UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The Centrifugal separation of apple cell serum Coltart, Michael Logan 1974

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1974_A6_7 C65.pdf [ 5.48MB ]
Metadata
JSON: 831-1.0099869.json
JSON-LD: 831-1.0099869-ld.json
RDF/XML (Pretty): 831-1.0099869-rdf.xml
RDF/JSON: 831-1.0099869-rdf.json
Turtle: 831-1.0099869-turtle.txt
N-Triples: 831-1.0099869-rdf-ntriples.txt
Original Record: 831-1.0099869-source.json
Full Text
831-1.0099869-fulltext.txt
Citation
831-1.0099869.ris

Full Text

THE CENTRIFUGAL SEPARATION OF APPLE CELL SERUM BY MICHAEL LOGAN COLTART B.S.A., University of B r i t i s h Columbia, 1964 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n the Department of Food Science We accept t h i s thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA July, 1974. In presenting t h i s thesis i n p a r t i a l f u l f i l m e n t of the requirements for an advanced degree at The University of B r i t i s h Columbia, T agree that the Library s h a l l make i t f r e e l y available for reference and study. I further agree that permission for intensive copying of th i s thesis for scholarly purposes may be granted by the Head of my Depart-ment or by his representative i f i t i s understood that copying or publication of th i s thesis for f i n a n c i a l gain s h a l l not be allowed without my written permission. M. L. Col t a r t . Department of Food Science, The University of B r i t i s h Columbia, 2 0 7 5 Wesbrook Place, Vancouver, B.C., V6T 1W5. ABSTRACT Factors a f f e c t i n g the centrifugal separation of apple parenchyma c e l l serum were investigated for three important c u l t i v a r s from the Okanagan Valley of B r i t i s h Columbia; Mcintosh, Red Delicious, and Winesap. The factors studied included c u l t i v a r , maturity, maceration treatment, and centrifugation time and speed. Observations included y i e l d of c e l l serum, r e l a t i v e serum c l a r i t y , pulp and serum viscometric properties, alcohol insoluble s o l i d s , soluble s o l i d s , serum pH, p a r t i c l e size and tissue firmness. The pulp viscometric property, v i s c o s i t y at a shear rate of 100 sec \ was the observation which primarily influenced juice y i e l d s . The increased separation obtained for Mcintosh > Red Delicious > Winesap was attributed to pulp v i s c o s i t y values. Relative serum c l a r i t y was influenced by serum soluble solids when centrifugation time was constant at six minutes or by the serum pH and pulp v i s c o s i t y at maturity one (0 storage). Increased centrifugation speed and time markedly improved the y i e l d of c e l l serum for the factors evaluated. Maceration treatments reduced the average p a r t i c l e diameter from 330 ym to 229 ym and the pulp v i s c o s i t y values. At 5,500 and 8,000 rpm, higher y i e l d s were obtained when the p a r t i c l e size was small. At 10,500 rpm or 14,500 rpm, higher serum y i e l d s were obtained with larger p a r t i c l e s i z e s . Consideration of the p a r t i c l e size (> 100 um) and shape (non-spherical), along with sedimentation theory indicated the separation followed Newton's Law. The high y i e l d s obtained with the larger p a r t i c l e size at high rpm confirmed a low drag force c o e f f i c i e n t (C D = .5). Although a s l i g h t reduction i n p a r t i c l e size and v i s c o s i t y was observed when parenchyma tissue was subjected to ultrasonic v i b r a t i o n , no improvement was obtained in serum y i e l d or c l a r i t y . The cen t r i f u g a l separation of apple parenchyma c e l l serum was shown to be f e a s i b l e . The e f f i c i e n c y of the separation improved as pulp v i s c o s i t y decreased and speed or time of centrifugation increased. The tissue p a r t i c l e size evaluated was of secondary importance for the separations observed. i i i . PAGE ABSTRACT i TABLE OF CONTENTS i i i LIST OF TABLES v LIST OF FIGURES ix LIST OF ABBREVIATIONS AND DEFINITIONS x ACKNOWLEDGEMENTS x i i INTRODUCTION 1 REVIEW OF LITERATURE 4 Apple Composition Ultrasonics Expression Centrifugation 4 8 9 12 EXPERIMENTAL METHODS Experimental Design Cul t i v a r Maturity Maceration of Tissue Centrifugation Speed Time Y i e l d Serum C l a r i t y V i s c o s i t y Alcohol Insoluble Solids Soluble Solids PH P a r t i c l e Size Tissue Firmness 17 18 18 19 19 20 20 20 21 22 23 24 24 24 25 RESULTS AND DISCUSSION 26 Factor T r i a l s Y i e l d of C e l l Serum (% by weight) Serum C l a r i t y 41 42 43 i v . TABLE OF CONTENTS PAGE RESULTS AND DISCUSSION (Continued) V i s c o s i t y 44 Alcohol Insoluble Solids 4 6 Serum Soluble Solids 46 C e l l Serum pH 46 P a r t i c l e Size 47 Tissue Firmness 47 Evaluation of Factors 47 Predicted Observations 4 9 CONCLUSIONS 52 LITERATURE CITED 56 APPENDIX A Supplementary Experimental Data 6 3 APPENDIX B Experimental Results 67 APPENDIX C Analyses of Variance 82 APPENDIX D Evaluation of Factors - Regression Equations 98 APPENDIX E Predicted Observations 105 V. LIST OF TABLES TABLE PAGE 1 E f f e c t of Speed, Time, Temperature and Maceration Treatment on C e l l Serum Y i e l d • :(% by weight) . 26 2 E f f e c t of Maceration Treatment, Speed, Time, and Tube Diameter on C e l l Serum Y i e l d (% by weight) 27 3 E f f e c t of Time, Temperature and Type of Centrifuge Tube on Y i e l d of C e l l Serum (% by weight) 2 8 4 E f f e c t of Speed, and Tissue Storage on C e l l Serum Yi e l d •(% by weight) 29 5 E f f e c t of Speed, and Tissue T r i a l s #1-7 on C e l l Serum Y i e l d (% by weight) 31 6 ANOVA - The E f f e c t of Speed and Tissue T r i a l s #1-7 on C e l l Serum Y i e l d (% by weight) 31 7 Contrasts for the E f f e c t of Speed on C e l l Serum Y i e l d (% by weight) for T r i a l s #1-7 32 8 Contrasts for the E f f e c t of T r i a l s #1-7 on C e l l Serum Y i e l d (% by weight) on Speed 33 9 Covariance Analysis of Flow Behavior for Mcintosh Serum at 15°C and 36°C 34 10 Observed P a r t i c l e Sizes of Parenchyma Tissue from Maceration Treatment 1-4 pr i o r to Deaeration 37 11 E f f e c t of Speed and Maceration Treatment on Y i e l d of C e l l Serum for Control and Deaerated Tissue, Pulp AIS, Serum pH and Soluble Solids (% by weight) 38 12 E f f e c t of Maceration Treatment on Rheological Parameters for Control and Deaerated Tissue 3 9 13 E f f e c t of Maceration Treatment and Deaeration on C e l l Serum Rheological Parameters 40 E x p e r i m e n t a l P l a n t o E v a l u a t e Parameters o f A p p l e C e n t r i f u g a t i o n C e n t r i f u g a l F o r c e Generated on P a r t i c l e v e r s u s P o s i t i o n i n Tube A c t u a l C e n t r i f u g a t i o n C y c l e f o r Nominal Time Y i e l d .of C e l l Serum (% by w e i g h t ) a t Time 2 f o r C u l t i v a r , M a t u r i t y , M a c e r a t i o n and Speed Parameters Serum C l a r i t y a t Time 2 f o r C u l t i v a r , M a t u r i t y , M a c e r a t i o n and Speed Parameters Y i e l d o f C e l l Serum (% by weight) a t M a t u r i t y 1 f o r C u l t i v a r , Time, M a c e r a t i o n and Speed Parameters Serum C l a r i t y a t M a t u r i t y 1 f o r C u l t i v a r , Time, M a c e r a t i o n and Speed Parameters E f f e c t o f C u l t i v a r , M a t u r i t y and M a c e r a t i o n on P u l p Flow B e h a v i o r Index E f f e c t o f C u l t i v a r , M a t u r i t y and M a c e r a t i o n Parameters on P u l p Average V i s c o s i t y ( P o i s e s ) E f f e c t o f C u l t i v a r , M a t u r i t y and M a c e r a t i o n Parameters on P u l p Y i e l d S t r e s s (dynes/ c m 2 ) E f f e c t o f C u l t i v a r , M a t u r i t y and M a c e r a t i o n Parameters on C e l l Serum Flow B e h a v i o r Index E f f e c t o f C u l t i v a r , M a t u r i t y and M a c e r a t i o n Parameters on C e l l Serum Average V i s c o s i t y ( P o i s e s ) E f f e c t o f C u l t i v a r , M a t u r i t y and M a c e r a t i o n Parameters on A l c o h o l I n s o l u b l e S o l i d s (% by w e i g h t ) E f f e c t o f C u l t i v a r , M a t u r i t y and M a c e r a t i o n Parameters on C e l l Serum S o l u b l e S o l i d s (% by weight) v i i . TABLE PAGE B-12 E f f e c t of Cu l t i v a r , Maturity and Maceration Parameters on C e l l Serum pH 79 B-13 E f f e c t of C u l t i v a r , Maturity and Maceration Parameters on Observed Average P a r t i c l e Size (diameter i n ym) 80 B-14 E f f e c t of Cu l t i v a r , Maturity and Maceration Parameters on Tissue Firmness Measured by the Magness-Taylor Pressure Test (pounds) 81 C-l Analysis of Variance. Y i e l d of C e l l Serum for Time 2 83 C-2 Analysis of Variance. C l a r i t y of C e l l Serum at Time 2 84 C-3 Analysis of Variance. Y i e l d of C e l l Serum at Maturity 1 85 C-4 Analysis of Variance. C e l l Serum C l a r i t y at Maturity 1 86 C-5 Analysis of Variance. Y i e l d of C e l l Serum at Time 2 (speed pooled) 87 C-6 Analysis bf Variance. C e l l Serum C l a r i t y at Time 2 (speed pooled) 8 8 C-7 Analysis of Variance. Pulp Flow Behavior Index at Time 2 8 9 C-8 Analysis of,Variance. Pulp Average V i s c o s i t y at 100 sec" for Time 2 90 C-9 Analysis of Variance. Pulp Y i e l d Stress ( T Dynes CM- ) at Time 2 91 C-10 Analysis of Variance. C e l l Serum Flow Behavior Index at Time 2 92 C - l l Analysis of V a r i a n c e ^ C e l l Serum Apparent Vi s c o s i t y at 600 sec for Time 2 93 C-12 Analysis of Variance. Pulp Alcohol Insoluble Solids 94 v i i i . TABLE PAGE C-13 . Analysis of Variance. C e l l Serum Soluble Solids at Time 2 95 C-14 Analysis of Variance. C e l l Serum pH at Time 2 96 C-15 Analysis of Variance. Observed P a r t i c l e Size at Time 2 97 D-l Stepwise Regression of Cu l t i v a r , Maturity, Maceration, Speed and Observations 99 D-2 Stepwise Regression of Cultivar,. Maturity, Maceration, Speed and Observations 100 D-3 Stepwise Regression of Cu l t i v a r , Time, Maceration, Speed and Observations 101 D-4 Stepwise Regression of Cul t i v a r , Time, Maceration, Speed and Observations 102 D-5 Stepwise Regression of a l l Parameters and Observations with Maceration 2 + 3 Pooled 103 D-6 Stepwise Regression of a l l Parameters and Observations with Maceration 2 + 3 pooled 104 E - l Predicted Y i e l d of C e l l Serum for S i g n i f i c a n t Parameters at Three Mean Pulp V i s c o s i t i e s . ' Mcintosh Cu l t i v a r (% by weight) 106 E-2 Predicted Yi e l d of C e l l Serum for S i g n i f i c a n t Parameters at Three Mean Pulp V i s c o s i t i e s . Delicious C u l t i v a r (% by weight) 107 E-3 Predicted Y i e l d of C e l l Serum for S i g n i f i c a n t Parameters at Three Mean Pulp V i s c o s i t i e s . Winesap Cultivar (% by weight) 108 i x . LIST OF FIGURES FIGURE PAGE 1 Flow Behavior of Mcintosh C e l l Serum at 15 (A) and 36 ( A ) °C 35 X . LIST OF ABBREVIATIONS AND DEFINITIONS A = Cross sectional area of p a r t i c l e s , ym AIS = Alcohol Insoluble Solids, g/lOOg C l Mcintosh C u l t i v a r C2 = Red Delicious C u l t i v a r C 3 = Winesap C u l t i v a r CD = Drag c o e f f i c i e n t C e l l serum average v i s c o s i t y Apparent v i s c o s i t y at y = 60.0 sec , D • = P a r t i c l e diameter, ym F rD = Drag force F s = Sedimentation force M Mass, g M = Mac or Maceration treatment 1-4 M l = Mat or Maturity 1 = 0 storage M2 = Mat or Maturity 2 = 1 week storage at 21 WC M3 = Mat or Maturity 3 = 2 weeks storage at 21°C Pulp Average V i s c o s i t y _, = Apparent v i s c o s i t y at y = 100 sec , poises Re = Reynold's Number, dimensionless, defines f l u i d flow regime S = Speed 1-4, rpm Serum = The supernatant or s p e c i f i c portion of the plant f l u i d obtained by the centrifugation of macera-ted apple parenchyma tissue often referred to as "ju i c e " or "sap" x i . = Time 1 or 2 min with centrifuge power on T^ = Time 2 or 6 min with centrifuge power on T^ = Time 3 or 18 min with centrifuge power on V , = Veloci t y of p a r t i c l e r e l a t i v e to f l u i d V = Terminal v e l o c i t y g = Gravitational acceleration m dvnes sec = Power Law consistency c o e f f i c i e n t , — 2 cm n = Power Law flow behavior index of pulp or serum, no units rpm = Revolutions per minute Y = Shear rate, sec n = Liquid v i s c o s i t y , poises P = Liquid density, g/cm^ a = P a r t i c l e density, g/cm^ -2 x = Shear stress, dynes cm -2 T = Y i e l d stress, dynes cm n ACKNOWLEDGEMENTS The aixthoh. wl6he.6 to e.xpn.e.66 hl6 gnatltu.de. to Vn.. M.A. Tang, Re.6 ean.ch Supe.JiVA.6oi, ^on. hl6 a6 6 16 t a nee and coun6e.£ dutilng thl6 6tudy. The. advice. o& V n.o ^ e.6 6 o n.6 G.W. Eaton, W.V. ? civile., and J.F. Rlc.haA.d6 16 6<lnce.h-e.ty appizclatcd. Thl6 xe6e.ah.ch wa6 ^Inanczd In pant by a PIER Fe.ttow6hlp &h.om the National Re.6e.an.ch Council, and al6o Sun-Rype Ph.odu.ct6 Ltd., Ke.lowna, B.C. INTRODUCTION The t r a d i t i o n a l method of separating apple c e l l sap (apple juice) involves pulping whole apples p r i o r to compres-sive loading to e f f e c t sap expression. The simple j e l l y bag or commercial hydraulic press are examples of loading systems More recently, f i l t r a t i o n , centrifugation, reverse pressure f i l t r a t i o n , extrusion, and vacuum f i l t r a t i o n processes have been developed due to r i s i n g labor and raw material costs. The amount of c e l l sap obtained varies from 50 to 85% subject to several factors; f r u i t composition, p a r t i c l e s i z e , applied force, rate of loading, time of load application, oxidative state of the tissue, type of pressing system, and the use of modifiers, enzymes or press aids. The main factor which determines the amount of juice obtained, i s f r u i t composition. F r u i t w i l l vary considerably i n the amount of water, acids, sugars, soluble pectins and other constituents soluble i n water and insoluble s t r u c t u r a l con-stituents such as c e l l u l o s e , hemicellulose, pectin, protein and dextrins. Thus for the purpose of serum separation, f r u i t may be assumed to consist of an i n e r t f r a c t i o n and a l i q u i d f r a c t i o n . Juice separation i s normally conducted i n two step The f i r s t stage i s the primary separation of gross p a r t i c l e s from the j u i c e . The second involves sedimentation of s m a l l suspended p a r t i c l e s and some h y d r o c o l l o i d s from t h e serum. Thus i n d i c e s o f serum s e p a r a t i o n a r e t h e f i n a l w e i g h t and c l a r i t y o f t h e serum. I n p r i n c i p l e , t h e t o t a l amount o f serum a v a i l a b l e i s t h e whole t i s s u e minus t h e i n e r t f r a c t i o n ; however, t h e amount o f serum a c t u a l l y o b t a i n e d i s more c l o s e l y r e l a t e d t o t h e s e p a r a t i o n system and t h e h y d r a -t i o n c h a r a c t e r i s t i c s o f t h e t i s s u e . Serum q u a l i t y i s e v a l u a t e d by f l a v o r , c o l o r , and c l a r i t y c h a r a c t e r i s t i c s . I n o r d e r t o m a i n t a i n some o r a l l o f t h e d e s i r e d a t t r i b u t e s c e r t a i n r e s t r i c t i o n s a r e p l a c e d on t h e s e p a r a t i o n p r o c e s s . I f t i s s u e p a r t i c l e s i z e i s t o o l a r g e reduced serum w e i g h t r e s u l t s from t h e i n a b i l i t y o f t h e c e l l sap t o t r a v e r s e t h e l a r g e p a r t i c l e s . The l i m i t o f g r i n d i n g i t h e appearance o f f i n e s i n t h e serum o r t h e i n a b i l i t y t o s e p a r a t e l i q u i d from t h e f l u i d p u l p . E x t e n s i v e s e p a r a t i o n time o r a e r a t i o n r e s u l t s i n o x i d i z e d serum t h a t i s da'rker i n c o l o r and poor i n f l a v o r c h a r a c t e r i s t i c s . These t r a d i t i o n a l c o n c e r n s have tended t o l i m i t t h e development o f n o v e l s e p a r a t i o n systems. The o b j e c t i v e o f s e p a r a t i o n i s a t t a i n m e n t o f t h e h i g h e s t y i e l d and q u a l i t y serum p o s s i b l e . From t h e p r e v i o u s d i s c u s s i o n , t h i s i s f a v o r e d by h i g h e x p r e s s i o n p r e s s u r e , optimum p a r t i c l e s i z e and minimum p r o c e s s t i m e . P e e l e d , de-seeded- t i s s u e must be used because h i g h p r e s s u r e s would remove and e m u l s i f y u n d e s i r a b l e o i l s and waxes. The optimum p a r t i c l e s i z e i s n e c e s s a r i l y s m a l l i n order t o permit serum e x p r e s s i o n from the t i s s u e . C l a s s i c methods of s e p a r a t i n g f i n e l y ground pulp make use of l o a d i n g d e v i c e s w i t h a sack o r screen t o r e t a i n the p a r t i c l e s . U n f o r t u n a t e l y the f i n e t i s s u e q u i c k l y b l i n d s the r e t e n t i o n d e v i c e so t h a t l i t t l e or no s e p a r a t i o n o c c u r s . " B l i n d i n g " i n t h i s c ontext r e f e r s to the c o n s o l i d a t i o n o f f i n e p a r t i c l e s a djacent t o the porous r e t e n t i o n d e v i c e w i t h a r e s u l t a n t decrease i n c a p i l l a r y flow. The use o f l a r g e r openings i n the system i s u n d e s i r a b l e due to the i n c l u s i o n of an e x c e s s i v e l e v e l o f unseparated t i s s u e i n the serum. An a l t e r n a t e method f o r s e p a r a t i n g serum from f i n e l y ground apple t i s s u e i s sedimentation by h i g h speed c e n t r i -f u g a t i o n . T h i s process i s not l i m i t e d by b l i n d i n g i n the r e t e n t i o n d e v i c e and may p r o v i d e a much s h o r t e r r e s i d e n c e time t h a t would minimize c o l o r and f l a v o r d e g r a d a t i o n . The purpose o f t h i s study was to i n v e s t i g a t e the f e a s i b i l i t y of s e p a r a t i n g apple serum from f i n e l y d i v i d e d parenchyma t i s s u e by a process o f c e n t r i f u g a t i o n and to as s e s s the a f f e c t s of c o n t r o l l a