UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Analysis of the effects of land use and soils on the water quality of the Salmon River Watershed, Langley Beale, Roxanna Louise 1976

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1976_A6_7 B42.pdf [ 19.7MB ]
Metadata
JSON: 831-1.0100143.json
JSON-LD: 831-1.0100143-ld.json
RDF/XML (Pretty): 831-1.0100143-rdf.xml
RDF/JSON: 831-1.0100143-rdf.json
Turtle: 831-1.0100143-turtle.txt
N-Triples: 831-1.0100143-rdf-ntriples.txt
Original Record: 831-1.0100143-source.json
Full Text
831-1.0100143-fulltext.txt
Citation
831-1.0100143.ris

Full Text

ANALYSIS OF THE EFFECTS OF LAND USE AND SOILS ON THE WATER QUALITY OF THE SALMON RIVER WATERSHED LANGLEY - by ROXANNA LOUISE BEALE Sc. Agr., U n i v e r s i t y o f B r i t i s h Columbia, 1972 A THESIS SUBMITTED IN PARTIAL FULFILU4ENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE - inTHE FACULTY OF GRADUATE STUDIES DEPARTMENT OF SOIL SCIENCE We accept t h i s t h e s i s as conforming to the required standard  U n i v e r s i t y o f B r i t i s h Columbia A p r i l 1, 1976  In p r e s e n t i n g t h i s  thesis  in p a r t i a l  f u l f i l m e n t o f the requirements  an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, the I  Library shall  make i t  freely available  f u r t h e r agree t h a t p e r m i s s i o n  for  reference and  for e x t e n s i v e copying o f  this  that  study. thesis  s c h o l a r l y purposes may be granted by the Head of my Department or  by h i s of  for  I agree  for  representatives.  this  written  thesis  for financial  <S-o/C-  University of B r i t i s h  gain s h a l l  not be allowed without my  Ap£/L.  •5i<c/<£/i/C fci  Columbia  2075 Wesbrook Place Vancouver, Canada V6T 1W5  Date  is understood that copying or p u b l i c a t i o n  permission.  Department of The  It  j7~7&  It  ABSTRACT The primary o b j e c t i v e o f t h i s study was t o evaluate q u a n t i t a t i v e l y the e f f e c t s o f a mixture o f a g r i c u l t u r a l and n o n - a g r i c u l t u r a l land use p r a c t i c e s on the chemical c h a r a c t e r i s t i c s o f the Salmon R i v e r , near Fort Langley, B.C. Present land use and geomorphic u n i t maps were used t o determine appropriate stream sampling s i t e s which would give an i n d i c a t i o n o f the combined and separate e f f e c t s o f land use and geologic m a t e r i a l s on water q u a l i t y . Chemical c h a r a c t e r i s t i c s o f the Salmon R i v e r and i t s t r i b u t a r i e s were monitored over a 10 month p e r i o d from May 1974 u n t i l A p r i l 1975.  Eighteen chemical v a r i a b l e s were  analyzed i n the laboratory u s i n g Standard Methods and 5 were monitored i n the f i e l d .  The in situ parameters included pH,  temperature, o x i d a t i o n - r e d u c t i o n p o t e n t i a l , s p e c i f i c and d i s s o l v e d oxygen l e v e l s .  conductance  Also monitored were 7 trace metals,  Cr, Cu, Fe, Mn, N i , Pb and Zn. Atmospheric p r e c i p i t a t i o n c o l l e c t o r s were i n s t a l l e d a t the end o f June 1974 and p r e c i p i t a t i o n samples c o l l e c t e d monthly from J u l y 1974 u n t i l A p r i l 1975.  Eighteen separate chemical  v a r i a b l e s were monitored at these s i t e s using standard methods. Stream bed sediment grab samples were taken i n May and again i n J u l y 1974.  These_ samples were analyzed f o r t o t a l  elemental composition as w e l l as t o t a l n i t r o g e n , t o t a l carbon, t o t a l s u l f u r , t o t a l c a t i o n exchange c a p a c i t y , exchangeable cations (Ca, Mg, Na, K) and pH.  The major geologic m a t e r i a l s i n the watershed were sampled i n 6 s i t e s l o c a t e d i n undisturbed and c u l t i v a t e d areas on marine, g l a c i a l outwash, and a l l u v i a l m a t e r i a l s . The monitoring o f some s e l e c t e d chemical c h a r a c t e r i s t i c s o f the Salmon R i v e r revealed i n general the mean values o f pH, s p e c i f i c c o n d u c t i v i t y , temperature, t o t a l a l k a l i n i t y , t o t a l HC0 a l k a l i n i t y , t o t a l hardness (CaCC> e q u i v a l e n t ) , t o t a l 3  3  d i s s o l v e d s o l i d s , t o t a l K j e l d a h l N, organic C, NO -N, CI, Na, and K were c o n s i s t e n t l y higher a t low streamflows than a t high (>750cfs) streamflows.  Oxidation r e d u c t i o n p o t e n t i a l and  d i s s o l v e d oxygen mean values were c o n s i s t e n t l y higher a t high flows than a t low flows.  The other v a r i a b l e s measured  remained r e l a t i v e l y constant on average across a l l l e v e l s o f streamflow.  There was, however, considerable v a r i a t i o n a t s p e c i f i c  p o i n t samples. Data derived from c o l l e c t i o n o f atmospheric p r e c i p i t a t i o n i n d i c a t e d a s i g n i f i c a n t i n p u t o f many chemical f a c t o r s t o the watershed. Bed sediment and s o i l s chemical c h a r a c t e r i s t i c s give a general i n d i c a t i o n o f the amounts and d i s t r i b u t i o n o f the various chemicals p o t e n t i a l l y a v a i l a b l e f o r c o n t r i b u t i o n t o stream waters. A n a l y s i s o f the r e s u l t s obtained i n comparison w i t h water q u a l i t y standard acceptable l e v e l s revealed water q u a l i t y  problems w i t h pH, temperature, phosphorus, i r o n , copper, and manganese.  S i g n i f i c a n t s t a t i s t i c a l c o r r e l a t i o n e x i s t s between  water q u a l i t y v a r i a b l e s and glaciomarine, marine and beach o v e r l y i n g marine o r glaciomarine m a t e r i a l s ; g l a c i a l outwash m a t e r i a l s ; a g r i c u l t u r a l f i e l d crops; low density r e s i d e n t i a l areas; and schools. In order t o i d e n t i f y s p e c i f i c p o i n t and non-point sources more d e t a i l e d information i s needed on groundwater c h a r a c t e r i s t i c s and the streamflow c h a r a c t e r i s t i c s o f tributary  streams. Some general management a l t e r n a t i v e s are recommended  bearing i n mind that each s i t e must be evaluated on i t s own merits and s p e c i f i c suggestions made o n - s i t e .  TABLE OF CONTENTS  V Page  Introduction  ]_  L o c a t i o n and E x t e n t o f S t u d y A r e a  3  History  3  D e s c r i p t i o n o f the Study Area  5  1.  P h y s i o g r a p h y and D r a i n a g e  5  2.  S u r f i c i a l Geology  7  3.  Geomorphic U n i t s  7  4.  Soils  5.  Groundwater  6.  Hydrology  18  7.  Climate  20  8.  P r e s e n t L a n d and W a t e r Use  27  9.  Z o n i n g P a s t and P r e s e n t  37  10 Resources  Methods  10  43  F i e l d Sampling  43  1.  Surface water  43  2.  Precipitation  47  3.  Sediment  43  4.  Soils  48  Field Analysis  48  Laboratory Analysis  52  1.  Surface water  52  2.  P r e c i p i t a t i o n water  54  3.  Sediment  55  4.  S o i l samples  samples  55  TABLE OF CONTENTS  (con't) PAGE  Results Present  L a n d Use  57 57  Proportions of Various  Land Uses  57  Benchmark P h y s i c a l a n d C h e m i c a l P r o p e r t i e s o f S o i l s a n d 65 Geomorphic U n i t s 1.  Soils  65  2.  Geomorphic U n i t s  65  • a) p H ( H 0 ) 2  6 7  b) p H ( C a C l )  67  c) o r g a n i c C  69  d)  organic matter  70  e)  total N  70  2  f ) C/N R a t i o  70  g)  a v a i l a b l e PO^-P  71  h)  Ca,Mg,Na,K  72  i) Fe,Al  73  j ) t o t a l CEC  74  Chemical Status of Surface and S t r e a m S e d i m e n t s 1.  Surface  Waters, Atmospheric  Water Chemistry  Precipitation, 75 75  A. V a r i a b l e s m e a s u r e d  75  a) pH  76  b)  D i s s o l v e d Oxygen  81  c)  S p e c i f i c Conductance  81  d)  Oxidation  e)  Temperature  - Reduction  f) T o t a l A c i d i t y  Potential  82 82 82  TABLE OF  CONTENTS  (con't) PACE 83  g)  Total A l k a l i n i t y  h)  Total Bicarbonate A l k a l i n i t y  83  i)  T o t a l Calcium Carbonate Hardness  83  j) T o t a l Dissolved  Residue  84  k)  Total Kjeldahl Nitrogen  84  1)  T o t a l Organic Carbon  85  m)  Nitrate Nitrogen  85  n)  Chloride  86  o)  Total Acid  p)  Total Sulfate  87  q)  Calcium  91  r) Magnesium  D i g e s t i b l e Phosphorus  86  '  87  s) S o d i u m  88  t) Potassium  88  u)  89  Iron  v) A l u m i n u m  89  w)  Manganese  89  x)  Silicon  yO  B.  Trace Metals  92  a)  Chromium  94  b)  Copper  y4  c)  Iron  9b  d)  Manganese  95  e)  Nickel  f)  Lead  g)  Zinc  y5 96 y  96  TABLE OF CONTENTS  (con't)  V  PAGE 2.  A t m o s p h e r i c P r e c i p i t a t i o n Chemical Data A. V a r i a b l e s M e a s u r e d  96 96  a) pH  98  b) t o t a l a c i d i t y  98  c) t o t a l a l k a l i n i t y a n d t o t a l b i c a r b o n a t e 101 alkalinity d) t o t a l  calcium carbonate hardness  e) t o t a l d i s s o l v e d i n o r g a n i c r e s i d u e  101  f)  102  total Kjeldahl Nitrogen  g) t o t a l o r g a n i c c a r b o n  102  h) N 0 - N  1U3  i)  1U3  3  S0  4  j) CI  104  k) Ca  104  1) Mg  104  m) Na  105  n) K  105  o) F e  106  p) A l  106  q) Mn  106  B. . T r a c e M e t a l s 3.  lul  107  Some C h e m i c a l P r o p e r t i e s o f S a l m o n R i v e r S t r e a m B e d Sediments 107 A.. V a r i a b l e s M e a s u i e d  107  U  L  TABLE OF CONTENTS  (con't) PAGE m  Discussion Water Q u a l i t y 1.  Water s u p p l y f o r d r i n k i n g , c u l i n a r y ]_j_4 and f e e d p r o c e s s i n g w i t h o u t t r e a t m e n t a) pH  H4  b) t e m p e r a t u r e c) d i s s o l v e d  115  inorganic substances  H5  d) s p e c i f i c c o n d u c t a n c e e) N0. -N 3  f) CI g)  PO -P 4  h) so  4  l  i  6  11  6  1  1  6  H7  i ) Ca  H7  j ) Mg  119  k) F e  liy  1)  Cd  l z Q  m) Pb  120  n) Cu  120  o) C r  120  p) Mn  120  q) h a r d n e s s  12i  r ) Zn  121  s) d i s s o l v e d o x y g e n 2.  115  12i  W a t e r S u p p l y f o r b a t h i n g , swimming, and o t h e r r e c r e a t i o n a l uses 122 a) pH  122  b) t e m p e r a t u r e  122  TABLE OF CONTENTS  (con't) PAGE  c) o t h e r s  122  d)  123  d i s s o l v e d oxygen  Water S u p p l y f o r t h e g r o w t h and p r o p a g a t i o n o f f i s h and o t h e r a q u a t i c l i f e  123  a)  pH  123  b)  temperature  123  c)  d i s s o l v e d i n o r g a n i c substances  ]_24  d)  others  124  e)  d i s s o l v e d oxygen  125  Water s u p p l y  for agricultural  use  125  a)  pH  125  b)  temperature  125  c)  d i s s o l v e d oxygen  125  d)  others  126  Water s u p p l y Statistical  for industrial  use  126  Analysis  125  1.  Concentration vs. streamflow s t a t i o n s a t a l l times;  across  2.  C o n c e n t r a t i o n vs.  for similar  streamflow  'size mnt.ribii.tinn 3.  arp.ss  C o r r e l a t i o n m a t r i x f o r Land rise and Geomorphic u n i t v s . c o n c e n t r a t i o n  a l l 127  ^27 132  a)  pH  132  b)  oxidation - reduction potential  132  c)  d i s s o l v e d oxygen  132  d)  specific  132  e)  temperature  conductance  152  TABLE OF CONTENTS  (con't) PAGE  f)  total acidity  g)  t o t a l a l k a l i n i t y a n d t o t a l b i c a r b o n a t e 152 alkalinity  h) h a r d n e s s  152  i)  d i s s o l v e d i n o r g a n i c substances  152  j)  t o t a l Kjeldahl Nitrogen  153  k) o r g a n i c C  15 3  1) N 0 - N  153  m) C I  15 3  n) PO.-P  153  o)  153-  3  4.  152  S0  4  p) Ca  154  q) Mg  15 4  r)  154  Na  s) K  154  t)  Fe  155  u) A l  155  v) Mn  155  w) S i  155  C o r r e l a t i o n M a t r i x o f Water Chemistry tionships  Interrela155  Summary  16 0  Conclusions  170  Interim Suggestions  171  Bibliography  173  Appendices  17 8  yd  L I S T OF TABLES I. II. III. IV. V. VI.' VII. VIII. IX. X. XI. XII. XIII.  XIV.  XV. XVI. XVII.  R e l a t i v e p r o p o r t i o n s o f geomorphic u n i t s  11  Relative proportions of slope classes  11  Mean m o n t h l y h y d r a u l i c d i s c h a r g e , maximum a n d minimum d i s c h a r g e s a n d v o l u m e s  22  T e m p e r a t u r e and p r e c i p i t a t i o n a t A l d e r g r o v e year average) T e m p e r a t u r e and p r e c i p i t a t i o n a t M i l n e r average)  (30  (7 y e a r  23 24  R e l a t i v e p r o p o r t i o n s o f land use c l a s s e s  29  Licenced water withdrawal  38  Contributing areas, Percent  s i z e and a r e a  land use type  ratios  Gecmorphic  U n i t s d e f i n e d by s o i l  Selected chemical units  45  i n each c o n t r i b u t i n g area  M o s t common a n d / o r i n t e n s i v e a g r i c u l t u r a l i n each geomorphic u n i t  properties  land use  series  of three  61 64 67  geomorphic 68  Averages and ranges o f c o n c e n t r a t i o n s o f w a t e r c h e m i s t r y v a r i a b l e s w i t h i n each sampling s i t e over time  77  Means a n d s t a n d a r d d e v i a t i o n s o f w a t e r c h e m i s t r y d a t a a c r o s s s t a t i o n s over time a t h i g h and low hydraulic discharge rates  79  Averages and ranges o f t r a c e m e t a l  93  concentrations  A v e r a g e s and r a n g e s o f c o n c e n t r a t i o n s o f p r e c i p i t a t i o n water chemistry v a r i a b l e s gg Selected chemical bed  XVIII.  PAGE  p r o p e r t i e s o f some S a l m o n R i v e r  sediments  Total elemental  108 analyses o f sediments  110  XIX. XX.  W a t e r q u a l i t y s t a n d a r d s and g u i d e l i n e s ' C o r r e l a t i o n m a t r i x , l a n d use and geomorphic u n i t versus concentration  112 149  XXI.  C o r r e l a t i o n matrix o f water chemistry ships  156  interrelation-  L I S T OF FIGURES 1.  General  2.  Sur'ficial  3.  Geomorphic U n i t s  4.  Soils  5.  Groundwater  6.  Mean m o n t h l y h y d r o l o g y  7.  Daily  8.  Present land  9.  C u r r e n t Stage  l o c a t i o n o f study  PAGE  area  4  Geology  . 8 9: 12  Resources  precipitation  17 graph  21  graph  u s e map Zoning  26  (1971)  2b'  map  39  10.  L o n g Term Z o n i n g  11.  A g r i c u l t u r a l Land  12.  Present zoning  13.  Surface water  14.  Contributing  15.  P r e c i p i t a t i o n Sampler Diagram  16.  P r e s e n t Land Use showing r e c e n t  17.  Location of intensive  18.  Daily  19.  Calcium  (ppm) v s .  20 .  Nitrate  (ppm) v s . h y d r a u l i c  21.  Kjeldahl  22 .  Carbon v s . h y d r a u l i c  23. 24.  P l o t o f K j e l d a l Nitrogen vs. discharge f o r s i z e area 1 133 P l o t o f Carbon v s . d i s c h a r g e f o r s i z e area 1 134  25.  Plot of Nitrate  v s . discharge f o r s i z e area 1  135  26.  P l o t of Calcium vs. discharge f o r s i z e area 1  13S  map  40 '  Reserves  41  map  42  sampling areas  site  location  l o c a t i o n maps and e x t e n t  4b 49  subdivisions  agricultural  practices  hydrograph  Nitrogen  44  58 5y lib  hydraulic  discharge (cfs) discharge (cfs)  (ppm) v s . h y d r a u l i c discharge (cfs)  12 b 12y  discharge (cfs) 130 131  XVM  L I S T OF FIGURES  (con't)  PAGE  27.  P l o t of K j e l d a h l Nitrogen vs. discharge f o r s i z e area 2  2.37  28.  P l o t of Carbon v s . d i s c h a r g e  2.38  29.  Plot of Nitrate vs. discharge  30.  P l o t of Calcium  31.  P l o t of K j e l d a h l Nitrogen discharge f o r s i z e area  32.  P l o t o f Carbon  33.  P l o t of N i t r a t e vs. discharge  34.  P l o t of Calcium  35.  P l o t of K j e l d a h l Nitrogen vs. discharge f o r s i z e area 4  2.45  36.  P l o t of Carbon v s . d i s c h a r g e f o r s i z e area  2.46  37.  P l o t of N i t r a t e vs. discharge f o r s i z e area 4  2.47  38.  P l o t of Calcium  2.48  r  f o r s i z e area  2  f o r s i z e area  2  2.39  vs. discharge f o r s i z e area  2  2.40  vs. discharge _ f o r s i z e area  3  3  2.41 2.42  3  2,43  vs. discharge f o r s i z e area 3  2.44  vs. discharge  f o r s i z e area  4  f o r s i z e area 4  XV  L I S T OF PLATES PAGE I . * Stream g a u g i n g s t a t i o n on t h e Salmon a t 72nd A v e n u e , L a n g l e y , B.C. II. III. IV. V. VI. VII. VIII. IX.  X. XI. XII. XIII.  XIV. XV.  D a i r y p a s t u r e on F r a s e r  River  Floodplain  D a i r y farm i n Langley V a l l e y  30  area  30  S t r a w b e r r y f a r m n e a r H o p i n g t o n , on 248th Street  31  B e e f c a t t l e o n f a r m a t R o b e r t s o n Road Beef c a t t l e on farm a t 248th  Typical poultry (56th Avenue)  32  Street  P a s t u r e f o r horse farm a t Cohglan (256th S t r e e t )  19  32  Road  33  f a r m o n R o b e r t s Road  34  Farm w o o d l o t ; immature, non m e r c h a n t a b l e f o r e s t t y p i c a l o f the f o r e s t s i n the watershed on R o b e r t s o n C r e s c e n t Low d e n s i t y r e s i d e n t i a l d e v e l o p m e n t Road ( 5 6 t h A v e n u e )  on R o b e r t s  Hobby f a r m a r e a o n T e l e g r a p h T r a i l  35 36 36  P r e c i p i t a t i o n s a m p l e s i t e 10 a t R o b e r t s o n C r e s c e n t and 240th S t r e e t  50  P r e c i p i t a t i o n s a m p l e s i t e 6 a t Deep C r e e k Road (222nd S t r e e t ) n e a r W i l s o n Town L i n e Road ( 9 6 t h Avenue)  51  P r e c i p i t a t i o n sample n e a r 8 0 t h Avenue  s i t e 4 a t Telegraph T r a i l  Ponded w a t e r o f Salmon R i v e r a t s t a t i o n Rawlinson Crescent  2 near  51  162  XVI.  Lagoon s e r v i n g T r i n i t y Western C o l l e g e a t G l o v e r Road •  164  XVII.  Salmon R i v e r a t s t a t i o n 9 d u r i n g h i g h s t r e a m f l o w showing streambank e r o s i o n  166  XVIII.  R e s e r v o i r on t r i b u t a r y o f Salmon R i v e r a t s a m p l i n g s i t e 10 n e a r R i c h a r d s o n C r e s c e n t  l 6 7  L I S T OF APPENDICES I. II. Ill. IV. v. VI. VII.  Daily hydrologic discharge  1974-1975  Daily precipitation  1974-1975  S o i l Chemical S p e c i f i c water Trace metal  and P h y s i c a l P r o p e r t i e s chemistry  data  data  P r e c i p i t a t i o n chemical concentration data  PAGE 178 179 181 191 215 222  A v e r a g e v a l u e s a t e a c h s a m p l i n g s t a t i o n a t h i g h 241 and l o w h y d r a u l i c d i s c h a r g e f o r e a c h c h e m i c a l v a r i a b l e  xvii  ACKNOWLEDGEMENTS The author would l i k e t o extend her sincere a p p r e c i a t i o n t o a l l f a c u l t y , s t a f f , and f e l l o w students i n the Department o f S o i l Science who cooperated w i t h and a s s i s t e d her d u r i n g the course o f t h i s 'project.  P a r t i c u l a r thanks i s  extended t o the Department o f S o i l Science and Westwater Research Centre f o r p r o v i d i n g t e c h n i c a l assistance f o r p a r t o f the work. S p e c i a l thanks i s a l s o extended t o A g r i c u l t u r e Canada f o r funds provided through Operating Grant OG-HOM-l during the course o f the p r o j e c t . Sincere a p p r e c i a t i o n i s extended t o Dr. L. M. L a v k u l i c h o f the Department o f S o i l Science f o r h i s patience, understanding, encouragement, and guidance throughout the study.  Thanks a l s o  t o Mr. J . Wiens, Dr. R. P. W i l l i n g t o n , Ms. D. Nutchey, Mrs. B. Herman and Ms. R. Hardy f o r t h e i r support, a s s i s t a n c e , and time without which completion o f t h i s study would have been d i f f i c u l t . S p e c i a l thanks t o Glen f o r h i s unique understanding and encouragement throughout the study.  INTRODUCTION The are in  and g r o u n d w a t e r  l e a v i n g a watershed  i n f l u e n c e d by t h e c h a r a c t e r i s t i c s and p r o c e s s e s that area.  related and  q u a l i t y of surface  The c h e m i c a l  to climate,  land use.  several a)  vegetative  Chemicals enter  dust,  or i n fixation  from m i n e r a l  c)  from b i o l o g i c a l  parent  m a t e r i a l s and  the watershed  system  from  the  land  by o r g a n i s m s ;  weathering  ( p h y s i c a l and c h e m i c a l ) ;  processes  additions of organic  and  i n c l u d i n g man a n d h i s  and i n o r g a n i c  foragricultural  from t h e system  fertilizers to  crops.  include:  l o s s e s a s d i s s o l v e d and s u s p e n d e d in  b)  soils,  from t h e atmosphere i n p r e c i p i t a t i o n ,  b)  a)  cover,  i n streams i s  sources:  in  Losses  concentrations  present  constituents  the stream;  l o s s e s i n the removal o f m a t e r i a l s  from t h e  land  crop  as i n f o r e s t and a g r i c u l t u r a l  harvesting;  and c)  l o s s e s due t o t h e r e l e a s e t o some e x t e n t  of nitrogen,  phosphorus by  s u l f u r and  volatilization.  Numerous s t u d i e s h a v e b e e n u n d e r t a k e n  t o i n v e s t i g a t e the  e f f e c t s o f a g r i c u l t u r e wastes on t h e q u a l i t y o f s u r f a c e and underground waters. on  the d i r e c t  feedlot of  These s t u d i e s have p r i m a r i l y  effects of point  sources,  such as a  concentrated specific  on a p a r t i c u l a r t y p e o f s o i l o r a p a r t i c u l a r s e q u e n c e  fertilization  and crop  r o t a t i o n on a s p e c i f i c  s o i l type i n  a c e r t a i n geographical specific by  area.  detailed studies  a g r i c u l t u r a l wastes,  u r a l wastes, shed,  few  practices  s t u d y was  watershed.  The  quantitatively ural  land  in a specific  This  few  the  a u t h o r s have l o o k e d a t  and use  the  as  some  a wide v a r i e t y o f  soil  c l i m a t i c b e l t , are  undertaken to  determine the  of  j u s t such  t h i s s t u d y was  e f f e c t s of  p r a c t i c e s on  the  waters of  the  Salmon R i v e r  Watershed, near F o r t  method o f  1.  To  1971  C e n t e r , U.B.C.) f o r t h e Benchmark p h y s i c a l ed  according  1973).  and  3.  land  surface  significant ification uting use land  land  of  use  land  chemical  u s e s and  the  4.  the  use  map  Langley,  month  involved  use  soil  10  1974  properties  (Eggleston  and  most common o r  in  six basic  (Westwater  to  the  period. steps.  Research  status. were e s t a b l i s h Lavkulich, intensive  Evaluation  of  the  bottom sediments  existing from  watershed, according and  geomorphic u n i t  proportions  most  5.  to drainage area  associated  Stratcontribof  t y p e s f o r computer a n a l y s i s  v e r s u s g e o m o r p h i c u n i t and  t h e i r combined o r  in  chemical  the  - geomorphic u n i t combination.  site  in  management p r a c t i c e s m a i n t a i n e d  w a t e r s and  t o each sampling  t y p e s and  for a  e n t i r e watershed  Determination of  each geomorphic u n i t . of  B.C.,  t o geomorphic u n i t s  agricultural  status  present  to  chemical concentrations  attaining this objective  update the  a  a mixture of a g r i c u l t -  use  Langley D i s t r i c t M u n i c i p a l i t y ,  well  complex.  investigate  primary objective  the a g r i c u l t -  i n t e n s i t i e s of  management schemes as p r a c t i c e s on  affected  a g r i c u l t u r a l water-  land  The  a l l these  movement o f w a t e r s  Watersheds which have v a r i o u s  non-agricultural types,  of  a u t h o r s have l o o k e d a t  in total.  agricultural  However, i n s p i t e o f  land of  separate  e f f e c t s on s u r f a c e w a t e r q u a l i t y ification and  of detrimental  (Wiens,  1974).  Ident-  l a n d use impacts as t o cause  recommend p o s s i b l e a l t e r n a t i v e management o r  in  order  to maintain  acceptable  water and sediment as d e f i n e d Water Q u a l i t y S t a n d a r d s  chemical status  by t h e B.C.  The and  i n the  Recommended  (1969( f o r d r i n k i n g w a t e r a n d  fisheries. Location  zoning,  |  and E x t e n t  Salmon R i v e r  o f Study  Area;  i s a tributary  of the Fraser  River  i t s watershed i s l o c a t e d p r i m a r i l y i n Langley  Municipality with rict  a small p o r t i o n located i n Matsqui D i s t -  M u n i c i p a l i t y with  a small p o r t i o n located i n Matsqui  District Municipality of British watershed area  lies  and  east o f Langley  The  Salmon R i v e r  Fort  Langley,  The  kilometers  north city  enters  Columbia  and n o r t h the Fraser  River  5,439  The  and n o r t h  Aldergrove.  t o the west o f  thirty-four  o r approximately  city  and west o f  bank o f t h e F r a s e r  i s approximately  i n area  (Figure 1).  and e a s t o f L a n g l e y  on the south  watershed  District  River. (34) s q u a r e  hectares.  History; Fort 1825, ing  Langley  on t h e south  the f i r s t  furs,  articles.  f o u n d e d by t h e Hudson's Bay Company, i n shore o f the F r a s e r  permanent B r i t i s h  land of B r i t i s h in  was  Columbia.  settlement  Active trade  but also i n a g r i c u l t u r a l  kilometers  products  With  establish-  developed, not only and m a n u f a c t u r e d  R i v e r was n a v i g a b l e  f u r t h e r upstream.  thus  on t h e lower main-  These e n t e r p r i s e s f l o u r i s h e d u n t i l  was p r o v e n t h a t t h e F r a s e r 126  River,  1858, when i t t o F o r t Hope,  this discovery,  Fort  FIGURE 1 LOCATION OF SALMON RIVER BASIN, LANGLEY  Hope, Fort ever,  126 k i l o m e t e r s f u r t h e r Hope was  established  a s t h e new  With t h i s  discovery,  economic terminus.  i n 1858, S i r James D o u g l a s r e a d a p r o c l a m a t i o n  Queen o f E n g l a n d  establishing  Columbia w i t h F o r t capital  was moved  Victoria, In  upstream.  spite  Langley  Langley t o New  i t s present  I n 1859, t h e  W e s t m i n s t e r and n i n e y e a r s (Luttmerding  o f i t s d e m i s e as c a p i t a l has remained p r i m a r i l y  from t h e  t h e Crown c o l o n y o f B r i t i s h  as t h e c a p i t a l .  location  How-  l a t e r to  and S p r o u t ,  o f B r i t i s h Columbia,  an a g r i c u l t u r a l  1966). Fort  community.  Description 1.  o f the  Physiography Langley  Study  and  Drainage;  District  Municipality  Lowland o f southwestern p a r t of the Georgia a post-glacial  Area  British  Columbia,  Depression.  valley  up  to  i s p a r t of the F r a s e r  The  5  which i n t u r n i s  Fraser River  k i l o m e t e r s . , w i d e and  more m e t e r s d e e p , f l o w s w e s t w a r d a l o n g t h e the  t h e two ively  largest  flat  a former  upland  to s l i g h t l y  less  The  surrounds  d r a i n e d northward The  Langley  the south rolling  of  Upland  square  1.6  edges.  of  the F r a s e r  k i l o m e t e r s wide,  kilometers upland  North  of M i l n e r the  area area  t h e Salmon R i v e r . lies  to the  s o u t h and  Valley.  e a s t as w e l l  The  t o j u s t o v e r 120  i t s tributaries  the uplands with  Salmon R i v e r and  some a r e a s  about  center  topography  meters.  d r a i n much o f t h i s  as is  The area  to  ( H a l s t e a d , 1957).  topography  landscape  by  It is relat-  i n the  meander c h a n n e l  i s situated.  elevations rise  Salmon R i v e r and  Both  2.6  separates  30 m e t e r s a l o n g t h e  and w e s t o f t h e L a n g l e y  and  the n o r t h  than  channel,  an a p p r o x i m a t e l y  on w h i c h F o r t L a n g l e y  8 t o 15 m e t e r s  a former  semi-circular  sea,  the municipality.  w i t h e l e v a t i o n s from  rising  River.  in  or  n o r t h boundary  embayment o f t h e  areas of  North of M i l n e r i t j o i n s  is  15  municipality. Langley V a l l e y ,  and  occupying  and  lowlands  slopes of  5 percent or  i t s tributaries  creating  stream  are f l a t  ( L u t t m e r d i n g and  less.  are deeply  bank s l o p e s o f Sprout,  to gently  rolling  However,  incised  into  the the  6 t o 15 p e r c e n t i n  1966).  1  2.  Surficial The  Geology;  Langley  glacio-fluvial  Uplands r e g i o n  deposits  combination with clay and  till  Valley  deposits  ents.  The  of Fraser upland  deposits are  (Figure  almost e n t i r e l y  f l o o d p l a i n and  area  these  Salmon R i v e r  Valley  using  the  the  soils  (Eggleston units.  primarily  The  clayey  deposits  deposits.  the  Fraser  gravel, with  sedim-  River  consists  The  is situated is  l o c a t i o n and  g e o m o r p h i c u n i t s b a s e d on  (1966)  Langley  Richmond d e l t a d e p o s i t s .  small  Abbotsford  g r a v e l a t the  surface  The  and  origin  and  texture of  geology  area  and  Armstrong Sprout  twelve  F o r t Langley  deposits.  The  of  is  Langley  c l a y t o sandy c l a y m a r i n e predominately  loamy  glacio-  loam t o g r a v e l l y o u t w a s h small proportions  m a t e r i a l s , beach sands o v e r marine o r  marine d e p o s i t s ,  surficial  of  There are  surrounding  These u p l a n d s have i n c l u s i o n s o f glaciomarine  1973).  Uplands are sandy  information  of Luttmerding  loamy a l l u v i a l  fine  geomorphic  been d i v i d e d i n t o  are predominately  marine d e p o s i t s  the  has  Lavkulich,  Langley  of  area  information  lowland and  the  surficial  and  extent  watershed.  Salmon R i v e r Watershed  (1957) and  sands,  Units;  3 shows t h e  the  materials  beach  1957).  Figure  The  stony  marine C l o v e r d a l e  upon w h i c h F o r t L a n g l e y  Geomorphic  and  and  However, t h e  f o r m e r meander c h a n n e l o f  (Armstrong,  units  2).  Outwash, i n  d e p o s i t s , Newton  some S u n n y s i d e l i t t o r a l  r e c e s s i o n a l o u t w a s h s a n d and  3.  the A b b o t s f o r d  Whatcom g l a c i o m a r i n e  deposits, with Surrey  called  i s composed p r i m a r i l y o f  lag gravels over glaciomarine  of  deposits.  clayey  glacio-  materials,  as  LEGEND H«p U n i t  Description  1  Hevton Stony C l a y : glaciomarine d e p o s i t s ; c l a y e y s i l t and p o o r l y s o r t e d t i l l - l i k e m i x t u r e s , minor c l a y e y s i l t , s l l t y c l a y , and sand up to 60 meters t h i c k .  2  C l o v e r d a l e Sediments: marine d e p o s i t s ; s l l t y c l a y , c l a y e y s i l t , s i l t and clay', minor s a n d , g r a v e l , and p o o r l y s o r t e d t i l l - l i k e mixtures up to 270 meters t h i c k  3  F r a s e r F l o o d p l a i n and Richmond D e p o s i t s : f l o o d p l a i n , c h a n n e l , e s t u a r i n e , and d e l t a i c d e p o s i t s ; s l l t y c l a y , clayey s l i t , and s i l t up to 4 meters t h i c k , r e s t i n g on 15 meters or more of marine and non marine sand  4  A b b o t s f o r d Outwash: g l a c i o f l u v i a l deposits; r e c e s s i o n a l outwash sand and g r a v e l , up to 38 meters t h i c k , g r a v e l at s u r f a c e  5  A b b o t s f o r d Outvash: g l a c i o f l u v i a l deposits; r e c e s s i o n a l outwash sand and g r a v e l , up to 38 meters t h i c k , sand at s u r f a c e  6  Huntingdon G r a v e l : channel and f l o o d p l a i n d e p o s i t s ; g r a v e l and sand up to 30 meters or more t h i c k , u n d e r l i e Whatcom g l a c i o m a r i n e d e p o s i t s  7  Sunnyslde Sand: r a i s e d l i t t o r a l and beach sands; r e s t i n g on Whatcom g l a c i o m a r i n e d e p o s i t s  8  Whatcom G l a c i o m a r i n e D e p o s i t s : stony c l a y e y s i l t and s i l t y c l a y , c l a y , s i l t , and sand, 8 to 90 meters t h i c k  9  Sunnyslde Sand: raised r e s t i n g on C l o v e r d a l e  10  stony  l i t t o r a l and beach sands; Sediments  Surrey T i l l : g l a c i a l d e p o s i t s ; sandy to s i l t y t i l l and minor s u b - s t r a t i f i e d d r i f t up to 23 meters t h i c k , but g e n e r a l l y l e s s than 8 meters  thick  OO  10  w e l l a s some f a i r l y  large organic  soil  m o r p h i c u n i t map p r i m a r i l y d e s c r i b e s up  t o a d e p t h o f 1.5 m e t e r s .  being are  deposits.  the surface  This  geo-  materials  The g e o m o r p h i c u n i t map i s  u s e d h e r e a s t h e b a s e map w i t h  which a l l o t h e r  inputs  compared. Tables  I a n d I I show t h e r e l a t i v e p r o p o r t i o n s  o f each  geomorphic u n i t and s l o p e c l a s s i n t h e watershed r e s p e c t i v e l y . Those streams i n c o n t a c t w i t h primarily  areas  0 t o 5% s l o p e g r a d i e n t  ephemeral streams, e s p e c i a l l y watershed. adjacent  4.  Soils;  Salmon R i v e r  area  G l e y s o l s o r Gleyed  formed i n p o o r l y The  drained finer  upland with  areas  5.  The l o w l a n d  present i n  the upland  soils  Organic  areas.  are generally moderately-well  inclusions of poorly  Groundwater  watershed.  incised  soils are  have zones o f  drained  The l o w l a n d  areas  areas  to well-  i n zones o f  are primarily  due t o t h e f i n e r  t h e m a t e r i a l s and t h e d e p r e s s i o n a l  sources  i s deeply  of soils  Regosols, while  drained  textured materials.  Figure and  orders  Both areas  poorly or imperfectly drained of  three  (Figure 4).  are p r i m a r i l y B r u n i s o l s . soils  i n t h e upper reaches o f the  t o s l o p e s o f 15% o r g r e a t e r .  There are predominately  primarily  generally includes the  The m a i n s t e m o f t h e S a l m o n R i v e r  and  the  w h i c h h a v e b e e n mapped a s  textured  nature  location.  Resources;  5 i n d i c a t e s the areas  o f major a q u i f e r  o f the groundwater resource  systems  o f t h e Salmon  River  Table  1:  Proportions River Basin  o f g e o m o r p h i c u n i t s i n t h e Salmon and s t r e a m l e n g t h s c o n t a c t i n g e a c h  Geomorphic unit Aluvium  glacial  % of  stream l e n g t h (km)  1.6  3.2  clayey  7.1  22.8  27.0  2 3.2  14.6  11.8  40.0  21.2  4.3  .4.0  2.1  1.3  2.4  1.1  2.1  5.9  outwash  marine,.loamy clayey  beach over glacial glacial  area  loamy  marine glacial  total  marine marine  or  outwash over marine  glacial  organic i  (after Table  II:  Slope  Class  class  Weins,1975)  P r o p o r t i o n s o f s l o p e c l a s s e s i n t h e Salmon R i v e r B a s i n and s t r e a m l e n g t h s c o n t a c t i n g e a c h c l a s s % of t o t a l  area  0-5%  74.8%  6 - 15%  16.60%  15%  9.4%  ( a f t e r Weins,  1975)  stream length (km) 24.6  km  9.9  km  12.2  km  IV  \  FIGURE 4 SOIL SURVEY: (modified after Luttmerding and Sprout, 1966 and Runka and Kelly, 1964)  CL-88  SOIL ASSOCIATIONS: MAP SYMBOL  LEGEND  SOIL NAME  PARENT MATERIALS  DRAINAGE  CLASSIFICATION  AB  ALBION  Moderately f i n e or f i n d textured glaciomarine deposits  M o d e r a t e l y poor t o p o o r , (perched w a t e r table)  Humic E l u v i a t e d G l e y s o l  AD  ABBOTSFORD  Less than 50 cm of medium textured aeolian deposits u n d e r l a i n by g r a v e l l y g l a c i a l outwash  Good t o rap i d  O r t h i c Humo-Ferric Podzol  AN  ANN IS  Less than .40 cm o f o r g a n i c m a t e r i a l u n d e r l a i n by m o d e r a t e l y fine textured Fraser River floodplain deposits or lacustrine deposits  Poor t o v e r y poor ( h i g h groundwater table)  Rego G l e y s o l  BD  BANFORD  Between 40 and 160 cm o f o r g a n i c m a t e r i a l u n d e r l a i n by medium o r moderately f i n e textured Fraser River floodplain or lacustrine deposits  Poor t o very poor ( h i g h groundwater table)  T e r r i c Humlsol  BO  BOSE  Less than 160 cm o f g r a v e l l y lag o r g l a c i a l outwash d e p o s i t s o v e r moderately f i n e t e x t u r e d g l a c i o marine o r moderately c o a r s e textured g l a c i a l t i l l deposits  Well t o m o d e r a t e l y w e l l D u r l c H u m o - F e r r l c Podzol drained (telI u r i c seepage)  BR  BERRY  Moderately f i n e t o f i n e textured marine ( C l o v e r d a l e ) d e p o s i t s  Imperfect (perched water t a b l e )  GI eyed P o d z o l I c Gray Luvi so I  CD  CLOVERDALE  M o d e r a t e l y f i n e t e x t u r e d marine sed i ments  Poor (perched w a t e r table)  Humic L u v l c G l e y s o l  CG  GOGHLAN  S h a l l o w ( l e s s than 12 i n c h e s ) a e o l i a n d e p o s i t s and c o l l u v i u m o v e r l y i n g and mixed w i t h c o a r s e textured gIaciaI t i l l  Imperfect ( f l u c t u a t i n g water t a b l e )  GI eyed O r t s t e l n F e r r o Humic Podzol  (humic phase)  (continued).  MAP SYMBOL  SOIL NAME  PARENT MATERIALS  DRAINAGE  CLASSIFICATION  CL  COLUMBIA  Coarse t e x t u r e d s t r a t i f i e d outwash  CM  CHEAM  Coarse tex+ured c o l l u v i u m and minor Well t o m o d e r a t e l y we I a l l u v i a l - c o l l u v i a l fan d e p o s i t s dra i ned (teI I u r i c seepage)  O r t h i c Humo-Ferric Podzol  Medium t o m o d e r a t e l y f i n e t e x t u r e d a e o l i a n deposits over g l a c i a l outwash o r g l a c i a l t i l l  Poor t o v e r y poor ( t e l l u r i c seepage and f l u c t u a t i n g groundwater t a b l e )  Rego Humic G l e y s o I  Medium t e x t u r e d F r a s e r R i v e r f l o o d p l a i n deposits over coarse t e x t u r e d m a t e r i a l a t 18 inches or l e s s  Imperfect  GI eyed Degraded M e l a n i c Brun i s o l  Medium t o m o d e r a t e l y f i n e t e x t u r e d Fraser River floodplain deposits  Imperfect ( f l u c t u a t i n g groundwater t a b l e )  GI eyed Degraded M e l a n i c Brunisol  CN  DW  F  CALKINS  DEWDNEY  FAIRFIELD  We I I t o rap i d l y dra ined  O r t h i c Humo-Ferric Podzol  G  GREVELL  Moderately coarse textured Fraser River f l o o d p l a i n deposits  We I I t o r a p i dIy drained  Orthic  GG  GRIGG  Medium t o m o d e r a t e l y f i n e t e x t u r e d F r a s e r R i v e r ponded depos i t s  Poor ( h i g h g r o u n d water t a b l e )  GI eyed O r t h i c Gray  GN  GIBSON  M o d e r a t e l y w e l l decomposed o r g a n i c m a t e r i a l s over F r a s e r Floodplain deposits  Very poor ( h i g h g r o u n d - T e r r i c water t a b l e )  HD  HAZELWOOD  Fine t e x t u r e d Fraser R i v e r f l o o d p l a i n ponded d e p o s i t s  Poor (low p e r m e a b i l i t y ) O r t h i c Humic G l e y s o l  HJ  HJORTH  Medium t e x t u r e d F r a s e r R i v e r floodplain deposits  Poor t o m o d e r a t e l y p o o r ; (some a r e a s subject to flooding)  O r t h i c Humic G l e y s o l  HN  HERON  M o d e r a t e l y c o a r s e t e x t u r e d beach d e p o s i t s o v e r moderately f i n e t e x t u r e d marine d e p o s i t s o r moderately coarse t e x t u r e d g l a c i a l till  Poor (perched w a t e r table)  Rego Humic G l e y s o l  Regosol  Mesisol  (continued)...  MAP SYMBOL  SOIL NAME  PARENT MATERIALS  DRAINAGE  CLASSIFICATION  HT  HALLERT  Medium t e x t u r e d F r a s e r R i v e r f l o o d - Poor ( h i g h groundwater p l a i n d e p o s i t s w i t h l a y e r s of table) organ i c materi a I  Rego G l e y s o l  JN  JUDSON  Well decomposed o r g a n i c m a t e r i a l s m a t e r i a l s u n d e r l a i n by f i n e textured mineral material  Very  Terric  KZ  KATZIE  F i n e t e x t u r e d marine and F r a s e r R i v e r f l o o d p l a i n ponded d e p o s i t s  M o d e r a t e l y poor t o poor  LH  LEHMAN  Thin ( l e s s than 30 cm) medium textured a e o l i a n deposits over moderately coarse t e x t u r e d g l a c i a l outwash  Poor ( t e l l u r i c seepage) O r t h i c Humic G l e y s o l  LV  LIVINGSTONE  S h a l l o w , medium t e x t u r e d c o l l u v i a l and reworked marine d e p o s i t s o v e r c o a r s e t e x t u r e d l i t t o r a l sands, o v e r f i n e t e x t u r e d marine depos i t s  M o d e r a t e l y poor t o poor  GI eyed L u v i c HumoF e r r i c Podzol  LY  LYNDEN  Moderately coarse t o coarse g l a c i a l outwash d e p o s i t s  Wei I t o r a p i d l y drained  O r t h i c Humo-Ferric PodzoI  MH  MARBLE HILL  Medium t e x t u r e d a e o l i a n d e p o s i t s over moderately coarse t e x t u r e d g l a c i a l outwash d e p o s i t s  Wei I t o r a p i d l y dra i ned  Orthic Podzol  MR  MILNER  F i n e t e x t u r e d marine  M o d e r a t e l y we 11 drained  Luvic Humo-Ferric Podzol  MY  MURRAYVILLE  S h a l l o w medium t e x t u r e d marine and slopewash m a t e r i a l s o v e r one t o f i v e f e e t of l i t t o r a l sand o v e r l y i n g marine f i n e t e x t u r e d sediments  Moderate Iy we I I d r a i n e d ; (perched water t a b l e )  GI eyed L u v i c HumoF e r r i c Podzol  N  NICHOLSON  Moderately f i n e t e x t u r e d g l a c i o marine d e p o s i t s  M o d e r a t e l y we I I drained  O r t h i c Humo-Ferric Podzol  PE  PAGE  Medium t o m o d e r a t e l y f i n e textured Fraser River f l o o d plain deposits  M o d e r a t e l y poor t o poor  Orthic Gleysol  deposits  poor  Humisol  O r t h i c Humic G l e y s o l  Humo-Ferric  LEGENDS  MAP SYMBOL  (continued)  PARENT MATERIAL  SOIL NAME  DRAINAGE  CLASSIFICATION  PR  PREST  Medium t o m o d e r a t e l y f i n e t e x t u r e d raser River floodplain deposits  Very poor ( g r o u n d water t a b l e c l o s e t o surface)  Rego G l e y s o l  RS  ROSS  Medium t o m o d e r a t e l y f i n e t e x t u r e d l o c a l stream d e p o s i t s  Very poor ( s u b j e c t t o f l o o d i n g and seepage)  Rego G l e y s o l  SC  SCAT  Fine textured depos i t s  Poor ( s u b j e c t t o O r t h i c Humic G l e y s o l seepage and f l u c t u a t i n g groundwater t a b l e )  SUNSHINE  M o d e r a t e l y c o a r s e t e x t u r e d beach d e p o s i t s , one t o s i x f e e t t h i c k over f i n e t e x t u r e d glaciomarine sed iments  Wei I d r a i n e d  O r t h i c Humo-Ferric Podzol  WHATCOM  Moderately f i n e textured g l a c i o marine d e p o s i t s  Moderately well t o well d r a i n e d (perched water t a b l e )  L u v i s o l i c Humo-Ferric Podzol  WESTLANG  Moderately f i n e t o f i n e t e x t u r e d reworked marine and F r a s e r R i v e r floodplain deposits  Poor t o very p o o r ; (groundwater t a b l e near t h e s u r f a c e )  Rego Humic G l e y s o l  SS  W WL  ( a f t e r L u t t m e r d i n g , H.  1973.  gIacio-marine  P r e l i m i n a r y Copy Langley - Vancouver Map A r e a S o i l Survey R e p o r t #15)  LEGEND Description Free n o n - a r t e s i a n w e l l s , water t a b l e w e l l s Flowing  artesian  Includes  wells  Non-flowing a r t e s i a n  wells  Springs A r e a s i n which most of the ground water • i s o b t a i n e d from n o n - a r t e s i a n w e l l s A r e a s i n which most o f the ground water i s o b t a i n e d from f l o w i n g a r t e s i a n w e l l s and s p r i n g s A r e a s i n which most o f the ground water i s o b t a i n e d from n o n - f l o w i n g a r t e s i a n w e l l s Halstead,  0  •  .  "  0 0  1957,  1960)  The  g r o u n d w a t e r r e s o u r c e s map  (1957, 1960) following  relates  examination  by A r m s t r o n g materials  closely  as c o m p i l e d  The  geology  non-artesian aquifer  upland m a t e r i a l s such  map  systems.  The  a s t h e Newton S t o n y  textured and  non-flowing  artesian  C l a y and  springs.  shallow water t a b l e s  due  6.  t h e Whatcom  deep  systems.  