UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Analysis of the effects of land use and soils on the water quality of the Salmon River Watershed, Langley Beale, Roxanna Louise 1976

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1976_A6_7 B42.pdf [ 19.7MB ]
Metadata
JSON: 831-1.0100143.json
JSON-LD: 831-1.0100143-ld.json
RDF/XML (Pretty): 831-1.0100143-rdf.xml
RDF/JSON: 831-1.0100143-rdf.json
Turtle: 831-1.0100143-turtle.txt
N-Triples: 831-1.0100143-rdf-ntriples.txt
Original Record: 831-1.0100143-source.json
Full Text
831-1.0100143-fulltext.txt
Citation
831-1.0100143.ris

Full Text

ANALYSIS OF THE EFFECTS OF LAND USE AND SOILS ON THE WATER QUALITY OF THE SALMON RIVER WATERSHED -LANGLEY - by -ROXANNA LOUISE BEALE Sc. Agr., University of B r i t i s h Columbia, 1972 A THESIS SUBMITTED IN PARTIAL FULFILU4ENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE - i n -THE FACULTY OF GRADUATE STUDIES DEPARTMENT OF SOIL SCIENCE We accept t h i s thesis as conforming to the required standard University of B r i t i s h Columbia A p r i l 1, 1976 In presenting th i s thes is in pa r t i a l fu l f i lment of the requirements for an advanced degree at the Un ivers i ty of B r i t i s h Columbia, I agree that the L ibrary sha l l make i t f ree l y ava i l ab le for reference and study. I fur ther agree that permission for extensive copying of th is thesis for scho lar ly purposes may be granted by the Head of my Department or by his representat ives. It is understood that copying or pub l i ca t ion of th is thes i s for f i nanc ia l gain sha l l not be allowed without my wr i t ten permission. Department of <S-o/C- •5i<c/<£/i/C fci The Univers i ty of B r i t i s h Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 Date Ap£/L. j7~7& I t ABSTRACT The primary objective of t h i s study was to evaluate quantitatively the effects of a mixture of a g r i c u l t u r a l and non-agricultural land use practices on the chemical characteristics of the Salmon River, near Fort Langley, B.C. Present land use and geomorphic unit maps were used to determine appropriate stream sampling s i t e s which would give an i n d i c a t i o n of the combined and separate effects of land use and geologic materials on water quality. Chemical ch a r a c t e r i s t i c s of the Salmon River and i t s t r i b u t a r i e s were monitored over a 10 month period from May 1974 u n t i l A p r i l 1975. Eighteen chemical variables were analyzed i n the laboratory using Standard Methods and 5 were monitored i n the f i e l d . The in situ parameters included pH, temperature, oxidation-reduction p o t e n t i a l , s p e c i f i c conductance and dissolved oxygen l e v e l s . Also monitored were 7 trace metals, Cr, Cu, Fe, Mn, N i , Pb and Zn. Atmospheric p r e c i p i t a t i o n c o l l e c t o r s were i n s t a l l e d at the end of June 1974 and p r e c i p i t a t i o n samples collected monthly from July 1974 u n t i l A p r i l 1975. Eighteen separate chemical variables were monitored at these s i t e s using standard methods. Stream bed sediment grab samples were taken i n May and again i n July 1974. These_ samples were analyzed f o r t o t a l elemental composition as w e l l as t o t a l nitrogen, t o t a l carbon, t o t a l s u l f u r , t o t a l cation exchange capacity, exchangeable cations (Ca, Mg, Na, K) and pH. The major geologic materials i n the watershed were sampled i n 6 s i t e s located i n undisturbed and cult i v a t e d areas on marine, g l a c i a l outwash, and a l l u v i a l materials. The monitoring of some selected chemical characteristics of the Salmon River revealed i n general the mean values of pH, s p e c i f i c conductivity, temperature, t o t a l a l k a l i n i t y , t o t a l HC03 a l k a l i n i t y , t o t a l hardness (CaCC>3 equivalent), t o t a l dissolved s o l i d s , t o t a l Kjeldahl N, organic C, NO -N, CI, Na, and K were consistently higher at low streamflows than at high (>750cfs) streamflows. Oxidation reduction potential and dissolved oxygen mean values were consistently higher at high flows than at low flows. The other variables measured remained r e l a t i v e l y constant on average across a l l levels of streamflow. There was, however, considerable variation at s p e c i f i c point samples. Data derived from c o l l e c t i o n of atmospheric p r e c i p i t a t i o n indicated a s i g n i f i c a n t input of many chemical factors to the watershed. Bed sediment and s o i l s chemical characteristics give a general in d i c a t i o n of the amounts and d i s t r i b u t i o n of the various chemicals p o t e n t i a l l y available f o r contribution to stream waters. Analysis of the re s u l t s obtained i n comparison with water qu a l i t y standard acceptable levels revealed water quality problems with pH, temperature, phosphorus, i r o n , copper, and manganese. S i g n i f i c a n t s t a t i s t i c a l correlation exists between water q u a l i t y variables and glaciomarine, marine and beach overlying marine or glaciomarine materials; g l a c i a l outwash materials; a g r i c u l t u r a l f i e l d crops; low density r e s i d e n t i a l areas; and schools. In order to i d e n t i f y s p e c i f i c point and non-point sources more detailed information i s needed on groundwater chara c t e r i s t i c s and the streamflow characteristics of tri b u t a r y streams. Some general management alternatives are recommended bearing i n mind that each s i t e must be evaluated on i t s own merits and s p e c i f i c suggestions made on-site. TABLE OF CONTENTS V Page I n t r o d u c t i o n ]_ L o c a t i o n and E x t e n t o f Study A r e a 3 H i s t o r y 3 D e s c r i p t i o n o f the Study A r e a 5 1. P h y s i o g r a p h y and Drainage 5 2. S u r f i c i a l Geology 7 3. Geomorphic U n i t s 7 4. S o i l s 10 5. Groundwater Resources 10 6. H y d r o l o g y 18 7. C l i m a t e 20 8. P r e s e n t Land and Water Use 27 9. Zoning P a s t and P r e s e n t 37 Methods 43 F i e l d Sampling 43 1. S u r f a c e w a t e r 43 2. P r e c i p i t a t i o n 47 3. Sediment 43 4. S o i l s 48 F i e l d A n a l y s i s 48 L a b o r a t o r y A n a l y s i s 52 1. S u r f a c e water 52 2. P r e c i p i t a t i o n w ater 54 3. Sediment samples 55 4. S o i l samples 55 TABLE OF CONTENTS (con't) PAGE R e s u l t s 57 P r e s e n t Land Use 57 P r o p o r t i o n s o f V a r i o u s Land Uses 57 Benchmark P h y s i c a l and Che m i c a l P r o p e r t i e s o f S o i l s and 65 Geomorphic U n i t s 1. S o i l s 65 2. Geomorphic U n i t s 65 • a) pH(H 20) 6 7 b) p H ( C a C l 2 ) 67 c) o r g a n i c C 69 d) o r g a n i c m a t t e r 70 e) t o t a l N 70 f) C/N R a t i o 70 g) a v a i l a b l e PO^-P 71 h) Ca,Mg,Na,K 72 i ) F e , A l 73 j ) t o t a l CEC 74 C h e m i c a l S t a t u s o f S u r f a c e Waters, A t m o s p h e r i c P r e c i p i t a t i o n , and Stream Sediments 75 1. S u r f a c e Water C h e m i s t r y 75 A. V a r i a b l e s measured 75 a) pH 76 b) D i s s o l v e d Oxygen 81 c) S p e c i f i c Conductance 81 d) O x i d a t i o n - R e d u c t i o n P o t e n t i a l 82 e) Temperature 82 f) T o t a l A c i d i t y 82 TABLE OF CONTENTS (con't) PACE g) T o t a l A l k a l i n i t y 83 h) T o t a l B i c a r b o n a t e A l k a l i n i t y 83 i ) T o t a l C a l c i u m Carbonate Hardness 83 j ) T o t a l D i s s o l v e d Residue 84 k) T o t a l K j e l d a h l N i t r o g e n 84 1) T o t a l O r g a n i c Carbon 85 m) N i t r a t e N i t r o g e n 85 n) C h l o r i d e 86 o) T o t a l A c i d D i g e s t i b l e Phosphorus 86 p) T o t a l S u l f a t e 87 q) C a l c i u m 91 r) Magnesium ' 87 s) Sodium 88 t ) P o t a s s i u m 88 u) I r o n 89 v) Aluminum 89 w) Manganese 89 x) S i l i c o n yO B. Trace M e t a l s 92 a) Chromium 94 b) Copper y4 c) I r o n 9b d) Manganese 95 e) N i c k e l y5 f) Lead 96 g) Z i n c y 96 TABLE OF CONTENTS (con't) V U L PAGE 2. A t m o s p h e r i c P r e c i p i t a t i o n C h e m i c a l Data 96 A. V a r i a b l e s Measured 96 a) pH 98 b) t o t a l a c i d i t y 98 c) t o t a l a l k a l i n i t y and t o t a l b i c a r b o n a t e 101 a l k a l i n i t y d) t o t a l c a l c i u m c a r b o n a t e hardness l u l e) t o t a l d i s s o l v e d i n o r g a n i c r e s i d u e 101 f) t o t a l K j e l d a h l N i t r o g e n 102 g) t o t a l o r g a n i c c a r b o n 102 h) N0 3-N 1U3 i ) S 0 4 1U3 j ) CI 104 k) Ca 104 1) Mg 104 m) Na 105 n) K 105 o) Fe 106 p) A l 106 q) Mn 106 B. . Trace M e t a l s 107 3. Some Ch e m i c a l P r o p e r t i e s o f Salmon R i v e r Stream Bed Sediments 107 A.. V a r i a b l e s Measuied 107 TABLE OF CONTENTS (con't) PAGE D i s c u s s i o n m Water Q u a l i t y 1. Water s u p p l y f o r d r i n k i n g , c u l i n a r y ]_j_4 and f e e d p r o c e s s i n g w i t h o u t t r e a t m e n t a) pH H4 b) te m p e r a t u r e 115 c) d i s s o l v e d i n o r g a n i c s u b s t a n c e s H5 d) s p e c i f i c conductance 115 e) N0.3-N l i 6 f ) CI 11 6 g) P O 4 - P 1 1 6 h) so 4 H7 i ) Ca H 7 j ) Mg 119 k) Fe l i y 1) Cd l z Q m) Pb 120 n) Cu 120 o) Cr 120 p) Mn 120 q) hardness 12i r) Zn 121 s) d i s s o l v e d oxygen 12i 2. Water Supply f o r b a t h i n g , swimming, and o t h e r r e c r e a t i o n a l uses 122 a) pH 122 b) temperature 122 TABLE OF CONTENTS (con't) PAGE c) o t h e r s 122 d) d i s s o l v e d oxygen 123 Water Supply f o r the growth and propagation 123 of f i s h and other a q u a t i c l i f e a) pH 123 b) temperature 123 c) d i s s o l v e d i n o r g a n i c substances ]_24 d) others 124 e) d i s s o l v e d oxygen 125 Water supply f o r a g r i c u l t u r a l use 125 a) pH 125 b) temperature 125 c) d i s s o l v e d oxygen 125 d) o t h e r s 126 Water supply f o r i n d u s t r i a l use 126 S t a t i s t i c a l A n a l y s i s 125 1. C o n c e n t r a t i o n vs. streamflow across a l l 127 s t a t i o n s at a l l times; 2. C o n c e n t r a t i o n vs. streamflow f o r s i m i l a r 'size mnt.ribii.tinn arp.ss ^27 3. C o r r e l a t i o n matrix f o r Land rise and Geomorphic u n i t v s . c o n c e n t r a t i o n 132 a) pH 132 b) o x i d a t i o n - r e d u c t i o n p o t e n t i a l 132 c) d i s s o l v e d oxygen 132 d) s p e c i f i c conductance 132 e) temperature 152 TABLE OF CONTENTS (con't) PAGE f) t o t a l a c i d i t y 152 g) t o t a l a l k a l i n i t y and t o t a l b i c a r b o n a t e 152 a l k a l i n i t y h) hardness 152 i ) d i s s o l v e d i n o r g a n i c s u b s t a n c e s 152 j ) t o t a l K j e l d a h l N i t r o g e n 153 k) o r g a n i c C 15 3 1) N0 3-N 153 m) CI 15 3 n) PO.-P 153 o) S 0 4 153-p) Ca 154 q) Mg 15 4 r) Na 154 s) K 154 t ) Fe 155 u) A l 155 v) Mn 155 w) S i 155 4. C o r r e l a t i o n M a t r i x o f Water C h e m i s t r y I n t e r r e l a -t i o n s h i p s 155 Summary 16 0 C o n c l u s i o n s 170 I n t e r i m S u g g e s t i o n s 171 B i b l i o g r a p h y 173 Appendices 17 8 y d LIST OF TABLES PAGE I . R e l a t i v e p r o p o r t i o n s o f geomorphic u n i t s 11 I I . R e l a t i v e p r o p o r t i o n s o f s l o p e c l a s s e s 11 I I I . Mean monthly h y d r a u l i c d i s c h a r g e , maximum and 22 minimum d i s c h a r g e s and volumes IV. Temperature and p r e c i p i t a t i o n a t A l d e r g r o v e (30 23 y e a r average) V. Temperature and p r e c i p i t a t i o n a t M i l n e r (7 y e a r 24 average) VI.' R e l a t i v e p r o p o r t i o n s o f l a n d use c l a s s e s 29 V I I . L i c e n c e d water w i t h d r a w a l 38 V I I I . C o n t r i b u t i n g a r e a s , s i z e and a r e a r a t i o s 45 IX. P e r c e n t l a n d use t y p e i n each c o n t r i b u t i n g a r e a 61 X. Most common and/or i n t e n s i v e a g r i c u l t u r a l l a n d use 64 i n each geomorphic u n i t X I . Gecmorphic U n i t s d e f i n e d by s o i l s e r i e s 67 X I I . S e l e c t e d c h e m i c a l p r o p e r t i e s o f t h r e e geomorphic u n i t s 68 X I I I . Averages and ranges o f c o n c e n t r a t i o n s o f wa t e r 77 c h e m i s t r y v a r i a b l e s w i t h i n each s a m p l i n g s i t e o v e r time XIV. Means and s t a n d a r d d e v i a t i o n s o f water c h e m i s t r y 79 d a t a a c r o s s s t a t i o n s o v e r time a t h i g h and low h y d r a u l i c d i s c h a r g e r a t e s XV. Averages and ranges o f t r a c e m e t a l c o n c e n t r a t i o n s 93 XVI. Averages and ranges o f c o n c e n t r a t i o n s o f p r e c i p i t a t i o n w a t e r c h e m i s t r y v a r i a b l e s gg X V I I . S e l e c t e d c h e m i c a l p r o p e r t i e s o f some Salmon R i v e r bed sediments 108 X V I I I . T o t a l e l e m e n t a l a n a l y s e s o f sediments 110 XIX. Water q u a l i t y s t a n d a r d s and g u i d e l i n e s ' 112 XX. C o r r e l a t i o n m a t r i x , l a n d use and geomorphic u n i t 149 v e r s u s c o n c e n t r a t i o n XXI. C o r r e l a t i o n m a t r i x o f water c h e m i s t r y i n t e r r e l a t i o n - 156 s h i p s LIST OF FIGURES PAGE 1. G e n e r a l l o c a t i o n o f study a r e a 4 2. S u r ' f i c i a l Geology . 8 3. Geomorphic U n i t s 9 : 4. S o i l s 12 5. Groundwater Resources 17 6. Mean monthly h y d r o l o g y graph 21 7. D a i l y p r e c i p i t a t i o n graph 26 8 . P r e s e n t l a n d use map (1971) 2b' 9. C u r r e n t Stage Zoning map 39 10. Long Term Zoning map 40 ' 11. A g r i c u l t u r a l Land Reserves 41 12. P r e s e n t z o n i n g map 42 13. S u r f a c e water s a m p l i n g s i t e l o c a t i o n maps 44 14. C o n t r i b u t i n g a r e a s l o c a t i o n and e x t e n t 4b 15. P r e c i p i t a t i o n Sampler Diagram 49 16. P r e s e n t Land Use showing r e c e n t s u b d i v i s i o n s 58 17. L o c a t i o n o f i n t e n s i v e a g r i c u l t u r a l p r a c t i c e s 5y 18. D a i l y h y drograph l i b 19. C a l c i u m (ppm) v s . h y d r a u l i c d i s c h a r g e ( c f s ) 12 b 20 . N i t r a t e (ppm) v s . h y d r a u l i c d i s c h a r g e ( c f s ) 12y 21. K j e l d a h l N i t r o g e n (ppm) v s . h y d r a u l i c d i s c h a r g e ( c f s ) 22 . Carbon v s . h y d r a u l i c d i s c h a r g e ( c f s ) 130 131 23. P l o t o f K j e l d a l N i t r o g e n v s . d i s c h a r g e f o r s i z e a r e a 1 24. P l o t o f Carbon v s . d i s c h a r g e f o r s i z e a r e a 1 133 134 25. P l o t o f N i t r a t e v s . d i s c h a r g e f o r s i z e a r e a 1 135 26. P l o t o f C a l c i u m v s . d i s c h a r g e f o r s i z e a r e a 1 13S X V M LIST OF FIGURES (con't) PAGE 27. P l o t o f K j e l d a h l N i t r o g e n v s . d i s c h a r g e f o r s i z e a r e a 2 2.37 28. P l o t o f Carbon v s . d i s c h a r g e f o r s i z e a r e a 2 2.38 29. P l o t o f N i t r a t e v s . d i s c h a r g e f o r s i z e a r e a 2 2.39 30. P l o t o f C a l c i u m v s . d i s c h a r g e f o r s i z e a r e a 2 2.40 31. P l o t o f K j e l d a h l N i t r o g e n d i s c h a r g e f o r s i z e a r e a 3 2.41 32. P l o t o f Carbon v s . d i s c h a r g e _ f o r s i z e a r e a 3 2.42 33. P l o t o f N i t r a t e v s . d i s c h a r g e f o r s i z e a r e a 3 2,43 34. P l o t o f C a l c i u m v s . d i s c h a r g e f o r s i z e a r e a 3 2.44 35. P l o t o f K j e l d a h l N i t r o g e n v s . d i s c h a r g e f o r s i z e a r e a 4 2.45 36. P l o t o f Carbon v s . d i s c h a r g e f o r s i z e a r e a 4 2.46 37. P l o t o f N i t r a t e v s . d i s c h a r g e f o r s i z e a r e a 4 2.47 38. P l o t o f C a l c i u m v s . d i s c h a r g e f o r s i z e a r e a 4 2.48 r LIST OF PLATES I . * Stream g a u g i n g s t a t i o n on t h e Salmon R i v e r a t 72nd Avenue, L a n g l e y , B.C. I I . D a i r y p a s t u r e on F r a s e r F l o o d p l a i n I I I . D a i r y farm i n L a n g l e y V a l l e y a r e a IV. S t r a w b e r r y farm near Hopington, on 248th S t r e e t V. Beef c a t t l e on farm a t Ro b e r t s o n Road V I . Beef c a t t l e on farm a t 248th S t r e e t V I I . P a s t u r e f o r h o r s e farm a t Cohglan Road (256th S t r e e t ) V I I I . T y p i c a l p o u l t r y farm on Rob e r t s Road (56th Avenue) IX. Farm w o o d l o t ; immature, non m e r c h a n t a b l e f o r e s t t y p i c a l o f the f o r e s t s i n the watershed on R o b e r t s o n C r e s c e n t X. Low d e n s i t y r e s i d e n t i a l development on Rob e r t s Road (56th Avenue) X I . Hobby farm a r e a on T e l e g r a p h T r a i l X I I . P r e c i p i t a t i o n sample s i t e 10 a t Ro b e r t s o n C r e s c e n t and 240th S t r e e t XV. Ponded water o f Salmon R i v e r a t s t a t i o n 2 near R a w l i n s o n C r e s c e n t XVI. Lagoon s e r v i n g T r i n i t y Western C o l l e g e a t G l o v e r Road • X V I I . Salmon R i v e r a t s t a t i o n 9 d u r i n g h i g h s t r e a m f l o w showing streambank e r o s i o n XV PAGE 19 30 30 31 32 32 33 34 35 36 36 50 X I I I . P r e c i p i t a t i o n sample s i t e 6 a t Deep Creek Road (222nd S t r e e t ) near W i l s o n Town L i n e Road (96th 51 Avenue) XIV. P r e c i p i t a t i o n sample s i t e 4 a t T e l e g r a p h T r a i l 51 near 8 0 t h Avenue 162 164 166 X V I I I . R e s e r v o i r on t r i b u t a r y o f Salmon R i v e r a t s a m p l i n g l 6 7 s i t e 10 near R i c h a r d s o n C r e s c e n t LIST OF APPENDICES PAGE I . D a i l y h y d r o l o g i c d i s c h a r g e 1974-1975 178 I I . D a i l y p r e c i p i t a t i o n 1974-1975 179 I l l . S o i l C h e m i c a l and P h y s i c a l P r o p e r t i e s 181 IV. S p e c i f i c w a t e r c h e m i s t r y d a t a 191 v . Trace m e t a l d a t a 215 V I . P r e c i p i t a t i o n c h e m i c a l c o n c e n t r a t i o n d a t a 222 V I I . Average v a l u e s a t each s a m p l i n g s t a t i o n a t h i g h 241 and low h y d r a u l i c d i s c h a r g e f o r each c h e m i c a l v a r i a b l e x v i i ACKNOWLEDGEMENTS The author would l i k e to extend her sincere appreciation to a l l f a c u l t y , s t a f f , and fellow students i n the Department of S o i l Science who cooperated with and assisted her during the course of t h i s 'project. P a r t i c u l a r thanks i s extended to the Department of S o i l Science and Westwater Research Centre f o r providing technical assistance f o r part of the work. Special thanks i s also extended to Agriculture Canada for funds provided through Operating Grant OG-HOM-l during the course of the project. Sincere appreciation i s extended to Dr. L. M. Lavkulich of the Department of S o i l Science f o r h i s patience, understanding, encouragement, and guidance throughout the study. Thanks also to Mr. J. Wiens, Dr. R. P. Willington, Ms. D. Nutchey, Mrs. B. Herman and Ms. R. Hardy f o r t h e i r support, assistance, and time without which completion of t h i s study would have been d i f f i c u l t . Special thanks to Glen for h i s unique understanding and encouragement throughout the study. INTRODUCTION The q u a l i t y o f s u r f a c e and groundwater l e a v i n g a watershed are i n f l u e n c e d by the c h a r a c t e r i s t i c s and pr o c e s s e s p r e s e n t i n t h a t a r e a . The chemic a l c o n c e n t r a t i o n s i n streams i s r e l a t e d t o c l i m a t e , v e g e t a t i v e c o v e r , s o i l s , p a r e n t m a t e r i a l s and and l a n d use. Chemicals e n t e r the watershed system from s e v e r a l s o u r c e s : a) from the atmosphere i n p r e c i p i t a t i o n , i n d u s t , o r i n f i x a t i o n by organisms; b) from m i n e r a l weathering ( p h y s i c a l and c h e m i c a l ) ; and c) from b i o l o g i c a l p r o c e s s e s i n c l u d i n g man and h i s a d d i t i o n s o f o r g a n i c and i n o r g a n i c f e r t i l i z e r s t o the l a n d f o r a g r i c u l t u r a l c r o p s . Losses from the system i n c l u d e : a) l o s s e s as d i s s o l v e d and suspended c o n s t i t u e n t s i n the stream; b) l o s s e s i n the removal o f m a t e r i a l s from the l a n d as i n f o r e s t and a g r i c u l t u r a l crop h a r v e s t i n g ; and c) l o s s e s due t o the r e l e a s e o f n i t r o g e n , s u l f u r and t o some e x t e n t phosphorus by v o l a t i l i z a t i o n . Numerous s t u d i e s have been undertaken t o i n v e s t i g a t e the e f f e c t s o f a g r i c u l t u r e wastes on the q u a l i t y o f s u r f a c e and underground waters. These s t u d i e s have p r i m a r i l y c o n c e n t r a t e d on the d i r e c t e f f e c t s o f p o i n t s o u r c e s , such as a s p e c i f i c f e e d l o t on a p a r t i c u l a r type o f s o i l o r a p a r t i c u l a r sequence of f e r t i l i z a t i o n and crop r o t a t i o n on a s p e c i f i c s o i l type i n a c e r t a i n g e o g r a p h i c a l a r e a . However, i n s p i t e o f a l l these s p e c i f i c d e t a i l e d s t u d i e s o f the movement o f waters a f f e c t e d by a g r i c u l t u r a l wastes, few authors have looked a t the a g r i c u l t -u r a l wastes, few authors have looked a t the a g r i c u l t u r a l water-shed, i n t o t a l . Watersheds which have v a r i o u s i n t e n s i t i e s o f a g r i c u l t u r a l p r a c t i c e s and management schemes as w e l l as some n o n - a g r i c u l t u r a l l a n d use p r a c t i c e s on a wide v a r i e t y o f s o i l types, i n a s p e c i f i c c l i m a t i c b e l t , are complex. T h i s study was undertaken to i n v e s t i g a t e j u s t such a watershed. The primary o b j e c t i v e o f t h i s study was to q u a n t i t a t i v e l y determine the e f f e c t s of a mixture of a g r i c u l t -u r a l l a n d use p r a c t i c e s on the c h e m i c a l c o n c e n t r a t i o n s i n the waters o f the Salmon R i v e r Watershed, near F o r t Langley, i n Langley D i s t r i c t M u n i c i p a l i t y , B.C., f o r a 10 month p e r i o d . The method o f a t t a i n i n g t h i s o b j e c t i v e i n v o l v e d s i x b a s i c s t e p s . 1. To update the 1971 p r e s e n t l a n d use map (Westwater Research Center, U.B.C.) f o r the e n t i r e watershed to 1974 s t a t u s . Benchmark p h y s i c a l and chemical s o i l p r o p e r t i e s were e s t a b l i s h -ed a c c o r d i n g t o geomorphic u n i t s (Eggleston and L a v k u l i c h , 1973). 3. D e t e r m i n a t i o n o f the most common o r i n t e n s i v e a g r i c u l t u r a l l a n d uses and management p r a c t i c e s m a i n t a i n e d i n each geomorphic u n i t . 4. E v a l u a t i o n o f the e x i s t i n g c h e m i c a l s t a t u s o f s u r f a c e waters and bottom sediments from the most s i g n i f i c a n t l a n d use - geomorphic u n i t combination. 5. S t r a t -i f i c a t i o n o f the watershed, a c c o r d i n g to d r a inage area c o n t r i b -u t i n g t o each sampling s i t e and a s s o c i a t e d p r o p o r t i o n s o f l a n d use types and geomorphic u n i t types f o r computer a n a l y s i s o f l a n d use v e r s u s geomorphic u n i t and t h e i r combined o r s e p a r a t e e f f e c t s on s u r f a c e water q u a l i t y (Wiens, 1974). Ident-i f i c a t i o n o f d e t r i m e n t a l l a n d use impacts as to cause and recommend p o s s i b l e a l t e r n a t i v e management o r zoning, i n o r d e r to m a i n t a i n a c c e p t a b l e chemical s t a t u s i n the water and sediment as d e f i n e d by the B.C. Recommended Water Q u a l i t y Standards (1969( f o r d r i n k i n g water and f i s h e r i e s . | L o c a t i o n and Ex t e n t o f Study Area; The Salmon R i v e r i s a t r i b u t a r y o f the F r a s e r R i v e r and i t s watershed i s l o c a t e d p r i m a r i l y i n Langley D i s t r i c t M u n i c i p a l i t y w i t h a s m a l l p o r t i o n l o c a t e d i n Matsqui D i s t -r i c t M u n i c i p a l i t y w i t h a s m a l l p o r t i o n l o c a t e d i n Matsqui D i s t r i c t M u n i c i p a l i t y o f B r i t i s h Columbia (Figure 1). The watershed area l i e s n o r t h and e a s t o f Langley c i t y and n o r t h and e a s t o f Langley c i t y and n o r t h and west of A l d e r g r o v e . The Salmon R i v e r e n t e r s the F r a s e r R i v e r to the west o f F o r t Langley, on the south bank o f the F r a s e r R i v e r . The watershed i s approximately t h i r t y - f o u r (34) square k i l o m e t e r s i n area o r approximately 5,439 h e c t a r e s . H i s t o r y ; F o r t Langley was founded by the Hudson's Bay Company, i n 1825, on the south shore o f the F r a s e r R i v e r , thus e s t a b l i s h -i n g the f i r s t permanent B r i t i s h s e t t l e m e n t on the lower main-l a n d o f B r i t i s h Columbia. A c t i v e t r a d e developed, not o n l y i n f u r s , but a l s o i n a g r i c u l t u r a l products and manufactured a r t i c l e s . These e n t e r p r i s e s f l o u r i s h e d u n t i l 1858, when i t was proven t h a t the F r a s e r R i v e r was n a v i g a b l e t o F o r t Hope, 126 k i l o m e t e r s f u r t h e r upstream. With t h i s d i s c o v e r y , F o r t FIGURE 1 LOCATION OF SALMON RIVER BASIN, LANGLEY Hope, 126 k i l o m e t e r s f u r t h e r upstream. With t h i s d i s c o v e r y , F o r t Hope was e s t a b l i s h e d as the new economic terminus. How-ever, i n 1858, S i r James Douglas read a p r o c l a m a t i o n from the Queen of England e s t a b l i s h i n g the Crown colony of B r i t i s h Columbia w i t h F o r t Langley as the c a p i t a l . In 1859, the c a p i t a l was moved to New Westminster and nine years l a t e r to V i c t o r i a , i t s p r e s e n t l o c a t i o n (Luttmerding and Sprout, 1966). In s p i t e o f i t s demise as c a p i t a l o f B r i t i s h Columbia, F o r t Langley has remained p r i m a r i l y an a g r i c u l t u r a l community. D e s c r i p t i o n o f the Study Area 1. Physiography and Drainage; Langley D i s t r i c t M u n i c i p a l i t y i s p a r t of the F r a s e r Lowland of southwestern B r i t i s h Columbia, which i n t u r n i s p a r t of the Georgia Depression. The F r a s e r R i v e r occupying a p o s t - g l a c i a l v a l l e y up to 5 kilometers., wide and 15 o r more meters deep, flows westward along the n o r t h boundary o f the m u n i c i p a l i t y . Langley V a l l e y , a former embayment o f the sea, s e p a r a t e s the two l a r g e s t upland areas of t h e m u n i c i p a l i t y . I t i s r e l a t -i v e l y f l a t w i t h e l e v a t i o n s from 8 to 15 meters i n the c e n t e r and r i s i n g to s l i g h t l y l e s s than 30 meters along the edges. North o f M i l n e r i t j o i n s a former meander channel o f the F r a s e r R i v e r . The s e m i - c i r c u l a r channel, about 1.6 k i l o m e t e r s wide, surrounds an approximately 2.6 square k i l o m e t e r s upland area on which F o r t Langley i s s i t u a t e d . North of M i l n e r the area i s d r a i n e d northward by the Salmon R i v e r . The Langley Upland l i e s to the south and e a s t as w e l l as the south and west o f the Langley V a l l e y . The topography i s r o l l i n g and e l e v a t i o n s r i s e to j u s t over 120 meters. The Salmon R i v e r and i t s t r i b u t a r i e s d r a i n much o f t h i s area to the n o r t h (Halstead, 1957). Both the uplands and lowlands are f l a t to g e n t l y r o l l i n g i n topography w i t h s l o p e s o f 5 p e r c e n t o r l e s s . However, the Salmon R i v e r and i t s t r i b u t a r i e s are deeply i n c i s e d i n t o the landscape c r e a t i n g stream bank s l o p e s o f 6 to 15 p e r c e n t i n some areas (Luttmerding and Sprout, 1966). 1 2. S u r f i c i a l Geology; The Langley Uplands r e g i o n i s composed p r i m a r i l y o f g l a c i o - f l u v i a l d e p o s i t s c a l l e d the A b b o t s f o r d Outwash, i n combination w i t h Whatcom g l a c i o m a r i n e d e p o s i t s , Newton stony c l a y d e p o s i t s , w i t h some Sunnyside l i t t o r a l and beach sands, and Surrey t i l l d e p o s i t s ( F i g u r e 2). However, the Langley V a l l e y d e p o s i t s are almost e n t i r e l y marine C l o v e r d a l e sedim-ents. The former meander channel o f the F r a s e r R i v e r c o n s i s t s of F r a s e r f l o o d p l a i n and Richmond d e l t a d e p o s i t s . The s m a l l upland area upon which F o r t Langley i s s i t u a t e d i s A b b o t s f o r d r e c e s s i o n a l outwash sand and g r a v e l , w i t h g r a v e l a t the s u r f a c e (Armstrong, 1957). 3. Geomorphic U n i t s ; F i g u r e 3 shows the l o c a t i o n and e x t e n t o f the geomorphic u n i t s and the Salmon R i v e r watershed. The Salmon R i v e r Watershed area has been d i v i d e d i n t o geomorphic u n i t s based on the o r i g i n and t e x t u r e o f s u r f i c i a l m a t e r i a l s u s i n g the s u r f i c i a l geology i n f o r m a t i o n o f Armstrong (1957) and the s o i l s i n f o r m a t i o n o f Luttmerding and Sprout (1966) (E g g l e s t o n and L a v k u l i c h , 1973). There are twelve o f these u n i t s . The lowland area s u r r o u n d i n g F o r t Langley i s p r i m a r i l y c l a y e y and loamy a l l u v i a l d e p o s i t s . The Langley V a l l e y d e p o s i t s are predominately c l a y to sandy c l a y marine d e p o s i t s . The Langley Uplands are predominately loamy g l a c i o -marine d e p o s i t s and f i n e sandy loam to g r a v e l l y outwash d e p o s i t s . These uplands have i n c l u s i o n s o f s m a l l p r o p o r t i o n s o f c l a y e y g l a c i o m a r i n e m a t e r i a l s , beach sands over marine o r g l a c i o -marine d e p o s i t s , l a g g r a v e l s over g l a c i o m a r i n e m a t e r i a l s , as LEGEND H«p U n i t Descr ip t ion  1 Hevton Stony C lay: glaciomarine depos i t s ; stony c layey s i l t and poor ly sorted t i l l - l i k e mixtures, minor c layey s i l t , s l l t y c l a y , and sand up to 60 meters th i ck . 2 C loverdale Sediments: marine depos i t s ; s l l t y c l a y , clayey s i l t , s i l t and clay', minor sand, g r ave l , and poorly sorted t i l l - l i k e mixtures up to 270 meters th ick 3 Fraser F loodp la in and Richmond Deposits : f l o o d p l a i n , channel, es tuar ine, and d e l t a i c depos i t s ; s l l t y c l a y , clayey s l i t , and s i l t up to 4 meters th i ck , res t ing on 15 meters or more of marine and non marine sand 4 Abbotsford Outwash: g l a c i o f l u v i a l depos i t s ; reces s i ona l outwash sand and g rave l , up to 38 meters t h i ck , gravel at surface 5 Abbotsford Outvash: g l a c i o f l u v i a l depos i t s ; reces s iona l outwash sand and g rave l , up to 38 meters t h i ck , sand at surface 6 Huntingdon Grave l : channel and f l oodp l a in depos i t s ; g rave l and sand up to 30 meters or more th i ck , under l ie Whatcom glaciomarine deposits 7 Sunnyslde Sand: ra i sed l i t t o r a l and beach sands; r e s t i n g on Whatcom glaciomarine deposits 8 Whatcom Glaciomarine Deposits: stony clayey s i l t and s i l t y c l ay , c l ay , s i l t , and sand, 8 to 90 meters th ick 9 Sunnyslde Sand: ra i sed l i t t o r a l and beach sands; r e s t i n g on Cloverdale Sediments 10 Surrey T i l l : g l a c i a l depos i t s ; sandy to s i l t y t i l l and minor s u b - s t r a t i f i e d d r i f t up to 23 meters t h i ck , but general ly less than 8 meters th ick OO 10 w e l l as some f a i r l y l a r g e o r g a n i c s o i l d e p o s i t s . T h i s geo-morphic u n i t map p r i m a r i l y d e s c r i b e s the s u r f a c e m a t e r i a l s up to a depth o f 1.5 meters. The geomorphic u n i t map i s being used here as the base map w i t h which a l l o t h e r i n p u t s are compared. Tables I and I I show the r e l a t i v e p r o p o r t i o n s o f each geomorphic u n i t and sl o p e c l a s s i n the watershed r e s p e c t i v e l y . Those streams i n c o n t a c t w i t h areas which have been mapped as p r i m a r i l y 0 t o 5% s l o p e g r a d i e n t g e n e r a l l y i n c l u d e s the ephemeral streams, e s p e c i a l l y i n the upper reaches o f the watershed. The main stem o f the Salmon R i v e r i s deeply i n c i s e d and a d j a c e n t t o s l o p e s o f 15% o r g r e a t e r . 4. S o i l s ; There are predominately t h r e e o r d e r s o f s o i l s p r e s e n t i n the Salmon R i v e r area ( F i g u r e 4 ) . The lowland s o i l s a re p r i m a r i l y G l e y s o l s o r Gleyed Regosols, w h i l e the upland s o i l s a re p r i m a r i l y B r u n i s o l s . Both areas have zones o f Organic s o i l s formed i n p o o r l y d r a i n e d a r e a s . The upland areas a r e g e n e r a l l y m o d e r a t e l y - w e l l to w e l l -d r a i n e d w i t h i n c l u s i o n s o f p o o r l y d r a i n e d areas i n zones o f f i n e r t e x t u r e d m a t e r i a l s . The lowland areas are p r i m a r i l y p o o r l y o r i m p e r f e c t l y d r a i n e d due to the f i n e r t e x t u r e d nature o f the m a t e r i a l s and the d e p r e s s i o n a l l o c a t i o n . 5. Groundwater Resources; F i g u r e 5 i n d i c a t e s the areas o f major a q u i f e r systems and sources o f the groundwater r e s o u r c e o f the Salmon R i v e r watershed. Table 1: P r o p o r t i o n s o f geomorphic u n i t s i n the Salmon R i v e r B a s i n and stream l e n g t h s c o n t a c t i n g each c l a s s Geomorphic % o f t o t a l a r e a stream l e n g t h u n i t (km)  Aluvium loamy 1.6 3.2 c l a y e y 7.1 22.8 g l a c i a l outwash 27.0 2 3.2 marine 14.6 11.8 g l a c i a l marine,.loamy 40.0 21.2 c l a y e y 4.3 .4.0 beach over marine or g l a c i a l marine 2.1 1.3 g l a c i a l outwash over g l a c i a l marine 2.4 1.1 o r g a n i c i 2.1 5.9 ( a f t e r Weins,1975) Table I I : P r o p o r t i o n s of s l o p e c l a s s e s i n the Salmon R i v e r B a s i n and stream l e n g t h s c o n t a c t i n g each c l a s s Slope C l a s s % of t o t a l a r e a stream l e n g t h (km) 0 - 5 % 74.8% 24.6 km 6 - 15% 16.60% 9.9 km 15% 9.4% 12.2 km ( a f t e r Weins, 1975) \ FIGURE 4 SOIL SURVEY: (modified after Luttmerding and Sprout, 1966 and Runka and Kelly, 1964) IV CL-88 SOIL ASSOCIATIONS: LEGEND MAP SYMBOL SOIL NAME PARENT MATERIALS DRAINAGE CLASSIFICATION AB AD AN ALBION ABBOTSFORD ANN IS BD BANFORD BO BOSE BR CD CG BERRY CLOVERDALE GOGHLAN Moderately f i n e o r f i n d tex tu red g l ac iomar ine depos i t s Less than 50 cm of medium tex tu red aeo l i a n depos i t s under l a i n by g r a v e l l y g l a c i a l outwash Less than .40 cm of o rgan i c mate r i a l under la in by moderately f i n e tex tu red Fraser R i v e r f l o o d p l a i n depos i t s o r l a c u s t r i n e depos i t s Between 40 and 160 cm of o r gan i c mate r i a l under la in by medium o r moderately f i n e tex tu red F raser R i v e r f l o o d p l a i n o r l a c u s t r i n e depos i t s Less than 160 cm of g r a v e l l y lag o r g l a c i a l outwash depos i t s over moderately f i n e tex tu red g l a c i o -marine o r moderately coarse t ex tu red g l a c i a l t i l l depos i t s Moderately f i n e t o f i n e tex tu red marine (C loverda le ) depos i t s Moderately f i n e t ex tu red marine sed i ments Shal low ( l e s s than 12 inches) a eo l i a n depos i t s and co l l u v i um o v e r l y i n g and mixed w i th coarse tex tu red g Iac ia I t i l l Moderately poor t o poor, (perched water t a b l e ) Good t o rap i d Poor t o very poor (high groundwater t a b l e ) Poor t o very poor (high groundwater t a b l e ) Humic E l u v i a t e d G ley so l O r t h i c Humo-Ferr ic Podzol Rego G ley so l (humic phase) T e r r i c Humlsol Well t o moderately we l l Du r l c Humo-Ferr lc Podzol d ra ined ( t e l I u r i c seepage) Imperfect (perched water t a b l e ) Poor (perched water t a b l e ) GI eyed Podzo l I c Gray Luvi so I Humic Luv lc G ley so l Imperfect ( f l u c t u a t i n g GI eyed O r t s t e l n F e r r o -water t a b l e ) Humic Podzol ( con t i nued ) . MAP SYMBOL SOIL NAME PARENT MATERIALS DRAINAGE CLASSIFICATION CL CM CN DW F G GG GN HD HJ HN COLUMBIA CHEAM CALKINS DEWDNEY FAIRFIELD GREVELL GRIGG GIBSON HAZELWOOD HJORTH HERON Coarse t ex tu red s t r a t i f i e d outwash Coarse tex+ured co l l u v i um and minor a l l u v i a l - c o l l u v i a l fan depos i t s Medium t o moderately f i n e t ex tu red aeo l i an depos i t s over g l a c i a l outwash o r g l a c i a l t i l l Medium tex tu red Fraser R i ve r f l o o d p l a i n depos i t s over coarse t ex tu red mate r i a l a t 18 inches or less Medium t o moderately f i n e t ex tu red F ra se r R i ve r f l o o d p l a i n depos i t s Moderately coarse tex tu red Fraser R i v e r f l o o d p l a i n depos i t s Medium to moderately f i n e t ex tu red Fraser R i ve r ponded depos i t s Moderately we l l decomposed o rgan i c m a t e r i a l s over F raser F l o odp l a i n depos i t s F ine t ex tu red Fraser R i ve r f l o o d p l a i n ponded depos i t s Medium tex tu red Fraser R i v e r f l o o d p l a i n depos i t s Moderately coarse tex tu red beach depos i t s over moderately f i n e t ex tu red marine depos i t s o r moderately coarse tex tu red g l a c i a l t i l l We I I t o rap i d l y dra ined Well t o moderately we I dra i ned (teI I u r i c seepage) Poor t o very poor ( t e l l u r i c seepage and f l u c t u a t i n g ground-water t a b l e ) Imperfect Imperfect ( f l u c t u a t i n g groundwater t a b l e ) We I I t o rap i dIy d ra ined Poor (high ground-water t a b l e ) Very poor (high ground-water t a b l e ) O r t h i c Humo-Ferr ic Podzol O r t h i c Humo-Ferr ic Podzol Rego Humic Gleyso I GI eyed Degraded Me lan i c Brun i s o l GI eyed Degraded Me lan i c B run i s o l O r t h i c Regosol GI eyed O r t h i c Gray T e r r i c Mes i so l Poor (low p e r m e a b i l i t y ) O r t h i c Humic G ley so l Poor to moderately poor; (some areas s ub jec t t o f l o od i n g ) Poor (perched water t a b l e ) O r t h i c Humic G ley so l Rego Humic G ley so l ( c o n t i n u e d ) . . . MAP SYMBOL SOIL NAME PARENT MATERIALS DRAINAGE CLASSIFICATION HT JN KZ LH LV LY MH MR MY N PE HALLERT JUDSON KATZIE LEHMAN LIVINGSTONE LYNDEN MARBLE HILL MILNER MURRAYVILLE NICHOLSON PAGE Medium tex tu red F raser R i ve r f l ood -p l a i n depos i t s w i th layers of organ i c materi a I Well decomposed o rgan i c m a t e r i a l s m a t e r i a l s unde r l a i n by f i n e t ex tu red mineral mate r i a l F ine tex tu red marine and Fraser R i ve r f l o o d p l a i n ponded depos i t s Thin ( l e s s than 30 cm) medium tex tu red aeo l i an depos i t s over moderately coarse tex tu red g l a c i a l outwash Sha l low, medium tex tu red c o l l u v i a l and reworked marine depos i t s over coarse t ex tu red l i t t o r a l sands, over f i n e tex tu red marine depos i t s Moderately coarse t o coarse g l a c i a l outwash depos i t s Medium tex tu red aeo l i an depos i t s over moderately coarse tex tu red g l a c i a l outwash depos i t s F ine tex tu red marine depos i t s Shal low medium tex tu red marine and slopewash m a t e r i a l s over one t o f i v e f e e t of l i t t o r a l sand o v e r l y i n g marine f i n e tex tu red sediments Moderately f i n e t e x t u r ed g l a c i o -marine depos i t s Medium t o moderately f i n e tex tu red F raser R i ve r f l o o d -p l a i n depos i t s Poor (high groundwater Rego G leyso l t a b l e ) Very poor T e r r i c Humisol Moderate ly poor t o O r t h i c Humic G ley so l poor Poor ( t e l l u r i c seepage) O r t h i c Humic G ley so l Moderately poor t o poor Wei I t o r a p i d l y dra ined Wei I t o r a p i d l y dra i ned Moderate ly we 11 dra ined Moderate Iy we I I d r a i n e d ; (perched water t a b l e ) Moderately we I I d ra ined Moderate ly poor t o poor GI eyed Luv i c Humo-F e r r i c Podzol O r t h i c Humo-Ferr ic PodzoI O r t h i c Humo-Ferr ic Podzol Luv ic Humo-Ferr ic Podzol GI eyed Luv i c Humo-F e r r i c Podzol O r t h i c Humo-Ferr ic Podzol O r t h i c G ley so l LEGENDS (cont inued) MAP SYMBOL SOIL NAME PARENT MATERIAL DRAINAGE CLASSIFICATION PR RS SC SS W WL PREST ROSS SCAT SUNSHINE WHATCOM WESTLANG Medium t o moderately f i n e t ex tu red ra ser R i ve r f l o o d p l a i n depos i t s Medium to moderately f i n e tex tu red loca l stream depos i t s F ine tex tu red g Iac io -mar ine depos i t s Moderately coarse tex tu red beach depos i t s , one t o s i x f ee t t h i c k over f i n e t ex tu red g lac iomar ine sed iments Moderately f i n e tex tu red g l a c i o -marine depos i t s Moderately f i n e t o f i n e tex tu red reworked marine and Fraser R i ve r f l o o d p l a i n depos i t s Very poor (ground-water t a b l e c l o s e t o su r f ace ) Rego G leyso l Very poor ( sub jec t t o Rego G ley so l f l o o d i n g and seepage) Poor ( s ub jec t t o O r t h i c Humic G leyso l seepage and f l u c t u a t i n g groundwater t a b l e ) Wei I d ra ined O r t h i c Humo-Ferr ic Podzol Moderately we l l t o we l l L u v i s o l i c Humo-Ferr ic d ra ined (perched Podzol water t a b l e ) Poor t o very poor; (groundwater t a b l e near the su r face ) Rego Humic G ley so l ( a f t e r Lut tmerd ing , H. 1973. P r e l i m i n a r y Copy Langley - Vancouver Map Area S o i l Survey Report #15) • " 0 . 