b l e f a c t o r s i n t h a t p r o c e s s . REVIEW OF LITERATURE Apple Composition Apples consist primarily of water which varies from 78.9 to 90.0% of the t o t a l weight depending on c u l t i v a r / maturity and size of the f r u i t (L3, S 7 ) . The remaining portion i s soluble and insoluble s o l i d s . The soluble portion consists of sugars (fructose, glucose, sucrose, maltose), pectin degradation products (galacturonic acid, arabinose, galactose, rhamnose, xylose), acids (malic, c i t r i c , ascorbic ox a l i c and l a c t i c ) , astringent polyphenols, esters, antho-cyanins, and me t a l l i c ions (Bl, D2, J 2 , L 7, P i , S4, S7, T l , Wl) . The soluble s o l i d s , which vary with c u l t i v a r , matur-i t y and f r u i t s i z e , markedly a f f e c t j u i c e q u a l i t y and e x t r a c t a b i l i t y due to poten t i a l f l a v o r and v i s c o s i t y c o n t r i -butions (L2, M4, P5, T 3 ) . Soluble s o l i d constituents, such as starch degradation products, may a f f e c t v i s c o s i t y by reacting with galacturonic acid and condensing to y i e l d c e l l u l o s e which increases markedly with storage (W4). V o l a t i l reducing substances and aromatic flavors increase with apple ripeness. The maximum y i e l d of juice for Mcintosh apples was found a f t e r six days of ripening at 72°F. After 18 days at 72°F, y i e l d , soluble s o l i d s and t o t a l sugars decreased and o f f - f l a v o r s appeared (P5) . The reducing sugars and sugar/acid r a t i o increased markedly d u r i n g s t o r a g e whereas titrata±>le. a c i d i t y d e c r e a s e d one t h i r d . T h i s o c c u r r e d a t t h e same r a t e r e g a r d l e s s o f grade ( L 2 ) . E x t r a Fancy and Fancy grades were shown t o be h i g h e r i n sugar and t o t a l s o l i d s compared w i t h "C" grade a p p l e s ( L 2 ) . One week o f r i p e n i n g was fou n d . t o be optimum f o r D e l i c i o u s and Winesap a p p l e s . E x t r a Fancy and Fancy grades were h i g h e r i n s u g a r , l o w e r i n a c i d and had a more d e s i r a b l e f l a v o r t h a n "C" grade a p p l e s o f t h e same v a r i e t y and r i p e n i n g t r e a t m e n t (N3). S u l l i v a n (S10) found changes i n t h e r e s p i r a t i o n r a t e c l o s e l y p a r a l l e l e d e x p r e s s i b l e j u i c e c o n t e n t . Thus e x p r e s s i b l e j u i c e c o n t e n t v a r i e d w i t h m a t u r i t y and a f t e r s t o r a g e a t 35°F l a r g e r a p p l e s e x h i b i t e d a h i g h e r r e s p i r a t i o n r a t e and g r e a t e r e x p r e s s i b l e j u i c e . The i n s o l u b l e p o r t i o n ( a l c o h o l i n s o l u b l e s o l i d s , AIS) has been d e s c r i b e d as a m a t r i x o f c e l l u l o s e , h e m i c e l l u l o s e and p e c t i n (M4, N2). A l c o h o l i n s o l u b l e s o l i d s have been shown t o a c c o u n t f o r 63.8-79.7% o f t h e v a r i a t i o n i n f i r m n e s s o f a p p l e s ( T l , W4). I n a l l c u l t i v a r s , s t a r c h e s , p e c t i n i c a c i d and h e m i c e l l u l o s e d e c r e a s e w i t h m a t u r i t y (W4). C e l l u l o s e i n c r e a s e s as much as 25% d u r i n g s t o r a g e and p o s s e s s e s u n i que v i s c o s i t y and h y d r a t i o n p r o p e r t i e s ( K l ) . The c e l l w a l l s a r e composed e s s e n t i a l l y o f c e l l u l o s e m i c r o f i b r i l s embedded i n an amorphous m a t r i x w h i c h i s t h e p r i n c i p a l s t r u c t u r a l com-ponent (S9). A p p l e f i r m n e s s has been c h a r a c t e r i z e d by Bourne as d e f o r m a b i l i t y v e r s u s t h e b i o y i e l d p o i n t g e n e r a l l y measured by t h e Magness-Taylor p r e s s u r e t e s t (B3) . A detailed study of the r e l a t i o n s h i p between texture and structure was c a r r i e d out by Reeve (R2). Average c e l l size was noted to be larger near the core and varied s i g n i -f i c a n t l y with variety. C e l l s varied i n size from 140 to 489 ym i n the case of Gravenstein var i e t y . Winesap and Delicious v a r i e t i e s had similar c e l l sizes (266 ym) and i n t e r c e l l u l a r , c a v i t i e s (19-23.6%). Flesh c e l l s were spherical whereas core parenchyma c e l l s were elongated and larger i n size for a l l v a r i e t i e s . The composition of the middle lamellae between adjoining c e l l walls i s considered to be or primary importance i n texture qu a l i t y (Bl, CI, R2, W2). Whittenberger noted that e l e c t r o l y t e s i n tomato markedly reduced juice v i s c o s i t y (W3) . Tolby et a l . noted i n apple sauce that the a c i d i t y or pH l e v e l had a substantial e f f e c t on the f l u i d v i s c o s i t y . They also suggested that i f the tissue was homogenized to a minute siz e , the water holding capacity would increase (T3). The t o t a l amount of true fats i n apple f l e s h i s not s i g n i f i c a n t , varying between 0.3 andQ.4%. The f i n e c u t i c l e covering the epidermis i s composed of cutin and waxes. Essent i a l o i l s are present i n the parenchyma tissue studied and impart c h a r a c t e r i s t i c flavors (Gl). An area of t r a d i t i o n a l concern i s the oxidative state of the tissue (P3). Joslyn found enzymatic browning during preparation of apple reduced the s o l u b i l i t y but not composi-tion of the pectins (J3). Maturity and v a r i e t y also affected t h e e x t r a c t a b i l i t y o f p e c t i n . P r o a n t h o c y a n i d i n s w e r e n o t e d t o be e x t r e m e l y s u s c e p t i b l e t o e n z y m a t i c a n d n o n - e n z y m a t i c o x i d a t i v e p o l y m e r i z a t i o n r e s u l t i n g i n c o l o r c h a n g e s and s e d i m e n t f o r m a t i o n . The f l a v o n o i d s u b s t a n c e s , i n t u r n , w e r e s u s c e p t i b l e t o e n z y m a t i c and a u t o - o x i d a t i o n (H2, J 2 , W l ) . T h e r m a l d e s t r u c t i o n o f p e r o x i d a s e i n a p p l e s r e q u i r e d a 15.5 m i n u t e t r e a t m e n t a t 212°F o r 24.5 m i n u t e s a t 190°F i n t h e c a s e o f c i d e r ( N l ) . • • F r e e z i n g a p p l e t i s s u e i n c r e a s e s t h e e x p r e s s i b l e j u i c e c o n t e n t a s s u m i n g t h e f r o z e n f r u i t i s p r o c e s s e d r a p i d l y -( B 2 ) . An i n c r e a s e i n b a c t e r i a numbers a n d t u r b i d i t y was n o t e d i n t h e r e s u l t a n t j u i c e . F r e e z i n g a p p l e t i s s u e a l s o i m p r o v e s t h e d e h y d r a t i o n and r e h y d r a t i o n c h a r a c t e r i s t i c s ( S 6 ) . S i m i l a r e f f e c t s c a n be o b t a i n e d w i t h l o w m o l e c u l a r w e i g h t s u r f a c e a c t i v e a g e n t s due t o t h e p o r o u s n a t u r e o f a p p l e t i s s u e ( S l ) . A n o t h e r common method o f m o d i f y i n g f r u i t t i s s u e t o i m p r o v e s e p a r a t i o n i s t h e u s e o f enzymes s u c h a s p e c t i n a s e s o r c e l l u l a s e s . The M u r c h p r o c e s s i n v o l v e s t h i s a p p r o a c h f o r M i c h i g a n a p p l e s (M3). T h i s p r o c e s s h o w e v e r was n o t s u i t a b l e f o r N o r t h w e s t v a r i e t i e s ( G 2 ) , P e c t i n a s e s a d d e d t o p a r e n c h y m a t i s s u e d i d n o t s u f f i c i e n t l y r e d u c e t h e p u l p v i s c o s i t y t o p e r m i t a p p l i c a t i o n t o t h e f i l t e r and i n a d d i t i o n g e n e r a t e d u n s i g h t l y c o l o r a t i o n i n t h e r e s u l t a n t j u i c e . 8. Ultrasonics Since the AIS portion and p a r t i c u l a r l y c e l l u l o s e has been considered the major contributor to the structure and water holding capacity of apple ti s s u e , improvement i n the expressible juice content may be accomplished by tissue reduction or d i s i n t e g r a t i o n . Thompson noted that some of the factors involved with ult r a s o n i c extraction of plant material are dispersion of adhering material, p a r t i c l e size reduction, c e l l wall disruption, gross s t i r r i n g e f f e c t s , s e l e c t i v e a g i t a t i o n at phase boundaries, thermal e f f e c t s and l i b e r a t i o n of active constituents from bound s i t e s within the c e l l (T2). In the solvent extraction of o i l from peanuts using n-hexane, the temperature increase which accompanies insonation, resulted i n a 1.88 r a t i o vs. a 2.76 increase by weight aft e r 6 minutes of insonation at 400 KHz. Ambient extraction gave a value of one (T2) . Others have reported an increase i n the permeability of substances into the c e l l s even when no destruction of the c e l l wall occurred (L4). I t i s also considered u n l i k e l y that thermal e f f e c t s alone are important i n the changes brought about by exposure to ultrasound such as dispersion of c e l l contents ( E l , L 4 ) . Morehead found exposure to 700 KHz for 20 minutes resulted i n a breakdown of both native and regenerated 9. c e l l u l o s e f i b e r s i n t o o p t i c a l l y t r a n s p a r e n t f i b r i l s ( M l ) . Some v a r i a t i o n i n t h e e f f e c t o f u l t r a s o n i c i r r a d i a t i o n on t h e v i s c o s i t y o f c e l l u l o s e s o l u t i o n s has been r e p o r t e d . C a v i t a t i o n 2 f o r f i v e m inutes a t 400 KHz u s i n g 250 watts/cm d e c r e a s e d t h e v i s c o s i t y o f c o t t o n samples b u t n o t v i s c o s e r a y o n (S 3 ) . The d i s r u p t i v e and d e p o l y m e r i z i n g e f f e c t o f u l t r a s o u n d on l a r g e m o l e c u l e s i n s o l u t i o n such as DNA has been shown (N4). I t would n o t be unexpected t h a t some c o n s t i t u e n t s o f t h e AIS might undergo some d e p o l y m e r i z a t i o n (W6). Any o b s e r v e d e f f e c t o f u l t r a s o n i c v i b r a t i o n w i l l p r o b a b l y be due t o e x t r a c e l l u l a r c a v i t a t i o n (D3). T h i s c o n t r i b u t e s t o c e l l u l a r d i s r u p t i o n by g i v i n g r i s e t o shock waves and p r e s s u r e s w h i c h may be t r a n s m i t t e d from t h e serum t h r o u g h c e l l w a l l s w i t h d i s r u p t i v e e f f e c t s . The a p p l i c a t i o n o f u l t r a s o u n d t o improve e x p r e s s i b l e j u i c e c o n t e n t i n a p p l e t i s s u e has been n o t e d by C o l t a r t (C4). U l t r a s o u n d was found t o reduce t i s s u e s i z e and v i s c o s i t y i n the r e s u l t a n t j u i c e v i a a second t r e a t m e n t w h i c h improves f i l t r a t i o n c h a r a c t e r i s t i c s . P u l p s and/or serum were s u b j e c t e d t o u l t r a s o n i c v i b r a t i o n s i n the f r e q u e n c y range between 20 2 and 300 KHz a t a sound i n t e n s i t y o f up t o about 20 watt/cm (C4). E x p r e s s i o n E x p r e s s i o n i s t h e s e p a r a t i o n o f l i q u i d from a two phase s o l i d - l i q u i d system by. c o m p r e s s i o n due t o movement o f the r e t a i n i n g w a l l i n s t e a d o f pumping t h e s o l i d - l i q u i d system 1 0 . i n t o a f i x e d chamber as i n f i l t r a t i o n (S5).' I n f i l t r a t i o n t he o r i g i n a l m i x t u r e must be s u f f i c i e n t l y f l u i d t o be pumpable. I n e x p r e s s i o n , the m a t e r i a l may appear e n t i r e l y as a s e m i s o l i d o r a s l u r r y . E x p r e s s i o n , f o r th e ' p u r p o s e o f a n a l y s i s , may be s e p a r a t e d i n t o two a r e a s . The f i r s t i s f i l t r a t i o n , t he second i s c o n s o l i d a t i o n . C o n s o l i d a t i o n commences when the s o l i d c o n c e n t r a t i o n i n the o r i g i n a l m a t e r i a l i s s u f f i c i e n t so t h a t the u n i f o r m d i s t r i b u t i o n o f h y d r a u l i c p r e s s u r e i s lower t h a n t h e a p p l i e d p r e s s u r e (S5) . Ca-ke compaction d u r i n g c e n t r i f u g a t i o n proceeds on the p r i n c i p l e o f c o n s o l i d a t i o n • ( H i ) . Kormendy noted t h a t t h e p r e s s i n g time t o a c h i e v e the same p e r c e n t y i e l d o f f l u i d i s p r o p o r t i o n a l t o t h e square o f the i n i t i a l t h i c k n e s s o f t h e m a t e r i a l t o be e x p r e s s e d ( K 2 ) . W h i l e the t h e o r y was v a l i d a t e d on c i d e r a p p l e s the t h e o r y may be c o m p l i c a t e d by v a r i a t i o n o f p a r t i c l e s i z e and the, p r e s e n c e of a i r i n the t i s s u e ( R l ) . The p e r c e n t y i e l d - t i m e c u r v e s f o r d i f f e r e n t i a l i n i t i a l t h i c k n e s s , p l o t t e d as t h e r a t i o o f time and the square o f i n i t i a l t h i c k n e s s , c o i n c i d e f o r d i f f e r e n t t h i c k n e s s e s , and y i e l d a s i n g l e c u r v e . The e x p e r i m e n t s on a p p l e p u l p and g r a t e d a p p l e s a r e p a r t i c u l a r l y i n t e r e s t i n g as e x p r e s s i b l e j u i c e i s shown t o be h i g h e r f o r f i n e l y ground parenchyma t i s s u e c o n t r a r y t o T o l b y ( K 2 , T3) . H i g h e s t y i e l d s were o b t a i n e d w i t h the p e e l and c o r e f r a c t i o n removed w h i c h i s a l s o d e s i r a b l e from a q u a l i t y p o i n t o f view i f h i g h e x p r e s s i o n forces are to be used. The expression of apple juice may be defined by the insoluble s o l i d s content. The amount of expression i s defined by the change i n the r a t i o of insoluble s o l i d s i n i t i a l l y minus the r a t i o of insoluble solids i n the tissue and consolidated tissue a f t e r the cessation of expression (G2) . Increasing labor and raw material costs have provided the necessary incentive for the development of pressing systems as a replacement for the t r a d i t i o n a l hydraulic press. These novel systems are extensively re-viewed elsewhere (Cl, C2, C3, Dl, Gl, L9, S7, T5, T.6) . A l l have the objective of producing maximum y i e l d and optimum quali t y economically. Unfortunately some are area-specific while others use techniques unacceptable to the Canada Department of Agriculture which requires the use of f i r s t pressing without the addition of water for standardized apple j u i c e . Evaluation of apple f i l t r a t i o n c h a r a c t e r i s t i c s , s p e c i f i c a l l y the tendency of f i n e l y macerated tissue to bl i n d , and the requirement to optimize consolidation v i a th application of high forces resulted i n the evaluation of sedimentation and centrifugation. The centrifugation of apple parenchyma tissue against a s o l i d surface would optimize the f i l t r a t i o n and consolidation structure. Sedimentation with the aid of tannin and g e l a t i n has been used to c l a r i f y pressed apple j u i c e (T6). C e n t r i f u g a t i o n of the parenchyma t i s s u e would enhance sedimentation to the p o i n t of overcoming hindered s e t t l i n g which would i n t e r f e r e w ith the sedimentation of f i n e l y macerated parenchyma t i s s u e . T h i s technique has been e v a l u a t e d by two groups s e p a r a t e l y ( M 2 ) . Apple c o n s t i t u e n t sedimentation c h a r a c t e r i s -t i c s were a l s o d e s c r i b e d by F r e n k e l ( F 2 ) . C e n t r i f u g a t i o n The use of a c e n t r i f u g e to enhance s e p a r a t i o n of c e l l serum from apple parenchyma t i s s u e i s sedimentation t h a t should be s u b j e c t to c o n v e n t i o n a l s e t t l i n g parameters. These a r e : v i s c o s i t y of the s l u r r y , s u r f a c e t e n s i o n or i n t e r f a c i a l energy o f the l i q u i d s o l i d system, v i s c o s i t y of the continuous phase or c e l l serum, p a r t i c l e s i z e d i s t r i b u -t i o n of the t i s s u e fragments, d e n s i t y d i f f e r e n c e between the serum and c e l l fragments, the shape, s u r f a c e t e x t u r e and c a p i l l a r y s t r u c t u r e of the t i s s u e fragments, and the p a r t i c l e c o n c e n t r a t i o n . The e f f e c t i v e n e s s of s e p a r a t i o n using sedimentation i s determined by the f r e e f a l l i n g speed of the d i s c o n t i n u o u s phase through the continuous phase ( P 4 , T 4 ) and the packing c h a r a c t e r i s t i c s of the d i s c o n t i n u o u s phase wi t h r e s p e c t to compaction and e l a s t i c i t y (Hi, P 4 ) . The sedimentation f o r c e (F g) a c t i n g on a s p h e r i c a l p a r t i c l e of d e n s i t y a i n a l i q u i d of d e n s i t y p i s 1 3 , 3 F = TT D (a - p) g [ 1 ] s 6 where D = p a r t i c l e diameter q = g r a v i t a t i o n a l acceleration \ The force opposing movement i s the drag force F^, created by f l u i d flow over the p a r t i c l e surface F d = TT p V 2 D 2 C d [2] 8 where V = v e l o c i t y of p a r t i c l e r e l a t i v e to f l u i d = drag c o e f f i c i e n t . The drag c o e f f i c i e n t (C.,) i s related to the f l u i d d flow c r i t e r i o n , the Reynold's number (Re). Thus: 24 If Re > 1 0 , C d = — (Stokes 1 law or streamline flow). If 1 0 < Re < 1 0 0 0 , C, = (Intermediate law) a 0 . 6 Re If Re > 1 0 0 0 , C d = 0 . 