Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Population variation in North American Menziesia (Ericaceae) Wells, Thomas Cameron 1992

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata


831-ubc_1992_spring_wells_thomas_cameron.pdf [ 3.95MB ]
JSON: 831-1.0098874.json
JSON-LD: 831-1.0098874-ld.json
RDF/XML (Pretty): 831-1.0098874-rdf.xml
RDF/JSON: 831-1.0098874-rdf.json
Turtle: 831-1.0098874-turtle.txt
N-Triples: 831-1.0098874-rdf-ntriples.txt
Original Record: 831-1.0098874-source.json
Full Text

Full Text

POPULATION VARIATION IN NORTH AMERICAN MENZIESIA  (ERICACEAE)  by THOMAS CAMERON WELLS B.Sc., The University of Guelph, 1983 M.Sc., The University of Western Ontario, 1986 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY  in THE FACULTY OF GRADUATE STUDIES (Department of Botany)  We accept this thesis as conforming to the required standard  THE UNIVERSITY OF BRITISH COLUMBIA February 1992  © Thomas Cameron Wells, 1992  In presenting this thesis in  partial fulfilment of the  requirements for an advanced  degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department  or  by  his  or  her  representatives.  It  is  understood  that  copying  or  publication of this thesis for financial gain shall not be allowed without my written permission.  Department of  Botany  The University of British Columbia Vancouver, Canada Date  DE-6 (2/88)  April 29, 1992  Abs tract  Menziesip,  a widespread genus of shrubs, occurs in  temperate montane regions of North Zmerica Japan  (8 species).  (2 species)  and  Although this disjunct distribution is  shared by numerous vascular plant genera,  few have been  examined biosystematically within and among the floristic regions.  In western North rnerica, N.  ferrupinea is a highly  variable species and apparently is related closely to Appalachian N. pilosa, based on flavonoid analyses. study,  In this  univariate and multivariate analyses of 22  morphological descriptors revealed discontinuous and clinal variation along west-east and north-south gradients in N. ferrupinea,  allowing recognition of two phases.  same procedures, uniform.  Using the  N. pilosa proved to be comparatively  Variation was partitioned largely within rather than  among populations, with morphological patterns spatially correlated on a regional scale. events and,  Past and present migrational  to a lesser degree, ecological variables have  contributed to clinal development.  Analyses also were made  using starch gel electrophoresis with 13 enzyme systems coding for 19 loci.  Isozyme variation resided predominantly within  rather than among populations, with lower than expected total genetic diversity.  Levels of allozyme variation within  populations were comparable to other xenogamous, species.  entomophilous  Populations situated near distributional extremes  ii  H HH-  0  0 It  HC  Cr  C) CU  U)  U)  ‘-0 CD CD  CU •  H-  CD  0-. I-  CU  U)  H-  II çt  Z  Ct  U)  Cr  Z 0  -  C) çt  Cr H-  U)  U)  ‘<  H  CD  C) Cr H  It CD  CD  t-  i  ‘-0 t\)  C  0-.  CU  U)  0  H  H  P’  I  0  cr  0-.  CU  Cr CD  ‘1 CD I—i  CD  CU  Cr  It  U) U)  CD CU  H-  i-c  H  I  CU  CU  Cr  HC)  —  CD  C)  CD  0  U) CD  i  C) 0  H  Cr  C)  çt H-  U)  H(JJ  0-. I—h  c-t  U)  0  (0  H-  t. CD  U)  CD  H-  C)  i 0  II :i  CD  W  CD U) CD  I  çt  0  ‘-0  It  U)  CU  r-h  H-  o  Ct  M-,  o  o  HCr H-  Q co  C)  h  CD  CD C) HrD  CD 0-.  Cr  CU  0  •  o  (0  H-  :—  <  ‘1  <1  CD  HU)  U)  CD  H-  It CD C)  t  U)  CD  H  0  U)  Cr  Ct  -  ‘<  H H  CU  HC)  (0  o H o  o  Ift  CD 0-.  U)  H-  (0  Cr  Cl) :i  CD  U)  HU)  H CD U)  0 C)  CD  çT  CD It <It CD 0 H I—  I—-.  <  HCr  Cr  CD  0-.  H-  HC)  Cr  CD  (0 CD  CU  U)  CD  Q.  U) C)  C)  :i  CD  Cr  0  U)  CD  Cr J  H  Ct H 0  CU 0. 4)j HU) Cr H-  I.<  0-.  Cr  H  c.Q  t5 CD  H-  CD  Cr ‘<  Ct H-  0.. CD Ii  H-  C)  çt H-  G) CD i CD  Cr  0-.  CU  CD  I-  CD  I-  CU  CD  çt  çt  t5 i  Z 0 i-  CU Cr  0.. H-  Ct  CT)  Ct  CU  C)  0-. H-  H-  -  0 tC <  H  0  It  0  0  CD Q  U)  t• CU  -  H-  M-  U) HU)  C)  H  CD  ))  D  N  0  C)  0  II fr  D)  cr H-  Q  HU)  CD 0-.  (•1  0  C) CD  Cr  I  CU çt  U)  CD 0-.  H  CD  CD  <  It CD C) H-  H  U)  CD  U)  C) H 0  Ct  0 U)  CD  ‘-‘  IP)  U) jH-  IH-  IN  Ij  kD  H-  Cr  CD  H  0-.-•  CU  c15 CU ‘-<  CD  CU  U)  Cl)  ‘ Cr U)  fr  CD  CU  CU  CU It  C  U)  0  ‘-  CD  )  Cr  It CD  CD  U)  CD  H-  CD C)  It  U)  U) CD  CD  )  ‘tj  Ci P)  U)  0  It  H  CU  II  o  H  1h  H-  rr H0  C)  CD  ii  H )  Cl)  CD h  H-  C) )  U)  It ‘1 CD  P)  C) H H  CD II  Q. CD  H )  (t h  C)  CD H-  Ct  t-  It  CU  CD  Cr  0  M  0 U) CD  -r  H-  U)  0  H-  (-t  H  ft  0  ft  ‘  CD U) Cr CD  H-  c-r  U)  CD  H(0  U)  CU  tT CD  CU c-iH 0  H H H-  It 0  C) 1-i Q U) U)  ‘<  0-.  C) CD  CD  M F—  H  (Q  H-  CD  CD  II  t3  HS  —  E  0  H-, F  CD  ‘-0 CD  Cr CD CU i-c Ii U) CD CD HCD CrCt  U)  CU  H  U) CU  Ij  It CD  0-. HU)  0..  CD CD  U)  H  CU  0  I-’-  c-iCU Cr  H-  <  CU  (Q  0-.  CU  U)  l-  C) i  J  H(0  CU 0-. HIt <It  CD  <  N  0  H U)  •  CD U)  çr  CD  ct  Z  H-  H  <  C) HCU H  It CD  U)  CD  U)  0  H-  Cr  H l))  It  It 0  CD  I-  J  H  CU  CD  Hçt  I-h  0  CD H U)  CD  H  (0  H  HCr CD  It  CD U)  Ii  H0  CU  H  CU  HC)  Cr  CD  (0 CD  Ci  U)  CU  H CD  CD  Cr  0-.  H Cr CD  H  x  CD  Table of Contents Page  Abstract List of Tables List of Figures Acknowledgements  ii vi ix xii  .  Chapter 1.1 1.2 1.3 1.4  1 Introduction Circumscription of Menziesia Taxonomic Treatments of Menziesia Phytogeographic Considerations Objectives of the Thesis -  Chapter 2 2.1 2.2  2.3  Patterns of Morphological Variation in Menziesia Introduction Materials and Methods 2.2.1 Herbarium Specimens and Species Distribution Mapping 2.2.2 Selection of OTUs for Study 2.2.3 Selection of Descriptors Leaf Characters Fruit Characters 2.2.4 Univariate Analysis of Descriptors 2.2.5 Multivariate Analysis of Group Structure. 2.2.6 Tests for Association between Morphological Variation and Geography 2.2.7 Comparison of Morphological Variation with Ecological Parameters 2.2.8 Analysis of Japanese Taxa and the Cladistic Analysis of Menziesia Results 2.3.1 Univariate Analyses of Character Variation 2.3.2 Cluster Analysis 2.3.3 Principal Components Analyses Within-group PCA of Menziesia ferruainea, sensu lato Within-group PCA of Menziesia pilosa 2.3.4 Discriminant Analysis 2.3.5 Association between Morphological Variation and Geography 2.3.6 Ecology and Patterns of Morphological Variation in the Western North American Menziesia Sites 2.3.7 Ecology and Patterns of Morphological Variation in the Appalachian Menziesia Sites  1 1 2 7 10  -  iv  14 14 14 14 15 16 17 18 18 .20 21 23 25 27 27 28 30 30 31 32 34 34  37  Page 2.3.8  2.4  Comparisons between North American and Japanese Menziesia Discussion 2.4.1 Taxonomic Considerations in North American Menziesia 2.4.2 Key, Descriptions, and Nomenclature of North American Menziesia 2.4.3 Factors Influencing Morphological Variation in North American Menziesia with Reference to the Japanese Species  Chapter 3 Isozyme Analyses of North American Menziesia. 3.1 Introduction 3.2 Materials and Methods 3.2.1 Selection of Populations and Material 3.2.2 Extraction and Electrophoresis of Enzymes 3.2.3 Analysis of Genetic Variation Results 3.3 3.3.1 Interpretation of Isozyme Banding Patterns 3.3.2 Genetic Variation Within Populations 3.3.3 Genetic Variation Among Populations 3.3.4 Estimates of Gene Flow in Menziesia 3.4 Discussion 3.4.1 Genetic Variation Within Populations 3.4.2 Genetic Variation Among Populations 3.4.3 Factors Influencing Isozyme Variation in North American Menziesia -  39 42 42 46  51 .  .102 102 102 102 104 107 109 109 111 114 116 117 117 121 128  Chapter 4 Concluding Remarks 4.1 Objectives Revisited 4.2 Further Avenues of Study  152 152 157  References  161  -  Appendix 1 Appendix 2 Appendix 3 A3.1 A3 .2 A3 .3 A3 .4  -  -  Summary of Voucher Specimens Examined  174  Summary of Ecological Parameters for the North American Menziesia Field Sites  187  Growing Menziesia Seedlings Using Sterile Culture 195 Surface Sterilization and Preparation of Seeds... .195 Preparation of Growth Media 196 Conditions Growth 196 Discussion 198 -  v  List of Tables  Table  Description  Page  2.1  Summary of Menziesia herbarium specimens used in mapping species distributions.  60  2.2  OTUs utilized in morphometric and ecological analyses of Menziesia.  64  2.3  Description of the twenty-two morphological characters used in the morphometric analyses of Menziesia.  68  2.4  Ecological descriptors used in the canonical correlation analyses of North American Menziesia.  70  2.5  Characters used in the cladistic analysis of Menziesia.  71  2.6  Character states of taxa used in the cladistic analysis of Menziesia.  73  2.7  Principal components analysis of North American Menziesia using 22 morphological descriptors: loadings, eigenvalues, and variance per component.  85  2.8  Principal components analysis of ferrupinea, sens. lat. using 12 morpho logical descriptors: loadings, eigenvalues, and variance per component.  87  Principal components analysis of Appalachian oilosa using 10 morphological descriptors: loadings, eigenvalues, and variance per component  87  2.10  Canonical correlation analysis of the relationship between morphological and ecological descriptors of OTUs from the western North American Menziesia field sites: loadings, intraset and interset communalities.  93  2.11  Canonical correlation analysis of the relationship between morphological and ecological descriptors of OTUs from the eastern North American Menziesia field sites: loadings, intraset and interset communalities.  97  2.9  .  .  vi  List of Tables  Table  Description  Page  2.12  Principal components analysis of Japanese Menziesia using 20 morphological descriptors: loadings, eigenvalues, and variance per component.  100  3.1  Collection sites and sample sizes of 34 populations of North American Menziesia sampled for isozyme analyses.  134  3.2  Electrode and gel buffers used to resolve 16 enzyme systems in North American Menziesia.  135  3.3  Summary of intrapopulational genetic variation in 34 populations of North American Menziesia: mean number of alleles per locus, proportion of polymorphic loci, observed and expected heterozygosities, mean fixation indices.  139  3.4  Fixation indices for all polymorphic loci in populations of North American Menziesia.  141  3.5  Allele frequencies summarized by geographic region for North American Menziesia.  143  3.6  Nei’s genetic diversity statistics for North American Menziesia taxa for each polymorphic , DST, 5 locus and pooled over all loci: HT, H GST.  145  3.7  Mean genetic identities and mean genetic distances among the three North American taxa of Menziesia.  147  3.8  Nei’s genetic identities and genetic distances depicting the relationship between the three North American taxa of Menziesia.  147  3.9  Gene flow (Nm) estimates from allele frequencies for the three taxa of North American Menziesia. Estimates are calculated by three different methods: Wright, Crow, and Slatkin.  150  vii  List of Tables  Table  Description  Page  3.10  Frequency of private alleles used to calculate gene flow among populations of North American Menziesia using Slatkin’s method.  150  3.11  Levels of intrapopulational genetic variation in North American Menziesia compared to average values summarized from other studies: mean number of alleles per locus; percentage of polymorphic loci; mean expected heterozygosity.  151  Al.1  Summary of lending institutions from which Menziesia specimens were obtained.  174  A1.2  Summary of voucher specimens examined in the study of North American Menziesia.  175  Al.3  Summary of Japanese Menziesia voucher specimens.  184  A2.l  Species association matrix for western North American Menziesia sites.  187  A2.2  Species association matrix for eastern North American Menziesia sites.  189  A2.3  Physical features of North American Menziesia field sites.  191  A2.4  Summary of soils found at the North American Menziesia field sites.  192  A2.5  Summary of climatic factors at the North American Menziesia field sites.  194  viii  List of Figures  Figure  Description  Page  2.1  Distribution of Menziesia ferrupinea, lat., in western North America.  sens.  61  2.2  Distribution of Menziesia pilosa in eastern North America.  62  2.3  Distribution of the common taxa of Japanese Menziesia based on a representative sample of herbarium specimens.  63  2.4  Sampling regions and collection sites of the western North American Menziesia specimens examined.  66  2.5  Sampling regions and collection sites of Menziesia specimens examined in eastern North America.  67  2.6  Box plots summarizing variation in 22 morphological descriptors of North American Menziesia.  74  2.7  Contour plots of descriptors exhibiting clinal variation in j. ferruainea, sens. lat., in western North America, superimposed on sampling localities.  80  2.8  Contour plots of descriptors exhibiting clinal variation in pilosa in eastern North America, superimposed on the sampling localities.  82  2.9  Summary dendrogram of a UPGMA cluster analysis of North American Menziesia OTUs based on morphological data.  83  2.10  Distribution of 238 OTUs of North American Menziesia within the first two axes of a principal components analysis based on 22 morphological descriptors.  84  2.11  Disposition of 150 OTUs of ferruainea, sens. lat., within the first two axes of a principal components analysis using 12 morphological descriptors.  86  .  .  ix  List of Figures  Figure  Description  Page  2.12  Disposition of 88 OTUs of M. pilosa within the first two axes of a principal components analysis using 10 morphological descriptors.  88  2.13  Distribution of 238 OTUs of North American Menziesia within the space of the first two canonical variates of a discriminant analysis based on 14 morphological descrip tors.  89  2.14  Gabriel plot defining intersite relatedness among the collection localities of ferrupinea, sens. lat., OTUs in western North America.  90  Gabriel plot defining intersite relatedness among the collection localities of pilosa OTUs in eastern North America.  91  2.16  Dendrogram of western North American Menziesia field sites based on a UPGMA cluster analysis of community types as defined by a Jaccard similarity matrix of species association.  92  2.17  Distribution of 101 OTUs of western North American M. ferrupinea, sens. lat., within the morphological and ecological domains of a canonical correlation analysis.  95  2.18  Dendrogram of eastern North American Menziesia field sites based on a UPGMA cluster analysis of community types as defined by a Jaccard similarity matrix of species association.  96  2.19  Distribution of 61 OTUs of Appalachian pilosa within the morphological and ecological domains of a canonical correlation analysis.  98  2.20  Distribution of 30 OTUs, representing the common species of Japanese Menziesia, within the first two axes of a principal components analysis based on 20 morphological descriptors.  99  .  2.15  .  .  x  List of Figures  Figure  Description  Page  2.21  Strict consensus tree obtained from 6 maximally parsimonious cladograms of Japanese and North American taxa of Menziesia.  101  2.22  One of the 6 cladograms of Menziesia taxa, similar to the strict consensus solution, illustrating the changes in character states needed to obtain the tree.  101  3.1  Representative illustrations of isozyme banding patterns observed in an electro phoretic study of North American Menziesia.  136  3.2  Dendrogram of North American Menziesia populations, grouped by geographic regions, based on a UPGMA cluster analysis of Nei’s genetic identities.  148  3.3  Dendrogram of populations of North American Menziesia based on a UPGMA cluster analysis of Nei’s genetic identities.  149  xi  Acknowledgements I would like to express my gratitude to my supervisor, Dr. Bruce Bohm, for giving me the opportunity and support to pursue my interests in studying variation in woody plants. I would also like to thank the members of my advisory committee: Drs. Gary Bradfield, Fred Ganders, Jack Maze, and Wilf Schofield for helpful input at various stages of the project. Post-graduate scholarships from the Natural Sciences and Engineering Research Council of Canada and the University of British Columbia, as well as teaching assistantships in the Department of Botany are gratefully acknowledged. Drs. Fred Ganders and Carl Douglas provided lab space for the electrophoretic and sterile culture work, respectively. Drs. Doug and Pam Soltis at Washington State University, Pullman also generously supplied lab space and helpful advice while Dr. Steve Novak deserves special thanks for teaching me the art of starch gel electrophoresis. A productive conversa tion with Dr. Randy Bayer at the University of Alberta, Edmonton led me to develop a protocol for the collection and freezing of Menziesia field samples needed for the isozyme Discussions with fellow graduate students, especially work. Stewart Schultz and Brian Compton, and of ficemates Drs. Bill Crins and Kadi Hauffe helped me to look at science and Menziesia in different and interesting ways. And of course, I cannot adequately express my apprecia tion to my wife, Muriel, for her love and encouragement; and to both of my families for their guidance and support.  xii  1  Chapter 1 Introduction  1.1 Circumscription of Menziesia  Menziesia Smith is a genus of erect or spreading deciduous shrubs that belongs to tribe Rhodoreae D. Don (subfamily Rhododendroideae Endi.) of the Ericaceae Family)  (Stevens 1971).  (Heath  Its general appearance provides  Menziesia with the local common names of “false azalea” or “fool’s huckleberry”, as it can be mistaken in some seasons for these other ericaceous shrubs.  Nevertheless,  it is a  distinct and perhaps relatively primitive member of the Rhodoreae according to a recent cladistic analysis of the tribe  (Kron and Judd 1990).  The genus is disjunctively  distributed, with eight species in Japan 1986)  and two species in North America  (Hatta and Tashiro  (Gleason 1952;  Hitchcock et al. 1959) Vegetatively, Menziesia is distinguished by its elliptical to ovate to obovate deciduous leaves with distinct subulate or strigose hairs on the lower midrib.  The  inflorescences are arranged in umbels or racemes with tetramerous or pentamerous urceolate to tubular-campanulate flowers that have superior ovaries and anthers dehiscing by short slits.  The fruits are dry septicidal capsules that  produce numerous small seeds. Menziesia grows in a variety of habitats including coastal or mountainous temperate mesophytic forests,  subalpine  2  forests,  and heath balds  and Tashiro 1986).  (Braun 1950; Daubenmire 1978;  In both Japan and North America,  Hatta  Menziesia  tends to occur in areas of high rainfall or where persistent fog or mist ensures a surplus water supply over the growing season.  Occasionally, Menziesia is a major component of the  shrubby understory community whereby it is an important contributor to the stabilization of slopes. Although it is sometimes grown horticulturally as an interesting ornamental shrub  (Rehder 1940; Kruckeberg 1982),  it is not generally  considered to be economically important. note ethnobotanically because a fungus, vaccinii  (Fuck.)  Woron.,  However,  it is of  Exobasidium sp. af fin.  that attacks its leaves and  inflorescences is eaten by various groups of coastal First Nations people in British Columbia and Alaska  (Compton 1991).  1.2 Taxonomic Treatments of Menziesia The genus Menziesia was first described by J.E. (1791)  Smith  from material collected along the coast of western  North America.  Today,  two species are generally recognized in  North America:  Menziesia pilosa  (Michx.)  Juss.  from the  Appalachians of southern Pennsylvania to northern Georgia (Gleason 1952)  and Menziesia ferruainea Smith from montane  western North America  (Hitchcock et al.  1959).  The two North  American species are considered to be similar to one another based on general observations al.  1984).  (Radford et al.  1968;  Bohm et  3  In western North America,  .  ferrupinea is highly  variable both within and among populations.  The recognition  of a less glandular and generally less pubescent phase, distinct from coastal j.  ferruainea,  led Asa Gray  describe a new species, Menziesia alabella Gray, Rocky Mountains.  Peck  (1941),  (1878) from the  in consideration of  intermediate specimens collected from the Cascades, Gray’s taxon to varietal rank, (Gray)  Peck.  to  reduced  ferruainea var. alabella  According to this alignment,  ferruainea var.  .  alabella was described in the Vascular Plants of the Pacific Northwest as having a range encompassing the Rockies from British Columbia and Alberta south to Montana,  Idaho, Wyoming,  eastern Washington and Oregon and down the Columbia River valley to Mt. Adams and Mt. Hood of the southern Cascades. Specimens from coastal Alaska and British Columbia south to northern California and inland to the northern Cascades were referred to as  .  ferruainea var.  ferruainea  1959; Hitchcock and Cronquist 1973).  (Hitchcock et al.  In preparation for the  Flora of the Queen Charlotte Islands these combinations were changed to subspecific rank  (Calder and Taylor 1956;  1968).  In an attempt to clarify the taxonomy of western North American Menziesia,  Hickman and Johnson  (1969)  conducted a  morphometric study and documented complex patterns of clinal variation,  expressed primarily as differences in several  pubescence characters and in leaf tip shape. observed,  however,  The patterns  could not be partitioned into discrete  taxonomic categories.  Rather,  Hickman and Johnson  4  hypothesized that the dines observed reflected migrational events as influenced by glacial history, past and present patterns of gene flow,  and the adaptation of populations to  their existing environments.  Nevertheless, Martin (1973),  in  an unpublished thesis comparing two widely separated populations from Mt.  Seymour in the Coast Range of British  Columbia and from Waterton Lakes National Park in southern Alberta,  found significant differences between the populations  over several morphological features shape, and stomatal density).  (pubescence,  leaf tip  Based on these data, Martin  again raised the possibility that taxonomic recognition was warranted for the Rocky Mountain phase. A study that compared eastern and western North American Menziesia utilized foliar flavonoids  (Bohm et al. 1984)  Menziesia ferrupinea was found to accumulate derivatives of kaempferol,  7-O-methylkaempferol, quercetin,  7-0-  methylquercetin, myricetin and gossypetin that occurred variously as a complex mixture of mono-, triglycosides,  di-,  and  some of which were acylated derivatives.  In  comparison, Appalachian N. pilosa had a simpler flavonoid profile lacking 7-0-methylated flavonols, gossypetin.  triglycosides, and  In addition the two species were further  distinguished by the presence of an unidentified flavanone in N.  ferrupinea and dihydromyricetin in N. pilosa.  profiles in N.  Flavonoid  ferrupinea were highly variable but not  sufficiently distinct from the coast to the Rockies to allow recognition of infraspecific taxa,  thereby supporting the  5  that a single species  conclusion of Hickman and Johnson  (1969)  exists in western North America.  Based on extensive reviews  of the flavonoid literature  (Bohin et al.  1984;  Bohrn 1987),  it  appears that North American Menziesia exhibits one of the highest levels of intrapopulational flavonoid variation ever observed in vascular plants and closely resembles the situation described in Phlox oilosa L.  it is in Japan that Menziesia reaches its  Nevertheless, greatest diversity. that of Ohwi  (Levy 1983).  The standard treatment of the genus is  (1965) who,  in his Flora of Japan,  recognized  four species and numerous taxa of intraspecific rank. Recently,  two new species were described based on  morphological and ecological considerations 1986).  (Tashiro and Hatta  Although a stable taxonomic treatment does not appear  to exist,  detailed work by Tashiro and Hatta supports the  recognition of eight Japanese species of Menziesia Tashiro 1986).  The species are readily divisible into two  groups according to the number of floral parts. group, .  which is pentamerous,  ciliicalvx Maxim.,  .  A second,  povozanensis M.  lasioohvlla Nakai, N. katsumatpe M.  vakushimensis M. particular,  tetramerous,  Kikuchi,  The first  is endemic to Japan and includes  Tashiro et Hatta, M. rnultiflora Maxim., Maxim.  (Hatta and  and N. oentandra  group consists of N. and N.  M. ourourea Maxim.,  Tashiro et Hatta.  Menziesia oentandra,  is common and widely distributed,  in  occurring from  the southern island of Kyushu north to Sakhalin Island and the southern Kuriles  (Ohwi 1965).  In contrast,  the tetramerous  6  species have more restricted distributions relative to their pentamerous counterparts.  They are morphologically distinct  from North American Menziesia which are also tetramerous. major difference between Tashiro and Hatta’s work, is the inclusion of  Ohwi, within  .  ciliicalvx,  .  sens.  multiflora and lat., by Ohwi  .  A  and that of  lasioohvlla  (1965).  Biologists generally acknowledge that variation is the raw material for evolution.  Nevertheless,  surprisingly few  widely distributed plants have been studied throughout their geographic range with a view to examining comprehensively the degree of variation present and the factors accounting for it. Some exemplary studies that employ a variety of investigative tools are represented in work done on Phlox L. Levin and Levy 1971; Levy 1983),  (Levin 1966;  the Chenooodium fremontii  complex (Crawford 1976; Crawford and Wilson 1977;  Wats.  Crawford and Mabry 1978; LaDuke and Crawford 1979), Clavtonia virainica L. complex (Doyle 1983, et al.  1984; Doyle and Doyle 1988).  morphological,  and the  1984 a, b; Doyle  In each case,  cytological and biochemical races were  discovered. It is not clear whether western North American Menziesia form one or two distinct biological entities. analysis of the complex patterns within  .  A thorough  ferruainea is  required to determine if observed variation justifies partitioning this taxon into discrete races or groups. Furthermore,  despite their similarity, no genetic analyses  exist to assess the relationship between the disjunct  I-t J  Q. CO  H-  C))  C))  CO H-  I-  CD  Cr  0  Cr  CO Cr  C))  Ct i-  C) 0  ‘ti  CO  Cr CD  C) 0  P.1  CD C))  N  CD  Cr  H-  CO  -.  tO  -  ‘.0  H  C))  5  H-  CO  C  Mi  CD  i-c  H-  H-  Cr  CD  Mi  0  CO  Cl  CD  C))  HI-h Hi CD l-  C)  Cl  H-  C  ,Q  CD  0  Cr  H H HC))  Cl  CD  P.1  C)  5  CD 1 H-  II Cr  0  1i  CD  CD CO Cr  Cl  C))  C).  CO H-  i-c  CO Cr CD  C))  CD  CD  Cr  CD  CO  C  CD C) C))  Cl  CD  0  C  CD IH  <  0  CD  CD  CD  <  Cr  C  —  P.)  HC)  i  S  CD  Cr  0  1  CD CO Ct CD  Cr  C)  Mi Ht-  C)) CO  C)) CO  0  Hi H  CD  Cr  CD  CD  CD Ct  HCO Cr  CD  rr  C))  rr  CO  CD  HCr H-  C  H-  Cr  H  H-  CO C) C) CD H-CD  ‘ij  Cr  I-  Z 0  CD  Cr  Cr  C))  Cr  CD  H  CO CO H-  0  ‘ti  HCO  Ct  0  0  Cl  P.  C))  Cr  C) H  •  —1 CD  ‘.0  H-  Mi  C))  CO  CD  HCt H-  H  0  CO  C))  I-  0  H  H-  C)  C))  Hi  0  H-  Mi Mi H-  <  Cl  H-  C))  Cr CO  CD  Cr  CO  3  lj CD CD  CO  C))  C))  C))  Cl)  Mi  0  C))  C)  CO Ct H  H-  0  H-  I-j  Q  C))  H 0  Hi  I-  C))  ‘  tI 0  çt CD  C) 0  IMi H-  CD  C  CO  h  ))  ‘t5 tI Cl) P.)  HCr CD  0  Cl  CD  Cr  H3  C) C))  C))  CO Ct  C))  CD  0  -  Mi H  0  Z  <  H  C) C))  h  CD  C))  H-  I-  CD ICr  C)  •  -J 1’)  ‘.0  I—’  0 0 Q.  H-  CO Cr  CD C)  Ct  CD  Icr  o  Z  Hi  0  I-  çt CD  Cl)  CD  t3  o  CO  tC))  o  Mi F-  H-  CO  5  C))  0  Ct c-r CD 3 Cr H-  CD  Cr  CD CD  Cr  CD  Cl  CD  i-  C)  CO  C)  CD  CO CO  h  C))  HC)  0  Cr H-  C  H-  Cr  CO  Cl  c-r CD  C)  CD  tI  CD  Cr  <  H-  h  C))  IH-  CD  H  —  Ct  CO  i-c C))  Cr  3  C) 0  H i  —  w  CD  H ‘.0  H-  <  Q  CD  —  CO  C))  h  0  Mi F-  0  Cr  I-  t’.)  i-h  0  Cr Cl)  H  C))  ti  I-  C)  H  C) C  CO  C)  <  Mi  0  HH HCD CO  Mi  C))  CD  o  1’J CD  ‘<  5 C))  ICD  CD  Cr  -  Cl  CD CD  Cl  3  H  -  —  tO  -  H ‘.0  C))  C))  I-  C)  —  h  0  U]  H ‘.0  H-  -.  I-h  C))  CD  CD  CD  H CX) UI ‘.0  I-’  <  C))  II  0  CD  0  0  H  C))  i-  0  Hi  Cl  CD  N  H-  CQ  CD C)  I-  CD  CD  tY  CD  <  C))  C))  CO H-  I  CD  CD 1) Cl) Cr  Cl  C))  C))  C)  IH-  CD  Cr  Cr H-C  t’i  C)) CO  ‘<  C))  CO  C))  t-  CD  CO Cr  C))  CD  CD CD  Cr  CD  tI  <  H H  C))  H-  C)  CD  tI  CO  CD  CO  HCD  HCr  Mi H-  Mi  C))  C)  H-  HCO Cr  1  0  H  Mi  CD  CO  0  F-  ()  C))  H ‘.0 CD (Ji  -<  CD  HMi Mi  ‘—3  -.  H ‘.0 CD W  CD 1 (Q  CD  C)  C  I-  -•  tO  -  ‘.0  H  C))  H-  CO  C  HN  —  CD  ‘-  CD  ti  CO  H-  CD  I3  CD  ICr J  0  < Ct  C)  C  ‘.—-  CO  H-  tJ  CD  Cr J  H-  rr CO  H  C))  CI  i-c  C))  H  C) C  CO  C)  <  Mi  0  II  C))  CD  CD  I-Q  CO  C  0  CD ‘  C  CD  C))  H-  N H-  I—h  0  0 CO CD  Ct  0  Cr  I-i  C)  HH  CO H-  CO  0  H-  ç-t  C  Cr I-j H1J  CO  H-  H-Cl  Q.  CD  I-i  CD  CO  0  CD CD  0  a)  0  F-’•  Ø  ri-  CD  I-’  W  0 0  I-’-  0  1-  (  < C1 0 (Q CD  •  S  II  CO C)) II ‘.<  CO  C) CD  CD  CD  0  H-  Cr  0  Hi  0  CO  CD  Cr C Q.  CO  Mi  CD  0 C tI  Cr H-  C))  CD  CO Cf  <  0 CO  H-  CD  H-  Ct  C))  frj  C))  ‘  0  C)  •  CO  ‘ti CD C) HCD  Co  CD  CO  CD  ‘cj C))  C))  C  C) CD  Cr  CD  II  C))  HC))  N H-  CO CD  CD  C))  C))  C  Cl  3  C))  HC) C))  -  CD  c-r  t-  0  Z  i-c  Q  CO  H-  Cr  M  0  (  H-  Cl  Cr C))  CD ‘ CO  Q.  C  Cr Cr CD i-  CD  C))  CD  <  CD  H-  C)  C))  0  rr  C))  C) C))  H-  CD i-c  5  Cr  i-c  0  CD  Cr  CD  CD  CD Cr  ti  H-  CO  3  0  H-  C)) Cr  CD H  ii  CD  Cr  CD  CO CO  CD  Cl II  C)) Q.  CD  <  :•  C))  HCD CO  Cl  C  Cr  CO  0  C))  CD  CO  C)  C)  H-  0  :i  0  C))  Cr  C))  ‘tI  H  C))  CD  <  I-j HCI Cr H-  C)  CO  Cl CD  CD  Cr  Q.  0  CD  <  H-  Cl  CD  5  C))  ><  CD  CD CD  CD  <  C))  H-  N H-  3  :  CD CO CD  C)) ‘ti C))  Ci  cT  Cr  t-  C)  CD  C)) ‘ti  Cr  H-  CO  Q. 0 CD  i-.  0  I-  C))  N HCD CO H-  CD  ()  CO  CD  H-  ti CD C)  CO  C))  HC)  i-c  CD  Ct  Z 0  CD  U) Cr  CD  Cl  C))  H-  C)  C)  C)) H C))  tI  8  Similarly,  little attention has been placed on disjunctions  between eastern and western North America, with a notable exception of Fernald’s comparison of the vascular boreal floras  (Fernald 1925).  The disjunction of the temperate floras of eastern Asia and North America is thought to reflect largely changes in climate and geography since the Tertiary, evolution within the floras themselves the Eocene to mid-Miocene present),  coupled with  (Tiffney l985a).  From  (55-13 million years before  floras of eastern Asia and North America were  continuously linked via the Bering and North Atlantic land bridges  (Tiffney 1985 a,b)  .  It is likely that temperate  genera including Menziesia became widely established in eastern Asia and North America at this time 1967; Wolfe 1969, Miocene Epochs  1972,  1981,  1985)  (38-5 my b.p.),  .  (Wolfe and Leopold  During the Oligocene to  the Rocky Mountains rose,  creating an increasingly arid midcontinental region in North America. my b.p.)  A simultaneous cooling trend in the late Miocene  (13  led to the southward migration of the temperate flora  in North America  (Wolfe and Leopold 1967; Wolfe 1987a,b).  A  split between west coast and eastern temperate floras resulted,  which could account for the disjunct distribution of  Menziesia in North America. my b.p.),  Later,  during the Pliocene  the Sierra-Cascade axis uplifted,  (5-2  drying the region  between the Cascades and Rockies thereby likely contributing to the separation of coastal and interior populations of i. ferrupinea.  9  Of equally dramatic proportions, however, were the Pleistocene glaciation events  (1.9-0.01 my b.p.), where  recurring advances of ice covered most of Canada and the northern parts of the contiguous United States  (Prest 1984).  