UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Age differences in the semantic structure of animal terms and the effects of training Storm, Jill Christine 1975

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1975_A1 S87_5.pdf [ 13.39MB ]
Metadata
JSON: 831-1.0100072.json
JSON-LD: 831-1.0100072-ld.json
RDF/XML (Pretty): 831-1.0100072-rdf.xml
RDF/JSON: 831-1.0100072-rdf.json
Turtle: 831-1.0100072-turtle.txt
N-Triples: 831-1.0100072-rdf-ntriples.txt
Original Record: 831-1.0100072-source.json
Full Text
831-1.0100072-fulltext.txt
Citation
831-1.0100072.ris

Full Text

AGE DIFFERENCES I N THE SEMANTIC  STRUCTURE OF ANIMAL TERMS  AND THE EFFECTS OF TRAINING  by J I L L CHRISTINE STORM B.A., U n i v e r s i t y o f A u c k l a n d , M.A.,  1961  U n i v e r s i t y of B r i t i s h Columbia,  A T H E S I S SUBMITTED  1967  I N P A R T I A L F U L F I L M E N T OF  THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF  PHILOSOPHY  (Interdisciplinary)  We  accept t h i s  t h e s i s as c o n f o r m i n g t o t h e  r e q u i r e d ^afectrtdard  THE U N I V E R S I T Y OF B R I T I S H COLUMBIA April,  1975  iV  In p r e s e n t i n g  this  thesis  an advanced degree at the L i b r a r y  shall  I f u r t h e r agree  in p a r t i a l  fulfilment  the U n i v e r s i t y of  make i t  freely  t h a t permission  of  the  requirements  B r i t i s h Columbia,  available  for  reference  for e x t e n s i v e copying o f  I agree  for  that  and study. this  thesis  f o r s c h o l a r l y purposes may be granted by the Head of my Department or by h i s of  this  written  representatives.  It  thesis for financial  is understood that gain s h a l l  permission.  Depa rtment The U n i v e r s i t y o f B r i t i s h Vancouver 8, Canada  Columbia  not  copying o r p u b l i c a t i o n  be allowed without my  ABSTRACT Two s t u d i e s were conducted t o e x p l o r e  the r o l e o f semantic s t r u c t u r e  w i t h i n the domain o f animal terms i n c h i l d r e n ' s spontaneous o p e r a t i o n s  on  these terms and on l e a r n i n g and t r a n s f e r performance. In the f i r s t study, 24 s u b j e c t s a t each o f 6 e d u c a t i o n a l from k i n d e r g a r t e n  through zoology graduates were g i v e n  form on a s e t o f animal terms.  A s s o c i a t i v e tasks  levels  four tasks t o per-  (free l i s t i n g  and  animal a s s o c i a t i o n s t o animal words) showed s i m i l a r semantic s t r u c t u r e s across  a l l educational  a l a r g e group o f f a i r l y  l e v e l s , w i t h a few s t r o n g l y a s s o c i a t e d terms, and i s o l a t e d terms.  While a s i z e dimension was  dominant i n the s o r t i n g and s i m i l a r i t y t a s k s  f o r grade 7, grade 11, and  undergraduate groups, the dominant dimension f o r z o o l o g i s t s was based on food h a b i t s . In the second study, 140 grade 3 and grade 7 s u b j e c t s list  o f f a m i l i a r animal terms.  varied.  L i s t o r g a n i z a t i o n was  learned a  experimentally  Two types o f o r g a n i z a t i o n were b o t h d e s i g n e d t o t r a i n the same  m u l t i p l e c l a s s i f i c a t i o n scheme: o f the items t o g e t h e r w i t h  a h i e r a r c h i c a l l y organized  t h e i r category  labels,-  presentation  and a l i s t  presenta-  t i o n o f the items d e s i g n e d t o t r a i n s e p a r a t e l y the c l a s s i n c l u s i o n r e l a t i o n s i n v o l v e d i n the h i e r a r c h i c a l s t r u c t u r e . the s t i m u l u s  items was a l s o i n c l u d e d .  A random o r g a n i z a t i o n o f  The e x p e r i m e n t a l  hypothesis  was  t h a t f o r o l d e r c h i l d r e n the h i e r a r c h i c a l o r g a n i z a t i o n would be as e f f e c t ive  as the separate  presentation  younger c h i l d r e n the separate  o f the two c l a s s i f i c a t i o n s , w h i l e f o r  p r e s e n t a t i o n would be more e f f e c t i v e .  r e c a l l was the d i r e c t measure o f l e a r n i n g . with  Free  A s e r i e s o f four s o r t i n g tasks  the same item s e t were used t o t e s t f o r t r a n s f e r .  etian notion of increasing cognitive f l e x i b i l i t y  Based on the P i a g -  i n c h i l d r e n throughout the  concrete  operational period,  organized values  i t was e x p e c t e d t h a t o l d e r  t r a i n i n g c o n d i t i o n s w o u l d combine and disembed  o n t h e t r a n s f e r t a s k more a c c u r a t e l y  children. transfer  c h i l d r e n from both dimensional  and s p o n t a n e o u s l y t h a n  younger  A n o - t r a i n i n g c o n t r o l g r o u p a t e a c h age l e v e l p e r f o r m e d on t h e task.  O l d e r c h i l d r e n r e c a l l e d more i t e m s . duced s u p e r i o r  recall  i n early trials  Organized presentation  t o randomly organized  lists  at both  ages.  Type o f o r g a n i z a t i o n d i d n o t produce d i f f e r e n t i a l e f f e c t s on  recall,  nor d i d this variable interact with  in  f r e e r e c a l l were a l s o  age.  pro-  Measures o f c l u s t e r i n g  analyzed.  T h e r e was a t r a i n i n g e f f e c t a t b o t h g r a d e l e v e l s o n t h e f r e e s o r t i n g task.  Groups r e c e i v i n g s t r u c t u r e d o r g a n i z a t i o n  new a n d d i f f e r e n t way o f o r g a n i z i n g  had e s s e n t i a l l y learned  these l e x i c a l  items.  a p p l i e d t h e s t r u c t u r e s l e a r n e d more s p o n t a n e o u s l y a n d w i t h t h a n y o u n g e r c h i l d r e n i n t h e same c o n d i t i o n s .  Grade 7 c h i l d r e n fewer  than grade 3 c h i l d r e n .  subjects  performed b e t t e r than non-trained  subjects  sorts.  On a l l s o r t s h i e r a r c h i c a l a n d l i s t  accurate  t h a n random c o n d i t i o n s u b j e c t s . stimulus  counterparts. tion subjects  conditions  errors  On t h e 6, 3, a n d 2 c a t e g o r y  s o r t s , g r a d e 7 c h i l d r e n w e r e more a c c u r a t e  organized  Trained  on t h e 6 and 3 category  condition subjects  w e r e more  Grade 7 c h i l d r e n i n t h e  d i d b e t t e r on a l l s o r t s t h a n t h e i r grade 3  H i e r a r c h i c a l condition subjects  d i d b e t t e r than l i s t  on t h e 6 c a t e g o r y s o r t , b u t e q u i v a l e n t l y on t h e 3 and 2  category sorts.  The t h e o r e t i c a l and p r a c t i c a l  results are discussed.  a  implications of these  condi-  iv  T a b l e o f Contents Chapter I  II  Page INTRODUCTION  1  A.  General Objectives  1  B.  Theoretical Significance  C.  Practical Significance  A.  Semantic S t r u c t u r e  B.  Development  C.  Rationale  1 4  ANALYSIS OF RESEARCH PROBLEMS  . . .  B.  .  6 6  o f Semantic S t r u c t u r e  . .  and Outcomes  11 16  METHODS OF DATA ANALYSIS AND TASKS A.  IV  .  OBSERVED NORMATIVE SEMANTIC STRUCTURE OF ANIMAL TERMS BY AGE AND EDUCATIONAL LEVEL:  III  . . . . .  21  S e l e c t i o n o f Methods o f A n a l y s i s  21  1.  Multidimensional  23  2.  Hierarchical Clustering  Scaling  . . .  24  S e l e c t i o n o f Tasks  26  1.  A s s o c i a t i v e Tasks  26  2.  Cognitive  Tasks  . . . . .  OBSERVATIONS, RESULTS, AND DISCUSSION  27 30  A.  Design o f Study  30  B.  Subjects  32  C.  Stimulus M a t e r i a l s  32  D.  Task 1:  34  E.  Free-Listing  1.  Procedure  34  2.  Results  34  Task 2:  Animal A s s o c i a t i o n s  t o Animal Terms  45  :'.v Chapter  Page  F.  G.  H. V  1.  Procedure  45  2.  Results  46  Task  3:  VII  55  1.  Procedure  55  2.  Results  56  Task 4:  S o r t i n g o f Animals  80  1.  Procedure  80  2.  Results  81  Summary o f F i n d i n g s and D i s c u s s i o n  90  EFFECTS OF STRUCTURAL ORGANIZATION ON LEARNING AND TRANSFER PERFORMANCE:  VI  Pair-Ratings  ANALYSIS OF RESEARCH PROBLEMS . .  A.  Multiple Classification  B.  Hierarchical Organization  C.  Relevant Free R e c a l l Studies i n C h i l d r e n  D.  R a t i o n a l e and Summary o f Hypotheses  . .  . .  100 100 103  .  106 108  METHOD  117  A.  E x p e r i m e n t a l Design  117  B.  Subjects  C.  S t i m u l u s Items  123  D.  Apparatus  124  .  and Procedure  RESULTS A.  B.  123  127  L e a r n i n g Task  127  1.  Item R e c a l l  127  2.  Clustering i n Recall  135  T r a n s f e r Task  139  1.  139  Free S o r t i n g Six  Category - Three Category S c a l i n g  S i x Category - Two Category S c a l i n g  140 142  vi  Chapter  Page Three Category - Two Category Scaling Hierarchical Clustering:  Qualitative  Descriptions Hierarchical Clustering:  2.  VIII  144  . 144 Quantitative  Comparisons  167  Fixed Sorting  170  Six Category Sorting  171  Three Category Sorting  173  Two Category Sorting  175  DISCUSSIONS AND SUMMARY OF FINDINGS  177  A.  Hypotheses and Findings i n Free Recall Learning . . . .  B.  Hypotheses and Findings i n the Sorting Transfer Task  C.  Overall Summary . .  177  . 180 185  LITERATURE CITED  189  APPENDICES  195  ;  vii  L i s t o f Tables Table I  Page F r e e - L i s t i n g Data on a l l . A n i m a l s L i s t e d :  Central  T e n d e n c i e s , D i s p e r s i o n s , and Sample S i z e f o r each Educational Level II  . . . . . .  F r e e - L i s t i n g Data on Animals L i s t e d  . . . .  35  from S e l e c t e d S e t :  C e n t r a l T e n d e n c i e s , D i s p e r s i o n s , and P r o p o r t i o n s  f o r each  Educational Level III  37  R e l a t i o n s h i p b e t w e e n H e n l e y ' s . (1969)  Intersection Coeffic-  i e n t s and I n t e r s e c t i o n C o e f f i c i e n t s from t h e Present f o r each Education IV  Pair-Ratings:  Study  Level  . . .  S t r e s s Values by E d u c a t i o n a l  47  Level  (MDSCAL) V  Sorting:  62 Mean Number o f C a t e g o r i e s  U s e d t o S o r t 25  A n i m a l Terms, Range, and S t a n d a r d D e v i a t i o n f o r each Educational Level VI  82  R e l a t i o n s h i p s b e t w e e n T a s k s o n 12 I t e m S u b s e t o f A n i m a l Terms  VII VIII  92  R e l a t i o n s h i p s b e t w e e n T a s k s o n 25 I t e m S e t o f A n i m a l T e r m s  93  Mean Number o f I t e m s R e c a l l e d a n d S t a n d a r d D e v i a t i o n s f o r each E d u c a t i o n a l Experimental  IX  . .  Level over S i x T r i a l s  as a F u n c t i o n o f  Conditions  128  Mean Number o f I t e m s R e c a l l e d a n d S t a n d a r d D e v i a t i o n s f o r each E d u c a t i o n a l L e v e l over Ten T r i a l s as a F u n c t i o n o f Experimental  Conditions  . 129  viii Table X  Page Observed C e l l means and Standard D e v i a t i o n s f o r C l u s t e r i n g Scores as a F u n c t i o n o f T r i a l s , Grade, Stimulus O r g a n i z a t i o n and Degree o f L e a r n i n g .  XI  . .  S i x Category - Three Category S c a l i n g :  137  Observed  Scale Value  Means and Standard D e v i a t i o n s and Transformed Means and Standard D e v i a t i o n s by E x p e r i m e n t a l Treatments XII  S i x Category - Two Category S c a l i n g :  Observed  141 Scale Value  Means and Standard D e v i a t i o n s and Transformed Means and Standard D e v i a t i o n s by E x p e r i m e n t a l Treatments XIII  Three Category - Two Category S c a l i n g :  143  Observed S c a l e  Value Means and Standard D e v i a t i o n s and Transformed Means and Standard D e v i a t i o n s by E x p e r i m e n t a l Treatments" . . . . . . . XIV  S i x Category Respect R a t i o s :  Observed  145  R a t i o Score Means  and Standard D e v i a t i o n s and Transformed Means and Standard D e v i a t i o n s by E x p e r i m e n t a l Treatments XV  Three Category Respect R a t i o s :  172  Observed R a t i o Score Means  and Standard D e v i a t i o n s and Transformed Means and Standard D e v i a t i o n s by E x p e r i m e n t a l Treatments XVI  Two Category Respect R a t i o s :  Observed  . 174 R a t i o Score Means  and Standard D e v i a t i o n s and Transformed Means and Standard D e v i a t i o n s by E x p e r i m e n t a l Treatments  176  ix  L i s t of Figures Figure  '  '  1  A schematic  2  H i e r a r c h i c a l c l u s t e r i n g f o r zoology Ph.D.s on the f r e e l i s t i n g task  3  r e p r e s e n t a t i o n o f the d e s i g n o f study  Page  (diameter method)  (diameter method)  (diameter method)  task  (diameter method)  43  44  (diameter method)  49  (diameter method)  50  H i e r a r c h i c a l c l u s t e r i n g f o r grade 11 s u b j e c t s on the (diameter method)  51  H i e r a r c h i c a l c l u s t e r i n g f o r grade 7 s u b j e c t s on the a s s o c i a t i o n s task  12  42  H i e r a r c h i c a l c l u s t e r i n g f o r e d u c a t i o n undergraduates on  a s s o c i a t i o n s task 11  41  H i e r a r c h i c a l c l u s t e r i n g f o r zoology Ph.D.s on t h e  the a s s o c i a t i o n s t a s k 10  40  H i e r a r c h i c a l c l u s t e r i n g f o r k i n d e r g a r t e n s u b j e c t s on t h e  a s s o c i a t i o n s task 9  ..  H i e r a r c h i c a l c l u s t e r i n g f o r grade 3 s u b j e c t s on the f r e e -  free-listing 8  (diameter method)  H i e r a r c h i c a l c l u s t e r i n g f o r grade 7 s u b j e c t s on the f r e e -  l i s t i n g task 7  task  H i e r a r c h i c a l c l u s t e r i n g f o r grade 11 s u b j e c t s on t h e f r e e -  l i s t i n g task 6  39  H i e r a r c h i c a l c l u s t e r i n g f o r e d u c a t i o n undergraduates i n  l i s t i n g task 5  31  (diameter m e t h o d ) . . . .  the f r e e - l i s t i n g 4  I  (diameter method)  52  H i e r a r c h i c a l c l u s t e r i n g f o r grade 3 s u b j e c t s on the a s s o c i a t i o n s task  (diameter method)  53  X  Figure 13  Page Hierarchical  clustering  a s s o c i a t i o n s task 14  Hierarchical r a t i n g task  15  Hierarchical pair-rating  16  Hierarchical r a t i n g task  17  Hierarchical r a t i n g task  18  f o r k i n d e r g a r t e n s u b j e c t s on the  (diameter method)  clustering  54  f o r zoology Ph.D.s on the p a i r -  (diameter method) clustering task  58  f o r e d u c a t i o n undergraduates on t h e  (diameter method)  clustering  59  f o r grade 11 s u b j e c t s on t h e p a i r -  (diameter method) clustering  60  f o r grade 7 s u b j e c t s on the p a i r -  (diameter method)  .  Dimensions 1 and 2 o f 5-dimensional  s c a l i n g o f 12  f o r zoology Ph.D.s on the p a i r - r a t i n g 19  Dimension 1 and 3 o f 5-dimensional Ph.D.s on the p a i r - r a t i n g  20  task  task  animals  (MDSCAL)  63  s c a l i n g f o r zoology  (MDSCAL)  Dimensions 1 and 2 o f 5-dimensional  64  s c a l i n g o f 12  f o r e d u c a t i o n undergraduates on the p a i r - r a t i n g  animals  task  (MDSCAL) 21  66  Dimensions 1 and 2 o f 5-dimensional  s c a l i n g o f 12  f o r grade 11 s u b j e c t s on t h e p a i r - r a t i n g 22  61  Dimensions 1 and 2 o f 5-dimensional  task  (MDSCAL)  s c a l i n g o f 12  f o r grade 7 s u b j e c t s on t h e pair-:-rating t a s k  animals . . .  67  animals  (MDSCAL)  . . . .  68  C  23  The s u b j e c t space f o r dimensions 1 and 2 f o r zoology Ph.D.s on the p a i r - r a t i n g  24  task  (INDSCAL). . . . . . . . . . .  The s u b j e c t space f o r dimensions 1 and 2 f o r e d u c a t i o n undergraduates on the p a i r - r a t i n g t a s k  25  70  (INDSCAL)  71  The s u b j e c t space f o r dimensions 1 and 2 f o r grade 11 s u b j e c t s on the p a i r - r a t i n g t a s k  (INDSCAL)  . . . .  72  xi Figure 26  Page The s u b j e c t space f o r dimensions 1 and 2 f o r grade 7 s u b j e c t s on the p a i r - r a t i n g t a s k  27  (INDSCAL) .  The s u b j e c t space f o r dimensions 1 and 2 (pooled) f o r z o o l o g y Ph.D.s and e d u c a t i o n undergraduates  28  (INDSCAL)  (INDSCAL)  76  The s u b j e c t space f o r dimensions 1 and 2 (pooled) f o r  (diameter method)  (INDSCAL)........  . . .  . . . . . .  (diameter method)  . . . . .  H i e r a r c h i c a l c l u s t e r i n g f o r grade 11 on s o r t i n g  task . . .  H i e r a r c h i c a l c l u s t e r i n g f o r grade 7 on s o r t i n g  86  H i e r a r c h i c a l c l u s t e r i n g f r o grade 3 on s o r t i n g  task 87  H i e r a r c h i c a l c l u s t e r i n g f o r k i n d e r g a r t e n on the s o r t i n g task  39  85  task  (diameter method). 38  79  84  (diameter method) 37  78  83  (diameter m e t h o d ) . . . . . . 36  . . .  H i e r a r c h i c a l c l u s t e r i n g f o r e d u c a t i o n undergraduates on s o r t i n g task  35  (INDSCAL)  H i e r a r c h i c a l c l u s t e r i n g f o r z o o l o g y Ph.D.s on the s o r t i n g task  34  77  The s u b j e c t space f o r dimensions 1 and 2 (pooled) f o r grade 11 and grade 7 s u b j e c t s  33  (INDSCAL) . . .  The s u b j e c t space f o r dimensions 1 and 2 (pooled) f o r e d u c a t i o n undergraduates and grade 7 s u b j e c t s  32  74  75  e d u c a t i o n undergraduates and grade 11 s u b j e c t s 31  . . . .  The s u b j e c t space f o r dimensions 1 and 2 (pooled) f o r zoology Ph.D.s and grade 7 s u b j e c t s  30  (INDSCAL)  The s u b j e c t space f o r dimensions 1 and 2 (pooled) f o r zoology Ph.D.s and grade 11 s u b j e c t s  29  73  (diameter method)  R e l a t i o n s h i p s among words i n a h i e r a r c h y  88 .  118  xii  Figure 40a  Page Relationships  among words i n a l i s t  organized  according  t o food h a b i t s 40b  Relationships  119 among words i n a l i s t  organized  according  to functions  120  41  Random o r g a n i z a t i o n o f 24 words  121  42  A schematic r e p r e s e n t a t i o n  43  Mean number o f items r e c a l l e d a c c o r d i n g  o f the e x p e r i m e n t a l d e s i g n  . . .  t o grade and degree  of l e a r n i n g 44  Hierarchies s o r t i n g data  45  Hierarchies s o r t i n g data  46  Hierarchies s o r t i n g data  47  Hierarchies s o r t i n g data  48  Hierarchies  130 f o r grade 7 t r a i n e d  Hierarchies s o r t i n g data  50  Hierarchies  f o r grade 3 t r a i n e d  Hierarchies free-sorting  52  Hierarchies data  53  147 conditions  from the f r e e 148  f o r grade 7 n o - t r a i n i n g c o n d i t i o n from the f r e e (diameter method)  •. .  149  f o r grade 3 n o - t r a i n i n g c o n d i t i o n from the f r e e (diameter method)  150  f o r grade 7 and grade 3 h i e r a r c h i c a l data  condition  (diameter method)  .  153  f o r grade 7 h i e r a r c h i c a l c o n d i t i o n from the f r e e (diameter method) .  154  f o r grade 3 h i e r a r c h i c a l c o n d i t i o n from t h e (diameter method)  f o r grade 7 and grade 3 l i s t data  155 c o n d i t i o n from the  (diameter method)  f o r grade 7 l i s t  f o r grade 3 l i s t  (diameter method)  156  c o n d i t i o n from the f r e e - s o r t i n g  (diameter method)  Hierarchies data  from the f r e e -  (diameter; method)  f r e e - s o r t i n g data 51  conditions  (diameter method)  from the f r e e - s o r t i n g 49  122  158 c o n d i t i o n from the f r e e - s o r t i n g 159  xiii Figure 54  Page Hierarchies  f o r grade 7 and grade  the f r e e - s o r t i n g data 55  Hierarchies sorting data  56  Hierarchies sorting data  57  Hierarchies condition  58  condition  from  ( d i a m e t e r method)  f o r g r a d e 7 random c o n d i t i o n  160 from the f r e e -  ( d i a m e t e r method) f o r grade  161  3 random c o n d i t i o n  from the f r e e -  ( d i a m e t e r method) f o r grade 7 and grade  from f r e e - s o r t i n g data  Hierarchies  3 random c o n d i t i o n  f o r grade 7 and grade  162 3 ten learning  trials  ( d i a m e t e r method) 3 s i x learning  from the f r e e - s o r t i n g data  164  trials  ( d i a m e t e r method)  . . .  165  ACKNOWLEDGMENT  I thank my committee  chairman, Dr. Seong-Soo Lee, f o r t h e  s u p p o r t and guidance r e c e i v e d d u r i n g a l l phases o f t h i s  research.  I a l s o thank the members o f my committee, Dr. Stephen F o s t e r , D r . John G i l b e r t , Dr. D a v i d Ingram and Dr. Nancy S u z u k i f o r t h e i r h e l p f u l s u g g e s t i o n s and comments. his  h e l p w i t h programming  consultations. the  I thank Mr. L o u i s Varga f o r  and Dr. Todd Rogers f o r s t a t i s t i c a l  I am g r a t e f u l f o r t h e c o o p e r a t i o n r e c e i v e d from  p r i n c i p a l s , t e a c h e r s , and s t u d e n t s who p a r t i c i p a t e d i n t h e s e  studies.  Finally,  I thank my husband, Tom, f o r h i s  encouragement  and moral s u p p o r t , and my son, N i c k , f o r h i s p a t i e n c e .  1  1  CHAPTER I INTRODUCTION A.  General  Objectives  E m p i r i c a l s t u d i e s of semantic s t r u c t u r e s w i t h i n and between domains have begun o n l y r e c e n t l y . and m o d i f i c a t i o n by rare. was  Two  In p a r t i c u l a r , s t u d i e s o f the  t r a i n i n g of semantic s t r u c t u r e s have been  s t u d i e s were designed to e x p l o r e  this field.  specific development  relatively  A normative study  developed t o i n v e s t i g a t e the e x i s t i n g s u b j e c t i v e o r g a n i z a t i o n o f animal  terms i n groups o f persons a t d i f f e r e n t age second study was  and  educational  levels.  A  d e s i g n e d t o manipulate the s t r u c t u r a l o r g a n i z a t i o n o f a s e t  o f f a m i l i a r l e x i c a l items from the domain o f animal terms i n o r d e r  to  t i g a t e the e f f e c t s o f d i f f e r e n t types o f s t r u c t u r a l o r g a n i z a t i o n on and  r e c a l l i n a m u l t i - t r i a l f r e e r e c a l l task and  a t r a n s f e r s o r t i n g task i n grade 3 and B.  inves-  learning  on combinatory a b i l i t y  in  grade 7 c h i l d r e n .  Theoretical Significance Although the approach adopted i n the f i r s t  r a t h e r than e x p l a n a t o r y ,  study i s d e s c r i p t i v e  the former n e c e s s a r i l y precedes the  latter.  Before t h e o r e t i c a l formulations,  s t r u c t u r e s d e s c r i b i n g r e l a t i o n s h i p s between  words i n a common domain must be  identified.  t o t h a t domain or may  The  i n d i c a t e some more g e n e r a l  s t r u c t u r e s may  human c a p a c i t y t o  semantic r e l a t i o n s i n d e p e n d e n t l y of a p a r t i c u l a r domain. i n v e s t i g a t i o n s w i t h i n one  semantic f i e l d  quate d e s c r i p t i o n o f l e x i c a l  are a f i r s t  specific organize  In e i t h e r c a s e ,  s t e p towards an ade-  organization.  T h e o r e t i c a l models have been suggested t o d e s c r i b e r e t r i e v a l o f semantic knowledge i n a d u l t s t h e o r e t i c models).  be  storage  and  ( f o r example, the network and  These models assume t h a t memory s t r u c t u r e  mirrors  set-  2 l o g i c a l s t r u c t u r e and t h a t l o g i c a l l y v a l i d r e l a t i o n s can be r e a d from t h e s t r u c t u r e o f s t o r e d semantic i n f o r m a t i o n .  I t seems o f  t h e o r e t i c a l i n t e r e s t t o examine f i r s t o f a l l whether t h e r e common t o a p a r t i c u l a r domain which can be e x t r a c t e d t a s k s used t o g e t a t t h i s s t r u c t u r e .  directly  i s a structure  independently o f the  C e r t a i n t a s k s may e l i c i t more  c o g n i t i v e l y o r i e n t e d r e l a t i o n s h i p s between l e x i c a l items i n t h e sense t h a t systematic other  dimensions a r e a p p l i e d t o a l l items w i t h i n t h e domain;  whereas  t a s k s may e l i c i t more a s s o c i a t i o n i s t i c , i m p r e s s i o n i s t i c , emotional  r e l a t i o n s h i p s between l e x i c a l items.  Whether t h i s i s so can o n l y be  determined by t h e use o f a number o f d i f f e r e n t t a s k s and a v a r i e t y o f techniques f o r data a n a l y s i s . Even i f a common s t r u c t u r e emerges a c r o s s  tasks  f o r a d u l t s , an  e x p l o r a t i o n a t younger age l e v e l s would seem n e c e s s a r y f o r an adequate theory  o f t h e development o f semantic knowledge and a d e s c r i p t i o n o f t h e  semantic f e a t u r e s  involved.  Semantic development i n v o l v e s t h e c o m p i l a t i o n  o f a d i c t i o n a r y and t h e a d d i t i o n o f semantic f e a t u r e s t o t h e s e d i c t i o n a r y entries. first  According  to McNeill  (1970), t h e most a b s t r a c t f e a t u r e s a r e added  and t h e p r o c e s s o f f e a t u r e a d d i t i o n i n v o l v e s f i n e r and f i n e r  discriminations.  Conversely, Anglin  (1970) and Vygotsky  t h a t development proceeds from c o n c r e t e ones.  (1962) propose  f e a t u r e a d d i t i o n t o more a b s t r a c t  Both i n P i a g e t i a n a n a l y s i s and i n concept l e a r n i n g terms, semantic  development may be seen as a growth i n t h e a b i l i t y t o i d e n t i f y dimensions and  t h e i r values,  t o apply  these s y s t e m a t i c a l l y t o a r e l a t e d s e t o f items  and  t o understand t h e combinatory r u l e s  ( f o r example, c l a s s i n c l u s i o n  r e l a t i o n s ) which a l l o w r e l a t i o n s h i p s between l e x i c a l items t o be established. Although the f i r s t  study i s n o t d e s i g n e d t o uncover t h e p r o c e s s e s  i n v o l v e d i n t h e development o f semantic knowledge, i t i s i n t e n d e d t o describe  s t a t e s o f semantic o r g a n i z a t i o n o f animal terms a t v a r i o u s age  3 l e v e l s and  t o suggest the k i n d s  o f semantic f e a t u r e s b e i n g  semantic r e l a t i o n s i n t h i s domain.  In t h i s way,  bute t o t h e o r e t i c a l d e s c r i p t i o n s o f the a d d i t o n  used t o  organize  i t w i l l hopefully  contri-  o f f e a t u r e s i n semantic  development. The  second study i s concerned w i t h e x t e n d i n g our u n d e r s t a n d i n g o f  a c q u i s i t i o n and  t r a n s f e r o f complex c l a s s i f i c a t o r y s k i l l s , p a r t i c u l a r l y  i n v o l v i n g c l a s s i n c l u s i o n r e l a t i o n s and h i e r a r c h i c a l o r g a n i z a t i o n , w i t h i n the semantic domain o f animal terms. these s k i l l s emerge w i t h c o n c r e t e  Piaget  operations  a number o f s t u d i e s , m o s t l y u s i n g c o n c r e t e  during  the 7 - 9  be  has  age  period,  but  and Winzenz, 1967;  in children,  Research on Nelson and  adults  Smith,  shown t h a t the type o f s t r u c t u r a l o r g a n i z a t i o n of the m a t e r i a l s  l e a r n e d a f f e c t s l e a r n i n g and  organization  retention.  form o f o r g a n i z a t i o n , e a s i l y stored.  Bower  e f f i c i e n c y both i n storage  r e t r i e v a l p r o c e s s e s under t h i s type of s t i m u l u s since h i e r a r c h i c a l organization  presentation.  i s a frequently occurring  and  That i s ,  and-pervasive  a r e t r i e v a l r u l e t o generate such a s t r u c t u r e i s  P a r t i c u l a r word o c c u r r e n c e s are then s t o r e d as groups  l a b e l s are a s s i g n e d  to  Notably, h i e r a r c h i c a l  leads to p a r t i c u l a r l y e f f i c i e n t l e a r n i n g i n a d u l t s .  suggests t h a t t h i s r e s u l t s from g r e a t e r  t o the groups.  and  D u r i n g r e t r i e v a l , the r u l e which  generates a h i e r a r c h i c a l s t r u c t u r e l e a d s t o r e c a l l o f the and  again  and p i c t o r i a l s t i m u l i have  some c l a s s i f i c a t i o n s b e i n g more d i f f i c u l t than o t h e r s . ( f o r example, Bower, C l a r k , L e s g o l d  those  seems t o suggest t h a t  demonstrated s e q u e n t i a l development i n c l a s s i f i c a t o r y s k i l l s  1972)  the  category l a b e l s  f u r t h e r e l a b o r a t i o n o f the c a t e g o r y instances:. . I t i s not  c l e a r whether v e r b a l items arranged i n a h i e r a r c h i c a l  s t r u c t u r e w i l l f a c i l i t a t e l e a r n i n g and study i s d e s i g n e d t o e x p l o r e  transfer in children.  t h i s aspect.  The  second  In a d d i t i o n , a c o n s i d e r a t i o n  of  the c l a s s i n c l u s i o n r e l a t i o n s i n v o l v e d i n h i e r a r c h i c a l o r g a n i z a t i o n suggests t h a t younger c h i l d r e n r e c e n t l y a c q u i r i n g c l a s s i f i c a t i o n s k i l l s  may  4 s t o r e and  r e t r i e v e v e r b a l items more e a s i l y i f these c l a s s i n c l u s i o n  r e l a t i o n s are s e p a r a t e d  out and p r e s e n t e d s e p a r a t e l y  t o be  learned.  Of  p a r t i c u l a r i n t e r e s t i s the e f f e c t o f s t r u c t u r a l o r g a n i z a t i o n on t r a n s f e r t o another t a s k .  That i s , even though the p r o c e s s e s i n v o l v e d i n s t o r i n g  r e t r i e v i n g i n f o r m a t i o n which i s h i e r a r c h i c a l l y o r g a n i z e d  may  be more  complex f o r c h i l d r e n as compared t o a d u l t s , perhaps h a v i n g mastered o r g a n i z a t i o n over a s e r i e s of l e a r n i n g t r i a l s , d i f f e r e n t task  i n v o l v i n g the  out.  organization of stimulus  materials  their cognitive organization  C o n v e r s e l y , i t may  C.  t o another t a s k .  be  i s not  s u f f i c i e n t l y developed t o a l l o w i n t h i s way  that  either  or t r a n s f e r of  this  I t i s thus o f t h e o r e t i c a l i n t e r e s t t o  possibilities.  Practical Significance Descriptions  of the  subjective s t r u c t u r e of s p e c i f i c  domains have important e d u c a t i o n a l  implications.  i n i n s t r u c t i o n a l psychology, Glaser  and  Resnick  semantic  In a review o f  s c i e n t i s t s and  should  scholars  i n a d i s c i p l i n e , and  be s t r u c t u r e d f o r optimum use  research  (1972) p o i n t out t h a t  d i s t i n c t i o n between the s u b j e c t matter s t r u c t u r e as i t has been by  a  that h i e r a r c h i c a l  i s too complex f o r young c h i l d r e n ;  e f f i c i e n t l e a r n i n g o f the items o r g a n i z e d  these  c l a s s i f i c a t o r y s k i l l s on  under c o n d i t i o n s where the c l a s s i n c l u s i o n  r e l a t i o n s were s e p a r a t e d  explore  this  same items w i l l be more f l e x i b l e than f o r those  c h i l d r e n whose l e a r n i n g o c c u r r e d  organization  and  the  organized  the s u b j e c t matter as i t  by those who  are newly a c q u i r i n g  knowledge i n a d i s c i p l i n e ,  is implicit  i n the work of those who  cerned w i t h i n s t r u c t i o n .  I t seems obvious t h a t the way  are  con-  i n which  s t r u c t u r e s i n a p a r t i c u l a r d i s c i p l i n e ought t o be  formulated  course of i n s t r u c t i o n i n t h a t d i s c i p l i n e would be  j o i n t l y dependent on  the  imposed on the s u b j e c t area by  the  amount and  type o f o r g a n i z a t i o n a l r e a d y  students a t d i f f e r e n t e d u c a t i o n a l the way  and  the  l e v e l s a t the onset o f i n s t r u c t i o n , and  i t i s expected t h a t the s t u d e n t s h o u l d  s t r u c t u r e the  subject  m a t t e r a t t h e end o f t h e i n s t r u c t i o n a l p r o c e s s . the dimensions particular countries  ( i f any)  on w h i c h  socio-economic  economic development, c o n c e p t s w o u l d be  children at a specific  o r c u l t u r a l group,  ( e . g . on t h e b a s e s etc.),  F o r e x a m p l e , i f one  of size,  age,  a  s t r u c t u r e t h e names o f  location, distance, products,  t h e p r o c e s s o f t e a c h i n g new  facilitated.  o r from  knew  A,teacher would,  geographical  f o r example, p r e s e n t  k n o w l e d g e i n a manner accommodated t o t h e s t r u c t u r e o f  new  pre-existing  knowledge. In  order to consider the process of producing a l t e r a t i o n s  e x i s t i n g semantic s t r u c t u r e , this structure.  relations,  In s e l e c t i n g a developmental  domain w h i c h has  few h a v e p r o v i d e d  approach,  and  of  i n considering a  f o r p r a c t i t i o n e r s and  of  developmental  e d u c a t i o n a l r e l e v a n c e , i t i s hoped t h a t the f i r s t  w i l l provide data with implications with  necessary to begin with a d e s c r i p t i o n  A l t h o u g h t h e r e have been e m p i r i c a l i n v e s t i g a t i o n s  v a r i o u s s e m a n t i c f i e l d s and data.  it.is  i n an  those  semantic study  concerned  instruction. It  i s c l e a r l y e d u c a t i o n a l l y r e l e v a n t t o s t u d y methods o f p r e s e n t i n g  m a t e r i a l t o e f f e c t o p t i m a l changes i n e x i s t i n g study explores t h i s  structures.  aspect w i t h the kinds of n a t u r a l i s t i c  The  second  concepts t o  a c q u i r e d i n t h e c l a s s r o o m a n d , more i m p o r t a n t l y , e x a m i n e s t h e e f f e c t l e a r n i n g on t r a n s f e r t o a n o t h e r t a s k , a b a s i c g o a l o f t h e process.  be of  instructional  6  CHAPTER I I OBSERVED NORMATIVE  SEMANTIC STRUCTURE OF ANIMAL TERMS BY AGE AND  EDUCATIONAL LEVEL: A.  ANALYSIS OF RESEARCH PROBLEMS  Semantic S t r u c t u r e Semantic s t r u c t u r e i n t h i s study r e f e r s t o the s u b j e c t i v e  t i o n o f a p a r t i c u l a r domain o f m e a n i n g f u l l y terms, p l a n t s , a n i m a l s ) .  Subjective  measures o f p s y c h o l o g i c a l d i s t a n c e . l e x i c a l item  organiza-  r e l a t e d terms (e.g. k i n s h i p  organization  i s i n f e r r e d from  various  I t i s assumed t h a t t h e meaning o f a  i s , i n p a r t , a f u n c t i o n o f the meaning r e l a t i o n s o b t a i n i n g  between t h a t item and o t h e r  items i n t h e same domain.  Dixon  (1971)  i n d i c a t e s t h a t t h e r e a r e two s i d e s t o l i n g u i s t i c meaning - sense and reference.  The sense o f a word i s i t s p l a c e  w i t h o t h e r words i n t h e v o c a b u l a r y .  i n a system o f r e l a t i o n s h i p s  Reference r e f e r s t o t h e r e l a t i o n s h i p  between words and the t h i n g s , e v e n t s , and a c t i o n s they "stand present  for".  The  study i s concerned o n l y w i t h ' t h e former type o f l i n g u i s t i c meaning.  R e l a t i o n s h i p s between items i n a semantic domain c o n s t i t u t e the s t r u c t u r e o f t h a t semantic f i e l d . terms o f p r o x i m i t y .  The meaning shared by two words i s e s t i m a t e d i n  Proximity  measures can be o b t a i n e d  by almost any  method which i s assumed t o measure s i m i l a r i t y , a s s o c i a t i o n , s u b s t i t u t a b i l i t y o r c o - o c c u r r e n c e o f any two words o r s e t s o f words. i c a l research,  proximity  has been d e f i n e d  In p s y c h o l o g -  i n terms o f word c l u s t e r i n g i n  f r e e - l i s t i n g o r f r e e r e c a l l , and .in terms o f t h e number o f responses s h a r e d by words i n a f r e e - a s s o c i a t i o n t e s t .  Other methods f o r e s t i m a t i n g  proximity  i n c l u d e s i m i l a r i t y judgements o r r a n k i n g s o f s i m i l a r i t y between words, s o r t i n g words on the b a s i s o f s i m i l a r i t y o f meaning, and s u b s t i t u t a b i l i t y  7 o f d i f f e r e n t words i n the same sentence  s l o t s i n sentence  frames.  Finally,  amount o f i n t e r f e r e n c e o r memory f a c i l i t a t i o n produced by p r e s e n t i n g s p e c i f i c words c o n t i g u o u s l y i n a l e a r n i n g t a s k , and the number o f judges can s t a t e a r e l a t i o n t h a t makes two p r o x i m i t y measures. shared by two  o r more words e q u i v a l e n t can a l s o y i e l d  I t i s assumed t h a t the more c r i t e r i a l p r o p e r t i e s  o r more words, the g r e a t e r degree o f e q u i v a l e n c e between  those words, and,  t h e r e f o r e , the g r e a t e r degree o f shared meaning.  In e s t a b l i s h i n g e q u i v a l e n c e between two  o r more words, c e r t a i n  p r o p e r t i e s o f these words are i g n o r e d , w h i l e o t h e r s are a t t e n d e d i s s i m i l a r t o concept  Dominowski, 1971)'.  animals  o t h e r dimensions  vary  This  and  r e d square  the  form whereas a l l o t h e r dimensions on which  (e.g. s i z e , number, t e x t u r e , e t c ; ) are i r r e l e v a n t .  In  on the b a s i s of t h e i r shared mammalian c h a r a c t e r i s t i c s , (e.g. s i z e , c o l o r , s k i n t h i c k n e s s , e t c . ) are .ignored.  T h e r e f o r e , i n e s t a b l i s h i n g the l e a r n how  (Bourne, J r . , E k s t r a n d ,  F o r example, i n forming the concept  r e l e v a n t dimensions are c o l o r and the s t i m u l i may  to.  f o r m a t i o n i n which some dimensions become r e l e v a n t t o  the concept w h i l e o t h e r s are i r r e l e v a n t  grouping  who  'meaning' o f the item mammal a p e r s o n must  t o d i s t i n g u i s h between r e l e v a n t and  t o group o t h e r l e x i c a l items relevant characteristics.  irrelevant characteristics  ( p a r t i c u l a r animals) The  study o f concept  on the b a s i s ©f  and  their  f o r m a t i o n and o f the  s u b j e c t i v e l e x i c o n are s i m i l a r i n t h a t both are concerned  w i t h the  struc-  t u r a l r e l a t i o n s among m a t e r i a l s (whether these m a t e r i a l s are s t a n d a r d i z e d geometric  s t i m u l i or i n t e r n a l l i n g u i s t i c f e a t u r e s ) .  • These  structural  r e l a t i o n s are f l e x i b l e i n t h a t they can vary between i n d i v i d u a l s and w i t h i n the same i n d i v i d u a l a c c o r d i n g to which dimensions are c o n s i d e r e d r e l e v a n t and which are i r r e l e v a n t a t a p a r t i c u l a r time. grouped as p o s i t i v e exemplars and r e l e v a n t dimension exemplar and  l i o n and  were d o m e s t i c i t y .  l i o n , dog,  cow  Dog  and  c a t would be  as n e g a t i v e exemplars i f the  ' However, cow would be a n e g a t i v e  and c a t p o s i t i v e exemplars i f the r e l e v a n t  dimension  8 were changed t o  carnivorousness.  Although t h e r e have been e m p i r i c a l i n v e s t i g a t i o n s o f v a r i o u s f i e l d s and r e l a t i o n s (e.g. A n g l i n , 1970; Fillenbaum  and Rapoport, 1971;  Deese, 1968; 1973;  Deese, 1962, 1965, 1970;  Henley, 1967, 1969;  Osgood, S u c i , and Tannenbaum, 1965;  Henley, Noyes, and  Rips,  Shoben, and Smith,  Romney and D'Andrade, 1964), few have been developmental i n approach.  In s e l e c t i n g a developmental approach f o r the p r e s e n t semantic f i e l d  (animal  study a s p e c i f i c  terms) was chosen which would be e d u c a t i o n a l l y  r e l e v a n t and i n which t h e r e were a l r e a d y Henley  semantic  d a t a a v a i l a b l e from a d u l t  (1969) i n v e s t i g a t e d t h e semantic s t r u c t u r e o f animal terms  mammals) w i t h a d u l t s u b j e c t s u s i n g a v a r i e t y o f d e s c r i p t i v e With the e x c e p t i o n  samples. (common  techniques.  o f the p a i r e d a s s o c i a t e method, she found h i g h  corres-  pondence between d i f f e r e n t s c a l i n g and a s s o c i a t i v e t e c h n i q u e s and t h e emergence o f a c l e a r s t r u c t u r e w i t h r e l e v a n t dimensions o f s i z e and f e r o c i t y . R i p s e t a l . (1973) used m u l t i d i m e n s i o n a l the u n d e r l y i n g obtained predacity  s e a l i n g In an attempt t o determine  semantic r e l a t i o n s among twelve common mammals.  a two d i m e n s i o n a l s o l u t i o n r e p r e s e n t i n g ( w i l d animals and farm animals b e i n g  predacity).  Both these s t u d i e s c o n f i r m  i n t u i t i o n and a s s o c i a t i v e d a t a  They  the dimensions o f s i z e and  found a t the two extremes o f  the n o t i o n , p r e v i o u s l y based on  (Deese, 1965, 1970) t h a t the f i e l d  terms i n E n g l i s h I s h i g h l y s t r u c t u r e d , a t l e a s t i n a d u l t s .  o f animal  There i s  c l e a r l y a need f o r a developmental study o f the semantic s t r u c t u r e o f animal terms i f one i s i n t e r e s t e d n o t simply  i n describing properties of  the a d u l t s u b j e c t i v e l e x i c o n , b u t ' i n d e t e r m i n i n g something about the ontogeny o f semantic s t r u c t u r e s and how new meaning d i s t i n c t i o n s e n t e r the subjective lexicon.  Fillenbaum  and Rapoport  on such matters would be o f e x t r a o r d i n a r y  (1971) p o i n t o u t t h a t  "Data  importance, f o r a t p r e s e n t ,  except perhaps- f o r some r a t h e r complex i n f e r e n c e s based on changes i n the nature o f a s s o c i a t i v e responses  (see e.g. M c N e i l l , 1970) we have  very  9 l i t t l e knowledge about the manner i n which semantic knowledge develops (p. 249) ." According to Katz and Fodor (1963) the semantic component of language consists of a dictionary entry f o r each word together with a branching hierarchy of features.  The topmost node i n the semantic tree i s a  grammatical marker (e.g. noun) followed by abstract semantic markers (e.g. animate, human) which are s u f f i c i e n t i n number to delineate a l l senses of the word.  The terminating node i n the hierarchy i s a semantic distinguisher  which shows the " i d i o s y n c r a t i c " meaning of the word. criticized  This system has been  (see P e r f e t t i , 1972) primarily because i t allows f o r a l i m i t l e s s  number of semantic markers.  "The number of semantic markers depends on  the degree of s e n s i t i v i t y required and since the only r e s t r i c t i o n on the l a t t e r i s imagination, the semantic structure becomes unstructured ( P e r f e t t i , 1972, p. 248)."  A further problem i s the f a i l u r e of the system to take  into account knowledge about words which r e l i e s on nonlinguistie information. Perfetti  (1972) prefers to regard semantic features as abstract  components of the meaning of a l e x i c a l item. l i n g u i s t i c or n o n - l i n g u i s t i c .  These components can be  Features represent the knowledge a person  has stored i n an i n t e r n a l i z e d dictionary.  This approach does not specify  any p a r t i c u l a r arrangement of features i n the i n t e r n a l i z e d dictionary. However, two current models of semantic memory, both incorporate the notion of features, i n the above sense, and suggest possible organization of semantic knowledge.  The network model (Anderson, 1972; C o l l i n s and  Q u i l l i a n , 1969, 1970a, 1970b;  .Rumelhart, Lindsay, and Norman, 1972)  suggests that words e x i s t as independent units i n semantic memory, connected in a network of labeled relationships.  For example, a statement such as  a robin i s a b i r d i s represented as two nodes connected by an i s a r e l a t i o n . Higher order superordinates such as animal may be d i r e c t l y connected to robin by another i s a r e l a t i o n , or may be i n d i r e c t l y connected v i a the  i n t e r m e d i a t e node b i r d .  Thus, i n t h i s model, d i c t i o n a r y e n t r i e s  are h i e r a r c h i c a l l y o r g a n i z e d  (words)  (e.g. r o b i n i s s u b o r d i n a t e t o b i r d which i s  s u b o r d i n a t e t o animal) w h i l e p r o p e r t i e s o r f e a t u r e s which are s t o r e d w i t h the words are unordered R e a c t i o n times o f t h i s model support  (e.g. canary - s i n g s , y e l l o w ;  f o r the t r u t h o r f a l s i t y of statements (e.g. a canary  f o r t h i s approach.  on f r e e r e c a l l c l u s t e r i n g  i s an amimal;  ( B o u s f i e l d , 1953;  C o f e r , 1965;  suggests  t h a t concepts  1962)  f e a t u r e s as w e l l as h i e r -  d i s t a n c e e f f e c t s a r e ' p l a c e d a t the r e t r i e v a l  r e p r e s e n t e d i n semantic model may  Tulving,  F r i e n d l y , 1972).  A second model, the s e t - t h e o r e t i c model 1970)  s e l e c t e d on the b a s i s  I n d i r e c t e m p i r i c a l support comes from s t u d i e s  a r c h i c a l o r g a n i z a t i o n (e.g. A n g l i n , 1970;  Wallace,  wings).  a canary has wings) p r o v i d e  which show o r g a n i z a t i o n around shared semantic  model, semantic  bird -  (Meyer, 1970;  In the network stage. Schaeffer  l i k e r o b i n , b i r d and 'animal  memory as a s e t o f elements.  and  are  Elements i n t h i s  be exemplars, a t t r i b u t e s , subsets o r s u p e r s e t s o f  concepts.  Semantic d i s t a n c e e f f e c t s , a c c o r d i n g t o t h i s model, are p l a c e d a t the comparison stage, f o l l o w i n g r e t r i e v a l o f the concepts. seen as the amount of non-overlap  between the two  D i s t a n c e i s thus  concepts.  The  two  models, network and s e t - t h e o r e t i c d i f f e r , t h e r e f o r e , i n t h e i r u n d e r l y i n g 1  r e p r e s e n t a t i o n of• semantic  knowledge and  i n t h e i r placement o f d i s t a n c e  e f f e c t s i n the p r o c e s s i n g sequence. A c c o r d i n g to the network model . (Rumelhart and Abrahamson, 1973) a group o f items a l l have the- same s u p e r o r d i n a t e  (e.g. mammal) and  when  differ  from each o t h e r w i t h r e s p e c t t o the v a l u e s o f a common s e t o f p r o p e r t i e s (e.g. s i z e and  f e r o c i t y ) , then the items can be e q u i v a l e n t l y c o n c e p t u a l i z e d  as e n t r i e s i n a m u l t i d i m e n s i o n a l space.  Thus, t h i s model assumes t h a t  t h e r e i s an i s a r e l a t i o n s h i p s between each i t e m and  i t s superordinate,  as  w e l l as a p o s i t i v e r e l a t i o n s h i p between each i t e m and a common s e t o f properties.  The  s e t - t h e o r e t i c model would seem t o i n d i c a t e t h a t when  items  share by  the same s u p e r o r d i n a t e ,  the d i s t a n c e between them would be  the degree o f f e a t u r e o v e r l a p .  may  be two  Rips e t a l . (1973) suggest t h a t  Thus, even when i n s t a n c e s share  d e f i n i n g c a t e g o r y membership, i t seems p l a u s i b l e t h a t those  a l l features items which  fewer o f the c h a r a c t e r i s t i c f e a t u r e s would be more d i s t a n t i n semantic  space than o t h e r items s h a r i n g a g r e a t e r number o f c h a r a e t e r i s t i c According  to t h i s v i e w p o i n t ,  features  (e.g. l a n d h a b i t a t i o n etc.)  and  fewer o f the  of a category  T h i s approach f i t s  they  are more exemplary than o t h e r i n s t a n c e s .  learn- c a t e g o r y  She  found t h a t  (e.g. sparrow)  membership o f p e r i p h e r a l i n s t a n c e s  (e.g.  duck).  Development o f Semantic S t r u c t u r e The  development o f a semantic system i n v o l v e s the c o m p i l a t i o n o f a  d i c t i o n a r y and the a d d i t i o n o f semantic f e a t u r e s t o these Both M c N e i l l  (1968, 1970)  gradual process.  and Vygotsky  According  dictionary entries.  (1962) r e g a r d t h i s development as  to'McNeill  reasons f o r t h i s slow development.  The  (1970) t h e r e are a t l e a s t first  reason  o f the i n f o r m a t i o n t h a t i s encoded i n the l e x i c o n .  The  achievement, one  (1965) and P i a g e t  (1967).  complex-  second  reason  intellectual  l e v e l o f which i s a t t a i n e d a t approximately  as demonstrated by White  seven y e a r s  The  third  hypothesis  suggested by M c N e i l l "(1970) t o d e s c r i b e  a c q u i s i t i o n i s known as the h o r i z o n t a l h y p o t h e s i s .  According  semantic to  of  reason  concerns the a b s t r a c t n e s s of d i c t i o n a r y e n t r i e s themselves. One  a  three  concerns the  i s t h a t semantic development depends on a . c e r t a i n l e v e l o f  age,  the  (1973) i n which she showed t h a t some i n s t a n c e s  c h i l d r e n l e a r n c a t e g o r y membership o f c e n t r a l i n s t a n c e s before  characteristic  s h o u l d t h e r e f o r e be more d i s t a n t  i n semantic space from o t h e r mammalian 'instances. s t u d i e s conducted by Rosch  features.  even though a mammal such as s e a l shares a l l  the d e f i n i n g mammalian f e a t u r e s , i t shares  ity  cate-  c h a r a e t e r i s t i c f e a t u r e s which c h a r a c t e r i z e most'  i n s t a n c e s o f the c a t e g o r y .  B.  there  k i n d s o f f e a t u r e s , d e f i n i n g f e a t u r e s which s t r i c t l y d e f i n e  gory membership, and  share  determined  this  12 hypothesis,  when a word e n t e r s  a s s o c i a t e d w i t h the word e n t e r stages,  other  the i n t e r n a l d i c t i o n a r y , some o f the f e a t u r e s the d i c t i o n a r y a t t h e same time.  semantic f e a t u r e s are added.  At l a t e r  The a d d i t i o n o f each semantic  f e a t u r e has widespread importance f o r the e n t i r e d i c t i o n a r y , s i n c e each f e a t u r e w i l l appear i n more than one e n t r y entries. separated  and may appear i n a g r e a t many  When a semantic f e a t u r e i s added an e n t i r e c l a s s o f words i s from a n o t h e r , these two separated  t o t h i s semantic f e a t u r e .  classes d i f f e r i n g with  In M c N e i l l ' s view, the most a b s t r a c t  respect  features  are added t o the d i c t i o n a r y e n t r i e s f i r s t and the p r o c e s s o f f e a t u r e i n v o l v e s f i n e r and f i n e r d i s c r i m i n a t i o n s . the c o m p i l a t i o n  addition  F o r example, h i s d e s c r i p t i o n o f  f o r the d i c t i o n a r y e n t r y f l o w e r  indicates that physical  o b j e c t i s the f i r s t  semantic f e a t u r e added ( a f t e r t h e s y n t a c t i c marker noun),  f o l l o w e d by l i v i n g ,  then s m a l l , then p l a n t .  semantic f e a t u r e s  The s e q u e n t i a l a d d i t i o n o f  i n t h i s manner "means t h a t words can be p a r t o f a c h i l d ' s  v o c a b u l a r y b u t have d i f f e r e n t semantic p r o p e r t i e s adult's vocabulary  ( M c N e i l l , 1970, p. 4 ) . "  from the same words i n an  I f t h i s i s the c a s e , i t would  appear t h a t the s t r u c t u r e o f a s p e c i f i c semantic f i e l d would d i f f e r i n g t o developmental l e v e l on the b a s i s o f t h e number and k i n d s p r o p e r t i e s which had been added t o the d i c t i o n a r y e n t r i e s .  accord-  o f semantic  Within the  f i e l d o f animal terms, i t i s p l a u s i b l e t h a t the d i c t i o n a r y c o m p i l a t i o n proceed i n a s i m i l a r f a s h i o n t o t h a t g i v e n  f o r the word f l o w e r .  F o r example,  a t time one, dog might have the semantic f e a t u r e p h y s i c a l o b j e c t . times f e a t u r e s  such as l i v i n g ,  might  s m a l l , animal, e t c . would be added.  At l a t e r I f this  view i s c o r r e c t , an attempt t o determine the s t r u c t u r e o f animal terms a t the  stage when the o n l y  f e a t u r e added t o each d i c t i o n a r y e n t r y was p h y s i c a l  o b j e c t would r e v e a l no s t r u c t u r e o r e l s e e q u i v a l e n c e  between a l l terms,  s i n c e a l l animals used h e r e i n a r e p h y s i c a l o b j e c t s .  With t h e f u r t h e r  a d d i t i o n o f semantic f e a t u r e s , d i f f e r e n t i a t i o n s h o u l d  o c c u r between  animals w i t h a p r o g r e s s i o n  specific  from fewer b u t l a r g e r g r o u p i n g s and/or fewer  13 meaningful  dimensions t o s m a l l e r , more f i n e l y d i s c r i m i n a t e d and more  numerous groups and/or more numerous meaningful Eve C l a r k (1973) d e s c r i b e s semantic  f e a t u r e a c q u i s i t i o n i n ways  s i m i l a r to McNeill's h o r i z o n t a l hypothesis. r e l a t e s p r i m a r i l y t o semantic of  age)  dimensions.  However, her  hypothesis  a c q u i s i t i o n i n v e r y young c h i l d r e n  ( 2 i years  and s p e c i f i e s more p r e c i s e l y the type o f f e a t u r e i n v o l v e d i n  semantic  development.  L i k e M c N e i l l , she c o n s i d e r s t h a t f e a t u r e s are  added s e q u e n t i a l l y t o l e x i c a l items i n the i n t e r n a l d i c t i o n a r y u n t i l a d u l t model i s a t t a i n e d . d e r i v e d from p e r c e p t s .  The  f e a t u r e s t o e n t e r the l e x i c o n  of features.  and which are redundent w i t h i n a s e t o r  The more g e n e r a l f e a t u r e s are a c q u i r e d  and development i s seen as a p r o c e s s . o f c a t e g o r i c a l narrowing. when the word dog  i s f i r s t a c q u i r e d , i t i s overextended  with perceptual s i m i l a r i t i e s i n t r o d u c t i o n o f new  are  A t a l a t e r s t a g e , the c h i l d l e a r n s which f e a t u r e s  are l i n g u i s t i c a l l y important combination  first  the  words  (e.g. c a t , cow,  (e.g. c a t , cow,  F o r example,  to other  horse, e t c . ) .  first  animals  With the  horse) these o v e r e x t e n s i o n s  are  narrowed down. McNeill  (1970). had a second h y p o t h e s i s , the v e r t i c a l  hypothesis,  which i s not m u t u a l l y e x c l u s i v e o f the h o r i z o n t a l h y p o t h e s i s . to  t h i s h y p o t h e s i s most o r a l l o f the semantic  According  features associated with a  l e x i c a l i t e m e n t e r the d i c t i o n a r y a t the same time as the word i t s e l f , these d i c t i o n a r y e n t r i e s are s e p a r a t e d  from each o t h e r so t h a t  but  semantic  f e a t u r e s are p r e s e n t i n s e v e r a l u n r e l a t e d p l a c e s i n the d i c t i o n a r y .  Thus,  the l e x i c a l e n t r i e s f o r younger and o l d e r c h i l d r e n would show the same semantic  f e a t u r e s and  semantic  development would i n v o l v e the  v e r t i c a l c o l l e c t i o n o f these s e p a r a t e components i n t o u n i f i e d features.  Clark  gradual semantic  (1973) p o i n t s out t h a t t h i s h y p o t h e s i s does not  s p e c i f y "what form the o r g a n i z a t i o n o f such a l e x i c o n would take m e n t a l l y , beyond one's b e i n g a b l e t o l i s t  clearly develop-  a g r a d u a l i n c r e a s e i n the number  14 o f v o c a b u l a r y items used by the c h i l d  (p. 6 8 ) . "  A somewhat o p p o s i n g v i e w p o i n t has been proposed by A n g l i n Vygotsky  (1962).  From t h i s v i e w p o i n t semantic development i n v o l v e s t h e  growth i n t h e a b i l i t y t o g e n e r a l i z e by a b s t r a c t i n g s i m i l a r i t i e s i n c r e a s i n g l y broad c l a s s e s . see  t h a t roses  (1970) and  According  and t u l i p s a r e f l o w e r s ,  to Anglin  among  (1970) "At f i r s t he might  t h a t oaks and elms a r e t r e e s ,  that  c o l l i e s and poodles a r e dogs and t h a t diamonds and r u b i e s a r e s t o n e s .  Some-  what l a t e r he might r e a l i z e t h a t the o b j e c t s he has c l a s s e d as f l o w e r s a r e s i m i l a r t o the o b j e c t s he has c l a s s e d as t r e e s i n t h a t b o t h a r e p l a n t s . Still  l a t e r he might form even more g e n e r a l  objects  concepts o f l i v i n g  and f i n a l l y , , e n t i t i e s which would apply  o t h e r words, a c c o r d i n g  (p. 1 4 ) . "  This d e s c r i p t i o n d i f f e r s  i n t h a t the c h i l d b e g i n s by t h e a d d i t i o n o f the more  from  concrete  f e a t u r e s and adds h i e r a r c h i c a l l y more a b s t r a c t f e a t u r e s over time.  A  number o f e m p i r i c a l s t u d i e s l e n d s u p p o r t t o t h i s , i d e a by d e m o n s t r a t i n g younger c h i l d r e n have more i d i o s y n c r a t i c and c o n c r e t e ( A n g l i n , 1970;  In  t o A n g l i n , the c h i l d i s c o n s t r u c t i n g a h i e r a r c h i c a l  system w i t h i n c r e a s i n g l y a b s t r a c t nodes. McNeill's  t o most nouns  things,  Bower e t a l . , 1969;  Miller,  1967;  lexical  Schaeffer  that  organization e t a l . , 1971).  In terms o f the semantics o f animal terms, t h i s a n a l y s i s would suggest t h a t c h i l d r e n f i r s t see s i m i l a r i t i e s among s m a l l groups o f animals s i m i l a r i t i e s d e r i v e d on the b a s i s o f more c o n c r e t e  (these  features).  In a d d i t i o n ,  the b a s i s f o r c l a s s i f y i n g a t young age l e v e l s may be more i d i o s y n c r a t i c as a r e s u l t o f d i f f e r e n t i a l environmental experiences.  With development,  l a r g e r and more a b s t r a c t groups and/or fewer m e a n i n g f u l dimensions would be formed.  theory  . ' F i n a l l y , i t i s worthwhile t o c o n s i d e r ,  i n t h i s context,  ( I n h e l d e r and P i a g e t ,  t h e development o f c l a s s i f i c -  atory s k i l l s  i n children.  an i n v a r i a n t sequence.  1964) c o n c e r n i n g According  t o the t h e o r y  In the f i r s t stage  Piaget's  these s k i l l s develop i n  (approximately 2 - 5  years o f  age)  children c l a s s i f y objects  i n one  o f two  ways, e i t h e r by making  p a r t i a l alignments or by making complex o b j e c t s . c h i l d uses o n l y some o f the o b j e c t s together on  In p a r t i a l alignment,  similarities.  Sometimes grouping o c c u r s When the c h i l d  constructs  complex o b j e c t s , he uses the d i s p l a y items t o make p i c t u r e s o r Even though the c h i l d may s i m i l a r i t i e s do not the second stage  perceive  objects  (approximately 5 - 7  i n the d i s p l a y .  forms.  s i m i l a r i t i e s between o b j e c t s ,  f u l l y determine what o b j e c t s  classes with a l l appropriate  the  i n the o r i g i n a l d i s p l a y and p u t s them  i n s e v e r a l ways w i t h no o v e r a l l p l a n .  the b a s i s o f no d e t e c t a b l e  small  objects  go  y e a r s of age),  into a collection. the c h i l d can  i n a c l a s s and he  Although he  can  construct  these  can use  In  form  a l l the  a h i e r a r c h i c a l arrange-  ment o f items, he does not y e t f u l l y understand the c l a s s i n c l u s i o n r e l a t i o n s h i p s contained o f age stand  approximately),  i n the h i e r a r c h y . he  l e a r n s how  In the t h i r d stage  to c o n s t r u c t  a hierarchy  (7 - 11 and  to under-  c l a s s i n c l u s i o n r e l a t i o n s h i p s , but h i s c l a s s i f i c a t o r y s k i l l s  p r i m a r i l y l i m i t e d to i n t e r a c t i o n s with concrete conceptualizing Finally,  objects  are  and he has  trouble  c l a s s i n c l u s i o n r e l a t i o n s h i p s i n the absence o f the  i n the f o u r t h stage  (11 y e a r s o f age  a t o r y s k i l l s are f l e x i b l e and  not bound by  approximately),  the c o n c r e t e  his  years  objects.  classific-  presence o f  the  objects. Although P i a g e t ' s above, i t has  approach i s q u i t e d i f f e r e n t from those  i m p l i c a t i o n s f o r a developmental d e s c r i p t i o n o f  s t r u c t u r e w i t h i n a s p e c i f i c domain.  discussed  semantic  I t suggests: t h a t p e r c e i v e d  similarit-  i e s between animal terms would be haphazard, changeable and i d i o s y n c r a t i c i n very young c h i l d r e n . reorganized The  With i n c r e a s i n g age,  i n t o a more s y s t e m a t i c  and  sophisticated classificatory  t h e o r i e s o u t l i n e d above c o n c e r n i n g  necessarily contradictory. ment i s r e l a t i v e l y slow and  the semantic domain would  be  system.  