.14 i t 1 3 62 1 1.60 -54.01 » 13646 1 .60 - 54. 50 II 13683 1 .60 -55 .72 t i 13 777 1. 60 -5 8.41 i t 14 169 1.60 -69.13 i i 14213 1 .60 -70.16 i i 14272 1. 60 -67.71 14317 1 .6 0 -65.88 " 143 52 1.60 -6 3.80 " 144 30 1.60 -74. 08 it 14492 1 .60 -71.75 t i 14581 1 .60 -74 .32 " 14632 1.60 -71.7 5 t i 14662 1 .60 -75.67 i t 14958 1.6 0 -77.7 5 » 15017 1 .60 -81.54 «' .1505 6 . 1 .60 -82 . 77 tt 3.60 3 .60 -10.897 1 1 .20 3.60 -20.723 26 .70 3 .60 -2.3.09 5 55.60 3.60 -23.773 132.10 3.60 -23.773 182 .50 3 .60 -23.773 187. 60 3. 60 -2 8. 68 6 198 . 10 3.60 -37.581 235.90 3 .60 -40. 970 299.00 3 .60 -43.037 393.40 3 .60 -43.426 512.20 3 .60 -42. 74 9 633 .40 3.60 -42.833 730.30 3 .60 -42.494 742.20 3. 60 -43.765 749.70 3 .60 -46.391 777.20 3 .60 -5 0.119 827.00 . 3. 60 - 51. 22 0 920.60 3 .60 -51 . 569 1041.50 3.60 -52.575 1162.40 3 . 60 -53.168 1285.20 3 .60 -51 .897 1317.80 3.60 -54.862 1345.10 3 .60 -88. 590 1384.80 3.60 -61 .555 1462. 10 3. 60 -63.757 1573.30 3.60 -65. 113 -127-Time (min) 17C2.70 Depth (cm) 3. 60 -65. 028 1822 .80 3.60 -65.790 1998 .10 3 .60 -6 5.36 7 2003.20 3. 60 -65.113 2010 .90 3.60 -65.197 2034.6 0 3 .60 -6 9. 179 2068.70 3. 60 -73.245 2078.40 3 .60 -72 .567 2137.00 3 .60 -75. 447 2213.70 3.60 -7 7.819 2314 .20 3 .60 -81 .29 2 2436.80 3.60 -81.208 2553 .90 3.60 -82.902 2677.90 3 .60 -8 2.05 5 2824. 10 3. 60 -82.309 2 8 29.30 3 .60 -8 3.156 2837.30 3.60 -82.902 2848.00 3 .60 -•83.071 2863.70 3 .60 -83.325 2901.00 3.60 -85.359 2961 .30 3.60 -8 9.340 3024.40 3 .60 -91 . 54 3 3126.20 3. 60 -92. 559 3245.40 3 .60 -94.762 3332.10 3.60 -97.049 3336. 10 3. 60 -96. 371 3348.90 3 .60 -95.863 3364.40 3.60 -97.472 3389.70 3.60 -96.541 3422.30 3 .60 -98.658 3462.30 3.60 -101.200 3522.00 3.60 -10 3.995 3601 .00 3 .60 -589.733 3712.00 5. 60 114. 053 3835 .60 3.60 -114.584 3955. 80 3 .60 -1 1 5.770 4138.20 3. 60 -119.497 4143.30 3 .60 -118.939 4158.60 3.60 -119.836 4186.50 3.60 -120.090 4235.30 3 .60 -120.353 4309.00 3. 60 - 1 21.36 1 4410.60 3 .60 -123.90 2 4538.30 3 .60 -125.851 4663.20 3. 60 -127.71.4 4778.30 3.60 -129.0 70 4850 .30 3 .60 -131.357 48 96.2 0 3.60 - 132. 882 4909 .00 3 .60 -139. 1.5 1 Time (min.) Depth 1 c m ) 4926.30 3 .6 0 -150.333 4945.90 3.6 0 - 159. 143 49 70 .4 0 3 .60 -168 .300 5 0 22.50 3.60 -188.283 50 7L .00 3 . 60 -200.821 5 I 70.30 3 .60 -23 1 .40? 5 2 92.20 3. 60 -266.7?6 5412.10 3 . 60 -30 3.06 8 5538.90 3 .60 -344.492 5663.80 .3.60 - 3 76. 63? 5781 .20 3 .60 -410.229 5 919.20 3 .60 -446.316 6046.30 3.6 0 -474.271 6172 .70 3 .60 -503.750 6300.00 3.60 -537. 331 642 5 .00 3.60 -56 7.87 7 6 5 5 2.80 3.60 -601.333 6686.60 3.6 0 -632.258 6 8 10 .20 3 .60 -660.637 6 9 37 . ] 0 3.60 -685. 203 70 6 2.40 3. 60 -706.805 7133.20 - 3.60 -725.018 73 74.2 0 3 .60 -736.877 84 13 8427 3 .60 3.60 -1.87ba: -3.8 5 n 8 460 3.6 0 -3. 85 i i 8485 3 .6 0 -3.24 t r 85 14 3. 60 -4 . 3g> n 8553 3.60 -3.64 >t 3588 3 .60 -3.13 n 3673 3. 60 -2.91 »» 8715 3 .60 -3. 20 n 8764 3 .60 -3.28 n 88 10 3.60 -3.42 n 8 835 3.60 -3.67 n 8855 3.60 -3.39 8 8 8 7 3.60 -3. 60 II 9240 3 .60 -3.46 n 92 5 2 3. 60 -3 .6 7 n 9 3 14 3.6 0 - 3. 42 II 9329 3 .6 0 -3.92 II 9377 3.6 0 -4.21 II 9 38 7 3 .6 0 -4.07 it 9 35 9 3.60 -6.81 n 98 65 3.60 -6. 73 II 99 12 3 .60 _ -5. 11 „ 9949 3 . 6 0 "5.22 „ 9975 3. 60 -5.26 II 10013 3 .60 -4.79 „ - 1 2 8 -Time (min) Depth (cm) Time (min) Depth (cm) 10 139 3. 60 -5.00 bars 12 1 84 3 .6 0 -8.7 2bars. 10 180 3 . 60 -5.65 ti 12197 3.6 0 -8. 90 „ 10 216 3.60 -5.65 it 12 2 15 3 .6 0 -8.36 „ 10 253 3.60 -5.94 it 12 2 3 3 3 . 6 0 -9.O0 II 10279 3 .6 0 — 6.66 tt 12251 3.60 -9. 54 „ 10325 3 .60 -5.55 II ] 2 2 65 3 .60 -9.29 „ 10 6 5 6 3.60 -5. 5 8 II 12 2. 8 3 3.60 -9.76 i i K'666 3 .60 -5.22 t' 12296 3.60 -9. 44 ti 1 0695 3.60 -5.5 5 tt 12 314 3.60 -9.72 „ 10 7 24 3.60 -4.93 tt 12327 3. 60 -9.87 ti 10731 3 .60 -4.61 it 12 345 3 .60 -9.69 „ 10897 3.60 -5.65 ti 12 3 5 3 3.60 -10 . 16 , i 109 23 3.60 -6.27 ,i 12374 3.60 -9. 40 tt 11391 3 .60 -7.53 ti 12 399 3 .60 -10.6 3 n 1 1404 3.60 -7.71 tt 12426 3.60 -10.16 tt 1 1430 3 .6 0 -7.56 it 12442 3.60 -10. 45 ,, 1 1 467 3 .60 -6.73 tt 12460 3 .60 -9.62 i i 11511 3.60 -7. 1 7 tt 12478 3. 60 -10.05 „ 11537 3 .60 -6.84 it 1249 6 3.60 -9. 30 II 11 554 3.60 -6.81 ti .12 514 3 .60 -10.23 n 1 157 3 3. 60 -6 . 9 9 ti 12 531 3. 60 -10.27 , i 11591 3 .6 0 -6.81 it 12543 3.60 -9.76 ,, 1 1609 3. 60 -7.06 tt 12 566 3 .60 -9 .83 II 11626 3.60 -6.73 it 12 584 3.60 -9.80 „ 11644 3 .60 -7.49 tt 12 603 3 .60 - 10.45 ti 11657 3. 6 0 -7.20 H 12621 3.60 -10.52 II .116 7.6 3.60 -6.88 i i 12638 3.60 -11.09,, 1 1 694 3. 60 -7.6 3 ti 12656 3 .60 -11.85 „ 11711 3.6 0 - 7 . 0 6 12675 3.6 0 -12.17 „ 11730 3 .60 -8.18 » 12693 3.60 -12. 79„ 1 1748 3. 6 0 -7.53 it 12710 3 .60 -12.25 „ 1 1766 3 .60 -8.28 it 12728 .3. 60 -11.06 ,f 11 783 3 .60 -7.71 tt 12746 3.60 -11 . 3 1 1 1 11801 . 3.60 -7.78 II 12 764 3.60 -11.31,, 11820 3 .60 -7.20 it 12782 3 . 60 -11.06,, 11 83 3 3.60 -7.38 tt . 1.2800 12819 12337 3 .6 0.__ -11. 27 I I 1 1 8 5 5 118 72 3.60 3 .60 -7.53 » -7.45 ti * 3. 60 3.60 -10.77H - 1 I.27M 1 1390 3.60 -8.00 »» 12 854 3.60 -10 . 7 0 n 1 1903 3.6 0 -7.56 " 12872 3.60 -10.81M 11922 3 .60 -8.46 » 12388 3 .60 - 10.05n 1 1932 3. 60 -8.21 " 12 903 3.60 -10 . 6 3 t , 1 1949 3 .6 0 -8.36 " 12932 3 . 60 -9. 9 3 n 11 962 3 .60 -8.3 6 it 12971 3 .60 — 1 0 • 4 5 u 1 1980 3.60 -8.46 tt 12994 3. 60 -10.5 9M 11998 3 .60 -8.61 it 13042 3.60 -10.1 6 n 12010 3.60 -8.18 it 13058 3.60 -.10 . 1 6 n 12024 3.60 -8.75 it 130 7 5 8. 6 0 -1 0 .2 7 n 12075 3 . 6 0 -8.75 tt 13089 3.60 - 10.16„ 12132 3. 6 0 -8.68 II 1310 7 3.60 -10.8 4 « 12151 3 .6 0 _ - 8 . 9 3 n 13126 3 . 6 0 - 9 . 6 2« - 1 2 9 -Time(min) Depth(cm) ijj Time(min) Depth(cm) X\> 1314 3 3 . 60 - 10. 73 ba 131 75 3 . 6 0 -10. 3 7 tt 13 18 7 3. 60 -11. 17 tt 13222 8 . 60 -11. 60 tt 13275 3 m 60 -12 . 14 ti 13285 3. 60 -10. 88 tt 13303 3 . 60 -11. 71 ti 13321 3. 6 0 -1 1 . 0 6 tt 13339 3. 6 0 - 11. 78 ti 1 3 3 5 5 3 . 6 0 -11. 2 4 tt 13373 3. 60 -11. 89 tt 13 3 9 2 3 . 60 - 11. 31 tt 134 09 3 . 6 0 -11. 85 " 13427 3. 6 0 -12. 50 tt 13445 3 • 6 0 - 11. 8 9 tt 13462 3. 6 0 -11 . 92 tt 13480 3. 60 -11. 7 8 tt 13498 3 . 60 -12. 61 tt 13 516 3. 6 0 -11 . 92 . tt 13534 3 . 60 - 12. 68 tt 1 3 552 3 . 60 -12. 14 ft 13570 3. 60 -12. 50 tt 13588 3 . 60 - 12. 61 tt 13 603 3 . 60 -12. 43 tt 13615 3. 60 -12. 72 tt 1 36 2 3 3 -60 -12. 50 tt 13649 3. 60 -12 . 57 tt 13690 3. 60 - 13. 04 tt 13779 3 . 60 -14. 12 tt 13795 3. 60 -13. 29 rt 138 12 3. 60 - 13. 22 ft 13834 3 . 60 -12. 57 ft 13856 3. 60 -13. 90 tt 13878 3 . 60 - 12. 86 ft 13901 3 . 60 -13. 22 tt 13923 3. 60 -13. 40 tt 13945 3 . 60 -13. 58 tt 13964 3. 60 -13 . 62 tt 13984 3. 6 0 -13. 9 8 tt 14007 3 . 6 0 -14. 01 tt 14028 3. 60 -14. 16 tt 140 50 3 . 60 - 14. 95 tt 14072 3 . 60 -15. 17 tt 14094 3. 60 -15. 13 it 14116 3 . 60 - 16. 14 ft 14139 3. 60 -15. 85 tt 14156 3. 60 - 16. 2 8 tf 14171 3 . 6 0 -15 . .89 tt 14224 3. 60 -14. 84 it 14272 3 . 6 0 - 13. 94 t 14324 3 . 6.0_ -14. .59 f 14 3 5 3 3 .60 - 14. 12 bars 14368 3 .60 - 1 4. 9 9 » 143 92 3 .60 -14 . 3 0 " 14409 3 .60 - 1 5. 2 0 " 14432 3 .6 0 -15. 4 5 » 145 30 3 . 6 0 -1 5 . 0 2 » 14636 3 .60 -15. 63 tt 14 6 5 9 3 . 6 0 -15. 6 7 " 14 6 7 3 3 . 60 -13. 00 tt 14695 3 .60 - 13. 2 2 » 14718 3 .60 -13. 40 » 14736 3 .60 - 13. 2 2 " 14 7 5 8 3 .60 -13. 6 5 tt 1 4775 3 .60 -13 . 5 3 » 14797 3 .60 - 14. 3 4 tf 14 819 3 .60 -13. 5 8 tt 14841 3 . 6 0 -14 . 84 ft 143 59 3 .60 -14. 12 » 14881 3 .6 0 -15. 0 2 " 14903 3 .60 -14. 3 0 tf 14925 3 .60 -14. 4 8 " 14965 3 .60 -16 . 3 2 tt 15029 3 .60 -16. 3 9 " 15 058 3 .6 0 -16. 5 0 ft 15083 3 . 60 -16. 5 7 tt 15104 3 . 60 -16. 10 tt 15127 3 .60 -16 . 2 8 » 15149 3 . 60 -16. 46 tt 15171 3 .60 - 15. 74 ft 151 94 3 .6 0 -17. 18 tt 15217 3 .60 -16. 10 ft 15239 3 .6 0 - 17. 3 6 tf 15261 3 .60 -17. 36 ft 15283 3 . 60 -16. 82 tf 15305 3 .60 -17. 07 tf 15327 3 . 60 -17. 54 tt 15349 3 .60 - 17. CO tt 15371 3 .60 -17. 72 » 15393 3 . 60 -16 . 32 » 154 14 3 .60 - 18. 44 tt 1 5436 3 .6 0 -18 . 37 » 1 5459 3 .60 -18. 9 8 t i 1 5 4 81 3 .60 - 18. 6 2 » 15 503 3 .60 -20 . 79 tt 15524 3 . 6 0 -21. 3 7 » 15546 3 .60 -22. 30 tt 1 5 56 8 3 . 60 -21 . 3 7 tt 15590 3 .60 -22. 41 " 156 10 3 .60 -21 . 15 tt 15634 3 . 60 -21 . 98 " 15695 3 .60 - 21. 15 " 15798 3 .60 -20 . 7<L-p--130-Time(min) Depth(cm) H> 3. 90 5 .60 -9. 35 6 11.50 5.60 -15.165 2 7 .00 5 .60 -19.037 55.90 5.60 -19. 03 7 132.40 5 .60 -18.231 182.80 5 .60 -1.9.522 137.90 5. 60 -28,074 198.40 5.60 - 36.061 236.20 5 .60 -36.545 299.30 5. 60 - 38. 885 393.70 5.60 -38.885 512.50 5 .60 -37. 594 6 33.70 5.6 0 -37.191 730.60 8.60 -37.QQ7 742.50 5. 60 -41. 144 750.00 5.60 -44.291 777.50 5.60 -46. 066 832.30 5.60 -46. 953 920.90 5 .60 -47.276 1041.80 5.60 -4 7. 43 7 1162.70 5.60 -48.647 1285.50 5 .60 -47.276 1310.10 5. 60 -53. 48 8 1345.30 5.60 -56.877 1385.10 5 .60 -59.700 146 2.40 5. 60 -60. 023 1573.60 5 .60 -60.669 1703.00 5.60 -61.072 1823.00 5.60 -6 0. 83 0 1998.40 5.60 -61.072 2003.50 5.60 -6 0. 02 3 2011 .20 5.60 -62.524 2034.90 5 .60 -68.737 2069.00 5.60 -71. 802 2078.70 5.60 -70.512 2137.30 5 .60 -73.900 2214.00 5. 60 -75. 352 2314.50 5 .60 -7 7.69 2 2437. 10 5.60 -76.321 2554.20 5.60 -77.450 2678.20 5 .60 -76 .805 2824.40 5. 60 -77.531 2829.60 5 .60 -77.854 2337.60 5 .60 -77.289 2848.20 5.60 -80.032 2864.00 5.60 -3 1.40 4 2901.30 5.60 -83. 501 2961.60 5.60 -8 7.29 3 3024.70 5 .60 -8 9.230 3126.50 5.60 -89. 71 4 3245.70 5.60 -91.811 3332 .30 5.60 -92.376 3336.40 5. 60 -9 3. 183 Time(min) Depth(cm) 3349 .20 5 .60 -9 2•699 3364.70 5 .60 -93.909 3390.00 5. 60 - 93. 99 0 34 22 .60 5 .60 -96 .16 3 34 62.60 5.60 -99.395 3522.30 5 .60 - 103.02 6 3601 .30 5 .60 -1.04 .962 3711.40 1.60 -~- 3^6. 520 3835 .90 5.60 -112.627 3956. 10 5 .60 - I I 3 . 5 0 5 4138.50 5. 60 - 1 1 5. 531 4143.60 5.60 -116.661 4158.90 5.60 -117. 145 4186.80 5.60 -117.064 4235 .60 5 .60 -117 .952 43 09.3 0 5.60 - 117.790 4410.90 5 .60 -121.179 4538 .60 5 .60 -123.680 4663.40 5. 60 - 125. 93 9 4778 .60 5 .60 -125.455 48 50 .60 5.60 -128.918 4 8 96.50 5.60 -126.659 4909.30 5.60 -12 7.305 4926 .6 0 5 .60 -133 .275 4946.20 5.60 -136.986 4970 .70 5.60 -139.084 502.3 .00 5 .60 -148.120 5071.60 5. 60 - 1 56. 350 5170 .90 5.60 -170.549 5 2 92.8 0 5.60 -186.040 5412.70 5 . 60 -202.499 5539 .70 5 .60 -302 .220 56 64.40 5.60 -23 9. 612 5781 .70 5.60 -25 8.168 5919 .80 5 .60 -279.629 6047.00 5.6 0 -299.800 6173.30 5.60 -321.019 6300.70 5.60 -342.560 6425.50 5 .60 - 36 5. 151 6553 .60 5 .60 -38 5 . 321. 6 6 37.60 5.6 0 -409.122 68 10 .90 5.60 -43 3.326 6°3 8.00 5 .60 -457.530 706 3.40 5.6 0 -43 3. 751 7139 . 10 5.60 -50 7.149 7 375. 10 5 .6 0 -544.262 756 1 . 20 5. 60 -587.426 7743.00 5.60 -628.169 7914.20 5.60 -661.249 8 100.00 5 .60 -694.3? 8 8132 .20 5 .60 -716.918 . 8464.30 5. 60 -734.668 8650 .00 5.60 -748.384 -131-Time(min) Depth(cm) xj; Time(min) Depth(cm) 9012 .00 .00 93 77 9 5 6 2 9 746 9951 10 151 .90 . 50 . 50 .00 . 7 0 .20 10357 10 561 10799 1 1035 112 3 3 11523 .30 . 00 .30 .90 . 50 .80 11764 120 01 12250 12358 . 80 .80 .00 .40 15 611 156 40 *.20 11 .80 27.40 56. 10 132.70 183. 10 198.70 236.50 299.60 394 .00 512. 80 634 .00 73 0.90 742.80 750.30 777.80 333 .60 921 .20 1042.10 1 162.90 1285 .80 1318.40 1345.60 1385.40 1462.70 1573.90 1703.30 1823.30 1998.70 2003.80 2011.50 2035.20 2069.30 5 .60 5 . 60 -759.275 -763. 71 3 5 .60 5.60 5.60 5 .60 5.6 0 5.60 -775.008 -786. 303 -787.917 -792. 758 -799. 212 -803.246 5 .60 5.60 5 .60 5.60 5. 60 5 .60 -804.860 - 802. 440 -796.388 -786.303 -775. 008 -758.554 5.60 5.60 5 .60 5. 60 5. 60 5.60 -763.310 -755.645 -748 .384 - 744.75 3 -4.6 0 bars -5.69 IT 7.60 7.60 7.60 7. 60 7.60 7 .60 7. 60 7 .60 7 .60 7.60 7 .60 7.60 OZL^CL 7.60 7. 60 7.60 7.60 7.60 7 .60 7.60 7.60 7 .60 7. 60 7.60 7.60 7. 60 7 .60 7.60 7.60 7.60 7.6Q 7.60 7.60 7.60 -^21,0^5-. -26.316 -2 8.016 -28. 186 -28.016 -28. 696 -40. 428 -4 5.784 -46. 634 -47.910 -47.910 -47. 229 -47.484 -4 7.43 4 -52.670 -55.816 -56.666 -56.751 -56.921 -57. 431 -57.856 -57.261 -66.188 -67.718 -68.993 -69. 843 -70.133 -70. 43 3 -70.183 -70.438 -71.203 -75.709 -81.405 -84. 126 2079.00 7 .60 -8 4.126 2137.60 7 .60 -85. 486 22 14.30 7.60 -86.676 2 314 .80 7 .60 -87.95 1 2437.40 7.60 - 37. 356 2554 .50 7 .60 -8 7.866 26 78.50 7 .60 -37.526 2824.70 7. 60 - 8 7. 781 2 829.90 7 .60 -8 8.1?1 2 8 37.90 7.60 -89.22 7 2848.50 7. 60 -91. 60 7 2864.30 7 .60 -94.242 2901.60 7.60 -96. 623 2961.90 7.60 - 100.108 3025.00 7 .60 -101 .46 9 3126.80 7.60 - .101. 63 9 3246.00 7.60 - 102. 149 3332.60 7 .60 -10 3.254 3336.70 7. 60 -103. 084 3349.50 7.60 -10 3.59 4 3365.00 7.6 0 -1 05. 549 3390.20 7.60 - 107. 845 3422 .90 7 .60 -11.0.320 3462.80 7.6 0 -113. 381 3 5 22.60 7 .60 -117.196 3601.60 7 .60 -119 .747 3712.30 7. 60 -122-977 3836 .20 7 .60 -12 5.443 3956.40 7.60 -126.293 4138.80 7.60 -127.653 4143.90 7 .60 -127 .653 4159.2 0 7.60 - 127. 483 4187.10 7 .60 -128.248 4235.90 7.60 -129.183 4309.60 7. 60 - 1 30. 543 4411 .20 7 .60 -132 .924 4538.90 7.60 -135. 339 4663.70 7.60 - 137.090 4778.90 7 .60 -138 . 110 4 350.90 7 .60 -139.72-4 896.80 7 .6 0 -1 3 3. or*8 /T Q no. 5 n 7.60 - 1 8 8.70R 4 ^ 26 .90 7 .60 - 1 3 9.895 4 94A.5 0 7. 6 0 - j .vo. o] c; 4 9 71 .00 7. 60 - 1 4 ] . . Q 7 s 5 0 2 3 . 5 0 7 .6 0 - ' 4 ^ . J /.;-: 507 2.30 7. 60 - ' 4 9 . 75 7 51 7 1 . 5 0 * 7 .60 - 1 8 5 .36 8 5 293. 50 7 .60 - 1 0 3. 61 4 5413.30 7. 60 - !. 7 2 . n 3 0 5 5 40 .50 7 .50 -18 3 . 7 5 2 5665.00 7.60 -3 04. 04 4 5782.20 7 .60 -207.2?6 5920 .40 7 .6 0 - 2 ? 2 . 8 9 9 - 1 3 2 -Time(min) Depth(cm) Time(min) Depth(cm) 6 0 4 7 . 7 0 7 . 6 H - 2 3 7 67 7 6 1 7 3 . 9 0 7 . 6 0 - 7 < ; 4 . 4 0 o 0 3 0 1 . 3 0 7 .6 0 - 2 6 4 . 6 9 4 6 4 ? 6 . 1 0 7 . 6 0 - 2 8 7 7 3 6 6 5 5 4 . 5 0 7 . 6 0 - 3 0 3 Q ;7? Q 66*38 . 5 0 , 7 . 6 0 - 3 2 3 . O 1 6 6 0 1 1 . 7 0 7 .6 0 ~ 3 4 ? < C (- O 6 9 3 9 . 0 0 7 . 6 0 - 3'- 2 , Q 7 7 0 6 4 . 4 0 7 . 6 0 - 3 3 4 , ? 3 6 7 1 9 0 . 1 0 7 . 6 0 - 4 '0 4 6 3 0 7 3 7 6 . 2 0 7 . 6 0 - 4 3 5 . 6 4 0 7 5 6 1 . 8 0 7 . 6 0 - u 6 5 , A 4 0 7 7 4 3 . 7 0 7 . 6 0 - 4'J o 8 4 6 7 9 1 4 . 8 0 7 . 6 0 — 5 "3 0 , O ? A 8 1 0 0 . 6 0 7 . 6 0 - 0 6 6 , 30 7 8 1 8 2 . 8 0 7 . 6 0 -co 7 . 61 2 8 4 6 5 .0 0 7 . 6 0 .- 6 ? 9 , 9 j P 8 6 5 0 . 7 0 7 . 6 0 - 6 4 3 , 4 9 9 3 3 3 1 . 7 0 7 . 6 0 - 6 8 6 . 0 ? 7 9 0 1 7 . 7 0 7 . 6 0 - 7 1 0 . 6 3 1 9 1 9 6 . 5 0 7 . 6 0 - 7 3 8 78 6 9 3 78 .1 0 7 . 6 0 - 7 6 1 . 5 9 0 9 5 6 3 . 0 0 • 7 . 6 0 - 7 8 2 . 0 0 4-9 7 4 6 . 7 0 7 . 6 0 - 7 9 9 , 0 9 6 9 9 5 2 . 3 0 7 . 6 0 - 8 1 5 , ? 4 Q 1 0 1 6 1 . 8 0 7 . 6 0 - 8 I o). 0 7 s-1 0 3 5 7 . 7 0 7 . 6 0 - 8 2 7 . 1 5 1 1 0 5 6 1 . 4 0 7 . 6 0 - 8 8 9 . 9 0 3 1 0 3 0 0 . 0 0 7 . 6 0 - 8 5 4 . 35 6 1 1 0 3 6 . 5 0 7 . 6 0 - P- 6 5 . 4 0 8 1 1 2 8 4 . 3 0 7 . 6 0 - 3 7 3 . 9 0 9 1 1 5 2 4 . 7 0 7 . 6 0 - p' 8 3 6 1 1 1 7 6 5 . 7 0 7 . 6 0 - 3 3 8 . 3 6 ? 1 2 0 0 2 . 6 0 7 . 6 0 - 3 q 2 . 13 7 1 2 2 5 0 . 6 0 7 . 6 0 - 3 9 7 . 71 3 1 2 3 5 9 . 1 0 7 . 6 0 - 9 0 1 . 1 1 4 1 2 5 8 8 . 7 0 7 . 6 0 - 9 0 3 6 6 4 12 3 2 7 . 3 0 7 . 6 0 . 6 6 4 1 3 0 6 6 . 5 0 7 . 6 0 - 9 0 1 . 9 6 4 1 3 3 1 1 . 0 0 7 . 6 0 - 3 9 3 . 5 4 3 1 3 5 5 1 . 5 0 7 .6 (3 - 8 0 S . 0 ! 3 1 3 7 ° 2 . 7 0 7 . 6 0 - 8 0 4 . 31 3 1 4 0 3 2 . 3 0 7 . 6 0 — p n 9 61 2 1 4 2 7 ] . 8 0 7 . 6 0 - 8 Q 0 . 91 ? 1 4 4 8 3 . 0 0 7 . 6 o - 3 3 6 . 4 6 1 1 4 7 2 1 . 0 0 7 . 5 0 - 8 8 1 . 9 5 1 4 9 4 Q . 5 0 7 . 6 0 - 8 7 9 . 3 6 0 1 5 1 5 0 . 5 0 7 . 6 0 - 3 6 0 . 9 3 7 1 5 3 5 0 . 3 0 7 . 6 0 - 3 7 3 . 9 0 9 1 5 5 5 3 . 2 0 7 . 6 0 - 8 5 0 . 5 3 0 1 5 6 5 7 . 3 0 7 . 6 0 - 3 2 2 . 0 5 0 4. 40 10. 10 -8. 24 2 12.00 10 . 10 -13.050 27.70 10 . 10 -14.417 56.40 10. 10 - 1 4. 46 7 133 .00 10 . 10 -1.4.771 183.40 10.10 -14. 720 188.40 10. 10 -28.234 199.00 10 .10 -32.612 236.80 10. 10 -34.232 299 .90 10 . 10 -34.612 394.30 10 . 10 -34.713 513. 10 10. 10 -34. 764 634.30 10 . 10 -34.733 731.20 10.10 -34. 73 9 743.10 10. 10 -40. 3.31 7 50.6 0 1 0 . 1 0 -42.88 7 778.10 10.10 -44.507 8 33.80 10.10 -44.386 921 .50 10 .10 -44 .937 1042.40 10.10 -45.089 1163 .20 10. 10 -45.165 12 86.10 10 . 10 -45.089 1318.60 10. 10 -54.478 1345.90 10 . 10 -56.351 1385.70 10.10 -57. 1 86 1463.00 10.10 -56. 32 5 1574.20 10 .10 -56.630 1703.60 10. 10 -56.958 1823.60 10. 10 -57.034 19 99.00 10 .10 -57.211 2004. 10 10. 10 -59.210 2011.80 10 . 10 -64.044 2035.50 1 0 . 1 0 -6 9.434 2069.60 10. 10 -72. 016 2079 .30 1 0 . 1 0 -72.522 2137.80 10.10 -73.787 2214.60 10. 10 -74.5 0 7 2315.10 10 . 10 -75 . 128 2437.70 10. 10 -75.306 2554.80 10 . 10 -75.457 2678.80 10 .10 -7 5.45 7 2825.00 10. 10 -75. 43? 2830 .20 10. 10 -75.837 28 38. 2 0 10.10 -78. 039 2848.80 10. .10 -80.620 2864 .60 10 . 10 -8 3 .32 8 2901.90 10.10 -86.871 2962 .2Q._ UL._LQ_ -89.1?3 3025.30 10.10 -90.034 3127.10 10.10 -90.541 3246.30 10 .10 -90.895 -133-Time(min) Depth(cm) 3332.90 10.10 -91.173 3337.00 10. 10 -91.274 3349.RO 10.10 -9 3 .046 3365.30 10. 