5 (Newton's law). In the Stokes 1 law region (streamline flow), the drag c o e f f i c i e n t C = Mil L 3 ] d VDp where n = f l u i d v i s c o s i t y , thus, F, = 3 it n VD. [4] d 14. For s t e a d y - s t a t e s e t t l i n g of the p a r t i c l e i n the f l u i d , equations [1] and [4] may be equated and s o l v e d f o r the t e r m i n a l s e t t l i n g v e l o c i t y . v = ( P " P> P 2 9 r 5 ] g 18 n 1 0 1 Thus, the s e t t l i n g r a t e i s then p r o p o r t i o n a l to the diameter o f the p a r t i c l e squared and d i r e c t l y p r o p o r t i o n a l to the d i f f e r e n c e i n d e n s i t y between the p a r t i c l e s and surrounding f l u i d . For l a r g e r ( greater than 100 ym) or n o n - s p h e r i c a l -p a r t i c l e s , Intermediate or Newton's law regime a p p l i e s where the r e s i s t i n g f o r c e i s independent of the v i s c o s i t y and p r o p o r t i o n a l to the square of the p a r t i c l e v e l o c i t y . At h i g h c e n t r i f u g a l f o r c e s the sedimentation r a t e becomes p r o p o r t i o n a l to the c e n t r i f u g a l f o r c e ( A l , L l , P4, S2). A f a c t o r which markedly a l t e r s the s e t t l i n g of p a r t i c l e s i s c a l l e d "the h i n d e r e d s e t t l i n g e f f e c t " (S2). Hindered s e t t l i n g i s s i g n i f i c a n t a t s o l i d s c o n c e n t r a t i o n s g r e a t e r than 1% by volume, e f f e c t i v e l y l o w e r i n g the p a r t i c l e v e l o c i t y (P4). In the case of apple t i s s u e , hindered s e t t l i n g i s thus expected to be a major e f f e c t . The c o n v e r s i o n f a c t o r between c e n t r i f u g a l systems i s c a l l e d the sigma v a l u e (Z) and assumes non-hindered s e t t l i n g o f p a r t i c l e s (P4). Comparisons can s t i l l be made between two systems e x h i b i t i n g h i n d e r e d s e t t l i n g p r o v i d e d the degree of hindrance i s e q u i v a l e n t i n the systems under Note: A k i n e t i c d e r i v a t i o n f o r sedimentation was d e s c r i b e d by W i l l i a m s (W5). c o n s i d e r a t i o n . H i n d e r e d s e t t l i n g may be p a r t i a l l y overcome by u s i n g c o a g u l a n t s t o f l o c c u l a t e p a r t i c l e s i n t h e 1-100 urn range (A2, F l , S2, S l l ) . Due t o t h e s m a l l d e n s i t y d i f f e r e n c e between f l u i d and s o l i d i n food systems, s e p a r a t i o n i s seldom p o s s i b l e f o r p a r t i c l e s below 75 ym (DI, T 4 ) . When th e c e n t r i f u g e i s charge d a t low f l o w r a t e s , h i n d e r e d s e t t l i n g has l i t t l e o r no e f f e c t . A t h i g h f l o w r a t e s p a r t i c l e s i z e and v i s c o s i t y o f t h e serum i n f l u e n c e t h e h i n -d e red s e t t l i n g phenomenom as e x p r e s s e d by S t o k e s ' law (P4, S2) . Anderson n o t e d an anomaly i n Stokes!: law due t o s t r e a m i n g w h i c h he termed " t u r n o v e r " ( A l ) . P a r t i c l e s m i g r a t e t h r o u g h t h e i n t e r f a c e o f two l a y e r s and appear a t the t o p o f the lo w e r l a y e r . The t o p o f t h e l o w e r l a y e r i s th e n made more dense by v i r t u e o f t h e p a r t i c l e s i t now con-t a i n s and " t u r n s o v e r " moving as a body t o t h e bottom o f t h e tube (Al) . D i f f e r e n t i a l c e n t r i f u g a t i o n s e p a r a t e s p a r t i c l e s a c c o r d i n g t o s i z e , shape and d e n s i t y b u t p r i m a r i l y a c c o r d i n g t o s i z e w i t h the e x c e p t i o n of. t i s s u e c h l o r o p l a s t s which remained a t t h e t o p o f t h e tube even a t 40,000 rpm ( J l , L8).. The t r a n s i t i o n from a v e r t i c a l tube p o s i t i o n r o t a t i n g around an' e x t e r n a l a x i s p a r a l l e l t o t h e tube and a h o r i z o n t a l p o s i t i o n c h a r a c t e r i s t i c o f normal r o t a t i o n a l speeds, g e n e r a t e s f o r c e s i n c e n t r i f u g e s w h i c h may produce a r o t a t i o n a l f l u i d a t t h e t o p and bottom i n o p p o s i t e d i r e c t i o n s ( A l ) . Some d i s r u p t i o n o f t h e s e r u m - s o l i d boundary may o c c u r during deceleration (Hi). This e f f e c t may reduce somewhat the compaction and yi e l d s obtainable from a laboratory centrifuge. The e f f e c t of small variations i n temperature i s greatly magnified as the g r a v i t a t i o n a l f i e l d i s increased since no increase i n the forces opposing movement or the serum v i s c o s i t y occurs. While temperature effects undoubtedly contribute to sedimentation at various combinations of rpm and time, the ef f e c t s are common but may accentuate the e f f e c t of high rpm and/or time. In layered systems, esp e c i a l l y those involving t h i n b r e i layers close to the axis of rotation and f a i r l y long tubes a considerable portion of the p a r t i c l e s h i t the side of the tube before reaching the bottom (Al). C o l l i s i o n with the wall tends to make the p a r t i c l e s agglutinate and either adhere or s l i d e as a mass to the bottom. EXPERIMENTAL METHODS E x p e r i m e n t a l D e s i g n P r e l i m i n a r y e x p e r i m e n t s were c a r r i e d o u t i n v e s t i -g a t i n g t h e f e a s i b i l i t y o f c e n t r i f u g i n g macerated a p p l e parenchyma i n a l a b o r a t o r y c e n t r i f u g e t o d e t e r m i n e whether r e s u l t s c o u l d be o b t a i n e d t h a t were comparable t o t h o s e o b s e r v e d u s i n g a s o l i d - b o w l d e c a n t e r . The e f f e c t s o f macera-t i o n , c e n t r i f u g a t i o n , t i s s u e , a c c e l e r a t i o n , d e c e l e r a t i o n , speed, t y p e o f c e n t r i f u g e t u b e , o x i d a t i o n s t a t e , c u l t i v a r , f r e e z i n g o f t i s s u e , enzymes, t e m p e r a t u r e and o c c l u d e d a i r ; i n s h o r t , the v a r i o u s f a c t o r s w h i c h c o u l d d e t e r m i n e t h e minimum and maximum amount o f c e l l serum o b t a i n a b l e from a p p l e parenchyma t i s s u e under t h e l a b o r a t o r y c o n d i t i o n s o f i n v e s t i -gation.. These e x p e r i m e n t a l r e s u l t s were used t o d e c i d e on an e x p e r i m e n t a l p l a n o f e v a l u a t i n g s u f f i c i e n t d a t a t o p e r m i t a s t a t i s t i c a l e v a l u a t i o n o f t h e f a c t o r s , t h e p r e l i m i n a r y i n v e s t i g a t i o n i n d i c a t e d t o be i m p o r t a n t . The e x p e r i m e n t a l f a c t o r s i n v e s t i g a t e d f o r s i g n i f i c a n c e w e r e c u l t i v a r ( 3 ) , m a t u r i t y (.3), m a c e r a t i o n t r e a t m e n t ( 4 ) , c e n t r i f u g a t i o n t ime (3) and speed ( 4 ) . Times 1 t o 3 were e v a l u a t e d a t m a t u r i t y 1 whereas time 2 o n l y was used a t m a t u r i t y 2 and 3. The e f f e c t o f t h e parameters i n v e s t i g a t e d were c h a r a c t e r i z e d by measurements f o r t i s s u e f i r m n e s s , homogenate A I S , serum y i e l d , serum c l a r i t y , p u l p p a r t i c l e s i z e , p u l p v i s c o s i t y , serum v i s c o s i t y , serum s o l u b l e s o l i d s , 18. and serum pH. The order i n which the exper/iments were performed was determined by a computer program. The experimental plan i s outlined i n Table A l . Analyses of variance were performed to i d e n t i f y the experimental factors which influence serum y i e l d and serum c l a r i t y . Stepwise multiple l i n e a r regressions were used to regress serum y i e l d and serum c l a r i t y on the coded experimental factors and measurements as well as a l l two-way interactions (C3). This method eliminated independent variables that did not contribute s i g n i f i c a n t l y (P _> 0.05) to the regression. The purpose of the stepwise multiple regression was to . i d e n t i f y the important experimental factors and measurements and to provide equations for prediction of serum y i e l d s or c l a r i t y under various experimental conditions. C u l t i v a r Three apple c u l t i v a r s , obtained from the Okanagan Valley of B r i t i s h Columbia, were used i n t h i s study. Mcintosh (cultivar 1), Red Delicious (c u l t i v a r 2), and Winesap (cult i v a r 3), were chosen to represent physiological v a r i a -tion which can occur i n apples grown i n the various commercial orchards of North America. The size of the apples was judged as number three's and graded Extra Fancy. Maturity The apples were held at QCiC or- 4°C for the exploratory period of research which covered 3 0 days. On commencement of the main experiment, a l l apples were held at 3 0°F. Variations i n maturity were obtained by holding 19. the three v a r i e t i e s for zero (maturity 1), one (maturity 2) or two weeks (maturity 3) at 21°C p r i o r to tissue preparation. Maceration of Tissue A l l apples were peeled and the tissue macerated by the Waring Blendor, V i r t i s homogenizer or G i f f o r d Wood C o l l o i d m i l l to provide a suitable size range. The standard method of macerating apple tissue derived from t h i s study was to peel three medium=sized apples to obtain approximately 340 g of tissue. The tissue was ground i n a Waring Blendor for one minute at 1-200 rpm to break up the s l i c e s . This was followed by one minute at 10,500 rpm (maceration 1) or one minute at 10,500 rpm followed by one minute at 20,600 rpm (maceration 2) or one minute at 10,500 rpm, one minute at 20,600 rpm and 10 minutes sonication at 300 KHz at a sound i n t e n s i t y of 20 watts/cm 2 (maceration 3) or two minutes at 10,500 rpm and two minutes at 20,600 rpm (macera-ti o n 4). Blender speeds re f e r to the nolOad speed i n a l l cases. Centrifugation Two centrifuges were used i n th i s study; a Sorval Superspeed RC2-B re f r i g e r a t e d centrifuge or an IEC c e n t r i -fuge. Pyrocarbonate, polyethylene, glass and st a i n l e s s s t e e l centrifuge tubes were evaluated. Stainless s t e e l centrifuge tubes were used for the majority of the experimen-t a l work as these were the most durable and also most closely approximated commercial contact surfaces. The IEC centrifuge was used for the majority of experiments (International model HT centrifuge with 2 3 cm diameter, 8 place, 33° angle rotor, #5 424-10 stainl e s s steel centrifuge tubes). 20. Speed The e f f e c t of rpm on the y i e l d of c e l l serum was investigated on the Sorval RC2-B centrifuge by varying the speed from 5,500 rpm (3,640 g) to 15,000 rpm (27,000 g ). The ef f e c t of rpm using the IEC centrifuge for the majority of experiments was evaluated at 5,500 rpm (speed 1), 8,000 rpm (speed 2), 10,500 rpm (speed 3) and 14,500 rpm (speed 4). The IEC settings and results are shown i n Table A2. The rpms selected approximate commercial ranges of speed and resultant g r a v i t a t i o n a l force available to achieve an economic separation. Time The time of centrifugation using the Sorval RC2-B centrifuge was as stated at the sp e c i f i e d rpm. The e f f e c t of centrif ugation time using the IEC centrifuge was evaluated at 2 minutes (time 1), 6 minutes (time 2) and 18 minutes (time 3) . The time at the sp e c i f i e d rpm -thus varied from 0.0 to 17.5 minutes, as shown i n Table A3, depending on the rpm and time combination. This time range was selected to approximate the minimum and maximum residence times which could be expected for a given p a r t i c l e size range i n a commercial-size s o l i d bowl decanter or alternate centrifuge. Y i e l d Y i e l d of c e l l serum was obtained by weighing c e n t r i -fuge tubes to a constant weight, i . e . approximately 15 g of macerated parenchyma tis s u e . After centrifugation the supernatant was c a r e f u l l y decanted, the tube and p e l l i c l e weighed and the y i e l d o f c e l l serum c a l c u l a t e d as the per-centage c e l l serum o f the o r i g i n a l weight of apple parenchyma t i s s u e . Serum C l a r i t y The c l a r i t y o f the supernatant c e l l serum was measured i n the f o l l o w i n g manner: 1. The a b s o r p t i o n c h a r a c t e r i s t i c s of commercial apple j u i c e and c e n t r i f u g e d c e l l serum were measured from 420 to 640 nm on a Unicam r e c o r d i n g spectrophotometer. Since the a b s o r p t i o n was uniform a t 520 nm, t h i s wave l e n g t h was chosen to measure the c l a r i t y on a Bausch & Lomb S p e c t r o n i c 20. A l i q u o t s of the commercial j u i c e were f i l l e d i n t o p l a i n t e s t tubes and f r o z e n f o r use as blanks throughout the t r i a l . 2. The instrument was allowed to warm up f o r a t l e a s t a h a l f hour. The instrument was zeroed, then s e t a t 100% t r a n s m i t t a n c e u s i n g the commercial sample of apple j u i c e . The percentage t r a n s m i t t a n c e was then measured f o r the s e t of a l i q u o t s i n q u e s t i o n . I f an a l i q u o t i n the s e t was h i g h l y t u r b i d , the instrument would be r e c a l i b r a t e d a t 100% t r a n s -mittance u s i n g the c l e a r e s t a l i q u o t . The r e l a t i v e c l a r i t y o f the second a l i q u o t was a percentage of the f i r s t because the r e l a t i v e absorbance was pro-p o r t i o n a l t o the d i f f e r e n c e i n c o n c e n t r a t i o n between unknown and standard. T h i s procedure was d e s c r i b e d by Ewing (E2) as d i f f e r e n t i a l o r r e l a t i v e photometry. R e l a t i v e c l a r i t y was used as a measure o f t h e e f f i c i e n c y o f c e n t r i f u g a t i o n i n t h e S t o k e s ' Law regime due t o t h e v e r y s m a l l s i z e o f t h e suspended p a r t i c l e s . V i s c o s i t y The r h e o l o g i c a l c h a r a c t e r i s t i c s o f t h e macerated a p p l e t i s s u e and s u p e r n a t a n t c e l l serum were d e t e r m i n e d u s i n g a Haake R o t o v i s k o equipped w i t h a c o n s t a n t t e m p e r a t u r e b a t h . The v i s c o m e t e r was t u r n e d on and a l l o w e d t o e q u i l i b r a t e f o r one hour b e f o r e d e t e r m i n i n g v i s c o s i t y . The p u l p v i s c o s i t y o f each sample was d e t e r m i n e d p r i o r t o c e n t r i f u g a t i o n by w e i g h i n g o u t 100 g t o a cup and measuring t h e v i s c o s i t y i n C o u e t t e f l o w a t 15.0 + 0.2°C u s i n g a MV-1 s p i n d l e . The serum v i s c o s i t y was d e t e r m i n e d on t h e p o o l e d s u p e r n a t a n t a l i q u o t s o b t a i n e d from t h e v a r i o u s c e n t r i f u g a t i o n t e s t s u s i n g a p p r o x i m a t e l y 20 ml w i t h t h e NV s p i n d l e and cup. A Moseley two-channel s t r i p c h a r t r e c o r d e r was used t o r e c o r d t h e r e s u l t s . R h e o l o g i c a l c h a r a c t e r i s t i c s were d e t e r m i n e d by measuring t h e s h e a r s t r e s s from h i g h t o low shear r a t e s , t h e n a f t e r two minute r e l a x a t i o n t i m e t o o b t a i n t h e y i e l d s t r e s s , s h e a r s t r e s s e s were r e c o r d e d from low t o h i g h shear r a t e s . The d a t a were e n t e r e d on computer punch c a r d s and t h e f l o w f a c t o r s o f t h e p o w e r - l a w - w i t h - y i e l d - s t r e s s model e v a l u a t e d f o r t h e a p p l e p u l p v i s c o m e t r i c t e s t s . 2 where T = sh e a r s t r e s s , dynes/cm Y = sh e a r r a t e , sec"""" 2 ' T = y i e l d s t r e s s , dynes/cm m = a f a c t o r , t h e c o n s i s t e n c y c o e f f i c i e n t , dynes s e c n / c m 2 n = a f a c t o r , t h e f l o w b e h a v i o r i n d e x . F o r t h e serum f l o w d a t a , no y i e l d s t r e s s was e v i d e n t , t h u s t h e power-law model T = m yn [7] was used. From t h e f i t t e d f l o w c u r v e s , a p p a r e n t v i s c o s i t y a t i n t e r m e d i a t e shear r a t e s were computed. These r e p r e s e n -t a t i v e a p p a r e n t v i s c o s i t i e s were e v a l u a t e d a t 100 s e c " ^ f o r th e p u l p and a t 600 s e c " ^ f o r serum f l o w c u r v e s . A l c o h o l I n s o l u b l e S o l i d s A l c o h o l i n s o l u b l e s o l i d s (AIS) were d e t e r m i n e d by com b i n i n g p e l l i c l e s o f a p p l e t i s s u e r e m a i n i n g a f t e r c e n t r i -f u g a t i o n a t the f o u r speeds. Combined i n s o l u b l e s o l i d s o f each f r a c t i o n were suspended i n i s o p r o p y l a l c o h o l f o r s t o r a g e AIS was d e t e r m i n e d by h e a t i n g t h e suspended p e l l i c l e i n i s o p r o p y l a l c o h o l (IPA) t o 50°C and b l e n d i n g w i t h a l a r g e r q u a n t i t y o f IPA i n a Lou r d e s b l e n d e r . The a l c o h o l and s o l i d s were f i l t e r e d u s i n g #1 paper i n a Buchner f u n n e l . The s o l i d s were washed w i t h IPA, f i l t e r e d and t h e n suspended i n 400 ml o f m e t h a n o l , b l e n d e d , f i l t e r e d and washed. The r e s u l t a n t s o l i d s were d r i e d a t 100°C, weighed and t h e AIS c a l c u l a t e d as a percentage of the o r i g i n a l apple parenchyma t i s s u e weight (G2). So l u b l e S o l i d s S o l u b l e s o l i d s were determined on the pooled serum supernatants at 20°C u s i n g an Abbe 3L r e f r a c t o m e t e r manufactured by Bausch and Lomb. Determinations were made i n d u p l i c a t e and averaged. pH pH was determined on a Corning pH meter wi t h an expanded s c a l e u s i n g pooled serum supernatants a t 20°C. P a r t i c l e S i z e P a r t i c l e s i z e o f the macerated t i s s u e was determined u s i n g two separate techniques: 1. The p a r t i c l e s i z e was estimated by measuring F e r e t ' s s t a t i s t i c a l diameter which i s the maximum o u t s i d e diameter of a p a r t i c l e measured h o r i z o n t a l l y across the s l i d e . An Olympus b i n o c u l a r microscope w i t h a f i l a r o c u l a r micrometer was c a l i b r a t e d w i t h a stage micrometer and more than 100 p a r t i c l e s of apple pulp were measured along major and minor axes f o r each o f the f o u r p a r t i c l e s i z e ranges i n a d d i t i o n to the h o r i z o n t a l measurement. The r e s u l t a n t data i n f i l a r u n i t s were transformed to m i l l i m e t e r s u s i n g a computer program which then determined the mean diameter and p a r t i c l e s i z e - d i s t r i b u t i o n . A t - t e s t was then used to compare mean diameters of the f o u r p a r t i c l e s i z e ranges. 