UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Influence of infrared energy on early growth rates of poultry Ben-Abdallah, Noureddine 1973

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
[if-you-see-this-DO-NOT-CLICK]
UBC_1974_A7 A23_9.pdf [ 4.72MB ]
[if-you-see-this-DO-NOT-CLICK]
Metadata
JSON: 1.0099953.json
JSON-LD: 1.0099953+ld.json
RDF/XML (Pretty): 1.0099953.xml
RDF/JSON: 1.0099953+rdf.json
Turtle: 1.0099953+rdf-turtle.txt
N-Triples: 1.0099953+rdf-ntriples.txt
Original Record: 1.0099953 +original-record.json
Full Text
1.0099953.txt
Citation
1.0099953.ris

Full Text

INFLUENCE OF INFRARED ENERGY ON EARLY GROWTH RATES OF POULTRY  BY  NOUREDDINE B. ABDALLAH B.Sc.  Texas A & M U n i v e r s i t y ,  1969  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE  REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in  t h e Department o f  Agricultural  We a c c e p t required  THE  this thesis  Engineering  as c o n f o r m i n g  to the  standard  UNIVERSITY OF BRITISH COLUMBIA December, 1973.  In p r e s e n t i n g an  this  thesis  in partial  advanced degree at t h e U n i v e r s i t y  the  Library  shall  make  i t freely  I f u r t h e r agree t h a t permission for  h i s representatives.  of  this  written  thesis  f o r financial  gain  shall  that  December  17, 1973  copying o f this  that  thesis  copying or p u b l i c a t i o n  n o t be a l l o w e d w i t h o u t  Engineering  Columbia  I agree  by t h e Head o f my D e p a r t m e n t o r  permission.  The U n i v e r s i t y o f B r i t i s h V a n c o u v e r 8 , Canada  Columbia,  f o r r e f e r e n c e and s t u d y .  f o rextensive  I t i s understood  Department o f A g r i c u l t u r a l  Date  of B r i t i s h  available  s c h o l a r l y p u r p o s e s may be g r a n t e d  by  f u l f i l m e n t o f the requirements f o r  my  ABSTRACT  The of  r a d i o s i t y method o f r a d i a n t  e n c l o s u r e s was u s e d  uniformity  of thermal r a d i a t i o n  ment chamber. of  infrared  radiation  non-participating method was used  two  Two purposes. of  levels to  t o be g r e y  medium.  methods, were  a controlled  of radiation  for testing  The s e c o n d  temperature,  the i n c i d e n t  Then,  lamp  brooding  experiment  radiation  the r e s u l t s  sets  of experiments  rate  index.  at different  o b t a i n e d by t h e  were t e s t e d  were d e s i g n e d  was t o s t u d y  on p o u l t r y .  experiment  system.  thermometer  compared.  warm a i r b r o o d i n g  heat  the e f f e c t s  The w a l l s o f t h e  for different  the  influence  In t h i s experiment,  and t h e r e s u l t s were  t h o s e o b t a i n e d by u s e o f a c o n v e n t i o n a l h e a t  system.  environ-  and s e p a r a t e d by a r a d i a t i v e l y  separate experiments  radiation  analysis  and t h e  A l s o the b l a c k globe  to c a l c u l a t e  The f i r s t  infrared  within  on young b r o i l e r s .  i n t h e chamber.  mentioned  the i n t e n s i t y  The chamber was d e s i g n e d  chamber were assumed  locations  to predict  interchange  was t o compare a system,  lamp  two  compared brooding  controlled  to a c o n v e n t i o n a l  The r e l a t i v e e f f e c t s  i n both  were m e a s u r e d by u s e o f t h e w e e k l y  growth  TABLE OF CONTENTS PAGE TITLE  PAGE  ABSTRACT  i i  TABLE OF CONTENTS  i i i  L I S T OF FIGURES  V  L I S T OF TABLES  vi  L I S T OF SYMBOLS  XX.  ACKNOWLEDGEMENTS  xiii  INTRODUCTION  1  LITERATURE REVIEW  3  EXPERIMENTAL DESIGN  7  EXPERIMENTAL MATERIAL AND  PROCEDURE  DESCRIPTION OF EXPERIMENTAL EQUIPMENT 1. T h e r m a l R a d i a t i o n B r o o d i n g E x p e r i m e n t 2. Warm A i r B r o o d i n g E x p e r i m e n t DETERMINATION OF THE RADIANT IN THE CHAMBER  12 15 15 17.  HEAT LOAD DISTRIBUTION 19  1. R a d i o s i t y Method Assumptions Theory S o l u t i o n and R e s u l t s  19 19 20 22  2. B l a c k G l o b e Thermometer Method Temperature o f R a d i a n t Heat P a n e l s Mean R a d i a n t T e m p e r a t u r e (MRT), R a d i a n t H e a t Load (RHL) and B l a c k G l o b e T e m p e r a t u r e (BGT) Results.  27 27 28 34  3. C o m p a r i s o n o f R a d i a n t H e a t L o a d R e s u l t s O b t a i n e d . . by t h e R a d i o s i t y Method and t h e B l a c k G l o b e Thermometer Method 34  iv.  PAGE DATA ANALYSIS  38  1.  38  2.  G e n e r a l Models (a) A n a l y s i s o f v a r i a n c e o f t h e e x p e r i m e n t a l data (b) R e g r e s s i o n a n a l y s i s o f t h e e x p e r i m e n t a l data R e s u l t s and D i s c u s s i o n o f t h e A n a l y s e s o f Variance (a) I n f r a r e d b r o o d i n g e x p e r i m e n t TEST 1: New H a m p s h i r e s TEST 2: U.B.C. B r o i l e r s TEST 3: U.B.C. B r o i l e r s TEST 4: U.B.C. B r o i l e r s (b) Warm a i r b r o o d i n g Broilers TESTS: 5 and 6  3.  Infrared  39  40 40 40 44 . 46 49  Commercial 50 50  Results of the Linear M u l t i p l e Regression Analyses (a) I n f r a r e d b r o o d i n g e x p e r i m e n t (b) Warm a i r b r o o d i n g  4.  experiment:  38  experiment  and Warm A i r B r o o d i n g :  51 51 52  A Comparison  53  CONCLUSIONS  57  L I S T OF REFERENCES  59  APPENDIX A  62  APPENDIX B  69  APPENDIX C  78  APPENDIX D  87  V .  L I S T OF FIGURES  FIGURE  1  PAGE  Schematic  of the a i r conditioning  used w i t h the i n f r a r e d r a d i a t i o n  system experi-  ment  2  16  D e v e l o p m e n t o f t h e chamber showing identification of  3  surface  number and t h e 9 l o c a t i o n s  the globe  Basic  geometry  configuration  21  used  to c a l c u l a t e the  f a c t o r s by e q u a t i o n s  7, 8 and 18.  4  Mean R a d i a n t T e m p e r a t u r e 2-in  diameter black globe  25  nomograph f o r thermometer  32  VI ,  LIST  OF  TABLES  TABLE  PAGE B l a c k g l o b e t e m p e r a t u r e (BGT) and r a d i a n t h e a t l o a d (RHL) as p e r t r e a t m e n t and b r o o d i n g p e r i o d f o r t e s t s 1, 2 and 3  8  B l a c k g l o b e t e m p e r a u t r e (BGT) and r a d i a n t h e a t l o a d (RHL) as p e r b r o o d i n g p e r i o d for t e s t 4  9  D r y b u l b t e m p e r a u t r e (°F) as p e r b r o o d i n g p e r i o d f o r t e s t s 5 and 6. (Relative h u m i d i t y - 5Q%)  11  Computer o u t p u t f o r t h e v a l u e o f t h e r a d i o s i t y (B) i n BTU h r ft f o r the 10 s u r f a c e s o f t h e chamber as s p e c i f i e d i n F i g u r e 2.  27  P r e d i c t e d and e x p e r i m e n t a l RHL (BTU h r ^ ft~2) d i s t r i b u t i o n i n the environmental chamber  1  37  A v e r a g e w e e k l y body w e i g h t s i n grams and a v e r a g e w e e k l y growth, r a t e s as by t r e a t m e n t , f o r t e s t s 2, 3, 4, 5 and 6 (males)  54  S c h e f f e ' s l i m i t s a t t h e 95% c o n f i d e n c e f o r the s p e c i f i e d c o n t r a s t s f o r t e s t s 2, 3, 5 and 6 (males)  55  level  L I S T OF  TABLES  APPENDIX A  Average surface  s u r f a c e t e m p e r a t u r e , e m m i t t a n c e and a r e a o f t h e s u r f a c e o f t h e chamber  C o n f i g u r a t i o n f a c t o r s between t h e o f t h e chamber  surfaces  M a t r i x o f c o e f f i c i e n t s and c o l u m n v e c t o r of constants f o r the s o l u t i o n of the s y s t e m o f l i n e a r non-homogeneous e q u a t i o n s C o n f i g u r a t i o n f a c t o r between t h e sphere a t d i f f e r e n t l o c a t i o n s and t h e w a l l s o f t h e chamber I n c i d e n t r a d i a t i o n on t h e g l o b e f o r t h e 9 locations A i r v e l o c i t y , a i r temperature, globe t e m p e r a t u r e and r e s u l t i n g mean r a d i a n t temperature of the globe f o r the 9 l o c a t i o n s  L I S T OF  TABLES  APPENDIX B  TABLE Bl  A v e r a g e w e e k l y body w e i g h t s and analyses of variance, test 1  B2  A v e r a g e g r o w t h r a t e s and t h e i r of variance, test. 1  B3  A v e r a g e w e e k l y body w e i g h t s and analyses of variance, t e s t 2  B4  A v e r a g e g r o w t h r a t e s and t h e i r of v a r i a n c e , t e s t 2  B5  A v e r a g e w e e k l y body w e i g h t s and analyses of variance, t e s t 3  B6  A v e r a g e g r o w t h r a t e s and t h e i r of variance, t e s t 3  B7  A v e r a g e w e e k l y body w e i g h t s and analyses of variance, t e s t 4  B8  A v e r a g e g r o w t h r a t e s and t h e i r of variance, test 4  their  analyses  their  analyses  their  analyses  their  analyses  ix  L I S T OF  TABLES  APPENDIX C TABLE  Cl  C2  C3  C4  C5  C6  PAGE  A v e r a g e w e e k l y body w e i g h t s and t h e i r a n a l y s e s o f v a r i a n c e , t e s t 5 (males)  79  A v e r a g e g r o w t h r a t e s and t h e i r o f v a r i a n c e , t e s t 5 (males)  80  analyses  A v e r a g e w e e k l y body w e i g h t s and t h e i r a n a l y s e s o f v a r i a n c e , t e s t 5 (females)  81  A v e r a g e g r o w t h r a t e s and t h e i r of v a r i a n c e , t e s t 5 (females)  82  analyses  A v e r a g e w e e k l y body w e i g h t s and t h e i r a n a l y s e s o f v a r i a n c e , t e s t 6 (males)  83  A v e r a g e g r o w t h r a t e s and t h e i r o f v a r i a n c e , t e s t 6 (males)  84  analyses  C7  A v e r a g e w e e k l y b o d y w e i g h t s and t h e i r a n a l y s e s o f v a r i a n c e , t e s t 6 (females)  C8  A v e r a g e g r o w t h r a t e s and t h e i r of v a r i a n c e , t e s t 6 (females)  analyses 86  X .  L I S T OF TABLES APPENDIX D  TABLE  PAGE  Dl  M u l t i p l e l i n e a r regression analyses f o r t e s t s 1 t o 4, w i t h 3-week body w e i g h t a s dependent v a r i a b l e  D2  M u l t i p l e l i n e a r regression analyses f o r t e s t s 1 t o 4, w i t h 7-week body w e i g h t a s dependent v a r i a b l e  89  M u l t i p l e l i n e a r regression analyses f o r t e s t 5, w i t h 3-week body w e i g h t a s dependent v a r i a b l e  90  Multiple l i n e a r regression analyses f o r t e s t 6, w i t h 3-week body w e i g h t as dependent v a r i a b l e  91  D3  D4  xi.  L I S T OF  SYMBOLS  A.  =  S u r f a c e a r e a o f an a r b i t r a r y chamber.  B_.  =  Radiosity  F  =  Kata f a c t o r supplied Kata thermometer.  by t h e m a n u f a c t u r e r  .=  Configuration  factor  between s u r f a c e s  Gg_^=  Configuration  factor  between t h e g l o b e and s u r f a c e  I.  Incident radiant chamber,  3  G.  =  3  I  . = ^  I  1  of surface  'j'  energy  I n c i d e n t r a d i a n t energy i o f t h e chamber. 1  surface  as d e f i n e d  'j'  o f the  by e q u a t i o n of the  'j'  on any s u r f a c e  1  j'  T.  =  A b s o l u t e temperature chamber.  o f any s u r f a c e  Tg  =  Absolute temperature  of the black globe.  T  =  A b s o l u t e mean r a d i a n t  =  A i r s p e e d i n t h e chamber thermometer.  g  V  'i'.  of the  on t h e g l o b e due t o s u r f a c e  T o t a l i n c i d e n t r a d i a n t energy s u r f a c e s o f t h e chamber.  3  and  1  =  g  [1] .  on t h e g l o b e f r o m a l l 'j'  of the  temperature. as d e t e r m i n e d by t h e K a t a  a & b  C o n s t a n t s u s e d i n t h e K a t a e q u a t i o n [ 17 ] d e p e n d i n g upon t h e t y p e o f t h e i n s t r u m e n t , t h e c o o l i n g r a n g e and t h e a i r s p e e d r a n g e t o be m e a s u r e d .  h  =  Convective heat t r a n s f e r c o e f f i c i e n t f o r the black g l o b e t h e r m o m e t e r d e p e n d i n g upon t h e s i z e o f t h e globe.  q  c  =  Convective heat loss  q  r  =  Radiative heat loss  =  Dry bulb temperature  t  o r g a i n by t h e g l o b e . o r g a i n by t h e g l o b e , o f a i r i n t h e chamber.  'i'  xii.  t  =  Black globe  =  Mean r a d i a n t  =  Mean t e m p e r a t u r e o f t h e K a t a t h e r m o m e t e r d e p e n d i n g upon t h e c o o l i n g r a n g e o f t h e i n s t r u m e n t .  0  =  Cooling  £j  =  Total  hemispherical emissivity  of surface ' j  e  =  Total  hemispherical emissivity  of the black globe.  a_.  =  Total hemispherical absorptivity  of surface  Pj  =  Total hemispherical r e f l e c t i v i t y  of surface ' j  a  =  Stefan-Boltzmann constant.  g  t t m  temperature, temperature.  time o f the Kata  BGT =  Black globe temperature  MRT  Mean r a d i a n t  =  RHL =  temperature  Radiant heat load  thermometer.  t +  t  -»- I  *••  g  1  1  .  j' . 1  .  xiii.  ACKNOWLEDGEMENTS  The assistance  author  i n this  wishes t o express  h i sappreciation f o r  study by:  P r o f e s s o r L.M. S t a l e y , o f t h e A g r i c u l t u r a l D e p a r t m e n t , who p r o v i d e d encouragement d u r i n g Dr.  CW.  Roberts, Dr.  guidance,  this  Poultry Science  Engineering  research project;  Department;  A l Crompton, Foreman, and o t h e r P o u l t r y Farm who h e l p e d  Mr.  this  J . Pehlke,  paper;  members o f t h e  during prehatch  aspects  Technician, f o rcounsel o f the temperature  Thanks i s a l s o e x t e n d e d C o u n c i l o f C a n a d a who p r o v i d e d project.  staff  this  stage  study;  Electronic  tronic  Agricul-  D e p a r t m e n t , f o r s e r v i n g on t h e  r e s e a r c h c o m m i t t e e and r e v i e w i n g  of  D r . N.R. B u l l e y ,  E.O. N y b o r g and P r o f e s s o r E . L . Watson,  t u r a l Engineering  Mr.  a d v i c e , and  controllers.  to the National  financial  on e l e c -  support  Research for  this  1.  INTRODUCTION  Reduction i n the broiler the  houses can  thermal  and  Due tion, the  the  accomplished  optical  t o the  radiant  source of  usual  be  o v e r a l l heating  properties  r a d i a t i o n to  be  process of preheating  the  broiler  loss in  avoiding  infrared radiation.  the  of  birds;  the  can  temperature g r a d i e n t  thermal  of  radia-  directly  from  a i r and  the  the  with i t .  necessity  structure  advantage  thus e l i m i n a t i n g  of heating  house a s u b s t a n t i a l r e d u c t i o n  through  the  of  l a r g e masses o f  conveyance system a s s o c i a t e d By  taking  transmitted  the  of  by  d i r e c t i o n a l property  energy can  requirement  be  the  i n conductive  e f f e c t e d due  between the  air in  to the  heat  decrease  i n s i d e and  outside  thermal r a d i a t i o n of  primary  air. Another property importance  i s b a s e d on  e n e r g y b e t w e e n two of  the  the  bodies  f o u r t h power o f  amount o f  energy  significantly, Instant  heat  practical of  other  importance  time c o n v e n t i o n a l  temperature of f o r young  that  with small  i s the  the  chicks.  fact  that  the  exchange of  i s proportional  their  ( S t e f a n - B o l t z m a n n Law). the  of  respective  Because of can  be  this  to  the  absolute  is  compared  to  the  temperatures law,  increased  differences i n surface of  difference  f o u r t h power  exchanged  property  radiant  temperature.  