10 -95.551 3 3 90 .50 10 . 10 -99.018 3423.20 10 .10 -102.232 3463.10 10. 10 - 105. 32 0 3522.90 10.10 -108.534 3601.90 10.10 -86. 01 1 3712.60 10. 10 -113.399 3836.50 10 .10 -115.645 3956.70 10.10 - 116.65 8 4139 .10 10. 10 -117.366 4144 .20 10 . 10 -117.417 4159.50 10. 10 -117.467 4187.40 10. 10 -118.151 4236.20 10.10 -119.644 4309.90 10. 10 -121. 618 4411 .50 10 .10 -123.744 4539.20 10.10 -126.198 4664.00 10.10 -127.970 4779.20 10 .10 -129.235 4 851.20 10.10 -130.02 0 4897.10 10. 10 -128.603 4909 .80 10 .10 -1.28.805 49 27.2 0 10. 10 - 12 9. 261. 4 9 46.80 10.10 -129.817 4971.30 10.10 -130.678 5024.00 10. 10 - 132. 247 5 073 .00 10 . 10 -134.651 5172.2 0 10.10 -138. 346 5294.20 10. 10 -143.711 5414 .00 10.10 -1.50.012 5541.20 10. 10 -157.655 5665.60 10. 10 -165.754 5 7 8 2.80 10 .10 -174.864 59 21.00 10. 10 -186.101 6048 .30 10 . 10 -197.236 6174.60 10.10 -208.953 6 301.90 10.10 -221.277 64 26.70 10 .10 -233 .425 65 55.50 10.10 -245. 1 93 6689.20 10. 10 -258.605 6812.50 10. 10 -271.259 6940.00 10. 10 -284. 292 7065 .40 10 . 10 -297.452 7 191. 10 10.10 -310.485 7 3 77.30 10. 10 -329. 71 9 7 562.50 10 .10 -343.764 7744.30 10.10 -362.744 7915.40 10. 10 -379.953 8101 .20 10 . 10 -389 .317 8183.30 10. 10 -406.273 8465.70 10. 10 -420.445 Time(min) Depth(cm) 86 5 1 .30 10 .10 -435.882 88 32.40 10. 10 -455.369 90 L3.50 10. 10 -459.165 9197.20 10.10 -471.059 9 3 78. 70 10.10 -480.423 9663.70 10 . 10 -483.339 9747.30 10.10 -492. 823 99 53 .0 0 10.10 -503.705 10152 .50 10 . 1 0 -512 .563 10358. 10 10. 10 - 520. 66 1 10 561 .70 10 . 10 -53 3.56 8 108 00.70 1 0 .1 0 -545.842 110 37.30 10.10 -557. 103 11. 2 8 5 . 0 0 10 . 10 -568.112 .11585.4 0 10.10 -576.717 11766.30 10 . 60 -5 84.435 12003 .30 10 . 10 -592.534 12251.40 10. 10 -601.391 123 59 .5 0 10. 10 -606.453 12589 .50 10 .10 -613.918 123 28.00 10.10 -61 9. 365 13 067.40 10 . 10 -625.306 13311.80 10. 10 -629.229 13552 .20 10. 10 -634.290 13 793.4 0 10.10 -638.087 14032.00 10. 10 -635. 935 14272.70 10. 10 -625.130 14483.90 10.1 0 -613.235 4. 70 12. 10 - 3. 246 " 12.30 12.10 -8.982 28.00 12 .10 -10.216 56. 70 12. 10 - 10.586 133.30 12.10 -11.017 183.70 12 .10 -11.32 6 188.70 12.10 -23.229 199.30 12 . 10 -28.626 237. 10 12.10 -30.414 300.20 12. 10 -31.000 3 94.50 12.10 -31 .185 513.40 12. 10 -31. 740 634.60 12 . 10 -31.956 731. 50 12.10 -32.265 74 3.60 14. 10 -102. 605 750.90 12 .10 -39.04 9 778.40 12.10 -40. 83 7 834.10 12. 10 -41.300 921.80 12 . 10 -41.36 2 1042.60 12. 10 -41.978 1163.50 12. 10 -42. 31 8 12 86.40 12.10 -4 2.4 10 1318.90 12.10 -50. 397 1346.20 12. 10 -52.494 1386.00 12 .10 -53.265 1463.30 12. 10 -54.067 -134-Time(min) Depth(cm) Time(min) Depth(cm) 1574.50 12 . 10 -54.622 5 1 7 2 . 7 0 1 2 . 1 0 - 1 31.. 4 1 3 L703.90 12. 10 -54. 338 5 2 9 4 . ° 0 1.2.. 1 0 - 1 3 8 . 3 .<->. n 1 8 ? 3 .90 _L2_«_L£. - 5L5L._1135__ 6 4 1 4 . 5 0 1 2 . 1 0 - 1 •'• 0 . '-• ' 2 L999 .30 12.10 -55.454 6 5 4 ! O ft 1 2 . 1 0 - ] / . ' , , 1 :> 20 04.40 12. 10 -57. 08 9 5 6 6 6 . 2'"i 1 2 . 1 0 -18 1. 0 4 6 2012 . 10 12.10 -61.314 57 8 3 . 6 O 1 2 . 1 0 - ) r- 7 . 0 ? r. 2035.80 12.10 -66.525 5 9 2 1 . 7 0 1 2 . io - 1 5 '• . 4 3 I 2069.90 12. 10 -69. 239 6 0 9 - O O 1 2 . 1 0 - ! 7 4 1 2 0 7 9 . c S O 1 ? . 1 n - r S Q - 3 6 A 6 17 6 . 1 0 1 2 . 1 0 - 1 7 '•->. •)« 3 2138. 10 12. 10 -71.039 6 3 0 2 . 5 0 1 2 . 1 0 - l 5. 9.3 °-2214.90 12 . 10 -72.076 6 4 2 7 . 2 9 1.2 . 1 0 _ 1 o ~> 1. • 2315.40 12 .10 -72.662 6 5 56 . 4 0 1 2 . 1 0 - 1 OO. 6 5 1. 2438.00 12. 10 -7 3. 06 3 6-S9C . 0 0 1 2 . 1 0 - 2 0 6 . 1- 0 tj 2 5 56.00 12 . 10 -73.309 6 8 1 3 . 3 0 12 . 1 0 - 2 i. 3 . n <•. c; 26 79.10 12 . 10 -73.679 6 9 4 1 . 8 0 1 2 . 1 0 - 2 1. ^ . 5 4 1. 2825.30 12.10 -73.649 7 0 6 6 . 3 0 1 2 . 1 0 - 2 2 6 . 0 1 7 2830.60 12 .10 -73 .895 7 1 9 2 . 1 0 1 2 . 1 0 - 2 7 2 . 1 8 4 2838.50 12. 10 -76.146 7378 . 4 0 12. 1 0 - 2 4 0 . 0 7 3 2 8 49 . 10 12 . 10 -78.490 7 5 6 3 . 2 0 1 2 . 1 0 - 2 4 8 . 0 3 7 2864.90 12. 10 -81.111 7 7 4 5 , . 0 0 1 2 . 1 0 - ? 6 " 7 . 4 7 1 2902.10 12. 10 -84. 442 7 9 1 6 . 0 0 1 2 . 1 0 - 2 6 5 . 9 3 2 2962 .50 12. 10 -86.508 8 1 0 1 . 9 0 12 . 1 0 - 2 7 2 . 5 8 2 3025.60 12. 10 -87. 495 8 1 3 4 . 0 0 1 2 . 1 0 - 2 8 1 . 2 ! 6 3127.40 12. 10 -87.926 8 4 6 6 . 3 0 1 2 . 1 0 - ? 3 8 . 6 ! 7 3246 .60 12 . 10 -88. 173 3 6 5 2 . 0 0 1 2 . 1 0 - 2 0 6 . 0 1 p. 3333.20 12. 10 -88. 821 3 3 3 3 . 0 0 1 2 . 1 0 - 3 0 2 . 49 4 3337.30 12 . 10 -88.944 9 0 1 4 . 1.0 1 2 . 1 0 - 3 0 0 . 3 9 6 3350.10 12 . 10 -91 . 10 3 9 1 9 7 . 8 0 1 2 . 1 0 - 3 1 8. 2 2 1 3365.60 12. 10 -94. 032 9 3 7 9 , . 4 0 1 2 . 1 0 - "> 2 6 . 0 0 6 3390.80 12. 10 -97.270 9 5 6 4 . 3 0 1 2 . 1 0 - 3 2 3 . 3 9 '3 3423.40 12.10 -100.755 9 748 0 0 1 2 . 1 0 - 3 3 4 . 1 0 3 3463.40 12. 10 - 103. 777 9 9 5 3 . 6 0 1 2 . 1 0 - 3 4 ].. 0 4 1 3523.20 12 . 10 -106.892 .1 0 1C O 3 . 1 0 1 2 . 1 0 - 3 4 6 . 9 7 s 3602.20 12.10 -109.852 1 0 358 . 5 0 1 2 . 1 . 0 - 3 6 1 . 2 1 3 3712.80 12. 10 - 112.134 10 6 6 2 . 1.0 1? . 1 0 - 6 9 . 7 °. ^  3836.80 12. 10 -113.768 10801, 5 0 1 2 . 1 0 - 3 6 3 . 4 3 7 395 7.00 12.10 - 114.693 1. 1 0 3 8 . . 2 0 1 2 . 1 0 - 3 7 7. 775 4139.40 12. 10 -115.619 1 1 2 3 5 . 7 0 1 2 . 1 0 - 3 8 5 . 75 6 4 144.50 12. 10 -116.112 1 1 5 2 6 . 1 0 1 2 . 1 0 - 3 0 r>. 6 4 0 4159.80 12. 10 - 116. 235 1 1 . 7 6 7 . 0 0 1 2 .60 - 4 0 0 , 4 0 3 4187 .70 12 . 10 -117.315 1 2 0 H 4 . 00 1 2 . 1 0 - t, 0 7 . O r . Q 4 2 36.50 12.10 -119.Oil 1 2 2 5 2 . 0 0 1 2 . 1 0 - 4 1 3 . 7 5 4 4310.20 12. 10 -120.923 1 2 0 0 . 8 0 1 2 . 1 0 - M A , 1 3 4 4411.80 12.10 -122 .958 1 2 5 9 0, 2 0 1 2 . 1 0 - 4 3 3. 0 1 2 4539.40 12.10 -12 5.5 79 1 2 8 2 8 . 7 0 1 2 . 1 0. - 4 A 0 . 1 U 4 4664.30 12. 10 -127.12 1 13 0 5 8. . 4 0 1 2 . 1 0 - -'. 4 6 . 3 6 1 4 779.5 0 12 . 10 -128.23 1 1 3 3 1 2 . 7 0 1 2 . 1 0 - 4 6 0 . 2N 6 4 8 5 1 . 4 H 12 . 1 0 - 1 2 9 . O6.4 1 3 5 5 3 . 0 0 1 2 . 1 0 - 4 6 6 . 2 1 0 4 3 ^ 7 . 4 0 1 2 . 1 0 - 1 2 6 . 9 0 6 1 3 7 9 4. I .O 1 2 . 1 0 - 4 4 2 , 0 7 n 4 9 1 0 . 10 1 2 . 1 0 -12 7.15? 1 4 0 7 3 . 5 0 1 2 . 1 0 - 4 6 6 . 4 9 2 7 . 5 0 1 2 . 1 0 -1 ? r >. 7 9 s 1 4 2 7 3 . 6 0 1 2 . 1 0 -4 7 1 O ? | 4 9 4 7 .00 1 2.1? - 1 2 5 . 9 o 0 144 8 4 . 8 0 1 2 . 1 0 - 4 7 ? , 0? 6 4 9 7 1 .60 1 2 . 10 - 1 2 6 . 4 1 ? 1 4 7 2 2 . 7 0 1 2 . 1 0 - 4 7 R> . 4 9 3 50?4.50 12.10 -127.534 14 9 5 0 . 8 0 1 2 . 1 0 - u r q . 3 .1 0 ' 5073.70 12.10 -12 8.784 1 5 1 6 1 .50 1 ? . 1^  - 4 8 3 . 5 1 1 1 5 3 5 1 . 5 0 1 2 . 1 0 - 4 « . 7 . 3 6 5 -135-Time(min) Depth(cm) ^ 15 5 5 4 . 4 0 12.1 9 - C « f, . O "l q 1 5 6 5 3 . 6 0 12. 60 - 4 <> R. 7 s 7 5.00 14. 10 -6. 811 12 .60 14.10 - 10.628 28.40 14.10 -11.71 1 57.00 14. 10 - 11. 659 133.60 14.10 - 1 2. 12 3 134.00 14.10 -12.381 189.00 14. 10 -26.713 199.60 14 . 10 -29 .374 237.40 14.10 -30. 71 5 300 .50 14. 10 -31.153 3 9 4 . 8 0 14.1.0 -31 . 153 513.70 14. 10 -3 0.947 634.90 . 14. 10 -31.282 731.80 14 .10 -31. 28 2 743.90 16. 10 - 12. 83 1 7 50.20 14. 10 -39.482 778.60 14 .10 -40. 668 834.40 14.10 -41.313 922.10 . 14.10 -41.416 1042.90 14. 10 -41. 51. 9 1163.80 14. 10 -41.390 1286.70 14.10 -41.570 1319.20 14. 10 -50.570 1346.50 14. 10 -52 .426 1386.30 14. 10 -5 3.741 1463 .60 14. 10 -53.79 3 1574.80 14.10 -54. 102 17C4.20 14. 10 -54. 2.31. 182.4.20 14.10 -54.309 1999.60 14.10 -53.664 2004.70 14.10 -57.197 2012 .40 14 .10 -61 .864 2036.10 14.10 -66. 531 2070.10 14.10 -69.161 2030.10 16. 10 -22.437 x 2138.40 14. 10 -70. 760 2215.20 14. 10 -71.482 2315.70 14.10 -71.611 2438.30 14. 10 -71. 74 0 2556 .40 14.10 -71 .843 2679.40 14.10 -71.998 2825.60 14 . 10 -72. 178 2 83 0.90 14.10 -73.931 2838.80 14. 10 -77.206 2849 .40 14. 10 -79.630 2865.20 14.10 -82. 183 2902.40 14. 10 -84. 813 2962.80 14.10 -36.4.38 3025.90 14.10 -87.005 3127.70 14. 10 -37.314 3246.90 14.10 -87.675 3333.50 14. 10 -88. 062 Time(min) .. Depth(cm) 3337.60 14. 10 -88 .62 9 3350.40 14. 10 -9 3.064 3365.90 14. 10 -96.339 3 391 . 10 14.10 -99.614 3423.70 14 .10 -102.786 3463.70 14. 10 - 105. 5 1 9 3 523.5 0 14. 10 -108.278 36 02.50 14.10 -110.341 3713.10 14 .10 -112.507 3837 .10 14. 10 -113 .409 3957.30 14. 10 -1 1.4. 02 8 4139 .70 14 . 10 - 114.544 4144.80 14.10 -114.853 4160. 10 14. 10 -115. 936 41.88.00 14. 10 -117.664 4236.80 14.10 -119.701 43 10.50 14. 10 -121.609 4412 . 10 14 . 10 -123.827 45 39.70 14.10 -126.22 5 4 6 64.60 14.10 - 127. 566 4 7 7 9 . 8 0 14 .10 -128 .236 48 51 .70 14. 10 - 1 ? 8 . 46 8 4307.70 14.10 -127.334 4910.4 0 14.10 -12 7. 281 4 9 27 .70 14 .10 -12 7.738 4 9 4 7 . 3 0 14.10 - 1 27. 33 4 4 97].00 14. 10 - 1 7 . 7-TQ 8 0 2 5 . Q(\ 14 .10 - 1. 2 8 . 4 1 7 5 074.40 1 4 . 1 0 - 12 Q.753 5 173 .30 14.10 -1. 31 . 330 52 95.50 14.10 -13 4.734 5415.10 14 . 10 - 1 3 a. 3 1 8 5542.70 14.10 -142.5 09 5666.80 1 4 .1 0 - 1. 4 6 .415 5784 . 10 14 . in -151 .0 o s 5 9 2 2 .2 0 14 . 1 0 -15 6 . 0 0 7 6049.70 14.1 0 -160.520 6175 .70 14.10 -165.4°6 6 8 03 .10 14.10 -17 0 . 1 P 9 64 27.70 14 . 10 - 1 7 4 . 7 0 7 6 5 5 7 .0 0 14.10 - 1 7 9 . 2 1 4 6 6 90.80 14.10 -18 3.503 6314.00 14.10 - 1 8 7 . 8 q 3 60 4 2 .6 0 14.10 -1 2 . 1 7 704 7.30 1^ . i o _ 1 0 . n 7 r. 7193.00 14 .1 0 - 1 9 0.343 7879 .40 14.10 -2"15.?r)8 7^63.30 14.1 0 -210.416 7 74 5 .70 14.10 - 2 15 . 3 1 4 7 916 .50 14.10 - ? ? 0 . 3 1 4 3 1 0 2 . 6 0 14.16 -2^5.371 8 1.84 .70 14.10 -230.786 84 67.00 14.10 - 2 36. 81 4 8 6 5 2.70 14.10 -241.10O -136-Time(rain) Depth(cm) 8 8 33.70 14 . i o - 2 '< 5 . ° c-» ° 9 0 1 4 . 8 0 1 4 . 1 0 - 2 5 1 . 2 8 5 0 1 <->f:> . 5 0 1 4 . 1 0 - 2 0 6 . 5 7 1 9 3 « 0 . 0 0 1 4 . 1 0 - 2r7 . 0 0 3 9r. 0 5 . on 1 4 . 1 0 - 2 A4 . 0 4 0 9 7 4 8 . 7 0 14 . 1 0 - 7 0 0 . 4 -'• 4 o g 5 4 . 3 0 1 4 . 1 0 - 2 7 S . 2 0 4 10! 1 3 . 8 0 1 4 . 1 0 _ _ ~> O n .">. 1 /, 1 0 3 5 8 . 8 0 1 4 . 1 0 - 8 0 * . 7 0 9 1 0 5 6 2 . 5 0 1 4 . 1 0 - 2 0 1 . 3 ° ' ? ! 0 0 0 2 ,? 0 1 4 . 1 0 - 2 0 7 . 8 2 3 1 1 0 3 8 . 8 0 1 4 . 1 0 - 3 0 5 . 5 6 4 1 1 2 3 6 . 3 0 1 4 . 1 0 - 3 1. 3 . 8 1. 5 1 1 5 2 7 . 0 0 1 4 . 1 0 - 3 1 5 . 3 0 3 1 1 7 6 7 . 8 0 1.4. 6 0 - 3 8 2 . 0 6 7 1.2.0 0 4 . 9 0 1 4 . 10 - 3 2 8 . 5 1 3 1 2 2 5 2 . 6 0 l'« . 1 0 - 3 3 6 . 2 4 9 1 2 3 5 1 . 5 0 1 4 . 1 0 - 3 4 2 . 6 0 5 1 2 5 0 1 . 0 0 1 4 . 10 - 3 4 9 . 0 ] 1 2 3 2 9 . 5 0 1 4 . 1 0 - . 3c :6 . 3 7 7 1 3 0 6 0 . 3 0 1 4 . 1 0 - 3 6 2 . 1.64 1 3 3 1 3 . 5 0 1 4 . 1 0 - 8 0 7 . 1.91. 1 3 5 5 3 . 8 0 1 4 . 1 0 - 3 7 4 . 2 3 3 1 37 9 4 . 9 0 1 4 . 1 0 - 3 8 0 . 3.5 8 14 0 3 4 . 3 0 14 . 1 0 - 3 3 7 . 5 5 3 1 4 2 7 4 . 4 0 1 4 . 1 0 - 3 9 2 . 9 7 7 1 4 4 8 5 . 8 0 1 4 . 1 0 - 3 9 6 . 5 8 7 1 4 7 2 3 . 5 0 1 4 . 1 0 - 4 0 0 . 9 7 1 1 4 9 5 1 . 2 0 1 4 . 1 0 -406. 1 2 3 1 5 1 5 2 . 2 0 14.10 - 4 1 0 . 6 4 0 1 5 3 5 2 . 1 0 1 4 . 1 0 - 4 1 5 . 1 5 3 1 5 5 5 5 . 1 0 1 4 . 1 0 - 4 "> 0 . 1• 1 0 1.56 5 9 . 3 0 1.4 . 6 0 - 4 7 2 . 8 P 9 5. 3 0 16. 10 -7. 545 12 .90 16.10 -12.378 28.60 16.10 - 13.506 57. 30 16. 10 -13. 506 133.90 16.10 -13.828 184.20 16 .10 -14.31 I 189.30 16.10 -26.234 199.80 16.10 -30.342 237.60 16. 10 -31 . 953 300.80 1.6 . 10 -32.195 395.00 16.10 -3 2.195 513.90 16. 10 -32.517 635 .10 16 .10 -32 .436 732.00 16. 10 -32.275 743.30 12. 10 58.833 750.40 16 . 10 -39.847 778.90 16. 10 -41.2 98 • 834.70 16. 10 -41.539 Time(min) Depth(cm) 922.30 16.10 -41.539 1043.20 16. 10 -41. 70 0 1164 .10 15 . 10 -41.78 1 1286.90 16.10 -4 1.70 0 1319.40 16 . 10 -49.353 1346 .70 16 . 10 - 5 1.931 1386.50 16. 10 -62.334 1463.80 16 . 10 -5 3. 139 1575.00 16.10 -5 3.300 1704.40 16. 10 -5 3. 703 1824.40 16.10 -53.784 1999.8 0 16.10 -53.364 2004.90 16. 10 -56.634 2012 .60 16 . 10 -61.114 2036.30 16.10 -65. 545 2070.40 1.6 . 10 -68. 122 2079.90 14 .10 -215.05 5 2138.70 16. 10 -69.250 2215.40 16. 10 -70.056 2315.90 16.10 -70.458 2438.60 16. 10 -70. 373 2556.60 16 .10 -7 0.539 2679.70 16.10 -70.361 2825.80 16.10 -70.620 2831 .20 16 .10 -72.714 2 839.10 16. 10 -76. 339 2849.70 16. 10 -78. 595 "2865.40 16.10" -80.447 2902.60 16. 10 -82. 542 2963 . 0 0 16.10 -33.539 3026.20 16.10 -33. 91 1 3127.90 16. 10 -84.233 3247.20 16 . 10 -84.395 3333.70 16.10 -85.442 3337.90 16. 10 -87.214 3350.60 16 . 10 -93.33 6 3366. 10 16. 10 -96.639 3391 .30 16.10 -99.619 84 2 4 . 0 0 16.10 -102.278 3463.90 16 . 10 -.104. 533 3523.80 16 .10 -106.386 3602.80 16.10 - 107.997 3713.40 16. 10 -109. 125 3837.30 16 . 10 -109.639 3957.60 16. 10 - 109. 850 4139 .90 16.10 - 109.689 4 1 4 5 . 0 0 16 .10 - 1 1 0 . 0 1 1 48160. 30. 16.10 - 112. 267 4 1 8 8 . 2 0 16. 10 - 1 14.925 4 2 3 7 . 0 0 16.10 -116.778 4310.70 16 . 10 -118.550 -137-Time(min) Depth(cm) i|/ 4 4 1 2 . 3 0 16 . 10 - 1 2 0 . 3 ? ? 4 5 4 0 . 0 0 1 6 . 10 - 1 2 ? . 31 9 4 6 6 4 . 8 0 16 . 10 - 1 2 2 . 9 8 1 4 7 8 0 . 0 0 1 6 . 1 0 - 1 2 3 . 1 4 2 4 8 5 2 . 0 0 1 6 . IO - 12 3 . '••4 4 3 97 ,0.0 . . 1 6 . 10 _ 1 2 1 . ? o o 4 9 1 0 . 6 0 15 . 10 - 1 2 1 . 7 3 9 4 9 2 8 . 0 0 1 6 . 1 0 - 1 2 1 . 1 2 8 4 9 4 7 . 6 0 16 . 10 - 1 . 2 0 . 3 7 7 4 9 7 2 . 2 0 1 6 . 10 - 1 2 0 . 3 2 2 50 2 5 .40 1 6 . 1 0 _ j •> 0 . 4 0 7 5 0 5 4 . 9 0 1 b . 10 - 1 7 1. 7 7 3 5 1 7 3 . 7 0 1 6 . 1 0 - 1 7 2 . 6 5 8 5 2 9 6 . 0 0 1 6 . 10 - 1 2 4 . 3 3 3 5 4 1 6 . 6 ? 16 . 10 -1 2 . 7 . 1. 5 9 5 5 4 3 . 3 0 1 6 . 10 - 1 3 1 , 1 1 7 56 6 7 . 3 0 16 . 10 - 1 3 3 . 3 * 6 5 7 8 4 . 5 0 16 . 1 0 - 1 3 6 . .'5<-5 9 2 2 . 7 0 1 6 . 1 0 -13 9 . 7 3 6 6 0 5 0 . 2 0 1 6 . 10 - 1 4 2 . 5 5 5 6 1 7 6 . 2 0 1 6 . 1 0 - 1 . 4 6 . 01 9 6 3 0 4 . 5 0 16 . 10 _ I 4 9 . O O O 6 4 2 8 . 2 0 IS . 13 - 1 5 ] . . 8 1 9 6 5 6 7 . 4 0 1 6 . 1 0 - 1 6 4 . 6 3 0 6 6 9 1 . 6 0 1 6 . 10 - 1 5 7 . 0 5 5 6 8 1 4 . 7 0 16 . 10 - 1 r - 9 . 4 7 ? 6 9 4 3 . 4 0 1 6 . 10 - 1 6 2 . 2 0 ? 70 6 8 . 1 0 16 . 10 -1 6 4 . 3 0 5 7 1 9 3 . 9 0 1 6 . 1 0 - 1 6 6 . 7 2 ? 7 3 8 0 . 2 0 1 6 . 1.0 - 1 6 0 . 5 4 2 7 5 6 4 . 4 0 16 . 10 - 1 7 1 . 5 ^ 5 7 7 4 6 . 3 0 1 6 . 10 - 1 7 4 . 7 7 8 7 9 17 . i o 16 . 10 - 17 7 . 5 9 7 81 0 3 . 0 0 16 . 10 - 1 8 0 . 4 1 . 7 8 1 8 5 . 1 0 1 6 . 10 - 1 0 3 . 0 5 0 3 4 6 7 . 6 0 1 6 . 10 - 1 8 6 . 0 6 5 8 6 5 3 . 2 0 1 6 . 1 0 - 1 0 3 . 3 7 5 8 8 3 4 . 2 0 16 . 10 - l o i . 6 0 4 9 0 1 5 . 3 0 16 . 10 - 1 9 4 . 0 ] 7 9 1 9 9 . 10 1 6 . 1 0 - 1 9 H . 1 3 « 9 3 3 1 . 6 0 16 . 10 - 1 . 9 9 . 7 5 0 9 5 6 5 . 5 0 1 6 . 1 0 - 2 0 3 . 7 7 8 9 7 4 9 . 2 0 1 6 . 10 - 2 0 7 . O f f ) 9 9 5 4 . 9 0 16 . 10 - 2 0 9 . 4 ] 6 1 0 1 5 4 . 4 0 1 6 . 1 0 - 2 1 2 . 6 7 0 10 3 ^ 9 . 2 0 16 . 10 - 2 1 5 . 3 6 ]. 1 0 8 6 ? . 8 0 18 . 1.0 - 2 1 . 9 . 3 3 0 1 0 3 0 2 . 8 0 1 6 . 10 - 2 2 3 . 91 6 1 10 3 9 .40 16 . 10 - 2 2 7 . 9 4 4 1 1 2 8 6 . 9 0 15 . i n - ? 3 ? . 77 7 1 1 5 2 7 . 6 0 1 6 . 10 - 2 3 6 . 8 0 5 Time(min) Depth(cm) 1 1 7 6 3 . 4 0 1 2 0 0 5 . 4 0 12 2 5 3 . 2 0 1 2 3 6 2 . 1 0 1 2 6 91 . 7 0 1 2 8 30 . 10 1 6 . 6 0 1 6 . 1 0 1 6 . 1 0 16 . 10 1 6 . 1 0 1 6 . 10 - 2 4 1 . 6 3 0 - 7 '- c- 6 (, •'-- 7 0 0 , 0 0 7 - 7 6 t> 9 '', r> - 2 5 O . 3 A J - 2 6 3 . 79 J 1 3 0 7 0 . 2 0 1 3 3 1 4 . 1 0 1 3 5 6 4 . 5 0 13 7 9 6 . 5 0 1 4 0 3 4 . O O 1 4 2 75 . 1 0 1 6 . 1 0 1 6 . 1 0 16 . 1.0 1 6 . 1 0 1 6 . 1 0 1 5 . 1 0 - ? 0 6 . 2 2 1 - 2 7 1 . 4 4 4 - ? 7 6 . 7 7 7 - 2 70. i q a - 2 3 5 . 1 7 0 - ? ' • • 3 . 0 ( t 4 1 4 4 8 6 . 6 0 1 4 7 2 4 . 2 0 1 4 9 5 1 . 8 0 1 6 1 5 2 . 6 0 15 3 5 2 . 6 0 1 5 5 5 5 . 6 0 1 6 . 10 16 . 10 1 5 . 1 0 1 6 . 1 0 16 . 1. n 1 6 . 1 0 - 2 9 1 . 9 8 5 - 2 0 6 . 4 1 6 - 3 0 7 , 4 ^ 4 - 3 0 4 . 4 7 1 -OOP .00 6 - 8 1 2 . 0 3 0 15 6 5 9 . 9 0 16 . 6 0 - 3 1 4 . 6 4 1 -138-APPENDIX III Water content as a function of time at various depths f o r wetting of the layered s o i l column -139-Time(min) Depth(cm) w(cm^/cm^) 45. 33 0.50 0.107 7 73.2 5 0 .50 0.1108 103. 5ft 0.5 0 0. 1118 162.18 0 .50 0 .1126 191.55 0.5 0 0.1130 245.90 0.5 0 0.1124 268.48 0.50 0.1089 291.41 0. 5 0 0.1072 362.22 0.50 0.1143 456.16 0.50 0.1308 526.15 0. 50 0.1096 618.24 0.50 0.1146 712.08 0.50 0.1154 82 8. 16 0.50 0.1409 922 .38 0.50 0.1657 1039.00 0.50 0.2075 1297.42 0.50 0.2755 134 3.41 0.50 0.2 839 1 393. 15 0. 50 0. 2980 1416.40 0.50 0.2 948 1463.88 0.50 0.314 5 1511.86 0.50 0.3153 1581.78 0.50 0.3382 1655.32 0.50 0.3495 1678.62 0.50 0.3548 1725.14 0.50 0.353 1 1771.47 0.50 0.3615 1898.60 0.50 0.3714 1990.42 0.50 0.3702 2C82.52 0. 50 0. 3719 2198.22 0.50 0.3706 2314.60 0.50 0.3 85 4 2453.90 0.5 0 0.3783 2 591.86 0.50 0 .3848 2629.55 0.5 C 0.3827 2895.59 0.50 0.4058 3057.46 0.50 0.4156 3217.60 0.50 0.4170 3377.71 0.50 0.4207 3 537. 80 0.50 0.4278 3744.99 0.50 0. 4233 3929.28 0.50 0.4314 4113.63 0.50 0.4287 4252.23 0. 50 0.4261 4367.70 0 .50 0 .4249 44. 79 1.50 0.1253 73.28 1.50 0. 1276 103.00 1 .50 0.1328 161.66 1.50 0. 132 5 190.99 1.50 0.1301 244.63 1.50 0.135 1 268.05 1.50 0.1296 290.98 1 .50 0.1288 Time(r.iin) Depth(cm) 3 3 w(cmJ/cm ) 361. 78 1.50 0.1364 45 5.72 1.50 0.1507 52 5. 72 1.50 0.1310 6 17.31 1.50 0.1398 711.64 1.50 0.1641 82 7. 72 1. 5 0 0.197 3 921 .92 1.50 0.2037 10 39.44 1.50 0.2 363 1297.00 1. 5 0 0. 2 3 84 134 2.38 1.50 0.2926 1 39 2. 70 1.50 0.2 930 14 15.98 1.5 0 0. 3039 1463.42 1.50 0.3 133 1511.42 1 .50 0.3232 1581.32 1.50 0.3432 16 54 .36 1.50 0 .3514 1678.20 1.50 0.3 53 5 1724.70 1. 