0 0 LEGEND D e s c r i p t i o n Free non-artesian w e l l s , Includes water table w e l l s Flowing a r t e s i a n wells Non-flowing a r t e s i a n w e l l s Springs Areas i n which most of the ground water • i s obtained from non-artesian wells Areas i n which most of the ground water i s obtained from flowing a r t e s i a n w e l l s and springs Areas i n which most of the ground water i s obtained from non-flowing a r t e s i a n w e l l s Halstead, 1957, 1960) The groundwater r e s o u r c e s map as compiled by H a l s t e a d (1957, 1960) r e l a t e s c l o s e l y t o t h a t which would be expected f o l l o w i n g examination o f the s u r f i c i a l geology map as compiled by Armstrong (1957, 1960). The c o a r s e r t e x t u r e d deep outwash m a t e r i a l s g e n e r a l l y supply groundwater from shallow (<15 meters) unconfined n o n - a r t e s i a n a q u i f e r systems. The f i n e r t e x t u r e d upland m a t e r i a l s such as the Newton Stony C l a y and the Whatcom Gla c i o m a r i n e d e p o s i t s supply graoundwater from deep (>15 meters) c o n f i n e d by non-flowing a r t e s i a n a q u i f e r systems. The f i n e t e x t u r e d lowland m a t e r i a l s , the C l o v e r d a l e Marine sediments and the F r a s e r f l o o d p l a i n d e p o s i t s support deep f l o w i n g and a r t e s i a n w e l l s and s p r i n g s . The importance o f a g r i c u l t u r a l waste water contamination o f groundwater s u p p l i e s e s p e c i a l l y i n s hallow water t a b l e s i s r e c o g n i z e d by the author, however, due to the complexity o f a groundwater systems study and the time and f u n d i n g c o n s t r a i n t s o f the p r e s e n t study, the e f f e c t s o f a g r i c u l t u r a l l a n d use p r a c t i c e s on groundwater q u a l i t y and q u a n t i t y are l e f t f o r independent study. 6. Hydrology; The streamflow o f the Salmon R i v e r has been gauged c o n t -i n u o u s l y by Environment Canada, I n l a n d Waters Branch, Water Survey D i v i s i o n s i n c e 1969, w i t h the gauging s t a t i o n l o c a t e d a t the 72nd Avenue c r o s s i n g ( P l a t e I ) . P r i o r to t h a t time gauging was i n t e r m i t t e n t . The r e s u l t s o f these r e c o r d s i n d i c a t e a g e n e r a l t r e n d f o r peak flows to o c c u r between the months o f November and March and f o r the low flow p e r i o d to occur between the months o f June and October. The maximum d a i l y d i s c h a r g e d u r i n g the time p e r i o d 1969 through 1974 was 30.8 c u b i c meters per second. The minimum d a i l y d i s c h a r g e was 0.2 c u b i c meters P l a t e I : Stream gauging s t a t i o n , on Salmon R i v e r a t 72nd Avenue, Langley, B.C. per second. The average monthly hydrology d i s c h a r g e over the time p e r i o d 1969 to 1974 i s p l o t t e d i n F i g u r e 6. Mean monthly stream/low maximum and minimum flows and volumes are p r e s e n t e d i n T a b l e number I I I . The d a i l y h y d r o l o g i c a l d i s -charge data f o r the water sampling p e r i o d 1974-1975 i s p r e s -ented i n Appendix I. The h y d r o l o g i c data was used i n conjun-c t i o n w i t h water q u a l i t y a n a l y s i s r e s u l t s to determine e f f e c t s o f l a n d use on s u r f a c e water q u a l i t y . Because most o f the p u b l i s h e d h y d r o l o g i c a l i n f o r m a t i o n i s r e p o r t e d i n E n g l i s h r a t h e r than m e t r i c u n i t s o f measure, E n g l i s h u n i t s are used i n t h i s r e p o r t w i t h the a p p r o p r i a t e c o n v e r s i o n f a c t o r s appended. 7. C l i m a t e ; T a b l e IV i n d i c a t e s the 3 0 year average o f m e t e o r o l o g i c a l data r e c o r d e d a t A l d e r g r o v e , B.C. and T a b l e V shows the 7 year average r e c o r d e d a t M i l n e r , B.C. The c l i m a t e o f the Salmon R i v e r area i s i n s h o r e maritime and i s s t r o n g l y i n f l u e n c e d by the Coast Mountains which term-i n a t e on the n o r t h s i d e o f the F r a s e r R i v e r . Abundant r a i n -f a l l d u r i n g the w i n t e r i s f o l l o w e d by a d e f i c i e n c y d u r i n g J u l y and August. The l o n g e s t f r o s t - f r e e p e r i o d s and growing seasons e x i s t i n the P a c i f i c Coast area, o f which the Lower F r a s e r V a l l e y i s a p a r t . Minor v a r i a n c e s e x i s t which can be a t t r i b u t e d t o l o c a l i n f l u e n c e s such as topography, e l e v a t i o n , and d i s t a n c e from l a r g e bodies o f water. C l i m a t o l o g i c a l data has been c o l l e c t e d a t M i l n e r , B.C. A r t i f i c i a l I n semination Center s i n c e 1967, and a t A l d e r g r o v e Canadian Armed Forces Base s i n c e 1941 f o r the Canada Department o f the Environment, Atmospheric Environment S e r v i c e s . S i n c e -| 1 1 1 "i 1 1 1 1 i i 1 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC T a b l e I I I : Mean Monthly H y d r a u l i c Discharge For Salmon R i v e r , 1969-1974, I n c l u d i n g Conversion To Acre-Feet And Maximum And Minimum Discharge For Each Month Over The Time P e r i o d Of Gagging  Jan. Feb. Mar. Apr. May June J u l . Aug. Sept. Oct. Nov. Dec. mean d i s c h a r g e 128.1 ( c f s ) * 122.3 90.7 47.2 25.7 16.5 15.4 8.4 14.3 22.2 73.0 119.5 mean d i s c h a r g e 7869 ( a c r e - f t ) * 6868 5558 3094 1446 979 947 518 849 1365 4342 760.4 maximum d i s c h a r g e 727 879 443 316 129 169 423 15.8 132 198 556 1140 (cf s ) minimum d i s c h a r g e 24.3 22.2 17.2 .15.6 11.0 6.5 6.3 5.9 6.4 6.5 8.0 10.0 (c f s ) * f o r c o n v e r s i o n t o m e t r i c u n i t s 3 c u b i c meters per second= c f s x 0.028 m_ f t h e c t a r e - meters = a c r e - f t x (o.405 ha. TABLE IV: TEMPERATURE AND PRECIPITATION RECORD AT ALDERGROVE, B.C.  ( 3Q y e a r average, 1941- 1970 TEMPERATURE ° C PRECIPITATION cm MEAN MAX. MEAN MIN. MAX. MIN. # DAYS FR. TEMP TOTAL # DAYS >_ 0.01 SNOWFALL Jan. 4 -2 14 -19 22.9 41.9 Feb. 8 -1 19 -11 17.8 12.4 Mar. 10 0 22 -8 15.7 10.4 Apr. 13 2 25 -4 10.9 0.5 May 18 5 33 -2 7.1 0.2 June 20 8 33 1 6.6 0 July 23 9 36 3 4.3 0 Aug. 23 9 36 2 5.3 0 Sept. 20 7 31 -2 9.4 0 Oct. 14 4 25 -4 18.5 T Nov. 9 1 18 -9 21.3 5.1 Dec. 6 -1 16 -20 24.4 25.4 a t ! TARTF? y. TOMPT?paTrn?P RMT> PCTY-TP-praTTr-M RECORD AT MTTNF^,-BJI f7 ypar, a w r a g p , 1967 -197^ TEMPERATURE °C PRECIPITATION cm. MEAN MAX. MEAN MIN. MAX. MIN. # DAYS FR. TEMP TOTAL # DAYS >_ 0.(51 SNOWFALL Jan. 4 -2 15 -22 21 21.3 20 ^.n Feb. 9 -1 20 -22 16 14.0 14 4.1 Mar. 11 1 19 -11 16 17.0 18 4.3 Apr. 13 2 26 -5 9 11.2 16 0 May 18 5 33 -2 2 6.4 12 0 June 20 9 33 2 0 6.4 10 1 i 0 '. July 23 9 33 2 0 4.8 5 0 Aug. 23 9 35 -1 1 3.6 8 0 Sept. 20 7 34 -5 1 10.9 12 0 Oct. 14 4 24 -8 9 17.2 19 0 Nov. 9 2 18 -11 9 17.5 21 6.1 Dec. 6 -1 14 -19 19 23.1 2.3 30.2 these two r e c o r d i n g s t a t i o n s are i n o r very c l o s e to the Salmon R i v e r Watershed the data from them was used i n t h i s study to get an i n d i c a t i o n o f how h y d r o l o g i c d i s c h a r g e , p r e c i p i t a t i o n , and stream water q u a l i t y were c o r r e l a t e d . The a c t u a l d a i l y v a l u e s o f p r e c i p i t a t i o n ( r a i n and snow) are p r e s e n t e d i n Appendix I I . A p l o t o f the d a i l y p r e c i p i t a t i o n amounts i s p r e s e n t e d i n F i g u r e 7. These data f o l l o w the g e n e r a l -i z e d t r e n d of heavy w i n t e r p r e c i p i t a i t o n f o l l o w e d by a summer dry p e r i o d which o c c u r r e d from August to October i n 1974. In the Langley area, o n l y about 8 c e n t i m e t e r s o f t o t a l p r e c i p i t a t i o n o c c u r s as snow. i n the A l d e r g r o v e area about 10 c e n t i m e t e r s o f t o t a l p r e c i p i t a t i o n o c c u r s as snow, w h i l e i n the M i l n e r a r e a about 6.2 c e n t i m e t e r s o f t o t a l p r e c i p i t a t i o n o c c u r s as snow. The minimum temperature a t A l d e r g r o v e i n 30 years i s -19°C. w h i l e the maximum i s 36°C. The minimum temp-e r a t u r e a t M i l n e r i n 8 y e a r s o f r e c o r d i n g i s -22°C, w h i l e the maximum i s 35°C. The t o t a l average annual p r e c i p i t a t i o n a t A l d e r g r o v e , 30 y e a r average, i s 171.1 c e n t i m e t e r s , and a t M i l n e r , 8 y e a r average i s 84.3 c e n t i m e t e r s (Environment Canada, 1974) Taken as a whole, the c l i m a t e o f the Lower F r a s e r V a l l e y i s q u i t e s u i t a b l e f o r a g r i c u l t u r a l p r o d u c t i o n . Temperatures are not extreme. High winds are r a r e . Growing season sun-l i g h t hours are adequate. F r o s t - f r e e p e r i o d s and growing seasons are l o n g . The primary r e s t r i c t i o n i s the summer dry p e r i o d which produces s o i l moisture d e f i c i e n c i e s (Luttmerding and Sprout, 1966). X7 8. Pre s e n t Land and Water Use; In 1971, the Westwater Research Center, U n i v e r s i t y o f B r i t i s h Columbia, compiled a c u r r e n t l a n d use map of the Lower F r a s e r V a l l e y i n c l u d i n g the Salmon R i v e r Watershed. T h i s map (Figure 8) i n d i c a t e s the g e n e r a l l o c a t i o n and e x t e n t of the v a r i o u s types o f l a n d use maintained i n the watershed ar e a . From the map i t i s observed t h a t most of the area i s being u t i l i z e d f o r some form o f a g r i c u l t u r a l p r o d u c t i o n . Table VI shows the r e l a t i v e p r o p o r t i o n s o f l a n d use c l a s s e s i n the Salmon R i v e r Watershed. D a i r y i n g c o n s t i t u t e s the most important s i n g l e e n t e r p r i s e , and i s l o c a t e d dominately i n the F r a s e r f l o o d p l a i n ( P l a t e II) and the Langley V a l l e y ( P l a t e I I I ) areas o f the watershed. Small f r u i t s , p r i m a r i l y s t r a w b e r r i e s and some r a s p b e r r i e s are grown i n the v i c i n i t y o f Hopington and o t h e r f a v o u r a b l e areas ( P l a t e I V ) . S e v e r a l beef c a t t l e f e e d l o t s and farms prod u c i n g b r e e d i n g s t o c k are pr e s e n t ( P l a t e V , V I ) . A few farms are devoted t o br e e d i n g and t r a i n i n g o f race horses o r a c t as boa r d i n g and r i d i n g s t a b l e s ( P l a t e V I I ) . P o u l t r y ( P l a t e V I I I ) and f u r farming are important e n t e r p r i s e s i n some are a s . Of l e s s e r importance i s ve g e t a b l e p r o d u c t i o n . A s i g n i f i c a n t p o r t i o n remains i n f o r e s t which i s g e n e r a l l y u nproductive and used p r i m a r i l y f o r farm woodlots ( P l a t e I X ) . Urban, suburban ( P l a t e X) and hobby farm development ( P l a t e XI) e x i s t s on a s i g n i f i c a n t p o r t i o n o f the watershed as w e l l . The water o f the Salmon R i v e r i s h e l d under l i c e n s e by numerous p r i v a t e c i t i z e n s . Although the m a j o r i t y o f water FIGURE 8 SALMON RIVER DRAINAGE BASIN Present Land Us* (1971) 05 • Milt* LEGEND R«»idcnlNji fortilry F'tid Crop* ^retard* E2] i mm E 2 Penal Initit jlroni Wataf Chemical Prncamnf r . p e c i o i i f Ammal Forms (inclvtlmo, livestock) C o m m t f cicH Transportation, Cnorgy ft Commur.icot.on Corridor* rrocrorjt ton N o n Metallic M « . r > , Litmtar ftivr* Table VI: Proportion of land use classes i n the Salmon River • basin C i-Land Use Class % of t o t a l area single family dwellings (0.4 hectares) 1.1 low density r e s i d e n t i a l (0.4 - 2 hectares)8.4 roads 1.1 commercial 0.1 recreation 0.5 i n s t i t u t i o n a l <0.1 vacant land 1.6 f i e l d crops 10.4 specialty animal farms 0.4 grazing-pasture lands 36.6 forested lands (including non-comm. cover) 36.1 gravel p i t s 0.2 orchards 0.4 (after Weins, 1975) 30 P l a t e I I I : D a i r y farm i n Langley V a l l e y a r e a 51 P l a t e IV: Strawberry f i e l d near Hopington on 248th S t r e e t P l a t e V I I : Pasture f o r horse farm a t Cohglan Road (256th S t r e e t ) P l a t e V I I I : T y p i c a l p o u l t r y farm on Roberts Road (56th Avenue) 3 5 P l a t e IX: Farm woodlot, immature nonmerchantable f o r e s t , t y p i c a l o f the f o r e s t s i n the watershed, on Robertson C r e s c e n t P l a t e X: Low d e n s i t y r e s i d e n t i a l development a t Roberts Road (56th Avenue) P l a t e XI: Hobby farm area on T e l e g r a p h T r a i l l i c e n c e s h e l d are f o r i r r i g a t i o n purposes, t h e r e are a few h e l d f o r domestic water supply (Table V I I ) ( B . C . Dept. o f Lands, F o r e s t s , and Water Resources, Water Rig h t s Branch, 1975). The q u a l i t y o f the stream water must conform to both i r r i g a t i o n water q u a l i t y standards o r c r i t e r i a and d r i n k i n g water q u a l i t y standards o r c r i t e r i a . 9. Zoning P a s t and P r e s e n t ; In 1966 the then e x i s t e n t Lower Mainland R e g i o n a l P l a n n i n g Board developed an O f f i c i a l R e g i o n a l P l a n f o r the whole o f the lower mainland. P l a n s were developed f o r both the s h o r t and the long term. The s h o r t term o r c u r r e n t stage map shows the area as i t was zoned i n 1966 (Figure 9). T h i s p l a n shows the major p o r t i o n o f the watershed zoned as upland r u r a l develop-ment wit h minor areas o f developed urban a r e a s , l a r g e areas o f d e v e l o p i n g urban, acreage r u r a l , i n d u s t r i a l and s p e c i a l r e s e r v e a r e a s . The l o n g term p l a n shows the proposed develop-ment o f a major s a t e l l i t e c i t y i n the area o f d e v e l o p i n g and e x i s t i n g urban areas , w i t h i n the Salmon R i v e r Watershed (Figure 10). With the passage o f the Land Commission A c t (1972) and the subsequent d e s i g n a t i o n o f A g r i c u l t u r a l Land Reserves the zoning o f the area has been a l t e r e d s l i g h t l y ( F i g u r e 11). The m a j o r i t y o f the watershed i s zoned 5 a c r e minimum w i t h l a r g e p r o p o r t i o n s zoned as H, 1 and 2 a c r e minimum and some zoned as 20 a c r e minimum (Figure 12). (The C o r p o r a t i o n o f the Township o f Langley, 1970, 1973). Table V I I : L i c e n s e d Water Withdrawal from the Salmon R i v e r and i t s T r i b u t a r i e s Use Volume Domestic Water Supply I r r i g a t i o n I n d u s t r i a l - f i s h c u l t u r e - g o l f course - f r u i t p r o c e s s i n g Land Improvement 11,000 gpd.* 572.8 acre f e e t * 7 c f s . * 3 acre f e e t 15,000 gpd. 17,000 gpd. D.35 c f s . • c o n v e r s i o n f a c t o r s gpd t o l i t e r s per day = gpd x 4.54 l i t e r s g a l l o n a c r e - f e e t t o hectare-meters = a c f t x 0.12 ha.m a c f t 3 c f s t o c u b i c meters per second = c f s x 0.028 m_ f t ' FIGURE 9 OFFICIAL CURRENT STAGE PLAN: SALMON RIVER WATERSHED Symbol .1 •URB-1: 2 URB-2: 3 URB-3: 4 RRL-1: 5 RRL-2: 6 IND-1: 7 ' RSV-2: 8 RSV-1: LEGEND Description Established urban area Developing urban area Lowland r u r a l area Upland r u r a l area Acreage r u r a l area Developing I n d u s t r i a l area I n s t i t u t i o n a l reserve area Limited use reserve area ( a f t e r Lower Mainland Regional Planning Board 1966) OJ -0 LEGEND Symbol Description 1 Developed urban areas 2 Developed i n d u s t r i a l areas 3 Rural, a g r i c u l t u r a l areas 4 Reserve, l i m i t e d use areas ( a f t e r Lower Mainland Regional Planning Board, 1966) FIGURE 10 OFFICIAL LONG RANGE PLAN: SALMON RIVER WATERSHED LEGEND Symbol Description 1 UR- 1: one-half acre minimum 2 UR- 2: one acre minimum 3 UR- 2: two and one-half acre or less minimum 4 RR- 1: f i v e acre minimum 5 RR- 3: twenty acre minimum ( a f t e r Langley M u n i c i p a l i t y Zoning Bylaw No. 1302, 1AA1 1970, 1973) FIGURE 12 v EXISTING ZONING: SALMON RIVER WATERSHED 4-3 METHODS FIELD SAMPLING 1. S u r f a c e Water Water samples from the-- Salmon R i v e r and i t s t r i b u t a r y streams were c o l l e c t e d a t s e l e c t e d s i t e s from May 1974 u n t i l A p r i l 1975. F i g u r e 13 i s a map showing the l o c a t i o n o f these s i t e s . These sampling s i t e s were l o c a t e d where major breaks i n geomorphic u n i t s o r i n p r e s e n t l a n d use p a t t e r n s were mapped and on t r i b u t a r y streams which d r a i n predomin-a t e l y one type of l a n d use p a r t i c u l a r l y e x t e n s i v e a g r i c u l t u r e o r urban s u b d i v i s i o n . The c o n t r i b u t i n g area numbers, the; sampling s t a t i o n numbers to which they c o n t r i b u t e , the culumative c o n t r i b u t i n g area s i z e , the cumulative c o n t r i b u t i n g area s i z e , and the r a t i o of each a r e a c o n t r i t u b i n t to the whole watershed are p r e s e n t e d i n Table V I I I . On the b a s i s o f area r a t i o s the c o n t r i b u t i n g areas were s u b d i v i d e d i n t o f o u r s i z e c l a s s e s . S i z e 1 c o n t r i b -u t i n g areas were those areas w i t h r a t i o s o f l e s s than 0.20 and i n c l u d e d areas c o n t r i b u t i n g t o sampling s t a t i o n s 8, 10, 11 and 12. S i z e 2 c o n t r i b u t i n g areas were those areas w i t h r a t i o s o f 0.20 t o 0.4 0 and i n c l u d e d areas c o n t r i b u t i n g to s t a t i o n s 4, 5, 7, 9, and 15. S i z e 3 c o n t r i b u t i n g areas were those areas w i t h r a t i o s o f 0.4 0 t o 0.80 and i n c l u d e d those areas c o n t r i b u t i n g t o s t a t i o n s 2, 3, 6, and 14. S i z e 4 c o n t r i b u t i n g areas were those areas w i t h r a t i o s o f 0.80 t o 1.00 and i n c l u d e d those areas c o n t r i b u t i n g to s t a t i o n 1. F i g u r e 14 shows the l o c a t i o n and e x t e n t of each area c o n t r i b -u t i n g t o each water sampling s i t e . The c o n t r i b u t i n g areas Table V I I I : Contributing areas, size, and area ratios Contribut- Cumulative Cumulative ing Area Contribut-Sampling Contributing Contribut- Size ing Area Station # Area # ing Area #5 (hectacres) (hectacres) Area Ratio 11 1 1 940.5 940.5 0.12 15 2 1+2 660.0 1606.5 0.20 10 3 3 309.5 309.5 0.04 9 4 1+2+3+4 244.5 2160.5 0.27 8 5 5 143.1 143.1 0.02 7 6 1+2+3+4+5 650.0 2953.6 0.37 4 7 1+2+3+4+5 +6+9 168.5 3122.1 0.39 12 8 7 119.0 119.0 0.01 5 9 7+8 1469.4 1588.4 0.20 6 10 1+2+3+4+5+ 6+7+8+9+10 596.0 5306.5 0.66 3 11 11 490.0 490.0 0.72 2 14 12 14 1+2...+11+ 12 14 472.5 347.5 6269.0 480.6 0.78 0.72 1 15 1+2...+14 1282.5 8032.1 1.00 +15 are numbered from 1 t o 15 b e g i n n i n g a t the headwaters of the r i v e r and ending a t the j u n c t i o n o f the Salmon and F r a s e r R i v e r s . During the summer months May to September, samples f o r c h e m i c a l a n a l y s i s were c o l l e c t e d twice a month, w h i l e from September u n t i l A p r i l they were c o l l e c t e d once monthly due t o time c o n s t r a i n t s . F i v e hundred m i l l i l i t e r samples were c o l l e c t e d and a n a l y s e d as q u i c k l y as p o s s i b l e , t o a v o i d p o s s i b l e d e g e n e r a t i o n o f samples. Samples were not c o l l e c t e d f o r p e s t i c i d e a n a l y s i s s i n c e p r e v i o u s s t u d i e s r e v e a l e d no d e t e c t a b l e amounts o f p e s t i c i d e r e s i d u e s i n the water ( H a l l , 1974). Samples f o r t r a c e metal a n a l y s i s were c o l l e c t e d monthly, f r o z e n and s t o r e d u n t i l 50-60 samples were accumulated t o f a c i l i t a t e e f f i c i e n t a n a l y s i s . Separate 125 m i l l i l i t e r samples were c o l l e c t e d , f r o z e n and s t o r e d f o r phosphorus a n a l y s i s , a t the same time as samples were c o l l e c t e d f o r the o t h e r c h e m i c a l a n a l y s e s . The p r e l i m i n a r y r e s u l t s f o r the month of May were l a t e r r e j e c t e d s i n c e the methods of a n a l y s i s were b e i n g t e s t e d and i n s u f f i c i e n t sample was c o l l e c t e d t o complete a l l o f the l a b o r a t o r y a n a l y s e s . 2. P r e c i p i t a t i o n P r e c i p i t a t i o n samplers were i n s t a l l e d a t the end of June, 1974 and p r e c i p i t a t i o n samples c o l l e c t e d monthly from J u l y , 1974 u n t i l A p r i l , 1975. These p r e c i p i t a t i o n samplers were made of 1 g a l l o n p l a s t i c b o t t l e s f i t t e d w i t h a screen covered f u n n e l t o c o l l e c t p r e c i p i t a t i o n p r i m a r i l y f o r analysis of chemical; imputs i n rainwater, d u s t f a l l , and snow combined. A diagram of the samplers i s pres-ented i n Figure 15. Ten of these samplers were located throughout the watershed. Figure 13 i s a map showing the lo c a t i o n of these samplers. Plates XII, XIII, and XIV are examples of the areas where p r e c i p i t a t i o n samplers were located and how they were fastened to the s i t e . 3. Sediment Grab samples of sediment were taken from the stream bottom i n May and again i n July, 1974. 4. S o i l s Six selected s o i l s were sampled i n three of the major geomorphic units. The horizons i n each s o i l were sampled for background or benchmark values to compare with those values found by Luttmerding and Sprout, (1966). FIELD ANALYSIS In s i t u measurements included pH, temperature, redox p o t e n t i a l , e l e c t r i c a l conductivity and dissolved oxygen. The pH readings were made using a combination saturated KC1 electrode on an Instrument Laboratory Company Model 17 5 portable pH meter. Redox poten t i a l was determined using a combination platinum redox electrode model number 96-78 with an Orion s p e c i f i c ion meter model #4 07. Temperature was determined with a s o l i d state metal thermometer. A Yellow Springs Instrument Company s a l i n i t y - c o n d u c t i v i t y -temperature meter Model 33 was used for conductivity determinations. A Yellow Springs Instrument Company oxygen mater model #54 and electrode was used to determine the FIGURE 15 DIAGRAM OF PRECIPITATION COLLECTING APPARATUS NYLON SCREEN FASTENED WITH SILICONE GLUE ALUMINUM FOIL COVERED TO REDUCE EVAPO-RATION LOSSES PLASTIC FUNNEL 5" DIAM. RUBBER STOPPER NO. 7 PLASTIC CONTAINER I GAL. VOLUME P l a t e X I I : P r e c i p i t a t i o n sample s i t e 10 a t Robertson Crescent and 240th S t r e e t P l a t e X I I I : P r e c i p i t a t i o n sample s i t e 6 a t Deep Creek Road (222nd S t r e e t ) near Wilson Town L i n e Road (96th Avenue) 52 d i s s o l v e d oxygen c o n t e n t o f the stream. The o n l y f i e l d d e t e r m i n a t i o n s done on the p r e c i p i t a t i o n samples was pH and a measurement of volume. No f i e l d d e t e r m i n a t i o n s were c a r r i e d out on the sediment samples. LABORATORY ANALYSES 1. S u r f a c e Waters The 1 l i t e r samples c o l l e c t e d f o r t r a c e metal a n a l y s i s were kept f r o z e n u n t i l 50-60 samples were accumulated f o r e f f i c i e n t a n a l y s i s . The samples when thawed were a c i d i f i e d w i t h n i t r i c a c i d and taken to the Westwater Research Center f o r a n a l y s i s . These a n a l y s e s were c a r r i e d out under the d i r e c t i o n o f Dr. K. H a l l i n the geochemistry l a b o r a t o r y o f the F a c u l t y o f G e o l o g i c a l S c i e n c e s , U.B.C, u s i n g the MIBK o r g a n i c e x t r a c t i o n method as d e s c r i b e d by McQuaker (1973). The 125 ml. samples c o l l e c t e d were kept f r o z e n u n t i l the o t h e r c h e m i c a l a n a l y s e s were complete. These samples were then thawed and a n a l y s e d f o r t o t a l a c i d d i g e s t i b l e d i s s o l v e d and p a r t i c u l a t e phosphorus. T n e method used was t h a t d e s c r i b e d by the American P u b l i c H e a l t h A s s o c i a t i o n (1971) u s i n g a c i d d i g e s t i o n and stannous chloride-molybdenum blu e c o l o u r development. Those 500 ml. samples which were c o l l e c t e d f o r d e t a i l e d c h e m i c a l c o n c e n t r a t i o n a n a l y s i s were analyzed as q u i c k l y as p o s s i b l e i n the Pedology L a b o r a t o r y , U.B.C. The samples were f i r s t f i l t e r e d through a number 1 Whatman f i l t e r paper to remove suspended s o l i d s , the f i l t e r paper was then a i r -d r i e d and weighed t o determine the approximate weight o f suspended s o l i d s . The r e s u l t s o f these measurements were h i g h l y e r r a t i c and i m p o s s i b l e t o s t a n d a r d i z e so they have not been i n c l u d e d i n t h i s study. Blank r e a d i n g s o f d i s t i l l e d water passed through the f i l t e r paper were a l s o c a r r i e d through a l l procedures. Immediately f o l l o w i n g f i l t r a t i o n , NO^-N c o n c e n t r a t i o n s were determined u s i n g the c h r o n o t r o p i c a c i d technique o f the U.B.C. Pedology l a b o r a t o r y ( L a v k u l i c h e t a l , 1974). T o t a l a c i d i t y , t o t a l a l k a l i n i t y , and t o t a l d i s s o l v e d s o l i d s were determined f o l l o w i n g the NO^-N a n a l y s i s . T o t a l a c i d i t y was determined u s i n g p h e n a l p h a l e i n i n d i c a t o r and t i t r a t i o n w i t h 0.02N NaOH. T o t a l a l k a l i n i t y was determined u s i n g p h e n a l p h a l e i n i n d i c a t o r , mixed bromocresol green-methyl red i n d i c a t o r f o l l o w e d by t i t r a t i o n w i t h 0.02 HCl. B i c a r b o n a t e , carbonate, and hydroxide a l k a l i n i t y were determined by c a l c u l a t i o n u s i n g the r e s u l t s o f the t o t a l a l k a l i n i t y . T o t a l d i s s o l v e d r e s i d u e or t o t a l d i s s o l v e d s o l i d s were determined by e v a p o r a t i o n o f the f i l t e r e d samples. A l l o f the above methods were d e s c r i b e d by the American P u b l i c H e a l t h A s s o c i a t i o n (1971). A n a l y s i s f o r t o t a l K j e l d a h l n i t r o g e n was c a r r i e d out s i m u l t -aneously w i t h the p r e v i o u s a n a l y s i s . T h i s d e t e r m i n a t i o n was done u s i n g a s l i g h t l y m o d i f i e d semi-micro K j e l d a h l technique preceeded by c o n c e n t r a t i o n o f the sample by e v a p o r a t i o n . E v a p o r a t i o n was f o l l o w e d by treatment w i t h s a l i c y l i c a c i d , s u l f u r i c a c i d , and sodium t h i o s u l p h a t e i n an attempt t o r e t a i n the NO,. T h i s sample was.then d i g e s t e d w i t h a K-SO., CuSO., Se c a t a l y s t i n s u l f u r i c a c i d f o l l o w e d by steam d i s t i l l a t i o n and t i t r a t i o n o f the d i s t i l l a t e w i t h 0.02 o r 0.05 N HC1 u s i n g b o r i c a c i d as the end p o i n t i n d i c a t o r . (Jackson, 1958; Chapman and P r a t t , 1961; and Bremner, 1965). The o r g a n i c carbon c o n c e n t r a t i o n was determined next u s i n g a s l i g h t l y m o d i f i e d Walkley-Black w e t - o x i d a t i o n technique ( A l l i s o n , 1965 and Chapman and P r a t t , 1961). S u l f a t e d e t e r m i n a t i o n s were then conducted u s i n g the B a C l 2 t u r b -i d i m e t r i c technique (APHA, 1971). The c a t i o n c o n c e n t r a t i o n s were determined l a s t u s i n g the Perkin-Elmer atomic a b s o r p t i o n Spectrophotometer model number 306 d i r e c t l y on the f i l t e r e d water samples f o r Ca, Mg, Na., K, Fe, A l , S i , Mn. T o t a l hardness was c a l c u l a t e d , u s i n g the formula method (iAPHA, 1971) . C h l o r i d e c o n c e n t r a t i o n s were determined u s i n g the Ag 2SO^ p o t e n t i o m e n t r i c t i t r a t i o n technique ( L a v k u l i c h et a l . , 1974). 2. P r e c i p i t a t i o n Waters The water from the p r e c i p i t a t i o n samplers was c o l l e c t e d monthly from J u l y 1974 u n t i l A p r i l 1975 i n c l u s i v e . The l a b o r a t o r y a n a l y s e s run on these samples i n c l u d e d t o t a l a c i d i t y , t o t a l a l k a l i n i t y , HCC>3, C0 3, and OH a l k a l i n i t y , NO^-N, t o t a l d i s s o l v e d s o l i d s ( r e s i d u e ) , t o t a l K j e l d a h l N, t o t a l o r g a n i c C, CI, S0 4, Ca, Mg, Na, K, Fe, A l , S i and Mn. A l l o f these d e t e r m i n a t i o n s were c a r r i e d out u s i n g the same procedures o u t l i n e d i n the p r e c e e d i n g s e c t i o n on s u r f a c e waters. 55 3. Sediment Samples The sediment samples c o l l e c t e d were a i r dryed, ground l i g h t l y to pass a 2mm s i e v e , c o a r s e fragments weighed and the weight r e c o r d e d . A subsample o f the l e s s than 2 mm f r a c t i o n was then taken and ground to pass a 60 mesh ( 0.2mm) s i e v e . T h i s sample was used f o r t o t a l a l u m i n o s i l i c a t e d i s t -r u c t i o n by HNO^, H 2S0 4, HF, and HC10 to determine Ca, Mg, Na, K, Fe, A l , Mn, Cu, Zn, N i , Cr, Co, T i , Pb, Cd, and S i (by d i f f e r e n c e ) . T o t a l N was determined on the l e s s than 2mm f r a c t i o n by the semi-micro K j e l d a h l method ( L a v k u l i c h e t . a l . , 1974). T o t a l C was determined on the l e s s than 2 mm f r a c t i o n by the Leco i n d u c t i o n furnace method as was t o t a l S ( L a v k u l i c h e t . a l , 1974). T o t a l c a t i o n exchange c a p a c i t y and exchangeable c a t i o n s (Ca, Mg, Na, K), and pH were c a r r i e d out on the l e s s than 2mm f r a c t i o n . Exchangeable c a t i o n s were determined by Ammonium a c e t a t e e x t r a c t i o n a t pH 7.0, t o t a l c a t i o n exchange c a p a c i t y by KC1 d i s p l a c e m e n t o f NH^ and subsequent K j e l d a h l d i s t i l l a t i o n ( L a v k u l i c h e t . a l . , 1974). The pH was determined i n water and CaCl, (Peech, 1965). E x t r a c t a b l e PO.-P was determined on the l e s s than 2mm 4 f r a c t i o n u s i n g the NH^F e x t r a c t a n t and S n C l 2 - Molybdenum b l u e c o l o u r development ( L a v k u l i c h e t . a l . , 19 74). 4. S o i l Samples S i x s i t e s were sampled f o r s o i l a n a l y s i s f o r comparison w i t h data p r e s e n t e d by Luttmerding and Sprout (1966). These samples were a i r dryed, crushed l i g h t l y to pass a 2mm s i e v e and the f o l l o w i n g a n a l y s e s undertaken: pH, o r g a n i c C, t o t a l N, P, c a t i o n exchange c a p a c i t y exchangeable c a t i o n s (Ca, Mg, Na, K,) Fe, and A l . The pH va l u e s were determined both i n H 20 and 0.01 C a C l 2 , (Peech, 1965). Organic C v a l u e s were determined u s i n g the Walkley - B l a c k wet o x i d a t i o n technique ( A l l i s o n , 1965). T o t a l N va l u e s were determined u s i n g the semi-micro K j e l d a h l technique (Jackson, 1958; Bremner, 1965). E x t r a c t a b l e PO^-P was determined w i t h the NH^F e x t r a c t i o n technique u s i n g S n C ^ molybdenum blu e c o l o u r development. (Olson and Dean, 1965; - Jackson, 1958). Exchangeable c a t i o n s and t o t a l c a t i o n exchange c a p a c i t i e s were determined u s i n g the n e u t r a l ammonium a c e t a t e e x t r a c t i o n f o r exchangeable c a t i o n s f o l l o w e d by l.ON KC1 l e a c h i n g and semi-micro K j e l d a h l d i s t i l l a t i o n o f the l e a c h a t e f o r t o t a l c a t i o n exchange c a p a c i t y ( L a v k u l i c h e t . a l . , 1974). Carbon, n i t r o g e n r a t i o s and pe r c e n t o r g a n i c matter were then c a l c u l a t e d from the r e s u l t s o f these a n a l y s e s . I r o n and aluminum d e t e r -minations were done by the a c i d ammonium o x a l a t e e x t r a c t i o n method ( L a v k u l i c h e t . a l . , 1974). RESULTS PRESENT LAND USE Updating o f the 1971 Westwater p r e s e n t l a n d use study, r e v e a l e d l i t t l e s i g n i f i c a n t change i n the o v e r a l l p a t t e r n o f l a n d use, w i t h the e x c e p t i o n o f the development of two areas i n s u b d i v i s i o n , (Minty, 1975), as i n d i c a t e d on F i g u r e 16. T h i s i s p a r t i c u l a r l y t r u e a t a s c a l e o f 1:50,00 On a more d e t a i l e d l e v e l many o f those areas which were d e s c r i b e d as s i n g l e f a m i l y r e s i d e n t i a l areas w i t h l o t s o f l e s s than 0.4 hecare s i z e have f i l l e d i n w i t h f u r t h e r homes. Areas o f s m a l l acreage r u r a l i . e . 4 h e c t a r e p l o t s and l e s s appear to have i n c r e a s e d s l i g h t l y s i n c e 1971. In the case o f a g r i c u l t u r a l l a n d use p a t t e r n s they are very s i m i l a r t o those o f 1971 (at 1:50,000). In some cases e s p e c i a l l y around e x i s t i n g u r b a n i z e d or semi-urbanized areas some o f the a g r i c -u l t u r a l l a n d has been developed i n t o r e s i d e n t i a l housing, p a r t i c u l a r l y i n the area near Hopington. F i g u r e 17 shows the approximate l o c a t i o n o f i n t e n s i v e a g r i c u l t u r a l p r a c t i c e s i n r e l a t i o n t o the sampling s t a t i o n l o c a t i o n s on the Salmon R i v e r (Wiens, 1975). 1. P r o p o r t i o n s o f v a r i o u s l a n d uses The watershed o f the Salmon R i v e r was s u b d i v i d e d i n t o sampling areas on the b a s i s o f major breaks i n geomorphic u n i t and/or l a n d use p a t t e r n . S u r f a c e water sampling s i t e s were e s t a b l i s h e d a t these major breaks. The landscape areas c o n t r i b u t i n g t o these sampling s i t e s were then d e l i n e a t e d on the b a s i s o f topography. Figure 17 Location of intensive agriculture areas i n relation to sampling station locations H] Broiltr 10 Doir» E Egg [f| Gomt Farm El B«« l O Hor»» ' 03 Muthroom bO A c t u a l percentage p r o p o r t i o n s o f v a r i o u s l a n d use types have been c a l c u l a t e d f o r each c o n t r i b u t i n g area, as have p r o p o r t i o n s o f geomorphic u n i t s i n each c o n t r i b u t i n g a r e a . T a b l e IX g i v e s the percentage v a l u e s o f each l a n d use type i n each area c o n t r i b u t i n g to the s p e c i f i e d sampling s i t e s (Wiens, 1974). G r a z i n g lands and f o r e s t e d l a n d cover the major percentage of the area i n most o f the watershed. The percentage of g r a z i n g l?.ncT v a r i e s from 8 to 62 p e r c e n t of the a r e a . S i t e 8 has the l e a s t area of g r a z i n g l a n d c o n t r i b u t i n g t o i t w i t h 8.5 p e r c e n t , w h i l e s i t e 10 has the l a r g e s t area w i t h 61.8 p e r c e n t and the o t h e r s g e n e r a l l y are i n the range of 35 to 52 p e r c e n t . The percentage o f f o r e s t l a n d w i t h i n each c o n t r i b u t i n g a r e a v a r i e s from 19 to 51 p e r c e n t . S i t e s 10 and 12 have the lowest percentages w i t h 9.2 and 19.8 p e r c e n t , r e s p e c t i v e l y . The l a r g e s t percentages are found i n s i t e s 14 and 9 w i t h 51.41 and 50.61 p e r c e n t . The percentages o f area c o n t r i b u t i n g to the o t h e r s i t e s range from 36 to 4 3 p e r c e n t . Low d e n s i t y r e s i d e n t i a l areas cover the next l a r g e s t p r o p o r t i o n o f the watershed. The percentages o f c o n t r i b u t i n g areas vary from 0.0 to 27.0 p e r c e n t . S i t e 14 has the lowest percentage a t 0.0. S i t e s 7, 8 and 12 had the h i g h e s t p e r c e n t -ages o f 29.9, 26.9 and 26.7. The o t h e r s i t e s v a r i e d between 8 and 16 p e r c e n t o f the c o n t r i b u t i n g area being covered by low d e n s i t y r e s i d e n t i a l . F i e l d crops covered the next l a r g e s t p r o p o r t i o n o f the a r e a . The range i n area covered was from 0 to 34.7 p e r c e n t . Table IX: Percent of la n d use type i n each a r e a c o n t r i b u t i n g t o each sampling s t a t i o n  l a n d use s i t e 01 09 41 42 43 441 471 48 50 60 70 80 1 6.45 1.9 29. 3 35.8 26.0 0.2 0.2 2 1.4 12.3 0.4 50.6 29.0 0.4 3.0 3.0 3 15.5 14.6 0.3 19.5 47.9 2.1 4 14.0 12.2 31.0 43.1 5 8.0 8.9 34.5 42.7 0.4 2.0 3.5 6 6.3 34.7 27.6 25.1 1.6 4.3 7 30.0 5.7 33.1 30.0 1.0 8 26.9 17.1 8.5 40.2 7.2 9 4.4 43.2 50.6 lu- 16.5 61. 8 19.2 1.0 l l 3.3 0.2 51.6 42.4 1.0 1.0 12 26.7 52.3 19.8 1.2 14 9.0 39.4 51.4 0.2 15 4.9 1.9 47.4 45.1 H 1 b2 01 - s i n g l e f a m i l y r e s i d e n t i a l ( 0.4 h e c t a r e s ) 09 - low d e n s i t y r e s i d e n t i a l (0.4 - 2 h e c t a r e s ) 41 - f i e l d c r o p s 42 - s p e c i a l t y animal farms 43 - g r a z i n g - p a s t u r e lands 441 - f o r e s t e d lands 4 71 - g r a v e l p i t s 48 - o rchards 50 - roads 60 - commercial 70 - h i g h d e n s i t y parks 80 - s c h o o l s Sites 9, 10, 11, 12, and 15 had no measureable percentage of t h e i r respective contributing areas covered by f i e l d crops. The largest percentage of area i n f i e l d crops where those areas contributing to s i t e s 1, and 6 with percentages of 29.3 and 34.7 respectively. The other s i t e s have from 2.1 to 6.8 percent of t h e i r contributing areas occupied by f i e l d crop operations. , Specialty animal farms occupy only the smallest prop-ortions of the watershed. Sites 4, 5, 6, 7, 8, 9, 10, 12, i and 14 have no measureable percentage of t h e i r contributing area occupied by s p e c i a l t y animal farms. Generally gravel p i t s , orchards, roads, commercial areas, high density parks, and schools occupy very low percentages of the area of each contributory area. The percentages of these types of land use are generally less than 4 percent. A generalized de s c r i p t i o n of the land use types associated with the various geomorphic units i s given i n Table X. This information was derived from an overlay of geomorphic units (Westwater, 1973) over1 the present land use map (Westwater, 1971) and summarized as follows. F i e l d crops are generally associated with loamy alluvium, g l a c i a l outwash, and marine materials. Grazing and pasture lands are associated with a l l of the geomorphic units. Woodlots and suburban development are associated with a l l of the geomorphic units except the alluvium. Poultry production i s associated primarily with g l a c i a l outwash materials. Parks bM-Table X: Most Common and/or I n t e n s i v e A g r i c u l t u r a l Land Use i n each Geomorphic U n i t .  Geomorphic U n i t A - A l l u v i u m sA 1 A cA G - G l a c i a l outwash M - Marine GM - G l a c i a l Marine 1GM cGM B/M, GM - Beach over Marine or G l a c i a l Marine G/GM - G l a c i a l Outwash over G l a c i a l Marine LG/GM - Lag Gravels^ over G l a c i a l Marine Land Use f i e l d crops g r a z i n g , p a s t u r e - d a i r y f i e l d c r o p s , woodlots, suburban, p o u l t r y g r a z i n g , p a s t u r e , f i e l d crops (hay.) , woodlots suburban. g r a z i n g , p a s t u r e , woodlots, suburban . it •• ii ii g r a z i n g , p a s t u r e , woodlots, parks 0 - Organic are a s s o c i a t e d w i t h beach m a t e r i a l s which o v e r l a y e i t h e r marine o r g l a c i a l marine m a t e r i a l s ; BENCHMARK PHYSICAL AND CHEMICAL PROPERTIES OF SOILS AND GEOMORPHIC UNITS 1. S o i l s A d e t a i l e d s o i l survey o f the lower F r a s e r R i v e r v a l l e y i n c l u d i n g Langley and Matsqui M u n i c i p a l i t i e s was p u b l i c h e d i n the e a r l y 1960's. D e t a i l e d sampling o f s o i l s f o r chemical and p h y s i c a l c h a r a c t e r i z a t i o n was completed and the r e p o r t f o r Langley M u n i c i p a l i t y p u b l i s h e d i n 1966. T h i s d e t a i l e d i n f o r m a t i o n , p u b l i s h e d a t a s c a l e o f 1:25,000 i s used as benchmark data f o r geomorphic u n i t s concept used i n t h i s .study. A d e s c r i p t i o n o f those s o i l s e r i e s u n i t s which f i t the geomorphic u n i t s d e s c r i b e d i s as f o l l o w s i n Table XI. The chemical and p h y s i c a l data which c h a r a c t e r i z e s each o f the s o i l s e r i e s mentioned above are pr e s e n t e d i n Appendix I I I . 2. Geomorphic U n i t s (Geologic M a t e r i a l s ) A study was undertaken i n 1973 by Boojedheur t o c h a r a c t e r i z e the a b s o r p t i v e c a p a c i t i e s o f the g e o l o g i c m a t e r i a l s o f the Salmon R i v e r watershed. In t h i s study the t h r e e major g e o l o g i c m a t e r i a l s were sampled, i n c l u d i n g a l l u v i u m , g l a c i a l outwash, and marine m a t e r i a l s . These samples were taken from both c u l t i v a t e d and r e l a t i v e l y u n d i s t u r b e d s i t e s f o r comparison. The r e s u l t s o f the chemical c h a r a c t e r i z a t i o n o f these s i t e s i n terms o f pH bb i n H^O and CaCl^i o r g a n i c carbon; o r g a n i c matter; t o t a l n i t r o g e n ; c a r b o n : n i t r o g e n r a t i o ; a v a i l a b l e PO^-P; exchange-ab l e Ca, Mg, Na, K; O x a l a t e - e x t r a c t a b l e F e , . A l , and t o t a l c a t i o n exchange c a p a c i t y are pres e n t e d i n Tab l e X I I . a) pH (H 20) On a l l u v i a l m a t e r i a l s i n the r e l a t i v e l y u n d i s t u r b e d s i t e the pH tends to i n c r e a s e i n the B and C h o r i z o n s over the A. In the c u l t i v a t e d s i t e the pH tended to decrease i n the C h o r i z o n over the A and B h o r i z o n s . However, i n both l o c a t i o n s the pH va l u e s were i n the same g e n e r a l range of about 5.5. In both outwash and marine m a t e r i a l s t h e r e was l i t t l e d i f f e r e n c e i n the tren d s observed. The c u l t i v a t e d and un d i s t u r b e d s i t e s a l s o e x h i b i t e d s i m i l a r trends o f the pH i n c r e a s i n g i n the B and C h o r i z o n s over the A w i t h the c u l t i v a t e d s i t e s c o n s i s t e n t l y h i g h e r i n both cases. O v e r a l l the Ah h o r i z o n o f the f o r e s t e d marine m a t e r i a l had the lowest pH a t 3.6, and the C h o r i z o n o f the c u l t i v a t e d marine m a t e r i a l had the h i g h e s t pH a t 5.9. b) pH (C a C l 2 ) On a l l u v i a l m a t e r i a l s the pH v a l u e s o f the r e l a t i v e l y u n d i s t u r b e d s i t e i n c r e a s e d i n the B and C h o r i z o n s over the A. In the c u l t i v a t e d s o i l the pH va l u e s remained n e a r l y c o n s t a n t throughout the p r o f i l e . On outwash m a t e r i a l s the pH v a l u e s o f both the un d i s t u r b e d and c u l t i v a t e d s i t e s were r e l a t i v e l y c o n s t a n t throughout the s o i l p r o f i l e a l t h o u g h the v a l u e s were g e n e r a l l y h i g h e r f o r the c u l t i v a t e d s i t e . 