i n f r a r e d r a d i a t i o n of relatively  warm a i r s y s t e m s r e q u i r e  long  period  to b r i n g  a i r i n the b u i l d i n g to a c o m f o r t a b l e  the level  Even appear of  though  parameters  on b i o l o g i c a l s y s t e m s  available  about  growth o f b i r d s Consequently, effects  growth r a t e s  would  the e f f e c t s  and a s s o c i a t e d e n v i r o n -  must be known b e f o r e r a d i a n t h e a t i n g  c a n be w i d e l y a d o p t e d .  the  r a d i a n t h e a t i n g systems  t o be more e c o n o m i c a l t h a n warm a i r s y s t e m s ,  such r a d i a t i o n  mental  infrared  Unfortunately, limited  the e f f e c t s and l e s s  about  the purpose  of infrared  of infrared their  of t h i s  radiation  as an i n d e x .  The  data are  radiation  on t h e  thermal surface  investigation  was  properties to study  on b r o i l e r c h i c k s , u s i n g  thermal r a d i a t i o n  sources o p e r a t i n g a t temperatures  systems  of less  was  t h a n 200°F  from (93°C).  3.  LITERATURE REVIEW  Researchers agree  the l i f e  its  aspects of  t h a t the b r o o d i n g phase, h a t c h t o about  weeks o f age, in  i n the environmental  three or  i s t h e m o s t i m p o r t a n t and most c r i t i c a l  of the b i r d .  maturity i s mainly  The  performance  poultry four period  of the b i r d  d e p e n d e n t upon i t s b r o o d i n g  during  phase  history. Environmental comfort  o f t h e c h i c k s a r e n o t , as y e t , f u l l y  f a c t o r s may  be  classified,  thermal, p h y s i c a l In found  and  thus,  between t h e s i m p l e  available relative  nature,  These into  sociological.  the comfort ignoring  factors  o f t h e b i r d s were  t h a t were  investigated  i n t e r a c t i o n s w h i c h may  exist  factors.  The- e f f e c t s radiation  f o r the  defined.  according to t h e i r  most i n s t a n c e s , e n v i r o n m e n t a l  to i n f l u e n c e  separately,  and  f a c t o r s which are important  of a i r speed,  have r e c e i v e d  d a t a a r e on  limited  the e f f e c t s  h u m i d i t y on g r o w t h r a t e s  a i r composition, noise attention.  Most of  the  of dry-bulb temperature of p o u l t r y  and  (Staley et a l .  1970) . Data on b r o i l e r s investigated upon c h i c k s . of  birds,  on  the e f f e c t of q u a l i t y  are n e g l i g i b l e .  and q u a n t i t y o f  M c C l u s k e y and A r s c o t t  t h e i n f l u e n c e o f i n c a n d e s c e n t and They f o u n d  t h a t body w e i g h t s  a t 56 d a y s o f age,  and  light  (1967) h a v e  infrared  lamps  feed conversion  r e a r e d under c o n t i n u o u s  light  4 .  from  250 w a t t ,  clear glass,  maximum o f 600 f o o t c a n d l e s (P < 0.05) l o w e r from  250 w a t t ,  maximum l i g h t Furthermore, continuous  than b i r d s  red glass,  i n f r a r e d h e a t lamps d e l i v e r i n g a (55.7 l u x ) , were reared  under  continuous  t h e 8-week body w e i g h t s from  light  i n f r a r e d h e a t lamps d e l i v e r i n g a  i n t e n s i t y o f 62 f o o t c a n d l e s  light  significantly  60 w a t t  (5.8 l u x ) .  of birds reared  under  i n c a n d e s c e n t lamps w i t h a  maximum i n t e n s i t y o f 1.2 f o o t c a n d l e s  (.11 l u x ) were  though  t h a n t h e 8-week body  not s t a t i s t i c a l l y  weights  of birds  tunately, better  we c a n n o t  infrared  the  red glass  conclude that  h e a t lamps.  h e a t lamp  associated  than l i g h t  since  c o n t r o l l e d n o r measured.  were o b v i o u s l y  d i f f e r e n t because  Because o f t h e n a t u r e o f t h i s  probably better  safer  to conclude that  than c l e a r g l a s s  radiation.  within  t h e energy  compared  t o 60  i t is  the r e d glass heat  lamps a r e  h e a t lamps f o r b r o o d i n g c h i c k s .  L o n g h o u s e and G a r v e r  to the p h y s i c a l conditions  This  than the q u a n t i t y  (.1964) f o u n d  d i f f e r e n c e between i n c a n d e s c e n t and f l u o r e s c e n t respect  tempera-  These  experiment,  d i f f e r e n c e was due t o ,the q u a l i t y r a t h e r of  with the  temperatures  t o t h e pens were d i f f e r e n t , 250 w a t t s  watts.  of poultry  t r e a t m e n t s was p r o b a b l y due t o  pens were n e i t h e r  temperatures  Unfor-  i n c a n d e s c e n t lamps a r e  t h e l o w e r body w e i g h t  difference rather  input  under  t h a n i n f r a r e d lamps f o r t h e p u r p o s e  r e a r i n g , because  ture  reared  significant,  higher,  of broilers.  little lights  with  5.  The by S k o g l u n d reared had  and  under  Palmer  a light  significantly  r e a r e d under .05  i n f l u e n c e of l i g h t  lux).  t h e low  10,  light  2 and  intensity  o f 120  investigated that  foot candles  l o w e r body w e i g h t s  0.5  they found  was  They c o n c l u d e d  intensity  (P < 0.05) 5,  Also,  (1962).  intensity  foot candles  no  birds (11.1  than  (.93,  birds  .46,  .19,  significant difference  t r e a t m e n t s b u t t h e r e was  a  lux)  among  tendency  t o a s m a l l i n c r e a s e o f body w e i g h t w i t h a d e c r e a s e i n  light  intensity. Some p r e l i m i n a r y work was b r o o d i n g by B a k e r Crober  and  Bywaters  industrial  investigators infrared  radiation.  These  manufacturers  have u s e d  h e a t lamps,  heat  infrared  Shirley  (1970).  i n their  h i g h temperature  intensity  and  and  A l l of  the  experiments,  lamps were p u r c h a s e d  with d i f f e r e n t  radiation  (1951), S t a l e y , R o b e r t s  ( 1 9 6 7 ) , B a x t e r , Maddox and  mentioned  done on  from  sources of different  quality  of  radiation. Baker  and  Bywaters  (1951) h a v e c o n c l u d e d t h a t  e n e r g y ..requirement f o r w i n t e r b r o o d i n g was  from  per c h i c k w i t h continuous o p e r a t i o n of the heat first for  8 weeks.  infrared  They h a v e a l s o  b r o o d i n g was ;  methods o f b r o o d i n g .  found  that  as low o r l o w e r  2 to 3  the kWh  lamps f o r t h e  the m o r t a l i t y  rate  than f o r other  No  s i g n i f i c a n t d i f f e r e n c e s were  found  i n body w e i g h t  or degree  o f f e a t h e r i n g between c h i c k s  brooded  under  h e a t lamps and  infrared  systems.  Finally,  c h i c k s brooded  with other  t h e s e a u t h o r s have f o u n d t h a t  pullets  6.  reared with earlier  infrared  than t h e i r Staley  250-watt  sisters  h e a t lamp p l a c e d  levels with (451 Wm~ )  found  The  a t 24 i n c h e s  pen was  significant  82°F  using  at different  three  thermometer  (P < 0.05)  375-watt  as c r i t e r i o n  industrial  have  globe  They  i n body w e i g h t s i n  established  infrared  divided globe  From t h e r e s u l t s  comfort equivalent  (22°C) .  r e a d i n g s were  into  c o m f o r t zones  a heat gradient h e a t lamps.  equal c i r c u l a r  t e m p e r a t u r e s , and  o f c o m f o r t t h e number o f b i r d s  zone.  a b o u t 79°F  radiation  level.  ages by c r e a t i n g  known e q u i v a l e n t b l a c k  specific  two  the  respectively.  2  differences  t e m p e r a t u r e g r a d i e n t was with  glass  above  (27.8°C) r e s p e c t i v e l y .  o f t h e low r a d i a t i o n  chicks  into  f t (583 Wm~ )  B a x t e r e t a l . (1970) for  (61 cm)  divided  2-in black globe  (24.8°C)and  favour  systems.  a p p r o x i m a t e a v e r a g e s o f 145 B T U / h r / s q f t  resulting  76.5°F  t o l a y 2 t o 3 weeks  brooded with other  and 185 B T U / h r / s q  2  started  e t a l . (1967) have u s e d a c l e a r  c e n t r e o f the pen.  The  radiation  of t h e i r  resting  The zones using in a  experiments, the  t e m p e r a t u r e a t one week o f age  (26°C) and a t f i v e  s e e k s o f age i t was  about  was 72°F  7.  EXPERIMENTAL DESIGN  The may  be d i v i d e d  The  first  effect  two  This  tests  on g r o w t h  s u b - e x p e r i m e n t was  growth  rate  rate  as c a l c u l a t e d  to study the  o f young  broiler  tests.  o f c o n c e r n was  from the b l a c k  w h i l e the dependent  which  sub-experiments.  composed o f f o u r  the independent v a r i a b l e  data;  two  designed primarily  t e m p e r a t u r e as c a l c u l a t e d  thermometer  of s i x tests  categories or into  of thermal r a d i a t i o n  radiant  weekly  into  experiment consisted  s u b - e x p e r i m e n t was  chicks. these  entire  variable  In  t h e mean  globe was  from the weekly  the  body  weight  data. The each; a h i g h  first  level  three  tests  of r a d i a t i o n ,  a conventional brooding. resulting birds  radiant  i n days  high  level  was  88°F  (31.1°C)  day  level  (.1.1°C) e v e r y t h r e e d a y s  the  n i n e t e e n t h day o f  For  temperature (1.7°C)  every  on t h e n i n e t e e n t h the s t a r t i n g  dropping a t the r a t e  t o a minimum o f 70°F  of  (21.1.°C)  on  age.  both l e v e l s of r a d i a t i o n , environment  day  t o s e p a r a t e pens  transferred  the  i n T a b l e 1.  of r a d i a t i o n ,  from the c o n t r o l l e d and  and  o f t h e age o f t h e  o f 3°F  (21.1°C)  (27.8°C)  2°F  treatments  of r a d i a t i o n  the s t a r t i n g globe  dropping a t the r a t e  temperature was,82°F  For  level  as a f u n c t i o n  of radiation  F o r t h e low  of three  g l o b e t e m p e r a t u r e s and  t o a minimum o f 70°F  o f age.  globe  heat load  a low  f r o m hatch, a r e i l l u s t r a t e d  the  t h r e e days  The  consisted  the b i r d s  chambers on t h e  were removed twenty-first  i n t h e same h o u s e  where  TABLE 1.  Black globe load for  (RHL) tests  temperature as p e r  1,  4-6  2 and  (°F)  RHL  (BTU  88 hr"  1  163  85  7-9  (°F)  RHL  (BTU  1  151  brooding  heat period  (days) 13-15  radiation  16-18  19-21  level  82  79  76  73  70  153  149  144  140  135  ft" ) 2  158  82 hr"  Period  10-12  Low BGT  radiant  3.  High BGT  and  t r e a t m e n t and  Brooding 1-3  (BGT)  80  radiation  level  78  76  74  72  70  145  143  140  137  135  ft" ) 2  148  9.  the c o n v e n t i o n a l brooding of  the t e s t .  of  the t e s t  t r e a t m e n t was l o c a t e d  since  the s t a r t  From t h e end o f t h e t h i r d week t o t h e t e r m i n a t i o n a t t h e end o f t h e s e v e n t h week, t h e t h r e e  treat-  ments were managed i n t h e same manner.  TABLE 2.  Black globe temperature load  (RHL) as p e r b r o o d i n g p e r i o d  Brooding  BGT  (°F)  RHL  (BTU/hr"  1  ft" )  The designed globe The  fourth  temperature  instead of  2  to determine  final  o f t h e 70°F  f o r test  4.  (days) 8-14  15-21  88  84  80  163  156  151  of this  the e f f e c t  drop  Period  heat  1-7  test  first  experiment  o f a lower  was  r a t e o f the black  as a f u n c t i o n o f t h e age o f t h e b i r d s .  black globe  temperature  (21.1°C) u s e d  o f 80°F  (26.7°C) was  during the f i r s t  three  chosen tests  the experiment. Test  starting  4 c o n s i s t e d o f two t r e a t m e n t s .  a t a globe temperature  (2.2°C) p e r week t o 80°F g r o w t h i n t h e chamber. floor  brooding  temperature ing  (BGT) and r a d i a n t  period  system  o f 88°F  One  treatment  (31.1°C) d r o p p i n g 4°F  (26.7°C) d u r i n g t h e t h i r d week o f The o t h e r t r e a t m e n t was a c o n v e n t i o n a l  using i n d u s t r i a l heat  and t h e RHL f o r t e s t  earlier,  The g l o b e  4 as a f u n c t i o n o f t h e b r o o d -  are i l l u s t r a t e d i n Table As m e n t i o n e d  lamps.  2.  the purpose  of the p r e v i o u s  10.  four  tests,  j u s t d e s c r i b e d , was  thermal r a d i a t i o n second  on  the r a t e  designed  1)  To  test  f o r t h r e e major the performance 3  (8.5 m  or sub-experiment  number  The  two,  purposes: o f a 300  min  cubic f e e t per  ) a i r conditioning  i t s adaptability  experimentation with To  of  min  —1  AIRE and  2)  the e f f e c t  o f g r o w t h o f young c h i c k s .  p a r t of the experiment  was  to determine  compare i n f r a r e d  u n i t made by  i n environmental  AMINCO-  control  poultry.  r a d i a t i o n b r o o d i n g w i t h warm a i r  brooding. 3)  To  study  the e f f e c t of the environmental  The tests.  second  p a r t of t h i s  In these t e s t s  experiment  the independent  chambers. consisted  variable  of  was  the dry bulb temperature,  w h i l e the dependent  was  t h e same as b e f o r e .  test  ments; mental  chamber 1,  Each  chamber  c o n d i t i o n s i n t h e two  p o s s i b l e with the a v a i l a b l e temperature  both  and  tests  the s t a r t i n g  a minimum o f 78°F  5 and  facilities.  test  of  age  for test  6.  6,  The  dry  The  treat-  environ-  the t h i r t e e n t h  test  was  (1.6°C) e v e r y  (22.2°C) on  T e s t 5 and  bulb  a r e shown i n T a b l e  o f 3°F  as  o f the c h i c k s i n days  dry b u l b temperature  (25.6°C) on  t o a minimum o f 72°F  variable  of three  birds.  two  concern  chambers were k e p t as c l o s e  (32.2°C) d r o p p i n g a t t h e r a t e to  floor  as a f u n c t i o n o f t h e age  f r o m h a t c h , f o r t e s t 5 and For  2,  consisted  of  day  3. 90°F  t h r e e days for  the n i n e t e e n t h  test  day  6 were t e r m i n a t e d on  the  TABLE  3.  Dry-bulb period  temperature  (°F) as p e r b r o o d i n g  f o r t e s t s 5 and 6.  humidity  = 50%) .  Brooding 1-3  4-6  7-9  Period  10-12 Test  90.0  (Relative  87.0  84.0  (days)  13-15  16-18  19-21  78.0  78.0  78.0  78.0  75.0  72.0  5  81.0  Test 6 90.0  87.0  84.0  t w e n t y - f i r s t day o f a g e . floor  b i r d s were r e a r e d  .conventional  brooding  81.0  During  the e n t i r e i n v e s t i g a t i o n , the  under i n d u s t r i a l system.  heat  lamps u s i n g  a  EXPERIMENTAL. MATERIAL AND  The University  experimental birds  of B r i t i s h  genetic  line.  attempt  to reduce  sensitivity  Columbia  PROCEDURE  f o r the f i r s t  New H a m p s h i r e s ,  test a  were  specific  T h i s c h o i c e o f e x p e r i m e n t a l m a t e r i a l was an the experimental  of the experiment  error  thus  i n c r e a s i n g the  to the environmental  effect of  concern. During  the f o l l o w i n g  a l e s s homogeneous were u s e d  as e x p e r i m e n t a l For  and  U.B.C.  than  Hampshires,  t h e New  t h e warm a i r e x p e r i m e n t  Hambley H a t c h e r i e s  were h a t c h e d  which  chicks  t h a t hatched  divided  of the t e s t s ,  and a s s i g n e d so t h a t  from  vaccination  The eggs  a total  four,  day were  120 m a l e  randomly  o f 40 b i r d s were i n e a c h  A l l c h i c k s were c o m p l e t e l y d r y on received a  1  the v a c c i n a t i o n  treatments,  and w e i g h e d  weighings  from  f o r Marek s disease.  