2. The method o f determining p a r t i c l e s i z e which was used f o r the m a j o r i t y o f the experiments i n v o l v e d the f o l l o w i n g procedure: A smal l amount of the macerated t i s s u e was d i s p e r s e d on a microscope s l i d e i n the serum o b t a i n e d from c e n t r i f u g a t i o n a t 14,500 rpm. Two samples from each homogenate experimental u n i t were taken. The s l i d e was p l a c e d on an Olympus b i n o c u l a r microscope equipped w i t h an A s a h i Pentax 35 mm camera and fou r o r f i v e photomicrographs were made from each s l i d e . A micrometer s l i d e was used w i t h each r o l l of f i l m to o b t a i n the m a g n i f i c a t i o n f a c t o r . The f i l m was developed and l a r g e p r i n t s made to measure p a r t i c l e s i z e , u s i n g F e r e t ' s s t a t i s t i c a l diameter. Over 100 measurements were taken from each experiment to c a l c u l a t e the mean diameter and p a r t i c l e s i z e d i s t r i b u t i o n . By means of a t - t e s t mean p a r t i c l e diameters o f the f o u r maceration treatments were compared u s i n g a l i b r a r y computer program. T i s s u e Firmness The Magness-Taylor p r e s s u r e t e s t e r w i t h a 5/16 i n plunger was used to e v a l u a t e t i s s u e firmness (B3). One i n c h diameter d i s c s were c u t out of the s i d e of two o f the three apples used f o r each t r i a l . The r e s u l t a n t two valu e s (pounds) were averaged. RESULTS AND DISCUSSION P r e l i m i n a r y T r i a l s The e f f e c t s o f a Waring B l e n d o r and a V i r t i s Homogenizer on c e l l serum y i e l d were compared i n t h e d e v e l o p -ment o f a t e c h n i q u e f o r a p p l e parenchyma t i s s u e m a c e r a t i o n . D e l i c i o u s a p p l e segments were macerated f o r 1.5 min a t 200 rpm and 1.5 min a t 12,600 rpm p r i o r t o 2 min a t 20,500 rpm i n a Waring B l e n d o r o r 2 min a t f u l l speed i n a V i r t i s Homogenizer (Table 1 ) . Both homogenates were v i b r a t e d f o r 1 min a t f u l l power and c e n t r i f u g e d i n l a r g e d i a m e t e r t u b e s , . i n a S o r v a l Superspeed RC2-B c e n t r i f u g e . TABLE 1 E f f e c t o f Speed, Time, Temperature and M a c e r a t i o n Treatment on C e l l Serum Y i e l d (% by weight) C e n t r i f u g a t i o n Treatment Temp °C % Y i e l d o f C e l l Serum  C u m u l a t i v e V i r t i s Waring 5 min a t 6,000 rpm (4,340 ff) - 3 66.4 66.2 + 5 min a t 6,000 rpm (4,340 Q) 0 71.8 73.1 + 5 min a t 15,00 0 rpm (27,000. Q) 13 75.8 78.4 The h i g h e r l e v e l o f t i s s u e m a c e r a t i o n o b t a i n e d u s i n g a V i r t i s homogenizer d i d not r e s u l t i n i n c r e a s e d serum y i e l d s (Table 1) p o s s i b l y due t o t h e poor c o m p a c t i o n c h a r a c -t e r i s t i c o f l a r g e d i a m e t e r tubes o r g r e a t e r w a t e r h o l d i n g c a p a c i t y (HI, P4, T3) . A two-way- s e p a r a t i o n was o b s e r v e d w i t h a s u r f a c e f r a c t i o n c o m p r i s e d o f t h e l a r g e r t i s s u e fragments ( A l ) . I n o r d e r t o a c h i e v e g r e a t e r t i s s u e c ompaction D e l i c i o u s segments were macerated f o r 1 min a t 200 rpm, 1 min a t 12,600 rpm and 2 min a t 20,500 rpm on a Waring B l e n d o r (#1) p l u s one minute s o n i c a t i o n (#2) o r f o r 2 min i n a V i r t i s homogenizer (#3). A l l t e s t s were c a r r i e d o ut w i t h a r e p l i c a t e a t a t e m p e r a t u r e o f 18 - 20°C i n t h e S o r v a l RC2-B c e n t r i f u g e . S m a l l and l a r g e d i a m e t e r c e n t r i f u g e tubes were compared u s i n g a c u m u l a t i v e speed t r e a t m e n t (Table 2 ) . TABLE 2 E f f e c t o f M a c e r a t i o n Treatment, Speed, Time, and Tube D i a -meter on C e l l Serum Y i e l d (% by w e i g h t ) % Y i e l d o f C e l l Serum  Large Diameter S m a l l Diameter M a c e r a t i o n t r e a t m e n t C e n t r i f u g a t i o n 5 min a t 6,000 rpm (4,340 g) + 1 2 1 2 3 55.9 54.4 56.2 53.6 47.4 5 min a t 5,500 rpm (3,640 g) 61.2 59.2 61.2 59.0 43.3 + 4 min a t 15,000 rpm (27,000 g) 75.4 72.8 79.7 79.0 79.0 The r e s u l t s (Table 2) i n d i c a t e d t h a t a t h i g h speeds more compaction was p o s s i b l e i n a s m a l l e r tube than i n a l a r g e r one. P u l p y i e l d s , t i m e o r s u r f a c e w a l l t e n s i o n l o w e r e d t h e c e l l serum y i e l d a t s l o w e r speeds. The e f f e c t o f u l t r a -s o n i c v i b r a t i o n d e p r e s s e d t h e y i e l d a t a l l speeds whereas the V i r t i s homogenizer r e s u l t e d i n l o w e r y i e l d s o f c e l l serum 28. i r r e s p e c t i v e o f speed due to the i n h e r e n t s m a l l e r p a r t i c l e s i z e range (Dl, T4). The e f f e c t o f time and temperature o f t i s s u e s torage on serum y i e l d was determined by macerating D e l i c i o u s apple segments f o r 1 min a t 200 rpm, 2 min a t 12,600 rpm and 2 min a t 20,500 rpm u s i n g a Waring Blendor (Table 3) (B2, P5, S10). The s u r f a c e w a l l e f f e c t was i n v e s t i g a t e d by u s i n g l a r g e diameter p o l y p r o p y l e n e and pyrocarbonate tubes i n an IEC c e n t r i f u g e a t 5,50 0 rpm f o r 5 min. The c e n t r i f u g e averaged 3 min a c c e l e r a t i o n and 5 min d e c e l e r a t i o n . TABLE 3 E f f e c t i f Time, Temperature and Type of C e n t r i f u g e Tube on Y i e l d of C e l l Serum .(% by weight) Storage Time and ' % Y i e l d of C e l l Serum Temperature P o l y p r o p y l e n e Tubes Pyrocarbonate Tubes 0 hrs to 21°C 12 hrs a t 21°C 12 hrs a t 0°C 12 hrs a t -26°C Optimum serum r e s u l t s were ob t a i n e d on f r e s h l y p r e -pared t i s s u e u s i n g p o l y p r o p y l e n e tubes (Table 3). I t appeared some enzymatic a c t i v i t y had taken p l a c e between 0 and 21°C which a f f e c t e d serum y i e l d . The e f f e c t s o f f r e e z i n g apple t i s s u e p r i o r t o c e n t r i f u g a t i o n were i n v e s t e d f u r t h e r as an improvement i n y i e l d has been claimed (B2) (Table 4 ) . Small diameter s t a i n l e s s s t e e l c e n t r i f u g e tubes were used, t o a c c e l e r a t e heat t r a n s f e r 66.5 59.7 58.6 61.8 62.7 48 .9 52.1 56.3 rates and improve y i e l d s by reducing wall e l e c t r o s t a t i c e f f e c t s . Delicious apples were frozen over night at -26°C, peeled and s l i c e d while frozen, thawed 15 min i n a water bath and macera-ted i n a Waring Blendor for 1 min at 200 rpm, 2 min at 12,600 rpm and 2 min at 20,500 rpm. Control Delicious apples were macerated d i r e c t l y from storage. Centrifugation was car r i e d out at room temperature with 15 g of parenchyma tissue i n each tube for 8 min at the indicated speed. TABLE 4 E f f e c t of Speed, and Tissue Storage on C e l l Serum Y i e l d (% by. weight) % C e l l Serum Y i e l d  Replicate No. Speed (rpm) Control Tissue Frozen Tissue 1 5,500 61.6 58.5 2 5,500 75.4 59.2 3 5,500 58.6 53.9 4 5,500 62.8 58.4 1 10,500 78.0 78.0 2 10,500 77.3 77.2 1 14,500 82.1 82.4 2 14,500 82.0 82 . 2 Freezing apple tissue p r i o r to centrifugation appeared to depress y i e l d s at slower speed (Table 4). As rpm was increased the results were more 'consistent and no depression was apparent. A series of tissue modification t r i a l s were car r i e d out i n order to choose factors to be investigated i n a larger 30. e x p e r i m e n t . The r e s u l t s appear i n T a b l e 5 f o r t h e f o l l o w i n g t r i a l s : 1) Red D e l i c i o u s a p p l e segments were macerated f o r 1 min a t 200 rpm, 2 min a t 12,600 rpm and 2 min a t 20,500 rpm i n t h e p r e s e n c e o f n i t r o g e n and .12 g o f a s c o r b i c a c i d / 3 4 0 g t i s s u e t o m i n i m i z e browning. 2) Red D e l i c i o u s a p p l e segments were macerated as i n #1 w i t h the a d d i t i o n o f .143% p e c t i n o l 5B (Rohm & Haas) whi c h was a l e v e l comparable t o t h a t used d u r i n g t h e Murch p r o c e s s i n v e s t i g a t i o n (G2). The t i s s u e was t h e n h e a t e d from 10°C t o 65°C o v e r 7 h r s , and c o o l e d t o room tem p e r a t u r e p r i o r t o c e n t r i f u g a t i o n . 3) Red D e l i c i o u s segments were macerated f o r 1 min a t 200 rpm and 2 min a t 12,600 rpm i n a Waring B l e n d o r t o o b s e r v e t h e e f f e c t o f a l a r g e r p a r t i c l e s i z e on serum y i e l d . 4) Red D e l i c i o u s segments were macerated as i n #3 p l u s 2 min a t 20,500 rpm t o d e t e r m i n e t h e e f f e c t o f a s m a l l e r p a r t i c l e on y i e l d . 5) M c i n t o s h segments were macerated as i n #4 t o o b s e r v e t h e e f f e c t on c u l t i v a r . 6) M c i n t o s h homogenates p r e p a r e d as i n #5 were s u b j e c t e d t o u l t r a s o n i c v i b r a t i o n f o r 10 min a t 300 KK2 a t a sound i n t e n s i t y o f 20 watts/cm . 7) M c i n t o s h homogenate p r e p a r e d as i n #5 was c i r c u l a t e d t h r o u g h a G i f f o r d Wood C o l l o i d m i l l f o r 2 min a t #44 s e t t i n g . TABLE 5 E f f e c t of Speed and Tissue T r i a l s #1-7 on C e l l Serum Y i e l d (% by weight) Speed rpm T r i a l T r i a l T r i a l T r i a l T r i a l T r i a l T r i a l 5,500 61.9 53.8 49.2 61.9 61.2 64.7 62.7 10,500 77.3 66.8 =77.4 7 8.0 78.7 80.0 78.2 10,500 7.8.9. 70.3 78.3 79.1 80.4 81.6 80.1 14 ,500 82.4 74.5 82.8 83.2 83.3 84 .8 82.8 Average 75.1 66.4 71.9 75.5 75.9 77 .8 75.9 Note: Data presented was the average of two observations TABLE 6 Analysis of Variance E f f e c t of Speed and Tissue T r i a l s #1-7 on C e l l Serum Y i e l d (% by weight) Source of Variation Degrees of Freedom Mean Square F Ratio Speed 3 1421 ' ** T r i a l 6 117.4 ** S X T 18 11.96 ** Error 28 1.047 Total 55 ** S i g n i f i c a n t at P < .01 The re s u l t s i n Table 6 indicate a high l e v e l of significance for speed and t r i a l s . No apparent improvement i n y i e l d i s evident for unoxidized Delicious, i . e . #1 vs. #4, however the sediment from browning i n the decanted serum was considerably reduced, (H2, J2, Wl). The use of pectinol (#2) m a r k e d l y l o w e r e d t h e y i e l d even more t h a n l a r g e r p a r t i c l e s i z e (#3) (M3). The average y i e l d s f o r t h e M c i n t o s h c u l t i v a r were s l i g h t l y h i g h e r t h a n Red D e l i c i o u s (G4). V i b r a t i o n o f t h i s c u l t i v a r gave t h e h i g h e s t y i e l d i r r e s p e c t i v e o f speed (#6). The use o f a c o l l o i d m i l l (#7) i n a d d i t i o n t o t h e s t a n d a r d m a c e r a t i o n (#5) d i d n o t improve serum y i e l d s due t o t h e r e s u l -t a n t s m a l l e r p a r t i c l e s i z e samples (P4). I n o r d e r t o o b t a i n f u r t h e r i n f o r m a t i o n r e g a r d i n g t h e above t r i a l s , c o n t r a s t s were made between t r i a l s and speed u s i n g t h e i n d i v i d u a l degree o f freedom t e c h n i q u e o f p a r t i t i o n i n g ( L 5 ) . I n T a b l e 7, speeds 5,500, 10,500 and 14,500 rpm were shown t o be s i g n i f i c a n t l y d i f f e r e n t and t h e r e p l i c a t e s o f 10,500 rpm n o n - s i g n i f i c a n t w h i c h was assumed t o j u s t i f y the use o f s i n g l e o b s e r v a t i o n s f o r f u t u r e t r i a l s . TABLE 7 t C o n t r a s t s f o r t h e E f f e c t o f Speed on C e l l Serum Y i e l d (% by weight) f o r T r i a l s #1-7 2 2 Speed (rpm) ' EM Q F - R a t i o 1 2 3 4 .5,500 10,500 10,500 14,000 (N=14) rpm"Mean 59.3 -6.6 78.3 81.9 C o n t r a s t s 1/234 -3 1 1 1 1.2 4055 . ** 23/4 0 -1 -1 2 6 186.0 ** 2/3 0 -1 1 0 2 20.57 NS T o t a l • 4 261 ** S i g n i f i c a n t a t P < 0.01 33. In Table 8 c o n t r a s t s were made f o r the 7 t r i a l s i n Table 5. The Mcintosh methods were shown to be s i g n i f i c a n t l y d i f f e r e n t from the Red D e l i c i o u s methods. The e f f e c t o f v i b r a t i o n of Mcintosh are not shown to be d i f f e r e n t from the two c o n v e n t i o n a l maceration treatments, however the u l t r a -s o n i c v i b r a t i o n treatment was continued f o r subsequent t r i a l s i n order t o observe r h e o l o g i c a l e f f e c t s p r e v i o u s l y r e p o r t e d (C4) . TABLE .8 C o n t r a s t s f o r the E f f e c t o f T r i a l s #1-7 on C e l l Serum Y i e l d . (% by weight) f o r Speed 2 2 T r i a l T r i a l T r i a l T r i a l T r i a l T r i a l T r i a l EM Q F Speed Means 75.1 66.3 71.9 75.5 75.9 77.8 75.9 Contrasts Delicious/ Mcintosh -3 -3 -3 -3 4 4 4 84 254 ** (preparation) 1/4 -1 0 0 1 0 0 0 2 .680 NS 3/2 0 -1 1 2 124 ** 1,4/3,2 -1 +1 +1 -1 4 306 ** 5,7/6 -1 2 - 1 6 18.6 NS 5/7 - 1 0 1 2 .016 NS Total . 7 0 4 ** Significant at P < .01 Note: EM2 = sum of M^ , M2, .. • Q2 = (\VW!M)2 = (£MTJ2 n(Mj+M^++M 2) ^ where M = means Q 2 S an orthogonal s e t of i n d i y i d u a l degrees, o f freedom T = treatment t o t a l . Since a temperature increase was observed during centrifugation, p a r t i c u l a r l y at higher speeds, the e f f e c t of an increase i n temperature was measured on the v i s c o s i t y of parenchyma c e l l serum obtained from Mcintosh apples (Table 9). Apples stored for two weeks at '21°C were macerated for three minutes i n a Waring Blendor, vibrated for 10 min and aliquots c e n t r i f i g e d at speeds 1, 2, 3, or 4 for 6 minutes. The serum o flow behavior was measured at 15 and 36 C. A covarxance test was used to compare slopes and lev e l s of the two rheograms. The F-test for slopes indicated a s i g n i f i c a n t difference i n . the shear thinning behavior. TABLE 9 Covariance Analysis of Flow Behavior for Mcintosh Serum at 15°C and 36°C ' df F - r a t i o Test for homogeneity of residual variances 18/18 1.52 NS Test for slopes 1/36 6.52 * Test for l e v e l s 1/37 12.4 * Overall test 2/36 74.8 * * S i g n i f i c a n t at P < .05 NS Not s i g n i f i c a n t l y d i f f e r e n t (P > 0.05) The apparent v i s c o s i t y of Mcintosh serum at a given shear rate was s u b s t a n t i a l l y lower at 36°C than at 15°C (Table 9). The negative slopes of the rheograms confirmed non-Newtonian, pseudoplastic behavior (Figure 1 ) . 36. The o b s e r v e d e f f e c t o f t e m p e r a t u r e on serum v i s c o s i t y would o n l y a f f e c t t h e s e p a r a t i o n o f s m a l l p a r t i c l e s w h i c h f o l l o w Stokes'Law ( A l , L l , P4, S 2 ) . S i n c e a p p l e parenchyma t i s s u e has been r e p o r t e d t o c o n t a i n up t o 25% a i r i n i n t e r c e l l u l a r spaces (R2) and Waring B l e n d o r s were known t o i n c o r p o r a t e a i r d u r i n g m a c e r a t i o n of t i s s u e , i t was o f i n t e r e s t t o a s c e r t a i n t h e e f f e c t o f vacuumi-z i n g t h e f r e s h l y macerated t i s s u e p r i o r t o c e n t r i f u g a t i o n . The p r e v i o u s e x p e r i m e n t s have i n d i c a t e d t h a t p a r t i c l e s i z e a f f e c t e d t h e amount o f serum decanted a f t e r c e n t r i f u g a t i o n . A vacuum t r e a t m e n t would e v a l u a t e whether the a p p a r e n t p a r t i c l e s i z e e f f e c t was r e a l l y due t o a i r e n t r a p p e d i n c o a r s e p a r t i c l e s o f parenchyma t i s s u e . Four s e t s o f t h r e e medium-sized Red D e l i c i o u s a p p l e s w i t h Magness T a y l o r t e s t s o f 11 l b s each were t r e a t e d t o y i e l d m a c e r a t i o n t r e a t m e n t s 1 t h r o u g h 4. Each t r e a t m e n t was s p l i t i n t o two a l i q u o t s . One f r a c t i o n was d e a e r a t e d f o r 5 min i n a Thermo-Vac f r e e z e d r y e r a t a vacuum o f 29 i n o f Hg, and t h e o t h e r s e r v e d as a c o n t r o l . The p u l p v i s c o s i t y o f each f r a c t i o n was measured a t 14.6°C p r i o r t o c e n t r i f u g a t i o n a t speeds 1 t o 4. AIS and serum c l a r i t y were d e t e r m i n e d and p a r t i c l e s i z e s i n t h e p u l p measured v i s u a l l y u s i n g method 1. M a c e r a t i o n t r e a t m e n t s 1 and 2 were s i g n i f i c a n t l y d i f f e r e n t from 3 and 4 (Table 1 0 ) . K u r t o s i s v a l u a t i o n s from a computer program f o r a l l m a c e r a t i o n t r e a t m e n t s i n d i c a t e d p a r t i c l e s i z e s e x h i b i t e d a b i m o d a l d i s t r i b u t i o n . TABLE 10 Observed P a r t i c l e S i z e s of Parenchyma T i s s u e from Maceration Treatments 1-4 p r i o r to D e a e r a t i o n Maceration Mean S.D. K u r t o s i s Skew-Treatment Diameter um Geometric Mean um ness 1 330 287 208 4 .04 1.87 2 299 265 151 .61 1.00 3 .247 221 127 5 .98 1.94 4 229 205 112 .89 1.10 The h i g h standard d e v i a t i o n a l s o i n d i c a t e d a substan-t i a l s c a t t e r i n the d a t a . The c o e f f i c i e n t of skewness i n d i c a t e d t h a t a l l p a r t i c l e s i z e d i s t r i b u t i o n s had a t a i l to the r i g h t , t h a t i s , there were s u b s t a n t i a l numbers of.atypical; l a r g e p a r t i c l e s . I f the d i s t r i b u t i o n were normal the c o e f f i c -i e n t o f skewness would approach zero. The p a r t i c l e s i z e d i s t r i b u t i o n measured u s u a l l y i n d i c a t e d a c o n s i s t e n t e f f e c t f o r maceration treatment and t h a t the range (229-330 um) c o n t a i n e d a number of s i n g l e s p h e r i c a l parenchyma c e l l s t h a t were s u b j e c t to Newton's Law ( A l , L l , P4, R2, S2). There was an apparent e f f e c t of speed and maceration treatment on the y i e l d of c e l l serum (Table 11). The t - t e s t s on an i n d i v i d u a l b a s i s i n d i c a t e d no s i g n i f i c a n t d i f f e r e n c e between c o n t r o l and deaerated t i s s u e w i t h r e s p e c t to c e l l serum y i e l d f o r a l l speeds except 10,500 rpm which was s i g n i f j cant a t the 5% l e v e l . The c e n t r i f u g a t i o n of f r e s h l y prepared t i s s u e a p p a r e n t l y had some s i g n i f i c a n c e f o r maceration treatment f o r TABLE 11 E f f e c t of Speed and Maceration Treatment on Y i e l d of C e l l Serum f o r Control and Deaerated Tissue, Pulp AIS, Serum pH and Soluble S o l i d s . (% by weight) Speed Maceration 1 Maceration 2 Maceration 3 Maceration 4 Maceration 4* c 1 D 2 C D C D C D C D 1 44.00 43.81 51.02 48.59 50.66 50.80 52.13 51.33 56.86 56.95 . 