50 0.3618 1771.02 1.50 0.3683 1898.17 1.50 0.3710 1989.99 1.50 0.3 83 1 20 82.08 1 .50 0.3 79 7 2197.79 1.5 0 0. 3 75 1 2314.17 1.50 0.3901 2453.48 : 1.50 0.3913 2591.43 1.50 0.3 894 2629 . 11 1.50 0.3 86 3 2895. 15 1.5 0 0.415 8 3057.01 1.50 0.4293 3217.17 1 .50 0.4 26 5 3377. 28 1.50 0.4241 3 537.3 8 1 .50 0.4272 3744.57 1 .50 0.4336 39 2 8.83 1.5 0 0. 4308 4113.20 1.50 0.4377 4251.80 1. 50 0.4328 4367.26 1.50 .0. 4301 43.64 3.50 0 .1559 72. 13 3.50 0.16 04 101.84 3.50 0.1522 160.49 3.50 0.1557 189.86 3.50 0.1617 243.78 3.50 0.163 1 267.15 3.5 0 0.1606 290.08 3.50 0.1625 360.90 3-50 0 .1611 454.82 3. 50 0.2019 524.81 3.50 0.2099 616.92 3.50 0.2341 710.67 3.50 0.2510 826.81 3.50 0.2718 921.03 3 .50 0.2776 1038. 57 3.50 0.2875 1296.11 3.50 0.3092 -140-T i m e ( m i n ) D e p t h ( c m ) w(cm"V c m ^ ) 1342.08 3.5 0 0.3197 1391.81 3.50 0. 3 24 4 1415 .08 3.50 0.3161 1462.54 3.50 0.3400 1510.53 3.50 0.3436 1580.42 3. .J5 0 0.3 59 7 1653.38 3.50 0.3617 1677.30 3.50 0.3629 1723.80 3.50 0.3702 1770. 16 3.50 0.3772 1897.24 3.50 0.3799 1989. 10 3.5 0 0. 3 793 2 0 81.19 3.50 0 .3826 2196.38 3.50 0.3888 2313.28 3.50 0.3964 2452.58 3.50 0.4015 2590. 56 3.50 0.4027 2628.21 3.50 0.3995 2894.27 3.50 0.4 209 3056.14 3. 50 0.4251 3216.26 3.50 0.4327 3376.39 3.50 0.4270 3536.47 3.50 0.4280 3 743.64 3.50 0 .4252 3927. 97 3 .50 0.4276 4 112.30 3.50 0.4260 4250.91 3.50 0.4 28 5 4366.38 3.50 0.4226 42.50 5.5 0 0. 1650 70.97 5.50 0.1654 100.72 5.50 0.1554 159.38 5.50 0.1607 188.69 5 .50 0.1571 242.86 5.50 0.1657 266 .26 5.50 0.1655 289. 19 5.5 0 0.1600 360.00 5.50 0.2344 453.95 5.50 0.2934 523.95 5.50 0.2920 616. 02 5 .50 0.3 005 70 9. 84 5.50 0.3031 825.95 5.50 0.3174 920.15 5 .50 0.3125 103 7.68 5.50 0.3180 129 5.21 5 .50 0.3199 1341.20 5.50 0.3206 1390.92 5.50 0.3205 1414.19 5.50 0.3317 1461. 64 5.5 0 0.3486 150 9.64 5.50 0.3582 1579.55 5 .50 0.3677 1653.18 5.50 0.3670 1676.41 5.50 0.3571 1722. 92 5.50 0.3538 T i r a e ( m i n ) D e p t h ( c m ) u ( c m 3 / c m ^ ) 1779.24 5.50 0.3 68 8 1896 .39 5.50 0.3640 1568.21 5.50 0. 3 634 20 8 0. 30 5.5 0 0.3687 2196.01 5 .5 0 0 .3634 2212. 39 5.5 0 0. 3 93 8 245 1 .68 5.50 0.3987 2589.65 5.50 0.3985 2627. 12 5.5 0 0.3970 2893.38 5.50 0 .4170 305 5.23 5.50 0.4275 3215.38 5.5 0 0.4247 3375.50 5.50 0.4205 3 5 3 5.58 5.5 0 0.4254 3742.77 5.50 0.4216 3927.14 5.50 0.4304 4111.42 5.50 0.4235 4250.01 5.50 0.4 29 1 4365. 58 5.5 0 0.42 86 41.65 7.50 0. 1 127 69. 86 7.50 0.1106 109. 60 7. 5 0 0.1117 15 8.24 7.50 0.1136 187.58 7 .50 0.1134 241.94 7.5 0 0. 1204 265 .37 7.50 0.1412 288.29 7. 50 0.2134 3 59.31 7.50 0.2608 453.05 7.5 0 0.3 009 5 2 3. 03 7. 50 0.2812 615. 14 7.50 0.2765 708. 98 7.50 0.2366 825.03 7.50 0.2 862 919.26 7.5 0 0 .2801 1036. 78 7.5 0 0.2854 1294.33 7.50 0.2916 1 34 0.30 7.50 0.2791 1390. 03 7.50 0.2957 1413.31 7.50 0.3239 1460 . 76 7.50 0 .3464 150 8. 76 7.50 0.3416 1578.64 7.5 0 0.3478 16 5 2.20 7 .50 0.3434 1675.52 7.50 0.3404 1722.02 7.50 0.3384 1778.37 7.50 0.3416 189 5.42 7.50 0.3480 1987.31 7.50 0 .346 1 2C89.41 7.5 0 0.3469 2 195. 12 7.5 0 0.3435 2311.49 7.50 0.3 84 1 2450.79 7. 50 0.3871 2588.78 7 .50 0.3862 2626.43 7. 50 0.3871 -141-Time(min) Depth(cm) w(cm3/cm^) 2892.48 7 .50 '0.4083 3054.37 7.5 0 0 .4050 3214.48 7.50 0.4 05 7 3374.60 7.50 0.4044 3534.69 7.50 0.4086 3 741 .85 7.50 0.4083 3 9 2 6.18 7.5 0 0.4121 A110. 53 7. 50 0.4134 4 2 49.14 7.50 0.4129 4364.59 7.50 0.4 06 5 39. 50 10.00 0.1228 68.46 10 .00 0.1264 10 8.18 10.00- 0.1204 156.84 10.00 0.126 8 186.17 10 .00 0.1228 240.83 10.00 0.2201 . 264.26 10.00 0.2405 287. 18 10.00 0.2 49 8 358.00 10.00 0.2819 451 .93 10 .00 0.3 120 521. 92 10.00 0.2896 614.02 10.00 0.2905 707.84 10.00 0 .2934 823.94 10.00 0.2903 918.15 10 .00 0 .2926 1035.67 10.00 0.2888 1293.21 10.00 0.2927 1339.19 10.00 0 .2909 1388. 91 10.00 0.3048 1412.19 10.00 0.3715 1459.64 10 .00 0.3892 15C7.42 10. 00 0.3939 1577.53 10.00 0.3947 .1651.08 10.00 0.3910 1674.40 10.00 0.3889 1720.90 10 .00 0.3901 1777.23 10.00 0.3940 1894.38 10.00 0.3950 1986 .20 10 .00 0 . 39 2 5 2088.29 10.00 0.3939 2 194.00 10.00 0.3985 2310.39 10 .00 0.4154 2449. 66 10. 00 0.42 3 5 2 58 7.64 10.00 0.4253 2625. 32 10.00 0.4 184 2891.37 10.00 0.4373 3053.23 10 .00 0 .4365 3213.38 10.00 0.4320 3373 .48 10.00 0 .4359 3533.58 10.00 0.4 4 04 3740.75 10.00 0.4388 3925.03 10 .00 0 .4384 4 109. 41 10.00 " 0.4452 4248.01 10.00 0.4346 Time(min) Depth(cm) w(cm.3/cm^ ) 4 363.46 ~ " 10.00 0.4366 38. 00 12.0 0 0. 1 1 89 61 .30 12.00 0.1 16 1 10 7.04 12 .00 0.1J.54 155.69 12.00 0. 1152 18 5.05 12 .0 0 0 .1247 239.94 12.00 0.2 38 2 26 3.28 12.00 0.2 461 286.28 12.00 0 .2508 3 5 7. 10 12.00 0. 2650 451.03 12.00 0.2989 521.02 12.00 0.28 14 6 13. 14 12.00 0.2817 706.97 12.00 0 .2846 82 3. 02 12.00 0.2878 917.25 12.00 0.2825 1034.78 12.00 0.2875 1292.32 12.00 0. 2850 133 8.29 12.00 0.2871 1388.01 12 .00 0.3153 1411.28 12.00 0. 3927 1458.78 12.00 0.403 8 1506.75 12.00 0.4049 1576.63 12.00 0.4067 1650. 19 12 .00 0.4130 1673.51 12.00 0.4096 1720.01 12.00 0.4034 177 6.36 12 .00 0 .4098 1893.48 12.00 0.4185 1985.30 12.00 0 .4 119 2087. 40 12.00 0.4112 2 19.3. 11 12.00 0.4090 2309.48 12.00 0.4267 2 44 8. 78 12.00 0.4277 2586.77 12.00 0.4244 2 624. 41 12.00 0.4202. 2 890. 47 12.00 0.4305 3052.34 12.00 0.4339 3212.47 12 .00 0.4360 3372.59 12.00 0.4312 3 53 2 .68 12.00 0.4358 3739. 83 12.00 0.4271 3924.17 12.00 0.4371 4108.52 12 .00 0.4 32 1 4247. 12 12.00 0.4344 4362 . 58 12.00 0.4354 37. 67 14 .0 0 0.1034 66. 15 14.00 0. 1 030 105.89 14.00 0 .10 34 154.56 14.00 0.103 2 183.89 14.00 0.1925 239.06 14.00 0 .2245 262.49 14.00 0.2298 285.39 14. 00 0.2406 -142-Time (rain) Depth(cm) w(cm cm J) 35o. 20 ' 14.00" 0.24 30 450. 14 14. 00 0. 2766 520. 14 14.00 0.2591 612.22 14.00 0.26 16 706 . 12 14. 00 0. 2 5 80 822. 14 14.00 0.2 60 1 916.35 14.0 0 0.2592 1033.87 14. 00 0.2638 12 9 0 . 9 9 14.00 0.2 58 5 1337.40 1 4. 00 0.2 64 8 1387.09 14.00 0.3104 1410.38 14.00 0.3916 1457.83 14.00 0.4041 1505.83 14.00 0.3976 1575. 75 14.00 0.4064 1649.28 14. 00 0.4040 1672.19 14.00 0.4036 17 19. 11 14.00 0. 3991 17 7 5 . 46 14.00 0.4018 1892.57 14.00 0.4079 1984.40 14. 00 0.3972 2086.50 14.00 0 .4049 2.192. 20 14.00 0.4084 2308.58 14. 0 0 0.4175 2447.87 14.00 0.4 136 2585.84 14. 00 0.4169 2623.52 14.00 0.4092 2889.13 14 .00 0.4082 30 51. 43 14. 00 0.4219 3211.58 14.00 0 .408 1 3371. 69 14. 00 0.4206 3531.78 14 .00 0.4130 3738.95 14.00 0.4148 3923.24 14.00 0.4210 4107.61 14.00 0.4159 4246.21 14.00 0.4217 4361.66 14.00 0.4223 36.48 16 .00 0.0865 65. 03 16. 00 0.0838 104.74 16.00 0.0888 153.40 16 .00 0.1662 182.75 16.00 0.2 129 238 . 19 16.00 0.2337 261.55 16.00 0.2329 284.52 16.00 0.2478 355.35 16.00 0.2510 449.25 16.00 0.2763 519.29 16.00 0.2613 611.38 16.00 0.2598 705. 20 16.00 C 2669 821 .26 16.00 0.272? 915.49 16 .00 0.2605 1033.00 16.00 0.2636 1290.56 16.00 0 .2690 Time (rain) Depth(cm) w(cm cm ) 1 33 6. 54 16.00 0.2 60 7 1386.23 16.00 0. 322.4 1409.51 16.00 0.3728 14 56.99 16. 00 0.3 892 150 4.99 1 6 . 0 0 0.3830 1574.39 16 .00 0.3945 1648.41 16.00 0.3902 167 I.76 16 .00 0.3932 1718.22 16 .00 0.3365 177 4.39 16. 0 0 0.3917 189 1.71 16.00 0.3945 .1983. 53 16.00 0. 3908 208 5.62 16.0 0 0.3849 219 1.35 16 .00 0.3988 2307.71 16. 02 0.3997 2 44 7.00 16 .00 0 .3965 2584.99 16 .00 0.3959 2622.63 16. 0 (J 0.3958 2 8 88.69 16 .00 0 .3993 3 050. 59 16.0 0 0.3968 3210.70 16.00 0.3982 3370.31 16.00 0.4025 3530. 92 16. 00 C.4060 3 73 8.08 16.00 0.3970 3922.39 16.00 0.4 06 7 4106. 76 16.00 0, 4037 4245.37 16.00 0 .410 3 4360. 81 16.0 0 0.4088 35.37 18.00 0.1018 63 .86 13 .00 0.1038 103.62 18. 00 0.0989 152.27 18.00 0.2202 181. 64 18.00 0.2475 237.30 18.00 0.2636 260.70 13.00 0 .2634 2 83.63 18.00 0.2712 354.46 13.00 0.2 761 448.39 18 .00 0.3 04 1 518. 39 18.00 0.2 83 3 610.47 18.00 0.2849 704.2 8 18.00 0.2858 820.39 18.00 0.2 894 914.60 18.00 0.2870 1032.12 18. 00 0. 2864 1289.64 18.00 0.2901 1335.62 18 .00 0.2931 1385.38 18. 00 0.3 542 1408.61 18.00 0.3870 14 56.08 18.00 0.3 94 2 1504.08 18.00 0.4025 1573 .99 18.00 0.4015 1647. 51 18.00 0.4002 1670.84 18.00 0.3934 1717.37 18 .00 0 . 3959 Time(min) Depth(cm) wCcm^/cm^) 1773. 68 18. 00 0.3 976 1890 .31 18.00 0.4 05 2 198 2.63 18.00 0.4002 2084.53 18. 00 0. 3984 2190.43 18 .00 0.3933 2 306. 81 18 .0 0 0.4090 2446.10 18.00 0.4180 2 584 .19 13 .00 0.4181 2 621.78 18. 00 0.4110 2887.80 18. 00 0.4193 3049.69 18.00 0.4211 3209.81 13.00 0. 416 9 3369.97 18.00 0.4166 3 530. 01 18.00 0 .4215 3737.20 18.00 0.4129 3921.49 18.00 0.4191 4105. 84 18.00 0.4270 4244.45 18.00 0.4255 4369.92 18.00 0.4223 - 1 4 4 -APPENDIX IV •k Total water potential as a function of time at various depths for wetting of the layered s o i l column A l l water potential is given in cm of water unless otherwise noted -145-Time (min) .* Depth(cm) 72 1.60 -87.66 ba-107 1.60 -90.48 IT 151 1.60 -92.03 I t 187 1.60 -89.50 I t 277 1.60 -89.74 TI 441 1.60 -77.22 t l 469 1.60 -77.01 t t 478 1.60 -76.89 t t 507 1.60 -70.41 t f 530 1.60 -64.90 t f 544 1.60 -62.70 t l 557 1.60 -56.09 t l 575 1.60 -53.39 f t 599 1.60 -45.07 t f 610 1.60 -39.69 f t 618 1.60 -38.46 t t 627 1.60 -31.98 t f 631 1.60 -31.73 f t 643 1.60 -29.16 652 1.60 -23.78 656 1.60 -23.78 666 1.60 -20.60 674 1.60 -15.95 687 1.60 -13.87 693 1.60 -11.34 705 1.60 -9.26 711 1.60 -6.93 724 1.60 -3.79 733 1.60 -2.48 717.30 1 .60 -620.624 738 .00. . 1.60 -626.838 783 .30 1 .60 -614.360 809.30 1. 60 -598.308 8 22 .00 1 .60 -537.737 8 34. 80 1 .60 -57 8. 341 847.40 1 . 60 -567.378 862 .80 1 .60 -55 2 .501 875.60 1 .60 -460.105 888 .20 1 .60 -434.378 921 .00 1 .60 -4 35.16 1 933.70 1.60 -469.501 944 .10 1.60 -456.581 957 .00 1.60 -440.529 969.80 1 . 60 -423. 694 982.50 I .60 -407.251 994.20 1 .60 -391.590 1010.50 1 .60 - 3 73. 139 1023.10 1 .60 -357.529 1035.70 1 .60 -343. 826 Time(min) Depth(cm) 10 59 .30 1 .60 -31 7. 59 5 1078.40 1 .60 -297.62 8 1099.00 1.60 -281.135 1125 .00 1 .60 -2 60.04 3 1145.60 1.60 -245. 949 1168. 10 1 ,60 -232. 246 1193 .50 1 .60 -218.934 1222.80 1 .60 -205.623 1286.70 1 .60 -133.307 1326.90 1 .60 , -170.387 1365.70 1. 60 -159.475 1379 .50 1.60 - 15 5.901 1332.50 1 .60 -154.335 1404.20 1.60 - 149. 637 1432.50 1 .60 -141.024 1485.90 1 .60 -117.92 5 1499 .20 1 .60 -113.22 7 1553 .40 1 .60 -94.043 1606.70 1.60 -78. 332 1667 .80 1 .60 -6 7.811 1630 .10 1 .60 -59.825 1818.60 1. 60 -52.934 1917 . 10 1 .60 -49.176 20 34.50 1 .60 -47. 453 2157.10 1 . 60 -46.85 7 2277.90 1 .60 -27.721 2395,80 1 .60 -24.745 2516.60 1 .60 -24.432 2636 .00 1 .60 -24.745 2757.10 1.60 -24.276 2857 .20 1.60 -23.962 2 862.80 1 .60 -2 3.33 6 28 69.70 1, 60 - 8. 459 2881 .70 1 .60 -3.447 2905.20 1. 60 -2. 82 1 2967.70 .1.60 -2.50 3 3088.20 1 .60 -2.664 3207.50 1. 60 -2. 038 3345.90 1 .60 -2.351 35 18. 10 1 .60 -2.351 3638.00 1.60 -2. 194 3763 .90 1 .60 -2.35 1 3885.80 1 .60 -2.586 40 09 .70 1 .60 -2.50 8 41 32 -90 1 .60 -2.038 4251.40 1. 60 -2.508 4371.40 1 .60 -2.35 1 4371.40 1 .60 -2.351 -146-Time(min) Depth(cm) 4371.40 1. 60 -2. 351 4371.40 1 .60 -2.351 4371.40 1 .60 -2.351 4371.40 1.60 -2.35 1 4371.40 1 .60 -2.351 4371.40 1. 60 -2.35 1 4371.40 1.60 -2.351 43 71.40 1 .60 -2.35 1 4 371.40 1. 60' - 2. 3 51 4371.40 1 .60 -2.35 1 74 3.60 -22.30 ba 121 3.60 -22.55 " 153 3.60 -23.38 •» 189 3.60 -24.57 " 266 3.60 -24.10 » 283 3.60 -22.95 " 304 3.60 -23.24 » 334 3.60 -22.44 » 354 3.60 -22.62 " 439 3.60 -10.34 " 453 3.60 -8.54 " 467 3.60 -6.73 » 476 3.60 -5.76 » 488 3.60 -4.57 » 494 3.60 -4.64 » 507 3.60 -3.89 " 515 3.60 -4.07 » 533 3.60 -3.06 » 546 3.60 -2.34 » 559 3.60 -1.94 " 576 3.60 -1.51 » 600 3.60 -0.86 » 502.70~ 3 .60 -314.58 9 579.00 3. 60 -343.391 622 .30 3 .60 -342.96 7 717.80 3 .60 -327. 71 9 738.60 3.60 - 32 1 . 789 766 .30 3 .60 -307 . 388 783.90 3.60 -295.529 809 .90 3.60 -282.822 822 .50 3 .60 -274.351 835.30 3. 60 -267.997 863.40 3 .60 -2 54.86 7 888.80 3 .60 -200. 22 3 921.60 3. 60 -232.842 970.40 3 .60 -219.712 1036.30 3 .60 -208.699 1099.50 3.60 -197.687 1168 .70 3 .60 -184.556 Time(min) bepth(cm) 1287.20 3 .60 -16 2.107 1379 .90 3 .60 -141 .946 I 382. 80 3.60 -145.165 14 04 .60 3.6 0 - 142. 20 0 ' 1432 .90 3 .60 -13 2.035 1486.30 3. 60 - 10 5. 77 4 1499.70 3. 60 - 100.69 1 15 53.80 3.60 -86.714 1607. 10 3. 60 -73.160 16 68 .40 3 .60 -64.096 1630.70 3.60 -5 6.98 0 1319.20 3 .60 " -5 0.203 1917.60 3 .60 -45.459 2035.00 3.60 -44.273 2157.70 3 .60 -4 3.596 2278 .30 3 .60 -25.976 2 396.40 3. 60 -2 3.09 5 2517.30 3.60 -2 .1.909 2636.60 3 .60 -22.926 2757.70 3. 60 -21.232 2857.80 3 .60 -21.909 2863.20 3 .60 -2 1. 062 2 3 70. 10 3.60 -1 1 .405 2882.10 3 .60 -.3 .44 2 2905.80 3.60 -2.08 7 2968 .30 3.60 -1.07 0 3088.80 3 .60 -1.579 3208. 10 3. 60 - 1.070 3346.50 3,60 -0.56 2 3518.70 3 .60 -1.409 3638.60 3.60 -1.070 3764.50 3 .60 -0.901 3886.40 3.60 -1.325 4010.30 3.60 - 1.240 4133 .50 3 .60 -0.39 3 4252.10 3. 60 - 1. 07 0 4372 .00 3 .60 -1 . 240 4 37 2.00 3 .60 - 1.240 4372.00 3. 60 - 1.240 4372.00 3 .60 -1.240 4372.00 3 .60 -1.24 0 4372.00 3.60 - 1.240 4372 .00 3 .60 -1 .24 0 4372.00 3.60 -1.24 0 4372 .00 3.60 - 1 .240 4 3 72.00 3 .60 -1 .240 4372.00 3. 60 - 1. 240 4372 -CO 3.60 -I.240 4372.00 3 .60 -1.240 4372.00 3 .60 - 1. 240 4372.00 3 .60 -1 .240 -147-Time(min) Depth(cm) 4372.00 3 .60 -1.24 0 4 3 72.00 3 .60 - 1.-240 4372.00 3 .60 -1.24 0 4372.00 3. 60 -1. 240 43 72 .0 0 3.60 -1.240 4372.00 3.60 -1.240 4372.00 3. 60 - 1. 240 4372.00 3 .60 -1.240 3 -60 -1.240 . 437^.00 B.60 -4.10 "bars 119 5.60 -4.56 " 129 5.60 -5.06 » 159 5.60 -6.12 » 212 5.60 -8.98 " 257 5.60 -8.98 " 285 5.60 -5.90 » 299 5.60 -5.74 » 334 5.60 -4.81 » 337 5.60 -5.57 » 352 5.60 -6.12 " 363 5.60 -5.74 » 435 5.60 -1.31 " 449 5.60 -0.98 " 457 5.60 -0.89 " 372.40 5.60 -5 5 1. 52 9 380.00 5. 60 -544.268 385.00 5 .60 -534.586 390.20 5.60 -524. 097 395.60 5.60 -513.206 400 .60 5 .60 -496.666 406.20 5.60 -478.110 441.80 5.60 -298.595 444.40 5 .60 -284.073 449.20 5.60 -261.482 454.20 5.60 -241.312 461.90 5.60 -215.091 467.00 5.60 - 199.358 475 .00 5 .60 -133.222 487.70 5.60 -166.280 503.00 5.60 -152. 56 4 527 .70 5 .60 -136 .024 579.40 5. 60 - 117.871 623 .00 5 .60 -110.610 7 18.20 5 .60 -10 I.332 738.80 5. 60 -98. 91 1 766 .60 5 .60 -98.104 810.20 5.60 -96.491 921.90 5.60 -92.45 7 1036 .60 5 .60 -88.826 1169.00 5.60 -84. 792 1287.40 5.60 -80.758 1380.00 5 .60 -79.951 1383.00 5. 60 -77. 531 Time(min) Depth(cm) 1404.80 1433.20 1486.50 1499 .90 1554.00 1607 .30 166 8 .70 1631.00 1819.50 1917.90 20 35.30 2158 .00 2278.50 2396.70 2517.60 2636.90 2758 .00 2 858.10 2 8 63.40 2870 .30 2882.30 2906. 10 2968 .60 3089.10 3208.40 3346.80 3519.00 3638 .90 3764.70 3886.70 4010.60 4133.80 4252 .40 4372.30 4 372.30 4372.30 4372.30 4372.30 4372 .30 4372.30 4372.30 4372 .30 4372.30 4372.30 4372.30 4372.30 4 372.30 4372.30 4372.30 5 .60 5 .60 6.60 5 .60 5.60 5.60 5 .60 5. 60 5.60 5 .60 5. 60 5 .60 5 .60 5.60 5 .60 5.60 5.60 5 .60 5. 60 5 .60 5 .60 5. 60 5 .60 5 .60 5. 60 5 .60 5. 60 5.60 5 .60 5. 60 5 .60 5. 60 5.60 5 .60 5. 60 5 .60 5.60 5.60 5 .60 5.60 5.60 5 .60 5. 60 5 .60 5 .60 5. 60 5 .60 5 .60 5.60 -70.673" -52. 520 -47.276 -46.372 -44.452 -40.418 :39 ".530 •39. 530 -3 8.239 -36. 464 •35. 174 -3 6.62 6 •1 5. 433 •16.617 14.519 15.310 14.842 15.810 10. 969 2. 26 2 5.489 4. 360 5.974 4.199 5.974 6.619 5.651 4. 344 6.135 5. 731 5.974 5. 167 5.167 5.00 5 5. 005 5.005 5. 005 5.00 5 5 .00 5 5. 00 5 5.005 5.005 5. 005 5.00 5 5. 005 5. 005 5.005 5. 005 5. 005 -148-Time(min) Depth(cm ) v 5 .70 7 .60 -73 8 .89 5 70.0 0 7. 60 -756.589 • 102 .20 7.60 -7 37.46 1 2 02.00 7 .60 -30 1.76 2 252.00 7. 60 -5 37. 25 2 261 .80 7 .60 -551.705 284.40 7.60 -576.359 293.30 7.60 - 569. 55 3 298 .70 7 .60 -556 .305 301.20 7.60 -547. 02 9 303 .60 7.60 -536.402 306 .00 7 .60 -52 2.80 0 30 8.30 7. 60 -507.497 310 .80 7 .60 -489.644 313.40 7.60 -466.690 315.80 7.60 -442-386 318.40 7 .60 -415 .63 1 320.90 7.60 -385.076 323.70 7.60 -352.771 326.30 7 .60 -317.065 331.40 7. 60 -243. 10? 334.20 7.60 -209.947 336.80 7 .60 -179.34 2 339.40 7. 60 -154.688 3 41.80 7 .60 -137.635 346.90 7.60 -115.581 357.4 0 7.60 -99.42 3 372 .70 7 .60 -8 9 . 22 7 503.30 7.60 -74.349 623.40 7.60 -73.499 718.50 7 .60 -72.224 810.50 7. 60 -72.649 922.20 7 .60 -71.374 1036.90 7 .60 -7 0. 94 9 1169.20 7. 60 -70. 523 1287.70 7 .60 -70.098 13 80.20 7.60 -70.098 1383.20 7.60 -70.098 1405 .00 7.60 -54.371 14 33.40 7. 60 -48. 845 1486.70 7.60 -4 8.84 5 1500.10 7.60 -4 8. 84 5 15 54.20 7.60 -47.995 1607.50 7 .60 -47.995 1631.30 7. 60 -5. 57? 1669 .00 7.60 -5.062 1819.70 7.60 -5.402 1918.20 7. 60 -5. 062 2035.50 7.60 -4. 722 2158.20 7.60 -5. 402 2278-70 7.60 15.001 2397.00 7 .60 14.661 2517.90 7.60 15.681 Time(min) Depth(cm) V 26 37.20 7.60 15.171 2 758.30 7-60 15.511 2857.40 7.60 16. 17 1. 2 8 63 .60 7.60 2 2.312 2870.50 7.60 33. 19 4 2882.50 7. 60 3 5. 91 5 2906.40 7 .6 0 3 6.035 2 968.90 7 .6 0 3 6. 