to t h e i r  cation,  one t h r o u g h  t h e i n c u b a t o r and w i t h i n two h o u r s  After birds  broilers  farm.  on t h e t w e n t y - f i r s t  the three treatments.  removal  included tests 5  (B.C.) L t d . , A b b o t s f o r d .  a t t h e U.B.C. p o u l t r y  F o r each  broilers,  birds.  6, t h e e x p e r i m e n t a l b i r d s were c o m m e r c i a l  J.J.  of  genetic line  three tests,  and t h e a s s i g n m e n t  t h e y were w i n g banded  t o t h e n e a r e s t gram.  were r a n d o m i z e d  The  of the  for identifisubsequent  s o t h a t no one o r d e r c o u l d be  repeated  on  with water  next weighing.  f o r the  ad. li.bi.tam  fed 23  the  percent  first  All  rates,  broiler  percent  ration  f a t and  t h e one  and  the  5 percent  fibre.  every  i n d i v i d u a l weekly  s e v e n week g r o w t h r a t e were c a l c u l a t e d t i o n r e l a t i o n s h i p g i v e n by individual t ^ and  b i r d s were  c o n t a i n i n g about  t o t h r e e week g r o w t h r a t e and  The  mixed  week  up  I n d i v i d u a l w e e k l y body w e i g h t s were  computer c a r d s  between t i m e s  The  b i r d s were i n d i v i d u a l l y w e i g h e d  t o s e v e n weeks o f age. p u n c h e d on  a n t i b i o t i c was  s e v e n d a y s o f age.  a standard  p r o t e i n , 3.5  An  Roberts  three  t h e power  to func-  (1964).  growth r a t e  t.^ was  using  the  growth  (r) f o r t h e  computed by  period  the f o l l o w i n g  expression: LOG  r  (=^) 1  H  =  {-M  LOG where  = Y  t^  and  1 body w e i g h t o f b i r d conception  2  =  body w e i g h t o f b i r d conception  t^  =  age  Once t h e and  their  sex  during  the  (on a w e e k l y  t e s t was  verified  were n e g l e c t e d died  + 3  from the  by  t ^ from  a t time  from  base)  terminated,  internal  anlysis  s e v e n weeks'  a t time  t h e b i r d s were  inspection.  along with  test.  The  killed  females  the b i r d s t h a t  For  t e s t 5 and t e s t 6, t h e same p r o c e d u r e was  with the following m o d i f i c a t i o n s : instead of  three  6 only,  of a l l males.  the density  was  The b i r d s were m i x e d  The t e s t s were t e r m i n a t e d  weeks o f age i n s t e a d  o f s e v e n weeks.  reduced  used  from  40 b i r d s  a t t h e end  And, f o r t e s t t o 36 b i r d s p e r  treatment. At  t h e end o f e a c h t e s t t h e b i r d s were k i l l e d  s e x e d by i n t e r n a l i n s p e c t i o n , analyzed  separately.  and  t h e n t h e m a l e s and f e m a l e s were  15.  DESCRIPTION OF  1.  Thermal  Radiation Brooding  The major a)  EXPERIMENTAL EQUIPMENT  Experiment  e x p e r i m e n t a l s y s t e m may  be d i v i d e d  into  two  systems:  The  controlled  environment  chambers and  their  radiant  heat sources. b)  The  a i r conditioning Two  controlled  and  conveying  system.  environment growth  chambers o f  d e s i g n were u s e d d u r i n g  the e n t i r e  investigation.  chamber was  t o h o u s e up  to f o r t y  constructed  weeks o f a g e . were 4X4  feet  The  overall  surface  the  chambers was  air  was  the  available  a r e a by  3 feet high.  kept a t the lowest dew-point a i r conditioning  by c i r c u l a t i n g  chilled  water  coils  the r e t u r n  partially  carbon d i o x i d e gases  through  and e n t e r i n g  4,  This  T h i s was  accom -  i t through a f i n e water coils.  One,  spray  The  to ensure  temperature;  two,  to  t h e r e t u r n a i r m i x t u r e f r o m f i n e d u s t , ammonia  Throughout 1  a i r entering  a i r f r o m t h e chambers o v e r  a t a c o n s t a n t dew-point clean  three  temperature p o s s i b l e with  p u r p o s e o f t h e s p r a y chamber i s t w o f o l d .  and  The  t h e same t e m p e r a t u r e as t h a t o f t h e c o o l i n g  saturation  at  f o r b o t h chambers.  facilities.  then passing  Each  d i m e n s i o n s o f t h e chamber  i n t h e same c o n d i t i o n  plished  at  inside  birds  similar  (Figure 1).  the thermal r a d i a t i o n  the a i r l e a v i n g  the growth  experiment,  the a i r c o n d i t i o n i n g  chamber was  saturated  tests system  at a constant  16 . FIGURE 1.  SCHEMATIC OF THE A I R CONDITIONING SYSTEM USED WITH THE INFRARED RADIATION EXPERIMENT.  H  N  M  NOMENCLATURE A B C D E F G H I J K L M N 0  R e c i r c u l a t e d a i r from chambers Fibre glass f i l t e r Make-up a i r i n t a k e Damper f o r make-up a i r c o n t r o l C e n t r i f u g a l f a n (3 s p e e d s ) Fan e l e c t r i c motor C h i l l e d water c o o l i n g c o i l Baffle Hot water r e h e a t c o i l C o n d i t i o n e d a i r t o chambers C o n t r o l l e d e n v i r o n m e n t chambers W a t e r r e c i r c u l a t i n g pump Water h e a t e r Water c h i l l e r S p r a y chamber  17 .  temperature  o f about This  bers  through  45°F  (7.2°C).  saturated  flexible  a i r was c o n v e y e d  plastic  ducts.  chambers n e a r c e i l i n g  level  then r e t u r n e d through  flexible  t o t h e g r o w t h cham-  The a i r e n t e r e d t h e  and e x h a u s t e d  below f l o o r  ducts to a f i b r e  level,  glass  filter  b e f o r e p a s s i n g o v e r g a s - f i l l e d wet and d r y b u l b s o f a ture recorder controller. w i t h make up f r e s h a new  The r e t u r n a i r was t h e n m i x e d  a i r before entering  a 3-speed  fan to start  cycle. The  u s e o f t h e low s a t u r a t i o n  (7.2°C) was t o make s u r e t h a t all  tempera-  their  heat requirement  temperature  t h e young b i r d s  from  o f 45°F  got p r a c t i c a l l y  the radiant heat source.  The  r a d i a n t h e a t s o u r c e was composed o f 4 r a d i a n t h e a t p a n e l s o f 750  watts  capacity  The  r a d i a n t h e a t p a n e l s were l o c a t e d  cm) h i g h f r o m of 2.  the c e i l i n g  order  a t about  18 i n c h e s (45.7  and p r o v i d e d a l m o s t  full  two c o n t r o l l e d  environment  experiment  chambers u s e d  were a l s o u s e d  during  with this  but with the radiant heat panels turned o f f .  t o k e e p t h e a i r i n t h e chambers a t some d e s i r e d  a 300 c u b i c  coverage  Experiment  3 feet  was i n s t a l l e d , the  o f 3 k i l o w a t t s p e r chamber.  s u r f a c e a r e a o f t h e chambers.  thermal r a d i a t i o n  experiment,  a total  the wire f l o o r  Warm A i r B r o o d i n g The  the  each,  p e r m i n (8.5 m  replacing  termal r a d i a t i o n  state  -1 min  ) a i r conditioning  the a i r conditioning  experiment.  In  system used  unit with  18.  During and 50  s i x , the  a i r was  percent, while  specified  t h i s warm a i r b r o o d i n g kept  the dry bulb  t h e d e s i g n and chambers u s e d  and  Roberts  development of d u r i n g the  tests  at a constant r e l a t i v e humidity  i n the e x p e r i m e n t a l Staley  experiment,  temperature  was  design section,  varying Table  as  3.  (1969) d e s c r i b e d i n d e t a i l the c o n t r o l l e d  investigation.  environment  five of  DETERMINATION OF THE RADIANT HEAT LOAD DISTRIBUTION IN THE CHAMBER  1.  R a d i o s i t y Method Assumptions In order  analysis  among t h e  following 1.  to perform different  assumptions  A l l the  i s the  equal  Each of  3.  The  the  surfaces  surfaces  emittance of  f o r the  of  the  any  the  exchange  chamber,  (e = a)  the  the  grey,  surfaces  is  f o r a l l wave-  study;  surfaces  surface  chamber a r e  anyone o f  range under  participating  radiosity  of  of  to i t s absorptance  lengths 2.  r a d i a n t energy  a r e made:  participating  that  the  is  isothermal.  i s uniform  along  that  surface. 4.  The  r a d i a t i o n emitted  5.  The  radiation reflected  6.  The  surfaces  are  emitting  f r o m any  f r o m any  separated  and  by  non-isothermal  number o f  surface  may  assumption  is,partially  fulfilled  be  achieved  two,  but  i n a d d i t i o n constant  face  are  required.  the  by  surfaces. nature  desired. by  non-  medium.  into smaller  the degree of accuracy  is diffuse.  a non-absorbing,  s u b d i v i s i o n s w i l l depend on  p r o b l e m and  is diffuse.  surface  non-scattering  A s s u m p t i o n number two ding  surface  meeting  The  of  subdiviThe the  third  assumption  thermal p r o p e r t i e s of  the  number sur-  20.  For mentioned into  the purpose  assumptions,  the w a l l s  o f t h e chamber  the d i f f e r e n t  surfaces  meeting  t h e above  o f t h e chamber were d i v i d e d  t e n s u r f a c e s , e a c h one o f w h i c h  The d e v e l o p m e n t of  of p a r t i a l l y  i s assumed  isothermal.  and t h e i d e n t i f i c a t i o n  a r e shown  i n Figure  number  2.  Theory L e t surface participating  surfaces.  from a l l s u r f a c e s 'j'  i s concave.  'j'  be I j .  from  'j'  Surface  o f t h e chamber Let this  Part of this  surface  be any a r b i t r a r y  'j'  total  surface of the  ' j i s receiving radiation 1  including itself  i f surface  i n c i d e n t r a d i a t i o n on  surface  incident radiation i s reflected  a t a r a t e o f p. I , .  The r e m a i n i n g i n c i d e n t  33 r a d i a n t energy  i s a b s o r b e d by s u r f a c e  A p o r t i o n of the absorbed rate the  EJOTJ  fore,  the t o t a l  surface  area  at a rate  r a d i a t i o n i s emitted  and t h e r e m a i n d e r  chamber w a l l s  'j'  r a d i a n t energy  radiosity.  (B) i s t h e sum o f t h e r e f l e c t e d  energy  In equation  of a surface  the r a d i o s i t y  through  to the a i r stream.  leaving a surface  p e r u n i t t i m e i s termed  form,  back a t a  i s l o s t by c o n d u c t i o n  and by c o n v e c t i o n  oijlj.  'j'  per u n i t  Radiosity  and t h e e m i t t e d 'j'  There-  may  energy.  be  stated as: e.aT.  3 and  f o r a grey-body  Therefore  p.  3 and  equation  =  + p•I  3  3 j  [1]  (e=a).  1-e .  3 [1] becomes,  [2]  globe loco Hons  FIGURE 2.  Development o f the chamber showing s u r f a c e i d e n t i f i c a t i o n number and the 9 l o c a t i o n s o f the globe.  B  =  i 3  But, 'j'  i s the  leaving that  e.aT. D D I j , the  sum  of  i s reaching  of  (1 - e.) J  total  the  e v e r y one  +  4  I.  [3]  3  i n c i d e n t r a d i a t i o n on  r a d i a n t energy, r e f l e c t e d the  p a r t i c i p a t i n g surfaces  surface  1  j .  Or  1  i n equation  surface  and of  emitted, the  chamber  form,  n I . 3 where, G.  3-1  surface  =  Bi G •  E  . i s the  'j'  and  n  =  ^ c o n f i g u r a t i o n f a c t o r between the a r b i t r a r y  the  surface  i n s e r t i n g the  equation  [ 1 ] , we  B •  .'i . 1  number o f p a r t i c i p a t i n g s u r f a c e s the  By  [4]  i=l  value  of  I., i n t o t h e  =  e.oT  4 •* +  of equation  [5] may  p  and  Bi G . • .  E  i=l  Therefore,  written linear  unknown  [5]  J  an  t h e r e are as many  equation  f o r each s u r f a c e . non-homogeneous  of  the  Thus,  form we  algebraic  radiosities.  Results sytem of  i n simple A X  be 'n'  'n'  This written  surfaces.  a system of  equations with  radiosity  n  above d i s c u s s i o n i t i s c l e a r t h a t as  Solution  general  get,  radiosities  obtain  up  enclosure.  3  From t h e  making  -  matrix b  linear  a l g e b r a i c e q u a t i o n s may  be  form: [6]  where  and Our  A  =  matrix  of coefficients,  b  =  column v e c t o r o f c o n s t a n t s ,  X  =  c o l u m n v e c t o r o f unknowns.  problem i s t o f i n d  represents stants  t h e column v e c t o r o f unknowns w h i c h  the r a d i o s i t i e s , given  and t h e m a t r i x  of coefficients.  W i t h some s i m p l e  algebraic manipulation,  [5] may be c h a n g e d t o t h e m a t r i x  d-PlGi-i)  B  t h e column v e c t o r o f con-  form:  l-Pl i-2 2-Pl i_3 3G  G  B  equation  - l l-10 l p  B  G  B  =  £  0  1° 1 T  4  4 " 2 2-l i p  B  G  + ( 1  ~ 2 2-2 P  G  ) B  2" 2 2-3 3 P  G  B  ~ 2 2-10 10  _  P  - 10 10-l r 10 lO_2 2" 10 10-3 3'-p  To  G  B  P  G  B  P  G  B  s o l v e t h e system o f l i n e a r  t e n unknown r a d i o s i t i e s ,  + ( 1  G  B  - l p  the surface  the  chamber must be known.  taken  ) B  2  a T  10  2  = £  l  a T 0  l  f o r the  of surfaces i n  A minimum o f t h r e e  temperatures  l o c a t i o n s o n e a c h s u r f a c e o f t h e chamber were  The. mean o f t h e t h r e e o r more measurements i s  as t h e temperature o f t h a t s p e c i f i c  means a r e i n c l u d e d i n A p p e n d i x A, T a b l e surface area, surface.  10-10  e  temperatures as w e l l as  c o n f i g u r a t i o n f a c t o r between each p a i r  measured.  G  a l g e b r a i c equations  the  at d i f f e r e n t  0  =  surface.  A l along  These  with the  t h e m a t e r i a l a n d t h e assumed e m i t t a n c e  o f each  The ure  a r e easy  figuration  configuration factors f o ra rectangular  t o c a l c u l a t e since only  O p p o s i t e and e q u a l  2.  Perpendicular  configuration  o f con-  r e c t a n g l e s , and a common  edge.  t a b l e s and g r a p h s u s e d  f a c t o r s f o r these  used i n t h i s  t o determine the  two common g e o m e t r i e s a r e  i n most r a d i a t i o n h e a t  equations  Howell  parallel  rectangles with  Equations,  two  types  are present:  1.  available  two b a s i c  enclos-  t r a n s f e r t e x t books.  paper a r e given  The  by S i e g e l and  (1972). For  t h e two e q u a l ,  parallel,  directly  opposed  rectangles, 1/2 * G  1-2  + X /^  TTXY  l+X  + Y  X  2 arctan  + Y  [7] +  where X  =  Al+X  Y  ** G  having  (X a r c t a n X) - ( Y a r c t a n Y )  -  a/c and Y = b / c .  same l e n g t h , each  arctan  F o r t h e two f i n i t e  rectangles  o f the  one common edge, and p e r p e n d i c u l a r t o  other 1 1-2  i —  TTX  X arctan — + Y arctan X  1 - / 2.„2 X + Y arctan  1  y  x  [8] 2„  X'  + \  *  m { [  (  1  +  x  ^ ^ :  (l+X  2  + Y  ^ ]  Y  2  )  [ *<j; y>] 2 2 2 (l+X ) ( X + Y ) x  +  x  For  definition  o f terms r e f e r  t o F i g u r e 3a  For  definition  o f terms r e f e r  t o F i g u r e 3b  1  ^  2  ( I + X  2  2  +  Y  2  2 2  (1+Y ) ( X  + Y  ) )  }  With the  use  relations,  of  equations  the  [7]  flux-algebra  and  or  [8]  along with  angle-factor  configuration  factor reciprocity rule;  configuration  factors  The  The  method w h i c h has  (1970) .  equations and  configuration  the  Using  and  e a s i l y be  r e s u l t s are  surface  ' j  must e q u a l u n i t y ,  f a c t o r s use by  configuration  of  a l l the  to a l l the  1  or  one  the  hundred  factor reciprocity rule is  surfaces  i n equation  the  flux  Sparrow  and  2 and  the  f a c t o r s were  shown i n A p p e n d i x A, sum  and  determined.  dimensions of Figure  r u l e s , the  symmetry  algebra,  a l l the  been e x p l a i n e d  the  The any  can  calculations for configuration  algebra Cess  required  the  Table  calculated  A2.  