The  importance  of  and  (>15 The  i s r e c o g n i z e d by  l a n d use  q u a n t i t y are l e f t  meters)  fine  sediments and  agricultural  o f groundwater s u p p l i e s e s p e c i a l l y the author,  funding c o n s t r a i n t s o f the present  agricultural  meters)  textured  to the c o m p l e x i t y o f a groundwater systems study  time  and  aquifer  outwash  t h e F r a s e r f l o o d p l a i n d e p o s i t s s u p p o r t deep f l o w i n g  waste water c o n t a m i n a t i o n  of  compiled  (<15  finer  lowland m a t e r i a l s , the C l o v e r d a l e Marine  a r t e s i a n w e l l s and  in  as  shallow  G l a c i o m a r i n e d e p o s i t s s u p p l y graoundwater from c o n f i n e d by  expected  c o a r s e r t e x t u r e d deep  g e n e r a l l y s u p p l y groundwater from  unconfined  Halstead  t o t h a t w h i c h w o u l d be  o f the s u r f i c i a l  (1957, 1 9 6 0 ) .  by  practices  on  study,  groundwater  f o r independent  however, and  the  the  effects  quality  study.  Hydrology; The  streamflow  i n u o u s l y by  o f t h e Salmon R i v e r has  E n v i r o n m e n t Canada, I n l a n d Waters Branch,  Survey  Division  at  72nd A v e n u e c r o s s i n g  the  gauging  was  been gauged  s i n c e 1969,  intermittent.  with the gauging (Plate The  I).  results  Prior  station to that  cont-  Water located time  of these records  indicate  a g e n e r a l t r e n d f o r p e a k f l o w s t o o c c u r b e t w e e n t h e months o f November and  M a r c h and  t h e months o f J u n e and d u r i n g the time per  second.  The  f o r t h e low October.  p e r i o d 1969  The  through  minimum d a i l y  flow p e r i o d to occur maximum d a i l y 1974  was  d i s c h a r g e was  30.8 0.2  between  discharge c u b i c meters  c u b i c meters  Plate  I:  S t r e a m g a u g i n g s t a t i o n , on S a l m o n R i v e r a t 72nd Avenue, L a n g l e y , B.C.  per  second.  the  time  The  average  p e r i o d 1969  monthly hydrology  t o 1974  i s plotted  m o n t h l y s t r e a m / l o w maximum and presented charge ented  I.  The  c t i o n with water q u a l i t y of  l a n d use  published rather in  on  are  p e r i o d 1974-1975 i s p r e s -  results  s u r f a c e water q u a l i t y .  report with  used  in  conjun-  to determine  effects  B e c a u s e most o f  the  the  appropriate conversion  are  used  factors  appended.  Climate; IV  data  recorded  year  average The  and  indicates  the  30 year  at Aldergrove, recorded  and  at Milner,  B.C.  of meteorological  Table V  c l i m a t e o f t h e Salmon R i v e r a r e a the Coast  d u r i n g the winter  July  and  August. exist  Fraser Valley attributed  The  i s a part.  to l o c a l  Coast  d a t a has  Insemination  C a n a d i a n Armed F o r c e s  of  as  be  elevation,  water.  s i n c e 1967,  B a s e s i n c e 1941  the Environment, Atmospheric  Lower  which can  topography,  been c o l l e c t e d  Center  rain-  growing  area, o f which the  i n f l u e n c e s such  term-  during  p e r i o d s and  Minor variances e x i s t  large bodies  Climatological  Abundant  a deficiency  7  maritime  Mountains which  longest frost-free  i n the P a c i f i c  d i s t a n c e from  Artificial  i s f o l l o w e d by  shows t h e  i s inshore  the n o r t h s i d e of the F r a s e r R i v e r .  fall  seasons  average  B.C.  i s s t r o n g l y i n f l u e n c e d by  i n a t e on  of  volumes  hydrological dis-  h y d r o l o g i c d a t a was analysis  Mean  hydrological information i s reported i n English  Table  and  daily  over  6.  than m e t r i c u n i t s o f measure, E n g l i s h u n i t s  this  7.  The  f o r the water sampling  i n Appendix  i n Figure  minimum f l o w s and  i n T a b l e number I I I .  data  discharge  at Milner, and  at  B.C.  Aldergrove  f o r the Canada  Environment S e r v i c e s .  Department Since  -|  JAN  1  1  FEB  MAR  1  APR  "i  MAY  1  JUN  1  1  1  JUL  AUG  SEP  i  OCT  i  NOV  1  DEC  Table  III:  Mean M o n t h l y H y d r a u l i c D i s c h a r g e F o r Salmon R i v e r , 1969-1974, I n c l u d i n g C o n v e r s i o n To A c r e - F e e t And Maximum And Minimum D i s c h a r g e F o r E a c h Month Over The Time P e r i o d Of G a g g i n g  Jan. mean discharge (cfs)*  128.1  mean d i s c h a r g e 7869 (acre-ft)*  Dec.  8.4  14.3  22.2  73.0  119.5  947  518  849  1365  4342  760.4  423  15.8  132  198  556  1140  May  June  Jul.  Aug.  122.3  90.7  47.2  25.7  16.5  15.4  6868  5558  3094  1446  979  316  129  169  879  443  minimum discharge (cfs)  24.3  22.2  17.2  t o metric  .15.6  11.0  units  3 c u b i c m e t e r s p e r second= hectare  Nov.  Apr.  727  conversion  Oct.  Mar.  maximum discharge (cfs)  *for  Sept.  Feb.  c f s x 0.028  - meters = a c r e - f t x  m_ ft  (o.405 ha.  6.5  6.3  5.9  6.4  6.5  8.0  10.0  TABLE I V :  TEMPERATURE AND PRECIPITATION RECORD AT ALDERGROVE, B.C. Q a v e r a g e , 1941- 1970 (3  y  e  a  r  TEMPERATURE MEAN MAX.  MEAN MIN.  MAX.  PRECIPITATION cm  °C MIN.  # DAYS FR. TEMP  TOTAL  # DAYS >_ 0.01  SNOWFALL  Jan.  4  -2  14  -19  22.9  41.9  Feb.  8  -1  19  -11  17.8  12.4  Mar.  10  0  22  -8  15.7  10.4  Apr.  13  2  25  -4  10.9  0.5  May  18  5  33  -2  7.1  0.2  June  20  8  33  1  6.6  0  July  23  9  36  3  4.3  0  Aug.  23  9  36  2  5.3  0  Sept.  20  7  31  -2  9.4  0  Oct.  14  4  25  -4  18.5  T  Nov.  9  1  18  -9  21.3  5.1  Dec.  6  -1  16  24.4  25.4  -20  at  !  TARTF? y . TOMPT?paTrn?P RMT> PCTY-TP-praTTr-M RECORD AT MTTNF^,-BJI f7 ypar, a w r a g p ,  TEMPERATURE MEAN MAX.  1967-197^  PRECIPITATION cm.  °C  MEAN MIN.  MAX.  MIN.  # DAYS FR. TEMP  TOTAL  # DAYS >_ 0.(51  SNOWFALL  Jan.  4  -2  15  -22  21  21.3  20  Feb.  9  -1  20  -22  16  14.0  14  4.1  Mar.  11  1  19  -11  16  17.0  18  4.3  Apr.  13  2  26  -5  9  11.2  16  0  May  18  5  33  -2  2  6.4  12  ^.n  1  0  i  June  20  9  33  2  0  6.4  10  July  23  9  33  2  0  4.8  5  0 ' . 0  Aug.  23  9  35  -1  1  3.6  8  0  Sept.  20  7  34  -5  1  10.9  12  0  Oct.  14  4  24  -8  9  17.2  19  0  Nov.  9  2  18  -11  9  17.5  21  6.1  Dec.  6  -1  14  -19  19  23.1  2.3  30.2  these  two  recording stations  Salmon R i v e r W a t e r s h e d study  t o g e t an  precipitation, The  actual  presented  the data  and  daily  stream  i n Appendix  II.  In the L a n g l e y  A plot  10  centimeters  in  the M i l n e r a r e a about  years  of total  snow.  The  from August  maximum i s 3 5 ° C . Aldergrove, Milner,  The  30 y e a r  8 year  average  summer  1974. of  total  area  about  snow,  while  precipitation  at Aldergrove  annual  i s 171.1  i s 84.3  as  a  The  general-  in  minimum  precipitation  centimeters,  centimeters  and  30  temp-  r e c o r d i n g i s -22°C, w h i l e  average  average,  in  of t o t a l  t h e maximum i s 3 6 ° C .  total  f o l l o w the  8 centimeters  centimeters  are  precipitation  i n the A l d e r g r o v e  erature at Milner i n 8 years of  this  snow)  f o l l o w e d by  p r e c i p i t a t i o n occurs 6.2  and  to October  minimum t e m p e r a t u r e  i s -19°C. w h i l e  (rain  These d a t a  precipitaiton  snow.  in  were c o r r e l a t e d .  of the d a i l y  area, o n l y about as  used  the  hydrologic discharge,  i n F i g u r e 7.  p r e c i p i t a t i o n occurs  c l o s e to  them was  values of p r e c i p i t a t i o n  dry p e r i o d which o c c u r r e d  as  from  water q u a l i t y  t r e n d o f heavy w i n t e r  occurs  i n or very  i n d i c a t i o n o f how  amounts i s p r e s e n t e d ized  are  the at  at  (Environment  Canada,  1974) Taken as is  a whole, the  quite suitable  are not light  extreme.  for agricultural High  are  long.  The  p e r i o d which produces and  winds are  hours are adequate.  seasons  Sprout,  1966).  c l i m a t e o f t h e Lower F r a s e r  rare.  Growing  Temperatures season  F r o s t - f r e e p e r i o d s and  primary soil  production.  restriction  moisture  i s the  deficiencies  Valley  sun-  growing summer  dry  (Luttmerding  X7  8.  P r e s e n t Land and Water Use; In  1971, t h e W e s t w a t e r R e s e a r c h C e n t e r , U n i v e r s i t y o f  British  Columbia,  Lower F r a s e r This of  map  Valley  (Figure  the various  area.  compiled  utilized  types o f land  in  the Fraser  (Plate  III)  strawberries of  cattle  present  floodplain  important  constitutes the  areas o f the watershed. a n d some r a s p b e r r i e s favourable  Small  fruits,  areas  (Plate VIII)  stock are  unproductive Urban,  and r i d i n g  stables  and f u r f a r m i n g a r e  A significant  farm development  Several  A few f a r m s a r e d e v o t e d t o b r e e d i n g a n d  vegetable production.  (Plate IX).  primarily  (Plate IV).  h o r s e s o r a c t as b o a r d i n g  which i s g e n e r a l l y  Valley  a r e grown i n t h e v i c i n i t y  f e e d l o t s and farms p r o d u c i n g b r e e d i n g  Poultry  dominately  ( P l a t e I I ) and t h e L a n g l e y  i n some a r e a s .  of  use c l a s s e s  and i s l o c a t e d  enterprises  woodlots  of land  Dairying  single enterprise,  o f race  (Plate V I I ) .  i n the watershed  t h a t most o f t h e a r e a i s  proportions  Watershed.  (Plate V,VI).  training  extent  f o r some f o r m o f a g r i c u l t u r a l p r o d u c t i o n .  H o p i n g t o n and o t h e r  beef  Watershed.  l o c a t i o n and  use maintained  i t i s observed  t h e Salmon R i v e r  most i m p o r t a n t  u s e map o f t h e  8) i n d i c a t e s t h e g e n e r a l  T a b l e V I shows t h e r e l a t i v e in  land  i n c l u d i n g t h e Salmon R i v e r  From t h e map  being  a current  Of l e s s e r i m p o r t a n c e i s portion  remains  i n forest  and u s e d p r i m a r i l y f o r f a r m  suburban  ( P l a t e X) a n d hobby  ( P l a t e XI) e x i s t s o n a s i g n i f i c a n t  portion  the watershed as w e l l . The  w a t e r o f t h e Salmon R i v e r  numerous p r i v a t e c i t i z e n s .  i s held  Although  under l i c e n s e by  the majority  o f water  FIGURE 8  SALMON RIVER DRAINAGE BASIN Present Land Us* (1971)  05 Milt* LEGEND  R«»idcnlNji  i  fortilry  •  F'tid  Crop*  ^retard*  Penal  Initit  jlroni  E2] Wataf  mm  E2  Chemical  Prncamnf  r.pecioiif  Ammal  Forms  (inclvtlmo,  livestock)  C o m m t f cicH T r a n s p o r t a t i o n , Cnorgy ft Commur.icot.on rrocrorjt ton Non  Metallic  Litmtar ftivr*  M«.r>,  Corridor*  Table V I : •  P r o p o r t i o n o f land use c l a s s e s i n the Salmon R i v e r basin Ci  Land Use C l a s s  % of t o t a l  single family dwellings  (0.4 hectares)  1.1  low d e n s i t y r e s i d e n t i a l  (0.4 - 2 h e c t a r e s ) 8 . 4  roads  1.1  commercial  0.1  recreation  0.5  institutional vacant field  <0.1  land  1.6  crops  10.4  s p e c i a l t y animal grazing-pasture f o r e s t e d lands  farms lands  ( i n c l u d i n g non-comm. cover)  0.4 36.6 36.1  gravel p i t s  0.2  orchards  0.4  ( a f t e r Weins, 1975)  area  30  Plate  III:  Dairy  farm  i n Langley  Valley  area  51  Plate  IV:  Strawberry f i e l d on 2 4 8 t h S t r e e t  near  Hopington  Plate VII:  P a s t u r e f o r horse farm a t C o h g l a n Road ( 2 5 6 t h S t r e e t )  Plate VIII:  T y p i c a l p o u l t r y f a r m on Road ( 5 6 t h Avenue)  Roberts  35  Plate  IX:  Farm w o o d l o t , immature n o n m e r c h a n t a b l e f o r e s t , t y p i c a l o f the f o r e s t s i n the w a t e r s h e d , on R o b e r t s o n C r e s c e n t  P l a t e X:  Plate  XI:  Low d e n s i t y r e s i d e n t i a l d e v e l o p m e n t a t R o b e r t s Road ( 5 6 t h Avenue)  Hobby  f a r m a r e a on T e l e g r a p h  Trail  licences held  h e l d are  f o r domestic  Forests,  and  quality of  9.  the  In  stream  and  the  Board  developed  lower  mainland.  the long term. a r e a as  or  criteria  i t was  of developing  then  areas.  an O f f i c i a l  P l a n s were d e v e l o p e d The  s h o r t term  zoned  i n 1966  The  irrigation quality  urban, The  acreage  zoned as  rural,  city  Planning  f o r the whole o f  f o r both  (Figure 9).  l o n g term  Regional  the  short  o r c u r r e n t s t a g e map  of developed  the  zoning of  shows  the  T h i s p l a n shows  the  upland  rural  urban a r e a s , industrial  develop-  large and  areas  special  p l a n shows t h e p r o p o s e d  develop-  i n the area o f d e v e l o p i n g  subsequent d e s i g n a t i o n of A g r i c u l t u r a l  The  m a j o r i t y of the watershed  t h e a r e a has  been a l t e r e d  l a r g e p r o p o r t i o n s z o n e d as H, a c r e minimum  Township o f L a n g l e y ,  1970,  i s zoned 1 and  ( F i g u r e 12).  and  Watershed  1973).  Land  slightly  (1972)  Reserves  (Figure  5 a c r e minimum  2 a c r e minimum and (The  the  and  With the passage o f the Land Commission A c t  the  20  Lands,  1975).  d r i n k i n g water  Regional Plan  and  z o n e d as  to both  u r b a n a r e a s , w i t h i n the Salmon R i v e r 10).  few  Dept. o f  Branch,  e x i s t e n t Lower M a i n l a n d  ment o f a m a j o r s a t e l l i t e  (Figure  and  a  Present;  ment w i t h m i n o r a r e a s  existing  (Table VII)(B.C. Water R i g h t s  major p o r t i o n o f the watershed  reserve  there are  criteria.  Past  1966  purposes,  w a t e r must c o n f o r m  standards  or  Zoning  water supply  Water Resources,  water q u a l i t y standards  for irrigation  11).  with some  Corporation of  the  Table  VII:  L i c e n s e d Water W i t h d r a w a l from t h e Salmon R i v e r and i t s T r i b u t a r i e s  Use Domestic Water  Volume  Supply  11,000 gpd.*  Irrigation  572.8 a c r e  feet*  Industrial -  fish  - golf Land  fruit  culture  7  course  3 acre  feet  15,000  gpd.  17,000  gpd.  processing  Improvement  cfs.*  D.35  •conversion gpd  cfs.  factors to  liters  acre-feet  per  day  = gpd  to hectare-meters  x  4.54  liters gallon  = acft x  0.12  ha.m acf t  3 cfs  to c u b i c meters per  second = c f s x  0.028  m_ ft'  FIGURE 9  OFFICIAL CURRENT STAGE PLAN: SALMON RIVER WATERSHED  LEGEND Symbol .1 2 3 4 5 6 7' 8  Description •URB-1: URB-2: URB-3: RRL-1: RRL-2: IND-1: RSV-2: RSV-1:  E s t a b l i s h e d urban area D e v e l o p i n g urban area Lowland r u r a l area Upland r u r a l area Acreage r u r a l a r e a D e v e l o p i n g I n d u s t r i a l area I n s t i t u t i o n a l r e s e r v e area L i m i t e d use r e s e r v e a r e a  ( a f t e r Lower M a i n l a n d 1966)  Regional Planning  Board  OJ -0  FIGURE 10  OFFICIAL LONG RANGE PLAN: SALMON RIVER WATERSHED  LEGEND Symbol 1 2 3 4  Description Developed urban areas Developed i n d u s t r i a l areas R u r a l , a g r i c u l t u r a l areas Reserve, l i m i t e d use a r e a s  ( a f t e r Lower M a i n l a n d R e g i o n a l P l a n n i n g Board, 1966)  FIGURE 12 v  EXISTING ZONING:  SALMON RIVER WATERSHED  LEGEND Symbol  Description  1 2 3  UR- 1: UR- 2: UR- 2:  4 5  RR- 1: RR- 3:  o n e - h a l f acre minimum one acre minimum two and o n e - h a l f acre or l e s s minimum f i v e acre minimum twenty acre minimum  ( a f t e r L a n g l e y M u n i c i p a l i t y Zoning Bylaw No. 1302, 1AA1 1970, 1973)  4-3 METHODS FIELD 1.  SAMPLING  S u r f a c e Water Water samples  streams  the-- S a l m o n R i v e r  were c o l l e c t e d a t s e l e c t e d  April  1975.  these  sites.  breaks  from  Figure  13 i s a map  These sampling  i n geomorphic u n i t s  sites  showing  sites  or  one t y p e o f l a n d  urban The  numbers area  contributing to which they  each  in  Table VIII.  included  areas Size  o f 0.20  which d r a i n  predominagriculture  contributing  the culumative  contributing  four  size classes.  t o sampling  contributing  Size  1 contrib-  a r e a s were t h o s e those  Size  areas  8, 10,  3 contributing  and i n c l u d e d  contributing  to  areas  4  0.80  to s t a t i o n area  The c o n t r i b u t i n g  were  those  Size  areas with r a t i o s of  site.  with  contributing  2, 3, 6, a n d 14.  areas  water sampling  0.20  a r e a s were t h o s e a r e a s  t o 0.4 0 a n d i n c l u d e d  to stations  stations  F i g u r e 14 shows t h e l o c a t i o n a n d e x t e n t o f e a c h t o each  are presented  areas with r a t i o s of l e s s than  contributing  and i n c l u d e d  s i z e , and t h e r a t i o  of area r a t i o s the  4, 5, 7, 9, a n d 15.  contributing  area  t o t h e whole watershed  2 contributing  areas contributing  uting  patterns  contribute,  t h o s e a r e a s w i t h r a t i o s o f 0.4 0 t o 0.80  1.00  use  major  station  On t h e b a s i s  a r e a s were t h o s e  11 a n d 12.  to  where  a r e a numbers, the; s a m p l i n g  area c o n t r i t u b i n t  stations  the l o c a t i o n o f  or i n present land  a r e a s were s u b d i v i d e d i n t o  ratios  until  subdivision.  of  and  1974  use p a r t i c u l a r l y e x t e n s i v e  s i z e , the cumulative  uting  f r o m May  were l o c a t e d  were mapped a n d o n t r i b u t a r y s t r e a m s ately  and i t s t r i b u t a r y  1.  contribareas  Table  VIII:  Sampling Station #  Contributing areas, s i z e , and area r a t i o s Contribut- Cumulative Cumulative i n g Area ContributContributing ContributSize i n g Area Area # i n g Area #5 (hectacres) (hectacres)  Area Ratio  11  1  1  940.5  940.5  0.12  15  2  1+2  660.0  1606.5  0.20  10  3  3  309.5  309.5  0.04  9  4  244.5  2160.5  0.27  8  5  5  143.1  143.1  0.02  7  6  1+2+3+4+5  650.0  2953.6  0.37  4  7  1+2+3+4+5 +6+9  168.5  3122.1  0.39  12  8  7  119.0  119.0  0.01  5  9  7+8  1469.4  1588.4  0.20  6  10  596.0  5306.5  0.66  3  11  490.0  490.0  0.72  2  12  472.5  6269.0  0.78  14  14  347.5  480.6  0.72  1  15  1282.5  8032.1  1.00  1+2+3+4  1+2+3+4+5+ 6+7+8+9+10 11 1+2...+11+ 12 14 1+2...+14 +15  are  numbered  the  r i v e r and e n d i n g a t t h e j u n c t i o n  Fraser  1 t o 15 b e g i n n i n g  a t the headwaters o f o f t h e Salmon a n d  Rivers.  During for  from  t h e summer months May  chemical analysis  from September u n t i l  t o September,  were c o l l e c t e d t w i c e a month, April  due t o t i m e c o n s t r a i n t s .  possible  collected  Five  hundred m i l l i l i t e r  revealed the  no d e t e c t a b l e  water  analysis  ( H a l l , 1974).  s a m p l e s were a c c u m u l a t e d  stored  125 m i l l i l i t e r  and s t o r e d  to f a c i l i t a t e  rejected  since  insufficient laboratory 2.  results  metal until  in  analysis 50-60  efficient  analysis. frozen  and  analyses.  f o r t h e month o f May were  t h e methods o f a n a l y s i s  sample was  studies  a t t h e same t i m e a s s a m p l e s  were c o l l e c t e d f o r t h e o t h e r c h e m i c a l preliminary  to  residues  s a m p l e s were c o l l e c t e d ,  f o r phosphorus a n a l y s i s ,  The  previous  Samples f o r t r a c e frozen  samples  S a m p l e s were n o t  amounts o f p e s t i c i d e  were c o l l e c t e d m o n t h l y ,  Separate  since  monthly  as p o s s i b l e ,  d e g e n e r a t i o n o f samples.  for pesticide  while  t h e y were c o l l e c t e d o n c e  were c o l l e c t e d a n d a n a l y s e d a s q u i c k l y avoid  samples  were b e i n g  later  tested  and  c o l l e c t e d t o complete a l l o f the  analyses.  Precipitation Precipitation  s a m p l e r s were i n s t a l l e d  a t t h e end o f  J u n e , 1974 a n d p r e c i p i t a t i o n s a m p l e s c o l l e c t e d m o n t h l y July,  1974 u n t i l  April,  were made o f 1 g a l l o n covered  funnel  1975.  These p r e c i p i t a t i o n  plastic bottles  to collect  fitted  with a  from  samplers screen  precipitation primarily for  a n a l y s i s of chemical; imputs and snow combined. ented i n F i g u r e 15. throughout  i n rainwater, d u s t f a l l ,  A diagram o f t h e samplers  i s pres-  Ten o f these samplers were l o c a t e d  the watershed.  l o c a t i o n o f these samplers.  F i g u r e 13 i s a map  showing the  P l a t e s X I I , X I I I , and  XIV  are examples o f the areas where p r e c i p i t a t i o n samplers were l o c a t e d and how 3.  they were f a s t e n e d to the  site.  Sediment Grab samples of sediment were taken from the  bottom i n May 4.  and a g a i n i n J u l y ,  stream  1974.  Soils S i x s e l e c t e d s o i l s were sampled i n t h r e e of the major  geomorphic u n i t s . f o r background  The h o r i z o n s i n each s o i l were sampled  or benchmark v a l u e s to compare w i t h those  v a l u e s found by Luttmerding and Sprout,  (1966).  FIELD ANALYSIS In s i t u measurements i n c l u d e d pH,  temperature,  redox  p o t e n t i a l , e l e c t r i c a l c o n d u c t i v i t y and d i s s o l v e d oxygen. The pH r e a d i n g s were made u s i n g a combination s a t u r a t e d KC1 e l e c t r o d e on an Instrument L a b o r a t o r y Company Model 17 5 p o r t a b l e pH meter.  Redox p o t e n t i a l was  determined  using a  combination p l a t i n u m redox e l e c t r o d e model number 96-78 w i t h an O r i o n s p e c i f i c i o n meter model #4 07. was  Temperature  determined w i t h a s o l i d s t a t e metal thermometer.  A  Yellow S p r i n g s Instrument Company s a l i n i t y - c o n d u c t i v i t y temperature  meter Model 33 was  determinations. mater model #54  used f o r c o n d u c t i v i t y  A Yellow S p r i n g s Instrument Company oxygen and e l e c t r o d e was  used to determine  the  FIGURE 15  DIAGRAM OF PRECIPITATION COLLECTING APPARATUS  NYLON SCREEN FASTENED WITH SILICONE GLUE  PLASTIC FUNNEL 5" DIAM. RUBBER STOPPER NO. 7  ALUMINUM FOIL COVERED TO REDUCE EVAPORATION LOSSES  PLASTIC CONTAINER I GAL. VOLUME  Plate  XII:  P r e c i p i t a t i o n sample s i t e 10 a t R o b e r t s o n C r e s c e n t and 2 4 0 t h S t r e e t  Plate  XIII:  P r e c i p i t a t i o n sample s i t e 6 a t Deep C r e e k Road (222nd S t r e e t ) n e a r W i l s o n Town L i n e Road ( 9 6 t h Avenue)  52 dissolved  oxygen  The o n l y  content o f the stream.  field  d e t e r m i n a t i o n s done o n t h e p r e c i p i t a t i o n  s a m p l e s was pH a n d a measurement o f v o l u m e . No f i e l d  d e t e r m i n a t i o n s were c a r r i e d  o u t on t h e sediment  samples. LABORATORY ANALYSES 1.  Surface The  Waters  1 liter  samples  were k e p t f r o z e n u n t i l efficient  analysis.  with n i t r i c for  analysis.  direction of  acid  collected  The s a m p l e s when thawed  and t a k e n t o t h e Westwater  T h e s e a n a l y s e s were c a r r i e d  the  other chemical  were t h e n thawed dissolved that  (1971)  Sciences,  using  blue colour Those  o u t under t h e  U.B.C, using the  a n a l y s e s were c o m p l e t e .  and a n a l y s e d  fortotal T  by t h e A m e r i c a n P u b l i c  acid  by McQuaker  c o l l e c t e d were k e p t f r o z e n  and p a r t i c u l a t e phosphorus.  described  acidified  Research Center  e x t r a c t i o n method a s d e s c r i b e d  125 m l . s a m p l e s  were  i n the geochemistry laboratory  the Faculty o f Geological  The  analysis  50-60 s a m p l e s were a c c u m u l a t e d f o r  o f D r . K. H a l l  MIBK o r g a n i c  f o r trace metal  digestion  acid n  e  These  (1973).  until  samples  digestible  method u s e d was  Health  Association  and s t a n n o u s c h l o r i d e - m o l y b d e n u m  development. 500 m l . s a m p l e s w h i c h were c o l l e c t e d  for detailed  chemical  c o n c e n t r a t i o n a n a l y s i s were a n a l y z e d a s q u i c k l y a s  possible  i n the Pedology Laboratory,  were f i r s t to  U.B.C.  The s a m p l e s  f i l t e r e d t h r o u g h a number 1 Whatman f i l t e r  remove s u s p e n d e d  solids,  the f i l t e r  paper  p a p e r was t h e n a i r -  dried  and weighed t o d e t e r m i n e  suspended s o l i d s . highly erratic  The r e s u l t s  and i m p o s s i b l e  not been i n c l u d e d i n t h i s water passed through NO^-N acid et  acidity  indicator  carbonate,  Immediately  Total acidity,  was d e t e r m i n e d with  total  the f i l t e r e d  of d i s t i l l e d  following  carried filtration,  using the chronotropic laboratory (Lavkulich  alkalinity,  and t o t a l  using phenalphalein  0.02N NaOH.  Total  alkalinity  i n d i c a t o r , mixed bromocresol  and h y d r o x i d e  or t o t a l  readings  have  f o l l o w i n g t h e NO^-N  f o l l o w e d by t i t r a t i o n  the r e s u l t s  residue of  Blank  so they  p a p e r were a l s o  s o l i d s were d e t e r m i n e d  titration  using  study.  o f t h e U.B.C. P e d o l o g y  a l , 1974).  m e a s u r e m e n t s were  to standardize  c o n c e n t r a t i o n s were d e t e r m i n e d  using phenalphalein red  o f these  the f i l t e r  a l l procedures.  dissolved  and  through  technique  Total  the approximate weight o f  with  analysis.  indicator was  green-methyl  0.02 H C l .  Bicarbonate,  a l k a l i n i t y were d e t e r m i n e d  o f the t o t a l  alkalinity.  by c a l c u l a t i o n  Total dissolved  d i s s o l v e d s o l i d s were d e t e r m i n e d samples.  by  for total  aneously  with  K j e l d a h l n i t r o g e n was c a r r i e d  the previous  done u s i n g a s l i g h t l y preceeded  analysis.  modified  t h e NO,.  (1971).  out simult-  This determination  semi-micro K j e l d a h l  was  technique  b y c o n c e n t r a t i o n o f t h e sample b y e v a p o r a t i o n .  E v a p o r a t i o n was f o l l o w e d b y t r e a t m e n t sulfuric  evaporation  A l l o f t h e a b o v e methods were  d e s c r i b e d by t h e American P u b l i c H e a l t h A s s o c i a t i o n Analysis  determined  acid,  with  salicylic  and s o d i u m t h i o s u l p h a t e i n an a t t e m p t  T h i s sample w a s . t h e n d i g e s t e d w i t h  acid, to retain  a K-SO., CuSO., Se  catalyst and  in sulfuric  acid  f o l l o w e d by s t e a m d i s t i l l a t i o n  t i t r a t i o n o f the d i s t i l l a t e  boric  acid  a s t h e end p o i n t  Chapman a n d P r a t t , 1961; organic  modified  (Allison,  idimetric  and Bremner, 1 9 6 5 ) .  Walkley-Black  were t h e n  technique  were d e t e r m i n e d  determined  last  conducted using  (APHA, using  1971).  water samples h a r d n e s s was  f o r Ca, Mg,  next  2  Sulfate 2  the formula  titration  turb-  concentrations  atomic  306 d i r e c t l y  a  technique  The c a t i o n  Chloride concentrations  the Ag SO^ p o t e n t i o m e n t r i c  using  absorption  on t h e f i l t e r e d  Na., K, F e , A l , S i , Mn.  calculated, using  (iAPHA, 1971) .  1958;  the B a C l  the Perkin-Elmer  using  The  wet-oxidation  S p e c t r o p h o t o m e t e r m o d e l number  Total  method  were d e t e r m i n e d  technique  using  (Lavkulich  a l . , 1974). Precipitation The  monthly  f r o m J u l y 1974 u n t i l A p r i l  acidity,  analyses  total  NO^-N, t o t a l total  Waters  water from the p r e c i p i t a t i o n  laboratory  All  (Jackson,  1965 a n d Chapman and P r a t t , 1 9 6 1 ) .  determinations  2.  0.02 o r 0.05 N HC1  indicator.  c a r b o n c o n c e n t r a t i o n was  slightly  et  with  r u n on t h e s e  alkalinity,  dissolved solids  o f these  procedures waters.  determinations  samples 3  included  a n d OH  collected The total  alkalinity,  (residue), total  o r g a n i c C, C I , S 0 , C a , Mg, 4  1975 i n c l u s i v e .  HCC> , C 0 , 3  s a m p l e r s was  K j e l d a h l N,  Na, K, F e , A l , S i a n d  were c a r r i e d  o u t l i n e d i n the preceeding  out using  s e c t i o n on  Mn.  t h e same  surface  55 3.  Sediment The  lightly the  Samples  sediment  samples  t o p a s s a 2mm  weight  c o l l e c t e d were a i r d r y e d ,  sieve,  recorded.  t h e n t a k e n and  sieve.  sample  This  r u c t i o n by HNO^, Na, (by  K,  difference).  1974).  by  Cu,  et.al,  1974).  cations  d e t e r m i n e d on  Na,  fraction.  by KC1  distillation i n water  and C a C l ,  K ) , and pH  using  blue colour 4.  Soil Six  et.al.,  PO.-P 4  was  total  capacity  and  cations 7.0,  et.al.,  and  1974).  (Lavkulich  exchangeable the l e s s  were d e t e r m i n e d  total  cation  subsequent  Kjeldahl  The pH was  determined  1965). d e t e r m i n e d on the l e s s t h a n  t h e NH^F  extractant  and S n C l  development  (Lavkulich  et.al.,  2  2mm  - Molybdenum  19 7 4 ) .  Samples s i t e s were s a m p l e d  for soil  analysis  f o r comparison (1966).  These  to pass  samples  sieve  by  exchange  w i t h d a t a p r e s e n t e d by L u t t m e r d i n g and S p r o u t  2mm  2mm  fraction  S  were c a r r i e d o u t on  Exchangeable  (Peech,  and S i  (Lavkulich  f u r n a c e method a s was  (Lavkulich  Cd,  Mg,  t h e l e s s t h a n 2 mm  d i s p l a c e m e n t o f NH^  Extractable fraction  T i , Pb,  dist-  d e t e r m i n e d on t h e l e s s t h a n  Ammonium a c e t a t e e x t r a c t i o n a t pH capacity  t o d e t e r m i n e Ca,  Zn, N i , C r , Co,  T o t a l c a t i o n exchange  (Ca, Mg,  2mm  and HC10  ( 0.2mm)  aluminosilicate  t h e s e m i - m i c r o K j e l d a h l method  induction  mm  t o p a s s a 60 mesh  for total  T o t a l N was  T o t a l C was  by t h e L e c o  than  4  and  o f the l e s s than 2  ground  used  H S 0 , HF,  F e , A l , Mn,  fraction  was  2  c o a r s e fragments weighed  A subsample  f r a c t i o n was  ground  and  were a i r d r y e d , c r u s h e d l i g h t l y the f o l l o w i n g  analyses undertaken:  pH,  a  organic  C, t o t a l  cations  ( C a , Mg, Na, K,) F e , a n d A l .  determined  N, P, c a t i o n  both i n H 0  wet o x i d a t i o n  were d e t e r m i n e d 1958; the  were d e t e r m i n e d u s i n g  using  (Allison,  Extractable  (Olson  Exchangeable cations  cation  ratios  followed  distillation  exchange c a p a c i t y  nitrogen  (Lavkulich  S n C ^ molybdenum  blue  - Jackson,  1958).  capacities  o f the leachate  organic  1974).  with  extraction  by l.ON KC1 l e a c h i n g a n d  o f these analyses.  et.al.,  (Jackson,  PO^-P was d e t e r m i n e d  et.al.,  for total  1974).  m a t t e r were t h e n Iron  Carbon, calculated  a n d aluminum  m i n a t i o n s were done by t h e a c i d ammonium o x a l a t e method  - Black values  ammonium a c e t a t e  (Lavkulich  and p e r c e n t  from t h e r e s u l t s  Total N  c a t i o n exchange  the neutral  exchangeable c a t i o n s  semi-micro K j e l d a h l  1965).  the Walkley  a n d Dean, 1965;  and t o t a l  were d e t e r m i n e d u s i n g  were  the semi-micro Kjeldahl technique  Bremner, 1 9 6 5 ) .  development.  (Peech,  1965).  NH^F e x t r a c t i o n t e c h n i q u e u s i n g  colour  for  2  technique  exchangeable  The pH v a l u e s  a n d 0.01 C a C l ,  2  Organic C values  exchange c a p a c i t y  deter-  extraction  RESULTS PRESENT LAND  USE  Updating study,  of the  1971  revealed l i t t l e  Westwater p r e s e n t l a n d  significant  change i n t h e  use overall  p a t t e r n o f l a n d use, w i t h the e x c e p t i o n o f the  development  of  indicated  two  areas i n s u b d i v i s i o n ,  on F i g u r e 16. On  This i s particularly  a more d e t a i l e d  described  as  less  0.4  than  Areas  single  existing ultural  relation  rural  use  since  1971.  I n some c a s e s areas  into  location of intensive  In the  case  sampling  station  to  especially  around  some o f t h e  agric-  housing,  agricultural  l o c a t i o n s on  shows practices  the  Salmon  1975). uses  a r e a s on  the b a s i s o f major breaks  l a n d use  were e s t a b l i s h e d  the b a s i s o f  less  F i g u r e 17  o f t h e Salmon R i v e r was  contributing  homes.  and  residential  watershed  and/or  of  p a t t e r n s they are very s i m i l a r  Proportions of various land  sampling  i n with further  i . e . 4 hectare plots  been developed  t o the  1:50,00  areas with l o t s  i n the a r e a near Hopington.  (Wiens,  The  unit  have f i l l e d  ( a t 1:50,000).  the approximate  1.  size  urbanized or semi-urbanized  particularly  River  land  l a n d has  as  true at a scale of  residential  t o have i n c r e a s e d s l i g h t l y  t h o s e o f 1971  in  family  hecare  of a g r i c u l t u r a l  1975),  l e v e l many o f t h o s e a r e a s w h i c h were  of small acreage  appear  (Minty,  pattern.  topography.  The  into  i n geomorphic  S u r f a c e water sampling  a t these major breaks.  to these sampling  subdivided  landscape  sites areas  s i t e s were t h e n d e l i n e a t e d  on  Figure 17 Location o f i n t e n s i v e a g r i c u l t u r e areas i n r e l a t i o n t o sampling s t a t i o n locations H]  Broiltr  10  Doir»  E  Egg  [f|  Gomt Farm  El  B««l  O  Hor»»  03  Muthroom  '  bO A c t u a l percentage have b e e n c a l c u l a t e d  p r o p o r t i o n s o f v a r i o u s l a n d use  f o r each c o n t r i b u t i n g  p r o p o r t i o n s o f geomorphic u n i t s Table in  IX g i v e s t h e p e r c e n t a g e  each area  (Wiens,  contributing  the area  have  i n each c o n t r i b u t i n g  area.  v a l u e s o f each l a n d use  to the  specified  l a n d s and  sampling  f o r e s t e d land cover  i n most o f t h e w a t e r s h e d .  l?.ncT v a r i e s least  as  sites  from  8 to  62 p e r c e n t o f  The  the  to i t with  g e n e r a l l y are  The  percentage  o f f o r e s t l a n d w i t h i n each c o n t r i b u t i n g  lowest  percentages  largest  51.41 to  and  51 p e r c e n t . with  percentages  50.61  the o t h e r Low  to  and  are  found  percent.  sites  The  range from  density residential  areas vary  from  percentage  a t 0.0.  8 and low  29.9,  16  26.9  percent of  density Field  area.  0.0  The  to  27.0  Sites and  7,  26.7.  the  range of  Sites  9.2  p r o p o r t i o n of the watershed.  ages o f  i n the  area with  19.8  10  and  in sites  14  61.8 to  percent  52  have  percent. area  the  respectively. and  of area  9 with contributing  to 4 3 percent.  areas The  cover  the next  percentages  percent. 8 and The  12  percent,  percentages 36  35  the  8.5  the others  19  largest  8 has  and  from  the  Site  of grazing  site  varies  has  percentage  percentage  area.  area of grazing land contributing 10  the major  percent, while  The  type  1974).  Grazing of  area,  types  12  Site had  other  contributing  14 the  sites  of  largest contributing  has  the  highest varied  area being  lowest percentbetween  covered  by  residential. crops  covered  range i n area  the  next  covered  largest was  from  proportion of 0 t o 34.7  the  percent.  Table land use site  01  09  41  6.45  1.9  29. 3  2  1.4  12.3  3  15.5  14.6  4  14.0  5  IX:  P e r c e n t o f l a n d use t y p e i n each a r e a t o each sampling s t a t i o n  42  43  441  471  48  35.8  26.0  0.2  0.2  0.4  50.6  29.0  0.4  0.3  19.5  47.9  12.2  31.0  43.1  8.0  8.9  34.5  42.7  6  6.3  34.7  27.6  25.1  7  30.0  5.7  33.1  30.0  1.0  8  26.9  17.1  8.5  40.2  7.2  9  4.4  43.2  50.6  lu-  16.5  61. 8  19.2  51.6  42.4  52.3  19.8  39.4  51.4  1  ll  3.3  12  26.7  14 15  0.2  9.0 4.9  1.9  47.4  50  3.0  contributing  60  70  80  3.0  2.1  0.4  2.0  3.5 1.6  4.3  1.0 1.0  1.0 1.2  0.2  45.1 H  1  b2  01 09 41 42 43 441 4 71 48 50 60 70 80  -  s i n g l e f a m i l y r e s i d e n t i a l ( 0.4 h e c t a r e s ) low d e n s i t y r e s i d e n t i a l (0.4 - 2 h e c t a r e s ) f i e l d crops s p e c i a l t y animal farms grazing - pasture lands forested lands gravel pits orchards roads commercial high d e n s i t y parks schools  S i t e s 9, 10,  11, 12, and  15 had no measureable percentage  t h e i r r e s p e c t i v e c o n t r i b u t i n g areas covered by f i e l d The  l a r g e s t percentage  of area i n f i e l d  areas c o n t r i b u t i n g t o s i t e s 1, and and  34.7  respectively.  of  crops.  crops where those  6 w i t h percentages  of  29.3  The o t h e r s i t e s have from 2.1  to  6.8  p e r c e n t o f t h e i r c o n t r i b u t i n g areas o c c u p i e d by f i e l d operations.  crop  ,  S p e c i a l t y animal  farms occupy o n l y the s m a l l e s t prop-  o r t i o n s o f the watershed.  S i t e s 4,  5, 6, 7, 8, 9, 10,  12,  i  and 14 have no measureable percentage area o c c u p i e d by s p e c i a l t y animal  of t h e i r  contributing  farms.  G e n e r a l l y g r a v e l p i t s , o r c h a r d s , roads,  commercial  areas, h i g h d e n s i t y parks, and s c h o o l s occupy v e r y  low  percentages  of the area o f each c o n t r i b u t o r y a r e a .  The  percentages  o f these types o f l a n d use are g e n e r a l l y l e s s  than 4 p e r c e n t . A g e n e r a l i z e d d e s c r i p t i o n of the l a n d use  types  a s s o c i a t e d w i t h the v a r i o u s geomorphic u n i t s i s g i v e n i n T a b l e X.  T h i s i n f o r m a t i o n was  geomorphic u n i t s use map  d e r i v e d from an o v e r l a y o f  (Westwater, 1973)  (Westwater, 1971)  over  1  the p r e s e n t l a n d  and summarized as f o l l o w s .  Field  crops are g e n e r a l l y a s s o c i a t e d w i t h loamy a l l u v i u m , g l a c i a l outwash, and marine m a t e r i a l s .  G r a z i n g and p a s t u r e  are a s s o c i a t e d w i t h a l l o f the geomorphic u n i t s .  lands  Woodlots  and suburban development are a s s o c i a t e d w i t h a l l o f the geomorphic u n i t s except the a l l u v i u m .  Poultry production  i s a s s o c i a t e d p r i m a r i l y w i t h g l a c i a l outwash m a t e r i a l s .  Parks  bM-  Table  X:  M o s t Common a n d / o r I n t e n s i v e Agricultural L a n d Use i n e a c h G e o m o r p h i c U n i t .  Geomorphic A - Alluvium  Unit  Land  Use  sA 1A  field  cA  grazing,  G - Glacial  outwash  - Glacial  dairy  crops, woodlots,  suburban, crops  poultry  (hay.) ,  Marine  1GM  cGM B/M,  GM - B e a c h o v e r Marine or G l a c i a l Marine  G/GM  - G l a c i a l Outwash over G l a c i a l Marine  LG/GM - L a g G r a v e l s ^ o v e r G l a c i a l Marine 0 - Organic  pasture -  grazing, pasture, f i e l d woodlots suburban.  M - Marine GM  field  crops  grazing, . it  grazing,  pasture, woodlots, ••  ii  pasture, woodlots,  suburban ii  parks  are  associated with  marine o r g l a c i a l  beach m a t e r i a l s  marine  which o v e r l a y  either  materials;  BENCHMARK PHYSICAL AND CHEMICAL PROPERTIES OF SOILS GEOMORPHIC UNITS 1.  AND  Soils A detailed soil  valley  i n c l u d i n g Langley  publiched  chemical  and  the report  D e t a i l e d sampling o f s o i l s  a n d p h y s i c a l c h a r a c t e r i z a t i o n was c o m p l e t e d f o r Langley M u n i c i p a l i t y published  detailed information,  is  u s e d a s benchmark d a t a  in  t h i s .study.  which  River  a n d M a t s q u i M u n i c i p a l i t i e s was  i n t h e e a r l y 1960's.  for  This  survey o f the lower F r a s e r  published  i n 1966.  a t a s c a l e o f 1:25,000  f o r geomorphic u n i t s concept  A d e s c r i p t i o n o f those s o i l  f i t t h e geomorphic u n i t s d e s c r i b e d  series  used  units  i s as f o l l o w s i n  Table XI. The  chemical  each o f t h e s o i l  and p h y s i c a l d a t a  which  characterizes  s e r i e s mentioned above a r e p r e s e n t e d i n  Appendix I I I . 2.  Geomorphic U n i t s A  (Geologic  s t u d y was u n d e r t a k e n  characterize  the absorptive  i n 1973 by B o o j e d h e u r t o c a p a c i t i e s o f the geologic  materials  o f t h e Salmon R i v e r  the  major g e o l o g i c  three  alluvium,  glacial  s a m p l e s were t a k e n undisturbed chemical  sites  Materials)  watershed.  materials  In this  were s a m p l e d ,  outwash, and m a r i n e m a t e r i a l s .  study including These  from b o t h c u l t i v a t e d and r e l a t i v e l y f o r comparison.  The r e s u l t s o f t h e  c h a r a c t e r i z a t i o n o f these s i t e s  i n t e r m s o f pH  bb in  H^O and CaCl^i  nitrogen;  o r g a n i c carbon;  carbon:nitrogen  a b l e Ca, Mg, Na, K; cation a)  pH  ratio;  organic matter; a v a i l a b l e PO^-P;  exchange-  O x a l a t e - e x t r a c t a b l e F e , . A l , and t o t a l  exchange c a p a c i t y a r e p r e s e n t e d  i n Table XII.  (H 0) 2  On a l l u v i a l site  t h e pH t e n d s  over  t h e A.  decrease in  both  of  about  materials i n the r e l a t i v e l y t o i n c r e a s e i n t h e B and C  In the c u l t i v a t e d  site  i n the C horizon over  undisturbed horizons  t h e pH t e n d e d  to  t h e A and B h o r i z o n s .  However,  l o c a t i o n s t h e pH v a l u e s were i n t h e same g e n e r a l  range  5.5.  In both difference  o u t w a s h a n d m a r i n e m a t e r i a l s t h e r e was  i n the trends observed.  undisturbed  sites  cultivated  sites  also exhibited similar  Overall  consistently  higher  little  The c u l t i v a t e d a n d trends  pH i n c r e a s i n g i n t h e B a n d C h o r i z o n s o v e r  had  total  of the  the A with the  i n both  cases.  t h e Ah h o r i z o n o f t h e f o r e s t e d m a r i n e m a t e r i a l  the lowest  pH a t 3.6, a n d t h e C h o r i z o n o f t h e c u l t i v a t e d  m a r i n e m a t e r i a l h a d t h e h i g h e s t pH a t 5.9. b)  pH  (CaCl ) 2  On a l l u v i a l undisturbed A.  site  m a t e r i a l s t h e pH v a l u e s o f t h e r e l a t i v e l y i n c r e a s e d i n t h e B and C h o r i z o n s o v e r t h e  In the c u l t i v a t e d  constant  throughout  soil  t h e pH v a l u e s  remained  nearly  the p r o f i l e .  On o u t w a s h m a t e r i a l s t h e pH v a l u e s o f b o t h t h e undisturbed throughout higher  and c u l t i v a t e d the s o i l  sites  profile  f o r the c u l t i v a t e d  were r e l a t i v e l y  although  site.  constant  t h e v a l u e s were g e n e r a l l y  67 Table XI:  Geomorphic Units Defined Dy S o i l S e r i e s  Geomorphic Unit Symbol  Description  Soils Symbol  Name  Classification  Alluvium sA  1A  cA  clayey Alluvium  G l a c i a l outwash  M  Marine  GM  Glacio-Marine  . 1GM  loamy glaciomarine  -  CGM  B/M,GM  i  sandy Alluvium loamy Alluvium  G F  Grevell Fairfield  HD HJ HT PE PR AN  Hazelwood Hjorth Hallert Page Prest Annis  CV KZ RS WL  Carvolth Katzie Ross Westlang  AO  Abbotsford  CL  Columbia  LH LY  Lehman Lynden  MH  Marble  BR  Berry  CD  Cloverdale  MR.  