595 3089.40 7.60 35.915 3208 .70 7 .60 36 .935 3347.10 7.60 36.93 5 3519 .20 7.60 36.765 3639 .20 7 .60 36.2 55 3765.00 7. 60 36.595 3887 .00 7.60 3 6.510 4010.80 7 .60 36.59 5 4134. 10 7. 60 36. 765 42 52.70 7 .60 36.5^5 4372.60 7.60 36.42 5 4372.60 7.60 3 6.42 5 4372 .60 7 .60 36 .425 4372.60 7. 60 36.425 4372.60 7.60 36.42 5 4372.60 7 .60 3 6.42 5 4372.60 7. 60 3 6.4?5 136. 10 10.10 -534.580 160.40 10.10 -532.555 188.00 10. 10 - 530. 531 2.02 .20 10 . 10 -529 .266 2 16. 10 10.10 -528.127 218 .00 10. 10 -5 2 5.469 220 .00 10. 10 -519 .902 221.90 10. 10 -512.310 223.90 10. 10 -503. 199 225.90 10.10 -49 2.317 231.70 10. 10 -44 8. 536 2 35.60 10 .10 -408.55 0 2 37.60 10 .10 -3 83.117 2 39.80 10.10 -350.091 245 .20 10 . 10 -257 .719 252. 10 10. 10 - 1 31.43 7 255 .30 10. 10 -99.297 256 .90 10 . 10 -9 1.95 3 258.60 10. 10 -89. 42 7 262 .00 10 . 10 -8 4.37 2 270.30 10.10 -8 0. 32 3 293-60 10. 10 -74.875 331 .70 10 . 10 -69 .941 373.00 10. 10 -66. 144 503.60 10 . 10 -6 2.72 8 623.60 10.10 -62. 72 8 718.80 10. 10 -61.589 810 .80 10 . 10 -61.589 922.50 10.10 -61.842 -149-Time(min) Depth(cm). 1 0 3 7 . 2 0 1 0 . 10 - 6 2 . 3 4 8 " " 1 1 6 9 . 5 0 10 . 1 0 - 6 2 . 4 7 5 1 2 3 7 . 9 0 1 0 . 10 - 6 1 . 7 1 6 1 3 8 0 . A O 1 0 . 10 - 6 1 . 5 8 9 1 3 8 3 . A O 10 . 1 0 - 6 1 . 4 6 3 1 A 0 5 . 2 0 1 0 . 10 - 4 5 . 3 9 3 1 4 3 3 . 6 0 10 . 1 0 - 4 1 . 5 9 6 14 8 6 . 9 0 1 0 . 1 0 - 4 1 . 3 4 3 1 5 0 0 . 3 0 1 0 . 1 0 - 4 0 . 9 6 4 1 5 5 4 . 4 0 10 . 1 0 - 4 0 . 7 1 1 1 6 0 7 . 7 0 1 0 . 1 0 - 4 0 . 2 0 5 1 6 6 9 . 3 0 1 0 . 1 0 - 3 9 . 8 2 5 1 6 3 1 . 5 0 10 . 1 0 - 3 9 . 6 7 3 1 8 2 0 . 0 0 1 0 . 10 - 3 9 . 1 1 6 1 9 1 8 . 5 0 10 . 1 0 - 3 9 . 0 6 6 2 0 3 5 . 8 0 1 0 . 1 0 - 3 8 . 9 6 5 2 1 5 8 . 5 0 1 0 . 1 0 - 3 9 . 3 1 9 2 2 7 8 . 9 0 10 . 10 - 1 9 . 0 7 3 2 3 9 7 . 3 0 1 0 . 1 0 - 1 8 . 6 1 8 2 5 1 9 . 2 0 1 0 . 1 0 - 1 8 . 6 1 8 2 6 3 7 . 5 0 10 . 1 0 - 1 8 . 6 1 8 2 7 5 8 . 6 0 1 0 . 10 - 1 8 . 26 3 2 8 5 7 . 7 0 1 0 . 10 - 1 8 . 3 1 4 2 8 6 3 . 8 0 10 . 1 0 - 9 . 4 0 6 2 8 7 0 . 7 0 1 0 . 10 - 0 . 1 9 4 2 8 8 2 . 7 0 1 0 . 1 0 2 . 6 9 1 2 9 0 6 . 7 0 1 0 . 1 0 3 . 2 9 8 2 9 6 9 . 2 0 1 0 . 1 0 3 . 2 4 8 3 0 3 9 . 7 0 10 . 1 0 2 . 9 4 4 3 2 C 9 . 0 0 1 0 . 1 0 3 . 7 0 3 3 3 4 7 . 4 0 1 0 . 10 3 . 4 0 0 3 5 1 9 . 6 0 10 . 10 3 . 5 0 1 3 6 3 9 . 5 0 1 0 . 10 3 . 5 5 2 3 7 6 5 . 3 0 10 . 10 3 - 50 1 3 8 8 7 . 3 0 1 0 . 1 0 3 . 4 7 6 4 0 1 1 . 1 0 1 0 . 1 0 3 . 4 5 0 4 1 3 4 . 4 0 10 . 1 0 4 . 0 0 7 4 2 5 2 . 9 0 1 0 . 1 0 3 . 5 5 2 4 3 7 2 . 9 0 1 0 . 10 3 . 6 5 3 4 3 7 2 . 9 0 10 . 10 3 . 6 5 3 4 3 7 2 . 9 0 1 0 . 10 3 . 6 5 3 4 3 7 2 . 9 0 1 0 . io"~ 3 . 6 5 3 4 3 7 2 . 9 0 1 0 . 1 0 3 . 6 5 3 4 3 7 2 . 9 0 1 0 . 10 3 . 6 5 3 4 3 7 2 . 9 0 1 0 . 1 0 3 . 6 5 3 4 3 7 2 . 9 0 1 0 . 1 0 3 . 6 5 3 4 3 7 2 . 9 0 1 0 . 1 0 3 . 65 3 4 3 7 2 . 9 0 10 . 10 3 . 6 5 3 4 3 7 2 . 9 0 1 0 . 1 0 3 . 6 5 3 6 . 1 0 12 . 10 - 4 8 9 . 0 6 1 7 0 . 4 0 12 . 10 - 4 8 8 . 2 9 I 1 0 2 . 7 0 1 2 . 10 - 4 3 8 . 1 3 6 1 3 6 . 3 0 1 2 . 1 0 - 4 8 7 . 6 7 4 1 6 0 . 6 0 1 2 . 1 0 - 4 8 7 . 2 1 1 Time(min) Depth(cm) 1 8 8 . 2 0 1 2 . 1 0 - 4 8 6 . 2 8 6 1 9 2 . 4 0 12 . 1 0 - 4 8 3 . 3 19 1 9 4 . 4 0 1 2 . 10 - 4 8 0 . 7 3 5 1 9 6 . 4 0 12 . 10 - 4 7 5 . 4 9 3 1 9 8 . 4 0 1 2 . 1 0 - 4 6 9 . 32 5 2 0 0 . 4 0 1 2 . 1 0 - 4 6 1 . 6 1 6 2 0 2 . 4 0 12 . 1 0 - 4 5 2 . 6 7 3 2 0 4 . 4 0 12 . 1 0 - 4 4 1 . 72 6 2 0 6 . 5 0 12 . 10 - 4 2 8 . 7 7 4 2 0 8 . 7 0 12 • 10 - 4 1 3 . 5 0 9 2 1 0 . 8 0 1 2 . 1 0 - 3 9 7 . 4 7 4 2 1 2 . 5 0 1 2 . 10 - 3 7 9 . 8 9 6 2 1 4 . 4 0 12 . 1 0 - 3 6 1 . 7 0 2 2 1 6 . 3 0 1 2 . 1 0 - 3 3 8 . 2 6 6 2 1 8 . 3 0 12 . 1 0 - 3 1 2 . 3 6 2 2 2 2 . 1 0 1 2 . 1 0 - 2 4 9 . 7 6 2 2 2 4 . 1 0 12 . 10 - 2 1 4 . 6 0 7 2 2 8 . 1 0 1 2 . 1 0 - 1 5 0 . 7 7 3 2 3 0 . 1 0 1 2 . 10 - 1 2 5 . 4 3 7 2 3 1 . 9 0 12 . 10 - 10 8 . 5 2 6 2 3 3 . 9 0 1 2 . 1 0 - 9 4 . 0 3 2 2 3 5 . 8 0 1 2 . 10 - 8 5 . 2 4 4 2 3 7 . 8 0 12 . 10 - 7 9 . 5 3 9 2 4 0 . 2 0 1 2 . 1 0 - 7 5 . 2 2 1 2 5 2 . 3 0 1 2 . 10 - 6 9 . 3 6 2 2 9 3 . 9 0 12 . 1 0 - 6 4 . 4 2 3 3 7 3 . 3 0 1 2 . 1 0 - 5 9 . 4 9 4 5 0 3 . 8 0 1 2 . 10 - 5 7 . 0 2 7 6 2 4 . 0 0 12 . 10 - 5 6 . 3 7 3 7 1 9 . 1 0 1 2 . 10 - 5 7 . 0 2 7 8 1 1 . 1 0 12 . 10 - 5 6 . 4 1 0 9 2 2 . 8 0 1 2 . 1 0 - 5 6 . 4 1 0 1 0 3 7 . 4 0 1 2 . 1 0 - 5 6 . 3 7 3 1 1 6 9 . 8 0 12 . 10 - 5 6 . 7 1 9 12 8 7 . 1 0 1 2 . 1 0 - 5 6 . 2 5 6 1 3 8 0 . 7 0 12 . 10 - 5 6 . 2 5 6 1 3 8 3 . 5 0 1 2 . 1 0 - 5 5 . 9 4 3 1 4 0 5 . 3 0 1 2 . 1 0 - 3 9 . 7 5 8 1 4 3 3 . 8 0 1 2 . 1 0 - 3 6 . 2 1 2 1 4 8 7 . 1 0 1 2 . 1 0 - 3 5 . 7 4 9 1 5 0 0 . 5 0 1 2 . 1 0 - 3 5 . 2 3 7 1 5 5 4 . 6 0 1 2 . 1 0 - 3 5 . 5 9 5 1 6 C 7 . 9 0 12 . 1 0 - 3 4 . 9 7 3 1 6 6 9 . 6 0 1 2 . 1 0 - 1 9 . 5 2 9 1 6 3 1 . 8 0 12 . 10 - 1 9 . 5 2 9 1 8 2 0 . 3 0 1 2 . 1 0 - 1 8 . 6 0 4 1 9 1 8 . 8 0 1 2 . 1 0 - 1 8 . 3 5 0 2 0 3 6 . 1 0 12 . 1 0 - 1 8 . 7 8 9 2 1 5 8 . 8 0 1 2 . 1 0 - 1 9 . 5 2 9 2 2 7 9 . 1 0 12 . 10 1 . 1 ^ 4 2 3 9 7 . 6 0 1 2 . 1 0 1 . 6 2 6 2 5 1 9 . 5 0 1 2 . 10 1 . 5 6 4 2 6 3 7 . 8 0 12 . 10 1 . 4 4 1 2 7 5 9 . 0 0 12 . 1 0 1 . 9 3 4 -150-Time(min) Depth(cm) 2858 .00 12.10 2.053 2864 .00 12. 10 10.630 2870.90 12. 10 20. 190 2832 .90 12. 10 22.287 2907.00 12 .10 22.719 2969.50 12. 10 22. 965 3090.00 12. 10 .2.2 . 842 3209.30 12. 10 23.644 3347.70 12.10 2 3.212 35 L9.90 12.10 2 3.33 6 3639.80 12.10 2 3. 39 7 3765.60 12.10 23.274 3765.90 12 .10 -49.256 3766.10 12 . 10 -5 5.36 2 3887 .60 12 .10 23.120 4011.40 12.10 23.151 4134.70 12.10 2 3.32 9 4253 .20 12 .10 23.212 4373.20 12. 10 23.397 6.40 14. 10 -421.857 70.60 14.10 -422.76 0 102.90 14. 10 -423.146 136.50 14 . 10 -42 3.53 3 160.80 14.10 -423. 791 162.80 14. 10 -42 0.56 8 164.60 14 .10 -407.417 166.50 14.10 -380. 34 3 168.40 14. 10 -337.022 181.70 14.10 -76.537 188.40 14. 10 -72.204 202.60 14.10 -67.949 252.50 14 .10 -63.179 293.20 14.10 -60.858 373 .60 14.10 -58.02? 504.20 14.10 -56.604 624.30 14. 10 -56.083 719.40 14.10 -55.959 3 11.40 14. 10 -55.701 923 .10 14.10 -55.959 1037. 70 14.10 -5 5.314 1170. 10 14. 10 -55. 185 1287.30 14. 10 -55.314 1381.00 14.10 -55.314 1383.70 14.10 -52.736 1405.50 14 .10 -38 .42 5 1434.00 14. 10 -35.588 1487.30 14.10 -35.330 15 00.70 14.10 -3 5.97 5 1554.80 14. 10 -34.428 1608 . 10 14.10 -35.201 1669.90 . 14.10 -36.104 1632. 10 14. 10 -36.001 1820.60 14.10 -35.588 1920. 10 14.10 -35.588 Time(min) Depth(cm) 2036.30 14.10 -35.176 2159 .00 14 .10 -35-124 2279.30 14. 10 -15. 06 3 2397 .90 14.10 -14.54 7 2519.80 14.10 -14.495 2638. 10 14. 10 -14.650 27 59 .30 14 . 10 -14.866 2858.30 14.10 -14.341 2864 .20 14.10 -0.056 2871 . 10 14 .10 4.276 28 8 3.10 14. 10 5. 824 2907.30 14.10 6. 39 1 2969.80 14.10 6. 494 3090.30 14.10 6.494 3209.60 14 . 10 7.319 3348.00 14. 10 6. 855 3520 .20 14. 10 7.319 3640. 10 14.10 7 . 42 2 3887.90 14. 10 7. 44 3 4011 .70 14.10 7.371 4135.00 14.10 7. 732 4253.50 14.10 7. 371 43 73 .50 14 .10 7.216 43 73.50 14.10 7.216 4373 .50 14. 10 7.216 4373.50 14 . 10 7.216 4373.50 14. 10 7. 216 4373.50 14.10 7.216 4373.50 14.10 7. 216 4373.50 14. 10 7. 216 43 73 .50 14 .10 7.216 4373.50 14.10 7.216 43 73.50 14.10 7.216 4373 .50 14.10 7.216 4373.50 14. 10 7.216 4373 .50 14. 10 7.216 4 3 7.3.50 14.10 7.216 4373.50 14. 10 7. 216 43 73.50 14.10 7.216 43 73.50 14.10 7.216 4373.50 14.10 7.216 43 73 .50 14 .10 7.216 4373.50 14.10 7.216 6.50 16. 10 -3 11.72 1 70 .80 16 .10 -314. 133 103.00 16. 10 -.3 14. 94 4 136.60 16 . 10 -310.916 138.60 16 .10 -298.027 140.30 16.10 -274.666 142 .20 16 . 10 -242 .041 143.90 16.10 -202.167 15 3.40 16. 10 -68.445 160.00 16 .10 -60.389 188.70 16. 10 -54.347 -151-Time(min) Depth(cm) 202 .80 16. 10 -62.334 252 .60 16.10 -49.917 293.40 16. 10 -49. I l l 3 73.80 16 .10 -47.50 0 5 04.40 16.10 -46.2 92 624.50 16.10 -46.292 719 .60 16 . 10 -46 .695 811.60 16.10 -45.839 923.40 16. 10 -45.839 1038-00 16 . 10 -46.292 1170.40 16. 10 -45. 88 9 1287.50 16.10 -46.292 1331.20 16.10 -46. 292 1383.80 16. 10 -42.264 1405.70 16 .10 -30.534 1434.10 16.10 -31.389 1487.40 16.10 -27.361 1500.80 16 . 10 -27.754 1555.00 16. 10 -26. 153 1608.20 16.10 -30. 181 1670.10 16.10 -30. 261 1632.30 16. 10 - 30 . 261 1820 .80 16 .10 -29 .778 1920.30 16. 10 -29.939 2036.60 16. 10 -29.773 2159.20 16.10 -30. 100 2279.40 . 16. 10 -52. 01 1 2398 .20 16.10 -1 1.250 2520.10 16.10 -11.250 2638.30 16. 10 -11.250 2759.50 16 .10 -1 1.250 2858.50 16. 10 -11.250 2864.40 16. 10 -0.456 2871.20 16 . 10 5.989 2883.20 16. 10 7. 922 2907.60 16 .10 8.03 3 2970.10 16.10 8. 244 3090.60 16. 10 8.083 3209 .90 16 .10 8.889 3348.20 16.10 8. 405 3520.40 16. 10 8. 566 3640 .30 16 .10 8 . 566 3888. 10 16. 10 8. 325 4012.00 16. 10 8. 244 4135.30 16 .10 9.050 4253.80 16. 10 8. 727 4373 .80 16.10 8.727 4373.80 16 .10 8. 727 Time(min) 4373.80 4373 .80 43 73-80 4373.80 43 73 .80 4373.80 Depth(cm) 4373.80 4373.80 4 3 73.8 0 4373.80 4373.8 0 43 73.80 4373.80 4373.80 4373.80 4373.80 4373.80 4373 .80 4373. 80 16 . 10 16 .10 16.10 16. 10 16 . 10 16. 10 16 • 10 16.10 16. 10 16 . 10 16.10 16. 10 16 . 10 16. 10 16. 10 16 . 10 16. 10 16.10 16.10 8. 727 8 . 72 7 8.727 3.727 8 .72 7 8. 72 7 8.727 8. 72 7 8. 72 7 8.727 8. 727 8.72 7 8 . 72 7 8. 72 7 3. 727 8. 727 8. 72 7 8.72 7 8. 72 7 -152-APPENDIX V Water content as a function of time at various depths for drying induced by drainage and evaporation of the non-layered s o i l column -153-Time(min) Depth(cm) ( 3/ 3N w(cm /cm )4 . 10 1 7. 92 3 1 .94 4 0 . 6 0 6 0 . 95 i"1.50 0 . 8 ' 1 0 . 5 0 0 . 50 0. 5 0 0 .4 26 8 o . 4 ] ;»/ 0 . 4 :>'-' 5 0 . 4 181 0. 4 1.26 7 4 . at 33 . 43 1 1 6 . 0 0 14 3 . 9 0 1 8 5 . 6 0 2 2 7 . 2 7 0 . 8 0 C . 5 0 0 . 5 o 0 . 50 0 . 5 0 0 . 5 0 0 . 4 1 3 5 0 . 4 0 = > 7 0 . 4 1 1 1 0 . 4 0 37 O . t l 2 4 o . 4 0 7 0 26 3 . 3 4 3 3 0. 35 39 5 . 19 46 5 . 4 3 5 3 5'. 21 59 1 .12 0 . 50 0 . 5 0 0 . 50 . 0 . 5 0 0 . 5 0 0 . 4 0 9 0 0 , 4<"> 3 3 0 . 4 1 6 1 . 0 .4 0' 9 8 0 , 4 1 0 0 0 . 4 0 7 7 6 3 2 . 9 5 64 6 . 8 0 6 60 . 6 6 6 7 4 . 6 1 7 1 6 . 3 7 7 4 4 . 1 3 0 . 5 0 P O O o c; p 0 . 5 0 0 . 50 0 . 5 0 0 . 3 0 0 7 0 . 4 0 9 7 0 . 4 0 3 0 0 . 4 0 39 0 . 4 0 5 4 Q ,4047 7 8 5 . 7 0 8 1 3 . 4 6 8 5 4 . 9 4 8 8 2 . 54 9 2 3 . 2 8 5 6 4 . 2 0 0 . 5 0 0 . 5 0 0 . 5 0 0 . 5 0 0 . 5 0 0 .5 0 0 . 4 0 6 1 0 , 4. o o l 0'. 4 0 7 2 0 . 3 08 5 . 0 . 4 0 2 3 0 .4 0 I 1 1 0 1 8 . 3 6 105 8 . 8 6 1 0 9 9 . 4 5 1 1 13 . 3 0 1132 . 3 4 1 1 4 6 . 3 7 0 . 6 o 0 . 5 0 0 . 5 0 0 . 5 0 (; . 5 0 0 . 5 0 0 . 3 9 74 0 . 4 0 1 1 0 . 3 9 7 0 0 . 3 0 8 5 0 . 4 0 56 0 . 3 09 2 117 4 . 7 2 120 2 . 9 5 1 24 5. 45 129 3 . 72 13 5 2 . 4 6 1 4 0 9 . 2 1 0 . 5 0 0 .5 0 0 . 5 0 0 . 5 0 0 .5 0 0 . 5 () 0 . 3 9 6 9 0 . 3 8 7 6 0 . 4 0 1 7 0 . 3 9 3 0 0 . 39 0 0 0 , 307 3 146 6 .0 5 1 5 0 4 . 4 5 15 1 7 . 9 8 15 3 1 . 9 5 155 9 . 8 9 I 6 1 5 . 49 0 . 50' 0 . 50 0 . 5 0 0 . 5 0 0 . 5 0 0 . 5 0 0 . 3 9 1 8 0 . 3 ° 2 1 0 . 3 04 1 0 . 3 9 8 0 . 3 8 1 9 0 . 3 946 1 6 7 1 . 5 3 1 72 7. 39 178 3 . 0 5 183 8. 94 1894 . 18 2010 . 8 9 0 .5 0 0 . 6 0 0 . 5 0 0 . 5 0 0 . 5 0 0 . 5 0 0 . 3 ° 8 0 0 . 3 07 0 0 . 3 » 3 6 0 . 3 9 4 0 0 . 3 8 61 0 . 3 8 8 9 Time(min) Depth(cm) w(cm~V cra^  20 24 . OS 5'. 5 'j 0.">O06 .2 03 0 . 4 0 . * r; >'\ • . O' . 30 3 '• 2 0 5 4 . 4 0 ! 1 . '0 \J . OO 1 2 0 8 4 . 2 6 0 . 6 0 .' . 3 5 5 2 1 1 0 . 5 4 ; i 0 O '"' . 5 ' 8 2 1 5 8 . 2 0 0 . 81) ' . " ; ; 7 <i20 3 . 16 r "* ,i p. i 1 • „ s i 2 2 6 4 . 3 0 = • . 50 O . 7 7 1. 2 3 2 1 . 19 0. 5 0 2 3 7 8 . 9 2 0 . 5 0 3737 24C.7. 8 0 0 . 5 0 <.' .3 7 5 7 24 2 8, 99 0 , 5 1 0 . 3 703 2 4 4 3 . 5 6 0 . 5 0 i . 3 7 5 Q 2 4 5 8 . 22 0 . 50 • . 3 8 1 2 2 4 3 7 . 5 0 0 . 5 0 0.5 76 7 2 5 1 6 . 4 5 p ft p 0 . 3 7 3 ? 2 5 6 0 . 2 2 0 . 0 0 . 'i 6 76 263 2 . 8 0 0 . 5 0 0=3853 2 7 0 3 . 6 5 v . o 0 . 3 7 6 0 2 7 4 6 . 5 2 . . 5 . 5 0 0 . 3 82 7 2 8 5 9 . 5 0 ' 0 . 5 0 0 . 372 4 2 8 6 ° . 12 0 . 0 1) 0 . 8 7 6 1 2 9 1 7 , 3 2 P C ,'i 0 . 3 7 3 0 2 0 6 5 . 7 5 0 . 5 0 0 . 3 5 9 3 0 0 4 4 . 5 / 0 . 3 4 5 7 5 08 9 .02 0 . 3308 3 1 - 4 . o ? 0 . 3 20 1 34 3 1 . 30 0 . 5 0 . 2 6 7 2 34 7 6 . 6 2 0 . 5 0 0 . 2 56 1 3 ') 4 4 . 01 . • } « J „- 0 . 2 3 0 1 3 6 4 7 . 5 0 1 • « 0 . 2.2 14 3 7 3 * . 6 5 * r . 2 0 2 8 - 8 5 1 . 7 0 0 . 1 5'1 59 6 4 . 30 ( . 5 r 0 . 1 8 9 1 4 0 5 4 . 1 2 • " .50 0 . 1 8 4 7 4 13 1. 50 0. 5 0 0 . 1 7 7 7 4 3 5 8 . 1 2 0 . 5 0 0 . 1 6 0 8 4 4 7 5 . 0 0 5.5 •"' 0 . ]. 6 0 1 4 5 8 1 .90 Tl . o O 0 . 161. 9 4 6 8 1. . c» 0 0 . 5 0; O . 1 6 0 6 4 8 1 4 . 51 >' . 5 " O . 1 l ; 7 2 4 0 4 7 . 2 5 \.. .> 0 . 1 5 4 7 5 0 8 4 . 0 6 ' . .• 0 0 . 105 5 5 2 1 8 . 25 0 . ^ 0 1 5 4 3 5 35 1 . 00 i~ -| 0 . 3. 5 4 i 8 4 0 7 . 1 2 0 . 5 0 o . l 5 4 3 5 5 78 . 30 0 . 3 0 0. I 8 1 0 58 4 3 . 0 8 0 . 1 4 5 1 5 fi(..5 0 r-, c, p ... 0 . 1450 6 10 9 . 4 5 r . c o 0 . 1 3 3 c 0435 . 20 J • 7 0 . 1 3 6 6 6 5 6 8 . 3 2 0 . 5 0 • 0 . 1 6 9 n 6 8 8 . 7 0 0 . 6 0 0. V3 5 7 Time(min) Depth(cm) w(cm3/cm^) f:P<Hi. 0 0 0 . 6 3 0.1^ p. c v 5 7 2. 10 C . 5 • i 0. 12 7 4 7 10 7.55 0 . 6 0 0.1.25 9 72 4i0.4 5 0 . 5 0 0 . 1 2 2 4 730 0.65 r r: -v 0. 1256 7 54 J. . Or 0 . 5 0 0i .12 7 4 7 r j o. 4 0 . • ? 0 . 1 18 « 7640.65 0.50 0.1272 790? . 50 0 . 6 0 0 . 1 2 2 8 -029.56 0. 5 0 0. 1. 1. 8 8 0 1 59.40 0. 1200 o 3 3 7. 52 0 . 5 0 o .12 2 1 ^ 4 ] 5 . 40 C . 6 0 0. 117 8 8 547.00 i 6 6 o 0.U 7 7 8 74 8. 93 5! . 5 0 0 .118 7 0 9 3 4.65 0.60 0. 1158 0 1. 5 5 . 8 5 0.60 O.l 134 0 32 0. 3 8 0. 5 0 0.1123 95 12.86 • > • ) 0.1104 5685 .40 o . so . 0.1 108 . 3.63 1 .50" 0 .4 154 17. 48 V- 1.6 0 0.41 5 s 3 1 .50 i ,' 1.50 0 , 4 1. 4 8 4 5.20 : 1.50 0.4l29 60.52 i 1.50 0.401 3 74.45 1.50 0.4070 88. 00 1.50 0.4 102 115.58 1. 5 0 0.40 3 5 143.5 7 1 .5 0 0.3979 18 5.20 1.50 0. 4 0 6 6 2 26.8 5 1.5 0 0.4 06 4 2 82, 93 1 .50 0 .399 6 3 3 8.94 1.5 0 0.4 05 2 3 94.77 J. . 50 0 .40 6 6 4 6 5. 00 1.50 0 . 4 0 ], 2 5 34.80 1. 5 0 ' 0. 4 0 2 4 590 .70 1 . 5 0 0 .40 26 632.54 1.50 0. 3 9 b 5 6 46.40 1 . 6 0 0 .409 8 6 60 . 2 5 1.50 0 .3976 6 74.20 1. 5 0 0.3 93 6 7 15.^5 1 . 50 0.400 3 743.71 1 .5 0 0 . 3 6 9 3 7 8 5.29 1.50 0. 3 86 5 8 13.05 1.50 0.8966 8 54.5 0 1.50 0.39 5 5 8 8 2.13 1. 5 0 0.3878 9 2 2 . 8 7 _ . J. .60 0.59 3! 9 6 3.80 1 . 5 0 0.3 97 7 10 17.95 1 . 5 0 0.3332 10 58.45 1.50 0 . 3 a 9 5 1099.03 1.50 0.3a48 11 17.86 1 .50 0 . 38 40 Time(min) Depth(cm) w(cnr/cm3) 1352.02 1 C, ( i * .. >; . 3 « ? 4 1408.60 1 ? i. • ' ' 0 . 3 0 6 6 1. 4fc 5. 62 J . 0 0 " . 3 02 7 1504.05 1. 5 0 C. 3 7 76 15 17.67 L . 5 0 1 5 3 1. 5 i l.oo . 3 3 0 4 15 50.4H 1 r. " L * . 0. • 7.o• 1 61 5 . 0 8 1 .5=" r s 0 •-. -3 . ... - . 16 7 1. 1 2 1 . :>•-> 0 . 3 70 6 1726.95 J. .53 • 0 .38 1? 1782.ft3 1 . 50 0 . 0 71 3 1 838 . 50 .1. 5 0 1 0.376 2 1893.76 1 .5 0 0 . 3 70 6 20 16. 4 6 • 1.50 0. 3 64 9 20 24.5 2 1.50 0.3709 2038. 9 7 J . . . . • . ' 0 . " '• 7 2054.03 1 . 5 0 0. 3 754 2 0 0 3 . 3 3 1.50 0 . 3 7^2' 2 11 0 • 1 3 1 . 5 0 0 . 3 6 0 0 2151.60 1. 5 '3 0.3713 2 20 7 . 7 4 1 rr j", -L 9 .•*•«.• 0 . 0 7 0 3 22 63.8 5 1.50 0. 36 04 2320 .77 1.50 0.3 6 58 2 378.45 1 .50 0 .3 6 3 3 24 0 7.38 1.50 0 . 3 6 o't 2 4 28.56 1.50 0.3678 2443.15 1 .5 & 0.359? 2457.80 1. 5 0 0 . 3 6 2 3 2 4 8 7.05 1.50 0.359 1 2 516. 05 1 . 5 0 0 . 3 5 4 8 2 559.6 0 1.50 r ;> r: -> • _ * -•' i . . . ' 2 6 31 .38 1. 50 0 .3664 2703. 22 1.50 '3.3612 2746 . 10 1 , 5 0 0 . 5 6 4 9 2.8 5 3 . 6 5 1 .50 0.3666 1131.94 1 .5 0 0 . 3 0 1. 5 1145.95 1.5 0 0.3906 117 4.81 1 .60 0 . 3 8 74 1202.52 1. 5 0 r. p A 1 12 4 5.02 1 . 5 0 0 . 3 0 2 5 12 93.29 ! . 0 0 0.8320 2 8 8 8. 2 0- • . L 0 0 . 3 6 2 7 2 9 1 6 . 4 f 1 . 6i 0 . 3 6 60 2 964.9o 1.5"' ' 3 . 3 44 2 • 3043. !••• 1. . 5 0 0.331 2 3 0 8 9 . 0 2 1 . 50 0 . 3 2 3 .0 3 1 3 3. 7 5 1 . 0 1 0.3 12? 3 4 3 0 . /»n .1 . 0 -< 0 . 2 6 0 347 0, 7 6 1 . 5 1 . 0 . ? 6 c 2 3 54 3 , 2 . 0 1 . 5 0 0.25! 0 3 646.40 1 . Ol 0 . 2 3 5 P 373 5.7 0 1 . 5 0 0.2 2 39 . 3 850.76 1 . 5 0 0.2163 -155-Time(min) Depth(cm) w(cm3/cm3) Time(min) Depth(cm) w(cm3/cm o'O- 3 . 38 3 . !:- o . ? ] 3o • 3 0 3.94 4 •f- 5 . 3 r. ! . 50 9 C 1 0.7O-47 4 6 4 . 2 8. . 4 1 4 4 1 67 1 . ':' 9 0.2 0 24 5 3 5 . 9 -A ;; 0 . O ;, J'i o5<: 7. 30 1 . 50 C . 1 0 2 " 5 8 9.86 r> . 50 . A •4 0 •-460,08 1 . 5 '"• 0 . 3 0 4 7 6 3 1.72 7 0 . 4(i"'' 0 - O b i . 0 0 1 . 80 0.3.8 86 64 8 . 5 7 •s . 5;-) p 0. <••>:• 1. 0 0 1 . '• 0 0 . 1. 862 0 5 9. 4 1 . p 07 7 •• >'• 1 v . 7 0 1.50 0.1802 6-73. 3 8 3 . 5 Ol . ' 0 i. 1 0 4- (-. . 4 ( ; 1.50 0.1788 715.08 • . t- 5; p. ... •')'.• 0 8r« 3. ? 0 1 .80 0.1814 7 4 2. 88 3 . 5 0 0 , 5 ,;; j 0 50 1 7 . 40 1 . 5 0 0 .17 7 1 764.^6 . 5o 0 . 8 0 > 2 08 01.00 1 ir I t . . J 0.1780 812 .22. 0 .000 5 0 4 6 6 . 2 5 1 . 5 0 0.17 0 3 85 3 .66 3 .50 . 3 9 2 6 58 7 7.13 i . rj o 0 . 176 8 881.28 ;) ^ • 0 . 3 94 2 6 8 4 ? . 2 0 1.50 0.172 4 922.02 "> 7 < 6 0 0 . 3 9 7 0' 8975.60 1 . 5 0 0.1710 96 2 .96 3 . 5 0 p 8° 17 6 106.60 1 .5 o 0 . 16 5 0 1017.10 7 n n , 5 o: 4 0 •-4 • /, . /+f : 1 • 5 0 0 . 15 81 105 7.63 T p 7 0 s 0 6 5 8 7.43 ' 1 . 5 0 0 . 1.60 0 10 98 .20, 3 .':- 0 0, 3 0 0i8 6687.37 L . 5 5= 0.1553 1117. 05, 3, 5 0 3 8 73 6 839.10 I. 5 0 0. 