UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Age differences in the semantic structure of animal terms and the effects of training Storm, Jill Christine 1975

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1975_A1 S87_5.pdf [ 13.39MB ]
Metadata
JSON: 831-1.0100072.json
JSON-LD: 831-1.0100072-ld.json
RDF/XML (Pretty): 831-1.0100072-rdf.xml
RDF/JSON: 831-1.0100072-rdf.json
Turtle: 831-1.0100072-turtle.txt
N-Triples: 831-1.0100072-rdf-ntriples.txt
Original Record: 831-1.0100072-source.json
Full Text
831-1.0100072-fulltext.txt
Citation
831-1.0100072.ris

Full Text

AGE DIFFERENCES IN THE SEMANTIC STRUCTURE OF ANIMAL TERMS AND THE EFFECTS OF TRAINING by J I L L CHRISTINE STORM B.A., U n i v e r s i t y o f A u c k l a n d , 1961 M.A., U n i v e r s i t y o f B r i t i s h C o l u m b i a , 1967 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY ( I n t e r d i s c i p l i n a r y ) We a c c e p t t h i s t h e s i s as c o n f o r m i n g t o t h e r e q u i r e d ^afectrtdard THE UNIVERSITY OF BRITISH COLUMBIA A p r i l , 1975 In presenting th i s thesis in p a r t i a l fu l f i lment of the requirements for an advanced degree at the Univers i ty of B r i t i s h Columbia, I agree that the L ibrary sha l l make it f ree ly ava i lab le for reference and study. I further agree that permission for extensive copying of th i s thesis for scho lar ly purposes may be granted by the Head of my Department or by his representat ives . It is understood that copying or p u b l i c a t i o n of th is thesis for f inanc ia l gain shal l not be allowed without my writ ten permission. Depa rtment The Univers i ty of B r i t i s h Columbia Vancouver 8, Canada i V ABSTRACT Two studies were conducted to explore the r o l e of semantic structure within the domain of animal terms i n children's spontaneous operations on these terms and on learning and tr a n s f e r performance. In the f i r s t study, 24 subjects at each of 6 educational l e v e l s from kindergarten through zoology graduates were given four tasks to per-form on a set of animal terms. Associative tasks (free l i s t i n g and animal associations to animal words) showed s i m i l a r semantic structures across a l l educational l e v e l s , with a few strongly associated terms, and a large group of f a i r l y i s o l a t e d terms. While a siz e dimension was dominant i n the s o r t i n g and s i m i l a r i t y tasks f o r grade 7, grade 11, and undergraduate groups, the dominant dimension f or zoologists was based on food habits. In the second study, 140 grade 3 and grade 7 subjects learned a l i s t of f a m i l i a r animal terms. L i s t organization was experimentally varied. Two types of organization were both designed to t r a i n the same multiple c l a s s i f i c a t i o n scheme: a h i e r a r c h i c a l l y organized presentation of the items together with t h e i r category labels,- and a l i s t presenta-t i o n of the items designed to t r a i n separately the cla s s i n c l u s i o n r e l a -tions involved i n the h i e r a r c h i c a l structure. A random organization of the stimulus items was also included. The experimental hypothesis was that f o r older c h i l d r e n the h i e r a r c h i c a l organization would be as e f f e c t -ive as the separate presentation of the two c l a s s i f i c a t i o n s , while for younger c h i l d r e n the separate presentation would be more e f f e c t i v e . Free r e c a l l was the d i r e c t measure of learning. A seri e s of four s o r t i n g tasks with the same item set were used to t e s t f o r t r a n s f e r . Based on the Piag-etian notion of increasing cognitive f l e x i b i l i t y i n c h i l d r e n throughout the c o n c r e t e o p e r a t i o n a l p e r i o d , i t was e x p e c t e d t h a t o l d e r c h i l d r e n f r o m b o t h o r g a n i z e d t r a i n i n g c o n d i t i o n s w o u l d combine and disembed d i m e n s i o n a l v a l u e s on t h e t r a n s f e r t a s k more a c c u r a t e l y and s p o n t a n e o u s l y t h a n younger c h i l d r e n . A n o - t r a i n i n g c o n t r o l group a t each age l e v e l p e r f o r m e d on t h e t r a n s f e r t a s k . O l d e r c h i l d r e n r e c a l l e d more i t e m s . O r g a n i z e d p r e s e n t a t i o n p r o -duced s u p e r i o r r e c a l l i n e a r l y t r i a l s t o randomly o r g a n i z e d l i s t s a t b o t h ages. Type o f o r g a n i z a t i o n d i d n o t pro d u c e d i f f e r e n t i a l e f f e c t s on r e c a l l , n o r d i d t h i s v a r i a b l e i n t e r a c t w i t h age. Measures o f c l u s t e r i n g i n f r e e r e c a l l were a l s o a n a l y z e d . T here was a t r a i n i n g e f f e c t a t b o t h grade l e v e l s on t h e f r e e s o r t i n g t a s k . Groups r e c e i v i n g s t r u c t u r e d o r g a n i z a t i o n had e s s e n t i a l l y l e a r n e d a new and d i f f e r e n t way o f o r g a n i z i n g t h e s e l e x i c a l i t e m s . Grade 7 c h i l d r e n a p p l i e d t h e s t r u c t u r e s l e a r n e d more s p o n t a n e o u s l y and w i t h f e w e r e r r o r s t h a n younger c h i l d r e n i n t h e same c o n d i t i o n s . On t h e 6, 3, and 2 c a t e g o r y s o r t s , grade 7 c h i l d r e n were more a c c u r a t e t h a n grade 3 c h i l d r e n . T r a i n e d s u b j e c t s p e r f o r m e d b e t t e r t h a n n o n - t r a i n e d s u b j e c t s on t h e 6 and 3 c a t e g o r y s o r t s . On a l l s o r t s h i e r a r c h i c a l and l i s t c o n d i t i o n s u b j e c t s were more a c c u r a t e t h a n random c o n d i t i o n s u b j e c t s . Grade 7 c h i l d r e n i n t h e o r g a n i z e d s t i m u l u s c o n d i t i o n s d i d b e t t e r on a l l s o r t s t h a n t h e i r grade 3 c o u n t e r p a r t s . H i e r a r c h i c a l c o n d i t i o n s u b j e c t s d i d b e t t e r t h a n l i s t c o n d i -t i o n s u b j e c t s on t h e 6 c a t e g o r y s o r t , b u t e q u i v a l e n t l y on t h e 3 and 2 c a t e g o r y s o r t s . The t h e o r e t i c a l and p r a c t i c a l i m p l i c a t i o n s o f t h e s e r e s u l t s a r e d i s c u s s e d . i v Table of Contents Chapter Page I INTRODUCTION 1 A. General Objectives 1 B. Theoretical Significance . . . . . . 1 C. P r a c t i c a l S i g n i f i c a n c e 4 II OBSERVED NORMATIVE SEMANTIC STRUCTURE OF ANIMAL TERMS BY AGE AND EDUCATIONAL LEVEL: ANALYSIS OF RESEARCH PROBLEMS . 6 A. Semantic Structure . . . 6 B. Development of Semantic Structure . . 11 C. Rationale and Outcomes 16 III METHODS OF DATA ANALYSIS AND TASKS 21 A. Selection of Methods of Analysis 21 1. Multidimensional Scaling . . . 23 2. H i e r a r c h i c a l C l u s t e r i n g 24 B. Sele c t i o n of Tasks 26 1. Associative Tasks 26 2. Cognitive Tasks . . . . . 27 IV OBSERVATIONS, RESULTS, AND DISCUSSION 30 A. Design of Study 30 B. Subjects 32 C. Stimulus Materials 32 D. Task 1: F r e e - L i s t i n g 34 1. Procedure 34 2. Results 34 E. Task 2: Animal Associations to Animal Terms 45 :'.v Chapter Page 1. Procedure 45 2. Results 46 F. Task 3: Pair-Ratings 55 1. Procedure 55 2. Results 56 G. Task 4: Sorting of Animals 80 1. Procedure 80 2. Results 81 H. Summary of Findings and Discussion 90 V EFFECTS OF STRUCTURAL ORGANIZATION ON LEARNING AND TRANSFER PERFORMANCE: ANALYSIS OF RESEARCH PROBLEMS . . . . 100 A. Multiple C l a s s i f i c a t i o n . . 100 B. H i e r a r c h i c a l Organization 103 C. Relevant Free Recall Studies i n Children . 106 D. Rationale and Summary of Hypotheses 108 VI METHOD 117 A. Experimental Design 117 B. Subjects . 123 C. Stimulus Items 123 D. Apparatus and Procedure 124 VII RESULTS 127 A. Learning Task 127 1. Item Recall 127 2. Cl u s t e r i n g i n Recall 135 B. Transfer Task 139 1. Free Sorting 139 Six Category - Three Category Scaling 140 Six Category - Two Category Scaling 142 v i Chapter Page; Three Category - Two Category Scaling 144 Hierarchical Clustering: Qualitative Descriptions . 144 Hierarchical Clustering: Quantitative Comparisons 167 2. Fixed Sorting 170 Six Category Sorting 171 Three Category Sorting 173 Two Category Sorting 175 VIII DISCUSSIONS AND SUMMARY OF FINDINGS 177 A. Hypotheses and Findings in Free Recall Learning . . . . 177 B. Hypotheses and Findings in the Sorting Transfer Task . 180 C. Overall Summary . . 185 LITERATURE CITED 189 APPENDICES 195 v i i L i s t o f T a b l e s T a b l e Page I F r e e - L i s t i n g D a t a on a l l . A n i m a l s L i s t e d : C e n t r a l T e n d e n c i e s , D i s p e r s i o n s , and Sample S i z e f o r each E d u c a t i o n a l L e v e l . . . . . . . . . . 35 I I F r e e - L i s t i n g D a t a on A n i m a l s L i s t e d f r o m S e l e c t e d S e t : C e n t r a l T e n d e n c i e s , D i s p e r s i o n s , and P r o p o r t i o n s f o r each E d u c a t i o n a l L e v e l 37 I I I R e l a t i o n s h i p between H e n l e y ' s . (1969) I n t e r s e c t i o n C o e f f i c -i e n t s and I n t e r s e c t i o n C o e f f i c i e n t s from t h e P r e s e n t S t u d y f o r each E d u c a t i o n L e v e l . . . 47 IV P a i r - R a t i n g s : S t r e s s V a l u e s by E d u c a t i o n a l L e v e l (MDSCAL) 62 V S o r t i n g : Mean Number o f C a t e g o r i e s Used t o S o r t 25 A n i m a l Terms, Range, and S t a n d a r d D e v i a t i o n f o r each E d u c a t i o n a l L e v e l 82 V I R e l a t i o n s h i p s between Tasks on 12 Item S u b s e t o f A n i m a l Terms 92 V I I R e l a t i o n s h i p s between Tas k s on 25 Item S e t o f A n i m a l Terms . . 93 V I I I Mean Number o f Items R e c a l l e d and S t a n d a r d D e v i a t i o n s f o r each E d u c a t i o n a l L e v e l o v e r S i x T r i a l s as a F u n c t i o n o f E x p e r i m e n t a l C o n d i t i o n s 128 I X Mean Number o f Items R e c a l l e d and S t a n d a r d D e v i a t i o n s f o r each E d u c a t i o n a l L e v e l o v e r Ten T r i a l s as a F u n c t i o n o f E x p e r i m e n t a l C o n d i t i o n s . 129 v i i i Table Page X Observed C e l l means and Standard Deviations f o r Cl u s t e r i n g Scores as a Function of T r i a l s , Grade, Stimulus Organization and Degree of Learning . . . 137 XI Six Category - Three Category Scaling: Observed Scale Value Means and Standard Deviations and Transformed Means and Standard Deviations by Experimental Treatments 141 XII Six Category - Two Category Scaling: Observed Scale Value Means and Standard Deviations and Transformed Means and Standard Deviations by Experimental Treatments 143 XIII Three Category - Two Category Scaling: Observed Scale Value Means and Standard Deviations and Transformed Means and Standard Deviations by Experimental Treatments" . . . . . . . 145 XIV Six Category Respect Ratios: Observed Ratio Score Means and Standard Deviations and Transformed Means and Standard Deviations by Experimental Treatments 172 XV Three Category Respect Ratios: Observed Ratio Score Means and Standard Deviations and Transformed Means and Standard Deviations by Experimental Treatments . 174 XVI Two Category Respect Ratios: Observed Ratio Score Means and Standard Deviations and Transformed Means and Standard Deviations by Experimental Treatments 176 i x L i s t of Figures Figure ' ' Page 1 A schematic representation of the design of study I 31 2 H i e r a r c h i c a l c l u s t e r i n g f o r zoology Ph.D.s on the free-l i s t i n g task (diameter m e t h o d ) . . . . 39 3 H i e r a r c h i c a l c l u s t e r i n g f o r education undergraduates i n the f r e e - l i s t i n g task (diameter method) .. 40 4 H i e r a r c h i c a l c l u s t e r i n g f o r grade 11 subjects on the free-l i s t i n g task (diameter method) 41 5 H i e r a r c h i c a l c l u s t e r i n g f o r grade 7 subjects on the f r e e -l i s t i n g task (diameter method) 42 6 H i e r a r c h i c a l c l u s t e r i n g f o r grade 3 subjects on the free-l i s t i n g task (diameter method) 43 7 H i e r a r c h i c a l c l u s t e r i n g f o r kindergarten subjects on the f r e e - l i s t i n g task (diameter method) 44 8 H i e r a r c h i c a l c l u s t e r i n g f o r zoology Ph.D.s on the associations task (diameter method) 49 9 H i e r a r c h i c a l c l u s t e r i n g f o r education undergraduates on the associations task (diameter method) 50 10 H i e r a r c h i c a l c l u s t e r i n g f o r grade 11 subjects on the associations task (diameter method) 51 11 H i e r a r c h i c a l c l u s t e r i n g f o r grade 7 subjects on the associations task (diameter method) 52 12 H i e r a r c h i c a l c l u s t e r i n g f o r grade 3 subjects on the associations task (diameter method) 53 X Figure Page 13 H i e r a r c h i c a l c l u s t e r i n g f o r kindergarten subjects on the associations task (diameter method) 54 14 H i e r a r c h i c a l c l u s t e r i n g f o r zoology Ph.D.s on the p a i r -r a t i n g task (diameter method) 58 15 H i e r a r c h i c a l c l u s t e r i n g f o r education undergraduates on the p a i r - r a t i n g task (diameter method) 59 16 H i e r a r c h i c a l c l u s t e r i n g f o r grade 11 subjects on the p a i r -r a t i n g task (diameter method) 60 17 H i e r a r c h i c a l c l u s t e r i n g f o r grade 7 subjects on the p a i r -r a t i n g task (diameter method) . 61 18 Dimensions 1 and 2 of 5-dimensional s c a l i n g of 12 animals f o r zoology Ph.D.s on the p a i r - r a t i n g task (MDSCAL) 63 19 Dimension 1 and 3 of 5-dimensional s c a l i n g f o r zoology Ph.D.s on the p a i r - r a t i n g task (MDSCAL) 64 20 Dimensions 1 and 2 of 5-dimensional s c a l i n g of 12 animals for education undergraduates on the p a i r - r a t i n g task (MDSCAL) 66 21 Dimensions 1 and 2 of 5-dimensional s c a l i n g of 12 animals f o r grade 11 subjects on the p a i r - r a t i n g task (MDSCAL) . . . 67 22 Dimensions 1 and 2 of 5-dimensional s c a l i n g of 12 animals for grade 7 subjects on the pair-:-rating task (MDSCAL) . . . . 68 C 23 The subject space f o r dimensions 1 and 2 for zoology Ph.D.s on the p a i r - r a t i n g task (INDSCAL). . . . . . . . . . . 70 24 The subject space for dimensions 1 and 2 f o r education undergraduates on the p a i r - r a t i n g task (INDSCAL) 71 25 The subject space f o r dimensions 1 and 2 f o r grade 11 subjects on the p a i r - r a t i n g task (INDSCAL) . . . . 72 x i Figure Page 26 The subject space for dimensions 1 and 2 for grade 7 subjects on the p a i r - r a t i n g task (INDSCAL) . 73 27 The subject space f or dimensions 1 and 2 (pooled) f or zoology Ph.D.s and education undergraduates (INDSCAL) . . . . 74 28 The subject space f o r dimensions 1 and 2 (pooled) for zoology Ph.D.s and grade 11 subjects (INDSCAL) 75 29 The subject space f o r dimensions 1 and 2 (pooled) f or zoology Ph.D.s and grade 7 subjects (INDSCAL) 76 30 The subject space f o r dimensions 1 and 2 (pooled) f or education undergraduates and grade 11 subjects (INDSCAL) . . . 77 31 The subject space f o r dimensions 1 and 2 (pooled) f or education undergraduates and grade 7 subjects (INDSCAL) . . . 78 32 The subject space f or dimensions 1 and 2 (pooled) f or grade 11 and grade 7 subjects ( I N D S C A L ) . . . . . . . . . . . 79 33 H i e r a r c h i c a l c l u s t e r i n g f o r zoology Ph.D.s on the so r t i n g task (diameter method) . . . . . . 83 34 H i e r a r c h i c a l c l u s t e r i n g f o r education undergraduates on so r t i n g task (diameter method) . . . . . 84 35 H i e r a r c h i c a l c l u s t e r i n g f o r grade 11 on s o r t i n g task (diameter m e t h o d ) . . . . . . . . . 85 36 H i e r a r c h i c a l c l u s t e r i n g f o r grade 7 on so r t i n g task (diameter method) 86 37 H i e r a r c h i c a l c l u s t e r i n g f r o grade 3 on s o r t i n g task (diameter method). 87 38 H i e r a r c h i c a l c l u s t e r i n g f o r kindergarten on the s o r t i n g task (diameter method) 88 39 Relationships among words i n a hierarchy . 118 x i i Figure Page 40a Relationships among words i n a l i s t organized according to food habits 119 40b Relationships among words i n a l i s t organized according to functions 120 41 Random organization of 24 words 121 42 A schematic representation of the experimental design . . . 122 43 Mean number of items r e c a l l e d according to grade and degree of learning 130 44 Hierarchies f o r grade 7 trained conditions from the fr e e -sorting data (diameter method) 147 45 Hierarchies f o r grade 3 trained conditions from the fr e e -s o r t i n g data (diameter; method) 148 46 Hierarchies f o r grade 7 no-training condition from the fr e e -s o r t i n g data (diameter method) • . . 149 47 Hierarchies f o r grade 3 no-training condition from the fr e e -s o r t i n g data (diameter method) 150 48 Hierarchies f o r grade 7 and grade 3 h i e r a r c h i c a l condition from the f r e e - s o r t i n g data (diameter method) . 153 49 Hierarchies f o r grade 7 h i e r a r c h i c a l condition from the free-s o r t i n g data (diameter method) . 154 50 Hierarchies f o r grade 3 h i e r a r c h i c a l condition from the fr e e - s o r t i n g data (diameter method) 155 51 Hierarchies f o r grade 7 and grade 3 l i s t condition from the fr e e - s o r t i n g data (diameter method) 156 52 Hierarchies f o r grade 7 l i s t condition from the f r e e - s o r t i n g data (diameter method) 158 53 Hierarchies f o r grade 3 l i s t condition from the f r e e - s o r t i n g data (diameter method) 159 x i i i F i g u r e Page 54 H i e r a r c h i e s f o r grade 7 and grade 3 random c o n d i t i o n from t h e f r e e - s o r t i n g d a t a ( d i a m e t e r method) 160 55 H i e r a r c h i e s f o r grade 7 random c o n d i t i o n f r o m t h e f r e e -s o r t i n g d a t a ( d i a m e t e r method) 161 56 H i e r a r c h i e s f o r grade 3 random c o n d i t i o n from t h e f r e e -s o r t i n g d a t a ( d i a m e t e r method) 162 57 H i e r a r c h i e s f o r grade 7 and grade 3 t e n l e a r n i n g t r i a l s c o n d i t i o n from f r e e - s o r t i n g d a t a ( d i a m e t e r method) 164 58 H i e r a r c h i e s f o r grade 7 and grade 3 s i x l e a r n i n g t r i a l s c o n d i t i o n f r o m t h e f r e e - s o r t i n g d a t a ( d i a m e t e r method) . . . 165 ACKNOWLEDGMENT I thank my committee chairman, Dr. Seong-Soo Lee, for the support and guidance received during a l l phases of t h i s research. I also thank the members of my committee, Dr. Stephen Foster, Dr. John G i l b e r t , Dr. David Ingram and Dr. Nancy Suzuki for t h e i r h e l p f u l suggestions and comments. I thank Mr. Louis Varga f o r hi s help with programming and Dr. Todd Rogers f o r s t a t i s t i c a l consultations. I am g r a t e f u l f o r the cooperation received from the p r i n c i p a l s , teachers, and students who p a r t i c i p a t e d i n these studies. F i n a l l y , I thank my husband, Tom, for h i s encouragement and moral support, and my son, Nick, for h i s patience. 1 1 CHAPTER I INTRODUCTION A. General Objectives Empirical studies of semantic structures within and between s p e c i f i c domains have begun only recently. In p a r t i c u l a r , studies of the development and modification by t r a i n i n g of semantic structures have been r e l a t i v e l y rare. Two studies were designed to explore t h i s f i e l d . A normative study was developed to investigate the e x i s t i n g subjective organization of animal terms i n groups of persons at d i f f e r e n t age and educational l e v e l s . A second study was designed to manipulate the s t r u c t u r a l organization of a set of f a m i l i a r l e x i c a l items from the domain of animal terms i n order to inves-t i g a t e the e f f e c t s of d i f f e r e n t types of s t r u c t u r a l organization on learning and r e c a l l i n a m u l t i - t r i a l free r e c a l l task and on combinatory a b i l i t y i n a t r a n s f e r s o r t i n g task i n grade 3 and grade 7 c h i l d r e n . B. Theoretical Significance Although the approach adopted i n the f i r s t study i s d e s c r i p t i v e rather than explanatory, the former necess a r i l y precedes the l a t t e r . Before t h e o r e t i c a l formulations, structures describing r e l a t i o n s h i p s between words i n a common domain must be i d e n t i f i e d . The structures may be s p e c i f i c to that domain or may indicate some more general human capacity to organize semantic r e l a t i o n s independently of a p a r t i c u l a r domain. In e i t h e r case, investigations within one semantic f i e l d are a f i r s t step towards an ade-quate d e s c r i p t i o n of l e x i c a l organization. Theoretical models have been suggested to describe storage and r e t r i e v a l of semantic knowledge i n adults (for example, the network and set-th e o r e t i c models). These models assume that memory structure mirrors 2 l o g i c a l structure and that l o g i c a l l y v a l i d r e l a t i o n s can be read d i r e c t l y from the structure of stored semantic information. I t seems of t h e o r e t i c a l i n t e r e s t to examine f i r s t of a l l whether there i s a structure common to a p a r t i c u l a r domain which can be extracted independently of the tasks used to get at t h i s structure. Certain tasks may e l i c i t more co g n i t i v e l y oriented r e l a t i o n s h i p s between l e x i c a l items i n the sense that systematic dimensions are applied to a l l items within the domain; whereas other tasks may e l i c i t more a s s o c i a t i o n i s t i c , i m p r e s s i o n i s t i c , emotional r e l a t i o n s h i p s between l e x i c a l items. Whether t h i s i s so can only be determined by the use of a number of d i f f e r e n t tasks and a v a r i e t y of techniques for data a n a l y s i s . Even i f a common structure emerges across tasks for adults, an exploration at younger age l e v e l s would seem necessary for an adequate theory of the development of semantic knowledge and a d e s c r i p t i o n of the semantic features involved. Semantic development involves the compilation of a d i c t i o n a r y and the addition of semantic features to these d i c t i o n a r y e n t r i e s . According to McNeill (1970), the most abstract features are added f i r s t and the process of feature addition involves f i n e r and f i n e r discriminations. Conversely, Anglin (1970) and Vygotsky (1962) propose that development proceeds from concrete feature addition to more abstract ones. Both i n Piagetian analysis and i n concept learning terms, semantic development may be seen as a growth i n the a b i l i t y to i d e n t i f y dimensions and t h e i r values, to apply these systematically to a re l a t e d set of items and to understand the combinatory rules (for example, cla s s i n c l u s i o n r e l a t i o n s ) which allow r e l a t i o n s h i p s between l e x i c a l items to be established. Although the f i r s t study i s not designed to uncover the processes involved i n the development of semantic knowledge, i t i s intended to describe states of semantic organization of animal terms at various age 3 l e v e l s and to suggest the kinds of semantic features being used to organize semantic r e l a t i o n s i n t h i s domain. In t h i s way, i t w i l l hopefully c o n t r i -bute to t h e o r e t i c a l descriptions of the additon of features i n semantic development. The second study i s concerned with extending our understanding of the a c q u i s i t i o n and t r a n s f e r of complex c l a s s i f i c a t o r y s k i l l s , p a r t i c u l a r l y those invo l v i n g c l a s s i n c l u s i o n r e l a t i o n s and h i e r a r c h i c a l organization, again within the semantic domain of animal terms. Piaget seems to suggest that these s k i l l s emerge with concrete operations during the 7 - 9 age period, but a number of studies, mostly using concrete and p i c t o r i a l s t i m u l i have demonstrated sequential development i n c l a s s i f i c a t o r y s k i l l s i n c h i l d r e n , some c l a s s i f i c a t i o n s being more d i f f i c u l t than others. Research on adults (for example, Bower, Clark, Lesgold and Winzenz, 1967; Nelson and Smith, 1972) has shown that the type of s t r u c t u r a l organization of the materials to be learned a f f e c t s learning and retention. Notably, h i e r a r c h i c a l organization leads to p a r t i c u l a r l y e f f i c i e n t learning i n adults. Bower suggests that t h i s r e s u l t s from greater e f f i c i e n c y both i n storage and r e t r i e v a l processes under t h i s type of stimulus presentation. That i s , since h i e r a r c h i c a l organization i s a frequently occurring and-pervasive form of organization, a r e t r i e v a l rule to generate such a structure i s e a s i l y stored. P a r t i c u l a r word occurrences are then stored as groups and labels are assigned to the groups. During r e t r i e v a l , the rule which generates a h i e r a r c h i c a l structure leads to r e c a l l of the category l a b e l s and further elaboration of the category instances:. . I t i s not c l e a r whether verbal items arranged i n a h i e r a r c h i c a l structure w i l l f a c i l i t a t e learning and t r a n s f e r i n c h i l d r e n . The second study i s designed to explore t h i s aspect. In addition, a consideration of the c l a s s i n c l u s i o n r e l a t i o n s involved i n h i e r a r c h i c a l organization suggests that younger ch i l d r e n recently acquiring c l a s s i f i c a t i o n s k i l l s may 4 store and r e t r i e v e verbal items more e a s i l y i f these c l a s s i n c l u s i o n r e l a t i o n s are separated out and presented separately to be learned. Of p a r t i c u l a r i n t e r e s t i s the e f f e c t of s t r u c t u r a l organization on t r a n s f e r to another task. That i s , even though the processes involved i n s t o r i n g and r e t r i e v i n g information which i s h i e r a r c h i c a l l y organized may be more complex for c h i l d r e n as compared to adults, perhaps having mastered t h i s organization over a s e r i e s of learning t r i a l s , c l a s s i f i c a t o r y s k i l l s on a d i f f e r e n t task involving the same items w i l l be more f l e x i b l e than for those c h i l d r e n whose learning occurred under conditions where the c l a s s i n c l u s i o n r e l a t i o n s were separated out. Conversely, i t may be that h i e r a r c h i c a l organization of stimulus materials i s too complex for young ch i l d r e n ; that t h e i r cognitive organization i s not s u f f i c i e n t l y developed to allow e i t h e r e f f i c i e n t learning of the items organized i n t h i s way or t r a n s f e r of t h i s organization to another task. I t i s thus of t h e o r e t i c a l i n t e r e s t to explore these p o s s i b i l i t i e s . C. P r a c t i c a l S i g n i f i c a n c e Descriptions of the subjective structure of s p e c i f i c semantic domains have important educational implications. In a review of research i n i n s t r u c t i o n a l psychology, Glaser and Resnick (1972) point out that the d i s t i n c t i o n between the subject matter structure as i t has been organized by s c i e n t i s t s and scholars i n a d i s c i p l i n e , and the subject matter as i t should be structured for optimum use by those who are newly acquiring knowledge i n a d i s c i p l i n e , i s i m p l i c i t i n the work of those who are con-cerned with i n s t r u c t i o n . I t seems obvious that the way i n which structures i n a p a r t i c u l a r d i s c i p l i n e ought to be formulated and the course of i n s t r u c t i o n i n that d i s c i p l i n e would be j o i n t l y dependent on the amount and type of organization already imposed on the subject area by the students at d i f f e r e n t educational l e v e l s at the onset of i n s t r u c t i o n , and the way i t i s expected that the student should structure the subject m a t t e r a t t h e end o f t h e i n s t r u c t i o n a l p r o c e s s . F o r example, i f one knew th e d i m e n s i o n s ( i f any) on w h i c h c h i l d r e n a t a s p e c i f i c age, o r f r o m a p a r t i c u l a r s o c i o - e c o n o m i c o r c u l t u r a l g r o u p , s t r u c t u r e t h e names o f c o u n t r i e s ( e . g . on t h e b a s e s o f s i z e , l o c a t i o n , d i s t a n c e , p r o d u c t s , economic development, e t c . ) , t h e p r o c e s s o f t e a c h i n g new g e o g r a p h i c a l c o n c e p t s w o u l d be f a c i l i t a t e d . A , t e a c h e r w o u l d , f o r example, p r e s e n t new knowledge i n a manner accommodated t o t h e s t r u c t u r e o f p r e - e x i s t i n g knowledge. I n o r d e r t o c o n s i d e r t h e p r o c e s s o f p r o d u c i n g a l t e r a t i o n s i n an e x i s t i n g s e m a n t i c s t r u c t u r e , i t . i s n e c e s s a r y t o b e g i n w i t h a d e s c r i p t i o n o f t h i s s t r u c t u r e . A l t h o u g h t h e r e have been e m p i r i c a l i n v e s t i g a t i o n s o f v a r i o u s s e m a n t i c f i e l d s and r e l a t i o n s , few have p r o v i d e d d e v e l o p m e n t a l d a t a . I n s e l e c t i n g a d e v e l o p m e n t a l a p p r o a c h , and i n c o n s i d e r i n g a s e m a n t i c domain w h i c h has e d u c a t i o n a l r e l e v a n c e , i t i s hoped t h a t t h e f i r s t s t u d y w i l l p r o v i d e d a t a w i t h i m p l i c a t i o n s f o r p r a c t i t i o n e r s and t h o s e c o n c e r n e d w i t h i n s t r u c t i o n . I t i s c l e a r l y e d u c a t i o n a l l y r e l e v a n t t o s t u d y methods o f p r e s e n t i n g m a t e r i a l t o e f f e c t o p t i m a l changes i n e x i s t i n g s t r u c t u r e s . The second s t u d y e x p l o r e s t h i s a s p e c t w i t h t h e k i n d s o f n a t u r a l i s t i c c o n c e p t s t o be a c q u i r e d i n t h e c l a s s r o o m and, more i m p o r t a n t l y , examines t h e e f f e c t o f l e a r n i n g on t r a n s f e r t o a n o t h e r t a s k , a b a s i c g o a l o f t h e i n s t r u c t i o n a l p r o c e s s . 6 CHAPTER II OBSERVED NORMATIVE SEMANTIC STRUCTURE OF ANIMAL TERMS BY AGE AND EDUCATIONAL LEVEL: ANALYSIS OF RESEARCH PROBLEMS A. Semantic Structure Semantic structure i n t h i s study r e f e r s to the subjective organiza-t i o n of a p a r t i c u l a r domain of meaningfully r e l a t e d terms (e.g. kinship terms, plants, animals). Subjective organization i s i n f e r r e d from various measures of psychological distance. I t i s assumed that the meaning of a l e x i c a l item i s , i n part, a function of the meaning r e l a t i o n s obtaining between that item and other items i n the same domain. Dixon (1971) indicates that there are two sides to l i n g u i s t i c meaning - sense and reference. The sense of a word i s i t s place i n a system of r e l a t i o n s h i p s with other words i n the vocabulary. Reference ref e r s to the r e l a t i o n s h i p between words and the things, events, and actions they "stand f o r " . The present study i s concerned only with'the former type of l i n g u i s t i c meaning. Relationships between items i n a semantic domain constitute the structure of that semantic f i e l d . The meaning shared by two words i s estimated i n terms of proximity. Proximity measures can be obtained by almost any method which i s assumed to measure s i m i l a r i t y , association, s u b s t i t u t -a b i l i t y or co-occurrence of any two words or sets of words. In psycholog-i c a l research, proximity has been defined i n terms of word c l u s t e r i n g i n f r e e - l i s t i n g or free r e c a l l , and .in terms of the number of responses shared by words i n a fre e - a s s o c i a t i o n t e s t . Other methods f or estimating proximity include s i m i l a r i t y judgements or rankings of s i m i l a r i t y between words, sor t i n g words on the basis of s i m i l a r i t y of meaning, and s u b s t i t u t a b i l i t y 7 of d i f f e r e n t words i n the same sentence s l o t s i n sentence frames. F i n a l l y , amount of interference or memory f a c i l i t a t i o n produced by presenting s p e c i f i c words contiguously i n a learning task, and the number of judges who can state a r e l a t i o n that makes two or more words equivalent can also y i e l d proximity measures. I t i s assumed that the more c r i t e r i a l properties shared by two or more words, the greater degree of equivalence between those words, and, therefore, the greater degree of shared meaning. In e s t a b l i s h i n g equivalence between two or more words, c e r t a i n properties of these words are ignored, while others are attended to. This i s s i m i l a r to concept formation i n which some dimensions become relevant to the concept while others are i r r e l e v a n t (Bourne, J r . , Ekstrand, and Dominowski, 1971)'. For example, i n forming the concept red square the relevant dimensions are color and form whereas a l l other dimensions on which the s t i m u l i may vary (e.g. s i z e , number, texture, etc;) are i r r e l e v a n t . In grouping animals on the basis of t h e i r shared mammalian c h a r a c t e r i s t i c s , other dimensions (e.g. s i z e , color, skin thickness, etc.) are .ignored. Therefore, i n e s t a b l i s h i n g the 'meaning' of the item mammal a person must learn how to d i s t i n g u i s h between relevant and i r r e l e v a n t c h a r a c t e r i s t i c s and to group other l e x i c a l items ( p a r t i c u l a r animals) on the basis ©f t h e i r relevant c h a r a c t e r i s t i c s . The study of concept formation and of the subjective lexicon are s i m i l a r i n that both are concerned with the struc-t u r a l r e l a t i o n s among materials (whether these materials are standardized geometric s t i m u l i or i n t e r n a l l i n g u i s t i c features). • These s t r u c t u r a l r e l a t i o n s are f l e x i b l e i n that they can vary between i n d i v i d u a l s and within the same i n d i v i d u a l according to which dimensions are considered relevant and which are i r r e l e v a n t at a p a r t i c u l a r time. Dog and cat would be grouped as p o s i t i v e exemplars and l i o n and cow as negative exemplars i f the relevant dimension were domesticity. ' However, cow would be a negative exemplar and l i o n , dog, and cat p o s i t i v e exemplars i f the relevant dimension 8 were changed to carnivorousness. Although there have been empirical i n v e s t i g a t i o n s of various semantic f i e l d s and r e l a t i o n s (e.g. Anglin, 1970; Deese, 1962, 1965, 1970; Fillenbaum and Rapoport, 1971; Henley, 1967, 1969; Henley, Noyes, and Deese, 1968; Osgood, Suci, and Tannenbaum, 1965; Rips, Shoben, and Smith, 1973; Romney and D'Andrade, 1964), few have been developmental i n approach. In s e l e c t i n g a developmental approach f o r the present study a s p e c i f i c semantic f i e l d (animal terms) was chosen which would be educationally relevant and i n which there were already data a v a i l a b l e from adult samples. Henley (1969) investigated the semantic structure of animal terms (common mammals) with adult subjects using a v a r i e t y of d e s c r i p t i v e techniques. With the exception of the paired associate method, she found high corres-pondence between d i f f e r e n t s c a l i n g and as s o c i a t i v e techniques and the emergence of a cl e a r structure with relevant dimensions of siz e and f e r o c i t y . Rips et a l . (1973) used multidimensional sealing In an attempt to determine the underlying semantic r e l a t i o n s among twelve common mammals. They obtained a two dimensional s o l u t i o n representing the dimensions of s i z e and predacity (wild animals and farm animals being found at the two extremes of pre d a c i t y ) . Both these studies confirm the notion, previously based on i n t u i t i o n and asso c i a t i v e data (Deese, 1965, 1970) that the f i e l d of animal terms i n English Is highly structured, at l e a s t i n adults. There i s c l e a r l y a need f o r a developmental study of the semantic structure of animal terms i f one i s interested not simply i n describing properties of the adult subjective lexicon, but'in determining something about the ontogeny of semantic structures and how new meaning d i s t i n c t i o n s enter the subjective lexicon. Fillenbaum and Rapoport (1971) point out that "Data on such matters would be of extraordinary importance, f o r at present, except perhaps- for some rather complex inferences based on changes i n the nature of associative responses (see e.g. McNeill, 1970) we have very 9 l i t t l e knowledge about the manner in which semantic knowledge develops (p. 249) ." According to Katz and Fodor (1963) the semantic component of language consists of a dictionary entry for each word together with a branching hierarchy of features. The topmost node in the semantic tree i s a grammatical marker (e.g. noun) followed by abstract semantic markers (e.g. animate, human) which are sufficient in number to delineate a l l senses of the word. The terminating node in the hierarchy is a semantic distinguisher which shows the "idiosyncratic" meaning of the word. This system has been cr i t i c i z e d (see Perfetti, 1972) primarily because i t allows for a limitless number of semantic markers. "The number of semantic markers depends on the degree of sensitivity required and since the only restriction on the latter is imagination, the semantic structure becomes unstructured (Perfetti, 1972, p. 248)." A further problem is the failure of the system to take into account knowledge about words which relies on nonlinguistie information. Perfetti (1972) prefers to regard semantic features as abstract components of the meaning of a lexical item. These components can be linguistic or non-linguistic. Features represent the knowledge a person has stored in an internalized dictionary. This approach does not specify any particular arrangement of features in the internalized dictionary. However, two current models of semantic memory, both incorporate the notion of features, in the above sense, and suggest possible organization of semantic knowledge. The network model (Anderson, 1972; Collins and Quillian, 1969, 1970a, 1970b; .Rumelhart, Lindsay, and Norman, 1972) suggests that words exist as independent units in semantic memory, connected in a network of labeled relationships. For example, a statement such as a robin i s a bird is represented as two nodes connected by an isa relation. Higher order superordinates such as animal may be directly connected to robin by another isa relation, or may be indirectly connected via the intermediate node b i r d . Thus, i n t h i s model, d i c t i o n a r y entries (words) are h i e r a r c h i c a l l y organized (e.g. robin i s subordinate to b i r d which i s subordinate to animal) while properties or features which are stored with the words are unordered (e.g. canary - sings, yellow; b i r d - wings). Reaction times for the t r u t h or f a l s i t y of statements selected on the basis of t h i s model (e.g. a canary i s an amimal; a canary has wings) provide support for t h i s approach. Indirect empirical support comes from studies on free r e c a l l c l u s t e r i n g (Bousfield, 1953; Cofer, 1965; Tulving, 1962) which show organization around shared semantic features as well as h i e r -a r c h i c a l organization (e.g. Anglin, 1970; F r i e n d l y , 1972). In the network model, semantic distance e f f e c t s are'placed at the r e t r i e v a l stage. A second model, the set- t h e o r e t i c model (Meyer, 1970; Schaeffer and Wallace, 1970) suggests that concepts l i k e robin, b i r d and 'animal are represented i n semantic memory as a set of elements. Elements i n t h i s model may be exemplars, a t t r i b u t e s , subsets or supersets of concepts. Semantic distance e f f e c t s , according to t h i s model, are placed at the comparison stage, following r e t r i e v a l of the concepts. Distance i s thus seen as the amount of non-overlap between the two concepts. The two models, network and set 1-theoretic d i f f e r , therefore, i n t h e i r underlying representation of• semantic knowledge and i n t h e i r placement of distance e f f e c t s i n the processing sequence. According to the network model . (Rumelhart and Abrahamson, 1973) when a group of items a l l have the- same superordinate (e.g. mammal) and d i f f e r from each other with respect to the values of a common set of properties (e.g. si z e and f e r o c i t y ) , then the items can be equivalently conceptualized as entries i n a multidimensional space. Thus, t h i s model assumes that there i s an i s a r e l a t i o n s h i p s between each item and i t s superordinate, as well as a p o s i t i v e r e l a t i o n s h i p between each item and a common set of properties. The s e t - t h e o r e t i c model would seem to ind i c a t e that when items share the same superordinate, the distance between them would be determined by the degree of feature overlap. Rips et a l . (1973) suggest that there may be two kinds of features, d e f i n i n g features which s t r i c t l y define cate-gory membership, and c h a r a e t e r i s t i c features which characterize most' instances of the category. Thus, even when instances share a l l features de f i n i n g category membership, i t seems p l a u s i b l e that those items which share fewer of the c h a r a c t e r i s t i c features would be more di s t a n t i n semantic space than other items sharing a greater number of c h a r a e t e r i s t i c features. According to t h i s viewpoint, even though a mammal such as seal shares a l l the d e f i n i n g mammalian features, i t shares fewer of the c h a r a c t e r i s t i c features (e.g. land h a b i t a t i o n etc.) and should therefore be more d i s t a n t i n semantic space from other mammalian 'instances. This approach f i t s the studies conducted by Rosch (1973) i n which she showed that some instances of a category are more exemplary than other instances. She found that ch i l d r e n learn category membership of c e n t r a l instances (e.g. sparrow) before they learn- category membership of p e r i p h e r a l instances (e.g. duck). B. Development of Semantic Structure The development of a semantic system involves the compilation of a d i c t i o n a r y and the addition of semantic features to these d i c t i o n a r y e n t r i e s . Both McNeill (1968, 1970) and Vygotsky (1962) regard t h i s development as a gradual process. According to'McNeill (1970) there are at l e a s t three reasons for t h i s slow development. The f i r s t reason concerns the complex-i t y of the information that i s encoded i n the l e x i c o n . The second reason i s that semantic development depends on a.certain l e v e l of i n t e l l e c t u a l achievement, one l e v e l of which i s attained at approximately seven years of age, as demonstrated by White (1965) and Piaget (1967). The t h i r d reason concerns the abstractness of d i c t i o n a r y entries themselves. One hypothesis suggested by McNeill "(1970) to describe semantic a c q u i s i t i o n i s known as the h o r i z o n t a l hypothesis. According to t h i s 12 hypothesis, when a word enters the i n t e r n a l d i c t i o n a r y , some of the features associated with the word enter the dictionary at the same time. At l a t e r stages, other semantic features are added. The addition of each semantic feature has widespread importance for the ent i r e d i c t i o n a r y , since each feature w i l l appear i n more than one entry and may appear i n a great many e n t r i e s . When a semantic feature i s added an e n t i r e class of words i s separated from another, these two separated classes d i f f e r i n g with respect to t h i s semantic feature. In McNeill's view, the most abstract features are added to the d i c t i o n a r y entries f i r s t and the process of feature addition involves f i n e r and f i n e r discriminations. For example, h i s d e s c r i p t i o n of the compilation f o r the d i c t i o n a r y entry flower i n d i c a t e s that p h y s i c a l  object i s the f i r s t semantic feature added (af t e r the s y n t a c t i c marker noun), followed by l i v i n g , then small, then plant. The sequential addition of semantic features i n t h i s manner "means that words can be part of a c h i l d ' s vocabulary but have d i f f e r e n t semantic properties from the same words i n an adult's vocabulary (McNeill, 1970, p. 4)." I f t h i s i s the case, i t would appear that the structure of a s p e c i f i c semantic f i e l d would d i f f e r accord-ing to developmental l e v e l on the basis of the number and kinds of semantic properties which had been added to the di c t i o n a r y e n t r i e s . Within the f i e l d of animal terms, i t i s p l a u s i b l e that the d i c t i o n a r y compilation might proceed i n a s i m i l a r fashion to that given f o r the word flower. For example, at time one, dog might have the semantic feature p h y s i c a l object. At l a t e r times features such as l i v i n g , small, animal, etc. would be added. I f t h i s view i s correct, an attempt to determine the structure of animal terms at the stage when the only feature added to each d i c t i o n a r y entry was p h y s i c a l  object would reveal no structure or else equivalence between a l l terms, since a l l animals used herein are phys i c a l objects. With the further addition of semantic features, d i f f e r e n t i a t i o n should occur between s p e c i f i c animals with a progression from fewer but larger groupings and/or fewer 13 meaningful dimensions to smaller, more f i n e l y discriminated and more numerous groups and/or more numerous meaningful dimensions. Eve Clark (1973) describes semantic feature a c q u i s i t i o n i n ways s i m i l a r to McNeill's h o r i z o n t a l hypothesis. However, her hypothesis r e l a t e s p r i m a r i l y to semantic a c q u i s i t i o n i n very young chi l d r e n ( 2 i years of age) and s p e c i f i e s more p r e c i s e l y the type of feature involved i n semantic development. Like McNeill, she considers that features are added sequentially to l e x i c a l items i n the i n t e r n a l d i c t i o n a r y u n t i l the adult model i s attained. The f i r s t features to enter the lexicon are derived from percepts. At a l a t e r stage, the c h i l d learns which features are l i n g u i s t i c a l l y important and which are redundent within a set or combination of features. The more general features are acquired f i r s t and development i s seen as a process.of c a t e g o r i c a l narrowing. For example, when the word dog i s f i r s t acquired, i t i s overextended to other animals with perceptual s i m i l a r i t i e s (e.g. cat, cow, horse, e t c . ) . With the introduction of new words (e.g. cat, cow, horse) these overextensions are narrowed down. McNeill (1970). had a second hypothesis, the v e r t i c a l hypothesis, which i s not mutually exclusive of the h o r i z o n t a l hypothesis. According to t h i s hypothesis most or a l l of the semantic features associated with a l e x i c a l item enter the dic t i o n a r y at the same time as the word i t s e l f , but these d i c t i o n a r y e n t r i e s are separated from each other so that semantic features are present i n several unrelated places i n the d i c t i o n a r y . Thus, the l e x i c a l e ntries f or younger and older c h i l d r e n would show the same semantic features and semantic development would involve the gradual v e r t i c a l c o l l e c t i o n of these separate components i n t o u n i f i e d semantic features. Clark (1973) points out that t h i s hypothesis does not c l e a r l y specify "what form the organization of such a lexicon would take develop-mentally, beyond one's being able to l i s t a gradual increase i n the number 14 of vocabulary items used by the c h i l d (p. 68)." A somewhat opposing viewpoint has been proposed by Anglin (1970) and Vygotsky (1962). From t h i s viewpoint semantic development involves the growth i n the a b i l i t y to generalize by abstracting s i m i l a r i t i e s among inc r e a s i n g l y broad classes. According to Anglin (1970) "At f i r s t he might see that roses and t u l i p s are flowers, that oaks and elms are trees, that c o l l i e s and poodles are dogs and that diamonds and rubies are stones. Some-what l a t e r he might r e a l i z e that the objects he has classed as flowers are s i m i l a r to the objects he has classed as trees i n that both are pl a n t s . S t i l l l a t e r he might form even more general concepts of l i v i n g things, objects and f i n a l l y , , e n t i t i e s which would apply to most nouns (p. 14)." In other words, according to Anglin, the c h i l d i s constructing a h i e r a r c h i c a l system with in c r e a s i n g l y abstract nodes. This d e s c r i p t i o n d i f f e r s from McNeill's i n that the c h i l d begins by the addition of the more concrete features and adds h i e r a r c h i c a l l y more abstract features over time. A number of empirical studies lend support to this, idea by demonstrating that younger ch i l d r e n have more i d i o s y n c r a t i c and concrete l e x i c a l organization (Anglin, 1970; Bower et a l . , 1969; M i l l e r , 1967; Schaeffer et a l . , 1971). In terms of the semantics of animal terms, t h i s analysis would suggest that c h i l d r e n f i r s t see s i m i l a r i t i e s among small groups of animals (these s i m i l a r i t i e s derived on the basis of more concrete features). In addition, the basis f o r c l a s s i f y i n g at young age l e v e l s may be more i d i o s y n c r a t i c as a r e s u l t of d i f f e r e n t i a l environmental experiences. With development, larger and more abstract groups and/or fewer meaningful dimensions would be formed. . ' F i n a l l y , i t i s worthwhile to consider, i n t h i s context, Piaget's theory (Inhelder and Piaget, 1964) concerning the development of c l a s s i f i c -atory s k i l l s i n c h i l d r e n . According to the theory these s k i l l s develop i n an i n v a r i a n t sequence. In the f i r s t stage (approximately 2 - 5 years of age) c h i l d r e n c l a s s i f y objects i n one of two ways, e i t h e r by making small p a r t i a l alignments or by making complex objects. In p a r t i a l alignment, the c h i l d uses only some of the objects i n the o r i g i n a l d isplay and puts them together i n several ways with no o v e r a l l plan. Sometimes grouping occurs on the basis of no detectable s i m i l a r i t i e s . When the c h i l d constructs complex objects, he uses the display items to make pictures or forms. Even though the c h i l d may perceive s i m i l a r i t i e s between objects, these s i m i l a r i t i e s do not f u l l y determine what objects go into a c o l l e c t i o n . In the second stage (approximately 5 - 7 years of age), the c h i l d can form classes with a l l appropriate objects i n a class and he can use a l l the objects i n the d i s p l a y . Although he can construct a h i e r a r c h i c a l arrange-ment of items, he does not yet f u l l y understand the class i n c l u s i o n r e l a t i o n s h i p s contained i n the hierarchy. In the t h i r d stage (7 - 11 years of age approximately), he learns how to construct a hierarchy and to under-stand c l a s s i n c l u s i o n r e l a t i o n s h i p s , but h i s c l a s s i f i c a t o r y s k i l l s are p r i m a r i l y l i m i t e d to i n t e r a c t i o n s with concrete objects and he has trouble conceptualizing c l a s s i n c l u s i o n r e l a t i o n s h i p s i n the absence of the objects. F i n a l l y , i n the fourth stage (11 years of age approximately), h i s c l a s s i f i c -atory s k i l l s are f l e x i b l e and not bound by the concrete presence of the objects. Although Piaget's approach i s quite d i f f e r e n t from those discussed above, i t has implications for a developmental d e s c r i p t i o n of semantic structure within a s p e c i f i c domain. I t suggests: that perceived s i m i l a r i t -ies between animal terms would be haphazard, changeable and i d i o s y n c r a t i c i n very young c h i l d r e n . With increasing age, the semantic domain would be reorganized into a more systematic and s o p h i s t i c a t e d c l a s s i f i c a t o r y system. The theories o u t l i n e d above concerning semantic development are not nece s s a r i l y contradictory. A l l approaches indi c a t e that semantic develop-ment i s r e l a t i v e l y slow and that c h i l d r e n have d i f f e r e n t subjective semantic 16 structures at d i f f e r e n t age l e v e l s . Some t h e o r e t i c a l approaches (e.g. Clark) are s p e c i f i c to a p a r t i c u l a r age l e v e l , whereas others (e.g. Piaget) are more general i n that they apply to the e n t i r e age spectrum during which s i g n i f i c a n t development occurs. Anglin and McNeill disagree as to the order i n which semantic features enter the i n t e r n a l d i c t i o n a r y , but agree on the h i e r a r c h i c a l nature of the semantic system. C. Rationale and Outcomes The intent of the present study was to describe the semantic s t r u c -ture of a f a m i l i a r set of animal terms at d i f f e r e n t age and educational l e v e l s using a v a r i e t y of tasks and d e s c r i p t i v e techniques designed to y i e l d various measures of psychological distance. Although t h e o r e t i c a l p o s i t i o n s concerning both the organization and development of semantic knowledge have been outlined above, i t should be emphasized that the present study was t designed p r i m a r i l y to y i e l d d e s c r i p t i v e information rather than to t e s t any t h e o r e t i c a l point of view. In the preceding section on the development of semantic structures, i t was implied that c h i l d r e n e x h i b i t d i f f e r e n t subjective semantic struc-tures at d i f f e r e n t ages. Both McNeill and Anglin imply differences i n number of c l u s t e r s and meaningful dimensions and i n the kinds of features used as a function of age. Another a l t e r n a t i v e i s that there i s a roughly constant number of c l u s t e r s and dimensions across age l e v e l s r e f l e c t i n g a l i m i t a t i o n on the capacity to dimensionalize and group objects. However, the basis f o r categorizing objects might change with age. This approach i s more i n l i n e with Piaget. Each change i n structure might involve a t o t a l reorganization of the semantic f i e l d to a more sophisticated c l a s s i f -i c a t o r y system. I t i s possible that the more p r i m i t i v e methods for c l a s s i f i c a t i o n are s t i l l a v a i lable to the i n d i v i d u a l , but not dominant. This approach would mean that age produces greater f l e x i b i l i t y i n a person's a b i l i t y to c l a s s i f y the same set of l e x i c a l items. Changes i n structure 17 m i g h t be due- t o s p e c i f i c e v e n t s . Z o o l o g i s t s , s i n c e t h e y have had e x t e n s i v e e x p e r i e n c e s , i n c l u d i n g f o r m a l t r a i n i n g , , , i n a n i m a l taxonomy, s h o u l d e x h i b i t t h e most complex s u b j e c t i v e s t r u c t u r e f o r t h e s e m a n t i c f i e l d o f a n i m a l t e r m s . I t i s a l s o p o s s i b l e t h a t t h e f i e l d o f a n i m a l terms becomes s u b j e c t -i v e l y s t r u c t u r e d by c h i l d r e n a t an e a r l y age and f u r t h e r s c h o o l and o t h e r e x p e r i e n c e s t o w h i c h t h e average c h i l d i s e xposed l e a v e t h e s t r u c t u r e e s s e n t i a l l y unchanged e x c e p t f o r an i n c r e a s e i n t h e number o f l e x i c a l i t e m s w h i c h become a s s i m i l a t e d t o t h i s s t r u c t u r e w i t h t h e a d d i t i o n o f new d i c t i o n -a r y e n t r i e s . T h i s i n t e r p r e t a t i o n conforms more t o M c N e i l l ' s v e r t i c a l hypo-t h e s i s . I f t h i s o c c u r s i t may be b ecause t h e r e i s one ' n a t u r a l s t r u c t u r e ' due t o i n h e r e n t b i o l o g i c a l l y d e t e r m i n e d p a t t e r n s , o r because t h e t y p e s o f e x p e r i e n c e s needed t o e s t a b l i s h s t r u c t u r e i n t h e f i e l d o f a n i m a l terms o c c u r f o r most c h i l d r e n a t an e a r l y age and f u r t h e r - e x p e r i e n c e s a r e n o t s u f f i c i -e n t l y p o t e n t t o change th e dominant s t r u c t u r a l r e l a t i o n s h i p s a l r e a d y e s t a b l i s h e d . H e n l e y ( 1 9 6 9 ) , u s i n g a d u l t s u b j e c t s , f ound c l e a r d i m e n s i o n s o f s i z e and f e r o c i t y i n t h e s t r u c t u r e o f a n i m a l t e r m s . I t i s n o t i m p l a u s -i b l e t h a t c h i l d r e n , f r o m an e a r l y age, use t h e same two d i m e n s i o n s t o c h a r a c t e r i z e t h i s s e m a n t i c f i e l d , s i n c e t h e s e d i m e n s i o n s do n o t appear t o be p a r t i c u l a r l y complex. However, i t may t a k e t i m e f o r t h i s s t r u c t u r e t o s t a b i l i z e ( s i n c e t i m e t o s t a b i l i z e may depend on t h e n a t u r e o f one's e x p e r i e n c e s and t h e number o f l e a r n i n g e n c o u n t e r s w i t h a n i m a l s , a n i m a l s t o r i e s , e t c . ) and, t h e r e f o r e , a t younger age l e v e l s , mere i n d i v i d u a l d i f f e r e n c e s among c h i l d r e n o f t h e same age a r e l i k e l y t o be d e t e c t e d . I f i t i s t h e c a s e t h a t c h i l d r e n and a d u l t s s t r u c t u r e t h e s e t o f a n i m a l terms i n r o u g h l y t h e same way, t h i s m i g h t i n d i c a t e t h a t t h e t y p e s o f l e a r n i n g e x p e r i e n c e s e n c o u n t e r e d t h r o u g h t h e s c h o o l y e a r s a r e n o t s u f f i c i e n t i n number o r s t r o n g enough t o produce a l t e r a t i o n s i n t h i s dominant s t r u c t u r e . I n c o n n e c t i o n w i t h t h i s p o s s i b i l i t y , i t w o u l d be o f i n t e r e s t t o examine t h e I 18 s u b j e c t i v e s t r u c t u r e f o r a n i m a l terms' i n e x p e r t s i n t h e a r e a o f a n i m a l taxonomy. I t seems c o u n t e r - i n t u i t i v e t h a t z o o l o g i s t s w i t h t h e i r e x t e n s i v e t r a i n i n g i n a n i m a l c l a s s i f i c a t o r y systems w o u l d d i m e n s i o n a l i z e on t h e b a s i s o f s i z e and f e r o c i t y . I t i s t o be supposed t h a t t h e ' t y p e s o f l e a r n i n g e x p e r i e n c e s i n v o l v e d i n t r a i n i n g t o be a z o o l o g i s t w o u l d o v e r r i d e t h e dominant method o f s t r u c t u r i n g a n i m a l t e r m s . E m p i r i c a l s u p p o r t f o r t h i s i d e a was o b t a i n e d by J o h nson (1964) i n a c o m p a r i s o n o f t h r e e h i g h - s c h o o l ' groups i n terms o f t h e i r a s s o c i a t i v e s t r u c t u r e s f o r words d e f i n i n g key c o n c e p t s i n c l a s s i c a l m e c h a n i c s . The groups were e s t a b l i s h e d on t h e b a s i s o f whether t h e y were t a k i n g h i g h - s c h o o l p h y s i c s , had t a k e n i t , o r i n t e n d e d t o t a k e i t . The r e s u l t s i n d i c a t e d t h a t a s s o c i a t i o n s t o c r i t i c a l words were more h i g h l y o r g a n i z e d f o r those- c u r r e n t l y t a k i n g p h y s i c s t h a n f o r "those -who i • • had p r e v i o u s l y t a k e n p h y s i c s , whose a s s o c i a t i o n s were, i n t u r n , more h i g h l y o r g a n i z e d t h a n f o r t h o s e who i n t e n d e d ' t o t a k e p h y s i c s . More i m p o r t a n t l y , t h e s p e c i f i c s t r u c t u r e s f o r t h o s e who were t a k i n g o r had t a k e n p h y s i o s were c o r r e l a t e d w i t h and a p p a r e n t l y d e t e r m i n e d by t h e r e l a t i o n s h i p s d e f i n e d i n b a s i c e q u a t i o n s i n m e c h a n i c s . I t seems, l i k e l y , t h e r e f o r e , t h a t z o o l o g i s t s w i l l e x h i b i t s t r u c t u r e s d e t e r m i n e d by s p e c i f i c and e x t e n s i v e t r a i n i n g i n a n i m a l , taxonomy. However, i f i n f a c t , t h e r e a r e no d i f f e r e n c e s i n s t r u c -t u r e between z o o l o g i s t s , o t h e r a d u l t s , and c h i l d r e n , t h i s w o u l d i n d i c a t e t h a t t h e t y p e s o f t a s k s used t o a s s e s s s e m a n t i c s t r u c t u r e t y p i c a l l y e l i c i t more p r i m i t i v e r e s p o n s e s w h i c h do not' r e f l e c t t h e t r a i n e d c o m p e t e n c i e s o f t h e i n d i v i d u a l ; o r t h a t t h e methods u s e d t o a n a l y z e t h e s e r e s p o n s e s a r e n o t s u f f i c i e n t l y s e n s i t i v e and r e f i n e d t o d e t e c t i m p o r t a n t d i f f e r e n c e s ; o r t h a t t h e r e s u l t s o b t a i n e d a r e a r t i f a c t s o f t h e p a r t i c u l a r , s t i m u l u s s e t u s e d . A f i n a l p o s s i b i l i t y t o be c o n s i d e r e d i s t h a t e a r l y i n t h e s c h o o l y e a r s t h e f i e l d o f a n i m a l terms i s u n s t r u c t u r e d . T h i s may o c c u r , f r o m M c N e i l l ' s v i e w p o i n t , because s e m a n t i c f e a t u r e s have n o t y e t been added t o t h e a n i m a l i t e m s e n t e r e d i n t h e d i c t i o n a r y a t a l e v e l i n t h e h i e r a r c h y 19 necessary to d i f f e r e n t i a t e between s p e c i f i c animal terms.