Milner  N  Nicholson  W  Whatcom  clayey glaciomarine SC  Scat  Beach over Marine or Glaciomarine  Heron  HN LV MY SS  G/GM LG/GM  0  Hill  Livingstone Murrayville Sunshine  Orthic Regosol Gleyed Gray Brown Luvisol Orthic Humic Gleysol O r t h i c Humic Gleysol Rego G l e y s o l Orthic Gleysol Rego Gleysol . Rego Gleysol (Humic phase) Rego Humic Gleysol Orthic Humic Gleysol Rego Gleysol Rego Humic Gleysol O r t h i c Humo F e r r i c Podzol Orthic Humo F e r r i c Podzol O r t h i c Humic Gleysol Orthic Humo F e r r i c Podzol Orthic Humo F e r r i c Podzol Gleyed Podzolic gray Luvisol Humic L u v i s o l i c Gleysol L u v i s o l i c Humo F e r r i c Podzol  Orthic Humo F e r r i c Podzol L u v i s o l i c Humo F e r r i c Podzol O r t h i c Humic Gleysol Rego Humic Gleysol Gleyed L u v i s o l i c Humo F e r r i c Podzol Gleyed L u v i s o l i c Humo F e r r i c Podzol O r t h i c Humo F e r r i c Podzol  G l a c i a l Outwash over glaciomarine  no chemical o r p h y s i c a l data a v a i l a b l e  Lag Gravels over glaciomarine  no chemical o r p h y s i c a l data a v a i l a b l e  Organic  BD GN JN  Banford Gibson Judson  T e r r i c Humisol T e r r i c Mesisol T e r r i c Humisol  Table  Depth  PH (CaClj)  Organic C  5.1 5.6 5.6  4.3 4.6 4.7  12.37 1.22 1.67  5.5 5.5 5.4  4.5 4.4 4.5  5.1 5.2 5.5  4.3 4.1 4.1  5.4 5.6 5.8  4.6 4.6 4.6  3.6 4.4 4.9  3.1 3.9 4.3  5.1 5.6 S.9  4.0 4.5 4.5  pH (H 0) 2  Alluvium G o l f Course Ap 0-25 25-40 Bg 40+ eg Cultivated 0-20 Ap 20-40 Bg 40+ Cg Outwash Forested 0-10 Ap 10-40 B 40+ C Cultivated 0-12.5 Ap 12.5-90 B C 90+ Marine Forested 4-0 Ah 0-71 Bf 71+ C Cultivated 0-10 Ap 10-70 B 70+ C  XII:  Some S e l e c t e d Chemical P r o p e r t i e s o f Three Geomorphic U n i t s i n Salmon R i v e r Watershed under C u l t i v a t e d and R e l a t i v e l y Undisturbed Conditions Organic Matter  T o t a l P0 ~P 4  C/N  Exchangeable Ammonium O x a l a t e Ca Mg Na K Fe Al • meg/lOOg%  PP  m  0.02 1.07 0.01 0.49 ND 0.47  0.60 0.12 0.12  52.42 16.70 15.83  0.79 1.38 .17 ND .68 0 07 0.86 1.62 0.21 0.18 0.79  0.80 0.98 0.40  42.75 39.28 32.42  7.1 18.3 17.0  2 ND 0.10 0.93 2.22 75 0.08 0.02 0.05 0.97 0.75 0.59 0.20 0.01 0.04 0.33  1.70 2.00 0.98  30.35 17.94 12.25  23.9 30.2 39.8  9.4 14.2 14.7  3.00 0.44 0.27 0.07 ND  31 0.95 25 0.81 0.26  1.43 1.88 0.94  25.27 21.20 11.65  0.49 0.24 0.06  19.6 14.9 13.0  28.5 17.3 16.8  5.48 0.03 0.15  1.20 08 1.20 0.14  1.37 . 1.58 0.13  59.80 30.55 15.96  0.84 0.21 0.04  12.9 9.7 25.5  5.8 15.0 £.5  3.59 0.36 0.08 0.06 0.59 2.49 0.62 0.08 0.03 1.04 2.36 1.79 0.24 0.02 0.20  0.48 1.84 1.01  28.60 27.03 10.73  21.3 2.1 2.3  2.15 0.11 0.12  13.9 9.6 9.6  5.7 11.0 13.9  7.43 2.44 1.24 '•  12.8 4.2 2.1  1.44 0.22 0.10  35.6 33.8 14.0  5.1 12.25 11.0 6.52 12.4 10.06  6.52 1.83 0.51  11.2 3.1 0.)  0.92 0.10 0.03  47.5 20.0 13.0  7.1 2.3 0.3  0.44 0.08 0.03  13.99 4.15 1.01  24.1 7.1 1.7  4.85 3.16 0.34  8.4 5.4 0.6  4.14 '.: 1.14 0.44  ND - n o t d e t e c t a b l e ;  C a t i o n Exchange Capacity mea/lOOg  2.85 0.47 ND 1.42 0.54 ND 1.30 0.52 ND  ,10 0.03 08 0.02  ( a f t e r Boojhedeur, 1975)  0  S  0 4  I n t h e m a r i n e m a t e r i a l s t h e pH v a l u e s tendency both  showed a  t o i n c r e a s e from the A t o the C h o r i z o n s a t  the undisturbed  of  the c u l t i v a t e d  of  the undisturbed Overall  and t h e c u l t i v a t e d  soil  sites.  were c o n s i s t e n t l y  The  higher  values  than  those  soils.  t h e pH v a l u e s  i n t h e Ah h o r i z o n o f t h e f o r e s t e d  m a r i n e m a t e r i a l s were l o w e s t  a t 3.1.  undisturbed  m a t e r i a l s had t h e h i g h e s t  value  site  on a l l u v i a l  the u n d i s t u r b e d over  t h e A.  also  decreased  m a t e r i a l s the o r g a n i c carbon site  decreased  The o r g a n i c  carbon  levels  site.  i n t h e B and C h o r i z o n s o f b o t h  approximately Similar  times  and u n d i s t u r b e d  sites  indicated  on t h e outwash  On m a r i n e m a t e r i a l s t h e d i f f e r e n c e s cultivated carbon  the s i t e s  of the undisturbed  that of the c u l t i v a t e d  Overall  are similar  organic  carbon  s i t e are  A.  and marine m a t e r i a l s . between u n d i s t u r b e d  and  the organic  A horizon being  approximately  A horizon,  the C h o r i z o n o f the c u l t i v a t e d  the lowest  of organic  i n the c u l t i v a t e d  A h o r i z o n were e v e n g r e a t e r w i t h  level  2.9 t i m e s  The l e v e l s  that of the c u l t i v a t e d  t r e n d s were a l s o  site  t h e A, b u t n o t  i n the A horizon of the undisturbed 1.7  horizons  f o r the c u l t i v a t e d  i n t h e B and C h o r i z o n s o v e r  the l e v e l s  content of  s h a r p l y i n the B and C  s h a r p l y as i n the u n d i s t u r b e d  carbon  had  pH  Carbon  In a l l u v i a l  but  the r e l a t i v e l y  i n t h e C h o r i z o n a t 4.7.  c) O r g a n i c  as  Also  level  a t 0.34%.  marine m a t e r i a l The Ah  h o r i z o n o f the f o r e s t e d marine m a t e r i a l had the h i g h e s t  o r g a n i c carbon l e v e l a t 13.99%. d) Organic The  Matter  C h o r i z o n o f the c u l t i v a t e d  the lowest o r g a n i c matter content  a t 0.6%.  o f the f o r e s t e d marine m a t e r i a l had content  marine m a t e r i a l The Ah  horizon  the h i g h e s t o r g a n i c matter  a t 24.1%.  e) T o t a l  Nitrogen  For a l l o f the m a t e r i a l s a t both c u l t i v a t e d undisturbed  s i t e s the t o t a l n i t r o g e n l e v e l s  w i t h depth o f the s o i l p r o f i l e . levels  had  and  tended to decrease  The A h o r i z o n t o t a l  nitrogen  i n a l l s i t e s tended t o be h i g h e r than those of the  B  and C h o r i z o n s . O v e r a l l the C h o r i z o n of both the f o r e s t e d and g l a c i a l outwash m a t e r i a l s had at had  0.03%.  The Ap  the lowest  cultivated  t o t a l nigrogen  h o r i z o n o f the u n d i s t u r b e d  levels  a l l u v i a l material  the h i g h e s t t o t a l n i t r o g e n l e v e l a t 2.15%.  f) Carbon:  Nitrogen  Ratio  For a l l u v i a l and outwash m a t e r i a l s the carbon: r a t i o tended to i n c r e a s e with depth. the v a l u e s same range.  f o r both c u l t i v a t e d  and  In a l l u v i a l m a t e r i a l s  undisturbed  were i n the  In outwash m a t e r i a l s the r a t i o i n the A h o r i z o n  o f the c u l t i v a t e d  s i t e was  s i t e , but the r e v e r s e was  greater  than t h a t i n the  w i t h depth, but  undisturbed  t r u e f o r the B and C h o r i z o n s .  For f o r e s t e d marine m a t e r i a l s the C:N i n the c u l t i v a t e d  i n the B h o r i z o n over the A and horizon.  nitrogen  ratio  s i t e the C:N  decreased  increased  ratio  increased  a g a i n i n the C  A l l o f the h o r i z o n s o f the f o r e s t e d marine s o i l  had  71 h i g h e r C:N r a t i o s Overall material the g)  than  those o f the c u l t i v a t e d  the C h o r i z o n o f the c u l t i v a t e d  had t h e lowest  C:N r a t i o  o f 5.1.  marine  alluvial  The Ah h o r i z o n o f  f o r e s t e d m a r i n e m a t e r i a l was h i g h e s t a t 28.5. Available The  Phosphorus:  t r e n d s o f a v a i l a b l e phosphorus were h i g h l y v a r i a b l e  among t h e s i x s i t e s In a l l u v i a l relatively  sampled.  m a t e r i a l , the phosphorus l e v e l s  undisturbed  soil  decreased  the A but remained constant  i n t h e C.  soils  decreased  the  the phosphorus l e v e l s  i n the  i n the B horizon  consistently  down  through  profile.  tended  to decrease  materials with  with depth.  t h e phosphorus l e v e l s  depth.  But i n c u l t i v a t e d tended  i n phosphorus than  levels  i n the c u l t i v a t e d  with  cultivated  site  increasing  than  exceeding  t o have  i n the c u l t i v a t e d  cultivated  site  the f o r e s t e d  o f the s o i l tended  was much h i g h e r , site.  profile.  In the  to decrease i n i n the C  The A and B h o r i z o n s  t o have h i g h e r v a l u e s s i t e while  site.  levels  t o t h e A and i n c r e a s e a g a i n  tended  tended  i n the undisturbed  that o f the A horizon.  the forested s i t e  horizons  depth  the phosphorus l e v e l s  t h e B h o r i z o n compared horizon  slightly  the A h o r i z o n o f the c u l t -  In f o r e s t e d marine m a t e r i a l s the phosphorus decreased  outwash  to increase  i v a t e d o u t w a s h , b u t t h e B and C h o r i z o n s t e n d e d higher  levels  The A h o r i z o n o f t h e f o r e s t e d o u t w a s h  t o be h i g h e r  of  after  However i n t h e c u l t i v a t e d  In f o r e s t e d outwash m a t e r i a l s t h e phosphorus  of  soils.  than  those  the C h o r i z o n o f the  approximately  2 times  that  Overall alluvial ppm.  t h e B and  m a t e r i a l had  The  Ap  Exchangeable In  and  o f 47.5 Calcium,  relatively  potassium  tended  decreased  ivated in  potassium  increased in  Magnesium,Sodium,  Potassium  materials calcium sodium  i n the C h o r i z o n .  increase slightly  with depth;  and  to  cultdecrease  i n the C h o r i z o n ;  potassium  i n c r e a s e d i n the  a g a i n i n the C h o r i z o n .  w i t h depth,  w h i l e magnesium  w h i l e magnesium d e c r e a s e d  again i n the C h o r i z o n .  the c u l t i v a t e d  was  In the  outwash m a t e r i a l s c a l c i u m , sodium  decreased  with depth,  the h i g h e s t  c a l c i u m and magnesium t e n d e d  B h o r i z o n then decreased forested  9.6  magnesium i n c r e a s e d i n t h e B h o r i z o n  t h e B h o r i z o n and  In  o u t w a s h had  to decrease w i t h depth,  soils  sodium d e c r e a s e d  forested  at  ppm.  again s l i g h t l y  alluvial  undisturbed  lowest phosphorus l e v e l s  undisturbed a l l u v i a l  n o t d e t e c t a b l e , and but  the  h o r i z o n o f the  phosphorus l e v e l h)  C h o r i z o n s of the  outwash w i t h  and  decreased  i n the B h o r i z o n  Similar  and  trends occurred  the e x c e p t i o n t h a t  sodium  was  not d e t e c t a b l e . In  the  potassium In  f o r e s t e d m a r i n e m a t e r i a l s c a l c i u m , magnesium,  and  sodium a l l tended  the c u l t i v a t e d  area  t h e c a l c i u m and  tended  to decrease  tended  to i n c r e a s e s l i g h t l y  Overall showed t h e  to decrease  w i t h depth,  depth.  potassium  levels  b u t magnesium and  sodium  with  the B h o r i z o n of the  lowest  with  calcium levels  depth. f o r e s t e d marine m a t e r i a l s a t 0.03  meg/lOOg.  The of The  highest  calcium  the c u l t i v a t e d C horizons  l e v e l s were f o u n d alluvial  of the c u l t i v a t e d  f o r e s t e d marine s i t e at  0.07 meg/lOOg.  exhibited  horizon the  outwash s i t e  alluvial  not detected  of the undisturbed of the c u l t i v a t e d  magnesium  C horizon  values were  at  were f o u n d  alluvium,  soils,  i n t h e Ap  t h e Ap h o r i z o n o f  The h i g h e s t  i n the C horizon P o t a s s i u m was  C horozon o f the undisturbed  highest  detectable  potassium  h o r i z o n o f the c u l t i v a t e d Ammonium O x a l a t e  Extractable  In t h e u n d i s t u r b e d alluvial  materials  iron  area  showed an i n c r e a s e  in  material.  were f o u n d  The  i n the B  material,  of the golf  course  i n the A h o r i z o n  on with  and  depth.  relatively  Under c u l t i v a t i o n t h e  i n b o t h F e and A l .  In the f o r e s t e d outwash m a t e r i a l s were f o u n d  to increase  cultivated  o u t w a s h showed a d e c r e a s e  an i n c r e a s e  undetected  I r o n a n d Aluminum  i n t h e B and C h o r i z o n s .  B horizon  detectable  a n d aluminum d e c r e a s e d  B o t h F e a n d A l were h i g h e s t constant  levels  o f thee  o f the; c u l t -  alluvial  alluvial  3.42  i n t h e A, B, o r C  alluvial  outwash m a t e r i a l s .  i v a t e d marine m a t e r i a l s .  and  and t h e  f o r e s t e d o u t w a s h , o r t h e A, B, o r C h o r i z o n s  sodium l e v e l s  i)  meg/lOOg.  The h i g h e s t magnesium v a l u e s  Sodium was  cultivated  the  a t 12.25  showed t h e l o w e s t  i n the c u l t i v a t e d  meg/lOOg. horizons  materials  i n t h e Ap. h o r i z o n  slightly  both  iron  i n the B horizon.  i n A l concentrations  i n Fe  a n d aluminum The  concentrations  i n the B  horizon.  In  the f o r e s t e d marine m a t e r i a l s  to remain constant with  depth, while  the A h o r i z o n cultivated and in  again  The l o w e s t the  materials  again iron  then decreased iron  found  on a l l u v i a l  l e v e l s were  total  undisturbed  The l o w e s t  found  horizon  aluminum  i n the C  increased  horizon.  i n the C h o r i z o n o f  0.14%.  The h i g h e s t  of the c u l t i v a t e d  aluminum  materials.  Exchange  alluvial  l e v e l s were  The h i g h e s t  detected  detected  aluminum  m a t e r i a l decreased  to the B horizon  horizon.  The c u l t i v a t e d  sharply  and a l s o a g a i n  alluvial  c a t i o n exchange c a p a c i t y w i t h In both the c u l t i v a t e d the t o t a l  materials,  Capacity  c a t i o n exchange c a p a c i t y o f the  alluvial  iron  o f t h e u n c u l t i v a t e d p a r t o f the g o l f  A horizon  materials  slightly  with  i n the B  while  over In the  i n the B h o r i z o n o f the f o r e s t e d outwash  Total Cation The  increased  l e v e l s were  decrease  i n the C h o r i z o n .  i n the B horizon  a t 1.62%.  and  tended  i n the B h o r i z o n  i n the C horizon,  t h e B and C h o r i z o n s  course  j)  increased  f o r e s t e d marine m a t e r i a l s  l e v e l s were  in  aluminum  marine m a t e r i a l s  the B h o r i z o n  levels  i n t h e A and B h o r i z o n s  and d e c r e a s e d  decreased  iron  relatively from the  slightly  materials  i n the C  decreased  depth i n the s o i l  i n total  profile.  and f o r e s t e d o u t w a s h and m a r i n e  c a t i o n exchange c a p a c i t y d e c r e a s e d  with  depth. Overall  the lowest  total  c a t i o n e x c h a n g e was  the C h o r i z o n o f the c u l t i v a t e d meg/lOOg.  The h i g h e s t  t h e Ah h o r i z o n meg/lOOg.  total  marine m a t e r i a l  c a t i o n e x c h a n g e was  o f the f o r e s t e d marine m a t e r i a l s  found i n  at  10.73  found i n a t 59.80  EXISTING CHEMICAL STATUS OF SURFACE WATERS, ATMOSPHERIC PRECIPITATION, AND STREAM SEDIMENTS 1.  S u r f a c e Water  Chemistry i  A  «  Variables  Measured  Twenty-four chemical v a r i a b l e s  w h i c h were  t o h a v e s i g n i f i c a n c e t o w a t e r q u a l i t y and reasonably sites  on  simple  the  1974-1975.  to o b t a i n ,  Salmon R i v e r The  twenty  w h i c h were  were m o n i t o r e d a t  for a period  four  judged  variables  of  ten  measured  fourteen months  in  include:  pH dissolved specific  oxygen conductance  oxidation-reduction  potential  temperature total  acidity  total  alkalinity  bicarbonate total  alkalinity  hardness  dissolved  (calcium  carbonate  equivalent)  residue  total  Kjeldahl  total  organic  nitrogen carbon  nitrate-nitrogen chloride t o t a l a c i d d i g e s t i b l e phosphorus and p a r t i c u l a t e ) total  sulfate  calcium magnesium  (dissolved  sodium potassium iron aluminum manganese silicon Average  v a l u e s f o r each v a r i a b l e w i t h i n  were c a l c u l a t e d of  over the t o t a l  values f o r these v a r i a b l e s  also  noted.  in Table  station  time o f m o n i t o r i n g .  Ranges  over the time o f t h e study  The r e s u l t s o f t h e s e c a l c u l a t i o n s  were  are presented  XIII.  A l s o mean v a l u e s f o r e a c h v a r i a b l e for  each  two g e n e r a l h y d r a u l i c  f l o w , were c a l c u l a t e d .  across a l l stations  discharge levels;  These  h i g h a n d low  data are presented i n Table  XIV. A summary o f t h e r e s u l t s o f t h e c a l c u l a t i o n s v a r i a b l e monitored The variable  site  follows.  specific  monitored  f o r each  and date  specific  data f o r each  a r e p r e s e n t e d i n Appendix IV.  a) pH The from  average  7.0 t o 7.3.  t o h i g h was f r o m and  of  sampling  stations  5.8 t o 8.2.  Sampling  o f pH v a l u e s was 5.8 t o 8.2 w h i c h  Sampling  stations  1, 3, 6, 10  7.3.  The w i d e s t  was f o u n d a t s t a t i o n  s t a t i o n 11 h a d t h e n a r r o w e s t  7.2 t o 7.5.  ranged  The r a n g e o f v a l u e s m e a s u r e d f r o m low  15 a v e r a g e d pH 7.0, s t a t i o n 11 a v e r a g e d  range 1.  pH v a l u e s w i t h i n  pH  range  77  r i l l - i Average! and Range* o f Values f o r Water Data (June 1974 - A p r i l  Variable  range Dissolved l p~-=w -  average range  Specific Ccr.c*jcr*noe  average • range  C^ci3»*i on r*d ^ c t i c . i  3  4  .'5  . '6  . 7  8  7.0  7.2  7.0  7.1  7.2  7.0  7.1  7.1  '9 7.1  .10 7.0  7.3  7.1  7.2  7.0  5.8-8.2  6.0-7.8  5.9-7.5  6.0-7.6  6.0-7.6  6.0-7.8  6.0-7.8  5.8-7.8  5.9-7.8  5.9-7.3  7.2-7.5  6.8-7.3  6.0-7.6  5.7-7.5  9.0  8.5  7.0  12.4  average  °c  range average  i ctal  Aciairy tag/ ) c^rc. • ^ i v ) : c-a 1 / .CaCC,«"suii ) sicaricr.ite  range average range average range average  7z t a l ,eq)  rar.ge averaoe  i - . : i i s -J/1)  10.0 7.0-X3.0  range average ra.-.^e ave ran'' range  7.4-11.6  117 45-190  112 .  55-182 . 285  average range  c  2  s  pH  '— /I  1  ^ ~-\ average  1»75)  100-530  130-650  7.6-13.2 78  82  40-120  40-112  30-110  40-190  250  220  280  245  20-630 '  15-710  0-600  8  9  9  0-19  0-18  0-14  2-14  ' 3-18  0-19  3.8  3.2  3.5  3.6  3.7  2.0-6.0  2.0-6.0  2.0-6.0  2.0-6.0 32.8  9.3-50.0 36.4  7.9-49.2  9.3-50.0  7.9-49.2  32.8  33.07  22.33-49.99 22.38-53.50 97  2.0-8.0  1.6-5.0  72.6  26.5  7.8-293.6  7.1r36.4  56.0  26.5  7.8-293.6 57.41  7.1-36.4 29.85  24.08-181.27 16.98-37.97 200  74 0-170  30.2 7.4-73.2 30.2 7.4-73.2 33.12  1.63  0.79  _0.00-1.23  0.06-3.59  0.14-13.80  0.06-3.70  5.23  5.52  7.09  6.56  4.12  0.00-26.30  0.00-31.00  0.00-24.20  0.00-2S.70  29.2 5.7-90.4 26.92  32.66  2-190  2-182  0.79  0.85  0.01-3.02  5.7-90.4  7.3-44.0  86  74-368  31.2  29.8  20.41-41.31  0.89  2.4-11.0  7.3-44.0  78  4-200  4.5  29.8  21.65-42.39  0.32  0.00-23.00  8.4-14.6  9  4.0  0.0-230  250  80  -20-510  0-22  89  60-650  80  9.0-12.6  10.6  11.4  10  10  37.74  290  9.6-13.4  11.3  15-580  11  it.4  3.0-13.4  11.6  0.00-3.?S 5.00 .0.12-25.00  17.78-36.33 76 1-164 0.63 n  nfi-vfl7 5.39  11.5 10.0-14.3 125 40-700  10.3 8..0-14.3-  0.5-13.2 195  58  60-1400  30-90  .11 '  10.1-14.0 41 30-50  230  240  185  370  10-500  0-660  -250-620  120-560 6  8 0-13 6.3  9  10  5-18  0-20  3.6  5.9  2.0-36.0  2.0-5.0  45.9  26.3  59.6  6.6-36.8  7.0-296.0  26.3  50.2  6.6-36.8  7.0-296.0  7.1-347.2 44.9 7.1-347.2  3.0-34.0  32.49  22.70  • 35.10  23.81-36.53  15.20-27.45  22.19-115.11  102  124  58  1-11 5.4 3.0-11.0 13.4 6.0-25.6 13.4 6.0-25.6 18.22 15.68-22.89 50  61  0-549  0-540  9  4.2  4.2  2.4-6.0  3.5-5.0  4.0-7.0  9.2-53.6  7.3-24.0  38.1  11.6 7.3-24.0  ,  9.2-51.6  30.2 7.3.-33.3 30.2 7.3-22.8  23.84  34.54  22.81  15.27-37.24  19.77-44.76  16.52-42.72  74  .0 ..00-.1.5 6 .  2.60-8.90  33.1  11.6  n.??-i«.9fl  0.70-26.40  1-19  0-16  5.2  0.79  1.20-25.70  10  0-10  46-122  1.00-30.20 _ 0 . 4 0 - 5 7 . 4 0  35-115  5  0.40  5.56  67  120-720  32-72  0.01-0.85  8.1 3.0-12.3  230  1.34  6.02  20-103  15  235  40-512  0.22-7.56  75  40-110  1.10  -  9.0-13.8  9.0-13.0  0-138  5.96  11.1  11.2  2-298 ' 2.04  6.23  . 14  12  0.16-2.41  72 0-153  3-272  0.72  0.6?  0.00-3.25  12.45  4 .94  1.00-40.10  0.10-26.30  0.36-1.^3 i.i'j 0.70-27.40  7J?  TABLE X I I I : A v e r a g e s a n d R a n g e s o r V a l u e s f o r Water D a t a "(June 1974 - A p r i l 1975) Sit Variable  1  SO. - t  i  2.0  ' rar.ge ave r a g e  CI "  range / cid 3ii,estiblt p  ave r a g e range  4f.*-)  range ave r a c e  C  a  0-3.0  1.0-4.1  10.2  9.1  0.3-7.7 58.7  0.0-25.8 0.06 0.00-0.12  ave rage  ave rage *  0.08 0.00-0.28 5.1 2.1-10.9  5*63  5.12  2.83-7.54  2.91-6.80  5.3-113.6 0.16 0.00-0.72 13.3 3.2-26.2 7.92  3.5  5 3.6  0.9-4.9 1.4  1.3-4.7 3.5  • 0.0-5.0  3.74  3.64  3.08-31.20 6.54  PP»  range ave r a g e rar.ge average  '•'•«»  range average  Al ppa  rar.ge ayeraae rar.ge «vei**vje range  2.18-5.41 10.31  2.10-4.73  2.12-18.50  9.94  35.72  0.0-5.7  0.0-4.3  0.0-14.2 •  0.07  0.29  0.29  0.00-1.44  0.00-0.24  3.8 1.5-7.9 4.56 3.09-6.08 3.08 1.69-4.30 4.60  1.70-54L50  1.34-2.07  0.10  0.10  0.30  1.53  0.08 0.00-0.45 0.01  0.00-0.50 0.02  0.00-0.30 0.22  0.00-0.90 0.04  0.00-0.20  0.00-0.07  0.00-3.14  0.00-0.20  0.00-0.04  1-8  2-8  2-13 •  0.4-8.3  0.06  1.33-2.72  0.00-4.10  1.3  0.14  0.75-2.00  0.00-0.40  1.3-5.6  9 •  0.0-8.5  2.90-7.62  0.00-0.64  !  8 4.6  2.4  6.81-83.10 7.88  0.76  3.2  1.2  5.31-15.50 1:67  0.21  7  2.7  2.93-19.40 1.48  0. 35  6 3.3 1.1-5.0  0.00-0.29  2.8 1.2-7.S  3.7 '  4.72  0.004  2-8  0.4-8.5 4.87  0.00-1.88 3.5 1.4-6.9 4.49  3.06-6.10  2.84-7.20  2.72-5.93  3.44  3.28  2.63  pp=> range  8  2.3-11.9  1.2-22.8  4  ppa range  «9  3 1.7  6.1 S 0  2 2.9  2.18-4.40  1.93-4.27  1.64-3.80  4.88  5.58  4.77  4.24-8.00  3.61-9.20  2.94-7.50  1.03  1.43  2.90  0.75-1.38  1.24-1.95  1.48-8.90  0.10  0.14  0.12  0.00-0.28  0.00-0.45  0.03  0.03  0.00-0.20  0.00-0.20  0.006  0.005  0.00-0.04 3-8  0.'00-0.04  j  3-12  0.00-0.35 0.03 0.00-0.20 0.03 0.00-0.10 2-S  0.00-2.96 ^  4.4  1.4-15.2 5.20 3.85-6.80 2.98 2.12-7.75 5.56 3.56-18.25 5.40 2.14-42.00 0.11 0.00-0.30 0.04 0.00-0.40 0.11 0.00-0^27 .4-12  0.6-3.4  1  10  5.7  0.00-0.71 4.2  0.15  1.8-9.8 3.73 2.38-4.93 2.26 1.40-2.66 3.90 2.56-6.44 1. 88 1.30-2.85 0.47 0.00-1.20 0.04 0.00-0.30 0.02 0.00-0.07 2-S •  4.8  0.00-0.08 2.1  1.3-16.2 7.80  1.9-2.4 3.25  4.14-10.33 3.98  2.34-4.48 1.78  1.85-11.45 7.01  1.40-2.29 3.68  3.88-28.00 9.69  2.76-5.35 1.50  2.35-93.00 0.61  1.30-1.89 0.10  0.00-1.78 0.03  O.p'0-0.30 0.10  0.00-0.10 0.19  0.00-0.20 0.01  0.00-1.42 2-S  0.0-2.1 O.OS  0.03-2.56 '  0.6-3.3 0.7  0.0-44.0  0.13  12 1.8  1.5  0.3-5.6  1.2 0.0-14.2  11  2.2  •  0.00-0.04  •  1  "  15  l.S  1.3  0.2-5.0  0.7-2.9  0.5-3.2  1.9  0.3  0.5  0.0-7.1  0.0-0.7  0.0-3.6  0.47  0.07  O.CS  •0.00-2.40 5.6 3.5-8.7 4.53 2.62-7.30 2.45 1.43-4.25 3.93 2.56-6.30 3.63 1.92-9.60 0.20 0.00-0.60 0.10 0.00-0.30 0.005 C. 00-0.03  0.00-0.28 5.1 1.7-10.4 4.88 2.63-6.65 3.57 2.02-4.52 4.21 2.99-6.62 1.38 0.76-1.52 0.24 0.00-0.50 O.OS 0.00-0.30 0.01 0.00-0.OS  0.S2-0.24 5.0 1.8-12.0 3.31 1.95-4.SS 2.34 1.29-3.33 3.51 2.40-7.25 1.54 1.04-2.31 0.55 O.CO-1.2: 0.C3 0.00-0.40 o.:2 0.00-0.11  i 1-2  0-2  2-8  0-6  Table XIV: Means and standard d e v i a t i o n s of water chemistry data across s t a t i o n s over the period of monitoring at high and low h y d r a u l i c discharge r a t e s . High Discharge Mean Standard Deviation  Mean  pH  6.8  0.21  7.2  0.10  Redox mV  309  58.7  244  44.7  Dissolved Oxygen ppm  12.2  0.68  9.6  2.03  Specific Conductance umho  50  • 10.81  118 •  79.96  Name  Temperature °C •  1.41  6  Total Acidity mg/1 C a ( C 0 )  Low Discharge Standard Deviation  10  1.71  4.71  0.99  4.30  1.25  17.4  3.04  38.9  19.99  17.4  3.04  37.3  16 77  21.04  3.94  35.09  11 05  Dissolved Residue mg/1  74.8  16.91  93.4  44 i«  Kjeldahl Nitrogen ppm  0.44  0.33  1.07  0.57  Organic Carbon ppm  4.47  1.67  6.82  2.59  Nitrate Nitrogen ppm .  1.7  0.60  2.7  1.23  3  2  Total Alkalinity mg/1 C a ( C 0 )  2  Total Bicarbonate mg/1 C a ( C 0 )  2  Total Hardness mg/1 C a ( C 0 )  2  3  3  3  /  so  (con* t) Table XIV: High Discharge Mean Standard Deviation Chloride Ppm  1.11  Phosphorus ppm  1.04  Sulfate  •  43.0  Low Discharge Mean Standard Deviation  i.o.2  9  0.68  1 00  9.3  5.0  0.53  5.52  >  8  8  0.49 26.'8  PPm Calcium ppm Magnesium  3.20 2  >  0  ?  0  >  3  5  3  >  5  9  1.64 1  3  4  Sodium ppm  4.06  1.73  8.88  10.90  Potassium ppm  1.80  0.70  3.55  3.69  Iron ppm  0.23  0.11  0.44  0.32  Aluminum ppm  0.21  0.16  0.49  0.30  Manganese ppm  0.23  0.18  0.30  0.21  Silicon ppm  2.8  1.11  4.8  1.88  Discharge cfs  __ . -  5 7  4  60.23  6.9  6.81  The  mean pH v a l u e s a c r o s s a l l s t a t i o n s  hydraulic  at high  f l o w l e v e l s was 6.8, w h i l e a t l o w f l o w s t h e  mean pH was 7.2. b) D i s s o l v e d The ranged  average  from  averaged The  Oxygen dissolved  8.1 t o 12.4 ppm.  Sampling  8.1 ppm a n d s t a t i o n number  range o f d i s s o l v e d  14.6 ppm. ranging  oxygen v a l u e s w i t h i n  Sampling  from  variability The  stations  s t a t i o n number  11 a v e r a g e d  oxygen v a l u e s extended  12.4 ppm.  from  s t a t i o n 10 showed t h e w i d e s t  0.5 t o 13.2 ppm.  Station  w i t h v a l u e s r a n g i n g from  mean d i s s o l v e d  15  0.5 t o  variability  11 h a d t h e l e a s t  10.1 t o 14.0 ppm.  oxygen v a l u e s a c r o s s a l l s t a t i o n s  a t h i g h s t r e a m f l o w l e v e l s were 12.2 ppm, w h i l e a t l o w f l o w s dissolved  o x y g e n l e v e l s w e r e on a v e r a g e  c) S p e c i f i c C o n d u c t a n c e The  average  stations  varied  Sampling  station  290 umho. ranged  (Electrical  Conductivity)  s p e c i f i c conductance  within  sampling  f r o m 41 t o 290 hmho o v e r t h e t i m e o f m o n i t o r i n g 11 a v e r a g e d  The v a r i a b i l i t y  from  l o w e r a t 9.6 ppm.  41 umho, w h i l e s t a t i o n 3 a v e r a g e d  o f s p e c i f i c conductance  20 unho t o 14 00 umho o v e r t h e p e r i o d  The w i d e s t r a n g e o f v a r i a b i l i t y where v a l u e s r a n g e d  from  values  o f sampling.  was f o u n d a t s t a t i o n 10  60 t o 14 00 umho.  The n a r r o w e s t  r a n g e o f v a r i a b l i t y was f o u n d a t s t a t i o n 11 where v a l u e s ranged  from  The high  30 t o 50 umho.  mean c o n d u c t i v i t y  values across a l l stations a t  s t r e a m f l o w s was 50.1 umho, w h i l e a t l o w f l o w i t was  118.5 umhos.  82. d) O x i d a t i o n - R e d u c t i o n The stations  average range  Potential  oxidation  form  185 mV  reduction potentials  within  t o 370 mV.  station  while station  Sampling  10 a v e r a g e d  185 mV,  11 a v e r a g e d  variability  i n the v a l u e s found ranged  370 mV.  f r o m -250 t o 720  Sampling  station  10 e x h i b i t e d  620 mV.  Station  1 showed t h e l e a s t v a r i a b i l i t y  100 t o 530 mV The  over the p e r i o d  e)  the w i d e s t range  mV.  o f -250 t o r a n g i n g from  of sampling.  mean o x i d a t i o n - r e d u c t i o n  a t h i g h s t r e a m f l o w was 309 mV  The  values across a l l stations  a n d a t low f l o w was 244  mV.  Temperature The  ranged while  average  temperatures w i t h i n  f r o m 5 ° C t o 11?C. station  values  1 averaged  Sampling 11°C.  eratures  station  The r a n g e  across a l l stations varied  station  sampling  from  1 showed t h e m o s t v a r i a b i l i t y from 0 t o 22°C.  variability  Stations  stations  12, a v e r a g e d 5 ° C , o f temperature  4 t o 22°C.  Sampling  w i t h a range  o f temp-  11 a n d 12 showed t h e l e a s t  w i t h v a l u e s r a n g i n g form 1 t o 11°C and 0 t o 10°C,  respectively. The 6°C, f)  mean v a l u e s a c r o s s a l l s t a t i o n s  a t h i g h f l o w was  and a t low f l o w was 1 0 ° C .  Total  Acidity  The  average  stations  ranged  Sampling  station  8 averaged  total form  acidity  3.2 t o 6.3 mg/1  3 averaged  8.2 mg/1  across a l l sampling  values within CaCO^  3.2 mg/1  equivalent.  CaCO^ e q u i v a l e n t ,  CaCO^ e q u i v a l e n t . stations varied  sampling  The r a n g e  from  station  of values  1.6 t o 36.0  mg/1  83 CaCO^ e q u i v a l e n t . sampling mg/1  station  15 w i t h  mean v a l u e  f l o w was 4.7 mg/1 was 4.3 mg/1 Total  ranged  number 12 a v e r a g e d  3.0 t o 5.0  total The  mean v a l u e s  i t was  ranging  CaCC>  mean  station  3  Sampling The  f r o m 5.7 t o 347.2  8 showed t h e g r e a t e s t  f r o m 7.1 t o 347.2 mg/1 variability  CaCO^  with  CaCO^ e q u i v a l e n t . a t high  flow f o r  CaCO^ e q u i v a l e n t , w h i l e a t equivalent.  Alkalinity  bicarbonate mean v a l u e  CaC0  stations  equivalent.  3  varied  a l l stations  was 17.4 mg/1  38.9 mg/1  a n d r a n g e s o f v a l u e s w e r e t h e same  alkalinity  as f o r t o t a l  f o r bicarbonate  alkalinity.  alkalinity  at high  flow  CaCO^ e q u i v a l e n t a n d a t low f l o w s was 38.9  CaCO^ e q u i v a l e n t .  T o t a l Hardness  (Calcium  Average v a l u e s stations  range  Sampling  station  while  11.6 mg/1  across  average values  was 17.4 mg/1 mg/1  at high  t h e low f l o w  equivalent.  12 showed t h e l e a s t  Total Bicarbonate The  3  f r o m 7.3 t o 2 4.0 mg/1  alkalinity  flow  CaC0  Sampling  values  Station  ranging  The total  stations  values within  across a l l stations  with  equivalent.  i)  alkalinity  CaCO^ e q u i v a l e n t .  values  a l l sampling  CaCO^ e q u i v a l e n t , w h i l e  average t o t a l  variability  for  from  CaCO^ e q u i v a l e n t .  range o f v a l u e s mg/1  across  f r o m 11.6 t o 72.6 mg/1  station  h)  a range o f v a l u e s  Alkalinity  The  low  v a r i a b i l i t y was e x h i b i t e d b y  CaCO-j e q u i v a l e n t . The  g)  The l e a s t  station  Carbonate)  of total  hardness w i t h i n  f r o m 18.22 t o 57.41 mg/1 11 a v e r a g e d  3 averaged  18.22 mg/1  57.41 mg/1  sampling  CaCO^ e q u i v a l e n t . CaC0  CaGO-  3  equivalent,  equivalent.  The  range o f t o t a l  hardness values  f r o m 15.20 t o 181.27 mg/1 variability ranged least  variability  j)  was  mean v a l u e  high  Total  Dissolved  sampling station  range o f v a l u e s 512 mg/1.  with  values  ility  The stations  3  CaCO^  was  3 where  values  equivalent. 9 where  The  values  equivalent. carbonate  21.04 mg/1  was  The g r e a t e s t  hardness  CaCC>  equivalent  3  35.09 mg/1  CaCC>  equivalent,  3  Solids of total  dissolved residue within  f r o m 50 t o 512 mg/1.  50 mg/1, found  Sampling ranging  CaC0  calcium  station  Sampling  10 a v e r a g e d  512  mg/1.  a c r o s s a l l s t a t i o n s v a r i e d from 0  station  10 showed t h e g r e a t e s t  f r o m 40 t o 512 mg/1.  was e x h i b i t e d by s t a t i o n  32 t o 72  93.4  of t o t a l  s t a t i o n s range 11 a v e r a g e d  station  at station  streamflow  Average v a l u e s  to  found  streamflow  a t low  The  i n sampling  f r o m 15.20 t o 27.45 mg/1  The  and  found  stations varied  equivalent.  3  f r o m 24.08 t o 181.27 mg/1  ranged  at  was  CaCC>  across  11 w i t h  The l e a s t  values  variability  variab-  ranging  from  mg/1. mean t o t a l at high  d i s s o l v e d residue value  f l o w was  7 4.8 mg/1,  across a l l  and a t low f l o w  was  mg/1.  k) T o t a l  Kjeldahl Nitrogen  Average v a l u e s  of total  s t a t i o n s v a r i e d f r o m 0.32 averaged values  0.32 ppm,  encountered  18.98 ppm.  station across  Kjeldahl nitrogen within  t o 2.04 ppm. 8 averaged  Sampling 2.04.  station  The r a n g e o f  a l l s t a t i o n s v a r i e d from  The g r e a t e s t v a r i a b i l i t y  1  of results  was  0.00 t o found  at  sampling  ppm.  station  The l e a s t  8 where v a l u e s r a n g e d  variability  where v a l u e s r a n g e d The stations  from  mean t o t a l  1)  Total  Organic  stations varied 5 averaged  ility  value across a l l  Carbon  from  o r g a n i c carbon w i t h i n  4.12 t o 12.45 ppm.  4.12 ppm, s t a t i o n  Sampling  12 a v e r a g e d  time p e r i o d  variability  form  Station  stations  station  over The  8 ranging variab-  organic carbon.  organic carbon  a t high flow  was 4.47 ppm, a n d a t low f l o w t h e mean was 6.82 m)  The  11 showed t h e l e a s t  2.60 t o 8.90 ppm t o t a l  The mean v a l u e f o r t o t a l  station  0.00 t o 57.40 ppm.  was f o u n d a t s a m p l i n g  0.40 t o 57.40 ppm. r a n g i n g from  varied  sampling  12.45 ppm.  o f values obtained across a l l sampling  sampling  from  11  0.01 t o 0.85 ppm.  Average v a l u e s o f t o t a l  greatest  station  f o r t h e h i g h f l o w was 0.44 ppm a n d t h e v a l u e f o r  f l o w was 1.07 ppm.  the  0.22 t o 18.98  was f o u n d a t s a m p l i n g  Kjeldahl nitrogen  low  range  from  ppm.  Nitrate-Nitrogen Average v a l u e s f o r n i t r a t e - n i t r o g e n w i t h i n  stations  ranged  f r o m 1.3 t o 4.6 ppm.  averaged  1.3 ppm,  station  8 averaged  values across a l l stations from  0.4 t o 8.3 ppm.  variability least  Sampling  values varied  from  was f o u n d  4.6 ppm.  station 9 The r a n g e o f  o v e r t h e pe'riod o f s a m p l i n g station  w i t h v a l u e s r a n g i n g form  variability  Sampling  sampling  0.7 t o 2.9 ppm.  8 showed t h e g r e a t e s t  0.4 t o 8.3 ppm.  at station  varied  The  14 where t h e n i t r a t e  The  mean v a l u e  f o r n i t r a t e - n i t r o g e n a t high  flow  was  1.7 ppm a n d a t low d i s c h a r g e was 2.7. n) C h l o r i d e The  average values  of chloride concentrations within  sampling  s t a t i o n s range  f r o m 0.3 t o 58.7 ppm a c r o s s t h e  stations.  The a v e r a g e v a l u e  0.3 ppm, t h e a v e r a g e all  o f the sampling  study The  for station  the c o n c e n t r a t i o n s ranged  station ppm.  station  14 was  3 was 58.7 ppm.  s t a t i o n s over  greatest variability  the  f o r sampling  the time  Across  period of the  f o r m 0.00 t o 113.6 ppm.  o f v a l u e s was f o u n d  at  sampling  3 where t h e c o n c e n t r a t i o n s v a r i e d f r o m 5.3 t o 113.6  Sampling  station  14 showed t h e l e a s t  concentrations ranging Mean v a l u e s  a t high  f r o m 0.0 t o 0.7  variability  with  ppm.  and low f l o w were 1.1 a n d 9.9  ppm  respectively. o)  Total Acid Digestible  Phosphorus  Average v a l u e s o f t o t a l  acid  digestible  concentrations w i t h i n s t a t i o n s over f r o m 0.05 t o 0.47 ppm p h o s p h o r u s . 0.05 ppm,  station  number  concentrations observed over The  the p e r i o d o f the study greatest v a r i a b i l i t y  sampling ppm.  station  Sampling  concentrations ranging  at  high  ively.  Sampling  station  0.47 ppm.  11  stations  v a r i e d f r o m 0.00 t o 2.96  i n c o n c e n t r a t i o n was o b s e r v e d ranged  from  for acid  0.00 t o 0.08  digestible  ppm. at  0.00 t o 2.96  11 showed t h e l e a s t v a r i a b i l i t y from  averaged  The r a n g e o f  a l l o f the sampling  8 where t h e v a l u e s  station  Mean v a l u e s  a l l s t a t i o n s ranged  12 a v e r a g e d across  phosphorus  with  ppm.  phosphorus  concentrations  a n d low f l o w were 1.04 a n d 1.00 ppm p h o s p h o r u s r e s p e c t -  p)  Total  Sulfate  Average c o n c e n t r a t i o n s o f s u l f a t e w i t h i n stations  ranged  Sampling  station  ppm.  f r o m 2.1 t o 13.3 ppm 11 a v e r a g e d  sulfate  2.1 ppm,  sampling across  station  The r a n g e o f c o n c e n t r a t i o n s a c r o s s  3 averaged  period of monitoring  v a r i e d f r o m 0.4  The  greatest v a r i a b i l i t y  o f c o n c e n t r a t i o n s was  ppm. with  station  The l e a s t values  3 with  variability  at  high  r)  Magnesium  of sulfate  site  observed  t o 2.4  v a r i e d f r o m 1.29  3 with  The l o w e s t  station  ppm  station  sulfate  11  respectively,  average  11 a t 1.78  f r o m 1.40  3.98  t o 18.50 ppm magnesium. observed  The  at  great-  sampling  t o 18.50 with  ppm. values  ppm.  o f magnesium c o n c e n t r a t i o n s a c r o s s a l l  stations at high  respectively.  10 a t  9 showed t h e l e a s t v a r i a b i l i t y t o 2.66  the highest  across a l l sampling  c o n c e n t r a t i o n s v a r y i n g f r o m 2.12  station  concentration  ppm,  at station  i n c o n c e n t r a t i o n s was  Mean v a l u e s sampling  t o 26.2  concentrations across stations  t o 3.98 ppm.  a t sampling  variability  ranging  0.4  ppm.  The r a n g e o f c o n c e n t r a t i o n s o b s e r v e d  Sampling  from  at  a v e r a g e c o n c e n t r a t i o n s o f magnesium w i t h i n s t a t i o n s  f r o m 1.78  stations est  ranging  sulfate.  observed  shown by s a m p l i n g  a v e r a g e c o n c e n t r a t i o n was o b s e r v e d ppm.  t o 26.2 ppm,  and low f l o w were 4.3 a n d 5.0 ppm  The  was  was  v a r y i n g f r o m 1.9  Mean v a l u e s  ranged  the values  13.3  a l l s t a t i o n s over  the  sampling  stations.  a n d low f l o w were 2.07  and  3.59  88 s)  Sodium Average c o n c e n t r a t i o n v a l u e s  stations  vary  Sampling  station  35.72 ppm. over  from  3.51 t o 35.72 ppm  15 a v e r a g e d  station  was o b s e r v e d  mean v a l u e  stations  at high  8.8 8 ppm  sodium,  was  f o r m 6.81  the c o n c e n t r a t i o n s ranged  t)  station  2.40  of monitoring. averaged  ppm.  t o 83.10 ppm  a t sampling  f r o m 2.76  with  sodium.  station  t o 5.35  The  11 where  ppm.  f o r sodium c o n c e n t r a t i o n s a c r o s s a l l  f l o w was  4.06 ppm,  a n d a t low f l o w  was  Potassium  stations  range  monitoring. sampling  highest  over  f r o m 1.03  The l o w e s t station  a v e r a g e was  potassium.  t o 9.69  5 with  over  the p e r i o d o f  at station  varying  was  of potassium ranged  ppm  across a l l stations  from  0.75  t o 9 3.00  10 e x h i b i t e d t h e g r e a t e s t v a r i a b i l i t y  observed  f r o m 0.75  Mean v a l u e s  observed  10 a t 9.69  c o n c e n t r a t i o n s v a r y i n g f r o m 2.35 t o 93.00 ppm. variability  sampling  an a v e r a g e o f 1.03 ppm, t h e  observed  Concentrations  station  ppm  within  a v e r a g e c o n c e n t r a t i o n was  the p e r i o d o f monitoring  Sampling  low  3  t o 8 3.10  Average c o n c e n t r a t i o n s o f potassium  at  the time  3 showed t h e g r e a t e s t v a r i a b i l i t y  variability  The  sampling  The r a n g e o f c o n c e n t r a t i o n s a c r o s s a l l s t a t i o n s  concentrations ranging least  over  3.51 ppm,  the period of monitoring  Sampling  o f sodium w i t h i n  t o 1.38  at station  with  least  concentrations  ppm.  o f potassium  f l o w were 1.80  5 with  The  ppm.  concentrations  a n d 3.55 ppm  respectively.  a t h i g h and  u)  Iron The  average c o n c e n t r a t i o n s o f i r o n w i t h i n  s t a t i o n s over  the period of monitoring  to  The l o w e s t  0.76  ppm  ppm.  was  0.76  observed  rations The  values was  a c r o s s a l l s t a t i o n s was  ranging  recorded  0.28  ppm  f r o m 0.00  for station  flow across  of iron  The r a n g e o f  f r o m 0.00  recorded  t o 4.10 5 with  t o 4.10 ppm  for station  ppm.  The l e a s t  values  concent-  ranging  iron.  3 with variability  from  0.00 t o  concentrations a t high  a n d low  ppm  respectively,  Aluminum c o n c e n t r a t i o n s o f aluminum w i t h i n s t a t i o n s o v e r  the p e r i o d o f m o n i t o r i n g Sampling  station  0.30 ppm. over  v a r i e d f r o m 0.01  4 averaged  0.01 ppm,  greatest variability station  3 with  least variability 0.00  t o 0.30  station  The r a n g e o f c o n c e n t r a t i o n s a c r o s s  the p e r i o d o f monitoring  sampling  of  was  3.  0.08  4, t h e h i g h e s t o f  a l l s t a t i o n s were 0.2 3 a n d 0.44  Average  The  0.08  iron.  Mean v a l u e s  v)  station  at station  greatest variability  from  average c o n c e n t r a t i o n o f  a t sampling  ppm was o b s e r v e d  ranged  sampling  t o 0.10  from  0.00  a r a n g e o f 0.00  t o 0.90  t o 0.90  at station  averaged  a l l stations  i n c o n c e n t r a t i o n s was  was o b s e r v e d  ppm  was  3  ppm.  ppm.  observed ppm.  10 w i t h  The  a range  aluminum.  Mean v a l u e s o f a l u m i n u m c o n c e n t r a t i o n s a c r o s s a l l stations  over  the p e r i o d o f monitoring  f l o w were 0.21 a n d 0.49 ppm w)  at high  a n d low  respectively,  Manganese Average  c o n c e n t r a t i o n s o f manganese w i t h i n  at  sampling  stations to  over  0.22 ppm.  the period  The l o w e s t a v e r a g e  ppm was o b s e r v e d of  monitoring varied  from  from  station  at station  from  was o b s e r v e d  0.00 t o 3.14 ppm.  station  6, t h e h i g h e s t 2.  The r a n g e  0.00 t o 3.14 ppm. a t sampling  The l e a s t  12 w i t h a r a n g e  0.005  c o n c e n t r a t i o n o f 0.005  o f manganese a c r o s s a l l s t a t i o n s o v e r  variability  at  a t sampling  0.22 ppm was o b s e r v e d  trations of  of monitoring varied  o f concen-  the period  The g r e a t e s t  station  2 w i t h the range  variability  o f 0.00 t o 0.03  average  was  recorded  ppm.  Mean v a l u e s o f manganese c o n c e n t r a t i o n s a c r o s s a l l stations  o v e r t h e p e r i o d o f m o n i t o r i n g a t h i g h a n d low  f l o w w e r e 0.2 3 a n d 0.30 ppm x)  respectively,  Silicon The  sampling  average stations  1 t o 6 ppm.  concentration values f o r s i l i c o n over the period  The l o w e s t a v e r a g e  observed  a t sampling  averaged  6 ppm.  period  station  concentration v a r i a b i l i t y  varying  from  12, s t a t i o n  from  was o b s e r v e d  1 t o 2 ppm  over the period  were 2.8 a n d 4.8 ppm  from  c o n c e n t r a t i o n o f 1 ppm was 3,5,6,8 and 14 a l l  0 t o 13 ppm.  was o b s e r v e d  from  at station  over the  The g r e a t e s t  2 t o 13 ppm.  11 w i t h  The  values  silicon.  Mean v a l u e s o f s i l i c o n stations  varies  Concentrations across a l l stations  o f m o n i t o r i n g ranged  least variability  o f sampling  within  concentrations across a l l  o f m o n i t o r i n g a t h i g h and low f l o w  respectively.  q)  Calcium The  average  stations  calcium  v a r i e d from  11 a v e r a g e d  3.25  3.25, s t a t i o n  concentrations within t o 7.y2 ppm. 3 averaged  concentration values  across  sampling  1.95  v a r i e d from  Sampling  7.y2 ppm.  t o 31.20 ppm  calcium.  3 showed t h e g r e a t e s t v a r i a b i l i t y  ranging  from  3.0 8 t o 31.2 0 ppm.  f r o m 2.34  t o 4.4 8  Mean v a l u e s at  high  observed  station Ranges o f  a l l s t a t i o n s f o r the p e r i o d ot  station  c o n c e n t r a t i o n s was  sampling  with  The l e a s t  at station  Sampling concentrations  variability i n  11 w i t h  values  varying  ppm. f o r calcium  a n d low f l o w were  concentrations  3.2u  a n d 5.52  across  a l l stations  respectively.  °\2 B.  Trace  Metals  C o n c e n t r a t i o n s o f seven determined period  by o r g a n i c s o l v e n t  July  studied  t r a c e metal elements (MIBK) e x t r a c t i o n  3 1 s t , 1974 t o M a r c h  31, 1975.  were  f o r the  The s e v e n  elements  include: chromium copper iron manganese nickel lead zinc  Cobalt  and cadmium  generally  by  b u t were  u n d e t e c t a b l e i n most s a m p l e s and a r e t h e r e f o r e n o t  discussed. into  l e v e l s were a l s o m o n i t o r e d ,  I r o n a n d mangenese were d e t e r m i n e d  an a t o m i c  absorption spectrometer.  direct  The r e s u l t s  t h e o r g a n i c s o l v e n t e x t r a c t a n t were c o n s i s t e n t l y  than the r e s u l t s  of direct  of sampling  f o r each  determined higher  aspiration.  