16 32 1 1.3 1. 10 3, 5 0 0 , 3 02^ 6 971 .20 i . 50 0.1503 114 5.1 0 3 .50 p. 3 8 00 7106.70 1.50 0 . 15 0 0 117 3.47 5 0 0 . 5 007 7 239.65 1. 50 0.15 10 1201.69. 3 . 5 0 7 5 3 0 7387.50 1 .50 0.151 0 1244.20' < .50 f: . 5. 5 5 0 7 54 0 . 50 1 . 5 0 0.14 8 0 12 0 2.37 3, 5 0 "•' 8 10 7 6 3 8.45 1.50 0.14 3 5 13 51.12 7 5 0 0 .38 60 7 63 9. 75 1 .50 0 . 1 4 q 0 1407.98 5 0 p 3 3 2 6 7 5 99. 6 0 1.50 0 . 3. 507 1464.71 3, 5 0 O , 5 853 8028 . 70 1. 50 0.144 5 150 3 . 2 2 •> 8 0 .'•\ .3822 815 8.48 j. . 5 0 0 . 3. 4 3 4 1516. 75 3, 5 0 5;, 3818 33 3 6.7 0 P4 14.50 I. 50 1 . 50 0. 148Q 0.1415 15 30.68 15 58.84 3. :i 5 0 50 0 "831 . 3 8 .!. 6 8 546. 15 1 . 5 0 0.1464 16 14.22 7 . 5 0 3 8.3 4 8 748 .04 1.50 0.13 9 7 16 7 0.26 j .50 ,-~\ . 0 "7 0' ] 8033.75 1.50 0.1367 1726.05 •> c. p P .:-" 5 4 1 9 1 54. 98 1 . 5 0 0. 13 87 17 81.61 5.0 O .8 77 6 082 7 . 48 1 .50 0.13 3 1 18 3 7.5« 7 « .3778 9 811.90 1.50 0.1356 1 802. 93 p 5 0 . 5 0 3 6 0 684.52 2 . 85 1 . 3 0 3. 5 0 0.132H 0.42 3 7 2C 09. 03 202 3 .6 7 3 < 5 0 5 0 P . 5 6 '•'> . 3 0 0 8 16.5 / 3 . 50 0 . 4- 2 20 20 38.05 5 0 0 . : 4 3 3 0.59 3.50 0 .4l:J] 20 5 3 . 1 5 6 0 l' ' . 5 70 7 4 4.35 3. 5 0 0 . 4 2 5 7 208 3.00 .y . 5 0 .5518 59 .66 3 . 50 0 . 4 0 7 1 2 105.31 7 5 0 .3613 7 3.60 3 . 5 0 0. 62 5 3 2150.96 3 . 5 0 . . 3 c 7 6 87 . 18 3. 5 0 0. 4 0 0 5 2 206.01 .5 < 6 n p .0^17 114.75 3.50 0 .40 4 3 2 2 0 3.04 7 5 0 0 .367C 142.75 3.50 0 . 4009 231'-.84 7 1." r, J . 1 0' . ':, 6 5 7 184.37 3.50 0 . 4 0 6 1 2 3 77. 44 5 0,' 0 . 3 5 7 0 22 6. 03 3.50 0..4 0 4 1 2406.45 3. 5 0 . 3598 282. 10 3.50 0. 4 0i ? 6 2427.75 3 . 50 p . 3 69 1 338 . 1 1 3 .50 0 .4.1 28 2442.28 3. 5 0 O . 346 7 24 56.86 7 50 0; . 3 8 -> 5 Time(min) Depth(cm) w(cm3/cm ) 2 4 3<>. 1 5 5 0' ; 3'5 •' o 2 5 1 5 . 2 2 p o 0 9 ( 3 61 2 5 5 8 . 8 9 6 0 o . 3 4 19 2 6 3 0 . « 3 3 . C' . 3 6 ! 1 2 7 0 2 . 3 2 6 0 9 '3 5 3 8 2 7 4 5 . 1 8 i . ^ 0 0 . " o 8 7 2 6 5 6 . 6 2 3 . 5 0 3 3 5 o 2 6 66 . 36 6- 0 0 , Or'oV 20 1 6 . 6 2 . 5 0 ' <-•, . 3 5 5 6 9 f 3 . 10 o •; P ( 3 4 3 5 j •) 4 1 • 9 0 3 0 . 3 3 72 3 - 6 7 . 2 5 -J 5 0 . 3 2 5 ° 3 13 1 . 9 9 3 4 0 . 3 2 73 34 2 8 . 6 0 5 0 0 . 2 8 1 o 34 7 3 . 9 6 5 0 0 2 7 ••: 0 3 54 1 . 4 0 5 0 0 . 2 7 7 5 3 c 4 4 . 6 0 3 . 5 0 r, "2 5 9 4 " 3 7 3 3 . 5 5 5 0 0 2 4 94 3 8 4 S . 9 9 -.7 . 6 5 ' . 2 4 7 3 396 1 . 6 0 •? 6 0 o 2 3 7 6 4 0 5 1 . 5 0 5 . 3 0 o . 2 3 12 4 12 8 . 3 0 3 5 0 0 . 2 3 1 1 3 6 6. 6 u ^. bii 11, 2 1. 7 4. 4 4 6 3 . 1 7 . 5 0 0 . 2 1 6 3 4 5 7 9 . 3 0 -j . 5 0 0 . 2 1 5 0 4 6 7 9 . 3 0 n 5 0 p 2 0 6 8 4 8 1 1 . 9 5 o . 5 0 P. . 2 0 3 1 4 9 4 4 . 7 3 33 . 60 0 , 2 0 4 7 5 0 8 1 . 50 3 6 0 0 . 2 0 4 4 5 2 1 5 . 5 4 3 . 5 0 o . 1 9 7 3 5 3 4 5 . 2 3 5 0 0 . 1 9 6 9 5 4 6 4 . 50 . 5 0 p 1 9 5 7 5 5 7 5 . 4 0 3 . 5 0 0 . . 1 9 4 4 5 8 4 0 . 5 0 3 . 5 0 0 , 1 8 7 5 6 v / _> . V 5! . 5w 0 . 1 3 8 8 6 1 0 6 . 9 0 0 . 1 8 3 2 6 4 3 2 . 6 2 6 0 0 . 1 76 9 o 5 6 5 . 7 0 - . 5 0 p . 1 7 9 1 6 6 8 6 . 1 2 3 50 n . 1 7 5 6 6 8 3 7 . 4 0 3 . 5 0 0 . 1 76 2 o 9 6 9 . 4 6 . 0 ! 4 1 6 ^ 2 7 1 r 5 . 0 0 3 5 0 0 . 1 7 1 9 7 3 3 7 , . 9 0 3 . '5 p 17 17 7 5 8 6 . 0 5 c> . '.) 0 , 1 6 9 0 7 5 3 8 . 76 3 5 0 « 1 6 9 3 7 6 3 6 . 6 2 . 5 0 o 16 5 2 1 6 3 « . 6 j . J 1 6 6 0 7 85 7 . 9 0 3 5 0 o . 1 6 9 4 8 0 2 6 . 9 6 3 6 ~> P 1 6 6 3 3 1 5 6 . 7 0 3 50 0 . 1 6 6 5 8 3 3 4 . 9 5 3 , 5 0 0 . 16 75 >'412 . 7 0 3 . 5 '3 P 1 6 4 4 Time(min) Depth(cm) w(cm3/cra^) ^TOOT-vr-— - — r , \ . 1 0 0 0 6 7 4 6 . 3 • 0 . 6 0 . 1 ' 0 ' w 0 3 3. . * jO 0 . 1 0 9 0 9 i 5 5 . 2o ' ] 0 . 1 0 7 5 5 - 3 ? r . 7 7 0 . 1 0 / 3 - - 1 - i <" - • 1 1 ^ S f ' 0 1 ' . . / ' ' _ « L • '. so <>2 . /'• 0 . 16 2 .< 2 . o l •'' .O\0 :: 1 5 . ••• 8 i. r, : • .4 18 4 2 9 . 7 0 z'- » V> '.1 0 . 4 1 7 4 4 3 . 5 3 ^ r f\ .MO ' 6 3 . S 4 0.4 0 6 0 7 2 . 7 7 S , 5 ;*) p . 1, 9 3 9 8 6 . 3 5 0 . 4 0 3 5 1 1 3 . 91 5 . oo 0 . 6 0 3 5 14 1 . 8 9 5 . 5 Oi 0 . 3 9 7 7 18 3 . 5 3 5 . 60 0 . 4 0: 6 0 2 2 5 . 19 5 . 5 o 0 . 3 0 0 1 2 8 1 . 2 6 3 . 5 0 '3 . 5 - • 7 7^  3 3 7 . 2 6 5 . 5 0 0 . '+ 0 0 3 3 9 3 . 10 5 . 5 0 0 . 4 0 4 2 4 6 3 . 3 6 5 . 5 0 0 . 0 9 9 5 . 5-7. 15 5 . 5 0 0 . 5 9 74 5 8 9 . 0 3 . 4 0' 3 7 6 3 0 . 65 5 . 5 (31 0 , 4 0 0 3 6 4 4 . 7 4 c c, p 0 . 3 91 7 6 5 8 . 5 7 5 . 5 0 0 . 3 3 5 7 6 7 2 . 5 2 5 . 5 Oi 0 . 3 8 34 7 1 4 . 2 6 5 . r 0 r"i 0 A 7 4- 2 . 0 4 5 . 5 0 0 . 5 7 1 7 78 3 . 6 2 6 . 60 5' . 3 7 5 9 8 1 1 . 3 8 5 . 5 0 0 . c 0 3 9 8 5 2 . 8 3 5 r-; n 0 . 3 8 4 9 8 8 0 . 4 3 5 . 5 0 0 . 3 0.1 7 9 2 1 . 2 0 5 . 5 0 • J . 3 777 9 6 2 . 1 2 5 . 5 0 O . 3 6 3C 1 0 1 6 . 2 6 5 . 5 0 0 . 5 7 0 6 1 0 5 6 . 3 0 5 . 6 0 0 . 3 7 .3 7 1 C 9 7 . 3 7 5 . 5 0 0 . 5 7 3 4 1 1 1 6 . 2 0 5 . 3 oj 0 . 3 6 3 f 1 1 3 0 . 2 6 to c, f • '•• • J c 9 H 114 4 . 2 5 5 . 6 0 0 . 3 6 5 7 1 17 2 . 6 4 5 . 5 0 0 . 5 O 7 9 12 0 0 . 8 5 5 . 5 0 '": . 3<: •"" 124 3 . 3 6 5 . 6-" 0 . 6 6 7 1 2 9 1 . 4 8 5 . 5 0 • * • 1 • ' 3 '• 1 3 6 0 . 2 2 5 . 3 .^ . 0 . 3 5 0 4 14 0 7 . 1 2 5 . 5 o 0 . 7 0 4 7 1 4 o 3 . 8 2 6 . 5 O 0 . 3 6 9 . ' ; 1 5 0 2 . 3 7 5 . 5,0 0 . 5 4 6 2 1 5 1 5 . 6 9 5 . 5 0 0 . 3 5 4 2 1 5 2 9 . « 5 5 . 5 0 0' . 3 5 3 Time(min) Depth(cm) w(cm3/cm3 155 7. 60 5 . ": 0 r'. 3 32 3 1 613.40 5 . 3; 0 0.3 52 7 1 6 6 9.4 4 5.56 9 . " 4 i | 1725. 15 5. 6 0 ' ' 0 '"' I" • • «J 1780.97 5 . 5 0 '5 . 3 5 0 3 1 c 3 6.7 0 5.50 0 .3 4 7 1 1392.09 5. 8 0 0.3 46J 2 1. 0 8 . 8 0 5 . 6 0 0.3 560 2 022.85 5 . 5 0 0.-^ 4 14 2037.13 5. 50 0.33 6 8 2052.22 5 .50 0 . 3096 20 82. 17 5.5 0 0.3~74 2 10 8.46 5 . 5 0 0.3 30 3 21 50.15 5 .5 0 0 .3327 .2206.66 5. 5 0 0. 3 2 3 6 2262 .20 5 . 50 0 . 326 6 2318. 85 5.50 0 .3 0 2 .3 2 3 76.66 5.50 0. .3 2 4 4 2.405 .57 5.50 0' . 5 2 6 6 2426.90 5.50 0. 32 3 5 2 4 41.47 5. 5 0 0.3250 2456.00 5.50 0 .3 2 9 2. 2485. 26 5. 5 (3 0.3170 2514.39 5 .5 0 0.3236 2557.99 5.60 0.32 8 1 2 6 30.07 5. 5 0 0.3 26 8 27 01.42 .5 .5 0 0 . 3 19 2 2 74 4.2 8 . 5.50 0. 3275 2855.05 5 .50 0.3106 "2 304 .-70"" 5 .50 0.3132 2912.80 5.5 0 0.3166 29 6 1.33 c; t; n * 0.3154 3 0 40.15 5.00 0.3063 30 8 5.. 4 5 5.5 0 0.3 0 06 .-> 1 30 . lb . 5 ij 0.6 99 6 34 2 6. 8 0 c- r, ~. . 0.2 7 37 34 72.20 5. 5 0 0. 26 9 6 3 5 39 .6 0' 5 .5 0 0.2714 3 642.82 0.2553 3 7 3 2 . 15 6 . • 0 0. 2 5 0 1 .' 6 <i 7 . i 6 >'•'••• 0.246? 39 50. 6.4 5.50 0. ? 411 4 0 4 9 . 7 0 « r* 0.2287 6127.03 5 .50 0.2328 4 3 5 3. 7 5 5.50 0. 21 80 4 466.40 6 ^ n • • ' 0.21 0 ? 4 5 7 7. 62 5 . 6 0.21 4 ] 4677.56 5. 5 0 0.21 '-3 46 10.20 5 . ^ 0 0.206 1 494 3. 02 r, r r, . . . * •' 0.2 n?^ 5C79.30 5 . 5 0 0.2052 5213.60 5 .5 0 0 . ] 9 4 4 5 34 1.4 5 5.5 0 '.i .10/ 6 6462.62 5 . 8'". 0 . 1 9 6 2 5573.53 5. 5 0 0 . 1 0 1 2 Time(min) Depth(cm) w(cm3/cm3) 3' 0 3 H . 7 6 0 . i : 0 O. 1 C MO 3 3 * 0 . 1 6 !. 0 c . 1 4 O. 1 7r- 7 6 4 -; '.• . \.\ 7' B ' 1 0,17 i < • 5 56 3 .or •*"*•*' 0.18 3 4 6 0 0 4 . 4 0 f ~ •, 0 . 1 6 08 * ".> . 0.18 0 6 6 0 6 7 . 6 0 . 1 7 3 7 7 103. 30 5 . 5 0 0.1 7 5 i /' 2 5 :•> . L 0.1 /O- '" 7 3 8 4.35 5,50 0.174 2 7 6 3 7.05 f-; f \ 0. 17 10; 7 6 .3 4 . 3 0 « 1 ; 0 . 1 6 6 6 7 6 3 0 . 15 !" t-~, " : * 0. 170« 7696.20 6 . 6 0 0 . 1 6 3 4 •0 ,- •.•. ^ . • • ' ' 0.16/6 8166.9o 0.17 13 0 3 3 3.25 5 . 5 5; 6 .16 8 8 8 41 0.46 ' J . ' • 5 0.16 7 6 3 5 4 7 . 6 ? 0 . 6 0 0.1708 0 74 4 . 50 5 . 5 0 0 . 1 6 8 p 463u.2o • 0 ' • " 0. [ 63 0 915 1.4 0 c: /-• 0.15 96 5 3 2 4, 9 9 {-" 0.1621 95 0 3.40 5 . 6 -.i 0 „ 1 6 06 06 30 .98 r; c: . 0.15 9 0 1.36 7 .0 0 0 . 4 0 V: 8 15.00 7 . 0 6 0,3071 2 5 .0.3 7 .0 0 0 .4034 4 2.90 7.0 0 0. 4 0 > 2 5 8.21 7 . 00 0 . 3 86 6 7 2 .1 5 7 . 0 0 •">. 3 9 2 2 85. 72 7 . 0 0 ' 3 . 3 6 6 7 113.26 7.00 0 . 0 6 / 7 14 1.27 7 .00 5 .305 0 182.90 7.00 0. 3 9.1 2 224 .56 7 .0 0 ^ . 8 4 0 2 80.65 7 .0 0 0 . 5 3 3 5 3 6.65 7. 0 0 0. 3 7 v 1 39 2.48 7 . 0 0 0.3731 4 62.72 7 . 0 0 0 . 39 0 7 5 3 2.61 7 . r >., 0 . 3 7 9 2 6 88.40 7 .00 0 . 3 7 5.3 6 30.24 7 . 0 0 0. 5' 7*7 6 4 4 . 0 9 7.00 r .351 6 6 5 7. 55 7 . 0 0 0 . 3 6 i 5 6 7 ].. ''Ji: 7 . 0 0 0. 3 5 3 5 7 13.6!; 70 00 0 . V.;, 3 74).40 7 . 0 0 • J . :' -J / 5 78 3 . 00 7.00 0 . 3 4 1 8 8 10. 75 7 . 0 0 0 . 3 4 1 2 8 6 2.20 7 . 0 0 0 . 347 3 8 7 9 . 8 1 7 . 00 0 . 3 4 2 2 °20.56 7.0-0 0. 3 50 5 9 6 1. 49 7. ' 0 0. .341 u 1 '315. 62 7.00 (3. 3 4 5 1 -158-Time(min) Depth(cm) w(cm3/cm3 I 0 56 . 1 8 7 .0 r; 0 . 4 5' ' 1 0 0 6 . 7 4 7 . 0 0 0'. 3 4 ? 1 1 1 1 5 . 5 3 7 . o 0 o . 0 1 6 6 1 1 2 0 . 62 7 . 0 5' ' . 3 2 3 0 114 3 . 6 8 7 . 0 0 0 . 3 10 1 i 1 7 2 . 0 0 7 . 0 0 0 . 8 1. 3 3 1 2 C O . 2 2 7. 0 0 0 . 3 0 0 3 128 2 . 7 2 7 . 0 0 0 , 3 1 0 0 12 0 0 . 80 7 . f • 0 o . 3 C ? 1 3 8 0 . 5 7 7. 0 0 0 . 3 04 2 14 06 . 50 7 . 0 0 0 . 3 1 *• 3 14 6 3 . 1 4 7 . 0 0 0 . 3 0 34 1 5 0 1 . 7 5 7 . 0 0 0 • 3 0 3 4 15 15 .26 7 . 0 0 0 . 804 1 1 5 2 9 . 21 7 . 0 0 0 . 2 987 1 5 5 7 . L 8 7 . 0 0 0 . 2 0 1 3 16 1 2 . 7 6 7 .0 0 0 . 2 068 1 6 6 8 . 8 0 7 . 0 0 0 . ? 8 70 17 2 4 . 4 8 7 . 0 0 0 . 2 5 1 0 178 0 . 8 6 7 . 0 0 0 . 2 8 7 2 1.836.02 7. 00 0 . 2 02 8 1891 . 4 5 7 . 0 0 o . 2 0 0 3 2 0 0 8 . 1 8 7 . 0 0 0 . 8 0'-} 9 20 22 . 22 7. 0 0 0 . 3 736 2 0 3 6 . 5 0 7 .0 0 0 . 27 20 2 0 5 1 . 58 7 . 00 0 . 2 72 7 208 1 . 5 5 7 . 0 0 0 . 267 4 2 1 0 7 . 82 7 . 0 0 " oTTTo 2 ' 2 1 4 9 . 5 0 7 . 0 0 0 . 2 6 2 1 2 20 5 . 4 3 f . 0 0 0 . 2 6 3 3 2 2 6 1 . 59 7 . 00 0 . 2 6 5 5 2 3 1 8 . 2 7 7 . 0 0 0 . 2 6 3 2 2 3 7 5 . 9 9 7 .0 0 0 . 8 6 4 6 24 0 4 . 9 0 7 . (5 0 0 . 2 6 4 3 2 4 2 6 . 2 5 7 . 0 0 0 . 2 5 5 1 244 0 . 8 5 7 . 0 0 0 .2640! 2 4 5 5 . 3 3 7 . 0 0 0 . 2 6 3 7 2 4 8 4 . 5 9 7 . 0 0 O ? K -a 7 2 5 1 3 . 7 5 7 . 0 o 0 . 2 5 7o 2 55 7 . 3 2 7 . 0 0 O . 2 5 5 0 2 62 9 . 4 0 7 .0 o 0 . 8 6 1 2 7 0 0 . 73 , 7. OQ 0 . 2 0 i 5 2 7 4 3 . 6 2 7 . 0 0 0.26-. , 2 . 2 8 5 3 . 7 0 7 .0 0 0 . 2 S ,0 9 2 8 8 3 . 3 0 7 . ( 0 ; 0 . 2 5 3 ? .-. O L . t d ' . • 0 . c 0 5 8 2 9 5 0 . 9 8 7 . 0 0 0 . 2 5 4 1 3 0 3 8 . 8 0 7 . 0 0 , 0 . 2 46 7 5 0 3 4 . 10 7 . 0 0 0 . 2 466 3 1 2 8 . 8 0 7 .0 0 0 . 2 4 1 2 3 4 2 5 . 4 5 7. O'l 6 . 9 3 1 0 Time(min) Depth(cm) w( cm3/cm3^ ~ 4 70 . S'- 0 . 0 1 3 7 " ' -830.30 0 . v 1 7 5 •'• 0 4 i , 0 5 0.5 00 1 5 73'' . 0 0 7 . 0 0 . c 0 7 1 3 8 4 5 . 0 4 7 . ' 0 0. ' : 0 7 ! ) *: 5 - . 4 5 7. 1 0 . 1 8 8 ••' '; 4 * . ^ ' ' 7 . • ~ ••TTi-- < " 7. ' p 0 . 1 8 06 •'i 5 0 0 . 4 ~ 7 . c '-.1.76 8 » 4 6 6 . O1; 7 ..'I •. 0 . 1 7 3 0 l 5 . •. 7. •" '.i 0 . 1 7 1 1 v • 7 . 2 5 7 . '"0 0 . 1 7 7 0 <• 0L . 1 . 9-: 0.1 0 J 8 4 0 4 1 . 6 5 7.00 0 . 1 6 0 7 , ; ; (' 7 8 . 4 8 7 . 0 0 0.1620 5 2 12.45 7. 10 0 , 1 5 77 8 4 6 . 0 5 7. 8 •••• 0• 15 31 54 6 1 . 'iii 7 . • 1 0.1565 5 5 72.20 7.0.) 0.10 30 " 5 8 3 7.45 7 .0 0 0.144 1 58 7 0 . 9 0 7. 0 0 0 . 1488 6 1 0 3 .on 7 . 0 0 0. 144 1 6 4 20.60 7 . 0 ) ' 0 . 1363 0862.50 7. -oil 0. 1430 66 0 •,, L 0 "50. ! «-. 1 7 6834.20 7 . 0 0 . 1 30 0 6060 . 26 7. >;•.» 0. m o Y 1 0 1 .9 3 7.00 0.13 7 1 723 4 . 0 0 7.0 0 0 . 1 3 3 4 7383.00 7 . On 0 . 13 6 7 7 5 3 5.75 / .0 0 n .1328 76 8 3 . 5 0 7. 0 is 0 i . 1 2 3 4 7'- 7.0 0 0 . 1 3 2 6 7 3 04.00 7 . 5 0 0 . 1 3 O S 802^.93 7 . 0 0 0 . i 3 1 5 5 153.58 '/ . p O 0 . 1 2 7 0 o . i 0 i . ;t 0.17 63 8 4 0 0 . 5 3 7. 0 0 0. .12 8 7 0 8 4 I . 20 7 . 0 0 0 . 1 2 O 8 8 74 8. 20 7. Of- 0. 1 247 o<'>28 . 0 0 / . .' 5 r:. 1 2 4 5 01 5r.or 7 . • ( 0 . 1 2 5 ^  0 • 2 5. r-4 ' . ' 111 0. 1 l7~T~ 0 40 7 . 04 7 . ')''' 0 . 1 1 0 f' 0 6 7 0 . 6 0 7 , 5 0 0 . ] 1 7 2 -159-APPENDIX VI Total water potential as a function of time at various depths for drying induced by drainage and evaporation of the non-layered s o i l column A l l water potential is given in cm of water unless otherwise noted -160-Time(min) Depth(cm) V 0.08 1.60 -2.038 4. 60 1 .60 -1.803 9. 17 1.60 - 1.959 11.52 1 .60 -1.255 13. 59 1.60 -6.344 15.94 1 . 60 - 12.922 18.38 1 .60 -17.620 20. 70 1. 60 - 19.734 22.97 1.60 -20.830 27. 50 1 .60 -22.240 34. 61 1.60 -22.396 43.65 1 .60 -22.396 52. 63 1 .60 -22.788 54.87 1 .60 -22.788 57.12 1 .60 -26.311 59.38 , 1. 60 -31. 088 66.42 1.60 -37.978 75.34 1 .60 -40.093 82. 20 1. 60 -41. 189 93.68 1 .60 -42.128 121.45 1 .60 -42.363 155.99 1.60 -42.755 158.48 1 .60 -42.755 232.50 1 .60 -42. 285 274.03 1.60 -42.755 327.48 1.60 -42.755 385.63 1. 60 -42. 755 446.53 1 .60 -42.833 513.68 1 .60 -42.755 577.90 1. 60 -42. 755 638.10 1 .60 -42.990 640.35 1 .60 -42.833 642.61 1.60 -43.146 644.93 1 .60 -45.104 649.70 1. 60 -48. 471 654.32 1. 60 -50.977 661.19 1 .60 -53.795 666.08 1. 60 -55. 283 677.35 1 .60 -57.632 702.74 1 .60 -59.746 730.42 1. 60 -60.764 785 .59 1 .60 -61 .704 838.33 1.60 -61.704 901.68 1 .60 -62.957 955.12 1 .60 -63.113 1015.55 1. 60 -63. 113 1086.75 1.60 -63.113 1 110.35 1 .60 -63.113 1112.58 1. 60 -63. 035 1114.79 1 .60 -63.348 1117.00 1 .60 -63.113 1119.26 1.60 -63.505 1123.95 1 .60 -64.836 Time(min) Depth(cm) 1128.50 1. 60 -66. 324 1 135.45 1.60 -68.203 1 142.40 1 .60 -6 9. 3 78_ 1151.74 1.60 -71.022 1163.50 1 .60 -72.823 1175.30 1.60 -73. 997 1189.37 1 .60 -74.859 1208.22 1 .60 -76.425 1234.09 1. 60 -77. 991 1269 .95 1 .60 -79.557 1305.82 1 .60 -80.262 1355.26 1 . 60 -81.123 1414.69 1 .60 -81 .906 1496.84 1 .60 -82.845 1499.17 1.60 -82.924 1501 .48 1 .60 -82.689 1503.77 1. 60 -82. 924 1508 .38 1 . 60 -82.845 1515.30 1 .60 • -83.472 1524.50 1. 60 -85. 038 1536.30 1 .60 -86.212 1550.50 1 .60 -87.779 1571.63 1.60 -89.579 1607 .26 1 .60 -91.302 1661.45 1 .60 -93.260 1715.62 1.60 -94.904 1776 .78 1 .60 -95 .844 1845.37 1. 60 -97. 175 1912.62 1 .60 -97.566 1967.50 1 .60 -97.723 20 16.02 1. 60 -98. 349 2018.30 1 .60 -97.958 2020.71 1 .60 -98. 271 2023.25 1 .60 -98.271 2025.63 1 .60 -97.645 2030.54 1.60 -98.349 2035 .30 1.60 -99.132 2042.78 1 .60 -100.228 2050.19 1. 60 - 101. 481 2059.90 1 .60 -102.343 2069.66 1 .60 -104.457 2090.50 1. 60 - 107.041 2116 .05 1 .60 -110 .095 2150.95 1 .60 -113.227 2188.10 1 . 60 -116.359 2 2 34.16 1 .60 -118.708 2288.40 1. 60 -119. 961 2343.00 1 .60 -122.075 2381.23 1 .60 -122.623 2418.91 1. 60 -124.346 2423.70 1 .60 -124.189 2426.21 1 .60 -124.189 2431 .04 1 .60 -12 4 . I l l 2435.90 I .60 -124.424 -161-Time(min) Depth(cm) Time(min) Depth(cm) 2443.10 1.60 -125.285 3 5 72.3 5 1.60 -543.4 9~6 ~" 2452.95 1.60 -125.677 3598 .80 1 .60 -561.897 2465.02 1.60 -126.538 3625 .15 1 .60 -581 .473 2479.68 1. 60 -127.478 3 6 5 5.60 1. 60 -601.048 2501.42 1.60 -128.809 3682.60 1 .60 -616.709 2527.90 1 .60 -130.453 3705. 60 1 ..60 -630.02 0 2563 .97 1.60 - 132.019 si37_32.40 1. 60 -644. 115_ 2611.00 1 .60 -133.663 3763.50 1 .60 -658.209 2650.73 1. 60 -135. 699 3791.24 1 .60 -671.520 2690 .02 1.60 -137.265 3836.20 1.60 -679.351 2724.70 1 .60 -138.283 3889.23 1 .60 -684.832 2752.54 1 .60 -139.066 3952.20 1.60 -687. 181 2321 .70 1 .60 -137.657 4004 .68 1 .60 -638 .747 2830.25 1 .60 -139.458 4076.00 1 .60 -691.096 2342.75 1.60 -139.928 4158.40 1.60 -691.096 2859.35 1 .60 -141.729 4236.23 1 .60 -692 .270 2880.20 1. 60 -142.825 4313.20 1. 60 -691.879 2905 .50 1.60 -142.981 4386.43 1.60 -690.313 2934.00 1 .60 -144.626 , 4465.60 1 .60 -688.355 2945.40 1. 60 -147. 680 4458 1.60 -0.8.8 bar 2949.50 1.60 -154.100 4481 1.60 . -3.87 bar 2953.55 1 .60 -160.208 4498 1.60 -4.00 » 2957.56 1.60 -164.906 4515 1.60 -4.60 » 2961.45 1 .60 -168 .821 4542 1.60 -4.30 » 2965.36 1.60 -172.110 4560 1.60 -4.38 » 2969 .82 1.60 -174.302 4989 1.60 -2.93 » 2973.50 1.60 -176 .338 5025 1.60 -3.06 " 2977.45 1.60 -179.470 5055 1.60 -1.43 » 2981.50 1.60 -182. 133 5067 1.60 -1.95 » 2985.44 1 .60 -185.343 5076 1.60 -1.09 » 3003.61 1.6C -188. 788 5104 1.60 -2.67 » 3011.80 1.60 -193.095 5253 1.60 -3.91 " . 3023.30 1 .60 -199.437 5267 1.60 -2.72 » 3043. 15 1. 60 -210.165 5291 1.60 -3.02 " 3058 .83 1 .60 -216.585 5319 1.60 -3.40 » 3062.93 1 .60 -218.934 5336 1.60 -3.14 " 3036.60 . 1.60 -229. 114 5365 1.60 -4.68 » 3109.99 1 .60 -240.859 5402 1.60 -3.70 " 3137.20 1. 60 -254.170 5534 1.60 -4.34 » 3173 .70 1 . 60 -268.265 5552 1.60 -4.25 » 3213.40 1 .60 -287.840 5577 1.60 -4.25 » 3261.83 1.60 -313.288 5604 1.60 -4.00 " 3302.08 1 .60 -336 .779 5631 1.60 -3.36 » 3346.40 1 .60 -364.185 5656 1.60 -3.36 » 3378.50 1.60 -385.326 5683 1.60 -3.14 » 3406 .55 1 .60 -405.293 5709 1.60 -2.93 » 3430.22 1. 60 -422.520 5735 1.60 -2.50 » 3453.47 1.60 -440.529 5762 1.60 -3.14 " 3472.96 1 .60 -458.147 5776 1.60 -4.98 « 3491.52 1. 60 -475.374 5788 1.60 -6.22 » 3511.20 1.60 -491.974 5808 1.60 -6.35 " 3526.38 1 .60 -505.520 5830 1.60 -6.56 " 3542.40 1.60 -520.006 5860 1.60 -6.48 » 3546.10 1 .60 -522.746 5902 1.60 -6.78 " -162-Time(min) Depth( cm) Time(min) Depth(cm) 5927 . 1 .60 -6 .73 bars 7260 1 .60 -32 . 