The distribution of Menziesia in North America was undoubtedly altered during this period and,  in the west,  the genus may  have been limited to refugia in the unglaciated regions of central Alaska and below the glacial boundary of southern Alberta,  Washington and Montana.  The effects of glaciation  may have been less pronounced in the Appalachians where the ice sheets advanced only as far as northern Pennsylvania (Mickelson et al.  Temperate elements were thus able to  1983).  retreat further south unimpeded in the Appalachians where they remained at lower elevations during glacial maxima 1983)  .  (Watts  Menziesia tilosa is currently distributed south of the  maximum glacial boundary. glaciated,  Although parts of Japan were also  there apparently was no period during which the  temperate flora was eliminated (Maekawa 1974). south and altitudinal oscillations,  Despite north-  a temperate flora was  probably maintained over the greater part of Japan allowing continuous survival of similar floral elements that date from the Eocene to the present. Unfortunately,  little biosystematic work has been done on  genera that exhibit North American and east Asiatic disjunct distributions.  The few cases to date represent a number of  scenarios.  Some genera such as Bovkinia Nutt.  (Gornall and  Bohm 1985),  and Acer L.  (Chang and  section Palmatum Ogata  10  Giannasi 1991)  exhibit close affinities between the Asian and  North American species.  In Tiarella L.  (=Cladotharnnus Bong.)  and Elliotia Muhl.  all the species are very distinct. section Aaastache  (Soltis and Bohin 1984) (Bohxn et al.  In Aaastache Clayton  (Lint and Epling 1945; Vogelmann 1984;  Vogelmann and Gastony 1987), Liauidambar L. 1983;  Hoey and Parks 1991),  Santamour 1983;  1978),  Parks et al.  (He and Santamour  and Liriodendron L. 1983;  (He and  Parks and Wendel 1990),  alternative interpretations of the relationships between the Asian and North American taxa arise depending on whether morphological or biochemical data are considered. has stated that some genera, Raf.  and Stvrax L.,  Wood  notably Gaultheria L.,  (1972)  Osmorhiza  have species occurring in eastern North  America that are more similar morphologically to their eastern Asian counterparts than they are to their geographically closer western North American relatives.  Such findings stress  the need for further examination of genera exibiting this pattern of disjunction.  1.4 Objectives of the Thesis Because of its biogeographical distribution and relatively small number of species, Menziesia is a genus well suited for intensive studies that consider the evolution of continental disjuncts and the partitioning of variation in shrubby plants.  For logistical reasons this study focused  primarily on the North American members of the genus.  11  The primary goal was to determine the degree of intrapopulational and interpopulational variation present in Appalachian  .  oilosa and western N.  ferruainea,  sens.  lat.  This involved both detailed examination of morphological variation  (Chapter 2)  and isozyme variation analyzed among 34  populations of North American Menziesia (Chapter 3). these approaches,  several questions were addressed:  With  1. Are  there discrete patterns of variation in western North American Menziesia that warrant taxonomic recognition?  If so, what  criteria apply and at what taxonomic level is recognition valid?  2. How similar are the western and eastern North  American species of Menziesia to one another morphologically and ecologically,  and how much izozyme divergence has taken  place between these areas?  Achievement of this objective will  aid in understanding how Menziesia has evolved in North America and the degree to which factors such as geographic isolation, glaciation and habitat preference have influenced the shaping of past and present patterns of gene flow.  ...  Can  clinal variation in morphology be correlated with current environmental factors  (Chapter 2)?  .  Can allele frequencies  be used to estimate levels of gene flow among populations (Chapter 3)?  This thesis then complements and expands on the  current body of knowledge of North American Menziesia as circumscribed by the work of Hickman and Johnson Bohm et al.  (1969)  and  (1984)  Despite the limited availability of Japanese material for the current study,  it was possible to compare the Japanese and  C)  MCT)  h  Cr  13  2)  Cf  0  ti  S  H-  13 I-Q  h  CD  CD  C)  T))  CD  Cl) c-i  Cl)  C) 0  X  CD  CD  Cr  CL HCD CD  Cl) Cr  CL  CD  CD c-f 2) HH  S  -  —  Q C)  D  H  1 H-  2)  2)  H  CD  )  CD  CD CD  Cr  2) Cf CD CL  H H H-  0  ti  I  CL  H-  M Cr CD i  0  -  < CD CL  H H-  Q  0  H  ) ICD  Cl)  Cf  C)  CD  1•  Cl)  H-,  0  Cl) Cr  0  S  Cl) —  ) t-  CD  <  Cf  C) CD  CD  H-  CL  ICD 2) Cl) CD  C)  H3  CD  2)  Q.  2)  >  CL  ci  C) CD 0 2)  CL  2)  CD CD  CD H CD  ti 0  -.  CD  N  IH-  C)  CL  CD  Cr  2)  H  CD  ti  CD  2)  CD  CD  H -.o -J D  •  H  2)  CD Cf  5  -  ‘1  0  Ct  CD  H-  HHCD  H  0  Cr  HCD Cl)  ‘tS 2) ti  CD Cl) CD  CD  C)  -3  •  Cl)  H-  C)  fr H-  5  2)  -.  D  —.1  H  0  M  j  < 13  CD  Cf  0) .O  —  c-f  <  H ‘0  Cr  C) 0 L  CL  2)  C)  5  iH-  $)  Cl) H-  CD  H-  1  C)  H-  Ct  CD  CD  (Q  0  -  H-  CD  CD  5  N  13  CD  CD 0  H-  0  Q  Cl) CD  )  ti CD  Cf  C)  Cr  Cl)  C)  H-  CD  Ci  CD  Cf H0  2)  H  0  H  0  H-CD CD Cl) CD  Qj  Cl) Cr  CD 0  H-CD  CD  Z  HH  t3  M  0  Cr  J CD  CD  -Q  —  Cl)  0  I-C  )  -  •  HCr Cl)  2)  Ci I-T  2) H  C)  0  LQ H-  H  C) 0  CD  CL  0)  Cl)  5  Cl) Cr CD  <  cn  (Q  H O CD  c-i  CD  <  CD  0 CL  0  C)  -  CD  H-  X ) 5  CD  0)  2)  Cf  —J C) CD  ‘<  Cr CD H  5  H-  0)  H -D  H.  CD  <  fCD  H-CD  CD  X  0  CD  1  I-  2)  CL  0)  C)  I-i H-  S  0)  —  2) H Cl)  2)  ><  H-  Z  CD  0)  Cr  <  ‘t5 CD  Q  3  0 0 Q  2)  M-,  2) H Cl)  )  0  HCD Cl)  C Q-  CD  C)  Cl)  Cf  r-r  Cl)  -  Cf  Cf f T)) Cl)  C) 0  H  2)  CD  CD  1  Cl)  H-  o  c-i H-  H-  2)  <  CD  5  N  o  HCl)  CD ti 2) H  CD  CD  Z  CD CD  CD  <  2)  CD ti CD  Ci  Cr CD CL  2)  H-  H H  0  I tJ  C) Cf  H-  H13  Cf  <  CD H-  I  CD  <  CL  CL  Cl CD  CD CD  C)  5  Cl)  HCD  H  Cf HC)  Cl) CD  ci  ti ti  Cl)  H-CD  -  W  —  CQ CD  Q.  -  )  Cf CD I-  2)  C)  —  HT))  N HCD  X  CD  I-h  0  Cl)  0  H 2) Cr H-  0  0  H  0  H3 Q  0  c-r H-  H-  ) Ic-r  CD  Cr  0  H0  Cr  5  2)  I  0  M  H-  CD  I-c  HCL CD Cl)  -  CL  I CD H 0) rr CD  <  Cl) CD H  C) H 0  H-  0  0  ‘1  (Q  Cl)  l-  0  CD  CL  2)  C)  CD  CL  T)) Cl) Cf  CD  Cr  h  CD  0  Cl)  Cl)  N  C) 2)  CD tH-  5  c-f  ti  0  I-h  0  cn HCl)  <  ) H  2)  CD  -< 5  0  HCl)  CD  Cr  -  <  H H  2)  ‘‘1  H-  HCl)  •  Cl)  r  C)  i  Li.  CL  Cl) H21 i  I-  CD  Cl) Cf  CD  2-)  2)  $)  C)  iH-  Cl)  Ci  0  Z  Cl)  13  0 13  0  5  CU Cr H-  0  H3 M  C)  c-f H-  2)  5  CD  c-f  Cl)  <  0  H-  M-  0  <  0 CL  CL  HCr CD  5  H H-  k<  H  Cf  CD  ii I-’  C)  CD  Cr  0  Cf  13  CD  CL CL  CU  Cl  2)  Cl)  CD 3  L  CD  Cf  0 M-  <  CL  Cf  Cl)  Cl) ‘1  Ct  1  I-h  CL  l-j  2)  :  0  Cr  2)  <  CD  Cr  Cr Cl)  H-  0  c-f  0  5  HCl)  •  X 2)  2)  Ct  CD  CD Cl)  c-i  0  2)  Cl)  H-  Cl)  0  Cr H-  2)  CD H  -  CD  Cf  ‘-Q  H-  H-  CD  Q.  <  Cl)  CD  )  CD  13  Cr  I—,,  0  <  ti  Cl) Cf C)  5  CT)  I-C Cr  21  ‘1  CD  3  c-i  C) 0  CD Cl) CD  2)  2)  C-i  H-  CD  Cr  HCi  $)  X  Ci 2)  2) 3  13  Cr J  CD Cl)  0  CD  Cr  2) ‘-C CD  5  C) 0  Q.  0)  H ‘< N CD  2)  2)  0  Cr  Cr  ti  Cr I-C H-  C) 0  CL  CU  5  Cf  CD  2)  Cr Cf  Cr  Cl)  1  I-h H-  CD  Cf  Cr Cl)  CD  ‘1 H-CD Cl) ()  t-  Ct)  5  H-CD  ‘-<  2)  H0  Cf  H  0  <  CD  CD  Cf  i,  Q  (Q  H-  CL  0)  1 CD ICl) Cr  CD  Cr  Cr  CT)  0  Cr  I-  t”i  Cl)  H-  .  (Q  H-  CD  CL  2) Cf CD I-j  Cr CD  ci C)  CL  C) 0  2) Cl)  H-  N H-  M  0  CD Cl)  C) H-  rj CD  CD  Cr  2)  <  Ct  CD  H  2) H  C)  Z  H-  CD  <  C H-  CD  2)  HH Cl)  2)  CD Cr  Cf 2)  2)  Q  H  C) 2)  H-  0 (Q  H  0  ‘t5  I-i  S  0  0  CD HCD  2) H  2)  C)  Ct H-  CD  H pi CL H  Cl)  CD  CD  c-i  0  CD I-j Cl)  CD  5  3  C) 2)  H-  CD  J’  Cr  Z 0  H  CD ‘-0  H  Ct  CF  0 0 ci  i ci  Dl  “<  H  CD  Dl i-i  CD  H  Ct  CO  CO  CD  ci CO  CD  <  Cl) Cr  CD  5  H-  HCr  Cl)  i-c  CD  0  <  HCl)  5  N  C)  ‘Ci  C)  1  0  i H-  CD  CO  Di  M-,  0  Ct  HC)  Cl)  H  0  Cr  CD  M  I-h  H-  CC)  H-  C)  0  Ct i-  CO  C)  C) H’  0  S  ‘<  0  Ct  CD  <  H-  Ct  Di H’ H  CD H’  Dl  H-  I—i  H0  Cr  Dl  Di ‘1 H-  <  HC)  ,-t  CD  to CD  0  Cl)  <  Di  0  Ct  i  0  CO  CD  CD  < CD  Di  —  ‘-0  H’  Cr Ct  Di Ct H-  ‘<  H  Q.  Di  ci  C1 IDl  Cr  —  •  CT)  i:  •  CD II CO  —  Di  ‘  C)  H’  Di  CD  0  Ct  0  Di -c HCO  ‘ti  5  0  C)  H  •  CO  Q  CD Cr  ti  H-  HCt  I-h  0  CO  H’  H CD < CD  H tQ J’  H-C  Ct  Di  H  ‘  ‘ti 0  0  Dl  ‘CI HC)  to  Cl)  H-  —  -  Di  C_Il  CD  -0  H  H  Dl Di  CI)  Q.  Di  Cr  C)  CO  CO  5  Di  C) 0  to  H-  Ct  H-  CD  i’  ti  to  H-  ci  i-c H-  5  Di  —  Cl)  CD Cl)  H-  ci  o o  I-  o  <  IHC)  ‘  CO  o  II  Dl  J H-  CD  Cl)  CD  H’  to CD 0 to  I-h  CD  5  Cl)  CD  Di  ci  H’  H-  -  CD CD  I-  •  CO  H’ H-  5  CD  Ct  Dl  I-c  (-r  Cr  CD  CO  5  0  Di  H0  CD CD  Cr  ‘Z  Cr  H-  P1  Di IHDl  <  Ct  H-  1 t:  Di  Q.  Cl) ti  c-’-  CO  ‘-<  CO  to  H-  I CD CD ci  b  HCr CO  M-  o  CO  CO  CD  H’  l I-c  to  CD  I-  H  5  H  H  J  0  CD H-  i  Di  H-  C)  Di  H  Dl  ti ti  ci  Di  H’  I—’ ‘-0  H’  Di  Ct  CD  Di  CO Ct h-  5  CD  CD  < Di  H-  •  H’  Di  Ct  CD  CD  H’  I--c  CD  CD  I-  -•  CD  CD  I—’ ‘-0  •  H  Di  Cr  CD  5  H-  H-  IC)  ID) IC)  1<  -  H’ ‘0 CD (D  -  —1  (D  H ‘-0  •  H’  CO Dl  Di ii  CD  X 5  ICO  I  IH ii  I  CD  Ct  ci Di  0  Ct  ci  CD  H-  Di  CD  Di  i—c  CD  to CD  ‘<  CO  ci  CD  CI  i-c  HCO Ct  ci  H-,  0  CO  CD  HN  0  H’  C) 0  CD  I-  Di  II  Q  CO  çt  CD  -i  0  M  M-  0  CO Cr 0 tj -ç  I-  Q CD  CD  rt  Ct  c  Cl)  CD  Ct  to  0  5  •  CO  CD  rt  H  CO  CD  CO  0  •  I—i CO  —  •  Cr  H-  —  < 0  —  <  Di  I-  0  CO  0 C) 0  Di  0  çt  -.  CO CD C)  0 H’  ‘-0  H-,  CD  Cr  Di  H-  S  ci 0  CD  çt  0  CD  <  Cr  CD  CO  C) Di  CD  13  CO  CD  H Ct H-  Q  C)  c-t  Dl  H  5  Dl  I-h  0  CO  CD  5  CD  H W  14  Chapter 2 Patterns of Morphological Variation in Menziesia  2.1 Introduction  This chapter examines intrapopulational and interpopulational morphological variation in North American Menziesia.  Since Menziesia is generally well represented in  herbarium collections, detailed study of its morphology throughout its range was possible.  Furthermore,  information  from herbarium labels was used to generate distributional maps of the genus in North America. however,  Most of the material examined,  came from population sampling carried out during  field seasons of 1977-1990.  This work permitted an  examination of variation within and among populations and provided ecological data to be used to test the relationship between morphological variation patterns and environmental and geographical factors.  A cladistic analysis, which explores  the relationships between the North American and Japanese species of Menziesia based on morphology,  is also presented.  2.2 Materials and Methods 2.2.1 Herbarium Specimens and Species Distribution Mapping  Herbarium specimens of Menziesia were obtained from 29 major and regional herbaria located in North America as well as from three Japanese herbaria  (Appendix 1.1).  Over 1800  North American specimens and 164 specimens of Japanese Menziesia were examined in the course of the study  (Table  S  ci  H  :-  CD  t’)  0  ci  H  CD  CD  C))  CD  ci  Ct  C))  H 0 C)  [-J  CD  H  C))  I-]  -  Co  CD  ‘-3  0  H-  Cr  S  o  H-  S  o o  f-3  >‘  C))  H  H t  C))  o  H-  Ct  CD ‘-C  ‘-  o  C))  ci  CD  S  CD ‘-C  Ct  —  Ct  C))  H  ‘t5  H  C))  ci  H-  H  ci  H  Co  ci  H  Cl)  Mi H  (y-  Ct  Cr  ci  CD  C)  CD  -  HC)  ‘—s  5  Cr  ‘-C  0  (-h) 5  II Q  Mi  CD  C))  CD  i-  CD  Co  H  ci  H  H  ci  H  Co  C))  Ct  C))  C))  Hi  a  Co •  H‘-Q  I-iJ  -  C))  Co  Cr  k<  H-  H-  H-  N  Mi  0  HZ  C))  H-  ci  C))  Co Ct  0 C))  C)  • C) •  H-  r  C))  Ct  j  U)  ci  C)) 1 HCD  <  CD  C))  C))  ci CD  H  C)  H-  C))  Ct  H-  Co  Cl  o o  C)J  o  o  I-Q  H-  C))  Co  ci  0  Ct  C) H  0  C)  C))  H  ‘1  CD  Ct  CD  CD  Co CD  ci  0  Ct  :-  tQ  ‘1 0  I-  CD  Ct  Mi  0  rr  0 Co  5  0  (1 J  CQ  H-  Co  o  D)  H  CD  Co  CD  HCt  Co  CD  :-  Ct  CD C))  ci  (Q ‘-C  H-  çt  cu  Co  CD  H-  N  CD  CD Cl)  CD  çr  H-  •  Co  C)  5—  b..) •  CD  H-  u-I  P)  Co  C))  Co  H-  ci  Ct  Co  H Co  Cr  :i  H-  ci  CD  c  Ct  H-  ‘-Q  H-  H)  0  0  Ct 1.1.  (D  C)  (D  Cl)  1<  Q  Cl)  I•  0  H-,  a  I-  HO  S  cu’  Co  C)  Co H-  C))  CD  ‘—3  ci  CD  ct  Co CD  ‘ti I-C CD  C)) I-C CD  Co  5  CD C) H-  CD  CD  ‘ti  O  <  -  •  Hi  0 I-C  j  —  H-  CD  CD  Co  CD  C))  ti  C 4 CU  I-h  0  Co  HCD  C)  CD  Co  0  5 5  0  C)  CD  Cr  I-  0  Mi  Co  C))  ‘-C  H  Co  C))  tO • to  ci  C))  • H  s)  •  Co  c_Q  H-  ‘1  —  H-  HCD CO  N  CD  HCU  CI) C)  H  ‘ti ‘ti C))  ci  C))  C))  HC)  CD  5  Cl) H  H-  0  Ct  0  5  C))  ci  Cr (D  H-  S  H H-  CD  Ct  CD  ‘-Q H-  ‘-C  CD  CD  0  CD  C)-’ H-  Ct  0 t  CD ‘-C CD  • W  Mi  CD Co  (Q  ‘1 C))  CD ‘1 CU H  Q CD  H  o  Co -  0  Cr  CD  H  HH C))  C))  <  C))  H  C)-)  H-  I-C  CD  Ct  C))  Co  CD  C))  ti  C  C)-’  Co  CD  CD Co  (t  0  Cl-  Z  I-  CD  Co Ct  CD  I-  0  Mi  Co  S  C)) ‘ti  H0  çt  ti  H-  ‘-C  Ct  HCo  •  LO CD ‘—0  H  Co  H  H  CD  -•  CD  CD  ‘-C)  H  I-C  H-  C)  Co  j  Q  C))  CD  C)  H  H-  CD CD  H .0  H  C))  0  H-  Ct  C))  0  C))  0  F-3  C)) I  C)) ci  Co  ci  C))  CD C)  Co  S  Cr  (Q C)) N CD  5  0  Mi M  CD  HCr  Co  CD  C)) C)  I-C  0  CD  ‘ti CD  Co  CD  Ct  Mi  0  O’,O  U]  ‘-0  CD H  Ct  S  C))  H-  X  0  Mi  Co ‘ti I--C  CD  Ct  C)) ‘ti  I’  Co  0 M ci H-  C) 0  CD  ci  Cr  Q H-  H 0  CD CD ‘--C  CD  H  C))  ci  CD  H  H  C))  (-t  CD  S  C))  HC)  ‘ti  C))  I--C  (Q  o o  Cr  C) H-  ‘-  S  II  tQ  ‘ti ‘-C  H  H-  ci  Cr  CD  Mi Mi H C) H-  Co  c:  Co  CQ  H-  ‘ti  5  C))  Cr  C)  I-C  U]  c  H  0  Ct  CD I-C  H  H  <  Cl)  H (I)  CD  (Q  C))  ‘ti C) C)  Co  HC)  CU  -  LQ  CD h Co  CD Co  ç-t  C) HCU  0  Co Co  I-C  CD  Cl-  ‘  5  C) 0  —  5  CD  çt  Co  k<  Co  ci  C))  ci CD  ct  H  Cr  CI)  H  CD  Cr  C  H-  H-  5  I--C  CD  Cr  CD  ci  ti ‘-<  Co  CD  C) H-  CD  ‘ti  C)  CD C))  I-h  0  H0  Cr  ‘—C  H-  çt  Co  H-  ci  CD  çt  S  C)j  0  Cr  ci  CD  Co  Co  C)-’  0  H  çt  S C))  0  Mi  H  CD  Co H Cr  CD  ‘—3  C))  c1  ci C))  CT]  ‘--C H  C))  0  W  C)  tO  0  H  CD ‘--C Co  <  —  CD  Co  C))  C))  çt  Q C))  >  I:-’  ‘-iJ  Lii  II  H-  C)) H  C)  o  H  Mi  o  C  H-  Ct  0 ‘--C  Co  ci  C))  H  C))  HCD  ‘--C  H  Q  ‘--C  k<  Co  C))  CD  CD Cl-  ct  C)  CD  I—’  H  C)  0  H  S  C))  0  Ct  H  ci  I--C CD  CD  Cl  CD  Co  C))  H 0  Ct  C))  0 ‘--C  Mi  H  H  CD  H  C))  S  H Ii  ‘--C  C))  ‘—-C  CD  H  H  I—n  16  Appalachians. extremities  Populations situated at or near the range  (eg. HUN,  TET, WBR,  LWS) were of special interest.  Since most sites contained large numbers of Menziesia bushes, OTUs were selected with the aid of a random numbers table along transects,  usually near trails or logging roads.  Herbarium specimens in good condition were chosen to represent areas not covered by the field sampling.  Of the 238  individuals used for the morphometric analyses of North American Menziesia, east)  160 were randomly sampled (99 west/61  and 78 were herbarium specimens  (57 west/27 east).  To facilitate the statistical analyses of variation, were assigned to regions defined by physiographic, and ecological factors  (Figs.  2.4-2.5; Table 2.2).  OTUs  climatic, These  regions were similar to those used in earlier studies of Menziesia  (Hickman and Johnson 1969; Bohm et al.  1984),  but  differed by ignoring political boundaries. Material of Japanese Menziesia came entirely from herbarium specimens.  Unfortunately,  only 30 specimens of the  common taxa were sufficiently mature to allow their inclusion in the morphometric analyses  (Table 2.2).  2.2.3 Selection of Descriptors  Twenty-two characters were chosen to describe morphological variation in Menziesia  (Table 2.3).  Because  leaf expansion in Menziesia is usually not complete until flowering has ended,  for consistency,  only from mature fruiting specimens.  measurements were made This posed no major  CD  h  CD  CD  H  Cf CD ‘-C  tQ Cr  CU i  Cl  Cf  -  Hcr  U)  Cl CD  ‘< ‘ci CD  0 ‘-C  U)  CD  H  CD  H-,  0  U)  C) CD  C) CD  Cr  CD  U) H-  C)  ‘<  tI CD  U)  CD  i  CU  ) H  U) 0  C 0  Cl  CU  i  U)  CU C) Cr CD  U)  CD  I-  CD C) H-  U)  IC))  i) —-  CU  C)  CD  C)  C) CD  U)  CD  lCD  Ci  -  IN  H-i  ‘ci  C)  CU  lCD  CU  1i  H-  0  I-C  CD  b’  tQ CD  II  H C))  C))  H-  0  0  H-  C)) c-f  H-  C))  <  Li  H-  H CD  0 M  CU  1-C  C) Ct  CD  U) C)  C)  CU  1—h  H  Ct  I-  ti 0  H-  CD  Cr  1  CD  Cf  C) CU  H-  I-’-  CD  0  U)  H-  U) H-  <  U) ti CD C)  (  H-  HU)  H-  <  Cr H-  tQ  IH  C) H CD CU  HU)  Ø  H-  CD  c-v  H-  Cr U)  CD  CD  X  CD  Cr  U)  CD C))  CD  H-  ‘—a  II CD  O  ‘D  H  —  ‘ci  -  1<  Cl  Cr  U)  U)  H-  Cr  H  U) H-  HCD  N  H CD  C) CU  IQ Cf  F  H-  IH-  CD  CU  U)  U) CD  ‘-<  CU H  C))  cr  CD  Q  U) CD  U)  H  C)) H  H-  U) CD Q  c1  I-  C))  I-C  HCD Cl  CD  Cl  1-h ‘-C 0  I-C  CD  C)) CQ CD U)  II  CD  C  0 ‘-3  C))  CD  ‘Ci CD ‘-C  Cl  CD  1-C  Ct  Cl  C))  Cl  CD CD  II  -3  •  CU ‘Ci CD  U)  ‘<  C) C)) H H  1-C H-  U)  CU H  <  U)  Q.  C))  CD  Ij I.Q  H  CD  t  0  Cr  CD Q  Q.  Cr CD  <  CD  çt  H-  CD C))  CD  I-C  CD  CD U)  <  CD C))  F-  Cr  0 0  I U)  Cr  0  U)  C)) H  H-  II  CD  CD Cr  I-C  CD  Ct  CU  H-  CU  CD  0  -  I-h  0  U)  CD  H-  Cl) C)  U)  CD  U)  CD C) C))  Ci  H  0 1-C H U)  H H  C))  -  CD  CI ‘-C 0 LY  CD  Ct  CD  HN  H-  H-  0  —  H D  rti U)  ti  H-  ‘d  Q.  CU  U) 0  H-  HC)  —  H  0  U)  CD  CU  H CD  CU H  H-  CD ‘-1  Cr  I-I 0  M  CD  C))  Cr  ‘I CD  CD  U)  Cr  CD  CD  I-  U)  CD ))  CD ‘-C ‘-C 0 1-C  c-v  CD  I-C CD  CC)  C))  CD  M  0  C) CD  h  0  U)  Q CD  I-i  H CU  CU  H-  Cr  H  CD U)  I-  CU  <  -  c-r  CU C) C) 0  0  Cr 0  H-  CD  Cr CU  c-I-  0  U)  H  Cl  C))  C)) ‘Ci CD  U)  H CD C)) 1-h  -  H ‘<  Cr  U) CD  C) Q  U)  cv  0 0  U)  CD Q  Ct  Q C))  0  H  CD  1Q  H,Q Cr H-CD 0  U)  ‘ci  H-,  H-  C)) Z Cl  H  <  HC) CU  C-I  0  CD  c-r  H-  Q  H  0 Z  CU  U)  Q  CU  U)  I—’-  Cr  HCD  I-  CU  <  U) HN CD  C)  C))  I-C  0 I-h  U)  Cl  CD  CD  Ct  C)) Ct  CD I-C U)  Ct  U)  C) H  CD  I H I H H-  0  H-  Cr  tY 0  CD Q  C)  C) Q.  I-  cJ  C)) ‘-C CD  U)  H CD C)) < CD  CD  rr  -  I-C  CD  <  CD  0  1<  CU c-t CD H  C)) Q CD Q  CD  N  H-  U)  Q.  CU  CD  CU  U)  I—h  H CD CU CD U)  CD  H-  H-i  Cl CD  0  Cf  CD Cl  Cl  i CD CD  CU ‘-C CD  U)  0 ‘-C  cv  ‘tI  H-  I-C  C)  U)  Cl CD  CD  I-h  Cr H‘-C CD  CD  ‘Ci H CD  H-  U)  C)) U)  t3  lCD ICfl IHIC))  IH-  lCD  CD  CC)  W CD C) C))  —  -  1>3  CD U)  CD  CD CU  H  CU  -  C) CD  CD  C)  H  CD  Cr  CU  <  0  <  H  CU H  II  CD  CD  H-,  0  ‘< ‘Ci CD  cr  Cl  CU  CD CD  Cl CD (Q  CD  Cr  <  H-,  H-  cv  C))  Cr 0  Q.  CU  CD U)  H CD CU  H-  0  CD  CU  U)  C)  Cl  CU  CD  C)  CD  CD U)  I-  H 0  H-,  H-  U)  CD  H  U)  ‘Ci  C) CU  •  < I-C  CD  C)  CD  U) C)  CD  ‘Ci  HCr U)  I-C  H-,  CD  ‘  o  -j  ‘<  C))  0  CD tQ  -  U)  M  cv  H-  I-  C)  U)  CD  H Cr  M ‘-  Hc-r  U)  CD  H 0  M  0  I-  b CD  CD  Cr  -.  C)  —  C) CD  CD  C) CD  C) CD  U)  CD  ‘Z  CD  CD I0)  rr  )  I  C)  H  CD  CD U)  C) Cf  I-h I-  H-  U) HN  CD  Cf  CD  c-v  CD CU  CD H H  Cl  Cr 0  CD  0 U)  C)  CD ‘-jl CD  U)  Cr Cl) I-I  C)  C))  I-i  C))  C)  HI-I Cr CD CD  •  •  •  I-  H  C)) c-ICD Cl  ‘-C CD  C) 0  ‘<  H  I.Q  H  CD  ‘-C  CD  1-C  U)  c-v  ‘H-  C)  Cl)  CD  CU H  0  I-h I—.  <  CU  C) CD  U)  U)  CD  H  0  H,  U)  )  H-  < U)  CD  H  U)  U) (-r CD  H  CD < U)  U)  ‘-  CD  0,  0  0  0 ‘1  H-  CD Cl  U)  Cl  o  o  CD U)  l-  H  I-I.  CD Cl  C)  -  W LI)  c  It,  C-)  ‘ti cr 0  H  C) 11  Cr CD H  U)  CD Q Ii  U) Cl  t’• CD  Cl  H  0  -  CD Cl  H-  I-  Cr CD  Cl CD  U)  U)  Cr  H  ‘-<  Cr C)  H  CD  U) Cr  ‘-•I  C) C)  U)  U)  CD  H-  H-  Cl)  Cl CD U)  Cl CD  C) CD  CD  Cl-  CD  HU) Ct  U)  C)  Ct  Ct  U)  Cr  U) H-  ‘ti t’• CD  Cl CD  H CD  C) CD  C) ‘ti U)  U)  CD  It’  1i CD  U)  U)  CD  C) CD  U)  çr  -  ‘  CD  CD  0  H  CD Cl  Cl CD  ‘-  0  Z (Q  H U)  H C)  C) U)  CD ‘1 CD  U)  I-  U) (Q CD  < CD  U) H  Cl  0 ‘•l U)  CD  IH  U) C)  Cl CD  Ct  ‘H-  Cr  U)  0  Ct  H  CD 0) ()  1h  U) CD U)  k<  0  U)  U)  C) U) H  H-  Ct  HU)  çt  U)  U) Ct  CD  H  0)  I.J•  I-I 1<  0)  0) Cr CD  0)  I.’.  Ct  H,  C)  CD U)  H H  0  ID  U)  Cr  It’  U)  0  U) H-  CD Q  0  H,  0  t1’ CD  U)  0  U)  U)  C) I-i  M U)  H-  U)  Q CD  CD  H-  C)  CD  H,  0  H  HH  I.-]  Q  CD  0  U)  c:u  H  H-  C)  I-  J_  CD  HU)  —J -0  CD ‘-<  H ‘-<  (1 U)  0  C)  ) H  H  x  W 0  H-  p) t  I-  (Q  H  Cr 0  CD  t’  U) U) H-  ‘ti 0  c-f  0  U)  U)  Cr  H-  11 < CD Cl —  C)  CD  II  CD  U)  C-t  CD  CD tQ  U)  CD  H  U)  U) ‘t’  C)  CD  H  H,  0  U)  CD  U) C)  H  I-  U)  CD  ct  CD  U)  U)  C)  CD  Iri  •  Cl-  U)  It’  11  ‘t’ CD  U)  CD  C)  CD  C)  U)  CD  Ct  C)  l-  H  H-  CD  CD  )-  Cl-  H-,  Cr0  C)  CD U)  0  ‘-I  H,  CD Cl  fr  U)  CD U)  CD  CD  H  CD  C)  H  Cl  CD  ‘ti  CD Cl  Ct  U)  C) H-  0  U)  CD  Cr  C)  U) HU) Cr CD  0  C)  I-Il 0 II  U)  ‘-.5  0  Ct  H  II  C)  Cl CD  C) CD  CD  CD U) C)  U) U) U)  C  It,  Cl  U)  CD  Cl  U)  CD  H  U)  U) It,  U)  U)  U) HN CD  C)  Cr  U)  U) ‘-‘I (Q CD  H  z  H,  0  CD  U)  Cl  CD  Cl  C) H  H  H-  U)  U)  •(_.)  to  H CD  U)  F-  U)  ‘-‘I  CD  Cr  C)  U)  U)  -  C)  Cr  H-  I-I  a  CD  Cr  I•1  0) (  0)  (  I.’. (1  exj  L’.)  •  •  L’.)  •  •  H,  CD U)  H  CD U)  l-  U)  CD  C)  U)  i-h  U)  to  H  to  CD  I-i  Cl)  U)  H,  0  I-  CD  CD  U)  CD  U)  U)  0  Ct  Cl  CD  Cl-  CD  0  C)  Cl  U)  <  CD  I-  0  CD  U)  Cl  H  HCD  H,  CD  It,  0  U) C)  H  Cr  C)  CD  U) U)  Cl H-  U)  H  Cr  H  CD Cl  Cr  C  0  C)  U)  I-c  U) H  H,  0  I—c  U)  CD  C  CD  Cr  U)  U)  CD Cl  C) 0  U)  CD  CD  CD U)  HCt H-  U)  ID CD  H,  CT) U)  H  i-  Cl)  Its  CD U)  H-  Ct  CD CD  II  Cr  CD  Ct  U)  C)  H-  H  ‘tS  CD  Cl  U)  M  U)  CD  H  Ct)  Ct  H,  0  CD  H  Cl Cl  H-  CD  Cr  ‘1  CD U)  CD  U)  Cr  CD i-I CD  U)  CD  CD  I-I  $i  U)  CD U)  Cr ‘<  U) H-  Cl CD  H H  U)  -  H  CTh H  Cl  U)  Cl  W t r  Cl)  0  H,  C) (1) ‘ti Cr  X  iJ  •  U  tO  CD  1J H  U)  ‘-  -  U)  Cl)  C  ci-  U)  CD  H,  CD  H  U)  H-  HM  Cr  U)  ,Q  -  CD  H  Cr U) t’  U)  t’ CD  0  Ct  CD  Cr  Cl  CD  0  U)  Cr  U) H-  CD  Cl  U) H  CD  1<  Cr  C) CD  CD  U) C)  t’ CD  ‘ti  H,  0  U)  Cr  CD  CD  I  U)  CD U)  H  H,  CD  I-  U)  C)  —  0  Cr  Q  Q CD  C Cl  U.  U)  U)  U)  U) CD  <  H  U)  U)  CD  r1  U)  h H-  U)  <  H  H  Cr  H-  CD  S  CD  U)  U)  t3 CD  Cr  0  CD  CD  CD  H  H  U)  I—c  U)  0  U)  CD  0  Ct  Cl  0 C  I-h  l  < CD  I-s  CD  U)  CD  S  CD  I-s  C  U)  S  CD U)  CD  U) H  H-  CD  Cr  U) cr  c-r  H,  CD U)  CD  0  U)  0  H-  t’  Cl  CD  t’  H cx  19  graphics package SYGRAPI-{  (Wilkinson 1990b).  Variation was  examined both within and among populations as well as by region and taxonomic group. Descriptor dispersion was assessed within and among regions by fitting the observed data to a standard normal curve and checking for departures using the Kolmogorov-Smirnov goodness of fit test probabilities,  (Zar 1984)  Lilliefors corrected  .  needed for the proper use of the test  (Lilliefors 1967;  Sokal and Rohlf 1981), were obtained using  SYSTAT program NPAR  (Wilkinson 1990a).  For normally distributed descriptors,  differences among  taxonomic groups were tested with one-way ANOVAs using the SYSTAT routine STATS  (Wilkinson 1990a).  Bartlett’s test was  employed to check for the equality of group variances. some cases,  In  variables were transformed using either  logarithmic or square-root transformations to correct for departures from the test conditions  (Zar 1984).  in variable means among taxa were determined using Tukey’s multiple comparison procedure  Differences oosteriori  (Zar 1984).  For  non-normally distributed variables, where the assumptions of a one-way ANOVA could not be met,  the Kruskal-Wallis non  parametric ANOVA was used instead, comparisons tests  (Dunn 1964;  followed by Dunn’s multiple  Zar 1984).  The latter  calculations were performed using output from SYSTAT routines NPAR and TABLES. Clinal variation in the data was explored by creating contour plots of descriptor observations versus locality using  20  the inverse smoothing option of SYGRAPH routine PLOT (Wilkinson 1990b)  2.2.5  Multivariate Analyses of Group Structure A variety of multivariate analyses were employed to  examine group structure in the morphometric data.  An initial  exploration of the entire data set was accomplished using unweighted pair-group method (UPGMA)  cluster analysis  (Sneath  A Euclidean distance matrix of OTUs,  and Sokal 1973).  with  variables standardized to zero mean and unit variance, was used. STAND  All calculations were done with the NTSYS-pc routines (data standardization),  distance matrix)  and SAHN  algorithmic nature, into groups,  SIMINT (calculation of the  (clustering)  By their  (Rohif 1988).  cluster analyses will partition the data  whether such groups are meaningful or not  (Orlóci  1978;  Pilou 1984)  (PCA)  based on a correlation matrix of the original data was  .  Therefore,  a principal components analysis  performed to check the validity of the groups defined in the cluster analysis. routine FACTOR  This was carried out using the SYSTAT  (Wilkinson l990a).  Group structure within Appalachian and western North Imerican Menziesia were examined separately using subsets of variables to perform principal components analyses.  The  variables were chosen based on their near normal distribution within regions and on their ability to explain unique components of variation within the first few principal components.  Descriptors were removed if they were found to be  21  highly correlated with other retained variables.  This was  tested by comparing the Pearson product-moment correlations between all descriptors with their partial correlations (SYSTAT routines CORR and MGLH; Wilkinson 1990a). product moment correlation  (rhi)  than the partial correlation  If the  of two descriptors is greater  (rhi.),  then their relationship  is largely explainable by correlations with other descriptors (Rohif 1977).  Such redundancy adds little to the overall  structure of the data. Groups defined by cluster analysis and PCA5 were also subjected to discriminant analysis to test for distinctness of priori chosen groups and to identify the descriptors  the  that maximize those differences. discriminant analysis,  To meet the conditions of  a subset of descriptors was chosen that  most nearly approximated normality among the groups. Descriptors with little or no variation in one or more of the selected groups were discarded prior to the analysis.  2.2.6 Tests for Association between Morphological Variation and Geography  The association between morphological variation and geography was examined by the Mantel test which statistically assesses the degree of similarity between two independently derived data matrices  (Mantel 1967;  Sokal 1979).  symmetric distance matrices are required;  Two  in this case,  X,  a  Euclidean distance matrix derived from the morphological data, and Y,  a matrix of geographic distances between OTUs.  The  22  test computes the sum of products of the corresponding matrix elements according to:  Z  =  I..  *  where x and y are off diagonal elements of matrices X and Y, respectively. The null hypothesis of no association between the matrices is tested by iteratively generating random permutations of the elements of one matrix,  and then computing the inner product  between these permutations and the elements of the other matrix,  to obtain Z’  .  The two matrices are considered to  correspond significantly when Z exceeds Z’.  The Mantel test  was performed using the NTSYS-pc subroutine MXCOMP which automatically calculates Z and Z’ and derives a t-statistic to determine the difference between them (Rohlf 1988).  Two  hundred fifty iterations were performed to generate Z’ Two forms of geographic distance matrices were used to  conduct the tests.  The first test employed a binary  connectivity matrix which joins only localities considered to be near neighbours  (Sokal 1979).  according to Gabriel networks  Related localities,  linked  (Gabriel and Sokal 1969), were  assigned a value of one; all other elements were set to zero. This type of matrix assesses whether geographic variation is a first order process; that is, where only neighbouring localities or individuals are capable of influencing one another  (Sokal 1979).  A second,  regional test of association,  used a matrix of Euclidean distances between localities calculated from their latitude and longitude coordinates.  In  23  this case,  all localities are related to one another,  in  proportion to the continuous measure of geographic distance between them.  2.2.7 Comparison of Morphological Variation with Ecological Parameters  Field sites were compared by constructing species association matrices to analyze their community structure. Presence/absence species matrices were used to optimize the efficiency of data collection 1974; Gauch 1982).  (Mueller—Dombois and Ellenberg  Only perennial plants, primarily from the  tree or shrub layer, were included because they formed the most stable visible element of vegetation within a site.  This  minimizes differences in site evaluation owing to seasonal Community relationships among populations were  variation.  summarized by unweighted pair-group method  (UPGMA)  clustering  of Jaccard similarity matrices of the data using NTSYS-pc programs SIMEQUAL and SAHN (Rohif 1988).  The vegetation  groups defined were then cross-referenced to the vegetation provinces of Daubenmire  (1978)  and Braun  (1950)  to define the  habitats in which North American Menziesia grows. In addition, each site,  several ecological factors were compiled for  including four physical variables,  descriptors,  two soil  and four climatological parameters  (Table 2.4).  The physical and soil variables were measured at the site at several points along the collecting transect.  Elevations were  obtained from a Thommen TX-22 altimeter corrected to sea level  24  while slope and aspect were measured with a Silva 15T compass and clinometer.  Exposure was estimated using canopy photos  taken over a sample plant with a 35mm camera mounted on a levelled tripod (Chan et al. 1986; Mason 1990) 750  angle lens with a  .  field of view was employed.  A 28 mm wide The amount  of cover was calculated from the ratio of dark to light areas on the high contrast black and white film (Ilford XP400). Climatological data were obtained from meteorological records (Baldwin 1968; Canada Dept. of Energy, Mines, 1974; Farley 1979)  .  and Resources  A summary of these site parameters is  found in Appendix 2. Relationships between the patterns of morphological variation observed in Menziesip and ecological factors occurring at the field sites were assessed using canonical correlation analysis  (CCA).  This analysis compares two  independently derived morphological and ecological data matrices and projects a solution onto a limited number of axes that maximize the correlation between the two data sets (Gittins 1979).  Consequently, canonical axes differ from  principal components in that they do not simultaneously extract the maximum amount of variation present within each data domain. To meet the test conditions,  individuals from 20 western  North American populations and from 14 populations in the Appalachians were compared separately, heterogeneity.  to minimize group  In each area different subsets of  morphological and ecological descriptors were used to simplify  25  interpretation and to reduce potential problems caused by nonnormally distributed descriptors or co-linearity in the data Calculations were performed using SYSTAT  (Gittins 1979). subroutine MGLH  The results were  (Wilkinson 1990a).  