semantic development are  not  A l l approaches i n d i c a t e t h a t semantic d e v e l o p t h a t c h i l d r e n have d i f f e r e n t s u b j e c t i v e  semantic  16 s t r u c t u r e s a t d i f f e r e n t age Clark)  levels.  are s p e c i f i c to a p a r t i c u l a r age  are more g e n e r a l i n t h a t they apply s i g n i f i c a n t development o c c u r s . order  Some t h e o r e t i c a l approaches l e v e l , whereas o t h e r s  t o the e n t i r e age  (e.g.  (e.g.  Piaget)  spectrum d u r i n g which  A n g l i n and M c N e i l l d i s a g r e e  as t o  i n which semantic f e a t u r e s e n t e r the i n t e r n a l d i c t i o n a r y , b u t  the agree  on  the h i e r a r c h i c a l n a t u r e o f the semantic system. C.  Rationale The  and  Outcomes  i n t e n t o f the p r e s e n t  study was  to d e s c r i b e the semantic s t r u c -  t u r e o f a f a m i l i a r s e t o f animal terms a t d i f f e r e n t age l e v e l s u s i n g a v a r i e t y of t a s k s and  d e s c r i p t i v e techniques  v a r i o u s measures o f p s y c h o l o g i c a l d i s t a n c e . concerning  and  educational designed to  yield  Although t h e o r e t i c a l p o s i t i o n s  both the o r g a n i z a t i o n and development o f semantic knowledge have  been o u t l i n e d above, i t s h o u l d be  emphasized t h a t the p r e s e n t  study  was  t  d e s i g n e d p r i m a r i l y to y i e l d d e s c r i p t i v e i n f o r m a t i o n  r a t h e r than to t e s t  any  t h e o r e t i c a l p o i n t o f view. In the p r e c e d i n g i t was  s e c t i o n on the development o f semantic s t r u c t u r e s ,  i m p l i e d t h a t c h i l d r e n e x h i b i t d i f f e r e n t s u b j e c t i v e semantic s t r u c -  t u r e s a t d i f f e r e n t ages.  Both M c N e i l l and A n g l i n imply  number o f c l u s t e r s and meaningful dimensions and used as a f u n c t i o n o f age. constant  i n the k i n d s  of  Another a l t e r n a t i v e i s t h a t t h e r e  number o f c l u s t e r s and  dimensions a c r o s s  l i m i t a t i o n on the c a p a c i t y t o d i m e n s i o n a l i z e  and  age  features  is a  roughly  levels reflecting  group o b j e c t s .  the b a s i s f o r c a t e g o r i z i n g o b j e c t s might change w i t h i s more i n l i n e w i t h P i a g e t .  differences i n  age.  a  However,  T h i s approach  Each change i n s t r u c t u r e might i n v o l v e a  t o t a l r e o r g a n i z a t i o n o f the semantic f i e l d to a more s o p h i s t i c a t e d c l a s s i f i c a t o r y system.  I t i s p o s s i b l e t h a t the more p r i m i t i v e methods f o r  c l a s s i f i c a t i o n are s t i l l  a v a i l a b l e to the i n d i v i d u a l , b u t not  dominant.  T h i s approach would mean t h a t age produces g r e a t e r f l e x i b i l i t y i n a person's a b i l i t y t o c l a s s i f y the same s e t o f l e x i c a l items.  Changes i n s t r u c t u r e  17 m i g h t be  due- t o s p e c i f i c e v e n t s .  experiences, i n c l u d i n g formal the most complex s u b j e c t i v e  Zoologists,  since  t h e y have had  extensive  training,,, i n a n i m a l taxonomy, s h o u l d  structure  f o r the  semantic f i e l d  of  exhibit  animal  terms. It ively  i s also possible  s t r u c t u r e d by  t h a t the  field  c h i l d r e n a t an  experiences to which the  o f a n i m a l t e r m s becomes  e a r l y age  average c h i l d  e s s e n t i a l l y u n c h a n g e d e x c e p t f o r an  and  further school  i s exposed leave  increase  i n the  w h i c h become a s s i m i l a t e d t o t h i s s t r u c t u r e w i t h ary  entries.  thesis. due  This  be  because there  m o s t c h i l d r e n a t an  e a r l y age  e n t l y p o t e n t t o change the established. of  s i z e and  ible  adult  s t o r i e s , etc.) differences If  the and,  number o f  the  d e p e n d on  number o r s t r o n g  In connection w i t h  a t y o u n g e r age same age  c a s e t h a t c h i l d r e n and same way,  of occur  suffici-  dimensions  I t i s not  implaus-  dimensions not  to  appear  to  structure  nature of  to  one's  animals,  animal  l e v e l s , mere i n d i v i d u a l  are  likely  adults  t o be  detected.  s t r u c t u r e the  set  t h i s might i n d i c a t e t h a t the school  years are  not  enough t o p r o d u c e a l t e r a t i o n s i n t h i s dominant this possibility,  I  the  hypo-  already  take time f o r t h i s  l e a r n i n g experiences encountered through the in  same two  types  not  found c l e a r  l e a r n i n g encounters with  among c h i l d r e n o f t h e  a n i m a l terms i n r o u g h l y the  subjects,  diction-  of animal terms  t h e s e d i m e n s i o n s do  H o w e v e r , i t may  therefore,  i t i s the  use  since  ( s i n c e t i m e t o s t a b i l i z e may  e x p e r i e n c e s and  field  items  structure'  or because the  s t r u c t u r e of animal terms.  t h i s semantic f i e l d ,  p a r t i c u l a r l y complex.  'natural  further- experiences are  t h a t c h i l d r e n , f r o m an e a r l y age,  stabilize  lexical  vertical  dominant s t r u c t u r a l r e l a t i o n s h i p s  (1969), using  f e r o c i t y i n the  characterize be  Henley  and  i n the  other  a d d i t i o n o f new  i s one  b i o l o g i c a l l y determined patterns,  e x p e r i e n c e s needed t o e s t a b l i s h s t r u c t u r e for  number o f  the  and  structure  i n t e r p r e t a t i o n c o n f o r m s more t o M c N e i l l ' s  I f t h i s o c c u r s i t may  to inherent  the  subject-  i t w o u l d be  of  of types  of  sufficient structure.  i n t e r e s t t o examine  the  18 subjective  structure  taxonomy.  f o r a n i m a l terms' i n e x p e r t s i n t h e  I t seems c o u n t e r - i n t u i t i v e t h a t  t r a i n i n g i n animal c l a s s i f i c a t o r y of  s i z e and  ferocity.  experiences involved  zoologists with  I t i s t o be  obtained  by  Empirical  groups i n terms of t h e i r a s s o c i a t i v e s t r u c t u r e s The  The  previously  organized the  t h a n f o r t h o s e who  specific structures  basic will  •  taken physics,  correlated with  and  f o r t h o s e who  d e t e r m i n e d by  o r t h a t the  sufficiently  s e n s i t i v e and  r e s u l t s obtained A  field  McNeill's  viewpoint,  intended  More  -who  t a k e n p h y s i o s were  relationships defined  s p e c i f i c and are  importantly,  therefore,  that  extensive no  training in  differences  c h i l d r e n , t h i s would  not' r e f l e c t t h e  refined to detect  artifacts t o be  of the  in strucindicate  typically  elicit  t r a i n e d competencies of  important differences;  p a r t i c u l a r ,stimulus  considered  because semantic features  animal items e n t e r e d i n the  set  i s t h a t e a r l y i n the  o f animal terms i s u n s t r u c t u r e d .  in  zoologists  methods u s e d t o a n a l y z e t h e s e r e s p o n s e s a r e  final possibility  years the  the  are  basis  than f o r "those  used to assess semantic s t r u c t u r e  more p r i m i t i v e r e s p o n s e s w h i c h do  the  the  I t seems, l i k e l y ,  d e t e r m i n e d by  individual;  the  t o c r i t i c a l words were  were t a k i n g o r had  However, i f i n f a c t , t h e r e  types of tasks  on  key  •  t u r e b e t w e e n z o o l o g i s t s , o t h e r a d u l t s , and t h a t the  high-school'  taken i t , or  intended'to take physics.  apparently  exhibit structures  this  whose a s s o c i a t i o n s w e r e , i n t u r n , more h i g h l y  equations i n mechanics.  animal, taxonomy.  support for  f o r those- c u r r e n t l y t a k i n g p h y s i c s  i had  had  results indicated that associations  more h i g h l y o r g a n i z e d  the  f o r words d e f i n i n g  physics,  basis  learning  groups were e s t a b l i s h e d  of whether t h e y were t a k i n g h i g h - s c h o o l to take i t .  the  a z o o l o g i s t would override  (1964) i n a c o m p a r i s o n o f t h r e e  concepts i n c l a s s i c a l mechanics.  extensive  on  supposed t h a t the'types of  i n t r a i n i n g t o be  Johnson  animal  their  systems would d i m e n s i o n a l i z e  dominant method o f s t r u c t u r i n g a n i m a l t e r m s . i d e a was  area of  This have not  d i c t i o n a r y at a l e v e l  may  not or  school from  y e t been added  i n the  that  used.  occur,  the  hierarchy  to  19 n e c e s s a r y t o d i f f e r e n t i a t e between s p e c i f i c animal terms.-  I t may o c c u r ,  a l t e r n a t i v e l y , because the semantic f e a t u r e s which have been added t o t h e d i c t i o n a r y items a r e so c o n c r e t e t h a t each animal term forms a c l a s s o f i t s own ( i n l i n e w i t h A n g l i n ' s  t h e o r e t i c a l approach).  F i n a l l y , t h i s may be the  case because the dominant s t r u c t u r e • f o r animal terms•does n o t become e s t a b l i s h e d u n t i l some time d u r i n g possibilities  the s c h o o l y e a r s .  Each o f these  can o n l y be examined by an a n a l y s i s o f the s u b j e c t i v e  structure  i n the f i e l d when i t does m a n i f e s t i t s e l f , and the p a r t i c u l a r t r a n s i t i o n s which may o c c u r . I t s h o u l d be noted t h a t l a c k o f s t r u c t u r e as i t has been above r e f e r s t o l a c k o f normative s t r u c t u r e terms. the  defined  f o r the semantic f i e l d ' o f animal  I t i s a l s o p o s s i b l e t h a t c h i l d r e n a t younger age l e v e l s s t r u c t u r e  semantic f i e l d  i n i d i o s y n c r a t i c ways.  T h i s means t h a t animal terms  would be s t r u c t u r e d  f o r each i n d i v i d u a l c h i l d , b u t t h e r e would n o t be a  normative s t r u c t u r e  ( t h a t i s , , a way o f s t r u c t u r i n g the f i e l d which i s common  t o c h i l d r e n i n t h a t p a r t i c u l a r age g r o u p ) . Represented below i s a l i s t o f p o s s i b l e outcomes r e g a r d i n g  the organ-  i z a t i o n o f the semantic f i e l d o f animal terms a t d i f f e r e n t age and , educational  levels.  These outcomes are i n t e n d e d t o encompass the range o f  p o s s i b i l i t i e s and a r e n o t c o n s i d e r e d 1.  2.  Semantic s t r u c t u r e s may vary a c r o s s  exclusive.  some age and e d u c a t i o n a l  levels i n  the  f o l l o w i n g ways:  a.  i n t h e i n t e r p r e t a b i l i t y o f the dimensions and c l u s t e r s o b t a i n e d  b.  i n the number o f c l u s t e r s and meaningful dimensions o b t a i n e d , and  c.  i n the types o f f e a t u r e s  used.  Semantic s t r u c t u r e s may, on the o t h e r hand, be s i m i l a r a c r o s s and  3.  t o be m u t u a l l y  educational  l e v e l s i n the same t h r e e ways l i s t e d  above.  The semantic f i e l d o f animal" terms may be u n s t r u c t u r e d and  educational  some age  a t younger age  l e v e l s ( i n the sense t h a t no normative, i n t e r p r e t a b l e  semantic'structure w i l l be found)";;-''." There w i l l be greater homogeneity of dimensions and groupings among subjects with increasing age and educational  level.  The s i z e of the natural set of animal, items stored i n an i n t e r n a l i z e d dictionary w i l l increase' with increasing, age. and education.  21  CHAPTER I I I METHODS OF DATA ANALYSIS AND A.  S e l e c t i o n o f Methods o f A n a l y s i s The p r e s e n t approach was  concerned  w i t h d i s c o v e r i n g whether common  u n d e r l y i n g s t r u c t u r e s e x i s t a t p a r t i c u l a r age be  TASKS  l e v e l s , and i f so, what c o u l d  c o n s i d e r e d t o be the most a p p r o p r i a t e r e p r e s e n t a t i o n o f t h e s e s t r u c t u r e s .  The b a s i c data c o n s i s t e d o f two-way a r r a y s o f p r o x i m i t y measures d e r i v e d from f o u r d i f f e r e n t t a s k s .  A v a r i e t y of t e c h n i q u e s were used t o  the data from the d i f f e r e n t t a s k s and  analyze  f r e q u e n t l y d i f f e r e n t techniques were  a p p l i e d t o the same d a t a . The  use o f s e v e r a l t a s k s and s e v e r a l t e c h n i q u e s  f o r a n a l y s i s was  c o n s i d e r e d a d v i s a b l e s i n c e a p a r t i c u l a r s t r u c t u r e o b t a i n e d may a r t i f a c t o f the p a r t i c u l a r t a s k o r techniques dimensional niques  employed.  w e l l be  an  A s p a t i a l or  r e p r e s e n t a t i o n w i l l emerge i f m u l t i d i m e n s i o n a l s c a l i n g t e c h -  are a p p l i e d and a taxonomic s t r u c t u r e w i l l emerge from the use  h i e r a r c h i c a l c l u s t e r i n g procedures.  The  of  imposition of s p e c i f i c structures  w i l l t o a g r e a t e r o r l e s s e r e x t e n t d i s t o r t the a c t u a l u n d e r l y i n g - r e p r e s e n tation.  I t was  t h e r e f o r e n e c e s s a ry  t o have some i n d i c a t i o n o f the amount  o f d i s t o r t i o n imposed on the d a t a by the use o f t e s t s b u i l t i n t o procedures  (e.g. the s t r e s s index In m u l t i d i m e n s i o n a l s c a l i n g  and by the c o n c u r r e n t use o f s e v e r a l d i f f e r e n t t e c h n i q u e s . advantage o f the use o f a number o f t e c h n i q u e s  the  procedures) "The  principal  f o r data a n a l y s i s ,  involving  b a s i c a l l y d i f f e r e n t s t r u c t u r a l assumptions, i s t h a t i n s t e a d o f b e i n g f a c e d w i t h some a b s o l u t e judgement o f i n t e r p r e t a b i l i t y , as would be the case i f o n l y one  technique had been used, one may  r a t h e r , make a  comparative  judgement under more i n f o r m a t i v e 1971,  p.  two  clustering analysis.  MDS  method t r a n s f o r m s a p r o x i m i t y dimensionality  the t o - b e - r e v e a l e d provide data  and  major t e c h n i q u e s employed were m u l t i d i m e n s i o n a l  Rapoport,  m a t r i x i n t o a s p a t i a l model o f  s t r u c t u r e t h a t seem m i n i m a l l y  Fillenbaum  represent  and,  and  Rapoport  a value  form o f hopefully,  r e c o n s t r u c t i o n o f the  original  A l t h o u g h the s p a t i a l model has been  that a set of underlying on each dimension and  typically  as a p o i n t i n space, MDS  (1971) c l a i m t h a t the E u c l i d e a n  tech-  However,  model i s q u i t e  dimensions e x i s t such t h a t each  t h a t i t i s u s e f u l and  reasonable to  r e l a t i o n s among items i n such terms.  When assumptions' c o n c e r n i n g be-revealed Johnson's  vulnerable  the u n d e r l y i n g  s t r u c t u r e seem q u e s t i o n a b l e ,  dimensionality  o f the  to-  d i m e n s i o n - f r e e methods such as  (1967) h i e r a r c h i c a l c l u s t e r i n g method appear u s e f u l f o r d i s c o v e r i n g  s t r u c t u r e s i n the d a t a .  The  aim  o f t h i s t e c h n i q u e i s t o express  the  r e l a t i o n s h i p s among a s e t o f items i n terms o f h i e r a r c h i c a l l y arranged o f o p t i m a l l y homogeneous subgroups.  defined  components o f the h i e r a r c h y  Hierarchical clustering  ( M i l l e r , 1967).  f o r o n l y some o f  methods are u s e f u l p a r t l y i n t h a t they c a n , p r o v i d e a check on the  taxonomic or h i e r a r c h i c a l as opposed t o  c l a s s i f i c a t o r y or l i n e a r .  . As M i l l e r  the  adequacy  o f d i m e n s i o n a l r e p r e s e n t a t i o n , b u t p r i m a r i l y because the u n d e r l y i n g i n f a c t be  sets  T h i s method i s based on the more  l i m i t e d assumption t h a t each item has" a v a l u e  t u r e may  The  sufficiently  e a s i l y extended t o i n c l u d e n o n - E u c l i d e a n models.  robust provided item has  p. 6 ) . "  i n t h a t each item i s r e p r e s e n t e d  niques can be  discovering  "on" the b a s i s o f assumptions about the g e n e r a l  (Shepard, 1969,  (MDS)  i f that structure i s s p a t i a l .  f o r the p o s s i b i l i t y o f an a c c e p t a b l e  Euclidean  scaling  methods are u s e f u l f o r purposes o f  the n a t u r e o f the s t r u c t u r e which o b t a i n s  low  (Fillenbaum  240).  The and  circumstances."  struc-  cross-  (1969) p o i n t s out " h i e r a r c h i c a l  (taxonomic) o r g a n i z a t i o n based on r e l a t i o n s o f c l a s s i n c l u s i o n i s a  pervasive the  feature of-the  underlying  properties.  (subjective)  Since  in'more  detail.  i n i t i a l d a t a f o r MDS p r o c e d u r e s a r e e n t r i e s i n a p r o x i m i t y Through t h e use o f i t e r a t i v e  a t t e m p t s a r e made t o f i n d some a r r a n g e m e n t o f p o i n t s dimensionality  such t h a t t h e rank order  maximally i n v e r s e l y c o r r e l a t e d with To t h e e x t e n t the data,  ratio  that this  procedures,  i n a space o f low  of the i n t e r p o i n t distances i s  t h e rank order  i s achieved,  of the s i m i l a r i t y  the r e s u l t i n g representation  and t h e r e s u l t i n g i n t e r p o i n t d i s t a n c e s  the dimensionality  measures.  perfectly  a r e measurable on a  are l i k e l y  t o occur.  o f t h e space i s reduced, d e p a r t u r e s from  Kruskal  a p p r o a c h e s a monotone f u n c t i o n .  This  and p r o x i m i t y  measures  i s c a l l e d t h e i n d e x o f s t r e s s and i s  d e p e n d e n t o n t h e number o f i t e r a t i o n s e m p l o y e d , t h e number o f i t e m s , tical  variability  i n the data'and the d i m e n s i o n a l i t y  order  to discover  the appropriate  number o f d i m e n s i o n s s u c h t h a t a n y i n c r e a s e i n t e r p r e t a b i l i t y of the dimensional in.the data,  acceptably  i n dimensions w i l l  representation.  t h e more d i m e n s i o n s o n e may  Individual differences i n the proximity a n t when MDS p r o c e d u r e s a r e b e i n g systematic  o f the space.  number o f d i m e n s i o n s , K r u s k a l  s e l e c t i n g t h a t number w h i c h makes t h e s t r e s s v a l u e  error inherent  perfect  (1964) d e v e l o p e d - a n i n d e x t o m e a s u r e how  c l o s e l y t h e r e l a t i o n s h i p between i n t e r p o i n t d i s t a n c e s  the  matrix  scale. As  fit  dimensional  Scaling  e s t a b l i s h e d on an o r d i n a l s c a l e .  fits  Alternatively,  b o t h o f t h e above t e c h n i q u e s a r e u s e d e x t e n s i v e l y i n  Multidimensional The  (p. 176)."  s t r u c t u r e may c o n s i s t o f b o t h t a x o n o m i c a n d  t h i s study, they are considered 1.  lexicon  employed.  statisIn  suggests  small,  or'that  n o t improve  Finally,  the less  extract.  data are p a r t i c u l a r l y  import-  When t h e s e d i f f e r e n c e s a r e  a n d c o n s i s t e n t t h e y a r e o f i n t e r e s t i n t h e i r own r i g h t .  Isaac  (1968) s u g g e s t s t h a t i n d i v i d u a l d i f f e r e n c e s c a n a r i s e e i t h e r a s a r e s u l t o f p a r t i c u l a r response biases  and/or as a r e s u l t o f d i f f e r e n c e s i n p e r c e i v e d  24 s t r u c t u r e o f the s t i m u l u s ' s e t . incorporate  There have been a number o f attempts  i n d i v i d u a l d i f f e r e n c e s i n t o MDS  and M e s s i c k ' s  and  Rapoport, 1971).  has been proposed by C a r r o l l and ual  matrices  of-proximity  solutions.  The  d e p i c t s how  p r o c e d u r e s , f o r example, Tucker  (1963) " p o i n t s o f view" a n a l y s i s .  p r o c e d u r e s , see F i l l e n b a u m  the  first  Chang ('1970) .  (For a review o f these The  b e s t s o l u t i o n so f a r  Given an i n p u t o f  individ-  d a t a , the program produces an o u t p u t o f two s c a l i n g '  s o l u t i o n i s c a l l e d ' t h e "group s t i m u l u s  "average" s u b j e c t r e a c t s t o the s t i m u l i .  space" a n d ' i t  The  second s o l u -  t i o n i s a " s u b j e c t space"'which d e p i c t s a c o n f i g u r a t i o n o f p o i n t s the e x t e n t  to  t o which each s u b j e c t r e s p e c t e d  the dimensions o f the  reflecting first  space.  C a r r o l l and Chang's model, t h e r e f o r e , accounts f o r i n d i v i d u a l d i f f e r e n c e s i n similarity  judgements in' terms o f . d i f f e r e n t i a l " s a l i e n c i e s " o f a common s e t  o f u n d e r l y i n g dimensions.  However, the method i s l i m i t e d t o the case i n  which i n d i v i d u a l s u b j e c t spaces a r e ' r e l a t e d by common space.  In cases where the p e r c e p t u a l  l i n e a r transformations spaces r e p r e s e n t  of a  nonlinear  d i s t o r t i o n s o f a common space, the method'may r e q u i r e too many dimensions. The  method a l s o r e q u i r e s the r e l a t i v e l y s t r o n g assumption o f a  r e l a t i o n between p r o x i m i t y  d a t a and  distances.  C a r r o l l and  linear  Chang have  produced a v e r s i o n o f the method t h a t i s a t l e a s t " q u a s i nonmetric", but e x p l o r a t i o n s w i t h both r e a l and., a r t i f i c i a l " d a t a have shown t h a t t h i s  quasi  nonmetric v e r s i o n y i e l d s s e a l i n g s o l u t i o n s t h a t are v i r t u a l l y i n d i s t i n g u i s h able from those o b t a i n e d by 2.  the-metric  version.  Hierarchical Clustering A h i e r a r c h i c a l c l u s t e r i n g scheme c o n s i s t s o f a t r e e s t r u c t u r e w i t h  numerical  values  at' the branches r e p r e s e n t i n g the s i m i l a r i t i e s among  A c l u s t e r i n g o f a s e t o f i t e m s " i s simply e x c l u s i v e and  exhaustive  groups, or c l u s t e r s . .  a sequence o f c l u s t e r s such t h a t the as t h e r e are items and  a p a r t i t i o n o f the s e t i n t o  first  each s u c c e s s i v e  one  The  tree structure  items. mutually  describes  i s composed o f as many c l u s t e r s i n the s e r i e s i s formed by  25 merging c l u s t e r s from the immediately  preceding c l u s t e r i n g .  Once two  items  have been p l a c e d t o g e t h e r i n a c l u s t e r they s t a y t o g e t h e r i n a l l subsequent clusterings.  A c l u s t e r i n g scheme d e s c r i b e s a h i e r a r c h i c a l s t r u c t u r e b u t  u n l i k e a h i e r a r c h i c a l c o n c e p t u a l scheme, no i n t e r p r e t a t i o n i s g i v e n and no c o n c e p t u a l f e a t u r e s are a s s i g n e d t o the v a r i o u s branch p o i n t s i n the hierarchy. The method b e g i n s w i t h the f i n e s t p a r t i t i o n all  c l u s t e r s c o n s i s t s o f s i n g l e items.  ("weak" c l u s t e r ) i n which  By p l a c i n g t o g e t h e r those  items  which a r e . c o n s i s t e n t l y s o r t e d ( r e c a l l e d , . e t c . ) most c o n t i g u o u s l y , the f i r s t n o n t r i v i a l c l u s t e r i n g i s achieved.  Suppose, f o r example, t h a t items i and  j a r e two elements merged a t t h i s minimum d i s t a n c e . inequality  (UMI) h o l d s  I f the u l t r a m e t r i c  ( t h a t i s , f o r any t h r e e items i n such  a system, the  d i s t a n c e s between them must a l l be e q u a l , o r i f one d i s t a n c e i s l e s s , the o t h e r two must be equal)  then  and i f the d i s t a n c e between i and j i s the  s m a l l e s t d i s t a n c e , then the d i s t a n c e between i and any o t h e r i t e m k and the d i s t a n c e between j and k must be e q u a l .  Thus, when i and j are merged, the  d i s t a n c e o f t h i s c l u s t e r t o k must be the d i s t a n c e from e i t h e r o f the merged elements t o k.  T h e r e f o r e , i n forming a new,  smaller matrix of distances,  the c l u s t e r e d elements are r e p l a c e d by t h e i r merger and i d e n t i c a l  operations  can be performed on items and c l u s t e r s , an i t e m b e i n g merely a c l u s t e r o f • s i z e one.  T h i s procedure  i s repeated on the new m a t r i x .  The most p r o x i m a l  items are a g a i n j o i n e d and i f the UMI h o l d s , the d i s t a n c e s o f a l l o t h e r items t o the merged s e t w i l l e q u a l t h e i r d i s t a n c e s t o each member o f the merger.  T h i s i t e r a t i o n i s c o n t i n u e d u n t i l a l l items a r e merged t o g e t h e r  into a single  ("strong"  cluster).  When the UMI h o l d s f o r an e m p i r i c a l d i s t a n c e m a t r i x t h e r e i s e x a c t e q u i v a l e n c e between the d i s t a n c e m a t r i x and a h i e r a r c h i c a l ( M i l l e r , 1967).  clustering  The same amount o f i n f o r m a t i o n i s c o n t a i n e d i n b o t h .  However, i n g e n e r a l , the p r o x i m i t y d a t a w i l l not s a t i s f y the UMI  either  . because of  'noise' or because the  a hierarchy.  Johnson  c l u s t e r i n g w h i c h c o u l d be  cluster.  u p p e r and  result.  Any  two  data  are not  data.  Under the  Selection of  f a r t h e s t member o f t h e two  terms;  similarities  In  a  same  conceptual  t o M i l l e r ' (1969) .  l a n g u a g e , and  linguistic  should  These are  be  plaus-  as t h e most b a s i c  relevance  -  compatability  semantics r e c e n t l y proposed.  Tasks  2)  animal  These t a s k s were:  a s s o c i a t i o n s to animal  among p a i r s o f a n i m a l s ;  and  4)  types  of tasks t o which the  t a s k s are d e s c r i b e d  1.  A s s o c i a t i v e Tasks first  free-listing 3)  The  disor  t a s k s were chosen i n  non-productive,  cognitive applied.  below.  used s p e c i f i c a l l y  p r o d u c t i v e , c o n t e x t - f r e e measure o f s u b j e c t i v e s t r u c t u r e . determination level  words  s e l e c t e d m e t h o d s o f a n a l y s i s c o u l d be  t a s k , f r e e - l i s t i n g , was  t e r m s a t e a c h age  of  r a t i n g s of  s o r t i n g of animal  t o i n c l u d e b o t h p r o d u c t i v e , a s s o c i a t i v e , and  The  1)  words;  the b a s i s of s i m i l a r i t y of meaning.  f o r the  item  methods w o u l d g i v e the  order  allowed  nearest  cluster.  dealing with a hierarchical  according  Four t a s k s were s e l e c t e d . .  The  connectedness  d i s t a n c e o f an  - agreement' w i t h what most p e o p l e would' a c c e p t  p i c t u r e s on  hierarchical  are too n o i s y f o r p r e c i s e a n a l y s i s .  with theories of l i n g u i s t i c  animal  to  methods p r o d u c e q u i t e d i f f e r e n t h i e r a r c h i e s , i t  criteria  v e r b a l concepts i n our  B.  s o l u t i o n s , w h i c h , when a p p l i e d  psychological i n t e r p r e t a t i o nof s t r u c t u r a l analyses  j u d g e d a g a i n s t two ibility  to  Under the d i a m e t e r method, the  i n d i c a t e s e i t h e r t h a t we scheme o r t h a t t h e  does n o t  26.  conform  c l u s t e r i n g scheme, t h e  Whenever t h e  '  item to a c l u s t e r i s i t s distance to the  to a c l u s t e r i s i t s distance t o the perfect hierarchical  items  l o w e r bounds on  d e r i v e d from the  m e t h o d , t h e d i s t a n c e o f an member o f t h e  s t r u c t u r e of the  (1967) p r o p o s e d two  t h e same p r o x i m i t y d a t a , p r o v i d e  ;  o f the  average s i z e of the  ( t h a t i s , t h e number o f a n i m a l s  to provide The  set of readily  a  method animal' available),  g i v e n a . l i m i t e d amount of' time-for' responding.  I t allowed  the  calculation  o f i n t e r - a n i m a l d i s t a n c e s , .that i s , d i s t a n c e s between p a i r s o f animals based on o r d i n a l output be  o f animal terms.  Inter-animal  distance i s considered  a measure o f the r e l a t i o n s h i p , between a p a r t i c u l a r p a i r o f  animals.  These d i s t a n c e s c o n s t i t u t e d ' t h e p r o x i m i t y measures'for t h i s t a s k . a r c h i c a l c l u s t e r i n g and m u l t i d i m e n s i o n a l  s c a l i n g techniques  to  Hier-  c o u l d then be  a p p l i e d t o these p r o x i m i t y measures t o determine whether an  appropriate  r e p r e s e n t a t i o n o f semantic s t r u c t u r e c o u l d be o b t a i n e d and'to i n d i c a t e the types  o f f e a t u r e s b e i n g used t o a s s i g n d i s t a n c e s between animal p a i r s . The  second t a s k , animal, a s s o c i a t i o n s t o animal words, was  second p r o d u c t i v e measure of•• s u b j e c t i v e s t r u c t u r e .  used as a  T h i s t a s k .is recom-  mended by Deese (1970) because i t procluces more o r d e r l y r e s u l t s than o b t a i n e d by  free association.  Although i t m a y b e a r t i f i c i a l l y  by  f o r c i n g people t o respond i n ' a •'particular way.,  in  t h i s study  i t appeared  s i n c e "People r e a d i l y t h i n k o f animals,  constrained appropriate  p l a n t s and  chemical  elements as e x i s t i n g i n a k i n d o f ' c a t e g o r i c a l s t r u c t u r e (Deese, 1970, 111).- "  The  task allowed  o f Deese's  (1967) i n t e r s e c t i o n c o e f f i c i e n t  (another measure o f • t h e  'These i n t e r s e c t i o n c o e f f i c i e n t s  another s e t o f p r o x i m i t y measures which s e r v e d  2.  p.  the c a l c u l a t i o n o f a s s o c i a t i v e o v e r l a p by means  s h i p between p a i r s o f i t e m s ) .  semantic s t r u c t u r e and  those  as the b a s i s f o r  relation-  provided determining  features.  C o g n i t i v e Tasks The  t h i r d t a s k , p a i r - r a t i n g s o f d i s s i m i l a r i t y , was  more c o g n i t i v e l y o r i e n t e d type o f t a s k , which allowed  a  considered  about the c r i t e r i a t o be used f o r determinng d i s s i m i l a r i t y . s e l e c t e d as'a c o n t r a s t t o the f i r s t two the b a s i s o f s i m i l a r i t y , p r o v i d e d  tasks.  two  Both A n g l i n  It  judgements was  f o u r t h t a s k , s o r t i n g on  a second, n o n - p r o d u c t i v e ,  a g a i n s e l e c t e d t o c o n t r a s t w i t h the f i r s t complement the p a i r - r a t i n g t a s k .  The  non-productive,  t a s k s , and,  cognitive task, i n a d d i t i o n , to  (1970) and M i l l e r  (1967) have  found t h a t the s o r t i n g t a s k i s p a r t i c u l a r l y ences.  1  s e n s i t i v e t o development  differ-  M i l l e r c o n s i d e r s t h a t the t a s k i s e s p e c i a l l y u s e f u l when.the  t o be s o r t e d a r e d e r i v e d from a . s e t o f t a x o n o m i c a l l y r e l a t e d items.  items The  r a t e d d i s s i m i l a r i t y and s o r t e d s i m i l a r i t y measures y i e l d e d the p r o x i m i t y measures f o r t h e c o g n i t i v e t a s k s .  These a l l o w e d f o r t h e a p p l i c a t i o n o f  h i e r a r c h i c a l and m u l t i d i m e n s i o n a l s c a l i n g t e c h n i q u e s so t h a t a p p r o p r i a t e semantic  s t r u c t u r e s " and f e a t u r e s c o u l d be  determined.  Each o f these measures had been employed i n p r e v i o u s s t u d i e s o f semantic  s t r u c t u r e s , mostly, w i t h a d u l t s .  p r e s e n t study s e r v e d , p a r t l y , purposes purposes  T h e r e f o r e , t h e i r use i n the  o f r e p l i c a t i o n , b u t f o r the most p a r t ,  o f e x t e n s i o n t o d i f f e r e n t developmental  levels.  Henley  (1969)  employed the f r e e - l i s t i n g , a s s o c i a t i v e , and p a i r - r a t i n g t a s k s i n h e r study o f the semantics o f animal terms i n a d u l t s .  A n g l i n (1970) and M i l l e r  (1967, 1969) used the s o r t i n g t a s k w i t h a d u l t s and c h i l d r e n . and Rapoport  Fillenbaum  (1971) a l s o used the s o r t i n g t a s k t o study the semantic  of good-bad terms, have verbs and p r e p o s i t i o n s i n a d u l t s . t i o n o f Henley  (1969) and F i l l e n b a u m and Rapoport  t a s k s had n o t been a p p l i e d , and i n  domains  With the excep-  (1971), however, these  no cases had a l l f o u r t a s k s been used  w i t h the same sample, when o n l y one s p e c i f i c semantic domain was under investigation'.  The combined use o f the f o u r t a s k s s e l e c t e d i n t h i s  study,  two o f which were p r o d u c t i v e and a s s o c i a t i v e i n n a t u r e , and two o f which were n o n - p r o d u c t i v e  and c o g n i t i v e , seemed e s p e c i a l l y a p p l i c a b l e i n s t u d y i n g  a s p e c i f i c semantic domain from a developmental Another applicability  viewpoint.  reason f o r the s e l e c t i o n o f these p a r t i c u l a r t a s k s was t h e i r (with one exception) t o the groups o f i n t e r e s t i n the study.  Two o f the t a s k s  ( f r e e - l i s t i n g and animal a s s o c i a t i o n s t o animal terms)  c o u l d be a p p l i e d t o a l l groups w i t h no t a s k m o d i f i c a t i o n s . t a s k , however, had t o be m o d i f i e d f o r . t h e two youngest  The s o r t i n g  age,groups.  Since  k i n d e r g a r t e n c h i l d r e n c o u l d n o t be expected t o read animal names p r i n t e d on  29 c a r d s and s i n c e any p r o m p t i n g method w o u l d h a v e i n t e r a c t e d  in-'unanticipated  ways w i t h t h e o r g a n i z a t i o n a l p r o c e s s b e i n g t a p p e d , k i n d e r g a r t e n c h i l d r e n were asked t o s o r t p i c t u r e s o f animals r a t h e r than a n i m a l terms. to p r o v i d e a comparison o f a n i m a l terms  In order  group., s i n c e i t was n o t e n t i r e l y ' c l e a r t h a t  a n d s o r t i n g o f a n i m a l p i c t u r e s was  comparable,  (grade t h r e e ) a l s o s o r t e d p i c t u r e s .  sorting  the.next  youngest  age g r o u p  youngest  age g r o u p s w e r e n o t g i v e n t h e p a i r - r a t i n g t a s k s i n c e p e r f o r m a n c e  t h i s t a s k depended on r e a d i n g s k i l l , ratings,  and a b i l i t y  and development appear tree  • I n a d d i t i o n , t h e two  s u f f i c i e n t p e r s e v e r e n c e t o make 66  t o understand the s c a l i n g procedures.  nature o f . t h i s  The  on  pair-  comparative  s t u d y r u l e d o u t t h e u s e o f some t a s k s w h i c h  t o p r o v i d e s i g n i f i c a n t d a t a on s e m a n t i c s t r u c t u r e  ( f o r example,  the  c o n s t r u c t i o n method and t h e method o f c o n s t r u c t i n g c o m p l e t e , u n d i r e c t e d  l i n e a r graphs used by F i l l e n b a u m and Rapoport,  1971).  > .  '  F u r t h e r r e a s o n s f o r t h e i n c l u s i o n o f f o u r t a s k s were t o i n c r e a s e t h e generality of the findings,  a n d t o a l l o w t h e u s e o f a number o f d i f f e r e n t  s t r u c t u r a l a n a l y s e s i n o r d e r t o attempt, t o r e v e a l t h e u n d e r l y i n g meaning p r o p e r t i e s and the n a t u r e o f t h e i r  organization.  30  CHAPTER T V OBSERVATIONS, RESULTS, AND A.  Design o f Study Subjects  from s i x e d u c a t i o n a l l e v e l s :  grade 11, second year the  DISCUSSION  study.  c o l l e g e and zoology  k i n d e r g a r t e n , grade. 3, g r a d e  doctoral candidates  A l l s u b j e c t s p a r t i c i p a t e d on a l l t a s k s  p a i r - r a t i n g task  The t w o p r o d u c t i v e  s u b j e c t s , s i n c e i t was c o n s i d e r e d  (with the omission  t a s k s were a d m i n i s t e r e d  selected i n the f r e e - l i s t i n g  in  Since  the associations task. free-listing  task, this  this  subjects, having  f i r s t to a l l tasks  and t h e a s s o c i a t i o n s  f i r s t t o every  second i n a l l cases.  completed the productive  subject.  The t w o y o u n g e s t  Half of the older  tasks, d i d the s o r t i n g task  the other h a l f received these  fol-  two  tasks  order.  A week l a t e r , zoology  individually  appeared most l i k e l y i n  received the picture s o r t i n g task.  lowed by t h e p a i r - r a t i n g t a s k , w h i l e in reverse  contamination  t a s k was a d m i n i s t e r e d  The a s s o c i a t i o n s t a s k was a d m i n i s t e r e d age g r o u p s , f i n a l l y ,  of the  t h a t p r i o r p e r f o r m a n c e on t h e o t h e r  would i n f l u e n c e the animals  the  participatedi n  f o r t h e t w o y o u n g e s t age g r o u p s ) a d m i n i s t e r e d  o v e r one s e s s i o n .  those  Ph.D. c a n d i d a t e s  to  make t h e m a g a i n .  in  a different  s u b j e c t s who made t h e p a i r - r a t i n g s ( e x c e p t  who  c o u l d n o t be o b t a i n e d  f o r the  a second time) were  On t h e s e c o n d p a i r - r a t i n g t a s k , t h e p a i r s w e r e  ( w i t h i n - p a i r and b e t w e e n - p a i r ) o r d e r .  This  allowed  asked  presented a measure  of w i t h i n subject r e l i a b i l i t y representing the consistency with which the s t i m u l i w e r e j u d g e d o v e r t h e two s e s s i o n s . the design  7,  o f the study  i s presented  A schematic representation o f  i n Figure  1.  SESSIONS  EDUCATIONAL LEVEL  1.  2.  Tasks  Tasks  Kindergarten  Free-listing Associations Picture Sorting  Grade 3  Free-listing Associations Picture Sorting Pair-ratings  Grade 7  Free-listing Associations Verbal Sorting Pair-ratings  Pair-ratings  Grade 11  Free-listing Associations Verbal Sorting Pair-ratings  Pair-ratings  College  Free-listing Associations Verbal Sorting Pair-ratings  Zoologists  Free-listing Associations Verbal Sorting Pair-ratings  Figure  1.  A schematic r e p r e s e n t a t i o n  o f t h e d e s i g n o f study I .  • 32 B.  Subjects A t o t a l o f 144 s u b j e c t s s e r v e d i n t h e study.  all  s u b j e c t s was E n g l i s h .  The n a t i v e language f o r  The k i n d e r g a r t e n , grade 3, and grade 7 s u b j e c t s  were randomly s e l e c t e d , 12 boys and 12 g i r l s a t each e d u c a t i o n a l l e v e l , an elementary  s c h o o l i n Vancouver, B.C.  A t the k i n d e r g a r t e n l e v e l ,  from  ages  ranged from f i v e y e a r s , seven months t o s i x y e a r s , f i v e months w i t h a mean age o f f i v e y e a r s , 11 months.  The age range a t t h e grade 3 l e v e l was e i g h t  y e a r s , 3 months t o n i n e y e a r s , 6 months w i t h a mean age o f e i g h t y e a r s , 10 months;  and a t t h e grade 7 l e v e l 12 y e a r s , 5 months t o 13 y e a r s , 9 months  w i t h a mean age o f 12 y e a r s , 11 months.  Twelve boys and 12 g i r l s were  randomly s e l e c t e d from t h e grade 11 c l a s s e s a t a s e n i o r secondary Ladner, B.C.  school i n  Ages ranged from 15 y e a r s 8 months t o 18 y e a r s 3 months w i t h  a mean age o f 17 years 2 months.  Twenty-four s u b j e c t s  (12 males and 12  females) were randomly s e l e c t e d from E d u c a t i o n 200 c l a s s e s a t The U n i v e r s i t y o f B r i t i s h Columbia.  These s u b j e c t s ranged i n age from 18 t o 27 y e a r s  a mean age o f 20 y e a r s . Zoology  with  F i n a l l y , 24 Ph.D. d o c t o r a l c a n d i d a t e s r e g i s t e r e d i n  a t the U n i v e r s i t y o f B r i t i s h Columbia were asked t o p a r t i c i p a t e .  The  12 males were randomly s e l e c t e d from t h e l i s t o f d o c t o r a l c a n d i d a t e s .  The  12 females were almost  a l l the female d o c t o r a l c a n d i d a t e s i n Zoology.  Ages ranged from 21 t o 36 y e a r s w i t h a mean age o f 27 y e a r s . C.  Stimulus M a t e r i a l s In o r d e r t o a s s e s s semantic  s t r u c t u r e , a s e t o f animal  c o n c e p t u a l l y d i s t i n c t t o the youngest c h i l d r e n was needed. (1969) found t h a t t h e c a t e g o r y  'animals'  (and s i n c e t h i s f i n d i n g was supported  terms a l r e a d y S i n c e Henley  c o n s i s t e d p r i m a r i l y o f mammals  i n a p i l o t study w i t h a s m a l l sample  o f k i n d e r g a r t e n aged c h i l d r e n ) 42 c o l o r e d s l i d e s o f common mammals sampled from 11 mammalian o r d e r s were p r e s e n t e d t o 21 k i n d e r g a r t e n c h i l d r e n i n an individual testing situation. animals  used by Henley  The animal s l i d e s i n c l u d e d t h e 30 common  (1969) as w e l l as twelve  a d d i t i o n a l stimulus  items.  33  S l i d e s were p r e s e n t e d i n a random o r d e r . t o name the animal d e p i c t e d on each s l i d e .  The  c h i l d ' s t a s k was  to  attempt  The t w e n t y - f i v e animals which  were i d e n t i f i e d by more than f i f t y p e r c e n t o f the c h i l d r e n formed the s e t o f animal terms used i n t h i s study. were as  The animals and t h e i r mammalian o r d e r s  follows:  carnivora:  b e a r , c a t , dog, f o x , l e o p a r d , l i o n , s e a l , skunk;  artiodactyla:  camel,  perissidactyla: rodentia:  deer, g i r a f f e , p i g , sheep;  donkey, h o r s e , z e b r a ;  mouse, p o r c u p i n e ,  chiroptera:  bat;  lagomorpha:  rabbit;  marsupialia: primate:  cow,  kangaroo;  monkey;  proboscidea:  squirrel;  and  elephant.  T h i s s e t o f animal terms was tasks.  used f o r both the s o r t i n g and  From t h i s l a r g e r s e t o f animals, a subset o f 12 animals,  associative consisting  o f those animals which had been c o r r e c t l y i d e n t i f i e d by a l l k i n d e r g a r t e n c h i l d r e n was selected:  used f o r the p a i r - r a t i n g t a s k .  bear, c a t , cow,  The  f o l l o w i n g animals were  dog, g i r a f f e , r a b b i t , sheep,  s e a l , p i g , horse,  e l e p h a n t , and z e b r a . The s t i m u l u s items were p r e s e n t e d v e r b a l l y i n the a s s o c i a t i o n s t a s k . In the p a i r - r a t i n g t a s k , each p a i r o f animals was 2 i " x 3if" i n d e x c a r d s .  presented h o r i z o n t a l l y  There were 66 p a i r s r e s u l t i n g from a l l p o s s i b l e  p a i r - w i s e combinations o f the 12 a n i m a l s .  There were two  s e t s o f 66  Sets A and B, r e f l e c t i n g the two d i f f e r e n t w i t h i n - p a i r o r d e r s cow-bear i n Set A was was  on  bear-cow i n Set B ) .  ( f o r example,  In the s o r t i n g t a s k , each  p r i n t e d i n l a r g e type on a 2\" x 3b" index c a r d .  pairs,  animal  !  34 D. 1.  T a s k 1:  Free-Listing  Procedure All  s u b j e c t s , t e s t e d i n d i v i d u a l l y , w e r e r e q u e s t e d t o name a s many  a n i m a l s a s t h e y c o u l d t h i n k o f i n 10 m i n u t e s . to  t h i n k o f a s many a n i m a l s a s p o s s i b l e .  responses. 2.  They were encouraged  The e x p e r i m e n t e r r e c o r d e d  their  A f t e r 10 m i n u t e s , t h e t a s k w a s t e r m i n a t e d .  Results List  l e n g t h • a c r o s s a l l groups  ranged  f r o m 15 t o 1 6 8 .  List  r a n g e s , means, m e d i a n s a n d s t a n d a r d d e v i a t i o n s f o r each group in  t ot r y  Table I.  F o r example, the median l i s t  g a r t e n c h i l d r e n was 24.5;  f o r t h e z o o l o g i s t s 96.0.  l e n g t h f o r the k i n d e r S e v e r a l younger  c h i l d r e n , almost e x c l u s i v e l y those a t the k i n d e r g a r t e n l e v e l ,  deriving  list  are presented  T h e r e was a n i n c r e a s e i n t h e s e m e a s u r e s w i t h i n c r e a s e s i n  amount o f e d u c a t i o n .  constellations  length  listed  ( f o r e x a m p l e , d a d d y l i o n , mummy l i o n , b a b y l i o n ) .  family  In  l e n g t h m e a s u r e s , e a c h member o f t h e f a m i l y w a s c o u n t e d a s a  s e p a r a t e a n i m a l s i n c e i t was assumed t h a t f o r t h e s e c h i l d r e n  family  r e l a t i o n s h i p s c o n s t i t u t e d a p s y c h o l o g i c a l d i s t i n c t i o n between animals is,  a mummy l i o n w a s a d i f f e r e n t a n i m a l f r o m a d a d d y l i o n ) .  tendency and  (that  Although  this  t o p r e f i x a n a n i m a l t e r m w i t h a f a m i l y • r e l a t i o n s h i p was l i m i t e d b y  large t o the k i n d e r g a r t e n l e v e l ,  t h e r e were examples throughout a l l  e d u c a t i o n a l l e v e l s , e x c e p t f o r t h e z o o l o g i s t l e v e l , where t h e young o f a s p e c i e s were l i s t e d s e p a r a t e l y ( f o r example, k i t t e n and c a t , puppy a n d dog, c o l t a n d h o r s e , c a l f a n d cow). presented i n Appendix  A.  The complete  A l t o g e t h e r , 1213  Of t h e s e , 5 8 2 w e r e named more t h a n o n c e . t h a n 90% o f t h e s u b j e c t s . of  free-listing  data are  d i f f e r e n t a n i m a l s w e r e named. Dog a n d c a t w e r e l i s t e d b y more  L i o n , h o r s e , cow, e l e p h a n t a n d t i g e r  f r e q u e n c y ) w e r e l i s t e d b y more t h a n 8 0 % o f t h e s u b j e c t s .  (in order  O f t h e 19  a n i m a l s l i s t e d b y m o r e t h a n 5 0 % o f t h e s u b j e c t s , 16 a r e mammals, t h u s r e c o n f i r m i n g the f i n d i n g t h a t the category animals i s p r e p o t e n t l y t h a t o f  35  Table I F r e e - L i s t i n g Data on a l l Animals L i s t e d : C e n t r a l Tendencies, D i s p e r s i o n s , and Sample S i z e f o r each E d u c a t i o n a l L e v e l Educational Level  Median  Zoology  96.00  53-168  100.46  28.80  24  E d u c a t i o n 200  72.50  29-124  72.38  24.00  24  Grade 11  64.00  32-105  64.75  17.90  24  Grade 7  59.00  37-102  60.75  15.30  24  Grade 3  58.00  16-85  53.96  15.20  24  Kindergarten  24.50  15-50  28.00  10.30  24  Range  Mean  N  36 mammals.  On the o t h e r hand, non mammals predominate  i n t h e animals  listed  o n l y by a few s u b j e c t s , p a r t i c u l a r l y i n those animals l i s t e d o n l y once. The  l i s t i n g p r o t o c o l s were examined f o r t h e presence o f the 25  animal terms i n the s e l e c t e d s e t .  No s u b j e c t named a l l 25 a n i m a l s .  The  number o f animals l i s t e d from t h e s e l e c t e d s e t ranged from z e r o t o 21.  The  ranges, means, medians and s t a n d a r d d e v i a t i o n s f o r each group a r e p r e s e n t e d i n Table I I . '  There was an i n c r e a s e i n average number o f animals named  from t h e s e l e c t e d s e t up t o grade 11, f o l l o w e d by a s l i g h t decrease i n the E d u c a t i o n 200 groups, and a l a r g e r decrease i n t h e z o o l o g i s t group.  Table  I I a l s o p r e s e n t s t h e p r o p o r t i o n o f animals named from the s e l e c t e d s e t t o the t o t a l number o f animals named. k i n d e r g a r t e n group  T h i s p r o p o r t i o n i s highest i n the  (.37), lowest i n t h e z o o l o g i s t  group  the same throughout t h e f o u r middle e d u c a t i o n a l groups i n t h e youngest  (.12) and r o u g h l y  (.22 - .27).  age group, w h i l e s u b j e c t s i n g e n e r a l named fewer  Thus,  animals  than any o t h e r group, more o f those animals which they d i d name belonged t o the s e l e c t e d s e t than those named by any o t h e r group.  In t h e f o u r middle  e d u c a t i o n a l groups, w h i l e a b s o l u t e number o f animals named i n c r e a s e d a c r o s s groups, t h e number o f animals named from t h e s e l e c t e d l i s t  proportionately  i n c r e a s e d so as t o m a i n t a i n r o u g h l y the same p r o p o r t i o n o f s e l e c t e d t o t o t a l animals named.  animals  However, f o r the z o o l o g i s t s , w h i l e t o t a l number  o f animals i n c r e a s e d , t h e r e was not a s i m i l a r i n c r e a s e i n animal terms named from t h e s e l e c t e d s e t . As Henley  (1969) has shown, animals which a r e r e l a t e d  psychologically  are named i n c l o s e r p r o x i m i t y on l i s t s than animals which a r e more psychologically distant.  Thus, t h e d i f f e r e n c e between o r d i n a l p o s i t i o n s o f  animals can be used t o o b t a i n s i m i l a r i t y measures f o r animal p a i r s .  Based  upon the f r e e - l i s t i n g d a t a f o r each e d u c a t i o n a l group, mean i n t e r a n i m a l s i m i l a r i t i e s f o r t h e 25 animal subset were c a l c u l a t e d i n t h e f o l l o w i n g manner:  (a) f o r each animal p a i r , f o r each s u b j e c t , the d i f f e r e n c e i n o r d e r  37  Table I I F r e e - L i s t i n g Data on Animals L i s t e d from S e l e c t e d S e t : C e n t r a l T e n d e n c i e s , D i s p e r s i o n s , and P r o p o r t i o n s f o r each E d u c a t i o n a l L e v e l  a  Educational Level  Median  Zoology  a Proportion  Range  Mean  13.,00  0-•21  12.,54  5.,10  .125  E d u c a t i o n 200  16.,50  10-:21  16.,17  2.,80  .223  Grade 11  17,.00  11--21  16..42  2..60  .254  Grade 7  15..00  11--23  15..33  2..'60  .252  Grade 3  14..50  8--21  14..50  3,.50  .269  Kindergarten  11..00  2--15  10,.42  3,.30  .372  animals l i s t e d  S  from s e l e c t e d s e t / t o t a l number o f animals  listed  38 of  listing  t a n c e was by  t h e two  m u l t i p l i e d by  list  obtained;  length;-  (b) t h e r e c i p r o c a l o f t h i s  t h e l o w e r t h e number, t h e g r e a t e r animals.  I f b o t h members o f  a n i m a l p a i r w e r e n o t l i s t e d b y a s u b j e c t t h e n a s c o r e o f z e r o was i n d i c a t i n g t h a t t h i s p a r t i c u l a r a n i m a l p a i r was the animal p a i r s appearing i n the  list.  e d u c a t i o n a l group. cow  as i n p u t t o J o h n s o n ' s clusterings  Two  is  f i r s t p o i n t i s t h a t semantic  s e a l were  s i m i l a r i t y matrices The  served  hierarchical  hierarchies  structures are s i m i l a r  across  For example, t h e r e i s a farm animal c l u s t e r a t a l l e d u c a t i o n a l  11 a n d k i n d e r g a r t e n ) o r cow,  a city  The  p o i n t s s h o u l d be n o t e d a b o u t t h e  l e v e l s c o n s i s t i n g o f s h e e p , p i g , cow grade  f o r a l l groups,  ( d i a m e t e r method) o b t a i n e d a r e p r e s e n t e d f o r each e d u c a t i o n a l  The  groups.  B for  I n g e n e r a l , skunk, p o r c u p i n e , b a t and  (1967) h i e r a r c h i c a l c l u s t e r i n g .  g r o u p i n F i g u r e s 2-7. obtained.  of  1  most d i s t a n t from most o t h e r a n i m a l terms.  all  more d i s t a n c e t h a n a n y  C a t and dog were most s i m i l a r  and h o r s e .  an  obtained  s i m i l a r i t y m a t r i c e s a r e shown i n t h e t a b l e s i n A p p e n d i x  f o l l o w e d by  degree  ;  t h e p s y c h o l o g i c a l d i s t a n c e b e t w e e n t h e two  each  each  T h u s , t h e l a r g e r the; number o b t a i n e d , t h e g r e a t e r t h e  s i m i l a r i t y b e t w e e n an a n i m a l p a i r ;  The  dis-  (e) mean s i m i l a r i t i e s w e r e o b t a i n e d  t a k i n g t h e mean o v e r a l l s u b j e c t s w i t h i n a p a r t i c u l a r g r o u p f o r  animal p a i r . of  a n i m a l s was  animal c l u s t e r  ( c a t , dog  and h o r s e  horse  (Zoology, Education  and p i g  (grades. 7 and  a n d mouse) f o r a l l g r o u p s .  d o n k e y o c c u r i n t h e same c l u s t e r f o r a l l g r o u p s e x c e p t g r a d e  200,  3). Camel  7.  There and  Porcupine  ^ H e n l e y (1969) c a l c u l a t e d a n i n t e r a n i m a l d i s t a n c e m e a s u r e f o r t h e f r e e l i s t i n g d a t a b y d i v i d i n g t h e d i f f e r e n c e i n o r d e r t o l i s t i n g t h e two a n i m a l s , f o r each a n i m a l p a i r , f o r each s u b j e c t , by l i s t l e n g t h and t h e n m u l t i p l y i n g b y 100. Mean d i s t a n c e s w e r e t h e n o b t a i n e d b y t a k i n g t h e mean o v e r a l l s u b j e c t s f o r each animal p a i r . T h i s d i s t a n c e m e a s u r e was o r i g i n a l l y u s e d in the present study. The r e s u l t s o b t a i n e d w e r e n o t m e a n i n g f u l , h o w e v e r , s i n c e t h e m e a s u r e y i e l d s a z e r o when o n l y one member o f an a n i m a l p a i r a p p e a r s on t h e l i s t , t h u s s p u r i o u s l y i n d i c a t i n g m i n i m a l d i s t a n c e . Theref o r e , a s i m i l a r i t y m e a s u r e was d e v i s e d t o t a k e i n t o a c c o u n t t h e p r e s e n t d a t a i n w h i c h z e r o i n d i c a t e d m a x i m a l d i s t a n c e and i n c r e a s i n g numbers i n d i c a t e d increasing similarity.  39  bat camel donkey zebra leopard lion bear seal giraffe elephant kangaroo sheep pig cow horse cat dog mouse rabbit fox monkey porcupine skunk deer squirrel 1 80 F i g u r e 2.  ;  1 70  1 60  ; [ : 1 r50 40 30 P r o x i m i t y Values  20  10  H i e r a r c h i c a l c l u s t e r i n g f o r zoology Ph.D.s on the f r e e l i s t i n g t a s k (diameter method)  00  >  squirrel rabbit bat skunk porcupine monkey mouse  >  dog cat lion elephant zebra giraffe deer bear kangaroo fox seal leopard donkey camel horse cow pig sheep  —  80  Figure  3.  70  60  50 40 30 Proximity Values  20  H i e r a r c h i c a l c l u s t e r i n g f o r education undergraduates t h e f r e e - l i s t i n g t a s k ( d i a m e t e r method)  i  —  10  in  41  squirrel deer bear fox seal monkey lion elephant giraffe zebra mouse dog cat rabbit horse cow pig sheep camel leopard donkey skunk porcupine bat kangaroo -1— 80  Figure  4.  70  60  50 40 Proximity  30 Value  20  10  H i e r a r c h i c a l c l u s t e r i n g f o r g r a d e 11 s u b j e c t s o n t h e f r e e l i s t i n g t a s k ( d i a m e t e r method)  00  42  squirrel rabbit horse cow pig lion mouse dog cat zebra elephant giraffe monkey kangaroo seal camel leopard donkey fox deer bear sheep  >  skunk porcupine bat  i— 80  Figure  5.  — r 70  60  —i—  50 Proximity  ~40~ Values  30  20  10  H i e r a r c h i c a l c l u s t e r i n g f o r grade 7 s u b j e c t s on t h e f r e e l i s t i n g t a s k ( d i a m e t e r method)  > —i  00  43  squirrel deer bear seal fox rabbit horse cow pig skunk porcupine kangaroo zebra giraffe sheep monkeyelephant lion  >  dog cat mouse leopard donkey camel bat  Figure  —i 80  6.  1 70  1 i 60 50 Proximity  1 40 Values  1  30  1— 20  10  H i e r a r c h i c a l c l u s t e r i n g f o r g r a d e 3 s u b j e c t s on t h e f r e e l i s t i n g t a s k ( d i a m e t e r method)  00  44  squirrel. kangaroo. monkey deer lion elephant giraffe . leopard  >  horse cow sheep pig skunk porcupine. mouse  >  dog cat bear rabbit bat zebra seal fox  >  donkey camel —> 80  F i g u r e 7.  1 70  60  1  1 1 r 50 40 30 Proximity Values  —i—  20  —r—  10  H i e r a r c h i c a l c l u s t e r i n g f o r k i n d e r g a r t e n s u b j e c t s on t h e f r e e - l i s t i n g task (diameter method)  00  45 and  skunk a r e g r o u p e d t o g e t h e r by  a l l groups except k i n d e r g a r t e n c h i l d r e n .  There i s a c l u s t e r c o r r e s p o n d i n g t o a l a r g e w i l d animal group a t a l l educational  l e v e l s which  i n c l u d e s some o f t h e f o l l o w i n g a n i m a l s :  e l e p h a n t , g i r a f f e and The  second  h o r s e , p i g and decrease  zebra.  •  ,  p o i n t i s t h a t w i t h few e x c e p t i o n s  lion,  . ( c a t and dog,  This  t h a t t h e a s s o c i a t i v e s t r u c t u r e f o r the domain o f a n i m a l terms, can be d e t e r m i n e d by  t h e 25 a n i m a l s s e l e c t e d  f o r use,  a s s o c i a t e d a n i m a l s and  a l a r g e group o f f a i r l y  strong associations.  Developmentally,  The  cow,  s h e e p ) , t h e p r o x i m i t y v a l u e s o b t a i n e d are q u i t e low  systematically with decreasing educational l e v e l .  y o u n g e r age  leopard,  and suggests  as f a r as  c o n t a i n s a few  strongly  i s o l a t e d animals w i t h  no  these a s s o c i a t i o n s appear weaker a t  levels. s i m i l a r i t y m a t r i c e s s e r v e d a s i n p u t t o t h e K r u s k a l (1964)  dimensional s c a l i n g program  (MDSCAL).  At a l l educational l e v e l s ,  multi-  the  v a l u e s o b t a i n e d f o r t h e s t r e s s i n d e x f o r s c a l i n g i n up t o 9 d i m e n s i o n s  were  so h i g h t h a t a m u l t i d i m e n s i o n a l s c a l i n g model, c l e a r l y , d i d n o t p r o v i d e adequate f i t f o r the d a t a .  The  level.  E.  Animal Associations' to Animal  T a s k 2:  s u b j e c t s , t e s t e d i n d i v i d u a l l y , were t o l d t h a t the  g o i n g t o r e a d a l o u d some a n i m a l names.  experimenter  the f i r s t  r e s p o n d w i t h any thought  each  o f , and  They were a s k e d  animal.  to t e l l  a n i m a l , b u t t h a t i t s h o u l d be  the f i r s t  experimenter  could  animal t h a t they  t h a t i t s h o u l d be d i f f e r e n t f r o m t h e e x p e r i m e n t e r ' s  The  the  listened  They were t o l d t h a t t h e y  25 s t i m u l u s w o r d s w e r e p r e s e n t e d i n a d i f f e r e n t a n d subject.  experimenter  a n i m a l t h e y c o u l d t h i n k o f a f t e r t h e y had  c a r e f u l l y t o the experimenter's  The  Terms  Procedure All  was  an  f i t became e v e n p o o r e r w i t h d e c r e a s i n g  educational  1.  this  animal.  random o r d e r f o r  recorded the subject's responses.  46 2.  Results A complete  t a b l e o f a s s o c i a t i o n s f o r each  presented i n Appendix cat  C.  The  to  s t r o n g e s t a s s o c i a t i o n s were b e t w e e n dog  ( t h a t i s , c a t as a response  lowed by t i g e r as a r e s p o n s e s q u i r r e l and  Of t h e s e , 330  iations  t o dog  to l i o n ,  zebra to horse.  t o be  and dog  as a r e s p o n s e  r a t t o mouse, h o r s e  T h e r e w e r e 564  o c c u r r e d a t the grade  t h e r e appeared  educational level i s and  t o cat)',  t o cow,  idiosyncratic  fol-  chipmunk  associations.  3 and k i n d e r g a r t e n l e v e l s .  Therefore,  a tendancy. w i t h i n c r e a s i n g e d u c a t i o n a l l e v e l  f o r assoc-  t o become l e s s i d i o s y n c r a t i c a n d more u n i f o r m a c r o s s , . s u b j e c t s  within  t h e same e d u c a t i o n a l l e v e l . Intersection coefficients  (Deese,  1965,  a n i m a l p a i r i n t h e s e l e c t e d s e t o f 25 a n i m a l s . the elements  o f two  sets  p.  51)  were computed f o r e v e r y  This coefficient  measures  ( f o r example, the a s s o c i a t i o n s t o the f i r s t  and t h e a s s o c i a t i o n s t o t h e second  animal)  i n common, a n d  animal  i s g i v e n by  the  formula: I C = SA O  SB where the numerator r e p r e s e n t s the  v/NA  .  s e c t i o n of the d i s t r i b u t i o n of responses denominator  f o r t h e two  a n i m a l s and where  r e p r e s e n t s t h e g e o m e t r i c mean o f t h e number o f r e s p o n s e s  each d i s t r i b u t i o n .  S i n c e Deese assumes t h a t e v e r y s t i m u l u s w o r d  itself  as a r e s p o n s e ,  always  48 i n t h e p r e s e n t s t u d y .  ients  inter-  NB  f o r each  along w i t h the o r a l response,  in  elicits  the denominator  Complete t a b l e s o f i n t e r s e c t i o n  was coeffic-  e d u c a t i o n a l l e v e l are presented i n the t a b l e s i n Appendix  T w e n t y a n i m a l s o u t o f t h e s e t o f 25 u s e d h e r e a n i m a l s used by Henley  (1969).  Henley's  a r e i n common w i t h  intersection coefficients  o b t a i n e d from the N a t i o n a l A u x i l i a r y P u b l i c a t i o n s S e r v i c e .  The  education l e v e l are given i n Table I I I .  