configuration making up  above  factors  the  from  enclosure  form:  n  This  sum  E  G.  i=l  3  .  i s also  calculating  solved  constants  the  [10]  shown i n T a b l e A2  on  system of the  as  factors  digital  matrix of  are  shown i n A p p e n d i x A,  The  s o l u t i o n of  summarized  in  the  c o e f f i c i e n t s and  the  surface equations  computer.  The  are  and  l i n e a r nonhomogeneous  Table  m a t r i x was  G a u s s i a n e l i m i n a t i o n method w i t h  results  a check f o r e r r o r s  factors.  these c o n f i g u r a t i o n  temperatures, the be  1.0.  configuration  With  can  =  1  i n Table  4.  the  column v e c t o r  A3. o b t a i n e d by  partial  using  pivoting.  The  of  TABLE 4.  Computer o u t p u t f o r t h e v a l u e (B)  i n BTU h r  f t  for  chamber as s p e c i f i e d  in  of the r a d i o s i t y  t h e 10 s u r f a c e s Figure  of the  2.  Surface  Radiosity  Surface  Radiosity  1  210.96  6  166.07  2  152.66  7  151.38  3  172.84  8  166.85  4  165.58  9  174 .48  5  173.44  10  166.29  2.  B l a c k G l o b e Thermometer Method Temperature of r a d i a n t heat  panels  Temperature r e g u l a t i o n o f the r a d i a n t was  critical  heat  panels  b e c a u s e o f t h e f o u r t h power law o f r a d i a t i o n  4 (q  <x T ) .  An o n - o f f  it  was  found  that  in  the s u r f a c e  H o n e y w e l l c o n t r o l l e r was  there  temperatures  of the heat panels.  these f l u c t u a t i o n s , the on-off  replaced  by an e l e c t r o n i c p r o p o r t i o n a l  of  type  first;  were f l u c t u a t i o n s up t o 7°F (4°C)  minimize  resistance  tested  temperature  the r a d i a n t heat panel.  sensor  to  c o n t r o l l e r was c o n t r o l l e r with  cemented to t h e s u r f a c e  With t h i s  a maximum f l u c t u a t i o n o f 4°F  In order  proportional controller  (2.2°C) was  encountered.  28 .  The panel  was  surface  determined  at  difference (1°C).  location  nine  of  by  locations  these  ture  fluctuation  heat  panel  was  temperature  measuring  between  differences  range,  the  sensor  the  The  locations  were w e l l  location  of  equivalent index  thermal  on i t s  measured  within  the  heat  the  2°F  tempera-  sensor  on  Heat  Load  the  immaterial.  MRT,  like  temperature  rather  the  were w i t h i n  Mean R a d i a n t T e m p e r a t u r e (MRT), R a d i a n t and B l a c k G l o b e T e m p e r a t u r e (BGT). The  on  temperature  simultaneously.  i n temperature  Since  the  than  the  and  a real  environmental  effective  similar  terms,  temperature.  indices,  temperature,  i t can  i s an  be  the  environmental  Therefore, not  (RHL)  like  other  measured  directly. The three  of  the  temperature, can  only  be  Few  papers  thermometer studies and  i s a measure  main  environmental  air velocity computed  have and  from  and  Parker  Bond et  the  the  black on  and and  the to  other  namely  globe theory  of  (1955),  of  ambient a i r The  thermometer  thermal  are  effects  radiation.  fields.  Kelly  a l . (1967)  combined  factors,  thermal  i t s application  (1934),  of  and  been w r i t t e n  in agriculture  Warner  (1966)  MRT  the  MRT data.  black  globe  environmental Among  these,  Pereira  notable  Bedford  et a l .  examples.  The b a s i c b l a c k g l o b e temperature copper  sensor placed a t the centre o f a hollow,  sphere.  tennis b a l l response  thermometer c o n s i s t e d o f a  Pereira  e t a l . (1966) c o n s i d e r e d u s i n g a t a b l e  as a b l a c k g l o b e  time  thermometer;  o f the black globe  size  tion of  selection  and t h e r e s p o n s e  the sphere  Bond and K e l l y  also  time  sensor  size  (1934) . o f thermo-  thermometer r e a d i n g ;  o f t h e g l o b e was s e l e c t e d  a r e a t o volume  r a t i o decreases  criterion.  conduction  with  age f r o m  the surface  about  2.6 a t  When t h e e q u i v a l e n t d i a m e t e r  i s taken as t h e diameter  same s u r f a c e a r e a , t h e 2 i n c h  using the surface  F o r young c h i c k s ,  t o 0.8 a t 7 weeks o f a g e .  hatching b i r d .  was d i s c u s s e d by  sizes.  ratio  approximately  of the diameter  t h e p e r c e n t e r r o r due t o h e a t  a r e a t o volume  globe  and Warner  on t h e b l a c k g l o b e  estimated  the b i r d  The e f f e c t  e t a l . (1967) d i s c u s s e d t h e e f f e c t  The s i z e  of  t h e type  i s d e p e n d e n t on t h e a p p l i c a -  temperature  (1955) and B e d f o r d  for various wire  hatch  that the  t h a t o f t h e copper  of the sphere,  desired.  on t h e b l a c k g l o b e  Parker  they  than  of the s i z e  o f the temperature  couple wire  found  thermometer.  The and  they  t h e r m o m e t e r made o f a t a b l e  t e n n i s b a l l was c o n s i d e r a b l y f a s t e r black globe  blackened,  o f t h e sphere  (.5 cm) d i a m e t e r  having the  globe w i l l  t h e same s u r f a c e a r e a t o volume r a t i o Therefore, the 2 inch  thermometer, p a i n t e d w i t h  l a c q u e r , was c h o s e n as t h e s t a n d a r d  as a  (5 cm) d i a m e t e r  two c o a t s o f f l a t to correlate  have  black  black t h e growth  30 .  rate  o f young b r o i l e r s  t o t h e BGT.  Iron-constantan t h e a i r and g l o b e  temperatures.  (24 gauge) i n t h i s steady-state  If  result  i t i s assumed t h a t  neglected, then the heat  s  %  ^  C  t o examine t h e thermometer.  state  conditions,  wires  and t h e s u p p o r t i s  " t ) = £ a  g  O  (T  (q^ = q „ ) ,  4 s  Rankine,  equal  thus  - T 4)  [11]  g  t h e above e q u a t i o n f o r t h e mean r a d i a n t  i n degrees  and i f  l o s s o r g a i n b y r a d i a t i o n must  l o s s o r g a i n by c o n v e c t i o n ,  H  Solving  the thermocouple  the heat  i s related  i s a t equilibrium with i t s  and i t i s u n d e r s t e a d y  conduction through  because of the  o f how t h e MRT  i ti s helpful  the globe  thermocouples  chambers.  of the theory of the black globe  surroundings  T ,  temperature,  t o measure  of the  was n o t c r i t i c a l  a better understanding  the black globe  final  experiment  The s i z e  c o n d i t i o n of the environmental  For to  t h e r m o c o u p l e s were u s e d  temperature,  we g e t , 0 . 25  T  and  s  = 100  i n degrees MRT  h  —  C  „0.5  —  ^g  V  "  4  -  V  ^  4  +  <1*0>  Farhenheit =  T  g  - 459.69  I n t h e above e q u a t i o n s , t h e c o n v e c t i v e h e a t coefficient  [12 ]  4  (h ) f o r d i f f e r e n t d i a m e t e r s  g i v e n by t h e ASHVE R e s e a r c h  transfer  of the globe are  T e c h n i c a l A d v i s o r y Committee on  31  Instruments  (1942).  For the 2 inch diameter  t h e v a l u e o f 0.202. ity  Also,  o f t h e b l a c k g l o b e may  lacquer  (e  paint  =  .95).  i n o r d e r t o compute temperature,  that and  a i r temperature  approaches  zero  case e q u a t i o n e  which  g  implies T  black  [12] i t may  and t h e a i r v e l o c i t y  i t may  t h e BGT  be s e e n  from  i f the d i f f e r e n c e  approaches  the r a d i a n t radiation, Kelly  a  (T s  between  zero o r the v e l o c i t y conditions).  [12] BGT  of the a i r  In e i t h e r  4  -  T  4  g  %  )  =  O  h i Jo ]  that, =  T . g  energy.  i s a measure o f t h e e q u i v a l e n t  Also,  t h e MRT  energy  incident  referred  t o as  (1955),  near the  equation  the surrounding s u r f a c e s w i t h which the animals radiant  that  [12] becomes  The MRT  ing  be s e e n  measured v a l u e s of the g l o b e  (calm e n v i r o n m e n t a l  s  of  be t a k e n a s t h a t o f t h e f l a t  the a i r temperature  t h e MRT approaches  suggest emmissiv-  By e q u a t i o n  Also,  they  i n t h e above e q u a t i o n s , t h e  t h e MRT,  globe are r e q u i r e d .  globe,  i s a direct  on t h e a n i m a l s . r a d i a n t heat  i s proportional  load  temperature are exchang-  indicator of  This  incident  (RHL) by Bond and  t o t h e f o u r t h power o f t h e  MRT,  or 4 RHL The MRT from  may  =  a T  g  .  be c a l c u l a t e d  [14 ] using equation  t h e nomograph, F i g u r e 4.  [12] o r r e a d  directly  DIFFERENCE BETWEEN GLOBE .AND AIR TEMPERATURE ( t g - t j , °F.  \ \  1  ~ 2  o  tn w s o S  \ \  \  \  \  \ s  »  tt  \ \  jo >  13  i  tn a S3-  \  \  a  cn  V  \ \  \  r c. o v • TJ co cn M tn o z c O  \  \ \  a H  HfJ  \  o  ?J  rc  ll  II  o  o  \  o.  fo  I  M  H  \ \  sr  Ul  z  D  H >  tt W  i  •2 (to  o o  v>  S.  l  \  l  ^  n  Co  o  00  o  o! MEAN PADT.ANT TEMPERATURE, °F  f  In o r d e r t o check  the v a r i a t i o n s  chamber t h e MRT was d e t e r m i n e d surface area. inches  a t nine l o c a t i o n s * of the f l o o r  The c e n t r e o f t h e g l o b e was k e p t a t a b o u t  (33 cm) f r o m t h e h e a t p a n e l s d u r i n g  ments.  i n RHL i n s i d e t h e  a l l t h e n i n e measure-  The a i r t e m p e r a t u r e was measured a t a b o u t  (5 cm) f r o m  t h e g l o b e by a s h i e l d e d  13  2 inches  i r o n - c o n s t a n t a n thermo-  couple. The determine tion.  to r e l a t e  the a i r v e l o c i t y  range  encountered  the cooling  where  i n t h e chamber.  F/0 (t - t ) - a m a air  F  Kata  0  average  loca-  o f t h e low  The e q u a t i o n u s e d was g i v e n by  velocity  air  a and b  =  constants.  temperature  time i n sees o f the Kata  The F f a c t o r  thermometer  ( c o o l i n g range  v a l u e s o f a and b a s w e l l  Refer to Figure  t h e r m o m e t e r by t h e  f o r the non-silvered  e x p e r i m e n t was 473  t , a r e g i v e n by Bruce  thermometer  i n °F  F i s s u p p l i e d w i t h each  i n this The  i n fpm  cooling  =  employed  [15]  factor  t  Kata f a c t o r  " 2 I  /b  mean t e m p e r a t u r e i n °F  m  manufacturer.  *  t h e b l a c k globe a t each  time t o t h e a i r v e l o c i t y  V  t  ture,  near  (1960) a s ,  V  The  r a t e o f a K a t a t h e r m o m e t e r was u s e d t o  The K a t a t h e r m o m e t e r was c h o s e n b e c a u s e  velocity  Bruce  cooling  a s t h e mean  100 -  tempera-  (1960) f o r low v e l o c i t i e s  2, on page 21.  95°F)  (< 180 f p m ) .  In t h i s  experiment  0 . 1 1 1 ""  (97.7-ta) 0.0158  V  the v e l o c i t y  equation  2  L was  used.  Results The tures,  mean r a d i a n t  loads f o r the nine  and g l o b e  temperature  o f 136°F  temperatures  t h e measured  f o r a constant  the globe.  is  an i n c r e a s e i n g l o b e  size. 20.3  cm) g l o b e s  radiometer 7°F  Bond and K e l l y  They a l s o  f o r the s i z e  (1955) have shown t h a t  temperature  indicated  heat  (58°C).  A c o r r e c t i o n was r e q u i r e d t o a c c o u n t of  tempera-  locations are  i n A p p e n d i x A, T a b l e A6, a l o n g w i t h  temperatures  panel  air velocities,  and r a d i a n t heat  tabulated air  computed  that  with  there  i n c r e a s e i n globe  t h e 6 and 8 i n c h  (15.2-  gave t h e c l o s e s t v a l u e s t o t h e s p h e r i c a l  readings.  A maximum  temperature  (3.8°C) b e t w e e n t h e 2 and 6 i n c h g l o b e  difference of t h e r m o m e t e r was  reported. The to  equivalent radiant  the standard  6 inch  heat  load values corrected  (15.2 cm) d i a m e t e r  black  globe  t h e r m o m e t e r a r e shown i n t h e l a s t row o f T a b l e A6. 3. C o m p a r i s o n o f R a d i a n t H e a t L o a d R e s u l t s O b t a i n e d by t h e R a d i o s i t y Method and t h e B l a c k G l o b e Thermometer Method I n o r d e r t o compare t h e r e s u l t s it  i s necessary  to calculate  the incident  the globe u s i n g t h e p r e d i c t e d r a d i o s i t i e s  o f t h e two methods radiation  (RHL) on  o f t h e chamber  walls of  and h e a t p a n e l s .  the r a d i a t i o n  chamber t h a t  This  streaming  i s reaching Let  incident  i s t h e sum  away f r o m e a c h s u r f a c e  of the  the globe.  this incident  then i n equation  radiation  radiant  e n e r g y be t e r m e d  I ,  form, n  I  I  = g  i  =  G.G . (n = 10) i g-i  1  [17]  where n G  Z  .  =  1  =  configuration  i=l G  . Q i —  The the of  factors  of the  1  between t h e g l o b e and  o f chamber f o r e a c h o f t h e n i n e  t h e symmetry r e l a t i o n s and G  .  The location  =  -.— a r c s i n  4u  (A^, A^, A^, B.^, B^,  surfaces  r  l+X  configuration  locations*  2  factors  flux-algebra.  2  equation  [18]  2 2  +Y +X Y  f o r t h e g l o b e a t any  B^, C^, C^,  o f t h e chamber a r e t a b u l a t e d Using  C^)  t o any o f t h e  i n Appendix A,Table  [17] and t h e c o n f i g u r a t i o n  of  T a b l e A4, t h e t h e o r e t i c a l i n c i d e n t  at  e a c h l o c a t i o n may  * **  'i  t h e g l o b e were d e t e r m i n e d by t h e u s e o f e q u a t i o n [ 1 8 ] ,  along with  ten  configuration  ten surfaces  f a c t o r between t h e  g l o b e and s u r f a c e chamber.  y  be c a l c u l a t e d .  Appendix A F o r d e f i n i t i o n o f terms r e f e r  factors  r a d i a t i o n on t h e g l o b e The r e s u l t s a r e shown i n  to Figure  3c,  A4  A p p e n d i x A, T a b l e A 5 . For  t h e purpose o f comparison,  experimental  r a d i a n t heat  of  i n t h e chamber, a r e r e p r o d u c e d  the globe  experimental  load values  t h e p r e d i c t e d and  values of theincident  (RHL), u s i n g t h e b l a c k g l o b e T a b l e A6*; are  taken  than  the experimental  t h e e n c l o s u r e , then  lower  than  The  This implies,  to design  tool,  surface l o a d , as  F o r most d e s i g n  therefore, the r a d i o s i t y  i fa digital  computer  method i s  i s accessible.  t o change t h e p r o p e r t i e s o f t h e s u r f a c e s  distribution  with  i norder t h e most  t o o b t a i n an efficient  utilization.  In the p r e s e n t i n r a d i a n t heat  experiment  t h e p r e d i c t e d maxiumum  l o a d between l o c a t i o n s ,  o f t h e chamber, was 4.0 BTU h r "  1  f t "  2  a t the f l o o r  (12.6 Wm" ), a s 2  -1 compared (19.2 *  t o t h e m e a s u r e d maxiumum v a l u e o f 6.1 BTU h r  Wm~ ). 2  Appendix A  purposes  main a d v a n t a g e o f t h e r a d i o s i t y method i s  even r a d i a n t energy  level  environmental  t h e r m o m e t e r w o u l d be a b o u t 5  as w e l l a s t h e shape o f t h e s t r u c t u r e ,  difference  such  l o a d on c e r t a i n  the required value.  the a b i l i t y  energy  method  i f the  t h e a c t u a l mean r a d i a n t h e a t  i sacceptable;  a valuable design  radiant  from  -2 -2 f t (27.75 Wm ) higher  r a d i a n t heat  by t h e b l a c k g l o b e  error  probably  mean v a l u e .  