summarized by plotting the first two canonical variates and descriptor loadings for each data domain.  In addition,  correlations between the descriptors and the canonical variates of each domain determined to be significant were used to calculate intraset and interset descriptor communalities (SYSTAT routine CORR; Wilkinson 1990a).  These communalities  represent the amount of variation summarized by each descriptor within and between the two data domains.  The  amount of variance and redundancy within and between the canonical variates of each data set, calculated as outlined by Gittins  respectively,  were also  (1979)  2.2.8 Analysis of Japanese Taxa and the Cladistic Analysis of Menziesia A full set of morphometric data was collected for 30 OTUs of the common species of Japanese Menziesia: multiflora,  .  tentandrp,  and jy. purourea  .  ciliicalvx,  (Table 2.2).  The  descriptors chosen were the same as those used in the North American study  (Table 2.3),  except for BPUBS and CPUBP which  were invariant in the Japanese taxa.  Group structure was  examined using principal components analysis. Comparison of the North American and Japanese taxa was accomplished by cladistic analysis.  Seventeen binary  .  26  characters were chosen which could be polarized amongst the taxa  (Table 2.5).  Some characters used in the main study were  included because they exhibited discontinuous variation among the taxa.  The remaining characters chosen were mostly floral  descriptors.  The genus Cladothamnus Bong. was used as an  outgroup for character polarization as it is considered to be one of the most primitive members of the Rhododendroideae (Kron and Judd 1990).  However,  some characters could not be  polarized against the outgroup because both states were found in Cladothamnus  (Bohm et. al.,  1978).  In this case,  polarization was assigned on the assumption that common equals primitive. Included in the analysis were the eight Japanese species recognized by Hatta and Tashiro and  .  ferruQinea  (1986),  as well as  .  oilosa  (both coastal and Rocky Mountain phases)  from North America.  Character states for each species were  scored by examining a large number of herbarium specimens. addition,  published descriptions by Ohwi  and Hatta  (1986) were used to score the newly described or  less common Japanese taxa, not seen.  (1965)  In  and Tashiro  for which herbarium material was  The resultant data set  (Table 2.6) was analyzed  using Wagner parsimony with the cladistics package PAUP (version 2.1;  Swof ford 1985).  parsimonious trees were found, was employed  To ensure that all maximally the branch and bound algorithm  (Hendy and Penny 1982).  27  2.3 Results 2.3.1 Univariate Analyses of Character Variation Of the 22 variables selected for use in the multivariate analyses of morphological variation,  14 were found to be  normally distributed over most of the regions and populations Nine of these were continuous variables and five  examined.  were meristic:  ANGTIP,  describe leaf shape;  CILIA, CALWID,  pubescence; CALPUB, size,  LABOVE,  LBELOW,  SPUBS,  and SEGWID describe fruit  and PEDLEN and PEDPUB  describe pedicel length and pubescence, capsule pubescence  (CPUBP,  CPUBG)  and PETIOLE  and SUBLATE describe leaf  CAPLEN,  shape and calyx pubescence;  LWIDTH,  Only  respectively.  and leaf venation  (NTJMVEIN)  were non-normally distributed in all of the regions. Box plots of all 22 descriptors indicate differences between three broad groups of North American Menziesia 2.6).  For example,  LABOVE,  LBELOW,  (CALWID,  NTJMVEIN,  PEDLEN,  Appalachian  .  PEDPUB)  another  SPUBG,  SUBLATE)  BPUBG,  (ANGBASE,  and fruit descriptors  illustrate differences between  pilosa and western M.  although the coastal (alabella)  several leaf descriptors  (Fig.  (ferrupinea)  ferrupinea,  sens.  lat.,  and Rocky Mountain  phases are not significantly different from one  (Fig.  2.6).  All three regions are distinct from one  another as described by seven other variables PETIOLE,  SEGWID,  (CAPLEN,  Coastal  CILIA,  CPUBG,  FRTNUM,  and N.  pilosa are similar to one another in calyx width and  pubescence as well as leaf width  SPUBS).  (CALPUB,  CALWID,  both have capsules lacking puberulent hairs  .  ferrupinea  LWIDTH),  (CPUBP).  and  However,  28  the Rocky Mountain phase N.  ferruainea “alabella” and N.  oilosa have generally broader leaf tips and densely puberulent leaf undersides  (ANGTIP and BPUBP).  In western North American Menziesia, observed in several descriptors  (Fig.  clinal variation was  2.7).  Leaf tip angle  (ANGTIP),  the density of puberulent hairs on the leaf  underside  (BPUBP)  and calyx pubescence  (CALPUB)  increased  inland from the coast to the Rockies, while capsule length (CAPLEN)  gradually decreased inland from the coast and further  declined southward in the Rockies. along north-south trends,  Other characters, varying  included the density of puberulent  hairs on the upper leaf surface subulate hairs on the midvein  (SPUBS)  and the number of  (SUBLATE), which both increased  southward along the coast from Alaska to California. the density of glandular hairs on lower leaf  Conversely, surfaces  (BPUBG)  was highest in Alaska and along the B.C.  north coast and decreased southward toward Oregon and Although clinal variation was less apparent in N.  California. pilosa  (Fig.  undersides  2.8),  (BPUBP)  the density of puberulent hairs on leaf and glandular hairs on capsules  well as capsule length and segment width  (CAPLEN,  (CPUBG), SEGWID)  as  all  declined toward the southern part of the range from southern Virginia to northern Georgia.  2.3.2 Cluster Analysis A cluster analysis of the entire morphological data set  partitioned individuals into two major groups corresponding to  29  an Appalachian cluster and a western North American cluster (Fig.  2.9). Within the Appalachian group,  chaining is apparent with  intermixing of individuals from the five physiographic regions.  One fairly coherent group consists largely of OTUs  from the southern Appalachians  (region A5).  Other individuals  appear to cluster because they come from open sub-alpine populations  (DCL, W, MIT).  In western North America,  OTUs are clearly divided into  two discrete clusters consisting of either coastal and Cascades OTUs  (ferrupinea)  or Rocky Mountains OTUs  (alabella).  The intrapopulational cohesiveness of OTU5 is not particularly strong in any geographic region.  For example, while a cluster  of individuals from the southern coast of Oregon and northern California  (region W3)  “ferruainea” coastal  subgroup,  (region W2)  is evident within the coastal they are combined with a few north  and Cascades  present in the “ferruainea” Cascades OTUs  (region W5),  (region W5)  Also  cluster are all of the northern plus one individual  Ferry Co.,  WA in the Columbia Plateau  individual  (CR01)  (region W6).  (WAO2)  (region W7),  from Government Camp,  the Southern Cascades  OTUs.  OR near Mt.  from  and one Hood in  The interior “alabella”  cluster includes all of the OTUs from the Rocky Mountains plus all of the southern Cascades OTUs except ORO1 from Government Camp. Despite a fair degree of interpopulational variation in the interior,  there appears to be some segregation of  30  individuals from the westernmost ranges of the Rockies W7)  relative to the main cordilleran range  (region  (region W8)  2.3.3 Principal Components Analyses  The results obtained from a PCA of the entire dataset compare well with observations made from the cluster analysis Again,  (Fig 2.10).  two major groups of OTUs corresponding to  M. pilosa from the Appalachians and from the west are evident.  .  ferruainea,  sens.  lat.,  There is some segregation of  individuals from the coastal or Cascades populations (f errucinea)  relative to OTUs from the Rocky Mountains but there is considerable overlap.  (cxlabella),  This points to  clinal variation in western North American Menziesia. Together,  the first two axes account for 41% of the total  variation, with most of the descriptors loaded highly on two or more of the first three principal components  (Fig.  2.10;  Table 2.7). within-group PCA of Menziesia ferrucginea,  sensu lato  Eleven descriptors were chosen to examine variation in western North American Menziesia, descriptors  including six continuous  (five lengths and one angle)  (pubescence)  descriptors  (Table 2.8).  plus six meristic  Another ten descriptors  were dropped because they were non-normally distributed in some regions,  or because they added little to the overall data  structure independent of the retained descriptors. these data  (Fig.  2.11)  A PCA of  was very similar to one obtained using  31  all characters  (not shown), with 54% of the total variation in  the data set described by the first two axes.  Most striking  is a gradation of OTUs along a west to east dine. Consequently,  coastal  (regions W7-W8)  (regions Wl-W4)  OTUs are largely distinct from one another,  with individuals from the Cascades between them.  and Rocky Mountains  (regions W5-W6)  lying  Separation of the two phases is primarily  influenced by characters such as capsule length calyx pubescence leaf tip shape  (CALPUB),  and  (CAPLEN)  leaf surface pubescence  (SPUBS)  and  The overlap of some OTUs from the  (ANGTIP).  different physiographic regions indicates a high level of intrapopulational variation relative to interpopulational variation.  Also apparent is a north-south dine among the  coastal populations with individuals from southern Oregon and northern California similar,  but less obvious,  along a west (LABOVE, density  (region W3)  (W7)  LWIDTH,  LBELOW, (BPUBG)  to east  A  trend is also seen in the Rockies (W8)  dine.  PETIOLE)  Leaf size variables  and glandular pubescence  dominate the first component, while other leaf  pubescence descriptors (CALPUB)  being most distinct.  (SPUBS,  SUBLATE)  and calyx pubescence  are highly loaded on the second axis. Within-Group PCA of Menziesia Dilosa  Ten descriptors were chosen for the analysis of OTUs  (Table 2.9).  .  oilosa  All ten were normally distributed among the  physiographic regions and include five length descriptors, leaf tip angle  (ANGTIP),  and four meristic pubescence  32  Other descriptors were dropped from the analysis  descriptors.  because they were either non-normal, the data structure,  or were highly correlated with other  variables retained in the analysis. 2.12)  or contributed little to  The resultant PCA (Fig.  was very similar to one obtained using all 22 variables  (not shown),  thereby validating the ability of the reduced  data set to explain most of the morphological variation in pilosa.  Of the total variation present in the data set,  was explained by the first two principal components  .  54%  (Table  2.9). In M. pilosa,  intrapopulational variation is fairly high,  with individuals from a given population or region tending to group more closely to OTUs from other widely separated regions,  than to one another.  not very pronounced. (region A5)  However,  Variation among populations is southern Appalachian OTUs  and Pennsylvanian OTUs  (region Al)  form somewhat  distinct groups separated mainly along the second axis. variables most responsible for this are capsule size SEGWID)  and pedicel pubescence  component,  (PEDPUB).  (PETIOLE)  (CAPLEN,  On the first  leaf surface subulate pubescence  petiole length  The  (SPUBS)  are most highly loaded  and  (Fig.  2.12;  Table 2.9).  2.3.4 Discriminant Analysis All of the previous analyses indicate the presence of three broadly defined groups of North American Menziesia. Their coherence was further tested by discriminant analysis.  CD  Cr  V  CO  0  H,  C  CO  H-  Ct  CD  H CI) C) CD  ‘  CD C) Ct  H,  CD ‘-5  CO Ct  0  CI) H  CD CO  CO  CI)  ‘t  Cl)  Ct  CO  CD  C  Cr  H-  CD CO C) ‘1  Cl  l—5 Cr CD CD  C  H,  CD CO CD  çt  (Q  CO H-  HCD <: CD Cl  C)  CI) CO  CD  Ct  ‘CI  Cr H-  Cr H3 (  CI)  H CD  CI) H,  Cl  CI)  ‘tI  C)  Ct  IQ  Z  H CD  H CD  CO  C) CI)  ‘-  t  ‘j  0  —  C) CD  ><  S)) H ‘<  =  C)  •  IS)-)  IH IH  lCD  H  =  CO CD  CI)  Ct CD 1-5 HC ‘1  H-  CD  Ct  0  I-i  H,  H CD  CI)  CD CO  Cl  S))  C)  CO  C) CI)  Ct  C  Cl  CI)  CO Ct  HCO  CI) ><  Cl  0  CO CD C)  CD  Cr  (Q  C  H  •  -  H  C)  -  1-5 CO  0  Ct  H-  C)  CD CO  Cl  ‘tS CD  CI)  CO  CI)  Cl  Cl  C) C  CD  Cl  CD  CO HN CD  HCt  ‘1  H,  Cl  CI)  —  L1  t-  Cl)  Cl)  —  CI)  S))  H  H ‘<  H(Q  CD  CI) I-5  t’l  ‘  C)  Cl  CI)  : H  0  i  C’)  0  Ct  0  I-I  H,  CD CI)  H-  IH,  IS))  -  h  IH, kD  •  I  H-b CO lCD  Z  H-  -t  Cl)  C)  HCO  Q  HCO  CO  CD  ‘ti  CI) 1-5  ‘CI  CO CD  CO  I-5  C  ‘-5 H‘CI Cr  C)  CD CO  Cl  H  H,  CO CD  0 CO Cl-  CD  Cr  CI) ICD  H ‘d  0  Z  -  CD  H  Q  O\0  —  )  (Q  c1  ‘D 0  CD  :  CO  0 ‘—5  Ct  ‘CI  Cl  CD CO C) 1-5 H-  C) CD  CD CO C) CD  H,  H CD CI)  CD  -  HCO  X  CI)  H, H1j CO Ct  CD  Ct  0  H  CI) >< CI)  CI)  CD 1-5 HC)  1-5 Cr  0  Z  CD CO c-t CD 1-5 3  CD  Ct  0  1-5  H,  H CD  CI)  ‘i  CO CD ‘t3 CI)  <  C) H CD CI) I H  HCO  I  c5 IHIH IC  I  H-  CI)  C)  CI)  H  S)  ti  ‘CI  •  H W  •  •  l-’J H-  CD 1  Ct  0  CI)  CD  0  0  H,  II CD  CI  CO  0  II  tQ  ‘1 CD CD  f-t  CD  Ct  C) Cr  HCO Ct H-  Cl  C  CO Cr 1-5 S)) Ct CD CO  HH H  HCI) Ct CD CO  I-i  < CI  H  CI)  HC)  0  CI)  0  rr  CO Ct  ‘-5  H, H-  CD  çt  H,  C  Cr  C  H  ‘CI  •  C) H  C)  •  C)  A  ‘  CD Cl) f-t CO  Cr  H0  -  ‘<  0  Cl  CI)  Q  H CI) CD  CO  -  CD  Ct  0 H,  CD CO HCO  Ct  Z H H  C  ‘CI  H H  CD  Ct  Cr H ‘<  CD  Q  CO CD  C) C  •  —  C) H  C)  •  C)  A  —  H Ct CO  c  I-i CD CO  C  Cl  u CD  CI CI)  CD C) Cr CD l  CD  —J-  I-i  CI) CO  CO  I0  CQ  ICD CD  Ct  CD  Ct J  H,  0  ‘<  Ct  H H-  CI)  ,Q  Cr  Ct CD CO  <  0  C  CO CD  CI)  ‘Z3 CO  C  L -5  II CD CD  Ct  CD  -t  CD CD  CD  (Q  H-  HCO  (Q  H-  rt  HCl)  Q  H-  H  CO CD H,  CD  I-i  CD  H CD CO  CI) 1-5 HCI)  ,-  H  H H  <  -  CO HCO  CI) H  CI)  CD  Ct  0  ) CO CD •  H CD CO  CI  H-  t  < CI)  C) CD  CD CO C) CD  ‘CI  HCO Ct HC)  1-5  CD  CD  CD  CD  <  H-  H,  HH CD  CO  I-i  CD  C) Ct  CI)  CI)  C)  CI) rJ CD  CO  Cl  CI)  CO HN CD  CO  C  Cr H-  C  C)  CD 1-5 CD  CD  H-  Z  •  (-‘-)  H  •  •  (Q  H-  I-xj  CO  0  I—i  CQ  Cr J ICD CD  (1)  rt J  CD CD  Cr  t3 CD  Cl  CI) :i  H3  HCr  Cl  i Cr CD  -5 H-  Ct  HCO  Cl  <  CI) H H  1  0  CO Ct  0  CD ‘1 CD  CD  <  Ct  U) CD  C) CI)  CD  b  r  1-5 CD  CO CD  0  C)  CD  0  Cr  Cl  CO CO HtQ 3 CD  CD  E  —  Ui  I  H  CI) II CD Cl) CO  —  CO  0  CI  1-5 CO CD  CD  I  —•  —‘  CC)  I  a  1-5 CD Cl) CO  CI)  —  HCD CO  C)  C  Z CD  Ct  Q  CI)  CD CO  CI) Cl  CO C)  CI)  CO  Q  U]  o-  Cl  CD  Q  C) H  H-  ICI I53 lCD lFIH 1CI  IH  IC  =  -•  —  Lfl  H I  CO  CI)  ‘1 CD  CI)  -  CO  Cl  CI)  CO C)  0  CD  f-t  CD  Cr  0  CO  CD  Ct  0  H-fl  CI) C)  H  ‘t S))  CD  Ct  H. H CD  C  Cr  ‘  CD CO C) 1-5 H-  Cl  CI) H  C)  C H 0 ) H-  1-5  0  CD  ‘1 Ct CD  ‘J 0  CO CI)  0  HH  H, ‘  Q Cl  CD  CO  H-  H,  CD  Q.  -.5  It-j IH  IS)) id  Ct’  c-t  H,  C  CD  C  H-  C) CD  CI)  H  CD  ‘  CD  CO  0  -  H-  CD tQ  c-t  C) C CI)  CD CO ‘-t  CD  Cr  ‘-s C  H,  0  CX) U]  Cl  Cl CD  C) H  H-  ICI)  lCD  H-  It-i Ih  =  IH, lCD  -.  C5 CO  0  CQ  C))  w  34  discriminant analysis.  Only two OTUs from ferruainea were  assigned to “tilosa” while another two OTU5 were placed with “plabell”;  all four OTUs were from the Cascades.  five OTUs of  A total of  “alabella” were likewise transferred to  “ferruQinea  2.3.5 Association between Morphological Variation and Geography  Mantel test comparisons between a distance matrix of western  ferrupinea,  .  using all 22 morphological descriptors,  and a binary connectivity matrix of geographical association, based on a Gabriel network  (Fig.  2.14),  resulted in a non  significant correlation between the two data sets p(Z  Z’)  >  <  0.01).  (r  -0.343;  =  The same test applied to the Appalachian  data set and its associated binary connectivity network 2.15), 0.01)  .  was also not significant  (r  =  -0.131; p(Z  >  Z’)  (Fig. <  However, when regional variation was tested using  geographic Euclidean distance matrices,  highly significant  correlations with the morphological data sets were found, in the west Appalachians  (r (r  0.164,  =  =  p(Z  0.179; p(Z  Z’)  > >  Z’)  0.001)  > >  both  and in the  0.001).  2.3.6 Ecology and Patterns of Morphological Variation in the Western North American Menziesia sites  Four main community types were identified in the western Menziesia field sites according to a cluster analysis 2.16)  of the vegetation found at those sites  (Fig.  (Appendix 2.1).  35  Most of the sites in the Rocky Mountains,  and some from the  are in subalpine forest dominated by Engelmann  Cascades,  spruce and subalpine fir (Daubenmire 1978).  (the Picea enaelmanii Parry Province)  The remaining populations are found in the  Temperate Mesophytic Forest Region of Daubenmire these, most belong to the Tsuaa heteroohvlla Province (MOS)  (central section)  .  Of  Sarg. ID  is an ecotone site between the Tsuaa heteroohvlla  Province  (eastern section).  (Mirbel)  Although Humboldt County,  Franco CA  is in the southern section of Daubenmire’s Tsuaa  heteroohvlla Province,  it is quite distinct because it is  dominated by a canopy of redwood Don)  (Raf.)  However, Moscow Mountain,  Province and the drier Pseudotsuaa menziesii  (HUM)  (1978).  Endl.).  (Sequoia semoervirens  (D.  Here Menziesia attains a unique lifestyle,  growing in organic debris on nurse logs and as an epiphyte in the lower branches of redwood trees. Morphological and ecological variation in the western North Anierican Menziesia populations were compared using canonical correlations analysis  (CCA).  The morphological  descriptors used included the same 12 characters used in the within-group PCA of western Menziesia, (HEIGHT)  (Table 2.10)  .  plus shrub height  Nine ecological factors  were used in the analysis; only FROSFREE, free days,  (Table 2.10)  the number of frost  was dropped because it was highly correlated with  the mean January temperature  (JANTEMP),  and therefore  contributed little unique information to the data structure.  H-  H  cv  U) cv U)  H-  cv  CD U)  <  h  U)  Z Cl) ci  CD  cv  U)  cv  0  i--c  CD CD  CD  <  Cl  I-  cv  ‘Cl  Cl ‘Cl  CD  ‘Cl  CD Cl  •  0  cv H-  U) H 0  H-  cv  I-  U)  H-  CD  CD  N  cv  Cl)  lH-  H  ‘<  <  Cl)  H  C) c)  0  cv  Cl  H-  t-  c))  S 5  U)  0  cv  H-  U)  0 (Q  ‘<  cv  CD  CD  I-h  t-  0  ><  Cl)  S  —  LI] C)  Cr)  -  U)  i-i CD  U)  ‘Cl 0  CD  i-j  CD  cv  h  I-  I-  CD  ‘cv  0  ci  Cl  CD (Q 0  Q  i  cv  0  H  U)  0  0  U)  ‘ti  C) c) cv CD ci  CD Cl) U) Cl)  H  h  H-  I-c  CD  H-  CD  CD  CD U)  I-  cv  CD  5  l-  0  H-,  0  ct  ci  5  0  0  cv  H  U)  CD  HH  CD ci  C)  CD ci  I-  0  cv  H-  T))  C)  H-  Cl) H  0  cv  CD  CD CD  I—c  cv  H-  0  CD  CD  I-  CT)  CD  C) H  Cl)  Cl)  l-  cv  i-n I-h CD C)  cv HU) cv HC)  < p  t  i-c  I—’-  c))  cv  C) c)) H  M  0  i  H CD  H-  cv  C) T))  C) 0  H H-  cv c-v  T))  (I)  H-  i 0  )  C)  5  U)  CD  l-  i-i Cl) cv  ‘ti CD  CD  cv  l-  CD  cv  H-  Q  Cl)  i-  CD  5 5  U)  cv  Z  0  U)  :—  CD Cl)  H-  U)  CD CD  I-c  U) cv I M  0  l-  i-h  I-c  (Q CD  0  H  Cl  Cl  CQ  CD  5 5  H-  5 Cl) X  c))  U)  CD  :—  CD Cl) C)  i-  H-  H-c))  N  CD  HC)  H-  CD  c)) cv  5  H H-  C)  Cl)  CD  Q  H-  <  0  h  i-  CD  H-  CD  h  CD  -  —  I  U)  0  H-  CD CQ  —  U)  0  H  U) cv  Cl)  Cl  C) 0  cv  H-  Q  CD  cv  c)-)  C) H-  0  U)  U)  T))  CD  P  H0  cv Cl) cv  H-  H‘Cl  C)  CD  i-c  ‘Cl  (Q  H-  U)  CD c))  i-c  C)  H-  Cl)  H U)  H-  0  U)  HC)  Q Cl)  i-  C)  •  U)  CD  U)  CD c)  I-  CD C)  ci  Q  H-  Q.  Q  U)  U)  Cl)  CD Cl) Cl) CD  i-c  C)  H-  —  (I)  Ui  Ui C)  Ui -i  CD  C)  CD I  U) C)  CD  ‘ti  M  H CD Cl)  M  0  U)  CD  ‘<  cv  H-  c))  cv  I-  C) (1) I-c  0  CD  HH  —  H  0  Ui LII t-  < LI]  Ui  t  U)  CD  N  U) H-  H CD c)  I-  tQ CD  i-  H Cli  0  c-v  CT)  cv  Q  I—i  CD  HU)  —  LI]  Cc-i  ‘-U 0  ><  LI]  —  CD  ci  Cl)  U)  Z Q  H-  U)  CD Cl)  I-c  C)  H-  H H  CD  U)  •  cv U)  Cl)  ti H  CD  cv  0  —  Ui 0  Ui i  5  Cl  -  H  C) H  -  Ui  C  C)  -  C) CD  C) CD  U)  CD  ti  M-,  0  0  cv  U)  i-c  ‘Cl CD Cl  ‘Cl  Cl  -  0  U)  CD Cl)  U)  CD  CD  i-c  I  U) cv  0  i-c  I-h  I  U)  CD  cv  H  0 M  U)  Cl  Q  Cl  U)  CD  I-c  cv  c))  I-c  ti CD  CD  cv  CD  <  CD  H  I-c  CD  tQ  H-  cv  H-  CD  H-  C)  H-  C) 0  i-c  S 5  CD  U)  ci  Cl>  CD I-i  cv  H-  I-  CD  0  H  H-  cv  CQ  0  H  Cl)  -  0  H-  cv  c)  CD  CD H  (Q  U) H-  CD D)  ‘-  C)  H-  I-  -  CD  H  ‘Cl  5  Cli  CD  l-  ‘i 0  -  U)  H-  5  0  Cl)  cv  Q. Cl  0  cv  CD  cv  CD CD  cv  CD  U)  0  cv H-  p C)  CD  cv  H-  CD  cv  CD  H-  H  cv  0  —  C’  H  •  IO  CD  H  c))  ‘-  --  H —1  •  I-’)  •  tQ  H-  ‘I]  -  Cn  t  H-  Q  c).  0  H  i—c  0  cv  ‘ti  IH-  C)  U)  ci CD  c)) H  C)  0 ‘-Q H-  I—  CD C) 0 N  5  5  cv  ci  Cl)  Cl) H  0 Q HC)  H  0  ‘Cl  i--i  0  •  CD  0  N  HC)  ‘<  0  U)  CD  CD  ‘Cl H-  H  Cl  y  U)  CD  cv  i  H-  Cl)  0  H-  cv  Cl)  H  ‘Cl 0 ‘CS  M-  0  U)  cv  Hcv  CD ci  Cl  H  CD  i—i I-i  C)  Cl)  H-  I—’Cl)  cv  H  H  CD  U)  •  CX>  H-,  5  I-i  0  H-,  l-  0  H-  i-c  CD  cv  H-  CD  cv  0  U)  0  S  0  l-  I—n  ci  CD  J  H-  (Q  H-  cv  HU)  Q  CD  p i  C)  a”  W  U)  0  I  —I  U)  H-  (  CD  l-  —  =  ))  IQ Ii-Ic)) I5 1(1) II—’ IH  CD  CD CD  cv  CT)  H0  c-v  Cli  H-  cv  CD  h  CD  M-  Q Hi—h  ct  ‘-  Cl)  ti CD  CD  cv  CD  cv  U)  I-c U)  CD  <  CD  0 i—i  U)  0  H-  CD Q  i-  -  Hi  li-n  •  0  U)  0  U)  CD  ci  c)-I  Cl) U) C)  C)  ci  H  i  cv  U)  0  C)  -  H  HH  IQ  H-  ‘-i]  -  ‘ii C)  ‘Cl  )  t i  I  H-  H-  cv  CD  cv  z  H-  < CD ci  CD 1-i  U)  0  CD  U)  0  cv  0  cv  l-  Cli  5  H-  U)  k<:  i-  CD  S  CD  i-  c))  Cl)  H  cv  CD U)  i-  CD  cv  H-  Cl  ci 0  H  HC)  I.Q  0 H 0  ‘ti  l-  5  0  Z CD  cv  H  —  —J  H  t’J  tQ  H-  i  —  H  cv  CD  H-  <  CD  U)  H-  U)  cv  CD  Cl)  Cl) cv  Q.  0  cv  CD  cv  CD CD  cv  CD  C) CD  CD  ‘-  ‘-Q  0  C)  H-,  0  CD CD  h  CD CQ  tQ  Cl)  U)  CD  cv  H-  ‘-  c)  C) Cl) H  H-  0  C)  Cl)  CD  <  C) cv I—’-  CD  U)  CD  l  H  CD  J  < cv  ci  cv CD  C)  H  CD ‘ti  U)  37  relationship between the two data domains adequately.  The  amount of variation described by these three sets of canonical variates are roughly similar for both the morphological and ecological data domains,  though a greater amount of variation  in the ecological domain is explained over the first two axes (Table 2.10)  .  The morphological canonical variates  (Ul-U3)  account for more of the variation in their own domain than they do in the ecological domain  (Vl-V3),  and vice versa, but  each set does account for a reasonable portion of the other as seen in the redundancies. JANTEMP,  PRECIP,  Ecological variables such as ELEV,  and SOILORG have high intraset and interset  conimunalities and therefore are the most important contributors to the analysis. descriptors  (LABOVE,  as capsule size  LEELOW,  (CAPLEN)  Leaf size,  shape and pubescence  LWIDTH, ANGTIP,  SUBLATE),  as well  are similarly important in describing  variation in the morphological domain.  2.3.7 Ecology and Patterns of Morphological Variation in the Appalachian Menziesia Sites  In general, Appalachian Menziesia field sites are characterized by a conspicuous deciduous tree component and high species diversity  (Appendix 2.2).  A cluster analysis of  the sites based on the presence or absence of 41 perennial plant species resulted in the recognition of two major community types  (Fig.  2.18).  either Picea rubens Sarg.  These are representative of  subalpine forests or temperate  mesophytic forest habitats largely dominated by oak  38  (Daubenrnire 1978;  Braun 1950).  Of the latter, most are  ref errable to either the Ridge and Valley or Northern Blue Ridge sections of Braun’s Oak-Chesnut Forest Type, sites from the southern Appalachians  (LWS, WSM,  except for  PIS,  which  BB)  are particularly species-rich. In the canonical correlation analysis, morphological descriptors were chosen,  eight  including five of the  10 characters used in the within-group PCA of the Appalachian data  (  CILIA,  CAPLEN,  A preliminary CCA indicated that ANGTIP, SEGWID,  and PEDPUB were not significant  contributors to the analysis; hence they were dropped. However,  despite their correlation with LABOVE,  the leaf  descriptors LBELOW and LWIDTH were shown to contribute to the analysis and were included on that basis. characters,  FROSFREE and SOILDEP were found to be highly  colinear with JANTEMP and AUGTEMP, retained.  Of the ecological  In addition,  ASPECT,  respectively,  and were not  SLOPE and SOILORG were  discarded as they added little to the overall data structure. Only the first three canonical variates were necessary to summarize the interactions between the two data domains 2.11).  The ecological canonical variates  particular,  (V1-V3),  (Table  in  describe a greater amount of variation than do the  morphological canonical variates  (Ul-U3).  As well,  each set  of canonical variates accounts for more variation within their corresponding domain opposite domain  (total variance)  (total redundancy).  relative to their Nevertheless,  does account for a reasonable portion of the other.  each set All of  39  the ecological variables included in the analysis have high intraset cornmunalities and two, interset communalities as well. pubescence characters  (LABOVE,  JANTEMP and AUGTEMP, Similarly, LBELOW,  have high  leaf size and  LWIDTH,  SPUBS,  BPUBP)  and HEIGHT are important contributors to the morphological domain and also have reasonable interset conimunalities. An illustration of the two data domains  (Fig.  2.19)  reveals a correspondence between morphological variation and ecological factors.  With an increase in elevation  (lower  summer and winter temperatures and a shorter frost-free season),  leaves tend to become smaller  LWIDTH) while leaf surface pubescence Moreover,  (LABOVE, (SPUBS)  certain types of leaf pubescence  LBELOW,  increases.  (SPUBS,  BPUBP)  appear to become more dense when subjected to the higher exposures experienced on the open heath balds in the subalpine zone.  With increased shade in the oak forest sites,  become larger and plant height increases.  leaves  Consequently,  there  is some relation between the disposition of OTUs in the data domains with the ecological community types defined in the cluster analysis of sites  (Fig. 2.18).  To a lesser degree,  southern Appalachian OTUs are also distinguishable from OTUs of the more northerly populations.  2.3.8 Comparisons between North American and Japanese Menz ies ia An initial examination of morphological variation in Japanese Menziesia involved the use of PCA to explore group  40  structure within and among samples of the common taxa 2.20).  Two distinct groups are apparent.  consists of a mix of  multiflora and  .  along with an individual of tetramerous  .  (Fig.  One cluster ciliicalvx OTU5,  .  ourourea.  The  second cluster comprises individuals of j. pentandra, which appear to be quite distinct from the other common five-merous Japanese taxa.  The first two components of the PCA together  account for over 46% of the total variation present, with most of the descriptors being loaded highly on one or more of the first three components  (Fig.  2.20; Table 2.12).  In general,  pubescence characters are most highly loaded along the first axis while variables of size or shape dominate the second axis. In a cladistic comparison of the North American and Japanese species of Menziesia, based on morphology,  six  maximally parsimonious trees were obtained using the branch and bound option of PAUP  (Swof ford 1985).  32 steps with a consistency index of 0.531. consensus tree  (Fig.  Most notably,  American taxa, with the coastal (GLAB)  phases of  .  A strict  illustrates the elements common to  2.21)  the different solutions.  All had a length of  (FERR)  all of the North and Rocky Mountain  ferruainea being most similar,  in a cohesive group with  .  oentandra from Japan.  are linked As seen in  the PCA of Japanese Menziesia, j. oentpndra is distinct from the other five-merous taxa based on a number of characters (Fig.  2.22;  Table 2.6).  Like all of the North American taxa,  N. oentandra has small flowers,  glandular hairs on the upper  Q  <  c-IH-  C)  Di  0  I0  c-I-  CD ‘-<  ><  Dl  CD  c-I-  H-  CD  Dl  ‘—9  Dl  c-I-  •  CD  C)  D)  0  H-  c-I-  0 H  CD  CD  c-I-  I-h  CD hc H-  c-I-  o i-c  Z  CD  o  II  CD o  Dl H H  Di  I-c  H-  CD  c-I-  ‘ZI  C)  CD  II  c-IH-  H, II  o  0  H,  Dl  0  c-I-  Dl II  CD  ts  CD  Q  Dl  0 I-i  ‘<  Dl H CD  IHlCD  ‘  •  Di  ><  Di  c-I-  CD  0  KJ  II  I  II  0  I-i-i  CD  •  II H  H-  H, Dl  Dl  HCD  r  CD  Dl  c-I-  Dl  CD  Dl c-I-  •  It  c-I-  Dl  c-I-  c-I-  CD  (Q CD  CD CD  (Q  LQ  CD CD  CD  Ci  H-  0  •  CD  CD  C)  -<  H  C) Dl  i-c  0  M  C) H-  HCD  Q-  CD  CD  CD  H  l-’  0  CD  c  0  CD  <  Dl  Dl  c-IDl  CD  0  CD  J  c-I-  i-h  H  H  •  H CD  Di  ‘Tj  CD CL)  c-I-  C)  3  c-IH-  CD  Q H-  Di  CQ  0  H  <  II  CD  CD  II  0 H c-I-  Dl  Z  H,  CD  Dl  II  H 0  IH-  k-I-  IH  Ii  I  CD  c-I-  CD  CD  ‘tS  ‘I  CD  C1  0  c-IJ  H,  0  c-I-  0 CD  CD  H,  0  CD  CD  CD  Hc-IH<  H-  II  lCD  I  IH-  I5  lCD  H  c-I  CD HCD c-I CD  0  C)  I  Q  I  1< ID)  •  I  Q.  Dl  Dl  ‘1 CD  h  Ic  I  CD  CD H-  Dl  i-c  CD  c-I-  0  Dl  CD  0  0  c-V  CD Q.  c-I  H Di  CD  H  k  CD  H CD  CD  N  CD  0  H  IQ  C)  ri CD  c-I  Cl)  0  H-  H-  IZ  I-h  0  CD  Dl CD  ti  Di H  C)  H-  <  c-I-  CD  c-I-  CD  H  H-  —  CD  II  H-  Dl  LQ  H 0  CD  <  Dl  C)  I-h  <  CD  0  H CD  C) CD  H-  CD  ts  c-I-  C) CD  CD  CD  ti  k<  H  CD  CD  Q. CD  CD  -9  •  CD  H Dl  H  0  l-  C) 0  H CD  ti  i-c  ‘ti  0  c-I-  0  I  CD  -  Di  Di  c-I-  CD  CD  i  Di  CDi ti  CD  c-I  H,  0  3 CD  0  0  •  •  I  Dl  c-I  11  CD  c-I-  0  CD  H-  c-V  H-  3 Di  c-I-  Q  CD  c-IH-  H ‘<  CD CD  C) H  CD  “<  CD  H-  CD Di  C)  CD  CD  CD  H  CD  Dl ‘I CD  CD  c-I H0  H  0  CD  CD H-  CD  c-I-  CQ  0  Dl  CD  CD  C)  CD  0  CD II  I  H, H,  C)  CD  0  c  II  CD Q H-  CD  H-  II  0  CD CD  H  c-t J  Di  0  c-I-  Q.  CD  c-I  Dl  H  II CD  CD  I  CD  -h H<  CD  c-I  II  Dl  HCD  IH ID)  1C5  IC)  kD IH-  ID)  IH  I  <  H  II H-  D)  II H-  ‘tj  H-  0  1 CD CD  CD  <  Dl  c-I-  0  --  Di  II  -  CD HI 0  H c-IHI-h  I  c-ICD  <  CD  CD  H-  c-IH-  HCD  HCD  II  CD  II  0  (D CD  Q.  H-  CD  II  CD  Q.  H,  H CD Di  z  CD  II CD  CD  Di H  ti  (Q  H-  Dl  CD  Di  H  CD H  CD  Di  Di H CD  CD  CD  Q-  Di  CD  H  Dl  c-I-  CD  CD  c-I-  H,  0  c-I-  Dl  c-I-  0  c-I  H  Dl  Q  CD  II  CD  CD  Dl  CD c-I-  Di  H-  <  Dl  H  CD  CD  CQ  CD  c-I  H-  Hc-I-  CD  3 H-  HCD  II  Ii  IDI Ci  Ic-I-  lCD ii  Its  ID)  IH-  k,  kD  If-’-  IN  i3  1(1)  l  •  H-  CD  H-  Z  CD  ID)  1<  -  I  Di 3 Q.  ID)  lCD  III  lI-I  b  i  Ic-i  I  CD  CD  H-  C)  CD  CD  CD  CD CD  Di  ‘ti  C4 Di  CD  0  CD  Di  I-  c-V  CD  c-I-  CD  c-I-  Dl  CD  HDl  H Dl C)  Di  ‘t5  CD  c-I  Q  H II  Hc-I  CD  i-c  Di  CD  Cl)  c-I-  I-h CD Di  Dl  CD  IF-’ b lCD ID)  IH-  b  •  I  -  CD  H  CD  C) Dl  c-I  H-  II  c-I-  H CD  II  CD  ‘j  H  CD CD  CD  0  c-I-  ‘<  Dl c-I CD H  CD  Q.  0  CD  Dl  0  CD  H  1)  c-I-  -  M  Dl  CD  H  CD  c-I-  M  0  H-  I-  H-  II  CD  H 0  CD  c-I  ‘Q  0  H  Dl  Dl H I-c CD  CD  c-I  H Dl  ti  CD  H,  0  II  CD  H-  Q  Di  Ø  Di  CD  C)  Di  II  CD  H,  H CD  H-  C)  C I-  h  CD  Co  H-  CD  C  0 C)  0 C)  Cr  C))  XJ  CO  Ct HCD  M CD  C  CD  C  Cr  CD  çr  H-  CD  HCr  Cl  C  0  C)  H C)]  V  (Q  H-  C  ,  C))  H H  C) C))  HCo C)  H-  C))  H,  ‘1  CD  Ct  Co  CD  H-  J 0 C)  CD  Ct  H-  HH CD  C) CD ‘< Co H---  Ct  HCO  <  CU  Cl  C) C)) Cl  C)) Co  C)  CD 1  çt  C  Co  HICO  0  C  CD h  C))  Co  CD  C)  H  C))  Co  < CD  H CD C))  —  çl CD Co  C))  () C)) Co C)  I-  CD  Cr  I  0  CD  Cr  H-  Ct  H 0  CU  Co Cr  0 C))  C)  CD  Cr  0  i tQ  H H  Cr  0  HFCO  CU  çt  H CD  C  CD I-  C  Q  C  CD I-  C  )  H,  0  Cfl Hçr ‘<  CD  H CD  H  5  H C)  —-.  