The  D. the  were  correlations  between t h o s e d a t a and t h e p r e s e n t d a t a f o r a l l p o s s i b l e p a i r e n t r i e s each  the  at  c o r r e l a t i o n s between  the  d i f f e r e n t e d u c a t i o n a l l e v e l s i n the present study are a l s o given i n Table  47  Table I I I R e l a t i o n s h i p b e t w e e n H e n l e y ' s (1969) I n t e r s e c t i o n C o e f f i c i e n t s I n t e r s e c t i o n C o e f f i c i e n t s from the P r e s e n t Study f o r each E d u c a t i o n a l L e v e l Henley  Zoology  Education  Gr  11  Gr: 7  Zoology  .683  Education  .700  .872  Gr  .721  .899  .911  Gr 7  .632  .863  .921  .901  Gr 3  .634  .854  .859  .858  .866  Kindergarten  .516  .698  .765  .730  .795  11  Gr 3  .761  and  48 III.  The  .721  c o r r e l a t i o n s between the p r e s e n t data and Henley's d a t a range from  t o .516.  The  c o r r e l a t i o n s between the d i f f e r e n t e d u c a t i o n a l l e v e l s i n  the p r e s e n t study range from .921  t o .698.  The  lowest c o r r e l a t i o n s  obtained  were between zoology d o c t o r a l c a n d i d a t e s and k i n d e r g a r t e n c h i l d r e n , and 11 and k i n d e r g a r t e n c h i l d r e n .  grade  Thus t h e r e appears to be o v e r a l l agreement  between Henley's d a t a and the p r e s e n t d a t a , and w i t h i n the p r e s e n t  study  2 between d i f f e r e n t e d u c a t i o n a l l e v e l s .  These r e s u l t s i n d i c a t e t h a t the  i n t e r s e c t i o n c o e f f i c i e n t s o b t a i n e d i n the p r e s e n t study are not o n l y  similar  a c r o s s e d u c a t i o n a l l e v e l s but a l s o i n agreement w i t h the i n t e r s e c t i o n  coef-  f i c i e n t s o b t a i n e d from a t o t a l l y d i f f e r e n t a d u l t sample. The  i n t e r s e c t i o n c o e f f i c i e n t s f o r each e d u c a t i o n a l l e v e l were used as  i n p u t t o Johnson's clusterings  listing  low.  in  The p r o x i m i t y v a l u e s f o r c l u s t e r s a t a l l e d u c a t i o n a l l e v e l s In agreement w i t h the c l u s t e r i n g s o b t a i n e d from the  i s o l a t e d animals.  a l l educational levels.  Cat and dog,  free-  horse and  cow,  l i o n and  subjects.  Skunk and p o r c u p i n e ,  a r e grouped a t a l l l e v e l s except  Other groupings  and  l e o p a r d are grouped a t  G i r a f f e and e l e p h a n t are grouped a t a l l l e v e l s ,  the e x c e p t i o n o f the E d u c a t i o n 200  level.  obtained  d a t a , t h e r e appear t o be a few r e l i a b l y grouped p a i r s o f animals  many f a i r l y  pig,  The  (diameter method) f o r each e d u c a t i o n a l l e v e l are p r e s e n t e d  F i g u r e s 8-13. are mostly  (1967) h i e r a r c h i c a l c l u s t e r i n g t e c h n i q u e .  sheep  with and  a t the k i n d e r g a r t e n  have low p r o x i m i t y v a l u e s , and c l u s t e r s a c r o s s a l l  e d u c a t i o n a l l e v e l s do not appear t o be e s p e c i a l l y meaningful  or  clearly  2 In a p p l y i n g the Pearson product-moment c o r r e l a t i o n c o e f f i c i e n t t o t h e s e d a t a , the independency assumption was v i o l a t e d , s i n c e each s u b j e c t ' s a s s o c i a t i o n t o a p a r t i c u l a r animal c o u l d not be assumed t o be independent from the same s u b j e c t ' s a s s o c i a t i o n t o another a n i m a l . Thus, the s i g n i f i c a n c e l e v e l s f o r the c o e f f i c i e n t s o b t a i n e d are not r e p o r t e d . The c o e f f i c i e n t s are p r e sented simply as an a p p r o x i m a t e . d e s c r i p t i o n o f the r e l a t i o n s h i p s between d a t a sets. T h i s r a t i o n a l e a l s o a p p l i e s t o the c o r r e l a t i o n c o e f f i c i e n t s t o be r e p o r t e d i n subsequent s e c t i o n s o f t h i s c h a p t e r . In o r d e r t o get another measure o f these r e l a t i o n s h i p s , K e n d a l l ' s t a u was a l s o a p p l i e d t o the same data. The c o e f f i c i e n t s o b t a i n e d were lower f o r a l l comparisons, r a n g i n g from .509 t o .188, b u t they m a i n t a i n e d the same p a t t e r n o f r e l a t i o n s h i p s as t h a t o b t a i n e d f o r Pearson's r .  zebra giraffe elephant  >  — —  deer  _  camel squirrel mouse  ——.  —  bat monkey kangaroo  -  skunk porcupine  — .  ,  rabbit  —  fox bear  —  sheep  •—  pig dog cat seal  : .  —  -s.  "  lion leopard  f~ .  >  — —  horse cow  —  donkey  ______—— i  i  1  .9  .8  .7  i  1  .6.5  1  1  1  1  1—  .4  .3  .2  .1  .00  P r o x i m i t y Value  F i g u r e 8.  Hierarchical associations  c l u s t e r i n g f o r zoology Ph.D.s on the task (diameter method)  50  zebra giraffe lion leopard elephant kangaroo camel squirrel mouse  >  rabbit monkey skunk porcupine fox deer bear sheep pig  >  horse cow seal donkey dog cat bat  i  ,9  Figure  9.  1 .8  1 .7  1 1 1 1 .6 .5 .4 .3 Proximity Values  1 .2  1 .1  r —  .00  Hierarchical clustering f o r education undergraduates on t h e a s s o c i a t i o n s t a s k ( d i a m e t e r m e t h o d )  fox elephant giraffe  >  cow horse leopard lion bat  >  >  mouse kangaroo rabbit seal monkey bear deer pig sheep porcupine skunk squirrel camel donkey zebra  .8 <  F i g u r e 10.  .7  .6  .5 .4 Proximity  .3 .2 Values  .1  .00  H i e r a r c h i c a l c l u s t e r i n g f o r g r a d e 11 s u b j e c t s on t h e a s s o c i a t i o n s t a s k ( d i a m e t e r m e t h o d )  52  zebra giraffe elephant lion leopard squirrel monkey  >  >  skunk porcupine seal sheep pig  >  horse cow rabbit kangaroo mouse  >  bat fox bear  >  donkey camel dog cat deer  F i g u r e 11.  —i  1  1  .8  .7  .6  i  r  .5 .4 Proximity  1  1  .3 .2 Values  1  .1  i  .00  H i e r a r c h i c a l c l u s t e r i n g f o r grade 7 s u b j e c t s on t h e a s s o c i a t i o n s t a s k ( d i a m e t e r method)  zebra lion leopard sheep pig squirrel rabbit skunk porcupine bat seal bear monkey donkey mouse kangaroo giraffe elephant horse  >  cow deer camel fox dog  >  cat .9  Figure  12.  .8  .7  .6 .5 Proximity  .4 .3 Values  .2  .1  .00  H i e r a r c h i c a l C l u s t e r i n g f o r grade 3 s u b j e c t s on t h e a s s o c i a t i o n s t a s k ( d i a m e t e r m e t h o d )  54  zebra  >  lion leopard skunk rabbit mouse bat squirrel porcupine sheep seal cow deer pig monkey horse donkey  >  giraffe elephant kangaroo fox camel bear dog  >  cat  .9  Figure  13.  .8  .7  .6 .5 Proximity  .4 .3 Values  . 2 . 1  .00  Hierarchical clustering f o r kindergarten s u b j e c t s on t h e a s s o c i a t i o n s t a s k ( d i a m e t e r method)  55 interpretable. The  i n t e r s e c t i o n c o e f f i c i e n t s formed the  multidimensional listing  data,  an  acceptable  F.  T a s k 3:  1.  Procedure The  the  s t r e s s values  f i t f o r the  the  f o r s c a l i n g were too h i g h  freeto  provide  data.  25  animals.  The  l a b e l s at the  each judgement.  animals taken from  f a c e , on  amount o f  (no d i s s i m i l a r i t y )  to  A d r a w i n g o f a s c a l e f r o m 0 t o 10 w i t h  extreme p o i n t s  subject The  a s c a l e from 0  and  the  and  i n the  s u b j e c t was  centre  of the  asked to c o n s u l t  e x a c t i n s t r u c t i o n s w e r e as  the  of  2i"'x 3 i " index cards),  T h e y w e r e a s k e d t o make a j u d g e m e n t o f t h e  (maximum d i s s i m i l a r i t y ) .  f r o n t of the  12  s u b j e c t s were p r e s e n t e d w i t h p a i r s  (typed h o r i z o n t a l l y , i n b o l d  s i m i l a r i t y between a n i m a l s on  in  obtained  In agreement w i t h  s t i m u l i i n t h i s experiment were the  p a i r at a time.  verbal  (MDSCAL).  (1964)  Pair-Ratings  larger set of animals,  s c a l i n g program  input to Kruskal's  one dis-  10 appropriate  s c a l e was  placed  the  for  scale  follows:  Now I am g o i n g t o g i v e p a i r s o f a n i m a l s t o y o u a n d I w a n t y o u t o d e c i d e and t e l l me how a l i k e o r d i f f e r e n t y o u t h i n k e a c h p a i r i s . I have a w h o l e b u n c h o f a n i m a l p a i r s w r i t t e n p u t on t h e s e • c a r d s . I am g o i n g t o t a k e one c a r d a t a t i m e and p l a c e i t i n f r o n t o f y o u . I am a l s o g o i n g t o g i v e you t h i s s c a l e t o use. As y o u c a n s e e t h e s c a l e g o e s from zero t o ten. Y o u w i l l n o t i c e t h a t t h e z e r o e n d i s m a r k e d 'not d i f f e r e n t ' , a n d . t h e 10 end i s p a r k e d ' e x t r e m e l y d i f f e r e n t ' and t h e 5 i s marked 'moderately d i f f e r e n t ' . For each a n i m a l p a i r , I want you t o t e l l me w h e r e y o u t h i n k t h e p a i r w o u l d b e l o n g a c c o r d i n g t o t h i s scale. F o r e x a m p l e , i f y o u t h i n k t h e r e i s no d i f f e r e n c e b e t w e e n a p a i r o f a n i m a l s y o u w o u l d s a y " z e r o " , m e a n i n g , t h e two a n i m a l s a r e n o t d i f f e r e n t from each o t h e r . I f you t h i n k t h e r e i s a g r e a t d e a l o f d i f f e r e n c e b e t w e e n t h e two a n i m a l s y o u m i g h t s a y " t e n " , m e a n i n g , t h e two a n i m a l s a r e e x t r e m e l y d i f f e r e n t f r o m e a c h o t h e r . Or, i f you d o n ' t t h i n k t h e d i f f e r e n c e i s q u i t e t h a t g r e a t , y o u m i g h t s a y "9" o r "8". i f y o u t h i n k t h e r e i s a m o d e r a t e d i f f e r e n c e b e t w e e n t h e two a n i m a l s you m i g h t say "5", meaning t h a t t h e y are s o r t o f h a l f w a y d i f ferent. I f the d i f f e r e n c e i s a l i t t l e l e s s t h a n moderate, you might s a y "4", a n d i f i t i s a l i t t l e m o r e , y o u m i g h t s a y "6". You c a n p i c k , any number on t h i s s c a l e d e p e n d i n g on y o u r d e c i s i o n a b o u t j u s t how l a r g e or s m a l l the d i f f e r e n c e i s between each p a i r . Try t o t h i n k c a r e f u l l y a b o u t y o u r c h o i c e o f t h e n u m b e r on t h e s c a l e b e f o r e y o u t e l l me. Do y o u h a v e any q u e s t i o n s ? O.K. L e t ' s go a h e a d . T h e r e w e r e 66  p a i r s t o be  rated, c o n s i s t i n g of a l l possible  56 combinations  o f t h e 12 animals.  The p a i r s were p r e s e n t e d i n random o r d e r .  A t a second s e s s i o n , one week l a t e r , a l l s u b j e c t s c a n d i d a t e s ) were asked  (except zoology d o c t o r a l  t o make t h e judgements a g a i n , as a r e l i a b i l i t y  A t t h i s second s e s s i o n , the p a i r s were p r e s e n t e d  check.  i n a d i f f e r e n t between-and  within-pair order. 2.  Results R e l i a b i l i t y i n d i c e s i n terms o f c o r r e l a t i o n c o e f f i c i e n t s f o r the  E d u c a t i o n 200 s u b j e c t s ranged from .427 t o .854 w i t h a median o f .705; f o r the grade 11 s u b j e c t s from .419 t o .898, w i t h a median o f .645; grade 7 s u b j e c t s from of  .312 t o .891 (with one o u t l y i n g r e l i a b i l i t y  .071), w i t h a median o f .595.  for  coefficient  D i s s i m i l a r i t y matrices f o r a l l subjects at  each e d u c a t i o n a l l e v e l were averaged each t e s t i n g s e s s i o n .  and f o r t h e  t o g i v e mean p a i r d i s s i m i l a r i t i e s f o r  The c o r r e l a t i o n between the mean d i s s i m i l a r i t y  matrix  S e s s i o n 1 and S e s s i o n 2 f o r the E d u c a t i o n 200 s u b j e c t s was .970; f o r  grade 11 s u b j e c t s was .964;  and f o r grade 7 s u b j e c t s was .957.  some s u b j e c t s showed low r e l i a b i l i t y ability overall  f o r each i t e m p a i r .  Thus, w h i l e  i n t h e i r r a t i n g s , t h e r e was h i g h  reli-  T h i s i n d i c a t e s t h a t low r e l i a b i l i t y i n  i n d i v i d u a l s u b j e c t s d i d n o t cause low r e l i a b i l i t y  i n t h e o v e r a l l m a t r i x , and 3  a l s o , t h a t o r d e r o f p r e s e n t a t i o n o f s t i m u l i d i d n o t a f f e c t the r a t i n g s . Johnson's  (1967) h i e r a r c h i c a l c l u s t e r i n g t e c h n i q u e was a p p l i e d t o  the d i s s i m i l a r i t y m a t r i c e s o b t a i n e d from t h e f i r s t p a i r - r a t i n g s e s s i o n .  Com-  p l e t e t a b l e s o f the o b t a i n e d d i s s i m i l a r i t y " m a t r i c e s as a f u n c t i o n o f educat i o n a l l e v e l are presented  i n Appendix E .  The r e s u l t i n g  clusterings  3 In o r d e r t o g e t a second e s t i m a t e o f the r e l i a b i l i t y o f the p a i r - r a t i n g judgements, K e n d a l l ' s t a u was a l s o computed. The c o e f f i c i e n t s f o r the E d u c a t i o n 200 s u b j e c t s ranged from .337 t o .783 w i t h a median o f .541, f o r the grade 11 s u b j e c t s from .308 t o .794, w i t h a median o f .543; and f o r t h e grade 7 s u b j e c t s from .252 t o .656 (with one o u t l y i n g c o e f f i c i e n t o f .077) w i t h a median o f .454. The c o r r e l a t i o n between t h e mean d i s s i m i l a r i t y m a t r i x f o r S e s s i o n 1 and S e s s i o n 2 f o r the E d u c a t i o n 200 s u b j e c t s was .840; f o r the grade 11 s u b j e c t s was .811; and f o r t h e grade 7 s u b j e c t s was .811. These r e s u l t s agree w i t h those r e p o r t e d above.  (diameter method) are p r e s e n t e d The  c l u s t e r i n g f o r the zoology  groups based on food h a b i t s herbivorous  i n F i g u r e s 1 4 - 1 7 f o r each e d u c a t i o n a l  s u b j e c t s shows a c l e a r d i v i s i o n i n t o two  ( h e r b i v o r e s and  carnivores).  a c c o r d i n g t o domestic v s . w i l d animals.  animal  (large vs.  and w i t h i n the  The  The  dominant groups f o r the  order', food h a b i t s , f u n c t i o n , and appearance, but'not f a s h i o n , and w i t h o u t  any  e d u c a t i o n a l groups f o r s c a l i n g i n one The  (1964)  s t r e s s values according  to five•dimensions  to  are p r e s e n t e d  subjects are presented  Examination o f Dimension 1 ,  i n which e l e p h a n t ,  end  c a t a t the o t h e r end,  s e a l , bear,  dog  and  o f food h a b i t s , o r a simple second dimension has  i n F i g u r e s 1 8 and  g i r a f f e and  z e b r a are a t  dichotomy between h e r b i v o r e s and  s e a l and  elephant  a t one  reached  Zoology, U.B.C.)  reason.to  end  expect  The  1  19. one  appears t o show a dimension carnivores.  extreme and r a b b i t and  the o t h e r and appears t o be a dimension based upon r e p r o d u c t i v e r a t e .  s e a l a t one  in  P l o t s f o r Dimension 1 v s . Dimension 2 , and Dimension  v s . Dimension 3 f o r the zoology  c o n c l u s i o n was  multi-  f i t i n f i v e dimensions i s judged a c c e p t a b l e here f o r a l l  educational levels.  and  systematic  levels.  d i s s i m i l a r i t y m a t r i c e s were s u b j e c t e d t o K r u s k a l ' s The  location,  in a clearly  c l e a r d i f f e r e n c e s between e d u c a t i o n a l  dimensions s c a l i n g a n a l y s i s (MDSCAL).  .Table IV.  by  c l u s t e r s from s u b j e c t s a t these e d u c a t i o n a l l e v e l s a l s o .  seem t o take i n t o account some o r . a l l o f the f o l l o w i n g f e a t u r e s : '  The  there  land  2 0 0 , grade 1 1 and grade 7 s u b j e c t s appear t o be determined  size.  major  the  W i t h i n the c a r n i v o r o u s animals,  i s a d i v i s i o n a c c o r d i n g t o l a n d v s . a q u a t i c animals,  Education  Within  group t h e r e i s f u r t h e r s u b d i v i s i o n a c c o r d i n g t o s i z e  medium-small), and mammalian orders..  animals  level.  The  cat at (This  a f t e r c o n s u l t a t i o n w i t h a member o f the Department o f t h i r d dimension i s hard t o l a b e l .  and b e a r and g i r a f f e a t the o t h e r .  I t has  Although  r a b b i t and  t h e r e i s no  t h a t a c o g n i t i v e dimension need have a v e r b a l l a b e l , i t was  not c o n s i d e r e d worthwhile t o a n a l y z e each a d d i t i o n a l dimension beyond the p o i n t a t which a v e r b a l l a b e l c o u l d be a t t a c h e d t o a dimension.  Accordingly,  58  \  2ebra  12  -i 1  F i g u r e 14.  1 2  1 3  1 4  1 1 5 6 Proximity  1 i 7 8 Values  1  H i e r a r c h i c a l c l u s t e r i n g f o r z o o l o g y Ph.D.s o n t h e p a i r - r a t i n g t a s k ( d i a m e t e r method)  9  1 10  Figure 15.  Hierarchical clustering for education undergraduates on the p a i r - r a t i n g task (diameter method)  Figure  16.  H i e r a r c h i c a l c l u s t e r i n g f o r g r a d e 11 p a i r - r a t i n g t a s k ( d i a m e t e r method)  s u b j e c t s on  the  Figure 17.  Hierarchical clustering for grade 7 subjects on p a i r - r a t i n g task (diameter method)  62  T a b l e IV Pair-Ratings:  Stress Values  3  by E d u c a t i o n a l L e v e l  Educational  (MDSCAL)  Level  Zool  Educ  Gr 11  Gr 7  1 Dimension  21 .46%  31 .33%  37. 35%  41. 26%  2 Dimensions  12 .02%  20 .63%  21. 75%  26. 75%  3 Dimensions  7 .62%  12 .85%  14. 09%  21. 26%  4 Dimensions  2 .57%  10 .32%  10. 59%  14. 96%  5 Dimensions  .99%  5 .33%  6. 96%  9. 57%  The s t r e s s v a l u e s g i v e an i n d i c a t i o n o f the degree t o which d i s t o r t i o n has t o be imposed on the d i s t a n c e s t o f i t t h e s t i m u l i i n t o a s p e c i f i c number o f dimensions  63  Dimension  2  seal  •  • elephant  • zebra giraffe  • horse*  •cow  c o  •H  W  • sheep  ••pig  rabbit  F i g u r e 18.  bear • dog  •  . cat  D i m e n s i o n s 1 a n d 2 o f 5 - d i m e n s i o n a l s c a l i n g o f 12 a n i m a l s f o r z o o l o g y Ph.D.s o n t h e p a i r - r a t i n g t a s k (MDSCAL)  a  i  •H Q  64  Dimension 3  •  rabbit  seal*  0 cow •elephant • pig •sheep • dog  • zebra #  • cat  horse  •giraffe  •  F i g u r e 19.  Dimension 1 and 3 o f 5-dimensional on t h e p a i r - r a t i n g t a s k (MDSCAL)  scaling  f o r zoology Ph.D.s  65 the r e p r e s e n t a t i o n s f o r Dimensions  4 and 5 are not reproduced h e r e .  s h o u l d be noted t h a t the 5-dimensional s o l u t i o n was the most adequate  used because  i t provided  f i t f o r the d a t a a c r o s s a l l groups, not because  expected t o be a b l e t o i n t e r p r e t a l l o f the dimensions.  the author  F o r the  s u b j e c t s , the f i t f o r the 2-dimensional s c a l i n g s o l u t i o n , and,  It  zoology  fora l l  groups, the f i t f o r the 3-dimensional s o l u t i o n would have been c o n s i d e r e d a c c e p t a b l e by most s t a n d a r d s . and perhaps  However, no i n f o r m a t i o n appears t o be  g r e a t e r a c c u r a c y gained by s e l e c t i n g the d i m e n s i o n a l s o l u t i o n  w i t h the lowest s t r e s s v a l u e s and examining m e a n i n g f u l dimensions of t h i s  lost  i n terms  solution. F o r the z o o l o g y s u b j e c t s , the animals group themselves  two main c a t e g o r i e s .  One  z e b r a , g i r a f f e , h o r s e , cow, carnivores  roughly i n t o  group c o n s i s t s o f hoofed h e r b i v o r e s ( e l e p h a n t , sheep, and p i g ) , and the second c o n s i s t s o f  (dog, c a t , and b e a r ) .  R a b b i t and s e a l occupy  solitary  positions  d i s t a n t from a l l the o t h e r animals. P l o t s o f Dimension  1 v s . Dimension  o t h e r e d u c a t i o n a l l e v e l s i n F i g u r e s 20-22. Dimension  2 are p r e s e n t e d f o r each o f the There i s s t r o n g agreement on  1, which i s a s i z e dimension, a c r o s s a l l t h r e e e d u c a t i o n a l l e v e l s .  Cat, r a b b i t and s e a l are a t one extreme and g i r a f f e and e l e p h a n t a t the o t h e r extreme.  The second dimension, which shows rough u n i f o r m i t y a c r o s s groups  i n t h a t s e a l i s always  a t one extreme and the remaining animals  r o u g h l y midway a l o n g the dimension  i s hard to l a b e l .  grouped  S i n c e i t appears  c o n s i s t e n t l y a c r o s s groups, i t would, seem t o be a p s y c h o l o g i c a l l y  meaningful  dimension, but not e a s i l y i d e n t i f i a b l e by any E n g l i s h term.  remaining  dimensions  f o r each e d u c a t i o n a l l e v e l were n o t , i n t e r p r e t a b l e and are not  reproduced h e r e . o f s m a l l animals (bear, cow,  The  A g a i n , the animals are grouped  categories,  ( c a t , r a b b i t , dog, p i g and sheep) and one o f l a r g e  h o r s e , z e b r a , g i r a f f e , and e l e p h a n t ) .  other animals.  i n t o two  .  one  animals  S e a l i s d i s t a n t from a l l  66  Dimension  2  • seal  •  elephant  bear  •  cow  •  o  zebra  •H  W C CO  • horse  e •rH  Q  giraffe cat •  dog • • • sheep pig • rabbit  F i g u r e 20.  D i m e n s i o n s 1 a n d 2 o f 5 - d i m e n s i o n a l s c a l i n g o f 12 a n i m a l s f o r e d u c a t i o n u n d e r g r a d u a t e s on t h e p a i r - r a t i n g t a s k (MDSCAL)  67  Dimension  2  sheep •cat • rabbit  •giraffe  • dog ihorse cow  c o •H cn C  zebra  CD  6  pig  •H Q  i bear elephant  •seal  F i g u r e 21.  D i m e n s i o n s 1 a n d 2 o f 5 - d i m e n s i o n a l s c a l i n g o f 12 a n i m a l s f o r g r a d e 11 s u b j e c t s o h t h e p a i r - r a t i n g t a s k (MDSCAL)  68  Dimension  2  0 horse »cow  cat • dog  zebra sheep giraffe  c o  •H W  C  • bear  0)  e  •pig  •H  • rabbit  Q  elephant  • seal  F i g u r e 22.  Dimensions 1 and 2 o f 5-dimensional s c a l i n g o f 12 animals f o r grade 7 s u b j e c t s on the p a i r - r a t i n g t a s k (MDSCAL)  i  69 To  examine i n t e r s u b j e c t v a r i a b i l i t y ,  INDSCAL t e c h n i q u e  was  used.  The  input data  C a r r o l l and f o r the  the  individual subjects' d i s s i m i l a r i t y matrices  The  o u t p u t c o n s i s t e d o f two  were f i v e d i m e n s i o n a l . identical the  to the  Chang's  technique  (1969)  consisted  a t each e d u c a t i o n a l  first  s o l u t i o n was  the  stimulus  s t i m u l u s s p a c e d e r i v e d f r o m MDSCAL, a n d  space which  was  which i n d i c a t e d  how  the  subject space, g i v i n g a c o n f i g u r a t i o n of  t o which each s u b j e c t i n the group r e s p e c t e d  s i o n s of the  space.  the  first  stimulus two  Subjects  their respect  a t t h e g r a d e 11 and  across  higher  on  the  first  w i t h i n each e d u c a t i o n a l f o r t h e two level.  f o r the Education  first  s u b j e c t spaces f o r the  dimensions are presented  s u b j e c t s t e n d e d t o be sion.  The  d i m e n s i o n and  For 200  low on  i n Figures  dimensions. the  zoology  students, the  two  The  dimen-  For the  levels  a l l levels,  second dimen-  q u i t e homogeneous  most homogeneous s u b j e c t s  students,  t h e r e were t h r e e  s u b j e c t s , who  second dimension.  the d i f f e r e n t educational  23-26.  t o be  the  4 educational  d i m e n s i o n t h a n on l e v e l tend  The  points  i n d i c a t i n g the extent  in  which  "average" s u b j e c t i n each group responded i n the p a i r - r a t i n g t a s k .  s e c o n d s o l u t i o n was  for  level.  s c a l i n g s o l u t i o n s f o r each l e v e l , both of  The  of  subjects,  were v e r y h i g h on  Overall,  the  were  the  similarities  l e v e l s a r e more a p p a r e n t t h a n t h e  differ-  ences. In order across  t o c o m p a r e more r i g o r o u s l y t h e d i f f e r e n c e s b e t w e e n  g r o u p s , a s e r i e s o f INDSCAL a n a l y s e s  individual  subjects' matrices  a stimulus  s p a c e and  Plots  f o r the  r e v e a l any  i n Figures  27-32.  An  the  l e v e l s were p o o l e d  group were  two-dimensional s u b j e c t spaces f o r the  and  generated.  s i x p o s s i b l e group  examination  of these  plots  s t r i k i n g d i f f e r e n c e s between groups e i t h e r i n terms  homogeneity or d i s p e r s i o n . similar.  educational  s u b j e c t space f o r the pooled  combinations are presented does n o t  w i t h i n two  were c o n d u c t e d i n w h i c h  subjects  The  subject spaces are, i n f a c t ,  remarkably  of  70  0.933  a  0.667  o  •H  in  C  CD  e  -H Q  o  o o  0.400  o o o o  o o o o o  o o  O  o o  o o  0.133  o o  0.000  0.200  — I 0.400  1 0.600  o  ^J— 0.800  Dimension 1 F i g u r e 23.  The s u b j e c t space f o r dimensions 1 and 2 f o r z o o l o g y Ph.D.s on the p a i r - r a t i n g task (INDSCAL)  71  0.933  M  I  0.667  o 0.400  O  dbO  Q  O  O  O  0 o  o o  O °  Oo  o  0.133  oo  0.000 i  Figure  o  24.  0.200  0.400 Dimension  0.600  0.800  1  The s u b j e c t s p a c e f o r d i m e n s i o n s 1 a n d 2 f o r e d u c a t i o n g r a d u a t e s o n t h e p a i r - r a t i n g t a s k (INDSCAL)  under-  72  0.933  0.667 c  o  •H  cn C CD  e  •H  D 0.400  oo o o  o  oo o  o  o o  0.133  0.000  Figure 25.  0.200  0.400 Dimension 1  0.600  0.800  The subject space for dimensions 1 and 2 f o r grade 11 subjects on the p a i r - r a t i n g task (INDSCAL)  73  0.933  0.667 _  J  0.400  o o  o  o &o 0«D  O  o  o  o  OO  o o  0.133  O  o  0  o o  0.000  F i g u r e 26.  0.200  0.400 Dimension 1  0.600  0.800  The s u b j e c t space f o r dimensions 1 and 2 f o r grade 7 s u b j e c t s on the p a i r - r a t i n g t a s k (INDSCAL)  74  0.933  O education •  zoology  0.667 CM  a  o  •H cn  c  CD  o  B  •rH Q  •  0.400  o  o« O 0  0.133  o • •  o o • oo • ••• o  —\  0.000  F i g u r e 27.  0.200  0.400 Dimension 1  0.600  0.800  The s u b j e c t space f o r dimensions 1 and 2 (pooled) f o r zoology Ph.D.s and e d u c a t i o n undergraduates (INDSCAL)  75  0.933  o grade 11 • zoology  C N 0.667  I  0.400  •8 0.133  0.000  F i g u r e 28.  0.200  •  O  0*0  '  •• J o 0069 0* • •  •o o* o o%o • • ••• • o  0.400 Dimension 1  0.600  0.800  The s u b j e c t space f o r dimensions 1 and 2 (pooled) f o r zoology Ph.D.s and grade 11 subjects"(INDSCAL)  76  0 grade 7 •  0.933  zoology  0.667 o  •H W  C CU  e •rH  cP  0.400 _ J  Q  o  •  o  o o • o *b % o <>•• • go •  <  •'• <>•  o  •  o*ooo*  # o • ••• 0.133  o  0.000  F i g u r e 29.  0.200  0.400 Dimension 1  0.600  0.800  The s u b j e c t s p a c e f o r d i m e n s i o n s 1 a n d 2 ( p o o l e d ) f o r z o o l o g y Ph.D.s a n d g r a d e 7 s u b j e c t s (INDSCAL)  77  o g r a d e 11 • education  0.667  I  o  0.400  o oo  •• ••  $o o88o«o o •o o • •o • • • • o oSo # o •  0.133  0.000  0.200  0.400 Dimension  Figure  30.  •  o  0.600  0.800  1  The s u b j e c t s p a c e f o r d i m e n s i o n s 1 a n d 2 ( p o o l e d ) f o r e d u c a t i o n u n d e r g r a d u a t e s a n d g r a d e 11 s u b j e c t s (INDSCAL)  78  o grade 7 • education  0.667  c o  -H cn  C  CD  e  o o  Q 0.400  o  o • »o • • o o $ 0 ^ , 0 o • 8* <* * • • o •oo* • o • o 9  '•  0.133  •  o  •  • o  —  0.000  I  0.200  1 0.400  1 0.600  1— 0.800  Dimension 1 Figure  31.  The s u b j e c t space f o r dimensions 1 and 2 (pooled) f o r educat i o n undergraduates and grade 7 s u b j e c t s (INDSCAL)  79  o grade 7 • grade 11  0.933 _ J  0.667  0.400  O o  o» o • o o •  «9 o •  o• $4±oo  #  o 0.133 -\  0.000.  0.200  -6 0.400  0.600  0.800  Dimension 1  F i g u r e 32.  The s u b j e c t space f o r dimensions 1 and 2 (pooled) grade 11 and grade 7 s u b j e c t s (INDSCAL)  for  G. 1.  Task 4:.  S o r t i n g o f Animals  Procedure The  s u b j e c t s were g i v e n 25 c a r d s .  F o r the two youngest  c a r d c o n t a i n e d a n a t u r a l i s t i c c o l o r e d 5" x 3 i " photograph animals i n t h e s e t .  F o r the o l d e r groups,  cards.  appeared  corresponding  on 2\" x 3 i " index  The s u b j e c t s were i n s t r u c t e d t o s o r t t h e words  p i l e s on the b a s i s o f s i m i l a r i t y .  each  o f one o f t h e  an animal term,  t o t h e p i c t u r e s used w i t h the younger groups,  groups,  (or p i c t u r e s ) i n t o  The s u b j e c t s were f i r s t g i v e n t h e c a r d s  and t o l d t h a t each c a r d . c o n t a i n e d ' a name (or p i c t u r e ) o f an a n i m a l .  They  were asked t o spread t h e cards o u t i n . f r o n t o f them and t o l o o k them o v e r . K i n d e r g a r t e n , grade  3 and grade  animal as they spread them o u t .  7 s u b j e c t s were asked t o r e a d  I f a ' s u b j e c t made an e r r o r o r c o u l d n o t  i d e n t i f y an animal from the p i c t u r e , t h e experimenter him o r s u p p l i e d the c o r r e c t animal name. o c c a s i o n s w i t h t h e youngest the c o r r e c t response  age group.  immediately  gone through a l l 25 c a r d s .  (name) each  immediately c o r r e c t e d  T h i s o c c u r r e d on two o r t h r e e The s u b j e c t was r e q u e s t e d t o r e p e a t  a f t e r t h e experimenter  and a g a i n when he had  Then t h e s u b j e c t s were i n s t r u c t e d t o p u t i n t o  p i l e s a l l the animals t h a t they c o n s i d e r e d s i m i l a r , t h a t belonged i n some way.  together  They were t o l d t h a t they c o u l d make as many p i l e s as they  l i k e d and have as many animals i n a p i l e as they l i k e d ;  they c o u l d have  p i l e s w i t h j u s t one a n i m a l , o r two, o r t h r e e , o r as many as they  liked.  Each s u b j e c t was t o l d t h a t h i s p i l e s d i d n o t have t o have e q u a l numbers i n them.  The experimenter  s t r e s s e d t h a t t h e s u b j e c t had t o d e c i d e how many  p i l e s t o make and which animals t o p u t i n t o p i l e s , b u t t h a t those which t h e s u b j e c t thought b e l o n g e d ' t o g e t h e r A f t e r t h e z s o r t i n g procedure was completed,  animals  s h o u l d go i n t o t h e same p i l e . t h e s u b j e c t was i n s t r u c t e d t o l o o k  over t h e animals i n each p i l e and make any changes he c o n s i d e r e d n e c e s s a r y . A t t h e end o f the t a s k , the experimenter  recorded the s o r t i n g responses.  25 cards were p r e s e n t e d i n a d i f f e r e n t and random o r d e r f o r each s u b j e c t .  The  81 2.  Results The  all  number o f c a t e g o r i e s u s e d f o r s o r t i n g t h e 25 a n i m a l s  educational levels  from  2 t o 25.  ranged  over •  Table V p r e s e n t s t h e range o f c a t e -  g o r i e s , t h e mean number o f c a t e g o r i e s a n d t h e s t a n d a r d d e v i a t i o n s a s a f u n c tion of educational level.  T h e mean number o f c a t e g o r i e s u s e d was h i g h e s t  in  T h e r e was a d e c r e a s e  t h e k i n d e r g a r t e n group.  i n mean number o f c a t e g o r -  ies  u s e d up t o a n d i n c l u d i n g g r a d e 1 1 , f o l l o w e d b y a n i n c r e a s e i n E d u c a t i o n  and  zoology subjects.  T h e g r o u p u s i n g t h e f e w e s t number o f c a t e g o r i e s , o n  t h e a v e r a g e , a n d w i t h ' t h e l o w e s t s t a n d a r d d e v i a t i o n was t h e g r a d e 11 g r o u p . I n c i d e n c e m a t r i c e s were.computed f o r each s u b j e c t by a s s i g n i n g a z e r o or  one t o each p a i r o f a n i m a l s  according to-whether  p l a c e d t o g e t h e r i n t h e same p i l e . for  These i n c i d e n c e m a t r i c e s were t h e n  added  a l l s u b j e c t s w i t h i n an e d u c a t i o n a l l e v e l and s e r v e d as i n p u t t o J o h n s o n ' s  hierarchical clustering The 33-38. in  o r n o t they had been  technique..  h i e r a r c h i e s f o r each e d u c a t i o n a l l e v e l a r e p r e s e n t e d  The c l u s t e r s  i n Figures  ( d i a m e t e r method) o b t a i n e d f o r t h e z o o l o g y s u b j e c t s a r e  agreement w i t h those  f o r the pair ratings task.  T h e r e a r e two main  c l u s t e r s r e f l e c t i n g a . d i s t i n c t i o n b a s e d o n f o o d h a b i t s (monkey a n d b e a r a s e p a r a t e c l u s t e r , p e r h a p s because t h e y t e n d t o be o m n i v e r o u s , a l t h o u g h is  classified officially  a s a c a r n i v o r e , a n d monkey a s a h e r b i v o r e ) .  each c l u s t e r , t h e r e a r e f u r t h e r s u b d i v i s i o n s t a k i n g i n t o account ical  ( f o r example, skunk and p o r c u p i n e  on t h e i r b u i l t - i n  defenses  v s . nondefensive  f o r m one b r a n c h animals  like  bear  Within  geograph-  l o c a t i o n , h a b i t a t , m a m m a l i a n o r d e r , d o m e s t i c i t y , a n d some more  dimensions  form  specific  o f a t r e e based  r a b b i t , mouse a n d  squirrel). There a r e t h r e e main groupings group i n c l u d e s domesticated animals.  f o r the Education  200 s u b j e c t s .  animals w i t h a f u r t h e r d i v i s i o n  f o r pets v s . farm  The o t h e r t w o c l u s t e r s a p p e a r t o r e f l e c t a s i z e d i m e n s i o n ,  small-to-medium-sized  animals  One  i n one g r o u p and m e d i u m - t o - l a r g e - s i z e d  with animals  82  Table V Sorting: Mean Number o f C a t e g o r i e s U s e d t o S o r t 25 A n i m a l T e r m s , Range, and S t a n d a r d D e v i a t i o n f o r each E d u c a t i o n a l L e v e l Range  Mean  S  3-17  9.71  4.28  3-15  9.25  3.14  G r 11  4-16  8.17  2.30  Gr 7  3-15  8.92  3.54  Gr  3-16  9.12  3.83  2-25  10.92  4.99  Zoology =Education  200  3  Kindergarten  83  zebra horse donkey sheep cow deer giraffe came 1 elephant pig kangaroo squirrel mous e rabbit skunk porcupine seal lion  >  leopard cat  >  fox dog bat  >  monkey bear  — r 24  Figure  33.  22  i 20  —i— 18  Hierarchical sorting task  — i — 16 ~14~ 1 12 2 Proximity  - 1 —  1 8 10 0 Values  clustering f o r zoology (diameter method)  Ph.D.s  on  the  84  24  Figure  34:  22  20  18  Hierarchical graduates on  16 14 12 10 Proximity Values  clustering for education unders o r t i n g t a s k (diameter method)  85  elephant camel giraffe kangaroo bear  7  > -  >  >  leopard lion cat  >  dog fox seal monkey  > >  bat mouse rabbit porcupine skunk  >  y~  squirrel pig cow sheep deer  >  donkey horse  >  zebra 24  Figure  >  s~  35.  22  20  18  Hierarchical sorting task  16 14 12 10 Proximity Values  c l u s t e r i n g f o r grade (diameter method)  11  on  86  elephant giraffe leopard lion  >  >  monkey cat  >  dog mous e  >  > >  cow pig sheep bat •seal kangaroo rabbit deer bear fox porcupine skunk squi rre1 came 1 donkey  >  horse zebra  24  Figure  36.  22  20  > 18  Hierarchical sorting task  16 14 Proximity  — r  2  12 10 Values  c l u s t e r i n g f o r grade (diameter method)  7  on  87  >  fox leopard S~  lion monkey  >  kangaroo rabbit bear came 1 elephant seal bat  >  porcupine skunk mouse  >  squirrel  >  cat dog pig  > >  cow donkey horse sheep deer zebra —I  24  F igure  >  >  giraffe  3 7.  1  1  1  22  20  18  Hierarchical sorting task  1  r  >  r  I  16 14 12 10 Proximity Values  c l u s t e r i n g f o r grade (diameter method)  1  I  1  1  8  6  4  2  3  on  ~  I  0  88  deer  >  elephant kangaroo  >  bear  >  leopard lion bat  > >  >  cat dog fox seal  >  porcupine skunk monkey  >  mouse rabb i t squi rre1 pig sheep camel giraffe cow donkey  >  horse zebra 24  Figure  38.  22  20  18  Hierarchical sorting task  16 14 Proximity  12 10 Values  c l u s t e r i n g f o r k i n d e r g a r t e n on (diameter method)  the  89  i n t h e o t h e r group.  H a b i t a t and degree o f f e r o c i t y appear t o be f e a t u r e s .  f o r f u r t h e r d i s t i n c t i o n s w i t h i n t h e s e two major c l u s t e r s .  The f o u r main  c l u s t e r s o b t a i n e d a t t h e grade 11 l e v e l r e f l e c t t h e s i z e dimension a g a i n . One c l u s t e r c o n s i s t s o f l a r g e mammals, f u r t h e r d i v i d e d a c c o r d i n g t o food habits.  There i s another group c o n s i s t i n g o f medium-sized  another c l u s t e r o f medium-sized small, a n i m a l s .  herbivores.  W i t h i n t h e medium-sized  water) produces a f u r t h e r d i s t i n c t i o n .  Finally,  c a r n i v o r e s , and  there i s a c l u s t e r o f  c a r n i v o r e group, h a b i t a t W i t h i n t h e medium-sized  (land v s . herbivore  group, a f u n c t i o n a l d i s t i n c t i o n based on whether the animals a r e commonly used as food seems t o be r e s p o n s i b l e f o r another d i v i s i o n . group seems t o be f u r t h e r s u b d i v i d e d a c c o r d i n g t o h a i r  The s m a l l animal  length.  The f o u r c l u s t e r s a t t h e grade 7 l e v e l c o r r e s p o n d t o a group o f w i l d animals, a group o f d o m e s t i c a t e d a n i m a l s , a group o f North American a n i m a l s , and, f i n a l l y , a group-of animals t h a t can be r i d d e n .  E x c e p t f o r the f i n a l  group, the s i z e dimension seems t o be r e s p o n s i b l e f o r s u b d i v i s i o n s w i t h i n the t h r e e main t r e e s . ance  ( c i t y v s . farm;  H a b i t a t a l s o appears t o be o f p s y c h o l o g i c a l importa i r , land, water).  The c l u s t e r i n g s f o r t h e two youngest age groups do not l e n d themselves t o easy i n t e r p r e t a t i o n .  There a r e f o u r main c l u s t e r s a t t h e grade 3 l e v e l .  One group c o n s i s t s o f monkey, f o x , l e o p a r d , l i o n , kangaroo and r a b b i t . second c o n s i s t s o f b e a r , camel, e l e p h a n t and s e a l . p o r c u p i n e , skunk, mouse and s q u i r r e l .  kangaroo;  mouse, r a b b i t and s q u i r r e l ; and z e b r a .  There a r e s i x main h i e r -  One c o n t a i n s d e e r , e l e p h a n t and  the second groups dog, c a t and b a t ;  the f o u r t h b e a r , l e o p a r d and l i o n ;  The t h i r d c o n t a i n s b a t ,  The f i n a l group c o n t a i n s p e t s and  farm animals as w e l l as deer, g i r a f f e and z e b r a . a r c h i e s f o r the k i n d e r g a r t e n c h i l d r e n .  A  the t h i r d ,  f o x and s e a l ;  t h e f i f t h p o r c u p i n e , skunk,  monkey,  and the s i x t h farm animals and camel,  giraffe  By and l a r g e , t h e dimensions used f o r g r o u p i n g animals i n t h e s e  two age groups a r e n o t apparent.  T h i s may be because t h e dimensions used  90 were p r i m a r i l y p e r c e p t u a l , o r because no s y s t e m a t i c c r i t e r i a were b e i n g a p p l i e d i n these age groups, o r , f i n a l l y , because t h e r e was l a c k o f u n i f o r m ity  i n s o r t i n g b e h a v i o r a c r o s s s u b j e c t s w i t h i n these p a r t i c u l a r age groups. The  i n c i d e n c e m a t r i c e s f o r each . e d u c a t i o n a l l e v e l were s u b j e c t e d t o  K r u s k a l ' s MDSCAL a n a l y s i s .  In agreement w i t h t h e f r e e - l i s i n g and a s s o c i a -  t i o n s d a t a , the s t r e s s v a l u e s were t o o h i g h t o p r o v i d e an adequate f i t f o r a m u l t i d i m e n s i o n a l model o f s o r t i n g H.  behavior.  Summary o f F i n d i n g s and D i s c u s s i o n , S i m i l a r semantic  s t r u c t u r e s were o b t a i n e d a c r o s s a l l e d u c a t i o n a l  l e v e l s on t h e f r e e - l i s t i n g and a s s o c i a t i o n s t a s k s .  These s t r u c t u r e s were  s i m i l a r i n terms o f t h e i n t e r p r e t a b i l i t y o f t h e s t r u c t u r e s , t h e number o f c l u s t e r s o b t a i n e d and t h e types o f f e a t u r e s used. in  They were a l s o s i m i l a r  t h a t a m u l t i d i m e n s i o n a l model d i d n o t p r o v i d e an adequate f i t f o r t h e d a t a  from e i t h e r t a s k .  The p r o x i m i t y v a l u e s o b t a i n e d from the a p p l i c a t i o n o f  c l u s t e r i n g t e c h n i q u e s were low and decreased educational l e v e l . age.  s y s t e m a t i c a l l y with  T h i s i n d i c a t e s , d e c r e a s i n g homogeneity w i t h  O v e r a l l , there:appeared  l a r g e group o f f a i r l y  decreasing decreasing  t o be a.few s t r o n g l y a s s o c i a t e d animals  i s o l a t e d animals.  In the f r e e - l i s t i n g t a s k , t h e above  r e s u l t s p e r t a i n t o t h e a n a l y s i s o f d i s t a n c e s between those 25 animal the s e l e c t e d s e t .  I n terms o f o v e r a l l number o f animals  l i s t i n g t a s k , t h e r e was an expected age  and e d u c a t i o n .  and a  increase i n l i s t  terms i n  c i t e d i n the f r e e -  length with i n c r e a s i n g  The r e s u l t s from.the a s s o c i a t i o n s t a s k seemed t o agree  w i t h the r e s u l t s o b t a i n e d by Henley  (1969) f o r those animals which  overlapped  i n both s t u d i e s . On the p a i r - r a t i n g t a s k , both MDS and h i e r a r c h i c a l c l u s t e r i n g r e v e a l e d a dominant dimension  o f s i z e f o r grades 7, 11 and E d u c a t i o n 200.  T h i s r e s u l t i s i n agreement w i t h t h e f i r s t dimension (1969) and R i p s , Shoben and Smith o v e r l a p p i n g , s e t s o f animal  analyses  terms.  (1973)..  o b t a i n e d b o t h by Henley  Both s t u d i e s used d i f f e r e n t , b u t  The f i r s t dimension  o b t a i n e d by MDS and  91 hierarchical  c l u s t e r i n g f o r t h e z o o l o g i s t s was  S i n c e a n a d e q u a t e f i t f o r t h e d a t a was e n c e s a n a l y s i s c o u l d be second dimensions,  p r o v i d e d b y MDS,  c o n s i d e r a b l e h o m o g e n e i t y was  l e v e l s w e r e more a p p a r e n t  dimension.  an- i n d i v i d u a l  a p p l i e d t o the p a i r - r a t i n g data.  w i t h i n e a c h e d u c a t i o n a l l e v e l and  The  a food-habits  On  the f i r s t  obtained across  o v e r a l l , the s i m i l a r i t i e s  w i t h the p a i r - r a t i n g data.  subjects  across  Although  revealed a strong s i z e dimension zoologists again c l a s s i f i e d  multidimensional s c a l i n g d i d not  11, and  Education  readily  200.  identifiable  unstructured at these  age  levels.  field  The  The  the extent that l a c k . o f s t r u c t u r e r e f e r s t o lack of s t r u c t u r e , the semantic  provide  again  the s t i m u l i according to.food h a b i t s .  ( as opposed t o i d i o s y n c r a t i c ) a p p e a r s t o be  f o r g r a d e s 7;  g r a d e 3 c h i l d r e n d i d n o t show any To  educational  from t h e s o r t i n g t a s k were i n b a s i c agreement  an a d e q u a t e f i t f o r t h e s o r t i n g d a t a , t h e h i e r a r c h i c a l c l u s t e r i n g s  structure.  and  than the d i f f e r e n c e s .  results obtained  d e r g a r t e n and  differ-  kin-  group normative  f o r animal  terms  However, see d i s c u s s i o n on  pages 95-96. On Although on any  a l l t a s k s , h i e r a r c h i c a l ' c l u s t e r i n g , was  m u l t i d i m e n s i o n a l s c a l i n g d i d n o t g i v e an a d e q u a t e f i t f o r t h e  task except  the p a i r - r r a t i n g t a s k , t h i s  task with decreasing The and  The  f i t became e v e n p o o r e r  item set.  These r e l a t i o n s h i p s are p r e s e n t e d  d i s s i m i l a r i t y matrices  data  on  item  -.88  t o -.71  i n Tables VI  f o r each e d u c a t i o n a l l e v e l o b t a i n e d  12 i t e m s u b s e t .  High  i n d i c a t e a s t r o n g r e l a t i o n s h i p b e t w e e n t h e two  p a i r - r a t i n g task, the i n t e r s e c t i o n c o e f f i c i e n t s the  interanimal s i m i l a r i t y matrices  and  from the  negative correlations ranging tasks.  c o r r e l a t i o n s were a l s o o b t a i n e d between the d i s s i m i l a r i t y m a t r i c e s  and  every  subset  the p a i r - r a t i n g t a s k were c o r r e l a t e d w i t h the s i m i l a r i t y m a t r i c e s from s o r t i n g t a s k on t h e  age.  age.  r e l a t i o n s h i p s b e t w e e n t a s k s w e r e e x a m i n e d o n t h e 12  o n t h e 25  VII.  weaker-with decreasing  from the  from  Negative from  the  from the a s s o c i a t i o n s task free-listing  t a s k on t h e  12  T a b l e VI Relationships  Educational Level  between Tasks on 12 Item Subset o f Animal Terms Tasks A s s o c i a t i o n s -• Pair-Ratings.  Sorting Pair-Ratings  Free-Listing Pair-Ratings  Zool.  -.88  -.51  -.40  Educ.  -.71  -.63  -.46  Gr 11  -.84  -.55  -.47  Gr 7  -.80  -.59  -.49  >  Associations Sorting  —  Free-Listing Sorting  Free^Listing Associations  Zool.  .49  .43  .81  Educ.  .67  .57  .83  Gr 1 1  .59  .54  .8.7  Gr 7  .77  .68  .88  Gr 3  .58  .68  .84  Kind.  .58  .54  .76  93  Table VII Relationships  between Tasks on 25  Item S e t o f Animal Terms  Tasks Educational Level  Sorting Associations  Sorting Free-Listing  . Free-Listing Associations  Zool.  .43  .28  .72  Educ.  .59  .35  .68  Gr  11  .57  .27  .65  Gr  7"  .62  .43  Gr 3  .49 ,  .35  .68  Kind.  .45  o .27  .54  .  -71  94 i t e m subset, b u t these were lower,  ranging  l a t i o n s between t h e s i m i l a r i t y m a t r i c e s matrices  The c o r r e -  from t h e s o r t i n g t a s k and t h e  f r o m t h e a s s o c i a t i o n s and. f r e e - l i s t i n g t a s k s r a n g e d f r o m  o n t h e 12 i t e m s u b s e t . matrices  f r o m -.63 t o - . 4 0 .  between t h e s e  .43  The c o r r e l a t i o n s b e t w e e n t h e a s s o c i a t i o n s t a s k  and t h e f r e e - l i s t i n g m a t r i c e s  .88 t o .76 t h u s  .77 t o  f o r t h e 12 i t e m s u b s e t  i n d i c a t i n g strong r e l a t i o n s h i p s across  ranged  educational  from  levels  two t a s k s .  C o r r e l a t i o n s were d e t e r m i n e d between s o r t i n g , a s s o c i a t i o n s and listing, matrices  o n t h e 25 i t e m s e t .  The c o r r e l a t i o n s b e t w e e n  sorting  matrices  and a s s o c i a t i o n s m a t r i c e s  ranged from  .62 t o .43 a n d b e t w e e n  matrices  and f r e e - l i s t i n g m a t r i c e s  from  .27.  between a s s o c i a t i o n s and f r e e - l i s t i n g  .43.to  ranged from  free-  sorting  The c o r r e l a t i o n s  .72 t o .54.  Thus i t a p p e a r s t h a t t h e r e a r e s t r o n g r e l a t i o n s h i p s between t h e s o r t i n g and p a i r - r a t i n g s t a s k s and.between t h e f r e e - l i s t i n g tasks at a l l educational levels. the  These r e l a t i o n s h i p s were a n t i c i p a t e d i n  selection of the four tasks i n t h i s  advanced f o r t h e i r It  inclusion.  study  and r e c o n f i r m t h e r a t i o n a l e  4  seems c l e a r t h a t b o t h  t h e a s s o c i a t i o n s and f r e e - l i s t i n g  t a p p i n g a common a s s o c i a t i v e s t r u c t u r e .  I n t h e domain o f a n i m a l  seem t o b e a f e w s t r o n g l y a s s o c i a t e d p a i r s ( e . g . c a t - d o g , l a r g e group o f f a i r l y  and a s s o c i a t i o n s  i s o l a t e d animals  tasks are terms there  cow-horse) and a  w i t h no s t r o n g a s s o c i a t i o n s .  That  t h e r e were no c l e a r d i f f e r e n c e s b e t w e e n any o f t h e g r o u p s o n t h e a s s o c i a t i v e 4 Correlation coefficients v i a Kendall s t a u were a l s o o b t a i n e d between t h e 12 i t e m a n d 25 i t e m a n i m a l s e t s f o r t h e d i f f e r e n t t a s k s . I n agreement w i t h t h e p r e v i o u s a p p l i c a t i o n s o f t a u , t h e c o e f f i c i e n t s were lower i n a b s o l u t e v a l u e , b u t t h e p a t t e r n o f r e l a t i o n s h i p s was more a m b i g u o u s t h a n t h a t obtained through the a p p l i c a t i o n o f Pearson's r . The r e l a t i o n s h i p s b e t w e e n t h e s o r t i n g a n d p a i r - r a t i n g t a s k o n t h e 12 i t e m s u b s e t r a n g e d f r o m -.71 t o -.52. A l l o t h e r r e l a t i o n s h i p s b e t w e e n t a s k s o n t h e 12 i t e m s u b s e t w e r e lower and n o t s y s t e m a t i c a l l y d i f f e r e n t from each o t h e r . The r e l a t i o n s h i p s b e t w e e n t a s k s o n , t h e 25 i t e m s e t r a n g e d f r o m .11 t o .47 w i t h a l l t a s k s h a v i n g r o u g h l y t h e same r e l a t i o n s h i p s . 1  95 tasks  suggests t h a t t h e ' a s s o c i a t i v e p r o c e s s i s dependent- on e a r l y  specific  l i n g u i s t i c experience- i n v o l v i n g the c o - o c c u r r e n c e o f c e r t a i n ' a n i m a l w i t h i n the same c o n t e x t es.  Anglin  t o age  terms  o r w i t h the same p r i v i l e g e s o f o c c u r r e n c e i n s e n t e n c -  (1970) a l s o found t h a t the a s s o c i a t i o n s t a s k was  not s e n s i t i v e  difference. The  p a i r r - r a t i n g s and  d i f f e r e n c e s , and  s o r t i n g tasks  t o be p r o v i d i n g i n f o r m a t i o n  n i t i v e s t r u c t u r e o f animal terms. t o the way  seem t o be more s e n s i t i v e t o about d i f f e r e n c e s i n the  Cognitive  sions)  i n order  set.  Both M i l l e r  using various  to assign values  criteria  when the s u b j e c t  i s systemat-  (e.g. f e a t u r e s , images, dimen-  t o a l l the items c o n t a i n e d  (1967) and A n g l i n  cog-  s t r u c t u r e i s used here t o r e f e r  i n which animal terms are o r g a n i z e d  i c a l l y s e l e c t i n g and  age  in a particular  (1970) have a l s o found t h a t the  sorting  task r e v e a l s developmental d i f f e r e n c e s . Although i t was  suggested e a r l i e r t h a t one  p o s s i b l e outcome f o r  o r g a n i z a t i o n o f the semantic f i e l d o f animal terms a t younger age  levels  might i n v o l v e f i n d i n g l a c k o f normative s t r u c t u r e , the w r i t e r was  interested  in  d i s c o v e r i n g whether'the c l u s t e r r e s u l t i n g from the s o r t i n g t a s k a t  grade 3.and k i n d e r g a r t e n To e x p l o r e  l e v e l s were m e a n i n g f u l ' t o c h i l d r e n o f t h a t  t h i s , a group o f grade 2 . c h i l d r e n  s c h o o l were shown the p i c t o r i a l , s t i m u l i . u s e d  i n the s o r t i n g t a s k .  f i r s t o f a l l from the grade 3 c h i l d r e n i n : t h e p r e s e n t  animals had  children.  been p l a c e d . t o g e t h e r ' i n  reason. and  study and  t h a t t h e r e was  obtained following these  a reason f o r  They were asked t o t r y t o guess t h i s  S p e c i f i c a l l y , the w r i t e r s a i d t h a t she was  t h a t they had  been  The  The c h i l d r e n were t o l d t h a t groups and  p u t t i n g p a r t i c u l a r animals'together.  age.  from a West Vancouver elementary  s t i m u l i were arranged,. however, i n t o the c l u s t e r s which had  t h i s from the k i n d e r g a r t e n  g o i n g t o c l o s e her  t o t e l l her which group,they were t h i n k i n g about so  when she opened her eyes she  could  the  i d e n t i f y the r i g h t group.  appeared t o suggest some m e a n i n g f u l , but not t o t a l l y s y s t e m a t i c  eyes  that  T h i s method criteria  for  96 the  groupings obtained.  For the c l u s t e r s o b t a i n e d a t the grade  the  c h i l d r e n s u g g e s t e d t h a t one  group  p i n e , s k u n k , mouse a n d s q u i r r e l ) , animals  (fox, l i o n ,  represented small animals  another group  l e o p a r d , monkey, k a n g a r o o  3  (bat, porcu-  represented quite  and r a b b i t ) ,  level,  fierce  a third  group  r e p r e s e n t e d a n i m a l s w h i c h were n o t w i l d , d i d n o t b i t e and m o s t l y d i d n o t meat  ( d o g , c a t , p i g , cow,  and t h e f i n a l group had doing something The  labels  and  zebra),  ( b e a r , e l e p h a n t and  seal) or s t o r i n g water  of (camel).  suggested f o r the s i x k i n d e r g a r t e n trees r e f l e c t e d p r i m a r i l y B e a r , l e o p a r d , and  e l e p h a n t and k a n g a r o o , r a b b i t and s q u i r r e l ,  cow,  deer, g i r a f f e  a r e l a t i o n s h i p t o water, e i t h e r i n the sense  i n water  f e r o c i t y dimension.  which  donkey, h o r s e , sheep,  a little  l i o n were l a b e l e d as f i e r c e ,  fierce;  fierce;  and p i g , sheep,  They s u g g e s t e d t h a t dog,  chase c a t s and  cats- chase b a t s .  deer,  t o u c h e d them i n  camel,  z e b r a , d o n k e y a n d h o r s e a s n i c e a n i m a l s w h i c h m i g h t be  dren's zoo.  a  monkey, p o r c u p i n e , s k u n k , m o u s e , •••  s m a l l a n d m o s t l y h a r m l e s s e x c e p t i f one  c a s e t h e y m i g h t be a l i t t l e  eat  giraffe,  found i n a  chil-  c a t and b a t were r e l a t e d i n t h a t  Finally,  f o x and  s e a l were grouped  dogs  because  t h e y b o t h e a t meat. T h i s p r o c e d u r e , not p l a n n e d i n advance o r s y s t e m a t i c a l l y p u r s u e d , i s mentioned the  o n l y because  i t appears  t o suggest t h a t even  a t younger  age  s e m a n t i c f i e l d - o f a n i m a l terms c o n t a i n s s t r u c t u r e and t h a t t h i s  structure,  a l t h o u g h l e s s s y s t e m a t i c a l l y o r g a n i z e d , d e p e n d s o n t h e same k i n d s o f (size, age  ferocity,  and  systematically  f a r as t h e development  i n older  of the semantic s t r u c t u r e of animal  c o n c e r n e d , t h e a s s o c i a t i v e t a s k s seem t o s u g g e s t l i t t l e ,  s y n c r a t i c a s s o c i a t i o n s t e n d t o d e c r e a s e w i t h i n c r e a s i n g age. to  features  groups. As  is  e t c . ) w h i c h emerge more c l e a r l y  levels,  p r o v i d e some s u p p o r t f o r t h e n o t i o n o f d e f i n i n g v s .  (e.g. seal)  appeared  except that The  data  idioappear  characteristic  f e a t u r e s i n t h a t those animals which shared fewer o f the mammalian f e a t u r e s  terms  characteristic  t o be most d i s t a n t i n s e m a n t i c  space.  97 The features  r e s u l t s from the c o g n i t i v e tasks  suggest that c e r t a i n semantic  ( e . g . s i z e ) f o r t h e domain o f a n i m a l terms e n t e r  a t an e a r l y age.  the semantic  D e v e l o p m e n t c o n s i s t s i n a more s y s t e m a t i c  application of  these features t o the increasing c o l l e c t i o n of r e l a t e d l e x i c a l first  f e a t u r e s may b e d e r i v e d , a s C l a r k s u g g e s t s ,  s i z e i s a d i m e n s i o n based on p e r c e p t u a l these f i r s t there  features  appear a l s o t o be f a i r l y  a p p e a r s t o be f e a t u r e a d d i t i o n w i t h  terms.  from percepts.  discriminations. concrete  system  Clearly,  As A n g l i n  i n nature.  increasing education,  These  suggests, Although  i t a l s o seems  c l e a r t h a t , a t l e a s t b e y o n d g r a d e 7, no r a d i c a l r e o r g a n i z a t i o n o f t h e n o r m a t i v e semantic s t r u c t u r e appears t o occur without ing  extensive  such as t h a t i n v o l v e d i n becoming a z o o l o g i s t .  systematic  a p p l i c a t i o n o f t h e same s e m a n t i c f e a t u r e s  support f o r McNeill's v e r t i c a l hypothesis.  additional train-  The i n c r e a s i n g l y appears t o provide  The t e n d e n c y f o r g r o u p i n g s t o b e  f o r m e d i n a more i d i o s y n c r a t i c , h a p h a z a r d f a s h i o n i n y o u n g e r c h i l d r e n a l s o r e f l e c t s the developmental trends It  i s methodologically  suggested by Piaget.  i n t e r e s t i n g . t o note t h a t the p a i r - r a t i n g s task  was a m e n a b l e t o b o t h s p a t i a l a n d t a x o n o m i c o r g a n i z a t i o n s w h e r e a s t h e s o r t i n g task  induced only a taxonomic s t r u c t u r e .  I n a d d i t i o n , b o t h • t h e s p a t i a l and  taxonomic o r g a n i z a t i o n s w h i c h emerged.from t h e p a i r - g r a t i n g s d a t a strikingly  s i m i l a r semantic features.  to those obtained data.  This  appropriate  These f e a t u r e s were a l s o v e r y  from t h e h i e r a r c h i c a l c l u s t e r i n g analyses  suggests,  first  yielded similar  on t h e s o r t i n g  o f a l l , t h a t a t a x o n o m i c s t r u c t u r e i s a more  r e p r e s e n t a t i o n o f t h e domain o f a n i m a l t e r m s , s i n c e t h e r e i s  agreement on t h i s  structure across  two t a s k s .  Secondly, i t suggests that the  t a s k r e q u i r e m e n t s i n v o l v e d i n p a i r - r a t i n g s may t h e m s e l v e s b e r e s p o n s i b l e f o r inducing  a spatial organization regardless  investigation. spatially,  T h u s , t h e more a t a s k  f o r example, by p r e s e n t i n g  t h e more l i k e l y  o f t h e s p e c i f i c domain under  s u g g e s t s t h a t i t e m s can be a line  i ti s that subjects w i l l  along which t o order  t r y t o impose a  organized comparisons,  dimensional  98 r e p r e s e n t a t i o n , whether of the l e x i c a l  items  or not this  organization  involved.  On t h e b a s i s o f t h e r e s u l t s suggested.  c o r r e s p o n d s t o any n a t u r a l  from t h i s  s t u d y , o t h e r s t u d i e s c a n be  One t y p e o f s t u d y , b a s i c a l l y m e t h o d o l o g i c a l , w o u l d b e c o n c e r n e d  w i t h examining m u l t i d i m e n s i o n a l s c a l i n g and h i e r a r c h i c a l  clustering of pair-  r a t i n g s a n d s o r t i n g b e h a v i o r when t h e c r i t e r i a o n w h i c h t o s o r t o r s c a l e t h e s t i m u l i were g i v e n b e f o r e h a n d t o t h e s u b j e c t s . determine whether  I t would be p o s s i b l e t o  s u b j e c t i v e i n t e r p r e t a t i o n s by t h e experimenter about  f o r t h e d i m e n s i o n s o r nodes i n a c l u s t e r do, i n f a c t , d i s t i n c t i o n s b e i n g made b y t h e s u b j e c t s .  scaling  correspond t o the  F o r example,  o b t a i n e d f o r s e v e r a l groups on t h e p a i r - r a t i n g s t a s k .  labels  a s i z e d i m e n s i o n was A comparison o f t h i s  s o l u t i o n t o o n e o b t a i n e d when s u b j e c t s w e r e i n s t r u c t e d t o o r d e r t h e  s t i m u l i on a s i z e d i m e n s i o n would be i n t e r e s t i n g . dimensions d e r i v e d from m u l t i d i m e n s i o n a l s c a l i n g not forthcoming. available  Also, labels  f o r further  f o r t h e s e same g r o u p s  were  Some l i g h t m i g h t b e t h r o w n o n t h i s p r o b l e m i f d a t a w e r e  f r o m s u b j e c t s who h a d b e e n r e q u i r e d t o s c a l e t h e same s e t o f  s t i m u l i a c c o r d i n g t o many d i f f e r e n t c r i t e r i a . dimensions i n t h e grade  I f t h e second and t h i r d  7, 11 a n d E d u c a t i o n 200 s u b j e c t s r e p r e s e n t a n y t h i n g  o t h e r t h a n i n d i v i d u a l d i f f e r e n c e s o r r e s p o n s e s t o t h e s t i m u l i b a s e d on p r i m i t i v e p e r c e p t u a l c u e s , i t might be p o s s i b l e t o i d e n t i f y t h e l a b e l s f o r these dimensions through the.above obtained concerning c r i t e r i a  approach.  I n f o r m a t i o n c o u l d a l s o be  f o r s c a l i n g o r s o r t i n g w h i c h d o make a d i f f e r -  e n c e i n t h e s c a l i n g s o l u t i o n s a n d c l u s t e r i n g s , a n d t h o s e w h i c h do n o t . A second l i n e o f r e s e a r c h would  involve process studies concerned  the n a t u r a l a c q u i s i t i o n o f semantic s t r u c t u r e s i n v e r y young c h i l d r e n .  with In  the domain o f a n i m a l terms t h e s e s t u d i e s might i n v o l v e d e t e r m i n i n g t h e o r d e r of a c q u i s i t i o n o f s p e c i f i c  a n i m a l terms and t h e b a s i s f o r d i f f e r e n t i a t i n g  these terms from each o t h e r and from o t h e r l e x i c a l i t e m s . B e s i d e s t h e s t u d i e s s u g g e s t e d above,  a more i n t e r e s t i n g a n d i m p o r t a n t  99 question arises concerning the p o s s i b i l i t y of t r a i n i n g new  semantic structures  and/or modifying existing semantic structures at d i f f e r e n t age l e v e l s .  