41 bars 5939 1 .60 -7 .16 t i 7285 1 .60 -32 .84 » 5956 1 .60 -6 .95 TT 7311 1 .60 -32 .41 » 5973 1 .60 -7 .42 TT 7335 1 .60 -34 .42 » 6004 1 .60 -7 .20 TT 7353 1 .60 -35 .96 » 6030 1 .60 -7 .93 TT 7377 1 .60 -37 .37 » 6057 1 .60 -6 .86 Tt 7394 1 .60 -38 .27 » 6083 1 .60 -6 .78 Tt 7412 1 .60 -38 .01 » 6111 1 .60 -7 .33 Tt 7435 1 .60 -38 .99 » 6136 1 .60 -8 .02 TT 7461 1 .60 -40 .32 " 6162 1 .60 -8 .06 TT 7481 1 .60 -40 .75 » 6189 1 .60 -8 .49 t l 7503 1 .60 -41 .60 » 6215 1 .60 -8 .96 t t 7524 1 .60 -42 .67 » 6241 1 .60 -9 .77 It 7546 1 .60 -43 .95 » 6268 1 .60 -10 .32 t f 7567 1 .60 -44 .81 " 6299 1 .60 -10 .37 IT 7588 1 .60 -46 .51 " 6325 1 .60 -10 .62 IT 7610 1 .60 -46 .94 " 6346 1 .60 -10 .92 t t 7631 1 .60 -47 .80 » 6498 1 .60 -13 .48 TT 7653 1 .60 -48 .01 » 4509 1 .60 -14 .72 f t 7676 1 .60 -49 .29 » 6539 1 .60 -15 .19 TT 7697 1 .60 -50 .36 » 6565 1 .60 -15 .07 ' TT 7715 1 .60 -51 .21 " 6577 1 .60 -14 .77 TT 7736 1 .60 -51 .86 " 6587 1 .60 -16 .18 TT 7758 1 .60 -53 .57 » 6611 1 .60 -14 .04 TT 7779 1 .60 -53 .78 » 6627 1 .60 -16 .09 TT 7801 1 .60 -54 .63 » 6644 1 .60 -15 .24 TT 7822 1 .60 -56 .13 " 6664 1 .60 -17 .37 IT 7844 1 .60 -57 .41 " 6682 1 .60 -17 .46 f t 7866 1 .60 -54 .42 » 6706 1 .60 -18 .10 TT 7887 1 .60 -55 .06 » 6731 1 .60 -17 .93 IT 7909 1 .60 -57 .37 " 6764 1 .60 -18 .65 II 7927 1 .60 -60 .44 » 6810 1 .60 -20 .24 II 7938 1 .60 -58 .91 » 6826 1 .60 -21 .39 11 7966 1 .60 -59 .68 » 6848 1 .60 -21 .82 IT 7993 1 .60 -61 .94 » 6900 1 .60 -21 .09 It 8016 1 .60 -64 .29 » 6940 1 .60 -21 .99 11 8067 1 .60 -66 .21 " 6961 1 .60 -24 .08 IT 8169 1 .60 -68 .14 » 6986 1 .60 -23 .87 IT 8172 1 .60 -67 .88 » . 7011 1 .60 -25 .58 IT 8205 1 .60 -73 .01 » 7036 1 .60 -26 .22 TT 8226 1 .60 -75 .83 » 7062 1 .60 -26 .22 II 8265 1 .60 -77 .62 " 7087 1 .60 -26 .43 It 8271 1 .60 -77 .62 » 7133 1 .60 -27 .29 It 8285 1 .60 -77 .88 " 7158 1 .60 -28 .78 t t 8305 1 .60 -77 .88 » 7183 1 .60 -29 .42 t t 8337 1 .60 -80 .44 » 7209 1 .60 -30 .92 t l 8362 1 .60 -83 .13 » 7234 1 .60 -31 .56 t t 8382 1 .60 -84 .67 " -163-Time(min) Depth(cm) "T 0.60 3.60 -0.393 5. 13 3. 60 0. 116 9 .70 3.60 -0.054 12.06 3 .60 0.116 14. 13 3. 60 -4. 459 16.50 3.60 -7.593 18. 94 3.60 -10.134 21.22 3.60 -13.692 23.47 3.60 -14.539 28.03 3.60 -18. 097 35.15 3.60 - 19.792 44. 17 3.60 -19.283 53. 14 3. 60 -21.062 55.39 3.60 -20.893 57.64 3 .60 -23.519 59. 90 3. 60 -27.077 66 .93 3.60 -33. 176 75. 89 3.60 -35.887 82.72 3. 60 -37.496 94.24 3.60 . -39.021 122.00 3. 60 -39. 360 156.52 3.60 -40.546 159.01 3 .60 -40.546 233.05 3. 60 -39. 445 274.59 3.60 -40.546 328.00 3 .60 -40.546 386.21 3. 60 -40.461 447.19 3.60 -40.546 514.19 3.60 -40.546 578.41 3. 60 -40.461 638.62 3 .60 -41.054 640.87 3. 60 -40. 546 643.15 3.60 -41.139 645.47 3 .60 -43.935 650.25 3. 60 -46. 052 654.82 3.60 -49.017 661.72 3 .60 -51.220 666.61 3. 60 -53.253 677 .88 3.60 -55 .794 703.27 3.60 -56. 726 730.95 3. 60 -58.336 786 .10 3 .60 -59.183 838.85 3. 60 -59.013 902 .18 3. 60 -60.030 9 55.65 3 .60 -60.369 1016.07 3. 60 -60. 030 1087.25 3 .60 -59.183 1110.89 3 .60 -59.437 1113.10 3. 60 -59.267 1115.30 3.60 -60.877 1117.50 3. 60 -60. 030 1119.79 3. 60 -60.877 1124.48 3.60 -62.571 Tim2(nin) Depth(cm) 1129 .00 3. 60 -64.604 1136 .00 3.60 -66 .298 1 142.9 1 3. 60 -67.654 1152 .26 3.60 -69.263 1164.02 3.60 -71. 127 1175.82 3. 60 -71.042 1189.91 3.60 -72.567 12C8.75 3 .60 -73.584 1234.62 3. 60 -75.278 1270 .50 3 .60 -76.549 1306.38 3.60 -76.972 1355 .79 3.60 -77.819 1415.02 3. 60 -78.666 1457.39 3. 60 -79. 683 1499.70 3. 60 -79.514 1502.00 3.60 -78.666 1504.30 3. 60 -79. 768 1508.91 3 .60 -79.514 1515.83 3 .60 -80.530 1525.09 3.60 -82.902 1536 .83 3.60 -83.664 1551.02 3.60 -85. 105 1572. 19 3.60 -87.138 1607.79 3 .60 -88.662 1662.02 3. 60 -90. 357 1716 .14 3. 60 -91.627 1777.35 3 .60 -91. 712 1845.92 3. 60 -93. 576 1913.14 3.60 -94.338 1968.00 3 .60 -94.677 2016.58 3. 60 -94.762 2018.85 3 .60 -93.915 2021.30 3. 60 -94.762 2023.81 3. 60 -94.762 2026.18 3.60 -93.915 2031.10 3. 60 -94. 846 2035.86 3. 60 -96.456 2043.38 3 .60 -97.303 2050.72 3. 60 -98.997 2060 .50 3 .60 -99 .760 2070.18 3.60 -102. 3 86 2091 .02 3. 60 -104.927 2116 .60 3.60 -108.146 2151.48 3. 60 - 1 1 1. 280 2188.70 3.60 -113.398 2234.69 3 .60 -115.092 2288.92 3. 60 -1 15. 516 2343 .60 3 .60 -117.803 2381.85 3 .60 -118.057 2419.50 3.60 -121.022 2424.28 3 .60 -1 19 .582 2426.80 3. 60 -120.175 2431.62 3.60 -118.650 -164-Time(min) Depth(cm) "ty • 2436.46 3 .60 -120.175 2443.65 3. 60 - 120.429 2453.50 3.60 -120.599 2465.62 3.60 -122.547 2480.22 3.60 -123.733 2501 .94 3 .60 -125.088 2528.47 3.60 -126.952 2564.50 3.60 -128.646 2611.54 3 .60 -129.239 2651.23 3. 60 -131.781 2690.54 3.60 -133.136 2724.25 3.60 -133.729 2753.04 3.60 - 134.237 2822 .65 3.60 -126.529 2831.25 3. 60 -128. 646 2843.70 3.60 -130.341 2860.35 3.60 -132.035 2881.22 3. 60 -133.305 2906.50 3.60 -133.729 2934.90 3.60 -135.678 2946.30 3.60 -135.678 2950.42 3 .60 -137.965 2954.49 3.60 -138.219 2958.50 3.60 - 140.506 2962.40 3 .60 -142.200 2966.20 3. 60 -143. 471 2970.38 3.60 -145.673 2974.40 3 .60 -146.436 2978.40 3.60 - 148.977 2982.42 3.60 -149.994 2986.30 3.60 -152.366 3004.60 3.60 -154.738 3012.74 3 .60 -157.533 3024.20 3. 60 - 162. 531 3044.00 3.60 -169.816 3059.36 3.60 -174.899 3063.85 3. 60 -176.932 3087.48 3 .60 -184.133 3110.80 3.60 -193.875 3138.16 3.60 -203.193 3174.60 3.60 -215.052 3214.30 3.60 -230.300 3262.75 3.60 -247.243 3303.00 3.60 -264.185 3347.30 3. 60 -281. 127 3379.38 3.60 -292.987 3407. 48 3 .60 -304.847 3431.10 3. 60 -312. 895 3454.32 3 .60 -190 .486* 3473.80 3 .60 -168.885 3492.40 3.60 - 154.060 3512.10 3 .60 -157.025 Time(min) Depth(cm) J 3527.27 3 .60 -162.531 3543.25 3.60 - 165.66 5 3546.96 3 .60 -164.649 3573.25 3. 60 -166.767 3599 .50 3.60 -168.461 3626.00 3 .60 -168.885 3656.44 3. 6 0 -168.037 3 683 .40 3 .60 -164.225 3706.50 3 .60 -161.261 3733 .30 3. 60 -166.767 3764.40 3 .60 -168 .037 3792.20 3. 60 -170.155 3837.15 3.60 -171.002 3890.14 3.60 -176.509 3953.00 3. 60 - 179. 473 40 05 .50 3 .60 -179.473 4076. 90 3. 60 -176.932 4159.30 3. 60 -175.407 4237.10 3 .60 -176.509 4314.10 3. 60 -176.932 4387.25 3.60 -176.085 4466.40 3 .60 -172.866 4547.10 3. 60 100.894 4561 .99 3. 60 80.755 4569.98 3 .60 46.519 4577.90 3. 60 16.31 1 4585.3? 3.60 -11.884 4593.27 3 .60 -36.856 4601. 16 3.60 -60.217 4610.15 3 .60 -80.356 4622.05 3. 60 -107.744 4633 .82 3 . 60 -13 2.717 4650.6? 3 .60 -160 .91] 4666.75 3. 60 - 187. 092 4683.50 3 . 60 -210.452 4704.03 3 .60 -236.633 4724.25 3. 60 -259.591 4745. 1 1 3 .60 -279.730 4 7 73.7 0 3 .60 -301.883 48 00.50 3 . 60 - 317.994 4 355 .8 0 3 .60 -334 .910 49C9.90 3.60 -354.244 4972 .40 3 . 60 -373.577 5035.75 3 .60 -391.299 5055.30 3. 60 -405. 799 515 5.64 3 . 60 -417.883 5235,72 3 .60 -42 4.73 0 5 2 5 3.48 3. 60 -426. 743 5261 .50 3 .60 -427.388 5269.90 3.60 -427.952 5 2 78.27 3.60 -428.354 failure of the tensiometer -165-Time(min) Depth(cm) 5286 .37 3 .60 -423.677 5290.53 3. 60 -428.7 57 5294 .70 3. 60 -429. 160 5332 .51 3 .60 -4 30.771 5445.2 5 3. 60 -436. 410 5552.68 3.60 -441.243 5664.50 3 .60 -446.077 5 784.70 3. 60 -451.313 5906 .50 3 .60 -456 .791 6023.60 3.60 -462.188 6144 .40 3. 60 -467.021 6263.75 3.60 -471.049 6385.04 3. 60 -476.688 6501.50 3 . 60 -480.957 6611.74 3 .60 -484.341 6733.38 3. 60 -483.132 6855.42 3 .60 -481 . 118 6945.72 3.60 -477.171 6569.94 3. 60 -474.271 6988.50 3 .60 -467 .021 7CC7.50 3. 60 -456.952 70 26.38 3. 60 -442.854 7 4 75 .8 3 3.60 -2.66 bars ...8068 - 7 9 3 ,60 0-4.03 11 80 83.2 3 3. 60 -4.6 3 " 80 92 .59 3.60 -4.72 " 8138. 12 3.6 0 -4.8 2 " 8150.5 4 3. 60 -4.97 " 8178 .48 3 .60 -4.25 " ...8189. 86 3.60 .-4.00 " 8208.43 3.60 -5.13 " 83 2 6.4 5 3 .60 -5.11 " 834 3.0 0 3. 60 -4.97 V 8377.15 3.60 -6.09 " 8392.67 3.60 -5.69 " ._. 8410. 26 3. 60 -6.01 tt 8*41.30 3.60 -6.77 tt 8453.72 3 .60 -5.65 tt 8511.67 3 . 60 -6.01 tt 8924.54 3 .60 -7.17 tt 8926.96 3. 60 -7.85 tt 8960.7 5 3.60 -8.28 tt 8979.3 8 3 .60 -8.46 tt 90.04. 21 3. 60 -8.43 tt 90 16 .63 3.60 -8.46 tt 9043.54 3 .60 -8.54 tt 9050.73 3.60 -8.25 it 95 17.46 3 .60 -9.62 tt 9528.84 3.60 -10.27 „ 9536.08 3.60 - 10. 01 tt 9564.02 3 .60 -11.06 t? Time (min) Depth (cm) iji 9606,4 5 3.60 -TcT.59~ bars 96 12. .6 5 3.60 -10.99 tr 962 0.93 .3 .60 -10.81 it 5653,01 3. 60 -11.78 ti 9635.09 3.60 - 11.42 tt 96 95. 43. 3.6 0 -11.96 tt 9790.6 3 3. 60 -11.56 ti 9800 .93 3 .60 -10.70 tt 98 12. 3 6 . 8.60 -11 .42 ti 9 84 0.30 3.60 - 12.39 tt 9854 .79 3 .60 -13.04 it 5 8 8 5.33 3. 60 -13.40 tt 90 01 .35 3.60 -12.63 it 9015.34 3.60 -13-18 tt 99 3 7.5 7 3. 60 -13.47 , tt 9967 .57 3. 60 -13.22 tt 90 96.5 5 3. 60 -14.26 it 10015. 18 3. 60 -14.23 tt .10476.68 3 .60 - 16.82 tt 10490.13 3.60 -17.36 ti . 10 502 . 5 5 3.60 -17.69 11 10516.00 3 .60 -17.36 i i 10533.59 3. 60 -17.04 i i __108 5 3 .25 ,-.3..60_ - 17.72 • ;t 10576. 02 3.60 -18.52 11 10597.75 3.60 - 18.44 It 10619.47 3.60 -18.62 11 10642.24 3. 60 -18.88 tl 106 58 .80 3.60 -18.93 tt 106 80.5 2 3 .60 -19.56 tt 10 70 3.2 9 3. 60 -19.67 It 107 25.02 3 . 60 - 19.74 tl 10 746.75 3.60 -19.63 tl 1.0 76 8 .48 3. 60 - 19.52 Tt 10790 .2 1 3 .60 -19.56 11 108 11.94 3. 60 -20 .0 7 tt 10833.67 3.60 -20. 1 7 It 10855.40 3.60 -20.82 Tt . 10878. 1 6 3. 60 -20.86 Tt 10399 .89 3. 60 -21.04 T! 10922.66 3 . 60 -21 .1 5 tt 1 0945.42 3. 60 -21.51 It • 10967.15 3 .60 -21.58 tl 10989.92 3. 60 -22.19 tl 11011. & 5 3.60 -21. 69 Tl 11056.14 3 .60 -22.30 Tt 11035.12 3. 60 -22.59 11 11 ICO .64 3.60 -21.93 11 11106.8 5 3. 60 -22 .26 Tt 11119.26 3. 60 4. 07 .. tt -166-Time(min) Depth(cm) 0.89 5.60 3.957 5.40 5.60 5 .974 9. 98 5.60 5. 651 12.33 5. 60 4. 199 14.40 5 .60 -3.708 16.79 5. 60 -6. 935 19 . 19 5.60 -10.566 21. 50 5 .60 -12.583 23. 73 5. 60 - 11. 938 28.3.0 5 .60 -15.003 35. 42 5.60 -15. 165 44.44 5. 60 -15.003 53 .40 5.60 -16.617 55.64 5.60 -16. 617 57 .90 5.60 -23.798 60 .15 5 .60 -27.912 67. 20 5. 60 -32. 834 76.15 5.60 -33.883 82.99 5.60 -34.528 94.52 5. 60 -34. 367 122.30 5.60 -35.577 156.78 5 .60 -35.980 159.28 5. 60 -35.980 233 .31 5.60 -35.174 274.88 5.60 -35.980 328.26 5.60 -35.980 386.50 5.60 -36.061 447.33 5. 60 -35. 980 514.46 5.60 -35.416 578.71 5 .60 -36.061 638.89 5.60 -36. 384 641 .13 5.60 -35.980 643.42 5 .60 -41.225 645.72 5.60 -45.662 650.53 5.60 -50.099 655. 18 5. 60 -50. 503 662.00 5.60 -52.116 666.86 5 .60 -52.923 678. 15 5. 60 -54. 940 703.54 5.60 -54.698 731.22 5.60 -55.747 786.37 5.60 -55.424 839 .10 5.60 -55.747 902.43 5.60 -55. 747 955 .90 5.60 -56.312 1016.12 5. 60 -56.796 1087.51 5. 60 -54. 860 1111.12 5.60 -55.344 1113.35 5 .60 -56.957 1115.54 5.60 -62. 605 1117.75 5 .60 -60 .427 1120.07 5.60 -63.573 1124.74 5.60 -65.429 Time(rain) Depth(cm) ty, 1129.26 5 .60 -68. 253 1136.27 5.60 -69.705 1143.18 5 .60 -70.270 1152.54 5.60 -6 9. 866 1164.30 5. 60 -71.722 1176.10 5 .60 -71 .964 1190.20 5. 60 -72. 690 1209 .02 5.60 -71.803 1234.90 5 .60 -73.174 1270.80 5. 60 -73.578 1306.63 5.60 -73.497 1360.0 7 5 .60 -74.223 1415.50 5.60 -75.917 1497.65 5 .60 -76.321 1499.98 5.60 -75.110 1502.28 5.60 -76.321 1504 .57 5.60 -78.741 1509.20 5. 60 -80. 032 1516.10 5.60 -82.694 1525.37 5.60 -84.389 1537.10 5. 60 -85. 599 1551.30 5.60 -86.406 1572.49 5 .60 -87.374 1608.06 5.60 -37.535 1662.34 5 .60 -88.019 1716.42 5. 60 -89. 230 1777.65 5.60 -89.230 1846.18 5.60 -90.036 1913.38 5. 60 -90.682 1968.28 5.60 -90.682 2016.82 5 .60 -90.762 2019. 10 5. 60 -90.036 2021 .60 5 .60 -92.457 2024.10 5.60 -92.457 2026.44 5.60 -94.232 2031.40 5 .60 -97.459 2036.15 5. 60 -101.251 20 43.6 9 5.60 -103.671 2050.99 5 .60 -105.608 2060.78 5. 60 -106.092 2070.43 5.60 -108.593 2091.38 5 .60 -111.417 2116.90 5. 60 -114.805 2151 .74 5 .60 -116 .661 2188.99 5.60 -116.742 2234.94 5.60 -116.742 2289. 18 5 .60 -116. 177 2343.90 5. 60 -116.661 2382 .14 5.60 -118.275 2419.80 5 .60 -120.695 2424.57 5. 60 -118.275 2427.07 5 .60 -119 .969 2431.90 5 .60 -119.888 2436.74 5.60 -122.389 -167-Time(min) Depth(cm) V 2443 . 9 5 5 . 6 0 - 1 . 2 3 . 2 7 7 2 4 5 3 . 7 3 5 . 60 - 1 2 4 . 7 2 9 2 4 6 5 . 9 0 5 . 6 0 - 1 2 6 . 2 6 2 2 4 8 0 . 5 0 5 . 6 0 - 1 2 6 . 7 4 6 2 5 0 2 . 2 2 5 . 60 - 1 2 7 . 3 1 1 2 5 2 8 . 7 5 . 5. .60! - T 2 9 . 5 7 0 _ 2 5 6 4 . 7 5 5 . 60 - 1 3 1 . 183 2 6 1 1 . 8 3 5 . 6 0 - 1 3 1 . 3 4 5 2 6 5 1 . 5 0 5 . 6 0 - 1 3 2 . 1 5 2 2 6 9 0 . 8 0 5 . 60 - 1 3 4 . 4 1 1 2 7 2 4 . 5 0 5 . 6 0 - 1 3 4 . 4 1 1 2 7 5 3 . 3 0 5 . 6 0 - 1 3 4 . 8 1 4 2 8 2 3 . 1 0 5 . 6 0 - 1 2 0 . 9 3 7 2831 . 7 5 5 . 6 0 - 1 2 1 . 9 0 5 2 8 4 4 . 2 1 5 . 6 0 - 1 2 4 . 7 2 9 2 8 6 0 . 8 5 5 . 6 0 - 1 2 4 . 7 2 9 2881 . 7 0 5 . 6 0 - 1 2 6 . 101 2 9 0 7 . 0 0 5 . 60 - 1 2 8 . 198 2 9 3 5 . 2 5 5 . 6 0 - 1 2 9 . 9 7 3 2 9 4 6 . 7 6 5 . 6 0 - 1 2 9 . 5 7 0 2 9 5 0 . 9 0 5 . 60 - 1 3 0 . 3 7 7 2 9 5 4 . 9 5 5 . 6 0 - 1 3 1 . 1 0 3 2 9 5 8 . 9 5 5 . 6 0 - 1 3 0 . 3 7 7 2 9 6 2 . 8 0 5 . 6 0 - 1 3 2 . 7 1 6 2 9 6 6 . 7 0 5 . 6 0 - 1 3 1 . 2 6 4 2 9 7 0 . 8 0 5 . 6 0 - 1 3 3 . 6 0 4 2 9 7 4 . 8 0 5 . 6 0 - 1 3 3 . 4 4 3 2 9 7 8 . 9 6 5 . 6 0 - 1 3 4 . 4 1 1 2 9 8 2 . 8 2 5 . 60 - 1 3 6 . 186 2 9 8 6 . 8 0 5 . 6 0 - 1 3 6 . 0 2 4 300 5 . 0 1 5 . 6 0 - 1 3 7 . 7 9 9 3 0 1 3 . 2 0 5 . 60 - 1 4 0 . 3 8 1 3 0 2 4 . 6 5 5 . 6 0 - 1 4 2 . 3 1 7 3 0 4 4 . 4 5 5 . 6 0 - 1 4 7 . 1 5 8 3 0 6 0 . 2 7 5 . 6 0 - 1 5 1 . U 2 3 0 6 4 . 3 0 5 . 6 0 - 1 5 1 . 3 5 4 3 0 8 7 . 9 0 5 . 6 0 - 1 5 7 . 405 3 1 1 1 . 3 5 5 . 6 0 - 1 6 3 . 4 5 6 3138 . 6 0 5 . 6 0 - 1 6 9 . 9 1 0 3 1 7 5 . 0 1 5 . 60 - 1 7 8 . 7 8 5 3 2 1 4 . 8 2 5 . 6 0 - 1 9 0 . 4 8 4 3 2 6 3 . 2 0 5 . 6 0 - 2 0 3 . 7 9 6 3 3 0 3 . 4 8 5 . 60 - 2 1 5 . 8 9 8 3 3 4 7 . 7 5 5 . 6 0 - 2 3 0 . 0 1 7 3 3 7 9 . 8 0 5 . 6 0 - 2 4 0 . 102 3 4 0 7 . 9 0 5 . 6 0 - 2 4 8 . 5 7 4 3431 . 5 2 5 . 6 0 - 2 5 4 . 2 2 1 3 4 5 4 . 8 2 5 . 60 - 2 6 4 . 3 0 6 3 4 7 4 . 2 7 5 . 6 0 - 2 6 8 . 4 2 1 3 4 9 2 . 8 0 5 . 6 0 - 2 7 2 . 5 3 6 3 5 1 2 . 5 0 5 . 60 - 2 7 8 . 022 3 5 2 7 . 7 5 5 . 6 0 - 2 8 4 . 4 7 6 3 5 4 3 . 6 0 5 . 6 0 - 2 8 8 . 591 3 5 4 7 . 3 2 5 . 6 0 - 2 8 8 . 5 1 0 Time(min) Depth(cm) 3 5 7 3 . 7 0 5 . 6 0 - 2 96 . 5 7 8 3 5 9 9 . 9 4 5 . 6 0 - 3 0 4 . 6 4 6 3 6 2 6 . 4 2 5 . 60 - 3 1 2 . 7 1 5 3656 . 8 0 5 . 6 0 - 3 2 0 . 7 8 3 3 6 8 3 . 8 0 5 . 60 - 3 2 8 . 850 3706 . 9 3 5 . 6 0 - 3 3 6 . 5 1 5 3 7 3 3 . 7 8 5 . 6 0 - 3 4 4 . 9 8 7 3 7 6 4 . 8 0 5 . 60 - 3 5 3 . 0 5 5 3 7 9 2 . 6 0 5 . 6 0 - 3 6 1 . 9 2 9 3 8 3 7 . 5 6 5 . 6 0 - 3 7 4 . 0 3 1 3 8 9 0 . 6 0 5 . 60 - 3 8 9 . 3 6 1 3 9 5 3 . 4 5 5 . 6 0 - 4 0 6 . 7 0 7 4 0 0 5 . 9 0 5 . 60 - 4 2 1 . 633 4 0 7 7 . 4 0 5 . 6 0 - 4 3 8 . 9 7 9 4 1 5 9 . 7 8 5 . 6 0 - 4 5 9 . 9 5 6 4 2 3 7 . 5 2 5 . 6 0 - 4 7 8 . 5 1 3 4 3 1 4 . 5 5 5 . 6 0 - 4 9 5 . 8 5 9 4 3 8 7 . 7 2 5 . 6 0 - 5 0 8 . 7 6 8 4 4 6 6 . 8 8 5 . 60 - 5 1 7 . 6 4 3 4 5 4 8 . 9 0 [ 5 . 6 0 - 5 3 0 . 5 5 2 4 5 6 3 . 7 0 5 . 6 0 ' - 5 2 9 . 7 4 5 4571 . 6 5 5 . 6 0 - 5 3 0 . 5 5 2 4 5 7 9 . 2 0 5 . 60 - 5 3 3 . 3 7 6 4 5 8 7 . 0 5 5 . 6 0 - 5 3 4 . 5 86 4 5 9 5 . 1 5 5 . 6 0 - 5 3 4 . 5 8 6 4 6 0 3 . 4 0 5 . 6 0 - 5 3 6 . 1 9 9 4 6 1 1 . 9 0 5 . 6 0 - 5 3 7 . 4 1 0 4 6 2 3 . 8 0 5 . 6 0 - 5 3 9 . 023 4 6 3 5 . 18 5 . 6 0 - 5 4 2 . 6 5 4 4 6 5 2 . 4 0 5 . 6 0 - 5 4 3 . 0 5 7 4 6 6 8 . 7 0 5 . 6 0 - 5 4 7 . 898 4 6 8 5 . 2 5 5 . 60 - 5 4 9 . 1 0 8 4 7 0 5 . 9 0 5 . 6 0 - 5 5 2 . 9 0 0 4 7 2 6 . C 8 5 . 60 - 5 5 5 . 5 6 3 4 746 . 8 0 5 . 6 0 - 5 5 8 . 7 9 0 4 7 7 5 . 5 5 5 . 6 0 - 5 6 2 . 8 2 4 4 8 0 2 . 4 0 5 . 6 0 - 5 6 8 . 4 7 2 48 6 7 . 6 4 5 . 6 0 - 5 7 6 . 5 4 0 4 9 1 1 . 2 3 5 . 6 0 - 5 8 5 . 0 1 1 4 5 7 4 . 1 0 5 . 6 0 - 5 9 4 . 2 9 0 5037 . 7 0 5 . 6 0 - 6 0 3 . 1 6 4 5 0 5 7 . 1 0 5 . 60 - 6 0 8 . 8 1 2 5 1 5 7 . 5 5 5 . 6 0 - 6 1 7 . 283 5 2 3 7 . 4 5 5 . 6 0 - 6 2 5 . 7 5 5 5 2 5 5 . 2 4 5 . 60 - 6 2 8 . 1 7 5 5 26 3 . 2 8 5 . 6 0 - 6 2 8 . 9 8 2 5 2 7 1 . 8 2 5 . 6 0 - 6 2 8 . 982 5 2 8 0 . 0 5 5 . 6 0 - 6 3 0 . 9 9 9 5 2 8 8 . 1 6 5 . 6 0 - 6 3 2 . 2 0 9 5 2 9 2 . 5 2 5 . 6 0 - 6 3 1 . 4 0 3 5296 . 4 0 5 . 60 - 6 3 3 . 0 16 5334 . 7 8 5 . 6 0 - 6 3 4 . 6 3 0 5 4 4 7 . 0 4 5 . 60 - 6 4 4 . 312 5 5 5 4 . 6 0 5 . 6 0 - 6 5 4 . 3 9 7 -168-Time(min) Depth(cm) 5 6 6 6 . 3 0 5.60 -658.834 5786.55 5. 60 -6 60. 044 590 8.27 5 .60 -659.641 6025.30 5.60 -657. 624 6 146.2 3 5.60 -655.203 6265.62 5 ,60 -649 .636 6 3 86.80 5.60 -646.732 6 503.22 5.60 -643.505 66 13 .40 5 .60 -6 39.471 6 7 35. 10 5.60 -635.43 7 6 9 5 7.10 5.60 -6 35.0 33 6 9 47,40 5.60 -631.403 6971. 14 5. 60 -630.596 6990.12 5 .60 -630.5 96 7009.20 5 .60 -631.403 7027,, 90 5.60 -62 8.175 8963.86 5 . 60 - i .52 bar 8963.52 5. 60 -2.78 ii 90 08 .36 5 .60 -2.69 ti 9021.80 5.60 -2.46 ti 9049.7 5 5.60 — 2.36 ti 9 6 5 3 .01 5 .60 -3.02 96 84.0 5 5.6 0 -4.00 ii 9 6 96 .4 7 5.60 -4. CO ti 9 84 9*6 1 5.60 -3.6 3 ti 9 0 5 5, 8 2 5.60' -3.66 rt 9 8 6 2 . 73 5.60 -6.02 ti 9906 .52 5.60 ...99 2 1.0 1 5. 60 -4.52 ti 9942 .7 4 5 .60 -6.77 -tt 99 6 3.61 5.60 -3.49 it 10007.93 5.60 -5.27 rt 10016.21 5 .60 -7.65 ii 10478.75 5.6 0 9.45 ti 10494.27 5.60 -8.09 'i 105 0^.62 5 .60 -9.50 it 1103 7. 19 5.60 -11.33 » Time(min) Depth(cm) V 1 .12 7.60 -2.597 5. 66 7. 60 - 1. 832 10.23 7. 60 -2.342 12.55 7.60 -4.2 97 14.69 7. 60 - 10.843 17.03 7.60 -16.114 19. 45 7 .60 -18.665 21.75 . 7.60 -20.025 23 .99 7.60 -20.110 2 3. 58 7. 60 -21.810 35 .69 7.60 -22.915 44. 70 7 .60 -22.235 53. 67 7. 60 -23. 170 55.90 7.60 -26.571 58. 1 5 7.60 -33.542 60. 43 7. 60 -38.133 67.46 7.60 -41.618 76. 40 7.60 -41.789 8 3,25 7. 60 -42.214 94.80 7 .60 -42.469 122.55 7. 60 -42. 384 157.05 7. 