method was t o be u s e d  chambers f o r a s p e c i f i c  this  o f t h e globe  5 shows t h a t t h e p r e d i c t e d mean r a d i a n t h e a t  -1 i n t h e chamber was 8.8 BTU h r  percent  r a d i a n t energy  5. The  t h e r m o m e t e r method, a r e t a k e n  load  determined  i n Table  T a b l e A5*.  Table  of  locations  and t h e p r e d i c t e d v a l u e s u s i n g t h e r a d i o s i t y from  radiosity  f o r the nine  -2 f t  TABLE  5.  Predicted  and e x p e r i m e n t a l  distribution  A2  (BTU h r  i n the environmental  Location of the globe  Al  RHL  BI  A3  f t )  chamber.  i n t h e chamber B3  B2  C2  Cl  C3  Predicted  170 .9 171.6  171.0  174. 0 174 .9 174 .2 173 .3 174 .4 173 . 5  Experimental  163 .8 161.8  166.2  162. 7 163 .3 167 .9 163 .6 163 .3 166 .3  Difference  7 .1  9.8  4.8  11. 3  11 .6  6 .3  9 .7  11 .1  7 .2  %  4 .3  6.0  2.8  6. 9  7 .1  3 .7  5 .9  6 .7  4 .3  Error  P r e d i c t e d mean RHL i n t h e chamber = 173.1 B T U h r = 545.88 Wm  f t  -2  -1 -2 E x p e r i m e n t a l mean RHL i n t h e chamber = 164.3 B T U h r f t = 518.13 Wm -2  P r e d i c t e d maximum d i f f e r e n c e b e t w e e n l o c a t i o n s i n t h e chamber = 4,0 BTU h r f t (12.6 Wm ) 1  -  2  -2  E x p e r i m e n t a l maximum d i f f e r e n c e b e t w e e n l o c a t i o n s i n t h e chamber = 6 . 1 BTU h r f t (19.2 Wm" ) -  1  -  2  2  Maximum d i f f e r e n c e b e t w e e n e x p e r i m e n t a l s  11.6  BTU h r  -  1  f t "  2  (36.58  Mean d i f f e r e n c e b e t w e e n e x p e r i m e n t a l = Mean p e r c e n t =  8.8 B T U h r ^  1  f t "  2  164.3  x  1  0  Q  (27.75  _  5  _  Wm" ) 2  and p r e d i c t e d  error 17 3.1 - 164.3  and p r e d i c t e d  3  %  Wm ) -2  RHL  RHL  DATA ANALYSIS  1.  General (a)  Models  A n a l y s i s of v a r i a n c e of The  using  the  w e e k l y body w e i g h t s  following statistical Y  the e x p e r i m e n t a l  = y + d  i j  ±  + e  and  data  g r o w t h r a t e s were  analyzed  model: [19]  ± j  where, Y^. = t h e w e e k l y body w e i g h t o r g r o w t h r a t e o f b i r d ' j ' i n treatment 'i', 1  y  = the  t r u e p o p u l a t i o n mean,  d^  = the  fixed  = i n d e p e n d e n t random n o r m a l d e v i a t e s mean z e r o a n d v a r i a n c e a ,  i  = t r e a t m e n t s = 1-3 f o r a l l t e s t s t e s t 4, where i = 1, 2  j  = 1 -  1  In the case  order  F o r t r a n p r o g r a m was  of  = individuals within to perform  the a n a l y s i s  of  (1960),  chapter  For  the e s t i m a t i o n of  t h e S c h e f f e ' s method was confidence  10.  interval  used,  treatment,  the  the  of  a  analysis  single  degree  confidence  Brownlee  f o r any  for  the d a t a f o r  w r i t t e n f o l l o w i n g the procedure  Brownlee  The  except  treatments.  number o f o b s e r v a t i o n s p e r  f r e e d o m c o n t r a s t s , and  intervals,  with  2  e  of unequal  o u t l i n e d by  'i',  e.. 1  and  e f f e c t of treatment  (1960).  c o n t r a s t 9,  where  k  e  =  z c, i=i  with  an e s t i m a t e d  120]  y. 1  variance 2 V[@]  = a  z e  k  z i=l  (Ci/rii)  [21]  39  k E i=l  and w i t h t h e r e s t r i c t i o n , Then,  the Scheffe's  limits  S  [22]  f o r the contrast are +  where,  = 0.  S (V [ 9 ] ) 0  =  (k-1) F _  k  =  number o f t r e a t m e n t s ,  v  =  degrees o f freedom  2  ±  ( k - 1 , v)  a  (b) R e g r e s s i o n a n a l y s i s Multiple  linear  r  5  2 3  ]  [24]  f o r the error  term,  of the experimental data  r e g r e s s i o n was u s e d t o d e t e r m i n e t h e 2  coefficient  of determination, R .  were f i t t e d  to the infrared  Three m a t h e m a t i c a l models  brooding experimental data.  These  models a r e : i)  + h  X_ + b  Y  =  a  Y  =  3-week body w e i g h t  i n grams,  Xj_ =  1-week body w e i g h t  i n grams,  X  =  1-2 week g r o w t h  rate,  X-j =  2^3 week g r o w t h  rate  Q  1  ]  2  X  2  + b  3  X  [25]  3  where,  and  2  a , b , b „ and b , a r e m u l t i p l e o 1 I ~> ii)  Y  1  linear  =  a  =  3--week body w e i g h t i n grams,  Q  + b{ X-L + b '  regression  X  coefficients  [26]  4  where, I  and  Y  1  X^ =  l^week body w e i g h t  X^ =  1--3 week g r o w t h  a ^ , b j and b ^ a r e m u l t i p l e  linear  i n grams,  rate, regression  coefficients.  40.  iii.)  Y"  ~  +  X  y"  f=  7^-week body w e i g h t i n grams,  X-^  =  1-week body w e i g h t i n grams,  X  ?=  1^3 week g r o w t h  rate,  =  3-7 week g r o w t h  rate,  x  +  X  +  2  X  [27]  5  where,  2  X^ and  a " , b " , b o and b , a r e m u l t i p l e o For  first at 2.  t h e warm a i r b r o o d i n g  two m o d e l s were u s e d , s i n c e  three  weeks o f age r a t h e r  Results a)  and D i s c u s s i o n  Infrared  brooding  variance  are included  analyses the  New  two t a b l e s , heat  lamp  Chamber  (high  (Table  Hampshires  The a v e r a g e  their  i n A p p e n d i x B, T a b l e B2.  In  brooding).  of variance  B l ( b ) ) show t h a t  of  t h e t r e a t m e n t s were a s f o l l o w s :  radiation level  analyses  analyses  and t h e 3 t o 7-week p e r i o d w i t h  (low r a d i a t i o n l e v e l  The  Variance  as t h e average growth r a t e s f o r  Chamber 1 2  terminated  t h a n s e v e n weeks.  are included  (conventional  only the  experiment  as w e l l  of variance  above m e n t i o n e d  Floor  t h e e x p e r i m e n t was  i n A p p e n d i x B, T a b l e B I .  1 t o 3-week p e r i o d  coefficients,  experimental data,  a v e r a g e w e e k l y body w e i g h t s and t h e i r  weekly growth r a t e s the  regression  of the Analyses of  TEST 1: The  linear  brooding). brooding). o f a v e r a g e w e e k l y body  f o r the f i r s t  a v e r a g e w e e k l y body w e i g h t s o f b i r d s  three  reared  weights  weeks o f a g e , t h e i n t h e two chambers  41.  were s i g n i f i c a n t l y weekly also  that  average weekly level  under  level  to d e t e c t  level  t h e above d i f f e r e n c e  average weekly difference  brooded  The  was  body w e i g h t s  (Table  i n chambers and b i r d s during  when t h e c h i c k s  the b i r d s  advantage they  started by  brooded  brooded  the l a t e r reared  (though  of birds  Bl  brooded  o f the  in  analysis  variance  (b)) i n d i c a t e s  on t h e f l o o r ,  became (4  to the f l o o r . to m a i n t a i n  i n growth  birds,  rate.  This  o f average growth  as  that birds  to 7  i n t h e chamber f o r t h e  as t h e s e c o n d week o f g r o w t h  the analyses of v a r i a n c e  B2 ( b ) ) .  high  weeks o f t h e t e s t  i n t h e chambers  a depression  as e a r l y  the  t o t h e ^random  i n body w e i g h t s o v e r t h e f l o o r  suffered  brooded  body w e i g h t s , between  t h r e e weeks o f age were t r a n s f e r r e d of  the  However,  i n the  failure  due  under  Furthermore, the analyses of  i n average weekly  non-significant  1).  in  a c c o u n t e d f o r more t h a n 9 8 p e r c e n t o f t h e  sums o f s q u a r e s .  brooded  chamber.  difference  2) and b i r d s  (chamber  than t h a t  average  T a b l e BI,  brooded  25 grams h i g h e r  non-significant)  v a r i a t i o n s which  weeks),  significant  (chamber  of r a d i a t i o n  chamber was  low r a d i a t i o n  the  no  than the  the f l o o r .  body w e i g h t s between b i r d s  level  statistically  of  t h e r e was  on  7-week body w e i g h t o f b i r d s  radiation  total  < 0.01)  reared  of thermal r a d i a t i o n  t h e low  average  the  (probably  body w e i g h t s o f b i r d s  indicates  high  higher  first  The  failure  their implies  that  depression indicated  rates  (Table  It  i s important  to notice  average d i f f e r e n c e i n the f i r s t the  chicks  reared  the highly  significant  week g r o w t h r a t e  i n t h e chambers.  i n favour of  The a v e r a g e f i r s t  week  g r o w t h r a t e s were 2.62 and 1.9 5 f o r chambers  and f o r f l o o r  birds,  the growth  respectively  (Table  B2).  But, during  (1 t o 3) and (3 t o 7) weeks, t h e f l o o r higher  b i r d s had s i g n i f i c a n t l y  ( p r o b a b i l i t y < 0.01) g r o w t h r a t e s  growth r a t e s  f o r birds reared  than the corresponding  i n t h e chambers.  Even though the  a v e r a g e g r o w t h r a t e o f b i r d s b r o o d e d i n t h e chambers 2.77  compared  birds  reared  t o 3.0 8 f o r f l o o r i n chambers  birds  3-week body w e i g h t o v e r f l o o r  decline  i n growth r a t e  the  f o rbirds  3 t o 4-week p e r i o d .  transfer  o f t h e young  This  chicks  average growth r a t e s  and  2.67 f o r chamber and f l o o r the reduction  birds.  This equal  to the f l o o r ,  during  were 2.38 The c a u s e  t h e 3 t o 4-week  period  f r o m chambers t o  after a period  adjusted  during  to the f l o o r .  birds, respectively.  i n growth r a t e  However, i t seems t h a t  chambers  was  f o r t h e 3 t o 4-week p e r i o d  t i o n o f one week, t h e b i r d s , w h i c h h a v e b e e n the  highest  corresponded to the  was due t o t h e s u d d e n e n v i r o n m e n t a l change floor.  The  f r o m t h e chambers  The  of  a highly'significant  i n t h e chambers  period  was  f o r t h e same p e r i o d , t h e  f i n i s h e d with  average  periods  of acclimatizatransferred  from  t o t h e new e n v i r o n m e n t .  a d j u s t m e n t t o t h e new e n v i r o n m e n t i s i n d i c a t e d by t h e average weekly growth r a t e s  between  4 and 7 weeks,  (Table  during  B2)..  the growth  period  The e q u a l i t y o f w e e k l y  growth r a t e s  during  t h e 4 t o 7-weeks p e r i o d  implies  significance  o f t h e d i f f e r e n c e i n t h e 3 t o 7-week  that the  period  growth r a t e i n f a v o u r o f t h e f l o o r significant  difference  b i r d s , was m a i n l y  due t o t h e  i n t h e 3 t o 4-week g r o w t h r a t e .  The  h i g h r e d u c t i o n i n g r o w t h r a t e d u r i n g t h e 3 t o 4-week p e r i o d i s an  indication  the  floor  was c r i t i c a l .  to minimize transfer second  that the t r a n s f e r  physical  period.  and  chamber  t h e chambers t o  In the subsequent t e s t s ,  and e n v i r o n m e n t a l  c a r e was  birds  during the  i n t h e two chambers  ( T a b l e B 2 ) , r e m a i n s t o be i n v e s t i g a t e d .  confidence  interval  2 birds versus  S c h e f f e ' s method.  taken  s t r e s s e s during the  week o f g r o w t h o f b i r d s  to floor The  from  The c a u s e o f t h e low g r o w t h r a t e ,  and t h i r d  compared  of birds  floor  In equation  f o r t h e c o n t r a s t , chamber 1  b i r d s may be e s t i m a t e d  form  during  t h e c o n t r a s t may be  expressed as, /\  e  =  /\  \i  y - 2y  +  1  2  3  where, ^1'  For  a n c  ^ ^3  a  t i m a t e s °f t h e t r u e mean o f chamber 1, chamber 2, and f l o o r birds respectively.  r  e  t h e 1-week body w e i g h t , 0  with  =  e s  we  have  89 + 89 - 2(74)  =  30 grams,  an e s t i m a t e d v a r i a n c e V V  By  ^2'  [0]  =  [(l)  2  '+ ( l ) + 2  (-2) ] 2  -  16.33  equation [24], S  then,  2  =  by e q u a t i o n 9  =  6.24; [ 2 3 ] , t h e 95 p e r c e n t 30+10  grams.  confidence  limits are:  Similarly  f o r t h e 2-week body w e i g h t we g e t , 9  =  36+21  grams,  and, f o r t h e 3-week body w e i g h t , 9  =  The difference level  35+33  grams.  95 p e r c e n t c o n f i d e n c e  (chamber  (floor)  manner.  have  =  u  2  - -u . 3  =  15+6  grams.  =  20+9  grams.  f o r t h e 3-week body w e i g h t , 9  =  20+11  grams.  TEST  2:  U.B.C.  Broilers  The a v e r a g e w e e k l y body w e i g h t s and t h e i r v a r i a n c e a r e shown i n A p p e n d i x B, T a b l e B3. weekly growth r a t e s the  We  t h e 2-week body w e i g h t , 9  And  radiation  t h e 1-week body w e i g h t , 9  For  the high  2) and t h e c o n v e n t i o n a l b r o o d i n g i n a similar  f o r the  contrast, 9  For  limits  i n w e e k l y body w e i g h t s between  t r e a t m e n t s , may be c a l c u l a t e d the  level  as w e l l  1 t o 3-week p e r i o d  analyses  The a v e r a g e  as t h e average growth r a t e s f o r  and t h e 3 t o 7-week p e r i o d  and t h e i r  o f v a r i a n c e a r e shown i n A p p e n d i x B, T a b l e B4.  thesej two t a b l e s , Floor  analyses  t h e t r e a t m e n t s were  as f o l l o w s :  ( c o n v e n t i o n a l pen b r o o d i n g ) .  Chamber 1  (high r a d i a t i o n  Chamber  (low r a d i a t i o n  2  level level  brooding). brooding).  In  The  a n a l y s i s of variance  of the average  body w e i g h t s i n d i c a t e d t h a t c h i c k s b r o o d e d were s i g n i f i c a n t l y brooded with with  (probability  the conventional  the r e s u l t s  highly  superior  of test  2.  system.  w e i g h t b e t w e e n t h e two l e v e l s of  the high  level  During steady  This  i s i n agreement 1, t h e r e was a  of thermal r a d i a t i o n i n favour  t h e f o l l o w i n g weeks o f t h e t e s t ,  (Table  chicks  (11 grams) i n 1-week body  rates of b i r d s reared  as i n d i c a t e d by t h e a v e r a g e w e e k l y  during  < 0.01) t h a n  (chamber 1 ) .  d e c l i n e i n growth  variance  week  i n t h e two chambers  But, u n l i k e t e s t  significant difference  first  B4).  This  growth  i n t h e chambers,  rate analyses of  d e c l i n e i n growth  t h e s e c o n d week o f g r o w t h ,  t h e r e was a  rates,  starting  was m a i n l y due t o a d i s e a s e  ( p o r o s i s ) w h i c h was o b s e r v e d , i n t h e chambers o n l y ,  early  during  diseased  t h e s e c o n d week o f g r o w t h .  b i r d s were n e g l e c t e d Using level  limits  from the r e p o r t e d  Scheffe's  © = For  /N  on t h e f l o o r ,  =  /\  +v ~ v2  3  weight,  75+17  t h e 2-week body =  /\  2  t h e 1-week body  0  confidence  f o r t h e c o n t r a s t between c h i c k s b r o o d e d  We have t h e c o n t r a s t ,  0  analyses.  method, t h e 95 p e r c e n t  chambers and c h i c k s b r o o d e d  For  Dead and v i s i b l y  grams.  weight,  28+34  grams.  i n the  may be c a l c u l a t e d .  And  f o r t h e 3-week b o d y 0  =  -44 + 53  Similarly, for  the difference  of  radiation  We  have  u  t h e 1-week =  i n weekly  1  =  =  The  and in as  level  between  treatments  may  limits high  be  level  constructed.  3  body  weight,  4 3 + 1 0  grams.  weight,  1 9 + 2 0  grams.  - 8 + 3 1  weight, grams.  TEST  variance  weekly  weights,  1) a n d f l o o r  f o r t h e 3-week b o d y 0  of  body  confidence  - u -  t h e 2-week b o d y 9  And  t h e 95 p e r c e n t  (chamber  =  9 For  grams.  the contrast,  e For  weight,  3:  average weekly a r e shown  growth  rates  body  Broilers  weights with  i n A p p e n d i x B, T a b l e  as w e l l  t h e a v e r a g e 3 t o 7-week A p p e n d i x B, T a b l e  U.B.C.  their  B5.  analyses  The a v e r a g e  a s t h e a v e r a g e 1 t o 3-week  period  period  growth  rates  are included  B6.  