2 55.26 54.12 65.33 64.86 61.29 62.04 66.51 65.08 68.04 66.98 3 72.10 69.71 71.89 72.34 69.70 69.22 73.65 72.37 73.86 72.44 4 75.33 76.43 78.37 78.48 73.93 75.73 78.17 78.04 78.64 78.55 Average of 4 speeds 61.67 61.02 66.65 66.07 63.91 64.45 67.61 66.70 69.35 68.76 AIS 1.915 1.915 1.705 1.773 1.749 1.791 1.717 1.781 - — pH 3.88 3.88 3.92 3.92 3.90 3.90 3.95 3.95 - - • Soluble S o l i d s 13.9 14.7 14.2 13.9 14.1 14.3 14.9 14.2 - -1 Control 2 Deaerated * R e p l i c a t e o f m a c e r a t i o n 4 centrifuged irnmediately following treatments as no v i s c o s i t y f a c t o rs were measured. Results shown were s i n g l e observations. the r e p l i c a t e was s i g n i f i c a n t l y h i g h e r than the c o n t r o l f o r maceration 4 (Table 11). T h i s was noted i n e a r l i e r t r i a l s as a p o s s i b l e enzymatic e f f e c t . I n d i v i d u a l p a i r e d comparisons of AIS showed - a s i g n i f i c a n t d i f f e r e n c e between c o n t r o l and deaerated t i s s u e . The deaerated t i s s u e c o n tained a 3% h i g h e r l e v e l o f AIS by weight. T h i s was accompanied by a drop i n temperature from 21°C to 10°C during the 5 min vacuum treatment, which i n d i c a t e d water l o s s . There was no s i g n i f i c a n t d i f f e r e n c e between the s o l u b l e s o l i d s o f the serum from c o n t r o l o r deaerated t i s s u e . . The shear s t r e s s versus shear r a t e v a l u e s were used to i n d i c a t e d i f f e r e n c e s due to maceration or d e a e r a t i o n . Co-v a r i a n c e a n a l y s i s (S8) i n d i c a t e d a s i g n i f i c a n t d i f f e r e n c e between c o n t r o l and deaerated t i s s u e a t a l l maceration t r e a t -ments except 1 (Table 12). There was a s i g n i f i c a n t d i f f e r e n c e between maceration treatments 1, 2, 3 and 4 f o r l e v e l s and s l o p e s . TABLE 12 E f f e c t of Maceration Treatment on R h e o l o g i c a l Paramaters f o r C o n t r o l and Deaerated T i s s u e Covariance Tests Slope Level Maceration Tissue dyne sec m' 2 sec n 2 r 1 Control 478.7 .149 .737) Deaerated 522.3 .146 .787) 2 Control 274.5 .204 .913) Deaerated 285.2 .227 .809) 3 Control 149.8 .302 .995) Deaerated 179.3 .286 .990) 4 Control 172.0 .266 .985) Deaerated 197.7 .257 .986) NS NS NS * NS * NS * * Significant at P < .05 NS Not significantly different r 2 Linear correlation coefficient 40. The c o n s i s t e n c y c o e f f i c i e n t (m) was higher f o r the deaerated treatment and decreased w i t h i n c r e a s e d maceration treatment, w i t h the e x c e p t i o n of maceration 3 where u l t r a -s o n i c v i b r a t i o n was a p p l i e d . E f f e c t s of u l t r a s o n i c v i b r a t i o n on pulp and serum v i s c o s i t y were r e p o r t e d , however, a serum e f f e c t r e q u i r e d a separate serum treatment which s i g n i f i c a n t l y improved c l a r i f i c a t i o n time (C4). Maceration treatment 3 which was v i b r a t e d e x h i b i t e d the lowest c o n s i s t e n c y c o e f f i c i e n t and p s e u d o p l a s t i c i t y . The pulp (n value) appeared l e s s p s e u d o p l a s t i c as maceration i n c r e a s e d e x h i b i t i n g a y i e l d s t r e s s and non-time dependent b e h a v i o r . The r e d u c t i o n i n m and y i e l d s t r e s s v a l u e s f o r pulp compared f a v o r a b l y w i t h i n c r e a s e d serum y i e l d s . Rheograms of c e l l serum flow were eva l u a t e d and com^ -pared f o r c o n t r o l and deaerated samples as shown i n Table 13. TABLE 13 E f f e c t of Maceration Treatment and D e a e r a t i o n on C e l l Serum R h e o l o g i c a l Parameters Maceration Tissue . • ' „ dyne sec n r Covariance Tests m on 2 Slope Level 1 Control .741 .670 .984) Deaerated .673 .730 .985) 2 Control .370 .757 .987) Deaerated .375 .753 .987) 3 Control .351 .758 .984) Deaerated .333 .770 .987) 4 Control .344 .768 .989) Deaerated .425 .748 .986) NS NS NS NS NS NS NS * * Significant at P< .05 NS Not significantly different Note: Lower values of n indicated a higher l e v e l of f l u i d pseudoplasticity. At n=l f l u i d would have been described as Newtonian. The c e l l serum was markedly le s s pseudoplastic and exhibited a lower consistency index, m, than the pulp. The serum cl o s e l y followed the power-law model as indicated by the r values. The consistency c o e f f i c i e n t and pseudoplast-i c i t y decreased with increased maceration treatment which indicated the presence of p a r t i c l e s . There was no apparent e f f e c t for the deaeration treatment except at maceration treatment 4 where a l e v e l difference was evident. The deaerated serum at maceration 4 was more pseudoplastic and exhibited a high apparent v i s c o s i t y at each shear rate. The e f f e c t of deaeration was apparent and undesirable on the pulp v i s c o s i t y and AIS which were both higher. Replicated maceration 4 indicated a y i e l d d e terioration with time, previously noted. I t was apparent there was a d e f i n i t e e f f e c t on serum y i e l d for the maceration treatments evaluated. Factor T r i a l s Data from the experiment to quantify factors were col l e c t e d i n three sets. C u l t i v a r , maturity, maceration and speed factors provided 144 single observations for the y i e l d and c l a r i t y of c e l l serum at time 2 (Table B l , B 2 ) . A n overlapping experiment for c u l t i v a r , time, maceration and speed factors at maturity 1 (0 storage) provided 144 single observations for y i e l d and c l a r i t y of c e l l serum (Tables B3, B4). C u l t i v a r , maturity and maceration factors at time 3 provided 36 pooled observations f o r a l l measurements (Tables B 5 to B14). Y i e l d o f C e l l Serum (% by w e i g h t ) Y i e l d a t time 2 was seen t o i n c r e a s e w i t h speed and m a c e r a t i o n t r e a t m e n t and d e c r e a s e w i t h m a t u r i t y (Table B l ) . C u l t i v a r 1 (Mcintosh) was t h e most r e s p o n s i v e t o t r e a t m e n t s f o l l o w e d by c u l t i v a r 2 ( D e l i c i o u s ) and c u l t i v a r 3 (Winesap). M a c e r a t i o n 3 ( v i b r a t i o n ) had l i t t l e e f f e c t o v e r m a c e r a t i o n 2 f o r c u l t i v a r , m a t u r i t y o r speed. Speed and m a t u r i t y were h i g h l y s i g n i f i c a n t and c u l t i v a r s i g n i f i c a n t f o r t h e y i e l d o f c e l l serum a t t i m e 2 (Table C I ) . M a c e r a t i o n was n o t s i g n i f i c a n t as a main e f f e e t , h o w e v e r t h e i n t e r a c t i o n w i t h speed was s i g n i f i c a n t (P < .01). Y i e l d o f c e l l serum (% by w e i g h t ) a t m a t u r i t y 1 f o r c u l t i v a r , t i m e , m a c e r a t i o n and speed f a c t o r s i n c r e a s e d w i t h t i m e , m a c e r a t i o n and speed. The e f f e c t o f c u l t i v a r was i n t e r e s t i n g as t h e r e s u l t f o r Winesap a t t i m e 1, m a c e r a t i o n 1, and speed 1 c o n f i r m e d t h e p e r c e n t y i e l d v a l u e s , a l s o I n d i c a t e d t h e s e d i m e n t a t i o n r a t e . Speed and t i m e were h i g h l y s i g n i f i c a n t and c u l t i v a r s i g n i f i c a n t f o r t h e y i e l d o f serum a t m a t u r i t y 1 (Table C 3 ) . M a c e r a t i o n was a h i g h l y s i g n i f i c a n t i n t e r a c t i o n w i t h speed and s i g n i f i c a n t w i t h c u l t i v a r . A n a l y s i s o f v a r i a n c e f o r t h e y i e l d o f c e l l serum a t t ime 2 (speed pooled) i n d i c a t e d t h a t c u l t i v a r was h i g h l y s i g n i f i c a n t and m a c e r a t i o n s i g n i f i c a n t (Table C 5 ) . The y i e l d s o b t a i n e d , i . e . 0 t o 84%, i n d i c a t e d t h a t a s u i t a b l e v a r i a t i o n i n t h e f a c t o r s was e v a l u a t e d t o i n d i c a t e c ommercial y i e l d s were p o s s i b l e (G2). I t was a l s o e v i d e n t t h a t h i g h e r y i e l d s may a c t u a l l y have been o b t a i n e d but not observed due to compaction and e l a s t i c i t y c h a r a c t e r i s t i c s of the p a r t i c l e s ( H i , P4). The predominate e f f e c t of speed r a t h e r than maceration confirmed the s e p a r a t i o n f o l l o w e d Newton's Law where the t e r m i n a l s e t t l i n g v e l o c i t y was a f u n c t i o n of the d e n s i t y d i f f e r e n c e , diameter of p a r t i c l e and "g". Serum C l a r i t y Serum c l a r i t y a t time 2 i n c r e a s e d w i t h speed, c u l t i v a r , m a t u r i t y and maceration (Table B2). C u l t i v a r 2 (Red D e l i c i o u s ) y i e l d e d the c l e a r e s t serum a t h i g h l e v e l s of maceration whereas c u l t i v a r s 1 and 3 gave h i g h e r l e v e l s of c l a r i t y a t lower l e v e l s o f maceration treatment. Speed was s i g n i f i c a n t (P < .01) and c u l t i v a r , m a t u r i t y or maceration s i g n i f i c a n t (P < .05) f o r serum c l a r i t y a t time 2 (Table C2). Serum c l a r i t y a t m a t u r i t y 1 i n c r e a s e d w i t h time, speed, c u l t i v a r and maceration. Red D e l i c i o u s gave the c l e a r e s t serum at maceration 3 and time 3, whereas Mcintosh was c l e a r e s t a t maceration 1, time 3. winesap was c o n s i s t e n t i n response to the i n c r e a s e of a l l three f a c t o r s . The c l a r i t y a t m a t u r i t y one was s i g n i f i c a n t l y a f f e c t e d by speed or maceration (P < .01) and c u l t i v a r (P. < .05) (Table C4) . Time was not s i g n i f i c a n t due to the h i g h l e v e l o f i n t e r a c t i o n w i t h speed. A n a l y s i s of v a r i a n c e f o r a l l serum c l a r i t y a t time 2 (speed pooled) i n d i c a t e d o n l y c u l t i v a r and m a t u r i t y were s i g n i f i c a n t (P < .01) but not maceration treatment.- I t was hoped t h a t the d e t e r m i n a t i o n of serum c l a r i t y would have i n d i c a t e d the s e p a r a t i o n c h a r a c t e r i s t i c s o f the s m a l l e r p a r t i c l e s i n the Stokes Law r e g i o n , i . e . 100 ym where serum v i s c o s i t y and the square of the p a r t i c l e diameter, are f a c t o r s . The n o n - s i g n i f i c a n c e of maceration i n d i c a t e d t h a t the p r e v i o u s l y r e p o r t e d d i f f i c u l t y i n o b t a i n i n g s e p a r a t i o n below 75 ym and an anomaly i n Stokes' Law due to streaming were encountered (A l , D l , T4). Ac c e p t a b l e l e v e l s o f c l a r i t y f o r t a n n i n - g e l a t i n or p e c t i n o l c l a r i f i c a t i o n treatments were however o b t a i n e d . V i s c o s i t y The pulp flow behavior index decreased w i t h macera-t i o n and m a t u r i t y but a c u l t i v a r e f f e c t was not e v i d e n t (Table B5). A n a l y s i s of v a r i a n c e f o r pulp flow behavior index a t time two i n d i c a t e d no s i g n i f i c a n t f a c t o r s (Table C7). The pulp average v i s c o s i t y (poises) i n c r e a s e d w i t h m a t u r i t y and c u l t i v a r (Table B6). A s l i g h t decrease w i t h maceration treatment was e v i d e n t . C u l t i v a r (P < .01) and m a t u r i t y (P < .05) were s i g n i f i c a n t f a c t o r s i n the a n a l y s i s of v a r i a n c e f o r pulp average v i s c o s i t y a t 100 sec ^ f o r time 2. The pulp average v i s c o s i t y would have a f f e c t e d c o n s o l i d a -t i o n (S5). Since compaction d u r i n g c e n t r i f u g a t i o n was r e p o r t e d to proceed on the p r i n c i p l e o f c o n s o l i d a t i o n a c o r r e l a t i o n w i t h serum y i e l d was expected ( H i ) . The pulp y i e l d s t r e s s decreased w i t h i n c r e a s i n g maceration treatment and v a r i e d w i t h c u l t i v a r . C u l t i v a r 1 (Mcintosh) which gave the h i g h e s t y i e l d s g e n e r a l l y had the lowest y i e l d s t r e s s v a l u e s , whereas c u l t i v a r 3 (Winesap) had the h i g h e s t v a l u e s a t maceration 1 and lowest y i e l d s . There was a l s o a s l i g h t t r e n d f o r i n c r e a s i n g y i e l d s t r e s s v a l u e s w i t h m a t u r i t y . Condensation products such as c e l l u l o s e p r e v i o u s l y r e p o r t e d may have been formed e s p e c i a l l y s i n c e maceration treatment markedly reduced v a l u e s (W5). C u l t i v a r (P < .0.1) and maceration CP < .05) were s i g n i f i c a n t f a c t o r s i n the a n a l y s i s o f v a r i a n c e f o r pulp y i e l d s t r e s s (r^ rdynes cm - 2) a t time 2 (Table C9) . C e l l serum flow behavior index i n c r e a s e d s l i g h t l y w i t h m a t u r i t y , however no t r e n d was e v i d e n t f o r c u l t i v a r or maceration (Table B8). No s i g n i f i c a n t f a c t o r s were determined i n the a n a l y s i s of v a r i a n c e f o r c e l l serum flow behavior index a t time 2. C e l l serum average v i s c o s i t y (poises) decreased v a r i a b l y w i t h m a t u r i t y (Table B9). No s i g n i f i c a n t ' factors were determined i n the a n a l y s i s of v a r i a n c e . The f a i l u r e to d i f f e r e n t i a t e f a c t o r e f f e c t s on serum v i s c o s i t y f a c t o r s was s u r p r i s i n g , e s p e c i a l l y f o r c u l t i v a r . Subsequent treatment of the serum with u l t r a s o n i c v i b r a t i o n would have been worthwhile as a d e p r e s s i o n f o r maceration 3 serum v i s c o s i t y v a l u e s (poises) versus maceration 2 i s e v i d e n t . Serum v i s c o s i t y e f f e c t s were p r e v i o u s l y r e p o r t e d (C4). A l c o h o l I n s o l u b l e S o l i d s , The a l c o h o l i n s o l u b l e s o l i d s (% by w e ight) v a l u e s v a r i e d w i t h c u l t i v a r (Table BIO). The a l c o h o l i n s o l u b l e s o l i d s v a l u e s i n d i c a t e d t h a t t h e c o n c e n t r a t i o n o f s o l i d s , even on a w e i g h t b a s i s , was o v e r 1%, t h e l e v e l a t w h i c h " h i n d e r e d s e t t l i n g " came i n t o e f f e c t ( P 4 ) . C u l t i v a r was t h e o n l y s i g n i f i c a n t f a c t o r i n t h e a n a l y s i s o f v a r i a n c e (P < .01). No c o r r e l a t i o n w i t h m a c e r a t i o n o r m a t u r i t y was e x p e c t e d u n l e s s d e s i c c a t i o n o c c u r r e d (W5). A c o r r e l a t i o n between AIS l e v e l s ( h i n d e r e d s e t t l i n g ) , p u l p y i e l d s t r e s s and serum y i e l d was e x p e c t e d , however, o n l y a t r e n d i s e v i d e n t due t o t h e l i m i t e d number o f AIS and y i e l d s t r e s s d e t e r m i n a t i o n s (36) v e r s u s y i e l d (240). Serum S o l u b l e S o l i d s The serum s o l u b l e s o l i d s (% by w e ight) were d e t e r m i n e d i n d u p l i c a t e and t h e r e s u l t s averaged f o r g r e a t e r a c c u r a c y (Table B l l ) . The serum s o l u b l e s o l i d s w h i c h i n d i c a t e d serum d e n s i t y v a r i e d w i t h c u l t i v a r and i n c r e a s e d s l i g h t l y w i t h m a t u r i t y . C u l t i v a r was a s i g n i f i c a n t f a c t o r i n t h e a n a l y s i s o f v a r i a n c e (P < .01) (Table C13) . Serum d e n s i t y changes were e x p e c t e d t o a f f e c t s e p a r a t i o n s w h i c h o c c u r r e d i n t h e Newton's Law r e g i o n . The parameter however was minor i n comparison t o t h e f a c t o r speed. C e l l Serum pH C e l l serum pH v a r i e d w i t h c u l t i v a r and i n c r e a s e d w i t h m a t u r i t y (Table B12). C u l t i v a r and m a t u r i t y f a c t o r s were s i g n i f i c a n t (P < .01) (Table C14). No e f f e c t f o r t h e maceration f a c t o r was expected. No c o r r e l a t i o n between pH and y i e l d or serum v i s c o s i t y was e v i d e n t , however, pH and e l e c t r o l y t e s have been r e p o r t e d to have a s u b s t a n t i a l e f f e c t on v i s c o s i t y (T3, W3) . P a r t i c l e S i z e The observed average p a r t i c l e s i z e diameter v a r i e d from 259 to 475 ym (Table B13) . D e l i c i o u s and Winesap c e l l s were r e p o r t e d as 266 ym (R2). The photomicrograph technique must have g i v e n lower r e s o l u t i o n of s m a l l e r c e l l s and fragments as the averages were h i g h e r than those measured v i s u a l l y . A l s o the a n a l y s i s of v a r i a n c e (Table C15) i n d i c a t e d no s i g n i f i c a n t f a c t o r s , whereas a maceration e f f e c t was Observed v i s u a l l y (Table 10). T i s s u e Firmness The t i s s u e firmness (pounds) of the apples used f o r the m a j o r i t y of t r i a l s d e c l i n e d w i t h m a t u r i t y and v a r i e d w i t h c u l t i v a r (Table B14). E v a l u a t i o n of F a c t o r s The r e g r e s s i o n equations i n c o r p o r a t e d the "Dummy V a r i a b l e " coding technique i n the m u l t i p l e r e g r e s s i o n to o p t i m i z e the e f f e c t s and i n t e r a c t i o n s on the dependent v a r i a b l e analyzed (C3, G3, L6) . The y i e l d of c e l l serum at time 2 was d e s c r i b e d by the r e g r e s s i o n equation (Table D l ) . Pulp average v i s c o s i t y and c u l t i v a r were the o n l y main e f f e c t s which c o n t r i b u t e d 48. to the e x p l a i n e d sum of squares. Pulp average v i s c o s i t y a f f e c t e d the f r e e f a l l i n g speed of the d i s c o n t i n u o u s phase (pulp) through the continuous phase (serum) (P4, T4). C u l t