- I t may occur, a l t e r n a t i v e l y , because the semantic features which have been added to the diction a r y items are so concrete that each animal term forms a cla s s of i t s own (in l i n e with Anglin's t h e o r e t i c a l approach). F i n a l l y , t h i s may be the case because the dominant st r u c t u r e • f o r animal terms•does not become established u n t i l some time during the school years. Each of these p o s s i b i l i t i e s can only be examined by an analysis of the subjective structure i n the f i e l d when i t does manifest i t s e l f , and the p a r t i c u l a r t r a n s i t i o n s which may occur. I t should be noted that lack of structure as i t has been defined above r e f e r s to lack of normative structure f o r the semantic f i e l d ' o f animal terms. I t i s also possible that c h i l d r e n at younger age l e v e l s structure the semantic f i e l d i n i d i o s y n c r a t i c ways. This means that animal terms would be structured f o r each i n d i v i d u a l c h i l d , but there would not be a normative structure (that is,, a way of st r u c t u r i n g the f i e l d which i s common to children i n that p a r t i c u l a r age group). Represented below i s a l i s t of possible outcomes regarding the organ-i z a t i o n of the semantic f i e l d of animal terms at d i f f e r e n t age and , educational l e v e l s . These outcomes are intended to encompass the range of p o s s i b i l i t i e s and are not considered to be mutually exclusive. 1. Semantic structures may vary across some age and educational l e v e l s i n the following ways: a. i n the i n t e r p r e t a b i l i t y of the dimensions and c l u s t e r s obtained b. i n the number of c l u s t e r s and meaningful dimensions obtained, and c. i n the types of features used. 2. Semantic structures may, on the other hand, be s i m i l a r across some age and educational l e v e l s i n the same three ways l i s t e d above. 3. The semantic f i e l d of animal" terms may be unstructured at younger age and educational l e v e l s (in the sense that no normative, in t e r p r e t a b l e semantic'structure w i l l be found)";;-''." There w i l l be greater homogeneity of dimensions and groupings among subjects with increasing age and educational level. The size of the natural set of animal, items stored in an internalized dictionary w i l l increase' with increasing, age. and education. 21 CHAPTER III METHODS OF DATA ANALYSIS AND TASKS A. S e l e c t i o n of Methods of Analysis The present approach was concerned with discovering whether common underlying structures e x i s t at p a r t i c u l a r age l e v e l s , and i f so, what could be considered to be the most appropriate representation of these structures. The basic data consisted of two-way arrays of proximity measures derived from four d i f f e r e n t tasks. A v a r i e t y of techniques were used to analyze the data from the d i f f e r e n t tasks and frequently d i f f e r e n t techniques were applied to the same data. The use of several tasks and several techniques f o r analysis was considered advisable since a p a r t i c u l a r structure obtained may well be an a r t i f a c t of the p a r t i c u l a r task or techniques employed. A s p a t i a l or dimensional representation w i l l emerge i f multidimensional s c a l i n g tech-niques are applied and a taxonomic structure w i l l emerge from the use of h i e r a r c h i c a l c l u s t e r i n g procedures. The imposition of s p e c i f i c structures w i l l to a greater or l e s s e r extent d i s t o r t the actual underlying-represen-t a t i o n . I t was therefore necessary to have some i n d i c a t i o n of the amount of d i s t o r t i o n imposed on the data by the use of t e s t s b u i l t i n t o the procedures (e.g. the stress index In multidimensional s c a l i n g procedures) and by the concurrent use of several d i f f e r e n t techniques. "The p r i n c i p a l advantage of the use of a number of techniques for data a n a l y s i s , i n v o l v i n g b a s i c a l l y d i f f e r e n t s t r u c t u r a l assumptions, i s that instead of being faced with some absolute judgement of i n t e r p r e t a b i l i t y , as would be the case i f only one technique had been used, one may rather, make a comparative judgement under more informative circumstances." (Fillenbaum and Rapoport, 1971, p. 240). The two major techniques employed were multidimensional s c a l i n g (MDS) and c l u s t e r i n g a n a l y s i s . MDS methods are useful f o r purposes of discovering the nature of the structure which obtains i f that structure i s s p a t i a l . The method transforms a proximity matrix i n t o a s p a t i a l model of s u f f i c i e n t l y low dimensionality "on" the basis of assumptions about the general form of the to-be-revealed structure that seem minimally vulnerable and, hopefully, provide for the p o s s i b i l i t y of an acceptable reconstruction of the o r i g i n a l data (Shepard, 1969, p. 6)." Although the s p a t i a l model has been t y p i c a l l y Euclidean i n that each item i s represented as a point i n space, MDS tech-niques can be e a s i l y extended to include non-Euclidean models. However, Fillenbaum and Rapoport (1971) claim that the Euclidean model i s quite robust provided that a set of underlying dimensions e x i s t such that each item has a value on each dimension and that i t i s useful and reasonable to represent r e l a t i o n s among items i n such terms. When assumptions' concerning the underlying dimensionality of the to-be-revealed structure seem questionable, dimension-free methods such as Johnson's (1967) h i e r a r c h i c a l c l u s t e r i n g method appear useful f o r discovering structures i n the data. The aim of t h i s technique i s to express the r e l a t i o n s h i p s among a set of items i n terms of h i e r a r c h i c a l l y arranged sets of optimally homogeneous subgroups. This method i s based on the more l i m i t e d assumption that each item has" a value defined for only some of the components of the hierarchy ( M i l l e r , 1967). H i e r a r c h i c a l c l u s t e r i n g methods are useful p a r t l y i n that they can,provide a check on the adequacy of dimensional representation, but p r i m a r i l y because the underlying s t r u c -ture may i n f a c t be taxonomic or h i e r a r c h i c a l as opposed to cross-c l a s s i f i c a t o r y or l i n e a r . . As M i l l e r (1969) points out " h i e r a r c h i c a l (taxonomic) organization based on r e l a t i o n s of class i n c l u s i o n i s a p e r v a s i v e f e a t u r e o f - t h e ( s u b j e c t i v e ) l e x i c o n (p. 1 7 6 ) . " A l t e r n a t i v e l y , t h e u n d e r l y i n g s t r u c t u r e may c o n s i s t o f b o t h t a x o n o m i c and d i m e n s i o n a l p r o p e r t i e s . S i n c e b o t h o f t h e above t e c h n i q u e s a r e u s e d e x t e n s i v e l y i n t h i s s t u d y , t h e y a r e c o n s i d e r e d in'more d e t a i l . 1. M u l t i d i m e n s i o n a l S c a l i n g The i n i t i a l d a t a f o r MDS p r o c e d u r e s a r e e n t r i e s i n a p r o x i m i t y m a t r i x e s t a b l i s h e d on an o r d i n a l s c a l e . Through t h e use o f i t e r a t i v e p r o c e d u r e s , a t t e m p t s a r e made t o f i n d some arrangement o f p o i n t s i n a space o f low d i m e n s i o n a l i t y such t h a t t h e rank o r d e r o f t h e i n t e r p o i n t d i s t a n c e s i s m a x i m a l l y i n v e r s e l y c o r r e l a t e d w i t h t h e rank o r d e r o f t h e s i m i l a r i t y measures. To t h e e x t e n t t h a t t h i s i s a c h i e v e d , t h e r e s u l t i n g r e p r e s e n t a t i o n p e r f e c t l y f i t s t h e d a t a , and t h e r e s u l t i n g i n t e r p o i n t d i s t a n c e s a r e m e a s u r a b l e on a r a t i o s c a l e . As t h e d i m e n s i o n a l i t y o f t h e space i s r e d u c e d , d e p a r t u r e s f r o m p e r f e c t f i t a r e l i k e l y t o o c c u r . K r u s k a l (1964) d e v e l o p e d - a n i n d e x t o measure how c l o s e l y t h e r e l a t i o n s h i p between i n t e r p o i n t d i s t a n c e s and p r o x i m i t y measures approaches a monotone f u n c t i o n . T h i s i s c a l l e d t h e i n d e x o f s t r e s s and i s dependent on t h e number o f i t e r a t i o n s employed, t h e number o f i t e m s , s t a t i s -t i c a l v a r i a b i l i t y i n t h e d a t a ' a n d t h e d i m e n s i o n a l i t y o f t h e s p a c e . I n o r d e r t o d i s c o v e r t h e a p p r o p r i a t e number o f d i m e n s i o n s , K r u s k a l s u g g e s t s s e l e c t i n g t h a t number w h i c h makes t h e s t r e s s v a l u e a c c e p t a b l y s m a l l , o r ' t h a t number o f d i m e n s i o n s s u c h t h a t any i n c r e a s e i n d i m e n s i o n s w i l l n o t improve t h e i n t e r p r e t a b i l i t y o f t h e d i m e n s i o n a l r e p r e s e n t a t i o n . F i n a l l y , t h e l e s s e r r o r i n h e r e n t i n . t h e d a t a , t h e more d i m e n s i o n s one may e x t r a c t . I n d i v i d u a l d i f f e r e n c e s i n t h e p r o x i m i t y d a t a a r e p a r t i c u l a r l y i m p o r t -a n t when MDS p r o c e d u r e s a r e b e i n g employed. When t h e s e d i f f e r e n c e s a r e s y s t e m a t i c and c o n s i s t e n t t h e y a r e o f i n t e r e s t i n t h e i r own r i g h t . I s a a c (1968) s u g g e s t s t h a t i n d i v i d u a l d i f f e r e n c e s can a r i s e e i t h e r as a r e s u l t o f p a r t i c u l a r r e s p o n s e b i a s e s and/or as a r e s u l t o f d i f f e r e n c e s i n p e r c e i v e d 24 structure of the stimulus'set. There have been a number of attempts to incorporate i n d i v i d u a l differences i n t o MDS procedures, for example, Tucker and Messick's (1963) "points of view" a n a l y s i s . (For a review of these procedures, see Fillenbaum and Rapoport, 1971). The best s o l u t i o n so f a r has been proposed by C a r r o l l and Chang ('1970) . Given an input of i n d i v i d -ual matrices of-proximity data, the program produces an output of two s c a l i n g ' solutions. The f i r s t s o l u t i o n i s called'the "group stimulus space" and'it depicts how the "average" subject reacts to the s t i m u l i . The second s o l u -t i o n i s a "subject space"'which depicts a configuration of points r e f l e c t i n g the extent to which each subject respected the dimensions of the f i r s t space. C a r r o l l and Chang's model, therefore, accounts for i n d i v i d u a l differences i n s i m i l a r i t y judgements in' terms of . d i f f e r e n t i a l " s a l i e n c i e s " of a common set of underlying dimensions. However, the method i s l i m i t e d to the case i n which i n d i v i d u a l subject spaces are'related by l i n e a r transformations of a common space. In cases where the perceptual spaces represent nonlinear d i s t o r t i o n s of a common space, the method'may require too many dimensions. The method also requires the r e l a t i v e l y strong assumption of a l i n e a r r e l a t i o n between proximity data and distances. C a r r o l l and Chang have produced a version of the method that i s at l e a s t "quasi nonmetric", but explorations with both r e a l and., a r t i f i c i a l " data have shown that t h i s quasi nonmetric version y i e l d s sealing solutions that are v i r t u a l l y i n d i s t i n g u i s h -able from those obtained by the-metric version. 2. H i e r a r c h i c a l C l u s t e r i n g A h i e r a r c h i c a l c l u s t e r i n g scheme consists of a tree structure with numerical values at' the branches representing the s i m i l a r i t i e s among items. A c l u s t e r i n g of a set of items"is simply a p a r t i t i o n of the set i n t o mutually exclusive and exhaustive groups, or clusters.. The tree structure describes a sequence of c l u s t e r s such that the f i r s t i s composed of as many c l u s t e r s as there are items and each successive one i n the series i s formed by 25 merging c l u s t e r s from the immediately preceding c l u s t e r i n g . Once two items have been placed together i n a c l u s t e r they stay together i n a l l subsequent c l u s t e r i n g s . A c l u s t e r i n g scheme describes a h i e r a r c h i c a l structure but unlike a h i e r a r c h i c a l conceptual scheme, no i n t e r p r e t a t i o n i s given and no conceptual features are assigned to the various branch points i n the hierarchy. The method begins with the f i n e s t p a r t i t i o n ("weak" cluster) i n which a l l c l u s t e r s consists of sin g l e items. By pla c i n g together those items which are.consistently sorted (recalled,.etc.) most contiguously, the f i r s t n o n t r i v i a l c l u s t e r i n g i s achieved. Suppose, for example, that items i and j are two elements merged at t h i s minimum distance. I f the ultrametric i n e q u a l i t y (UMI) holds (that i s , f o r any three items i n such a system, the distances between them must a l l be equal, or i f one distance i s l e s s , then the other two must be equal) and i f the distance between i and j i s the smallest distance, then the distance between i and any other item k and the distance between j and k must be equal. Thus, when i and j are merged, the distance of t h i s c l u s t e r to k must be the distance from e i t h e r of the merged elements to k. Therefore, i n forming a new, smaller matrix of distances, the clustered elements are replaced by t h e i r merger and i d e n t i c a l operations can be performed on items and c l u s t e r s , an item being merely a c l u s t e r of • size one. This procedure i s repeated on the new matrix. The most proximal items are again joined and i f the UMI holds, the distances of a l l other items to the merged set w i l l equal t h e i r distances to each member of the merger. This i t e r a t i o n i s continued u n t i l a l l items are merged together into a sin g l e ("strong" c l u s t e r ) . When the UMI holds f o r an empirical distance matrix there i s exact equivalence between the distance matrix and a h i e r a r c h i c a l c l u s t e r i n g ( M i l l e r , 1967). The same amount of information i s contained i n both. However, i n general, the proximity data w i l l not s a t i s f y the UMI e i t h e r . ; ' 26. b ecause o f ' n o i s e ' o r because t h e s t r u c t u r e o f t h e i t e m s does n o t c o n f o r m t o a h i e r a r c h y . Johnson (1967) p r o p o s e d two s o l u t i o n s , w h i c h , when a p p l i e d t o t h e same p r o x i m i t y d a t a , p r o v i d e upper and l o w e r bounds on h i e r a r c h i c a l c l u s t e r i n g w h i c h c o u l d be d e r i v e d from t h e d a t a . Under t h e c o n n e c t e d n e s s method, t h e d i s t a n c e o f an i t e m t o a c l u s t e r i s i t s d i s t a n c e t o t h e n e a r e s t member o f t h e c l u s t e r . Under t h e d i a m e t e r method, t h e d i s t a n c e o f an i t e m t o a c l u s t e r i s i t s d i s t a n c e t o t h e f a r t h e s t member o f t h e c l u s t e r . I n a p e r f e c t h i e r a r c h i c a l c l u s t e r i n g scheme, t h e two methods w o u l d g i v e t h e same r e s u l t . Whenever th e two methods pr o d u c e q u i t e d i f f e r e n t h i e r a r c h i e s , i t i n d i c a t e s e i t h e r t h a t we a r e n o t d e a l i n g w i t h a h i e r a r c h i c a l c o n c e p t u a l scheme o r t h a t t h e d a t a a r e t o o n o i s y f o r p r e c i s e a n a l y s i s . Any p s y c h o l o g i c a l i n t e r p r e t a t i o n o f s t r u c t u r a l a n a l y s e s s h o u l d be j u d g e d a g a i n s t two c r i t e r i a a c c o r d i n g t o M i l l e r ' (1969) . These a r e p l a u s -i b i l i t y - agreement' w i t h what most p e o p l e would' a c c e p t as t h e most b a s i c v e r b a l c o n c e p t s i n o u r l a n g u a g e , and l i n g u i s t i c r e l e v a n c e - c o m p a t a b i l i t y w i t h t h e o r i e s o f l i n g u i s t i c s e m a n t i c s r e c e n t l y p r o p o s e d . B. S e l e c t i o n o f Tasks F o u r t a s k s were s e l e c t e d . . These t a s k s were: 1) f r e e - l i s t i n g o f a n i m a l t e r m s ; 2) a n i m a l a s s o c i a t i o n s t o a n i m a l words; 3) r a t i n g s o f d i s -s i m i l a r i t i e s among p a i r s o f a n i m a l s ; and 4) s o r t i n g o f a n i m a l words o r p i c t u r e s on t h e b a s i s o f s i m i l a r i t y o f meaning. The t a s k s were chosen i n o r d e r t o i n c l u d e b o t h p r o d u c t i v e , a s s o c i a t i v e , and n o n - p r o d u c t i v e , c o g n i t i v e t y p e s o f t a s k s t o w h i c h t h e s e l e c t e d methods o f a n a l y s i s c o u l d be a p p l i e d . The t a s k s a r e d e s c r i b e d below. 1. A s s o c i a t i v e Tasks The f i r s t t a s k , f r e e - l i s t i n g , was used s p e c i f i c a l l y t o p r o v i d e a p r o d u c t i v e , c o n t e x t - f r e e measure o f s u b j e c t i v e s t r u c t u r e . The method a l l o w e d f o r t h e d e t e r m i n a t i o n o f t h e average s i z e o f t h e s e t o f a n i m a l ' terms a t each age l e v e l ( t h a t i s , t h e number o f a n i m a l s r e a d i l y a v a i l a b l e ) , given a . l i m i t e d amount of' time-for' responding. I t allowed the c a l c u l a t i o n of inter-animal distances, .that i s , distances between p a i r s of animals based on o r d i n a l output of animal terms. Inter-animal distance i s considered to be a measure of the relationship, between a p a r t i c u l a r p a i r of animals. These distances constituted'the proximity measures'for t h i s task. Hier-a r c h i c a l c l u s t e r i n g and multidimensional s c a l i n g techniques could then be applied to these proximity measures to determine whether an appropriate representation of semantic structure could be obtained and'to i n d i c a t e the types of features being used to assign distances between animal p a i r s . The second task, animal, associations to animal words, was used as a second productive measure of•• subjective structure. This task .is recom-mended by Deese (1970) because i t procluces more orderly r e s u l t s than those obtained by free association. Although i t maybe a r t i f i c i a l l y constrained by f o r c i n g people to respond i n ' a •'particular way., i t appeared appropriate i n t h i s study since "People r e a d i l y think of animals, plants and chemical elements as e x i s t i n g i n a kind o f ' c a t e g o r i c a l structure (Deese, 1970, p. 111).- " The task allowed the c a l c u l a t i o n of associative overlap by means of Deese's (1967) i n t e r s e c t i o n c o e f f i c i e n t (another measure of•the r e l a t i o n -ship between p a i r s of items). 'These i n t e r s e c t i o n c o e f f i c i e n t s provided another set of proximity measures which served as the basis f o r determining semantic structure and features. 2. Cognitive Tasks The t h i r d task, p a i r - r a t i n g s of d i s s i m i l a r i t y , was a non-productive, more c o g n i t i v e l y oriented type of task, which allowed considered judgements about the c r i t e r i a to be used for determinng d i s s i m i l a r i t y . I t was selected as'a contrast to the f i r s t two tasks. The fourth task, s o r t i n g on the basis of s i m i l a r i t y , provided a second, non-productive, cognitive task, again selected to contrast with the f i r s t two tasks, and, i n addition, to complement the p a i r - r a t i n g task. Both Anglin (1970) and M i l l e r (1967) have found that the s o r t i n g task i s p a r t i c u l a r l y 1 s e n s i t i v e to development d i f f e r -ences. M i l l e r considers that the task i s e s p e c i a l l y useful when.the items to be sorted are derived from a.set of taxonomically r e l a t e d items. The rated d i s s i m i l a r i t y and sorted s i m i l a r i t y measures y i e l d e d the proximity measures f o r the cognitive tasks. These allowed f o r the a p p l i c a t i o n of h i e r a r c h i c a l and multidimensional s c a l i n g techniques so that appropriate semantic structures" and features could be determined. Each of these measures had been employed i n previous studies of semantic structures, mostly, with adults. Therefore, t h e i r use i n the present study served, p a r t l y , purposes of r e p l i c a t i o n , but for the most part, purposes of extension to d i f f e r e n t developmental l e v e l s . Henley (1969) employed the f r e e - l i s t i n g , a s s o c i a t i v e , and p a i r - r a t i n g tasks i n her study of the semantics of animal terms i n adults. Anglin (1970) and M i l l e r (1967, 1969) used the s o r t i n g task with adults and ch i l d r e n . Fillenbaum and Rapoport (1971) also used the s o r t i n g task to study the semantic domains of good-bad terms, have verbs and prepositions i n adults. With the excep-t i o n of Henley (1969) and Fillenbaum and Rapoport (1971), however, these tasks had not been applied, and i n no cases had a l l four tasks been used with the same sample, when only one s p e c i f i c semantic domain was under investigation'. The combined use of the four tasks selected i n t h i s study, two of which were productive and associative i n nature, and two of which were non-productive and cognitive, seemed e s p e c i a l l y applicable i n studying a s p e c i f i c semantic domain from a developmental viewpoint. Another reason f o r the s e l e c t i o n of these p a r t i c u l a r tasks was t h e i r a p p l i c a b i l i t y (with one exception) to the groups of i n t e r e s t i n the study. Two of the tasks ( f r e e - l i s t i n g and animal associations to animal terms) could be applied to a l l groups with no task modifications. The so r t i n g task, however, had to be modified for.the two youngest age,groups. Since kindergarten c h i l d r e n could not be expected to read animal names pri n t e d on 29 c a r d s and s i n c e any p r o m p t i n g method w o u l d have i n t e r a c t e d i n - ' u n a n t i c i p a t e d ways w i t h t h e o r g a n i z a t i o n a l p r o c e s s b e i n g t a p p e d , k i n d e r g a r t e n c h i l d r e n were a s k e d t o s o r t p i c t u r e s o f a n i m a l s r a t h e r t h a n a n i m a l t e r m s . I n o r d e r t o p r o v i d e a c o m p a r i s o n group., s i n c e i t was n o t e n t i r e l y ' c l e a r t h a t s o r t i n g o f a n i m a l terms and s o r t i n g o f a n i m a l p i c t u r e s was compar a b l e , t h e . n e x t y o u n g e s t age group (grade t h r e e ) a l s o s o r t e d p i c t u r e s . • I n a d d i t i o n , t h e two y o u n g e s t age groups were n o t g i v e n t h e p a i r - r a t i n g t a s k s i n c e p e r f o r m a n c e on t h i s t a s k depended on r e a d i n g s k i l l , s u f f i c i e n t p e r s e v e r e n c e t o make 66 p a i r -r a t i n g s , and a b i l i t y t o u n d e r s t a n d t h e s c a l i n g p r o c e d u r e s . The c o m p a r a t i v e and development n a t u r e o f . t h i s s t u d y r u l e d o u t t h e use o f some t a s k s w h i c h appear t o p r o v i d e s i g n i f i c a n t d a t a on s e m a n t i c s t r u c t u r e ( f o r example, t h e t r e e c o n s t r u c t i o n method and t h e method o f c o n s t r u c t i n g c o m p l e t e , u n d i r e c t e d l i n e a r graphs u s e d by F i l l e n b a u m and R a p o p o r t , 1971). > . ' F u r t h e r r e a s o n s f o r t h e i n c l u s i o n o f f o u r t a s k s were t o i n c r e a s e t h e g e n e r a l i t y o f t h e f i n d i n g s , and t o a l l o w t h e use o f a number o f d i f f e r e n t s t r u c t u r a l a n a l y s e s i n o r d e r t o attempt, t o r e v e a l t h e u n d e r l y i n g meaning p r o p e r t i e s and t h e n a t u r e o f t h e i r o r g a n i z a t i o n . 30 CHAPTER TV OBSERVATIONS, RESULTS, AND DISCUSSION A. D e s i g n o f Study S u b j e c t s f r o m s i x e d u c a t i o n a l l e v e l s : k i n d e r g a r t e n , grade. 3, grade 7, grade 11, second y e a r c o l l e g e and z o o l o g y d o c t o r a l c a n d i d a t e s p a r t i c i p a t e d i n t h e s t u d y . A l l s u b j e c t s p a r t i c i p a t e d on a l l t a s k s ( w i t h t h e o m i s s i o n o f t h e p a i r - r a t i n g t a s k f o r t h e two y o u n g e s t age groups) a d m i n i s t e r e d i n d i v i d u a l l y o v e r one s e s s i o n . The two p r o d u c t i v e t a s k s were a d m i n i s t e r e d f i r s t t o a l l s u b j e c t s , s i n c e i t was c o n s i d e r e d t h a t p r i o r p e r f o r m a n c e on t h e o t h e r t a s k s w o u l d i n f l u e n c e t h e a n i m a l s s e l e c t e d i n t h e f r e e - l i s t i n g and t h e a s s o c i a t i o n s i n t h e a s s o c i a t i o n s t a s k . S i n c e t h i s c o n t a m i n a t i o n a p p e a r e d most l i k e l y i n t h e f r e e - l i s t i n g t a s k , t h i s t a s k was a d m i n i s t e r e d f i r s t t o e v e r y s u b j e c t . The a s s o c i a t i o n s t a s k was a d m i n i s t e r e d second i n a l l c a s e s . The two y o u n g e s t age g r o u p s , f i n a l l y , r e c e i v e d t h e p i c t u r e s o r t i n g t a s k . H a l f o f t h e o l d e r s u b j e c t s , h a v i n g c o m p l e t e d t h e p r o d u c t i v e t a s k s , d i d t h e s o r t i n g t a s k f o l -lowed by t h e p a i r - r a t i n g t a s k , w h i l e t h e o t h e r h a l f r e c e i v e d t h e s e two t a s k s i n r e v e r s e o r d e r . A week l a t e r , t h o s e s u b j e c t s who made t h e p a i r - r a t i n g s ( e x c e p t f o r t h e z o o l o g y Ph.D. c a n d i d a t e s who c o u l d n o t be o b t a i n e d a second time) were a s k e d t o make them a g a i n . On t h e second p a i r - r a t i n g t a s k , t h e p a i r s were p r e s e n t e d i n a d i f f e r e n t ( w i t h i n - p a i r and b e t w e e n - p a i r ) o r d e r . T h i s a l l o w e d a measure o f w i t h i n s u b j e c t r e l i a b i l i t y r e p r e s e n t i n g t h e c o n s i s t e n c y w i t h w h i c h t h e s t i m u l i were j u d g e d o v e r t h e two s e s s i o n s . A s c h e m a t i c r e p r e s e n t a t i o n o f t h e d e s i g n o f t h e s t u d y i s p r e s e n t e d i n F i g u r e 1. EDUCATIONAL LEVEL SESSIONS Kindergarten 1. Tasks F r e e - l i s t i n g Associations Picture Sorting 2. Tasks Grade 3 F r e e - l i s t i n g Associations Picture Sorting Grade 7 F r e e - l i s t i n g Associations Verbal Sorting P a i r - r a t i n g s P a i r - r a t i n g s Grade 11 F r e e - l i s t i n g Associations Verbal Sorting P a i r - r a t i n g s P a i r - r a t i n g s College F r e e - l i s t i n g Associations Verbal Sorting P a i r - r a t i n g s P a i r - r a t i n g s Zoologists F r e e - l i s t i n g Associations Verbal Sorting P a i r - r a t i n g s Figure 1. A schematic representation of the design of study I. • 32 B. Subjects A t o t a l of 144 subjects served i n the study. The native language f o r a l l subjects was English. The kindergarten, grade 3, and grade 7 subjects were randomly selected, 12 boys and 12 g i r l s at each educational l e v e l , from an elementary school i n Vancouver, B.C. At the kindergarten l e v e l , ages ranged from f i v e years, seven months to s i x years, f i v e months with a mean age of f i v e years, 11 months. The age range at the grade 3 l e v e l was eight years, 3 months to nine years, 6 months with a mean age of eight years, 10 months; and at the grade 7 l e v e l 12 years, 5 months to 13 years, 9 months with a mean age of 12 years, 11 months. Twelve boys and 12 g i r l s were randomly selected from the grade 11 classes at a senior secondary school i n Ladner, B.C. Ages ranged from 15 years 8 months to 18 years 3 months with a mean age of 17 years 2 months. Twenty-four subjects (12 males and 12 females) were randomly selected from Education 200 classes at The Univ e r s i t y of B r i t i s h Columbia. These subjects ranged i n age from 18 to 27 years with a mean age of 20 years. F i n a l l y , 24 Ph.D. doctoral candidates r e g i s t e r e d i n Zoology at the Univ e r s i t y of B r i t i s h Columbia were asked to p a r t i c i p a t e . The 12 males were randomly selected from the l i s t of doctoral candidates. The 12 females were almost a l l the female doctoral candidates i n Zoology. Ages ranged from 21 to 36 years with a mean age of 27 years. C. Stimulus Materials In order to assess semantic structure, a set of animal terms already conceptually d i s t i n c t to the youngest c h i l d r e n was needed. Since Henley (1969) found that the category 'animals' consisted p r i m a r i l y of mammals (and since t h i s f i n d i n g was supported i n a p i l o t study with a small sample of kindergarten aged children) 42 colored s l i d e s of common mammals sampled from 11 mammalian orders were presented to 21 kindergarten c h i l d r e n i n an i n d i v i d u a l t e s t i n g s i t u a t i o n . The animal s l i d e s included the 30 common animals used by Henley (1969) as well as twelve a d d i t i o n a l stimulus items. 33 S l i d e s were presented i n a random order. The c h i l d ' s task was to attempt to name the animal depicted on each s l i d e . The twenty-five animals which were i d e n t i f i e d by more than f i f t y percent of the c h i l d r e n formed the set of animal terms used i n t h i s study. The animals and t h e i r mammalian orders were as follows: carnivora: bear, cat, dog, fox, leopard, l i o n , s e a l , skunk; a r t i o d a c t y l a : camel, cow, deer, g i r a f f e , p i g , sheep; p e r i s s i d a c t y l a : donkey, horse, zebra; rodentia: mouse, porcupine, s q u i r r e l ; chiroptera: bat; lagomorpha: rabbit; marsupialia: kangaroo; primate: monkey; and proboscidea: elephant. This set of animal terms was used for both the s o r t i n g and a s s o c i a t i v e tasks. From t h i s l arger set of animals, a subset of 12 animals, c o n s i s t i n g of those animals which had been c o r r e c t l y i d e n t i f i e d by a l l kindergarten chi l d r e n was used for the p a i r - r a t i n g task. The following animals were selected: bear, cat, cow, dog, g i r a f f e , r a b b i t , sheep, s e a l , p i g , horse, elephant, and zebra. The stimulus items were presented v e r b a l l y i n the associations task. In the p a i r - r a t i n g task, each p a i r of animals was presented h o r i z o n t a l l y on 2 i " x 3if" index cards. There were 66 p a i r s r e s u l t i n g from a l l po s s i b l e pair-wise combinations of the 12 animals. There were two sets of 66 p a i r s , Sets A and B, r e f l e c t i n g the two d i f f e r e n t within-pair orders (for example, cow-bear i n Set A was bear-cow i n Set B). In the s o r t i n g task, each animal was p r i n t e d i n large type on a 2\" x 3b" index card. ! 34 D. Task 1: F r e e - L i s t i n g 1. P r o c e d u r e A l l s u b j e c t s , t e s t e d i n d i v i d u a l l y , were r e q u e s t e d t o name as many a n i m a l s as t h e y c o u l d t h i n k o f i n 10 m i n u t e s . They were encouraged t o t r y t o t h i n k o f as many a n i m a l s as p o s s i b l e . The e x p e r i m e n t e r r e c o r d e d t h e i r r e s p o n s e s . A f t e r 10 m i n u t e s , t h e t a s k was t e r m i n a t e d . 2. R e s u l t s L i s t l e n g t h • a c r o s s a l l groups r a n g e d from 15 t o 168. L i s t l e n g t h r a n g e s , means, medians and s t a n d a r d d e v i a t i o n s f o r each group a r e p r e s e n t e d i n T a b l e I . There was an i n c r e a s e i n t h e s e measures w i t h i n c r e a s e s i n amount o f e d u c a t i o n . F o r example, t h e median l i s t l e n g t h f o r t h e k i n d e r -g a r t e n c h i l d r e n was 24.5; f o r t h e z o o l o g i s t s 96.0. S e v e r a l younger c h i l d r e n , a l m o s t e x c l u s i v e l y t h o s e a t t h e k i n d e r g a r t e n l e v e l , l i s t e d f a m i l y c o n s t e l l a t i o n s ( f o r example, daddy l i o n , mummy l i o n , baby l i o n ) . I n d e r i v i n g l i s t l e n g t h measures, each member o f t h e f a m i l y was c o u n t e d as a s e p a r a t e a n i m a l s i n c e i t was assumed t h a t f o r t h e s e c h i l d r e n f a m i l y r e l a t i o n s h i p s c o n s t i t u t e d a p s y c h o l o g i c a l d i s t i n c t i o n between a n i m a l s ( t h a t i s , a mummy l i o n was a d i f f e r e n t a n i m a l f r o m a daddy l i o n ) . A l t h o u g h t h i s t e n d e n c y t o p r e f i x an a n i m a l t e r m w i t h a f a m i l y • r e l a t i o n s h i p was l i m i t e d by and l a r g e t o t h e k i n d e r g a r t e n l e v e l , t h e r e were examples t h r o u g h o u t a l l e d u c a t i o n a l l e v e l s , e x c e p t f o r t h e z o o l o g i s t l e v e l , where t h e young o f a s p e c i e s were l i s t e d s e p a r a t e l y ( f o r example, k i t t e n and c a t , puppy and dog, c o l t and h o r s e , c a l f and cow). The com p l e t e f r e e - l i s t i n g d a t a a r e p r e s e n t e d i n A p p e n d i x A. A l t o g e t h e r , 1213 d i f f e r e n t a n i m a l s were named. Of t h e s e , 582 were named more t h a n once. Dog and c a t were l i s t e d by more t h a n 90% o f t h e s u b j e c t s . L i o n , h o r s e , cow, e l e p h a n t and t i g e r ( i n o r d e r o f f r e q u e n c y ) were l i s t e d by more t h a n 80% o f t h e s u b j e c t s . Of t h e 19 a n i m a l s l i s t e d b y more t h a n 50% o f t h e s u b j e c t s , 16 a r e mammals, t h u s r e c o n f i r m i n g t h e f i n d i n g t h a t t h e c a t e g o r y a n i m a l s i s p r e p o t e n t l y t h a t o f 35 Table I F r e e - L i s t i n g Data on a l l Animals L i s t e d : Central Tendencies, Dispersions, and Sample Size f o r each Educational Level Educational Level Median Range Mean N Zoology 96.00 Education 200 72.50 Grade 11 64.00 Grade 7 59.00 Grade 3 58.00 Kindergarten 24.50 53-168 29-124 32-105 37-102 16-85 15-50 100.46 72.38 64.75 60.75 53.96 28.00 28.80 24.00 17.90 15.30 15.20 10.30 24 24 24 24 24 24 36 mammals. On the other hand, non mammals predominate i n the animals l i s t e d only by a few subjects, p a r t i c u l a r l y i n those animals l i s t e d only once. The l i s t i n g protocols were examined f o r the presence of the 25 animal terms i n the selected set. No subject named a l l 25 animals. The number of animals l i s t e d from the selected set ranged from zero to 21. The ranges, means, medians and standard deviations f o r each group are presented i n Table I I . ' There was an increase i n average number of animals named from the selected set up to grade 11, followed by a s l i g h t decrease i n the Education 200 groups, and a larger decrease i n the zoologist group. Table II also presents the proportion of animals named from the selected set to the t o t a l number of animals named. This proportion i s highest i n the kindergarten group (.37), lowest i n the zoologist group (.12) and roughly the same throughout the four middle educational groups (.22 - .27). Thus, i n the youngest age group, while subjects i n general named fewer animals than any other group, more of those animals which they d i d name belonged to the selected set than those named by any other group. In the four middle educational groups, while absolute number of animals named increased across groups, the number of animals named from the selected l i s t proportionately increased so as to maintain roughly the same proportion of selected animals to t o t a l animals named. However, for the z o o l o g i s t s , while t o t a l number of animals increased, there was not a s i m i l a r increase i n animal terms named from the selected set. As Henley (1969) has shown, animals which are r e l a t e d p s y c h o l o g i c a l l y are named i n cl o s e r proximity on l i s t s than animals which are more psycho-l o g i c a l l y d i s t a n t . Thus, the difference between o r d i n a l p o s i t i o n s of animals can be used to obtain s i m i l a r i t y measures f o r animal p a i r s . Based upon the f r e e - l i s t i n g data f o r each educational group, mean interanimal s i m i l a r i t i e s f o r the 25 animal subset were cal c u l a t e d i n the following manner: (a) f o r each animal p a i r , f o r each subject, the differ e n c e i n order 37 T a b l e I I F r e e - L i s t i n g Data on Animals L i s t e d from Selected Set: Central Tendencies, Dispersions, and Proportions f o r each Educational Level Educational Level Median Range Mean a S Proportion Zoology 13. ,00 0-•21 12. ,54 5. ,10 .125 Education 200 16. ,50 10-:21 16. ,17 2. ,80 .223 Grade 11 17, .00 11--21 16. .42 2. .60 .254 Grade 7 15. .00 11--23 15. .33 2. .'60 .252 Grade 3 14. .50 8--21 14. .50 3, .50 .269 Kindergarten 11. .00 2--15 10, .42 3, .30 .372 aanimals l i s t e d from selected s e t / t o t a l number of animals l i s t e d 38 o f l i s t i n g t h e two a n i m a l s was o b t a i n e d ; (b) t h e r e c i p r o c a l o f t h i s d i s -t a n c e was m u l t i p l i e d by l i s t l e n g t h ; - (e) mean s i m i l a r i t i e s were o b t a i n e d by t a k i n g t h e mean o v e r a l l s u b j e c t s w i t h i n a p a r t i c u l a r g r oup f o r each a n i m a l p a i r . Thus, t h e l a r g e r the; ;number o b t a i n e d , t h e g r e a t e r t h e degree o f s i m i l a r i t y between an a n i m a l p a i r ; t h e l o w e r t h e number, t h e g r e a t e r t h e p s y c h o l o g i c a l d i s t a n c e between t h e two a n i m a l s . I f b o t h members o f an a n i m a l p a i r were n o t l i s t e d by a s u b j e c t t h e n a s c o r e o f z e r o was o b t a i n e d i n d i c a t i n g t h a t t h i s p a r t i c u l a r a n i m a l p a i r was more d i s t a n c e t h a n any o f t h e a n i m a l p a i r s a p p e a r i n g i n t h e l i s t . 1 The s i m i l a r i t y m a t r i c e s a r e shown i n t h e t a b l e s i n A p p e n d i x B f o r each e d u c a t i o n a l group. C a t and dog were most s i m i l a r f o r a l l g r o u p s , f o l l o w e d by cow and h o r s e . I n g e n e r a l , skunk, p o r c u p i n e , b a t and s e a l were most d i s t a n t from most o t h e r a n i m a l t e r m s . The s i m i l a r i t y m a t r i c e s s e r v e d as i n p u t t o Johnson's (1967) h i e r a r c h i c a l c l u s t e r i n g . The h i e r a r c h i c a l c l u s t e r i n g s ( d i a m e t e r method) o b t a i n e d a r e p r e s e n t e d f o r each e d u c a t i o n a l group i n F i g u r e s 2-7. Two p o i n t s s h o u l d be n o t e d about t h e h i e r a r c h i e s o b t a i n e d . The f i r s t p o i n t i s t h a t s e m a n t i c s t r u c t u r e s a r e s i m i l a r a c r o s s a l l g r o u p s . F o r example, t h e r e i s a f a r m a n i m a l c l u s t e r a t a l l e d u c a t i o n a l l e v e l s c o n s i s t i n g o f sheep, p i g , cow and h o r s e ( Z o o l o g y , E d u c a t i o n 200, grade 11 and k i n d e r g a r t e n ) o r cow, h o r s e and p i g (grades. 7 and 3 ) . There i s a c i t y a n i m a l c l u s t e r ( c a t , dog and mouse) f o r a l l g r o u p s . Camel and donkey o c c u r i n t h e same c l u s t e r f o r a l l groups e x c e p t g r a d e 7. P o r c u p i n e ^ H e n l e y (1969) c a l c u l a t e d an i n t e r a n i m a l d i s t a n c e measure f o r t h e f r e e -l i s t i n g d a t a by d i v i d i n g t h e d i f f e r e n c e i n o r d e r t o l i s t i n g t h e two a n i m a l s , f o r e a ch a n i m a l p a i r , f o r each s u b j e c t , by l i s t l e n g t h and t h e n m u l t i p l y i n g b y 100. Mean d i s t a n c e s were t h e n o b t a i n e d by t a k i n g t h e mean o v e r a l l s u b j e c t s f o r each a n i m a l p a i r . T h i s d i s t a n c e measure was o r i g i n a l l y u s e d i n t h e p r e s e n t s t u d y . The r e s u l t s o b t a i n e d were n o t m e a n i n g f u l , however, s i n c e t h e measure y i e l d s a z e r o when o n l y one member o f an a n i m a l p a i r a p p e ars on t h e l i s t , t h u s s p u r i o u s l y i n d i c a t i n g m i n i m a l d i s t a n c e . T h e r e -f o r e , a s i m i l a r i t y measure was d e v i s e d t o t a k e i n t o a c c o u n t t h e p r e s e n t d a t a i n w h i c h z e r o i n d i c a t e d maximal d i s t a n c e and i n c r e a s i n g numbers i n d i c a t e d i n c r e a s i n g s i m i l a r i t y . 39 bat camel donkey zebra leopard l i o n bear seal g i r a f f e elephant kangaroo sheep p i g cow horse cat dog mouse rabbit fox monkey porcupine skunk deer s q u i r r e l 1 ; 1 1 ; [ : 1 r-80 70 60 50 40 30 Proximity Values 20 10 00 Figure 2. H i e r a r c h i c a l c l u s t e r i n g f o r zoology Ph.D.s on the fr e e -l i s t i n g task (diameter method) s q u i r r e l r a b b i t b a t skunk p o r c u p i n e monkey mouse dog c a t l i o n e l e p h a n t z e b r a g i r a f f e d e e r b e a r k a ngaroo f o x s e a l l e o p a r d donkey camel h o r s e cow p i g sheep > > — i — 10 80 70 60 50 40 30 P r o x i m i t y V a l u e s 20 F i g u r e 3. H i e r a r c h i c a l c l u s t e r i n g f o r e d u c a t i o n u n d e r g r a d u a t e s i n t h e f r e e - l i s t i n g t a s k ( d i a m e t e r method) 41 s q u i r r e l d e e r b e a r f o x s e a l monkey l i o n e l e p h a n t g i r a f f e z e b r a mouse dog c a t r a b b i t h o r s e cow p i g sheep camel l e o p a r d donkey skunk p o r c u p i n e b a t k a ngaroo -1— 80 70 60 50 40 30 P r o x i m i t y V a l u e 20 10 00 F i g u r e 4. H i e r a r c h i c a l c l u s t e r i n g f o r grade 11 s u b j e c t s on t h e f r e e -l i s t i n g t a s k ( d i a m e t e r method) 42 s q u i r r e l r a b b i t h o r s e cow p i g l i o n mouse dog c a t z e b r a e l e p h a n t g i r a f f e monkey kangaroo s e a l camel l e o p a r d donkey f o x d e e r b e a r sheep skunk p o r c u p i n e b a t > > i— 80 — r 70 —i— 50 ~40~ —i 00 60 30 20 10 P r o x i m i t y V a l u e s F i g u r e 5. H i e r a r c h i c a l c l u s t e r i n g f o r grade 7 s u b j e c t s on t h e f r e e -l i s t i n g t a s k ( d i a m e t e r method) 43 s q u i r r e l d e e r b e a r s e a l f o x r a b b i t h o r s e cow p i g skunk p o r c u p i n e kangaroo z e b r a g i r a f f e sheep monkey-e l e p h a n t l i o n dog c a t mouse l e o p a r d donkey camel b a t > — i 1 1 i 1 1 1— 80 70 60 50 40 30 20 P r o x i m i t y V a l u e s 10 00 F i g u r e 6. H i e r a r c h i c a l c l u s t e r i n g f o r grade 3 s u b j e c t s on t h e f r e e -l i s t i n g t a s k ( d i a m e t e r method) 44 s q u i r r e l . kangaroo. monkey deer l i o n elephant g i r a f f e . leopard horse cow sheep p i g skunk porcupine. mouse dog cat bear ra b b i t bat zebra seal fox donkey camel > > > —> 1 1 1 1 r 80 70 60 50 40 30 Proximity Values — i — 20 —r— 10 00 Figure 7. H i e r a r c h i c a l c l u s t e r i n g f o r kindergarten subjects on the f r e e - l i s t i n g task (diameter method) 45 and skunk a r e grouped t o g e t h e r by a l l groups e x c e p t k i n d e r g a r t e n c h i l d r e n . There i s a c l u s t e r c o r r e s p o n d i n g t o a l a r g e w i l d a n i m a l group a t a l l educa-t i o n a l l e v e l s w h i c h i n c l u d e s some o f t h e f o l l o w i n g a n i m a l s : l i o n , l e o p a r d , e l e p h a n t , g i r a f f e and z e b r a . • , . The s e c o n d p o i n t i s t h a t w i t h few e x c e p t i o n s ( c a t and dog, cow, h o r s e , p i g and s h e e p ) , t h e p r o x i m i t y v a l u e s o b t a i n e d a r e q u i t e low and d e c r e a s e s y s t e m a t i c a l l y w i t h d e c r e a s i n g e d u c a t i o n a l l e v e l . T h i s s u g g e s t s t h a t t h e a s s o c i a t i v e s t r u c t u r e f o r t h e domain o f a n i m a l t e r m s , as f a r as t h i s can be d e t e r m i n e d by t h e 25 a n i m a l s s e l e c t e d f o r u s e , c o n t a i n s a few s t r o n g l y a s s o c i a t e d a n i m a l s and a l a r g e group o f f a i r l y i s o l a t e d a n i m a l s w i t h no s t r o n g a s s o c i a t i o n s . D e v e l o p m e n t a l l y , t h e s e a s s o c i a t i o n s appear weaker a t younger age l e v e l s . The s i m i l a r i t y m a t r i c e s s e r v e d as i n p u t t o t h e K r u s k a l (1964) m u l t i -d i m e n s i o n a l s c a l i n g program (MDSCAL). A t a l l e d u c a t i o n a l l e v e l s , t h e v a l u e s o b t a i n e d f o r t h e s t r e s s i n d e x f o r s c a l i n g i n up t o 9 d i m e n s i o n s were so h i g h t h a t a m u l t i d i m e n s i o n a l s c a l i n g model, c l e a r l y , d i d n o t p r o v i d e an adequate f i t f o r t h e d a t a . The f i t became even p o o r e r w i t h d e c r e a s i n g e d u c a t i o n a l l e v e l . E. Task 2: A n i m a l A s s o c i a t i o n s ' t o A n i m a l Terms 1. P r o c e d u r e A l l s u b j e c t s , t e s t e d i n d i v i d u a l l y , were t o l d t h a t t h e e x p e r i m e n t e r was g o i n g t o r e a d a l o u d some a n i m a l names. They were a s k e d t o t e l l t h e e x p e r i m e n t e r t h e f i r s t a n i m a l t h e y c o u l d t h i n k o f a f t e r t h e y had l i s t e n e d c a r e f u l l y t o t h e e x p e r i m e n t e r ' s a n i m a l . They were t o l d t h a t t h e y c o u l d r e s p o n d w i t h any a n i m a l , b u t t h a t i t s h o u l d be t h e f i r s t a n i m a l t h a t t h e y t h o u g h t o f , and t h a t i t s h o u l d be d i f f e r e n t f r o m t h e e x p e r i m e n t e r ' s a n i m a l . The 25 s t i m u l u s words were p r e s e n t e d i n a d i f f e r e n t and random o r d e r f o r each s u b j e c t . The e x p e r i m e n t e r r e c o r d e d t h e s u b j e c t ' s r e s p o n s e s . 46 2. R e s u l t s A complete t a b l e o f a s s o c i a t i o n s f o r each e d u c a t i o n a l l e v e l i s p r e s e n t e d i n A p p e n d i x C. The s t r o n g e s t a s s o c i a t i o n s were between dog and c a t ( t h a t i s , c a t as a r e s p o n s e t o dog and dog as a r e s p o n s e t o c a t ) ' , f o l -lowed by t i g e r as a r e s p o n s e t o l i o n , r a t t o mouse, h o r s e t o cow, chipmunk t o s q u i r r e l and z e b r a t o h o r s e . There were 564 i d i o s y n c r a t i c a s s o c i a t i o n s . Of t h e s e , 330 o c c u r r e d a t t h e grade 3 and k i n d e r g a r t e n l e v e l s . T h e r e f o r e , t h e r e a p p e a r e d t o be a tendancy. w i t h i n c r e a s i n g e d u c a t i o n a l l e v e l f o r a s s o c -i a t i o n s t o become l e s s i d i o s y n c r a t i c and more u n i f o r m a c r o s s , . s u b j e c t s w i t h i n t h e same e d u c a t i o n a l l e v e l . I n t e r s e c t i o n c o e f f i c i e n t s (Deese, 1965, p. 51) were computed f o r e v e r y a n i m a l p a i r i n t h e s e l e c t e d s e t o f 25 a n i m a l s . T h i s c o e f f i c i e n t measures t h e e l e m e n t s o f two s e t s ( f o r example, t h e a s s o c i a t i o n s t o t h e f i r s t a n i m a l and t h e a s s o c i a t i o n s t o t h e second a n i m a l ) i n common, and i s g i v e n by t h e f o r m u l a : IC = SA O SB where t h e numerator r e p r e s e n t s t h e i n t e r -v/NA . NB s e c t i o n o f t h e d i s t r i b u t i o n o f r e s p o n s e s f o r t h e two a n i m a l s and where t h e d e n o m i n a t o r r e p r e s e n t s t h e g e o m e t r i c mean o f t h e number o f r e s p o n s e s i n each d i s t r i b u t i o n . S i n c e Deese assumes t h a t e v e r y s t i m u l u s word e l i c i t s i t s e l f as a r e s p o n s e , a l o n g w i t h t h e o r a l r e s p o n s e , t h e d e n o m i n a t o r was a l w a y s 48 i n t h e p r e s e n t s t u d y . Complete t a b l e s o f i n t e r s e c t i o n c o e f f i c -i e n t s f o r each e d u c a t i o n a l l e v e l a r e p r e s e n t e d i n t h e t a b l e s i n A p p e n d i x D. Twenty a n i m a l s o u t o f t h e s e t o f 25 used h e r e a r e i n common w i t h t h e a n i m a l s used by H e n l e y (1969). H e n l e y ' s i n t e r s e c t i o n c o e f f i c i e n t s were o b t a i n e d from t h e N a t i o n a l A u x i l i a r y P u b l i c a t i o n s S e r v i c e . The c o r r e l a t i o n s between t h o s e d a t a and t h e p r e s e n t d a t a f o r a l l p o s s i b l e p a i r e n t r i e s a t each e d u c a t i o n l e v e l a r e g i v e n i n T a b l e I I I . The c o r r e l a t i o n s between t h e d i f f e r e n t e d u c a t i o n a l l e v e l s i n t h e p r e s e n t s t u d y a r e a l s o g i v e n i n T a b l e 47 T a b l e I I I R e l a t i o n s h i p between H e n l e y ' s (1969) I n t e r s e c t i o n C o e f f i c i e n t s and I n t e r s e c t i o n C o e f f i c i e n t s f r o m t h e P r e s e n t each E d u c a t i o n a l L e v e l S t u d y f o r H e n l e y Z o o l o g y E d u c a t i o n Gr 11 Gr: 7 Gr 3 Z o o l o g y .683 E d u c a t i o n .700 .872 Gr 11 .721 .899 .911 Gr 7 .632 .863 .921 .901 Gr 3 .634 .854 .859 .858 .866 K i n d e r g a r t e n .516 .698 .765 .730 .795 .761 48 I I I . The c o r r e l a t i o n s between the present data and Henley's data range from .721 to .516. The c o r r e l a t i o n s between the d i f f e r e n t educational l e v e l s i n the present study range from .921 to .698. The lowest c o r r e l a t i o n s obtained were between zoology doctoral candidates and kindergarten c h i l d r e n , and grade 11 and kindergarten c h i l d r e n . Thus there appears to be o v e r a l l agreement between Henley's data and the present data, and within the present study 2 between d i f f e r e n t educational l e v e l s . These r e s u l t s i n d i c a t e that the i n t e r s e c t i o n c o e f f i c i e n t s obtained i n the present study are not only s i m i l a r across educational l e v e l s but also i n agreement with the i n t e r s e c t i o n coef-f i c i e n t s obtained from a t o t a l l y d i f f e r e n t adult sample. The i n t e r s e c t i o n c o e f f i c i e n t s f or each educational l e v e l were used as input to Johnson's (1967) h i e r a r c h i c a l c l u s t e r i n g technique. The obtained c l u s t e r i n g s (diameter method) for each educational l e v e l are presented i n Figures 8-13. The proximity values for c l u s t e r s at a l l educational l e v e l s are mostly low. In agreement with the c l u s t e r i n g s obtained from the f r e e -l i s t i n g data, there appear to be a few r e l i a b l y grouped p a i r s of animals and many f a i r l y i s o l a t e d animals. Cat and dog, l i o n and leopard are grouped at a l l educational l e v e l s . G i r a f f e and elephant are grouped at a l l l e v e l s , with the exception of the Education 200 subjects. Skunk and porcupine, sheep and pig , horse and cow, are grouped at a l l l e v e l s except at the kindergarten l e v e l . Other groupings have low proximity values, and c l u s t e r s across a l l educational l e v e l s do not appear to be e s p e c i a l l y meaningful or c l e a r l y 2 In applying the Pearson product-moment c o r r e l a t i o n c o e f f i c i e n t to these data, the independency assumption was v i o l a t e d , since each subject's associa-t i o n to a p a r t i c u l a r animal could not be assumed to be independent from the same subject's association to another animal. Thus, the s i g n i f i c a n c e l e v e l s for the c o e f f i c i e n t s obtained are not reported. The c o e f f i c i e n t s are pre-sented simply as an approximate.description of the r e l a t i o n s h i p s between data sets. This r a t i o n a l e also applies to the c o r r e l a t i o n c o e f f i c i e n t s to be reported i n subsequent sections of t h i s chapter. In order to get another measure of these r e l a t i o n s h i p s , Kendall's tau was also applied to the same data. The c o e f f i c i e n t s obtained were lower for a l l comparisons, ranging from .509 to .188, but they maintained the same pattern of r e l a t i o n s h i p s as that obtained for Pearson's r. zebra g i r a f f e elephant — — deer _ camel s q u i r r e l mouse ——. — bat monkey kangaroo -skunk — porcupine . , rab b i t — fox — bear sheep •— p i g : dog . — -s. cat " f~ s e a l l i o n . — leopard — horse cow — donkey _ _ _ _ _ _ — — > > i i 1 i 1 1 1 1 1 1— .9 .8 .7 . 6 . 5 .4 .3 .2 .1 .00 Proximity Value Figure 8. H i e r a r c h i c a l c l u s t e r i n g f o r zoology Ph.D.s on the associations task (diameter method) 50 z e b r a g i r a f f e l i o n l e o p a r d e l e p h a n t kangaroo camel s q u i r r e l mouse r a b b i t monkey skunk p o r c u p i n e f o x d e e r b e a r sheep p i g h o r s e cow s e a l donkey dog c a t b a t > > i 1 1 1 1 1 1 1 1 r — ,9 .8 .7 .6 .5 .4 .3 .2 .1 .00 P r o x i m i t y V a l u e s F i g u r e 9. H i e r a r c h i c a l c l u s t e r i n g f o r e d u c a t i o n u n d e r g r a d u a t e s on t h e a s s o c i a t i o n s t a s k ( d i a m e t e r method) f o x e l e p h a n t g i r a f f e cow h o r s e l e o p a r d l i o n b a t mouse kangaroo r a b b i t s e a l monkey b e a r d e e r p i g sheep p o r c u p i n e skunk s q u i r r e l camel donkey z e b r a > > > .8 .7 .6 .5 .4 .3 .2 .1 .00 < P r o x i m i t y V a l u e s F i g u r e 10. H i e r a r c h i c a l c l u s t e r i n g f o r grade 11 s u b j e c t s on t h e a s s o c i a t i o n s t a s k ( d i a m e t e r method) 52 z e b r a g i r a f f e e l e p h a n t l i o n l e o p a r d s q u i r r e l monkey skunk p o r c u p i n e s e a l sheep p i g h o r s e cow r a b b i t k angaroo mouse b a t f o x b e a r donkey camel dog c a t d e e r > > > > > —i 1 1 i r 1 1 1 i .8 .7 .6 .5 .4 .3 .2 .1 .00 P r o x i m i t y V a l u e s F i g u r e 11. H i e r a r c h i c a l c l u s t e r i n g f o r grade 7 s u b j e c t s on t h e a s s o c i a t i o n s t a s k ( d i a m e t e r method) z e b r a l i o n l e o p a r d sheep p i g s q u i r r e l r a b b i t skunk p o r c u p i n e b a t s e a l b e a r monkey donkey mouse kangaroo g i r a f f e e l e p h a n t h o r s e cow d e e r camel f o x dog c a t > > .9 .8 .7 .6 .5 .4 .3 .2 .1 .00 P r o x i m i t y V a l u e s F i g u r e 12. H i e r a r c h i c a l C l u s t e r i n g f o r grade 3 s u b j e c t s on t h e a s s o c i a t i o n s t a s k ( d i a m e t e r method) 54 z e b r a l i o n l e o p a r d skunk r a b b i t mouse b a t s q u i r r e l p o r c u p i n e sheep s e a l cow d e e r p i g monkey h o r s e donkey g i r a f f e e l e p h a n t k a ngaroo f o x camel b e a r dog c a t > > > .9 .8 .7 .6 .5 .4 .3 . 2 . 1 .00 P r o x i m i t y V a l u e s F i g u r e 13. H i e r a r c h i c a l c l u s t e r i n g f o r k i n d e r g a r t e n s u b j e c t s on t h e a s s o c i a t i o n s t a s k ( d i a m e t e r method) 55 i n t e r p r e t a b l e . The i n t e r s e c t i o n c o e f f i c i e n t s formed t h e i n p u t t o K r u s k a l ' s (1964) m u l t i d i m e n s i o n a l s c a l i n g program (MDSCAL). I n agreement w i t h t h e f r e e -l i s t i n g d a t a , t h e s t r e s s v a l u e s o b t a i n e d f o r s c a l i n g were t o o h i g h t o p r o v i d e an a c c e p t a b l e f i t f o r t h e d a t a . F. Task 3: P a i r - R a t i n g s 1. P r o c e d u r e The s t i m u l i i n t h i s e x p e r i m e n t were t h e 12 a n i m a l s t a k e n from t h e l a r g e r s e t o f 25 a n i m a l s . The s u b j e c t s were p r e s e n t e d w i t h p a i r s o f a n i m a l s , ( t y p e d h o r i z o n t a l l y , i n b o l d f a c e , on 2 i " ' x 3 i " i n d e x c a r d s ) , one p a i r a t a t i m e . They were a s k e d t o make a judgement o f t h e amount o f d i s -s i m i l a r i t y between a n i m a l s on a s c a l e f r o m 0 (no d i s s i m i l a r i t y ) t o 10 (maximum d i s s i m i l a r i t y ) . A d r a w i n g o f a s c a l e f r o m 0 t o 10 w i t h a p p r o p r i a t e v e r b a l l a b e l s a t t h e extreme p o i n t s and i n t h e c e n t r e o f t h e s c a l e was p l a c e d i n f r o n t o f t h e s u b j e c t and t h e s u b j e c t was a s k e d t o c o n s u l t t h e s c a l e f o r each judgement. The e x a c t i n s t r u c t i o n s were as f o l l o w s : Now I am g o i n g t o g i v e p a i r s o f a n i m a l s t o y o u and I want you t o d e c i d e and t e l l me how a l i k e o r d i f f e r e n t you t h i n k each p a i r i s . I have a whole bunch o f a n i m a l p a i r s w r i t t e n p u t on t h e s e • c a r d s . I am g o i n g t o t a k e one c a r d a t a t i m e and p l a c e i t i n f r o n t o f you. I am a l s o g o i n g t o g i v e you t h i s s c a l e t o u s e . As you can see t h e s c a l e goes f r o m z e r o t o t e n . You w i l l n o t i c e t h a t t h e z e r o end i s marked 'not d i f f e r e n t ' , and.the 10 end i s p a r k e d ' e x t r e m e l y d i f f e r e n t ' and t h e 5 i s marked 'moderately d i f f e r e n t ' . F o r each a n i m a l p a i r , I want you t o t e l l me where you t h i n k t h e p a i r w o u l d b e l o n g a c c o r d i n g t o t h i s s c a l e . F o r example, i f you t h i n k t h e r e i s no d i f f e r e n c e between a p a i r o f a n i m a l s you w o u l d sa y " z e r o " , meaning, t h e two a n i m a l s a r e n o t d i f f e r e n t from each o t h e r . I f you t h i n k t h e r e i s a g r e a t d e a l o f d i f f e r e n c e between t h e two a n i m a l s you m i g h t say " t e n " , meaning, t h e two a n i m a l s a r e e x t r e m e l y d i f f e r e n t f r o m each o t h e r . Or, i f you d on't t h i n k t h e d i f f e r e n c e i s q u i t e t h a t g r e a t , you m i g h t say "9" o r "8". i f you t h i n k t h e r e i s a moderate d i f f e r e n c e between t h e two a n i m a l s you m i g h t say "5", meaning t h a t t h e y a r e s o r t o f h a l f w a y d i f -f e r e n t . I f t h e d i f f e r e n c e i s a l i t t l e l e s s t h a n moderate, you m i g h t say "4", and i f i t i s a l i t t l e more, you m i g h t say "6". You can p i c k , any number on t h i s s c a l e d e p e n d i n g on y o u r d e c i s i o n about j u s t how l a r g e o r s m a l l t h e d i f f e r e n c e i s between each p a i r . T r y t o t h i n k c a r e f u l l y about y o u r c h o i c e o f t h e number on t h e s c a l e b e f o r e you t e l l me. Do you have any q u e s t i o n s ? O.K. L e t ' s go ahead. There were 66 p a i r s t o be r a t e d , c o n s i s t i n g o f a l l p o s s i b l e 56 combinations of the 12 animals. The p a i r s were presented i n random order. At a second session, one week l a t e r , a l l subjects (except zoology doctoral candidates) were asked to make the judgements again, as a r e l i a b i l i t y check. At t h i s second session, the pair s were presented i n a d i f f e r e n t between-and within-pair order. 