In these  tables  the treatments are  heat  lamp  follows:  Floor  (conventional  Chamber  1  (low r a d i a t i o n  Chamber  2  (high  From Table  B 5 , we  radiation  level level  t h e weekly body can conclude:  brooding). brooding). brooding).  weight analyses  of variance,  First,  on t h e a v e r a g e , week one and week two body  weights o f the c h i c k s brooded significantly  higher  i n t h e two chambers were  (probability  p o n d i n g body w e i g h t s o f b i r d s Second, significant  Third,  i n t h e chambers and t h e f l o o r  brooded  under  2) were s i g n i f i c a n t l y  than the weekly  body w e i g h t s  radiation  (chamber 1 ) .  level The  confidence  Scheffe's  are,  For  + y  =  2  - 2y  =  =  =  =  weight,  grams.  grams.  weight,  22+40  grams.  weight,  -5+57  grams.  f o r t h e 5-week body 0  3  weight,  26+24  21+77  weight,  grams.  (probability brooded  a t t h e 95 p e r c e n t  S\  19+13  t h e 4-week body ©  And,  ±  t h e 3-week body 0  For  V  t h e 2-week body 0  For  =  t h e weekly  thermal r a d i a t i o n  higher  f o r the c o n t r a s t  f o r t h e 1-week body 6  high  f o rbirds  limits  /\  0  lamps.  t o week s e v e n , t h e r e was no  f r o m week two t o week f i v e ,  f o r birds  (chamber  under h e a t  between t h e a v e r a g e v a l u e o f w e e k l y  body w e i g h t s o f t h e b i r d s  weights  brooded  f r o m week t h r e e  difference  < 0.01) t h a n t h e c o r r e s -  birds body level  < 0.01)  u n d e r low  l e v e l of  48 .  S i m i l a r l y , the'Scheffe s l i m i t s  f o r the d i f f e r e n c e i n  1  w e e k l y body w e i g h t s , between radiation  (chamber 0  for  =  -  =  -  3  8+7  grams.  20+14  grams.  31+23  grams.  t h e 4-week body w e i g h t , 0  And  y  treatments, are:  t h e 3-week body w e i g h t , ©  For  -  of thermal  t h e 2-week body w e i g h t , 6  For  2  2) and f l o o r  level  t h e 1-week body w e i g h t , 9  For  y  the high  =  24+33  grams.  f o r t h e 5-week body w e i g h t , 0  =  38+45  grams.  The a n a l y s e s o f v a r i a n c e o f t h e mean w e e k l y g r o w t h rates the  f o r the f i r s t  same  trend  the h a t c h  period  as t h e p r e v i o u s  t o 1-week g r o w t h r a t e  chambers, was h i g h e r period  t h r e e week  of t h e i r  compared  contemporaries  two t e s t s . of birds  reared  indicated  On t h e average,-  reared  t o t h e growth r a t e  t h e s i t u a t i o n was r e v e r s e d d u r i n g growth  o f growth,  i n t h e two f o r t h e same  on t h e f l o o r .  the f o l l o w i n g  However,  two weeks o f  (Table B6). It  as i n t e s t  i s of importance to mention that 2 was o b s e r v e d  again within  chambers, b u t t o a l e s s e r d e g r e e .  t h e same d i s e a s e  the b i r d s  i n the  TEST 4: The  shown i n A p p e n d i x B,  weekly growth r a t e s , the g r o w t h r a t e s and A p p e n d i x B,  Table  Table  1 t o 3-week and  their  B7.  the  analyses  The  average  3 t o 7-week  their  analyses  of v a r i a n c e are  B8.  In these  t a b l e s , the  shown i n  two•treatments  as f o l l o w s :  Floor  (conventional heat  Chamber  2  This  t e m p e r a t u r e as  final  globe  the m o d i f i e d  globe  tests,  whole f i r s t  week o f  the  r a t e o f chamber b i r d s .  88°F  chambers was  The  the  floor,  Therefore, (31.1°C),  t e s t had  an  reverse  fore,  the  during  the  opposite  a  result  drop. t o 1-week significantly while  in  maintaining  Table  adverse  2,  effect  situation The  variance  i t i s probably  for on  occurred  situation  birds, while occurred.  s e c o n d week o f g r o w t h , a b l a c k  globe  this a  the growth again  chamber b i r d s had  1 t o 2-week g r o w t h r a t e t o f l o o r tests,  the  70°F  of  average hatch  i n the  s e c o n d week o f g r o w t h .  the p r e v i o u s  but  and n o n - s i g n i f i c a n c e .  temperature  the  reversed.  temperature of  superior  and  t h a t o f b i r d s b r o o d e d on  s i t u a t i o n was  the  test,  r a t e of black  black globe  during  tests,  i n c r e a s e d from  trend of s i g n i f i c a n c e  growth r a t e o f b i r d s brooded  the  i n the p r e v i o u s  black  (26.7°C)).  In the p r e v i o u s  test  same s t a r t i n g  average weekly growth r a t e a n a l y s e s  alternating  than  the  t e m p e r a t u r e was  trend i s unique to t h i s  higher  brooding).  level,  globe  The show an  lamp  (high r a d i a t i o n  (21°C) to"80°F  of  Broilers  a v e r a g e w e e k l y body w e i g h t s and  of v a r i a n c e are  are  U.B.C.  a  in There-  50 .  t e m p e r a t u r e o f 84°F  (28.9°C), T a b l e  2, was b e t t e r  t h a n a b l a c k g l o b e t e m p e r a t u r e o f 82°F 76°F  (24.4°C) d u r i n g  Finally, in  the l a t e r  the present t e s t  f o r growth  (27.8°C) d r o p p i n g t o  p a r t o f t h e week, T a b l e 1.  indicated  no s i g n i f i c a n t  difference  t h e 2 t o 3-week g r o w t h r a t e between chamber and f l o o r  birds,  while previous  during  t h e t h i r d week o f g r o w t h  Therefore, the  tests  showed a s u p e r i o r  t e m p e r a t u r e o f 73°F  b)  i n favour of f l o o r  a b l a c k g l o b e t e m p e r a t u r e o f 80°F  t h i r d week gave s l i g h t l y  better  results  (22.8°C) d r o p p i n g  rate  birds.  (26.7°C)  during  than a globe  t o 70°F  Warm A i r B r o o d i n g E x p e r i m e n t : TESTS:  growth  (21°C).  Commercial  Broilers  5 and 6  The mean w e e k l y body w e i g h t w i t h  analyses of  variance  for test  included  i n A p p e n d i x C, T a b l e s C l , C3, C5 and C7, r e s p e c t i v e l y .  The  5 and f o r t e s t  their  average weekly growth r a t e s  growth r a t e s w i t h  their  6, f e m a l e s and m a l e s , a r e  as w e l l  a s t h e 1 t o 3-week  analyses of variance  are also  included  i n A p p e n d i x C, T a b l e s C2, C4, C6 and C8, r e s p e c t i v e l y . The body w e i g h t a n a l y s e s o f v a r i a n c e i n d i c a t e d significant of  difference  the b i r d s  on t h e f l o o r .  reared  difference only.  i n t h e 1-week body w e i g h t s i n f a v o u r  i n t h e chambers compared  T h i s d i f f e r e n c e was p r e s e n t  f o r fc?oth s e x e s .  a  But, during  the f o l l o w i n g  to birds  reared  i n b o t h t e s t s and two weeks, t h e  i n body w e i g h t s r e m a i n e d s i g n i f i c a n t  f o r females  It  i s important  t o note the s i g n i f i c a n t d i f f e r e n c e i n  3-week body w e i g h t between t h e two chambers. was i n f a v o u r note t h a t tests for  of b i r d s  t h e above t r e n d  and  f o r both  growth r a t e s  birds  chambers  that  this  period,  5 were  3.39  and 3.12  chamber  6,  The a n a l y s e s  f o r chamber  t h e y were  could  3.19  2 was  Resui.ts , a)  smaller  tables  o f t h e two  the t h i r d  week. i n test  2, r e s p e c t i v e l y ;  f o r chamber  since  1 and  t h e two  due t o t h e f a c t than the feeder  of the feeder  the feeder  Of t h e L i n e a r  Infrared brooding The s i m p l e  tion  these  conditions.  that the i n chamber  1.  d i d not i n f l u e n c e the  t h e e a r l y s t a g e o f g r o w t h b u t , as t h e f e e d  sumption i n c r e a s e d , 3.  Also,  a t t h e same e n v i r o n m e n t a l  feeder  during  that of birds i n  The c a u s e o f t h e d i f f e r e n c e i n  d i f f e r e n c e was  birds  the growth r a t e of  1 and chamber  n o t be e n v i r o n m e n t a l ,  the c a p a c i t y  tables  o f the male b i r d s  and 2.86  The c a u s e o f t h i s i n chamber  during  the growth r a t e s  chambers were p r a c t i c a l l y  Obvicusly,  behind  i n both  of variance  indicated that  to f a l l  difference  important to  c o n s i s t e n t l y present  significant  2, r e s p e c t i v e l y .  growth r a t e s  I t i s also  the d i f f e r e n c e i n growth r a t e s  become h i g h l y  i n test  1.  t h e s e c o n d week o f g r o w t h .  During  and,  sexes.  2 started  1 during  indicated  was  ( A p p e n d i x C)  i n chamber  chamber  i n chamber  This  capacity  con-  became a f a c t o r .  Multiple Regression  Analyses  experiment  and m u l t i p l e  coefficients  2 (R ) f o r t h e 3-week body w e i g h t w i t h  of determina-  1-week body  weight,  1 t o 2-week g r o w t h r a t e , week g r o w t h r a t e , all  treatments,  between  26%-59%,  41%-62%  The s i m p l e  of the 1, 2, 3 and 4  coefficients  between  3-week body w e i g h t and e a c h one o f t h e t h r e e g r o w t h  listed  a b o v e , were g e n e r a l l y  interesting  low and n o n - s i g n i f i c a n t .  t o note t h a t only  the following  two  1-week body w e i g h t and 1 t o 3-week g r o w t h r a t e , to  For  explained  and 47%-54%  correlation  and 1 t o 3-  (Table D I ) .  i n t h e 3-week body w e i g h t f o r t e s t  respectively. the  a r e shown i n A p p e n d i x D  t h e 1-week body w e i g h t a l o n e  70%-85%,  variability  2 t o 3-week g r o w t h r a t e  rates It is  traits, were needed  a c c o u n t f o r a l m o s t 100 p e r c e n t o f t h e v a r i a b i l i t y  i n the  3-week body w e i g h t . The c o e f f i c i e n t s body w e i g h t w i t h and  1-week body w e i g h t , 1 t o 3-week g r o w t h  3 t o 7-week g r o w t h r a t e  (Table D2). the  o f d e t e r m i n a t i o n f o r t h e 7-week  I t i s of interest  correlations  body w e i g h t  are included  between  i n Appendix D  t o note that  f o r a l l treatments  t h e 7-week body w e i g h t and 1-week  ( T a b l e D2) were l o w e r  than the c o r r e l a t i o n s  3-week body w e i g h t and 1-week body w e i g h t ( T a b l e D I ) . expected, weight,  the combination o f the three t r a i t s ,  1 t o 3-week g r o w t h r a t e  between As was  1-week body  and 3 t o 7-week g r o w t h  e x p l a i n e d most o f t h e v a r i a b i l i t y b)  rate  rate,  i n t h e 7-week body w e i g h t ,  Warm A i r B r o o d i n g E x p e r i m e n t The c o e f f i c i e n t s  body w e i g h t w i t h  o f d e t e r m i n a t i o n f o r t h e 3-week  1-week body w e i g h t , 1 t o 2-week g r o w t h  rate,  2 t o 3-week g r o w t h tabulated for  test  rate  i n Appendix  and 1 t o 3-week g r o w t h  D  ( T a b l e D3) f o r t e s t  rate are  5 and ( T a b l e D4)  6. The  regression  a n a l y s e s f o r t h e two t e s t s  indicated  t h a t t h e 1-week body w e i g h t e x p l a i n e d b e t w e e n 4 4 and 7 6 p e r cent the  (a s i g n i f i c a n t  amount) o f t h e v a r i a t i o n  3-week body w e i g h t ,  assuming  v a r i a b l e s were k e p t c o n s t a n t . of  experiment,  variability .Infrared  rate  i n t h e 3-week body  As i n t h e i n f r a r e d  two t r a i t s , explained  A  h a t c h t o t h r e e weeks o f a g e .  because  New Hampshires\  instead  of b r o i l e r s ;  grams and t h e i r  the  table.  It  used  therefore,  f o r the brooding  Test  1 was  neglected,  as e x p e r i m e n t a l m a t e r i a l  no c o m p a r i s o n  5 shows t h e a v e r a g e w e e k l y resulting  average weekly  treatments with t h e i r  replicated  each  were  constructed  could  be made  1 and o t h e r t e s t s o f t h e e x p e r i m e n t .  Table  actual  almost a l l the  T a b l e 5 was  a summary o f t h e r e s u l t s  period,  between t e s t  1-week body  Comparison  the purpose o f comparison,  represents  coefficients  weight.  and Warm A i r B r o o d i n g : For  which  low.  the following  w e i g h t and 1 t o 3-week g r o w t h  with  a l l other independent  The o t h e r s i m p l e  d e t e r m i n a t i o n were g e n e r a l l y  brooding  associated  As t h e t a b l e once  growth  identifications  indicates,  rates.  are l i s t e d  The below  some o f t h e t r e a t m e n t s were  o r more.  i s of i n t e r e s t  treatment.  body w e i g h t s i n  t o n o t e t h e growth  During a l l the tests,  rate  t h e growth  trend of rates  of the  54.  TABLE  6.  Average weekly growth 6  rates  body weights  a s by t r e a t m e n t , f o r t e s t s  Test No  Chamber 1  Chamber 2  2, 3, 4, 5 and  Treatment  (weeks)  H  1  2  98 294 543  2  E.  43  3  E  45 127 283  4  3  Growth p e r i o d H-l  1-2  2-3  n  2.87 4.95 3.37  22  511  3.65 3 .57 3.25  30  E  47 124 278 500  3.34 3.63 3.22  37  5  E  46 115  290 542  3.14 4 .15 3.43  24  6  E  41 116  268 497  3. 60 3 .74 3.40  23  2  A  43 141  313  53 5  4.08 3 .60 2.93  20  3  C  44 138 289  502  3.95 3.33 3 .03  25  5  D  48 126  559  3 .36 3.91 3 .39  14  6  D  42 124 277 496  3.77 3 .60 3.19  18  2  C  42 130 303  507  3.89 3 . 81 2 .82  25  3  A  44 135  542  3.88 3 .64 3.18  27  4  B  47 120 288 519  3 . 28 3.92 3 .22  26  5  D  48 125  297 525  3.34 3.90 3.12  18  6  D  41 125  269  452  3. 89 3.42 2. 86  11  301  303  Nomenclature below: A:  High r a d i a t i o n l e v e l brooding, f i n a l (21.1°C)  BGT o f 70°F  B:  High r a d i a t i o n l e v e l brooding, f i n a l  BGT o f 80°F  (26.7°C) C:  weekly  (males).  Age  Floor  i n grams and a v e r a g e  Low r a d i a t i o n l e v e l b r o o d i n g ,  final  BGT o f 70°F  (21.1°C) D:  Warm a i r b r o o d i n g , r e l a t i v e h u m d i t y  E:  H e a t lamps b r o o d i n g .  H:  Hatch  n:  Number o f b i r d s  = 50%  TABLE  7.  Scheffe's the  limits  a t t h e 95% c o n f i d e n c e  specified contrasts f o rtests  level for  2, 3, 5 and 6  (males).  AGE Contrast  *  T e s t No.  Week 1  Week 2  2  75+17  28+34  -44+53  3  19+13  26+24  22+40  5  21+17  18+37  0+60  6  17 + 15  10+35  -46+60  2  43+10  19+20  - 8+31  3  8+ 7  20+14  31+23  5  11+10  11+23  17 + 37  6  8+ 8  9 + 19  - 1+33  Week 3  CO < 3-  1 CN  + ,—j  <  3.  II CD e = e =  ^2 "  y  3  y  3  e =  y  l  " ^3  e  y  i  " ^3  * l  M  y y  3  =  e s t i m a t e d mean o f  chamber  1 birds  =  e s t i m a t e d mean o f  chamber  2 birds  =  e s t i m a t e d mean o f  floor  birds  f l o o r b i r d s i n d i c a t e d a low-high-low to  trend.  The low h a t c h  1-week growth r a t e i n d i c a t e d t h e b i r d s were s t r e s s e d d u r i n g  t h e i r f i r s t week o f growth.  T h i s s t r e s s was due t o e i t h e r  a r e c o v e r y from h a t c h i n g e f f e c t and/or an e n v i r o n m e n t a l  effect.  The same growth r a t e t r e n d o c c u r r e d d u r i n g t e s t 4, i n chamber 2, w i t h t h e h i g h r a d i a t i o n l e v e l and h i g h f i n a l b l a c k g l o b e temperature  treatment.  However, d u r i n g t e s t s 2 and 3, i n  chambers 1 and 2, w i t h t h e h i g h l e v e l o f r a d i a t i o n and low f i n a l b l a c k g l o b e temperature  t r e a t m e n t , t h e growth r a t e s  showed a d e c r e a s i n g t r e n d w i t h age. These growth r a t e t r e n d s i n d i c a t e d t h e importance g l o b e temperature  o f t h e r a t e o f change o f t h e b l a c k  w i t h time.  