6 7 Table XI: Geomorphic Units Defined Dy Soil Series Geomorphic Unit Symbol Description sA 1A cA M GM . 1GM - CGM B/M,GM G/GM LG/GM 0 Alluvium sandy Alluvium loamy Alluvium clayey Alluvium Glacial outwash Soils Symbol Name Clas s i f i c a t i o n i G Grevell Orthic Regosol F F a i r f i e l d Gleyed Gray Brown Luvisol HD Hazelwood Orthic Humic Gleysol HJ Hjorth Orthic Humic Gleysol HT Hallert Rego Gleysol PE Page Orthic Gleysol PR Prest Rego Gleysol AN Annis . Rego Gleysol (Humic CV phase) Carvolth Rego Humic Gleysol KZ Katzie Orthic Humic Gleysol RS Ross Rego Gleysol WL Westlang Rego Humic Gleysol AO Abbotsford Orthic Humo Ferric Podzol CL Columbia Orthic Humo Ferric Podzol LH Lehman Orthic Humic Gleysol LY Lynden Orthic Humo Ferric Podzol MH Marble H i l l Orthic Humo Ferric Podzol Marine Glacio-Marine loamy glaciomarine BR CD MR. N W clayey glaciomarine SC Beach over Marine or Glaciomarine HN LV MY SS Gl a c i a l Outwash over glaciomarine Lag Gravels over glaciomarine Organic Berry Cloverdale Milner Nicholson Whatcom Scat Heron Livingstone Murrayville Sunshine Gleyed Podzolic gray Luvisol Humic Luvisolic Gleysol Luvisolic Humo Ferric Podzol Orthic Humo Ferric Podzol Luvisolic Humo Ferric Podzol Orthic Humic Gleysol Rego Humic Gleysol Gleyed Luvisolic Humo Ferric Podzol Gleyed Luvisolic Humo Ferric Podzol Orthic Humo Ferric Podzol no chemical or physical data available no chemical or physical data available BD GN JN Banford Gibson Judson Te r r i c Humisol Te r r i c Mesisol Te r r i c Humisol Table XII: Some Selected Chemical Properties of Three Geomorphic Units i n Salmon River Watershed under C u l t i v a t e d and R e l a t i v e l y Undisturbed Conditions  Depth pH (H 20) PH (CaClj) Organic C Organic T o t a l P0 4~P Matter PPm C/N Exchangeable Ammonium Oxalate Ca Mg Na K Fe % A l • meg/lOOg- Cation Exchange Capacity mea/lOOg  Alluvium Golf Course Ap Bg eg C u l t i v a t e d Ap Bg Cg Outwash Forested Ap B C C u l t i v a t e d Ap B C Marine Forested Ah Bf C C u l t i v a t e d Ap B C 0-25 25-40 40+ 0-20 20-40 40+ 0-10 10-40 40+ 0-12.5 12.5-90 90+ 4-0 0-71 71+ 0-10 10-70 70+ 5.1 5.6 5.6 4.3 4.6 4.7 12.37 1.22 1.67 21.3 2.1 2.3 2.15 13.9 5.7 2.85 0.47 ND 0.02 1.07 0.11 9.6 11.0 1.42 0.54 ND 0.01 0.49 0.12 9.6 13.9 1.30 0.52 ND ND 0.47 5.5 4.5 7.43 12.8 1.44 35.6 5.1 12.25 5.5 4.4 2.44 4.2 0.22 33.8 11.0 6.52 5.4 4.5 1.24 '• 2.1 0.10 14.0 12.4 10.06 5.1 4.3 6.52 11.2 0.92 47.5 7.1 2.22 5.2 4.1 1.83 3.1 0.10 20.0 18.3 0.75 5.5 4.1 0.51 0.) 0.03 13.0 17.0 0.59 5.4 4.6 4.14 7.1 0.44 23.9 9.4 3.00 5.6 4.6 '.: 1.14 2.3 0.08 30.2 14.2 0.44 5.8 4.6 0.44 0.3 0.03 39.8 14.7 0.27 3.6 3.1 13.99 24.1 0.49 19.6 28.5 5.48 4.4 3.9 4.15 7.1 0.24 14.9 17.3 0.03 4.9 4.3 1.01 1.7 0.06 13.0 16.8 0.15 5.1 4.0 4.85 8.4 0.84 12.9 5.8 3.59 5.6 4.5 3.16 5.4 0.21 9.7 15.0 2.49 S.9 4.5 0.34 0.6 0.04 25.5 £.5 2.36 .17 ND .68 0 0.79 07 0.86 0.21 0.18 0.79 1.38 1.62 2 ND 0.10 0.08 0.02 0.05 0.20 0.01 0.04 0.07 ND ,10 0.03 08 0.02 31 25 08 0.36 0.08 0.06 0.62 0.08 0.03 1.79 0.24 0.60 0.12 0.12 0.80 0.98 0.40 52.42 16.70 15.83 42.75 39.28 32.42 0.02 0.93 1.70 30.35 0.97 2.00 17.94 0.33 0.98 12.25 0.95 1.43 25.27 0.81 1.88 21.20 0.26 0.94 11.65 1.20 1.37 59.80 1.20 . 1.58 30.55 0.14 0.13 15.96 0.59 0.48 28.60 1.04 1.84 27.03 0.20 1.01 10.73 ND - not detectable; ( a f t e r Boojhedeur, 1975) 0 S 0 4 In the marine m a t e r i a l s the pH v a l u e s showed a tendency to i n c r e a s e from the A to the C h o r i z o n s a t both the u n d i s t u r b e d and the c u l t i v a t e d s i t e s . The v a l u e s o f the c u l t i v a t e d s o i l were c o n s i s t e n t l y h i g h e r than those of the u n d i s t u r b e d s o i l s . O v e r a l l the pH v a l u e s i n the Ah h o r i z o n of the f o r e s t e d marine m a t e r i a l s were lowest a t 3.1. A l s o the r e l a t i v e l y u n d i s t u r b e d s i t e on a l l u v i a l m a t e r i a l s had the h i g h e s t pH val u e i n the C h o r i z o n a t 4.7. c) Organic Carbon In a l l u v i a l m a t e r i a l s the o r g a n i c carbon content o f the u n d i s t u r b e d s i t e decreased s h a r p l y i n the B and C h o r i z o n s over the A. The o r g a n i c carbon l e v e l s f o r the c u l t i v a t e d s i t e a l s o decreased i n the B and C h o r i z o n s over the A, but not as s h a r p l y as i n the u n d i s t u r b e d s i t e . The l e v e l s o f o r g a n i c carbon i n the B and C h o r i z o n s o f both the s i t e s a re s i m i l a r but the l e v e l s i n the A h o r i z o n o f the u n d i s t u r b e d s i t e are approximately 1.7 times t h a t of the c u l t i v a t e d A. S i m i l a r t r e n d s were a l s o i n d i c a t e d i n the c u l t i v a t e d and u n d i s t u r b e d s i t e s on the outwash and marine m a t e r i a l s . On marine m a t e r i a l s the d i f f e r e n c e s between u n d i s t u r b e d and c u l t i v a t e d A h o r i z o n were even g r e a t e r w i t h the o r g a n i c carbon l e v e l o f the u n d i s t u r b e d A h o r i z o n being approximately 2.9 times t h a t of the c u l t i v a t e d A h o r i z o n , O v e r a l l the C h o r i z o n o f the c u l t i v a t e d marine m a t e r i a l had the lowest o r g a n i c carbon l e v e l a t 0.34%. The Ah h o r i z o n o f the f o r e s t e d marine m a t e r i a l had the h i g h e s t organic carbon l e v e l at 13.99%. d) Organic Matter The C horizon of the c u l t i v a t e d marine material had the lowest organic matter content at 0.6%. The Ah horizon of the forested marine material had the highest organic matter content at 24.1%. e) Total Nitrogen For a l l of the materials at both c u l t i v a t e d and undisturbed s i t e s the t o t a l nitrogen l e v e l s tended to decrease with depth of the s o i l p r o f i l e . The A horizon t o t a l nitrogen l e v e l s i n a l l s i t e s tended to be higher than those of the B and C horizons. Overall the C horizon of both the forested and c u l t i v a t e d g l a c i a l outwash materials had the lowest t o t a l nigrogen l e v e l s at 0.03%. The Ap horizon of the undisturbed a l l u v i a l material had the highest t o t a l nitrogen l e v e l at 2.15%. f) Carbon: Nitrogen Ratio For a l l u v i a l and outwash materials the carbon: nitrogen r a t i o tended to increase with depth. In a l l u v i a l materials the values for both c u l t i v a t e d and undisturbed were i n the same range. In outwash materials the r a t i o i n the A horizon of the c u l t i v a t e d s i t e was greater than that i n the undisturbed s i t e , but the reverse was true for the B and C horizons. For forested marine materials the C:N r a t i o increased with depth, but i n the c u l t i v a t e d s i t e the C:N r a t i o increased i n the B horizon over the A and decreased again i n the C horizon. A l l of the horizons of the forested marine s o i l had 71 h i g h e r C:N r a t i o s than those o f the c u l t i v a t e d marine s o i l s . O v e r a l l the C h o r i z o n o f the c u l t i v a t e d a l l u v i a l m a t e r i a l had the lowest C:N r a t i o o f 5.1. The Ah h o r i z o n o f the f o r e s t e d marine m a t e r i a l was h i g h e s t a t 28.5. g) A v a i l a b l e Phosphorus: The t r e n d s o f a v a i l a b l e phosphorus were h i g h l y v a r i a b l e among the s i x s i t e s sampled. In a l l u v i a l m a t e r i a l , the phosphorus l e v e l s i n the r e l a t i v e l y u n d i s t u r b e d s o i l decreased i n the B h o r i z o n a f t e r the A but remained c o n s t a n t i n the C. However i n the c u l t i v a t e d s o i l s the phosphorus l e v e l s decreased c o n s i s t e n t l y down through the p r o f i l e . In f o r e s t e d outwash m a t e r i a l s the phosphorus l e v e l s tended to decrease w i t h depth. But i n c u l t i v a t e d outwash m a t e r i a l s the phosphorus l e v e l s tended to i n c r e a s e s l i g h t l y w i t h depth. The A h o r i z o n o f the f o r e s t e d outwash tended to be h i g h e r i n phosphorus than the A h o r i z o n o f the c u l t -i v a t e d outwash, but the B and C h o r i z o n s tended to have h i g h e r l e v e l s i n the c u l t i v a t e d than i n the u n d i s t u r b e d s i t e . In f o r e s t e d marine m a t e r i a l s the phosphorus l e v e l s decreased w i t h i n c r e a s i n g depth o f the s o i l p r o f i l e . In the c u l t i v a t e d s i t e the phosphorus l e v e l s tended to decrease i n the B h o r i z o n compared to the A and i n c r e a s e a g a i n i n the C h o r i z o n exceeding t h a t o f the A h o r i z o n . The A and B h o r i z o n s o f the f o r e s t e d s i t e tended to have h i g h e r v a l u e s than those h o r i z o n s i n the c u l t i v a t e d s i t e w h i l e the C h o r i z o n o f the c u l t i v a t e d s i t e was much h i g h e r , approximately 2 times t h a t of the f o r e s t e d s i t e . O v e r a l l the B and C h o r i z o n s of the u n d i s t u r b e d a l l u v i a l m a t e r i a l had the lowest phosphorus l e v e l s a t 9.6 ppm. The Ap h o r i z o n o f the f o r e s t e d outwash had the h i g h e s t phosphorus l e v e l o f 47.5 ppm. h) Exchangeable Calcium, Magnesium,Sodium, Potassium In r e l a t i v e l y u n d i s t u r b e d a l l u v i a l m a t e r i a l s c a l c i u m and potassium tended to decrease w i t h depth, sodium was not d e t e c t a b l e , and magnesium i n c r e a s e d i n the B h o r i z o n but decreased a g a i n s l i g h t l y i n the C h o r i z o n . In the c u l t -i v a t e d a l l u v i a l s o i l s c a l c i u m and magnesium tended to decrease i n the B h o r i z o n and i n c r e a s e s l i g h t l y i n the C h o r i z o n ; sodium decreased w i t h depth; and potassium i n c r e a s e d i n the B h o r i z o n then decreased a g a i n i n the C h o r i z o n . In f o r e s t e d outwash m a t e r i a l s c a l c i u m , sodium and potassium decreased w i t h depth, w h i l e magnesium decreased w i t h depth, w h i l e magnesium decreased i n the B h o r i z o n and i n c r e a s e d a g a i n i n the C h o r i z o n . S i m i l a r t r e n d s o c c u r r e d i n the c u l t i v a t e d outwash wi t h the e x c e p t i o n t h a t sodium was not d e t e c t a b l e . In the f o r e s t e d marine m a t e r i a l s c a l c i u m , magnesium, potassium and sodium a l l tended to decrease w i t h depth. In the c u l t i v a t e d area the c a l c i u m and potassium l e v e l s tended to decrease w i t h depth, but magnesium and sodium tended to i n c r e a s e s l i g h t l y w i t h depth. O v e r a l l the B h o r i z o n o f the f o r e s t e d marine m a t e r i a l s showed the lowest c a l c i u m l e v e l s a t 0.03 meg/lOOg. The h i g h e s t c a l c i u m l e v e l s were found i n the Ap. h o r i z o n of the c u l t i v a t e d a l l u v i a l m a t e r i a l s a t 12.25 meg/lOOg. The C h o r i z o n s o f the c u l t i v a t e d outwash s i t e and the f o r e s t e d marine s i t e showed the lowest magnesium v a l u e s a t 0.07 meg/lOOg. The h i g h e s t magnesium v a l u e s were e x h i b i t e d i n the c u l t i v a t e d a l l u v i a l C h o r i z o n a t 3.42 meg/lOOg. Sodium was not d e t e c t e d i n the A, B, o r C h o r i z o n s of the u n d i s t u r b e d a l l u v i a l s o i l s , i n the Ap h o r i z o n o f the c u l t i v a t e d a l l u v i u m , the Ap h o r i z o n o f the f o r e s t e d outwash, o r the A, B, o r C h o r i z o n s o f thee c u l t i v a t e d outwash m a t e r i a l s . The h i g h e s t d e t e c t a b l e sodium l e v e l s were found i n the C h o r i z o n o f the; c u l t -i v a t e d marine m a t e r i a l s . Potassium was undetected i n the C horozon o f the u n d i s t u r b e d a l l u v i a l m a t e r i a l . The h i g h e s t d e t e c t a b l e potassium l e v e l s were found i n the B h o r i z o n o f the c u l t i v a t e d a l l u v i a l m a t e r i a l , i ) Ammonium Oxala t e E x t r a c t a b l e I r o n and Aluminum In the u n d i s t u r b e d a r e a o f the g o l f course on a l l u v i a l m a t e r i a l s i r o n and aluminum decreased w i t h depth. Both Fe and A l were h i g h e s t i n the A h o r i z o n and r e l a t i v e l y c o n s t a n t i n the B and C h o r i z o n s . Under c u l t i v a t i o n the B h o r i z o n showed an i n c r e a s e i n both Fe and A l . In the f o r e s t e d outwash m a t e r i a l s both i r o n and aluminum were found to i n c r e a s e s l i g h t l y i n the B h o r i z o n . The c u l t i v a t e d outwash showed a decrease i n Fe c o n c e n t r a t i o n s and an i n c r e a s e i n A l c o n c e n t r a t i o n s i n the B h o r i z o n . In the f o r e s t e d marine m a t e r i a l s i r o n l e v e l s tended to remain c o n s t a n t i n the A and B h o r i z o n s and decrease w i t h depth, w h i l e aluminum i n c r e a s e d i n the B h o r i z o n over the A h o r i z o n and decreased a g a i n i n the C h o r i z o n . In the c u l t i v a t e d marine m a t e r i a l s i r o n i n c r e a s e d i n the B h o r i z o n and decreased a g a i n i n t h e C h o r i z o n , w h i l e aluminum i n c r e a s e d i n the B h o r i z o n then decreased s l i g h t l y i n the C h o r i z o n . The lowest i r o n l e v e l s were found i n the C h o r i z o n o f the f o r e s t e d marine m a t e r i a l s w i t h 0.14%. The h i g h e s t i r o n l e v e l s were found i n the B h o r i z o n of the c u l t i v a t e d a l l u v i a l m a t e r i a l s a t 1.62%. The lowest aluminum l e v e l s were d e t e c t e d i n the B and C h o r i z o n s of the u n c u l t i v a t e d p a r t of the g o l f course on a l l u v i a l m a t e r i a l s . The h i g h e s t d e t e c t e d aluminum l e v e l s were i n the B h o r i z o n of the f o r e s t e d outwash m a t e r i a l s , j) T o t a l C a t i o n Exchange C a p a c i t y The t o t a l c a t i o n exchange c a p a c i t y o f the r e l a t i v e l y u n d i s t u r b e d a l l u v i a l m a t e r i a l decreased s h a r p l y from the A h o r i z o n to the B h o r i z o n and a l s o a g a i n s l i g h t l y i n the C h o r i z o n . The c u l t i v a t e d a l l u v i a l m a t e r i a l s decreased i n t o t a l c a t i o n exchange c a p a c i t y w i t h depth i n the s o i l p r o f i l e . In both the c u l t i v a t e d and f o r e s t e d outwash and marine m a t e r i a l s the t o t a l c a t i o n exchange c a p a c i t y decreased w i t h depth. O v e r a l l the lowest t o t a l c a t i o n exchange was found i n the C h o r i z o n o f the c u l t i v a t e d marine m a t e r i a l a t 10.73 meg/lOOg. The h i g h e s t t o t a l c a t i o n exchange was found i n the Ah h o r i z o n o f the f o r e s t e d marine m a t e r i a l s a t 59.80 meg/lOOg. EXISTING CHEMICAL STATUS OF SURFACE WATERS, ATMOSPHERIC PRECIPITATION, AND STREAM SEDIMENTS 1. S u r f a c e Water Chemistry i A « V a r i a b l e s Measured Twenty-four chemical v a r i a b l e s which were judged to have s i g n i f i c a n c e to water q u a l i t y and which were reasonably simple to o b t a i n , were monitored a t f o u r t e e n s i t e s on the Salmon R i v e r f o r a p e r i o d of ten months i n 1974-1975. The twenty f o u r v a r i a b l e s measured i n c l u d e : pH d i s s o l v e d oxygen s p e c i f i c conductance o x i d a t i o n - r e d u c t i o n p o t e n t i a l temperature t o t a l a c i d i t y t o t a l a l k a l i n i t y b i c a r b o n a t e a l k a l i n i t y t o t a l hardness (calcium carbonate e q u i v a l e n t ) d i s s o l v e d r e s i d u e t o t a l K j e l d a h l n i t r o g e n t o t a l o r g a n i c carbon n i t r a t e - n i t r o g e n c h l o r i d e t o t a l a c i d d i g e s t i b l e phosphorus ( d i s s o l v e d and p a r t i c u l a t e ) t o t a l s u l f a t e c a l c i u m magnesium sodium potassium i r o n aluminum manganese s i l i c o n Average v a l u e s f o r each v a r i a b l e w i t h i n each s t a t i o n were c a l c u l a t e d over the t o t a l time o f m o n i t o r i n g . Ranges of v a l u e s f o r these v a r i a b l e s over the time o f the study were a l s o noted. The r e s u l t s o f these c a l c u l a t i o n s a re pre s e n t e d i n T a b l e X I I I . A l s o mean v a l u e s f o r each v a r i a b l e a c r o s s a l l s t a t i o n s f o r two g e n e r a l h y d r a u l i c d i s c h a r g e l e v e l s ; h i g h and low flow, were c a l c u l a t e d . These data are pre s e n t e d i n T a b l e XIV. A summary o f the r e s u l t s o f the c a l c u l a t i o n s f o r each v a r i a b l e monitored f o l l o w s . The s i t e s p e c i f i c and date s p e c i f i c d ata f o r each v a r i a b l e monitored are p r e s e n t e d i n Appendix IV. a) pH The average pH v a l u e s w i t h i n sampling s t a t i o n s ranged from 7.0 to 7.3. The range o f v a l u e s measured from low to h i g h was from 5.8 to 8.2. Sampling s t a t i o n s 1, 3, 6, 10 and 15 averaged pH 7.0, s t a t i o n 11 averaged 7.3. The w i d e s t range o f pH v a l u e s was 5.8 to 8.2 which was found a t s t a t i o n 1. Sampling s t a t i o n 11 had the narrowest pH range o f 7.2 to 7.5. 77 r i l l - i Average! and Range* of Values for Water Data (June 1974 - A p r i l 1»75) V a r i a b l e ^ s~-\ 1 2 3 4 .'5 . '6 . 7 8 ' 9 .10 .11 ' 12 . 14 15 pH average range 7.0 5.8-8.2 7.2 6.0-7.8 7.0 5.9-7.5 7.1 6.0-7.6 7.2 6.0-7.6 7.0 6.0-7.8 7.1 6.0-7.8 7.1 5.8-7.8 7.1 5.9-7.8 7.0 5.9-7.3 7.3 7.2-7.5 7.1 6.8-7.3 7.2 6.0-7.6 7.0 5.7-7.5 D i s s o l v e d l p~-=w -average range 10.0 7.0-X3.0 9.0 7.4-11.6 8.5 3.0-13.4 11.6 9.6-13.4 11.3 9.0-12.6 11.4 8.4-14.6 10.6 7.6-13.2 11.5 10.0-14.3 10.3 8..0-14.3-7.0 0.5-13.2 12.4 10.1-14.0 11.2 9.0-13.0 11.1 9.0-13.8 8.1 3.0-12.3 S p e c i f i c Ccr.c*jcr*noe average • range 117 45-190 . 112 55-182 290 60-650 80 40-120 80 40-112 82 30-110 78 40-190 125 40-700 58 30-90 195 60-1400 41 30-50 61 40-110 75 20-103 67 35-115 C^ci3»*i on r* d ^ c t i c . i average range 100-530 . 285 130-650 250 15-580 250 -20-510 220 20-630 ' 280 15-710 245 0-600 230 10-500 240 0-660 185 -250-620 370 120-560 120-720 235 0-549 230 0-540 °c average range 11 0-22 10 0-19 10 0-18 9 0-14 8 2-14 9 ' 3-18 9 0-19 8 0-13 9 5-18 10 0-20 6 1-11 5 0-10 9 0-16 10 1-19 i c t a l A c i a i r y t a g / c ^ r c . • ^ i v ) average ) range 4.0 2.0-6.0 3.8 2.0-6.0 3.2 2.0-8.0 3.5 1.6-5.0 3.6 2.0-6.0 3.7 2.0-6.0 4.5 2.4-11.0 6.3 2.0-36.0 3.6 2.0-5.0 5.9 3.0-34.0 5.4 3.0-11.0 5.2 4.0-7.0 4.2 2.4-6.0 4.2 3.5-5.0 : c-a 1 / .CaCC,«"suii average ) range i t . 4 9.3-50.0 32.8 7.9-49.2 72.6 7.8-293.6 26.5 7.1r36.4 30.2 7.4-73.2 29.8 7.3-44.0 31.2 5.7-90.4 45.9 7.1-347.2 26.3 6.6-36.8 59.6 7.0-296.0 13.4 6.0-25.6 11.6 7.3-24.0 33.1 9.2-53.6 30.2 7.3.-33.3 s i c a r i c r . i t e average range 36.4 9.3-50.0 32.8 7.9-49.2 56.0 7.8-293.6 26.5 7.1-36.4 30.2 7.4-73.2 29.8 7.3-44.0 29.2 5.7-90.4 44.9 7.1-347.2 26.3 6.6-36.8 50.2 7.0-296.0 13.4 6.0-25.6 18.22 15.68-22.89 11.6 7.3-24.0 38.1 , 9.2-51.6 30.2 7.3-22.8 7z t a l ' — / I ,eq) average rar.ge 37.74 22.33-49.99 33.07 22.38-53.50 57.41 24.08-181.27 29.85 16.98-37.97 33.12 21.65-42.39 32.66 20.41-41.31 26.92 17.78-36.33 32.49 23.81-36.53 22.70 15.20-27.45 • 35.10 22.19-115.11 23.84 15.27-37.24 34.54 19.77-44.76 22.81 16.52-42.72 i - . : i i s -J/1) averaoe range 89 0.0-230 97 4-200 200 74-368 74 0-170 78 2-190 86 2-182 76 1-164 102 2-298 58 0-138 124 40-512 50 32-72 74 46-122 72 0-153 3-272 average ra.-.^e 0.32 _0.00-1.23 0.89 0.06-3.59 1.63 0.14-13.80 0.79 0.06-3.70 0.79 0.01-3.02 0.85 0.00-3.?S 0.63 n n f i - v f l 7 ' 2.04 n.??-i«.9fl 1.10 .0 ..00-.1.5 6 . 1.34 0.22-7.56 0.40 0.01-0.85 0.79 0.16-2.41 0.72 0.00-3.25 0.6? 0.36-1.^3 c ave ran'' range 5.23 0.00-23.00 5.52 0.00-26.30 7.09 0.00-31.00 6.56 0.00-24.20 4.12 0.00-2S.70 5.00 .0.12-25.00 5.39 1.00-30.20 6.23 _0.40-57.40 5.96 -1.20-25.70 6.02 0.70-26.40 5.56 2.60-8.90 12.45 1.00-40.10 4 .94 0.10-26.30 i.i'j 0.70-27.40 7J? TABLE X I I I : Averages and Ranges o r Values f o r Water Data "(June 1974 - A p r i l 1975) S i t V a r i a b l e SO. - t 1 2.0 2 3 4 3.5 0.9-4.9 5 3.6 1.3-4.7 6 7 8 9 • 1 10 11 1.5 0.6-3.3 • 12 1 " 15 i ' rar.ge 0-3.0 2.9 1.0-4.1 1.7 0.3-7.7 3.3 1.1-5.0 3.2 ! 1.3-5.6 4.6 0.4-8.3 1.3 0.6-3.4 2.2 0.3-5.6 1.8 0.2-5.0 l . S 0.7-2.9 1.3 0.5-3.2 CI " ave rage range 10.2 0.0-25.8 9.1 1.2-22.8 58.7 5.3-113.6 1.4 • 0.0-5.0 3.5 0.0-8.5 2.7 0.0-5.7 1.2 0.0-4.3 2.4 0.0-14.2 • 1.2 0.0-14.2 5.7 0.0-44.0 0.7 0.0-2.1 1.9 0.0-7.1 0.3 0.0-0.7 0.5 0.0-3.6 / c i d 3 i i , e s t i b l t p ave rage range 0.06 0.00-0.12 0.08 0.00-0.28 0.16 0.00-0.72 0.14 0.00-1.44 0.06 0.00-0.24 0.07 0.00-0.29 0.29 0.00-1.88 0.29 0.00-2.96 0.13 0.00-0.71 0.15 0.03-2.56 O.OS 0.00-0.08 0.47 •0.00-2.40 0.07 0.00-0.28 O.CS 0.S2-0.24 S 0 4 f . * - ) range 6.1 2.3-11.9 5.1 2.1-10.9 13.3 3.2-26.2 3.8 1.5-7.9 2.8 1.2-7.S ' 3.7 0.4-8.5 3.5 1.4-6.9 ^ 4.4 1.4-15.2 4.2 1.8-9.8 ' 4.8 1.3-16.2 2.1 1.9-2.4 5.6 3.5-8.7 5.1 1.7-10.4 5.0 1.8-12.0 C a ppa ave race range 5*63 2.83-7.54 5.12 2.91-6.80 7.92 3.08-31.20 4.56 3.09-6.08 4.72 3.06-6.10 4.87 2.84-7.20 4.49 2.72-5.93 5.20 3.85-6.80 3.73 2.38-4.93 7.80 4.14-10.33 3.25 2.34-4.48 4.53 2.62-7.30 4.88 2.63-6.65 3.31 1.95-4.SS «9 pp=> ave rage range 3.74 2.18-5.41 3.64 2.10-4.73 6.54 2.12-18.50 3.08 1.69-4.30 3.44 2.18-4.40 3.28 1.93-4.27 2.63 1.64-3.80 2.98 2.12-7.75 2.26 1.40-2.66 3.98 1.85-11.45 1.78 1.40-2.29 2.45 1.43-4.25 3.57 2.02-4.52 2.34 1.29-3.33 8 * PP» ave rage range 10.31 2.93-19.40 9.94 5.31-15.50 35.72 6.81-83.10 4.60 2.90-7.62 4.88 4.24-8.00 5.58 3.61-9.20 4.77 2.94-7.50 5.56 3.56-18.25 3.90 2.56-6.44 7.01 3.88-28.00 3.68 2.76-5.35 3.93 2.56-6.30 4.21 2.99-6.62 3.51 2.40-7.25 ave rage rar.ge 1.48 0.75-2.00 1:67 1.33-2.72 7.88 1.70-54L50 1.53 1.34-2.07 1.03 0.75-1.38 1.43 1.24-1.95 2.90 1.48-8.90 5.40 2.14-42.00 1. 88 1.30-2.85 9.69 2.35-93.00 1.50 1.30-1.89 3.63 1.92-9.60 1.38 0.76-1.52 1.54 1.04-2.31 '•'•«» a v e r a g e range 0. 35 0.00-0.64 0.21 0.00-0.40 0.76 0.00-4.10 0.08 0.00-0.45 0.10 0.00-0.28 0.14 0.00-0.45 0.12 0.00-0.35 0.11 0.00-0.30 0.47 0.00-1.20 0.61 0.00-1.78 0.10 O.p'0-0.30 0.20 0.00-0.60 0.24 0.00-0.50 0.55 O.CO-1.2: A l ppa average rar.ge 0.10 0.00-0.50 0.10 0.00-0.30 0.30 0.00-0.90 0.01 0.00-0.20 0.03 0.00-0.20 0.03 0.00-0.20 0.03 0.00-0.20 0.04 0.00-0.40 0.04 0.00-0.30 0.03 0.00-0.10 0.10 0.00-0.20 0.10 0.00-0.30 O.OS 0.00-0.30 0.C3 0.00-0.40 ayeraae rar.ge «vei**vje range 0.02 0.00-0.07 1-8 0.22 0.00-3.14 2-8 0.04 0.00-0.20 2-13 • 0.004 0.00-0.04 2-8 0.006 0.00-0.04 3-8 j 0.005 0.'00-0.04 3-12 0.03 0.00-0.10 2-S 0.11 0.00-0^27 .4-12 0.02 0.00-0.07 2-S • 0.19 0.00-1.42 2-S • 0.01 0.00-0.04 1-2 0.005 C. 00-0.03 0-2 0.01 0.00-0.OS i 2-8 o.:2 0.00-0.11 0-6 Table XIV: Means and standard deviations of water chemistry data across stations over the period of monitoring at high and low hydraulic discharge rates. High Discharge Low Discharge Name Mean Standard Deviation Mean Standard Deviation pH 6.8 0.21 7.2 0.10 Redox 309 58.7 244 44.7 mV Dissolved Oxygen 12.2 0.68 9.6 2.03 ppm Specific • Conductance 50 10.81 118 79.96 umho • Temperature 6 1.41 10 1.71 °C • Kjeldahl Nitrogen ppm Organic Carbon ppm Nitrate Nitrogen ppm . 4.71 0.99 4.30 1.25 17.4 3.04 38.9 19.99 Total Acidity mg/1 Ca(C0 3) 2 Total A l k a l i n i t y mg/1 Ca(C0 3) 2 Total Bicarbonate 17.4 3.04 37.3 16 77 mg/1 Ca(C0 3) 2 Total Hardness 21.04 3.94 35.09 11 05 mg/1 Ca(C0 3) 2 Dissolved Residue 74.8 16.91 93.4 44 i« mg/1 0.44 0.33 1.07 0.57 4.47 1.67 6.82 2.59 1.7 0.60 2.7 1.23 / so (con* t) Table XIV: High Discharge Low Discharge Mean Standard Deviation Mean Standard Deviation Sodium ppm Potassium ppm Iron ppm Aluminum ppm Manganese ppm Sili c o n ppm Chloride 1.11 • i.o.2 9 > 8 8 Ppm Phosphorus 1.04 0.68 1 00 ppm 0.49 Sulfate 43.0 9.3 5.0 26.'8 PPm Calcium ppm 3.20 0.53 5.52 1.64 Magnesium 2 > 0 ? 0 > 3 5 3 > 5 9 1 3 4 4.06 1.73 8.88 10.90 1.80 0.70 3.55 3.69 0.23 0.11 0.44 0.32 0.21 0.16 0.49 0.30 0.23 0.18 0.30 0.21 2.8 1.11 4.8 1.88 Discharge __ . cfs 5 7 - 4 60.23 6.9 6.81 The mean pH va l u e s a c r o s s a l l s t a t i o n s a t h i g h h y d r a u l i c flow l e v e l s was 6.8, w h i l e a t low flows the mean pH was 7.2. b) D i s s o l v e d Oxygen The average d i s s o l v e d oxygen v a l u e s w i t h i n s t a t i o n s ranged from 8.1 to 12.4 ppm. Sampling s t a t i o n number 15 averaged 8.1 ppm and s t a t i o n number 11 averaged 12.4 ppm. The range o f d i s s o l v e d oxygen v a l u e s extended from 0.5 to 14.6 ppm. Sampling s t a t i o n 10 showed the widest v a r i a b i l i t y r a n g i n g from 0.5 to 13.2 ppm. S t a t i o n 11 had the l e a s t v a r i a b i l i t y w i t h v a l u e s ranging from 10.1 to 14.0 ppm. The mean d i s s o l v e d oxygen v a l u e s a c r o s s a l l s t a t i o n s a t h i g h streamflow l e v e l s were 12.2 ppm, w h i l e a t low flows d i s s o l v e d oxygen l e v e l s were on average lower a t 9.6 ppm. c) S p e c i f i c Conductance ( E l e c t r i c a l C o n d u c t i v i t y ) The average s p e c i f i c conductance w i t h i n sampling s t a t i o n s v a r i e d from 41 to 290 hmho over the time o f m o n i t o r i n g Sampling s t a t i o n 11 averaged 41 umho, w h i l e s t a t i o n 3 averaged 290 umho. The v a r i a b i l i t y o f s p e c i f i c conductance v a l u e s ranged from 20 unho to 14 00 umho over the p e r i o d o f sampling. The w i d e s t range o f v a r i a b i l i t y was found a t s t a t i o n 10 where v a l u e s ranged from 60 to 14 00 umho. The narrowest range o f v a r i a b l i t y was found a t s t a t i o n 11 where v a l u e s ranged from 30 to 50 umho. The mean c o n d u c t i v i t y v a l u e s a c r o s s a l l s t a t i o n s a t high streamflows was 50.1 umho, w h i l e a t low flow i t was 118.5 umhos. 82. d) O x i d a t i o n - Reduction P o t e n t i a l The average o x i d a t i o n r e d u c t i o n p o t e n t i a l s w i t h i n s t a t i o n s range form 185 mV t o 370 mV. Sampling s t a t i o n 10 averaged 185 mV, w h i l e s t a t i o n 11 averaged 370 mV. The v a r i a b i l i t y i n the v a l u e s found ranged from -250 t o 720 mV. Sampling s t a t i o n 10 e x h i b i t e d the widest range of -250 t o 620 mV. S t a t i o n 1 showed the l e a s t v a r i a b i l i t y r a n g i n g from 100 t o 530 mV over the p e r i o d of sampling. The mean o x i d a t i o n - r e d u c t i o n v a l u e s a c r o s s a l l s t a t i o n s a t h i g h streamflow was 309 mV and a t low flow was 244 mV. e) Temperature The average temperatures w i t h i n sampling s t a t i o n s ranged from 5°C to 11?C. Sampling s t a t i o n 12, averaged 5°C, w h i l e s t a t i o n 1 averaged 11°C. The range of temperature v a l u e s a c r o s s a l l s t a t i o n s v a r i e d from 4 t o 22°C. Sampling s t a t i o n 1 showed the most v a r i a b i l i t y w i t h a range of temp-e r a t u r e s from 0 t o 22°C. S t a t i o n s 11 and 12 showed the l e a s t v a r i a b i l i t y w i t h v a l u e s r a n g i n g form 1 t o 11°C and 0 t o 10°C, r e s p e c t i v e l y . The mean v a l u e s a c r o s s a l l s t a t i o n s a t h i g h flow was 6°C, and a t low flow was 10°C. f) T o t a l A c i d i t y The average t o t a l a c i d i t y v a l u e s w i t h i n sampling s t a t i o n s ranged form 3.2 to 6.3 mg/1 CaCO^ e q u i v a l e n t . Sampling s t a t i o n 3 averaged 3.2 mg/1 CaCO^ e q u i v a l e n t , s t a t i o n 8 averaged 8.2 mg/1 CaCO^ e q u i v a l e n t . The range of v a l u e s a c r o s s a l l sampling s t a t i o n s v a r i e d from 1.6 t o 36.0 mg/1 8 3 CaCO^ e q u i v a l e n t . The l e a s t v a r i a b i l i t y was e x h i b i t e d by sampling s t a t i o n 15 w i t h a range of v a l u e s from 3.0 t o 5.0 mg/1 CaCO-j e q u i v a l e n t . The mean va l u e a c r o s s a l l sampling s t a t i o n s a t h i g h flow was 4.7 mg/1 CaCO^ e q u i v a l e n t , w h i l e the low flow mean was 4.3 mg/1 CaCO^ e q u i v a l e n t . g) T o t a l A l k a l i n i t y The average t o t a l a l k a l i n i t y v a l u e s w i t h i n s t a t i o n s ranged from 11.6 t o 72.6 mg/1 CaC0 3 e q u i v a l e n t . Sampling s t a t i o n number 12 averaged 11.6 mg/1 CaCC>3 e q u i v a l e n t . The range of v a l u e s a c r o s s a l l s t a t i o n s v a r i e d from 5.7 t o 347.2 mg/1 CaCO^ e q u i v a l e n t . Sampling s t a t i o n 8 showed the g r e a t e s t v a r i a b i l i t y w i t h v a l u e s r a n g i n g from 7.1 to 347.2 mg/1 CaCO^ e q u i v a l e n t . S t a t i o n 12 showed the l e a s t v a r i a b i l i t y w i t h v a l u e s r a n g i n g from 7.3 t o 2 4.0 mg/1 CaCO^ e q u i v a l e n t . The mean v a l u e s a c r o s s a l l s t a t i o n s a t h i g h flow f o r t o t a l a l k a l i n i t y was 17.4 mg/1 CaCO^ e q u i v a l e n t , w h i l e a t low flow i t was 38.9 mg/1 CaC0 3 e q u i v a l e n t . h) T o t a l B i c a r b o n a t e A l k a l i n i t y The average v a l u e s and ranges of v a l u e s were the same f o r t o t a l b i c a r b o n a t e a l k a l i n i t y as f o r t o t a l a l k a l i n i t y . The mean va l u e f o r b i c a r b o n a t e a l k a l i n i t y a t h i g h flow was 17.4 mg/1 CaCO^ e q u i v a l e n t and a t low flows was 38.9 mg/1 CaCO^ e q u i v a l e n t . i ) T o t a l Hardness (Calcium Carbonate) Average v a l u e s o f t o t a l hardness w i t h i n sampling s t a t i o n s range from 18.22 to 57.41 mg/1 CaCO^ e q u i v a l e n t . Sampling s t a t i o n 11 averaged 18.22 mg/1 CaC0 3 e q u i v a l e n t , w h i l e s t a t i o n 3 averaged 57.41 mg/1 CaGO- e q u i v a l e n t . The range of t o t a l hardness v a l u e s a c r o s s s t a t i o n s v a r i e d from 15.20 to 181.27 mg/1 CaCC>3 e q u i v a l e n t . The g r e a t e s t v a r i a b i l i t y was found i n sampling s t a t i o n 3 where v a l u e s ranged from 24.08 t o 181.27 mg/1 CaC0 3 e q u i v a l e n t . The l e a s t v a r i a b i l i t y was found a t s t a t i o n 9 where v a l u e s ranged from 15.20 to 27.45 mg/1 CaCO^ e q u i v a l e n t . The mean value of t o t a l c a l c i u m carbonate hardness a t h i g h streamflow was 21.04 mg/1 CaCC>3 e q u i v a l e n t and a t low streamflow was 35.09 mg/1 CaCC>3 e q u i v a l e n t , j) T o t a l D i s s o l v e d S o l i d s Average v a l u e s o f t o t a l d i s s o l v e d r e s i d u e w i t h i n sampling s t a t i o n s range from 50 to 512 mg/1. Sampling s t a t i o n 11 averaged 50 mg/1, s t a t i o n 10 averaged 512 mg/1. The range of v a l u e s found a c r o s s a l l s t a t i o n s v a r i e d from 0 to 512 mg/1. Sampling s t a t i o n 10 showed the g r e a t e s t v a r i a b i l i t y w i t h v a l u e s r a n g i n g from 40 to 512 mg/1. The l e a s t v a r i a b -i l i t y was e x h i b i t e d by s t a t i o n 11 w i t h v a l u e s r a n g i n g from 32 t o 72 mg/1. The mean t o t a l d i s s o l v e d r e s i d u e v a l u e a c r o s s a l l s t a t i o n s a t h i g h flow was 7 4.8 mg/1, and a t low flow was 93.4 mg/1. k) T o t a l K j e l d a h l N i t r o g e n Average v a l u e s of t o t a l K j e l d a h l n i t r o g e n w i t h i n s t a t i o n s v a r i e d from 0.32 to 2.04 ppm. Sampling s t a t i o n 1 averaged 0.32 ppm, s t a t i o n 8 averaged 2.04. The range o f v a l u e s encountered a c r o s s a l l s t a t i o n s v a r i e d from 0.00 to 18.98 ppm. The g r e a t e s t v a r i a b i l i t y o f r e s u l t s was found a t sampling s t a t i o n 8 where v a l u e s ranged from 0.22 to 18.98 ppm. The l e a s t v a r i a b i l i t y was found a t sampling s t a t i o n 11 where v a l u e s ranged from 0.01 to 0.85 ppm. The mean t o t a l K j e l d a h l n i t r o g e n v a l u e a c r o s s a l l s t a t i o n s f o r the h i g h flow was 0.44 ppm and the value f o r low flow was 1.07 ppm. 1) T o t a l Organic Carbon Average v a l u e s o f t o t a l o r g a n i c carbon w i t h i n sampling s t a t i o n s v a r i e d from 4.12 to 12.45 ppm. Sampling s t a t i o n 5 averaged 4.12 ppm, s t a t i o n 12 averaged 12.45 ppm. The range o f v a l u e s o b t a i n e d a c r o s s a l l sampling s t a t i o n s over the sampling time p e r i o d v a r i e d form 0.00 to 57.40 ppm. The g r e a t e s t v a r i a b i l i t y was found a t sampling s t a t i o n 8 r a n g i n g from 0.40 t o 57.40 ppm. S t a t i o n 11 showed the l e a s t v a r i a b -i l i t y r a n g i n g from 2.60 to 8.90 ppm t o t a l o r g a n i c carbon. The mean v a l u e f o r t o t a l o r g a n i c carbon a t h i g h flow was 4.47 ppm, and a t low flow the mean was 6.82 ppm. m) N i t r a t e - N i t r o g e n Average v a l u e s f o r n i t r a t e - n i t r o g e n w i t h i n sampling s t a t i o n s ranged from 1.3 t o 4.6 ppm. Sampling s t a t i o n 9 averaged 1.3 ppm, s t a t i o n 8 averaged 4.6 ppm. The range o f v a l u e s a c r o s s a l l s t a t i o n s over the pe'riod o f sampling v a r i e d from 0.4 t o 8.3 ppm. Sampling s t a t i o n 8 showed the g r e a t e s t v a r i a b i l i t y w i t h v a l u e s r a n g i n g form 0.4 to 8.3 ppm. The l e a s t v a r i a b i l i t y was found a t s t a t i o n 14 where the n i t r a t e v a l u e s v a r i e d from 0.7 to 2.9 ppm. The mean value f o r n i t r a t e - n i t r o g e n a t hig h flow was 1.7 ppm and a t low d i s c h a r g e was 2.7. n) C h l o r i d e The average v a l u e s o f c h l o r i d e c o n c e n t r a t i o n s w i t h i n sampling s t a t i o n s range from 0.3 t o 58.7 ppm a c r o s s the s t a t i o n s . The average value f o r sampling s t a t i o n 14 was 0.3 ppm, the average f o r s t a t i o n 3 was 58.7 ppm. Across a l l o f the sampling s t a t i o n s over the time p e r i o d o f the study the c o n c e n t r a t i o n s ranged form 0.00 to 113.6 ppm. The g r e a t e s t v a r i a b i l i t y of v a l u e s was found a t sampling s t a t i o n 3 where the c o n c e n t r a t i o n s v a r i e d from 5.3 t o 113.6 ppm. Sampling s t a t i o n 14 showed the l e a s t v a r i a b i l i t y w i t h the c o n c e n t r a t i o n s r a n g i n g from 0.0 to 0.7 ppm. Mean va l u e s a t h i g h and low flow were 1.1 and 9.9 ppm r e s p e c t i v e l y . o) T o t a l A c i d D i g e s t i b l e Phosphorus Average v a l u e s o f t o t a l a c i d d i g e s t i b l e phosphorus c o n c e n t r a t i o n s w i t h i n s t a t i o n s over a l l s t a t i o n s ranged from 0.05 t o 0.47 ppm phosphorus. Sampling s t a t i o n 11 averaged 0.05 ppm, s t a t i o n number 12 averaged 0.47 ppm. The range o f c o n c e n t r a t i o n s observed a c r o s s a l l o f the sampling s t a t i o n s over the p e r i o d o f the study v a r i e d from 0.00 to 2.96 ppm. The g r e a t e s t v a r i a b i l i t y i n c o n c e n t r a t i o n was observed a t sampling s t a t i o n 8 where the v a l u e s ranged from 0.00 t o 2.96 ppm. Sampling s t a t i o n 11 showed the l e a s t v a r i a b i l i t y w i t h c o n c e n t r a t i o n s r a n g i n g from 0.00 to 0.08 ppm. Mean v a l u e s f o r a c i d d i g e s t i b l e phosphorus c o n c e n t r a t i o n s a t h i g h and low flow were 1.04 and 1.00 ppm phosphorus r e s p e c t -i v e l y . p) T o t a l S u l f a t e Average c o n c e n t r a t i o n s of s u l f a t e w i t h i n sampling s t a t i o n s ranged from 2.1 to 13.3 ppm s u l f a t e a c r o s s s t a t i o n s . Sampling s t a t i o n 11 averaged 2.1 ppm, s t a t i o n 3 averaged 13.3 ppm. The range of c o n c e n t r a t i o n s a c r o s s a l l s t a t i o n s over the p e r i o d of m o n i t o r i n g v a r i e d from 0.4 t o 26.2 ppm, s u l f a t e . The g r e a t e s t v a r i a b i l i t y o f c o n c e n t r a t i o n s was observed a t sampling s t a t i o n 3 w i t h the v a l u e s r a n g i n g from 0.4 t o 26.2 ppm. The l e a s t v a r i a b i l i t y was shown by sampling s t a t i o n 11 w i t h v a l u e s v a r y i n g from 1.9 to 2.4 ppm. Mean v a l u e s of s u l f a t e c o n c e n t r a t i o n s a c r o s s s t a t i o n s a t h i g h and low flow were 4.3 and 5.0 ppm s u l f a t e r e s p e c t i v e l y , r) Magnesium The average c o n c e n t r a t i o n s of magnesium w i t h i n s t a t i o n s ranged from 1.78 t o 3.98 ppm. The lowest average c o n c e n t r a t i o n was observed a t sampling s t a t i o n 11 a t 1.78 ppm, the h i g h e s t average c o n c e n t r a t i o n was observed a t s t a t i o n 10 a t 3.98 ppm. The range o f c o n c e n t r a t i o n s observed a c r o s s a l l sampling s t a t i o n s v a r i e d from 1.29 to 18.50 ppm magnesium. The g r e a t -e s t v a r i a b i l i t y i n c o n c e n t r a t i o n s was observed a t sampling s i t e 3 w i t h c o n c e n t r a t i o n s v a r y i n g from 2.12 t o 18.50 ppm. Sampling s t a t i o n 9 showed the l e a s t v a r i a b i l i t y w i t h v a l u e s r a n g i n g from 1.40 to 2.66 ppm. Mean va l u e s of magnesium c o n c e n t r a t i o n s a c r o s s a l l sampling s t a t i o n s a t h i g h and low flow were 2.07 and 3.59 ppm r e s p e c t i v e l y . 8 8 s) Sodium Average c o n c e n t r a t i o n v a l u e s of sodium w i t h i n sampling s t a t i o n s vary from 3.51 to 35.72 ppm over the time of m o n i t o r i n g . Sampling s t a t i o n 15 averaged 3.51 ppm, s t a t i o n 3 averaged 35.72 ppm. The range of c o n c e n t r a t i o n s a c r o s s a l l s t a t i o n s over the p e r i o d of m o n i t o r i n g was 2.40 to 8 3.10 ppm. Sampling s t a t i o n 3 showed the g r e a t e s t v a r i a b i l i t y w i t h c o n c e n t r a t i o n s r a n g i n g form 6.81 to 83.10 ppm sodium. The l e a s t v a r i a b i l i t y was observed a t sampling s t a t i o n 11 where the c o n c e n t r a t i o n s ranged from 2.76 t o 5.35 ppm. The mean va l u e f o r sodium c o n c e n t r a t i o n s a c r o s s a l l s t a t i o n s a t h i g h flow was 4.06 ppm, and a t low flow was 8.8 8 ppm sodium, t) Potassium Average c o n c e n t r a t i o n s of potassium w i t h i n sampling s t a t i o n s range from 1.03 t o 9.69 ppm over the p e r i o d o f m o n i t o r i n g . The lowest average c o n c e n t r a t i o n was observed a t sampling s t a t i o n 5 w i t h an average o f 1.03 ppm, the h i g h e s t average was observed a t s t a t i o n 10 a t 9.69 ppm potassium. C o n c e n t r a t i o n s of potassium a c r o s s a l l s t a t i o n s over the p e r i o d o f m o n i t o r i n g ranged from 0.75 to 9 3.00 ppm. Sampling s t a t i o n 10 e x h i b i t e d the g r e a t e s t v a r i a b i l i t y w i t h c o n c e n t r a t i o n s v a r y i n g from 2.35 t o 93.00 ppm. The l e a s t v a r i a b i l i t y was observed a t s t a t i o n 5 w i t h c o n c e n t r a t i o n s v a r y i n g from 0.75 t o 1.38 ppm. Mean v a l u e s o f potassium c o n c e n t r a t i o n s a t h i g h and low flow were 1.80 and 3.55 ppm r e s p e c t i v e l y . u) Ir o n The average c o n c e n t r a t i o n s o f i r o n w i t h i n sampling s t a t i o n s over the p e r i o d of m o n i t o r i n g ranged from 0.08 to 0.76 ppm. The lowest average c o n c e n t r a t i o n o f 0.08 ppm was observed a t sampling s t a t i o n 4, the h i g h e s t o f 0.76 ppm was observed a t s t a t i o n 3. The range of concent-r a t i o n s a c r o s s a l l s t a t i o n s was from 0.00 t o 4.10 ppm i r o n . The g r e a t e s t v a r i a b i l i t y was r e c o r d e d f o r s t a t i o n 3 w i t h v a l u e s r a n g i n g from 0.00 to 4.10 ppm. The l e a s t v a r i a b i l i t y was r e c o r d e d f o r s t a t i o n 5 w i t h v a l u e s r a n g i n g from 0.00 to 0.28 ppm i r o n . Mean v a l u e s o f i r o n c o n c e n t r a t i o n s a t h i g h and low flow a c r o s s a l l s t a t i o n s were 0.2 3 and 0.44 ppm r e s p e c t i v e l y , v) Aluminum Average c o n c e n t r a t i o n s o f aluminum w i t h i n s t a t i o n s over the p e r i o d of m o n i t o r i n g v a r i e d from 0.01 to 0.30 ppm. Sampling s t a t i o n 4 averaged 0.01 ppm, s t a t i o n 3 averaged 0.30 ppm. The range o f c o n c e n t r a t i o n s a c r o s s a l l s t a t i o n s over the p e r i o d o f m o n i t o r i n g was from 0.00 to 0.90 ppm. The g r e a t e s t v a r i a b i l i t y i n c o n c e n t r a t i o n s was observed a t sampling s t a t i o n 3 w i t h a range o f 0.00 to 0.90 ppm. The l e a s t v a r i a b i l i t y was observed a t s t a t i o n 10 w i t h a range of 0.00 to 0.10 ppm aluminum. Mean v a l u e s o f aluminum c o n c e n t r a t i o n s a c r o s s a l l s t a t i o n s over the p e r i o d o f m o n i t o r i n g a t h i g h and low flow were 0.21 and 0.49 ppm r e s p e c t i v e l y , w) Manganese Average c o n c e n t r a t i o n s o f manganese w i t h i n sampling s t a t i o n s over the p e r i o d of m o n i t o r i n g v a r i e d from 0.005 to 0.22 ppm. The lowest average c o n c e n t r a t i o n o f 0.005 ppm was observed a t sampling s t a t i o n 6, the h i g h e s t average of 0.22 ppm was observed a t s t a t i o n 2. The range o f concen-t r a t i o n s o f manganese a c r o s s a l l s t a t i o n s over the p e r i o d of m o n i t o r i n g v a r i e d from 0.00 to 3.14 ppm. The g r e a t e s t v a r i a b i l i t y was observed a t sampling s t a t i o n 2 w i t h the range from 0.00 to 3.14 ppm. The l e a s t v a r i a b i l i t y was r e c o r d e d a t s t a t i o n 12 w i t h a range o f 0.00 to 0.03 ppm. Mean v a l u e s o f manganese c o n c e n t r a t i o n s a c r o s s a l l s t a t i o n s over the p e r i o d o f m o n i t o r i n g a t h i g h and low flow were 0.2 3 and 0.30 ppm r e s p e c t i v e l y , x) S i l i c o n The average c o n c e n t r a t i o n v a l u e s f o r s i l i c o n w i t h i n sampling s t a t i o n s over the p e r i o d o f sampling v a r i e s from 1 t o 6 ppm. The lowest average c o n c e n t r a t i o n o f 1 ppm was observed a t sampling s t a t i o n 12, s t a t i o n 3,5,6,8 and 14 a l l averaged 6 ppm. C o n c e n t r a t i o n s a c r o s s a l l s t a t i o n s over the p e r i o d o f m o n i t o r i n g ranged from 0 t o 13 ppm. The g r e a t e s t c o n c e n t r a t i o n v a r i a b i l i t y was observed from 2 t o 13 ppm. The l e a s t v a r i a b i l i t y was observed a t s t a t i o n 11 w i t h v a l u e s v a r y i n g from 1 t o 2 ppm s i l i c o n . Mean v a l u e s o f s i l i c o n c o n c e n t r a t i o n s a c r o s s a l l s t a t i o n s over the p e r i o d o f m o n i t o r i n g a t h i g h and low flow were 2.8 and 4.8 ppm r e s p e c t i v e l y . q) Calcium The average c a l c i u m c o n c e n t r a t i o n s w i t h i n sampling s t a t i o n s v a r i e d from 3.25 to 7.y2 ppm. Sampling s t a t i o n 11 averaged 3.25, s t a t i o n 3 averaged 7.y2 ppm. Ranges o f c o n c e n t r a t i o n v a l u e s across a l l s t a t i o n s f o r the p e r i o d ot sampling v a r i e d from 1.95 to 31.20 ppm calcium. Sampling s t a t i o n 3 showed the g r e a t e s t v a r i a b i l i t y w i t h c o n c e n t r a t i o n s r a n g i n g from 3.0 8 to 31.2 0 ppm. The l e a s t v a r i a b i l i t y i n c o n c e n t r a t i o n s was observed a t s t a t i o n 11 w i t h v a l u e s v a r y i n g from 2.34 to 4.4 8 ppm. Mean va l u e s f o r c a l c i u m c o n c e n t r a t i o n s across a l l s t a t i o n s a t h i g h and low flow were 3.2u and 5.52 r e s p e c t i v e l y . °\2 B. Trace Metals C o n c e n t r a t i o n s of seven t r a c e metal elements were determined by o r g a n i c s o l v e n t (MIBK) e x t r a c t i o n f o r the p e r i o d J u l y 31st, 1974 t o March 31, 1975. The seven elements s t u d i e d i n c l u d e : chromium copper i r o n manganese n i c k e l l e a d z i n c C o b a l t and cadmium l e v e l s were a l s o monitored, but were g e n e r a l l y u n d e t e c t a b l e i n most samples and are t h e r e f o r e not d i s c u s s e d . I r o n and mangenese were determined d i r e c t a s p i r a t i o n i n t o an atomic a b s o r p t i o n spectrometer. The r e s u l t s determined by the o r g a n i c s o l v e n t e x t r a c t a n t were c o n s i s t e n t l y h i g h e r than the r e s u l t s o f d i r e c t a s p i r a t i o n . T a b les p r e s e n t i n g a l l of the data c o l l e c t e d a t each time of sampling f o r each sampling s t a t i o n are g i v e n i n Appendix IV. The r e s u l t s o f c a l c u l a t i o n s o f average c o n c e n t r a t i o n s and ranges o f v a l u e s over the p e r i o d of m o n i t o r i n g i s p r e s e n t -ed i n Table XV. A summary of these average c o n c e n t r a t i o n s and the range of v a l u e s f o r each metal s t u d i e d i s pr e s e n t e d i n the t e x t f o l l o w i n g . Table XV: AVERAGES AND RANGES OF VALUES OF TRACE ELEMENT CONCENTRATIONS FOR SALMON RIVER WATERS (JULY 1974 - APRIL 1975) (ug/1) ^ v ^ I T E I • ELEMENT*^ 1 2 3 4 5 6 7 8 9 10 11 12 14 15 average 1.48 1.01 1.11 0.64 0.81 0.71 0.63 1.81 0.49 0.58 0.72 0.52 1.63 0.61 Chromium range C.5-3.5 <. 