In  pursuing t h i s alternative, the outcomes from the present study seem to i n d i cate an appropriate choice among the tasks and analytic techniques used. More s p e c i f i c a l l y , a cognitive task l i k e the sorting task, i n  combination  with the h i e r a r c h i c a l clustering technique as a t o o l for describing taxonomic structures, appear the most promising. task requirements  I t has already been noted that the  involved i n p a i r - r a t i n g s may  induce a less natural organiz-  ation of l e x i c a l items than those involved i n the sorting task as f a r as the domain of animal terms i s concerned.  For t h i s reason, the sorting task i s  considered to be more appropriate for the type of research to be reported i n the following chapters.  100  CHAPTER V EFFECTS OF STRUCTURAL ORGANIZATION ON LEARNING AND TRANSFER PERFORMANCE:  ANALYSIS OF RESEARCH PROBLEMS  T h i s study was p r i m a r i l y concerned w i t h m a n i p u l a t i n g t h e s t r u c t u r a l o r g a n i z a t i o n o f a s e t o f f a m i l i a r l e x i c a l items from the domain o f animal terms.  I t was d e s i g n e d t o e x p l o r e t h e e f f e c t s o f two d i f f e r e n t t y p e s o f  s t r u c t u r a l o r g a n i z a t i o n on r e c a l l and c l u s t e r i n g i n a m u l t i - t r i a l f r e e t a s k and on combinatory grade 7 c h i l d r e n .  recall  a b i l i t y i n a t r a n s f e r s o r t i n g t a s k i n grade 3 and  The two t y p e s o f s t r u c t u r a l o r g a n i z a t i o n were b o t h d e s i g n e d  t o t r a i n t h e same m u l t i p l e c l a s s i f i c a t i o n scheme.  One type c o n s i s t e d o f a  h i e r a r c h i c a l l y o r g a n i z e d p r e s e n t a t i o n o f the items t o g e t h e r w i t h t h e i r c a t e gory l a b e l s .  The o t h e r type was a l i s t p r e s e n t a t i o n d e s i g n e d t o t r a i n  s e p a r a t e l y the c l a s s i n c l u s i o n r e l a t i o n s i n v o l v e d i n t h e h i e r a r c h i c a l ture.  struc-  I t was expected t h a t r e c a l l and t r a n s f e r a b i l i t y would be d i f f e r e n t i -  a l l y a f f e c t e d by p r e s e n t a t i o n method a c c o r d i n g t o t h e age and c o g n i t i v e o f c h i l d r e n a t these two grade l e v e l s .  ability  A review o f t h e t h e o r e t i c a l and  e m p i r i c a l l i t e r a t u r e r e l e v a n t t o t h e o v e r a l l o b j e c t i v e s o f t h e p r e s e n t study i s p r e s e n t e d below. A.  Multiple  Classification  M u l t i p l e c l a s s i f i c a t i o n r e f e r s t o t h e a b i l i t y t o combine the common feature  (or a t t r i b u t e ) o f one c l a s s w i t h t h e common f e a t u r e (or a t t r i b u t e ) o f  another c l a s s such t h a t t h e m u l t i p l e c l a s s i s d e f i n e d by t h e simultaneous presence o f both f e a t u r e s .  In P i a g e t i a n t h e o r y ( I n h e l d e r and P i a g e t , 1964),  m u l t i p l e c l a s s i f i c a t i o n i s c o n s i d e r e d important i n t h e a t t a i n m e n t o f c o n c r e t e o p e r a t i o n s and m u l t i p l e c l a s s i f i c a t i o n items a r e i n c l u d e d i n many  developmental  101 tests  (Jacobs and Vandeventer, 1969).  The  emergence o f t h i s s k i l l ,  demonstrated i n a number o f s t u d i e s , o c c u r s ( I n h e l d e r and  Piaget,  1964;  Parker and  P i a g e t c o n s i d e r s t h a t the o p e r a t i o n s simultaneously. tial  around seven t o nine y e a r s  Day,  1971;  underlying  and W o h l w i l l ,  However, a number o f s t u d i e s have o b t a i n e d  K l a h r and Wallace  report information processing from simple lems.  age  varying  emerge sequen-  (Klahr and  Wal-  (1970), u s i n g computer s i m u l t a t i o n methods,  analyses  f o r seven c l a s s i f i c a t i o n t a s k s  s o r t i n g t o h i e r a r c h i c a l c l a s s i f i c a t i o n and  They i d e n t i f i e d a s e t of b a s i c p r o c e s s e s  f i c a t i o n such a s . n o t i c i n g a v a l u e f e a t u r e s common t o two  of  1967).  classificatory skills  development on d i f f e r e n t types o f c l a s s i f i c a t i o n t a s k s  l a c e , 1970).  as  c l a s s i n c l u s i o n prob-  involved i n multiple  ( f e a t u r e ) o f an o b j e c t ,  o b j e c t s , and  classi-  identifying  f i n d i n g a l l objects with  V a r i a t i o n s i n a t t e n t i o n and m o t i v a t i o n  ranging  a given  a f f e c t these b a s i c p r o c e s s e s  r e s p o n s i b l e f o r v a r i a t i o n s a t the t a s k performance l e v e l .  feature. and  K l a h r and  are  Wallace  (1970) suggested an o r d e r i n g o f task d i f f i c u l t y i n terms o f the demands p l a c e d on a t t e n t i o n a l and m o t i v a t i o n a l mechanisms.  They c o n s i d e r e d h i e r a r c h i c a l  c l a s s i f i c a t i o n t o be r e l a t i v e l y more d i f f i c u l t than o t h e r  classification  tasks. There have been two  main types o f s t u d i e s a s s e s s i n g age  i n m u l t i p l e c l a s s i f i c a t i o n performance. dimensions  (e.g. shape, c o l o r ) i n a m a t r i x  choose the a p p r o p r i a t e row  and  The  item t o f i l l  column dimensions  f i r s t type has  format.  age  dimensions t o s o r t items.  i n the use o f f u n c t i o n a l and  age.  Kofsky, 1966).  A gradual  o f age,  The  c h i l d r e n use  increase occurs with  a b s t r a c t dimensions.  i n c r e a s i n g age  the  These s t u d i e s have found  At 6 y e a r s  s i o n s are dominant a t e i g h t or nine years o f age. dimensions i n c r e a s e s s t e a d i l y w i t h  perceptual  c h i l d ' s task i s to  (Jacobs and Vandeventer, 1969;  t h a t the b a s i s f o r s o r t i n g changes w i t h  ing  used  the b l a n k c e l l a t the i n t e r s e c t i o n o f  second type has used an o b j e c t s o r t i n g approach.  perceptual  The  differences  The and  use  increas-  F u n c t i o n a l dimenof abstract  education  (Goldman  and  102 Levine,  1963;  1954).  This  Heald and M a r z o l f ,  1953;  Giver  a n d H o r n s b y , 1966;  Sigel,  1953,  d e v e l o p m e n t a l sequence appears t o be one o f p r e f e r e n c e f o r  c e r t a i n t y p e s o f dimensions f o r s o r t i n g r a t h e r t h a n an i n a b i l i t y t o u s e o t h e r s ( B i r c h and Bortner,  1966).  Parker  approach w i t h t h e use o f t h ethree al,  and a b s t r a c t - and obtained  above.  a n d Day (1971) c o m b i n e d t h e m a t r i x types o f dimensions - perceptual,  t h e same d e v e l o p m e n t a l s e q u e n c e  function-  described  • Studies  concerned with  d e s c r i b i n g t h e a c q u i s i t i o n o f complex  icatory  s k i l l s have used e i t h e r c o n c r e t e  studies  (e.g."Anglin,  1970;  Miller,  or pictorial  stimuli.'  classif-  Those s o r t i n g  1969) w h i c h h a v e u s e d v e r b a l s t i m u l i  c h i l d r e n were n o t d e s i g n e d t o e x p l o r e  theunderlying  with  combinatory, r u l e s , b u t  r a t h e r t o r e v e a l t h e dimensions used depending on t h e p a r t i c u l a r s t i m u l u s items. Some s t u d i e s h a v e b e e n c o n c e r n e d w i t h t i o n s and a s s e s s i n g  training multiple  e f f e c t i v e n e s s o f t r a i n i n g on subsequent c r i t e r i o n  These s t u d i e s have p r i m a r i l y used, n o n - v e r b a l s t i m u l i a n d a r e , especially relevant  classificatasks.  therefore, not  t o t h e main concern o f t h e p r e s e n t study.  Edwards  (1968) u s e d a m a t c h i n g t o s a m p l e t e c h n i q u e a n d d i f f e r e n t t y p e s o f v e r b a l These cues i n c r e a s e d fer  task.  arities  t h e v a r i e t y a n d number o f c a t e g o r i z a t i o n s made o n a t r a n s -  S i g e l , Roeper and Hooper  (1966) f o u n d t h a t d i s c u s s i o n s  and d i f f e r e n c e s between v a r i o u s  changes i n c l a s s i f i c a t i o n performance. used t r a i n i n g on matrix-completion, increased Ruff  scores  i nfirst  objects  d i d n o tproduce  about  simil-  subsequent  Jacobs and Vandeventer  (1969, 1971)  m a t r i x - b u i l d i n g and s o r t i n g and obtained  g r a d e r s on t r a n s f e r t a s k s .  Parker,  Sperr, and  (1972) c o m p a r e d i n d i v i d u a l s e q u e n c e d i n s t r u c t i o n ( d e v e l o p e d b y t a s k  analysis) with ably  cues.  t r a i n i n g on t e r m i n a l b e h a v i o r .  Both groups performed  compar-  and were s i g n i f i c a n t l y b e t t e r t h a n a n o - c o n t a c t c o n t r o l group. T r a i n i n g on a m u l t i p l e c l a s s i f i c a t i o n which a l s o i n v o l v e d  i n c l u s i o n r e l a t i o n s w a s t r i e d b y Kohnstamm  (1963) w i t h  f i v e year  class  olds.  103 Training  on  the  logical  structure using blocks  d i f f e r i n g only  in size  c o l o r t r a n s f e r r e d t o more c o m p l e x v e r b a l l y p r e s e n t e d i t e m s . a simpler  task  allowed  the  c h i l d to grasp the  t h e n t r a n s f e r r e d t o a more c o m p l e x The  c o m p o n e n t s i n any  and  the  Concept c o m p l e x i t y can d i m e n s i o n s and tion applies.  separately  Training  in multiple  d i m e n s i o n s and  t o the  number and  Hierarchical  type of  In c l a s s i f i c a t i o n t a s k s ,  the  t h e i r values here.  relevant  the  r u l e t o be  same  distinc-  acquired,  d i f f i c u l t y of dimensional  s t u d i e s w h i c h e x a m i n e t h e s e two  c l a s s i f i c a t i o n m i g h t s h e d some l i g h t on  variables  which  dimensional values - i s relevant  e a s i e r t o l e a r n when t h e  reduced.  p r o c e s s e s and B.  vary according  - the  Kohnstamm's s t u d y i n d i c a t e s t h a t t h e  c l a s s i n c l u s i o n , was f i c a t i o n was  relevant  combinatory r u l e s .  class inclusion logic,  concept l e a r n i n g l i t e r a t u r e between  concept l e a r n i n g task  r u l e f o r combining the  T h u s t r a i n i n g on  task.  d i s t i n c t i o n made i n t h e  two  and  identi-  components  the  learning  involved.  Organization  C l a s s i f i c a t i o n tasks  which require  recursive  r e w r i t i n g of  successive  nodes i n terms o f c l a s s i n c l u s i o n r e l a t i o n s r e s u l t i n h i e r a r c h i c a l s t r u c t u r e s . Not  only  a l s o an  i s hierarchical organization  e f f i c i e n t method f o r - o r g a n i z i n g  involves  grouping information,  i f y i n g the higher and  pervasive  labels.  assigning  Two S m i t h , 1972)  specific  studies  spection.  l a b e l s to the  i t is  since i t then c l a s s -  then c o n s i s t s of r e c a l l i n g lower-level  the labels  instances.  have examined the  and  W i n z e n z , 1967;  c o m p l e t e h i e r a r c h i c a l s t r u c t u r e was  c o n s i s t i n g of  and  e f f e c t s of h i e r a r c h i c a l organization  B o w e r e t . a l . (1967) p r e s e n t e d f o u r h i e r a r c h i e s  each h i e r a r c h y  science,  g r o u p s , and  i n t u r n generate the  (Bower, C l a r k , L e s g o l d  i n g i n a d u l t s when t h e  and  storing information  R e t r i e v a l of information  l e v e l c l a s s i f i c a t i o n s w h i c h can  eventually  and  in life  28 w o r d s .  for meaningful conceptual hierarchies  Nelson on  and  learn-  presented for i n concurrently,  Learning i n a free r e c a l l s i t u a t i o n (e.g.  minerals-,  a n i m a l s ) was  compared  I  1  w i t h l e a r n i n g o f randomly generated h i e r a r c h i e s c r e a t e d list.  The  r e s u l t s indicated that subjects  c o n d i t i o n were g e n e r a t i n g T h i s was  tual categories; in  and  word was  r e c a l l e d before  t h a t r e c a l l o f a n o d a l word served  e n t i r e c l u s t e r below t h a t word was  as a cue  t o concep-  level.  often omitted.  •, Bower e t a l . (1969;.-  suggest t h a t when a l i s t  f o r the r e c a l l  Bower, 1970;  Bower, L e s g o l d  list  Organized p r e s e n t a t i o n  a l s o strengthens p a r t i c u l a r  and  and  Tieman,  the  category-to-instance him  t o generate they  list are  o f the  conceptual  the l i s t  conceptual  a s s e s s e d i n another study where  naive  c o n s t r u c t i o n p r i n c i p l e and were asked t o t r y t o  h i e r a r c h i e s o f the type used i n Bower e t a l . ' s study.  d i d badly  a t t r y i n g t o produce the h i e r a r c h i e s a c t u a l l y  p r e s e n t e d t o the e x p e r i m e n t a l  subjects.  S i m i l a r views c o n c e r n i n g been proposed by Dale  That  word l i s t s simply-on the b a s i s o f t h e i r knowledge  c o n s t r u c t i o n p r i n c i p l e was  Naive s u b j e c t s  to  T h i s p r e v e n t s the o c c u r r e n c e o f i n t r u s i o n s ( n o n - l i s t  s u b j e c t s were not g e n e r a t i n g  construct  stores  subject  c a t e g o r i e s , would o c c u r f r e q u e n t l y w i t h o u t such an e d i t i n g p r o c e s s .  s u b j e c t s were g i v e n  1969)  also tries  provides  D u r i n g r e c a l l , the r e t r i e v a l p l a n a l l o w s  members) which, because o f the nonexhaustive c h a r a c t e r  list  the  .  members which are checked f o r r e c o g n i t i o n o f l i s t membership b e f o r e  o f the  of  to h i e r a r c h i c a l  o f r e l a t e d f a m i l i a r words i s s t u d i e d , a p e r s o n  generate a r e t r i e v a l method.  overtly recalled.  subordin-  In the group r e c e i v i n g  about the o c c u r r e n c e o f each word on the  w i t h a r e t r i e v a l r u l e and  its  that  I f a n o d a l word were f o r g o t t e n ,  randomly g e n e r a t e d h i e r a r c h i e s , r e c a l l appeared u n r e l a t e d  associations.  construction rule.  t h a t h i e r a r c h i e s were generated from top t o bottom;  the s u b o r d i n a t e words below t h a t node.  information  organized  e n t i r e l y c l u s t e r e d according  almost a l l cases the s u p e r o r d i n a t e  ate words;  list  4  same word  i n the c o n c e p t u a l l y  t h e i r r e c a l l by u s i n g the  apparent i n t h a t r e c a l l was  from the  0  (1967) and  the p r o c e s s e s i n v o l v e d i n f r e e r e c a l l have Kintsch  (1968).  Improvement i n r e c a l l  over  105 trials,  according  to t h i s viewpoint,  the  a s s o c i a t i o n s between the  the  f u r t h e r e l a b o r a t i o n of the  occurence-information  being  frequency, recency, or the A  second study  would r e s u l t from the  c a t e g o r y l a b e l and retrieval  stored  rule;  f o r the  trace-strength  (Nelson  and  strengthening  the  presented instances;  and  f r o m more d i s c r i m i n a t i n g  l i s t w o r d s , e i t h e r on of the presented  S m i t h , 1972)  ture  from t h a t of  ture.  learning already  A c q u i s i t i o n and  items.  e f f e c t was  greater  idea t h a t the  at the  r a t h e r t h a n as  a list  subjects  had  learned  received, t r i a l s  i n which the p o s i t i o n of v a r i o u s  changed from l e f t t o r i g h t ' o r v i c e v e r s a  ment.  This.study  tural organization  learning.  d i d not  information  a f f e c t s l e a r n i n g , and  was The  r e s u l t s support  construction  c l u s t e r s i n the  the  rule  since those subjects  who  hierarchy  perform s i g n i f i c a n t l y  always s t u d i e d the h i e r a r c h y  s u p p o r t s Bower e t a l . ' s s t u d y .  struc-  of associations.  a list  ' p h o t o g r a p h i c ' image o f t h e h i e r a r c h y  who  time of  Their  r a t h e r t h a n any  e n t l y from those subjects  (connections  f a m i l i a r m a t e r i a l arranged i n t h i s  f o r a c q u i s i t i o n than r e t e n t i o n .  experimental  long-  e f f e c t s of l e a r n i n g a p a r t i c u l a r s t r u c -  r e t e n t i o n w e r e b e t t e r when t h e  presented i n a v i s u a l hierarchy  of  e x a m i n e d a c q u i s i t i o n and  between l e t t e r s ) p r e s e n t e d i n a g r a p h i c a l h i e r a r c h y t o separate the  from  the b a s i s  term r e t e n t i o n of p r e v i o u s l y u n f a m i l i a r h i e r a r c h i c a l information  They were a t t e m p t i n g  of  u n d e r one  differ-  arrange-  I t indicates that  struc-  i t extends t h i s e f f e c t to long  term  retention. Whether o r not  a h i e r a r c h i c a l s t r u c t u r e g e n e r a t e d by  c o n s t r u c t i o n r u l e w o u l d be The  and  used by  c h i l d r e n has  c l o s e s t approximation to a study dealing with  by A n g l i n  (1970).  adults with the  learned  He  presented subjects  ranging  l e f t - b r a n c h i n g or right-branching  ends o f the  tree branches.  The  Subjects  and  (now  then t r y t o w r i t e the words  had  not  this question i n age  been was  list  studied. conducted  from t h i r d graders  to  t r e e - l i k e diagrams w i t h words  at  m a t e r i a l was  t u r e d or randomly p o s i t i o n e d .  a similar  either conceptually  t o study the  diagrams  struc-  briefly  p r e s e n t e d a t the b o t t o m o f the page) i n  106 t h e i r appropriate  p l a c e s on the diagrams.  youngest s u b j e c t s made l i t t l e use age,  the  o f the  The  r e s u l t s indicated that  structure provided.  subjects presented with s t r u c t u r e d m a t e r i a l -  b e t t e r than the  With i n c r e a s i n g  performed i n c r e a s i n g l y  s u b j e c t s p r e s e n t e d w i t h the randomly p o s i t i o n e d  Bower (1970) p o i n t s out  i s to  ' d i v i d e and  m a t e r i a l i n t o s m a l l e r groups by  conquer':  some means, and  integrated packets of information.  that i s , subdivide  then l e a r n those p a r t s  . . . With word l i s t s  r u l e which g e n e r a t e s a h i e r a r c h i c a l s t r u c t u r e i s f a m i l i a r and  for  In o r d e r  t o use  i t , however, a p e r s o n has  c l a s s i n c l u s i o n r e l a t i o n s and  c h i l d r e n , depending on t h e i r age  use  f i g u r e s , i n which the s u b j e c t s o f the p o p u l a t i o n ,  level rule.  could, i n theory,  Whitman and  d e t e r m i n i n g which p a r t i c u l a r i n s t a n c e s  I t may  Lee  easier  other  Garner  had,  facil-  In a study w i t h geometric generate a l l p o s s i b l e (1962) showed t h a t ease o f  i n f a c t , been p r e s e n t e d depended subset o f  pre-  Rule d i f f i c u l t y i s an important component i n l e a r n i n g  r e t r i e v a l , therefore.  C.  be  (1968) showed t h a t  on the c o m p l e x i t y o f the r e s t r i c t i v e r u l e c h a r a c t e r i z i n g the  in  a b l e t o under-  lower l e v e l r u l e s i n v o l v e d i n a more complex r u l e  i t a t e d the a c q u i s i t o n o f the h i g h e r  sented p a t t e r n s .  for  so t h a t , when combined w i t h  c l a s s i n c l u s i o n s , a h i e r a r c h i c a l s t r u c t u r e emerges.  instances  efficient  Thus, a s i m p l i f i e d p r e s e n t a t i o n  a h i e r a r c h i c a l s t r u c t u r e may Relevant Free R e c a l l Studies  aid.younger age  o f the r u l e s  groups i n f r e e r e c a l l  involved learning.  at free r e c a l l learning i n c h i l d r e n .  A review o f these s t u d i e s appears t o i n d i c a t e t h a t c h i l d r e n from the age on are a b l e t o use  r e c a l l o f items i n the  and  i n Children  A number o f s t u d i e s have looked  kindergarten  The  stage o f c o g n i t i v e development, t o  l e a r n each c l a s s i n c l u s i o n r u l e s e p a r a t e l y ,  p r i o r l e a r n i n g o f the  as  (p. 41)."  t o be  them r e c u r s i v e l y .  and  the  the main g r o u p i n g  determinants are s i m i l a r i t y o f meanings or semantic c a t e g o r i e s  stand  material.  "the p r e f e r r e d s t r a t e g y o f the a d u l t human i n l e a r n i n g  a l a r g e body o f m a t e r i a l  human a d u l t s .  the  o r g a n i z a t i o n a l p r o c e s s e s i n order  f r e e r e c a l l t a s k s which have been used.  to  of  increase  A l t h o u g h some  107 s t u d i e s have found t h a t i n c r e a s e s recall  and  c l u s t e r i n g of items  H a l w e s , and and  Flavell,  Shapiro,  the  a b i l i t y o f the  This  free r e c a l l  Laurence was  this  and  older  f o r c h i l d r e n across  of the  d i f f e r e n t age  spontaneously  or  stored  categories  and  obtained  groups.  increase  appeared to a i d nursery  c h i l d r e n were o r g a n i z i n g semantic categories  school  school  t h e s e two  they  For  example,  g r o u p s , was  not  there  evidence that  i n ' a manner c o n s i s t e n t w i t h  s p o n t a n e o u s l y employ s o r t i n g s t r a t e g i e s t o o r g a n i z e  form c a t e g o r i e s , y o u n g e r age  ference  recall  the  grades  a  collection  the  three  A l s o , C o l e e t a l . (1971) f o u n d t h a t d e s p i t e  the  manipu-  a subsequent increase  and  subjects  expected to produce  i n g r a d e s 1 t h r o u g h 9,  o l d e r c h i l d r e n was  storage  strategies.  the  only  real  dif-  t h a t o l d e r c h i l d r e n appeared This  implies that  the proper s t r a t e g i e s .  Other studies  to  differential  younger  c h i l d r e n c o u l d p e r f o r m l i k e o l d e r ones under c o n d i t i o n s where t h e y were t r a i n e d t o use  1  across  across  Yet  and  in recall  between y o u n g e r and  better retrieval  the  shown how  l a t i o n o f d i f f e r e n t v a r i a b l e s w h i c h m i g h t be l e a r n i n g and  -  when- p r o m p t e d o r  t h e r e was  groups.  the  contained.  of p i c t u r e s , whereas grade 5 c h i l d r e n . d i d .  use  lists  kindergartners.  M o e l y e t a l . (1969) f o u n d t h a t c h i l d r e n i n k i n d e r g a r t e n 3 d i d not  in  c h i l d r e n w e r e somewhat e q u i v o c a l  c h i l d r e n but  t h e i r output l i s t s  then  inconsistencies  of h i g h l y r e l a t e d versus unrelated  nursery  However, i n n e i t h e r c a s e , w i t h  and  informa-  s i g n i f i c a n t l y d i f f e r e n t f o r c h i l d r e n from grade 3 onwards, whereas  results for kindergarten  and  form c a t e g o r i e s ,  c o n s e q u e n t l y show an  a n a l y s i s makes some s e n s e o u t  children  for organization),  to organize  and  Olson,  Yoshimura, Moely,  f o r b e t t e r r e t r i e v a l of the  information,  in  Moely,  l a t t e r t o impose o r g a n i z a t i o n  allow  (1967) f o u n d t h a t r e c a l l  increases  S h a r p , 1971;  R o s n e r , 1971;  I f d e l i b e r a t e l y i n s t r u c t e d i n how  y o u n g e r c h i l d r e n use  in  and  (or t o n o t i c e p o s s i b i l i t i e s  to develop a r u l e which w i l l  recall.  associated with  (Cole, Frankel  N e l s o n , 1969;  learning materials  tion.  are  1 9 7 1 ) , t h e m a i n d i f f e r e n c e b e t w e e n y o u n g e r and  seems t o l i e i n t h e on  1969;  i n age  (e.g. H o r o w i t z ,  1969;  to  108 S h a p i r o and Moely, 1971;  a n d S t e i n m e t z a n d B a t t i g , 1969) h a v e f o u n d no  s i g n i f i c a n t d i f f e r e n c e s i n c l u s t e r i n g w i t h age. These r e s u l t s on f r e e r e c a l l . l e a r n i n g i n c h i l d r e n c a n be v i e w e d i n terms o f t h e t h e o r e t i c a l framework and r e s e a r c h According  t o Kendler  (1973), there  c o n t r o l and p r o d u c t i o n the  deficiency.  C o n t r o l ' d e f i c i e n c y i s used t o d e s c r i b e ( f o r example, a c a t e g o r y  t o control behavior.  shown t h a t c o n t r o l d e f i c i e n c y r a p i d l y d e c l i n e s Production  d e f i c i e n c y , on t h e o t h e r  completely supplied  with  age.  Thus, those f r e e r e c a l l  children  This  level. even  t o be produced  deficiency i s also  l e v e l b u t i t d e c l i n e s much more s l o w l y a n d l e s s  there  i s a marked improvement i n l e a r n i n g and r e c a l l .  s t u d i e s which s u p p l i e d mediators f o r t h e younger  c h i l d r e n found an i n c r e a s e this  i tf a i l s  have  W i t h t h i s t y p e o f d e f i c i e n c y , when t h e m e d i a t o r i s  f o rthe child,  not provide  Numerous s t u d i e s  hand, r e f e r s t o t h e case i n which,  class of environmental events.  present a t the kindergarten  label)  after the kindergarten  when t h e m e d i a t o r i s i n t h e r e p e r t o i r e o f t h e c h i l d , to the relevant  deficiency.  a r e two t y p e s o f m e d i a t i o n a l d e f i c i e n c i e s ' -  s i t u a t i o n i n which a p o t e n t i a l mediator  e v e n when i t i s p r o d u c e d f a i l s  on m e d i a t i o n a l  i n c l u s t e r i n g and r e c a l l .  type o f strategy,  Those s t u d i e s w h i c h d i d  found d i f f e r e n c e s between younger and o l d e r  ( i n t h e case where o l d e r c h i l d r e n ' s p o n t a n e o u s l y  produced t h e media-  t o r s ) o r no d i f f e r e n c e s i n t h e c a s e w h e r e a l l g r o u p s w e r e d e f i c i e n t (none s u p p l i e d t h e m e d i a t o r s s p o n t a n e o u s l y ) o r where a l l groups were efficient  ( s i n c e t h e t a s k was o r g a n i z e d  the p o t e n t i a l D.  Rationale The  so t h a t a l l subjects  equally  w o u l d be aware o f  mediators). a n d Summary o f H y p o t h e s e s  p r e s e n t study examined l e a r n i n g and t r a n s f e r o f a m u l t i p l e c l a s s -  i f i c a t i o n o f a n i m a l terms i n c h i l d r e n o f two d i f f e r e n t ages under d i f f e r e n t stimulus  presentation  methods and d e g r e e s o f l e a r n i n g .  indicated that multiple c l a s s i f i c a t i o n years range, a group o f c h i l d r e n  skills  Since  P i a g e t has  emerge i n t h e s e v e n t o n i n e .  ( g r a d e 3) who h a d n e w l y a c q u i r e d  o r were i n  109 the p r o c e s s o f a c q u i r i n g t h i s s k i l l were compared w i t h an o l d e r group o f dren  (grade 7) whose a b i l i t y i n m u l t i p l e c l a s s i f i c a t i o n s k i l l s  w e l l developed  and h i g h l y f l e x i b l e .  sense and means the person's to  another.  Flexibility  a b i l i t y to s h i f t  i s used here  from one  I t i s the o p p o s i t e o f r i g i d i t y .  chil-  s h o u l d have been i n the P i a g e t i a n  classificatory  system  Cognitive f l e x i b i l i t y  "exists  i f and o n l y i f a s u b j e c t , when c o n f r o n t e d w i t h a s e t o f elements which he to  c l a s s i f y , can a n t i c i p a t e the s e v e r a l stages i n v o l v e d i n the  has  complete  c l a s s i f i c a t i o n and can a l s o a t the same time a n t i c i p a t e those s t a g e s i n reverse order. subdivisions.  In o t h e r words, he must a n t i c i p a t e b o t h the unions and ( I n h e l d e r and P i a g e t , 1964,  p.  the  288)."  As i n d i c a t e d p r e v i o u s l y , m a t e r i a l o r g a n i z e d i n a h i e r a r c h i c a l t u r e produces e f f i c i e n t and r a p i d l e a r n i n g i n a d u l t s .  struc-  Whether t h i s i s so i n  younger age groups has not been demonstrated c l e a r l y , but i t was  expected  that  twelve o r t h i r t e e n y e a r o l d s would have the c a p a c i t y t o behave i n a manner c o n s i s t e n t w i t h the a d u l t model.  On the o t h e r hand,- i t was  suggested  that a  method o f s t i m u l u s p r e s e n t a t i o n which disembedded the c l a s s i n c l u s i o n n e s t e d w i t h i n a p a r t i c u l a r h i e r a r c h i c a l s t r u c t u r e might f a c i l i t a t e for  relations  learning  younger c h i l d r e n t o a g r e a t e r e x t e n t than l e a r n i n g a h i e r a r c h y i n i t s  complete form.  T h e r e f o r e , t h e r e were two  experimental c o n d i t i o n s .  In  c o n d i t i o n a h i e r a r c h i c a l o r g a n i z a t i o n of' the s t i m u l u s items and- t h e i r labels  (the v a l u e s o f the dimensions  i n v o l v e d ) was  c a t e g o r y l a b e l s f o r the v a l u e s o f one dimension,  used.  f a s h i o n , f o l l o w e d by a second  dimension,  list,  In the o t h e r ,  were p r e s e n t e d i n a  i n which the v a l u e s f o r the  t o g e t h e r w i t h the same s t i m u l u s items r e - a r r a n g e d was  l i s t p r e s e n t a t i o n method was  The  second  used.  designed t o t r a i n s e p a r a t e l y the c l a s s  r e l a t i o n s c o n t a i n e d i n the h i e r a r c h i c a l  category  t o g e t h e r w i t h the s t i m u l u s  items a p p r o p r i a t e l y arranged a c c o r d i n g t o t h a t dimension, list  one  The  inclusion  structure.  l e a r n i n g paradigm i n the e x p e r i m e n t a l c o n d i t i o n was  similar,  not p r o c e d u r a l l y i d e n t i c a l , t o the r u l e l e a r n i n g paradigm i n concept  but  learning  110 experiments. were and  S u b j e c t s w e r e t o l d what, t h e r e l e v a n t v a l u e s  t h a t they  the  stimulus  and  some a n i m a l s  these  other  should  items.  this  information i n order  t o h e l p t h e m remember  f o l l o w i n g animals  were p l a n t e a t e r s ;  and  t o h e l p t h e m remember t h e  o r d i n a t e c a t e g o r i e s was  dimensions  e x a m p l e , t h e y w e r e t o l d t h a t some a n i m a l s  eat p l a n t s ; • t h a t the  animals  ment i n o r d e r  For  use  of the  that they  items.  The  eat  meat  w e r e meat e a t e r s  should  study  this  p r o v i s i o n of the  also expected to a i d i n reducing  production  and arrange-  super-  deficien-  c i e s i n younger c h i l d r e n . Since for  c h i l d r e n of eight or.nine  functional features  features  for  f u r , and  o f age  seem t o show a  l e v e l of the h i e r a r c h y i n v o l v e d c l a s s  functional features  (or attributes)',  e a t e r s v s . meat e a t e r s ) .  abstract, features  I n .the l i s t organized  according  more r a p i d l y t h a n ~ • t h e  list  organized  i n terms of the  vice versa  f o r the grade 7 c h i l d r e n .  unambiguously t e s t e d , since i n order  t u r e t h e r e were t h r e e v a l u e s  values  values  of the The  of the  of the  d i m e n s i o n s and  type  second phase of the  while also being  study  dimension,  expectation could  in a hierarchical  s o r t i n g t a s k was  the  a p p l i c a t i o n of the m u l t i p l e c l a s s i f i c a t i o n  of a l l t o s o r t the  struc-  items  were of  confounded.  s u i t e d f o r examining o r g a n i z a t i o n a l  i n as u n b i a s e d  not  involved a transfer sorting task.  main i n t e r e s t i n the  required f i r s t  abstract  T h u s , t h e e f f e c t s o f number  o f d i m e n s i o n were  3  f u n c t i o n a l dimension  f u n c t i o n a l dimension, whereas t h e r e  r e l a t i v e l y unconfounded by.search  examine t h i s  to the  to organize  The  To  for pets,  expected t h a t grade  However, t h i s  abstract dimension.  S o r t i n g tasks are p a r t i c u l a r l y  phase.  ( i . e . animals  c o n d i t i o n i t was  list  o n l y two  inclusion  (or a t t r i b u t e s ) ( i . e . p l a n t  c h i l d r e n would l e a r n the  be  abstract  f o r game) w h i l e • t h e , h i g h e r . l e v e l i n t h e h i e r a r c h y i n v o l v e d c l a s s  i n c l u s i o n r e l a t i o n s b a s e d on  and  preference  (or a t t r i b u t e s ) , whereas o l d e r c h i l d r e n p r e f e r  ( o r a t t r i b u t e s ) , one  r e l a t i o n s b a s e d on  years  and  processes  retrieval strategies.  i n t h e r e l a t i o n s h i p b e t w e e n age  a way  s u p p l i e d during the  training  as p o s s i b l e , s u b j e c t s were  ( t h e same a n i m a l  and  terms used i n  the  Ill learning  task),  on  the b a s i s  o f s i m i l a r i t y , i n t o as many p i l e s as  F o l l o w i n g t h i s , i n o r d e r t o look more c l o s e l y a t the and  the  a b i l i t y o f the  relations  list  condition  archical condition  relationship-between  s u b j e c t s t o combine the  learned separately into a multiple  class  c l a s s i f i c a t i o n and  s u b j e c t s t o p u l l a p a r t the  s o r t the  items i n t o s i x . groups;-  s o r t i n t o t h r e e groups; were r e q u i r e d  and  i n the  hier-  class inclusion relations  s o r t s were r e q u i r e d .  f i n a l s o r t i n t o two  In the  groups.  age  inclusion  o f the  t h e i r s e p a r a t e components, t h r e e f u r t h e r s u b j e c t s were asked t o s o r t the  desired.  into first  i n the The  second  subjects  t o have equal:numbers o f animal items i n each group.  Thus,  the  s i x c a t e g o r y s o r t corresponded t o a s o r t i n g which would emerge i f animal items were a s s i g n e d c o r r e c t l y t o groups r e p r e s e n t i n g the both dimensions; formed on two  the  the b a s i s  The l e d t o the fixed sorts  functional  specifying  feature  (or a t t r i b u t e )  expectation that (the 6,  3,  and  s o r t i n the  spontaneously the  i n how  values;  the  f l e x i b i l i t y expected i n the older  c h i l d r e n would be  2 category sorts) I t was  a l s o expected t h a t  c l a s s i f i c a t i o n which had  the  free sort.  For  expected t h a t younger c h i l d r e n who c l a s s i n c l u s i o n r e l a t i o n s would net a b i l i t y t o generate the whereas c h i l d r e n who  the had  t r a n s f e r more r e a d i l y and  older  held  equally  on the  d u r i n g the  f a c i l e on  the  conditions .  free sort  (the apply  t r a i n i n g phase. group about t h e i r was  conditions of  f l e x i b i l i t y or the  group  would be more l i k e l y t o  l e a r n e d under the  have the  the  age  s i x category f i x e d s o r t , i t  s i x groups based on  had  subjects  regardless of l e a r n i n g  s e r i e s of four) o l d e r - c h i l d r e n  the  number o f items.per group.  s p e c i f i c e x p e c t a t i o n s were f o r m u l a t e d f o r the younger age  performance on  The  and  t o make t h e i r s o r t s a p a r t from  number o f groups and  degree o f c o g n i t i v e  type o f s o r t r e q u i r e d .  first  No  o f the  of course, i n s t r u c t e d  general directions  of  t h r e e c a t e g o r y s o r t ' c o r r e s p o n d e d t o the d i s t i n c t i o n  c a t e g o r y s o r t c o r r e s p o n d e d ' t o : t h e food h a b i t s dimension.  were not,  and  simultaneous presence  separate  combinatory  combination o f both  l e a r n e d under the h i e r a r c h i c a l c o n d i t i o n  attributes,  would show  form-the s i x groups w i t h g r e a t e r a c c u r a c y .  For  the  112 t h r e e and list  two  c a t e g o r y f i x e d s o r t s , younger c h i l d r e n who  conditions  learned  under  were expected t o c l a s s i f y a t a l e v e l equal t o or b e t t e r  c h i l d r e n o f the same age I t was  had  who  had  learned  under the h i e r a r c h i c a l  under the h i e r a r c h i c a l c o n d i t i o n would have developed a  had  sufficiently  f l e x i b l e u n d e r s t a n d i n g o f the r e l a t i o n s h i p s i n v o l v e d  so t h a t they c o u l d  up  I f t h i s were the  the  was list  c l a s s i f i c a t i o n scheme i n a l l p o s s i b l e ways.  expected t h a t those c h i l d r e n would not be condition  subjects  on the  t h r e e and  two  than  conditions.  a matter o f i n t e r e s t t o determine whether young c h i l d r e n who  learned  divide  case, i t  s i g n i f i c a n t l y d i f f e r e n t from category s o r t s .  I t was  involved. each age  i n t h e i r u n d e r s t a n d i n g o f the  To examine t h i s p o s s i b i l i t y , w i t h i n l e v e l , subjects  received  A c o n t r o l group a t each age  l e v e l learned  l a b e l s p r e s e n t e d i n a random o r d e r .  At each age  these groups would p e r f o r m more p o o r l y i n l e a r n i n g and a t each age  t r a n s f e r behavior.  a l t e r e d the  o f animal terms used.  The i s o n w i t h the The  category  expected  that  than e i t h e r o f the o t h e r groups both  F i n a l l y , no-training  c o n t r o l groups,  I t was  categories no-training  o f the  expected t h a t the n o - t r a i n i n g  s i g n i f i c a n t l y i n f e r i o r t o the s e t u p . i n the  s p e c i f i c set  that t h e i r fixed  t r a i n e d groups i n t h e i r approxim-  l e a r n i n g phase. t o a l l o w a compar-  f r e e s o r t i n g r e s u l t s o b t a i n e d from grades 7 and r e s u l t s o b t a i n e d from t h a t study d i d not f o r grade 3 c h i l d r e n .  i n d i c a t e t h a t c h i l d r e n a t t h a t age  the  groups would  f r e e s o r t s and  c o n t r o l groups were a l s o i n c l u d e d  i d e n t i f i a b l e group s t r u c t u r e  one  These groups were  structural organization  s o r t d i f f e r e n t l y from the t r a i n e d groups on the  a t i o n s t o the  task.  items and  l e v e l , i t was  at  t r a i n e d groups i n o r d e r t o determine the degree t o which  t r a i n i n g methods had  s o r t s would be  learning  list  l e v e l performed o n l y on the t r a n s f e r t a s k .  compared w i t h the  study.  the  and  relationships  each l e a r n i n g c o n d i t i o n ,  s i x or t e n t r i a l s on the  the  also  expected t h a t more l e a r n i n g t r i a l s might h e l p b o t h h i e r a r c h i c a l l y t r a i n e d l i s t t r a i n e d younger s u b j e c t s  the  show any  3 i n the  first  readily  T h i s does not  necessarily  l e v e l were unable t o c l a s s i f y the  stimulus  -  .  s e t i n some o r d e r l y a n d r e l i a b l e  113 fashion, albeit idiosyncratic.  f a c t t h a t grade 3 c h i l d r e n s o r t e d p i c t o r i a l s t i m u l i presented  t o t h e o l d e r age g r o u p s  However, t h e  s t i m u l i rather than the verbal  ( i n order  t o provide  a comparison  g r o u p f o r t h e k i n d e r g a r t e n - c h i l d r e n who, f o r o b v i o u s r e a s o n s , w e r e u n a b l e t o sort verbal s t i m u l i ) leads  t o some c o n f o u n d i n g .  The q u e s t i o n  remained as t o  whether a normative s t r u c t u r e would have been i d e n t i f i e d ' f o r grade 3 c h i l d r e n if  t h e y had s o r t e d v e r b a l s t i m u l i and whether t h i s would have been s i m i l a r t o  the normative s t r u c t u r e obtained more i n f o r m a t i o n  f o r older children.  on t h i s q u e s t i o n ,  study  semantic s t r u c t u r e and/or m o d i f y i n g familiar  study  and t h e p r e s e n t  also study.  was c o n c e r n e d w i t h t r a i n i n g a new  the existing  semantic'structure  s e t o f a n i m a l t e r m s a t two d i f f e r e n t age l e v e l s .  t h a t may b e m a n i p u l a t e d t o p r o d u c e t h i s tions , e i t h e r through manipulation  to obtain  t h e n o - t r a i n i n g c o n t r o l groups were  i n c l u d e d t o a l l o w comparisons between t h e f i r s t I n summary, t h e p r e s e n t  Therefore,  of a  One s e t o f f a c t o r s  change i s t h e e x t e r n a l l e a r n i n g  of- t h e o r g a n i z a t i o n o f t h e s t i m u l u s  condimater-  i a l s o r t h r o u g h i n c r e a s i n g t h e amount o f t i m e a n d n u m b e r o f t r i a l s o n t h e learning task.  A n o t h e r f a c t o r w h i c h , may i n f l u e n c e a c q u i s i t i o n o f a s e m a n t i c  s t r u c t u r e i s t h e c o g n i t i v e stage o f t h e l e a r n e r as roughly The  success of a t r a i n i n g procedure i n producing  recall  and c l u s t e r i n g i n a f r e e r e c a l l  task.  . The l a t t e r Adults  lists  change c a n be examined by  t a s k and by p e r f o r m a n c e on a t r a n s f e r  seems more d i a g n o s t i c o f a s t r u c t u r a l  acquire  and r e c a l l word l i s t s  are h i e r a r c h i c a l l y organized.  indexed by age.  change.  r a p i d l y a n d e f f i c i e n t l y when t h e  Whether o r n o t t h i s h o l d s  true f o r  y o u n g e r c h i l d r e n i n t h e p r o c e s s o f a c q u i r i n g and- a p p l y i n g m u l t i p l e atory s k i l l s  has n o t been demonstrated.  involves the a b i l i t y ously, the hypothesis  t o combine v a l u e s  Since  classific-  hierarchical organization  f r o m t w o o r more d i m e n s i o n s  i s a d v a n c e d t h a t y o u n g e r c h i l d r e n may f i n d  simultane-  i teasier to  l e a r n t h e c l a s s i n c l u s i o n r e l a t i o n s h i p s embedded i n a h i e r a r c h i c a l s t r u c t u r e if  these r e l a t i o n s h i p s are presented  separately.  Secondly, i t i s  114 hypothesized  t h a t an i n c r e a s e i n t r i a l s and  f a c i l i t a t e understanding  time on the l e a r n i n g t a s k  o f the s t r u c t u r a l r e l a t i o n s h i p s between t h e  Furthermore, r e g a r d l e s s o f item r e c a l l recall  task, i t i s hypothesized  and  items.  c l u s t e r i n g on the  t h a t t r a n s f e r performance w i l l be  by the o r g a n i z a t i o n o f the s t i m u l u s  will  items i n the l e a r n i n g t a s k .  free  influenced However, the  assumption t h a t c h i l d r e n i n c r e a s e i n c o g n i t i v e f l e x i b i l i t y throughout t h e range under examination, l e a d s t o the main h y p o t h e s i s should b o t h combine and disembed d i m e n s i o n a l  that older children  v a l u e s more spontaneously  more a c c u r a t e l y than younger c h i l d r e n r e g a r d l e s s o f o r i g i n a l t r a i n i n g tions.  These hypotheses l e a d t o the e x p e c t a t i o n s  In the m u l t i - t r i a l 1.  free r e c a l l  age  and condi-  summarized below.  task:  Method o f s t i m u l u s p r e s e n t a t i o n w i l l a f f e c t performance a t d i f f e r e n t  age  l e v e l s i n the f o l l o w i n g ways: a.  Item r e c a l l tions  and  c l u s t e r i n g under both o r g a n i z e d  ( h i e r a r c h i c a l and  list  c o n d i t i o n s ) w i l l not be  d i f f e r e n t a t the grade seven b.  Item r e c a l l to  and  item r e c a l l  Subjects  significantly  c o n d i t i o n w i l l be  superior  c l u s t e r i n g under the h i e r a r c h i c a l c o n d i t i o n , how-  ever, a t the grade t h r e e c.  presenta-  level.  c l u s t e r i n g under the l i s t and  stimulus  level.  l e a r n i n g under organized.stimulus  conditions:will recall  more items than s u b j e c t s l e a r n i n g under the randomly o r g a n i z e d u l u s p r e s e n t a t i o n c o n d i t i o n a t both grade 2.  levels.  I f t h e r e are d i f f e r e n c e s between grade l e v e l s i n item r e c a l l and ing,  stim-  grade seven c h i l d r e n w i l l r e c a l l more items and  cluster-  cluster to a greater  e x t e n t than grade t h r e e c h i l d r e n . 3.  Degree o f i n i t i a l tions. and  The  l e a r n i n g w i l l a f f e c t both age  groups, under a l l c o n d i -  t e n l e a r n i n g t r i a l s c o n d i t i o n w i l l produce b e t t e r item  c l u s t e r i n g than the s i x l e a r n i n g t r i a l s c o n d i t i o n .  an i n t e r a c t i o n between age  There may  and degree o f l e a r n i n g such t h a t more  recall a l s o be  initial  115 learning t r i a l s the grade three  will  produce greater b e n e f i t s i n r e c a l l  and c l u s t e r i n g a t  level.  On t h e f r e e s o r t o f t h e t r a n s f e r s o r t i n g t a s k : a.  S c a l i n g and c l u s t e r i n g t e c h n i q u e s the  r e v e a l more a p p l i c a t i o n o f  s t r u c t u r e s l e a r n e d under t h e organized  c o n d i t i o n s f o r subjects i n those than a t t h e grade three b.  will  The same e f f e c t s w i l l  stimulus  c o n d i t i o n s a t t h e grade seven  be o b t a i n e d  i n a comparison between  c o n d i t i o n s and between t r a i n e d and n o n - t r a i n e d  a.  level  level.  s t i m u l u s p r e s e n t a t i o n c o n d i t i o n s and"random s t i m u l u s  On t h e f i x e d  presentation  organized  presentation  groups.  sorts of the transfer s o r t i n g task:  Grade seven c h i l d r e n w i l l  g r o u p more s t i m u l u s  items  c o r r e c t l y on a l l  s o r t s than grade three c h i l d r e n . b.  Subjects will  l e a r n i n g under t h e o r g a n i z e d  g r o u p more i t e m s  stimulus presentation  c o r r e c t l y on a l l s o r t s t h a n s u b j e c t s  conditions learning  u n d e r t h e random s t i m u l u s p r e s e n t a t i o n c o n d i t i o n . c.  Trained  s u b j e c t s a t both grade l e v e l s w i l l  than non-trained d.  g r o u p more i t e m s  correctly  subjects.  Grade seven h i e r a r c h i c a l  condition subjects w i l l  a t e l y t h e same l e v e l o f a c c u r a c y  perform a t approxim-  as grade seven l i s t  c o n d i t i o n sub-  jects. e.  Grade t h r e e h i e r a r c h i c a l c o n d i t i o n s u b j e c t s w i l l a t e l y on t h e s i x c a t e g o r y jects, but the l a t t e r w i l l former on t h e t h r e e  Over a l l s o r t s three  s o r t than grade three  and two c a t e g o r y  ( f r e e a n d f i x e d ) more i t e m s  than by those  expectations  list  accur-  c o n d i t i o n sub-  p e r f o r m a t l e a s t as w e l l o r b e t t e r than t h e sorts.  will  s u b j e c t s who l e a r n e d u n d e r t h e o r g a n i z e d  ten t r i a l s  p e r f o r m more  be c o r r e c t l y g r o u p e d b y g r a d e stimulus conditions receiving  receiving only s i xt r i a l s .  about t h e e f f e c t s o f l e a r n i n g t r i a l s  T h e r e were no  specific  on g r a d e seven s o r t i n g  116 performance. A p r e d i c t i o n concerning f e r e n t a g e l e v e l s i s a l s o made. a b s t r a c t dimensions a.  is  dif-  condition children w i l l  recall  dimensions, i t e m s b e t t e r when t h e  i s o r g a n i z e d a c c o r d i n g t o a b s t r a c t a t t r i b u t e s t h a n when t h e l i s t  o r g a n i z e d a c c o r d i n g t o f u n c t i o n a l a t t r i b u t e s and v i c e v e r s a f o r  grade three b.  at  S i n c e o l d e r c h i l d r e n show a p r e f e r e n c e f o r  and younger c h i l d r e n f o r f u n c t i o n a l  Grade seven l i s t list  differences i n dimensional preferences  children.  On t h e t r a n s f e r t a s k , g r a d e s e v e n c h i l d r e n w i l l the a b s t r a c t dimension  b e more l i k e l y  t o use  as a major organized- i n f r e e s o r t i n g o f t h e  s t i m u l u s items whereas grade t h r e e c h i l d r e n w i l l  use t h e f u n c t i o n a l  dimension. It  s h o u l d be p o i n t e d o u t t h a t i f t h e s e p r e d i c t i o n s a r e u p h e l d  t h e r e i s an  a l t e r n a t i v e e x p l a n a t i o n i n t e r m s o f number o f v a l u e s p e r d i m e n s i o n , n e c e s s a r i l y confounded i n t h e design o f t h i s  study.  which are  117  CHAPTER VI METHOD A.  Experimental  Design  A 2 x 3 x 2 f a c t o r i a l design  (grade x o r g a n i z a t i o n x t r i a l s ) was used  i n the l e a r n i n g phase o f the experiment. were grade seven and grade t h r e e . were h i e r a r c h i c a l o r g a n i z a t i o n a b s t r a c t dimension), f o l l o w e d by a l i s t tion. 41.  list  The two l e v e l s o f the f i r s t f a c t o r  The t h r e e l e v e l s o f the second f a c t o r  (the f u n c t i o n a l dimension n e s t e d w i t h i n the  o r g a n i z a t i o n . (a l i s t  c h a r a c t e r i z i n g one dimension  c h a r a c t e r i z i n g the o t h e r dimension),  and random o r g a n i z a -  These t h r e e types o f o r g a n i z a t i o n a r e shown i n F i g u r e s  39, 40, and  The two l e v e l s o f the t h i r d f a c t o r were s i x and t e n l e a r n i n g t r i a l s .  A schematic r e p r e s e n t a t i o n o f the complete d e s i g n  i s presented  i n F i g u r e 42.  A m u l t i - t r i a l f r e e r e c a l l paradigm was used f o r the t r a i n i n g phase. There was a study p e r i o d , f o l l o w e d by a r e c a l l p e r i o d , f o l l o w e d by a b r i e f error-checking period  (to provide  informative feedback).  a r c h i c a l c o n d i t i o n , the h i e r a r c h y was p r e s e n t e d necting links indicated.  In the h i e r -  i n i t s v i s u a l form w i t h  H a l f o f the s u b j e c t s a t b o t h grade  received s i x learning t r i a l s  and the o t h e r h a l f t e n t r i a l s .  con-  levels In the l i s t  c o n d i t i o n , h a l f o f the s u b j e c t s a t b o t h grade l e v e l s r e c e i v e d s i x l e a r n i n g trials  and the o t h e r h a l f t e n t r i a l s .  In the l i s t  s u b j e c t s a t b o t h grade l e v e l s l e a r n e d the l i s t a b s t r a c t c a t e g o r i e s f i r s t and the l i s t  c o n d i t i o n , h a l f o f the  organized  organized  according to  according to f u n c t i o n a l  c a t e g o r i e s second.  The o t h e r h a l f r e c e i v e d the l i s t s i n the r e v e r s e  Within  subgroups, h a l f o f the s u b j e c t s r e c e i v e d t h r e e  each o f these  on each l i s t  and the o t h e r h a l f r e c e i v e d f i v e t r i a l s  on each  list.  order.  trials  118  ANIMALS  CAT  FOX  TIGER  RABBIT  SQUIRREL  DEER  DOG  SEAL  BEAR  GERBIL  MUSKRAT  MOOSE  SKUNK  RACCOON  PANTHER  MONKEY  BEAVER  ELEPHANT  F i g u r e 39.  R e l a t i o n s h i p s among words i n a h i e r a r c h y  F o r p r e s e n t a t i o n purposes, the animal terms were arranged i n a h o r i z o n t a l a r r a y under the a p p r o p r i a t e s u p e r o r d i n a t e c a t e g o r y label.  ANIMALS  MEAT EATERS CAT DOG SKUNK FOX SEAL RACCOON TIGER BEAR PANTHER  PLANT EATERS RABBIT GERBIL MONKEY SQUIRREL MUSKRAT BEAVER DEER MOOSE ELEPHANT  Figure  40a.  R e l a t i o n s h i p s among w o r d s i n a l i s t to food  habits  organized  according  120  ANIMALS  FOR PETS CAT DOG SKUNK RABBIT GERBIL MONKEY  FOR FUR FOX SEAL -  •  RACCOON SQUIRREL MUSKRAT BEAVER  FOR GAME TIGER BEAR PANTHER DEER MOOSE ELEPHANT  Figure  40b.  R e l a t i o n s h i p s among w o r d s i n a l i s t according  t o functions  organized  .121,  MEAT EATERS MUSKRAT BEAR ELEPHANT ANIMALS PANTHER MONKEY PLANT EATERS FOR GAME BEAVER DEER RACCOON SKUNK FOX TIGER RABBIT FOR FUR FOR PETS CAT SQUIRREL SEAL GERBIL •  MOOSE DOG  F i g u r e 41.  Random o r g a n i z a t i o n o f 24 words  I  122  Organization Hierarchical  Grade  Degree o f  Learning 6  t r i a l s 10  trials 6  List  t r i a l s 10  Random trials 6  t r i a l s 10  7  3  Figure  42.  A schematic representation of the experimental  design  trials  S u b j e c t s i n t h e random c o n d i t i o n were p r e s e n t e d w i t h t h e a n i m a l t e r m s a n d the  category headings mixed  list  form.  i n a random o r d e r i n an e v e n l y s p a c e d  vertical  The o r d e r o f t h e s t i m u l u s i t e m s r e m a i n e d c o n s t a n t a c r o s s  trials.  Half of the subjects received s i x t r i a l s ;  the remaining h a l f ten  trials.  T h u s t o t a l e x p o s u r e t o t h e s t i m u l u s i t e m s was e q u i v a l e n t a c r o s s  conditions. F o l l o w i n g i n i t i a l l e a r n i n g , s u b j e c t s i n a l l c o n d i t i o n s , and an a d d i t i o n a l group o f s u b j e c t s  from both grade l e v e l s  s e r v i n g as a n o - t r a i n i n g  c o n t r o l g r o u p , w e r e g i v e n f o u r e n v e l o p e s e a c h c o n t a i n i n g 18 c a r d s . c a r d h a d one a n i m a l t e r m p r i n t e d on i t . the  cards i n the f i r s t  basis of similarity;  B.  E a c h s u b j e c t was a s k e d t o s o r t  e n v e l o p e i n t o a n u n d e s i g n a t e d number o f p i l e s i n t h e second envelope i n t o s i x groups;  envelope i n t o three groups;  Each  on t h e  i n the t h i r d  and i n t h e l a s t e n v e l o p e i n t o two g r o u p s .  Subjects One h u n d r e d  Vancouver,  and f o r t y  children  from another elementary s c h o o l i n  B.C. s e r v e d a s s u b j e c t s i n t h e s t u d y .  The s u b j e c t s w e r e t h o s e  c h i l d r e n whose p a r e n t s s i g n e d t h e p a r e n t a l c o n s e n t f o r m s . j e c t s were drawn from each grade l e v e l . level  Seventy  Ages r a n g e d a t t h e grade  subseven  f r o m 12 y e a r s 4 m o n t h s t o 13 y e a r s 5 m o n t h s w i t h a mean a g e o f 12  y e a r s 11 months. years  A t t h e grade t h r e e l e v e l  ages ranged from 8 y e a r s t o 9  3 m o n t h s w i t h a mean a g e o f 8 y e a r s 10 m o n t h s .  s u b j e c t s were randomly  W i t h i n e a c h age g r o u p  a s s i g n e d t o t h e t r a i n i n g c o n d i t i o n s and t o t h e no-  t r a i n i n g c o n t r o l group w i t h o u t r e g a r d t o sex.  T h e r e w e r e 20 s u b j e c t s i n  e a c h t r a i n i n g c o n d i t i o n a n d 10 s u b j e c t s i n t h e n o - t r a i n i n g g r o u p a t e a c h age  level.  C.  S t i m u l u s Items The e i g h t e e n a n i m a l t e r m s a n d t h e s i x c a t e g o r y h e a d i n g s f o r t h e  l e a r n i n g t a s k f o r t h e d i f f e r e n t c o n d i t i o n s were those i n d i c a t e d i n Figures  39, 40, and 4 1 .  Given t h e e x p r e s s e d i n t e r e s t i n f u n c t i o n a l and  124 abstract features  ,o r a t t r i b u t e s , the p a r t i c u l a r category  headings and t h e  a n i m a l t e r m s s e l e c t e d w e r e more o r l e s s f o r c e d b y t h e n e e d t o g e n e r a t e a h i e r a r c h i c a l s t r u c t u r e , by t h e composition  o f t h e animal kingdom  itself,  and  F o r example, t h e food  function  by t h e need t o use f a m i l i a r animals.  o f a n i m a l s c o u l d n o t b e i n c l u d e d b e c a u s e humans r a r e l y e a t c a r n i v o r e s . Similarly,  t h o s e a n i m a l s w h i c h p e r f o r m work f u n c t i o n s a r e g e n e r a l l y  herbivorous. for  The same 18 a n i m a l s w e r e u s e d i n t h e s o r t i n g t a s k .  t h e warm-up t a s k w e r e d r a w n f r o m t h e p l a n t d o m a i n .  h e a d i n g s and i t e m s were as f o l l o w s : (potatoe,  pea),  and t r e e s  flowers  (oak, maple).  (daisy, rose),  headings  (flowers, vegetables,  d i s t r i b u t e d below and s p e c i f i c  c o n d i t i o n , t h e items were grouped a c c o r d i n g  in D.  vegetables  p l a n t s a t t h e topmost  and t r e e s ) h o r i z o n t a l l y  items h o r i z o n t a l l y arranged a t the lowest  l e v e l o f the h i e r a r c h y , beneath the category  list.  category  For the h i e r a r c h i c a l condition,  t h e s e items were a r r a n g e d i n a h i e r a r c h y h a v i n g node, c a t e g o r y  The  headings.  to categories  For the l i s t i n a vertical  F o r t h e random c o n d i t i o n , t h e i t e m s and c a t e g o r i e s were  a vertical  random  Items  presented  list.  Apparatus and Procedure The  s u b j e c t s were t e s t e d i n groups o f f i v e .  Each s u b j e c t  sat at a  t a b l e w i t h i n a s m a l l c u b i c l e , a r r a n g e d s o t h a t he c o u l d s e e t h e e x p e r i m e n t e r b u t n o t t h e o t h e r members o f h i s g r o u p .  Immediately preceding  main l e a r n i n g t a s k ,  a l l subjects  up  i n the h i e r a r c h i c a l condition received the plant  task.  hierarchy;  Subjects subjects  i n the l i s t  items arranged i n a l i s t w i t h  r e c e i v e d two c o m p l e t e t r i a l s  c o n d i t i o n were p r e s e n t e d  category  headings;  with  and s u b j e c t s  random c o n d i t i o n r e c e i v e d t h e p l a n t i t e m s r a n d o m l y a r r a n g e d . w e r e shown t h e c o m p l e t e s e t o f s t i m u l u s presented  by tape-recorder.  each c o n d i t i o n i s presented  items.  o n t h e warm-  the plant i nthe Subjects  A l l d i r e c t i o n s were  A complete t e x t o f t h e i n s t r u c t i o n s f o r i n A p p e n d i x G.  the  Under t h e c o n d i t i o n s o f  125 •• o r g a n i z e d p r e s e n t a t i o n ( h i e r a r e h i e a l and l i s t ) ,  t h e method o f o r g a n i z a t i o n  was e x p l a i n e d t o t h e s u b j e c t s a n d t h e i t e m s r e a d a l o u d . c o n d i t i o n , t h e items were simply, r e a d o v e r . were t o l d t h a t t h e i r it.  F o r t h e random  In a l l conditions, subjects  t a s k was t o s t u d y t h e w h o l e l i s t  a n d t r y t o remember  The s u b j e c t s w e r e a l l o w e d o n e m i n u t e s t u d y t i m e .  Following this,  t h e y were i n s t r u c t e d t o count backwards from a randomly s e l e c t e d number f o r 20 s e c o n d s .  This procedure  was d e s i g n e d t o e n s u r e  2-digit  that  i n f o r m a t i o n t o be r e c a l l e d had been s t o r e d i n long-term r a t h e r than s h o r t t e r m memory  ( c f . Nelson and Smith, 1973).  instructed to t r yto recall  The s u b j e c t s w e r e  a s many p l a n t s a s p o s s i b l e .  were a l l o w e d one m i n u t e t o w r i t e t h e i r r e c a l l r e s p o n s e s s h o w e d t h a t w r i t t e n r e c a l l was s u p e r i o r t o v e r b a l r e c a l l three children.)  next l e a r n i n g t r i a l ,  over t h e i r w r i t t e n responses  again.  a n i m a l l i s t s were p r e s e n t e d .  t h e y were  errors of  A f t e r t h e t w o warm-up t r i a l s , t h e  The same p r o c e d u r e  e x c e p t t h a t s u b j e c t s were g i v e n two m i n u t e s s t u d y i n d i c a t e d t h a t two minutes  o u t l i n e d a b o v e was to record their  fol-  responses.  was a s u f f i c i e n t amount o f t i m e The s u b j e c t s r e c e i v e d e i t h e r  or ten trials. At t h e end o f t h e l e a r n i n g t r i a l s ,  envelopes task. to  items were  Before the onset o f the  i n order t o determine  even f o r s u b j e c t s a t t h e y o u n g e r age l e v e l . ) six  concerned  They were t h e n r e q u e s t e d t o t u r n t h e page o f t h e i r  b o o k l e t and study t h e l i s t  (A p i l o t  even i n grade  t h e s u b j e c t s w e r e g i v e n 30 s e c o n d s i n w h i c h  omission or intrusion.  lowed  (Cole e t a l . , 1971,  Following the r e c a l l period, the l i s t  presented again i n preparation f o r the next t r i a l .  check  The s u b j e c t s  The s u b j e c t s w e r e i n s t r u c t e d n o t t o b e o v e r l y  with s p e l l i n g accuracy.  to  then  and t o l d  t h e s u b j e c t s were g i v e n f o u r  t h a t t h e y w e r e g o i n g t o do a d i f f e r e n t , b u t r e l a t e d ,  They were i n s t r u c t e d t o t a k e o u t t h e c a r d s from t h e f i r s t  s p r e a d them o u t i n f r o n t o f them and t o l o o k them o v e r .  then t o l d  t o p u t them i n t o p i l e s , p u t t i n g t o g e t h e r i n a p i l e  envelope,  They were those  animals  126 . t h a t a p p e a r e d t o them t o be a l i k e ,  to belong together.  Instructions for  t h e f r e e s o r t p a r a l l e l e d t h o s e u s e d i n t h e s o r t i n g t a s k i n S t u d y 1. they had s o r t e d the cards t o t h e i r s a t i s f a c t i o n ,  they were d i r e c t e d t o t a k e  o u t a s many e l a s t i c b a n d s a s n e e d e d f r o m t h e e n v e l o p e , p l a c e a b a n d each p i l e  and r e t u r n i t t o t h e e n v e l o p e .  