60 -42.469 159.5 2 7.60 -42.724 233.59 7. 60 -42. 129 275.14 7 .60 -42.469 328.53 7 -42.469 386.75 7.60 -42.639 4 47.60 7 .60 -42 .724 514,71 7. 60 -42. 044 57 8.9 5 7.60 -42.469 639 .14 7.60 -43.319 6 41.40 7. 60 -45. 189 643.70 7.60 -52.585 646.00 7.60 -56.921 650.80 7. 60 -60. 322 655.34 7.60 -61.257 662.19 7.60 -62.022 667.12 7. 60 -62.022 678.42 7 .60 -62.872 703.81 7. 60 -62.192 731.49 7. 60 -62.702 786.62 7 .60 -62.447 839.34 7. 60 -62. 532 902.70 7.60 -6 2.70 2 956.18 7.60 -63.127 1016.59 7. 60 -62.787 1087.78 7 .60 -6 2.022 1111.38 7.6 0 -62. 192 1113 .61 7. 60 -67.973 1115.81 7 .60 -73.924 1118.02 7. 60 -76. 899 1120.34 7.60 -79.025 U 2.5 .01 7.60 -80.72 5 -169-Time(min) Depth(cm) 1129.52 7. 60 -81.575 1136.53 7.60 -82.255 1143.43 7. 60 -82. 425 1152.80 7.60 -81.915 1164.55 7.60 -8 2.42 5 1176.35 7. 60 -82. 425 1190.46 7.60 -82.425 12C9.30 7.60 -82.255 1235.17 7.60 -82.425 1271.09 7.60 -82.425 13C6.90 7. 60 -82.425 1360.32 7.60 -82.510 1415 .77 7 .60 -82.850 1457.92 7. 60 -83. 275 1500.25 7.60 -87.526 1 50 2. 54 7 .60 -91.182 1504. 82 7. 60 -94. 327 1509.46 7 .60 -95.858 1516.37 7.60 -96.198 1525.66 7.60 -97.303 1537.38 7.60 -97 .303 1551.55 7.60 -97.558 1572.78 7. 60 -97.643 1608.34 7 .60 -97.558 1662.62 7. 60 -97. 643 1716.70 7.60 -97.728 1777.94 7 .60 -97.643 1846.43 7.60 -97.728 1913.65 7 .60 -97.728 1968.52 7.60 -97.728 2017.10 7. 60 -97.813 2019 .39 7 .60 -101.214 2021.90 7. 60 -111.330 2024.35 7.60 -117.706 2026.71 7 .60 -121.957 2031.70 7. 60 -125. 103 2036.45 7.60 -127.143 2043.99 7 .60 -128.418 2051.26 7.60 -128.758 2061 .08 7.60 -128.418 2G70.70 7.60 -130.288 2091.54 7. 60 -132.414 2117 .20 7.60 -132.754 2152.02 7. 60 - 133. 434 2189 .30 7.60 -133.009 2235.20 7.60 -127.653 2289.43 7. 60 -127.228 2344.20 7 .60 -127.483 2382.43 7 .60 -127.483 2420. 10 7.60 -128.333 2424.85 7 .60 -132.584 2427.34 7.60 -136.835 2432.20 7. 60 -139.810 2437.04 7.60 -141.510 Time(min) Depth(cm) 2444.24 7. 60 -142. 190 2454 .00 7. 60 -142.361 2466.20 7 .60 -142.786 2480.77 7. 60 -142.786 2502.49 7.60 -142 .446 2529.04 7.60 -144.061 2565 .02 7.60 -145.166 2612.10 7.60 -144.486 2651.74 7. 60 - 144. 826 2691 .06 7 .60 -145.336 2724.74 7.60 -145.251 2753.55 7. 60 -145.336 2823.55 7 .60 -123 .062 2832.25 7. 60 -125. 358 2844 .60 7. 60 -128.758 2861.35 7.60 -131.054 2882.20 7. 60 -133.349 2907 .50 7.60 -135.134 2935.75 7.60 -136.835 2947.28 7.60 -137.685 2951 .40 7.60 -138.195 2955.33 7. 60 -138.535 2959.40 7.60 -138.535 2963 .25 7 .60 -138.875 2967.18 7. 60 - 138. 535 2971 .45 7.60 -140.150 2975. 30 7.60 -140.150 2979.40 7. 60 -140.235 2983.32 7.60 -141 .510 2987.28 7.6 0 -141.765 3005.55 7.60 -143.211 3013 .60 7.60 -144.741 3025.17 7.60 -147. 036 3044.40 7.60 -150.437 3060.75 7 .60 -153.837 3064.75 7. 60 -154. 688 3083.35 7.60 -159.363 3111.75 7.60 -164.889 3 139. 10 7.60 -170.840 3175.46 7 .60 -178 .492 3215.28 7.60 -188.268 3263 .65 7. 60 -199.745 3303 .96 7 .60 -210.372 3348.20 7. 60 -220. 999 3380.25 7.60 -229.925 3408.30 7 .60 -238.002 3431.56 7. 60 -242.252 3455.30 7.60 -250.754 3474.75 7.60 -255.005 349 3.2 5 7.60 -259.255 3512 .97 7 .60 -263.506 3528.23 7.60 -269.457 3544. 10 7. 60 -273.708 3547.75 7 .60 -274.133 -170-Time(min) Depth(cm) V 3574.L5 7. 60 -280. 509 3600.30 7. 60 -288.160 3626.89 7.60 -294.961 3657.28 7. 60 -301. 762 368 4.2 5 7.60 -308.563 3707.40 7.60 -314.514 3734.22 7. 60 -321.315 3765 .23 7 .60 -328.967 3793.10 7.60 -335.768 3838 .05 7.60 -345.970 3891 .01 7.60 -357.872 3953.90 7. 60 -371.474 4006.85 7.60 -383.376 4077.90 7.60 -398.679 4160 .27 7.60 -415.256 4237 .92 7 .60 -430.984 4315.07 7. 60 -445.437 4388.16 7.60 -458.189 4467.38 7.60 -471.791 4549.40 7 .60 -486 .668 4572. 10 .. 7.60 -487. 944 4579 .60 7.60 -488.794 4587.50 7 .60 -490.494 4595.60 7. 60 -492.195 4603.82 7.60 -493.045 4612.82 7 .60 -493.045 4624.23 7.60 -495.170 4636 .15 7 .60 -497 .295 4652.85 7.60 -498. 996 4669 .20 7.60 -502.396 4685.73 7.60 -503.671 4 706.88 7.60 - 506.647 4726.48 7 .60 -510 .043 4747.30 7.60 -512.343 4775 .60 7. 60 -5 15 .999 4802 .88 7 .60 -520 .504 4 8 5 8. G 8 7. 60 -527.050 4911.20 7.60 -534.702 4974.58 7.60 -541.928 5038.20 7. 60 -550.259 5097.56 7 .60 -556 .380 5 158.10 7.60 -562.756 5237.80 7.60 -571.258 5255.70 7 .60 -573.808 5263.78 . 7.60 -574.658 5272.32 7.60 -575.083 5280.50 7 .60 -576. 189 5 2 88.65 7. 60 -577.634 5293.00 7.60 -578.059 5296.80 7.60 -578.059 5334.72 . 7.60 -580.184 5447.52 7 .60 -590 .386 5555.06 7.60 -600.333 5666 .28 7. 60 -608.664 Time(min) Depth(cm) VP 5 787.02 7 .60 -618.0 16 5 908.72 7. 60 -626.092 60 25 .75 7. 60 -634.168 6 146.63 7.60 -638.419 6266. 10 7. 60 -640.119 6387.28 7 .60 -640.205 6503.62 7.60 -639.949 6613. 8 4 7. 60 -639.694 6 735 .50 7 .60 -6 38 .844 6857.52 7.60 -639.694 6947 .89 7. 60 -639.269 7009.62 7 .60 -638.419 70 2 8.3 7 7. 60 -637.569 7 146 .88 7.60 -637.569 7265.52 7.60 -637.569 7386.52 7.60 -637. 144 - 1 7 1 -APPENDIX VII Water content as a function of time at various depths for wetting of the non-layered s o i l column •172-Time(min) Depth(cm) w(cm3/ cm 3 2.85 0 .5 '3' 0.1 156 •4 7.40 0 .5'"1 o.1100 6 1.6 2 ''. 5 0 0.]169 0 1 .0 3 0 . 5 o 0.1157 I 1.9. 78 0. 3 0 0. 1 156 17 7. 53 0. 5 0. 1 15? 2 3 5 . 1.6 0 , oO 0 .1 ? 1.5 292.53 0. 5 0 0. 1222 3 4 9 . 9 5 0 . 0 0 0. 120 8 4 C 7. 4 I 0 .5 0 o . 1 2 3 8 4 6 4 . 5 8 0. 5 0 0. 1 2 2 4 5 21.83 0 .5 0 0.1213 5 7 8. 9 9 0. 50 0.1357 6 3 5.87 0., 5 0 0. 142 9 6 92.59 0 .50 0 . 1. 5 4 3 714.01 0. 6 0 0. 1 61 7 7 28.18 0 .5 0 0.1552 7 42.54 0' . 5 0 0.16 06 7 70, 90 0 . 5 0 0.1735 79 9.21 0 . 6 0 0.13 4 1 81.3. 45 0.50 0.1353 827 .61 C. 5 0 0. 1. 8 8 8 8 41. 9 5 0 .5 n 0.19 0 3 6 70. 32 0 . 5 0 0. 2 0 0 3 39 8.68 0. 5 0 0.2056 94 1.21 0 .5 0 0.217 8 5 5 3.20 0.50 0. 2 3 62 10 54.38 0.5 0 0.24 40 1111.85 0 .5 0 0.264 3 116 8.61 C.5 0 0.2712 122 7.34 0 . 50 0.27 20 12 76.00 0. 5 0 0.28 2 3 1339.68 (3. 5 0 0.2 96 1 1378.39 0 . 50 0.3032 1252.60 0. 5 0 0. 3066 1406.95 0. 5 0 0. 3 0 70 143 5.38 0 .5 0 0.3117 146 3.64 0. 5 0 - 0.3151 150 4.33 0.50 0.3173 15 4 6.47 0 .5 0 0 .3261 .1 4 0 2. 4 6 0.5 0 0. 337 5 16 57 . 50 0 . 50 0.3 370 1712.00 0. 5 0 0 . 3 4 1 0 1 7 e 6 . 4 7 0.5 0 0.3532 19 3 4 .5 9 l.i . 5 0 0 . 3 5 8 5' 194 8.86 0. 5 0 0.3 53 8 1963.55 0.50 0.3669 1970.58 0 .5 0 0.35 9 7 2 0 0 6.30 C.50 0. 3 5 37 2034.40 0 .50 0 .36 39 2399.68 0 .5 0 0 . .3 7 1 2 24]3.75 0.50 0.3781 2427.81 0 .50 0 .3 8 0 4 Time(min) Depth(cm) 3 3 w(cra cm ?4 5 5. 5 6 i m • ! 0. •• VP ! " 2 4 84. / 3 • . .: 7 7<: 2 5?7. 00 'J- „ fo •": 0.9031 2 5 70 . 7 2 0. 3 6 40 2 614.47 o . 6 ". 3 . 37 76 2 6 4 7. 60 0.3 P55 2 6 7 2 . o 0 < , o 'J 0. 3 04 6 2 08 l . i c ^ i 0'". 3 0 5 1 2 7 02. 1 " : 1 . 0 i) 0.3698 2 716.56 0 .l-0 0 . 0 7 6 7 2 74 5. 22 6 .6 5 0.20. 30 2 7 74.05 0. 6 0 0 0' 2 8 0 2.94 i. . 5 O 0.3911 2 831.65 0 « 50 0. 39 5 2 2360.28 0 . 50 0. 3 5 3 5 2 3 76. 5-) r t 6 ;"• 0.3841 2 8 9 0. 7 7 0. 5 0 0. 3 931 2904 .9° 0 . o 0 0.3925 2 9 33.0 0 ( , 0 0 0 . 5 9 3 9 296 2. 13 •5 . 5 0' 0. 393 1 2990 . 64 ' 0.5 0 0 .3920 3018.93 0 .6 0 0.4037 3 04 7.52 5;. 6 0 ri.40 1.2 3064 .47 0 . 6 0 0 .3927 30 7 8. 70 0 . 50 0.40 4 3 309 3 . 16 f 6 r. 0.3 994 312 1.51 0.^0 0.4001 3149. 81 0. 5 0 0. 402 3 3 20 6.66 0.50 0. 4 0 6 1 3 2 63.0 3 0 .5 0 0 .404 7 33 15. 08 0 . .6 0 0. 4 061 3 360 . 84 0 . 6 0 0 .4131 3 55 9. 80 0 .5 0 0.39 9 4 3 5 7 6.8 7 0 . 5 0 0.4 040 3 590 .83 . 0 0 0 .4 1 5 2 3 604.80 0 . 50 0.4 20 2 3 6 3 3 . 0 2 0. 4 0 « 1 36 60.36 0 . 50) 0 .4 22 1. 3 7 C 7. 6 0 0. 8 0 0. 425 8 3749.94 0 . 6 0 0 . 4 2 0 2 3806.39 0 . 6 f • 0 .4 2 17 3 85 3. 1.6 0 , 6 0 0. 4 ? 7 0 3 90 5 . 76 1 3 *^  r > 0 .435 7 4( 0 3.21 !" - 5 0 . 4 .? 4 9 4 0 7 5.20 P .433 0 4 13 2. 9 6 /" 0.4 30 1 4 3 62.65 r c 0.4324 32 . 4 5 1 . 6 0 0.126 4 4 6 . 6 o 1 . 6 0 0 . 4 !J .7 0 6 1. 20 1 . 5 0 0.1313 90 . 6 1 1 . 6 0 0 . ] 3 5 6 115.3 6 1 .60 0 .13 5 6 177. 11 3 . 5 0 0.1283 2 34 . 76 1 . 5 0 0 . 1 3,2 5 -173-Time(min) Depth(cm) w(cm3/cm3) Time(min) Depth(cm) w(cm3/cm3) 2 92. 1.4 1 . 5 0 ~0T14 0 3 2 70 1. 60 '• 1.5'3 — _ 3 4 9 . 4 ^ 1.5.-1 !\ i m 2 710.14 1 . 5 0 0 . 3 8 6 0 4 07.00 1 . 50 0 .1 4 7 3 7 7 4 4 . 7 0 0 . - >•  0 4 0 4. 15 1.50 0 . 1 54 0 27 7 3.64 1.5- '" . 5 V \ 521.42 1.50 0. 1 6 6 . 4 2 802. 55 i •-., a. « . . - 0 . .:• 8; 5 4 0 7 3.07 1 . 5 0 0.1744 2 831.52 i . 5 • * # -._ ••)t; 835 .46 ! . 5 - : 0 . 1 x 9 7 2 6 5 0 . 0 7 ! . 5 •• 0. 5 0 ]. 2 692. 16 1 . 50' • -• . ! 0 i 0 2 8 / 5 . V 0 1 r. 0 . 8 0 3 6 713.60 1. c- 0 0 . 1922 2890.33 i ", (1 05 ^  1 ' 7 2 7.75 1 . 5 n 0.2O40 20 0 4.5 7 1 .5 ' ' ' n. V 4 0 7 4 2.10 1 .60 0.201 1 2 9 3 3 . 3 3 1 .50 '. . 0 0 7 ] 7 7 0. 4Q 1 . 5 n 0.2111 2 0 6 ! . 70 1 . r- '\ 3 92 6 7 98 .80 1. . 5 0 0 . 80 9 1 2000 . 12 ' 1.50 0 . 4 0 57""' 813.04 1 . 5 0 0.2 09 1 30 1 3.52 i * • ' 0 . 4 0 0 2 827.20 1.50 0.2117 3047 . 18 1. 5 0 ''•. 4 0 24 ' 8 41.55 1 . 54 0 .2117 3 064.06 1 . 5 0 0.3894 8 6 9.87 1.50 0. 2 24 7 3 0 7 8. 3 6 1.53 0 . 3 093 89 3.26 1. 50 0.2 134 309 2 . 7 2 1 . 5 ' ) n . 4 0 4 5 940.80 1 .50 0.2 2 79 , 2121.08 1 .5 0 0 . 4 0 7 0 5 9 7 . 78 1.50 0.2 3 06 3 149.40 1 . 5 0 0.406 7 10 54.46 1.50 0.24 0 3 3206 .25 1 .55i 0 ,4037_, 11 11 .44 " 1 .50 0.2558 3 2 62.64 1.50 0.403] 1168.20 1.50 0 . 2 6 3 4 3 31 8.64 1. 8 4 0. 4 3.0 2 1226.93 1.50 0 . 2746 3 3 60.4 0 1 .50 0.411] 12 75.58 1.50 0 . 2 8 7 3 3 5 5 0.40 1 C. . 1 1 . ' 0.4042 1339.26 1. 5 0 0.2952 3 5 76.4 6 1. 5 0 0.4 08 8 13 7 7.97 1 .50 0.30 2 3 3 500.42 1 .50 0.4 252 1392.20 1. 5 0 0. 301 rt 3604.8 8 1 . 5 0 0.42 4 4 1406.52 1 . 5 0 0. 3034 3632.60 I . 5 0 0 . 4 3 3. 2 14 34.9 6 1 .5 n 0 .30-8 1 3660.42 1 . 5 0 0.4 25 5 146 3 . 24 3. . 5 0 0.3105 3 70 7. 18 1.50 0 . 4 2 81 1503 .87 1 . 50 0 . 3 20 1. 3 749 .53 1 .50 0 .4 280 1546.06 1.50 0.3 2 42 3 806.48 1. 5 0 0 . 4 2 4 4 1602.04 1.50 0 .331 a 3 862.74 1 . 5 0 0. 42 5 7 16 5 7,08 1.50 0.3357 3 9 0 5.32 ! . 5 0 0.4280 17 11.60 1. 5 0 0.3431 4 0 0 2.78 1 . 5 0 0 . 4 3 7 0 1766.06 3.60 0 . 3 5 6 0 4 0 74.8 4 1. 8 0 0.4310 1934.18 1.50 0.36 1 1. 413 2.52 1 .5 5 0.427? 19 4 8 . 4 5 1.50 0.3 6 3 2 4 16 2. 44 1.50 0.4255 1963 . 12 1 . 5o 0 . 3 5 8 9 31.62 : . 5 0 0.3 5 3 5 1 0 7 8. 1 5 1.50 0 . 3 5.3 6 4 6 . 1, 4 • « 0 . 1 5 6 r> 200 5 . 88 1. 5 0 0 . 3 5 0 6 6 0 . 3 3 5, 5 0' 0 . .1 6 6 0 20 3 3 . 9 . " 1 .50 0.3635 80 .78 j • > '• * 0 . i 5 0 6 2399.26 1 , 5 0 0 . 3 754 1 1 6. 5 5 ' • 0. !6 45 2 4 13.37 1.50 0 . 3 70 3 176.28 5.50 0 . 17 1 0 2427.40 1 .5 0 0 . 3 76 8 2 3 3.02 3 . 50 0.18^8 24 5 6 .52 1.50 0. 3 782 20 1. 30 o? r: 0 * • . 0 . 7 1 0 8 2 483.81 i . 5 5) 0 . 5757 3 4 8 . 7 1 3 . 6 0 0.217 3 2 82 6.60 1 . 5 ' . ! 0 . 3 8 8 5 4 06.14 3.50 0.2 8 8 0 2 5 70.28 1. 50 0.3 7 50 463. 33 ''.50 0.2358 2614.45 1 . 50 0.3772 520 .60 5.5 0 0 . 0 3 56 2 6 4 3.36 1.8 0 0.3878 577.76 •2 r -. 0.24 2 2 2672.57 1.50 0 . 3 84 8 6 3 4 . 6 8 3 . 5 0 0. 2491 2687.25 1 .50 0 . 7 8 4 0 691 . 35 5.50 0 .2 50O -174-Time(rnin) Depth(cm) 3 3 w(cm /cm ) Time(min) Depth(cm) 3 0 w(cm /cm ) 712. 7 8 3 . 6 1 ' oi. 2 6 4 Q 2 0 80.42 3 . 5 0 0.40 60 7 2 6 . 9 4 3 . 3 0 0 . 2 5 3 7 2O03 . 72 >.  0 . 'i72 74 1. 18 -i q .-•> « . 0 . 2 4 9 3 2 0 3 2 . 4- ... . 0 / .-1 j u. 7 6 9 . 6 7 ? . 8 3) 0. 26 18 2 o 6 0 . 8 7 ..'. •' f-O-67 7 9 7 . 9 8 3 . 5 n 0.26 27 2 9 fc 9 . ? 8 3 . 5 0 5 . '•>• 0 2 5 812.20 3 , 5 0 0 . 2 0 0 0 3 01 7.60 5 . 6 .3 0 . * 0 ? 0. 8 2 6 . 3 8 8 . 0 . ? 6 4 1 3 0 4 6.17 3 . 6 j (3.4071 • 8 4 9.71 3.60 0 .26 66 3 0 6 3 . 2 3 . 6 • 1 0 . 4 164 868.97 2.50 0.2669 30 7 7.50 3 . 5 0 O . 4 1 2 9 697.43 3 . 5 6 0.2692- 3 0 5 1 . 81 6 0 0 . 4 196 9 3 9 .98 3.50 0.2747 3120 .24 3.50 0.420 7 996.95 3.50- 0 . 2 7 7 7 8 14 6 . 5 8 s> . "> 0 0 . 4 ) 6 3 10 53.64 3.50 0 . 2 87 2 3 20 5.42 3 . 5 0 0 . 4 14.2 1 1 10.60 3 .5 0 0 .2958 326 1 . 76 • 3.50 0.4-168 1 167. 3 7 3 .5 0 0. 2 941 3317 .73 3 . 5 3 0.4213 12 2 6.10 3 . 50 0 . 2996 3 3 59 . 48 3.60. 0 . 4 2 4 3 12 74. 75 3.5 0 0.3087 . 3 5 5 8. 52 3.50 0 .4 2 39 1338 .44 3.50 0.31 3 8 3 5 7 5 . 5 3 3 . 5 (3 0.4].90 13 7 7.14 3.5o 0 .314 0 3 5 89 .6 3' 5 . 3 0 0.4166 1391. 3 7 3.6 0 0.3183 3603.45 5 0 0.4218 3. 40 5 .60 3.50 0.316 4 3 6 3 1.63 3.50 0.4305 1434.14 3.50 0 .3203 3 6 5 9 . 5 2 3 . 5 0 0 . 4 19 0-1462.40 3 . 5 0 0.3272 37 06.24 3 . 6 0 0 . 4 23 7 15 0 2.98 3 .50 0.33 39 3 74 P.70 3 . 6 0 0 . 4?.4?. 1545.22 3 . 6 0 0 . 3 3 74 3803.4 0 3 . 5 0 0 . 4 ? 4.7 160 1 .20 3.6 0 0 . 3 4 5 2 3661.92 3.50 0.424 0 16 56.25 3 .5 0 0.3431 3 904 . 4 0 3.50 0 .4207 1710. 76 3.50 0 . 3 52 6 400 1. 37 3 . 5 0 0.43 31 1765.23 3.50 0.3606 4073.96 0.4328 193 3.35 3.50 0 .3 6 8 7 4 131.6 1 3.50 0.4275 1 94 7 . 63 3.50 0 . 0 6 4 5 4 16 1 . 6.0 5-. 5 0 0 . 4 2 6 6 1362 .21 3 .30 0.3645 30 . 7 8 5.50 0 . I 7 6 1577.24 3 .5 0 0 . 3 6 4 3 4 5 . 3 0 5 .6 0" 0 . 18 0 2 2 0 0 5 . 0 4 3. 5 0 0.3 74 4 5 0 . 56 6 . 0 0 0 . 1 9 3 1 2"33 . 1 5 3 .50 0.3787 8 8 . 5 4 5 . 6 0 0 . 2 2 4 7 2 35 8.44 3.50 0. 3 7 84 117.70 .0 L~ ^ • % ' . 0 . 2 242 24 12.50 3 . 5 0 0 . 3 8 7 3 17 5 . 4 3 5 . 5 0 0 . 2 4 0 5 2426.57 3.50 0.3 778 2 3 3 . 0 3 0 . 259 1 2454.6 8 3.5 0 0. 3 933 2 90.47 5 . 5 0 0 . 2 7 51 2 4 8 2 . 9 8 3 . 50 0 . 3 7 9 7 34 7 . 33 5.50 0.2681 2 52 5. 74 3 .50 0.8914 40 5 . 3 3 6.60 0.2712 2 569 .37 3 . 5 0' 0 . 3 9 1 8 4 6 2 . 46 5-50 0 . 2 7 05 2613 . 16 3 . 3 (j 0 . 3 8 5 2 519.75 5 . 6 0 0 . 2 74 0, 2 6 4 2.46 3.5 0 0.3 90 7 6 76. 9 0i 5.60 0.2759 2671 . 7 3 3 . 5 0 0.3 96 3 0 3 3.80 5 . 6 0 0 . 2 80 7 26 86 .28 3.50 0 . 3 9 4 6 6 90.55; 5 . 5 0 0.2332 2 700.85 3. 5 0 0 .4 019 711.94 5 . 5 0 0.2832 27 1 5.30 3 . 5 0 0 . 3 9 7 3 726. If 5 . 5 0 0 . 2 6 04 27 43.83 3 .5 0 0.4053 7 4 6-. 30 * * \ J 0 . 2 7 7 2 27 7 2.80 3. 5 0 0. 4 03 9 76 6.8 2 5 . 5 0 0. 2 8 7° 2 801.70 3.50 0.4032 79 7.16 5.50 0 .2 0 0 ? 2 830.3 8 3.50 0.4135 811.36 5.50 0 . 2 0 6 0 2 8 5 9.13 3.5 0 0 .4 06 0 8 2 6.54 5 . 5 0 0 . 2r>5r' 2875.10 3.50 0 . 4 0 0 4 3 39 . 36 5 . 6 0 0 . 2 89 2 - 1 7 5 -T i m e ( m i n ) D e p t h ( c r a ) w ( c m / c m ) 8 6 8 . 0 7 6 . 5 0 0 . 2 9 5 0 8 9 6 . 6 0 5 . 5 0 0 . 2 0 5 3 939 . 14 -- * -> ' ' 0 . 3 0 1 1 5 9 6 . 10 (-. u i\ ..'4} • :.' 0 . 3 0 51 1 0 5 2 . 8 0 5 . 5 0 0 . 2 9 7 0 11OO.78 6 6 0 0 . 3 0 5 3 1 16 6. 5? •> » . y 0 . 3 0 3 7 12 2 5 . 2 5 3 . 6 0 0 . 3 0 3 ? 12 7 3 . «I 5 . 5 0 0 . 3 0 6 6 1 3 3 7 . 60 5. 6.5 0 . 3 1 2 4 13 7 6 . 3 0 5 .5Q 0 . 3 106 1 3 9 0 . 54 5 . 5 0 A . 3 1 2 7 1 4 0 4 . 7 1 3 . 5 0 0 . 3 18 6 143 3 . 2 7 5 . 5 0 , 0 . 3 2 1 8 1 4 6 1 . 56 5 . 6 '1 0 . 3 2 1 5 1 5 0 2 . 0 7 5 . 5 0 0 . 3 2 3 1 1 54 4 . 3 8 5 .5 0 0 . 3 242 1 6 0 0 . 3 6 5 . 5 0 0 . 3 3 1 9 1 6 5 5 . 4 1 5 . 5 0 0 . 3 .246 1 7 0 9 . 9 2 • 5 . 5 0 0 . 3 3 8 6 17 6 4 . 3 9 5 . 5 0 0 . 3 4 3 0 193 2 . 5 0 5 . 5 0 0 . 3 446 1 5 4 6 . 7 9 5 . 5 0 0 . 3451. 1961 . 3 2 5 . 5 0 0 . 34 6 0 1 9 7 6 . 3 5 5 . 5 0 0 . 3 5 0 3 20 0 4 . 2 1 5 . 5 0 0 . 3 52 0 203 2 . 3 0 5 . 5 0 0 . 3 5 6 0 2 35 7 . 60 5 . 5 0 0 . 3 6 6 2 24 1 1 . 66 5 . 5 0 0 . 3 73 1 2 42 5 . 7 3 5 . 5 0 0 . 3 6 2 6 2 4 5 3 . 8 5 5 . 5 0 0 . 3 74 0 ' ' 2 4 8 2 . 1 5 5 . 6 0 0 . 3 815 2 5 2 4 . 92 5 . 6 0 0 . 3 740 2 5 6 8 . 4 7 5 . 5 0 0 . 3 7 84 26 12 . 2 5 5 . 5 0 0 . 3 7 6 3 2 6 4 1 . 5 5 5 . 5 0 0 . 3 8 0 7 26 7 0 . 3 8 5 . 3 0 0 . 3 8 2 2 2 68 5.44 5 . 50 0 . 2 8 0 6 2 7 0 0 . 02 5 . 5 0 0 . ? 3 9 9 2 7 1 4 . 4 6 5 . 5 0 0 . 3 0 5 ? 2 7 4 2 . 9 9 5 .5 3! 0 . 3 8 8 1 2 7 7 1 . 97 5 . 50 0 . 3 8 7 7 2 8 0 0 . 8 6 5 . 5 0 0 . 3 5 5 2 2 82 9 . 54 5 .5 0 0 . 3 8 3 4 2 8 5 8 . 23 5 . 5 0 0.4 04 4 2 3 74 . 2 6 5 . 5 0' 0 . 3 0 6 1 2 8 8 3 . 52 5 . 5 0 0 . 4 1 ? 1 2 9 0 2 . 9 0 6 . 5 0 C. 4 1 0 7 2 9 31 . 3 8 6 . 5 0 0 . 4 0 7 6 2 5 6 0 . 0 4 3 . 5 0 0 . 4 06 8 2 9 8 8 . 4 5 5 . 5 0 0 . 4 1 8 0 3 0 1 6 . 8 4 5 .5 0 0 .4 1 1. ]. 3 0 4 5 . 28 5 . 5 0 0 . 4 096 30 6 2 . 4 0 5 . 5 0 0 . 4 096 T i m e ( r n i n ) D e p t h ( c r n ) w ( c m / c m ) 3 0 7 6 . 6 6 r. ^ 0 . 4 1 6 3 ? J 9 0 . 9 3 6 . 6 0 . 0 . 4 1 04 3 1 1 9 . 4 2 5 . :'- 0 0 . 4 1 6 5 31.4 7. 73 5 • 6 •' '• 0 . 4 1 3 5 .5 20 4 . 30 0 . 4 1 5 ? 3 26 5 . 04 6 . 5 •". o . 4 1 3 1 3 3 1 6 . 0 6 * c •  0. 4 1 6 ! . 3 3 5 8 . 3 0 - * • ' . ' 0 . 4 2 6 6 3 5 5 7 . 7 4 3 .3 3. 0 . 4 145 3 5 7 4 . 6 6 5 . o ' * 0 . 4 2 5 o 3 5 8 8 . 75 5 . 5 0 0 . 4 2 3 2 3 6 0 2 . 6 8 5 . 5 3 0 . 4 ? 3 4 36 30 . 85 o . 6 0 0.4 oo i 3 6 5 8 . 6 2 5 . 5 0 0 . 4 2 3 5 .3705 . 37 5 . 5 0 0 . 4 2 3 8 3 7 4 7 . 8 6 5 ,6 0 0 . 4 24 4 3 8 0 4 . 6 3 6 , 5 0 0 . 4 2 2 7 3 8 6 1 . 0 6 6 . 5 0 0 . 4 1 8 3 3 9 0 3 . 3 2 0 . 4 2 3 8 40 0 0 . 9 3 5 . 5 0 0 . 425 9 4 0 7 3 . 0 6 6 . 5 0 0 . 4 3 2 1 4 1 3 0 . 72 5 . 5 0 0 . 4 2 70 4 1 6 0 . 7 7 5 . 5 0 0 . 4 2 4 9 30 . 1 4 7 . (3 0 0 . 2351. 44. 6 6 7. 0 li 0 . 2392 5 8 . 9 5 7. 00 0 . 2 4 6 0 8 3 .1 2 7 . 0 0 0 . 2 5 3 2 1 1 7 . 08 7. 00 0 . 2 5 72 1 7 4 . 0 0 7 . 0 0 o . 2 5 3 2 2 3 2 . 4 6 7 . 0 0 0 . 26 3 2 ; 2 8 5 . 8 5 7. 0 0 0 . 2 642 .347. 25 7 . 0 0 o . 2 6 2 ? 4 0 4 . 7 1 7 . 0 0 o.?o 1 6 4 6 1.6 8 7 . 063 0:. 2 6 2 7 5 1 9 . 1 4 7 . 0 0 0 . 2 60 9 5 7 6 . 2 7 N 7 . 0 0 0. 2 67o 6 3 3 . 