5-2.0 C15-2.1 <.5-l.l <.50-1.30 <.50-1.40 <.50-1.00 C 50-11.6 0.40-0.70 <0.50-1.00 <0.50-1.00 <0.50-1.00 <0.50-3.82 <0.50-0.90 average 3.52 4.68 6.42 3.67 5.23 3.07 4.13 4.71 3.53 7.49 4.48 6.36 5.12 4.13 Copper range ^1.00-8.20 <1.00-10.2 2.20-11.8 1.00-6.50 <1.00-14.2 <1.00-6.50 O . O O -7.00 <1.00-15.2 <1.00-8.60 <cl.00-30.0 2.30-8.60 4.70-8.80 1.80-12.0 <1.00-8.20 average 790 550 1670 160 280 280 250 660 480 880 240 560 590 580 • Iron range 530-1420 360-720 340-432.0 60-370 100-820 180-570 140-425 120-4470 200-900 100-2900 170-360 260-1040 230-1480 180-1020 average 53 39 345 9 25 16 67 176 31 334 14 25 26 52 Manganese range 24-102 14-51 38-2250 0 -24 0-133 0-30 30-124 64-410 11-63 15-476 0 -30 11-44 0-65 13-122 average 1.41 0.89 2.22 0.93 0.82 0.77 0.97 2.31 0.66 0.90 0.72 0.98 1.00 0.76 Nickel range 0.70-2.20 0.70-1.20 0.70-6.70 0 -3.20 0.30-1.40 0-1.00 0-2.70 0 -13.2 0 -1.40 0-5.00 0 -1.40 0.70-1.50 0-2.40 0.30-1.00 average 0.89 2.44 0.96 0.62 0.73 0.66 0.84 0.62 0.56 1.28 0.50 0.68 0.62 0.60 Lead range 0-3.00 0 -17.2 0-3.00 0-1.60 0-1.60 0-1.00 0-2.00 0 -1.00 0-1.00 0-6.30 0-1.50 0-2.40 ' 0-1.00 0-1.00 average 3.80 3.80 9.46 1.82 4.44 5.00 3.30 8.50 1.64 12.81 1.18 4.34 1.24 3.10 Zinc range I. 60-II. 3 1.00-17.8 1.40-42.0 0 -7.30 1.00-19.0 0.20-19.0 1.00-10.1 3.40-17.0 0-5.20 0 -92.0 0.20-2.00 3.00-6.90 0-3.50 1.00-5.90 a) Chromium Average c o n c e n t r a t i o n v a l u e s f o r chromium w i t h i n sampling s t a t i o n s over the p e r i o d of sampling v a r i e d from 0.49 t o 1.81 ug/1. The range of c o n c e n t r a t i o n s a c r o s s a l l sampling s t a t i o n s over the p e r i o d o f m o n i t o r i n g v a r i e d from 0.40 t o 11.6 ug/1. The lowest average concen-t r a t i o n was observed a t sampling s i t e 9 w i t h a v a l u e of 0.49 ug/1. The h i g h e s t average was r e c o r d e d a t s t a t i o n 8 w i t h a v a l u e of 1,81 ug/1. Concentrate ens a t sampling s t a t i o n 8 showed the g r e a t e s t v a r i a b i l i t y i n r a n g i n g from 0.50 t o 11.6 ug/1. Sampling s t a t i o n 9 showed the l e a s t v a r i a b i l i t y where the range was from 0.40 t o 0.70 ug/1. b) Copper Average c o n c e n t r a t i o n s of copper w i t h i n sampling s t a t i o n s over the p e r i o d o f m o n i t o r i n g v a r i e d from 3.07 to 7.49 ug/1. The range of c o n c e n t r a t i o n s observed a c r o s s sampling s t a t i o n s f o r the p e r i o d o f m o n i t o r i n g ranged from 1.00 t o 30.0 ug/1. The lowest average c o n c e n t r a t i o n was observed a t sampling s i t e 6 w i t h an average of 3.07 ug/1, the h i g h e s t average was r e c o r d e d a t sampling s t a t i o n 10 w i t h a v a l u e o f 7.49 ug/1. The g r e a t e s t v a r i a b i l i t y o f c o n c e n t r a t i o n s was r e c o r d e d a t sampling s t a t i o n 10 w i t h c o n c e n t r a t i o n s r a n g i n g from 1.00 t o 30.0 ug/1. The l e a s t v a r i a b i l i t y was observed a t sampling, s t a t i o n s 4 and 6 w i t h c o n c e n t r a t i o n s r a n g i n g from 1.00 to 6.50 ug/1. °\5 c) Iron Average c o n c e n t r a t i o n s of i r o n w i t h i n sampling s t a t i o n s over the p e r i o d of m o n i t o r i n g range from 160 to 1670 ug/1. The range of c o n c e n t r a t i o n s a c r o s s a l l s t a t i o n s over the p e r i o d of m o n i t o r i n g v a r i e d from 60 to 4470 ug/1. The lowest average c o n c e n t r a t i o n was observed a t sampling s t a t i o n 4 w i t h an average c o n c e n t r a t i o n of 160 ug/1, the h i g h e s t average was observed a t s t a t i o n 3 w i t h an average of 1670 ug/1. The g r e a t e s t v a r i a b i l i t y o f c o n c e n t r a t i o n s was observed at sampling s t a t i o n 8 w i t h a range of 12 0 t o 447 0 ug/1. The l e a s t v a r i a b i l i t y was observed a t sampling s t a t i o n 7 w i t h a range of 140 t o 425 ug/1. d) Manganese Average c o n c e n t r a t i o n s of manganese w i t h i n sampling s t a t i o n s over the p e r i o d o f m o n i t o r i n g range from 9 t o 345 ug/1. The range of c o n c e n t r a t i o n observed a c r o s s a l l samp-l i n g s t a t i o n s over the p e r i o d o f m o n i t o r i n g v a r i e d from 0 t o 2250 ug/1. Sampling s t a t i o n 4 averaged 9 ug/1, w h i l e s t a t i o n 3 averaged 345 ug/1. The g r e a t e s t v a r i a b i l i t y o f c o n c e n t r a t i o n s was observed a t sampling s t a t i o n 4 w i t h a range from 0 t o 24 ug/1. e) N i c k e l Average c o n c e n t r a t i o n s of n i c k e l w i t h i n s t a t i o n s over the p e r i o d o f sampling v a r i e d from 0.66 to 2.31 ug/1. The range of c o n c e n t r a t i o n s of n i c k e l a c r o s s a l l s t a t i o n s over the p e r i o d o f m o n i t o r i n g v a r i e d from 0 t o 13.2 ug/1. Sampling s t a t i o n 9 averaged 0.66 ug/1, w h i l e s t a t i o n 8 averaged. 2.31. % The g r e a t e s t v a r i a b i l i t y was observed a t sampling s t a t i o n 8 w i t h v a l u e s r a n g i n g form 0 t o 13.2 ug/1. The l e a s t v a r i a b i l i t y was rec o r d e d a t sampling s t a t i o n 2 w i t h v a l u e s v a r y i n g from 0.70 t o 1.20 ug/1. f) Lead Average c o n c e n t r a t i o n s o f l e a d w i t h i n sampling s t a t i o n s over the p e r i o d of m o n i t o r i n g v a r i e d from 0.50 t o 2.44 ug/1. The range of c o n c e n t r a t i o n s a c r o s s a l l s t a t i o n s over the p e r i o d of m o n i t o r i n g v a r i e d from 0.0 t o 17.2 ug/1. Sampling s t a t i o n 11 averaged 0.50 ug/1, w h i l e s t a t i o n 2 averaged 2.44 ug/1. C o n c e n t r a t i o n s a t sampling s t a t i o n 2 showed the g r e a t -e s t v a r i a b i l i t y i n the range from 0 t o 17.2 ug/1. The l e a s t v a r i a b i l i t y i n c o n c e n t r a t i o n s was observed a t sampling s t a t i o n 6, 8, 9, 14 and 15 w i t h a range of v a l u e s from 0 t o 1.00 ug/1. g) Z i n c Average c o n c e n t r a t i o n s o f z i n c w i t h i n sampling s t a t i o n s over the p e r i o d of m o n i t o r i n g v a r i e d from 1.18 t o 12.81 ug/1. The range o f c o n c e n t r a t i o n s a c r o s s a l l s t a t i o n s f o r the p e r i o d o f sampling v a r i e d from 0.00 t o 92.0 ug/1. Sampling s t a t i o n 11 averaged 1.18 ug/1, w h i l e s t a t i o n 10 averaged 12.8 ug/1. The g r e a t e s t v a r i a b i l i t y o f c o n c e n t r a t i o n s was observed a t sampling s t a t i o n 10 where v a l u e s v a r i e d from 0 to 92.0 ug/1. The l e a s t v a r i a b i l i t y o f c o n c e n t r a t i o n s was observed a t sampling s t a t i o n 11 where v a l u e s v a r i e d from 0.20 to 2.00 ug/1. 2. Atmosoheric P r e c i p i t a t i o n Chemical Data A . Chemical V a r i a b l e s Ten p r e c i p i t a t i o n c o l l e c t i n g d e v i c e s were l o c a t e d a t v a r i o u s p o s i t i o n s throughout the Salmon R i v e r watershed t o correspond g e n e r a l l y w i t h the stream sampling s t a t i o n s . The c o l l e c t i o n s o f these d e v i c e s was sampled monthly and the v a r i a b l e s which were determined were: pH t o t a l a c i d i t y t o t a l a l k a l i n i t y t o t a l b i c a r b o n a t e a l k a l i n i t y t o t a l hardness (calcium carbonate e q u i v a l e n t ) t o t a l d i s s o l v e d r e s i d u e t o t a l K j e l d a h l n i t r o g e n t o t a l o r g a n i c carbon n i t r a t e - n i t r o g e n s u l f a t e c h l o r i d e c a l c i u m magnesium sodium potassium i r o n aluminum manganese These samples were c o l l e c t e d from J u l y 1, 1974 to March 31, 1975. The complete c h e m i c a l data f o r each v a r i a b l e on each date o f sampling f o r a l l of the sampling l o c a t i o n s are p r e s e n t e d i n Appendix VI. 76 C a l c u l a t i o n s o f average c o n c e n t r a t i o n s w i t h i n each sampling s t a t i o n and the range of v a l u e s observed over time are p r e s e n t e d Table XVI. A summary of the r e s u l t s i n t h i s t a b l e i s p r e s e n t e d i n the f o l l o w i n g t e x t . a) pH Average pH v a l u e s w i t h i n sampling s t a t i o n s vary from 4.9 t o 5.6. Sampling s t a t i o n 9 averaged 4.9 w h i l e s t a t i o n 1 averaged 5.6. The range of pH v a l u e s observed a c r o s s a l l sampling s t a t i o n s over the p e r i o d o f m o n i t o r i n g v a r i e d from 4.3 t o 6.1. The g r e a t e s t v a r i a t i o n was noted f o r sampling s t a t i o n s 2 and 3 w i t h v a l u e s r a n g i n g from 4.5 t o 6.0 and 4.3 t o 5.8 r e s p e c t i v e l y . The l e a s t v a r i a b i l i t y was noted a t sampling s t a t i o n 8 w i t h v a l u e s r a n g i n g from 4.8 to 5.0. b) T o t a l a c i d i t y Average t o t a l a c i d i t y v a l u e s w i t h i n sampling s t a t i o n s over the p e r i o d o f m o n i t o r i n g v a r i e d from 2.7 to 4.5 mg/1 CaCO^ e q u i v a l e n t . Sampling s t a t i o n 8 averaged 2.7 mg/1 CaCO^ e q u i v a l e n t , w h i l e s t a t i o n 10 averaged 4.5 mg/1 CaCO^ e q u i v a l e n t . The range of v a l u e s o f t o t a l a c i d i t y a c r o s s a l l s t a t i o n s over the p e r i o d o f m o n i t o r i n g v a r i e d from 1.2 t o 11.0 mg/1 CaCO^ e q u i v a l e n t . The g r e a t e s t v a r i a b i l i t y was observed a t sampling s t a t i o n 2 w i t h v a l u e s v a r y i n g from 2.0 t o 11.0 mg/1 CaC0 3 e q u i v a l e n t . The l e a s t v a r i a b i l i t y was noted a t sampling s t a t i o n 11 w i t h v a l u e s v a r y i n g from 3.6 t o 4.0 mg/1 CaCO_ e q u i v a l e n t . I 7<7 T A B L E X V I i P r e c i p i t a t i o n Hater Chemistry Averages and Range July/74 - March/75 (inclusive) " ^ • ^ S i t e Variable 1 2 3 4 5 6 8 9 10 11 PH average range 5.6 4.9-6.1 5.4 4.5-6.0 5.1 4.3-5.8 5.0 4.4-5.3 5.3 5.0-5.5 5.0 4.5-5.2 4.9 4.8-5.0 4.8 4.3-5.2 5.1 4.8-5.4 4.9 4.6-5.1 Total Acidity ng/l Ca CO-, average range 3.0 2.0-6.0 4.4 2.0-11.0 3.4 2.4-4.0 4.0 3.0-5.0 3.3 1.6-6.0 3.7 1.2-6.0 2.7 2.0-5.0 3.9 3.0-5.0 4.5 3.0-7.6 3.9 3.6-4.0 Total A l k a l i n i t y ng/l Ca COj average range 4.2 1.4-7.2 4.8 1.1-9.6 3.4 1.4-5.6 3.7 1.4-6.4 3.9 2.1-7.2 3.7 1.4-6.4 6.9 2.2-18.0 3.9 1.4-6.4 4.2 1.4-7.2 4.1 1.4-6.4 Total Bicarbonate Al!t i k i n i t y mg/l CaCO^ average range 4.2 1.4-7.2 4.8 1.1-9.6 3.4 1.4-5.6 3.7 1.4-6.4 3.9 \ 2.1-7.2 j 3.7 ,1.4-6.4 6.9 2.2-18.0 3.9 1.4-6.4 4.2 1.4-7.2 4.1 1.4-6.4 Ca C0 3 Hardness aig/L average range 5.48 1.17-28.65 9.26 0.81-43.98 2.86 0.86-9.45 2.44 0.87-6.09 : 5.54 ! 1 ! 0.86-20.14 I 3.27 1.02-8.25 4.35 1.11-12.53 3.15 0.86-10.32 4.71 0.88-16.93 4.21 0.92-17.46 Dissolved Solids ng/r average range 9.0 0.0-32.0 25.3 0-108.0 7.3 0.0-38.0 11.0 0.0-42.0 21.3 ' 0.0-80.0 1 22.0 0.0-76.0 11.0 .0.0-32.0 9.7 0.0-42.0 11.0 0.0-50.0 17.7 0.0-54.0 Total K'iel-lahl N ppn. average range 0.60 0.0-1.34 0.66 0.0-1.51 0.53 0.0-1.18 0.41 0.0-1.23 0.52 0.0-1.68 0.44 0.0-1.18 0.49 0.0-0.95 0.33 0.0-0.69 0.55 0.0-1.40 0.38 0.0-0.73 Total C ppm average range 3.70 0.10-8.10 2.90 0.10-7.80 3.20 0.0-8.60 4.40 0.0-9.90 2.70 0.0-8.10 2.80 0.0-8.10 1.70 0.0-4.60 3.20 0.0-8.40 2.60 0.0-8.90 2.70 0.0-7.00 NOj-N PP» < average range 0.37 0.0-1.60 0.44 0.0-1.58 0.31 0.0-1.52 0.31 0.0.-1,48 0.46 0.0-1.62 0.35 . JB...0-1...63 . 0.42 ; .0.0-1.66 0.34 0.0-1.53 0.22 0.0-0.40 0.35 0.0-1.87 ••• ' ' / o o I J XVIt P r e c i p i t a t i o n Water Chemistry Averages and Ranges July/74 - March/75 (inclusive) Site Variable S 0 4 ppm range 1 l . i n 0.30-2.60 i. 1.10 0.30-3.10 3 0.60 0.20-1.10 4 0.50 0.10-1.00 5 1.50 0.20-7.60 6 8 0.80 1.10-2.20 10 • T.6-> 0.20-1.40 11 0.50 0.20-0.90 1.30 0.40-3.40 0.50 0.10-0.90 CI ppm average range . 0.27 0.0-2.13 0.20 0.0-0.76 0.00 0.0-0.0 0.18 0.0-1.42 0.80 0.0-6.39 1.92 0.0-15.34 0.0 0.0-0.0 0.0 0.0-0.0 0.0 0.0-0.0 0.0 0.0-0.0 Ca ppm average range 1.47 0.37-7.61 1.54 0.19-6.00 0.84 ' 0.20-2.85 0.68 0.25-1.87 1.64 0.21-6.49 0.86 0.21-2.70 1.10 0.33-2.56 0.77 0.24-2.04 1.13 0.21-4.57 1.20 0.27-5.72 ppm average range 0.32 0.06-2.03 0.82 0.04-5.00 0.12 0.04-0.43 0.08 0.04-0.24 0.11 0.04-0.28 0.08 0.03-0.23 0.10 0.05-0.23 0.09 0.04-0.29 0.17 0.04-0.76 0.12 0.04-0.55 Na ppm average range 1.82 0.57-10.10 7.93 0.39-50.00 0.89 0.10-3.07 0.86 0.25-2.70 1.96 0.30-6.95 0.90 0.36-2.70 1.61 0.70-5.75 1.05 0.25-2.90 1.50 0.44-6.07 1.05 0.30-3.75 K Ppm average range 1.21 0.02-8.65 4.32 0.09-28.30 0.26 0.04-1.33 0.20 0.03-0.83 1.45 0.04-7.70: 0.17 0.02-0.65 0.52 0.05-1.26 0.21 0.03-0.95 0.63 0.11-3.36 0.16 0.02-0.96 Fe ppm average range 0.02 0.00-0.10 0.06 0.00-0..8 0.02 0.00-0.20 0.04 0.0-0.20 0.02 . 0.0-0.10 0.03 . 0.0-0.20 0.0 0.0-0.0 0.03 0.0-0.20 0.03 0.0-0.20 0.01 0.0-0.10 Al ppm average range 0.07 0.0-0.20 0.10 0.0-0.50 0.04 0.0-0.20 0.03 0.0-0.10 0.10 0.0-0.50 0.03 0.0-0.10 0.04 0.0-0.20 0.03 0.0-0.20 0.04 0.0-0.30 0.03 0.0-0.20 Mn PPm average range 0.04 0.0-0.30 0.007 0.0-0.05 0.007 0.0-0.04 0.002 0.0-0.02 0.003 0.0-0.03 0.002 0.0-0.02 0.03 0.0-0.20 0.004 0.0-0.03 . 0.02 0.0-0.20 0.02 0.0-0.20 101 c) T o t a l A l k a l i n i t y and T o t a l B i c a r b o n a t e A l k a l i n i t y Average v a l u e s o f t o t a l a l k a l i n i t y and t o t a l b i c a r b o n a t e a l k a l i n i t y w i t h i n sampling s t a t i o n s over the p e r i o d of monit-o r i n g v a r i e d from 3.4 t o 6.9 mg/1 CaCO^ e q u i v a l e n t . Sampling s t a t i o n 3 averaged 3.4 mg/1 CaCO^ e q u i v a l e n t , w h i l e s t a t i o n 8 averaged 6.9 mg/1 CaCO^ e q u i v a l e n t . The range of v a l u e s observed a c r o s s a l l sampling s t a t i o n s over the p e r i o d o f m o n i t o r i n g v a r i e d from 1.1 t o 18.0 mg/1 CaCO^ e q u i v a l e n t . The g r e a t e s t v a r i a b i l i t y was observed a t sampling s t a t i o n 8 w i t h v a l u e s r a n g i n g 'from 2.2 t o 18.0 mg/1 CaCO^ e q u i v a l e n t . The l e a s t v a r i a b i l i t y was noted a t sampling s t a t i o n 3 w i t h v a l u e s r a n g i n g from 1.4 t o 5.6 mg/1 CaCO^ e q u i v a l e n t . d) T o t a l Hardness (Calcium Carbonate E q u i v a l e n t ) The average v a l u e s of t o t a l c a l c i u m carbonate hardness w i t h i n sampling s t a t i o n s over the p e r i o d o f m o n i t o r i n g v a r i e d from 2.44 to 9.2 6 mg/1 CaCO^ e q u i v a l e n t . Sampling s t a t i o n 4 averaged 2.44 mg/1 CaCO^ e q u i v a l e n t s t a t i o n 2 averaged 9.2 6 mg/1 CaCO^ e q u i v a l e n t . The g r e a t e s t v a r i a b -i l i t y o f v a l u e s was observed a t sampling s t a t i o n 2 w i t h v a l u e s v a r y i n g from 0.81 to 4 3.98 mg/1 CaCO^ e q u i v a l e n t . The l e a s t v a r i a b i l i t y was observed a t sampling s t a t i o n 4 w i t h v a l u e s r a n g i n g from 0.87 to 6.09 mg/1 CaCO^ e q u i v a l e n t . e) T o t a l D i s s o l v e d S o l i d s Average l e v e l s o f t o t a l d i s s o l v e d r e s i d u e w i t h i n sampling s t a t i o n s over the p e r i o d o f m o n i t o r i n g ranged from 7.3 t o 25.3 mg/1. The lowest average was observed a t sampling 102 s t a t i o n 3 a t 7.3 mg/1, w h i l e the h i g h e s t average value was noted a t sampling s t a t i o n 2 a t 25.3 mg/1. The range of d i s s o l v e d r e s i d u e l e v e l s a c r o s s a l l sampling s t a t i o n s over the p e r i o d o f m o n i t o r i n g v a r i e d from 0.0 to 108.0 mg/1. Sampling s t a t i o n 2 showed the g r e a t e s t v a r i a b i l i t y w i t h l e v e l s r a n g i n g from 0.0 to 108.0 mg/1. S t a t i o n s 1 and 8 showed the l e a s t v a r i a b i l i t y w i t h l e v e l s r a n g i n g from 0.0 to 32.0 mg/1. f) T o t a l K j e l d a h l N i t r o g e n The average c o n c e n t r a t i o n s of K j e l d a h l n i t r o g e n w i t h i n s t a t i o n s over the p e r i o d o f m o n i t o r i n g ranged from 0.33 t o 0.66 ppm. Sampling s t a t i o n 9 averaged 0.33 ppm, w h i l e s t a t i o n 2 averaged 0.66 ppm. The range o f c o n c e n t r a t i o n s of K j e l d a h l n i t r o g e n a c r o s s a l l s t a t i o n s over the p e r i o d of m o n i t o r i n g v a r i e d from 0.00 t o 1.68 ppm. The g r e a t e s t v a r i a b i l i t y o f c o n c e n t r a t i o n s was observed a t sampling s t a t i o n 5 w i t h v a l u e s r a n g i n g from 0.00 to 1.68 ppm. The l e a s t v a r i a b i l i t y o f c o n c e n t r a t i o n s was observed a t s t a t i o n 9 w i t h v a l u e s r a n g i n g from 0.00 to 0.69 ppm. g) T o t a l Organic Carbon The average o r g a n i c carbon c o n c e n t r a t i o n s w i t h i n s t a t i o n s over the p e r i o d o f m o n i t o r i n g v a r i e d from 2.60 to 4.40 ppm. Sampling s t a t i o n 10 averaged 2.60 ppm, w h i l e s t a t i o n 4 averaged 4.40 ppm. The range o f c o n c e n t r a t i o n s of o r g a n i c carbon a c r o s s a l l s t a t i o n s over the p e r i o d o f m o n i t o r i n g v a r i e d from 0.00 t o 9.90 ppm. The g r e a t e s t v a r i a b i l i t y i n c o n c e n t r a t i o n s was observed a t sampling s t a t i o n 4 w i t h v a l u e s 1 0 3 r a n g i n g from 0.00 to 9.90 ppm. The l e a s t v a r i a b i l i t y i n c o n c e n t r a t i o n s was observed a t s t a t i o n 8 w i t h v a l u e s r a n g i n g from 0.00 to 4.60 ppm. h) N i t r a t e - N i t r o g e n Average n i t r a t e - n i t r o g e n c o n c e n t r a t i o n s w i t h i n sampling s t a t i o n s over the p e r i o d o f m o n i t o r i n g v a r i e d from 0.22 t o 0.46 ppm. Sampling s t a t i o n 10 averaged 0.22 ppm, w h i l e s t a t i o n 10 averaged 0.46 ppm.. The range of n i t r a t e - n i t r o g e n concen-t r a t i o n s a c r o s s a l l sampling s t a t i o n s over the p e r i o d o f m o n i t o r i n g v a r i e d from 0.00 to 1.8 7 ppm. The g r e a t e s t v a r i a b i l i t y o f c o n c e n t r a t i o n s was observed a t sampling s t a t i o n 11 w i t h c o n c e n t r a t i o n s f l u c t u a t i n g from 0.00 to 1.87 ppm. The l e a s t v a r i a b i l i t y was observed a t sampling s t a t i o n 10 w i t h c o n c e n t r a t i o n s v a r y i n g from 0.00 to 0.40 ppm. i ) S u l f a t e The average c o n c e n t r a t i o n s of s u l f a t e w i t h i n sampling s t a t i o n s over the p e r i o d o f m o n i t o r i n g ranged from 0.50 to 1.50 ppm. The lowest average s u l f a t e c o n c e n t r a t i o n was observed a t sampling s t a t i o n s 4, 6, and 11 w i t h v a l u e s o f 0.50 ppm, w h i l e the h i g h e s t average c o n c e n t r a t i o n was observed at s t a t i o n 5 a t 1.50 ppm. The range o f c o n c e n t r a t i o n s o f s u l f a t e a c r o s s a l l s t a t i o n s over the p e r i o d o f m o n i t o r i n g f l u c t u a t e from 0.10 t o 7.60 ppm. The g r e a t e s t v a r i a b i l i t y i n c o n c e n t r a t i o n s was observed a t sampling s t a t i o n 5 where valu e s v a r i e d from 0.20 to 7.60 ppm. The l e a s t v a r i a b i l i t y was observed a t s t a t i o n 6 where v a l u e s f l u c t u a t e d between 0.20 and 0.90 ppm. 10t j) C h l o r i d e Average c h l o r i d e c o n c e n t r a t i o n s w i t h i n sampling s t a t i o n s over the p e r i o d o f m o n i t o r i n g v a r i e d from 0.00 to 1.92 ppm. Sampling s t a t i o n s 3, 8, 9, 10 and 11 averaged 0.00 ppm, w h i l e s t a t i o n 6 averaged 1.92 ppm. The c o n c e n t r a t i o n s observed a c r o s s a l l sampling s t a t i o n s over the p e r i o d o f m o n i t o r i n g f l u c t u a t e d between 0.00 and 15.34 ppm. The g r e a t e s t v a r i a b -i l i t y was observed a t sampling s t a t i o n 6 where c o n c e n t r a t i o n s v a r i e d from 0.00 to 15.34 ppm. The l e a s t v a r i a b i l i t y was observed a t sampling s t a t i o n s 3, 8, 9, 10 and 11 where conent-t r a t i o n s remained c o n s t a n t a t 0 ppm. k) Cal c i u m The average c o n c e n t r a t i o n s o f c a l c i u m w i t h i n sampling s t a t i o n s over the p e r i o d o f m o n i t o r i n g ranged from 0.68 t o 1.64 ppm. Sampling s t a t i o n 4 averaged 0.68 ppm, w h i l e s t a t i o n 5 averaged 1.64 ppm. The c o n c e n t r a t i o n s a c r o s s a l l sampling s t a t i o n s over the p e r i o d o f sampling f l u c t u a t e d between 0.19 and 7.61 ppm. The c o n c e n t r a t i o n s a c r o s s a l l sampling s t a t i o n s over the p e r i o d o f sampling f l u c t u a t e d between 0.19 and 7.61 ppm. The g r e a t e s t v a r i a b i l i t y o f c o n c e n t r a t i o n s was observed a t sampling s t a t i o n 1 where v a l u e s f l u c t u a t e d between 0.37 and 7.61 ppm. The l e a s t v a r i a b i l i t y was observed a t sampling s t a t i o n 4 where v a l u e s f l u c t u a t e d between 0.25 and 1.87 ppm. 1) Magnesium Average magnesium c o n c e n t r a t i o n s w i t h i n sampling s t a t i o n s over the p e r i o d o f sampling ranged from 0.08 t o 0.82 ppm. Sampling s t a t i o n s 4 and 6 averaged 0.08 ppm, w h i l e s t a t i o n 2 averaged 0.82 ppm. The c o n c e n t r a t i o n s of magnesium a c r o s s a l l 105 sampling s t a t i o n s over the p e r i o d o f m o n i t o r i n g f l u c t u a t e d between 0.0 3 and 5.00 ppm. The g r e a t e s t v a r i a b i l i t y was noted a t sampling s t a t i o n 2 where c o n c e n t r a t i o n s encountered v a r i e d from 0.04 to 5.00 ppm. The l e a s t v a r i a b i l i t y was observed a t s t a t i o n 8 where c o n c e n t r a t i o n s v a r i e d from 0.05 to 0.2 3 ppm. m) Sodium The average sodium c o n c e n t r a t i o n s w i t h i n sampling s t a t i o n s over the p e r i o d o f sampling ranged from 0.8 6 t o 7.93 ppm. Sampling s t a t i o n 4 averaged 0.86 ppm, w h i l e s t a t i o n 2 averaged 7.93 ppm. The c o n c e n t r a t i o n s encountered a c r o s s a l l sampling s t a t i o n s over the p e r i o d o f m o n i t o r i n g f l u c t u a t e d between 0.10 and 50.00 ppm. The g r e a t e s t v a r i a b i l i t y o f c o n c e n t r a t i o n s was observed a t sampling s t a t i o n 2 w i t h v a l u e s f l u c t u a t i n g between 0.39 and 50.0 ppm. The l e a s t v a r i a b i l i t y was observed a t sampling s t a t i o n 6 w i t h c o n c e n t r a t i o n s v a r y i n g from 0.36 t o 2.7 ppm. n) Potassium Average c o n c e n t r a t i o n s of potassium w i t h i n sampling s t a t i o n s over the p e r i o d o f sampling ranged from 0.20 to 4.32 ppm. Sampling s t a t i o n 4 averaged 0.20 t o 4.32 ppm. The c o n c e n t r a t i o n s of potassium observed a c r o s s a l l sampling s t a t i o n s over the p e r i o d o f m o n i t o r i n g f l u c t u a t e d from 0.02 to 28.30 ppm. The g r e a t e s t v a r i a b i l i t y o f c o n c e n t r a t i o n s was observed a t sampling s t a t i o n 2 where v a l u e s v a r i e d from 0.09 to 28.30 ppm. The l e a s t v a r i a b i l i t y was observed a t s t a t i o n 6 where c o n c e n t r a t i o n s f l u c t u a t e d between 0.02 and 0.65 ppm. 106 o) Ir o n The average i r o n c o n c e n t r a t i o n s w i t h i n sampling s t a t i o n s over the p e r i o d of m o n i t o r i n g ranged from 0 to 0.06 ppm. Sampling s t a t i o n 8 averaged 0 ppm, w h i l e s t a t i o n 2 averaged 0.06 ppm. The c o n c e n t r a t i o n s observed a c r o s s a l l sampling s t a t i o n s over the p e r i o d o f m o n i t o r i n g f l u c t u a t e d between 0 and 0.20 ppm. The g r e a t e s t v a r i a b i l i t y was observed a t sampling s t a t i o n s 3, 4, 6, 9, and 10 where the c o n c e n t r a t i o n s v a r i e d from 0 t o 0.20 ppm. The l e a s t v a r i a b i l i t y was observed a t s t a t i o n 8 where the c o n c e n t r a t i o n remained c o n s t a n t a t 0 ppm. p) Aluminum Average aluminum c o n c e n t r a t i o n s w i t h i n sampling s t a t i o n s over the p e r i o d o f m o n i t o r i n g ranged from 0.03 t o 0.10 ppm. Sampling s t a t i o n s 4, 6, 9, and 11 averaged 0.03 ppm w h i l e s t a t i o n s 2 and 5 averaged 0.10 ppm. The c o n c e n t r a t i o n s o f aluminum observed a c r o s s a l l sampling s t a t i o n s over the p e r i o d o f sampling f l u c t u a t e d between 0 and 0.50 ppm. The g r e a t e s t v a r i a b i l i t y was observed a t sampling s t a t i o n s 2 and 5 where the c o n c e n t r a t i o n s v a r i e d from 0 t o 0.50 ppm. The l e a s t v a r i a b i l i t y was observed a t sampling s t a t i o n 4 and 6 where c o n c e n t r a t i o n s v a r i e d from 0 to 0.10 ppm. q) Manganese The average c o n c e n t r a t i o n s o f manganese w i t h i n sampling s t a t i o n s over the p e r i o d o f sampling ranged from 0.002 to 0.04 ppm. Sampling s t a t i o n s 4 and 6 averaged 0.002 ppm, wh i l e s t a t i o n 1 averaged 0.04 ppm. The c o n c e n t r a t i o n s observed a c r o s s a l l sampling s t a t i o n s over the p e r i o d o f the study f l u c t u a t e d between 0.00 and 0.30 ppm. The g r e a t e s t 107 v a r i a b i l i t y was observed a t sampling s t a t i o n 1 where concen-t r a t i o n s v a r i e d from 0.00 to 0.30 ppm. The l e a s t v a r i a b i l i t y was observed a t s t a t i o n s 4 and 6 where c o n c e n t r a t i o n s v a r i e d from 0.00 t o 0.02 ppm. B. Trace Metals A n a l y s i s f o r the presence o f t r a c e metal elements i n the atmospheric p r e c i p i t a t i o n c o l l e c t i o n s was not conducted s i n c e i n most cases t h e r e was b a r e l y s u f f i c i e n t sample t o c a r r y out the b a s i c c h e m i c a l c o n c e n t r a t i o n a n a l y s i s . Perhaps t h i s i s an area which c o u l d b e n e f i t from f u r t h e r d e t a i l e d r e s e a r c h as an independent study, as there appear t o be s i g n i f i c a n t amounts o f v a r i o u s c h e m i c a l elements b e i n g r e t u r n e d t o the e a r t h i n atmospheric p r e c i p i t a t i o n . T h i s has been born out by o t h e r r e s e a r c h e r s (Bormann and L i k e n s , 1965). 3. Some Chemical P r o p e r t i e s o f Salmon R i v e r Stream Bed Sediments A. Chemical P r o p e r t i e s Some s e l e c t e d c h e m i c a l n u t r i e n t p r o p e r t i e s o f some Salmon R i v e r bed sediments are pr e s e n t e d i n Tab l e XVII. Samples were taken a t t h r e e d i f f e r e n t times to determine whether t h e r e was a change i n the chemical nature o f the stream bed sediments over time and between h i g h and low stream f l o w s . However, the data o b t a i n e d from those samples c o l l e c t e d d i d not show any s i g n i f i c a n t d i f f e r e n c e s , o r t r e n d s . Although v a l u e s f o r most o f the n u t r i e n t s i n c l u d i n g o r g a n i c carbon, t o t a l K j e l d a h l n i t r o g e n , s u l f a t e - s u l f u r , a v a i l a b l e phosphate-phosphorus, and the exchangeagle c a t i o n s (Ca,Mg, Na,K) TABLE XVTI: high flew May 7 May 13 low flow July 31 SOME SELECTED CHEMICAL PROPERTIES OF SEDIMENTS OF SALMON RIVER SAMPLED AT HIGH AND LOW FLOW PERIODS OF THE HYDROLOGIC CYCLE Ph pH Org C Org N S O.M. PO4-P Ca Mg Na K CEC H 20 CaCl 2 % % % % ppm. meg/10Og 1 5.3 4.5 0.088 0.018 MD 5.49 1.47 0.05 0.19 14.84 2 5.4 4.9 3.40 0.236 0.018 170.4 10.58 2.33 0.21 0.29 33.54 3 5.6 5.2 3.25 0.208 0.022 181.8 13.15 4.72 0.25 0.37 37.22 4 5.8 5.0 0.38 0.039 0.011 MD 0.99 0.23 0.02 0.05 2.18 5 5.7 4.9 0.42 0.033 0.007 37.2 1.35 0.30 0.02 0.05 2.98 6 5.7 5.2 0.78 0.066 0.007 54.3 6.45 1.55 0.07 0.17 15.20 1 5.7 5.2 1.68 0.140 0.017 112.2 8.70 2.45 0.14 0.22 21.02 2 5.4 4.7 2.58 0.200 0.028 145.2 1.63 0.30 0.02 0.10 7.42 3 5.6 5.1 2.81 0.189 0.019 178.2 10.63 3.80 0.27 0.31 33.10 4 5.8 5.1 0.36 0.026 0.010 174.6 1.15 0.30 0.02 0.06 3.35 5 5.5 5.0 0.53 0.017 0.009 33.3 1.08 0.28 0.02 0.05 2.62 6 5.7 5.1 0.21 0.016 0.006 24.6 1.13 0.30 0.03 0.06 2.62 7 5.6 5.1 0.38 0.021 0.004 63.0 1.38 0.23 0.03 0.10 5.16 8 5.3 4.7 0.34 0.018 0.003 54.6 0.70 0.18 0.02 0.04 3.13 9 5.5 4.9 0.50 0.042 0.024 46.5 1.30 0.38 0.02 0.07 4.07 10 5.5 5.1 1.85 0.150 0.022 202.2 6.55 1.95 0.08 0.33 17.17 11 5.6 5.1 2.23 0.081 0.013 130.8 4.55 1.53 0.07 0.19 16.22 12 5.7 4.9 1.24 0.094 0.006 109.2 1.63 0.48 0.03 0.15 4.22 14 6.1 5.3 0.44 0.032 0.013 36.6 2.29 0.78 0.16 0.08 4.62 1 5.5 4.7 0.90 0.060 0.008 1.5 37.5 5.00 1.02 0.16 0.19 10.59 2 5.3 4.2 3.48 0.230 0.014 6.0 42.0 7.12 1.34 0.27 0.29 24.90 3 5.6 4.7 0.99 0.040 0.013 1.7 17.3 5.25 1.44 0.73 0.33 5.06 6 5.6 4.7 0.19 0.003 0.007 0.3 17.2 1.62 0.29 0.06 0.10 3.70 7 5.6 4.9 0.34 0.004 0.005 0.6 34.7 1.62 0.24 0.05 0.11 4.11 101 appeared t o i n c r e a s e s l i g h t l y a t the low flow p e r i o d ( J u l y 31) compared to the h i g h e r flow p e r i o d s (May 7 and 13, 1974). T o t a l e l e m e n t a l a n a l y s e s o f the sampled bed sediments were a l s o conducted. These data are p r e s e n t e d i n Table XVIII. The r e s u l t s o f these a n a l y s e s r e v e a l e d l i t t l e s i g n i f i c a n t d i f f e r e n c e between the s e d i n e n t s a t i n d i v i d u a l sampling s i t e s a t h i g h and low r a t e s o f streamflow; Because these are complete data f o r a l l of the sampling s t a t i o n s a t o n l y one sampling time i t was f e l t t h a t i t would be u n r e a l i s t i c t o draw any d e f i n i t e c o n c l u s i o n s about the c o n t r i b u t i o n o f sediments t o the stream water q u a l i t y . The volume and chemical nature o f suspended sediments on streams becomes very important when those sediments are d e p o s i t e d on areas of s t a n d i n g water such as i n d e l t a s i n la k e s and oceans or t e m p o r a r i l y ponded areas i n the stream system, where the sediments can r e l e a s e some o f t h e i r n u t r i e n t s to the a q u a t i c system. (McKee and Wolf, 1963; K u e n t z e l , 1969; Woldendorp, 1972, and Northcote, 1973). To determine p r e c i s e l y the e f f e c t s o f sediment l o a d i n g s and the nature o f those sediments on s u r f a c e water q u a l i t y would r e q u i r e i n t e n s i v e s t u d i e s as have been conducted by such authors as Friedman and G a v i s t (1970); Fox (1966); and Krone (1966). TABLE XVTII: TOTAL ELEMENTAL ANALYSIS OF SALMON RIVER BED SEDIMENTS AT THREE SAMPLING TIMES Sampling Site/Date CaO MgO Na20 F e2°3 M 2 ° 3 I l n°2 CuO ZnO NiO CrO CoO T i 0 2 K 20 Total SiO. Average range 14 1 0.77 1.71 5.00 8.18 27.97 0.158 0 s .007 0.015 0. 010 0. 020 0. 011 1.326 2.458 47.64 53 .36 2 1.20 2.42 6.80 11.78 43.28 0.237 0 .006 0.026 0. 014 0. 029 0. 017 2.040 3.519 71.37 28 .63 3 0.88 1.49 4.70 7.69 24.64 0.174 0 .005 0.014 0. 010 0. 016 0. 008 1.394 2.530 43.55 56 .45 4 1.27 1.66 5.80 5.95 25.06 0.142 0 .003 0.009 0. 006 0. 020 0. 008 1.275 1.952 43.16 56 .84 5 1.27 1.66 4.67 7.78 24.38 0.190 0 .002 0.011 0. 006 0. 028 0. 008 2.091 1.687 43.78 56 .22 6 0.87 1.23 4.75 4.18 20.37 0.126 0 .002 0.009 0. 010 0. 016 0. 008 1.224 1.759 34.55 65 .45 1.04 1.70 5.29 7.59 27.62 0.171 0 .004 0.014 0. 009 0. 021 0. 010 1.558--2.318- 47.31 52 .82 0.77--1.23- 4.67- 4.18- 20.37- 0.126- 0 .002- 0.009- 0. 006- 0. 016- -0. 008- 1.224--1.687- 34.55- 28 .63-1.27 2.42 6.80 11.78 43.28 0.237 0 .007 0.026 0. 014 0. 029 0. 017 2.091 3.519 71.37 65 .45 Average 1 0.60 1.64 4.21 7.84 26.69 0.142 0. 006 0. 014 0 .006 0. 020 0.012 1.445 2.772 45.40 54.60 2 0.85 1.61 4.86 7.46 29.18 0.142 0. 004 0. 017 0 .010 0. 020 0.012 1.496 2.217 47.88 52.12 3 1.22 1.58 5.64 5.23 26.23 26.23 0. 126 0. 003 0 .009 0. 006 0.016 0.008 1.173 1.880 56.88 4 1.25 1.81 4.35 8.29 22.42 0.190 0. 003 0. 009 0 .002 0. 024 0.011 1.989 1.446 41.79 58.21 5 1.85 2.46 4.62 14.07 25.52 0.300 0. 002 0. 012 0 .006 0. 031 0.011 4.080 1.542 54.50 45.50 6 1.89 2.56 6.21 15.16 23.36 0.348 0. 002 0. 012 0 .006 0. 036 0.011 4.386 1.542 55.42 44.48 7 1.58 1.99 4.86 13.56 17.92 2.180 0. 003 0. 011 0 .010 0. 031 0.008 2.652 1.663 46.47 53.53 8 1.75 1.96 4.81 7.78 10.28 0.474 0. 000 0. 010 0 .010 0. 024 0.008 1.887 1.711 30.70 69.30 9 0.88 1.64 4.56 7.69 10.17 0.158 0. 003 0. 016 0 .010 0. 020 0.012 1.394 2.217 28.77 71.23 10 0.94 1.68 4.59 7.86 24.64 0.174 0. 003 0. 015 0 .010 0. 020 0.012 1.496 2.217 43.66 56.34 11 0.81 1.38 4.48 7.35 21.62 0.221 0. 004 0. 015 0 .010 0. 016 0.012 1.462 2.169 39.55 60.45 12 1.33 1.51 4.43 8.18 20.64 0.221 0. 002 0. 012 0 .006 0. 020 0.011 2.312 1.639 40.31 59.69 14 1.62 1.28 5.48 4.18 24.99 0.111 0. 001 0. 008 0 .006 0. 012 0.011 1.173 1.687 40.56 59.44 1.27 1.78 .4.85 8.82 21.82 0.368 0. 003 0. 013 0 .008 0. 022 0.011 2.072 1.900 42.94 57.06 0.60-1.28- 4.21- 4.18- 10.17- 0.111- 0.000- 0.008- 0.002- 0.012-0.008- 1.173-1.446- 28.77- 44.48-1.89 2.56 6.21 15.16 29, .18 2. ,180 0, .006 0, .017 0. 010 0. 036 0. .012 4.386 2. .772 55. ,52 71. ,23 July 31/74 -1 0.85 1.76 4.05 8.38 24. .98 0. ,126 0, .004 0. .014 0. 013 0. 024 0. ,008 1.547 3, .302 45. .06 54. ,94 2 1.04 1.66 4.51 7.75 24, .34 0. ,126 0, .005 0. .019 0. 010 0. 020 0. .012 1.564 2, .193 43. .25 56. ,75 3 0.99 1.66 5.89 10.58 30. .43 0. ,221 0, .004 0, .004 0. 014 0. 010 0. .012 1.190 2, .723 53. .74 46. .26 6 0.97 1.10 5.00 3.60 17, .46 0. ,095 0, .002 0. .008 0006 0. 016 0. .008 0.969 1, .711 30. .94 69. ,06 7 1.20 1.43 5.51 5.60 24. .12 0. ,126 0. .002 0, .009 0. 010 0. 016 0. .008 1.326 2, .024 41. ,38 58. ,62 Average 1.01 1.52 4.99 7.18 24, .27 0. ,139 0, .003 0, .013 0. 010 0. 018 0. ,010 1.319 2, .391 42. ,87 57. .13 range 0.85-1.10- 4.05- 3.60- 17.46- 0.095- 0.002-1.20 1.76 5.89 10.58 30.43 0.221 0.005 0.008- 0.006-0.019 0.013 0.016-0.008-0.024 0.012 1.564 3.302 30.94- 46.26-53.74 69.06 ^ I l l DISCUSSION WATER QUALITY G u i d e l i n e s and standards f o r l e v e l s of c e r t a i n chemicals i n s u r f a c e waters have been e s t a b l i s h e d by v a r i o u s government ag e n c i e s . Some of the p u b l i c a t i o n s r e l e a s e d by government agencies which were c o n s u l t e d i n c l u d e the Sta t e of C a l i f o r n i a , the Resources Agency o f C a l i f o r n i a , S t a t e Water Resources C o n t r o l Board (1963); P a c i f i c Northwest Area P o l l u t i o n C o n t r o l C o u n t i l (1966); Canada Department of N a t i o n a l H e a l t h and Welfare (1968); U n i t e d S t a t e s F e d e r a l Water P o l l u t i o n C o n t r o l A d m i n i s t r a t i o n (1968); B r i t i s h Columbia Department of H e a l t h S e r v i c e s and H o s p i t a l Insurance (1969); and Environment Canada, Water Management S e r v i c e , I n l a n d Waters Branch (1972). The g u i d e l i n e s and standards d e r i v e d from these sources f o r some of the chemic a l v a r i a b l e s s t u d i e d are p r e s e n t e d i n Table XIV. In t h i s study f o u r types o f water use are c o n s i d e r e d f o r e v a l u a t i o n , s i n c e these f o u r types of use o c c u r r e d most f r e q u e n t l y i n the Salmon R i v e r Watershed. The q u a l i t y of water i n the Salmon R i v e r was ev a l u a t e d as (1) a water supply f o r d r i n k i n g , c u l i n a r y , and food p r o c e s s i n g , w i t h o u t treatment o t h e r than simple d i s -i n f e c t i o n and removal o f n a t u r a l l y o c c u r r i n g i m p u r i t i e s ; (2) a water supply f o r b a t h i n g , swimming and r e c r e a t i o n such as viewi n g ; (3) a water supply f o r the growth and pro p a g a t i o n of f i s h and othe r a q u a t i c l i f e , i n c l u d i n g waterfowl, f u r b e a r e r s , and ot h e r a q u a t i c and semi-aquatic TABLE XIX: Water q u a l i t y standards and g u i d e l i n e s f o r some s e l e c t e d water q u a l i t y v a r i a b l e s . 1 ^S. Water Quality >vUse Parameter >^  Guideline Level Water supply, drinking, culinary and food processing without treatment other than simple disinfection & removal of naturally present impurities Bathing, swimming, recreation. - Growth and propogatior of fish & other aquatic Mfe, including waterfowl, furbearers, other aquatic and semi-aquatic l i f e . Agricultural water supply; i r r i g a -tion, stock watering, truck farming. Dissolved Oxygen ' mg/1 or Z satn. >75% satn. 1 >5 mg/11 ' v a r i a b l e >3 mg/11 pH 6.5-8.5^ 4 6.5-8.3 6.5-8.51 6.5-8.33 6.5-8.51 6.5-8.51 Temperature °C objective acceptable <#} no incr. over natural 3 30°C3 £20 cold water f i s h l £29.5 warm water* <12.8 spawning! 15.5-21.21 Dissolved Inorganic substances objective acceptable <500 mg/11 2 4 1000 mg/1 2000-10,000 mg/1 fresh water fish J : Specific electrical conductivity 500 mg/1 rx 7.7 mhos i • J Nitrate-nitrogen as nitrogen objective acceptable maximum . <10.0 mg/1* 1 •C10.0 mg/1* I 10.0 mg/1* <10.0 mg/lJ <10.0 mg/13 10.0 mg/lJ ! ! Chloride objective acceptable <250 mg/1 2 ). 250 mg/1 1 * <250 mg/13 250 mg/13 ! ! Total phosphorus objective acceptable •dOt.Smg/12 ) O.Db5mg/l2 4 O.Ot>5mg/l3 O.Ofe5mg/l3 =5' O O G H3 M S ! •3 1 >. n Sulfate objective acceptable <250 mg/12 * 500 mg/1 <250 mg/13 500 mg/lJ >! fi > H H Z < . G tf n H c Calcium objective acceptable <75 mg/12,4. 200 mg/K * <75 mg/13 200 mg/lJ g 2 *-* t 1 a W pi TABLE XIX: Water q u a l i t y standards and g u i d e l i n e s f o r some s e l e c t e d water q u a l i t y v a r i a b l e s . Water^"\^ Quality Use Parameter > ^ Magnesium Guideline Level Water supply, drinking, culinary and food processing without treatment other than simple disinfectio I removal of naturally present impurities J Bathing, swimming, recreation Growth and propogation / of fish & other aquatic / l i f e , including water- ./ fowl, furbearers, other Agricultural wate aquatic and semi-aquatic/supply; irrigatio l i f e / stock watering, t /.farming objective acceptable <50 mg/12 4 150 mg/11 4 <5Q mg/13 150 mg/13 z • • -O ' H Iron objective acceptable <0.05 mg/12 4 0.3 mg/l2 4 <0.05 mg/13 0.30 mg/13 5S H G !> 5! r. r H Cadmium objective acceptable maximum Not Detectable 3 . <0.01 mg/13 0.01 mg/13 Not Detectable-1 •CO.01 mg/13 0.01 mg/13 > S P a > n 5 w ^ ^ t-1 ™ H 25 Lead objective acceptable maximum Not Detectable 3 <0.05 mg/13 0.05 mg/13 Not Detectable 3 -10.05 mg/13 0.05 mg/l3 L—Z PS M . 