around  T h i s p r o c e d u r e was f o l l o w e d f o r  the second s o r t ,  i n which they were r e q u i r e d t o form s i x p i l e s ,  three p i l e  and f o r t h e f i n a l two p i l e  sort,  After  sort.  f o r the  Instructions to think  c a r e f u l l y a n d t r y t o u s e w h a t th'ey h a d j u s t l e a r n e d p r e c e d e d e a c h  sort.  The s u b j e c t s i n t h e n o - t r a i n i n g c o n t r o l g r o u p w e r e s i m p l y t o l d t o t h i n k c a r e f u l l y and t o s o r t t o g e t h e r t h o s e a n i m a l s w h i c h t h e y t h o u g h t together.  belonged  127-  CHAPTER V I I RESULTS A.  L e a r n i n g Task No  this  significant effects attributable  study.  Consequently,  the analyses presented 1.  Item  this  f a c t o r was  mean number o f i t e m s r e c a l l e d o n e a c h t r i a l  presented i n Table V I I I  not s i g n i f i c a n t  (C  r e c e i v i n g 10  trials  and  (D2)  [60,9] =  g r a d e and The  .053,  p  .072,. p <  .05) .  The  the standard d e v i a t i o n s f o r those  C o c h r a n e ' s t e s t was,  < .05).  The  again, not  condition subjects receiving  hypotheses.  was  items  groups  significant  43.  overall analysis of  10 t r i a l s ,  list  whereas f o r  o r g a n i z a t i o n changed on  T h e r e f o r e , the groups were not comparable f o l l o w i n g and p r e c e d i n g t h e f i n a l t r i a l .  the  condition with s i x  o r g a n i z a t i o n c h a n g e d on t h e f o u r t h t r i a l ,  three t r i a l s  are  mean number o f i t e m s r e c a l l e d a c c o r d i n g t o  For those s u b j e c t s l e a r n i n g under the l i s t  perform  (Dl)  IX f o r t h e t h r e e s t i m u l u s  d e s i g n o f t h e s t u d y d i d n o t p e r m i t one  sixth t r i a l .  standard  mean number o f  degree o f < l e a r n i n g are presented i n F i g u r e  t r i a l s , , the l i s t  the  from homogeneity of v a r i a n c e  are presented i n Table  presentation conditions.  to  of  f o r the three s t i m u l u s p r e s e n t a t i o n c o n d i t i o n s .  [60,9] =  r e c a l l e d on e a c h t r i a l  and  received s i x learning t r i a l s  Cochrane's t e s t f o r d e t e c t i n g departures  first  c o l l a p s e d f o r the purposes  below.  d e v i a t i o n s f o r those groups which  data.  in  Recall  The  (C  t o sex d i f f e r e n c e s were found  T h u s , i t was  s e v e r a l separate data analyses i n order t o t e s t the  list  the  the  necessary statistical  128 T a b l e VITI Mean Number o f Items R e c a l l e d and Standard L e v e l over S i x T r i a l s  D e v i a t i o n s f o r each E d u c a t i o n a l  as a F u n c t i o n o f E x p e r i m e n t a l  Conditions  Trials 1 Conditions Grade 7  Grade 3  M  2  3  HC  LC  RC  HC  LC  RC  HC  LC  RC  13.3  12.8  10.0  15.9  15.7  12.2  17.7  16.7  12.3  S  1.83  2.39  3.20  M  9.5  7.5  7.5  S  2.01  3.41  2.17  1.91  12.0 3.43  2.50  10.0 3.65  4.32  9.7 2.91  0.68  1.49  11.5 . 11.3 3.44  3.74  4.83  10.4 2.27  Trials  Conditions Grade 7  M S  Grade 3  M S  4  >»  HC  LC  .  17.4  15.6  1.90  12.6 4.35  2.22  7.5 3.75  5'  6'  RC  HC  LC  RC  HC  LC  RC  14.0  17.9  16.8  15.3  17.9  16.4  15.6  3.56  12.7 4.08  0.32  12.6 3.86  1.03  11.1 3.51  1.83  11.1 3,67  0.32  12.8 4.52  2.27  11.7 2.91  2.12  11.6 3.10  Table Mean Number o f I t e m s R e c a l l e d a n d S t a n d a r d  IX  Deviations f o rEach_Educational  of Experimental  L e v e l o v e r Ten T r i a l s  as a F u n c t i o n  Conditions  Trials  Conditions Grade 7  Grade 3  M  HC  LC  RC  HC  LC  RC  HC  LC  RC  HC  LC  RC  HC  LC  RC  12.9  10.9  10.8  14.9  14.4  14.0  16.0  15.9  16.2  16.9  16.3  15.5  16.1  17.5  15.7  S  3.11  3.25  2.53  M  9.3  9.4  7.2  S  1.83  2.46  2.10  3.03 12.3 3.13  2.07 11.0 2.91  2.49 10.1 2.51  1.70 12.6  1.66  2.35  12.7. 11.6  2.95  3.34  2.32  1.29 12.7 2.26  2.00 13.0 3.30  2.27 12.0 3.16  2.42 12.3 3.40  0.71 .13.8 3.97  2.41 11.6 3.60  Trials 10  Conditions Grade 7  M S  Grade 3  HC  LC  RC  HC  LC  RC  HC  LC  RC  HC  LC  RC  HC  LC  RD  17.3  14.4  16.8  16.4  15.5  17.0  17.1  16.1  16.5  16.8  16.6  16.1  16.8  17.4  17.3  1.06  M  13.5  S  - 2.27  2.95 10.8 4.08  1.32 12.0 3.62  3.13 13.4 1.84  2.37 12.6 3.72  1.49 12.2 4.10  2.18 14.1 2.73  2.18 12.3 5.06  1.84 12.5. 3.27  3.16 13.3 3.65  2.07 11.7 4.88  2.81 12.6 3.20  1.81 14.1 2.60  0.97 13.1 4.77  0.82 13.0 3.37  18  ta S  ,  5 4  .  3 0  4  ,  ,  1  Figure  2  43.  ,  3  Mean  number  ,  4  of items  ,  5 Trials  recalled  ,  6  according  ,  7  -  8  to grade  •  9  and degree  — •  10  of  learning  13.1 An  overall  orthogonal source  (grades)  x- 3  (conditions) x 2  a n a l y s i s o f v a r i a n c e was  table for this  l e v e l was was  2  set at  p e r f o r m e d on  analysis i s presented  .10.  Each hypothesis  a s i g n i f i c a n t m a i n e f f e c t due  As  organized list  expected,  on  the  b o t h g r a d e 7 and  l e a r n i n g under the  conditions.  three  trials.  A  i n A p p e n d i x H.  The  overall  alpha  t e s t e d a t the  .01  level.  first  three t r i a l s  There  .0001..  than grade  ( h i e r a r c h i c a l c o n d i t i o n (HC)  performed s i g n i f i c a n t l y b e t t e r than those  The  two  organized  n e i t h e r d i d the I t was  children  stimulus  c o n d i t i o n s d i d not  i n t e r a c t i o n s b e t w e e n g r a d e and  the  learning  expected t h a t grade 7 c h i l d r e n i n the organized  same r e l a t i o n s h i p a p p e a r s t o h o l d a l s o a t t h e g r a d e 3  This i n d i c a t e s t h a t the  list  c o n d i t i o n d i d not  facilitate  stim-  trials.  B o t h c o n d i t i o n s were e q u i v a l e n t and  How-  level.  l e a r n i n g to  g r e a t e r degree than the h i e r a r c h i c a l c o n d i t i o n d u r i n g the  first  s u p e r i o r t o the  =  differ  u l u s p r e s e n t a t i o n c o n d i t i o n s w o u l d p e r f o r m a t an e q u i v a l e n t l e v e l . ever,  3  and  r a n d o m s t i m u l u s p r e s e n t a t i o n c o n d i t i o n ( R C ) , F_ (1,108)  1 3 . 6 0 , p < .0004. significantly;  first  grade 3 c h i l d r e n l e a r n i n g under  stimulus presentation conditions  c o n d i t i o n . (LC))  the  learning)  t o g r a d e , F_ (1,108) = 6 8 . 5 7 , p <  G r a d e 7 c h i l d r e n r e c a l l e d more i t e m s children.  was  (degrees of  a  three  random  condi-  tion. The  m a i n e f f e c t due  g r a d e , c o n d i t i o n , and  t o d e g r e e o f l e a r n i n g and  degree o f l e a r n i n g were not  expected s i n c e degree of l e a r n i n g d i d not three  three t r i a l s ,  significant. across  This  s u b j e c t s on  Fs  quadratic e f f e c t s across  i s to  the  number o f i t e m s  asymptotic  the  (1,108) = 2 5 7 , 7 8 , 2 3 . 1 2 , £ <-0001 r e s p e c t i v e l y .  are g r a p h i c a l l y demonstrated i n Figure  although level,  i n t e r a c t i o n s of  recalled  43.  increases across  Figure trials  l e v e l i s a t t a i n e d at approximately  i n t e r a c t i o n s b e t w e e n l i n e a r and  q u a d r a t i c e f f e c t s and  the  43  first  These  shows  be  first  trials. T h e r e were s i g n i f i c a n t l i n e a r and  trends  differ  the  that  a t each grade third trial.  grade, c o n d i t i o n s  The and  132., degree of A  l e a r n i n g were not s e c o n d a n a l y s i s was  subjects. of  A source table  learning)  trial,  significant. performed.on the for this  a n a l y s i s of variance  grade 7 c h i l d r e n s t i l l  icant.  regardless  of the  presentation  the  conditions,  I t was  .0001..  and  last trial,  initial  the  a l l subjects  benefits provided  by  the  from a d d i t i o n a l l e a r n i n g t r i a l s .  The  port  f o r these p r e d i c t i o n s .  ing,  although approaching, d i d not  no  and  the  Figure  stimulus  (Dl),  extent than older  data appear to give  required  the  d i r e c t i o n a l sup-  d i d not  finding.  t o i n t e r a c t i o n s b e t w e e n and  among t h e  serve to  f a c t o r s and  t a s k w o u l d seem t o a c c o u n t f o r t h i s .  learn-  learning interaction  43 h e l p s t o e x p l i c a t e t h i s  Motivational  and  l e v e l of s i g n i f i c a n c e ,  degree of  that additional learning t r i a l s  number o f i t e m s r e c a l l e d .  ness of the due  and  (D2)  children  a p p e a r s t h a t mean a s y m p t o t i c l e v e l s f o r e a c h g r a d e w e r e a t t a i n e d on early trials  signif-  learning trials  receiving 6 trials  g r a d e by  the  performance.  r e c e i v i n g 10  reach the  3  level,  However, the main e f f e c t f o r degree o f  p_ <£. .066;  last  longer  e x t e r n a l l y organized  were comparable i n r e c a l l  significant.  On  w i t h i n each.grade  t h a t younger c h i l d r e n would b e n e f i t to a g r e a t e r  a l s o not  (degrees  d i f f e r e n c e between  r a n d o m c o n d i t i o n was  w o u l d r e c a l l more i t e m s t h a n t h o s e s u b j e c t s  was  (conditions) x 2  However, the  expected that those subjects  F_ (1,108) = 3.46,  for a l l  r e c a l l e d s i g n i f i c a n t l y more i t e m s t h a n g r a d e  treatment conditions Thus, by  (grades) x 3  learning t r i a l  i s p r e s e n t e d i n A p p e n d i x I.  c h i l d r e n , F_ (1,108) = 6 7 . 0 4 , p < organized  2  last  the  A l l the  It  the increase  apparent e a s i -  remaining  v a r i a b l e s w e r e f o u n d t o be  effects non-  significant. Two the  a d d i t i o n a l analyses provided  course of  learning.  yses of variance received 10  Two  2  were performed;  6 learning t r i a l s ,  learning t r i a l s .  and  a c h e c k on  (grades) x 3 one one  Source t a b l e s  on  on  the  the  item  recall  throughout  (conditions)  orthogonal  d a t a from the  subjects  d a t a from the  subjects  f o r these analyses are  who  presented  analwho received in  Appendix J .  The r e s u l t s o b t a i n e d were mainly  i n agreement.  Both  analyses  i n d i c a t e t h a t grade 7 c h i l d r e n r e c a l l e d more- items than grade 3 c h i l d r e n , Fs (1,54) = 48.42, 34,80, p_ < .0001.  F o r the low degree o f l e a r n i n g c o n d i t i o n  (6 t r i a l s ) o r g a n i z e d s t i m u l u s c o n d i t i o n s were s u p e r i o r t o the random s t i m u l u s c o n d i t i o n , F_ (1,54) = 5.82, p.< .019.  F o r the h i g h degree o f l e a r n i n g c o n d i -  t i o n , t h i s s u p e r i o r i t y no l o n g e r h o l d s .  T h e r e f o r e , over 10 t r i a l s ,  r e c a l l f o r a l l s t i m u l u s p r e s e n t a t i o n c o n d i t i o n s reached performance.  item  the same l e v e l o f  The i n t e r a c t i o n s f o r grade and c o n d i t i o n s were n o n s i g n i f i c a n t  w i t h e i t h e r degree o f l e a r n i n g . S i g n i f i c a n t l i n e a r and q u a d r a t i c e f f e c t s f o r t r i a l s were o b t a i n e d f o r both h i g h and low degrees o f l e a r n i n g , Fs (1,54) = 105.57, 121.54., p_ ^ for  .0001  l i n e a r e f f e c t s and Fs (1,54) = 20.97, 82.44., p <• .0001 f o r q u a d r a t i c  effects.  T h i s i s i n agreement w i t h the r e s u l t s from t h e a n a l y s i s o f the  f i r s t t h r e e t r i a l s . . • In a d d i t i o n , r e s i d u a l o r t h o g o n a l e f f e c t s f o r t r i a l s were s i g n i f i c a n t f o r b o t h degrees o f l e a r n i n g , F (1,162) = 7.21, p_ < .01 and F_ (1,3.78) = 17.90, p_ <  .01.  Although  n o t o f any p a r t i c u l a r i n t e r e s t i n  t h i s study, t h i s appears t o r e s u l t p r i m a r i l y from the temporary drop i n number o f items r e c a l l e d f o l l o w i n g the change i n l i s t list  condition.  t r e n d s and l i s t  Consequently,  o r g a n i z a t i o n under t h e  the i n t e r a c t i o n s between r e s i d u a l  orthogonal  versus h i e r a r c h i c a l s t i m u l u s p r e s e n t a t i o n c o n d i t i o n s were  s i g n i f i c a n t f o r b o t h degrees o f l e a r n i n g and between r e s i d u a l t r e n d s f o r trials  and l i s t  and h i e r a r c h i c a l v e r s u s random s t i m u l u s p r e s e n t a t i o n c o n d i -  t i o n s f o r the low degree o f l e a r n i n g c o n d i t i o n .  A l l further interactions  between t r i a l s , grades and c o n d i t i o n s were n o n s i g n i f i c a n t . Two f i n a l  a n a l y s e s examined item r e c a l l w i t h i n the l i s t  presentation condition.  There were two reasons  stimulus  f o r these a n a l y s e s .  The  f i r s t was t o t e s t f o r the d e s i r e d n u l l e f f e c t s o f o r d e r o f l i s t p r e s e n t a t i o n . Since the two types o f l i s t s were c o u n t e r b a l a n c e d i t was n e c e s s a ry  f o r order across subjects,  t o determine whether i t e m r e c a l l on a s p e c i f i c l i s t  differed  134. depending en whether t h a t l i s t was list  organized  these analyses  according was  t o d i f f e r e n t dimensions.  The  other  reasons f o r  t o examine more c l o s e l y grade performance under  p a r t i c u l a r types o f l i s t (orders)  p r e s e n t e d f i r s t o r second, f o l l o w i n g a  organization.  x 2 ( l i s t organizations)  degree o f l e a r n i n g c o n d i t i o n .  Accordingly,  a 2  a n a l y s i s of variance  Appendix K c o n t a i n s  the  (grades) x 2  was  performed on  each  source t a b l e s f o r these  analyses. As  these t a b l e s i n d i c a t e , o r d e r was  r e c a l l under both degrees o f l e a r n i n g . F  (1,16)'= 28.08, p <  e f f e c t of l i s t  .10  f o r Dl.;  o r g a n i z a t i o n was  learning condition.  For the  F  a nonsignificant factor in  The  grade e f f e c t was  (1,16) = 7.73,  again  item  obtained,  p < c . 0 5 f o r D2.  The  not s i g n i f i c a n t f o r the h i g h degree o f  low  degree o f l e a r n i n g c o n d i t i o n , t h i s e f f e c t  approaches s i g n i f i c a n c e , F_ (1,16) = 5.27,  p <  r e c a l l under the  t o f u n c t i o n a l dimensions was  list  organized  according  what s u p e r i o r to t h a t under the l i s t s i o n s f o r both grades 7 and whether one since l i s t In the  type o f l i s t  As  organized  three  t o o n l y two  r a t h e r than two  according  according  Therefore,  p a r t s may  be p a r t l y r e s p o n s i b l e  F  (8,128) = 15.46, p.<  and  order  values organized into  f o r the tendency t o  r a t h e r than any e f f e c t The  inter-  o r g a n i z a t i o n were not s i g n i f i c a n t under both  Item r e c a l l i n c r e a s e d organization, F  .01  dimension.  to three  which stems from the types o f dimensions used i n the study.  w i t h i n each type o f l i s t  possible  s u b d i v i d i n g the same l i s t  produce s u p e r i o r item r e c a l l on the f u n c t i o n a l l i s t  degrees o f l e a r n i n g .  not  the same items were  values.  list  some-  t o a b s t r a c t dimen-  confounded w i t h number o f v a l u e s p e r  the items were o r g a n i z e d  a c t i o n s between grade and  item  i n d i c a t e d p r e v i o u s l y , a c l e a r t e s t of  o f the dimension, whereas i n the a b s t r a c t l i s t according  I t appears t h a t  o r g a n i z a t i o n would b e n e f i t l e a r n i n g was  o r g a n i z a t i o n was  functional l i s t  3.  .05.  f o r D2.  The  s i g n i f i c a n t l y across  (4,64) = 23.10, p <£. .01  trials for Dl;  i n t e r a c t i o n s between t r i a l s ,  a c r o s s both degrees o f l e a r n i n g were n o n s i g n i f i c a n t w i t h  the  grade  135'  exception of the order by t r i a l s interactions f o r the high degree of learning group.  I t appears that f o r the f i r s t two t r i a l s on both functional and  abstract l i s t s item r e c a l l was higher when these l i s t s were presented second. This e f f e c t d i d not hold f o r the f i n a l three t r i a l s i n the s e r i e s . Overall, grade 7 children recalled more items than grade 3 children. The effects of organized treatment conditions produced superior r e c a l l at both grade levels during the early learning t r i a l s i n comparison with the random stimulus presentation condition.  With additional t r i a l s , subjects  i n the random stimulus presentation condition approximated the same l e v e l of item r e c a l l as those subjects i n the organized stimulus presentation conditions.  D i f f e r e n t i a l r e c a l l e f f e c t s were not obtained between h i e r a r c h i c a l  and l i s t organizations.  Due to attainment of early asymptotic performance  l e v e l s , degree of learning d i d not produce s i g n i f i c a n t differences between the 6 and 10 learning t r i a l s conditions. •2.  Clustering i n Recall Following Anglin (1970), clustering scores were obtained by c a l c u l a t i n g  the r a t i o of number of repetitions on a t r i a l to the t o t a l possible number of repetitions on that t r i a l .  A r e p e t i t i o n occurs whenever an item from one  category i s followed by another item from the same category.  Thus, i f a  subject r e c a l l e d 7 items from three categories a,b, and c i n the following order:  aabcbac, he received a clustering score of 1/4 = .25; whereas i f a  subject r e c a l l e d the same 7 items i n the order aaabbcc, he received a clustering score 4/4 = 1.0.  This measure has the advantage of being.roughly  independent of number of items r e c a l l e d .  On the assumption of random  arrangement of items on a given t r i a l , the expected value of t h i s s t a t i s t i c i s constant and equal to 1/k where k i s the number of categories r e c a l l e d i f the same number of items per category i s r e c a l l e d .  Violations of t h i s  assumption i n f l a t e the expected value of the s t a t i s t i c s l i g h t l y , but not enough to make any p r a c t i c a l difference.  •136 In the p r e s e n t organization. categories; were t h r e e As  study number o f c a t e g o r i e s v a r i e d a c c o r d i n g  i n the l i s t  c o n d i t i o n , under the  c a t e g o r i e s , and  two  categories  F o r example, the expected value  list  .333  f o r the  condition.  stimulus  f o r the h i e r a r c h i c a l  c o n d i t i o n , and  calculated.  the maximum p o s s i b l e d e v i a t i o n .  .50  f o r the  The the  stimulus  c l u s t e r i n g score  comparison a c r o s s  first  (1.00) , he  i f he had  would  a c l u s t e r i n g score  organization  c l u s t e r i n g s c o r e s based  and  standard  deviations  f o r c l u s t e r i n g scores  degree o f l e a r n i n g are p r e s e n t e d i n T a b l e X. o f the d e r i v e d  (2 a r c s i n J y ) was x 2  c l u s t e r measure  a p p l i e d t o the o b t a i n e d  (grades) x 2  (conditions)  v a r i a n c e was  performed on the t r a n s f o r m e d s c o r e s  (degrees of l e a r n i n g )  on the  .035.  A 2  orthogonal a n a l y s i s of  f o r the f i r s t t h r e e  o f grade 7 over grade 3 approaches s i g n i f i c a n c e , but  as l a r g e as t h a t o b t a i n e d  f i r s t three t r i a l s  In  ( y ) , an a r c s i n  scores.  A source t a b l e f o r t h i s a n a l y s i s i s p r e s e n t e d i n Appendix L.  condition subjects  on  and. the l a s t t r i a l as a f u n c t i o n o f grade,  to s t a b i l i z e variances  p  0.00.  categories.  three t r i a l s  (1,72).= 4.64,  on  Thus, i f a s u b j e c t i n the  c a l c u l a t i o n , but  o b s e r v e d c e l l means and  transformation  ity  abstract  These d e v i a t i o n s were  a p e r f e c t c l u s t e r i n g score  c a l c u l a t i o n allows  d i f f e r i n g numbers o f  order  .167  (the expected value) he would r e c e i v e a c l u s t e r i n g s c o r e o f  T h i s new  for  organization.  for clustering varied.  the d e v i a t i o n o f each s u b j e c t ' s  r e t a i n t h i s score w i t h the new .167  there  t o equate the u n i t o f measurement a c r o s s d i f f e r e n t  h i e r a r c h i c a l c o n d i t i o n had  of  under the a b s t r a c t  f o r c l u s t e r i n g was  from the expected v a l u e was  then d i v i d e d by  functional organization  the expected v a l u e  functional l i s t  In o r d e r  organizations,  each t r i a l  stimulus  In the h i e r a r c h i c a l c o n d i t i o n , items were p r e s e n t e d i n s i x  a r e s u l t o f t h i s manipulation,  condition,  to  The  trials.  superio-  t h i s e f f e c t i s not  f o r item  r e c a l l , F_  There i s s i g n i f i c a n t l y more c l u s t e r i n g f o r  list  a t both grade l e v e l s i n comparison w i t h the h i e r a r c h i c a l  c o n d i t i o n , F_ (1,72) = 7.68,  p ^. .007.  I t was  expected t h a t c l u s t e r i n g a t  Table X Observed C e l l means and Standard  D e v i a t i o n s f o r C l u s t e r i n g Scores  F u n c t i o n o f T r i a l s , Grade, Stimulus  O r g a n i z a t i o n and Degree o f L e a r n i n g  Trials 1 M  2  3  Last  .667  .722  .848  .825  .285  .279  .218  .252  Dl S HC  .  M  .684  .634  .735  .912  S  .294  .220  .303 :  .173  M  .711  .673  .707  .549  D2 . „ , _ Grade 7  •  T  S • '- - .299  n  .438 '  .394  ' .460  M  .884  .921  .985  .870  S  .191  .145  .049  .211  M  .418  .531  .496  .455  S  .309  .269  .309  .333  M  .701  .597  .596  .428  S  .316 ;——  .307  .268  .341  D2  Dl NC  D2 „ ^ Grade 3 n  M  .767  .830  .852  .561  . S  .342  ..267  .281  ' .418  M  .687  .672  .486  S  .381  .411  .442  Dl m  D2  as a  .  .565 .396  ;138 the  grade 3 l e v e l would be s u p e r i o r  ently,  forlist  condition  t h i s e f f e c t holds across both grades, since  grades and c o n d i t i o n s  was n o n s i g n i f i c a n t .  subjects.  Appar-  t h e i n t e r a c t i o n between  As e x p e c t e d , t h e main e f f e c t o f  degree o f l e a r n i n g , and t h e i n t e r a c t i o n s between degree o f l e a r n i n g and grade, and  degree o f l e a r n i n g and c o n d i t i o n s  significant triple ing,  F  the  were n o n s i g n i f i c a n t .  i n t e r a c t i o n between grade, c o n d i t i o n s  (1,72) = 8 . 6 6 , £ < .004.  While t h i s  T h e r e was a  and degree o f l e a r n -  effect i s of l i t t l e  interest i n  p r e s e n t a n a l y s i s , i t i s w o r t h m e n t i o n i n g t h a t i t appears t o stem  the presence o f three  grade 3 subjects  i n the high  c o n d i t i o n who c l u s t e r e d a t a n e a r z e r o l e v e l . for  this  accidental  l i n e a r and q u a d r a t i c  the item  recall  r e s u l t s , there  main e f f e c t s f o r t r i a l s ,  Clustering scores increased trials.  explanation  list  condition  involved.  l i n e a r e f f e c t s a n d F_ (1,72) = 1 9 . 1 0 , JD <  f i r s t three  but since  list  c l u s t e r i n g a n d d e g r e e o f l e a r n i n g was n o n s i g n i f i c -  i d i o s y n c r a c i e s appear t o be  In agreement w i t h  for  T h e r e i s no r e a d y  low l e v e l o f c l u s t e r i n g i n these s u b j e c t s ,  o v e r a l l produced superior ant,  degree o f l e a r n i n g  from  i n a negatively  were s i g n i f i c a n t  F_ (1,72) = 3 7 . 4 0 , p -c .0001 .0001 f o r q u a d r a t i c  accelerated  fashion  effects. across the  The r e m a i n i n g e f f e c t s due t o i n t e r a c t i o n s b e t w e e n a n d  among t h e v a r i a b l e s w e r e n o n s i g n i f i c a n t . A s e c o n d a n a l y s i s was p e r f o r m e d o n t h e t r a n s f o r m e d s c o r e s f o r t h e last  learning t r i a l .  A source t a b l e  x 2 (degrees o f l e a r n i n g ) By  the l a s t t r i a l ,  clustering, F  f o r t h i s 2 (grades) x 2  analysis of variance  (conditions)  i s presented i n Appendix  c l u s t e r i n g a t t h e g r a d e 7 l e v e l was s u p e r i o r  (1,72) = 14.-99, p < .0003.  M.  t o grade 3  Therefore, the difference i n  c l u s t e r i n g between t h e two g r a d e s i n c r e a s e d  Grade 7  chil-  d r e n a p p e a r e d t o be making use o f t h e e x t e r n a l l y imposed o r g a n i z a t i o n  to a  greater  e x t e n t than t h e younger c h i l d r e n .  scores between c o n d i t i o n s and  list  condition  was no l o n g e r  subjects  across t r i a l s .  The d i f f e r e n c e  significant.  i n clustering  Both h i e r a r c h i c a l  a t each grade l e v e l c l u s t e r e d  equivalently•  139. The r e m a i n i n g e f f e c t s w e r e Overall, the  last trial,  the results  nonsignificant. f r o m t h e c l u s t e r i n g a n a l y s e s i n d i c a t e ' t h a t by"  grade 7 c h i l d r e n  A l t h o u g h c l u s t e r i n g was  superior  clustered  under the l i s t  l e v e l s i n the f i r s t three t r i a l s , the  hierarchical condition  learning  T r a n s f e r Task  1.  Free  condition  the s u p e r i o r i t y  amounts o f  of the l i s t  grade  condition  over  Degree o f  clustering.  Sorting  The f r e e  s o r t i n g d a t a w e r e s u b j e c t e d t o two m a i n a n a l y s e s .  y s i s t o be r e p o r t e d f i r s t . i n v o l v e d t h e use o f a s t a t i s t i c Johnson  children.  f o r both  had been l o s t by t h e l a s t t r i a l .  d i d not produce d i f f e r e n t i a l  B.  more t h a n g r a d e 3  (1967).  This s t a t i s t i c  subject's observed c l u s t e r i n g . theoretical  clusterings  on t h e f u n c t i o n a l abstract  yields  a scale  value o b t a i n e d from each (X) a n d t w o  ( f o r example, a t h r e e c a t e g o r y c l u s t e r i n g  d i m e n s i o n , a n d a two c a t e g o r y c l u s t e r i n g yields.a  and  i s z e r o when X i s A a n d one when X i s B.  ing  manner:  scale  ,/AB(X) = d ( A , X ) / d ( A , X ) + d ( B , x ) , w h e r e  agrees w i t h e i t h e r  ing  (B);  a theoretical  v a l u e between z e r o and one,  I t i s calculated  i n the  J.AB(X) i s a s c a l e  clustering  (A) b a s e d  (B) b a s e d o n t h e  ranging from 0 t o 1 i n d i c a t i n g the extent t o which the observed (X)  anal-  suggested by  G i v e n an o b s e r v e d c l u s t e r i n g  dimension), the s t a t i s t i c  The  value clustering  (A) o r a t h e o r e t i c a l  d ( A , X ) i s t h e d i s t a n c e b e t w e e n t h e two c l u s t e r i n g s  d(B,X) i s t h e d i s t a n c e between t h e two c l u s t e r i n g s  B a n d X.  follow-  cluster-  A a n d X;  and  Clusterings  can  be r e p r e s e n t e d 'as a d j a c e n c y m a t r i c e s , t h a t  and  o n e s w h e r e e n t r y i , j c o n t a i n s a one i f a n d o n l y i f o b j e c t s i a n d j a r e  i n t h e same c l u s t e r . "  Thus,, i n t h e a b o v e s t a t i s t i c ,  between two c l u s t e r i n g s , the  i s , an n x n m a t r i x o f z e r o s  d(A,X) - t h e d i s t a n c e  A a n d X - s i m p l y r e f l e c t s t h e number o f e n t r i e s  a d j a c e n c y m a t r i c e s o f A and X t h a t  are d i f f e r e n t , n o r m a l i z e d by  b y n ( n - 1 ) , a n d d ( B , X ) r e f l e c t s t h e number o f d i f f e r e n t n o r m a l i z e d  in  dividing entries  140 in  the adjacency  m a t r i c e s o f B a n d X.  For each s u b j e c t ' s observed culated.  These were:  the observed  clustering,  t h r e e s e a l e v a l u e s were  1) a s i x c a t e g o r y - t h r e e c a t e g o r y s c a l e v a l u e w h e r e  c l u s t e r i n g r e c e i v e d a s c a l e v a l u e o f zero i f i t conformed t o  the s i x c a t e g o r y c l u s t e r i n g d e r i v e d from t h e simultaneous values o f the a b s t r a c t dimension  t i o n , o r an i n t e r m e d i a t e s c a l e v a l u e r e f l e c t i n g scale polarities;  or two  use o f t h e two  and t h r e e v a l u e s o f t h e f u n c t i o n a l  s i o n a n d a one i f i t c o n f o r m e d t o t h e t h r e e c a t e g o r y  and  cal-  2) a s i x c a t e g o r y -  one d e p e n d i n g on t h e o b s e r v e d  functional  dimen-  classifica-  i t s relationship to the  two c a t e g o r y s c a l e v a l u e between  clustering's  two c a t e g o r y a b s t r a c t c l a s s i f i c a t i o n ;  zero  conformity t o the s i x category  and, f i n a l l y ,  3) a t h r e e c a t e g o r y -  category s c a l e v a l u e r e f l e c t i n g t h e r e l a t i o n s h i p between t h e observed  c l u s t e r i n g and t h e t h r e e category classification.  functional.and•two category abstract  Each a n a l y s i s on t h e s e s c a l e v a l u e s w i l l  be r e p o r t e d  separately. Six  Category In  and  - Three Category  order t o s t a b i l i z e  Scaling t h e v a r i a n c e s o f t h e d e r i v e d r a t i o m e a s u r e (y)  t h u s meet t h e r e q u i r e m e n t s  u n d e r l y i n g t h e use o f these s t a t i s t i c s  with  p r o p o r t i o n d a t a , a n a r c s i n t r a n s f o r m a t i o n (2 a r c s i n J/y) was p e r f o r m e d the s c a l e v a l u e s . and  oh  T h e ' o b s e r v e d s c a l e v a l u e means a n d s t a n d a r d d e v i a t i o n s  t h e t r a n s f o r m e d means a n d s t a n d a r d d e v i a t i o n s a s a f u n c t i o n o f g r a d e ,  c o n d i t i o n , and degree o f l e a r n i n g a r e p r e s e n t e d  i n Table X I .  s c a l e v a l u e mean f o r g r a d e 7 a n d g r a d e 3 s u b j e c t s a p p r o x i m a t e d  The  overall  the s i x  c a t e g o r y c l u s t e r i n g more c l o s e l y t h a n t h e t h r e e c a t e g o r y c l u s t e r i n g .  A 2  (grades)  com-  x 7 (conditions) analysis o f variance w i t h planned  p a r i s o n s was p e r f o r m e d for  this  analysis i s presented  as f o l l o w s : ing  on t h e t r a n s f o r m e d  trials  hierarchical, (D2); l i s t ,  scale values.  i n A p p e n d i x N.  6 learning t r i a l s  DI;  list,  D2;  orthogonal  A source  table  The s e v e n c o n d i t i o n s w e r e (DI);  random, D I ;  hierarchical, r a n d o m , D2;  10  learn-  a n d no  Table XI S i x Category - Three  Category  and T r a n s f o r m e d  Observed  S c a l e V a l u e Means a n d S t a n d a r d D e v i a t i o n s  Means a n d S t a n d a r d D e v i a t i o n s b y E x p e r i m e n t a l  Hierarchical Condition Dl  Scaling:  L i s t Condition  Random C o n d i t i o n  D2  Dl  D2  Dl-  D2  Treatments No T r a i n i n g C o n d i t i o n  M  .255 •  .191  .492  .483  .426  .421  .390  S  .224  .204  .201  .306  .084  .047  .060  Mtr  .852  .666  1.610,  1.593  1.419  1.412  1.349  Str  .738  .705  .571  .930  .171  .096  .122  M  .338  .385  .448  .447  .394  . 359  .391  S  .128  .073  .204  .131 .  .064  .035  .046  Mtr  1.186  1.337  1.521  1.465  1.356  1.283  Str  .429  .148  .585  .269  .130  .072  Grade 7  Grade 3 " 1.351 .094  H  1  1^  .142 training. ... The  main r e s u l t o f  ence between s u b j e c t s t r a i n e d under the  list  condition., F  subjects.  t r a i n i n g c o n d i t i o n s was  . The  In f a c t , nine  w i t h p e r f e c t a c c u r a c y , compared w i t h no  subjects  i n the  grade 3 c h i l d r e n , only j e c t s i n the perfect  conformity  subjects with One  list,  zero  r a n d o m and one  with  the  out  list-trained greater  subject  i n the  subjects  at the  only  one  subject  Six  A l l other  C a t e g o r y - Two Scale  of the and  values  no-training control conditions  s i x category c l u s t e r i n g .  c o n d i t i o n a t the  Category  the  list  condition, For  three  Three  sorted  the  no  sub-  in  list-condition  category s o r t i n g  (compared  no-training conditions).  grade 3 l e v e l reproduced the  three  no-training  condi-  Sealing  obtained  transformed scale values  f o r g r a d e 3 was  were c l o s e r t o the  in  than  e f f e c t s were n o n s i g n i f i c a n t .  from the  arcsin transformation.  and  their  i n t h e h i e r a r c h i c a l c o n d i t i o n and  f r e e s o r t i n g were t r a n s f o r m e d by  Means and as  0.305.  standard  deviations  The  o v e r a l l mean f o r g r a d e 7  Again, the  scale values  means  f o r observed  a f u n c t i o n o f g r a d e , c o n d i t i o n and  l e a r n i n g are presented i n Table X I I . 0.281  in  dif-  grade 7 l e v e l  i n the  c a t e g o r y c l u s t e r i n g (none i n t h e h i e r a r c h i c a l . , r a n d o m a n d tions) .  and  s i x category t h e o r e t i c a l c l u s t e r i n g  i n t h e h i e r a r c h i c a l , r a n d o m and list  Hierarch-  of twenty grade 7 s u b j e c t s  i n grade 7 p e r f e c t l y reproduced the subjects  .0001.  no-training control conditions.  subject  random and  subjects  i n t e r a c t i o n between grades  s i x c a t e g o r y s o r t was  grade 3 l e v e l .  p <  differ-  a l s o s i g n i f i c a n t i n d i c a t i n g t h a t the  h i e r a r c h i c a l c o n d i t i o n reproduced the  and  significant  s i x c a t e g o r y c l u s t e r i n g more  b e t w e e n h i e r a r c h i c a l l y - t r a i n e d and  approximation to the at the  (1,126) = 2 9 . 4 9 ;  approximated the  c l o s e l y than l i s t - t r a i n e d  ference  a n a l y s i s i s the  t r a i n e d under the h i e r a r c h i c a l c o n d i t i o n and  i c a l l y - t r a i n e d subjects  organized  i n t e r e s t in- t h i s  f o r both  degree  of  was grades  s i x category t h e o r e t i c a l c l u s t e r i n g .  A source table f o r a 2  (grades) x 7  (conditions)  a n a l y s i s of  variance  Table X I I S i x C a t e g o r y - Two C a t e g o r y and T r a n s f o r m e d  Observed  S c a l e V a l u e Means a n d S t a n d a r d D e v i a t i o n s  Means a n d S t a n d a r d D e v i a t i o n s b y E x p e r i m e n t a l T r e a t m e n t s  Hierarchical Condition DI  Sealing:  D2  L i s t Condition  Random C o n d i t i o n  DI  DI  D2  .  No T r a i n i n g C o n d i t i o n  D2  M  .189  .207  .315  .324  .293  .328  .309  S  .168  .309  .074  .255  .052  .075  .053  Mtr  .713  .705  1.186  1.206  1.141  1.215  1.176  Str  .621  1.000  .159  .768  .113  .161  .112  M  .250  .299  .300  . 390  .308  .270  .316  S  .098  .065  .048  .206  .073  .031  .050  Mtr  .997  1.155  1.158  1.346  1.173  1.109  1.193  Str  .364  .138  .105  .431  .152  Grade 7  Grade 3  .071 .  .107  1  :  on  the  transformed  the r e s u l t s from  scale values i s presented  t r a i n i n g c o n d i t i o n s was  The  comparison  condition  s u b j e c t s i n the h i e r a r c h i c a l  performed were  child  category  t h e two  At  clustering.  both  c o n d i t i o n s were c l o s e r t o the s i x conditions. one  For grade child  list  repro-  T h e r e w e r e no g r a d e 3 s u b j e c t s  category c l u s t e r i n g without error.  7  i n the  no-training conditions) perfectly  - Two  Category  who  A l l other  effects  Means a n d  standard  Scaling  S c a l e v a l u e s were c a l c u l a t e d and deviations f o r observed XIII.  The  and  transformed  0.403.  Both grades  t h e s c a l e t h a n t o t h e two A source  table  on t h e t r a n s f o r m e d e f f e c t s and ant.  transformed.  s c a l e values are presented  o v e r a l l g r a d e 7 s c a l e v a l u e was  s c a l e v a l u e was  for a 2  0.379;  the o v e r a l l grade  (grades)  x 7  i n t e r a c t i o n s between and  i n A p p e n d i x P.  among t h e v a r i a b l e s w e r e  in their  A l l main nonsignifictraining  s o r t i n g approximations As  i n d i c a t e d a b o v e , few  o v e r a l l s o r t e d i n p e r f e c t c o n f o r m i t y w i t h e i t h e r t h e two  category or  to  the  subjects three  sortings.  Hierarchical Clustering: The  pole  (conditions) analysis of variance  scale values i s presented  three category t h e o r e t i c a l s o r t s .  category  3  were c l o s e r t o the t h r e e c a t e g o r y  T h i s i s c l e a r i n d i c a t i o n t h a t r e g a r d l e s s o f g r a d e l e v e l and  and  i n Table  category pole.  c o n d i t i o n s , subjects d i d not d i f f e r two  organized  nonsignificant.  Three Category  of  between  i n t h e h i e r a r c h i c a l c o n d i t i o n and  (none i n t h e r a n d o m a n d  d u c e d t h e two  expected,  s i g n i f i c a n t , F_ (1,126) = 1 1 . 8 0 , p <i .001.  category c l u s t e r i n g than s u b j e c t s i n the l i s t s u b j e c t s , one  As  t h i s a n a l y s i s complement t h o s e o b t a i n e d from t h e s i x  category - three category scaling.  grade l e v e l s ,  i n A p p e n d i x 0.  "144 •  second  Qualitative Descriptions  m a j o r a n a l y s i s on t h e f r e e s o r t i n g d a t a i n v o l v e d t h e  a p p l i c a t i o n o f Johnson's (1967) h i e r a r c h i c a l c l u s t e r i n g t e c h n i q u e . method o f h i e r a r c h i c a l  c l u s t e r i n g i s d e s c r i b e d i n Chapter  III.  The  Incidence  Table Three  Category  - Two C a t e g o r y  and T r a n s f o r m e d  Observed  S c a l e V a l u e Means a n d S t a n d a r d D e v i a t i o n s  Means a n d S t a n d a r d D e v i a t i o n s b y E x p e r i m e n t a l  Hierarchical Condition D2  Dl  Scaling:  XIII  L i s t Condition Dl  D2  Random C o n d i t i o n Dl..  Treatments No T r a i n i n g C o n d i t i o n  D2  M  .363  .418  .341  .359  .361  .398  .410  S  .048  .208  .129  .275  .073  .053  .034  Mtr  1.292  1.459  1.193  1.229  1.287  1.365  1.390  Str  .099  .596  .430  .867  .155  .107  .070  M  .383  .405  .370  .442  .406  .398  .418  S  .038  .045  .133  .22.6  .040  .045  .036  Grade 7  .  Grade 3 Mtr  1.335  1.378  1.253  1.452  1.378  1.365  1.405  Str  .079  .093  .444  .494  .081  .092  .073  146m a t r i c e s were computed f o r each o f the s u b j e c t s showing which animal had been p l a c e d t o g e t h e r i n the same p i l e .  pairs  These i n c i d e n c e m a t r i c e s were  then added f o r a l l s u b j e c t s w i t h i n a group and s u b j e c t e d t o the h i e r a r c h i c a l clustering analysis.  F i f t e e n s e p a r a t e a n a l y s e s were performed  on  the  i n c i d e n c e m a t r i c e s p o o l e d a c r o s s v a r i o u s l e v e l s o f the e x p e r i m e n t a l These a n a l y s e s were performed  i n o r d e r t o account  f o r the e f f e c t s o f the  experimental, f a c t o r s q u a n t i t a t i v e l y d e s c r i b e d by the v a r i o u s scales  factors.  [e.g.^AB(X) ] d e f i n e d and used i n the p r e s e n t  comparative  study.  The h i e r a r c h i e s f o r the t r a i n e d groups a t the grade 7 and grade 3 l e v e l s are shown i n F i g u r e s 44 and 45.  The  t r e e s f o r the grade 7 group  r e f l e c t t o a c o n s i d e r a b l y g r e a t e r e x t e n t than the t r e e s f o r the grade 3 group the combination  o f a b s t r a c t and  functional values.  There are t h r e e  major h i e r a r c h i e s i n the grade 7 group r e f l e c t i n g the d i s t i n c t i o n between animals  f o r game, f u r and p e t s  t o form one  cluster).  (the p e t s and  fur hierarchies ultimately  W i t h i n each o f these h i e r a r c h i e s , t h e r e i s a major  s u b d i v i s i o n between h e r b i v o r o u s and c a r n i v o r o u s a n i m a l s . these s u b d i v i s i o n s , one p a i r o f animals g r e a t e r percentage t i g e r and panther  of subjects.  W i t h i n each o f  i s c l u s t e r e d by a c o n s i d e r a b l y  F o r example, 93% o f the s u b j e c t s p l a c e d  t o g e t h e r i n the same p i l e , whereas o n l y 47% o f the sub-  j e c t s p l a c e d bear i n the same p i l e w i t h t i g e r and panther; and c a t , but o n l y 37% i n c l u d e d skunk i n t h i s group. the t r e e s are not as c l e a r l y d e l i n e a t e d . One  c o n t a i n s a l l the game animals  and  fox).  animals  join  78% p a i r e d dog  A t the grade 3 l e v e l ,  There are two major h i e r a r c h i e s .  and t h r e e o f the f u r animals  (seal,  beaver,  The o t h e r h i e r a r c h y c o n t a i n s a l l the p e t s and the o t h e r 3 f u r  ( s q u i r r e l , muskrat, and r a c c o o n ) .  There appear t o be no  t i o n s between o r w i t h i n h i e r a r c h i e s on the b a s i s o f food h a b i t s .  distinc-  :  H i e r a r c h i e s f o r the grade 7 and grade 3 n o - t r a i n i n g groups are shown i n F i g u r e s 46 and 47.  The h i e r a r c h i e s o b t a i n e d from these groups are  c l e a r l y d i f f e r e n t from those o b t a i n e d from the t r a i n e d groups a t each grade  147  0  25  seal (elephant  monkey  skunk  squirrel  50  bear  kuskrat  A  a c c o o n  f o x  r a b^ > g e r b i l  beaver  75  dog moose  |tigerP  a  n  t  h  e  cat  deer  r  100  Figure  44.  H i e r a r c h i e s f o r grade from the f r e e - s o r t i n g method)  7 trained conditions data (diameter  "148  0  r_  25 L_ monkey  fox  f  m  u  s  k  r  a  l  rabbit  bear  skunk  raccocbn  50 •a  $.ea]/ \ beaver  CD  u a)  / \ g e r b i l squirrel  •p w P rH U  tiger  panther  dog  cat  75  moose  deer  100  Figure  45.  H i e r a r c h i e s f o r grade from the f r e e - s o r t i n g method)  3 trained conditions data (diameter  149  elephant  Figure  46.  H i e r a r c h i e s f o r grade 7 n o - t r a i n i n g c o n d i t i o n from the f r e e - s o r t i n g d a t a ( d i a m e t e r method)  150  0 25  Y^-bear  50  panther 75 H t i g e r 100  Figure  bea yer muskritskunk elephdnt raccoon ^ ^ dog cat gerbil  rabbit  fox squirrel  moose  47.  Hierarchies f o r grade from the f r e e - s o r t i n g  deer  3 no-training condition d a t a ( d i a m e t e r method)  151 level. tree  There are f o u r main t r e e s  containing  and tree  containing  (which a r e a l s o a l l c a r n i v o r o u s ) .  squirrel, gerbil,  moose, d e e r a n d s e a l .  o t h e r on numerous d i m e n s i o n s  grouped s e a l w i t h  appear t h a t n e a r l y  ( f o r example, food h a b i t s  t h e s e o t h e r two a n i m a l s .  a l l subjects  elephant form the l a s t t r e e . i s very low.  Most s u b j e c t s  placed  tiger, The  and h a b i t a t )  placed  tropical  Monkey a n d  f o r the grade 3 n o - t r a i n i n g group.  countries.  The f i r s t  There a r e 5  tree  second t r e e appears t o c o n s i s t o f small, tameable animals  r a c c o o n , presumably on t h e b a s i s  water.  The f i n a l The  tree contains  hierarchies obtained  including  (squirrel,  The  skunk  fourth  pictured i n the  moose a n d d e e r . from t h e t r a i n e d s u b j e c t s  a t the grade 7  W h i l e some o f t h e same  occur together w i t h i n the hierarchies obtained grade 7 groups  group.  The t h i r d t r e e p a i r s  of their striped fur.  l e v e l c l e a r l y show t h e e f f e c t o f t r a i n i n g .  untrained  pair  piles,  f o x , p a n t h e r , and b e a r c o r r e s p o n d s t o a l a r g e , w i l d a n i m a l s  t r e e groups s e a l , e l e p h a n t , and b e a v e r , a n i m a l s f r e q u e n t l y  the  but  Therefore, i t would  monkey a n d e l e p h a n t i n s i n g l e with  each  O n l y one o u t o f t e n  seal i n a separate p i l e .  g e r b i l , monkey, r a b b i t , m u s k r a t , d o g a n d c a t ) . and  A.third  The p e r c e n t a g e o f c l u s t e r i n g f o r t h i s  although both animals are associated main t r e e s  animals.  Moose a n d d e e r c l e a r l y r e s e m b l e  t h e y a r e a l s o a l i k e i n b e i n g l a r g e and n o n - f i e r e e . subjects  A  r a b b i t , skunk, raccoon, muskrat,  b e a v e r w o u l d seem t o c o n s i s t o f s m a l l , n o n - f i e r c e contains  One  t i g e r , p a n t h e r , c a t , f o x , d o g , a n d b e a r a p p e a r s t o be p r e -  dominantly large, f i e r c e animals second t r e e  f o r the grade 7 n o - t r a i n i n g group.  animals  from b o t h t h e t r a i n e d and  ( f o r e x a m p l e , t i g e r a n d p a n t h e r , moose  and.deer),  h i e r a r c h i e s , from the t r a i n e d group unambiguously r e f l e c t t h e combination  of abstract  and f u n c t i o n a l dimensions p r e s e n t e d i n t h e t r a i n i n g c o n d i t i o n s ,  whereas t h e t r e e s  obtained  from the u n t r a i n e d  group are l e s s e a s i l y  labeled,  more n u m e r o u s , a n d l e s s s y s t e m a t i c .  A comparison o f t h e t h i r d grade h i e r -  archies  g r o u p s s u p p o r t t h e same d i s t i n c t i o n s  f o r the t r a i n e d and u n t r a i n e d  .152 drawn f o r t h e grade 7 g r o u p s , effect i s clearly  b u t w i t h l e s s o r d e r and c l a r i t y .  s t r o n g e r a t t h e grade 7 l e v e l .  T h i s e f f e c t was q u a n t i -  t a t i v e l y t e s t e d p r e v i o u s l y i n terms o f t h e comparative To  The t r a i n i n g  scale values.  examine t h e e f f e c t o f t r a i n i n g c o n d i t i o n s , h i e r a r c h i c a l s t r u c t u r e s  were o b t a i n e d f o r each type o f o r g a n i z a t i o n , and w i t h i n t h a t t y p e o f organization  f o r each grade l e v e l .  s o r t i n g data f o r grades i n F i g u r e 48. the simultaneous  combination  o f both  dimensions  formed  are ultimately  and h e r b i v o r o u s p e t s  This r e s u l t i s e x p l i c a t e d by examining  s e p a r a t e l y from t h e two grades  from  and r e f l e c t s p e r f e c t l y t h e  The s u b g r o u p s o f c a r n i v o r o u s a n d h e r b i v o r o u s  the herbivorous f u ranimals  50).  free  7 and 3 i n t h e h i e r a r c h i c a l c o n d i t i o n i s p r e s e n t e d  and c a r n i v o r o u s f u r animals  cluster.  clustering given  F i g u r e 48 shows c l e a r l y t h e s i x m a j o r g r o u p i n g s  training organization. animals  The h i e r a r c h i c a l  game  clustered together, while  j o i n t o form  another  the hierarchies  obtained  i n t h e h i e r a r c h i c a l c o n d i t i o n ( F i g u r e s 49 a n d  F o r t h e grade 7 group, t h e s i x groups formed from t h e simultaneous  combination  o f both dimensions  are clearly evident.  These s i x groups  u l t i m a t e l y merge i n t o two h i g h e r o r d e r g r o u p s r e f l e c t i n g t h e d i s t i n c t i o n between h e r b i v o r e s and c a r n i v o r e s .  F o r t h e grade 3 group, a three  group  d i s t i n c t i o n emerges, p r i m a r i l y b a s e d on t h e f u n c t i o n a l d i m e n s i o n .  Although  t h e s e g r o u p s c o n t a i n a f e w e r r o r s ( f o r e x a m p l e , f o x i s g r o u p e d w i t h game a n i m a l s , s q u i r r e l w i t h p e t s , and skunk w i t h f u r animals)  these r e s u l t s  sup-  p o r t t h e e x p e c t a t i o n t h a t grade 7 c h i l d r e n would p r e f e r t o use t h e a b s t r a c t dimension,  w h i l e grade 3 c h i l d r e n would p r e f e r t o use t h e f u n c t i o n a l  dimension. The Figure 51.  hierarchies  from t h e l i s t  The t h r e e m a i n t r e e s o b t a i n e d r e p r e s e n t t h e t h r e e v a l u e s o f t h e  f u n c t i o n a l dimension.  Within these t r e e s , there i s a s u b d i v i s i o n  p r i m a r i l y on t h e a b s t r a c t dimension. grouping.  condition subjects are presented i n  based  T h e r e i s one e r r o r i n t h e f u n c t i o n a l  Skunk i s i m p r o p e r l y g r o u p e d w i t h t h e f u r a n i m a l s .  Inthe  153  0  25  skunk  — squi r r elephant  seal 50  U  ^ r a c c cxSn^E o x  bear  monkey muskrat  75  beav  rabbit tiger  gerbil  pantlj^er  tiger  panther mooseaeer  ioo  L  Figure  48.  Hierarchies f o r g r a d e 7 and g r a d e 3 h i e r a r c h i c a l c o n d i t i o n from t h e f r e e - s o r t i n g d a t a ( d i a m e t e r method)  . 154.  Figure  49.  H i e r a r c h i e s f o r grade from t h e f r e e - s o r t i n g  7 hierarchical data (diameter  condition method)  155  Figure  50 .  H i e r a r c h i e s f o r grade from the f r e e - s o r t i n g  3 hierarchical condition data (diameter method)  -156  25 monkey  fox  CD  U  CD +J  >e l e p h j a n t  to  3  squirral 50  bear skunk  muskrat  raccoon  beaver rabbit  75  dog  F  100  geidJDiJ. cat  i g e A p A moose deer a  n  t  L_  Figure  51.  Hierarchies f o r grade 7 and grade 3 l i s t c o n d i t i o n from the f r e e - s o r t i n g data (diameter method)  157 a b s t r a c t g r o u p i n g , s e a l a n d monkey a r e s e t a p a r t f r o m t h e o t h e r a n i m a l s ing  their  food h a b i t s .  The t r e e s o b t a i n e d s e p a r a t e l y f o r e a c h  grade  i n the  list  c o n d i t i o n a r e p r e s e n t e d i n F i g u r e s 52 a n d 53.  N e i t h e r t h e grade  grade  3 h i e r a r c h i e s a r e a s c l e a r a s t h e two grades  combined i n t h e l i s t  dition. animals  I n t h e grade  ultimately  w i t h t h e c a r n i v o r o u s game a n i m a l s ) . c l e a r d i s t i n c t i o n s based  join  ( f o xi s improperly grouped  The h e r b i v o r o u s game a n i m a l s a r e  I n t h e grade  3 c l u s t e r i n g , a l l t h e game  (fox i s again included with t h i s group).  c o n s i s t s o f two f u r a n i m a l s  ( s e a l and b e a v e r ) .  raccoon).  Overall,  f u n c t i o n a l dimension ings.  i n the l i s t  appears  tree  (muskrat,  squirrel,  c o n d i t i o n , f o r b o t h age g r o u p s , t h e  t o predominate  The a b s t r a c t d i m e n s i o n  A separate  The t h i r d  i n c l u d e s a l l t h e pets and t h e three remaining f u r animals and  con-  The p e t s f o r m a s e p a r a t e t r e e w i t h n o  on food h a b i t s .  grouped i n a separate t r e e .  tree  7 nor  7 c l u s t e r i n g . , t h e f u r a n i m a l s a n d t h e c a r n i v o r o u s game  form separate t r e e s which  a n i m a l s form one t r e e  shar-  i n determining the animal  i s t a k e n i n t o a c c o u n t more a t t h e g r a d e  group7  level. The  hierarchical  c l u s t e r i n g f o r t h e grade  7 and grade  t h e r a n d o m c o n d i t i o n i s p r e s e n t e d i n F i g u r e 54. c o n d i t i o n a r e more a m b i g u o u s . one  tree, this  animals  While  tree ultimately  ( s e a l and beaver)  joins  to  conform  (dog and c a t ) .  Intuitively,  c o n d i t i o n s e p a r a t e d by grade 7 level,  Another  tree contains  t h e t r e e s o b t a i n e d appear  on a s i z e d i m e n s i o n .  form two m a j o r b r a n c h e s  occur together i n another t r e e .  the grade  a n o t h e r t r e e c o n s i s t i n g o f two f u r  more r e a d i l y t o g r o u p i n g s b a s e d  medium-sized animals  The t r e e s o b t a i n e d f o r t h i s  a l l t h e game a n i m a l s o c c u r t o g e t h e r i n  a n d two p e t s  a m i x t u r e o f p e t s and f u r a n i m a l s .  3 subjects i n  o f one t r e e .  Large and  Small  animals  The h i e r a r c h i c a l s t r u c t u r e s f o r t h e r a n d o m  l e v e l a r e p r e s e n t e d i n F i g u r e s 55 a n d 56.  t h e r e a r e f o u r main t r e e s .  One c o n s i s t i n g o f t i g e r ,  p a n t h e r , monkey, a n d e l e p h a n t w o u l d a p p e a r t o b e l a r g e , e x o t i c ( h o w e v e r , a l t h o u g h monkey i s e x o t i c ,  At  i ti s not large).  animals  Another  consisting  -158  seal monkey skunk  elephant bear squirrel  "racboon  muskrat  beaver rabb i t  _d e ' e r i i o o s e | tiger  Figure  52.  panther  Hierarchies f o r grade the f r e e - s o r t i n g data  7 l i s t condition from (diameter method)  159  Figure  53.  H i e r a r c h i e s f o r grade the f r e e - s o r t i n g d a t a  3 l i s t c o n d i t i o n from ( d i a m e t e r method)  160  100  F i g u r e 54.  H i e r a r c h i e s f o r g r a d e 7 and g r a d e 3 random c o n d i t i o n f r o m t h e f r e e - s o r t i n g d a t a ( d i a m e t e r method)  Figure 55.  Hierarchies for grade 7 random condition from the free-sorting data (diameter method)  162  F i g u r e 56.  H i e r a r c h i e s f o r g r a d e 3 random c o n d i t i o n f r o m t h e f r e e - s o r t i n g d a t a ( d i a m e t e r method)  163 of  moose, d e e r  and b e a r  c o n f o r m s t o l a r g e n a t i v e mammals.  c o n t a i n i n g s q u i r r e l , muskrat, f o x , skunk, raccoon, dog  seems t o c o n s i s t o f s m a l l a n i m a l s .  F i n a l l y , s e a l and beaver  small animals monkey);  (squirrel,  c a t and form  a  The t r e e s f o r  T h e r e seems t o b e . a t r e e f o r  r a b b i t , skunk, r a c c o o n , muskrat, and  a tree including t i g e r , panther,  consists p r i m a r i l y o f beaver,  gerbil,  to label.  tree  rabbit, gerbil,  s e p a r a t e t r e e , p r e s u m a b l y . b a s e d on t h e i r a q u a t i c n a t u r e . the grade 3 s u b j e c t s a r e n o t easy  Another  large w i l d animals;  e l e p h a n t , dog and c a t which  f o x , b e a r , moose, and d e e r and a f i n a l  i s hard.to l a b e l . .  which  tree f o r seal, Overall, the h i e r -  a r c h i e s o b t a i n e d from t h e s u b j e c t s i n t h e random c o n d i t i o n a r e r a t h e r ambiguous, u n l e s s a s i z e dimension  i s involved.  Two f i n a l h i e r a r c h i c a l s t r u c t u r e s a r e p r e s e n t e d  i n F i g u r e s 57 a n d 5 8 ,  r e p r e s e n t i n g t h e t r e e s o b t a i n e d from t h e s u b j e c t s i n t h e s i x l e a r n i n g c o n d i t i o n and t e n l e a r n i n g t r i a l s a b l y s i m i l a r and demonstrate, conditions.  condition.  These h i e r a r c h i e s  a g a i n , t h e s i m i l a r i t y between both  F o r both groups,  trials  a r e remarklearning  t h e r e a r e t h r e e main t r e e s corresponding t o  the values o f the f u n c t i o n a l dimension.  In the s i x learning t r i a l s  condi-  tion,  join  Within  t h e p e t s and f u r animals  each t r e e t h e r e a r e b a s i c a l l y the a b s t r a c t dimension, the s i x t r i a l s  If  emerge.  corresponding t o the values of  Skunk i s e r r o n e o u s l y p l a c e d w i t h f u r a n i m a l s i n  structures.  the co-occurrence  terms o f shared  two b r a n c h e s  into a single tree.  w i t h the exception o f the t r e e f o r f u r animals i n  condition.  both h i e r a r c h i c a l  ultimately  o f a p a i r o f animals  f e a t u r e s between those  i n a tree i s considered i n  t w o a n i m a l s , some i n t e r e s t i n g  A c c o r d i n g t o t h e o r g a n i z a t i o n imposed d u r i n g t h e t r a i n i n g  t i o n s , each p a i r o f animals  can s h a r e two f e a t u r e s ( t h a t i s , b o t h  t a k e t h e same v a l u e o n e a c h dimension).,, one f e a t u r e ( t h a t i s , b o t h t a k e t h e same v a l u e o n one d i m e n s i o n ,  results condi-  animals animals  b u t a d i f f e r e n t v a l u e on t h e o t h e r  d i m e n s i o n ) , o r no f e a t u r e s ( t h a t i s , b o t h  animals  t a k e d i f f e r e n t v a l u e s on  164  seal  25  elephant  fox monkey  squirrel bear  muskrat  50  accopn skunk raccoon rabb  rbil  u o  -p cn 3 dog cat 75 t i g e r panther Dse ddeer ^ moose  100 Figure 57.  Hierarchies f o r grade 7 and grade 3 ten learning t r i a l s condition from free-sorting data (diameter method)  F«7  5 7  165  0  25 elephant monkey  bear squirrel 50  raccoon f o x muskrat seal beaver  rabbit  +J  gerbil  3  dog c a t  75 tiger  panther moose d e e r  100  F i g u r e 58.  H i e r a r c h i e s f o r grade 7 and grade 3 s i x l e a r n i n g t r i a l s c o n d i t i o n from the f r e e - s o r t i n g data ( d i a m e t e r method)  166 both dimensions). structures, there a hierarchy. moose.  The f i r s t o b s e r v a t i o n  a r e some a n i m a l p a i r s w h i c h a l w a y s o c c u r t o g e t h e r  These a r e t i g e r - p a n t h e r ,  Thus, r e g a r d l e s s  associated  i s that across a l l h i e r a r c h i c a l  r a b b i t - g e r b i l , eat-dog, and deer-  of t r a i n i n g condition, these are very  animal p a i r s .  the  greatest  strongly  A l l o f t h e m a l s o s h a r e t h e same v a l u e s o n t h e t w o  dimensions presented i n the t r a i n i n g conditions v a l u e s on o t h e r dimensions.  within  and d o u b t l e s s ,  many o t h e r  O v e r a l l , these a r e a l s o t h e p a i r s c l u s t e r e d by  percentage o f subjects  i n a l l the h i e r a r c h i c a l clusterings  obtained. A second p o i n t the  same t r e e .  These a r e :  panther paired with or elephant; pairs  fail  i s t h a t some a n i m a l p a i r s n e v e r o c c u r t o g e t h e r bear paired with  r a b b i t , g e r b i l o r monkey;  and t i g e r p a i r e d w i t h  within  r a b b i t , g e r b i l o r monkey; skunk p a i r e d w i t h  rabbit or gerbil.  Not only  d e e r , moose do t h e s e  t o s h a r e any v a l u e s on t h e d i m e n s i o n s employed i n t h e t r a i n i n g  p h a s e , t h e y a l s o a p p e a r t o t a k e d i f f e r e n t v a l u e s o n a number o f o t h e r sions.  Thus, i n t h e s e t o f animal terms employed i n t h i s  some a n i m a l p a i r s s t r o n g l y sociated  regardless  associated  a n d some a n i m a l p a i r s s t r o n g l y  a r e 18 a n i m a l - p a i r s  t h e s e p a i r s was a l w a y s ' i n t h e same t r e e (trained), hierarchical condition  a r c h i c a l c o n d i t i o n , grade 7 l i s t condition.  This  study, there are dis-  of training.  T h i r d l y , there  7  dimen-  w h i c h s h a r e two v a l u e s .  Each o f  i n the following conditions:  (both  grade  grades combined), grade 7 h i e r -  c o n d i t i o n , and t h e s i x t r i a l s  learning  r e s u l t i n d i c a t e s b o t h t h e e f f e c t s o f t r a i n i n g , and t h e  s u p e r i o r i t y o f the grade 7 c h i l d r e n . A fourth point  i s t h a t o f t h e 57 p a i r s o f a n i m a l s w h i c h s h a r e t h e  same v a l u e o n t h e a b s t r a c t placed group.  dimension, the only  group which  consistently  e a c h o f t h e s e p a i r s w i t h i n t h e same t r e e was t h e g r a d e 7 h i e r a r c h i c a l This  indicates the effects of h i e r a r c h i c a l training.on  behavior f o r the.older  subjects  sorting  and a l s o t h e s a l i e n c y o f t h e a b s t r a c t  167 dimension.  These s u b j e c t s w e r e . c l e a r l y  using  the abstract dimension i n  t h e i r s o r t s , a f a c t which i s e s p e c i a l l y noticeable p a i r s w h i c h were n e v e r p l a c e d (for  w i t h i n t h e same t r e e i n a n y o t h e r  example, r a b b i t and g e r b i l p a i r e d w i t h  monkey p a i r e d w i t h Fifth,  condition  d e e r , moose a n d e l e p h a n t ,  t h e r e w e r e some p a i r s p l a c e d  training conditions  i n t h e same t r e e i n o n e o r o t h e r  from s u b j e c t s  i n the  organized  ( h i e r a r c h i c a l and . l i s t ) w h i c h were n e v e r p l a c e d  t h e random t r a i n i n g c o n d i t i o n g r o u p s , or. n o - t r a i n i n g g r o u p s .  seal paired with and  panther;  raccoon, beaver and muskrat;  raccoon paired with  muskrat p a i r e d w i t h  skunk p a i r e d w i t h  t i g e r , bear and panther;  d e e r , moose a n d e l e p h a n t ,  from t h e organized  t r a i n i n g conditions  tiger,  seal  s q u i r r e l and  and fox-beaver..  Finally,  some  obtained  a p p e a r e d i n o n e o r more o f t h e h i e r -  f r o m t h e random t r a i n i n g g r o u p s a n d n o - t r a i n i n g  These were c a t and dog p a i r e d w i t h  together  These were  a n i m a l p a i r s w h i c h w e r e n e v e r i n t h e same t r e e i n t h e h i e r a r c h i e s  archies obtained  and  deer and moose).  of the h i e r a r c h i c a l clusterings obtained  in  i n the case o f c e r t a i n  groups.  