16 7 .0 0 0 . 2 o 14 6 8 9 . 87 7 . 0 0 0 . 2 6 6 0 7 1 1 . 3 2 7 . 0 0 0 . 2 6 4 2 7 2 5 . 4 6 7 . 0 0 0 . 0 7 8 6 7 3 9 . 6 3 7. 0 0 . 2 71 7 76 8 . 2 0 7 . 3 0 0 . 2 771 7 9 6 . 5 2 7 .93 0 . 7 7 1 3 3 1 0 . 7 5 7 . 00 o . ? 79 0 6 2 4 . 9 0 7 . 0 0 ' • <- . 1 . ' . 1 8 3 9 . 2 5 7 .oo o. 2813 86 7 . 4 0 7 . f • 0 0 . 2 0 5 7 P. 9 6 . 9 7 7 . 0 0 0 . 2 8 8 4 5 3 3 . 3 0 7. 0 0 ' 0 . 2 9 3 7 9 9 5 . 4 0 7 . 0 0 0 . 2 8 1 3 10 5 2 . 1 8 7 . 00 0 .2 8.3 4 110 9 .1 <. 7 . 0 0 0 . 2 87 0 116 5 . 0 0 7 . 0 0 0 . ?oo 1 12 2 4 . 6 3 7 . 0 0 0 . 2 8 5 2 -176-Time(min) Depth(cm) w(cmJ/cmJ) 12 7 3.27 7. 0 0 0.25 o i !3 36.97 7 . '': 0 o . ? 0 0; ? 1 375. 66 7. i? 0 o.2 8 00 138 9 .90 7. 0 0 0.2 09 2 18 03.07 7. 0 0 0. 2 087 18 3 2.65 7. 0' 0 0. 3 00 1 18-6 0.94 7 .00 0.3054 15 01.4 3 7.-G 0. 3 08 9 15 43.74 7 .0 0 0 . 30 81 1 5 9 9. 74 7.00 0.208 7 . 16 5 4.80 7.0 0 0.3029 17 09 .30 7 .0 0 0 . 30 6 4 1 7 6 3. 74 7.0 0 0. 30 49 19 3 1.87 7. 0 0 0.3122 19 46.17 7 .0 0 0.3145 I960.64 ' 7.00 0. 3 2 07 19 7 5.68 7.00 0.3210 2 0 0 3.59 7 .0 0 0.3231 203 1. 68 7. 00 0.3 2 49 2396.98 7 .0 0 0.3248 2411.04 7 .0 0 0 . 3 3 7 4 2 4 2 5.10 7. 0 0 0.3 39 5 2 453.23 7 .00 0.3443 2 481 . 53 7.0 0 0 . 3 50 1 2 5 24. 28 7. 0 0 0. 3 4 59 2 567.32 7 .00 0.3 55 5 26 11.57 7. 0 0 0. 3 5 04 2640.90 • 7.0 0 0.3503 2 6 70.26 7.00 0.349 1 2 6 84.77 7. 0 0 0. 3 61 2 2 6 99.40 7.00 0.3609 2 713.84 7 .0 0 0.363 3 2742.33 7. 0 0 0. 359 6 2771 .33 7.00 0 .36 34 2 800.2 3 7.0 0 0. 3 6 6 0 28 2 8.93 7. 0 0 0.3 700 2 3 5 7.66 7.00 0 . 3 6 1 7 2 3 7 3.63 7 .0 0 0.3 786 2 5 8 7. 85 7 .00 0.3763 2 90 2.27 7.0 0 0.3700 2 030 .90 7.0 0 0.3801 2 0 59.40 7 . •? 0 0.3 84 8 2987.82 7 .0.0 0.3872 8016.22 7 .00 0 . 38 39 3 04 4.6 2 7.00 0. 3 34 2 30 6 1 .78 7.00 0 . 38 96 3C76.04 7.0 0 O . 7 0 6 0 3090 .24 7. 0 0 0. 3 0 77 3118.30 7.00 0 . 390 4 3 14 7. 10 7. 0 0 0. 4 06 3 3 203.97 7 .0 0 0.4027 3 260.20 7 .00 '0.3987 3 3 16. 18 7.00 0 . 3 9 5 9 3 357.94 7 .00 0 . 39 9 6 Time(min) Depth(cm) w(cmJ/cm 5 5 5 7 . ( 9 7 . .-n 0 .4'"' 5 7 3 5 7 3 . 0 7 7 . 0 0 0. 71 '• 0 5 3 5 8 8.13 7.00 0 .40 I iftC 1. 00 7. 0 r. 0 . 4 0'-)} 3 6 3C . 1 ? v. 0 0 0 .4122 885 7. 04 7 .0 0 0 .4 3.1 "> 3 7 C 4. 7 0 7. c- 0 0 • •'- 0 3 7 3 747.24 7 .0 0 0.4132 5804.01 7.00 0 .4066 3860 . 46 7.0 0 O . 4 1 0 7 -3 0 n Z . 8 4 7 .0 0 0.4U2 40OO.32 7.00 0 . 4 0 9 4 4072.38 7. 0 0 0. 4 J. 6 3 4 1 30.04 7 . 0 0 0 . 4 1. 3 4 4 160. 14 7. 8 0 0. 4 1 5 6 -177-APPENDIX VIII •k Total water potential as a function of time at various depths for wetting of the non-layered s o i l column A l l water potential is given in cm of water unless otherwise noted -178-Time(min) Depth(cm) 131.7 1.60 -93.52 bars 155.5 1.60 -93.50 179.3 1.60 -96.08 208.2 1.60 -93.39 224.8 1.60 -91.98 236.6 1.60 -88.39 249.6 1.60 -88.77 262.0 1.60 -86.47 272.4 1.60 -84.03 284.8 1.60 -80.83 288.9 1.60 -80.57 295.2 1.60 -76.72 298.3 1.60 -77.49 303.4 1.60 -76.21 314.8 1.60 -75.06 325.2 1.60 -72.88 331.4 1.60 -71.47 335.5 1.60 -71.08 341.7 1.60 -66.47 367.6 1.60 -60.57 377.9 1.60 -56.86 384.1 1.60 -52.88 389.3 1.60 -52.37 394.5 1.60 -50.70 399.7 1.60 -49.55 403.8 1.60 -48.01 407.9 1.60 -46.34 413.1 1.60 -44.81 418.3 1.60 -43.78 423.5 1.60 -41.60 428.6 1.60 -39.04 433.8 1.60 -37.88 438.9 1.60 -35.96 444.2 1.60 -33.65 449.3 1.60 -31.60 454.5 1.60 -30.83 459.7 1.60 -27.88 461.8 1.60 -26.86 464.9 1.60 -26.43 470.0 1.60 -25.45 475.2 1.60 -23.06 480.4 1.60 -21.39 485.5 1.60 -20.36 490.7 1.60 -18.65 496.9 1.60 -16.82 506.2 1.60 -14.25 516.6 1.60 -13.06 521.8 1.60 -10.71 528.9 1.60 -9.00 538.3 1.60 , -6.09 549.7 1.60 -6.22 562.1 1.60 -2.76 579.7 1.60 -1.39 Time(min) Depth(cm) 25c.62 1 .60 -262.000 276.46 1 . 60 -483.595 311.82 1 .60 -588.520 358.35 1.60 -640. 199 420 .62 1 .60 -669. 171 l 545.88 1 .60 -677.001 484.36 1 . 60 -678.568 607.95 1 .60 -665 .648 666.25 1 .60 -647. 247 705.84 1 .60 -630.020 709 .14 1 .60 -628.454 . 712.27 1 .60 -626.888 717.12 1 . 60 -624.539 751.25 1 .60 -606.530 784.34 1. 60 - 587. 345 820 .74 1 .60 -561.897 825.66 1 .60 -557.982 830.49 1. 60 -554.067 837.31 1 .60 -548.586 842.35 1 .60 -545.454 855.70 1 .60 -534.492 872 .40 1 .60 -518.048 887.30 1. 60 -503.171 9C5.80 1 .60 -482.812 924.26 1 .60 -462.062 942.74 1.60 -438.963 959 .00 1 . 60 -418.604 9 81.83 1 .60 -389.633 597.92 1 . 60 -371.623 1018.45 1 .60 -348.9 16 1041.70 1.60 -325.425 1071.89 1 . 60 -301.543 1092.47 1 .60 -287 .840 1125. 12 1 . 60 -266.698 1162 .50 1 . 60 -246.340 12 04.70 1 .60 -230.680 1252.74 1. 60 -2 12.670 1297 .2.5 1 .60 -198.576 1343.60 1.60 -185.265 1366.45 1 . 60 -336. 387 1368 .80 1 .60 -334.821 1375.56 1 . 60 -334.038 1387.26 1 . 60 -330.906 1401 .06 1 .60 -170.387 1417.28 1. 60 - 168. 038 1444.65 1 .60 -159.425 147 3.3 5 1 .60 -152.378 1534.50 1.60 -139.066 1597.57 1 .60 -127.321 1656.57 1 .60 -117.142 1717.50 1.60 -109.312 1 786 .75 1 .60 -99 .915 1846.85 1 .60 -93.651 -179-Time(min) Depth(cm) 1904.25 1 .60 -89.736 1939.49 i .60 -87. 387 1941.85 1 . 60 -86.604 1946.30 1 .60 -86.604 1950.70 1.60 -86. 761 1957.67 1 . 60 -86.526 1971.30 1 .60 -85.038 1993.75 1. 60 -32. 219 2016.00 1 .60 -79.009 2047.70 1 .60 -76.033 2083.07 1.60 -72. 51.0 2113.25 1 .60 -70.474 2143.34 1 .60 -67. 311 2205.46 1.60 -64.679 2267 .82 1 .60 -62.330 2316.56 1. 60 -60. 764 2370.91 1 .60 -59.355 2405.18 1 .60 -58.024 2407.63 1. 60 -58.024 2414.55 1 .60 -57.632 2423.94 1 .60 -57. 084 2435.48 1.60 -55.988 2449.21 1 .60 -54.735 2474.44 1.60 -52.073 2502.19 1 .60 -50.193 2537.30 1.60 -48.941 2575.55 . 1. 60 -47. 453 2624.87 1 .60 -45.965 2679.16 1 .60 -45. 730 2681.55 1. 60 -45. 339 2686.36 1 .60 -45.260 2693.54 1 .60 -44.243 27G3. 14 1 .60 -41.659 2714.90 1 .60 -39.623 2 729. 30 1 .60 -37. 665 2743.27 1 .60 -36.491 2762.21 1 .60 -34.925 2802.29 1. 60 - 34. 846 2851.37 1 .60 -34.142 2867.60 1 .60 -33.907 2869.91 1 . 60 -33. 515 2872.20 1 .60 -33.515 2876.78 1 .60 -30.618 2883.82 1 .60 -27.251 2890.73 1 .60 -25.528 2904.78 1. 60 -24, 041 2921 .30 1 .60 -23.962 2945.00 1 .60 -23.806 2986.91 1. 60 -23. 179 3024. 10 1 .60 -22.866 3056.30 1 .60 -23.101 3058.68 1 . 60 -22.866 3061.06 1 .60 -20.439 3065.72 1 .60 -16.132 Time(min) Depth(cm) 3072.85 1 . 60 - 14.096 3082.17 1 .60 -13 .000 3096. 14 1. 60 -36. 021 3116.70 1 . 60 -13.000 3153.22 1 .60 -12.609 3196.65 1. 60 ...-12. 217 3261.94 1 .60 -12.217 33 21.90 1 . 60 -12. 452 3407.70 1.60 -12.217 3487.78 1 .60 -1 1.904 3568.00 1. 60 - 12.374 3570.35 1 .60 -11.826 3572.70 1 .60 -10.025 3575 . 15 1.60 -6.892 3579.80 1 .60 -3.604 3 586.67 1 .60 -2.351 3596 .20 1 . 60 -2.194 3607.52 1 .60 -2. 1 16 3635.34 1. 60 -2. 038 3681.34 1.60 -2.038 3737. 37 . 1 .60 -1.959 3781.66 1. 60 -2. 038 379 5 .80 1 .60 -2.038 - 3578.64 1 .60 -2.038 4072.85 1 . 60 - 1.33*3" 4181.00 1 .60 -1.725 .-15.8 3.60 -23.81 bar 25.1 3.60 -24.39 tr 31.3 3.60 -24.03 TT 37.5 3.60 -23.49 tT 43.7 3.60 -23.49 f t 51.0 3.60 -24.03 It 64.4 3.60 -23.74 t t 78.9 3.60 -22.95 It 88.2 3.60 -22.16 It 97.5 3.60 -20.86 t t 105.8 3.60 -20.03 t l 116.1 3.60 -19.24 t t 127.5 3.60 -18.44 t t 142.0 3.60 -16.79 f l 153.4 3.60 -16.14 It 165.8 3.60 -13.18 II 171.0 3.60 -12.68 f l 181.3 3.60 -12.14 II 192.7 3.60 -10.99 II 195.8 3.60 -8.90 t t 217.5 3.60 -8.68 It 230.0 3.60 -7.49 t l 239.3 3.60 -6.55 f t 245.5 3.60 -5.44 It 256.9 3.60 -5.98 f t 264.1 3.60 -5.08 f t III- *k 3,. 6£L -4~7/5r f t 289/9 03.60 - 3T.85 -180-Time(min) Depth(cm) 302.4 3.60 -3.67 bars 308.6 3.60 -3.17 " 327.2 3.60 -2.99 » 352.1 3.60 -1.33 » 364.5 3.60 -1.15 " 382.1 3. oO -O.bl " 256.45 3. 60 -338.133 276.30 3. 60 -342.160 311.65 3 .60 -346 . 188 358.20 3. 60 -346.188 420.46 3.60 -338.133 484.18 3 .60 -326.049 545.72 3. 60 -311.549 607.80 3.60 -295 .438 666.12 3.60 -279. 730 705 .68 3. 60 -269.661 708 .99 3 .60 -269.661 712.11 ' 3. 60 -268.855 716 .95 3.60 -267.244 751.10 3 .60 -259.188 784.15 3. 60 -251.133 820.58 3 .60 -243.077 825.53 3 .60 -241.466 830.32 3. 60 -239.855 837.14 3 .60 -239.050 842.19 3. 60 -237.438 8 55.54 3.60 -235.022 872.20 3 .60 -2 30.9 94 887.06 3. 60 -226. 966 905.58 3.60 -221.327 924.02 3 .60 -217.300 942.50 3.60 -212.466 958.78 3 .60 -208 .439 981.61 3. 60 -202.800 997.75 3.60 -198.772 1018.22 3 .60 -194.744 1041.49 3. 60 -188.300 1071 .65 3 .60 -181 .855 1092.23 3.60 -178. 633 1124.88 3. 60 -172.994 1162 .26 3.60 -166 .550 1204.46 3. 60 -158.897 1252.48 3.60 -152.0 50 1297.02 3.60 -145.605 1343.37 3. 60 - 1 39. 967 1366.21 3 .60 -297.855 1368.56 3 .60 -297.855 1375.35 3. 60 -297.855 1387 .05 3 .60 -295 .841 1400.86 3.60 -132.717 1417.07 3. 60 - 130.300 Time(min) Depth(cm) 1444.43 3 .60 -124.66 1 1473. 15 3. 60 -119.828 1534.27 3 . 60 -110. 161 15 9 7.35 3 .60 -100.4 94 1656.75 3. 60 -92.439 1717 .30 3 . 6 0 -85.995 1786.52 3 . 6 0 -78. 342 1846 .62 3. 60 -73.9 11 1904 .06 3 .60 -69 .078 1939.25 3. 60 -67. 467 1941 .62 3.60 -67.386 1946.09 3 .60 -6 6.500 1950.48 3. 60 -66. 661 1957.45 3 .60 -65.856 1571.09 3.60 -65.050 1993.54 3. 60 -62.553 2015.80 3 .60 -59.411 2047.46 3.60 -56. 1 89 2082 .85 3.60 -52.967 2113.01 3 .60 -50.953 2 143.14 3. 60 -48.939 2205.25 3.60 -45.314 2267.60 3 .60 -43.300 2316.35 3. 60 -41. 689 2 3 70.72 3 .60 -40 .884 24G4.98 3 .60 -40.078 2407.38 3 . 60 -39.917 2414 .34 3.60 -39.272 2423.72 3. 60 -38. 628 2435 .25 3.60 -37.822 2448.97 3 .60 -36.614 2474.20 3. 60 -34. 036 2501.95 3.60 -32.667 2537.06 3 .60 -31.297 2575.32 3.60 -30.411 2624.62 3 .60 -28.800 2678.55 3.60 -28.639 268 1 .30 3.60 -28.397 2 686.15 3 .60 -28.156 2693.34 3. 60 -27. 270 2702.90 3.60 -25.981 2714.66 3 .60 -24.128 2729 .05 3.60 -22.356 2743.05 3 .60 -20 .906 2761.98 3. 60 - 19.617 2802.05 3 . 60 -18.489 285 1. 16 3 .60 -17.764 2867.36 3. 60 - 17. 845 2869.70 3 .60 -17.684 2872.00 3 .60 -1 7. 684 2876.55 3. 60 - 16.717 -181-Time(min) Depth(cm) 2883 .60 3 .60 -15. 186 2890.52 3.60 -13. 495, 2904.55" 3.60' "- 11 .078 2921.05 3 .60 -9.467 2944.76 3. 60 -8. 259 2986.70 3.60 -7.856 3023.86 3 .60 -7.856 3056.05 3. 60 -7.695 3058.45 3 .60 -7.856 3060.84 3.60 -7.211 3065 .50 3. 60 -5.520 3072 .62 3 .60 -3.0 22 3081.95 3. 60 -1. 250 3095 .95 3.60 0.361 3116.45 3 .60 1. 5 69 3153.00 3. 60 1.311 3196.43 3.60 1.811 3261.72 3 .60 1.811 3321.70 3. 60 1.972 3407 .51 3 .60 : 2.214 3487.55 3.60 2.214 3567.77 . 3.60 2. 133 3570.15 3 .60 2. 133 3572.46 3. 60 3. 019 3574.92 3.60 3.664 3 5 79. 5 9 3 .60 5. 677 3586.44 3. 60 8. 094 3595 .99 3 .60 9.705 3607.29 3 .60 10. 672 3635.12 3.60 11.478 3681 .10 3 .60 11.478 3737.15 3.60 11.558 3781.43 3. 60 52.883 3795.60 3 .60 11.553 ..3576. 41 . . . .3.60. . 13. oag 4072 .62 3.60 13.089 4180.75 3 .60 13.089 12.7 5.60 -20.76 bars 19.9 5.60 -19.26 » 27.1 5.60 -19.49 » 53.0 5.60 -13.02 » 57.2 5.60 -11.37 " 62.3 5.60 -12.78 » 66.5 5.60 -11.09 " 73.7 5.60 -10.53 » 79.9 5.60 -11.14 » 85.1 5.60 -9.12 » 90.3 5.60 -7.62 » -94.4 5.60 -6.91 » 99.6 5.60 -6.54 » Time(min) Depth(cm) 103.7 5 .60 -5.74 bars 107.9 5 .60 -5.74 » 114.1 5 .60 -6.30 " 119.2 5 .60 -3.86 " 125.5 5 .60 -3.49 « 133.7 5 .60 -5.32 » 139.9 5 .60 -1.28 " 145.1 5 .60 -2.64 " 150.3 5 .60 -0.81 » 157.5 5 .60 -2.27 " 163.7 5 .60 -1.19 » 172.0 207 .07 5 .60 5.60 " -151.757 257. 20 5.60 -145. 706 . 277.03 5. 60 -143.286 312 .40 5 .60 -140.365 358.94 5.60 -137. 638 421 .20 5. 60 -135.217 484 .92 5 .60 -133.604 546.46 5.60 -131. 183 608 .54 5.60 -131.183 666.87 5.60 -130.377 706.41 5. 60 -131. 183 709 .67 5 .60 -128.763 712.80 5 .60 -130.377 ' 717.70 5.60 -127. 149 751 .85 5 .60 -120 .856 784.55 5.60 -117.468 821 .34 5.60 -118.275 826.24 5 .60 -116.661 831.06 5. 60 -115. 047 337 .85 5.60 -112.627 842.93 5 .60 -111.320 856.07 5. 60 - 108. 996 873 .00 5 .60 -105.366 8 3 8.11 5 .60 -104.962 906.63 5. 60 -102.945 943 .60 5 .60 -102.138 1125.94 5. 60 -97. 298 1298 .00 5.60 -93.264 1367.26 5 .60 -254.221 1369.55 5. 60 -253.414 1376.36 5.60 -253.011 1388.05 5.60 -250.187 1401.84 5. 60 - 85. 195 1418.05 5 .60 -82.775 1445.49 5.60 -78. 741 1474.13 5. 60 -77.934 1535 .30 5 .60 -76.321 15S8.36 5. 60 -72. 690 1657.72 5.60 -72.207. -182-Time(min) Depth(cm) 1718.26 5.60 -70. 673 1787.54 5. 60 -68.656 1347 .62 5.60 -66.639 19C5.CO 5 .60 -65.832 1940.30 5. 60 -64.299 1947.05 5 .60 -63.815 1951.52 5.60 -64.057 1958.43 5. 60 -61.879 1972.05 5 .60 -58.974 1994.55 5. 60 -55. 344 2016.75 5.60 -53.972 2048.50 5 .60 -52.197 2083.84 5.60 -50.745 2114.02 5 .60 -51 .713 2 144.14 5 .60 -49.293 2206.25 5. 60 -49.857 2268 .63 5 .60 -48.889 2317.34 5. 60 -47.276 2371.78 5. 60 -47.276 2406.00 5 .60 -45.823 2408.57 5. 60 -47. 276 2415.35 5 .60 -45 .501 2424.70 5. 60 -41.628 2436.30 5. 60 -40.983 2450.06 5 .60 -39.611 2475.20 5. 60 -38. 804 2503.06 5.60 -37.997 2538.18 5 .60 -37. 513 2576.36 5.60 -35.174 2625.63 5.60 -34.770 2682.40 5.60 -34.367 2687 .20 5. 60 -32.915 2694.33 5 .60 -30.333 2704.00 5. 60 -27. 267 2715.72 5.60 -27.348 2730.09 5 .60 -26.460 2744.10 5. 60 -26. 299 2763 .06 5 .60 -25.411 2803.19 5 .60 -25.089 2852.15 5.60 -25.492 2868 .40 5 .60 -24 .685 2870.72 5.60 -25. 492 2872 .98 5.60 -23.233 2877 .63 5 .60 -19. 118 2884.60 5. 60 - 16.698 2891.58 5.60 -15.810 2905.61 5 .60 -15.003 2922. 14 5. 60 - 15.972 2987.70 5 .60 -15.003 3024.89 5 .60 -14.197 3057.IC 5.60 - 15.810 Time(min) Depth(cm) 3059.50 5 .60 -13.390 3061.90 5.60 -10. 163 3066 .57 5. 60 -6.935 3073.63 5 .60 -5.322 3C83.02 5. 60 -4.434 3096.94 5.60 -4.031 3117.54 5 .60 -4. 354 3154.03 5. 60 -4. 192 3197.42 5 .60 -4.515 3262.72 5.60 -5.322 3322.65 5. 60 -4.354 3408.43 5 .60 -3 .869 3488.54 5. 60 -5.40 2 3568 .84 5.60 -4.112 3571.15 5 .60 -3.466 3573.54 5. 60 -2.256 3575 .97 5.60 1.617 3580.60 5.60 2. 988 3587.50 5. 60 4. 279 3596.96 5 .60 5 .893 3608.34 5.60 4. 683 3636 . 10 5. 60 4.763 3682 .16 5 .60 5 .974 3738.15 5. 60 5. 974 3782 .50 5. 60 6.377 3796.58 5.60 5.167 3979.45 5. 60 5. 893 4073.70 5.60 6.780 4181.85 5 .60 4. 844 5.61 7.60 -103.679 9.15 7 .60 -103.339 28.63 7. 60 -97. 728 54 .90 7.60 -96.878 73. 84 7 .60 -95.603 89.22 7. 60 -96.028 97 .69 7 .60 -96 .878 142.4 5 7.60 -95. 603 170 .86 7.60 -95.433 200 .83 7 .60 -95.178 257.39 7. 60 -95. 178 277 .22 7.60 -95.178 312.60 7 .60 -95.178 546.65 7. 60 -95. 178 485.14 7 .60 -95.178 421.40 7.60 -95.178 359.15 7. 60 -95.178 608.73 7.60 -95 . 178 667.06 7.60 -95.178 7 06.61 7. 60 -95. 178 709.85 7.60 -93.477 7 12.98 7. 60 -90. 927 -183-Time(min) Depth(cm) 717 .89 7.60 -88.376 752.06 7.60 -84.976 785. 15 7.60 -34. 976 821.55 7 .60 -85 .401 826.41 7 .60 -82.000 331.25 7.60 -78.600 838.03 7 .60 -76.474 883.13 7. 60 -76.474 856 .46 7. 60 -76.474 373.20 7 .60 -75.624 888.32 7. 60 -76. 474 906.90 7.60 -75.624 925. 1 9 7 .60 -76. 474 9 4 3.88 7. 60 -76.474 1 126.20 7 .60 -75.624 1298.26 7.60 -76. 474 1344.66 7.60 -76.474 1367.51 7 .60 -246.503 1369.80 7. 60 -246. 503 1376.66 7.60 -2-42.252 1388.30 7 .60 -238.002 1402.10 7. 60 -67.123 1418.07 7.60 -67.123 1445.75 7.60 -65. 848 1474.38 7.60 -66.273 1535 .54 7 .60 -67.123 1598.64 7.60 -65. 848 1657.97 7.60 -66.273 1718 .54 7.60 -67.123 1787.77 7. 60 -67. 123 1847.89 7.60 -65.848 1905.26 7.60 -65. 848 1940.58 7. 60 -65. 848 1942.90 7 .60 -67.038 1947.30 7.60 -63.552 1951.80 7.60 -103.594 1958 .70 7 .60 -58.621 1572.30 7.60 -56.921 1994.83 7. 60 . -55.90.1 2017.02 7.60 -55.391 2048.75 7. 60 -55.476 2084 .11 7 .60 -55.221 2114.28 7.60 -55. 476 2144.40 7.60 -55.221 2206.50 7 .60 -55.221 2268.91 7. 60 -55. 221 2317.60 7.60 -54.796 2371.92 7.60 -55.221 2406.30 7.60 -54. 201 2408 .86 7 .60 -53.521 2415.62 7.60 -49.270 Time(min) Depth(cm) 2425.00 7. 60 -46.719 2436.55 7 .60 -46.549 245C.30 7. 60 -4 5. 86 9 2475.45 7.60 -45.274 2503.34 7 .60 -45.444 2538.47 7. 6 0 -45. 019 2576 .64 7. 60 -44.254 2625.90 7.6 0 -43.999 2680.26 7. 60 - 44.849 2682 .70 7 .60 -42.469 2687.30 7.60 -39.068 2694.61 7.60 -36.518 2704.30 7 .60 -34.817 2716.CO 7. 60 -34. 817 2730 .35 7.60 -34.817 2744.34 7.60 -34.817 2763.32 7. 60 -33. 967 2803.35 7.60 -33.967 2852.42 7.60 -34. 392 2868.67 7.60 -33.797 2870.99 7 .60 -33 .117 2873.25 7.60 -29. 972 2877 .90 7.60 -26.316 2884.85 7 .60 -24.616 2891. 85 7. 60 -24. 191 2905 .90 7.60 -23.765 2922.42 7.60 -24.616 2946.06 7. 60 -23.936 2988.95 7.60 -23.936 3025. 14' 7.60 -23.595 30 57.3 5 7.60 - 24.446 3059 .80 7.60 -21.215 3062.18 7. 60 -17. 899 3066 .83 7.60 - 15.434 3073.84 7 .60 -14.414 3083.30 7. 60 - 13. 649 3097.20 7.60 -13.564 3117.80 7.60 -13.904 3154.30 7.60 - 13.734 3197.66 7 .60 -13.394 3262.97 7.60 -13.734 3322.90 7. 60 -13.564 3408 .66 7 .60 -13.139 3488.80 7. 60 - 13. 394 3569.10 7. 60 -13.224 3571.42 7.60 -12.033 3 5 7 3.82 7. 60 -9. 823 3576.26 7 .60 -7.783 -184-Time( min) Depth(cm) 3580.85 7. 60 -5. 572 3587.80 7. 6C -4. 382 3597.23 7 .60 -3. 872 36C8.60 7. 60 -4. 212 3836.35 7.60 -4. 127 3682.45 7 .60 -3. 447 3738.4 1 7.60 -3. 362 3782.75 7 .60 -3. 2.77 3 796.85 7.60 -3. 957 3979.70 7. 60 -3. 362 4073 .98 7.60 -2 . 682 4182.11 7.60 -3. 447 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0100938/manifest

Comment

Related Items