1 W Copper objective acceptable <0.01 mg/13 1.0 mg/13 <0.01 mg/13 1.00 mg/13 ! J Chromium objective acceptable maximum Not Detectable 3 <0.05 mg/13 0.05 mg/lJ Not Detectable-1 <0.05 mg/13 0.05 mg/13 • J Manganese objective acceptable <0.01 mg/12 4 0.05 mg/lz 4 <:0.01 mg/13 0.05 mg/lJ j | Total Hardness objective <120 mg/12 4 <120mg/l3 ! j Zinc objective acceptable <1.0 mg/13 5.0 mg/13 <1.0 mg/13 5.0 mg/13 — — — — _ i l i 1 Policy of Pacific N.W. Pollution Control Council, 1966 2 Canadian Drinking Water Standards and Objectives, 1968 3 Guidelines for Water Quality Objectives and Standards, 1972 4 Recommended B.C. Health Branch Water Quality Standards, 1969 l i f e ; and (4) a water supply f o r a g r i c u l t u r a l use i n c l u d i n g i r r i g a t i o n , stock w a t e r i n g , and t r u c k farming. The s p e c i f i c c h emical c h a r a c t e r i s t i c s c o n s i d e r e d i n t h i s e v a l u a t i o n i n c l u d e d : d i s s o l v e d oxygen l e v e l s , pH v a l u e s , temperature, d i s s o l v e d i n o r g a n i c substance l e v e l s , s p e c i f i c e l e c t r i c a l conductance, n i t r a t e - n i t r o g e n , c h l o r i d e , a c i d d i g e s t i b l e phosphorus, s u l f a t e , c a l c i u m , magnesium, i r o n , manganese, t o t a l c a l c i u m carbonate hardness, z i n c , cadmium, l e a d , copper, and chromium l e v e l s . The ot h e r v a r i a b l e s which were monitored i n the course of the study are not e v a l u a t e d here f o r t h e i r impacts on water q u a l i t y f o r the f o u r uses d e s c r i b e d because g u i d e l i n e s and/or standards e i t h e r are not r e a d i l y a v a i l a b l e or are i n the pr o c e s s of being d e v i s e d . Each v a l u e f o r every sampling s t a t i o n a t each time of sampling was e v a l u a t e d t o determine whether or not they met the water q u a l i t y c r i t e r i a . Average c h e m i c a l c o n c e n t r a t i o n s a t each sampling s t a t i o n f o r h i g h streamflows and low streamflows were a l s o checked w i t h water q u a l i t y c r i t e r i a . These d a t a are p r e s e n t e d i n Appendix V I I . A summary o f the e v a l u a t i o n o f the r e s u l t s o b t a i n e d i n t h i s study and t h e i r r e l a t i o n s h i p t o the p u b l i c h e d g u i d e l i n e s and standards f o l l o w s : 1. Water supply f o r d r i n k i n g , c u l i n a r y , and food p r o c e s s i n g without treatment. a) pH On average a t low r a t e s of streamflow a l l sampling s t a t i o n s were w i t h i n the l i m i t s o f the water q u a l i t y c r i t e r i a . However, a t hi g h flows sampling s t a t i o n 1 the pH averaged 6.3, s l i g h t l y below the water q u a l i t y l i m i t s . The s p e c i f i c dates on which the pH was l e s s than 6.5 a t sampling s t a t i o n 1, were June 4, 1974, June 18, 1974 and March 1, 1975. During, t h i s time the pH v a r i e d from 5.8 t o 6.1. A l l sampling s i t e s had v a l u e s 6.5 on June 4, 1974. b) Temperature On average a t both h i g h and low flow a l l of the sampling s t a t i o n s were w i t h i n the a c c e p t a b l e l i m i t s o f temperature. However, a t low streamflow s e v e r a l sampling s t a t i o n s had average temperatures g r e a t e r than 10°C, but l e s s than 15°C. Those sampling s t a t i o n s a v e r a g i n g g r e a t e r than 10°C were s t a t i o n 1, 12°C, s t a t i o n 2, 11°C. Some of the sampling s t a t i o n s had v a l u e s g r e a t e r than 15°C p e r i o d i c a l l y . These s i t e s i n c l u d e June 18/74, J u l y 31/74, August 27/74. S t a t i o n 1 S t a t i o n 2 J u l y 3/74, J u l y 18/74, August 13/74, August 27/74. S t a t i o n 5; S t a t i o n 10 S t a t i o n 11 S t a t i o n 12 S t a t i o n 14 S t a t i o n 15 J u l y 31/74. June 18/74, J u l y 18/74, J u l y 31/74. June 18/74. J u l y 18/74. June 18/74. June 18/74, J u l y 31/74. Temperatures a t these times went up as h i g h as 22°C. At these times the flow of water a t these sampling s t a t i o n s was g e n e r a l l y very slow and the depth was very shallow, a l l o w i n g the water t o warm c o n s i d e r a b l e , e s p e c i a l l y s i n c e i n most p l a c e s t h e r e was very l i t t l e bank v e g e t a t i o n t o shade the water. c) D i s s o l v e d I n o r g a n i c Substances The l e v e l o f d i s s o l v e d i n o r g a n i c substances on average a t hi g h and low streamflows and a t p o i n t samples were w e l l w i t h i n the o b j e c t i v e s l e v e l s o f the water q u a l i t y c r i t e r i a a t l e s s than 500 mg/1. d) S p e c i f i c Conductance The s p e c i f i c e l e c t r i c a l conductance was below 7.7 mhos, at a l l sampling s t a t i o n s a t a l l times. e) N i t r a t e - N i t r o g e n The n i t r a t e - n i t r o g e n l e v e l s as nigrogen were l e s s than 10 mg/1 a t a l l sampling s t a t i o n s a t a l l times. f) C h l o r i d e The c o n c e n t r a t i o n s o f c h l o r i d e a t a l l sampling s t a t i o n s a t a l l times were l e s s than the o b j e c t i v e 250 mg/1. g) Phosphorus The c o n c e n t r a t i o n s o f phosphate-phosphorus as phosphorus were c o n s i s t e n t l y h i g h e r than the a c c e p t a b l e 0.065 mg/1, (The g u i d e l i n e s are 0.2 mg/1 of phosphate as phosphate which c o n v e r t s t o 0.065 mg/1 of phosphate expressed as phosphorus, Environment Canada, 1972) a t a l l sampling s t a t i o n s a t a l l sampling times. The average v a l u e s a t h i g h and low stream-flow show l i t t l e p a t t e r n . At sampling s t a t i o n s 1,2,6,9,14 and 15 the c o n c e n t r a t i o n s of:>phosphorusare h i g h e r f o r h i g h flow. Yet, a t sampling s t a t i o n s 3,4,5,7,8,10,11 and 12 the c o n c e n t r a t i o n s of phosphorus are h i g h e r f o r low flow. A few p o i n t samples were w i t h i n the o b j e c t i v e l i m i t s o f the water q u a l i t y c r i t e r i a , these i n c l u d e d : S t a t i o n 1; August 27/74, January 30/75. S t a t i o n 2; August 27/74. S t a t i o n 3; January 30/74. S t a t i o n 4; August 2 7/74. S t a t i o n 5; J u l y 3/74, October 28/74, March S t a t i o n 6; January 30/74, March 1/75. S t a t i o n 7; March 1/75. S t a t i o n 8; August 2 7/74. S t a t i o n 9; August 27/74. S t a t i o n 11; January 30/75, March 1/75. S t a t i o n 12; March 1/75. S t a t i o n 13; March 1/75. These e x c e p t i o n s t o the r u l e g e n e r a l l y occur f o l l o w i n g the f l u s h i n g a c t i o n o f h i g h storm flows as shown on the hydrograph (Figure 18) .. h) S u l f a t e The c o n c e n t r a t i o n s o f s u l f a t e a t h i g h and low r a t e s o f streamflow a t a l l sampling s t a t i o n s a t a l l sampling times were w i t h i n the o b j e c t i v e water q u a l i t y c r i t e r i a o f l e s s than 250 mg/1. i ) Calcium The c a l c i u m c o n c e n t r a t i o n s were w i t h i n the o b j e c t i v e range of l e s s than 75 mg/1 a t a l l sampling s t a t i o n s a t a l l sampling times. j) Magnesium The magnesium c o n c e n t r a t i o n s were w i t h i n the o b j e c t i v e range of l e s s than 50 mg/1 a t a l l sampling s t a t i o n s a t a l l sampling times, k) Ir o n On average the i r o n c o n c e n t r a t i o n s a t h i g h streamflows were w i t h i n the a c c e p t a b l e range of l e s s than 0.3 ppm except sampling s t a t i o n s 1 and 11. A l s o sampling s t a t i o n s 1,3,4,5, 9,10 and 15 exceeded the a c c e p t a b l e 0.3 ppm l i m i t s on average at low streamflows. The sampling s t a t i o n s and s p e c i f i c sampling times when the i r o n c o n c e n t r a t i o n s exceeded the a c c e p t a b l e l i m i t s are as f o l l o w s : S t a t i o n 1; June 4/74, June 18/74, J u l y 18/74, August 13/74, August 27/74, October 1/74, March 31/75. S t a t i o n 2; J u l y 18/74, August 13/74. S t a t i o n 3; June 4, 18/74, J u l y 3, 18, 31/74, August 13, 27/74, October 1, 28/74, December 30/74, January 30/75. S t a t i o n 4; June 4/74. S t a t i o n 6; June 4/74. S t a t i o n 7; June 4/74. S t a t i o n 9; June 4/74, J u l y 3, 18, 31/74, August 13, 27/74, October 1, 28/74. S t a t i o n 10; J u l y 3, 18, 31/74, August 13, 27/74, October 28/7 4. S t a t i o n 11; June 4, 18/74, J u l y 13/74. S t a t i o n 12; June 4/74. S t a t i o n 14; June 4/74, J u l y 18, 31/74, August 27/74. S t a t i o n 15; June 4, 18/74, J u l y 1, 18, 31/74, August 13, 27/74, October 1, 28/74. 1 2 0 1) Cadmium The c o n c e n t r a t i o n s o f cadmium f i t between the o b j e c t i v e and a c c e p t a b l e l e v e l s o f water q u a l i t y a t a l l sampling s t a t i o n s a t a l l sampling times, m) Lead The l e a d c o n c e n t r a t i o n s were w i t h i n the a c c e p t a b l e water q u a l i t y l i m i t s a t a l l sampling s t a t i o n s a t a l l sampling times, n) Copper Copper c o n c e n t r a t i o n s were s l i g h t l y h i g h e r i n some p o i n t samples a t some sampling s t a t i o n s , than the a c c e p t a b l e 0.01 mg/1 v a l u e . Those sampling s i t e s and times were the f o l l o w i n g : 0.0102 mg/1, March 31/75. 0.0115 mg/1, January 30/75, 0.0118 mg/1, March 31/75. 0.012 0 mg/1, January 30/75. 0.0142 mg/1, November 28/74, 0.0152 mg/1, March 1/75. S t a t i o n 2 S t a t i o n 3 S t a t i o n 4; S t a t i o n 5; S t a t i o n 8; o) Chromium o C o n c e n t r a t i o n s of chromium were w i t h i n a c c e p t a b l e l i m i t s a t a l l sampling s t a t i o n s a t a l l sampling times, p) Manganese On average manganese c o n c e n t r a t i o n s exceeded the a c c e p t a b l e 0.05 mg/1 l i m i t s a t a l l sampling s t a t i o n s a t both h i g h and low streamflow w i t h the e x c e p t i o n o f sampling s t a t i o n 12 a t low flow. Sampling s t a t i o n s and sampling times where c o n c e n t r a t i o n s o f manganese exceeded 0.05 mg/1 i n c l u d e : S t a t i o n 1 S t a t i o n 2 S t a t i o n 3 S t a t i o n 7 S t a t i o n 8 J u l y 3/74. October 1/74. J u l y 3/74, November 11/74, March 31/74. October 28/74, January 31/75. June 6/74, J u l y 3, 18/74, August 13, 27/74, November 11, 28/74, December 30/74, January 31/75, March 1, 31/75. S t a t i o n 9; August 13/74. S t a t i o n 10; J u l y 3, 31/74, August 2 7/74, October 2 8/74, March 1/75. S t a t i o n 11; June 18/74. S t a t i o n 15; J u l y 3/74. q) T o t a l Hardness (Calcium Carbonate) T o t a l hardness was w i t h i n the o b j e c t i v e l e v e l s o f l e s s than 120 mg/1 a t a l l sampling s t a t i o n s a t a l l sampling times w i t h the e x c e p t i o n o f sampling s t a t i o n 3 on October 1, 1974, w i t h a r e a d i n g o f 181 mg/1. r) Z i n c Z i n c c o n c e n t r a t i o n s a t a l l sampling s t a t i o n s a t a l l sampling s t a t i o n s were w i t h i n the o b j e c t i v e l e v e l o f 1.0 mg/1. s) D i s s o l v e d Oxygen The g u i d e l i n e s from the p u b l i c a t i o n s t u d i e s i n d i c a t e t h a t an a c c e p t a b l e l e v e l o f d i s s o l v e d oxygen c o n c e n t r a t i o n i s g r e a t e r than 75% s a t u r a t i o n . S i n c e the data was c o l l e c t e d i n ppm and i n s u f f i c i e n t a d d i t i o n a l i n f o r m a t i o n was c o l l e c t e d t o make the a p p r o p r i a t e c o n v e r s i o n i t w i l l be assumed t h a t the c r i t e r i a i n ppm would be s i m i l a r t o those p r e s c r i b e d f o r 122 b a t h i n g and swimming a t minimum 5 mg/1. F o l l o w i n g t h a t assumption through, d i s s o l v e d oxygen l e v e l s on average a t h i g h and low streamflows were w i t h i n the a c c e p t a b l e range g r e a t e r than 5 mg/1. However, p o i n t samples throughout the sampling p e r i o d were measured a t l e s s than 5 mg/1. These i n c l u d e d : S t a t i o n 3; August 27, October 1, 1974. S t a t i o n 10; J u l y 31, August 13, 27, October 28, 1974. S t a t i o n 15; August 13, 27, October 1, 28, 1974. 2. Water supply f o r b a t h i n g , swimming, and o t h e r r e c r e a t i o n a l uses. a) pH The water q u a l i t y l i m i t s o f pH f o r b a t h i n g , swimming, and ot h e r r e c r e a t i o n a l uses are the same as those f o r d r i n k i n g water and t h e r e f o r e the e v a l u a t i o n s f o r b a t h i n g , swimming and oth e r r e c r e a t i o n a l uses are the same as f o r d r i n k i n g water. b) Temperature Temperature l e v e l s a t a l l sampling s t a t i o n s a t a l l sampling times are w i t h i n the a c c e p t a b l e l i m i t o f 30°C. c) Others The remaining c h e m i c a l v a r i a b l e s e v a l u a t e d f o r b a t h i n g , swimming, and o t h e r r e c r e a t i o n a l uses are the same as those e v a l u a t e d f o r d r i n k i n g water w i t h the same c l a s s l i m i t s . T h e r e f o r e , f o r an e v a l u a t i o n o f the chemi c a l v a r i a b l e s o f d i s s o l v e d i n o r g a n i c substances, s p e c i f i c e l e c t r i c a l c o n d u c t i v i t y , n i t r a t e - n i t r o g e n , c h l o r i d e , phosphate-phosphorus, s u l f a t e c a l c i u m , magnesium,iron, cadmium, l e a d , copper, 123 chromium, manganese, t o t a l hardness (CaCO^ e q u i v a l e n t ) , and z i n c r e f e r t o the s e c t i o n of d r i n k i n g water standards, d) D i s s o l v e d Oxygen D i s s o l v e d oxygen l e v e l s on average a t h i g h and low stream flows were w i t h i n the a c c e p t a b l e range g r e a t e r than 5 mg/1. However, p o i n t samples throughout the sampling p e r i o d were measured a t l e s s than 5 mg/1. These i n c l u d e d : S t a t i o n 3; August 27/74, October 1, 28/74. S t a t i o n 10; J u l y 31/74, August 13, 27/74, October 28/74. S t a t i o n 15; August 13/ 27/74, October 1, 28/74. Sampling s t a t i o n s 11 and 12 were dry of water d u r i n g J u l y , August, and September, 1974. 3. Water supply f o r the growth and p r o p a g a t i o n of f i s h and o t h e r a q u a t i c l i f e . a) pH The a c c e p t a b l e l i m i t s o f pH f o r f i s h p r o p a g a t i o n and growth are the same as f o r d r i n k i n g water. T h e r e f o r e , f o r an e v a l u a t i o n of pH r e f e r t o S e c t i o n 1 on d r i n k i n g water. b) Temperature Temperatures o f the water are g e n e r a l l y a c c e p t a b l e f o r c o l d water f i s h s i n c e durng m o n i t o r i n g the temperature seldom exceeded 20°C. Warm water f i s h are not c o n s i d e r e d i n t h i s geographic l o c a t i o n . Temperatures f o r spawning f i s h are g e n e r a l l y a c c e p t a b l e d u r i n g the s p r i n g and f a l l seasons. For any f i s h s p e c i e s t h a t might spawn i n the summer months the temperatures g e n e r a l l y tend t o exceed 12.8°C a t most p o i n t s . c) D i s s o l v e d I n o r g a n i c Substances The l e v e l s of d i s s o l v e d i n o r g a n i c substances were w i t h i n the a c c e p t a b l e range of l e s s than 2000 mg/1 f o r f r e s h water f i s h a t a l l sampling s t a t i o n s a t a l l sampling times. d) Others The o t h e r c h e m i c a l v a r i a b l e s measured i n t h i s study may have s i g n i f i c a n t e f f e c t s on the growth and p r o p a g a t i o n o f f i s h and o t h e r a q u a t i c l i f e i n the Salmon R i v e r watershed. However, i t was f e l t t h a t t o c o n s i d e r each v a r i a b l e independant of o t h e r v a r i a b l e s was not r e a l i s t i c s i n c e numerous o t h e r f a c t o r s determine the t o x i c i t y o f c h e m i c a l v a r i a b l e s . The t o x i c i t y o f s p e c i f i c chemicals depends on the c o n c e n t r a t i o n of the c h e m i c a l , the d u r a t i o n o f t h a t c o n c e n t r a t i o n , the temperature, the pH, the l e t h a l t h r e s h o l d c o n c e n t r a t i o n f o r s p e c i f i c f i s h s p e c i e s and the i n t e r a c t i o n s o f t h a t chemical w i t h o t h e r chemicals which a l t e r the way i t a f f e c t s the b i o l o g i c f a c t o r s . T h i s i s not t o mention those chemicals which are c o n c e n t r a t e d i n the bodies o f c e r t a i n organisms and accumulate through the food c h a i n . Because o f the complexity o f r e a c t i o n s o f these chemical f a c t o r s an e v a l u a t i o n of the i m p l i c a t i o n s o f the c o n c e n t r a t i o n s observed over the p e r i o d o f sampling s i t e s are l e f t f o r f u r t h e r study. G e n e r a l l y d u r i n g the course o f the study few f i s h f r y , f i n g e r l i n g s e t c e t e r a , were observed by the author. A l s o , i t has been suggested by o t h e r authors t h a t s l u g s o f h i g h c o n c e n t r a t i o n s o f some chemicals d u r i n g storm r u n o f f may have a g r e a t e r l e t h a l e f f e c t on f i s h p o p u l a t i o n s than s l o w l y i n c r e a s i n g c o n c e n t r a t i o n s . (Northcote, 1973). e) D i s s o l v e d Oxygen No a b s o l u t e statement can be made to g i v e the minimum d i s s o l v e d oxygen c o n c e n t r a t i o n r e q u i r e d to support f i s h l i f e , because the oxygen requirements o f f i s h vary w i t h the s p e c i e s and age o f the f i s h , w i t h p r i o r a c c l i m a t i z a t i o n , w i t h temperature, w i t h the c o n c e n t r a t i o n o f o t h e r substances i n the water, and w i t h numerous o t h e r f a c t o r s . Under average stream c o n d i t i o n s the d i s s o l v e d oxygen c o n c e n t r a t i o n s h o u l d remain a t 5 mg/1 or h i g h e r . (McKee and Wolf, 1963) . F o l l o w i n g t h i s r a t i o n a l e the degree of f i t of d i s s o l v e d oxygen l e v e l s t o the c r i t e r i a are the same as f o r d r i n k i n g water supply and b a t h i n g . 4) Water supply f o r a g r i c u l t u r a l use. a) pH For an e v a l u a t i o n of the pH v a l u e s f o r a g r i c u l t u r a l use r e f e r t o s e c t i o n 1 on d r i n k i n g water s i n c e the water q u a l i t y l i m i t s are the same. b) Temperature G e n e r a l l y the water temperatures f e l l i n the range o f 15.5 to 21.2°C d u r i n g the summer months when the water would normally be used f o r i r r i g a t i o n . However, d u r i n g the f a l l , w i n t e r and s p r i n g months the water temperatures were below 15.5°C and u s u a l l y l e s s than 10°C, which would be a c c e p t a b l e f o r s tock w a t e r i n g , but not i r r i g a t i o n or t r u c k farming. c) D i s s o l v e d Oxygen D i s s o l v e d oxygen c o n c e n t r a t i o n s were g e n e r a l l y a c c e p t a b l e at a l l sampling s t a t i o n s and sampling times except s t a t i o n 10 on J u l y 31/74, August 13, 27/74 and October 2 8/74. d) Others G u i d e l i n e s f o r the other c h e m i c a l v a r i a b l e s are not a v a i l a b l e i n the p u b l i c a t i o n s c o n s u l t e d , although t o t a l d i s s o l v e d i n o r g a n i c substance l e v e l s , s p e c i f i c e l e c t r i c a l c o n d u c t i v i t y and sodium l e v e l s above c e r t a i n l i m i t s are known t o a d v e r s e l y e f f e c t s a l t s e n s i t i v e crops (Wilcox, 1958) . Due t o complex i n t e r a c t i o n s i n the chemical v a r i a b l e s a f f e c t i n g use o f water f o r a g r i c u l t u r e t h i s e v a l u a t i o n i s l e f t f o r f u r t h e r study. 5) Water supply f o r i n d u s t r i a l use Since t h e r e was p r o p o r t i o n a t e l y very l i t t l e i n d u s t r i a l development i n the Salmon R i v e r watershed, the q u a l i t y o f waters r e q u i r e d f o r these uses was not e v a l u a t e d . S t a t i s t i c a l A n a l y s i s With completion o f the m o n i t o r i n g o f c h e m i c a l c h a r a c t e r -i s t i c s o f the s u r f a c e waters o f the Salmon R i v e r watershed s e v e r a l ( s t a t i s t i c a l and g r a p h i c a l ) methods w i t h the a i d of the computer, were u t i l i z e d i n an attempt t o d e r i v e r e l a t i o n s h i p s between water c h e m i s t r y , streamflow, l a n d use p a t t e r n , and geomorphic u n i t s . The f i r s t s tep was t o p l o t a l l c hemical c o n c e n t r a t i o n s a c r o s s a l l sampling s t a t i o n s and sampling times a g a i n s t h y d r a u l i c d i s c h a r g e . Secondly, the watershed was segregated i n t o areas o f s i m i l a r p r o p o r t i o n s which c o n t r i b u t e d to sampling s i t e s . The r e s u l t s o f the c h e m i c a l m o n i t o r i n g i n these groups then were p l o t t e d a g a i n s t h y d r a u l i c d i s c h a r g e . The t h i r d step was a c o r r e l a t i o n ( a n a l y s i s ) which i n d i c a t e d r e l a t i o n s h i p s between the l a n d use, type of geomorphic m a t e r i a l , and the c o n c e n t r a t i o n s o f 127 chemical v a r i a b l e s observed i n the study. The f o u r t h step was a c o r r e l a t i o n ( a n a l y s i s ) t o determine the g e n e r a l i n t e r a c t i o n s between chemical v a r i a b l e s themselves. 1. C o n c e n t r a t i o n vs. h y d r a u l i c d i s c h a r g e a c r o s s a l l sampling s t a t i o n s and a l l sampling times Computer p l o t s were executed f o r each chemical v a r i a b l e a c r o s s a l l sampling s t a t i o n s a t a l l sampling times. These p l o t s do not g i v e any d e f i n i t e i n d i c a t i o n s of t r e n d s o f chemical c o n c e n t r a t i o n s r e l a t e d d i r e c t l y t o h y d r a u l i c d i s -charge. Examples f o r the v a r i a b l e s , c a l c i u m , n i t r a t e , t o t a l K j e l d a h l n i t r o g e n and carbon v e r s u s streamflow are p r e s e n t e d i n F i g u r e s 19, 20, 21, 22 r e s p e c t i v e l y . 2. C o n c e n t r a t i o n v e r s u s H y d r a u l i c Discharge f o r s i m i l a r s i z e c o n t r i b u t i n g a r e a s . As d e s c r i b e d i n a p r e v i o u s s e c t i o n the watershed was d i v i d e d i n t o areas c o n t r i b u t i n g to the s p e c i f i c sampling s t a t i o n s on the b a s i s o f t o p o g r a p h i c breaks. These c o n t r i b u t i n g areas were s u b d i v i d e d i n t o f o u r s i z e c l a s s e s on the b a s i s o f area r a t i o s , as d e s c r i b e d i n the f i e l d sampling methods s e c t i o n . C o n c e n t r a t i o n s of the chemical v a r i a b l e s which had been monitored were then p l o t t e d to compare w i t h the h y d r a u l i c d i s c h a r g e a t the time of sampling. The r e s u l t s of the p l o t s o f the c o n c e n t r a t i o n s of each chemical v a r i a b l e a t a l l sampling time f o r each s i z e o f c o n t r i b u t i n g area were s i m i l a r t o the r e s u l t s of the a c r o s s s t a t i o n p l o t s of c o n c e n t r a t i o n versus h y d r a u l i c d i s c h a r g e . There are no d e f i n i t e t r e n d s of c o n c e n t r a t i o n s r e l a t e d t o h y d r a u l i c d i s c h a r g e . Examples of CD. 10 o o . in o 9" Calcium (ppm) s i if-a o . m + + + + + + + 4- + + 80.0 - | 120.0 n 160.0 - i 200.0 -1 240.0 ~1 280.0 - 1 320.0 H y d r a u l i c Discharge ( c f s ) FIGURE 19: P l o t of H y d r a u l i c Discharge ( c f s ) v s . Calcium C o n c e n t r a t i o n (ppm) Across A l l Sampling S t a t i o n s . 00 a o . N i t r a t e -N i t r o g e n (ppm) 03 + + + + 80.0 T T 120.0 160.0 200.0 H y d r a u l i c D i s c h a r g e ( c f s ) 240.0 -I 280.0 ~1 320.0 FIGURE 2 0 : P l o t o f H y d r a u l i c D i s c h a r g e ( c f s ) v s . N i t r a t e C o n c e n t r a t i o n (ppm) A c r o s s A l l S a m p l i n g S t a t i o n s . C M T o t a l Kj e l d a h l N i t r o g e n (ppm) a. D u i . rv - J + ±1* + r 120.0 160.0 200.0 "1 240 :o -1 280.0 320.0 H y d r a u l i c Discharge ( c f s ) FIGURE 21: P l o t of H y d r a u l i c Discharge ( c f s ) vs. T o t a l K j e l d a h l Nitrogen C o n c e n t r a t i o n (ppm) Across A l l Sampling S t a t i o n s T o t a l Organic " Carbon ° (ppm) .0 320.0 H y d r a u l i c Discharge ( c f s ) FIGURE 22: P l o t of H y d r a u l i c Discharge ( c f s ) vs. T o t a l Organic Carbon Concentration (ppm) Across A l l Sampling S t a t i o n s . 132 p l o t s o f n i t r o g e n , carbon, n i t r a t e and c a l c i u m versus h y d r a u l i c d i s c h a r g e f o r each s i z e c o n t r i b u t i n g area are p r e s e n t e d i n F i g u r e s 2 3,24,25,26,27,28,29,30,31,32,33,34, 35,36,37,38 f o r s i z e 1,2,3,4 c o n t r i b u t i n g areas r e s p e c t i v e l y . 3) C o r r e l a t i o n M a t r i x f o r Land Use and Geomorphic M a t e r i a l versus C o n c e n t r a t i o n . C o r r e l a t i o n ( a n a l y s i s ) to compare the r e l a t i o n s h i p s between la n d use p a t t e r n s and g e o l o g i c m a t e r i a l s and t h e i r i n f l u e n c e s i f any on water ch e m i s t r y was done by computer. The r e s u l t s o f t h i s a n a l y s i s are p r e s e n t e d i n Table XX. The water ch e m i s t r y v a l u e s a r e compared a t h i g h and low streamflow. C o r r e l a t o n c o e f f i c i e n t s are c o n s i d e r e d to be s i g n i f i c a n t a t the 95 p e r c e n t (confidence l e v e l ) i f they have v a l u e s of 0.5139 or g r e a t e r s i n c e t h e r e were 14 o b s e r v a t i o n s and 13 degrees o f freedom. a) pH Values o f pH were found to be s i g n i f i c a t l y r e l a t e d to loamy* g l a c i o m a r i n e and g l a c i o m a r i n e m a t e r i a l s a t h i g h stream-flow. b) O x i d a t i o n - Reduction P o t e n t i a l At h i g h h y d r a u l i c d i s c h a r g e l e v e l s redox p o t e n t i a l was s i g n i f i c a n t l y r e l a t e d t o s c h o o l s and g l a c i o m a r i n e m a t e r i a l s . However, t h i s appears to be a s p u r i o u s c o r r e l a t i o n r a t h e r than a t r u e c o r r e l a t i o n , s i n c e t h e r e appears to be no l o g i c a l e x p l a n a t i o n f o r the c o r r e l a t i o n . c) S p e c i f i c E l e c t r i c a l C o n d u c t i v i t y E l e c t r i c a l c o n d u c t i v i t y was s i g n i f i c a n t l y c o r r e l a t e d T o t a l K j e l d a h l N i t r o g e n (ppm) to-J 03 a $4 -if #+^ o.o r 4.0 8.0 T T + T 12.0 16.0 20.0 24.0 H y d r a u l i c D i s c h a r g e ( c f s ) 28.0 32.0 FIGURE 23: P l o t of T o t a l K j e l d a h l Nitrogen C o n c e n t r a t i o n (ppm) vs. H y d r a u l i c Discharge ( c f s ) f o r C o n t r i b u t i n g Area S i z e 1. T o t a l Organic Carbon (ppm) 10 in + + + fe + + + + + 0.0 4.0 a.o T T 12.0 16.0 20.0 H y d r a u l i c Discharge ( c f s ) 24.0 28.0 ~1 32 FIGURE 24: P l o t of T o t a l Organic Carbon C o n c e n t r a t i o n (ppm) vs. H y d r a u l i c Discharge ( c f s ) f o r C o n t r i b u t i n g Area S i z e 1 r\j_ o 03" N i t r a t e -N i t r o g e n (ppn) I D C3 I + - + + + IN + ++ -t 0.0 "4- + + 4.0 + T T 8.0 12.0 16.0 20.0 H y d r a u l i c D i s c h a r g e ( c f c ) 24.0 28.0 32 FIGURE 25: P l o t o f N i t r a t e C o n c e n t r a t i o n (ppm) v s . H y d r a u l i c D i s c h a r g e ( c f s ) f o r C o n t r i b u t i n g A r e a S i z e 1. C a l c i u n (ppia) o U3-1 CD 03 \4 + + + + + 0.0 4.0 ~1 1 1 1 1 8.0 12.0 16.0 20.0 24.0 H y d r a u l i c Discharge ( c f s ) 28.0 32 FIGURE 26: P l o t of Calcium C o n c e n t r a t i o n (ppm) vs. H y d r a u l i c Discharge ( c f s ) f o r C o n t r i b u t i n g Area S i z e 1. O o . 03 T o t a l K j e l d a h l N i t r o g e n (ppm) IX) + ++ + + T n 120.0 ~l 140.0 ~1 150.0 20.0 T 40.0 60.0 80.0 100.0 H y d r a u l i c D i 3 c h a r g e (cfo) FIGURE 27: P l o t of T o t a l K j e l d a h l Nitrogen Concentration (ppm) vs. H y d r a u l i c Discharge ( c f s ) f o r C o n t r i b u t i n g Area S i z e 2 . o J T o t a l Organic Carbon ( P P a) rv U3-I 03' ++ + ± + + + + 0.0 20.0 T T 40.0 60.0 80.0 100.0 H y d r a u l i c Discharge ( c f s ) ~1 120.0 "I 140.0 160.0 FIGURE 28: P l o t of T o t a l Organic Carbon Concentrations (ppm) vs. H y d r a u l i c Discharge ( c f s ) f o r C o n t r i b u t i n g Area Size 2. a ID I l i t r a t e -N i t r o g c n . (ppn) in o o 07' a + + t + + + + + + + + 0.0 20.0 40.0 60.0 80.0 71 100.0 n 120.0 ~ l 140.0 160.0 H y d r a u l i c Discharge ( c f s ) FIGURE 29: P l o t of N i t r a t e - N i t r o g e n C o n c e n t r a t i o n s (ppm) vs. H y d r a u l i c Discharge ( c f s ) f o r C o n t r i b u t i n g Area S i z e 2. O J ID to in 03 Calcium o (ppm) CN in IQ + + + + + -H-+ + 0.0 20.0 40.0 60.0 60.0 1 100.0 120.0 140.0 160.0 H y d r a u l i c Discharge ( c f s ) FIGURE 30: P l o t of Calcium Concentrations (ppm) vs. H y d r a u l i c Discharge ( c f s ) f o r C o n t r i b u t i n g Area S i z e 2. IN O a. m T o t a l K j e l d a h l N i t r o g e n (ppm) o to. o o o 0.0 F I G U R E 31 4 - + + , r r 1 1 40.0 80.0 120.0 160.0 200.0 H y d r a u l i c D i s c h a r g e ( c f s ) 240.0 -1 280.0 ~1 320.0 P l o t o f T o t a l K j e l d a h l N i t r o g e n C o n c e n t r a t i o n (ppm) v s . H y d r a u l i D i s c h a r g e ( c f s ) f o r C o n t r i b u t i n g A r e a s S i z e 3. T o t a l Organic Carb on (ppm) 3h 9H o co-J + + + + 40.0 + + + —r eo. n 120.0 n 160.0 200.0 -1 .240.0 "~1 .280.0 320.0 H y d r a u l i c Discharge ( c f s ) FIGURE 32: P l o t of T o t a l Organic Carbon C o n c e n t r a t i o n (ppm) vs. H y d r a u l i c Discharge ( c f s ) f o r C o n t r i b u t i n g Areas S i z e 3. N i t r a t e -N i t r o g e n (ppm) o t o ' (M 4 4fF + i t 0.0 40.0 + • + + + 80.0 120.0 n 160.0 -1 200.0 ~I 240 .U -1 280.0 320.0 Hydr a u l i c Discharge ( c f s ) FIGURE 33: P l o t of N i t r a t e - N i t r o g e n C o n c e n t r a t i o n s (ppm) vs. H y d r a u l i c Discharge ( c f s ) f o r C o n t r i b u t i n g Areas S i z e 3. CD 4-O ft" Calcium (ppn) 5" fM a to. + + + 4- ++ + 40.0 80.0 120.0 160.0 ~]— 200.0 - | 240.0 —I 280.0 320.0 Hyd r a u l i c Discharge ( c f s ) FIGURE 3 4 : P l o t of Calcium Concentrations (ppm) vs. H y d r a u l i c Dischrage ( c f s ) f o r C o n t r i b u t i n g Areas S i z e 3. 4* IM a IM ID T o t a l K j e l d a h l N i t ro gen (ppm) IN CO • ma a' + + 0.0 40.0 80.0 120.0 + T 160.0 1 200.0 —1 240.0 ~I 280.0 320.0 H y d r a u l i c Discharge ( c f s ) FIGURE 35: P l o t of T o t a l K j e l d a h l Nitrogen C o n c e n t r a t i o n (ppm) vs. H y d r a u l i c Discharge ( c f s ) f o r C o n t r i b u t i n g Area S i z e 4. IN to-I T o t a l Organic (ppn) o ca o •4* + rr-0.0 1 40.0 80.0 ~ i 120.0 160.0 " I 200.0 1 240.0 ~1 280.0 " I 320.0 H y d r a u l i c Discharge ( c f s ) FIGURE 36: P l o t of T o t a l Organic Carbon C o n c e n t r a t i o n (ppm) vs. H y d r a u l i c Discharge ( c f s ) f o r C o n t r i b u t i n g Area S i z e 4. 0 3 N i t r a t e -N i t r o ;cn (ppm) fM. ++ 03 +1— 40.0 0.0 80.0 120.0 160.0 ~~I 200.0 240.0 —I 280.0 ~1 320.0 H y d r a u l i c Discharge ( c f s ) FIGURE 37: P l o t of N i t r a t e - N i t r o g e n Concentrations (ppm) vs. H y d r a u l i c Discharge ( c f s ) f o r C o n t r i b u t i n g Area S i z e 4. fM-1 O - l C a 1 c i um (ppm) a to" + + + + + 0.0 -4Q.0 80.0 120.0 "1 160.0 I 200.0 _1  2-40.0 —1 280.0 320.0 H y d r a u l i c Discharge ( c f s ) FIGURE 38: P l o t of Calcium C o n c e n t r a t i o n (ppm) vs. H y d r a u l i c Discharge ( c f s ) f o r C o n t r i b u t i n g Area S i z e 4. Table XXi C o r r e l a t i o n Matrix; Land Use and Geomorphic Materials vs. Water Chemistry ! ' .. ' :"'V. VARIABLE C HI : C LOW N03 HI N03 LOW CL HI CL LOW P04 HI F04 LOW S04 HI S04 LOW CA HI 01 ' 0.0455 -0.1635 -0.0729 -0.1266 -0.0236 0.0405 0.0242 -0.2738 0.2835 0.1151 0.0441 09 0.2780 0.5093 0.4287 0.5236* 0.2714 0.2238 -0.0063 0.6157* 0.3039 0.2418 0.5548* 40 ' -0.3315 -0.4008 0.0001 0.3949 0.0287 -0.1004 -0.1800 -0.4475 ' 0.0834 -0.2819 0.0167 41 -0.2556 -0.2218 0.1725 0.3554 0.5055 0.4775 -0.0603 0.2877 0.5616* 0.4327 0.3791 42 . -0.2520 -0.0514 0.4564 0.4630 -0.0041 -0.0248 0.2856 0.3396 0.1464 -0.0624 . 0.3046 43 0.2106 0.2470 0.1488 -0.2398 -0.6756 -0.7267 0.0704 -0.2501 -0.5060 -0.4984 ' ; 0.0273 441 -0.1327 -0.3777 -0.6077 -0.4916 0.1200 0.2590 -0.0976 -0.3698 -0.0226 0.0915 -0.6871 471 -0.2075 -0.5300 -0.0853 0.4664 -0.1519 -0.1534 -0.3083 -0.3513 0.3386 -0.3618 -0.0277 48 -0.3265 -0.4032 -0.0032 0.3859 0.0283 -0.0976 -0.1764 -0.4543 0.0948 -0.2741 0.0183 50 -0.3500 -0.3942 -0.2116 0.0493 . 0.3876 0.3937 -0.1767 -0.2737 0.0901 . 0.0678 -0.3256 60 -0.2258 -0.1560 -0.2758 -0.2539 -0.4236 -0.2816 0.1696 -0.3925 -0.3788 -0.4476 -0.6506 70 1 ! • -0.1283 ! -0.2956 +0.3621 0.0373 0.0617 -0.0938 0.1690 -0.2947 0.3982 -0.0653 0:4054 80 . 0.6884* 0.8189* -0.3944 0.0185 -0.1790 -0.1326 -0.0912 0.2696 . -0.2381 0.0740 i -0.1393 LA -0.0455 -0.1635 -0.0729 -0.1266 -0.0236 0.0405 0.0242 -0.2738 0.2835 0.1151 ': 0.0441 CA -0.2993 -0.2133 •0.3309 0.5193* -0.1196 -0.1326 0.1283 -0.0342 0.2823 -0.1861 . 0.3048 G -0.4537 -0.4426 0.7082* 0.7929* -0.1699 -0.3111 0.1081 -0.0045 0.3060 -0.4044 0.6347* K -0.0934 -0.1328 -0.1682 -0.1122 0.7545* 0.7184* -0.0580 0.0694 0.5437* 0.6703* 0.0531 LGM -0.3560 0.3098 -0.7048 -0.6874 -0.3529 -0.1956 -0.0228 -0.2842 -0.5313 -0.1281 -0.7970 CGM -0.2375 -0.3310 -0.3198 -0.2044 0.6218* 0.7000* -0.1229 -0.0213 0.2570 0.4416 -0.3643 B/M.CM -0.1551 -0.1699 -0.2614 -0.1315 . 0.6981* -0.7247* -0.1406 0.0430 0.4866 0.6635* 0.0329 G/GM *0.4204 0.1738 0.1821 -0.2086 -0.2282 -0.3034 0.0755 ., -0.0335 0.1263 -0.0474 0.3382 0 -0.2414 -0.4644 -0.2416 0.0607 -0.0817 -0.1812 -0.1781 -0.5020 0.0582 -0.1613 -0.0587 A -0.2295 -0.2197 0.2473 0.3846 -0.1037 -0.0958 0.1109 -0.1061 0.3099 -0.1179 0.2596 GM 0.2364 0.1615 -0.7488 -0.6921 -0.0968 0.0726 -0.0643 -0.2636 -0.3874 0.0416 -0.8477 VARIABLE CA LOU MG HI MG LOW NA HI NA . LOW K HI K LOW FE HI FE LOW AL HI AL LOW 01 09 40 41 42 43 441 447 48 50 60 70 80 LA CA G M LGM CGM B/M.CM C/GM 0 A GM 0.1331 0.3815 -0.0270 0.3927 -0.1724 -0.2879 -0.1855 -0.1224 -0.0213 0.0025 -0.6665 0. 3570 -0.0548 0.1331 -0.1086 -0.0249 0.5434* -0.4291 0.1703 0.5240* 0.2912 -0.0165 -0.0499 -0.3261 0.3155 0.0566 0.3354 0.6380* -0.0800 -0.5500 0.0276 0.2728 0.3450 0.2555 -0.6568 0.3300 -0.3193 0.3155 0.1284 0.2413 0.6742' -0.6168 0.3554 0.6955* 0.0113 0.4584 0.1944 -0.4294 0.1023 0.1929 0.0989 0.5548* -0.1559 -0.6632 0.1543 0.0341 0.1022 0.3037 -0.5974 0.1205 -0.1435 0.1023 -0.1385 -0.1104 0.7475* -0.3921 0.5604* 0.7864* -0.0500 0.1398 -0.0830 -0.1540 0.3429 0.1745 0.2488 0.6126* -0.0621 -0.7689 0.2021 0.0782 0.2608 0.5324* -0.3751 0.1709 -0.1988 0.3429 0.1040 -0.1291 0.9098* -0.3728 0.6735* 0.8129* -0.3105 0.1471 0.1824 -0.0964 0.0656 0.2058 -0.0730 0.5147* -0.0270 -0.7331 0.2390 -0.1906 -0.0694 0.3989 -0.3224 -0.0699 -0.1422 0.0656 -0.1247 -0.3159 ' 0.7763* -0.2220 0.7018* 0.7495* -0.3170 -0.1262 -0.0823 0.0496 -0.0664 0.6468* -0.3099 -0.1007 0.0563 0.3650 -0.6585 -0.5008 -0.3095 -0.4248 -0.3842 0.4144 0.1463 -0.0664 -0.0579 0.0946 -0.0685 -0.2765 -0.4266 -0.2016 0.5607* -0.5221 -0.0659 -0.4009 -0.1643 0.5193* -0.3684 0.0929 0.0580 0.1100 -0.4730 -0.5369 -0.3715 -0.3127 -0.4990 0.2228 -0.0007 -0.1643 -0.1822 0.0003 0.1056 -0.3334 -0.1558 0.0489 0.3784 -0.4438 -0.1947 -0.3558 0.4596 -0.4639 0.0153 O.O60O -0.1772 -0.1493 0.5076 -0.0136 0.0339 0.4253 0.6168* . 0.0847 -0.3826 0.4596 0.1623 -0.4220 0.3851 0.3639 0.4153 " 0.3071 -0.4279 0.0648 0.2631 0.4756 -0.0967 0.0246 0.1445 -0.2548 -0.2187 -0.1771 0.2560 -0.0463 0.1374 0.3380 -0.2097 -0.0889 -0.0323 -0.0967 -0.4408 -0.1451 0.0212 0.0335 0.4167 0.0504 0.1082 -0.1238 -0.3849 0.1784 0.2727 0.2414 -0.1933 0.2346 0.0749 -0.1644 -0.0351 0.0715 -0.1806 -0.0280 -0.0462 0.2357 -0.1670 0.2727 0.2089 0.0517 0.2189 -0.1931 0.0817 0.2737 . 0.1133 -0.2552 0.2473 -0.1449 0.2507 0.0793 0.3356 -0.0006 0.1789 0.0461 -0.2714 -0.1041 0.3423 0.1207 -0.1673 -0.2759 0.3386 0.2507 0.2256 0.0509 0.0064 -0.0825 -0.1174 -0.1813 -0.3196 0.2050 0.2545 -0.1161 •>0 Table XX (con't) VARIABLE PH HI PH LOW 01 -0.6376 -0.1747 09 -0.0470 -0.4279 40 -0.2852 0.2476 41 -0.4387 0.0295 42 -0.2374 0.0855 43 0.1887 -0.0754 441 0.1430 0.2482 471 -0.3609 0.4170 48 -0.3079 0.2392 50 -0.0175 0.1768 60 0.1756 0.2718 70 -0.5458 -0.1504 80 0.4082 -0.1919 LA -0.6376 -0.1747 CA -0.6013 0.1190 G -0.5875 0.1776 M -0.3004 -0.1472 LCM 0.5676* 0.0501 CGM 0.0330 0.0355 B/M.GM -0.2305 -0.0587 C/GM -0.1195 -0.3177 0 -0.2913 0.3933 A -0.6698 0.0464 GM 0.5232* 0.0578 VARIABLE ADC LOU . ALK HI 01 -0.0998 0.2652 09 0.4873 -0.1083 40 -0.3099 0.1631 41 -0.0572 0.7019* 42 0.3237 -0.0561 43 0.6030 -0.6590 441 -0.8740 0.2166 471 -0.4172 0.2247 48 -0.3109 0.1724 50 -0.7069 0.2011 60 -0.3664 -0.6150 70 0.1945 0.1137 80 0.1590. -0.3031 LA -0.0998 0.2652 CA 0.1853 0.0422 C 0.4009 0.0896 M -0.4165 0.7054* LCM -0.3753 -0.4861 CCM -0.8041 0.4678 B/M.GM -0.4918 0.8065* G/GM 0.4560 -0.0762 0 -0.2998 0.4863 A 0.1216 0.1101 CM -0.6241 -0.2717 RDX HI RDX LOU DO HO -0.1295 0.0850 -0.3988 0.0423 0.0363 0.0335 -0.0037 -0.1616 -0.6136 -0.5389 0.0626 -0.0766 -0.3852 -0.0889 0.0791 0.3051 -0.0611 0.3042 0.0941 0.0639 -0.2125 -0.0642 -0.0904 -0.5738 -0.0088 -0.0561 -0.6239 0.0844 0.0759 -0.4955 0.4106 0.3263 0.1374 -0.1556 -0.1972 -0.3462 0.5397* 0.3986 0.1679 -0.1295 0.0850 -0.3988 -0.2628 0.1247 -0.1743 -0.5226 -0.4419 -0.2534 -0.2477 0.2151 -0.3231 0.6567 0.3819 0.2358 -0.1187 0.0119 -0.3371 -0.3038 0.1570 -0.1710 0.0038 -0.3585 -0.0296 -0.2147 -0.0380 -0.3421 -0.2501 0.1254 -0.2554 0.5495* 0.3484 0.0926 ALK LOU HC03 HI HCO LOW 0.0229 0.2652 0.0534 0.1897 -0.1083 0.1697 -0.1123 0.1631 -0.0793 0.5001 0.7019* 0.4590 0.1393 -0.0561 0.1786 -0.3812 -0.6590 -0.2279 -0.0970 0.2166 -0.2059 -0.1938 0.2247 -0.1383 -0.1103 0.1724 -0.0763 0.0360 0.2011 . -0.0757 -0.5315 -0.6150 -0.5384 0.2039 0.1137 0.3181 -0.4247 -0.3031 -0.4735 0.0229 0.2652 0.0534 -0.0154 0.0422 . 0.0661 0.1655 0.0896 0.3257 . 0.4730 0.7054* 0.3502 -0.5662 -0.4861 -0.6335 0.2941 0.4678 0.1187 0.4896 0.8065* 0.3646 0.0483 -0.0762 0.1683 -0.0430 0.4863 0.0147 -0.0059 0.1101 ' 0.0688 -0.4056 -0.2717 -0.5286 DO LOW CND HI CND LOW 0.0146 0.1566 0.0504 -0.0764 0.3379 0.3654 0.2347 0.0825 -0.1138 0.1379 0.6261* ' 0.4718 0.1272 0.1334 0.0307 -0.1622 -0.4878 -0.4614 0.0077 -0.1780 -0.0924 0.4278 -0.0962 -0.2584 0.2320 0.0890 -0.1104 0.0746 0.1473 0.1348 0.1172 -0.5665 -0.5278 -0.3405 0.3511 0.1821 0.1384 -0.2954 -0.1987 0.0146 0.1566 0.0504 0.2867 0.1544 -0.0747 0.2484 0.1888 -0.0573 -0.2256 0.6990* 0.6146* -0.0559 -0.6388 -0.4469 -0.0927 0.3048 0.3801 -0.1109 0.6276* 0.5719* -0.3753 -0.0192 0.0100 0.2785 0.0445 -0.1729 0.2365 0.1700 -0.0461 -0.0834 -0.4673 -0.2675 HRD HI HRD LOW DS HI 0.3557 0.1461 -0.0933 0.2192 0.2230 . 0.2423 0.2527 0.1102 -0.1978 : 0.7603* 0.5823* 0.4346 0.1890 . -0.1178 0.1598 -0.5463 -0.6117 -0.3322 -0.1881 0.0656 -0.0171 0.2150 0.0446 -0.0653 0.2646 0.1152 -0.1973 0.1462 0.2437 -0.0211 -0.6373 -0.6420 -0.1017 0.3142 0.1943 0.2644 -0.3703 -0.1760 -0.1792 0.3557 0.1461 -0.0933 0.3706 -0.0701 0.0972 0.4466 -0.0151 0.0017 0.6075* 0.7269* 0.5020 -0.8041 -0.4745 -0.2383 0.2236 0.4760 0.2056 0.6009* 0.7553* 0.4221 -0.0800 0.0052 -0.0033 0.3229 0.1596 -0.1577 0.4021 -0.0150 0.0521 -0.6450 -0.2583 -0.1416 T HI T LOW ADC HI -0.1334 0.3876 -0.1201 0.0641 -0.1709 -0.2036 0.2797 0.1295 -0.4547 0.1904 0.4361 -0.2901 0.4022 -0.0194 -0.1470 -0.1771 -0.3886 0.4543 -0.0964 0.2797 -0.0335 0.4054 0.2160 • -0.4883 0.2707 0.1447 -0.4558 0.1552 0.2405 -0.2604 -0.0221 -0.1393 0.2290 0.1015 0.5389* -0.2493 -0.5346 -0.6154 0.0212 -0.1334 0.3876 • -0.1201 0.3040 0.1674 -0.2570 0.7501* 0.1567 -0.4298 -0.1843 0.6177f -0.2918 -0.5653 -0.3483 0.4024 0.0620 0.4199 -0.2172 -0.1579 0.5836* -0.2698 -0.1378 0.0978 0.0096 0.0530 0.2332 -0.2432 0.2081 0.2466 -0.2426 -0.4874 -0.1645 0.2853 DS LOW N HI N LOW 0.0058 -0.1847 -0.3657 0.3900 0.1160 0.5549* -0.0485 0.2008 -0.2935 0.5046 0.1685 0.3702 0.0279 0.1821 0.5113 -0.5591 -0.0832 -0.1962 -0.0601 -0.1246 -0.5621 -0.2211 0.1420 -0.5225 -0.0477 0.1949 -0.3056 0.2080 0.0428 -0.2576 -0.5600 -0.0672 -0.5203 0.0852 0.3469 -0.1429' -0.1275 -0.0538 -0.0686 0.0058 -0.1847 -0.3657 -0.0941 0.1593 0.0557 -0.0731 0.2332 0.3376 0.6494* 0.2491 0.0334 -0.4492 -0.2283 -0.6298 0.4521 -0.0376 -0.0913 0.6216* 0.1436 0.0465 -0.0824 0.0394 -0.0883 -0.1380 0.1274 -0.3810 -0.0746 0.0763 -0.0595 -0.2439 -0.2191 -0.6000 Table XX (con't) VARIABLE MN HI MN LOW SI HI SI LOW 01' -0.2099 -0.1587 0.3915 0.1202 09 0.4317 -0.6511 -0.0470 -0.1028 40 -0.2430 -0.0177 0.3725 0.4564 41 0.4064 0.2580 0.7974* 0.7344* 42 0.8814* -0.2669 0.2858 0.1538 43 -0.1248 -0.2225 -0.5766 -0.7802 441 -0.6142 0.5357* -0.0401 0.2279 471 -0.1897 0.4234 0.4242 0.5872* 48 -0.2493 -0.0241 0.3847 0.4568 50 -0.3389 -0.0372 0.2413 - 0.3883 60 -0.1769 -0.2106 -0.3940 -0.4251 70 -0.2806 -0.1070 0.2298 -0.0255 80 -0.1425 -0.3818 -0.5528 - -0.3750 LA -0.2099 -0.1587 0.3915 : ' 0.1202 CA 0.5213* -0.2888 0.5349* 0.2677 G 0.6904* 0.0105 0.5816* 0.4481 M -0.2790 0.0856 0.5160* 0.5148* LGM -0.6724 -0.0064 -0.7785 -0.6201 CGM -0.3188 0.2497 0.2510 0.4881 B/M.GM -0.2687 0.4370 0.5382* 0.6503* G/GM -0.3209 0.1020 -0.3047 -0.3733 • «K -0.3048 0.6115* 0.5153* 0.5881* 0.3624 -0.2795 0.5455* 0.2513 CM -0.7193 0.0830 -0.6122 -0.3852 HI - high hydraulic discharge LOW - low hydraulic discharge PH - pH RDX - oxidation - reduction potential DO - dissolved oxygen CND - specific conductance T - temperature ACD - total acidity Alk - total alkalinity HC03 - total bicarbonate alkalinity HRD - total calcium carbonate hardness DS - dissolved Inorganic substances N - total Kjeldahl nitrogen C - organic carbon N03 - nitrate-nitrogen CL - chloride P04 - phosphate-phosphorus LEGEND 01 - single family residential (<1 acre) 09 - low density residential (1-5 acres) 40 - vacant land 41 - field crops 42 - specialty animal farms 43 - grazing - pasture lands 441 - forested lands 471 - gravel pits 48 - orchards ' 50 - roads 60 - commercial 70 - high density parks 80 - schools LA - loamy alluvial materials CA - clayey alluvial materials G - glacial outwash materials M - marine materials 1GM - loamy glaciomarine materials cGM - clayey glaciomarine materials B/M.GM - beach overlying marine or glaciomarine materials G/GM - glacial outwash overlying glaciomarine materials 0 - organic materials A - alluvial materials GM - glaciomarine materials S04 - sulfate-sulfate CA - calcium MG - magnesium NA - sodium K - potassium FE - iron AL - aluminum MN - manganese 51 - silicon * - significant at 95Z level. 