i v a r e f f e c t s on y i e l d were a n t i c i p a t e d and was the reason f o r the c h o i c e o f the c u l t i v a r s . The r e l a t i v e c l a r i t y o f c e l l serum a t time 2 was i n f l u e n c e d by serum s o l u b l e s o l i d s , c u l t i v a r and m a t u r i t y (Table D2). The serum s o l u b l e s o l i d s or serum d e n s i t y a f f e c t e d the s e p a r a t i o n o f s m a l l e r p a r t i c l e s due to decreased diameter. Some e f f e c t of serum d e n s i t y was expected on l a r g e p a r t i c l e s e p a r a t i o n i f a i r was p r e s e n t (R2). At m a t u r i t y 1, w i t h c e n t r i f u g a t i o n time a f a c t o r , the c e l l serum y i e l d was i n f l u e n c e d by serum c l a r i t y , c u l t i v a r , maceration, time 1 and time 2 (Table D3). The i n c r e a s e d number of s i g n i f i c a n t f a c t o r s a t m a t u r i t y was due to the i n c l u s i o n of the f a c t o r time which improved the r e s o l u t i o n of serum y i e l d . Serum y i e l d , serum pH, pulp average v i s c o s i t y , c u l t i v a r and time were s i g n i f i c a n t independent v a r i a b l e s i n the r e g r e s s i o n equation of serum c l a r i t y (Table D4). The e f f e c t o f serum pH confirmed p r e v i o u s r e p o r t s (T3, W3). Pulp average v i s c o s i t y , maceration, time and speed were s i g n i f i c a n t independent v a r i a b l e s i n the stepwise r e g r e s -s i o n of serum y i e l d f o r a l l f a c t o r s and o b s e r v a t i o n s w i t h maceration treatment 2 + 3 pooled (Table D5). The e f f e c t of m a c e r a t i o n and speed f a c t o r s c o n f i r m e d t h a t t h e s e p a r a t i o n o c c u r r e d a c c o r d i n g t o Newton's Law. The t i m e and p u l p average v i s c o s i t y d a t a i n d i c a t e d t h e r a t e o f s e p a r a t i o n c o u l d be improved by t i s s u e m a c e r a t i o n t r e a t m e n t o r h i g h e r speed. The s t e p w i s e r e g r e s s i o n o f serum c l a r i t y f o r a l l f a c t o r s w i t h m a c e r a t i o n t r e a t m e n t 2 and 3 p o o l e d i n d i c a t e d c u l t i v a r , m a t u r i t y , t i m e and speed t o be s i g n i f i c a n t i n d e p e n -dent v a r i a b l e s . S i n c e c l a r i f i c a t i o n o f serum t r a d i t i o n a l l y r e q u i r e s s e d i m e n t a t i o n and f i l t r a t i o n t h e e f f e c t o f t i m e and speed f a c t o r s was e x p e c t e d (C3, G2). The s i g n i f i c a n c e o f v a r i e t y and m a t u r i t y c o n f i r m e d t h a t p h y s i o l o g i c a l d i f f e r e n c e s i n p u l p average v i s c o s i t y ( p o i s e ) , p u l p y i e l d s t r e s s ( T V dynes cm ) , p u l p i n s o l u b l e s o l i d s (% by w e i g h t ) , serum s o l u b l e s o l i d s (% by w eight) and c e l l serum pH c o n t r i b u t e d t o t h e serum c l a r i t y b u t were n o t s i g n i f i c a n t . The s i g n i f i c a n c e o f m a t u r i t y i n t h e serum c l a r i t y r e g r e s s i o n d i d n o t p e r m i t t h e p o o l i n g o f m a t u r i t y . The p r e -d i c t i o n program was n o t used f o r serum c l a r i t y due t o t h e unequal number o f o b s e r v a t i o n s a t each m a t u r i t y . P r e d i c t e d O b s e r v a t i o n s P r e d i c t e d y i e l d was c a l c u l a t e d from t h e r e g r e s s i o n e q u a t i o n ( a l l f a c t o r s ) f o r M c i n t o s h ( c u l t i v a r 1) (Table E l ) , Red D e l i c i o u s ( c u l t i v a r 2) (Table E2) and c u l t i v a r 3 (Winesap) (Table E 3 ) . Serum y i e l d was c a l c u l a t e d f o r each v a r i e t y on t h r e e p u l p average v i s c o s i t i e s , low (4.5 poises,medium 6.0 poises and h i g h 7.3 p o i s e s ) . The chosen v i s c o s i t i e s r e p r e s e n t e d t h e mean + one s t a n d a r d d e v i a t i o n . T h i s v a r i a b l e was 50. i n c l u d e d as i t was the o n l y measurement s i g n i f i c a n t i n the r e g r e s s i o n of a l l f a c t o r s . Maceration treatments 2 and 3 which were not s i g n i f i c a n t l y d i f f e r e n t were pooled. These treatments had been s u b j e c t to the same l e v e l of maceration i n a Waring Blendor, however, maceration 3 was exposed to subsequent u l t r a s o n i c v i b r a t i o n . The p r e d i c t e d y i e l d o f c e l l serum v a r i e d w i t h c u l t i v a r w i t h the Mcintosh c u l t i v a r responding most f a v o r a b l y to c e n t r i f u g a t i o n (Table E l ) . T h i s was not expected as normally Mcintosh apples were d i f f i c u l t to p r e s s i n standard commercial treatments and Mcintosh was the s c r e e n i n g c u l t i v a r f o r o ther p r e s s i n g systems (G2) . The maceration treatment i n c r e a s e d the y i e l d of c e l l serum a t low speeds, however, h i g h e r l e v e l s of maceration gave lower r e s u l t s a t speed 3 or 4. Serum y i e l d i n c r e a s e d with time and decreased w i t h i n c r e a s i n g v i s c o s i t y l e v d l s (Table E l ) . The c u l t i v a r d i f f e r e n t i a t i o n f o r serum y i e l d d i s -appeared a t h i g h e r l e v e l s of time, maceration and speed i r r e s p e c t i v e o f pulp apparent v i s c o s i t y (Tables E l , E2, E3). Red D e l i c i o u s gave s l i g h t l y lower y i e l d s a t reduced treatment l e v e l s (Table E2). Maceration treatment improved y i e l d values at lower rpm o n l y , however, y i e l d i n c r e a s e d w i t h time i r r e s p e c t i v e of speed or maceration f a c t o r s . Increased pulp average v i s c o s i t y (poises) v a l u e s gave decreased serum y i e l d s f o r the o t h e r t h r e e f a c t o r s . 51. W inesap ( c u l t i v a r 3) had m a r k e d l y l o w e r serum y i e l d v a l u e s a t l o w e r l e v e l s o f s p e e d , m a c e r a t i o n and t i m e ( T a b l e E 3 ) . Serum y i e l d s d e c r e a s e d w i t h i n c r e a s e d p u l p a v e r a g e v i s c o s i t y ( p o i s e s ) . The e f f e c t o f f a c t o r s was c o n s i s t e n t w i t h t h e r e s u l t s c l a c u l a t e d f o r t h e o t h e r c u l t i v a r s . H i g h e r l e v e l s o f m a c e r a t i o n r e d u c e d t h e y i e l d o f c e l l serum a t s p e e d 3 o r 4. Lower l e v e l s o f m a c e r a t i o n r e d u c e d t h e y i e l d o f p r e d i c t e d c e l l serum a t s p e e d 1 o r 2. The l e v e l o f r e s p o n s e i n d i c a t e d t h a t t h e s e p a r a t i o n was g o v e r n e d by Newton's Law. I f t h e s e p a r a t i o n f o l l o w e d S t o k e s ' Law, a d i f f e r e n t i a t i o n between m a c e r a t i o n 2 and 3 p o o l e d and m a c e r a -t i o n 4 due t o t h e o b s e r v e d d i f f e r e n c e i n t h e p a r t i c l e d i a m e t e r s w o u l d have o c c u r r e d . H i n d e r e d s e t t l i n g was n o t a m a j o r f a c t o r i n t h e p r e -d i c t e d y i e l d o f c e l l serum as h i g h e r v a l u e s were c a l c u l a t e d f o r s p e e d 1 and 2 w i t h i n c r e a s e d m a c e r a t i o n t r e a t m e n t ( S 2 ) . The i n c r e a s e d number o f p a r t i c l e s due t o i n c r e a s e d m a c e r a t i o n t r e a t m e n t were e x p e c t e d t o d e c r e a s e t h e y i e l d o f c e l l serum a t low s p e e d s . A t s p e e d 1 and 2 i n c r e a s e d m a c e r a t i o n t r e a t -ment r e s u l t e d i n h i g h e r l e v e l s o f serum y i e l d due t o t h e o b s e r v e d a f f e c t o f m a c e r a t i o n on p u l p a v e r a g e v i s c o s i t y ( p o i s e s ) -2 and p u l p y i e l d s t r e s s (dynes,cm ) . The e f f e c t o f t h e p a r t i c l e d i a m e t e r was g r e a t e r t h a n t h e v i s c o s i t y p a r a m e t e r s a t s p e e d 3 o r 4. The d r a g f o r c e C D on t h e p a r t i c l e was .5 s i n c e t h e s e p a r a t i o n f o l l o w e d Newton's Law. CONCLUSIONS The s e p a r a t i o n o f apple serum u s i n g c e n t r i f u g a l s e dimentation proceeded a c c o r d i n g to the p r i n c i p l e o f c o n s o l i -d a t i o n . C onventional d i f f e r e n t i a t i o n o f e x p r e s s i o n i n t o f i l t r a t i o n and c o n s o l i d a t i o n was not a p p l i c a b l e due to the s i g n i f i c a n c e of pulp average v i s c o s i t y (poises) and n e g l i g i b l e serum e f f e c t . The s e p a r a t i o n f o l l o w e d Newton's Law. Hindered s e t t l i n g was not a s i g n i f i c a n t f a c t o r . The f a c t o r s which i n f l u e n c e d the y i e l d s o f c e l l serum were speed, time, c u l t i v a r , maceration treatment and m a t u r i t y . An improved s e p a r a t i o n was o b t a i n e d f o r Mcintosh > Red D e l i c i o u s > Winesap c u l t i v a r s . The hig h y i e l d of c e l l serum ob t a i n e d from the Mcintosh c u l t i v a r were not obt a i n e d from c o n v e n t i o n a l p r e s s i n g systems. Y i e l d s o f c e l l serum decreased with m a t u r i t y w i t h the optimum y i e l d o b t a i n e d from m a t u r i t y 1 (0 s t o r a g e ) . Since the apples were s t o r e d a t 0°C, and the t r i a l s c a r r i e d out i n January, i t was assumed t h i s storage would be e q u i v a l e n t to the 6 or 7 day storage a t 2 2°C normally used f o r f r e s h l y harvested apples to o b t a i n optimum y i e l d s . The r e l a t i v e serum c l a r i t y was i n f l u e n c e d by serum s o l u b l e s o l i d s when c e n t r i f u g a t i o n time was constant (6 min) or pH o f c e l l serum and pulp average v i s c o s i t y (poises) a t m a t u r i t y 1 (0 s t o r a g e ) . F a c t o r s which i n f l u e n c e d the r e l a -t i v e serum c l a r i t y were speed, time, m a t u r i t y and c u l t i v a r . 5 3 . The e f f e c t o f maceration treatment reduced the pulp average v i s -cosity (poises) which indirectly affected serum c l a r i t y . Macera-t i o n 1 and 4 gave s i m i l a r c l a r i t y v a l u e s and thus serum c l a r i t y d i d not i n d i c a t e the e f f e c t o f sedimentation on s m a l l e r p a r t i c l e s which f o l l o w Stokes' Law. Red D e l i c i o u s gave the c l e a r e s t serum, however, a c c e p t a b l e l e v e l s of serum c l a r i t y were ob t a i n e d with the. t h r e e c u l t i v a r s f o r commerc i a l c l a r i f i c i a t i o n . Pulp v i s c o m e t r i c parameters f i t t e d the power-law equation and the pulp was p s e u d o p l a s t i c w i t h a y i e l d s t r e s s -2 (dynes cm ) and non-time dependent. The improved s e p a r a t i o n o b t a i n e d f o r Mcintosh > Red D e l i c i o u s > Winesap v a r i e t i e s c l o s e l y f o l l o w e d pulp average v i s c o s i t y ( p o i s e s ) . The e f f e c t of maceration was e v i d e n t on pulp v i s c o s i t y w i t h i n c r e a s e d l e v e l s of maceration r e d u c i n g pulp v i s c o s i t y v a l u e s to g i v e i n c r e a s e d y i e l d s o f serum. The serum was l e s s p s e u d o p l a s t i c than the pulp and 2 a c c u r a t e l y f i t t e d the power-law model (r = .984-.987). The serum v i s c o s i t y parameters d i d not a f f e c t the s e p a r a t i o n which was expected s i n c e the s e p a r a t i o n f o l l o w e d Newton's Law. The a l c o h o l i n s o l u b l e s o l i d s (% by weight) val u e s were h i g h e r f o r the Winesap c u l t i v a r , however, no d i r e c t c o r r e l a t i o n was e v i d e n t w i t h y i e l d of c e l l serum. The serum s o l u b l e s o l i d s v a r i e d w i t h c u l t i v a r b u t no t m a t u r i t y . M c i n t o s h c u l t i v a r had t h e l o w e s t s o l u b l e s o l i d s v a l u e . The serum s o l u b l e s o l i d s a f f e c t e d t h e r e l a t i v e serum c l a r i t y . The pH o f t h e Red D e l i c i o u s serum was s i g n i f i c a n t l y h i g h e r t h a n serum from M c i n t o s h o r Winesap. The serum pH o f a l l c u l t i v a r s d e c r e a s e d w i t h m a t u r i t y . Serum pH a f f e c t e d serum c l a r i t y . H i g h e r pH v a l u e s were a s s o c i a t e d w i t h improved serum c l a r i t y . The p a r t i c l e s i z e range o b t a i n e d by t h e use o f a Waring B l e n d o r (229 t o 330 um) i n d i c a t e d a h i g h l e v e l o f i n d i v i d u a l parenchyma c e l l s were o b t a i n e d . The r e d u c t i o n i n parenchyma t i s s u e average p a r t i c l e s i z e o b t a i n e d by i n c r e a s e d m a c e r a t i o n t r e a t m e n t a f f e c t e d t h e o b s e r v e d and c a l c u l a t e d serum y i e l d s . R e d u c t i o n s i n t i s s u e p a r t i c l e s i z e was e x p e c t e d t o reduce y i e l d s due t o h i n d e r e d s e t t l i n g . T h i s e f f e c t was n o t e v i d e n t . C o n s i d e r a t i o n o f t h e p a r t i c l e s i z e range > 100 um and shape i n d i c a t e d t h e s e p a r a t i o n was s u b j e c t t o Newton's Law. I n t h i s r e g i o n l a r g e r p a r t i c l e s were s u b j e c t e d t o a low d r a g f o r c e c o e f f i c i e n t ( C D = .5) w i t h an improved response f o r l a r g e r p a r t i c l e s on serum y i e l d a t h i g h e r speeds. L a r g e r p a r t i c l e s i z e ranges were a s s o c i a t e d w i t h h i g h e r p u l p v i s c o s i t y p a r a m e t e r s . . The s u b j e c t i o n o f macerated parenchyma t i s s u e t o u l t r a s o n i c v i b r a t i o n d i d not demonstrate the y i e l d improve-ment expected. U l t r a s o n i c treatment r e s u l t e d i n a lower pulp .consistency c o e f f i c i e n t and p s e u d o p l a s t i c i t y value w i t h no e f f e c t on the s e p a r a t i o n o b t a i n e d . T i s s u e m o d i f i c a t i o n through the use of f r e e z i n g temperatures or p e c t i n o l d i d not improve serum y i e l d . The use of a s c o r b i c a c i d i n c r e a s e d the serum c l a r i t y but not the y i e l d o f c e l l serum. The average Magness-Taylor p r e s s u r e t e s t v a l u e s (pounds) decreased w i t h m a t u r i t y and v a r i e d w i t h c u l t i v a r s (Mcintosh < Red D e l i c i o u s < Winesap). The c e n t r i f u g a l s e p a r a t i o n of apple parenchyma serum was shown to be f e a s i b l e and economic y i e l d s (> 8 0% by weight) were ob t a i n e d f o r the f a c t o r s e v a l u a t e d . The e f f i c i e n c y o f the s e p a r a t i o n improved w i t h lower pulp average v i s c o s i t y , h i g h c e n t r i f u g a l f o r c e s , and s u f f i c i e n t time f o r c o n s o l i d a t i o n . The t i s s u e p a r t i c l e s i z e s e v a l u a t e d were of secondary importance f o r the s e p a r a t i o n of c e l l serum. 5 6 . LITERATURE CITED A l Anderson, N.G. Studies on i s o l a t e d c e l l components. Exptl. C e l l . Res. 9 : 4 4 6 - 4 5 9 , 1 9 5 5 . A 2 Aronsson, G. Decanters for sludge dewatering. Process Biochem. 5 ( 1 ) : 1 9 - 2 0 , 1 9 7 0 . Bl Barrett, A.J. and Northcote, D.H. Apple f r u i t pectic substances. Biochem. J. 9 4 : 6 1 7 - 6 2 7 , 1 9 6 5 . B 2 Barton, R. Frozen apples make sa t i s f a c t o r y cider. Ohio Farm and Home Res. 9 0 - 9 1 , November-December, 1 9 5 1 . B 3 Bourne, M.C. Two kinds of firmness i n apples. Food  Technol. 2 3 ( 3 ) : 5 9 - 6 0 , 1 9 6 9 . CI Charley, V.L.S. The p r i n c i p l e s and Practice of Cider Making. Headley Bros., London, England, 1 9 4 9 . C 2 Charley, V.L.S. and Mumford, P.M. Recent Advances i n F r u i t Juice Production. Leonard H i l l Ltd., London, England, 1 9 5 0 . C 3 Cohen, J. Multiple regression as a general data-analytic system. Psych. B u l l . 7 0 ( 6 ) : 4 2 6 - 4 4 3 , 1 9 6 8 . C 4 C o l t a r t , M.L. and Paton, D. Process for improved apple juice extraction. U.S. Patent 3 , 6 6 7 , 9 6 7 , June 6 , 1 9 7 2 . C 5 Crowe, D.S. Extraction of f r u i t juices squeeze or g's. Food Technol. of A u s t r a l i a . 2 2 ( 1 0 ) : 5 5 6 - 5 6 1 , 1 9 7 0 . Dl Dahlstrom, D.A. Application of low-cost, high capacity c l a s s i f i c a t i o n to thickening and separation of s o l i d s i n the food industry. Food Technol. 7 : 1 1 6 - 1 2 6 , 1 9 5 3 . D 2 Davison, P.K. and Young, R. Gas chromatography of carbohydrates. J. of Chromatography, 4 1 ( 1 ) : 1 2 - 2 1 , 1 9 6 9 . — ~ — D 3 Dorsey, A.E. Control of foam during fermentation by the application of ultrasonic energy. J. of Biochem. and Microbiol. Technol, E n f T . ->QQ3T^; 1 ? 5 0 _ 57. E l E l ' P i n e r , I.E. F a i k i n , I.M. and Basurmanova, O.K. I n t r a c e l l u l a r m i c r o c u r r e n t s caused by u l t r a s o u n d waves. Fed. Proc. 25 (2) : 716-720, J u l y , 1966. E2 Ewing, G.W. Instrumental Methods of Chemical A n a l y s i s . McGraw-Hill Book Company Inc., Toronto, 1960. F l F i t z g e r a l d , C.L., Clemens, M.M. and R e i l l y , P.B. Coagulants f o r waste-water treatment. Chem. Eng. Prog. 66(1): 36-40, 1970. F2 F r e n k e l , C., K l e i n , I . and D i l l e y , D.R. Methods f o r the study of r i p e n i n g and p r o t e i n s y n t h e s i s i n i n t a c t pome f r u i t s . Phytochem. 8 (6) : 945-955, 1968. Gl G a l l i a r d , T. Aspects of l i p i d metabolism i n h i g h e r p l a n t s . I I . Phytochem. 7(11): 1915-1922, 1968. G2 Greenwood, I.F. C o l t a r t , M.L. and Paton, D. A review of continuous apple j u i c e e x t r a c t i o n systems and a method f o r a s s e s s i n g new developments. I n t e r n a -t i o n a l F e d e r a t i o n of F r u i t J u i c e Producers, Palermo: 173-189, 1970. ' !" G3 G u j a r a t i , D. Use of dummy v a r i a b l e s i n t e s t i n g f o r e q u a l i t y between s e t s of c o e f f i c i e n t s i n l i n e a r r e g r e s s i o n s : a g e n e r a l i z a t i o n . Amer. S t a t . 18-22,24, December, 1970. HI Haruni, M.M. and Storrow, J.A. H y d r o e x t r a c t i o n V I I : R e s i d u a l moisture i n whizzed cakes. Chem. Ehg. S c i . 