2. Results R e l i a b i l i t y indices i n terms of c o r r e l a t i o n c o e f f i c i e n t s f o r the Education 200 subjects ranged from .427 to .854 with a median of .705; f o r the grade 11 subjects from .419 to .898, with a median of .645; and for the grade 7 subjects from .312 to .891 (with one outly i n g r e l i a b i l i t y c o e f f i c i e n t of .071), with a median of .595. D i s s i m i l a r i t y matrices f o r a l l subjects at each educational l e v e l were averaged to give mean p a i r d i s s i m i l a r i t i e s f o r each t e s t i n g session. The c o r r e l a t i o n between the mean d i s s i m i l a r i t y matrix for Session 1 and Session 2 f o r the Education 200 subjects was .970; f o r grade 11 subjects was .964; and f o r grade 7 subjects was .957. Thus, while some subjects showed low r e l i a b i l i t y i n t h e i r r a t i n g s , there was high r e l i -a b i l i t y o v e r a l l for each item p a i r . This indicates that low r e l i a b i l i t y i n i n d i v i d u a l subjects d i d not cause low r e l i a b i l i t y i n the o v e r a l l matrix, and 3 also, that order of presentation of s t i m u l i d i d not a f f e c t the ra t i n g s . Johnson's (1967) h i e r a r c h i c a l c l u s t e r i n g technique was applied to the d i s s i m i l a r i t y matrices obtained from the f i r s t p a i r - r a t i n g session. Com-plete tables of the obtained d i s s i m i l a r i t y " m a t r i c e s as a function of educa-t i o n a l l e v e l are presented i n Appendix E. The r e s u l t i n g c l u s t e r i n g s 3 In order to get a second estimate of the r e l i a b i l i t y of the p a i r - r a t i n g judgements, Kendall's tau was also computed. The c o e f f i c i e n t s f o r the Education 200 subjects ranged from .337 to .783 with a median of .541, f o r the grade 11 subjects from .308 to .794, with a median of .543; and for the grade 7 subjects from .252 to .656 (with one outly i n g c o e f f i c i e n t of .077) with a median of .454. The c o r r e l a t i o n between the mean d i s s i m i l a r i t y matrix f o r Session 1 and Session 2 for the Education 200 subjects was .840; f o r the grade 11 subjects was .811; and for the grade 7 subjects was .811. These r e s u l t s agree with those reported above. (diameter method) are presented i n Figures 1 4 - 1 7 for each educational l e v e l . The c l u s t e r i n g f o r the zoology subjects shows a c l e a r d i v i s i o n into two major groups based on food habits (herbivores and carnivores). Within the herbivorous group there i s further subdivision according to s i z e (large vs. medium-small), and mammalian orders.. Within the carnivorous animals, there i s a d i v i s i o n according to land vs. aquatic animals, and within the land animals according to domestic vs. w i l d animals. The dominant groups f o r the Education 2 0 0 , grade 1 1 and grade 7 subjects appear to be determined by animal s i z e . The c l u s t e r s from subjects at these educational l e v e l s also . seem to take i n t o account some o r . a l l of the following features:' l o c a t i o n , order', food habits, function, and appearance, but'not i n a c l e a r l y systematic fashion, and without any c l e a r d ifferences between educational l e v e l s . The d i s s i m i l a r i t y matrices were subjected to Kruskal's ( 1 9 6 4 ) m u l t i -dimensions s c a l i n g analysis (MDSCAL). The stress values according to educational groups f o r s c a l i n g i n one to five•dimensions are presented i n .Table IV. The f i t i n f i v e dimensions i s judged acceptable here f o r a l l educational l e v e l s . Plots f o r Dimension 1 vs. Dimension 2 , and Dimension 1 vs. Dimension 3 for the zoology subjects are presented i n Figures 1 8 and 1 9 . Examination of Dimension 1 , i n which elephant, g i r a f f e and zebra are at one end and s e a l , bear, dog and cat at the other end, appears to show a dimension of food habits, or a simple dichotomy between herbivores and carnivores. The second dimension has seal and elephant a t one extreme and r a b b i t and cat at the other and appears to be a dimension based upon reproductive rate. (This conclusion was reached a f t e r consultation with a member of the Department of Zoology, U.B.C.) The t h i r d dimension i s hard to l a b e l . I t has r a b b i t and s e a l at one end and bear and g i r a f f e at the other. Although there i s no reason.to expect that a cognitive dimension need have a verbal l a b e l , i t was not considered worthwhile to analyze each a d d i t i o n a l dimension beyond the point at which a verbal l a b e l could be attached to a dimension. Accordingly, 58 \ 2ebra 12 -i 1 1 1 1 1 1 i 1 1 1 2 3 4 5 6 7 8 9 10 P r o x i m i t y V a l u e s F i g u r e 14. H i e r a r c h i c a l c l u s t e r i n g f o r z o o l o g y Ph.D.s on t h e p a i r - r a t i n g t a s k ( d i a m e t e r method) Figure 15. Hierarchical clustering for education undergraduates on the pair-rating task (diameter method) F i g u r e 16. H i e r a r c h i c a l c l u s t e r i n g f o r grade 11 s u b j e c t s on t h e p a i r - r a t i n g t a s k ( d i a m e t e r method) Figure 17. Hierarchical clustering for grade 7 subjects on pair-rating task (diameter method) 62 Table IV Pair-Ratings: Stress V a l u e s 3 by Educational Level (MDSCAL) Educational Level Zool Educ Gr 11 Gr 7 1 Dimension 21 .46% 31 .33% 37. 35% 41. 26% 2 Dimensions 12 .02% 20 .63% 21. 75% 26. 75% 3 Dimensions 7 .62% 12 .85% 14. 09% 21. 26% 4 Dimensions 2 .57% 10 .32% 10. 59% 14. 96% 5 Dimensions .99% 5 .33% 6. 96% 9. 57% The stress values give an i n d i c a t i o n of the degree to which d i s -t o r t i o n has to be imposed on the distances to f i t the s t i m u l i i n t o a s p e c i f i c number of dimensions 63 D i m e n s i o n 2 • e l e p h a n t • z e b r a g i r a f f e • h o r s e * •cow s e a l • c o •H W a i •H Q sheep • • p i g r a b b i t • • b e a r • dog . c a t F i g u r e 18. Dim e n s i o n s 1 and 2 o f 5 - d i m e n s i o n a l s c a l i n g o f 12 a n i m a l s f o r z o o l o g y Ph.D.s on t h e p a i r - r a t i n g t a s k (MDSCAL) 64 Dimension 3 • rabbit s e a l * 0 cow •elephant • p i g •sheep • dog • zebra # horse • cat • g i r a f f e • Figure 19. Dimension 1 and 3 of 5-dimensional s c a l i n g f o r zoology Ph.D.s on the p a i r - r a t i n g task (MDSCAL) 65 the representations f o r Dimensions 4 and 5 are not reproduced here. I t should be noted that the 5-dimensional s o l u t i o n was used because i t provided the most adequate f i t for the data across a l l groups, not because the author expected to be able to i n t e r p r e t a l l of the dimensions. For the zoology subjects, the f i t for the 2-dimensional s c a l i n g s o l u t i o n , and, for a l l groups, the f i t for the 3-dimensional s o l u t i o n would have been considered acceptable by most standards. However, no information appears to be l o s t and perhaps greater accuracy gained by s e l e c t i n g the dimensional s o l u t i o n with the lowest stress values and examining meaningful dimensions i n terms of t h i s s o l u t i o n . For the zoology subjects, the animals group themselves roughly i n t o two main categories. One group consists of hoofed herbivores (elephant, zebra, g i r a f f e , horse, cow, sheep, and p i g ) , and the second consists of carnivores (dog, cat, and bear). Rabbit and seal occupy s o l i t a r y p o s i t i o n s d i s t a n t from a l l the other animals. Plots of Dimension 1 vs. Dimension 2 are presented for each of the other educational l e v e l s i n Figures 20-22. There i s strong agreement on Dimension 1, which i s a s i z e dimension, across a l l three educational l e v e l s . Cat, rab b i t and seal are at one extreme and g i r a f f e and elephant at the other extreme. The second dimension, which shows rough uniformity across groups i n that seal i s always at one extreme and the remaining animals grouped roughly midway along the dimension i s hard to l a b e l . Since i t appears consistently across groups, i t would, seem to be a p s y c h o l o g i c a l l y meaningful dimension, but not e a s i l y i d e n t i f i a b l e by any Eng l i s h term. The remaining dimensions for each educational l e v e l were not,interpretable and are not reproduced here. Again, the animals are grouped into two categories, one of small animals (cat, r a b b i t , dog, p i g and sheep) and one of large animals (bear, cow, horse, zebra, g i r a f f e , and elephant). Seal i s d i s t a n t from a l l other animals. . 66 D i m e n s i o n 2 • s e a l • e l e p h a n t b e a r • cow • z e b r a o •H W C CO e •rH Q • h o r s e g i r a f f e c a t • dog • • • sheep p i g • r a b b i t F i g u r e 20. Dimensions 1 and 2 o f 5 - d i m e n s i o n a l s c a l i n g o f 12 a n i m a l s f o r e d u c a t i o n u n d e r g r a d u a t e s on t h e p a i r - r a t i n g t a s k (MDSCAL) 67 D i m e n s i o n 2 sheep • c a t • r a b b i t • dog • g i r a f f e i h o r s e cow z e b r a c o •H cn C CD 6 •H Q p i g i b e a r e l e p h a n t • s e a l F i g u r e 21. Dimensions 1 and 2 o f 5 - d i m e n s i o n a l s c a l i n g o f 12 a n i m a l s f o r grade 11 s u b j e c t s oh t h e p a i r - r a t i n g t a s k (MDSCAL) 68 Dimension 2 cat • dog sheep • p i g • rab b i t 0 horse »cow zebra g i r a f f e • bear c o •H W C 0) e •H Q elephant • seal Figure 22. Dimensions 1 and 2 of 5-dimensional s c a l i n g of 12 animals for grade 7 subjects on the p a i r - r a t i n g task (MDSCAL) i 69 To examine i n t e r s u b j e c t v a r i a b i l i t y , C a r r o l l and Chang's (1969) INDSCAL t e c h n i q u e was u s e d . The i n p u t d a t a f o r t h e t e c h n i q u e c o n s i s t e d o f t h e i n d i v i d u a l s u b j e c t s ' d i s s i m i l a r i t y m a t r i c e s a t each e d u c a t i o n a l l e v e l . The o u t p u t c o n s i s t e d o f two s c a l i n g s o l u t i o n s f o r each l e v e l , b o t h o f w h i c h were f i v e d i m e n s i o n a l . The f i r s t s o l u t i o n was t h e s t i m u l u s space w h i c h was i d e n t i c a l t o t h e s t i m u l u s space d e r i v e d from MDSCAL, and w h i c h i n d i c a t e d how t h e " a v e r a g e " s u b j e c t i n each group r e s p o n d e d i n t h e p a i r - r a t i n g t a s k . The second s o l u t i o n was t h e s u b j e c t s p a c e , g i v i n g a c o n f i g u r a t i o n o f p o i n t s i n d i c a t i n g t h e e x t e n t t o w h i c h each s u b j e c t i n t h e group r e s p e c t e d t h e dimen-s i o n s o f t h e s t i m u l u s s p a c e . The s u b j e c t s p a c e s f o r t h e 4 e d u c a t i o n a l l e v e l s f o r t h e f i r s t two d i m e n s i o n s a r e p r e s e n t e d i n F i g u r e s 23-26. F o r a l l l e v e l s , s u b j e c t s t e n d e d t o be h i g h e r on t h e f i r s t d i m e n s i o n t h a n on t h e second dimen-s i o n . S u b j e c t s w i t h i n e ach e d u c a t i o n a l l e v e l t e n d t o be q u i t e homogeneous i n t h e i r r e s p e c t f o r t h e two d i m e n s i o n s . The most homogeneous s u b j e c t s were a t t h e g r ade 11 l e v e l . F o r t h e z o o l o g y s t u d e n t s , t h e r e were t h r e e s u b j e c t s , and f o r t h e E d u c a t i o n 200 s t u d e n t s , two s u b j e c t s , who were v e r y h i g h on t h e f i r s t d i m e n s i o n and low on t h e second d i m e n s i o n . O v e r a l l , t h e s i m i l a r i t i e s a c r o s s t h e d i f f e r e n t e d u c a t i o n a l l e v e l s a r e more a p p a r e n t t h a n t h e d i f f e r -e n c e s . I n o r d e r t o compare more r i g o r o u s l y t h e d i f f e r e n c e s between s u b j e c t s a c r o s s g r o u p s , a s e r i e s o f INDSCAL a n a l y s e s were c o n d u c t e d i n w h i c h t h e i n d i v i d u a l s u b j e c t s ' m a t r i c e s w i t h i n two e d u c a t i o n a l l e v e l s were p o o l e d and a s t i m u l u s space and s u b j e c t space f o r t h e p o o l e d group were g e n e r a t e d . P l o t s f o r t h e t w o - d i m e n s i o n a l s u b j e c t s p aces f o r t h e s i x p o s s i b l e group c o m b i n a t i o n s a r e p r e s e n t e d i n F i g u r e s 27-32. An e x a m i n a t i o n o f t h e s e p l o t s does n o t r e v e a l any s t r i k i n g d i f f e r e n c e s between groups e i t h e r i n terms o f homogeneity o r d i s p e r s i o n . The s u b j e c t s p a c e s a r e , i n f a c t , r e m a r k a b l y s i m i l a r . 70 0.933 0.667 a o •H in C CD e -H Q 0.400 o o o o o o o o O o o o o o o o o o o 0.133 o o o — I 1 ^ J — 0.400 0.600 0.800 Dimension 1 0.000 0.200 Figure 23. The subject space f o r dimensions 1 and 2 for zoology Ph.D.s on the p a i r - r a t i n g task (INDSCAL) 71 0.933 I M 0.667 0.400 o O Q dbO O O O O O o ° 0 o o o o o 0.133 o o 0.000 0.200 0.400 0.600 0.800 i D i m e n s i o n 1 F i g u r e 24. The s u b j e c t space f o r d i m e n s i o n s 1 and 2 f o r e d u c a t i o n under-g r a d u a t e s on t h e p a i r - r a t i n g t a s k (INDSCAL) 72 0.933 0.667 c o •H cn C CD e •H D 0.400 0.133 o o oo o o o o o o o 0.000 0.200 0.400 0.600 0.800 Dimension 1 Figure 25. The subject space for dimensions 1 and 2 for grade 11 subjects on the pair-rating task (INDSCAL) 73 0.933 0.667 _ J 0.400 0.133 o o o o & o o O 0 « D O O o O 0 o o o o o o 0.000 0.200 0.400 Dimension 1 0.600 0.800 Figure 26. The subject space f o r dimensions 1 and 2 for grade 7 subjects on the p a i r - r a t i n g task (INDSCAL) 74 0.933 O education • zoology 0.667 CM a o •H cn c CD B •rH Q 0.400 O o • 0 • o • o o« o o • o o • • • • o 0.133 —\ 0.000 0.200 0.400 Dimension 1 0.600 0.800 Figure 27. The subject space f o r dimensions 1 and 2 (pooled) f o r zoology Ph.D.s and education undergraduates (INDSCAL) 75 0.933 C N 0.667 0.400 0.133 o grade 11 • zoology •8 I O 0*0 ' • •• J o 0069 0* • o o * • o o%o • • • • • • • o 0.000 0.200 0.400 0.600 0.800 Dimension 1 Figure 28. The subject space f o r dimensions 1 and 2 (pooled) f o r zoology Ph.D.s and grade 11 subjects"(INDSCAL) 76 0.933 0 grade 7 • z o o l o g y 0.667 o •H W C CU e •rH Q 0.400 _ J cP o 0.133 • < o o • o •'• o *b % o <>• <>•• • go o • • o*ooo* # o • ••• o 0.000 0.200 0.400 Di m e n s i o n 1 0.600 0.800 F i g u r e 29. The s u b j e c t space f o r d i m e n s i o n s 1 and 2 (pooled) f o r z o o l o g y Ph.D.s and grade 7 s u b j e c t s (INDSCAL) 77 o grade 11 • e d u c a t i o n 0.667 I 0.400 0.133 o o o o •• •• $o o88o«o o •o o • • o • • • • o oSo # o • • o 0.000 0.200 0.400 0.600 0.800 Dim e n s i o n 1 F i g u r e 30. The s u b j e c t space f o r d i m e n s i o n s 1 and 2 (pooled) f o r e d u c a t i o n u n d e r g r a d u a t e s and grade 11 s u b j e c t s (INDSCAL) 78 0.667 c o -H cn C CD e Q 0.400 0.133 o grade 7 • education o o o o • »o • • o o $ 0 ^ , 0 o • 8* <* * 9 • • o •oo* • o • o ' • • o • • o 0.000 — I 1 1 1 — 0.200 0.400 0.600 0.800 Dimension 1 Figure 31. The subject space for dimensions 1 and 2 (pooled) f o r educa-t i o n undergraduates and grade 7 subjects (INDSCAL) 79 0.933 _J o grade 7 • grade 11 0.667 0.400 o» o • O o o o • «9 o o • • $4±oo # o 0.133 -\ 0.000. 0.200 -6 0.400 0.600 0.800 Dimension 1 Figure 32. The subject space f o r dimensions 1 and 2 (pooled) f o r grade 11 and grade 7 subjects (INDSCAL) G. Task 4:. Sorting of Animals 1. Procedure The subjects were given 25 cards. For the two youngest groups, each card contained a n a t u r a l i s t i c colored 5" x 3 i " photograph of one of the animals i n the set. For the older groups, an animal term, corresponding to the pict u r e s used with the younger groups, appeared on 2\" x 3 i " index cards. The subjects were i n s t r u c t e d to so r t the words (or pictures) into p i l e s on the basis of s i m i l a r i t y . The subjects were f i r s t given the cards and t o l d that each card.contained'a name (or picture) of an animal. They were asked to spread the cards out i n . f r o n t of them and to look them over. Kindergarten, grade 3 and grade 7 subjects were asked to read (name) each animal as they spread them out. I f a'subject made an error or could not i d e n t i f y an animal from the p i c t u r e , the experimenter immediately corrected him or supplied the correct animal name. This occurred on two or three occasions with the youngest age group. The subject was requested to repeat the correct response immediately a f t e r the experimenter and again when he had gone through a l l 25 cards. Then the subjects were in s t r u c t e d to put in t o p i l e s a l l the animals that they considered s i m i l a r , that belonged together i n some way. They were t o l d that they could make as many p i l e s as they l i k e d and have as many animals i n a p i l e as they l i k e d ; they could have p i l e s with j u s t one animal, or two, or three, or as many as they l i k e d . Each subject was t o l d that h i s p i l e s d i d not have to have equal numbers i n them. The experimenter stressed that the subject had to decide how many p i l e s to make and which animals to put in t o p i l e s , but that those animals which the subject thought belonged'together should go in t o the same p i l e . A f t e r the zsorting procedure was completed, the subject was i n s t r u c t e d to look over the animals i n each p i l e and make any changes he considered necessary. At the end of the task, the experimenter recorded the s o r t i n g responses. The 25 cards were presented i n a d i f f e r e n t and random order f o r each subject. 81 2. R e s u l t s The number o f c a t e g o r i e s u s e d f o r s o r t i n g t h e 25 a n i m a l s r a n g e d o v e r • a l l e d u c a t i o n a l l e v e l s f r o m 2 t o 25. T a b l e V p r e s e n t s t h e range o f c a t e -g o r i e s , t h e mean number o f c a t e g o r i e s and t h e s t a n d a r d d e v i a t i o n s as a f u n c -t i o n o f e d u c a t i o n a l l e v e l . The mean number o f c a t e g o r i e s used was h i g h e s t i n t h e k i n d e r g a r t e n g r o u p . There was a d e c r e a s e i n mean number o f c a t e g o r -i e s u sed up t o and i n c l u d i n g grade 11, f o l l o w e d b y an i n c r e a s e i n E d u c a t i o n and z o o l o g y s u b j e c t s . The group u s i n g t h e f e w e s t number o f c a t e g o r i e s , on t h e average, and w i t h ' t h e l o w e s t s t a n d a r d d e v i a t i o n was t h e g r a d e 11 g r o u p . I n c i d e n c e m a t r i c e s were.computed f o r each s u b j e c t by a s s i g n i n g a z e r o o r one t o each p a i r o f a n i m a l s a c c o r d i n g t o - w h e t h e r o r n o t t h e y had been p l a c e d t o g e t h e r i n t h e same p i l e . These i n c i d e n c e m a t r i c e s were t h e n added f o r a l l s u b j e c t s w i t h i n an e d u c a t i o n a l l e v e l and s e r v e d as i n p u t t o Johnson's h i e r a r c h i c a l c l u s t e r i n g t e c h n i q u e . . The h i e r a r c h i e s f o r each e d u c a t i o n a l l e v e l a r e p r e s e n t e d i n F i g u r e s 33-38. The c l u s t e r s ( d i a m e t e r method) o b t a i n e d f o r t h e z o o l o g y s u b j e c t s a r e i n agreement w i t h t h o s e f o r t h e p a i r r a t i n g s t a s k . T h e r e a r e two main c l u s t e r s r e f l e c t i n g a . d i s t i n c t i o n b a s e d on f o o d h a b i t s (monkey and b e a r form a s e p a r a t e c l u s t e r , p e r h a p s because t h e y t e n d t o be o m n i v e r o u s , a l t h o u g h b e a r i s c l a s s i f i e d o f f i c i a l l y as a c a r n i v o r e , and monkey as a h e r b i v o r e ) . W i t h i n each c l u s t e r , t h e r e a r e f u r t h e r s u b d i v i s i o n s t a k i n g i n t o a c c o u n t g eograph-i c a l l o c a t i o n , h a b i t a t , mammalian o r d e r , d o m e s t i c i t y , and some more s p e c i f i c d i m e n s i o n s ( f o r example, skunk and p o r c u p i n e f o r m one b r a n c h o f a t r e e b a s e d on t h e i r b u i l t - i n d e f e n s e s v s . n o n d e f e n s i v e a n i m a l s l i k e r a b b i t , mouse and s q u i r r e l ) . There a r e t h r e e main g r o u p i n g s f o r t h e E d u c a t i o n 200 s u b j e c t s . One group i n c l u d e s d o m e s t i c a t e d a n i m a l s w i t h a f u r t h e r d i v i s i o n f o r p e t s v s . f a r m a n i m a l s . The o t h e r two c l u s t e r s appear t o r e f l e c t a s i z e d i m e n s i o n , w i t h s m a l l - t o - m e d i u m - s i z e d a n i m a l s i n one group and m e d i u m - t o - l a r g e - s i z e d a n i m a l s 82 T a b l e V S o r t i n g : Mean Number o f C a t e g o r i e s Used t o S o r t 25 A n i m a l Terms, Range, and S t a n d a r d D e v i a t i o n f o r each E d u c a t i o n a l L e v e l Range Mean S Zo o l o g y 3-17 9.71 4.28 =Education 200 3-15 9.25 3.14 Gr 11 4-16 8.17 2.30 Gr 7 3-15 8.92 3.54 Gr 3 3-16 9.12 3.83 K i n d e r g a r t e n 2-25 10.92 4.99 83 z e b r a h o r s e d o n k e y s h e e p cow d e e r g i r a f f e came 1 e l e p h a n t p i g k a n g a r o o s q u i r r e l mous e r a b b i t s k u n k p o r c u p i n e s e a l l i o n l e o p a r d c a t f o x d o g b a t m o n k e y b e a r > > > — r 24 i 20 16 ~14~ 12 10 8 P r o x i m i t y V a l u e s — i — 12 22 —i— 18 - 1 — 10 F i g u r e 3 3 . H i e r a r c h i c a l c l u s t e r i n g f o r z o o l o g y P h . D . s o n t h e s o r t i n g t a s k ( d i a m e t e r m e t h o d ) 84 24 22 20 18 16 14 12 10 P r o x i m i t y V a l u e s F i g u r e 3 4 : H i e r a r c h i c a l c l u s t e r i n g f o r e d u c a t i o n u n d e r -g r a d u a t e s o n s o r t i n g t a s k ( d i a m e t e r m e t h o d ) 85 e l e p h a n t c a m e l g i r a f f e k a n g a r o o b e a r l e o p a r d l i o n c a t d o g f o x s e a l m o n k e y b a t m o u s e r a b b i t p o r c u p i n e > 7 > -> > > > s k u n k y~ s q u i r r e l > p i g cow s h e e p s~ d e e r > d o n k e y h o r s e z e b r a > > 24 22 20 18 16 14 12 10 P r o x i m i t y V a l u e s F i g u r e 3 5 . H i e r a r c h i c a l c l u s t e r i n g f o r g r a d e 11 o n s o r t i n g t a s k ( d i a m e t e r m e t h o d ) 86 e l e p h a n t g i r a f f e l e o p a r d l i o n m o n k e y c a t d o g mous e cow p i g s h e e p b a t • s e a l k a n g a r o o r a b b i t d e e r b e a r f o x p o r c u p i n e s k u n k s q u i r r e 1 came 1 d o n k e y h o r s e z e b r a > > > > > > > > — r 2 24 22 20 18 16 14 12 10 P r o x i m i t y V a l u e s F i g u r e 3 6 . H i e r a r c h i c a l s o r t i n g t a s k c l u s t e r i n g f o r g r a d e ( d i a m e t e r m e t h o d ) 7 o n 87 f o x l e o p a r d l i o n S~ m o n k e y k a n g a r o o r a b b i t b e a r came 1 e l e p h a n t s e a l b a t p o r c u p i n e s k u n k m o u s e s q u i r r e l c a t d o g p i g cow d o n k e y h o r s e s h e e p d e e r g i r a f f e z e b r a > > > > > > > > > > —I 1 1 1 1 r r I 1 I 1 1 ~ I 24 22 20 18 16 14 12 10 8 6 4 2 0 P r o x i m i t y V a l u e s F i g u r e 3 7. H i e r a r c h i c a l c l u s t e r i n g f o r g r a d e 3 o n s o r t i n g t a s k ( d i a m e t e r m e t h o d ) 88 d e e r e l e p h a n t k a n g a r o o b e a r l e o p a r d l i o n b a t c a t d o g f o x s e a l p o r c u p i n e s k u n k m o n k e y m o u s e r a b b i t s q u i r r e 1 p i g s h e e p c a m e l g i r a f f e cow d o n k e y h o r s e z e b r a > > > > > > > > > 24 22 20 18 16 14 12 10 P r o x i m i t y V a l u e s F i g u r e 3 8 . H i e r a r c h i c a l s o r t i n g t a s k c l u s t e r i n g f o r k i n d e r g a r t e n ( d i a m e t e r m e t h o d ) on t h e 8 9 i n the other group. Habitat and degree of f e r o c i t y appear to be features . fo r further d i s t i n c t i o n s within these two major c l u s t e r s . The four main c l u s t e r s obtained at the grade 11 l e v e l r e f l e c t the size dimension again. One c l u s t e r consists of large mammals, further divided according to food habits. There i s another group c o n s i s t i n g of medium-sized carnivores, and another c l u s t e r of medium-sized herbivores. F i n a l l y , there i s a c l u s t e r of small, animals. Within the medium-sized carnivore group, habitat (land vs. water) produces a further d i s t i n c t i o n . Within the medium-sized herbivore group, a fun c t i o n a l d i s t i n c t i o n based on whether the animals are commonly used as food seems to be responsible f o r another d i v i s i o n . The small animal group seems to be further subdivided according to h a i r length. The four c l u s t e r s at the grade 7 l e v e l correspond to a group of w i l d animals, a group of domesticated animals, a group of North American animals, and, f i n a l l y , a group-of animals that can be ridden. Except f o r the f i n a l group, the size dimension seems to be responsible f o r subdivisions within the three main trees. Habitat also appears to be of psychological import-ance ( c i t y vs. farm; a i r , land, water). The c l u s t e r i n g s f o r the two youngest age groups do not lend themselves to easy i n t e r p r e t a t i o n . There are four main c l u s t e r s at the grade 3 l e v e l . One group consists of monkey, fox, leopard, l i o n , kangaroo and r a b b i t . A second consists of bear, camel, elephant and s e a l . The t h i r d contains bat, porcupine, skunk, mouse and s q u i r r e l . The f i n a l group contains pets and farm animals as well as deer, g i r a f f e and zebra. There are s i x main h i e r -archies f o r the kindergarten c h i l d r e n . One contains deer, elephant and kangaroo; the second groups dog, cat and bat; the t h i r d , fox and se a l ; the fourth bear, leopard and l i o n ; the f i f t h porcupine, skunk, monkey, mouse, rabbi t and s q u i r r e l ; and the s i x t h farm animals and camel, g i r a f f e and zebra. By and large, the dimensions used f o r grouping animals i n these two age groups are not apparent. This may be because the dimensions used 90 were p r i m a r i l y perceptual, or because no systematic c r i t e r i a were being applied i n these age groups, or, f i n a l l y , because there was lack of uniform-i t y i n s o r t i n g behavior across subjects within these p a r t i c u l a r age groups. The incidence matrices for each .educational l e v e l were subjected to Kruskal's MDSCAL ana l y s i s . In agreement with the f r e e - l i s i n g and associa-tions data, the stress values were too high to provide an adequate f i t f o r a multidimensional model of so r t i n g behavior. H. Summary of Findings and Discussion, S i m i l a r semantic structures were obtained across a l l educational l e v e l s on the f r e e - l i s t i n g and associations tasks. These structures were s i m i l a r i n terms of the i n t e r p r e t a b i l i t y of the structures, the number of cl u s t e r s obtained and the types of features used. They were also s i m i l a r i n that a multidimensional model d i d not provide an adequate f i t f o r the data from e i t h e r task. The proximity values obtained from the a p p l i c a t i o n of c l u s t e r i n g techniques were low and decreased s y s t e m a t i c a l l y with decreasing educational l e v e l . This indicates, decreasing homogeneity with decreasing age. O v e r a l l , there:appeared to be a.few strongly associated animals and a large group of f a i r l y i s o l a t e d animals. In the f r e e - l i s t i n g task, the above r e s u l t s p e r t a i n to the analysis of distances between those 25 animal terms i n the selected set. In terms of o v e r a l l number of animals c i t e d i n the free-l i s t i n g task, there was an expected increase i n l i s t length with increasing age and education. The r e s u l t s from.the associations task seemed to agree with the r e s u l t s obtained by Henley (1969) for those animals which overlapped i n both studies. On the p a i r - r a t i n g task, both MDS and h i e r a r c h i c a l c l u s t e r i n g analyses revealed a dominant dimension of size f or grades 7, 11 and Education 200. This r e s u l t i s i n agreement with the f i r s t dimension obtained both by Henley (1969) and Rips, Shoben and Smith (1973).. Both studies used d i f f e r e n t , but overlapping, sets of animal terms. The f i r s t dimension obtained by MDS and 91 h i e r a r c h i c a l c l u s t e r i n g f o r t h e z o o l o g i s t s was a f o o d - h a b i t s d i m e n s i o n . S i n c e an adequate f i t f o r t h e d a t a was p r o v i d e d by MDS, an- i n d i v i d u a l d i f f e r -ences a n a l y s i s c o u l d be a p p l i e d t o t h e p a i r - r a t i n g d a t a . On t h e f i r s t and s e c o n d d i m e n s i o n s , c o n s i d e r a b l e homogeneity was o b t a i n e d a c r o s s s u b j e c t s w i t h i n e ach e d u c a t i o n a l l e v e l and o v e r a l l , t h e s i m i l a r i t i e s a c r o s s e d u c a t i o n a l l e v e l s were more a p p a r e n t t h a n t h e d i f f e r e n c e s . The r e s u l t s o b t a i n e d from t h e s o r t i n g t a s k were i n b a s i c agreement w i t h t h e p a i r - r a t i n g d a t a . A l t h o u g h m u l t i d i m e n s i o n a l s c a l i n g d i d n o t p r o v i d e an adequate f i t f o r t h e s o r t i n g d a t a , t h e h i e r a r c h i c a l c l u s t e r i n g s a g a i n r e v e a l e d a s t r o n g s i z e d i m e n s i o n f o r g r a d e s 7; 11, and E d u c a t i o n 200. The z o o l o g i s t s a g a i n c l a s s i f i e d t h e s t i m u l i a c c o r d i n g t o . f o o d h a b i t s . The k i n -d e r g a r t e n and grade 3 c h i l d r e n d i d n o t show any r e a d i l y i d e n t i f i a b l e group s t r u c t u r e . To t h e e x t e n t t h a t l a c k . o f s t r u c t u r e r e f e r s t o l a c k o f n o r m a t i v e ( as opposed t o i d i o s y n c r a t i c ) s t r u c t u r e , t h e s e m a n t i c f i e l d f o r a n i m a l terms appears t o be u n s t r u c t u r e d a t t h e s e age l e v e l s . However, see d i s c u s s i o n on pages 95-96. On a l l t a s k s , h i e r a r c h i c a l ' c l u s t e r i n g , was w e a k e r - w i t h d e c r e a s i n g age. A l t h o u g h m u l t i d i m e n s i o n a l s c a l i n g d i d n o t g i v e an adequate f i t f o r t h e d a t a on any t a s k e x c e p t t h e p a i r - r r a t i n g t a s k , t h i s f i t became even p o o r e r on e v e r y t a s k w i t h d e c r e a s i n g age. The r e l a t i o n s h i p s between t a s k s were examined on t h e 12 i t e m s u b s e t and on t h e 25 i t e m s e t . These r e l a t i o n s h i p s a r e p r e s e n t e d i n T a b l e s V I and V I I . The d i s s i m i l a r i t y m a t r i c e s f o r each e d u c a t i o n a l l e v e l o b t a i n e d from t h e p a i r - r a t i n g t a s k were c o r r e l a t e d w i t h t h e s i m i l a r i t y m a t r i c e s f r o m t h e s o r t i n g t a s k on t h e 12 i t e m s u b s e t . H i g h n e g a t i v e c o r r e l a t i o n s r a n g i n g from -.88 t o -.71 i n d i c a t e a s t r o n g r e l a t i o n s h i p between t h e two t a s k s . N e g a t i v e c o r r e l a t i o n s were a l s o o b t a i n e d between t h e d i s s i m i l a r i t y m a t r i c e s from t h e p a i r - r a t i n g t a s k , t h e i n t e r s e c t i o n c o e f f i c i e n t s from t h e a s s o c i a t i o n s t a s k and t h e i n t e r a n i m a l s i m i l a r i t y m a t r i c e s from t h e f r e e - l i s t i n g t a s k on t h e 12 Table VI Relationships between Tasks on 12 Item Subset of Animal Terms Tasks Educational Level Sorting -Pair-Ratings Associations -• Pair-Ratings. F r e e - L i s t i n g -Pair-Ratings Zool. -.88 -.51 -.40 Educ. -.71 -.63 -.46 Gr 11 -.84 -.55 -.47 Gr 7 -.80 -.59 -.49 > Associations — Sorting F r e e - L i s t i n g -Sorting F r e e ^ L i s t i n g -Associations Zool. .49 .43 .81 Educ. .67 .57 .83 Gr 11 .59 .54 .8.7 Gr 7 .77 .68 .88 Gr 3 .58 .68 .84 Kind. .58 .54 .76 93 Table VII Relationships between Tasks on 25 Item Set of Animal Terms Educational Level Sorting -Associations Tasks Sorting -F r e e - L i s t i n g . F r e e - L i s t i n g -Associations Zool. .43 .28 .72 Educ. .59 .35 .68 Gr 11 .57 .27 .65 Gr 7" .62 .43 . -71 Gr 3 .49 , .35 .68 Kind. .45 o .27 .54 94 i t e m s u b s e t , b u t t h e s e were l o w e r , r a n g i n g f r o m -.63 t o -.40. The c o r r e -l a t i o n s between t h e s i m i l a r i t y m a t r i c e s from t h e s o r t i n g t a s k and t h e m a t r i c e s from t h e a s s o c i a t i o n s and. f r e e - l i s t i n g t a s k s r a n g e d from .77 t o .43 on t h e 12 i t e m s u b s e t . The c o r r e l a t i o n s between t h e a s s o c i a t i o n s t a s k m a t r i c e s and t h e f r e e - l i s t i n g m a t r i c e s f o r t h e 12 i t e m s u b s e t r a n g e d f r o m .88 t o .76 t h u s i n d i c a t i n g s t r o n g r e l a t i o n s h i p s a c r o s s e d u c a t i o n a l l e v e l s between t h e s e two t a s k s . C o r r e l a t i o n s were d e t e r m i n e d between s o r t i n g , a s s o c i a t i o n s and f r e e -l i s t i n g , m a t r i c e s on t h e 25 i t e m s e t . The c o r r e l a t i o n s between s o r t i n g m a t r i c e s and a s s o c i a t i o n s m a t r i c e s r a n g e d from .62 t o .43 and between s o r t i n g m a t r i c e s and f r e e - l i s t i n g m a t r i c e s f r o m .43.to .27. The c o r r e l a t i o n s between a s s o c i a t i o n s and f r e e - l i s t i n g r a n g e d from .72 t o .54. Thus i t a p p e a r s t h a t t h e r e a r e s t r o n g r e l a t i o n s h i p s between t h e s o r t i n g and p a i r - r a t i n g s t a s k s and.between t h e f r e e - l i s t i n g and a s s o c i a t i o n s t a s k s a t a l l e d u c a t i o n a l l e v e l s . These r e l a t i o n s h i p s were a n t i c i p a t e d i n t h e s e l e c t i o n o f t h e f o u r t a s k s i n t h i s s t u d y and r e c o n f i r m t h e r a t i o n a l e 4 advanced f o r t h e i r i n c l u s i o n . I t seems c l e a r t h a t b o t h t h e a s s o c i a t i o n s and f r e e - l i s t i n g t a s k s a r e t a p p i n g a common a s s o c i a t i v e s t r u c t u r e . I n t h e domain o f a n i m a l terms t h e r e seem t o be a few s t r o n g l y a s s o c i a t e d p a i r s (e.g. c a t - d o g , cow-horse) and a l a r g e group o f f a i r l y i s o l a t e d a n i m a l s w i t h no s t r o n g a s s o c i a t i o n s . T h a t t h e r e were no c l e a r d i f f e r e n c e s between any o f t h e g r o u p s on t h e a s s o c i a t i v e 4 C o r r e l a t i o n c o e f f i c i e n t s v i a K e n d a l l 1 s t a u were a l s o o b t a i n e d between t h e 12 i t e m and 25 i t e m a n i m a l s e t s f o r t h e d i f f e r e n t t a s k s . I n agreement w i t h t h e p r e v i o u s a p p l i c a t i o n s o f t a u , t h e c o e f f i c i e n t s were l o w e r i n a b s o l u t e v a l u e , b u t t h e p a t t e r n o f r e l a t i o n s h i p s was more ambiguous t h a n t h a t o b t a i n e d t h r o u g h t h e a p p l i c a t i o n o f P e a r s o n ' s r . The r e l a t i o n s h i p s between t h e s o r t i n g and p a i r - r a t i n g t a s k on t h e 12 i t e m s u b s e t r a n g e d f r o m -.71 t o -.52. A l l o t h e r r e l a t i o n s h i p s between t a s k s on t h e 12 i t e m s u b s e t were l o w e r and n o t s y s t e m a t i c a l l y d i f f e r e n t from each o t h e r . The r e l a t i o n s h i p s between t a s k s o n,the 25 i t e m s e t ra n g e d f r o m .11 t o .47 w i t h a l l t a s k s h a v i n g r o u g h l y t h e same r e l a t i o n s h i p s . 95 tasks suggests that the'associative process i s dependent- on early s p e c i f i c l i n g u i s t i c experience- i n v o l v i n g the co-occurrence of certain'animal terms within the same context or with the same p r i v i l e g e s of occurrence i n sentenc-es. Anglin (1970) also found that the associations task was not s e n s i t i v e to age d i f f e r e n c e . The pairr-ratings and s o r t i n g tasks seem to be more s e n s i t i v e to age d i f f e r e n c e s , and to be providing information about differences i n the cog-n i t i v e structure of animal terms. Cognitive structure i s used here to r e f e r to the way i n which animal terms are organized when the subject i s systemat-i c a l l y s e l e c t i n g and using various c r i t e r i a (e.g. features, images, dimen-sions) i n order to assign values to a l l the items contained i n a p a r t i c u l a r set. Both M i l l e r (1967) and Anglin (1970) have also found that the s o r t i n g task reveals developmental d i f f e r e n c e s . Although i t was suggested e a r l i e r that one possible outcome for organization of the semantic f i e l d of animal terms at younger age l e v e l s might involve f i n d i n g lack of normative structure, the w r i t e r was i n t e r e s t e d i n discovering whether'the c l u s t e r r e s u l t i n g from the s o r t i n g task at the grade 3.and kindergarten l e v e l s were meaningful'to c h i l d r e n of that age. To explore t h i s , a group of grade 2.children from a West Vancouver elementary school were shown the p i c t o r i a l , stimuli.used i n the s o r t i n g task. The s t i m u l i were arranged,. however, in t o the c l u s t e r s which had been obtained f i r s t of a l l from the grade 3 c h i l d r e n in:the present study and following t h i s from the kindergarten c h i l d r e n . The c h i l d r e n were t o l d that these animals had been placed.together'in groups and that there was a reason for putting p a r t i c u l a r animals'together. They were asked to t r y to guess t h i s reason. S p e c i f i c a l l y , the w r i t e r said that she was going to close her eyes and that they had to t e l l her which group,they were thinking about so that when she opened her eyes she could i d e n t i f y the r i g h t group. This method appeared to suggest some meaningful, but not t o t a l l y systematic c r i t e r i a f o r 96 t h e g r o u p i n g s o b t a i n e d . F o r t h e c l u s t e r s o b t a i n e d a t t h e grade 3 l e v e l , t h e c h i l d r e n s u g g e s t e d t h a t one group r e p r e s e n t e d s m a l l a n i m a l s ( b a t , p o r c u -p i n e , skunk, mouse and s q u i r r e l ) , a n o t h e r group r e p r e s e n t e d q u i t e f i e r c e a n i m a l s ( f o x , l i o n , l e o p a r d , monkey, kangaroo and r a b b i t ) , a t h i r d g r oup r e p r e s e n t e d a n i m a l s w h i c h were n o t w i l d , d i d n o t b i t e and m o s t l y d i d n o t e a t meat (dog, c a t , p i g , cow, donkey, h o r s e , sheep, d e e r , g i r a f f e and z e b r a ) , and t h e f i n a l group had a r e l a t i o n s h i p t o w a t e r , e i t h e r i n t h e sense o f d o i n g s o m e t h i n g i n w a t e r ( b e a r , e l e p h a n t and s e a l ) o r s t o r i n g w a t e r ( c a m e l ) . The l a b e l s s u g g e s t e d f o r t h e s i x k i n d e r g a r t e n t r e e s r e f l e c t e d p r i m a r i l y a f e r o c i t y d i m e n s i o n . B e a r , l e o p a r d , and l i o n were l a b e l e d as f i e r c e , d e e r , e l e p h a n t and k a n g a r o o , a l i t t l e f i e r c e ; monkey, p o r c u p i n e , skunk, mouse, •• r a b b i t and s q u i r r e l , s m a l l and m o s t l y h a r m l e s s e x c e p t i f one t o u c h e d them i n w h i c h c a s e t h e y m i g h t be a l i t t l e f i e r c e ; and p i g , sheep, c a m e l , g i r a f f e , cow, z e b r a , donkey and h o r s e as n i c e a n i m a l s w h i c h m i g h t be f o u n d i n a c h i l -d r e n ' s zoo. They s u g g e s t e d t h a t dog, c a t and b a t were r e l a t e d i n t h a t dogs chase c a t s and cats- chase b a t s . F i n a l l y , f o x and s e a l were grouped because t h e y b o t h e a t meat. T h i s p r o c e d u r e , n o t p l a n n e d i n advance o r s y s t e m a t i c a l l y p u r s u e d , i s m e n t i o n e d o n l y because i t appears t o s u g g e s t t h a t even a t younger age l e v e l s , t h e s e m a n t i c f i e l d - o f a n i m a l terms c o n t a i n s s t r u c t u r e and t h a t t h i s s t r u c t u r e , a l t h o u g h l e s s s y s t e m a t i c a l l y o r g a n i z e d , depends on t h e same k i n d s o f f e a t u r e s ( s i z e , f e r o c i t y , e t c . ) w h i c h emerge more c l e a r l y and s y s t e m a t i c a l l y i n o l d e r age g r o u p s . As f a r as t h e development o f t h e s e m a n t i c s t r u c t u r e o f a n i m a l terms i s c o n c e r n e d , t h e a s s o c i a t i v e t a s k s seem t o s u g g e s t l i t t l e , e x c e p t t h a t i d i o -s y n c r a t i c a s s o c i a t i o n s t e n d t o d e c r e a s e w i t h i n c r e a s i n g age. The d a t a appear t o p r o v i d e some s u p p o r t f o r t h e n o t i o n o f d e f i n i n g v s . c h a r a c t e r i s t i c f e a t u r e s i n t h a t t h o s e a n i m a l s w h i c h s h a r e d f e w e r o f t h e c h a r a c t e r i s t i c mammalian f e a t u r e s ( e . g . s e a l ) appeared t o be most d i s t a n t i n s e m a n t i c s p a c e . 97 The r e s u l t s f r o m t h e c o g n i t i v e t a s k s s u g g e s t t h a t c e r t a i n s e m a n t i c f e a t u r e s (e.g. s i z e ) f o r t h e domain o f a n i m a l terms e n t e r t h e s e m a n t i c s y s t e m a t an e a r l y age. Development c o n s i s t s i n a more s y s t e m a t i c a p p l i c a t i o n o f t h e s e f e a t u r e s t o t h e i n c r e a s i n g c o l l e c t i o n o f r e l a t e d l e x i c a l t e r m s . These f i r s t f e a t u r e s may be d e r i v e d , as C l a r k s u g g e s t s , f r o m p e r c e p t s . C l e a r l y , s i z e i s a d i m e n s i o n b a s e d on p e r c e p t u a l d i s c r i m i n a t i o n s . As A n g l i n s u g g e s t s , t h e s e f i r s t f e a t u r e s appear a l s o t o be f a i r l y c o n c r e t e i n n a t u r e . A l t h o u g h t h e r e a p p ears t o be f e a t u r e a d d i t i o n w i t h i n c r e a s i n g e d u c a t i o n , i t a l s o seems c l e a r t h a t , a t l e a s t beyond grade 7, no r a d i c a l r e o r g a n i z a t i o n o f t h e norma-t i v e s e m a n t i c s t r u c t u r e a p p ears t o o c c u r w i t h o u t e x t e n s i v e a d d i t i o n a l t r a i n -i n g s u c h as t h a t i n v o l v e d i n becoming a z o o l o g i s t . The i n c r e a s i n g l y s y s t e m a t i c a p p l i c a t i o n o f t h e same s e m a n t i c f e a t u r e s a p p ears t o p r o v i d e s u p p o r t f o r M c N e i l l ' s v e r t i c a l h y p o t h e s i s . The t e n d e n c y f o r g r o u p i n g s t o be formed i n a more i d i o s y n c r a t i c , h a p h a z a r d f a s h i o n i n younger c h i l d r e n a l s o r e f l e c t s t h e d e v e l o p m e n t a l t r e n d s s u g g e s t e d by P i a g e t . I t i s m e t h o d o l o g i c a l l y i n t e r e s t i n g . t o n o t e t h a t t h e p a i r - r a t i n g s t a s k was amenable t o b o t h s p a t i a l and ta x o n o m i c o r g a n i z a t i o n s whereas t h e s o r t i n g t a s k i n d u c e d o n l y a ta x o n o m i c s t r u c t u r e . I n a d d i t i o n , b o t h • t h e s p a t i a l and tax o n o m i c o r g a n i z a t i o n s w h i c h emerged.from t h e p a i r - g r a t i n g s d a t a y i e l d e d s t r i k i n g l y s i m i l a r s e m a n t i c f e a t u r e s . These f e a t u r e s were a l s o v e r y s i m i l a r t o t h o s e o b t a i n e d from t h e h i e r a r c h i c a l c l u s t e r i n g a n a l y s e s on t h e s o r t i n g d a t a . T h i s s u g g e s t s , f i r s t o f a l l , t h a t a t a x o n o m i c s t r u c t u r e i s a more a p p r o p r i a t e r e p r e s e n t a t i o n o f t h e domain o f a n i m a l t e r m s , s i n c e t h e r e i s agreement on t h i s s t r u c t u r e a c r o s s two t a s k s . S e c o n d l y , i t s u g g e s t s t h a t t h e t a s k r e q u i r e m e n t s i n v o l v e d i n p a i r - r a t i n g s may t h e m s e l v e s be r e s p o n s i b l e f o r i n d u c i n g a s p a t i a l o r g a n i z a t i o n r e g a r d l e s s o f t h e s p e c i f i c domain under i n v e s t i g a t i o n . Thus, t h e more a t a s k s u g g e s t s t h a t i t e m s can be o r g a n i z e d s p a t i a l l y , f o r example, by p r e s e n t i n g a l i n e a l o n g w h i c h t o o r d e r c o m p a r i s o n s , t h e more l i k e l y i t i s t h a t s u b j e c t s w i l l t r y t o impose a d i m e n s i o n a l 98 r e p r e s e n t a t i o n , whether o r n o t t h i s c o r r e s p o n d s t o any n a t u r a l o r g a n i z a t i o n o f t h e l e x i c a l i t e m s i n v o l v e d . On t h e b a s i s o f t h e r e s u l t s from t h i s s t u d y , o t h e r s t u d i e s can be s u g g e s t e d . One t y p e o f s t u d y , b a s i c a l l y m e t h o d o l o g i c a l , w o u l d be c o n c e r n e d w i t h e x a m i n i n g m u l t i d i m e n s i o n a l s c a l i n g and h i e r a r c h i c a l c l u s t e r i n g o f p a i r -r a t i n g s and s o r t i n g b e h a v i o r when t h e c r i t e r i a on w h i c h t o s o r t o r s c a l e t h e s t i m u l i were g i v e n b e f o r e h a n d t o t h e s u b j e c t s . I t w o u l d be p o s s i b l e t o d e t e r m i n e whether s u b j e c t i v e i n t e r p r e t a t i o n s by t h e e x p e r i m e n t e r about l a b e l s f o r t h e d i m e n s i o n s o r nodes i n a c l u s t e r do, i n f a c t , c o r r e s p o n d t o t h e d i s t i n c t i o n s b e i n g made by t h e s u b j e c t s . F o r example, a s i z e d i m e n s i o n was o b t a i n e d f o r s e v e r a l groups on t h e p a i r - r a t i n g s t a s k . A c o m p a r i s o n o f t h i s s c a l i n g s o l u t i o n t o one o b t a i n e d when s u b j e c t s were i n s t r u c t e d t o o r d e r t h e s t i m u l i on a s i z e d i m e n s i o n w o u l d be i n t e r e s t i n g . A l s o , l a b e l s f o r f u r t h e r d i m e n s i o n s d e r i v e d from m u l t i d i m e n s i o n a l s c a l i n g f o r t h e s e same groups were n o t f o r t h c o m i n g . Some l i g h t m i g h t be thrown on t h i s p r o b l e m i f d a t a were a v a i l a b l e from s u b j e c t s who had been r e q u i r e d t o s c a l e t h e same s e t o f s t i m u l i a c c o r d i n g t o many d i f f e r e n t c r i t e r i a . I f t h e second and t h i r d d i m e n s i o n s i n t h e grade 7, 11 and E d u c a t i o n 200 s u b j e c t s r e p r e s e n t a n y t h i n g o t h e r t h a n i n d i v i d u a l d i f f e r e n c e s o r r e s p o n s e s t o t h e s t i m u l i b a s e d on p r i m i t i v e p e r c e p t u a l c u e s , i t m i g h t be p o s s i b l e t o i d e n t i f y t h e l a b e l s f o r t h e s e d i m e n s i o n s t h r o u g h the.above a p p r o a c h . I n f o r m a t i o n c o u l d a l s o be o b t a i n e d c o n c e r n i n g c r i t e r i a f o r s c a l i n g o r s o r t i n g w h i c h do make a d i f f e r -ence i n t h e s c a l i n g s o l u t i o n s and c l u s t e r i n g s , and t h o s e w h i c h do n o t . A second l i n e o f r e s e a r c h w o u l d i n v o l v e p r o c e s s s t u d i e s c o n c e r n e d w i t h t h e n a t u r a l a c q u i s i t i o n o f s e m a n t i c s t r u c t u r e s i n v e r y young c h i l d r e n . I n t h e domain o f a n i m a l terms t h e s e s t u d i e s m i g h t i n v o l v e d e t e r m i n i n g t h e o r d e r o f a c q u i s i t i o n o f s p e c i f i c a n i m a l terms and t h e b a s i s f o r d i f f e r e n t i a t i n g t h e s e terms from each o t h e r and fr o m o t h e r l e x i c a l i t e m s . B e s i d e s t h e s t u d i e s s u g g e s t e d above, a more i n t e r e s t i n g and i m p o r t a n t 99 question arises concerning the possibility of training new semantic structures and/or modifying existing semantic structures at different age levels. In pursuing this alternative, the outcomes from the present study seem to i n d i -cate an appropriate choice among the tasks and analytic techniques used. More specifically, a cognitive task like the sorting task, in combination with the hierarchical clustering technique as a tool for describing taxonomic structures, appear the most promising. It has already been noted that the task requirements involved in pair-ratings may induce a less natural organiz-ation of lexical items than those involved in the sorting task as far as the domain of animal terms is concerned. For this reason, the sorting task is considered to be more appropriate for the type of research to be reported in the following chapters. 100 CHAPTER V EFFECTS OF STRUCTURAL ORGANIZATION ON LEARNING AND TRANSFER PERFORMANCE: ANALYSIS OF RESEARCH PROBLEMS This study was p r i m a r i l y concerned with manipulating the s t r u c t u r a l organization of a set of f a m i l i a r l e x i c a l items from the domain of animal terms. I t was designed to explore the e f f e c t s of two d i f f e r e n t types of s t r u c t u r a l organization on r e c a l l and c l u s t e r i n g i n a m u l t i - t r i a l free r e c a l l task and on combinatory a b i l i t y i n a tr a n s f e r s o r t i n g task i n grade 3 and grade 7 ch i l d r e n . The two types of s t r u c t u r a l organization were both designed to t r a i n the same multiple c l a s s i f i c a t i o n scheme. One type consisted of a h i e r a r c h i c a l l y organized presentation of the items together with t h e i r cate-gory l a b e l s . The other type was a l i s t presentation designed to t r a i n separately the c l a s s i n c l u s i o n r e l a t i o n s involved i n the h i e r a r c h i c a l s t r u c -ture. I t was expected that r e c a l l and tr a n s f e r a b i l i t y would be d i f f e r e n t i -a l l y affected by presentation method according to the age and cognitive a b i l i t y of c h i l d r e n at these two grade l e v e l s . A review of the t h e o r e t i c a l and empirical l i t e r a t u r e relevant to the o v e r a l l objectives of the present study i s presented below. A. Mult i p l e C l a s s i f i c a t i o n M ultiple c l a s s i f i c a t i o n r e f e r s to the a b i l i t y to combine the common feature (or attribute) of one clas s with the common feature (or attribute) of another class such that the multiple c l a s s i s defined by the simultaneous presence of both features. In Piagetian theory (Inhelder and Piaget, 1964), multiple c l a s s i f i c a t i o n i s considered important i n the attainment of concrete operations and multiple c l a s s i f i c a t i o n items are included i n many developmental 101 t e s t s (Jacobs and Vandeventer, 1969). The emergence of t h i s s k i l l , as demonstrated i n a number of studies, occurs around seven to nine years of age (Inhelder and Piaget, 1964; Parker and Day, 1971; and Wohlwill, 1967). Piaget considers that the operations underlying c l a s s i f i c a t o r y s k i l l s emerge simultaneously. However, a number of studies have obtained varying sequen-t i a l development on d i f f e r e n t types of c l a s s i f i c a t i o n tasks (Klahr and Wal-lace, 1970). Klahr and Wallace (1970), using computer simultation methods, report information processing analyses for seven c l a s s i f i c a t i o n tasks ranging from simple s o r t i n g to h i e r a r c h i c a l c l a s s i f i c a t i o n and c l a s s i n c l u s i o n prob-lems. They i d e n t i f i e d a set of basic processes involved i n multiple c l a s s i -f i c a t i o n such as.noticing a value (feature) of an object, i d e n t i f y i n g features common to two objects, and f i n d i n g a l l objects with a given feature. Variations i n attention and motivation a f f e c t these basic processes and are responsible f o r v a r i a t i o n s at the task performance l e v e l . Klahr and Wallace (1970) suggested an ordering of task d i f f i c u l t y i n terms of the demands placed on a t t e n t i o n a l and motivational mechanisms. They considered h i e r a r c h i c a l c l a s s i f i c a t i o n to be r e l a t i v e l y more d i f f i c u l t than other c l a s s i f i c a t i o n tasks. There have been two main types of studies assessing age differences i n multiple c l a s s i f i c a t i o n performance. The f i r s t type has used perceptual dimensions (e.g. shape, color) i n a matrix format. The c h i l d ' s task i s to choose the appropriate item to f i l l the blank c e l l at the i n t e r s e c t i o n of the row and column dimensions (Jacobs and Vandeventer, 1969; Kofsky, 1966). The second type has used an object s o r t i n g approach. These studies have found that the basis for s o r t i n g changes with age. At 6 years of age, c h i l d r e n use perceptual dimensions to sort items. A gradual increase occurs with increas-ing age i n the use of functional and abstract dimensions. Functional dimen-sions are dominant at eight or nine years of age. The use of abstract dimensions increases s t e a d i l y with increasing age and education (Goldman and 102 L e v i n e , 1963; H e a l d and M a r z o l f , 1953; G i v e r and Hornsby, 1966; S i g e l , 1953, 1954). T h i s d e v e l o p m e n t a l sequence appears t o be one o f p r e f e r e n c e f o r c e r t a i n t y p e s o f d i m e n s i o n s f o r s o r t i n g r a t h e r t h a n an i n a b i l i t y t o use o t h e r s ( B i r c h and B o r t n e r , 1966). P a r k e r and Day (1971) combined t h e m a t r i x a p p r o a c h w i t h t h e use o f t h e t h r e e t y p e s o f d i m e n s i o n s - p e r c e p t u a l , f u n c t i o n -a l , and a b s t r a c t - and o b t a i n e d t h e same d e v e l o p m e n t a l sequence d e s c r i b e d above. • -S t u d i e s c o n c e r n e d w i t h d e s c r i b i n g t h e a c q u i s i t i o n o f complex c l a s s i f -i c a t o r y s k i l l s have used e i t h e r c o n c r e t e o r p i c t o r i a l s t i m u l i . ' Those s o r t i n g s t u d i e s ( e . g . " A n g l i n , 1970; M i l l e r , 1969) w h i c h have u s e d v e r b a l s t i m u l i w i t h c h i l d r e n were n o t d e s i g n e d t o e x p l o r e t h e u n d e r l y i n g c o m b i n a t o r y , r u l e s , b u t r a t h e r t o r e v e a l t h e d i m e n s i o n s used d e p e n d i n g on t h e p a r t i c u l a r s t i m u l u s i t e m s . Some s t u d i e s have been c o n c e r n e d w i t h t r a i n i n g m u l t i p l e c l a s s i f i c a -t i o n s and a s s e s s i n g e f f e c t i v e n e s s o f t r a i n i n g on subsequent c r i t e r i o n t a s k s . These s t u d i e s have p r i m a r i l y used, n o n - v e r b a l s t i m u l i and a r e , t h e r e f o r e , n o t e s p e c i a l l y r e l e v a n t t o t h e main c o n c e r n o f t h e p r e s e n t s t u d y . Edwards (1968) u s e d a m a t c h i n g t o sample t e c h n i q u e and d i f f e r e n t t y p e s o f v e r b a l c u e s . These cues i n c r e a s e d t h e v a r i e t y and number o f c a t e g o r i z a t i o n s made on a t r a n s -f e r t a s k . S i g e l , Roeper and Hooper (1966) f o u n d t h a t d i s c u s s i o n s about s i m i l -a r i t i e s and d i f f e r e n c e s between v a r i o u s o b j e c t s d i d n o t prod u c e subsequent changes i n c l a s s i f i c a t i o n p e r f o r m a n c e . J a c o b s and V a n d e v e n t e r (1969, 1971) used t r a i n i n g on m a t r i x - c o m p l e t i o n , m a t r i x - b u i l d i n g and s o r t i n g and o b t a i n e d i n c r e a s e d s c o r e s i n f i r s t g r a d e r s on t r a n s f e r t a s k s . P a r k e r , S p e r r , and R u f f (1972) compared i n d i v i d u a l sequenced i n s t r u c t i o n ( d e v e l o p e d by t a s k a n a l y s i s ) w i t h t r a i n i n g on t e r m i n a l b e h a v i o r . B o t h groups p e r f o r m e d compar-a b l y and were s i g n i f i c a n t l y b e t t e r t h a n a n o - c o n t a c t c o n t r o l g r o u p . T r a i n i n g on a m u l t i p l e c l a s s i f i c a t i o n w h i c h a l s o i n v o l v e d c l a s s i n c l u s i o n r e l a t i o n s was t r i e d by Kohnstamm (1963) w i t h f i v e y e a r o l d s . 103 T r a i n i n g on t h e l o g i c a l s t r u c t u r e u s i n g b l o c k s d i f f e r i n g o n l y i n s i z e and c o l o r t r a n s f e r r e d t o more complex v e r b a l l y p r e s e n t e d i t e m s . Thus t r a i n i n g on a s i m p l e r t a s k a l l o w e d t h e c h i l d t o g r a s p t h e c l a s s i n c l u s i o n l o g i c , w h i c h t h e n t r a n s f e r r e d t o a more complex t a s k . The d i s t i n c t i o n made i n t h e c o n c e p t l e a r n i n g l i t e r a t u r e between t h e two components i n any c o n c e p t l e a r n i n g t a s k - t h e d i m e n s i o n s and t h e i r v a l u e s and t h e r u l e f o r c o m b i n i n g t h e r e l e v a n t d i m e n s i o n a l v a l u e s - i s r e l e v a n t h e r e . Concept c o m p l e x i t y can v a r y a c c o r d i n g t o t h e number and t y p e o f r e l e v a n t d i m e n s i o n s and c o m b i n a t o r y r u l e s . I n c l a s s i f i c a t i o n t a s k s , t h e same d i s t i n c -t i o n a p p l i e s . Kohnstamm's s t u d y i n d i c a t e s t h a t t h e r u l e t o be a c q u i r e d , c l a s s i n c l u s i o n , was e a s i e r t o l e a r n when t h e d i f f i c u l t y o f d i m e n s i o n a l i d e n t i -f i c a t i o n was r e d u c e d . T r a i n i n g s t u d i e s w h i c h examine t h e s e two components s e p a r a t e l y i n m u l t i p l e c l a s s i f i c a t i o n m i g h t shed some l i g h t on t h e l e a r n i n g p r o c e s s e s and v a r i a b l e s i n v o l v e d . B. H i e r a r c h i c a l O r g a n i z a t i o n C l a s s i f i c a t i o n t a s k s w h i c h r e q u i r e r e c u r s i v e r e w r i t i n g o f s u c c e s s i v e nodes i n terms o f c l a s s i n c l u s i o n r e l a t i o n s r e s u l t i n h i e r a r c h i c a l s t r u c t u r e s . Not o n l y i s h i e r a r c h i c a l o r g a n i z a t i o n p e r v a s i v e i n l i f e and s c i e n c e , i t i s a l s o an e f f i c i e n t method f o r - o r g a n i z i n g and s t o r i n g i n f o r m a t i o n s i n c e i t i n v o l v e s g r o u p i n g i n f o r m a t i o n , a s s i g n i n g l a b e l s t o t h e g r o u p s , and t h e n c l a s s -i f y i n g t h e l a b e l s . R e t r i e v a l o f i n f o r m a t i o n t h e n c o n s i s t s o f r e c a l l i n g t h e h i g h e r l e v e l c l a s s i f i c a t i o n s w h i c h can i n t u r n g e n e r a t e t h e l o w e r - l e v e l l a b e l s and e v e n t u a l l y s p e c i f i c i n s t a n c e s . Two s t u d i e s (Bower, C l a r k , L e s g o l d and Winzenz, 1967; and N e l s o n and S m i t h , 1972) have examined t h e e f f e c t s o f h i e r a r c h i c a l o r g a n i z a t i o n on l e a r n -i n g i n a d u l t s when t h e c o m p lete h i e r a r c h i c a l s t r u c t u r e was p r e s e n t e d f o r i n -s p e c t i o n . Bower e t . a l . (1967) p r e s e n t e d f o u r h i e r a r c h i e s c o n c u r r e n t l y , e a ch h i e r a r c h y c o n s i s t i n g o f 28 words. L e a r n i n g i n a f r e e r e c a l l s i t u a t i o n f o r m e a n i n g f u l c o n c e p t u a l h i e r a r c h i e s (e.g. m i n e r a l s - , a n i m a l s ) was compared I 1 0 4 with learning of randomly generated hierar c h i e s created from the same word l i s t . The r e s u l t s indicated that subjects i n the conceptually organized condition were generating t h e i r r e c a l l by using the l i s t construction r u l e . This was apparent i n that r e c a l l was e n t i r e l y clustered according to concep-t u a l categories; that h i e r a r c h i e s were generated from top to bottom; that i n almost a l l cases the superordinate word was r e c a l l e d before i t s subordin-ate words; and that r e c a l l of a nodal word served as a cue for the r e c a l l of the subordinate words below that node. If a nodal word were forgotten, the e n t i r e c l u s t e r below that word was often omitted. In the group r e c e i v i n g randomly generated h i e r a r c h i e s , r e c a l l appeared unrelated to h i e r a r c h i c a l l e v e l . • , . Bower et a l . (1969;.