Tables presenting a l l of the data c o l l e c t e d time  aspiration  sampling  station  a t each  are given i n  Appendix IV. The and ed  results  ranges i n Table  of calculations  o f values over  the p e r i o d  of monitoring i s present-  XV.  A summary o f t h e s e a v e r a g e of v a l u e s f o r each metal following.  o f average c o n c e n t r a t i o n s  studied  c o n c e n t r a t i o n s and t h e range i s presented i n the text  Table XV:  •  ^v^ITE I ELEMENT*^ average Chromium  range average  Copper  range average  • Iron  range average  Manganese  range average  Nickel range average Lead  range average  Zinc range  AVERAGES AND RANGES OF VALUES OF TRACE ELEMENT CONCENTRATIONS FOR SALMON RIVER WATERS (JULY 1974 - APRIL 1975) (ug/1)  1  2  3  4  5  6  7  8  1.48  1.01  1.11  0.64  0.81 <.501.30  0.71 <.501.40  0.63 <.501.00  1.81 C 5011.6  C.5-3.5 <. 5-2.0 C15-2.1 <.5-l.l 3.52  4.68  ^ 1 . 0 0 - <1.008.20 10.2  6.42 2.2011.8  3.67 5.23 3.07 4.13 1.00- <1.00- <1.00- O . O O 6.50 14.2 6.50 7.00  9  10  11  12  14  15  0.49 0.58 0.72 0.52 1.63 0.61 0 . 4 0 - <0.50- <0.50- <0.50- <0.50- <0.500.70 1.00 1.00 1.00 3.82 0.90  4.71 3.53 7.49 <1.00- <1.00- <cl.0015.2 8.60 30.0  4.48 2.308.60  6.36 4.708.80  5.12 4.13 1.80- <1.0012.0 8.20  790 5301420  550 360720  1670 340432.0  160 60370  280 100820  280 180570  250 140425  660 1204470  480 200900  880 1002900  240 170360  560 2601040  590 2301480  580 1801020  53 24102  39 1451  345 382250  9 024  25 0133  16 030  67 30124  176 64410  31 1163  334 15476  14 030  25 1144  26 065  52 13122  1.41 0.702.20  0.89 0.701.20  2.22 0.706.70  0.93 03.20  0.82 0.301.40  0.77 01.00  0.97 02.70  2.31 013.2  0.66 01.40  0.90 05.00  0.72 01.40  0.98 0.701.50  1.00 02.40  0.76 0.301.00  0.89 03.00  2.44 017.2  0.96 03.00  0.62 01.60  0.73 01.60  0.66 01.00  0.84 02.00  0.62 01.00  0.56 01.00  1.28 06.30  0.50 01.50  0.68 02.40  0.62 ' 01.00  0.60 01.00  3.80  3.80 1.0017.8  9.46 1.4042.0  1.82 07.30  4.44 1.0019.0  5.00 0.2019.0  3.30 1.0010.1  8.50 3.4017.0  1.64 05.20  12.81 092.0  1.18 0.202.00  4.34 3.006.90  1.24 03.50  3.10 1.005.90  I. 60II. 3  a)  Chromium A v e r a g e c o n c e n t r a t i o n v a l u e s f o r chromium w i t h i n  sampling from  s t a t i o n s over  0.49  t o 1.81 u g / 1 .  across a l l sampling varied  from  tration ug/1.  the period  was  0.40  The r a n g e  stations  over  t o 11.6 u g / 1 .  observed  The h i g h e s t a v e r a g e  was  Sampling  the range b)  was  the period  site  9 showed t h e l e a s t  0.40  t o 0.70  concen-  9 w i t h a v a l u e o f 0.49  i n r a n g i n g from  8 with a  station 0.50  8  t o 11.6  variability  where  ug/1.  Copper Average c o n c e n t r a t i o n s o f copper  stations 7.49  1.00  over  ug/1.  sampling  the period  The r a n g e  stations  the h i g h e s t average a v a l u e o f 7.49  site was  ug/1.  observed ranging  from  1.00  t o 30.0 u g / 1 .  1.00  t o 6.50  across  o f 3.07 station  The g r e a t e s t v a r i a b i l i t y station  3.07 t o  from  c o n c e n t r a t i o n was  6 w i t h an a v e r a g e  a t sampling, s t a t i o n s from  from  o f m o n i t o r i n g ranged  recorded a t sampling  recorded a t sampling  ranging  sampling  of concentrations observed  The l o w e s t a v e r a g e  a t sampling  within  of monitoring varied  f o r the p e r i o d  t o 30.0 u g / 1 .  observed  was  of monitoring  C o n c e n t r a t e ens a t s a m p l i n g  station  from  of concentrations  recorded at station  showed t h e g r e a t e s t v a r i a b i l i t y ug/1.  varied  The l o w e s t a v e r a g e  a t sampling  v a l u e o f 1,81 u g / 1 .  of sampling  ug/1, 10 w i t h  of concentrations  10 w i t h c o n c e n t r a t i o n s The l e a s t  variability  was  4 and 6 w i t h c o n c e n t r a t i o n s  ug/1.  °\5 c)  Iron Average c o n c e n t r a t i o n s o f i r o n w i t h i n  over the p e r i o d The  range  period  o f m o n i t o r i n g range  lowest average  at  The g r e a t e s t  least  3 w i t h an a v e r a g e  variability  station  variability  a range  60 t o 4470 u g / 1 .  The station  c o n c e n t r a t i o n o f 160 ug/1, t h e h i g h e s t  was o b s e r v e d a t s t a t i o n  sampling  over the  c o n c e n t r a t i o n was o b s e r v e d a t s a m p l i n g  4 w i t h an a v e r a g e  ug/1.  from  stations  160 t o 1670 u g / 1 .  of concentrations across a l l stations  of monitoring varied  average  from  sampling  o f c o n c e n t r a t i o n s was  8 w i t h a range  was o b s e r v e d  o f 1670 observed  o f 12 0 t o 447 0 ug/1.  a t sampling  station  The  7 with  o f 140 t o 425 u g / 1 .  d) Manganese A v e r a g e c o n c e n t r a t i o n s o f manganese w i t h i n stations ug/1. ling  over the p e r i o d  The r a n g e stations  of c o n c e n t r a t i o n observed  over the period  2250 u g / 1 .  Sampling  3 averaged  345 u g / 1 .  was o b s e r v e d  o f m o n i t o r i n g range  station  from  4 averaged  station  9 t o 345  a c r o s s a l l samp-  of monitoring varied  The g r e a t e s t  a t sampling  sampling  from  9 ug/1, w h i l e  variability  0 to  station  of concentrations  4 w i t h a range  from  0 to  24 u g / 1 . e)  Nickel Average c o n c e n t r a t i o n s o f n i c k e l w i t h i n  the  period  range  of sampling v a r i e d  from  of concentrations of nickel  period station  of monitoring varied 9 averaged  0.66  from  0.66  stations  over  t o 2.31 u g / 1 .  The  across a l l stations 0 t o 13.2 u g / 1 .  ug/1, w h i l e s t a t i o n  over the  Sampling  8 averaged. 2.31.  % The  greatest v a r i a b i l i t y  with values was  ranging  recorded  0.70 f)  was  form  a t sampling  0 t o 13.2 u g / 1 .  a t sampling  t o 1.20  observed  station  2 with  station  The l e a s t  from  ug/1.  Lead  over The  the p e r i o d of monitoring  varied  from  0.50  range o f c o n c e n t r a t i o n s a c r o s s a l l s t a t i o n s  period  of monitoring  station ug/1. est  11 a v e r a g e d  varied 0.50  Concentrations  variability  variability  from  0.0  ug/1, w h i l e  a t sampling  i n the range  from  i n c o n c e n t r a t i o n s was  6, 8, 9, 14 and 15 w i t h  station  Sampling  2 averaged  2.44  2 showed t h e g r e a t -  0 t o 17.2 u g / 1 . observed  a range o f v a l u e s  ug/1.  over the  t o 17.2 u g / 1 . station  stations  t o 2.44  The  a t sampling from  least station  0 t o 1.00  ug/1.  Zinc Average c o n c e n t r a t i o n s o f z i n c w i t h i n sampling  over The  the p e r i o d of monitoring  varied  from  1.18  range o f c o n c e n t r a t i o n s a c r o s s a l l s t a t i o n s  period  o f sampling  station  observed  0.20  a t sampling  f o r the  10  Sampling  averaged  o f c o n c e n t r a t i o n s was  10 where v a l u e s v a r i e d  variability  station  t o 12.81 u g / 1 .  t o 92.0 u g / 1 . station  stations  from  of concentrations  11 where v a l u e s v a r i e d  Atmosoheric  A.  Chemical  Precipitation  Chemical  from  Data  Variables  precipitation  collecting  d e v i c e s were  0  was  ug/1.  2.  Ten  0.00  ug/1, w h i l e  station  The l e a s t  a t sampling  t o 2.00  1.18  from  The g r e a t e s t v a r i a b i l i t y  92.0 u g / 1 .  observed  varied  11 a v e r a g e d  12.8 u g / 1 .  to  variability  values varying  Average c o n c e n t r a t i o n s o f l e a d w i t h i n sampling  g)  8  located at  various positions  throughout  t h e Salmon R i v e r w a t e r s h e d  correspond g e n e r a l l y w i t h the stream collections  o f t h e s e d e v i c e s was  v a r i a b l e s which  were d e t e r m i n e d  sampling  sampled  to  stations.  monthly  and  The  the  were:  pH total  acidity  total  alkalinity  total  bicarbonate  total  hardness  total  dissolved residue  total  Kjeldahl  total  organic carbon  alkalinity  (calcium  carbonate equivalent)  nitrogen  nitrate-nitrogen sulfate chloride calcium magnesium sodium potassium iron aluminum manganese These  samples  were c o l l e c t e d  from J u l y  1,  1974  t o March  31,  1975. The  complete  date of sampling presented  c h e m i c a l data f o r each f o r a l l of the sampling  i n Appendix  VI.  variable locations  on  each  are  76 Calculations sampling  station  are presented table a)  o f average  c o n c e n t r a t i o n s w i t h i n each  and t h e r a n g e o f v a l u e s o b s e r v e d  Table  i s presented  XVI.  A summary o f t h e r e s u l t s  over  time  i n this  i n the f o l l o w i n g t e x t .  pH A v e r a g e pH v a l u e s w i t h i n s a m p l i n g  t o 5.6.  Sampling  averaged  5.6.  sampling  s t a t i o n s over  4.3 t o 6.1. stations  station  2 and 3 w i t h v a l u e s r a n g i n g  station  b)  acidity acidity  CaCO^ e q u i v a l e n t .  Sampling  CaCO^ e q u i v a l e n t , w h i l e  s t a t i o n s over 11.0  mg/1  observed  station  station  from  CaCO^ e q u i v a l e n t . a t sampling  a t sampling  3.6 t o 4.0 mg/1  station  CaC0  3  f o r sampling  was n o t e d a t  4.8 t o 5.0.  10 a v e r a g e d  2.7  4.5 mg/1  acidity  varied  from  2 with  values varying The l e a s t  CaCO^  across a l l 1.2 t o was  from  variability  11 w i t h v a l u e s v a r y i n g  CaCO_ e q u i v a l e n t .  mg/1  mg/1  The g r e a t e s t v a r i a b i l i t y  equivalent. station  stations  2.7 t o 4.5  8 averaged  the p e r i o d o f monitoring  from  4.5 t o 6.0 a n d  from  The r a n g e o f v a l u e s o f t o t a l  2.0 t o 11.0 mg/1 was n o t e d  varied  4.9  1  varied  values w i t h i n sampling  the period of monitoring  from  across a l l  The l e a s t v a r i a b i l i t y  8 with values ranging  Average t o t a l  equivalent.  from  vary  station  the period of monitoring  The g r e a t e s t v a r i a t i o n was n o t e d  sampling  over  4.9 w h i l e  T h e r a n g e o f pH v a l u e s o b s e r v e d  4.3 t o 5.8 r e s p e c t i v e l y .  Total  9 averaged  stations  from  I  7<7  P r e c i p i t a t i o n Hater Chemistry Averages and Range TABLE  XVIi  July/74 - March/75  (inclusive)  "^•^Site Variable average PH  range  Total  average  1  2  5.6  5.4  4.9-6.1 3.0  4.5-6.0 4.4  3  4  5  6  8  5.1  5.0  5.3  5.0  4.9  4.8  5.1  4.4-5.3  5.0-5.5  4.5-5.2  4.8-5.0  4.3-5.2  4.8-5.4  4.0  3.3  3.7  2.7  3.9  4.5  3.0-5.0  1.6-6.0  1.2-6.0  2.0-5.0  3.0-5.0  3.0-7.6  3.7  3.9  3.7  6.9  3.9  4.2  1.4-6.4  2.1-7.2  1.4-6.4  1.4-7.2  3.7  3.9  3.9  4.2  1.4-6.4  1.4-7.2  4.3-5.8 3.4  9  10  11 4.9 4.6-5.1 3.9  Acidity  ng/l  Ca CO-, Total Alkalinity n g / l Ca COj  range average range  2.0-6.0 4.2 1.4-7.2  2.0-11.0 4.8 1.1-9.6  2.4-4.0 3.4 1.4-5.6  Total Bicarbonate Al!t i k i n i t y mg/l CaCO^  average range  1.4-7.2  1.1-9.6  Ca C 0 Hardness aig/L  average  5.48  9.26  range  1.17-28.65  0.81-43.98  0.86-9.45  25.3  7.3  3  Dissolved Solids  ng/r  Total K'iel-lahl N ppn. Total C ppm NOj-N PP» <  average  4.2  9.0  4.8  3.4 1.4-5.6 2.86  2.1-7.2 j  1.4-6.4 2.44 0.87-6.09  1.4-6.4 \  :  5.54  ! 1 ! 0.86-20.14  2.2-18.0  3.7  6.9  ,1.4-6.4  2.2-18.0  3.27 1.02-8.25  4.35  3.15  4.71  1.11-12.53  0.86-10.32  0.88-16.93  3.6-4.0 4.1 1.4-6.4 4.1 1.4-6.4 4.21 0.92-17.46  I  11.0  21.3  '  range  0.0-32.0  0-108.0  0.0-38.0  0.0-42.0  0.0-80.0  average  0.60  0.66  0.53  0.41  0.52  range  0.0-1.34  0.0-1.51  0.0-1.18  0.0-1.23  0.0-1.68  average  3.70  2.90  3.20  4.40  2.70  1  22.0  11.0  0.0-76.0 0.44 0.0-1.18 2.80  range  0.10-8.10  0.10-7.80  0.0-8.60  0.0-9.90  0.0-8.10  average  0.37  0.44  0.31  0.31  0.46  0.35  range  0.0-1.60  0.0-1.58  0.0-1.52  0.0.-1,48  0.0-1.62  . JB...0-1...63 .  0.0-8.10  ;  9.7  11.0  .0.0-32.0  0.0-42.0  0.0-50.0  0.49  0.33  0.55  0.0-0.95  0.0-0.69  0.0-1.40  1.70  3.20  2.60  0.0-4.60  0.0-8.40  0.0-8.90  0.42  0.34  0.22  .0.0-1.66  0.0-1.53  0.0-0.40  17.7 0.0-54.0 0.38 0.0-0.73 2.70 0.0-7.00 0.35 0.0-1.87 •••  '  '  /oo I  J  XVIt  P r e c i p i t a t i o n Water Chemistry Averages and Ranges July/74 - March/75  (inclusive)  Site Variable  1 l.in  4 ppm S 0  CI ppm Ca ppm  ppm  Na ppm  K Ppm  Fe ppm  Al ppm  Mn PPm  i. 1.10  3 0.60  range  0.30-2.60  average  0.27  0.20  0.00  0.0-2.13  0.0-0.76  0.0-0.0  1.47  1.54  0.84  range . average range  0.37-7.61  average  0.32  range  0.06-2.03  average  1.82  range  0.57-10.10  average  1.21  range  0.02-8.65  average  0.02  0.30-3.10  0.19-6.00 0.82 0.04-5.00 7.93 0.39-50.00 4.32 0.09-28.30 0.06  range  0.00-0.10  average  0.07  range  0.0-0.20  average  0.04  0.007  range  0.0-0.30  0.0-0.05  0.00-0..8 0.10 0.0-0.50  4 0.50  0.20-1.10  '  0.20-7.60 0.80  0.0-1.42  0.0-6.39  0.68  1.64  0.25-1.87  0.12  0.08  0.89 0.10-3.07 0.26 0.04-1.33 0.02 0.00-0.20  0.04-0.24 0.86 0.25-2.70 0.20  0.11 0.04-0.28 1.96 0.30-6.95 1.45 0.04-7.70:  0.04  0.02  0.0-0.20 0.03  0.0-0.20  0.0-0.10  0.0-0.04  0.21-6.49  0.03-0.83  0.04  0.007  1.50  0.10-1.00 0.18  0.20-2.85  0.04-0.43  5  0.002 0.0-0.02  . 0.0-0.10 0.10 0.0-0.50  6  8  10 •  0.50 0.20-0.90  1.30  0.80  T.6->  0.40-3.40  1.10-2.20  0.0  0.0  0.20-1.40 0.0  0.0-15.34  0.0-0.0  0.0-0.0  0.0-0.0  0.86  1.10  0.77  1.13  1.92  0.21-2.70 0.08 0.03-0.23 0.90 0.36-2.70 0.17 0.02-0.65 0.03 . 0.0-0.20  0.33-2.56 0.10 0.05-0.23 1.61 0.70-5.75 0.52 0.05-1.26  0.24-2.04 0.09  0.03  0.03  0.0-0.10  0.0-0.20  0.0-0.20  0.0-0.20  0.63  0.03-0.95  0.0-0.20  0.0-0.02  0.44-6.07  0.21  0.04  0.0-0.03  1.50  0.25-2.90  0.0  0.03  0.04-0.76  1.05  0.0-0.0  0.002  0.17  0.04-0.29  0.03  0.003  0.21-4.57  0.11-3.36 0.03 0.0-0.20 0.04 0.0-0.30  0.004 0.0-0.03  0.02 .  0.0-0.20  11 0.50 0.10-0.90 0.0 0.0-0.0 1.20 0.27-5.72 0.12 0.04-0.55 1.05 0.30-3.75 0.16 0.02-0.96 0.01 0.0-0.10 0.03 0.0-0.20 0.02 0.0-0.20  101 c) T o t a l  Alkalinity  and T o t a l  Average v a l u e s o f t o t a l alkalinity  within  oring varied station  sampling  from  observed  alkalinity  stations  3.4 t o 6.9 mg/1  3 averaged  8 averaged  3.4 mg/1  6.9 mg/1  varied  greatest v a r i a b i l i t y  and t o t a l  over  the period  stations  The r a n g e over  1.1 t o 18.0 mg/1  least  was o b s e r v e d  variability  v a l u e s r a n g i n g from d)  T o t a l Hardness The  average  within  sampling  varied  from  station  ility  values of t o t a l stations  2.44 t o 9.2 6 mg/1 2.44 mg/1  9.2 6 mg/1  o f v a l u e s was o b s e r v e d  least  e)  Total  8  3 with  the period  hardness  of monitoring  CaCO^ e q u i v a l e n t .  Sampling  CaCO^ e q u i v a l e n t s t a t i o n  2  The g r e a t e s t v a r i a b -  a t sampling  station  2 with  CaCO^ e q u i v a l e n t .  a t sampling  0.87 t o 6.09 mg/1  station  4  CaCO^ e q u i v a l e n t .  Dissolved Solids  Average sampling  station  calcium carbonate  was o b s e r v e d  w i t h v a l u e s r a n g i n g from  station  The  Equivalent)  0.81 t o 4 3.98 mg/1  variability  of values  CaCO^ e q u i v a l e n t .  CaCO^ e q u i v a l e n t .  v a l u e s v a r y i n g from The  over  station  CaCO^ e q u i v a l e n t .  a t sampling  1.4 t o 5.6 mg/1  Sampling  the period of  a t sampling  (Calcium Carbonate  4 averaged  averaged  was n o t e d  of monit-  CaCO^ e q u i v a l e n t .  w i t h v a l u e s r a n g i n g 'from 2.2 t o 18.0 mg/1 The  bicarbonate  CaCO^ e q u i v a l e n t .  CaCO^ e q u i v a l e n t .  from  Alkalinity  CaCO^ e q u i v a l e n t , w h i l e  across a l l sampling  monitoring  Bicarbonate  levels  stations  7.3 t o 25.3 mg/1.  of total  over  dissolved  the period  residue within  o f m o n i t o r i n g ranged  The l o w e s t a v e r a g e  was o b s e r v e d  from  a t sampling  102 station noted  3 a t 7.3 mg/1,  a t sampling  dissolved  while  station  residue levels  levels  station  ranging  2 a t 25.3 mg/1.  varied  32.0  f)  Total  from  0.0  t o 108.0 mg/1. with  average over  ppm.  with  S t a t i o n s 1 and 8  levels  the p e r i o d of monitoring  0.66  station  ppm.  9 averaged  ranging  from  0.0  from  0.00  t o 1.68  c o n c e n t r a t i o n s was ranging  from  0.00  observed t o 1.68  t o 0.69  over  ppm.  ppm,  0.33 t o  while  station  the p e r i o d of monitoring  a t sampling  station  The l e a s t  at station  5 with  variability  9 with values  of values  of ranging  ppm.  g) T o t a l  Organic  Carbon  The  average  o r g a n i c carbon  the period of monitoring  Sampling  station  averaged  4.40 ppm.  10 a v e r a g e d  from  2.60 ppm,  2.60  while  stations  t o 4.40  station  ppm.  4  The r a n g e o f c o n c e n t r a t i o n s o f o r g a n i c  across a l l s t a t i o n s over  varied  from  t o 9.90  c o n c e n t r a t i o n s was  concentrations within  varied  carbon  0.00  0.33  from  The g r e a t e s t v a r i a b i l i t y  ppm.  c o n c e n t r a t i o n s was o b s e r v e d 0.00  ranged  The r a n g e o f c o n c e n t r a t i o n s o f K j e l d a h l  nitrogen across a l l stations  over  mg/1.  concentrations of Kjeldahl nitrogen within  Sampling  2 averaged  from  t o 108.0  over  Kjeldahl Nitrogen  stations  varied  was  mg/1.  The  0.66  0.0  stations  2 showed t h e g r e a t e s t v a r i a b i l i t y  showed t h e l e a s t v a r i a b i l i t y to  from  value  The r a n g e o f  a c r o s s a l l sampling  the p e r i o d o f m o n i t o r i n g Sampling  the h i g h e s t average  ppm.  observed  the p e r i o d o f monitoring The g r e a t e s t v a r i a b i l i t y i n  a t sampling  station  4 with  values  1 0 3  ranging  from  0.00  t o 9.90  c o n c e n t r a t i o n s was from  0.00  ppm.  observed  t o 4.60  The l e a s t v a r i a b i l i t y i n  at station  8 with values ranging  ppm.  h) N i t r a t e - N i t r o g e n Average n i t r a t e - n i t r o g e n stations 0.46  over  ppm.  Sampling  10 a v e r a g e d trations  the p e r i o d  0.46  of monitoring varied  station  ppm..  10 a v e r a g e d  The r a n g e  across a l l sampling  monitoring varied variability  from  concentrations within  0.00  0.22  from ppm,  stations  over  t o 1.8 7 ppm.  a t sampling  i)  0.00  t o 1.87  t o 0.40  station  ppm.  station  10  ppm.  Sulfate The  average  stations  observed  o f m o n i t o r i n g ranged  The l o w e s t a v e r a g e a t sampling  0.50 ppm,  stations  5 a t 1.50  ppm.  from  0.10  t o 7.60  c o n c e n t r a t i o n s was o b s e r v e d varied  from  observed 0.90  ppm.  0.20  t o 7.60  at station  0.50 t o  c o n c e n t r a t i o n was  c o n c e n t r a t i o n was  ppm.  observed  of concentrations of  over the period  of monitoring  The g r e a t e s t v a r i a b i l i t y i n  a t sampling  ppm.  from  sampling  4, 6, a n d 11 w i t h v a l u e s o f  The r a n g e  across a l l stations  fluctuate  sulfate  while the h i g h e s t average  station  sulfate  concentrations of sulfate within  over the p e r i o d  1.50 ppm.  at  0.00  station  concen-  a t sampling  The  w i t h c o n c e n t r a t i o n s v a r y i n g from  while  The g r e a t e s t  from  observed  to  the period of  11 w i t h c o n c e n t r a t i o n s f l u c t u a t i n g was  0.22  of nitrate-nitrogen  o f c o n c e n t r a t i o n s was o b s e r v e d  least variability  sampling  The l e a s t  station  5 where  variability  6 where v a l u e s f l u c t u a t e d  values  was  b e t w e e n 0.20  and  10t j) C h l o r i d e Average c h l o r i d e over  the period  concentrations within  of monitoring varied  Sampling  stations  station  6 averaged  1.92  ppm.  varied  observed  from  0.00  over  t o 1.92 0.00  ppm.  ppm,  while  the p e r i o d o f m o n i t o r i n g  a n d 15.34 ppm.  a t sampling  station  t o 15.34 ppm. stations  The g r e a t e s t v a r i a b 6 where c o n c e n t r a t i o n s  The l e a s t v a r i a b i l i t y  observed  a t sampling  trations  remained c o n s t a n t a t 0  k)  stations  The c o n c e n t r a t i o n s o b s e r v e d  stations  f l u c t u a t e d b e t w e e n 0.00 was  0.00  3, 8, 9, 10 a n d 11 a v e r a g e d  across a l l sampling  ility  from  sampling  3, 8, 9,  was  10 a n d 11 where  conent-  ppm.  Calcium The  average  stations 1.64  over  ppm.  and over The  the period  Sampling  5 averaged stations  concentrations of calcium within  1.64  over  station  ppm.  station  o f sampling  o f sampling  greatest variability station  7.61 ppm.  0.68  ppm,  0.68 t o  while  fluctuated  station  between  The c o n c e n t r a t i o n s a c r o s s a l l s a m p l i n g  the period  sampling  4 averaged  from  The c o n c e n t r a t i o n s a c r o s s a l l s a m p l i n g  the period  7.61 ppm.  o f m o n i t o r i n g ranged  sampling  f l u c t u a t e d b e t w e e n 0.19  o f c o n c e n t r a t i o n s was  1 where v a l u e s f l u c t u a t e d  The l e a s t v a r i a b i l i t y  was  stations  a n d 7.61  ppm.  observed a t  b e t w e e n 0.37  observed  0.19  and  a t sampling  4 where v a l u e s f l u c t u a t e d b e t w e e n 0.25  a n d 1.87  ppm.  1) Magnesium A v e r a g e magnesium over  the p e r i o d  concentrations within  of sampling  Sampling  stations  averaged  0.82  ppm.  sampling  ranged  from  0.08  t o 0.82  4 and 6 averaged  0.08  ppm,  while  T h e c o n c e n t r a t i o n s o f magnesium  stations ppm.  station  2  across a l l  105 sampling  stations  over  b e t w e e n 0.0 3 a n d 5.00 at  sampling  from  0.04  station m)  station  the p e r i o d ppm.  was  2 where c o n c e n t r a t i o n s e n c o u n t e r e d  t o 5.00 ppm.  The l e a s t  variability from  was  0.05  noted  varied  observed a t  t o 0.2 3  ppm.  Sodium average  sodium c o n c e n t r a t i o n s w i t h i n  s t a t i o n s over the period 7.93 ppm.  Sampling  2 averaged  7.93 ppm.  all  sampling  was from  0.36  over the p e r i o d  observed  a t sampling  t o 2.7  0.86  sampling  from  0.8 6 t o  ppm,  while  The c o n c e n t r a t i o n s e n c o u n t e r e d  b e t w e e n 0.39  observed  ranged  4 averaged  a n d 50.00 ppm.  c o n c e n t r a t i o n s was fluctuating  o f sampling  station  stations  b e t w e e n 0.10  of monitoring  The g r e a t e s t a t sampling  a n d 50.0 ppm. station  station  station  across fluctuated  variability  of  2 with values  The l e a s t  variability  6 with concentrations varying  ppm.  Potassium Average c o n c e n t r a t i o n s o f potassium w i t h i n  stations 4.32 The  over the p e r i o d  ppm.  Sampling  o f sampling  station  over the period  28.30 ppm.  was 0.09  t o 28.30 ppm.  0.65  0.20  sampling  from  t o 4.32  of monitoring fluctuated  station  The l e a s t  0.20 t o ppm.  observed across a l l sampling  The g r e a t e s t v a r i a b i l i t y  observed a t sampling  station  ranged  4 averaged  concentrations of potassium  stations to  fluctuated  The g r e a t e s t v a r i a b i l i t y  8 where c o n c e n t r a t i o n s v a r i e d  The  n)  of monitoring  from  of concentrations  2 where v a l u e s v a r i e d  variability  was  from  observed a t  6 where c o n c e n t r a t i o n s f l u c t u a t e d b e t w e e n 0.02  ppm.  0.02  and  106 o)  Iron The  over  average  the period  Sampling  and  varied at  8 averaged  from  0 ppm, w h i l e  The c o n c e n t r a t i o n s o b s e r v e d over the p e r i o d  0.20 ppm.  sampling  concentrations within  o f m o n i t o r i n g ranged  station  0.06 ppm. stations  iron  from  station  0 t o 0.06 station  2  stations ppm.  averaged  across a l l sampling  of monitoring fluctuated  The g r e a t e s t v a r i a b i l i t y  stations  sampling  between 0  was o b s e r v e d a t  3, 4, 6, 9, a n d 10 where t h e c o n c e n t r a t i o n s  0 t o 0.20 ppm.  The l e a s t  variability  8 where t h e c o n c e n t r a t i o n r e m a i n e d  was  observed  c o n s t a n t a t 0 ppm.  p) Aluminum Average aluminum c o n c e n t r a t i o n s w i t h i n over  the p e r i o d  Sampling  o f m o n i t o r i n g ranged  from  s t a t i o n s 4, 6, 9, a n d 11 a v e r a g e d  2 and 5 averaged  0.10 ppm.  f l u c t u a t e d b e t w e e n 0 a n d 0.50 ppm.  variability  was o b s e r v e d  concentrations varied q)  stations  a t sampling from  over  the period of The g r e a t e s t  stations  0 t o 0.50 ppm.  a t sampling  from  stations  The c o n c e n t r a t i o n s o f a l u m i n u m  sampling  the concentrations varied  ppm.  0.03 ppm w h i l e  across a l l sampling  was o b s e r v e d  stations  0.03 t o 0.10  observed  variability  sampling  station  0 t o 0.10  2 a n d 5 where The  least  4 a n d 6 where  ppm.  Manganese The  stations 0.04 ppm. while  over  c o n c e n t r a t i o n s o f manganese w i t h i n  the period  Sampling  station  observed study  average  o f sampling  stations  1 averaged  fluctuated  from  4 and 6 averaged  0.04 ppm.  across a l l sampling  ranged  sampling  0.002 t o  0.002  ppm,  The c o n c e n t r a t i o n s  stations  over  b e t w e e n 0.00 a n d 0.30 ppm.  the period o f the The g r e a t e s t  107 variability trations was  varied  from  a t sampling  station  0.00 t o 0.30 ppm.  observed a t s t a t i o n s  from B.  was o b s e r v e d  1 where  The l e a s t  concen-  variability  4 a n d 6 where c o n c e n t r a t i o n s v a r i e d  0.00 t o 0.02 ppm. Trace  Metals  Analysis  f o rthe presence  the atmospheric  precipitation  o f trace metal  c o l l e c t i o n s was n o t c o n d u c t e d  since  i n most c a s e s t h e r e was b a r e l y  carry  out the basic  sufficient  sample t o  chemical concentration analysis.  an a r e a w h i c h c o u l d b e n e f i t as an i n d e p e n d e n t  elements i n  from  further  study, as t h e r e appear  Perhaps  detailed research t o be  significant  amounts o f v a r i o u s c h e m i c a l e l e m e n t s  being returned tothe  earth  This  i n atmospheric  precipitation.  by o t h e r r e s e a r c h e r s (Bormann a n d L i k e n s , 3.  Some C h e m i c a l  this i s  has been born o u t 1965).  P r o p e r t i e s o f Salmon R i v e r S t r e a m B e d  Sediments A.  Chemical  Properties  Some s e l e c t e d  chemical nutrient  Salmon R i v e r b e d s e d i m e n t s  properties  o f some  are presented i n Table  Samples were t a k e n a t t h r e e d i f f e r e n t  times  XVII.  t o determine  w h e t h e r t h e r e was a c h a n g e i n t h e c h e m i c a l n a t u r e o f t h e stream bed sediments stream  flows.  collected  o v e r time  and between h i g h and low  However, t h e d a t a o b t a i n e d f r o m  d i d n o t show a n y s i g n i f i c a n t  differences,  A l t h o u g h v a l u e s f o r most o f t h e n u t r i e n t s carbon,  total  Kjeldahl nitrogen,  phosphate-phosphorus,  those  or trends.  including organic  sulfate-sulfur,  and the exchangeagle  samples  available  cations  (Ca,Mg, Na,K)  TABLE XVTI: Ph H 0 2  high flew May 7  May 13  low flow J u l y 31  SOME SELECTED CHEMICAL PROPERTIES OF SEDIMENTS OF SALMON RIVER SAMPLED AT HIGH AND LOW FLOW PERIODS OF THE HYDROLOGIC CYCLE Na K CEC Ca Mg Org N S O.M. PO -P pH Org C ppm. meg/10Og % % % % CaCl 4  2  1 2 3 4 5 6  5.3 5.4 5.6 5.8 5.7 5.7  4.5 4.9 5.2 5.0 4.9 5.2  3.40 3.25 0.38 0.42 0.78  0.088 0.236 0.208 0.039 0.033 0.066  0.018 0.018 0.022 0.011 0.007 0.007  1 2 3 4 5 6 7 8 9 10 11 12 14  5.7 5.4 5.6 5.8 5.5 5.7 5.6 5.3 5.5 5.5 5.6 5.7 6.1  5.2 4.7 5.1 5.1 5.0 5.1 5.1 4.7 4.9 5.1 5.1 4.9 5.3  1.68 2.58 2.81 0.36 0.53 0.21 0.38 0.34 0.50 1.85 2.23 1.24 0.44  0.140 0.200 0.189 0.026 0.017 0.016 0.021 0.018 0.042 0.150 0.081 0.094 0.032  0.017 0.028 0.019 0.010 0.009 0.006 0.004 0.003 0.024 0.022 0.013 0.006 0.013  1 2 3 6 7  5.5 5.3 5.6 5.6 5.6  4.7 4.2 4.7 4.7 4.9  0.90 3.48 0.99 0.19 0.34  0.060 0.230 0.040 0.003 0.004  0.008 0.014 0.013 0.007 0.005  170.4 181.8 MD 37.2 54.3  5.49 10.58 13.15 0.99 1.35 6.45  1.47 2.33 4.72 0.23 0.30 1.55  0.05 0.21 0.25 0.02 0.02 0.07  0.19 0.29 0.37 0.05 0.05 0.17  14.84 33.54 37.22 2.18 2.98 15.20  112.2 145.2 178.2 174.6 33.3 24.6 63.0 54.6 46.5 202.2 130.8 109.2 36.6  8.70 1.63 10.63 1.15 1.08 1.13 1.38 0.70 1.30 6.55 4.55 1.63 2.29  2.45 0.30 3.80 0.30 0.28 0.30 0.23 0.18 0.38 1.95 1.53 0.48 0.78  0.14 0.02 0.27 0.02 0.02 0.03 0.03 0.02 0.02 0.08 0.07 0.03 0.16  0.22 0.10 0.31 0.06 0.05 0.06 0.10 0.04 0.07 0.33 0.19 0.15 0.08  21.02 7.42 33.10 3.35 2.62 2.62 5.16 3.13 4.07 17.17 16.22 4.22 4.62  37.5 42.0 17.3 17.2 34.7  5.00 7.12 5.25 1.62 1.62  1.02 1.34 1.44 0.29 0.24  0.16 0.27 0.73 0.06 0.05  0.19 0.29 0.33 0.10 0.11  10.59 24.90 5.06 3.70 4.11  MD  1.5 6.0 1.7 0.3 0.6  101 appeared  to increase  compared  to the higher flow periods  Total were a l s o The  slightly  a t t h e low f l o w p e r i o d (May 7 a n d 13,  e l e m e n t a l a n a l y s e s o f t h e sampled conducted.  results  These  bed sediments  little  one  sampling time  i t was f e l t  t o draw a n y d e f i n i t e sediments The on  that  stations  the e f f e c t s  sediments  intensive  sediments  sediments a r e  such as i n d e l t a s i n  can r e l e a s e  (McKee a n d W o l f ,  some o f t h e i r 1963;  W o l d e n d o r p , 1972, a n d N o r t h c o t e , 1 9 7 3 ) .  Friedman  unrealistic  o r t e m p o r a r i l y ponded a r e a s i n t h e s t r e a m  where t h e s e d i m e n t s  precisely  at only  the c o n t r i b u t i o n o f  becomes v e r y i m p o r t a n t when t h o s e  to t h e a q u a t i c system.  those  these  volume and c h e m i c a l n a t u r e o f suspended  l a k e s and oceans  sites  quality.  d e p o s i t e d on a r e a s o f s t a n d i n g w a t e r  1969;  sampling  i t w o u l d be  c o n c l u s i o n s about  t o the stream water  streams  system,  Because  data f o r a l l of the sampling  XVIII.  significant  d i f f e r e n c e between t h e s e d i n e n t s a t i n d i v i d u a l a t h i g h a n d low r a t e s o f s t r e a m f l o w ;  31)  1974).  data are presented i n Table  o f these analyses revealed  are complete  (July  o f sediment  on s u r f a c e w a t e r  studies  (1970);  Kuentzel, To  determine  l o a d i n g s and t h e n a t u r e o f quality  as have been c o n d u c t e d  and G a v i s t  nutrients  Fox (1966);  would  require  by such a u t h o r s as and Krone  (1966).  TABLE XVTII: TOTAL ELEMENTAL ANALYSIS OF SALMON RIVER BED SEDIMENTS AT THREE SAMPLING TIMES Sampling Ti0 CrO CoO CuO ZnO NiO Na 0 Site/Date CaO MgO 2°3 2 ° 3 °2 2  F e  M  Average range 1 2 3 4 5 6 7 8 9 10 11 12 14 Average J u l y 31/74 1 2 3 6 7 Average range  K 0 2  Total  SiO.  s  14  1 2 3 4 5 6  2  Iln  5.00 6.80 4.70 5.80 4.67 4.75 5.29 4.676.80  8.18 11.78 7.69 5.95 7.78 4.18 7.59 4.1811.78  27.97 43.28 24.64 25.06 24.38 20.37 27.62 20.3743.28  0.158 0.237 0.174 0.142 0.190 0.126 0.171 0.1260.237  0 .007 0 .006 0 .005 0 .003 0 .002 0 .002 0 .004 0 .0020 .007  0.015 0.026 0.014 0.009 0.011 0.009 0.014 0.0090.026  0.010 0.014 0.010 0.006 0.006 0.010 0.009 0.0060.014  0.020 0.011 0.029 0.017 0.016 0. 008 0.020 0.008 0.028 0.008 0.016 0.008 0.021 0.010 0.016- -0. 0080.029 0.017  1.326 2.458 2.040 3.519 1.394 2.530 1.275 1.952 2.091 1.687 1.224 1.759 1.558--2.3181.224--1.6872.091 3.519  47.64 71.37 43.55 43.16 43.78 34.55 47.31 34.5571.37  53 .36 28 .63 56 .45 56 .84 56 .22 65 .45 52 .82 28 .6365 .45  4.21 0.60 1.64 4.86 0.85 1.61 5.64 1.22 1.58 1.25 1.81 4.35 4.62 1.85 2.46 6.21 1.89 2.56 1.58 1.99 4.86 4.81 1.75 1.96 0.88 1.64 4.56 0.94 1.68 4.59 0.81 1.38 4.48 4.43 1.33 1.51 1.62 1.28 5.48 1.27 1.78 .4.85 0.60-1.28- 4.216.21 1.89 2.56  7.84 7.46 5.23 8.29 14.07 15.16 13.56 7.78 7.69 7.86 7.35 8.18 4.18 8.82 4.1815.16  26.69 29.18 26.23 22.42 25.52 23.36 17.92 10.28 10.17 24.64 21.62 20.64 24.99 21.82 10.1729, .18  0.142 0.142 26.23 0.190 0.300 0.348 2.180 0.474 0.158 0.174 0.221 0.221 0.111 0.368 0.1112.,180  0.006 0.004 0.126 0.003 0.002 0.002 0.003 0.000 0.003 0.003 0.004 0.002 0.001 0.003 0.0000,.006  0.014 0.017 0.003 0.009 0.012 0.012 0.011 0.010 0.016 0.015 0.015 0.012 0.008 0.013 0.0080,.017  0 .006 0 .010 0 .009 0 .002 0 .006 0 .006 0 .010 0 .010 0 .010 0 .010 0 .010 0 .006 0 .006 0 .008 0.0020.010  0.020 0.012 0.020 0.012 0.006 0.016 0.024 0.011 0.031 0.011 0.036 0.011 0.031 0.008 0.024 0.008 0.020 0.012 0.020 0.012 0.016 0.012 0.020 0.011 0.012 0.011 0.022 0.011 0.012-0.0080.036 0..012  1.445 2.772 1.496 2.217 0.008 1.173 1.989 1.446 4.080 1.542 4.386 1.542 2.652 1.663 1.887 1.711 1.394 2.217 1.496 2.217 1.462 2.169 2.312 1.639 1.173 1.687 2.072 1.900 1.173-1.4464.386 2..772  45.40 47.88 1.880 41.79 54.50 55.42 46.47 30.70 28.77 43.66 39.55 40.31 40.56 42.94 28.7755. ,52  54.60 52.12 56.88 58.21 45.50 44.48 53.53 69.30 71.23 56.34 60.45 59.69 59.44 57.06 44.4871.,23  8.38 7.75 10.58 3.60 5.60 7.18 3.6010.58  24. .98 0.,126 0,.004 24, .34 0.,126 0,.005 30..43 0.,221 0,.004 17, .46 0.,095 0,.002 24. .12 0.,126 0..002 24, .27 0.,139 0,.003 17.46- 0.095- 0.00230.43 0.221 0.005  0..014 0..019 0,.004 0..008 0,.009 0,.013 0.0080.019  0.013 0.010 0.014 0006 0.010 0.010 0.0060.013  0.024 0.,008 0.020 0..012 0.010 0..012 0.016 0..008 0.016 0..008 0.018 0.,010 0.016-0.0080.024 0.012  1.547 1.564 1.190 0.969 1.326 1.319  45. .06 43. .25 53. .74 30. .94 41. ,38 42. ,87 30.9453.74  54. ,94 56. ,75 46. .26 69. ,06 58. ,62 57. .13 46.2669.06 ^  0.77 1.71 1.20 2.42 0.88 1.49 1.27 1.66 1.27 1.66 0.87 1.23 1.04 1.70 0.77--1.231.27 2.42  0.85 1.76 1.04 1.66 0.99 1.66 0.97 1.10 1.20 1.43 1.01 1.52 0.85-1.101.20 1.76  4.05 4.51 5.89 5.00 5.51 4.99 4.055.89  -  3,.302 2,.193 2,.723 1,.711 2,.024 2,.391  1.564 3.302  Ill  DISCUSSION WATER QUALITY Guidelines in  surface  and s t a n d a r d s  f o rlevels  w a t e r s h a v e b e e n e s t a b l i s h e d by v a r i o u s  agencies.  Some o f t h e p u b l i c a t i o n s r e l e a s e d  a g e n c i e s w h i c h were c o n s u l t e d the  include  Resources Agency o f C a l i f o r n i a ,  Control  Board  Control  Countil  and  Welfare  Control  of c e r t a i n chemicals  (1963);  Pacific  (1966);  (1968);  Services  Water  Northwest Area  these are  (1972). sources  presented  United  States  (1968);  Federal  British  and H o s p i t a l  The g u i d e l i n e s  Water  XIV.  water use a r e c o n s i d e r e d types o f use occurred Watershed. evaluated food  (2)  Inland  Waters  and s t a n d a r d s d e r i v e d  In t h i s  study  for evaluation,  most f r e q u e n t l y  a s (1) a w a t e r  four  since  from  studied types o f  these  i n t h e Salmon  supply  four River  f o r d r i n k i n g , c u l i n a r y , and  without treatment other  than  and removal o f n a t u r a l l y o c c u r r i n g  a water supply  such as viewing; propagation waterfowl,  and  The q u a l i t y o f w a t e r i n t h e Salmon R i v e r was  processing,  infection  Department  (1969);  variables  Health  Pollution  Columbia  Insurance  f o r some o f t h e c h e m i c a l i n Table  Resources  Pollution  E n v i r o n m e n t C a n a d a , W a t e r Management S e r v i c e , Branch  of C a l i f o r n i a ,  Canada D e p a r t m e n t o f N a t i o n a l  Administration  of Health  by g o v e r n m e n t  the State  State  government  for bathing,  and o t h e r  furbearers,  aquatic  and o t h e r  dis-  impurities;  swimming and r e c r e a t i o n  (3) a w a t e r s u p p l y  of fish  simple  f o r t h e growth and life,  aquatic  including  and  semi-aquatic  TABLE X I X :  1  Water q u a l i t y s t a n d a r d s  ^S. Water Quality Parameter  >vUse >^  Guideline Level  and g u i d e l i n e s f o r some s e l e c t e d  Water supply, drinking, culinary and food processing without treatment other than simple disinfection & removal of naturally present impurities  Dissolved Oxygen  >75% satn.  water q u a l i t y  - Growth and propogatior of f i s h & other aquatic M f e , including Agricultural water waterfowl, furbearers, supply; i r r i g a other aquatic tion, stock and semi-aquatic watering, truck life. farming.  Bathing, swimming, recreation. >5 mg/1  1  1  '  ' mg/1 or Z satn. 6.5-8.5^ 6.5-8.3  pH  6.5-8.5 6.5-8.3  >3 mg/1  1  variable  1  4  6.5-8.5  1  3  Temperature °C  objective acceptable  <#}  Dissolved Inorganic substances  objective acceptable  <500 mg/1 1000 mg/1  6.5-8.5  1  £20 cold water f i s h l no incr. over n a t u r a l £29.5 warm water* 30°C <12.8 spawning! 3  15.5-21.2  1  3  1 2  4  500 mg/1 rx 7.7 mhos  : Specific e l e c t r i c a l conductivity  variables.  J  2000-10,000 mg/1 fresh water f i s h  1  i  •  J  <10.0 mg/1* •C10.0 mg/1* I 10.0 mg/1*  <10.0 mg/lJ <10.0 mg/1 10.0 mg/l  !  !  objective acceptable  <250 mg/1 ). 250 mg/1 *  <250 mg/1 250 mg/1  !  !  objective acceptable  •dOt.Smg/1 ) O.Db5mg/l  O.Ot>5mg/l O.Ofe5mg/l  Sulfate  objective acceptable  <250 mg/1 * 500 mg/1  <250 mg/1 500 mg/l  Calcium  objective acceptable  <75 mg/1 , . 200 mg/K *  <75 mg/1 200 mg/l  Nitrate-nitrogen as nitrogen Chloride Total phosphorus  objective acceptable maximum  .  2  1  2  2  4  2  2  4  3 J  3 3  3 3  3 J  3  J  =5' O H3  >! > H  g  O G M  fi H  Z  S •3 >.  1  !  H  c  n  < . G tf n  t2 W 1  *-a* pi  TABLE XIX:  Water q u a l i t y  Water^"\^ Quality Parameter Magnesium Iron  Use >^  standards  and g u i d e l i n e s f o r some s e l e c t e d water q u a l i t y  Water supply, drinking, culinary and food processing without treatment other than simple disinfectio I removal of naturally Guideline Level present impurities objective acceptable  <50 mg/1 150 mg/1  objective acceptable  <0.05 mg/1 0.3 mg/l2 4  2  <5Q 4  4  Lead Copper  objective acceptable  <0.01 mg/1 1.0 mg/1  Chromium  objective acceptable maximum  Not Detectable <0.05 mg/1 0.05 mg/l  Manganese  objective acceptable  <0.01 mg/1 0.05 mg/l  Total Hardness  objective  <120 mg/1  objective acceptable  <1.0 mg/1 5.0 mg/1  Zinc  1  z O  3  <0.05 mg/1 0.30 mg/1  H  Not Detectable 3 <0.01 mg/1 0.01 mg/1  Not Detectable•CO.01 mg/1 0.01 mg/1  Not Detectable <0.05 mg/1 0.05 mg/1  Not Detectable -10.05 mg/1 0.05 mg/l3  3  3  3  3  3  <0.01 mg/1 1.00 mg/1  3  3  Not Detectable<0.05 mg/1 0.05 mg/1  3  4  z  4  3  L > — ZS  P a PS  Canadian Drinking Water Standards and Objectives, 1968 Guidelines for Water Quality Objectives and Standards, 1972  4  Recommended B.C. Health Branch Water Quality Standards, 1969  J  |  <120mg/l  !  j  3  <1.0 mg/1 5.0 mg/1 — — — —  3  •  j  3  2  J  <:0.01 mg/1 0.05 mg/l  J  Policy of P a c i f i c N.W. Pollution Control Council, 1966  1  1  3  4  3  1  3  J  r H > n 5 w ^ t™  !  3  3  2  1  3  3  3  3  _ i l  r.  5!  G  3  3  2  !>  5S  3  3  3  • • '  H  3  2  .  Bathing, swimming, recreation  Growth and propogation / of f i s h & other aquatic / l i f e , including water- ./ fowl, furbearers, other A g r i c u l t u r a l wate aquatic and semi-aquatic/supply; i r r i g a t i o life / stock watering, t /.farming  mg/1 150 mg/1  4  1  objective acceptable maximum objective acceptable maximum  Cadmium  J  variables.  i  ^  H  2 M5 W  .  life;  and  (4) a w a t e r s u p p l y  irrigation, chemical  stock watering,  characteristics  included:  dissolved  dissolved  oxygen  copper,  levels,  levels,  specific  chloride,  hardness,  a n d chromium l e v e l s .  were m o n i t o r e d  i n the course  here  impacts  for their  acid  zinc,  iron,  readily  Each v a l u e was  available f o r every  of the study  sampling  criteria.  each  station  checked  are presented  station  which  f o r the four  a t each  Average c h e m i c a l  uses  either are  time  devised.  of  sampling  concentrations at  f o r high streamflows  a n d low  criteria.  streamflows  These  data  i n Appendix V I I .  relationship  and  standards  1.  Water s u p p l y f o r d r i n k i n g , without treatment.  a)  pH  sampling  lead,  w h e t h e r o r n o t t h e y met t h e  w i t h water q u a l i t y  s t u d y and t h e i r  On a v e r a g e  manganese,  are not evaluated  A summary o f t h e e v a l u a t i o n o f t h e r e s u l t s this  digestible  or are i n the process of being  water q u a l i t y  were a l s o  electrical  The o t h e r v a r i a b l e s  on w a t e r q u a l i t y  evaluated t o determine  sampling  specific  temperature,  cadmium,  d e s c r i b e d because g u i d e l i n e s and/or standards not  The  pH v a l u e s ,  c a l c i u m , magnesium,  calcium carbonate  including  considered i n this evaluation  nitrate-nitrogen,  phosphorus, s u l f a t e ,  use  and t r u c k f a r m i n g .  i n o r g a n i c substance  conductance,  total  for agricultural  obtained i n  t o the publiched g u i d e l i n e s  follows: culinary,  and f o o d p r o c e s s i n g  a t low r a t e s o f s t r e a m f l o w a l l  s t a t i o n s were w i t h i n t h e l i m i t s  o f the water  quality  criteria.  t h e pH a v e r a g e d The  specific  sampling  6.3,  slightly  station  6.1.  b)  Temperature  A l l sampling  On a v e r a g e  sites  were w i t h i n  temperatures  Those s a m p l i n g station stations sites  h a d v a l u e s 6.5  from  on J u n e  the acceptable l i m i t s several  g r e a t e r than  stations  1, 1 2 ° C , s t a t i o n  of  5.8 4,  1974.  sampling  temperature.  stations  2, 1 1 ° C .  had  10°C, b u t l e s s than 15°C.  a v e r a g i n g g r e a t e r than  had v a l u e s g r e a t e r than  10°C were  Some o f t h e s a m p l i n g 15°C p e r i o d i c a l l y .  These  include 1  J u n e 18/74, J u l y  Station  2  J u l y 3/74, J u l y A u g u s t 27/74.  Station  5;  July  Station  10  J u n e 18/74, J u l y  Station  11  June  18/74.  Station  12  July  18/74.  Station  14  June  18/74.  Station  15  June  18/74, J u l y  Temperatures  was  t h e pH v a r i e d  Station  these  6.5 a t  a t b o t h h i g h and low f l o w a l l o f t h e s a m p l i n g  However, a t low s t r e a m f l o w average  l e s s than  limits.  1, were J u n e 4, 1974, J u n e 18, 1974 and During, t h i s time  to  station 1  below the water q u a l i t y  d a t e s on w h i c h t h e pH was  M a r c h 1, 1975.  stations  However, a t h i g h f l o w s s a m p l i n g  times  31/74, A u g u s t 18/74, A u g u s t  27/74. 13/74,  31/74. 18/74, J u l y  31/74.  31/74.  a t t h e s e t i m e s went up a s h i g h a s 2 2 ° C . the flow o f water a t these  generally  v e r y slow  sampling  and t h e d e p t h was  very  At  stations shallow,  allowing in  t h e w a t e r t o warm c o n s i d e r a b l e , e s p e c i a l l y  most p l a c e s t h e r e was v e r y  little  since  bank v e g e t a t i o n t o  shade t h e w a t e r . c) D i s s o l v e d I n o r g a n i c The high the  l e v e l o f d i s s o l v e d i n o r g a n i c substances  and low s t r e a m f l o w s objectives levels  than  500  The  on a v e r a g e a t  and a t p o i n t s a m p l e s were w e l l w i t h i n  o f the water q u a l i t y  criteria  at less  mg/1.  d) S p e c i f i c  at  Substances  Conductance  specific  a l l sampling  electrical  c o n d u c t a n c e was b e l o w 7.7 mhos,  s t a t i o n s a t a l l times.  e) N i t r a t e - N i t r o g e n The 10 mg/1 f)  nitrate-nitrogen levels a t a l l sampling  as nigrogen  than  s t a t i o n s a t a l l times.  Chloride The  c o n c e n t r a t i o n s o f c h l o r i d e a t a l l sampling  at  a l l times  g)  Phosphorus The  were l e s s  (The  than  t h e o b j e c t i v e 250  higher  than  g u i d e l i n e s a r e 0.2 mg/1  converts  t o 0.065 mg/1  the acceptable  flow  mg/1.  