2: 203-212, 1953. H2 Hulme, A . C , Rhodes, M.J.C., G a l l i a r d , T. and Wooltorton, L.S.C., M e t a b o l i c changes i n e x c i s e d f r u i t t i s s u e . IV: P l a n t P h y s i o l . 43: 1154-1161, 1968. J l Jagendorf, A.T. P u r i f i c a t i o n of c h l o r o p l a s t s by a d e n s i t y technique. P l a n t P h y s i o l . 30: 138-143, 1955. J2 Johnson, G., Donnelley, B.J. and Johnson, D.K. Proanthocyanides as r e l a t e d to apple j u i c e p r o c e s s i n g and s t o r a g e . ' Food Techno1. 23(10): 82-86, 1969. J3 J o s l y n , M.A. and Deuel, H. The e x t r a c t i o n of p e c t i n s from apple marc p r e p a r a t i o n s . J . Food S c i . 28(1): 65-83, 1963. K l K e r t e s z , Z.I., Eucare, M. and Fox, G. A study of apple c e l l u l o s e . Food Res. 24: 14-19, 1959. 5 8 . K2 K&rmendy, I . A p r e s s i n g t h e o r y w i t h v a l i d a t i n g e x p e r i -ments on a p p l e s . J . F o o d S c i . 2 9 ( 5 ) : 6 3 1 - 6 3 4 , 1 9 6 4 . L l L a n d i s , D.M. P r o c e s s c o n t r o l o f c e n t r i f u g e o p e r a t i o n s . Chem. Eng. P r o g . 6 6 ( 1 ) : 5 1 - 5 3 , 1 9 7 0 . L2 L e i n b a c h , L.R., T a l b u r t , W.F. and C a r l s e n , E.W. Changes i n c o m p o s i t i o n o f n o r t h - w e s t s t a n d a r d D e l i c i o u s a p p l e s d u r i n g s t o r a g e t h a t a f f e c t t h e i r s u i t a b i l i t y f o r j u i c e p r o d u c t i o n . F o o d T e c h n o l . 7 : 4 0 4 - 4 0 7 , 1 9 5 3 . L3 L e n t z , C P . and Rooke, E.A. R a t e s o f m o i s t u r e l o s s o f a p p l e s u n d e r r e f r i g e r a t e d s t o r a g e c o n d i t i o n s . F o o d T e c h n o l . 1 8 : . 1 1 9 - 1 2 1 , 1 9 6 4 . L4 L e p e s c h k i n , M.W. and Goldman, D.E. E f f e c t o f u l t r a s o u n d . on c e l l s t r u c t u r e . J . C e l l . Comp. P h y s i o l . 4 0 : 3 8 3 - 3 9 7 , 1 9 7 1 . L 5 L i , J.C.R. S t a t i s t i c a l I n f e r e n c e I . Edwards B r o t h e r s I n c . , Ann A r b o r , M i c h i g a n , 2 5 2 - 2 6 4 , 1 9 6 4 . L6 L i , J.C.R. S t a t i s t i c a l I n f e r e n c e I I . Edwards B r o t h e r s I n c . , Ann A r b o r , M i c h i g a n , C h a p t e r 3 2 , 1 9 6 4 . L7 L i e b e r m a n , M. O x i d a t i v e a c t i v i t y o f c y t o p l a s m i c p a r t i c l e s o f a p p l e s , K r e b s c y c l e o x i d a t i o n s , o x i d a t i v e p h o s p h o r y l a t i o n and c y t o c h r o m e s . P l a n t P h y s i o l . 3 6 : 8 0 4 - 8 1 0 , 1 9 6 1 . < L 8 L i n d a h l , P.E. On c o u n t e r s t r e a m i n g c e n t r i f u g a t i o n i n t h e s e p a r a t i o n o f c e l l s and c e l l f r a g m e n t s . B i o c h i m . B i o p h y s . A c t a . 2 1 : 4 1 1 - 4 1 5 , 1 9 5 6 . L 9 L i i t h i i , H.R. Improvements i n f r u i t j u i c e t e c h n o l o g y . I n t e r n a t i o n a l J u i c e F e d e r a t i o n P r o c e e d i n g s . 8 7 - 1 3 9 , 1 9 6 7 . : M l Morehead, F . F . U l t r a s o n i c d i s i n t e g r a t i o n o f c e l l u l o s e f i b e r s b e f o r e and a f t e r a c i d h y d r o l y s i s . T e x t i l e  Res. J . 2 0 : 5 4 9 - 5 5 3 , 1 9 5 0 . M2 Moyer, J . C . and P i o n t e k , E.A. P e r s o n a l c o m m u n i c a t i o n . New Y o r k S t a t e A g r i c u l t u r a l E x p e r i m e n t a l S t a t i o n , Geneva, New Y o r k , 1 9 7 1 . M3 M u r c h , A . F . and Murch, J . F . ..Clear f r u i t and v e g e t a b l e j u i c e s . B e l g i a n P a t e n t , 6 4 2 , " 9 9 4, Way 1 8 , 1 9 6 4 . U.S. p a t e n t app. J a n u a r y , 1 9 6 3 . 59. M4 Kylne, A.M. and S e e g m i l l e r , C.G. Laboratory s t u d i e s on f a c t o r s a f f e c t i n g l e a c h i n g l o s s e s d u r i n g the pro-c e s s i n g of apples. Food Technol. 4:. 43 - 4 6 , 1950. NI Nebesky, E.A., E s s e l e n , W.B., Kaplan, A.M. and F e l l e r s , C.R. Thermal d e s t r u c t i o n and s t a b i l i t y o f p e r o x i -dase i n a c i d foods. Food Res. 15: 114-124, 1950. N2 Nelmes, B.J. and P r e s t o n , R.D. Wall development i n apple f r u i t s . A study of the l i f e h i s t o r y o f a parenchyma c e l l . J . E x p t l . Botany. 19 (60) : 496-518, 1968. N3 Neubert, A.M. C a r t e r , G.H. and Van Doren, A. E f f e c t o f f r u i t h a n d l i n g methods on j u i c e q u a l i t y of ap p l e s . Food Technol. 9: 114-118,. 1955. N4 Newcomer, E.H. Observations on dosage, the mechanisms of a c t i o n and the recovery of c e l l s exposed to u l t r a s o n i c v i b r a t i o n s . Amer. J . Botany, 41: 384-389, 1954. P l P e r r i n g , M.A. and W i l k i n s o n , B.G. The m i n e r a l composition of apples IV: The r a d i a l d i s t r i b u t i o n of chemicals i n apples and i t s s i g n i f i c a n c e i n sampling and a n a l y s i s . J . S c i . Fd. A g r i c . 16: 535-541, 1965. P2 P h i l l i p s , G.W.M., Aceto, N.C, R e d f i e l d , G.S. and Eskew, R.K. Leach p r e s s i n g o f ap p l e s . A method of i n c r e a s i n g the y i e l d of f u l l f l a v o u r j u i c e con-c e n t r a t e . Food Te c h n o l . 8: 110-112, 1954. P3 Ponting, J.D. and J o s l y n , M.A. A s c o r b i c a c i d o x i d a t i o n and browning i n apple t i s s u e e x t r a c t s . Arch. Biochem. 19: 47-63, 1948. P4 Poole, J.B. and Doyle, D. S o l i d - l i q u i d S e p a r a t i o n . Chemical P u b l i s h i n g Co. Inc., New York, 117-122, 1968. P5 Powrie, W.D. and A s s e l b e r g s , E.A. The i n f l u e n c e o f p o s t -h a r v e s t r i p e n i n g o f Mcintosh apples on the y i e l d , composition and f l a v o u r of the j u i c e . Can. J . A g r i c . S c i . 36: 349-355, 1956. Rl Reeve, R.M:. and Leinbach, L.R. H i s t o l o g i c a l i n v e s t i g a t i o n s of t e x t u r e i n a p p l e s . I. Composition and i n f l u e n c e of heat i n s t r u c t u r e . Food Res. 18: 592-603, 1953. 60. R2 Reeve, R.M. H i s t o l o g i c a l i n v e s t i g a t i o n s of t e x t u r e i n apples. I I . S t r u c t u r e and i n t e r c e l l u l a r spaces, Food Res. 18: 604-617, 1953. 51 Saravacos, G.D. and Charm, S.E. E f f e c t of s u r f a c e a c t i v e agents on the d e h y d r a t i o n of f r u i t s and v e g e t a b l e s . Food Technol. 16: 91-93, 1962. 52 Schnit'tger, J.R. I n t e g r a t e d theory of s e p a r a t i o n f o r bulk c e n t r i f u g e s . Ind. Eng. Chem. Process Pes. Develop. 9(3): 407-413, 1972. : 53 Schwenker, R.F. and Whitwell, J.C. E f f e c t of u l t r a s o n i c r a d i a t i o n on the v i s c o s i t y of c e l l u l o s e s o l u t i o n s . T e x t i l e Res. J . 436-437, 1953. 54 S h a l l e n b e r g e r , R.S. N u t r i t i o n a l q u a l i t y of f r u i t s and v e g e t a b l e s . HortScience 5(2): 100-101, 1970. 55 S h i r a t o , M., Murase, T., Kato, H. and Fukaya, S. Fundamental a n a l y s i s f o r e x p r e s s i o n under co n s t a n t p r e s s u r e . F i l t r a t i o n ^ and S e p a r a t i o n . 7 (3) : 277^-282, 1970. 56 Sinnamon, H.I. E f f e c t of p r i o r f r e e z i n g on d e h y d r a t i o n and r e h y d r a t i o n • o f apple h a l f segments. Food- Technol. 22 (8) : 101-103, 1968. 57 Smock, R.M. and Neubert, A.M. Economic Crops Volume I I . Apples and Apple Products. I n t e r s c i e n c e P u b l i s h e r s Inc., New York, 1950. 58 Snedecor, G.W. and Cochrane, W.G. S t a t i s t i c a l Methods. 6th E d i t i o n . Iowa S t a t e U n i v e r s i t y P r e s s , 1968. 59 Somers, G.F. V i s c o - e l a s t i c p r o p e r t i e s of storage t i s s u e s from potato, apple and pear. J . Food S c i . 30(6): 922-929, 1965. S10 S u l l i v a n , D.T. and E n z i e , J.V. The e x p r e s s i b l e j u i c e contents of Richard and Jonared apples as r e l a t e d to r e s p i r a t i o n r a t e , s o l u b l e s o l i d s content and f i r m n e s s . Am. Soc. Hort. S c i . 77: 43-49, 1961. S l l S u t herland, K.S. C e n t r i f u g e s i n sewage treatment. Process Biochem. 5(1 ) : 51-53, 1970. 61. T l T a r a k o l i , M. and Wiley, R.C. Q u a l i t a t i v e d e t e r m i n a t i o n of enzymatic products obtained.from.apple c e l l w a l l p o l y s a c c h a r i d e s . • proc.Amer.Soc.Hort.Sci. 87: 104-112, 1966. : ~ T 2 Thompson, D. and S u t h e r l a n d , D.G. U l t r a s o n i c i n s o n a t i o n e f f e c t on l i q u i d - s o l i d e x t r a c t i o n . Ind. Eng. Chem. 47 (6) : 1167-1169, 1955. T3 Tolby, V. and Wiley, R.C. L i q u i d - s o l i d s s e p a r a t i o n , a problem i n processed.apple.sauce. Proc. Amer. Soc. Hort. S c i . 81: 78-91, 1963. ' T4 Todd, D.B. and P o d b i e l n i a k , W.J. Advances i n c e n t r i f u g a l e x t r a c t i o n . Chem. Eng. Prog. 61(5): 69-73, 1965. T 5 T r e s s l e r , D.K. and J o s l y n , M.A. F r u i t and Vegetable J u i c e P r o c e s s i n g Technology. A v i P u b l i s h i n g Company Inc., Westport, Conn., U.S.A., 1961. T6 T r e s s l e r , D.K. and J o s l y n , M.A. F r u i t and Vegetable J u i c e P r o c e s s i n g Technology - Second E d i t i o n . A v i P u b l i s h i n g Company Inc., Westport, Conn., U.S.A., 1971. Wl Walker, J.R.L. and Hulme, A.C. S t u d i e s on the enzymatic browning of apples. I I I . P u r i f i c a t i o n of apple phenplase. Phytochem. 5: 259-262, 1966. * W2 Whittenberger, R.T. and N u t t i n g , G.C. E f f e c t of tomato c e l l s t r u c t u r e s on c o n s i s t e n c y of tomato j u i c e . Food Technol. 11 (1): 19-22, 1957. W3 Whittenberger, R.T. and N u t t i n g , G.C. High v i s c o s i t y of c e l l w a l l suspensions prepared from tomato j u i c e . Food Technol. 12(8): 420-424, 1958. W4 Wiley, R.C. and Sterabridge,. G..E. F a c t o r s a f f e c t i n g apple t e x t u r e , proc.Amer.Soc.Hort.Sci. 77: 60-72, 1961. W5 W i l l i a m s , J.W. Sedimentation a n a l y s i s and some r e l a t e d . problems. P a r t V. U l t r a c e n t r i f u g a t i o n and o t h e r experimental methods. J . Polymer S c i . 12: 351-378, 1954. Woodford, R. and M o r r i s o n , J.C. The e f f e c t of u l t r a -s o n i c energy on the e x t r a c t i o n of anthraquinones from senna p e r i c a r p s . J . Pharm. Pharmac. 21(9): 595-601, 1969. , , 6 3 . APPENDIX A . T A B L E A - l E X P E R M E N T A L P L A N TO EVALUATE PARAMETERS OF A P P L E CENTRIFUGATION C u l t i v a r M a t u r i t y M A C E R A T I O N 1 O r d e r T ime S p e e d O r d e r T ime Speed O r d e r T ime Speed O r d e r T i m e S p e e d 2 6 18 2 4 3 1 4 3 2 1 3 4 2 1 18 4 2 1 3 6 1 4 2 3 2 2 4 1 3 13 2 2 3 4 1 6 3 4 2 1 18 2 3 1 4 18 2 .6 4 2 1 3 2 4 1 3 3 4 2 1 12 2 1 4 3 15 3 1 4 2 11 2 1 4 3 4 3 2 1 27 2 3 1 4 36 1 4 2 3 28 2 3 1 4 33 1 4 2 3 19 2 18 6 4 2 3 1 1 4 2 3 1 4 3 2 25 18 2 6 1 4 2 3 4 3 2 1 2 3 4 i 30 6 18 2 4 2 3 1 1 4 2 3 1 3 4 2 18 3 4 1 2 6 2 1 3 4 2 2 3 4 1 35 14 1 4 2 3 23 3 2 1 4 . 18 2 4 3 1 1 4 2 3 31 2 1 3 4 10 1 4 3 2 26 1 3 4 2 2 3 4 1 2 18 6 3 4 1 2 3 1 2 4 1 4 3 2 32 •2 18 6 2 3 1 2 3 1 4 2 2 1 3 4 18 6 2 3 4 1 2 2 1 3 4 2 3 4 1 24 22 2 3 1 4 17 2 4 3 1 34 1 4 2 3 20 29 4 2 3 1 21 2 3 1 4 16 3 1 4 2 6 2 18 3 2 1 4 2 4 3 1 4 2 1 3 1 4 3 2 1 3 4 2 N o t e : P l a n i n d i c a t e s t h e s e q u e n c e i n w h i c h t h e e x p e r i m e n t s were c o n d u c t e d . O r d e r i n d i c a t e s t h e s e q u e n c e 1-36 i n w h i c h t h e f a c t o r s C u l t i v a r , M a t u r i t y and M a c e r a t i o n t r e a t m e n t were c a r r i e d o u t . The s e q u e n c e f o r t h e t i m e was c a r r i e d ^ o u t i n d e s c e n d i n g o r d e r w h e r e a s s p e e d r e f e r s t o RPM 1 t o 4 c a r r i e d o u t f r o m *• l e f t t o r i g h t . TABLE A-2 CTITOUFUGAL FORCE GENERATED ON PARTICLE VERSUS POSITION IN TUBE T W , e 4.. . C e n t r i f u g a l Force a t Stati o n P o s i t i o n , IEC S e t t i n g Speed, rpm. —•• Top 2 i n . Middle 3 i n . Bottom 4 i n . 2 4 5 ' 5 ° 0 1,700 2,600 3,400 • 3 4 8'000 3,500 5,300 7,400 48 72 10,500 6,000 9,200 12,500 14,500 10,900 17,500 24,500 66. TABLE A-3 • . ACTUAL CEH^TRIFUGATION CYCLE FOR NOMINAL TIME Nominal E l a p s e d Time, m i n . Speed rpm t i m e , m i n A c c e l e r a t i o n S t a t e d Speed D e c e l e r a t i o n 5,500 2 0.5 1.5 6 II 6 .0.5 5.5 6 II 18 0.5 17.5 6 8,000 2 1.0 1 8 II 6 1.0 5 8 18 1.0 17 8 10,500 2 1.4 0.6 9 II 6 1.4 0.6 9 II 18 1.4 0.6 9 14,500 2. 2.0 0 9 II 6 2.0 . 4 9 II 18 2.0 16 9 67. APPENDIX B - TABLE B - l YIELD OF CELL SERUM (% by weight) AT TIME. 2 FOR OJLTIVAR,MATURITY, MACERATION AND SPEED PARAMETERS M A C E R A T I 0 N Cu l t i v a r Maturity 1 2 3 4 Speed Speed Speed Speed 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 52.8 65.3 73.3 78.6 54.3 67.7 73.8 80.3 56.0 69.1. 75.4 80.4 56.0 68.2 74.1 80.1 1 2 52.7 64.0 73.6 79.4 51.8 64.9 71.5 77.1 55.0 63.6 73.8 78.6 57.8 68.6 75.4 80.0 3 46.7 60.8 69.6 76.6 48.7 64.0 72.4 77.9 53.9 66.1 72.6 78.3 48.6 64.6 70.7 76.0 1 44.8 60.3 68.9 76.6 50.4 60.1 70.4 75.9 48.3 62.3 69.4 77.0 50.4 64.2 72.1 78.3 2 2 21.8 58.3 72.4 78.7 49.1 62.0 69.8 76.8 51.6 62.8 70.5 76.5 52.9 64.3 73.3 78.9 3 42.3 62.4 76.3 81.6 44.5 62.0 72.2 77.5 49.8 62.9 72.1 77.8 53.8 61.1 70.1 76.6 1 34.1 58.7 73.3 77.7 39.5 56.0 75.1 75.6 46.4 60.3 70.4 77.4 40.5 57.5 70.1 79.9 3 2 30.6 49.8 64.4 73.5 45.6 57.9 69.6 76.9 40.8 57.1 66.2 72.6 43.2 59.2 67.9 74.7 3 33.7 49.5 70.4 76.1 41.2 58.0 69.0 76.1 37.3 55.3 62.3 70.9 45.0 57.2 66.0 72.3 Note: R e s u l t s shown were i n d i v i d u a l o b s e r v a t i o n s . CO TABLE B-2 SERUM CLARITY AT TIME 2 FOR CULTIVAR, MATURITY, MACERATION AND SPEED PARAMETERS C u l t i v a r M a t u r i t y M A C E R A T I O N Speed Speed . Speed ' Speed  1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 0.89 1.68 3.70 4.80 0.01 0.02 0.04 0.11 0.01 0.05 0.13 0.30 0.01 0.02 0.05 0.11 2 1.06 1.59 3.83 5.90 0.57 0.80 1.68 4.00 0.44 0.44 2.28 4.00 1.01 1.68 3.53 4.20 3 1.15 2.90 3.00 5.00 0.32 1.10 2.10 2.50 0.52 0.78 1.80 4.00 0.37 0.87 1.06 2.50 1 0.37 0.84.1.68 3.00 0.25 0.32 0.75 2.50 0.57 0.82 1.97 2.50 0.28 0.49 1.50 3.50 2 0.00 0.13 2.33 3.50 1.33 1.40 2.59 7.00 1.11 1.30 4.56 6.50 0.61 1.69 4.05 6.75 3 0.00 0.20 0.88 4.00 0.41 1.20 1.50 2.50 0,99 3.15 3.83 9.00 .1.15 2.40 6.3510.00 1 0.04 0.33 0.20 1.50 0.02 0.07 0.44 2.20 0.12 0.18 0.45 1.50 0.07 0.18 0.49 2.00 2 0.22 0.41 2.80 5.00 0.16 0.40 0.96 2.00 0.04 0.21 0.33 0.60 0.24 0.75 1.71 3.00 3 0.00 0.06 1.50 3.00 0.14 0.30 0.80 2.00 0.21 0.53 0.64 1.50 0.17 0.50 0.80 2.50 Note: Results shown were single observations ( T i TABLE B-3 YIELD OF CELL SERUM (% by weight) AT MATURITY 1 FOR CULTIVAR, TIME, MACERATION AND SPEED PARAMETERS C u l t i v a r Time M A C E R A T I O N Speed Speed Speed 1 2 3 4 1 . 2 3 4 1 2 3 4 1 2 3 4 1 39.4 56.2 66.3 73.2 43.1 57.4 66.5 73.0 47.0 53.0 67.7 73.5 45.6 56.7 67.1 73.7 1 2 52.8 65.3 73.3 78.6 54.3 67.7 73.8 80.3 56.0 69.2 75.4 80.4 56.0 68.2 74.1 80.1 3 58.7 71.0 78.0 82.1 62.4 74.1 78.8 83.6 64.1 71.8 78.4 83.0 62.6 74.1 78.5 83.6 1 32.4 49.9 72.8 76.4 37.8 53.7 59.4 67.1 38.8 55.5 60.8 67.7 43.6 56.8 65.0 70.8 2 2 44.8 60.3 68.9 76.6 50.4 60.1 70.4 75.9 48.3 62.3 69.4 77.0 50.4 64.2 72.1 78.3 3 40.6 75.1 68.0 80.5 . 55.2 70.9 76.6 82.2 56.1 69.6 75.8 81.7 60.4 70.9 77.8 82.7 1 00.0 33.3 62.8 70.2 33.8 47.7 58.8 66.9 40.5 51.7 60.1 69.0 35.2 47.2 58.9 70.5 3 2 34.1 58.7 73.3 77.7 39.5 56.0 75.1 75.6 46.4 60.3 70.4 77.4 40.5 57.5 70.1 79.9 3 3.6-.3 65.4 76.8 81.0 43.7 61.0 72.9 84.0 57.5 68.6 77.4 83.5 44.5 71.1 74.3 82.1 N o t e : R e s u l t s shown w e r e s i n g l e o b s e r v a t i o n s . TABLE B-4 SERUM C L A R I T Y A T MATURITY 1 FOR (TXJLTIVAR, T I M E , MACERATION AND SPEED PARAMETERS C u l t i v a r T ime M A C E R A T I 0 N 1 2 3 4 S p e e d S p e e d S p e e d S p e e d •1 2 3 4 1 2 3 4 1 2 3 4. 1 2 3 4 1 0.55 0.65 1.51 2.00 0.01. 0.01 0.03 0.04 0.02 0.03 0.06 0.10 0.00 0.00 0.00 0.01 1 2 0.89 1.68 3.70 4.80 0.01 0.02 0.04 0.11 0.01 0.05 0.13 0.30 0.01 0.02 0.05 0.11 3 0.90 1.30 5.20 10.0 0.57 1.04 2.04 .5.20 0.36 0.82 1.87 5.50 0.50 1.19 3.21 4.00 1 0.13 0.23 0.56 1.50 0.03 0.05 0.08 0.10 0.16 0.34 0.47 1.00 0.04 0.07 0.15 0.20 2 2 0.37 0.84 1.68 3.00 0.25 0.32 0.75 2.50 0.57 0.82 1.97 2.50 0.28 0.49 1.50 3.50 3 0.18 5.85 3.06 9.00 0.31 1.64 3.90 7.80 2.88 6.03 10.5 ]8.0 1.76 4.48 7.20 16.0 1 0.00 0.04 0.05 0.10 0.03 0.07 0.10 0.10 0.02 0.03 0.06 0.10 0.06 0.10 0.13 0.20 3 2 0.04 0.33 0.20 1.50 0.02 0.07 0.44 2.20 0.12 0.18 0.45 1.50 0.07 0.18 0.49 2.00 3 0.00 0.50 0.75 5.00 0.14 0.21 0.35 7.00 0.27 1.20 2.16 8.00 0.05 0.10 0.50 10.0 Note: R e s u l t s shown were s i n g l e o b s e r v a t i o n s . TABLE B-5 EFFECT OF CULTIVAR, MATURITY AND MACERATION ON PULP FLOW BEHAVIOR INDEX C u l t i v a r Maturity Maceration 1 Maceration 2 . Maceration 3 Maceration 4 1 .335 .327 .284 .272 1 2 .262 .248 .270 .367 3 .247 .262 .274 .257 1 .306 .261 .306 .303 2 2 .299 .319 .277 .247 3 .266 .275 .258 .233 1 .309 .289 .