HI—i Co  CU  CD Co  -  Cr  H CD  CD Co CD  Cr  C  I-  CD  C)  CD  C  CO CD H “<  CD  Q  C)) ICD  Co  CD  H  C  C) CU ‘t5 Co  HCr  1  i-ti  (I) H-  N HCD CO HCU •  CD  C)-’  CD IHC)  5  iCt  0  Z  C))  •  0  H-  Ct  H-  II  < C))  CO  0 C  C  Ct H-  C) 0  Co  H-  Cl  Cr  H-  H-  CD X  CO  C) Cr CD  C))  I-  C))  C)  -  CD  ct  0  Co Cr  CU  Cr I-  0  C)  H  •  I Cr Co  C))  t  CD  Ct  C  0  C)  h  CD  CD  Cl  CU  CD  0  D 1  C))  Co CD  0  HH  ‘  <  H  CO  Cl CD  CD  ‘1  Cr  0  ‘-  5  CD  I-  C))  CU Ct  f1  CD CO  C))  H CD  CD  <  CU  Cl  ))  ‘-  0  I-  H-  CD  Cr  C))  Cr  0  CD H  h  CU  H  Cl C  H ))  Q  H H CD  CO Co  çt  CU  F-  CD  5  5  CD  tQ  0 i-  C))  H  CU  H-  CU  CD  Co  0  ‘rJ HH  CO  CO  I  I-  CO  C  0  H,  H CD  CD  0 C) C)  C) C)) CD  5  Co  < CD  C))  CD  H  Cl  C))  M  CD  H H  C))  CO  II CD  C))  Co  C  H CD  Co  ‘  C))  C)  —  Cr  H H-  H H-  C)  II  CD  Cr  0  -  CD H 0  I-  H C))  C  H  C))  (Q  H CD CO CO  1  U Co  0  C)  CD  çt  CD C) 0  Cl  C))  CD Q 0  l-  0  0  I-h l-  H Co  Cl C C))  H-  <  H-  H-  CD  CD I-i  -  Cr  CU  CD  D CO  C)  0  0  pi  CD  Cr  S  II 0  I-h  Cl  CU  H  H-  Ct  HCD  I-I  C)) Cl  (Q  CU  0  CD  Co  CD C))  II  C)  H-  CD  C)  CD CO C) CD  C  ‘  ><  H  CU  C)  Q  CU  CD  H  i (Q  )  Cr  H  -  H,  ‘ti  C? H-  0 H,  Co  ‘1  Cr Cr CD  C))  -  H-  C))  C))  H CD  CD  HH  •  X  H CD  ti  5  C) 0  CD  ‘1  0  5  ICD  5  c-t H0 CD IHC)  fr  Cr  C))  C))  0  Z  ‘-  CD  H-  I  < C))  H  CI)  H-CD Co C)  0 Q  H  0  ‘ti  0  i  •  I-  C))  H  C  Q  H CU  ‘-Q  H CD CO Co  Q  CU  H H CD I-i  Co  F-  C)  CU h 0 H H-  fl  Cr  0  H-  Cr  ‘ti  C) CD  CD  ICD  C))  H CD Co  C  Co  C) C)) ti  Q  CU  Ct  C) CD  CO  CD  C  CD  Cr  ICD  CD  -  H-  C))  C) CD 0  Cl  CU  CD  CD Co Co CD  HCD FCO CO CD  ICD  C))  CD Co  C)  C))  H,  ‘-  C  Co  H,  CU  H CD  CD  Q  H  5  CD  C))  I-i  Co  H-  Cr  C  Cr  0  tQ  C  0  h  Cr  5  I-i  0  HI-h  C  H  t  C))  CU I-j  fi CD  •  H CD Co  C  Co  ‘  CU  C)  Ct  C) CD  CD Co  ‘ti C  C  H C)) -i I  C))  ( H  H H  C))  H  CD  Cr  0  HICo  J  C))  CD  Ct  C))  C  Ii  CO  Co CD  I-  C))  C) 0  —  Co  CD  C)) C)  II-h  C  CO  I-  CD  5  Co  0  Co CD  HH  ‘  k<  Co CD H  Q. Cl)  ‘ti Co  CU  -  H-  I-j  Q  H-  5  CD  Q  H-  IC))  1W  10  IHIH  ICi  CU  --  1(1)  IH-  i K’i  1(1)  CO  Ct  H-  Co  CD  <  CD CU  H  H CU II  C  H  C))  CD tQ  <  Ct HCU H H  CD  CO CO  CD  CO  C))  HC)  -  HCU  ti CU H CI) C)  CD  Ct  S  0  H,  0 CO C))  HH  ICi  I  HCO  C) Cr  HCo Cr H-  Cl  Co c-r  5  0  CD  J  Co  ‘ti  C  0  Q  CD  H  CU tY  Co  H  C  Cr H-  CO  H-  Q.  CD CD  I  Cr  0  CD  C)  CD  HCo Ct  CD  CD  c-r  5  HII  I-1  0  C)  C))  CO H-  CD  N H-  CU  H C)  CD  H  Cr  Z 0  I-h  0  CO  CD  CO  <  H  C))  C))  H  C) C).)  H-  0 (Q  0  ‘  I-  5 0  Q  H CD  H-  C))  f-t  Cl CD  —  ‘<  Cl  Co Cr  HCo  Cr  i  H  I-i.  N I—’.  CD  0)  C)  i-a  CD  :‘  I  CF  0  Z  0)  0  1.1.  Cr  0)  CD  0) I-  0  (  C)  i-’.  0  0  0)  Lsi  0  0) 0) I-i-  W 0  3  M  43  over relatively small distances,  individuals from the coast or  northern Cascades are readily distinguished from individuals collected in the Rockies.  Hovever, accurate identification  may be confounded in the Cascades of southern Washington and northern Oregon, where intergradation between the two phases is apparent. In their study of flavonoids,  Bohm et al.  similar trends in North American Menziesia. and N.  (1984)  Both  .  observed uilosa  ferrupinea had similar arrays of flavonoids, but  differed in key respects.  In particular, N. oilosa had a  simpler array of flavonoids since it does not accumulate 7-0methylated flavonols, however,  triglycosides and gossypetin.  accumulate dihydromyricetin, which  not, while M.  .  It does,  ferrupinea does  ferrupinea accumulates an unidentified flavanone  not seen in N. oilosa.  Less variation in flavonoids was  observed within and among populations of N. pilosa compared to N.  ferruainea,  in which complex and highly variable profiles  prevented the recognition of coastal and interior phases. It was Peck (1941) who realized that distinct coastal and Rocky Mountains phases of Menziesia tended to intergrade in the Cascades.  Accordingly, he recognized a single species, N.  ferrupinea, with two varieties, an arrangement maintained in the Vascular Flora of the Pacific Northwest where the zone of intergradation was identified as centering around Mt. Adams and Mt. Hood (Hitchcock et al. (1969),  1959).  Hickman and Johnson  focusing primarily on pubescence characters and leaf  tip shape, documented complex patterns of clinal variation,  •  —  H ‘O Lfl ‘D  Fl CD CD  CD  H-  Cr  CD  H-  0  •  H  CD  Z  H-  CD  0  CD Cr  CD  Cr  Cr  0  C)  ‘<  Cr  0  H  Cr  Z  CD  Si  CO CD  C) 0 Z  Hi  H-  N H-  CO  C) CD 51 CD  CO  C) CD  CD Fl  Cr  Si  0  CO  CD  Cr  0  MFl  CD H H  CD  CD I-  C)  Cr C)  H-  <  CD 51 CD  Z  Fl  CO  CO  CD  Ct  Z  H-  0 Z  H-  Cr  CD  <  CO CD ‘1  0  Cr  IH-  CD  <  I-h  0  tQ  H H  CD  CO  H-  Z  0  H-  HCr  rr  CD  CD Cfl CD Cfl  ) I-  H-  H CO  Cl Si CD  H-  <  Z Cl  H-  l  H CD CO CO HI-h HCD  C)  CO  H-  CO  (Q Fl 0 Si  CD Cl  M H-  51 CI)  II H-  IC  IH-  H  CD Cr  lCD  1C1  -5  CD  CD  CO CT) Cr  Ci  CO  CO Cr  0 Z  CD  51  CO  CD  CO  CO  CD  CD Fl Z  CO Cr  CD  Z  H CD  CD  CO H-  CD  N H-  CD Z  Z  Fl HC) D)  CD  f-r  0 Fl  CD CO Cr CD Fl  Cl  t-h  CD  ‘-3  CO HCO  <  H-  H  C) 5))  Z  Fl CD  0  CD  Z  0 Si  Cr  ‘CI  Fl 0 Ci  I  Z  HCr tS H-  CD  c-r  Z  H-  Cl  Z CD  Cr Cr Ci) H-  5))  CD Fl CD  CO  c-r  H  Si  Fl CD  CO  CD Fl  HH  Cn H-  CD CO  C) CS)  CO  P  0  C)  H—  CD  Z  CD  Z HCO  CF  Z  H-  Ct  0  CD  CD  Fl CD  Fl H-  5)) tJ H CD  1-5  CD  0  CO  CD  H0 Z  Cr  Z  CD  c-r  H,  0  CD CO CO  Z  CD  H-  çr  C)  i)  <  Z Si 0 Si CO  H-  Cr  C) 0 Z  <  Q CD H  Fl  CD  H  CD  CO H-  Si  Z  J (I)  ) Hfr CO rt HH-CD Cr Z  H-H-Fl tQ 5)) Z Z Cr H CD CD b Z  CO CO  CD  CD  CD  1-3 C CO  0  CD  ç-r 3  M  0  o\°  UI  -D  CD Fl  0  •  CO HCO  H  Z CD  CD  Z  H-  Fl  CD H-  Z  C) I-j H-  (1)  1  <  HCO  0  Z  Z CD Fl  c-r  l  H-,  0  C CO  0 -3  CD CO  C) CD 51  CO  CO 0  Ci  C) CD  Fl  0 Fl Cr Z CD  CD Z 51  Cr CD H  C) 0 CD CO  CD Cl  rr  Fl CD  CD  CD  CO  H< CD H  f-r  CD C)  M  CD  CD  çr  CD Z 51  HCD CO  0 C)  CD  Cr  M  0  CD  CO  0  Cr  I-h Fl 0  CD CD  HZ  Fl Si  ti  H-  0 Z  Cr H-  CD  H-  Fl  CD  <  H  Z CD  C) H H-  CO  Si  0  H-  Z  Z  5))  C)  H-  Fl  CD  Cr  0 Fl  CD CD F-Z N ‘-< HCO HCO H-  CD  CO Cr CD 1-5  Si  H  C)  H CD  CD  CD Z CQ CO Cr Si H-CD CO Fl Z  Cl HCO Cr H-  <  H CD ) Fl H  C)  CD  CD Fl  CD CO CD CO  0  CD CO CS I-’Cr CD  Cl  CD 1-5  <  CD  0  —  D  H .D  —  0 Z  CO  C 0  Z 51  CS)  Z  CD  C)  H-  ‘-<  CD 51  H-  I  C)  CO  CI)  Fl  M H-  Fl CD CD  CO  Z 51  CD  Fl  CF  Z CD  Cr  H  0  <  CD Z  CD 51  -  CO  Si Fl CD  CD CS) CO  <  Cr  H-  CO  51 CD  CI) :i C) CD  C)  CO  CD  Si  H  Cl  CD  1-5 CO  0  Cr  CO C) Fl H-  51 CD  CD  CD  CO  51  CD  CD  N  CO H-  CO  Z Si 0 Si  H-  0 Z Cr  C)  H  .Q  Si Cl HZ  H  C)  H  CO  Fl  Cr 0  ‘tS  H-  C) Fl  CD CO  51  M  0  HCr CD  Si  CO  CD Z 51 CD 51  Cr  CD  CD  <  Si 51  Ct  CO  Cr  Fl CD Z  Fl  Si  C)  CD  Cr  H  <  C)  Z  •  Cr CD  CD  H-  CD Cl  Fl  CD  ç-t  H-  CQ  CD H-  CO  Cl)  51  CD  CD CO C)  Fl  CD  H CO  51 Si CD  H-  <  H-  Z Cl  H-  H  Cr CD  CO  0 CD  C)  0  h  H  CD  H  CD  HCO  Si  Z  H-  Cr  HCO  Cl  H  (  Z CI)  H  CD  CD Fl CD  HCD CO  0 C)  Cr  M Fl 0  CO  0  H-  f-t  J CD  Cr  0  I-h 1-5  H CO  Cl Si 5))  H-  H-  Z Cl  H-  Cr  0)  Cr  51  ( CD  CD 51  H  Z 0  C)  CD  CD  <  -r  H CD CO CO  CD  Cr  CD Fl  <  CD  M H-  M  Si  CO  CD  51  CD ICD  Cl  Co H-  C) 0 Z  ) CO  •  H-  Fl  I-j  M  Z  H-  5)) < CD  Cr  HC)  t1  I-j CO  0  Cr  H-  Fl  CD  H  5I CD CO C)  (Q I-c,  0 Fl  CD  H-  C) 0  M  0  Si HCr CD  CO  5))  I-i  0  C)  H CD  CD  j  i-3  CD  CD Z C)  Il  C) 0  HCO  Cl  51< 5)) 0 IZ < c-r  5))  CD  0  Cr  0 Z  CO  CD 5))  II  Cr  C) CD HC) H-CD  CO  CD  Fl  M  Z  H-  0 M  0 Z  H-  Cr  H-  CD C) 0 (Q Z  Fl  0  CO  Z SI  CD  Cr -5  CD Cl  (-F  5))  Q  1-5  CD  CD ‘-Q  CO  H ‘<  Cr  CD Z Cl CD  Cl CD  H-  HCr H-  H-  J  <  CD  i ‘<  Ct  H-  CD  CD  ‘-<  CD  Cr  Z  Q  C))  CD  Ct  -  ‘-  CD  <  CD 0  I-  0  C))  0  Cr  CD  ‘—3  •  CD  I-  CD  HU)  -  •  H C)) Cr  •  CO  CO CD  CD C))  ci  CD HII  I-I  H-  Cr CD  Cr  •  ‘<:  Cr  II-  CD U) CD  HN CD  ICD C) 0  0  U)  I-  U) ti CD C) HCD  C  •  C)  ><  Cr C)  1 C)) H  C  Cr  C) H C))  CD  S  0  CD  C))  S  Cr 0  Cr  C) C)) CO CD CO  c-r 0  ci  5  HCr CD  H H-  C)) CO  C))  I-j  C)  C C) Cr C))  H-  I-h  CD C) H-  ‘  CO  C)  I-h I—s  H-  ‘<  H  0  CD  Cr  C)) CO  Cr ‘<  (1)  C)) IH-  CD H  I-I  CD  II  ci  CD  C  I-c  0  H  C))  Q  C))  0  çt  U)  CO  I-c  CD  1  C  ‘-<  0 IH  ‘ti 0  CD t-  Q  H  C)  CD U) H-  CD  I  CD  tQ  Mi  Mi CD  •  H-  0 I-h  Cr  C))  ‘CI  C)  ‘CI  C)) Cr  Q.  CD  ci  C)  C))  0  CD  0  HCr  CO  C  Q  C CD  Cr H-  C) 0  CD  H-  ti C)) Ct M  < S  CO  0 I-h  C))  CD  M,  Cr  II  0  H-  C))  C))  U) HU)  ‘-  C))  <  CD  Cr  CD  <  0  C) Cr  HU) -t H-  0  N 0  0  I-i  C)) I-  H ‘-<  CD  <  H-  Q.  CD  ICD  H C)) Cr  C)) ‘1  C))  C)) CO ti  CD C) HM HC)  0 CO CD  hh  H-  Q  ‘  CD U)  0  I-i  U)  C))  CD  <  J C))  tq  0 I-I,  U) CD  C  CD  •  C) CD CO  CD -‘I CD  Mi  CD  i-c  ‘CI  HCr C)) cT  tr  W  C)) Z ci  —  Q CD  IC)  -  ‘<  0  0 H  5  C) I  0 Mi  C)) U) HU)  CI  CD  Cr  0  H CD  CI  C))  HN  -Q i  C) 0  CD  ii  —  C) HCD U)  CD  U) ti  C)  H-  Hrr  CO  C  ‘1 0  (Q  ci  iCD CQ C)) Cr CD  (Q  CD H H I CO CD  ci  Cr CD  CD ‘CI ICD U) CD  I-  HCD CO  C)  CD  U)  C  (I)  •  —  ‘.0 o  )—  H 0 h  C)  <  Q  C))  •  Ø.  C  0  I-  CD  I—c  CD  H ‘-0 Ui  I  H 0  “<  ‘-3  Q C))  t-t  CD  Cr  CD CD i  t5 CD c-r  Ct) ci  HU)  X  CD  CU Cr H0  C))  I-  (C  I-  c-r CD  H  CD  Q  H-  Cr  C))  Ct  I-h CD H Ct  C))  C) C)) H i CD  •  CD U)  Q  C))  C)  C)) U)  C)  0  ‘-Q  CD  0  CD  Cr  H-  c-i-  H ‘-<  C 5 C)) CI  ‘1 CD U)  ‘CI  ‘<  HCO  ci  HN CD  i-I CD C) C tQ  CD  Q.  H  HCD  C II  0  CO  H0  Cr  HC))  I-  C))  <  CD C) HI-h HC)  ti  C) CO  I-h I-  H-  CU  <  0 Mi  CD H  <  H CD  CD  Cr  ci  C CO CD  —  a H  H ‘.0  —  CD C)  HC)  c-r  C)) -c  CD  Cr  —  CD I-c  CD  0  •  CD  I-  C) C  CO  0  HCr  C))  ç-r  CD  0 ‘-I  5  Cl) C) H U)  <  CD  I-  HCr H0  ).Q  (I)  CO  CO CD  C  C))  C)  CD  HCD  Mi  H-  Cr  C  ‘.-J-  HCO  CD C))  H-  C  fr  II  Mi CD  I  H-  -t  H-  C))  -  0 I-h  U) CD  C  CD  Cr  Cr  C  CI•  Q.  CD  Cr  i-c  C))  I-  C))  0 Cr  HU)  Cr  C)  CD  I-j  0  Cr  0 I-h  H0  Cr  H-  0 CQ  -  C) 3  C  CO  Co  CD CO  CD C) H-  CO  ti  Cr  C)  CD  0  C-? 0  HH CU  5  CO H-  1<  <  CD  i-  C))  CD  <  Cr  —  HCD U) HC))  N  C)  I-j HC)  CD  5  ‘‘  Cr  ‘  Z 0  U)  I--c  CD  Cr  H-C  H-CD C) C))  CO  CU  H-  C)  C))  CU H  ‘CI ‘CI  CD  ç-t  5  C  II  Mi  IC))  ICO  IH IC  IC IH-  •  I  ><  Q  C)) h CD  ‘  0 S  C)  CD  H-  HU) Cr H-  Q.  C))  II H  <  C))  C) H CD  —r  CD U)  CD  Ct  H-  CD C) HCD U)  ‘  C))  Cr  HC)  C) H-  0  CD  CO CD  C)  CD U)  C)  C) H CD C)  CD  0 ‘ti  C  C)  I-i C))  U)  C))  C H3 Mh C)) U) ‘ti  CD C)  CO  rt  o ci-  H-  CD C) HCD U)  ti  t3 U)  C  U)  Mi  0  CO CD  C  CD  Cr  CO Cr  CD  (Q tQ  CO  C  iO  Cr J CD  Mi  0  I-I  C))  H 0  ‘I  CD  Cr  I-’-  C))  I-  Mi  0  C  CO CD  Cr 0  CO  HI-  I-h  CD  ç-t  CD ‘1 CD  —  CD  -r C)) >‘ C))  C)  H-  Mi  H-  C)  CD  ‘CI  CU CO  I-h  H-  CD  i-c  CD  CD C) HCD U)  U)  Cr  CD  HCO  U)  0  C)  C))  CD  Q.  H-  0  ‘  I—i ‘.0 O  I-i  CD  CD  HCD f-r HCD U)  l-  <  C))  HH CD  =  CD U)  H-  C)  U) ‘CI CD  0  Cr  ‘ti  C  c-r  CD  Cl)  C))  H-  U)  I-’  0  C)) i Q.  H CO H  0 rr Cr CD  H  -c  C))  Cr 0  CD  ci  C)) H  C)  —  =  CO ‘CI CD C) HCD U)  C CI  U)  C))  Hi  -r  H-  ‘CI CO  II  0 C  ‘-Q  C  CO  -t  C)  CO Cr H-  H-  C  0  Q.  U)  HC) Cr CD H “<  Q.  CD  5  H-C)  Cr  Q.  =  I-’ CD U) Cr h HC) Ct CD  H  C  I-  CD  Cr  CD U)  H  H CD  HC))  Hi  Cr H-  CD  Q  H-  H  H  ci  C))  CD  I-I  CD  1  C)) CO CD CO  ‘ti  0  Cr  j  )Q  0  Cr  U,  46  rationale of Calder and Taylor for recognizing subspecies in .  ferruQinea is sound and more in keeping with modern  taxonomic practices of recognizing infraspecific variation (Stace 1986) Because this is the first study to examine morphological variation in detail throughout the range of Menziesia in North America,  2.4.2  a synoptic treatment is presented below.  Key,  Descriptions,  and Nomenclature of North American  Menz ies ia  KEY TO NORTH AMERICAN MENZIESIA Smith (ERICACEAE) Erect or straggling shrubs to 4 m tall, young branches finely puberulent and glandular-pilose, becoming less pubescent or glabrous with age, with older bark shredding in longitudinal strips.  Leaves alternate,  often in compact whorl-like  clusters; thin and deciduous,  glaucous or pale green below;  pilose or glandular-pilose above,  glandular-pubescent or  pilose to densely puberulent below, with subulate hairs along the midrib; margins ciliate, minutely crenulate-serrulate; ovate to elliptic to oblanceolate or obovate, 1.0-3.0 cm wide,  3-8 cm long,  tips acute and apiculate to rounded and  slightly mucronate,  short petioles to 1 cm,  leaf bases acute  to cuneate.  Inflorescence a 2-8 flowered terminal corymb or  umbel  or abbreviated raceme, nodding,  (ours)  on shoots of the  previous year, appearing with the leaves; pedicels glandular pubescent to pilose or puberulent,  10-40 nim long,  deciduous membranous bracts; perianth 4  subtended by  (5) merous,  calyx  .  CD Cl)  H•  f-I  F  lCD  •  •  U)  0  Cr  W C)  h-i,  •  S  f-I 0  M  CD U)  Cl  C) Cl) U) C) Cl)  -  C)  •  Cr 0  Cl) H  ti  C’) Cl)  CD Cl)  H-  HCD hi I-I  I •  •  •  • • • •  .  • • • • •  Cr  Cl) U)  • •  •  0  •  ()  Cr  (Q  •  I  Si  CD f-I  t  i  CD f-I  <  CD  Cr  CD  I-I  0  U)  H CD  ti U)  Cl)  C)  I-  Cl)  Cl) H  HH 0 U) CD  ti  CD  Cr  X  V W  CD U) C)  ti  H Cl f-I I  Cl  (C H Cl)  ci0  U)  I-I  0  Z  H Cl)  Cl) HI-i U)  I-I  (C  H < Cl) Cl) i-i H-Cl CD U) H Cl)  CD  •  • • • • •  HO  •  CQ I-I  CD U) C)  CD  H 0  H Cr  HC) CD H Cl)  Cl  CD  •  CD H 0  Cr  H CD  CD I-I  CD f-I  H Cl) f-I I  Cl  H Cl)  Q  Cr 0  U)  0  f-I  Cl)  H  -•  CD  0  ti  Cl)  I-I CD CD  CD I  H  CD  <  Cr 0  CD CD  I-I  ti  Cr  Cl)  Cl  si  ‘  H 0 U) CD  H-  ti  H Cl f-I I  Cl  Cl)  H  C!)  Cr H-  H Cl) Cr CD  HC)  Cl)  ti  Cr CD  Cl) C)  HCr  CD Cl)  Cl)  CD  U)  •  •  —  U) U)  -  CD Cl)  H-  I-I I-I  Il-i,  I  •  •  •  •  •  •  •  • •  •  •  CD hi HC) Cl)  5  I-I ci-  0  ‘-I  CD  C?  CD  J Cl  S  C!) CD H  CD  Cl  CD U)  S  CD Cr H-  U) 0  •  Cr  f-I  si H CD  CD  ti  ti  -  Ct  CD Cl) C) CD  I  ‘ti  1-1  H Cl  Cl  FCl)  0  Ct  C!)  f-I 0  ti  H Cl)  CQ  —  Cl -I HCD Cl)  <  0  -  CO i H CD U)  ti  C) Cl)  H-  I-I  Cl  H  5  tQ  0  Cl H  Cl) HI-I U)  5  H Cl) Cr CD  U)  CD  f-h H-  Cr  H-  CD H 0  ti  Cr  H CD  CD I-  ti  CD CO  5  Cr H-  CD  0  C  r-r  CD  C)  Cfl  CD  ‘tS  H Cl) f-I I  Cl  (Q H Cl)  -.  CD  <  0  Cl)  HH 0 Cl) CD  Cl  Cl)  Cr  CD  C)  CD CO  ti  H Cl) I-I I  Cl  H Cl)  (Q  U)  CD  <  CD Cl)  •  FCl)  •  Cl)  Cl)  C-j  H-  C))  —J  CD f-I H C) Cl)  0 ‘-I Cr  H-  t’J  U)  CD  H-  CD C)  ti  U)  C)  H  ci-  0  U)  Cl  CD  0 Cr J  Cr  Cl)  Q  Ct CD  0 H-  ti  -  U)  CD I0  5  Cl  Cl)  Cr CD  H-  S  Cl)  Cl  CD  CO CD  -  CD  H-  Z  c’-) I  ( c-r  H CD  H  .D  W I  -  Cl  U) 0 H  ‘ti  CD H H H-  Cr 0  Cl  H  < 0  0  H  Cl  H-  Cl  C)  c-t H-  CD ti  U)  C) ci-  CD  CD I-  Cl  CD H  H CD U)  U)  ti  C) Cl)  •  ci-  H CD  CD f-i  ‘ti t  CO CD H ‘<  CD  Cl  0 I-I  c-r  CD C!) C) CD  ti  Cl) I-I I  H  Cl  H Cl)  Q  r1 CD  f-I 0 Si U)  Cl) tY  CQ H  -  Q  H H CD  CD  C)  —  Ui  -  CD -I H0 I-I  ti  Cl)  Cl-  <  0  I-i 0 H H Cl)  0  C)  CD  ci-  0  rt  H  c  Q  I-  H  <  CD  Cl) Cr  H-  f-I  0 ><  Cl) ‘ti ‘ti  f-  CD  Cl  C!) H CD  CO Cr ‘< H CD  -  Cl  CD  H 0  0 Ct  Cl  c CD  H Cl  CD  <  ciH  U) H HtQ  5  U)  Cl) H 0  5  Cl)  <  CD H  o-  H H  I-h  CD  Cl  çt  H  H•  U)  Cr  CD  5  Cl  H H  Cr  CD  S ti  H-Cl)  Cl  CD  )  Cl  Ci CD  M  0  5 ‘ti  Cl)  (Q  I-I C!)  0  —  H-  HCr  Cl  U) CD  H,  M  U)  ci CD  H’  0  5  ti  -  CD Cl  C) f-I  C) Cl)  I  CD 0 H Cl) Cr CD  I-I  Cr 0  f-I C) CD 0 H Cl) Cr CD  Cl  Cl  LQ  0  H  —  CD  ()  Cr  U)  -•  U) H H• Cr U)  Cl -  ‘-I Cr  Cl  C) H Ci  H-  -  f-I Cl)  0  —  Cl)  5  CD  CD  Cl ‘t3  CD Cl) h  H H-  CD  Ct  Cl)  Cr  (Q CD t-  H 0  -•  I-I  CO rt Cl)  CD  Q  H-  Cl)  H  c-r  Cl CD  H CD  U)  -  Cl  H (1)  I-  CD  0  U)  —  0 f-I CD U)  ‘ti  Hi Cl) H  5  Cr CD I-I  <  HU) C) CD  CL CD  J HC) tY  U)  L-  rciCD i CD  Cl)  c1 CD  frh H  )  ci0  CD  Cr  H-  I  HU)  CQ I-I CD CD  0 ‘-I 0 H H Cl)  -.  Ct  Cl) Cr CD  •  Ci)  h  CD  ti  -  c-t  H CD  CD f-I  ti  U)  5  CD  H-  Ct  CD  0  U)  CD  Cr  HH H Cl)  C)  I  Cl)  H  Q.  Cl)  H  t-j U)  —  Cl) H Cl)  U) CD  Ct  C)  H U) Cr H  Q  H  H ci  5  t-  0  H Co C) H hh  Q  Z 1Q  ft CD  C)  cli  Cl)  Iti  ft H-  —.  tO I o  CD çt H0 H CD Co  Q  -  I-  Co  —r  ft CD  cli  tD 0  0  0  ft  w  H  H  •  cli t’  ft  t’  •  Cl  0  •  Q.  cli  I-j  cli  -  •  t’  (I) dl H HCo  ft H C)  HH  0  w  I-1  0 0  Co  H  [1  HCo  l-  C) CD 0 H  Ii  •  I  cli  •  o-  H  •.  <  0  H,  II HCo  H  0  H  —  0  CD  Co Co ‘tS  H  H,  Co Hcli  k<  Co ft  t-  II  CD  CD  H  C)  Co  -  H  0  0  H,  C)  CD cli  H  H  -  G’i  U]  dl  ft  •  Cl  CD  H  •  H  •  H  Hft  Cl)  id  1i lID  IH-  kD ItIh Ii  Il-h  Cl) D  Co H  CD  H-  N  I  H  cli  N  cli  0 C)  I-’  0  cli H Co CD  H-  CD  H,  •.  CD Co  cli  0  0  C)  N  CD  I  ‘-<  Co ft  -  1-h  H  CD cli  Cl)  < t5  It’  CD H H H  CD Co  <  cli  I:—’ CD  g  c-v DO  H-  C)  U]  H • Is) I r’-)  —  cli tQ tQ H H-  Co f-r  0  ‘1  0  j ICD C) rt  H  C)  w I  •  id  lo  IH  ‘H-  It’  •  I  •  •  •  •  -  •  •  C)  0  -t  •  Co  ••  i Cl)  cli  H-  C)  cli  H  cli  Iti  ‘t5  •  ft  CD  CD II $i H  I  t’  t’ 1  CD Ij  CD  h  cli  H  Cl  dl  H  (Q  H  CD  Co  CD  Cl  —  Co  CD  cli II H-  <  0  -  Co  CD  H  Co  C) cl) ti  •  t’  h H-  Q  H-  i  0  cli Hh Co  ft CD  H  t5  I C!)  H cli  Q.  tQ H cli  CD  Co  II  C) 0 cli  ft  H-  -  0  CD H  t’  II  cli  H  Q.  cli  CD tQ H  H H  C) cli  H-  It’  (1-  Cl  cli  -  CD  Co  Q  HH  t’  ft  CD  H  II  CD  t’ 1  <  H  CD  Co  CD  Cl  -.  CD  < H  I  Cl  cli  ( H  I<  ft H  Co H H-  H  <  0  0 h  H cli  Cl  cli  H  CD (Q  CD  HH 0 Co  t’ 1  <  CD  Co  Cl)  Cl  Co  cli 0  < CD  cli  CD  11  cli  H  H  cli  Id  IH  lID IH  ft  CD  II  t’ 1  k3  1111  ti  cli  Co  H  CD cli  H-  H  Ill)  IM  •  ti  Co Cl)  Hft  0  ft H-  cli  cli  l-  ft CD  H-  IH  IQ  -  ‘t’  Co Co  I  hi  IH-  Ili  Ih  Ih  lCD  ‘I-h  •  I  •  •  •  •  •  •  •  •  •  •  •  -  •  •  •  •  •  •  CD I-I CD  C) i  Cl  cli  •  Co  0 I-h  Co  CD  C) cli  Co  C) cli  ‘-<  •  Q  cli  -  -  H 3  -  C)  Cl  cli  •  CD  ft 0  ft  0  Co  -  W  0  ft  I C)  •  Co CD  -  Co  CD  H-  0 C)  •  Co  CD  cli  C) cli Co C)  Co  H-  0  Co  H  (Q  H-  II  cli  ‘t  Co  Co  CD  H-  ft  CD  Co 0  tC  0  ft  ft  Co  H CD  Q  cli  ft  CD  C)  Co  Cl)  t’  t’ 1  I-i  H  dl  Q  Z  H di  (Q  Co  k<  di  H  dl  H CD Co  cli ti  C)  0  CD Co  H-  < cli l-  Q  I-j  CD  t’  tI  ‘<  Co Cl) H  Q CD  cli Cl  Co C)  C) cli  •  Co  H-  ft  t’ 1  C) CD  CD  -  H 0  CD  t’  CD  H  I-  CD  t’  It’  •  di HII Co  CD  Co  0  C) CD H (0  0  () l-  i-  C!)  Cl CD  Cl  i  cli  ft  Co C) CD  CD  y  t’ 1  H cli I I  Q.  cli  H  -.  CD  CD  ‘-Q  Co  <  H  CD  0  t’  cli  H 0 Co CD  t1’ H-  I<  Co H HCQ 3 ft H  -  ft  CD  CD Co C)  t’  t’ 1  II  H cli  Q  cli  H  tQ  CD  ft  H-cl)  0  CD H H  1<  H-CD  CD  CD Co ti H-H  CD  ft  W )<  tO  A  J dl H ICl)  1  H cli  H dl  Q  l-  0  Co  Hft  ft H  Q  Co H H  CD  ft  C)  cli  cli  ft  Cl CD  0  CD  t-  0  Co  ti  H-  ft  H-  Co  CD  <  cli  CD  tO  Co  49  usually prominantly apiculate; glandular-pilose above; occasionally glabrous below, with few to  glandular-pubescent, many  fine subulate hairs on midrib; dark green or blue-  (0-25)  green above, paler below.  Flowers 3-7,  on pedicels with  conspicuously long glandular hairs greater than 3x the pilose hairs,  15-40 mm long,  calyx disciform,  glandular-ciliate;  corolla greenish-white to cream to salmon pink, lobed, (5)  6-8  urceolate to urceolate-campanulate. mm long,  (9)  mesic woods,  6-8 rrun,  4-  Capsules ovoid,  glabrous to glandular-pubescent. Moist  open montane or subalpine forests. Alaska south  along the coast to N. California; Cascades of BC to southern WA. .  J.  Fl.: April-Aug; ferruainea ssp. Bot.  43:  Synonyms:  Frt.: July-Nov. alabella  1387—1400. .  .  (Gray)  Calder and Taylor, Canad.  (1956).  alabella Gray, ferruainea var.  Syn. Fl. N. Am. alabella  (Gray)  of Higher Plants of Oregon:  Short compact shrub to 1.5 m. 3-8 cm long,  542  2(1):39  Peck, Manual  (1941).  Leaves obovate to oblanceolate,  1.5-3.0 cm wide, petioles 3-9 mm long;  rounded than acute,  (1878).  only slightly mucronate;  tips more  glandular  pubescent and only slightly pilose above; glandular pubescent and typically densely puberulent below,  though only sparsely  so in the southern Cascades, with few (0-10)  fine subulate  hairs along midrib; yellow-green above, pale to glaucous below.  Pedicels slightly to moderately glandular and less  than 2-3x the length of pilose hairs;  calyx disciform,  50  glandular-ciliate and often puberulent. mm long,  Open montane to subalpine woods; Rockies of  southeast BC and southern Alberta,  Co.)  MT,  3.5-7  glandular-pubescent and slightly to densely  puberulent.  ID,  Capsules small,  and northern WY,  south to eastern WA and OR,  as well as Cascades of WA (Skarnania  and OR, where intergradation with ssp.  apparent.  M. pilosa  Fl.:  late May-July;  (M±chx.)  Juss.,  ferrupinea is  Frt.: Aug.—Oct.  Ann. Mus.  Paris 1:  56  (1802).  Common Names: minnie-bush. Synonoyms: N.  Smithii Michx.,  Fl. Bor. Am.  N. alobularis Salisb., Shrub to 2  (3) m tall.  5.5 cm long, to rounded,  1:  235  Parad. Lond.  t.  (1803). 44  (1806).  Leaves elliptic to oblanceolate,  1.0-2.5 cm wide,  petioles 2-9 mm long;  2.0-  tips acute  prominantly mucronate; densely pilose above and  eglandular to rarely slightly glandular; densely puberulent and usually eglandular below, with 10-25 coarse glandular subulate hairs on the midrib.  Flowers 3-7,  on glandular  pilose pedicels 10-25 mm long; calyx disciform,  ciliate;  corolla greenish-white suffused with pink near the tips, urceolate 6-10 mm long, (3)  4-6  Moist,  4 lobed;  capsules ellipsoid to ovoid,  (7) mm long; densely glandular,  never puberulent.  open montane oak woods to high elevation heath balds;  southern PA and western MD, eastern TN and northern GA.  south through WV, VA, Fl. May-July;  and NC to  Frt. Aug-Oct.  51  Factors Influencing Morphological Variation in North  2.4.3  American Menziesia with Reference to the Japanese Species  Hickman and Johnson  (1969),  hypothesized that patterns of  morphological variation in western North Zmerican Menziesia were explainable in terms of migrational history, past and present patterns of gene flow, environments. detail,  and adaptations to existing  Although they did not examine these factors in  they discussed the effects of glaciation on western  Menziesia.  In both western and eastern North Zmerica,  morphological variation is greater within populations than among populations.  This pattern shows significant correlation  with geography on a regional but not on a local scale, indicated by the Mantel test results.  as  The apportionment of  variation is consistent with a sexual diploid xenogamous breeding strategy  Chromosome counts for  (Grant 1981).  Menziesia are in fact diploid with 2n Brockman 1966;  (Taylor and  ferruainea occurs in a variety of  including sea level Picea sitchensis  forests from Alaska to Oregon,  (Bong.)  Carr.  and montane woods with Thuia  plicata Donn. and Tsuaa heterophvlla, (Bong.)  26  Packer 1983).  Along the coast, N. habitats,  =  Carr. at higher elevations.  habitats are the coastal redwood  or Tsuaa mertensiana Unique among these  (Sequoia semoervirens)  forests of northern California, where Menziesia grows either on fallen logs or as an epiphyte in the lower branches of trees.  In the Cascades and Rocky Mountains, Menziesia  typically grows in open subalpine forests,  usually along the  P1  H  P1  CD  Cr CD  Cr  H O  Cr  5 <  IHP1  P1  k<  X  Cr CD  CD  1:-I  Cr  I  CD  P1  CD  S  CD  CD  Cr  CD  •  H HCQ  Cr  çt  CI)  o  ‘CQ CD  p1  H  Cr  H-  CD CD  CD  •  0 I-h  CD  r-r  0 i  5  P1  CD  (Q  H P1 t-  CD  Cr  Cr  P1  P1  rf  H  H  LQ  cL  CD  Cl)  O  ‘t3  CD  <  CD  Z.  H-  H HCQ  <  Hi  O  CD  Cl)  P1  CD  P1  P1 C) Cr  P1 H Cl) 0  S  P1  CD CD  <  P1  CD  H  H-,  0  Cl)  I-h P1 C)  CD  II  Cl)  ‘t3 ‘t  Z• Cl)  Cr  0  I-<  HH 0 Cl) HCr  CD H  CD  5  P1 () C) $  Cr  Cl J  CD Cl)  H  CD  H(Q  P1  Cl) ‘Zi ‘1 P1  Cr P1 H H  <  H  CD  P1  CD  H CD  <  Cl)  ‘1  P1  CD  <  0  Cr  CD  H-  P1  P1 (Q  Ci) i C) CD  Mi  CD  H H-  Cr  I H H(Q  H 0  Cl) CD  P1 HH P1 ?J’  P1  H-  P1 Cr  <  (I) H CD  CD ‘1  tQ  CD  CD  H-  CD  Cr  Cr  H-  Q-  CD  Q.  0  (C  CD  P1  H-  Cr  CD  CD ‘1  i  0  ø  CD  Cr Cl)  ()  Cr5  5  P1  H  P1  H  Cl)  H  N  CD  0  ci  l:3  o  o  h  P1 1 P1  P1 H CD  CD  C) ‘-<  C)  0  CD  CD  (t :-  P1  CD  <:  H CD P1  ft  CD  HCl)  Cr 3  CQ ‘i O  Q.  CD  Cl)  P1  Cl)  I-  H i C)  •  Q-  H-  5  ‘1 0  Mi  H0  Cr  CD HC) C) P1  CD  Q  Q.  P1  CD  P1 Q  ‘tI  I-  CD  H H  P1  S  Cl) O  ><  CD Cr P1  Ct  H-  Cr 0  CD  Cr  P1  P1  CD II  Cr  CD Cr  CD  C) CD  H-  Cl)  CD  0  N  CD  ‘Ci H-  P1 H  CD  CD  Cr  H-  Cl)  P1  Q  Cr  CD  H-  ‘Ci CD  CD  Cl)  Cr  5  CD  O  H-  CD  CD  ‘  C) CD  P1  ‘ti H  Cr  C) CD  CD CD  05 0 II H CD 0  z  Cl)  <  <  P1  CD  ‘-  CL  CD  0  Cr  Q  H H-  z-  —  5  Q  HI-i  CD  Cr 0  Cl  CD C) 0 H  0 Cl) CD  ‘Ci  X  CD  <  CD  H CD P1  CL  3  P1  CL  CD CD  P1  CD  h  C)  H-  H  CD  I-  H  H P1  H-  5  Cl) H-  CD  C)  CD  C)  CD  CD  CD CD  C)  k<  Cr  CD C)  frj  CL H-  CD  II  CD  Cr CD  H P1  ‘Ci  CD  D  Mi P1  I-  CD  5  P1 H H CD  CD  H 0  CD  Cr  Cl)  5  CD  C) P1  CD  Cr  Cr 0  Cl)  0  P1 Cr H-  Cr  P1 ‘Ci  P1  CD  Ci  5 P1 <  CD Cl)  (Q  P1  C)  t3 CD Cl) CD  •  CD  CD H  <  H CD  0  h  P1  H  CL  H P1  (Q  CD  I-  0  5  CL  P1  Cl)  Cl)  P1 C)  Il Mi  Cl)  I-  CD  ‘Ci  ‘Ci  CD  Cr  0  CD  HH 0 CD  ‘  CD  0 I-  5  5  CD  C) P1  CD  Cl)  CD  H CD P1  CD  H H  Cr  P1 C)  ‘Ci  S  C) 0  CD  ‘1  5  0  CL  P1  CD ‘1  H  P1 H  S  Cl)  CD  I-  CD  Z  Cl)  CD I-  H-  Cr  P1 •  Cl) H-  CD  H-  N  Mi  C) Cr  CD  H-,  Mi  CD  P1  CD  Cl)  HH  0  CD  C)  H-  H  p1  CD  <  P1  P1  Cl)  H  ‘Ci  I  CD  P1  CD  P1 <  -‘  H  0 0  C)  CD  I  P1  CD Q :i  P1 P1 CD  Cr  HCr  Ci  P1  CD  Cr  P1 Cl)  CQ  H 0  P1 Cl)  Cr  <  H-  C)  H-  Cr  Cl)  P1  H  ‘Ci  CD  CD  (Q  H-  0  ‘-Q  CD  Cr  fr’  CD  0  H  ‘  Cl)  P1 Cr CD  <C)  P1  Cr 0  Q.  Hi 0  CD  I-  Cl)  Cl)  Ct  O  I-  P1 C) Cr 0  H-,  H  P1  Cr  5  CD  0  H-  <  CD  CD  O  C/)  H-  HH  HP1  <  P1  H  P1  HC)  (  O  P1  Cr  O H  ‘t5  O  CD  Cr  O  H  ‘Ci  H 0 3 Cl)  Cr  P1  <  H CD  CI)  CD  H HC) P1 H  0 (Q  CD C) 0  H-  Cr CD  H-  Ci’  H-  >  CD  H-  N H-  CD  ‘<  H  Cr  CD  ,Q  CD P1 Cr  0 Cl) CD Cl  ><  ‘Ci  CD  ‘-<  CD II  H-  Cl)  Ci  CD  Cl)  HC) P1 C) CD 0  F-  CD  CD II  0 Cr  HCr  CD  CD  CD  0  Cr  P1  0 C) H-  CD  CD  P1  C)  •  Cl)  CL  Ci  P1 H  H  lP1  lCD  10  IHIH  ICi  •  I  -  CD  0  Cr H-  P1  CD <  CD H  Cr  CD  CD  H(Q  CD  Cr  Cr  •  Cl)  Cr H0  P1  <  CD  CD  Cl) I-  CQ  H-  P1 Cr  CD  CL  :i  P1  Cl) Cr  •  ‘  H-  ‘ti  0  —  tY’  Cl)  II  C  ‘tj  —  H-  I-  lCD  H  CD  H  CD  Cr  ‘-Q  0  P1  CD  Q.,  0  0  CL  CD  Cr  lCD  P1 lC)1  H-  S  0  CL  0 P1  H-  Ci’  h-  Cl)  ‘<  ‘-  Cr 0  Cl)  h  CL CD  P1  III  lI-h  IHlCD lCD  I  KD I  13  R3 kD  I’i  P1  CD  IF-’k  hi  H-  0 I  CD  CL  H-  tl  H  CD  P1  CL  Hi 0  CD  C)  P1  P1  Cl)  HH 0  ICi  •  l  P1  H-  P1 H P1 C)  ‘Ci  ‘Ci  HCl) 0 3  -  ‘Ci P1  5  C)  o  H  •  Q  11 0  Cr 0 I—i Cr P1  0  C)  Cl)  H  Cr  H-  CL  Mi 0  HCl)  HCr  <  P1 H H  C) P1 Cl) H0  C)  0  0  Cr  Cl)  i CL  P1  CD Cr  Cr Cr  0 0  II  P1  H 0  H  H-  CL  P1  H H-  5  Cl) H  CD  IH  hi  Mi  0  CD  CL  CD ‘-Q  Ui  H  rr H-  U)  Dl i  0 H  H  CD  H-  Dl U)  Cr  I-i  0  H  Dl  0  I-I  CD 0  CD CD  0 ‘-1  Cr  H,  0  ci  ç1  Dl  C)  CD Dl  H-  I-I rr  z 0  0  Q  z0  HU)  Z  ci  Di  Dl  Dl  cs  4 c  H-  I-i U)  0  Cr  U)  () CD  Dl  U)  CD ‘-I  H-  ci  Dl  C) çr  HU) çt H-  ci  U) Cr  o  CD  HU)  I-I Dl  I-I  0  CD  Dl  Dl  Cr  lCD ij ICr  Ics  t1 3 CD  ci CD U) cs t ‘i  ç1 CD  CD  0  Cr  0  c-r  CD U)  •  —  aUi  H  :H-  0  U)  CD  0  <  H  0  CD  Cr  Di  U)  H CD  0  Cr  l  Cr  H  H-  ><  0  I-I  CD  U)  0  C) H  H ‘<  CD  <  Di i Q.  U) H  H  CD  ‘1 CD H Dl  Di  H H-  I-I H H  ft H-  U)  CD U) CD  Dl  C Di  CD DiO  C)) Di  CD  çt  H-  H Cr  U)  CD  C)  Di  H  0  Dl  H,  D) U)  CD C) Cr CD  C)  CD  Di U)  CD Di  H-  I-I  fri  H,  Di U)  CD CD  ft  H-  Di  U)  Di  H  Di  Di  Dl  Di  C)  H U) F-  H-  H-  1  I-I  I-j  CD  HU) rt  H-  Dl  Qj  Dl  Qj  o  H-  U)  ;s  Dl  •  I  Q  Dl  S  H, I-1  0  U)  Q CD  CD  Cr  H-  ‘<  rr H  Ci CD  CD  ‘  CD  i  H-  CD  ‘-1  0 H,  CD  CD  Cr  H  Z  H0  C) Cr  Cl) ci  ‘-1  Di  H ‘<  Cr  CD  I-I  Dl  ‘ti  cs  HHU) U).  Dl  Dl U)  I-I Cr U)  Dl  cs t  H  Dl  H 0 i—i  H,  I-I  I-I  I  U) H U)  CD  N Dl  0  0  I  CD U)  H-  CD  U)  CD  U)  CL)  Dl  Dl  U)  CD i-i 0  i-i Dl  CD Cr  -r  CD  Cr  S  0  I-I  Hi  C) Cr  HU) Cr H-  ci  Cr CD  H-  ,Q  cs Cl)  o  Ct  11  ‘cs CD Di  Di  ‘.<  Cr  -  U)  o  CD t-  5  Cr CD çr IDl  H  I-I CD  Di  CD  Cr  (Q  0  r)’ H Cr  U)  CD  CD  Cr  CD  Cr  H  d  CD U)  ci  ci  Cr CD  Dl  CD I-  ‘—1  U) CD H ‘-<  0  C)  ‘ti  I  CD Ci  CD  Ci  H  •  ‘l  CD U)  Cr  H, CD Di  HC)  I-i  CD C) H-  S  Di ‘d 0  ‘<  5  Di  Di 1 CD  U)  Di  X  Di  Cr  Z  Di  HC)  I-I  CD  5  0 CD  I-i  CD  Di  0 U) Di  Id  I  ci  Dl  CD Dl  Z  H  -  I-i  H,  d t  U)  c-r  C)  -J-  HU)  I-I CD  Di  <  J• CD  çr  Dl çt  Cr  Ci-  C)  H, Dl  H-  11  Cr  0  CD CD  fri  Cr  CD  Cr  —  Di  ti  Di  S  0  fri  H,  ‘-1 Di  Ci  Di  Cr  CD  •  I  Cr  E  CD l  Cr  0 (C CD  5  H  CD Ci •  N  H-  CD C) 0  fri  HDi  U)  CD  N H-  CD  0 H,  U)  CD  Hi  U) Cr  H,  CD  Cr J  HU)  —  i-O H  •  H-  1  —  ci  Cr CD  CD  ti CD  CD  ii  d  5  Dl  ci 0 CQ I-I  Di  C)  CD  Di  U)  C) H-  Cr J CD  5  0  H,  0  Cr  CD  5  0  H  CD  <  CD  ci  CD  Cr  0  Q  Di  CD  <  Di  5  Di ‘<  I-I U)  0 H,  Ci H-  Di  Ci CD fri U) Cr  CD i-i  Cr Cr  CD  Dl  Cr  Di  CD  I-I I-I H-  0  CD Ci  U)  Di  -  Dl )— ‘< U) HU)  Di  C)  HU) Cr H-  Di Ci  H  C)  •  ci  Di  0  H-  5  Di  X  CD  CD  d  CD  0  Cr  Ci  CD  U)  U)  Di  U) Cr  5  <  I-I  0  HU) Cr  C) Cr  H, Di  CD  U)  CD  Cr  CD  C)  CD  ‘-I N HHCD 0 Z H, U) H H-HO  CD  U)  Cr  Di  Cr  ><  CD  CD  c-r  H  F-  Di  0 H,  0  ‘-I HU)  d Di  0  C)  5  H 0  H  tQ  H-  H-  Di  l Di Cr  H Di C)  CD  Ci (  Cr 0 fri U)  Di C)  CD  CD  U)  CD  CD  Cr  H-  CD  CD Cr H,  frI  t  fri  0 d  i U)  ‘-I CD  Cr  H  Di  H-  H  C)  CD  Cr  I-I  H, 0  <  H  H  H,  Cr  Di C) C) 0  Cr 0  U) CD  0  CD H Dl Cr H-  0 fri i  C)  H  Di  0  H-  CD (Q  fri  Cr  C) Di  H-  HH,  U) HtQ  CD  Cr  CD  <  H-  0  CD  Cr  0  -  ‘<  I-I Di tI  tQ  (Q CI) 0  i  Di  c-r HC)  H-  Di  < Di fri  Di H  C)  H-  0 (Q  H  0  ‘d  5  0 i-i  0 ‘ti  Di  CI) cn  ‘-Q  Di  C)  C) Dl H  H-  (Q  tQ CD 0  5  CD I-I  Cr  0  H  <  H  CD  Di  -  H CD  Di  U) C)  HU)  Cr  0  H  H  I-I  Dl ‘ti ti CD Dl  0 Cr  0  Ci  CD  0  Di  U)  fri  0  C) Cr  H, Di  H  Cr Di  5  CD  0  HI-I  <  CD  U) U)  CD  CD  fri Cr  CD < CD  Z  I-j  :5  0  5  0  C)  CD  i-i  Di  0  H  5  Di  fr  CD  H  Ci  -  fri CD U)  Cr  CD I-I Dl  CD  Cr  CD fri  5  Di  U)  0 Hç-r Di Cr H  U)  C)  H  Di  (Q  0  ICD  CI)  -  U)  CD  U) H-  ‘d  H-  C)  CD  l  0 H,  CD H U)  H CD <  H  Di  Di  Ui  54  Menziesia ferrupinea and N. oentandra often have been termed vicariant species in phytogeographic comparisons of the eastern Asian and North American floras Kruckeberg 1983). analysis,  (Mizushima 1972;  Based on the results of the cladistic  this supposition seems reasonable.  Their  relationship suggests that an ancestral taxon, most like N. IDentandra, migrated to North America from Japan via Beringia. The morphological similarity between N. pilosa,  ferruainea and N.  and the fact that both species are tetramerous,  suggests that they were derived from a common ancestor which made its way across North America.  