times.  show l i t t l e  0.065  o f phosphate expressed  The a v e r a g e v a l u e s pattern.  mg/1,  o f phosphate as phosphate  E n v i r o n m e n t C a n a d a , 1972) a t a l l s a m p l i n g sampling  stations  c o n c e n t r a t i o n s o f phosphate-phosphorus as phosphorus  were c o n s i s t e n t l y  and  were l e s s  as phosphorus,  stations at a l l  at high  At sampling  which  and low s t r e a m -  s t a t i o n s 1,2,6,9,14  15 t h e c o n c e n t r a t i o n s of:>phosphorusare h i g h e r  f o r high  flow. the  Yet, a t sampling  concentrations  A few p o i n t  stations  o f phosphorus a r e h i g h e r  s a m p l e s were w i t h i n  water q u a l i t y c r i t e r i a ,  A u g u s t 27/74, J a n u a r y  Station  2;  August  Station  3;  January  Station  4;  August  Station  5;  July  Station  6;  January  Station  7;  March  Station  8;  A u g u s t 2 7/74.  Station  9;  August  Station  11;  January  Station  12;  March  1/75.  Station  13;  March  1/75.  flushing  action  (Figure  of the  30/75.  27/74. 30/74. 2 7/74.  3/74, O c t o b e r  28/74, M a r c h  30/74, M a r c h  1/75.  1/75.  27/74. 30/75, M a r c h  t o the r u l e of high  1/75.  generally  storm  occur  following  f l o w s a s shown on t h e  18) ..  Sulfate The  c o n c e n t r a t i o n s o f s u l f a t e a t h i g h a n d low r a t e s  streamflow a t a l l sampling t i m e s were w i t h i n less i)  limits  included:  1;  hydrograph h)  these  a n d 12  f o r low f l o w .  the o b j e c t i v e  Station  These e x c e p t i o n s the  3,4,5,7,8,10,11  than  250  stations  the o b j e c t i v e  of  a t a l l sampling  water q u a l i t y  criteria  of  mg/1.  Calcium The  c a l c i u m c o n c e n t r a t i o n s were w i t h i n  range o f l e s s than sampling  times.  75 mg/1  a t a l l sampling  the  objective  stations  at a l l  j)  Magnesium The magnesium  c o n c e n t r a t i o n s were w i t h i n  r a n g e o f l e s s t h a n 50 mg/1  the  objective  a t a l l sampling s t a t i o n s  ata l l  sampling times, k)  Iron On a v e r a g e t h e i r o n  were w i t h i n sampling 9,10 at  the acceptable  stations  range o f l e s s  1 a n d 11.  a n d 15 e x c e e d e d  low s t r e a m f l o w s .  sampling  concentrations at high  limits  t h a n 0.3 ppm  sampling s t a t i o n s  the acceptable  0.3 ppm  The s a m p l i n g s t a t i o n s  t i m e s when t h e i r o n  acceptable  Also  a r e as  streamflows  limits and  except  1,3,4,5, on a v e r a g e  specific  c o n c e n t r a t i o n s exceeded the  follows:  Station  1;  J u n e 4/74, J u n e 18/74, J u l y 18/74, A u g u s t A u g u s t 27/74, O c t o b e r 1/74, M a r c h 31/75.  Station  2;  July  Station  3;  J u n e 4, 18/74, J u l y 3, 18, 31/74, A u g u s t 13, 27/74, O c t o b e r 1, 28/74, December 30/74, J a n u a r y 30/75.  Station  4;  June  4/74.  Station  6;  June  4/74.  Station  7;  June  4/74.  Station  9;  J u n e 4/74, J u l y 3, 18, 31/74, A u g u s t 27/74, O c t o b e r 1, 28/74.  Station  10; J u l y 3, 18, 31/74, A u g u s t O c t o b e r 28/7 4.  Station  11; J u n e  4, 18/74, J u l y  Station  12; J u n e  4/74.  Station  14; J u n e  4/74, J u l y  Station  15; J u n e 4, 18/74, J u l y 1, 18, 31/74, A u g u s t 13, 27/74, O c t o b e r 1, 28/74.  18/74, A u g u s t  13/74,  13/74.  13,  13,  27/74,  13/74.  18, 31/74, A u g u s t  27/74.  120 1)  Cadmium The  and  c o n c e n t r a t i o n s o f cadmium  acceptable  levels  at  a l l sampling  m)  Lead The  lead  o f water q u a l i t y  objective  a t a l l sampling  stations  times,  c o n c e n t r a t i o n s were w i t h i n t h e a c c e p t a b l e  water q u a l i t y sampling  f i t between t h e  limits  a t a l l sampling  stations  at a l l  times,  n) C o p p e r C o p p e r c o n c e n t r a t i o n s were s l i g h t l y point  s a m p l e s a t some s a m p l i n g  0.01 mg/1  value.  Those  h i g h e r i n some  stations,  sampling  sites  than  the acceptable  and times  were t h e  following: Station  2  0.0102 mg/1,  M a r c h 31/75.  Station  3  0.0115 mg/1, 0.0118 mg/1,  J a n u a r y 30/75, M a r c h 31/75.  Station  4;  0.012 0 mg/1,  January  Station  5;  0.0142 mg/1,  November  Station  8;  0.0152 mg/1,  M a r c h 1/75.  30/75. 28/74,  o) Chromium  o Concentrations at a l l sampling  o f c h r o m i u m were w i t h i n a c c e p t a b l e  stations  a t a l l sampling  limits  times,  p) Manganese On a v e r a g e 0.05 mg/1  manganese c o n c e n t r a t i o n s e x c e e d e d t h e a c c e p t a b l e  limits  low  streamflow  low  flow.  a t a l l sampling  with  Sampling  stations  a t both  the exception o f sampling stations  and s a m p l i n g  h i g h and  s t a t i o n 12 a t  times  where  c o n c e n t r a t i o n s o f manganese July  Station  2  October  Station  3  July  Station  7  O c t o b e r 28/74, J a n u a r y  Station  8  J u n e 6/74, J u l y 3, 18/74, A u g u s t 13, November 11, 28/74, December 30/74, J a n u a r y 31/75, M a r c h 1, 31/75.  Station  9;  August  Station  10; J u l y 3, 31/74, A u g u s t 2 7/74, M a r c h 1/75.  Station  11; J u n e  18/74.  Station  15; J u l y  3/74.  Hardness  3/74. 1/74.  3/74, November 11/74, M a r c h  (Calcium  a t a l l sampling  w i t h a r e a d i n g o f 181  sampling  the o b j e c t i v e stations station  October  2 8/74,  levels  of less  a t a l l sampling  times  3 on O c t o b e r  1974,  1,  mg/1.  c o n c e n t r a t i o n s a t a l l sampling stations  Dissolved  were w i t h i n  acceptable  greater i n ppm  than  the o b j e c t i v e  level  from the p u b l i c a t i o n of dissolved  75% s a t u r a t i o n .  and i n s u f f i c i e n t  t o make t h e a p p r o p r i a t e criteria  stations  at a l l  level  o f 1.0  mg/1.  indicate  that  Oxygen  The g u i d e l i n e s  the  27/74,  Zinc Zinc  an  31/75.  Carbonate)  h a r d n e s s was w i t h i n  120 mg/1  31/74.  13/74.  with the exception o f sampling  s)  include:  1  Total  r)  0.05 mg/1  Station  q) T o t a l  than  exceeded  i n ppm  studies  oxygen c o n c e n t r a t i o n  Since  t h e d a t a was  additional  information  conversion  i twill  is  collected  was  collected  be assumed  that  w o u l d be s i m i l a r t o t h o s e p r e s c r i b e d f o r  122 bathing  a n d swimming a t minimum  assumption  through, d i s s o l v e d  5 mg/1.  oxygen  Following  that  l e v e l s on a v e r a g e a t  h i g h a n d low s t r e a m f l o w s were w i t h i n  the acceptable  greater  samples  the  than  5 mg/1.  sampling p e r i o d  However, p o i n t  were m e a s u r e d a t l e s s  range  throughout  than  5 mg/1.  These  included:  2.  Station  3;  August  Station  10; J u l y  Station  15; A u g u s t  Water s u p p l y  27, O c t o b e r  31, A u g u s t  1, 1974.  13, 27, O c t o b e r  13, 27, O c t o b e r  f o r bathing,  28, 1974.  1, 28, 1974.  swimming, and o t h e r  recreational  uses. a) pH The  water q u a l i t y  other recreational  other r e c r e a t i o n a l  the evaluations  swimming, a n d  f o r drinking  f o r bathing,  swimming a n d  u s e s a r e t h e same a s f o r d r i n k i n g  water.  Temperature Temperature  sampling c)  o f pH f o r b a t h i n g ,  u s e s a r e t h e same a s t h o s e  w a t e r and t h e r e f o r e  b)  limits  l e v e l s a t a l l sampling  times are w i t h i n  stations  the acceptable  limit  at a l l o f 30°C.  Others The  remaining chemical v a r i a b l e s  swimming, and o t h e r r e c r e a t i o n a l evaluated Therefore, dissolved  for drinking  inorganic  nitrate-nitrogen,  t h e same c l a s s  limits.  o f the chemical v a r i a b l e s  substances,  chloride,  f o r bathing,  u s e s a r e t h e same a s t h o s e  water with  f o r an e v a l u a t i o n  evaluated  specific  electrical  phosphate-phosphorus,  c a l c i u m , m a g n e s i u m , i r o n , cadmium,  lead,  of  conductivity,  sulfate  copper,  123 chromium, manganese, t o t a l zinc  refer  to the section  d) D i s s o l v e d  hardness  (CaCO^ e q u i v a l e n t ) ,  of drinking  water  oxygen  levels  on a v e r a g e a t h i g h a n d  s t r e a m f l o w s were w i t h i n  the acceptable  5 mg/1.  samples  However, p o i n t  were m e a s u r e d  at less  Station  3;  Station  10; J u l y  Station  15; A u g u s t  Water  supply  and o t h e r a)  31/74, A u g u s t  These  13,  28/74.  27/74, O c t o b e r 28/74.  12 were d r y o f w a t e r d u r i n g  July,  1974. of  fish  life.  pH  growth  limits  o f pH  for fish  propagation  a r e t h e same a s f o r d r i n k i n g w a t e r .  an e v a l u a t i o n  o f pH  refer  to Section  and  Therefore, f o r  1 on d r i n k i n g  water.  Temperature Temperatures o f the water are g e n e r a l l y  c o l d water exceeded  generally fish  fish  20°C.  geographic  any  28/74.  f o r the growth and p r o p a g a t i o n  aquatic  than  included:  13/ 27/74, O c t o b e r 1,  11 a n d  The a c c e p t a b l e  b)  range g r e a t e r  A u g u s t 27/74, O c t o b e r 1,  stations  low  throughout the sampling p e r i o d  t h a n 5 mg/1.  A u g u s t , and September, 3.  standards,  Oxygen  Dissolved  Sampling  and  s i n c e durng m o n i t o r i n g Warm w a t e r  location. acceptable  species  fish  t h a t might  temperatures g e n e r a l l y  the temperature seldom  are not considered  Temperatures during  acceptable f o r  f o r spawning  the s p r i n g  and  fall  in this  fish  are  seasons.  For  spawn i n t h e summer months t h e  t e n d t o e x c e e d 12.8°C  a t most  points.  c) D i s s o l v e d I n o r g a n i c The the  of dissolved  acceptable  fish d)  levels  range o f  a t a l l sampling  i n o r g a n i c substances  less  than  stations  2000 mg/1  other chemical  have s i g n i f i c a n t fish  and  effects  felt  a t a l l sampling  water  times.  factors  determine  toxicity  temperature,  with  i n the  toxicity  d e p e n d s on  the  lethal  which a l t e r  T h i s i s not  t h e way  through  of r e a c t i o n s of these  implications o f sampling  sites  are  organisms  factors  for further  o f the  e t c e t e r a , were o b s e r v e d by  other authors  c o n c e n t r a t i o n s o f some c h e m i c a l s have a g r e a t e r l e t h a l  by  effect  concentrations.  on  study  the an e v a l u a t i o n over  few  fish fry,  the author.  Also,  that slugs of runoff  p o p u l a t i o n s than  (Northcote,  the  study.  d u r i n g storm fish  the  chemicals  Because o f  chemical  left  chemical  i t affects  o f the c o n c e n t r a t i o n s observed  been suggested  increasing  The  the c o n c e n t r a t i o n  of certain  food c h a i n .  G e n e r a l l y during the course  has  variables.  to mention those  the  fingerlings  other  the i n t e r a c t i o n s of t h a t  and  period  independant  threshold concentration for  i n the bodies  the  s i n c e numerous  of chemical  which are concentrated  complexity  of  Salmon R i v e r w a t e r s h e d .  realistic  s p e c i e s and  factors.  accumulate  propagation  may  the d u r a t i o n of t h a t c o n c e n t r a t i o n , the  other chemicals  biologic  t h e g r o w t h and  chemicals  t h e pH,  fish  not  the  of s p e c i f i c  the chemical,  specific  on  study  t h a t t o c o n s i d e r each v a r i a b l e  o f o t h e r v a r i a b l e s was  it  for fresh  v a r i a b l e s measured i n t h i s  other aquatic l i f e  However, i t was  of  were w i t h i n  Others The  of  Substances  1973).  high may slowly  e)  Dissolved No  Oxygen  absolute  dissolved  be  oxygen c o n c e n t r a t i o n  because  the  and  of the  age  s t a t e m e n t can  temperature, with t h e w a t e r , and  with  the  with  the  minimum  r e q u i r e d to support  oxygen r e q u i r e m e n t s fish,  made t o g i v e  prior  of  fish  vary with  fish the  concentration of other  numerous o t h e r  Following oxygen  this  levels  water supply  substances  factors.  and  (McKee and  r a t i o n a l e the  to the  4) W a t e r s u p p l y a)  or higher.  criteria  species  a c c l i m a t i z a t i o n , with  Under  Wolf,  degree of  are  the  in  average  stream c o n d i t i o n s the d i s s o l v e d oxygen c o n c e n t r a t i o n r e m a i n a t 5 mg/1  life,  should  1963) .  f i t of d i s s o l v e d  same as  for drinking  bathing. for agricultural  use.  pH For  use  an  refer  quality b)  e v a l u a t i o n of the t o s e c t i o n 1 on  limits  are  the  pH  values  for  agricultural  d r i n k i n g water s i n c e the  water  same.  Temperature Generally  15.5  the water temperatures  t o 21.2°C d u r i n g  normally winter  be  and  1 5 . 5 ° C and  the  fell  i n the  range  summer months when t h e w a t e r  used f o r i r r i g a t i o n .  However, d u r i n g  the  of would fall,  s p r i n g months t h e w a t e r t e m p e r a t u r e s were b e l o w usually less  for  stock watering,  c)  D i s s o l v e d Oxygen Dissolved  but  than not  10°C,  irrigation  oxygen c o n c e n t r a t i o n s  at  a l l sampling  s t a t i o n s and  on  J u l y 31/74, A u g u s t  13,  w h i c h w o u l d be  farming.  were g e n e r a l l y  sampling  27/74 and  or truck  acceptable  times  October  except 2 8/74.  acceptable station  10  d)  Others Guidelines  f o r the other  chemical  v a r i a b l e s are  available  i n the p u b l i c a t i o n s c o n s u l t e d , although  dissolved  i n o r g a n i c substance  conductivity  and  sodium l e v e l s  known t o a d v e r s e l y e f f e c t Due  t o complex  affecting left 5)  use  of water  for further  Since  salt  interactions  Water s u p p l y  of  the  crops  this  u s e s was  not  evaluation i s  little  of the m o n i t o r i n g  industrial quality  s u r f a c e waters of the and  of chemical  of  i n an  attempt  The  streamflow,  first  s t e p was  c o n c e n t r a t i o n s across a l l sampling  and  sampling  times  segregated  monitoring  hydraulic discharge.  i n these The  indicated  into  areas  sites. groups  third  of  The then  s t e p was  land to  similar results  the  plot  proportions of  the  were p l o t t e d a  use  Secondly,  against  correlation  r e l a t i o n s h i p s between the  o f g e o m o r p h i c m a t e r i a l , and  aid  stations  against hydraulic discharge.  which c o n t r i b u t e d to sampling  ( a n a l y s i s ) which  the  to derive  chemical  t h e w a t e r s h e d was  watershed  g r a p h i c a l ) methods w i t h  geomorphic u n i t s .  character-  Salmon R i v e r  all  type  1958) .  evaluated.  r e l a t i o n s h i p s between w a t e r c h e m i s t r y ,  use,  (Wilcox,  use  c o m p u t e r , were u t i l i z e d  chemical  are  Analysis  the  and  limits  Salmon R i v e r w a t e r s h e d , t h e  (statistical  pattern,  electrical  chemical v a r i a b l e s  p r o p o r t i o n a t e l y very  With completion  several  sensitive  for agriculture  waters r e q u i r e d f o r these  of  above c e r t a i n  i n the  for industrial  development i n the  istics  specific  total  study.  t h e r e was  Statistical  levels,  not  land  concentrations  of  127 chemical was  v a r i a b l e s observed  a correlation  interactions 1.  i n the  The  ( a n a l y s i s ) t o determine the  between c h e m i c a l  variables  fourth  step  general  themselves.  Concentration vs. h y d r a u l i c discharge across a l l s a m p l i n g s t a t i o n s and a l l s a m p l i n g times Computer p l o t s were e x e c u t e d  across plots  a l l sampling do  not  g i v e any  definite  concentrations related  charge.  Examples  total  indications directly  f o r the v a r i a b l e s ,  K j e l d a h l n i t r o g e n and  presented  f o r each chemical v a r i a b l e  s t a t i o n s at a l l sampling  chemical  2.  study.  i n Figures  19,  20,  carbon 21,  of trends  calcium,  described i n a previous  divided  into  stations  on  areas the  field  on  for  similar  s e c t i o n the watershed  c o n t r i b u t i n g to the  basis of topographic  the b a s i s of area  sampling  specific  monitored  were t h e n  discharge  a t the  sampling  breaks.  as  of the  chemical  time  to the r e s u l t s  four  described in  size  the  plotted  time  of  v a r i a b l e s w h i c h had  t o compare w i t h  sampling.  The  c o n c e n t r a t i o n s of each chemical  sampling  versus  ratios,  was  methods s e c t i o n .  Concentrations  of the  are  respectively.  T h e s e c o n t r i b u t i n g a r e a s were s u b d i v i d e d i n t o classes  of  nitrate,  streamflow  Concentration versus Hydraulic Discharge size c o n t r i b u t i n g areas. As  These  to hydraulic d i s -  versus  22  times.  f o r each s i z e of the across  hydraulic discharge.  concentrations related  been  the h y d r a u l i c  results  of the  plots  variable at a l l  o f c o n t r i b u t i n g a r e a were station plots T h e r e a r e no  of  concentration  definite  to hydraulic discharge.  similar  trends  Examples  of of  CD.  10  o o. in  o  9"  if-  Calcium  si  +  (ppm) a  o. m  + + + + +  + 4-  80.0  -|  120.0  Hydraulic FIGURE 19:  +  + n 160.0  - i  200.0  -1  240.0  ~1  280.0  -1  320.0  Discharge ( c f s )  Plot of H y d r a u l i c Discharge ( c f s ) v s . Calcium Across A l l Sampling S t a t i o n s .  Concentration  (ppm) 00  a  o.  03  NitrateNitrogen (ppm)  + + + 80.0  120.0 Hydraulic  FIGURE  20:  + T 160.0  T 200.0  240.0  -I  280.0  ~1 320.0  Discharge ( c f s )  Plot of Hydraulic Discharge ( c f s ) Across A l l Sampling Stations.  vs. Nitrate  Concentration  (ppm)  CM  a.  D ui.  Total Kj e l d a h l  rv-J  Nitrogen (ppm)  +  ±1* r  120.0  Hydraulic FIGURE 21:  + 160.0  200.0  "1  240 :o  -1 280.0  320.0  Discharge ( c f s )  P l o t of H y d r a u l i c Discharge ( c f s ) v s . T o t a l K j e l d a h l N i t r o g e n C o n c e n t r a t i o n (ppm) A c r o s s A l l S a m p l i n g S t a t i o n s  Total Organic Carbon  " °  (ppm)  .0 Hydraulic  FIGURE  22:  320.0  Discharge ( c f s )  P l o t of H y d r a u l i c Discharge ( c f s ) v s . T o t a l Organic C a r b o n C o n c e n t r a t i o n (ppm) A c r o s s A l l S a m p l i n g Stations.  132 p l o t s o f n i t r o g e n , carbon, hydraulic discharge presented  and  f o r each s i z e  Correlation  if  any  of  this  versus  c o n t r i b u t i n g area  1,2,3,4 c o n t r i b u t i n g a r e a s  C o r r e l a t i o n M a t r i x f o r L a n d Use M a t e r i a l versus Concentration.  l a n d use  calcium  are  i n F i g u r e s 2 3,24,25,26,27,28,29,30,31,32,33,34,  35,36,37,38 f o r s i z e 3)  nitrate  relationships  g e o l o g i c m a t e r i a l s and  on w a t e r c h e m i s t r y  was  done by  a n a l y s i s are presented  i n Table  XX.  coefficients  percent  are  at  the  of  0.5139 o r g r e a t e r s i n c e t h e r e were 14  13  degrees of  a)  pH Values  (confidence  level)  The  The  low  considered  results  water  streamflow.  t o be  i f they  between  their influences  computer.  v a l u e s a r e c o m p a r e d a t h i g h and  Correlaton 95  Geomorphic  ( a n a l y s i s ) t o compare t h e  p a t t e r n s and  chemistry  and  respectively.  significant  have  values  observations  and  freedom.  o f pH  were f o u n d  loamy* g l a c i o m a r i n e  and  t o be  significatly  glaciomarine  related  materials at high  to stream-  flow. b)  Oxidation - Reduction  Potential  At high h y d r a u l i c d i s c h a r g e  levels  significantly  related  t o s c h o o l s and  However, t h i s  appears  t o be  than  a true correlation,  explanation  f o r the  c)  Electrical  Specific  Electrical  was  glaciomarine materials.  a spurious  since there  redox p o t e n t i a l  correlation  a p p e a r s t o be  rather no  logical  correlation. Conductivity  c o n d u c t i v i t y was  significantly  correlated  to-J  Total Kjeldahl Nitrogen (ppm) 03  a  $4 -if #+^  o.o  r  4.0  8.0  12.0  Hydraulic  FIGURE  23:  T  16.0 Discharge  T  20.0  +  T  24.0  28.0  (cfs)  P l o t o f T o t a l K j e l d a h l N i t r o g e n C o n c e n t r a t i o n (ppm) vs. H y d r a u l i c D i s c h a r g e ( c f s ) f o r C o n t r i b u t i n g A r e a S i z e 1.  32.0  10  in  Total Organic Carbon (ppm)  ++ +  +  fe 0.0  4.0  +  +  + + a.o  T  12.0 Hydraulic  FIGURE 24:  T  16.0 Discharge  20.0  24.0  28.0  ~1 32  (cfs)  P l o t o f T o t a l O r g a n i c Carbon C o n c e n t r a t i o n (ppm) vs. H y d r a u l i c Discharge ( c f s ) f o r C o n t r i b u t i n g Area Size 1  r\j_  o 03"  NitrateNitrogen  I D  (ppn) C3  I  +  +  +  -+ IN  + ++ -t "40.0  + + + 4.0  8.0  12.0 Hydraulic  FIGURE  25:  P l o t of N i t r a t e Discharge (cfs)  T  16.0 Discharge  T  20.0  24.0  28.0  (cfc)  Concentration (ppm) vs. Hydraulic for C o n t r i b u t i n g Area Size 1.  32  o  U3-1  Calciu n  CD  (ppia)  03  \4 + +  0.0  4.0  + + + ~1  8.0  1  12.0 Hydraulic  FIGURE 26:  1  16.0 Discharge  1  20.0  1  24.0  28.0  (cfs)  P l o t of C a l c i u m C o n c e n t r a t i o n (ppm) v s . H y d r a u l i c D i s c h a r g e ( c f s ) f o r C o n t r i b u t i n g A r e a S i z e 1.  32  O  o.  03  Total Kjeldahl  IX)  Nitrogen (ppm)  20.0  40.0  + ++ + + T 60.0  Hydraulic  FIGURE  27:  T  80.0  Di3charge  100.0 (cfo)  n  120.0  ~l  140.0  ~1  150.0  P l o t of T o t a l K j e l d a h l N i t r o g e n Concentration (ppm) vs. H y d r a u l i c D i s c h a r g e ( c f s ) f o r C o n t r i b u t i n g Area S i z e 2. oJ  rv  Total Organic U3-I  Carbon  +  +  ( P P a)  03'  0.0  + ±+  20.0  + +  + 40.0  T  60.0 Hydraulic  FIGURE  28:  80.0 Discharge  T  100.0  ~1  "I  120.0  140.0  160.0  (cfs)  P l o t of T o t a l O r g a n i c Carbon C o n c e n t r a t i o n s ( c f s ) f o r C o n t r i b u t i n g A r e a S i z e 2.  (ppm)  vs. H y d r a u l i c  Discharge  a ID  + in  t  o  +  +  + ++  Ilitrateo  Nitrogcn.  07'  +  (ppn) a  +  + +  0.0  20.0  40.0  60.0 Hydraulic  FIGURE 29:  80.0 Discharge  71  100.0  n  120.0  ~l  140.0  160.0  (cfs)  P l o t of N i t r a t e - N i t r o g e n C o n c e n t r a t i o n s (ppm) v s . Discharge ( c f s ) f o r C o n t r i b u t i n g A r e a S i z e 2.  Hydraulic  OJ  ID  + +  to in  ++  03  Calcium  o  +  -H-  (ppm)  CN  in  + + IQ  0.0  20.0  40.0  60.0 Hydraulic  FIGURE 30:  60.0 Discharge  1 100.0  120.0  140.0  (cfs)  P l o t of C a l c i u m C o n c e n t r a t i o n s (ppm) v s . H y d r a u l i c D i s c h a r g e ( c f s ) f o r C o n t r i b u t i n g A r e a S i z e 2.  160.0  IN  O  a. m  o to.  Total  o  Kjeldahl Ni  trogen  (ppm)  o  o  ,  0.0  40.0  80.0  4-  rr  +  120.0 Hydraulic  FIGURE  31  1  +  160.0  1  200.0  240.0  -1  280.0  ~1 320.0  Discharge ( c f s )  Plot of Total Kjeldahl Nitrogen Concentration (ppm) D i s c h a r g e ( c f s ) f o r C o n t r i b u t i n g A r e a s S i z e 3.  vs.  Hydrauli  3h  9H o  ++ + +  Total Organic Carb on (ppm)  co-J  40.0  —r eo.  +  + n  120.0  Hydraulic FIGURE  32:  + n  200.0  160.0  -1  .240.0  "~1  .280.0  320.0  Discharge ( c f s )  P l o t of T o t a l O r g a n i c C a r b o n C o n c e n t r a t i o n (ppm) v s . H y d r a u l i c D i s c h a r g e ( c f s ) f o r C o n t r i b u t i n g A r e a s S i z e 3.  NitrateNitrogen  o to'  4  (ppm)  4fF (M  it  +•+ +  +  0.0  + 40.0  80.0  120.0  n  160.0  Hydr a u l i c FIGURE 33:  -1  200.0  ~I  240 .U  -1  280.0  320.0  Discharge ( c f s )  P l o t of N i t r a t e - N i t r o g e n C o n c e n t r a t i o n s (ppm) v s . H y d r a u l i c D i s c h a r g e ( c f s ) f o r C o n t r i b u t i n g A r e a s S i z e 3.  CD 4-  O  ft"  Calcium (ppn)  5 " fM  a  to.  ++ 40.0  +  80.0  4-  120.0 Hyd r a u l i c  FIGURE 3 4 :  ++  +  160.0 Discharge  ~]—  200.0  -| 240.0  —I 280.0  320.0  (cfs)  P l o t o f C a l c i u m C o n c e n t r a t i o n s (ppm) v s . H y d r a u l i c D i s c h r a g e ( c f s ) f o r C o n t r i b u t i n g Areas S i z e 3. 4*  IM  a IM  ID  Total Kjeldahl  IN  N i t ro gen (ppm)  CO  •m  +  +  + a a'  0.0  40.0  80.0  120.0 Hydraulic  FIGURE 35:  T  160.0  1  200.0  —1 240.0  ~I  280.0  320.0  Discharge ( c f s )  P l o t of T o t a l K j e l d a h l N i t r o g e n C o n c e n t r a t i o n D i s c h a r g e ( c f s ) f o r C o n t r i b u t i n g A r e a S i z e 4.  (ppm) v s . H y d r a u l i c  IN  to-I  Total Organic  o  (ppn) ca  o  + rr-  0.0  •4*  1  40.0  80.0  ~i  120.0  Hydraulic FIGURE  36:  160.0  "I  200.0  1  240.0  ~1 280.0  "I  320.0  Discharge ( c f s )  P l o t of T o t a l O r g a n i c Carbon C o n c e n t r a t i o n (ppm) v s . H y d r a u l i c D i s c h a r g e ( c f s ) f o r C o n t r i b u t i n g A r e a S i z e 4.  0 3  ++ NitrateN i t r o ;cn  fM.  (ppm)  03  0.0  +1—  40.0  80.0  120.0 Hydraulic  FIGURE 37:  160.0  ~~I  200.0  240.0  —I  280.0  ~1  320.0  Discharge ( c f s )  P l o t of N i t r a t e - N i t r o g e n C o n c e n t r a t i o n s (ppm) v s . H y d r a u l i c Discharge ( c f s ) f o r C o n t r i b u t i n g A r e a S i z e 4.  fM-1  O-l  C a 1 c i um (ppm)  a to"  + + +  + +  0.0  -4Q.0  80.0  120.0  Hydraulic FIGURE 38:  "1 160.0  I  200.0  _  1  2-40.0  —1  280.0  320.0  Discharge ( c f s )  P l o t o f C a l c i u m C o n c e n t r a t i o n (ppm) v s . H y d r a u l i c D i s c h a r g e ( c f s ) f o r C o n t r i b u t i n g A r e a S i z e 4.  T a b l e XXi  Correlation Matrix;  Land Use and Geomorphic M a t e r i a l s  !  VARIABLE 01 ' 09 40 41 42 43 441 471 48 50 60 70 1 80 LA CA G K LGM CGM B/M.CM G/GM 0 A GM VARIABLE 01 09 40 41 42 43 441 447 48 50 60 70 80 LA CA G M LGM CGM B/M.CM C/GM 0 A GM  C  HI  0.0455 0.2780 ' -0.3315 -0.2556 . -0.2520 0.2106 -0.1327 -0.2075 -0.3265 -0.3500 -0.2258 ! • -0.1283 . 0.6884* -0.0455 -0.2993 -0.4537 -0.0934 -0.3560 -0.2375 -0.1551 *0.4204 -0.2414 -0.2295 0.2364 CA LOU 0.1331 0.3815 -0.0270 0.3927 -0.1724 -0.2879 -0.1855 -0.1224 -0.0213 0.0025 -0.6665 0. 3570 -0.0548 0.1331 -0.1086 -0.0249 0.5434* -0.4291 0.1703 0.5240* 0.2912 -0.0165 -0.0499 -0.3261  :  !  v s . Water C h e m i s t r y .. ' "'V.  '  :  C LOW  N03 HI  N03 LOW  CL  -0.1635 0.5093 -0.4008 -0.2218 -0.0514 0.2470 -0.3777 -0.5300 -0.4032 -0.3942 -0.1560 -0.2956 0.8189* -0.1635 -0.2133 -0.4426 -0.1328 0.3098 -0.3310 -0.1699 0.1738 -0.4644 -0.2197 0.1615  -0.0729 0.4287 0.0001 0.1725 0.4564 0.1488 -0.6077 -0.0853 -0.0032 -0.2116 -0.2758 +0.3621 -0.3944 -0.0729 •0.3309 0.7082* -0.1682 -0.7048 -0.3198 -0.2614 0.1821 -0.2416 0.2473 -0.7488  -0.1266 0.5236* 0.3949 0.3554 0.4630 -0.2398 -0.4916 0.4664 0.3859 0.0493 . -0.2539 0.0373 0.0185 -0.1266 0.5193* 0.7929* -0.1122 -0.6874 -0.2044 -0.1315 . -0.2086 0.0607 0.3846 -0.6921  -0.0236 0.2714 0.0287 0.5055 -0.0041 -0.6756 0.1200 -0.1519 0.0283 0.3876 -0.4236 0.0617 -0.1790 -0.0236 -0.1196 -0.1699 0.7545* -0.3529 0.6218* 0.6981* -0.2282 -0.0817 -0.1037 -0.0968  HI  MG HI  MG LOW  NA HI  NA . LOW  0.3155 0.0566 0.3354 0.6380* -0.0800 -0.5500 0.0276 0.2728 0.3450 0.2555 -0.6568 0.3300 -0.3193 0.3155 0.1284 0.2413 0.6742' -0.6168 0.3554 0.6955* 0.0113 0.4584 0.1944 -0.4294  0.1023 0.1929 0.0989 0.5548* -0.1559 -0.6632 0.1543 0.0341 0.1022 0.3037 -0.5974 0.1205 -0.1435 0.1023 -0.1385 -0.1104 0.7475* -0.3921 0.5604* 0.7864* -0.0500 0.1398 -0.0830 -0.1540  0.3429 0.1745 0.2488 0.6126* -0.0621 -0.7689 0.2021 0.0782 0.2608 0.5324* -0.3751 0.1709 -0.1988 0.3429 0.1040 -0.1291 0.9098* -0.3728 0.6735* 0.8129* -0.3105 0.1471 0.1824 -0.0964  0.0656 0.2058 -0.0730 0.5147* -0.0270 -0.7331 0.2390 -0.1906 -0.0694 0.3989 -0.3224 -0.0699 -0.1422 0.0656 -0.1247 -0.3159 ' 0.7763* -0.2220 0.7018* 0.7495* -0.3170 -0.1262 -0.0823 0.0496  CL  LOW  0.0405 0.2238 -0.1004 0.4775 -0.0248 -0.7267 0.2590 -0.1534 -0.0976 0.3937 -0.2816 -0.0938 -0.1326 0.0405 -0.1326 -0.3111 0.7184* -0.1956 0.7000* -0.7247* -0.3034  -0.1812 -0.0958 0.0726 K HI -0.0664 0.6468* -0.3099 -0.1007 0.0563 0.3650 -0.6585 -0.5008 -0.3095 -0.4248 -0.3842 0.4144 0.1463 -0.0664 -0.0579 0.0946 -0.0685 -0.2765 -0.4266 -0.2016 0.5607* -0.5221 -0.0659 -0.4009  P04 HI  F04 LOW  S04 HI  0.0242 -0.0063 -0.1800 -0.0603 0.2856 0.0704 -0.0976 -0.3083 -0.1764 -0.1767 0.1696 0.1690 -0.0912 0.0242 0.1283 0.1081 -0.0580 -0.0228 -0.1229 -0.1406 0.0755 ., -0.1781 0.1109 -0.0643  -0.2738 0.6157* -0.4475 0.2877 0.3396 -0.2501 -0.3698 -0.3513 -0.4543 -0.2737 -0.3925 -0.2947 0.2696 -0.2738 -0.0342 -0.0045 0.0694 -0.2842 -0.0213 0.0430 -0.0335 -0.5020 -0.1061 -0.2636  0.2835 0.3039 ' 0.0834 0.5616* 0.1464 -0.5060 -0.0226 0.3386 0.0948 0.0901 . -0.3788 0.3982 . -0.2381 0.2835 0.2823 0.3060 0.5437* -0.5313 0.2570 0.4866 0.1263 0.0582 0.3099 -0.3874  K LOW -0.1643 0.5193* -0.3684 0.0929 0.0580 0.1100 -0.4730 -0.5369 -0.3715 -0.3127 -0.4990 0.2228 -0.0007 -0.1643 -0.1822 0.0003 0.1056 -0.3334 -0.1558 0.0489 0.3784 -0.4438 -0.1947 -0.3558  FE  HI  0.4596 -0.4639 0.0153 O.O60O -0.1772 -0.1493 0.5076 -0.0136 0.0339 0.4253 0.6168* . 0.0847 -0.3826 0.4596 0.1623 -0.4220 0.3851 0.3639 0.4153 " 0.3071 -0.4279 0.0648 0.2631 0.4756  FE  S04 LOW 0.1151 0.2418 -0.2819 0.4327 -0.0624 -0.4984 ' 0.0915 -0.3618 -0.2741 0.0678 -0.4476 -0.0653 0.0740 i 0.1151 ': -0.1861 . -0.4044 0.6703* -0.1281 0.4416 0.6635* -0.0474 -0.1613 -0.1179 0.0416  CA HI 0.0441 0.5548* 0.0167 0.3791 . 0.3046 0.0273 -0.6871 -0.0277 0.0183 -0.3256 -0.6506 0:4054 -0.1393 0.0441 0.3048 0.6347* 0.0531 -0.7970 -0.3643 0.0329 0.3382 -0.0587 0.2596 -0.8477 ;  LOW  AL HI  AL LOW  -0.0967 0.0246 0.1445 -0.2548 -0.2187 -0.1771 0.2560 -0.0463 0.1374 0.3380 -0.2097 -0.0889 -0.0323 -0.0967 -0.4408 -0.1451 0.0212 0.0335 0.4167 0.0504 0.1082 -0.1238 -0.3849 0.1784  0.2727 0.2414 -0.1933 0.2346 0.0749 -0.1644 -0.0351 0.0715 -0.1806 -0.0280 -0.0462 0.2357 -0.1670 0.2727 0.2089 0.0517 0.2189 -0.1931 0.0817 0.2737 . 0.1133 -0.2552 0.2473 -0.1449  0.2507 0.0793 0.3356 -0.0006 0.1789 0.0461 -0.2714 -0.1041 0.3423 0.1207 -0.1673 -0.2759 0.3386 0.2507 0.2256 0.0509 0.0064 -0.0825 -0.1174 -0.1813 -0.3196 0.2050 0.2545 -0.1161  •>0  Table XX (con't) PH HI  PH LOW  RDX HI  RDX LOU  DO HO  DO LOW  CND HI  CND LOW  T HI  01 09 40 41 42 43 441 471 48 50 60 70 80 LA CA G M LCM CGM B/M.GM C/GM 0 A GM  -0.6376 -0.0470 -0.2852 -0.4387 -0.2374 0.1887 0.1430 -0.3609 -0.3079 -0.0175 0.1756 -0.5458 0.4082 -0.6376 -0.6013 -0.5875 -0.3004 0.5676* 0.0330 -0.2305 -0.1195 -0.2913 -0.6698 0.5232*  -0.1747 -0.4279 0.2476 0.0295 0.0855 -0.0754 0.2482 0.4170 0.2392 0.1768 0.2718 -0.1504 -0.1919 -0.1747 0.1190 0.1776 -0.1472 0.0501 0.0355 -0.0587 -0.3177 0.3933 0.0464 0.0578  -0.1295 0.0423 -0.0037 -0.5389 -0.3852 0.3051 0.0941 -0.0642 -0.0088 0.0844 0.4106 -0.1556 0.5397* -0.1295 -0.2628 -0.5226 -0.2477 0.6567 -0.1187 -0.3038 0.0038 -0.2147 -0.2501 0.5495*  0.0850 0.0363 -0.1616 0.0626 -0.0889 -0.0611 0.0639 -0.0904 -0.0561 0.0759 0.3263 -0.1972 0.3986 0.0850 0.1247 -0.4419 0.2151 0.3819 0.0119 0.1570 -0.3585 -0.0380 0.1254 0.3484  -0.3988 0.0335 -0.6136 -0.0766 0.0791 0.3042 -0.2125 -0.5738 -0.6239 -0.4955 0.1374 -0.3462 0.1679 -0.3988 -0.1743 -0.2534 -0.3231 0.2358 -0.3371 -0.1710 -0.0296 -0.3421 -0.2554 0.0926  0.0146 -0.0764 0.2347 0.1379 0.1272 -0.1622 0.0077 0.4278 0.2320 0.0746 0.1172 -0.3405 0.1384 0.0146 0.2867 0.2484 -0.2256 -0.0559 -0.0927 -0.1109 -0.3753 0.2785 0.2365 -0.0834  0.1566 0.3379 0.0825 0.6261* 0.1334 -0.4878 -0.1780 -0.0962 0.0890 0.1473 -0.5665 0.3511 -0.2954 0.1566 0.1544 0.1888 0.6990* -0.6388 0.3048 0.6276* -0.0192 0.0445 0.1700 -0.4673  0.0504 0.3654 -0.1138 ' 0.4718 0.0307 -0.4614 -0.0924 -0.2584 -0.1104 0.1348 -0.5278 0.1821 -0.1987 0.0504 -0.0747 -0.0573 0.6146* -0.4469 0.3801 0.5719* 0.0100 -0.1729 -0.0461 -0.2675  -0.1334 0.0641 0.2797 0.1904 0.4022 -0.1771 -0.0964 0.4054 0.2707 0.1552 -0.0221 0.1015 -0.5346 -0.1334 0.3040 0.7501* -0.1843 -0.5653 0.0620 -0.1579 -0.1378 0.0530 0.2081 -0.4874  VARIABLE  ADC LOU  . ALK HI  01 09 40 41 42 43 441 471 48 50 60 70 80 LA CA C M LCM CCM B/M.GM G/GM 0 A CM  -0.0998 0.4873 -0.3099 -0.0572 0.3237 0.6030 -0.8740 -0.4172 -0.3109 -0.7069 -0.3664 0.1945 0.1590. -0.0998 0.1853 0.4009 -0.4165 -0.3753 -0.8041 -0.4918 0.4560 -0.2998 0.1216 -0.6241  VARIABLE  0.2652 -0.1083 0.1631 0.7019* -0.0561 -0.6590 0.2166 0.2247 0.1724 0.2011 -0.6150 0.1137 -0.3031 0.2652 0.0422 0.0896 0.7054* -0.4861 0.4678 0.8065* -0.0762 0.4863 0.1101 -0.2717  T LOW  ADC HI  0.3876 -0.1709 0.1295 0.4361 -0.0194 -0.3886 0.2797 0.2160 • 0.1447 0.2405 -0.1393 0.5389* -0.6154 0.3876 • 0.1674 0.1567 0.6177f -0.3483 0.4199 0.5836* 0.0978 0.2332 0.2466 -0.1645  -0.1201 -0.2036 -0.4547 -0.2901 -0.1470 0.4543 -0.0335 -0.4883 -0.4558 -0.2604 0.2290 -0.2493 0.0212 -0.1201 -0.2570 -0.4298 -0.2918 0.4024 -0.2172 -0.2698 0.0096 -0.2432 -0.2426 0.2853  ALK LOU  HC03 HI  HCO LOW  HRD HI  HRD LOW  DS HI  DS LOW  N HI  0.0229 0.1897 -0.1123 0.5001 0.1393 -0.3812 -0.0970 -0.1938 -0.1103 0.0360 -0.5315 0.2039 -0.4247 0.0229 -0.0154 0.1655 . 0.4730 -0.5662 0.2941 0.4896 0.0483 -0.0430 -0.0059 -0.4056  0.2652 -0.1083 0.1631 0.7019* -0.0561 -0.6590 0.2166 0.2247 0.1724 0.2011 . -0.6150 0.1137 -0.3031 0.2652 0.0422 0.0896 0.7054* -0.4861 0.4678 0.8065* -0.0762 0.4863 0.1101 -0.2717  0.0534 0.1697 -0.0793 0.4590 0.1786 -0.2279 -0.2059 -0.1383 -0.0763 -0.0757 -0.5384 0.3181 -0.4735 0.0534 . 0.0661 0.3257 0.3502 -0.6335 0.1187 0.3646 0.1683 0.0147 ' 0.0688 -0.5286  0.3557 0.2192 0.2527 0.7603* 0.1890 -0.5463 -0.1881 0.2150 0.2646 0.1462 -0.6373 0.3142 -0.3703 0.3557 0.3706 0.4466 0.6075* -0.8041 0.2236 0.6009* -0.0800 0.3229 0.4021 -0.6450  0.1461 0.2230 0.1102 0.5823* . -0.1178 -0.6117 0.0656 0.0446 0.1152 0.2437 -0.6420 0.1943 -0.1760 0.1461 -0.0701 -0.0151 0.7269* -0.4745 0.4760 0.7553* 0.0052 0.1596 -0.0150 -0.2583  -0.0933 . 0.2423 -0.1978 0.4346 0.1598 -0.3322 -0.0171 -0.0653 -0.1973 -0.0211 -0.1017 0.2644 -0.1792 -0.0933 0.0972 0.0017 0.5020 -0.2383 0.2056 0.4221 -0.0033 -0.1577 0.0521 -0.1416  0.0058 0.3900 -0.0485 0.5046 0.0279 -0.5591 -0.0601 -0.2211 -0.0477 0.2080 -0.5600 0.0852 -0.1275 0.0058 -0.0941 -0.0731 0.6494* -0.4492 0.4521 0.6216* -0.0824 -0.1380 -0.0746 -0.2439  -0.1847 0.1160 0.2008 0.1685 0.1821 -0.0832 -0.1246 0.1420 0.1949 0.0428 -0.0672 0.3469 -0.0538 -0.1847 0.1593 0.2332 0.2491 -0.2283 -0.0376 0.1436 0.0394 0.1274 0.0763 -0.2191  :  N LOW -0.3657 0.5549* -0.2935 0.3702 0.5113 -0.1962 -0.5621 -0.5225 -0.3056 -0.2576 -0.5203 -0.1429' -0.0686 -0.3657 0.0557 0.3376 0.0334 -0.6298 -0.0913 0.0465 -0.0883 -0.3810 -0.0595 -0.6000  Table XX (con't) VARIABLE 01' 09 40 41 42 43 441 471 48 50 60 70 80 LA CA G M LGM CGM B/M.GM G/GM  MN HI  • «K CM  -0.2099 0.4317 -0.2430 0.4064 0.8814* -0.1248 -0.6142 -0.1897 -0.2493 -0.3389 -0.1769 -0.2806 -0.1425 -0.2099 0.5213* 0.6904* -0.2790 -0.6724 -0.3188 -0.2687 -0.3209 -0.3048 0.3624 -0.7193  MN LOW -0.1587 -0.6511 -0.0177 0.2580 -0.2669 -0.2225 0.5357* 0.4234 -0.0241 -0.0372 -0.2106 -0.1070 -0.3818 -0.1587 -0.2888 0.0105 0.0856 -0.0064 0.2497 0.4370 0.1020 0.6115* -0.2795 0.0830  SI HI 0.3915 -0.0470 0.3725 0.7974* 0.2858 -0.5766 -0.0401 0.4242 0.3847 0.2413 -0.3940 0.2298 -0.5528 0.3915 : 0.5349* 0.5816* 0.5160* -0.7785 0.2510 0.5382* -0.3047 0.5153* 0.5455* -0.6122  SI LOW 0.1202 -0.1028 0.4564 0.7344* 0.1538 -0.7802 0.2279 0.5872* 0.4568 - 0.3883 -0.4251 -0.0255 - -0.3750 ' 0.1202 0.2677 0.4481 0.5148* -0.6201 0.4881 0.6503* -0.3733 0.5881* 0.2513 -0.3852  LEGEND 01 - single family residential (<1 acre) 09 - low density residential (1-5 acres) 40 - vacant land 41 - f i e l d crops 42 - specialty animal farms 43 - grazing - pasture lands 441 - forested lands 471 - gravel pits 48 - orchards  '  50 - roads 60 - commercial 70 - high density parks 80 - schools LA - loamy a l l u v i a l materials CA - clayey a l l u v i a l materials G - glacial outwash materials M - marine materials 1GM - loamy glaciomarine materials  HI - high hydraulic discharge LOW - low hydraulic discharge PH - pH RDX - oxidation - reduction potential DO - dissolved oxygen CND - specific conductance  cGM - clayey glaciomarine materials B/M.GM - beach overlying marine or glaciomarine materials G/GM - glacial outwash overlying glaciomarine materials 0 - organic materials A - a l l u v i a l materials GM - glaciomarine materials  T - temperature ACD - total acidity Alk - total alkalinity HC03 - total bicarbonate alkalinity HRD - total calcium carbonate hardness DS - dissolved Inorganic substances N - total Kjeldahl nitrogen  S04 - sulfate-sulfate CA - calcium MG - magnesium NA - sodium K - potassium FE - iron  C - organic carbon  AL - aluminum  N03 - nitrate-nitrogen  MN - manganese  CL - chloride P04 - phosphate-phosphorus  51 - silicon * - significant at 95Z level.  152  with  beach m a t e r i a l s o v e r l y i n g marine or  materials  at both  and  crops  e)  field  h i g h and  rates of  at highstreamflow  streamflow  rates.  Temperature Water temperatures  correlated  to high  low  streamflows  a p p e a r e d t o be  density parks,  beach m a t e r i a l s over and  explanations  f o r them.  Total with  marine m a t e r i a l s  g l a c i a l outwash a t h i g h  a p p e a r t o be  Total  significantly  marine or g l a c i o m a r i n e  correlations  f)  low  glaciomarine  spurious  and  materials at flow.  These  s i n c e t h e r e a r e no  logical  Acidity acidity  l a n d use  values  showed no  significant  correlations  o r geomorphic m a t e r i a l s a t h i g h o r  low  stream-  flow. g)  Total Alkalinity Total  and  alkalinity  Total  and  total  Bicarbonate bicarbonate  were s i g n i f i c a t l y c o r r e l a t e d w i t h m a t e r i a l s and  T o t a l Hardness Total  rates of  i)  field  low  glacio-  significantly  c r o p s , m a r i n e m a t e r i a l s and glaciomarine  beach  materials at  streamflows.  Dissolved Inorganic Total  marine  Equivalent)  h a r d n e s s was  m a t e r i a l s o v e r l y i n g m a r i n e and h i g h and  crops,  streamflow.  (Calcium Carbonate  calcium carbonate  correlated with  both  field  alkalinity  beach m a t e r i a l s o v e r l y i n g marine o r  marine m a t e r i a l s a t h i g h h)  Alkalinity  Substances  d i s s o l v e d i n o r g a n i c substances  were f o u n d  to  be  155 significantly  c o r r e l a t e d w i t h m a r i n e m a t e r i a l s and  m a t e r i a l s o v e r l y i n g marine or g l a c i o m a r i n e low j)  beach  materials at  streamflow. Total  Kjeldahl Nitrogen  T o t a l K j e l d a h l n i t r o g e n c o n c e n t r a t i o n s were f o u n d be  significantly  areas k)  a t low  Organic  low  density  residential  streamflow.  Carbon  Organic antly  correlated with  to  carbon  c o n c e n t r a t i o n s were f o u n d  correlated with  These are  likely  s c h o o l s a t h i g h and  spurious  t o be  low  signific-  streamflow.  correlations.  1) N i t r a t e - N i t r o g e n At high streamflow correlated with  n i t r a t e - n i t r o g e n was  g l a c i a l outwash m a t e r i a l s .  f l o w n i t r a t e - n i t r o g e n was density  residential  glacial  outwash m a t e r i a l s ,  m)  areas,  significantly  low  stream-  correlated with  clayey a l l u v i a l materials,  c o n c e n t r a t i o n s were s i g n i f i c a n t l y  w i t h marine m a t e r i a l s , c l a y e y g l a c i o m a r i n e b e a c h m a t e r i a l s o v e r l y i n g m a r i n e and at  both  n)  Acid  h i g h and  low  low  and  correlated  m a t e r i a l s arid  glaciomarine  materials  streamflow.  Digestible-Phosphorus  Concentrations ificantly  o)  At  Chloride Chloride  low  significantly  of acid  correlated with  digestible low  phosphorus are  density residential  sign-  areas  at  streamflow. Sulfate Sulfate  c o n c e n t r a t i o n s were  found  t o be  significantly  15^ correlated with flow.  At  low  field  crops  streamflow  and  marine m a t e r i a l s a t  s u l f a t e was  high  correlated with  beach o v e r l y i n g marine or g l a c i o m a r i n e ,  and  marine,  glaciomarine  materials. p)  Calcium At high  streamflow  correlated with  low  outwash m a t e r i a l s . w i t h m a r i n e and  c a l c i u m c o n c e n t r a t i o n s were  density residential Calcium  was  areas  significantly  b e a c h o v e r l y i n g m a r i n e and  and  significantly glacial  correlated  glaciomarine  materials, q)  Magnesium Magnesium c o n c e n t r a t i o n s were f o u n d  correlated with  field  crops  marine or g l a c i o m a r i n e field and r)  and  t o be  significantly  beach m a t e r i a l s o v e r l y i n g  materials at high  streamflow,  and  with  crops, marine m a t e r i a l s , c l a y e y glaciomarine m a t e r i a l s ,  beach m a t e r i a l s o v e r l y i n g marine or g l a c i o m a r i n e m a t e r i a l s , Sodium At high  streamflow  correlated with  field  s o d i u m c o n c e n t r a t i o n s were crops,  roads,  significantly  marine m a t e r i a l s , c l a y e y  g l a c i o m a r i n e m a t e r i a l s , and  beach m a t e r i a l s o v e r l y i n g marine  or glaciomarine m a t e r i a l s .  S o d i u m was  correlated with  field  m a r i n e m a t e r i a l s , and  also  significantly  crops, marine m a t e r i a l s , c l a y e y beach m a t e r i a l s o v e r l y i n g maring  glacioor  glaciomarine materials, s)  Potassium Potassium  c o n c e n t r a t i o n s were f o u n d  correlated with  low  density residential  outwash m a t e r i a l s o v e r l y i n g g l a c i o m a r i n e  t o be areas  significantly and  glacial  materials, at  high  155 streamflow.  At  low  flow potassium  correlated with  low  density residential  t)  correlated with  were f o u n d  commercial areas  with  l a n d use  or  logic  were f o u n d  specialty  animal  glacial  streamflow.  significantly  correlated  materials,  t o be  at high  rates of h y d r a u l i c  significantly  c o r r e l a t e d with  farms, c l a y e y a l l u v i u m , m a t e r i a l s ,  outwash m a t e r i a l s .  significantly  organic  At  low  c o r r e l a t e d with  and  s t r e a m f l o w manganese f o r e s t e d lands  and  materials,  Silicon Silicon  c o n c e n t r a t i o n s were f o u n d  correlated with glacial  low  field  crops,  t o be  significantly  clayey a l l u v i a l materials,  outwash, m a r i n e , beach o v e r l y i n g marine o r  marine, organic At  at high  significantly  Manganese  discharge  w)  t o be  were n o t  Manganese c o n c e n t r a t i o n s  was  areas,  Aluminum Aluminum c o n c e n t r a t i o n s  v)  significantly  Iron Iron concentrations  u)  was  flows  and  a l l u v i a l materials, at high  s i l i c o n concentrations  correlated with  field  crops,  were  gravel pits,  organic  4.  C o r r e l a t i o n Matrix  marine m a t e r i a l s , materials  materials. o f Water C h e m i s t r y I n t e r r e l a t i o n s h i p s  A c o r r e l a t i o n matrix versus  streamflow.  significantly  beach m a t e r i a l s o v e r l y i n g marine o r g l a c i o m a r i n e and  glacio-  water chemistry  i s presented  (Table XXI).  