- Bower, 1970; Bower, Lesgold and Tieman, 1969) suggest that when a l i s t of r e l a t e d f a m i l i a r words i s studied, a person stores information about the occurrence of each word on the l i s t and also t r i e s to generate a r e t r i e v a l method. Organized presentation provides the subject with a r e t r i e v a l rule and also strengthens p a r t i c u l a r category-to-instance associations. During r e c a l l , the r e t r i e v a l plan allows him to generate l i s t members which are checked for recognition of l i s t membership before they are o v e r t l y r e c a l l e d . This prevents the occurrence of i n t r u s i o n s (non-list members) which, because of the nonexhaustive character of the conceptual categories, would occur frequently without such an e d i t i n g process. That subjects were not generating word l i s t s simply-on the basis of t h e i r knowledge of the l i s t construction p r i n c i p l e was assessed i n another study where naive subjects were given the l i s t construction p r i n c i p l e and were asked to t r y to construct conceptual h i e r a r c h i e s of the type used i n Bower et a l . ' s study. Naive subjects d i d badly at t r y i n g to produce the h i e r a r c h i e s a c t u a l l y presented to the experimental subjects. Similar views concerning the processes involved i n free r e c a l l have been proposed by Dale (1967) and Kintsch (1968). Improvement i n r e c a l l over 105 t r i a l s , a c c o r d i n g t o t h i s v i e w p o i n t , w o u l d r e s u l t f r o m t h e s t r e n g t h e n i n g o f t h e a s s o c i a t i o n s between t h e c a t e g o r y l a b e l and t h e p r e s e n t e d i n s t a n c e s ; f r o m t h e f u r t h e r e l a b o r a t i o n o f t h e r e t r i e v a l r u l e ; and from more d i s c r i m i n a t i n g o c c u r e n c e - i n f o r m a t i o n b e i n g s t o r e d f o r t h e l i s t w o r ds, e i t h e r on t h e b a s i s o f f r e q u e n c y , r e c e n c y , o r t h e t r a c e - s t r e n g t h o f t h e p r e s e n t e d i t e m s . A second s t u d y ( N e l s o n and S m i t h , 1972) examined a c q u i s i t i o n and l o n g -t e r m r e t e n t i o n o f p r e v i o u s l y u n f a m i l i a r h i e r a r c h i c a l i n f o r m a t i o n ( c o n n e c t i o n s between l e t t e r s ) p r e s e n t e d i n a g r a p h i c a l h i e r a r c h y a t t h e t i m e o f l e a r n i n g . They were a t t e m p t i n g t o s e p a r a t e t h e e f f e c t s o f l e a r n i n g a p a r t i c u l a r s t r u c -t u r e from t h a t o f l e a r n i n g a l r e a d y f a m i l i a r m a t e r i a l a r r a n g e d i n t h i s s t r u c -t u r e . A c q u i s i t i o n and r e t e n t i o n were b e t t e r when t h e i n f o r m a t i o n was p r e s e n t e d i n a v i s u a l h i e r a r c h y r a t h e r t h a n as a l i s t o f a s s o c i a t i o n s . The e f f e c t was g r e a t e r f o r a c q u i s i t i o n t h a n r e t e n t i o n . T h e i r r e s u l t s s u p p o r t t h e i d e a t h a t t h e e x p e r i m e n t a l s u b j e c t s had l e a r n e d a l i s t c o n s t r u c t i o n r u l e r a t h e r t h a n any ' p h o t o g r a p h i c ' image o f t h e h i e r a r c h y s i n c e t h o s e s u b j e c t s who r e c e i v e d , t r i a l s i n w h i c h t h e p o s i t i o n o f v a r i o u s c l u s t e r s i n t h e h i e r a r c h y changed f r o m l e f t t o r i g h t ' o r v i c e v e r s a d i d n o t p e r f o r m s i g n i f i c a n t l y d i f f e r -e n t l y f r o m t h o s e s u b j e c t s who a l w a y s s t u d i e d t h e h i e r a r c h y under one a r r a n g e -ment. T h i s . s t u d y s u p p o r t s Bower e t a l . ' s s t u d y . I t i n d i c a t e s t h a t s t r u c -t u r a l o r g a n i z a t i o n a f f e c t s l e a r n i n g , and i t e x t e n d s t h i s e f f e c t t o l o n g t e r m r e t e n t i o n . Whether o r n o t a h i e r a r c h i c a l s t r u c t u r e g e n e r a t e d by a s i m i l a r l i s t c o n s t r u c t i o n r u l e w o u l d be l e a r n e d and used by c h i l d r e n has n o t been s t u d i e d . The c l o s e s t a p p r o x i m a t i o n t o a s t u d y d e a l i n g w i t h t h i s q u e s t i o n was c o n d u c t e d by A n g l i n (1970). He p r e s e n t e d s u b j e c t s r a n g i n g i n age f r o m t h i r d g r a d e r s t o a d u l t s w i t h l e f t - b r a n c h i n g o r r i g h t - b r a n c h i n g t r e e - l i k e d i a g r a m s w i t h words a t t h e ends o f t h e t r e e b r a n c h e s . The m a t e r i a l was e i t h e r c o n c e p t u a l l y s t r u c -t u r e d o r randomly p o s i t i o n e d . S u b j e c t s had t o s t u d y t h e d iagrams b r i e f l y and t h e n t r y t o w r i t e t h e words (now p r e s e n t e d a t t h e b o t t o m o f t h e page) i n 106 t h e i r appropriate places on the diagrams. The r e s u l t s indicated that the youngest subjects made l i t t l e use of the structure provided. With increasing age, the subjects presented with structured -material performed i n c r e a s i n g l y better than the subjects presented with the randomly positioned material. Bower (1970) points out "the preferred strategy of the adult human i n learning a large body of material i s to 'divide and conquer': that i s , subdivide the material into smaller groups by some means, and then learn those parts as integrated packets of information. . . . With word l i s t s the main grouping determinants are s i m i l a r i t y of meanings or semantic categories (p. 41)." The rule which generates a h i e r a r c h i c a l structure i s f a m i l i a r and e f f i c i e n t f or human adults. In order to use i t , however, a person has to be able to under-stand c l a s s i n c l u s i o n r e l a t i o n s and use them r e c u r s i v e l y . I t may be easier for c h i l d r e n , depending on t h e i r age and stage of cognitive development, to learn each class i n c l u s i o n rule separately, so that, when combined with other c l a s s i n c l u s i o n s , a h i e r a r c h i c a l structure emerges. Lee (1968) showed that p r i o r learning of the lower l e v e l r u l e s involved i n a more complex r u l e f a c i l -i t a t e d the acquisiton of the higher l e v e l r u l e . In a study with geometric fi g u r e s , i n which the subjects could, i n theory, generate a l l possible instances of the population, Whitman and Garner (1962) showed that ease of determining which p a r t i c u l a r instances had, i n f a c t , been presented depended on the complexity of the r e s t r i c t i v e r u l e c h a r a c t e r i z i n g the subset of pre-sented patterns. Rule d i f f i c u l t y i s an important component i n learning and r e t r i e v a l , therefore. Thus, a s i m p l i f i e d presentation of the rules involved i n a h i e r a r c h i c a l structure may aid.younger age groups i n free r e c a l l learning. C. Relevant Free R e c a l l Studies i n Children A number of studies have looked at free r e c a l l learning i n c h i l d r e n . A review of these studies appears to i n d i c a t e that c h i l d r e n from the age of kindergarten on are able to use organizational processes i n order to increase r e c a l l of items i n the free r e c a l l tasks which have been used. Although some 107 s t u d i e s have f o u n d t h a t i n c r e a s e s i n age a r e a s s o c i a t e d w i t h i n c r e a s e s i n r e c a l l and c l u s t e r i n g o f i t e m s ( C o l e , F r a n k e l and S h a r p , 1971; M o e l y , O l s o n , Halwes, and F l a v e l l , 1969; N e l s o n , 1969; R o s n e r , 1971; and Y o s h i m u r a , Moely, and S h a p i r o , 1 9 7 1 ) , t h e main d i f f e r e n c e between younger and o l d e r c h i l d r e n seems t o l i e i n t h e a b i l i t y o f t h e l a t t e r t o impose o r g a n i z a t i o n s p o n t a n e o u s l y on t h e l e a r n i n g m a t e r i a l s ( o r t o n o t i c e p o s s i b i l i t i e s f o r o r g a n i z a t i o n ) , and t o d e v e l o p a r u l e w h i c h w i l l a l l o w f o r b e t t e r r e t r i e v a l o f t h e s t o r e d i n f o r m a -t i o n . I f d e l i b e r a t e l y i n s t r u c t e d i n how t o o r g a n i z e o r form c a t e g o r i e s , t h e n younger c h i l d r e n use t h i s i n f o r m a t i o n , and c o n s e q u e n t l y show an i n c r e a s e i n r e c a l l . T h i s a n a l y s i s makes some sense o u t o f t h e o b t a i n e d i n c o n s i s t e n c i e s i n f r e e r e c a l l f o r c h i l d r e n a c r o s s d i f f e r e n t age g r o u p s . F o r example, L a u r e n c e (1967) f o u n d t h a t r e c a l l o f h i g h l y r e l a t e d v e r s u s u n r e l a t e d l i s t s was s i g n i f i c a n t l y d i f f e r e n t f o r c h i l d r e n f r o m grade 3 onwards, whereas t h e r e s u l t s f o r k i n d e r g a r t e n and n u r s e r y s c h o o l c h i l d r e n were somewhat e q u i v o c a l -c a t e g o r i e s appeared t o a i d n u r s e r y s c h o o l c h i l d r e n b u t n o t k i n d e r g a r t n e r s . However, i n n e i t h e r c a s e , w i t h t h e s e two g r o u p s , was t h e r e e v i d e n c e t h a t t h e c h i l d r e n were o r g a n i z i n g t h e i r o u t p u t l i s t s i n ' a manner c o n s i s t e n t w i t h t h e s e m a n t i c c a t e g o r i e s t h e y c o n t a i n e d . Moely e t a l . (1969) found t h a t c h i l d r e n i n k i n d e r g a r t e n and g r a d e s 1 and 3 d i d n o t s p o n t a n e o u s l y employ s o r t i n g s t r a t e g i e s t o o r g a n i z e a c o l l e c t i o n o f p i c t u r e s , whereas grade 5 c h i l d r e n . d i d . Y e t when- prompted o r shown how t o f orm c a t e g o r i e s , t h e r e was a subsequent i n c r e a s e i n r e c a l l a c r o s s t h e t h r e e younger age g r o u p s . A l s o , C o l e e t a l . (1971) found t h a t d e s p i t e t h e manipu-l a t i o n o f d i f f e r e n t v a r i a b l e s w h i c h might be e x p e c t e d t o p r o d u c e d i f f e r e n t i a l l e a r n i n g and r e c a l l a c r o s s s u b j e c t s i n g r a d e s 1 t h r o u g h 9, t h e o n l y r e a l d i f -f e r e n c e between younger and o l d e r c h i l d r e n was t h a t o l d e r c h i l d r e n appeared t o use b e t t e r r e t r i e v a l and s t o r a g e s t r a t e g i e s . T h i s i m p l i e s t h a t younger c h i l d r e n c o u l d p e r f o r m l i k e o l d e r ones under c o n d i t i o n s where t h e y were t r a i n e d t o use t h e p r o p e r s t r a t e g i e s . O t h e r s t u d i e s (e.g. H o r o w i t z , 1969; 108 S h a p i r o and M o e l y , 1971; and S t e i n m e t z and B a t t i g , 1969) have f o u n d no s i g n i f i c a n t d i f f e r e n c e s i n c l u s t e r i n g w i t h age. These r e s u l t s on f r e e r e c a l l . l e a r n i n g i n c h i l d r e n can be v i e w e d i n terms o f t h e t h e o r e t i c a l framework and r e s e a r c h on m e d i a t i o n a l d e f i c i e n c y . A c c o r d i n g t o K e n d l e r (1973), t h e r e a r e two t y p e s o f m e d i a t i o n a l d e f i c i e n c i e s ' -c o n t r o l and p r o d u c t i o n d e f i c i e n c y . C o n t r o l ' d e f i c i e n c y i s used t o d e s c r i b e t h e s i t u a t i o n i n w h i c h a p o t e n t i a l m e d i a t o r ( f o r example, a c a t e g o r y l a b e l ) even when i t i s p r o d u c e d f a i l s t o c o n t r o l b e h a v i o r . Numerous s t u d i e s have shown t h a t c o n t r o l d e f i c i e n c y r a p i d l y d e c l i n e s a f t e r t h e k i n d e r g a r t e n l e v e l . P r o d u c t i o n d e f i c i e n c y , on t h e o t h e r hand, r e f e r s t o t h e case i n w h i c h , even when t h e m e d i a t o r i s i n t h e r e p e r t o i r e o f t h e c h i l d , i t f a i l s t o be p r o d u c e d t o t h e r e l e v a n t c l a s s o f e n v i r o n m e n t a l e v e n t s . T h i s d e f i c i e n c y i s a l s o p r e s e n t a t t h e k i n d e r g a r t e n l e v e l b u t i t d e c l i n e s much more s l o w l y and l e s s c o m p l e t e l y w i t h age. W i t h t h i s t y p e o f d e f i c i e n c y , when t h e m e d i a t o r i s s u p p l i e d f o r t h e c h i l d , t h e r e i s a marked improvement i n l e a r n i n g and r e c a l l . Thus, t h o s e f r e e r e c a l l s t u d i e s w h i c h s u p p l i e d m e d i a t o r s f o r t h e younger c h i l d r e n f o u n d an i n c r e a s e i n c l u s t e r i n g and r e c a l l . Those s t u d i e s w h i c h d i d n o t p r o v i d e t h i s t y p e o f s t r a t e g y , f o u n d d i f f e r e n c e s between younger and o l d e r c h i l d r e n ( i n t h e case where o l d e r c h i l d r e n ' s p o n t a n e o u s l y p r o d u c e d t h e media-t o r s ) o r no d i f f e r e n c e s i n t h e case where a l l groups were d e f i c i e n t (none s u p p l i e d t h e m e d i a t o r s s p o n t a n e o u s l y ) o r where a l l groups were e q u a l l y e f f i c i e n t ( s i n c e t h e t a s k was o r g a n i z e d so t h a t a l l s u b j e c t s w o u l d be aware o f t h e p o t e n t i a l m e d i a t o r s ) . D. R a t i o n a l e and Summary o f Hypotheses The p r e s e n t s t u d y examined l e a r n i n g and t r a n s f e r o f a m u l t i p l e c l a s s -i f i c a t i o n o f a n i m a l terms i n c h i l d r e n o f two d i f f e r e n t ages under d i f f e r e n t s t i m u l u s p r e s e n t a t i o n methods and d e g r e e s o f l e a r n i n g . S i n c e P i a g e t has i n d i c a t e d t h a t m u l t i p l e c l a s s i f i c a t i o n s k i l l s emerge i n t h e seven t o n i n e . y e a r s r a n g e , a group o f c h i l d r e n (grade 3) who had newly a c q u i r e d o r were i n 109 the process of acquiring t h i s s k i l l were compared with an older group of c h i l -dren (grade 7) whose a b i l i t y i n multiple c l a s s i f i c a t i o n s k i l l s should have been well developed and highly f l e x i b l e . F l e x i b i l i t y i s used here i n the Piagetian sense and means the person's a b i l i t y to s h i f t from one c l a s s i f i c a t o r y system to another. I t i s the opposite of r i g i d i t y . Cognitive f l e x i b i l i t y " e x i s t s i f and only i f a subject, when confronted with a set of elements which he has to c l a s s i f y , can a n t i c i p a t e the several stages involved i n the complete c l a s s i f i c a t i o n and can also at the same time a n t i c i p a t e those stages i n reverse order. In other words, he must an t i c i p a t e both the unions and the subdivisions. (Inhelder and Piaget, 1964, p. 288)." As indicated previously, material organized i n a h i e r a r c h i c a l s t r u c -ture produces e f f i c i e n t and rapid learning i n adults. Whether t h i s i s so i n younger age groups has not been demonstrated c l e a r l y , but i t was expected that twelve or t h i r t e e n year olds would have the capacity to behave i n a manner consistent with the adult model. On the other hand,- i t was suggested that a method of stimulus presentation which disembedded the c l a s s i n c l u s i o n r e l a t i o n s nested within a p a r t i c u l a r h i e r a r c h i c a l structure might f a c i l i t a t e learning for younger c h i l d r e n to a greater extent than learning a hierarchy i n i t s complete form. Therefore, there were two experimental conditions. In one condition a h i e r a r c h i c a l organization of' the stimulus items and- t h e i r category l a b e l s (the values of the dimensions involved) was used. In the other, category l a b e l s f or the values of one dimension, together with the stimulus items appropriately arranged according to that dimension, were presented i n a l i s t fashion, followed by a second l i s t , i n which the values f o r the second dimension, together with the same stimulus items re-arranged was used. The l i s t presentation method was designed to t r a i n separately the c l a s s i n c l u s i o n r e l a t i o n s contained i n the h i e r a r c h i c a l structure. The learning paradigm i n the experimental condition was s i m i l a r , but not procedurally i d e n t i c a l , to the r u l e learning paradigm i n concept learning 110 e x p e r i m e n t s . S u b j e c t s were t o l d what, t h e r e l e v a n t v a l u e s o f t h e d i m e n s i o n s were and t h a t t h e y s h o u l d use t h i s i n f o r m a t i o n i n o r d e r t o h e l p them remember t h e s t i m u l u s i t e m s . F o r example, t h e y were t o l d t h a t some a n i m a l s e a t meat and some a n i m a l s e a t p l a n t s ; • t h a t t h e f o l l o w i n g a n i m a l s were meat e a t e r s and t h e s e o t h e r a n i m a l s were p l a n t e a t e r s ; and t h a t t h e y s h o u l d s t u d y t h i s a r r a n g e -ment i n o r d e r t o h e l p them remember t h e i t e m s . The p r o v i s i o n o f t h e s u p e r -o r d i n a t e c a t e g o r i e s was a l s o e x p e c t e d t o a i d i n r e d u c i n g p r o d u c t i o n d e f i c i e n -c i e s i n younger c h i l d r e n . S i n c e c h i l d r e n o f e i g h t o r . n i n e y e a r s o f age seem t o show a p r e f e r e n c e f o r f u n c t i o n a l f e a t u r e s ( o r a t t r i b u t e s ) , whereas o l d e r c h i l d r e n p r e f e r a b s t r a c t f e a t u r e s ( o r a t t r i b u t e s ) , one l e v e l o f t h e h i e r a r c h y i n v o l v e d c l a s s i n c l u s i o n r e l a t i o n s b a s e d on f u n c t i o n a l f e a t u r e s ( o r a t t r i b u t e s ) ' , ( i . e . a n i m a l s f o r p e t s , f o r f u r , and f o r game) w h i l e • t h e , h i g h e r . l e v e l i n t h e h i e r a r c h y i n v o l v e d c l a s s i n c l u s i o n r e l a t i o n s b a s e d on a b s t r a c t , f e a t u r e s ( o r a t t r i b u t e s ) ( i . e . p l a n t e a t e r s v s . meat e a t e r s ) . I n .the l i s t c o n d i t i o n i t was e x p e c t e d t h a t grade 3 c h i l d r e n w o u l d l e a r n t h e l i s t o r g a n i z e d a c c o r d i n g t o t h e f u n c t i o n a l d i m e n s i o n more r a p i d l y t h a n ~ • t h e l i s t o r g a n i z e d i n terms o f t h e a b s t r a c t d i m e n s i o n , and v i c e v e r s a f o r t h e g r ade 7 c h i l d r e n . However, t h i s e x p e c t a t i o n c o u l d n o t be u n a mbiguously t e s t e d , s i n c e i n o r d e r t o o r g a n i z e i n a h i e r a r c h i c a l s t r u c -t u r e t h e r e were t h r e e v a l u e s o f t h e f u n c t i o n a l d i m e n s i o n , whereas t h e r e were o n l y two v a l u e s o f t h e a b s t r a c t d i m e n s i o n . Thus, t h e e f f e c t s o f number o f v a l u e s o f t h e d i m e n s i o n s and t y p e o f d i m e n s i o n were confounded. The second phase o f t h e s t u d y i n v o l v e d a t r a n s f e r s o r t i n g t a s k . S o r t i n g t a s k s a r e p a r t i c u l a r l y s u i t e d f o r e x a m i n i n g o r g a n i z a t i o n a l p r o c e s s e s w h i l e a l s o b e i n g r e l a t i v e l y unconfounded b y . s e a r c h and r e t r i e v a l s t r a t e g i e s . The main i n t e r e s t i n t h e s o r t i n g t a s k was i n t h e r e l a t i o n s h i p between age and t h e a p p l i c a t i o n o f t h e m u l t i p l e c l a s s i f i c a t i o n s u p p l i e d d u r i n g t h e t r a i n i n g phase. To examine t h i s i n as u n b i a s e d a way as p o s s i b l e , s u b j e c t s were r e q u i r e d f i r s t o f a l l t o s o r t t h e i t e m s (the same a n i m a l terms used i n t h e I l l learning task), on the basis of s i m i l a r i t y , i n t o as many p i l e s as desired. Following t h i s , i n order to look more c l o s e l y at the relationship-between age and the a b i l i t y of the l i s t condition subjects to combine the c l a s s i n c l u s i o n r e l a t i o n s learned separately into a multiple c l a s s i f i c a t i o n and of the h i e r -a r c h i c a l condition subjects to p u l l apart the c l a s s i n c l u s i o n r e l a t i o n s i n t o t h e i r separate components, three further sorts were required. In the f i r s t s ort the subjects were asked to sort the items i n t o six. groups;- i n the second sort i n t o three groups; and i n the f i n a l sort i n t o two groups. The subjects were required to have equal:numbers of animal items i n each group. Thus, the s i x category sort corresponded to a sorting which would emerge i f animal items were assigned c o r r e c t l y to groups representing the simultaneous presence of both dimensions; the three category sort'corresponded to the d i s t i n c t i o n formed on the basis of the functional feature (or attribute) values; and the two category s o r t corresponded'to:the food habits dimension. The subjects were not, of course, i n s t r u c t e d i n how to make t h e i r sorts apart from the general d i r e c t i o n s s p e c i f y i n g number of groups and number of items.per group. The degree of cognitive f l e x i b i l i t y expected i n the older age group led to the expectation that the older c h i l d r e n would be equally f a c i l e on the f i x e d sorts (the 6, 3, and 2 category sorts) regardless of learning conditions . and type of sort required. I t was also expected that on the free sort (the f i r s t sort i n the s e r i e s of four) o l d e r - c h i l d r e n would be more l i k e l y to apply spontaneously the c l a s s i f i c a t i o n which had held during the t r a i n i n g phase. No s p e c i f i c expectations were formulated for the younger age group about t h e i r performance on the free s o r t . For the s i x category f i x e d s o r t , i t was expected that younger c h i l d r e n who had learned under the conditions of separate class i n c l u s i o n r e l a t i o n s would net have the f l e x i b i l i t y or combinatory a b i l i t y to generate the s i x groups based on the combination of both a t t r i b u t e s , whereas chi l d r e n who had learned under the h i e r a r c h i c a l condition would show tra n s f e r more r e a d i l y and form-the s i x groups with greater accuracy. For the 112 three and two category f i x e d sorts, younger c h i l d r e n who had learned under the l i s t conditions were expected to c l a s s i f y at a l e v e l equal to or better than c h i l d r e n of the same age who had learned under the h i e r a r c h i c a l conditions. I t was a matter of i n t e r e s t to determine whether young c h i l d r e n who had learned under the h i e r a r c h i c a l condition would have developed a s u f f i c i e n t l y f l e x i b l e understanding of the r e l a t i o n s h i p s involved so that they could divide up the c l a s s i f i c a t i o n scheme i n a l l possible ways. I f t h i s were the case, i t was expected that those c h i l d r e n would not be s i g n i f i c a n t l y d i f f e r e n t from the l i s t condition subjects on the three and two category s o r t s . I t was also expected that more learning t r i a l s might help both h i e r a r c h i c a l l y t r a i n e d and l i s t t r a i n e d younger subjects i n t h e i r understanding of the r e l a t i o n s h i p s involved. To examine t h i s p o s s i b i l i t y , within each learning condition, at each age l e v e l , subjects received s i x or ten t r i a l s on the learning task. A control group at each age l e v e l learned the l i s t items and category labels presented i n a random order. At each age l e v e l , i t was expected that these groups would perform more poorly than e i t h e r of the other groups both i n learning and t r a n s f e r behavior. F i n a l l y , no-training c o n t r o l groups, one at each age l e v e l performed only on the t r a n s f e r task. These groups were compared with the t r a i n e d groups i n order to determine the degree to which the t r a i n i n g methods had a l t e r e d the s t r u c t u r a l organization of the s p e c i f i c set of animal terms used. I t was expected that the no-training groups would sort d i f f e r e n t l y from the t r a i n e d groups on the free sorts and that t h e i r f i x e d sorts would be s i g n i f i c a n t l y i n f e r i o r to the trained groups i n t h e i r approxim-ations to the categories set up.in the learning phase. The no-training control groups were also included to allow a compar-ison with the free s o r t i n g r e s u l t s obtained from grades 7 and 3 i n the f i r s t study. The r e s u l t s obtained from that study d i d not show any r e a d i l y i d e n t i f i a b l e group structure for grade 3 c h i l d r e n . This does not n e c e s s a r i l y i n d i c a t e that c h i l d r e n at that age l e v e l were unable to c l a s s i f y the stimulus - . 113 s e t i n some o r d e r l y and r e l i a b l e f a s h i o n , a l b e i t i d i o s y n c r a t i c . However, t h e f a c t t h a t grade 3 c h i l d r e n s o r t e d p i c t o r i a l s t i m u l i r a t h e r t h a n t h e v e r b a l s t i m u l i p r e s e n t e d t o t h e o l d e r age groups ( i n o r d e r t o p r o v i d e a c o m p a r i s o n group f o r t h e k i n d e r g a r t e n - c h i l d r e n who, f o r o b v i o u s r e a s o n s , were u n a b l e t o s o r t v e r b a l s t i m u l i ) l e a d s t o some c o n f o u n d i n g . The q u e s t i o n r e m a i n e d as t o whether a n o r m a t i v e s t r u c t u r e w o u l d have been i d e n t i f i e d ' f o r grade 3 c h i l d r e n i f t h e y had s o r t e d v e r b a l s t i m u l i and whether t h i s w o u l d have been s i m i l a r t o t h e n o r m a t i v e s t r u c t u r e o b t a i n e d f o r o l d e r c h i l d r e n . T h e r e f o r e , t o o b t a i n more i n f o r m a t i o n on t h i s q u e s t i o n , t h e n o - t r a i n i n g c o n t r o l groups were a l s o i n c l u d e d t o a l l o w c o m p a r i s o n s between t h e f i r s t s t u d y and t h e p r e s e n t s t u d y . I n summary, t h e p r e s e n t s t u d y was c o n c e r n e d w i t h t r a i n i n g a new s e m a n t i c s t r u c t u r e and/or m o d i f y i n g t h e e x i s t i n g s e m a n t i c ' s t r u c t u r e o f a f a m i l i a r s e t o f a n i m a l terms a t two d i f f e r e n t age l e v e l s . One s e t o f f a c t o r s t h a t may be m a n i p u l a t e d t o p r o d u c e t h i s change i s t h e e x t e r n a l l e a r n i n g c o n d i -t i o n s , e i t h e r t h r o u g h m a n i p u l a t i o n of- t h e o r g a n i z a t i o n o f t h e s t i m u l u s m a t e r -i a l s o r t h r o u g h i n c r e a s i n g t h e amount o f t i m e and number o f t r i a l s on t h e l e a r n i n g t a s k . A n o t h e r f a c t o r which, may i n f l u e n c e a c q u i s i t i o n o f a s e m a n t i c s t r u c t u r e i s t h e c o g n i t i v e s t a g e o f t h e l e a r n e r as r o u g h l y i n d e x e d by age. The s u c c e s s o f a t r a i n i n g p r o c e d u r e i n p r o d u c i n g change can be examined by r e c a l l and c l u s t e r i n g i n a f r e e r e c a l l t a s k and by p e r f o r m a n c e on a t r a n s f e r t a s k . . The l a t t e r seems more d i a g n o s t i c o f a s t r u c t u r a l change. A d u l t s a c q u i r e and r e c a l l word l i s t s r a p i d l y and e f f i c i e n t l y when t h e l i s t s a r e h i e r a r c h i c a l l y o r g a n i z e d . Whether o r n o t t h i s h o l d s t r u e f o r younger c h i l d r e n i n t h e p r o c e s s o f a c q u i r i n g and- a p p l y i n g m u l t i p l e c l a s s i f i c -a t o r y s k i l l s has n o t been d e m o n s t r a t e d . S i n c e h i e r a r c h i c a l o r g a n i z a t i o n i n v o l v e s t h e a b i l i t y t o combine v a l u e s from two o r more d i m e n s i o n s s i m u l t a n e -o u s l y , t h e h y p o t h e s i s i s advanced t h a t younger c h i l d r e n may f i n d i t e a s i e r t o l e a r n t h e c l a s s i n c l u s i o n r e l a t i o n s h i p s embedded i n a h i e r a r c h i c a l s t r u c t u r e i f t h e s e r e l a t i o n s h i p s a r e p r e s e n t e d s e p a r a t e l y . S e c o n d l y , i t i s 114 hypothesized that an increase i n t r i a l s and time on the learning task w i l l f a c i l i t a t e understanding of the s t r u c t u r a l r e l a t i o n s h i p s between the items. Furthermore, regardless of item r e c a l l and c l u s t e r i n g on the free r e c a l l task, i t i s hypothesized that t r a n s f e r performance w i l l be influenced by the organization of the stimulus items i n the learning task. However, the assumption that c h i l d r e n increase i n cognitive f l e x i b i l i t y throughout the age range under examination, leads to the main hypothesis that older c h i l d r e n should both combine and disembed dimensional values more spontaneously and more accurately than younger c h i l d r e n regardless of o r i g i n a l t r a i n i n g condi-t i o n s . These hypotheses lead to the expectations summarized below. In the m u l t i - t r i a l free r e c a l l task: 1. Method of stimulus presentation w i l l a f f e c t performance at d i f f e r e n t age l e v e l s i n the following ways: a. Item r e c a l l and c l u s t e r i n g under both organized stimulus presenta-tions ( h i e r a r c h i c a l and l i s t conditions) w i l l not be s i g n i f i c a n t l y d i f f e r e n t at the grade seven l e v e l . b. Item r e c a l l and c l u s t e r i n g under the l i s t condition w i l l be superior to item r e c a l l and c l u s t e r i n g under the h i e r a r c h i c a l condition, how-ever, at the grade three l e v e l . c. Subjects learning under organized.stimulus c o n d i t i o n s : w i l l r e c a l l more items than subjects learning under the randomly organized stim-ulus presentation condition at both grade l e v e l s . 2. I f there are differences between grade l e v e l s i n item r e c a l l and c l u s t e r -ing, grade seven ch i l d r e n w i l l r e c a l l more items and c l u s t e r to a greater extent than grade three c h i l d r e n . 3. Degree of i n i t i a l learning w i l l a f f e c t both age groups, under a l l condi-t i o n s . The ten learning t r i a l s condition w i l l produce better item r e c a l l and c l u s t e r i n g than the s i x learning t r i a l s condition. There may also be an i n t e r a c t i o n between age and degree of learning such that more i n i t i a l 115 l e a r n i n g t r i a l s w i l l p r o d u c e g r e a t e r b e n e f i t s i n r e c a l l and c l u s t e r i n g a t t h e grade t h r e e l e v e l . On t h e f r e e s o r t o f t h e t r a n s f e r s o r t i n g t a s k : a. S c a l i n g and c l u s t e r i n g t e c h n i q u e s w i l l r e v e a l more a p p l i c a t i o n o f t h e s t r u c t u r e s l e a r n e d under t h e o r g a n i z e d s t i m u l u s p r e s e n t a t i o n c o n d i t i o n s f o r s u b j e c t s i n t h o s e c o n d i t i o n s a t t h e grade se v e n l e v e l t h a n a t t h e grade t h r e e l e v e l . b. The same e f f e c t s w i l l be o b t a i n e d i n a c o m p a r i s o n between o r g a n i z e d s t i m u l u s p r e s e n t a t i o n c o n d i t i o n s and"random s t i m u l u s p r e s e n t a t i o n c o n d i t i o n s and between t r a i n e d and n o n - t r a i n e d g r o u p s . On t h e f i x e d s o r t s o f t h e t r a n s f e r s o r t i n g t a s k : a. Grade seven c h i l d r e n w i l l group more s t i m u l u s i t e m s c o r r e c t l y on a l l s o r t s t h a n grade t h r e e c h i l d r e n . b. S u b j e c t s l e a r n i n g under t h e o r g a n i z e d s t i m u l u s p r e s e n t a t i o n c o n d i t i o n s w i l l group more i t e m s c o r r e c t l y on a l l s o r t s t h a n s u b j e c t s l e a r n i n g under t h e random s t i m u l u s p r e s e n t a t i o n c o n d i t i o n . c. T r a i n e d s u b j e c t s a t b o t h grade l e v e l s w i l l group more i t e m s c o r r e c t l y t h a n n o n - t r a i n e d s u b j e c t s . d. Grade seven h i e r a r c h i c a l c o n d i t i o n s u b j e c t s w i l l p e r f o r m a t a p p r o x i m -a t e l y t h e same l e v e l o f a c c u r a c y as grade seven l i s t c o n d i t i o n sub-j e c t s . e. Grade t h r e e h i e r a r c h i c a l c o n d i t i o n s u b j e c t s w i l l p e r f o r m more a c c u r -a t e l y on t h e s i x c a t e g o r y s o r t t h a n grade t h r e e l i s t c o n d i t i o n sub-j e c t s , b u t t h e l a t t e r w i l l p e r f o r m a t l e a s t as w e l l o r b e t t e r t h a n t h e fo r m e r on t h e t h r e e and two c a t e g o r y s o r t s . Over a l l s o r t s ( f r e e and f i x e d ) more i t e m s w i l l be c o r r e c t l y g rouped by grade t h r e e s u b j e c t s who l e a r n e d under t h e o r g a n i z e d s t i m u l u s c o n d i t i o n s r e c e i v i n g t e n t r i a l s t h a n by t h o s e r e c e i v i n g o n l y s i x t r i a l s . There were no s p e c i f i c e x p e c t a t i o n s about t h e e f f e c t s o f l e a r n i n g t r i a l s on grade seven s o r t i n g 116 p e r f o r m a n c e . A p r e d i c t i o n c o n c e r n i n g d i f f e r e n c e s i n d i m e n s i o n a l p r e f e r e n c e s a t d i f -f e r e n t age l e v e l s i s a l s o made. S i n c e o l d e r c h i l d r e n show a p r e f e r e n c e f o r a b s t r a c t d i m e n s i o n s and younger c h i l d r e n f o r f u n c t i o n a l d i m e n s i o n s , a. Grade seven l i s t c o n d i t i o n c h i l d r e n w i l l r e c a l l i t e m s b e t t e r when t h e l i s t i s o r g a n i z e d a c c o r d i n g t o a b s t r a c t a t t r i b u t e s t h a n when t h e l i s t i s o r g a n i z e d a c c o r d i n g t o f u n c t i o n a l a t t r i b u t e s and v i c e v e r s a f o r grade t h r e e c h i l d r e n . b. On t h e t r a n s f e r t a s k , grade seven c h i l d r e n w i l l be more l i k e l y t o use t h e a b s t r a c t d i m e n s i o n as a major o r g a n i z e d - i n f r e e s o r t i n g o f t h e s t i m u l u s i t e m s whereas grade t h r e e c h i l d r e n w i l l use t h e f u n c t i o n a l d i m e n s i o n . I t s h o u l d be p o i n t e d o u t t h a t i f t h e s e p r e d i c t i o n s a r e u p h e l d t h e r e i s an a l t e r n a t i v e e x p l a n a t i o n i n terms o f number o f v a l u e s p e r d i m e n s i o n , w h i c h a r e n e c e s s a r i l y c onfounded i n t h e d e s i g n o f t h i s s t u d y . 117 CHAPTER VI METHOD A. Experimental Design A 2 x 3 x 2 f a c t o r i a l design (grade x organization x t r i a l s ) was used i n the learning phase of the experiment. The two l e v e l s of the f i r s t f a c t o r were grade seven and grade three. The three l e v e l s of the second f a c t o r were h i e r a r c h i c a l organization (the functional dimension nested within the abstract dimension), l i s t organization . (a l i s t c h a r a c t e r i z i n g one dimension followed by a l i s t c h a racterizing the other dimension), and random organiza-t i o n . These three types of organization are shown i n Figures 39, 40, and 41. The two l e v e l s of the t h i r d f actor were s i x and ten learning t r i a l s . A schematic representation of the complete design i s presented i n Figure 42. A m u l t i - t r i a l free r e c a l l paradigm was used f o r the t r a i n i n g phase. There was a study period, followed by a r e c a l l period, followed by a b r i e f error-checking period (to provide informative feedback). In the h i e r -a r c h i c a l condition, the hierarchy was presented i n i t s v i s u a l form with con-necting l i n k s i ndicated. Half of the subjects at both grade l e v e l s received s i x learning t r i a l s and the other h a l f ten t r i a l s . In the l i s t condition, h a l f of the subjects at both grade l e v e l s received s i x learning t r i a l s and the other h a l f ten t r i a l s . In the l i s t condition, h a l f of the subjects at both grade l e v e l s learned the l i s t organized according to abstract categories f i r s t and the l i s t organized according to functional categories second. The other h a l f received the l i s t s i n the reverse order. Within each of these subgroups, h a l f of the subjects received three t r i a l s on each l i s t and the other h a l f received f i v e t r i a l s on each l i s t . 118 ANIMALS CAT FOX TIGER RABBIT SQUIRREL DEER DOG SEAL BEAR GERBIL MUSKRAT MOOSE SKUNK RACCOON PANTHER MONKEY BEAVER ELEPHANT Figure 39. Relationships among words i n a hierarchy For presentation purposes, the animal terms were arranged i n a ho r i z o n t a l array under the appropriate superordinate category l a b e l . ANIMALS MEAT EATERS CAT DOG SKUNK FOX SEAL RACCOON TIGER BEAR PANTHER PLANT EATERS RABBIT GERBIL MONKEY SQUIRREL MUSKRAT BEAVER DEER MOOSE ELEPHANT F i g u r e 40a. R e l a t i o n s h i p s among words i n a l i s t o r g a n i z e d a c c o r d i n g t o f o o d h a b i t s 120 ANIMALS FOR PETS CAT DOG SKUNK RABBIT GERBIL MONKEY FOR FUR FOX SEAL - • RACCOON SQUIRREL MUSKRAT BEAVER FOR GAME TIGER BEAR PANTHER DEER MOOSE ELEPHANT F i g u r e 40b. R e l a t i o n s h i p s among words i n a l i s t o r g a n i z e d a c c o r d i n g t o f u n c t i o n s .121, MEAT EATERS MUSKRAT BEAR ELEPHANT ANIMALS PANTHER MONKEY PLANT EATERS FOR GAME BEAVER DEER RACCOON I SKUNK FOX TIGER RABBIT FOR FUR FOR PETS CAT SQUIRREL SEAL GERBIL • MOOSE DOG Figure 41. Random organization of 24 words 122 Grade O r g a n i z a t i o n H i e r a r c h i c a l L i s t Random Degree o f L e a r n i n g 7 6 t r i a l s 10 t r i a l s 6 t r i a l s 10 t r i a l s 6 t r i a l s 10 t r i a l s 3 F i g u r e 42. A s c h e m a t i c r e p r e s e n t a t i o n o f t h e e x p e r i m e n t a l d e s i g n S u b j e c t s i n t h e random c o n d i t i o n were p r e s e n t e d w i t h t h e a n i m a l terms and the c a t e g o r y h e a d i n g s mixed i n a random o r d e r i n an e v e n l y s p a c e d v e r t i c a l l i s t f orm. The o r d e r o f t h e s t i m u l u s i t e m s r e m a i n e d c o n s t a n t a c r o s s t r i a l s . H a l f o f t h e s u b j e c t s r e c e i v e d s i x t r i a l s ; t h e r e m a i n i n g h a l f t e n t r i a l s . Thus t o t a l e x p o s u r e t o t h e s t i m u l u s i t e m s was e q u i v a l e n t a c r o s s c o n d i t i o n s . F o l l o w i n g i n i t i a l l e a r n i n g , s u b j e c t s i n a l l c o n d i t i o n s , and an a d d i -t i o n a l group o f s u b j e c t s from b o t h grade l e v e l s s e r v i n g as a n o - t r a i n i n g c o n t r o l g r o u p , were g i v e n f o u r e n v e l o p e s each c o n t a i n i n g 18 c a r d s . Each c a r d had one a n i m a l t e r m p r i n t e d on i t . Each s u b j e c t was a s k e d t o s o r t the c a r d s i n t h e f i r s t e n v e l o p e i n t o an u n d e s i g n a t e d number o f p i l e s on t h e b a s i s o f s i m i l a r i t y ; i n t h e second e n v e l o p e i n t o s i x g r o u p s ; i n t h e t h i r d e n v e l o p e i n t o t h r e e g r o u p s ; and i n t h e l a s t e n v e l o p e i n t o two g r o u p s . B. S u b j e c t s One hun d r e d and f o r t y c h i l d r e n from a n o t h e r e l e m e n t a r y s c h o o l i n Vancouver, B.C. s e r v e d as s u b j e c t s i n t h e s t u d y . The s u b j e c t s were t h o s e c h i l d r e n whose p a r e n t s s i g n e d t h e p a r e n t a l c o n s e n t forms. Seventy sub-j e c t s were drawn from each grade l e v e l . Ages ran g e d a t t h e grade s e v e n l e v e l f rom 12 y e a r s 4 months t o 13 y e a r s 5 months w i t h a mean age o f 12 y e a r s 11 months. A t t h e grade t h r e e l e v e l ages ra n g e d from 8 y e a r s t o 9 y e a r s 3 months w i t h a mean age o f 8 y e a r s 10 months. W i t h i n each age group s u b j e c t s were randomly a s s i g n e d t o t h e t r a i n i n g c o n d i t i o n s and t o t h e no-t r a i n i n g c o n t r o l g roup w i t h o u t r e g a r d t o s e x . There were 20 s u b j e c t s i n each t r a i n i n g c o n d i t i o n and 10 s u b j e c t s i n t h e n o - t r a i n i n g group a t each age l e v e l . C. S t i m u l u s Items The e i g h t e e n a n i m a l terms and t h e s i x c a t e g o r y h e a d i n g s f o r t h e l e a r n i n g t a s k f o r t h e d i f f e r e n t c o n d i t i o n s were t h o s e i n d i c a t e d i n F i g u r e s 39, 40, and 41. G i v e n t h e e x p r e s s e d i n t e r e s t i n f u n c t i o n a l and 124 -a b s t r a c t f e a t u r e s , o r a t t r i b u t e s , t h e p a r t i c u l a r c a t e g o r y h e a d i n g s and t h e a n i m a l terms s e l e c t e d were more o r l e s s f o r c e d by t h e need t o g e n e r a t e a h i e r a r c h i c a l s t r u c t u r e , by t h e c o m p o s i t i o n o f t h e a n i m a l kingdom i t s e l f , and by t h e need t o use f a m i l i a r a n i m a l s . F o r example, t h e f o o d f u n c t i o n o f a n i m a l s c o u l d n o t be i n c l u d e d because humans r a r e l y e a t c a r n i v o r e s . S i m i l a r l y , t h o s e a n i m a l s w h i c h p e r f o r m work f u n c t i o n s a r e g e n e r a l l y h e r b i v o r o u s . The same 18 a n i m a l s were used i n t h e s o r t i n g t a s k . Items f o r t h e warm-up t a s k were drawn from t h e p l a n t domain. The c a t e g o r y h e a d i n g s and i t e m s were as f o l l o w s : f l o w e r s ( d a i s y , r o s e ) , v e g e t a b l e s ( p o t a t o e , p e a ) , and t r e e s (oak, m a p l e ) . F o r t h e h i e r a r c h i c a l c o n d i t i o n , t h e s e i t e m s were a r r a n g e d i n a h i e r a r c h y h a v i n g p l a n t s a t t h e topmost node, c a t e g o r y h e a d i n g s ( f l o w e r s , v e g e t a b l e s , and t r e e s ) h o r i z o n t a l l y d i s t r i b u t e d below and s p e c i f i c i t e m s h o r i z o n t a l l y a r r a n g e d a t t h e l o w e s t l e v e l o f t h e h i e r a r c h y , b e n e a t h t h e c a t e g o r y h e a d i n g s . F o r t h e l i s t c o n d i t i o n , t h e i t e m s were grouped a c c o r d i n g t o c a t e g o r i e s i n a v e r t i c a l l i s t . F o r t h e random c o n d i t i o n , t h e i t e m s and c a t e g o r i e s were p r e s e n t e d i n a v e r t i c a l random l i s t . D. A p p a r a t u s and P r o c e d u r e The s u b j e c t s were t e s t e d i n groups o f f i v e . Each s u b j e c t s a t a t a t a b l e w i t h i n a s m a l l c u b i c l e , a r r a n g e d so t h a t he c o u l d see t h e e x p e r i -menter b u t n o t t h e o t h e r members o f h i s group. I m m e d i a t e l y p r e c e d i n g t h e main l e a r n i n g t a s k , a l l s u b j e c t s r e c e i v e d two complete t r i a l s on t h e warm-up t a s k . S u b j e c t s i n t h e h i e r a r c h i c a l c o n d i t i o n r e c e i v e d t h e p l a n t h i e r a r c h y ; s u b j e c t s i n t h e l i s t c o n d i t i o n were p r e s e n t e d w i t h t h e p l a n t i t e m s a r r a n g e d i n a l i s t w i t h c a t e g o r y h e a d i n g s ; and s u b j e c t s i n t h e random c o n d i t i o n r e c e i v e d t h e p l a n t i t e m s randomly a r r a n g e d . S u b j e c t s were shown t h e complete s e t o f s t i m u l u s i t e m s . A l l d i r e c t i o n s were p r e s e n t e d by t a p e - r e c o r d e r . A complete t e x t o f t h e i n s t r u c t i o n s f o r each c o n d i t i o n i s p r e s e n t e d i n A p p e n d i x G. Under t h e c o n d i t i o n s o f 125 •• o r g a n i z e d p r e s e n t a t i o n ( h i e r a r e h i e a l and l i s t ) , t h e method o f o r g a n i z a t i o n was e x p l a i n e d t o t h e s u b j e c t s and t h e i t e m s r e a d a l o u d . F o r t h e random c o n d i t i o n , t h e i t e m s were s i m p l y , r e a d o v e r . I n a l l c o n d i t i o n s , s u b j e c t s were t o l d t h a t t h e i r t a s k was t o s t u d y t h e whole l i s t and t r y t o remember i t . The s u b j e c t s were a l l o w e d one minute s t u d y t i m e . F o l l o w i n g t h i s , t h e y were i n s t r u c t e d t o c o u n t backwards from a randomly s e l e c t e d 2 - d i g i t number f o r 20 seco n d s . T h i s p r o c e d u r e was d e s i g n e d t o e n s u r e t h a t i n f o r m a t i o n t o be r e c a l l e d had been s t o r e d i n l o n g - t e r m r a t h e r t h a n s h o r t -t e r m memory ( c f . N e l s o n and S m i t h , 1973). The s u b j e c t s were t h e n i n s t r u c t e d t o t r y t o r e c a l l as many p l a n t s as p o s s i b l e . The s u b j e c t s were a l l o w e d one m i n u t e t o w r i t e t h e i r r e c a l l r e s p o n s e s ( C o l e e t a l . , 1971, showed t h a t w r i t t e n r e c a l l was s u p e r i o r t o v e r b a l r e c a l l even i n grade t h r e e c h i l d r e n . ) The s u b j e c t s were i n s t r u c t e d n o t t o be o v e r l y c o n c e r n e d w i t h s p e l l i n g a c c u r a c y . F o l l o w i n g t h e r e c a l l p e r i o d , t h e l i s t i t e m s were p r e s e n t e d a g a i n i n p r e p a r a t i o n f o r t h e n e x t t r i a l . B e f o r e t h e o n s e t o f t h e n e x t l e a r n i n g t r i a l , t h e s u b j e c t s were g i v e n 30 seconds i n w h i c h t h e y were t o check o v e r t h e i r w r i t t e n r e s p o n s e s i n o r d e r t o d e t e r m i n e e r r o r s o f o m i s s i o n o r i n t r u s i o n . They were t h e n r e q u e s t e d t o t u r n t h e page o f t h e i r b o o k l e t and s t u d y t h e l i s t a g a i n . A f t e r t h e two warm-up t r i a l s , t h e a n i m a l l i s t s were p r e s e n t e d . The same p r o c e d u r e o u t l i n e d above was f o l -lowed e x c e p t t h a t s u b j e c t s were g i v e n two m i n u t e s t o r e c o r d t h e i r r e s p o n s e s . (A p i l o t s t u d y i n d i c a t e d t h a t two m i n u t e s was a s u f f i c i e n t amount o f t i m e even f o r s u b j e c t s a t t h e younger age l e v e l . ) The s u b j e c t s r e c e i v e d e i t h e r s i x o r t e n t r i a l s . A t t h e end o f t h e l e a r n i n g t r i a l s , t h e s u b j e c t s were g i v e n f o u r e n v e l o p e s and t o l d t h a t t h e y were g o i n g t o do a d i f f e r e n t , b u t r e l a t e d , t a s k . They were i n s t r u c t e d t o t a k e o u t t h e c a r d s from t h e f i r s t e n v e l o p e , t o s p r e a d them o u t i n f r o n t o f them and t o l o o k them o v e r . They were t h e n t o l d t o p u t them i n t o p i l e s , p u t t i n g t o g e t h e r i n a p i l e t h o s e a n i m a l s 126 . t h a t a p p e a r e d t o them t o be a l i k e , t o b e l o n g t o g e t h e r . I n s t r u c t i o n s f o r t h e f r e e s o r t p a r a l l e l e d t h o s e used i n t h e s o r t i n g t a s k i n Study 1. A f t e r t h e y had s o r t e d t h e c a r d s t o t h e i r s a t i s f a c t i o n , t h e y were d i r e c t e d t o t a k e o u t as many e l a s t i c bands as needed from t h e e n v e l o p e , p l a c e a band arou n d each p i l e and r e t u r n i t t o t h e e n v e l o p e . T h i s p r o c e d u r e was f o l l o w e d f o r t h e second s o r t , i n w h i c h t h e y were r e q u i r e d t o form s i x p i l e s , f o r t h e t h r e e p i l e s o r t , and f o r t h e f i n a l two p i l e s o r t . I n s t r u c t i o n s t o t h i n k c a r e f u l l y and t r y t o use what th'ey had j u s t l e a r n e d p r e c e d e d each s o r t . The s u b j e c t s i n t h e n o - t r a i n i n g c o n t r o l group were s i m p l y t o l d t o t h i n k c a r e f u l l y and t o s o r t t o g e t h e r t h o s e a n i m a l s w h i c h t h e y t h o u g h t b e l o n g e d t o g e t h e r . 127-CHAPTER V I I RESULTS A. L e a r n i n g Task No s i g n i f i c a n t e f f e c t s a t t r i b u t a b l e t o sex d i f f e r e n c e s were f o u n d i n t h i s s t u d y . C o n s e q u e n t l y , t h i s f a c t o r was c o l l a p s e d f o r t h e p u r p o s e s o f t h e a n a l y s e s p r e s e n t e d below. 1. Item R e c a l l The mean number o f i t e m s r e c a l l e d on each t r i a l and t h e s t a n d a r d d e v i a t i o n s f o r t h o s e groups w h i c h r e c e i v e d s i x l e a r n i n g t r i a l s (Dl) a r e p r e s e n t e d i n T a b l e V I I I f o r t h e t h r e e s t i m u l u s p r e s e n t a t i o n c o n d i t i o n s . Cochrane's t e s t f o r d e t e c t i n g d e p a r t u r e s from homogeneity o f v a r i a n c e was n o t s i g n i f i c a n t (C [60,9] = .072,. p < .05) . The mean number o f i t e m s r e c a l l e d on each t r i a l and t h e s t a n d a r d d e v i a t i o n s f o r t h o s e groups r e c e i v i n g 10 t r i a l s (D2) a r e p r e s e n t e d i n T a b l e IX f o r t h e t h r e e s t i m u l u s p r e s e n t a t i o n c o n d i t i o n s . Cochrane's t e s t was, a g a i n , n o t s i g n i f i c a n t (C [60,9] = .053, p < . 0 5 ) . The mean number o f i t e m s r e c a l l e d a c c o r d i n g t o grade and degree o f < l e a r n i n g a r e p r e s e n t e d i n F i g u r e 43. The d e s i g n o f t h e s t u d y d i d n o t p e r m i t one o v e r a l l a n a l y s i s o f t h e d a t a . F o r t h o s e s u b j e c t s l e a r n i n g under t h e l i s t c o n d i t i o n w i t h s i x t r i a l s , , t h e l i s t o r g a n i z a t i o n changed on t h e f o u r t h t r i a l , whereas f o r l i s t c o n d i t i o n s u b j e c t s r e c e i v i n g 10 t r i a l s , l i s t o r g a n i z a t i o n changed on t h e s i x t h t r i a l . T h e r e f o r e , t h e groups were n o t comparable f o l l o w i n g t h e f i r s t t h r e e t r i a l s and p r e c e d i n g t h e f i n a l t r i a l . Thus, i t was n e c e s s a r y t o p e r f o r m s e v e r a l s e p a r a t e d a t a a n a l y s e s i n o r d e r t o t e s t t h e s t a t i s t i c a l h y p o t h e s e s . 128 Table VITI Mean Number of Items Recalled and Standard Deviations f o r each Educational Level over Six T r i a l s as a Function of Experimental Conditions T r i a l s 1 2 3 Conditions HC LC RC HC LC RC HC LC RC Grade 7 M 13.3 12.8 10.0 15.9 15.7 12.2 17.7 16.7 12.3 S 1.83 2.39 3.20 1.91 2.50 4.32 0.68 1.49 4.83 Grade 3 M 9.5 7.5 7.5 12.0 10.0 9.7 11.5 . 11.3 10.4 S 2.01 3.41 2.17 3.43 3.65 2.91 3.44 3.74 2.27 T r i a l s 4 >» 5' 6' Conditions HC LC . RC HC LC RC HC LC RC Grade 7 M 17.4 15.6 14.0 17.9 16.8 15.3 17.9 16.4 15.6 S 1.90 2.22 3.56 0.32 1.03 1.83 0.32 2.27 2.12 Grade 3 M 12.6 7.5 12.7 12.6 11.1 11.1 12.8 11.7 11.6 S 4.35 3.75 4.08 3.86 3.51 3,67 4.52 2.91 3.10 T a b l e IX Mean Number o f Items R e c a l l e d and S t a n d a r d D e v i a t i o n s f o r E a c h _ E d u c a t i o n a l L e v e l o v e r Ten T r i a l s as a F u n c t i o n o f E x p e r i m e n t a l C o n d i t i o n s T r i a l s C o n d i t i o n s HC LC RC HC LC RC HC LC RC HC LC RC HC LC RC Grade 7 M 12.9 10.9 10.8 S 3.11 3.25 2.53 Grade 3 M 9.3 9.4 7.2 S 1.83 2.46 2.10 14.9 14.4 14.0 3.03 2.07 2.49 12.3 11.0 10.1 3.13 2.91 2.51 16.0 15.9 16.2 1.70 1.66 2.35 12.6 12.7. 11.6 2.95 3.34 2.32 16.9 16.3 15.5 1.29 2.00 2.27 12.7 13.0 12.0 2.26 3.30 3.16 16.1 17.5 15.7 2.42 0.71 2.41 12.3 .13.8 11.6 3.40 3.97 3.60 T r i a l s 10 C o n d i t i o n s HC LC RC HC LC RC HC LC RC HC LC RC HC LC RD Grade 7 M 17.3 14.4 16.8 S 1.06 2.95 1.32 Grade 3 M 13.5 10.8 12.0 S - 2.27 4.08 3.62 16.4 15.5 17.0 3.13 2.37 1.49 13.4 12.6 12.2 1.84 3.72 4.10 17.1 16.1 16.5 2.18 2.18 1.84 14.1 12.3 12.5. 2.73 5.06 3.27 16.8 16.6 16.1 3.16 2.07 2.81 13.3 11.7 12.6 3.65 4.88 3.20 16.8 17.4 17.3 1.81 0.97 0.82 14.1 13.1 13.0 2.60 4.77 3.37 18 , ta 5 S 4 . 3 0 4 , , , , , , , - • — • 1 2 3 4 5 6 7 8 9 10 T r i a l s F i g u r e 43. Mean number o f i t e m s r e c a l l e d a c c o r d i n g t o grade and degree o f l e a r n i n g 13.1 An o v e r a l l 2 (grades) x- 3 ( c o n d i t i o n s ) x 2 (degrees o f l e a r n i n g ) o r t h o g o n a l a n a l y s i s o f v a r i a n c e was p e r f o r m e d on t h e f i r s t t h r e e t r i a l s . A s o u r c e t a b l e f o r t h i s a n a l y s i s i s p r e s e n t e d i n A p p e n d i x H. The o v e r a l l a l p h a l e v e l was s e t a t .10. Each h y p o t h e s i s was t e s t e d a t t h e .01 l e v e l . There was a s i g n i f i c a n t main e f f e c t due t o g r a d e , F_ (1,108) = 68.57, p < .0001.. Grade 7 c h i l d r e n r e c a l l e d more i t e m s on t h e f i r s t t h r e e t r i a l s t h a n grade 3 c h i l d r e n . As e x p e c t e d , b o t h grade 7 and grade 3 c h i l d r e n l e a r n i n g under o r g a n i z e d s t i m u l u s p r e s e n t a t i o n c o n d i t i o n s ( h i e r a r c h i c a l c o n d i t i o n (HC) and l i s t c o n d i t i o n . (LC)) p e r f o r m e d s i g n i f i c a n t l y b e t t e r t h a n t h o s e c h i l d r e n l e a r n i n g under t h e random s t i m u l u s p r e s e n t a t i o n c o n d i t i o n (RC), F_ (1,108) = 13.60, p < .0004. The two o r g a n i z e d s t i m u l u s c o n d i t i o n s d i d n o t d i f f e r s i g n i f i c a n t l y ; n e i t h e r d i d t h e i n t e r a c t i o n s between grade and l e a r n i n g c o n d i t i o n s . I t was e x p e c t e d t h a t grade 7 c h i l d r e n i n t h e o r g a n i z e d s t i m -u l u s p r e s e n t a t i o n c o n d i t i o n s w o u l d p e r f o r m a t an e q u i v a l e n t l e v e l . How-e v e r , t h e same r e l a t i o n s h i p appears t o h o l d a l s o a t t h e grade 3 l e v e l . T h i s i n d i c a t e s t h a t t h e l i s t c o n d i t i o n d i d n o t f a c i l i t a t e l e a r n i n g t o a g r e a t e r degree t h a n t h e h i e r a r c h i c a l c o n d i t i o n d u r i n g t h e f i r s t t h r e e t r i a l s . B o t h c o n d i t i o n s were e q u i v a l e n t and s u p e r i o r t o t h e random c o n d i -t i o n . The main e f f e c t due t o degree o f l e a r n i n g and t h e i n t e r a c t i o n s o f g r a d e , c o n d i t i o n , and degree o f l e a r n i n g were n o t s i g n i f i c a n t . T h i s i s t o be e x p e c t e d s i n c e degree o f l e a r n i n g d i d n o t d i f f e r a c r o s s s u b j e c t s on t h e f i r s t t h r e e t r i a l s . There were s i g n i f i c a n t l i n e a r and q u a d r a t i c e f f e c t s a c r o s s t h e f i r s t t h r e e t r i a l s , Fs (1,108) = 257,78, 23.12, £ <-0001 r e s p e c t i v e l y . These t r e n d s a r e g r a p h i c a l l y d e m o n s t r a t e d i n F i g u r e 43. F i g u r e 43 shows t h a t a l t h o u g h number o f i t e m s r e c a l l e d i n c r e a s e s a c r o s s t r i a l s a t each grade l e v e l , a s y m p t o t i c l e v e l i s a t t a i n e d a t a p p r o x i m a t e l y t h e t h i r d t r i a l . The i n t e r a c t i o n s between l i n e a r and q u a d r a t i c e f f e c t s and g r a d e , c o n d i t i o n s and 132., d egree o f l e a r n i n g were n o t s i g n i f i c a n t . A second a n a l y s i s was p e rformed.on t h e l a s t l e a r n i n g t r i a l f o r a l l s u b j e c t s . A s o u r c e t a b l e f o r t h i s 2 (grades) x 3 ( c o n d i t i o n s ) x 2 (degrees o f l e a r n i n g ) a n a l y s i s o f v a r i a n c e i s p r e s e n t e d i n A p p e n d i x I. On t h e l a s t t r i a l , g rade 7 c h i l d r e n s t i l l r e c a l l e d s i g n i f i c a n t l y more i t e m s t h a n grade 3 c h i l d r e n , F_ (1,108) = 67.04, p < .0001.. However, th e d i f f e r e n c e between t h e o r g a n i z e d t r e a t m e n t c o n d i t i o n s and t h e random c o n d i t i o n was no l o n g e r s i g n i f -i c a n t . Thus, by t h e l a s t t r i a l , a l l s u b j e c t s w i t h i n each.grade l e v e l , r e g a r d l e s s o f t h e i n i t i a l b e n e f i t s p r o v i d e d by e x t e r n a l l y o r g a n i z e d s t i m u l u s p r e s e n t a t i o n c o n d i t i o n s , were comparable i n r e c a l l p e r f o r m a n c e . I t was e x p e c t e d t h a t t h o s e s u b j e c t s r e c e i v i n g 10 l e a r n i n g t r i a l s (D2) w o u l d r e c a l l more i t e m s t h a n t h o s e s u b j e c t s r e c e i v i n g 6 t r i a l s ( D l ) , and t h a t younger c h i l d r e n w o u l d b e n e f i t t o a g r e a t e r e x t e n t t h a n o l d e r c h i l d r e n f rom a d d i t i o n a l l e a r n i n g t r i a l s . The d a t a appear t o g i v e d i r e c t i o n a l sup-p o r t f o r t h e s e p r e d i c t i o n s . However, t h e main e f f e c t f o r degree o f l e a r n -i n g , a l t h o u g h a p p r o a c h i n g , d i d n o t r e a c h t h e r e q u i r e d l e v e l o f s i g n i f i c a n c e , F_ (1,108) = 3.46, p_ <£. .066; and t h e grade by degree o f l e a r n i n g i n t e r a c t i o n was a l s o n o t s i g n i f i c a n t . F i g u r e 43 h e l p s t o e x p l i c a t e t h i s f i n d i n g . I t a ppears t h a t mean a s y m p t o t i c l e v e l s f o r each grade were a t t a i n e d on t h e e a r l y t r i a l s and t h a t a d d i t i o n a l l e a r n i n g t r i a l s d i d n o t s e r v e t o i n c r e a s e t h e number o f i t e m s r e c a l l e d . M o t i v a t i o n a l f a c t o r s and t h e a p p a r e n t e a s i -ness o f t h e t a s k w o u l d seem t o a c c o u n t f o r t h i s . A l l t h e r e m a i n i n g e f f e c t s due t o i n t e r a c t i o n s between and among th e v a r i a b l e s were f o u n d t o be non-s i g n i f i c a n t . Two a d d i t i o n a l a n a l y s e s p r o v i d e d a check on i t e m r e c a l l t h r o u g h o u t th e c o u r s e o f l e a r n i n g . Two 2 (grades) x 3 ( c o n d i t i o n s ) o r t h o g o n a l a n a l -y s e s o f v a r i a n c e were p e r f o r m e d ; one on t h e d a t a from t h e s u b j e c t s who r e c e i v e d 6 l e a r n i n g t r i a l s , and one on t h e d a t a from t h e s u b j e c t s who r e c e i v e d 10 l e a r n i n g t r i a l s . Source t a b l e s f o r t h e s e a n a l y s e s a r e p r e s e n t e d i n Appendix J . The r e s u l t s obtained were mainly i n agreement. Both analyses indi c a t e that grade 7 chi l d r e n r e c a l l e d more- items than grade 3 c h i l d r e n , Fs (1,54) = 48.42, 34,80, p_ < .0001. For the low degree of learning condition (6 t r i a l s ) organized stimulus conditions were superior to the random stimulus condition, F_ (1,54) = 5.82, p.