The transition from a  pentamerous ancestor to a widespread tetramerous taxon may have occurred in Japan, but more likely evolved in Beringia or northwestern North America since N. oentandra appears to be the only closely related Japanese species.  These events  probably took place during the Eocene or early to mid-Miocene when the Beringia link existed and the floras of eastern Asia and North America were contiguous  (Tiffney 1985a).  Uplifting of the Rockies and the increasing aridity of the midcontinental plains, which started in the Oligocene and became pronounced in the Miocene,  divided the temperate  mesophytic flora of North America into eastern and western components  (Daubenmire 1978).  In this regard,  it is worth  noting that there have been reports of Menziesia from Minnesota,  several hundred kilometres distant from the nearest  populations in either the Rockies or the Appalachians 1952; Rosendahl 1963).  The material,  (Gleason  from the Duluth area,  Cr H-  Cr  CD H  H  l-  H  CD Cr  I-  Cr I-I  CD  C))  [Cr CD  1<  0  CD  — ‘-U  U)  I-  H-  H-  CD  Cr  <  U)  Cl Cr H-  H-  Cr ‘-  C!)  Cl  H0  I  0  c-I-  (I)  ‘13  CC)  H-  I-  ‘13 C)) C)  H-  CD  Cr •  H  13  C))  Cl CD  H-  U)  0  C)  C)) Q  CD  <  CD U)  CD  Cr  H-  HCD  N H-  Cr  H,  C))  U)  0  0  M  Cr  0  C!)  U)  CD  CD  i-  C))  Q.  C))  HCD  b  C) C) H  HU)  HCt  h  W  H,  0  Cr  0 U)  Cl)  C)  C))  i  CD CD  Cr H-  C)  0  HU) Cr  ‘ti H Cl)  C))  HCQ I  Q  CD  0  CD  Cr  13 ‘-<  Q.  CD  CD  <  0  C)  Q.  <  CD  H  C))  C) H-  ‘-Q FCD  U) H-  CD  Cr  CD  0 :i  HCr  H  C)) Cl Cl  H  II  •  CD  CD  —  C) HCD  C))  (C)  CD  H-  C)) H ‘13  ‘-<  t  Q  CD  ‘-0 CD  FH  c-t  CD  <  C) 0  c-r  -  CD  Cr  CD H ‘<  c-r  CD  13 C)) II CD  U)  -  Cr  CD  CD  U)  HC) CD  CD  H-  0  I-  CD  ‘ii 1i CD  CD  CD h  Cr  U) 0  D CD  CD U)  C)  C!)  Cr  Cr  CD  CD CD  H-  C)) U)  Cn Cr  Cl  CD  HCr  C  I-  CD  C))  CD  CD Q  c-t  tQ FC)) C) HC))  c-r J  H-  (-t  CD  CD  U)  CD  C)  CD H-  CD  Cr  C))  Cr  Cr  0  Cr  CD  f-r  OD W  I-  HH H  U)  Q  I-  CD  C))  C) 0  )) I-  H ‘-O  H  D  H,  0  Cr  U) 0  Q  C))  C))  Cl)  H C))  i-  CD  Cr  (C)  IH-  Cl  H0  Cr  I-  CD  0  •  CD  CD  I-h I-  CD  0  H-  c-r  H-  Cr  CD  c-i-  U)  H-  U)  Z  C)  U)  H-  CD H  H-  C-t  CD C)  ‘13  Cl)  CD  C))  Q  Ii ICr Cl)  D  113  •  IX  a  C)) 3  C))  U)  0  HF-  P1  Cr  U)  H-  Ct  H-  C))  Cr  H  H-  IQ CD U)  CD  C)  C)) ‘1 ‘-<  0  H-  Cr  H  < 0  CD  H CD  H-  Ci)  Cl)  0  Z  CD C) H-  (C)  H,  0  C/)  Cl) 0 Q CD  H-  CD ti  CD  Cr  CD CD  ‘  CD  I-  -  <  H  -t  CD C) CD  C)  II  ‘13  0  CD  •  C) C))  H-  1  CD  0 ‘Cr  Z  II  CD  c-t  C!)  CD  H-  CD  H-  Cl)  CD  N H-  CD  •  IX  H 0 H-CC) HC) CD CD CD H Cr 0  h II  CD  I-h  •  IX  H-,  0  CD Cl) CD U)  ‘13  I-  CD C!) Cr CD  0  Cr  CD  Cr  1h  0  Cr  H-  I-i  C))  HH  Cl) H-  I-h  0  U)  II  0  H0 I-L  II  CD  Cr  H-  Cl  C))  H  C)) U) Cr C))  C) 0  H,  0  CD  CD  H0 C) CD  H  CD  Cr  (C)  H-  I-  Cl  U)  C))  Cl CD  C)  C)) U)  C)  CD  0  Cr  c-t H-  H,  0  Cr  CD  CD F0 ti  <  CD  Q.  CD  C))  ‘-  C))  ‘13  U) CD  CD  Cr  C)) Cr CD Q.  c-r H-  H-  H-  CD  CD  I  —  ‘-0 CD  H  Cr Cr U)  C))  H-  H-  N  l-  0  M  CD  CD  CD  H  H-  U) U)  ‘13 0  C))  U)  C))  Q.  CD  <  I-i  CD  U)  CD  <  C))  H  Q.  C) 0  c-r  CD C!)  Q.  H-  CD  Cr  H-  CD  I-  CD  CD H C/) CD  I-  Cl  Z  CD  C))  Cr  0  U)  CD  X HZ  H-  Cl  CD  Cr  HU)  X  CD  HC)  C!)  C!) Cr  CD  0  I-h  •  HH H  X  ><  H-  I-’  C))  I  I-i  HCD Cr  •  lCD  lCD  jC)  IH-  hi  H  CD  H-  C)  C))  I  (C) H  CD  C)) Cr  H  -  0  CD Cl  CD  l-  ‘13  CD U)  Cl  H-  0 ‘1 CD  CD  C)  0  CD  Cr  H-,  H-  0 t  Cr  CD  II CD  0 FC)) Cr CD Q  U)  H-  CD  c-i-  CD  U)  CD ‘ti 1 CD  CD  C) CD  C!)  HC!)  Cr  H  -  C)) ‘< 0  Cr  C)) H  C/) Cr t  C) CD  CD  l-  H-  Cl  H  0  C)  Hç-t  -  CD Cl  U)  H-  H  13  C))  Cr  CD U)  H  CD H  C))  C)  CD  Cr  H-,  H  •  C))  H 0  H,  CD  Cr  0  U)  CD  H-  CD  Cr  Cr Q  0  Cr H-  C) Cr  0 Q  Cr  H-  H  C))  Cr  CD  Q  CD C) C) H-  CD  Ct  CD  HU)  0  H-  Cr  C))  H  C5  0  Cr -  CD Z  U) H-  CD  l  Cr  Cr —  C) CD  ICD  C))  CD  CD  13  CD  <  C))  ‘<  CD  H-  H-  N  CD  -  ‘<  H  CD  <  Cr H-  CD  I-  CD  H Cr  U)  I•  0  l-  I-  CD  H-  (U  CD  Cr  Cr  CD  c-r  H CD  H-  U)  U)  13 0  U)  H-  Cr  H-  H l-  H C))  C))  i-  CD  Cr  C))  H CD  HC))  H,  I-i H-  CD  <  I-i,  0  C) CD  CD  C))  Cr  CD U) 0  H-  0  M h  HC))  C!)  H-  N  CD  H-,  0  H-  Cr  H  C))  0 ‘13  ‘  HU)  Cr  I-h  0  C!)  Q  I-  CD C) 0  I-j  IH-  C))  13  t-  CD  0  CD  II  C))  CD 1 CD  Cr  Cr  0  U)  CD  Cr  Cr C!)  I-  CL)  H-  0  0 Ct  H  ‘  II  CD  ‘-D (3-, W  H  —  H  l CD  CD  U)  0  i  U)  CD  Cr  H H C))  CD  13  C))  IX  Cr 0  CD Q  I-  CD  I—h  CD  I  CD  CD  U)  C))  U,  Q  I  •  II  Cl 0)  C) CD  CO  ci  H-  C  ti  0  I-  C) HC)) H  tQ CD  CD  H H  H  C))  CD  C))  Cl  Cr  C))  CD  (Q  C  Cr  C M  Cr  ci  C  CO  Cl  C))  CO  C)) Cl CD  C)  C)  C)) CO  CD  H3  CO  C))  CD fr  CD I-  t5 C)) I-j I-i HCD h  FCr  C  I-  C  c Cr  ci  I-h  C))  CO  C))  Cl  Cr CD  H C) Cr CD C))  C))  C)  Cr  CD  ci  CO Cr  C)  CD  H-C C)) I-h  <  J C))  H  0  H Cl  Q  CD  C)  ‘tS  CO  I-h  k<  H  C))  ci  ‘ti II CD CO  CD  CD  N HCD CO HC))  CD  •  C)) H  CD Cr  CO  H-  C  —  IC))  lCD  IC)  IH-  hi  C I-  H,  C  CO  CD CO c-r CD Cl  CD  Cr  C  Cr  H-  N H-  C H,  C) Cr HC  ci  Cl  Cr IC  1 CD I H-  ( tQ  CD  Ct  C  H,  CD  CO  CD CD  HC  Ct  ‘z3 ci H C))  C  -  ii  C))  C  ci  CD  CO  Cr CD II H-  C)  Cl  Cl (I)  < H-  Q  ‘  C)  -  CO Cr  0 C)  C)  h Cr  0  H-  CD  Cr  3  H  CD H  C))  Cr  H  Cr  CD  0 ci  HCO  H-  —  H -D CD  CD CO Cr  1  -  C I-  Cl  IIH-  C)  C  HC) CD I I-h I-j CD CD  CD ICr C))  H  CD  Cr  Cr  C))  Cr  <  H  CD  H H-  HCO  HCr  -  C))  CO  C))  H  H-  I-  ci  C) C)  C  C Ct  C CD CO  Cl  IC)) b lCD IH IH IC))  IH  IQ  •  CO CO  C))  (I)  H-  h t-  H,  Cr  •  l  C) CD  (1) H-  •  CO  C  Cr H-  ci  HCO Cr IH-  Cl  CD  lj I-i C  CQ  H-  h  0  I H,  CD  I-  CD tCD  Cr  —  CD Q  CD  Cr  C  Cr  H-  C)  C))  C)) Cl  CD  I-  CO  Cr C  CD CO H-  H-  N  H  Cr C))  C) C) H-C C)) C)) H CO  C))  CQ H  H-  C  H H  C  I-h  HC))  b  ci  C H  C)  IHCr HCO  H,  C CD  C  C)) CD CO  H  C)  C) H-  C))  CC H  CD  Cr  HC))  CQ  ci  H,  ICD  CD CO CD  •  C))  H-  II  C  H HH,  C))  C)  Cl  C))  CD CQ C  0  H-  k  II  Cl C))  ci  H tJ HO  C))  CD  C)) <  Cl  H  C  t.Q  I-j  CD CO  C) Cl  CO C)  C))  C)  CD  C))  Cl  C))  ICD Cr  I-h  C  Cr  CO C  CO  C))  CD H H  CO  C))  C)) CO Cr  C  C)  Cr  I-c  3 C  Cr J CD  C)) H C  C I-  C))  H C) CO  H-  Cl  HCO Cr CD  CD  C))  H-  (Q  II CD H,  CD  c-t  CO CD C3 C)) 1 C))  Cr  C))  Cr  Cr  Cl) CO  I.Q  ci  CO  C) CO Cr  0  C)  CD  Ct  CQ  C  H  C))  H-  C  Cr H-  C))  <  C)) i-i H-  HC) C)) H  (Q  H C  C  I-c  C  C M  CO  I-  CD  C)) c-r Cr  H  C))  H H-  C)  Cr  I CO H-C  N H-  II Cr  3  0  >< CD  <  H  3  H-  C))  Cr  C I-h  C)CO  CD  I-  C))  Cl I-  H H-  CO  CD H CD CO  Cr  I-  CD  CD  -.  <  CO H-  ci  C) H  0  C) CD  C) CD  ci  t-  CO  d  C))  I-  H  C  CO H-  C) 0  HCO  t C)) Cr CD  CD  Cr  CQ  IH-  Cl ci  C))  H C)) CO  C)) H  H-  CD  C)  CD  Cl  <  LII  •  H  C).  Cr HC)  C))  H CD  C  I-  HCO  C))  H CD  tY  0)  HCr  ci  CO  C H,  C) CD  HCO C-t CD  X  CD  CD  Cr  -  CD I-  <  CD  C  (Q  II CD  0  C I-h  l CD CO  C))  CO C)  C)-  C)  I-  CD CO Cr CD  CD  Cr  CO  ci C)  CO  CO  C))  tCD  C))  H-  c-r C)) H  CO  C))  C) C  Cr  C  C))  C) CO  C)  <  Cl  C)  I-  CD  Cl  C)  C)) H  —.  CO H-  CD  ‘-0  H H-C CO II C) H C  Q  1 H-  ci  Cl  Cl  HCO Cr CD  ><  CD  C))  Cl  H  ci  C) C  Cl  C))  Cl  Cr CD  C))  H-  C)  H  (Q  ci  CD CD  CD  C)  H CO C  C))  <  C))  CO  Cl  H CO H C))  Cr Cr CD  C) Cr CD  Cl  C  ‘i H  C))  C)  C)  C)) < Cl)  IH-CD Cr I-h C)) ci CQ Cr CO CD  C))  Cr  C))  Cr  CD  C)  CD  Cl  H-  <  CD  HCO  Cr H-CD C I-c CD  C))  C) H-  C))  tQ H  C)) C  •  H  CD  H L  •  H  C))  CD Cr  Cl  Ct -t CD CO H, CD H  0 C  I-j  H C)) CO  H-  H-  H-  N  I-c  C  H,  riCO  C))  Hc-t  C))  Cr  CD  C)  I-h H H-C ICO C)) H 3 HC)  C  IH-  CD  H  C) H-  C))  C))  H  Q  HCr CD  •  —  CD b)  D  H  CO CO CD I-  CD  —  Cl  HCO Ct CD  CD  <  H  C))  C  I-  Cl  C))  H  0 Cl  C)  C) CD  1  CO  I-  CD CD  ci  iQ  CD  H,  C  Cr CO  I-  C))  ‘d  •  (iJ  CD  o  H  CO CO CD fr  ci  CD  —  C))  C  H  I-h  CD  C))  Cr  C  (1) CO Ct CD ‘  ‘1  CD  Cr  I-h  C  CO  CD  CD  I-  CD  Cr  C  Cl  C)  N H CD CO H  X CD  ‘-  C  H  C))  ci  tQ  I-h  1 CD  CO  C))  Cl  C) ç-t CD  C)  C)) < CD  a,  CO HCQ  H-  C)  0  CD CO  c-I-  Cl. H-  CD  CD  tQ  •  cv  CD  Cl)  II CD  5 CD  0  H-CD Cl) cv CO Cl)  <  <  Cl) C)  H-  i  0  CD  cv  H CO 0 H Cl)  Cl)  ti  h  CD  cv  C) 0  H-  CD  cv  CD H ‘-<  <  H-  HCO  ‘<  Cl) cv  II  ti Cl)  5  C) 0  CO  CD  f-v  H  0  k<  Cl  CD  CO  Cl)  cv  H-  ••  CO  Cl) ‘ti  II  0  0  CS  cv  cv  CO  HH 0  ICS  I  k<  0  CO  ‘-<  H  CD  H H-  Cl) CO  CO  v  CD  C)  0  CS  H-  cv  H-  Cl)  II  CO  CO  0  H  H-  Iti  •  I  0  H0  H-  I  fr cv  0  CO  0  ct H-  0  C)  CD  CO  cv cv  Cl)  -.  LI)  CD  ‘D  H  CO  H-  <  Cl)  —  Cl) ‘<  Q.  0  cv  Cl  cv  CO  CD  Q.  f-v  H-  cv  H  Cl  ‘-  CD  0  H  cv  Cl)  CD  II  CQ  ‘<  0 cv  H  Cl)  h  —  ti  1 F-D  t  tQ  H-  0  CD  HCO  cv  CO  Cl)  ‘ti  I-i  CD  CO  HCl)  C)  Cl  H  Cl)  ti  cv  CD CO  CO  Hct  0  II Hf-v  H  Cl)  CD  ‘CS ‘CI Cl)  )  HH Cl H  t5  CO cv  CS•  CD  Cl Z Q  cv  -  j cv  CO  0  5  0  H(Q  f-v  0 Ml  C) CD  0  t1)  H-  Q H  CD  -  Cl)  1  cv  CD ti HCO 0  CO H-  CD 0  CD  <  cv  C) CD  H  ) cv H-  II CD  I-  0  M  H-  0 Q CD  0  CD  II  0  Cl)  H-  f-I-  CD CO  CD  HI—h H C) Cl) l  CD  CD  cv  HH  H Cl) C)  cv  H-  Cl)  HCl)  < Cl)  H  CO  <  ‘d CD  II  CD  cv  CO 0  H-  <  I-  Q Cl)  0  Cl) H  H-  LQ H Cl) C)  CD  cv  I—h  0  cv  CO 0  H  0  CO  H0  Hcv  Q  C) 0  H  <  H  CD  Cl)  cv 0  CD  -  CO  HCl)  Cl) H Cl) C)  CD  f-v  H i  Cl  CD  C)  CD  I—h  H  Cl)  CO CO  CD  H  H  <  Cl)  I 0  CO  Cl)  Cl)  I-’-  N Cl) HC) H-CD CO Cl)  H  CC  <  H  Z  Cl) H-  ‘cr  C) CD  H-Cl  cv I-  HCO  f-v  CD  h I-  C)  CO  cv  H-  5  0  H h  cv  Cl)  CD  cv  CD  I-i  0  cv  H-  0  H-  H-  f-v  C) HCl)  Cl.  H  <  N  CD Q.  C)  I-  M, 0  cv CO  CD CD  CO  HC) CD  CD  cv  i-h  0  f-v  CD Cl)  CD  cr I-  I-  CD  f-v  H  M 0 H H 0  CD  H-  f-v  )  I-  M  0  cv  CD  H  CO CO H-  0  ‘CS  CO  Cl)  CO CD CO  Cl)  CD  f-t  0 Ml  <  ii  H-  CO  CD  ‘CS  0 cv <  Cl) CO CD CO  ‘CS  II  H0  CD  cv  H-  l  Cl)  H  Cl)  cv  CD I—h 0 II CD  II  CD  •  —  <I  H  CD  CO  Cl)  -  0 Cl) CO  CD  Q. (Q  t  CD  cv  (Q  Z  IH-  CD  <  CO CD  CO  cv  H-  H  N  C)  CD  f-t  CD CD  cv  CD  H0  f-v  Cl)  Cl)  CQ  CD  f-f  H-  fr  CD  0  H-Il  i CC  H-  tQ  < CD  H-  Q  Ml  0  Q  H-  Hcv  H-  5  CD  I-  Cl)  CD  k<  Cl)  CD Cl)  H  Ih  M  I  M  0  H-  X  0  I-  CD  CO  0  H  C)  CD  h  CD  Cl)  I-i CD  Cl)  <  H  0  CD  cv  0 i-h  cv  Il 0  C  Cl  CD  H-  cv  C) C)  CD  cv  cv  I-i  0  ‘  CO  0  cv  ‘-<  II  0 0  cv  CD  CD C) 0  tY  CD  Cl)  Q.  H  0  H Cl) cv CD Cl)  CD  cv  —  H  Cl)  5  ‘  CD  Hcv  CO  ti  <  CD  f-v  (Q  H-  i-j  h’  CD  f-v  Cl)  Q.  0 0  •  t  Cl  CD Q.  0  H H  Cl  Q.  CO  S  Q Cl)  •  cv  0  i  Cl)  CD CO  Cl)  C)  CO  Cl  C)  I-  CD  Z  C)  cv  H  H-  frj II  CD  H  •  I  H-,  0  CO  Cl) CO CD  CS  Cl)  Cl) H  x  H  H  HCl)  <  H  ‘CS  CD  f-f  Q  H-  ct  Cl)  cv  CD  Q. CQ  l-  CD II  Cl)  lI  -  H0  CD  f-I  Q.  Cl)  CO  H-  Cl)  f-I-  5  0  CD  <  Cl)  CD H CD  I-  CD  0  H  0  cv  CD Q.  cv  HC)  cv i-  •  LI)  CD  -D  H  -  CD  CO  CO  CD  0  CO  Cl) H  f-t  5 0  CD  cv  H-  CO  H0  H-ct  f-v  Cl)  H-  f-f  Cl) C)  tQ H  CD  H-  Cl) H ti  CD  <  H-  CO  CD  cv  ‘1 CD CO  Z 0 M-i CD <  CD CD  Cl) < CD  CD  CO  CD C) Cl  h  H-  C) CD  H-  Ml  0  f-v  II CD Cl)  cv  CD  h  CD  v  C  H-  0  0 H H  Q.  CO  f-v  Cl)  ‘ti  M-,  0  H0  CO  ti Cl)  CD  Q.  I-  Cl)  Icv  0  ‘CI H-CD  Cl)  CO  Cl)  Q-  CD  cv  C)  CD  <  Cl)  5 < Cl)  Cl)  CD  cv  Cl)  H  HCl)  C) 0 H  t  CD  f-f  D CD  c-I-  CO  0 Cl)  Q.  Cl)  H-  Cl  cv  0  <  i 0 C)  CD  CO 0  CD  cv  H-  Cl) C) ct  cv  C) 0  0  cv  H-ct i  CD  0  C)  0  cv  CO  Cl  H  0  H Cl)  i-h  CD  CO  0  H-  f-v  H  0  Cl) H  cv  C) 0 Cl)  Cl)  0 ‘1  II H-  CD  cv  H i  CD  cv  S  CD CD  cv  CD  —  Lfl  C))  C))  H H  Ic  CD H ‘<  <  H-  c-f  ‘H-  kj  C)  kv  IH  C  C) 0  -  .  iX  -  ><  H  C)  5  ci  Cr C  CU :i  HC)  CD  Cr  Cr  H,  C  <  HCD  C))  CU  H-  Ii CD  ci  IX  HCl)  HCD CD  CD  Cr C  C))  CD  ‘ti  C))  C) Cr  C  Cl  H  CU  l-d  CD < CD  CD  -  HCD  CD  CU H ‘<  CU  C)  CD  CD Cl  Cr H-  CD  H-  Cl  H C))  C)  CI)  Cr  H-  Cl  H  C) C ci  CD C) HCD CD  ‘  CD  CD CD CD  C)) ti C))  CD  Cr  CQ  0  S  C))  CD  H-  CD  C  <  CD Cl  CD H C)) Cr H-  I-  h  5  1  Cr  C  Cl  C))  H C))  CD  ‘  CD Cr CD M  CU  CD  H,  C  C)) CD  I-  0  H  H,  CD  IC)) Cr  ti CD  Cr CD  CD  Cr  -t  CD  5  H-C H, FCD  •  C))  C  H  C)  CD  H-  CD  Q CD ‘1  CD C F-  CD  C)  CD  Q  11 ( CD  C) C)  lCD  I3 Ii-’-  5  CD  CD  <  CD H  H-  Cr  CD  CD  Cr  C  0  C) Cr  lCD  5  CD CD  CD  Cr  H  C))  I—i  CD  CD  C)) Cr  Cr I-’d CD CD Cl H-  <  HCD Ct H-  Q  C  II H-  H,  CD CD H  C  CD C) HCD CD  CD  CD  ci  C  I-  CD  5  C))  Cr  CD  CD  Cr  5  C CD c-t  CD  •  C ci  h  (Q  CD  Q ci  CD  C  C  HCD  CD H  Cl  H-  HCD  C)  H-  —  I—c  Ii  Ii ICr Ic))  lCD  C) H  CD  Cr 0  CD  I-  CD C))  C))  CU  HH H-C h H-  •  IX  H,  (Q  CD HCD Cr H-  0  C)  -  ci  I0  Cl  C) 0  CD CD  IC))  0  C)) H Cl)  HCD  H H  HC  IHIC))  I  C))  H H CD  •  IX  Cl  CU 3  IC))  k) II-  IM IH  IH-  Içt  5 ci  L  •  I  -  CD I-j  <  CD  0  •  C))  CD  IH-  CD  C))  f-t  H-  )  f-t  Ii IN IH-  kD  lcn  H-  5  t-  CD  Q CD  H-  CD  Ct  I-c  0  H,  —  H ‘-0 -J U1  -  C\)  H LD  CD  H,  H  0  4  H,  0  Cl) CD CD  CD  C Cr  <  CD  Cr  H-  -r  H  CD CD  C  F-  C)  CD  Cr  H-  H,  ICU  lCD lCD IH-  L lCD L3 IN IH-  H3  3  0  H-  Cr  hd C))  tQ  H-  5  l  CU  3  C  Cr H-  ci  H  0  <  CD  H,  0  i-  Cr CD  çt  C))  CD  H-  -]  HC) CU  CD  ‘  Z  Cr  0  !Z  C  Cr  Cl  Cr CD  C))  5  HtQ h  H  CU II H-  Cl  CD CD C) C  CD 3  J  Ct  Cl  C))  -  C)) 3  C))  d  C  H-  F-  5  X  H  CU  C  HCD  HCr  I-’d  CD  ci  CD  (Q  CD  Ct  H,  0  CD  5  II  C  H,  Cr  C))  Ct  CD  I-  C  Li.  u  CD  Cr  H,  0  H H  C))  Cl CD CD  H  C)  H-  ‘ti  C))  H-  CD  Ii  CD  Cr  CD  CD CU  H-  HM CD Ct  H,  Cl  CD  <  < C  CD  N HCD CD HCU  CD  Ct  C))  Ct  ‘<  CD H  H-  F-  HCr ‘-<  1-i U)  CD  H-  <  Cl  HU)  t3  Cr  Cl) CD  C))  C)  CD  Cl  C  H,  I CD  CU  CD C) HCD CD  w  CD  0 ci  I  CD  5  C))  II  CD Cr  Cr  Q  ))  H Cr  F  CD  C ci  I-  CD  5  3 Cr C))  CD  ‘ti  Cr  0  CD  I  CD  —  3  C))  C C))  H-  CD  t-  C) ci  C C)  CD HC))  N H-  lCD  1Z  C I-h  ‘<  l— CD HCr  CD  Q. H<  Ct  CD CD  Ct  CD CU  l-d  -Q  CD  Cr  Cr  C))  Cr  CD  Cr  C Cr  tQ  i-i  0  H,  CD  Cr  0  3  H  Q ci  H-CD  C) HCD CD  CD  CD  Cr  CD C))  h  Cr  ICD  H  C) H-  )  H t-  CQ  H  C  H  C H  H,  CD  H-  C))  C)) C)  C)) H  II  CD  Cr  CD C ci  CD  Cr  H,  C  CD  C)  CD  HCl  <  CD  CD  5 <  C))  0  IHIH  P  •  IX  H-  Cr  Cl HCD  CU  C  5  I--c  Q  Ct  0 ci  I CD  Ct  I-  0  C))  C  H  )  i—c  H,  C  I-i C)) Cr H-  tQ  H-  5  Q.  C)) ‘1  Cr  C  H-  <  3  C  Cr H-  H-  C))  I  C))  <  C)) H  3  H H-  C)  •  CD I-’d CD  CD  CD  H CD CD CD  CD CD  tJ  <  CD H  H H-  CD  C))  0  Cr H-  CU  H  C  CD  H-  C  H  0 H  H,  H-  Cr  C  CD CD  ci  CD CD  CD  I-  ‘  0  Cr H-  C)  CD CD H CD  C) CD  CD H-  CD  CD  C) H-  CD  CD  C))  LHC)  CD  I-c  CD  C ‘Ct  5  CD  H-  IC))  ko  lo  IH  I’-’  Iti  •  IX  ‘<  H C)) H3  > ‘ti  CD  CU HCD C)  CU  5  <  HH HCr  C)  Cr  CD  C  3  l  CD  Ct  CI) CD  CD  :—  Cr  CD  H-  C))  çt  IC))  lii  id  Ci  k-t  lCD I3  I  CD CD CD  C))  C))  C  Cr C  CD  H  U)  H  CD  ui  ‘-0  H  ci  C))  CD  IC))  I  C  Cl  C  —  C)) CD Cr  I  Cr  C) C  II  fr  C))  CD  H  <  II  H-CD H 5 HCU H Cr C)) H-  Cfl  U] co  I-  CD U) CD Di  CD  Di  Cr  Cl)  Di  H-  II HH,  ‘-< U)  U)  H-  CD  CD U)  C)  ‘CI  U)  H  Di  •  C)  H  0  Cf  Ct CD  Cr  Di  H  CD  .  i-  0  Cr  Di  I-h  0  U)  Cr  Di  II CD  CD  I-  Dl  k<  CD  C-f  Cr  Di  Cr  II  H-  CD  C—  CD  ‘-0  H  Di  Cr  Cr  Di  Cl  Dl Z  0  Cl) Cr  C) CD Cl)  H-  CD  Dl  Dl C  -.  (fl  o  H -o  H-  Z  0  —  <  CD H  <  Cr H-  Q CQ  U)  U)  0  -r H-  H-  Cr I-i  Q. HU)  CD Q  C) -r  C)  CD U) ti CD  I  CD Q-  Cr  HU) Cr IH-  Q.  Di  H ‘-o CD a  Di  H I-<  0  rr  HCD U)  -r  Cr  Di  X  Cl  Di  0  I-i  H-  -3 Di U)  -  Q  Cr CD  I—’ Di  ICD  <  U) CD H  H 0  C)  <  Di H H HQ. CD  CD  C) H-  0 ‘1  ti CD  Di  Cr  I CD  II  U)  CD C)  C)  Cl HCD  U)  ‘  U) CD  CD  Di ‘ti Di  CD  CD  ç-r  -  II  CD  <  CD  0  Ct  ç-r  U)  I-  CD  ICr  H,  o  0  H  CD  Ii H H  CD Q. CD Q.  Cl) HU)  CD  h  HCl)  C)  I-j  CD  0  Cl)  H-  Cl)  o  Cr  o  ti  tQ  H-  II  o  H-  CD Q  I  H-  U)  CD  II  Cl)  H-  C) Cl)  CD U) Cr  I  t—  Dl  HI-  Q  H-  Cl)  CD  0  <  I-i  çr  D)  CD  I-  Hi  Dl  H-  Cl)  Dl  ‘-<  Cl  Di  U)  <  H,  0  U)  Q-  Di  U) H  H-  I-i  CD  Ct  U) 0  CD  Cr  0  0  N  H,  I  CD  Di  U)  0  0  U)  H-  II Cr  ‘CI Di  i  I-  CD  ii  Cf  0  CD  Cr J  H-  ‘1 U)  0 C) C)  Cl) H-  CD  Dl  0  0  Dl  U) H-  CD  H-  N  CD  U)  CD  H-  U)  Di  IX  .  Di  IDi  Iti I h riIli h lCD  •  I  CD  HH  -  0 0 ‘-< 0 N Di  Cr  0  •  U)  0  Cr H-  H-  CI  HU) rr  Cl  Cl  CD  Cr  H-  I-i  iCD U) Cr  ‘<  H  < CD  Cr H-  CD H Di  I-  CD  <  Dl  Di  ‘-< H CD Cr HC)  0 ti  0  ‘-<  Cf H  CD  I-  Di  ‘ti  ‘  Di  CD  Di  Cl)  HCD  ‘ti CD  U)  U) CD  CD  Di ti Di  C  Cl)  0  I  CD  Dl  I-  Cr CD Cr  CD  ‘—J  ‘CI  0  CD  <1  H-  Hrr  I-  Cf  H-  i-  ‘CI  U)  ti  Dl  II  (Q  0  CD  Cf  0  Ct  CD  ‘ti  I-i CD  Cl  Cl  U)  Di  O —  CD  ‘-D  H  Di  c-r  Cr  Di  X  Cl  Di  0  HI-i  -3 Di  CD  C)  CD  U) C)  CD  H 0  I-h  H-  CD  Ct  LQ  H-  Q  CD  Cr  U)  Cr U)  Di C)  I-  Y  Cr  C)  Cr H-  Cl)  H-  Q  Di  Cl)  0  Cr  U)  I-  Di ti ti CD Di  Di CD  Dl Ct  U)  1 Cr  I  ‘ti Di  0  C)  CD  ‘<  H  H  Di  H-  C)  CD  CD U)  -  U)  CD  tQ  CD  Cr  I-h  0  CD  CD  I-  i  Cr  CD  HU) Cr  U)  l-  CD  ‘CI  U)  0  I-  CD  Cl  Di  CD  i C)  CD  C)  U)  CD  0  I-h H  H-  CD  U)  0  Di C) CD  II  Cr CD Q.  P1  i.Q  0  H  CD  U)  Cr  H-  J  c-r  H-  •  ‘—  Ui  H ‘D O  H-  0  Cl)  0  0 I-h  H-,  Di H  I-  CD  J  Cr  Cl) 0  CD  Cr  H-  H  0  CD  H  H-  0  H-  (I)  Q.  Di  H-  0  C) 0  HU)  I-  H 0  H Cr HH,  0  C) C)  U)  H-  H  C) Di  H HH-  U)  H-  Cl  Di  Cl)  0  I—  CD  II Cr  C) H-C  IX  -  CD -  I-j  C  I-  (I)  Cr J  ‘-j  “I  Di L H-. Q 0  0  H-  Z  0  M  Di  H  C)  CD  .  ><  H  C)  HH-  H  H-  C)  -  H,  0  U)  HCD Cr HCD  <  Dl I-  Di U)  •  Cr  C)  Cl) Cr H-  Cl H-  CD  I-  Di  Di  ii  0  H  I-h  U)  U) H-  Di H ‘<  Dl  H C)  HU) Cr  H-Cl  H c-r  Cl  Di  X  H  HC) Di  C) HH H-  Cr  Di  Cr  Cl)  Cr  Cl)  CD  (  Q  U)  U)  I-’  H  H,  H-  H  •  IX  Cl  Di  H  H  H-  H  I  CD Q.  Di  CD  h  i  Dl  Di  H  0  IDl  H-  —  U]  H ‘o 0  H-  0  CD CD Cl  Cl  H  U)  H CD  CD C)  U)  H CD  Dl  < Dl IH-  (Q H CD  H-  U)  Di  M  C  CD  0  H  Dl U)  ‘  17j  CD  (-r  ICr  CD  CD  I-h  HH  Cl  H  0  c-f  CD  U)  fr CD  I CD  Di  Cl  Di  C) Di H H  H-  0 (Q  H  0  ‘ti  0  HH Di  Cl) H-  CD  (-Ti  60 Table 2.1. Summary of Menziesia herbarium specimens used in mapping species distributions. Taxon/Territory  No.  Specimens  Total  North American Taxa  N.  ferrupinea, sens. lat. Alaska Alberta British Columbia California Idaho Montana Oregon Washington Wyoming  1309 198 97 325 38 196 169 101 162 23  N. oilosa  503 Georgia Maryland North Carolina Pennsylvania Tennessee Virginia West Virginia  11 24 169 26 34 147 92  Japanese Taxa  N.  ciliicalvx Honshu Shikoku  55 53 2  N. povozanensis Honshu  1  lasioohvlla Honshu  3  N. multiflora Honshu  54  N. entandra Hokkaido Honshu Shikoku  8 38 2  N.  N. ourourea Kyushu  3 54 48  3 3  Fig.  2.1.  Distribution of Menziesia ferruginea,  sens.  13S° U  lat.,  in western North America.  Fig.  86° N  z  2.2.  76°  N  Distribution of Menziesia pilosa in eastern North America.  81° N  DISTRIBUTION OF N. PILOSA IN THSTERN NORTH AMERICA  C’  63  38°N  250km ,-7 1.  —‘  b  •  j44E  oo  0  p  M. ciliicalyx  M. multiflora  * M. goyozanensis  • M. pentandra  M. lasiophylla  M. purpurea  0  çO  Distribution of the conunon taxa of Japanese Fig. 2.3. on a representative sample of herbarium based Menziesia specimens.  64  OTUs utilized in morphometric and ecological analyses of Menziesia. Arranged within regions by state or province with field sites highlighted in bold. Collection information for all OTU5 is given in Appendices 1.2 and 1.3. All accession numbers are T.C. Wells collections, except state or provincially coded OTUs which represent herbarium specimens. Table 2.2.  Taxon / Region  No. OTUs  Individuals Examined  North American Taxa .  ferrupinea,  sens.  Wi Alaska  lat. 5  AKO1-AKO2, AKO5,  AKO8-AKO9  W2 Alaska/B.C Coast  12  AKO3-AKO4, AKO6-AKO7,  W3 U.S. Coast  13  WAO1, WAO3; OR: 08W (1009), BEV (623624) , PER (926, 939) , CC (948) ; CAO1— CAO2, HUN (628, 637, 639)  W4 Inner Coast of B.C. and Washington  33  BC: BWF (1725-1729, 1733, 1735, 1739— 1741, 1744-1745, 1747—1752, 1754), STL (707, 711, 717, 726, 729, 733, 738, 740-741), PL5 (662, 1010, 1017), SEY (BCO8); WAO5  W5 North Cascades  20  BCO9—BC1O, ROT (745, 750, 754, 762, 766), SKY (799, 808); WA: STV (1677—1678, 1680-1686)  W6 South Cascades  4  W7 Western Ranges of Rockies  31  W8 Main Cordillera  32  WAO4; GVC  (ORO1),  AK1O;  BCO1-BCO7  759—760,  0R02-ORO3  B.C.: SPA (810, 812, 814), TRO (821), (873), GNP (1121—1123, 1126, 1129, 1132, 1134, 1137, 1140, 1143, 1145) WAO2; 1D02—1D04, FRE (1D05), MOS (17151722) ; MTO8—MTO9 MUR  ABO1, LL (1151, 1169, 1177, 1184), (1190, 1219); IDOl; MTO1—MTO7, MT1O—MT12, ALV (1228—1230, 1232, 1235, 1237—1238, 1240, 1247—1248, 1252); WYO1-WYO2, TET (WYO3) WAT  .  pilosa  Al Central Penn.  5  PAO1-PAO5  A2 North Allegheny  9  PAO6-PAO7; MDO1-MDO3, WBR  Table 2.2 continued next page  (1273-1276)  65  continued. OTUs utilized in morphometric and ecological analyses of Menziesia.  Table 2.2  Taxon / Region  No. OTUs  Individuals Examined  A3 VA/WVA Ridge & Valley  24  WVO1-WV03, DOL (1280, 1285, 1289, 1290, 1292, 1309), CAP (1334, 1341, 1358, 1360), MIN (1374, 1384, 1390, 1399, 1401) ; VAO5, MTL (1601—1602, 1607, 1611, 1623)  A4 N Blue Ridge  12  VAO1-VA04, VAO6-VAO7, JEN (1312, 1325, 1327, 1332), RKN (1402)  A5 S Blue Ridge  38  VA: WTM (1406, 1414, 1419, 1422, 1431, 1434-1436); NCO1-NCO5, MIT (1440, 1453, 1458), PIS (1470, 1478, 1482, 1502), WSM (1508, 1514, 1519, 1530) ; TNO1— TNO2, LEC (1572—1573, 1580); GA: BB (1557-1558, 1561, 1566, 1568), LWS (1538, 1541, 1544, 1550)  Japanese Taxa  ciliicalvx Honshu  6  CI01-C106  multiflora Honshu  13  MUO1-M[J13  .  .  oentandra Hokkaido Honshu  3 7  PEO4, PEO6-PEO7 PEO1-PEO3, PEO5,  turourea Kyushu  1  PUO1  .  .  PEO8-PE1O  1316,  / 1  /  /  2  7O’, 0  4  .  I  500km  o  •  3  (•  I  T  H  \  w’ 115 3844  Sampling regions and collection sites of the western Fig. 2.4. Open circles North American Menziesia specimens examined. denote samples collected from field sites; black circles indicate that samples came from herbarium collections. Further details are given in Table 2.2 and Appendix 1.2.  I  125km  I  ----.  Samp1inc regions and collection sites of Menziesia specimens examined in Fig. 2.5. eastern North America. Open circles denote samples collected from field sites; black circles indicate that samples came from herbarium collections. Detailed information on all samples is outlined in Table 2.2 and Appendix 1.2.  \\  86 w  2  68 Table 2.3. Description of the twenty-two morphological characters used in the morphometric analyses of Menziesia. Leaf Characters ANGBASE  Angle between tangent to leaf base and midvein with vertex at petiole insertion point (degrees)  ANGTIP  Angle of leaf apex between midvein and widest point of lamina (degrees)  BPUBG  Density of glandular hirs on lower leaf surface (number of hairs/lO nim surface area)  BPUBP  Density of puberulent hairs on lower leaf surface 2 surface area) (number of hairs/lO mm  CILIA  Number of ciliate hairs along leaf margin along 1 cm length near leaf apex)  LABOVE  Leaf length above widest point  (mm)  LBELOW  Leaf length below widest point  (mm)  LWIDTH  Leaf width at widest point  NUNVEIN  Number of secondary veins along one side of midvein  PETIOLE  Petiole length  SPUBG  Density of glandular hirs on upper leaf surface (number of hairs/iC rnmh surface area)  SPUBS  Density of subulate hairs on upper leaf surface 2 surface area) (number of hairs/iC mm  SUBLATE  Number of subulate hairs along lower midvein  (measured  (mm)  (mm)  Fruit Characters CALPUB  Number of glandular-ciliate hairs on margin of calyx disc  CALWID  Calyx disc width  CAPLEN  Length of capsule  (mm) (mm)  Table 2.3 continued next page  I  I I I  I  I  I  I I  I—.-  I (Cl I iCt ICI)  lCD I I Cl) lCD i(Q  lf-  ‘cj I Cl) I  ID)  IMI IC)  0  I I I IHlQ ct I I  IH  Lii 0  IC?)  0  (Q  OCQ  CDCD  H’j C)rrCl)  (DOD)  ctH-p) JIict CDC/)(D  H- Y 0 Q.(D $1I Cl) FCD0 M3 F0  - I—i CDD)  rr  I-Q.  CD  ctQ H- FH-C)D)  CD  CDM  tQ  -  CQ Ct  FCD  HC) CD  H’CO ct H’ CI)H-rt  CD<  CD  z  Lii  Lxi  HHJ frCD  Lxi  0  Ct  Cl)  0  I-  LQ  CD  C) ‘ti U)  0  C) CD  —  çt Cl) ct D)) CtHCD Cl)Cl)  ct I— CD -.  CD Cl) C)t CDCD  0 H,  CD  C)  C) Ct CD Cl)  M M  H-  CD  H’ Cr Cl)  I-  0 M  <  Ci)CI) CD H’ i—c-t  i’j  CD  Qei CDCD  “d  C  n  Z  C  Z  1i j  Ii  Oh  C)  H’  CD Ct tail II Oil li CCII ii CtII  0  0  H’  Cl) CD  C/)  D)0  j CDCD iCl) N C) H-I-j CDH CJ)’TJ H-ct  0.  CD Cl)CD  H-act ‘<H  0  JC)  H-  H-ta C).  0(D  CD13 C) 0 F-I-  D)II  i-ii CDII H —fl (Qil i-Il  H  CDiI Cl) F- H C)D)H CDii QiI ctII l— II D)II II II Cl) Ii rtD)ii D)H’Ii ctIi CDCflhi Cl) Ii —0Ii Ii ii C)ii D)ii II Cl)H  H  Wil 011 ii II II II QllI CD(Dll II CflCI)II CD H-il I—ctil ‘<<Ii Ii 0il MiI  cii  II  fl  0-,  I  I  I I I  I  I I I I I I I I I I I I I I I I I  I  II  II  rt  0 Cl CO c-I-  CO —  II  C))  0  0 k<  II  Cl)  <  Q  CD  0  HCD  II  CD  ><  CD  EQ  H-  Q  C))  Cfl  0  CD  —CD  c-ru  0  OQ. CDCD  —  CO  CD  CD  EQ 11  CD  Q  -  CI  0  0  C))  CD  I-(  0  M  Qi  CD  Q.  II  0 0  ‘-I CD  CD  En H 0 ‘Z3  0 1-i,  H0  rr  CD  t-  H-  Q  I-  CDCD  —.rt  LII  i-  Cl  LII  C)  C!)  0  C)) H  I  CD  (1  CD  II  I  C))  c-ICD Cl)  C)  c-I-  Cl)  (.J  —•  C5  CD CD  Q-  0  cT  C)) H H 0  Cl)  —  c-I-  CD  Qi  H  H-  Cl) 0  ‘-o  Lii  tJ  H Li  >  1’l  CD  H-  0  ctO CD Cnh< — c-I-  PJ0  El)— c-t11  —•0 H-  CflCO  H-M H  00  Cl)  H-CD O  HH  CD IO  c-r  — Qj C))  C)  —  II CD  C))  CD I-j  c-ICD  ‘-<  11  C))  C C))  <  rr  CD  1 < H0 0 110 (QQ P)li  P)  (QQ  JO H-f-i  0  0  H 1:-I  (r: 0 000  CD  °  C)  -  11 CD  CD 11 C)) c-I-  c-ICD  c-I-  Cl)  EQ  <  C))  P II )  P  I-’. ()  0  0  I  (D 0  rt  CD  CD C)) II  <  CD II  ‘  Cl)  <  C))  CD  HH  HH  C))  Qi  I  Q.  I  P)  CD  CD  1  <  C’  Z LII  C  P) tQ CD  CD  ‘-] LII  0  Cl  CD 11  Hc-IC)) ciH0  H-  CD  CO c-I-  CD 0  0  0  I c-IC)) H  I—h II  c-I-  I I I I I I  0 I-h  CD  0 I-h  3 çt  c  0  CD  (Q  fr )  CD  <  C’  Li  r’i  i  0 (r  XJ  ‘iJ  I I I I I  I  I  I  I1 I P) I (Q I CD I P) I  ICD  Iij I I I Ii I C) H I I I I I I I—-C) 10<  Hc-ICD  CD —  CO  CD  CO  CD  c-I-  EQ  H  0  CO  c-t  0 H-  C)) H  11  CD  CO CD  c-I-  C))  CD  —C))  Ct  -  rtQ  Cnn) (Dct OH-  <  frH PJCI)  ct(D  <  t LII  Li  II  EQ  CD  Q.  --  0  0  C)I  CD  II  0  Q.  CD  Qi  11  0  II CD 0  H0  c-I-  C))  0 H H-  H-  CD  0  H  n  LII  0 ‘-d  (n  II II II II II II II II II II II II II II II II II II II II II II II II II II II II  II  rtII CDII II flhI II II II II II II II  CDII  CCIi (DII II II II II PII II  (Il II II II ci  I-’-II  ll II ‘<U )ll  Cl)Q  Qi 3CD  ft  (DO C)) c-I-H CD  CDH  H C))O •C)) Ii Q  EOCD  N H-Cl CD  H  CD  C))Cn  H  (D11  X>c-I  H  c-t  c-I-CEO  CD  Cl)O I-i C)) CDOH  Ej)CDH  CD’<O  HH  I-hC)  OP)LII  cn  P)C1•  flP  s1(DCD CDH  hhO OO  calyx lobes very distinct campanulate or urceolate large greenish-white to yellow to salmon-pink short (typically < 20 mm long but up to 30 mm) mostly < 10 hairs/cm (uptol3) glandular >> twice length of puberulent hairs  3. sepal prominence  4. corolla shape  5. corolla size  6. corolla colour  7. pedicel length  8. pedicel pubescence  9. ratio length of glandular to puberulent hairs  glandular hairs esentially absent when mature  11. density of glandular hairs on capsules  Table 2.5 continued next page  glabrous to slightly puberulent  10. density of puberulent hairs on capsules  (10-17 mm long)  twice as many as petals  2. number of stamens  State 5 merous  Plesiomorphic  1. number of floral parts  Character  See text for details  (mostly  <  10 mm long)  >  13 hairs/cm  slightly to moderately glandular pubescent  moderately to densely puberulent  glandular at most twice length of puberulent hairs  typically (upto30)  long (typically > 25 mm long but up to 40 mm)  deep rose to purple  small  tubular-campanulate  calyx disciform  same number as petals  4 merous  Apomorphic  Table 2.5. Characters used in the cladistic analysis of Menziesia. on character polarization.  I I —.1 I.  H  I—i  I—a  w  I—i  I I  C)  •  I  IC) IC IF— 0 I I 10 IM, I If—i lCD I P) IH I I I Cl lCD I Ito I IH, Ct) IC) lCD I I I If—i lCD IP) 1< I CT) Ito I I ‘Ci Il)) I lCD I I(Q I 1(T) lCD I:i I ltj lCD II10 I I I I I I I I H lCD ICt) I < lCD I to I I (Q Ct) I IC) 10 Ito I I CD If—i 10 I I I I  P I—ui 0 it (Q(D t-’ç I—i 00 M, CD t-(O f( M,) Cr CD HQ3 P) H-Hto  I—tfl OHCt CD< ‘1 0 f—i H, CD I)’tJ I-h  —to OHc-r CD< ‘1 0 F- H, CD (t)CQ I-t,FI to  0Q. CD  0Q CD  h H, H (l)) C)fr’ Cl) Htn  c-r < 1 H• S1’tI HHC) 1’JP) FF—a  < A IC) Ct) H1Cl)  I-H, C)CD  t\iCt k<  to Ci HII C) H,T)) PJ1— C)fJ  CO(D  ht H, H P)(D C) CDrt  0Q. ICD Cfl ‘tiP‘rJCr (D< ‘1 C) I—a H, CD  P)(Q  M,I— (0  h H, I—a P)P) C) CD  ‘z5  Cr ‘<  CD to to CD  HII to  (1) HI-I (0  ç-t H-  Ct-’  H H-  )  CD<  Cr  I CDU1  to CD  CtC)  HC) P) H  F—i k<  Ct) to CD  Cr  HH-C) (J Ct) HF‘<  i—c-r C)’<  Cr H-’<  QJ’tI  V I01  ‘Ci  Ct)1J  -.  i—Cr <D’<  ‘Ci  HC) 1’J) l— Cl) Fsi< I-j hhV Ct) C)H (DC) CD Ct) I II @ (DC) Ct)C)  oc1Iw  i(DIC) Irr CflICD ‘tIH-I  ‘tJCrI  CD<I II I 01 I—a H, I I CD P)toI H, I t3I C0I H, Cr I )CDl I C) CDI )I H-I 1-jI (1)1 I I I I CDI toIF— toICD CDIto I Hrtio H-Is l)) I 0 F—I i- I ‘Ci ‘<I3 IHCt)IC) Ci-i (01 CDI l Cr1  Ct)  Ct) H1Cl)  HC) t’3Ct) H to I— i< I MV Ct) C)F— (DC) I Ct) CD I U] CD  C...) C) ) H-  Ct) HI-j (I)  to  Ct) H‘i (1)  I  Pto H-Ci 11Ct) toFFH ‘< C) V U) OI C..-) toC) I- CQ H, H  WCt) C) (DCI  I I I I I I I I I I I IkV I J’ C) ‘CI L.iIO I I LflIO JC) I I-I I ‘Ci to to I IHI-jIC) H,I Ct)HI C)Ct)I CDCI CDI I I ) h  CDP)I  Ct)H-I 1-jI (01  )—  I  I-Ct) CD Ct)  I I I I I  I ii it II II ii II II II II II II II II II II II II II H II II H ii II II II II II II II II II II II II II H II II II II II II II ii II II II II II (1)11 c-rn Ct)II Cr11 CDII II ii II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II  I—’ CD  Ui  C) 0 Cr H’ CD  C) P) ii Ct) C) Cr CD to Cr Ct) Ct CD Cl) (I) CD  Cl H Cr CD C) Ct)  Cl  H (I) Cr H C) Ct) Ct) to H to 0 H  N HHCt)  Cladothamnus  Outgroup  .  .  M. ciliicalyx jvj. aovozanensis jj. katsumatae M. lasioohvlla yj. multiflora I. oentandra ourourea vakushimensis  Japanese taxa  .  ferruainea “ferruginea” ferrupinea “glabella” j. pilosa  North American taxa  Taxon  CLAD  CILI GOYO KATS LASI MULT PENT PURP YAKU  FERR GLAB PILO  Code  0  0 1 0 0 0 0 1 1  1 1 1  0  0 0 0 0 0 1 0 0  0 0 0  U  0 0 0 0 1 0 1 1  0 0 0  00  00  0000 0000 1000 0100 0000 0001 0001 0001  1100 1111 0100  UUO  100 100 000 001 001 010 001 100  010 010 010  OUO  100 010 000 110 110 111 001 000  ill 111 110  0000  0001 0001 0001 0001 0001 0010 0001 0001  0101 1101 1011  Character 1234567891011121314151617  Table 2.6. Character states of taxa used in the cladistic analysis of Menziesia. plesiomorphic; 1 apomorphic; U = unpolarized). (0 See text and Table 2.5 for character descriptions and details of scoring.  