showing water This  i s an  chemistry  attempt  to  T a b l e XXIt  f >—  DH HI PH LOW RCX HI ODXLOU' OQ HI 0 0 LCW CNO HI CNDLOW T HI T LTW ACQ HI ACPICW ft! K HI ALKLOW HC03HI HT 01 OW HPO HI HRDLOW \n DS 1 N K LOW ^* C HI c 10W  l-l  1  S I 13 NC3L Ow CL Lnw CL P04 HI F04l OW SC«>  HI  S0"-LOW CA HI r * i n-i MG MG  V"  Hi HI NA LOW LOW K HI K LOW HI FE FF LOW u MIr «L AL LOW MN HI i fu 1u SI SI HI LOW y\t  "  nI  Correlation Matrix,  pH Low  pH Hi 1.0000 0.3055 0.6895* 0.4561* 0.<S39* 0.1643 — A 11 r r -o.itie -0.4652 r 71 2 — u . u . t  l.CCOO 0.2869 0.2582 -0.0353 0 . 6 300* - 0 .*-2'-2 -0.5078 0.0136 -0.3327 0.0652 o.'9ee* -0.30f9 -0.0600 -n i r P A 1 . O•* 7A t • 11 "i  Redox Ifi l.OOOC 0.7042*^ 0.3515 0.^157 -0.6549 -0.4827 -0.5735 -T.7579 C.4363* -0.1787 -0.6637 -0.7391 - 0 . 6 6 37 -C.9045 -0.6608 -C.5286  Water C h e n i e t r y v o . Water ChomiBtry  BOX Low ».  1.0000 0.4044 0.4069 -0.3367 -0.3317 -0.664-1 -0.51*0 0.2B39 -0.2493 -0.31 7 -0.5823 -0.3157  •DOrHi.; '  1.0000 0.2898 -0.3020 -0.1487 -0.3500 -0.5569 0.5795* 0.2028 - 0 . 3 331 -0.1868 -0.3331 -0.7356 -0.6"'; 8 -0.4485 -0.2391 -0.3436 -0.3833 - 0 .l*-17 -0.5'31 -0.1C84 -0.396C -0.2827 -0.3171 0 . 3 9 5 6 -C.2721 — A . * V -0.4171 -0.086 8 -a1 C O ft.0173 - P . 3903 rt » /, /. "a '-0.1476 -0.2704 -0.4 5 97 -0.4969 -0 .4231 0.0594 -0.16fc4 CJ'I * 0.3167 0.3140 -it.M-i-B -0.4560 -0.12*7 - 0 . 6 7 u »t> 0.0618 0.2336 C.3516 -0.2368 -0.0726 0.3289 0.4 292* 0.5001* 0.*>76^* -0.36?7 _n A5«%* 0.432C* -0.1661 ' -0.^ 566 -n .53PP —n ?/• ? ? ' - 0 . 1 6 28 -0.0856 -0.1022 0.7*',7 -0.2123 -0.1324 -0.357e —I . J . -0.2772 -0.0930 -0.0386 -0.225P. -0.2U2 -0.3301 0.1240 -0.0851 -0.1737 0.C147 -C.2614 -0.002° C.245 3 -0.0265 • -0.1454 -0.2726 C.Z127 A r ^ ?7 -0."305 -.1.3901 _0 - c c i -0 16 —ft Lft-l — U . - t''' .-- - * -0.0239 -0.0193 -0.3233 -0.5'-97 -0.0296 *0. 1534 -0.549 1 -0.5309 -0.3133 -0.4 3'8 -0.154V -0.3338 -f.3672 -P..5021 -r.2"'4 -0.4263 -0. 26' 1 -0.6043 -0.1227 -0.4496 . -0.2574 -0.25< 3 -C't 15 -0 .36 60 -0.166' -0.3702 _n 1 0 1 3 -0.00t3 -C.3134 — . 2 ( 6 '• -0.09'-7 -0.0174 -C.2e04 -0.2410 0.0160 0.0967 -0.1354 . - 0 . 3 3 6 5 - 0 . ( 142 -G.OE25 0.1275 -0.402 5 1u -f.3067 rt of -0. J976 0.1169 0.477 1*- . 0.3179 0.19)9 -0.3969 -0.6079 -f.2286 -0.3346 -0.7*71 -0.1725 -0.0'-77 -0.206 5 — O.C'51* u. ^ ^ i c -0.2598 0.2726 0.0665 0 .13^4 - 0.0*fcf C f t 72 0.2*93 -1.1770 L . 3 i . r 8 9 0.1827 — fi -0.103* -0.0531 -n.3234 -o./>')r6 r .7P00 -0 -0£ ° -0.32<>9 -0.2832 -0.62<=5 0.1833 -0.5722 -0.3960 -0.2768 -0.6231 0.1576 -C.4592 1  —ft " — U2  U i r  R  —U « 1 1  _A lCt"rflA  1  ^' •* *  -<i?  w  *- * ^- ^- — ~—  ^' — c  u. U-lCC c  e  DO Loir  1.0000 -0.5551 -0.5600 0.0623 •-0.5891 0.0509 -0.2754 -0.2271 -0. 5720 -C.2271 . -0.5762 -0. 1483 -Q.M12 -0.4508 -0.4962 -0.27<U -0.194" -0.1334 -0.0784 - 0 . 7838 0.5032* -0.4377 -0,2^? . - 0.10'3 -0.1222 " 0 . 350* -0.5286 - 0 . 2560 -0.V969  0.2457 -0.3642 -0.230'. -0.346 3 -0.5676 -0.6121 0. 1399 -C. 3959 -0 .On"'6 -O.C0l 0.3*82 0.0967 0.1551 0.19*3 r  CND H i  1.0000 0.9150*0.15 25 0.7016* -0.2414 0.1941 0.76CO*. 0.9101* 0.7699* O.F.7/;5*0.8550*0.9031*0.5319*C.9C22*0.26 91 0.>=7?2*-0.11 08 -0.1648 0.'732* 0 . 05 15 0.6511*P . i t 71 0*-0.0731 0.3134 0. f'Ql*. 0.714.IS*-  0.6 5 5 ' ' * 0.6'9?*-  O.f 506*O.P561* 0.6100* 0.7410* 0.4-725* 0.6676* -0.1151 0 . 2 " 63 0 ,?'-P«-  0.0OB9. 0.06'5  0.0^27 C-.6 06 I*  CND Low .""  T  Hi'  Acid HI  T Low '  N 1.0000 0.0343 0.5673* -0.0370 0.137° 0.70 3 0 * 0.926 4* 0.7030* 0 .6330* 0.739-?* 0.9290* 0.453*.» 0.933 4* 0.023 0.613 )* 0.021 -0 .0248 0.3900 -0.093? 0.923^* 1  -  <-.6 3 ' : - - * R  -0.1"9fi  0.4 76 1* 0 . 5 7 ' •',*0.6?'-7* 0 . 5 7O^i*  0.9?B'i*-  0 .7^7•* 0.°1 V 6 * ('. 611 °* 0.8697* •>. 5 5 6 . ' . *  0.7^6:* -U.OTP 1 0.406 3 0.3"" i - 0 . 1 S3; 0.01^=. 0.0'7, 1 .'•! 5 V  0.32'-'-  < 1.G93D 0.3155 -0.3974 0 . TB67 0.07'R 0.2795 0.0738 0.3770 ;:.2°35 0. 0630 n.0=30 0.0365 -0.0118 0.2249 - 0 . 5 614 -0.640^ 0.^71 5 * 0.6ie'* -0.0416 - i ' . l - 0 .  "'6'i  209 0.0172 ; . ? 7 . n  -0.3*i 6 0.3->71 - 0 . O-'-?: 172'. >-i -0.09' 2 -0.1357 -•.038'- 0 . 0 1--7 -0.-3258 0 . 21'. 1  (.•.  t  -'•.2i:'-i 0 . '•23--' ",iO_Il._ •: . :-3 'h* 0 . so  1.0000 -0.O66 -0.1548 0.603^*  0.6910* 0.6^36 * _ f l . 7_0.7 ^ * :'.S166* 0.C362* 0.<=O  C  P  0.5!7t*  0.2217 O.Of35 - 0.2579 -0.5322 0.7P47 -0.1 0 8 6 0.5096* f'.'-!63 0 . 1' ?•> -0.0631 '.•.739 •* . 0 . 4 ^ ' 6*  0.300° 0 . 5 0 - 3 *  1.0000 0.2879 -0.2947 - 0 . 0 ? 95 -0.2^42 D.2* 26 -0.2201 -0.2207 • ; . i <-0 -0.431"r.0.0260 0.1921 0.1252 !  |  - 3 . ">374.  j  -0.3-' 93-0.1000  •  ,  -0.3-'43 - 0j .. r0 . 315 0 -0.3?22 •0. " " " l l -:.'5tt -3.1311 -^.23 3 3 •'.216: R  - !  C . 6 7.11* .•>. 5 ' '•* — 1 . ' < 9 0.5 7 6 ° * 0.t6f2* -0.06'-e 0.116 2 : .1763 0.2'-' 5 C'."'«6'l 0.0 65 0. -275* 0.2 10 -0.2 ?4 0.2^0! - 0. 1 ? 0 • j .2'-2'•>. ;• 2 3 • 0.215 5 TO.I!07 . . >'-3 3 ' - 0 . * <• 3 ? . $ 3? 9 * - '1 . ? . 9 1 Q4 ecu - ' - . 5 - ' - 6 c  T  Q  C  C  Q  c  M  Table XXI < can't) ;  :  ACDLOW fll K U 1ALKLOw HC03HI Hrni ru HRD HI . HRPLOW o< HI OS LOW N HI N i nu C HI C LOW NO! HI N03L0W CL HI r.t i n u P04- HI PQ4L0W S04 HI SC4-LQW CA HI r.A i ru HC HI  Acid Law ,:. Alk Hi 1.0000 I .noon 0.2170 0.7558* -0.1931 1.0000  l  0.1451 -0.05M n.ntAf 0.0519 O.OE52 0.***•=•* 0.1665 0.23SO a.  0.2069 -0.1390 .p.^PK -0.0216 0.2600  HG LOW  NA HI NA LOM K HI K I nu FE HI FE LOW Al HI AL LOW . MN HI MM i nu SI HI  snow  .  -0.0951 C.6E97*. ().?/i.t. 0.0(J3< -0.1 58C -O.TPie -0.2952 0. 75ft*-r-.f ?ira-0.46 55 -0.2116 -0.07in 0.2296 0.3E43 -0.^475 -0.0231  -0.3677  0.8*06*0.8727*0.-1471 0.7154*0.1146  O.POOfl  -0.1021 -0 .3439 0. OR r.7 -0.06E7 0.7219* -0.0728 0.16f 6 0.61PA* 0.6696* 0.3611 0.6f.^R* 0 .913P* 6.86M * 0.7R??*0.6«65* -0.0113 P .7R15 -0.C31B 0.2326 0.1QPR -0.0699 -0.0312  0.7370* 0.7555*-  Alk Low  HCOjHl  HC0 Low 3  HRD HI  HRD Low  DS HI  l.ODOO 0. /• 01 fi 0.9441* 0.0434  0.44f 5* 0.4177  DS Low  H HI  H low  1.0000  C.755E*  0.0ACA *  0.8016* 0.P748* 0.470** C.R694*  0.0255  0.f,SA9*  -0.1789 -0.2753  O.SM?*  -0.05 3c 0.79P2-* CM.RR* -0.0798 0.3658 • C.5P.74* 0.6P41* 0.66 04 * 0.P491* 0.79P3* C.R330* f,.67^*0.7144*. 0.4986* 0.7575* -0.1609 0.4095 n.?RPi -0.1O01 0.1346 fl.peft-,  C.5587** 0.4451*-  1.0000 0.697ft* 0.8406* 0.8727* 0.3*7* 0.7154* 0.11*6 n.?9oo -0.1021 -0.3439 0.0*.f>7 -0.C6E.7 0.7219* 0.441 A* -0.0738 0. 1686 0.A1F6* 0.6696* 0.3611 O.'R'R* 0.9 138* 0.6601* 0.78??* 0.6965* -0.0113 0.2815 -0.0318 0.2326  0.1C7R  -0.0699 -0.0312 0.5A5** 0.7370*  0.7555*  l .oooo 0.8085 * 0.7630* 0.?AA7 0.7731* : 0.0774 r,. f v, ? * -0.2368 -0.3583 0.69^* 0.C130 0.6530* 0.<7RR* -0.C463 0.2648 0. 7>in* 0.5258* 0.7644* c  O.ROI l *  0.7850* 0.7132 * 0.5',1 9* 0.5289 * 0.5491 * 0.74RD * -C.2340 0.3566 n. 757R -0.1534 0.1-787 0.75R4 0.5935* 0.4175  1.0000 0.8293* n.?^7i 0.7226*. 0.0965 I). 47^0*-0.2715 -0.4051 0.i9AR* 0.2791 0. 6622*o.5?n=* -0.1475 0.16R5 0 .60«0* 0. 46 80*0.7175 * n.76?n * 0. 9 5 0 ° * 0.7662* 0.7''.R? * 0.5671* 0.2697 0.4535* -0.G650 0.1549 0. 3t R'-. 0.0164 0.2286 r,. ?£.BL  0.8P79* 0.68PE*  r-0 .0364 -0. 1292 0.73P2 -0.0208 0.E969*• n. f? e *-0.?'-16 C.3393 0 .6.470* 0.E06 8* C 5 1 P9* c  O.f 927* 0.°°0!> 0-P173* 0. P5f*0.32R3 0.* o1 P* -O.f 9C5  o.'ioe  0. *7?A - 0. 1'- 99 -0.09 19 0 . 5 o. 5 O.f 615* 0.5782* c  —  1.0000, 0.007 9 C: / .» !> *-0.0333 -0.3393 -0.003-V 0.075 c 0.02?6 0.17P7 -0.033-V 0.n65 -O.OP'O A 1* 0.2«:6 5 -0. 197^ - C O ' 2^ tt. *? > t / 0. ?L RO 0. -V936-* 0.8571* 0.0027 0. 518^* C r. f. t 0.12' 1 ii no? - o. nf ? 5* U a '1 0.1 3'-3 0.7'-60* 0.0278 u0.• 943^* ?* 0. 1 3^7 50' J * -0..'27 3 0./-67'. 0. n r o 7 O .5<7/*y " - 0 • 0 0 ° u. -'.1109 -0.2^32 0.43'4* -0.17^8 0.357 3 -0.1756 -0. I15B 0.28<-2 P.0235 0.052 3 1. • i77 •) - 0 .*i7*» R 0.0P21 0.''05 2 0. 134'> O.*0'5  P (*l U.  r VI 0 77 0.2233 0.0032 1D 1 0. * 1 -0.02*4 j m £ £.  1.0000 0.029P  u  U* il Ul  "ii P ? • U. OSl ORt1 A. 0 7073*-ft* O.ro^ 0.109? A 7* i) • "* T Vi (« 0.39?8 O.P05 7*  0 0.1133 0.5737*  1—•  r-J  3-  n. i , ? -U.11559 -0.2R^0 -0 .20? ? -0.20' 5 0.00'-6 Ci "i •a • L 0.1569 0.2057 c  :  c  •  1.0000 -0.1316 0.1343 0.575'- » 0.2593 0.49**-* • 0. 3°97 0.1971 0.i901* 0.15?4 0.'-' 63 0.S4.44 * 0 50 3 6 * 0.3328 o.;-263* 0. 2' 52 :.'>19 0 0.55 79* 0. 0 1 9 * -0.4--72* o.i ess 3.!'^3 -0.0-31 0.1703* -~> . " l " 8 0.?>P5 0. H 9 3 f  7  \1  IS8 U t o* r - <\J  «  •4  <r -o <t «*,]  r-  cr  r-  -o m o ]  C  cn 0 r  m O Ol  "3  C: O  o r-  • * • 41  <*  o  o  u» ct  o *o "4 o r\j|in o  o  iri cJ r-  ro — -4 nj o  O  -  o o|  o  o  0 1  o o c  —• o •  ol  o Ol  o c I  4 I  co  cc col tf- <r j  H tb m m m e n ; <f cc m M o h' s* d ^ o c co aj U i c J o <r o -oar .of rn| IT in]r •~ ;«j ro m so %© m cc m a ~4 <r *-* ^~ (VJ C I m r- o -< <s • • • • ••(••• o o <q H O C | Q O O ) o o o o o q o c o I o o o I  o o o  r-  0>  tn 'O r\j m rd J- CM fvj f J O l a- m M nj m r\j ~ eg (M] O in cc[ r- r- o • • i  ... ood  ooo  *  cu  < i r - o l t-4 o o , si- cc (Nj m m r-J o r- . J *o o o sad 0  1  o  <• <• in) i n  n N d «u r- mj «r o H u\ <r i<u r , O- q m - • CI CM d . 0 o c o o  m O ' cc.-« c*i C<M cj O ^  3-4  o  59  O  I  o  o  c(  r- r*i — o u o s.- cH I— eg |cr- r - u ^> u < C ^ -J ci o, o Ui U. O o o  I  Sxc| _ > c. c  o 1  O l d o <]  I  *  o -< q  O  O CN  o  o c O  • • ^> I  1 « O  I  o c  u  o  4  sj  d  o»  o  o  c  o mH o o ri ooci O c C  o c  •  o  c  CM  tn  N  a  1  I <K r I S O  I  1  • •  o o  a co «>i o m cc c —« rsl <M cJ o r-  py —t wfM - « <J N4 < a rsj <t — U i sO fvj U~. (N n w r<*J w r~ o  >  r-  r- oi  ca ^ O N  O C o  u.  rn m —< r".[ oiT\ oo df\ c o d i». >»• f- I I O rr  ~ a; r~r\. -a- n. om 4i < c rsj O f v UJ CO -O  o  S 4 ^c*  *  l-  *  If  o o  i/- m r - >o  o o d I i r  ^  -"»< 00*r*J M  —» tr. r im c o  fxj i r  ^  o o -  1 I  H r-: •o <f r . . < r- CM o o d c o d o o d in. LT«. I oo  -1 o o ir\  00  q0 o o 1 I I  i V  co  q r - a i H »o a- c d o c .  ooq  n  ^ Ki  m o* Hro rn . « oo H o d o o d coa| I i  cA I  ill  ^4 UI o co  CD 111 vO ^ "Xi i*^ o | < ?• a»—« m o —. o O w-1 ^  -ij a  I  t- o  rr]  •5  C ro cc! C - o - o  o o  I  I  o •£> r-|sO  1  ^ (\ H O r<\ a. r-| m m o -c m -< o ^ ^ J • • • o o a o o « o o al  © o O O P I  c" o q I  "i  m o *o o m o uo r- cr m o C H CO CM m  I  o o IN IM o Hm  ^  r-  O  I I  m m m o m m m m m m • « • o O O O o o I ir  I I  •H Ed  1  I  nodood  o o-  C\  a*  o o o|0 o  ci  OIMOOI o r"i r-  1  CM  ooq  CC s0|C'  m  H i - i ^ c\i -T * " (7 i nJ o c| « • C. O ' O O P I  f\i  m o  cr  o o  q oooj o o o( 0 o m co  *o  r-  q I  - i O C\j|  T  • • •  * « «l  co  o <J o m u\ C N C ^ • •  o — o o  m  o c d  o o o O O o; O C d I l I I I I I  o  O  m in H  Csj <M (Nil  o cc o <A  u .  o l C- -T o <-• o o ^  O crt IT. f M O m O 0 CO <JJ culm m c\jj m c, 1  o^  O fM|  J t n -T (n|  H  coo  S3  o c>  * *  •T co r-| • o x - ar—j m o ml H O C  1 n i O. -* r c. o o  r-*  j  u\ m  (T-  CL' |-  o o n  o l o o c j «\ o c r< d r ~A i c c  c  o  IT. CC o  m tr mi m o C  si r-  r\j r - m)  * * , ^ ml m <\J|  cor.  O — <M • • •  co o |  iC nC ro si-  CI »*>' 4 N •  o l r. cn  m  0> —|  u  o  — IT  tt> m m] .-. a. C C J-\ O m • • * o o c  m m c r - -» eel  o o o o  eg rg i*v n  r"1 O  u. o mo c — O' * y• a* d — - J CNI «  .  oooj c o q o o I I I  X C IJ  u; ai J UL. IX <d  ^  o H s, o r- CM o o  O PI  73 ft  X  o  show some o f t h e complex variables. observed to  interactions  From t h i s m a t r i x  between t h e c h e m i c a l  i t i s evident that  f o r chemical water q u a l i t y  are intimately  o t h e r c h e m i c a l s p r e s e n t i n t h e system  not monitored  i n t h i s study.  including  The c o r r e l a t i o n  w h i c h a r e s i g n i f i c a n t a t 95 p e r c e n t c o n f i d e n c e 24 v a r i a b l e s  o r 23 d e g r e e s  v a l u e s g r e a t e r than c o r r e l a t i o n matrix  related chemicals  coefficients level  o f freedom a r e those which  0.4200 a n d a r e a s t e r i s k e d table.  the r e s u l t s  i n the  over have  SUMMARY I n summary, i t a p p e a r s  that there  r e l a t i o n s h i p s between a g r i c u l t u r a l materials, The  and water  types  forested shed. as  general  Agricultural  lands  i n t h e Salmon  classes;  agricultural,  ( i n t e n s i v e and e x t e n s i v e ) and  occupy t h e major p r o p o r t i o n o f t h e water-  Intensive agricultural  uses i n c l u d e  field  crops  s t r a w b e r r i e s , r a s p b e r r i e s , a n d some c o l e c r o p s ;  ultural  u s e s i n c l u d e hobby  developments The  (>4 h e c t a r e s )  f o r e s t e d lands  with  residential  (<0.4 h e c t a r e s )  very  o f the watershed.  schools,  roads,  (0.4 - 2 h e c t a r e s ) areas  small areas  In m o n i t o r i n g the  surface  and high  high  streamflows  density  occupy p r o p o r t i o n a t e l y  Miscellaneous  commercial areas  l a n d uses  and s p e c i a l t y  such  animal proportion-  o f t h e watershed. some o f t h e c h e m i c a l  r u n o f f o f t h e Salmon R i v e r  were i n d i c a t e d .  lands.  Low d e n s i t y  f a r m s s u c h a s t h e V a n c o u v e r Game Farm a l s o o c c u p y ately  rural  acreages  no m e r c h a n t a b l e t i m b e r .  developments  agric-  some h a y a n d p a s t u r e woodlot  such  poultry  Extensive  farms o r s m a l l a c r e a g e  residential  little  feedlots.  a r e predominantly  containing essentially  Mean v a l u e s  across  characteristics of some g e n e r a l  a l l sampling  (>50 c f s o n d a y sampled)  oxidation-reduction potential,  than  trends  stations at  f o r those  v a r i a b l e s m o n i t o r e d were c o n s i s t e n t l y h i g h e r for  River  d e n s i t y urban, and m i s c -  f a r m s , d a i r y f a r m s a n d some b e e f  as  l a n d use, geomorphic  o f land use p r e v a l e n t  low d e n s i t y urban, h i g h  ellaneous.  simple  chemistry.  watershed a r e o f f i v e forest,  a r e no  chemical  low f l o w s  and d i s s o l v e d oxygen  concentrations. specific  At  low  electrical  streamflows  conductivity,  t h e mean v a l u e s f o r  temperature,  total  bicarbonate a l k a l i n i t y ,  total  total  dissolved  Kjeldahl  carbon,  solids,  nitrate-nitrogen,  were c o n s i s t e n t l y for  chloride,  h i g h e r than  some c h e m i c a l v a r i a b l e s  b o t h h i g h and of  total  total  low  There  was  data t a b l e  as n i t r a t e s  flows.  T h i s was  at station  aluminum, manganese, and  IV,  and  some s a m p l i n g  the  extended  these  3,  ponding  ( P l a t e XV)  rivers  effect  than a stream  such  and  c a n be  of the  these  near  1 and  throughout  Fort  lower  a t these  become more o b v i o u s .  have  partially  immediate  environs  sites.  Salmon R i v e r a t s t a t i o n s  two  showed  chemicals  2 i s ponded f o r t h e y e a r by  t h e dyke w h i c h h o l d s b a c k t h e F r a s e r R i v e r a t t h e of  specific  stations  8, manganese a t s t a t i o n  a general description  periods  point  10.  of the water sampling The  silicon.  at specific  consulting  i n the preceeding d i s c u s s i o n  e x p l a i n e d by  at  sulfate  Some o f t h e p r o b l e m s w i t h w a t e r q u a l i t y w h i c h surfaced  However,  t r u e f o r mean v a l u e s  higher concentrations of certain at station  potassium  t h e mean v a l u e s were s i m i l a r  a s c e r t a i n e d by  i n Appendix  consistently  calcium  s o d i u m , and  however, c o n s i d e r a b l e v a r i a t i o n  s a m p l e s a s c o u l d be  hardness,  nitrogen, organic  phosphate-phosphorus,  c a l c i u m , magnesium, i r o n ,  alkalinity,  calcium carbonate  t h o s e a t low  streamflows.  acidity,  total  pH,  Langley.  reaches  times  and  T h i s was  Because o f  r e a c t more l i k e  the water q u a l i t y  shown by  a gate  on  confluence this a lake problems  the p r e s e n c e  of  algal  lt>2  Plate XV:  Ponded water o f Salmon River a t Station 2 near Rawlinson Crescent  Ifc3  blooms i n t h e s e r e a c h e s o f t h e r i v e r ,  particularly  i n July,  August and September. At  station 3 part  alleged  t o serve  to T r i n i t y station  o f the stream  a s sewage h o l d i n g  Western C o l l e g e  i s also  lagoons o r water  (Plate XVI).  f e d by s t o r m  This  r u n o f f water  upland  areas  areas,  w h i c h have d r a i n a g e d i t c h e s  tributary  i s p o n d e d by l a g o o n s  emptying  chemical concentrations  explain  residential  into the small  j o i n s t h e Salmon R i v e r  T h e s e two f a c t s p a r t i a l l y  sampling  f r o m some o f t h e  t o t h e w e s t w h i c h a r e low d e n s i t y  stream which  reservoirs  a t s t a t i o n 3.  some o f t h e a n a m a l o u s  observed a t t h i s  with n a t u r a l l y e x i s t i n g contributions  from  i n combination  the marine  materials.  This  could  correlation  that  a p p e a r s t o be r e l a t e d t o t h e s c h o o l  use  the s p u r i o u s . s t a t i s t i c a l land  class. Sampling  at  also explain  site,  sites  relatively  contributed use  f a c t o r s and g e o l o g i c  point  Therefore  areas.  i n the stream  These s i t e s  from lands materials  have w a t e r s  w h i c h have s e v e r a l affecting their  i ti s difficult  land  water  t o d i s t i n g u i s h any  sources o f water q u a l i t y degradation  from these  drain-  areas. Sampling  area  undisturbed  which d r a i n  chemistry.  age  4,5,6, a n d 7 a r e l o c a t e d  s t a t i o n 8 i s on a s m a l l  o f low d e n s i t y  of poultry  residential  production  drainage area.  units  stream which d r a i n s  development w i t h  interspersed  T h e s e two i n t e n s i v e  land  an  concentrations  t h r o u g h o u t t h e same use p r a c t i c e s  Plate XVT:  Lagoon serving T r i n i t y Western College a t Glover Road  l o c a t e d on c o a r s e explanation  these  loadings  High  give  i n this  some  concentrations  suspended sediment  storms,  loads  stream.  However,  station  extending  f o r expanded  9 has had a g r e a t  right  study. deal  of grazing  down t h e s t r e a m b a n k t o t h e w a t e r .  T h i s has r e s u l t e d i n t h e e r o s i o n o f t h e streambank during  high  evidence  streamflows.  (Plate XVII).  Also  this  o f accumulations o f automobile bodies  g a r b a g e i n t h e s t r e a m and a l o n g indication  of the o r i g i n  i n t h e Salmon R i v e r a t h i g h  area  where more r e s e a r c h station  the banks.  flows  particularly area has  and o t h e r  This  g i v e s an  o f some o f t h e s u s p e n d e d  load  Sampling  were  were n o t m e a s u r e d a c c u r a t e l y , a n d c o u l d  i n d i c a t e an a r e a  Sampling pressure  site.  noted, during  therefore  outwash m a t e r i a l s  t o some o f t h e a n o m a l o u s c h e m i c a l  observed a t t h i s visually  textured  sediment  and i n d i c a t e s an  i s needed.  10 was l o c a t e d o n a s m a l l  ephemeral  s t r e a m w h i c h h a d a f a r m w a t e r r e s e r v o i r l o c a t e d on t h e s t r e a m j u s t upstream  from t h e sampling  Because o f t h i s during  site.  r e s e r v o i r the stream  t h e summer months, a l t h o u g h  (Plate  XVIII).  f l o w was v e r y  i ti s likely  small  that  w o u l d be no w a t e r i n t h e s t r e a m a t t h a t t i m e w i t h o u t reservoir. on  This  r e s e r v o i r appeared  t h e q u a l i t y o f w a t e r downstream Sampling  t o have p r o f o u n d f o r the period o f  there the effects monitoring.  s t a t i o n s 11 a n d 12 were l o c a t e d on e p h e m e r a l  s t r e a m s w h i c h were d r y d u r i n g m o s t o f J u l y , A u g u s t , a n d September.  This  fact  helps  t o e x p l a i n some o f t h e a n o m a l i e s  Plate XVTI:  Salmon River a t s t a t i o n 9 during high streamflow showing streambank erosion  Plate XVIII:  Reservoir on t r i b u t a r y of Salmon River a t sampling s i t e 10 near Richardson Crescent  168 observed  i n the c h e m i c a l v a r i a b l e s measured a c r o s s a l l  statons. Sampling  stations  of predominantly with  14 a n d 15 a r e t h e r e s u l t  agricultural  the n a t u r a l l y  occurring  chemicals can e x p l a i n  areas.  of drainage  This fact  i n combination  geologic material derived  some o f t h e r e s u l t s  observed  a t these  sites. Data  d e r i v e d from  indicated  collection  a significant  the watershed.  not in  i n p u t o f many c h e m i c a l  precipitation factors to  However, due t o l a c k o f u n i f o r m d a t a on t h e  volume o f p r e c i p i t a t i o n period  o f atmospheric  entering  the watershed  of monitoring calculations  seem r e a l i s t i c .  Although  during the  of the actual  loading d i d  the concentrations of chemicals  t h e p r e c i p i t a t i o n were g e n e r a l l y indicates  s i g n i f i c a n t both  t o t h e s t r e a m w a t e r and t o t h e l a n d .  sediment  and s o i l s  a general indication  i n p u t s from  this  that  were m e a s u r e a b l e  Bed  that  low t h e f a c t  they  source are  chemical c h a r a c t e r i s t i c s  give  o f t h e amounts a n d d i s t r i b u t i o n o f  the v a r i o u s c h e m i c a l s i n these m a t e r i a l s and thus the potential from  for deterioration  o f water q u a l i t y  the i n p u t o f p a r t i c u l a t e matter  erosion An  into  resulting  streams  via soil  mechanisms. evaluation  o f the chemical c h a r a c t e r i s t i c s  sampling  station  a t each  relation  t o p u b l i s h e d water q u a l i t y  major water q u a l i t y which exceeded  point,  problems.  o f each  i n time, of sampling, i n criteria  The f i v e  the water q u a l i t y  revealed  chemical  guidelines  five  variables  included  pH,  temperature, manganese.  phosphate-phosphorus,  more a c i d  than  the suggested  8.5, f o r a l l e v a l u a t e d u s e s o f w a t e r .  w a t e r s u p p l i e s a n d t o some e x t e n t at  copper,  A v e r a g e v a l u e s o f pH a t s a m p l i n g  were s l i g h t l y to  iron,  specific  locations  during  fish  and  station  limits  1  o f 6.5  For drinking  spawning  low s t r e a m f l o w s  temperatures  exceeded the  a c c e p t a b l e g u i d e l i n e s o f 1 5 ° C f o r d r i n k i n g w a t e r and 1 2 . 8 ° C for  spawning  exceeded  fish.  the p r e s c r i b e d l i m i t  at a l l sampling trations  Phosphorus  stations  the  f o r stations  limit.  except at  except  limit  station  on a l l o c c a s i o n s  12.  and t h e average  concen-  exceeded the  values  f o r low  1, 3, 4, 5, 9, 10 and 15 a l l e x c e e d e d  Manganese c o n c e n t r a t i o n s a t a l l s a m p l i n g  once d u r i n g t h e i n t e r v a l  concentrations  at five  o c c a s i o n s exceeded  sampling  of monitoring.  stations  However, t h e s e  exceed  0.015 mg/1.  limit  Copper  on s i x s e p a r a t e limit  o f 0.01  c o n c e n t r a t i o n s as measured d i d n o t  Graphs o f c o n c e n t r a t i o n v e r s u s of sophistication  r e l a t i o n s h i p s between  stations  acceptable  the prescribed acceptable  mg/1.  levels  Iron  sites  12 e x c e e d e d t h e p r e s c r i b e d 0.05 mg/1  least  three  digestible)  o f 0.065 mg/1  on some d a y s a t some s a m p l i n g  0.30 mg.l a c c e p t a b l e flows  (total acid  streamflow  at  r e v e a l e d no s i m p l e  streamflow  and d i r e c t  and c h e m i c a l  concentrations. Correlation ificant types  (analysis)  correlation  indicated  t h a t t h e r e was  between some t y p e s  sign-  o f l a n d u s e a n d some  of geologic materials, independently  or i n combination,  with the chemical c h a r a c t e r i s t i c s of the surface the  Salmon R i v e r .  significant  materials  showing  c o r r e l a t i o n with chemical variables  include  glaciomarine,  The m a j o r g e o l o g i c  marine, beach o v e r l y i n g marine o r g l a c i o -  m a r i n e , and g l a c i a l land  include  residential of  outwash m a t e r i a l s .  use showing s i g n i f i c a n t  variables  land  waters o f  use a l s o  c o r r e l a t i o n with  agricultural field  areas,  S p e c i f i c types of  and s c h o o l s .  crop areas,  Other m a t e r i a l s  showed s i g n i f i c a n t  chemistry v a r i a b l e s , but those  chemical low d e n s i t and t y p e s  correlations with  listed  above o c c u r r e d  water most  frequently. Correlation measured g i v e ship  a n a l y s i s between t h e c h e m i c a l  a general  variables  i n d i c a t i o n of the intimate  among some o f t h e c h e m i c a l  relation  variables.  CONCLUSIONS The  foregoing  shown t h a t River  of data  and d i s c u s s i o n h a s  some p r o b l e m s w i t h w a t e r q u a l i t y i n t h e Salmon  w a t e r s h e d do e x i s t .  problem iron,  presentation  The f a c t o r s w h i c h p r e s e n t  s o f a r a r e pH, t e m p e r a t u r e ,  c o p p e r , and manganese.  phosphate-phosphorus,  Indications  are that  p r o b l e m s do n o t a r i s e s o l e l y f r o m a g r i c u l t u r a l l a n d from g e o l o g i c  materials,  outwash m a t e r i a l s ; schools;  as w e l l  In order  such as g l a c i o m a r i n e  low d e n s i t y  residential  s o u r c e s more d e t a i l e d i n f o r m a t i o n of  detailed i.e. daily,  surface  point  land  use bu  use;  and  crops.  and n o n - p o i n t  i s required  water  these  and g l a c i a l  as from a g r i c u l t u r a l f i e l d  to indentify specific  the  i n t h e form  sampling,  detailed  171 groundwater  sampling,  several  times  o f t h e y e a r , and  d e t a i l e d monitoring o f the streamflow stream,  or selected  c o u l d be c o n d u c t e d From t h e b a s i c problem  areas  sites.  o f each  A l s o suspended  t o compare w i t h  sediment  the r e s u l t s  information presented c a n be s e l e c t e d  tributary  i n this  f o r further  studies  of this  study  study.  potential  study.  INTERIM SUGGESTIONS i  Assuming t h a t forthcoming to  further detailed  some i n t e r i m  study w i l l  o r "stop-gap"  n o t be  s u g g e s t i o n s a r e made  h e l p a m e l i o r a t e the present problems as envisaged  author.  These a r e g e n e r a l s u g g e s t i o n s and s p e c i f i c  would r e q u i r e o n - s i t e ability 1.  of specific  areas  solutions.  fields  soil  e r o s i o n from  and s t r e a m b a n k s .  such  include contour  land, b u i l d i n g  o f s m a l l t e r r a c e s o r l a n d dams t o  o v e r l a n d f l o w and i n c r e a s e  building runoff,  s m a l l storm  shelter  on s l o p i n g  infiltration,  runoff reservoirs  to contain the  and r e - v e g e t a t i o n o f streambanks.  Re-vegetate summer  plowing  Some  open  measures might  reduce  2.  by t h i s  e v a l u a t i o n t o d e c i d e on t h e a p p l i c -  Implement m e a s u r e s t o r e d u c e agricultural  immediately  streambanks.  T h i s would h e l p t o reduce  low f l o w t e m p e r a t u r e s , for fish  reduce  soil  extent  storm  would p r o v i d e  p o p u l a t i o n s , and might even  some help  e r o s i o n o f s t r e a m b a n k s , a n d t o some runoff  (Ricca e t a l , 1970).  172  3.  Improved  s u r f a c e r u n o f f water i n s m a l l  for better reducing  regulation  the  impacts  of h y d r a u l i c of storm  and  attached impurities  would h e l p reduce quality fish  way  as t o be  the  stream.  to prevent  of reduced  d u r i n g storm  t h e s e w o u l d be with  low  flows  supplement  reg-  (Chamberlin,  i n such  utilization  and  streams  dairy  during  dumping i n t o  (Robbins,  on  high  flows  T r y a p p l y i n g t h e manures t o a g r i c u l t u r a l  This  water  engineered  wastes i . e . p o u l t r y  them w a s h i n g i n t o  flows  This  allow better  fish  (Also r e g u l a t e d i r e c t  fertilizer  out.  discharge with reduced  compatible  Impound a n i m a l  runoff.  to settle  i n c r e a s e d or maintained  Ideally  thus  allowing particulate  I t would a l s o  of hydraulic  f l o w s and 1975).  impacts  i n urbanized areas  populations.  ulation  4.  the  discharge  flows, i . e . high  o f h i g h c o n c e n t r a t i o n w a s t e s , by matter  reservoirs  a  of  manure storm streams).  l a n d as  HOwells, K r i z ,  i s p r e s e n t l y b e i n g done i n some a r e a s o f  a  1972). the  watershed. 5.  Keep g a r b a g e o u t o f t h e  Certainly  this  i s an  incomplete  available  to help minimize  ulations,  but  these  are  streams!  the e f f e c t s  m a n i p u l a t i n g the  of the  o f and  some common s e n s e  p e n s i v e ways o f m a i n t a i n i n g s t r e a m otherwise  list  and  l a n d use  manip-  relatively  water q u a l i t y  watershed.  possibilities  and  flow  inexwhile  173 BIBLIOGRAPHY A r m s t r o n g , J . E . , 1957 S u r f i c i a l G e o l o g y o f New GSC p a p e r 87-5  Westminster  A r m s t r o n g , J . E . , 1960 S u r f i c i a l G e o l o g y o f Sumar M a p - A r e a , GSC p a p e r 59-9, map 44-1959  Map  Area,  B.C.  B.C.  B r i t i s h C o l u m b i a D e p t . o f H e a l t h S e r v i c e s and H o s p i t a l I n s u r a n c e , 1969 Recommended W a t e r Q u a l i t y S t a n d a r d s Div. o f P u b l i c H e a l t h E n g i n e e r i n g , H e a l t h Branch B r i t i s h Columbia Dept. o f L a n d s , F o r e s t s and R e s o u r c e s , 1975 Records o f water l i c e n c e s . Unpublished. R i g h t s Branch, Burnaby, B.C.  Water Water  B h o o j e d h u r , S., 1975 A d s o r p t i o n and Heavy M e t a l P a r t i t i o n i n g i n S o i l s S e d i m e n t s o f t h e Salmon R i v e r A r e a , B.C. PhD t h e s i s , UBC, D e p t . o f S o i l S c i e n c e  -  C a n a d a D e p t . o f N a t i o n a l H e a l t h and W e l f a r e , 1968 C a n a d i a n D r i n k i n g W a t e r S t a n d a r d s and O b j e c t i v e s C a n a d a D e p t . o f T r a n s p o r t , 1941 t o 1970. Monthly Record. M e t e o r o l o g i c a l O b s e r v a t i o n s i n Canada. M e t e o r o l o g i c a l Branch C a r r o l l , D., 1962 R a i n w a t e r as a C h e m i c a l A g e n t o f G e o l o g i c P r o c e s s e s A Review. USGS W a t e r S u p p l y P a p e r 1535 G (17632) C h a m b e r l i n , T., 1975 P e r s o n a l communication Chapman, H.D., Methods o f University Sciences.  P.F. P r a t t , 1961 A n a l y s i s f o r S o i l s , P l a n t s and W a t e r s of C a l i f o r n i a , D i v i s i o n of A g r i c u l t u r a l pp. 150-160  E g g l e s t o n , J . , L.M. L a v k u l i c h , 1973 G e o m o r p h i c U n i t s , S l o p e s , and S o i l D r a i n a g e Maps o f Salmon R i v e r W a t e r s h e d ( s c a l e 1:50,000) u n p u b l i s h e d . Westwater Research Agency, U n i v e r s i t y o f B r i t i s h Columbia  E n v i r o n m e n t C a n a d a , 1971 t o 1975 Monthly Record. M e t e o r o l o g i c a l O b s e r v a t i o n s i n Canada. Atmospheric Environment S e r v i c e E n v i r o n m e n t C a n a d a , 1974-1975 M e t e o r o l o g i c a l Data f o r m e t e o r o l o g i c a l s t a t i o n s a t M i l n e r a n d A l d e r g r o v e , B.C. Atmospheric Environment S e r v i c e s , D.O.E., V a n c o u v e r , B.C. U n p u b l i s h e d Data E n v i r o n m e n t C a n a d a , W a t e r Management S e r v i c e , I n l a n d W a t e r s B r a n c h , 19 72 G u i d e l i n e s f o r W a t e r Q u a l i t y O b j e c t i v e s and S t a n d a r d s . Technical Bulletin #67 F i s h e r , D.W., A.W. G a m b e l l , G.E. L i k e n s , F.H. Bormann, 1968 A t m o s p h e r i c C o n t r i b u t i o n s t o Water Q u a l i t y o f Streams i n t h e H u b b a r d B r o o k E x p e r i m e n t a l F o r e s t , New H a m p s h i r e W a t e r R e s o u r c e s R e s e a r c h , V.4, #5, p p . 1115-1126. Fox,  W.M. , 1966 Products of S o i l Erosion i n A g r i c u l t u r a l E f f l u e n t In: A g r i c u l t u r a l Waste W a t e r s , R e p o r t #10, U n i v . of C a l i f o r n i a T  F r i e d m a n , G.M., E . G a v i s h , 1970 C h e m i c a l Changes i n I n t e r s t i t i a l W a t e r s f r o m S e d i m e n t s o f L a g o o n a l , D e l t a i c , R i v e r , E s u a r i n e and S a l t Water M a r s h and Cove E n v i r o n m e n t s . J . Sedimentary P e t r o l o g y , V. 40, #3. H a l l , K., 1974 P e r s o n a l communication. Westwater R e s e a r c h U n i v e r s i t y o f B r i t i s h Columbia  Agency,  H a l s t e a d , E.C., 1957 Groundwater Resources o f L a n g l e y M u n i c i p a l i t y , GSC W a t e r S u p p l y P a p e r #327, C a n a d a D e p a r t m e n t M i n e s and T e c h n i c a l S u r v e y s  B.C. of  H a l s t e a d , E.C., 1959 Groundwater Resources o f M a t s q u i M u n i c i p a l i t y , GSC W a t e r S u p p l y P a p e r #328, C a n a d a D e p a r t m e n t M i n e s and T e c h n i c a l S u r v e y s .  B.C. of  J a c k s o n , M.L., 1958 S o i l Chemical A n a l y s i s . Englewood C l i f f s , N.J.  Prentice & H a l l , Inc., p . 160 ( p h o s p h o r u s ) .  K r o n e , R.B., 1966 The R o l e o f S u s p e n d e d M i n e r a l S o l i d s i n W a t e r Q u a l i t y . In: A g r i c u l t u r a l Waste W a t e r s , R e p o r t No. 10, U n i v . of C a l i f o r n i a L a v k u l i c h , L.M., e t a l , 1974 M e t h o d s o f S o i l A n a l y s i s , P e d o l o g y L a b o r a t o r y , U.B.C. Dept. o f S o i l S c i e n c e , U n i v e r s i t y o f B r i t i s h Columbia L o e h r , R. , 1972 A n i m a l Waste Management - P r o b l e m s a n d G u i d e l i n e s f o r Solutions. J . E n v i r o n m e n t a l Q u a l i t y , V. 1, #1, p p . 71-78 Luttmerding, H.A. S o i l R e s o u r c e s o f t h e L a n g l e y - V a n c o u v e r Map A r e a (9 3G/S) B r i t i s h C o l u m b i a . B.C. D e p a r t m e n t o f A g r i c u l t u r e currently i n preparation, unpublished McKee, J . E . , and H.W. W o l f , e d s . , 1965 Water Q u a l i t y C r i t e r i a . S t a t e o f C a l i f o r n i a , The Resources Agency o f C a l i f o r n i a , S t a t e Water Resources C o n t r o l Board, P u b l i c a t i o n #3-A McQuaker, N.R., 1973 A L a b o r a t o r y Manual f o r t h e C h e m i c a l A n a l y s i s o f Water, W a s t e w a t e r , and B i o l o g i c a l T i s s u e s . Chemical Laboratory Water R e s o u r c e s S e r v i c e s , Dept. o f Lands, F o r e s t s , and Water R e s o u r c e s (metals.) M i n e r , J.R., 1970 A g r i c u l t u r a l ( L i v e s t o c k ) Wastes. pp. 1171-1179  JWPCF  V.  42,  #6,  M i n t y , D., 1975 P r e s e n t L a n d Use - L a n g l e y P r o p e r t i e s F o l i o f o r t h e B.C. Land Commission. G e o g r a p h i c D i v i s i o n , B. C. G o v e r n m e n t , E n v i r o n m e n t and L a n d Use C o m m i t t e e S e c r e t a r i a t N o r t h c o t e , T.G., 1973 P e r s o n a l communication. Animal Resource E c o l o g y , U n i v e r s i t y o f B r i t i s h Columbia O l s e n , S.R., L.A. Dean, 1965 Phosphorus. I n : C A . B l a c k , (ed) , M e t h o d s o f S o i l A n a l y s i s , P a r t 2, C h e m i c a l a n d M i c r o b i o l o g i c a l P r o p e r t i e s , #9 i n Agronomy S e r i e s Am. S o c . o f Agronomy, I n c . Pub. M a d i s o n , W i s c o n s i n , p p . 1040. P a c i f i c Northwest Area P o l l u t i o n Water Q u a l i t y O b j e c t i v e s  Control Council,  1966  17fc P e a r s o n , F . J . , D.W. F i s h e r , 1971 Chemical Composition o f Atmospheric P r e c i p i t a t i o n i n the Northeastern United States. USGS W a t e r S u p p l y P a p e r , 1535 p (15497) P e e c h , M., 1965 Hydrogen - I o n A c t i v i t y  I n : B l a c k p p . 922-92 3  R i c c a , V . T . , P.W. Simmons, J . L . M c G u i n n e s s , E . P . T a i g a n i d e s , 1970 I n f l u e n c e s o f L a n d Use on R u n o f f f r o m A g r i c u l t u r a l W a t e r s h e d s T r a n s a c t i o n s o f t h e ASAW, V. 13, #1 R o b b i n s , J.W.D., D.H. H o w e l l s , G . J . K r i z , 1972 Stream P o l l u t i o n form Animal P r o d u c t i o n U n i t s . Journal o f W a t e r P o l l u t i o n C o n t r o l F e d e r a t i o n , V. 44, #8 Runka, G.G., C.C. K e l l e y , 1964 S o i l S u r v e y o f M a t s q u i M u n i c i p a l i t y a n d Sumas M o u n t a i n . P r e l i m i n a r y R e p o r t #6 o f t h e Lower F r a s e r V a l l e y S o i l S u r v e y w i t h s o i l map o f M a t s q u i M u n i c i p a l i t y a n d Sumas M o u n t a i n , S c a l e 1" - 2000 f e e t . B.C. D e p t . o f A g r i c u l t u r e , K e l o w n a , B.C. S i e v e r s , D.M., G.L. L e n t z , R.P. B e a s l e y , 1970 Movement o f A g r i c u l t u r a l F e r t i l i z e r s a n d O r g a n i c I n s e c t i c i d e s i n Surface Runoff. Trans. ASAW, V. 13, #1, p p . 323-325 S p r o u t , P.N., H.A. L u t t m e r d i n g , 1966 S o i l Survey o f Langley M u n i c i p a l i t y and Barnston I s l a n d . P r e l i m i n a r y R e p o r t #7 o f t h e Lower F r a s e r V a l l e y S o i l S u r v e y w i t h s o i l map o f L a n g l e y M u n i c i p a l i t y a n d B a r n s t o n I s l a n d , s c a l e 1" - 2000 f e e t . B.C. D e p t . o f A g r i c u l t u r e , K e l o w n a , B.C. S y l v e s t e r , R.O., 1960 N u t r i e n t C o n t e n t o f D r a i n a g e Water from F o r e s t e d , Urban, and A g r i c u l t u r a l A r e a s . T r a n s . Seminar on A l g a i - M e t r o p o l i t a n Wastes. U.S. P u b l i c H e a l t h S e r v i c e , R.A. T a f t S a n i t a r y E n g . C e n t r e , C i n c i n n a t i 26, O h i o T a r a s , M.J., A . E . G r e e n b e r g , R.D. Hoak, a n d M.C. Rand ( e d ) , 1974 S t a n d a r d Methods: f o r t h e E x a m i n a t i o n o f Water and Wastewater. 13th e d i t i o n , American P u b l i c H e a l t h A s s o c i a t i o n , A m e r i c a n W a t e r Works A s s o c i a t i o n , W a t e r Pollution Control Federation, p . 50, 52,178, 524, 530, 535 The  C o r p o r a t i o n o f t h e T o w n s h i p o f L a n g l e y , 1970 Z o n i n g b y l a w , 1970, number 1302, a s amended b y b y l a w numbers 1380 a n d 1428. The C o r p o r a t i o n o f t h e Township o f L a n g l e y , 1973. E x i s t i n g B u s i n e s s Z o n i n g Amendment ( D e v e l o p m e n t A r e a ) B y l a w , 1973, number 1441  177 U n i t e d S t a t e s , F e d e r a l Water P o l l u t i o n C o n t r o l A d m i n i s t r a t i o n , 1968 Water Q u a l i t y C r i t e r i a . Report o f the N a t i o n a l T e c h n i c a l A d v i s o r y Committee t o t h e S e c r e t a r y o f t h e I n t e r i o r Westwater, 1971 P r e s e n t L a n d Use Map o f Salmon R i v e r W a t e r s h e d 1:50,000). unpublished.  (Scale  W i e b l e , S.R., 1970 U r b a n D r a i n a g e as a F a c t o r i n E u t r o p h i c a t i o n . In: Eutrophication: Causes, Consequences, C o r r e c t i v e s , o f Symp. N a t . Academy o f S c i e n c e s , p 383-403  Proc.  W e i d n e r , R.B., A.G. C h r i s t i a n s o n , S.R. W i e b e l , G.G. Robeck, 1969 R u r a l Runoff as a F a c t o r i n Stream P o l l u t i o n . J o u r . Water P o l l u t i o n C o n t r o l F e d e r a t i o n , V. 41, #3, pp. 377-384 W i e n s , J . , 1973, 74, 75 P e r s o n a l communication W i l c o x , L.V., 1958 Water Q u a l i t y from the S t a n d p o i n t o f I r r i g a t i o n . A m e r i c a n W a t e r Works A s s o c . J o u r n a l V. 50, p. 650-654 * E n v i r o n m e n t C a n a d a , W a t e r Management S e r v i c e , I n l a n d W a t e r s B r a n c h , 19 74, 1975. H y d r o l o g i c d a t a f o r Salmon R i v e r a t 72nd A v e n u e , L a n g l e y , B.C. Unpublished data.  ^ppani^v  T,  Salmon River a t 72nd Avenue, Langley  DAILY DISCHARGE iTTtUBlC  t-LfcT PER SbCOMt) FOR 1974 / i  9  7  .  5  DAY  JUN  1 2 3 a  22.4 34.6 60.S 131 84.5  8.9 9.9 12.9 13.8 10.t  7.5 7.0 7.0 6.9 6.9  7.2 7.4 7.6 7.3 7.9  8.7 10.6 8.5 7.9 8.4  6 7 8 9 10  50.2 34.3 27.6 23.5 19.8  9.2 8.2 8.2 16.9 23.9  6.6 6.8 6.8 6.8 6.8  7.3 7.2 7.7 14.0 9.1  7.7 7.6 7.5 7.3 7.6  7.4 9.0 7.3 16.0 16.5  83.0 91.0 57.0 89,0 135  11 12 13 14 lb  17.8 16.0 15.2 14.1 13.4  15.6 25.9 15.6 12.7 11.8  6.7 7.5 7.7 8.0 8.2  7.7 7.3 7.3 7.1 7.1  7.7 7.4 6.9 6.7 6.6  14.6 60.5 22.2 14.2 10.9  16 17  12.6 11.9 11.2 10.5 10.0  12.3 16.8 14.9 12.9 11.1  7.2 7.2 7.2 6.0 8.4  6.9 7.0 6.7 6.4 6.5  6.2 6.3 6.2 6.7 7.8  9.6 24.5 67.7 66.2 193  158 104 157 204 264  10.1 10.1 9. 1 8.7 8.5  10.4 10.0 9.0 8.7  7.8 7.S 9.3 8.8 8.3  6.5 6.8 6.5 6.5 6.6  7.1 6.3 6.1 7.0 5.9  131 56.3 55.8 74.5 51.7  431 118 64.2 52.6 96.2  106 12/ 300 132 , , 83.4  9.5 10.7 10.6 10.0 9.2  8.4 8.2 8.2 8.2 7.8 7.7  6.0 7.9 7.6 ' 7.2 7.0 7.0  6.5 6.5 6.7 6.6 6.6  5.8 8.3 7.7 6.2 5.8 6.5  33.7 26.9 22.5 21.0 18.7  116 108 61.6 73.5 92.6 54.6  62.3 47.2 39.5  IB 19 20 21 22 2a 25 2b 2/ CO  29 30  !  11  JUL  AUG  9.4  •  SEP  OCT  NOV  DEC  6.7 6.4  6. 1 5.9 6.7  -  JAN  FEB  73.0 66.4 59.5 71.3 159  39.4 37.0 34.5 31.2 28.2  128 J 81.9 OH | O  E E E E E  145 78.2 138 92.9 53.6  25.7 27.8 26.2 26.3 51.6  53.8 ui i <; «* • J 46,7 57.2  220 E 77.8 64.9 61.6 fib.O  46.3 46.6 51.4 55.2 46.4  53.5 5b. 4 158 134 88. 7  16.1 21.7 27.9 89.0 E 74.0 E  47.6 390 40/ 18/ 180  68.1 61,6 68.4 203 195 9b.4 7 6.6 158 ' 222 120 97.6 93.7 90.0  41.6  TOTAL  717.6  367.6  231.6  218.7  223.0  1063.5  3371.3  2368,9  MEAN AC-FT  23.9 1420 151 8.5  11.9 729 25.9 7.7  7.5 459 9.3 - 6.6  7.3 434 14.0-  7.2 442 10.6 5.8  35.4 2110 193 5.9  109 6690 431 16.1  84.6 4700 222 25.7  MA X  MIN  B-ICE CONDITIONS  6.4  E "ESTIMATED  MAR 126  1 Xfl  « >°  <19  I  *  Appendix II. DAILY PRECIPITATION (cm)DATA, MAY, 1974 TO MARCH 1975 AT MILNER, B.C. Day of Month I May  June  July  August  September October Noventer Decanter January February 1974  1975  1975  0.25  0.08  cm —  1.  0.15  0.96  0.15  0  0  0.99  0  0.51  2.  0.05  0.28  0.08  0  0  0  0  0.33  3.  0.41  0.03  0  2.06  1.93  0  0  0  0  1.40  0.94  0  0.66  0  0  0  0  0.64  0.30  1.47  0  0  0.43  0.38  0.53  0 0.51  4. 5.  0.74  0  0  0  0  6. 7.  1.65  0.02  0  0  0  0  0.68  1.14  0.15  0.74  0  0.02  0  0  0  0  0  1.90  8.  0.48  0  0  1.37  0 2.21  0  2.72  0.61  0.15 '  0.18  9. ••. 10.  0.74  0  1.55  0 0.05  0.05  2.06  0.84  0.05  2.29  0.13  0  0.15  0  0  0.38  0.36  2.56  11.  0  0  0.86  0  0.43  0  0  0.02  4.98  0  12.  0.10  1.60  0.05  0  0  0  0  0.25  0.51  13.  0.46  0.84  2.77  0  0  0.48 0  0  0  0  1.07  14.  0.23  0  0.28  0  T  0  0  0  0  0.30  15.  0'  0.46  0.13  0  0.13  0  0  0  0.13  1.65  16.  0.13  2.44  0  0  1.27  0  0  0  0.20  0.58  17.  3.91  0.08  0.36  0  0.10  0  0  0  3.25  1.24  18.  2.24  0  0.36  0  0  0  0  0  0.79  1.19  0  0.94  19.  0  0  0  0.08  0  0  2.94  2.31  20.  0.28  0  1.68  0  0  0  0  0  2.13  21.  4.06  0  0  0  0.25 •  0  0  0  0  0  22.  0  0.71  0  0  0  0  0.46  0  0  0.84  0  3.78  0.05 1.68  23.  0.68  0  0  0.56  0  0  1.17  24.  T  2.82  T  0  0  0  0  0  0.33  1.37  0.08  25.  0.30  0  0.20  0  0  0  0.05  0  0.30  26.  0  0.20  0  0.53  0  0 0.25  0.33  0  1.30  0  0  0.10  27. 