d e e r , moose a n d e l e p h a n t a n d t i g e r -  monkey . Hierarchical Clustering:  Quantitative  Comparisons  An a d d i t i o n a l a n a l y s i s on t h e h i e r a r c h i c a l c l u s t e r i n g s i n v o l v e d comparison between h i e r a r c h i c a l s t r u c t u r e s u s i n g Johnson are  (1968).  derived  Therefore, ical  matrices  with  i d e n t i c a l Ns.  c e r t a i n comparisons were p e r m i s s a b l e .  c l u s t e r i n g s (A a n d B ) , a n a r b i t r a r y d i s t a n c e  h i e r a r c h i e s and t h e h e i g h t point.  suggested, by  T h e s e c o m p a r i s o n s a r e p o s s i b l e o n l y when t h e h i e r a r c h i e s  from pooled incidence only  a statistic  a  The h e i g h t  was c h o s e n o n t h e s e  (h) o f e a c h c l u s t e r i n g was d e t e r m i n e d a t t h a t  o f a c l u s t e r i n g , represented  as an a d j a c e n c y m a t r i x , i s  j u s t t h e sum. o f t h e o f f - d i a g o n a l e l e m e n t s n o r m a l i z e d For  the present analyses,  ing  was c h o s e n  G i v e n two h i e r a r c h -  a point  by d i v i d i n g by n ( n - 1 ) .  approximately two-thirds  ( a t t h e p o i n t where 35% o f t h e s u b j e c t s  up e a c h c l u s t e r -  clustered)  i n order  ,168 to  a l l o w number o f c l u s t e r s t o b e  structures. Given is  two  The  approximately  height of the i n t e r s e c t i o n  adjacency  s i m p l y t h e sum  ( h ( A f) B ) ) was  m a t r i c e s , r e p r e s e n t i n g two  then  c l u s t e r i n g s , the  - 1)..  Given  t h e h e i g h t o f t h e i n t e r s e c t i o n o f two  s t a t i s t i c h(A(1  hierarchical calculated. intersection  of the o f f - d i a g o n a l items which appear t o g e t h e r i n both  m a t r i c e s , n o r m a l i z e d by d i v i d i n g b y n ( n c l u s t e r i n g and  t h e same a c r o s s  B ) / h ( A ) , known as t h e r e s p e c t r a t i o ,  which the groupings  the height of clusterings,  each  the  i n d i c a t e s the extent  i n c l u s t e r i n g A r e f l e c t the groupings  in clustering  S i m i l a r l y , h ( A ( l B)/h(B) i n d i c a t e s the e x t e n t t o which the groupings c l u s t e r i n g B r e f l e c t the groupings A and  B were i d e n t i c a l ,  height of B  the expected  s c o r e c a n be  (A) o b t a i n e d f r o m one  (B) o b t a i n e d  from another  a n o t h e r , z s c o r e b a s e d on t h e o b s e r v e d B  c a n be  f o r A w o u l d be  f o r A would be:  computed i n o r d e r t o attempt  the c l u s t e r i n g  for  Value  I f t h e two  (see Johnson(1968) f o r f u r t h e r d e t a i l s ) ,  variance o f the d i s t r i b u t i o n  clustering  i n c l u s t e r i n g A..  ( h ( A ) ) , and  and  in  the  t h e maximum p o s s i b l e T h u s a _z  to r e j e c t the n u l l hypothesis  g r o u p o f s u b j e c t s was group of s u b j e c t s .  the variance of the d i s t r i b u t i o n  that ,  unrelated to  the  Similarly,  f o r B, for B  the expected  (h(A)(l -  value  h(A)))  computed. N i n e q u a n t i t a t i v e c o m p a r i s o n s w e r e made b e t w e e n t h e  hierarchical  clusterings:  hierarchical conditions; random c o n d i t i o n s ; learning t r i a l s and  B.  clusterings  equal to  h(B)(1 - h(B)).  respect r a t i o  to  following  g r a d e .7 v s . g r a d e 3 t r a i n e d c o n d i t i o n s ; list  v s . random c o n d i t i o n s ;  g r a d e 7 v s . g r a d e 3,  list  hierarchical  grade 7 vs. grade 3 n o - t r a i n i n g c o n d i t i o n s ;  conditions;  obtained vs.  vs.  s i x vs.  given h i e r a r c h i c a l ,  ten  list  random c o n d i t i o n s . The  grade 7 and  n u l l hypothesis  e o u l d n o t be  grade 3 t r a i n e d groups.  o b t a i n e d from these c o n d i t i o n and  r e j e c t e d i n the  comparison between  I t appears t h a t the  groups were u n r e l a t e d .  h i e r a r c h i c a l c o n d i t i o n s was  The  clustering  comparison between  significant.  The  -z_ s c o r e  list obtained  169 for  the l i s t  was  1.99  c o n d i t i o n was  (p <  .05).-  were s i g n i f i c a n t l y  2.48  Thus,  (p <  .01)  and f o r t h e h i e r a r c h i c a l c o n d i t i o n  a l t h o u g h t h e c l u s t e r i n g s i n t h e s e two  related, subjects  i n t h e h i e r a r c h i c a l c o n d i t i o n made some  a d d i t i o n a l d i s t i n c t i o n s not found i n the l i s t i s o n between  t h e random c o n d i t i o n  c o n d i t i on  c o n d i t i o n group.  and t h e l i s t  some o f t h e c l u s t e r s i n t h e r a n d o m c o n d i t i o n obtained i n the l i s t  conditions  ( z — 2-.18, p ^  with  (z  t h e random c o n d i t i o n  z, s c o r e - f o r  the  h i e r a r c h i c a l c o n d i t i o n was  not  be r e j e c t e d i n t h e c o m p a r i s o n between  the  n o - t r a i n i n g grade  trials  t h e r a n d o m c o n d i t i o n was  conditions 2.26  (p < . 0 2 5 ) .  The  (p <. .025)  (p <  .05).  obtained  same t e n d e n c y  The n u l l h y p o t h e s i s c o u l d  the n o - t r a i n i n g grade 7 group  comparison between  The  final  The  s i x and- t e n  (the z s c o r e - f o r  1.84 These  (p <  learning  2.19  .05)  7 and grade  comparison, between The  grade 7  3 list  and  conditions  grade 7 and grade  3 random  z s c o r e f o r t h e g r a d e 7 random  a n d f o r t h e g r a d e 3 r a n d o m c o n d i t i o n was  1.81  analyses.  the h i e r a r c h i e s  o b t a i n e d from the n o - t r a i n i n g groups a t both  grade l e v e l s were compared w i t h . t h e h i e r a r c h i e s o b t a i n e d f o r grade 7  overlapping  were  r e s u l t s s e r v e as f u r t h e r s u p p o r t for- the r e s u l t s  from e a r l i e r  grade 3 s u b j e c t s  and  the s i x t r i a l s  c o n d i t i o n was  comparisons between  and grade  approached s i g n i f i c a n c e .  Finally,  The  e x t e n t t o which these groups o v e r l a p p e d i n t h e i r c l u s t e r -  significant..  c o n d i t i o n was  a  condition which d i d not  and f o r t h e t e n t r i a l s  a p p r o x i m a t e l y t h e same..  conditions  clusters .  (p < .05) , b u t t h e z_ s c o r e f o r  (p <• . 2 5 ) .  The  grade 3 h i e r a r c h i c a l c o n d i t i o n s not  1.19  approached s i g n i f i c a n c e  c o n d i t i o n was  i n g s was  3 group.  that  random and h i e r a r c h i c a l c o n d i t i o n s .  The  0.66  compar-  .025) , b u t t h a t t h e r e w e r e  = .1.50.,. p_ <£ . 2 5 ) .  i s m a i n t a i n e d i n the comparison between  The  indicates  overlapped with  s u f f i c i e n t number o f a d d i t i o n a l c l u s t e r s i n t h e l i s t overlap  groups  on t h e s o r t i n g t a s k  and  i n S t u d y 1, i n w h i c h a d i f f e r e n t , b u t  a n d l a r g e r s e t o f a n i m a l t e r m s was  used i n t h e p r e s e n t s t u d y were i n c l u d e d  used  (11 o f t h e 18 a n i m a l s  i n the l a r g e r s e t i n Study 1 ) .  For  170;' t h e two  grade  7 h i e r a r c h i c a l s t r u c t u r e s , the s i z e dimension  'seems t h e  most s a l i e n t .  Many o f t h e same a n i m a l p a i r s o c c u r w i t h i n t h e same t r e e i n  both structures  ( f o r example, monkey-elephant, dog-eat,  skunk-squirrel-rabbit).  For the grade  3 hierarchical  t i n c t i o n b e t w e e n tame a n d w i l d a n i m a l s a p p e a r s The  s t r u c t u r e s , the  to hold f o r both  s i z e d i m e n s i o n seems t o b e more s a l i e n t i n g r a d e  present study.  seal-deer, bear-fox,  Some a n i m a l , p a i r s o c c u r w i t h i n t h e same t r e e  raccoon were grouped  by grade  a b l y on t h e b a s i s o f s t r i p e d g i r a f f e and  groups.  3 subjects i n the  ( f o r example, s e a l - e l e p h a n t , d o g - c a t , and m o n k e y - r a b b i t ) . and  dis-  i n both  J u s t as  groups,  skunk  3 s u b j e c t s i n the p r e s e n t s t u d y presum-  f u r , t h e same d i s t i n c t i o n seems t o h a v e a l l o w e d  z e b r a t o be p l a c e d t o g e t h e r i n S t u d y  1  (although i t i s also  c l e a r t h a t t h e s e p a i r s s h a r e v a l u e s on a number o f o t h e r d i m e n s i o n s ) . Overall,  t h e r e i s some s i m i l a r i t y b e t w e e n t h e h i e r a r c h i c a l  o b t a i n e d a t each grade similarities 7 level.  level  i n both Study  are not overwhelming.  Size i s the dimension  dimension w i t h the grade  1 and  structures  the present study.  They appear  t o be  s t r o n g e r at the  t h a t e m e r g e s more c l e a r l y t h a n a n y  7 s u b j e c t s and t h e g r a d e  These grade  other  3 s u b j e c t s i n the present  study. 2.  Fixed Sorting The  f i x e d s o r t s were the s o r t s i n which  s o r t the animal terms ratio  statistic  to which  i n t o a p r e d e t e r m i n e d number o f c a t e g o r i e s .  s u g g e s t e d by Johnson  the s u b j e c t ' s observed  classifications  s u b j e c t s were d i r e c t e d  (1968) was  used t o measure t h e e x t e n t  c l u s t e r i n g s o f t h e 18 i t e m s r e f l e c t e d  i s the r a t i o :  h(cHA)/h(A) ;  t h e s u b j e c t ' s c l u s t e r i n g o f t h e 18 o b j e c t s w h i c h h a s n  ,n  ,...n  The  o f t h o s e same i t e m s p r e s e n t i n t h e t r a i n i n g p h a s e .  s t a t i s t i c , p r e v i o u s l y mentioned,  , and C i s a t h e o r e t i c a l c l u s t e r i n g  phase c l a s s i f i c a t i o n s )  w h i c h has  i s d e f i n e d as  ,n  .  This  size  case, the ...n  the  where A i s  clusters of  (in this  c l u s t e r s of size n  h e i g h t o f t h e s u b j e c t ' s c l u s t e r i n g and  to  training  H(A)  i s the  n  (n  - 1) + n  (n  - 2) + ... n  (n  - 1) / n ( n - 1 ) .  H(C A A) i s t h e h e i g h t  of t h e i n t e r s e c t i o n o f t h e t h e o r e t i c a l c l u s t e r i n g and t h e s u b j e c t ' s c l u s t e r i n g and r e p r e s e n t s the  the l a r g e s t c l u s t e r i n g included i n both.  i n t e r s e c t i o n i s a new c l u s t e r i n g  b o t h A a n d C.  T h i s r a t i o ranges from zero t o one.  Category S o r t i n g  A score  and  To s t a b i l i z e  f o r the transformed  scores  transformed  are presented  degree o f l e a r n i n g .  A p p e n d i x Q.  D2; As  six  A source  (Dl);  A 2 (grades)  expected,  19.14, £ <  c o m p a r i s o n s was p e r f o r m e d o n  table f o r t h i s a n a l y s i s i s presented i n :  hierarchical, s i x  r a n d o m , D2;  a n d no  t o the  d u r i n g t h e . t r a i n i n g phase than grade 3 c h i l d r e n ,  .0001).  A l l t r a i n e d groups  s i g n i f i c a n t l y more t h a n t h e n o n - t r a i n e d F_( 1,126) = 8.08, £ <. . 0 0 5 .  (hierarchical,  stimulus  classification to a  and  level, presentation  significantly  a t b o t h g r a d e l e v e l s t h a n t h e random s t i m u l u s  c o n d i t i o n , F (1,126) = 2 0 . 5 3 , £ < . . 0 0 0 1 .  list  classification  group a t each grade  A l s o , , t h e two o r g a n i z e d  conditions r e f l e c t e d the s i x category  and  (2); l i s t , D l ;  training.  random) a t b o t h g r a d e l e v e l s r e s p e c t e d .the s i x . c a t e g o r y  greater extent  scores  (conditions)  grade 7 c h i l d r e n s o r t e d i n g r e a t e r conformity  categories presented  F(l,126)=  x 7  hierarchical, ten learning trials  r a n d o m , Dl,;'  these  i n Table XIV as a f u n c t i o n o f  The s e v e n c o n d i t i o n s w e r e a s f o l l o w s :  learning t r i a l s list,  scores.  ratio  deviations f o r the obtained  analysis of variance with planned orthogonal the  of the derived  (2 a r c s i n J y ) was p e r f o r m e d o n  The o b s e r v e d means a n d s t a n d a r d  grade, condition.and  clustering.  t h e s i x c a t e g o r i e s s e t up i n t h e  the variances  (y) a n a r c s i n t r a n s f o r m a t i o n  scores.  indi-  f o r each s u b j e c t r e p r e s e n t i n g t h e degree t o  clustering respected  training conditions. measure  o f one  by  ;  A r a t i o s c o r e was o b t a i n e d which that subject's  Thus,  c o n t a i n i n g a s e t o f c l u s t e r s shared  c a t e s p e r f e c t agreement between t h e t h e o r e t i c a l and o b s e r v e d Six  observed  presentation  The d i f f e r e n c e b e t w e e n  organized  r a n d o m c o n d i t i o n s was g r e a t e r a t t h e g r a d e 7 l e v e l t h a n a t t h e g r a d e 3  Table XIV S i x Category Respect R a t i o s :  O b s e r v e d R a t i o S c o r e Means a n d S t a n d a r d D e v i a t i o n s a n d  T r a n s f o r m e d Means a n d S t a n d a r d D e v i a t i o n s b y E x p e r i m e n t a l Hierarchical Condition Degree o f Learning  Dl  D2  List Dl  Random C o n d i t i o n  Condition  Dl  D2  Treatments No T r a i n i n g  Condition  D2  M  .694  .722  .444  .461  .233  .322  .294  S  .359  .368  .259  .342  .141  .104  .114  Mtr  2.2 38  2.505  1.501  1.586  .945  1.200  1.135  Str  1.012  1.027  .681  .916  .42 3  .220  .250  M  .367  .400  .250  .311  .261  .244  .178  S  .236  .341  .115  .176  .091  .065  .063  Mtr  1.345  1.441  1.023  1.162  1.064  1.028  .858  Str  ,654  .947  .290  .383  .202  .153  .179  Grade 7  Grade 3  .  level,  F_(l.,126)  = 8 . 3 1 , p_ <• . 0 0 5 .  a r c h i c a l o r g a n i z a t i o n a t both with the s i x predetermined the l i s t  the  list  grade l e v e l s  c l a s s i f i e d more i n a c c o r d a n c e  categories than  o r g a n i z a t i o n , F_(l,126)  the grade 3 c h i l d r e n .  S u b j e c t s who h a d l e a r n e d u n d e r t h e h i e r  s u b j e c t s who h a d l e a r n e d u n d e r  = 1 6 . 7 7 , p < .0001.  T h i s was e x p e c t e d f o r  I t d o e s n o t seem, h o w e v e r , t h a t g r a d e 7 c h i l d r e n i n  c o n d i t i o n had s u f f i c i e n t  form t h e s i x category  flexibility  i n classificatory  c l a s s i f i c a t i o n approximately  skills  as w e l l as t h o s e  7 s u b j e c t s t r a i n e d under t h e h i e r a r c h i c a l c o n d i t i o n . degree o f l e a r n i n g were, again, n o t s i g n i f i c a n t .  to  grade  The e f f e c t s f o r  A l l further interactions  b e t w e e n a n d among t h e v a r i a b l e s w e r e n o n s i g n i f i c a n t . Three Category A ratio  Sorting score  of the correspondence ing  between t h e s u b j e c t ' s observed  and t h e t h r e e c a t e g o r y  f u n c t i o n a l dimension. transformed 2  f o r e a c h s u b j e c t was c a l c u l a t e d r e f l e c t i n g t h e e x t e n t  (grades)  cluster  c l u s t e r i n g formed a c c o r d i n g t o v a l u e s o f t h e  Means a n d s t a n d a r d d e v i a t i o n s f o r o b s e r v e d  r a t i o scores are presented  i n Table  XV.  scores i s presented  children respected the f u n c t i o n a l • t h r e e category than grade 3 c h i l d r e n , F(l,126)  and  A source "table f o r a  x 7 (conditions) a n a l y s i s o f variance with planned  c o m p a r i s o n s on t h e t r a n s f o r m e d  both  three category  orthogonal  i n A p p e n d i x R.  Grade 7  sort significantly  = 4 4 , 0 1 , p <. . 0 0 0 1 .  more  Trained subjects at  grade l e v e l s respected the f u n c t i o n a l c l a s s i f i c a t i o n t o a g r e a t e r  e x t e n t t h a n n o n - t r a i n e d s u b j e c t s , F.(l,126)  = 1 2 . 0 8 , p_  .0007.  However,  t h i s d i f f e r e n c e b e t w e e n t r a i n e d a n d n o n - t r a i n e d . c o n d i t i o n s was somewhat g r e a t e r a t the grade 7 l e v e l ,  F(l,126)  = 4.53, p_  d i f f e r e n c e s between h i e r a r c h i c a l and l i s t e i t h e r grade l e v e l .  p  As  expected,  c o n d i t i o n s were n o t o b t a i n e d a t  H i e r a r c h i c a l and l i s t  condition subjects of both  grades conformed t o t h e f u n c t i o n a l c l a s s i f i c a t i o n subjects  .035.  s i g n i f i c a n t l y more  than  i n t h e r a n d o m s t i m u l u s p r e s e n t a t i o n c o n d i t i o n , F_( 1,126) = 2 6 . 5 8 ,  l .0001.  The d i f f e r e n c e b e t w e e n r a n d o m a n d o r g a n i z e d  stimulus  T a b l e XV Three Category Respect R a t i o s : and  T r a n s f o r m e d Means a n d S t a n d a r d D e v i a t i o n s b y E x p e r i m e n t a l  Hierarchical Degree o f Learning  Condition -  DI  O b s e r v e d R a t i o S c o r e Means a n d S t a n d a r d  D2  L i s t Condition D2  DI  Treatments No T r a i n i n g  • Random C o n d i t i o n DI.  Deviations  D2  M  .807  .840  .809  .853  .493  .513  .453  S  .230  .213  .205  .260  .197  .148  .176  Mtr  2.476  2.595  2.430  2.680  1.561  1.597  1.475  Str  .737  .714  .664  .777  .410  .300  .368  M.  .460  . .437  .500  .493  .447  .416  .389  S  .208  .229  .203  .281  .165  .099  .122  Mtr  1.543  1.492  1.626  1.611  1.462  1.398  Str  .589  .627  .571  .706  .344  .205'  Grade 7  Grade 3  Condition  ,  ,1.342 .252  1-75 presentation  c o n d i t i o n s was s i g n i f i c a n t l y g r e a t e r  grade 3 l e v e l ,  F(l,126)  = 1 4 . 9 6 , £ <• .0002.  a t the grade 7 than a t the  A l l f u r t h e r e f f e c t s and i n t e r -  a c t i o n s b e t w e e n a n d among t h e v a r i a b l e s w e r e n o n s i g n i f i c a n t . Two C a t e g o r y Ratio extent the  Sorting scores  were c a l c u l a t e d f o r each s u b j e c t  o f agreement between'the s u b j e c t ' s  representing the  o b s e r v e d two c a t e g o r y s o r t and  two c a t e g o r y c l u s t e r i n g f o r m e d on t h e b a s i s o f t h e v a l u e s  dimension.  Observed and transformed r a t i o  tions are presented i n Table XVI. (conditions)  analysis of variance  score  of the abstract  means a n d s t a n d a r d  A s o u r c e t a b l e f o r a 2 (grades), x 7 i s p r e s e n t e d i n A p p e n d i x S.  Grade 7  c o n f o r m e d s i g n i f i c a n t l y more t o t h e t w o c a t e g o r y a b s t r a c t v a l u e s t h a n g r a d e 3, F ( l , 1 2 6 ) and this the  non-trained  devia-  = 17.22, £ < .0001.  g r o u p s was n o t s i g n i f i c a n t .  clustering  The d i f f e r e n c e b e t w e e n t r a i n e d Table XVI would i n d i c a t e  that  r e s u l t i s p r i m a r i l y a t t r i b u t a b l e t o t h e c l o s e correspondence between random c o n d i t i o n g r o u p s and t h e n o - t r a i n i n g g r o u p s .  stimulus  presentation  conditions  respected  the values  Both  organized  of the abstract  d i m e n s i o n i n t h e i r c l u s t e r i n g s i g n i f i c a n t l y more t h a n t h e r a n d o m c o n d i t i o n , F ( 1,12.6) = 1 6 . 2 3 , £ ^. . 0 0 0 1 . organized  a n d r a n d o m c o n d i t i o n s was g r e a t e r  F_( 1,126) = 7.42, £.<- .007. icant.  F o r grade 7 c h i l d r e n , t h e d i f f e r e n c e  between  than f o r ' t h e grade 3 c h i l d r e n ,  Other e f f e c t s and i n t e r a c t i o n s were  nonsignif-  Table XVI Two C a t e g o r y R e s p e c t R a t i o s :  O b s e r v e d R a t i o S c o r e Means a n d S t a n d a r d D e v i a t i o n s a n d  T r a n s f o r m e d Means and. S t a n d a r d D e v i a t i o n s b y E x p e r i m e n t a l T r e a t m e n t s Condition Degree o f Learning  Hierarchical  .  List  Random  •  .  No  Training  •  DI  D2  DI  D2  DI  D2  M  .678  .791  .633  .733  .467  . .506  .572  S  .278  .270  .219  .225  .054  .109  .187  Mtr  2.155  2.495  1.956  2.219  1.504  1.585  1.776  Str  .851  .835  .662  .693  .108  .228  .533  M  .478  .517  .561  .544  .511  .456  .450  S  .070  .172  .188  .190  .057  .023  .018  Mtr  1.527  .1.661  1.754  1.720  1.593  1.482  1.471  Str  .141  .523  .537  .544  .116  .047  .035  Grade 7  Grade 3  177  CHAPTER V I I I DISCUSSIONS AND The  analyses of  r a t i o n a l e and  the  present data w i l l  hypotheses advanced f o r the  t h e s e s were s u p p o r t e d .  A  further  h y p o t h e s e s t h a t w e r e c o n f i r m e d and information in A.  about o r g a n i z a t i o n a l  be  study.  FINDINGS examined i n l i g h t Many o f  examination of  the  of  major hypo-  evidence regarding  t h o s e t h a t were not  processes i n free  may  recall  provide and  H y p o t h e s e s and  Findings i n Free R e c a l l  predicted  that  those  additional  transfer  tasks  children  i n the  grade 3 c h i l d r e n  list  condition  i n the  stimulus presentation,  w o u l d show s u p e r i o r  hierarchical condition.  d a t a and  theory indicating e f f i c i e n t  learning  t a s k s when t h e  archical  structure.  i t was  the  Since hierarchies that  and  but  recall  and that  and  cluster grade  to  learn  involve  This prediction  clustering for adults  class  inclusion  acquiring  well regardless  3 c h i l d r e n on list  children  item r e c a l l .  condition as  and  young as  At both grade l e v e l s ,  hierarchical condition  8 or  9 years of  in  classification  age  can  not  skills  demonstrate class  hierarchy.  f o r the  i t e m r e c a l l was  groups.  hier-  involved  of whether the  grade 7 c h i l d r e n , but  from  relationships  i n c l u s i o n r e l a t i o n s h i p s were disembedded o r p r e s e n t e d i n a complete These e x p e c t a t i o n s were u p h e l d f o r the  to  stemmed  class inclusion relationships  equally  3  clustering  were disembedded whereas grade 7 c h i l d r e n would  flexibility  items  w e r e embedded i n a m e a n i n g f u l  grade 3 c h i l d r e n  l i s t s more e a s i l y when t h e  hierarchy  sufficient  recall  stimulus materials  considered l i k e l y  would l e a r n  Learning  grade 7 c h i l d r e n would r e c a l l  comparably under b o t h methods o f  for  the  children.  I t was  in  SUMMARY OF  grade  comparable  This Indicates  understand h i e r a r c h i c a l  that organization  178  ;  and  the  the  v e r y l e a s t , can  as  c l a s s i n c l u s i o n r e l a t i o n s h i p s embedded w i t h i n  t h e y can  learn  l e a r n items which are  items which are  These r e s u l t s agree w i t h study as  (Steinberg  young as  recall  a recent,  A n d e r s o n , 1974) can  but  use  each p i c t u r e  h i e r a r c h i c a l l y as  demonstrated that  In the  Steinberg  familiar things.  s u b s e q u e n t l y , g i v e n as  cues the  at  easily  structure.  c l a s s i n c l u s i o n h i e r a r c h i e s as  eight pictures of  or,  e n t i r e l y d i f f e r e n t type  w h e r e i t was  for r e t r i e v i n g information.  g r a d e r s saw  structure,  p r e s e n t e d i n a more s i m p l e  those of  s i x y e a r s o f age  tional basis first  and  structured  that  and  of  children a  func-  Anderson  They a t t e m p t e d  study  to  c o r r e s p o n d i n g noun  and  f o u r o t h e r w o r d s w h i c h mapped o n t o a c l a s s i n c l u s i o n t r e e - l i k e s t r u c t u r e . Predictions firmed.  b a s e d on  a model of  semantic distance  These r e s u l t s f o r f i r s t  b a s e d on p r e v i o u s r e s e a r c h Piaget,  1964;  O l v e r and  expected i n the  grade c h i l d r e n are  (Anglin,  1970;  H o r n s b y , 1966;  present study that  i n c l u s i o n r e l a t i o n s h i p s , i t was  Entwistle,  fact,  expected that as  class inclusion relationships involved.  use  t h e s e r e l a t i o n s h i p s a t an  and  t h a t by  the  contrary 1966;  Steinberg  e a r l i e r age  finding that  It the  effici-  they d i d ,  (1974), t h a t  function  class  presentation  they  in can  indicated,  efficiently  complex c l a s s i n c l u s i o n r e l a t i o n s h i p s at l e a s t i n terms of r e c a l l o f a free r e c a l l  was  a b l e t o use  t h a n p r e v i o u s r e s e a r c h had  t i m e t h e y r e a c h grade 3 t h e y can  and  Although i t  from a simpler  Anderson  con-  expectations  t h e y w o u l d l e a r n as  The  and  to  Inhelder  g r a d e 3 c h i l d r e n w o u l d be  not  s u g g e s t s , i n agreement w i t h  s t r u c t u r e were  Palermo, 1971).  e n t l y from a complex h i e r a r c h i c a l o r g a n i z a t i o n of the  i n the  with items  on  task.  i s possible,  of course, that  items f o r r e c a l l regardless  Evidence which i s contrary clustering results. the  first  of the  grade 3 subjects  class inclusion relationships  to this p o s s i b i l i t y  Again, the  seems t o be  r e s u l t s were c o n s i s t e n t  groups.  On  three t r i a l s ,  clustered  r e s p o n s e s more u n d e r t h e  b o t h g r a d e 3 and  list  were s i m p l y m e m o r i z i n g  condition  involved.  i n d i c a t e d by  across both  grade 7  the  age  subjects  than under the  hierarchical  '179' condition.  However, b y t h e l a s t t r i a l ,  function of organization of stimulus  d i f f e r e n c e s i n c l u s t e r i n g as a  items were n o t o b t a i n e d .  a p p e a r s t h a t a t b o t h g r a d e l e v e l s , more c l u s t e r i n g o c c u r r e d trials  when i t e m s w e r e p r e s e n t e d  i n terms o f simpler  Thus i t  i n the early  class inclusion rela-  t i o n s h i p s than i n h i e r a r c h i c a l p r e s e n t a t i o n , b u t t h a t as t r i a l subjects extent  proceeded,  i n t h e h i e r a r c h i c a l c o n d i t i o n c a u g h t up a n d c l u s t e r e d t o t h e same  as s u b j e c t s  i n the l i s t  Thus t h e i t e m r e c a l l young as e i g h t o r n i n e  groups.  and c l u s t e r i n g r e s u l t s i n d i c a t e t h a t c h i l d r e n as  y e a r s o f age b o t h u n d e r s t a n d c l a s s i n c l u s i o n and u s e  complex c l a s s i n c l u s i o n r e l a t i o n s h i p s as e f f i c i e n t l y  as simple  class  inclu-  sion relationships. I t was a l s o e x p e c t e d t h a t b o t h g r a d e 3 a n d g r a d e 7 s u b j e c t s r e c a l l more i t e m s u n d e r c o n d i t i o n s o f o r g a n i z e d random s t i m u l u s p r e s e n t a t i o n . three  trials  across  This  i s i n i t i a l l y a i d e d when i t e m s a r e p r e s e n t e d  fashion, with  this effect i s lost.  items o r the presentation  demonstrate a greater  opposed t o random s t i m u l u s It  i n a clearly  items, but  The a d d i t i o n o f more likely as  presentation. t a s k might have produced  a n d c l u s t e r i n g a s a f u n c t i o n o f number o f t r i a l s .  was e x p e c t e d t h a t t h o s e s u b j e c t s  receiving ten trials  It  would r e c a l l and  c l u s t e r more t h a n t h o s e s u b j e c t s r e c e i v i n g o n l y s i x t r i a l s . asymptotic  struc-  as a r e s u l t o f o r g a n i z e d  i s q u i t e p o s s i b l e t h a t a more d i f f i c u l t  differences i n recall  trials  Thus i t appears  o f more c o m p l e x h i e r a r c h i e s w o u l d  d i f f e r e n c e i n item r e c a l l  (trials  I t was n o t c o n -  an e x p l i c i t r u l e f o r o r g a n i z i n g t h e l e x i c a l  that with additional t r i a l s , lexical  trials  both levels, nor f o r the intermediate  four - nine) f o r those groups r e c e i v i n g t e n t r i a l s .  that recall tured  s i xt r i a l s .  than  f o r the f i r s t  b o t h grade l e v e l s , and f o r t h e i n t e r m e d i a t e  f i r m e d on t h e l a s t t r i a l a c r o s s (trials  stimulus presentation  e x p e c t a t i o n was c o n f i r m e d  f o u r and f i v e ) f o r t h o s e groups r e c e i v i n g o n l y  would  I t appears  l e v e l s o f performance were r e a c h e d by b o t h grades a t  that  approximately  -.180.the  t h i r d or fourth  trial.  I t was p r e d i c t e d  that differences  t a s k would f a v o r t h e grade 7 c h i l d r e n . across conditions  on item r e c a l l .  i n performance on t h e f r e e  recall  T h i s r e s u l t was c o n s i s t e n t l y  There was a tendency f o r grade 7 c h i l d r e n  t o c l u s t e r more than grade 3 c h i l d r e n on the e a r l y l e a r n i n g t r i a l s . last trial  grade 7 s u b j e c t s  subjects. regardless  clustered  By t h e  s i g n i f i c a n t l y more than grade 3  Thus grade 7 c h i l d r e n r e c a l l e d more items than grade 3 c h i l d r e n of conditions,  organizations The  obtained  and a l s o c l u s t e r e d  imposed i n the l i s t  i n greater  and h i e r a r c h i c a l  conformity t o the  conditions.  o v e r a l l r e s u l t s on t h e f r e e r e c a l l t a s k suggest s i m i l a r s t o r a g e and  r e t r i e v a l p r o c e s s e s i n both grade 3 and grade 7 c h i l d r e n .  However, i t seems  t h a t o l d e r c h i l d r e n d i f f e r from younger ones i n t h e e f f i c i e n c y o f these p r o c e s s e s r a t h e r than i n t h e i r a b i l i t y t o use i n f o r m a t i o n  differentially  p r e s e n t e d i n complex c l a s s i n c l u s i o n h i e r a r c h i e s o r i n s i m p l e r  class inclusion  lists. A f i n a l expectation l e v e l s was n o t c o n f i r m e d .  c o n c e r n i n g d i m e n s i o n a l p r e f e r e n c e s a t d i f f e r e n t age In the s i x t r i a l s l i s t  learning condition  at both  grade l e v e l s , r e c a l l was s u p e r i o r when t h e l i s t was o r g a n i z e d a c c o r d i n g t o the  f u n c t i o n a l dimension than when i t was o r g a n i z e d a c c o r d i n g t o t h e a b s t r a c t  dimension.  T h i s e f f e c t was n o t o b t a i n e d i n t h e t e n t r i a l s l i s t  c o n d i t i o n .for e i t h e r grade l e v e l . processes are operating  A g a i n , the r e s u l t s i n d i c a t e t h a t t h e same  i n b o t h o l d e r and younger c h i l d r e n  (at l e a s t i n s o f a r  as performance on the f r e e r e c a l l t a s k i s c o n c e r n e d ) . B.  Hypotheses and F i n d i n g s The  learning  i n the S o r t i n g Transfer  '  Task  e x p e c t a t i o n s f o r the t r a n s f e r s o r t i n g t a s k stemmed from t h e  p r i m a r y assumption t h a t t h e r e would be an e f f e c t o f t r a i n i n g on t r a n s f e r performance. cognitive  Furthermore, i t was p r e d i c t e d  that the greater  degree o f  f l e x i b i l i t y i n the o l d e r c h i l d r e n would be demonstrated by a  s t r o n g e r tendency t o a p p l y spontaneously t h e trained', s t r u c t u r e s  i n the free  181.'" sorting task  i n comparison w i t h  grade 3 c h i l d r e n .  w e r e e x p e c t e d t o s o r t more c o r r e c t l y on s t r u c t u r e d o r g a n i z a t i o n used i n the By  c o n t r a s t , on  the  the  Likewise  two  parative  t r a i n i n g phase than younger c h i l d r e n .  f i x e d s o r t s , the  grade 3 c h i l d r e n i n the h i e r a r c h i c a l  c o n d i t i o n grade 3 c h i l d r e n , but  r e s u l t s obtained  scale scores  i n the  from the  supported the  more l i k e l y t o a p p l y  t r a i n i n g phase.  subjects  T h i r t y s e v e n and  s i x , three,  o r two  s i x category  b e t t e r on  the  three  and  one  contrast, only  of the  5%  i n perfect conformity  drawn:  f o r the  untrained  groups i n the  s i x category grouping.  grade 3 subjects  i n the  organization  the  A l l except  one By  structured t r a i n i n g condi-  imposed d u r i n g  t h a t a l l t r a i n e d grade 7 s u b j e c t s  training. extend the the  above  f o l l o w i n g con-  showed a  clearer  t r a i n i n g dimensions than a l l t r a i n e d grade 3 s u b j e c t s ;  groups a t b o t h grade l e v e l s were d i f f e r e n t from the criteria  a p p l i e d t o make t h e i r s o r t s  f e r o c i t y appearing t o dominate at the f o r example, d o m e s t i c a t i o n ,  organized  t r a i n i n g groups at each grade l e v e l  t r a i n i n g dimensions to a greater ( i n which the  at the  extent  hierarchies obtained  s i z e and  grade 3 l e v e l ) ; showed a r e s p e c t  than the  that  trained  (the dimensions o f  grade 7 l e v e l ,  criteria,  predominantly);  with  Twenty f i v e p e r c e n t o f  From a c o m p a r i s o n o f t h e h i e r a r c h i e s o b t a i n e d ,  c l u s i o n s are  groups  grade 7 c h i l d r e n  h i e r a r c h i c a l c l u s t e r i n g r e s u l t s b o t h s u p p o r t and  findings.  the  been t r a i n e d under the h i e r a r c h i c a l c o n d i t i o n .  t i o n s c o n f o r m e d p e r f e c t l y t o an The  imposed d u r i n g  h a l f p e r c e n t of the sorted  J o h n s o n ' s com-  t h a t grade 7 c h i l d r e n would  organization  c a t e g o r y sorts-.  spontaneously a p p l i e d the had  respect  expectation  spontaneously the  of these subjects  and  no  the  free sorting data using  structured t r a i n i n g conditions  e i t h e r the  the  of  category sorts. The  be  children  f i x e d s o r t s under both types  c o n d i t i o n w e r e e x p e c t e d t o p e r f o r m more a c c u r a t e l y on s o r t i n g than l i s t  older  that for  size  other both the  random c o n d i t i o n t r a i n i n g  seemed t o r e f l e c t a s i z e d i m e n s i o n  t h a t h i e r a r c h i c a l l y t r a i n e d grade 7 subjects  showed  the  182 dominance o f t h e a b s t r a c t d i m e n s i o n ' i n t h e i r  s o r t i n g b e h a v i o r whereas h i e r -  a r c h i c a l l y t r a i n e d grade 3 s u b j e c t s  organized  f u n c t i o n a l dimension;  that f o r l i s t  and f i n a l l y ,  the stimulus  items around t h e  trained subjects  at both  grade l e v e l s , t h e f u n c t i o n a l dimension'was dominant. Thus, t h e a n a l y s e s hypotheses. the  o f the free s o r t i n g data s t r o n g l y support the major  A t r a i n i n g e f f e c t was d e m o n s t r a t e d a t b o t h a g e l e v e l s .  f i n d i n g i n t h e f r e e r e c a l l data t h a t t r a i n e d groups i n a l l c o n d i t i o n s  performed comparably i n item  r e c a l l on t h e l a s t t r i a l ,  the free sorting data  i n d i c a t e t h a t groups r e c e i v i n g s t r u c t u r e d o r g a n i z a t i o n task had e s s e n t i a l l y learned lexical  items,  opportunity stimulus did  Despite  i n the free  recall  a new a n d d i f f e r e n t way o f o r g a n i z i n g  t h e 18  an o r g a n i z a t i o n which s u b j e c t s  to learn  presentation)  i n t h e random c o n d i t i o n had t h e  ( s i n c e c a t e g o r y l a b e l s were i n c l u d e d but d i d not.  not t r y spontaneously t o apply  o r t h e y d i d n o t know how t o a p p l y  Either subjects  i n t h e random  i n t h e random  condition  t h e category l a b e l s t o group t h e items, them, o r e l s e t h e y imposed t h e i r  o r g a n i z a t i o n on t h e i t e m s f o r r e c a l l p u r p o s e s .  This  organization  own could  have  been determined by dimensions f o r g r o u p i n g animals which t h e s u b j e c t s had been accustomed t o u s i n g p r i o r t o t h e experiment dimension). simply for  the  i s that subjects  memorized t h e items i n s e r i a l o r d e r .  the subjects  dimension. by  Another p o s s i b i l i t y  ( f o r example, t h e s i z e i n t h e random  condition  The h i e r a r c h i c a l c l u s t e r i n g  i n t h e r a n d o m c o n d i t i o n seemed t o r e f l e c t p r i m a r i l y a s i z e  Whether t h e s u b j e c t s  d e c i d e d t o u s e t h i s d i m e n s i o n when  confronted  t h e f r e e s o r t i n g task, o r whether they a l s o used i t t o c l u s t e r items i n free recall  task  i s not clear.  The f r e e s o r t i n g d a t a a l s o i n d i c a t e  older children i n the structured t r a i n i n g conditions they had learned  more s p o n t a n e o u s l y a n d w i t h  d r e n i n t h e same  conditions.  The  hypothesis  concerning dimensional  that  applied the structures  fewer e r r o r s than younger  preferences  chil-  a t d i f f e r e n t age  l e v e l s was a l s o c o n f i r m e d f o r t h e h i e r a r c h i c a l l y t r a i n e d s u b j e c t s , b u t n o t  .183 for  the  the  a b s t r a c t d i m e n s i o n t o f o r m two  ally  list  trained subjects.  t r a i n e d s u b j e c t s used the  Grade 7 h i e r a r c h i c a l l y t r a i n e d s u b j e c t s  major groupings w h i l e grade 3 h i e r a r c h i c -  f u n c t i o n a l dimension t o form three  groupings.  However, t h e  for  groups t r a i n e d under the  b o t h age  list  condition.  h i e r a r c h i c a l l y t r a i n e d subjects agrees w i t h previous  Goldman and Sigel,  1953,  Levine,  1963;  1954).  The  major  f u n c t i o n a l d i m e n s i o n seems t o h a v e b e e n more  mental d i f f e r e n c e s i n dimensional  preferences  H e a l d and  1953;  finding  research  ( B i r c h and  Marzolf,  s a l i e n c y of the  This  on  and  for  seem t o b e  any  1966;  Hornsby;,  f u n c t i o n a l dimension i n the grade 7 l i s t The  expectation  under the organized e i t h e r the  f o r the greater  salience of  receiving 6 free recall  t r i a l s was  not  subjects i n the ten t r i a l s  confirmed.  The  data  stimulus  items  One  i n the  free r e c a l l  h a v e l e a r n e d more a b o u t  d i d not.  i s t h a t the  There are  t a s k was  too  t h a t m o t i v a t i o n a l o r f a t i g u e f a c t o r s were r e s p o n s i b l e f o r t h e subjects t o b e n e f i t from g r e a t e r exposure. a t t a i n e d optimum p e r f o r m a n c e d u r i n g t h e t h e i r c a p a c i t y t o s t o r e and structure.  The  r e c a l l over the  Another i s that  r e t r i e v e items  and  to two  long  and  f a i l u r e of  the  subjects  to understand the o r g a n i z a t i o n a l  as boredom i n c r e a s e d .  t h i s d i d not occur.  Mean.number, o f i t e m s  t h i r d or fourth t r i a l  and  the curve  the  e a r l y free r e c a l l t r i a l s both i n  f i r s t p o s s i b i l i t y w o u l d seem t o i m p l y later trials  using  task,  through greater exposure  i n d i c a t e that they  p o s s i b l e r e a s o n s f o r t h i s outcome.  correctly  Even though d i f f e r e n c e s  obtained  condition could s t i l l  s t r u c t u r a l o r g a n i z a t i o n of the  trials  c l a s s i f i c a t i o n s than grade 3 c h i l d r e n  a s a f u n c t i o n o f number o f t r i a l s w e r e n o t  that organization.  the  condition sortings.  s t i m u l u s c o n d i t i o n s w o u l d s o r t more i t e m s category  conThere  t h a t grade 3 c h i l d r e n r e c e i v i n g t e n f r e e r e c a l l  s i x , t h r e e , o r two  1966;  f u n c t i o n a l dimension f o r l i s t  ready explanation  the  develop-  Bortner,  Olver  salient  d i t i o n grade 3 s u b j e c t s i s a l s o i n agreement w i t h the above r e s e a r c h . does not  used  a decrease i n  Figure  7-1  item  suggests  r e c a l l e d r e a c h e d a s y m p t o t e on  then l e v e l l e d o f f .  Thus, the  second  that the  184 possibility The basically  seems more  likely.  r e s u l t s of' t h e  analyses  i n agreement w i t h  predictions.  On  the  the On  On  untrained  the  s i x and  subjects  as a r e s u l t o f the  stimulus  dition  and  three  subjects  subjects.  d i d b e t t e r on  the  predicted list  l e v e l made l i t t l e  use  However, i n A n g l i n ' s the  subjects  from the  during  Therefore,  i n order  generating  the  no-training  d i d b e t t e r on  grade 7 l i s t  accurthe  a l l s o r t s than  their  subjects  condition subjects  on  3 h i e r a r c h i c a l concondition  grade 7 subjects  in  sufficient  s i x category sort.  I t seems c l e a r  t h e more c o m p l e x s t r u c t u r a l o r g a n i z a t i o n  them t o combine t h e  transfer task  (1970).  study, the  He  dimensions  involved.  seem t o c l a s h d i r e c t l y  found t h a t c h i l d r e n at the  c l a s s i n c l u s i o n r u l e s were not  study p e r i o d , nor  were the  items,  with  third  grade  trees.  explained  to  category l a b e l s presented.  t o have c a t e g o r y l a b e l s s e r v e a cueing  stimulus  group.  p e r f o r m e d more  of structured material arranged i n branching  the  from  d i m e n s i o n s i n v o l v e d more e a s i l y t h a n t h e t r a i n i n g  These f i n d i n g s from the by A n g l i n  was  sorts obtained  c o n d i t i o n s w e r e e x p e c t e d t o show the  sort,  finding  3 hierarchical condition as  than  subjects  category This  f o r grade 3 s u b j e c t s , but  organization allowed  those obtained  two  s i x category sorts than l i s t  t o p e r f o r m c o m p a r a b l y , on  list  original  A l s o , grade 7 c h i l d r e n i n  conditions  b o t h g r a d e l e v e l s , t r a i n i n g on  the  the  condition subjects  accurately  allowed.them t o disembed the on  On  c a t e g o r y s o r t s , b u t b o t h g r a d e s 7 and  b o t h h i e r a r c h i c a l and  for  list  G r a d e s 7 and  T h i s was  flexibility  subjects.  to those obtained  presentation  p e r f o r m e d , as e x p e c t e d , a s two  most o f the  category s o r t s , t r a i n e d  random c o n d i t i o n s u b j e c t s .  grade 3 counterparts.  the  three  performed e q u a l l y w e l l .  a l l s o r t s , h i e r a r c h i c a l and  organized  f i x e d s o r t s were  close approximation of the  random c o n d i t i o n s u b j e c t s  a t e l y than the  data from the  f r e e s o r t i n g r e s u l t s and  performed b e t t e r than non-trained  explained  the  a l l s o r t s g r a d e 7 c h i l d r e n p e r f o r m e d more a c c u r a t e l y  grade 3 c h i l d r e n .  t r a i n e d and  on  spontaneous p r o d u c t i o n  function  for  would have been  1 aSnecessary.  S t u d i e s on  the  slow d e c l i n e  c h i l d r e n would i n d i c a t e that supply the  the  of production d e f i c i e n c y  younger c h i l d r e n i n A n g l i n ' s  m e d i a t o r s needed t o a i d them i n t h e i r t a s k  p r e s e n t s t u d y was informed of the  quite  rules  number o f t r i a l s  d i f f e r e n t from A n g l i n ' s  for assigning  t o the  i n that  subjects  c a t e g o r y l a b e l s , and  could  be  the  transfer  produce  the  items  task.  s t u d i e s ' p r e s e n t e d i n t h i s d i s s e r t a t i o n have a t t e m p t e d t o  g r a d e l e v e l s and  t o e x p l o r e the  effectiveness  emerging from these s t u d i e s  will  It'is  -  explore both other sets of  lexical  hoped t h a t  have g e n e r a l i t y t o o t h e r  Further research of  and  of d i f f e r e n t t r a i n i n g techniques  domains, p a r t i c u l a r l y those domains w i t h c a t e g o r i c a l countries).  assess  d o m a i n o f a n i m a l t e r m s a t d i f f e r e n t age  i n producing a l t e r a t i o n s i n semantic s t r u c t u r e .  plants,  a  Summary  semantic s t r u c t u r e w i t h i n the  ings  The  were  expected to  c o r r e c t l y t o g r o u p s on  The  not  i t e m s t o g r o u p s , were exposed o v e r  category labels necessary for assigning  Overall  study d i d  performance.  more s p o n t a n e o u s l y t h e  C.  i n young  items w i t h i n the  find-  semantic  structure  a developmental kind  the  ( f o r example, i s needed  same d o m a i n and  to  other  domains. W i t h i n the or  s e m a n t i c domain o f a n i m a l t e r m s , c h i l d r e n as  s i x y e a r s o f age  between a s m a l l associations  appear t o have formed f a i r l y  set of animals  w o u l d seem t o be  b a s e d on  and  These a s s o c i a t i o n s  form a p e r s i s t e n t  their interchangeability  emerge m o s t c l e a r l y a c r o s s a l l age  associations.  t h e i r greater  assimilated  S i n c e i t can  d e p e n d e n t on b o t h l i n g u i s t i c  core of h i g h l y  l e v e l s on  to t h i s c o r e -  be and  tasks  number o f  i n sentence  five  associations These  t h e i r contiguous presentation  e t c . ) , on  semantic features,  Other animals are  pairwise  ( f o r example, dog-cat, cow-horse).  speech, p i c t u r e books, contexts, on  strong  young as  (in oral shared  frames.  r e l a t e d concepts which o f an  associative  kind.  to form a l o o s e l y t i e d network  of  assumed t h a t . t h i s p r o c e s s o f a s s i m i l a t i o n i s n o n l i n g u i s t i c e x p e r i e n c e s , and  since  younger  186' c h i l d r e n have had fewer e x p e r i e n c e s ,  a t y o u n g e r age l e v e l s t h e s e  other  a n i m a l s a r e a s s i m i l a t e d i n a more i d i o s y n c r a t i c a n d l o o s e r f a s h i o n . i n c r e a s i n g age and s h a r e d e x p e r i e n c e s , ized across work.  t h e a s s o c i a t i o n s become more  c h i l d r e n o f a c o m p a r a b l e a g e a n d more c l o s e l y t i e d  However, u n l e s s  specific  With standard-  i n t o the net-  and e x t e n d e d t r a i n i n g c o n c e r n i n g  animal  taxonomy i s u n d e r t a k e n , t h e emerging c o g n i t i v e s t r u c t u r e , as d e t e r m i n e d by tasks  i n which subjects  have t o impose an o r g a n i z a t i o n on a s e t o f a n i m a l  t e r m s , a p p e a r s t o be dominated by t h e s i z e d i m e n s i o n , w i t h o t h e r example, f e r o c i t y , d o m e s t i c i t y , s y s t e m a t i c a l l y and w i t h animal  habitation) being  taken i n t o account  animals.  assumes.greatest s a l i e n c e .  animal  d i f f e r e n t from  I n these s p e c i a l cases, that p a r t i c u l a r feature Zoologists  s t u d y , based p r i m a r i l y on food from experiences w i t h  less  l e s s s a l i e n c e , e x c e p t i n s p e c i a l c a s e s where an  ( f o r example, s e a l ) possesses a f e a t u r e o u t s t a n d i n g l y  most o f t h e o t h e r  features ( f o r  habits.  show a s t r u c t u r e , u n i q u e i n t h i s This  s t r u c t u r e r e s u l t s , presumably,  taxonomies.  I n t h e l e a r n i n g a n d t r a n s f e r . o f new s e m a n t i c s t r u c t u r e s , c h i l d r e n a s young as e i g h t o r nine ification  skills,  organizations ference in  y e a r s o f age, i n agreement w i t h P i a g e t ,  and can apply  these s k i l l s  the free r e c a l l  task  seems t o r e s i d e n o t i n d i f f e r e n t c o g n i t i v e  simply  i n d i f f e r e n c e s i n ' t h e number o f l e x i c a l  and  r e t r i e v e d f r o m l o n g t e r m memory d u r i n g  these l e x i c a l  task the  items,  The m a j o r  year o l d s and twelve and t h i r t e e n year  but  The  t o understand h i e r a r c h i c a l  incorporating class inclusion relationships.  between e i g h t and nine  can use c l a s s -  a short  difolds  operations,  i t e m s t h a t c a n be s t o r e d i n s e r i e s o f exposures t o  a q u a n t i t a t i v e rather than a q u a l i t a t i v e d i f f e r e n c e .  m a j o r d i f f e r e n c e s b e t w e e n t h e s e two age g r o u p s i n t h e t r a n s f e r s o r t i n g appear t o l i e i n t h e g r e a t e r appropriate  gories with to a greater  a b i l i t y o f t h e o l d e r age g r o u p t o g e n e r a t e  c a t e g o r y l a b e l s s p o n t a n e o u s l y and t o a s s i g n  fewer e r r o r s . extent  items t o cate-  The f i n d i n g t h a t y o u n g e r c h i l d r e n d i d n o t b e n e f i t  from a simpler p r e s e n t a t i o n  of the class inclusion  -.1-8X  relations involved  i n the^.hierarchical  structure  f i n d h i e r a r c h i c a l p r e s e n t a t i o n s m e a n i n g f u l and and  organizing  new  more c o m p l e x h i e r a r c h i e s ,  trained  items.  The  and  with  transfer  to organize the  set of  investigated  item r e c a l l with  at  and  by  transfer  long term  retention.  F r o m an  educational  l e a s t by  the  o r g a n i z e and  other natural  hierarchies  zoologists.  e f f e c t s s h o u l d be  first  and  new  does not  school.  adults  a s s i m i l a t i o n o f new  The  children  at the  t a t i o n of t i o n of ture  are  h a v e an  same m a t e r i a l ,  p r e s e n t e d and  e f f e c t s of  with  the  such t r a i n i n g Both  concerned  also  children,  spontaneously the  i n ways t h a t  may  be  s h o u l d be  taken  Even i n a d u l t s ,  organizations  organization  does not  the  taught  animal  in  terms,  interfere  terms. how  t h r o u g h o u t a p a r t i c u l a r age  l o w e r end  the  number  be  items i n  them r e l a t e d  of  with  tasks.  extensive vocabulary of  this natural  of t h i s  structural relationships  the  see  r e f l e c t any  s e c o n d s t u d y s h e d s some l i g h t on  semantic structure  finding that  concepts about animals.  spontaneous o r g a n i z a t i o n  suggests that  can  study suggests that  already cognitively related  i n t o account i n introducing  the  transfer  perhaps e a r l i e r ,  Perhaps t h i s  d i f f e r e n t f r o m ways e d u c a t o r s w o u l d l i k e t o  with  e f f e c t s of  explored i n studies  standpoint, the  c l a s s i f y animals.  study also  The  under-  a greater  a n i m a l t e r m s i n a manner c o n s i s t e n t  t i m e t h e y r e a c h g r a d e 7,  However, s i n c e  incorporating  extension to other types of  domain o f a n i m a l terms are  the  acquiring  hierarchies,  task demonstrated t h a t c h i l d r e n  d o m i n a n t d i m e n s i o n d e m o n s t r a t e d by s h o u l d be  e f f i c i e n t ways f o r  children  e x t e n t o f young c h i l d r e n ' s  standing, of h i e r a r c h i c a l r e l a t i o n s h i p s with  lexical  these  concepts.  F u r t h e r r e s e a r c h should e x p l o r e the  of  suggests that  structural organization  range.  I t suggests  age  range can  learn  as  e a s i l y as  f r o m a more s i m p l e  provided, that  explained.  t o a t t e m p t t o change  the  rules  that  from a complex p r e s e n presenta-  f o r g e n e r a t i n g the  However, i t a l s o on  a  p e r f o r m a n c e on  suggests that  struc-  the  a related transfer  task  188 are  greater  atory  a s t h e c h i l d b e c o m e s o l d e r and- more f l e x i b l e  ability.  Perhaps this-means, t h a t t h e t e a c h i n g  in his classific-  o f complex c l a s s i f i c a -  t i o n s should  be d e l a y e d u n t i l t h e c h i l d has a t t a i n e d g r e a t e r  flexibility,  although,  attempts t o t r a i n  o n s p e c u l a t i v e g r o u n d s , i t seems p r o b a b l e  complex c l a s s i f i c a t i o n s  acquisition of greater  cognitive  cognitive  that  may, i n t h e m s e l v e s , h a s t e n t h e  flexibility.  189  LITERATURE C I T E D A n d e r s o n , J . R. FRAN: A s i m u l a t i o n m o d e l o f f r e e - r e c a l l . I n G. H. B o w e r ( E d . ) , The p s y c h o l o g y o f l e a r n i n g a n d m o t i v a t i o n , V o l . V. New Y o r k : Academic P r e s s , 1972. A n g l i n , J . M. 1970.  The g r o w t h o f w o r d m e a n i n g .  Cambridge, Mass.:  M.I.T. P r e s s ,  B i r c h , H. G. a n d B o r t n e r , M. S t i m u l u s c o m p e t i t i o n and c a t e g o r y usage i n normal c h i l d r e n . J o u r n a l o f G e n e t i c P s y c h o l o g y , 1966, 109, 195-204. B o u r n e , J r . L . E . , E k s t r a n d , B. R a n d D o m i n o w s k i , R. L . thinking. New J e r s e y : P r e n t i c e - H a l l , 1971. v  The P s y c h o l o g y  of  B o u s f i e l d , W. A. The o c c u r r e n c e o f c l u s t e r i n g i n t h e r e c a l l o f r a n d o m l y arranged a s s o c i a t e s . J o u r n a l o f G e n e r a l P s y c h o l o g y , 1953, 4 9 , 229-240. G o w e r , G. H. O r g a n i z a t i o n a l f a c t o r s i n memory. 1, 1 8 - 4 6 .  Cognitive Psychology,  B o w e r , G. H., C l a r k , M. C., L e s g o l d , A. M., a n d W i n z e n z , D. r e t r i e v a l schemes i n r e c a l l o f c a t e g o r i z e d w o r d l i s t s . V e r b a l L e a r n i n g a n d V e r b a l B e h a v i o r , 1 9 6 9 , 3_, 3 2 3 - 3 4 3 .  1970,  Hierarchical Journal of  B o w e r , G. H., L e s g o l d , A. M., a n d T i e m a n , D. Grouping operations i n free recall. J o u r n a l o f V e r b a l L e a r n i n g a n d V e r b a l B e h a v i o r , 1 9 6 9 , 8_, 481-493. C a r r o l l , J . D., a n d C h a n g , J . J . A n a l y s i s o f I n d i v i d u a l d i f f e r e n c e s i n m u l t i d i m e n s i o n a l s c a l i n g v i a a n N-way g e n e r a l i z a t i o n o f " E c k a r t - Y o u n g " decomposition. P s y c h o m e t r i k a , 1 9 7 0 , 35_, 2 8 3 - 3 1 9 . Cofer, C.N. On some f a c t o r s i n t h e o r g a n i z a t i o n a l c h a r a c t e r i s t i c s o f f r e e recall. A m e r i c a n P s y c h o l o g i s t , 1 9 6 5 , 20_, 2 6 1 - 2 7 2 . C o l e , M., F r a n k e l , F. a n d S h a r p , D. Development o f f r e e r e c a l l children. D e v e l o p m e n t a l P s y c h o l o g y , 1 9 7 1 , 4_, 1 0 9 - 1 2 3 . ;  learning i n  C o l l i n s , A. M. a n d Q u i l l i a n , M. R. R e t r i e v a l t i m e , f r o m s e m a n t i c memory. J o u r n a l o f V e r b a l L e a r n i n g a n d V e r b a l B e h a v i o r , 1 9 6 9 , 8_, 2 4 1 - 2 4 8 . . E x p e r i m e n t s o n s e m a n t i c memory a n d l a n g u a g e c o m p r e h e n s i o n . I n L. W. G r e g g ( E d . ) , C o g n i t i o n i n l e a r n i n g a n d memory. New Y o r k : Wiley, .1970. (a) . Does c a t e g o r y s i z e a f f e c t c a t e g o r i z a t i o n t i m e ? L e a r n i n g a n d V e r b a l B e h a v i o r , 1 9 7 0 , 9_, 4 3 2 - 4 3 8 . (b)  Journal of Verbal  190 D a l e , H. C. A. F a m i l i a r i t y a n d f r e e r e c a l l . m e n t a l P s y c h o l o g y , 1967, 19, 103-108.  Quarterly Journal of Experi-  D e e s e , J . On t h e s t r u c t u r e o f a s s o c i a t i v e m e a n i n g . 1962, 6 9 , 131-175.  P s y c h o l o g i c a l Review,  . The s t r u c t u r e o f a s s o c i a t i o n s i n l a n g u a g e a n d t h o u g h t . Johns Hopkins P r e s s , 1965. -  .  P s y c h o l i n g u i s t i c s . Boston:  Baltimore:  A l l y n and Bacon, 1970.  D i x o n , R. M. W. A m e t h o d o f s e m a n t i c d e s c r i p t i o n . I n D. D. S t e i n b e r g a n d L. A. J a k o b o v i t s ( E d s . ) , S e m a n t i c s , A n I n t e r d i s c i p l i n a r y r e a d e r i n p h i l o s o p h y , l i n g u i s t i c s and psychology. Cambridge: University Press, 1971. E d w a r d s , J . C. T h e e f f e c t o f i n s t r u c t i o n a n d c o n c o m i t a n t v a r i a b l e s o n multiple categorization ability. iJiglewood, C a l i f o r n i a : Southwest R e g i o n a l L a b o r a t o r y f o r E d u c a t i o n a l Research and Development, 1968. E n t w i s t l e , D. R. Word a s s o c i a t i o n s o f y o u n g c h i l d r e n . B a l t i m o r e : Hopkins P r e s s , 1966.  Johns  F i l l e n b a u m , S. a n d R a p a p o r t , A. Structures i n the subjective lexicon. York: Academic P r e s s , 1971. F r i e n d l y , M. L . free r e c a l l .  New  P r o x i m i t y a n a l y s i s and t h e s t r u c t u r e o f o r g a n i z a t i o n i n P r i n c e t o n , • New J e r s e y : E d u c a t i o n a l T e s t i n g S e r v i c e , 1972.  G l a s e r , R. a n d R e s n i c k . L . B. I n s t r u c t i o n a l psychology. P s y c h o l o g y , 1 9 7 2 , 2_3, 2 0 7 - 2 7 5 . G o l d m a n , A. E. a n d L e v i n e , M. A d e v e l o p m e n t a l s t u d y C h i l d Development, 1963, 34, 649-666.  Annual Review o f  of object  sorting.  H e a l d , J . E. a n d M a r z o l f , S. S. A b s t r a c t b e h a v i o r i n e l e m e n t a r y s c h o o l c h i l d r e n as measured by t h e G o l d s t e i n S c h e e r e r S t i c k T e s t and t h e W e i g l - G o l d s t e i n - S c h e e r e r Color. Form S o r t i n g T e s t . Journal of C l i n i c a l P s y c h o l o g y , 1 9 5 3 , 10_, .59-62. H e n l e y , N a n c y M. Semantics o f v i c t o r y and d e f e a t . S k i l l s , 1967, 25, 17-22.  Perceptual  and Motor  . A p s y c h o l o g i c a l study o f the semantics o f animal terms. o f V e r b a l L e a r n i n g a n d V e r b a l B e h a v i o r , 1 9 6 9 , 8, 1 7 6 - 1 8 4 .  Journal  H e n l e y , N a n c y M., N o y e s , H. L a n d D e e s e , J . S e m a n t i c s t r u c t u r e i n s h o r t t e r m memory. J o u r n a l o f E x p e r i m e n t a l P s y c h o l o g y , 1 9 6 8 , 77_, 5 8 7 - 5 9 2 . v  H o r o w i t z , A. B. E f f e c t s o f s t i m u l u s p r e s e n t a t i o n modes o n c h i l d r e n ' s r e c a l l and c l u s t e r i n g . Psychonomic S c i e n c e , 1969, 14, 297-298. I n h e l d e r , B. a n d P i a g e t , J . The e a r l y g r o w t h o f l o g i c i n t h e c h i l d : c l a s s i f i c a t i o n and s e r i a t i o n . New Y o r k : H a r p e r a n d Row, 1 9 6 4 .  191 I s a a c , P. D. D i s s i m i l a r i t y j u d g e m e n t s and m u l t i d i m e n s i o n a l s c a l i n g c o n f i g u r a t i o n s as i n d i c e s o f p e r c e p t u a l s t r u c t u r e : a s t u d y o f i n t e r - i n d i v i d u a l consistencies. Ann A r b o r , M i c h i g a n : Michigan Mathematical Psychology Program 68-3, 1968. J a c o b s , P. I . a n d V a n d e v e n t e r , M. The l e a r n i n g a n d t r a n s f e r o f d o u b l e classification skills: a r e p l i c a t i o n and e x t e n s i o n s . (Research B u l l e t i n . No. 69-88) P r i n c e t o n , New J e r s e y : E d u c a t i o n a l T e s t i n g S e r v i c e , 1969. . The l e a r n i n g a n d t r a n s f e r o f d o u b l e c l a s s i f i c a t i o n f i r s t graders. C h i l d D e v e l o p m e n t , 1 9 7 1 , 42_, 1 4 9 - 1 5 9 . J o h n s o n , P. E. A s s o c i a t i v e meaning o f concepts E d u c a t i o n a l P s y c h o l o g y , 1 9 6 4 , 55_, 8 4 - 8 8 . J o h n s o n , S. C. 241-254. .  Hierarchical  Metric clustering.  K a t z , J . J . a n d F o d o r , J . A. 1 9 6 3 , 39_, 1 7 0 - 2 1 0 . K e n d l e r , T. S. 1972, 43,  clustering  schemes.  Unpublished, The  i n physics.  by  Journal  of  Psychometrika,  1967,  32,  1968.  s t r u c t u r e of a semantic  An o n t o g e n y o f m e d i a t i o n a l d e f i c i e n c y . 1-18.  K i n t s c h , W. R e c o g n i t i o n and Experimental Psychology,  skills  free r e c a l l of organized 1968, 78, 4 8 1 - 4 8 7 .  theory.  Child  lists.  Language,  Development,  Journal  of  K l a h r , D. a n d W a l l a c e , J . G. An i n f o r m a t i o n p r o c e s s i n g a n a l y s i s o f some P i a g e t i a n e x p e r i m e n t a l t a s k s . C o g n i t i v e P s y c h o l o g y , 1 9 7 0 , 1_, 3 5 8 - 3 8 7 . Kohnstamm, G. A. An e v a l u a t i o n o f p a r t o f P i a g e t ' s t h e o r y . i c a , 1963, 21, 313-356.  Acta  K o f s k y , E. A scalogram study of c l a s s i f i c a t o r y development. D e v e l o p m e n t , 1 9 6 6 , _37, 1 9 2 - 2 0 4 .  Psycholog-  Child  K r u s k a l , J . B. M u l t i d i m e n s i o n a l s c a l i n g by o p t i m i z i n g goodness o f f i t t o nonmetric hypothesis. P s y c h o m e t r i k a , 1 9 6 4 , 29_, 1-27.  a  L a u r e n c e , M. W. A developmental look at the usefulness of l i s t c a t e g o r i z a t i o n as an a i d t o f r e e r e c a l l . C a n a d i a n J o u r n a l ' o f P s y c h o l o g y , 1967, 21, 153-165. Lee,  S. S. T r a n s f e r f r o m l o w e r - o r d e r t o h i g h e r - o r d e r c o n c e p t . V e r b a l L e a r n i n g a n d V e r b a l B e h a v i o r , 1 9 6 8 , 1_, 9 3 0 - 9 3 7 .  M c N e i l l , D. .  The The  development of the semantic a c q u i s i t i o n of language.  M e y e r , D. E. On t h e r e p r e s e n t a t i o n a n d information. Cognitive Psychology,  New  system. York:  Journal  Unpublished, H a r p e r and  r e t r i e v a l of stored 1 9 7 0 , 1_, 2 4 2 - 3 0 0 .  of  1968.  Row,  semantic  1970.  192 M i l l e r , G. A. P s y c h o l i n g u i s t i c a p p r o a c h e s t o t h e s t u d y o f c o m m u n i c a t i o n . I n D. L. A r m ( E d . ) , J o u r n e y s i n S c i e n c e . Small s t e p s - — giant s t r i d e s . A l b u q u e r q u e , New M e x i c o : U n i v e r s i t y o f New M e x i c o P r e s s , 1 9 6 7 . -  of  . A p s y c h o l o g i c a l method t o i n v e s t i g a t e v e r b a l c o n c e p t s . M a t h e m a t i c a l P s y c h o l o g y , 1 9 6 9 , 6_, 1 6 9 - 1 9 1 .  