< .019. For the high degree of learning condi-t i o n , t h i s s u p e r i o r i t y no longer holds. Therefore, over 10 t r i a l s , item r e c a l l f o r a l l stimulus presentation conditions reached the same l e v e l of performance. The inte r a c t i o n s f o r grade and conditions were non s i g n i f i c a n t with e i t h e r degree of learning. S i g n i f i c a n t l i n e a r and quadratic e f f e c t s f o r t r i a l s were obtained f o r both high and low degrees of learning, Fs (1,54) = 105.57, 121.54., p_ ^  .0001 for l i n e a r e f f e c t s and Fs (1,54) = 20.97, 82.44., p <• .0001 for quadratic e f f e c t s . This i s i n agreement with the r e s u l t s from the analysis of the f i r s t three t r i a l s . . • In addition, r e s i d u a l orthogonal e f f e c t s f o r t r i a l s were s i g n i f i c a n t f o r both degrees of learning, F (1,162) = 7.21, p_ < .01 and F_ (1,3.78) = 17.90, p_ < .01. Although not of any p a r t i c u l a r i n t e r e s t i n t h i s study, t h i s appears to r e s u l t p r i m a r i l y from the temporary drop i n number of items r e c a l l e d following the change i n l i s t organization under the l i s t condition. Consequently, the in t e r a c t i o n s between r e s i d u a l orthogonal trends and l i s t versus h i e r a r c h i c a l stimulus presentation conditions were s i g n i f i c a n t f o r both degrees of learning and between r e s i d u a l trends f o r t r i a l s and l i s t and h i e r a r c h i c a l versus random stimulus presentation condi-tions f o r the low degree of learning condition. A l l further i n t e r a c t i o n s between t r i a l s , grades and conditions were n o n s i g n i f i c a n t . Two f i n a l analyses examined item r e c a l l within the l i s t stimulus presentation condition. There were two reasons f o r these analyses. The f i r s t was to t e s t f o r the desired n u l l e f f e c t s of order of l i s t presentation. Since the two types of l i s t s were counterbalanced f o r order across subjects, i t was necessary to determine whether item r e c a l l on a s p e c i f i c l i s t d i f f e r e d 134. depending en whether that l i s t was presented f i r s t or second, following a l i s t organized according to d i f f e r e n t dimensions. The other reasons f o r these analyses was to examine more c l o s e l y grade performance under the p a r t i c u l a r types of l i s t organization. Accordingly, a 2 (grades) x 2 (orders) x 2 ( l i s t organizations) analysis of variance was performed on each degree of learning condition. Appendix K contains source tables f o r these analyses. As these tables i n d i c a t e , order was a nonsignificant factor i n item r e c a l l under both degrees of learning. The grade e f f e c t was again obtained, F (1,16)'= 28.08, p < .10 for Dl.; F (1,16) = 7.73, p<c.05 for D2. The e f f e c t of l i s t organization was not s i g n i f i c a n t f or the high degree of learning condition. For the low degree of learning condition, t h i s e f f e c t approaches s i g n i f i c a n c e , F_ (1,16) = 5.27, p < .05. I t appears that item r e c a l l under the l i s t organized according to functional dimensions was some-what superior to that under the l i s t organized according to abstract dimen-sions for both grades 7 and 3. As i n d i c a t e d previously, a c l e a r t e s t of whether one type of l i s t organization would b e n e f i t learning was not possible since l i s t organization was confounded with number of values per dimension. In the functional l i s t the items were organized according to three values of the dimension, whereas i n the abstract l i s t the same items were organized according to only two values. Therefore, subdividing the same l i s t i nto three rather than two parts may be p a r t l y responsible for the tendency to produce superior item r e c a l l on the functional l i s t rather than any e f f e c t which stems from the types of dimensions used i n the study. The i n t e r -actions between grade and l i s t organization were not s i g n i f i c a n t under both degrees of learning. Item r e c a l l increased s i g n i f i c a n t l y across t r i a l s within each type of l i s t organization, F (4,64) = 23.10, p <£. .01 f o r D l ; F (8,128) = 15.46, p.< .01 for D2. The i n t e r a c t i o n s between t r i a l s , grade and order across both degrees of learning were nonsignificant with the 135' exception of the order by t r i a l s interactions for the high degree of learning group. It appears that for the f i r s t two t r i a l s on both functional and abstract l i s t s item recall was higher when these l i s t s were presented second. This effect did not hold for the f i n a l three t r i a l s in the series. Overall, grade 7 children recalled more items than grade 3 children. The effects of organized treatment conditions produced superior recall at both grade levels during the early learning t r i a l s in comparison with the random stimulus presentation condition. With additional t r i a l s , subjects in the random stimulus presentation condition approximated the same level of item recall as those subjects in the organized stimulus presentation condi-tions. Differential recall effects were not obtained between hierarchical and l i s t organizations. Due to attainment of early asymptotic performance levels, degree of learning did not produce significant differences between the 6 and 10 learning t r i a l s conditions. •2. Clustering in Recall Following Anglin (1970), clustering scores were obtained by calculating the ratio of number of repetitions on a t r i a l to the total possible number of repetitions on that t r i a l . A repetition occurs whenever an item from one category i s followed by another item from the same category. Thus, i f a subject recalled 7 items from three categories a,b, and c in the following order: aabcbac, he received a clustering score of 1/4 = .25; whereas i f a subject recalled the same 7 items in the order aaabbcc, he received a clustering score 4/4 = 1.0. This measure has the advantage of being.roughly independent of number of items recalled. On the assumption of random arrangement of items on a given t r i a l , the expected value of this s t a t i s t i c is constant and equal to 1/k where k is the number of categories recalled i f the same number of items per category i s recalled. Violations of this assumption inflate the expected value of the s t a t i s t i c slightly, but not enough to make any practical difference. •136 In the present study number of categories varied according to stimulus organization. In the h i e r a r c h i c a l condition, items were presented i n s i x categories; i n the l i s t condition, under the functional organization there were three categories, and two categories under the abstract organization. As a r e s u l t of t h i s manipulation, the expected value f o r c l u s t e r i n g varied. For example, the expected value for c l u s t e r i n g was .167 for the h i e r a r c h i c a l condition, .333 f o r the functional l i s t condition, and .50 for the abstract l i s t condition. In order to equate the u n i t of measurement across d i f f e r e n t stimulus organizations, the deviation of each subject's c l u s t e r i n g score on each t r i a l from the expected value was c a l c u l a t e d . These deviations were then divided by the maximum possible deviation. Thus, i f a subject i n the h i e r a r c h i c a l condition had a p e r f e c t c l u s t e r i n g score (1.00) , he would r e t a i n t h i s score with the new c a l c u l a t i o n , but i f he had a c l u s t e r i n g score of .167 (the expected value) he would receive a c l u s t e r i n g score of 0.00. This new c a l c u l a t i o n allows comparison across c l u s t e r i n g scores based on d i f f e r i n g numbers of categories. The observed c e l l means and standard deviations f o r c l u s t e r i n g scores for the f i r s t three t r i a l s and. the l a s t t r i a l as a function of grade, stimulus organization and degree of learning are presented i n Table X. In order to s t a b i l i z e variances of the derived c l u s t e r measure (y), an a r c s i n transformation (2 arcsinJy) was applied to the obtained scores. A 2 (grades) x 2 (conditions) x 2 (degrees of learning) orthogonal analysis of variance was performed on the transformed scores f o r the f i r s t three t r i a l s . A source table f o r t h i s analysis i s presented i n Appendix L. The superio-i t y of grade 7 over grade 3 approaches s i g n i f i c a n c e , but t h i s e f f e c t i s not as large as that obtained on the f i r s t three t r i a l s f o r item r e c a l l , F_ (1,72).= 4.64, p .035. There i s s i g n i f i c a n t l y more c l u s t e r i n g for l i s t condition subjects at both grade l e v e l s i n comparison with the h i e r a r c h i c a l condition, F_ (1,72) = 7.68, p .^ .007. I t was expected that c l u s t e r i n g at Table X Observed C e l l means and Standard Deviations f o r C l u s t e r i n g Scores as a Function of T r i a l s , Grade, Stimulus Organization and Degree of Learning T r i a l s 1 2 3 Last M .667 .722 .848 .825 Dl S .285 .279 .218 .252 HC . M .684 .634 .735 .912 D2 . „ , _ S .294 .220 .303 .173 Grade 7 • : M .711 .673 .707 .549 T n S • '- - .299 .438 ' .394 ' .460 M .884 .921 .985 .870 D2 S .191 .145 .049 .211 M .418 .531 .496 .455 Dl S .309 .269 .309 .333 NC M .701 .597 .596 .428 D2 „ n ^ S .316 .307 .268 .341 Grade 3 ; — — M .767 .830 .852 .561 Dl m . S .342 ..267 .281 ' .418 M .687 .672 .486 . .565 D2 S .381 .411 .442 .396 ;138 t h e grade 3 l e v e l w o u l d be s u p e r i o r f o r l i s t c o n d i t i o n s u b j e c t s . Appar-e n t l y , t h i s e f f e c t h o l d s a c r o s s b o t h g r a d e s , s i n c e t h e i n t e r a c t i o n between gr a d e s and c o n d i t i o n s was n o n s i g n i f i c a n t . As e x p e c t e d , t h e main e f f e c t o f degree o f l e a r n i n g , and t h e i n t e r a c t i o n s between degree o f l e a r n i n g and g r a d e , and degree o f l e a r n i n g and c o n d i t i o n s were n o n s i g n i f i c a n t . There was a s i g n i f i c a n t t r i p l e i n t e r a c t i o n between g r a d e , c o n d i t i o n s and degree o f l e a r n -i n g , F (1,72) = 8 . 6 6 , £ < .004. W h i l e t h i s e f f e c t i s o f l i t t l e i n t e r e s t i n t h e p r e s e n t a n a l y s i s , i t i s w o r t h m e n t i o n i n g t h a t i t appears t o stem from t h e p r e s e n c e o f t h r e e grade 3 s u b j e c t s i n t h e h i g h degree o f l e a r n i n g l i s t c o n d i t i o n who c l u s t e r e d a t a n e a r z e r o l e v e l . There i s no r e a d y e x p l a n a t i o n f o r t h i s low l e v e l o f c l u s t e r i n g i n t h e s e s u b j e c t s , b u t s i n c e l i s t c o n d i t i o n o v e r a l l p r o d u c e d s u p e r i o r c l u s t e r i n g and degree o f l e a r n i n g was n o n s i g n i f i c -a n t , a c c i d e n t a l i d i o s y n c r a c i e s appear t o be i n v o l v e d . I n agreement w i t h t h e i t e m r e c a l l r e s u l t s , t h e r e were s i g n i f i c a n t l i n e a r and q u a d r a t i c main e f f e c t s f o r t r i a l s , F_ (1,72) = 37.40, p -c .0001 f o r l i n e a r e f f e c t s and F_ (1,72) = 19.10, JD < .0001 f o r q u a d r a t i c e f f e c t s . C l u s t e r i n g s c o r e s i n c r e a s e d i n a n e g a t i v e l y a c c e l e r a t e d f a s h i o n a c r o s s t h e f i r s t t h r e e t r i a l s . The r e m a i n i n g e f f e c t s due t o i n t e r a c t i o n s between and among t h e v a r i a b l e s were n o n s i g n i f i c a n t . A second a n a l y s i s was p e r f o r m e d on t h e t r a n s f o r m e d s c o r e s f o r t h e l a s t l e a r n i n g t r i a l . A s o u r c e t a b l e f o r t h i s 2 (grades) x 2 ( c o n d i t i o n s ) x 2 (degrees o f l e a r n i n g ) a n a l y s i s o f v a r i a n c e i s p r e s e n t e d i n Ap p e n d i x M. By t h e l a s t t r i a l , c l u s t e r i n g a t t h e grade 7 l e v e l was s u p e r i o r t o grade 3 c l u s t e r i n g , F (1,72) = 14.-99, p < .0003. T h e r e f o r e , t h e d i f f e r e n c e i n c l u s t e r i n g between t h e two gr a d e s i n c r e a s e d a c r o s s t r i a l s . Grade 7 c h i l -d r e n a p p e a r e d t o be making use o f t h e e x t e r n a l l y imposed o r g a n i z a t i o n t o a g r e a t e r e x t e n t t h a n t h e younger c h i l d r e n . The d i f f e r e n c e i n c l u s t e r i n g s c o r e s between c o n d i t i o n s was no l o n g e r s i g n i f i c a n t . B o t h h i e r a r c h i c a l and l i s t c o n d i t i o n s u b j e c t s a t each grade l e v e l c l u s t e r e d e q u i v a l e n t l y • 139. The r e m a i n i n g e f f e c t s were n o n s i g n i f i c a n t . O v e r a l l , t h e r e s u l t s from t h e c l u s t e r i n g a n a l y s e s i n d i c a t e ' t h a t by" t h e l a s t t r i a l , grade 7 c h i l d r e n c l u s t e r e d more t h a n grade 3 c h i l d r e n . A l t h o u g h c l u s t e r i n g was s u p e r i o r under t h e l i s t c o n d i t i o n f o r b o t h grade l e v e l s i n t h e f i r s t t h r e e t r i a l s , t h e s u p e r i o r i t y o f t h e l i s t c o n d i t i o n o v e r t h e h i e r a r c h i c a l c o n d i t i o n had been l o s t by t h e l a s t t r i a l . Degree o f l e a r n i n g d i d n o t produce d i f f e r e n t i a l amounts o f c l u s t e r i n g . B. T r a n s f e r Task 1. F r e e S o r t i n g The f r e e s o r t i n g d a t a were s u b j e c t e d t o two main a n a l y s e s . The a n a l -y s i s t o be r e p o r t e d f i r s t . i n v o l v e d t h e use o f a s t a t i s t i c s u g g e s t e d by Johnson (1967). T h i s s t a t i s t i c y i e l d s a s c a l e v a l u e o b t a i n e d f r o m each s u b j e c t ' s o b s e r v e d c l u s t e r i n g . G i v e n an o b s e r v e d c l u s t e r i n g (X) and two t h e o r e t i c a l c l u s t e r i n g s ( f o r example, a t h r e e c a t e g o r y c l u s t e r i n g (A) b a s e d on t h e f u n c t i o n a l d i m e n s i o n , and a two c a t e g o r y c l u s t e r i n g (B) b a s e d on t h e a b s t r a c t d i m e n s i o n ) , t h e s t a t i s t i c y i e l d s . a s c a l e v a l u e between z e r o and one, and i s z e r o when X i s A and one when X i s B. I t i s c a l c u l a t e d i n t h e f o l l o w -i n g manner: ,/AB(X) = d(A,X)/d(A,X) + d(B,x), where J.AB(X) i s a s c a l e v a l u e r a n g i n g f r o m 0 t o 1 i n d i c a t i n g t h e e x t e n t t o w h i c h t h e o b s e r v e d c l u s t e r i n g (X) a g r e e s w i t h e i t h e r a t h e o r e t i c a l c l u s t e r i n g (A) o r a t h e o r e t i c a l c l u s t e r -i n g ( B ) ; d(A,X) i s t h e d i s t a n c e between t h e two c l u s t e r i n g s A and X; and d(B,X) i s t h e d i s t a n c e between t h e two c l u s t e r i n g s B and X. C l u s t e r i n g s can be r e p r e s e n t e d 'as a d j a c e n c y m a t r i c e s , t h a t i s , an n x n m a t r i x o f z e r o s and ones where e n t r y i , j c o n t a i n s a one i f and o n l y i f o b j e c t s i and j a r e i n t h e same c l u s t e r . " Thus,, i n t h e above s t a t i s t i c , d(A,X) - t h e d i s t a n c e between two c l u s t e r i n g s , A and X - s i m p l y r e f l e c t s t h e number o f e n t r i e s i n t h e a d j a c e n c y m a t r i c e s o f A and X t h a t a r e d i f f e r e n t , n o r m a l i z e d by d i v i d i n g by n ( n - 1 ) , and d(B,X) r e f l e c t s t h e number o f d i f f e r e n t n o r m a l i z e d e n t r i e s 140 i n t h e a d j a c e n c y m a t r i c e s o f B and X. F o r each s u b j e c t ' s o b s e r v e d c l u s t e r i n g , t h r e e s e a l e v a l u e s were c a l -c u l a t e d . These were: 1) a s i x c a t e g o r y - t h r e e c a t e g o r y s c a l e v a l u e where t h e o b s e r v e d c l u s t e r i n g r e c e i v e d a s c a l e v a l u e o f z e r o i f i t conformed t o t h e s i x c a t e g o r y c l u s t e r i n g d e r i v e d from t h e s i m u l t a n e o u s use o f t h e two v a l u e s o f t h e a b s t r a c t d i m e n s i o n and t h r e e v a l u e s o f t h e f u n c t i o n a l dimen-s i o n and a one i f i t conformed t o t h e t h r e e c a t e g o r y f u n c t i o n a l c l a s s i f i c a -t i o n , o r an i n t e r m e d i a t e s c a l e v a l u e r e f l e c t i n g i t s r e l a t i o n s h i p t o t h e s c a l e p o l a r i t i e s ; 2) a s i x c a t e g o r y - two c a t e g o r y s c a l e v a l u e between z e r o and one d e p e n d i n g on t h e o b s e r v e d c l u s t e r i n g ' s c o n f o r m i t y t o t h e s i x c a t e g o r y o r two c a t e g o r y a b s t r a c t c l a s s i f i c a t i o n ; and, f i n a l l y , 3) a t h r e e c a t e g o r y -two c a t e g o r y s c a l e v a l u e r e f l e c t i n g t h e r e l a t i o n s h i p between t h e o b s e r v e d c l u s t e r i n g and t h e t h r e e c a t e g o r y f u n c t i o n a l . a n d • t w o c a t e g o r y a b s t r a c t c l a s s i f i c a t i o n . Each a n a l y s i s on t h e s e s c a l e v a l u e s w i l l be r e p o r t e d s e p a r a t e l y . S i x C a t e g o r y - Three C a t e g o r y S c a l i n g I n o r d e r t o s t a b i l i z e t h e v a r i a n c e s o f t h e d e r i v e d r a t i o measure (y) and t h u s meet t h e r e q u i r e m e n t s u n d e r l y i n g t h e use o f t h e s e s t a t i s t i c s w i t h p r o p o r t i o n d a t a , an a r c s i n t r a n s f o r m a t i o n (2 a r c s i n J/y) was p e r f o r m e d oh t h e s c a l e v a l u e s . T h e ' o b s e r v e d s c a l e v a l u e means and s t a n d a r d d e v i a t i o n s and t h e t r a n s f o r m e d means and s t a n d a r d d e v i a t i o n s as a f u n c t i o n o f g r a d e , c o n d i t i o n , and degree o f l e a r n i n g a r e p r e s e n t e d i n T a b l e X I . The o v e r a l l s c a l e v a l u e mean f o r grade 7 and grade 3 s u b j e c t s a p p r o x i m a t e d t h e s i x c a t e g o r y c l u s t e r i n g more c l o s e l y t h a n t h e t h r e e c a t e g o r y c l u s t e r i n g . A 2 (grades) x 7 ( c o n d i t i o n s ) a n a l y s i s o f v a r i a n c e w i t h p l a n n e d o r t h o g o n a l com-p a r i s o n s was p e r f o r m e d on t h e t r a n s f o r m e d s c a l e v a l u e s . A s o u r c e t a b l e f o r t h i s a n a l y s i s i s p r e s e n t e d i n A p p e n d i x N. The seven c o n d i t i o n s were as f o l l o w s : h i e r a r c h i c a l , 6 l e a r n i n g t r i a l s ( D I ) ; h i e r a r c h i c a l , 10 l e a r n -i n g t r i a l s (D2); l i s t , DI; l i s t , D2; random, DI; random, D2; and no T a b l e X I S i x C a t e g o r y - Three C a t e g o r y S c a l i n g : Observed S c a l e V a l u e Means and S t a n d a r d D e v i a t i o n s and T r a n s f o r m e d Means and S t a n d a r d D e v i a t i o n s by E x p e r i m e n t a l Treatments H i e r a r c h i c a l C o n d i t i o n L i s t C o n d i t i o n Random C o n d i t i o n No T r a i n i n g C o n d i t i o n D l D2 D l D2 Dl- D2 M .255 • .191 .492 .483 .426 .421 .390 S .224 .204 .201 .306 .084 .047 .060 Grade 7 M t r .852 .666 1.610, 1.593 1.419 1.412 1.349 S t r .738 .705 .571 .930 .171 .096 .122 M .338 .385 .448 .447 .394 . 359 .391 S .128 .073 .204 .131 . .064 .035 .046 Grade 3 M t r 1.186 1.337 1.521 1.465 1.356 1.283 " 1.351 S t r .429 .148 .585 .269 .130 .072 .094 H 1 1 ^ .142 t r a i n i n g . ... The main r e s u l t o f i n t e r e s t i n - t h i s a n a l y s i s i s t h e s i g n i f i c a n t d i f f e r -ence between s u b j e c t s t r a i n e d under t h e h i e r a r c h i c a l c o n d i t i o n and s u b j e c t s t r a i n e d under t h e l i s t c o n d i t i o n . , F (1,126) = 29.49; p < .0001. H i e r a r c h -i c a l l y - t r a i n e d s u b j e c t s a p p r o x i m a t e d t h e s i x c a t e g o r y c l u s t e r i n g more c l o s e l y t h a n l i s t - t r a i n e d s u b j e c t s . . The i n t e r a c t i o n between grades and o r g a n i z e d t r a i n i n g c o n d i t i o n s was a l s o s i g n i f i c a n t i n d i c a t i n g t h a t t h e d i f -f e r e n c e between h i e r a r c h i c a l l y - t r a i n e d and l i s t - t r a i n e d s u b j e c t s i n t h e i r a p p r o x i m a t i o n t o t h e s i x c a t e g o r y s o r t was g r e a t e r a t t h e grade 7 l e v e l t h a n a t t h e grade 3 l e v e l . I n f a c t , n i n e o u t o f t w e n t y grade 7 s u b j e c t s i n t h e h i e r a r c h i c a l c o n d i t i o n r e p r o d u c e d t h e s i x c a t e g o r y t h e o r e t i c a l c l u s t e r i n g w i t h p e r f e c t a c c u r a c y , compared w i t h o n l y one s u b j e c t i n t h e l i s t c o n d i t i o n , and no s u b j e c t s i n t h e random and n o - t r a i n i n g c o n t r o l c o n d i t i o n s . F o r t h e grade 3 c h i l d r e n , o n l y one s u b j e c t i n t h e h i e r a r c h i c a l c o n d i t i o n and no sub-j e c t s i n t h e l i s t , random and n o - t r a i n i n g c o n t r o l c o n d i t i o n s s o r t e d i n p e r f e c t c o n f o r m i t y w i t h t h e s i x c a t e g o r y c l u s t e r i n g . Three l i s t - c o n d i t i o n s u b j e c t s i n grade 7 p e r f e c t l y r e p r o d u c e d t h e t h r e e c a t e g o r y s o r t i n g (compared w i t h z e r o s u b j e c t s i n t h e h i e r a r c h i c a l , random and n o - t r a i n i n g c o n d i t i o n s ) . One s u b j e c t i n t h e l i s t c o n d i t i o n a t t h e grade 3 l e v e l r e p r o d u c e d t h e t h r e e c a t e g o r y c l u s t e r i n g (none i n t h e h i e r a r c h i c a l . , random and n o - t r a i n i n g c o n d i -t i o n s ) . A l l o t h e r e f f e c t s were n o n s i g n i f i c a n t . S i x C a t e g o r y - Two C a t e g o r y S e a l i n g S c a l e v a l u e s o b t a i n e d from t h e f r e e s o r t i n g were t r a n s f o r m e d by means o f t h e a r c s i n t r a n s f o r m a t i o n . Means and s t a n d a r d d e v i a t i o n s f o r o b s e r v e d and t r a n s f o r m e d s c a l e v a l u e s as a f u n c t i o n o f g r a d e , c o n d i t i o n and degree o f l e a r n i n g a r e p r e s e n t e d i n T a b l e X I I . The o v e r a l l mean f o r g r ade 7 was 0.281 and f o r g r ade 3 was 0.305. A g a i n , t h e s c a l e v a l u e s f o r b o t h g r a d e s were c l o s e r t o t h e s i x c a t e g o r y t h e o r e t i c a l c l u s t e r i n g . A s o u r c e t a b l e f o r a 2 (grades) x 7 ( c o n d i t i o n s ) a n a l y s i s o f v a r i a n c e T a b l e X I I S i x C a t e g o r y - Two C a t e g o r y S e a l i n g : Observed S c a l e V a l u e Means and S t a n d a r d D e v i a t i o n s and T r a n s f o r m e d Means and S t a n d a r d D e v i a t i o n s by E x p e r i m e n t a l Treatments . H i e r a r c h i c a l C o n d i t i o n L i s t C o n d i t i o n Random C o n d i t i o n No T r a i n i n g C o n d i t i o n DI D2 DI D2 DI D2 M .189 .207 .315 .324 .293 .328 .309 S .168 .309 .074 .255 .052 .075 .053 Grade 7 M t r .713 .705 1.186 1.206 1.141 1.215 1.176 S t r .621 1.000 .159 .768 .113 .161 .112 M .250 .299 .300 . 390 .308 .270 .316 S .098 .065 .048 .206 .073 .031 .050 Grade 3 M t r .997 1.155 1.158 1.346 1.173 1.109 1.193 S t r .364 .138 .105 .431 .152 .071 . .107 1 : "144 • on the t r a n s f o r m e d s c a l e v a l u e s i s p r e s e n t e d i n A p p e n d i x 0. As e x p e c t e d , t h e r e s u l t s f r o m t h i s a n a l y s i s complement t h o s e o b t a i n e d from t h e s i x c a t e g o r y - t h r e e c a t e g o r y s c a l i n g . The c o m p a r i s o n between o r g a n i z e d t r a i n i n g c o n d i t i o n s was s i g n i f i c a n t , F_ (1,126) = 11.80, p <i .001. A t b o t h grade l e v e l s , s u b j e c t s i n t h e h i e r a r c h i c a l c o n d i t i o n s were c l o s e r t o t h e s i x c a t e g o r y c l u s t e r i n g t h a n s u b j e c t s i n t h e l i s t c o n d i t i o n s . F o r grade 7 s u b j e c t s , one c h i l d i n t h e h i e r a r c h i c a l c o n d i t i o n and one c h i l d i n t h e l i s t c o n d i t i o n (none i n t h e random and n o - t r a i n i n g c o n d i t i o n s ) p e r f e c t l y r e p r o -duced t h e two c a t e g o r y c l u s t e r i n g . There were no grade 3 s u b j e c t s who p e r f o r m e d t h e two c a t e g o r y c l u s t e r i n g w i t h o u t e r r o r . A l l o t h e r e f f e c t s were n o n s i g n i f i c a n t . Three C a t e g o r y - Two C a t e g o r y S c a l i n g S c a l e v a l u e s were c a l c u l a t e d and t r a n s f o r m e d . Means and s t a n d a r d d e v i a t i o n s f o r o b s e r v e d and t r a n s f o r m e d s c a l e v a l u e s a r e p r e s e n t e d i n T a b l e X I I I . The o v e r a l l grade 7 s c a l e v a l u e was 0.379; t h e o v e r a l l grade 3 s c a l e v a l u e was 0.403. B o t h g r a d e s were c l o s e r t o t h e t h r e e c a t e g o r y p o l e o f t h e s c a l e t h a n t o t h e two c a t e g o r y p o l e . A s o u r c e t a b l e f o r a 2 (grades) x 7 ( c o n d i t i o n s ) a n a l y s i s o f v a r i a n c e on t h e t r a n s f o r m e d s c a l e v a l u e s i s p r e s e n t e d i n A p p e n d i x P. A l l main e f f e c t s and i n t e r a c t i o n s between and among t h e v a r i a b l e s were n o n s i g n i f i c -a n t . T h i s i s c l e a r i n d i c a t i o n t h a t r e g a r d l e s s o f grade l e v e l and t r a i n i n g c o n d i t i o n s , s u b j e c t s d i d n o t d i f f e r i n t h e i r s o r t i n g a p p r o x i m a t i o n s t o t h e two and t h r e e c a t e g o r y t h e o r e t i c a l s o r t s . As i n d i c a t e d above, few s u b j e c t s o v e r a l l s o r t e d i n p e r f e c t c o n f o r m i t y w i t h e i t h e r t h e two c a t e g o r y o r t h r e e c a t e g o r y s o r t i n g s . H i e r a r c h i c a l C l u s t e r i n g : Q u a l i t a t i v e D e s c r i p t i o n s The second m a j o r a n a l y s i s on t h e f r e e s o r t i n g d a t a i n v o l v e d t h e a p p l i c a t i o n o f Johnson's (1967) h i e r a r c h i c a l c l u s t e r i n g t e c h n i q u e . The method o f h i e r a r c h i c a l c l u s t e r i n g i s d e s c r i b e d i n C h a p t e r I I I . I n c i d e n c e T a b l e X I I I Three C a t e g o r y - Two C a t e g o r y S c a l i n g : Observed S c a l e V a l u e Means and S t a n d a r d D e v i a t i o n s and T r a n s f o r m e d Means and S t a n d a r d D e v i a t i o n s by E x p e r i m e n t a l Treatments H i e r a r c h i c a l C o n d i t i o n L i s t C o n d i t i o n Random C o n d i t i o n No T r a i n i n g C o n d i t i o n D l D2 D l D2 Dl.. D2 M .363 .418 .341 .359 .361 .398 .410 S .048 .208 .129 .275 .073 .053 .034 Grade 7 M t r 1.292 1.459 1.193 1.229 1.287 1.365 1.390 S t r .099 .596 .430 .867 .155 .107 .070 M .383 .405 .370 .442 .406 .398 .418 S .038 . .045 .133 .22.6 .040 .045 .036 Grade 3 M t r 1.335 1.378 1.253 1.452 1.378 1.365 1.405 S t r .079 .093 .444 .494 .081 .092 .073 146-matrices were computed for each of the subjects showing which animal p a i r s had been placed together i n the same p i l e . These incidence matrices were then added f o r a l l subjects within a group and subjected to the h i e r a r c h i c a l c l u s t e r i n g a n a l y s i s . F i f t e e n separate analyses were performed on the incidence matrices pooled across various l e v e l s of the experimental f a c t o r s . These analyses were performed i n order to account for the e f f e c t s of the experimental, factors q u a n t i t a t i v e l y described by the various comparative scales [e.g.^AB(X) ] defined and used i n the present study. The hiera r c h i e s f or the tra i n e d groups at the grade 7 and grade 3 l e v e l s are shown i n Figures 44 and 45. The trees for the grade 7 group r e f l e c t to a considerably greater extent than the trees f o r the grade 3 group the combination of abstract and functional values. There are three major hierarc h i e s i n the grade 7 group r e f l e c t i n g the d i s t i n c t i o n between animals for game, fur and pets (the pets and fur h i e r a r c h i e s ultimately j o i n to form one c l u s t e r ) . Within each of these h i e r a r c h i e s , there i s a major subdivision between herbivorous and carnivorous animals. Within each of these subdivisions, one p a i r of animals i s clustered by a considerably greater percentage of subjects. For example, 93% of the subjects placed t i g e r and panther together i n the same p i l e , whereas only 47% of the sub-jects placed bear i n the same p i l e with t i g e r and panther; 78% paired dog and cat, but only 37% included skunk i n t h i s group. At the grade 3 l e v e l , the trees are not as c l e a r l y delineated. There are two major h i e r a r c h i e s . One contains a l l the game animals and three of the fur animals (seal, beaver, and fox). The other hierarchy contains a l l the pets and the other 3 fur animals ( s q u i r r e l , muskrat, and raccoon). There appear to be no d i s t i n c -tions between or within hiera r c h i e s on the basis of food habits. : Hierarchies f o r the grade 7 and grade 3 no-training groups are shown i n Figures 46 and 47. The hierarchies obtained from these groups are c l e a r l y d i f f e r e n t from those obtained from the tra i n e d groups at each grade 147 0 25 50 75 100 ( e l e p h a n t s q u i r r e l b e a r s e a l s k u n k k u s k r a t A a c c o o n f o x b e a v e r m o n k e y r ab ^ > g e r b i l m o o s e d e e r d o g c a t | t i g e r P a n t h e r F i g u r e 4 4 . H i e r a r c h i e s f o r g r a d e 7 t r a i n e d c o n d i t i o n s f r o m t h e f r e e - s o r t i n g d a t a ( d i a m e t e r m e t h o d ) "148 0 r _ 25 L_ 50 • a CD u a) •p w P rH U 75 100 f o x b e a r t i g e r p a n t h e r m o n k e y f m u s k r a l r a b b i t s k u n k r a c c o c b n $ . e a ] / \ / \ g e r b i l b e a v e r s q u i r r e l d o g c a t m o o s e d e e r F i g u r e 4 5 . H i e r a r c h i e s f o r g r a d e 3 t r a i n e d c o n d i t i o n s f r o m t h e f r e e - s o r t i n g d a t a ( d i a m e t e r m e t h o d ) 149 elephant Fi g u r e 46. H i e r a r c h i e s f o r grade 7 n o - t r a i n i n g c o n d i t i o n from the f r e e - s o r t i n g data (diameter method) 150 0 25 50 75 100 Y^-bear p a n t h e r H t i g e r f o x y e r r a b b i t m u s k r i t s k u n k e l e p h d n t r a c c o o n ^ ^ b e a s q u i r r e l g e r b i l d o g c a t m o o s e d e e r F i g u r e 4 7 . H i e r a r c h i e s f o r g r a d e 3 n o - t r a i n i n g c o n d i t i o n f r o m t h e f r e e - s o r t i n g d a t a ( d i a m e t e r m e t h o d ) 151 l e v e l . There a r e f o u r main t r e e s f o r t h e grade 7 n o - t r a i n i n g g r o u p . One t r e e c o n t a i n i n g t i g e r , p a n t h e r , c a t , f o x , dog, and b e a r appears t o be p r e -d o m i n a n t l y l a r g e , f i e r c e a n i m a l s (which a r e a l s o a l l c a r n i v o r o u s ) . A second t r e e c o n t a i n i n g s q u i r r e l , g e r b i l , r a b b i t , skunk, r a c c o o n , m u s k r a t , and b e a v e r w o u l d seem t o c o n s i s t o f s m a l l , n o n - f i e r c e a n i m a l s . A . t h i r d t r e e c o n t a i n s moose, d e e r and s e a l . Moose and d e e r c l e a r l y r e s e m b l e each o t h e r on numerous d i m e n s i o n s ( f o r example, f o o d h a b i t s and h a b i t a t ) b u t t h e y a r e a l s o a l i k e i n b e i n g l a r g e and n o n - f i e r e e . O n l y one o u t o f t e n s u b j e c t s grouped s e a l w i t h t h e s e o t h e r two a n i m a l s . T h e r e f o r e , i t w o u l d appear t h a t n e a r l y a l l s u b j e c t s p l a c e d s e a l i n a s e p a r a t e p i l e . Monkey and e l e p h a n t form t h e l a s t t r e e . The p e r c e n t a g e o f c l u s t e r i n g f o r t h i s p a i r i s v e r y low. Most s u b j e c t s p l a c e d monkey and e l e p h a n t i n s i n g l e p i l e s , a l t h o u g h b o t h a n i m a l s a r e a s s o c i a t e d w i t h t r o p i c a l c o u n t r i e s . There a r e 5 main t r e e s f o r t h e grade 3 n o - t r a i n i n g g roup. The f i r s t t r e e i n c l u d i n g t i g e r , f o x , p a n t h e r , and b e a r c o r r e s p o n d s t o a l a r g e , w i l d a n i m a l s group. The s e c o n d t r e e appears t o c o n s i s t o f s m a l l , tameable a n i m a l s ( s q u i r r e l , g e r b i l , monkey, r a b b i t , m u s k r a t , dog and c a t ) . The t h i r d t r e e p a i r s skunk and r a c c o o n , p r e s u m a b l y on t h e b a s i s o f t h e i r s t r i p e d f u r . The f o u r t h t r e e groups s e a l , e l e p h a n t , and b e a v e r , a n i m a l s f r e q u e n t l y p i c t u r e d i n t h e w a t e r . The f i n a l t r e e c o n t a i n s moose and d e e r . The h i e r a r c h i e s o b t a i n e d from t h e t r a i n e d s u b j e c t s a t t h e grade 7 l e v e l c l e a r l y show t h e e f f e c t o f t r a i n i n g . W h i l e some o f t h e same a n i m a l s o c c u r t o g e t h e r w i t h i n t h e h i e r a r c h i e s o b t a i n e d f r o m b o t h t h e t r a i n e d and u n t r a i n e d grade 7 groups ( f o r example, t i g e r and p a n t h e r , moose a n d . d e e r ) , t h e h i e r a r c h i e s , f r o m t h e t r a i n e d group unambiguously r e f l e c t t h e c o m b i n a t i o n o f a b s t r a c t and f u n c t i o n a l d i m e n s i o n s p r e s e n t e d i n t h e t r a i n i n g c o n d i t i o n s , whereas t h e t r e e s o b t a i n e d from t h e u n t r a i n e d group a r e l e s s e a s i l y l a b e l e d , more numerous, and l e s s s y s t e m a t i c . A c o m p a r i s o n o f t h e t h i r d grade h i e r -a r c h i e s f o r t h e t r a i n e d and u n t r a i n e d groups s u p p o r t t h e same d i s t i n c t i o n s .152 drawn f o r t h e grade 7 g r o u p s , b u t w i t h l e s s o r d e r and c l a r i t y . The t r a i n i n g e f f e c t i s c l e a r l y s t r o n g e r a t t h e grade 7 l e v e l . T h i s e f f e c t was q u a n t i -t a t i v e l y t e s t e d p r e v i o u s l y i n terms o f t h e c o m p a r a t i v e s c a l e v a l u e s . To examine t h e e f f e c t o f t r a i n i n g c o n d i t i o n s , h i e r a r c h i c a l s t r u c t u r e s were o b t a i n e d f o r each t y p e o f o r g a n i z a t i o n , and w i t h i n t h a t t y p e o f o r g a n -i z a t i o n f o r each grade l e v e l . The h i e r a r c h i c a l c l u s t e r i n g g i v e n f r e e s o r t i n g d a t a f o r g r a d e s 7 and 3 i n t h e h i e r a r c h i c a l c o n d i t i o n i s p r e s e n t e d i n F i g u r e 48. F i g u r e 48 shows c l e a r l y t h e s i x major g r o u p i n g s formed from t h e s i m u l t a n e o u s c o m b i n a t i o n o f b o t h d i m e n s i o n s and r e f l e c t s p e r f e c t l y t h e t r a i n i n g o r g a n i z a t i o n . The subgroups o f c a r n i v o r o u s and h e r b i v o r o u s game a n i m a l s and c a r n i v o r o u s f u r a n i m a l s a r e u l t i m a t e l y c l u s t e r e d t o g e t h e r , w h i l e t h e h e r b i v o r o u s f u r a n i m a l s and h e r b i v o r o u s p e t s j o i n t o fo r m a n o t h e r c l u s t e r . T h i s r e s u l t i s e x p l i c a t e d by e x a m i n i n g t h e h i e r a r c h i e s o b t a i n e d s e p a r a t e l y from t h e two gra d e s i n t h e h i e r a r c h i c a l c o n d i t i o n ( F i g u r e s 49 and 5 0 ) . F o r t h e grade 7 gr o u p , t h e s i x groups formed from t h e s i m u l t a n e o u s c o m b i n a t i o n o f b o t h d i m e n s i o n s a r e c l e a r l y e v i d e n t . These s i x groups u l t i m a t e l y merge i n t o two h i g h e r o r d e r groups r e f l e c t i n g t h e d i s t i n c t i o n between h e r b i v o r e s and c a r n i v o r e s . F o r t h e grade 3 gr o u p , a t h r e e group d i s t i n c t i o n emerges, p r i m a r i l y b a s e d on t h e f u n c t i o n a l d i m e n s i o n . A l t h o u g h t h e s e groups c o n t a i n a few e r r o r s ( f o r example, f o x i s grouped w i t h game a n i m a l s , s q u i r r e l w i t h p e t s , and skunk w i t h f u r a n i m a l s ) t h e s e r e s u l t s sup-p o r t t h e e x p e c t a t i o n t h a t grade 7 c h i l d r e n w o u l d p r e f e r t o use t h e a b s t r a c t d i m e n s i o n , w h i l e grade 3 c h i l d r e n w o u l d p r e f e r t o use t h e f u n c t i o n a l d i m e n s i o n . The h i e r a r c h i e s from t h e l i s t c o n d i t i o n s u b j e c t s a r e p r e s e n t e d i n F i g u r e 51. The t h r e e main t r e e s o b t a i n e d r e p r e s e n t t h e t h r e e v a l u e s o f t h e f u n c t i o n a l d i m e n s i o n . W i t h i n t h e s e t r e e s , t h e r e i s a s u b d i v i s i o n b a s e d p r i m a r i l y on t h e a b s t r a c t d i m e n s i o n . There i s one e r r o r i n t h e f u n c t i o n a l g r o u p i n g . Skunk i s i m p r o p e r l y grouped w i t h t h e f u r a n i m a l s . I n t h e 153 0 2 5 skunk 5 0 U 7 5 s e a l ^ r a c c cxSn^E o x bear t i g e r pantlj^er t i g e r panther — squi r r elephant muskrat beav monkey r a b b i t g e r b i l m o o s e a e e r i o o L Figure 48. H i e r a r c h i e s f o r grade 7 and grade 3 h i e r a r c h i c a l c o n d i t i o n from the f r e e - s o r t i n g data (diameter method) . 154. F i g u r e 49. H i e r a r c h i e s f o r grade 7 h i e r a r c h i c a l c o n d i t i o n from the f r e e - s o r t i n g data (diameter method) 155 F i g u r e 50 . H i e r a r c h i e s f o r g r a d e 3 h i e r a r c h i c a l c o n d i t i o n f r o m t h e f r e e - s o r t i n g d a t a ( d i a m e t e r m e t h o d ) -156 25 CD U CD +J to 3 50 75 100 L_ b e a r >e l e p h j a n t s q u i r r a l f o x m o n k e y s k u n k r a c c o o n m u s k r a t b e a v e r r a b b i t g e i d J D i J . d o g c a t F i g e A p a n t A m o o s e d e e r F i g u r e 5 1 . H i e r a r c h i e s f o r g r a d e 7 a n d g r a d e 3 l i s t c o n d i t i o n f r o m t h e f r e e - s o r t i n g d a t a ( d i a m e t e r m e t h o d ) 157 a b s t r a c t g r o u p i n g , s e a l and monkey a r e s e t a p a r t f r o m t h e o t h e r a n i m a l s s h a r -i n g t h e i r f o o d h a b i t s . The t r e e s o b t a i n e d s e p a r a t e l y f o r each grade i n t h e l i s t c o n d i t i o n a r e p r e s e n t e d i n F i g u r e s 52 and 53. N e i t h e r t h e grade 7 n o r grade 3 h i e r a r c h i e s a r e as c l e a r as t h e two grades combined i n t h e l i s t c on-d i t i o n . I n t h e grade 7 c l u s t e r i n g . , t h e f u r a n i m a l s and t h e c a r n i v o r o u s game a n i m a l s f o r m s e p a r a t e t r e e s w h i c h u l t i m a t e l y j o i n ( f o x i s i m p r o p e r l y grouped w i t h t h e c a r n i v o r o u s game a n i m a l s ) . The p e t s form a s e p a r a t e t r e e w i t h no c l e a r d i s t i n c t i o n s b a s e d on f o o d h a b i t s . The h e r b i v o r o u s game a n i m a l s a r e grouped i n a s e p a r a t e t r e e . I n t h e grade 3 c l u s t e r i n g , a l l t h e game a n i m a l s f o r m one t r e e ( f o x i s a g a i n i n c l u d e d w i t h t h i s g r o u p ) . A s e p a r a t e t r e e c o n s i s t s o f two f u r a n i m a l s ( s e a l and b e a v e r ) . The t h i r d t r e e i n c l u d e s a l l t h e p e t s and t h e t h r e e r e m a i n i n g f u r a n i m a l s ( m u s k r a t , s q u i r r e l , and r a c c o o n ) . O v e r a l l , i n t h e l i s t c o n d i t i o n , f o r b o t h age g r o u p s , t h e f u n c t i o n a l d i m e n s i o n appears t o p r e d o m i n a t e i n d e t e r m i n i n g t h e a n i m a l group-i n g s . The a b s t r a c t d i m e n s i o n i s t a k e n i n t o a c c o u n t more a t t h e grade 7 l e v e l . The h i e r a r c h i c a l c l u s t e r i n g f o r t h e grade 7 and grade 3 s u b j e c t s i n t h e random c o n d i t i o n i s p r e s e n t e d i n F i g u r e 54. The t r e e s o b t a i n e d f o r t h i s c o n d i t i o n a r e more ambiguous. W h i l e a l l t h e game a n i m a l s o c c u r t o g e t h e r i n one t r e e , t h i s t r e e u l t i m a t e l y j o i n s a n o t h e r t r e e c o n s i s t i n g o f two f u r a n i m a l s ( s e a l and b e a v e r ) and two p e t s (dog and c a t ) . A n o t h e r t r e e c o n t a i n s a m i x t u r e o f p e t s and f u r a n i m a l s . I n t u i t i v e l y , t h e t r e e s o b t a i n e d appear t o c o n f o r m more r e a d i l y t o g r o u p i n g s b a s e d on a s i z e d i m e n s i o n . L a r g e and medium-sized a n i m a l s form two major b r a n c h e s o f one t r e e . S m a l l a n i m a l s o c c u r t o g e t h e r i n a n o t h e r t r e e . The h i e r a r c h i c a l s t r u c t u r e s f o r t h e random c o n d i t i o n s e p a r a t e d by grade l e v e l a r e p r e s e n t e d i n F i g u r e s 55 and 56. A t t h e grade 7 l e v e l , t h e r e a r e f o u r main t r e e s . One c o n s i s t i n g o f t i g e r , p a n t h e r , monkey, and e l e p h a n t w o u l d appear t o be l a r g e , e x o t i c a n i m a l s (however, a l t h o u g h monkey i s e x o t i c , i t i s n o t l a r g e ) . A n o t h e r c o n s i s t i n g -158 e l e p h a n t s e a l s k u n k _d e ' e r i i o o s e | t i g e r p a n t h e r b e a r s q u i r r e l " r a c b o o n m o n k e y m u s k r a t b e a v e r r a b b i t F i g u r e 5 2 . H i e r a r c h i e s f o r g r a d e t h e f r e e - s o r t i n g d a t a 7 l i s t c o n d i t i o n f r o m ( d i a m e t e r m e t h o d ) 159 F i g u r e 53. H i e r a r c h i e s f o r grade 3 l i s t c o n d i t i o n from the f r e e - s o r t i n g data (diameter method) 160 100 F i g u r e 54. H i e r a r c h i e s f o r grade 7 and grade 3 random c o n d i t i o n f rom t h e f r e e - s o r t i n g d a t a ( d i a m e t e r method) Figure 55. Hierarchies for grade 7 random condition from the free-sorting data (diameter method) 162 F i g u r e 56. H i e r a r c h i e s f o r grade 3 random c o n d i t i o n from t h e f r e e - s o r t i n g d a t a ( d i a m e t e r method) 163 o f moose, deer and b e a r conforms t o l a r g e n a t i v e mammals. A n o t h e r t r e e c o n t a i n i n g s q u i r r e l , m u s k r a t , f o x , skunk, r a c c o o n , r a b b i t , g e r b i l , c a t and dog seems t o c o n s i s t o f s m a l l a n i m a l s . F i n a l l y , s e a l and b e a v e r f o r m a s e p a r a t e t r e e , p r e s u m a b l y . b a s e d on t h e i r a q u a t i c n a t u r e . The t r e e s f o r t h e grade 3 s u b j e c t s a r e n o t easy t o l a b e l . There seems t o be.a t r e e f o r s m a l l a n i m a l s ( s q u i r r e l , g e r b i l , r a b b i t , skunk, r a c c o o n , m u s k r a t , and monkey); a t r e e i n c l u d i n g t i g e r , p a n t h e r , f o x , b e a r , moose, and d e e r w h i c h c o n s i s t s p r i m a r i l y o f l a r g e w i l d a n i m a l s ; and a f i n a l t r e e f o r s e a l , b e a v e r , e l e p h a n t , dog and c a t w h i c h i s h a r d . t o l a b e l . . O v e r a l l , t h e h i e r -a r c h i e s o b t a i n e d from t h e s u b j e c t s i n t h e random c o n d i t i o n a r e r a t h e r ambiguous, u n l e s s a s i z e d i m e n s i o n i s i n v o l v e d . Two f i n a l h i e r a r c h i c a l s t r u c t u r e s a r e p r e s e n t e d i n F i g u r e s 57 and 58, r e p r e s e n t i n g t h e t r e e s o b t a i n e d from t h e s u b j e c t s i n t h e s i x l e a r n i n g t r i a l s c o n d i t i o n and t e n l e a r n i n g t r i a l s c o n d i t i o n . These h i e r a r c h i e s a r e remark-a b l y s i m i l a r and d e m o n s t r a t e , a g a i n , t h e s i m i l a r i t y between b o t h l e a r n i n g c o n d i t i o n s . F o r b o t h g r o u p s , t h e r e a r e t h r e e main t r e e s c o r r e s p o n d i n g t o t h e v a l u e s o f t h e f u n c t i o n a l d i m e n s i o n . I n t h e s i x l e a r n i n g t r i a l s c o n d i -t i o n , t h e p e t s and f u r a n i m a l s u l t i m a t e l y j o i n i n t o a s i n g l e t r e e . W i t h i n each t r e e t h e r e a r e b a s i c a l l y two b r a n c h e s c o r r e s p o n d i n g t o t h e v a l u e s o f t h e a b s t r a c t d i m e n s i o n , w i t h t h e e x c e p t i o n o f t h e t r e e f o r f u r a n i m a l s i n t h e s i x t r i a l s c o n d i t i o n . Skunk i s e r r o n e o u s l y p l a c e d w i t h f u r a n i m a l s i n b o t h h i e r a r c h i c a l s t r u c t u r e s . I f t h e c o - o c c u r r e n c e o f a p a i r o f a n i m a l s i n a t r e e i s c o n s i d e r e d i n terms o f s h a r e d f e a t u r e s between t h o s e two a n i m a l s , some i n t e r e s t i n g r e s u l t s emerge. A c c o r d i n g t o t h e o r g a n i z a t i o n imposed d u r i n g t h e t r a i n i n g c o n d i -t i o n s , e ach p a i r o f a n i m a l s can s h a r e two f e a t u r e s ( t h a t i s , b o t h a n i m a l s t a k e t h e same v a l u e on each dimension).,, one f e a t u r e ( t h a t i s , b o t h a n i m a l s t a k e t h e same v a l u e on one d i m e n s i o n , b u t a d i f f e r e n t v a l u e on t h e o t h e r d i m e n s i o n ) , o r no f e a t u r e s ( t h a t i s , b o t h a n i m a l s t a k e d i f f e r e n t v a l u e s on 164 25 50 u o -p cn 3 75 100 seal elephant squirrel bear tiger panther fox muskrat accopn skunk raccoon monkey rabb r b i l dog cat Dse d^  moose deer Figure 57. Hierarchies for grade 7 and grade 3 ten learning t r i a l s condition from free-sorting data (diameter method) F«7 5 7 165 0 25 50 +J 3 75 b e a r t i g e r p a n t h e r e l e p h a n t r a c c o o n f o x s q u i r r e l m u skrat s e a l b e a v e r monkey r a b b i t g e r b i l dog c a t moose d e e r 100 F i g u r e 58. H i e r a r c h i e s f o r grade 7 and grade 3 s i x l e a r n i n g t r i a l s c o n d i t i o n from t h e f r e e - s o r t i n g d a t a ( d i a m e t e r method) 166 b o t h d i m e n s i o n s ) . The f i r s t o b s e r v a t i o n i s t h a t a c r o s s a l l h i e r a r c h i c a l s t r u c t u r e s , t h e r e a r e some a n i m a l p a i r s w h i c h always o c c u r t o g e t h e r w i t h i n a h i e r a r c h y . These a r e t i g e r - p a n t h e r , r a b b i t - g e r b i l , e a t - d o g , and d e e r -moose. Thus, r e g a r d l e s s o f t r a i n i n g c o n d i t i o n , t h e s e a r e v e r y s t r o n g l y a s s o c i a t e d a n i m a l p a i r s . A l l o f them a l s o s h a r e t h e same v a l u e s on t h e two d i m e n s i o n s p r e s e n t e d i n t h e t r a i n i n g c o n d i t i o n s and d o u b t l e s s , many o t h e r v a l u e s on o t h e r d i m e n s i o n s . O v e r a l l , t h e s e a r e a l s o t h e p a i r s c l u s t e r e d by t h e g r e a t e s t p e r c e n t a g e o f s u b j e c t s i n a l l t h e h i e r a r c h i c a l c l u s t e r i n g s o b t a i n e d . A second p o i n t i s t h a t some a n i m a l p a i r s n e v e r o c c u r t o g e t h e r w i t h i n t h e same t r e e . These a r e : b e a r p a i r e d w i t h r a b b i t , g e r b i l o r monkey; p a n t h e r p a i r e d w i t h r a b b i t , g e r b i l o r monkey; skunk p a i r e d w i t h d e e r , moose o r e l e p h a n t ; and t i g e r p a i r e d w i t h r a b b i t o r g e r b i l . Not o n l y do t h e s e p a i r s f a i l t o s h a r e any v a l u e s on t h e d i m e n s i o n s employed i n t h e t r a i n i n g p h a s e , t h e y a l s o appear t o t a k e d i f f e r e n t v a l u e s on a number o f o t h e r dimen-s i o n s . Thus, i n t h e s e t o f a n i m a l terms employed i n t h i s s t u d y , t h e r e a r e some a n i m a l p a i r s s t r o n g l y a s s o c i a t e d and some a n i m a l p a i r s s t r o n g l y d i s -s o c i a t e d r e g a r d l e s s o f t r a i n i n g . T h i r d l y , t h e r e a r e 18 a n i m a l - p a i r s w h i c h s h a r e two v a l u e s . Each o f t h e s e p a i r s was always' i n t h e same t r e e i n t h e f o l l o w i n g c o n d i t i o n s : grade 7 ( t r a i n e d ) , h i e r a r c h i c a l c o n d i t i o n ( b o t h g r a d e s combined), grade 7 h i e r -a r c h i c a l c o n d i t i o n , grade 7 l i s t c o n d i t i o n , and t h e s i x t r i a l s l e a r n i n g c o n d i t i o n . T h i s r e s u l t i n d i c a t e s b o t h t h e e f f e c t s o f t r a i n i n g , and t h e s u p e r i o r i t y o f t h e grade 7 c h i l d r e n . A f o u r t h p o i n t i s t h a t o f t h e 57 p a i r s o f a n i m a l s w h i c h s h a r e t h e same v a l u e on t h e a b s t r a c t d i m e n s i o n , t h e o n l y group w h i c h c o n s i s t e n t l y p l a c e d each o f t h e s e p a i r s w i t h i n t h e same t r e e was t h e grade 7 h i e r a r c h i c a l group. T h i s i n d i c a t e s t h e e f f e c t s o f h i e r a r c h i c a l t r a i n i n g . o n s o r t i n g b e h a v i o r f o r t h e . o l d e r s u b j e c t s and a l s o t h e s a l i e n c y o f t h e a b s t r a c t 167 d i m e n s i o n . These s u b j e c t s w e r e . c l e a r l y u s i n g t h e a b s t r a c t d i m e n s i o n i n t h e i r s o r t s , a f a c t w h i c h i s e s p e c i a l l y n o t i c e a b l e i n t h e case o f c e r t a i n p a i r s w h i c h were n e v e r p l a c e d w i t h i n t h e same t r e e i n any o t h e r c o n d i t i o n ( f o r example, r a b b i t and g e r b i l p a i r e d w i t h d e e r , moose and e l e p h a n t , and monkey p a i r e d w i t h d e e r and moose). F i f t h , t h e r e were some p a i r s p l a c e d i n t h e same t r e e i n one o r o t h e r o f t h e h i e r a r c h i c a l c l u s t e r i n g s o b t a i n e d from s u b j e c t s i n t h e o r g a n i z e d t r a i n i n g c o n d i t i o n s ( h i e r a r c h i c a l and . l i s t ) w h i c h were n e v e r p l a c e d t o g e t h e r i n t h e random t r a i n i n g c o n d i t i o n g r o u p s , or. n o - t r a i n i n g g r o u p s . These were s e a l p a i r e d w i t h r a c c o o n , b e a v e r and m u s k r a t ; skunk p a i r e d w i t h t i g e r , s e a l and p a n t h e r ; r a c c o o n p a i r e d w i t h t i g e r , b e a r and p a n t h e r ; s q u i r r e l and muskrat p a i r e d w i t h d e e r , moose and e l e p h a n t , and fox-beaver.. F i n a l l y , some a n i m a l p a i r s w h i c h were n e v e r i n t h e same t r e e i n t h e h i e r a r c h i e s o b t a i n e d f rom t h e o r g a n i z e d t r a i n i n g c o n d i t i o n s a p p e a r e d i n one o r more o f t h e h i e r -a r c h i e s o b t a i n e d f r o m t h e random t r a i n i n g groups and n o - t r a i n i n g g r o u p s . These were c a t and dog p a i r e d w i t h d e e r , moose and e l e p h a n t and t i g e r -monkey . H i e r a r c h i c a l C l u s t e r i n g : Q u a n t i t a t i v e Comparisons An a d d i t i o n a l a n a l y s i s on t h e h i e r a r c h i c a l c l u s t e r i n g s i n v o l v e d a c o m p a r i s o n between h i e r a r c h i c a l s t r u c t u r e s u s i n g a s t a t i s t i c suggested, by Johnson (1968 ) . These comparisons a r e p o s s i b l e o n l y when t h e h i e r a r c h i e s a r e d e r i v e d f r o m p o o l e d i n c i d e n c e m a t r i c e s w i t h i d e n t i c a l Ns. T h e r e f o r e , o n l y c e r t a i n c o m p a r i s o n s were p e r m i s s a b l e . G i v e n two h i e r a r c h -i c a l c l u s t e r i n g s (A and B ) , an a r b i t r a r y d i s t a n c e was chosen on t h e s e h i e r a r c h i e s and t h e h e i g h t (h) o f each c l u s t e r i n g was d e t e r m i n e d a t t h a t p o i n t . The h e i g h t o f a c l u s t e r i n g , r e p r e s e n t e d as an a d j a c e n c y m a t r i x , i s j u s t t h e sum. o f t h e o f f - d i a g o n a l e l e m e n t s n o r m a l i z e d by d i v i d i n g by n ( n - 1 ) . F o r t h e p r e s e n t a n a l y s e s , a p o i n t a p p r o x i m a t e l y t w o - t h i r d s up each c l u s t e r -i n g was chosen ( a t t h e p o i n t where 35% o f t h e s u b j e c t s c l u s t e r e d ) i n o r d e r ,168 t o a l l o w number o f c l u s t e r s t o be a p p r o x i m a t e l y t h e same a c r o s s h i e r a r c h i c a l s t r u c t u r e s . The h e i g h t o f t h e i n t e r s e c t i o n (h(A f) B)) was t h e n c a l c u l a t e d . G i v e n two a d j a c e n c y m a t r i c e s , r e p r e s e n t i n g two c l u s t e r i n g s , t h e i n t e r s e c t i o n i s s i m p l y t h e sum o f t h e o f f - d i a g o n a l i t e m s w h i c h appear t o g e t h e r i n b o t h m a t r i c e s , n o r m a l i z e d by d i v i d i n g b y n ( n - 1).. G i v e n t h e h e i g h t o f each c l u s t e r i n g and t h e h e i g h t o f t h e i n t e r s e c t i o n o f two c l u s t e r i n g s , t h e s t a t i s t i c h(A(1 B ) / h ( A ) , known as t h e r e s p e c t r a t i o , i n d i c a t e s t h e e x t e n t t o w h i c h t h e g r o u p i n g s i n c l u s t e r i n g A r e f l e c t t h e g r o u p i n g s i n c l u s t e r i n g B. S i m i l a r l y , h ( A ( l B)/h(B) i n d i c a t e s t h e e x t e n t t o w h i c h t h e g r o u p i n g s i n c l u s t e r i n g B r e f l e c t t h e g r o u p i n g s i n c l u s t e r i n g A.. I f t h e two c l u s t e r i n g s A and B were i d e n t i c a l , t h e e x p e c t e d V a l u e f o r A w o u l d be e q u a l t o t h e h e i g h t o f B (see Johnson(1968) f o r f u r t h e r d e t a i l s ) , and t h e maximum p o s s i b l e v a r i a n c e o f t h e d i s t r i b u t i o n f o r A w o u l d be: h ( B ) ( 1 - h ( B ) ) . Thus a _z s c o r e can be computed i n o r d e r t o a t t e m p t t o r e j e c t t h e n u l l h y p o t h e s i s t h a t , t h e c l u s t e r i n g (A) o b t a i n e d from one group o f s u b j e c t s was u n r e l a t e d t o t h e c l u s t e r i n g (B) o b t a i n e d from a n o t h e r group o f s u b j e c t s . S i m i l a r l y , another, z s c o r e b a s e d on t h e o b s e r v e d r e s p e c t r a t i o f o r B, t h e e x p e c t e d v a l u e f o r B ( h ( A ) ) , and t h e v a r i a n c e o f t h e d i s t r i b u t i o n f o r B ( h ( A ) ( l - h ( A ) ) ) can be computed. N i n e q u a n t i t a t i v e c o m p a r i s o n s were made between t h e f o l l o w i n g o b t a i n e d h i e r a r c h i c a l c l u s t e r i n g s : grade .7 v s . grade 3 t r a i n e d c o n d i t i o n s ; l i s t v s . h i e r a r c h i c a l c o n d i t i o n s ; l i s t v s . random c o n d i t i o n s ; h i e r a r c h i c a l v s . random c o n d i t i o n s ; g rade 7 v s . grade 3 n o - t r a i n i n g c o n d i t i o n s ; s i x v s . t e n l e a r n i n g t r i a l s c o n d i t i o n s ; grade 7 v s . g r a d e 3, g i v e n h i e r a r c h i c a l , l i s t and random c o n d i t i o n s . The n u l l h y p o t h e s i s e o u l d n o t be r e j e c t e d i n t h e c o m p a r i s o n between grade 7 and grade 3 t r a i n e d g r o u p s . I t a p p e a r s t h a t t h e c l u s t e r i n g o b t a i n e d from t h e s e groups were u n r e l a t e d . The c o m p a r i s o n between l i s t c o n d i t i o n and h i e r a r c h i c a l c o n d i t i o n s was s i g n i f i c a n t . The -z_ s c o r e o b t a i n e d 169 -f o r t h e l i s t c o n d i t i o n was 2.48 (p < .01) and f o r t h e h i e r a r c h i c a l c o n d i t i o n was 1.99 (p < .05).- Thus, a l t h o u g h t h e c l u s t e r i n g s i n t h e s e two g r o u p s were s i g n i f i c a n t l y r e l a t e d , s u b j e c t s i n t h e h i e r a r c h i c a l c o n d i t i o n made some a d d i t i o n a l d i s t i n c t i o n s n o t f o u n d i n t h e l i s t c o n d i t i o n g roup. The compar-i s o n between t h e random c o n d i t i o n and t h e l i s t c o n d i t i o n s i n d i c a t e s t h a t some o f t h e c l u s t e r s i n t h e random c o n d i t i o n o v e r l a p p e d w i t h c l u s t e r s . o b t a i n e d i n t h e l i s t c o n d i t i on (z — 2-.18, p ^ .025) , b u t t h a t t h e r e were a s u f f i c i e n t number o f a d d i t i o n a l c l u s t e r s i n t h e l i s t c o n d i t i o n w h i c h d i d n o t o v e r l a p w i t h t h e random c o n d i t i o n (z = .1.50.,. p_ <£ .25). The same t e n d e n c y i s m a i n t a i n e d i n t h e c o m p a r i s o n between random and h i e r a r c h i c a l c o n d i t i o n s . The z, s c o r e - f o r t h e random c o n d i t i o n was 1.19 (p < .05) , b u t t h e z_ s c o r e f o r t h e h i e r a r c h i c a l c o n d i t i o n was 0.66 (p <• .25). The n u l l h y p o t h e s i s c o u l d n o t be r e j e c t e d i n t h e c o m p a r i s o n between t h e n o - t r a i n i n g grade 7 group and t h e n o - t r a i n i n g grade 3 group. The c o m p a r i s o n between s i x and- t e n l e a r n i n g t r i a l s c o n d i t i o n s a p proached s i g n i f i c a n c e ( the z s c o r e - f o r t h e s i x t r i a l s c o n d i t i o n was 2.26 (p <. .025) and f o r t h e t e n t r i a l s c o n d i t i o n was 2.19 (p < .025). The e x t e n t t o w h i c h t h e s e groups o v e r l a p p e d i n t h e i r c l u s t e r -i n g s was a p p r o x i m a t e l y t h e same.. The comparisons between grade 7 and grade 3 h i e r a r c h i c a l c o n d i t i o n s and grade 7 and grade 3 l i s t c o n d i t i o n s were n o t s i g n i f i c a n t . . The f i n a l c o m p a r i s o n , between grade 7 and grade 3 random c o n d i t i o n s a p p r o a c h e d s i g n i f i c a n c e . The z s c o r e f o r t h e grade 7 random c o n d i t i o n was 1.84 (p < .05) and f o r t h e grade 3 random c o n d i t i o n was 1.81 (p < .05). These r e s u l t s s e r v e as f u r t h e r s u p p o r t f o r - t h e r e s u l t s o b t a i n e d from e a r l i e r a n a l y s e s . F i n a l l y , t h e h i e r a r c h i e s o b t a i n e d from t h e n o - t r a i n i n g groups a t b o t h grade l e v e l s were compared w i t h . t h e h i e r a r c h i e s o b t a i n e d f o r grade 7 and grade 3 s u b j e c t s on t h e s o r t i n g t a s k i n Study 1, i n w h i c h a d i f f e r e n t , b u t o v e r l a p p i n g and l a r g e r s e t o f a n i m a l terms was u s e d (11 o f t h e 18 a n i m a l s used i n t h e p r e s e n t s t u d y were i n c l u d e d i n t h e l a r g e r s e t i n S t u d y 1 ) . F o r 170;' t h e two grade 7 h i e r a r c h i c a l s t r u c t u r e s , t h e s i z e d i m e n s i o n 'seems t h e most s a l i e n t . Many o f t h e same a n i m a l p a i r s o c c u r w i t h i n t h e same t r e e i n b o t h s t r u c t u r e s ( f o r example, monkey-elephant, d o g - e a t , s e a l - d e e r , b e a r - f o x , s k u n k - s q u i r r e l - r a b b i t ) . F o r t h e grade 3 h i e r a r c h i c a l s t r u c t u r e s , t h e d i s -t i n c t i o n between tame and w i l d a n i m a l s appears t o h o l d f o r b o t h g r o u p s . The s i z e d i m e n s i o n seems t o be more s a l i e n t i n g r a d e 3 s u b j e c t s i n t h e p r e s e n t s t u d y . Some an i m a l , p a i r s o c c u r w i t h i n t h e same t r e e i n b o t h groups, ( f o r example, s e a l - e l e p h a n t , d o g - c a t , and m o n k e y - r a b b i t ) . J u s t as skunk and r a c c o o n were grouped by grade 3 s u b j e c t s i n t h e p r e s e n t s t u d y presum-a b l y on t h e b a s i s o f s t r i p e d f u r , t h e same d i s t i n c t i o n seems t o have a l l o w e d g i r a f f e and z e b r a t o be p l a c e d t o g e t h e r i n S t u d y 1 ( a l t h o u g h i t i s a l s o c l e a r t h a t t h e s e p a i r s s h a r e v a l u e s on a number o f o t h e r d i m e n s i o n s ) . O v e r a l l , t h e r e i s some s i m i l a r i t y between t h e h i e r a r c h i c a l s t r u c t u r e s o b t a i n e d a t each grade l e v e l i n b o t h S t u d y 1 and t h e p r e s e n t s t u d y . These s i m i l a r i t i e s a r e n o t o v e r w h e l m i n g . They appear t o be s t r o n g e r a t t h e grade 7 l e v e l . S i z e i s t h e d i m e n s i o n t h a t emerges more c l e a r l y t h a n any o t h e r d i m e n s i o n w i t h t h e grade 7 s u b j e c t s and t h e grade 3 s u b j e c t s i n t h e p r e s e n t s t u d y . 