Furthermore,  a t a b l e of confidence i n t e r v a l s i s  i n c l u d e d f o r a b e t t e r a p p r e c i a t i o n o f t h e d i f f e r e n c e between some o f t h e t r e a t m e n t means o f T a b l e 5. at  These c o n f i d e n c e  limits  t h e 95 p e r c e n t l e v e l , f o r some s e l e c t e d c o n t r a s t s , a r e shown  i n Table 6.  The l a r g e s t t r e a t m e n t d i f f e r e n c e of 43 + 10 grams  o c c u r r e d d u r i n g t e s t 2.  T h i s d i f f e r e n c e was between t h e h i g h  l e v e l t h e r m a l r a d i a t i o n and t h e f l o o r  treatments.  57 .  CONCLUSIONS The within  intensity  the c o n t r o l l e d  the  following  a)  The r a d i o s i t y  b)  The b l a c k  environment  chambers were s t u d i e d  g l o b e thermometer incident radiant  locations within  The v a r i a t i o n s  b)  For a l l locations,  method. e n e r g y was d e t e r m i n e d a t n i n e  t h e chamber, and i t was f o u n d  between l o c a t i o n s were the r a d i o s i t y  method p r e d i c t e d  v a l u e s d e t e r m i n e d by t h e b l a c k g l o b e A first  99 New H a m p s h i r e s ,  treatments radiation It a)  and  A total  i n each t e s t ;  was f o u n d  radiation  a high  o f 311 young  male  of four  radiation  tests,  level,  chicks,  i n the  with  three  a low  and a c o n v e n t i o n a l h e a t lamp b r o o d i n g s y s t e m .  that:  On t h e a v e r a g e ,  the weekly  t h r e e o f growth, high  levels  body w e i g h t s , f o r t h e f i r s t  of birds  brooded  under  t h e low and  o f r a d i a t i o n were s i g n i f i c a n t l y h i g h e r  t h a n t h e c o r r e s p o n d i n g body w e i g h t s o f b i r d s under b)  than  thermometer.  . 212 U.B.C. b r o i l e r s were u s e d  This experiment c o n s i s t e d  level  about  e x p e r i m e n t was d e s i g n e d t o s t u d y t h e e f f e c t s  e n e r g y on p o u l t r y .  experiment.  that:  small.  5 percent higher values of i n c i d e n t  infrared  using  method.  a)  of  radiation  two m e t h o d s :  The different  and u n i f o r m i t y o f t h e r m a l  heat  B i r d s brooded superior  lamps.  under  the high  level  to b i r d s brooded  radiation.  reared  of r a d i a t i o n  under  were  t h e low l e v e l o f  58 .  A second brooding  e x p e r i m e n t was d e s i g n e d t o compare warm a i r  t o h e a t lamp b r o o d i n g .  commercial  broilers  ment c o n s i s t e d  were u s e d  o f two t e s t s ,  chamber 1, chamber  A t o t a l o f 212 m i x e d s e x  i n the experiment.  This  experi-  w i t h t h e t r e a t m e n t s i n each  2 and f l o o r  ( h e a t lamp b r o o d i n g ) .  test;  The two  chambers were m a i n t a i n e d a t t h e same e n v i r o n m e n t a l c o n d i t i o n s for  each  test.  I t was f o u n d  that:  a)  On t h e a v e r a g e , t h e w e e k l y  body w e i g h t s o f b i r d s w i t h warm  a i r were h i g h e r t h a n t h e w e e k l y brooded b)  under  heat  T h e r e was a s i g n i f i c a n t week o f g r o w t h , When t h e h i g h  e x p e r i m e n t was compared  body w e i g h t s o f b i r d s  lamps. chamber e f f e c t ,  during  the t h i r d  i n f a v o u r o f chamber 1.  l e v e l of thermal r a d i a t i o n t o t h e warm a i r e x p e r i m e n t ,  of the f i r s t the weekly  body w e i g h t s o f t h e f o r m e r t r e a t m e n t were h i g h e r o r a t l e a s t equal  t o the weekly  body w e i g h t s o f t h e l a t t e r t r e a t m e n t .  L I S T OF  REFERENCES  ASHVE R e s e a r c h T e c h n i c a l A d v i s o r y "Measurement o f p h y s i c a l environment", 14:  Bywaters.  I n f r a r e d Energy".  A g r . Eng.  T.E. Maddox and H.V.  13, No.  B e d f o r d , T.  6, pp.  and C.G.  Bond, T.E.  34:  and C E .  agricultural April, Brownlee,  and A i r C o n d i t i o n i n g ,  458,  42:  with  316^320, June  Shirley.  1951.  "Temperature  T r n a s a c t i o n s o f t h e ASAE,  788^791,  Warner.  studies of heating Hygiene,  of the thermal  ''Brooding P o u l t r y  preferences of chicks". Vol.  Instruments.  1942.  and J.H.  B a x t e r , D.O.,  properties  Heating, Piping  382-385,  B a k e r , V.H.  Committee on  "The  1970. g l o b e thermometer  and v e n t i l a t i n g " .  Journal  in of  1934.  Kelly.  "The  research".  g l o b e thermometer  A g r . Eng.  36:  in  251-255,  1955.  K.A.  Science  Statistical  Theory  and E n g i n e e r i n g .  and M e t h o d o l o g y  J o h n W i l e y & Sons,  in N.Y.  1960. B r u c e , W.  Man  P a p e r No. National NRC  5514,  and H i s T h e r m a l 84,  D i v i s i o n of Building  Research C o u n c i l pp.  Environment.  Research,  o f Canada,  123-126, F e b r u a r y  Technical  1960.  Ottawa,  60.  8.  L o n g h o u s e , A.D.  and  H.L.  ASHRAE J o u r n a l , 9.  10.  M c C l u s k e y , W.H.  and  Garver.  68-74, J u l y G.H.  "The  i n c a n d e s c e n t and  infrared light  Poultry  46:  Science,  P a r k e r , B.F.,  E.M.  528-29,  S m i t h and  780-783, P e r e i r a , N.,  environments".  1964.  Arscott.  thermal radiometry".  11.  "Poultry  B.P.  influence  upon  of  chicks".  1967. Verma.  Transactions  "Black of  the  sphere  ASAE  10:  1967. T.E.  Bond and  characteristics black-globe  of  S.R.  Morrison.  "Thermal  a t a b l e - t e n n i s - b a l l used  thermometer".  as  a  ASAE p a p e r No.66-328,  1966. 12.  R o b e r t s , C.W. chicken".  "Estimation Poultry  of  e a r l y growth r a t e  Science,  43:  in  the  238-252, J a n u a r y ,  1964. 13.  S i e g e l , R.  and  Transfer. 14.  S k o g l u n d , W.C.  J.R.  Howell.  Thermal R a d i a t i o n  Heat  M c G r a w - H i l l Book Company, N.Y., and  D.H.  with b r o i l e r s " .  Palmer. Poultry  "Light  Science,  1972.  intensity studies 41:  1839-1842,  1962. 15.  S p a r r o w , E.M.  and  R.D.  Cess.  Brooks/Cole Publishing  Radiation  Heat  Transfer.  Company, B e l m o n t ,  California,  1970. 16.  S t a l e y , L.M., of  C.W.  R o b e r t s and  t h e r m a l r a d i a t i o n on  Hampshire c h i c k e n " . January,  1967.  D.C.  Crober.  e a r l y growth of  Can.  Agr.  Eng.  9:  "The  effect  the  New  39-42,  61.  17.  Staley, of  L.M.  Staley,  C.W.  Roberts.  "Design  c o n t r o l l e d environment  Can. 18.  and  Agr.  L.M.,  Eng.  C.W.  11:  brooders  71-73, November  Roberts  and  S.  and  development  for poultry". 1969.  Paulson.  "Improved  growth o f p o u l t r y u t i l i z i n g  controlled  ments".  76-79, November 197 0.  Can.  Agr.  Eng.  12:  environ-  62.  APPENDIX  A  TABLE A l  AVERAGE SURFACE TEMPERATURE EMITTANCE AND SURFACE AREA OF THE SURFACES OF THE CHAMBER.  Surface No.  Material  Surface Size (in)  1  white p a i n t  UO x 40  2  wood  3  oxidized alum.  Emittance  '  Average Temperature (°F)  0.90  136  40x4 0  0.85  82  40 x 13  0.20  74  4  "  40 x 16  0.20  68  5  "  40 x 13  0.20  82  6  "  40 x 16  0.20  70  7  plexiglass  40 x 13  0.90  82  8  oxidized  40 x 16  0,20  70  Al  9  "  40 x 13  0.20  87  10  "  40 x 16  0.20  72  64 .  TABLE A2  CONFIGURATION  1  F  l - i  F  FACTORS BETWEEN THE S U R F A C E S OF THE CHAMBER.  2 - i 3 - i 4 - i 5 - i 6 - i 7 - i 8 - i 9 - i F  F  F  F  F  F  F  1 0 - i  1  0  2  0.293  3  0 . 1 0 7 0.052  0  0  0.125 0.048  4  0.070 0.125  0  0  0.060 0 . 1 3 9 0.080 0.096  5  0 . 1 0 7 0.052  6  0 . 0 7 0 0 . 1 2 5 0.060 0 . 1 3 9  7  0.107 0.052  0.070 0 . 0 6 5 0 . 1 2 5 0 . 0 4 9  0  0  0 . 1 2 5 0.048  8  0.070.0.125  0.080  0.096  0.060  0.139  0  0  0.060 0.139  9  0.107 0.052  0.125 0.049  0.070  0.065 0 . 1 2 5 0 . 0 4 9  10 Total  0.070  0.293 0.329  ?  0  0.175 0.329 0.175 0.329 0.175 0.329 0.175  0 . 1 6 0 0 . 3 1 2 0.160 0 . 3 1 2 0 . 1 6 0 0 . 3 1 2 0 . 1 6 0 0 . 3 1 2  0.125 0.049  0.070 0 . 0 6 5 0 . 1 2 5 0 . 0 4 8  0.060 0.139  0  0  0 . 1 2 5 0.048  0.070  0.065  0  0  0.060 0 . 1 3 9 0 . 0 8 0  0.096  0 . 1 2 5 0.060 0 . 1 3 9 0.080 0.096  0.060 0 . 1 3 9  0  0  0  0  1.001 1 . 0 0 1 1.009 1.025 1.009 1.023 1.009 1.023 1.009 1.022  TABLE A3 THE - MATRIX OF COEFFICIENTS AND THE COLUMN VECTOR OF CONSTANTS FOR THE • SOLUTION OF THE SYSTEM OF LINEAR NONHOMOGENEOUS EQUATIONS ON DIGITAL COMPUTERS  + 1.0  -0. 0293 -0. 0107 -0. 0070 -0. 0107 -0. 0070 -0. 0107 -0 .0070 -0. 0107 -0. 0070  -0. 04 3 9  + 1.0  -0. 26 32  -0. 1280 + 1.0  - 0 . 1400  -0. 2497  - 0 . 2632  -0. 1280 -0. 1000 -0. 0480 + 1.0  0. 0  -0 .1400  -0. 2496 -0. 0384 -0. 1112  0 .0  + 1.0  -0. 0329  - 0 . 0160 -0. 0070 -0 .0080 -0 .0125 -0. 0060 + 1.0  -0. 1400  -0 .2496 -0. 052  -0. 2632  -0. 128  - 0 . 140 0  V  -0. 0078 -0. 0187 -0. 0078 -0. 0187 -0. 0078 -0 . 0187 -0. 0078 -0. 0187  0. 0  0. 0  -0. 1000 -0. 0480 -0. 0560 --0 .0640 -0. 1000 -0. 0480  + 1.0  -0 .0392 -0. 1112 -0. 0 5 20 -0 . 0768 -0, 0392 -0. 1112  -0. 0768 -0 .0384 -0. 1112  -0. 1000  0. 0  0. 0  -0. 0125 -0 .0060  + 1. 0  -0. 0392 -0. 1112  -0, 1000 -0 .0480 -0. 0560 -0. 0640 -0. 1000 -0 . 0480 +1. 0  2496 -0. 0 3 84 -0. 1112 -0. 0520 -0. 0 7 68 -0. 0384 -0 .1112  0. 0  B  27. 87  ! 3 B  V  26. 64  I  29. 58  -  27. 05  B,5 i ! 6 B  h  0 .0 +1. 0  125 .73  ! 2  -0 . 0480 -0. 0560 -0. 0640  -0 .0392 -0 .1112 -0 .0520 -0. 0768  194. 64  ! J i  B  8  B  9  B  io|  133. 12 27. 05 30. 59 27. 46  66 . TABLE A4 CONFIGURATION FACTOR BETWEEN THE SPHERE AT DIFFERENT LOCATIONS AND THE WALLS OF THE CHAMBER.  Surface Al  LOCATION OF GLOBE IN CHAMBER —• —•—• A2 A3 BI B2 B3 Cl  C2  C3  1  0.162 0.203 0.162 0.203 0.248 0.203 0.162 0.203  0.162  2  0.138 0.168 0.138 0 . 168 0.208 0.16.8 0.138 0.168  0.138  3  0.025 0.029 0.025 0.051 0.063 0.051 0.144 0.168  4  0.030 0.035 0.030 0.059 0.073 0.059 0.151 0.177 0.151  5  0.144 0.051 0.025 0.168 0.063 0.029 0.144 0.051 0.025  6  0.151 0.059 0.030 0.177 0.073 0.035 0.151 0.059 0.030  7  0.144 0.168 0.144 0.051 0.063 0.051 0.025 0.029 0.025  8  0,151 0.177 0.151 0.059 0.073 0.059 0.030 0.035  9  0.025 0.051 0.144 0.029 0.063 0.168 0.025 0.051 0.144  10  0.030 0.059 0.151 0.035 0.073 0.177 0.030 0.059 0.151  10 E F i =l  0.144  0.030  . 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 g  TABLE A5  INCIDENT RATIATION*ON  LOCATION OF GLOBE ON THE CHAMBER  Surface N o  -  THE GLOBE FOR THE 9 LOCATIONS  Al  A2  A3  BI  B2  B3  Cl  C2  C3  1  34.18  42.82  34.18  42.82  52.32  42.82  34.18  42.82  34.18  2  21.08  25.65  21.08  25.65  31.75  25.65  21.08  25.65  21.08  3  ~~ 4. 32  5.01  4.32  8,81  10.89  8 . 81  24.89  29 . 04  24.89  4  4.97  5.80  4.97  9.77  12.09  9.77  25.00  29.31  25.00  5  24.96  8.85  4.34  29.14  10.93  5.03  24.96  8.85  4.34  6  25.08  9.80  4.98  29.39  12.12  5.81  25.08  9.80  4.98  7  21.80  25.43  21.80  7.72  9.54  7.72  3.78  4.39  3.78  8  25.19  29.53  25.19  9.84  12.18  9.84  5.00  5.84  5.00  9  4.36  8.90  25,12  5.06  11.00  29.31  4.36  8.90  25.12  10  4.99  9.81  25.11  5.82  12.14  29.43  4.99  9.81  25,11  170.93  171-60  171.09  174.02  174.96  174.19  173.32  174.41  173.48  Total  * Units:  BTU h r  -  1  f t  -  2  TABLE A6 AIR VELOCITY, A I R TEMPERATURE, GLOBE TEMPERATURE AND RESULTING MEAN RADIANT TEMPERATURE OF THE GLOBE FOR THE 9 LOCATIONS ( h e a t p a n e l t e m p e r a t u r e = 136°F = 58°C)  LOCATION OF GLOBE IN THE CHAMBER Al  A2  A3  BT  B2  B3  7.0  3.2  4.3  7.0  3.6  7.6  Air  v e l o c i t y (FPM)  Air  t e m p e r a t u r e (°F) 74.0  Cl  C2  C3  Mean  20 .0  24 .7  14 .8  10.2  74.0  75.0  69.5  78.0  74 .0  65.5  68.0  73.0  72.3  Globe temperat u r e (°F)  80.2  80.6  83.1  78.0  82.4  82.4  73.6  74 .0  79 .3  79.3  MRT (°F)  83.5  82.9  86.3  82.5  85.1  86.8  80 .8  79.8  84 .0  83.5  ) 150.9 150.3 153.1 149.9 152.7 154.7  147.9  146.9  151.6 150.9  163.8 161.8 166.2 162.7 163.3 167.9  163.6  163.3  • ^ 166.3 164.3  RHL  (BTU  hr" ft 1  RHL ( c o r r e c t e d to the standard 6 i n b l a c k globe)  - 2  rK  69 .  APPENDIX  , j  B  TABLE B I a)  A v e r a g e w e e k l y body weights * o f 3  Treatment  (n)  Floor Chamber 1 Chamber 2  (33) (33) (33) (99)  Mean b)  Hatch  Week 1  42 41 42 42  74 89 89 84  t e s t 1 as by  Week 2  148 164 168 160  treatment.  A G E Week 3  Week 4  256 271 276 268  386 391 399 392  Weekly body w e i g h t a n a l y s e s o f v a r i a n c e i n p e r c e n t a g e of t e s t 1 f o r treatment e f f e c t .  Week 5  535 539 554 543  Week 6  719 720 740 726  Week 7  923 926 951 933  o f t o t a l sums o f s q u a r e s  A G E  s.v. Treatments -Chambers v s floor -Chamber 1 v s Chamber 2 Error Total  Hatch  Week 1  Week 2  Week 3  2  1.2  37 . 3 * *  16 . 2 * *  7 .3**  1.3  1.6  1.6  1.9  1  -  37 . 3 * *  15.7**  6.9**  0.9  0.7  0.4  0.6  0.4 98 .7 210,241  0.9 98.4 376,566  1.2 98.4 555,727  d.f.  1 0.0 96 98.8 62.7 98 1,031 13,756  0.5 83.8 47,548  **  Highly s i g n i f i c a n t  (P < 0.01)  *  Significant  (P < 0.05)  a  i n grams  0.4 92.7 101,729  Week 4  Week 5  Week 6  Week 7  1.3 98.1 771,999  TABLE B2 a)  A v e r a g e g r o w t h r a t e s o f t e s t 1 as by t r e a t m e n t . Growth  Treatment  (  Floor Chamber 1 Chamber 2 Mean b)  (n)  H-l  (33) (33) (33) 99  1.95 2.64 2.60 2.40  1-2 3.13 2.74 2. 84 2.90  Growth r a t e a n a l y s e s o f v a r i a n c e of t e s t 1 f o r treatment e f f e c t .  2-3 3.01 2.76 2.73 2.83  3-4 2.67 2.39 2.38 2.48  3-- 7 2 .52 2 .41 2 .42 2 .45  squares  2  6--7 0,.1  1--3 49 ,.7**  3- -7 14 , 7**  1  37 .3** . 30. .3**  25..3** 34 .0** , 0, .7  0, .8  . 0,.1  49 ,.0**  14 .6** ,  0. .3 74, .4  0 .0 , 99 ,.2  0,.0 99 ,.9  0,.7 50 ,.3  0 .1 , 85 ,.3 1..52  0..1 62,.6  Total  98  26 ,.92  Significant  sums o f  1-3 3.08 2.75 2.79 2.87  5--6 0, .8  1 96  *  6-7 2.38 2.39 2.39 2.39  Period  H--1  Treatments -Chambers v s floor -Chamber 1 v s Chamber 2 Error  Highly  5-6 2.51 2.47 2.47 2.48  4--5 2-:I 1--2 3-4 34 , , .0** 2 .21 37. .4** 32, . 21** 25..6**  d.f.  **  4-5 2.46 2.41 2.45 2.44  i n percentage of t o t a l  Growth  s.v.  Period  significant  1..9 67. .8 8..50  (P <  0.01)  (P <  0.05)  6 .19 ,  0,.0 66 ,.0 5,. 26  1,.5 97 .8 , 2,.08  4 .31 ,  3, .43  4 .28 ,  TABLE B3 a)  A v e r a g e w e e k l y body w e i g h t s o f t e s t  2 as by t r e a t m e n t ,  3  A G E Week 3  Treatment  (n)  Hatch  Week 5  Week 6  Week 7  Floor Chamber 1 Chamber 2  (22) (20) (25)  43 43 42  98 141 130  294 313 303  543 535 507  812 800 771  1108 1117 1083  1469 1458 1428  1826 1814 1795  Mean  (67)  43  123  303  528  794  1103  1452  1812  b)  Week 1  Week 2  Week 4  W e e k l y body w e i g h t a n a l y s e s o f v a r i a n c e i n p e r c e n t a g e o f t o t a l sums o f s q u a r e s of t e s t 2 f o r treatment. A G E S.V.  d.f.  Treatments 2 -Chambers v s floor 1 -Chamber 1 v s Chamber 2 Error 64 Total  66  **  Highly  *  Significant  a  i n grams  Hatch  Week 1  2.5  67.4**  7.7  13.4*  7.4  2.8  2.6  0 .8  63.1**  5.3  6.5*  4.2  0.3  1.4  0.5  4.3** 32.6  2.4 9 2.3  6.8* 86.6  3.2 92.6  2.5 97.2  1.2 97 .4  0.3 99.2  284,484  492,960  97.5  514 32,075  significant  Week 2  49 ,291  (P < 0.01) (P < 0.05)  Week 3  123,264  Week 4  Week 5  Week 6  Week 7  852,416 1, 423,984  TABLE a)  A v e r a g e growth r a t e s  of test  B4  2 as by t r e a t m e n t .  