M o e l e y , B. E . , O l s o n , F. A., H a l w e s , T. G., a n d F l a v e l l , J . H. deficiency i n children's clustered recall. Developmental 1 9 6 9 , 1, 2 6 - 3 4 .  Journal  Production Psychology,  N e l s o n , K. J . The o r g a n i z a t i o n o f f r e e r e c a l l b y y o u n g c h i l d r e n . o f E x p e r i m e n t a l C h i l d P s y c h o l o g y , 1 9 6 9 , 8_, 2 8 4 - 2 9 5 .  Journal  N e l s o n , T. 0. a n d S m i t h , E. E. A c q u i s i t i o n o f f o r g e t t i n g o f h i e r a r c h i c a l l y o r g a n i z e d m a t e r i a l i n l o n g - t e r m memory. J o u r n a l o f E x p e r i m e n t a l P s y c h o l o g y , 1 9 7 2 , 95_, 3 8 8 - 3 9 6 . O l v e r , R. R. a n d H o r n s b y , J . R. On e q u i v a l e n c e . I n J . S. B r u n e r , R. M. O l v e r , P. M. G r e e n f i e l d e t . a l . ( E d s . ) , S t u d i e s i n c o g n i t i v e g r o w t h . New Y o r k : W i l e y , 1966. O s g o o d , C. E . , S u c i , G. J . , a n d Tannenbaum, P. H. The m e a s u r e m e n t o f m e a n i n g . Urbana, 111.: U n i v e r s i t y o f I l l i n o i s P r e s s , 1967. P a l e r m o , D. S. C h a r a c t e r i s t i c s o f w o r d a s s o c i a t i o n r e s p o n s e s o b t a i n e d f r o m c h i l d r e n i n grades one t h r o u g h f o u r . D e v e l o p m e n t a l P s y c h o l o g y , 1 9 7 1 , 5_, 118-123. P a r k e r , R. K. a n d D a y , M. C. The u s e o f c o n c r e t e , f u n c t i o n a l a n d a b s t r a c t concepts i n m u l t i p l e c l a s s i f i c a t i o n . D e v e l o p m e n t a l P s y c h o l o g y , 1 9 7 1 , 5_, 312-319. P a r k e r , R. K., S p e r r , S. J . , a n d R u f f , M. C. M u l t i p l e c l a s s i f i c a t i o n : t r a i n i n g approach. D e v e l o p m e n t a l P s y e h o l o g y , 1 9 7 2 , 1_, 1 8 8 - 1 9 4 .  a  P e r f e t t i , C. A. P s y c h o s e m a n t i c s : some c o g n i t i v e a s p e c t s o f s t r u c t u r a l meaning. P s y c h o l o g i c a l B u l l e t i n , 1972, 78, 241-259. P i a g e t , J . R e v i e w o f S t u d i e s i n c o g n i t i v e g r o w t h b y J . S. B r u n e r , R o s e O l v e r , a n d P a t r i c i a : M. G r e e n f i e l d . Contemporary P s y c h o l o g y , 1967, 12, 532-533. R i p s , L . J . , S h o b e n , E . J . a n d S m i t h , E . E. S e m a n t i c d i s t a n c e a n d t h e v e r i f i c a t i o n o f semantic r e l a t i o n s . ' J o u r n a l o f V e r b a l L e a r n i n g and V e r b a l B e h a v i o r , 1 9 7 3 , 12_, 1-20. R o s c h , E . H. On t h e i n t e r n a l s t r u c t u r e o f p e r c e p t u a l a n d s e m a n t i c c a t e g o r ies. I n T. E . M o o r e ( E d . ) , C o g n i t i v e d e v e l o p m e n t a n d t h e a c q u i s i t i o n o f language. New Y o r k : Academic P r e s s , 1973. R o s n e r , Sue R. T h e e f f e c t s o f r e h e a r s a l a n d c h u n k i n g i n s t r u c t i o n s o n dren's m u l t i - t r i a l f r e e r e c a l l . Journal of Experimental Child P s y c h o l o g y , 1971, 1 1 , 93-105. R u m e l h a r t , D. E. a n d A b r a h a m s o n , A. A. A m o d e l f o r a n a l o g i c a l C o g n i t i v e P s y c h o l o g y , 1 9 7 3 , 5_, 1-28.  chil-  reasoning.  193 R u m e l h a r t , D. E . , L i n d s a y , P. H., a n d Norman, D. A. A p r o c e s s m o d e l f o r l o n g t e r m memory. I n E. T u l v i n g a n d W. D o n a l d s o n ( E d s . ) , O r g a n i z a t i o n a n d memory. New Y o r k : Academic P r e s s , 1972. Romney, A. K. a n d D ' A n d r a d e , R. G. C o g n i t i v e a s p e c t s o f E n g l i s h k i n t e r m s . I n A. K. Romney a n d R. G. D ' A n d r a d e ( E d s . ) , " T r a n s c u l t u r a l s t u d i e s i n cognition. American A n t h r o p o l o g i s t ( s p e c i a l P u b l i c a t i o n s ) , 1964, 146-170. S c h a e f f e r , B., L e w e s , J o a n A. a n d V a n D e c a r , A n n e t t e . The g r o w t h o f c h i l d r e n ' s s e m a n t i c memory; semantic elements. Journal o f Experimental C h i l d P s y c h o l o g y , 1971, 1 1 , 296-309. ;  S c h a e f f e r , B. a n d W a l l a c e , R. The c o m p a r i s o n o f w o r d m e a n i n g s . E x p e r i m e n t a l P s y c h o l o g y , 1 9 7 0 , 86_, 1 4 4 - 1 5 2 .  Journal of  S h a p i r o , S. I . a n d M o e l y , B. E. F r e e r e c a l l , s u b j e c t i v e o r g a n i z a t i o n , a n d l e a r n i n g t o l e a r n a t t h r e e age l e v e l s . Psychonomic Science, 1971, 23, 189-191. S h e p a r d , R. N. Some p r i n c i p l e s a n d p r o s p e c t s f o r t h e s p a t i a l r e p r e s e n t a t i o n of behavioral science data. P a p e r p r e s e n t e d a t MSSB A d v a n c e d R e s e a r c h Seminar on Measurement and S c a l i n g , J u n e , 1969. S i g e l , I . E. D e v e l o p m e n t a l t r e n d s i n t h e a b s t r a c t i o n a b i l i t y o f c h i l d r e n . C h i l d D e v e l o p m e n t , 1 9 5 3 , 2£, 131-144. . Dominance o f meaning. 201-207.  Journal o f Genetic  Psychology,  1954, 85,  S i g e l , I . E . , R o e p e r , A.; a n d H o o p e r , F. H. A t r a i n i n g p r o c e d u r e f o r t h e acquisition of Piaget's conservation of quantity: a p i l o t study and i t s replication. B r i t i s h J o u r n a l o f E d u c a t i o n a l P s y c h o l o g y , 1966, 36, 301-311. S t e i n b e r g , E. R. a n d A n d e r s o n , R. C. H i e r a r c h i c a l s e m a n t i c o r g a n i z a t i o n i n six-year-olds. U n p u b l i s h e d , 1974. S t e i n m e t z , J e n n y I . a n d B a t t i g , W. F. C l u s t e r i n g a n d p r i o r i t y o f f r e e r e c a l l o f n e w l y l e a r n e d i t e m s i n c h i l d r e n . D e v e l o p m e n t a l P s y c h o l o g y , 1 9 6 9 , 1_, 503-507. T u c k e r , L . R. a n d M e s s i c k , S. An. i n d i v i d u a l d i f f e r e n c e s m o d e l f o r m u l t i dimensional scaling. Psychometrika, 1963, 28, 333-367. T u l v i n g , E. S u b j e c t i v e o r g a n i z a t i o n i n f r e e r e c a l l o f " u n r e l a t e d " P s y c h o l o g i c a l R e v i e w , 1 9 6 2 , 69_, 3 5 5 - 3 6 3 . V y g o t s k y , L . S.  Thought and language.  words.  C a m b r i d g e , M a s s . : M.I..T. P r e s s , 1 9 6 2 .  W h i t e , S. H. E v i d e n c e f o r a h i e r a r c h i c a l a r r a n g e m e n t o f l e a r n i n g p r o c e s s e s . I n L. P. L i p s e t t a n d C. C. S p i k e r ( E d s . ) , A d v a n c e s i n c h i l d d e v e l o p m e n t a n d b e h a v i o r , V o l . 2. New Y o r k : Academic P r e s s , 1965. W h i t m a n , J . R. a n d G a r n e r , W. R. F r e e r e c a l l l e a r n i n g o f v i s u a l f i g u r e s a s a f u n c t i o n o f form o f i n t e r n a l s t r u c t u r e . J o u r n a l o f Experimental Psychology, 1962, 64, 558-564.  194 W o h l w i l l , J . F. The m y s t e r y o f t h e p r e - l o g i c a l c h i l d . 1 9 6 7 , 1, 2 4 - 3 4 .  P s y c h o l o g y Today,  Y o s h i m u r a , E. K., M o e l y , B. E., a n d S h a p i r o , S. I . The i n f l u e n c e o f a g e a n d p r e s e n t a t i o n o r d e r upon c h i l d r e n ' s f r e e r e c a l l and l e a r n i n g t o l e a r n . Psychonomic S c i e n c e , 1971, 23, 261-263.  A p p e n d i x A.  Free-Listing  Number o f S u b j e c t s l i s t i n g animal  138 134 129 124 117 117 117 106 104 103 100 97 95 91 83 83 83 80 73 71 70 69 67 65 65 65 61 61 61 60 60 60 58 57 57 57 57 56 55 52 50 49 49 47 46 45 45 45 45  Data  No. o f s u b j e c t s w i t h i n educational level Gr3 Gr7 Z Ed G r l l 22 20 18 18 16 13 16 11 16 14 13 15 19 13 14 14 13 13 10 13 16 16 5 10 5 5 15 11 14 10 10 7 3 7 9 10 11 6 3 14 14 10 11 5 8 9 7 6 9  24 24 24 23 22 22 20 23 24 19 24 22 18 24 18 21 21 21 23 17 22 22 14 21 19 16 16 22 18 16 18 18 18 19 17 19 20 15 16 11 13 15 15 11 • 13 9 15 14 16 13 17 14 11 12 14 11 10 15 17 11 12 14 10 15 6 12 14 13 14 13 10 9 17 10 8 11 15 ' 13 10 9 6 9 12 5 3 10 9 12 6 4 10 11 5 11 6 8 10 10  24 23 23 23 23 20 22 19 19 19 16 18 21 16 15 12 13 14 11 12 12 11 11 15 13 12 8 9 11 12 9 11 12 10 9 11 11 16 11 12 10 12 7 11 12 6 7 10 6  23 24 24 20 21 18 20 22 15 19 11 19 17 17 12 16 14 11 10 13 13 6 15 6 12 11 10 9 10 9 8 13 11 6 7 9 6 13 10 6 7 4 12 10 8 8 13 8 10  each Animal K 21 20 20 20 14 20 17 15 12 11 16 10 13 7 8 5 6 6 7 6 1 10 14 5 ' 6 6 5 7 1 1 7 4 14 7 5 8 2 2 3 1 4 6 6 0 8 1 2 7 0  dog cat lion horse cow elephant tiger monkey mouse whale giraffe rabbit bear pig chicken deer snake rat duck seal robin sheep fish gorilla hippopotamus zebra eagle kangaroo wolf fox goat squirrel bird alligator crocodile leopard moose gerbil rhinoceros salmon frog shark turtle raccoon bee beaver chipmunk donkey goose  Number o f S u b j e c t s l i s t i n g animal  45 44 44 44 43 42 41 41 41 40 40 40 39 39 39 39 38 36 36 36 36 36 35 34 33 33 32 32 32 31 31 30 30 30 30 30 30 30 29 29 29 28 28 28 27 27 27 25 25 25 25 24 23  No. o f s u b j e c t s w i t h i n e a c h educational level Z Ed G r l l Gr7 Gr3 K 6 8 8 12 10 6 4 6 4 8 4 13 9 4 8 9 3 5 16 6 3 9 11 3 7 6 9 0 4 5 6 0 12 9 5 7 1 9 8 8 6 6 9 6 1 . 6 7 5 10 4 4 8 6  7 10 7 11 10 6 13 9 12 11 10 6 8 11 6 9 9 8 3 7 9 7 7 7 12 7 7 7 15 5 10 5 4 11 6 7 6 4 5 3 6 5 6 3 8 5 7 9 4 4 3 8 6  12 9 ' 10 10 6 8 9 4 7 8 10 9 5 10 9 5 3 5 6 7 8 10 7 13 3 12 5 3 6 6 10 5 4 4 4 3 6 4 8 6 7 9 7 4 4 4 2 4 3 5 5 5 4  6 11 12 5 5 8 6 5 8 8 12 6 7 . 7 9 9 9 7 10 2 4 9 8 48 7 8 6 6 7 9 7 7 9 6 7 4 ' 4 4 9 5 7 3 4 4 6 5 5 5 6 4 3 8 3 8 5 4 3 9 5 4 1 8 8 3 2 4 2 8 7 8 5 8 9 6 3 5 3 6 6 3 6 6 2 4 2 8 4 6 6 4 8 4 5 3 1 5 3 6 6 6 5 1 2 2 3  3 0 6 0 1 4 1 4 2 1 3 0 ,2 0 2 0 7 5 3 3 4 3 0 1 0 1 0 9 0 1 0 4 5 0 0 0 0 4 0 0 1 0 0 3 2 0 2 3 0 0 2 0 2  Animal  polar bear dolphin penguin sparrow lizard. fly cougar guinea p i g koala chimpanzee ostrich trout ant antelope octopus spider rooster camel crab owl parrot seagull hawk buffalo coyote otter eel lamb lynx cheetah mink bull butterfly elk hamster mosquito skunk wasp crow walrus weasil g r i z z l y bear porpoise worm ape bluejay turkey bat beetle porcupine rattlesnake opossum pigeon  Number o f S u b j e c t s l i s t i n g animal  23 23 22 22 21 21 21 20 20 20 20 20 20 20 20 20 19 18 18 18 18 18 18 17 17 17 17 17 17 17 16 16 16 16 16 16 15 15 15 15 15 15 15 15 14 14 14 14 14 14 14 14 14  No. o f s u b j e c t s w i t h i n e a c h educational level Z Ed G r l l Gr7 Gr3 K 4 7 7 3 4 8 2 5 8 4 3 5 2 2 9 4 7 2 4 5 6 9 4 1 6 4 3 2 5 1 7 5 3 3 12 1 6 5 8 7 7 2 9 3 2 5 4 6 7 4 3 2 . 8 2 3 3 4 10 2 2 3 2 3 3 6 5 10 3 1 . 7 4 1 6 4 3 3 6 6 5 6 2 5 4 ' 4 4 2 2 3 4 2 4 1 6 0 6 2 2 3 1 2 7 1 6 5 0 5 4 3 2 3 0 2 5 5 7 M 2 3 3 1 2 8 1 7 1 1 7 2 5 4• 0 7 5 4 3 2 0 0 2 0 2 2 7 1 8 0 1 2 3 4 2 3 6 3 2 1 4 3 6  2 . 3 4 .'2 2 5 4 6 . 6 4 5 2 5 1 4 2 2 4 5 6 2 3 2 0 0 1 3 1 5 1 2 3 2 3 5 1 5 3 3 0 63 3 1 4 0 3 2 3 1 1 1 3 1 2 2 3 6 4 2 2 3 61 4 6 2 4 3 2 2 2 4 4 2 1 2 1 4 4 3 1 4 2 0 1 2 2 2 0 7 4 3 7 1 2 3 1 2 3 1 1 5 3 0 0  0 2 0 0 0 1 0 0 1 1 0. 2 0 0  o.  0 0 0 0 1 1 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 2 0 2 0 0 0 0 0 0 1 0 1 1 0 1 0 1  Animal  platypus starfish groundhog squid budgie goldfish panther baboon bobcat caterpillar gazelle lobster muskrat orangutang snail swan llama anteater blackbird clam mountain l i o n pheasant salamander badger black bear cariboo cod mountain goat mule poodle canary German s h e p h e r d hen herring hummingbird man catfish cobra human insect oyster Siamese c a t starling wallaby boa c o n s t r i c t o r calf dinosaur gopher grasshopper mole moth p r a i r i e dog sealion  Number o f S u b j e c t s l i s t i n g animal  14 14 13 13 13 13 13 13 13 13 13 13 13 13 13 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10  No. o f s u b j e c t s w i t h i n e a c h educational level Z Ed G r l l Gr7 Gr3 K 4 3 2 6 5 3 6 0 2 2 2 5 6 3 3 6 3 0 9 1 8 1 5 4 2 4 5 3 1  o: 0 0 9 8 6 2 2 2 0 4 4 5 7 0 1 6 5 7 0 6 0 1 2  2 5 2 3 1 5 4 2 2 5 0 2 4 3 2 4 1 6 0 3 0 6 0 4 1 4 2 3 3 1 0 1 1 1 0 2 3 2 5 3 1 3 0 0 1 2 3 1 5 2 4 1 5  5 2 1 0 2 3 1 0 1 5 4 2 1 5 3 2 2 1 2 4 0 3 1 2 3 3 3 1 3 0 3 0 0 2 2 5 2 2 1 3 1 1 3 0 4 0 1 1 3 0 1 0 1  2 2 3 3 2 1 2 3 3 2 2 4 1 1 5 0 3 4 0 0 0 1 2 1 1 0 0 2 2 5 3 2 0 0 2 0 2 2 3 0 2 1 0 6 2 1 0 0 1 1 3 3 1  0 2 5 1 1 1 0 7 5 0 3 0 1 1 0 0 3 1 1 3 1 0 1 0 . 4 0 1 2 2 1 5 6 0 0 1 2 2 1 0 0 2 0 0 3 2 1 0 1 1 1 2 3 1  1 0 0 0 2 0 0 1 0 1 2 0 0 0 0 0 0 0 0 1 2 0 2 0 0 0 0 0 0 4 0 2 1 0 0 0 0 1 1 0  o • 0 0 1 0 0 1 0 0 0 0 2 0  Animal  water b u f f a l o woodpecker armadillo hare hornet hyena jellyfish kitten ladybug panda peacock slug toad vulture wolverine bison bluebird colliedog earthworm pelican bumblebee chinchilla dragonfly falcon flamingo g a r t e r snake heron j aguar ox pony p r a i r i e dog puppy s e a anemone sea u r c h i n shrimp stork tadpole aardvark chihuahua dingo dogfish emu flea hog k i l l e r whale lemming mussel perch Persian cat praying mantis roadrunner swordfish tortoise  Number o f S u b j e c t s l i s t i n g animal 10 9 9 9 9 9 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 6 6 6 6 6 6  No. o f s u b j e c t s w i t h i n e a c h educational level Animal Z Ed G r l l Gr7 Gr3 K 5 2 2 1 0 0 termite 0 5 1 0 2 1 boar 0 0 1 5 3 0 fawn 2 4 2 1 0 0 grouse 2 1 1 4 1 , 0 guppy 4 4 0 1 0 0 halibut 7 1 0 0 1 0 housefly 3 3 2 1 0 0 rauskox 2 1 1 3 2 0 parakeet 7 2 0 0 0 0 Paramecium 3 3 1 2 0 0 raven 3 2 1 1 0 2 reindeer 4 1 1 0 3 0 swallow 2 2 0 3 2 0 tarantula 2 1 4 0 1 0 brown b e a r 4 1 2 0 1 0 cardinal 0 0 0 2 2 4 chick 3 3 1 1 0 0 chickadee 0 0 1 2 3 2 cub 2 3 2 1 0 0 dove 3 1 1 2 1. 6 gibbon 8 0 0 0 0 0 mite 3 2 2 1 0 0 python 2 2 1 2 1 0 , piranha 8 0 0 0 0 0 ' s e a cucumber 4 2 0 1 1 0 Tasmanian d e v i l 5 2 0 1 0 0 tick 5 2 1 0 0 0 tuna 5 2 0 0 0 0 amoeba 1 0 1 4 1 0 angelfish , 4 0 0 2 1 0 bald eagle , 1 0 4 1 0 1 bluewhale 4 3 0 0 0 0 cockroach 0 1 0 1 5 0 colt 4 1 2 0 0 0 crawfish 2 2 0 3 0 0 G r e a t Dane 1 2 0 2 , 2 0 iguana 1 2 2 1 1 0 jackal 6 0 0 1 0 . 0 louse 3 0 4 0 0 0 mallard 3 1 1 2 0 0 minnow 1 3 3 0 0 0 ocelot 4 1 1 0 1 0 osprey 2 4 1 0 0 0 quail 2 1 0 2 1 1 seahorse 2 2 2 0 . 1 0 sloth 1 0 4 1 1 0 sunfish 4 0 0 1 2 0 tern 2 2 1 1 0 0 anaconda 1 1 2 2 0 0 bass 0 3 1 1 1 0 cocker spaniel 1 0 2 0 3 0 crane 2 1 0 1 2 0 daddy l o n g l e g s 4 0 2 0 0 0 daphnia  200 Number o f S u b j e c t s l i s t i n g animal  6 6 6 6 6  6 6 6 6 6 6 6 6  6 6  6 6 6 6  6 6 6  6 6 6  6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5  No. o f s u b j e c t s w i t h i n e a c h educational level K Gr3 Gr7 Grll Z Ed 6 1 2 3 3 6 2 3 0 1 3 1 0 4 0 1 0 1  5 2 1  5 0 3 0 2 0 3 0 0 1 0 2 1 1 1 3 4 2  • 5 1 1 3 3 3 3 0 1 0 4• 4 1 1  o. 0 1 0. 1 0 0 0 2 0 3 3 2 0 2 1 2 1 0 1 1 0 4 2 3 2 4 0 0 1 1 3 1 1 2 2 1 0 0 0 3 0 1 1 1 0 0 2 1 1 1 0 3  0 0 4 0 0 0 1 1 0 0 0" 0 2 0 1 . 1 3 1 2 1 0 0 1 1 2 1• 1 1 2 1 3 0 3 0 3 1 0 0 0 3 2 1 0 1 1 0 0 0 0 1 0 0 0 1 0 1 0 0 3 1 2 0 2 0 1 1 0 2 1 1 0 2 0 1 0 0 1 1 o0 0 "0 1 1 0 1 0 0 0 0 0 0 3: 1 0 0 0 2 0 0 0 0 l 3 0 1  0 0 3 1 2. 0 2 1 0 2 0 0 1 0 1 1 0 0 1 0 1 0 0 1 2 2 . 0 1 0 0 1 0 •0 0 0 0 0 1 1 0 1 2 0 1 1 2 1 2 2 0 0 0 0  0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0  5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0.' 0 0 0 0 0  Animal  fruitfly gnu ground s q u i r r e l . hammerhead s h a r k hedgehog hydra jack rabbit jaybird Labrador leatherjacket lemur marten mongoose pike sasquatch scorpion sheepdog sole stickleback sturgeon Tyrannosaurus r e x vole wild cat wombat woodchuck wren Arabian horse albatross baby h o r s e boxer Brontosaurus bulldog bullsnake Canada goose carp centipede copperhead cormorant cricket deermouse dodo dromedary egret ermine euglena finch gardensnake husky impala kangaroo r a t mackerel manta r a y mountain sheep  201 Number o f S u b j e c t s l i s t i n g animal  5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3  •  No. o f s u b j e c t s w i t h i n e a c h educational level Gr7 Gr3 K Ed G r l l z1 2 4 4 3 3 0 0 0 0 2 1 1 3 4 0 1 0 2 2 1 1 4 2 0 0 2 0 0 '4 3 4 1 4 0 4 " 2 4 4 0 4 1 2 1 2 0 0 0 0 0 0 0 0  2 2 0 0 1 0 0 0 0 1 0 1 0 0 0 1 2 1 0 1 0 1 0 0 0 2 0 1 0 0 0 0 1 0 2 0 0 0 0 2 0 1 1 1 0 0 • 0 ' 0 0 0 0 0 0  1 0 1 1 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 0 2 1 0 0 1 1 0 0 3 0 1 0 1 0 1 0 2 . 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 . 0  1 1 0 0 0 1 0 0 2 1 1 1 1 0 0 1 1 1 0 0 1 0 0 0 0 1 0 3 1 0 0 0 1 0 1 0 0 0 0 2 0 1 0 0 1 1 0 0 .0 0 0 0 0  0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 1 1 0 1 0 2 3 0 2 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 1 1 2 1 0 0 0 0 0 0  0 0 0 0 0 0 4 4 1 0 0 .0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 3 3 3 3 3  Animal  roynah b i r d puma sea o t t e r whitefish anemone aphid baby c a t baby f i s h b a s s e t hound beagle black f l y b l a c k widow burro c o r a l snake crane f l y Dalmatian Doberman p i n s c h e r dragon electric eel fieldmouse flounder flying fish golden eagle goldfinch gosling greyhound gull Irish setter kingsnake locust marlin nematode Newfoundland dog nuthatcher palomino horse pickerel rainbow t r o u t ray rotifer stingray tapeworm terrier thrush wildebeeste whisky jack Arctic tern baby c h i c k baby deer baby dog baby e l e p h a n t baby g i r a f f e baby l i o n b a b y monkey  202 Number o f S u b j e c t s l i s t i n g animal  3 3 3 3 3 3 3 3 . 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3  No. o f s u b j e c t s w i t h i n educational level Z Ed Grll Gr7 Gr3 3 0 1 1 2 2 2 3 3 1". 2 0 3 .3 2 0 0 2 2 1 3 2 3 0 3 1 1 3 1 2 1 0 0 2 0 3 0 1 2 2 0 3 1 3 2 2 0 2 0 0 0 0 3  0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 2 0 0 0 2 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 2 0 1 0 0 0 2 0 3 1 1 1 0  0 2 1 0 0 1. 0 0 0 1 1 3 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 2 1 1 0 0  11. 1 0 1 0 1 0 1 1 1 1 0 1 2 0 0  0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0, 0 1 0 0 0 1 2 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0  0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 . 0 0' 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0  each . Animal K 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  bark b e e t l e barnswallow barracuda b i g h o r n e d sheep bird of paradise bullfrog chameleon char chum s a l m o n cockatoo cohoe salmon condor copepod coral cottonmouth snake doe duckling earwig echidna ferret flower beetle G i l a monster harbor seal H e r e f o r d cow honeybee Jersey king cobra king crab kiwi kodiac kudu l a u g h i n g hyena l i n g cod magpie mammoth m i l k snake monster mud p u p p y narwhal whale oriole partridge peccary Pekingese p i n k salmon pintail plenarium Pomeranian protozoa quarter horse ram Saint Bernard Samoyed d o g sandpiper  203 Number o f S u b j e c t s l i s t i n g animal  3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  2 2 2 2 2 2 2 2  No. o f s u b j e c t s w i t h i n e a c h educational level K Gr7 Gr3 Z Ed Grll  1  1 2 2 1 2 3 2 0 2 2 0 0 2 0 3 3 0 1 0 2 0 2 2 0 2 0 0 0 0 0 0 0 0 1 2  6  ;  0 0 0 2 2 0 2 2 2 2 2 2 2 2 2 2 2  '1 0 0 1 0 1 0 1 0 0 0 0 0 0 2 1 0 1 0 1 2 1 0 0 0 1 1 2 0 0 0 0 0 1' 1 0 1 1 0 0 2 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0' 0 0 1 0 0 • 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0, 0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0  0 0 0 1 0 0 0 0 0 0 0 3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 0 '0 1 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 0 0'' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  Animal  sardine sea snake shrew sidewinder silverfish snowy o w l sperm whale s p i d e r monkey sponge t e a l duck thoroughbred tunafish warbler water moccasin water'strider w h i t e - t a i l e d duck white whale w i l d dog wolfhound Aehmaea d i g i t a l i s Afhanistan A l a s k a n brown b e a r Amphioxus Appaloosa horse asp baby b e a r baby b i r d baby c a l f baby c h i c k e n b a b y cow baby duck b a b y moose baby r o o s t e r bacteria barn owl b e a r eub Beluga whale b i l l y goat blackbird b l a c k capped chickadee budworm bullhead caddis-fly cassowary Catherina tunicata chestnut backed chickadee chiton . coati cockle coot cotid cottontail rabbit cryptochiton  204 Number o f S u b j e c t s l i s t i n g animal •  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 '2 2 2 2 2 2 2 2 2 2 2 2 2  No. o f s u b j e c t s w i t h i n educational level Gr7 Gr3 • Z Ed' G r l l  each  0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0  2 0 1 1 2 2 2 2 2 2 1 2 2 1 2 2 2 1 1 2 2 1 1 2 2 2 0 0 2 1 2 0 0 2 1 0 1 1 2 1  o: 0 .1 • .-i I  2 2 0 0 2 2 2 2'  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 1 2 0. 0 0 0 0 2 1 0 0 0 0  0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0  0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0  Animal K cyclops d a i r y cow damsel f l y deer f l y dinoflagellate D o l l y Varden dytiscid ecartia emperor p e n g u i n euphausid flatworm flying squirrel gecko g i a n t clam glaucuswing g u l l goldeye grayling grebe Guernsey herring gull holopedium Holstein housefly h o u s e mouse h o w l e r monkey katydid kid kingfisher lacewing lamprey land s n a i l lark leach liverfluke loon lovebird lyrebird macaw mako s h a r k mammal manatee Manx c a t meadow v o l e millipede mockingbird monarch b u t t e r f l y Mopelia hindsei Morgan h o r s e mustang nat ostracod oyster catcher periwinkle  205 Number o f S u b j e c t s l i s t i n g animal  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 . 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  No. o f S u b j e c t s w i t h i n educational level Gr7 Gr3 Grll Z Ed 0 2 •0 2 1 0 2 0 2 0 1 1 1 2 2 0 2 1 2 1 2 0 0 2 2 2 1 2 1 1 1 0 2 1 0 0 2 0 0 1 0 1 2 0 2 2 1 2 2 2 0 0 2  00 2 0 1 1 0 1 0 0 0 0 1 0 0 0 0 1 0 10 0 0 0 0 0 0 0 0 0 0. 0 0 0 1. 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0  0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 2 0 0 0 0 0 0 1 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0  1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 2 1 1 0 0 2 0 0 0 0 0 0 .1 1 0  each Animal K 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  piglet pika pinto pronghorned antelope ptarmigan pterodactyl puffin pug purple martin queen bee red ant red f o x red s q u i r r e l rhea river otter rodent roundworm sailfish sand d o l l a r scallop sculpin s e a cow sea elephant sea slug sea t u r t l e short eared owl silver fox skate snapping t u r t l e schnauzer snow g o o s e snowshoe r a b b i t sockeye salmon song sparrow s p a n i e l dog s p a r r o w hawk s p r i n g salmon stallion stonefish sunbear tabby c a t tapir tarpon tedd'ybear h a m s t e r Thomson's g a z e l l e t i g e r shark toucan trele f r o g tukeworm tunicate unicorn w a t e r snake w h i t e f o o t e d mouse  206 Number o f S u b j e c t s l i s t i n g animal  1.  No. o f s u b j e c t s w i t h i n e a c h educational level Z Ed Grll Gr7 Gr3 K  Animal  2 0  white shark w i l d boar  0 0 1 . 0 . 0  0  0 1  0 0  Zoologist:  Acmaea i n s t a b a l i s , Acmaea m i t r a , Acmaea p a t e l l a , Acmaea' p e r s o n a , Acmaea s c a b r a , Acmaea t e s t u d i n a l i s , a c o r n worm, a d d e r , A f r i c a n c l a w e d t o a d , A f r i c a n e l e p h a n t , A f r i c a n l u n g f i s h , a l l i g a t o r l i z a r d , Ambystoma, A m i a , a n c h o v e t a , a n g l e r f i s h , a n t h r o p o i d , A p h r o d i t e , A r c t i c f o x , A r c t i c h a r e , armyworm, A s i a n e l e p h a n t , a s s a s s i n bug, A s t e r i a s v u l g a r i s , a x o l o t l , b a n d i c o o t , b a s k i n g s h a r k , b l a c k Angus, b l a c k a n t , black-headed g u l l , b l a c k r a t , b l a c k s q u i r r e l , b l u e f o o t e d booby, b l u e g i l l , b l u e grouse, b l u e heron, b l u e winged t e a l , bohemian waxwings, b o l l w e a v i l , B o n a p a r t e ' s g u l l , b o r e a l c h i c k a d e e , box c r a b , b r a i n c o r a l , bream, Brewer's b l a c k b i r d , b r o o k t r o u t , brown c r e e p e r , brown t h r a s h e r , brown t r o u t , b r y o z o a n , b u l l f i s h , b u l l f r o g , b u t t e r f l y f i s h , b u t t e r n e c k c l a m , C a l a n u s , C a l i f o r n i a mouse, C a n c e r m a g i s t e r , C a n c e r p r o d u c t u s , c a n v a s b a c k e d d u c k , Cape b u f f a l o , c a p r e l l i d , C a r c i n u s maenas, carpenter ant, c a t b i r d , c a l l a p h a r i d a e , ceratopagan, chain p i c k e r e l , chicken hawk, c h i p p i n g s p a r r o w , c h i r o n o m i d , c h o r d a t e , c h o r u s f r o g , c h u b , c i c a d a , c i n n e b a r moth, c i v e t , cochina,- c o c k c h a f e r , c o d d l i n g moth, c o e l e n t e r a t e , c o l l e m b o l a , companularia, condor, cornsnake, c o t t o n r a t , cowry, c r i n o i d , c r i s s a d a bug, c r u s t a c e a n , cubomedusae, c u r l e w , c u t t l e f i s h , C y a n o p l a x d i e n t i e n s , d a c e , dam, D a r w i n f i n c h , d i a m o n d b a c k e d r a t t l e r , D i a p t o m u s , d o g f i s h s h a r k , d o l p h i n f i s h , d o m e s t i c r a t , d o r a d , d r o s o p h i l a , dugong, dung b e e t l e , dusky shrew, E a s t e r n b l u e b i r d , E a s t e r n chipmunk, E a s t e r n diamond back, E c h i n u s e s c u l e n t i s , E c h i n a r a c h n i u s parma, E g y p t i a n c o b r a , e l e c t r i c ray, elephant s e a l , E n g l i s h sparrow, Eucalanus, European beaver, European wolf, evening grosbeak, fer-de-lance, f i d d l e r crab, f i n whale, f i r e c o r a l , f i r e c r e s t w r e n , f i s h c r o w , f l e s h f l y , F l o r i d a mouse, f l u k e , f o x s q u i r r e l , gadwal, Galapagos t o r t o i s e , gammarid, gannet, goby, g o l d c r e s t wren, g o l d e n k i n g l e t , goose b a r n a c l e , G r a n t ' s g a z e l l e , g r e a t b l u e w h a l e , g r e a t brown bear, g r e a t horned owl, g r e a t panda, Great Pyrenees, g r e a t e r scaup, greenf r o g , green winged t e a l , grouper, grosbeak, g u i l l e m o t , guinea f o w l , guinea h e n , g y m n o t i d , h a d d o c k , h a g f i s h , h a r v e s t e r , hawk m o t h , h e d g e h o g f i s h , H e n r i c i a , h e r m i t c r a b , h e r m i t t h r u s h , h o a r y ' m a r m o t , Homarus a m e r i c a n u s , h o r s e s h o e c r a b , h o u s e s p a r r o w , humpback w h a l e , H y l o b a t e s , h y r a x , i b i s , Ichneumon wasp, I n d i a n c o b r a , I n d i a n e l e p h a n t , i n d i g o s n a k e , i n v e r t e b r a t e , Ishnochiton, Ishnochiton albus, isopod, j a c k f i s h , jaguarundi, kinkajou, k i t f o x , k i t t i w a k e , Komodo d r a g o n , k r a i t , l a k e t r o u t , l a n g o u s t e , ; . l a n t e r n f i s h , l a r g e h e a d e d minnow, L a r v a c e a , l e a s t c h i p m u n k , l e a s t t e r n , l e a s t w e a s e l , l e s s e r panda, l e s s e r scaup, l i m p e t , l i t t l e n e c k clam, L i t t o r i n a l i t t o r e a , l o n g e a r e d o w l , l o n g t a i l e d w e a s e l , lugworm, M c G i l l v r a y ' s w a r b l e r , marmoset, m a r s h hawk, m a r s u p i a l , m a r s u p i a l d o g , m a r s u p i a l m o u s e , m a s k e d s h r e w , m a y f l y , m e g a l o p s , m e t a f r o g , m o n i t o r l i z a r d , M o n o c y s t i s , m o o n s n a i l , moose f l y , M o p a l i a c i t h i r a , M o p a l i a l i g n o s a , M o p a l i a muscosa, M o p a l i a c i l i a t a ,  207 moray, moray e e l , m o u n t a i n b e a v e r , m o u n t a i n c a r i b o u , mudshark, m u l l e t , murre, muscalunge, muscid, M y t i l u s c a l i f o r n i a n s i s , M y t i l u s e d u l i s , nemertine, n e m e r t i a n worm, N e r e i s , n e w t , n i g h t hawk, n i g h t j a r , N o r t h e r n f u r s e a l , N o r t h e r n l y n x , N o r t h e r n p i k e , N o r w a y r a t , N.W. salamander, nudebranch, n u t r i a , o l d squaw, o v e n b i r d , P a c i f i c r a t t l e r , P a c i f i c s a l a m a n d e r , p e r o m y s c u s mouse, p i n e s i s k i n , p h o r o n i d , p o l e c a t , p o r c u p i n e f i s h , p r a i r i e f a l c o n , P r o t e u s , ' . E t e r o s a u r u s , Pygmy o w l , Pygmy w h i t e f i s h , q u e e n e r a b , r e d b a c k e d v o l e , r e d d e e r , r e d s e a u r c h i n , r e d s i d e d d a c e , r e d s h o u l d e r e d hawk, r e d s n a p p e r , r e d t a i l e d hawk, r e d w i n g , r e d w o l f , r e t i c u l a t e d p y t h o n , r e t r i e v e r , r h i n o c e r o s b e e t l e , r h i n o b a t i d , r i c e r a t , r o c k C o r n i s h game h e n . R o c k y Mountain white f i s h , r o s e b r e a s t e d grosbeak, Rostrangra p u l c h r a , r o s y boa, round w h i t e f i s h , . rubber boa, ruby crowned k i n g l e t , ruddy duek, r u f f e d grouse, s a l p , s a n d f l y , s a n d h o p p e r , s a n d worm, s c o t e r , s c r e e c h o w l , s e a b a s s , s e a f a n , sea iguana, sea l e o p a r d , sea l i l y , sea p i n , sea snake, sea s t a r , sea t o a d , sea whip, shad, shark s u c k e r , s h o r t - t a i l e d shrew, s h o r t - t a i l e d w e a s e l , s i m u l i i d , s i p h o n o p h o r e s , s k i n k , smoky s h r e w , s n a p p e r , s n o w s h o e h a r e , s p h y n x , s p i n y l o b s t e r , s p i n y r a y , S p i r o r b i s , s p l a k e , s p o t t e d newt, s p o t t e d s a l a m a n d e r , s p r i n g s a l m o n , s p r u c e b u d worm, s t i c k i n s e c t , s t o n e f l y , s t r i p e d skunk, S t r o n g y l o c e n t r o t u s droehbachiensus, S t r o n g y l o c e n t r o t u s f r a n c i s c a n u s , Strongylocentrotus paulus, Strongylocentrotus purpuratus, swallowtail b u t t e r f l y , s y l l i d a e , t a i l e d f r o g , tanager, t a r d i g r a d e , temora, t e n t c a t e r p i l l a r , t e r e b e l l i d , t h i r t e e n l i n e d ground s q u i r r e l , t i g e r salamander, tiger snake, T i l a p i a , t i m b e r w o l f , t i n t i n i d , tomato bug, T o n i c e l l a c o o p e r i , T o n i c e l l a i n s i g n i s , T o n i c e l l a l i n e a t a , Townsend's w a r b l e r , t r e e c r e e p e r , t r e e s n a i l , trematode, trogon, tundra v o l e , tunny, Urochordate, v a r i e d t h r u s h , . v e r t e b r a t e , v e s p i d , V o l v o x , w a p i t i , w a r b l i n g v a r e o , w a t e r boatmen, w e a v i l , Weimaraner, Western diamond back, whale s h a r k , whelk, whelp, w h i r l i g i g b e e t l e , white bear, white-crowned sparrow, white f l y , w h i t e - t h r o a t e d s p a r r o w , w i n t e r w r e n , w i s e n t , wood t i c k .  1.  E d u c a t i o n 200 s u b j e c t :  a l p a c a , A l s a t i a n dog, a m p h i b i a n , . b u l l t e r r i e r , b u s h b a b y , Cape h o r n b u f f a l o , c a t t l e , cedar waxwings, c e n t a u r , C l y d e s d a l e h o r s e , eoypu, finnow, f o x t e r r i e r , g a n d e r , g a r d e n e r s n a k e , g o l d e n r e t r i e v e r , g r e a t worm, g r e e n s n a k e , grey f i s h , grey s q u i r r e l , g r i f f i n , h a r t , h e i f f e r , h i n d , j e r b o a , kangaroo mouse, L i g i a , l o n g h o r n cow, m a n d r i l l , m a n t a , m a n t i s , m a r m o t , m i n i a t u r e c o l l i e , m e a d o w l a r k , m o n g r e l , mut, n a u t i l u s , n i g h t i n g a l e , p e g a s u s , p e r e g r i n e f a l c o n , p o i n t e r , prawn, rainbow f i s h , Russian b l u e p o i n t c a t , s a t y r , S c o t t i s h t e r r i e r , S h e t l a n d h o r s e , s h e l t i e d o g , S i a m e s e f i g h t i n g f i s h , snow b e a r , snow b i r d , snow l e o p a r d , s p r i n g b o k , s p r i n g e r s p a n i e l , s t e e r , s t o a t , s u c k e r , S u f f o l k p u n c h h o r s e , T i b e t a n m a s t i f f , t i t mouse, t o r t o i s e c a t , towhee, t r e e kangaroo, water e l e p h a n t , water r a t , w i r e h a r e , w h i t e g o r i l l a , y e l l o w b e l l i e d marmot, y e l l o w j a c k e t , y e t i .  208 1 , G r a d e 11 s u b j e c t : a a r d w o l f , a d m i r a l , A t l a n t i c salmon, Angus, Baleen whale, B a l t i m o r e o r i o l e , b r a n t , b r o w n worm, C h e s a p e a k e d o g , c i n n a m o n b e a r , c o k a n e e , c o h o e , d i m e b a c k r a t t l e r , f i e l d r a t , German b r o w n f i s h , . h e l l d i v e r , h o r n e d o w l , l e m o n t e t r a , mud t r o u t , m u l e t a i l e d d e e r , o o l i c h a n , r a t f i s h , r a t t l e r , r e d r a e e r s n a k e , r o c k cod, s e t t e r dog, s h e p h e r d dog, s h o r t h o r n , s i l v e r t a i l f o x , s p o o d l e d o g , s q u i r r e l monkey, s t e e l h e a d , S t e l l a r ' s j a y , v i p e r , w o o d b u g , wood d u c k , wood t i t .  1.Grade 7 s u b j e c t : A u s t r a l o p i t h o c u s , baldheaded e a g l e , bedbug, b l a c k a n g e l f i s h , b l a c k c a t , b l a c k cow, b l a c k t e t r a , b u c k , c h e r o k e e t , c o n r a y , c u c k o o , d a c h s h u n d , d e s e r t rat, discus f i s h , English setter, f a n t a i l , f i r e f l y , f o a l , hatchet f i s h , Homo e r e c t u s , Homo s a p i e n s , h o t d o g , h o u n d , h o u s e c a t , J a v a man, k e e n h o u n d dog, m o c c a s i n snake, m o l l i e , m o u n t a i n b e a r , neon t e t r a f i s h , p o t a t o b e e t l e , p o t a t o b u g , R h o d e s i a n man, s a n d f l e a , s p a r r o w h a w k , s t e g o s a u r u s , s t i c k b u g , t i g e r b a r b , t u r t l e dove, w h i t e r a b b i t , w i e n e r dog, y e l l o w b e l l i e d s a p s u c k e r , yellow fever mosquito, zebra f i s h .  1.Grade 3 s u b j e c t : a n g l e r , Angora r a b b i t , a n k l y o s a u r u s , A r c t i c w o l f , baby sperm w h a l e , b r a c h i o s a u r u s , b u n n y r a b b i t , b u s h h o g , c a l f cow, c a l i c o c a t , c a m e l w i t h o n e hump, c h e e t a h c u b , c i r c u s e l e p h a n t , c o c k - o f - t h e - r o c k , c o k a n e e f i s h , c o u g a r cub, c o w f i s h , c r a b e l e p h a n t , c u c k o o b u r r a , deep s e a s t a r f i s h , d i m e t r o d o n , d o r m o u s e , d u t e h b e l t e d r a b b i t , f l o w e r b u g , f o x c u b , g e r m , gomo d r a g o n , g o n a n g i a n t , h a l f i d g e b i r d , horned t o a d , k i n g v u l t u r e , l e o p a r d cub, l i o n c u b , l i v i n g t e d d y b e a r , moa, m u d s h a r k , p e a r l , p i c k a p o o d o g , P o l i s h r a b b i t , p t e r a n o d o n , r e d bug, r e d c r a b , r e d r a b b i t , s e a monster, s e a sponge, s e a s c o r p i o n , s e a s n a i l , s e c r e t a r y - b i r d , s h i n e r f i s h , s h o r t h a i r c a t , sow, Tasmanian w o l f , teddy hamster, t r i c e r a t o p s , t r o p i c a l f i s h , t u r k e y v u l t u r e , w a r t h o g , w o o l l y mammoth b e a r l i k e d o g .  209 1. K i n d e r g a r t e n  subject:  Baby - a n t , -bee, - c a m e l , -daddy d e e r , -daddy, -daddy- f i s h , - d r a g o n , - f l y , - f o x , - f r o g , - g o a t , - g o r i l l a , - k a n g a r o o , - l a m b , - m o t h e r r o o s t e r , -mummy, -mummy d e e r , - m o u n t a i n l i o n , - p i g , - p o n y , - r a t , - - r h i n o c e r o s , - s h e e p , - t u r t l e , -whale, b i g c h i c k , b i r d s t h a t c a n f l y , b l u e f i s h , daddy - b i r d , - d r a g o n , - f i s h , - h o r s e , - k a n g a r o o , -mouse, - p i g , - r a t , - w h a l e , g h o s t , g r a n d m a . f i s h , g r a n d p a f i s h , g r e e n f i s h , m o t h e r - d r a g o n , -mouse, - p i g , - r a t , - w h a l e , mummy f i s h , p u s s y c a t , r e d f i s h , s a u r u s , s p a c e m o n s t e r , z o o leopard.  210  Appendix B - l .  CAT  BEAR CAT COW DOG  S i m i l a r i t y M a t r i x from t h e Free L i s t i n g Zoology Doctoral Candidates  COW  DOG  GlRF RABT SHEP SEAL PIG  Task f o r  HORS ELEP ZEBR BAT  2.73 2.12 3.23 5.16 2.86 7.93 6.76 2.49 3.64 5.C1  .40 1.12  16.6078.32 2.61 5.82 9.34 3.7616.6928.71 6.39 2.13 3.49 18.21 2.98 3.0542.84 2.8429.5652.CO  5.38 1.73  .57  3.00 6.6311.38 4.6616.2231.29 9.79 2.51 1.87  GIRF  2.55 5.29 4.09 6.45 2.8325.72 3.87  .57  RABT  4.27 1.30 1.88 2.64 5.36  .80  .74  SHEP  1.7417.4616.2811.08 1.71  .65  SEAL  2.37 2.90 7.16 2.35  .91  27.75 3.03 1.41  .80  HORS  6.89 3.29  .71  ELEP  3.76  .44  PIG  ZEBR  0.0  211  A p p e n d i x B-1,  continued  CAML DEER DONK FOX  RANG LEOP MOUS LION MONK PORC SKUN SQUR  BEAR  1.00 5.17  .78 7.20 4.07 2.10 2.41 8.16 1.52 4.07  CAT  1.45 4.46 2.03 1.83 2.88 2.0516.18 5.80 2.83  .31  .14 .67  COW  5.25 5.75 5.95 2.47 3.09 2.19 6.39 2.57 2.85  .48  .15 .73  DOG  2.11 3.87 2.40 2.44 2.63 2.0615.70 7.08 3.54  .31  .13 .87  GIRF  3.58 5.20 1.10 1.43 5.15 3.06 2.7919.26 4.17 1.73  .18 2.42  RABT  3.04 1.85 1.2410.56 7.02 2.02 4.32 1.52 3.92  .85  .69 2.63  SHEP  .29 3.14 4.34 5.93 3.69 3.67 6.33 2.38 5.21  .53  .15 .71  SEAL  1.16 1.99 6.23  PIG  3.11 4.59  .95 1.66 1.89 1.88 7.68 3.97 1.12  .43  .14 .59  HORS  2.24 7.83 9.07 1.58 5.81 1.87 6.12 4.08 5.06  .47  .14 1.03  ELEP  1.35 3.37  .31  .15 .47  ZEBR  .73 1.81 1.76 3.13 4.07 2.53  .20 .55  .36 2.81 4.19 2.42 8.1415.12 5.75  .20 1.37 3.64  .45 1.82 3.98 1.13 6.26  .57  .34 0.0  .11 0.0  .70  .18  212  A p p e n d i x B-1,  continued  CAML DEER DONK FOX  BAT CAML DEER DONK FOX  .10  KANG LEOP MOUS LION MONK PORC SKUN SQUR  .25 0.0  .20 1.76  .06 1.46  .20  .26  .36 0.0  .80  2.33 4.25  .65 1.50  .26 1.45 1.18  .78  .08 0.0  .07  .53 1.58 1.50 2.67 3.49 9.15 2.21 .21  .52  .26 6.40  .07 2.03  .64 3.20 1.75  .16 0.0  2.28 2.76  .96 2.37 1.49  .42  KANG  1.74 1.99 2.00 1.59  LEOP  .19  .37 .35  .07 0.0  .70  5.2320.10 3.87  .46  .19  .80  MOUS  3.42 2.03  .54  .42 2.05  LION  5.68  .42  .14  MONK  PORC SKUN  .23 0.0  .98 .96  3.13 4.27 .30  213  A p p e n d i x B-2.  CAT  BEAR  S i m i l a r i t y M a t r i x from t h e Free L i s t i n g Education Undergraduates  COW  DOG  GlRF RABT SHEP  SEAL PIG  Task f o r  HORS ELEP ZEBR BAT  4.76 5.81 4.13 6.34 4.14 1.54 6.81 2.21 7.16 7.76 3.31 1.19  CAT  11.9961.00 8.26 4.37 2.96 1.58 8.0221.0510.72 4.66 1.49  COW  11.23 3.70 4.37 8.79 1.1017.9529.04 5.53 2.41 1.47  DOG  7.80 4.24 2.44 1.56 6.7320.8910.4G 3.27 1.52  GIRF  5.35 2.78 2.45 4.24 7.G220.4412.77  RABT SHEP SEAL PIG  .98  1.90 1.97 4.50 3.3511.39 3.29 5.20 .97 6.85 5.G7 2.10  .84  .49  1.46 1.16 3.46 1.43 2.26 23.23 7.01 3.12 1.34  HORS  6.56 4.44  .94  ELEP  11.49  .97  ZEBR  .59  214  A p p e n d i x B-2, c o n t i n u e d  CAML DEER DONK FOX  BEAR  1.63 8.15  KANG LEOP MOUS LION MONK PORC SKUN SQUR  .71 1.48 1.48 2.30 5.07 8.15 3.03  .12  .20 4.05  CAT  .76 5.00 2.67 2.68 3.16 1.0519.3712.26 7.10  .30  .82 2.06  COW  2.72 6.68 3.25 3.04 3.57 1.57 5.39 5.72 4.31  DOG  .70 7.75 2.59 2.34 4.17 1.0514.15 8.5010.97  .44 1.18 2.33 .23  .87 1.88  GIRF  1.40 3.64 1.60 7.32 3.02 1.55 5.1512.37 7.14  .57 1.85 2.35  RABT  2.03 6.01 1.56 6.14 5.49 2.39 8.60 4.10 4.37  .67 1.3914.95  SHEP  4.63 8.09 1.82 5.21 1.87  .26 1.19 1.14  SEAL  .38 1.83  .43 1.36 2.48 1.41  .29 5.99 3.95 1.91 3.65 2.39 1.39  .21  .51 2.11  PIG  2.48 2.76 3.10 3.31 1.62 1.57 3.60 3.99 4.78  .44 1.26 2.76  HORS  2.40 4.21 2.33 2.46 1.89 1.83 7.01 4.93 3.69  .60  ELEP  1.02 5.47 1.23 3.80 3.36 2.77 7.5422.13 7.15  .32 3.12 4.71  ZEBR  3.94 1.74 3.75 1.54 1.69 5.99 4.9411.71 6.19  .18  .73 2.10  .22 2.43  215  A p p e n d i x B-2,  continued  CAML DEER DONK FOX  BAT CAML DEER DONK FOX  .79  .75  KANG LEOP MOUS LION MONK PCRC SKUN SQUR  .54  .96  .68  .24 3.02 1.21 1.80  .32 2.61 2.92  .95 2.31  .93  .85  .21 2.02  .28  3.95 3.66 3.99 .86  .56  .91  .89  .21 2.71  .71 3.34 5.46 4.29  .67 1.49 2.22  .28 1.95 3.23 3.20  .07  .20  .74  4.41 2.23 2.73 3.29 5.20 1.15 3.63 3.98  KANG  .69 2.65 2.01 2.98  .70  .61 3.12  LEOP  3.5211.67 1.79  .17  .99 1.61  MOUS  12.85 5.50  .32 1.16 3.79  LION  5.22  .45 2.69 1.79  MONK  .67  .85 3.91  PCRC  .37 1.21  SKUN  2.55  \  216  A p p e n d i x B-3.  CAT  BEAR  S i m i l a r i t y M a t r i x from t h e Free L i s t i n g Grade 11 S u b j e c t s  COW  DOG  GlRF RABT SHEP SEAL PIG  Task f o r  HORS ELEP ZEBR BAT  6.30 5.76 7.94 5.56 2.87 1.95 7.32 2.78 4.8711.25 6.35 1.17  CAT  9.9762.0912.9810.78 4.62 2.58 7.4015.5612.43 4.24  .42  COW  9.76 9.16 5.5913.40 4.8340.1350.06 9.41 5.14  .61  DOG  11.55 6.96 3.67 2.67 6.5718.00 8.36 4.09  .44  GIRF  1.98 3.45 3.8010.7612.2334.8812.40  .55  RABT  5.33 2.73 6.05 6.24 2.42 1.56  .50  SHEP  2.25 7.0210.22 3.08 3.45  .18  SEAL  2.80 2.10 3.20 1.60  .62  PIG  24.76 6.29 2.70 2.55  HORS  8.30 5.76  .67  ELEP  15.00  .38  ZEBR  .15  217  Appendix B-3, c o n t i n u e d  CAML DEER  DONK FOX  KANG LEOP MOUS LION MONK PGRC SKUN SQUR  BEAR  .86 9.79  .59 4.59 1.45 1.0410.38 8.54 7.48 1.07 4.47 6.72  CAT  .40 3.34  .64 1.36 2.67 2.4514.8912.32 6.07  COW DOG  3.64 1.72 1.29 2.47 2.20 2.07 4.95 7.37 3.94 .40 3.03  .39 1.18 2.30 .63  .48 3.05  .67 1.42 4.16 2.1213.3412.86 4.57  .39 1.05  1.89  .81 1.22 2.36 2.76 5.9C12.6816.20  .78  .72 1.65  GIRF  1.44 5.81  RABT  .46 2.64  .50 2.08 1.79 1.6412.40 2.45 2.8C  .50  .69 2.48  SHEP  .89 1.74 2.98 1.43 4.91 1.21 3.87 3.41 2.62  .45  .70 2.59  SEAL  .94 6.26  .63  .58 4.01  PIG HORS ELEP  ZEBR  .55 9.17 2.33 3.87 2.41 4.59 5.47  4.53 2.82 2.16 3.46 1.55 2.02 4.71 4.36 3.65 1.59 .40 3.83  .65 1.39  .71 1.63 1.72 2.68 7.70 9.15 4.69  .62  .34 1.66  2.38 5.89 1.03 1.37 2.32 5.56 8.7419.87 9.15  .63  .61 2.12  .38  .94 1.62  .59 3.69 2.25 1.86  .86 4.13 4.0610.83 8.C4  218  A p p e n d i x B-3, c o n t i n u e d  CAML DEER DONK FOX  BAT CAML DEER DONK FOX  0.0  .13 0.0 1.98  0.0  .14 3.20  KANG LEOP MOUS LION MONK PORC SKUN SQUR  .24  .72  .45  .40 4.23 2.04 1.12 0.0  .19  .39  .85  .92 1.68  .96  .40  .40  .98 5.25 5.03 6.08 4.78 4.84 5.87 2.07 1.52 9.77 .35  .13 4.17 1.46  .84 1.02 4.96  .06  .06 .58  .75 1.44 4.71 2.16 2.30 4.31 6.61  KANG  .79 2.47 3.39 2.55  .76  .92 .19  LEOP  1.40 8.54 4.32  .63  .33 1.15  MOUS  4.16 4.04  LION  10.88  .29 3.06 4.82 .68  .63 1.61  MONK  .62 2.54 1.21  PORC  3.27 .62  SKUN  .13  219  A p p e n d i x B-4.  CAT  BEAR  S i m i l a r i t y M a t r i x from t h e Free L i s t i n g Grade 7 S u b j e c t s  COW  DOG  GIRF RABT SHEP SEAL PIG  Task f o r  HORS ELEP ZEBR BAT  7,02 3.98 5.18 4.29 2.58 1.53 5.37 1.98 5.01 3.37 4.76  .35  CAT  5.9653.51 7.81 7.18 1.67 1.65 2.93 9.2011.52 4.21  .26  COW  6.66 2.78 7.27 6.07 2.2416.5032.20 6.75 2.71  .52  DOG  8.70 6.77 2.57 1.54 3.18 9.1813.36 4.81  .25  GIRF RABT SHEP SEAL PIG HORS  2.45  .84  .70 1.93 7.4326.58 7.96 4.30  4.03 3.25 6.66 9.23 1.66 1.7C 1.23 2.60 2.40  .88  .09  .70  .28  1.74 2.11 1.97 2.04  .09  11.81 4.95 3.52  .25  9.42 7.87  .13  ELEP  10.64 2.24  ZEBR  .07  220  A p p e n d i x B-4, c o n t i n u e d  CAML DEER DONK FOX  BEAR CAT COW DOG GIRF  KANG LEOP MOUS LION MONK PORC SKUN SQUR  1.09 8.56 3.31 6.54 5.93 2.08 7.28 6.21 5.33 2.C8 3.83 4.52 .53 1.78 1.51 3.04 1.17 1.4415.6812.45 3.41 1.67  .61 1.24  2.03 1.90 3.00 3.41 1.80 1.78 4.46 7.14 4.70 1.03 1.19 3.15 .87 1.60 1.33 2.21 1.10 1.3914.9912.79 3.36 2.74  .72 1.68  1.32 1.59 1.45 1.20 1.73 2.33 5.52 7.90 6.62 2.24 1.96 4.30  RABT  .78 3.24 1.20 3.02 3.21  SHEP  .27 2.45 1.28 3.43  SEAL  .66 1.40 2.04  .6211.25 6.02 2.76  .53 1.32 8.40  .68 1.29 1.06 2.14 2.01 2.54 1.14 1.51  .80 1.15  .98 1.61 2.94 3.15  .98 1.38 1.20  PIG  3.21 2.09 3.44 2.02 1.70 1.04 2.95 5.56 2.46  .68 4.64 4.13  HORS  5.51 1.69 5.58 3.14 1.34 2.03 5.93 7.8710.56  .86  ELEP ZEBR  .51 2.55  .81 3.31  .89 1.24 3.24 2.67 6.7415.3912.2 8 1.49 1.50 1.66  2.08 1.25 1.40  .94  .83 1.06 3.63 5.62 4.85  .49  .56 3.90  221  A p p e n d i x B-4, c o n t i n u e d  CAML DEER DONK FOX  BAT CAML  .12  KANG LEOP MOUS LION MONK PORC SKUN SQUR  .35 0.0  .12  .08 0.0  .13  .47  .89  .30  DEER  1.21 5.10 1.85  DONK  1.17  FOX KANG LEOP MOUS LION MONK PORC SKUN  1.64  .97 1.04  .30 1.20 1.42 2.13 0.0 .96 1.16  .90 1.24 3.40 4.06  .33 2.26 1.72 2.41 1.30 1.23  .80 1.24 2.72 2.70 1.13  .95 1.42 5.81  .85 2.00 .52 .75  .57 .67  .44 2.08 2.48 .76  .52 .71  .81  .84 .91  3.02 4.61 4.72 1.17 1.69 2.74 6.28 3.91  .92  .71 3.49  5.54 1.11 1.04 2.23 3.19 2.42 3.07 7.83 2.27 5.13  222  A p p e n d i x B-5.  CAT  BEAR CAT COW DOG GIRF RABT  Similarity Matrix Grade 3 S u b j e c t s  COW  DOG  6.90 2.52 6.01  from t h e F r e e L i s t i n g Task f o r  GIRF RABT SHEP  SEAL PIG  HORS ELEP ZEBR BAT  .93 4.88  .45 7.63 2.60 2.19 1.64 2.07  .47  7.1550.42 3.5613.26  .50 2.70 5.97 7.42 3.81 2.30  .27  6.36 2.98 5.57 2.52 1.8918.5429.84 3.50 3.16  .14  4.94 9.24 4.01  .51 2.57 3.44 4.85 4.74 2.19  .31  .92 2.69 1.12 3.08 9.2711.25  .17  1.23 2.45 5.28 4.69 2.21 1.32  .08  SHEP  .31 6.47 1.91 1.17  .49 0.0  SEAL  1.72 1.57 1.90  .99 0.0  PIG  14.74 1.86 1.71  .10  HORS  6.C6 2.70  .13  ELEP  2.59  .19  ZEBR  .16  223  Appendix B-5, c o n t i n u e d  CAML DEER  BEAR  .5310.71  DONK FOX  KANG LEOP MOUS LION MONK PORC SKUN SQUR  .49 2.52 3.02 1.00 2.73 6.08 9.72  .39 1.40 4.68  CAT  1.48 3.70 1.31 6.33 2.41 4.51 6.8112.68 4.42  .59  COW  3.41 4.08 4.48 5.09 1.79 1.83 3.04 3.28 3.86  .75 3.45 2.16  DOG  1.20 3.99 1.61 2.15 3.09 6.20 6.6312.70 4.11  .57  GIRF  1.03 3.30  RABT  1.07 7.48 2.44 8.45 1.34 1.80 5.24 4.03 2.47 2.11 1.92 5.81  .94  .63 2.04  .61 1.97  .81 2.30 1.73 1.15 5.69 4.25 1.95 3.18 1.71  SHEP  .57 2.22 2.57  .42  .71  .32 3.19  .77  .68  .37  .66 .45  SEAL  .15 2.10  .16 1.16 1.38 1.23 2.30 5.02 5.07  .84  .97 2.50  PIG  .95 1.58 1.35 2.62 1.07 1.90 2.31 2.92 2.05  .28 3.58 1.67  HORS  3.71 2.81 8.68 3.71 1.61 2.70 2.96 3.70 4.94  ELEP  2.42 2.53 2.10 1.06 1.45 1.97 4.0311.4913.74 1.49  ZEBR  1.68 2.08  .22  .60 2.12 3.04 .98 1.62  .97 2.27 2.11 1.08 5.49 4.94 1.74 2.09 3.68  224  A p p e n d i x B-5,  continued  CAML DEER DONK FOX  BAT CAML DEER DONK FOX KANG LEOP  .16 0.0  0.0  .65 6.04  0.0 .65  KANG LEOP MOUS LION MONK PORC SKUN SQUR  .38  .19  .13  .21 C O  .38 1.25 2.01 1.90 3.91  1.00 2.51 1.37 .88  .94  .35 1.19 2.49 2.37  .62  0.0  1.88  .11 4.32  .78 1.26 4.21  .41 1.32 1.73 1.83 3.37  .95 1.11 3.30  .73 1.46 1.16 1.32 1.78  .43  .87 3.18  1.00 3.95 2.09 5.21 1.09. 2.13 1.55 .16  .20 1.17  MOUS  5.29 4.64 1.07  .80 1.50  LION  8.26  MONK  PORC SKUN  3.6510.27 3.97  .62 1.44 2.46 1.14  .95 2.75  7.05 2.65 2.70  225  A p p e n d i x B-6.  CAT  BEAR  S i m i l a r i t y M a t r i x from t h e Free L i s t i n g Kindergarten Subjects  COW  DOG  GlRF RABT SHEP SEAL PIG  3.02 1.89 2.60 2.61 1.84  Task f o r  HORS ELEP ZEBR BAT  .56 2.14 1.48 2.57 4.C3  .52 1.23  CAT  3.3620.47 2.26 2.59 2.85  .61 1.43 6.76 2.34  .54  .47  COW  5.34 2.51 1.51 4.48  .37 4.1211.39 2.13  .59  .05  DOG  3.46 2.75 4.04  .63 1.81 4.92 2.66  .68  .53  .71 4.6610.46 3.74  .07  GIRF  .74  .81  .63  RABT  .76 1.30  .37 2.02 1.68  .63  .42  SHEP  .26  .67 3.61 1.21  .19  .06  .39 1.43 2.08  .35  SEAL PIG  -67  .08  .05  HORS  5.10 2.32  .06  ELEP  1.72  .13  ZEBR  2.52 1.04  .16  226  A p p e n d i x B-6, c o n t i n u e d  CAML DEER DONK FOX  $SIG  BEAR  .51  CAT COW  .68 2.25  .50 3.01 2.03 1.57 C C  0.0  .75  .68 1.34 1.53  .71 1.26 1.21 3.41 3.24 1.67 C O  0.0  .87  .98 1.15  .20 2.51 1.23 1.67 2.27 2.38 0.0  0.0  1.07  .48  .16  KANG LEOP MOUS LION MONK PORC SKUN SOUR  .87  DOG  1.34  .64 1.44 1.42 1.05 1.29 4.87 4.60 1.43 C C  0.0  .73  GIRF  2.09  .46 1. 15  .11  .24 1.99 1.74 6.25 3.96 C C  0.0  .21  RABT  .08  .32  .32  .47  .32 1.04 1.27 1.88 1.89 C O  0.0  .61  SHEP  .93  .36  .51 0.0  .75  .37  .84  .70 2.87 C O  0.0  .59  SEAL  .09 1.13  .10 0.0  .32  .17  .28 1.54 1.94 C O  0.0  .21 0.0  .23  .23  .85 1.69  0.0  1.05  PIG  0.0  HORS  1.43 1.36 3.49  . 13 1.53 1.58 4.45 2.88 1.84 C O  CO  1.51  ELEP  1.44  .12  .73 2.62 1.8810.41 3.47 C C  CO  .71  ZEBR  .62  .14  0.0  CO  .98 1.03 .18  .51 C O  .68  .21 1.95  .59 C O  0.0  .30 C O  .14  227  A p p e n d i x B-6, c o n t i n u e d  CAML DEER DONK FOX  KANG LEOP MOUS LION MONK PORC SKUN SQUR  0.0  0.0  1.42  .08  .71  .27  .18 0.0  0.0  CAML  .15 2.44 0.0  .08  .65  .62  .54  .35 C O  0.0  .09  DEER  .23 0.0  1.41 2.13 1.24 1.55 3.50 C O  0.0  .13  DONK  0.0  .07  BAT  FOX KANG LEOP  0.0  0.0  .15 1.09 0.0  0.0 .59  0.0  .63  .44  .69 C O  0.0  .14  .71  .24 C O  0.0  0.0  .63  .79 1.85 0.0  0.0  1.50  0.0  .18  .45 6.01 1.63 C O  MOUS  1.65 2.31 0.0  0.0  2.40  LION  3.52 O.C  0.0  .68  0.0  1.68  0.0  0.0  MONK PORC SKUN  CO  0.0  228 A p p e n d i x C.  A s s o c i a t i o n s t o Animal Words"  a Number b e f o r e b r a c k e t s i n d i c a t e s t o t a l number o f s u b j e c t s r e s p o n d i n g w i t h a particular association. Numbers w i t h i n b r a c k e t s i n d i c a t e b r e a k d o w n o f total.number by e d u c a t i o n a l l e v e l , going from h i g h e s t t o lowest e d u c a t i o n a l level. bat b i r d 4 8 ( 8 , 6 , 1 5 , 8 , 7 , 4 ) , mouse 1 3 ( 2 , 2 , 3 , 2 , 0 , 4 ) , r a t 1 1 ( 2 , 2 , 2 , 1 , 1 , 3 ) , owl 8(2,4,1,0,1), c a t 4(0,1,0,2,1,0), h o r s e 4(1,1,0,0,0,2), snake 3 ( 0 , 1 , 0 , 1 , 1 , 0 ) , b l u e j a y 2 ( 0 , 1 , 0 , 1 , 0 , 0 ) , c a m e l 2 ( 0 , 0 , 0 , 0 , 1 , 1 ) , cow 2. (1,0,0,1,0,0), e e l 2(0,0,0,2,0,0), f i s h 2(1,0,0,0,0,1), f l y 2 ( 0 , 0 , 1 , 0 , 1 , 0 ) , g i r a f f e 2 ( 0 , 0 , 0 , 0 , 0 , 2 ) , monkey _ 2 ( 0 , 0 , 1 , 0 , 1 , 0 ) , r a b b i t 2(0,0,0,0,1,1), spider 2(1,0,0,1,0,0), s q u i r r e l 2(1,1,0,0,0,0), t i g e r 2 ( 0 , 0 , 0 , 1 , 0 , 1 ) , v a m p i r e 2 ( 0 , 1 , 0 , 0 , 1 , 0 ) , b a b y h o r s e 1 (K) , bear 1 ( K ) , bee 1 ( G r 3 ) , b u t t e r f l y 1 ( K ) , b u z z a r d l ( E d ) , canary 1(Ed), cardinal l(Gr3), chicken 1(K), dolphin l(Gr3), eagle l ( G r 7 ) , f l y i n g s q u i r r e l l ( Z o o l ) , f o x 1 ( Z o o l ) , g e r b i l 1 ( G r 7 ) , goose 1 ( Z o o l ) , g u i n e a p i g 1 ( K ) , h e d g e h o g 1 ( G r 3 ) , l i o n l ( G r 7 ) , man 1 ( Z o o l ) , m o l e l ( G r l l ) , pigeon l ( Z o o l ) , porcupine l ( G r 3 ) , r o b i n 1(Ed), salamander l ( G r 3 ) , skunk l ( G r 3 ) , s t o r k 1 ( E d ) , v u l t u r e l ( G r 7 ) , w a l r u s l ( G r 3 ) . bear  l i o n 14(2,2,2,4,2,2), p o l a r bear 9(0,1,0,1,6,1), w o l f 9(3,1,2,2,1,0), d e e r 8 ( 0 , 2 , 3 , 3 , 0 , 0 ) , d o g 6 (.2,1,1,0,0,2) , moose 6 ( 1 , 3 , 1 , 1 , 0 , 0 ) , c a t 5(1,2,1,1,0,0), r a b b i t 5(0,0,2,1,2,0), elephant 4(0,0,1,0,1,2), f o x 4 ( 1 , 1 , 0 , 2 , 0 , 0 ) , g r i z z l y 4 ( 0 , 1 , 2 , 1 , 0 , 0 ) , b e e 3 ( 0 , 1 , 0 , 0 , 1 , 1 ) , cow 3 (0,0,1,0,0,2), t i g e r 3(1,2,0,0,0,0), b u f f a l o 2(0,0,2,0,0,0), b u l l 2 (0,0,0,1,0,1), donkey 2(0,0,0,0,1,1), f i s h 2(0,0,0,0,1,1), goat 2 (0,0,1,0,1,0), g o r i l l a 2(0,0,1,0,1,0), horse 2(0,1,0,0,1,0), k a n g a r o o 2 ( 0 , 1 , 0 , 0 , 0 , 1 , ) , man 2 ( 1 , 0 , 1 , 0 , 0 , 0 ) , mouse 2 ( 1 , 0 , 0 , 0 , 1 , 0 ) , raccoon 2(1,0,0,0,1,0), walrus 2(1,0,0,1,0^0),.zebra 2(0,1,0,0,0,1), a l l i g a t o r l ( G r 7 ) , a n t 1 ( K ) , baby c a l f 1 ( K ) , baby pony 1 ( K ) , beaver 1(0,1,0,0,0,0), bee l ( Z o o l ) , b i s o n 1 ( E d ) , . b l a c k b e a r l ( G r 3 ) , b u t t e r f l y l ( Z o o l ) , cougar 1 ( G r l l ) , cub 1 ( G r l l ) , g i r a f f e l ( G r 7 ) , gnu 1 ( K ) , k o a l a l ( E d ) , l y n x l ( G r l l ) , m a r t e n l ( Z o o l ) , monkey 1 ( K ) , o t t e r 1 ( Z o o l ) , panda l ( Z o o l ) , p a r r o t 1 ( G r 3 ) , pheasant 1 ( G r 3 ) , p i g l ( Z o o l ) , porcupine 1 ( K ) , p r a y i n g mantis 1 ( G r 3 ) , r a t l ( G r 7 ) , salmon 1 ( Z o o l ) , s e a l 1 ( K ) , shark 1 ( K ) , snake 1 ( K ) , s q u i r r e l 1 ( E d ) , w a l l a b y l ( G r 7 ) , whale l ( G r 3 ) , w o l v e r i n e l ( G r 7 ) .  camel  horse 33(4,8,9,8,3), g i r a f f e 11(3,4,1,1,1,1), llama 10(2,4,3,0,1,0), dromedary 9(4,1,2,1,1,0), donkey 8(0,0,2,4,0,2), e l e p h a n t 8 (0,1,2,4,0,1), l i o n 5(0,0,0,2,1,2), dog 3(1,0,0,0,1,1), goat 3 ( 0 , 0 , 1 , 0 , 2 , 0 ) , h i p p o p o t a m u s 3 ( 0 , 1 , 0 , 1 , 0 , 1 ) , man 3 ( 2 , 1 , 0 , 0 , 0 , 0 ) , z e b r a 3 ( 1 , 0 , 1 , 0 , 1 , 0 ) , cow 2 ( 0 , 0 , 0 , 0 , 1 , 1 ) , d e e r 2 ( 2 , 0 , 0 , 0 , 0 , 0 ) , g e r b i l 2(1,0,0,1,0,0), l e o p a r d 2(0,0,0,1,0,1), snake 2(0,1,0,0,1,0), a n t e l o p e l ( G r 3 ) , A r a b i a n horse l ( G r l l ) , baby bear 1 ( K ) , baby goat 1 ( K ) , baby lamb 1 ( K ) , b e a r 1 ( K ) , bee 1 ( K ) , b i r d 1 ( K ) , b o b c a t l ( G r 3 ) , b u f f a l o l ( G r 3 ) , c a l f 1!(K) , c a t 1 ( K ) , c h i m p a n z e e 1 ( K ) , c h i p m u n k 1 (K) , c o b r a l ( G r l l ) , c o l t l ( G r 3 ) , coney l ( Z o o l ) , dung b e e t l e l ( Z o o l ) , e e l l ( G r 3 ) , e l k 1(Ed), f i s h l ( G r 3 ) , f o x 1(K), gazelle 1(Zool), k a n g a r o o 1 ( K ) , lamb 1 ( E d ) , o s t r i c h l ( G r 3 ) , p e n g u i n l ( G r l l ) , p o r c u p i n e l ( G r 3 ) , p r a i r i e d o g l ( G r 7 ) , r a b b i t l ( G r 3 ) , sheep l ( Z o o l ) , skunk 1 ( K ) , t i g e r l ( E d ) , w a l r u s l ( G r 3 ) , w h a l e 1 (Gr3) .  cat  d o g 1 0 2 ( 1 6 , 2 0 , 1 8 , 2 1 , 1 3 , 1 4 ) , mouse 1 4 ( 6 , 2 , 2 , 1 , 2 , 1 ) , r a t 5 ( 0 , 0 , 0 , 0 , 2 , 3 ) k i t t e n 3(0,0,0,1,1,1), l i o n 3(1,1,0,0,1,0), t i g e r 3(0,0,2,0,1,0), b e a r 2 ( 0 , 0 , 0 , 0 , 1 , 1 ) , cow 2 ( 1 , 0 , 0 , 0 , 0 , 1 ) , b a t 1 ( K ) , b e a v e r 1 ( G r 3 ) ,  229 c a l f l ( G r 3 ) , g o a t 1 (K) , g e r b i l l.(Gr3) , h o r s e 1 (Gr7) , l y n x p i g l ( G r 7 ) , Siamese c a t l ( G r l l ) , w o l f 1 ( E d ) .  l(Grll),  cow  h o r s e 54(14,9,12,8,7,4), dog 14(0,5,1,3,2,3), b u l l 1 3 ( 0 , 5 , 2 , 4 , 2 , 0 ) , p i g 13(3,2,6,2,0,0) , c a l f 7(0,0,0,2,5,0), c a t 3(2,0,0,0,0,1), d o n k e y 3 ( 1 , 0 , 0 , 0 , 1 , 1 ) , moose 3 ( 1 , 0 , 0 , 0 , 1 , 1 ) , b e a r 2 ( 0 , 0 , 0 , 1 , 0 , 1 ) , c h i c k e n 2(0,0,0,1,0,1), r a t 2(0,1,0,0,0,1), sheep 2 ( 1 , 0 , 1 , 0 , 0 , 0 ) , b a b y c h i p m u n k 1 ( K ) , b a b y cow 1 (K) , b i r d 1 ( K ) , b u f f a l o I ( G r l l ) , c a m e l l ( G r 7 ) , c a t f i s h 1 ( K ) , c o l t l ( G r 3 ) , coyote l(ZooD, duck l ( G r 7 ) , f i s h 1 ( K ) , g i r a f f e 1 ( K ) , g o a t 1 (K) , g o o s e 1 ( K ) , h i p p o l ( Z o o l ) , J e r s e y 1 ( G r l l ) , l a m b 1 ( E d ) , l e o p a r d l ( G r 3 ) , l i o n 1 ( K ) , monkey l ( G r 3 ) , mouse l ( G r 7 ) , o t t e r 1 ( K ) , o x l ( G r 3 ) , r a b b i t 1 ( G r 3 ) , s e a l 1 ( K ) , steer 1(Ed), zebra 1(K).  deer  moose 3 1 ( 4 , 8 , 9 , 6 , 4 , 0 ) , a n t e l o p e 1 8 ( 4 , 5 , 2 , 5 , 1 , 1 ) , e l k 9 ( 5 , 1 , 1 , 2 , 0 , 0 ) , h o r s e 8(2,0,1,0,3,2), b e a r 7(1,1,0,1,2,2) fawn•5(1,0,1,2,1,0), cow 4 ( 0 , 0 , 0 , 1 , 1 , 2 ) , b u f f a l o 3 ( 1 , 0 , 1 , 0 , 0 , 1 ) , . c o u g a r 3 ( 0 , 2 , 1 , 0 , 0 , 0 ) , dog 3 ( 0 , 0 , 0 , 1 , 1 , 1 ) , e l e p h a n t 3 ( 0 , 0 , 0 , 0 , 1 , 2 ) , g o a t 3 ( 1 , 0 , 1 , 1 , 0 , 0 ) , lamb 3 ( 0 , 1 , 0 , 1 , 0 , 1 ) , sheep 3 ( 0 , 0 , 1 , 1 , 1 , 0 ) , b u l l 2 ( 0 , 0 , 0 , 0 , 2 , 0 ) , camel 2 ( 0 , 0 , 0 , 1 , 1 , 0 ) , doe 2 ( 0 , 0 , 0 , 0 , 2 , 0 ) , g a z e l l e 2 ( 0 , 1 , 1 , 0 , 0 , 0 ) , g i r a f f e 2(0,0,1,1,0,0), hippopotamus 2(0,0,0,0,0,2), l i o n 2(0,0,0,1, 0,1), mountain goat 2(2,0,0,0,0,0), whale 2(1,0,0,0,0,1) , w o l f 2 ( 0 , 1 , 1 , 0 , 0 , 0 ) , b a b y lamb 1 ( K ) , b l u e j a y l ( G r 3 ) , b u c k 1 ( E d ) , c a t 1 ( E d ) , c h e e t a h 1 ( G r l l ) , c o l t l ( G r 3 ) , c o y o t e 1 ( Z o o l ) f o x l ( G r l l ) , f r o g 1(K) , g e r b i l 1 ( K ) , h e n 1 ( G r 3 ) , k a n g a r o o 1 ( K ) , man 1 ( Z o o l ) , monkey 1 ( K ) , o x l ( G r 3 ) , pig:.1 ( G r l l ) , p o n y 1 ( K ) , p o o d l e 1 (K) , r a m l ( G r 7 ) , skunk 1 ( E d ) , s t a g 1 ( E d ) .  dog  c a t 108(17,21,19,23,13,15), w o l f 4(3,0,1,0,0,0), l i o n 3(0,0,0,0,1,2), r a t 3 ( 1 , 0 , 1 , 1 , 0 , 0 ) , cow 2 ( 0 , 0 , 0 , 0 , 1 , 1 ) , h o r s e 2 ( 0 , 0 , 0 , 0 , 1 , 1 ) , h y e n a 2 ( 0 , 0 , 2 , 0 , 0 , 0 ) , mouse 2 ( 0 , 2 , 0 , 0 , 0 , 0 ) , s h e e p 2 ( 0 , 0 , 0 , 0 , 1 , 1 ) , armadillo l ( Z o o l ) , bear 1(K), b i r d l ( G r 3 ) , cheetah 1(Zool), chicken 1(K), daschound 1 ( G r l l ) , elephant 1 ( K ) , goat 1(Ed), g o r i l l a l ( G r 3 ) , man 1 ( Z o o l ) , p a r r o t 1 ( G r 3 ) , p u p p y l ( G r 3 ) , r a b b i t 1 ( K ) , r a t t l e s n a k e l(Gr3), s q u i r r e l l ( G r 3 ) , zebra l(Gr3).  donkey h o r s e 61(9,12,13,10,9,8), mule 27(7,4,4,5,7,0), a s s 6 ( 4 , 0 , 2 , 0 , 0 , 0 ) , sheep 5 ( 0 , 3 , 1 , 0 , 0 , 1 ) , b u r r o 4 ( 1 , 2 , 0 , 1 , 0 , 0 ) , dog 3 ( 1 , 0 , 0 , 1 , 1 , 0 ) , g i r a f f e 3 ( 0 , 0 , 1 , 0 , 1 , 1 ) , z e b r a 3(0,1,1,1,0,0) , b e a r 2 ( 0 , 0 , 0 , 0 , 0 , 2 ) , c a t 2 ( 0 , 0 , 0 , 0 , 2 , 0 ) , cow 2 ( 1 , 0 , 0 , 0 , 1 , 0 ) , t i g e r 2 ( 0 , 0 , 0 , 0 , 0 , 2 ) , b a b y horse 1 ( K ) , b i r d 1 ( K ) , b u f f a l o 1 ( K ) , camel l ( G r 7 ) , cougar 1(Ed), daddy f i s h 1 ( K ) , f i s h 1 ( K ) , g o a t 1 ( G r l l ) , g o r i l l a 1 ( K ) , h a m s t e r 1 ( G r 7 ) , h a r e l ( Z o o l ) , h o r n e t l ( G r l l ) , human 1 ( G r l l ) , h y e n a 1 ( G r 7 ) , man 1 ( E d ) , m i n k 1 (Gr7) , monkey 1 ( K ) , p e n g u i n l ( G r 3 ) , p o n y 1 ( K ) , r a b b i t l ( G r 3 ) , skunk l ( G r 7 ) , s q u i r r e l 1 ( K ) , t u r k e y l ( G r 7 ) , whale 1 (Gr3) . elephant g i r a f f e 3 0 ( 7 , 1 , 8 , 6 , 5 , 3 ) , mouse 1 8 ( 4 , 5 , 1 , 5 , 3 , 0 ) , t i g e r 12 (2,6,0,1,1,0), r h i n o c e r o s 11(2,5,2,0,1,1), hippopotamus 8(1,2,3,2,0), l i o n 5(1,1,3,0,0,0), whale 5(1,0,3,1,0,0), zebra 4(0,0,0,2,0,2), monkey 3 ( 1 , 0 , 1 , 0 , 0 , 1 ) , r a t 3 ( 1 , 0 , 0 , 1 , 0 , 1 ) , b e a r 2 ( 0 , 0 , 1 , 0 , 0 , 1 ) , b i r d 2 ( 1 , 0 , 0 , 0 , 0 , 1 ) , camel. 2 ( 0 , 0 , 0 , 0 , 1 , 1 ) , cow 2 ( 0 , 0 , 0 , 0 , 0 , 2 ) , d e e r 2 ( 0 , 0 , 0 , 0 , 1 , 1 ) , h o r s e 2 ( 0 , 1 , 0 , 0 , 1 , 0 ) , men 2 ( 1 , 1 , 0 , 0 , 0 , 0 ) , p i g 2(0,0,1,1,0,0), seal 2(0,0,0,0,2,0), s q u i r r e l 2(0,0,0,0,2,0), b a b y g i r a f f e 1 ( k ) , baby l e o p a r d 1 ( K ) , b a d g e r 1 ( G r 3 ) , c a l f 1(K) , cat l ( G r 3 ) , crab 1(K), dinosaur l ( G r 7 ) , e e l 1(K), e l k l ( E d ) , f i s h 1 ( K ) , goat 1 ( K ) , g o r i l l a 1 ( K ) , hog 1 ( K ) , hyena l ( G r l l ) ,  230 h y r a x 1 ( Z o o l ) , I n d i a n e l e p h a n t l ( G r 3 ) , l e o p a r d 1 ( K ) , moose l ( G r 7 ) , muskox l ( Z o o l ) , o x l ( G r 3 ) , r o b i n l ( G r 3 ) , s e a l i o n l ( G r 3 ) , sheep 1 (Gr3), t y r r a n o s a u r u s l ( G r 7 ) , walrus 1(Ed). fox  w o l f 48(5,9,11,13,8,2), r a b b i t 12(3,3,3,0,3,0), coyote 9(1,1,0,3,3,1), . dog 8 ( 4 , 0 , 3 , 1 , 0 , 0 ) , h o r s e 5(1,0,0,1,1,2), w e a s i l 5 ( 0 , 0 , 2 , 0 , 3 , 0 ) , bear 3(0,0,0,1,1,1), badger 3(0,1,0,0,2,0), c a t 3(0,1,0,0,1,1), c h i c k e n 3 (.3,0,0,0,0,0),, l e o p a r d 3 ( 0 , 2 , 0 , 0 , 1 , 0 ) , m i n k 3 ( 0 , 2 , 1 , 0 , 0 , 0 ) , chipmunk 2 ( 0 , 0 , 0 , 0 , 0 , 2 ) , d e e r 2 ( 0 , 0 , 2 , 0 , 0 , 0 ) , e l e p h a n t 2 ( 1 , 0 , 0 , 0 , 0 , 1 ) , f i s h 2(0,0,2,0,0,0), g i r a f f e 2(0,0,0,0,0,2), goose 2(2,0,0,0,0,0), l y n x 2 ( 0 , 1 , 0 , 1 , 0 , 0 ) , skunk 2 ( 1 , 0 , 0 , 1 , 0 , 0 ) , t i g e r 2(1,0,-0,1,0,0), b e a g l e l ( G r l l ) , b i r d l ( G r 7 ) , camel 1 ( K ) , c o w l ( K ) , e a g l e l ( G r 3 ) , e l e p h a n t 1 ( K ) , g o a t l ( G r 7 ) , hamster 1 ( K ) , hound 1 ( E d ) , kangaroo 1 ( K ) , l i o n i ( Z o o l ) , man l ( E d ) , m o u n t a i n l i o n 1 ( K ) , mouse 1 ( E d ) , r a t . l ( K ) , s e a l 1 (K) , s h e e p 1 ( K ) , s h r i m p 1 ( K ) , s q u i r r e l 1 (K) , w h a l e 1 ( K ) , w i l d dog 1 ( Z o o l ) , wren 1 ( E d ) .  