2. F i x e d S o r t i n g The f i x e d s o r t s were t h e s o r t s i n w h i c h s u b j e c t s were d i r e c t e d t o s o r t t h e a n i m a l terms i n t o a p r e d e t e r m i n e d number o f c a t e g o r i e s . The r a t i o s t a t i s t i c s u g g e s t e d by Johnson (1968) was used t o measure t h e e x t e n t t o w h i c h t h e s u b j e c t ' s o b s e r v e d c l u s t e r i n g s o f t h e 18 i t e m s r e f l e c t e d t h e c l a s s i f i c a t i o n s o f t h o s e same i t e m s p r e s e n t i n t h e t r a i n i n g p h a s e . T h i s s t a t i s t i c , p r e v i o u s l y m e n t i o n e d , i s t h e r a t i o : h ( c H A ) / h ( A ) ; where A i s t h e s u b j e c t ' s c l u s t e r i n g o f t h e 18 o b j e c t s w h i c h has c l u s t e r s o f s i z e n ,n ,...n , and C i s a t h e o r e t i c a l c l u s t e r i n g ( i n t h i s c a s e , t h e t r a i n i n g phase c l a s s i f i c a t i o n s ) w h i c h has c l u s t e r s o f s i z e n ,n ...n . H(A) i s t h e h e i g h t o f t h e s u b j e c t ' s c l u s t e r i n g and i s d e f i n e d as n (n - 1) + n (n - 2) + ... n (n - 1) / n ( n - 1 ) . H(C A A) i s t h e h e i g h t o f t h e i n t e r s e c t i o n o f t h e t h e o r e t i c a l c l u s t e r i n g and t h e s u b j e c t ' s o b s e r v e d c l u s t e r i n g and r e p r e s e n t s t h e l a r g e s t c l u s t e r i n g i n c l u d e d i n b o t h . Thus, t h e i n t e r s e c t i o n i s a new c l u s t e r i n g c o n t a i n i n g a s e t o f c l u s t e r s s h a r e d by b o t h A and C. T h i s r a t i o r anges from z e r o t o one. A s c o r e o f one i n d i -c a t e s p e r f e c t agreement between t h e t h e o r e t i c a l and o b s e r v e d c l u s t e r i n g . S i x C a t e g o r y S o r t i n g ; A r a t i o s c o r e was o b t a i n e d f o r each s u b j e c t r e p r e s e n t i n g t h e degree t o w h i c h t h a t s u b j e c t ' s c l u s t e r i n g r e s p e c t e d t h e s i x c a t e g o r i e s s e t up i n t h e t r a i n i n g c o n d i t i o n s . To s t a b i l i z e t h e v a r i a n c e s o f t h e d e r i v e d r a t i o measure (y) an a r c s i n t r a n s f o r m a t i o n (2 a r c s i n J y ) was p e r f o r m e d on t h e s e s c o r e s . The o b s e r v e d means and s t a n d a r d d e v i a t i o n s f o r t h e o b t a i n e d s c o r e s and f o r t h e t r a n s f o r m e d s c o r e s a r e p r e s e n t e d i n T a b l e XIV as a f u n c t i o n o f g r a d e , c o n d i t i o n . a n d degree o f l e a r n i n g . A 2 (grades) x 7 ( c o n d i t i o n s ) a n a l y s i s o f v a r i a n c e w i t h p l a n n e d o r t h o g o n a l c o m p a r i s o n s was p e r f o r m e d on t h e t r a n s f o r m e d s c o r e s . A s o u r c e t a b l e f o r t h i s a n a l y s i s : i s p r e s e n t e d i n A p p e n d i x Q. The seven c o n d i t i o n s were as f o l l o w s : h i e r a r c h i c a l , s i x l e a r n i n g t r i a l s ( D l ) ; h i e r a r c h i c a l , t e n l e a r n i n g t r i a l s ( 2 ) ; l i s t , D l ; l i s t , D2; random, Dl,;' random, D2; and no t r a i n i n g . As e x p e c t e d , grade 7 c h i l d r e n s o r t e d i n g r e a t e r c o n f o r m i t y t o t h e s i x c a t e g o r i e s p r e s e n t e d d u r i n g t h e . t r a i n i n g phase t h a n grade 3 c h i l d r e n , F ( l , 1 2 6 ) = 19.14, £ < .0001). A l l t r a i n e d groups ( h i e r a r c h i c a l , l i s t and random) a t b o t h grade l e v e l s r e s p e c t e d .the s i x . c a t e g o r y c l a s s i f i c a t i o n s i g n i f i c a n t l y more t h a n t h e n o n - t r a i n e d group a t each grade l e v e l , F_( 1,126) = 8.08, £ <. .005. Also, , t h e two o r g a n i z e d s t i m u l u s p r e s e n t a t i o n c o n d i t i o n s r e f l e c t e d t h e s i x c a t e g o r y c l a s s i f i c a t i o n t o a s i g n i f i c a n t l y g r e a t e r e x t e n t a t b o t h grade l e v e l s t h a n t h e random s t i m u l u s p r e s e n t a t i o n c o n d i t i o n , F (1,126) = 20.53, £ < . .0001. The d i f f e r e n c e between o r g a n i z e d and random c o n d i t i o n s was g r e a t e r a t t h e grade 7 l e v e l t h a n a t t h e grade 3 T a b l e XIV S i x C a t e g o r y R e s p e c t R a t i o s : Observed R a t i o S c o r e Means and S t a n d a r d D e v i a t i o n s and T r a n s f o r m e d Means and S t a n d a r d D e v i a t i o n s by E x p e r i m e n t a l Treatments H i e r a r c h i c a l C o n d i t i o n - L i s t C o n d i t i o n Random C o n d i t i o n No T r a i n i n g C o n d i t i o n Degree o f L e a r n i n g D l D2 D l D2 D l D2 M .694 .722 .444 .461 .233 .322 .294 S .359 .368 .259 .342 .141 .104 .114 Grade 7 M t r 2.2 38 2.505 1.501 1.586 .945 1.200 1.135 S t r 1.012 1.027 .681 .916 . .42 3 .220 .250 M .367 .400 .250 .311 .261 .244 .178 S .236 .341 .115 .176 .091 .065 .063 Grade 3 M t r 1.345 1.441 1.023 1.162 1.064 1.028 .858 S t r ,654 .947 .290 .383 .202 .153 .179 l e v e l , F_(l.,126) = 8.31, p_ <• .005. S u b j e c t s who had l e a r n e d under t h e h i e r a r c h i c a l o r g a n i z a t i o n a t b o t h g rade l e v e l s c l a s s i f i e d more i n a c c o r d a n c e w i t h t h e s i x p r e d e t e r m i n e d c a t e g o r i e s t h a n s u b j e c t s who had l e a r n e d under t h e l i s t o r g a n i z a t i o n , F_(l,126) = 16.77, p < .0001. T h i s was e x p e c t e d f o r t h e grade 3 c h i l d r e n . I t does n o t seem, however, t h a t grade 7 c h i l d r e n i n t h e l i s t c o n d i t i o n had s u f f i c i e n t f l e x i b i l i t y i n c l a s s i f i c a t o r y s k i l l s t o fo r m t h e s i x c a t e g o r y c l a s s i f i c a t i o n a p p r o x i m a t e l y as w e l l as t h o s e grade 7 s u b j e c t s t r a i n e d under t h e h i e r a r c h i c a l c o n d i t i o n . The e f f e c t s f o r degree o f l e a r n i n g were, a g a i n , n o t s i g n i f i c a n t . A l l f u r t h e r i n t e r a c t i o n s between and among t h e v a r i a b l e s were n o n s i g n i f i c a n t . Three C a t e g o r y S o r t i n g A r a t i o s c o r e f o r each s u b j e c t was c a l c u l a t e d r e f l e c t i n g t h e e x t e n t o f t h e c o r r e s p o n d e n c e between t h e s u b j e c t ' s o b s e r v e d t h r e e c a t e g o r y c l u s t e r i n g and t h e t h r e e c a t e g o r y c l u s t e r i n g formed a c c o r d i n g t o v a l u e s o f t h e f u n c t i o n a l d i m e n s i o n . Means and s t a n d a r d d e v i a t i o n s f o r o b s e r v e d and t r a n s f o r m e d r a t i o s c o r e s a r e p r e s e n t e d i n T a b l e XV. A s o u r c e " t a b l e f o r a 2 (grades) x 7 ( c o n d i t i o n s ) a n a l y s i s o f v a r i a n c e w i t h p l a n n e d o r t h o g o n a l c o m p a r i s o n s on t h e t r a n s f o r m e d s c o r e s i s p r e s e n t e d i n A p p e n d i x R. Grade 7 c h i l d r e n r e s p e c t e d t h e f u n c t i o n a l • t h r e e c a t e g o r y s o r t s i g n i f i c a n t l y more t h a n grade 3 c h i l d r e n , F ( l , 1 2 6 ) = 44,01, p <. .0001. T r a i n e d s u b j e c t s a t b o t h grade l e v e l s r e s p e c t e d t h e f u n c t i o n a l c l a s s i f i c a t i o n t o a g r e a t e r e x t e n t t h a n n o n - t r a i n e d s u b j e c t s , F.(l,126) = 12.08, p_ .0007. However, t h i s d i f f e r e n c e between t r a i n e d and n o n - t r a i n e d . c o n d i t i o n s was somewhat g r e a t e r a t t h e grade 7 l e v e l , F ( l , 1 2 6 ) = 4.53, p_ .035. As e x p e c t e d , d i f f e r e n c e s between h i e r a r c h i c a l and l i s t c o n d i t i o n s were n o t o b t a i n e d a t e i t h e r grade l e v e l . H i e r a r c h i c a l and l i s t c o n d i t i o n s u b j e c t s o f b o t h g rades conformed t o t h e f u n c t i o n a l c l a s s i f i c a t i o n s i g n i f i c a n t l y more t h a n s u b j e c t s i n t h e random s t i m u l u s p r e s e n t a t i o n c o n d i t i o n , F_( 1,126) = 26.58, p l .0001. The d i f f e r e n c e between random and o r g a n i z e d s t i m u l u s T a b l e XV Three C a t e g o r y R e s p e c t R a t i o s : Observed R a t i o S c o r e Means and S t a n d a r d D e v i a t i o n s and T r a n s f o r m e d Means and S t a n d a r d D e v i a t i o n s by E x p e r i m e n t a l T reatments Degree o f L e a r n i n g Grade 7 Grade 3 H i e r a r c h i c a l C o n d i t i o n L i s t C o n d i t i o n • Random C o n d i t i o n No T r a i n i n g C o n d i t i o n DI - D2 DI D2 DI. D2 M .807 .840 .809 .853 .493 .513 .453 S .230 .213 .205 .260 .197 .148 .176 M t r 2.476 2.595 2.430 2.680 1.561 1.597 1.475 S t r .737 .714 .664 .777 .410 .300 .368 M. .460 . .437 .500 .493 .447 .416 .389 S .208 .229 .203 .281 .165 .099 .122 M t r 1.543 1.492 1.626 1.611 1.462 1.398 , ,1.342 S t r .589 .627 .571 .706 .344 .205' .252 1-75 p r e s e n t a t i o n c o n d i t i o n s was s i g n i f i c a n t l y g r e a t e r a t t h e grade 7 t h a n a t t h e grade 3 l e v e l , F ( l , 1 2 6 ) = 14.96, £ <• .0002. A l l f u r t h e r e f f e c t s and i n t e r -a c t i o n s between and among t h e v a r i a b l e s were n o n s i g n i f i c a n t . Two C a t e g o r y S o r t i n g R a t i o s c o r e s were c a l c u l a t e d f o r each s u b j e c t r e p r e s e n t i n g t h e e x t e n t o f agreement between'the s u b j e c t ' s o b s e r v e d two c a t e g o r y s o r t and t h e two c a t e g o r y c l u s t e r i n g formed on t h e b a s i s o f t h e v a l u e s o f t h e a b s t r a c t d i m e n s i o n . Observed and t r a n s f o r m e d r a t i o s c o r e means and s t a n d a r d d e v i a -t i o n s a r e p r e s e n t e d i n T a b l e X V I . A s o u r c e t a b l e f o r a 2 (grades), x 7 ( c o n d i t i o n s ) a n a l y s i s o f v a r i a n c e i s p r e s e n t e d i n A p p e n d i x S. Grade 7 conformed s i g n i f i c a n t l y more t o t h e two c a t e g o r y a b s t r a c t v a l u e s c l u s t e r i n g t h a n grade 3, F ( l , 1 2 6 ) = 17.22, £ < .0001. The d i f f e r e n c e between t r a i n e d and n o n - t r a i n e d groups was n o t s i g n i f i c a n t . T a b l e XVI w o u l d i n d i c a t e t h a t t h i s r e s u l t i s p r i m a r i l y a t t r i b u t a b l e t o t h e c l o s e c o r r e s p o n d e n c e between t h e random c o n d i t i o n groups and t h e n o - t r a i n i n g g r o u p s . B o t h o r g a n i z e d s t i m u l u s p r e s e n t a t i o n c o n d i t i o n s r e s p e c t e d t h e v a l u e s o f t h e a b s t r a c t d i m e n s i o n i n t h e i r c l u s t e r i n g s i g n i f i c a n t l y more t h a n t h e random c o n d i t i o n , F ( 1,12.6) = 16.23, £ .^ .0001. F o r grade 7 c h i l d r e n , t h e d i f f e r e n c e between o r g a n i z e d and random c o n d i t i o n s was g r e a t e r t h a n f o r ' t h e g r ade 3 c h i l d r e n , F_( 1,126) = 7.42, £.<- .007. O t h e r e f f e c t s and i n t e r a c t i o n s were n o n s i g n i f -i c a n t . T a b l e XVI Two C a t e g o r y R e s p e c t R a t i o s : Observed R a t i o Score Means and S t a n d a r d D e v i a t i o n s and T r a n s f o r m e d Means and. S t a n d a r d D e v i a t i o n s by E x p e r i m e n t a l Treatments C o n d i t i o n H i e r a r c h i c a l . L i s t Random • . No T r a i n i n g Degree o f • L e a r n i n g DI D2 DI D2 DI D2 M .678 .791 .633 .733 .467 . .506 .572 S .278 .270 .219 .225 .054 .109 .187 Grade 7 M t r 2.155 2.495 1.956 2.219 1.504 1.585 1.776 S t r .851 .835 .662 .693 .108 .228 .533 M .478 .517 .561 .544 .511 .456 .450 S .070 .172 .188 .190 .057 .023 .018 Grade 3 M t r 1.527 .1.661 1.754 1.720 1.593 1.482 1.471 S t r .141 .523 .537 .544 .116 .047 .035 177 CHAPTER V I I I DISCUSSIONS AND SUMMARY OF FINDINGS The a n a l y s e s o f t h e p r e s e n t d a t a w i l l be examined i n l i g h t o f t h e r a t i o n a l e and h y p o t h e s e s advanced f o r t h e s t u d y . Many o f t h e m a j o r hypo-t h e s e s were s u p p o r t e d . A f u r t h e r e x a m i n a t i o n o f e v i d e n c e r e g a r d i n g t h o s e h y p o t h e s e s t h a t were c o n f i r m e d and t h o s e t h a t were n o t may p r o v i d e a d d i t i o n a l i n f o r m a t i o n about o r g a n i z a t i o n a l p r o c e s s e s i n f r e e r e c a l l and t r a n s f e r t a s k s i n c h i l d r e n . A. Hypotheses and F i n d i n g s i n F r e e R e c a l l L e a r n i n g I t was p r e d i c t e d t h a t grade 7 c h i l d r e n w o u l d r e c a l l and c l u s t e r i t e m s comparably under b o t h methods o f s t i m u l u s p r e s e n t a t i o n , b u t t h a t g r ade 3 c h i l d r e n i n t h e l i s t c o n d i t i o n w o u l d show s u p e r i o r r e c a l l and c l u s t e r i n g t o g r a de 3 c h i l d r e n i n t h e h i e r a r c h i c a l c o n d i t i o n . T h i s p r e d i c t i o n stemmed from d a t a and t h e o r y i n d i c a t i n g e f f i c i e n t r e c a l l and c l u s t e r i n g f o r a d u l t s i n l e a r n i n g t a s k s when t h e s t i m u l u s m a t e r i a l s were embedded i n a m e a n i n g f u l h i e r -a r c h i c a l s t r u c t u r e . S i n c e h i e r a r c h i e s i n v o l v e c l a s s i n c l u s i o n r e l a t i o n s h i p s i t was c o n s i d e r e d l i k e l y t h a t g r ade 3 c h i l d r e n a c q u i r i n g c l a s s i f i c a t i o n s k i l l s w o uld l e a r n l i s t s more e a s i l y when t h e c l a s s i n c l u s i o n r e l a t i o n s h i p s i n v o l v e d i n t h e h i e r a r c h y were disembedded whereas grade 7 c h i l d r e n w o u l d d e m o n s t r a t e s u f f i c i e n t f l e x i b i l i t y t o l e a r n e q u a l l y w e l l r e g a r d l e s s o f whether t h e c l a s s i n c l u s i o n r e l a t i o n s h i p s were disembedded o r p r e s e n t e d i n a c o m p l e t e h i e r a r c h y . These e x p e c t a t i o n s were u p h e l d f o r t h e g r ade 7 c h i l d r e n , b u t n o t f o r t h e g r ade 3 c h i l d r e n on i t e m r e c a l l . A t b o t h grade l e v e l s , i t e m r e c a l l was comparable f o r l i s t c o n d i t i o n and h i e r a r c h i c a l c o n d i t i o n g r o u p s . T h i s I n d i c a t e s t h a t c h i l d r e n as young as 8 o r 9 y e a r s o f age can u n d e r s t a n d h i e r a r c h i c a l o r g a n i z a t i o n 178; and t h e c l a s s i n c l u s i o n r e l a t i o n s h i p s embedded w i t h i n t h a t s t r u c t u r e , o r , a t t h e v e r y l e a s t , can l e a r n i t e m s w h i c h a r e s t r u c t u r e d h i e r a r c h i c a l l y as e a s i l y as t h e y can l e a r n i t e m s w h i c h a r e p r e s e n t e d i n a more s i m p l e s t r u c t u r e . These r e s u l t s a g r e e w i t h t h o s e o f a r e c e n t , b u t e n t i r e l y d i f f e r e n t t y p e o f s t u d y ( S t e i n b e r g and A n d e r s o n , 1974) where i t was d e m o n s t r a t e d t h a t c h i l d r e n as young as s i x y e a r s o f age can use c l a s s i n c l u s i o n h i e r a r c h i e s a s a f u n c -t i o n a l b a s i s f o r r e t r i e v i n g i n f o r m a t i o n . I n t h e S t e i n b e r g and A n d e r s o n s t u d y f i r s t g r a d e r s saw e i g h t p i c t u r e s o f f a m i l i a r t h i n g s . They a t t e m p t e d t o r e c a l l each p i c t u r e s u b s e q u e n t l y , g i v e n as cues t h e c o r r e s p o n d i n g noun and f o u r o t h e r words w h i c h mapped o n t o a c l a s s i n c l u s i o n t r e e - l i k e s t r u c t u r e . P r e d i c t i o n s b a s e d on a model o f s e m a n t i c d i s t a n c e i n t h e s t r u c t u r e were c o n -f i r m e d . These r e s u l t s f o r f i r s t g rade c h i l d r e n a r e c o n t r a r y t o e x p e c t a t i o n s b a s e d on p r e v i o u s r e s e a r c h ( A n g l i n , 1970; E n t w i s t l e , 1966; I n h e l d e r and P i a g e t , 1964; O l v e r and Hornsby, 1966; P a l e r m o , 1971). A l t h o u g h i t was e x p e c t e d i n t h e p r e s e n t s t u d y t h a t grade 3 c h i l d r e n w o u l d be a b l e t o use c l a s s i n c l u s i o n r e l a t i o n s h i p s , i t was n o t e x p e c t e d t h a t t h e y w o u l d l e a r n as e f f i c i -e n t l y f r o m a complex h i e r a r c h i c a l o r g a n i z a t i o n as from a s i m p l e r p r e s e n t a t i o n o f t h e c l a s s i n c l u s i o n r e l a t i o n s h i p s i n v o l v e d . The f i n d i n g t h a t t h e y d i d , i n f a c t , s u g g e s t s , i n agreement w i t h S t e i n b e r g and A nderson (1974), t h a t t h e y can use t h e s e r e l a t i o n s h i p s a t an e a r l i e r age t h a n p r e v i o u s r e s e a r c h had i n d i c a t e d , and t h a t by t h e t i m e t h e y r e a c h grade 3 t h e y can f u n c t i o n e f f i c i e n t l y w i t h complex c l a s s i n c l u s i o n r e l a t i o n s h i p s a t l e a s t i n terms o f r e c a l l o f i t e m s on a f r e e r e c a l l t a s k . I t i s p o s s i b l e , o f c o u r s e , t h a t grade 3 s u b j e c t s were s i m p l y m e m o r i z i n g t h e i t e m s f o r r e c a l l r e g a r d l e s s o f t h e c l a s s i n c l u s i o n r e l a t i o n s h i p s i n v o l v e d . E v i d e n c e w h i c h i s c o n t r a r y t o t h i s p o s s i b i l i t y seems t o be i n d i c a t e d by t h e c l u s t e r i n g r e s u l t s . A g a i n , t h e r e s u l t s were c o n s i s t e n t a c r o s s b o t h age g r o u p s . On t h e f i r s t t h r e e t r i a l s , b o t h grade 3 and grade 7 s u b j e c t s c l u s t e r e d r e s p o n s e s more under t h e l i s t c o n d i t i o n t h a n under t h e h i e r a r c h i c a l '179' c o n d i t i o n . However, by t h e l a s t t r i a l , d i f f e r e n c e s i n c l u s t e r i n g as a f u n c t i o n o f o r g a n i z a t i o n o f s t i m u l u s i t e m s were n o t o b t a i n e d . Thus i t ap p e a r s t h a t a t b o t h grade l e v e l s , more c l u s t e r i n g o c c u r r e d i n t h e e a r l y t r i a l s when i t e m s were p r e s e n t e d i n terms o f s i m p l e r c l a s s i n c l u s i o n r e l a -t i o n s h i p s t h a n i n h i e r a r c h i c a l p r e s e n t a t i o n , b u t t h a t as t r i a l p r o c e e d e d , s u b j e c t s i n t h e h i e r a r c h i c a l c o n d i t i o n c aught up and c l u s t e r e d t o t h e same e x t e n t as s u b j e c t s i n t h e l i s t g r o u p s . Thus t h e i t e m r e c a l l and c l u s t e r i n g r e s u l t s i n d i c a t e t h a t c h i l d r e n as young as e i g h t o r n i n e y e a r s o f age b o t h u n d e r s t a n d c l a s s i n c l u s i o n and use complex c l a s s i n c l u s i o n r e l a t i o n s h i p s as e f f i c i e n t l y as s i m p l e c l a s s i n c l u -s i o n r e l a t i o n s h i p s . I t was a l s o e x p e c t e d t h a t b o t h grade 3 and grade 7 s u b j e c t s w o u l d r e c a l l more i t e m s under c o n d i t i o n s o f o r g a n i z e d s t i m u l u s p r e s e n t a t i o n t h a n random s t i m u l u s p r e s e n t a t i o n . T h i s e x p e c t a t i o n was c o n f i r m e d f o r t h e f i r s t t h r e e t r i a l s a c r o s s b o t h grade l e v e l s , and f o r t h e i n t e r m e d i a t e t r i a l s ( t r i a l s f o u r and f i v e ) f o r t h o s e groups r e c e i v i n g o n l y s i x t r i a l s . I t was n o t co n -f i r m e d on t h e l a s t t r i a l a c r o s s b o t h l e v e l s , n o r f o r t h e i n t e r m e d i a t e t r i a l s ( t r i a l s f o u r - n i n e ) f o r t h o s e groups r e c e i v i n g t e n t r i a l s . Thus i t a p p e a r s t h a t r e c a l l i s i n i t i a l l y a i d e d when i t e m s a r e p r e s e n t e d i n a c l e a r l y s t r u c -t u r e d f a s h i o n , w i t h an e x p l i c i t r u l e f o r o r g a n i z i n g t h e l e x i c a l i t e m s , b u t t h a t w i t h a d d i t i o n a l t r i a l s , t h i s e f f e c t i s l o s t . The a d d i t i o n o f more l e x i c a l i t e m s o r t h e p r e s e n t a t i o n o f more complex h i e r a r c h i e s w o u l d l i k e l y d e m o n s t r a t e a g r e a t e r d i f f e r e n c e i n i t e m r e c a l l as a r e s u l t o f o r g a n i z e d as opposed t o random s t i m u l u s p r e s e n t a t i o n . I t i s q u i t e p o s s i b l e t h a t a more d i f f i c u l t t a s k m i ght have p r o d u c e d d i f f e r e n c e s i n r e c a l l and c l u s t e r i n g as a f u n c t i o n o f number o f t r i a l s . I t was e x p e c t e d t h a t t h o s e s u b j e c t s r e c e i v i n g t e n t r i a l s w o u l d r e c a l l and c l u s t e r more t h a n t h o s e s u b j e c t s r e c e i v i n g o n l y s i x t r i a l s . I t a p p e a r s t h a t a s y m p t o t i c l e v e l s o f p e r f o r m a n c e were r e a c h e d by b o t h g r a d e s a t a p p r o x i m a t e l y -.180.-the t h i r d or fourth t r i a l . I t was predicted that differences i n performance on the free r e c a l l task would favor the grade 7 c h i l d r e n . This r e s u l t was c o n s i s t e n t l y obtained across conditions on item r e c a l l . There was a tendency f o r grade 7 c h i l d r e n to c l u s t e r more than grade 3 c h i l d r e n on the early learning t r i a l s . By the l a s t t r i a l grade 7 subjects clustered s i g n i f i c a n t l y more than grade 3 subjects. Thus grade 7 c h i l d r e n r e c a l l e d more items than grade 3 c h i l d r e n regardless of conditions, and also clustered i n greater conformity to the organizations imposed i n the l i s t and h i e r a r c h i c a l conditions. The o v e r a l l r e s u l t s on the free r e c a l l task suggest s i m i l a r storage and r e t r i e v a l processes i n both grade 3 and grade 7 c h i l d r e n . However, i t seems that older c h i l d r e n d i f f e r from younger ones i n the e f f i c i e n c y of these pro-cesses rather than i n t h e i r a b i l i t y to use information d i f f e r e n t i a l l y presented i n complex cla s s i n c l u s i o n h i e r a r c h i e s or i n simpler c l a s s i n c l u s i o n l i s t s . A f i n a l expectation concerning dimensional preferences at d i f f e r e n t age l e v e l s was not confirmed. In the s i x t r i a l s l i s t learning condition at both grade l e v e l s , r e c a l l was superior when the l i s t was organized according to the f u n c t i o n a l dimension than when i t was organized according to the abstract dimension. This e f f e c t was not obtained i n the ten t r i a l s l i s t learning condition .for e i t h e r grade l e v e l . Again, the r e s u l t s indicate that the same processes are operating i n both older and younger c h i l d r e n (at l e a s t i n s o f a r as performance on the free r e c a l l task i s concerned). ' B. Hypotheses and Findings i n the Sorting Transfer Task The expectations f o r the tr a n s f e r sorting task stemmed from the primary assumption that there would be an e f f e c t of t r a i n i n g on tr a n s f e r performance. Furthermore, i t was predicted that the greater degree of cognitive f l e x i b i l i t y i n the older c h i l d r e n would be demonstrated by a stronger tendency to apply spontaneously the trained', structures i n the free 181.'" s o r t i n g t a s k i n c o m p a r i s o n w i t h grade 3 c h i l d r e n . L i k e w i s e o l d e r c h i l d r e n were e x p e c t e d t o s o r t more c o r r e c t l y on t h e f i x e d s o r t s under b o t h t y p e s o f s t r u c t u r e d o r g a n i z a t i o n used i n t h e t r a i n i n g phase t h a n younger c h i l d r e n . By c o n t r a s t , on t h e f i x e d s o r t s , t h e grade 3 c h i l d r e n i n t h e h i e r a r c h i c a l c o n d i t i o n were e x p e c t e d t o p e r f o r m more a c c u r a t e l y on t h e s i x c a t e g o r y s o r t i n g t h a n l i s t c o n d i t i o n grade 3 c h i l d r e n , b u t no b e t t e r on t h e t h r e e and two c a t e g o r y s o r t s . The r e s u l t s o b t a i n e d from t h e f r e e s o r t i n g d a t a u s i n g Johnson's com-p a r a t i v e s c a l e s c o r e s s u p p o r t e d t h e e x p e c t a t i o n t h a t grade 7 c h i l d r e n w o u l d be more l i k e l y t o a p p l y s p o n t a n e o u s l y t h e o r g a n i z a t i o n imposed d u r i n g t h e t r a i n i n g p hase. T h i r t y seven and one h a l f p e r c e n t o f t h e grade 7 c h i l d r e n i n t h e s t r u c t u r e d t r a i n i n g c o n d i t i o n s s o r t e d i n p e r f e c t c o n f o r m i t y w i t h e i t h e r t h e s i x , t h r e e , o r two c a t e g o r y s o r t s - . Twenty f i v e p e r c e n t o f t h e s u b j e c t s s p o n t a n e o u s l y a p p l i e d t h e s i x c a t e g o r y g r o u p i n g . A l l e x c e p t one o f t h e s e s u b j e c t s had been t r a i n e d under t h e h i e r a r c h i c a l c o n d i t i o n . By c o n t r a s t , o n l y 5% o f t h e g r ade 3 s u b j e c t s i n t h e s t r u c t u r e d t r a i n i n g c o n d i -t i o n s conformed p e r f e c t l y t o an o r g a n i z a t i o n imposed d u r i n g t r a i n i n g . The h i e r a r c h i c a l c l u s t e r i n g r e s u l t s b o t h s u p p o r t and e x t e n d t h e above f i n d i n g s . From a c o m p a r i s o n o f t h e h i e r a r c h i e s o b t a i n e d , t h e f o l l o w i n g c o n -c l u s i o n s a r e drawn: t h a t a l l t r a i n e d grade 7 s u b j e c t s showed a c l e a r e r r e s p e c t f o r t h e t r a i n i n g d i m e n s i o n s t h a n a l l t r a i n e d grade 3 s u b j e c t s ; t h a t t h e u n t r a i n e d groups a t b o t h grade l e v e l s were d i f f e r e n t f r o m t h e t r a i n e d g roups i n t h e c r i t e r i a a p p l i e d t o make t h e i r s o r t s (the d i m e n s i o n s o f s i z e and f e r o c i t y a p p e a r i n g t o dominate a t t h e g r a d e 7 l e v e l , s i z e and o t h e r c r i t e r i a , f o r example, d o m e s t i c a t i o n , a t t h e g r ade 3 l e v e l ) ; t h a t b o t h o r g a n i z e d t r a i n i n g groups a t each grade l e v e l showed a r e s p e c t f o r t h e t r a i n i n g d i m e n s i o n s t o a g r e a t e r e x t e n t t h a n t h e random c o n d i t i o n t r a i n i n g g r o u p s ( i n w h i c h t h e h i e r a r c h i e s o b t a i n e d seemed t o r e f l e c t a s i z e d i m e n s i o n p r e d o m i n a n t l y ) ; t h a t h i e r a r c h i c a l l y t r a i n e d grade 7 s u b j e c t s showed t h e 182 dominance o f t h e a b s t r a c t d i m e n s i o n ' i n t h e i r s o r t i n g b e h a v i o r whereas h i e r -a r c h i c a l l y t r a i n e d grade 3 s u b j e c t s o r g a n i z e d t h e s t i m u l u s i t e m s a r o u n d t h e f u n c t i o n a l d i m e n s i o n ; and f i n a l l y , t h a t f o r l i s t t r a i n e d s u b j e c t s a t b o t h g rade l e v e l s , t h e f u n c t i o n a l dimension'was dominant. Thus, t h e a n a l y s e s o f t h e f r e e s o r t i n g d a t a s t r o n g l y s u p p o r t t h e ma j o r h y p o t h e s e s . A t r a i n i n g e f f e c t was d e m o n s t r a t e d a t b o t h age l e v e l s . D e s p i t e t h e f i n d i n g i n t h e f r e e r e c a l l d a t a t h a t t r a i n e d groups i n a l l c o n d i t i o n s p e r f o r m e d comparably i n i t e m r e c a l l on t h e l a s t t r i a l , t h e f r e e s o r t i n g d a t a i n d i c a t e t h a t groups r e c e i v i n g s t r u c t u r e d o r g a n i z a t i o n i n t h e f r e e r e c a l l t a s k had e s s e n t i a l l y l e a r n e d a new and d i f f e r e n t way o f o r g a n i z i n g t h e 18 l e x i c a l i t e m s , an o r g a n i z a t i o n w h i c h s u b j e c t s i n t h e random c o n d i t i o n had t h e o p p o r t u n i t y t o l e a r n ( s i n c e c a t e g o r y l a b e l s were i n c l u d e d i n t h e random s t i m u l u s p r e s e n t a t i o n ) b u t d i d n o t . E i t h e r s u b j e c t s i n t h e random c o n d i t i o n d i d n o t t r y s p o n t a n e o u s l y t o a p p l y t h e c a t e g o r y l a b e l s t o group t h e i t e m s , o r t h e y d i d n o t know how t o a p p l y them, o r e l s e t h e y imposed t h e i r own o r g a n i z a t i o n on t h e i t e m s f o r r e c a l l p u r p o s e s . T h i s o r g a n i z a t i o n c o u l d have been d e t e r m i n e d by d i m e n s i o n s f o r g r o u p i n g a n i m a l s w h i c h t h e s u b j e c t s had been accustomed t o u s i n g p r i o r t o t h e e x p e r i m e n t ( f o r example, t h e s i z e d i m e n s i o n ) . A n o t h e r p o s s i b i l i t y i s t h a t s u b j e c t s i n t h e random c o n d i t i o n s i m p l y memorized t h e i t e m s i n s e r i a l o r d e r . The h i e r a r c h i c a l c l u s t e r i n g f o r t h e s u b j e c t s i n t h e random c o n d i t i o n seemed t o r e f l e c t p r i m a r i l y a s i z e d i m e n s i o n . Whether t h e s u b j e c t s d e c i d e d t o use t h i s d i m e n s i o n when c o n f r o n t e d by t h e f r e e s o r t i n g t a s k , o r whether t h e y a l s o used i t t o c l u s t e r i t e m s i n t h e f r e e r e c a l l t a s k i s n o t c l e a r . The f r e e s o r t i n g d a t a a l s o i n d i c a t e t h a t o l d e r c h i l d r e n i n t h e s t r u c t u r e d t r a i n i n g c o n d i t i o n s a p p l i e d t h e s t r u c t u r e s t h e y had l e a r n e d more s p o n t a n e o u s l y and w i t h f e w e r e r r o r s t h a n younger c h i l -d r e n i n t h e same c o n d i t i o n s . The h y p o t h e s i s c o n c e r n i n g d i m e n s i o n a l p r e f e r e n c e s a t d i f f e r e n t age l e v e l s was a l s o c o n f i r m e d f o r t h e h i e r a r c h i c a l l y t r a i n e d s u b j e c t s , b u t n o t .183 f o r t h e l i s t t r a i n e d s u b j e c t s . Grade 7 h i e r a r c h i c a l l y t r a i n e d s u b j e c t s used t h e a b s t r a c t d i m e n s i o n t o f o r m two major g r o u p i n g s w h i l e grade 3 h i e r a r c h i c -a l l y t r a i n e d s u b j e c t s used t h e f u n c t i o n a l d i m e n s i o n t o form t h r e e m a j o r g r o u p i n g s . However, t h e f u n c t i o n a l d i m e n s i o n seems t o have been more s a l i e n t f o r b o t h age g r o u p s t r a i n e d under t h e l i s t c o n d i t i o n . T h i s f i n d i n g f o r t h e h i e r a r c h i c a l l y t r a i n e d s u b j e c t s a g r e e s w i t h p r e v i o u s r e s e a r c h on d e v e l o p -m e n t a l d i f f e r e n c e s i n d i m e n s i o n a l p r e f e r e n c e s ( B i r c h and B o r t n e r , 1966; Goldman and L e v i n e , 1963; H e a l d and M a r z o l f , 1953; O l v e r and Hornsby;, 1966; S i g e l , 1953, 1954). The s a l i e n c y o f t h e f u n c t i o n a l d i m e n s i o n f o r l i s t c o n -d i t i o n grade 3 s u b j e c t s i s a l s o i n agreement w i t h t h e above r e s e a r c h . There does n o t seem t o be any r e a d y e x p l a n a t i o n f o r t h e g r e a t e r s a l i e n c e o f t h e f u n c t i o n a l d i m e n s i o n i n t h e g r ade 7 l i s t c o n d i t i o n s o r t i n g s . The e x p e c t a t i o n t h a t grade 3 c h i l d r e n r e c e i v i n g t e n f r e e r e c a l l t r i a l s u nder t h e o r g a n i z e d s t i m u l u s c o n d i t i o n s w o u l d s o r t more i t e m s c o r r e c t l y u s i n g e i t h e r t h e s i x , t h r e e , o r two c a t e g o r y c l a s s i f i c a t i o n s t h a n grade 3 c h i l d r e n r e c e i v i n g 6 f r e e r e c a l l t r i a l s was n o t c o n f i r m e d . Even though d i f f e r e n c e s as a f u n c t i o n o f number o f t r i a l s were n o t o b t a i n e d i n t h e f r e e r e c a l l t a s k , s u b j e c t s i n t h e t e n t r i a l s c o n d i t i o n c o u l d s t i l l have l e a r n e d more about t h e s t r u c t u r a l o r g a n i z a t i o n o f t h e s t i m u l u s i t e m s t h r o u g h g r e a t e r e x p o s u r e t o t h a t o r g a n i z a t i o n . The d a t a i n d i c a t e t h a t t h e y d i d n o t . There a r e two p o s s i b l e r e a s o n s f o r t h i s outcome. One i s t h a t t h e t a s k was t o o l o n g and t h a t m o t i v a t i o n a l o r f a t i g u e f a c t o r s were r e s p o n s i b l e f o r t h e f a i l u r e o f t h e s u b j e c t s t o b e n e f i t f r o m g r e a t e r e x p o s u r e . A n o t h e r i s t h a t s u b j e c t s a t t a i n e d optimum p e r f o r m a n c e d u r i n g t h e e a r l y f r e e r e c a l l t r i a l s b o t h i n t h e i r c a p a c i t y t o s t o r e and r e t r i e v e i t e m s and t o u n d e r s t a n d t h e o r g a n i z a t i o n a l s t r u c t u r e . The f i r s t p o s s i b i l i t y w o u l d seem t o i m p l y a d e c r e a s e i n i t e m r e c a l l o v e r t h e l a t e r t r i a l s as boredom i n c r e a s e d . F i g u r e 7-1 s u g g e s t s t h a t t h i s d i d n o t o c c u r . Mean.number, o f i t e m s r e c a l l e d r e a c h e d asymptote on t h e t h i r d o r f o u r t h t r i a l and t h e c u r v e t h e n l e v e l l e d o f f . Thus, t h e second 184 p o s s i b i l i t y seems more l i k e l y . The r e s u l t s of' t h e a n a l y s e s on t h e d a t a from t h e f i x e d s o r t s were b a s i c a l l y i n agreement w i t h t h e f r e e s o r t i n g r e s u l t s and most o f t h e o r i g i n a l p r e d i c t i o n s . On a l l s o r t s grade 7 c h i l d r e n p e r f o r m e d more a c c u r a t e l y t h a n g r a d e 3 c h i l d r e n . On t h e s i x and t h r e e c a t e g o r y s o r t s , t r a i n e d s u b j e c t s p e r f o r m e d b e t t e r t h a n n o n - t r a i n e d s u b j e c t s . On t h e two c a t e g o r y s o r t , t r a i n e d and u n t r a i n e d s u b j e c t s p e r f o r m e d e q u a l l y w e l l . T h i s f i n d i n g was e x p l a i n e d as a r e s u l t o f t h e c l o s e a p p r o x i m a t i o n o f t h e s o r t s o b t a i n e d from t h e random c o n d i t i o n s u b j e c t s t o t h o s e o b t a i n e d from t h e n o - t r a i n i n g g roup. On a l l s o r t s , h i e r a r c h i c a l and l i s t c o n d i t i o n s u b j e c t s p e r f o r m e d more a c c u r -a t e l y t h a n t h e random c o n d i t i o n s u b j e c t s . A l s o , grade 7 c h i l d r e n i n t h e o r g a n i z e d s t i m u l u s p r e s e n t a t i o n c o n d i t i o n s d i d b e t t e r on a l l s o r t s t h a n t h e i r g r a d e 3 c o u n t e r p a r t s . Grades 7 and 3 h i e r a r c h i c a l c o n d i t i o n s u b j e c t s p e r f o r m e d , as e x p e c t e d , as a c c u r a t e l y as grade 7 l i s t c o n d i t i o n s u b j e c t s on t h e two and t h r e e c a t e g o r y s o r t s , b u t b o t h g r a d e s 7 and 3 h i e r a r c h i c a l c o n -d i t i o n s u b j e c t s d i d b e t t e r on t h e s i x c a t e g o r y s o r t s t h a n l i s t c o n d i t i o n s u b j e c t s . T h i s was p r e d i c t e d f o r g r ade 3 s u b j e c t s , b u t g r ade 7 s u b j e c t s i n b o t h h i e r a r c h i c a l and l i s t c o n d i t i o n s were e x p e c t e d t o show s u f f i c i e n t f l e x i b i l i t y t o p e r f o r m comparably, on t h e s i x c a t e g o r y s o r t . I t seems c l e a r f o r b o t h grade l e v e l s , t r a i n i n g on t h e more complex s t r u c t u r a l o r g a n i z a t i o n a l l o w e d . t h e m t o disembed t h e d i m e n s i o n s i n v o l v e d more e a s i l y t h a n t h e t r a i n i n g on t h e l i s t o r g a n i z a t i o n a l l o w e d them t o combine t h e d i m e n s i o n s i n v o l v e d . These f i n d i n g s from t h e t r a n s f e r t a s k seem t o c l a s h d i r e c t l y w i t h t h o s e o b t a i n e d by A n g l i n (1970). He f o u n d t h a t c h i l d r e n a t t h e t h i r d grade l e v e l made l i t t l e use o f s t r u c t u r e d m a t e r i a l a r r a n g e d i n b r a n c h i n g t r e e s . However, i n A n g l i n ' s s t u d y , t h e c l a s s i n c l u s i o n r u l e s were n o t e x p l a i n e d t o t h e s u b j e c t s d u r i n g t h e s t u d y p e r i o d , n o r were t h e c a t e g o r y l a b e l s p r e s e n t e d . T h e r e f o r e , i n o r d e r t o have c a t e g o r y l a b e l s s e r v e a c u e i n g f u n c t i o n f o r g e n e r a t i n g t h e s t i m u l u s i t e m s , spontaneous p r o d u c t i o n w o u l d have been 1 aS-n e c e s s a r y . S t u d i e s on t h e s l o w d e c l i n e o f p r o d u c t i o n d e f i c i e n c y i n young c h i l d r e n w o u l d i n d i c a t e t h a t t h e younger c h i l d r e n i n A n g l i n ' s s t u d y d i d n o t s u p p l y t h e m e d i a t o r s needed t o a i d them i n t h e i r t a s k p e r f o r m a n c e . The p r e s e n t s t u d y was q u i t e d i f f e r e n t from A n g l i n ' s i n t h a t s u b j e c t s were i n f o r m e d o f t h e r u l e s f o r a s s i g n i n g i t e m s t o g r o u p s , were exposed o v e r a number o f t r i a l s t o t h e c a t e g o r y l a b e l s , and c o u l d be e x p e c t e d t o p r o d u c e more s p o n t a n e o u s l y t h e c a t e g o r y l a b e l s n e c e s s a r y f o r a s s i g n i n g t h e i t e m s c o r r e c t l y t o groups on t h e t r a n s f e r t a s k . C. O v e r a l l Summary The s t u d i e s ' p r e s e n t e d i n t h i s d i s s e r t a t i o n have a t t e m p t e d t o a s s e s s s e m a n t i c s t r u c t u r e w i t h i n t h e domain o f a n i m a l terms a t d i f f e r e n t age and g r a de l e v e l s and t o e x p l o r e t h e e f f e c t i v e n e s s o f d i f f e r e n t t r a i n i n g t e c h n i q u e s i n p r o d u c i n g a l t e r a t i o n s i n s e m a n t i c s t r u c t u r e . I t ' i s hoped t h a t t h e f i n d -i n g s emerging f r o m t h e s e s t u d i e s w i l l have g e n e r a l i t y t o o t h e r s e m a n t i c domains, p a r t i c u l a r l y t h o s e domains w i t h - c a t e g o r i c a l s t r u c t u r e ( f o r example, p l a n t s , c o u n t r i e s ) . F u r t h e r r e s e a r c h o f a d e v e l o p m e n t a l k i n d i s needed t o e x p l o r e b o t h o t h e r s e t s o f l e x i c a l i t e m s w i t h i n t h e same domain and o t h e r domains. W i t h i n t h e s e m a n t i c domain o f a n i m a l t e r m s , c h i l d r e n as young as f i v e o r s i x y e a r s o f age appear t o have formed f a i r l y s t r o n g p a i r w i s e a s s o c i a t i o n s between a s m a l l s e t o f a n i m a l s ( f o r example, d o g - c a t , c o w - h o r s e ) . These a s s o c i a t i o n s w o u l d seem t o be b a s e d on t h e i r c o n t i g u o u s p r e s e n t a t i o n ( i n o r a l s p e e c h , p i c t u r e b o o k s , c o n t e x t s , e t c . ) , on t h e i r g r e a t e r number o f s h a r e d s e m a n t i c f e a t u r e s , and on t h e i r i n t e r c h a n g e a b i l i t y i n s e n t e n c e f r a m e s . These a s s o c i a t i o n s form a p e r s i s t e n t c o r e o f h i g h l y r e l a t e d c o n c e p t s w h i c h emerge most c l e a r l y a c r o s s a l l age l e v e l s on t a s k s o f an a s s o c i a t i v e k i n d . O t h e r a n i m a l s a r e a s s i m i l a t e d t o t h i s - c o r e t o f o r m a l o o s e l y t i e d network o f a s s o c i a t i o n s . S i n c e i t can be assumed t h a t . t h i s p r o c e s s o f a s s i m i l a t i o n i s dependent on b o t h l i n g u i s t i c and n o n l i n g u i s t i c e x p e r i e n c e s , and s i n c e younger 186' c h i l d r e n have had fewer e x p e r i e n c e s , a t younger age l e v e l s t h e s e o t h e r a n i m a l s a r e a s s i m i l a t e d i n a more i d i o s y n c r a t i c and l o o s e r f a s h i o n . W i t h i n c r e a s i n g age and s h a r e d e x p e r i e n c e s , t h e a s s o c i a t i o n s become more s t a n d a r d -i z e d a c r o s s c h i l d r e n o f a comparable age and more c l o s e l y t i e d i n t o t h e n e t -work. However, u n l e s s s p e c i f i c and e x t e n d e d t r a i n i n g c o n c e r n i n g a n i m a l taxonomy i s u n d e r t a k e n , t h e emerging c o g n i t i v e s t r u c t u r e , as d e t e r m i n e d by t a s k s i n w h i c h s u b j e c t s have t o impose an o r g a n i z a t i o n on a s e t o f a n i m a l t e r m s , a ppears t o be dominated by t h e s i z e d i m e n s i o n , w i t h o t h e r f e a t u r e s ( f o r example, f e r o c i t y , d o m e s t i c i t y , h a b i t a t i o n ) b e i n g t a k e n i n t o a c c o u n t l e s s s y s t e m a t i c a l l y and w i t h l e s s s a l i e n c e , e x c e p t i n s p e c i a l c a s e s where an a n i m a l ( f o r example, s e a l ) p o s s e s s e s a f e a t u r e o u t s t a n d i n g l y d i f f e r e n t from most o f t h e o t h e r a n i m a l s . I n t h e s e s p e c i a l c a s e s , t h a t p a r t i c u l a r f e a t u r e a s s u m e s . g r e a t e s t s a l i e n c e . Z o o l o g i s t s show a s t r u c t u r e , u n i q u e i n t h i s s t u d y , b a s e d p r i m a r i l y on f o o d h a b i t s . T h i s s t r u c t u r e r e s u l t s , p r e s u m a b l y , from e x p e r i e n c e s w i t h a n i m a l t a x o n o m i e s . I n t h e l e a r n i n g and t r a n s f e r . o f new s e m a n t i c s t r u c t u r e s , c h i l d r e n as young as e i g h t o r n i n e y e a r s o f age, i n agreement w i t h P i a g e t , can use c l a s s -i f i c a t i o n s k i l l s , and can a p p l y t h e s e s k i l l s t o u n d e r s t a n d h i e r a r c h i c a l o r g a n i z a t i o n s i n c o r p o r a t i n g c l a s s i n c l u s i o n r e l a t i o n s h i p s . The m a j o r d i f -f e r e n c e between e i g h t and n i n e y e a r o l d s and t w e l v e and t h i r t e e n y e a r o l d s i n t h e f r e e r e c a l l t a s k seems t o r e s i d e n o t i n d i f f e r e n t c o g n i t i v e o p e r a t i o n s , b u t s i m p l y i n d i f f e r e n c e s i n ' t h e number o f l e x i c a l i t e m s t h a t can be s t o r e d i n and r e t r i e v e d from l o n g t e r m memory d u r i n g a s h o r t s e r i e s o f e x p o s u r e s t o t h e s e l e x i c a l i t e m s , a q u a n t i t a t i v e r a t h e r t h a n a q u a l i t a t i v e d i f f e r e n c e . The major d i f f e r e n c e s between t h e s e two age groups i n t h e t r a n s f e r s o r t i n g t a s k appear t o l i e i n t h e g r e a t e r a b i l i t y o f t h e o l d e r age group t o g e n e r a t e t h e a p p r o p r i a t e c a t e g o r y l a b e l s s p o n t a n e o u s l y and t o a s s i g n i t e m s t o c a t e -g o r i e s w i t h f e w e r e r r o r s . The f i n d i n g t h a t younger c h i l d r e n d i d n o t b e n e f i t t o a g r e a t e r e x t e n t f r o m a s i m p l e r p r e s e n t a t i o n o f t h e c l a s s i n c l u s i o n -.1-8X r e l a t i o n s i n v o l v e d i n t h e ^ . h i e r a r c h i c a l s t r u c t u r e s u g g e s t s t h a t t h e s e c h i l d r e n f i n d h i e r a r c h i c a l p r e s e n t a t i o n s m e a n i n g f u l and e f f i c i e n t ways f o r a c q u i r i n g and o r g a n i z i n g new c o n c e p t s . F u r t h e r r e s e a r c h s h o u l d e x p l o r e t h e e x t e n t o f young c h i l d r e n ' s u n d e r -s t a n d i n g , o f h i e r a r c h i c a l r e l a t i o n s h i p s w i t h o t h e r n a t u r a l h i e r a r c h i e s , w i t h more complex h i e r a r c h i e s , and w i t h h i e r a r c h i e s i n c o r p o r a t i n g a g r e a t e r number o f l e x i c a l i t e m s . The t r a n s f e r t a s k d e m o n s t r a t e d t h a t c h i l d r e n can be t r a i n e d t o o r g a n i z e t h e s e t o f a n i m a l terms i n a manner c o n s i s t e n t w i t h t h e dominant d i m e n s i o n d e m o n s t r a t e d by z o o l o g i s t s . The e f f e c t s o f s u c h t r a i n i n g s h o u l d be i n v e s t i g a t e d by e x t e n s i o n t o o t h e r t y p e s o f t r a n s f e r t a s k s . B o t h i t e m r e c a l l and t r a n s f e r e f f e c t s s h o u l d be e x p l o r e d i n s t u d i e s c o n c e r n e d a l s o w i t h l o n g t e r m r e t e n t i o n . From an e d u c a t i o n a l s t a n d p o i n t , t h e f i r s t s t u d y s u g g e s t s t h a t c h i l d r e n , a t l e a s t by t h e t i m e t h e y r e a c h grade 7, and p e r h a p s e a r l i e r , s p o n t a n e o u s l y o r g a n i z e and c l a s s i f y a n i m a l s . P e r h a p s t h i s f i n d i n g t h a t i t e m s i n t h e domain o f a n i m a l terms a r e a l r e a d y c o g n i t i v e l y r e l a t e d i n ways t h a t may be d i f f e r e n t from ways e d u c a t o r s w o u l d l i k e t o see them r e l a t e d s h o u l d be t a k e n i n t o a c c o u n t i n i n t r o d u c i n g new c o n c e p t s about a n i m a l s . Even i n a d u l t s , t h e s pontaneous o r g a n i z a t i o n does n o t r e f l e c t any o f t h e o r g a n i z a t i o n s t a u g h t i n s c h o o l . However, s i n c e a d u l t s have an e x t e n s i v e v o c a b u l a r y o f a n i m a l t e r m s , t h e s t u d y a l s o s u g g e s t s t h a t t h i s n a t u r a l o r g a n i z a t i o n does n o t i n t e r f e r e w i t h t h e a s s i m i l a t i o n o f new t e r m s . The s econd s t u d y sheds some l i g h t on how t o a t t e m p t t o change a s e m a n t i c s t r u c t u r e t h r o u g h o u t a p a r t i c u l a r age r a n g e . I t s u g g e s t s t h a t c h i l d r e n a t t h e l o w e r end o f t h i s age range can l e a r n from a complex p r e s e n -t a t i o n o f s t r u c t u r a l r e l a t i o n s h i p s as e a s i l y as from a more s i m p l e p r e s e n t a -t i o n o f t h e same m a t e r i a l , p r o v i d e d , t h a t t h e r u l e s f o r g e n e r a t i n g t h e s t r u c -t u r e a r e p r e s e n t e d and e x p l a i n e d . However, i t a l s o s u g g e s t s t h a t t h e e f f e c t s o f s t r u c t u r a l o r g a n i z a t i o n on p e r f o r m a n c e on a r e l a t e d t r a n s f e r t a s k 188 a r e g r e a t e r as t h e c h i l d becomes o l d e r and- more f l e x i b l e i n h i s c l a s s i f i c -a t o r y a b i l i t y . P e r h a p s this-means, t h a t t h e t e a c h i n g o f complex c l a s s i f i c a -t i o n s s h o u l d be d e l a y e d u n t i l t h e c h i l d has a t t a i n e d g r e a t e r c o g n i t i v e f l e x i b i l i t y , a l t h o u g h , on s p e c u l a t i v e g r o u n d s , i t seems p r o b a b l e t h a t a t t e m p t s t o t r a i n complex c l a s s i f i c a t i o n s may, i n t h e m s e l v e s , h a s t e n t h e a c q u i s i t i o n o f g r e a t e r c o g n i t i v e f l e x i b i l i t y . 189 LITERATURE CITED A n d e r s o n , J . R. FRAN: A s i m u l a t i o n model o f f r e e - r e c a l l . I n G. H. Bower ( E d . ) , The p s y c h o l o g y o f l e a r n i n g and m o t i v a t i o n , V o l . V. New Y o r k : Academic P r e s s , 1972. A n g l i n , J . M. The growth o f word meaning. Cambridge, Mass.: M.I.T. P r e s s , 1970. B i r c h , H. G. and B o r t n e r , M. S t i m u l u s c o m p e t i t i o n and c a t e g o r y usage i n nor m a l c h i l d r e n . J o u r n a l o f G e n e t i c P s y c h o l o g y , 1966, 109, 195-204. Bourne, J r . L. E., E k s t r a n d , B. R v and Dominowski, R. L. The P s y c h o l o g y o f  t h i n k i n g . New J e r s e y : P r e n t i c e - H a l l , 1971. B o u s f i e l d , W. A. The o c c u r r e n c e o f c l u s t e r i n g i n t h e r e c a l l o f randomly a r r a n g e d a s s o c i a t e s . J o u r n a l o f G e n e r a l P s y c h o l o g y , 1953, 49, 229-240. Gower, G. H. O r g a n i z a t i o n a l f a c t o r s i n memory. C o g n i t i v e P s y c h o l o g y , 1970, 1, 18-46. Bower, G. H., C l a r k , M. C., L e s g o l d , A. M., and Winzenz, D. H i e r a r c h i c a l r e t r i e v a l schemes i n r e c a l l o f c a t e g o r i z e d word l i s t s . J o u r n a l o f  V e r b a l L e a r n i n g and V e r b a l B e h a v i o r , 1969, 3_, 323-343. Bower, G. H., L e s g o l d , A. M., and Tieman, D. G r o u p i n g o p e r a t i o n s i n f r e e r e c a l l . J o u r n a l o f V e r b a l L e a r n i n g and V e r b a l B e h a v i o r , 1969, 8_, 481-493. C a r r o l l , J . D., and Chang, J . J . A n a l y s i s o f I n d i v i d u a l d i f f e r e n c e s i n m u l t i d i m e n s i o n a l s c a l i n g v i a an N-way g e n e r a l i z a t i o n o f " E c k a r t - Y o u n g " d e c o m p o s i t i o n . P s y c h o m e t r i k a , 1970, 35_, 283-319. C o f e r , C . N . On some f a c t o r s i n t h e o r g a n i z a t i o n a l c h a r a c t e r i s t i c s o f f r e e r e c a l l . A m e r i c a n P s y c h o l o g i s t , 1965, 20_, 261-272. C o l e , M., F r a n k e l , F.; and Shar p , D. Development o f f r e e r e c a l l l e a r n i n g i n c h i l d r e n . D e v e l o p m e n t a l P s y c h o l o g y , 1971, 4_, 109-123. C o l l i n s , A. M. and Q u i l l i a n , M. R. R e t r i e v a l time, f r o m s e m a n t i c memory. J o u r n a l o f V e r b a l L e a r n i n g and V e r b a l B e h a v i o r , 1969, 8_, 241-248. . E x p e r i m e n t s on s e m a n t i c memory and language c o m p r e h e n s i o n . I n L. W. Gregg ( E d . ) , C o g n i t i o n i n l e a r n i n g and memory. New Y o r k : W i l e y , .1970. (a) . Does c a t e g o r y s i z e a f f e c t c a t e g o r i z a t i o n t i m e ? J o u r n a l o f V e r b a l L e a r n i n g and V e r b a l B e h a v i o r , 1970, 9_, 432-438. (b) 190 D a l e , H. C. A. F a m i l i a r i t y and f r e e r e c a l l . Q u a r t e r l y J o u r n a l o f E x p e r i - m e n t a l P s y c h o l o g y , 1967, 19, 103-108. Deese, J . On t h e s t r u c t u r e o f a s s o c i a t i v e meaning. P s y c h o l o g i c a l Review, 1962, 69, 131-175. . The s t r u c t u r e o f a s s o c i a t i o n s i n lan g u a g e and t h o u g h t . B a l t i m o r e : Johns H o p k i n s P r e s s , 1965. - . P s y c h o l i n g u i s t i c s . B o s t o n : A l l y n and Bacon, 1970. D i x o n , R. M. W. A method o f s e m a n t i c d e s c r i p t i o n . I n D. D. S t e i n b e r g and L. A. J a k o b o v i t s ( E d s . ) , S e m a n t i c s , An I n t e r d i s c i p l i n a r y r e a d e r i n  p h i l o s o p h y , l i n g u i s t i c s and p s y c h o l o g y . Cambridge: U n i v e r s i t y P r e s s , 1971. Edwards, J . C. The e f f e c t o f i n s t r u c t i o n and c o n c o m i t a n t v a r i a b l e s on m u l t i p l e c a t e g o r i z a t i o n a b i l i t y . iJiglewood, C a l i f o r n i a : Southwest R e g i o n a l L a b o r a t o r y f o r E d u c a t i o n a l R e s e a r c h and Development, 1968. E n t w i s t l e , D. R. Word a s s o c i a t i o n s o f young c h i l d r e n . B a l t i m o r e : Johns H o p k i n s P r e s s , 1966. F i l l e n b a u m , S. and R a p a p o r t , A. S t r u c t u r e s i n t h e s u b j e c t i v e l e x i c o n . New Y o r k : Academic P r e s s , 1971. F r i e n d l y , M. L. P r o x i m i t y a n a l y s i s and t h e s t r u c t u r e o f o r g a n i z a t i o n i n f r e e r e c a l l . P r i n c e t o n , • New J e r s e y : E d u c a t i o n a l T e s t i n g S e r v i c e , 1972. G l a s e r , R. and R e s n i c k . L. B. I n s t r u c t i o n a l p s y c h o l o g y . A n n u a l Review o f  P s y c h o l o g y , 1972, 2_3, 207-275. Goldman, A. E. and L e v i n e , M. A d e v e l o p m e n t a l s t u d y o f o b j e c t s o r t i n g . C h i l d Development, 1963, 34, 649-666. H e a l d , J . E. and M a r z o l f , S. S. A b s t r a c t b e h a v i o r i n e l e m e n t a r y s c h o o l c h i l d r e n as measured by t h e G o l d s t e i n S c h e e r e r S t i c k T e s t and t h e W e i g l - G o l d s t e i n - S c h e e r e r Color. Form S o r t i n g T e s t . J o u r n a l o f C l i n i c a l  P s y c h o l o g y , 1953, 10_, .59-62. H e n l e y , Nancy M. S e m a n t i c s o f v i c t o r y and d e f e a t . P e r c e p t u a l and Mo t o r  S k i l l s , 1967, 25, 17-22. . A p s y c h o l o g i c a l s t u d y o f t h e s e m a n t i c s o f a n i m a l t e r m s . J o u r n a l o f V e r b a l L e a r n i n g and V e r b a l B e h a v i o r , 1969, 8, 176-184. H e n l e y , Nancy M., Noyes, H. L v and Deese, J . Semantic s t r u c t u r e i n s h o r t -t e r m memory. J o u r n a l o f E x p e r i m e n t a l P s y c h o l o g y , 1968, 77_, 587-592. H o r o w i t z , A. B. E f f e c t s o f s t i m u l u s p r e s e n t a t i o n modes on c h i l d r e n ' s r e c a l l and c l u s t e r i n g . Psychonomic S c i e n c e , 1969, 14, 297-298. I n h e l d e r , B. and P i a g e t , J . The e a r l y growth o f l o g i c i n t h e c h i l d : c l a s s i f i c a t i o n and s e r i a t i o n . New Y o r k : H a r p e r and Row, 1964. 191 I s a a c , P. D. D i s s i m i l a r i t y judgements and m u l t i d i m e n s i o n a l s c a l i n g c o n f i g -u r a t i o n s as i n d i c e s o f p e r c e p t u a l s t r u c t u r e : a s t u d y o f i n t e r - i n d i v i d u a l c o n s i s t e n c i e s . Ann A r b o r , M i c h i g a n : M i c h i g a n M a t h e m a t i c a l P s y c h o l o g y Program 68-3, 1968. J a c o b s , P. I . and V a n d e v e n t e r , M. The l e a r n i n g and t r a n s f e r o f d o u b l e c l a s s i f i c a t i o n s k i l l s : a r e p l i c a t i o n and e x t e n s i o n s . ( R e s e a r c h B u l l e t i n . No. 69-88) P r i n c e t o n , New J e r s e y : E d u c a t i o n a l T e s t i n g S e r v i c e , 1969. . The l e a r n i n g and t r a n s f e r o f d o u b l e c l a s s i f i c a t i o n s k i l l s by f i r s t g r a d e r s . C h i l d Development, 1971, 42_, 149-159. J o h n s o n , P. E. A s s o c i a t i v e meaning o f c o n c e p t s i n p h y s i c s . J o u r n a l o f  E d u c a t i o n a l P s y c h o l o g y , 1964, 55_, 84-88. J o h n s o n , S. C. H i e r a r c h i c a l c l u s t e r i n g schemes. P s y c h o m e t r i k a , 1967, 32, 241-254. . M e t r i c c l u s t e r i n g . U n p u b l i s h e d , 1968. K a t z , J . J . and F o d o r , J . A. The s t r u c t u r e o f a s e m a n t i c t h e o r y . Language, 1963, 39_, 170-210. K e n d l e r , T. S. An ontogeny o f m e d i a t i o n a l d e f i c i e n c y . C h i l d Development, 1972, 43, 1-18. K i n t s c h , W. R e c o g n i t i o n and f r e e r e c a l l o f o r g a n i z e d l i s t s . J o u r n a l o f  E x p e r i m e n t a l P s y c h o l o g y , 1968, 78, 481-487. K l a h r , D. and W a l l a c e , J . G. An i n f o r m a t i o n p r o c e s s i n g a n a l y s i s o f some P i a g e t i a n e x p e r i m e n t a l t a s k s . C o g n i t i v e P s y c h o l o g y , 1970, 1_, 358-387. Kohnstamm, G. A. An e v a l u a t i o n o f p a r t o f P i a g e t ' s t h e o r y . A c t a P s y c h o l o g -i c a , 1963, 21, 313-356. K o f s k y , E. A s c a l o g r a m s t u d y o f c l a s s i f i c a t o r y development. C h i l d  Development, 1966, _37, 192-204. K r u s k a l , J . B. M u l t i d i m e n s i o n a l s c a l i n g by o p t i m i z i n g goodness o f f i t t o a n o n m e t r i c h y p o t h e s i s . P s y c h o m e t r i k a , 1964, 29_, 1-27. L a u r e n c e , M. W. A d e v e l o p m e n t a l l o o k a t t h e u s e f u l n e s s o f l i s t c a t e g o r i z a -t i o n as an a i d t o f r e e r e c a l l . C a n a d i a n J o u r n a l ' o f P s y c h o l o g y , 1967, 21, 153-165. Le e , S. S. T r a n s f e r from l o w e r - o r d e r t o h i g h e r - o r d e r c o n c e p t . J o u r n a l o f  V e r b a l L e a r n i n g and V e r b a l B e h a v i o r , 1968, 1_, 930-937. M c N e i l l , D. The development o f t h e s e m a n t i c s y stem. U n p u b l i s h e d , 1968. . The a c q u i s i t i o n o f l a n g u a g e . New Y o r k : H a r p e r and Row, 1970. Meyer, D. E. On t h e r e p r e s e n t a t i o n and r e t r i e v a l o f s t o r e d s e m a n t i c i n f o r m a t i o n . C o g n i t i v e P s y c h o l o g y , 1970, 1_, 242-300. 192 M i l l e r , G. A. P s y c h o l i n g u i s t i c approaches t o t h e s t u d y o f co m m u n i c a t i o n . I n D. L. A r m - ( E d . ) , J o u r n e y s i n S c i e n c e . S m a l l s t e p s - — g i a n t s t r i d e s . A l b u q u e r q u e , New M e x i c o : U n i v e r s i t y o f New M e x i c o P r e s s , 1967. . A p s y c h o l o g i c a l method t o i n v e s t i g a t e v e r b a l c o n c e p t s . J o u r n a l o f M a t h e m a t i c a l P s y c h o l o g y , 1969, 6_, 169-191. M o e l e y , B. E., O l s o n , F. A., Halwes, T. G., and F l a v e l l , J . H. P r o d u c t i o n d e f i c i e n c y i n c h i l d r e n ' s c l u s t e r e d r e c a l l . D e v e l o p m e n t a l P s y c h o l o g y , 1969, 1, 26-34. N e l s o n , K. J . The o r g a n i z a t i o n o f f r e e r e c a l l by young c h i l d r e n . J o u r n a l  o f E x p e r i m e n t a l C h i l d P s y c h o l o g y , 1969, 8_, 284-295. N e l s o n , T. 0. and S m i t h , E. E. A c q u i s i t i o n o f f o r g e t t i n g o f h i e r a r c h i c a l l y o r g a n i z e d m a t e r i a l i n l o n g - t e r m memory. J o u r n a l o f E x p e r i m e n t a l P s y c h o l - ogy, 1972, 95_, 388-396. O l v e r , R. R. and Hornsby, J . R. On e q u i v a l e n c e . I n J . S. B r u n e r , R. M. O l v e r , P. M. G r e e n f i e l d e t . a l . ( E d s . ) , S t u d i e s i n c o g n i t i v e g r o w t h . New Y o r k : W i l e y , 1966. Osgood, C. E., S u c i , G. J., and Tannenbaum, P. H. The measurement o f meaning. Urbana, 111.: U n i v e r s i t y o f I l l i n o i s P r e s s , 1967. Pa l e r m o , D. S. C h a r a c t e r i s t i c s o f word a s s o c i a t i o n r e s p o n s e s o b t a i n e d f r o m c h i l d r e n i n gr a d e s one t h r o u g h f o u r . D e v e l o p m e n t a l P s y c h o l o g y , 1971, 5_, 118-123. P a r k e r , R. K. and Day, M. C. The use o f c o n c r e t e , f u n c t i o n a l and a b s t r a c t c o n c e p t s i n m u l t i p l e c l a s s i f i c a t i o n . D e v e l o p m e n t a l P s y c h o l o g y , 1971, 5_, 312-319. P a r k e r , R. K., S p e r r , S. J., and R u f f , M. C. M u l t i p l e c l a s s i f i c a t i o n : a t r a i n i n g a p p r o a c h . D e v e l o p m e n t a l P s y e h o l o g y , 1972, 1_, 188-194. P e r f e t t i , C. A. P s y c h o s e m a n t i c s : some c o g n i t i v e a s p e c t s o f s t r u c t u r a l meaning. P s y c h o l o g i c a l B u l l e t i n , 1972, 78, 241-259. P i a g e t , J . Review o f S t u d i e s i n c o g n i t i v e g r o w t h by J . S. B r u n e r , Rose O l v e r , and P a t r i c i a : M. G r e e n f i e l d . Contemporary P s y c h o l o g y , 1967, 12, 532-533. R i p s , L. J . , Shoben, E. J . and S m i t h , E. E. Se m a n t i c d i s t a n c e and t h e v e r i f i c a t i o n o f s e m a n t i c r e l a t i o n s . ' J o u r n a l o f V e r b a l L e a r n i n g and  V e r b a l B e h a v i o r , 1973, 12_, 1-20. Rosch, E. H. On t h e i n t e r n a l s t r u c t u r e o f p e r c e p t u a l and s e m a n t i c c a t e g o r -i e s . I n T. E. Moore ( E d . ) , C o g n i t i v e development and t h e a c q u i s i t i o n o f  lang u a g e . New Y o r k : Academic P r e s s , 1973. Ro s n e r , Sue R. The e f f e c t s o f r e h e a r s a l and c h u n k i n g i n s t r u c t i o n s on c h i l -d r e n ' s m u l t i - t r i a l f r e e r e c a l l . J o u r n a l o f E x p e r i m e n t a l C h i l d  P s y c h o l o g y , 1971, 11, 93-105. R u m e l h a r t , D. E. and Abrahamson, A. A. A model f o r a n a l o g i c a l r e a s o n i n g . C o g n i t i v e P s y c h o l o g y , 1973, 5_, 1-28. 193 R u m e l h a r t , D. E., L i n d s a y , P. H., and Norman, D. A. A p r o c e s s model f o r l o n g -t e r m memory. I n E. T u l v i n g and W. Donaldson ( E d s . ) , O r g a n i z a t i o n and  memory. New Yor k : Academic P r e s s , 1972. Romney, A. K. and D'Andrade, R. G. C o g n i t i v e a s p e c t s o f E n g l i s h k i n t e r m s . I n A. K. Romney and R. G. D'Andrade ( E d s . ) , " T r a n s c u l t u r a l s t u d i e s i n c o g n i t i o n . A m e r i c a n A n t h r o p o l o g i s t ( s p e c i a l P u b l i c a t i o n s ) , 1964, 146-170. S c h a e f f e r , B., Lewes, J o a n A.; and Van Decar, A n n e t t e . The growth o f c h i l -d r e n ' s s e m a n t i c memory; s e m a n t i c e l e m e n t s . J o u r n a l o f E x p e r i m e n t a l  C h i l d P s y c h o l o g y , 1971, 11, 296-309. S c h a e f f e r , B. and W a l l a c e , R. The c o m p a r i s o n o f word meanings. J o u r n a l o f  E x p e r i m e n t a l P s y c h o l o g y , 1970, 86_, 144-152. S h a p i r o , S. I . and M o e l y , B. E. F r e e r e c a l l , s u b j e c t i v e o r g a n i z a t i o n , and l e a r n i n g t o l e a r n a t t h r e e age l e v e l s . Psychonomic S c i e n c e , 1971, 23, 189-191. Shepard, R. N. Some p r i n c i p l e s and p r o s p e c t s f o r t h e s p a t i a l r e p r e s e n t a t i o n o f b e h a v i o r a l s c i e n c e d a t a . P a p e r p r e s e n t e d a t MSSB Advanced R e s e a r c h Seminar on Measurement and S c a l i n g , J u n e , 1969. S i g e l , I . E. D e v e l o p m e n t a l t r e n d s i n t h e a b s t r a c t i o n a b i l i t y o f c h i l d r e n . C h i l d Development, 1953, 2£, 131-144. . Dominance o f meaning. J o u r n a l o f G e n e t i c P s y c h o l o g y , 1954, 85, 201-207. S i g e l , I . E., Roeper, A.; and Hooper, F. H. A t r a i n i n g p r o c e d u r e f o r t h e a c q u i s i t i o n o f P i a g e t ' s c o n s e r v a t i o n o f q u a n t i t y : a p i l o t s t u d y and i t s r e p l i c a t i o n . B r i t i s h J o u r n a l o f E d u c a t i o n a l P s y c h o l o g y , 1966, 36, 301-311. S t e i n b e r g , E. R. and A n d e r s o n , R. C. H i e r a r c h i c a l s e m a n t i c o r g a n i z a t i o n i n s i x - y e a r - o l d s . U n p u b l i s h e d , 1974. S t e i n m e t z , Jenny I . and B a t t i g , W. F. C l u s t e r i n g and p r i o r i t y o f f r e e r e c a l l o f newly l e a r n e d i t e m s i n c h i l d r e n . D e v e l o p m e n t a l P s y c h o l o g y , 1969, 1_, 503-507. T u c k e r , L. R. and M e s s i c k , S. An. i n d i v i d u a l d i f f e r e n c e s model f o r m u l t i -d i m e n s i o n a l s c a l i n g . P s y c h o m e t r i k a , 1963, 28, 333-367. T u l v i n g , E. S u b j e c t i v e o r g a n i z a t i o n i n f r e e r e c a l l o f " u n r e l a t e d " words. P s y c h o l o g i c a l Review, 1962, 69_, 355-363. V y g o t s k y , L. S. Thought and l a n g u a g e . Cambridge, Mass.: M.I..T. P r e s s , 1962. W h i t e , S. H. E v i d e n c e f o r a h i e r a r c h i c a l arrangement o f l e a r n i n g p r o c e s s e s . I n L. P. L i p s e t t and C. C. S p i k e r ( E d s . ) , Advances i n c h i l d development  and b e h a v i o r , V o l . 