28.  0.58  0  0  0  1.50  0  T  0.25  0.03  0  0  0  0.36  0  0.61  0 0  0.58  0  0 0  0.20  0.15  0.08  0  0.74  0.05  0  25.83  17.22  o*  29.  T  0  0  30.  0.76  0  0 0.51  0.23  0  0  0  0  0.33  7.19  1.57  3.02  4.67  31. : Total  11.99  5.56  21.84  0  16.74  /So  Appendix II.  DAILY PRECIPITATION (cm) DATA, MAY 1974 TO MARCH 1975 AT ALDERGROVE, B.C.  Day of Month May —  June  July  August September October November December January February  —  1975 1975  1974  cm  1.  0.76  1.27  0.15  0  0  1.14  0  2.  0  0.23  0.10  0  0  0  3.  0  2.72  1.85  0  0  0.28  4.  0  0.28  T  0  T  5.  0.58  T  0  0  6.  2.13  0.03  0  0  7.  0.84  0  0.03  0  8.  0.05  0  1.75  0  9.  0.74  0  1.40  10. 11.  0.13  0  0.99  12.  0.64  0.23  0.08  0  0.36  0.48  0.13  0  1.37  0.90 •  0  0  0.58  0.46  2.54  0  0  0.76  0.41  0.08  0  0  0  0.79  1.04  0.08  1.02  T  0  T  0  3.15  0.66  2.08  0  0.56  0.79  0.03  0.36  0  0.05  0.08  2.62  0.99  0.20  2.31  0.13  0  0.05  0.33  0.41  2.87  0  0.03  0  2.90  0  0  0  5.05  0  2.67  2.41  0.20  0  0  0.08  0  T  0.18  0.66  0.20  13.  1.22  0  0  0  0  0  0.03  1.12  0.03  3.45 0.08  14.  0.53  0  0  0  0  0  0  0.30  0.10  0.18  15.  0.41  0  T  0  0  0  0.18  1.88  0.18  2.06  16.  0  0  1.04  0  0  0  0.30  0.81  3.89  0.03  17.  0.03  0  0.05  T  0  0  3.20  2.13  2.26  0.53  18.  0  0  0.10  T  0  0  0.68  1.17  T  1.22  0  0.76  3.12  2.24  0.38  1.42  0  0  19.  0  0  0  0.10  20.  0  0  0  0  0.  T  2.61  4.06  21. 22.  T  0.03  T  0  0  0  T  0  T  0  0.91  0  T  0.25  0  0  0.79  0  3.61  0.05  23.  0.94  0  " 0  0.33  0  0  1.60  0.03.  0.03  1.91  24. .  2.69  0  0  T  0  0  0.18  1.40  0.13  0  25.  0.30  0.30  0  0  0  0.03  0  0.64  0  0.05  26.  0  0.48  0  0  0.28  0.28  0  1.02  0  0.08  27. 28.  0 0  0.10 T  0 0  0 0  T  1.04  0  0.25  0.61  0.08  0  T  0  0.61  0  0.61 0  2 9  -  30. 31. -  0  0  0  0  0  0  0  1.37  T  0.38  0  0  0  0.71  0.30  0  T  0  0  0  o  0.05  TOTAL 13.84  5.44  9.50  0.76  0.36 3.18  4.60  1.18 23.70  29.72  0.25 22.00 18.72  Appendix I I I : Some Generalized Selected Chemical and P h y s i c a l Properties o f Geomorphxc Units Based on S p e c i f i c S o i l Survey Data from Luttmerding anl Sprout (1966). GEOMORPHIC UNIT A - Alluvium sA sandy alluvium  SOIL UNITS INCLUDED  TEXTURE (surface meter) >1/3 f i n e sandy loam to gravel  G  • G - G r e v e l l - Orthic Regosol Horizon CI C2  cgj  C3  Texture s fs s s  Depth cm  _E2-  0-22.5 22.5-30 30-55 55+  7.1 7.3 7.4 7.4  Organic T o t a l C:N Matter Nitrogen Ratio % % 0.2 0.4 0.7 0.2  0.02 0.02 0.04 0.01  LA - Loamy Alluvium  7.5 11.9 10.1 9.2  PI  P2  ppm  ppm  2.5 2.2 .2.5 2.2  71 106 57 54  Ca  Mg -meg/1OOg-  5.3* 8.0* 4.4 0.8 3.6*  0.2 0.2 0.1 0.1  F,HD,HJ,HT,PE,PR  5.2 5.7 5.7 5.7 5.9 5.7  5.5 2.2 0.9  0.25 0.12 0.05  12.4 10.4 10.5  16.0 13.5 16.5 9.5  29 27 29 23  0.1 0.1 0.1 0.1  4.3 7.8 5.7 3.5  100.0 100.0 94.7 100.0  > 2/3 s i l t y clay loam to very f i n e sandy loam  F - F a i r f i e l d - Gleyed Gray Brown L u v i s o l Ap sil 0-17.5 cgjl s i l 17.5-27.5 cgj 2 sil 27.5-45 cgi sil 45-75 H C g l f s - f s l 75-100 Cg2 sil 100+  Cation Base Exchange SaturaCapacity t i o n %  3.38 1.80 2.12 4.39  2.65 0.36 0.67 1.35  0.05 Tr Tr Tr  0.09 0.06 0.09 0.08  23.5 13.8 10.7 11.4  26.3 16".l 26.9 51.1  0 3 0 2  59 3 39*8 In'i  13 3 3S*2 ll'l «*?  HD - Hazelwood - O r t h i c Humic G l e y s o l Ap AB Btg Cg IICg2  sicl sicl sic sicl Is  * Ca + Mg  0-22.5 22.5-35 35-60 60-72.5  4.8 5.1 5.2 5.5  25.3 11.6 2.6 1.1  0.98 0.32 0.10 0.06  16.0 20.0 13.8 11.4  21.3 6.3 4.4 4 1  41 12 11 21  5.5 10 1 11 8 7 1  1.8 3 6 52 f'fi  0.3 0 1 0 2 S'?  o't  90+  5.9  1.1  0.06  11.2  5.4  24  3.1  2 0  Tr  0.1  VI  HJ - Hjorth - Orthic Humic G l e y s o l  Horizon  Texture  Depth  pH  Organic T o t a l Matter Nitrogen %  cm Ap Cgl Cg2 Cg3 Iigg  s i c l 0-20.0 s i c l 20.0-37.5 s i c l 37.5-57.5 s i c l 57.5-92.5 fs-lfs 92.5+  5.5 5.9 6.0 5.9 5.8  C:N Ratio  PI  P2  %  Ca  Mg -mqg/lOOg-  _£pm_  9.2 2.6 0.7  0.38 0.14 0.05  14.0 11.3 8.3  14.0 10.0 24.5 18.5  38 21 42 33  46.6 58.8 27.9 34.2 28.3 61.7 21.1  1.39 1.62 0.81 0.87 0,63 1.13 0.48  19.3 21.0 19.9 22.6 25.9 31.5 25.1  32.5 7.0 3.5 3.0 3.5 4.0 6.5  81 15 23 19 23 12 63  5.3 1.0 0.6 0.6  0.27 0.07 0.04  11.4 8.4 9.2  27.0 19.0 7.0 8.5  181 34 15 23  Na  Cation Exchange Capacity  Base Saturation %  2.07 1.68 1.32 1.18  0.40 0.09 0.05 0.05  0.11 0.15. 0.09 0.10  33.3 21.2 11.6 10.6  20.9 31.5 52.9 53.3  0. 72 0.26 1.59* 0.89 0. 71 1.27 5. 4610. 72 3.82 1.56 6. 77 2.50 • 9.53  0.15 0.09 0.05 0.08 0.14 0.07 0.06  0.22 0.20 0.22 0.15 0.17 0.33 0.30  68.1 87.5 66.2 . 62.0 61.1 79.5 46.0  2.0 2.2 2.8 11.2 24.3 11.0 26.9  1.20 1.36 1.60 1.26  0.31 0.31 0.32 0.15  0.10 0.10 0.09 0.16  24.7 17.4 15.2 12.3  18.5 36.6 49.2 56.6  4.38 4.75 4.67 4.32  HT - H a l l e r t - Rego G l e y s o l muck 22.5-7.5 4.0 muck 7.5-0 4.2 s i c l 0-32.5 4.5 eg F s i muck 32.5-45 4.9 LSCg peat s i 45-77.5 5.0 L peat 77.5-107.5/4.9 Cg&L peat- 107.5+ 5.1 sicl Hp H  PE - Page - O r t h i c Gleysol Ap sicl sicl cgl eg 2 sicl Cg3 sil Cg4 fsl Cg 5 sil IlCg f s - l f s  0-17.5 • 17.5-32.5 32.5-47.5 47.5-65 65-85 85-97.5 97.5+  5.2 5.5 5.5 5.7 5.7 5.7 5.7  -  -  -  -  -  -  --  -  -  2.96 4.60 5.46 5.39  --  --  -  --  --  --  PR - P r e s t - Rego G l e y s o l  Horizon L-H Cgl Cg2 HCg  Texture  sicl sic lfs  Depth cm  pH  7.5-0 0-25 25-45 45-67.5  4.5 5.4 5.7 6.4  Organic T o t a l C:N Matter Nitrogen Ratio %  68.2 4.3 2.5 0.9  %  0.23 0.13 0.11  cA - clayey Alluvium  11.0 11.2 4.6  PI  P2  ppm  ppm  25.4 5.4 4.7 3.8  50 100 147 90  Ca  1  Mg  K -meg/lOOg-  6.6 8.2 6.7 4.0  2.9 5.0 5.6 3.0  1.3 0.4 0.3 0.1  AN,CV,KZ,RS,WL  %  0.2 0,2 0.2 0.2  36 .4 24 .4 17 .5 7 .0  30.2 56.6 73.1 100.0  > 1/3 c l a y to sandy c l a y  AN-- Annis - Rego Gleysol (Humic phase) Hp muck 25-5 5.2 1.77 56.5 FH muck 5-0 4.7 94.9 2.44 sicl '0-10 5.1 cgl 8.8 0.32 Cg2 sicl 10-20 5.4 0.10 1.8 cg3 sicl 20+ 6.1 0.04 0.5  19.1 22.5 15.6 11.0 8.4  50.3 11.8 8.3 7.5 4.4  78 18 25 23 54  cv - Carvolth - Rego Humic G l e y s o l sicl 1 Ap -sil 8.9 O-'AO 5.6 AC sicl 10-22.5 5.6 6.0 s i c l 22.5-37.5 6.0 cgl 2.5 cg2 s i c l 37.5-62.5 6.4 1.1 cg3 sic-c 92.5+ 6.4 1.1 6.4 0.9  12.7 12.0 11.0 9.7 8.4 9.4  17.3 15.1 13.6 17.0 37.5 60.1  35 30 24 29 71 102  0.40 0.29 0.13 0.64 0.74 0.55  Na  Cation Base Exchange SaturaCapacity tion  26.7 12.5 14.4 11.3 11.8  7.13 4.99 5.29 4.48 5.89 5.11  3.3 2.3 4.8 ,5.7 2.6  0.3 0.2 0.2 0.2 0.1  0.3 0.2 0.3 0.6 1. 0  86.6 125.5 47.5 31.0 . 20.2  2.36 1.51 3.03 2.70 4.69 5.41  0.15 0.07 0.06 0.06 0.09 0.10  0.24 30.8 0.19 27.8 0.65 . 24.3 0.86 16.1 1.10 21.6 1.29 20.6  35.3 12.1 41.5 57.4 70.4  32.1 24.3 37.2 50.3 54.5 57.8  KZ - R a t z i c - O r t h i c Humic G l e y s o l  Horizon  Texture  Depth  pH  _ Ap sicl Ah s i c l - s i c Cgl sic Cg 2 sic Cg3 sic-c Ca4 sic  0-20 20-37.5 37.5-55 55-80 80-107.5 107.5+  Organic T o t a l C:N Matter Nitrogen Ratio ;  5.5 6.5 5.7 5.9 6.1 6.3  % 14.2 5.0 1.1 0.9  -  —  % 0.75 0.22 0.07 0.05  -  —  11.0 13.2 10.0 10.3  —  PI  P2  ppm  ppm  16.7 12.2 6.1 6.8 7.8 7.8  33 18 9 11 35 28  Ca  Mg  K  Na  Cation Exchange Capacity  meg/lOOg  Base Saturation %  7.29 7.34 9.81 12.67 11.44 11.96  1.10 2.13 4.56 6.16 8.27 7.56  0.23 0.07 0.08 0.1 0.1 0.1  0.14 0.14 0.17 0.3 0.2 0.2  50 .2 38 .1 24 .4 29 .3 27 .5 28 .2  18.7 26.2 58.2 68.3 70.5 72.3  1.4 1.9 4.2 8.9  0.2 Tr 0.1 0.1  0.2 0.3 0.5 0.5  37 .4 23 .3 17 .9 24 .1  20.1 36.1 68.2 91.7  8.2 9.4 12.5 10.3 4.9  0.1 0.1 0.2 0.1 0.1  0.2 0.2 0.4 0.2 0.3  36 .0 37 .6 36 .2 28 .6 22 .4  53.3 63.2 74.5 68.5 54.9  RS - Ross - Rego Gleysol Ah AC Cgl eg 2  sil 0-22.5 s i l 22.5-32.5 s i c l 32.5-55 sic 55+  4.7 5.3 5.4 6.2  12.4 1.8 0.5 0.5  0.63 0.15 0.04 0.04  11.4 6.9 8.0 8.0  22.0 48.0 15.0 7.5  -  5.7 6.2 7.4 12.6  0.44 0.17 0.12  13.1 15.0 16.0  12.7 12.6 6.3 3.5 2.5  40 35 17 7 9  10.7 14.1 13.9 9.0 7.0  —  WL - Westlang - Rego Humic G l e y s o l Ap CA Cgl Cg 2  cg3  sic 0-15 c 15-35 ' c 35-57.5 c 57.5-85 s i l - s i c l 85+  5.8 5.8 6.0 6.0 5.8  9.9 4.3 3.2 '-•  -  -  -  -  G - G l a c i a l Outwash AD - Abbotsfotd - Orthic Humo F e r r i c Podzol Horizon  Organic T o t a l Matter Nitrogen  Texture cm  L-H Bfcol Bfcc2 B£cc3 8110 Ilol IIe2  1 1 si la B a  2.5-0 0-12.5 12.5-27.5 27.S-42.3 42.5-67.5 67.3-BS  es+  %  8.1 5.7 5.7 5.7 6.0 9.9 6.0  89.8 3.0 1.3 l.S -  -  C:M Ratio  --  P2  PI  ppm  %  1.71 0.07 0.05 0.04  >l/3 f i n e sandy loam t o g r a v e l  AD,CL,LH,LY,MH  30.4 24.1 15.3 21.1 • -  32.5 18.0 14.5  -  Ca  -  Na  1.25 0.69 0.69  •  0.15 0.13 0.06  •- - -  Base Saturation %  -meg/lOOg-  ppm 86 34 38  K  _M3_  Cation Exchange Capacity  0.05 0.05 0.09  -  14.8 10.2 10.8  -  -  9.8 8.5 7.4  *•  —  CL - Columbia - Orthic Humo F e r r i c Podzol L-H Bfl Bf2 Bf3 BC CI C2 LH  -  si si ls-s s s g  3.8-0 0-12.5 12.5-30 30-47.5 47.5-60 60-75 75+  5.3 5.7 5.8 5.8 6.0 6.2 6.1  46.5 4.4 1.7 1.0  0.81 0.11 0.06 0.03 0.01  34.0 22.0 16.2 18.6  51.0 142 40.5 86 37.5 44.5 116 _  -  0.94 0.40 0.26 0.39  -  0.58 0.32 0.19 0.12  -  0.06 Tr Tr Tr  0.06 0.05 0.05 0.05  -  —  17.0 9.6 6.6 2.6  9.7 8.0 7.6 21.5  —  Lehman - Orthic Humic G l e y s o l  L-H - 2.5-0 Ah s i l 0-15 AC s i l - 1 15-25 I l C g l g s l - g l s 25-42.5 IICg2 gs 42.5-90 IICg3 gs 90+  4.8 4.7 5.4 5.8 6.0 6.0  98.3 20.1 3.1  1.93 0.62 0.16 0.04 0.02  29.4 18.6 11.0  3.5 5.5 13.0 13.5  17 19 33 24 _  1.85 0.67 0.53 _  0.43 0.19 0.18 0.51* —  0.16 Tr Tr Tr —  0.28 0.11 0.06 0.06 .  —  43.5 27.9 6.1 2.4 —  6.2 3.5 12.6 23.8 **"  LY - Lynden - Orthic Humo Ferric Podzol  Horlzon  Tex-' ture  L-H Ae Bfl Bf2 BC CI C2  Is Is la ga ga 6  Depth cm  pH  5.0-0 0-1.9 1.9-22.5 22.5-45 45-55 55-72.5 72.5+  5.1 4.2 5.6 5.9 6.0 6.0 6.0  Organic' T o t a l C:N Matter Nitrogen Ratio X X . 1.53 0.07 0.06 0.03 0.01  58.3 3.7 2.6 1.0 0.3  K Na me g/100 g--  Cation Exchange Capacity  Base Saturatlon X  PI ppm  P2 ppm  Ca  Mj>  22.0 30.5 24.2 18.6 15.9  15.5 47.0 26.5 49.5  25 92 54 118  1.01 0.61 0.39 0.26  0.15 0.25 0.25 0.19  Tr 0.05 0.05 Tr  0.05 0.05 0.05 0.05  11.9 11.3 5.6 3.0  10.2 8.5 13.2 16.7  23.8 20.3 15.3 12.1 13.7 13.1  46.0 6.5 5.0 5.0 7.0  148 45 39 43 50  2.16 0.75  0.62 0.11 0.46* 0.46* 0.46*  0.18 0.08 0.05 Tr Tr  0.12 0.06 0.05 0.05 0.10  22.2 16.1 9.9 9.1 11.2  13.9 6.2 5.7 5.6 5.0  • MH - Marble' H i l l - Orthic Humo Ferric Podzol L-H BfK Bfl Bf2 CB C  czi't IlCl IIC2  all sil sil ell sil gsl 8  gs-  2.5-0 0-25 25-30 30-42.5 42.5-50 50-77.5 77.5-85 85-120 120+  4.7 5.5 5.6 5.7 5.8 5.7 5.7 5.9 5.8  60.2 7.0 3.4 1.5 1.2 0.9  1.46 0.20 0.12 0.07 0.05 0.04  • M -' Marine BR - Berry - Gleyed Fodzolic Gray Luvisol Ap Bf Bfg CB Cgl Cg2 Cg3 Cg4  sil-cl sil-cl cl-c cl-c c c c c  0-20 20-32.5 32.5-47.5 47.5-62.5 62.5-77.5 77.5-97.5 97.5-117.5 117.5+  6.1 6.2 5.5 5.3 6.2 6.0 7.2 7.6  7.2 2.9 1.2 0.5 0.5  0.29 0.13 0.06 0.03 0.03  >l/3 clay to sandy clay  BR,» CD, MR 14.4 12.4 12.7 11.3 9.7  9.0 3.2 3.7 2.1 1.6 1.0 1.0 3.1  16 11 5 3 34 202 229 230  6.47 2.26 4.33 7.25 13.98 13.09 10.74 7.97  0.81 0.76 4.17 10.86 19.81 18.93 14.19 7.67  0.16 0.13 0.21 0.27 0.38 0.43 0.41 0.29  0.19 0.14 0.25 0.57 •1.17 1.31 1.19 1.07  30.0 25.0 28.5 39.5 43.6 39.7 30.8 29.6  25.4 13.2. 31.4 48.0 81.0 85.0 86.1 57.4  CD - Cloverdale - Humic Luvisc  Horizon  Texture  Depth  PH  Gleysol  Qrgamlc Total Mat:ter N i t r o g e n '. %  C:N Ratio  %  Ah Aeg AB Btgl Btg2 BC Cgl Cg2  sicl sil-sicl sic sic sic sic sic sic  0-15 15-25 25-32.5 32.5-47.! 47.5-70 70-92.5 92.5-120 120+  5.6 5.6 5.9 6.7 7.8 7.9 7.8 8.0  0.48 0.06 0.05 0.03 0.02  11.5 1.2 0.9 0 .7 0.4  13.7 17.3 10.5 14.2 9.5  PI ppm 12.1 1.0 1.0 1.0 1.0 1.0 1.0 1.6  P2 ppm 18 2 2 2 93 145 188 256  Ca -meg/lOOg-  Na  Cation Exchange Capacity  5.62 4.33 7.76 10.46 10.08 9.88  2.58 4.63 10.13 18.41 16.36 13.69  0.27 0.09 0.15 0.18 0.25 0.27  0.48 0.27 0.57 2.20 4.34 4.08  8.11  14.27  0.39  4.07  35.9 17.6 26.3 35.2 35.5 31.9 30.7 27.6  0.32 0.19 0.24 0.32 0.34  0.09 0.09 0.14 0.30 0.41  35.5 30.7 30.0 35.0 34.6  Base Satur. tlon  24.9 53.0 68.9 88.8 87.4 87.5 87.4  MR - Milner - Luvlsollc Humo F«rriq Podzol L HF Bfhcc Bfcc Bf CI C2  sll-l sll-cl cl cl-c c  5-2.5 2.5-0 0-25 25-47.5 47.5-57.5 57.5-87.5 87.5+  4.1 5.1 5.2 4.9 4.9 6.4  32 .3 5 .4 3 .5 9 .9  1.30 0.20 0.10 0.10 Tr Tr  GM - G l a c i a l Marine lGm - loamy g l a c i a l marine  18.8 17.3 14.1 19.9 7.4 10.0  >100 >300 85.9 128 112 . 41.4 102 18.5 18.8 39 32 16.9 116 6.3  1.23 0.29 3.60 10.07 14.48  25-;0 4.8 0-40 sil 5.7 10-32.5 sil 6.0 32.5-62.5 5.9 sil s i l - 8 i c 62.5-77.5 5.9 77.5-92.5 5.8 cl . 92.5-112.5 6.4 sic 112.5+ sic 6.7'  6.0 3.1 21.5 55.7 74.6  N,W >2/3 s i l t y clay loam to yery fine sandy loam  N - Nicholson - Orthic Humo F e r r i s Podzol L-H Bfhcc Bfccl Bfcc2 Bfcc3 Cgjl Cgj 2 C  0.49 0.39 2.46 8.82 10.57  77 .0 3 .8 2 .5 1 .9 1 .5  1.97 0.17 0.08 0.06 0.05 0.02  22.6 20.1 17.5 17.1 16.2  5.5 2.0 2.0 2.0 2.0  15 9 8 8 14  2.65 0.66 0.40 0.13 6.91  1.08 0.72 0.61 0.56 5.40  0.43 0.14 Tr Tr  0.06  0.06 0.06 0.17 0.10 0.23  22.1 16.4 15.5 15.8 16.6  19.1 9.6 7.6 5.0 75.9  W - Whatcom - Luvisolic Humo 5 e r r _ Horizon  LF Bhf Bfb Bfl  TexPapth  sil sil  •11  ta  BC Cgl Cg2  sil sil cl cl-c  1.5-0 0-7.5 7.5-22.5 22.5-42.5 42.5-60 60-70 70-95 95+  pH  4.5 5.4 5.0 5.1 5.4 5.5 6.0 6.3  c  Podzol  Organic Total C:N ffecter B i t r o s a n R a t i o 5 x 88.0 13.2 5.8 3.6 4.4 2.5  2.09 0.44 0.19 0.13 0.16 0.10  24.3 17.4 18.0 15.4 16.1 14.0  cGM - clayey g l a c i a l marine  PI ppm  P2 ppm  Ca  18.5 5.0 5.0 11.5 16.0  56 28 28 40 37  3.89 0.75 0.40 0.95 1.13  Catlon Exchange S*1t»r Ca-pagjyy Hi<m  -ae-g/IOOg,-  SC  1.06 0.25 0.25 0.39 0.57  0.35 0.16 0.10 0.08 0.08  TT  Tr Tr 0.05 0.05  32.5 22.8 19.2 22.5 20.6  16.3 5.1 3.9 6.5  8.9  >l/3 clay to sandy loam  SC - Scat - Orthic Humic Gleysol L-H Ah Cgl Cg2 Cg3 Cg4  sicl sic sic 8ic-c sic-c  1.5-0 0.12.5 12.5-27. 27.5-45 45-65 26+  75.2 13.9 0.7  1.06 0.76 0.04 0.03 0.03 0.02  B/M, GM - Beach over Marine or Glacial Marine  42.4 14.5 9.2  70.0 1.0 3.0 2.5 1.5  187 2 7 88 205  3.81 7.32 12.28 14.43 12.31  1.21 > 6.11 10.61 12.55 12.12  0.26 0.27 0.30 0.32 0.31  0.14 0.19 0.29 0.37 0.30  46.1 23.5 30.0 31.6 29.4  11.8 59.1 78.3 87.6 85.1  HN,LV,MY,SS  HN - Heron - Rego Humic Gleysol F Ah AC HCg IIC & IllCg IHCg  fsl si s s-cl  25-0 0-15 15-20 20-40 40-62.5  4.7 5.0 5.8 5.8 5.5  53.1 7.5 L.6 ).4 D.2  cl-c  62.5+  5.4  ).3  3.06 0.34 • 0.08 0.03 0.02  10.1 12.9 11.2 7.6 8.1  3.1 1.8 1.1 4.5  1.1 0.4 0.2 1.8  0.3 0.1 Tr 0.1  0.2 0.2 0.1 0.2  17.8 8.1 5.3 10.7  26.4 31.4 26.3 60.8  0.02  10.9  7.7  5,5  0.2  0.3  18.0  75.6  LV - Livingstone - Gleyed Luvit Texture  Horizon  Ap AC Cg HCgl IICg2 IUCgl IIICg2  Depth cn  sil 1-sil l-sil s 8 c  i'  c  ,  • Humo Ferric Podzol Organic Matter %  pH  0-15 15-20 20-32.5 32.5-47.5 47.5-62.5 62.5-92.5 92.5+  5.5 .8.6 5.5 6.4 5.8 2.0 •. 6.4 6.6 6,5 ,. . (' 6.2  MY - Murrayville - Gleyed Luvis Bfl Bf2 IIBf IUCgj IUCgl IIICg2 IIICg3 IIICg4  1 fsl lfs cl c c c c  0-6 6-12 12-20 20-24 24-29 29-36 36-48 48+  5.5 5.9 i 5.9 5.3 5.2 5.7 7.1 7.3  1  SS - Sunshine •- Orthic Humo Fer LF Bfl Bf2 Bf3 BC Cg  si si 8l-lS  s 8-1  1-0 0-10 10-20 20-30 30-38 38-66  Total C:K Nitrogen Ratio % 0.54 0.24 0.09  19.9 15.2 17.3  ,  . .:  PI ppm  P2 ppm  Ca  16.2 9.4 17.4 15.7 8.1 3.1 12,5  22 24 31 27 15 7 89  2.42  10.4 15.0 12.9 2.1 1.0 2.1 2.1 8.4  31 45 54 2 2 7 45 52  Mg  K meg/lOOg  Na  Cation Base Exchange Satur-. Capacity atlon X 12.5 6.4 •9.7 24.9 45.9 77.6 100.0  1.37 1.35 1.03 0.72 0.61 1.00 1.16 6.86 9.58 6.92 10.11  0.08 0.08 Tr 0.06 0.06 0.37 0.47  0.36 0.19 0.19 0.18 0.26 1.66 2.26  33.9 25.4 12.6 6.3 , 5.4 23.8 19.5  0.92 0.67 0.59 2.10 1.50 3.02 3.78 9.99 15.23 11.32 18.36 11.65 18.09  0.10 0.05 0.05 0.08 0.16 0.36 0.36 0.38  0.45 0.09 0.14 0.19 0.39 1.16 1.68 2.14  16.5 11.5 6.8 19.3 24.3 38.5 36.9 37.2  8.9 7.0 11.5 20.1 30.2 ' 69.5 86.0 88.9  15.4 11.7 7.3 8.9  12.4 .9.2 16.1  ; Humo Ferric Podzol : 3.9 : 2.3 1.4 0.9 0.6 0.6 0.4 0.3  0.13 0.08 0.06 0.04 0.03 0.03 0.03 0.02  i  17.5 14.7 13.7 13.0 10.6 13.0 8.6 8.4  Podzol  37.1 4.8 5.7 3.9 5.7 , 2.5 • 5.8 ' 1.2 5.7 0.4 6.0  0.79 0.12 0.08 0.04 0.02  27.3 . 18.6 17.5 18.5 13.9  1.4 0.7 0.8 0.4  G/GM - G l a c i a l outwash over G l a c i a l Marine - no chemical or physical data available LG/GM- Lag Gravels over G l a c i a l Marine - no chemical of physical data available.  ;  0.3 0.2 0.3 0.2  0.1 0.1 Tr Tr  0.1 .0.1„ . 0.1 ' 0.1 ! :  7.6  BD.GN.JN  0 - Organic BD - Banford - Terrlc Humlsol Horizon  Texture  Hp F-H FCg Cgl Cg2  Depth cm  pH  57.5-40 40-27.5 27.5-0 0-35 35+  4.3 4.2 4.7 4.7 4.6  Organic Total C:N Matter N i t r o g e n R a t i o X %  PI ppm  P2 Ppm  Ca  Mg  4.3 3.9 7.6 8.6 11.8  1.2 1.3 3.7 3.6 6.4  55.8 91.2 38.0 8.1  1.99 2.28 0.96 0.31  16.3 23.2 22.9 15.3  30.0 5.0 1.0 3.4  54 12 12 11  38.7 86.1 82.6 87.0 40.4 52.3  1.33 2.53 2.43 2.04 0.84 0.97  16.8 19.6 19.6 24.6 27.9 31.1  7.5 5.0 3.5 3.0 5.0 10.0  22 7 5 4 17 23  1.84 6.45 7.81 7.33 7.46  95.5 110.7 147.5 143.5 107.2 115.5 113.4 10 7.0 98.7  2.98 2.42 1.76 1.36 1.19 0.99 1.23 2.28 2.27  18.5 26.4 37.6 48.6 52.0 67.5 53.4 27.1 25.1  30.5 5.5 4.0 4.5 3.0 1.5 1.5 1.0 1.0  45 7 6 6 3 2 2 2 2  10.35 5.94 11.32 22.16 24.83 27.48 27.48 19.28 15.69  K g/lOOg-  Na  Cation Base Exchange S a t u r C a p a c i t y 11 i on %  0.5 0.2 0.2 0.1 0.2  • 0.3 0.3 0.2 . 0.2 0.3  81.7 52.4 62.8 32.2 29.4  7.7 10.9 18.6 38.8 63.6  2.20 0.23 0.31 2.58 2.62 2.52  0.08 0.06 0.06 0.06 0.05 Tr  0.19 0.20 0.15 0.31 0.27 0.33  56.2 90.4 92.6 91.0 60.2 73.6  4.4 2.6 7.5 11.8 17.1 14.0  3.02 1.95 2.70 4.70 5.11 7.86 7.66 5.80 4.96  0.26 0.23 0.16 0.20 0.09 0.09 0.09 0.09 0.11  0.10 0.12 0.20 0.20 0.20 0.20 0.21 0.21 0.21  109.7 105.5 107.7 117.3 123.1 137.3 135.5 110.0 98.3  12.5 7.8 13.4 22.4 24.6 26.0 26.1 23.1 21.3  GN - Glbson - Terric Mesisol Hp FH1 FH2 Fl F2 L  muck muck muck peat peat peat  0-12.5 12.5-27.5 27.5-40 40-65 65-95 95+  4.0 4.1 4.6 4.8 5.0 4.8  JN - Judson - Terrlc Humlsol Hp HI H2 FL1 FL2  muck muck muck peat peat  LF Ll L2  peat peat peat  0-12.5 12.5-27.5 27.5-42.5 42.5-52.5 52.5-82.5 82.5-102.5 102.5-115 115-160 160+  3.8 3.9 4.1 4.3 4.5 4.6 4.7 5.0 5.1  1.  Appendix IV.  PH  WATER CHEMISTRY DATA (1974-75)  DATE  SAMPLING  D M Y  STATION NUMBER  1  2  3  4  5  6  7  8  9  406  5.80  6.00  5.90  6.00  6.00  6.00  6.00  5.80  5.90  1806  6.20  6.60  6.70  7.00  6.80  6.80  6.80  6.80  307  6.80  7.60  7.20  7.30  7.40  6.60  7.30  1807  6.60  7.20  7.00  7.30  7.40  7.30  3107  7.00  7.50  7.30  7.40  7.40  1308  6.90 .  7.30  7.50  7.30  2708  8.20  7.50  7.50  110  7.60  7.80  2810  7.70 •  1111  10  11  12  5.90  -0.0  7.10  6.80  7.20  7.30  7.10  7.10  7.40  7.20  7.60  7.70  7.30  7.40  5.60  7.50  7.70  6.90  6.80  7.40  2811  7.60  3012  14  15  -0.0  6.00  5.70  -0.0  -0.0  6.80  6.80  7.10  -0.0  -0.0  7.10  7.00  7.10  7.30  -0.0  -0.0  7.20  6.80  7.20  7.10  6.80  -0.0  -0.0  7.40  6.90  7.20  . 7.20  7.30  6.90  -0.0 '  -0.0  7.50  7.20  7.30  7.10  7.00  7.10  6.90  -0.0  -0.0  7.50  6.80  7.50  7.40  7.40  7.30  7.40  -0.0  -0.0  7.60  7.00  7.60  7.50  7.80  7.80  7.80  7.80  -0.0  -0.0  7.50  7.40  7.20  7.30  7.20  7.20  7.50  7.70  7.00  6.80  7.20  6.90  7.40  7.30  7.00  7.00  6.80  7.10  7.20  7.30  7.20  7.30  7.20  7.30  7.20  7.00  7.30  7.20  7.20  7.00  7.00  7.30  7.00  7.10  7.;o  7.20  7.10  7.20  7.20  3001  7.10  7.20  7.30  6.70  7.00  6.50  7.00  7.00  7.30  7.10  7.20  7. 10  7.30  7.30  103  6.10  7.00  7.50  7.00  7.40  6.80  7.10  7.10  7.20  7.00  7.20  7.00  7.20  7.20  3103  7.00  7.00  7.30  7.10  7.00  6.90  7.00  7.00  7.00  7.00  7.50  7.30  7.30  7.50  *  VALUES OF  -0.0  INDICATE  MISSING DATA  -0.0 7.30 -0.0  -0.0  Appendix IV (can't)  2.  OXIDATION REDUCTION POTENTIAL (mV)  DATE  SAMPLING STATION NUMBER  0 M Y  I  2  3  4  5  6  7  8  9  10  11  12  14  15  406  180.00  160.00  110.00  130.00  170.00  150.00  160.00  120.00  140.00  60.00  -0.0  -0.0  90.00  90.00  1806  260.00  210.00  100.00  80.00  120.00  70.00  50.00  20.00  180.00  40.00  -0.0  -0.0  0.0  20.00  307  • 160.00  160.00  160.00  160.00  165.00  165.00  160.00  165.00  170.00  L60.00  -0.0  -0.0  165.00  175.00  1807  140.00  140.00  100.00  340.00  190.00  220.00  265.00  250.00  180.00  175.00  -0.0  -0.0  150.00  170.00  3107  180.00  185.00  180.00  180.00  170.00  170.00  175.00  170.00  170.00  L75.00  -0.0  -0.0  180.00  175.00  1308 '  100.00  0.0  15.00  10.00  20.00  15.00  5.00  -0.0  -0.0  0.0  0.0  2708  .  0.0  10.00  0.0  .  -0.0  -0.0  -0.0  -0.0  -0.0  -0.0  -0.0  -0.0  -0.0  -0.0  -0.0  -0.0  -0.0  -0.0  110  170.00  650.00  300.00  330.00  300.00  340.00  320.00  350.00  250.00  -0.0  -0.0  -0.0  350.00  390.00  2810  250.00  300.00  400.00  250.00  130.00  130.00  110.00  150.00  50.00  >50.00  -0.0  -0.0  280.00  170.00  1111  365.00  520.00  330.00  390.00  400.00  500.00  365.00  440.00  300.00  -0.0  -0.0  265.00  345.00  345.00  2811  240.00  240.00  210.00  280.00  90.00  230.00  260.00  250.00  270.00  250.00  500.00  3012  150.00  260.00  100.00  180.00  150.00  180.00  170.00  140.00  140.00  150.00  160.00  3001  430.00  130.00  330.00  -20.00  30.00  460.00  300.00  230.00  400.00  340.00  20.00  103  520.00  520.00  583.00  700.00  630.00  610.00  600.00  440.00  660.00  540.00  540.00  3103  530iOO  530.00  560.00  510.00  510.00  710.00  500.00  500.00  480.00  470.00  500.00  * VALUES OF  -0.0  INDICATE MISSING DATA  ~o  Appendix IV (oon't) 3. DISSOLVED OXYGEN (ppm) DATE D  M  SAMPLING STATION NUMBER 1  2  3  4  5  6  7  8  9  8.20  10.40  10.60  10.50  9.00  10.90  10.40  10.90  10.80  8.10  6.70  6.20  11.50  10.80  11.80  9.60  10.40  8.40  9.60  10.20  8.40  8.80  Y  406 1806  /"  •  307  10  14  11  12  10.80  -0.0  -0.0  10.40  9.20  5.CO  -0.0  -0.0  9.00  10.20  8.20  5.80  -0.0  -0.0  10.00  '  * (7.00.. ' 7.40  15 10.00 7.80 j  4.40  1807  9.00  9.90  10.20  10.90  10.80  10.20  10.00  11.40  9.20  7.50  -0.0  -0.0  11.60  3.30  3107  11.00  8.30  8.70  11.40  12.10  10.30  7.60  11.20  8.00  1.40  -0.0  -0.0  11.30  6.40  1308  7.20  7.80  11.30  11.40  11.40  11.80  10.20  10.80  10.10  0.50  -0.0  -0.0  11.20  4.00  2708  11.40  7.40  5.00  11.30  11.40  9.40  10.00  11.00  8.60  1.40  -0.0  -0.0  11.20  3.00  110  8.20  7.60  3.00  10.40  10.00  9.80  9.40  10.00  8.20  -0.0  -0.0  9.00  4.60  2810  9.40  7.70  3.10  10.80  10.70  11.40  10.00  10.80  9.20  -0.0  -0.0  10.00  4.00  1111  11.80  9.20  5.80  11.30  11.40  11.80  10.00  11.30 .  9.40  2811  11.00  9.30  9.10  12.80  12.00  12.50  12.40  12.10  3012  13.00  11.60  12.80  12.50  11.80  14.60  12.20  3001  12.60  11.60  11.60  13.20  12.60  12.00  12.50  11.40  13.40  13.40 . 12.40  -0.0  -0.0  -0.0  13.00  12.20  103 3103  '  * VALUES OF  t  -0.0  INDICATE MISSING DATA  -0.0 1.00 -0.0  -0.0  9.60  10.50  8.20  12.80  11.90  10.10  9.00  11.20  10.10  14.30  14.30  12.60  12.40  13.00  13.80  12.80  13.00  12.30  13.70  13.20  13.20  11.70  12.80  11.20  12.80  13.20  13.00  12.80  12.80  14.00  12.80  13.60  12.60  12.80  12.20  11.90  -0.0  -0.0  -0.0  -0.0  -0.0  -0.0  Appendix IV (con't) 4.  SPECIFIC COJDOCITvTrY (umho)  DATE D  SAMPLING STATION NUMBER  M Y  6  7  8  9  10  11  12  14  15  406  68.00  62.00  81.00  45.00  48.00  85.00  49.00  70.00  42.00  62.00  -0.0  -0.0  55.00  43.00  1806  142.00  135.00  340.00  95.00  105.00  102.00  89.00  96.00  78.00  92.00  -0.0  -0.0  102.00  75.00  307  178.00  182.00  380.00  105.00  100.00  105.00  85.00  105.00  55.00  100.00  -0.0  -0.0  95.00  95.00  1807  165.00  140.00  252.00  98.00  112.00  108.00  95.00  108.00  78.00  132.00  -0.0  -0.0  108.00  72.00  3107  170.00  140.00  410.00  120.00  95.00  110.00  95.00  105.00  90.00  145.00  -0.0  -0.0  100.00: 115.00  1308  165.00  130.00  435.00  90.00  95.00  100.00  80.00  90.00  65.00  140.00  -0.0  -0.0  95.00  90.00  2708  190.00  165.00  650.00  95.00  90.00  90.00  85.00  85.00  60.00  125.00  -0.0  -0.0  90.00  100.00  110  140.00  110.00  600.00  90.00  80.00  100.00  90.00  95.00  65.00  -0.0  -0.0  -0.0  95.00  80.00  2810  110.00  135.00  460.00  80.00  90.00  85.00  75.00  85.00  50.00 1400.00  -0.0  -0.0  20.00  60.00  1111  90.00  130.00  240.00  80.00  80.00  90.00  190.00  700.00  60.00  -0.0  -0.0  110.00  90.00  50.00  2811  70.00  85.00  120.00  60.00  60.00  65.00  50.00  75.00  30.00  75.00  50.00  70.00  60.00  50.00  3012  ,45.00  60.00  80.00  40.00  50.00  30.00  40.00  40.00  40.00  60.00  30.00  40.00  40.00  60.00  3001  80.00  75.00  90.00  50.00  70.00  60.00  50.00  80.00  35.00  60.00  40.00  50.00  60.00  40.00  103  •55.00  55.00  60.00  40.00  40.00  40.00  40.00  65.00  40.00  70.00  40.00  40.00  45.00  35.00  3103  90.00  80.00  145.00  50.00  70.00  60.00  65.00  80.00  75.00  75.00  45.00  55.00  70.00  40.00  » VALUES OF  -0.0  INDICATE MISSING DATA  Appendix IV (con't) 5. TEMPERATURE ( C) DATE  SAMPLING STATION NUMBER  D M Y  6  7  8  9  10  11  12  14  15  406  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  -0.0  -0.0  10.00  10.00  1806  19.00  16.00  18.00  14.00  14.00  15.00  15.00  13.00  13.00  20.00  -0.0  -0.0  16.00  18.00  307  13.00  12.00  14.00  12.00  10.00  12.00  12.00  10.00  12.00  12.00  -0.0  -0.0  11.00  11.00  1807  11.00  12.00  14.00  12.00  11.00  12.00  12.00  10.00  13.00  16.00  -0.0  -0.0  11.00  13.00  3107  21.00  19.00  18.00  14.00  12.00  18.00  19.00.  13.00  18.00  17.00  -0.0  -0.0  14.00  19.00  1308  14". 00  14.00  16.00  12.00  12.00  15.00  13.00  12.00  14.00  13.00  -0.0  -0.0  12.00'  14.00  2708  22.00  18.00  18.00  12.00  10.00  13.00  13.00  12.00  14.00  14.00  -0.0  -0.0  14.00  14.00  110  12.00  12.00  10.00  10.00  10.00  10.00  10.00  10.00  -oJo  -0.0  -0.0  i  11.00  2810  9.00  9.00  8.00  9.00  9.00  8.00  8.00  8.00  10.00  -0.0  -0.0  IO.oo;  9.00  1111  6.00  6.00  6.00  6.00  6.00  6.00  6.00  6.00  -0.0  -0.0  6.00  8.00  5.00  2811  8.00  8.00  4.00  4.00  4.00  4.00  4.00  4.00  4.00  8.00  10.00  6.00  6.00  3012  0.0  0.0  5.00  7.00  5.00  7.00  7.00  0.0  3.00  3.00  0.0  9.00  4.00  3001  1.00  0.0  0.0  2.00  3.00  0.0  0.0  0.0  0.0  I . 00  0.0  0.0  1.00  103  5.00  3103  8.00  * VALUES OF  -0.0  10.00 !  i  8.00 6.00 8.00 0.0 1.00 5.00  7.00  5.00  . 5.00  5.00  5.00  5.00  5.00  5.00  5.00  5.00  5.00  1.00  5.00  8.00  : 5.00  5.00  5.00  6.00  6.00  6.00  6.00  11.00  9.00  5.00  7.00  INDICATE MISSING DATA  8.00  Appendix IV (con't) 6. TOTAL ACIDITY (mg/1  Ca(CO ) EQUIVALENT)  SAMPLING STATION NUMBER D M Y  2  3  4  5  6  7  8  9  10  11  406  3.90  4.80  6.20  4.30  3.90  3.10  3.90  3.90  3.90  7.80  -0.0  -0.0  5.80  3.90  1806  4.80  3.20  3.60  3.60  3.60  4.00  3.60  3.60  2.00  4.80  -0.0  -0.0  4.00  3.60  307  4.00  3.60  3.60  3.60  3.20  3.20  4.00  4.00  2.80  4.00  -0.0 •  -0.0  3.60  4.00  1807  5.60  4.40  4.40  3.20  3.20  3.20  4.00  5.60  2.00  6.80  -0.0  -0.0  4.40  4.40  3107  2.80  2.00  0.0  4.00  1.60  3.20  2.40  3.60  2.80  0.0  -o.o"  -0.0  3.60  .4.00  1308  2.00  3.20  0.0  1.60  2.40  2.40  2.40  2.00  2.80  4.80  -0.0  -0.0  2.40  4.40  2708  3.20  2.80  0.0  2.80  3.60  2.00  3.60  4.00  3.60  6.40  r-0.0  -0.0  2.80  3.20  4.00  4.00  4.00  -0.0  -0.0  -0.0  6.00  6.00  -0.0  4.00  ; 6.00  5.00  4.00  3.00  110 ;  1  j  t  4.00  6.00  0.0  4.00  4.00  6.00  2810  4.00  6.00  8.00  2.00  4.00  4.00  6.00  4.00  4.00  34.00  -0.0  1111  2.00  4.00  5.00  5.00  6.00  3.00  11.00  36.00  4.00  -0.0  -0.0  2811  4.00  4.00  2.00  4.00  2.00  4.00  4.00  4.00  4.00  4.00  3.00  5.00  4.00  3.00  3012  5.00  2.00  4.00  4.00 ,.;  4.00  4.00  6.00  6.00  4.00  4.00  4.00  4.00  6.00  4.00  3001  6.00  3.00  3.00  4.00  4.00  4.00  4.00  5.00  4.00  4.00  4.00  4.00  5.00  ,4.00  103  4.00  4.00  4.00  3.00  4.00  5.00  5.00  4.00  5.00  5.00  11.00  6.00  4.00  5.00  3103  4.00  4.00  5.00  3.00 ,  4.00  5.00  4.00  5.00  5.00  3.00  5.00  7.00  4.00  4.00  i  • VALUES OP  -0.0  1  INDICATE MISSING DATA  Appendix IV (ccn't) 7. TOTAL AIJOtfJNTTY (mg/1 Ca(C0 ) EQUIVALENT) 3  DATE  2  SAMPLING STATION NUMBER  D M Y  6  7  8  9  10  11  12  14  15  406  27.30  27.30  39.00  23.40  23.40  23.40  23.40  23.40  23.40  23.40  -0.0  -0.0  31.20  19.50  1806  44.80  39.60  80.80  32.40  35.20  35.20  30.00  29.20  34.00  47.60  -0.0  -0.0  48.40  33.20  307  47.20  40.00  80.00  32.80  34.80  34.80  30.80  32.80  34.80  49.60  -0.0  -0.0  48.80  41.60  1807  44.00  42.00  60.80  31.20  36.40  36.40  31.20  28.40  34.00  56.80  -0.0  -0.0  46.80  44.00  3107  46.00  40.40  89.60  33.60  33.20  36.00  30.00  28.40  33.20  74.00  -0.0  -0.0  48.00  35.60  1308  50.00  44.40  97.20  36.40  36.80  40.80  35.60  30.80  35.60  80.00  -0.0  -0.0  53.20  36.40  2708  50.00  44.00  90.80  36.00  73.20  42.40  32.00  28.40  35.20  80.00  -0.0  -0.0  53.60  88.80  110  46.40  42.80  97.20  35.20  35.20  44.00  36.80  32.00  36.80  -0.0  -0.0  -0.0  52.00  37.60  2810  50.00  49.20  293.60  36.00  37.60  39.20  32.80  28.80  32.80  296.00  -0.0  -0.0  48.00  30.40  1111  41.30  40.00  62.40  34.40  30.40  36.80  90.40  347.20  28.80  -0.0  -0.0  0.0  44.00  25.60  44.00  33.60  38.40  26.40  28.80  32.80  24.80  33.60  25.60  21.60  25.60  24.00  40.00  20.00  3012  24.00  21.60  24.80  16.80  22.40  20.00  18.40  22.40  17.60  20.80  19.20  20.80  24.80  19.20  3001  10.60  9.00  11.50  7.60  9.20  8.70  7.30  8.40  7.80  7.00  7.60  8.40  11.20  7.30  9.30  7.90  7.80  7.10  7.40  7.30  5.70  7.10  6.60  9.00  6.00  7.30  9.20  5.70  11.20  10.50  15.40  7.70  9.80  9.80  8.40  7.70  7.70  9.10  8.40  9.10  11.90  8.40  2811  103 3103  * VALUES OF  -0.0  INDICATE MISSING DATA  :  Appendix IV  (can't) ' 8. TOTAL BICARBONATE ALIvALINTTY (mg/1 Ca(C0 ) EQUIVALENT) 3  DATE  2  SAMPLING STATION NUMBER  D M Y  I  2  3  4  5  6  7  8  9  10  406  27.30  27.30  39.00  23.40  23.40  23.40  23.40  23.40  23.40  23.40  1806  44.80  39.60  80.80  32.40  35.20  35.20  30.00  29.20  34.00  307  47.20  40.00  80.00  32.80  34.80  34.60  30.80  32.80  1807  44.00  42.00  60.80  31.20  36.40  36.40  31.20  3107  46,00  40.40  35.20  33.60  33.20  36.00  1308  50.00  44.40  90.00  36.40  36.80  2708  50.00  44.00  0.0  36.00  110  46.40  42.80  0.0  2810  50.00  49.20  1111  41.30  2811  12  14  -0.0  -0.0  31.20  19.50  47.60  -0.0  -0.0  48.40  33.20  34.80  49.60  -0.0  -0.0.  48.80  41.60  28.40  34.00  56.80  -0.0  -0.0  46.80  44.00  30.00  28.40  33.20  69.20  -0.0  -0.0  48.00  35.60  40.80  35.60  30.80  35.60  80.00  -0.0  -0.0  53.20  36.40  73.20  42.40  32.00  28.40  35.20  80.00  -0.0  -0.0  53.60  88.80  , 35.20  35.20  44.00  36.80  32.00  36.80  -0.0  -0.0  -0.0  52.00  37.60  293.60  36.00  37.60  39.20  32.80  28.80  32.80  296.00  -0.0  -0.0  48.00  30.40  40.00  62.40  34.40  30.40  36.80  90.40  347.20  28.80  -0.0  -0.0  0.0  44.00  25.60'  44.00  33.60  38.40  26.40  28.80  32.80  24.80  33.60  25.60  21.60  25.60  24.00  40.00  20.00  3012-  24.00  21.60  24.80  16.80  22.40  20.00  18.40 ' 22.40  17.60  20.80  19.20  20.80  24.80  19.20  3001  10.60.  9.00  11.50  7.60  9.20  8.70  7.30  8.40  7.80  7.00  7.60  8.40  11.20  7.30  7.90  7.80  7.10  7.40  7.30  5.70  7.10  6.60  9.00  6.00  7.30  9.20  5.70  10.50  15.40  7.70  9.80  9.80  8.40  7.70  7.70  9.10  8.40  9.10  11.90  8.40  103 3103  9.30 ^ -  11.20  * VALUES OF  -0.0  INDICATE MISSING DATA  . 11  15  Appendix IV (con't) 9. TOTAL Ca(CD ) HARDNESS (ppm) 3  DATE D  2  SAMPLING STATION NUMBER  M Y  6  7  8  9  10  11  12  14  15  406  30.70  23.05  27.63  19.90  22.54  22.12  20.51  24.80  18.74  23. ef.  -0.0  -0.0  25.33  17.61  1806  41.15  37.29  56.95  31.64  35.38  34.65  28.62  31.97  27.38  31.04  -0.0  -0.0  38.54  25.92  37. 14  55.22  33.46  37.09  35.20  29.62  33.06  22.75  36.54  -0.0  -0.0  34.28  31.53  41.93  53.87  33.37  38.54  36.71  30.44  32.67  27.38  38.01  -0.0  -0.0  40.20  28.03  38.11  66.46  34.72  39.30  35.95  28.68  30.87  24.69  46.20  -0.0  -0.0  40.03  28.58  53.50  71.97  37.48  40.46  40.34  31.13  31.81  27.45  54.79  -0.0  -0.0  44.76  42.72  34.31  57.09  33.23.  37.08  34.11  25.49  29.20  24.17  55.39  -0.0  -0.0  41.96  23.21  40.22  181.27  41.41  42.39  41.31  33.92  35.43  26.50  -0.0  -0.0  -0.0  44.64  28.61  45.64  72.96  37.97  39.41  39.42  31.15  34.33  24.20  115.11  -0.0  -0.0  41.30  22.30  40.19  60.06  35.19  35.60  37.38  36.33  55. 16  24.22  -0.0  -0.0  37.24  36.84  18.95  32.58  35.33  26.39  31.91  32.60  25.96  28.64  25.01  31.22  22.89  31.89  31.17  22.74  22.45  29.45  22.25  21.65  21.46  18.74  23.81  18.03  25.15  15.68  15.27  22.06  16.53  26.18  33.27  22.22  26.39  24.73  23.42  30.81  17.86  22.95  18.29  20.63  .28.04  18.09  22.38  24.08  16.98  21.96  20.41  17.78  28.26  15.20  24.01  16.40  15.88  19.77  12.41  31.07  35.48  21.51  27.15  33.59  21.99  36.53  16.94  22.19  17.86  22.12  29.23  19.88  I  307 1807 3107 1308 2708 110 2810 1111 2811 3012 3001  42.57 44.45 40.41 49.99 38.50 47.33 44.45 41.56 37.17 24.69 28.48  103  22.33  3103  32.36  * VALUES OF  -0.0  INDICATE MISSING DATA  Appendix IV (con't) 10. TOTAL DISSOLVED RESIDUE (mg/1)  DATE  SAMPLING STATION NUMBER  D M Y  4  6  7  8  9  10  11  12  14  15  406  40.00  120.00  100.00  0.0  0.0  120.00  160.00  40.00  60.00  40.00  -0.0  -0.0  40.00  100.00  1806  108.00  116.00  188.00  78.00  64.00  112.00  46.00  120.00  38.00  78.00  -0.0  -0.0  38.00  128.00.  307  230.00  200.00  34b.00  170.00  190.00  182.00  164.00  178.00  138.00  156.00  -0.0  -0.0  158.00  272.00  1807  76.00  56.00  130.00  34.00  46.00  42.00  34.00  48.00  38.00  68.00  -0.0  -0.0  42.00  22.00  3107  126.00  134.00  368.00  118.00  126.00  124.00  84.00  112.00  BO.00  136.00  -0.0 • . -0.0  116.00  90.00  1308  156.00  142.00  348.00  126.00  116.00  118.00  72.00  122.00  76.00  130.00  -0.0  -0.0  110.00  94.00  2708  134.00  118.00  330.00  98.00  106.00  100.00  70.00  94.00  70.00  110.00  -0.0  -0.0  96.00  70.00  4.00  147.00  0.0  2.00  2.00  1.00  2.00  0.0  -0.0  -0.0  -0.0  0.0  3.00  110  • 0.0  :  2810  83.00  116.00  382.00  90.00  108.00  70.00  70.00  96.00  60.00  512.00  -0.0  -0.0  94.00  70.00  1111  30.00  68.00  144.00  42.00  60.00  56.00  106.00  298.00  26.00  -0.0  -0.0  122.00  56.00  14.00  2811'  30.00  70.00  100.00  58.00  68.00  68.00  46.00  64.00  56.00  78.CO  50.00  82.00  60.00  46.00'  3012  114.00  100.00  122.00  104.00  86.00  96.00  88.00  100.00  98.00  116.00  72.00  98.00  96.00  110.00  3001  80.00  66.00  98.00  54.00  76.00  70.00  58.00  64.00  32.00  54.00  40.00  46.00  56.00  40.00  103  54.00  64.00  74.00  56.00  56.00  44.00  58.00  90.00  52.00  70.00  32.00  46.00  70.00  32.00  3103  78.00  88.00  124.00  78.00  72.00  80.00  78.00  96.00  50.00  66.00  54.00  52.00  44.00  14.00  * VAIJES OF  -0.0  INDICATE MISSING DATA  11.  Appendix IV (con't) T o t a l K j e l d a h l Nitrogen (ppm)  DATE  SAMPLING STATION NUMBER 14  15  -0.0  0.50  0.84  -0.0  -0.0  0.90  0.90  0.67  -0.0  -0.0  0.73  0.62  0.62  1.45  -0.0  -0.0  0.28  0.67  0.42  0.67  0.64  -0.0  -0.0  0.36  0.56  0.31  0.22  0.0  0.22  -0.0  -0.0  0.08  0.53  0.0  0.06  0.34  0.17  1.51  -0.0  -0.0  0.28  0.45  2.52  3.08  0.56  0.62  0.48  -0.0  -0.0  0.53  0.87  3.70  3.02  3.02  0.11  1.85  7.56  -0.0  -0.0  3.25  0.73  0.90  1.51 .  0.72  18.98  2.02  2.41  0.39  1.01  1.23  1.12  1.46  0.67  0.90  0.95  0.95  1.18  1.96  0,73  0.90  0.84  0.90  0.23  0.28  0.13  0.21  0.17  0.30  0.23  0.53  0.21  0.51  0.23  0.40  0.25  0.38  0.27  0.23  0.17  0.23  0.26  0.0  0.98  1.21  0.32  0.56  0.17  0. 16  0.0  0.40  0.0  3.59  0.14  0.26  0.01  0.03  0.34  0.81  0.24  0.0  0.01  0.42  0.32  0.36  1.23  2.61  2.38  1.61  2.69  2.30  3.07  3.07  0.61  1.38  0.85  0.46  2. 15  1.08  11  12  0.78  -0.0  0.62  0.22  0.22  1.01  0.34  0.62  0.53  0.48  0.06  0.06  0.06  0.14  13.80  0.39  2.46  1.86  0.39  0.95  2811  0.62  3012 3001  1  2  3  4  5  6  7  8  9  406  0.47  0.73  0.56  0.39  0.84  0.62  0.56  0.34  0.84  1806  0.11  0.11  0.28  0.06  0.0  0.56  0.39  0.45  307  0.11  0.45  1.01  0.67  0.11  0.45  0.50  1807  0.28  0.11  0.62  0.67  -.0.45  0.11  3107  0.31  0.11  0.62  0.42  0.25  1308  0.28  0.08  0.17  0.28  2708  0.14  0.06  0.67  110  0.22  0.39  2810  0.22  1111  D M Y  103 3103  • VALUES OF  -0.0  INDICATE MISSING DATA  -0.0  -0.0  10  -0.0 7.56 -0.0  -0.0  12.  Appendix IV (can't) T o t a l Organic Carbon (ppm)  SAMPLING STATION NUMBER  0 M Y  1  2  3 .  i  406  7.60  6.80  6.90  1806  0.12  3.22  307  0.51  1807  s  4  *  5  6  I  '•,  7  8  ~ ~ 9  1  0  11  12  14  15  6.70  7.00  1.80  14.40  5.70  7.40  6.50  -0.0  -0.0  8.80  4.40  0.0  12.57  0.88  3.41  2.15  2.97  4.19  1*96  -0.0  -0.0  0.88  2.84  2.22  2.41  1.27  0.70  2.47  1.08  2.53  3.86  2.72  -0.0  -0.0  1.40  4.11  1.94  2.32  5.50  13.73  4.44  3.57  3.25  2.82  4.19  6.12  -0.0  -0.0  3.82  9.55  3107  1.00  1.10  2.20  0.60  0.0  0.80  1.00  1.40  3.30  2.91  -0.0  -0.0  1.50  4.60  1308  2.20  0.90  5.60  2.40  0.90  2.20  1.80  1.00  4.10  4.40  -0.0  -0.0  2.40  5.30  2708  2.40  1.90  2.20  0.20  0.20  0.30  1.10  0.40  2.70  1.50  -0.0  -0.0  0.70  4.70  110  0.12  0.0  0.0  0.70  0.12  0.12  1.30  0.70  2.60  -0.0  -0.0  -0.0  0.12  4.40  2810  0.0  2.40  4.80  0.0  1.20  1.20  1.20  1.20  3.60  26.40  -0.0  -0.0  1.20  6.00  1111  23.00  26.30  31.00  24.20  25.70  25.00  30.20  57.40  25.70  -0.0  -0.0  40.10  26.30  27.60  2611  22.30  24.20  25.70'  24.20  8.40  20.40  7.80  6.50  9.10  7.80  8.40  1.00  6.50  9.80  3012  2.60  1.90  1.30  0.10  0.70  ' 1.30  1.90  0.70  1.90  0.70  2.60  9.60  0.10  0.70  3001  2.50  0.60  3.80  0.0  0.60  1.20  1.90  1.90  1.20  1.20  3.10  3.20  1.20  2.50  4.00  3.70  6.40  3.20  2.90  3.20  4.00  2.40  4.80  7.20  4.80  6.00  4.80  5.60  8.10  5.30  8.60  8.60  8.10  8.10  7.80  5.60  10.70  8.90  8.90  16.00  14.40  9.90  103  .  3103  « VALUES OF  -0.0  INDICATE MISSING DATA  13.  Appendix IV (can't) N i t r a t e - N i t r o g e n (ppm)  DATE  SAMPLING STATION NUMBER  D M Y  1  2  3  4  5  6  1.20  1.00  1.00  0.90  1.30  1.10  • 2.40  2.80  0.30  3.50  3.80  406 1806  7  8  9  1.30  3.20  0.70  3.20  2.90  4.70  10  11  12  1.30  -0.0  1.00  0.80  14  15  -0.0  0.70  0.70  -0.0  -0.0  1.30  0.90  307  3.00  3.40 .  0.70  4.30  4.50  4.00  4.10  5.20  0.90  0.70  -0.0  -0.0  1.60  1.60  1807  2.20  2.70  1.50  3.10  3.30  2.70  2.80  4.40  1.00  ! 0. 30  -0.0  -0.0  1.20  0.60  3107  2.50  3.30  1.10  4.20  4.50  3.80  3.20  4.50  1.00  0.40  -0.0  -0.0  1.40  1.00  1308  2.30  3.40  1.00  4.20  4.40  3.80  3.30  4.50  0.60  0.40  .-0.0  -0.0  1.20  1.00  2708  2.60  3.80  0.90  : 4.60  4.20  4.10  3.10  4.60  . 0.80  : 0.70  -0.0  -0.0  1.40  1.10  4.10  7.70  4.80  '. 4.60 •  4.40  4.60  4.60  0.60  '-0.0  -0.0  , "0.0  1.60  4.70  •;. 0.90  -0.0  -0.0  4.10  1.00  110  \ ,2.90;  1  2810  2.70  3.80  0.80  4.30  4.60 :  4.20  ) 3.00  1111  0.0  2.70  1.20  3.50  3.70  3.30  2.60  2811  0.0  2.70  3.00  3.20  3.10 '  2.80  3012  2.00  2.20  2.50  2.40  2.30  2.30  2.60  3001  2.80  3.30  1.20  4.90  4.70  5.00  1.40  1.40  1.00  1.60  1.90  2.50  2.90  1.20  3.30  3.60  103 3103  * VALUES OF  -0.0  :  INDICATE MISSING DATA  ,3.30  ;  -0.0  2.40 -0.0  -0.0  :  1.10  . 2.00 : 1.10,  5.00  1.50  0.50  2.50  5.40  1.20  1.80  1.40  2.40  0.40  2.00  4.50  1.10  1.40  1.70  3.00  5.60  8.30  3.40  5.60  3.30  2.00  2.90  3.20  1.60  2.10  4.90  3.20  1.40  0.20  0.90  0.90  3.40  4.60  6.70  3.10  0.60  0.70  1.40  1.10  -0.0 1.40  Appendix IV (con't) 14.  Chloride  (ppm)  SAMPLING STATION NUMBER D M Y  2  3  4  5  6  7  8  9  10  11  12  0.0  -0.0  -0.0  0.0  0.0  406  0.0  1.40  5.50  0.0  0.0  0.0  0.0  1.10  1806  19.40  8.30  65.10  0.0  4.20  1.90  1.00  1.40  0.0  1.30  -0.0  -0.0  0.20  0.40  307  25.80  12.50  73.70  2.20  4.30  4.30  1.40  3.20  1.70  2.30  -0.0  -0.0  0.70  0.70  1807  16.00  9.70  34.20  0.30  3.60  2.20  0.70  1.40  0.0  8.00  -0.0  -0.0  0.0  0.30  3107  15.30  10.60  106.50  1.00  3.30  6.40  0.70  1.00  0.40  2.10  -0.0  -0.0  0.0  0.0  1308  25.10  1.20  110.40  2.90  3.60  4.30  1.40  2.90  0.0  3.60  -0.0  -0.0  0.70  0.0  2708  17.80  10.60  96.60  2.10  4.00  3.10  1.40  1.40  0.0  3.60  -0.0  -0.0  0.40  0.0  110  12.80  9.90  105.10  4.30  5.70  2.80  2.80  2.80  0.0  -0.0  -0.0  -0.0  0.0  1.40  0.70  2.10  0.0  0.0  0.0  44.00  -0.0  -0.0  0.0  0.70  8.50  5.70  4.30  14.20  14.20  -0.0  -0.0  7.10  0.0  0.0  : o.o  . 0.0  2810  0.0  22.80  113.60  0.70  1111  0.0  19.90  46.90  5.00  2811  0.0  9.90  22.00  0.0  3.60  1.40  1.40  2.10  0.0  2.10  2.10  2.10  3012  1.40  4. 10  . 9.60  0.0  0.0  0.70  0.70  0.70  0.0  2.10  0.0  0.0  0.70  0.0  3001  11.40  9.90  -0.0  1.50  8.40  4.50  1.50  3.00  0.80  4.60  1.50  1.50  0.0  0.80  103  1.50  2.30  5.30  0.0  3.00  0.80  0.80  1.50  3.80  0.0  0.0  0.0 .  0.0  3103  6.80  3.20  27.50  0.80  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  * VALUES OF  -0.0  INDICATE MISSING DATA  i  -0.0 0.0  3.60  Appendix IV (can't) 15.  T o t a l Acid D i g e s t i b l e Phosphate Phosphorus  (ppm)  DATE  SAMPLING STATION NUMBER  D M Y  1  . 2  3  4  5  6  7  8  9  10  11  12  14  15  406  0.12  0.28  0.04  0.04  0.04  0.16  0.04  0.12  0.08  0.08  -0.0  "0.0  0.16  0.20  1806  0.12  0.12  0.04  0.04  0.04  0.04  0.04  0.12  0.04  0.04  -0.0  -0.0  0.04  0.04  307  0.04  0.04  0.11  0.04  0.01  0.04  0.04  0.06  .0.04  0.04  -0.0  - 0.0  0.07  0.02  1807  0.08  0.05  0.04  0.04  0.04  0.03  0.04  0.06  0.04  0.04  . 0.0  -0.0  0.04  0.08  3107  0.04  0.04  0.04  0.06  . 0.0-3  0.03  0.04  0.03  0.05  0.04  - 0.0  -0.0  0.03  0.03  1308  0.08  0.04  0.03  0.03  0.04  0.03  0.04  0.05  0.05  0.03  - 0.0  .0.0  0.03  0.04  2708  0.0  . 0.0  0.20  0.0  0.16  0.04  0.04  0.0  0.0  . 0.08  - 0.0  -0.0  0.04  0.04  -0.0  -0.0  •0.0  0.04  0.04  . 0.0  0.0  0.16  0.12  -0.0  2.40  0.28  0.24  110  0.04  0.04  0.24  0.04  0.04  0.04  0.04  0.08  0.08  2810  0.12  0.20  0.72  0.04  0.0  0.17  1.88  0.12  0.08  1111  0.04  0.12  0.52  0.12  0.24  0.29  1.88  2.96  0.36  2811  0.04  0.04  0.24  0.04  0.04  0.08  0.08  0.20  0.04  0.08  0.08  0.04  0.08  0.12  3012  0.12  0.08  0.16  0.12  0.08  0.12  0.16  0.28  0.16  0.12  0.08  0.20  0.08  0.12  3001  0.0  0.08  0.0  1.44  0.08  0.0  0.04  0.12  0.04  0.04  0.0  0.08  0.04  0.04  0.09  0.03  0.01  0.05  0.01  0.01  0.0  0.02  0.71  0.05  0.0  0.0  0.0  0.02  0.04  0.05  0.09  0.03 .  