74 Fig. 2.6. Box plots summarizing variation in 22 morphological descriptors (Table 2.3) of North American Menziesia grouped by: F ferruginea; G glabella; P pilosa. The central horizontal line represents the median, while box edges define the upper and lower quartiles, respectively. Whiskers show the range of values falling within l.5x the interquartile range. Outliers are plotted as asterisks or as open circles when beyond 3x the interquartile range. For a given character, groups with the same letter do not differ significantly from one another a) leaf base and b) leaf tip angles; c) glandular (p < 0.05). or d) puberulent hair densities on leaf undersides.  a 50  b  ANGBASE  *  b  BPUBG  d  50  I  800  0  BPUBP I  600  :  30 E  GRP000E  b  GflPCOOE  C  J  I  a  GRPCODE  40-  ANGTIP  80  —  GRPCODE  75  Box plots summarizing variation in continued. Fig. 2.6 of North American Menziesia. descriptors morphological calyx f) pubescence; calyx width; g) capsule length; e) edge. leaf on h) ciliate hairs/cm  e  f  CALPUB  CALWID  5  20  ab 15 (I)  4  (‘3  a *  1  2  0 F  G  F  P  G  P  GRP000E  GRPCODE  g  b  h  CAPLEN  CILIA  40  10  b  a  C  b  9 30  GRPCODE  GRPCODE  c  76  continued. Box plots summarizing variation in Fig. 2.6 morphological descriptors of North American Menziesia. i) glandular or j) puberulent hair densities on fruit capsules; k) no. of fruits/infructescence; 1) leaf length above widest point.  CPUBG  CPUBP  I  5  5  4  4  _3  _3  >  >  (I)  (1)  c2)  U)  c  0  _o1  0 0  0  0  —1  —1 F  G  P  GRPCODE  k  a  b  a  F  G  P  GRPCODE  .  LABOVE  FRTNUM 40  8  0 C U) 0  t  I  I  F  0  P  30  0 D  20 (I)  aC  10 3  0  2 F  0 GRP000E  P  GRPCODE  77  Fig. 2.6 continued. Box plots summarizing variation in morphological descriptors of North American Menziesia. in) leaf length below widest point; n) leaf width; o) number of side veins per leaf; p) pedicel length.  m 50  n  LB ELOW a  a  b  *  40  LWIDTH  35  -  30  -  25  E E  30  20 20 15  10  10  F GRPCODE  P  GRPCODE  NUMVEIN  0  G  PEDLEN  p 50  8  7 40  30  20 4  3  10  F  G  GRPCODE  P  F  G GRPCODE  P  78  Box plots summarizing variation in continued. Fig. 2.6 morphological descriptors of North American Nenziesia. q) pedicel pubescence; r) petiole length; s) capsule segment width; t) glandular hair density on leaf upper surfaces.  q  r  PEDPUB  10  *  a  a  b 9  *  25  PETIOLE  -  -  8  E  7  2O (I) 1  Ct’  4 10 3 5  2 F  G  P  F  GRPCODE  4  t  b  SPUBG  30  I  a  P  GRPCODE  SEGWID  S  G  c * *  20 *  I  c’J  *  E E  0  io  -  I aab  GRPCODE  GRP000E  79  Fig. 2.6 continued. Box plots summarizing variation in morphological descriptors of North American Menziesia. u) subulate hair density on leaf upper surfaces; v) number of subulate hairs on the leaf lower surface midrib.  U  SPUBS  SUBLATE  V  40  30  I  I  I  * *  30  I  * *  E20  (t  *  20  *  £2 1  -o E  ,10  10  0 0  aab  C  -10 F  G GRPCODE  P  -10  -  F  G  GRPCODE  P  80  Contour plots of descriptors exhibiting clinal Fig. 2.7. variation in M. ferruginea, sens. lat., in western North America, superimposed on the sampling localities (Fig. 2.4). a) leaf tip angle; b) glandular or c) puberulent hair densities on lower leaf surfaces; d) calyx pubescence.  a  b  ANGTIP  BPUBG hairs/lOmm 2  degrees 65  I  65  I  I  25  50 60  4N  I  1  60 20-25 50  -J  G 45  50  )7 0  45 40 160  I  150  140  (  60  \  55\  I  120  130  10-15  50  110  510 40 160  150  140  d  BPUBP hairs/lOmm 2  65  120  110  LONG°  L0NG  C  130  I  CALPUB no. ciliate hairs  65  I  I  I  60  60  100  -  10  .1  55  8  -  8  12  2  -J  50  50  -  12  : 45 8  10  I\50\ I  160  150  140  130  LONG°  •/1 120  \ 110  40 160  I  150  140 LONG  130  120  110  81  Fig. 2.7 continued. Contour plots of descriptors exhibiting clinal variation in ferruginea, sens. lat., in western North America. e) capsule length; f) subulate hair density on upper leaf surfaces; g) number of subulate hairs on the leaf lower surface midrib. .  e  CAPLEN mm  65  60  55 -J  50  45  40 160  150  140  130  120  110  LONG°  f  g  SPUBS hairs/lOmm 2  65  65  60  60  SUB LATE hairs/midrib  55  55 F—  F— 4: -J  -J  50  50  45  45  40 160.  150  140  130 LONG°  120  110  40 160  150  140  130  LONG  120  110  82  Contour plots of descriptors exhibiting clinal Fig. 2.8. variation in pilosa in eastern North America, superimposed on the sampling localities (Fig. 2.5). a) puberulent hair density on lower leaf surfaces; b) capsule length; C) capsule glandular pubescence density; d) capsule segment width.  a  b  BPUBP  CAPLEN  2 hairs/lOmm 4—1  I  mm  I  .4—1  I  I  (:)  40  I  5.2  5.0  588O  200  5.2 -5.4 38  38  250-300  350  -J  .®?  37  37  250  36  36  150-200  .  200  4 6 4.8 . -  35 100 34  84  I  I  83  82  / 81  80  79  I  I  78  77  34 84  76  83  I  I  82  81  d  CPUBG density level  I  40  40  2.0\\  39 3.24 -J  -J  36 2.6 24  :  •c7  ..  35  l1  -1.7-2.0  )  I  83  82  81  80 LONGS  79  N  1.9-2.1  I  34 84  76  37  3.0  .8-2.2  I  77  mm 41  37  I  78  SEGWID  41  38  79  LONG  LONG°  C  80  78  77  76  84  83  82  81  80 LONG  79  78  77  76  Al PAO1  PILO  TNO1 1 BB 2 LWS  6 AS 4 WTM 2 MIT  AS  5  A4  3 ?.3 (MTS)  A2  A4 1 (JEN)  A3 4 (DOL)  1  I  A4  15 AS NCO1 1 MIT 4 PIS 3 WSM TNO2 2 LEC 3 BB  1.  I  1  10 A5 4 WTM 3 NC 1 BB 2 LWS  A4 7 2 VA 4 JEN 1 RKN  Al 4 B A2 17 A3  22 W8 ABO1 4 LL 2 WAT IDOl 3 MT 9 ALV 2 WY  MTO9  4 W7 2 GNP  GLAB  W7 SPA  W6  10 W8 7 MT 2 ALV WYO3  25 W7 2 SPA 1 TRO 1 MtJR 9 GNP 8 MOS 3 ID MTO8  3  W4 STL  W2  12 W5 5 ROT 2 SKY S STV  2 W4 1 BWF WAO5  12W3 2WA 2BEV 2 PER 1 CC 2 CA 3 HUN  4  1  W7 WAO2 1  FERR  W6 ORO1  1  8 W5 2 BC 2 ROT 4 STy  30 W4 19BWF 8STL 2 PL5 BCO8  -;;; (OSW)  AKO4  PL5  6 B 2 w 4 CO  W2  0.4  0.6  0.  1.0  12  1.4  1.6  Summary deridrogram of a UPGMA cluster analysis of North American Menziesia OTUs Fig. 2.9. •based on morphological data. OTUs are identified by region (Al, W2, etc.). or site codes Scale represents fusion levels. as outlined in Table 2.2.  A4 AS 2 ASVAO WSM LEC  I  I  -3 -3  -2  —1  0  -  C  -2  C  C  -1  D  pci  0  •  •  0c  0•  —  1  •b.  0  0  0  2  SPUBS  CPUBG  C pilosa  o glabella  • ferruginea  ANGT1P  CILIA  BPUBG  SEGWID  LABOVE  LWIDTH LBELOW  Fig. 2.10. Distribution of 238 OTUs of North American Meriziesia within the first two axes of a principal components analysis based on 22 xnorpholoical descriptors. The first and second axes account for 24.5 and 16.7% of the total variance, respectively. Descriptor loadins on the first two axes are illustrated by the vector diagram. The analysis is summarized in Table 2.7.  C)  1  2  3  A  85 Table 2.7. Principal components analysis of North American Menziesia using 22 morphological descriptors. Component loadings, eigenvalues, and the absolute and cumulative variance accounted for by the first 6 components are presented. Descriptor abbreviations as in Table 2.3.  Descriptor 1  2  Component Loadings 4 3  5  6  ANGTIP BPUBG BPUBP CALPUB CALWID CAPLEN CILIA CPUBG CPUBP FRTNUM LABOVE LBELOW LWIDTH NTJMVEIN PEDLEN PEDPUB PETIOLE SEGWID SPUBG SPUBS SUBLATE  —0.410 —0.305 0.532 —0.600 0.141 —0.084 0.727 0.276 —0.778 0.312 0.544 0.438 0.440 0.247 0.270 0.753 0.252 —0.231 0.603 0.579 —0.657 -0.716  —0.090 0.472 —0.444 0.155 0.198 —0.076 —0.251 —0.403 0.293 0.310 —0.058 0.721 0.806 0.867 0.183 0.257 0.001 0.656 —0.333 —0.133 —0.397 0.141  0.137 0.500 0.242 0.425 0.632 —0.220 —0.418 0.487 0.112 0.757 —0.226 —0.367 —0.204 —0.022 —0.356 0.013 0.162 —0.112 —0.211 0.470 —0.307 -0.420  —0.066 —0.046 —0.096 0.384 0.363 0.572 0.105 0.392 0.258 0.059 0.318 0.074 0.043 0.057 0.228 0.118 0.478 —0.109 0.290 —0.113 0.273 0.322  —0.665 —0.351 —0.119 0.095 0.040 —0.503 —0.201 0.122 —0.032 0.031 0.105 0.024 0.101 —0.229 0.124 —0.062 0.276 0.018 —0.335 0.040 0.113 0.117  —0.434 —0.191 —0.066 0.164 0.292 0.396 0.025 —0.154 0.067 0.080 0.035 —0.106 0.068 —0.214 —0.095 0.030 —0.644 0.098 0.028 0.007 —0.122 -0.107  Bigenvalues % Variance % Cum. Var.  5.381 24.46 24.46  3.664 16.66 41.12  2.883 13.10 54.22  1.550 7.05 61.27  1.210 5.50 66.77  1.057 4.81 71.58  ANGBASE  —2  0  0  0  0  —1  Do  0  0  I  pci  .  dOD  1  ..  I 1  2  0.  I  3  4  08  A6 17  1,2,4 •3  o  W Region SPUBS  BPUBG  CILIA  CAPLEN  CALPUB  SUB LATE  ANGTIP  LABOVE  LWIDTH  PETIOLE  Fig. 2.11. Disposition of 150 OTUs of . ferruginea, sens. lat., within the first two axes of a principal components analysis using 12 morphological descriptors. The first and second axes account for 31.8 and 22.1% of the total variance, respectively. OTUs are identified according to their sampling regions as defined in Table 2.2 and Fig. 2.4. Descriptor loadings on the first two axes are illustrated by the vector diagram. The analysis is summarized in Table 2.8.  .3 -3  2  1  (.) 0 0.  1  2  3  87  Table 2.8. Principal components analysis of ferruainea, sens. lat., using 12 morphological descriptors. Component loadings, eigenvalues, and the absolute and cumulative variance accounted for by the first 3 components are presented. Descriptor abbreviations as in Table 2.3. .  Descriptor 1  Component Loadings 2 3  ANGTIP BPUBG CALPUB CAPLEN CILIA LABOVE LBELOW LWIDTH PEDPUB PETIOLE SPUBS SUBLATE  0.318 —0.663 0.120 —0.157 —0.495 0.828 0.920 0.898 0.150 0.607 —0.460 0.230  0.705 0.207 0.670 -0.781 0.441 -0.359 -0.157 0.112 0.143 0.181 -0.577 -0.558  0.014 0.092 0.232 -0.085 0.491 0.075 0.012 0.113 0.743 0.032 0.401 0.596  E±genvalues % Variance % Cum. Var.  3.818 31.82 31.82  2.656 22.13 53,95  1.398 11.65 65.60  Table 2.9. Principal components analysis of Appalachian icilosa using 10 morphological descriptors. Component loadings, eigenvalues, and the absolute and cumulative variance accounted for by the first 3 components are presented. Descriptor abbreviations as in Table 2.3.  .  Descriptor 1  Component Loadings 2 3  ANGTIP BPUBP CAPLEN CILIA LABOVE PEDLEN PEDPUB PETIOLE SEGWID SPUBS  0.359 -0.580 0.302 -0.671 0.781 0.570 —0.381 0.729 0.055 -0.814  0.073 0.237 0.799 0.274 0.292 0.349 0.638 —0.139 0.836 0.091  0.184 0.463 —0.325 0.390 0.328 0.467 0.166 0.230 —0.369 0.054  Eigenvalues % Variance % Cum. Var.  3.284 32.84 32.84  2.117 21.17 54.01  1.051 10.51 64.52  —2  A  A  A  A  I  —l  B  i!  pci  0  I  —  Q  1  0  2  U  3  A3  ol  A Region  CILIA  SEGWID  PET IDLE  PEDLEN L ABOVE  CAPLEN  Fig. 2.12. Disposition of 88 OTUs of . pilosa within the first two axes of a principal components analysis using 10 morphological descriptors. The first and second axes account for 32.8 and 21.2% of the total variance, respectively. OTUs are identified according to their sampling regions as defined in Table 2.2 and Fig. 2.5. Descriptor loadings on the first two axes are illustrated by the vector diagram. Detailed summary is in Table 2.9.  —3 -3  -2  2  3  0  -4  I  0  0  •  •  0  0 00  —2  •  .•  0  DA 1  •  0  0  DC  2  •  C  4  6  C pilosa  Oglabella  • ferruginea  CAPLEN  LWI DT H  CALPUB  SPUBS  S U BL ATE  PET OLE  ANGTIP  Distribution of 238 OTUs of North American Menziesia within the space of the Fig. 2.13. first two canonical variates of a discriminant analysis based on 14 morphological desc riptors. Descriptor loadings on the first two canonical variates are illustrated by the vector diagram.  -6  -4  —2  C4  2  4  6  co  / /  K  1 ç1 1  500km  I  I I  T  \  Gabriel plot defining intersite relatedness among Fig. 2.14. ferruginea, sens. lat.., OTUs the collection localities of in western North America. .  125km  .  Fig. 2.15. Gabriel plot defining intersite relatedness among the collection localities of pilosa OTU5 in eastern North America.  \  I--.  H  -  > -H -  0  SUBALPINE  m  -  c  -  -<0  0) 1  r  C)  <  11  330  C  C) Z <  (I) -1 ‘  o  0  <  m  r  -l  0)  C)  r  -  >  -u  ,,  TEMPERATE MESOPHYTIC  ]j  m  t  (I)  0  C  • 0.5  0.4  0.3  0.2  Dendrograrn of western North American Menziesia field sites based on a UPGMA Fig. 2.16. cluster analysis of community types as defined by a Jaccard similarity matrix of species Scale represents fusion levels. association.  <  r  >  -  -  -  0.1  —0.774 0.129 —0.653 0.823 —0.234 0.510 —0.058 —0.280 —0.436 —0.230 —0.352 0.607 0.324 17.66  0.118 —0.279 —0.091 —0.103 —0.110 0.433 0.584 0.594 0.523 0.588 0.254 0.075 0.776  2 U  Table 2.10 continued next page  22.74 % Variance % Redundancy  BPUBG CALPUB CAPLEN CILIA HEIGHT LABOVE LBELOW LWIDTH PEDPUB PETIOLE SPUBS SUBLATE  ANGTIP  1 U  Morphological Data Domain:  15.11  —0.287 0.431 0.367 —0.150 0.644 —0.128 —0.474 —0.507 —0.666 0.202 —0.225 0.283 0.107  3 U  55.51  0.695 0.280 0.569 0.710 0.482 0.464 0.569 0.688 0.907 0.439 0.239 0.454 0.719  1 H  20.22  —0.729 0.122 —0.616 0.776 —0.221 0.481 —0.054 —0.264 —0.411 —0.216 —0.332 0.573 0.305  1 V  11.70  0.096 —0.227 —0.074 —0.083 —0.089 0.352 0.475 0.484 0.426 0.479 0.207 0.061 0.632  2 V  7.77  0.206 —0.309 —0.263 0.108 —0.462 0.092 0.340 0.363 0.478 —0.145 0.162 -0.203 —0.077  3 V  39.69  0.583 0.162 0.454 0.621 0.270 0.364 0.344 0.436 0.579 0.297 0.179 0.373 0.498  2 H  Table 2.10. Canonical correlation analysis of the relationship between morphological and ecological descriptors of OPUs from the western North American Menziesia field sites. Correlations between morphological and ecological descriptors and the first three canonical variates of each domain (U , U 2 ; V, V 3 21 V , U 1 1 as well as intraset (H ) 3 ) and 1 interset (H ) descriptor coromunalities for the first three canonical variates is 2 summarized. See text for details.  0.440 0.100 -0.751 —0.173 0.731 0.881 0.207 —0.325 0.843  % Variance 32.97 % Redundancy  ASPECT AUGTEMP ELEV EXPOSURE JANTEMP PRECIP SLOPE SOILDEP SOILORG  1 V  Ecological Data Domain:  17.73  —0.327 0.730 —0.490 0.431 0.448 —0.165 0.115 0.500 —0.197  2 V  6.94  —0.075 0.046 0.368 0.288 0.142 —0.107 0.520 0.310 —0.012  3 V  57.64  0.306 0.545 0.940 0.299 0.755 0.815 0.326 0.452 0.750  1 H  29.28  0.415 0.095 —0.707 —0.163 0.689 0.830 0.195 -0.307 0.795  1 U  11.74  —0.266 0.594 —0.399 0.350 0.365 —0.135 0.093 0.407 —0.160  2 U  3.56  0.054 —0.033 —0.264 —0.206 —0.102 0.077 —0.372 —0.222 0.008  3 U  44.58  0.246 0.363 0.729 0.192 0.618 0.713 0.185 0.309 0.658  2 H  Table 2.10 continued. Canonical correlation analysis of the relationship between morphological and ecological descriptors of OTUs from western North American Menziesia field sites. Correlations between morphological and ecological descriptors and the first three canonical variates of each domain (U , U 2 , V 1 ; V 3 21 V , U 1 1 as well as intraset (H ) 3 ) 1 and interset (H ) descriptor corrtrnunalities for the first three canonical variates is 2 sunimarized. See text for details.  -2  -1  04  0 Ui  z5  1  A6 17  2  D8  3  -2  1  2  3  ELEV  -2  I  -1  Fig. 2.17. Distribution of 101 OTUs of western North American . within the morphological (Ui, U2) and ecological (Vi, V2) domains correlation analysis. Individuals are coded by geographic region and Fig. 2.4. Vectors illustrate the contribution of descriptors domains. See Table 2.10 for further details.  -3  WRegion: •3  1  •  •  2  JANTEMP  3  ferruginea, sens. lat., of a canonical as defined in Table 2.2 to their respective data  0  vi  •  .  U,  96  •0.0  0.1  I  0.2  •0.3  0.4  0.5  0.6 c  j  1  Z  -  C)  j  —  Ill  -  Z  Z  !  o > -u  r Cl)  It  SUBALPINE  0)  (/)  -.  TEMPERATE MESOPHYTIC  Fig. 2.18. Dendrogram of eastern North American Menziesia field sites based on a UPGMA cluster analysis of community types as defined by a Jaccard similarity matrix of species association. Scale represents fusion levels.  —0.516 0.807 0.722 0.757 0.695 0.482 0.573 —0.787  0.882 0.940 —0.116 0.795 0.461  % Variance 50.39 % Redundancy  AUGTEMP JANTEMP ELEV EXPOSURE PRECIP  1 V  Ecological Data Domain:  % Variance 45.94 % Redundancy  BPUBP HEIGHT LABOVE LBELOW LWIDTH PEDLEN PETIOLE SPUBS  1 U 2 U  22.66  —0.408 —0.168 0.898 —0.018 0.363  2 V  15.90  —0.558 0.315 —0.457 —0.404 —0.422 —0.526 0.146 0.116  Morphological Data Domain:  18.74  0.025 0.161 0.299 —0.542 0.726  3 V  7.99  0.237 0.269 —0.159 —0.438 —0.428 —0.080 —0.320 —0.044  3 U  91.79  0.945 0.938 0.909 0.926 0.871  1 H  69.83  0.634 0.823 0.755 0.928 0.844 0.515 0.452 0.635  1 H  39.53  0.781 0.833 —0.103 0.704 0.408  1 U  36.05  —0.457 0.715 0.639 0.671 0.616 0.427 0.508 —0.697  1 V  14.12  —0.322 —0.132 0.709 —0.014 0.286  2 U  9.90  —0.440 0.249 —0.361 —0.319 —0.333 —0.415 0.115 0.091  2 V  6.13  0.014 0.092 0.171 —0.310 0.415  3 U  2.61  0.135 0.154 —0.091 —0.250 —0.245 —0.046 —0.183 —0.025  3 V  59.78  0.714 0.720 0.543 0.592 0.420  2 H  48.56  0.421 0.597 0.547 0.615 0.550 0.357 0.305 0.495  2 H  Table 2.11. Canonical correlation analysis of the relationship between morphological and ecological descriptors of OTUs from the eastern North American Menziesia field sites. Correlations between morphological and ecological descriptors and the first three canonical variates of each domain (U , U 2 ; V, V 3 21 V , U 1 ) and 1 1 as well as intraset (H ) 3 interset (H ) descriptor communalities for the first three canonical variates is 2 sunmar±zed. See text for details.  -3  S PUBS  I  -2  BPUBP  —1  .  0 Ui  .•  A  • .  1  HEIGHT  2  PEDLEN  I  LBELOW •H LABOVE  PETIOLE  3  —3 -3  —2  —1  1  -2  A  A  A  I  —f  I  I  0  vi  ELEVI  1  I  2  AUGTEMP  PRECIP  3  Fig. 2.19. Distribution of 61 OTUs of Appalachian . pilosa within the morphological (Ui, U2) and ecological (Vi, V2) domains of a canonical correlation analysis. Individuals are coded by geographic region as defined in Table 2.2 and Fig. 2.5. Vectors illustrate the contribution of descriptors to their respective data domains. See Table 2.11 for further details.  —3  -2  —1  1  I  •5  2  •  4  2  A3  3  A Region: •2  3  L  -1  0  o  0  0  A 0  •  •  PC 1  A A  •  .  .  •  2  •  •  •  3  M. multiflora  M. ciliicalyx  • M. pentandra I M. purpurea  o  CALWID  SEGWID  CALPUB  FRTNUM  LBELOW  ANGBASE  BPUBG  NUMVEtN  PETIOLE  SPUBG  Distribution of 30 OTUs, representing the common species of Japanese Fig. 2.20. Menziesia, within the first two axes of a principal components analysis based on 20 The first and second axes account for 26.8 and 19.6% of the morphological descriptors. Descriptor loadings on the first two axes are illustrated total variance, respectively. by the vector diagram; see Table 2.12 for further details.  —2 -2  —1  00 a.  1  2  100 Table 2.12. Principal components analysis of Japanese Menziesia using 20 morphological descriptors. Component loadings, eigen values, and the absolute and cumulative variance accounted for by the first 6 components are presented. Descriptor abbrevia tions as in Table 2.3.  Descriptor 1  2  Component Loadings 3 4  5  6  ANGBASE ANGTIP BPUBG CALPUB CALWID CAPLEN CILIA CPUBG FRTNUM LABOVE LBELOW LWIDTH NUNVEIN PEDLEN PEDPUB PETIOLE SEGWID SPUBG SPUBS SUBLATE  0.372 —0.708 0.467 —0.475 -0.798 —0.043 0.698 0.205 —0.471 —0.153 —0.543 —0.577 0.203 —0.331 0.182 0.130 —0.692 0.703 0.707 0.750  —0.504 —0.216 —0.142 —0.305 —0.247 0.435 0.280 0.235 0.162 0.866 0.780 0.609 0.524 0.611 0.147 0.678 —0.170 —0.111 0.254 0.372  0.072 —0.323 —0.472 0.195 0.182 0.360 —0.171 0.702 —0.316 0.003 —0.008 —0.129 0.038 —0.265 0.719 —0.216 0.271 —0.505 0.367 0.011  —0.564 —0.342 0.029 0.438 —0.034 0.281 0.226 0.345 0.543 —0.173 —0.011 —0.323 —0.468 0.357 —0.334 —0.319 0.014 0.135 0.097 0.154  0.137 0.097 0.403 —0.085 0.311 0.395 0.074 0.248 —0.094 0.046 0.004 0.253 0.342 —0.163 —0.333 —0.320 0.483 0.321 0.042 0.159  0.204 0.187 —0.117 0.420 —0.135 —0.429 0.308 —0.089 0.469 0.009 0.020 0.132 0.352 —0.108 0.080 —0.142 0.186 —0.083 0.398 0.133  Eigenvalues % Variance % Cum. Var.  5.361 26.81 26.81  3.925 19.63 46.44  2.278 11.39 57.83  1.919 9.60 67.43  1.313 6.57 74.00  1.189 5.95 79.95  101  FERR GLAB  I  PILO PENT LASI MULT CI LI GO YO PuRP YAKU KATS CLAD  Strict consensus tree obtained from 6 maximally Fig. 2.21. parsimonious cladograms of Japanese and North American taxa of Identification codes as in Table 2.6. Cladothamnus Menziesia. (CLAD) is the outgroup.  FERR 14  PENT  PILO  GLAB  /  \./“ g / 16/  13  /17 )C10 /2  14  / \./ 3 8  /  6  CILI  MULT  LASI  / /  PURP  GOYO  /  /  \i34/  6  / /  12  / /  \  / \o 3 y  KATS  YAKU  / /  /  /  81 16 13  12  4  7  11  4  17  CLAD  One of the 6 cladograms of I4enziesia taxa, similar Fig. 2.22. to the strict consensus solution (Fig. 2.21), illustrating the changes in character states (Table 2.6) needed to obtain the Identification codes as in Table 2.6. tree.  102  Chapter 3 Isozyme Analyses of North American Menziesip  3.1 Introduction  This chapter contains the results of an electrophoretic survey of isozymes obtained from populations of North American Menziesia.  The data are used to examine the levels of genetic  variation in North American Menziesia and how this variation is partitioned within and among populations and taxa. Estimates of gene flow are also derived. specific questions are addressed: phase of j.  .  Using the data,  two  Does the Rocky Mountains  ferruainea differ isozymically from coastal or  Cascades populations?  ..  How far has Appalachian  .  pilosa  diverged from western North American Menziesia?  3.2 Materials and Methods 3.2.1 Selection of Populations and Material  The 34 populations chosen for the electrophoretic study of isozyrnes in Menziesia  (Table 3.1)  include all populations  used in the morphometric analyses described in Chapter 2, with the exception of Glacier National Park,  BC where suitable  material was unavailable.  two populations were  added, (YNP)  .  namely: Yew Lake,  In addition, BC  (YEW)  and Yoho National Park,  Together the sites encompass most of the range of  Menziesia in North America except for the north coast of British Columbia and Alaska.  BC  U)  U)  -‘  cv  o  CD CD  0  CD Cl  HH, H-  (-v  M C))  H  C) 0  CD  ç  CT)  Z  H-  Z  CD  c-v  U)  CD  CD  cv  F—  CI)  5  CD U)  Ci H  C) C))  CD  Z  <  CD  0  cv  U)  C)) Z Cl  CD  -  0  CD  CD  C  0 C) cv  ‘1  C))  H  <  cv  C)) H  Cl) C))  I  CD  CD ‘1  z  cv  H  CD  0  ‘1  Q  CD  0  II  H,  C)  0  CD  I  cv  C))  I-  CD  N  Cl  CD  CD  CD  ‘  H,  Cl  H  1) 0  I  C))  I  cv  H  C  Cl; Z  Z  H-  Q  C) Cl)  H  cv  C)  CD  H  H  0  C)  C)) H U) 0  CD  <  I  CD  Cl)  CD  Q.  Z  •  0  H-  ‘-  0  t-  tj• C!)  CD  cv  (J)  Cl) CD  -v  H  0  ‘Zj  Q.  CD CD  Ci)  •  o  c_v  C))  CD  CD  CT)  CD H  o L  cv  H )  <  CD  cv  CD  CD  U)  CD  0  cv  CD  HH  -  C)  0  i  c-v  C))  CD Q  fr  0  cv  U)  U)  C))  U)  CD  ‘tS H  U) C))  CD  cv  C))  C)  t5 H H-  Ø  H  Q  cv  Cl) CD  CD  0  -  II  CD  tH  0  cv  Q  H-  Z  CD  cv  CD  <  HCl)  Q  CD  H-  U)  i  Cl)  —  U)  C)  C))  H  ‘-Q CD  Z  N CD  0  h  H,  cv  H  H ()  )  c-v  -  CD  CD  J•  c-t  H-  H  C))  ‘1  H-  C))  0 Z  •  C)  W  cv  C))  ))  F-  CD  cv 0 cv ct  H,  0  t-  cv  CD  C)  C))  Cl)  ‘1  C)  H-  rv  U)  H  C))  0  c-v  Z  H-  -  < CD  H  C!)  cv  Cl  0  CD  ‘  0  H  CD  CD  Z  i-  •  Z  CD  H-  CD  C)  cr  H  H  C))  U)  Z  H  C))  i (Q  H  ‘  H Cl)  ‘ti C  CC))  b•  <  Cl  H CD  H  CD  H  C)) t3  Cl) Z Cl  -  U)  L  C))  C)  H-  c-v  U)  C))  H  H CD  C)) CD HZ C)) T:50  U) CD  ‘1  CD  HH H-  C))  C)  C))  CD I  H  C  C))  HZ  C) CD Cl  C))  H  CD Z  cv Z  Cl)  CD  C’)  H CD  C))  Cl)  C))  Cl)  -  Z (Q  H-  ‘ti  Z H-  U)  CD  o  H,  b CD  ‘1  •  H C)) ti•  CD  Z•  cv  0  cv  C)  ti  CD Cl  i-  H  C) 0  ‘ti cv  CD  CD  CD  CD  cv  CD  ‘ti  ‘ti  CD  H-  Cl)  U)  C) H CD  H-  CD  CD  cv  o  cv  Z  ‘  C  CD  cv  Z  o  •  C)) C)  ‘ti  H  CD  Z  ‘1 o N CD  H,  C))  o  cv  cv  Cl) <  U)  ‘-Q  C))  HC)  cv  C)) U)  H  ‘rJ  Cl  CD  CD  H Cl)  H C))  C)  CD  U)  CD  I-  Z  H-  U)  cv  CD  C)  C))  ‘t3  CD  Z  Z  H-  ‘-  CD  Cl  0  Cl)  cv  Z  cv •  H-  C)  CD  CD ‘1  CD U)  -  cv  H-  Cl  CD  cv H  C) CD  H-  Cl  CD  ‘ti  C) Z  U)  CD H U)  Q  cv  I-  CD  C)  ‘tI  ‘ti  Cl C))  H,  0  CD Cl  c-v  C)  C  c-v  U)  0 Z  C)  U)  Cl)  cv  C)) C)  CD I-  Z  C)) Z Cl)  cv  Z (Q  CD Cl  H CD U)  HII  C)) ‘C:,  H-  Z cv  U)  CD  cv  -  C))  HU)  J  cv  Z  H  •  HH  0  I-h  Z  H-  H  C))  C))  C)) H-  CD II CD  Z Cl  C))  H CT)  t5  C))  cv  ‘1  0  Cl)  C)) Z  1i  cv  ‘<  HH  U)  CD  C))  CD  cv  Z  0  H  C))  CD  cv  C)  H CD  H  0  C)  ICD  CD  CD  <  cv  C)  H-  Z  cv  C)  H C))  ‘ti  ‘<  Cl  CD H  H-  M  CD  cv  Z  H-  H  C) Q 0  cv  CD  CD  CD h  H  H-  CD  Cl) C)  ‘ti  Cl  Z  C)  U)  cv  Z  CD  cv  0  H, I-  Cl  (U  cv  C)  CD  0 0  Cl  C)) H H  U)  C))  -  k<  Cl  C  cv  Cl)  Z CD  cv  Z  0  H H  H  CD  C  Cl  C) H  Z  CD  Q  H  0 C  CI) U)  H  H CD  H  C))  ICD  C))  C))  cv  C)  C)) U)  CD  C  HCl) Cl)  cv  H,  CD C))  H  Z  CD Cl)  h  ‘‘1  U’  H ‘O —1  Z  C  I  W  Cl)  Q  U)  Z  0  H-  cv  0 hc  ‘t3  H  C))  H-  ‘-  CD  cv  Z (Q  H-  0  I-  (Q  ‘-<  CD H  <  H-  c-I  C)  Cl)  C)) U)  Z  Cl)  C)) Z C) CD  C)  CD  -  cv  CD Cl  <  l-  0  ‘ti  H-  0 Z  H-  cv  C))  H  ‘ti  0  ‘ti  I-c  ‘ti CD  U)  H  C))  C  H-  Cl  <  H-  Cl  H;i  <  C)) Z  U)  CD  C  Cl)  Z CD  •  H U)  Cl C C))  H-  <  H-  Cl  Z  H-  CD  W C)  ‘<  H  CD  cv  C))  H-  >  H  U) C CD  HU)  H,  cv  H CD Cl)  H CD  lJ•  U) U) H  0  CD i-c  <  i-c CD  Z• CD  -  Z  H 0  cv  C))  ‘  0  0 ‘ti C  C)) C)  Cl)  Z  H  Z  H-  cv  C)) ‘ti  0  M  M  CD Cl  cv  C)  CD  H  H  C) H-C  Z  cv  H,  0  I-j CD  02  H CD 9)  M  CD CO  N CD i  0  ‘i i-  -  H CD  ci  0 ‘ti U)  i—c  CD  I-j  CD  .  w I  t’3  5  C)  C:  CD  H  HU) U)  9)  C: CD  0  HCO CO  CD 0)  N  LI  H-.  02  I-’-  Ct  5  Cr  U)  CD  I-  H,  H  .  I-h  0  0  0  II  N  C)  ti  0 rr  <  U)  CD •  CO  Cr  9)  H  9) H  I-  5  9) Cr CD  CD  Cr  Mi  0  0 U) CD  Ci-  Cr  H-  <  CD  C)  I-h  CD  0 )Q  Ui  CD  0  (Q  H H-  Q  CD  U) CD  H,  0  U)  I-’L  ‘-D  H  0  I-  9)  H  H  9)  H CD  H-  U)  —]  I—’ CD  I  0  Ø 0 Cr  Cr  X  L  •  H,  I  9)  H-  C  CD i  N  I-c 0  H,  I-  0  U)  CD  “j  CU  U)  9) C)  CD  ‘-1  0  I-h  ci  C: Cl) CD  CD -c CD  II  (D  H, H,  r-r H-  C)  t  C:  Cr ‘I 9)  CD <  P  H-  1  H-CD  Q -i  Cr  H-  Q  Q  0 H  CD  Cfl  C)  H,  0  5  CD  Cr  9) IH-  ti  C) 0  “<  -  U)  9) Cr Cr CD  I-Q  H-  9)  H,  0  C) CD  9)  Cr  I-  9)  C  CO  IN IHlCD  I  lCD  H-  U)  CD  < 5  N  I  I—h  CD  0  H,  ‘-<  Cr  H H-  9)  Cr  i-c  S  0  HtQ  ci  9)  Cr  0  I-  (Q  0  H  U)  CD  0  tQ  H H-  ‘ti  5  U) 9)  H  9)  Cr H0  9)  H  0  ti  CD  H-  Cr  C:  I  Cr  -  CD  0  CD  -  0  Cr  ci  U) CD  C:  CD  CD  U)  H Hi  U) CD CD  -  CD  <  CD  Q  -  H  9)  HC)  Cr  H-  C)  I-  1j  0  fr’  9) Q CD  U)  HZ (Q  H  Q.  U) CD CD  9)  H-  0 1  CD Cr  U)  H-  Cr  (D  H-  CD  Cr  CD Cr  I-  Cr CD  H-  H  H •  CO  Cr  C:  CD U)  I-c  9) U)  H-  ci  0 C:  C)  U)  0 i  H-  Ct  H-  0 ci  CiH-  I—c  CD  ci CD  U) (D CD  H,  0  0  9)  H-  5  i-c  (Q CD  H  H9)  f-r  Z  I-  CD  CD  hI  9) H C)  I-h  H-  Q.  U)  9)  CD  1  CD  Z  -  H0  Cr  9)  H  ti  0  I-  C:  r-r  9)  U)  U)  II  CD  0 H H CD  ‘-  Cr  C) 0  H,  9)  n  —  i  9)  H-,  0  CD  <  Cr H-  9)  Cr  U) CD  CD  I-  CD  I-I  Cr  0  CD  II  9)  U)  CD  H  l)  U)  Q  CD CD  U)  Cr  9)  Cr  CD  Cr  CO  CD  9) Cr  H-  <  H H CD  9)  ci  HCD H  Mi  CD  Ci-  H-  (  H H-  ‘l  Cl) 9)  0  ci  9)  •  C)  .D  H  o  H-C I-i H HQ Cr  U) U) H-  ti 0  Cr  9)  HCr  9)  I-c  CD H-  Cr  0  Cr  ci  ci  9) Iti Cr CD  9)  (D  9)  Cr  9)  Cr  Cr U)  H 9)  H, I0  <  H  C) Cr  CD  II  1 H-  H  CD  i-c  C:  Cr  C:  C)  HH CD  I-  Cr CD  U)  IFIC  ICr  Cr H0 i  0  Cr  CD  9) (Q  Cr  9)  9)  < h H-  ci  9)  •  9)  <  CD  5  ‘<  N  CD  CD 9) I-h  H  Cr CD  C)  CD  C) 0 H H  I  ci  H  C))  H-  CD CD H  5  N  CD  C: U) CD  0  CD  5  U) 9)  Cr 0  0 Hi  CD i  H-  H  9) ti  CD  CD  C: CD U)  H-  CD C)  <  Cr  -  —  w  ><  H-  Q  ti CD  ti  H-  IH-  I<  Z  Ci-  HCT)  CO  9)  CD  U)  Hç-r  H() CD  C) Cr  9)  H  0  C)  H-  CD  H-  Q  H H-  9)  U)  o  9) Cr H-  0  ti C: H  -  M0  H  9)  H-  0  0 Cr H  CD -  ‘1  Cr  9)  Cr  H  H-  9)  CD  Cr  H-  H HCD U)  9) C)  II 0  ti  9)  U)  H-  Cr  U)  Cr  0  0  CD  9) Cr Cr 9) H-  CD  I-  CD  Cr  0  l-  l.Q  U) CD CD ci H H-  CD  I-  CD  CQ CO  H H-  ci  U) CD CD  Z CD  Cl  Mi  0  9) H H  S  0 CO Cr  H  9)  ci-  9)  H0  f-i-  9)  Cr  hc  I-c  H-  0  CD  0  H-  Cr  H-  Q.  ti  9)  CD  -Q  I-c  CL)  Cr  ç-t  tt1 CD  •  9)  CD  Q  CD ci  <  1-c  C tJ CO CD  CO  9)  Cr  0  I-  (Q  CD  H  H HCr c-i-  -  U)  k<  9)  ci  C)  H  h  Cr CD  I—h  9)  CD  II-  C:  C C) C)  HQ  Cr  9)  H-  I-’  CD  tQ  H-  CD CD ci  U)  l  0  H Cr  •  CD ci  Cr  Cl)  5  H  <  I-  9)  H  tQ  CD  i-c  ci  9)  U) CD  C:  0  CD CD  I-  CD  Cr  H-  C) CD  9)  H  rj  i-  9)  I-L CD  CD  “< U)  i-c  Cr  CD  ‘-3  •  CD  Ci-  H H-  I-  CD  Cr  9)  rti  CD  0  ci  9)  -  tl CD 9) Cr  U)  Cr  9) t-  0  (1  9)  F—.  0  CD ci  N  HH H  l-  Cr CD  U)  Cr  9)  CD  0  LQ  H-  H  Cr 9)  C) Q  CO  <  c-i ‘1 9)  H-  ci  Cr CD  ti H 9)  CD  Cr  (L)  0  II  0  H C)  105  tissue was extracted by grinding only a few samples a time,  after they had been placed,  buffer.  In practice,  still frozen,  7-8 drops of grinding buffer were needed  grinding buffer itself, was made up in bulk refrigerated at 4°C for up to three weeks,  (ethylenediaminetetraacetic acid,  0.95 g of KC1; and 0.25 g of MgC1 2 6H 0. 2  0.125 ml)  and kept  and contained: pH 7.5;  125  0.5g  tetrasodium salt); Before use,  1.5g of  (PVP; MW 40000) was added to 12.5 ml of  buffer and allowed to dissolve. (approx.  The  (125 ml)  ml of 0.1M Tris[hydroxymethyl]aminomethane-HC1,  polyvinylpyrrolidone  at  into cold  to make a good homogenate from the frozen tissues.  of EDTA  (10-12)  In addition,  7-8 drops  of 2-mercaptoethanol were added by Pasteur  pipette to the buffer just prior to use.  A teflon-tipped  grinder was used to macerate the tissue in ceramic spot wells, that were placed on a tray of compacted crushed ice. Supernatant solutions of the plant extracts were then taken up with Whatman 3MW filter paper wicks  (3 x 10 mm), which were  then loaded onto 12.5% starch gels. Sixteen enzyme systems were examined in all of the populations: aldolase  aspartate amino transferase  (ALD),  dehydrogenase (GDH),  E.C.  (G3PDH),  E.C.  E.C.  E.C.  E.C.;; hexokinase  (LAP),  E.C.;  glutamate dehydrogenase  glyceraldehyde-3-phosphate dehydrogenase  isocitrate dehydrogenase peptidase  E.C.; glucose-6-phosphate  (G6PDH),;  (AAT),  (IDH),  (HK),  E.C.  E.C.;; leucine amino; malate dehydrogenase; malic enzyme  (ME),  E.C.;  (MDH),  106  phosphoglucoisomerase E.C.  (GPI),  (PGI)  =  glucose-6-phosphate isomerase; phosphoglucomutase  6-phospogluconate dehydrogenase  (6PGD),  shikimate dehydrogenase  E.C.  dismutase  (SOD),  E.C.  (TPI),  E.C.  (SkDH),  E.C.  (PGM), E.C.;;;  superoxide; and triose phosphate isomerase  The gel and electrode buffers used for electrophoretic separation are presented in Table 3.2.  Typically,  enzymes  were resolved on systems described by Soltis et al. system 1 for G6PDH, AAT,  GDH,  or MDH.  and ME;  G3PDH,  IDH,  and SkDH;  (1983):  system 6 for ALD,  and system 9 for PGM and occasionally 6PGD  A modification of system 8 gel and electrode buffers  (Hauffler 1985) was used for HK,  LAP,  morpholine-citrate electrode buffer Wendel and Weeden  PGI,  SOD,  and TPI.  A  (system M), modified from  (1989), was used routinely for resolving MDH  and 6PGD. The enzymes were resolved using staining recipes described in Soltis et al. where the amounts of MTT  (1983), with the exception of GDH  (3-[4,5-dimethylthiazol-2]yl-2,5-  diphenyltetrazolium bromide)  and PMS  (phenazine methosulfate)  were doubled to increase staining intensity.  For LAP,  recipes of either Soltis and Rieseberg  or Cheliak and  Pitel  (1984) were followed.  (1986)  the  Agarose overlays were used for  ALD and TPI,  from which SOD was resolved as an achromatic band  on the gel.  Occasionally,  enzymes were resolved on other  buffer systems to help interpret complex banding patterns and to test for hidden heterogeneity  (Kephart 1990).  This was  107  done particularly when comparing co-migrating bands between the western North American and Appalachian samples.  Banding  patterns were scored by numbering sequentially from the fastest anodally-migrating isozyme;  similarly,  allozymes of a  given locus were labelled alphabetically starting with the fastest anodally-migrating form.  3.2.3 Analysis of Genetic Variation Five measures of genetic variation within populations were applied to the elect.rophoretic data: alleles per locus,  the mean number of  including monomorphic loci  proportion of loci observed to be polymorphic,  (A);  the  where the  rarest allele occurred with a frequency of 0.01 or greater observed heterozygosity (Hobs); expected heterozygosity  (P);  (Hexp)  where Hexp  jth allele; F  =  [1  -  =  1  -  , 2 1 Zp  and p is the frequency of the  and the mean fixation index  (Hobs / Hexp)].  (F) where  Chi-square tests were performed to  determine whether the observed heterozygosity of a population deviated significantly from expected heterozygosity based on Hardy-Weinberg equilibrium expectations  (Ayala 1982).  Averages of the genetic variation statistics for the three North American taxa also were compared with one-way ANOVA and Tukey multiple comparison tests  (Zar 1984).  Genetic diversity among populations was analyzed using Nei’s  (1972,  1973)  gene diversity statistics; where HT is the  total gene diversity within a taxon, within populations of a taxon,  Hs is the gene diversity  DST is the gene diversity  108  between populations within a taxon, of gene differentiation. DST / HT.  GST  Note that HT  =  5 H  DST and that  +  Standard genetic distances and identities,  unbiased by sample size, determined  and GST is the coefficient  (Nei 1972,  among populations were also  1973).  These calculations were  performed using the GENESTAT-PC program (version 2.1 by P. Lewis and R. Whitkus; Whitkus 1988).  Populations were grouped  based on genetic identities with unweighted pair-group  (UPGMA)  cluster analysis using the NTSYS-pc subroutine SAHN (Rohif 1988) Estimates of gene flow (Nm)  among populations using  allele frequencies were also calculated by three different methods.  The first method employs Wright’s FST statistic,  where FST  =  1 /  (4Nm  +  1)  (Wright 1951; Futuyma 1979).  This  approach depends largely on the distribution of common alleles because of the calculation of FST  V / p  (1  -  p)j; where  is the variance in gene frequency among populations and the mean gene frequency. each allele at a locus.  (V)  (p)  is  The value of FST is calculated on A slightly different approach  substitutes the values of GST for FST in the formula, with a correction factor for the population sample size Another, 1985),  (Crow 1986).  more recent method of estimating gene flow  uses the frequency of private alleles,  that appear in only one population.  =  -0.505  (ln Nm)  -  that is,  alleles  It is estimated by the  formula: ln(p(1))  (Slatkin  2.44;  109 where: p(1) N m  frequency of private alleles; population size; migration rate.  = = =  All of the methods of estimating gene flow are dependant on calculating the average number of migrants exchanged between populations,  since N (the population size)  is rarely known  with any degree of certainty.  3.3 Results 3.3.1 Interpretation of Isozyme Banding Patterns  Of the 16 enzyme systems examined,  13 were interpretable  for all of the 34 populations of North American Menziesia studied  (Fig.  They presumably coded for 19 loci: AAT-l  3.1).  (a-b); AAT-2  (a); ALD-l  IDH-1  (a-c);  LAP-l  (a-d); MDH-3  PGI-2  (a-g);  PGM-l  (a-c);  (a-d);  SkDH-l  (a-c);  poorly resolved, interpreted. bands,  HK-l,  monomorphic.  (a); ALD-2  PGM-2  (a-d); MDH-4 (a-b);  6PGD-l  (a); and TPI-i  SOD-i  Although not always visible, LAP-2, MDH-l, In MDH,  be ghost bands,  (a); HK-2  (a);  PGI-i  (a);  (a-c); (a-d);  (a-b).  6PGD-2  A second,  locus of G3PDH was seen but could not be  PGM,  faint fast anodal  and MDH-2, were apparently and TPI,  bands were occasionally observed.  procedure,  (a); G3PDH-l  extra,  usually faint,  In PGM these turned out to  artifacts likely resulting from the extraction  and appeared most frequently when frozen or aged  tissue was used.  Similarly,  one or two faint bands were seen  frequently in TPI but only TPI-l was strongly stained and consistently scorable.  These faint bands appeared most  commonly in the western North American populations but were  110  occasionally present in Appalachian populations as well. However in MDH,  the extra bands were observed only in some  individuals and appeared regardless of whether duplicate tissues were run on systems 9 or Morpholine.  Similar  additional bands in MDH have been reported in diploid members of Vaccinium section Cvanococcus,  for which the genetic basis  is not known  1991).  (van Heemstra et al.  Three enzyme systems were not retained in the analyses because of difficulties in interpreting the banding patterns observed.  These include G6PDH  and ME-l which were  (1-2)  apparently monomorphic loci but were sometimes poorly resolved when frozen tissue was used.  As well,  GDH was not retained  because it was only faintly stained in some populations. resolved,  When  multiple banding patterns, possibly coded by one  locus, were observed. Of the 19 loci scored, ALD-l,  ALD-2,  seven were monomorphic: AAT-2,  G3PDH-l, HK-2,  enzyme system locus  PGI-1,  and SOD-l  (Fig.  3.1).  One  (AAT-l) was invariant within populations  and was fixed for AAT-la in the west and for AAT-lb in the Appalachians.  The other 11 enzyme loci examined were  polymorphic in at least some of the populations. patterns of IDH, MDH,  PGI,  6PGD,  Banding  and TPI were either one  banded or three-banded at each locus,  consistent with a  dimeric enzyme structure  Likewise,  (Fig.  3.1).  LAP,  PGM,  and  SkDH had one-banded or two-banded patterns at each locus, indicative of monomeric enzymes  (Fig.  3.1).  These results are  in agreement with quaternary structures commonly reported for  111  these systems in other vascular plants  (Weeden and Wendel  1989) Seedling enzyme banding patterns, when compared to known maternal patterns,  supported the genetic interpretation of  these enzyme systems.  Extra bands appearing in MDH-3 in some  maternal plants were similarly inherited by a portion of their progeny,  though reliable ratios were not obtained owing to the  small number of seedlings examined.  All of the enzyme loci  had banding patterns consistent with expectations for diploid individuals.  For several enzyme systems, many of the common  allozymes observed in Appalachian i. oilosa were scored as being identical to allozymes seen in western North American Menziesia because they would co—migrate in different buffer systems.  3.3.2 Genetic Variation Within Populations  Statistics measuring levels of genetic variation within populations  (Table 3.3)  reveal a high degree of similarity  among the western populations of  ferrupinea,  .  The mean number of alleles per population at Prairie Creek in Humboldt Co., Lake,  BC  CA  (A)  (HUM)  sens.  lat.  ranged from 1.21  to 1.74 at Yew  There was no significant difference between  (YEW).  the overall ranges of populations of  .  populations of  .  (A)  between coastal and Cascades  ferrupinea ssp.  ferructinea,  ferruginea ssp. alabella.  and the interior The same trend  was observed for the number of polymorphic loci per population (P), which varied from 0.158  (HUM)  to 0.474  (OSW).  Although  112  the average number of observed heterozygotes was slightly lower in coastal from the Rockies  ferrupinea  .  (0,070),  than in populations  (0.061)  the difference was not significant.  Observed mean heterozygosity was highest National Park, CA  BC  (YNP)  and lowest  at Prairie Creek,  (0.022)  In most of the populations examined,  (HUM).  at Yoho  (0.104)  the observed  heterozygosity deviated significantly from Hardy-Weinberg expectations  (Hexp).  fixation index  This is reflected in the average  for western Menziesia populations which  (F)  ranged from 0.102 in Manning Park, Lake,  BC  (MUR).  BC  to 0.576 at Murtle  (ROT)  The positive values of  indicate that a  (F)  fair degree of inbreeding exists in each population.  The  lowest degree of genetic variation, as measured by these parameters,  occurred at Prairie Creek,  and at String Lake, WY  (TET)  CA (HUM)  in the Rockies.  on the coast  These  populations are at the southernmost limits of distribution of Menziesia in western North America. Levels of genetic variation in Appalachian often lower,  mean number of alleles per population from 1.16 at Capon Springs, WV (CAP) NC  (WSM).  varied from 0.158  (A)  in  o±losa were  than those  in most instances significantly so,  observed in western North American Menziesia  Mountain,  .  (Table 3.3). .  pilosa ranged  to 1.58 at Whitesides  The proportion of polymorphic loci  (CAP, WSM,  observed heterozygosity for  LWS) .  to 0.474  (JEN).  (P)  While the  oilosa averaged 0.051,  this was  not significantly lower than the mean observed value in coastal N.  ferruinea  (0.061),  The  but was significantly lower  113  than the mean observed in the interior phase, N. ssp. alabella  (0.070)  Interestingly,  .  ferruainea  the observed  heterozygosity of most Appalachian populations, while slightly lower than expected,  did not deviate significantly from levels  calculated using the Hardy-Weinberg model.  Although there was  a tendency for inbreeding in the Appalachian populations surveyed,  it was lower than observed in the west, with  fixation indices Mountain, VA  varying from -0.170 at White Top  (F)  to 0.481 at Mt.  (WTM)  negative value of  (F)  Pisgah,  NC  The  (PIS).  at WTM indicates a high degree of random  mating in this population. When examined over all populations, 6PGD-l,  TPI-l),  some loci  had heterozygote frequencies that did not  deviate much from Hardy-Weinberg expectations Indeed,  (Table 3.4).  PGI-2 showed an excess of heterozygotes in several  populations, MDH-4,  (PGI-2,  particularly in  PGM-1,  6PGD-2,  .  pilosa.  Conversely,  LAP-i,  and SkDH had significantly fewer  observed heterozygotes than expected in many populations of ferruainea, (F).  sens.  lat.,  .  as reflected in the fixation indices  The remaining loci exhibited variable deviations from  random mating. Clinal patterns in allele frequencies were also observed in several of the enzyme systems  (Table 3.5).  In the west,  most of these trends varied along a west-east gradient. example,  For  PGI-2a and PGI-2d were commonly observed only in  coastal and Cascades populations and occurred infrequently in Wells Gray Park,  BC  (TRO and MUR).  In contrast,  PGI-2e was  114  seen only in a single individual at Moscow Mountain,  ID  (MOS)  while PGI-2g was locally common in the northern Rockies  (MUR,  LL,  While 6PGD-l was fixed for 6PGD-lc in coastal  YNP, WAT).  and northern Cascades populations of  .  ferruainea,  polymorphic in many of the interior populations, in the Rockies.  it was  and highly so  A similar trend of increasing polymorphism  was observed in 6PGD-2,  and IDH-l.  In general,  the number of  observed alleles and their frequency of occurrence became lower towards the southern part of the range of  .  ferrupinea,  both along the coast and in the Rockies. In the Appalachians, northernmost populations  PGM—2b occurred only in the (WBR,  DOL,  JEN, MIN) while PGI-2a was  found exclusively in the southern Appalachians.  As well,  6PGD-l was usually highly polymorphic while 6PGD-2 was not as variable as observed in  .  ferrupinea.  Polymorphism was  common in TPI-l in j. pilosa, whereas it was fixed in M. ferrupinea,  sens.  the Appalachians.  lat.  Both IDH and SkDH were invariant in  The number of observed alleles and degree  of polymorphism was usually lower in populations located in high altitude heath balds relative to cove woods populations, except at Capon Springs, WV (CAP).  3.3.3 Genetic Variation Among Populations Genetic variation among populations was assessed using Nel’s genetic diversity statistics except MDH-3,  total gene diversity  coastal or interior populations of  (Table 3.6).  For most loci  (HT) was highest in either .  ferrupinea relative to  Cn 0  ‘t3  5  P1  HCr  CD  ‘ti 0 ‘(3  I-ti  0  (Q  IHi  CD  w  CI  CD  tjl H  ts  I-  CD  Cl)  Cr  C)  H’ CO Cr H-  Cl  CD  Cr  5  0  i-  Mi  CO  0  Cr  I  H’  CO  CI  P1  H  ‘(3 i  0  rr C  I-  HH CI)  S  CO H-  i 0  Ct  •  0  CO Cr  S  0  P) CO  b  IF-A  IH-  1(3  -  H))  CD  Cr  CD  C) H  CD  •  CO  CD  Cr  çI  :i  CD  I-’0  (3  H CI)  ‘<  H’ I-  H-  C)  5  H P1  CO H-  CD  P1  C)  J,)  P1 ICD P1 CO  CD i-  •  CO  Cr P1 H-  0  Z  Cr J CD (i) CD  0  CD  ICD  Q CD (Q  H  •  —  IS)  •  (.Q  hJ H-  1  CD CI) H CD  ‘1  CD  Pi CO  )  IQ IHIi ICr)  bIfr  ‘H) ‘CD  •  I  Mi  0  CO  H  CO  CD  Cl  P1  CD  CI)  1)  Cl  P1  H  P1  )Q  H-  P1  H  -  Mi  0  Co  CD  0  CI) CO CI  P1  CD Cl  H  0 0  1<  P1 H H  0  H-  ii CD  t  CD Q  Co Cr CD II  C) F-  CD  ‘-  (1)  C)  CD  CD  CD  Cr  <  H’ H P1 M HCr  Cl) H-  Cr HC)  CD  CD  Cr H-C Mi 0  P1  F-  C5  I-  Zi  0  C)  CD Cr H’  CD  I.Q  (Q  H-  CD  H’ Cr  Q.  CD  H  W  W  •  H-  —  Cr  Cr H-  CD  Cl  H’  Cl) Cr HC)  CD  o  P1 CO CD  CD  I—’ CI P1 Cr J H-CD Io  o  P1  CD  Q  tQ CD  jJ  Cr  H-  I—i  C)  CD  IP1  h-  (1)  h))  b-  •  CO (0  Cr  Co  CD  H’  C)  0  CD  Cr  H-  IS) Ci  •  C)  5  C  Hi I-  P1 I-  ‘<  I—  I  P1  H’ H  -  (Q CD ts CD Cr HC)  CD P1 ts  5  -‘•  IP1  1(fl  1(3  •  I  P1  H’  C)  P1  H  CI)  H’  ti  D  -0  -  C)  Cr CD H-C  S  -  C) CD Co  HCD Cr P1  H-C 0  H P1 Cr  C ‘(3  ‘(3  CD  Cr  CD  •  —  —]  •  W  CD  H  P1  -  Co  P1  H-  C)  P1  I-  ti  CD  Cr  H-  C) C) CX)  CD P1  H-  III  Hi  •  I  H-  o —1 °  -  C)  5  0  Mi I-  ‘.Q CD  )  I-  P1  —  H’ tQ  CD  ) h  X P1  Cr P1  i  HCr  -  H-  CD  Z  —  H  —  Cl)  CD  H’ -r H’  Cr  Cl CD  H-  Cr H’ C)  CD  (Q CD  CD P1  -  I’J  <I  —  CO  ‘  H  )  CD t-  CD  H  ICI)  b—  IQ ft-i IP1  CD  Cl)  Ij-J-  IQ  Ih  b-ti lCD It-’  ai  Fa’  •  C)  5  Cr 0  b IC))  iH  C3  •  —  IS)  C) 0  C)  I-h IQ  Cl  H’  CD  P1 M  HC)  CD Cl)  <  CD ICl) HCr  H’  CD  CD  (Q  Mi  C  Cr  h  CD  Cr  Hi HC)  HCD  P1  I  CD  0  H P1 Cr H-  (3 0  H-  HCr  H  P1  Cr  0  Cr  CD  c-r  Mi  C  5  0 Co Cr  P1 Cr  Cr  Cr CD CO  P1  0  H-  P1  Cr p1  Q.  P1  H’  H 0  Cl HC)  CD  Ii-  IQ IF-I IP) y lCD I—  I-  C!)  CO  CD  < CD  (I)  Mi  °  P H ç CD CO  ‘-  CD  H’ LQ  Cr H ‘<  CD  Co HCD Cr  C) 0  CD  HIP)  p  II  CD  C)  P1 ‘1 Cr HCr H-  ‘rJ  HCO  <  CD ICO HCr  H-  HC)  i CD  Q CD  Mi  0 CD  C)  CD  Cr  Cl  CD  I-h i— CD C) c-r  CD  fr  HCO  HCO  -3  CO  FP1 Cr H0  0 ‘t3  (,Q  0  5  p  P1  rt  •  CO CO ‘(3  lCD IIIII IQ IHIts lCD IC))  ‘Hi  I  I-h C)  IS)  C)  -  C)  Cl  P1  IP)  kt)  1i  IH-  IQ  It I(i  It-i  Iti  •  CO CO  h-a13  çj  It-i  IM-  kD Ih  C)  •  I  i-  0  Mi  H Ci  C)  -  IH  IH-  (3  -  I  hj  0  I-h  -  C) C)  •  C)  CI)  (I)  —  CO  0  Cr H-  p  Z  o  S  5  (Q  0  P1  <  Cr  h CO H-  CD  Cl H<  0  ‘(3 ) IHCO  0  C)  H  •  F-  <  CD  <  CD C) Ct H-  fr CD CD  -  Ih I  h-  kD  ‘H)  5  I-  •  0  H,  —)  Ci  C)  •  C)  Mi  0  CD  P1  CD  <  P1  p1  0  Mi I  (Q CD  P1  —  Cl)  —--  Co  Mi  -  I  H-  Cr  H’  CO  I  CD  <  H’  t3  -  —  C)  Ci  C)  II  F-  H I IS)  Q  Q  P1  —  Ci  W  •  r—P1 Cr II H’ C) 0  0  H-  cr  H-  0  CO  5  i  0  Mi  H  Cr CI)  Co  C) 0 CI)  Cl  P1  h  Ct CD h H0  H-  I  0  I-h  C)  H  •  C)  Ø.  P1  FH W  •  C)  0  Ct  Ico  lo  Ij—  j ‘H-  CD CD  Co  0  CO  H  P1  CD  I-  CD  Hi  0  Co  CD  I-  )  HQ  P1  P1 X  Cr  H’  HCt  X CD  I-h H’  Cfl  Cr  Cr P1 < P1  H  CI)  t-  CD  <  0  H-,  0  CD  H  <  p  CD Co Cr  H-  CD  Cr  P1  I H  c-n  H H  116  yields similar results, with two major groups, to N. pilosa and N, apparent.  ferruinea,  sens.  lat.,  corresponding  being most  In pooled calculations, N. pilosa is marginally  more similar genetically to coastal N. ferrupinea  (I  ssp. alabella  0.933) (I  =  than it is to interior N.  0.924)  correlation coefficient  ferrupinea ssp.  (r  (Table 3.8) =  0.924)  .  ferruainea  A high cophenetic  indicates that the  dendrogram accurately portrays the relationships defined by the genetic identity matrix.  Most of the variation observed  among populations occurs in western N.  ferruainea,  and  although some partitioning of the coastal and interior populations is evident, the two groups. STV)  there is considerable intermixing of  Populations from the Cascades  (GVC,  are scattered over several branches of the N.  cluster.  Consequently,  ROT,  SKY,  ferrupinea  the genetic identity between the two  western subspecies is very high  (0.990)  (Table 3.8).  The most  distinct populations in the west are located along the main cordillera of the B.C. Rockies  (LL,  YNP, WAT).  In contrast,  N. pilosa appears to be a largely homogenous group with a much narrower range of genetic identities  (Fig.  3.3; Table 3.7).  There appears to be complete intermixing of populations from the northern and southern Blue Ridge populations and between subalpine and temperate mesophytic sites.  3.3.4 Estimates of Gene Flow in Menziesia  Estimates of gene flow (Nm) Wright’s  (1951)  in Menziesia based on  FST statistics range from 1.90 for N.  •  IC))  IH-  IC’)  IN IHlCD  i  I kD  I-h  0  U)  0  H-  H P) Cr  C  ‘tS 0 tI  ‘ti CD  CD  H,  0 i  CD  H-  Z  U)  I-C CD  C  Cf  H-CI-  H0  çr  CD C))  HC))  I-C  CD  U)  Cr C))  H, 0 I-C CD U) rr U)  CQ CD  ‘<  (5  3 I-C C  U)  CD Cl  c-f  C))  H-  U)  H  H  0  U) CD C) Cr I ‘(5  H-  Cl  CD  Ct  C  ti  H-  I-I  HU) Cr  Cl  H ‘< I  Q CD  H-  H,  0  U)  C  tQ CD  P)  HU)  C)  0  CD  Cr  CD  U) C C) C) CD U) U) H-  (7) H-  <  Cr  •  CD  I H C)  Cl  H-  H-  ‘-I  C  C)  C)  0  Cr  C))  Cr  HCr C)) Cr U)  C))  CD  H-  H  C)  C Y  U)  I  CD  Cr  i-i C))  C))  <  CD Cr HC)  CQ CD  H,  0  CD H U)  <  CD  F-’  HCQ  H  Ii  H-  C))  H,  Cr  CD C)  tI  Cr  H U)  H-  CD  F-  Q.  C  ‘ti CD Ii CD i  i  H-  0  — W  CD C) HCD U)  U)  ‘ti  H,  0  HCr U)  C)  Ii  Cr  H-  lCD  IN IH-  I lCD Ii  •  —  CD -O  H  Cr  Cl  0  0  Cl  C))  -•  ‘-0  H ‘-0  .  C)) H  Cr  CD  CD  H,  H-  H  Cl  C))  5  Ct CD  5  I-C HC)  U)  <  U)  CQ  H-  (5 CD CD Cl  CD  CD I—’ ‘<  ‘-Q  H C)) I-  C)-  CD  Cr  CD F-  F-  C) 0  U)  H-  U)  0 i  Cr H-  C)  I—’  C  ‘(5 0 ‘(5  a)  0  1’  0)  I-’  0 ‘d  ‘  I-’-  •  —  ‘-D  -D CD  H  HC)  5  C))  H-  Cr  C))  Cl) H  —  C’)  0  H-  Cr  C)  H  C  ‘(5  0  ‘(5  CQ  5  0  H-’ 0  H,  CD  CD  H-,  HCD  CD  CD  II  CD  Cl  H-  <  CD H  -D  W H 0 0  Cl  Z  H-  0 H Cr  Ci)  CD H P) Cr H<  C))  0  a)  a)  0  I-• a)  C_fl  -.  CD  H D  0  (1  0  I-’-  rr  I-  ø  <  0  rr  (D  0  0  •  W  H  HH HCr ‘<  HC)  I-I  C))  <  H-  CD Cr  CD  (7)  •  •  W  h’  H  C))  Cr H0  C  ti  H-  Cr Ii  H-  Cl  CD  Cr  f-aCr  C))  ‘-0  -  H  Ii H-C C) Z  5  C))  -.  H D CD  HC)  I-j  C))  Q  C))  <  I-i  0  Cr  CD H CD U) U)  <  HU)  0  <  C))  0 H,  CD  H-  C) C)) Cr  H-  Q  H-  CD  •  H  C))  Cr  Ii  CD  H-  CD  C)) ‘-l  HC))  C’)  CD  I  )  C)  F-’-  II  CD  0 ‘-C Cr  H-  Z 5  H-,  0  U)  5  0 U) Cr  Cr U)  I-C Hl  Ii  0  H,  c-Q CD U)  C-.) CD  C)) Ii CD  i-  C))  CD  <  r’  •  0  H  H,  CD  CQ CD  0  H  CD  H CD  Q.,  Cr CD  U) Cr H-  CD  CD U) ç1  HCQ  w  •  U)  H  CD  C  Cr CD  5  H-  Cr  CD U)  U)  -  H-  -t  H C))  Cl)  Q  C))  -  ‘-0  t’J  CD U)  ç1  C))  CD U) Cr H-  C))  <  Q,  CD  Ct  H-’ C))  C  C)  H  C))  C)  F-  C)) H-’  -  I—’ CD U) U)  Cl  CD  •  Ii  C))  H  H-  U) HO  CD  Cr  U)  C)-)  ‘<  0  C)  Cr  C)  CD C))  Cl -  U) CD  C  Cl  II  5  z  IH IC IC)) IC))  IH-  I(5  •  l  Cl  C)  CD H  W  II  — Z 5  H-  CD U)  J 0  i 0 C)  CD  Cr  0  I-j  H,  It—  IH  lCD  f-  •  U) U) CI  Cr  CD  CD  Cr  0  CQ  H-  CD C3 CD  —  CD CD  •  H  ‘1  H-  •  H  C))  CD  Cr  C))  H-  I-j  Cr  CQ  CD H-  H  U)  CD  S  C  IQ  C))  H-  Cr  U)  CD  H H  H,  U)  Cf H0  C))  H  C  ‘(5  0  CD  f-t  Q  CQ CD CD  5  0  CD Cl  <  U) CD  (5  0  CD  I-i  CD  -  -—  CD  •  W  H CD  C))  U) H-  H CD H ‘H-CD  L  I  C)  Ii H-  CD  Cr  0  Z  lI-C  IC  hi  kD  IH,  It  Cr 0  Cl  CD  Cr  5  H-  t--  CD  C))  CD F-  S 0 Cl  —  CD C_fl  .D  —  U)  -  H-  Cr  C)i  H  cn  Q  )) U) Cl)  b  f  S  (Q  I-C ‘-< H-  C)  -  CD Ii  H C  C)) rr  CD  U) 0  CD  Ii  C))  —  0 CD  H  0  C)  Cl)  (7)  (Q  H-  U)  C  ‘<  H  0  C) CD  H  ‘o  •  H  5  M Ci) Ii H-C  •  iCkI  CD H  L  IC)) I(5-  IH  jQ  ‘(5  U)  C))  CD  H-  Ii  C  Ii  CD  •  I  H-  CD J  H  Cr 0  )  U)  IHIH  •  Cr CD  C H C)  C)  C)) t--  C)  CD U)  C  C)) H  Cl  C) Cr CD  Cl)  C) 0 Ii Ii  0 —  W  H CD  -  IC))  lCD  H-  Ii Iii hi  H,  .  tI  U) U)  IH  Il-h  kD II-j Iii IC IQ  l  H  C))  Cr  C’)  C))  C) 0  I—C  0  H,  Øi  Cr 0  IC))  IF-  IF—  lCD  It3  H  ti  U) U)  Ic’  lCD  I  IH  I  ‘M  1(1) fr-i  H H  118  Levels of within-population allozyme variation were very similar in the two subspecies of N. Although these levels are low,  ferruainea  (Table 3.11).  compared to mean values  reported for widely distributed species,  they are very close  to average values for regionally distributed species 3.11; Hamrick and Godt 1989).  (Table  The mean levels of within  population allozyme variation in Appalachian N. oilosa are most similar to values observed in endemic species 3.11; Hamrick and Godt 1989).  In general,  (Table  the levels of  within-population genetic variation are somewhat lower than predicted on the basis of geographic distribution, the levels of expected heterozygosity (Hexp)  .  especially  Lower genetic  variability in N. oilosa might reflect its smaller distribution relative to N.  ferrupinea.  The results are  certainly consistent with the more homogenous morphology (Chapter 2)  and simpler flavonoid profiles  (Bohm et al.  1984)  seen in N. pilosa. With regard to life form,  the values of within-population  allozyme variation observed in North American Menziesia are again lower than expected for long-lived woody perennials (Table 3.11).  However,  they are comparable to levels observed  in short-lived woody perennials 1989)  .  (Table 3.11; Hamrick and Godt  It should be noted that most of the studies of long  lived woody perennials upon which these statistics are based are wind-pollinated tree species, particularly gymnosperms. Few studies have focused on short-lived woody species,  and  consequently, the data base may not be entirely reliable.  <  H-C  C 3  C i--h  H,  iCD CO  H Cr  C H,  -  <  CD  5  Co C  Cr  Cl) Cr  HCo  Cl.  Cf  Cl)  CL  Cl) H CD  CD  hI CD  •  H 0) Cr  •  CO  CD  CO  Cl)  CD  •  —  H-  CO CD CD  <  C Co HCf  CD Cr CD IC N ‘<  Q.  CD  Co H-  CD  H-  N  CD  Cf  H,  C  H  Cl)  I-j  < CD  Co H-CD  hI hI  CD  W  H CD  Cl)  —  HC) CD Co  CL  H,  H-  H-  c-f HC  0)  CL  CD  <  I-i  Co CD  C  (C  H-  CD  CQ C c-f CD Co  N  CD hI C  Ct  CD  CD  CD  H,  CD C) HCl) H H ‘-<  H-  ‘tI  CD CO  -  Co  CO CD  l  CD  C  H Cl) Cr H-  S  ‘Z  H3 Cl) c-f  H,  C  Cf  C  Cl)  CD >  CO  Cl)  H CO  CD  H CD  CD hI  H C  <  Cr H  Cl)  H C)  H,  H-  (Q  Co H-  CD  Cf  CD  Cl) hI  Cf CD lCD Co Cr  H-  H Cl) h  HC)  lCf  Cl)  ‘  i—h  C  •  H  ‘.0 ‘.0  H  Cl) Cf Cr  CL  Cl)  CL  Ci Cr I0)  —  HC  Cr  HCl)  hI  Cl)  <  C H,  CD H Co  <  H CD  CD  Cr  H,  C  Cl) Cr HC  5  H-  Cr  CD CO  fr  CD  C  CD  rr  5  3  H-  CL  CD  Cr  H  hI CD Co  CD  <  Cl)  5  Cl) ‘<  HC)  ‘  -  Co  CO ‘-< CO Cr CD  CD  5  N  CD  HC)  l-  C  < 5  tI C H  Cr  tQ  H(Q  ‘<  CD C) HCl) H H  tI  CD Co  HCo  H H HC Cl.  lJ  S—  Co  H-  CQ  II  CD  W  ‘<  H  C  C  CL  Cl) Co CD  hI CD  •  —  H  ‘-C>  H ‘.0  Cr  Cr  0)  CL  Cl)  CL  Co Cl. H--— C1 C) Cf Co hI ) Cl)  H-  Cl) Cr  c-f  Co  CD  Cr  5  H F-’  CD HC  H-  I-  CD  <  Cl)  CD H-C  S  H-  H,  C  C hI Cr HC  H,  H  tI  hI C  ‘  CD  •  H F-’  •  W  H CD  Cl) t  -  Cr  CD CO  H C  CD  Cf  CD  Cl)  H,  C  CD H Co  <  H CD  CD  C-t  H-  CL  CD  hI  Co CD  ‘  C  HCl) Cr HC  hI  Cl)  <  CD Cr HC)  tC CD  -  H ‘.0 ‘.0 F-’  Cl) Ct Cf  <  CL  Cl)  Cr hI  Cn  —  5  H H  J  CD H-  Cl)  -  —  H  ‘.0 ‘.0  F-’  -  H  Cl)  Cr  CD  CD  H  CD I-i  CL  W II CD  —  0 C) C C) C)  C  Cf H-  CD C)  CO  5  H-  H-  I<  CL  CD  H HCo  t  ‘  hI  CD  Cl)  Co Cr HC) CO  H-  Co Cr Cl) Cr  HC  C-f  Cl)  ) lH-  <  HC)  C-f  Q CD CD  Cl)  C)  HCD Co HCl)  CL  O) N  H-  ><  5  H  H  H-  H-  —  CX  C-  •  C)  II  H C C) H-  HC)  C3  II  C  5  ‘-<  H  C  5  ‘  C)  H-  hI  C  H,  Co  hI  Co  Co  C) CD C  0)  HC)  hI  CD  CD II  Cr  C  Cf C  CD  tI 0)  C) C  CD  —  H ‘-.0 ‘.0 CD  cr  CL  CL  CL  Cl)  IC  —  Cl) CD  CD  C hI  CL  C  CD  Cr  H-  Cf  H-  CO  CL  HtI H C H-  CL  I-i  C  H,  “< tI HC) Cl) H  C)  HCo  o  0i  ‘.0  F-’  Cl)  5  C)  W hI C  CL  Cl)  H C I-  <  Cl)  —  ‘-  N H-  C I-  H,  t-J G  II  ts-)  H,  0  Cr  C  H-  5  CD  Co C  C  5  C  hI  C)  Cl)  CD  H H  •  L)  CD  H  ‘  Cl)  Co  CD  CD C) H-  ‘  CO  CD Q  Cl) C-f  C H H H-  5  Cl) H I  H-  )  H3 CQ  HC)  I-  5  Cr  CD  Cr  Cr  0 CL C  CL  Co H-Cl) i Co  C  C)  hI  CD  Cl)  CL-•  CD  <  hI  Co CD  ‘  C  Co  hI  CD  C-t  Cr  Cl)  CQ  1 H-  Cl)  CD  Cr  —  CL  CD CD  CL  H  F-’Cl)  H-  ‘  F-’ CO  Cl)  CL  <  H-  CL  H-  CL  F-’ C H-  H-  tI  CL  H, C ‘1  Co  Cl) Cf HC  Cr  C)  CD  X  CD  ‘.0  CX)  C-t  5  çt  H  ‘-.00)  H-  CL  H>< CD  S  H-  CD  Co CD  Co  CD  Cl) H  <  C  Cf  H Cl) I-  H-  5  CO H-  S  C II CD  CD  II  Cl)  HH C Co Cl)  IC  •  I  H-  CL  CD  <  I-i  S  CO  H I  Cl)  H  Cl)  ><  Co CD  hI  C Cf  Cr  H-  1<  H  hI  Cl)  C  <  Cl)  H,  C!)  CD  CD  5  5  Cl) hI  ‘  C) C  0)  C!) H-  CD  N H-  CD  Cl)  HC)  l-  CD  Cf  h  0  Z  Co  H-  0)  CL  Cl)  CL  hI C Co Co CD  C)  c-f  C  CD  hI  Cl)  c-f  Cl)  Cr  C CO CD  Cr  <  H  F—  H Cl)  HC)  h c-f  Cl)  -  CD  C) H-  CD  Co  CD  Cl) H  <  •  —  (X) ‘-.0  ‘.0  H  Ct  CL  C  C)  CL  Cl)  hI HC)  0)  -.  H I—’  -  L-  H CD  t  Cl)  .—.  Q  Cl) Cr CD  H H-  H  Co  CD  C  C b’  H,  C  Co  H 0) Cr HC  C  ‘  H-  H Cr  ‘-<  C-f  HF-’ H-  Cl)  hI H-  Cl)  CD Cr HC)  CD  I.Q  H CD CO CO  CD  Cf  l-  CD  CD  Z  ‘.0  F-’ I-’  120  loci  (LAP-i, MDH-4,  PGM-l,  6PGD-2,  and SkDH-1)  expected from the allele frequencies.  than was  This is suggestive of  either significant levels of inbreeding in the populations or of selection against certain enzyme phenotypes at these loci. In contrast,  other loci  (MDH-3,  PGI-2,  TPI-1),  exhibited a slight excess of heterozygotes.  generally  Populations that  deviated the least from Hardy-Weinberg expectations were found in the Appalachians and at the distributional limits of both j.  ferrupinea,  LWS).  sens.  lat.,  (HUM,  TET),  and  .  pilosa  (CAP,  These areas also exhibited the lowest levels of genetic  variability seen in North American Menziesia. populations of Vaccinium (Breuderle et al.  Neither  1991)  nor  populations of Leioohvllum (Strand and Wyatt 1991)  exhibited  significant deviations from the Hardy-Weinberg equilibrium. Reduced levels of genetic variation within populations at or near the range extremities could be a result of the relative isolation of these areas resulting in bottleneck effects as Menziesia migrated northward following glacial retreat.  Areas to the south may have become too warm or too  dry to support Menziesia, Menziesia in Humboldt Co.,  except in isolated pockets. CA (HUM),  for example,  are  geographically isolated from Oregon coastal populations by an area of drier habitat roughly from Coos Bay, Oregon-California border.  Similarly,  OR south to the  the southern limit for  Menziesia in the Rockies occurs in the Grand Tetons of Wyoming at the bottom of cold air drainage valleys,  isolated from  populations in southern Montana and adjacent Idaho.  In the  121  Appalachians, Capon Springs, WV (CAP) GA (LWS)  and Lake Winfield Scott,  are comparatively less isolated,  and within-  population genetic variability is not much lower than observed in many  .  pilosa populations.  Other examples of probable  post-glacial isolation of populations and reduced levels of genetic variability have been observed in Phlox (Levin 1984) and Leioohvllum (Strand and Wyatt 1991).  3.4.2 Genetic Variation Among Populations  In North American Menziesia, among populations  (mean DST  =  levels of gene diversity  0.007 to 0.023)  relative to gene diversity within populations to 0.113).  are quite small (mean Hs  =  0.067  The partitioning of genetic variation within  rather than among populations correlates well with the partitioning of morphological variation observed in Chapter 2, as well as in the profiles of leaf flavonoids 1984)  .  (Bohm et al.  The low levels of total genetic diversity distributed  among populations are reflected in the small values of GST that range from 0.092 in ssp. alabella.  .  to 0.166 in  oilosa,  ferrupinea  These levels are much lower than the average  reported for animal-outcrossed species mean ± standard error), and in fact, observed in wind-pollinated (GST successional species 1989).  .  Similarly,  (GST  =  =  (GST  =  0.197 ± 0.017;  are comparable to levels  0.099 ± 0.012)  0.101 ± 0.013)  or late  (Hamrick and Godt  the levels of GST are low relative to mean  values reported for widespread species  (GST  =  0.210 ± 0.025),  but are slightly higher than levels observed in either short-  122  lived (GST  0.088 ± 0.024),  =  0.01) woody perennials However,  or long-lived (GST  .  0.076 ±  (Hamrick and Godt 1989).  the mean levels of total genetic diversity (HT)  in North American Menziesia, to 0.136 in  =  ranging from 0.074 in  ilosa  .  ferruainea ssp. alabella, are much lower on  average than values reported in most studies, where HT ± 0.007  (Hamrick and Godt 1989).  =  0.310  This appears to reflect low  levels of total diversity among populations in a number of polymorphic loci, with the notable exception of PGI-2. Consequently, (Hs)  levels of genetic diversity within populations  are correspondingly low,  to 0.113 in  .  ranging from 0.067 in  ferruainea ssp. alabella,  5 plant taxa, where the mean H  =  .  Dilosa  relative to most  0.230 ± 0.007  (Hamrick and  Godt 1989) Other ericaceous genera also exhibit lower than expected total levels of allozyme variation. buxifolium had levels of HT 0.062.  However,  =  For example,  0.118 ± 0.022 and H 5  Leioohvllum =  0.108 ±  like Menziesia, Leioohvllum had low levels of  genetic diversity among populations relative to the total genetic diversity (GPT 1991)  .  =  0.109 ± 0.22)  (Strand and Wyatt  In diploid species of Vaccinium section Cvanococcus,  HT ranged from 0.151 in  .  elliotii Chapm. to 0.212 in  .  tenellum Alt., with H similarly varying from 0.132 to 0.185 for the same species.  The levels of GST in these Vaccinium  species were also low,  ranging from 0.126 to 0.133  et al.  1991)  .  Breuderle and his associates  (1991)  (Breuderle attributed  CD  1<  N  o  Cl)  H-  o  C)) U) HU)  CD  Ct  0  H CD  C)  HCl)  tC  H-  HCl) Ct  Q  f-t  o  ‘1 CD  o  H C) ‘.0 C)  U) H-  Cl  C) H —Cl)  CD  0  C))  H  CD  CD  Ii  ‘.0  •  H  C)) U)  Q  H-  C)) U)  HCl)  <  Ct  HH C)) Ii H-  H-  U)  0 H-,  ‘0  C) .  o  H  H  U)  CD CI)  HCD  II  -  Cl)  H C)) Ct H0  ‘d  0  CD C) Hi-h HC)  H  CD  Cl)  Cl)  H  <  CD  ‘d  Cl)  U)  0  Ct  CD  H-  U)  0  C)  0 II  II  CD  0 c-V  C))  CD  0  Ct 0  •  —  Q.  CD  HH C)) i-i  I-j  0  M  M-,  C)  H-  H-  I-  Cl) Ct  HCl)  HC)  HU)  Ct  C)  Li.  Cl  I-  CD H-  c-F  CD  <  (Q H-  (Q  -  —  D W W  •  Q  C’  II  H  —  C))  lCD H H  IQ IH IC)) IrJ  Cl)  •  U)  Z  H0  ct  H-  ct l-  HU)  Q.  Ct  I-  0  ‘  CD  II  C)  fr  -.  Co H  -O  H  H  H HCD  -<  0  rr  rr  0  I-j  0  Ii  CD  <  CD  C)) ‘1 CD  CD C))  CD  H-,  H-  i-  0  CD  ‘1  C)  0  -  i-h  CD  rt  CD  C)  •  U) ‘C3  U)  CD C)  H-  tII  M  •  I  I-  0  —  • ‘.0 to  C)  II  — H  CD C))  H-  II-  H  •  I  I-j  CD  u CF  CD  Q.,  C))  IC)) IC))  IC)  Id IF-’IH  •  I  HC))  C)) H C) C)  ‘  CD CD  Ct  •  CD  ‘  <  Ct  H-  l-  HH C))  H-  Cl)  U) U)  CD C))  H-  l-  I  i-h  C)  H-  CD CF  CD  cQ  0 I-h  CD CD  I-  ‘-Q  CD  Cl  HtQ  CD  Ct  HCl)  Ct CD ICD Cl) Ct  H-  f-t  CD C)) Ct CD U)  L i-  i-h  Q  •  W  W  •  HtQ  ‘XI  -.  —)  W  H CD  C)  -  Cl)  Hi tQ  0  Cl)  C))  HH 0 Cl)  K)  •  I  HCF  H0  -  —  to  —  • ‘.0  C)  V  H  H(Q  CD  ‘-I  C))  C)  ><  C)  Ct  H-  N H-  CD  Ct  C))  H  0  ‘  0 i CQ  C)  0  Ct H-  C))  Ct H-  CD  I-  CD  HM  H-  Q  -t  H CD C)) U)  Cl)  C-t  -  i  C))  C)  CD Ii H-  t-r  0  H H  C))  H-  Ct  H-  U)  CD  Ct HCt H-  Cl Cl)  H-  C)  CD Ct H-  (Q CD  U)  CD H-  Z  Cl) •  H C)) Ct H0  0  ‘t  ‘  Ct 0  CD  Cl  0 i-h  H CF  CD U)  i-  CD  Ct  HU)  ‘-<  H-  Ct C))  I-  CD  C)  c-F  i U)  H-  C) (Q C))  H0  Ct  H Cl) H-CD H CD CD H C)  I CD  0  Ct  CD  Ct  C) HH--  H-  Cl)  H-  •  Hi CD  X  C))  CD  ‘.Q  H  CD  U)  Cl)  Ct  Ct  C))  H H CD H CD Cl)  P)  0  H-  N  H-  t  CD CD Q. H-  I-  H-  l-  <  H 0  <  H-  H 0 C)  CD  CD  (C  CD  c-F  0 H  CD  U) 0  çt  CD  b  Ct 0  CD C)) I-  ‘  ‘d  C))  ‘-<  Cr  U) H-  CD  H-  Cl  C))  C)  H-  CD Ct  CD  I-Q  H0 i  i—F  H-  C))  C)  0 I-h  H Cl)  Ct 0 Ct C)) H  M  < CD  0  H CD  Cl)  CD H  H CD  Q.  