2. New Yor k : Academic P r e s s , 1965. Whitman, J . R. and G a r n e r , W. R. F r e e r e c a l l l e a r n i n g o f v i s u a l f i g u r e s as a f u n c t i o n o f fo r m o f i n t e r n a l s t r u c t u r e . J o u r n a l o f E x p e r i m e n t a l P s y c h o l - ogy, 1962, 64, 558-564. 194 W o h l w i l l , J . F. The m y s t e r y o f t h e p r e - l o g i c a l c h i l d . P s y c h o l o g y Today, 1967, 1, 24-34. Y o s h i m u r a , E. K., M o e l y , B. E., and S h a p i r o , S. I . The i n f l u e n c e o f age and p r e s e n t a t i o n o r d e r upon c h i l d r e n ' s f r e e r e c a l l and l e a r n i n g t o l e a r n . Psychonomic S c i e n c e , 1971, 23, 261-263. A p p e n d i x A. F r e e - L i s t i n g D a t a Number o f S u b j e c t s No. o f s u b j e c t s w i t h i n each l i s t i n g a n i m a l e d u c a t i o n a l l e v e l A n i m a l Z Ed G r l l Gr7 Gr3 K 138 22 24 24 24 23 21 dog 134 20 23 24 23 24 20 c a t 129 18 22 22 23 24 20 l i o n 124 18 20 23 23 20 20 h o r s e 117 16 19 24 23 21 14 cow 117 13 22 24 20 18 20 e l e p h a n t 117 16 24 18 22 20 17 t i g e r 106 11 18 21 19 22 15 monkey 104 16 21 21 19 15 12 mouse 103 14 17 23 19 19 11 whale 100 13 22 22 16 11 16 g i r a f f e 97 15 21 14 18 19 10 r a b b i t 95 19 16 19 21 17 13 b e a r 91 13 16 22 16 17 7 p i g 83 14 16 18 15 12 8 c h i c k e n 83 14 18 18 12 16 5 d e e r 83 13 19 18 13 14 6 snake 80 13 17 19 14 11 6 r a t 73 10 15 20 11 10 7 duck 71 13 11 16 12 13 6 s e a l 70 16 13 15 12 13 1 r o b i n 69 16 11 15 11 6 10 sheep 67 5 9 • 13 11 15 14 f i s h 65 10 15 14 15 6 5 g o r i l l a 65 5 13 16 13 12 ' 6 hippopotamus 65 5 14 17 12 11 6 z e b r a 61 15 12 11 8 10 5 e a g l e 61 11 14 11 9 9 7 kangaroo 61 14 15 10 11 10 1 w o l f 60 10 17 11 12 9 1 f o x 60 10 14 12 9 8 7 g o a t 60 7 15 10 11 13 4 s q u i r r e l 58 3 6 12 12 11 14 b i r d 57 7 13 14 10 6 7 a l l i g a t o r 57 9 13 14 9 7 5 c r o c o d i l e 57 10 9 10 11 9 8 l e o p a r d 57 11 17 10 11 6 2 moose 56 6 11 8 16 13 2 g e r b i l 55 3 15 ' 13 11 10 3 r h i n o c e r o s 52 14 9 10 12 6 1 salmon 50 14 9 6 10 7 4 f r o g 49 10 5 12 12 4 6 s h a r k 49 11 10 3 7 12 6 t u r t l e 47 5 9 12 11 10 0 r a c c o o n 46 8 4 6 12 8 8 bee 45 9 11 10 6 8 1 b e a v e r 45 7 11 5 7 13 2 chipmunk 45 6 8 6 10 8 7 donkey 45 9 10 10 6 10 0 goose Number o f S u b j e c t s l i s t i n g a n i m a l No. o f s u b j e c t s w i t h i n each e d u c a t i o n a l l e v e l Z Ed G r l l Gr7 Gr3 K A n i m a l 45 6 7 12 44 8 10 9 44 8 7 ' 10 44 12 11 10 43 10 10 6 42 6 6 8 41 4 13 9 41 6 9 4 41 4 12 7 40 8 11 8 40 4 10 10 40 13 6 9 39 9 8 5 39 4 11 10 39 8 6 9 39 9 9 5 38 3 9 3 36 5 8 5 36 16 3 6 36 6 7 7 36 3 9 8 36 9 7 10 35 11 7 7 34 3 7 13 33 7 12 3 33 6 7 12 32 9 7 5 32 0 7 3 32 4 15 6 31 5 5 6 31 6 10 10 30 0 5 5 30 12 4 4 30 9 11 4 30 5 6 4 30 7 7 3 30 1 6 6 30 9 4 4 29 8 5 8 29 8 3 6 29 6 6 7 28 6 5 9 28 9 6 7 28 6 3 4 27 1 8 4 27 . 6 5 4 27 7 7 2 25 5 9 4 25 10 4 3 25 4 4 5 25 4 3 5 24 8 8 5 23 6 6 4 6 11 3 p o l a r b e a r 12 5 0 d o l p h i n 5 8 6 p e n g u i n 6 5 0 spar r o w 8 8 1 l i z a r d . 12 6 4 f l y 7 . 7 1 cougar 9 9 4 g u i n e a p i g 9 7 2 k o a l a 10 2 1 chimpanzee 4 9 3 o s t r i c h 8 4- 0 t r o u t 8 7 ,2 a n t 8 6 0 a n t e l o p e 6 7 2 o c t o p u s 9 7 0 s p i d e r 7 9 7 r o o s t e r 6 7 5 camel 4 ' 4 3 c r a b 4 9 3 owl 5 7 4 p a r r o t 3 4 3 s e a g u l l 4 6 0 hawk 5 5 1 b u f f a l o 5 6 0 c o y o t e 4 3 1 o t t e r 8 3 0 e e l 8 5 9 lamb 4 3 0 l y n x 9 5 1 c h e e t a h 4 1 0 mink 8 8 4 b u l l 3 2 5 b u t t e r f l y 4 2 0 e l k 8 7 0 hamster 8 5 0 m o s q u i t o 8 9 0 skunk 6 3 4 wasp 5 3 0 crow 6 6 0 w a l r u s 3 6 1 w e a s i l 6 2 0 g r i z z l y b e a r 4 2 0 p o r p o i s e 8 4 3 worm 6 6 2 ape 4 8 0 b l u e j a y 4 5 2 t u r k e y 3 1 3 b a t 5 3 0 b e e t l e 6 6 0 p o r c u p i n e 6 5 2 r a t t l e s n a k e 1 2 0 opossum 2 3 2 p i g e o n Number o f S u b j e c t s l i s t i n g a n i m a l No. o f s u b j e c t s w i t h i n each e d u c a t i o n a l l e v e l Z Ed G r l l Gr7 Gr3 K A n i m a l 23 4 7 7 2 . 3 0 p l a t y p u s 23 8 3 4 4 .'2 2 s t a r f i s h 22 2 5 8 2 5 0 groundhog 22 5 4 3 4 6 0 s q u i d 21 2 9 2 . 6 4 0 b u d g i e 21 7 2 4 5 2 1 g o l d f i s h 21 4 5 6 5 1 0 p a n t h e r 20 9 4 1 4 2 0 baboon 20 6 4 3 2 4 1 b o b c a t 20 1 2 5 5 6 1 c a t e r p i l l a r 20 3 7 5 2 3 0 . g a z e l l e 20 12 1 3 2 0 2 l o b s t e r 20 6 5 8 1 0 0 mus k r a t 20 7 7 2 3 1 0 o r a n g u t a n g 20 9 3 2 5 1 o. s n a i l 20 5 4 6 2 3 0 swan 19 3 7 4 3 2 0 l l a m a 18 2 . 8 2 5 1 0 a n t e a t e r 18 3 3 4 3 5 0 b l a c k b i r d 18 10 2 2 3 0 1 c l a m 18 3 3 2 6- 3 1 mou n t a i n l i o n 18 3 6 5 3 1 0 p h e a s a n t 18 10 3 1 4 0 0 salamander 17 1 . 7 4 2 3 0 ba d g e r 17 6 4 3 1 3 0 b l a c k b e a r 17 6 3 6 1 1 0 c a r i b o o 17 5 6 2 3 1 0 cod 17 5 4 ' 4 2 2 0 mountain g o a t 17 4 2 2 6 3 0 mule 17 2 3 4 4 2 2 p o o d l e 16 1 6 4 3 2 0 c a n a r y 16 0 6 2 6- 1 1 German s h e p h e r d 16 1 2 3 6 4 0 hen 16 7 1 2 4 2 0 h e r r i n g 16 6 5 0 3 2 0 hummingbird 16 5 4 3 2 2 0 man 15 3 0 2 4 4 2 c a t f i s h 15 5 2 5 2 1 0 c o b r a 15 7 M 2 2 1 2 human 15 3 1 3 4 4 0 i n s e c t 15 8 1 2 3 1 0 o y s t e r 15 1 7 1 4 2 0 Siamese c a t 15 7 2 5 0 1 0 s t a r l i n g 15 7 4 • 0 2 2 0 w a l l a b y 14 4 3 5 0 2 0 boa c o n s t r i c t o r 14 0 2 0 4 7 1 c a l f 14 2 0 2 7 3 0 d i n o s a u r 14 1 7 2 1 2 1 gopher 14 8 0 1 1 3 1 g r a s s h o p p e r 14 4 2 3 3 2 0 mole 14 6 2 3 1 1 1 moth 14 2 1 3 3 5 0 p r a i r i e dog 14 6 4 3 0 0 1 s e a l i o n Number o f S u b j e c t s l i s t i n g a n i m a l No. o f s u b j e c t s w i t h i n e ach e d u c a t i o n a l l e v e l Z Ed G r l l Gr7 Gr3 K A n i m a l 14 4 2 5 2 0 1 w a t e r b u f f a l o 14 3 5 2 2 2 0 woodpecker 13 2 2 1 3 5 0 a r m a d i l l o 13 6 3 0 3 1 0 h a r e 13 5 1 2 2 1 2 h o r n e t 13 3 5 3 1 1 0 hyena 13 6 4 1 2 0 0 j e l l y f i s h 13 0 2 0 3 7 1 k i t t e n 13 2 2 1 3 5 0 l a d y b u g 13 2 5 5 2 0 1 panda 13 2 0 4 2 3 2 peacock 13 5 2 2 4 0 0 s l u g 13 6 4 1 1 1 0 t o a d 13 3 3 5 1 1 0 v u l t u r e 13 3 2 3 5 0 0 w o l v e r i n e 12 6 4 2 0 0 0 b i s o n 12 3 1 2 3 3 0 b l u e b i r d 12 0 6 1 4 1 0 c o l l i e d o g 12 9 0 2 0 1 0 earthworm 12 1 3 4 0 3 1 p e l i c a n 11 8 0 0 0 1 2 bumblebee 11 1 6 3 1 0 0 c h i n c h i l l a 11 5 0 1 2 1 2 d r a g o n f l y 11 4 4 2 1 0 0 f a l c o n 11 2 1 3 1 . 4 0 f l a m i n g o 11 4 4 3 0 0 0 g a r t e r snake 11 5 2 3 0 1 0 h e r o n 11 3 3 1 2 2 0 j aguar 11 1 3 3 2 2 0 ox 11 o: 1 0 5 1 4 pony 11 0 0 3 3 5 0 p r a i r i e dog 11 0 1 0 2 6 2 puppy 11 9 1 0 0 0 1 s e a anemone 11 8 1 2 0 0 0 s e a u r c h i n 11 6 0 2 2 1 0 s h r i m p 11 2 2 5 0 2 0 s t o r k 11 2 3 2 2 2 0 t a d p o l e 10 2 2 2 2 1 1 a a r d v a r k 10 0 5 1 3 0 1 c h i h u a h u a 10 4 3 3 0 0 0 d i n g o 10 4 1 1 2 2 o • d o g f i s h 10 5 3 1 1 0 0 emu 10 7 0 3 0 0 0 f l e a 10 0 0 0 6 3 1 hog 10 1 1 4 2 2 0 k i l l e r whale 10 6 2 0 1 1 0 lemming 10 5 3 1 0 0 1 m u s s e l 10 7 1 1 0 1 0 p e r c h 10 0 5 3 1 1 0 P e r s i a n c a t 10 6 2 0 1 1 0 p r a y i n g m a n t i s 10 0 4 1 3 2 0 r o a d r u n n e r 10 1 1 0 3 3 2 s w o r d f i s h 10 2 5 1 1 1 0 t o r t o i s e Number o f S u b j e c t s No. o f s u b j e c t s w i t h i n e ach l i s t i n g a n i m a l e d u c a t i o n a l l e v e l A n i m a l Z Ed G r l l Gr7 Gr3 K 10 5 2 2 1 0 0 t e r m i t e 9 0 5 1 0 2 1 b o a r 9 0 0 1 5 3 0 fawn 9 2 4 2 1 0 0 g r o u s e 9 2 1 1 4 1 , 0 guppy 9 4 4 0 1 0 0 h a l i b u t 9 7 1 0 0 1 0 h o u s e f l y 9 3 3 2 1 0 0 rauskox 9 2 1 1 3 2 0 p a r a k e e t 9 7 2 0 0 0 0 Paramecium 9 3 3 1 2 0 0 r a v e n 9 3 2 1 1 0 2 r e i n d e e r 9 4 1 1 0 3 0 s w a l l o w 9 2 2 0 3 2 0 t a r a n t u l a 8 2 1 4 0 1 0 brown b e a r 8 4 1 2 0 1 0 c a r d i n a l 8 0 0 0 2 2 4 c h i c k 8 3 3 1 1 0 0 c h i c k a d e e 8 0 0 1 2 3 2 cub 8 2 3 2 1 0 0 dove 8 3 1 1 2 1. 6 g i b b o n 8 8 0 0 0 0 0 m i t e 8 3 2 2 1 0 0 p y t h o n 8 2 2 1 2 1 0 , p i r a n h a 8 8 0 0 0 0 0 ' s e a cucumber 8 4 2 0 1 1 0 Tasmanian d e v i l 8 5 2 0 1 0 0 t i c k 8 5 2 1 0 0 0 t u n a 7 5 2 0 0 0 0 amoeba 7 1 0 1 4 1 0 a n g e l f i s h , 7 4 0 0 2 1 0 b a l d e a g l e , 7 1 0 4 1 0 1 b l u e w h a l e 7 4 3 0 0 0 0 c o c k r o a c h 7 0 1 0 1 5 0 c o l t 7 4 1 2 0 0 0 c r a w f i s h 7 2 2 0 3 0 0 G r e a t Dane 7 1 2 0 2 , 2 0 i g u a n a 7 1 2 2 1 1 0 j a c k a l 7 6 0 0 1 0 . 0 l o u s e 7 3 0 4 0 0 0 m a l l a r d 7 3 1 1 2 0 0 minnow 7 1 3 3 0 0 0 o c e l o t 7 4 1 1 0 1 0 o s p r e y 7 2 4 1 0 0 0 q u a i l 7 2 1 0 2 1 1 s e a h o r s e 7 2 2 2 0 . 1 0 s l o t h 7 1 0 4 1 1 0 s u n f i s h 7 4 0 0 1 2 0 t e r n 6 2 2 1 1 0 0 anaconda 6 1 1 2 2 0 0 bass 6 0 3 1 1 1 0 c o c k e r s p a n i e l 6 1 0 2 0 3 0 c r a n e 6 2 1 0 1 2 0 daddy l o n g l e g s 6 4 0 2 0 0 0 d a p h n i a 200 Number o f S u b j e c t s No. o f s u b j e c t s w i t h i n each l i s t i n g a n i m a l e d u c a t i o n a l l e v e l A n i m a l Z Ed G r l l Gr7 Gr3 K 6 6 o. 0 0 0 0 f r u i t f l y 6 1 0 4 0 0 1 gnu 6 2 1 0 0 3 0 ground s q u i r r e l . 6 3 0. 1 1 1 0 hammerhead s h a r k 6 3 1 0 0 2. 1 hedgehog 6 6 0 0 0" 0 0 h y d r a 6 2 0 0 2 2 0 j a c k r a b b i t 6 3 0 1 . 1 1 0 j a y b i r d 6 0 2 3 1 0 0 L a b r a d o r 6 1 0 1 2 2 0 l e a t h e r j a c k e t 6 3 3 0 0 0 0 lemur 6 1 3 1 1 0 0 marten 6 0 2 1 • 2 1 0 mongoose 6 4 0 1 1 0 0 p i k e 6 0 2 1 2 1 0 s a s q u a t c h 6 1 1 0 3 1 0 s c o r p i o n 6 0 2 0 3 0 1 sheepdog 6 1 1 1 3 0 0 s o l e 6 5 0 0 0 1 0 s t i c k l e b a c k 6 2 1 3 0 0 0 s t u r g e o n 6 1 1 1 2 1 0 T y r a n n o s a u r u s r e x 6 5 0 1 0 0 0 v o l e 6 0 4 0 1 0 1 w i l d c a t 6 3 2 0 0 1 0 wombat 6 0 3 1 0 2 0 woodchuck 6 2 2 0 0 2 . 0 wren 5 0 4 1 0 0 0 A r a b i a n h o r s e 5 3 0 1 0 1 0 a l b a t r o s s 5 0 0 0 0 0 5 baby h o r s e 5 0 1 1 3 0 0 b o x e r 5 1 1 0 2 1 0 B r o n t o s a u r u s 5 0 3 0 2 0 0 b u l l d o g 5 2 1 1 1 • 0 0 b u l l s n a k e 5 1 1 2 0 0 1 Canada goose 5 1 2 1 1 0 0 c a r p 5 1 2 2 0 0 0 c e n t i p e d e 5 3 1 1 0 0 0 copperhead 5 4 0 0 0 1 0 cor m o r a n t 5 2 0 1 1 1 0 c r i c k e t 5 • 5 0 0 o- 0 0 deermouse 5 1 3 0 " 0 1 0 dodo 5 1 0 1 1 2 0 dromedary 5 3 1 1 0 0 0 e g r e t 5 3 1 0 0 1 0 ermine 5 3 1 0 0 1 0 e u g l e n a 5 3 0 0 0 2 0 f i n c h 5 0 0 1 3: 1 0 gardensnake 5 1 2 0 0 2 0.' husk y 5 0 1 2 0 2 0 i m p a l a 5 4 • 1 0 0 0 0 kangaroo r a t 5 4 1 0 0 0 0 m a c k e r e l 5 1 0 3 l 0 0 manta r a y 5 1 3 1 0 0 0 mo u n t a i n sheep 201 Number o f S u b j e c t s No. o f s u b j e c t s w i t h i n each l i s t i n g a n i m a l e d u c a t i o n a l l e v e l A n i m a l z- Ed G r l l Gr7 Gr3 K 5 1 2 1 1 0 0 roynah b i r d 5 2 2 0 1 0 0 puma 5 4 0 1 0 0 0 s e a o t t e r 5 4 0 1 0 0 0 w h i t e f i s h 4 3 1 0 0 0 0 anemone 4 3 0 0 1 0 0 a p h i d 4 0 0 0 0 0 4 baby c a t 4 0 0 0 0 0 4 baby f i s h 4 0 0 0 2 1 1 b a s s e t hound 4 0 1 1 1 1 0 b e a g l e 4 2 0 1 1 0 0 b l a c k f l y 4 1 1 0 1 1 .0 b l a c k widow 4 1 0 0 1 1 1 b u r r o 4 3 0 1 0 0 0 c o r a l snake 4 4 0 0 0 0 0 c r a n e f l y 4 0 1 1 1 1 0 D a l m a t i a n 4 1 2 0 1 0 0 Doberman p i n s c h e r 4 0 1 0 1 0 2 dragon 4 2 0 1 0 1 0 e l e c t r i c e e l 4 2 1 0 0 1 0 f i e l d m o u s e 4 1 0 2 1 0 0 f l o u n d e r 4 1 1 1 0 1 0 f l y i n g f i s h 4 4 0 0 0 0 0 g o l d e n e a g l e 4 2 0 0 0 2 0 g o l d f i n c h 4 0 0 1 0 3 0 g o s l i n g 4 0 2 1 1 0 0 greyhound 4 2 0 0 0 2 0 g u l l 4 • 0 1 0 3 0 0 I r i s h s e t t e r 4 0 0 3 1 0 0 k i n g s n a k e 4 '4 0 0 0 0 0 l o c u s t 4 3 0 1 0 0 0 m a r l i n 4 4 0 0 0 0 0 nematode 4 1 1 1 1 0 0 Newfoundland dog 4 4 0 0 0 0 0 n u t h a t c h e r 4 0 2 1 1 0 0 p a l o m i n o h o r s e 4 4 0 0 0 0 0 p i c k e r e l 4 " 2 0 2 0 0 0 r a i n b o w t r o u t 4 4 0 . 0 0 0 0 r a y 4 4 0 0 0 0 0 r o t i f e r 4 0 2 0 2 0 0 s t i n g r a y 4 4 0 0 0 0 0 tapeworm 4 1 1 1 1 0 0 t e r r i e r 4 2 1 1 0 0 0 t h r u s h 4 1 1 1 0 1 0 w i l d e b e e s t e 4 2 0 0 1 1 0 w h i s k y j a c k 3 0 0 0 1 2 0 A r c t i c t e r n 3 0 • 0 0 0 1 2 baby c h i c k 3 0 ' 0 0 0 0 3 baby d e e r 3 0 0 0 .0 0 3 baby dog 3 0 0 0 0 0 3 baby e l e p h a n t 3 0 0 0 0 0 3 baby g i r a f f e 3 0 0 0 . 0 0 3 baby l i o n 3 0 0 0 0 0 3 baby monkey 202 Number o f S u b j e c t s No. o f s u b j e c t s w i t h i n each l i s t i n g a n i m a l e d u c a t i o n a l l e v e l . A n i m a l Z Ed G r l l Gr7 Gr3 K 3 3 0 0 0 0 0 b a r k b e e t l e 3 0 1 2 0 0 0 b a r n s w a l l o w 3 1 0 1 1 0 0 b a r r a c u d a 3 1 0 0 0 1 1 b i g h o r n e d sheep 3 2 1 0 0 0 0 b i r d o f p a r a d i s e 3 2 0 1. 0 0 0 b u l l f r o g 3 2 0 0 1 0 0 chameleon 3 . 3 0 0 0 0 0 c h a r 3 3 0 0 0 0 0 chum salmon 3 1". 1 1 0 0 0 c o c k a t o o 3 2 0 1 0 0 0 cohoe salmon 3 0 0 3 0 0 0 condor 3 3 0 0 0 0 0 copepod 3 .3 0 0 0 0 0 c o r a l 3 2 0 0 1 0 0 c o t t o n m o u t h snake 3 0 1 1 0 1 0 doe 3 0 0 0 0 1 2 d u c k l i n g 3 2 0 0 1 0 0 e a r w i g 3 2 0 0 1 0 0 e c h i d n a 3 1 2 0 0 0 0 f e r r e t 3 3 0 0 0 0 0 f l o w e r b e e t l e 3 2 0 0 1 0 0 G i l a monster 3 3 0 0 0 0 0 h a r b o r s e a l 3 0 2 0 1 0 0 H e r e f o r d cow 3 3 0 0 0, 0 0 honeybee 3 1 1 1 0 0 0 J e r s e y 3 1 0 0 1 1 0 k i n g c o b r a 3 3 0 0 0 . 0 0 k i n g c r a b 3 1 1 1 0 0' 0 k i w i 3 2 0 1 0 0 0 k o d i a c 3 1 0 0 1 1 0 kudu 3 0 0 0 2 1 0 l a u g h i n g hyena 3 0 1 2 0 0 0 l i n g cod 3 2 0 1 0 0 0 magpie 3 0 1 1 - 1 0 0 mammoth 3 3 0 0 0 0 0 m i l k snake 3 0 0 0 0 0 3 monster 3 1 0 11. 1 0 0 mud puppy 3 2 0 1 0 0 0 n a r w h a l whale 3 2 1 0 0 0 0 o r i o l e 3 0 2 1 0 0 0 p a r t r i d g e 3 3 0 0 0 0 0 p e c c a r y 3 1 1 1 0 0 0 P e k i n g e s e 3 3 0 0 0 0 0 p i n k salmon 3 2 0 1 0 0 0 p i n t a i l 3 2 0 1 0 0 0 p l e n a r i u m 3 0 2 1 0 0 0 Pomeranian 3 2 0 1 0 0 0 p r o t o z o a 3 0 3 0 0 0 0 q u a r t e r h o r s e 3 0 1 1 1 0 0 ram 3 0 1 2 0 0 0 S a i n t B e r n a r d 3 0 1 0 1 1 0 Samoyed dog 3 3 0 0 0 0 0 s a n d p i p e r 203 Number o f S u b j e c t s No. o f s u b j e c t s w i t h i n e ach l i s t i n g a n i m a l e d u c a t i o n a l l e v e l Z Ed G r l l Gr7 Gr3 K 3 1 ' 1 0 0 1 0 3 2 1 0 0 0 0 3 2 1 0 0 0 0 3 1 0 1 1 0 0 3 2 0 0 0 0 1 3 3 0 0 0 0 0 3 2 0 0 0 1 0 3 0 1 2 0 0 0 3 2 0 1 0 0 0 3 2 0 1 0 0 0 3 0 1 2 0 0 0 3 0 0 0 3 0 0 3 2 1 0 0 0 0 3 0 1 2 0 0 0 3 3 0 0 0 0 0 3 3 0 0 0 0 0 3 0 0 1 ' 0 0 2 3 1 1 0 0 0 1 3 0 1 1 1 0 0 2 2 0 0 0 0 0 2 0 2 0 0 0 0 2 2 0 0 0 0 0 2 2 0 0 0 0 0 2 0 1 1 0 0 0 2 2 0 0 0 0 0 2 0 0 0 0 0 2 2 0 0 0 0 0 2 2 0 0 0 0 0 2 2 0 0 0 0 0 2 2 0 0 0 0 0 2 2 0 0 0 0 0 2 2 0 0 0 0 0 2 2 1 0 0' 0 0 0 2 2 1 1 0 0 0 0 2 2 0 0 0 0 0'' 2 6 0 • 0 1 1 0 2 0 0 1 0 1 0 2 0 0 1 0 1 0 2 0 0 0 0 2 0 2 2 0 0 0 0 0 2 2 0 0 0 '0 0 2 0 0 1 0 1 0 2 2 0 0 0 0 0 2 2 0 0 0 0 0 2 2 0 0 0 0 0 2 ; 2 0, 0 0 0 0 2 2 0 0 0 0 0 2 2 0 0 0 0 0 2 2 0 0 0 0 0 2 2 0 0 0 0 0 2 2 . 0 0 0 0 0 2 2 0 0 0 0 0 2 2 0 0 0 0 0 A n i m a l s a r d i n e s e a snake shrew s i d e w i n d e r s i l v e r f i s h snowy o w l sperm whale s p i d e r monkey sponge t e a l duck t h o r o u g h b r e d t u n a f i s h w a r b l e r w a t e r m o c c a s i n w a t e r ' s t r i d e r w h i t e - t a i l e d duck w h i t e whale w i l d dog w o l f h o u n d Aehmaea d i g i t a l i s A f h a n i s t a n A l a s k a n brown b e a r Amphioxus A p p a l o o s a h o r s e asp baby b e a r baby b i r d baby c a l f baby c h i c k e n baby cow baby duck baby moose baby r o o s t e r b a c t e r i a b a r n owl b e a r eub B e l u g a whale b i l l y g o a t b l a c k b i r d b l a c k capped c h i c k a d e e budworm b u l l h e a d c a d d i s - f l y c a ssowary C a t h e r i n a t u n i c a t a c h e s t n u t b a c k e d c h i c k a d e e c h i t o n . c o a t i c o c k l e c o o t c o t i d c o t t o n t a i l r a b b i t c r y p t o c h i t o n 204 Number o f S u b j e c t s No. o f s u b j e c t s w i t h i n e ach l i s t i n g a n i m a l • e d u c a t i o n a l l e v e l A n i m a l • Z Ed' G r l l Gr7 Gr3 K 2 2 0 0 0 0 0 c y c l o p s 2 0 0 0 2 0 0 d a i r y cow 2 1 0 1 0 0 0 damsel f l y 2 1 0 0 1 0 0 de e r f l y 2 2 0 0 0 0 0 d i n o f l a g e l l a t e 2 2 0 0 0 0 0 D o l l y V a r d e n 2 2 0 0 0 0 0 d y t i s c i d 2 2 0 0 0 0 0 e c a r t i a 2 2 0 0 0 0 0 emperor p e n g u i n 2 2 0 0 0 0 0 e u p h a u s i d 2 1 0 1 0 0 0 f l a t w o r m 2 2 0 0 0 0 0 f l y i n g s q u i r r e l 2 2 0 0 0 0 0 gecko 2 1 0 0 0 1 0 g i a n t c l a m 2 2 0 0 0 0 0 g l a u c u s w i n g g u l l 2 2 0 0 0 0 0 g o l d e y e 2 2 0 0 0 0 0 g r a y l i n g 2 1 0 1 0 0 0- grebe 2 1 0 1 0 0 0 Guernsey 2 2 0 0 0 0 0 h e r r i n g g u l l 2 2 0 0 0 0 0 h o l o p e d i u m 2 1 0 0 1 0 0 H o l s t e i n 2 1 0 0 1 0 0 h o u s e f l y 2 2 0 0 0 0 0 house mouse 2 2 0 0 0 0 0 h o w l e r monkey 2 2 0 0 0 0 0 k a t y d i d 2 0 0 0 0 2 0 k i d 2 0 1 1 0 0 0 k i n g f i s h e r 2 2 0 0 0 0 0 l a c e w i n g 2 1 1 0 0 0 0 lamprey 2 2 0 0 0 0 0 l a n d s n a i l 2 0 1 1 0 0 0 l a r k 2 0 0 1 1 0 0 l e a c h 2 2 0 0 0 0 0 l i v e r f l u k e 2 1 0 0 1 0 0 l o o n 2 0 0 1 1 0 0 l o v e b i r d 2 1 1 0 0 0 0 l y r e b i r d 2 1 0 1 0 0 0 macaw 2 2 0 0 0 0 0 mako s h a r k 2 1 0 0 0 1 0 mammal '2 o: 1 0 0 1 0 manatee 2 0 2 0 0 0 0 Manx c a t 2 .1 0. 1 0 0 0 meadow v o l e 2 • . - i 0 1 0 0 0 m i l l i p e d e 2 I 0 0 0 1 0 m o c k i n g b i r d 2 2 0 0 0 0 0 monarch b u t t e r f l y 2 2 0 0 0 0 0 M o p e l i a h i n d s e i 2 0 2 0 0 0 0 Morgan h o r s e 2 0 1 0 1 0 0 mustang 2 2 0 0 0 0 0 n a t 2 2 0 0 0 0 0 o s t r a c o d 2 2 0 0 0 0 0 o y s t e r c a t c h e r 2 2 ' 0 0 0 0 . 0 p e r i w i n k l e 205 Number o f S u b j e c t s No. o f S u b j e c t s w i t h i n each l i s t i n g a n i m a l e d u c a t i o n a l l e v e l Z Ed G r l l Gr7 Gr3 K 2 0 0- 0 0 1 1 2 2 0 0 0 0 0 2 •0 2 0 0 0 0 2 2 0 0 0 0 0 2 1 1 0 0 0 0 2 0 1 0 1 0 0 2 2 0 0 0 0 0 2 0 1 1 0 0 0 2 2 0 0 0 0 0 2 0 0 0 0 2 0 2 1 0 0 1 0 0 2 1 0 0 1 0 0 2 1 1 0 0 0 0 2 2 0 0 0 0 0 2 2 0 0 0 0 0 2 0 0 0 1 1 0 2 2 0 0 0 0 0 2 1 1 0 0 0 0 2 2 0 0 0 0 0 2 . 1 1- 0 0 0 0 2 2 0 0 0 0 0 2 0 0 1 1 0 0 2 0 0 0 2 0 0 2 2 0 0 0 0 0 2 2 0 0 0 0 0 2 2 0 0 0 0 0 2 1 0 1 0 0 0 2 2 0 0 0 0 0 2 1 0 0 0 1 0 2 1 0 0 1 0 0 2 1 0. 1 0 0 0 2 0 0 0 2 0 0 2 2 0 0 0 0 0 2 1 0 1 0 0 0 2 0 1. 1 0 0 0 2 0 0 0 0 2 0 2 2 0 0 0 0 0 2 0 1 0 1 0 0 2 0 0 0 0 2 0 2 1 0 0 0 1 0 2 0 1 0 0 1 0 2 1 1 0 0 0 0 2 2 0 0 0 0 0 2 0 0 0 0 2 0 2 2 0 0 0 0 0 2 2 0 0 0 0 0 2 1 1 0 0 0 0 2 2 0 0 0 0 0 2 2 0 0 0 0 0 2 2 0 0 0 0 0 2 0 1 0 0 .1 0 2 0 0 0 1 1 0 2 2 0 0 0 0 0 A n i m a l p i g l e t p i k a p i n t o p r o n g h o r n e d a n t e l o p e p t a r m i g a n p t e r o d a c t y l p u f f i n pug p u r p l e m a r t i n queen bee r e d a n t r e d f o x r e d s q u i r r e l r h e a r i v e r o t t e r r o d e n t roundworm s a i l f i s h sand d o l l a r s c a l l o p s c u l p i n s e a cow se a e l e p h a n t s e a s l u g s e a t u r t l e s h o r t e a r e d o w l s i l v e r f o x s k a t e s n a p p i n g t u r t l e s c h n a u z e r snow goose snowshoe r a b b i t s ockeye salmon song s p a r r o w s p a n i e l dog sp a r r o w hawk s p r i n g salmon s t a l l i o n s t o n e f i s h s unbear t a b b y c a t t a p i r t a r p o n tedd'ybear hamster Thomson's g a z e l l e t i g e r s h a r k t o u c a n trele f r o g tukeworm t u n i c a t e u n i c o r n w a t e r snake w h i t e f o o t e d mouse 206 Number o f S u b j e c t s l i s t i n g a n i m a l No. o f s u b j e c t s w i t h i n each e d u c a t i o n a l l e v e l Z Ed G r l l Gr7 Gr3 K A n i m a l 2 0 0 0 0 0 w h i t e s h a r k 0 1 . 0 . 0 1 0 w i l d b o a r 1. Z o o l o g i s t : Acmaea i n s t a b a l i s , Acmaea m i t r a , Acmaea p a t e l l a , Acmaea' p e r s o n a , Acmaea  s c a b r a , Acmaea t e s t u d i n a l i s , a c o r n worm, a d d e r , A f r i c a n c l a w e d t o a d , A f r i c a n e l e p h a n t , A f r i c a n l u n g f i s h , a l l i g a t o r l i z a r d , Ambystoma, Amia, a n c h o v e t a , a n g l e r f i s h , a n t h r o p o i d , A p h r o d i t e , A r c t i c f o x , A r c t i c h a r e , armyworm, A s i a n e l e p h a n t , a s s a s s i n bug, A s t e r i a s v u l g a r i s , a x o l o t l , b a n d i c o o t , b a s k i n g s h a r k , b l a c k Angus, b l a c k a n t , b l a c k - h e a d e d g u l l , b l a c k r a t , b l a c k s q u i r r e l , b l u e -f o o t e d booby, b l u e g i l l , b l u e g r o u s e , b l u e h e r o n , b l u e winged t e a l , bohemian waxwings, b o l l w e a v i l , B o n a p a r t e ' s g u l l , b o r e a l c h i c k a d e e , box c r a b , b r a i n c o r a l , bream, Brewer's b l a c k b i r d , b r o o k t r o u t , brown c r e e p e r , brown t h r a s h e r , brown t r o u t , b r y o z o a n , b u l l f i s h , b u l l f r o g , b u t t e r f l y f i s h , b u t t e r n e c k c l a m , C a l a n u s , C a l i f o r n i a mouse, Cancer m a g i s t e r , C a n c e r  p r o d u c t u s , c a n v a s b a c k e d duck, Cape b u f f a l o , c a p r e l l i d , C a r c i n u s maenas, c a r p e n t e r a n t , c a t b i r d , c a l l a p h a r i d a e , c e r a t o p a g a n , c h a i n p i c k e r e l , c h i c k e n hawk, c h i p p i n g s p a r r o w , c h i r o n o m i d , c h o r d a t e , c h o r u s f r o g , chub, c i c a d a , c i n n e b a r moth, c i v e t , cochina,- c o c k c h a f e r , c o d d l i n g moth, c o e l e n t e r a t e , c o l l e m b o l a , c o m p a n u l a r i a , c o n d o r , c o r n s n a k e , c o t t o n r a t , cowry, c r i n o i d , c r i s s a d a bug, c r u s t a c e a n , cubomedusae, c u r l e w , c u t t l e f i s h , C y a n o p l a x  d i e n t i e n s , d ace, dam, Darwin f i n c h , diamond b a c k e d r a t t l e r , Diaptomus, d o g f i s h s h a r k , d o l p h i n f i s h , d o m e s t i c r a t , d o r a d , d r o s o p h i l a , dugong, dung b e e t l e , dusky shrew, E a s t e r n b l u e b i r d , E a s t e r n chipmunk, E a s t e r n diamond back, E c h i n u s e s c u l e n t i s , E c h i n a r a c h n i u s parma, E g y p t i a n c o b r a , e l e c t r i c r a y , e l e p h a n t s e a l , E n g l i s h s p a r r o w , E u c a l a n u s , European b e a v e r , European w o l f , e v e n i n g g r o s b e a k , f e r - d e - l a n c e , f i d d l e r c r a b , f i n w h a l e , f i r e c o r a l , f i r e c r e s t wren, f i s h crow, f l e s h f l y , F l o r i d a mouse, f l u k e , f o x s q u i r r e l , g a d w a l , Galapagos t o r t o i s e , gammarid, ga n n e t , goby, g o l d c r e s t wren, g o l d e n k i n g l e t , goose b a r n a c l e , G r a n t ' s g a z e l l e , g r e a t b l u e w h a l e , g r e a t brown b e a r , g r e a t h o r n e d o w l , g r e a t panda, G r e a t P y r e n e e s , g r e a t e r s c a u p , g r e e n -f r o g , g r e e n w i nged t e a l , g r o u p e r , g r o s b e a k , g u i l l e m o t , g u i n e a f o w l , g u i n e a hen, g y m n o t i d , haddock, h a g f i s h , h a r v e s t e r , hawk moth, hedgehog f i s h , H e n r i c i a , h e r m i t c r a b , h e r m i t t h r u s h , hoary'marmot, Homarus a m e r i c a n u s , h o r s e s h o e c r a b , house s p a r r o w , humpback w h a l e , H y l o b a t e s , h y r a x , i b i s , Ichneumon wasp, I n d i a n c o b r a , I n d i a n e l e p h a n t , i n d i g o snake, i n v e r t e b r a t e , I s h n o c h i t o n , I s h n o c h i t o n a l b u s , i s o p o d , j a c k f i s h , j a g u a r u n d i , k i n k a j o u , k i t f o x , k i t t i w a k e , Komodo d r a g o n , k r a i t , l a k e t r o u t , l a n g o u s t e , ; . l a n t e r n f i s h , l a r g e h e a d e d minnow, L a r v a c e a , l e a s t chipmunk, l e a s t t e r n , l e a s t w e a s e l , l e s s e r panda, l e s s e r scaup, l i m p e t , l i t t l e n e c k c l a m , L i t t o r i n a l i t t o r e a , l o n g e a r e d o w l , l o n g t a i l e d w e a s e l , lugworm, M c G i l l v r a y ' s w a r b l e r , marmoset, marsh hawk, m a r s u p i a l , m a r s u p i a l dog, m a r s u p i a l mouse, masked shrew, m a y f l y , megalops, meta f r o g , m o n i t o r l i z a r d , M o n o c y s t i s , m o o n s n a i l , moose f l y , M o p a l i a c i t h i r a , M o p a l i a l i g n o s a , M o p a l i a muscosa, M o p a l i a c i l i a t a , 207 moray, moray e e l , mountain b e a v e r , mountain c a r i b o u , mudshark, m u l l e t , murre, muscalunge, m u s c i d , M y t i l u s c a l i f o r n i a n s i s , M y t i l u s e d u l i s , n e m e r t i n e , n e m e r t i a n worm, N e r e i s , newt, n i g h t hawk, n i g h t j a r , N o r t h e r n f u r s e a l , N o r t h e r n l y n x , N o r t h e r n p i k e , Norway r a t , N.W. s a l a m a n d e r , n u d e b r a n c h , n u t r i a , o l d squaw, o v e n b i r d , P a c i f i c r a t t l e r , P a c i f i c s a l a m a n d e r , peromyscus mouse, p i n e s i s k i n , p h o r o n i d , p o l e c a t , p o r c u p i n e f i s h , p r a i r i e f a l c o n , P r o t e u s , ' . E t e r o s a u r u s , Pygmy o w l , Pygmy w h i t e f i s h , queen e r a b , r e d b a c k e d v o l e , r e d d e e r , r e d s e a u r c h i n , r e d s i d e d dace, r e d s h o u l d e r e d hawk, r e d s n a p p e r , r e d t a i l e d hawk, r e d w i n g , r e d w o l f , r e t i c u l a t e d p y t h o n , r e t r i e v e r , r h i n o c e r o s b e e t l e , r h i n o b a t i d , r i c e r a t , r o c k C o r n i s h game hen. Rocky M o u n t a i n w h i t e f i s h , r o s e b r e a s t e d g r o s b e a k , R o s t r a n g r a p u l c h r a , r o s y b o a , round w h i t e f i s h , . r u b b e r boa, ruby crowned k i n g l e t , ruddy duek, r u f f e d g r o u s e , s a l p , sand f l y , sand h o p p e r , sand worm, s c o t e r , s c r e e c h o w l , s e a b a s s , s e a f a n , s e a i g u a n a , s e a l e o p a r d , s e a l i l y , s e a p i n , s e a snake, s e a s t a r , s e a t o a d , s e a w hip, shad, s h a r k s u c k e r , s h o r t - t a i l e d shrew, s h o r t - t a i l e d w e a s e l , s i m u l i i d , s i p h o n o p h o r e s , s k i n k , smoky shrew, s n a p p e r , snowshoe h a r e , sphynx, s p i n y l o b s t e r , s p i n y r a y , S p i r o r b i s , s p l a k e , s p o t t e d newt, s p o t t e d s a l a -mander, s p r i n g salmon, s p r u c e bud worm, s t i c k i n s e c t , s t o n e f l y , s t r i p e d skunk, S t r o n g y l o c e n t r o t u s d r o e h b a c h i e n s u s , S t r o n g y l o c e n t r o t u s f r a n c i s c a n u s , S t r o n g y l o c e n t r o t u s p a u l u s , S t r o n g y l o c e n t r o t u s p u r p u r a t u s , s w a l l o w t a i l b u t t e r f l y , s y l l i d a e , t a i l e d f r o g , t a n a g e r , t a r d i g r a d e , temora, t e n t c a t e r -p i l l a r , t e r e b e l l i d , t h i r t e e n l i n e d g r ound s q u i r r e l , t i g e r s a l a m a n d e r , t i g e r s n a k e , T i l a p i a , t i m b e r w o l f , t i n t i n i d , tomato bug, T o n i c e l l a c o o p e r i , T o n i c e l l a i n s i g n i s , T o n i c e l l a l i n e a t a , Townsend's w a r b l e r , t r e e c r e e p e r , t r e e s n a i l , t r e m a t o d e , t r o g o n , t u n d r a v o l e , t u n n y , U r o c h o r d a t e , v a r i e d t h r u s h , . v e r t e b r a t e , v e s p i d , V o l v o x , w a p i t i , w a r b l i n g v a r e o , w a t e r boatmen, w e a v i l , Weimaraner, Western diamond back, whale s h a r k , w h e l k , w h e l p , w h i r l i -g i g b e e t l e , w h i t e b e a r , w h i t e - c r o w n e d s p a r r o w , w h i t e f l y , w h i t e - t h r o a t e d s p a r r o w , w i n t e r w r e n , w i s e n t , wood t i c k . 1. E d u c a t i o n 200 s u b j e c t : a l p a c a , A l s a t i a n dog, a m p h i b i a n , . b u l l t e r r i e r , bushbaby, Cape h o r n b u f f a l o , c a t t l e , c e d a r waxwings, c e n t a u r , C l y d e s d a l e h o r s e , eoypu, f i n n o w , f o x t e r r i e r , g ander, g a r d e n e r snake, g o l d e n r e t r i e v e r , g r e a t worm, g r e e n s n a k e , g r e y f i s h , g r e y s q u i r r e l , g r i f f i n , h a r t , h e i f f e r , h i n d , j e r b o a , kangaroo mouse, L i g i a , l o n g h o r n cow, m a n d r i l l , manta, m a n t i s , marmot, m i n i a t u r e c o l l i e , meadowlark, m o n g r e l , mut, n a u t i l u s , n i g h t i n g a l e , p e g a s u s , p e r e g r i n e f a l c o n , p o i n t e r , prawn, r a i n b o w f i s h , R u s s i a n b l u e p o i n t c a t , s a t y r , S c o t -t i s h t e r r i e r , S h e t l a n d h o r s e , s h e l t i e dog, Siamese f i g h t i n g f i s h , snow b e a r , snow b i r d , snow l e o p a r d , s p r i n g b o k , s p r i n g e r s p a n i e l , s t e e r , s t o a t , s u c k e r , S u f f o l k punch h o r s e , T i b e t a n m a s t i f f , t i t mouse, t o r t o i s e c a t , towhee, t r e e k a n g a r o o , w a t e r e l e p h a n t , w a t e r r a t , w i r e h a r e , w h i t e g o r i l l a , y e l l o w b e l l i e d marmot, y e l l o w j a c k e t , y e t i . 208 1,Grade 11 s u b j e c t : a a r d w o l f , a d m i r a l , A t l a n t i c salmon, Angus, B a l e e n w h a l e , B a l t i m o r e o r i o l e , b r a n t , brown worm, Chesapeake dog, cinnamon b e a r , cokanee, cohoe, dimeback r a t t l e r , f i e l d r a t , German brown f i s h , . h e l l d i v e r , h o r n e d o w l , lemon t e t r a , mud t r o u t , m u l e t a i l e d d e e r , o o l i c h a n , r a t f i s h , r a t t l e r , r e d r a e e r s n a k e , r o c k c o d , s e t t e r dog, s h e p h e r d dog, s h o r t h o r n , s i l v e r t a i l f o x , s p o o d l e dog, s q u i r r e l monkey, s t e e l h e a d , S t e l l a r ' s j a y , v i p e r , woodbug, wood duck, wood t i t . 1.Grade 7 s u b j e c t : A u s t r a l o p i t h o c u s , b a l d h e a d e d e a g l e , bedbug, b l a c k a n g e l f i s h , b l a c k c a t , b l a c k cow, b l a c k t e t r a , buck, c h e r o k e e t , c o n r a y , c u c k o o , dachshund, d e s e r t r a t , d i s c u s f i s h , E n g l i s h s e t t e r , f a n t a i l , f i r e f l y , f o a l , h a t c h e t f i s h , Homo e r e c t u s , Homo s a p i e n s , h o t dog, hound, house c a t , J a v a man, keenhound dog, m o c c a s i n s n a k e , m o l l i e , m o u n t a i n b e a r , neon t e t r a f i s h , p o t a t o b e e t l e , p o t a t o bug, R h o d e s i a n man, s a n d f l e a , sparrowhawk, s t e g o s a u r u s , s t i c k bug, t i g e r b a r b , t u r t l e dove, w h i t e r a b b i t , w i e n e r dog, y e l l o w b e l l i e d s a p s u c k e r , y e l l o w f e v e r m o s q u i t o , z e b r a f i s h . 1.Grade 3 s u b j e c t : a n g l e r , Angora r a b b i t , a n k l y o s a u r u s , A r c t i c w o l f , baby sperm w h a l e , b r a c h i o s a u r u s , bunny r a b b i t , bush hog, c a l f cow, c a l i c o c a t , camel w i t h one hump, c h e e t a h cub, c i r c u s e l e p h a n t , c o c k - o f - t h e - r o c k , cokanee f i s h , c o ugar cub, c o w f i s h , c r a b e l e p h a n t , c u c k o o b u r r a , deep s e a s t a r f i s h , d i m e t r o d o n , dormouse, d u t e h b e l t e d r a b b i t , f l o w e r bug, f o x cub, germ, gomo d r a g o n , gonan g i a n t , h a l f i d g e b i r d , h o r n e d t o a d , k i n g v u l t u r e , l e o p a r d cub, l i o n cub, l i v i n g t e d d y b e a r , moa, mudshark, p e a r l , p i c k a p o o dog, P o l i s h r a b b i t , p t e r a n o d o n , r e d bug, r e d c r a b , r e d r a b b i t , s e a mons t e r , s e a sponge, s e a s c o r p i o n , s e a s n a i l , s e c r e t a r y - b i r d , s h i n e r f i s h , s h o r t h a i r c a t , sow, Tasmanian w o l f , t e d d y h a m s t e r , t r i c e r a t o p s , t r o p i c a l f i s h , t u r k e y v u l t u r e , w a r t h o g , w o o l l y mammoth b e a r l i k e dog. 209 1. K i n d e r g a r t e n s u b j e c t : Baby - a n t , -bee, - c a m e l , -daddy d e e r , -daddy, -daddy- f i s h , - d r a g o n , - f l y , - f o x , - f r o g , - g o a t , - g o r i l l a , - k angaroo, -lamb, -mother r o o s t e r , -mummy, -mummy d e e r , -mountain l i o n , - p i g , -pony, - r a t , - - r h i n o c e r o s , -sheep, - t u r t l e , -whale, b i g c h i c k , b i r d s t h a t can f l y , b l u e f i s h , daddy - b i r d , - d r a g o n , - f i s h , - h o r s e , -kangaroo, -mouse, - p i g , - r a t , - w h a l e , g h o s t , g r a n d m a . f i s h , grandpa f i s h , g r e e n f i s h , mother - d r a g o n , -mouse, - p i g , - r a t , -whale, mummy f i s h , p u s s y c a t , r e d f i s h , s a u r u s , space m o n s t e r , zoo l e o p a r d . 210 A p p e n d i x B - l . S i m i l a r i t y M a t r i x from t h e F r e e L i s t i n g Task f o r Z o o l o g y D o c t o r a l C a n d i d a t e s CAT COW DOG GlRF RABT SHEP SEAL PIG HORS ELEP ZEBR BAT BEAR 2.73 2.12 3.23 5.16 2.86 7.93 6.76 2.49 3.64 5.C1 .40 1.12 CAT 16.6078.32 2.61 5.82 9.34 3.7616.6928.71 6.39 2.13 3.49 COW 18.21 2.98 3.0542.84 2.8429.5652.CO 5.38 1.73 .57 DOG 3.00 6.6311.38 4.6616.2231.29 9.79 2.51 1.87 GIRF 2.55 5.29 4.09 6.45 2.8325.72 3.87 .57 RABT 4.27 1.30 1.88 2.64 5.36 .80 .74 SHEP 1.7417.4616.2811.08 1.71 .65 SEAL 2.37 2.90 7.16 2.35 .91 PIG 27.75 3.03 1.41 .80 HORS 6.89 3.29 .71 ELEP 3.76 .44 ZEBR 0.0 211 A p p e n d i x B-1, c o n t i n u e d CAML DEER DONK FOX RANG LEOP MOUS LION MONK PORC SKUN SQUR BEAR 1.00 5.17 .78 7.20 4.07 2.10 2.41 8.16 1.52 4.07 .20 .55 CAT 1.45 4.46 2.03 1.83 2.88 2.0516.18 5.80 2.83 .31 .14 .67 COW 5.25 5.75 5.95 2.47 3.09 2.19 6.39 2.57 2.85 .48 .15 .73 DOG 2.11 3.87 2.40 2.44 2.63 2.0615.70 7.08 3.54 .31 .13 .87 GIRF 3.58 5.20 1.10 1.43 5.15 3.06 2.7919.26 4.17 1.73 .18 2.42 RABT 3.04 1.85 1.2410.56 7.02 2.02 4.32 1.52 3.92 .85 .69 2.63 SHEP .29 3.14 4.34 5.93 3.69 3.67 6.33 2.38 5.21 .53 .15 .71 SEAL 1.16 1.99 6.23 .73 1.81 1.76 3.13 4.07 2.53 .34 0.0 .70 PIG 3.11 4.59 .95 1.66 1.89 1.88 7.68 3.97 1.12 .43 .14 .59 HORS 2.24 7.83 9.07 1.58 5.81 1.87 6.12 4.08 5.06 .47 .14 1.03 ELEP 1.35 3.37 .36 2.81 4.19 2.42 8.1415.12 5.75 .31 .15 .47 ZEBR .20 1.37 3.64 .45 1.82 3.98 1.13 6.26 .57 .11 0.0 .18 212 A p p e n d i x B-1, c o n t i n u e d CAML DEER DONK FOX KANG LEOP MOUS LION MONK PORC SKUN SQUR BAT .10 .25 0.0 .20 1.76 .06 1.46 .20 .26 .36 0.0 .80 CAML 2.33 4.25 .65 1.50 .26 1.45 1.18 .78 .08 0.0 .07 DEER .53 1.58 1.50 2.67 3.49 9.15 2.21 .52 .26 6.40 DONK .21 .07 2.03 .64 3.20 1.75 .16 0.0 .19 FOX 2.28 2.76 .96 2.37 1.49 .42 .37 .35 KANG 1.74 1.99 2.00 1.59 .07 0.0 .70 LEOP 5.2320.10 3.87 .46 .19 .80 MOUS 3.42 2.03 .54 .42 2.05 LION 5.68 .42 .14 .98 MONK .23 0.0 .96 PORC 3.13 4.27 SKUN .30 213 A p p e n d i x B-2. S i m i l a r i t y M a t r i x from t h e F r e e L i s t i n g Task f o r E d u c a t i o n U n d e r g r a d u a t e s CAT COW DOG GlRF RABT SHEP SEAL PIG HORS ELEP ZEBR BAT BEAR 4.76 5.81 4.13 6.34 4.14 1.54 6.81 2.21 7.16 7.76 3.31 1.19 CAT 11.9961.00 8.26 4.37 2.96 1.58 8.0221.0510.72 4.66 1.49 COW 11.23 3.70 4.37 8.79 1.1017.9529.04 5.53 2.41 1.47 DOG 7.80 4.24 2.44 1.56 6.7320.8910.4G 3.27 1.52 GIRF 5.35 2.78 2.45 4.24 7.G220.4412.77 .98 RABT 1.90 1.97 4.50 3.3511.39 3.29 5.20 SHEP .97 6.85 5.G7 2.10 .84 .49 SEAL 1.46 1.16 3.46 1.43 2.26 PIG 23.23 7.01 3.12 1.34 HORS 6.56 4.44 .94 ELEP 11.49 .97 ZEBR .59 214 A p p e n d i x B-2, c o n t i n u e d CAML DEER DONK FOX KANG LEOP MOUS LION MONK PORC SKUN SQUR BEAR 1.63 8.15 .71 1.48 1.48 2.30 5.07 8.15 3.03 .12 .20 4.05 CAT .76 5.00 2.67 2.68 3.16 1.0519.3712.26 7.10 .30 .82 2.06 COW 2.72 6.68 3.25 3.04 3.57 1.57 5.39 5.72 4.31 .44 1.18 2.33 DOG .70 7.75 2.59 2.34 4.17 1.0514.15 8.5010.97 .23 .87 1.88 GIRF 1.40 3.64 1.60 7.32 3.02 1.55 5.1512.37 7.14 .57 1.85 2.35 RABT 2.03 6.01 1.56 6.14 5.49 2.39 8.60 4.10 4.37 .67 1.3914.95 SHEP 4.63 8.09 1.82 5.21 1.87 .43 1.36 2.48 1.41 .26 1.19 1.14 SEAL .38 1.83 .29 5.99 3.95 1.91 3.65 2.39 1.39 .21 .51 2.11 PIG 2.48 2.76 3.10 3.31 1.62 1.57 3.60 3.99 4.78 .44 1.26 2.76 HORS 2.40 4.21 2.33 2.46 1.89 1.83 7.01 4.93 3.69 .60 .73 2.10 ELEP 1.02 5.47 1.23 3.80 3.36 2.77 7.5422.13 7.15 .32 3.12 4.71 ZEBR 3.94 1.74 3.75 1.54 1.69 5.99 4.9411.71 6.19 .18 .22 2.43 215 A p p e n d i x B-2, c o n t i n u e d CAML DEER DONK FOX KANG LEOP MOUS LION MONK PCRC SKUN SQUR BAT .79 .75 .54 .96 .68 .24 3.02 1.21 1.80 .32 2.61 2.92 CAML .95 2.31 .93 .85 .21 2.02 .91 .89 .28 .21 2.71 DEER 3.95 3.66 3.99 .71 3.34 5.46 4.29 .67 1.49 2.22 DONK .86 .56 .28 1.95 3.23 3.20 .07 .20 .74 FOX 4.41 2.23 2.73 3.29 5.20 1.15 3.63 3.98 KANG .69 2.65 2.01 2.98 .70 .61 3.12 LEOP 3.5211.67 1.79 .17 .99 1.61 MOUS 12.85 5.50 .32 1.16 3.79 LION 5.22 .45 2.69 1.79 MONK .67 .85 3.91 PCRC .37 1.21 SKUN 2.55 \ 216 A p p e n d i x B-3. S i m i l a r i t y M a t r i x from t h e F r e e L i s t i n g Task f o r Grade 11 S u b j e c t s CAT COW DOG GlRF RABT SHEP SEAL PIG HORS ELEP ZEBR BAT BEAR 6.30 5.76 7.94 5.56 2.87 1.95 7.32 2.78 4.8711.25 6.35 1.17 CAT 9.9762.0912.9810.78 4.62 2.58 7.4015.5612.43 4.24 .42 COW 9.76 9.16 5.5913.40 4.8340.1350.06 9.41 5.14 .61 DOG 11.55 6.96 3.67 2.67 6.5718.00 8.36 4.09 .44 GIRF 1.98 3.45 3.8010.7612.2334.8812.40 .55 RABT 5.33 2.73 6.05 6.24 2.42 1.56 .50 SHEP 2.25 7.0210.22 3.08 3.45 .18 SEAL 2.80 2.10 3.20 1.60 .62 PIG 24.76 6.29 2.70 2.55 HORS 8.30 5.76 .67 ELEP 15.00 .38 ZEBR .15 217 A p p e n d i x B-3, c o n t i n u e d CAML DEER DONK FOX KANG LEOP MOUS LION MONK PGRC SKUN SQUR BEAR .86 9.79 .59 4.59 1.45 1.0410.38 8.54 7.48 1.07 4.47 6.72 CAT .40 3.34 .64 1.36 2.67 2.4514.8912.32 6.07 .39 1.18 2.30 COW 3.64 1.72 1.29 2.47 2.20 2.07 4.95 7.37 3.94 .63 .48 3.05 DOG .40 3.03 .67 1.42 4.16 2.1213.3412.86 4.57 .39 1.05 1.89 GIRF 1.44 5.81 .81 1.22 2.36 2.76 5.9C12.6816.20 .78 .72 1.65 RABT .46 2.64 .50 2.08 1.79 1.6412.40 2.45 2.8C .50 .69 2.48 SHEP .89 1.74 2.98 1.43 4.91 1.21 3.87 3.41 2.62 .45 .70 2.59 SEAL .94 6.26 .55 9.17 2.33 3.87 2.41 4.59 5.47 .63 .58 4.01 PIG 4.53 2.82 2.16 3.46 1.55 2.02 4.71 4.36 3.65 1.59 .65 1.39 HORS .40 3.83 .71 1.63 1.72 2.68 7.70 9.15 4.69 .62 .34 1.66 ELEP 2.38 5.89 1.03 1.37 2.32 5.56 8.7419.87 9.15 .63 .61 2.12 ZEBR .59 3.69 2.25 1.86 .86 4.13 4.0610.83 8.C4 .38 .94 1.62 218 A p p e n d i x B-3, c o n t i n u e d CAML DEER DONK FOX KANG LEOP MOUS LION MONK PORC SKUN SQUR BAT 0.0 .13 0.0 0.0 .24 .72 .45 .40 4.23 2.04 1.12 0.0 CAML 1.98 .14 3.20 .19 .39 .85 .92 1.68 .96 .40 .40 DEER .98 5.25 5.03 6.08 4.78 4.84 5.87 2.07 1.52 9.77 DONK .35 .13 4.17 .84 1.02 4.96 .06 .06 .58 FOX 1.46 .75 1.44 4.71 2.16 2.30 4.31 6.61 KANG .79 2.47 3.39 2.55 .76 .92 .19 LEOP 1.40 8.54 4.32 .63 .33 1.15 MOUS 4.16 4.04 .29 3.06 4.82 LION 10.88 .68 .63 1.61 MONK .62 2.54 1.21 PORC 3.27 .62 SKUN .13 219 A p p e n d i x B-4. S i m i l a r i t y M a t r i x from t h e F r e e L i s t i n g Task f o r Grade 7 S u b j e c t s CAT COW DOG GIRF RABT SHEP SEAL PIG HORS ELEP ZEBR BAT BEAR 7,02 3.98 5.18 4.29 2.58 1.53 5.37 1.98 5.01 3.37 4.76 .35 CAT 5.9653.51 7.81 7.18 1.67 1.65 2.93 9.2011.52 4.21 .26 COW 6.66 2.78 7.27 6.07 2.2416.5032.20 6.75 2.71 .52 DOG 8.70 6.77 2.57 1.54 3.18 9.1813.36 4.81 .25 GIRF 2.45 .84 .70 1.93 7.4326.58 7.96 4.30 RABT 4.03 3.25 6.66 9.23 1.66 1.7C .09 SHEP 1.23 2.60 2.40 .88 .70 .28 SEAL 1.74 2.11 1.97 2.04 .09 PIG 11.81 4.95 3.52 .25 HORS 9.42 7.87 .13 ELEP 10.64 2.24 ZEBR .07 220 A p p e n d i x B-4, c o n t i n u e d CAML DEER DONK FOX KANG LEOP MOUS LION MONK PORC SKUN SQUR BEAR 1.09 8.56 3.31 6.54 5.93 2.08 7.28 6.21 5.33 2.C8 3.83 4.52 CAT .53 1.78 1.51 3.04 1.17 1.4415.6812.45 3.41 1.67 .61 1.24 COW 2.03 1.90 3.00 3.41 1.80 1.78 4.46 7.14 4.70 1.03 1.19 3.15 DOG .87 1.60 1.33 2.21 1.10 1.3914.9912.79 3.36 2.74 .72 1.68 GIRF 1.32 1.59 1.45 1.20 1.73 2.33 5.52 7.90 6.62 2.24 1.96 4.30 RABT .78 3.24 1.20 3.02 3.21 .6211.25 6.02 2.76 .53 1.32 8.40 SHEP .27 2.45 1.28 3.43 .68 1.29 1.06 2.14 2.01 2.54 1.14 1.51 SEAL .66 1.40 2.04 .80 1.15 .98 1.61 2.94 3.15 .98 1.38 1.20 PIG 3.21 2.09 3.44 2.02 1.70 1.04 2.95 5.56 2.46 .68 4.64 4.13 HORS 5.51 1.69 5.58 3.14 1.34 2.03 5.93 7.8710.56 .86 .81 3.31 ELEP .51 2.55 .89 1.24 3.24 2.67 6.7415.3912.2 8 1.49 1.50 1.66 ZEBR 2.08 1.25 1.40 .94 .83 1.06 3.63 5.62 4.85 .49 .56 3.90 221 A p p e n d i x B-4, c o n t i n u e d CAML DEER DONK FOX KANG LEOP MOUS LION MONK PORC SKUN SQUR BAT .12 .35 0.0 .12 .08 0.0 1.64 .30 1.20 1.42 2.13 0.0 CAML .13 .30 .47 .89 .97 1.04 .96 1.16 .85 2.00 .52 DEER 1.21 5.10 1.85 .90 1.24 3.40 4.06 .75 .57 .67 DONK 1.17 .33 2.26 1.72 2.41 1.30 .44 2.08 2.48 FOX 1.23 .80 1.24 2.72 2.70 .76 .52 .71 KANG 1.13 .95 1.42 5.81 .81 .84 .91 LEOP 3.02 4.61 4.72 1.17 1.69 2.74 MOUS 6.28 3.91 .92 .71 3.49 LION 5.54 1.11 1.04 2.23 MONK 3.19 2.42 3.07 PORC 7.83 2.27 SKUN 5.13 222 A p p e n d i x B-5. S i m i l a r i t y M a t r i x from t h e F r e e L i s t i n g Task f o r Grade 3 S u b j e c t s CAT COW DOG GIRF RABT SHEP SEAL PIG HORS ELEP ZEBR BAT BEAR 6.90 2.52 6.01 .93 4.88 .45 7.63 2.60 2.19 1.64 2.07 .47 CAT 7.1550.42 3.5613.26 .50 2.70 5.97 7.42 3.81 2.30 .27 COW 6.36 2.98 5.57 2.52 1.8918.5429.84 3.50 3.16 .14 DOG 4.94 9.24 .51 2.57 3.44 4.85 4.74 2.19 .31 GIRF 4.01 .92 2.69 1.12 3.08 9.2711.25 .17 RABT 1.23 2.45 5.28 4.69 2.21 1.32 .08 SHEP .31 6.47 1.91 1.17 .49 0.0 SEAL 1.72 1.57 1.90 .99 0.0 PIG 14.74 1.86 1.71 .10 HORS 6.C6 2.70 .13 ELEP 2.59 .19 ZEBR .16 223 A p p e n d i x B-5, c o n t i n u e d CAML DEER DONK FOX KANG LEOP MOUS LION MONK PORC SKUN SQUR BEAR .5310.71 .49 2.52 3.02 1.00 2.73 6.08 9.72 .39 1.40 4.68 CAT 1.48 3.70 1.31 6.33 2.41 4.51 6.8112.68 4.42 .59 .63 2.04 COW 3.41 4.08 4.48 5.09 1.79 1.83 3.04 3.28 3.86 .75 3.45 2.16 DOG 1.20 3.99 1.61 2.15 3.09 6.20 6.6312.70 4.11 .57 .61 1.97 GIRF 1.03 3.30 .94 .81 2.30 1.73 1.15 5.69 4.25 1.95 3.18 1.71 RABT 1.07 7.48 2.44 8.45 1.34 1.80 5.24 4.03 2.47 2.11 1.92 5.81 SHEP .57 2.22 2.57 .42 .71 .32 3.19 .77 .68 .37 .66 .45 SEAL .15 2.10 .16 1.16 1.38 1.23 2.30 5.02 5.07 .84 .97 2.50 PIG .95 1.58 1.35 2.62 1.07 1.90 2.31 2.92 2.05 .28 3.58 1.67 HORS 3.71 2.81 8.68 3.71 1.61 2.70 2.96 3.70 4.94 .60 2.12 3.04 ELEP 2.42 2.53 2.10 1.06 1.45 1.97 4.0311.4913.74 1.49 .98 1.62 ZEBR 1.68 2.08 .22 .97 2.27 2.11 1.08 5.49 4.94 1.74 2.09 3.68 224 A p p e n d i x B-5, c o n t i n u e d CAML DEER DONK FOX KANG LEOP MOUS LION MONK PORC SKUN SQUR BAT .16 0.0 0.0 0.0 .38 .94 .19 .13 .21 C O 0.0 1.88 CAML .65 6.04 .65 .38 1.25 2.01 1.90 3.91 .62 .11 4.32 DEER 1.00 2.51 1.37 .35 1.19 2.49 2.37 .78 1.26 4.21 DONK .88 .41 1.32 1.73 1.83 3.37 .95 1.11 3.30 FOX .73 1.46 1.16 1.32 1.78 .43 .87 3.18 KANG 1.00 3.95 2.09 5.21 1.09. 2.13 1.55 LEOP 3.6510.27 3.97 .16 .20 1.17 MOUS 5.29 4.64 1.07 .80 1.50 LION 8.26 .62 1.44 2.46 MONK 1.14 .95 2.75 PORC 7.05 2.65 SKUN 2.70 225 A p p e n d i x B-6. S i m i l a r i t y M a t r i x from t h e F r e e L i s t i n g Task f o r K i n d e r g a r t e n S u b j e c t s CAT COW DOG GlRF RABT SHEP SEAL PIG HORS ELEP ZEBR BAT BEAR 3.02 1.89 2.60 2.61 1.84 .56 2.14 1.48 2.57 4.C3 .52 1.23 CAT 3.3620.47 2.26 2.59 2.85 .61 1.43 6.76 2.34 .54 .47 COW 5.34 2.51 1.51 4.48 .37 4.1211.39 2.13 .59 .05 DOG 3.46 2.75 4.04 .63 1.81 4.92 2.66 .68 .53 GIRF .74 .81 .63 .71 4.6610.46 3.74 .07 RABT .76 1.30 .37 2.02 1.68 .63 .42 SHEP .26 .67 3.61 1.21 .19 .06 SEAL -67 .39 1.43 2.08 .35 PIG 2.52 1.04 .08 .05 HORS 5.10 2.32 .06 ELEP 1.72 .13 ZEBR .16 226 A p p e n d i x B-6, c o n t i n u e d CAML DEER DONK FOX KANG LEOP MOUS LION MONK PORC SKUN SOUR BEAR .51 .68 2.25 .16 .87 .50 3.01 2.03 1.57 C C 0.0 .75 CAT .68 1.34 1.53 .71 1.26 1.21 3.41 3.24 1.67 C O 0.0 .87 COW .98 1.15 .48 .20 2.51 1.23 1.67 2.27 2.38 0.0 0.0 1.07 DOG 1.34 .64 1.44 1.42 1.05 1.29 4.87 4.60 1.43 C C 0.0 .73 GIRF 2.09 .46 1. 15 .11 .24 1.99 1.74 6.25 3.96 C C 0.0 .21 RABT .08 .32 .32 .47 .32 1.04 1.27 1.88 1.89 C O 0.0 .61 SHEP .93 .36 .51 0.0 .75 .37 .84 .70 2.87 C O 0.0 .59 SEAL .09 1.13 .10 0.0 .32 .17 .28 1.54 1.94 C O 0.0 0.0 PIG 0.0 1.05 .21 0.0 .23 .23 .85 1.69 .59 C O 0.0 .14 HORS 1.43 1.36 3.49 . 13 1.53 1.58 4.45 2.88 1.84 C O C O 1.51 ELEP 1.44 .98 1.03 .12 .73 2.62 1.8810.41 3.47 C C C O .71 ZEBR .62 .18 .51 C O .14 .68 .21 1.95 .30 C O 0.0 C O $SIG 227 A p p e n d i x B-6, c o n t i n u e d CAML DEER DONK FOX KANG LEOP MOUS LION MONK PORC SKUN SQUR BAT 0.0 0.0 0.0 0.0 1.42 .08 .71 .27 .18 0.0 0.0 0.0 CAML .15 2.44 0.0 .08 .65 .62 .54 .35 C O 0.0 .09 DEER .23 0.0 1.41 2.13 1.24 1.55 3.50 C O 0.0 .13 DONK 0.0 .15 1.09 .63 .44 .69 C O 0.0 .07 FOX 0.0 0.0 .14 .71 .24 C O 0.0 0.0 KANG .59 .63 .79 1.85 0.0 0.0 1.50 LEOP .45 6.01 1.63 C O 0.0 .18 MOUS 1.65 2.31 0.0 0.0 2.40 LION 3.52 O.C 0.0 .68 MONK C O 0.0 1.68 PORC 0.0 0.0 SKUN 0.0 228 A p p e n d i x C. A s s o c i a t i o n s t o A n i m a l Words" a Number b e f o r e b r a c k e t s i n d i c a t e s t o t a l number o f s u b j e c t s r e s p o n d i n g w i t h a p a r t i c u l a r a s s o c i a t i o n . Numbers w i t h i n b r a c k e t s i n d i c a t e breakdown o f t o t a l . n u m b e r b y e d u c a t i o n a l l e v e l , g o i n g f r o m h i g h e s t t o l o w e s t e d u c a t i o n a l l e v e l . b a t b i r d 4 8 ( 8 , 6 , 1 5 , 8 , 7 , 4 ), mouse 13 ( 2 , 2 , 3 , 2 , 0 , 4 ) , r a t 1 1 ( 2 , 2 , 2 , 1 , 1 , 3 ) , owl 8 ( 2 , 4 , 1 , 0 , 1 ) , c a t 4 ( 0 , 1 , 0 , 2 , 1 , 0 ) , h o r s e 4 ( 1 , 1 , 0 , 0 , 0 , 2 ) , snake 3 (0,1,0,1,1,0), b l u e j a y 2 ( 0 , 1 , 0 , 1 , 0 , 0 ) , camel 2 ( 0 , 0 , 0 , 0 , 1 , 1 ) , cow 2. (1 , 0 , 0 , 1 , 0 , 0 ) , e e l 2 ( 0 , 0 , 0 , 2 , 0 , 0 ) , f i s h 2 ( 1 , 0 , 0 , 0 , 0 , 1 ) , f l y 2 (0,0 , 1 , 0 , 1 , 0 ) , g i r a f f e 2 ( 0 , 0 , 0 , 0 , 0 , 2 ) , monkey _2(0,0,1,0,1,0), r a b b i t 2 ( 0 , 0 , 0 , 0 , 1 , 1 ) , s p i d e r 2 ( 1 , 0 , 0 , 1 , 0 , 0 ) , s q u i r r e l 2 ( 1 , 1 , 0 , 0 , 0 , 0 ) , t i g e r 2 ( 0 , 0 , 0 , 1 , 0 , 1 ) , v a m p i r e 2 ( 0 , 1 , 0 , 0 , 1 , 0 ) , baby h o r s e 1 (K) , b e a r 1 ( K ) , bee 1 ( G r 3 ) , b u t t e r f l y 1 ( K ) , b u z z a r d l ( E d ) , c a n a r y 1 ( E d ) , c a r d i n a l l ( G r 3 ) , c h i c k e n 1 ( K ) , d o l p h i n l ( G r 3 ) , e a g l e l ( G r 7 ) , f l y i n g s q u i r r e l l ( Z o o l ) , f o x 1 ( Z o o l ) , g e r b i l 1 ( G r 7 ) , goose 1 ( Z o o l ) , g u i n e a p i g 1 ( K ) , hedgehog 1 ( G r 3 ) , l i o n l ( G r 7 ) , man 1 ( Z o o l ) , mole l ( G r l l ) , p i g e o n l ( Z o o l ) , p o r c u p i n e l ( G r 3 ) , r o b i n 1 ( E d ) , salamander l ( G r 3 ) , skunk l ( G r 3 ) , s t o r k 1 ( E d ) , v u l t u r e l ( G r 7 ) , w a l r u s l ( G r 3 ) . b e a r l i o n 1 4 ( 2 , 2 , 2 , 4 , 2 , 2 ) , p o l a r b e a r 9 ( 0 , 1 , 0 , 1 , 6 , 1 ) , w o l f 9 ( 3 , 1 , 2 , 2 , 1 , 0 ) , d e e r 8 ( 0 , 2 , 3 , 3 , 0 , 0 ) , dog 6 (.2,1,1,0,0,2) , moose 6 ( 1 , 3 , 1 , 1 , 0 , 0 ) , c a t 5 ( 1 , 2 , 1 , 1 , 0 , 0 ) , r a b b i t 5 ( 0 , 0 , 2 , 1 , 2 , 0 ) , e l e p h a n t 4 ( 0 , 0 , 1 , 0 , 1 , 2 ) , f o x 4 ( 1 , 1 , 0 , 2 , 0 , 0 ) , g r i z z l y 4 ( 0 , 1 , 2 , 1 , 0 , 0 ) , bee 3 ( 0 , 1 , 0 , 0 , 1 , 1 ) , cow 3 (0, 0 , 1 , 0 , 0 , 2 ) , t i g e r 3 ( 1 , 2 , 0 , 0 , 0 , 0 ) , b u f f a l o 2 ( 0 , 0 , 2 , 0 , 0 , 0 ) , b u l l 2 (0 , 0 , 0 , 1 , 0 , 1 ) , donkey 2 ( 0 , 0 , 0 , 0 , 1 , 1 ) , f i s h 2 ( 0 , 0 , 0 , 0 , 1 , 1 ) , g o a t 2 (0,0 , 1 , 0 , 1 , 0 ) , g o r i l l a 2 ( 0 , 0 , 1 , 0 , 1 , 0 ) , h o r s e 2 ( 0 , 1 , 0 , 0 , 1 , 0 ) , k a n g a r o o 2 ( 0 , 1 , 0 , 0 , 0 , 1 , ) , man 2 ( 1 , 0 , 1 , 0 , 0 , 0 ) , mouse 2 ( 1 , 0 , 0 , 0 , 1 , 0 ) , r a c c o o n 2 ( 1 , 0 , 0 , 0 , 1 , 0 ) , w a l r u s 2 ( 1 , 0 , 0 , 1 , 0 ^ 0 ) , . z e b r a 2 ( 0 , 1 , 0 , 0 , 0 , 1 ) , a l l i g a t o r l ( G r 7 ) , a n t 1 ( K ) , baby c a l f 1 ( K ) , baby pony 1 ( K ) , b e a v e r 1 ( 0 , 1 , 0 , 0 , 0 , 0 ) , bee l ( Z o o l ) , b i s o n 1 ( E d ) , . b l a c k b e a r l ( G r 3 ) , b u t t e r -f l y l ( Z o o l ) , c o u g a r 1 ( G r l l ) , cub 1 ( G r l l ) , g i r a f f e l ( G r 7 ) , gnu 1 ( K ) , k o a l a l ( E d ) , l y n x l ( G r l l ) , marten l ( Z o o l ) , monkey 1 ( K ) , o t t e r 1 ( Z o o l ) , panda l ( Z o o l ) , p a r r o t 1 ( G r 3 ) , p h e a s a n t 1 ( G r 3 ) , p i g l ( Z o o l ) , p o r c u p i n e 1 ( K ) , p r a y i n g m a n t i s 1 ( G r 3 ) , r a t l ( G r 7 ) , salmon 1 ( Z o o l ) , s e a l 1 ( K ) , s h a r k 1 ( K ) , snake 1 ( K ) , s q u i r r e l 1 ( E d ) , w a l l a b y l ( G r 7 ) , w hale l ( G r 3 ) , w o l v e r i n e l ( G r 7 ) . camel h o r s e 3 3 ( 4 , 8 , 9 , 8 , 3 ) , g i r a f f e 1 1 ( 3 , 4 , 1 , 1 , 1 , 1 ) , l l a m a 1 0 ( 2 , 4 , 3 , 0 , 1 , 0 ) , dromedary 9 ( 4 , 1 , 2 , 1 , 1 , 0 ) , donkey 8 ( 0 , 0 , 2 , 4 , 0 , 2 ) , e l e p h a n t 8 (0,1 , 2 , 4 , 0 , 1 ) , l i o n 5 ( 0 , 0 , 0 , 2 , 1 , 2 ) , dog 3 ( 1 , 0 , 0 , 0 , 1 , 1 ) , g o a t 3 (0, 0 , 1 , 0 , 2 , 0 ) , hippopotamus 3 ( 0 , 1 , 0 , 1 , 0 , 1 ) , man 3 ( 2 , 1 , 0 , 0 , 0 , 0 ) , z e b r a 3 ( 1 , 0 , 1 , 0 , 1 , 0 ) , cow 2 ( 0 , 0 , 0 , 0 , 1 , 1 ) , d e e r 2 ( 2 , 0 , 0 , 0 , 0 , 0 ) , g e r b i l 2 ( 1 , 0 , 0 , 1 , 0 , 0 ) , l e o p a r d 2 ( 0 , 0 , 0 , 1 , 0 , 1 ) , snake 2 ( 0 , 1 , 0 , 0 , 1 , 0 ) , a n t e l o p e l ( G r 3 ) , A r a b i a n h o r s e l ( G r l l ) , baby b e a r 1 ( K ) , baby g o a t 1 ( K ) , baby lamb 1 ( K ) , b e a r 1 ( K ) , bee 1 ( K ) , b i r d 1 ( K ) , b o b c a t l ( G r 3 ) , b u f f a l o l ( G r 3 ) , c a l f 1!(K) , c a t 1 ( K ) , chimpanzee 1 ( K ) , chipmunk 1 (K) , c o b r a l ( G r l l ) , c o l t l ( G r 3 ) , coney l ( Z o o l ) , dung b e e t l e l ( Z o o l ) , e e l l ( G r 3 ) , e l k 1 ( E d ) , f i s h l ( G r 3 ) , f o x 1 ( K ) , g a z e l l e 1 ( Z o o l ) , kangaroo 1 ( K ) , lamb 1 ( E d ) , o s t r i c h l ( G r 3 ) , p e n g u i n l ( G r l l ) , p o r c u -p i n e l ( G r 3 ) , p r a i r i e d o g l ( G r 7 ) , r a b b i t l ( G r 3 ) , sheep l ( Z o o l ) , skunk 1 ( K ) , t i g e r l ( E d ) , w a l r u s l ( G r 3 ) , whale 1 (Gr3) . c a t dog 102(16,20,18,21,13,14), mouse 1 4 ( 6 , 2 , 2 , 1 , 2 , 1 ) , r a t 5(0,0,0,0,2,3) k i t t e n 3 ( 0 , 0 , 0 , 1 , 1 , 1 ) , l i o n 3 ( 1 , 1 , 0 , 0 , 1 , 0 ) , t i g e r 3 ( 0 , 0 , 2 , 0 , 1 , 0 ) , b e a r 2 ( 0 , 0 , 0 , 0 , 1 , 1 ) , cow 2 ( 1 , 0 , 0 , 0 , 0 , 1 ) , b a t 1 ( K ) , b e a v e r 1 ( G r 3 ) , 229 c a l f l ( G r 3 ) , g o a t 1 (K) , g e r b i l l.(Gr3) , h o r s e 1 (Gr7) , l y n x l ( G r l l ) , p i g l ( G r 7 ) , Siamese c a t l ( G r l l ) , w o l f 1 ( E d ) . cow h o r s e 54(14,9,12,8,7,4), dog 1 4 ( 0 , 5 , 1 , 3 , 2 , 3 ) , b u l l 1 3 ( 0 , 5 , 2 , 4 , 2 , 0 ) , p i g 13(3,2,6,2,0,0) , c a l f 7 ( 0 , 0 , 0 , 2 , 5 , 0 ) , c a t 3 ( 2 , 0 , 0 , 0 , 0 , 1 ) , donkey 3 ( 1 , 0 , 0 , 0 , 1 , 1 ) , moose 3 ( 1 , 0 , 0 , 0 , 1 , 1 ) , b e a r 2 ( 0 , 0 , 0 , 1 , 0 , 1 ) , c h i c k e n 2 ( 0 , 0 , 0 , 1 , 0 , 1 ) , r a t 2 ( 0 , 1 , 0 , 0 , 0 , 1 ) , sheep 2 ( 1 , 0 , 1 , 0 , 0 , 0 ) , baby chipmunk 1 ( K ) , baby cow 1 (K) , b i r d 1 ( K ) , b u f f a l o I ( G r l l ) , camel l ( G r 7 ) , c a t f i s h 1 ( K ) , c o l t l ( G r 3 ) , c o y o t e l ( Z o o D , duck l ( G r 7 ) , f i s h 1 ( K ) , g i r a f f e 1 ( K ) , g o a t 1 (K) , goose 1 ( K ) , h i p p o l ( Z o o l ) , J e r s e y 1 ( G r l l ) , lamb 1 ( E d ) , l e o p a r d l ( G r 3 ) , l i o n 1 ( K ) , monkey l ( G r 3 ) , mouse l ( G r 7 ) , o t t e r 1 ( K ) , ox l ( G r 3 ) , r a b b i t 1 ( G r 3 ) , s e a l 1 ( K ) , s t e e r 1 ( E d ) , z e b r a 1 ( K ) . d e e r moose 31 ( 4 , 8 , 9 , 6 , 4 , 0 ) , a n t e l o p e 1 8 ( 4 , 5 , 2 , 5 , 1 , 1 ) , e l k 9 ( 5 , 1 , 1 , 2 , 0 , 0 ) , h o r s e 8 ( 2 , 0 , 1 , 0 , 3 , 2 ) , b e a r 7(1,1,0,1,2,2) fawn•5(1,0,1,2,1,0), cow 4 ( 0 , 0 , 0 , 1 , 1 , 2 ) , b u f f a l o 3(1,0,1,0,0,1),. c o u g a r 3 ( 0 , 2 , 1 , 0 , 0 , 0 ) , dog 3 ( 0 , 0 , 0 , 1 , 1 , 1 ) , e l e p h a n t 3 ( 0 , 0 , 0 , 0 , 1 , 2 ) , g o a t 3 ( 1 , 0 , 1 , 1 , 0 , 0 ) , lamb 3 ( 0 , 1 , 0 , 1 , 0 , 1 ) , sheep 3 ( 0 , 0 , 1 , 1 , 1 , 0 ) , b u l l 2 ( 0 , 0 , 0 , 0 , 2 , 0 ) , camel 2 ( 0 , 0 , 0 , 1 , 1 , 0 ) , doe 2 ( 0 , 0 , 0 , 0 , 2 , 0 ) , g a z e l l e 2 ( 0 , 1 , 1 , 0 , 0 , 0 ) , g i r a f f e 2 ( 0 , 0 , 1 , 1 , 0 , 0 ) , hippopotamus 2 ( 0 , 0 , 0 , 0 , 0 , 2 ) , l i o n 2 ( 0 , 0 , 0 , 1 , 0,1), m o u n t a i n g o a t 2 ( 2 , 0 , 0 , 0 , 0 , 0 ) , whale 2(1,0,0,0,0,1) , w o l f 2 ( 0 , 1 , 1,0,0,0), baby lamb 1 ( K ) , b l u e j a y l ( G r 3 ) , buck 1 ( E d ) , c a t 1 ( E d ) , c h e e t a h 1 ( G r l l ) , c o l t l ( G r 3 ) , c o y o t e 1 ( Z o o l ) f o x l ( G r l l ) , f r o g 1(K) , g e r b i l 1 ( K ) , hen 1 ( G r 3 ) , kangaroo 1 ( K ) , man 1 ( Z o o l ) , monkey 1 ( K ) , ox l ( G r 3 ) , pig:.1 ( G r l l ) , pony 1 ( K ) , p o o d l e 1 (K) , ram l ( G r 7 ) , skunk 1 ( E d ) , s t a g 1 ( E d ) . dog c a t 108(17,21,19,23,13,15), w o l f 4 ( 3 , 0 , 1 , 0 , 0 , 0 ) , l i o n 3 ( 0 , 0 , 0 , 0 , 1 , 2 ) , r a t 3 ( 1 , 0 , 1 , 1 , 0 , 0 ) , cow 2 ( 0 , 0 , 0 , 0 , 1 , 1 ) , h o r s e 2 ( 0 , 0 , 0 , 0 , 1 , 1 ) , hyena 2 ( 0 , 0 , 2 , 0 , 0 , 0 ) , mouse 2 ( 0 , 2 , 0 , 0 , 0 , 0 ) , sheep 2 ( 0 , 0 , 0 , 0 , 1 , 1 ) , a r m a d i l l o l ( Z o o l ) , b e a r 1 ( K ) , b i r d l ( G r 3 ) , c h e e t a h 1 ( Z o o l ) , c h i c k e n 1 ( K ) , daschound 1 ( G r l l ) , e l e p h a n t 1 ( K ) , g o a t 1 ( E d ) , g o r i l l a l ( G r 3 ) , man 1 ( Z o o l ) , p a r r o t 1 ( G r 3 ) , puppy l ( G r 3 ) , r a b b i t 1 ( K ) , r a t t l e s n a k e l ( G r 3 ) , s q u i r r e l l ( G r 3 ) , z e b r a l ( G r 3 ) . donkey h o r s e 61(9,12,13,10,9,8), mule 2 7 ( 7 , 4 , 4 , 5 , 7 , 0 ) , a s s 6 ( 4 , 0 , 2 , 0 , 0 , 0 ) , sheep 5 ( 0 , 3 , 1 , 0 , 0 , 1 ) , b u r r o 4 ( 1 , 2 , 0 , 1 , 0 , 0 ) , dog 3 ( 1 , 0 , 0 , 1 , 1 , 0 ) , g i r a f f e 3 ( 0 , 0 , 1 , 0 , 1 , 1 ) , z e b r a 3(0,1,1,1,0,0) , b e a r 2 ( 0 , 0 , 0 , 0 , 0 , 2 ) , c a t 2 ( 0 , 0 , 0 , 0 , 2 , 0 ) , cow 2 ( 1 , 0 , 0 , 0 , 1 , 0 ) , t i g e r 2 ( 0 , 0 , 0 , 0 , 0 , 2 ) , baby h o r s e 1 ( K ) , b i r d 1 ( K ) , b u f f a l o 1 ( K ) , camel l ( G r 7 ) , c ougar 1 ( E d ) , daddy f i s h 1 ( K ) , f i s h 1 ( K ) , g o a t 1 ( G r l l ) , g o r i l l a 1 ( K ) , hamster 1 ( G r 7 ) , h a r e l ( Z o o l ) , h o r n e t l ( G r l l ) , human 1 ( G r l l ) , hyena 1 ( G r 7 ) , man 1 ( E d ) , mink 1 (Gr7) , monkey 1 ( K ) , p e n g u i n l ( G r 3 ) , pony 1 ( K ) , r a b b i t l ( G r 3 ) , skunk l ( G r 7 ) , s q u i r r e l 1 ( K ) , t u r k e y l ( G r 7 ) , whale 1 (Gr3) . e l e p h a n t g i r a f f e 3 0 ( 7 , 1 , 8 , 6 , 5 , 3 ) , mouse 1 8 ( 4 , 5 , 1 , 5 , 3 , 0 ) , t i g e r 12 (2,6,0 , 1 , 1,0), r h i n o c e r o s 1 1 ( 2 , 5 , 2 , 0 , 1 , 1 ) , hippopotamus 8 ( 1 , 2 , 3 , 2 , 0 ) , l i o n 5 ( 1 , 1 , 3 , 0 , 0 , 0 ) , whale 5 ( 1 , 0 , 3 , 1 , 0 , 0 ) , z e b r a 4 ( 0 , 0 , 0 , 2 , 0 , 2 ) , monkey 3 ( 1 , 0 , 1 , 0 , 0 , 1 ) , r a t 3 ( 1 , 0 , 0 , 1 , 0 , 1 ) , b e a r 2 ( 0 , 0 , 1 , 0 , 0 , 1 ) , b i r d 2 (1 , 0 , 0 , 0 , 0 , 1 ) , camel. 2 ( 0 , 0 , 0 , 0 , 1 , 1 ) , cow 2 ( 0 , 0 , 0 , 0 , 0 , 2 ) , d e e r 2 ( 0 , 0 , 0 , 0 , 1 , 1 ) , h o r s e 2 ( 0 , 1 , 0 , 0 , 1 , 0 ) , men 2 ( 1 , 1 , 0 , 0 , 0 , 0 ) , p i g 2 ( 0 , 0 , 1 , 1 , 0 , 0 ) , s e a l 2 ( 0 , 0 , 0 , 0 , 2 , 0 ) , s q u i r r e l 2 ( 0 , 0 , 0 , 0 , 2 , 0 ) , baby g i r a f f e 1 ( k ) , baby l e o p a r d 1 ( K ) , b a d g e r 1 ( G r 3 ) , c a l f 1(K) , c a t l ( G r 3 ) , c r a b 1 ( K ) , d i n o s a u r l ( G r 7 ) , e e l 1 ( K ) , e l k l ( E d ) , f i s h 1 ( K ) , g o a t 1 ( K ) , g o r i l l a 1 ( K ) , hog 1 ( K ) , hyena l ( G r l l ) , 230 h y r a x 1 ( Z o o l ) , I n d i a n e l e p h a n t l ( G r 3 ) , l e o p a r d 1 ( K ) , moose l ( G r 7 ) , muskox l ( Z o o l ) , ox l ( G r 3 ) , r o b i n l ( G r 3 ) , s e a l i o n l ( G r 3 ) , sheep 1 ( G r 3 ) , t y r r a n o s a u r u s l ( G r 7 ) , w a l r u s 1 ( E d ) . f o x w o l f 48(5,9,11,13,8,2), r a b b i t 1 2 ( 3 , 3 , 3 , 0 , 3 , 0 ) , c o y o t e 9 ( 1 , 1 , 0 , 3 , 3 , 1 ) , . dog 8 ( 4 , 0 , 3 , 1 , 0 , 0 ) , h o r s e 5 ( 1 , 0 , 0 , 1 , 1 , 2 ) , w e a s i l 5 ( 0 , 0 , 2 , 0 , 3 , 0 ) , b e a r 3 ( 0 , 0 , 0 , 1 , 1 , 1 ) , badger 3 ( 0 , 1 , 0 , 0 , 2 , 0 ) , c a t 3 ( 0 , 1 , 0 , 0 , 1 , 1 ) , c h i c k e n 3 (.3,0,0,0,0,0),, l e o p a r d 3 ( 0 , 2 , 0 , 0 , 1 , 0 ) , mink 3 ( 0 , 2 , 1 , 0 , 0 , 0 ) , chipmunk 2 ( 0 , 0 , 0 , 0 , 0 , 2 ) , d e e r 2 ( 0 , 0 , 2 , 0 , 0 , 0 ) , e l e p h a n t 2 ( 1 , 0 , 0 , 0 , 0 , 1 ) , f i s h 2 ( 0 , 0 , 2 , 0 , 0 , 0 ) , g i r a f f e 2 ( 0 , 0 , 0 , 0 , 0 , 2 ) , goose 2 ( 2 , 0 , 0 , 0 , 0 , 0 ) , l y n x 2 ( 0 , 1 , 0 , 1 , 0 , 0 ) , skunk 2 ( 1 , 0 , 0 , 1 , 0 , 0 ) , t i g e r 2(1,0,-0,1,0,0), b e a g l e l ( G r l l ) , b i r d l ( G r 7 ) , camel 1 ( K ) , c o w l ( K ) , e a g l e l ( G r 3 ) , e l e p h a n t 1 ( K ) , g o a t l ( G r 7 ) , hamster 1 ( K ) , hound 1 ( E d ) , k a n g a r o o 1 ( K ) , l i o n i ( Z o o l ) , man l ( E d ) , m o u n t a i n l i o n 1 ( K ) , mouse 1 ( E d ) , r a t . l ( K ) , s e a l 1 (K) , sheep 1 ( K ) , s h r i m p 1 ( K ) , s q u i r r e l 1 (K) , whale 1 ( K ) , w i l d dog 1 ( Z o o l ) , wren 1 ( E d ) . g i r a f f e e l e p h a n t 2 5 ( 2 , 4 , 6 , 6 , 2 , 5 ) , z e b r a 1 5 ( 2 , 3 , 5 , 3 , 1 , 1 ) , l i o n 10(4,3,1,0, 1.1) , h o r s e 9 ( 2 , 0 , 1 , 3 , 1 , 2 ) , camel 8 ( 3 , 0 , 0 , 2 , 2 , 1 ) , k a n g a r o o 7(0,0,2,2, 1.2) , a n t e l o p e 5 ( 2 , 1 , 1 , 1 , 0 , 0 ) , o s t r i c h 5 ( 1 , 1 , 2 , 0 , 1 , 0 ) , dog 4 ( 0 , 0 , 1 , 0 , 1,2), hippopotamus 4 ( 0 , 0 , 1 , 1 , 1 , 1 ) , l e o p a r d 4 ( 0 , 2 , 0 , 1 , 0 , 1 , ) , r h i n o -c e r o s 4 ( 2 , 1 , 0 , 0 , 1 , 0 ) , t i g e r 4 ( 0 , 2 , 1 , 1 , 0 , 0 ) , cow 3 ( 1 , 0 , 0 , 1 , 0 , 1 ) , p i g 3 ( 0 , 1 , 0 , 0 , 0 , 2 ) , donkey 2 ( 1 , 1 , 0 , 0 , 0 , 0 ) , monkey 2(0,0,0,0,0,2), mouse 2 ( G r 3 ) , a n t l ( G r 7 ) , a n t e a t e r l ( G r l l ) , b e a r l ( G r 3 ) , b e a v e r 1 ( G r 3 ) , b u l l f r o g l ( G r 3 ) , c a t e r p i l l a r 1 ( G r 3 ) , c h i c k e n 1 ( K ) , d i n o s a u r l ( G r 3 ) , d o l p h i n l ( G r 3 ) , e a g l e l ( G r 3 ) , f i s h 1 ( K ) , f l a m i n g o l ( Z o o l ) , f l y 1 ( E d ) , g a z e l l e 1 ( E d ) , g e r b i l l ( G r 7 ) , h e r o n l ( Z o o l ) , i m p a l a 1 ( G r 3 ) , j a g u a r 1 ( E d ) , lemur 1 ( E d ) , mouse l ( G r l l ) , o k a p i l ( Z o o l ) , p o r c u p i n e 1 ( E d ) , r a t l ( G r 3 ) , r o b i n 1 ( K ) , skunk 1 ( G r 3 ) , snake 1 ( G r 3 ) , s q u i r r e l 1 ( G r l l ) , w e a s i l , 1 ( G r 3 ) . h o r s e cow 49(10,9,11,8,9,2), donkey.'17(1,4,6,4,0,2), dog 10 ( 4 , 1 , 3 , 1 , 0 , 1 ) , z e b r a 9 ( 2 , 1 , 1 , 3 , 1 , 1 ) , camel 4 ( 0 , 2 , 0 , 0 , 1 , 1 ) , man 4 ( 3 , 1 , 0 , 0 , 0 , 0 ) , p i g 4 ( 0 , 0 , 0 , 1 , 1 , 2 ) , pony 4 ( 0 , 1 , 0 , 2 , 0 , 1 ) , l i o n 3 ( 0 , 1 , 0 , 1 , 0 , 1 ) , sheep 3 ( 0 , 2 , 0 , 0 , 0 , 1 ) , c a t 2 ( 0 , 1 , 1 , 0 , 0 , 0 ) , c o l t 2 ( 0 , 0 , 0 , 1 , 1 , 0 ) , e l e p h a n t 2 ( 0 , 0 , 0 , 0 , 0 , 2 ) , kangaroo 2 ( 1 , 0 , 0 , 0 , 0 , 1 ) , mule 2 ( 1 , 0 , 1 , 0 , 0 , 0 ) , ox 2 (1,1,0,0,0,0), A r a b i a n L ( G r l l ) , b a d g e r 1 ( G r 3 ) , b e a r 1 ( K ) , b e a v e r 1 ( G r 3 ) , bee 1 ( G r 3 ) , c a l f l ( G r 3 ) , c h i c k e n 1 ( G r 3 ) , chimpanzee 1 ( G r 7 ) , deer l ( Z o o l ) , e a g l e 1 ( K ) , g i r a f f e 1 ( G r 3 ) , hippopotamus 1 ( K ) , monkey 1 ( K ) , p e n g u i n 1 ( G r 3 ) , p i g l e t 1 ( K ) , p o r p o i s e l ( G r 3 ) , p r a i r i e dog 1 ( G r 3 ) , puppy l ( G r 3 ) , s h i r e h o r s e T ( G r 3 ) , s i l v e r f i s h 1 ( K ) , skunk 1 (K) , s n a i l 1 ( K ) , t i g e r 1K)K, whale l ( G r 7 ) . k angaroo r a b b i t 21.