0.03  0.03  0.05  0.10  0.21  0.05  0.08  0.11  0.03  0.05  103 3103  -  • VALUES OF  -0.0  INDICATE MISSING DATA  2.56 -0.0  Appendix IV (can't) 16. SULFATE (gxlO ) SAMPLING STATION NUMBER D M Y  1  2  3  4  5  6  7  8  9  406  9.50  9.40  9.20  7.90  7.50  8.50  6.90  7.20  6.90  1806  9.50  6.40  16.70  5.30  4.20  4.90  5.10  5.10  307  9.40  10.90  22.10  6.60  5.00  6.40  5.90  1807  11.90  9.50  19.00  6.50 '  5.60  i 6.90  6.00  3107  9.40  1308  10.40  6.40  26.00  5.50  1.40 ; ' 4.90  4.80  4.10  2708  8.70  5.60  21.80  4.20,  1.70  4.30  2.00  2.80  2.80  2.10  26.20  2.20  1.50  1.20  1.4  1.4  1.8  -0.0  2B10  2.30  3.30  10.80  1.80  1.30  0.40  1.6"»  1.60  2.40  1111  2.70  3.80  7.00  2.40  2.40  2.80  4.70  15.20  2.90  2811  2.90  3.30  3.80  2.70  2.10  2.40  2.40  1.50  2.80  2.40  3012  3.60  3.00  3.90  2.60  2.20  2.60  2.40  1.70  2.50  3001  2.90  2.50  3.20  1.80  1.70  2.00  2.00  1.80  103  2.60  2.40  3.50  2.40  2.00  2.00  1.90  3103  3.40  3.00  6.40  1.50  1.20  1.60  1.50  ! ; 6.20 •21.40 i  110 ,  * VALUES OF  -0.0  •  i ,  ,4.90  2.10 ' • 4.00 ;  :  4.50 : v  10  11  IZ  8.40  -0.0  -0.0  6.80  7.40  9.80  5.60  -0.0  -0.0  6.30  9.80  5.90  8.70  8.40  -0.0  -0,0 •  7.60  9.00  6.70  9.80  13.30  -0.0  -0.0  ;10.90  12.60  5.30  3.90  -0.0 :  8.60  10.90  7.90  3.80  6.40 '  3.30  i . -0.0  3.90  6.20 1.30  -0.0  -0.0  ' 2.20  1.50  -0.0  -0.0  1  1  , -0.0  -0.0  tit  16.20  -0.0  -0.0  2.30  2.70  -0.0  -0.0  8.70  4.10  > 2.10  2.40  6.80  2.50  2.70  2.10  1.90  3.50  2.70  2.60  2.20  1.80  2.20  3.80  2.70  2.30  4.10  2.00  3.40  2.10  3.80  2.50  2.00  1.50  1.80  2.00  2.10  6.80  3.20  1.80  ' ' = 2.1  INDICATE MISSING DATA  SO  o  6-  17.  Appendix IV (can't) Calcium (ppm)  SAMPLING STATION NUMBER 0 M Y  1  2  3  4  5  6  7  8  9  406  3.81  3.56  3.68  3.19  3.46  3.50  3.35  4.31  3.05  1806  3.81  5.30  5.81  4.36  4.42  4.60  4.46  5.36  307  5.33  5.25  5.60  4.50  4.69  4.80  4.68  1807  6.35  6.00  7.54  5.04  5.26  5.22  3107  6.30  5.90  9.60  5.30  5.70  1308  7.54  6.17  11.00  5.59  2708  5.64  4.32  6.65  110  7.26  6.62  2810  6.18  1111  10  11  12  4.14  -0.0  -0.0  3.53  2.96  4.66  6.08  -0.0  -0.0  4.85  3.60  5.40  3.22  7.36  -0.0  -0.0  4.92  3.79  5.00  5.62  4.66  7.80  -0.0  -0.0  5.44  4.58  5.60  5.10  5.50  4.32  8.60  -0.0  -0.0  5.70  3.90  6.10  6.00 .  5.04  5.32  4.32  10.33  -0.0  -0.0  6.65  3.92  5.05  4.85  4.62  3.40  4.54  3.47  10.21  -0.0  -0.0  5.52  1.95  31.20  5.60  6.04  6.23  5.61  5.99  4.08  -0.0  -0.0  -0.0  6.62  3.77  6. 15  8.70  4.75  4.80  5.05  5.93  5.07  3.43  22.25  -0.0  -0.0  5.25  2.62  9.50  6.80  8.90  6.08  6.10  7.20  5.93  6.80  4.75  -0.0  -0.0  7.30  6.53  3.29  2811  8.60  6.30  6.15  4.53  5.38  6.08  4.75  5.00  4.93  6.35  4.48  6.50  4.76  4.40  3012  3.20  3. 15  3.08  3.84  3.15  3.10  2.95  3.85  2.60  4.75  2.34  2.62  2.86  2.37  3001  4.20  3.95  3.65  3.44  3.42  3.79  3.85  5.45  2.79  4.42  3.15  3.42  3.70  2.75  103  2.83  2.91  3.13  3.09  3.06  2.84  2.72  4.29  2.38  4.28  2.56  3.24  2.68  2.54  3103  . 4.60  4.50  4.12  3.89  4.30  4.36  4.61  5.50  3.33  4.90  3.70  4.10  4.20  3.25  * VALUES OF  -0.0  INDICATE MISSING DATA  18.  Appendix IV (can't) Magnesium (ppm)  SAMPLING STATION NUMBER 0 M Y  1  2  3  4  5  6  7  8  9  406  2.75  2.49  2.84  2.01  2.37  2.22  1.96  2.12  1.91  1806  2.75  3.79  7.40  3.21  3.65  3.49  2.68  2.77  4.86  3.93  6.23  3.51  3.88  3.66  2.83  1807  4. 70  4.48  6.00  3.35  4.00  3.78  3107  4.20  3.90  7.22  3.50  3.80  1308  5.41  4. 39  8.17  3.92  2 708-  4.49  3.87  6.79  110  4.70  4.51  2810  4.55  1111  10  11  12  2.32  -0.0  2.58  3.01  2.88  2.26  2.77  2.76  3.60  2.70  4.10  4.09 •  3.90  3.99  18.50  4.30  4. 73  9.40  3.50  4.53  2811  2.96  3012  14  15  -0.0  2.59  1.86  -0.0  -0.0  3.97  2.74  3.65  -0.0  -0.0  4.08  3.33  2.58  3.70  -0.0  -0.0  4.20  2.61  2.70  2.66.  4.70  -0.0  -0.0  3.84  2.70  3.02  2.94  2.66  5.56  -0.0  -0.0 .  4.49  3.07  3.82  2.82  2.82  2.60  5.30  -0.0  -10.0  4.28  2.62  4.37  4.27  3.13  3.02  2.57  -0.0  -0.0  -0.0  4.50  2.82  4.10  4.40  4.27  3.80  3.15  2.60  11.45  -0.0  -0.0  4.52  2.28  8.25  3.75  3.84  3.88  3.80  7.75  2.45  -0.0  -0.0  4.25  3.88  2.03  3.54  4.28  2.83  3.38  3.40  2.56  2.73  2.51  3.03  2.29  3.25  3.30  2.30  2.41  2.30  3.04  1.93  2.23  2.10  1.88  2. 16  1.80  2.53  1.70  1.80  2.35  1.70  3001  3.20  2.80  3.52  2.20  2.95  2.60  2.17  2.63  1.77  2.34  1.94  2. 16  2.86  1.80  103  2.18  2.10  2.12  1.69  2.18  1.93  1.64  2.19  1.51  2.35  1.55  1.43  2.02  1.29  3103  3.50  3.30  4.40  1.93  2.50  2.10  1.67  2.12  1.40  1.85  1.40  1.80  2.61  2.02  307.  * VALUES UF  -0.0  INDICATE MISSING DATA  19.  Appendix IV (can't) Sodium (ppm)  DATE  SAMPLING STATION NUMBER  D M Y  1  2  3  4  5  6  7  8  9  406  6.85  5.31  8.39  2.90  3.78  3.61  2.94  3.72  2.56  1806  6.85  10. 15  59.00  4.J.0  4.45  5.22.  4.30  4.57  4.00  307  19.40  10.20  55.00  4.90  4.50  5.40  4.60  5.00  3.60  1807  15.50  11.80  29.30  5.06  5.00  6.25  4.65  4.77  3107  12.50  11.40  14.30  5.06  4.35  5.65  4.80  1308  19.10  14.50  83.00  7.62  6.50  9.20  2708  14.90  10.90  83.10  5.14  4.42  110  11.80  9.40  64,50  5.20  2810  11.00  15.50  83.80  1111  3.26  10.75  2811  2.93  3012  14  15  -0.0  3.48  2.51  -0.0  -0.0  4.39  3.43'  4.90  -0.0  -0.0  4.40  3.90  4.00  5.47  -0.0  -0.0  4.21  3.32  4.75  6.44  . 5.80  6.87  6.92  6.44  9.50  -0.0  -0.0  6.62  7.25  5.76  4.91  4.70  3.82  5.86  -0.0  -0.0  4.19  3.58  4.63  6.52  5.26  5.12  3.87  -0.0  -0.0  -0.0  4.33  3.77  5.30  4.65  6.20  7.50  5.15  4.10  28.00  -0.0  -0.0  4.75  3.56  31.50  5.16  4.51  6.03  7.50  18.25  3.77  -0.0  -0.0  6.30  4.60  3.12  10.50  18.75  4.17  4.24  5.13  4.11  4.21  3.76  5.18  5.35  4.43  3.90  3.55  5.85  5.76  11.20  3.12  4.55  4.00  3.14  3.56  2.90  4.00  3.58  3.00  3.31  2.67  3001  9.30  8.25  14.10  3.50  8.00  5.50  3.60  4.15  2.90  4.40  3.00  3.15  3.40  2.80  103  5.65  5.93  6.81  2.99  4.46  3.83  3.00  3.68  2.70  4.11  2.76  2.56  2.99  2.40  3103  9.80  8.70  19.00  4.29  5.11  5.42  4.43  4.92  3.58  5.53  3.72  4.12  4.37  3.45  * VALUfcS OF  -0.0  INDICATE MISSING DATA  10  11  12  3.88  -0.0  4.50  -0.0  -0.0  4.20  3.40  20.  Appendix XV (can't) Potassium (ppm) SAMPLING STATION NUMBER  D M Y  1  2  3  4  5  6  7  8  9  406  2.00  1.56  2.08  1.69  1.30  1.59  1.82  2.23  1.80  1806-  2.00  1.53  5.42  1.48  0.84  1.31  1.88  2.95  307  1.55  1.45  5.00  1.37  0.75  1.38  2.00  1807  1.70  1.73  4.00  1.57  0.94  1.30  3107  1.44  1.40  4.55  1.39  0.77  1308  1.56  1 .49  5.43  1.50  2708  1.70  1.62  4.94  110  1.44  1.33  2810  1.55  1111  10  11  12  3.01  -0.0  2.11  3.36  3.25  1.44  2.18  2.80  1.24  1.95  0.79  1.26  1.47  0.90  54;50  1.35  2.72  12.20  0.79  2.25  2811  0.75  3012  14  15  -0.0  0.89  1.70  -0.0  -0.0  1.08  1.52 '  3.10  -0.0  -0.0  1.11  1.98  2.11  7.00  -0.0  -0.0  0.97  1.32  2.86  1.77  5.67  -0.0  -0.0  1.24  1.40  2.04  2.99  1.77  5.90  -0.0  -0.0  1.20  1.64  1.26  1.94  2.95  1.82  6.80  -0.0  -0.0  1.40  1.34  1.35  1.25  2.16  2.98  1.94  -0.0  -0.0  -0.0  1.32  1.60  1.37  1.00  1.40  8.90  2.59  2.05  93.00  -0.0  -0.0  1.41  1.66  10.00  1.66  1.15  1.95  8.90  42.00  2.85  -0.0  -0.0  9.60  1.52  1.45  2.00  2.36  2.07  1.29  1.94  2.28  2.14  2.63  3.96  1.89  3.29  1.15  2.36  1.62  1.69  1 .90  1.77  1.38  1.65  1.85  2.25  1.80  3.33  1.47  2.35  1.05  1.59  3001  1.40  1.40  1.70  1.40  0.95  1.30  1.80  3.00  1.30  2.35  1.35  1.92  0.85  1.15  103  1.31  1.41  2.2 8  1.34  1.11  1.33  1.48  2.34  1.45  5.19  1.30  2.30  0.76  1.04  3103  1.40  1.46  1.88  1.52  0.92  1.29  2.36  3.62  1.38  2.75  1.51  2.30  1.08  1.36  * VALUES OF  -0.0  INDICATE MISSING DATA  Appendix TV (can't) 21.  Iron  (ppm)  SAMPLING STATION NUMBER D M Y  1  2  3  4  5  6  7  8  9  406  0.64  0.27  0.35  0.45  0.28  0.45  0.35  0.10  0.55  1806 .  0.64  0.27  0.65  0.07  0.10  0.15  0.10  0.10  0.25  0.0)  0.73  0.0  0.09  0.0  0.08  1807  0.60  0.40  0.70  0.20  0.20  0.30  3107  0.30  0.27  3.46  0.13  0.16  1308  0.50  0.50  0.90  0.30  2708  0.45  0.10  0.65  110  0.40  0. 15  2810  0.30  1111  10  11  12  0.30  -0.0  -0.0  0.40  0.47  0.80  0.30  -0.0  -0.0  0.22  0.60  0.10  0.70  0.32  -0.0  -0.0  0.21  0.98  0.30  0.20  0.80  0.70  -0.0  -0.0  0.40  1.20  0.17  0.15  0.18  1.20  0.78  -0.0  -0.0  0.48  1.16  0.20  0.30  • 0.20  0.30  1.20  1.30  -0.0  -0.0  0.30  1.20  0.0  0.0  0.0  0.15  0.10  0.46  1.78  -0.0  -0.0  0.50  0.72  4.10  0.05  0.10  0.10  0.10  0.0  0.65  -0.0  -0.0  0.25  1.05  0.30  1.55  0.05  0.10  0.05  0.07  0.05  0.05  -0.0  -0.0  0.20  0.70  0.0  0.0  0.05  0.0  0.0  0.0  0.07  0.22  0.0  0.21  0.0  0.05  2811  0.05  0.0  0.0  0.0  0.0  0.0  0.0  0.05  0.03  0.03  0.0  0.0  0.0  0.0  3012  0.30  0.30  0.40  0.10  0.0  0.30  0.10  0.0  0.10  0.0  0.0  0.10  0.10  0.10  3001  0.10  0. 10  0.30  0.0  0.0  0.0  0.10  0.10  0.10  0.0  0.10  0.20  0.10  0.20  103  0.30  0.10  0.10  0.0  0.10  0.10  0.10  0.20  0.10  0.10  0.10  0.10  0.10  0.10  3103  0.40  0.33  0.40  0.20  0.20 '-.  0.20  0.0  0.30  0.0  0.30  0.60  0.30  0.30  307 .  * VALUES OF  -0.0  INDICATE MISSING DATA  ' 0.0  -0.0 2.30 -0.0  -0.0  22.  Appendix IV (can't) Aluminium (ppm)  SAMPLING STATION NUMBER D M Y  3  4  5  6  7  8  9  10  406  0.50  0.0  0.30  0.0  0.0  0.0  0.0  0.0  0.0  0.0  -0.0  -0.0  1806 .  0.50  0.20  0.20  0.0  0.0  0.0  0.0  0.20  0.10  0.0  0.0  0.0  -0.0  -0.0  307  0.0  0.0  0.0  0.0  0.10  0.0  0.50  0.0  0.0  0.0  0.0  0.0  -0.0  -0.0  1807  0.0  0.30  0.0  0.01  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  -0.0  -0.0  3107  0.0  0.0  0.0  0.0  0.0  0.30  0.0  0.0  0.0  0.0  0.0  0.10  -0.0  -0.0  1308  0.20  0.0  0.0  0.0  0.0  0.0  0.40  0.0  • 0.0  0.0  0.0  0.0  -0.0  -0.0  2708  0.10  0. 10  0.0  0.0  0.20  0.40  0.10  0.0  0.10  0.0  0.10  0.10  -0.0  -0.0  0.0  0.0  0.90  0.0  0.30  0.0  0.10  0.0  0.0  0.0  0.0  -0.0  -0.0  2810  o. to  0.20  0.10  -0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.10  0.10  0.0  -0.0  -0.0  1111  0.0  0.0  0.0  0.0  0.0  0.10  0.0  0.0  0.0  0.0  0.0  -0.0  -0.0  0.0  2811  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.10  0.0  0.0  3012  0.30  0.70  0.0  0.20  0.0  0.20  0.20  0.20  0.20  0.10  0.30  0.10  0.10  3001  0.0  0.40  0.0  0.0  0.10  0.0  0.20  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0. 10  103  0.30  0.30  0.07  0.0  0.0  0.10  0.0  0.10  0.10  0.40  0.10  0.0  0.20  3103  0.20  0.20  0.30  0.30  0.0  0.20  0.0  0.10  0.0  0.0  0.0  0.0  0.0  0.20  0.20  0.10  0.10  110  * VALUES ,.OF  -0.0  INDICATE MISSING DATA  23.  Appendix IV (can't) Manganese (ppm)  SAMPLING STATION D M y  NUMBER  4  5  6  7  8  9  10  406  0.0  0.0  0.0  0.0  0.0  0.0  0.01  0.0  0.0  0.0  -0.0  -0.0  0.0  1606  0.0  0.0  0.01  0.0  0. i  0.0  0.0  0.0  0.09  0.03  0.0  -0.0  -0.0  0.0  0.0  307  0.07  0.03  0.11  0.0  0.0  0.02  0.05  0.13  0,03  0.22  -0.0  -0.0  0.01  0.11  1807  0.03  0.01  0.0  0.01  0.01  0.02  0.04  0.10  0.02  0.01  -o;o  -0.0  0.02  0.03  3107  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.07  0.0  -0.0  -0.0  0.0  0.0  1308  0.0  0.0  0.0  0.0  0.0  0.0  0.03  0.10  0.07  0.20  -0.0  -0.0  0.0  0.09  2708  CO  0.0  0.0  0.0  0.0  0.0  0.0  0.20  0.0  0.50  -0.0  -0.0  0.0  0.0  110  0.0  3.14  0.0  0.0  0.0  0.0  0.03  0.0  -0.0  -0.0  0.0  0.0  2810  0.03  0.01  3.04  0.0  0.0  0.0  0.03  0.04  0.03  -0.0  -0.0  nu  0.05  0.0  0.0  0.0  0.20  0.0  0.0  0.0  0.03  0. 10  0.0  -0.0  -0.0  0.0  0.0  0.0  2811  0.0  0.0  0.04  0.0  0.0  0.0  0.07  0.14  0.02  0.0  0.0  0.0  0.0  0.0  3012  0.0  0.02  0.04  0.0  0.04  0.0  0.04  0.10  0.0  0.02  0.0  0.0  0.02  0.02  3001  0.04  0.03  0.03  0.0  0.0  0.0  0.07  0.27  0.0  0.0  0.0  0.0  0.0  0.01  103  0.03  0.03  0.02  0.01  0.02  0.04  0.04  0. 14  0.01  0.02  0.03  0.03  0.03  0.01  3103  0.04  0.02  0.07  0.04  0.03  0.0  0.10  0.21  0.02  0.04  0.04  0.0  0.03  0.04  *  V A L U E S OF  -0.0  I N D I C A T E M I S S I N G DATA  '  0.0  -0.0 1.42  24.  Appendix IV (con't) S i l i c o n (ppm)  SAMPLING STATION NUMBER 0 M Y  1  2  3  4  5  6  7  8  9  406  5.00  3.00  4.00  2.00  3.00  3.00  3.00  4.00  2.00  1606  5.00  6.00  8.00  6.00  8.00  6.00  5.00  6.00  8.00  7.00  10.00  7.00  8.00  7.00  5.00  1807  7.00  7.00  6.00  6.00  8.00  7.00  3107  6.00  6.00  9.00  6.00  8.00  1308  7.00  7.00  8.00  6.00  2708  4.00  6.00  8.00  110  8.00  8.00  2810  8.00  1111  10  11  12  3.00  -0.0  4.00  2.00  6.00  4.00  5.00  6.00  6.00  4.00  7.00  7.00  4.00  7.00  13.00  8.00  8.00  8.00  3.00  4.00  2811  3.00  3012  14  15  -0.0  4.00  2.00  -0.0  -0.0 .  8.00  4.00  2.00  -o.o •  -0.0  7.00  6.00  3.00  2.00  -0.0  -0.0  8.00  3.00  5.00  3.00  3.00  -0.0  -0.0  8.00  3.00  5.00  5.00  3.00  3.00  -0.0  -0.0  8.00  6.00  6.00  4.00  5.00  3.00  3.00  -0.0  -0.0  7.00  5.00  8.00  7.00  6.00  7.00  4.00  -0.0  -0.0  8.00  5.00  8.00  8.00  8.00  5.00  7.00  3.00  -0.0  -0.0  8.00  4.00  3.00  4.00  4.00  3.00  5.00  5.00  2.00  1.00  2.00  2.00  2.00  2.00  3.00  4.00  3.00  3.00  4.00  2.00  2.00  2.00  2.00  5.00  2.00  4.00  3.00  4.00  3.00  3.00  3.00  2.00  4.00  2.00  2.00  2.00  1.00  4.00  2.00  3001  4.00  4.00  6.00  4.00  5.00  4.00  4.00  5.00  5.00  2.00  2.00  2.00  6.00  3.00  103  4.00  4.00  3.00  2.00  4.00  4.00  3.00  5.00  2.00  3.00  2.00  0.0  3.00  0.0  3103  4.00  4.00  4.00  . 3.00  5.00  12.00  3.00  12.00  2.00  2.00  1.00  2.00  6.00  2.00  307 '  * VALUES OF  -0.0  INDICATE MISSING DATA  -0.0 5.00 -0.0  -0.0  Appendix IV (can't) 25.  Hydraulic Discharge (cfs) (measured and calculated)  DATE  SAMPLING STATION NUMBER  D M Y 406  1  2  3  4  5  6  7  8  9  10  11  12  14  15  218.95  171.10  8.70  85.55  43.50  145.00  120.00  4.35  59.45  8.70  -0.0  -0.0  8.70  43.50  1806.  16.46  12.86  0.65  6.43  3.27  10.90  6.10  0.33  6.43  0.65  -0.0  -0.0  0.65  3.27  307  18.88  14.75  1.13  7.38  3.75  12.50  7.00  6.38  5.13  0.75  -0.0  -0.0  1.13  3.75  1807  21.74  16.99  1.30  8.50  4.32  14.40  8.06  0.43  5.90  0.86  -0.0  -0.0  1.30  4.32  3107  11.63  9.09  0.70  4.54  2.31  7.70  4.31  0.23  3.16  0.46  -0.0  -0.0  0.70  2.30  1308  11.63  9.09  0.70  4.54  2.31  7.70  . 4.31  0.23  3.16  0.46  -0.0  -0.0  0.70  2.30  2708  11.93  9.32  0.72  4.66  2.37  7.90  4.42  0.24  3.24  0.47  -0.0  -0.0  0.72  2.37  110  12.99  10.15  0.78  5.07  2.58  8.60  4.82  0.26  3.53  0.52  -0.0  -0.0  0.78  2.58  2810  14.19  11.09  0.85  5.55  2.82  9.40  5.26  0.28  3.85  0.56  -0.0  -0.0  0.85  2.82  1111  28.24  22.07  1.69  11.03  5.61  18.70  10.47  0.56  7.&7  0.37  1.69  5.61  2811  34.13  26.67  2.05  13.33  6.78  22.60  12.66  0.68  7.67  1.36  4.07  0.45  2.05  6.78  3012  163.08  127.44  9.78  63.72  32.40  108.00  60.48  3.24  44.28  6.48  19.44  2.16  9.78  32.40  3001  62.82  49.09  2.50  24.54  12.48  41.60  23.30  1.25  17.06  2.50  7.49  0.83  2.50  12.48  103  190.26  148.68  7.56  74.34  37.80  126.00  70.56  3.78  51.66  7.56  22.68  2.52  7.56  37.80  -0.0  -0.0  -0.0  -0.0  3103  * VALUES OF  -0.0  -0.0  INDICATE MISSING DATA  -0.0  -0.0  -0.0  -0.0  -0.0  -0.0  -0.0  -0.0  -0.0  -0.0  -0.0  APPENDIX 1.  V.  TRACE F.THVENT ANALYSIS OF SALMON RIVER WATERS  Chromium (ug/1)  _^Site  1  2  31/7/74  1.10  0.68  27/8/74  <0.50  1/10/74  3.50  3  4  5  6  7  8  11  12  0.62 <0.50 <0.50 <0.50 <0.50  MD  MD  3.82 <0.50  0.55 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50  MD  MD  2.35 <0.50  0.80 <0.50  0.60  0.70  MD  MD  1.05 <0.50  27/10/74  0.75 <0.50 <0.50  0.60  1.00 <0.50 <0.50 CO. 50 <0.50 <0.50  MD  MD  0.65 <0.50  28/11/74  1.25 4.0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50  30/12/74  2.00  2.00  2.10  0.70  0.90  0.90  0.60  0.50  0.40  0.50  1.00  0.40  1.10  0.70  30/1/74  1.30  1.20  1.70  1.10  1.10  1.40  1.00  1.20  0.40  0.50  0.60  0.30  1.60  0.90  1/3/75  1.50  1.50  2.00  0.60  0.80  1.10  1.00  11.60 0.70  0.60  0.90  1.00  1.90  0.80  31/3/75  1.40  1.40  1.70  0.70  1.30  1.20  0.50  0.50  1.00  0.60  0.40  1.70  0.60  Date  0.50 <0.50 <0.50  0.70  9  0.55 <0.50 <0.50  0.40  10  MD  14  15  N3  APPENDIX V (con't)  2.  Copper  TRACE ELEMENT ANALYSIS OF SALMON RIVER WATERS  (ug/1)  a.  31/7/74  a.00  27/8/74  1.40  1.40  1/10/74  8.20  27/10/74  00 2.70  1.00  <1.00  <i.oo  4.20  1.60  1.00  1.00  MD  MD  7.60  3.10  2.50  1.50  <1.00  <1.00  1.20  a . 00  1.20  1.40  MD  MD  1.80  <1.00  5.50  8.70  3.30  7.20  3.90  5.60  6.00  7.80  MD  MD  MD  6.10  6.30  1.40  6.30  2.20  6.50  6.20  5.40  6.00  5.20  8.60  30.0  MD  MD  2.00  <1.00  28/11/74  3.70  7.40  3.70  2.00  14.2  CL.00  U . 00 a.oo  3.20  4.60  5.00  8.80  4.40  6.30  30/12/74  3.10  1.50  4.80  3.70  1.80  3.90  1.50  1.30  2.90  6.60  8.60  6.20  2.70  2.00  30/1/75  5.10  3.00  11.5  4.60  3.60  3.50  3.80  2.50  3.00  5.40  3.90  4.70  12.0  4.40  1/3/75  4.00  5.80  9.90  5.00  7.60  1.40  6.90  15.2  1.10  6.20  2.60  6.10  4.40  4.90  31/3/75  3.80  10; 2  11.8  5.40  4.50  6.50  7.00  8.60  3.00  4.70  2.30  6.00  5.10  8.20  TRACE ELEMENT ANALYSIS OF SALMON RIVER WATERS 3.  Iron (ug/1)  —-^Site Date  1  2  3  4  5  6  7  8  9  31/7/74  660  380  1250  130  820  210  425  275  850  1850  27/8/74  870  680  1520  80  100  180  140  200  580  1/10/74  1420  360  4320  80  130  200  350  220  27/10/74  840  680  3200  60  120  220  180  28/11/74  1080  720  1140  180  270  340  30/12/74  590  500  800  370  310  30/1/74 .  530  390  340  180  1/3/75  610  720  1480  31/3/75  530  550  970  12  14  15  MD  MD  1480  900  2900  MD  MD  1240  860  660  MD  MD  MD  380  1020  120  900  1380  MD  MD  370  920  230  180  300  150  170  500  360  300  570  340  180  350  130  170  260  350  330  180  220  140  100  200  100  190  260  230  230  230  300  320  300  4470  200  290  290  740  600  180  140  270  220  150  150  320  200  360  1040  340  350  10  11  i i  1  APPENDIX V (con't)  TRACE ELEMENT ANALYSIS OF SALMON RIVER VOTERS  4.  Manganese (ug/1)  31/7/74  68  49  145  11  133  21  124  157  63  171  MD  MD  65  94  27/8/74  102  48  81  ND  ND  ND  38  97  28  476  MD  MD  40  60  1/10/74  68  14  2250  ND  ND  ND  57  82  30  MD  MD  MD  <30  82  27/10/74  40  51  312  ND  ND  ND  30  64  62  1910  MD  MD  <30  122  28/11/74  62  48  90  ND  22  30  40  148  28  28  ND  22  ND  24  30/12/74  24  24  38  16  16  28  34  107.  11  15  7  11  13  15  30/1/75  42  42  50  24  18  22  107  274  25  20  18  20  13  26 :  1/3/75  26  30  59  16  16  20  47  410  11  24  13  26  18  13  31/3/75  42  44  78  16  24  20  124  245  24  31  30  44  22  30  '  to ;-0.  APPENDIX  V (can't)  i  ;  TRACE ELEMENT ANALYSIS OF SALMON RIVER WATERS  i 5. Nickel (ug/1) ^Site 2 1  3  4  Date 31/7/74  2.00 <1.00  2.00  1.00  27/8/74  <1.00 <1.00  <1.00  3.20  1/10/74  2.10 <1;00  27/10/74  <1.00  1.20  =! 5i  6  1  7  8  9  10  11  12  14  15  1.00 <1.00  <1.00  <1.00 <L.OO  <1.00  MD  MD  2.40 <L.OO  <1.00  d.oo  <1.00 <L.OO  <1.00  MD  MD  1.20 <1.00  6.70 <1.00 <1.00  <1.00  2.70  <1.00 1.40  MD  MD  MD  <1.00 <1.00  2.70  <1.00  <1.00  <1.00 <L.OO  5.00  MD  MD  <1.00 <1.00  1.40  a . oo  1.00  1.70 a . 00  1.40  1.40 <1.00 <1.00 <1.00  1.20 0.50  0.30  1.20  0.70  1.20  0.50  <i.6o  1.40 <1.00  28/11/74  2.20 <1.00  1.80 <1.00  30/12/74  1.50  0.70  1.20  0.50. 0.50  0.70  0.50  30/1/75  0.70  0.70  0.70  0.30  0.30  0.70  ND  ND  ND  ND  ND  1.00  ND  0.30  1/3/75  1.50  0.70  2.70  ND  0.50  0.50  0.50  13.2  ND  0.50  ND  0.70  1.20  0.70  31/3/75  0.70  0.70  1.20  ND  0.70  ND  1.00  0.70  ND  ND  1.00  1.50  ND  0.30  ro  te  APPENDIX V (con't)  6.  TRACE ELEMENT ANALYSIS OF SALMON KIVER WATERS  Lead (ug/1) 1.40  <1.00 d.OO  <1.00  MD  MD  <1.00 <1.00  27/8/74  <1.00 <1.00 <-1.00 O..00 <1.00 <1.00 <L.OO <1.00 <L.OO  <1.00  MD  MD  <1.00 <1.00  1/10/74  <1.00 <1.00  27/10/74  <1.00  28/11/74  ^31/7/74  <1.00  2.60 <1.00  1.40 <1.00  2.00  1.60 <1.00  2.00  <1.00 d.OO  MD  MD  MD  <.1.00 c o o  1.60 <1.00 <L.OO  <1.00  <1.00 <L.OO  6.30  MD  MD  41.00 <1.00  <1.00 <1.00 <1.00 <1.00 <i. 00 <1.00 <1.00  <1.00 <L.OO  3.00 <1.00  17.2 <1.00  <1.00 <1.00 <1.00 <1.00 <1.00  3.00  0.40  ND  ND  ND  0.90  0.60  0.60  ND  0.90  1.50  ND  0.60  0.40  30/1/75  ND  ND  ND  ND  0.60  ND  ND  ND  ND  ND  ND  ND  ND  ND  1/3/75  ND  ND  ND  ND  ND  ND  ND  ND  ND  ND  ND  ND  ND  ND  31/3/75  ND  ND  ND  ND  ND  ND  ND  ND  ND  ND  ND  2.40  ND  ND  30/12/74  TRACE ELEMENT ANALYSIS OF SALMON RIVER WATERS 7.  Zinc (ug/1) 6  11  12  5.20 <1.00  MD  MD  3.50 <1.00  10.1 <1.00  1.50  MD  MD  3.00  3.40 <1.00  MD  MD  MD  <1.00 <1.00  92.0  MD  MD  <1.00  5.90  6.90 <1.00  4.30  2.00  4.00  0.70  2.80  ND  1.70  3.80  ND  2.00  0.40  2.80  1.00  4.00  1.00  4.00  ND  ND  0.20  3.00  ND  3.00  7  8  1.20  3.10  4.50  19.0  10.1  42.0 <1.00 <1.00 <1,00  1.50  9  10  1  2  3  4  5  31/7/74  2.60  1.00  6.00  7.30  3.80  27/8/74  5.00  17.8  14.7  1.30  19.0  1/10/74  2.20 <1.00  27/10/74  11.3  2.30  5.20 <1.00  1.20 <1.00  28/11/74  1.60  2.00  4.10 <1.00  1.30  14.0  2.20  11.9 <1.00 <1.00 <1.00  30/12/74  4.60  3.50  4.30  2.80  6.20  5.20  4.60  10.0  3.00  1.20  30/1/74  1.70  2.50  3.00  1.00  3.50  1.70  3.50  5.80  1.00  1/3/75  2.00  3.30  5.80  1.00  3.00  1.70  1.40  17.0  31/3/75  3.00  1.00  1.40  ND  1.00  0.20  2.30  4.30  Date  MD = missing data ND = not detectable  O..00  9.50  2.20  14  15  3.90  1.  pH Appendix V I :  P r e c i p i t a t i o n Chemistry Data  DATE  SAMPLING  D M Y  3  STATION NUMBER  5  6  8  9  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  4  1  2  3107  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  2708  -0. 0  -0. 0  -0. 0  -0. 0  110  -0. 0  -0. 0  -0. 0  2810  -0. 0  -0. 0  -0. 0  10  11  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  2811  6. 00  5. 80  5.AO  5. 20  5. 40  5. 10  3012  6. 10  6. 00  5.80  5. 30  5.40  5. 20  3001  5. 30  5. 30  5o 40  5. 00  5.40  5. 20  5. 00  5. 20  103  4. 90  5. 30  4. 30  5. 00  5.00  5. 10  4. 80  4. 70  4. 80  5.00  3103  5. 50  4. 50  4.40  4. 40  5. 50  4. 50  4. 70  5.40  4. 60  * VALUES OF  -0.0  INDICATE MISSING DATA  5. 00 -0. 0  -0. 0  4. 30  5.20  5. 10  5.00  5. 00  5.00  -0. 0  5. 00  Appendix VI (con 1) 1  2.  Total  Acidity  (mg/1  CaCO,  equivalent)  DATE D  SAMPLING 2  1  M Y  3107  2. 00  -0. 0  STATION  NUMBER  3  4  5  6  8  9  2. 40  3. 20  1. 60  1. 20  3. 60  3. 20  10 7. 60  11  3. 60  2708  -Oo 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  110  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  2810  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  2811  2. 00  2. 00  4. 00  4. 00  2. 00  4. 00  2. 00  4. 00  4. 00  4. 00  3012  3. 00  3. 00  4. 00  5. 00  4. 00  4. 00  3. 00  4. 00  3. 00  4. 00  3001  3. 00  2. 00  3. 00  3. 00  2. 00  3. 00  3. 00  3. 00  103  2. 00  11. 00  3. 00  5. 00  6. 00  4. 00  5. 00  5. 00  4. 00  4. 00  3103  6. 00  4. 00  4. 00  4. 00  4. 00  6. 00  4. 00  4. 00  4. 00  * VALUES  OF  -0.0  INDICATE MISSING  DATA  -0. 0  -0. 0  4. 00  Appendix VI (can't), 3.  Total Alkalinity  (mg/1  CaC0  equivalent)  3  DATE  SAMPLING  D M Y  1  3107  6. 40  2 -0. 0  STATION NUMBER  3  4  5  6  2. 80  5. 20  2. 20  3. 60  8 18. 00  9  4. 80  10 4. 00  11 4,.80  2708  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0, .0  110  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. .0  2810  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. .0  2811  7. 20  9. 60  5. 60  6. 40  7. 20  6. 40  7. 20  6. 40  5. 60  6..40  3012  4. 80  8. 80  5. 60  4. 80  6. 40  6. 40  4. 80  6. 40  7. 20  6..40  3001  2. 50  2. 20  2. 80  2. 20  2. 20  2. 50  2. 20  2. 50  2. 70  1. 10  2. 40  2. 40  3. 10  2. 00  2. 20  2. 00  2. 80  2,.90  1. 40  2. 10  1. 40  1. 40  2. 10  1. 40  1. 40  1. 40  1..40  103 3103  *  VALUES  OF  -0.0  INDICATE MISSING  DATA  -0. 0  -0. 0  2..50  Appendix VI (can't) 4.  Total  Bicarbonate  Alkalinity  (mg/1  DATE D  M  CaCOj  SAMPLING  2  1  Y  6. 40  3107  -0. 0  equivalent)  STATION  NUMBER  3  4  5  6  2. 80  5. 20  2. 20  3. 60  8 18. 00  9  4. 80  10 4. 00  11 4. 80  2708  -0. 0  -0. 0  -0. 0  -0. 0  -o« 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  110  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  2810  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  2811  7. 20  9. 60  5. 60  6. 40  7. 20  6. 40  7. 20  6. 40  5. 60  6. 40  3012  4. 80  8. 80  5. 60  4. 80  6. 40  6. 40  4. 80  6. 40  7. 20  6. 40  3001  2. 50  2. 20  2. 80  2. 20  2. 20  2. 50  2. 20  2. 50  103  2. 70  1. 10  2. 40  2. 40  3. 10  2. 00  2. 20  2. 00  2. 80  2. 90  3103  1. 40  2. 10  1. 40  1. 40  2. 10  1. 40  1. 40  1. 40  1. 40  *  VALUES  OF  -0.0  INDICATE  MISSING  DATA  -0. 0  -0. 0  2. 50  Appenaix V± (coiiVu) 5.  T o t a l Hardness (ppm)  ( Co. CO, equivalent)  DATE  SAMPLING  STATION NUMBER 6  8  9  10. 89  1. 37  5. 48  0. 87  0,.88  1..16  6. 09  •20. 14  8. 25  7. 90  6. 84  16..93  17..46  5. 64  4. 08  9. 63  8 .14  12. 53  10. 32  11..70  8..87  4. 95  2. 76  3. 11  3. 53  4. 53  2. 50  3. 00  3..50  3,.55  1 95  2. 77  1. 12  2. 35  0. 96  1. 14  1. 29  1. 50  1..07  1,.20  3012  1. 17  1. 51  1. 22  0. 86  1 .34  1. 74  1.47  0. 86 •  0..68  0..92  3001  1. 85  0. 81  1. 04  1. 19  0. 86  1. 04  1. 11  1. 12  2. 88  1. 27  2. 11  1. 81  1. 52  1. 02  2. 50  2. 67  1..64  2.. 36  1. 54  0. 85  0. 86  0. 87  0. 95  2. 19  1. 14  1..28  1.. 11  3  4  43. 98  1. 58  1. 65  28. 65  22. 77  9. 45  110  4. 52  4. 47  2810  5. 19  2811  D M Y  1  3107  1. 60  2708  o  103 3103  *  VALUES  2  OF  -0.0  INDICATE MISSING  5  DATA  -o. 0  10  -0..0  11  1 .25 .  Appendix VT 6.  (can't)  T o t a l D i s s o l v e d Residue  (mg/1)  DATE D  M  SAMPLING STATION NUMBER 1  Y  2  3107  20. 00  108. 00  2708  -0. 0  -0. 0  110  -0. 0  2810  3  5  6  8  9  10  11  4. 00  10. 00  54. .00  12. 00  80. 00  76. 00  32. 00  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  - 0 . .0  -0. 0  -0. 0  -o. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  - 0 . .0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  - 0 . .0  2811  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0, .0  3012  32. 00  40. 00  38. 00  42. 00  48. 00  56. 00  42. 00  50. 00  48. .00  3001  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  -0. 0  0. .0  2. 00  4. 00  4. 00  12. 00  0. 0  0. 0  12. 00  12. 00  6. 00  4. .00  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  -0. 0  0. 0  0. 0  0. .0  103 3103 * VALUES OF  -0.0  2. 00  4  INDICATE MISSING DATA  -0. 0  Appendix VI (can't) 7.  Total  Kjeldahl  Nitrogen  (ppm)  DATE  SAMPLING STATION NUMBER  D M Y  1  2  3  4  5  6  8  9  3107  0. 95  1. 15  0. 39  0. 34  1. 68  0. 42  0. 95  0. 11  10 0. 39  11 0..34  2708  -o. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  - 0 . .0  110  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  - 0 . .0  -0. 0  -0. 0  2810  1. 06  1. 51  1. 18  1. 23  1. 12  2811  1. 34  0. 73  0. 90  0. 62  0. 0  -0. 0  3012  0. 0  0. 0  0. 0  0. 0  o. 0  .0. 0  3001  0. 09  0. 11  0. 0 3  0. 0  0. 13  103  0. 76  0. 26  0. 38  0. 31  0. 0  0. 84  0. 84  0. 38  3103 * VALUES OF  -0.0  INDICATE MISSING DATA  1. 40.  0..73  0. 67  0. 73  0..56  -0. 0  0. 0  0. 0  0..0  0. 17  0. 0  0. 0  -0. 0  0. 38  0. 53  0. 24  0. 50  0. 61  0..41  0. 31  0. 31  0. 69  0. 15  0.. 31  1. 18  0. 78  -0. 0  0..29  Appendix VI (con"t) 8.  T o t a l Organic  Carbon  (ppm)  DATE  SAMPLING  STATION NUMBER  D M Y  1  2  3  4  5  6  8  9  3107  1. 50  0. 10  I . 40  9. 90  0. 0  0. 20  0. 10  0. 04  10  0,.20  11  0 .60  2708  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0.,0  -0 .0  110  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0..0  -0 .0  2810  2. 40  4. 80  2. 80  1. 20  1. 20  1. 20  1. 20  2. 40  2..40  1 .20  2811  5. 80  7. 80  7. 20  7. 20  6. 50  6. 50  4. 60  8. 40  0..70  5 .80  3012  0. 10  0. 10  0. 10  0. 0  0. 0  0. 0  0. 0  0,. 10  0 .0  3001  5. 00  0. 60  0. 0  1. 90  0. 0  0. 60  0. 0  0. 60  103  3. 20  1. 60  2. 40  2. 40  3. 20  2. 90  2. 40  4. 00  3,.20  2 .90  3103  8. 10  4. 20  8. 60  8. 60  8. 10  8. 10  7. 00  8,.90  7 .00  * VALUES  OF  -0.0  INDICATE MISSING  DATA  -0. 0  -0. 0  -0..0  1 .20  Appendix VT (con 1) 1  9.  Nitrate-Nitrogen  (ppm)  DATE  SAMPLING  STATION NUMBER  D M Y  1  2  3  4  5  6  8  9  3107  0. 46  0. 46  0. 27  0. 23  0. 23  0. 32  0. 44  0. 31  2708  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  10 0. 33 -0. 0  11 0..33 -0..0  110  0. 17  0. 57  0. 17  0. 17  0. 86  0. 18  0. 42  0. 28  0. 34  0,.22  2810  0. 23  0. 40  0. 18  0. 20  0. 48  0. 18  0. 20  0. 21  0. 40  0..21  2811  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0..0'  3012  0. 17  0. 24  0. 18  0. 21  0. 25  0. 26  0. 26  0. 24  0. 27  0,.15  3001  1. 60  1. 58  1. 52  1. 48  1. 62  1. 63  1. 66  1. 53  0. 0  0. 0  0. 0  0. 0  0. 05  0. 0  0. 0  0. 0  0. 0  0..0  0. 33  0. 26  0. 18  0. 17  0. 22  0. 23  0. 18  0. 22  0..03  103 3103  * VALUES  OF  -0.0  INDICATE MISSING  DATA  -0. 0  -0. 0  1..87  Appendix VI (con t) 1  10.  Sulphate  (ppm)  DATE  SAMPLING STATION NUMBER  D M Y  1  3107  2.,60  2708  2  -0, ,0  -0. 0 -0. 0  3  4  5  6  8  9  0. 30  1. 00  7,.60  0. 40  3. 40  0. 70  -0. 0  -0. 0  -0..0  -0. 0  -0. 0  -0. 0  10  0..50 -0..0  11  0..50 -0. .0  110  1..10  3. 10  1. 00  0. 90  1,.60  0. 90  1. 30  0. 90  1,,40  0..90  2810  1..00  1. 60  0. 60  0. 70  0.,60  0. 70  0. 70  0. 60  0..80  0.,60  2811  0..40  1. 00  0. 40  o. 30  0..40  0. 40  0. 40  0. 70  0..50  0..30  3012  0..30  0. 40  0. 30  0. 20  0..20  0. 20  0. 10  0..20  0..10  3001  1.. 10  0. 40  0. 70  0. 30  0. 50  0. 50  0. 70  0. 60  1«. 10  0. 80  1. 10  0. 70  0..80  0. 80  1. 30  2. 20  0.. 80  0..80  l<. 30  0. 30  0. 20  0. 10  0..30  0. 20  0. 40  0,.30  0..20  103 3103  * VALUES OF  -0.0  INDICATE MISSING DATA  -0. 0  -0. 0  -0..0  0..60  Appendix VI (con't) 11.  Chloride  (ppm)  DATE  SAMPLING 3  4  5  -0. 0  0. 0  1. 42  6. 39  2  D M Y  1  3107  2. 13  STATION NUMBER 6 15. 34  8  9  10  11  0. 0  0. 0  0. 0  0..0  2708  -0. 0  -0. 0  -0.0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0. 0  -0,,0  110  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0..0  2810  0. 0  0. 0  0. 0  0. 0  0. 0  o..0  0. 0  0. 0  0. 0  0.,0  2811  0. 0  0. 71  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0..0  3012  Oo 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0..0  3001  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  -0. 0  0,.0  103  0. 0  0. 76  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0 '  0,.0  3103  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  -0. 0  0. 0  0. 0  0..0  * VALUES  OF  -0.0  INDICATE MISSING  DATA  Appendix VI (can't) 12.  Calcium  (ppm)  DATE  SAMPLING  M Y  STATION NUMBER  1  2  3  4  5  6  8  9  3107  0. 50  3. 10  0. 50  0. 50  3. 60  0. 50  2. 00  0. 30  0. 30  0..40  2708  7. 61  6. 00  2. 85  1. 82  6. 49  2. 70  2. 56  2. 04  4. 57  5,.72  110  1. 53  1. 33  1. 9 3  1. 47  2. 08  1. 56  1. 78  1. 78  1. 74  1 .66 .  2810  1. 35  1. 35  0. 96  0. 87  1. 25  1. 39  0. 92  1. 06  1. 22  1..29  2811  0. 37  0. 90  0. 35  0. 32  0. 29  0. 34  0. 40  0. 43  0. 30  0..38  3012  0. 37  0. 44  0. 20  0. 26  0. 23  0. 32  0. 33  0. 26  0. 21  0..27  3001  0. 40  0. 19  0. 21  0. 27  0. 21  0. 21  0. 34  0. 24  0. 71  0. 33  0. 30  0. 40  0. 30  0. 33  0. 44  0. 49  0. 33  0..40  0. 42  0. 21  0. 23  0. 25  0. 28  0. 38  0. 34  0. 35  0..33  D  103 3103 *  VALUES  OF  -0.0  INDICATE MISSING  DATA  -0. 0  10  -0. 0  11  0..33  Appendix VI (con t) 1  13.  Magnesium  (ppm)  DATE  SAMPLING  STATION NUMBER  D M Y  1  2  3  4  5  6  8  9  3107  0. 08  5. 00  0. 08  0. 08  0. 18  0. 03  0. 12  0. 03  0. 04  0. 04  2708  2. 03  1. 35  0. 43  0. 24  0. 28  0. 23  0. 23  0. 29  0. 76  0. 55  110  0. 17  0. 28  0. 20  0. 10  0. 16  0. 09  0. 15  0. 13  0. 17  0. 09  2810  0. 16  0. 34  0. 07  0. 07  0. 10  0. 10  0. 05  0. 08  0. 11  0. 08  2811  0. 07  0. 11  0. 06  0. 06  0. 05  0. 07  0. 07  0. 07  0. 06  0. 06  3012  0. 06  0. 10  0. 04  0. 05  0. 05  0. 06  0. 07  0. 05  0. 04  0. 06  3001  0. 07  0. 04  0. 04  0. 04  0. 04  0. 04  0. 05  0. 04  103  0. 08  0. 06  0. 05  0. 05  0. 04  0. 04  0. 06  0. 07  0. 05  0. 05  3103  0. 12  0. 08  0. 07  0. 06  0. 06  0. 07  0. 07  0. 10  0. 07  * VALUES  OF  -0.0  INDICATE MISSING  DATA  -0. 0  10  -0. 0  11  0. 06  Appendix VT (con 1) 1  14.  Sodium  (ppm)  DATE  SAMPLING  STATION NUMBER  3  4  5  6  8  9  14. 00  0. 46  0. 47  5. 79  0. 41  1. 11  1. 00  0 .50  0. 43  10. 10  50. 00  3. 07  2. 70  6. 95  2. 70  5. 75  2. 90  6 .07  3. 75  110  1. 05  2. 95  1. 11  0. 92  1. 08  1. 03  1. 83  1 .43  1 .78  1. 15  2810  1. 00  1. 09  0. 89  0. 71  0. 71  0. 72  1. 05  0. 76  0 .82  0. 73  2811  0. 78  0. 77  0. 68  0. 69  0. 74  0. 79  0. 81  0. 81  0 .83  0. 70  3012  0. 86  0. 86  0. 79  0. 78  0. 85  0. 89  0. 93  0. 82  0 .84  0. 86  3001  0. 76  0. 62  0. 10  0. 62  0. 60  0. 62  0. 70  0. 64  0. 69  0. 69  0. 59  0. 61  0. 58  0. 57  0. 71  0. 83  0 .68  0. 77  0. 62  0. 39  0. 32  0. 25  0. 30  0. 36  0. 25  0 .44  0. 30  D M Y  1  3107  0. 57  2708  103 3103 * VALUES  OF  2  -0.0  INDICATE MISSING  -0. 0  10  -0 .0  11  0. 74  DATA  6°  15.  Appendix VI (con't) P o t a s s i u m (ppm)  DATE  SAMPLING  STATION NUMBER  D M Y  1  2  3  4  5  6  8  9  3107  0. 58  6. 55  0. 08  0.34  7. 70  0. 12  1. 26  0. 16  0. 19  0. 11  2708  8. 65  28. 30  1. 33  0.83  4. 20  0. 65  1. 16  0. 95  3. 36  0. 96  110  0. 43  1. 12  0. 40  0. 29  0. 72  0. 22  0. 60  0. 34  0. 73  0. 06  2810  0. 18  1. 15  0. 25  0.13  0. 16  0. 20  0. 82  0. 13  0. 19  0. 05  2811  0. 02  0. 84  0. 05  0.05  o. 05  0. 02  0. 06  0. 08  0. 11  0. 03  3012  0. 04  0. 54  0. 04  0.03  0. 04  0. 04  0. 05  0. 04  0. 04  0. 02  3001  0. 11  0. 09  0. 07  0o04  0. 05  0. 06  0. 05  0. 04  103  0. 10  0. 15  0. 05  0.09  0. 08  0. 10  0. 13  0. 15  0. 11  0. 11  3103  0. 81  0. 10  0. 09  0.05  0. 09  0. 09  0. 03  0. 32  0. 06  * VALUES OF  -0.0  -0. 0  10  -0. 0  11  0. 09  INDICATE MISSING DATA Ski  Appendix VT 16.  Iron  (con t) 1  (ppm)  DATE  SAMPLING  STATION NUMBER  D M Y  1  2  3  4  5  6  8  9  3107  0. 01  0. 18  0. 0  0. 04  0. 03  0. 0  0. 0  0. 0  0. 01  0 .0  2708  0. 0  0. 08  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 20  0 .0  110  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0 .0  2810  0. 0  0. 05  0. 0  0. 05  0. 0  0. 05  0. 0  0. 0  0. 0  0 .0  2811  0. 10  0. 04  0. 0  0. 09  0. 02  0. 0  0. 0  0. 08  0. 04  0 .0  3012  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0 .0  3001  0. 0  0. 10  0. 20  0. 20  0. 10  0. 20  0. 0  0. 20  0. 10  0. 10  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0 .0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  -0. 0  0. 0  0. 0  0 .0  103 3103 *  VALUES  OF  -0.0  INDICATE MISSING  10  -0. 0  11  0 . 10  DATA  CO  Appendix VI (con't) 17.  Aluminium  (ppm)  DATE  SAMPLING  STATION NUMBER t  D M Y  1  2  3  4  5  6  8  9  3107  0. 0  0. 50  o. 0  0. 0  0. 20  0. 0  0. 0  0. 0  0. 0  0..0  2708  0. 10  0. 40  0. 10  0. 10  0. 50  0. 10  0. 10  0. 10  0. 30  0.. 10  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 10  0. 0  0. 0  0..0  2810  0. 20  0. 0  0. 0  0. 10  0. 0  0. 10  0. 0  0. 0  0. 0  0..0  2811  0. 10  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0..0  3012  0. 0  0. 0  0. 10  0. 0  0. 10  0. 10  0. 0  0. 0  0. 0  0..0  3001  0. 10  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  -0. 0  0,.0  103  0. 10  0. 0  0. 20  0. 10  0. 10  0. 0  0. 20  0. 20  0. 10  0,.20  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0..0  110  3103  * VALUES OF  -0.0  INDICATE MISSING DATA  -0. 0  10  11  Appendix VI (can't) 18.  Manganese  (ppm)  DATE  SAMPLING  STATION NUMBER  1  2  3  4  5  6  8  9  3107  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0 .0  0 .0  2708  0. 30  0. 0  o. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0 .20  0 .20  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0 .0  2810  0. 03  0. 05  0. OA  0. 0  0. 0  0. 0  0. 0  0. 01  0 .0  0 .0  2811  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0 .0  0 .0  3012  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 20  0. 0  0 .0  0 .0  3001  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 03  0. 0  -0 .0  0 .0  0. 02  0. 01  0. 02  0. 02  0. 03  0. 02  0. 02  0. 03  0 . 03*  0 .02  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0. 0  0 .0  0 .0  110  103 3103  * VALUES OF  -0.0  INDICATE MISSING DATA  -0. 0  10  11  D M Y  Appendix VI (con't) 19.  Total  Precipitation  (inches)  DATE  SAMPLING  STATION NUMBER  D M Y  1  2  3  4  5  6  8  9  3107  3. 28  3. 28  3. 28  3. 28  3. 28  3. 28  3. 28  3. 28  3. 28  3. 28  2708  0. 46  0. 46  0. 46  0. 46  0. 46  0. 46  0. 46  0. 46  0. 46  0. 46  110  1. 22  1. 22  1. 22  1. 22  1. 22  1. 22  1. 22  1. 22  1. 22  1. 22  2810  1. 82  1. 82  1. 82  1. 82  1. 82  1. 82  1. 82  1. 82  1. 82  1 .82  2811  8. 96  8. 96  8. 96  8. 96  8. 96  8. 96  8. 96  8. 96  8. 96  8 .96  10. 94  10. 94  10. 94  10. 94  10. 94  10. 94  10. 94  10. 94  10. 94  10. 94  7. 72  7. 72  7. 72  7. 72  7. 72  7. 72  7. 72  7. 72  6. 98  6. 98  6. 98  6. 98  6. 93  6. 98  6. 98  6. 98  3012 3001 103 3103 * VALUES  -0. 0  OF  -0.0  -0. 0  -0. 0  -0. 0  INDICATE MISSING  DATA  -0. 0  -0. 0  -0. 0  -0. 0  10  -0. 0 6. 98 -0. 0  11  7. 72 6. 98 -0. 0  Appendix V I I ,  PH HI ACD HI . N HI  Table of average values for each water chemistry variable measured at each sampling station at 1) high hydraulic discharge (4/6/74, 30/12/74, 1/3/75), and at 2) low hydraulic discharge (the remaining sampling times). PH LOW ACDLOW N LOW  S04 HI  SCWLOW  SITE HO.  FE HI  FE LOW  RDX ALK C CA AL  1  6.30* 4.30 0.23 5.23 0.41  7.13 3.87 0.35 6.13 0.33*  283.3 20.20 4.73 3.28 0.37  .256.8 40.46 5.35 6.28 0.75  11.23 20.20 1.53 2.45 0.10*  9.70 40.46 2.16 4.07 0.18*  6.77 3.60 . 1.53 4.93 0.22  7.35 3.85 0.73 5.08 0.21  313.3 18.93 4.13 3.21 0.17  278.6 36.29 5.87 5.61 0.75  11.13 18.93 1.53 2.30 0.16*  8.45 36.29 3.24 3.98 0.27*  59.00 22.632.60 5.67 3.33  125.6 38.18 10.71 11.00 5.75  6.87 4.73 0.28 5.53 0.28  7.07 2.88 1.97 13.18 0.87*  5.00 94.67 1.30* 1.55 149.1  10.92* 98.17 0.68* 1.69 17.38  263.3 23.87 4.87 3.30 0.36  241.1 84.81 7.65 9.08 0.28  12.27 23.87 1.50 2.67 0.20*  7.49 64.01 1.72 7.51 0.41*  73.67 27.05 6.80 8.80 3.67  343.5 64.99 72.87 45.78 7.08  6.73 3.77 0.29 4.30 0.18  7.23 3.40 0.92 3.60 0.83*  5.00 98.67 0.70* 2.09 8.68  11.75* 225.4 1.89* 9.33 1.19  336.7 15.77 3.33 3.37 0.67  228.2 29.14 7.37 4.86 0.00  12.13 15.77 1.63 1.88 0.33*  11.47 29.14 3.99 3.38 0.42*  41.67 19.71 0.00 3.00 2.33  84.42 • 32.38 17.33 5.00 5.42  6.80 3.97 0.34 3.90 0.13  7.27 3.47 0.91 2.39 0.96*  6.67 53.33 0.70* 1.60 74.54  9.08 78.83 0.77* 1.51 8.69  316.7 17.73 3.53 3.22 0.10  193.2 33.38 4.27 5.09 0.83  11.07 17.73 1.83 2.26 0.20*  11.30 33.38 4.10 3.74 0.33*  46.00 22.05 1.00 4.26 3.33  87.25 35.89 4.15 5.03 6.67  6.60 4.03 0.32 4.37 0.28  7.14 3.67 1.00 3.39 0.11  7.33 47.33 0.43* 1.26 37.90  8.75 86.16 0.63* 0.97 4.42 •  313.3 16.90 2.10 3.15 0.10  273.6 33.08 5.73 5.30 0.17  12.77 16.90 1.67 2.08 0.13*  11.02 33.08 3.75 3.59 0.33*  51.67 21.33 0.50 3.81 3.33  89.58 35.50 3.23 6.02 6.33  6.80 4.97 0.38 5.73 0.18  7.21 4.42 0.71 3.63 0.11  6.67 86.67 0.97* 1.52 126.3  310.0 15.83 6.77 3.01 0.10  227.7 • 32.51 5.05 4.86 0.17 '  11.93 15.83 2.00 1.83 0.30*  10.27 32.51 3.55 2.83 0.35*  43.00 19.01 0.50 3.03 2.66  87.42 28.90 1.38 5.21 4.50  7.33 102.00 0.67* 1.72 83.68  2  3  *  5 •  6  7  HI HI HI HI HI  RDXLOW ALKLOW C LOW CA LOW AL LOW  DO HI HC03HI H03 HI MG HI MN HI  DO LOW HCOLOW NO3L0W MG LOW MN LOW  *  CND HI HRD HI CL HI NA HI SI HI  CNDLOW HRDLOW CL LOW NA LOW SI LOW  T DS P04 K CFS  HI HI HI HI HI  T LOW DS LOW P04LOW K LOW CFSLOW  56.00 25.91 0.97 6.12 4.33  132.5 40.70 12.53 11.36 5.58  5.00 69.33 1.10* 1.64' 190.8  12.00* 94.25 0.53* 1.44 22.24  10.17 85.33 0.68* 1.40 14.73 9.83 69.08 1.84* 3.20 8.25  «^ ^ 'N>'  Appendix VII>  (con't) CNDHI HRDHI CL HI NA H I SI HI  CNDLOW HRDLOW C L LOW N A LOW S I LOW  11.12 52.98 5.12 3.19 0.12*  58.33 25.62 1.10 3.65 4.33  142.0 34.21 2.78. 6.04 6.08  7.33 76.67 1.40* 2.27 3.79  8.67 107.8 1.58* 6.18 0.99  12.63 15.87 ' 1.35 1.74 0.33*  9.69 28.86 1.26 2.39 0.24*  40.67 17.32 0.00 2.72 2.00  61.75 24.05 1.43 4.19 3.17  5.00 70.00 3.17* 1.68 51.80  9.83 55.33 0.86* 1.93 6.07  159.4 72.17 6.39 8.83 0.30  12.07 17.73 3.00 2.40 0.13*  5.30 71.69 1.98 4.46 0.24*  64.00 24.34 1.97 4.00 2.67  234.4 45.34 7.16 7.91 2.60  6.00 75.33 0.83* 3.84 7.58  11.20* 138.8 1.00* 13.39 0.86  440.0 12.60 3.70 2.450.15  323.3 13.87 6.80 3.78 0.67  13.20 12.60 1.25 1.63 0.15  11.65 13.87 1.70 1.89 0.13  35.00 16.04 0.00 3.17 2.00  45.00 19.68 1.20 4.02 1.67  4.00 52.00 0.40* 1.39 21.06  6.67 48.00 0.53* 1.58 5.78  420.0 14.05 8.80 2.93 0.15  321.3 10.38 15.08 5.33 0.75  12.90 14.05 0.80 1.62 0.15*  10.10 10.38 2.38 2.87 0.00  40.00 15.57 0.00 2.78 0.50  71.25 27.97 2.68 4.50 1.75  2.50 72.00 1.00* 2.32 2.34  7.30 3.99 0.82 5.21 0.25  260.00 21.73 4.57 3.02 0.10  230.00 42.16 • 5.04 5.35 0.43  12.60 21.73 1.10 2.32 0.17*  10.71 42.16 1.58 3.88 0.92*  46.67 22.39 0.23 3.26 3.67  82.08 37.58 0.17 4.45 6.75  5.00 68.67 0.80* 0.90 8.68  10.00 72.50 0.73* 1.19 1.19  7.07 4.13 0.73 5.08  263.3 14.80 3.57 2.62  224.1 34.08 7.61 3.49 0.75  11.80 14.80 1.53 1.62 0.10*  6.09 34.08 1.30 2.53 0.23*  46.00 15.52 0.00 2.53 1.33  72.25 25.88 0.66 3.76 3.75  6.33 80.67 1.13* 1.44 37.90  10.67* 71.92 0.71* 1.57 4.42  P H LOW ACDLOW N LOW S04LOW F E LOW  RDXHI ALKHI C HI CA H I AL HI  RDXLOW ALKLOW C LOW C A LOW A L LOW  DO HI HC03HI N03HI MG H I MN H I  6.63 4.63 0.56 4.33 0.10  7.21 6.73 2.41 4.30 0.12  233.3 17.63 2.93 4.15 0.17  230.5 52.98 7.05 5.46 0.83  12.73 17.63 2.83 2.16 0.80*  9  6.73 4.30 0.43 3.80 0.25  7.23 3.42 1.27 4.20 0.52*  313.3* 15.87 4.70 2.68 0.13  222.7 28.86 6.27 4.00 0.17  10  6.67 5.60 0.43 4.63 0.13  7.04 7.18 1.62 5.87 0.75*  270.0 17.73 4.80 4.39 0.33  11  7.20 7.50 0.12 2.00 0.50*  7.33 4.00 0.58 2.23 0.13  7.05 5.00 0.41 3.65 0.10  7.10 5.25 0.98 6.53 0.25  14  6.80 5.27 0.36 4.00 0.20  IS  6.70 4.30 0.53  SITE  PH H I ACDHI N HI S04HI FE HI  NO.  8 '  12 ' :  4.00 0.22  0.68*  -  '  0.10  DO L O W HCOLOW N03LOW MG LOW MN L O W  T DS P04 K CFS  '  HI HI HI HI HI  r  T LOW DS LOW P 0 4 LOW K LOW CFSLOW  "'.'{" '  6.25 75.50 1.58* 4.28 • 0.55 .  pH = pH ACD = t o t a l  acidity  (mg/1 C a ( C 0 ) 3  equivalent)  2  t o t a l K j e l k a h l n i t r o g e n (ppm) so, = s u l f a t e s u l f u r (ppm) 4 FE = i r o n (ppm) RDX = o x i d a t i o n - r e d u c t i o n p o t e n t i a l ALK = t o t a l a l k a l i n i t y (mg/1 C a ( C 0 ) N  3  C = o r g a n i c c a r b o n (ppm) CA — c a l c i u m (ppm) AL = aluminum (ppm) d i s s o l v e d o x y g e n (ppm) DO HCO = t o t a l b i c a r b o n a t e a l k a l i n i t y N0  3  -  nitrate-nitrogen  (ppm)  2  (mV) equivalent)  (mg/1 C a ( C 0 ) 3  2  equivalent)  (as N i t r a t e )  magnesium (ppm) MG MN = manganese (ppm) CND = s p e c i f i c c o n d u c t a n c e (umhos) h a r d n e s s (mg/1) HRD = t o t a l C a ( C 0 ) 3  2  CL = c h l o r i d e (ppm) NA — s o d i u m (ppm) SI — s i l i c o n ( p p m ) T — t e m p e r a t u r e ( C) t o t a l d i s s o l v e d i n o r g a n i c s u b s t a n c e s (mg/1) DS — phosphate-phosphorus (ppm) (as p h o s p h o r u s ) 4 K = p o t a s s i u m (ppm) CFS — h y d r a u l i c d i s c h a r g e ( c u . f t . p e r s e c . ) HI = h i g h h y d r a u l i c d i s c h a r g e LOW = low h y d r a u l i c d i s c h a r g e Q  —-  P 0  *exceed water  quality guidelines  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0100143/manifest

Comment

Related Items