152 w i t h beach m a t e r i a l s o v e r l y i n g marine or g l a c i o m a r i n e m a t e r i a l s a t both h i g h and low r a t e s o f streamflow and f i e l d crops a t h i g h s t r e a m f l o w r a t e s . e) Temperature Water temperatures appeared t o be s i g n i f i c a n t l y c o r r e l a t e d t o h i g h d e n s i t y parks, marine m a t e r i a l s and beach m a t e r i a l s over marine or g l a c i o m a r i n e m a t e r i a l s a t low streamflows and g l a c i a l outwash a t h i g h flow. These c o r r e l a t i o n s appear t o be s p u r i o u s s i n c e t h e r e are no l o g i c a l e x p l a n a t i o n s f o r them. f) T o t a l A c i d i t y T o t a l a c i d i t y v a l u e s showed no s i g n i f i c a n t c o r r e l a t i o n s w i t h l a n d use or geomorphic m a t e r i a l s a t h i g h o r low stream-flow. g) T o t a l A l k a l i n i t y and T o t a l B i c a r b o n a t e A l k a l i n i t y T o t a l a l k a l i n i t y and t o t a l b i c a r b o n a t e a l k a l i n i t y were s i g n i f i c a t l y c o r r e l a t e d w i t h f i e l d c r o p s , marine m a t e r i a l s and beach m a t e r i a l s o v e r l y i n g marine o r g l a c i o -marine m a t e r i a l s a t h i g h r a t e s o f streamflow. h) T o t a l Hardness (Calcium Carbonate E q u i v a l e n t ) T o t a l c a l c i u m carbonate hardness was s i g n i f i c a n t l y c o r r e l a t e d w i t h f i e l d c r o p s , marine m a t e r i a l s and beach m a t e r i a l s o v e r l y i n g marine and g l a c i o m a r i n e m a t e r i a l s a t both h i g h and low streamflows. i ) D i s s o l v e d I n o r g a n i c Substances T o t a l d i s s o l v e d i n o r g a n i c substances were found t o be 155 s i g n i f i c a n t l y c o r r e l a t e d w i t h marine m a t e r i a l s and beach m a t e r i a l s o v e r l y i n g marine or g l a c i o m a r i n e m a t e r i a l s a t low streamflow. j) T o t a l K j e l d a h l N i t r o g e n T o t a l K j e l d a h l n i t r o g e n c o n c e n t r a t i o n s were found t o be s i g n i f i c a n t l y c o r r e l a t e d w i t h low d e n s i t y r e s i d e n t i a l areas a t low streamflow. k) Organic Carbon Organic carbon c o n c e n t r a t i o n s were found to be s i g n i f i c -a n t l y c o r r e l a t e d w i t h s c h o o l s a t h i g h and low streamflow. These are l i k e l y s p u r i o u s c o r r e l a t i o n s . 1) N i t r a t e - N i t r o g e n At h i g h streamflow n i t r a t e - n i t r o g e n was s i g n i f i c a n t l y c o r r e l a t e d w i t h g l a c i a l outwash m a t e r i a l s . At low stream-flow n i t r a t e - n i t r o g e n was s i g n i f i c a n t l y c o r r e l a t e d w i t h low d e n s i t y r e s i d e n t i a l a r e a s , c l a y e y a l l u v i a l m a t e r i a l s , and g l a c i a l outwash m a t e r i a l s , m) C h l o r i d e C h l o r i d e c o n c e n t r a t i o n s were s i g n i f i c a n t l y c o r r e l a t e d w i t h marine m a t e r i a l s , c l a y e y g l a c i o m a r i n e m a t e r i a l s arid beach m a t e r i a l s o v e r l y i n g marine and g l a c i o m a r i n e m a t e r i a l s a t both h i g h and low streamflow. n) A c i d D i g e s t i b l e - P h o s p h o r u s C o n c e n t r a t i o n s o f a c i d d i g e s t i b l e phosphorus are s i g n -i f i c a n t l y c o r r e l a t e d w i t h low d e n s i t y r e s i d e n t i a l areas a t low streamflow. o) S u l f a t e S u l f a t e c o n c e n t r a t i o n s were found t o be s i g n i f i c a n t l y 15^  c o r r e l a t e d w i t h f i e l d crops and marine m a t e r i a l s a t h i g h flow. At low streamflow s u l f a t e was c o r r e l a t e d w i t h marine, beach o v e r l y i n g marine or g l a c i o m a r i n e , and g l a c i o m a r i n e m a t e r i a l s . p) Calcium At h i g h streamflow c a l c i u m c o n c e n t r a t i o n s were s i g n i f i c a n t l y c o r r e l a t e d w i t h low d e n s i t y r e s i d e n t i a l areas and g l a c i a l outwash m a t e r i a l s . Calcium was s i g n i f i c a n t l y c o r r e l a t e d w i t h marine and beach o v e r l y i n g marine and g l a c i o m a r i n e m a t e r i a l s , q) Magnesium Magnesium c o n c e n t r a t i o n s were found to be s i g n i f i c a n t l y c o r r e l a t e d w i t h f i e l d crops and beach m a t e r i a l s o v e r l y i n g marine o r g l a c i o m a r i n e m a t e r i a l s a t h i g h streamflow, and w i t h f i e l d c r o p s , marine m a t e r i a l s , c l a y e y g l a c i o m a r i n e m a t e r i a l s , and beach m a t e r i a l s o v e r l y i n g marine or g l a c i o m a r i n e m a t e r i a l s , r) Sodium At h i g h streamflow sodium c o n c e n t r a t i o n s were s i g n i f i c a n t l y c o r r e l a t e d w i t h f i e l d c r o p s , roads, marine m a t e r i a l s , c l a y e y g l a c i o m a r i n e m a t e r i a l s , and beach m a t e r i a l s o v e r l y i n g marine or g l a c i o m a r i n e m a t e r i a l s . Sodium was a l s o s i g n i f i c a n t l y c o r r e l a t e d w i t h f i e l d c r o p s , marine m a t e r i a l s , c l a y e y g l a c i o -marine m a t e r i a l s , and beach m a t e r i a l s o v e r l y i n g maring or g l a c i o m a r i n e m a t e r i a l s , s) Potassium Potassium c o n c e n t r a t i o n s were found t o be s i g n i f i c a n t l y c o r r e l a t e d w i t h low d e n s i t y r e s i d e n t i a l areas and g l a c i a l outwash m a t e r i a l s o v e r l y i n g g l a c i o m a r i n e m a t e r i a l s , a t h i g h 155 streamflow. At low flow potassium was s i g n i f i c a n t l y c o r r e l a t e d w i t h low d e n s i t y r e s i d e n t i a l a r e a s , t) I r o n I r o n c o n c e n t r a t i o n s were found to be s i g n i f i c a n t l y c o r r e l a t e d w i t h commercial areas a t h i g h streamflow. u) Aluminum Aluminum c o n c e n t r a t i o n s were not s i g n i f i c a n t l y c o r r e l a t e d w i t h l a n d use or l o g i c m a t e r i a l s , v) Manganese Manganese c o n c e n t r a t i o n s a t h i g h r a t e s of h y d r a u l i c d i s c h a r g e were found t o be s i g n i f i c a n t l y c o r r e l a t e d w i t h s p e c i a l t y animal farms, c l a y e y a l l u v i u m , m a t e r i a l s , and g l a c i a l outwash m a t e r i a l s . At low streamflow manganese was s i g n i f i c a n t l y c o r r e l a t e d w i t h f o r e s t e d lands and o r g a n i c m a t e r i a l s , w) S i l i c o n S i l i c o n c o n c e n t r a t i o n s were found to be s i g n i f i c a n t l y c o r r e l a t e d w i t h f i e l d c r o p s , c l a y e y a l l u v i a l m a t e r i a l s , g l a c i a l outwash, marine, beach o v e r l y i n g marine or g l a c i o -marine, o r g a n i c and a l l u v i a l m a t e r i a l s , a t h i g h streamflow. At low flows s i l i c o n c o n c e n t r a t i o n s were s i g n i f i c a n t l y c o r r e l a t e d w i t h f i e l d c r o p s , g r a v e l p i t s , marine m a t e r i a l s , beach m a t e r i a l s o v e r l y i n g marine o r g l a c i o m a r i n e m a t e r i a l s and o r g a n i c m a t e r i a l s . 4. C o r r e l a t i o n M a t r i x o f Water Chemistry I n t e r r e l a t i o n s h i p s A c o r r e l a t i o n m a t r i x i s p r e s e n t e d showing water che m i s t r y versus water c h e m i s t r y (Table XXI). T h i s i s an attempt t o Table XXIt C o r r e l a t i o n Matrix, Water Chenietry vo. Water ChomiBtry pH Hi 1.0000 pH Low Redox Ifi BOX Low ». •DOrHi.; ' DO Loir CND Hi CND Low ."" T Hi' T L o w ' Acid HI N f DH HI PH LOW RCX HI ODXLOU' OQ HI 0 0 LCW 0.3055 0.6895* 0.4561* 0.<S39* 0.1643 — A 11 rr l.CCOO 0.2869 0.2582 -0.0353 0 . 6 300* - 0 .*-2' -2 l.OOOC 0.7042*^ 0.3515 0.^157 -0.6549 1 .0000 0.4044 0.4069 -0.3367 1.0000 0.2898 -0.3020 1.0000 -0.5551 1.0000 < >— CNO HI CNDLOW T HI - o . i t i e -0.4652 - r 7 1 12 -0.5078 0.0136 - 0 .3327 -0.4827 -0.5735 -T.7579 -0.3317 -0.664-1 - 0.51* 0 -0.1487 -0.3500 -0.5569 -0.5600 0.0623 •-0.5891 0.9150*-0.15 25 0.7016* 1.0000 0.0343 0.5673* 1.G93D 0.3155 1.0000 T LTW ACQ HI ACPICW — u . u . t o.'9ee* -0.0600 — ft "2 O * A 0.0652 -0.30f9 -n i r P A C.4363* -0.1787 -0.6637 0.2B39 -0.2493 - 0 . 3 1 e7 0.5795* 0.2028 -0 . 3 331 0.0509 -0.2754 -0.2271 - 0.2414 0.1941 0 . 7 6 C O * . -0.0370 0.137° 0.70 3 0 * -0.3974 0 . TB67 0.07'R - 0 . O 6 6 - 0.1548 0 . 6 0 3 ^ * 1.0000 0.2879 - 0.2947 ft! K HI ALKLOW HC03HI U . • 7 t U -0.2391 -0.396C — A . * R V i1 • 11 r "i -0.4485 -0.1C84 -0.4171 -0.7391 - 0 . 6 6 37 -C.9045 -0.5823 - 0.3157 - 0 . 6 " ' ; 8 -0.1868 -0.3331 -0.7356 -0. 5720 -C.2271 . -0.5762 0.9101* 0.7699* O.F.7/;5*-0.926 4* 0.7030* 0 .6330* 0.2795 0.0738 0.3770 0.6910* 0.6^36 * _ f l . 7_0.7 ^ * - 0 . 0 ? 95 -0.2^42 HT 01 OW HPO HI HRDLOW -0.5'31 -C.2721 rt » /, /. "a - 0 .l*-17 -0.3956 -a1 C O -0.6608 -C.5286 - P . 3 9 0 3 -0.3833 -0.3171 ft.0173 -0.3436 -0.2827 -0.086 8 -0. 1483 -Q.M12 -0.4508 0.8550*-0.9031*-0.5319*-0.739-?* 0.9290* 0.453*.» ;:.2°35 0. 0630 n.0=30 :'.S166* 0.C362* 0 . < = O C P D.2* 26 -0.2201 - 0.2207 \n DS N l-l 1 LOW HI — U « 1 CJ'I * -0.12*7 -0.0726 _n A 5 « % * 1' - 1  -0.4969 0.3167 - 0 . 6 7 -0.4 5 97 -0.16fc4 - 0.4560 -0.2704 0.0594 -it.M-i-B -0.1476 -0 .4231 0.3140 -0.4962 -0.27<U -0.194" C.9C22*-0.26 91 0.>=7?2*-0.933 4* 0.023 1 0.613 -)* 0.0365 - 0.0118 0.2249 0 . 5 ! 7 t * 0.2217 O.Of35 • ; . i ! <-0 -0.431"-r.0.0260 | K C c 1 ^ *1 0 W u »t> 0.3289 0.432C* _A lCflA -0.2368 -0.36?7 —n ?/• ? ? C.3516 0.*>76^* -n .53PP 0.2336 0.5001* ' -0.^ 566 0.0618 0.4 292* -0.1661 - 0 .1334 -0.0784 - 0 . 7838 -0.11 08 -0.1648 0 . ' 7 3 2 * 0 . 0 2 1 --0 .0248 0.3900 -0.5 614 - 0.640^ 0.^71 5 * - 0.2579 -0.5322 0.7P47 0.1921 0.1252 -3. ">374. j IS 13 n I NC3L Ow CL HI —I . J . t"r - 0 . 2 U 2 -0.002° A r ^  ? 7 '^ •* * ' 0.7*',7 -0.2772 -0.3301 -0.1022 -0.357e -0.225P. -0.0856 -0.1324 -0.0386 - 0.16 28 -0.2123 -0.0930 0.5032* -0.4377 - 0 , 2 ^ ? . 0 . 05 15 0.6511*-P. i t 71 0*--0.093? 0.923^* <-.6 3 ' : - R - * 0 . 6 i e ' * -0.0416 - i ' . l " ' 6 ' i -0.1 08 6 0.5096* f'.'-!63 -0.3-',93- • -0.1000 - j . r . 3 0 - ! CL nP04 F04l OW -C.2614 C.Z127 —ft Lft-l 0.C147 -0.2726 _ 0 - c c i -0.1737 • -0.1454 -0 -<i? 1 6 -0.0851 -0.0265 -.1.3901 0.1240 C.245 3 - 0."305 - 0.10'3 - 0 .1222 " 0 . 350* -0.0731 0.3134 0. f'Ql*. - 0 . 1 " 9 f i 0.4 76 1* 0 . 5 7 ' •',*-- 0 . 209 0.0172 ; . ? 7 . n . 0 . 1' ?•> -0.0631 '.•.739 •* -0.3-'43 0 . 0 R 15 - 0 . 3 ? 2 2 S C « > HI S 0 " - L O W CA HI r * i n-i — U . - t''' -0.0296 - 0 . 4 3 '8 - r . 2 " ' 4 w . - - - * -0.5'-97 - 0.3133 -P..5021 -0.3233 -0.5309 -f.3672 -0.0193 -0.549 1 -0.3338 -0.0239 *0. 1534 -0.154V -0.5286 - 0 . 2560 - 0 . V 9 6 9 0.714.IS*-0 . 6 5 5 ' ' * 0 . 6 ' 9 ? * -0.6?'-7* 0 . 5 7O^i* 0.9?B ' i * --0.3*i 6 0.3->71 - 0 . O-'-?:1 0 . 4 ^ ' 6 * 0.300° 0 . 5 0 - 3 * •0. " " " l l - : . ' 5 t t -3.1311 -^.23 3 3 •'.216: — 1 . ' T < 9 MG MG V" HI LOW *- * ^ - ^ - — ~— -0.4496 - 0.166' — . 2 ( 6 '• -0.1227 -0 .36 60 _n 1 0 1 3 -0.6043 -C't 15 -C.3134 -0. 26' 1 -0.25< 3 -0.00t3 -0.4263 . -0.2574 -0.3702 0.2457 -0.3642 -0.230'. O.f 506*-O.P561* 0.6100* 0 .7^7•* 0.°1 V 6 * ('. 611 °* 172'. >-i - 0 . 0 9 ' 2 C . 6 7.11* .•>. 5 c ' '•* 0.5 7 6 ° * y\t NA K Hi LOW HI 0.0160 -G.OE25 rt of -0.2410 - 0 . ( 142 -0. c976 -C.2e04 -0.1354 . -f.3067 -0.0174 - 0.3365 - 0.402 5 -0.09'-7 0.0967 0.1275 -0.346 3 -0.5676 -0.6121 0.7410* 0.4-725* 0.6676* 0.8697* •>. 5 5 6 . ' . * 0.7^6:* - 0 .1357 -•.038'-- 0 . 0 1--7 0 . t 6 f 2 * 0.116 2 0.2'-' 5 - 0 . 0 6 ' - e : .1763 C ' . " ' « 6'l K FE FF LOW HI LOW u r u. Ul-CC O.C'51* - C f t 72 — fi '^ J 1 u— 0.19)9 -0.3346 -0.206 5 0.3179 -f.2286 -0 .0'-77 0.477 1*- . -0.6079 - 0 . 1 7 2 5 0.1169 -0.3969 -0.7*71 0. 1399 -C. 3959 -0 .On"'6 -0.1151 0.2" 63 0 , ? ' - P « --U.OTP 1 0.406 3 0 . 3 " " i -0.-3258 0 . 21'. t (.•. 0.0Q65 0.2 C10 0.2^ 0 ! 0. -275* - 0 . 2 C ? 4 - 0. 1 ? 0 Q «L AL MN MI LOW HI i f u — u  ^  ^  i c 0.0*fcf -0.103* - 0 - 0 £ ° c 0 .13^4 0.1827 r .7P00 0.0665 - L .3 i.r89 -o./>')r6 0.2726 -1.1770 -n.3234 -0.2598 0.2*93 -0.0531 -O.C0l r 0.3*82 0.0967 0.0OB9. 0 . 0 6 ' 5 0 .0^27 - 0 . 1 S3; 0.01^=. 0 . 0 ' 7 , - ' • . 2 i : ' - i 0 . '•23--' ", iO_Il._ • j .2'-2'-• 0.215 5 . . >'-3 3 ' •>. ;•c 2 3 TO.I!07 - 0 . * <• 3 ? SI SI 1 u" HI LOW -0.5722 -C.4592 0.1833 0.1576 -0.62<=5 -0.6231 -0.2832 -0.2768 -0.32<>9 -0.3960 0.1551 0.19*3 C-.6 06 I* 1 . ' • ! 5 V 0.32'-'-•: . :-3 'h* 0 . so . $ 3? 9 * QM4 e c u - '1 . ? . 9 1 - ' - . 5 - ' - 6 Table XXI; < can't) ACDLOW fll K U l Acid Law 1.0000 ,:. Alk Hi I .noon Alk Low HCOjHl HC03Low HRD HI HRD Low DS HI DS Low H HI H low 1ALKLOw HC03HI Hrni ru 0.2170 -0.1931 0.7558* 1.0000 1.0000 C.755E* 0.0ACA * 1.0000 0.697ft* l .oooo HRD HI . HRPLOW o< HI 0.1451 -0.05M n.ntAf 0.8*06*-0.8727*-0.-1471 8016* 0.P748* 0.470** 0.8406* 0.8727* 0.3*7* 0.8085 * 0.7630* 0.?AA7 1.0000 0.8293* n.?^7i l.ODOO 0. /• 01 fi OS LOW N HI N i nu 0.0519 O.OE52 0.***•=•* 0.7154*-0.1146 O.POOfl C.R694* 0.0255 0.f,SA9* 0.7154* 0.11*6 n.?9oo 0.7731* : 0.0774 r,. f v, ? * 0.7226*. 0.0965 I). 47^0*-0.9441* 0.0434 0.44f 5* 0.4177 0 7 7 P (*l 1.0000 0.029P 1.0000, • C HI C LOW NO! HI 0.1665 0.23SO a. -0.1021 -0 .3439 0. OR r.7 -0.1789 -0.2753 O.SM?* -0.1021 -0.3439 0.0*.f>7 -0.2368 -0.3583 0.69^* -0.2715 -0.4051 0.i9AR* r-0 .0364 -0. 1292 0.73P2 — j m £ £. r VI 0.2233 0.0032 0. 1 U. C: / .» !> * -0.003-V 0.02?6 0.007 9 -0.0333 -0.3393 1.0000 -0.1316 0.1343 N03L0W : CL HI r.t inu 0.2069 -0.1390 .p.^PK -0.06E7 0.7219* -0.05 3c 0.79P2-* CM.RR* -0.C6E.7 0.7219* 0.441 A* 0.C130 0.6530* 0.<7RR* 0.2791 0. 6622*-o.5?n=* -0.0208 0.E969*-• n. f? e c*-u* 1 D 1 -0.02*4 O.P05 7* 0 "ii P ? • U* il Ul -0.033-V A ORt 1 A. 0.075 c 0.17P7 0 .n65 0.575'- » 0.2593 0.49**-* • P04- HI PQ4L0W S04 HI -0.0216 0.2600 -0.0728 0.16f 6 0.61PA* -0.0798 0.3658 • C.5P.74* -0.0738 0. 1686 0.A1F6* -0.C463 0.2648 0.c7>in* -0.1475 0.16R5 0 .60«0* -0.?'-16 C.3393 0 .6.470* 0.1133 0.5737* 0 707ft* U. Sl1 * -0. 197^ 0. -V936-* A C r. f. t -O.OP'O 0.2«:6 5 -CO' 2^ 0. 3°97 0.1971 0.i901* SC4-LQW CA HI r.A i ru -0.0951 C.6E97*. ().?/i.t. 0.6696* 0.3611 0.6f.^R* 0.6P41* 0.66 04 * 0.P491* 0.6696* 0.3611 O.'R'R* 0.5258* 0.7644* O.ROI l * 0. 46 80*-0.7175 * n.76?n * 0.E06 8* C51 P9* O.ro^ 3*-0.109? i) • "* T tt. *? > t / 0.8571* 0. 518^* ii no? 7* 0. ?L RO 0.0027 0.12' 1 0.15?4 0.'-' 63 0.S4.44 * HC HI HG LOW NA HI 0.0(J3< -0.1 58C -O.TPie 0 .913P* 6.86M * 0.7R??*-0.79P3* C.R330* f,.67^*-0.9 138* 0.6601* 0.78??* 0.7850* 0.7132 * 0.5',1 9* 0. 950°* 0.7662* 0.7''.R? * O.f 927* 0.°°0!> 0-P173* 0.39?8 U a '1 V i ( « 0.7'-60* 0. 943^* - o. nf :? 5* 0.1 3'-3 0.0278 0f 50 3 6 * 0.3328 o.;-263* NA LOM K HI K I nu -0.2952 0. 75ft*--r-.f ?ira-0.6«65* -0.0113 P . 7 R 1 5 0.7144*. 0.4986* 0.7575* 0.6965* -0.0113 0.2815 0.5289 * 0.5491 * 0.74RD * 0.5671* 0.2697 0.4535* 0. P5f*-0.32R3 0.* o1 P* 1—• 3 - r-J n. i c , ? u • ? 50' J * 0./-67'. O 5 7 * 0. 1 3^7 -0..'27 3 0. n r o 7 0. 2' 52 :.'>19 0 0.55 79* FE HI FE LOW Al HI -0.46 55 -0.2116 -0.07in -0.C31B 0.2326 0.1QPR -0.1609 0.4095 n.?RPi -0.0318 0.2326 0.1C7R -C.2340 0.3566 n. 757R -0.G650 0.1549 0. 3t R'-. -O.f 9C5 o.'ioe 0. *7?A -U.11559 -0.2R^0 -0 .20? ? u. . < / y " -'.1109 0.43'4* - 0 • 0 c 0 ° -0.2^32 -0.17^8 0. 7019* -0.4--72* o.i ess AL LOW . MN HI MM i nu 0.2296 0.3E43 . -0.^475 -0.0699 -0.0312 -0.1O01 0.1346 fl.peft-, -0.0699 -0.0312 0.5A5** -0.1534 0.1-787 0.75R4 0.0164 0.2286 r,. ?£.BL - 0. 1'- 99 -0.09 19 0 . 5 o. c 5 -0.20' 5 0.00'-6 Ci "i •a • L 0.357 3 -0. I15B P.0235 -0.1756 0.28<-2 0.052 3 3.!'^3 -0.0-31 0.1703* SI HI snow -0.0231 -0.3677 0.7370* 0.7555*-C.5587** 0.4451*-0.7370* 0.7555* 0.5935* 0.4175 0.8P79* 0.68PE* O.f 615* 0.5782* 0.1569 0.2057 1. • i77 •) 0.''05 2 O.*0'5 - 0 .*i7*» R 0.0P21 0. 134'> -~> . " l " 8 0.?>P5 0. H93 \1 IS8 o o •H o H Ed O ^ 3-4 59 o o , o cu o o O crt O 0 S31 C: O o r-< * — IT o *o "4 o r\j| o * * , in ^ ml C  ro —j si- m <\J| U t o* r - <\J «*,] m m c r - u-» eel • * • o o o •4 <r -o <t r- cr r-41 0> —| u» ct r\j r - m) in co o | o c o l o o c j c o o IT. f M CO <JJ cul o o o I I I o H tb m m o s* d ^ o c o r- rn| IT in] o -< <s H O C | Q O O ) I si- cc (Nj sad 0 o ci 1 I O I M O O I o r"i r-n o d o o d I I n N d «u r- mj u\ <r ir , m - • CI 0 o c 1 I m O' cc-IN .-« c*i IM C-m <M cj c" o q I I «r o H <u O- q CM d . o o Sxc| _> c. tn 'O r\j J- CM nj m r\j . . . o o o * < i r - o l m m r-J r- . J <• <• in) O O O I o m o m o CM m o © o o s.- cH I— eg | c o <] (T- r-m o m l O m m m c\jj m c , Csj <M (Nil O O o ; I l m e n ; co co m r -oar %© m cc • • • o o o * « «l 0> fvj f J O l ~ eg (M] r- r- o • • i o o d t-4 CM C\ *o a* o o o| i n ^ O i r r- m m m m m • « • o o o m o *o uo r- cr C H CO O O P I cr- r - u o , o o o 1 O l d •T co r-| H O C O C d I I « C cn 0 tt> m m] .- . a. C C J-\ O m • • * o o c -o m o ] r m r"1 O "3 O O l m o l «\ r< ~A ro n j o o c d r i c c • o x J - a- H t n -T (n| m in H - o o | o c d 0 o 1 4 I aj Ui c J o <r o •~ ;«j ro m so m a ~4 <r *-* ~^ • • • ( • • • o o q o c o m r d a- m M O in cc[ 0 o O 1 I I m H m o r-| m m r- r*i >^ u < C Ui U . O O O CN o o c r- m o o o q o o- "i I I * ^  (\ O r<\ a. -c m • • • o o a I o o c ( — o u ^ -J ci o • • O >^ I 1 « O I O o l m cc col t- <r j f- .of (VJ C I o o <q I *o H -T * " f\i o c | « • C . O ' I C ro cc! C -ij a - o - o o o cA eg rg i*v CI »*>' n 4 N • cor . r. iri cJ cn r-si r-O — <M • • • o o n * * u\ m — -4 u . O fM| C - -T o ^ O ol <-• o o o — o o o o q I m m o -< o ^ ^ J 00 o o « o o al i l l ^ n o -< q o c q o o -i V i / - m r - >o 0 o o 1 I I o o O l <f cc M o h' m r- o • • • o o o i - i ^ c\i (7 1 i n J O O P o o d I i r S 4 ^c* T cr q •5 rr] o •£> r-| O w-1 ^ q r - a i H d o c . I co —» r i -1 o l-o ir\ s j fx j i r 4 * o I f o a; r~ r\. -a- n. < c rsj O f v o UJ CO -O ca ^ O C o o c py —t w-N4 1 < a rsj <t — w r- n U~. (N r~ <*J w • • • o o c o c o ^ o cc o <A o <J o m u \ C N C ^ • • —• o • - i O C\j| C C' m co s0| m ^ K i oooj CD 111 vO ^  "Xi sO i * ^ o | »—« m o H o d o o d »o a- c t . m c o o d c o d * rn m iT\ o f\ i». >»• f-O rr u o d o o d o r - o i o ~ m 4i ON N ooci fM - « <J Ui sO fvj oooj I X C IJ u; ai J UL. IX <d o IT. CC o o o CL' |-o o r-* n i O -1 . * r c. o o m t r j m i m o C o o c co o c q I I o o o( <?• a- H —. o coa| I i -» 0  H " <M rJ u . r-: o r . . < o o d I a co m cc c r- <M cJ —< r".[ c o d I I o m H o o ri O c C I m o c a* d c o q I I o c> o o I t- o ^4 UI o co 0 o 1 I ^ o» m o* ro rn . « o o * * •o <f r- CM in LT« . . o o «>i o —« rsl o r-CM tn u . o — O ' —* y • - J CNI « . o o > a o o 1 I <K r -I S O o H ^ O PI 73 s, o r- CM o o X o ft show some of the complex i n t e r a c t i o n s between the chemical v a r i a b l e s . From t h i s m a t r i x i t i s e v i d e n t t h a t the r e s u l t s observed f o r chemi c a l water q u a l i t y are i n t i m a t e l y r e l a t e d to o t h e r chemicals p r e s e n t i n the system i n c l u d i n g c hemicals not monitored i n t h i s study. The c o r r e l a t i o n c o e f f i c i e n t s which are s i g n i f i c a n t a t 95 p e r c e n t c o n f i d e n c e l e v e l over 24 v a r i a b l e s o r 23 degrees o f freedom are those which have v a l u e s g r e a t e r than 0.4200 and are a s t e r i s k e d i n the c o r r e l a t i o n m a t r i x t a b l e . SUMMARY In summary, i t appears t h a t t h e r e are no simple r e l a t i o n s h i p s between a g r i c u l t u r a l l a n d use, geomorphic m a t e r i a l s , and water chem i s t r y . The types o f l a n d use p r e v a l e n t i n the Salmon R i v e r watershed are o f f i v e g e n e r a l c l a s s e s ; a g r i c u l t u r a l , f o r e s t , low d e n s i t y urban, h i g h d e n s i t y urban, and misc-e l l a n e o u s . A g r i c u l t u r a l ( i n t e n s i v e and ex t e n s i v e ) and f o r e s t e d lands occupy the major p r o p o r t i o n o f the water-shed. I n t e n s i v e a g r i c u l t u r a l uses i n c l u d e f i e l d crops such as s t r a w b e r r i e s , r a s p b e r r i e s , and some c o l e c r o p s ; p o u l t r y farms, d a i r y farms and some beef f e e d l o t s . E x t e n s i v e a g r i c -u l t u r a l uses i n c l u d e hobby farms o r s m a l l acreage r u r a l developments (>4 hect a r e s ) w i t h some hay and pa s t u r e l a n d s . The f o r e s t e d lands are predominantly woodlot acreages c o n t a i n i n g e s s e n t i a l l y no merchantable timber. Low d e n s i t y r e s i d e n t i a l developments (0.4 - 2 hect a r e s ) and hig h d e n s i t y r e s i d e n t i a l (<0.4 hect a r e s ) areas occupy p r o p o r t i o n a t e l y very l i t t l e o f the watershed. M i s c e l l a n e o u s l a n d uses such as s c h o o l s , roads, commercial areas and s p e c i a l t y animal farms such as the Vancouver Game Farm a l s o occupy p r o p o r t i o n -a t e l y s m a l l areas o f the watershed. In m o n i t o r i n g some o f the chemical c h a r a c t e r i s t i c s o f the s u r f a c e r u n o f f o f the Salmon R i v e r some g e n e r a l t r e n d s were i n d i c a t e d . Mean va l u e s a c r o s s a l l sampling s t a t i o n s a t hi g h streamflows (>50 c f s on day sampled) f o r those chemical v a r i a b l e s monitored were c o n s i s t e n t l y h i g h e r than low flows f o r o x i d a t i o n - r e d u c t i o n p o t e n t i a l , and d i s s o l v e d oxygen c o n c e n t r a t i o n s . At low streamflows the mean v a l u e s f o r pH, s p e c i f i c e l e c t r i c a l c o n d u c t i v i t y , temperature, t o t a l a l k a l i n i t y , t o t a l b i c a r b o n a t e a l k a l i n i t y , t o t a l c a l c i u m carbonate hardness, t o t a l d i s s o l v e d s o l i d s , t o t a l K j e l d a h l n i t r o g e n , o r g a n i c carbon, n i t r a t e - n i t r o g e n , c h l o r i d e , sodium, and potassium were c o n s i s t e n t l y h i g h e r than those a t low f l o w s . However, f o r some chemi c a l v a r i a b l e s the mean v a l u e s were s i m i l a r a t both h i g h and low streamflows. T h i s was t r u e f o r mean v a l u e s of t o t a l a c i d i t y , phosphate-phosphorus, s u l f a t e c a l c i u m , magnesium, i r o n , aluminum, manganese, and s i l i c o n . There was however, c o n s i d e r a b l e v a r i a t i o n a t s p e c i f i c p o i n t samples as c o u l d be a s c e r t a i n e d by c o n s u l t i n g the s p e c i f i c data t a b l e i n Appendix IV, and some sampling s t a t i o n s showed c o n s i s t e n t l y h i g h e r c o n c e n t r a t i o n s o f c e r t a i n chemicals such as n i t r a t e s a t s t a t i o n 8, manganese a t s t a t i o n 3, and c a l c i u m a t s t a t i o n 10. Some of the problems w i t h water q u a l i t y which have s u r f a c e d i n the p r e c e e d i n g d i s c u s s i o n can be p a r t i a l l y e x p l a i n e d by a g e n e r a l d e s c r i p t i o n o f the immediate e n v i r o n s of the water sampling s i t e s . The Salmon R i v e r a t s t a t i o n s 1 and 2 i s ponded f o r extended p e r i o d s ( P l a t e XV) throughout the y e a r by a gate on the dyke which holds back the F r a s e r R i v e r a t the c o n f l u e n c e o f these two r i v e r s near F o r t Langley. Because o f t h i s ponding e f f e c t these lower reaches r e a c t more l i k e a l a k e than a stream a t these times and the water q u a l i t y problems become more obvio u s . T h i s was shown by the presence of a l g a l lt>2 Plate XV: Ponded water of Salmon River at Station 2 near Rawlinson Crescent I f c 3 blooms i n these reaches of the r i v e r , p a r t i c u l a r l y i n J u l y , August and September. At s t a t i o n 3 p a r t o f the stream i s ponded by lagoons a l l e g e d t o serve as sewage h o l d i n g lagoons or water r e s e r v o i r s to T r i n i t y Western C o l l e g e ( P l a t e XVI). T h i s sampling s t a t i o n i s a l s o f e d by storm r u n o f f water from some o f the upland areas t o the west which are low d e n s i t y r e s i d e n t i a l a r e a s , which have drainage d i t c h e s emptying i n t o the s m a l l t r i b u t a r y stream which j o i n s the Salmon R i v e r a t s t a t i o n 3. These two f a c t s p a r t i a l l y e x p l a i n some o f the anamalous chemic a l c o n c e n t r a t i o n s observed a t t h i s s i t e , i n combination w i t h n a t u r a l l y e x i s t i n g c o n t r i b u t i o n s from the marine m a t e r i a l s . T h i s c o u l d a l s o e x p l a i n the s p u r i o u s . s t a t i s t i c a l c o r r e l a t i o n t h a t appears t o be r e l a t e d t o the s c h o o l l a n d use c l a s s . Sampling s i t e s 4,5,6, and 7 are l o c a t e d i n the stream a t r e l a t i v e l y u n d i s t u r b e d a r e a s . These s i t e s have waters c o n t r i b u t e d which d r a i n from lands which have s e v e r a l l a n d use f a c t o r s and g e o l o g i c m a t e r i a l s a f f e c t i n g t h e i r water ch e m i s t r y . T h e r e f o r e i t i s d i f f i c u l t t o d i s t i n g u i s h any p o i n t sources o f water q u a l i t y d e g r a d a t i o n from these d r a i n -age a r e a s . Sampling s t a t i o n 8 i s on a s m a l l stream which d r a i n s an area o f low d e n s i t y r e s i d e n t i a l development w i t h c o n c e n t r a t i o n s o f p o u l t r y p r o d u c t i o n u n i t s i n t e r s p e r s e d throughout the same drainage a r e a . These two i n t e n s i v e l a n d use p r a c t i c e s Plate XVT: Lagoon serving Tri n i t y Western College at Glover Road l o c a t e d on coarse t e x t u r e d outwash m a t e r i a l s g i v e some e x p l a n a t i o n t o some of the anomalous chemi c a l c o n c e n t r a t i o n s observed a t t h i s s i t e . High suspended sediment loads were v i s u a l l y noted, d u r i n g storms, i n t h i s stream. However, these l o a d i n g s were not measured a c c u r a t e l y , and c o u l d t h e r e f o r e i n d i c a t e an area f o r expanded study. Sampling s t a t i o n 9 has had a g r e a t d e a l o f g r a z i n g p r e s s u r e e x t e n d i n g r i g h t down the streambank t o the water. T h i s has r e s u l t e d i n the e r o s i o n o f the streambank p a r t i c u l a r l y d u r i n g h i g h streamflows. ( P l a t e X V I I ) . A l s o t h i s area has evidence o f accumulations o f automobile bodies and o t h e r garbage i n the stream and a l o n g the banks. T h i s g i v e s an i n d i c a t i o n o f the o r i g i n o f some o f the suspended sediment l o a d i n the Salmon R i v e r a t h i g h flows and i n d i c a t e s an area where more r e s e a r c h i s needed. Sampling s t a t i o n 10 was l o c a t e d on a s m a l l ephemeral stream which had a farm water r e s e r v o i r l o c a t e d on the stream j u s t upstream from the sampling s i t e . ( P l a t e X V I I I ) . Because o f t h i s r e s e r v o i r the stream flow was very s m a l l d u r i n g the summer months, alth o u g h i t i s l i k e l y t h a t t h e r e would be no water i n the stream a t t h a t time without the r e s e r v o i r . T h i s r e s e r v o i r appeared t o have profound e f f e c t s on the q u a l i t y o f water downstream f o r the p e r i o d o f m o n i t o r i n g . Sampling s t a t i o n s 11 and 12 were l o c a t e d on ephemeral streams which were dry d u r i n g most of J u l y , August, and September. T h i s f a c t h e l p s to e x p l a i n some of the anomalies Plate XVTI: Salmon River at station 9 during high streamflow showing streambank erosion Plate XVIII: Reservoir on tributary of Salmon River at sampling s i t e 10 near Richardson Crescent 168 observed i n the chemi c a l v a r i a b l e s measured a c r o s s a l l s t a t o n s . Sampling s t a t i o n s 14 and 15 are the r e s u l t o f drainage of predominantly a g r i c u l t u r a l a r e a s . T h i s f a c t i n combination w i t h the n a t u r a l l y o c c u r r i n g g e o l o g i c m a t e r i a l d e r i v e d chemicals can e x p l a i n some of the r e s u l t s observed a t these s i t e s . Data d e r i v e d from c o l l e c t i o n o f atmospheric p r e c i p i t a t i o n i n d i c a t e d a s i g n i f i c a n t i n p u t of many chemical f a c t o r s to the watershed. However, due t o l a c k o f un i f o r m data on the volume o f p r e c i p i t a t i o n e n t e r i n g the watershed d u r i n g the p e r i o d o f m o n i t o r i n g c a l c u l a t i o n s o f the a c t u a l l o a d i n g d i d not seem r e a l i s t i c . Although the c o n c e n t r a t i o n s of chemicals i n the p r e c i p i t a t i o n were g e n e r a l l y low the f a c t t h a t they were measureable i n d i c a t e s t h a t i n p u t s from t h i s source are s i g n i f i c a n t both t o the stream water and t o the l a n d . Bed sediment and s o i l s c h e m i c a l c h a r a c t e r i s t i c s g i v e a g e n e r a l i n d i c a t i o n of the amounts and d i s t r i b u t i o n o f the v a r i o u s chemicals i n these m a t e r i a l s and thus the p o t e n t i a l f o r d e t e r i o r a t i o n of water q u a l i t y r e s u l t i n g from the i n p u t o f p a r t i c u l a t e matter i n t o streams v i a s o i l e r o s i o n mechanisms. An e v a l u a t i o n o f the chemi c a l c h a r a c t e r i s t i c s of each sampling s t a t i o n a t each p o i n t , i n time, of sampling, i n r e l a t i o n t o p u b l i s h e d water q u a l i t y c r i t e r i a r e v e a l e d f i v e major water q u a l i t y problems. The f i v e c h e m i c a l v a r i a b l e s which exceeded the water q u a l i t y g u i d e l i n e s i n c l u d e d pH, temperature, phosphate-phosphorus, i r o n , copper, and manganese. Average v a l u e s of pH a t sampling s t a t i o n 1 were s l i g h t l y more a c i d than the suggested l i m i t s o f 6.5 t o 8.5, f o r a l l e v a l u a t e d uses of water. For d r i n k i n g water s u p p l i e s and t o some e x t e n t f i s h spawning temperatures a t s p e c i f i c l o c a t i o n s d u r i n g low streamflows exceeded the a c c e p t a b l e g u i d e l i n e s o f 15°C f o r d r i n k i n g water and 12.8°C f o r spawning f i s h . Phosphorus ( t o t a l a c i d d i g e s t i b l e ) exceeded the p r e s c r i b e d l i m i t o f 0.065 mg/1 on a l l o c c a s i o n s a t a l l sampling s t a t i o n s except s t a t i o n 12. Iro n concen-t r a t i o n s on some days a t some sampling s i t e s exceeded the 0.30 mg.l a c c e p t a b l e l i m i t and the average v a l u e s f o r low flows f o r s t a t i o n s 1, 3, 4, 5, 9, 10 and 15 a l l exceeded the l i m i t . Manganese c o n c e n t r a t i o n s a t a l l sampling s t a t i o n s except 12 exceeded the p r e s c r i b e d 0.05 mg/1 a c c e p t a b l e l i m i t a t l e a s t once d u r i n g the i n t e r v a l o f m o n i t o r i n g . Copper c o n c e n t r a t i o n s a t f i v e sampling s t a t i o n s on s i x separate o c c a s i o n s exceeded the p r e s c r i b e d a c c e p t a b l e l i m i t o f 0.01 mg/1. However, these c o n c e n t r a t i o n s as measured d i d not exceed 0.015 mg/1. Graphs of c o n c e n t r a t i o n versus streamflow a t thr e e l e v e l s o f s o p h i s t i c a t i o n r e v e a l e d no simple and d i r e c t r e l a t i o n s h i p s between streamflow and ch e m i c a l c o n c e n t r a t i o n s . C o r r e l a t i o n ( a n a l y s i s ) i n d i c a t e d t h a t t h e r e was s i g n -i f i c a n t c o r r e l a t i o n between some types o f land use and some types o f g e o l o g i c m a t e r i a l s , i n d e p e n d e n t l y or i n combination, w i t h the chemi c a l c h a r a c t e r i s t i c s of the s u r f a c e waters of the Salmon R i v e r . The major g e o l o g i c m a t e r i a l s showing s i g n i f i c a n t c o r r e l a t i o n w i t h chemical v a r i a b l e s i n c l u d e g l a c i o m a r i n e , marine, beach o v e r l y i n g marine or g l a c i o -marine, and g l a c i a l outwash m a t e r i a l s . S p e c i f i c types of la n d use showing s i g n i f i c a n t c o r r e l a t i o n w i t h c h e m i c a l v a r i a b l e s i n c l u d e a g r i c u l t u r a l f i e l d crop areas , low d e n s i t r e s i d e n t i a l a r e a s , and s c h o o l s . Other m a t e r i a l s and types of l a n d use a l s o showed s i g n i f i c a n t c o r r e l a t i o n s w i t h water che m i s t r y v a r i a b l e s , but those l i s t e d above o c c u r r e d most f r e q u e n t l y . C o r r e l a t i o n a n a l y s i s between the chemic a l v a r i a b l e s measured g i v e a g e n e r a l i n d i c a t i o n o f the i n t i m a t e r e l a t i o n s h i p among some of the chemical v a r i a b l e s . CONCLUSIONS The f o r e g o i n g p r e s e n t a t i o n o f data and d i s c u s s i o n has shown t h a t some problems w i t h water q u a l i t y i n the Salmon R i v e r watershed do e x i s t . The f a c t o r s which p r e s e n t the problem so f a r are pH, temperature, phosphate-phosphorus, i r o n , copper, and manganese. I n d i c a t i o n s are t h a t these problems do not a r i s e s o l e l y from a g r i c u l t u r a l l a n d use bu from g e o l o g i c m a t e r i a l s , such as g l a c i o m a r i n e and g l a c i a l outwash m a t e r i a l s ; low d e n s i t y r e s i d e n t i a l l a n d use; and s c h o o l s ; as w e l l as from a g r i c u l t u r a l f i e l d c r o p s . In o r d e r t o i n d e n t i f y s p e c i f i c p o i n t and non-point sources more d e t a i l e d i n f o r m a t i o n i s r e q u i r e d i n the form of d e t a i l e d i . e . d a i l y , s u r f a c e water sampling, d e t a i l e d 171 groundwater sampling, s e v e r a l times o f the year, and d e t a i l e d m o n i t o r i n g o f the streamflow o f each t r i b u t a r y stream, o r s e l e c t e d s i t e s . A l s o suspended sediment s t u d i e s c o u l d be conducted t o compare w i t h the r e s u l t s o f t h i s study. From the b a s i c i n f o r m a t i o n p r e s e n t e d i n t h i s study p o t e n t i a l problem areas can be s e l e c t e d f o r f u r t h e r study. INTERIM SUGGESTIONS i Assuming t h a t f u r t h e r d e t a i l e d study w i l l not be immediately forthcoming some i n t e r i m or "stop-gap" s u g g e s t i o n s are made to h e l p a m e l i o r a t e the p r e s e n t problems as envisaged by t h i s author. These are g e n e r a l s u g g e s t i o n s and s p e c i f i c areas would r e q u i r e o n - s i t e e v a l u a t i o n t o deci d e on the a p p l i c -a b i l i t y of s p e c i f i c s o l u t i o n s . 1. Implement measures t o reduce s o i l e r o s i o n from open a g r i c u l t u r a l f i e l d s and streambanks. Some such measures might i n c l u d e contour plowing on s l o p i n g l a n d , b u i l d i n g o f s m a l l t e r r a c e s or l a n d dams to reduce o v e r l a n d flow and i n c r e a s e i n f i l t r a t i o n , b u i l d i n g s m a l l storm r u n o f f r e s e r v o i r s t o c o n t a i n the r u n o f f , and r e - v e g e t a t i o n of streambanks. 2. Re-vegetate streambanks. T h i s would h e l p t o reduce summer low flow temperatures, would p r o v i d e some s h e l t e r f o r f i s h p o p u l a t i o n s , and might even h e l p reduce s o i l e r o s i o n o f streambanks, and t o some ex t e n t storm r u n o f f (Ricca e t a l , 1970). 172 3. Improved s u r f a c e r u n o f f water i n s m a l l r e s e r v o i r s f o r b e t t e r r e g u l a t i o n of h y d r a u l i c d i s c h a r g e thus r e d u c i n g the impacts of storm f l o w s , i . e . h i g h flows o f h i g h c o n c e n t r a t i o n wastes, by a l l o w i n g p a r t i c u l a t e matter and a t t a c h e d i m p u r i t i e s t o s e t t l e out. T h i s would h e l p reduce the impacts of reduced water q u a l i t y i n u r b a n i z e d areas d u r i n g storm flows on f i s h p o p u l a t i o n s . I t would a l s o a l l o w b e t t e r r e g -u l a t i o n o f h y d r a u l i c d i s c h a r g e w i t h reduced h i g h flows and i n c r e a s e d or m a i n t a i n e d low flows (Chamberlin, 1975). I d e a l l y these would be engineered i n such a way as t o be compatible w i t h f i s h u t i l i z a t i o n o f the stream. 4. Impound animal wastes i . e . p o u l t r y and d a i r y manure t o prevent them washing i n t o streams d u r i n g storm r u n o f f . (Also r e g u l a t e d i r e c t dumping i n t o streams). T r y a p p l y i n g the manures t o a g r i c u l t u r a l l a n d as a f e r t i l i z e r supplement (Robbins, HOwells, K r i z , 1972). T h i s i s p r e s e n t l y b e i n g done i n some areas o f the watershed. 5. Keep garbage out of the streams! C e r t a i n l y t h i s i s an incomplete l i s t o f the p o s s i b i l i t i e s a v a i l a b l e t o h e l p minimize the e f f e c t s o f and l a n d use manip-u l a t i o n s , but these are some common sense and r e l a t i v e l y i n e x -p e n s i v e ways o f m a i n t a i n i n g stream water q u a l i t y and flow w h i l e otherwise m a n i p u l a t i n g the watershed. 173 BIBLIOGRAPHY Armstrong, J.E., 1957 S u r f i c i a l Geology of New Westminster Map Area, B.C. GSC paper 87-5 Armstrong, J.E., 1960 S u r f i c i a l Geology o f Sumar Map-Area, B.C. GSC paper 59-9, map 44-1959 B r i t i s h Columbia Dept. of H e a l t h S e r v i c e s and H o s p i t a l Insurance, 1969 Recommended Water Q u a l i t y Standards Div. o f P u b l i c H e a l t h E n g i n e e r i n g , H e a l t h Branch B r i t i s h Columbia Dept. of Lands, F o r e s t s and Water Resources, 1975 Records o f water l i c e n c e s . Unpublished. Water Ri g h t s Branch, Burnaby, B.C. Bhoojedhur, S., 1975 A d s o r p t i o n and Heavy Metal P a r t i t i o n i n g i n S o i l s -Sediments o f the Salmon R i v e r Area, B.C. PhD t h e s i s , UBC, Dept. o f S o i l S c i e nce Canada Dept. o f N a t i o n a l H e a l t h and W e l f a r e , 1968 Canadian D r i n k i n g Water Standards and O b j e c t i v e s Canada Dept. of T r a n s p o r t , 1941 t o 1970. Monthly Record. M e t e o r o l o g i c a l O b s e r v a t i o n s i n Canada. M e t e o r o l o g i c a l Branch C a r r o l l , D., 1962 Rainwater as a Chemical Agent of G e o l o g i c Processes -A Review. USGS Water Supply Paper 1535 G (17632) Chamberlin, T., 1975 P e r s o n a l communication Chapman, H.D., P.F. P r a t t , 1961 Methods o f A n a l y s i s f o r S o i l s , P l a n t s and Waters U n i v e r s i t y of C a l i f o r n i a , D i v i s i o n of A g r i c u l t u r a l S c i e n c e s . pp. 150-160 E g g l e s t o n , J . , L.M. L a v k u l i c h , 1973 Geomorphic U n i t s , S l o p e s , and S o i l Drainage Maps of Salmon R i v e r Watershed ( s c a l e 1:50,000) un p u b l i s h e d . Westwater Research Agency, U n i v e r s i t y o f B r i t i s h Columbia Environment Canada, 1971 t o 1975 Monthly Record. M e t e o r o l o g i c a l O b s e r v a t i o n s i n Canada. Atmospheric Environment S e r v i c e Environment Canada, 1974-1975 M e t e o r o l o g i c a l Data f o r m e t e o r o l o g i c a l s t a t i o n s a t M i l n e r and A l d e r g r o v e , B.C. Atmospheric Environment S e r v i c e s , D.O.E., Vancouver, B.C. Unpublished Data Environment Canada, Water Management S e r v i c e , I n l a n d Waters Branch, 19 72 G u i d e l i n e s f o r Water Q u a l i t y O b j e c t i v e s and Standards. T e c h n i c a l B u l l e t i n #67 F i s h e r , D.W., A.W. Gambell, G.E. L i k e n s , F.H. Bormann, 1968 Atmospheric C o n t r i b u t i o n s t o Water Q u a l i t y o f Streams i n the Hubbard Brook E x p e r i m e n t a l F o r e s t , New Hampshire Water Resources Research, V.4, #5, pp. 1115-1126. Fox, W.TM. , 1966 Products o f S o i l E r o s i o n i n A g r i c u l t u r a l E f f l u e n t I n : A g r i c u l t u r a l Waste Waters, Report #10, Univ. of C a l i f o r n i a Friedman, G.M., E. Gavish, 1970 Chemical Changes i n I n t e r s t i t i a l Waters from Sediments of Lagoonal, D e l t a i c , R i v e r , E s u a r i n e and S a l t Water Marsh and Cove Environments. J . Sedimentary P e t r o l o g y , V. 40, #3. H a l l , K., 1974 P e r s o n a l communication. Westwater Research Agency, U n i v e r s i t y o f B r i t i s h Columbia H a l s t e a d , E.C., 1957 Groundwater Resources of Langley M u n i c i p a l i t y , B.C. GSC Water Supply Paper #327, Canada Department of Mines and T e c h n i c a l Surveys H a l s t e a d , E.C., 1959 Groundwater Resources of Matsqui M u n i c i p a l i t y , B.C. GSC Water Supply Paper #328, Canada Department o f Mines and T e c h n i c a l Surveys. Jackson, M.L., 1958 S o i l Chemical A n a l y s i s . P r e n t i c e & H a l l , Inc., Englewood C l i f f s , N.J. p. 160 (phosphorus). Krone, R.B., 1966 The Role of Suspended M i n e r a l S o l i d s i n Water Q u a l i t y . In: A g r i c u l t u r a l Waste Waters, Report No. 10, Univ. of C a l i f o r n i a L a v k u l i c h , L.M., e t a l , 1974 Methods o f S o i l A n a l y s i s , Pedology L a b o r a t o r y , U.B.C. Dept. o f S o i l S c i e n c e , U n i v e r s i t y of B r i t i s h Columbia Loehr, R. , 1972 Animal Waste Management - Problems and G u i d e l i n e s f o r S o l u t i o n s . J . Environmental Q u a l i t y , V. 1, #1, pp. 71-78 Luttmerding, H.A. S o i l Resources of the Langley - Vancouver Map Area (9 3G/S) B r i t i s h Columbia. B.C. Department o f A g r i c u l t u r e c u r r e n t l y i n p r e p a r a t i o n , u n p u b l i s h e d McKee, J.E., and H.W. Wolf, eds., 1965 Water Q u a l i t y C r i t e r i a . S t a t e o f C a l i f o r n i a , The Resources Agency o f C a l i f o r n i a , S t a t e Water Resources C o n t r o l Board, P u b l i c a t i o n #3-A McQuaker, N.R., 1973 A L a b o r a t o r y Manual f o r the Chemical A n a l y s i s o f Water, Wastewater, and B i o l o g i c a l T i s s u e s . Chemical L a b o r a t o r y Water Resources S e r v i c e s , Dept. o f Lands, F o r e s t s , and Water Resources (metals.) Miner, J.R., 1970 A g r i c u l t u r a l ( L i v e s t o c k ) Wastes. JWPCF V. 42, #6, pp. 1171-1179 Minty, D., 1975 P r e s e n t Land Use - Langley P r o p e r t i e s F o l i o f o r the B.C. Land Commission. Geographic D i v i s i o n , B. C. Government, Environment and Land Use Committee S e c r e t a r i a t N o r t h c o t e , T.G., 1973 P e r s o n a l communication. Animal Resource Ecology, U n i v e r s i t y of B r i t i s h Columbia Olsen, S.R., L.A. Dean, 1965 Phosphorus. In: C A . B l a c k , (ed) , Methods of S o i l A n a l y s i s , P a r t 2, Chemical and M i c r o b i o l o g i c a l P r o p e r t i e s , #9 i n Agronomy S e r i e s Am. Soc. o f Agronomy, Inc. Pub. Madison, Wisconsin, pp. 1040. P a c i f i c Northwest Area P o l l u t i o n C o n t r o l C o u n c i l , 1966 Water Q u a l i t y O b j e c t i v e s 17fc Pearson, F . J . , D.W. F i s h e r , 1971 Chemical Composition o f Atmospheric P r e c i p i t a t i o n i n the Nor t h e a s t e r n U n i t e d S t a t e s . USGS Water Supply Paper, 1535 p (15497) Peech, M., 1965 Hydrogen - Ion A c t i v i t y I n : Black pp. 922-92 3 R i c c a , V.T., P.W. Simmons, J.L. McGuinness, E.P. T a i g a n i d e s , 1970 I n f l u e n c e s o f Land Use on Runoff from A g r i c u l t u r a l Watersheds T r a n s a c t i o n s o f the ASAW, V. 13, #1 Robbins, J.W.D., D.H. Howells, G.J. K r i z , 1972 Stream P o l l u t i o n form Animal P r o d u c t i o n U n i t s . J o u r n a l of Water P o l l u t i o n C o n t r o l F e d e r a t i o n , V. 44, #8 Runka, G.G., C.C. K e l l e y , 1964 S o i l Survey o f Matsqui M u n i c i p a l i t y and Sumas Mountain. P r e l i m i n a r y Report #6 of the Lower F r a s e r V a l l e y S o i l Survey w i t h s o i l map of Matsqui M u n i c i p a l i t y and Sumas Mountain, S c a l e 1" - 2000 f e e t . B.C. Dept. o f A g r i c u l t u r e , Kelowna, B.C. S i e v e r s , D.M., G.L. L e n t z , R.P. Beasley, 1970 Movement of A g r i c u l t u r a l F e r t i l i z e r s and Organic I n s e c t i c i d e s i n Surf a c e Runoff. Trans. ASAW, V. 13, #1, pp. 323-325 Sprout, P.N., H.A. Luttmerding, 1966 S o i l Survey o f Langley M u n i c i p a l i t y and Barnston I s l a n d . P r e l i m i n a r y Report #7 of the Lower F r a s e r V a l l e y S o i l Survey w i t h s o i l map o f Langley M u n i c i p a l i t y and Barnston I s l a n d , s c a l e 1" - 2000 f e e t . B.C. Dept. o f A g r i c u l t u r e , Kelowna, B.C. S y l v e s t e r , R.O., 1960 N u t r i e n t Content o f Drainage Water from F o r e s t e d , Urban, and A g r i c u l t u r a l Areas. Trans. Seminar on A l g a i - M e t r o -p o l i t a n Wastes. U.S. P u b l i c H e a l t h S e r v i c e , R.A. T a f t S a n i t a r y Eng. C e n t r e , C i n c i n n a t i 26, Ohio T a r a s , M.J., A.E. Greenberg, R.D. Hoak, and M.C. Rand (ed), 1974 Standard Methods: f o r the Examination o f Water and Wastewater. 