Growth  Period  Treatment  (n)  H-1  1-2  2-3  3-4  4-5  5-6  6-7  1-3  3-7  Floor Chamber 1 Chamber 2  (22) (20) (25)  2. 87 4.08 3 . 89  4.95 3.60 3.81  3.37 2.93 2 . 82  2.62 2. 61 2.72  2 .33 2.50 2.55  2.40 2.26 2.34  2.06 2.06 2.17  4 . 24 3.30 3.36  2.38 2.39 2.48  Mean  (67)  3.61  4.12  3.04  2.65  2.46  2.33  2.10  3.63  2.42  b)  Growth r a t e a n a l y s e s o f v a r i a n c e of t e s t 2 f o r treatment e f f e c t .  i n percentage  Growth s.v.  d.f.  Treatments -Chambers v s floor -Chamber 1 vs Chamber 2 Error Total **  Highly  *  Significant  H--1  1--2  2--3  o f t o t a l sums o f s q u a r e s -  Period 5--6  6--7  11..1*  5 .7 .  81.. 8** 15,.8**  7 .0* .  1..6  81..6**  67 .2 * * 67..3**  51.. 0**  7..9  23 . .0**  1  65..8**  65..8**  49 ..4**  1.. 9  21.. 9**  1 64  1..4 32 ., 8  1.. 5 32..7  1.. 6 49 .0 ,  66  27 . 64  33..98  significant  (P < 0.01) (P < 0.05)  3--7  4--5  2  7.. 59  1--3  3--4  6..0* 92..1 2.. 26  1..1 77..0 2,.75  4 .1 . 88 .9 . 2..06  4 .1 . 94 .3 , 3 .45 ,  5.. 8*  0 .2 . 18.. 2  10.. 0** 84 .2 .  14 ..62  0 . 89  T A B L E B5 a)  Average  weekly  body weights  3 ,  of test  3 as by t r e a t m e n t .  A G E Hatch  Week 3  Week 2  Week 1  Treatment  (n)  Floor Chamber 1 Chamber 2  (30) (25) (27)  45 44 44  127 138 135  283 289 303  511 502 542  Mean  (82).  44  133  292  518  b)  W e e k l y body w e i g h t a n a l y s e s o f v a r i a n c e of t e s t 3 f o r treatment e f f e c t .  S.V.  d .f.  2 Treatments -Chambers v s 1 floor -Chamber 1 v s Chamber 2 1 79 Error Total  81  **  Highly  *  Significant  a  i n grams  Week 5  Week 6  Week 7  776 747 800  10 8 6 1069 1124  1435 1420 1466  1792 1781 1815  774  1093  1440  1796  Week 4  i n p e r c e n t a g e o f t o t a l sums o f s q u a r e s  Hatch  Week 1  Week 2  A G E Week 3  0..5  13 .3**  15..2**  18 .,8**  15..4**  2..2  0 .0 .  16..6** 81..2  15..4** 84..6  12 .6**  99 ..5  6..2* 84.,8  0 .7 86 .7  784 11,612  significant  9.. 0**  42,029  (P < 0.01) (P < 0.05)  121,692  Week 6  Week 7  10 ..4*  4 .3 .  1..5  0..6  0..3  0..1  4..0 95..7  1..4 98 ..5  Week 4  Week 5  231,120  9 .. 8** 89 ..6 402,368  285,216  1,050,640  TABLE a)  Average growth r a t e s  of t e s t  3 as by  B6 treatment.  Growth  Period  Treatment  (n)  H-l  1-2  2-3  3-4  4-5  5-6  6-7  1-3  3-7  Floor Chamber 1 Chamber 2  (30) (25) (27)  3.65 3.95 3 . 88  3.57 3.33 3.64  3.25 3.03 3 .18  2.72 2.58 2.53  2.52 2.68 2.55  2 . 36 2.41 2 . 26  2.11 2.15 2.03  3.43 3 .20 3.43  2.46 2.48 2.37  Mean  (82)  3.83  3.51  3.15  2.61  2.58  2.34  2.10  3.35  2 . 44  b)  Growth r a t e a n a l y s e s o f v a r i a n c e of t e s t 3 f o r treatment e f f e c t .  i n percentage  Growth S.V.  d.f.  Treatments -Chambers v s floor -Chamber 1 vs Chamber 2 Error Total  H-l  2  15.4**  1  14.7**  1 79  0.7 84 . 6  (81)  **  Highly  significant  *  Significant  9.34  1-2  2-3  o f t o t a l sums o f  Period  3-4  4-5  5-6  29.1** 29.4** 16.4** 18.3** 13.3** 2.2 26.9** 70 . 9 4.09  (P <  0.01)  (P <  0.05)  squares  21.9** 15.7**  7.9**  0.7  6-7 7~77* 0.5  1-3 33.6** 7.8**  3-7 16.4** 2.4  7.5** 70 . 6  0.7 10.4** 12.6** 83 . 6 81.7 86 . 7  7.2* 25.8** 14.0** 92.3 66 .4 83 .6  3.88  3.26  2.70  2.13  2.56  2.81  1.08  TABLE B 7 a)  A v e r a g e w e e k l y body w e i g h t s o f t e s t 3  4 as by t r e a t m e n t . A G E  Hatch  Week 2  Week 1  Week 3  Week 5  Week 6  Week 7  765 775  1082 1087  1438 1411  1799 1770  770  1085  1425  1785  Week 4  Treatment  (n)  Floor Chamber 2  (37) (26)  47 47  124 120  278 288  500 519  Mean  (63)  47  122  283  510  variance  i n percentage of  b)  Weekly body w e i g h t a n a l y s e s o f of t e s t 4 f o r treatment.  t o t a l sums o f s q u a r e s  A G E d.f.  S.V. Chamber floor  Hatch  Week 2  Week 1  2 vs  Week 3  Week 4  Week 5  Week 6  Week 7  1  0.6  2.0  4.7  4.9  0.6  0.1  1.5  1.1  Error  61  99.4  98.0  95.3  95.1  99.4  99.9  98.5  98.9  Total  62  762  8,261  36 ,109  114,451  252,304  446,016  744,592  **  Highly  significant  *  Significant  a  i n grams  (P < 0.01) (P < 0.05)  1,190,896  TABLE a)  A v e r a g e growth r a t e s o f t e s t  B8  4 as by t r e a t m e n t v Growth  Period  Treatment  (n)  H-1  1-2  2-3  3-4  4-5  5-6  6-7  1-3  3 -7  Floor Chamber 2  (37) (26)  3.34 3.28  3.63 3.92  3 . 22 3. 22  2.76 2.61  2.59 2.53  2.42 2.22  2.13 2.15  3 .44 3 .61  2 .51 2 .40  Mean  (63)  3.31  3.78  3. 22  2.69  2.56  2.32  2.14  3.53  2 .46  b)  Growth r a t e a n a l y s e s o f v a r i a n c e of t e s t 4 f o r treatment e f f e c t .  i n ]p e r c e n t a g e o f t o t a l  Growth S .V. -Chamber 2 vs floor  d.f.  H-1  1  1.0  Error  61  99.0  Total  62  **  Highly  significant  *  Significant  7.12  1-2 30.8** 69 .2 4 . 20  (P < 0.01) (P < 0.05)  2-3 0.0 100 . 0 2.16  sums o f s q u a r e s  Period  3-4 18.3** 81.7 2.00  4-5 1.8 98.2 3.05  5-6 29.9** 70.1 2.08  6-7 0.3 99.7 3.12  1-3  3'-7  16 .8** 17 . 2** 83.2 2.31  82 .8 0 .96  78.  APPENDIX  \  C  79 .  TABLE C l a)  A v e r a g e w e e k l y body w e i g h t s by  i n grams o f t e s t  5 (males)'  treatment  Weeks o f Age Hatch  1  2  3  (24)  46  115  290  542  Treatment  (n)  Floor Chamber  1  (14)  48  126  301  559  Chamber  2  (18)  48  125  297  525  (56)  47  122  296  542  Mean  b)  Weekly body w e i g h t a n a l y s e s o f of  squares of  test 5  S .V.  v a r i a n c e i n p e r c e n t a g e sums  (males) f o r  treatment e f f e c t .  Weeks o f Age 1  d.f.  2  3  Treatments  2  16.3**  3.1  8.4  - Chambers v s floor  1  16.3**  2.8  0.0  - Chamber 1 v s Chamber 2  1  0.0  0.3  8.4*  Error  53  83.7  96.9  91.6  Total  55  9,595  39,659  110,637  **  Highly'significant  *  significant  (P <  0.01)  ..' (P < 0.05)  80 .  TABLE a)  C2  Average growth r a t e s o f t e s t  5  (males)  by  Growth  treatment-  Period  Treatment  (n)  H-l  1-2  2^3  1-3  Floor  (24)  3.14  4.15  3.43  3.83  Chamber 1  (14)  3.36  3.91  3.39  3.68  Chamber  (18)  3.34  3.90  3.12  3.55  (56)  3.28  3.99  3.31  3.69  2  Mean  b)  Growth r a t e  analyses of variance  squares of t e s t  5  (males)  i n percentage  f o r treatment  effect.  Growth S.V.  d.f.  Treatments - Chambers floor  H-l  1-2  sums o f  Period 2-3  1-3  2  10.4  18.7*'*  33.5**  34.8**  1  10.4*  18.7**  15.8**  29.3**  1  0.0  17 .7**  5.5*  vs  - Chamber 1 v s Chamber 2 Error  53  Total  55  **  Highly  *  Significant  .  89.6  0.0 .  5 .661  significant  (P <  0.01)  ••' (P <  0.05)  81.3  66.5  65.2  4 .415  3 -224  2 -343  81.  TABLE C3 A v e r a g e w e e k l y body w e i g h t s  a)  by  in  grams o f  test  Weeks o f  Age  5  (females).  treatment.  Hatch  1  2  3  (16)  47  109  265  469  Chamber 1  (25)  47  125  285  505  Chamber  (20)  46  120  276  480  (61)  47  118  275  485  Treatment  (n)  Floor 2  Mean  b)  W e e k l y body w e i g h t  analyses of variance  of  5 (females)  squares o f t e s t  i n percentage  f o r treatment  sums  effect..  Weeks o f Age S.V.  d.f  1  2  3  Treatments  2  22.1**  9.4  12.4*  - Chambers v s floor  1  19 .5**  7 .4*  6.1  - Chamber 1 v s Chamber 2  1  2.6  2.0  6.3*  Error  58  77.9  90.6  Total  60  10,557  **  highly  significant;  *  significant  (P < 0.01) (P < 0.05)  42,084  87.6 117,353  82.  TABLE C4 a)  Average growth r a t e s  of test  5 ( f e m a l e s ) by  Growth H - l  1-2  treatment.  Period  Treatment  (n)  2 - 3  . 1 - 3  Floor  (16)  2.93  3.95  3.15  3.59  Chamber  1  (25)  3.40  3.70  3.15  3.45  Chamber  2  (20)  3.34  3.75  3.04  3.43  (61)  3.22  3.80  3.11  3.49  Mean  b)  Growth r a t e squares  analyses of variance  of test  5 (females)  i n percentage  f o r treatment  Growth S.V.  d.f.  effect.  Period  H - 1  1 - 2  2 - 3  1 - 3 16. -j * *  Treatments  2  23. 2**  19. 3**  10. 6*  - Chambers v s floor  1  22. g * *  18. 5* *  1. 8  - Chamber Chamber  1 vs 2 1  0. 4  0. 8  Error  58  76. 8  80. 7  Total  60  10.358  highly  significant  significant  !  sums o f  (P < 0.01) (P < 0.05)  3.322  8. 8* 89. 4 1.705  16. 2** 0. 5 83. 3 1.657  83 .  TABLE a)  Average weekly by  C5  body w e i g h t s  i n grams o f t e s t  6 (males),  treatment  Treatment  (n)  Floor  Weeks o f Age 2  Hatch  1  3  (23)  41  116  268  497  Chamber  1  (18)  42  124  277  496  Chamber  2  (11)  41  125  269  452  (52)  41  122  271  482  Mean  b)  Weekly body w e i g h t a n a l y s e s o f v a r i a n c e of  squares of t e s t  6 (males)  i n percentage  f o r treatment  Weeks o f  sums  effect.  Age  d.f.  1  2  3  Treatments  2  13. 8*  2.9  17 . 2*  - Chambers v s floor  1  13.7**  1.5  4.3  - Chamber 1 v s Chamber 2  1  S .V.  Error Total  ** *  49 •  , j highly  51  significant  significant  0.1  1.4  86 . 2  97.1  6,101  (P < 0 .01) (P < 0 .05)  " ' 30,384  12.9** 82 . 8 102 ,778  TABLE C6 a)  Average  growth r a t e s  of test  6 (males)  by t r e a t m e n t •  Growth  Period  Treatment  (n)  H>1  1^2  ~2^3  1-3  Floor  (23)  3.60  3.74  3.40  3.58  Chamber 1  (18)  3.77  3.60  3.19  3.42  Chamber  (11)  3.89  3.42  2.86  3.17  (52)  3.75  3.59  3.15  3.39  2  Mean  b)  Growth r a t e squares  analyses of variance  of test  6 (males)  i n percentage  f o r treatment  effect..  Growth d.f.  S .V.  sums o f  Period  H -1  1- 2  2-3  1 -3  Treatments  2  14 .7*  19 . 8**  50 .6**  59 . 5**  - Chambers v s floor  1  12 .5**  11. 8**  32 .6**  40 .1**  - Chamber 1 v s Chamber 2  1  2 .2  8. 0*  18 . 0**  19 .4**  Error  49  8 5 .3  80 .2  49 .4  40 . 5  Total  51  5-000  2.802  4.329  **  Highly  significant  *  Significant  (P < 0.01) (P < 0.05)  2.238  85.  TABLE body w e i g h t s  Average weekly  a)  by  C7 i n grams a t t e s t 6  (females)*  treatment  Weeks o f Age Hatch  1  2  3  (10)  40  103  229  405  Treatment  (n)  Floor Chamber  1  (13)  41  114  251  446  Chamber  2  (20)  40  120  256  433  (43)  40  112  245  428  Mean  b)  Weekly body of  weight a n a l y s e s of  squares of  test 6  variance  (females) f o r  i n percentage  treatment  sums  effect.  Weeks o f Age  Treatments -  2  3  2  37 .6**  20 .4*  13.7  1  31.7**  19.5**  12.0*  Chambers v s floor  - Chamber Chamber  1  d.f.  S .V.  1 vs 2  1  5.9  0.9  1.7  Error  40  62.4  79.6  86.3  Total-  42  5,470  23 ,492  73,524  ** ' H i g h l y s i g n i f i c a n t Significant  (P  <  0.01)  (P <  0.05)  86 .  TABLE a)  C8  Average growth r a t e s o f t e s t  6 ( f e m a l e s ) by t r e a t m e n t .  Growth  Period  Treatment  (n)  H-l  1-2  2-3  1-3  Floor  (10)  3.32  3.58  3.11  3.37  Chamber  1  (13)  3.56  3.53  3.16  3.37  Chamber  2  (20)  3.84  3.38  2.88  3.15  (43)  2.57  2.50  3.05  3.30  Mean  b)  Growth r a t e  analyses of variance  squares of t e s t  i n percentage  6 (females) f o r treatment Growth  d.f.  S .V.  H--1  a  5,. 5  13,.5**  8,. 5  a  1  - Chamber 1 v s Chamber 2  1  Error  40  58,.6  84,.2  Total  42  4-738  2-239  Significant  a  Approaching  1--3  7 .,3  - Chambers v s floor  *  2--3  1--2  27 ,  41,.4**  significant  Period  39 ,7**  2  Highly  effect.  15,.8*  Treatments  **  sums o f  (P < 0.01) (P < 0.05)  significance  >  a  35..8** 10..0*  . 2** 34 ,  25.. 8**  60..3  64 , .2  1.864  1.375  87 .  APPENDIX  ...  '  J •  •  v  D  TABLE DI Multiple l i n e a r regression analyses f o r t e s t s 1 t o 4, w i t h 3-week body w e i g h t as d e p e n d e n t v a r i a b l e .  Dependent Treatment  X  l  x  2  X  3  X  4  *  Floor  * * * * *  Chamber 1  *  2  :  * *  *  *  * *  * * *  * *  * * * * * *  X-^ = X = X^ =1 X. '=  *  *  *  * * * * Chamber 2  *  * *  R2 f o r  variables  * * *  1-week body w e i g h t . 1-2 week g r o w t h r a t e . 2-3 week g r o w t h r a t e . 1-3 week g r o w t h r a t e .  * *  1  2  test 3  70.7 1.0 1.0 0.0 88.4 88.9 99 .5 99 .5  25.9 19 .9 32.0 6.7 89.3 46.9 99.2 99.4  61.6 2.8 0.3 1.9 83.0 81.5 99.8 99.8  85.6 48 .7 4.0 25.7 93.7 88 .7 99.5 99 .7  30.6 0.8 15.8 1.5 59 .6 49.0 99.3 99 .3  42.9 9.5 0. 0 5.4 77 .1 61.1 99.6 99.6  70 .0 20 .4 1.4 19 .3 92.3 70.1 99.8 99 .8  58.5 0.0 15 .0 6.3 87 .3 58 .5 99.8 99.8  40.8 0.0 5.8 1.0 81.9 77 .0 99.4 99.4  4  47.4 3.3 8.4 7.6 83.7 83.6 99.8 99.8  53.9 2.0 0.0 1.1 90.7 77.2 98.4 98.5  89 .  TABLE  D2  Multiple l i n e a r regression analyses f o r t e s t s 1 t o 4, w i t h 7-week body w e i g h t as dependent v a r i a b l e .  Dependent v a r i a b l e s Treatment  X  l  2  X  3  *  Floor  * * * *  Chamber 1  Chamber 2  * *  * * *  * * * * *  * *  * * *  * * * * *  = = =  x  * *  * * *  1-week body w e i g h t . 1-3 week g r o w t h r a t e . 3-7 week g r o w t h r a t e .  R 1  for test  2  3  19.2 11.4 0.6 66.6 54.9 98.3  17 .2 8.4 0.3 82.7 20 .1 99.4  16.2 4.9 10 .4 40 .4 53.5 99.7  71.1 24 .9 11.2 85.3 79.5 99.3  14 .0 1.5 54.3 52.6 69 .9 99 .5  25.3 1.5 22.6 51.6 54 .4 99.6  63 .0 11.2 0.0 82.0 68.4 99 .5  38.3 0.9 5.6 54.4 57.4 99 .7  4.8 7.7 6.0 41.0 24 .7 98.9  4  28 .4 9.9 2.0 74.5 41.6 99.5  7.4 12.0 8.4 47.1 42.8 97 .4  TABLE D3 M u l t i p l e r e g r e s s i o n a n a l y s e s f o r t e s t 5, w i t h 3 -week body w e i g h t as d e p e n d e n t v a r i a b l e .  Treatment  l  X  2  X  3  X  4  *  Floor  * * * * *  *  99.8  99.7  99.8  99.7  43.6  60.8  2.9  0.4  14 .4  0.5  11. 6  0. 6  79 .1  84.8  *  63.4  75.5  *  99 . 8  99.6  99.7  99.6  74.0  62.4  12.3  1.0  2.6  1.0  16.0  1.0  81.7  91.6  *  77 . 2  83.4  *  99 . 2  99 . 5  9 8.3  99.5  *  *  * * * *  *  * *  * X^ X^ X X^  = = = =  1.7  76.6  *  *  10 . 2  *  *  *  21. 2  67.6  *  Chamber 2  26.0  *  *  *  70.6  93.4  *  *  54.8  92.3  *  *  2  12.3  *  *  R (females  4.4  *  *  Chamber 1  R (males) 2  X  l^week body^ w e i g h t . 1-^2 week g r o w t h r a t e . 2-3 week growth, r a t e . 1-^3 week g r o w t h / r a t e .  *  TABLE D4 M u l t i p l e r e g r e s s i o n a n a l y s e s f o r t e s t 6, w i t h 3-week body w e i g h t as d e p e n d e n t v a r i a b l e .  Treatment  l  X  2  X  3  X  4  *  Floor  1.3  55.0  4.5  6.6  12.3  52.7  69 .5  94.5  *  82.4  86 .6  *  84.6  99 .9  99.7  99 .9  58.5  55.2  3.1  5.4  8.0  6.4  8.5  1.0  81.7  90.2  *  80 . 2  56.8  *  99 .7  99 .7  99.7  99.6  68.4  52.3  22.9  14.6  5.8  27.9  9.6  33.8  86 .4  87.8  *  71.1  77.2  *  99.8  99 .6  99.7  99.6  * *  * *  *  *  * * * *  * *  *  * *  *  *  * Chamber 2  * *  * * *  *  * 1  *  *  * X Xy X.-, X.  = = = =  2  75.5  * *  R (females)  65.0  *  Chamber 1  R (males) 2  X  1-week body w e i g h t . 1-2 week g r o w t h r a t e . 2-3 week g r o w t h r a t e . 1-3 week g r o w t h r a t e .  *  

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
United States 5 0
Japan 3 0
Canada 3 0
France 3 0
China 2 3
City Views Downloads
Ashburn 3 0
Tokyo 3 0
Unknown 3 9
Waterloo 2 0
Mountain View 1 0
Redmond 1 0
Shenzhen 1 3
Beijing 1 0
Vermilion 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}
Download Stats

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0099953/manifest

Comment

Related Items