- .419 .255 3 2 .304 .283 .292 .292 3 .294 .271 .266 .256 N o t e : R e s u l t s shown were a s i n g l e sample f r o m e a c h homogenate. TABLE B-6 EFFECT OF CULTIVAR, MATURITY AND MACERATION PARAMETERS ON PULP AVERAGE VISCOSITY (Poises) C u l t i v a r Maturity Maceration 1 Maceration 2 Maceration 3 Maceration 4 1 5.04 4.29 5.21 5.08 1 2 5.77 6.24 5.33 3.74 3 6.98 5.69 5.42 5.41 1 6.78 6.06 5.82 4.98 2 2 7.69 7.37 6.10 5.71 3 5.00 5.74 6.30 5.40 1 7.74 6.02 4.37 6.57 3 2 8.93 5.57 8.07 7.35 3 8.47 7.91 9.73 8.51 N o t e : R e s u l t s shown were a s i n g l e sample f r o m e a c h homogenate. TABLE B-7 EFFECT OF CULTIVAR, MATURITY AND MACERATION PARAMETERS ON PULP YIELD STRESS 2 (dynes/cm ) • C u l t i v a r Maturity Maceration 1 Maceration 2 Maceration 3 Maceration 4 1 100 53 141 121 1 2 153 184 153 30 3 289 156 147 144 1 342 197 183 94 2 2 395 203 205 277 3 244 256 265 214 1 421 289 60 212 3 2 398 191 287 283 3 462 321 333 272 N o t e : R e s u l t s shown were a s i n g l e sample f r o m e a c h homogenate. TABLE B-8 EFFECT OF CULTIVAR, MATURITY AND MACERATION PARAMETERS ON CELL SERUM FLOW BEHAVIOR INDEX Cultivar Maturity Maceration 1 - Maceration 2 Maceration 3 Maceration 4 1 .564 .585 .620 .588 1 2 .615 .588 .610 .621 3 .623 .742 .690 .741 1 .585 .718 .625 .591 2 2 .807 .597 .586 .586 3 .465 .728 .620 .765 1 .456 .527 .614 .445 3 2 .402 .548 .689 .596 3 .402 .589 .750 .610 Note: R e s u l t s shown were a s i n g l e o b s e r v a t i o n o f the pooled supernatant from speed 1-4. TABLE B-9 EFFECT OF CULTIVAR, MATURITY AND MACERATION PARAMETERS ON PETT. SERUM AVERAGE VISCOSITY (Poises) C u l t i v a r Maturity Maceration 1 Maceration 2 Maceration 3 Maceration 4 1 .143 .155 .137 .154 1 2 .124 .159 .146 .127 3 .102 .088 .091 .101 1 .123 .083' .079 .125 2 2 .096 .128 .125 .116 3 .182 .073 .114 .072 1 .190 .173 .116 .203 3 2 .210 .131 .091 .127 3 .282 .129 .142 .156 N o t e : R e s u l t s shown were a s i n g l e o b s e r v a t i o n o f t h e p o o l e d s u p e r n a t a n t f o r s p e e d 1-4. TABLE B-10 EFFECT OFOJLTTVAR, MATURITY AND MACERATION PARAMETERS ON ALCOHOL INSOLUBLE SOLIDS (% by weight). C u l t i v a r Maturity Maceration 1 Maceration 2 Maceration 3 Maceration 4 1 1.50 1.40 1.52 1.57 1 2 1.41 1.22 1.51 1.57 3 1.63 1.57 1.58 1.62 1 1.68 1.81 1.72 1.57 2 2 1.60 1.72 1.73 1.41 3 1.42 1.69 1.57 1.73 1 1.74 1.82 1.86 2.26 3 2 1.83 1.88 1.83 2.05 3 1.82 2.06 2.10 1.75 N o t e : R e s u l t s shown were s i n g l e o b s e r v a t i o n s o f t h e p o o l e d s p e ed (1-4) p e l l i c l e . TABLE B - l l EFFECT OF CULTIVAR, MATURITY AND MACERATION PARAMETERS ON CELL SERUM SOLUBLE SOLIDS (% by weight) C u l t i v a r Maturity Maceration I'- Maceration 2 Maceration 3 Maceration 4 1 l l . 9 11.9 12.6 11.9 1 2 11.7 14.1 12.4 11.8 3 12.4 12.5 12.5 12.2 1 15.1 14.1 13.8 13.9 2 2 13.8 13.8 13.6 13.2 3 14.0 14.8 14.7 13.1 1 14.4 14.1 14.5 14.1 3 2 14.5 14.6 15.2 13.4 3 14.3 14.0 15.2 14.7 N o t e : R e s u l t s shown were t h e p o o l e d s u p e r n a t a n t a l i q u o t s from Speed 1 t o 4. Two determinations were made and the r e s u l t s averaged. '. TABLE B-12 EFFECT OF CJLTIVAR, MATURITY AND MACERATION PARAMETERS ON CELT. SERUM pH C u l t i v a r Maturity Maceration 1 Maceration 2 Maceration 3 Maceration 4 1 3.50 3.40 3.42 3.40 1 2 3.61 3.35 3.61 3.50 3 3.62 3.70 3.61 3.72 1 4.00 3.90 3.92 ' . • " 3.90 2 2 3.94 4.05 4.04 4.00 3 4.10 4.05 . 4.10 3.95 1 3.42 3.35 3.35 3.40 • 3 2 3.45 3.60 3.50 3.56 3 3.50 3.65 3.55 3.70 . N o t e : R e s u l t s shown were t h e p o o l e d s u p e r n a t a n t a l i q u o t s f r o m Speed 1 t o 4. TABLE B-13 EFFECT OF CULTIVAR, MATURITY AND MACERATION PARAMETERS ON OBSERVED AVERAGE PARTICLE SIZE (diameter i n ym) C u l t i v a r Maturity Maceration 1 Maceration 2 Maceration 3 Maceration 4 1 312 331 299 351 1 2 .261 285 .296 273 3 309 378 422 .430 1 308 410 259 337 2 2 400 397 268 285 3 250 329 423 389 1 294 356 385 328 3 2 371 ;276 475 330 3 432 359 294 311 N o t e : R e s u l t s shown were a v e r a g e s o f 100 o b s e r v a t i o n s f r o m 4 o r 5 p h o t o m i c r o g r a p h s t a k e n f o r e a c h o f two s l i d e s f r o m s e p a r a t e s u b s a m p l e s o f t h e homogenate. TABLE B-14 EFFECT CF CULTIVAR, MATURITY AND MACERATION PARAMETERS ON TISSUE FIRMNESS MEASURED BY THE MAGNUS-TAYLOR PRESSURE TEST (pounds) C u l t i v a r Maturity Maceration 1 Maceration 2 Maceration 3 Maceration 4 1 - - 7.7 2 6.7 7.1 :6.0 3 5.4 5.2 5.7 4.5 1 10.6 10.7 11.3 2 12.1 10.4 11.0 3 9.2 9.5 - 9.7 1 - 13.8 - 14.0 2 11.5 12.4 11.1 13.3 3 11.2 10.4 10.5 N o t e : R e s u l t s shown were t h e a v e r a g e o f two o b s e r v a t i o n s f r o m e a c h a p p l e s a m p l e . 82. APPENDIX C TABLE C - l ANALYSIS OF VARIANCE YIELD OF CELL SERUM FOR TIME 2 Source of V a r i a t i o n Degrees o f Freedom Mean Square Er r o r F Ratio C u l t i v a r 2 675.0 S x C * Maturity 2 51.82 S x Mat. ** Maceration 3 74.48 S x Mac. NS Speed 3 6476 ** S x c 6 61.40 ** S x Mat. 6 0.320 NS S x Mac. 9 45.52 ** C x Mat. 4 30.06 C x Mac. 6 9.990 NS Mat.x Mac. 6 16.38 NS E r r o r 96 8.040 T o t a l 143 ** S i g n i f i c a n t a t P < .05 S i g n i f i c a n t a t P < .01 TABLE C-2 \ ANALYSIS OF VARIANCE CLARITY OF CELL SERUM AT TIME 2 Source of V a r i a t i o n Degrees of Freedom Mean Square E r r o r F Ratio C u l t i v a r 2 25.87 S x C * Maturity 2 20.16 S.x Mat. * Maceration 3 3.175 S x Mac. * Speed 3 66.73 ** S x C 6 3.846 ** S x Mat. 6 3.240 ** S x Mac. 9 0.578 NS C x Mat. 4 2.286 * C x Mac. 6 8.447 ** Mat.x Mac. 6 1.809 * E r r o r 96 .757 To t a l 143 * S i g n i f i c a n t a t P < .05 ** S i g n i f i c a n t a t P < .01 85. TABLE C-3 ANALYSIS OF VARIANCE YIELD OF HF.T.T, SERUM AT MATURITY 1 Source of V a r i a t i o n Degrees of Freedom Mean Square E r r o r F Ratio C u l t i v a r 2 726.9 C x S * Time 2 2666 T x S ** Maceration 3 120.0 M x S NS Speed 3 6704 ** C x S 6 114.2 ** T x S 6 29.40 * M x S 9 76.82 ** C x T 4 23.30 NS C x M 6 27.29 * T x M 6 5.190 NS Er r o r 96 11.29 To t a l 143 * S i g n i f i c a n t a t P < .05 ** S i g n i f i c a n t a t P < .01 TABLE C-4 ANALYSIS OF VARIANCE CELL SERUM CLARITY AT MATURITY 1 Source o f V a r i a t i o n Degrees of Freedom Mean Square E r r o r F Ratio C u l t i v a r 2 36.09 C x S * Time 2 164.3 T x S NS . Maceration 3 5.850 M x S ** Speed 3 83.01 ** C x S 6 4.520 ** T x S 6 40.06 ** M x S 9 0.650 NS C x T 4 19.57 ** C x M 6 9.250 ** T x M 6 4.390 ** E r r o r 96 1.230 To t a l 143 * S i g n i f i c a n t a t P < .05 ** S i g n i f i c a n t a t P < .01 TABLE C-5 ANALYSIS OF VARIANCE YIELD OF CELL SERUM AT TIME 2 (speed pooled) Source of V a r i a t i o n Degrees o f Freedom Mean Square F Ratio C u l t i v a r 2. 168.8 ** Maturity 2 12.97 NS Maceration 3 18.83 * C x Mat. 4 7.520 NS C x Mac. 6 2.500 NS Mat.x Mac. 6 4.100 NS Er r o r 12 3.480 T o t a l 35 S i g n i f i c a n t a t P < .05 S i g n i f i c a n t a t P < .01 TABLE C-6 • ANALYSIS OF VARIANCE CELL SERUM CLARITY AT TIME 2 (speed pooled) Source of V a r i a t i o n Degrees of Freedom Mean Square F Ratio C u l t i v a r 2 6.476 ** Maturity 2 5.022 ** Maceration 3 .7878 NS C x Mat. 4 .5667 NS C x Mac. 6 2.111 NS Mat.x Mac. 6 .4514 NS Er r o r 12 .5247 T o t a l 35 ** S i g n i f i c a n t a t P < .01 89. TABLE C- 7 ANALYSIS OF VARIANCE PULP FLOW BEHAVIOR INDEX AT TIME 2 Source of V a r i a t i o n Degrees of Freedom Mean Squares F Ratio C u l t i v a r 2 .0007 NS Maturity •2 .0054 NS Maceration 3 .0006 NS C x Mat. 4 .0001 NS C x Mac. 6 .0011 NS Mat.x Mac. 6 .0010 NS Error 12 .0016 T o t a l 35 t TABLE C-8 ANALYSIS OF VARIANCE PULP AVERAGE VISCOSITY AT 100 S E C _ 1 FOR TIME 2 Source of V a r i a t i o n Degrees o f Freedom Mean Squares F Ratio C u l t i v a r 2 13.47 ** Maturity 2 3.668 * Maceration 3 1.899 NS C x Mat. 4 2.371 NS C x Mac. 6 0.674 NS Mat.x Mac. 6 0.634 NS Error 12 „939 T o t a l 35 •t * S i g n i f i c a n t a t P < .05 ** S i g n i f i c a n t a t P < .01 9 1 . TABLE C - 9 . ANALYSIS OF VARIANCE PULP YTFTiD STRESS (t DYNES Y CM 2) AT TIME 2 Source of Variation Degrees of Freedom Mean Squares F Ratio C u l t i v a r 2 7 4 0 3 3 ** Maturity 2 1 6 8 0 7 NS Maceration 3 3 1 2 1 2 * C x Mat. 4 2 3 4 8 . 4 NS C x Mac. 6 3 6 3 8 . 6 NS Mat.x Mac. . 6 1 2 0 1 . 8 NS Error 1 2 6 4 0 6 . 7 Total 3 5 • * Significant at P < . 0 5 ** Significant at P < . 0 1 •92. TABLE C-10 ANALYSIS OF VARIANCE CELL SERUM FLOW BEHAVIOR INDEX AT TIME 2 Source of V a r i a t i o n Degrees of Freedom Mean Squares F Ratio C u l t i v a r 2 1.457 NS Maturity 2 1.067 NS Maceration 3 1.317 ' NS C x Mat. 4 1.230 NS C x Mac. 6 1.299 NS Mat.x Mac. 6 1.179 NS Error 12 1.298 T o t a l 35 93. TABLE C - l l ANALYSIS CF VARIANCE rrrr.T. SERUM APPARENT VISCOSITY AT 600 SEC" 1 FOR TIME 2 Source o f V a r i a t i o n Degrees o f Freedom Mean Squares F Ratio C u l t i v a r 2 130.1 NS Maturity 2 131.0 NS Maceration 3 130.4 NS . C x Mat. 4 130.9 NS C x Mac. 6 130.5 NS Mat.x Mac. 6 131.0 NS Er r o r 12 130.3 T o t a l 35 * TABLE C-12 ANALYSIS OF VARIANCE PULP ALCOHOL INSOLUBLE SOLIDS Source of V a r i a t i o n Degrees of Freedom Mean Square F Ratio C u l t i v a r 2 .5227 ** Maturity 2 .0152 NS Maceration 3 .0179 NS C x Mat.: 4 .0131 NS C x Mac. 6 .0241 NS Mat.x Mac. 6 .0075 NS Er r o r 12 .0237 To t a l 35 ** S i g n i f i c a n t a t P < .01 TABLE C-13 ANALYSIS OF VARIANCE CELL SERUM SOLUBLE SOLIDS AT TIME 2 Source of V a r i a t i o n Degrees o f Freedom Mean Squares F Ratio C u l t i v a r 2 14.79 ** Maturity 2 0.141 . NS Maceration 3 0.868 NS C x Mat. 4 0.312 NS C x Mac. 6 0.321 NS Mat.x Mac. 6 0.319 NS Er r o r 12 .292 To t a l 35 * ** S i g n i f i c a n t a t P < .01 TABLE C-14 ANALYSIS OF VARIANCE CELL SERUM pH AT TIME 2 Source o f V a r i a t i o n Degrees of Freedom Mean Squares F Ratio C u l t i v a r 2 .9286 ** Maturity 2 .1006 ** Maceration 3 .0008 NS C x Mat. 4 .0054 NS C x Mac. 6 .0062 NS Mat.x Mac. 6 .0036 NS Er r o r 12 .0057 T o t a l 35 ** S i g n i f i c a n t a t P < .01 97. TABLE C-.15 ANALYSIS OF VARIANCE OBSERVED PARTICLE SIZE AT TIME 2 Source o f V a r i a t i o n Degrees o f Freedom Mean Squares F Ratio C u l t i v a r 2 .0053 NS Maturity 2 .0437 NS Maceration 3 .0038 NS C x Mat. 4 . 0054 NS C x Mac. 6 .0059 NS Mat.x Mac. 6 .0056 NS Error 12 .0116 T o t a l 35 98. APPENDIX D TABLE D-l STEPWISE REGRESSION OF CULTIVAR, MATURITY, MACERATION, SPEED AND OBSERVATIONS Dependent V a r i a b l e = Y i e l d of C e l l Serum R 2 == .976 Standard Er r o r o f Y = 2.08 Independent Variables C o e f f i c i e n t F Constant 8 2 . 9 6 — Pulp Average V i s c o s i t y - 1 . 0 3 5 o . 0 0 0 C u l t i v a r 1 1 . 3 3 4 0 . 0 0 6 C u l t i v a r 1 x Maturity 1 1 . 8 8 0 0 . , 0 0 7 Maturity 1 x Maceration 1 1 . 4 6 6 0 . , 0 3 9 Maceration 1 x Speed 1 - 5 . 9 1 3 0 . , 0 0 0 Maceration 1 x Speed 2 - 2 . 6 9 9 0 . , 0 0 4 Speed 1 x AIS - 4 . 6 2 9 0 . . 0 1 5 Speed 1 x Serum C l a r i t y 6 . 3 0 9 0 . , 0 0 0 Speed 1 x Pulp Flow Behavior Index - 3 7 . 6 2 0 . . 0 0 0 Speed 1 x Pulp Y i e l d Stress - 0 . 0 2 9 0 . . 0 0 0 Speed 1 x Serum Flow Behavior Index - 1 1 . 2 8 0 , . 0 0 1 Speed 2 x AIS - 7 . , 3 3 7 0 , . 0 0 0 Speed 2 x Serum Average V i s c o s i t y - 2 1 . , 8 3 0 . 0 1 6 Speed 3 x Pulp Average V i s c o s i t y - 1 . , 8 2 5 0 . 0 0 0 Speed 3 x Pulp Y i e l d Stress - 0 . . 0 2 4 0 . 0 0 0 100. TABLE D-2 STEPWISE REGRESSION OF CULTIVAR, MATURITY, MACERATION, SPEED AND OBSERVATIONS C l a r i t y o f C e l l Serum 0.801 .876 Independent Var i a b l e s C o e f f i c i e n t F, Constant 9. 659 — Serum Soluble S o l i d s 0. 466 0. .000 C u l t i v a r 2 2. 949 0. .000 Maturity 1 -2. 297 0. .000 C u l t i v a r 2x Maceration 1 1. 328 0. .000 C u l t i v a r l x Maceration 1 -1. 962 0. .000 C u l t i v a r 2x Maceration 2 -1. 194 0. .000 Maturity 1 x Maceration 1 1. 179 0. .001 Maturity 1 x Speed 1 .1. 313 0. .001 Maturity 1 x Speed 2 1. 051 0. .008 Speed 1 x Serum pH -2. 824 0. .000 Speed 1 x Serum Soluble S o l i d s 0. 505 0. .001 Speed 2 x Serum pH -2. 300 0. .000 Speed 2 x Serum Soluble S o l i d s 0. 401 0. .006 Speed 3 x Serum pH -1. 009 0, .001 Speed 3 x Pulp Flow Behavior Index 7. 199 0. .043 Dependent V a r i a b l e = R2 = Standard E r r o r o f Y = 101. TABLE D-3 STEPWISE REGRESSION OF CULTIVAR, TIME, MACERATION, SPEED AND OBSERVATIONS Dependent Variable = Yield of C e l l Serum R2 0.957 Standard Error of Y = 3.153 Independent Variables Coefficient F Constant 84. 49 — Serum Clarity -0. 364 0. ,008 Cultivar 1 3. 417 0. ,000 Cultivar 2 2. 266 0. ,005 Maceration 2 -1. 473 0. ,018 Time 1 -16. .002 0. .000 Time 2 -6. 430 ' ' 0. ,000 Cultivar lx Speed 1 6. 838 0. ,000 Cultivar 2x Speed 1 6. 423 o. .000 Speed 1 x AIS 12. 08 0. .000 Speed 1 x Pulp Flow Behavior Index -42. 16 0. .000 Speed 1 x Pulp Average Viscosity -7. 896 0. .000 Speed 2 x Pulp Average Viscosity -2. 971 0. .000 Speed 3 x AIS -4. 116 0, .000 102. TABLE D-4 STEPWSIE REGRESSION OF CULTIVAR, TIME, MACERATION, SPEED AND OBSERVATIONS Dependent V a r i a b l e = C l a r i t y of C e l l Serum R 2 = 0.883 Standard E r r o r o f Y = 1.098 Independent Var i a b l e s C o e f f i c i e n t F prob Constant -21.39 Serum Y i e l d 0.103 0.000 Serum pH 7.033 0.000 Pulp Average V i s c o s i t y -0.571 0.000 Va r i e t y 1 ' -2.010 0.000 Time 1 -5.599 0.000 Time 2 -4.946 0.000 C u l t i v a r l x Maceration 1 1.580 0.000 C u l t i v a r l x Maceration 3 1.159 0.019 C u l t i v a r l x Speed 3 1.164 0.018 C u l t i v a r 2x Maceration 3 2.613 0.000 C u l t i v a r 2 x Time 1 -3.619 • 0.000 C u l t i v a r 2x Time 2 -2.988 0.000 C u l t i v a r 2x Speed 1 -2.230 0.000 C u l t i v a r 2x Speed 2 -1.497 0.003 Maceration 3 x Time 1 -1.401 0.004 Maceration 3 x Time 2 -1.599 0.001 Time 1 x Speed 1 6.926 0.000 Time 1 x Speed 2 5.988 0.000 Time 1 x Speed 3 4.284 0.000 Time 2 x Speed 1 6.015 0.000 Time 2 x Speed 2 5.159 0.000 Time 2 x Speed 3 3.838 0.000 Speed 1 x Serum Y i e l d -0.082 0.000 Speed 2 x Serum Y i e l d -0.074 0.000 Speed 3 x Serum Y i e l d -0.065 0.000 TABLE E-5 STEPWISE REGRESSION OF ALL PARAMETERS AND OBSERVATIONS WITH MACERATION 2 + 3 POOLED Dependent Variable = Y i e l d o f C e l l Serum R 2 = 0.955 Standard E r r o r of Y = 3.073 Independent Var i a b l e s C o e f f i c i e n t F Constant 91. ,55 ' — Pulp Average V i s c o s i t y -1. ,613 0. 000 Maceration 1 2. ,206 0. 001 Time 1 -14. ,76 0. 000 Time 2 -4. ,789 0. 000 Speed 1 -32. ,15 0. 000 Speed 2 -14. ,84 0. 000 Speed 3 -6. .384 0. 000 C u l t i v a r l x Time 1 3. .708 0. 002 C u l t i v a r l x Speed 1 10. .79 0. 000 C u l t i v a r l x Speed 2 5. .609 0. 000 C u l t i v a r 2x Time 1 3. .557 0. 002 Q a l t i v a r 2x Speed 1 5. .560 0. 000 C u l t i v a r 2x Speed 2 3. .932 0. 000 Maceration 1 x Speed 1 -12. .253 0. 000 Maceration 1 x Speed 2 -4. .062 0. 001 Maceration 2 x Speed 1 -2. .592 0. 008 Time 1 x Speed 1 -3. .795 0. 002 Time 1 x Speed 2 -5. .950 0. 000 Time 2 x Speed 2 -3, .218 0. 007 104. TABLE D-6 STEPWISE REGRESSION OF ALL PARAMETERS AND OBSERVATIONS WITH MACERATION 2 + 3 POOLED Dependent V a r i a b l e = C l a r i t y of C e l l Serum R 2 = 0.835 Standard E r r o r o f Y = 1.113 Independent Var i a b l e s C o e f f i c i e n t F p r o b Constant 8.817 — V a r i e t y 2 5.706 0.000 Maturity 1 -1.770 0.000 Time 1 -7.157 0.000 Time 2 -5.645 0.000 Speed 1 -8.942 0.000 Speed 2 -7.483 0.000 Speed 3 -5.691 0.000 C u l t i v a r l x Maceration 1 1.676 0.000 C u l t i v a r l x Speed 3 0.890 0.008 C u l t i v a r 2x Maceration 1 -1.738 ' 0.000 C u l t i v a r 2x Maceration 2 -1.827 0.000 C u l t i v a r 2x Time 1 -3.541 0.000 C u l t i v a r 2x Time 2 -2.568 0.000 C u l t i v a r 2x Speed 1 -2.011 0.000 C u l t i v a r 2x Speed 2 -1.303 0.001 Maturity 1 x Speed 1 1.481 0.003 Maturity 1 x Speed 2 1.157 0.016 Time 1 x Speed 1 7.766 0.000 Time 1 x Speed 2 6.441 0.000 Time 1 x Speed 3 5.207 0.000 Time 2 x Speed 1 6.062 0.000 Time 2 x Speed 2 4.889 0.000 Time 2 x Speed 3 3.765 0.000 105. APPENDIX E f TABLE E - l PPEDICTED YIELD OF CELT, SERUM FOR SIGNIFICANT PARAMETERS AT THREE MEAN PULP VISCOSITIES McINTOSH CULTIVAR (% by weight) V i s c o s i t y Time Maceration 1 Maceration 2 + 3 Pooled Maceration 4 Speed Speed Speed 1 2 3 4 1 2 3 4 1 2 3 4 1 37.6 55.7 68.6 75.0 45.0 57.6 66.4 72.8 47.6 52.0 66.4 72.8 Low 2 47.6 64.7 74.8 81.2 55.1 66.6 72.6 79.0 57.7 66.6 72.6 79.0 3 52.4 72.7 79.6 86.0 59.9 74.6 77.4 83.8 62.4 74.6 77.4 83.8 1 . 35.6 53.8 66.6 73.0 43.1 55.6 64.4 70.8 45.7 50.0 64.4 70.8 Medium 2 45.7 62.8 72.9 79.3 53.1 64.6 70.7 77.1 55.7 64.6 70.7 77.1 3 50.5 70.8 77.7 84.1 57.9 72.6 75.5 81.9 60.5 72.6 75.5 81.9 1 33.5 51.7 64.6 70.9 41.0 53.5 ' 62.3 68.7 43.6 47.9 62.3 68.7 High 2 43.6 60.7 70.8 77 .2 51.0 62.5 68.6 75.0 53.6 62.5 68.6 75.0 3 48.4 68.7 75.6 82.0 55.8 70.6 73.4 79.8 58.4 70.6 73.4 79.8 N o t e : D a t a was c a l c u l a t e d f o r a s i n g l e o b s e r v a t i o n . TABLE E-2 PREDICTED YIELD OF CELL SERUM FOR SIGNIFICANT PARAMETERS AT THREE MEAN PULP VISCOSITIES DELICIOUS CULTIVAR (% by weight) V i s c o s i t y Time Maceration 1 Maceration \ > + :• 3 Pooled Maceration 4 1 Speed 2 3 4 1 Speed 2 : 3 4 1 Speed 2 : 3 i \ 1 32. .2 53. .9 68. .4 74. 8 39. .6 55, .7 66. .2 72. .6 42. .2 55. .8 66. .2 72. .6 Low 2 42. .8 63. .0 74. •8 81. 2 49. .8 64. .9 72. .6 79. .0 52. .4 64. .9 72. .6 79. .0 3 47. •2 67. .1 83. .6 86. 0 54. ,6 72. .9 77. .4 83. .8 57. .2 72. .9 77. .4 83. .8 1 30. ,2 52. .0 66. .5 72. 9 37. .7 53. .8 . 64. 3 70. .7 40. .3 53. .8 64. .3 70. .7 Medium 2 40. .4 61. .1 72. .9 79. 3 47. .9 63. .0 70. .7 77. .1 50. .5 63. .0 70. .7 77. .1 3 45. .2 65. .2 81. .6 84. 1 52. .7 71. .0 75. .5 81. .9 55. .3 71. .0 75. .5 81. .9 1 28. .1 49. .9 64. .4 70. 8 35. .6 51. .7 62. .2 68. .6 38. .2 51. .7 62. .2 68. .6 High 2 38. .4 59. .0 70. .8 77. 2 45. ,8 60. .9 68. .6 75. •0 48. .4 60. .9 68. .6 75. .0 3 43. .1 63. .1 79. .5 82. 0 50. .6 68. .9 73. .4 79. ,8 53. .2 68. .9 73. ,4 79. .8 N o t e : D a t a was c a l c u l a t e d f o r a s i n g l e o b s e r v a t i o n . TABLE E-3 PREDICTED YIELD OF HTT.T. SERUM FOR SiaslITICANT PARAMETERS AT THREE MEAN PULP VISCOSITIES WINESAP CULTIVAR • (% by weight)  V i s c o s i t y Time Maceration 1 Maceration 2 + 3 Pooled Maceration 4 Speed Speed Speed 1 2 3 4 1 2 1 L \ 1 2 3 L 1 1 23. .1 46. .4 64. .9 71. ,2 30. .5 48, .3 62. .7 69. .0 ' 33. .1 48. .3 62. .7 69. .0 Low 2 36. .8 59. .1 74. .8 81. .2 44. .3 61. .0 72. .6 79. .0 46. .9 61. .0 72. .6 79. .0 3 41. .6 67. .1 79. .6 86. .0 49. .1 69. .0 77. .4 83. .8 51. .7 69. .0 77. .4 83. .8 1 21. .2 44, .5 62. .9 69. .3 28. .6 46. .3 60. .7 67. .1 31. .2 46. .3 60. .7 67. .1 Medium 2 34. .9 57. .2 72. .9 79. .3 42. .3 59. .0 70. ,7 77. ,1 44. .9 59. .0 70. .7 77. .1 3 39. .7 65. .2 77. .7 84. .1 47. .1 67. .0 75. .5 81. .9 49. .7 67. .0 75. .5 81. .9 1 19. ,0 42. .4 60. .8 67. ,2 26. .5 44. .2 58. ,6 65. ,0 29. .1 44. .2 58. .6 65. .0 High 2 32. .8 55. .1 70. ,8 77. .2 40. .2 56. .9 68. ,6 75. •0 42. .8 56. .9 68. .6 75. .0 3 37. .6 63. ,1 75. .6 82. .0 45. .0 64. .9 ' 73. .4 79. ,8 47. .6 64. .9 73. .4 79. .8 N o t e : D a t a was c a l c u l a t e d f o r a s i n g l e o b s e r v a t i o n . 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0099869/manifest

Comment

Related Items