13th e d i t i o n , American P u b l i c H e a l t h A s s o c i a t i o n , American Water Works A s s o c i a t i o n , Water P o l l u t i o n C o n t r o l F e d e r a t i o n , p. 50, 52,178, 524, 530, 535 The C o r p o r a t i o n o f the Township o f Langley, 1970 Zoning bylaw, 1970, number 1302, as amended by bylaw numbers 1380 and 1428. The C o r p o r a t i o n o f the Township of Langley, 1973. E x i s t i n g B usiness Zoning Amendment (Development Area) Bylaw, 1973, number 1441 177 U n i t e d S t a t e s , F e d e r a l Water P o l l u t i o n C o n t r o l A d m i n i s t r a t i o n , 1968 Water Q u a l i t y C r i t e r i a . Report of the N a t i o n a l T e c h n i c a l A d v i s o r y Committee to the S e c r e t a r y of the I n t e r i o r Westwater, 1971 P r e s e n t Land Use Map o f Salmon R i v e r Watershed (Scale 1:50,000). un p u b l i s h e d . Wieble, S.R., 1970 Urban Drainage as a F a c t o r i n E u t r o p h i c a t i o n . In: E u t r o p h i c a t i o n : Causes, Consequences, C o r r e c t i v e s , Proc. o f Symp. Nat. Academy of S c i e n c e s , p 383-403 Weidner, R.B., A.G. C h r i s t i a n s o n , S.R. Wiebel, G.G. Robeck, 1969 R u r a l Runoff as a F a c t o r i n Stream P o l l u t i o n . J o u r . Water P o l l u t i o n C o n t r o l F e d e r a t i o n , V. 41, #3, pp. 377-384 Wiens, J . , 1973, 74, 75 P e r s o n a l communication Wilcox, L.V., 1958 Water Q u a l i t y from the S t a n d p o i n t of I r r i g a t i o n . American Water Works Assoc. J o u r n a l V. 50, p. 650-654 *Environment Canada, Water Management S e r v i c e , I n l a n d Waters Branch, 19 74, 1975. H y d r o l o g i c data f o r Salmon R i v e r a t 72nd Avenue, Langley, B.C. Unpublished d a t a . ^ p p a n i ^ v T, Salmon River at 72nd Avenue, Langley DAILY DISCHARGE iTTtUBlC t-LfcT PER SbCOMt) FOR 1974 / i 9 7 5 . DAY JUN JUL AUG • SEP OCT NOV DEC JAN FEB MAR 1 2 22.4 34.6 8.9 9.9 7.5 7.0 7.2 7.4 8.7 10.6 6.7 6 .4 16.1 21.7 73.0 66 .4 39.4 37.0 126 1 Xfl 3 a 60.S 131 84.5 12.9 13.8 10.t 7.0 6.9 6.9 7.6 7.3 7.9 8.5 7.9 8.4 6. 1 5.9 6.7 27.9 89.0 - 74.0 E E 59.5 71.3 159 34.5 31.2 28.2 « >° * 128 J 81.9 6 7 50.2 34.3 9.2 8.2 6.6 6.8 7.3 7.2 7.7 7.6 7.4 9.0 83.0 91.0 E E 145 78.2 25.7 27.8 OH | O 53.8 ui <; 8 9 10 27.6 23.5 19.8 8.2 16.9 23.9 6.8 6.8 6.8 7.7 14.0 9.1 7.5 7.3 7.6 7.3 16.0 16.5 57.0 89,0 135 E E E 138 92.9 53.6 26.2 26.3 51.6 «* i • J 46,7 57.2 <19 I 11 12 17.8 16.0 15.6 25.9 6.7 7.5 7.7 7.3 7.7 7.4 14.6 60.5 220 77.8 E 46.3 46.6 53.5 5b. 4 13 14 lb 15.2 14.1 13.4 15.6 12.7 11.8 7.7 8.0 8.2 7.3 7.1 7.1 6.9 6.7 6.6 22.2 14.2 10.9 64 .9 61.6 fib.O 51.4 55.2 46 .4 158 134 88. 7 16 17 12.6 11.9 12.3 16.8 7.2 7.2 6.9 7.0 6.2 6.3 9.6 24.5 158 104 47.6 390 68.1 61,6 IB 19 ! 20 11.2 10.5 10.0 14.9 12.9 11.1 7.2 6.0 8.4 6.7 6.4 6.5 6.2 6.7 7.8 67.7 66.2 193 157 204 264 40/ 18/ 180 68.4 203 195 21 22 10.1 10.1 10.4 10.0 7.8 7.S 6.5 6.8 7.1 6.3 131 56.3 431 118 106 12/ 9b.4 7 6.6 2a 25 9. 1 8.7 8.5 9.4 9.0 8.7 9.3 8.8 8.3 6.5 6.5 6.6 6.1 7.0 5.9 55.8 74.5 51.7 64.2 52.6 96.2 300 132 , , 83.4 158 ' 222 120 2b 2/ 9.5 10.7 8.4 8.2 6.0 7.9 6.5 6.5 5.8 8.3 33.7 26.9 116 108 62.3 47.2 97.6 93.7 CO 29 30 10.6 10.0 9.2 8.2 8.2 7.8 7.6 ' 7.2 7.0 6.7 6.6 6.6 7.7 6.2 5.8 22.5 21.0 18.7 61.6 73.5 92.6 39.5 90.0 1 1 7.7 7.0 6.5 54 .6 41.6 TOTAL 717.6 367.6 231.6 218.7 223.0 1063.5 3371.3 2368,9 MEAN AC-FT 23.9 1420 11.9 729 7.5 459 7.3 434 7.2 442 35.4 2110 109 6690 84.6 4700 MA X MIN 151 8.5 25.9 7.7 9.3 - 6.6 14.0-6.4 10.6 5.8 193 5.9 431 16.1 222 25.7 B-ICE CONDITIONS E "ESTIMATED Appendix II. DAILY PRECIPITATION (cm)DATA, MAY, 1974 TO MARCH 1975 AT MILNER, B.C. Day of Month I May June July August September October Noventer Decanter January February 1974 1975 1975 cm — 1. 0.15 0.96 0.15 0 0 0.99 0 0.51 0.25 0.08 2. 0.05 0.28 0.08 0 0 0 0 0.33 0.41 0.03 3. 0 2.06 1.93 0 0 0 0 1.40 0.94 0 4. 0.66 0 0 0 0 0.64 0.30 1.47 0 5. 0.74 0 0 0 0 0 0.43 0.38 0.53 0 6. 1.65 0.02 0 0 0 0 0.68 1.14 0.15 0.51 7. 0.74 0 0.02 0 0 0 0 0 1.90 0.48 8. 0 0 1.37 0 2.21 0 2.72 0.61 0.15 ' 0.18 9. ••. 0.74 0 1.55 0 0.05 0.05 2.06 0.84 0.05 2.29 10. 0.13 0 0.15 0 0 0.38 0.36 2.56 0 0 11. 0.86 0 0.43 0 0 0.02 4.98 0 0.10 1.60 12. 0.05 0 0 0.48 0 0 0.25 0.51 0.46 2.77 13. 0.84 0 0 0 0 0 0 1.07 0 0.28 14. 0.23 0 T 0 0 0 0 0.30 0' 0.13 15. 0.46 0 0.13 0 0 0 0.13 1.65 0.13 2.44 16. 0 0 1.27 0 0 0 0.20 0.58 3.91 0.36 17. 0.08 0 0.10 0 0 0 3.25 1.24 2.24 0.36 18. 0 0 0 0 0 0 0.79 1.19 0 0.94 19. 0 0 0 0.08 0 0 2.94 2.31 0.28 1.68 20. 0 0 0 0 0 0 2.13 4.06 0 0 21. 0 0.25 • 0 0 0 0 0 0 0 0 22. 0.71 0 0 0.46 0 0 0.84 0 3.78 0.05 23. 0.68 0 0 0.56 0 0 1.17 T T 1.68 24. 2.82 0 0 0 0 0 0.33 1.37 0.08 0 25. 0.30 0.20 0 0 0 0.05 0 0.30 0 0.20 26. 0 0.53 0 0 0.25 0.33 0 1.30 0 0.10 27. 0 0.58 0 0 0 1.50 0 T 0.25 0.03 28. o* 0 0 0 0 0.36 0 0.58 29. T 0 0 0 0 0 0.61 0 0 30. 0.76 0 0 0.51 0.23 0.20 0.15 0.08 0 31. : 0 0 0 0 0.33 0.74 0.05 0 Total 11.99 5.56 7.19 1.57 3.02 4.67 21.84 25.83 17.22 16.74 /So Appendix II. DAILY PRECIPITATION (cm) DATA, MAY 1974 TO MARCH 1975 AT ALDERGROVE, B.C. Day of Month May June July August September October November December January February — — 1974 1975 1975 cm 1. 0.76 1.27 0.15 0 0 1.14 0 0.64 0.23 0.08 2. 0 0.23 0.10 0 0 0 0 0.36 0.48 0.13 3. 0 2.72 1.85 0 0 0.28 0 1.37 0.90 • 0 4. 0 0.28 T 0 T 0 0.58 0.46 2.54 0 5. 0.58 T 0 0 0 0.76 0.41 0.08 0 6. 2.13 0.03 0 0 0 0 0.79 1.04 0.08 1.02 7. 0.84 0 0.03 0 T 0 T 0 3.15 0.66 8. 0.05 0 1.75 0 2.08 0 0.56 0.79 0.03 0.36 9. 0.74 0 1.40 0 0.05 0.08 2.62 0.99 0.20 2.31 10. 0.13 0 0.13 0 0.05 0.33 0.41 2.87 0 0.03 11. 0.99 0 2.90 0 0 0 5.05 0 2.67 2.41 12. 0.20 0 0 0.08 0 T 0.18 0.66 0.20 3.45 13. 1.22 0 0 0 0 0 0.03 1.12 0.03 0.08 14. 0.53 0 0 0 0 0 0 0.30 0.10 0.18 15. 0.41 0 T 0 0 0 0.18 1.88 0.18 2.06 16. 0 0 1.04 0 0 0 0.30 0.81 3.89 0.03 17. 0.03 0 0.05 T 0 0 3.20 2.13 2.26 0.53 18. 0 0 0.10 T 0 0 0.68 1.17 T 1.22 19. 0 0 0 0.10 0 0.76 3.12 2.24 0.38 1.42 20. 0 0 0 0 0. T 2.61 4.06 0 0 21. T 0.03 T 0 0 0 T 0 T 0 22. 0.91 0 T 0.25 0 0 0.79 0 3.61 0.05 23. 0.94 0 " 0 0.33 0 0 1.60 0.03. 0.03 1.91 24. . 2.69 0 0 T 0 0 0.18 1.40 0.13 0 25. 0.30 0.30 0 0 0 0.03 0 0.64 0 0.05 26. 0 0.48 0 0 0.28 0.28 0 1.02 0 0.08 27. 0 0.10 0 0 T 1.04 0 0.25 0.61 0.08 28. 0 T 0 0 0 T 0 0.61 0 0.61 2 9 - 0 0 0 0 0 0 0 1.37 T 0 30. 0.38 0 0 0 0.71 0.30 0.05 0 T 31. - 0 0 0 o 0.36 1.18 0.25 TOTAL 13.84 5.44 9.50 0.76 3.18 4.60 23.70 29.72 22.00 18.72 Appendix III: Some Generalized Selected Chemical and Physical Properties of Geomorphxc Units Based on Specific S o i l Survey Data from Luttmerding anl Sprout (1966). GEOMORPHIC UNIT A - Alluvium sA sandy alluvium • G - Grevell - Orthic Regosol SOIL UNITS INCLUDED G TEXTURE (surface meter) >1/3 fine sandy loam to gravel Tex-Horizon ture Depth cm _E2-Organic Total C:N Matter Nitrogen Ratio % PI P2 Ca Mg Cation Base Exchange Satura-Capacity % CI C2 cgj C3 s 0-22.5 7.1 0.2 0.02 7.5 fs 22.5-30 7.3 0.4 0.02 11.9 s 30-55 7.4 0.7 0.04 10.1 s 55+ 7.4 0.2 0.01 9.2 ppm ppm -meg/1OOg-tion % 2.5 71 2.2 106 .2.5 57 2.2 54 5.3* 8.0* 4.4 0.8 3.6* LA - Loamy Alluvium F,HD,HJ,HT,PE,PR F - F a i r f i e l d - Gleyed Gray Brown Luvisol 0.25 0.12 0.05 Ap s i l 0-17.5 5.2 5.5 c g j l s i l 17.5-27.5 5.7 2.2 cgj 2 s i l 27.5-45 5.7 0.9 cgi s i l 45-75 5.7 HCg l f s - f s l 75-100 5.9 Cg2 s i l 100+ 5.7 0.2 0.1 4.3 100.0 0.2 0.1 7.8 100.0 0.1 0.1 5.7 94.7 0.1 0.1 3.5 100.0 > 2/3 s i l t y clay loam to very fine sandy loam 12.4 16.0 29 3.38 2.65 0.05 10.4 13.5 27 1.80 0.36 Tr 10.5 16.5 29 2.12 0.67 Tr 9.5 23 4.39 1.35 Tr 0.09 23.5 0.06 13.8 0.09 10.7 0.08 11.4 26.3 16".l 26.9 51.1 HD - Hazelwood - Orthic Humic Gleysol Ap s i c l 0-22.5 4.8 25.3 0.98 16.0 21.3 41 5.5 1.8 0.3 0 3 59 3 13 3 AB s i c l 22.5-35 5.1 11.6 0.32 20.0 6.3 12 10 1 3 6 0 1 0 2 39*8 3S*2 Btg s i c 35-60 5.2 2.6 0.10 13.8 4.4 11 11 8 5 2 0 2 In'i ll'l Cg s i c l 60-72.5 5.5 1.1 0.06 11.4 4 1 21 7 1 f ' f i S'? o ' t « * ? IICg2 Is 90+ 5.9 1.1 0.06 11.2 5.4 24 3.1 2 0 Tr 0.1 VI * Ca + Mg HJ - Hjorth - Orthic Humic Gleysol Tex- Organic Total C:N Horizon ture Depth pH Matter Nitrogen Ratio PI P2 Ca Mg Na Cation Base Exchange Satur-Capacity ation cm % % _£pm_ -mqg/lOOg- % Ap s i c l 0-20.0 5.5 9.2 Cgl s i c l 20.0-37.5 5.9 2.6 Cg2 s i c l 37.5-57.5 6.0 0.7 Cg3 s i c l 57.5-92.5 5.9 Iigg f s - l f s 92.5+ 5.8 0.38 0.14 0.05 14.0 11.3 8.3 14.0 10.0 24.5 18.5 38 21 42 33 4.38 4.75 4.67 4.32 2.07 1.68 1.32 1.18 0.40 0.09 0.05 0.05 0.11 0.15. 0.09 0.10 33.3 21.2 11.6 10.6 20.9 31.5 52.9 53.3 HT - Hallert - Rego Gleysol Hp muck 22.5-7.5 4.0 46.6 1.39 19.3 32.5 81 0. 72 0.26 0.15 0.22 68.1 2.0 H muck 7.5-0 4.2 58.8 1.62 21.0 7.0 15 1. 59* 0.09 0.20 87.5 2.2 eg s i c l 0-32.5 4.5 27.9 0.81 19.9 3.5 23 0. 71 0.89 0.05 0.22 66.2 . 2.8 F s i muck 32.5-45 4.9 34.2 0.87 22.6 3.0 19 5. 46- 1.27 0.08 0.15 62.0 11.2 LSCg peat s i 45-77.5 5.0 28.3 0,63 25.9 3.5 23 10. 72 3.82 0.14 0.17 61.1 24.3 L peat 77.5-107. 5/4.9 61.7 1.13 31.5 4.0 12 6. 77 1.56 0.07 0.33 79.5 11.0 Cg&L peat- 107.5+ 5.1 21.1 0.48 25.1 6.5 63 • 9. 53 2.50 0.06 0.30 46.0 26.9 s i c l PE - Page - Orthic Gleysol Ap s i c l 0-17.5 • 5.2 5.3 0.27 11.4 27.0 181 2.96 1.20 0.31 0.10 24.7 18.5 cgl s i c l 17.5-32.5 5.5 1.0 0.07 8.4 19.0 34 4.60 1.36 0.31 0.10 17.4 36.6 eg 2 s i c l 32.5-47.5 5.5 0.6 0.04 9.2 7.0 15 5.46 1.60 0.32 0.09 15.2 49.2 Cg3 s i l 47.5-65 5.7 0.6 - - 8.5 23 5.39 1.26 0.15 0.16 12.3 56.6 Cg4 f s l 65-85 5.7 - - - - - - - - - -Cg 5 s i l 85-97.5 5.7 - - - - - - - - - - -IlCg f s - l f s 97.5+ 5.7 - - - - - - - - - - -PR - Prest - Rego Gleysol Cation Base Tex- Organic Total C:N Exchange Satura-Horizon ture Depth pH Matter Nitrogen Ratio PI P2 Ca 1 Mg K Na Capacity tion cm % % ppm ppm -meg/lOOg- % L-H 7.5-0 4.5 68.2 25.4 50 6.6 2.9 1.3 0.2 36 .4 30.2 Cgl s i c l 0-25 5.4 4.3 0.23 11.0 5.4 100 8.2 5.0 0.4 0,2 24 .4 56.6 Cg2 si c 25-45 5.7 2.5 0.13 11.2 4.7 147 6.7 5.6 0.3 0.2 17 .5 73.1 HCg l f s 45-67.5 6.4 0.9 0.11 4.6 3.8 90 4.0 3.0 0.1 0.2 7 .0 100.0 cA - clayey Alluvium AN,CV,KZ,RS,WL > 1/3 clay to sandy clay AN-- Annis - Rego Gleysol (Humic phase) Hp muck 25-5 5.2 56.5 1.77 19.1 50.3 78 26.7 3.3 0. 3 0. 3 86.6 35.3 FH muck 5-0 4.7 94.9 2.44 22.5 11.8 18 12.5 2.3 0. 2 0. 2 125.5 12.1 cgl s i c l '0-10 5.1 8.8 0.32 15.6 8.3 25 14.4 4.8 0. 2 0. 3 47.5 41.5 Cg2 s i c l 10-20 5.4 1.8 0.10 11.0 7.5 23 11.3 ,5.7 0. 2 0. 6 31.0 . 57.4 cg3 s i c l 20+ 6.1 0.5 0.04 8.4 4.4 54 11.8 2.6 0. 1 1. 0 20.2 70.4 cv - Carvolth - Rego Humic Gleysol s i c l 1 Ap - s i l O-'AO 5.6 8.9 0.40 12.7 17.3 35 7.13 2.36 0. 15 0. 24 30.8 32.1 AC s i c l 10-22.5 5.6 6.0 0.29 12.0 15.1 30 4.99 1.51 0. 07 0. 19 27.8 24.3 cgl s i c l 22.5-37.5 6.0 2.5 0.13 11.0 13.6 24 5.29 3.03 0. 06 0. 65 . 24.3 37.2 cg2 s i c l 37.5-62.5 6.4 1.1 0.64 9.7 17.0 29 4.48 2.70 0. 06 0. 86 16.1 50.3 cg3 sic-c 92.5+ 6.4 1.1 0.74 8.4 37.5 71 5.89 4.69 0. 09 1. 10 21.6 54.5 6.4 0.9 0.55 9.4 60.1 102 5.11 5.41 0. 10 1. 29 20.6 57.8 KZ - Ratzic - Orthic Humic Gleysol Cation Base Tex- Organic Total C:N Exchange Satura-Horizon ture Depth pH Matter Nitrogen Ratio PI P2 Ca Mg K Na Capacity tion _ ; % % ppm ppm meg/lOOg % Ap s i c l 0-20 5.5 14.2 0.75 11.0 16.7 33 7.29 1.10 0.23 0.14 50 .2 18.7 Ah s i c l - s i c 20-37.5 6.5 5.0 0.22 13.2 12.2 18 7.34 2.13 0.07 0.14 38 .1 26.2 Cgl sic 37.5-55 5.7 1.1 0.07 10.0 6.1 9 9.81 4.56 0.08 0.17 24 .4 58.2 Cg 2 si c 55-80 5.9 0.9 0.05 10.3 6.8 11 12.67 6.16 0.1 0.3 29 .3 68.3 Cg3 si c - c 80-107.5 6.1 - - - 7.8 35 11.44 8.27 0.1 0.2 27 .5 70.5 Ca4 sic 107.5+ 6.3 — — — 7.8 28 11.96 7.56 0.1 0.2 28 .2 72.3 RS - Ross - Rego Gleysol Ah s i l 0-22.5 4.7 12.4 0.63 11.4 22.0 5.7 1.4 0.2 0.2 37 .4 20.1 AC s i l 22.5-32.5 5.3 1.8 0.15 6.9 48.0 - 6.2 1.9 Tr 0.3 23 .3 36.1 Cgl s i c l 32.5-55 5.4 0.5 0.04 8.0 15.0 - 7.4 4.2 0.1 0.5 17 .9 68.2 eg 2 si c 55+ 6.2 0.5 0.04 8.0 7.5 — 12.6 8.9 0.1 0.5 24 .1 91.7 WL - Westlang - Rego Humic Gleysol Ap sic 0-15 5.8 9.9 0.44 13.1 12.7 40 10.7 8.2 0.1 0.2 36 .0 53.3 CA c 15-35 ' 5.8 4.3 0.17 15.0 12.6 35 14.1 9.4 0.1 0.2 37 .6 63.2 Cgl c 35-57.5 6.0 3.2 0.12 16.0 6.3 17 13.9 12.5 0.2 0.4 36 .2 74.5 Cg 2 c 57.5-85 6.0 '-• - 3.5 7 9.0 10.3 0.1 0.2 28 .6 68.5 cg3 s i l - s i c l 85+ 5.8 - - - 2.5 9 7.0 4.9 0.1 0.3 22 .4 54.9 G - Gla c i a l Outwash AD - Abbotsfotd - Orthic Humo Ferric Podzol AD,CL,LH,LY,MH Horizon Tex-ture Organic Total C:M Matter Nitrogen Ratio PI P2 Ca _M3_ >l/3 fine sandy loam to gravel Cation Base Exchange Satura-K Na Capacity tion cm % % L-H 2.5-0 8.1 89.8 1.71 30.4 Bfcol 1 0-12.5 5.7 3.0 0.07 24.1 Bfcc2 1 12.5-27.5 5.7 1.3 0.05 15.3 B£cc3 s i 27.S-42.3 5.7 l.S 0.04 21.1 8110 la 42.5-67.5 6.0 - - -I l o l B 67.3-BS 9.9 - - • -IIe2 a es+ 6.0 - - — ppm ppm -meg/lOOg-CL - Columbia - Orthic Humo Ferric Podzol LH 46.5 4.4 1.7 1.0 Lehman - Orthic Humic Gleysol L-H - 3.8-0 5.3 Bf l s i 0-12.5 5.7 Bf2 s i 12.5-30 5.8 Bf3 l s - s 30-47.5 5.8 BC s 47.5-60 6.0 CI s 60-75 6.2 C2 g 75+ 6.1 0.81 0.11 0.06 0.03 0.01 L-H - 2.5-0 4.8 Ah s i l 0-15 4.7 AC s i l - 1 15-25 5.4 IlCgl gsl-gls 25-42.5 5.8 IICg2 gs 42.5-90 6.0 IICg3 gs 90+ 6.0 98.3 20.1 3.1 1.93 0.62 0.16 0.04 0.02 34.0 22.0 16.2 18.6 29.4 18.6 11.0 32.5 18.0 14.5 86 34 38 1.25 0.69 0.69 0.15 0.13 0.06 0.05 0.05 0.09 14.8 10.2 10.8 % 9.8 8.5 7.4 - - - • - - - -• - - - - *• 51.0 142 0.94 0.58 0.06 0.06 17.0 9.7 40.5 86 0.40 0.32 Tr 0.05 9.6 8.0 37.5 0.26 0.19 Tr 0.05 6.6 7.6 44.5 116 0.39 0.12 Tr 0.05 2.6 21.5 _ - - - - — — 3.5 17 1.85 0.43 0.16 0.28 43.5 6.2 5.5 19 0.67 0.19 Tr 0.11 27.9 3.5 13.0 33 0.53 0.18 Tr 0.06 6.1 12.6 13.5 24 0. 51* Tr 0.06 2.4 23.8 _ _ — — . — — **" LY - Lynden - Orthic Humo Ferric Podzol Cation Base Tex-' Organic' T o t a l C:N Exchange Satura-Horlzon ture Depth pH Matter Nitrogen Ratio PI P2 Ca Mj> K Na Capacity t l o n cm X X . ppm ppm me g/100 g-- X L-H 5.0-0 5.1 58.3 1.53 22.0 Ae Is 0-1.9 4.2 3.7 0.07 30.5 Bfl Is 1.9-22.5 5.6 2.6 0.06 24.2 Bf2 la 22.5-45 5.9 1.0 0.03 18.6 BC ga 45-55 6.0 0.3 0.01 15.9 CI ga 55-72.5 6.0 C2 • 6 72.5+ 6.0 MH - Marble' H i l l - Orthic Humo Ferric Podzol L-H 2.5-0 4.7 60.2 1.46 23.8 BfK a l l 0-25 5.5 7.0 0.20 20.3 Bfl s i l 25-30 5.6 3.4 0.12 15.3 Bf2 s i l 30-42.5 5.7 1.5 0.07 12.1 CB e l l 42.5-50 5.8 1.2 0.05 13.7 C s i l 50-77.5 5.7 0.9 0.04 13.1 czi't gsl 77.5-85 5.7 IlCl 8 85-120 5.9 IIC2 gs- 120+ 5.8 • M -' Marine BR, BR - Berry - Gleyed Fodzolic Gray Luvisol Ap s i l - c l 0-20 6.1 7.2 0.29 14.4 Bf s i l - c l 20-32.5 6.2 2.9 0.13 12.4 Bfg cl-c 32.5-47.5 5.5 1.2 0.06 12.7 CB cl-c 47.5-62.5 5.3 0.5 0.03 11.3 Cgl c 62.5-77.5 6.2 0.5 0.03 9.7 Cg2 c 77.5-97.5 6.0 Cg3 c 97.5-117.5 7.2 Cg4 c 117.5+ 7.6 » CD, 15.5 25 1.01 0.15 Tr 0.05 11.9 10.2 47.0 92 0.61 0.25 0.05 0.05 11.3 8.5 26.5 54 0.39 0.25 0.05 0.05 5.6 13.2 49.5 118 0.26 0.19 Tr 0.05 3.0 16.7 46.0 148 2.16 0.62 0.18 0.12 22.2 13.9 6.5 45 0.75 0.11 0.08 0.06 16.1 6.2 5.0 39 0.46* 0.05 0.05 9.9 5.7 5.0 43 0.46* Tr 0.05 9.1 5.6 7.0 50 0.46* Tr 0.10 11.2 5.0 MR >l/3 clay to sandy clay 9.0 16 6.47 0.81 0.16 0.19 30.0 25.4 3.2 11 2.26 0.76 0.13 0.14 25.0 13.2. 3.7 5 4.33 4.17 0.21 0.25 28.5 31.4 2.1 3 7.25 10.86 0.27 0.57 39.5 48.0 1.6 34 13.98 19.81 0.38 •1.17 43.6 81.0 1.0 202 13.09 18.93 0.43 1.31 39.7 85.0 1.0 229 10.74 14.19 0.41 1.19 30.8 86.1 3.1 230 7.97 7.67 0.29 1.07 29.6 57.4 CD - Cloverdale - Humic Luvisc Gleysol Horizon Tex-ture Depth Ah Aeg AB Btgl Btg2 BC Cgl Cg2 Qrgamlc T o t a l C:N PH Mat:ter Nitrogen Ratio PI P2  %'. % ppm ppm s i c l 0-15 s i l - s i c l 15-25 sic sic sic sic sic sic 25-32.5 32.5-47.! 47.5-70 70-92.5 92.5-120 120+ 5.6 5.6 5.9 6.7 7.8 7.9 7.8 8.0 Ca Na 11.5 1.2 0.9 0 .7 0.4 -meg/lOOg-Cation Base Exchange Satur. Capacity t l o n 0.48 0.06 0.05 0.03 0.02 13.7 12.1 18 5.62 2.58 0.27 0.48 35.9 24.9 17.3 1.0 2 4.33 4.63 0.09 0.27 17.6 53.0 10.5 1.0 2 7.76 10.13 0.15 0.57 26.3 68.9 14.2 1.0 2 10.46 18.41 0.18 2.20 35.2 88.8 9.5 1.0 93 10.08 16.36 0.25 4.34 35.5 87.4 1.0 145 9.88 13.69 0.27 4.08 31.9 87.5 1.0 188 30.7 1.6 256 8.11 14.27 0.39 4.07 27.6 87.4 MR - Milner - Luvlsollc Humo F«rriq Podzol L 5-2.5 >100 >300 HF 2.5-0 4.1 32 .3 1.30 18.8 85.9 128 Bfhcc s l l - l 0-25 5.1 5 .4 0.20 17.3 41.4 112 . 1.23 0.49 0.32 0.09 35.5 6.0 Bfcc s l l - c l 25-47.5 5.2 3 .5 0.10 14.1 18.5 102 0.29 0.39 0.19 0.09 30.7 3.1 Bf c l 47.5-57.5 4.9 9 .9 0.10 19.9 18.8 39 3.60 2.46 0.24 0.14 30.0 21.5 CI cl-c 57.5-87.5 4.9 Tr 7.4 16.9 32 10.07 8.82 0.32 0.30 35.0 55.7 C2 c 87.5+ 6.4 Tr 10.0 6.3 116 14.48 10.57 0.34 0.41 34.6 74.6 GM - Glacial Marine lGm - loamy glacial marine N - Nicholson - Orthic Humo Ferris Podzol N,W >2/3 s i l t y clay loam to yery fine sandy loam L-H 25-;0 4.8 77 .0 1.97 22.6 Bfhcc s i l 0-40 5.7 3 .8 0.17 20.1 5.5 15 2.65 1.08 0.43 0.06 22.1 19.1 Bfccl s i l 10-32.5 6.0 2 .5 0.08 17.5 2.0 9 0.66 0.72 0.14 0.06 16.4 9.6 Bfcc2 s i l 32.5-62.5 5.9 1 .9 0.06 17.1 2.0 8 0.40 0.61 Tr 0.17 15.5 7.6 Bfcc3 s i l - 8 i c 62.5-77.5 5.9 1 .5 0.05 16.2 2.0 8 0.13 0.56 Tr 0.10 15.8 5.0 Cgjl c l . 77.5-92.5 5.8 0.02 2.0 14 6.91 5.40 0.06 0.23 16.6 75.9 Cgj 2 sic 92.5-112.5 6.4 C sic 112.5+ 6.7' W - Whatcom - Luvisolic Humo 5err_ c Podzol Horizon Tex-Papth pH LF Bhf Bfb B f l ta BC Cgl Cg2 s i l s i l •11 s i l s i l c l cl-c 1.5-0 0-7.5 7.5-22.5 22.5-42.5 42.5-60 60-70 70-95 95+ 4.5 5.4 5.0 5.1 5.4 5.5 6.0 6.3 Organic T o t a l C:N ffecter B i t r o s a n R a t i o 5 x PI P2 Ca ppm ppm -ae-g/IOOg,-Catlon Exchange S*1t»r Ca-pagjyy Hi<m 88.0 2.09 24.3 13.2 0.44 17.4 18.5 56 3.89 1.06 0.35 TT 32.5 16.3 5.8 0.19 18.0 5.0 28 0.75 0.25 0.16 Tr 22.8 5.1 3.6 0.13 15.4 5.0 28 0.40 0.25 0.10 Tr 19.2 3.9 4.4 0.16 16.1 11.5 40 0.95 0.39 0.08 0.05 22.5 6.5 2.5 0.10 14.0 16.0 37 1.13 0.57 0.08 0.05 20.6 8.9 cGM - clayey glacial marine SC - Scat - Orthic Humic Gleysol SC >l/3 clay to sandy loam L-H Ah Cgl Cg2 Cg3 Cg4 s i c l sic sic 8ic-c sic-c 1.5-0 0.12.5 12.5-27. 27.5-45 45-65 26+ 75.2 13.9 0.7 1.06 0.76 0.04 0.03 0.03 0.02 B/M, GM - Beach over Marine or Glacial Marine HN - Heron - Rego Humic Gleysol 42.4 14.5 9.2 HN,LV,MY,SS 70.0 187 3.81 1.21 0.26 0.14 46.1 11.8 1.0 2 7.32 > 6.11 0.27 0.19 23.5 59.1 3.0 7 12.28 10.61 0.30 0.29 30.0 78.3 2.5 88 14.43 12.55 0.32 0.37 31.6 87.6 1.5 205 12.31 12.12 0.31 0.30 29.4 85.1 F 25-0 4.7 53.1 3.06 10.1 Ah f s l 0-15 5.0 7.5 0.34 • 12.9 AC s i 15-20 5.8 L.6 0.08 11.2 HCg s 20-40 5.8 ).4 0.03 7.6 IIC & s-cl 40-62.5 5.5 D.2 0.02 8.1 IllCg IHCg cl-c 62.5+ 5.4 ).3 0.02 10.9 3.1 1.1 0.3 0.2 17.8 26.4 1.8 0.4 0.1 0.2 8.1 31.4 1.1 0.2 Tr 0.1 5.3 26.3 4.5 1.8 0.1 0.2 10.7 60.8 7.7 5,5 0.2 0.3 18.0 75.6 LV - Livingstone - Gleyed Luvit • Humo Ferric Podzol Cation Base Tex- Organic T o t a l C:K Exchange Satur-. Horizon ture Depth pH Matter Nitrogen Ratio PI P2 Ca Mg K Na Capacity atlon cn % % ppm ppm meg/lOOg X Ap s i l 0-15 5.5 .8.6 0.54 19.9 16.2 22 2.42 1.37 0.08 0.36 33.9 12.5 AC 1-sil 15-20 5.5 6.4 0.24 15.2 9.4 24 1.35 0.08 0.19 25.4 6.4 Cg l - s i l 20-32.5 5.8 2.0 0.09 17.3 17.4 31 1. 03 Tr 0.19 12.6 •9.7 HCgl s 32.5-47.5 6.4 •. 15.7 27 0.72 0.61 0.06 0.18 6.3 , 24.9 IICg2 8 47.5-62.5 6.6 8.1 15 1.00 1.16 0.06 0.26 5.4 45.9 IUCgl c i ' , 62.5-92.5 6,5 ,. . (' , . .: 3.1 7 6.86 9.58 0.37 1.66 23.8 77.6 IIICg2 c 92.5+ 6.2 12,5 89 6.92 10.11 0.47 2.26 19.5 100.0 MY - Murrayville - Gleyed Luvis ; Humo Ferric Podzol Bfl 1 0-6 5.5 1 : 3.9 0.13 17.5 10.4 31 0. 92 0.10 0.45 16.5 8.9 Bf2 f s l 6-12 5.9 i : 2.3 0.08 14.7 15.0 45 0.67 0.05 0.09 11.5 7.0 IIBf l f s 12-20 5.9 1.4 0.06 i 13.7 12.9 54 0. 59 0.05 0.14 6.8 11.5 IUCgj c l 20-24 5.3 0.9 0.04 13.0 2.1 2 1.50 2.10 0.08 0.19 19.3 20.1 IUCgl c 24-29 5.2 0.6 0.03 10.6 1.0 2 3.02 3.78 0.16 0.39 24.3 30.2 IIICg2 c 29-36 5.7 0.6 0.03 13.0 2.1 7 9.99 15.23 0.36 1.16 38.5 ' 69.5 IIICg3 c 36-48 7.1 0.4 0.03 8.6 2.1 45 11.32 18.36 0.36 1.68 36.9 86.0 IIICg4 c 48+ 7.3 0.3 0.02 8.4 8.4 52 11.65 18.09 0.38 2.14 37.2 88.9 SS - Sunshine • - Orthic Humo Fer Podzol LF 1-0 4.8 37.1 0.79 27.3 . Bfl s i 0-10 5.7 3.9 0.12 18.6 1.4 0.3 0.1 0.1 15.4 12.4 Bf2 s i 10-20 5.7 , 2.5 0.08 17.5 0.7 0.2 0.1 .0.1„: . 11.7 .9.2 Bf3 8 l - l S 20-30 • 5.8 ' 1.2 0.04 18.5 0.8 ; 0.3 Tr 0.1 ' 7.3 16.1 BC s 30-38 5.7 0.4 0.02 13.9 0.4 0.2 Tr 0.1 ! 8.9 7.6 Cg 8-1 38-66 6.0 G/GM - Glacial outwash over Glacial Marine - no chemical or physical data available LG/GM- Lag Gravels over Glacial Marine - no chemical of physical data available. 0 - Organic BD.GN.JN BD - Banford - Terrlc Humlsol Tex- Cation Base Depth Organic T o t a l C:N Exchange Satur Horizon ture pH Matter Nitrogen Ratio PI P2 Ca Mg K Na Capacity 11 i on cm X % ppm Ppm g/lOOg- % Hp 57.5-40 4.3 55.8 1.99 16.3 30.0 54 4.3 1.2 0.5 • 0.3 81.7 7.7 F-H 40-27.5 4.2 91.2 2.28 23.2 5.0 12 3.9 1.3 0.2 0.3 52.4 10.9 FCg 27.5-0 4.7 38.0 0.96 22.9 1.0 12 7.6 3.7 0.2 0.2 . 62.8 18.6 Cgl 0-35 4.7 8.1 0.31 15.3 3.4 11 8.6 3.6 0.1 0.2 32.2 38.8 Cg2 35+ 4.6 11.8 6.4 0.2 0.3 29.4 63.6 GN - Glbson - Terric Mesisol Hp muck 0-12.5 4.0 38.7 1.33 16.8 7.5 22 2.20 0.08 0.19 56.2 4.4 FH1 muck 12.5-27.5 4.1 86.1 2.53 19.6 5.0 7 1.84 0.23 0.06 0.20 90.4 2.6 FH2 muck 27.5-40 4.6 82.6 2.43 19.6 3.5 5 6.45 0.31 0.06 0.15 92.6 7.5 Fl peat 40-65 4.8 87.0 2.04 24.6 3.0 4 7.81 2.58 0.06 0.31 91.0 11.8 F2 peat 65-95 5.0 40.4 0.84 27.9 5.0 17 7.33 2.62 0.05 0.27 60.2 17.1 L peat 95+ 4.8 52.3 0.97 31.1 10.0 23 7.46 2.52 Tr 0.33 73.6 14.0 JN - Judson - Terrlc Humlsol Hp muck 0-12.5 3.8 95.5 2.98 18.5 30.5 45 10.35 3.02 0.26 0.10 109.7 12.5 HI muck 12.5-27.5 3.9 110.7 2.42 26.4 5.5 7 5.94 1.95 0.23 0.12 105.5 7.8 H2 muck 27.5-42.5 4.1 147.5 1.76 37.6 4.0 6 11.32 2.70 0.16 0.20 107.7 13.4 FL1 peat 42.5-52.5 4.3 143.5 1.36 48.6 4.5 6 22.16 4.70 0.20 0.20 117.3 22.4 FL2 peat 52.5-82.5 4.5 107.2 1.19 52.0 3.0 3 24.83 5.11 0.09 0.20 123.1 24.6 82.5-102.5 4.6 115.5 0.99 67.5 1.5 2 27.48 7.86 0.09 0.20 137.3 26.0 LF peat 102.5-115 4.7 113.4 1.23 53.4 1.5 2 27.48 7.66 0.09 0.21 135.5 26.1 L l peat 115-160 5.0 10 7.0 2.28 27.1 1.0 2 19.28 5.80 0.09 0.21 110.0 23.1 L2 peat 160+ 5.1 98.7 2.27 25.1 1.0 2 15.69 4.96 0.11 0.21 98.3 21.3 1. PH Appendix IV. WATER CHEMISTRY DATA (1974-75) DATE SAMPLING STATION NUMBER D M Y 1 2 3 4 5 6 7 8 9 10 11 12 14 15 406 5.80 6.00 5.90 6.00 6.00 6.00 6.00 5.80 5.90 5.90 -0 .0 - 0 . 0 6.00 5.70 1806 6.20 6.60 6.70 7.00 6.80 6.80 6.80 6.80 7.10 6.80 - 0 . 0 - 0 . 0 6.80 6.80 307 6.80 7.60 7.20 7.30 7.40 6.60 7.30 7.20 7.30 7.10 - 0 . 0 - 0 . 0 7.10 7.00 1807 6.60 7.20 7.00 7.30 7.40 7.30 7.10 7.10 7.10 7.30 - 0 . 0 - 0 . 0 7.20 6.80 3107 7.00 7.50 7.30 7.40 7.40 7.40 7.20 7.20 7.10 6.80 -0 .0 - 0 . 0 7.40 6.90 1308 6.90 . 7.30 7.50 7.30 7.60 7.70 7.20 . 7.20 7.30 6.90 -0 .0 ' - 0 . 0 7.50 7.20 2708 8.20 7.50 7.50 7.30 7.40 7.30 7.10 7.00 7.10 6.90 - 0 . 0 - 0 . 0 7.50 6.80 110 7.60 7.80 5.60 7.50 7.50 7.40 7.40 7.30 7.40 - 0 . 0 -0 .0 - 0 . 0 7.60 7.00 2810 7.70 • 7.70 6.90 7.60 7.50 7.80 7.80 7.80 7.80 7.30 - 0 . 0 - 0 . 0 7.50 7.40 1111 6.80 7.40 7.20 7.30 7.20 7.20 7.50 7.70 7.00 - 0 . 0 - 0 . 0 6.80 7.20 6.90 2811 7.60 7.40 7.30 7.00 7.00 6.80 7.10 7.20 7.30 7.20 7.30 7.20 7.30 7.20 3012 7.00 7.30 7.20 7.20 7.00 7.00 7.30 7.00 7.10 7.;o 7.20 7.10 7.20 7.20 3001 7.10 7.20 7.30 6.70 7.00 6.50 7.00 7.00 7.30 7.10 7.20 7. 10 7.30 7.30 103 6.10 7.00 7.50 7.00 7.40 6.80 7.10 7.10 7.20 7.00 7.20 7.00 7.20 7.20 3103 7.00 7.00 7.30 7.10 7.00 6.90 7.00 7.00 7.00 7.00 7.50 7.30 7.30 7.50 * VALUES OF - 0 . 0 INDICATE MISSING DATA Appendix IV (can't) 2. OXIDATION REDUCTION POTENTIAL (mV) DATE SAMPLING STATION NUMBER 0 M Y I 2 3 4 5 6 7 8 9 10 11 12 14 15 60.00 - 0 . 0 - 0 . 0 40.00 - 0 . 0 - 0 . 0 L60.00 -0 .0 - 0 . 0 175.00 -0 .0 . - 0 .0 L75.00 -0 .0 - 0 . 0 5.00 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 .0 - 0 .0 - 0 . 0 - 0 . 0 >50.00 - 0 . 0 -0 .0 - 0 .0 - 0 . 0 265.00 406 180.00 160.00 110.00 130.00 170.00 150.00 160.00 120.00 140.00 1806 260.00 210.00 100.00 80.00 120.00 70.00 50.00 20.00 180.00 307 • 160.00 160.00 160.00 160.00 165.00 165.00 160.00 165.00 170.00 1807 140.00 140.00 100.00 340.00 190.00 220.00 265.00 250.00 180.00 3107 180.00 185.00 180.00 180.00 170.00 170.00 175.00 170.00 170.00 1308 ' 100.00 0.0 15.00 10.00 . 20.00 15.00 0.0 10.00 0.0 2708 -0 .0 - 0 . 0 -0.0 - 0 . 0 -0 .0 - 0 . 0 - 0 .0 -0 .0 -0 .0 110 170.00 650.00 300.00 330.00 300.00 340.00 320.00 350.00 250.00 2810 250.00 300.00 400.00 250.00 130.00 130.00 110.00 150.00 50.00 1111 365.00 520.00 330.00 390.00 400.00 500.00 365.00 440.00 300.00 2811 240.00 240.00 210.00 280.00 90.00 230.00 260.00 250.00 270.00 3012 150.00 260.00 100.00 180.00 150.00 180.00 170.00 140.00 140.00 3001 430.00 130.00 330.00 -20.00 30.00 460.00 300.00 230.00 400.00 103 520.00 520.00 583.00 700.00 630.00 610.00 600.00 440.00 660.00 3103 530iOO 530.00 560.00 510.00 510.00 710.00 500.00 500.00 480.00 90.00 90.00 0.0 20.00 165.00 175.00 150.00 170.00 180.00 175.00 0.0 0.0 - 0 . 0 -0 .0 350.00 390.00 280.00 170.00 345.00 345.00 250.00 500.00 150.00 160.00 340.00 20.00 540.00 540.00 470.00 500.00 * VALUES OF -0.0 INDICATE MISSING DATA ~o Appendix IV (oon't) 3. DISSOLVED OXYGEN (ppm) DATE SAMPLING STATION NUMBER D M Y 1 2 3 4 5 6 7 8 9 10 11 12 14 15 406 8.20 10.40 10.60 10.50 9.00 10.90 10.40 10.90 10.80 10.80 -0.0 -0.0 10.40 10.00 1806 8.10 • /" ' 6.70 6.20 11.50 10.80 11.80 9.60 10.40 9.20 5.CO -0.0 -0.0 9.00 j 7.80 307 * (7.00.. ' 7.40 8.40 9.60 10.20 8.40 8.80 10.20 8.20 5.80 -0.0 -0.0 10.00 4.40 1807 9.00 9.90 10.20 10.90 10.80 10.20 10.00 11.40 9.20 7.50 -0.0 -0.0 11.60 3.30 3107 11.00 8.30 8.70 11.40 12.10 10.30 7.60 11.20 8.00 1.40 -0.0 -0.0 11.30 6.40 1308 7.20 7.80 11.30 11.40 11.40 11.80 10.20 10.80 10.10 0.50 -0.0 -0.0 11.20 4.00 2708 11.40 7.40 5.00 11.30 11.40 9.40 10.00 11.00 8.60 1.40 -0.0 -0.0 11.20 3.00 110 8.20 7.60 3.00 10.40 10.00 9.80 9.40 10.00 8.20 -0.0 -0.0 -0.0 9.00 4.60 2810 9.40 7.70 3.10 10.80 10.70 11.40 10.00 10.80 9.20 1.00 -0.0 -0.0 10.00 4.00 1111 11.80 9.20 5.80 11.30 11.40 11.80 10.00 11.30 . 9.40 -0.0 -0.0 9.60 10.50 8.20 2811 11.00 9.30 9.10 12.80 12.00 12.50 12.40 12.10 12.80 11.90 10.10 9.00 11.20 10.10 3012 13.00 11.60 12.80 12.50 11.80 14.60 12.20 14.30 14.30 12.60 12.40 13.00 13.80 12.80 3001 12.60 11.60 11.60 13.20 12.60 12.00 13.00 12.30 13.70 13.20 13.20 11.70 12.80 11.20 103 12.50 t 11.40 13.40 13.40 . 12.40 12.80 13.20 13.00 12.80 12.80 14.00 12.80 13.60 12.60 3103 ' -0.0 -0.0 -0.0 13.00 12.20 12.80 12.20 11.90 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 * VALUES OF -0.0 INDICATE MISSING DATA Appendix IV (con't) 4. SPECIFIC COJDOCITvTrY (umho) DATE D M Y 406 1806 307 1807 3107 1308 2708 110 2810 1111 2811 3012 3001 103 3103 SAMPLING STATION NUMBER 6 7 8 9 10 11 12 14 15 68.00 62.00 81.00 142.00 135.00 340.00 70.00 ,45.00 80.00 •55.00 90.00 45.00 48.00 85.00 95.00 105.00 102.00 178.00 182.00 380.00 105.00 100.00 105.00 165.00 140.00 252.00 170.00 140.00 410.00 120.00 165.00 130.00 435.00 90.00 190.00 165.00 650.00 140.00 110.00 600.00 110.00 135.00 460.00 90.00 130.00 240.00 85.00 120.00 60.00 80.00 75.00 55.00 90.00 60.00 98.00 112.00 108.00 95.00 110.00 95.00 100.00 90.00 90.00 80.00 145.00 95.00 90.00 80.00 100.00 80.00 90.00 85.00 80.00 80.00 60.00 60.00 40.00 50.00 50.00 70.00 40.00 40.00 50.00 70.00 30.00 60.00 40.00 60.00 49.00 89.00 70.00 96.00 85.00 105.00 95.00 108.00 95.00 105.00 80.00 90.00 85.00 85.00 90.00 95.00 75.00 85.00 90.00 190.00 700.00 65.00 50.00 75.00 40.00 40.00 50.00 80.00 40.00 65.00 65.00 80.00 42.00 62.00 78.00 92.00 55.00 100.00 78.00 132.00 90.00 145.00 65.00 140.00 60.00 125.00 65.00 -0.0 50.00 1400.00 60.00 -0.0 30.00 40.00 35.00 40.00 75.00 75.00 60.00 60.00 70.00 75.00 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 50.00 30.00 40.00 40.00 45.00 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 110.00 70.00 40.00 50.00 40.00 55.00 55.00 102.00 95.00 108.00 20.00 90.00 60.00 40.00 60.00 45.00 70.00 43.00 75.00 95.00 72.00 100.00: 115.00 95.00 90.00 90.00 100.00 95.00 80.00 60.00 50.00 50.00 60.00 40.00 35.00 40.00 » VALUES OF -0.0 INDICATE MISSING DATA Appendix IV (con't) 5. TEMPERATURE ( C) DATE D M Y SAMPLING STATION NUMBER 6 7 8 9 10 11 12 14 15 406 1806 307 1807 3107 1308 2708 110 2810 1111 2811 3012 3001 103 3103 10.00 19.00 13.00 11.00 21.00 14". 00 22.00 12.00 9.00 6.00 8.00 0.0 1.00 5.00 8.00 10.00 16.00 12.00 12.00 19.00 14.00 18.00 10.00 ! i 8.00 6.00 8.00 0.0 1.00 5.00 7.00 10.00 18.00 14.00 14.00 18.00 16.00 18.00 12.00 9.00 6.00 8.00 0.0 0.0 5.00 8.00 10.00 14.00 12.00 12.00 14.00 12.00 12.00 10.00 8.00 6.00 4.00 5.00 0.0 . 5.00 : 5.00 10.00 14.00 10.00 11.00 12.00 12.00 10.00 10.00 9.00 6.00 4.00 7.00 2.00 5.00 5.00 10.00 15.00 12.00 12.00 18.00 15.00 13.00 10.00 9.00 6.00 4.00 5.00 3.00 5.00 5.00 10.00 15.00 12.00 12.00 19.00. 13.00 13.00 10.00 8.00 6.00 4.00 7.00 0.0 5.00 6.00 10.00 13.00 10.00 10.00 13.00 12.00 12.00 10.00 8.00 6.00 4.00 7.00 0.0 5.00 6.00 10.00 13.00 12.00 13.00 18.00 14.00 14.00 10.00 8.00 6.00 4.00 0.0 0.0 5.00 6.00 10.00 20.00 12.00 16.00 17.00 13.00 14.00 -oJo 10.00 -0.0 4.00 3.00 0.0 5.00 6.00 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 8.00 3.00 I . 00 5.00 11.00 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 6.00 10.00 0.0 0.0 5.00 9.00 10.00 16.00 11.00 11.00 14.00 12.00' 14.00 i IO.oo; 8.00 6.00 9.00 0.0 1.00 5.00 8.00 10.00 18.00 11.00 13.00 19.00 14.00 14.00 11.00 9.00 5.00 6.00 4.00 1.00 5.00 7.00 * VALUES OF -0.0 INDICATE MISSING DATA Appendix IV (con't) 6. TOTAL ACIDITY (mg/1 Ca(CO ) EQUIVALENT) SAMPLING STATION NUMBER D M Y 2 3 4 5 6 7 8 9 10 11 406 3.90 4.80 6.20 4.30 3.90 3.10 3.90 3.90 3.90 7.80 - 0 . 0 - 0 . 0 5.80 3.90 1806 4.80 3.20 3.60 3.60 3.60 4.00 3.60 3.60 2.00 4.80 - 0 . 0 - 0 . 0 4.00 3.60 307 4.00 3.60 3.60 3.60 3.20 3.20 4.00 4.00 2.80 4.00 - 0 . 0 • - 0 . 0 3.60 4.00 1807 5.60 4.40 4.40 3.20 3.20 3.20 4.00 5.60 2.00 6.80 - 0 . 0 - 0 . 0 4.40 4.40 3107 2.80 2.00 0.0 4.00 1.60 3.20 2.40 3.60 2.80 0.0 - o . o " - 0 . 0 3.60 .4.00 1308 2.00 3.20 0.0 1.601 2.40 2.40 2.40 2.00 2.80 4.80 - 0 . 0 - 0 . 0 2.40 4.40 2708 3.20 2.80 0.0 2.80 j 3.60 2.00 3.60 4.00 3.60 6.40 r-0.0 - 0 . 0 2.80 3.20 110 ; 4.00 6.00 0.0 4.00 4.00 6.00 t 4.00 4.00 4.00 - 0 . 0 - 0 . 0 - 0 . 0 6.00 6.00 2810 4.00 6.00 8.00 2.00 i 4.00 4.00 6.00 4.00 4.00 34.00 - 0 . 0 - 0 . 0 4.00 ; 6.00 1111 2.00 4.00 5.00 5.00 6.00 3.00 11.00 36.00 4.00 - 0 . 0 - 0 . 0 5.00 4.00 3.00 2811 4.00 4.00 2.00 4.00 2.00 4.00 4.00 4.00 4.00 4.00 3.00 5.00 4.00 3.00 3012 5.00 2.00 1 4.00 4.00 ,.; 4.00 4.00 6.00 6.00 4.00 4.00 4.00 4.00 6.00 4.00 3001 6.00 3.00 3.00 4.00 4.00 4.00 4.00 5.00 4.00 4.00 4.00 4.00 5.00 , 4 . 0 0 103 4.00 4.00 4.00 3.00 4.00 5.00 5.00 4.00 5.00 5.00 11.00 6.00 4.00 5.00 3103 4.00 4.00 5.00 3.00 , 4.00 5.00 4.00 5.00 5.00 3.00 5.00 7.00 4.00 4.00 • VALUES OP - 0 . 0 INDICATE MISSING DATA Appendix IV (ccn't) 7. TOTAL AIJOtfJNTTY (mg/1 Ca(C03)2 EQUIVALENT) DATE D M Y SAMPLING STATION NUMBER 6 7 8 9 10 11 12 14 15 406 1806 307 1807 3107 1308 2708 110 2810 1111 2811 3012 3001 103 3103 27.30 44.80 47.20 44.00 46.00 50.00 50.00 46.40 50.00 41.30 44.00 24.00 10.60 9.30 11.20 27.30 39.60 40.00 42.00 40.40 44.40 44.00 42.80 49.20 40.00 33.60 21.60 9.00 7.90 10.50 39.00 80.80 80.00 60.80 89.60 97.20 90.80 97.20 293.60 62.40 38.40 24.80 11.50 7.80 15.40 23.40 32.40 32.80 31.20 33.60 36.40 36.00 35.20 36.00 34.40 26.40 16.80 7.60 7.10 7.70 23.40 35.20 34.80 36.40 33.20 36.80 73.20 35.20 37.60 30.40 28.80 22.40 9.20 7.40 9.80 23.40 35.20 34.80 36.40 36.00 40.80 42.40 44.00 39.20 36.80 32.80 20.00 8.70 7.30 9.80 23.40 30.00 30.80 31.20 30.00 35.60 32.00 36.80 32.80 90.40 24.80 18.40 7.30 5.70 8.40 23.40 29.20 32.80 28.40 28.40 30.80 28.40 32.00 28.80 347.20 33.60 22.40 8.40 7.10 7.70 23.40 34.00 34.80 34.00 33.20 35.60 35.20 36.80 32.80 28.80 25.60 17.60 7.80 6.60 7.70 23.40 -0.0 -0.0 31.20 19.50 47.60 -0.0 -0.0 48.40 33.20 49.60 -0.0 -0.0 48.80 41.60 56.80 -0.0 -0.0 46.80 44.00 74.00 -0.0 -0.0 : 48.00 35.60 80.00 -0.0 -0.0 53.20 36.40 80.00 -0.0 -0.0 53.60 88.80 -0.0 -0.0 -0.0 52.00 37.60 296.00 -0.0 -0.0 48.00 30.40 -0.0 -0.0 0.0 44.00 25.60 21.60 25.60 24.00 40.00 20.00 20.80 19.20 20.80 24.80 19.20 7.00 7.60 8.40 11.20 7.30 9.00 6.00 7.30 9.20 5.70 9.10 8.40 9.10 11.90 8.40 * VALUES OF -0.0 INDICATE MISSING DATA Appendix IV (can't) ' 8. TOTAL BICARBONATE ALIvALINTTY (mg/1 Ca(C03)2 EQUIVALENT) DATE SAMPLING STATION NUMBER D M Y I 2 3 4 5 6 7 8 9 10 . 11 12 14 15 406 27.30 27.30 39.00 23.40 23.40 23.40 23.40 23.40 23.40 23.40 -0.0 -0.0 31.20 19.50 1806 44.80 39.60 80.80 32.40 35.20 35.20 30.00 29.20 34.00 47.60 -0.0 -0.0 48.40 33.20 307 47.20 40.00 80.00 32.80 34.80 34.60 30.80 32.80 34.80 49.60 -0.0 -0.0. 48.80 41.60 1807 44.00 42.00 60.80 31.20 36.40 36.40 31.20 28.40 34.00 56.80 -0.0 -0.0 46.80 44.00 3107 46,00 40.40 35.20 33.60 33.20 36.00 30.00 28.40 33.20 69.20 -0.0 -0.0 48.00 35.60 1308 50.00 44.40 90.00 36.40 36.80 40.80 35.60 30.80 35.60 80.00 -0.0 -0.0 53.20 36.40 2708 50.00 44.00 0.0 36.00 73.20 42.40 32.00 28.40 35.20 80.00 -0.0 -0.0 53.60 88.80 110 46.40 42.80 0.0 , 35.20 35.20 44.00 36.80 32.00 36.80 -0.0 -0.0 -0.0 52.00 37.60 2810 50.00 49.20 293.60 36.00 37.60 39.20 32.80 28.80 32.80 296.00 -0.0 -0.0 48.00 30.40 1111 41.30 40.00 62.40 34.40 30.40 36.80 90.40 347.20 28.80 -0.0 -0.0 0.0 44.00 25.60' 2811 44.00 33.60 38.40 26.40 28.80 32.80 24.80 33.60 25.60 21.60 25.60 24.00 40.00 20.00 3012- 24.00 21.60 24.80 16.80 22.40 20.00 18.40 ' 22.40 17.60 20.80 19.20 20.80 24.80 19.20 3001 10.60. 9.00 11.50 7.60 9.20 8.70 7.30 8.40 7.80 7.00 7.60 8.40 11.20 7.30 103 9.30 ^  7.90 7.80 7.10 7.40 7.30 5.70 7.10 6.60 9.00 6.00 7.30 9.20 5.70 3103 - 11.20 10.50 15.40 7.70 9.80 9.80 8.40 7.70 7.70 9.10 8.40 9.10 11.90 8.40 * VALUES OF -0.0 INDICATE MISSING DATA Appendix IV (con't) 9. TOTAL Ca(CD3)2 HARDNESS (ppm) DATE D M Y SAMPLING STATION NUMBER 6 7 8 9 10 11 12 14 15 406 1806 307 1807 3107 1308 2708 110 2810 1111 2811 3012 3001 103 3103 30.70 41.15 I 42.57 44.45 40.41 49.99 38.50 47.33 44.45 41.56 37.17 24.69 28.48 22.33 32.36 23.05 37.29 37. 14 41.93 38.11 53.50 34.31 40.22 45.64 40.19 32.58 22.45 26.18 22.38 31.07 27.63 56.95 55.22 53.87 66.46 71.97 57.09 181.27 72.96 60.06 35.33 29.45 33.27 24.08 35.48 19.90 31.64 33.46 33.37 34.72 37.48 33.23. 41.41 37.97 35.19 26.39 22.25 22.22 16.98 21.51 22.54 35.38 37.09 38.54 39.30 40.46 37.08 42.39 39.41 35.60 31.91 21.65 26.39 21.96 27.15 22.12 34.65 35.20 36.71 35.95 40.34 34.11 41.31 39.42 37.38 32.60 21.46 24.73 20.41 33.59 20.51 28.62 29.62 30.44 28.68 31.13 25.49 33.92 31.15 36.33 25.96 18.74 23.42 17.78 21.99 24.80 31.97 33.06 32.67 30.87 31.81 29.20 35.43 34.33 55. 16 28.64 23.81 30.81 28.26 36.53 18.74 27.38 22.75 27.38 24.69 27.45 24.17 26.50 24.20 24.22 25.01 18.03 17.86 15.20 16.94 23. ef. 31.04 36.54 38.01 46.20 54.79 55.39 -0.0 115.11 -0.0 31.22 25.15 22.95 24.01 22.19 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 22.89 15.68 18.29 16.40 17.86 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 37.24 31.89 15.27 20.63 15.88 22.12 25.33 38.54 34.28 40.20 40.03 44.76 41.96 44.64 41.30 36.84 31.17 22.06 .28.04 19.77 29.23 17.61 25.92 31.53 28.03 28.58 42.72 23.21 28.61 22.30 18.95 22.74 16.53 18.09 12.41 19.88 * VALUES OF -0.0 INDICATE MISSING DATA Appendix IV (con't) 10. TOTAL DISSOLVED RESIDUE (mg/1) DATE D M Y SAMPLING STATION NUMBER 6 7 8 9 4 10 11 12 14 15 406 1806 307 1807 3107 1308 2708 110 2810 1111 2811' 3012 3001 103 3103 40.00 108.00 230.00 76.00 126.00 156.00 134.00 • 0.0 83.00 30.00 30.00 114.00 80.00 54.00 78.00 120.00 116.00 200.00 56.00 134.00 142.00 118.00 4.00 116.00 68.00 70.00 100.00 66.00 64.00 88.00 100.00 188.00 34b.00 130.00 368.00 348.00 330.00 147.00 382.00 144.00 100.00 122.00 98.00 74.00 124.00 0.0 78.00 170.00 34.00 118.00 126.00 98.00 0.0 90.00 42.00 58.00 104.00 54.00 56.00 78.00 0.0 64.00 190.00 46.00 126.00 116.00 106.00 2.00 108.00 60.00 68.00 86.00 76.00 56.00 72.00 120.00 112.00 182.00 42.00 124.00 118.00 100.00 2.00 70.00 56.00 68.00 96.00 70.00 44.00 80.00 160.00 46.00 164.00 34.00 84.00 72.00 70.00 1.00 70.00 106.00 46.00 88.00 58.00 58.00 78.00 40.00 120.00 178.00 48.00 112.00 122.00 94.00 2.00 96.00 298.00 64.00 100.00 64.00 90.00 96.00 60.00 38.00 138.00 38.00 BO.00 76.00 70.00 0.0 60.00 26.00 56.00 98.00 32.00 52.00 50.00 40.00 78.00 156.00 68.00 136.00 130.00 110.00 -0.0 512.00 -0.0 78.CO 116.00 54.00 70.00 66.00 -0.0 -0.0 -0.0 -0.0 -0.0 • -0.0 -0.0 -0.0 -0.0 -0.0 50.00 72.00 40.00 32.00 54.00 -0.0 -0.0 -0.0 -0.0 . -0.0 -0.0 -0.0 : -0.0 -0.0 122.00 82.00 98.00 46.00 46.00 52.00 40.00 38.00 158.00 42.00 116.00 110.00 96.00 0.0 94.00 56.00 60.00 96.00 56.00 70.00 44.00 100.00 128.00. 272.00 22.00 90.00 94.00 70.00 3.00 70.00 14.00 46.00' 110.00 40.00 32.00 14.00 * VAIJES OF -0.0 INDICATE MISSING DATA Appendix IV (con't) 11. Total Kjeldahl Nitrogen (ppm) DATE SAMPLING STATION NUMBER D M Y 1 2 3 4 5 6 7 8 9 10 11 12 14 15 406 0.47 0.73 0.56 0.39 0.84 0.62 0.56 0.34 0.84 0.78 -0.0 -0.0 0.50 0.84 1806 0.11 0.11 0.28 0.06 0.0 0.56 0.39 0.45 0.62 0.22 -0.0 -0.0 0.90 0.90 307 0.11 0.45 1.01 0.67 0.11 0.45 0.50 0.22 1.01 0.67 -0.0 -0.0 0.73 0.62 1807 0.28 0.11 0.62 0.67 -.0.45 0.11 0.34 0.62 0.62 1.45 -0.0 -0.0 0.28 0.67 3107 0.31 0.11 0.62 0.42 0.25 0.53 0.48 0.42 0.67 0.64 -0.0 -0.0 0.36 0.56 1308 0.28 0.08 0.17 0.28 0.06 0.06 0.31 0.22 0.0 0.22 -0.0 -0.0 0.08 0.53 2708 0.14 0.06 0.67 0.06 0.14 0.0 0.06 0.34 0.17 1.51 -0.0 -0.0 0.28 0.45 110 0.22 0.39 13.80 0.39 2.52 3.08 0.56 0.62 0.48 -0.0 -0.0 -0.0 0.53 0.87 2810 0.22 2.46 1.86 3.70 3.02 3.02 0.11 1.85 7.56 7.56 -0.0 -0.0 3.25 0.73 1111 0.39 0.95 0.90 1.51 . 0.72 -0.0 -0.0 18.98 2.02 -0.0 -0.0 2.41 0.39 1.01 2811 0.62 1.23 1.12 1.46 0.67 0.90 0.95 0.95 1.18 1.96 0,73 0.90 0.84 0.90 3012 0.23 0.28 0.13 0.21 0.17 0.30 0.23 0.53 0.21 0.51 0.23 0.40 0.25 0.38 3001 0.27 0.23 0.17 0.23 0.26 0.0 0.98 1.21 0.32 0.56 0.17 0. 16 0.0 0.40 103 0.0 3.59 0.14 0.26 0.01 0.03 0.34 0.81 0.24 0.0 0.01 0.42 0.32 0.36 3103 1.23 2.61 2.38 1.61 2.69 2.30 3.07 3.07 0.61 1.38 0.85 0.46 2. 15 1.08 • VALUES OF -0.0 INDICATE MISSING DATA Appendix IV (can't) 12. Total Organic Carbon (ppm) SAMPLING STATION NUMBER 0 M Y 1 2 3 4 s I '•, ~ ~ . i * 5 6 7 8 9 1 0 11 12 14 15 406 7.60 6.80 6.90 6.70 7.00 1.80 14.40 5.70 7.40 6.50 -0.0 -0.0 8.80 4.40 1806 0.12 3.22 0.0 12.57 0.88 3.41 2.15 2.97 4.19 1*96 -0.0 -0.0 0.88 2.84 307 0.51 2.22 2.41 1.27 0.70 2.47 1.08 2.53 3.86 2.72 -0.0 -0.0 1.40 4.11 1807 1.94 2.32 5.50 13.73 4.44 3.57 3.25 2.82 4.19 6.12 -0.0 -0.0 3.82 9.55 3107 1.00 1.10 2.20 0.60 0.0 0.80 1.00 1.40 3.30 2.91 -0.0 -0.0 1.50 4.60 1308 2.20 0.90 5.60 2.40 0.90 2.20 1.80 1.00 4.10 4.40 -0.0 -0.0 2.40 5.30 2708 2.40 1.90 2.20 0.20 0.20 0.30 1.10 0.40 2.70 1.50 -0.0 -0.0 0.70 4.70 110 0.12 0.0 0.0 0.70 0.12 0.12 1.30 0.70 2.60 -0.0 -0.0 -0.0 0.12 4.40 2810 0.0 2.40 4.80 0.0 1.20 1.20 1.20 1.20 3.60 26.40 -0.0 -0.0 1.20 6.00 1111 23.00 26.30 31.00 24.20 25.70 25.00 30.20 57.40 25.70 -0.0 -0.0 40.10 26.30 27.60 2611 22.30 24.20 25.70' 24.20 8.40 20.40 7.80 6.50 9.10 7.80 8.40 1.00 6.50 9.80 3012 2.60 1.90 1.30 0.10 0.70 ' 1.30 1.90 0.70 1.90 0.70 2.60 9.60 0.10 0.70 3001 2.50 0.60 3.80 0.0 0.60 1.20 1.90 1.90 1.20 1.20 3.10 3.20 1.20 2.50 103 . 4.00 3.70 6.40 3.20 2.90 3.20 4.00 2.40 4.80 7.20 4.80 6.00 4.80 5.60 3103 8.10 5.30 8.60 8.60 8.10 8.10 7.80 5.60 10.70 8.90 8.90 16.00 14.40 9.90 « VALUES OF -0.0 INDICATE MISSING DATA Appendix IV (can't) 13. Nitrate-Nitrogen (ppm) DATE SAMPLING STATION NUMBER D M Y 1 2 3 4 5 6 7 8 9 10 11 12 14 15 406 1.20 1.00 1.00 0.90 1.30 1.10 1.30 3.20 0.70 1.30 -0.0 -0.0 0.70 0.70 1806 • 2.40 2.80 0.30 3.50 3.80 3.20 2.90 4.70 1.00 0.80 -0.0 -0.0 1.30 0.90 307 3.00 3.40 . 0.70 4.30 4.50 4.00 4.10 5.20 0.90 0.70 -0.0 -0.0 1.60 1.60 1807 2.20 2.70 1.50 3.10 3.30 2.70 2.80 4.40 1.00 ! 0. 30 -0.0 -0.0 1.20 0.60 3107 2.50 3.30 1.10 4.20 4.50 3.80 3.20 4.50 1.00 0.40 -0.0 -0.0 1.40 1.00 1308 2.30 3.40 1.00 4.20 4.40 3.80 3.30 4.50 0.60 0.40 .-0.0 -0.0 1.20 1.00 2708 2.60 3.80 1 0.90 : 4.60 4.20 4.10 3.10 4.60 . 0.80 : 0.70 -0.0 -0.0 1.40 1.10 110 \ ,2.90; 4.10 7.70 4.80 '. 4.60 • 4.40 4.60 4.60 0.60 '-0.0 -0.0 , "0.0 1.60 : 1.10 2810 2.70 3.80 0.80 4.30 4.60 : 4.20 ) 3.00 ; 4.70 •;. 0.90 2.40 -0.0 -0.0 . 2.00 : 1.10, 1111 0.0 2.70 1.20 3.50 3.70 3.30 2.60 4.10 1.00 -0.0 -0.0 5.00 1.50 0.50 2811 0.0 2.70 3.00 3.20 : ,3.30 3.10 ' 2.80 -0.0 2.50 5.40 1.20 1.80 1.40 2.40 3012 2.00 2.20 2.50 2.40 2.30 2.30 2.60 0.40 2.00 4.50 1.10 1.40 1.70 3.00 3001 2.80 3.30 1.20 4.90 4.70 5.00 5.60 8.30 3.40 5.60 3.30 2.00 2.90 3.20 103 1.40 1.40 1.00 1.60 1.90 1.60 2.10 4.90 -0.0 3.20 1.40 0.20 0.90 0.90 3103 2.50 2.90 1.20 3.30 3.60 3.40 4.60 6.70 1.40 3.10 0.60 0.70 1.40 1.10 * VALUES OF -0.0 INDICATE MISSING DATA Appendix IV (con't) 14. Chloride (ppm) SAMPLING STATION NUMBER D M Y 2 3 4 5 6 7 8 9 10 11 12 406 0.0 1.40 5.50 0.0 0.0 0.0 0.0 1.10 . 