giraffe  e l e p h a n t 25(2,4,6,6,2,5), zebra 15(2,3,5,3,1,1), l i o n 10(4,3,1,0, 1.1) , h o r s e 9 ( 2 , 0 , 1 , 3 , 1 , 2 ) , c a m e l 8 ( 3 , 0 , 0 , 2 , 2 , 1 ) , k a n g a r o o 7 ( 0 , 0 , 2 , 2 , 1.2) , a n t e l o p e 5 ( 2 , 1 , 1 , 1 , 0 , 0 ) , o s t r i c h 5 ( 1 , 1 , 2 , 0 , 1 , 0 ) , d o g 4 ( 0 , 0 , 1 , 0 , 1,2), hippopotamus 4(0,0,1,1,1,1), l e o p a r d 4(0,2,0,1,0,1,), r h i n o c e r o s 4 ( 2 , 1 , 0 , 0 , 1 , 0 ) , t i g e r 4 ( 0 , 2 , 1 , 1 , 0 , 0 ) , cow 3 ( 1 , 0 , 0 , 1 , 0 , 1 ) , p i g 3 ( 0 , 1 , 0 , 0 , 0 , 2 ) , d o n k e y 2 ( 1 , 1 , 0 , 0 , 0 , 0 ) , monkey 2 ( 0 , 0 , 0 , 0 , 0 , 2 ) , mouse 2 ( G r 3 ) , a n t l ( G r 7 ) , a n t e a t e r l ( G r l l ) , b e a r l ( G r 3 ) , b e a v e r 1 (Gr3), b u l l f r o g l ( G r 3 ) , c a t e r p i l l a r 1(Gr3), chicken 1(K), dinosaur l(Gr3), dolphin l(Gr3), eagle l(Gr3), f i s h 1(K), flamingo l ( Z o o l ) , f l y 1(Ed), gazelle 1(Ed), g e r b i l l ( G r 7 ) , heron l ( Z o o l ) , impala 1 ( G r 3 ) , j a g u a r 1 ( E d ) , l e m u r 1 ( E d ) , mouse l ( G r l l ) , o k a p i l ( Z o o l ) , p o r c u p i n e 1 ( E d ) , r a t l ( G r 3 ) , r o b i n 1 ( K ) , skunk 1 ( G r 3 ) , snake 1 (Gr3), squirrel 1(Grll), weasil,1(Gr3).  horse  cow 4 9 ( 1 0 , 9 , 1 1 , 8 , 9 , 2 ) , d o n k e y . ' 1 7 ( 1 , 4 , 6 , 4 , 0 , 2 ) , d o g 1 0 ( 4 , 1 , 3 , 1 , 0 , 1 ) , z e b r a 9 ( 2 , 1 , 1 , 3 , 1 , 1 ) , c a m e l 4 ( 0 , 2 , 0 , 0 , 1 , 1 ) , man 4 ( 3 , 1 , 0 , 0 , 0 , 0 ) , p i g 4 ( 0 , 0 , 0 , 1 , 1 , 2 ) , pony 4 ( 0 , 1 , 0 , 2 , 0 , 1 ) , l i o n 3 ( 0 , 1 , 0 , 1 , 0 , 1 ) , sheep 3(0,2,0,0,0,1), c a t 2(0,1,1,0,0,0), c o l t 2(0,0,0,1,1,0), elephant 2(0,0,0,0,0,2), kangaroo 2(1,0,0,0,0,1), mule 2(1,0,1,0,0,0), ox 2 (1,1,0,0,0,0), A r a b i a n L ( G r l l ) , badger 1 (Gr3), bear 1 ( K ) , beaver 1 (Gr3), bee 1 ( G r 3 ) , c a l f l ( G r 3 ) , c h i c k e n 1 ( G r 3 ) , chimpanzee 1 ( G r 7 ) , d e e r l ( Z o o l ) , e a g l e 1 ( K ) , g i r a f f e 1 ( G r 3 ) , h i p p o p o t a m u s 1 ( K ) , monkey 1(K), penguin 1 ( G r 3 ) , p i g l e t 1 ( K ) , p o r p o i s e l ( G r 3 ) , p r a i r i e dog 1 ( G r 3 ) , p u p p y l ( G r 3 ) , s h i r e h o r s e T ( G r 3 ) , s i l v e r f i s h 1 ( K ) , s k u n k 1 (K) , s n a i l 1 ( K ) , t i g e r 1K)K, whale l ( G r 7 ) .  kangaroo r a b b i t 21.(0,2,8,7,2,2) , k o a l a 1 4 ( 2 , 2 , 2 , 4 , 4 , 0 ) , w a l l a b y 1 4 ( 7 , 4 , 0 , 1,2,0), r a t 9(4,1,2,1,1,0), horse 7 ( 1 , 1 , 2 , 0 , 0 , 3 ) , . g i r a f f e 6(1,1,1, 0 , 2 ) , mouse 5 ( 0 , 0 , 2 , 2 , 1 , 0 ) , t i g e r 4 ( 1 , 1 , 0 , 0 , 1 , 1 ) , b e a r 3 ( 0 , 1 , 0 , 2 , 0,0), b i r d 3(0,0,1,0,1,1), d e e r 3(2,0,1,0,0,0), dog 3(0,1,0,1,1,0), f o x 3(0,0,0,0,1,2),. opossum 3 ( 3 , 0 , 0 , 0 , 0 , 0 ) , o s t r i c h 3 ( 0 , 2 , 1 , 0 , 0 , 0 ) , dingo 2(1,1,0,0,0,0), f i s h 2(0,0,0,0,0,2), j a c k a l 2(0,0,1,1,0,0), l i o n 2(0,0,0,1,0,1), zebra 2(0,1,0,0,1,0), beaver 1(Gr3), b r o n t o s a u r u s 1 ( G r 3 ) , camel 1 ( K ) , c h e e t a h 1(Gr3) , chipmunk 1 ( K ) , cougar l ( E d ) , dromedary 1 ( Z o o l ) , e a g l e l ( G r 3 ) , e l e p h a n t 1 ( G r 3 ) , f r o g 1 ( G r 7 ) , g o r i l l a 1(Ed), g r e e n f i s h 1 ( K ) , hamster l ( E d ) , hornet l(Gr3) j a c k r a b b i t l ( G r 7 ) , l e o p a r d l ( G r 7 ) , mammal l ( E d ) , monkey l ( G r 3 ) , p a n d a l ( G r l l ) , p o r c u p i n e 1 ( K ) , pup 1 ( K ) , r h i n o c e r o s 1 ( E d ) , s h a r k 1 ( K ) , s h e e p 1 ( K ) , s t o r k l ( G r 3 ) , swan 1 ( K ) , t i t m o u s e 1 ( E d ) , w h a l e l ( G r 3 ) , wombat l ( Z o o l ) , z e b r a l ( G r 3 ) . :  231 l e o p a r d l i o n 33 ( 7 , 4 , 6 , 4 , 5 , 7 ) ,. t i g e r .25 ( 2 , 8 , 4 , 3 , 4 , 4 ) , c h e e t a h 1 7 ( 5 , 3 , 4 , 3 , 1 ) , p a n t h e r 1 3 ( 4 , 4 , 2 , 3 , 0 , 0 ) , c a t 10 (0,.1,3, 3,1,2) , c o u g a r 7,(1,2,4,0,0,0) , j a g u a r 3(0,0,1,1,1,0), coyote 2(0,1,0,0,1,0), dog 2(1,0,0,0,0,1), • e l e p h a n t 2 ( 0 , 0 , 0 , 1 , 1 , 0 ) , h o r s e 2 ( 0 , 0 , 0 , 0 , 1 , 1 ) , monkey 2 ( 2 , 0 , 0 , 0 , 0 , 0 ) , zebra 2(0,0,0,2,0,0), aadvark 1(Gr7), bay l y n x l ( G r 3 ) , bobcat 1 (Gr3) , c a m e l l ( G r 3 ) , c h i p m u n k 1 ( K ) , cow l ( G r l l ) ' , d e e r 1 (Zool), f i s h 1 ( K ) , f o x l ( G r l l ) , g u i n e a p i g l ( G r 3 ) , hawk 1 ( G r 7 ) , h y e n a 1 ( E d ) , l a m b 1(K), l i z a r d l ( G r 7 ) , o s t r i c h 1 ( G r 3 ) , r a c c o o n l ( G r 3 ) , sheep l ( G r 3 ) , snake 1 ( K ) , sparrow l ( Z o o l ) , s q u i r r e l 1 ( K ) , s t a r f i s h 1 ( K ) , t u r t l e 1(K), w e a s i l l ( G r l l ) , whale 1 ( K ) . lion  t i g e r 77(15,21,13,12,11,5), l e o p a r d 11(0,0,0,4,2,5), c a t 7(1,0,4,2, 0 , 0 ) , c o u g a r 4 ( 0 , 0 , 1 , 2 , 1 , 0 ) , eow 4 (0 ,0,1,1,1,1) , b e a r 3 ( 0 , 0 , 1 , 0 , 1 , 1 ) , c h e e t a h 3 ( 2 , 0 , 0 , 0 , 0 , 1 , ) , chipmunk 2 ( 1 , 0 , 0 , 0 , 0 , 1 ) , f i s h 2 ( 0 , 0 , 0 , 0 , 0 , 2 ) , g i r a f f e 2 ( 0 , 0 , 1 , 0 , 0 , 1 ) , hippopotamus 2(0,0,0,0,0,2)., h o r s e 2(0,0,0, 0. 0 . 2 ) , mouse 2 ( 0 , 1 , 0 , 1 , 0 , 0 , ) , z e b r a 2 ( 0 , 1 , 0 , 0 , 1 , 0 ) , a n t e l o p e 1 ( Z o o l ) , b o b a c t llGr3) , b u l l l ( G r 7 ) , c a l f 1 ( K ) , e u b l ( G r 3 ) , d e e r l ( Z o o l ) , d u c k l ( G r 3 ) , e l e p h a n t l ( G r 3 ) , f o x 1 (Ed) ,. g o a t l ( G r 3 ) , g u i n e a p i g 1 ( K ) , hyena 1 ( Z o o l ) , jaguar 1 ( G r l l ) , kangaroo 1 ( Z o o l ) , l y n x 1(Gr7), panther l ( G r l l ) , p i g l ( G r l l ) , walrus l(Gr3), w i l d p i g 1(K), wolf 1 (Gr3).  monkey a p e 2 4 ( 4 , 5 , 4 , 4 , 6 , 1 ) , g o r i l l a 2 2 ( 3 , 7 , 5 , 4 , 2 , 1 ) , c h i m p a n z e e 1 8 ( 2 , 4 , 5 , 6 , 1.0) , man 7 ( 6 , 1 , 0 , 0 , 0 , 0 ) , s q u i r r e l 7 ( 0 , 1 , 2 , 3 , 0 , 1 ) e l e p h a n t 6 ( 0 , 2 , 1 , 1 , 1 , 1 ) , b a b o o n 5 ( 3 , 0 , 0 , 1 , 1 , 0 ) , dog-5(1,1,1,1,0,1)., c a t . 3 ( 0 , 0 , 1 , 0 , 0 , 2 ) , donkey 3(1,0,1,1,0,0) , l i o n 3(0,0,0,0,0,3), b e a r 2(0,0,0,0,0,2), chicken 2(0,0,0,0,0,2), f o x 2(0,0,0,1,1,0), g i r a f f e 2(1,0,0,0,0,1), h o r s e 2 ( 0 , 0 , 0 , 0 , 1 , 1 ) , opossum 2 ( 1 , 0 , 0 , 0 , 1 , 0 ) , p i g 2 ( 0 , 0 , 0 , 0 , 1 , 1 ) , s e a l 2.(0,0,0,0,1,1) , b e e 1 ( K ) , b i r d 1 ( K ) , c h i p m u n k 1 (K) , c u b l ( G r 3 ) , goat 1 ( G r l l ) , hippopotamus .l(Gr3), kangaroo 1(Gr3), k o a l a 1 ( G r 3 ) , l e m u r 1 (Ed) , l e o p a r d l . ( Z o o l ) , l y n x 1 (Gr3) , man 1 (Ed) , m o l e l ( G r l l ) , mouse l ( G r 7 ) , o s t r i c h 1 ( K ) , p e a c o c k l ( G r 3 ) , penguin" l.(KJ >. pony 1 ( K ) , r a b b i t 1 ( E d ) , r h i n o c e r o s l ( G r 3 ) , shrew 1 ( Z o o l ) , s l o t h 1 ( G r l l ) , snake l ( G r l l ) , toucan 1(Ed), whale l ( G r 3 ) , zebra l ( G r 7 ) . mouse  r a t 63(13,12,12,8,12,6), c a t 32(5,6,7,8,2,4), e l e p h a n t 5(0,1,2,2,0, 0 ) , dog 4 ( 0 , 0 , 0 , 1 , 1 , 1 , 1 ) s q u i r r e l 4 ( 2 , 0 , 0 , 1 , 0 , 1 ) , t i g e r 4 ( 0 , 0 , 0 , 3 , 1 ) , b i r d 3(1,0,0,1,1,0), g e r b i l 3(0,0,0,1,2,0), hamster 3(0,0,1,0,2,0), r a b b i t 3(0,2,0,0,0,1), f i s h 2(0,0,0,0,0,2), f o x 2(0,0,0,2,0,0), horse 2 ( 0 , 0 , 0 , 0 , 0 , 2 ) , l i o n 2 ( 0 , 1 , 0 , 0 , 0 , 1 ) , man 2 ( 1 , 1 , 0 , 0 , 0 , 0 ) , monkey 2 (0,0,0,0,0,2), v o l e 2(2,0,0,0,0,0), c a t e r p i l l a r 1(Gr3), i n s e c t 1 ( G r l l ) , lemming l ( G r l l ) , s e a l 1 ( K ) , sheep 1 ( K ) , t e r m i t e 1 ( E d ) .  pig  cow 2 2 ( 7 , 5 , 8 , 0 , 1 , 1 ) , h o r s e 1 3 ( 2 , 4 , 3 , 0 , 1 , 3 ) , g o a t 1 1 ( 2 , 4 , 2 , 2 , 0 , 1 ) , hog 11(0,0,1,7,3,0), c h i c k e n 7 ( 0 , 3 , 2 , 2 , 0 , 0 ) , sheep 7 ( 1 , 1 , 2 , 0 , 2 , 1 ) , b o a r 6 ( 2 , 1 , 0 , 1 , 2 , 0 ) , c a t 4 ( 1 , 0 , 1 , 1 , 1 , 0 ) , sow 4 ( 1 , 2 , 1 , 0 , 0 , 0 ) , d o n k e y 3 ( 0 , 1 , 0 , 2 , 0 , 0 ) , h i p p o p o t a m u s 3 ( 1 , 0 , 2 , 0 , 0 , 0 ) , lamb 3 ( 0 , 1 , 0 , 0 , 1 , 1 ) , man 3 ( 2 , 0 , 1 , 0 , 0 , 0 ) , d o g .2 ( 0 , 0 , 0 , 1 , 1 , 0 ) ' , e l e p h a n t 2 ( 0 , 0 , 0 , 0 , 0 , 2 ) , g i r a f f e 2(0,0,0,0,0,2), guinea p i g 2(1,0,0,0,1,0), l i o n 2(0,0,0,1,0, 1, ) p e c c a r y 2 ( 2 , 0 , 0 , 0 , 0 , 0 ) , s k u n k 2 ( 0 , 0 , 0 , 1 , 1 , 0 ) , t i g e r 2 ( 0 , 0 , 0 , 0 , 1.1) , w a r t h o g 2 ( 0 , 0 , 0 , 0 , 2 , 0 ) , b a b o o n l ( G r 7 ) , b e a r 1 ( Z o o l ) , b e e 1(K) , b i r d l ( G r 7 ) , b u f f a l o 1 ( K ) , bunny 1 ( K ) , c h i c k a d e e 1 ( K ) , duck l ( G r 7 ) , f i s h l ( G r 3 ) , hamster l ( G r 7 ) , hen l ( G r l l ) , h o r n e t 1 ( K ) , mule l ( G r 7 ) , o s t r i c h 1 ( K ) , p a r r o t 1 ( K ) , p i g l e t 1 ( G r 3 ) , pony 1 ( K ) , porcupine l ( G r 7 ) , praying mantis l ( Z o o l ) , r a t 1(Ed), rhinoceros T (Gr3), rodent l ( G r 3 ) , r o o s t e r l ( G r 3 ) , s e a g u l l 1 ( K ) , s e a l 1 ( K ) , s q i r r e l 1(K), turkey l(Gr3), wolf 1(Gr3).  232 porcupine skunk 22(6,4,4,4,3,1), s q u i r r e l 12(0,0,3,3,3,3), r a c c o o n 10(0,1, 4.4.1.0) , b e a v e r 7 ( 1 , 2 , 1 , 0 , 3 , 0 ) , r a b b i t 7 ( 1 , 1 , 2 , 2 , 1 , 0 ) , p i g 6 ( 3 , 0 , 0 , 2,1,0), a r m a d i l l o 5(0,1,1,2,1,0), hedgehog 5(3,1,0,0,1,0), chipmunk 4(0,1,1,1,1,0), elephant 4(0,0,0,1,1,2), w e a s i l 4(1,2,0,0,1,0), a n t e a t e r 3(1,1,1,0,0,0), e a t 3(0,0,2,0,0,1), dog 3(0,2,0,1,0,0), f o x 3(0,1,1,0,0,1) , h o r s e 3(1,0,0,0,0,2), l i o n 3(0,0,0,0,1,2), mouse 3 ( 0 , 0 , 1 , 0 , 1 , 1 ) , o p o s s u m 3 ( 1 , 0 , 1 , 0 , 1 , 0 ) , w o l f •. 3 ( 1 , 0 , 1 , 0 , 1 , 0 ) , deer 2(0,1,0,0,0,1), echidna 2(2,0,0,0,0,0), platypus 2(0,2,0,0,0,0), r a t 2 (0.,0,0,0,0,2) , s h e e p 2 ( 0 , 1 , 0 , 0 , 0 , 1 ) , w o l v e r i n e 2 ( 0 , 0 , 1 , 1 , 0 , 0 ) , b a d g e r l ( E d ) , b a t 1 ( K ) , b e e " l ( G r 3 ) , b l u e f i s h 1 ( K ) , cow 1 ( K ) , c r o c o d i l e 1 ( Z o o l ) , d o n k e y 1 ( K ) , f i s h l ( G r 7 ) , German s h e p a r d 1 ( K ) , g i r a f f e 1 ( K ) , h a m s t e r 1 ( E d ) , k a n g a r o o l ( G r 7 ) , l y n x 1 ( Z o o l ) , mongoose l(Gr3), pigeon 1(K), sealion l ( Z o o l ) , treefrog l ( Z o o l ) , turkey 1 (Gr3), t u r t l e l ( G r 7 ) . rabbit  h a r e 1 4 ( 4 , 4 , 1 , 2 , 3 , 0 ) , f o x 1 2 ( 2 , 2 , 1 , 5 , 0 , 2 ) , mouse 1 1 ( 0 , 4 , 2 , 4 , 1 , 0 ) , dog 1 0 ( 3 , 2 , 1 , 2 , 1 , 1 ) , k a n g a r o o 1 0 ( 0 , 0 , 4 , 3 , 1 , 2 ) , s q u i r r e l 9 ( 0 , 2 , 2 , 1 , 4,0), c a t 7(2,2,1,1,0,1), deer 6(1,1,0,1,1,2), horse 4(0,1,1,0,0,2), w o l f 4 ( 3 , 1 , 0 , 0 , 0 , 0 ) , cow 3 ( 0 , 0 , 0 , 1 , 1 , 1 ) , s h e e p 3 ( 1 , 0 , 1 , 0 , 0 , 1 ) , s k u n k 3(0,0,0,0,1,2), zebra 3(0,0,0,1,0,2), b i r d 2(0,0,1,0,1,0), coyote 2(1,0,0,0,1,0), elephant 2(1,0,0,0,0,1), f i s h 2(0,0,0,0,0,2), g o l d f i s h 2(0,0,0,1,1,0), ground hog 2(0,0,2,0,0,0), p i k e r 2(2,0,0,0,0,0), raccoon 2 (1,0,1,0,0,0), r a t 2(1,1,0,0,0,0), r o o s t e r 2(0,0,0,0,0,2), a n t e l o p e 1 ( G r 3 ) , b e a v e r 1 ( Z o o l ) , bunny l ( G r l l ) , b u t t e r f l y 1 ( K ) , c h e e t a h 1 ( E d ) , c h i n c h i l l a 1 ( G r l l ) , chipmunk l ( G r 7 ) , cougar 1 ( K ) , e a g l e l ( G r l l ) , g e r b i l l ( G r l l ) , g i r a f f e 1 ( G r 3 ) , goose l ( G r l l ) , gopher 1(Ed), grasshopper l ( G r 3 ) , hamster 1 ( G r l T ) , hippopotamus 1 ( G r 3 ) , j a c k r a b b i t 1 ( G r 3 ) , k i t t e n 1 ( E d ) , lamb l ( E d ) , l e o p a r d 1 ( K ) , s e a l l ( G r 3 ) , snowshoe r a b b i t l ( G r 7 ) , t u r k e y l ( G r 3 ) , w i l d b o a r 1 ( G r 3 ) , worm 1 ( Z o o l ) .  seal  w a l r u s 2 8 ( 6 , 4 , 4 , 5 , 8 , 1 ) , o t t e r 23.(3,8,7,2,2,1) , w h a l e 1 2 ( 5 , 1 , 2 , 2 , 0 , 2 ) , f i s h 10(2,0,4,2,1,1), penguin 6(0,0,2,3,1,0), porpoise 6(1,1,2,2,0,0), s e a l i o n 6 (2,2,1,0,1,0), d o l p h i n 5(1,1,0,3,0,0), p o l a r bear 4(1,0,0, 1,2,0), dog 3 ( 0 , 2 , 1 , 0 , 0 , 0 ) , g i r a f f e 3 ( 0 , 0 , 0 , 1 , 0 , 2 ) , l i o n 3 ( 1 , 1 , 0 , 1 , 0 , 0 ) , monkey 3 ( 0 , 0 , 0 , 1 , 0 , 2 ) , e l e p h a n t 2 ( 0 , 1 , 0 , 0 , 0 , 1 ) , h o r s e 2 (0,0,0,0,0,2), skunk 2(0,0,0,1,0,1), b e a r l ( G r 3 ) , b i r d 1 ( K ) , b l u e w h a l e 1 ( K ) , b r o n t o s a u r u s 1 ( G r 3 ) , cow 1 ( K ) , c r o c o d i l e l ( G r 3 ) , d e e r 1(K), e e l 1 ( Z o o l ) , goat 1(K), g o l d f i s h 1 ( K ) , guinea p i g 1 ( K ) , h i p p o p o t a m u s 1 ( G r 3 ) , h y e n a 1 ( G r 3 ) , lamb 1 ( K ) , l e o p a r d l ( G r 3 ) , mink 1 ( E d ) , mouse 1 ( G r 3 ) , m u s k r a t 1 ( Z o o l ) , p i g l ( G r 3 ) , p o n y 1 ( K ) , r a b b i t l ( G r 3 ) , shark l ( G r l l ) , s n a i l 1(Ed), zebra 1 ( K ) .  sheep  g o a t 4 3 ( 1 2 , 9 , 1 0 , 7 , 2 , 3 ) , cow 2 1 ( 5 , 5 , 2 , 4 , 2 , 3 ) , l a m b 1 7 ( 0 , 3 , 1 , 6 , 4 , 3 ) , dog 1 5 ( 1 , 4 , 4 , 1 , 3 , 2 ) , p i g 7(0,2,3,1,1,0) , w o l f 5 ( 1 , 1 , 0 , 1 , 1 , 1 ) , cat 3(0,1,0,1,0,1), deer 3(0,0,1,0,2,0), l i o n 3(0,0,0,1,1,1), bear 2 ( 0 , 0 , 1 , 0 , 1 , 0 ) , h o r s e 2 ( 0 , 0 , 0 , 1 , 0 , 1 ) , mouse 2 ( 0 , 1 , 1 , 0 , 0 , 0 ) , r a b b i t 2 (0,0,0,0,0,2), zebra 2(0,0,0,1,1), chicken 1(Gr3), crab elephant 1 ( K ) , donkey l ( Z o o l ) , f o x l ( G r 7 ) , g e r b i l 1 ( K ) , g i r a f f e 1 ( K ) , g u i n e a p i g 1 ( K ) , h a r e l ( G r 3 ) , k o a l a l ( G r 3 ) , l a m b l ( Z o o l ) , monkey 1 ( K ) , m u l e l ( E d ) , o x l ( G r 3 ) , ram l ( G r l l ) , r o o s t e r 1 ( G r 3 ) , s p i d e r 1 ( G r 3 ) , whale 1 ( K ) .  skunk  p o r c u p i n e 2 0 ( 4 , 3 , 5 , 2 , 2 , 4 ) , r a c c o o n 1 5 ; ( 3 , 4 , 2 , 4 , 2 , 0 ) , s q u i r r e l 10 (0,3,1,3,2,1), r a b b i t 8(1,2,1,1,1,2), c a t 6(2,1,3,0,0,0), dog 6 ( 2 , 3 , 0 , 1 , 0 , 0 ) , c h i p m u n k 5 ( 1 , 0 , 0 , 3 , 1 , 0 ) , b e a r 4 ( 0 , 2 , 0 , 0 , 1 , 1 ) , cow 4 0,0,1,1,1,1), f i s h 4(0,0,0,1,0,3), f o x 4(2,1,1,0,0,0), horse 4(0,0, 1.1.1.1) , mouse 4 ( 2 , 0 , 0 , 1 , 1 , 0 ) , r a t 4 ( 1 , 0 , 1 , 1 , 0 , 1 ) , o p o s s u m 3  233 ( 1 , 0 , 2 , 0 , 0 , 0 ) , , s e a l 3 (0,0,0,,0, 2,1) , b a d g e r 2 ( 1 , 0 , 1 , 0 , 0 , 0 ) , b e a v e r 2 ( 1 , 1 , 0 , 0 , 0 , 0 ) , c h i c k e n 2 . ( 0 , 0 , 0 , 1 , 1 ) , g i r a f f e 2 (0,0>0,0,0,2) , h e d g e h o g 2 ( 0 , 0 , 0 , 0 , 2 , 0 ) , l i o n . 2 ( 0 , 1 , 1 , 0 , 0 , 0 ) , man 2 (1,,1,0,0,0,0) , m i n k 2 ( 0 , 1 , 1 , 0 , 0 , 0 ) , monkey 2 ( 0 , 0 , 0 , 0 , 0 , 2 ) , w e a s i l 2 ( 1 , 1 , 0 , 0 , 0 , 0 ) , z e b r a 2 ( 0 , 0 , 0 , 0 , 1 , 1 ) , a p e 1 (K) , b a t l.(Gr7) , b i r d l ( G r l l ) , c h i n c h i l l a 1 (Gr7), d o l p h i n 1 ( G r 3 ) , dragon 1 ( K ) , e a g l e l ( G r 3 ) , groundhog l(Gr3), l e o p a r d 1 ( K ) , moose l ( G r 3 ) , o w l 1 ( G r l l ) , p i g l ( G r 7 ) , r a t t l e s n a k e 1 (Gr3), rhinoceros 1(Gr7), t u r t l e 1(Zool) tyrranosaurus l ( G r 3 ) , w o l f l ( G r 7 ) , woodchuck l ( G r l l ) . ;  squirrel c h i p m u n k 5 3 ( 8 , 7 , 1 2 , 1 0 , 1 2 , 4 ) , mouse 1 1 ( 1 , 3 , 1 , 3 , 2 , 1 ) , r a b b i t 7 ( 3 , 2 , 2 , 0 , 0 , 0 ) , r a t 7 ( 0 , 3 , 2 , 0 , 0 , 1 ) , d o g 6 ( 0 , 1 , 0 , 0 , 0 , 5 ) , monkey 6 (1,0,0,4,0,0), skunk 6(0,0,1,2,1,2), b i r d 5(2,1,1,0,1,0), gopher 4 (2,1,1,0,0,0), raccoon 4(0,1,0,1,1,1), g e r b i l 3(0,0,1,2,0,0), g i r a f f e 3(0,0,0,0,0,3), b e a r 2(0,2,0,0,0,0), camel 2(0,0,0,1,0,1), c a t 2(1,1,0,0,0,0), elephant 2(1,0,0,0,0,1), f o x 2(0,0,0,0,1,1), b a t 1 ( G r 3 ) , b l u e j a y l ( Z o o l ) , b o a r 1 ( K ) , c h i n c h i l l a 1 ( G r l l ) , goose 1 ( G r 3 ) , groundhog l ( G r 7 ) , hippopotamus 1 ( G r 3 ) , h o r s e 1 ( E d ) , k i t t e n 1 ( G r 3 ) , l e p r e c h a u n 1 ( K ) , l i o n l ( G r l l ) , man l ( Z o o l ) , m a r t e n 1 ( Z o o l ) , o p o s s u m l(Zool), rooster 1(k), Stellar's jay l(Zool), tiger 1(K), t u r t l e 1 (Gr3), zebra 1 ( K ) . ;  zebra  horse 52(7,11,13,12,6,3), g i r a f f e 18(3,2,2,3,5,3), l i o n 8(2,1,1,0, 2,2), l e o p a r d 7(1,0,1,3,0,2), donkey 6(1,0,2,1,0,2)., e l e p h a n t 6 ( 1 , 1 , 1 , 1 , 1 , 1 ) , t i g e r 6 ( 0 , 2 , 0 , 2 , 1 , 1 ) , cow 4 ( 1 , 1 , 0 , 0 , 1 , 1 ) , c a t 3 ( 0 , 0 , 0 , 0 , 1 , 2 ) , g a z e l l e 3 ( 1 , 0 , 1 , 0 , 1 , 0 ) , mouse 3 ( 0 , 0 , 0 , 0 , 1 , 2 ) , c h e e t a h 2(0,1,0,0,1,0), c o y o t e 2 ( 0 , 0 , 1 , 1 , 0 , 0 ) , dog 2 ( 2 , 0 , 0 , 0 , 0 , 0 ) , r h i n o c e r o s 2(1,1,0,0,0,0), antelope l ( Z o o l ) , bear 1 ( K ) , cougar 1(Ed), deer 1 . (Zool),,.. d u c k 1 ( K ) , f i s h 1 ( K ) , g n u 1 ( Z o o l ) , h i p p o p o t a m u s l.(Ed) , monkey l(Gr3), rabbit l(Grll) r a c c o o n 1 (Gr3) , r e d f o x l ( G r 7 ) , r o b i n 1 (Gr3) , r o o s t e r 1 (K) , s e a g u l l 1 ( G r l l ) , s e i a l i o n 1 (Ed) , s h a r k 1 (Ed) , s k u n k 1 (Gr3), whale 1 ( K ) , w i l d e b e e s t e l ( Z o o l ) .  234  Appendix  BAT BEAR CAML  D-l.  I n t e r s e c t i o n C o e f f i c i e n t M a t r i x from t h e A s s o c i a t i o n s Task f o r Zoology D o c t o r a l C a n d i d a t e s  BEAR CAML CAT  COW  .042 .021 .0  .021 .021 .042 .0  DEER DOG DONK ELEP FOX  DONK ELEP FOX  .021 .021 .021 .063 .125 .0 .0  CAT COW  DEER DOG  .0  .063 .042 .0  .063 .0 ~  .688 .0  .042 .0  G l R F HORS KANG  .063 .042 .0  .063 .042  .042 .104 .021 .021 .021 .021 .0  .125 .125 .021  .0  .0  .0  .0  .0  .042 .021 .021 .042 .500 .0  .021 .0  .042 .021 .063 .083 .042  .021 .042 .146 .0 .0  .0  .104 .021  .021 .229 .0  .042 .229 .021 .042 .0  .021 .021  GIRF  .042 .021  HORS  .042  235  A p p e n d i x D-1, c o n t i n u e d  LEOP LION MONK MOUS PIG  BAT  .0  BEAR  .0  SEAL SHEP SKUN  SQUR ZEBR  .021.0  .021 .021 .0  .042 .063 .021 .042  .063.021  .083 .063 .021 .042 .042 .0  CAML  .0  .0  .042.0  .0  CAT  .0  .042 .0  .229 .021.0  .042 .0  .021 .042 .021 .0  COW  .0  .0  .0  .021 .0  .125 .0  DEER  .021 .042 .021 .021  .042.0  .042 .021 .021 .021 .021  .042  DOG  .042 .021 .042 .042  .021.021  .146 .0  .042 .083 .021  .042  DONK  .0  .021 .0  .021 .0  ELEP  .042 .063 .042 .146  FOX  .021 .042 .0  GIRF HORS  .0  .021 .125  PORC RABT  .042 .021  .0  .229 .0  .021 .0  .0  .0  .042.0  .0  .042 .083 .0  .021 .021 .021  .042 .021 .C  .0  .0  .042  .021  .021  .042 .063  .042  .0  .0  .021  .188 .0  .021 .063 .0  .0  .0  .104 .021 .0  .0  .0  .0  .0  .0  .0  .146  .0  .0  .083.0  .0  .0  .0  .021 .021  .063 .021  .0  .188  236  A p p e n d i x D-1, c o n t i n u e d  LEOP LION MONK MOUS PIG  PORC RABT SEAL SHEP SKUN SQUR ZEBR  KANG  .021 .042 .021 .083 .0  .021 .021 .0  .0  .042 .021 .0  LEOP  .229 .063 .0  .0  .0  .0  .0  .0  .0  LION  .0  .0  .0  .0  .021 .021 .021 .021  .0  MONK  .021 .042 .021 .0  MOUS  .021 .0  PIG PORC RABT SEAL SHEP  .0  .021 .063  .0  .0  .042 .063 .0  .021 .0  .0  .083 .104 .0  .063 .0  .0  .104 .021 .021 .0  .063 .021 .021 .271 .021 .0 .0  .042 .083 .063 .0 .0  .0  .0  .0  .0  .0  .0  SKUN  .063 .0  SQUR  .0  237  Appendix D-2.  I n t e r s e c t i o n C o e f f i c i e n t M a t r i x from t h e A s s o c i a t i o n s Task f o r E d u c a t i o n Undergraduates  BEAR CAML CAT  BAT  .0  COW  .021 .021 .021 .0  BEAR  .021 .063 .0  CAML  .0  CAT COW DEER DOG  DEER DOG  .0  GIRF  HORS KANG  .0  .0  .021 .021  .146 .021 .0  .021 .042 .0 .0  DONK ELEP FOX  .0  .0  .063 .042 .042 .021 .083  .021 .104 .021 .104 .229 .021  .042 .854 .0  .0  .042 .0  .021 .0  .021 .104 .0  .0  .0  .375 .021  .0  .0  .021 .042 .021 .042 .0 .0  .0  .0  .0  .021  .021 .021  DONK  .021 .021 .021 .354 .021  ELEP  .021 .167 .021 .042  FOX GIRF HORS  .0  .021 .0 .0  .083 .021  238  A p p e n d i x D-2,  continued  LEOP LION MONK MOUS PIG  PORC RABT SEAL SHEP SKUN SQUR ZEBR  BAT  .0  .0  .0  .083  .021  .0  .021  .0  .0  .0.  .083  .0  BEAR  .042  .083  .0  .0  .0  .021  .021  .021  .021  .063  .063  .063  CAML  .021  .021  .021  .021  .021  .0  .021  .0  .021  .021  .0  .042  CAT  .021  .021  .0  .167  .0  .0  .063  .0  .021  .021  .021  .0  COW  .0  .0  .0  .021  .188  .0  .042  .0  .125  .0  .021  .021  DEER  .042  .0  .0  .0  .021  .021  .063  .0  .042  .021  .0  .021  DOG  .0  .0  .021  .042  .021  .042  .042  .042  .104  .063  .021  .0  DONK  .021  .0  .021  .021  .021  .0  .0  .0  .083  .021  .0  .042  ELEP  .125  .146  .063  .146  .0  .0  .0  .042  .0  .021  .0  .104  FOX  .063  .021  .021  .042  .0  .042  .125  .021  .021  .063  .0  .0  GIRF  .083  .104  .021  .0  .021  .021  .0  .0  .0  .C  .0  .167  HORS  .0  .021  .021  .021  .083  .021  .021  .0  .042  .021  .021  .250  239  A p p e n d i x D-2, c o n t i n u e d  LEOP LION MONK MOUS PIG  KANG  PORC RABT SEAL SHEP SKUN SQUR ZEBR  .042 .021 .021 .021 .021 .021 .063 .0  LEOP  .250 .0  LION  .0  .0  .021  .083  .0  .0  .0  .083  .021 .0  .083  .0  .0  .021 .0  .042 .0  .0  .0  .021 .0  .0  .021 .0  .0  .021 .0  .146 .0  .021 .021 .146 .0  .0  .042 .0  .125 .021 .021 .0  PORC  .021 .0  .021 .208 .042 .0  RABT  .0  MONK MOUS PIG  SEAL SHEP  .0  .0  .021 .0  .021 .021 .0  .042 .042 .125 .0  .021 .0 .0  .0  .021  .021 .0  SKUN  .083 .0  SQUR  .0  240  A p p e n d i x D-3.  BAT BEAR CAML CAT COW DEER DOG DONK ELEP FOX  Intersection Coefficient Matrix Task f o r Grade 11 S u b j e c t s  BEAR CAML CAT  COW  DEER DOG  .0  .0  .0  from t h e A s s o c i a t i o n s  GIRF  HORS KANG  .0  .0  .063  .021 .042 .042 .167 .042 .021 .042 .042 .0  .0  .0  .0  .0  .0  DONK ELEP FOX  .021 .0  .0  .021 .0  .0  .0  .0  .0  .063 .042 .0  .021 .208 .0  .771 .0  .0  .0  .021 .021 .021  .021 .021 .0  .0  .0  .0  .021 .021 .0 .0  .479 .0  .083 .042 .021 .021  .021 .083 .021 .063 .021 .0  .0  .021 .417 .0  .0  .313 .0  .0  .0  .0  .0  GIRF  .021 .083  HORS  .042  241  A p p e n d i x D-3, c o n t i n u e d  LEOP LION MONK MOUS PIG  PORC RABT  BAT  .0  .0  BEAR  .021 .083 .042 .0  CAML  .0  CAT  .104 .125 .021 .188  COW  .021 .021 .0  DEER  .042 .021 .021 .0  DOG  .0  .0  .021 .021 .0  DONK  .0  .0  .042 .0  ELEP  .0  .063 .042 .063  FOX  .042 .0  GIRF  .021 .063 .0  .021  HORS  .0  .0  .0  .0  .0  .042 .104 .0  .021 .0  .0  .0  .0  SEAL SHEP SKUN  SQUR ZEBR  .021 .0  .0  .042 .021  .042 .0  .042 .G  .0  .0  .021 .0  .0  .021 .021 .0  .0  .021  .021.042  .063 .063 .0  .021 .0  .0  .063 .0  .0  .292 .0  .0  .0  .063 .021 .0  .0  .042 .021  .0  .0  .063 .0  .021  .021  .021 .0  .0  .063.0 .0  .042  .021.021  .063 .0  .0  .021 .021 .083 .021 .021 .0 .0  .0  .042 .0  .0  .042 .0  .0  .0  .063  .0  .021  .083 .0  .021 .042 .0  .0  .0  .0  .0  .021 .0  .0  .021 .0  .021  .0 .146 .292  242  A p p e n d i x D-3, c o n t i n u e d  KANG  LEOP LION MONK MOUS PIG  PORC RABT SEAL  SHEP SKUN SQUR ZEBR  .0  .083 .0  .0  .271 .0  .0  .042 .063 .0  .0  .0  LEOP  .271 .0  .0  .0  .0  .0  .0  .0  .0'  LION  .0  .0  .021 .0  .0  .0  .0  .021 .021  .0  .021 .0  .0  .0  .021 .0  MONK MOUS PIG  .0  .021  .063 .0  .021 .021 .063 .0  .0  .146 .0  .0  .0  .063 .0  RABT  .0  SHEP  .021  .021 .063 .0  PORC  SEAL  .0  .0  .0  .250 .083 .0  .021 .063 .146 .0  .0  .021  .0  .0  .0  .0  .0  .0  SKUN  .083 .0  SQUR  .0  243  A p p e n d i x D-4.  Intersection Coefficient Matrix Task f o r Grade 7 S u b j e c t s  BEAR CAML CAT  BAT BEAR CAML CAT COW DEER DOG DONK ELEP FOX  COW  DEER DOG  .021 .021 .042 .021 .0 .0  DONK ELEP FOX  .021 .0  .021 .042 .104 .021 .0 .0  .021 .021 .0 .0  .0  from t h e A s s o c i a t i o n s  GIRF HORS KANG  .042 .042 .042 .0  .021  .042 .104 .021 .021 .083  .104 .104 .0  .104 .167 .0  .917 .0  .0  .0  .0  .021 .063 .0  .0  .0  .021 .333 .0  .021 .0  .021 .0  .021 .021 .021 .0  .021 .021 .021 .0 .0  .0  .0  .0  .021 .042 .292 .0  .021 .313 .042 .021 .021 .021 .0  GIRF  .063 .063  HORS  .021  244  A p p e n d i x D-4, c o n t i n u e d  LEOP LION MONK MOUS PIG  PORC RABT SEAL SHEP SKUN  BAT  .021 .042 .0  .104 .021 .0  BEAR  .0  .104 .0  .021 .0  .021 .021 .042 .021 .042 .0  CAML  .021 .042 .0  .021 .0  .0  CAT  .063 .042 .0  .188 .021 .0  .021 .0  .021 .0  .0  .0  COW  .0  .042 .0  .021 .083 .0  .021 .0  .083 .021 .0  .0  DEER  .0  .021 .0  .0  .021 .0  .063 .0  .0  .0  DOG  .0  .0  .021 .042 .021 .021 .042 .0  .021 .042 .0  .0  DONK  .0  .0  .021 .0  .0  .021 .0  .042  ELEP  .063 .042 .021 .167 .021 .021 .0  .021 .0  .021 .0  .104  FOX  .021 .042 .021 .063 .042 .0  .104 .0  .063 .042 .0  .042  GIRF  .042 .021 .0  .0  .0  .021 .0  HORS  .0  .021 .0  .0  .021 .021 .021 .0  .021 .0  .083 .0  .021 .0  .021 .021 .0  .0  .0  .0  .0  .0  .0  .0  SQUR ZEBR  .0  .042 .021  .0  .0  .021 .0  .042 .0  .021  .146  .313  245  A p p e n d i x D-4, c o n t i n u e d  LEOP LION MONK MOUS PIG  PORC RABT SEAL SHEP SKUN SQUR ZEBR  KANG  .021 .021 .0  .063 .0  .021 .208 .0  .0  .021 .0  .0  LEOP  .229 .0  .0  .0  .0  .0  .0  .0  .0  .146  LION  .0  .021 .021 .0  .0  .021 .021 .0  .0  .042  MONK  .021 .021 .0  .0  .021 .0  .146  MOUS  .021 .0  PIG  .0  .083 .0  .063 .0  .0  .0  .063 .021 .0  RABT  .0  SHEP  .021  .042 .104 .0  .063 .042 .0  PORC  SEAL  .0  .0  .250 .104 .0  .0  .042 .042  .021  .0  .042 .0  .0  .021 .0  .0  SKUN  .188 .0  SQUR  .0  246  A p p e n d i x D-5.  Intersection Coefficient Matrix Task f o r Grade 3 S u b j e c t s  BEAR CAML CAT  BAT BEAR CAML CAT COW DEER 00G DONK ELEP FOX  COW  .021 .063 .042 .0  DEER DOG  .0  from t h e A s s o c i a t i o n s  DONK ELEP FOX  .021 .0  .0  .0  GIRF  HORS KANG  .063 .021 .042  .063 .021 .021 .042 .042 .042 .021 .042 .021 .021 .021 .0  .042 .063 .021 .021 .021 .0 .021 .0  .104 .104 .021  .542 .042 .042 .021 .042 .042 .063  .125 .063 .042 .021 .063 .021 .375 .0 .021 .0  .063 .0  .021 .083 .0  .021 .0  .0  .021 .042 .042  .0  .0  .021 .20 8 .021  .021 .188 .021 .042 .042 .042 .042  GIRF  .063 .083  HORS  .021  247  A p p e n d i x D-5, c o n t i n u e d  LEOP LION MONK MOUS PIG  PORC RABT  BAT  .0  .063 .042 .021 .0  BEAR  .021 .104 .042 .021 .042 .063 .042 .083 .063 .042 .021  CAML  .063 .083 .021 .0 . .021 .021 .042 .042 .042 .0  .0  CAT  .042 .042 .0  .021  COW  .021 .021 .021 .0  .021 .0  .042 .0  .063 .042 .0  DEER  .0  .0  .0  .0  .042 .0  .083 .021 .0  DOG  .0  .021 .021 .042 .021 .0  .042 .0  .083 .021 .042  DONK  .0  .0  .021 .021 .0  ELEP  .063 .063 .042 .104 .042 .021 .0  FOX  .021 .021 .021 .0  GIRF  .021 .021 .042 .042 .021 .042 .042 .021 .0  HORS  .021 .0  .021 .021 .042 .0  .0  .167 .042 .021 .0  .0  .021 .0  .021 .0  .0  .0  SEAL SHEP SKUN SQUR ZEBR  .0  .0  .0  .063 .042 .0  .021 .042 .063 .0  .042 .042 .0  .0  .063 .042 .0 .021  .021 .042 .021 .0 .021  .0  .0  .042  .063  .021 .021 .021 .0 .083 .021  .021 .021 .042 .0  .125  .146  248  A p p e n d i x D-5, c o n t i n u e d  LEOP LION  KANG LEOP LION MONK MOUS PIG PORC RABT SEAL SHEP SKUN SQUR  MONK MOUS PIG  PORC RABT SEAL SHEP SKUN SQUR ZEBR  .042 .021 .083 .083 .021 .021 .083 .021 .021 .021 .021 .250 .0  .063 .042 .021 .021 .021 .021 .021 .021  .021 .063 .042 .042 .0 .0  .021 .063 .0  .042 .021 .021 .042 .021 .0 .021 .021 .042 .021 .0  .0  .063 .083  .021  .021  .021 .063  .042  .063 .021 .042 .125 .021 .0 .042 .0  .063  .021 .167 .104  .021 .021  .063 .021 .042 .125 .0 .0  .042 .021 .0 .021 .0  .021  .104 .063 .042  249  A p p e n d i x D-6.  I n t e r s e c t i o n C o e f f i c i e n t M a t r i x from t h e A s s o c i a t i o n s Task f o r K i n d e r g a r t e n S u b j e c t s  BEAR CAML CAT  BAT  COW  DEER DOG  .042 .042 .083 .083 .0  DONK ELEP FOX  GIRF  HORS KANG  .021 .083 .063 .042 .083 .063 .063  BEAR  .042 .021 .063 .042 .063 .083 .083 .042 .021 .021 .063  CAML  .021 .042 .042 .021 .063 .083 .063 .063 .063 .083  CAT COW DEER DOG DONK ELEP FOX  .083 .0  .604 .0  .042 .042 .0  .0  .042  .042 .104 .063 .125 .063 .083 .125 .042 .021 .042 .063 .021 .042 .083 .021 .0  .021 .0  .063 .042 .0  .063 .021 .042 .250 .063 .063 .188 .042 .042. .063 .042 .125  GIRF  .063 .104  HORS  .104  250  A p p e n d i x D-6, c o n t i n u e d  LEOP LION MONK MOUS PIG  PORC RABT  SEAL SHEP SKUN  SQUR ZEBR  BAT  .042 .063 .042 .188 .021 .063 .063 .063 .021 .063 .042  BEAR  .042 .083 .083 .021 .021 .021 .021 .042 .0  .042 .0  CAML  .042 .104 .063 .0  .021 .042 .0  CAT  .042 .0  .042 .167 .042 .063 .021 .021 .042 .021 .021  .042  COW  .021 .063 .042 .042 .042 .042 .042 .125 .083 .083 .021  .063  DEER  .042 .063 .042 .0  DOG  .021 .042 .042 .042 .0  DONK  .063 .063 .083 .042 .083 .021 .021 .063 .021 .021 .042 .083  ELEP  .042 .042 .083 .042 .063 .063 .042 .083 .021 .042 .042  .083  FOX  .063 .063 .021 .063 .0  .042 .083 .063 .042 .063 .104  .042  GIRF  .042 .083 .083 .021 .083 .021 .021 .063 .021 .083 .063  .104  HORS  .042 .104 .063 .063 .146 .042 .042 .063 .042 .042 .021  .104  .021 .0  .0  .021 .0  .063 .021 .042 .083 .063 .0 .0  .042 .0  .0  .042 .063  .021  .063 .021 .104 .0  251  A p p e n d i x D-6, c o n t i n u e d  LEOP LION MONK MOUS PIG  KANG LEOP LION MONK MOUS PIG PORC RABT  PORC RABT  SEAL SHEP SKUN SQUR ZEBR  .063 .104 .042 .063 .021 .021 .125 .042 .021 .042 .042 .396 .021 .042 .042 .0  .042  .G42 .063 .042 .042 .063 .104  .083 .083 .042 .042 .042 .042 .042 .042 .042 .042 .083 .0  .0  .083  .104 .021 .083 .042 .0  .021 .063 .063 .042 .021 .063 .083 .0  .0  .083 .063 .0  .0  .0  .083  .042  .021  .021 .125 .083 .0  .021 .063 .125 .021  .083  SEAL  .083 .063 .0  .063  SHEP  .0  .042  SKUN SQUR  .0 .083  .042 .042  252  Appendix  BEAR CAT COW DOG GIRF RABT  E-l.  D i s s i m i l a r i t y M a t r i x from t h e P a i r - R a t i n g Task f o r Zoology Doctoral Candidates  CAT  COW  DOG  GIRF RABT SHEP SEAL PIG  HORS ELEP ZEBR  4.88  6.63  4.58  6.75  6.80  6.38  6.63  6.25  6.67  6.92  6.88  6.83  3.29  7.25  6.29  6.67  7.17  6.54  6.75  7.71  7.21  6.38  4.38  5.67  2.63  7.46  4.17  3.13  4.71  3.83  7.21  6.38  5.92  6.25  6,17  6.38  7.00  6.58  6.50  4.92  8.29  5.38  3.67  5.33  3.96  5.17  8.08  5.46  6.13  6.50  6.46  7.83  4.25  4.08  5.71  3.88  7.83  7.83  8.13  7.92  4.88  5.46  5.67  4.88  1.54  SHEP SEAL PIG HORS ELEP  4.96  )  253  Appendix E-2.  BEAR CAT COW DOG GIRF RABT SHEP SEAL PIG HORS ELEP  D i s s i m i l a r i t y M a t r i x from the P a i r - R a t i n g Task f o r E d u c a t i o n Undergraduates  CAT  COW  DOG  GIRF RABT SHEP SEAL PIG  HORS ELEP ZEBR  6.96  6.75  5.96  7.71  7.75  6.88  8.04  7.46  6.17  7.54  6.92  7.04  3.25  8.71  4.96  6.50  7.50  6.38  6.88  8.46  7.46  6.29  7.38  7.67  5.21  8.04  5.00  4.21  6.58  5.79  7.96  6.17  5.21  7.71  5.46  6.13  8.42  6.92  8.71  7.96  8.96  8.46  5.29  6.13  5.29  6.04  7.63  6.46  8.25  8.75  8.33  8.13  5.29  6.29  8.13  6.67  8.38  8.79  8.79  8.75  6.54  7.50  7.58  6.38  2.2 5 6.63  254  Appendix E-3.  BEAR CAT COW DOG GIRF RABT SHEP SEAL PIG  HORS  ELEP  Dissimilarity Matrix Grade 11 S u b j e c t s  from t h e P a i r - R a t i n g Task f o r  CAT  COW  DOG  GIRF RABT SHEP  SEAL PIG  HORS ELEP ZEBR  8.38  7.00  6.42  7.58  8.21  7.46  8.17  7.50  7.04  7.17  6.83  8.08  3.42  8.79  4.17  6.29  8.29  6.54  8.13  9.42  8.13  6.50  6.38  8.29  4.75  8.88  5.58  4.00  6.79  5.38  7.83  6.46  5.54  8.00  5.63  6.67  9.04  7.38  8.71  7.92  9.25  8.38  4.67  6.83  5.33  6.75  8.21  6.33  8.08  9.42  8.50  8.79  5.25  5.04  8.58  5.75  8.00  8.71  9.3 8  8.71  6.38  7.38  7.96  6.21  1.50  5.79  255  A p p e n d i x E-4. '  BEAR CAT COW DOG GIRF RABT SHEP SEAL  PIG HORS ELEP  Dissimilarity Matrix Grade 7 S u b j e c t s  from t h e P a i r - R a t i n g Task f o r  CAT  COW  DOG  GIRF RABT SHEP SEAL PIG  HORS ELEP ZEBR  8.04  6.67  7.13  7.75  8.25  7.67  8.33  7.96  6.08  7.21  7.67  7.54  3.21  9.08  4.29  6.08  8.63  6.42  7.88  9.67  8.29  6.79  7.71  8.17  5.21  8.54  5.58  3.83 6 . 4 6  6.25  9.17  5.67  5.58  7.92  5.75  5.54  9.33  7.79  9.21  8.33  9.29  9.17  6.00  5.29  5.38  6.33  7.71  6.88  7.71  9.33  9.08  7.75  6.13  5.88  8.42  6.50  7.42  8.79  8.88  8.67  6.63  7.50  8.00  7.29  2.25 6.92  256  Appendix F - l .  S i m i l a r i t y M a t r i x from t h e S o r t i n g Task f o r Zoology Doctoral Candidates  BEAR CAML CAT  BAT BEAR CAML CAT COW DEER DOG DONK ELEP FOX GIRF HORS  2.  COW  DEER DOG  DONK ELEP FOX  GIRF  HORS KANG  0.  3.  0.  2.  3.  0.  0.  5.  C.  0.  0.  0.  1.  0.  3.  5.  0.  1.  9.  0.  0.  0.  0.  11.  10.  0.  8.  10.  0.  14.  8.  6.  1.  0.  11.  1.  0.  7.  0.  1.  1.  14.  1.  13.  6.  0.  8.  13.  4.  1.  12.  6.  4.  10.  12.  4.  2.  0.  18.  1.  2.  0.  6.  1.  10.  24.  4.  0.  12.  6.  5.  1.  1.  0.  10.  7. 4.  257  A p p e n d i x F-1, c o n t i n u e d  LEOP LION  MONK MOUS PIG  PORC RABT  SEAL SHEP SKUN SQUR ZEBR  BAT  3.  3.  1.  3.  0.  2.  1.  4.  0.  2.  3.  0.  BEAR  1.  1.  4.  3.  4.  7.  3.  1.  C.  8.  4.  0.  CAML  2.  2.  2.  2.  5.  2.  4.  1.  9.  1.  3.  10.  CAT  18.  18.  0.  1.  1.  1.  1.  5.  1.  3.  0.  0.  COW  0.  0.  0.  2.  12.  2.  5.  0.  21.  1.  3.  9.  DEER  0.  0.  0.  3.  5.  5.  6.  0.  15.  4.  6.  12.  DOG  6.  6.  0.  1.  1.  0.  0.  5.  1.  2.  0.  1.  DONK  0.  0.  0.  2.  8.  2.  4.  0.  13.  1.  3. 2 0 .  ELEP  3.  3.  3.  2.  4.  2.  5.  1.  6.  1.  3.  9.  FOX  7.  7.  0.  1.  0.  3.  2.  5.  C.  5.  3.  1.  GIRF  4.  3.  2.  2.  4.  2.  4.  1.  8.  1.  3. 13.  HORS  0.  0.  0.  2.  8.  2.  4.  0.  13.  1.  3. 2 0 .  258  Appendix F-1, continued  LEOP LION MONK MOUS PIG  KANG LEOP LION MONK MOUS PIG PORC RABT SEAL SHEP SKUN SQUR  4.  PORC RABT SEAL SHEP SKUN SQUR ZEBR  3.  2.  2.  2.  2.  4.  1.  4.  1.  3.  6.  23.  2.  0.  0.  0.  0.  6.  0.  2.  0.  3.  2.  0.  0.  0.  0.  6.  0.  2.  0.  4.  1..  3.  1.  0.  2.  C.  2.  0.  2.  4.  9.  13.  0.  2.  7.  19.  2.  4.  4.  0.  13.  4.  3.  4.  10.  0.  2.  15.  12.  2.  0.  5.  7.  15.  3.  0.  2.  0.  1.  1.  3.  9.  9.  1. 3.  259  Appendix F-2.  S i m i l a r i t y M a t r i x from t h e S o r t i n g Task f o r Education Undergraduates  BEAR CAML CAT  BAT BEAR CAML CAT COW DEER DOG DONK ELEP FOX  GIRF HORS  2.  COW  DEER DOG  DONK ELEP FOX  GIRF HORS KANG  0.  0.  0.  2.  0.  0.  0.  3.  1.  0.  1.  2.  2.  1.  12.  2.  0.  3.  9.  2.  0.  3.  1.  4.  4.  1.  9.  7.  0.  8.  8.  3.  5.  0.  16.  3.  1.  4.  0.  3.  0.  6.  5.  14.  2.  0.  1.  15.  1.  0.  5.  3.  7.  5.  6.  4.  3.  1.  8.  C.  4.  0.  2.  0.  3.  21.  1.  G.  14.  2.  5.  1.  0.  1.  4.  4. 1.  260  Appendix F-2, c o n t i n u e d  LEOP LION MONK MOUS PIG  PORC RABT SEAL SHEP SKUN SQUR ZEBR  BAT  0.  0.  3.  8.  0.  5.  3.  2.  0.  4.  10.  1.  BEAR  3.  4.  2.  5.  1.  7.  8.  2.  1.  8.  6.  2.  CAML  1.  1.  1.  0.  3.  0.  0.  0.  4.  0.  0.  8.  CAT  11.  11.  0.  1.  5.  1.  0.  1.  4.  2.  0.  0.  COW  0.  0.  0.  1.  16.  1.  1.  0.  16.  1.  0.  6.  DEER  0.  0.  1.  6.  4.  7.  9.  1.  6.  8.  7.  8.  DOG  4.  4.  C.  1.  5.  1.  0.  2.  4.  2.  0.  1.  DONK  0.  0.  0.  0.  12.  0.  0.  0.  12.  0.  0. 1 2 .  ELEP  6.  5.  10.  0.  3.  1.  1.  0.  2.  1.  0.  9.  FOX  4.  5.  2.  6.  1.  10.  7.  2.  1.  11.  7.  1.  GIRF  6.  5.  10.  1.  1.  1.  1.  1.  1.  1.  1. 14.  HORS  0.  0.  0.  0.  10.  0.  0.  0.  11.  0.  0. 14.  261  Appendix F-2, c o n t i n u e d  LEOP LION MONK MOUS PIG  KANG LEOP LION MONK MOUS PIG PORC RABT SEAL SHEP SKUN SQUR  1.  PORC RABT SEAL SHEP SKUN SQUR ZEBR  1.  5.  3.  1.  2.  4.  1.  1.  2.  1.  3.  23.  6.  0.  0.  0.  0.  0.  0.  1.  0.  6.  5.  0.  0.  C.  0.  0.  0.  1.  0.  5.  2.  0.  3.  1.  1.  0.  2.  2.  8.  1.  7.  14.  1.  1.  7.  18.  1.  1.  2.  0.  18.  1.  0.  3.  12.  3.  1.  19.  9.  1.  3.  3.  12.  15.  1.  0.  3.  2.  1.  1.  0.  4.  9.  1. 1.  262  Appendix F-3.  S i m i l a r i t y M a t r i x from t h e S o r t i n g Task f o r Grade 11 S u b j e c t s  BEAR CAML CAT  BAT BEAR CAML CAT COW DEER DOG DONK ELEP FOX GIRF HORS  1.  COW  DEER DOG  DONK ELEP FOX  GIRF HORS KANG  0.  1.  0.  0.  1.  0.  0.  1.  C.  0.  2.  1.  2.  3.  5.  3.  2.  6.  9.  1.  2.  2.  0.  6.  10.  1.  11.  10.  1.  18.  11.  8.  3.  1.  13.  4.  0.  6.  0.  4.  0.  9.  4.  16.  2.  0.  5.  16.  0.  2.  13.  3.  8.  9.  14.  3.  5.  0.  12.  1.  4.  1.  3.  2.  9.  23.  1.  1.  12.  3.  5.  1.  1.  1.  9.  9. 2.  263  Appendix F-3, continued  LEOP LION  MONK MOUS PIG  PORC RABT SEAL SHEP SKUN SQUR ZEBR  BAT  0.  0.  7.  12.  0.  4.  4.  1.  0.  5.  7.  0.  BEAR  9.  9.  2.  0.  2.  1.  0.  1.  3.  1.  1.  2.  CAML  1.  1.  1.  0.  0.  0.  0.  1.  5.  0.  0.  15.  CAT  7.  7.  2.  4.  5.  5.  7.  2.  4.  5.  6.  0.  COW  0.  0.  0.  0.  13.  0.  1.  0.  19.  0.  0.  10.  DEER  2.  2.  2.  0.  1.  2.  1.  2.  7.  2.  3. 13.  DOG  0.  0.  2.  3.  8.  1.  5.  4.  7.  1.  3.  0.  DONK  0.  0.  1.  0.  8.  0.  2.  1.  14.  0.  1.  16.  ELEP  5.  5.  3.  0.  2.  0.  0.  1.  G.  0.  0. 1 0 .  FOX  5.  5.  2.  2.  2.  5.  4.  4.  2.  5.  7.  GIRF  3.  3.  3.  0.  0.  0.  0.  1.  5.  0.  0. 1 6 .  HORS  0.  0.  1.  0.  8.  0.  2.  1.  14.  0.  1. 17.  0.  264  Appendix F-3, continued  LEOP LION MONK MOUS PIG  KANG LEOP LION MONK MOUS PIG PORC RABT SEAL SHEP SKUN SQUR  1.  PORC RABT SEAL SHEP SKUN SQUR ZEBR  1.  3.  2.  0.  1.  4.  1.  0.  1.  2.  6.  24.  2.  0.  0.  0.  0.  0.  C.  0.  0.  3.  2.  0.  0.  0.  0.  0.  0.  C.  0.  3.  6.  1.  3.  4.  2.  0.  3.  7.  3.  0.  9.  9.  1.  0.  10.  12.  0.  0.  2.  2.  15.  1.  0.  3.  13.  0.  0.  22.  17.  0.  2.  2.  15.  14.  0.  1.  1.  2.  1.  C.  0.  9.  17.  0. 0.  265  A p p e n d i x F-4.  S i m i l a r i t y M a t r i x from t h e S o r t i n g Task f o r Grade 7 S u b j e c t s  BEAR CAML CAT  BAT BEAR CAML CAT COW DEER DOG DONK ELEP FOX GIRF HORS  1.  COW  DEER DOG  DONK ELEP FOX  GIRF  HORS KANG  2.  2.  1.  1.  2.  2.  0.  3.  1.  1.  1.  1.  1.  4.  9.  3.  3.  7.  13.  3.  4.  3.  0.  4.  5.  0.  8.  3.  2.  12.  7.  4.  4.  2.  20.  3.  0.  3.  0.  4.  1.  5.  4.  10.  5.  1.  2.  12.  1.  3.  9.  2.  8.  4.  7.  5.  4.  0.  5.  0.  5.  1.  1.  2.  3.  19.  2.  1.  12.  3.  3.  2.  1.  3.  2.  7. 2.  266  A p p e n d i x F-4, c o n t i n u e d  LEOP LION MONK MOUS PIG  PORC RABT  SEAL SHEP SKUN  SQUR ZEBR  BAT  0.  0.  2.  6.  5.  10.  3.  1.  2.  8.  4.  0.  BEAR  4.  5.  1.  1.  0.  5.  3.  3.  0.  5.  5.  4.  CAML  2.  1.  1.  0.  2.  1.  1.  1.  4.  0.  0. 10.  CAT  4.  4.  2.  12.  5.  2.  5.  2.  4.  2.  4.  0.  COW  1.  0.  0.  3.  10.  0.  2.  2.  10.  0.  0.  4.  DEER  1.  0.  G.  3.  3.  5.  4.  3.  6.  5.  5.  7.  DOG  0.  0.  2.  12.  5.  2.  5.  2.  5.  2.  4.  1.  DONK  1.  0.  C.  2.  3.  0.  1.  1.  7.  0.  0. 1 1 .  ELEP  7.  8.  6.  0.  3.  0.  0.  2.  1.  0.  0.  9.  FOX  5.  4.  3.  3.  2.  6.  4.  2.  2.  7.  8.  1.  GIRF  7.  6.  6.  0.  1.  1.  1.  1.  2.  0.  0. 11.  HORS  0.  1.  0.  3.  5.  0.  2.  0.  7.  C.  0. 1 1 .  267  A p p e n d i x F-4, c o n t i n u e d  LEOP LION  KANG LEOP LION MONK MOUS PIG PORC RABT SEAL SHEP SKUN SQUR  2.  MONK MOUS PIG  PORC RABT SEAL SHEP SKUN  SQUR ZEBR  1.  4.  2.  0.  2.  7.  3.  1.  2.  3.  I.  23.  6.  0.  0.  0.  0.  1.  1.  G.  0.  5.  6.  0.  0.  0.  0.  0.  0.  0.  0.  6.  3.  2.  2.  5.  0.  1.  3.  6.  4.  5.  5.  8.  1.  3.  4.  7.  0.  4.  5.  1.  13.  3.  2.  0.  5.  2.  1.  21.  13.  1.  1.  2.  5.  10.  0.  2.  3.  1.  0.  0.  0.  1.  14.  1. 0.  268  Appendix F-5.  S i m i l a r i t y M a t r i x from t h e S o r t i n g Task f o r Grade 3 S u b j e c t s  BEAR CAML CAT  BAT BEAR CAML CAT COW DEER DOG DONK ELEP FOX GIRF HORS  1.  COW  DEER DOG  DONK ELEP FOX  GIRF  HORS KANG  1.  1.  1.  1.  2.  1.  3.  2.  1.  1.  2.  6.  2.  4.  2.  4.  3.  6.  3.  6.  3.  3.  0.  9.  6.  1.  10.  7.  2.  11.  10.  5.  1.  1.11.  1.  0.  5.  2.  1.  0.  4.  12.  4.  2.  5.  16.  1.  2.  9.  3.  8.  9.  11.  4.  4.  2.  9.  2.  5.  1.  3.  2.  5.  16.  2.  2.  4.  4.  2.  3.  3.  3.  7.  6.  9.  2.  269  Appendix F-5, continued  LEOP LION MONK MOUS PIG  PORC RABT  SEAL SHEP SKUN SQUR ZEBR  BAT  1.  2.  3.  5.  1.  2.  2.  2.  0.  1.  3.  2.  BEAR  7.  8.  2.  0.  4.  2.  0.  5.  0.  2.  0.  6.  CAML  2.  4.  4.  0.  1.  0.  0.  3.  4.  0.  1.  8.  CAT  8.  9.  4.  5.  5.  1.  6.  1.  1.  6.  5.  L .  COW  1.  2.  2.  1.  5.  0.  0.  0.  10.  1.  1. 10.  DEER  6.  2.  2.  1.  1.  6.  1.  9.  2.  4.  10.  DOG  2.  6.  1.  4.  7.  3.  4.  1.  4.  2.  0.  4.  DONK  1.  3.  2.  0.  3.  0.  0.  1. 12.  1.  1. 11.  ELEP  3.  5.  3.  0.  1.  2.  2.  3.  2.  1.  2.  4.  FOX  11.  9.  3.  2.  1.  7.  6.  0.  2.  5.  3.  3.  GIRF  5.  2.  1.  1.  1.  2.  2.  2.  4.  2.  1. 1 2 .  HORS  3.  3.  2.  2.  4.  0.  1.  0.  9.  0.  0.  3.  13.  270  Appendix F-5, c o n t i n u e d  LEOP LION MONK MOUS PIG  KANG LEOP LION MONK MOUS PIG PORC RABT SEAL SHEP SKUN SQUR  4.  PORC RABT  SEAL SHEP SKUN SQUR ZEBR  3.  5.  2.  1.  1.  10.  3.  1.  0.  1.  3.  19.  6.  1.  2.  3.  5.  2.  1.  5.  2.  3.  6.  0.  4.  2.  2.  3.  0.  4.  1.  4.  1.  3.  2.  2.  2.  0.  2.  7.  3.  1.  4.  8.  1.  2.  7.  10.  0.  4.  0.  1.  7.  4.  0.  2.  3.  1.  1.  15.  5.  2.  1.  3.  6.  8.  1.  1.  1.  3.  2.  1.  2.  5.  8.  2. 1.  271  A p p e n d i x F-6.  S i m i l a r i t y M a t r i x from t h e S o r t i n g Task f o r Kindergarten Subjects  BEAR CAML CAT  BAT BEAR CAML CAT COW DEER DOG DONK ELEP FOX GIRF HORS  4.  COW  DEER DOG  DONK ELEP FOX  GIRF  HORS KANG  4.  2.  2.  3.  4.  2.  3.  2.  1.  0.  2.  2.  0.  6.  4.  2.  1.  8.  2.  2.  2.  4.  0.  4.  5.  1.  4.  4.  3.  8.  2.  2.  0.  0.  10.  1.  1.  3.  2.  2.  1.  5.  6.  4.  3.  2.  3.  6.  4.  3.  4.  5.  4.  3.  3.  8.  2.  1.  2.  1.  1.  3.  2.  3.  2.  14.  3.  2.  4.  1.  8.  2.  0.  2.  4.  3. 2.  272  Appendix F-6, c o n t i n u e d  LEOP LION MONK MOUS PIG  PORC RABT SEAL SHEP SKUN SQUR ZEBR  BAT  2.  4.  2.  4.  2.  1.  2.  3.  1.  2.  1.  3.  BEAR  7.  7.  1.  1.  3.  1.  3.  1.  2.  1.  3.  3.  CAML  3.  0.  1.  1.  4.  1.  1.  1.  1.  1.  2.  3.  CAT  1.  1.  4.  2.  1.  3.  4.  2.  3.  4.  1.  2.  COW  1.  1.  2.  2.  4.  0.  3.  3.  2.  1.  3.  3.  DEER  1.  2.  0.  0.  2.  1.  2.  4.  2.  1.  4.  3.  DOG  0.  2.  1.  2.  I.  0.  3.  3.  3.  2.  3.  3.  DONK  0.  0.  1.  0.  4.  1.  2.  2.  3.  2.  3.  6.  ELEP  3.  2.  1.  0.  2.  1.  1.  1.  G.  3.  1.  4.  FOX  2.  2.  3.  2.  4.  1.  2.  4.  1.  1.  2.  1.  GIRF  5.  2.  2.  1.  1.  3.  1.  1.  2.  0.  2.  6.  HORS  4.  2.  4.  1.  2.  I.  2.  1.  4.  0.  1.  7.  273  Appendix F-6, c o n t i n u e d  LEOP LION MONK MOUS PIG  KANG LEOP LION MONK MOUS PIG PORC RABT SEAL SHEP SKUN SQUR  1.  PORC RABT SEAL SHEP SKUN SQUR ZEBR  0.  1.  I.  1.  1.  5.  4.  4.  2.  4.  4.  14.  2.  1.  1.  1.  1.  0.  2.  1.  0.  4.  5.  2.  0.  1.  0.  3.  1.  1.  0.  1.  4.  3.  2.  3.  2.  2.  1.  4.  0.  0.  6.  10.  I.  3.  4.  11.  1.  0.  3.  2.  4.  2.  2.  1.  2.  0.  2.  13.  5.  1.  3.  5.  4.  11.  2.  2.  3.  3.  3.  0.  3.  2.  5.  2. 2.  274 Appendix  G.  I n s t r u c t i o n s f o r L e a r n i n g Phase o f Study  II  H i e r a r c h i c a l C o n d i t i o n : Now I'm g o i n g t o show y o u some w o r d s . (Plant hierarchy presented) A s y o u c a n s e e , t h e s e w o r d s a r e a r r a n g e d i n a s p e c i a l way. The v e r y t o p w o r d i s p l a n t s . . ( E x p e r i m e n t e r p o i n t e d a t w o r d ) T h a t t e l l s us what a l l t h e o t h e r words a r e g o i n g t o be a b o u t - p l a n t s . Now l o o k a t t h e second l i n e . T h e r e a r e t h r e e words - f l o w e r s , v e g e t a b l e s , and t r e e s . ( E x p e r i m e n t e r p o i n t e d a t each word) These a r e a l l d i f f e r e n t k i n d s o f plants. Now l o o k b e l o w f l o w e r s . You s e e d a i s y and r o s e . These a r e b o t h k i n d s o f flowers.. Now l o o k b e l o w v e g e t a b l e s . You see p o t a t o and p e a both types of vegetables. F i n a l l y , look below t r e e s . Y o u s e e oak a n d maple - b o t h t y p e s o f t r e e s . ( E x p e r i m e n t e r p o i n t e d a t e a c h w o r d a s i t was mentioned) List Condition: Now I'm g o i n g t o show y o u some w o r d s . (Plant l i s t presented) A s y o u c a n s e e t h e s e w o r d s a r e a r r a n g e d i n a s p e c i a l way. The v e r y top word i s p l a n t s . T h a t t e l l s us what a l l t h e o t h e r words a r e g o i n g t o be a b o u t r p l a n t s . Now l o o k a t . t h e s e c o n d l i n e . You see f l o w e r s . A flower i s a kind of plant. Now l o o k a t t h e n e x t two w o r d s - d a i s y a n d r o s e . These are b o t h k i n d s o f f l o w e r s . Now l o o k a t t h e n e x t w o r d - v e g e t a b l e s . A vegetable i s a kind of plant. Look b e l o w v e g e t a b l e s and you see p o t a t o and p e a . These a r e b o t h k i n d s o f v e g e t a b l e s . Now l o o k a t t h e n e x t w o r d trees. A tree i s a kind of plant. Look b e l o w t r e e s and you see oak and maple - b o t h t y p e s o f t r e e s . Random C o n d i t i o n : Now I'm g o i n g t o show y o u some w o r d s . As y o u can s e e , these words are arranged i n a l o n g l i s t . I am g o i n g t o r e a d t h e s e w o r d s over t o you. The f i r s t w o r d i s p o t a t o . • The s e c o n d w o r d i s r o s e . The next word i s v e g e t a b l e s . The n e x t w o r d i s f l o w e r s . The n e x t w o r d i s trees. The n e x t w o r d i s p l a n t s . The n e x t . w o r d i s - p e a . The n e x t w o r d i s oak. The n e x t w o r d i s d a i s y . The l a s t w o r d i s m a p l e . A l l Conditions: Now I w a n t y o u t o s t u d y t h e s e w o r d s v e r y c a r e f u l l y a n d t r y t o remember a s many p l a n t s a s y o u p o s s i b l e c a n . Study the words u n t i l I say s t o p . (One m i n u t e ) Stop. ( E x p e r i m e n t e r removed s t i m u l u s i t e m s ) Now I w a n t y o u t o c o u n t b a c k w a r d s , o u t l o u d , a n d t o g e t h e r f r o m 9 9 . Ready, go 9 9 , 9 8 , (20 s e c o n d s ) . O.K. S t o p . Now p i c k up y o u r p e n c i l s a n d w r i t e down o n t h e p a d i n f r o n t o f y o u , a l l t h e p l a n t s y o u c a n remember f r o m the l i s t . P u t o n l y one w o r d o n e a c h l i n e . T r y t o work as f a s t as possible. Do n o t w o r r y a b o u t s p e l l i n g . O.K. Go. (One m i n u t e ) Stop. Here are the words a g a i n . (Experimenter presented s t i m u l u s items) Look a t them and l o o k a t y o u r w r i t t e n l i s t and see w h i c h p l a n t s you f o r g o t o r g o t wrong. Do n o t make a n y c h a n g e s i n y o u r b o o k l e t . J u s t c h e c k o v e r y o u r words. (30 s e c o n d s ) O.K. now t u r n t h e p a g e o n o u r p a d t o p a g e t w o . Check t h a t y o u have page two. S t u d y t h e l i s t v e r y c a r e f u l l y a g a i n . Be s u r e t o s t u d y t h e w h o l e l i s t b e c a u s e t h e way i t i s a r r a n g e d c a n h e l p y o u i n t r y i n g t o remember i t . (One m i n u t e ) Stop ( E x p e r i m e n t e r removed s t i m u l u s items) Now c o u n t b a c k w a r d s , o u t l o u d a n d t o g e t h e r f r o m 75. R e a d y , go 7 5 , 74 (20 s e c o n d s ) O.K. S t o p . Now w r i t e down a l l t h e p l a n t s y o u c a n remember f r o m t h e l i s t (2 m i n u t e s ) Stop. Here are the words a g a i n . Comp a r e them w i t h y o u r answers and see w h i c h ones you g o t wrong o r l e f t o u t . Remember, d o n ' t c h a n g e a n y t h i n g (20 s e c o n d s ) . O.K. Now t u r n t o p a g e t h r e e . Hierarchical Condition: I am g o i n g t o show y o u some d i f f e r e n t w o r d s now. Y o u c a n s e e t h a t t h e s e w o r d s a r e a r r a n g e d i n a s p e c i a l way t o o . The t o p w o r d - a n i m a l s t e l l s us t h a t a l l t h e o t h e r w o r d s a r e g o i n g t o be a b o u t animals. Look a t t h e second l i n e . You see meat e a t e r s and p l a n t e a t e r s .  275Some a n i m a l s e a t meat a n d some a n i m a l s e a t p l a n t s . . L o o k b e l o w t h e m e a t e a t e r s group. Some m e a t e a t e r s a r e f o r p e t s , some f o r f u r , a n d some f o r game. Game a n i m a l s : a r e a n i m a l s p e o p l e h u n t f o r s p o r t . ' Now T o o k b e l o w for pets. You see c a t , dog, and skunk. T h e s e c a n a l l be u s e d f o r p e t s . Now l o o k b e l o w f o r f u r . You s e e f o x , , s e a l , a n d r a c c o o n . These can a l l be u s e d . f o r f u r . Now l o o k b e l o w f o r game. You see t i g e r , b e a r , and panther. T h e s e c a n a l l be u s e d ' f o r game. Now l o o k u n d e r p l a n t e a t e r s . Some p l a n t e a t e r s a r e f o r p e t s , some f o r f u r , a n d some f o r game. Now l o o k below f o r p e t s . Y o u s e e t h a t r a b b i t , g e r b i l , and- monkey c a n a l l b e u s e d for pets. Now-look b e l o w f o r f u r . - You see t h a t s q u i r r e l , m u s k r a t , and b e a v e r c a n a l l be used, f o r f u r . F i n a l l y , . T o o k b e l o w f o r game. You see t h a t d e e r , m o o s e , ' a n d e l e p h a n t c a n a l l b e u s e d f o r game. L i s t Condition, f i r s t l i s t presented: I am g o i n g t o show y o u some d i f f e r e n t w o r d s now. Y o u c a n s e e t h a t t h e s e w o r d s a r e a r r a n g e d ' i n a s p e c i a l way too. The t o p w o r d : - a n i m a l s - t e l l s us t h a t a l l t h e o t h e r w o r d s a r e g o i n g t o be about a n i m a l s . Now l o o k a t t h e s e c o n d l i n e . L i s t C o n d i t i o n , second l i s t presented: Now see a n i m a l s a t t h e t o p . Look a t t h e second  look at this line.  list.  Again,  you  L i s t C o n d i t i o n , abstract dimension: You s e e m e a t e a t e r s . Some a n i m a l s eat meat. B e l o w m e a t e a t e r s i s a g r o u p o f a n i m a l s t h a t e a t s meat.' These animals are: c a t , dog, skunk, f o x , s e a l , r a c c o o n , t i g e r , b e a r , and p a n t h e r . Now l o o k a t t h e n e x t l i n e . You see p l a n t e a t e r s . Some a n i m a l s e a t p l a n t s . Below p l a n t e a t e r s i s a group o f animals t h a t e a t s p l a n t s . These a n i m a l s are: r a b b i t , g e r b i l , monkey, s q u i r r e l , m u s k r a t , b e a v e r , d e e r , m o o s e , and elephant. L i s t C o n d i t i o n , f u n c t i o n a l d i m e n s i o n : , You s e e f o r p e t s . Some a n i m a l s c a n be u s e d f o r p e t s . B e l o w f o r p e t s i s a g r o u p o f a n i m a l s t h a t c a n be used f o r p e t s . These a n i m a l s a r e : c a t , dog, skunk, r a b b i t , g e r b i l , and monkey. Now l o o k a t t h e n e x t l i n e . You see f o r f u r . Some a n i m a l s c a n be u s e d f o r f u r . B e l o w f o r f u r i s a group o f a n i m a l s t h a n can be u s e d f o r fur. These a r e f o x , s e a l , r a c c o o n , s q u i r r e l , m u s k r a t , and b e a v e r . Now look at the next l i n e . You s e e f o r game. Game a n i m a l s a r e a n i m a l s p e o p l e h u n t f o r s p o r t . . B e l o w f o r game i s a g r o u p o f a n i m a l s t h a t c a n be u s e d f o r game. These a r e t i g e r , b e a r , p a n t h e r , d e e r , moose, and e l e p h a n t . Random C o n d i t i o n : I am g o i n g t o show y o u some d i f f e r e n t w o r d s now. You can see t h a t t h e s e words a r e a r r a n g e d i n a l o n g l i s t t o o . I am g o i n g t o r e a d these words over t o you. The f i r s t w o r d i s m e a t e a t e r s . The s e c o n d word i s muskrat. The n e x t w o r d i s b e a r . The n e x t w o r d i s e l e p h a n t . The next word i s a n i m a l s . The n e x t w o r d i s p a n t h e r . The n e x t w o r d i n m o n k e y . The n e x t w o r d i s p l a n t e a t e r s . The n e x t w o r d i s f o r game. The n e x t w o r d i s beaver. The n e x t w o r d i s d e e r . The n e x t w o r d i s r a c c o o n . The n e x t word i s skunk. The n e x t w o r d i s f o x . The n e x t w o r d i s t i g e r . The n e x t word i s r a b b i t . The n e x t w o r d i s f o r f u r . The n e x t w o r d i s f o r p e t s . The n e x t w o r d i s c a t . The n e x t w o r d i s s q u i r r e l . The n e x t w o r d i s s e a l . The n e x t , w o r d i s g e r b i l . The n e x t w o r d i s m o o s e . And t h e l a s t word i s dog. A l l C o n d i t i o n s : O.K. t r y t o remember a s many say s t o p . (One m i n u t e ) and t o g e t h e r f r o m 68. p e n c i l s a n d w r i t e down  Now I w a n t y o u t o s t u d y t h e s e w o r d s v e r y c a r e f u l l y a n d words as you p o s s i b l y can. Study the words u n t i l I Stop. Now I w a n t y o u t o c o u n t b a c k w a r d s , o u t l o u d 6 8 , 67 (20 s e c o n d s ) . Stop. Now p i c k up y o u r o n t h e p a d i n f r o n t o f y o u , p a g e 3, a l l t h e a n i m a l s  276 y o u c a n remember f r o m t h e l i s t . P u t o n l y one w o r d o n e a c h l i n e . Try to w o r k a s f a s t a s p o s s i b l e a n d don'.t w o r r y a b o u t s p e l l i n g . O.K. Go. (Two minutes) Stop. Here a r e t h e words a g a i n . Look a t them and l o o k a t y o u r w r i t t e n l i s t and see w h i c h a n i m a l s you f o r g o t o r g o t wrong. D o n ' t make a n y c h a n g e s i n y o u r b o o k l e t . (30 s e c o n d s ) Now t u r n t h e p a g e o n y o u r p a d t o p a g e 4. C h e c k t h a t y o u h a v e p a g e 4. Study the l i s t v e r y , ' c a r e f u l l y a g a i n Be s u r e t o s t u d y t h e w h o l e l i s t b e c a u s e t h e way i t i s a r r a n g e d c a n h e l p y o u i n t r y i n g t o remember i t . (One m i n u t e ) Now c o u n t b a c k w a r d s f r o m 4 7 . 47, 46 ...... (-20 s e c o n d s ) Now w r i t e down a l l t h e a n i m a l s y o u c a n remember f r o m the l i s t . (2 m i n u t e s ) S t o p . Now l o o k a t t h e l i s t a g a i n a n d c h e c k y o u r answers. (30 s e c o n d s ) Now t u r n t o p a g e 5 i n y o u r b o o k l e t and' t h e n s t u d y the whole l i s t a g a i n . ( D i r e c t i o n s c o n t i n u e d i n t h e same way u n t i l t h e s u b j e c t s h a d r e c e i v e d s i x or t e n l e a r n i n g t r i a l s . For the l i s t condition subjects, a f t e r three or f i v e t r i a l s on t h e f i r s t l i s t , t h e s e c o n d l i s t was p r e s e n t e d a n d e x p l a i n e d and l e a r n i n g t r i a l s c o n t i n u e d as i n d i c a t e d a b o v e ) .  277  A p p e n d i x H.  Orthogonal A n a l y s i s o f Variance T r i a l s (N = 1 2 0 ) df  Source o f V a r i a t i o n  G r a n d Mean Between S u b j e c t s G r a d e (G) C o n d i t i o n s (C) HC v s L C ( C i ) HC,LC v s R C ( C ) Degree o f L e a r n i n g G x C G x Ci G x C G x D C x D Ci x D C x D G x C x D G x Ci x D G x C x D Error  1  (D)  2  Sums o f Squares  Mean Squares  160015.625  1 6 0 0 1 5 . 6 2 5  2933.140  3740.828  3 7 4 0 . 8 2 8  6 8 . 5 7 1  1 1 5 . 2 7 1  1 1 5 . 2 7 1  2 . 1 1 2  <  7 4 2 . 0 1 2  7 4 2 . 0 1 2  1 3 . 6 0 1  <  .0004  3 2 . 0 3 3  3 2 . 0 3 3  0 . 5 8 7  <  .445  .880  <  .0001  .0001  .149  1.250  1.250  0 . 2 2 9  <  1  4 1 . 6 6 6  4 1 . 6 6 6  0 . 7 6 4  <.  .384  4 5 . 6 3 3  4 5 . 6 3 3  0 . 8 3 7  <  .363  6 . 0 5 0  6 . 0 5 0  0 . 1 1 1  <  .740  1 2 3 . 2 6 7  1 2 3 . 2 6 7  2 . 2 6 0  ^  .136  1 2  2 0 . 0 0 0  2 0 . 0 0 0  0 . 3 6 7  <  .546  2 2 0 . 4 1 6  2 2 0 . 4 1 6  4 . 0 4 0  <  .047  5 8 9 1 . 8 7 3  5 4 . 5 5 4  1  7 9 9 . 3 4 8  7 9 9 . 3 4 8  2 5 7 . 7 7 5  4 7 . 0 2 2  4 7 . 0 2 2  2 3 . 1 2 2  < <  .0001  1  .110  2  108  .0001  2  Q  C x Ci x C x Ci x C  4  D  2  1  8 . 0 6 7  8 . 0 6 7  2.601  1  0 . 1 3 9  0 . 1 3 9  0 . 0 6 8  < <  < .154  1 1  2  1 1  2  x x  Three  1  2  T x L L Q Q T x L Q T x L L Q Q T x L Q T x L L Q Q T x L L  forFirst  2  2  Within Subjects T r i a l s (T) L i n r (L) Quad (Q) T x G L  Summary T a b l e  .  .794  6 . 4 0 0  6 . 4 0 0  2 . 0 6 4  0 . 3 0 0  0 . 3 0 0  0 . 0 9 7  .756  1.200  1.200  0 . 5 9 0  < .444  0 . 0 1 1  0 . 0 1 1  0 . 0 0 6  <  .941  D  1  1 1 . 2 6 7  1 1 . 2 6 7  3 . 6 3 3  < .059  D  1  0 . 9 3 9  0 . 9 3 9  0 . 4 6 2  <  1  0 . 1 0 0  0 . 1 0 0  0 . 0 3 2  < .8579  2 . 1 3 3  2 . 1 3 3  0 . 6 8 8  9 . 6 3 3  9 . 6 3 3  4 . 7 3 7  c <  1  0 . 1 7 9  0 . 1 7 9  0 . 0 8 7  1.  0 . 1 5 0  0 . 1 5 0  0 . 0 4 8  < .8264  1  0 . 0 8 9  0 . 0 8 9  0 . 0 4 4  <  1  0 . 2 2 5  0 . 2 2 5  0 . 0 7 3  1 5 . 4 0 8  1 5 . 4 0 8  4 . 9 6 9  <  .0279  0 . 2 0 8  0 . 1 0 2  <  .7496 .8538  .0621  x C G x C-L G x C G x C G x C G x D x G x D x G x D C x D x C-L X D x C x D x C-L x D x C x D G x C x D x G x Ci x x G x C x  4  G  x x x x  1  2  1  1  2  .4088 .0317 .7681  2 .8348  4  1  2  1  0 . 2 0 8  .7882  1  0 . 0 6 9  0 . 0 6 9  0 . 0 3 4  <  D  1  1 1 . 0 2 5  1 1 . 0 2 5  3 . 5 5 5  <  D  1  3.675  3.675  :.1.185  2  2  .498  4 .2787  278  Source o f V a r i a t i o n  Q x G x Ci x • D Q x. G x C x D Error L 2  Q  df  Sums o f Squares  Mean Squares  1 1  0.208 1.003  0.208 11.003  108 108  334.903 216.630  3.101 2.034  0.102 0.493  < .7496 < .4841  279 Appendix I .  Analysis of Variance  Sums o f Squares  df  Source o f V a r i a t i o n  525.006  525.006  67.043  < .0001  11.250 11.266  11.250 11.266  1.437 1.439  < .2333 < .233  27.075  27.075  3.457 < .066  1.800 .017  1.80(5 .017  .230 .002  < .6327 < .9633  5.208  5.208  .665  < .4166  1 1  6.050 5.400  6.050 .5.400  .773 < .3814 .690 < .4082  1 1  5.000 4.817  5.000 4.817  .639 < .4261 .615 < .4347  845.748  7.831  1  G x C G x Ci G x C  2  G x D  1  C x D Ci x D C x D  2  G x C x D G x Ci x D G x C x D  2  2  2  2  Within Error  Subjects 108  P * .0001  2  (D)  Mean Squares 3360.341  2  Degree o f L e a r n i n g  (N = 120)  26314.383  1  C o n d i t i o n s (L) HC v s LC (Ci) HC,LC v s RC ( C )  f o r Last T r i a l  26314.383  G r a n d Mean Between S u b j e c t s G r a d e (G)  Summary T a b l e  280 Appendix J - 1 .  Orthogonal Analysis of Variance L e a r n i n g C o n d i t i o n (N = 60)  Source o f V a r i a t i o n  df  Mean Squares  362858.875  362858.875  1 6 3 1 . 1 3 5 <.0001  10773.586  10773.586  4 8 . 4 2 3 < .0001  1 1  810,002 1293.630  810.002 1293.630  3.641 < .0617 5.815 < . 0 1 9 4  1 1  84.099 811.198 12012.723  84.099 811.198 222.458  .378 < . 5 4 1 3 3.647 < . 0 6 1 6  1 1 3  570.547 86.691 52.381  570.547 86.691 17.460  105.571<.0001 20.972 < .0001 7.241<.01  1 1 3  10.500 2.448 2.022  10.500 2.448 0.674  1.943 < .1691 . 5 9 1 < .4453 .280 >.25  1 1 1 1 3 3  1.956 22.217 4.074 0.012 43.120 55.248  1.956 22.217 4.074 0.012 14.373 18.416  .362 < .5500 4.111 < .0476 .986 < . 3 2 5 3 0.003 * .9573 5.961<.01 7.638 <.01  1 1 1 1 3 .3  3.291 2.679 1.336 24.901 24.706 16.304  3.291 2.679 1.336 24.901 8.235 5.435  0.609 0.496 0.323 6.024 3.416 2.254  291.838 223.217 390.508  5.404 4.134 2.411  12  2  2  Within Subjects T r i a l s (T) L i n r (L) Quad (Q) R e s i d u a l (R) T x G L G G Q R G X L Cl L c2 Q Cl Q C R X Cl R x C2 x C T X x Ci L x C L x Ci Q x Co Q R x R x Error L  54  10  2  10  2  Q R  Degree  Sums o f Squares  G r a n d Mean Between S u b j e c t s G r a d e (G) C o n d i t i o n s (C) HC v s LC ( C i ) HC,LC v s RC ( C ) G x C G x Ci G x C Error  Summary T a b l e f o r Low  54 54 162  < .4386 < .4845 <.5721 < .0174 <.05 * .25  281 Appendix J-2.  O r t h o g o n a l A n a l y s i s o f V a r i a n c e Summary T a b l e f o r H i g h D e g r e e L e a r n i n g C o n d i t i o n (N = 60)  Source o f V a r i a t i o n  df  Sums o f Squares  G r a n d Mean Between S u b j e c t s G r a d e (g) C o n d i t i o n s (C) HC v s LC ( C i ) HC,LC v s RC ( C 2 ) G x C G x Ci G x C Error  1161761.000  1161761.000  2 0 3 0 . 3 5 6 < .0001  19910.754  19910.754  34.797 < .0001  448.896 433.200  448.896 433.200  0.785 < .3797 0.757 < . 3 8 8 1  2.500 163.333 30898.546  2.500 163.333 572.195  0.004 < . 9 4 7 6 .286 < . 5 9 5 4  1 1 7  697.030 249.249 252.071  697.030 249.249 36.010  1 2 1 . 5 3 8 * .0001 82.441 <.0001 1 7 . 8 9 8 < .01  1 1 7  6.222 4.415 4.897  6.222 4.415 .700  1.085 <• .3023 1.460 <.2322 0.348 ^ . 2 5  1 2  2  Within Subjects T r i a l s (TO L i n r (L) Quad (Q) R e s i d u a l (R) T x G L x' Q x R x x C L L c Q Cl Q C R Cl R X c x G x C L G x Ci L G x C Q G x Ci Q G x C R G x Ci R x G x C Error L  54  18 1 1 •1 1 7' 7  2  2  2  1.320 22.790 0.037 4.671' 15.122 3.269  0.230 3.974 0.012 1.545 7.516 1.625  <.6334 < .0513 .9122 < .2193 *.01 <.25  15.205 0.990 0.474 0.025 11.872 15.685  15.205 0.990 0.474 0.025 1.696 2.241  2.651 0.173 0.157 0.008 0.843 1.114  <.1093 <.6795 c .6939 < .9276 >.25 >.25  309.693 163.262 760.350  5.735 3.023 2.012  1.320 22.790 0.037 4.671 105.853 22.885  18 1 1 1 1 7 7  2  2  2  Q R  Mean . Squares  54 54 378  282 A p p e n d i x K-1.  Analysis of Variance S i x T r i a l s (N = 2 0 )  Mean Squares  19533.010  19533.010  540.332 ^ . 0 1  1 1 1 16  1015.008 1.008 1.408 578.400  1015.008 1.008 1.408 36.150  2 8 . 0 7 8 <.01 0.028 > .25 0.039 T- .25  (L)  1 1 1 1 16  31.008 7.008 21.675 3.675 94.133  31.008 7.008' 21.675 3.675 5.883  5 . 2 7 1 < .05 1.191 ? . 2 5 3.684 < .10 0.625 >.25  L  4 4 4 4 64  232.533 25.133 10.267 17.667 161.067  58.133 6.283 2.567 4.417 2.517  23.100 < .01 2.497 .10 1.020?.25 1.755 < .25  df  G r a n d Mean Between S u b j e c t s G r a d e .(G) O r d e r (0) G x O Error  Within Subjects T r i a l s (T) w i t h i n G x T(L) O x T(L) G x O x T(L) Error  over  Sums o f Squares  Source o f V a r i a t i o n  L i s t Organization G x L O x L G x 0 x L Error  S