(0,2,8,7,2,2) , k o a l a 1 4 ( 2 , 2 , 2 , 4 , 4 , 0 ) , w a l l a b y 14(7,4,0, 1,2,0), r a t 9 ( 4 , 1 , 2 , 1 , 1 , 0 ) , h o r s e 7 ( 1 , 1 , 2 , 0 , 0 , 3 ) , . g i r a f f e 6 ( 1 , 1 , 1 , 0,2), mouse 5 ( 0 , 0 , 2 , 2 , 1 , 0 ) , t i g e r 4 ( 1 , 1 , 0 , 0 , 1 , 1 ) , b e a r 3(0,1,0,2, 0 , 0 ) , b i r d 3 ( 0 , 0 , 1 , 0 , 1 , 1 ) , d e e r 3 ( 2 , 0 , 1 , 0 , 0 , 0 ) , dog 3 ( 0 , 1 , 0 , 1 , 1 , 0 ) , f o x 3(0,0,0,0,1,2),. opossum 3 ( 3 , 0 , 0 , 0 , 0 , 0 ) , o s t r i c h 3 ( 0 , 2 , 1 , 0 , 0 , 0 ) , d i n g o 2 ( 1 , 1 , 0 , 0 , 0 , 0 ) , f i s h 2 ( 0 , 0 , 0 , 0 , 0 , 2 ) , j a c k a l 2 ( 0 , 0 , 1 , 1 , 0 , 0 ) , l i o n 2 ( 0 , 0 , 0 , 1 , 0 , 1 ) , z e b r a 2 ( 0 , 1 , 0 , 0 , 1 , 0 ) , b e a v e r 1 ( G r 3 ) , b r o n t o -s a u r u s 1 ( G r 3 ) , camel 1 ( K ) , c h e e t a h 1(Gr3) , chipmunk 1 ( K ) , cougar l ( E d ) , dromedary 1 ( Z o o l ) , e a g l e l ( G r 3 ) , e l e p h a n t 1 ( G r 3 ) , f r o g 1 ( G r 7 ) , g o r i l l a 1 ( E d ) , g r e e n f i s h : 1 ( K ) , h amster l ( E d ) , h o r n e t l ( G r 3 ) j a c k r a b -b i t l ( G r 7 ) , l e o p a r d l ( G r 7 ) , mammal l ( E d ) , monkey l ( G r 3 ) , panda l ( G r l l ) , p o r c u p i n e 1 ( K ) , pup 1 ( K ) , r h i n o c e r o s 1 ( E d ) , s h a r k 1 ( K ) , sheep 1 ( K ) , s t o r k l ( G r 3 ) , swan 1 ( K ) , t i t m o u s e 1 ( E d ) , whale l ( G r 3 ) , wombat l ( Z o o l ) , z e b r a l ( G r 3 ) . 231 l e o p a r d l i o n 33 (7,4,6,4,5,7) ,. t i g e r .25 ( 2 , 8 , 4 , 3 , 4 , 4 ) , c h e e t a h 1 7 ( 5 , 3 , 4 , 3 , 1 ) , p a n t h e r 13(4,4,2,3,0,0) , c a t 10 (0,.1,3, 3,1,2) , c o u g a r 7,(1,2,4,0,0,0) , j a g u a r 3 ( 0 , 0 , 1 , 1 , 1 , 0 ) , c o y o t e 2 ( 0 , 1 , 0 , 0 , 1 , 0 ) , dog 2 ( 1 , 0 , 0 , 0 , 0 , 1 ) , • e l e p h a n t 2 ( 0 , 0 , 0 , 1 , 1 , 0 ) , h o r s e 2 ( 0 , 0 , 0 , 0 , 1 , 1 ) , monkey 2 ( 2 , 0 , 0 , 0 , 0 , 0 ) , z e b r a 2 ( 0 , 0 , 0 , 2 , 0 , 0 ) , a a d v a r k 1 ( G r 7 ) , bay l y n x l ( G r 3 ) , b o b c a t 1 (Gr3) , camel l ( G r 3 ) , chipmunk 1 ( K ) , cow l ( G r l l ) ' , d e e r 1 (Zool), f i s h 1 ( K ) , f o x l ( G r l l ) , g u i n e a p i g l ( G r 3 ) , hawk 1 ( G r 7 ) , hyena 1 ( E d ) , lamb 1 ( K ) , l i z a r d l ( G r 7 ) , o s t r i c h 1 ( G r 3 ) , r a c c o o n l ( G r 3 ) , sheep l ( G r 3 ) , snake 1 ( K ) , s p a r r o w l ( Z o o l ) , s q u i r r e l 1 ( K ) , s t a r f i s h 1 ( K ) , t u r t l e 1 ( K ) , w e a s i l l ( G r l l ) , whale 1 ( K ) . l i o n t i g e r 77(15,21,13,12,11,5), l e o p a r d 1 1 ( 0 , 0 , 0 , 4 , 2 , 5 ) , c a t 7(1,0,4,2, 0 , 0 ) , c o u g a r 4 ( 0 , 0 , 1 , 2 , 1 , 0 ) , eow 4 (0 ,0,1,1,1,1) , b e a r 3 ( 0 , 0 , 1 , 0 , 1 , 1 ) , c h e e t a h 3 ( 2 , 0 , 0 , 0 , 0 , 1 , ) , chipmunk 2 ( 1 , 0 , 0 , 0 , 0 , 1 ) , f i s h 2 ( 0 , 0 , 0 , 0 , 0 , 2 ) , g i r a f f e 2 ( 0 , 0 , 1 , 0 , 0 , 1 ) , hippopotamus 2(0,0,0,0,0,2)., h o r s e 2 ( 0 , 0 , 0 , 0. 0.2), mouse 2 ( 0 , 1 , 0 , 1 , 0 , 0 , ) , z e b r a 2 ( 0 , 1 , 0 , 0 , 1 , 0 ) , a n t e l o p e 1 ( Z o o l ) , b o b a c t llGr3) , b u l l l ( G r 7 ) , c a l f 1 ( K ) , e u b l ( G r 3 ) , d e e r l ( Z o o l ) , duck l ( G r 3 ) , e l e p h a n t l ( G r 3 ) , f o x 1 (Ed) ,. g o a t l ( G r 3 ) , g u i n e a p i g 1 ( K ) , hyena 1 ( Z o o l ) , j a g u a r 1 ( G r l l ) , k a ngaroo 1 ( Z o o l ) , l y n x 1 ( G r 7 ) , p a n t h e r l ( G r l l ) , p i g l ( G r l l ) , w a l r u s l ( G r 3 ) , w i l d p i g 1 ( K ) , w o l f 1 ( G r 3 ) . monkey ape 24 ( 4 , 5 , 4 , 4 , 6 , 1 ) , g o r i l l a 2 2 ( 3 , 7 , 5 , 4 , 2 , 1 ) , chimpanzee 18(2,4,5,6, 1.0) , man 7(6,1,0,0,0,0) , s q u i r r e l 7 ( 0 , 1 , 2 , 3 , 0 , 1 ) e l e p h a n t 6 ( 0 , 2 , 1 , 1,1,1), baboon 5 ( 3 , 0 , 0 , 1 , 1 , 0 ) , dog-5(1,1,1,1,0,1)., ca t . 3 ( 0 , 0 , 1 , 0 , 0 , 2 ) , donkey 3(1,0,1,1,0,0) , l i o n 3 ( 0 , 0 , 0 , 0 , 0 , 3 ) , b e a r 2 ( 0 , 0 , 0 , 0 , 0 , 2 ) , c h i c k e n 2 ( 0 , 0 , 0 , 0 , 0 , 2 ) , f o x 2 ( 0 , 0 , 0 , 1 , 1 , 0 ) , g i r a f f e 2 ( 1 , 0 , 0 , 0 , 0 , 1 ) , h o r s e 2 ( 0 , 0 , 0 , 0 , 1 , 1 ) , opossum 2 ( 1 , 0 , 0 , 0 , 1 , 0 ) , p i g 2 ( 0 , 0 , 0 , 0 , 1 , 1 ) , s e a l 2.(0,0,0,0,1,1) , bee 1 ( K ) , b i r d 1 ( K ) , chipmunk 1 (K) , cub l ( G r 3 ) , g o a t 1 ( G r l l ) , hippopotamus . l ( G r 3 ) , k a ngaroo 1 ( G r 3 ) , k o a l a 1 ( G r 3 ) , lemur 1 (Ed) , l e o p a r d l.(Zool) , l y n x 1 (Gr3) , man 1 (Ed) , mole l ( G r l l ) , mouse l ( G r 7 ) , o s t r i c h 1 ( K ) , peacock l ( G r 3 ) , penguin" l.(KJ >. pony 1 ( K ) , r a b b i t 1 ( E d ) , r h i n o c e r o s l ( G r 3 ) , shrew 1 ( Z o o l ) , s l o t h 1 ( G r l l ) , snake l ( G r l l ) , t o u c a n 1 ( E d ) , whale l ( G r 3 ) , z e b r a l ( G r 7 ) . mouse r a t 63(13,12,12,8,12,6), c a t 32( 5 , 6 , 7 , 8 , 2 , 4 ) , e l e p h a n t 5(0,1,2,2,0, 0 ) , dog 4 ( 0 , 0 , 0 , 1 , 1 , 1 , 1 ) s q u i r r e l 4 ( 2 , 0 , 0 , 1 , 0 , 1 ) , t i g e r 4 ( 0 , 0 , 0 , 3 , 1 ) , b i r d 3 ( 1 , 0 , 0 , 1 , 1 , 0 ) , g e r b i l 3 ( 0 , 0 , 0 , 1 , 2 , 0 ) , hamster 3 ( 0 , 0 , 1 , 0 , 2 , 0 ) , r a b b i t 3 ( 0 , 2 , 0 , 0 , 0 , 1 ) , f i s h 2 ( 0 , 0 , 0 , 0 , 0 , 2 ) , f o x 2 ( 0 , 0 , 0 , 2 , 0 , 0 ) , h o r s e 2 ( 0 , 0 , 0 , 0 , 0 , 2 ) , l i o n 2 ( 0 , 1 , 0 , 0 , 0 , 1 ) , man 2 ( 1 , 1 , 0 , 0 , 0 , 0 ) , monkey 2 (0,0,0,0,0,2), v o l e 2 ( 2 , 0 , 0 , 0 , 0 , 0 ) , c a t e r p i l l a r 1 ( G r 3 ) , i n s e c t 1 ( G r l l ) , lemming l ( G r l l ) , s e a l 1 ( K ) , sheep 1 ( K ) , t e r m i t e 1 ( E d ) . p i g cow 2 2 ( 7 , 5 , 8 , 0 , 1 , 1 ) , h o r s e 1 3 ( 2 , 4 , 3 , 0 , 1 , 3 ) , g o a t 1 1 ( 2 , 4 , 2 , 2 , 0 , 1 ) , hog 1 1 ( 0 , 0 , 1 , 7 , 3 , 0 ) , c h i c k e n 7 ( 0 , 3 , 2 , 2 , 0 , 0 ) , sheep 7 ( 1 , 1 , 2 , 0 , 2 , 1 ) , b o a r 6 ( 2 , 1 , 0 , 1 , 2 , 0 ) , c a t 4 ( 1 , 0 , 1 , 1 , 1 , 0 ) , sow 4 ( 1 , 2 , 1 , 0 , 0 , 0 ) , donkey 3 ( 0 , 1 , 0 , 2 , 0 , 0 ) , hippopotamus 3 ( 1 , 0 , 2 , 0 , 0 , 0 ) , lamb 3 ( 0 , 1 , 0 , 0 , 1 , 1 ) , man 3 ( 2 , 0 , 1 , 0 , 0 , 0 ) , dog .2 (0,0,0,1,1,0)', e l e p h a n t 2 ( 0 , 0 , 0 , 0 , 0 , 2 ) , g i r a f f e 2 ( 0 , 0 , 0 , 0 , 0 , 2 ) , g u i n e a p i g 2 ( 1 , 0 , 0 , 0 , 1 , 0 ) , l i o n 2(0,0,0,1,0, 1, ) p e c c a r y 2 ( 2 , 0 , 0 , 0 , 0 , 0 ) , skunk 2 ( 0 , 0 , 0 , 1 , 1 , 0 ) , t i g e r 2(0,0,0,0, 1.1) , w a r t hog 2 ( 0 , 0 , 0 , 0 , 2 , 0 ) , baboon l ( G r 7 ) , b e a r 1 ( Z o o l ) , bee 1(K) , b i r d l ( G r 7 ) , b u f f a l o 1 ( K ) , bunny 1 ( K ) , c h i c k a d e e 1 ( K ) , duck l ( G r 7 ) , f i s h l ( G r 3 ) , hamster l ( G r 7 ) , hen l ( G r l l ) , h o r n e t 1 ( K ) , mule l ( G r 7 ) , o s t r i c h 1 ( K ) , p a r r o t 1 ( K ) , p i g l e t 1 ( G r 3 ) , pony 1 ( K ) , p o r c u p i n e l ( G r 7 ) , p r a y i n g m a n t i s l ( Z o o l ) , r a t 1 ( E d ) , r h i n o c e r o s T ( G r 3 ) , r o d e n t l ( G r 3 ) , r o o s t e r l ( G r 3 ) , s e a g u l l 1 ( K ) , s e a l 1 ( K ) , s q i r r e l 1 ( K ) , t u r k e y l ( G r 3 ) , w o l f 1 ( G r 3 ) . 232 p o r c u p i n e skunk 2 2 ( 6 , 4 , 4 , 4 , 3 , 1 ) , s q u i r r e l 1 2 ( 0 , 0 , 3 , 3 , 3 , 3 ) , r a c c o o n 1 0 ( 0 , 1 , 4.4.1.0) , b e a v e r 7 ( 1 , 2 , 1 , 0 , 3 , 0 ) , r a b b i t 7 ( 1 , 1 , 2 , 2 , 1 , 0 ) , p i g 6( 3 , 0 , 0 , 2,1,0), a r m a d i l l o 5 ( 0 , 1 , 1 , 2 , 1 , 0 ) , hedgehog 5 ( 3 , 1 , 0 , 0 , 1 , 0 ) , chipmunk 4 ( 0 , 1 , 1 , 1 , 1 , 0 ) , e l e p h a n t 4 ( 0 , 0 , 0 , 1 , 1 , 2 ) , w e a s i l 4 ( 1 , 2 , 0 , 0 , 1 , 0 ) , a n t e a t e r 3 ( 1 , 1 , 1 , 0 , 0 , 0 ) , e a t 3 ( 0 , 0 , 2 , 0 , 0 , 1 ) , dog 3 ( 0 , 2 , 0 , 1 , 0 , 0 ) , f o x 3(0,1,1,0,0,1) , h o r s e 3 ( 1 , 0 , 0 , 0 , 0 , 2 ) , l i o n 3 ( 0 , 0 , 0 , 0 , 1 , 2 ) , mouse 3 ( 0 , 0 , 1 , 0 , 1 , 1 ) , opossum 3 ( 1 , 0 , 1 , 0 , 1 , 0 ) , w o l f •. 3 (1,0,1,0,1,0) , d e e r 2 ( 0 , 1 , 0 , 0 , 0 , 1 ) , e c h i d n a 2 ( 2 , 0 , 0 , 0 , 0 , 0 ) , p l a t y p u s 2 ( 0 , 2 , 0 , 0 , 0 , 0 ) , r a t 2 (0.,0,0,0,0,2) , sheep 2 ( 0 , 1 , 0 , 0 , 0 , 1 ) , w o l v e r i n e 2 ( 0 , 0 , 1 , 1 , 0 , 0 ) , badger l ( E d ) , b a t 1 ( K ) , b e e " l ( G r 3 ) , b l u e f i s h 1 ( K ) , cow 1 ( K ) , c r o c o d i l e 1 ( Z o o l ) , donkey 1 ( K ) , f i s h l ( G r 7 ) , German s h e p a r d 1 ( K ) , g i r a f f e 1 ( K ) , hamster 1 ( E d ) , kangaroo l ( G r 7 ) , l y n x 1 ( Z o o l ) , mongoose l ( G r 3 ) , p i g e o n 1 ( K ) , s e a l i o n l ( Z o o l ) , t r e e f r o g l ( Z o o l ) , t u r k e y 1 ( G r 3 ) , t u r t l e l ( G r 7 ) . r a b b i t h a r e 1 4 ( 4 , 4 , 1 , 2 , 3 , 0 ) , f o x 1 2 ( 2 , 2 , 1 , 5 , 0 , 2 ) , mouse 1 1 ( 0 , 4 , 2 , 4 , 1 , 0 ) , dog 1 0 ( 3 , 2 , 1 , 2 , 1 , 1 ) , kangaroo 1 0 ( 0 , 0 , 4 , 3 , 1 , 2 ) , s q u i r r e l 9 ( 0 , 2 , 2 , 1 , 4 , 0 ) , c a t 7 ( 2 , 2 , 1 , 1 , 0 , 1 ) , d e e r 6 ( 1 , 1 , 0 , 1 , 1 , 2 ) , h o r s e 4 ( 0 , 1 , 1 , 0 , 0 , 2 ) , w o l f 4 ( 3 , 1 , 0 , 0 , 0 , 0 ) , cow 3 ( 0 , 0 , 0 , 1 , 1 , 1 ) , sheep 3(1,0,1,0,0,1) , skunk 3 ( 0 , 0 , 0 , 0 , 1 , 2 ) , z e b r a 3 ( 0 , 0 , 0 , 1 , 0 , 2 ) , b i r d 2 ( 0 , 0 , 1 , 0 , 1 , 0 ) , c o y o t e 2 ( 1 , 0 , 0 , 0 , 1 , 0 ) , e l e p h a n t 2 ( 1 , 0 , 0 , 0 , 0 , 1 ) , f i s h 2 ( 0 , 0 , 0 , 0 , 0 , 2 ) , g o l d -f i s h 2 ( 0 , 0 , 0 , 1 , 1 , 0 ) , ground hog 2 ( 0 , 0 , 2 , 0 , 0 , 0 ) , p i k e r 2 ( 2 , 0 , 0 , 0 , 0 , 0 ) , r a c c o o n 2 (1, 0 , 1 , 0 , 0 , 0 ) , r a t 2 ( 1 , 1 , 0 , 0 , 0 , 0 ) , r o o s t e r 2 ( 0 , 0 , 0 , 0 , 0 , 2 ) , a n t e l o p e 1 ( G r 3 ) , b e a v e r 1 ( Z o o l ) , bunny l ( G r l l ) , b u t t e r f l y 1 ( K ) , c h e e t a h 1 ( E d ) , c h i n c h i l l a 1 ( G r l l ) , chipmunk l ( G r 7 ) , c ougar 1 ( K ) , e a g l e l ( G r l l ) , g e r b i l l ( G r l l ) , g i r a f f e 1 ( G r 3 ) , goose l ( G r l l ) , gopher 1 ( E d ) , g r a s s h o p p e r l ( G r 3 ) , hamster 1 ( G r l T ) , hippopotamus 1 ( G r 3 ) , j a c k r a b b i t 1 ( G r 3 ) , k i t t e n 1 ( E d ) , lamb l ( E d ) , l e o p a r d 1 ( K ) , s e a l l ( G r 3 ) , snowshoe r a b b i t l ( G r 7 ) , t u r k e y l ( G r 3 ) , w i l d b o a r 1 ( G r 3 ) , worm 1 ( Z o o l ) . s e a l w a l r u s 28(6,4,4,5,8,1) , o t t e r 23.(3,8,7,2,2,1) , whale 1 2 ( 5 , 1 , 2 , 2 , 0 , 2 ) , f i s h 1 0 ( 2 , 0 , 4 , 2 , 1 , 1 ) , p e n g u i n 6 ( 0 , 0 , 2 , 3 , 1 , 0 ) , p o r p o i s e 6 ( 1 , 1 , 2 , 2 , 0 , 0 ) , s e a l i o n 6 (2 , 2 , 1 , 0 , 1 , 0 ) , d o l p h i n 5 ( 1 , 1 , 0 , 3 , 0 , 0 ) , p o l a r b e a r 4 ( 1 , 0 , 0 , 1,2,0), dog 3 ( 0 , 2 , 1 , 0 , 0 , 0 ) , g i r a f f e 3 ( 0 , 0 , 0 , 1 , 0 , 2 ) , l i o n 3 ( 1,1,0,1, 0,0), monkey 3 ( 0 , 0 , 0 , 1 , 0 , 2 ) , e l e p h a n t 2 ( 0 , 1 , 0 , 0 , 0 , 1 ) , h o r s e 2 (0,0 , 0 , 0 , 0 , 2 ) , skunk 2 ( 0 , 0 , 0 , 1 , 0 , 1 ) , b e a r l ( G r 3 ) , b i r d 1 ( K ) , b l u e whale 1 ( K ) , b r o n t o s a u r u s 1 ( G r 3 ) , cow 1 ( K ) , c r o c o d i l e l ( G r 3 ) , d e e r 1 ( K ) , e e l 1 ( Z o o l ) , g o a t 1 ( K ) , g o l d f i s h 1 ( K ) , g u i n e a p i g 1 ( K ) , hippopotamus 1 ( G r 3 ) , hyena 1 ( G r 3 ) , lamb 1 ( K ) , l e o p a r d l ( G r 3 ) , mink 1 ( E d ) , mouse 1 ( G r 3 ) , m u s k r a t 1 ( Z o o l ) , p i g l ( G r 3 ) , pony 1 ( K ) , r a b b i t l ( G r 3 ) , s h a r k l ( G r l l ) , s n a i l 1 ( E d ) , z e b r a 1 ( K ) . sheep g o a t 43(12,9,10,7,2,3), cow 2 1 ( 5 , 5 , 2 , 4 , 2 , 3 ) , lamb 1 7 ( 0 , 3 , 1 , 6 , 4 , 3 ) , dog 1 5 ( 1 , 4 , 4 , 1 , 3 , 2 ) , p i g 7(0,2,3,1,1,0) , w o l f 5 ( 1 , 1 , 0 , 1 , 1 , 1 ) , c a t 3 ( 0 , 1 , 0 , 1 , 0 , 1 ) , deer 3 ( 0 , 0 , 1 , 0 , 2 , 0 ) , l i o n 3 ( 0 , 0 , 0 , 1 , 1 , 1 ) , b e a r 2 (0,0 , 1 , 0 , 1 , 0 ) , h o r s e 2 ( 0 , 0 , 0 , 1 , 0 , 1 ) , mouse 2 ( 0 , 1 , 1 , 0 , 0 , 0 ) , r a b b i t 2 (0,0 , 0 , 0 , 0 , 2 ) , z e b r a 2 ( 0 , 0 , 0 , 1 , 1 ) , c h i c k e n 1 ( G r 3 ) , c r a b e l e p h a n t 1 ( K ) , donkey l ( Z o o l ) , f o x l ( G r 7 ) , g e r b i l 1 ( K ) , g i r a f f e 1 ( K ) , g u i n e a p i g 1 ( K ) , h a r e l ( G r 3 ) , k o a l a l ( G r 3 ) , lamb l ( Z o o l ) , monkey 1 ( K ) , mule l ( E d ) , ox l ( G r 3 ) , ram l ( G r l l ) , r o o s t e r 1 ( G r 3 ) , s p i d e r 1 ( G r 3 ) , whale 1 ( K ) . skunk p o r c u p i n e 2 0 ( 4 , 3 , 5 , 2 , 2 , 4 ) , r a c c o o n 15;(3,4,2,4,2,0), s q u i r r e l 10 (0,3 , 1 , 3 , 2 , 1 ) , r a b b i t 8 ( 1 , 2 , 1 , 1 , 1 , 2 ) , c a t 6 ( 2 , 1 , 3 , 0 , 0 , 0 ) , dog 6 (2,3 , 0 , 1 , 0 , 0 ) , chipmunk 5 ( 1 , 0 , 0 , 3 , 1 , 0 ) , b e a r 4 ( 0 , 2 , 0 , 0 , 1 , 1 ) , cow 4 0,0,1,1,1,1), f i s h 4 ( 0 , 0 , 0 , 1 , 0 , 3 ) , f o x 4 ( 2 , 1 , 1 , 0 , 0 , 0 ) , h o r s e 4 ( 0 , 0 , 1.1.1.1) , mouse 4 ( 2 , 0 , 0 , 1 , 1 , 0 ) , r a t 4 ( 1 , 0 , 1 , 1 , 0 , 1 ) , opossum 3 233 (1,0,2,0,0,0),, s e a l 3 (0,0,0,,0,;2,1) , badge r 2 ( 1 , 0 , 1 , 0 , 0 , 0 ) , b e a v e r 2 (1,1 , 0 , 0 , 0 , 0 ) , c h i c k e n 2.(0,0,0,1,1), g i r a f f e 2 (0,0>0,0,0,2) , hedge-hog 2 ( 0 , 0 , 0 , 0 , 2 , 0 ) , l i o n . 2 (0,1,1,0,0,0) , man 2 (1,,1,0,0,0,0) , mink 2 ( 0 , 1 , 1 , 0 , 0 , 0 ) , monkey 2 ( 0 , 0 , 0 , 0 , 0 , 2 ) , w e a s i l 2(1,1,0,0,0,0) , z e b r a 2 (0,0,0,0,1,1) , ape 1 (K) , b a t l.(Gr7) , b i r d l ( G r l l ) , c h i n c h i l l a 1 ( G r 7 ) , d o l p h i n 1 ( G r 3 ) , dragon 1 ( K ) , e a g l e l ( G r 3 ) , groundhog l ( G r 3 ) , l e o p a r d 1 ( K ) , moose l ( G r 3 ) , o wl 1 ( G r l l ) , p i g l ( G r 7 ) , r a t t l e s n a k e 1 ( G r 3 ) , r h i n o c e r o s 1 ( G r 7 ) , t u r t l e 1 ( Z o o l ) t y r r a n o s a u r u s l ( G r 3 ) , w o l f l ( G r 7 ) , woodchuck l ( G r l l ) . s q u i r r e l chipmunk 53(8,7,12,10,12,4), mouse 11 ( 1 , 3 , 1 , 3 , 2 , 1 ) , r a b b i t 7 (3,2 , 2 , 0 , 0 , 0 ) , r a t 7 ( 0 , 3 , 2 , 0 , 0 , 1 ) , dog 6 (0 , 1 , 0 , 0 , 0 , 5 ) , monkey 6 (1,0 , 0 , 4 , 0 , 0 ) , skunk 6 ( 0 , 0 , 1 , 2 , 1 , 2 ) , b i r d 5 ( 2 , 1 , 1 , 0 , 1 , 0 ) , gopher 4 (2,1 , 1 , 0 , 0 , 0 ) , r a c c o o n 4 ( 0 , 1 , 0 , 1 , 1 , 1 ) , g e r b i l 3 ( 0 , 0 , 1 , 2 , 0 , 0 ) , g i r a f f e 3 ( 0 , 0 , 0 , 0 , 0 , 3 ) , b e a r 2 ( 0 , 2 , 0 , 0 , 0 , 0 ) , camel 2 ( 0 , 0 , 0 , 1 , 0 , 1 ) , c a t 2 ( 1 , 1 , 0 , 0 , 0 , 0 ) , e l e p h a n t 2 ( 1 , 0 , 0 , 0 , 0 , 1 ) , f o x 2 ( 0 , 0 , 0 , 0 , 1 , 1 ) , b a t 1 ( G r 3 ) , b l u e j a y l ( Z o o l ) , b o a r 1 ( K ) , c h i n c h i l l a 1 ( G r l l ) , goose 1 ( G r 3 ) , groundhog l ( G r 7 ) , hippopotamus 1 ( G r 3 ) , h o r s e 1 ( E d ) , k i t t e n 1 ( G r 3 ) , l e p r e c h a u n 1 ( K ) , l i o n l ( G r l l ) , man l ( Z o o l ) , m arten 1 ( Z o o l ) ; , opossum l ( Z o o l ) , r o o s t e r 1 ( k ) , S t e l l a r ' s j a y l ( Z o o l ) , t i g e r 1 ( K ) , t u r t l e 1 ( G r 3 ) , z e b r a 1 ( K ) . z e b r a h o r s e 52(7,11,13,12,6,3), g i r a f f e 1 8 ( 3 , 2 , 2 , 3 , 5 , 3 ) , l i o n 8 ( 2,1,1,0, 2 , 2 ) , l e o p a r d 7 ( 1 , 0 , 1 , 3 , 0 , 2 ) , donkey 6(1,0,2,1,0,2)., e l e p h a n t 6 ( 1 , 1 , 1 , 1 , 1 , 1 ) , t i g e r 6 ( 0 , 2 , 0 , 2 , 1 , 1 ) , cow 4 ( 1 , 1 , 0 , 0 , 1 , 1 ) , c a t 3 (0, 0 , 0 , 0 , 1 , 2 ) , g a z e l l e 3 ( 1 , 0 , 1 , 0 , 1 , 0 ) , mouse 3 ( 0 , 0 , 0 , 0 , 1 , 2 ) , c h e e t a h 2 ( 0 , 1 , 0 , 0 , 1 , 0 ) , c o y o t e 2 ( 0 , 0 , 1 , 1 , 0 , 0 ) , dog 2 ( 2 , 0 , 0 , 0 , 0 , 0 ) , r h i n o c e r o s 2 ( 1 , 1 , 0 , 0 , 0 , 0 ) , a n t e l o p e l ( Z o o l ) , b e a r 1 ( K ) , c o u g a r 1 ( E d ) , deer 1 . (Zool),,.. duck 1 ( K ) , f i s h 1 ( K ) , gnu 1 ( Z o o l ) , hippopotamus l.(Ed) , monkey l ( G r 3 ) , r a b b i t l ( G r l l ) r a c c o o n 1 (Gr3) , r e d f o x l ( G r 7 ) , r o b i n 1 (Gr3) , r o o s t e r 1 (K) , s e a g u l l 1 ( G r l l ) , s e i a l i o n 1 (Ed) , s h a r k 1 (Ed) , skunk 1 ( G r 3 ) , whale 1 ( K ) , w i l d e b e e s t e l ( Z o o l ) . 234 A p p e n d i x D - l . I n t e r s e c t i o n C o e f f i c i e n t M a t r i x f r o m t h e A s s o c i a t i o n s Task f o r Z o o l o g y D o c t o r a l C a n d i d a t e s BEAR CAML CAT COW DEER DOG DONK ELEP FOX GlRF HORS KANG BAT .042 .021 .0 .021 .021 .042 .0 .063 .042 .0 .063 .042 BEAR .021 .021 .021 .063 .125 .0 .042 .104 .021 .021 .021 CAML .0 .0 .063 .042 .0 .021 .0 .125 .125 .021 CAT .063 .0 .688 .0 .0 .0 .0 .0 .0 COW ~ .042 .0 .042 .021 .021 .042 .500 .0 DEER .021 .0 .042 .021 .063 .083 .042 DOG .021 .042 .146 .0 .104 .021 DONK .0 .0 .021 .229 .0 ELEP .042 .229 .021 .042 FOX .0 .021 .021 GIRF .042 .021 HORS .042 235 A p p e n d i x D-1, c o n t i n u e d LEOP LION MONK MOUS PIG BAT .0 .0 .021 .125 .021 BEAR .042 .063 .021 .042 .063 CAML .0 .0 .042 .021 .042 CAT .0 .042 .0 .229 .021 COW .0 .0 .0 .0 .229 DEER .021 .042 .021 .021 .042 DOG .042 .021 .042 .042 .021 DONK .0 .0 .021 .0 .0 ELEP .042 .063 .042 .146 .042 FOX .021 .042 .0 .0 .0 GIRF .0 .104 .021 .0 .0 HORS .0 .0 .063 .021 .083 PORC RABT SEAL SHEP SKUN SQUR ZEBR .0 .021 .021 .0 .042 .083 .0 .021 .083 .063 .021 .042 .042 .0 .0 .0 .0 .021 .021 .021 .042 .0 .042 .0 .021 .042 .021 .0 .0 .021 .0 .125 .0 .0 .021 .0 .042 .021 .021 .021 .021 .042 .021 .146 .0 .042 .083 .021 .042 .0 .021 .0 .021 .0 .0 .021 .0 .042 .021 .C .042 .063 .042 .021 .188 .0 .021 .063 .0 .0 .0 .0 .0 .0 .0 .0 .146 .0 .0 .0 .0 .021 .021 .188 236 A p p e n d i x D-1, c o n t i n u e d LEOP LION MONK MOUS PIG PORC RABT SEAL SHEP SKUN SQUR ZEBR KANG .021 .042 .021 .083 .0 .021 .021 .0 .0 .042 .021 .0 LEOP .229 .063 .0 .0 .0 .0 .0 .0 .0 .0 .021 LION .0 .0 .0 .0 .0 .021 .021 .021 .021 .063 MONK .021 .042 .021 .0 .0 .0 .042 .063 .0 MOUS .021 .0 .021 .0 .0 .083 .104 .0 PIG .063 .0 .0 .104 .021 .021 .0 PORC .063 .021 .021 .271 .021 .0 RABT .0 .042 .083 .063 .0 SEAL .0 .0 .0 .0 SHEP .0 .0 .0 SKUN .063 .0 SQUR .0 237 Appendix D-2. Intersection C o e f f i c i e n t Matrix from the Associations Task f or Education Undergraduates BEAR CAML CAT COW DEER DOG DONK ELEP FOX GIRF HORS KANG BAT .0 .021 .021 .021 .0 .0 .0 .0 .0 .0 .021 .021 BEAR .021 .063 .0 .146 .021 .0 .063 .042 .042 .021 .083 CAML .0 .021 .042 .0 .021 .104 .021 .104 .229 .021 CAT .0 .042 .854 .0 .0 .042 .0 .021 .0 COW .021 .104 .0 .0 .0 .0 .375 .021 DEER .0 .021 .042 .021 .042 .0 .021 DOG .0 .0 .0 .0 .021 .021 DONK .021 .021 .021 .354 .021 ELEP .021 .167 .021 .042 FOX .0 .021 .0 GIRF .0 .083 HORS .021 238 A p p e n d i x D-2, c o n t i n u e d LEOP LION MONK MOUS PIG PORC RABT SEAL SHEP SKUN SQUR ZEBR BAT .0 .0 .0 .083 .021 .0 .021 .0 .0 . 0 . .083 .0 BEAR .042 .083 .0 .0 .0 .021 .021 .021 .021 .063 .063 .063 CAML .021 .021 .021 .021 .021 .0 .021 .0 .021 .021 .0 .042 CAT .021 .021 .0 .167 .0 .0 .063 .0 .021 .021 .021 .0 COW .0 .0 .0 .021 .188 .0 .042 .0 .125 .0 .021 .021 DEER .042 .0 .0 .0 .021 .021 .063 .0 .042 .021 .0 .021 DOG .0 .0 .021 .042 .021 .042 .042 .042 .104 .063 .021 .0 DONK .021 .0 .021 .021 .021 .0 .0 .0 .083 .021 .0 .042 ELEP .125 .146 .063 .146 .0 .0 .0 .042 .0 .021 .0 .104 FOX .063 .021 .021 .042 .0 .042 .125 .021 .021 .063 .0 .0 GIRF .083 .104 .021 .0 .021 .021 .0 .0 .0 .C .0 .167 HORS .0 .021 .021 .021 .083 .021 .021 .0 .042 .021 .021 .250 239 A p p e n d i x D-2, c o n t i n u e d LEOP LION MONK MOUS PIG PORC RABT SEAL SHEP SKUN SQUR ZEBR KANG .042 .021 .021 .021 .021 .021 .063 .0 .0 .0 .021 .083 LEOP .250 .0 .0 .0 .0 .021 .0 .0 .0 .0 .083 LION .0 .042 .0 .0 .0 .021 .0 .021 .0 .083 MONK .021 .0 .0 .021 .0 .0 .021 .021 .0 MOUS .021 .0 .146 .0 .021 .021 .146 .0 PIG .0 .042 .0 .125 .021 .021 .0 PORC .021 .0 .021 .208 .042 .0 RABT .0 .042 .042 .125 .021 SEAL .0 .021 .0 .021 SHEP .0 .0 .0 SKUN .083 .0 SQUR .0 240 A p p e n d i x D-3. I n t e r s e c t i o n C o e f f i c i e n t M a t r i x from t h e A s s o c i a t i o n s Task f o r Grade 11 S u b j e c t s BEAR CAML CAT COW DEER DOG DONK ELEP FOX GIRF HORS KANG BAT .0 .0 .0 .0 .0 .021 .0 .0 .0 .0 .0 .063 BEAR .021 .042 .042 .167 .042 .021 .042 .042 .0 .0 .0 CAML .0 .0 .021 .0 .063 .042 .0 .021 .208 .0 CAT .0 .0 .771 .0 .0 .0 .021 .021 .021 COW .021 .021 .0 .0 .0 .0 .479 .0 DEER .021 .021 .0 .083 .042 .021 .021 DOG .0 .021 .083 .021 .063 .021 DONK .0 .0 .021 .417 .0 ELEP .0 .313 .0 .0 FOX .0 .0 .0 GIRF .021 .083 HORS .042 241 A p p e n d i x D-3, c o n t i n u e d LEOP LION MONK MOUS PIG BAT .0 .0 .042 .104 .0 BEAR .021 .083 .042 .0 .042 CAML .0 .0 .021 .0 .021 CAT .104 .125 .021 .188 .021 COW .021 .021 .0 .0 .292 DEER .042 .021 .021 .0 .042 DOG .0 .0 .021 .021 .0 DONK .0 .0 .042 .0 .021 ELEP .0 .063 .042 .063 .063 FOX .042 .0 .0 .0 .0 GIRF .021 .063 .0 .021 .021 HORS .0 .0 .0 .0 .063 PORC RABT SEAL SHEP SKUN SQUR ZEBR .0 .021 .0 .0 .063 .063 .0 .021 .042 .0 .042 .G .0 .0 .0 .0 .021 .021 .0 .0 .021 .042 .021 .0 .0 .063 .0 .0 .0 .0 .0 .063 .021 .0 .0 .021 .0 .0 .063 .0 .0 .021 .021 .021 .021 .083 .021 .021 .0 .0 .0 .0 .042 .0 .0 .063 .0 .0 .042 .0 .0 .0 .021 .042 .083 .0 .021 .042 .0 .0 .021 .0 .0 .0 .0 .021 .146 .0 .021 .0 .0 .021 .0 .292 242 A p p e n d i x D-3, c o n t i n u e d LEOP LION MONK MOUS PIG PORC RABT SEAL SHEP SKUN SQUR ZEBR KANG .0 .0 .0 .083 .0 .0 .271 .0 .0 .042 .063 .0 LEOP .271 .0 .0 .0 .0 .0 .0 .0 .0' .0 .021 LION .0 .0 .021 .0 .0 .0 .0 .021 .021 .021 MONK .0 .021 .0 .0 .0 .021 .0 .063 .0 MOUS .0 .021 .063 .0 .021 .021 .063 .0 PIG .0 .0 .0 .146 .0 .0 .0 PORC .063 .0 .0 .250 .083 .0 RABT .0 .021 .063 .146 .021 SEAL .0 .0 .0 .0 SHEP .0 .0 .0 SKUN .083 .0 SQUR .0 243 A p p e n d i x D-4. I n t e r s e c t i o n C o e f f i c i e n t M a t r i x from t h e A s s o c i a t i o n s Task f o r Grade 7 S u b j e c t s BEAR CAML CAT COW DEER DOG DONK ELEP FOX GIRF HORS KANG BAT .021 .021 .042 .021 .0 .021 .0 .042 .042 .042 .0 .021 BEAR .0 .021 .042 .104 .021 .0 .042 .104 .021 .021 .083 CAML .0 .021 .021 .0 .104 .104 .0 .104 .167 .0 CAT .0 .0 .917 .0 .0 .0 .0 .021 .0 COW .021 .063 .0 .0 .0 .021 .333 .0 DEER .021 .0 .021 .021 .021 .0 .0 DOG .021 .021 .021 .0 .021 .042 DONK .0 .0 .0 .292 .0 ELEP .021 .313 .042 .021 FOX .021 .021 .0 GIRF .063 .063 HORS .021 244 A p p e n d i x D-4, c o n t i n u e d LEOP LION MONK MOUS PIG PORC RABT SEAL SHEP SKUN SQUR ZEBR BAT .021 .042 .0 .104 .021 .0 .0 .0 .0 .042 .021 .021 BEAR .0 .104 .0 .021 .0 .021 .021 .042 .021 .042 .0 .0 CAML .021 .042 .0 .021 .0 .0 .0 .0 .0 .0 .042 .0 CAT .063 .042 .0 .188 .021 .0 .021 .0 .021 .0 .0 .0 COW .0 .042 .0 .021 .083 .0 .021 .0 .083 .021 .0 .0 DEER .0 .021 .0 .0 .021 .0 .021 .0 .063 .0 .0 .0 DOG .0 .0 .021 .042 .021 .021 .042 .0 .021 .042 .0 .0 DONK .0 .0 .021 .0 .083 .0 .0 .0 .0 .021 .0 .042 ELEP .063 .042 .021 .167 .021 .021 .0 .021 .0 .021 .0 .104 FOX .021 .042 .021 .063 .042 .0 .104 .0 .063 .042 .0 .042 GIRF .042 .021 .0 .021 .0 .0 .0 .021 .0 .0 .021 .146 HORS .0 .021 .021 .0 .021 .0 .0 .021 .021 .021 .0 .313 245 A p p e n d i x D-4, c o n t i n u e d LEOP LION MONK MOUS PIG PORC RABT SEAL SHEP SKUN SQUR ZEBR KANG .021 .021 .0 .063 .0 .021 .208 .0 .0 .021 .0 .0 LEOP .229 .0 .0 .0 .0 .0 .0 .0 .0 .0 .146 LION .0 .021 .021 .0 .0 .021 .021 .0 .0 .042 MONK .021 .021 .0 .0 .021 .0 .0 .146 .021 MOUS .021 .0 .083 .0 .0 .042 .104 .0 PIG .063 .0 .0 .063 .042 .0 .0 PORC .063 .021 .0 .250 .104 .0 RABT .0 .0 .042 .042 .021 SEAL .0 .042 .0 .0 SHEP .021 .0 .0 SKUN .188 .0 SQUR .0 246 A p p e n d i x D-5. I n t e r s e c t i o n C o e f f i c i e n t M a t r i x from t h e A s s o c i a t i o n s Task f o r Grade 3 S u b j e c t s BEAR CAML CAT COW DEER DOG DONK ELEP FOX GIRF HORS KANG BAT .021 .063 .042 .0 .0 .021 .0 .0 .0 .063 .021 .042 BEAR .063 .021 .021 .042 .042 .042 .021 .042 .021 .021 .021 CAML .0 .042 .063 .021 .021 .021 .0 .104 .104 .021 CAT .021 .0 .542 .042 .042 .021 .042 .042 .063 COW .125 .063 .042 .021 .063 .021 .375 .0 DEER .021 .0 .063 .0 .021 .083 .0 00G .021 .0 .0 .021 .042 .042 DONK .0 .0 .021 .20 8 .021 ELEP .021 .188 .021 .042 FOX .042 .042 .042 GIRF .063 .083 HORS .021 247 A p p e n d i x D-5, c o n t i n u e d LEOP LION MONK MOUS PIG PORC RABT SEAL SHEP SKUN SQUR ZEBR BAT .0 .021 .021 .042 .0 .063 .042 .021 .0 .063 .042 .0 BEAR .021 .104 .042 .021 .042 .063 .042 .083 .063 .042 .021 .021 CAML .063 .083 .021 .0 . .021 .021 .042 .042 .042 .0 .0 .021 CAT .042 .042 .0 .167 .042 .021 .0 .0 .0 .0 .021 .042 COW .021 .021 .021 .0 .021 .0 .042 .0 .063 .042 .0 .021 DEER .0 .0 .0 .0 .0 .0 .042 .0 .083 .021 .0 .0 DOG .0 .021 .021 .042 .021 .0 .042 .0 .083 .021 .042 .021 DONK .0 .0 .021 .0 .0 .0 .021 .021 .0 .0 .0 .0 ELEP .063 .063 .042 .104 .042 .021 .0 .063 .042 .0 .042 .063 FOX .021 .021 .021 .0 .021 .042 .063 .0 .021 .021 .021 .0 GIRF .021 .021 .042 .042 .021 .042 .042 .021 .0 .083 .021 .125 HORS .021 .0 .021 .0 .042 .042 .0 .021 .021 .042 .0 .146 248 A p p e n d i x D-5, c o n t i n u e d LEOP LION MONK MOUS PIG PORC RABT SEAL SHEP SKUN SQUR ZEBR KANG .042 .021 .083 .083 .021 .021 .083 .021 .021 .021 .021 .063 LEOP .250 .0 .063 .042 .021 .021 .021 .021 .021 .021 .063 LION .021 .063 .042 .042 .0 .021 .063 .0 .0 .083 MONK .0 .042 .021 .021 .042 .021 .0 .021 .021 MOUS .021 .021 .042 .021 .0 .021 .063 .042 PIG .063 .021 .042 .125 .021 .0 .021 PORC .042 .0 .021 .167 .104 .021 RABT .063 .021 .042 .125 .0 SEAL .0 .042 .021 .0 SHEP .021 .0 .021 SKUN .104 .063 SQUR .042 249 A p p e n d i x D-6. I n t e r s e c t i o n C o e f f i c i e n t M a t r i x from t h e A s s o c i a t i o n s Task f o r K i n d e r g a r t e n S u b j e c t s BEAR CAML CAT COW DEER DOG DONK ELEP FOX GIRF HORS KANG BAT .042 .042 .083 .083 .0 .021 .083 .063 .042 .083 .063 .063 BEAR .042 .021 .063 .042 .063 .083 .083 .042 .021 .021 .063 CAML .021 .042 .042 .021 .063 .083 .063 .063 .063 .083 CAT .083 .0 .604 .0 .042 .042 .0 .0 .042 COW .042 .104 .063 .125 .063 .083 .125 .042 DEER .021 .042 .063 .021 .042 .083 .021 DOG .0 .021 .0 .063 .042 .0 DONK .063 .021 .042 .250 .063 ELEP .063 .188 .042 .042. FOX .063 .042 .125 GIRF .063 .104 HORS .104 250 A p p e n d i x D-6, c o n t i n u e d LEOP LION MONK MOUS PIG PORC RABT SEAL SHEP SKUN SQUR ZEBR BAT .042 .063 .042 .188 .021 .063 .063 .063 .021 .063 .042 .042 BEAR .042 .083 .083 .021 .021 .021 .021 .042 .0 .042 .0 .063 CAML .042 .104 .063 .0 .021 .0 .0 .021 .0 .021 .042 .0 CAT .042 .0 .042 .167 .042 .063 .021 .021 .042 .021 .021 .042 COW .021 .063 .042 .042 .042 .042 .042 .125 .083 .083 .021 .063 DEER .042 .063 .042 .0 .063 .021 .042 .083 .063 .0 .0 .021 DOG .021 .042 .042 .042 .0 .0 .042 .0 .063 .021 .104 .0 DONK .063 .063 .083 .042 .083 .021 .021 .063 .021 .021 .042 .083 ELEP .042 .042 .083 .042 .063 .063 .042 .083 .021 .042 .042 .083 FOX .063 .063 .021 .063 .0 .042 .083 .063 .042 .063 .104 .042 GIRF .042 .083 .083 .021 .083 .021 .021 .063 .021 .083 .063 .104 HORS .042 .104 .063 .063 .146 .042 .042 .063 .042 .042 .021 .104 251 A p p e n d i x D-6, c o n t i n u e d LEOP LION MONK MOUS PIG PORC RABT SEAL SHEP SKUN SQUR ZEBR KANG .063 .104 .042 .063 .021 .021 .125 .042 .021 .042 .042 .042 LEOP .396 .021 .042 .042 .0 .G42 .063 .042 .042 .063 .104 LION .083 .083 .042 .042 .042 .042 .042 .042 .042 .083 MONK .042 .083 .0 .0 .104 .021 .083 .042 .0 MOUS .021 .063 .063 .042 .021 .063 .083 .083 PIG .0 .0 .083 .063 .0 .042 .021 PORC .0 .0 .021 .125 .083 .0 RABT .021 .063 .125 .021 .083 SEAL .083 .063 .0 .063 SHEP .0 .0 .042 SKUN .083 .042 SQUR .042 252 A p p e n d i x E - l . D i s s i m i l a r i t y M a t r i x f r o m t h e P a i r - R a t i n g Task f o r Zo o l o g y D o c t o r a l C a n d i d a t e s CAT COW DOG GIRF RABT SHEP SEAL PIG HORS ELEP ZEBR BEAR 4.88 6.63 4.58 6.75 6.80 6.38 6.63 6.25 6.67 6.92 6.88 CAT 6.83 3.29 7.25 6.29 6.67 7.17 6.54 6.75 7.71 7.21 COW 6.38 4.38 5.67 2.63 7.46 4.17 3.13 4.71 3.83 DOG 7.21 6.38 5.92 6.25 6,17 6.38 7.00 6.58 GIRF 6.50 4.92 8.29 5.38 3.67 5.33 3.96 RABT 5.17 8.08 5.46 6.13 6.50 6.46 SHEP 7.83 4.25 4.08 5.71 3.88 SEAL 7.83 7.83 8.13 7.92 PIG 4.88 5.46 5.67 HORS 4.88 1.54 ELEP 4.96 ) 253 Appendix E-2. D i s s i m i l a r i t y Matrix from the Pair-Rating Task for Education Undergraduates CAT COW DOG GIRF RABT SHEP SEAL PIG HORS ELEP ZEBR BEAR 6.96 6.75 5.96 7.71 7.75 6.88 8.04 7.46 6.17 7.54 6.92 CAT 7.04 3.25 8.71 4.96 6.50 7.50 6.38 6.88 8.46 7.46 COW 6.29 7.38 7.67 5.21 8.04 5.00 4.21 6.58 5.79 DOG 7.96 6.17 5.21 7.71 5.46 6.13 8.42 6.92 GIRF 8.71 7.96 8.96 8.46 5.29 6.13 5.29 RABT 6.04 7.63 6.46 8.25 8.75 8.33 SHEP 8.13 5.29 6.29 8.13 6.67 SEAL 8.38 8.79 8.79 8.75 PIG 6.54 7.50 7.58 HORS 6.38 2.2 5 ELEP 6.63 254 A p p e n d i x E-3. D i s s i m i l a r i t y M a t r i x f r o m t h e P a i r - R a t i n g Task f o r Grade 11 S u b j e c t s CAT COW DOG GIRF RABT SHEP SEAL PIG HORS ELEP ZEBR BEAR 8.38 7.00 6.42 7.58 8.21 7.46 8.17 7.50 7.04 7.17 6.83 CAT 8.08 3.42 8.79 4.17 6.29 8.29 6.54 8 .13 9.42 8.13 COW 6.50 6.38 8.29 4.75 8.88 5.58 4.00 6.79 5.38 DOG 7.83 6.46 5.54 8.00 5.63 6.67 9.04 7.38 GIRF 8.71 7.92 9.25 8.38 4.67 6.83 5.33 RABT 6.75 8.21 6.33 8.08 9.42 8.50 SHEP 8.79 5.25 5.04 8.58 5.75 SEAL 8.00 8.71 9.3 8 8.71 PIG 6.38 7.38 7.96 HORS 6.21 1.50 ELEP 5.79 255 A p p e n d i x E-4. D i s s i m i l a r i t y M a t r i x from t h e P a i r - R a t i n g Task f o r ' Grade 7 S u b j e c t s CAT COW DOG GIRF RABT SHEP SEAL PIG HORS ELEP ZEBR BEAR 8.04 6.67 7.13 7.75 8.25 7.67 8.33 7.96 6.08 7.21 7.67 CAT 7.54 3.21 9.08 4 .29 6.08 8.63 6.42 7.88 9 .67 8.29 COW 6.79 7.71 8.17 5.21 8.54 5.58 3.83 6.46 6.25 DOG 9.17 5.67 5.58 7.92 5.75 5.54 9.33 7.79 GIRF 9.21 8.33 9.29 9.17 6.00 5.29 5.38 RABT 6.33 7.71 6.88 7.71 9.33 9.08 SHEP 7.75 6.13 5.88 8.42 6.50 SEAL 7.42 8.79 8.88 8.67 PIG 6.63 7.50 8.00 HORS 7.29 2.25 ELEP 6.92 256 A p p e n d i x F - l . S i m i l a r i t y M a t r i x from t h e S o r t i n g Task f o r Z o o l o g y D o c t o r a l C a n d i d a t e s BEAR CAML CAT COW DEER DOG DONK ELEP FOX GIRF HORS KANG BAT 2. 0. 3. 0. 2. 3. 0. 0. 5. C. 0. 0. BEAR 0. 1. 0. 3. 5. 0. 1. 9. 0. 0. 0. CAML 0. 11. 10. 0. 8. 10. 0. 14. 8. 6. CAT 1. 0. 11. 1. 0. 7. 0. 1. 1. COW 14. 1. 13. 6. 0. 8. 13. 4. DEER 1. 12. 6. 4. 10. 12. 4. DOG 2. 0. 18. 1. 2. 0. DONK 6. 1. 10. 24. 4. ELEP 0. 12. 6. 5. FOX 1. 1. 0. GIRF 10. 7. HORS 4. 257 A p p e n d i x F-1, c o n t i n u e d LEOP LION MONK MOUS PIG PORC RABT SEAL SHEP SKUN SQUR ZEBR BAT 3. 3. 1. 3. 0. 2. 1. 4. 0. 2. 3. 0. BEAR 1. 1. 4. 3. 4. 7. 3. 1. C. 8. 4. 0. CAML 2. 2. 2. 2. 5. 2. 4. 1. 9. 1. 3. 10. CAT 18. 18. 0. 1. 1. 1. 1. 5. 1. 3. 0. 0. COW 0. 0. 0. 2. 12. 2. 5. 0. 21. 1. 3. 9. DEER 0. 0. 0. 3. 5. 5. 6. 0. 15. 4. 6. 12. DOG 6. 6. 0. 1. 1. 0. 0. 5. 1. 2. 0. 1. DONK 0. 0. 0. 2. 8. 2. 4. 0. 13. 1. 3. 20. ELEP 3. 3. 3. 2. 4. 2. 5. 1. 6. 1. 3. 9. FOX 7. 7. 0. 1. 0. 3. 2. 5. C. 5. 3. 1. GIRF 4. 3. 2. 2. 4. 2. 4. 1. 8. 1. 3. 13. HORS 0. 0. 0. 2. 8. 2. 4. 0. 13. 1. 3. 20. 258 A p p e n d i x F-1, c o n t i n u e d LEOP LION MONK MOUS PIG PORC RABT SEAL SHEP SKUN SQUR ZEBR KANG 4. 3. 2. 2. 2. 2. 4. 1. 4. 1. 3. 6. LEOP 23. 2. 0. 0. 0. 0. 6. 0. 2. 0. 3. LION 2. 0. 0. 0. 0. 6. 0. 2. 0. 4. MONK 1.. 3. 1. 0. 2. C. 2. 0. 2. MOUS 4. 9. 13. 0. 2. 7. 19. 2. PIG 4. 4. 0. 13. 4. 3. 4. PORC 10. 0. 2. 15. 12. 2. RABT 0. 5. 7. 15. 3. SEAL 0. 2. 0. 1. SHEP 1. 3. 9. SKUN 9. 1. SQUR 3. 259 A p p e n d i x F-2. S i m i l a r i t y M a t r i x from t h e S o r t i n g Task f o r E d u c a t i o n U n d e r g r a d u a t e s BEAR CAML CAT COW DEER DOG DONK ELEP FOX GIRF HORS KANG BAT 2. 0. 0. 0. 2. 0. 0. 0. 3. 1. 0. 1. BEAR 2. 2. 1. 12. 2. 0. 3. 9. 2. 0. 3. CAML 1. 4. 4. 1. 9. 7. 0. 8. 8. 3. CAT 5. 0. 16. 3. 1. 4. 0. 3. 0. COW 6. 5. 14. 2. 0. 1. 15. 1. DEER 0. 5. 3. 7. 5. 6. 4. DOG 3. 1. 8. C. 4. 0. DONK 2. 0. 3. 21. 1. ELEP G. 14. 2. 5. FOX 1. 0. 1. GIRF 4. 4. HORS 1. 260 A p p e n d i x F-2, c o n t i n u e d LEOP LION MONK MOUS PIG PORC RABT SEAL SHEP SKUN SQUR ZEBR BAT 0. 0. 3. 8. 0. 5. 3. 2. 0. 4. 10. 1. BEAR 3. 4. 2. 5. 1. 7. 8. 2. 1. 8. 6. 2. CAML 1. 1. 1. 0. 3. 0. 0. 0. 4. 0. 0. 8. CAT 11. 11. 0. 1. 5. 1. 0. 1. 4. 2. 0. 0. COW 0. 0. 0. 1. 16. 1. 1. 0. 16. 1. 0. 6. DEER 0. 0. 1. 6. 4. 7. 9. 1. 6. 8. 7. 8. DOG 4. 4. C. 1. 5. 1. 0. 2. 4. 2. 0. 1. DONK 0. 0. 0. 0. 12. 0. 0. 0. 12. 0. 0. 12. ELEP 6. 5. 10. 0. 3. 1. 1. 0. 2. 1. 0. 9. FOX 4. 5. 2. 6. 1. 10. 7. 2. 1. 11. 7. 1. GIRF 6. 5. 10. 1. 1. 1. 1. 1. 1. 1. 1. 14. HORS 0. 0. 0. 0. 10. 0. 0. 0. 11. 0. 0. 14. 261 A p p e n d i x F-2, c o n t i n u e d LEOP LION MONK MOUS PIG PORC RABT SEAL SHEP SKUN SQUR ZEBR KANG 1. 1. 5. 3. 1. 2. 4. 1. 1. 2. 1. 3. LEOP 23. 6. 0. 0. 0. 0. 0. 0. 1. 0. 6. LION 5. 0. 0. C. 0. 0. 0. 1. 0. 5. MONK 2. 0. 3. 1. 1. 0. 2. 2. 8. MOUS 1. 7. 14. 1. 1. 7. 18. 1. PIG 1. 2. 0. 18. 1. 0. 3. PORC 12. 3. 1. 19. 9. 1. RABT 3. 3. 12. 15. 1. SEAL 0. 3. 2. 1. SHEP 1. 0. 4. SKUN 9. 1. SQUR 1. 262 A p p e n d i x F-3. S i m i l a r i t y M a t r i x from t h e S o r t i n g Task f o r Grade 11 S u b j e c t s BEAR CAML CAT COW DEER DOG DONK ELEP FOX GIRF HORS KANG BAT 1. 0. 1. 0. 0. 1. 0. 0. 1. C. 0. 2. BEAR 1. 2. 3. 5. 3. 2. 6. 9. 1. 2. 2. CAML 0. 6. 10. 1. 11. 10. 1. 18. 11. 8. CAT 3. 1. 13. 4. 0. 6. 0. 4. 0. COW 9. 4. 16. 2. 0. 5. 16. 0. DEER 2. 13. 3. 8. 9. 14. 3. DOG 5. 0. 12. 1. 4. 1. DONK 3. 2. 9. 23. 1. ELEP 1. 12. 3. 5. FOX 1. 1. 1. GIRF 9. 9. HORS 2. 263 A p p e n d i x F-3, c o n t i n u e d LEOP LION MONK MOUS PIG PORC RABT SEAL SHEP SKUN SQUR ZEBR BAT 0. 0. 7. 12. 0. 4. 4. 1. 0. 5. 7. 0. BEAR 9. 9. 2. 0. 2. 1. 0. 1. 3. 1. 1. 2. CAML 1. 1. 1. 0. 0. 0. 0. 1. 5. 0. 0. 15. CAT 7. 7. 2. 4. 5. 5. 7. 2. 4. 5. 6. 0. COW 0. 0. 0. 0. 13. 0. 1. 0. 19. 0. 0. 10. DEER 2. 2. 2. 0. 1. 2. 1. 2. 7. 2. 3. 13. DOG 0. 0. 2. 3. 8. 1. 5. 4. 7. 1. 3. 0. DONK 0. 0. 1. 0. 8. 0. 2. 1. 14. 0. 1. 16. ELEP 5. 5. 3. 0. 2. 0. 0. 1. G. 0. 0. 10. FOX 5. 5. 2. 2. 2. 5. 4. 4. 2. 5. 7. 0. GIRF 3. 3. 3. 0. 0. 0. 0. 1. 5. 0. 0. 16. HORS 0. 0. 1. 0. 8. 0. 2. 1. 14. 0. 1. 17. 264 A p p e n d i x F-3, c o n t i n u e d LEOP LION MONK MOUS PIG PORC RABT SEAL SHEP SKUN SQUR ZEBR KANG 1. 1. 3. 2. 0. 1. 4. 1. 0. 1. 2. 6. LEOP 24. 2. 0. 0. 0. 0. 0. C. 0. 0. 3. LION 2. 0. 0. 0. 0. 0. 0. C. 0. 3. MONK 6. 1. 3. 4. 2. 0. 3. 7. 3. MOUS 0. 9. 9. 1. 0. 10. 12. 0. PIG 0. 2. 2. 15. 1. 0. 3. PORC 13. 0. 0. 22. 17. 0. RABT 2. 2. 15. 14. 0. SEAL 1. 1. 2. 1. SHEP C. 0. 9. SKUN 17. 0. SQUR 0. 265 A p p e n d i x F-4. S i m i l a r i t y M a t r i x from t h e S o r t i n g Task f o r Grade 7 S u b j e c t s BEAR CAML CAT COW DEER DOG DONK ELEP FOX GIRF HORS KANG BAT 1. 2. 2. 1. 1. 2. 2. 0. 3. 1. 1. 1. BEAR 1. 1. 4. 9. 3. 3. 7. 13. 3. 4. 3. CAML 0. 4. 5. 0. 8. 3. 2. 12. 7. 4. CAT 4. 2. 20. 3. 0. 3. 0. 4. 1. COW 5. 4. 10. 5. 1. 2. 12. 1. DEER 3. 9. 2. 8. 4. 7. 5. DOG 4. 0. 5. 0. 5. 1. DONK 1. 2. 3. 19. 2. ELEP 1. 12. 3. 3. FOX 2. 1. 3. GIRF 2. 7. HORS 2. 266 A p p e n d i x F-4, c o n t i n u e d LEOP LION MONK MOUS PIG PORC RABT SEAL SHEP SKUN SQUR ZEBR BAT 0. 0. 2. 6. 5. 10. 3. 1. 2. 8. 4. 0. BEAR 4. 5. 1. 1. 0. 5. 3. 3. 0. 5. 5. 4. CAML 2. 1. 1. 0. 2. 1. 1. 1. 4. 0. 0. 10. CAT 4. 4. 2. 12. 5. 2. 5. 2. 4. 2. 4. 0. COW 1. 0. 0. 3. 10. 0. 2. 2. 10. 0. 0. 4. DEER 1. 0. G. 3. 3. 5. 4. 3. 6. 5. 5. 7. DOG 0. 0. 2. 12. 5. 2. 5. 2. 5. 2. 4. 1. DONK 1. 0. C. 2. 3. 0. 1. 1. 7. 0. 0. 11. ELEP 7. 8. 6. 0. 3. 0. 0. 2. 1. 0. 0. 9. FOX 5. 4. 3. 3. 2. 6. 4. 2. 2. 7. 8. 1. GIRF 7. 6. 6. 0. 1. 1. 1. 1. 2. 0. 0. 11. HORS 0. 1. 0. 3. 5. 0. 2. 0. 7. C. 0. 11. 267 A p p e n d i x F-4, c o n t i n u e d LEOP LION MONK MOUS PIG PORC RABT SEAL SHEP SKUN SQUR ZEBR KANG 2. 1. 4. 2. 0. 2. 7. 3. 1. 2. 3. I . LEOP 23. 6. 0. 0. 0. 0. 1. 1. G. 0. 5. LION 6. 0. 0. 0. 0. 0. 0. 0. 0. 6. MONK 3. 2. 2. 5. 0. 1. 3. 6. 4. MOUS 5. 5. 8. 1. 3. 4. 7. 0. PIG 4. 5. 1. 13. 3. 2. 0. PORC 5. 2. 1. 21. 13. 1. RABT 1. 2. 5. 10. 0. SEAL 2. 3. 1. 0. SHEP 0. 0. 1. SKUN 14. 1. SQUR 0. 268 A p p e n d i x F-5. S i m i l a r i t y M a t r i x from t h e S o r t i n g Task f o r Grade 3 S u b j e c t s BEAR CAML CAT COW DEER DOG DONK ELEP FOX GIRF HORS KANG BAT 1. 1. 1. 1. 1. 2. 1. 3. 2. 1. 1. 2. BEAR 6. 2. 4. 2. 4. 3. 6. 3. 6. 3. 3. CAML 0. 9. 6. 1. 10. 7. 2. 11. 10. 5. CAT 1. 1 . 1 1 . 1. 0. 5. 2. 1. 0. COW 9. 4. 12. 4. 2. 5. 16. 1. DEER 2. 9. 3. 8. 9. 11. 4. DOG 4. 2. 9. 2. 5. 1. DONK 3. 2. 5. 16. 2. ELEP 2. 4. 4. 2. FOX 3. 3. 3. GIRF 7. 6. HORS 2. 269 A p p e n d i x F-5, c o n t i n u e d LEOP LION MONK BAT 1. 2. 3. BEAR 7. 8. 2. CAML 2. 4. 4. CAT 8. 9. 4. COW 1. 2. 2. DEER 6. 2. 2. DOG 2. 6. 1. DONK 1. 3. 2. ELEP 3. 5. 3. FOX 11. 9. 3. GIRF 5. 2. 1. HORS 3. 3. 2. MOUS PIG PORC 5. 1. 2. 0. 4. 2. 0. 1. 0. 5. 5. 1. 1. 5. 0. 1. 1 . 3 . 4. 7. 3. 0. 3. 0. 0. 1. 2. 2. 1. 7. 1. 1. 2. 2. 4. 0. RABT SEAL SHEP 2. 2. 0. 0. 5. 0. 0. 3. 4. 6 . 1. 1. 0. 0. 10. 6. 1. 9. 4. 1. 4. 0. 1. 12. 2. 3. 2. 6. 0. 2. 2. 2. 4. 1. 0. 9. SKUN SQUR ZEBR 1. 3. 2. 2. 0. 6. 0. 1. 8. 6. 5. L . 1. 1. 10. 2. 4. 10. 2. 0. 4. 1. 1. 11. 1. 2. 4. 5. 3. 3. 2. 1. 12. 0. 0. 13. 270 A p p e n d i x F-5, c o n t i n u e d LEOP LION MONK MOUS PIG PORC RABT SEAL SHEP SKUN SQUR ZEBR KANG 4. 3. 5. 2. 1. 1. 10. 3. 1. 0. 1. 3. LEOP 19. 6. 1. 2. 3. 5. 2. 1. 5. 2. 3. LION 6. 0. 4. 2. 2. 3. 0. 4. 1. 4. MONK 1. 3. 2. 2. 2. 0. 2. 7. 3. MOUS 1. 4. 8. 1. 2. 7. 10. 0. PIG 4. 0. 1. 7. 4. 0. 2. PORC 3. 1. 1. 15. 5. 2. RABT 1. 3. 6. 8. 1. SEAL 1. 1. 3. 2. SHEP 1. 2. 5. SKUN 8. 2. SQUR 1. 271 A p p e n d i x F-6. S i m i l a r i t y M a t r i x from t h e S o r t i n g Task f o r K i n d e r g a r t e n S u b j e c t s BEAR CAML CAT COW DEER DOG DONK ELEP FOX GIRF HORS KANG BAT 4. 4. 2. 2. 3. 4. 2. 3. 2. 1. 0. 2. BEAR 2. 0. 6. 4. 2. 1. 8. 2. 2. 2. 4. CAML 0. 4. 5. 1. 4. 4. 3. 8. 2. 2. CAT 0. 0. 10. 1. 1. 3. 2. 2. 1. COW 5. 6. 4. 3. 2. 3. 6. 4. DEER 3. 4. 5. 4. 3. 3. 8. DOG 2. 1. 2. 1. 1. 3. DONK 2. 3. 2. 14. 3. ELEP 2. 4. 1. 8. FOX 2. 0. 2. GIRF 4. 3. HORS 2. 272 A p p e n d i x F-6, c o n t i n u e d LEOP LION MONK BAT 2. 4. 2. BEAR 7. 7. 1. CAML 3. 0. 1. CAT 1. 1. 4. COW 1. 1. 2. DEER 1. 2. 0. DOG 0. 2. 1. DONK 0. 0. 1. ELEP 3. 2. 1. FOX 2. 2. 3. GIRF 5. 2. 2. HORS 4. 2. 4. MOUS PIG PORC 4. 2. 1. 1. 3. 1. 1. 4. 1. 2. 1. 3. 2. 4. 0. 0. 2. 1. 2. I . 0. 0. 4. 1. 0. 2. 1. 2. 4. 1. 1. 1. 3. 1. 2. I. RABT SEAL SHEP 2. 3. 1. 3. 1. 2. 1. 1. 1. 4. 2. 3. 3. 3. 2. 2. 4. 2. 3. 3. 3. 2. 2. 3. 1. 1. G. 2. 4. 1. 1. 1. 2. 2. 1. 4. SKUN SQUR ZEBR 2. 1. 3. 1. 3. 3. 1. 2. 3. 4. 1. 2. 1. 3. 3. 1. 4. 3. 2. 3. 3. 2. 3. 6. 3. 1. 4. 1. 2. 1. 0. 2. 6. 0. 1. 7. 273 A p p e n d i x F-6, c o n t i n u e d LEOP LION MONK MOUS PIG PORC RABT SEAL SHEP SKUN SQUR ZEBR KANG 1. 0. 1. I. 1. 1. 5. 4. 4. 2. 4. 4. LEOP 14. 2. 1. 1. 1. 1. 0. 2. 1. 0. 4. LION 5. 2. 0. 1. 0. 3. 1. 1. 0. 1. MONK 4. 3. 2. 3. 2. 2. 1. 4. 0. MOUS 0. 6. 10. I. 3. 4. 11. 1. PIG 0. 3. 2. 4. 2. 2. 1. PORC 2. 0. 2. 13. 5. 1. RABT 3. 5. 4. 11. 2. SEAL 2. 3. 3. 3. SHEP 0. 3. 2. SKUN 5. 2. SQUR 2. 274 A p p e n d i x G. I n s t r u c t i o n s f o r L e a r n i n g Phase o f Stu d y I I H i e r a r c h i c a l C o n d i t i o n : Now I'm g o i n g t o show you some words. ( P l a n t h i e r -a r c h y p r e s e n t e d ) As you can s e e , t h e s e words a r e a r r a n g e d i n a s p e c i a l way. The v e r y t o p word i s p l a n t s . . ( E x p e r i m e n t e r p o i n t e d a t word) T h a t t e l l s us what a l l t h e o t h e r words a r e g o i n g t o be about - p l a n t s . Now l o o k a t t h e second l i n e . There a r e t h r e e words - f l o w e r s , v e g e t a b l e s , and t r e e s . ( E x p e r i m e n t e r p o i n t e d a t each word) These a r e a l l d i f f e r e n t k i n d s o f p l a n t s . Now l o o k b e l o w f l o w e r s . You see d a i s y and r o s e . These a r e b o t h k i n d s o f flowers.. Now l o o k below v e g e t a b l e s . You see p o t a t o and pea -b o t h t y p e s o f v e g e t a b l e s . F i n a l l y , l o o k b e l o w t r e e s . You see oak and maple - b o t h t y p e s o f t r e e s . ( E x p e r i m e n t e r p o i n t e d a t each word as i t was mentioned) L i s t C o n d i t i o n : Now I'm g o i n g t o show you some words. ( P l a n t l i s t p r e s e n t e d ) As you can see t h e s e words a r e a r r a n g e d i n a s p e c i a l way. The v e r y t o p word i s p l a n t s . That t e l l s us what a l l t h e o t h e r words a r e g o i n g t o be about r p l a n t s . Now l o o k a t . t h e s e c o n d l i n e . You see f l o w e r s . A f l o w e r i s a k i n d o f p l a n t . Now l o o k a t t h e n e x t two words - d a i s y and r o s e . These a r e b o t h k i n d s o f f l o w e r s . Now l o o k a t t h e n e x t word - v e g e t a b l e s . A v e g e t a b l e i s a k i n d o f p l a n t . Look below v e g e t a b l e s and you see p o t a t o and p e a . These a r e b o t h k i n d s o f v e g e t a b l e s . Now l o o k a t t h e n e x t word -t r e e s . A t r e e i s a k i n d o f p l a n t . Look below t r e e s and you see oak and maple - b o t h t y p e s o f t r e e s . Random C o n d i t i o n : Now I'm g o i n g t o show you some words. As you can s e e , t h e s e words a r e a r r a n g e d i n a l o n g l i s t . I am g o i n g t o r e a d t h e s e words o v e r t o y o u . The f i r s t word i s p o t a t o . • The second word i s r o s e . The n e x t word i s v e g e t a b l e s . The n e x t word i s f l o w e r s . The n e x t word i s t r e e s . The n e x t word i s p l a n t s . The n e x t . w o r d i s - p e a . The n e x t word i s oak. The n e x t word i s d a i s y . The l a s t word i s maple. A l l C o n d i t i o n s : Now I want you t o s t u d y t h e s e words v e r y c a r e f u l l y and t r y t o remember as many p l a n t s as you p o s s i b l e c a n . S t u d y t h e words u n t i l I s a y s t o p . (One minute) S t o p . ( E x p e r i m e n t e r removed s t i m u l u s i t e m s ) Now I want you t o c o u n t b a c k w a r d s , o u t l o u d , and t o g e t h e r f r o m 99. Ready, go 99, 98, (20 s e c o n d s ) . O.K. S t o p . Now p i c k up y o u r p e n c i l s and w r i t e down on t h e pad i n f r o n t o f y o u , a l l t h e p l a n t s you can remember from t h e l i s t . P u t o n l y one word on each l i n e . T r y t o work as f a s t as p o s -s i b l e . Do n o t w o r r y about s p e l l i n g . O.K. Go. (One minute) S t o p . Here a r e t h e words a g a i n . ( E x p e r i m e n t e r p r e s e n t e d s t i m u l u s i t e m s ) Look a t them and l o o k a t y o u r w r i t t e n l i s t and see w h i c h p l a n t s you f o r g o t o r g o t wrong. Do n o t make any changes i n y o u r b o o k l e t . J u s t check o v e r y o u r words. (30 seconds) O.K. now t u r n t h e page on o u r pad t o page two. Check t h a t you have page two. S t u d y t h e l i s t v e r y c a r e f u l l y a g a i n . Be s u r e t o s t u d y t h e whole l i s t b e cause t h e way i t i s a r r a n g e d can h e l p you i n t r y -i n g t o remember i t . (One minute) S t o p ( E x p e r i m e n t e r removed s t i m u l u s i t e m s ) Now c o u n t backwards, o u t l o u d and t o g e t h e r from 75. Ready, go 75, 74 (20 seconds) O.K. S t o p . Now w r i t e down a l l t h e p l a n t s you can remember from t h e l i s t (2 m i n u t e s ) S t o p . Here a r e t h e words a g a i n . Com-p a r e them w i t h y o u r answers and see w h i c h ones you g o t wrong o r l e f t o u t . Remember, do n ' t change a n y t h i n g (20 seconds). O.K. Now t u r n t o page t h r e e . H i e r a r c h i c a l C o n d i t i o n : I am g o i n g t o show you some d i f f e r e n t words now. You can see t h a t t h e s e words a r e a r r a n g e d i n a s p e c i a l way t o o . The t o p word - a n i m a l s t e l l s us t h a t a l l t h e o t h e r words a r e g o i n g t o be about a n i m a l s . Look a t t h e second l i n e . You see meat e a t e r s and p l a n t e a t e r s . 275-Some a n i m a l s e a t meat and some a n i m a l s e a t p l a n t s . . Look below t h e meat  e a t e r s group. Some meat e a t e r s a r e f o r p e t s , some f o r f u r , and some f o r  game. Game a n i m a l s : a r e a n i m a l s p e o p l e hunt f o r s p o r t . ' Now T o o k below f o r p e t s . You see c a t , dog, and skunk. These c a n a l l be u s e d f o r p e t s . Now l o o k b e l o w f o r f u r . You see f o x , , s e a l , and r a c c o o n . These can a l l be u s e d . f o r f u r . Now l o o k below f o r game. You see t i g e r , b e a r , and p a n t h e r . These can a l l be u s e d ' f o r game. Now l o o k under p l a n t e a t e r s . Some p l a n t e a t e r s a r e f o r p e t s , some f o r f u r , and some f o r game. Now l o o k b e l o w f o r p e t s . You see t h a t r a b b i t , g e r b i l , and- monkey can a l l be used f o r p e t s . Now-look below f o r f u r . - You see t h a t s q u i r r e l , m u s k r a t , and b e a v e r can a l l be used, f o r f u r . F i n a l l y , . T o o k b e l o w f o r game. You see t h a t d e e r , moose,'and e l e p h a n t can a l l be u s e d f o r game. L i s t C o n d i t i o n , f i r s t l i s t p r e s e n t e d : I am g o i n g t o show you some d i f f e r -e n t words now. You can see t h a t t h e s e words a r e arranged' i n a s p e c i a l way t o o . The t o p word:- a n i m a l s - t e l l s us t h a t a l l t h e o t h e r words a r e g o i n g t o be about a n i m a l s . Now l o o k a t t h e second l i n e . L i s t C o n d i t i o n , s e c o n d l i s t p r e s e n t e d : Now l o o k a t t h i s l i s t . A g a i n , you see a n i m a l s a t t h e t o p . Look a t t h e second l i n e . L i s t C o n d i t i o n , a b s t r a c t d i m e n s i o n : You see meat e a t e r s . Some a n i m a l s e a t meat. Below meat e a t e r s i s a group o f a n i m a l s t h a t e a t s meat.' These a n i m a l s a r e : c a t , dog, skunk, f o x , s e a l , r a c c o o n , t i g e r , b e a r , and p a n t h e r . Now l o o k a t t h e n e x t l i n e . You see p l a n t e a t e r s . Some a n i m a l s e a t p l a n t s . Below p l a n t e a t e r s i s a group o f a n i m a l s t h a t e a t s p l a n t s . These a n i m a l s a r e : r a b b i t , g e r b i l , monkey, s q u i r r e l , m u s k r a t , b e a v e r , d e e r , moose, and e l e p h a n t . L i s t C o n d i t i o n , f u n c t i o n a l d i m e n s i o n : , You see f o r p e t s . Some a n i m a l s can be used f o r p e t s . Below f o r p e t s i s a group o f a n i m a l s t h a t can be used f o r p e t s . These a n i m a l s a r e : c a t , dog, skunk, r a b b i t , g e r b i l , and monkey. Now l o o k a t t h e n e x t l i n e . You see f o r f u r . Some a n i m a l s can be u s e d f o r f u r . Below f o r f u r i s a group o f a n i m a l s t h a n can be u s e d f o r f u r . These a r e f o x , s e a l , r a c c o o n , s q u i r r e l , m u s k r a t , and b e a v e r . Now l o o k a t t h e n e x t l i n e . You see f o r game. Game a n i m a l s a r e a n i m a l s p e o p l e h u n t f o r s p o r t . . Below f o r game i s a group o f a n i m a l s t h a t can be used f o r game. These a r e t i g e r , b e a r , p a n t h e r , d e e r , moose, and e l e p h a n t . Random C o n d i t i o n : I am g o i n g t o show you some d i f f e r e n t words now. You can see t h a t t h e s e words a r e a r r a n g e d i n a l o n g l i s t t o o . I am g o i n g t o r e a d t h e s e words o v e r t o you. The f i r s t word i s meat e a t e r s . The second word i s m u s k r a t . The n e x t word i s b e a r . The n e x t word i s e l e p h a n t . The n e x t word i s a n i m a l s . The n e x t word i s p a n t h e r . The n e x t word i n monkey. The n e x t word i s p l a n t e a t e r s . The n e x t word i s f o r game. The n e x t word i s b e a v e r . The n e x t word i s d e e r . The n e x t word i s r a c c o o n . The n e x t word i s skunk. The n e x t word i s f o x . The n e x t word i s t i g e r . The n e x t word i s r a b b i t . The n e x t word i s f o r f u r . The n e x t word i s f o r p e t s . The n e x t word i s c a t . The n e x t word i s s q u i r r e l . The n e x t word i s s e a l . The next, word i s g e r b i l . The n e x t word i s moose. And t h e l a s t word i s dog. A l l C o n d i t i o n s : O.K. Now I want you t o s t u d y t h e s e words v e r y c a r e f u l l y and t r y t o remember as many words as you p o s s i b l y c a n . S t u d y t h e words u n t i l I s a y s t o p . (One minute) S t o p . Now I want you t o c o u n t b a c k w a r d s , o u t l o u d and t o g e t h e r from 68. 68, 67 (20 s e c o n d s ) . S t o p . Now p i c k up y o u r p e n c i l s and w r i t e down on t h e pad i n f r o n t o f y o u , page 3, a l l t h e a n i m a l s 276 you can remember from t h e l i s t . P u t o n l y one word on each l i n e . T r y t o work as f a s t as p o s s i b l e and don'.t w o r r y about s p e l l i n g . O.K. Go. (Two minutes) S t o p . Here a r e t h e words a g a i n . Look a t them and l o o k a t y o u r w r i t t e n l i s t and see w h i c h a n i m a l s you f o r g o t o r g o t wrong. Don't make any changes i n y o u r b o o k l e t . (30 seconds) Now t u r n t h e page on y o u r pad t o page 4. Check t h a t you have page 4. Stu d y t h e l i s t v e r y , ' c a r e f u l l y a g a i n Be s u r e t o s t u d y t h e whole l i s t b ecause t h e way i t i s a r r a n g e d can h e l p you i n t r y i n g t o remember i t . (One minute) Now c o u n t backwards f r o m 47. 47, 46 ...... (-20 seconds) Now w r i t e down a l l t h e a n i m a l s you can remember f r o m t h e l i s t . (2 m i n u t e s ) S t o p . Now l o o k a t t h e l i s t a g a i n and check y o u r answers. (30 seconds) Now t u r n t o page 5 i n y o u r b o o k l e t and' t h e n s t u d y t h e whole l i s t a g a i n . ( D i r e c t i o n s c o n t i n u e d i n t h e same way u n t i l t h e s u b j e c t s had r e c e i v e d s i x o r t e n l e a r n i n g t r i a l s . F o r t h e l i s t c o n d i t i o n s u b j e c t s , a f t e r t h r e e o r f i v e t r i a l s on t h e f i r s t l i s t , t h e s e c o n d l i s t was p r e s e n t e d and e x p l a i n e d and l e a r n i n g t r i a l s c o n t i n u e d as i n d i c a t e d a b o v e ) . 2 7 7 A p p e n d i x H. O r t h o g o n a l A n a l y s i s o f V a r i a n c e Summary T a b l e f o r F i r s t Three T r i a l s (N = 1 2 0 ) Source o f V a r i a t i o n d f Sums o f Mean Squares Squares Grand Mean 1 6 0 0 1 5 . 6 2 5 1 6 0 0 1 5 . 6 2 5 2 9 3 3 . 1 4 0 < . 0 0 0 1 Between S u b j e c t s Grade (G) C o n d i t i o n s (C) HC vs L C ( C i ) -HC,LC vs RC(C 2) Degree o f L e a r n i n g (D) G x C G x C i G x C 2 G x D C x D C i x D C 2 x D G x C x D G x C i x D G x C 2 x D E r r o r 1 2 1 1 1 2 1 0 8 3 7 4 0 . 8 2 8 1 1 5 . 2 7 1 7 4 2 . 0 1 2 3 2 . 0 3 3 1 . 2 5 0 4 1 . 6 6 6 4 5 . 6 3 3 6 . 0 5 0 1 2 3 . 2 6 7 2 0 . 0 0 0 2 2 0 . 4 1 6 5 8 9 1 . 8 7 3 3 7 4 0 . 8 2 8 1 1 5 . 2 7 1 7 4 2 . 0 1 2 3 2 . 0 3 3 1 . 2 5 0 4 1 . 6 6 6 4 5 . 6 3 3 6 . 0 5 0 1 2 3 . 2 6 7 2 0 . 0 0 0 2 2 0 . 4 1 6 5 4 . 5 5 4 6 8 . 5 7 1 . 0 0 0 1 2 . 1 1 2 < . 1 4 9 1 3 . 6 0 1 < . 0 0 0 4 0 . 5 8 7 < . 4 4 5 0 . 2 2 9 < . 8 8 0 0 . 7 6 4 <. . 3 8 4 0 . 8 3 7 < . 3 6 3 0 . 1 1 1 2 . 2 6 0 < . 7 4 0 ^ . 1 3 6 0 . 3 6 7 < . 5 4 6 4 . 0 4 0 < . 0 4 7 W i t h i n S u b j e c t s T r i a l s (T) L i n r (L) 1 7 9 9 . 3 4 8 7 9 9 . 3 4 8 2 5 7 . 7 7 5 < . 0 0 0 1 Quad (Q) 1 4 7 . 0 2 2 4 7 . 0 2 2 2 3 . 1 2 2 < . 0 0 0 1 T x G 2 L 1 8 . 0 6 7 8 . 0 6 7 2 . 6 0 1 < . 1 1 0 Q 1 0 . 1 3 9 0 . 1 3 9 0 . 0 6 8 < . 7 9 4 T x C 4 L x C i 1 6 . 4 0 0 6 . 4 0 0 2 . 0 6 4 < . 1 5 4 L x C 2 1 . 0 . 3 0 0 0 . 3 0 0 0 . 0 9 7 . 7 5 6 Q x C i 1 1 . 2 0 0 1 . 2 0 0 0 . 5 9 0 < . 4 4 4 Q x C 2 1 0 . 0 1 1 0 . 0 1 1 0 . 0 0 6 < . 9 4 1 T x D 2 L x D 1 1 1 . 2 6 7 1 1 . 2 6 7 3 . 6 3 3 < . 0 5 9 Q x D 1 0 . 9 3 9 0 . 9 3 9 0 . 4 6 2 < . 4 9 8 T x G x C 4 L x G x C-L 1 0 . 1 0 0 0 . 1 0 0 0 . 0 3 2 < . 8 5 7 9 L x G x C 2 1 2 . 1 3 3 2 . 1 3 3 0 . 6 8 8 c . 4 0 8 8 Q x G x C 1 1 9 . 6 3 3 9 . 6 3 3 4 . 7 3 7 < . 0 3 1 7 Q x G x C 2 1 0 . 1 7 9 0 . 1 7 9 0 . 0 8 7 . 7 6 8 1 T x G x D 2 L x G x D 1 . 0 . 1 5 0 0 . 1 5 0 0 . 0 4 8 < . 8 2 6 4 Q x G x D 1 0 . 0 8 9 0 . 0 8 9 0 . 0 4 4 < . 8 3 4 8 T x C x D 4 L x C-L X D 1 0 . 2 2 5 0 . 2 2 5 0 . 0 7 3 . 7 8 8 2 L x C 2 x D 1 1 5 . 4 0 8 1 5 . 4 0 8 4 . 9 6 9 < . 0 2 7 9 Q x C-L x D 1 0 . 2 0 8 0 . 2 0 8 0 . 1 0 2 < . 7 4 9 6 Q x C 2 x D 1 0 . 0 6 9 0 . 0 6 9 0 . 0 3 4 < . 8 5 3 8 T x G x C x D 4 L x G x C i x D 1 1 1 . 0 2 5 1 1 . 0 2 5 3 . 5 5 5 < . 0 6 2 1 L x G x C 2 x D 1 3 . 6 7 5 3 . 6 7 5 : . 1 . 1 8 5 . 2 7 8 7 278 Source o f V a r i a t i o n Q x G x C i x • D Q x. E r r o r L Q G x C 2 x D d f 1 1 108 108 Sums o f Squares 0.208 1.003 334.903 216.630 Mean Squares 0.208 11.003 3.101 2.034 0.102 < .7496 0.493 < .4841 279 A p p e n d i x I . A n a l y s i s o f V a r i a n c e Summary T a b l e f o r L a s t T r i a l (N = 120) Source o f V a r i a t i o n Grand Mean d f Sums o f Squares Mean Squares 26314.383 26314.383 3360.341 * P .0001 Between S u b j e c t s Grade (G) 1 C o n d i t i o n s (L) 2 HC vs LC (Ci) HC,LC vs RC (C 2) Degree o f L e a r n i n g (D) 1 G x C 2 G x C i G x C 2 G x D 1 C x D 2 C i x D C 2 x D G x C x D 2 G x Ci x D G x C 2 x D W i t h i n S u b j e c t s E r r o r 108 1 1 1 1 525.006 11.250 11.266 27.075 1.800 .017 5.208 6.050 5.400 5.000 4.817 845.748 525.006 11.250 11.266 27.075 1.80(5 .017 5.208 6.050 .5.400 5.000 4.817 7.831 67.043 < .0001 1.437 < 1.439 < .2333 .233 3.457 < .066 .230 < .002 < .6327 .9633 .665 < .4166 .773 < .690 < .639 < .615 < .3814 .4082 .4261 .4347 280 A p p e n d i x J - 1 . O r t h o g o n a l A n a l y s i s o f V a r i a n c e Summary T a b l e f o r Low Degree L e a r n i n g C o n d i t i o n (N = 60) Source o f V a r i a t i o n d f Sums o f Mean Squares Squares Grand Mean 362858.875 362858.875 1631.135 <.0001 (C) (Ci) Between S u b j e c t s Grade (G) C o n d i t i o n s HC vs LC HC,LC vs RC (C 2) G x C G x Ci G x C 2 E r r o r 1-2 1 1 1 1 10773.586 10773.586 54 810,002 1293.630 84.099 811.198 12012.723 810.002 1293.630 84.099 811.198 222.458 48.423 < .0001 3.641 < .0617 5.815 <.0194 .378 <.5413 3.647 <.0616 W i t h i n S u b j e c t s T r i a l s (T) L i n r (L) Quad (Q) R e s i d u a l (R) T x G L Q R X L L Q Q R X R x T X L L Q Q R x R x E r r o r L Q R G G G C l c 2 C l C 2 C l C2 x C x C i x C 2 x C i x Co 10 10 1 1 3 1 1 3 1 1 1 1 3 3 1 1 1 1 3 .3 54 54 162 570.547 86.691 52.381 10.500 2.448 2.022 1.956 22.217 4.074 0.012 43.120 55.248 3.291 2.679 1.336 24.901 24.706 16.304 291.838 223.217 390.508 570.547 86.691 17.460 10.500 2.448 0.674 1.956 22.217 4.074 0.012 14.373 18.416 3.291 2.679 1.336 24.901 8.235 5.435 5.404 4.134 2.411 105.571<.0001 20.972 < .0001 7.241<.01 1.943 < .1691 .591< .4453 .280 >.25 .362 < .5500 4.111 < .0476 .986 <.3253 0.003 * .9573 5.961<.01 7.638 <.01 0.609 < .4386 0.496 < .4845 0.323 <.5721 6.024 < .0174 3.416 <.05 2.254 * .25 281 A p p e n d i x J - 2 . O r t h o g o n a l A n a l y s i s o f V a r i a n c e Summary T a b l e f o r H i g h Degree L e a r n i n g C o n d i t i o n (N = 60) Source o f V a r i a t i o n d f Sums o f Squares Mean . Squares Grand Mean 1161761.000 1161761.000 2030.356 < .0001 Between S u b j e c t s Grade (g) C o n d i t i o n s (C) HC vs LC ( C i ) HC,LC vs RC ( C 2 ) G x C G x C i G x C 2 E r r o r 1 2 54 19910.754 448.896 433.200 2.500 163.333 30898.546 19910.754 448.896 433.200 2.500 163.333 572.195 34.797 < .0001 0.785 < .3797 0.757 <.3881 0.004 <.9476 .286 <.5954 W i t h i n S u b j e c t s T r i a l s (TO L i n r (L) Quad (Q) R e s i d u a l (R) T x G L x' Q x R x x C L L Q Q R R X x G L L Q Q R R x E r r o r L Q R c 2 C l C 2 C l c 2 x G G G G G G C x C i x C 2 x C i x C 2 x C i x C 2 18 18 1 1 7 1 1 7 1 1 •1 1 7' 7 1 1 1 1 7 7 54 54 378 697.030 249.249 252.071 6.222 4.415 4.897 1.320 22.790 0.037 4.671 105.853 22.885 15.205 0.990 0.474 0.025 11.872 15.685 309.693 163.262 760.350 697.030 249.249 36.010 6.222 4.415 .700 1.320 22.790 0.037 4.671' 15.122 3.269 15.205 0.990 0.474 0.025 1.696 2.241 5.735 3.023 2.012 121.538 * .0001 82.441 <.0001 17.898 < .01 1.085 <• .3023 1.460 <.2322 0.348 ^.25 0.230 <.6334 3.974 < .0513 0.012 .9122 1.545 < .2193 7.516 * . 0 1 1.625 <.25 2.651 <.1093 0.173 <.6795 0.157 c .6939 0.008 < .9276 0.843 >.25 1.114 >.25 282 A p p e n d i x K-1. A n a l y s i s o f V a r i a n c e Summary T a b l e f o r L i s t C o n d i t i o n o v e r S i x T r i a l s (N = 2 0 ) Source o f V a r i a t i o n d f Sums o f Squares Mean Squares Grand Mean 19533.010 19533.010 540.332 ^ . 0 1 Between S u b j e c t s Grade .(G) Or d e r (0) G x O E r r o r 1 1 1 16 1015.008 1.008 1.408 578.400 1015.008 1.008 1.408 36.150 28.078 <.01 0.028 > .25 0.039 T- .25 L i s t O r g a n i z a t i o n (L) 1 G x L 1 O x L 1 G x 0 x L 1 E r r o r 16 31.008 7.008 21.675 3.675 94.133 31.008 7.008' 21.675 3.675 5.883 5.271< .05 1.191 ?.25 3.684 < .10 0.625 >.25 W i t h i n S u b j e c t s T r i a l s (T) w i t h i n L G x T(L) O x T(L) G x O x T(L) E r r o r 4 232.533 4 25.133 4 10.267 4 17.667 64 161.067 58.133 23.100 < .01 6.283 2.497 .10 2.567 1 . 0 2 0 ? . 2 5 4.417 1.755 < .25 2.517 283 A p p e n d i x K-2. A n a l y s i s o f V a r i a n c e Summary T a b l e f o r L i s t C o n d i t i o n o v e r Ten T r i a l s (N = 20) • Source o f V a r i a t i o n d f Sums o f Squares Mean Squares Grand Mean 37922.580 37922.580 489.829 <.01 Between S u b j e c t s Grade (G) Or d e r (0) G x 0 E r r o r 1 1 1 16 . 598.580 2.000 0.320 1238.720 598.580 2.000 0.320 77.420 7.732 0.026 0.004 < .05 7 .25 7 .25 L i s t O r g a n i z a t i o n (L) 1 G x L 1 O X L 1 G x O x L 1 E r r o r 16 3.380 21.780 15.680 9.680 120.080 .3.380 21.780 15.680 9.680 7.505 0.450 2.902 2.089 1.290 ?.25 7 .10 ?.10 >.25 W i t h i n S u b j e c t s T r i a l s (T) w i t h i n (L) 8 G x T (L) 8 O x T (L) 8 G x ) x T (L) 8 E r r o r 128 376.040 26.840 75.720 23.400 389.200 47.005 3.355 9.465 2.925 3.041 15.459 1.103 3.113 0.962 ^.01 7 . 2 5 < .01 ?.25 284 Ap p e n d i x L. O r t h o g o n a l A n a l y s i s o f V a r i a n c e Summary. T a b l e f o r T r a n s f o r m e d C l u s t e r i n g S c o r e s f o r F i r s t Three T r i a l s (N = 8 0 ) Source o f V a r i a t i o n Grand Mean Between S u b j e c t s Grade .(G) C o n d i t i o n (C) Degree o f L e a r n i n g (D) G x C G x D C x D G x C x D E r r o r W i t h i n S u b j e c t s (T) (L) ( Q ) T T G x C T r i a l s L i n r Quad x G L Q x C L Q X D L Q x L Q x G x D L Q X L Q T X L Q E r r o r L Q T C x D G x C x D d f Sums o f Mean F p Squares Squares .1 2705.648 2705.648 591.662 • 0001 T 21.221 21.221 4.641 < . ,0346 1 35.107 35.107 7.677 < . ,0072 1 1.669 1.669 0.365 < • .5477 1 1.512 1.'512' 0.331 < . ,5672 1 4.282 4.282 0.936 < . 3365 1 0.009 0.009 0.002 .9658 1 39.595 39.595 8.658 .0044 72 329.256 4.573 1 33.499 33.499 37.403 < .0001 1 46.651 46.651 19,099 < .0001 1 3.398 3.398 3.794 < .0554 1 2.767 2.76 7 1.133 < .2908 1 0.009 0.009 0.010 < .9203 1 0.151 0.151 0.062 .8046 1 2.868 2.868 3.202 .0778 1 0.688 0.688 0.282 < .5972 1 0.080 0.080 0.090 < .7658 1 0.055 0.055 0.023 < .8813 1 1.379 1.379 1.539 < .2187 1 0.027 0.027 0.011 < .9164 1 0.211 0.211 0.235 < .6294 1 1.123 1.123 0.460 < .5000 1 0.588 0.588 0.656 < .4206 1 0.750 0.750 0.307 .5813 72 64.486 0.896 72 175.863 2.443 285 A p p e n d i x M. A n a l y s i s o f V a r i a n c e Summary T a b l e f o r T r a n s f o r m e d C l u s t e r i n g S c o r e s f o r L a s t T r i a l (N = 80) Source o f V a r i a t i o n d f Sums o f Squares Mean Squares Grand Mean 328.360 328.360 334.895 c.OOOl Between S u b j e c t s Grade (G) 1 C o n d i t i o n s (C) 1 Degrees o f L e a r n i n g (D) 1 G x C 1 G x D 1 C x D 1 G x C x D 1 W i t h i n S u b j e c t s E r r o r 72 14.693 14.693 14.985 < .0003 0.019 0.019 0.020 < .889 1.947 1.947 1.986 < .163 3.139 3.139 3.201 < .078 1.780 1.780 1.815 < .182 0.370 0.370 0.377 < .541 0.745 0.745. 0.759 < .387 70.595 0.980 286 Ap p e n d i x N. A n a l y s i s o f V a r i a n c e Summary T a b l e f o r S i x C a t e g o r y C a t e g o r y S c a l i n g (N = 140) - Three Source o f V a r i a t i o n Grand Mean Between S u b j e c t s Grade (G) T r a i n i n g (T) T r a i n i n g - N o T r a i n i n g HC - LC . (T2) HC,LC - RC (T3) D l - D2 (T4) HC,LC x D (T5) HC,LC,RC x D (T6) G x G G G G G G T x T^ x T 2 X T 3 x T 4 X T 5 X T 6 W i t h i n S u b j e c t s E r r o r d f Sums o f Mean 1 P Squares Squares 1 241.857 241.857 1152.999 < .0001 1 0.256 0.256 1.221 < .271 6 .708 (TI) 1 0.030 0.030 0.141 < 1 5.766 5.766 27.490 < .0001 1 0.212 0.212 1.008 < .317 1 0.029 0.029 0.139 < .710 1 0.002 0.002 0.009 < .923 1 0.001 0.001 0.005 < .943 6 1 0.040 0.040 0.192 < .662 1 1.869 1.869 8.910 < .004 1 0.573 0.573 2.731 < .101 1 0.045 0.045 0.215 .644 1 0.175 0.175 0.836 < .362 1 0.077 0.077 0.369 .545 126 26.430 0.210 287 App e n d i x 0. A n a l y s i s o f V a r i a n c e Summary T a b l e f o r S i x C a t e g o r y C a t e g o r y S c a l i n g (N = 140) - Two Source o f V a r i a t i o n d f Sums o f Squares Mean Squares Grand Mean -171.620 171.620 984.654 .0001 Between S u b j e c t s Grade (G) 1 T r a i n i n g (T) 6 T r a i n i n g - N o T r a i n i n g (TI) HC - LC HC,LC - RC DI - D2 HC,LC - D HC,LC,RC -T x X X X X X (T2) (T3) (T4) (T5) (T6) W i t h i n S u b j e c t s E r r o r 126 0.376 0.376 2.154 .145 1 0.140 0.140 0.802 < .372 1. 2.056 2.056 11.798 .001 1 0.223 0.223 1.278 < .260 1 0.129 0.129 0.742 .391 1 0.0002 0.0002 0.001 .971 1 0.073 0.073 0.419 < .519 1 0