0.0 0.0 -0.0 -0.0 0.0 0.0 1806 19.40 8.30 65.10 0.0 4.20 1.90 1.00 1.40 0.0 1.30 -0.0 -0.0 0.20 0.40 307 25.80 12.50 73.70 2.20 4.30 4.30 1.40 3.20 1.70 2.30 -0.0 -0.0 0.70 0.70 1807 16.00 9.70 34.20 0.30 3.60 2.20 0.70 1.40 0.0 8.00 -0.0 -0.0 0.0 0.30 3107 15.30 10.60 106.50 1.00 3.30 6.40 0.70 1.00 0.40 2.10 -0.0 -0.0 0.0 0.0 1308 25.10 1.20 110.40 2.90 3.60 4.30 1.40 2.90 0.0 3.60 -0.0 -0.0 0.70 0.0 2708 17.80 10.60 96.60 2.10 4.00 3.10 1.40 1.40 0.0 3.60 -0.0 -0.0 0.40 0.0 110 12.80 9.90 105.10 4.30 5.70 2.80 2.80 2.80 0.0 -0.0 -0.0 -0.0 0.0 1.40 2810 0.0 22.80 113.60 0.70 0.70 2.10 0.0 0.0 0.0 44.00 -0.0 -0.0 0.0 0.70 1111 0.0 19.90 46.90 5.00 i 8.50 5.70 4.30 14.20 14.20 -0.0 -0.0 7.10 0.0 0.0 2811 0.0 9.90 22.00 0.0 3.60 1.40 1.40 2.10 0.0 2.10 2.10 2.10 : o.o 3.60 3012 1.40 4. 10 . 9.60 0.0 0.0 0.70 0.70 0.70 0.0 2.10 0.0 0.0 0.70 0.0 3001 11.40 9.90 -0.0 1.50 8.40 4.50 1.50 3.00 0.80 4.60 1.50 1.50 0.0 0.80 103 1.50 2.30 5.30 0.0 3.00 0.80 0.80 1.50 -0.0 3.80 0.0 0.0 0.0 . 0.0 3103 6.80 3.20 27.50 0.80 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 * VALUES OF -0.0 INDICATE MISSING DATA Appendix IV (can't) 15. Total Acid Digestible Phosphate Phosphorus (ppm) DATE SAMPLING STATION NUMBER D M Y 1 . 2 3 4 5 6 7 8 9 10 11 12 14 15 406 0.12 0.28 0.04 0.04 0.04 0.16 0.04 0.12 0.08 0.08 -0.0 "0.0 0.16 0.20 1806 0.12 0.12 0.04 0.04 0.04 0.04 0.04 0.12 0.04 0.04 -0.0 -0.0 0.04 0.04 307 0.04 0.04 0.11 0.04 0.01 0.04 0.04 0.06 .0.04 0.04 -0.0 - 0.0 0.07 0.02 1807 0.08 0.05 0.04 0.04 0.04 0.03 0.04 0.06 0.04 0.04 . 0.0 -0.0 0.04 0.08 3107 0.04 0.04 0.04 0.06 . 0.0-3 0.03 0.04 0.03 0.05 0.04 - 0.0 -0.0 0.03 0.03 1308 0.08 0.04 0.03 0.03 0.04 0.03 0.04 0.05 0.05 0.03 - 0.0 .0.0 0.03 0.04 2708 0.0 . 0.0 0.20 0.0 0.16 0.04 0.04 0.0 0.0 . 0.08 - 0.0 -0.0 0.04 0.04 110 0.04 0.04 0.24 0.04 0.04 0.04 0.04 0.08 0.08 -0.0 -0.0 •0.0 0.04 0.04 2810 0.12 0.20 0.72 0.04 0.0 0.17 1.88 0.12 0.08 2.56 . 0.0 0.0 0.16 0.12 1111 0.04 0.12 0.52 0.12 0.24 0.29 1.88 2.96 0.36 -0.0 -0.0 2.40 0.28 0.24 2811 0.04 0.04 0.24 0.04 0.04 0.08 0.08 0.20 0.04 0.08 0.08 0.04 0.08 0.12 3012 0.12 0.08 0.16 0.12 0.08 0.12 0.16 0.28 0.16 0.12 0.08 0.20 0.08 0.12 3001 0.0 0.08 0.0 1.44 0.08 0.0 0.04 0.12 0.04 0.04 0.0 0.08 0.04 0.04 103 0.09 0.03 0.01 0.05 0.01 0.01 0.0 0.02 0.71 0.05 0.0 0.0 0.0 0.02 3103 - 0.04 0.05 0.09 0.03 . 0.03 0.03 0.05 0.10 0.21 0.05 0.08 0.11 0.03 0.05 • VALUES OF -0.0 INDICATE MISSING DATA Appendix IV (can't) 16. SULFATE (gxlO ) SAMPLING STATION NUMBER D M Y 1 2 3 4 5 6 7 8 9 10 11 IZ 406 9.50 9.40 9.20 7.90 7.50 8.50 6.90 7.20 6.90 8.40 -0.0 -0.0 6.80 7.40 1806 9.50 6.40 16.70 5.30 4.20 4.90 5.10 5.10 9.80 5.60 -0.0 -0.0 6.30 9.80 307 9.40 10.90 22.10 6.60 5.00 6.40 5.90 5.90 8.70 8.40 -0.0 -0,0 • 7.60 9.00 1807 11.90 9.50 19.00 6.50 ' 5.60 i 6.90 i , 6.00 6.70 9.80 13.30 -0.0 -0.0 ;10.90 12.60 3107 9.40 ! ; 6.20 • i • 21.40 ,4.90 : 2.10 ;' • 4.00 4.50 v: 5.30 3.90 i 6.20 . -0.0 -0.0 : 8.60 10.90 1308 10.40 6.40 26.00 5.50 1.40 ; ' 4.90 4.80 4.10 3.90 1.30 -0.0 -0.0 1 7.90 3.80 2708 8.70 5.60 21.80 4.20, 1.70 4.30 2.00 2.80 ' 2.20 1.50 -0.0 -0.0 6.40 ' 3.30 110 , 2.80 2.10 26.20 2.20 1.50 1.20 1.4 1.4 1.8 -0.0 , -0.0 -0.0 1 tit '= 2.1 2B10 2.30 3.30 10.80 1.80 1.30 0.40 1.6"» 1.60 2.40 16.20 -0.0 -0.0 2.30 2.70 1111 2.70 3.80 7.00 2.40 2.40 2.80 4.70 15.20 2.90 -0.0 -0.0 8.70 4.10 > 2.10 2811 2.90 3.30 3.80 2.70 2.10 2.40 2.40 1.50 2.80 2.40 2.40 6.80 2.50 2.70 3012 3.60 3.00 3.90 2.60 2.20 2.60 2.40 1.70 2.50 2.10 1.90 3.50 2.70 2.60 3001 2.90 2.50 3.20 1.80 1.70 2.00 2.00 1.80 2.20 1.80 2.20 3.80 2.70 2.30 103 2.60 2.40 3.50 2.40 2.00 2.00 1.90 4.10 2.00 3.40 2.10 3.80 2.50 2.00 3103 3.40 3.00 6.40 1.50 1.20 1.60 1.50 1.50 1.80 2.00 2.10 6.80 3.20 1.80 * VALUES OF -0.0 INDICATE MISSING DATA S O o 6-Appendix IV (can't) 17. Calcium (ppm) SAMPLING STATION NUMBER 0 M Y 1 2 3 4 5 6 7 8 9 10 11 12 406 3.81 3.56 3.68 3.19 3.46 3.50 3.35 4.31 3.05 4.14 -0.0 -0.0 3.53 2.96 1806 3.81 5.30 5.81 4.36 4.42 4.60 4.46 5.36 4.66 6.08 -0.0 -0.0 4.85 3.60 307 5.33 5.25 5.60 4.50 4.69 4.80 4.68 5.40 3.22 7.36 -0.0 -0.0 4.92 3.79 1807 6.35 6.00 7.54 5.04 5.26 5.22 5.00 5.62 4.66 7.80 -0.0 -0.0 5.44 4.58 3107 6.30 5.90 9.60 5.30 5.70 5.60 5.10 5.50 4.32 8.60 -0.0 -0.0 5.70 3.90 1308 7.54 6.17 11.00 5.59 6.10 6.00 . 5.04 5.32 4.32 10.33 -0.0 -0.0 6.65 3.92 2708 5.64 4.32 6.65 5.05 4.85 4.62 3.40 4.54 3.47 10.21 -0.0 -0.0 5.52 1.95 110 7.26 6.62 31.20 5.60 6.04 6.23 5.61 5.99 4.08 -0.0 -0.0 -0.0 6.62 3.77 2810 6.18 6. 15 8.70 4.75 4.80 5.05 5.93 5.07 3.43 22.25 -0.0 -0.0 5.25 2.62 1111 9.50 6.80 8.90 6.08 6.10 7.20 5.93 6.80 4.75 -0.0 -0.0 7.30 6.53 3.29 2811 8.60 6.30 6.15 4.53 5.38 6.08 4.75 5.00 4.93 6.35 4.48 6.50 4.76 4.40 3012 3.20 3. 15 3.08 3.84 3.15 3.10 2.95 3.85 2.60 4.75 2.34 2.62 2.86 2.37 3001 4.20 3.95 3.65 3.44 3.42 3.79 3.85 5.45 2.79 4.42 3.15 3.42 3.70 2.75 103 2.83 2.91 3.13 3.09 3.06 2.84 2.72 4.29 2.38 4.28 2.56 3.24 2.68 2.54 3103 . 4.60 4.50 4.12 3.89 4.30 4.36 4.61 5.50 3.33 4.90 3.70 4.10 4.20 3.25 * VALUES OF -0.0 INDICATE MISSING DATA Appendix IV (can't) 18. Magnesium (ppm) SAMPLING STATION NUMBER 0 M Y 1 2 3 4 5 6 7 8 9 10 11 12 14 15 406 2.75 2.49 2.84 2.01 2.37 2.22 1.96 2.12 1.91 2.32 -0.0 -0.0 2.59 1.86 1806 2.75 3.79 7.40 3.21 3.65 3.49 2.68 2.77 2.58 3.01 -0.0 -0.0 3.97 2.74 307. 4.86 3.93 6.23 3.51 3.88 3.66 2.83 2.88 2.26 3.65 -0.0 -0.0 4.08 3.33 1807 4. 70 4.48 6.00 3.35 4.00 3.78 2.77 2.76 2.58 3.70 -0.0 -0.0 4.20 2.61 3107 4.20 3.90 7.22 3.50 3.80 3.60 2.70 2.70 2.66. 4.70 -0.0 -0.0 3.84 2.70 1308 5.41 4. 39 8.17 3.92 4.10 4.09 • 3.02 2.94 2.66 5.56 -0.0 -0.0 . 4.49 3.07 2 708- 4.49 3.87 6.79 3.90 3.99 3.82 2.82 2.82 2.60 5.30 -0.0 -10.0 4.28 2.62 110 4.70 4.51 18.50 4.30 4.37 4.27 3.13 3.02 2.57 -0.0 -0.0 -0.0 4.50 2.82 2810 4.55 4. 73 9.40 4.10 4.40 4.27 3.80 3.15 2.60 11.45 -0.0 -0.0 4.52 2.28 1111 3.50 4.53 8.25 3.75 3.84 3.88 3.80 7.75 2.45 -0.0 -0.0 4.25 3.88 2.03 2811 2.96 3.54 4.28 2.83 3.38 3.40 2.56 2.73 2.51 3.03 2.29 3.25 3.30 2.30 3012 2.41 2.30 3.04 1.93 2.23 2.10 1.88 2. 16 1.80 2.53 1.70 1.80 2.35 1.70 3001 3.20 2.80 3.52 2.20 2.95 2.60 2.17 2.63 1.77 2.34 1.94 2. 16 2.86 1.80 103 2.18 2.10 2.12 1.69 2.18 1.93 1.64 2.19 1.51 2.35 1.55 1.43 2.02 1.29 3103 3.50 3.30 4.40 1.93 2.50 2.10 1.67 2.12 1.40 1.85 1.40 1.80 2.61 2.02 * VALUES UF -0.0 INDICATE MISSING DATA Appendix IV (can't) 19. Sodium (ppm) DATE SAMPLING STATION NUMBER D M Y 1 2 3 4 5 6 7 8 9 10 11 12 14 15 406 6.85 5.31 8.39 2.90 3.78 3.61 2.94 3.72 2.56 3.88 -0.0 -0.0 3.48 2.51 1806 6.85 10. 15 59.00 4.J.0 4.45 5.22. 4.30 4.57 4.00 4.50 -0.0 -0.0 4.39 3.43' 307 19.40 10.20 55.00 4.90 4.50 5.40 4.60 5.00 3.60 4.90 -0.0 -0.0 4.40 3.90 1807 15.50 11.80 29.30 5.06 5.00 6.25 4.65 4.77 4.00 5.47 -0.0 -0.0 4.21 3.32 3107 12.50 11.40 14.30 5.06 4.35 5.65 4.80 4.75 6.44 . 5.80 -0.0 -0.0 4.20 3.40 1308 19.10 14.50 83.00 7.62 6.50 9.20 6.87 6.92 6.44 9.50 -0.0 -0.0 6.62 7.25 2708 14.90 10.90 83.10 5.14 4.42 5.76 4.91 4.70 3.82 5.86 -0.0 -0.0 4.19 3.58 110 11.80 9.40 64,50 5.20 4.63 6.52 5.26 5.12 3.87 -0.0 -0.0 -0.0 4.33 3.77 2810 11.00 15.50 83.80 5.30 4.65 6.20 7.50 5.15 4.10 28.00 -0.0 -0.0 4.75 3.56 1111 3.26 10.75 31.50 5.16 4.51 6.03 7.50 18.25 3.77 -0.0 -0.0 6.30 4.60 3.12 2811 2.93 10.50 18.75 4.17 4.24 5.13 4.11 4.21 3.76 5.18 5.35 4.43 3.90 3.55 3012 5.85 5.76 11.20 3.12 4.55 4.00 3.14 3.56 2.90 4.00 3.58 3.00 3.31 2.67 3001 9.30 8.25 14.10 3.50 8.00 5.50 3.60 4.15 2.90 4.40 3.00 3.15 3.40 2.80 103 5.65 5.93 6.81 2.99 4.46 3.83 3.00 3.68 2.70 4.11 2.76 2.56 2.99 2.40 3103 9.80 8.70 19.00 4.29 5.11 5.42 4.43 4.92 3.58 5.53 3.72 4.12 4.37 3.45 * VALUfcS OF -0.0 INDICATE MISSING DATA Appendix XV (can't) 20. Potassium (ppm) SAMPLING STATION NUMBER D M Y 1 2 3 4 5 6 7 8 9 10 11 12 14 15 406 2.00 1.56 2.08 1.69 1.30 1.59 1.82 2.23 1.80 3.01 -0.0 -0.0 0.89 1.70 1806- 2.00 1.53 5.42 1.48 0.84 1.31 1.88 2.95 2.11 3.36 -0.0 -0.0 1.08 1.52 ' 307 1.55 1.45 5.00 1.37 0.75 1.38 2.00 3.25 1.44 3.10 -0.0 -0.0 1.11 1.98 1807 1.70 1.73 4.00 1.57 0.94 1.30 2.18 2.80 2.11 7.00 -0.0 -0.0 0.97 1.32 3107 1.44 1.40 4.55 1.39 0.77 1.24 1.95 2.86 1.77 5.67 -0.0 -0.0 1.24 1.40 1308 1.56 1 .49 5.43 1.50 0.79 1.26 2.04 2.99 1.77 5.90 -0.0 -0.0 1.20 1.64 2708 1.70 1.62 4.94 1.47 0.90 1.26 1.94 2.95 1.82 6.80 -0.0 -0.0 1.40 1.34 110 1.44 1.33 54;50 1.35 1.35 1.25 2.16 2.98 1.94 -0.0 -0.0 -0.0 1.32 1.60 2810 1.55 2.72 12.20 1.37 1.00 1.40 8.90 2.59 2.05 93.00 -0.0 -0.0 1.41 1.66 1111 0.79 2.25 10.00 1.66 1.15 1.95 8.90 42.00 2.85 -0.0 -0.0 9.60 1.52 1.45 2811 0.75 2.00 2.36 2.07 1.29 1.94 2.28 2.14 2.63 3.96 1.89 3.29 1.15 2.36 3012 1.62 1.69 1 .90 1.77 1.38 1.65 1.85 2.25 1.80 3.33 1.47 2.35 1.05 1.59 3001 1.40 1.40 1.70 1.40 0.95 1.30 1.80 3.00 1.30 2.35 1.35 1.92 0.85 1.15 103 1.31 1.41 2.2 8 1.34 1.11 1.33 1.48 2.34 1.45 5.19 1.30 2.30 0.76 1.04 3103 1.40 1.46 1.88 1.52 0.92 1.29 2.36 3.62 1.38 2.75 1.51 2.30 1.08 1.36 * VALUES OF -0.0 INDICATE MISSING DATA Appendix TV (can't) 21. Iron (ppm) SAMPLING STATION NUMBER D M Y 1 2 3 4 5 6 7 8 9 10 11 12 406 0.64 0.27 0.35 0.45 0.28 0.45 0.35 0.10 0.55 0.30 -0.0 -0.0 0.40 0.47 1806 . 0.64 0.27 0.65 0.07 0.10 0.15 0.10 0.10 0.80 0.30 -0.0 -0.0 0.22 0.60 307 . 0.25 0.0) 0.73 0.0 0.09 0.0 0.08 0.10 0.70 0.32 -0.0 -0.0 0.21 0.98 1807 0.60 0.40 0.70 0.20 0.20 0.30 0.30 0.20 0.80 0.70 -0.0 -0.0 0.40 1.20 3107 0.30 0.27 3.46 0.13 0.16 0.17 0.15 0.18 1.20 0.78 -0.0 -0.0 0.48 1.16 1308 0.50 0.50 0.90 0.30 0.20 0.30 • 0.20 0.30 1.20 1.30 -0.0 -0.0 0.30 1.20 2708 0.45 0.10 0.65 0.0 0.0 0.0 0.15 0.10 0.46 1.78 -0.0 -0.0 0.50 0.72 110 0.40 0. 15 4.10 0.05 0.10 0.10 0.10 0.0 0.65 -0.0 -0.0 -0.0 0.25 1.05 2810 0.30 0.30 1.55 0.05 0.10 0.05 0.07 0.05 0.05 2.30 -0.0 -0.0 0.20 0.70 1111 0.0 0.0 0.05 0.0 0.0 0.0 0.07 0.22 0.0 -0.0 -0.0 0.21 0.0 0.05 2811 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.05 0.03 0.03 0.0 0.0 0.0 0.0 3012 0.30 0.30 0.40 0.10 0.0 0.30 0.10 0.0 0.10 0.0 0.0 0.10 0.10 0.10 3001 0.10 0. 10 0.30 0.0 0.0 0.0 0.10 0.10 0.10 0.0 0.10 0.20 0.10 0.20 103 0.30 0.10 0.10 0.0 0.10 0.10 0.10 0.20 0.10 0.10 0.10 0.10 0.10 0.10 3103 0.40 0.33 0.40 0.20 0.20 '-. 0.20 ' 0.0 0.0 0.30 0.0 0.30 0.60 0.30 0.30 * VALUES OF -0.0 INDICATE MISSING DATA Appendix IV (can't) 22. Aluminium (ppm) SAMPLING STATION NUMBER D M Y 3 4 5 6 7 8 9 10 406 0.50 0.0 0.30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0 .0 -0 .0 0.0 0.0 1806 . 0.50 0.20 0.20 0.0 0.0 0.20 0.10 0.0 0.0 0.0 -0 .0 -0 .0 0.10 0.0 307 0.0 0.0 0 .50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0 .0 -0 .0 0.01 0.0 1807 0.0 0.0 0.30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0 .0 -0 .0 0.0 0.0 3107 0.0 0.0 0.30 0.0 0.0 0.0 0.0 0.0 0.0 0.10 -0 .0 -0 .0 0.0 0.40 1308 0 . 0 0.20 0.0 0.0 0.0 0.0 • 0.0 0.0 0.0 0.0 -0 .0 -0 .0 0.0 0.20 2708 0.10 0. 10 0 .40 0.0 0.10 0.0 0.10 0.0 0.10 0.10 -0 .0 -0 .0 0.30 0.10 110 0.0 0.0 0.90 0.0 0.0 0.0 0.0 0.0 0.0 -0 .0 -0 .0 -0 .0 0.0 0.0 2810 o. to 0.20 0.10 0.0 0.0 0.0 0.0 0.10 0.10 0.0 -0 .0 -0 .0 0.0 0.10 1111 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0 .0 -0 .0 0.0 0.0 0.0 2811 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.10 0.0 0.0 0.0 0.0 3012 0.30 0.20 0.70 0.20 0.20 0.20 0.20 0.10 0.30 0.10 0.10 0.0 0.10 0.20 3001 0.0 0.0 0.40 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. 10 0.0 0.0 103 0.30 0.30 0.07 0.0 0.10 0.10 0.10 0.40 0.10 0.0 0.20 0.30 0.20 0.10 3103 0.20 0.20 0.30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.20 0.20 0.10 0.10 * VALUES ,.OF -0 .0 INDICATE MISSING DATA Appendix IV (can't) 23. Manganese (ppm) SAMPLING STATION NUMBER D M y 4 5 6 7 8 9 10 406 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 -0.0 -0.0 0.0 0.0 1606 0.0 0.01 0.0 0. i 0.0 0.0 0.0 0.09 0.03 0.0 -0.0 -0.0 0.0 0.0 307 0.07 0.03 0.11 0.0 0.0 0.02 0.05 0.13 0,03 0.22 -0.0 -0.0 0.01 0.11 1807 0.03 0.01 0.0 0.01 0.01 0.02 0.04 0.10 0.02 0.01 -o;o -0.0 0.02 0.03 3107 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.07 0.0 -0.0 -0.0 0.0 0.0 1308 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.10 0.07 0.20 -0.0 -0.0 0.0 0.09 2708 CO 0.0 0.0 0.0 0.0 0.0 0.0 0.20 0.0 0.50 -0.0 -0.0 0.0 0.0 110 0.0 3.14 0.0 0.0 0.0 ' 0.0 0.0 0.03 0.0 -0.0 -0.0 -0.0 0.0 0.0 2810 0.03 0.01 3.04 0.0 0.0 0.0 0.03 0.04 0.03 1.42 -0.0 -0.0 0.05 0.0 n u 0.0 0.0 0.20 0.0 0.0 0.0 0.03 0. 10 0.0 -0.0 -0.0 0.0 0.0 0.0 2811 0.0 0.0 0.04 0.0 0.0 0.0 0.07 0.14 0.02 0.0 0.0 0.0 0.0 0.0 3012 0.0 0.02 0.04 0.0 0.04 0.0 0.04 0.10 0.0 0.02 0.0 0.0 0.02 0.02 3001 0.04 0.03 0.03 0.0 0.0 0.0 0.07 0.27 0.0 0.0 0.0 0.0 0.0 0.01 103 0.03 0.03 0.02 0.01 0.02 0.04 0.04 0. 14 0.01 0.02 0.03 0.03 0.03 0.01 3103 0.04 0.02 0.07 0.04 0.03 0.0 0.10 0.21 0.02 0.04 0.04 0.0 0.03 0.04 * VALUES OF -0.0 INDICATE MISSING DATA Appendix IV (con't) 24. S i l i c o n (ppm) SAMPLING STATION NUMBER 0 M Y 1 2 3 4 5 6 7 8 9 10 11 12 14 15 406 5.00 3.00 4.00 2.00 3.00 3.00 3.00 4.00 2.00 3.00 -0.0 -0.0 4.00 2.00 1606 5.00 6.00 8.00 6.00 8.00 6.00 5.00 6.00 4.00 2.00 -0.0 -0.0 . 8.00 4.00 307 ' 8.00 7.00 10.00 7.00 8.00 7.00 5.00 6.00 4.00 2.00 -o.o • -0.0 7.00 6.00 1807 7.00 7.00 6.00 6.00 8.00 7.00 5.00 6.00 3.00 2.00 -0.0 -0.0 8.00 3.00 3107 6.00 6.00 9.00 6.00 8.00 6.00 4.00 5.00 3.00 3.00 -0.0 -0.0 8.00 3.00 1308 7.00 7.00 8.00 6.00 7.00 7.00 5.00 5.00 3.00 3.00 -0.0 -0.0 8.00 6.00 2708 4.00 6.00 8.00 4.00 7.00 6.00 4.00 5.00 3.00 3.00 -0.0 -0.0 7.00 5.00 110 8.00 8.00 13.00 8.00 8.00 7.00 6.00 7.00 4.00 -0.0 -0.0 -0.0 8.00 5.00 2810 8.00 8.00 8.00 8.00 8.00 8.00 5.00 7.00 3.00 5.00 -0.0 -0.0 8.00 4.00 1111 3.00 4.00 3.00 4.00 4.00 3.00 5.00 5.00 2.00 -0.0 -0.0 1.00 2.00 2.00 2811 3.00 2.00 2.00 3.00 4.00 3.00 3.00 4.00 2.00 2.00 2.00 2.00 5.00 2.00 3012 4.00 3.00 4.00 3.00 3.00 3.00 2.00 4.00 2.00 2.00 2.00 1.00 4.00 2.00 3001 4.00 4.00 6.00 4.00 5.00 4.00 4.00 5.00 5.00 2.00 2.00 2.00 6.00 3.00 103 4.00 4.00 3.00 2.00 4.00 4.00 3.00 5.00 2.00 3.00 2.00 0.0 3.00 0.0 3103 4.00 4.00 4.00 . 3.00 5.00 12.00 3.00 12.00 2.00 2.00 1.00 2.00 6.00 2.00 * VALUES OF -0.0 INDICATE MISSING DATA Appendix IV (can't) 25. Hydraulic Discharge (cfs) (measured and calculated) DATE SAMPLING STATION NUMBER D M Y 1 2 3 4 5 6 7 8 9 10 11 12 14 15 406 218.95 171.10 8.70 85.55 43.50 145.00 120.00 4.35 59.45 8.70 -0.0 -0.0 8.70 43.50 1806. 16.46 12.86 0.65 6.43 3.27 10.90 6.10 0.33 6.43 0.65 -0.0 -0.0 0.65 3.27 307 18.88 14.75 1.13 7.38 3.75 12.50 7.00 6.38 5.13 0.75 -0.0 -0.0 1.13 3.75 1807 21.74 16.99 1.30 8.50 4.32 14.40 8.06 0.43 5.90 0.86 -0.0 -0.0 1.30 4.32 3107 11.63 9.09 0.70 4.54 2.31 7.70 4.31 0.23 3.16 0.46 -0.0 -0.0 0.70 2.30 1308 11.63 9.09 0.70 4.54 2.31 7.70 . 4.31 0.23 3.16 0.46 -0.0 -0.0 0.70 2.30 2708 11.93 9.32 0.72 4.66 2.37 7.90 4.42 0.24 3.24 0.47 -0.0 -0.0 0.72 2.37 110 12.99 10.15 0.78 5.07 2.58 8.60 4.82 0.26 3.53 0.52 -0.0 -0.0 0.78 2.58 2810 14.19 11.09 0.85 5.55 2.82 9.40 5.26 0.28 3.85 0.56 -0.0 -0.0 0.85 2.82 1111 28.24 22.07 1.69 11.03 5.61 18.70 10.47 0.56 7.&7 -0.0 -0.0 0.37 1.69 5.61 2811 34.13 26.67 2.05 13.33 6.78 22.60 12.66 0.68 7.67 1.36 4.07 0.45 2.05 6.78 3012 163.08 127.44 9.78 63.72 32.40 108.00 60.48 3.24 44.28 6.48 19.44 2.16 9.78 32.40 3001 62.82 49.09 2.50 24.54 12.48 41.60 23.30 1.25 17.06 2.50 7.49 0.83 2.50 12.48 103 190.26 148.68 7.56 74.34 37.80 126.00 70.56 3.78 51.66 7.56 22.68 2.52 7.56 37.80 3103 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 * VALUES OF -0.0 INDICATE MISSING DATA APPENDIX V. TRACE F.THVENT ANALYSIS OF SALMON RIVER WATERS 1. Chromium (ug/1) _^Site Date 1 2 3 4 5 6 7 8 9 10 11 12 14 15 31/7/74 1.10 0.68 0.50 <0.50 <0.50 0.62 <0.50 <0.50 <0.50 <0.50 MD MD 3.82 <0.50 27/8/74 <0.50 0.55 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 MD MD 2.35 <0.50 1/10/74 3.50 0.80 <0.50 0.60 0.70 0.70 0.55 <0.50 <0.50 MD MD MD 1.05 <0.50 27/10/74 0.75 <0.50 <0.50 0.60 1.00 <0.50 <0.50 CO. 50 <0.50 <0.50 MD MD 0.65 <0.50 28/11/74 1.25 4.0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 30/12/74 2.00 2.00 2.10 0.70 0.90 0.90 0.60 0.50 0.40 0.50 1.00 0.40 1.10 0.70 30/1/74 1.30 1.20 1.70 1.10 1.10 1.40 1.00 1.20 0.40 0.50 0.60 0.30 1.60 0.90 1/3/75 1.50 1.50 2.00 0.60 0.80 1.10 1.00 11.60 0.70 0.60 0.90 1.00 1.90 0.80 31/3/75 1.40 1.40 1.70 0.70 1.30 1.20 0.50 0.50 0.40 1.00 0.60 0.40 1.70 0.60 N3 APPENDIX V (con't) TRACE ELEMENT ANALYSIS OF SALMON RIVER WATERS 2. Copper (ug/1) 31/7/74 a .00 a. 00 2.70 1.00 <1.00 <i.oo 4.20 1.60 1.00 1.00 MD MD 7.60 3.10 27/8/74 1.40 1.40 2.50 1.50 <1.00 <1.00 1.20 a . 00 1.20 1.40 MD MD 1.80 <1.00 1/10/74 8.20 5.50 8.70 3.30 7.20 3.90 5.60 6.00 7.80 MD MD MD 6.10 6.30 27/10/74 1.40 6.30 2.20 6.50 6.20 5.40 6.00 5.20 8.60 30.0 MD MD 2.00 <1.00 28/11/74 3.70 7.40 3.70 2.00 14.2 CL.00 U . 00 a.oo 3.20 4.60 5.00 8.80 4.40 6.30 30/12/74 3.10 1.50 4.80 3.70 1.80 3.90 1.50 1.30 2.90 6.60 8.60 6.20 2.70 2.00 30/1/75 5.10 3.00 11.5 4.60 3.60 3.50 3.80 2.50 3.00 5.40 3.90 4.70 12.0 4.40 1/3/75 4.00 5.80 9.90 5.00 7.60 1.40 6.90 15.2 1.10 6.20 2.60 6.10 4.40 4.90 31/3/75 3.80 10; 2 11.8 5.40 4.50 6.50 7.00 8.60 3.00 4.70 2.30 6.00 5.10 8.20 TRACE ELEMENT ANALYSIS OF SALMON RIVER WATERS 3. Iron (ug/1) — - ^ S i t e Date 1 2 3 4 5 6 7 8 9 10 11 12 14 15 31/7/74 660 380 1250 130 820 210 425 275 850 1850 MD MD 1480 900 27/8/74 870 680 1520 80 100 180 140 200 580 2900 MD MD 1240 860 1/10/74 1420 360 4320 80 130 200 350 220 660 MD MD MD 380 1020 27/10/74 840 680 3200 60 120 220 180 120 900 1380 MD MD 370 920 28/11/74 1080 720 1140 180 270 340 230 180 300 150 170 500 360 300 30/12/74 590 500 800 370 310 570 340 180 350 130 170 260 350 330 30/1/74 . 530 390 340 180 180 220 140 100 200 100 190 260 230 230 1/3/75 610 720 1480 230 300 320 300 4470 200 290 290 740 600 180 31/3/75 530 550 970 140 270 220 150 150 320 200 360 1040 340 350 i i 1 APPENDIX V (con't) TRACE ELEMENT ANALYSIS OF SALMON RIVER VOTERS 4. Manganese (ug/1) 31/7/74 68 49 145 11 133 21 124 157 63 171 MD MD 65 94 27/8/74 102 48 81 ND ND ND 38 97 28 476 MD MD 40 60 1/10/74 68 14 2250 ND ND ND 57 82 30 MD MD MD <30 82 27/10/74 40 51 312 ND ND ND 30 64 62 1910 MD MD <30 122 28/11/74 62 48 90 ND 22 30 40 148 28 28 ND 22 ND 24 30/12/74 24 24 38 16 16 28 34 107. 11 15 7 11 13 15 ' 30/1/75 42 42 50 24 18 22 107 274 25 20 18 20 13 26 : 1/3/75 26 30 59 16 16 20 47 410 11 24 13 26 18 13 31/3/75 42 44 78 16 24 20 124 245 24 31 30 44 22 30 to ;-0. APPENDIX V (can't) ;i TRACE ELEMENT ANALYSIS OF SALMON RIVER WATERS i 5. Nickel (ug/1) =! i ^ S i t e Date 1 2 3 4 5 1 6 7 8 9 10 11 12 14 15 31/7/74 2.00 <1.00 2.00 1.00 1.00 <1.00 <1.00 <1.00 <L.OO <1.00 MD MD 2.40 <L.OO 27/8/74 <1.00 <1.00 <1.00 3.20 <i.6o <1.00 d .oo <1.00 <L.OO <1.00 MD MD 1.20 <1.00 1/10/74 2.10 <1;00 6.70 <1.00 <1.00 <1.00 2.70 <1.00 1.40 MD MD MD <1.00 <1.00 27/10/74 <1.00 1.20 2.70 1.40 <1.00 <1.00 <1.00 <1.00 <L.OO 5.00 MD MD <1.00 <1.00 28/11/74 2.20 <1.00 1.80 <1.00 1.40 a . oo 1.00 1.70 a . 00 1.40 1.40 <1.00 <1.00 <1.00 30/12/74 1.50 0.70 1.20 0.50. 0.50 0.70 0.50 1.20 0.50 0.30 1.20 0.70 1.20 0.50 30/1/75 0.70 0.70 0.70 0.30 0.30 0.70 ND ND ND ND ND 1.00 ND 0.30 1/3/75 1.50 0.70 2.70 ND 0.50 0.50 0.50 13.2 ND 0.50 ND 0.70 1.20 0.70 31/3/75 0.70 0.70 1.20 ND 0.70 ND 1.00 0.70 ND ND 1.00 1.50 ND 0.30 r o te APPENDIX V (con't) TRACE ELEMENT ANALYSIS OF SALMON KIVER WATERS 6. Lead (ug/1) ^31/7/74 <1.00 1.40 2.60 <1.00 1.40 <1.00 2.00 <1.00 d.OO <1.00 MD MD <1.00 <1.00 27/8/74 <1.00 <1.00 <-1.00 O..00 <1.00 <1.00 <L.OO <1.00 <L.OO <1.00 MD MD <1.00 <1.00 1/10/74 <1.00 <1.00 3.00 <1.00 1.60 <1.00 2.00 <1.00 d.OO MD MD MD <.1.00 c o o 27/10/74 <1.00 17.2 <1.00 1.60 <1.00 <L.OO <1.00 <1.00 <L.OO 6.30 MD MD 41.00 <1.00 28/11/74 <1.00 <1.00 <1.00 <1.00 <i. 00 <1.00 <1.00 <1.00 <L.OO <1.00 <1.00 <1.00 <1.00 <1.00 30/12/74 3.00 0.40 ND ND ND 0.90 0.60 0.60 ND 0.90 1.50 ND 0.60 0.40 30/1/75 ND ND ND ND 0.60 ND ND ND ND ND ND ND ND ND 1/3/75 ND ND ND ND ND ND ND ND ND ND ND ND ND ND 31/3/75 ND ND ND ND ND ND ND ND ND ND ND 2.40 ND ND TRACE ELEMENT ANALYSIS OF SALMON RIVER WATERS 7. Zinc (ug/1) Date 1 2 3 4 5 6 7 8 9 10 11 12 14 15 31/7/74 2.60 1.00 6.00 7.30 3.80 1.20 3.10 4.50 5.20 <1.00 MD MD 3.50 <1.00 27/8/74 5.00 17.8 14.7 1.30 19.0 19.0 10.1 10.1 <1.00 1.50 MD MD 3.00 3.90 1/10/74 2.20 <1.00 42.0 <1.00 <1.00 <1,00 1.50 3.40 <1.00 MD MD MD <1.00 <1.00 27/10/74 11.3 2.30 5.20 <1.00 1.20 <1.00 O..00 9.50 2.20 92.0 MD MD <1.00 5.90 28/11/74 1.60 2.00 4.10 <1.00 1.30 14.0 2.20 11.9 <1.00 <1.00 <1.00 6.90 <1.00 4.30 30/12/74 4.60 3.50 4.30 2.80 6.20 5.20 4.60 10.0 3.00 1.20 2.00 4.00 0.70 2.80 30/1/74 1.70 2.50 3.00 1.00 3.50 1.70 3.50 5.80 1.00 ND 1.70 3.80 ND 2.00 1/3/75 2.00 3.30 5.80 1.00 3.00 1.70 1.40 17.0 0.40 2.80 1.00 4.00 1.00 4.00 31/3/75 3.00 1.00 1.40 ND 1.00 0.20 2.30 4.30 ND ND 0.20 3.00 ND 3.00 MD = missing data ND = not detectable 1. pH Appendix VI: Precipitation Chemistry Data DATE SAMPLING STATION NUMBER D M Y 1 2 3 4 5 6 8 9 10 11 3107 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 2708 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 110 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 2810 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 2811 6. 00 5. 80 5. AO 5. 20 5. 40 5. 10 5. 00 4. 30 5. 20 5. 10 3012 6. 10 6. 00 5. 80 5. 30 5. 40 5. 20 -0. 0 5. 00 5. 00 5. 00 3001 5. 30 5. 30 5o 40 5. 00 5. 40 5. 20 5. 00 5. 20 -0. 0 5. 00 103 4. 90 5. 30 4. 30 5. 00 5. 00 5. 10 4. 80 4. 70 4. 80 5. 00 3103 5. 50 4. 50 4. 40 4. 40 5. 50 4. 50 -0. 0 4. 70 5. 40 4. 60 * VALUES OF -0.0 INDICATE MISSING DATA Appendix VI (con11) 2. T o t a l A c i d i t y (mg/1 CaCO, e q u i v a l e n t ) DATE SAMPLING STATION NUMBER D M Y 1 2 3 4 5 6 8 9 10 11 3107 2. 00 -0. 0 2. 40 3. 20 1. 60 1. 20 3. 60 3. 20 7. 60 3. 60 2708 -Oo 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 110 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 2810 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 2811 2. 00 2. 00 4. 00 4. 00 2. 00 4. 00 2. 00 4. 00 4. 00 4. 00 3012 3. 00 3. 00 4. 00 5. 00 4. 00 4. 00 3. 00 4. 00 3. 00 4. 00 3001 3. 00 2. 00 3. 00 3. 00 2. 00 3. 00 3. 00 3. 00 -0. 0 4. 00 103 2. 00 11. 00 3. 00 5. 00 6. 00 4. 00 5. 00 5. 00 4. 00 4. 00 3103 6. 00 4. 00 4. 00 4. 00 4. 00 6. 00 -0. 0 4. 00 4. 00 4. 00 * VALUES OF -0.0 INDICATE MISSING DATA Appendix VI (can't), 3. T o t a l A l k a l i n i t y (mg/1 CaC0 3 e q u i v a l e n t ) DATE SAMPLING STATION NUMBER D M Y 1 2 3 4 5 6 8 9 10 11 3107 6. 40 -0. 0 2. 80 5. 20 2. 20 3. 60 18. 00 4. 80 4. 00 4, .80 2708 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0, .0 110 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. .0 2810 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. .0 2811 7. 20 9. 60 5. 60 6. 40 7. 20 6. 40 7. 20 6. 40 5. 60 6. .40 3012 4. 80 8. 80 5. 60 4. 80 6. 40 6. 40 4. 80 6. 40 7. 20 6. .40 3001 2. 50 2. 20 2. 80 2. 20 2. 20 2. 50 2. 20 2. 50 -0. 0 2. .50 103 2. 70 1. 10 2. 40 2. 40 3. 10 2. 00 2. 20 2. 00 2. 80 2, .90 3103 1. 40 2. 10 1. 40 1. 40 2. 10 1. 40 -0. 0 1. 40 1. 40 1. .40 * VALUES OF -0.0 INDICATE MISSING DATA Appendix VI (can't) 4. T o t a l Bicarbonate A l k a l i n i t y (mg/1 CaCOj e q u i v a l e n t ) D A T E S A M P L I N G S T A T I O N N U M B E R D M Y 1 2 3 4 5 6 8 9 10 11 3107 6. 40 -0. 0 2. 80 5. 20 2. 20 3. 60 18. 00 4. 80 4. 00 4. 80 2708 -0. 0 -0. 0 -0. 0 -0. 0 -o« 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 110 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 2810 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 2811 7. 20 9. 60 5. 60 6. 40 7. 20 6. 40 7. 20 6. 40 5. 60 6. 40 3012 4. 80 8. 80 5. 60 4. 80 6. 40 6. 40 4. 80 6. 40 7. 20 6. 40 3001 2. 50 2. 20 2. 80 2. 20 2. 20 2. 50 2. 20 2. 50 -0. 0 2. 50 103 2. 70 1. 10 2. 40 2. 40 3. 10 2. 00 2. 20 2. 00 2. 80 2. 90 3103 1. 40 2. 10 1. 40 1. 40 2. 10 1. 40 -0. 0 1. 40 1. 40 1. 40 * V A L U E S O F -0.0 I N D I C A T E M I S S I N G D A T A Appenaix V± (coiiVu) 5. Total Hardness (ppm) ( Co. CO, equivalent) DATE SAMPLING STATION NUMBER D M Y 1 2 3 4 5 6 8 9 10 11 3107 1. 60 43. 98 1. 58 1. 65 10. 89 1. 37 5. 48 0. 87 0, .88 1. .16 2708 28. 65 22. 77 9. 45 6. 09 •20. 14 8. 25 7. 90 6. 84 16. .93 17. .46 110 4. 52 4. 47 5. 64 4. 08 9. 63 8 . 14 12. 53 10. 32 11. .70 8. .87 2810 5. 19 4. 95 2. 76 3. 11 3. 53 4. 53 2. 50 3. 00 3. .50 3, .55 2811 1 o 95 2. 77 1. 12 2. 35 0. 96 1. 14 1. 29 1. 50 1. .07 1, .20 3012 1. 17 1. 51 1. 22 0. 86 1 . 34 1. 74 1. 47 0. 86 • 0. .68 0. .92 3001 1. 85 0. 81 1. 04 1. 19 0. 86 1. 04 1. 11 1. 12 -0. .0 1 . 25 103 2. 88 1. 27 2. 11 1. 81 1. 52 1. 02 2. 50 2. 67 1. .64 2. . 36 3103 1. 54 0. 85 0. 86 0. 87 0. 95 2. 19 -o. 0 1. 14 1. .28 1. . 11 * VALUES OF -0.0 INDICATE MISSING DATA Appendix VT (can't) 6. T o t a l D i s s o l v e d Residue (mg/1) DATE SAMPLING STATION NUMBER D M Y 1 2 3 4 5 6 8 9 10 11 3107 20. 00 108. 00 2. 00 12. 00 80. 00 76. 00 32. 00 4. 00 10. 00 54. .00 2708 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 -0 . .0 110 - 0 . 0 - 0 . 0 - 0 . 0 - o . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 -0 . .0 2810 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 -0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 -0 . .0 2811 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0, .0 3012 32. 00 40. 00 38. 00 42. 00 48. 00 56. 00 - 0 . 0 42. 00 50. 00 48. .00 3001 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 - 0 . 0 0. .0 103 2. 00 4. 00 4. 00 12. 00 0. 0 0. 0 12. 00 12. 00 6. 00 4. .00 3103 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 - 0 . 0 0. 0 0. 0 0. .0 * VALUES OF -0 .0 INDICATE MISSING DATA Appendix VI (can't) 7. T o t a l K j e l d a h l N i t r o g e n (ppm) DATE SAMPLING STATION NUMBER D M Y 1 2 3 4 5 6 8 9 10 11 3107 0. 95 1. 15 0. 39 0. 34 1. 68 0. 42 0. 95 0. 11 0. 39 0. .34 2708 - o . 0 -0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 -0. .0 110 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 -0. .0 2810 1. 06 1. 51 1. 18 1. 23 1. 12 1. 18 - 0 . 0 - 0 . 0 1. 40. 0. .73 2811 1. 34 0. 73 0. 90 0. 62 0. 0 - 0 . 0 0. 78 0. 67 0. 73 0. .56 3012 0. 0 0. 0 0. 0 0. 0 o. 0 .0. 0 - 0 . 0 0. 0 0. 0 0. .0 3001 0. 09 0. 11 0. 0 3 0. 0 0. 13 0. 17 0. 0 0. 0 - 0 . 0 0. .29 103 0. 76 0. 26 0. 38 0. 31 0. 38 0. 53 0. 24 0. 50 0. 61 0. .41 3103 0. 0 0. 84 0. 84 0. 38 0. 31 0. 31 - 0 . 0 0. 69 0. 15 0. . 31 * VALUES OF -0.0 INDICATE MISSING DATA Appendix VI (con"t) 8. T o t a l Organic Carbon (ppm) DATE SAMPLING STATION NUMBER D M Y 1 2 3 4 5 6 8 9 10 11 3107 1. 50 0. 10 I. 40 9. 90 0. 0 0. 20 0. 10 0. 04 0, .20 0 .60 2708 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. ,0 -0 .0 110 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. .0 -0 .0 2810 2. 40 4. 80 2. 80 1. 20 1. 20 1. 20 1. 20 2. 40 2. .40 1 .20 2811 5. 80 7. 80 7. 20 7. 20 6. 50 6. 50 4. 60 8. 40 0. .70 5 .80 3012 0. 10 0. 10 0. 10 0. 0 0. 0 0. 0 -0. 0 0. 0 0, . 10 0 .0 3001 5. 00 0. 60 0. 0 1. 90 0. 0 0. 60 0. 0 0. 60 -0. .0 1 .20 103 3. 20 1. 60 2. 40 2. 40 3. 20 2. 90 2. 40 4. 00 3, .20 2 .90 3103 8. 10 4. 20 8. 60 8. 60 8. 10 8. 10 -0. 0 7. 00 8, .90 7 .00 * VALUES OF -0.0 INDICATE MISSING DATA Appendix VT (con11) 9. N i t r a t e - N i t r o g e n (ppm) DATE SAMPLING STATION NUMBER D M Y 1 2 3 4 5 6 8 9 10 11 3107 0. 46 0. 46 0. 27 0. 23 0. 23 0. 32 0. 44 0. 31 0. 33 0. .33 2708 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. .0 110 0. 17 0. 57 0. 17 0. 17 0. 86 0. 18 0. 42 0. 28 0. 34 0, .22 2810 0. 23 0. 40 0. 18 0. 20 0. 48 0. 18 0. 20 0. 21 0. 40 0. .21 2811 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. .0' 3012 0. 17 0. 24 0. 18 0. 21 0. 25 0. 26 0. 26 0. 24 0. 27 0, .15 3001 1. 60 1. 58 1. 52 1. 48 1. 62 1. 63 1. 66 1. 53 -0. 0 1. .87 103 0. 0 0. 0 0. 0 0. 0 0. 05 0. 0 0. 0 0. 0 0. 0 0. .0 3103 0. 33 0. 26 0. 18 0. 17 0. 22 0. 23 -0. 0 0. 18 0. 22 0. .03 * VALUES OF -0.0 INDICATE MISSING DATA Appendix VI (con 1t) 10. Sulphate (ppm) DATE SAMPLING STATION NUMBER D M Y 1 2 3 4 5 6 8 9 10 11 3107 2. ,60 -0. 0 0. 30 1. 00 7, .60 0. 40 3. 40 0. 70 0. .50 0. .50 2708 -0, ,0 -0. 0 -0. 0 -0. 0 -0. .0 -0. 0 -0. 0 -0. 0 -0. .0 -0. .0 110 1. .10 3. 10 1. 00 0. 90 1, .60 0. 90 1. 30 0. 90 1, ,40 0. .90 2810 1. .00 1. 60 0. 60 0. 70 0. ,60 0. 70 0. 70 0. 60 0. .80 0. ,60 2811 0. .40 1. 00 0. 40 o. 30 0. .40 0. 40 0. 40 0. 70 0. .50 0. .30 3012 0. .30 0. 40 0. 30 0. 20 0. .20 0. 20 -0. 0 0. 10 0. .20 0. .10 3001 1. . 10 0. 40 0. 70 0. 30 0. 50 0. 50 0. 70 0. 60 -0. .0 0. .60 103 1« . 10 0. 80 1. 10 0. 70 0. .80 0. 80 1. 30 2. 20 0. . 80 0. .80 3103 l< . 30 0. 30 0. 20 0. 10 0. .30 0. 20 -0. 0 0. 40 0, .30 0. .20 * VALUES OF -0.0 INDICATE MISSING DATA Appendix VI (con't) 11. C h l o r i d e (ppm) DATE SAMPLING STATION NUMBER D M Y 1 2 3 4 5 6 8 9 10 11 3107 2. 13 -0. 0 0. 0 1. 42 6. 39 15. 34 0. 0 0. 0 0. 0 0. .0 2708 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0, ,0 110 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. .0 2810 0. 0 0. 0 0. 0 0. 0 0. 0 o.. 0 0. 0 0. 0 0. 0 0. ,0 2811 0. 0 0. 71 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. .0 3012 Oo 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. .0 3001 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 -0. 0 0, .0 103 0. 0 0. 76 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 ' 0, .0 3103 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 -0. 0 0. 0 0. 0 0. .0 * VALUES OF -0.0 INDICATE MISSING DATA Appendix VI (can't) 12. C a l c i u m (ppm) DATE SAMPLING STATION NUMBER D M Y 1 2 3 4 5 6 8 9 10 11 3107 0. 50 3. 10 0. 50 0. 50 3. 60 0. 50 2. 00 0. 30 0. 30 0. .40 2708 7. 61 6. 00 2. 85 1. 82 6. 49 2. 70 2. 56 2. 04 4. 57 5, .72 110 1. 53 1. 33 1. 9 3 1. 47 2. 08 1. 56 1. 78 1. 78 1. 74 1 . 66 2810 1. 35 1. 35 0. 96 0. 87 1. 25 1. 39 0. 92 1. 06 1. 22 1. .29 2811 0. 37 0. 90 0. 35 0. 32 0. 29 0. 34 0. 40 0. 43 0. 30 0. .38 3012 0. 37 0. 44 0. 20 0. 26 0. 23 0. 32 0. 33 0. 26 0. 21 0. .27 3001 0. 40 0. 19 0. 21 0. 27 0. 21 0. 21 0. 34 0. 24 -0. 0 0. .33 103 0. 71 0. 33 0. 30 0. 40 0. 30 0. 33 0. 44 0. 49 0. 33 0. .40 3103 0. 42 0. 21 0. 23 0. 25 0. 28 0. 38 -0. 0 0. 34 0. 35 0. .33 * VALUES OF -0.0 INDICATE MISSING DATA Appendix VI (con 1t) 13. Magnesium (ppm) SAMPLING STATION NUMBER D M Y 1 2 3 4 5 6 8 9 10 11 3107 0. 08 5. 00 0. 08 0. 08 0. 18 0. 03 0. 12 0. 03 0. 04 0. 04 2708 2. 03 1. 35 0. 43 0. 24 0. 28 0. 23 0. 23 0. 29 0. 76 0. 55 110 0. 17 0. 28 0. 20 0. 10 0. 16 0. 09 0. 15 0. 13 0. 17 0. 09 2810 0. 16 0. 34 0. 07 0. 07 0. 10 0. 10 0. 05 0. 08 0. 11 0. 08 2811 0. 07 0. 11 0. 06 0. 06 0. 05 0. 07 0. 07 0. 07 0. 06 0. 06 3012 0. 06 0. 10 0. 04 0. 05 0. 05 0. 06 0. 07 0. 05 0. 04 0. 06 3001 0. 07 0. 04 0. 04 0. 04 0. 04 0. 04 0. 05 0. 04 -0. 0 0. 06 103 0. 08 0. 06 0. 05 0. 05 0. 04 0. 04 0. 06 0. 07 0. 05 0. 05 3103 0. 12 0. 08 0. 07 0. 06 0. 06 0. 07 -0. 0 0. 07 0. 10 0. 07 DATE * VALUES OF -0.0 INDICATE MISSING DATA Appendix VT (con11) 14. Sodium (ppm) DATE SAMPLING STATION NUMBER D M Y 1 2 3 4 5 6 8 9 10 11 3107 0. 57 14. 00 0. 46 0. 47 5. 79 0. 41 1. 11 1. 00 0 .50 0. 43 2708 10. 10 50. 00 3. 07 2. 70 6. 95 2. 70 5. 75 2. 90 6 .07 3. 75 110 1. 05 2. 95 1. 11 0. 92 1. 08 1. 03 1. 83 1 . 43 1 .78 1. 15 2810 1. 00 1. 09 0. 89 0. 71 0. 71 0. 72 1. 05 0. 76 0 .82 0. 73 2811 0. 78 0. 77 0. 68 0. 69 0. 74 0. 79 0. 81 0. 81 0 .83 0. 70 3012 0. 86 0. 86 0. 79 0. 78 0. 85 0. 89 0. 93 0. 82 0 .84 0. 86 3001 0. 76 0. 62 0. 10 0. 62 0. 60 0. 62 0. 70 0. 64 -0 .0 0. 74 103 0. 69 0. 69 0. 59 0. 61 0. 58 0. 57 0. 71 0. 83 0 .68 0. 77 3103 0. 62 0. 39 0. 32 0. 25 0. 30 0. 36 -0. 0 0. 25 0 .44 0. 30 * VALUES OF -0.0 INDICATE MISSING DATA 6° Appendix VI (con't) 15. Potassium (ppm) DATE SAMPLING STATION NUMBER D M Y 1 2 3 4 5 6 8 9 10 11 3107 0. 58 6. 55 0. 08 0.34 7. 70 0. 12 1. 26 0. 16 0. 19 0. 11 2708 8. 65 28. 30 1. 33 0.83 4. 20 0. 65 1. 16 0. 95 3. 36 0. 96 110 0. 43 1. 12 0. 40 0. 29 0. 72 0. 22 0. 60 0. 34 0. 73 0. 06 2810 0. 18 1. 15 0. 25 0.13 0. 16 0. 20 0. 82 0. 13 0. 19 0. 05 2811 0. 02 0. 84 0. 05 0.05 o. 05 0. 02 0. 06 0. 08 0. 11 0. 03 3012 0. 04 0. 54 0. 04 0.03 0. 04 0. 04 0. 05 0. 04 0. 04 0. 02 3001 0. 11 0. 09 0. 07 0o04 0. 05 0. 06 0. 05 0. 04 -0. 0 0. 09 103 0. 10 0. 15 0. 05 0.09 0. 08 0. 10 0. 13 0. 15 0. 11 0. 11 3103 0. 81 0. 10 0. 09 0.05 0. 09 0. 09 -0. 0 0. 03 0. 32 0. 06 * VALUES OF -0.0 INDICATE MISSING DATA Ski Appendix VT (con 1t) 16. I r o n (ppm) DATE SAMPLING STATION NUMBER D M Y 1 2 3 4 5 6 8 9 10 11 3107 0. 01 0. 18 0. 0 0. 04 0. 03 0. 0 0. 0 0. 0 0. 01 0 .0 2708 0. 0 0. 08 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 20 0 .0 110 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0 .0 2810 0. 0 0. 05 0. 0 0. 05 0. 0 0. 05 0. 0 0. 0 0. 0 0 .0 2811 0. 10 0. 04 0. 0 0. 09 0. 02 0. 0 0. 0 0. 08 0. 04 0 .0 3012 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0 .0 3001 0. 0 0. 10 0. 20 0. 20 0. 10 0. 20 0. 0 0. 20 -0. 0 0 . 10 103 0. 10 0. 10 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0 .0 3103 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 -0. 0 0. 0 0. 0 0 .0 * VALUES OF -0.0 INDICATE MISSING DATA CO Appendix VI (con't) 17. Aluminium (ppm) DATE SAMPLING STATION NUMBER D M Y 1 2 3 4 5 6 8 9 t 10 11 3107 0. 0 0. 50 o. 0 0. 0 0. 20 0. 0 0. 0 0. 0 0. 0 0. .0 2708 0. 10 0. 40 0. 10 0. 10 0. 50 0. 10 0. 10 0. 10 0. 30 0. . 10 110 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 10 0. 0 0. 0 0. .0 2810 0. 20 0. 0 0. 0 0. 10 0. 0 0. 10 0. 0 0. 0 0. 0 0. .0 2811 0. 10 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. .0 3012 0. 0 0. 0 0. 10 0. 0 0. 10 0. 10 0. 0 0. 0 0. 0 0. .0 3001 0. 10 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 -0. 0 0, .0 103 0. 10 0. 0 0. 20 0. 10 0. 10 0. 0 0. 20 0. 20 0. 10 0, .20 3103 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 -0. 0 0. 0 0. 0 0. .0 * VALUES OF -0.0 INDICATE MISSING DATA Appendix VI (can't) 18. Manganese (ppm) DATE SAMPLING STATION NUMBER D M Y 1 2 3 4 5 6 8 9 10 11 3107 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0 .0 0 .0 2708 0. 30 0. 0 o. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0 .20 0 .20 110 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0 . 0 0 .0 2810 0. 03 0. 05 0. OA 0. 0 0. 0 0. 0 0. 0 0. 01 0 .0 0 .0 2811 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0 .0 0 .0 3012 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 20 0. 0 0 .0 0 .0 3001 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 03 0. 0 -0 .0 0 .0 103 0. 02 0. 01 0. 02 0. 02 0. 03 0. 02 0. 02 0. 03 0 . 03* 0 .02 3103 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 -0. 0 0. 0 0 .0 0 .0 * VALUES OF -0.0 INDICATE MISSING DATA Appendix VI (con't) 19. T o t a l P r e c i p i t a t i o n (inches) DATE SAMPLING STATION NUMBER D M Y 1 2 3 4 5 6 8 9 10 11 3107 3. 28 3. 28 3. 28 3. 28 3. 28 3. 28 3. 28 3. 28 3. 28 3. 28 2708 0. 46 0. 46 0. 46 0. 46 0. 46 0. 46 0. 46 0. 46 0. 46 0. 46 110 1. 22 1. 22 1. 22 1. 22 1. 22 1. 22 1. 22 1. 22 1. 22 1. 22 2810 1. 82 1. 82 1. 82 1. 82 1. 82 1. 82 1. 82 1. 82 1. 82 1 . 82 2811 8. 96 8. 96 8. 96 8. 96 8. 96 8. 96 8. 96 8. 96 8. 96 8 . 96 3012 10. 94 10. 94 10. 94 10. 94 10. 94 10. 94 10. 94 10. 94 10. 94 10. 94 3001 7. 72 7. 72 7. 72 7. 72 7. 72 7. 72 7. 72 7. 72 -0. 0 7. 72 103 6. 98 6. 98 6. 98 6. 98 6. 93 6. 98 6. 98 6. 98 6. 98 6. 98 3103 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 -0. 0 * VALUES OF -0.0 INDICATE MISSING DATA Appendix VII , Table of average values for each water chemistry variable measured at each sampling station at 1) high hydraulic discharge (4/6/74, 30/12/74, 1/3/75), and at 2) low hydraulic discharge (the remaining sampling times). PH HI PH LOW ACD HI ACDLOW . N HI N LOW S04 HI SCWLOW SITE HO. FE HI FE LOW 1 6.30* 7.13 4.30 3.87 0.23 0.35 5.23 6.13 0.41 0.33* 2 6.77 7.35 3.60 3.85 . 1.53 0.73 4.93 5.08 0.22 0.21 3 6.87 7.07 4.73 2.88 0.28 1.97 5.53 13.18 0.28 0.87* * 6.73 7.23 3.77 3.40 0.29 0.92 4.30 3.60 0.18 0.83* 5 • 6.80 7.27 3.97 3.47 0.34 0.91 3.90 2.39 0.13 0.96* 6 6.60 7.14 4.03 3.67 0.32 1.00 4.37 3.39 0.28 0.11 7 6.80 7.21 4.97 4.42 0.38 0.71 5.73 3.63 0.18 0.11 RDX HI RDXLOW DO HI ALK HI ALKLOW HC03HI C HI C LOW H03 HI CA HI CA LOW MG HI AL HI AL LOW MN HI 283.3 .256.8 11.23 20.20 40.46 20.20 4.73 5.35 1.53 3.28 6.28 2.45 0.37 0.75 0.10* 313.3 278.6 11.13 18.93 36.29 18.93 4.13 5.87 1.53 3.21 5.61 2.30 0.17 0.75 0.16* 263.3 241.1 12.27 23.87 84.81 23.87 4.87 7.65 1.50 3.30 9.08 2.67 0.36 0.28 0.20* 336.7 228.2 12.13 15.77 29.14 15.77 3.33 7.37 1.63 3.37 4.86 1.88 0.67 0.00 0.33* 316.7 193.2 11.07 17.73 33.38 17.73 3.53 4.27 1.83 3.22 5.09 2.26 0.10 0.83 0.20* 313.3 273.6 12.77 16.90 33.08 16.90 2.10 5.73 1.67 3.15 5.30 2.08 0.10 0.17 0.13* 310.0 227.7 • 11.93 15.83 32.51 15.83 6.77 5.05 2.00 3.01 4.86 1.83 0.10 0.17 ' 0.30* DO LOW CND HI CNDLOW HCOLOW HRD HI HRDLOW NO3L0W CL HI CL LOW MG LOW NA HI NA LOW MN LOW SI HI SI LOW 9.70 56.00 132.5 40.46 25.91 40.70 2.16 0.97 12.53 4.07 6.12 11.36 0.18* * 4.33 5.58 8.45 59.00 125.6 36.29 22.63- 38.18 3.24 2.60 10.71 3.98 5.67 11.00 0.27* 3.33 5.75 7.49 73.67 343.5 64.01 27.05 64.99 1.72 6.80 72.87 7.51 8.80 45.78 0.41* 3.67 7.08 11.47 41.67 84.42 29.14 19.71 • 32.38 3.99 0.00 17.33 3.38 3.00 5.00 0.42* 2.33 5.42 11.30 46.00 87.25 33.38 22.05 35.89 4.10 1.00 4.15 3.74 4.26 5.03 0.33* 3.33 6.67 11.02 51.67 89.58 33.08 21.33 35.50 3.75 0.50 3.23 3.59 3.81 6.02 0.33* 3.33 6.33 10.27 43.00 87.42 32.51 19.01 28.90 3.55 0.50 1.38 2.83 3.03 5.21 0.35* 2.66 4.50 T HI T LOW DS HI DS LOW P04 HI P04LOW K HI K LOW CFS HI CFSLOW 5.00 12.00* 69.33 94.25 1.10* 0.53* 1.64' 1.44 190.8 22.24 5.00 10.92* 94.67 98.17 1.30* 0.68* 1.55 1.69 149.1 17.38 5.00 11.75* 98.67 225.4 0.70* 1.89* 2.09 9.33 8.68 1.19 6.67 9.08 53.33 78.83 0.70* 0.77* 1.60 1.51 74.54 8.69 7.33 8.75 47.33 86.16 0.43* 0.63* 1.26 0.97 37.90 4.42 • 6.67 10.17 86.67 85.33 0.97* 0.68* 1.52 1.40 126.3 14.73 7.33 9.83 102.00 69.08 « ^ 0.67* 1.84* ^ 1.72 3.20 83.68 8.25 'N>' Appendix VII> (con't) P H H I P H LOW R D X H I A C D H I A C D L O W A L K H I N H I N LOW C H I S 0 4 H I S 0 4 L O W C A H I S I T E NO. F E H I F E LOW A L H I 8 6 . 6 3 7 .21 2 3 3 . 3 ' 4 . 6 3 6 . 7 3 1 7 . 6 3 0 . 5 6 2 . 4 1 2 . 9 3 4 . 3 3 4 . 3 0 4 . 1 5 0 . 1 0 0 . 1 2 0 . 1 7 9 6 . 7 3 7 . 2 3 3 1 3 . 3 * 4 . 3 0 3 .42 1 5 . 8 7 0 . 4 3 1 .27 4 . 7 0 3 . 8 0 4 . 2 0 2 . 6 8 0 . 2 5 0 . 5 2 * 0 . 1 3 10 6 . 6 7 7 .04 2 7 0 . 0 5 . 6 0 7 .18 1 7 . 7 3 0 . 4 3 1 .62 4 . 8 0 4 . 6 3 5 . 8 7 4 . 3 9 0 . 1 3 0 . 7 5 * 0 . 3 3 11 7 .20 7 . 3 3 4 4 0 . 0 7 .50 4 . 0 0 1 2 . 6 0 0 . 1 2 0 . 5 8 3 . 7 0 2 . 0 0 2 . 2 3 2 . 4 5 -0 . 5 0 * 0 . 1 3 0 . 1 5 12 7 .05 7 .10 - 4 2 0 . 0 5 . 0 0 5 . 2 5 14 .05 0 . 4 1 0 . 9 8 8 . 8 0 ' 3 . 6 5 6 . 5 3 ' 2 . 9 3 : 0 . 1 0 0 . 2 5 0 . 1 5 14 6 . 8 0 7 .30 2 6 0 . 0 0 5 . 2 7 3 .99 2 1 . 7 3 0 . 3 6 0 . 8 2 4 . 5 7 4 . 0 0 5 . 2 1 3 .02 0 . 2 0 0 . 2 5 0 . 1 0 IS 6 .70 7 .07 2 6 3 . 3 4 . 3 0 4 . 1 3 1 4 . 8 0 0 . 5 3 0 . 7 3 3 .57 4.00 5 . 0 8 2 . 6 2 0.22 0.68* 0.10 R D X L O W DO H I DO LOW C N D H I A L K L O W H C 0 3 H I H C O L O W H R D H I C LOW N 0 3 H I N 0 3 L O W C L H I C A LOW MG H I M G LOW N A H I A L LOW MN H I MN LOW S I H I 230 .5 1 2 . 7 3 1 1 . 1 2 5 8 . 3 3 5 2 . 9 8 1 7 . 6 3 5 2 . 9 8 2 5 . 6 2 7 .05 2 . 8 3 5 . 1 2 1 .10 5 . 4 6 2 .16 3 . 1 9 3 . 6 5 0 . 8 3 0 . 8 0 * 0 . 1 2 * 4 . 3 3 222 .7 1 2 . 6 3 9 . 6 9 4 0 . 6 7 2 8 . 8 6 1 5 . 8 7 2 8 . 8 6 1 7 . 3 2 6 . 2 7 ' 1 .35 1 .26 0 . 0 0 4 . 0 0 1 .74 2 . 3 9 2 . 7 2 0 . 1 7 0 . 3 3 * 0 . 2 4 * 2 . 0 0 159 .4 1 2 . 0 7 5 . 3 0 6 4 . 0 0 72 .17 1 7 . 7 3 7 1 . 6 9 2 4 . 3 4 6 . 3 9 3 .00 1 . 9 8 1 . 9 7 8 . 8 3 2 . 4 0 4 . 4 6 4 . 0 0 0 . 3 0 0 . 1 3 * 0 . 2 4 * 2 . 6 7 3 2 3 . 3 1 3 . 2 0 1 1 . 6 5 3 5 . 0 0 1 3 . 8 7 1 2 . 6 0 1 3 . 8 7 1 6 . 0 4 6 . 8 0 1 .25 1 .70 0 . 0 0 3 . 7 8 1 .63 1 .89 3 . 1 7 0 . 6 7 0 . 1 5 0 . 1 3 2 . 0 0 3 2 1 . 3 1 2 . 9 0 1 0 . 1 0 4 0 . 0 0 1 0 . 3 8 1 4 . 0 5 1 0 . 3 8 1 5 . 5 7 1 5 . 0 8 0 . 8 0 2 . 3 8 0 . 0 0 5 . 3 3 1.62 2 . 8 7 2 . 7 8 0 . 7 5 0 . 1 5 * 0 . 0 0 0 . 5 0 2 3 0 . 0 0 1 2 . 6 0 1 0 . 7 1 4 6 . 6 7 4 2 . 1 6 2 1 . 7 3 4 2 . 1 6 2 2 . 3 9 • 5 . 0 4 1 .10 1 .58 0 . 2 3 5 . 3 5 2 . 3 2 3 . 8 8 3 . 2 6 0 . 4 3 0 . 1 7 * 0 . 9 2 * 3 . 6 7 2 2 4 . 1 1 1 . 8 0 6 . 0 9 4 6 . 0 0 3 4 . 0 8 1 4 . 8 0 3 4 . 0 8 1 5 . 5 2 7 . 6 1 1 . 5 3 1 .30 0 . 0 0 3 .49 1 .62 2 . 5 3 2 . 5 3 0 . 7 5 0 . 1 0 * 0 . 2 3 * 1 . 3 3 C N D L O W T H I T L O W HRDLOW DS H I DS LOW C L LOW P 0 4 H I P 0 4 LOW N A LOW K H I K LOW S I LOW C F S H I C F S L O W 1 4 2 . 0 7 . 3 3 8 .67 3 4 . 2 1 7 6 . 6 7 1 0 7 . 8 2 . 7 8 . 1 . 4 0 * 1 . 5 8 * 6 . 0 4 2 . 2 7 6 . 1 8 6 . 0 8 3 .79 0 . 9 9 6 1 . 7 5 5 . 0 0 9 . 8 3 2 4 . 0 5 70 .00 5 5 . 3 3 1 . 4 3 3 . 1 7 * 0 . 8 6 * 4 . 1 9 1 .68 1 . 9 3 3 . 1 7 5 1 . 8 0 6 . 0 7 2 3 4 . 4 6 . 0 0 1 1 . 2 0 * 4 5 . 3 4 7 5 . 3 3 1 3 8 . 8 7 .16 0 . 8 3 * 1 . 0 0 * 7 . 9 1 3 .84 1 3 . 3 9 2 . 6 0 7.58 0 . 8 6 4 5 . 0 0 4 . 0 0 6 . 6 7 1 9 . 6 8 5 2 . 0 0 4 8 . 0 0 1 .20 0 . 4 0 * 0 . 5 3 * 4 . 0 2 ' 1 .39 1 . 5 8 1 .67 2 1 . 0 6 5 . 7 8 71 .25 2 . 5 0 6 . 2 5 2 7 . 9 7 7 2 . 0 0 7 5 . 5 0 2 . 6 8 1 . 0 0 * r"'.'{" 1 . 5 8 * 4 . 5 0 2 . 3 2 4 . 2 8 • 1 .75 2 .34 ' 0 . 5 5 . 8 2 . 0 8 5 . 0 0 1 0 . 0 0 3 7 . 5 8 6 8 . 6 7 7 2 . 5 0 0 . 1 7 0 . 8 0 * 0 . 7 3 * 4 . 4 5 0 . 9 0 1 .19 6 . 7 5 8 . 6 8 1 .19 7 2 . 2 5 6 . 3 3 1 0 . 6 7 * 2 5 . 8 8 8 0 . 6 7 7 1 . 9 2 0 . 6 6 1 . 1 3 * 0 . 7 1 * 3 . 7 6 1 .44 1 . 5 7 3 . 7 5 3 7 . 9 0 4.42 pH = pH ACD = t o t a l a c i d i t y (mg/1 C a ( C 0 3 ) 2 e q u i v a l e n t ) N t o t a l K j e l k a h l n i t r o g e n (ppm) so, 4 = s u l f a t e s u l f u r (ppm) FE = i r o n (ppm) RDX = o x i d a t i o n - r e d u c t i o n p o t e n t i a l (mV) ALK = t o t a l a l k a l i n i t y (mg/1 C a ( C 0 3 ) 2 e q u i v a l e n t ) C = o r g a n i c carbon (ppm) CA — c a l c i u m (ppm) AL = aluminum (ppm) DO d i s s o l v e d oxygen (ppm) HCO = t o t a l b i c a r b o n a t e a l k a l i n i t y (mg/1 C a ( C 0 3 ) 2 e q u i v a l e n t ) N0 3 - n i t r a t e - n i t r o g e n (ppm) (as N i t r a t e ) MG - magnesium (ppm) MN = manganese (ppm) CND = s p e c i f i c conductance (umhos) HRD = t o t a l C a ( C 0 3 ) 2 hardness (mg/1) CL = c h l o r i d e (ppm) NA — sodium (ppm) SI — s i l i c o n (ppm) Q T — temperature ( C) DS —- t o t a l d i s s o l v e d i n o r g a n i c substances (mg/1) P 0 4 — phosphate-phosphorus (ppm) (as phosphorus) K = potassium (ppm) CFS — h y d r a u l i c d i s c h a r g e (cu. f t . per sec.) HI = hi g h h y d r a u l i c d i s c h a r g e LOW = low h y d r a u l i c d i s c h a r g e *exceed water q u a l i t y g u i d e l i n e s 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0100143/manifest

Comment

Related Items