CD  (1  ‘Z3 CD C)  CD ><  0  çt  Q  CD  C1  CD H C))  l-  C))  CF  CD i-I  H 0  -  H-  N H-  H  •  C)) Ct H0  tQ  CD U) Ct H-  <  H-  l-  CD  Irr  M-,  U)  CD  H-  Q  CD  ct  J C))  CF  C)) fr H0  Cl) C) CD  Ct  H-, CD I CD  H-,  H-  Cl  C)) Ct  CD  U) 0  C))  -t  Cl)  CD U)  l-  CD  I-’  <  C))  U)  CD C) HCD  U)  tY  1J  ‘1  U)  <  Cl  U)  i—h 0 h  H HI-h CD  CD  II  <  I H H-  CD  Q  H 0  HH CD  U) •  c-r  H C)  ‘-<  I—i  U)  H-  h  CD  ) rf rr  ‘Z  Cl) HCF  CD  <  H-  Q.,  CD Ct HC)  CD  LQ  i-h  0  CD H C))  <  H CD  H-  3  C)) H-  Ct  CD  <  H  H  CD ‘1 C))  (Q CD Z  H  tQ CD i CD I C))  C))  HCl)  Cl)  H-  i--F  CD ‘1  CD Ct  ‘<  C))  Cl)  0  Ct  ‘<  lH  CD C)  0 0  Ct  U)  H-  H Ct  Ui C))  cx  H ‘O  C)) C)) H  C)  Cl)  Cl  C))  C))  U) CF  <  — Cl)  H-  H-  Q  C))  (X —]  ‘.D  H  •  C) H  ICl)  I IFI Ii  H  C))  c-F  0  Ct Cl)  H C))  ‘  ‘<  I$i  Cl)  U)  0  HC) C)) C) CD  i-  0 i I CD  I-h  CD Ct  0  C-t  l-  CD  CD  Q  $ U)  W 0  —  Ct  0  “<  I  0 Z C))  H-  ct  H  0  <  CD  c-r  CD C) CD  C))  CD Cl  i-  C))  U)  CD  0  Ct  CD C)) h U)  ‘d  ‘z  C)  0  U)  CD C) HCD Cl) •  ‘d  Cl)  CD Cl) CD  Ct  H-,  0  H  C)) H I—(  ‘<  H-  CD tCl)  <  H-  Q  H  Ct 0 Ct C))  CD  0  CD  0 ii  0 i-h  HH Hf-V  U) H-  U)  tI 0  CD  f-F  0  f1  H-  H-  H  <  Cl) H Ct  II  CD  H  Q.  C)  H-  ,—t  LC CD i CD  CD ‘1  0  H to  124  as high levels of  This is perhaps not unusual,  variation.  genetic identity are commonly reported for infraspecific taxa recognized on the basis of morphology  (Crawford 1990)  Although populations from the Cascades and coast are almost indistinguishable based on isozyme analyses,  they do  This appears to  differ from the Rocky Mountains populations.  reflect clinal variation in the allele frequencies of PGI-2, 6PGD-l,  6PGD-2,  gradient.  and IDH-l, which occurred along a west-east  This is comparable to patterns of morphological ferrupinea  (Chapter 2),  but not with patterns  of variation in flavonoids  (Bohm et al.  1984).  variation in  .  In  .  pilosa,  populations from the northern and southern Blue Ridge were very similar genetically,  illustrating the high degree of  uniformity in the Appalachian species.  Nevertheless,  north-  south clinal variation in the allele frequencies of PGI-2 and PGM-1 were observed,  again mirroring morphological trends.  The relative homogeneity of  .  oilosa compared to j.  ferruginea is perhaps best explained by their geographic distributions.  While  .  ferrupinea,  sens.  lat.,  is widely  distributed in western North America in a number of habitats, M. pilosa occurs over a much smaller range and is restricted to higher elevations in the Appalachians. As discussed in the previous chapter, morphological evidence that  .  oilosa and  there is strong .  Although there is  derived from a comnmon widespread ancestor. some genetic divergence,  ferruainea are  the electrophoretic data confirm a  high degree of similarity between western  .  ferrupinea,  sens.  CD LI CD  CO  Cr  H  CO  CD  ti CD I-h 0 LI CD  CO  CD CI) LI  <  H 0  H-  H H  II  H C) I H O  CD  0  CD  0  LI 0  Hi  CL  Cr CD  H• CO 0 H CI)  CD  CD  b  CD  <  CI)  CL 1 0  CD  CO  Q.  CD  HI-j H-  t  Mi  C) CI)  0  H-  I  Q  H-  0  HCD CO  Cr  CD  CD C)  CO  Cr  I-i  0  CI) Z CL  i  CI)  H-  CO  CD  Cr  CI) Cr  Cr  CO Cr  CD  (  CO  C) CD  CD  CI) Q  CO  CL  CI)  H D CD -  CD H-  Cr CD CO  Il CI)  0  0  CD CO  Cr H-  f-t HCr  CO  CO  CD  Q Cr)  Q.  CD  CI) Cr  CD  (Q  CL  H-  Cr  CO  CI)  H  t  Hi  0  C) CD  (Q CD  0  H  CI)  CO  •  CI)  C)  ti CI) HLI  CO  CD  C) H-  CD  CO  CD  Cr  0  O  H  CL CD H  CD  CL  CI)  CO  CI) Il  tJ  •  •  W  Q  Il  CI)  Cr)  •  H  CO  CD  CD  CO  CD  H-  h  1 It  C)  II  H  0 I-h  <  Cr HCr  HQ. CD  C)  Cr H  C) CI)  H-CD  Cl)  (Q  CD  C) CD  CO H-  I-  CD  H CD  ‘I CI)  CI)  C) 0  — •  C)  H ‘-o ‘D  H  Z CL CD  CD  CL  CI)  CO  II  CI)  —  Cr  Li  ç-t  CO  H-Il  CD II  <  CD  0 Cr  CD  CO  H  1  I-  Li •  CI)  LI CI)  HHi  H-  H  3  II  H-  LI  H-  t  •  Cr CI)  CL CI)  CD  ‘<  N  0  HCO  CQ  CO H-  CD CL  H-  CO  Cr 0  LI  CI)  HH  H-  CO  <  H  0 tQ HC) CI) H  0 H  0 -i  HCO  CI)  HC)  Il  CD  ICr  0  II  H-  CI)  CO  Cl)  CD  <  CD  CD  Cl)  CI  0  Hi Il  0  H CO  CI)  CI)  <  CI)  J  CI)  LI  CD  CD  CQ  CD  CD  II  Cr  (  H-  CD Il  Mi H 0  C) Cr  —i-  CO  Q. H-  H  Cr CI)  CD  H-  çt  0  C)  0  F-  •  C)  CI)  CO Cr  CI)  0  Cr  CO CD C)  Mi  0  CD  CO  H  C)  CD  CO  CD ii HC) CI)  Cr  II  0  CD Il  CO rr  CD  CD  Cr  Mi  0  0  Cr  CI)  Cr 0  CD  CD LI  CD “<  Ct  Ct  0  ICfl ICI)  ILI l IQ IC  •  I  CI  H-  I)  CO  J C)  H-  Cr  Cr  CO  HH CI) II  CO H-  II CD  0  <  Cr H  H-  H  CO  CD ‘1 CD  CD  C)  Ic))  Ir IQ ICI) ICJ) rr  H-  CI) CO  C)  H-  —  CD  N  Cr  II  CD  <  CD  Cr  CD  •  C)  i HCO  —  Cr  -  ‘-<  H H  CI)  Il Cl) Cr HC)  0  ‘rj  0  CD H CD C) Cr Il  Q  CI)  H  <  CI) H  HC)  0 (Q  0 H  0 ‘I  H-  Hi  0  CO  CD  C) H-  CD  CO C5  C) CI)  CD LI  3  Cr  0 I—c  CD CI) CO Cr CD II  0  Cr  -  CD Il  CD  0  •  CD  C)  Cr CI)  CO  CI)  Hi  0  CO Lti CD C) HCD CO  HC) CI) 3  II  CD  I-j Cr  0  I-i  CD  CO Cr  CD  E  II  0  Mi  CI)  (-t  0 3 (Q  CI)  CD  <  II  CO CD  0  CD  CD LI  Cr UCr HCD CO  CD  CL  H  Cr H• C)  CD  CD  Hi  0  CD H CO  CD  H  CD CO Cr  HtC  CD  •  -  ‘D CD  H  <  0  CO Cr  P)  C)  CI)  CL  CI)  CI) 3  CD H  0 tQ  <  —  Ui  ‘-D  •  C)  0  rr  ro CO  •  C)  0  -i  I-h  Q  H-  (Q  Cr  H-  -  H H  HC) CI)  Cr  CD  I-j  0  0 ‘ti  Cr II  C)  CD H CD  CL  CD  CD I-h H-  Q.  CD II CD  —‘  CD  Il  CO  CD  CI) C) CD CI)  H-  t CI  lCD  I’  K  I  IQ P) ICO ICt ICI  H-  HCr  Cr  HCL CD  C)  H  CD  Cr  Q  CD  Mi  I—h  0  CO  0  II  I.Q  CO  CD  H-  CD C)  CO  CL  CD  Cr  0 H CI)  CO  H-  <  HC) CI) H H  CI)  II  tQ CD 0 (Q  CD Cr CD  C) II  HCO  Q.  Il  0  H  CD  H i-C)  CD t  Cr Cr H H-  C) 0  -  —  —)  Q  •  C)  II  H  CD CI) 3  i CL  CI)  (Q Il  CO  CD  C) H-  CD  CO  -  CO  C) Cr  3  Li.  CO  H-  CL  CI) H  Cr  3  CD  •  —  Ui  CD  ‘)  H  0 LI CL  Mi  C) LI CI)  H--.  Cr  C) 0  CD CL  H•  CI)  X  CD  Cr  CI)  Cr  HCD CO  CL  CO Cr  CD  Mi  CD  3  Cr  Mi  0  CD  0  H  H-  LI HC)  CD  (C CD  C) 0  CD  CD  Ct  CD  C) CD  ( CD  < CD  Q  HC)  Cr  0  CO  H  <  0  0  C)  3  I-  CD  rr  Cf  CI)  ‘ti  H CO  Cr  tQ  Cr H-  Cr  Mi H-  CO  C) H CD  CD CD  CD  CO  II  CD  0 Cr  CD 11  <  Cl)  X  0  (Q  I-h  0  CD H CO  <  H CD  II  CD  H-  C)  Ui  CD  H  0 LI Cl  Hi  C) LI CI)  -  0  Cr H-  H  C)  CD  CO  HC)  CI)  II  0 Q  tQ CD  I-h  0  CO  C) CI) CO CD  H-  1  Cr CD  C)  CD  CD  <  0 Cr  HCO  CI)  Cr  CL CI)  Cr H• C)  II CD  0  0 ti  Il  C) Cr  H CD  CD  CL  CI)  CL  H-  0  0  H CI)  Mi  H  CI  C)  H  H 0 IQ  0  ‘1  0  Ø  CI  c-r  CD  Cr  CD CD  Cr  CD  ti  C) CD  CD  C II  C) 0  CD  i-3  CI)  H H 0 CO  1C5  l  CI)  H  CI) H CI) C)  ‘tS  -  H CI)  H r’) Ui  H-  CD  Cl)  X  I-  ci  Cr  CD 0  I-  IC))  H-  ><  •  IC  Q  C))  •  C)  Cr J  HC)  C)  <  C)) H H  ii  0  •  CD CQ  —  Cr  CD  C)  l-  S  iCD  CD  I-  0  C)  11  CD  Cr  —  I-’-)  •  -  •  h  CD  Cr  C)) ‘ci  C)  —  CD  H,  0  CD  CD  CD  Cr  H-  fr  Q  C) CD  CD  II  CD  <  H-  Q  CD  H0 C)  -Q  -c  C)  0  Cr  ti ‘ti CD C))  C))  H Cl  CD U) Cr CD  Cl  C))  HC))  C)) H C) C)  ti  CD  Cr  CD  (Q CD  H,  0  H C!)  CD  CD  H  ( J  H-  CD II CD  H CD  Cr  CD CD  Cr  CD  C) Cr  H-  ‘ci  C))  i  H  Ici  Cr CD Cl  C))  H  CD  H 10 10 IC))  k  IC))  I  O  IC  CD CD  Cr  CD  P  <  CD  CD  h  CD  CO  Cr  0  Cr C))  CD C) HCD  C))  C) 0  U)  CD —CL  tI  U) CD  IC  k  CD  0  Q.  CD I1  H  0 N ‘<  C) CD  Q  HC) C))  l-  0 U) CO H-  ‘tj  H-  H-  Cl)  H  CD  0  H-  HCl)  CD U)  H-  Cl) C)  ti  CD  CD  <  0 Cl  <  C)  <  CD i çt HCr  Ø.  0  Q  HCfl 0 H C)) C-t CD  I  HCr  Cr  HU) Cr CD  CO  0  C)  i-c  CD  C))  IH-  kn  Il))  IH-  IN  Ii  Icy  HC) C))  I  CD  II Cr  0  Z  H-  0  H-  H  HC) C))  0  l-Q  H  0  ‘ci  0 h  H,  0  Cl)  i-c  C)) Cr c-r CD  ti  CD  H  H-  H0  Cr  C)  Li  U)  Cl  C)) H  Cr  CD  Cr H-  r -  HCD U)  Q  CD Cl  i-c  CD  Ct  0  ‘-0  •  CD  V  H  -  I  0  H  C))  0  I-  H,  (Q  H-  CI  H  Cl)  CD  C))  H-  C)  t-  CD  0 II Cr  Cr 0  C) Cr H0  Cl  0  Cr  H-  C) CD  tI  H HQ C) CD  H-  CO  HC!)  C))  C!)  H  •  Q.  Cr  CD  <  CD  H  C))  U)  CD  l HCD  C) i C) CD  çt  HCl)  Cr ‘<  Cr  C))  •  Hl CD  CD Cr HC)  (Q CD  H,  0  CD H  <  CD  H  Q  H-  Cl)  f-t  C))  H  •  CO  Cl) CD  C))  CD  H-  lH,  I  CD CD  Cr  CD  CO  CD I-  CI  0  CD  CD C!)  Ct  HCr  CD CL  I-  ‘ti C))  C) 0  CD  (Q  H-  H-  C!) Cr  ‘-<  H  I-  i—i  C))  Cr HC) $i  HC) Cr H-  C))  tI I-i  C) 0  H,  0  t-  <  C))  D) I  Q  HC)  CD Cr  CQ CD  H-  C))  Cl  C))  CT Cl)  I-  tEi CD CO CD  3  0 I—c  C))  Cl) 0  Cl  C))  CD  <  C)  Li.  0  CD  Cr  II 0  H,  C))  i  HCO  CL  Z  C))  CO Cr 0  H-  •  —  ‘-0 C)  CD  H o  •  H  C))  CD Cr  HCO Cr 0  0:)  CD  V  H  H,  0  <  Cr HCr  CD  Q  H-  Cr  CD  CD C)  1  “<  H  CD  Cr H-  C))  H  CD  II  C))  HC!)  H-  II  lCD  1<  I ICU  k’  I  CT  CT J C))  CD  <  CD  CD H H-  Cl)  CD  çt  C))  C) H-  Q  Cl) C!)  H-  [i  lCD  <  IC))  6I5’  •  IC!)  CL  C))  ,—r Cl)  I-i  CD Cl) CD  HC))  H-  C)  Q  C)) i  HC))  C)) ti  I-  I  C)) 1 0  (1) C)  CD  Cr  0  fr  H,  H‘CI  W  N I  Cl  H  C!)  —  •  CD  CD  —  lit, I—a IC))  H0  CD  CD  C)) H CC)  C)  Cr  CD CO CD  Cl  H,  0  Hi-  t5 C))  HCO  Cr  C)  Li.  CL  C))  -  CC) Cr  C))  Cr i-j  C) Q  H  GD ‘O  H o  •  C) H  CD Cr  HC!) Cr 0  •  t-  b-ak-n ki IC))  kt  J IC))  H,  0  Li  U)  CD  CD C) H-  ‘CI  I))  i  C))  CD  CD l-j  —  )  H  •  CD  Cr  H-  Q  CD  CD (-t H-  0  Cl)  C) CD  (0  CD M  H-  Q  CD H-  Cr  U)  CD  C)  H  ‘ti  H-  C)  C)  S H-  CD  J  HC)  I-  CD  II  H  -  <  Cr  H-  Cr  Cl CD  H-  CD Cr HC)  CD  H,  0  H C!)  CD  CD  H  CD  0  H  CD  <  CD  C)  0  H-  i-c  0  H,  C) C)) H H-  Q  C))  HC))  CD  CD Cl) Cr  Cr J  0  Cl)  CD  Cr  CD CD  CD Cr  CD  CD ‘1 <  Cl)  0  C))  CD  H-  Cr  H s)  Cr H-  CD  CL  H-  C)  Cr H-  (l)  3  (1)  C)  •  H  —  0  H  C!)  C)) h  Cl  C))  C)]  •  CD  I  CD  ‘-‘.)  CD  0  I-  H,  C)) i (Q (0 Cl  I-i  II  C))  H  IH-  ‘-<  CD Ij  0 H,  C) C)  H-  t-  CD  H  C))  h  Cr  C) CD  Q  C))  0  CO  1j  C)) H-  ‘Z3  C) HCD U)  CD  ti  CC)  CD  CD  (-t  tY CD U)  C))  C)  H-  i-c  CD  C!’  i-c Cr ::3  0  I-c  CD  Cr  C)) Cl)  CD  CO H C))  ‘1  CD C!) Cr CD  Q  C))  1j  H  C))  H-  U) H  <  H H  C) C))  H-  0  H (Q  0  i-c  ‘ci  0  i-c  0  H,  C)) U)  HC)  IC)) 111  IH  IH I  Cr CD  1j-1  H  CD CL  C)) H  Cr  0  U)  C))  Cl)  H  C) HCl) CO  CD  ti  127  aambelli Nutt.  (Schnabel and Hamrick 1990)  There is evidence  .  that these oaks have had the opportunity to hybridize within the past two or three million years, which could account for their high genetic identity of I = 0.915  (Schnabel and Hamrick  1990) It is possible that some allozyme variants between pilosa and yj. ally,  ferruainea were not detected electrophoretic  which would have resulted in higher genetic identity  estimates.  However,  underestimation of genetic variation is a  potential problem common to all isozyme studies 1990).  (Crawford  An examination of mutations in plastid DNA in North  American Menziesia would provide an alternative source of data that could be used to assess the time of divergence between ferrupinea and N. Dilosa.  In addition,  it would be useful to  compare the Japanese species of Menziesia, pentandra,  especially N.  with the North American species,  isozymes and DNA data,  .  using both  in order to obtain a clearer picture of  the species relationships in the genus.  At present,  there is  a paucity of information available on isozyme or DNA variability in disjunct shrubby genera that could be compared to Menziesia.  The examination of genera,  L., Vaccinium,  and Cladothamnus  such as Rhododendron  (= Elliotia), which have  vicariant species pairs in eastern Asia and North America would,  therefore,  be beneficial.  At present,  the high degree  of isozyme similarity between the North American species of Menziesia remains an interesting,  if not somewhat puzzling,  problem which must await further study.  128  3.4.3  Factors Influencing Isozyme Variation in North American  Menziesip  Estimates of gene flow (Nm)  in North American Menziesia,  calculated by three different methods, from 1.45 to 3.30.  ranged over all species  These levels are higher than average  estimates for animal-pollinated species  (Hamrick 1989).  This  indicates that gene flow among populations of Menziesia in both western North America and the Appalachians may be high enough to counteract influences promoting differentiation within populations.  Estimates of gene flow in Leioohvllum,  using Wright’s method substituted by GST, were 3.08 for gene flow among regions and 6.69 for gene flow among populations (Strand and Wyatt 1991).  These values are high compared to  Menziesia and may be the result of using only a few highly polymorphic loci in the calculation Direct measures of gene flow, movement and seed dispersal, Menziesia or Leioohvllum.  (Strand and Wyatt 1991).  such as following pollen have not been carried out in  Therefore,  the high levels of gene  flow estimated indirectly by isozyme data must be viewed with caution. In general,  there is a high degree of concordance between  patterns of morphological, Menziesia.  isozyme and flavonoid data in  Variation within all three data sets are higher  within than among populations, species.  consistent with xenogamous  The relatively high levels of gene flow among  populations are also consistent with this breeding strategy and could,  in part,  explain why  .  pilosa is a fairly  129  homogenous species.  There are factors, however,  that promote  differentiation within populations.  Menziesia is an insect-  pollinated genus and,  the predominant  in this study,  pollinators observed visiting Menziesia were bumblebees (Bombus spp.)  and other small bees.  Since these pollinators  tend to forage between flowers of the same or neighbouring plants they promote inbreeding within populations.  However,  some longer distance flights are probable so that gene flow is not entirely localized (Waddington 1983). Menziesia typically has one major flush of flowering early in the growing season, with an extended period when some flowers are available to pollinators.  The length of the  flowering period depends largely on the temperature regime. For example,  flowering is extended in warmer areas such as  California and this may increase the chances of long-distance pollination between unrelated plants 1984)  .  (Loveless and Hamrick  Conversely in cold subalpine areas,  the growing season  is short and flowering must take place within the span of four weeks to ensure enough time for seeds to mature.  This could  lower the potential for frequent long-distance pollination events.  In examining allele frequency variation of the highly  polymorphic locus,  PGI-2,  along transects within the west  coast populations,  partitioning of individuals into  subpopulations was often apparent. B.C.  (YEW),  transect,  For example,  at Yew Lake,  PGI-2a was common along one portion of the  becoming largely replaced by PGI-2d along another  part of the transect only 100-200 m away.  This patchiness in  ci)  H t-  0  C)  0  ci)  0  CD  Cl-  H’ ci)  Cl  CD  S  I-  CD  C-t  H’  ci)  ci) Cr  (Q  ci) H H H’  H  H,  0  C) CD  ci)  C)  t-  CD  Cl  ti  0  U) CD  C)  C) H  0 0  Ct  CL) U)  i  H H’  CD  H  0  H-  W  H’  ci)  H’ 0  ci)  Ct  H  ti 0 ‘ti ci  ci)  H’  Cr  Cl  H H-  CD CD  •  U)  H  0  U)  0  H’  Ct  ci)  <  CD frj  U)  >c  H-  i ci  CD  ‘ti ‘ti  —  0 i U)  H’  Cr  0  CD  Cr  H’  CD  <  Lii  •  X  H’  Cl  CD  CD  Cl  H-,  CD  cii H  N  ci)  <  H  0  Cl)  Ct  ci)  H’  S  I-  CD  CL)  ‘<  5  ci)  cii Cr  H’  ti ti  < C) 0  5  0  Cl-  Cl  Ct)  Cl CD ‘  ‘ti  CD  0  U)  C) 0  ci)  CD  CD  0  Cr  U) CD  Cr  -  CD Cl  ‘-<  Cr  Cl  Cr  CD  ‘1  0  U)  U)  Cr  CD  5  IH’  CD  ‘ti  CD  H CD  H’  Q.  ci)  ci  ci) ti ‘ti CD  Cl  ci)  CD  ti  U)  0  ‘<  ci)  C-t  ti  0  ci) H H  ti ci)  Cl  CD  Q  U)  ci  ci) ti CD  -t ci) H’  U)  ci  I.Q  H’  0  U)  U)  0  H ci)  CD  Cl  hj  0  0 I—’ H  II  CD  H-  <  ci  0  Cl-  Ct  ci)  H’  0  —  ‘-0  CD  D  H  —  ci) i  ‘ti H  H  CD I-  Cr  U) CD  Cl-  S ci)  Ct 0  <  0 I-  H H-  ti  <  H  CD CD Q  U) ci  U)  tQ  II CD  0  H-  Ct  H’  H  Q  U)  CD  H,  1  CD  CD  U)  U)  Cr  CD  CD Q.  C) CD  C) 0  Cr  ci) II  U)  U)  Q  HO C) HQ)  CD  M-, H-  )  U)  i Cr  H ci)  ‘tS  CD  ç-t  U) H  t-  5  CD  5  tI H’  CD  t-  ci) H  Q.  dl-  U)  ci)  H,  ci)  H-  <  <  0  ‘-  C I-  0 0  U)  Ct  U)  5  CD ci)  <  CD ti  ti  CD Cl U)  U) CD  M  0  Cl  U)  U) ci)  0 ci  Cl-  C) CD  0 Cl ci  ‘  ‘<  ci)  ClU)  ci)  H  ‘ti  H’  ci)  N H’  ‘  H  CD  -0  H  H-  <  CD  —  U)  HCD  C)  CD  ‘tl  U)  ç-t  ci)  H  Ici. H  CD  <  CD  U)  H’  Q  Cr CD  CD  5  C) ci  0  5  ti  H  ‘  CD Cl  Cr CD  Cl-  5  ci  C)  CL)  ci  U) H’  Hci) H  Cl-  ci) H  5  ‘1  0  H,  H-  ci)  H’  -  Ct H ‘<  CD  ,Q  CD  U)  C) 0  ‘  H  U) ci)  h  CD  U)  H’  <  H  H-Cl-  ci)  CD Cl  U) C) ci)  ‘ti CD ti U)  HU)  Cl  U)  Cl  U) CD CD  CD  Cr  -  H CD U)  ci  U)  ci) ti  C)  IH-  ci  Cr  ci)  5  HCr  U)  CD  C)  ci)  I-  CD Cl U)  U) CD  CD ‘I  E  CT)  Mi  J  F-’Cl-  Ct  H cii  ti  CD  Cl-  H-)  0  U)  ci  1 H-  ci)  5  H  ci)  CD H  U)  H’  i  0  CD  0  CD  ‘ti  HU)  •  <  ci)  ci)  5  0 ti CD  ti  0  5  U  0  Cl-  ‘ti  U)  C) CD  ci) H’  Cl-  U) Ct  H’  H’  I  L),  H’  Cr  CD  C) H-  M H-  H,  CD  II  0  H  0  ci H H  0  Ct  CD ci)  ci)  CD  0  Cl  <  CD  U) H’  U)  ci)  C)  ci  S  CD  ci)  U)  CD  0  Cl-  H CD U)  ci  U)  ‘  C) ci  Ct)  Ct  CD  Cl)  ci  ci)  C)  Cr U)  ti CD  C) ci tI  Q  H’  LQ  Cl-’  I—’  H  5 ci)  U)  CD II  <  ci) ti CD  U)  Cl  U) Cl) CD  CD  Cr  CD  C)  H’  Cl)  IH-, ci)  C)  CD II  ci)  U)  H Cr I  U) ci)  ci)  CD  H’  H  U)  ci C)  S  Cr  CD  CD U)  I  ‘ti  Cr  0  CD  Cl  CT)  U)  CD ti  U)  Cl H’  CD  ci) ‘1  U)  CD Cl  U) CD  Cl  ci)  0  HU) U) H’  C)  U)  ci)  0  Cr  0 ti  ti H’  ti  U) C) CD  CD  5  CD U)  H  ci  ‘ti U)  ci)  C)  H’  -  Z  H  <  H’ ‘<  Ct  ci) <  CL)  3’ CD  Cl-  TY’  -  N H’  F-”  Cl  S  U)  CD H’  Ct  0  0  I-j  0  ci) H U)  HU)  U)  U)  CD  H’  C)  Cl-  ci)  ci) i  5  CD C)  CD ti U) ci H  U)  H’  Q  CD Q  U) CD  Cr  Q.  CD  H-CD  CD  •  Cl-  CL)  Cl  F-”  <  CD  Cr  0  i  CD  CD  U)  CD  C)  C-t  ci)  ‘  H  ci)  0  H  C)  ci) Cr  Ct  U) 0  -  CD U)  Ct  0  i  CD  (Q  CD  -  CD  t-  CD  H,  H,  H’  ci) Cl  CD  Cl-  H  0  U)  Cl-  ‘ti H ci)  tQ  H’  ci ti  0  CL)  H’  U) U)  ti 0  C)  Cl-  0 ci  ‘1  0  H,  CD  C)  CD  Cl  H’  <  Lii  .  —1 ‘-0  ‘-O  H  ci  ‘l ci ç-r  —  C) Cr  CD  H-, H,  CD  Q.  ci  H  ci)  CD  Cl-  CD < H-5 Q ci)  Cr  3’ ci)  Cl-  Cl-  ci) C)  H,  CD  Ct  Q  Q.  H  C)  H’  X  ti  H  H-, II  CL)  Cr H’  CD Cl) ci  <  çt  H’  U)  CL) 0  <  0 N  CD Cr CD  Cl  < CT)  t-  U) CD  0  -t-,  0  U)  H  CD  <  CT)  I—’  CD  Cr  C)  CD  CD  ci)  Cl’  H’ C)  Z  H  CD  H 0  CD  Cl-  0  H  Cl-  C) 0 ci  C)  ci)  Q  ci  0  C)  -  U)  0 ci ti  (Q  H’  CD  j  ti  ci)  CD  CD CD  CD  Cr  H’  U)  t-  CL)  0 U) U) H-  C)  H  0  CD  H’  Ct  CL) CL) CD  U)  U)  H’  CD H CD U)  H  ci) H  CD  I  5  H  0  0  H’  çt  ci  H’ t3  Clt-  U)  h  Cl) CD Ci)  H  CD  i-c  C))  Cr CD  CD  5  H-  CD  CD  C))  0  CD  C)) Cr  i-c  5  CD  Cr iCD  Cr CD  CD  C ci  CD  ><  CD  i-c  CD  H-  Q  CQ IC))  HCr  Cr  ci  CD  C)) H  CD II  I.Q  J H-  0  Cr  C)) H  CD C)) Cr  I-c CD  C  0 HCD rr  5  ci  C))  —  CD  H-  CD  C  C) H  C  HCr CD  5  CD  Cr  C))  CD  5  HCD  CD H-  CD  N H-  CD  H H-  C))  CD  CD  Cr  ci  C))  H  0 Q  0  -  CD  Q.  C  b H Cr HCr  ICD  (D  •  C)  C H-  0  CD  C)  II  3 CD  Cr  0 I-i  c-t 0  H-  C))  C))  <1  H  <  i CD  CD  CD  c-t  C  0  CD  5  0  I-h I-  H  (Q CD  lQ  l-  CD  H H  C))  5  CD  HCt CD  H,  0  l-  H-  IC))  lCD  IC  IF-  ICS IH-  •  H-  Cr ‘<  H-  HH  HC))  C)  CD  <  CD Cr HC)  (Q CD  CD  CD I-  0  H  -  Cr h C)) CD Cr  C) 0  H  C)  CD  C  CD Cl)  C) 0  C))  CD  t  5 C)) <  CD  HC))  C)  C))  C))  CD  ct  •  Ct CD  C))  H-  Cr  C))  H,  0  <  CD Cr  H-  I-  C))  <  C))  C)  C  CD  H-  (Q  H-  Cr  HCD  X  CD  H,  0  CD  F-  C))  C) C))  CD ti CD C) HCD CD  C))  H-  CD i  CD CD I-  0  C)) i CD  <  Cr J C)) Cr  CD  Cr  0 H,  0 H,  CD CD Cr CD  i-c  ICD CD Cr CD  H,  H,  0  0  (Q  H,  0  ci  ICD  Ct CD  H-C Ici  C) CD I  C  i  CD  C))  l-  CD  5  CD  I-i I-’CD H-  1  C  CD  Cr  0  CD  Q  C  Ct  H-  Ct  Ct  C) H  ci  I  5  CD  Cr  (Q  H-  ci  C  C) H  H-  HH  IQ  H-  ci  C) 0 H  CD  Cr  ci  Ct  CD  C))  CD II  HCD  H -t  HCD CD  C)  0  C))  Cr CD  HCr  C))  C)  C))  C))  H,  0  Cr  H  C) C))  HI-h HO lCD IH-  CD  rt  H-  HH  < C)) ‘1 HC))  C)  CD Cr H-  CD  tQ  0 H,  CD FCD  <  CD  H  Cl) I-  CQ  H-  C))  ci  <  HC))  I-  0  H Hi-h  C) C))  0  Cr  C))  H C)) CD  5  i-i 0  H,  ci  Cr CD  C  HCD -r lH-  ci  <  CD H  ci  H-  HCD  C))  CD  H-  II C  M CD h  HCD Cr  I-  C))  C))  H-  CD  0  I-  H Cr  -  (C  H-  S  0  <  Ct 0  Cr  C  CD 0  ci  C))  CD ICt  H  0  Cr  ci  H  C)) Z  H-  •  -  Cr  CD  CD  CD  -t  H 3  -  HCl) CD  CD C)  CD  ci  Cr CD  C  HCD Cr II H-  ci  <  HC) C)) H H  5  CD  ci  CD  0 l-  0  i C)) I IH-  0  ci  C))  Cr  <  CD  ci  H-  HCr  CD  HCr  CD  i-c  HCD  CD C)  CD  Cr  C))  Cr  0  CD  CD  C))  —  D  D  H  Cr  ci  0  C)  ci  C)  C)  5  C))  CD  <  H-  ci  H,  0  CD H CD  CD  H  Cr CD II  C))  tQ I  Cr C) H-  H-  5  C))  CD  Cr H0  C  HCD c-t lH-  Q  -•  H -O CD  C)  H-  5  C))  ci  C))  CD CD CD  H  CD  <  0  -.  ‘D  —)  H ‘0  HC)  5  C))  .—  IHCD CD  C))  C 5 5  CD  Cl) (D < (1) IC) H  •  Q  CD ii CD  ci  CD H-  0  C)  CD  CD Cr  C  5  C)) Cr  Cr  II  0  -t  C)) C)  H,  CD I-  Cr  0  C))  HCD  C))  HC)  CD  5  ‘  0 II Cr  Z  CD  Cr  CD  ci  H-  N HCD CD H-  CD  •  C)  CD H-  N H-  CD  H-  CD  <  tY CD CD I-c  0  I.Q  0 0 I-h  C)  CD C)) H  I-  CD  HCD  ci  ci  CD CD CD  ci  CD CD  ci  C))  i  H-  0  Cr  C))  0 H H H-  Hi CD CD C) Cr I  i-c  CD  <  CD  C)  X  h C CD H  <  0  Cr H-  C))  H  C  0  I  H-  HCr  ci  H HN CD  0 C) C))  H  (Q  Cr H-  C) C)  Cr CD h  C  0  C)  <  CD I-c CD  Cr  H Q HC) Cr < H-CD 0 CD CD H• ct  C  0  0  C))  H  ci  H  C  C) 0  CD  5  j HCl)  C))  H-5 (D  ci  CD CD  l-  H-  H,  0  H CD < CD H CD  CD  Z  Cr CD  ci  I-i  0  CD ItQ CD i  <  H-  Q.  C) H-CD  I  <  HCr  <  C))  II  I-h  CI-  Cr H-  C  I-c Ht3  Ct  HCn  ci  HC)  C))  hj  Q  L CD Q  -  CD lCr J (D H CD CD CD  CD  C  0  C) C)  5  H,  0  CD H CD  <  CD  H  (Q  H-  C) H-  Ct  H-  5 C))  0  Cr  C (Q  0  CD  H-  (Q  CD  c-r 0  I-  C))  CD  C).I  H-  CD  H  CD  H CD  H 0  M  Cl)  i  CD  C)  •  Cr  CD  I-j  C))  ‘rJ  ci  CD CD CD  CD  Cr  H,  0  CD CD  h  Cr  H-CD  N H-  H, CD  H-  HCr  Cl)  0  Cr  <  CD H  H-  H  HCD  HCt  H-  N H-  H  Ct  C  -  CD C) HCD CD  ‘  CD  0  Cr  H(1) CD  C)  CD  CD  5  S  0  I-  I-h  < C))  HH H  CD  C)  Cr C))  HCD  ci  C)) H  I-’  Cr  0  CD  Cr  lCD CD  C  0  C)  M  0  C) CD  C))  H CD Cr  H H  CJ-)  HH H-  Cr CD ICL)  H  CD  hI  I  CO  CO Cr  0  CO  HCD  C)  CD  (Q •  Hi  Cl  hI CD CD  H-  CO  CD hI CQ  H-  CD  <  Cl  Ct  C)  C))  M-,  CD  Cr  H0 hI  Cr  C) C) 0  C))  ‘<  II Cl  C))  hI  ‘ti  K) IC)’  H-  IH 10  IH-  K)  C))  0  hI HC)  C))  I  CO  0  H CD  CO Cr C))  -  C)) Cr H0  H1-h HC)  Cl  CD  CD H ‘<  <  Q  hI C))  M  0  CO  CD  0  Cl)  H-  CD ti  CO Cr HC)  Q hI C))  Cr 0  C  H-  Q  —  CD  I-  CO  CO  CD  H C)) c-r H-  hI CD  CD  C))  CO  IH 10  -  K)  IH-  I  C))  H-  C)  H C))  C))  <  Q.  hI CD  C))  CO  Cr H0  C) CD  (1) hI HCD  ><  CD  C))  C))  CO  0  )  Cr  HCr H-  Q.  C) 0  C))  Cr  CD  Ct  Q.  Cr hI CD  0  Cr  Cr  H  HCl)  tI  C))  C))  t5 0  CD  HCr CD  Cr  CD CO  CO H HC  IC))  K) K)  K) IHIH  I •  -  <  0  Cr  CO  0  Ct  Cr  Q.  H-  H-  (L  I-I  Cr  CO  CD  H  0  Cr H-  C)  CD  CD H  CO  hI CD C)) Cr CD I-  CQ  Cl  C) CD  CD  CD hI H-  ti  CD  CO  C))  k<  H  C))  0  hI  tI  H-  CD  H-  N  CD  i  HC) C))  CD  Ct  hI  0  CD CO Cr CD hI  H CD CO CO  CD  hI Cr  < CD  CD  I-h Cr  hI H-  Q  C)  H-  CD Cr  C CD  Ø  i  C))  tQ  H-  Q  !CD CD  H-  h  CD  J  C)) <  H  H  tC  Cr 3’ hI 0  CD hI CO HCr  <  H-  Q  CD Cr HC)  CD  (  HCr  H H-  Q.  -  CO  C)) Cr H0  H  ti  ‘ti 0  H-  0  HCO 0 H C)) Cr H0  H  p  hI  Ct H-  C))  CD  Cr  H-  Q  H-CD Cfl CD H Cr E 0 CD  Cr  CD h  0 <  J  C)  H-  C) 0  H  CO  HC))  C)  C)) H C)  ‘ti ‘tI  CD  Cr  Cr 0  Q  hI C)) Ct CD  H-  C))  CO H-  N H-  CO  M  0  HH HCr ‘<  C)) HH C))  C))  CD  Hc-r  H H-  H CD  CO CO H-  0  tI  CD  Cr  <  CD H  C)-)  <  Cr Cfl  Cr H-  C))  CD  ç-t  C))  HC-r  C))  CD  H  Cr  H-  CO  —  H ‘O CD  Cr rr CO  C))  -  C)) Cr CO  Cl)  [1 CD Cr  HC). H  C)  C))  -Q H  II Cr  0  C/)  H  CD  <  Hi  H C)) Cr H-  CD  hI  0 i H ‘-<  CD  <  0  0  Cr  Q  C))  HCr  CD CO  Z C)  C))  <  Q.  C))  H  C))  H  C) H-  C))  b  (Q  CO  CL CD  Cr  H-  Ct  C)) H  CD hI  0  H  C)) Cr  CD  CQ hI  Q  C))  hI  C))  Cr  CO 0  Q.  CD  Cr  C))  t CD f-r hI CD  <  H  Cl)  Cr  0  IH-  Q.  H H 0  0  M  Z  Cr HC)  II HCO Cr hI H-  Cr  CD  hI  C) $i hI  HCr CO  H-  C))  1 CD CQ  Cr 0  C) (D CO  C)  HCO c-t  Q I-  IC))  10 K)  IH  H-  K)  Cr 3 CD  M  0  Cr  0  CO  I •  Cl  Cr CD  HCl) Cr hI H-  Cl  HCO  IC))  K))  K)  IH  IH-  K)  I  —  0  CO  H-  hç  C))  C) 0  H  C))  Cr  CD  F-  H H CD  HC))  W  <  H  CO  Z  CD  ti  CD I-  c-r  0  CO  H-  C)) hI ‘<  0  H  H-  C))  C)  H l))  H  i Cr  CD  C)  C))  -‘-  Q  C)  CL  C))  HC))  C) 0 H  Hf-r HCl)  hI  (31  H-  CD  CQ  CQ CD  hI  H  C))  C))  0  1-  I-h  H-  N H-  CD  hI  CD  CO CO  CD  CD CO  Cr  Cr C))  Cl)  Cl  HCr CD  C  Cr HCQ  CO  C)  Cr HC  C) 0  CD  J  Cr  H-  C)) hI ‘<  0  C) C) HC)) H  H  CQ  C))  H-  H H-  CD  hI HH “<  C))  l-j C))  0 l-j  Cr  c-r CD  ‘<  CD  CD  Cr  —  —  CX) W  ‘-D  CD  hç  hI  C)  Hçt CO  h  0  i  0  H-  Cr  0  CD  Cr  I-b  0  Cr  CO 0  Q  C))  C))  H C)CO  H-  C))  tQ H-  CD r-t,  i-j  0  Ct  CD  Cr  hI C))  ‘Q  H-  Cr 0  C))  H-  N HCD  CD  Cl  CD  hI C)  0  CD  <  C))  CL  H  0  ç-r CO  < CD  CD  0  H C)) C) HC)) Cr H-  (Q  CD  H CD HCO çt 0 C) CD  -  Cr H  CD  C)  I-i CD  0 I-i CD  CD  —)  ‘-.D  H  CD  Ht-  CD  C))  lI  CO  Ii  CD C))  0  H H-  H  H-  C,  C’J )-fl I W  C)) CO Cr  tI  CD  Cr  H-  Z (Q  tI H HHCr H-  ><  < CD  CO H-  CD  Cr  CD  0 I-h  CD CO  Q  HCO Q  ti  CD  CD  0  Q  hI  CD  Q  CD  C))  Z  tQ CD CO  IC))  C)  HC)  ‘-  CD  Cr J  0  z  CD hI  CO Cr  CD  Cr J’ CD  -  CD  Q  C))  i-  CD Q.  N  HH  C)  CO rr  -  H Q  -  Q  0 H  C))  C)) hI CD  CO  H C)  I)) FC)) C)  tI tI  H  Ui  to  :i  Q.  C))  W  to  H-  Q  CD  ti  CD CO Cr  CD  Cr  H  C))  ç-t  CD  H  )  H w to  P) P) Ii  )  p)  Cl) cr  CD C) f-iU)  l)  Cl-  H F-  H0  H-,  CD  0  CD  Cl)  U)  Cl)  $))  < ci-  Cl)  Cl)  ci-  CD  <  fi-  0  CD  •  H  ‘i  II  t-t  •  ci-  Cl) II  CD  C)  (Q CD  h  CD  <  H-  Cl  Cl Cl) ci-  H C)  I-  C)  CD  It,  U)  I-  CD  I-i ci-  HCl)  U)  H CD  Cl-  N  CD  ‘  CD  0  Cl)  Cl)  Cl  ))  CD Cl  c-i-  Cl)  F-  0  U)  H  H  0  C)  CD  C) CD  U) H-  c-i-  H  CD  CD  C) 1 H-  Cl)  (Q H U)  F I)  0  0 M  0  CD Cl  U)  Cl)  Cl  p  ci-  CD  Cl)  IP)  Kfl  Ii— K)  IH  Ct  P  ci-  )  HCl CD  CD  çl-  U)  CD  C)  1-h  0 CD  H  C) 0 ‘  CD  CD H-  I-h  CD I-  Cl)  Cl)  Cl)  0  ‘1 0  CD Z < H-  ‘  )  C  0  c-i  I-  H-  ‘-3 t3  I-  CD  H-  (Q CD F-  CD  CD  U)  C)  CD  U)  C) •  FCl) CD Cl)  •  rt  ?J  U) CD  F-  CD  C)  Z  CD  Q.  H F-  f-I  < H-  U)  CD  U)  CD  ‘1  0  )  U) H  CD  Q  -  I-  CD ‘1  (Q  < CD  CD  0  çr CD  CD  CD  çr  oft  w  134  Collection sites and sample sizes (n) of 34 Table 3.1. populations of North American Menziesia sampled for isozyme analyses. Unless otherwise noted, collection numbers of vouchers are T.C. Wells accessions deposited at UBC; W/H = T.C. Wells & M.E. Hiebert (UBC); S/C = W.L. Stern & K.L. Complete collection Chambers (OSC); B = S. Brunsfeld (WS). information is found in Appendix 1.2.  Pop.  N. BWF STL PL5 YEW SEY OSW PER HUN ROT SKY STV M.  Voucher No.  ferruainea ssp. 1725 707 1010 1042 W/H 1762 1009 926 628 745 799 1677 ferrupinep ssp.  GVC TRO MUR YNP LL WAT MOS FRE ALV TET  n  Location  ferrupinea 34 36 36 38 36 35 35 36 30 36 33  Brandywine Falls Park, BC Stump Lake, Alice Lake Park, BC Parking Lot 5, Cypress Park, BC Yew Lake, Cypress Park, BC Goldie Lake, Mt. Seymour Pk., BC Oswald West Park,Tilamook Co., OR Cape Perpetua, Lane Co., OR Prairie Cr., Humboldt Co., CA Rein Orchid Trail, Manning Park, BC Skyline Trail, Manning Park, BC Stevens Pass, Chelan Co.,WA  label1a  S/C 33 821 873 889 1151 1190 1715 B s.n. 1228 1265  34 36 37 36 36 38 33 17 38 36  Government Camp, Clackamas Co., OR Trophy Mtn., near Clearwater, BC Murtle Lake, Wells Gray Park, BC Kicking Horse R., Yoho N.P., BC Lake Louise, Banff N.P., AB Akimina Pass, Waterton Lks. Pk., AB Moscow Mtn., Latah Co., ID Freezeout Saddle, Shoshone Co., ID Alva Lake, Missoula Co., MT String Lake, Teton Co., WY  1273 1280 1341 1316 1374 1601 1406 1440 1470 1508 1572 1558 1538  18 36 36 36 28 32 38 35 36 34 26 36 34  Walnut Bottom Rd., Garrett Co., MID Dolly Sods, Grant Co., WV Capon Springs, Hampshire Co., WV Jenkins Gap, Warren Co., VA Minnehaha Spr., Pocahontas Co., WV Mountain Lake, Giles Co., VA White Top Mtn., Grayson Co., VA Mt. Mitchell, Yancey Co., NC Mt. Pisgah, Haywood Co., NC Whitesides Mtn., Macon Co., NC Mt. LeConte, Sevier Co., TN Brasstown Bald Mtn., Union Co., GA Lake Winfield Scott, Union Co., GA  N. pilosa WBR DOL CAP JEN MIN MTL MIT PIS WSM LEC SB LWS  135  Table 3.2. Electrode and gel buffers used to resolve 16 enzyme systems in North American Menziesia. Systems 1, 6, and 9 from Soltis et al. (1983); System 8 from Hauffler (1985); System M modified from Wendel and Weeden (1989). Enzymes occasionally resolved on alternate buffer systems are indicated in parentheses. Electrode Buffer  Gel Buffer  Enzymes  1.  0.40 M Citric Acid, trisodium salt; 1.0 M HC1 to pH 7.0  0.020 M Histidine.HC1; 1.0 M NaOH to pH 7.0  G6PDH G3PDH IDH SkDH  6.  0.100 M NaOH; 0.30 M Boric Acid, pH 8.6  0.015 M Tris; 0.004 M Citric Acid, pH 7.8  ALD AAT GDH (LAP) ME (PGI) SOD  8.  0.039 M LiOH; 0.263 M Boric Acid, pH 8.0  0.033 M Tris; 0.005 M Citric Acid; 0.004 M LiOH; 0.030 M Boric Acid; 1.0 M HC1 to pH 7.6  (AAT) HK LAP PGI SOD TPI  9.  0.065 M L-Histidine; 0.015 M approx. Citric Acid, to pH 5.7  0.009 M L-Histidine; 0.002 M Citric Acid  MDH PGM 6PGD (SkDH)  M.  0.04 M Citric Acid; 0.068 M approx. N- (3-aminopropyl) Morpholine to pH 6.2  1 part electrode buffer: 25 parts 2 H 0  MDH (PGM) 6PGD (SkDH)  -  *  —  ——  —  AAT  a2  a 1 b  —  a2  _al  ALD  —  al  G3PDH  —  a2  —-al  HK  —  —  —  —  IDH  _C  1 b  a  — — —  —  —C  a b  a2  ——d  ——  LAP  Fig. 3.1. Representative illustrations of isozyme banding patterns observed in an electrophoretic study of North American Menziesia. Numbering and lettering refers to locus and allele designations, respectively. Faint bands occasionally observed in MDH, PGM, and TPI are drawn as dashed lines. Scale indicates the relative mobility of anodally migrating isozyxnes.  0  0.2  0.4  0.6  0.8  Rm  H  —  —  -  ——  —  —  —  _  b.,.J  a  a2  al  —  C  ---a b4  — —  __  =—— —  __  ——  —  —  MDH  — —  —  -—  —  — —  —  —  —  PGI  —  —  —  —  —  —  —  —  Q  d e2  C  ai a  Fig. 3.1 continued. Representative illustrations of isozyxne banding patterns observed in an electrophoretic study of North American Nenziesia.  0  0.2  0.4  0.6  Rm  (AJ  —  —  —  PGM  a  ——C  a  —  —  —  —  —  —  —  —  =——  —_  —  6PGD  d  C  b2  a  C  bi  a  —  ——C  a —bi  SkDH  —al  SOD  ————  TPI  b  a  Fig. 3.1 continued. Representative illustrations of isozyme banding patterns observed in an electrophoretic study of North American Menziesia.  0  0.2  0.4  0.6  0.8  Rm  139 Table 3.3. Surranary of intrapopulational genetic variation in 34 populations of North American Menziesia. Population codes are given in Table 3.1. Included are: mean number of alleles per locus (A); proportion of polymorphic loci, with the frequency of the rarest allele > 0.01 (P); mean observed heterozygosity (Hobs); mean expected heterozygosity (Hexp); and the mean fixation index (F). Deviations from random mating are indicated at the following levels of significance: * ** p<O.O5, p<0.01, p<0.00l. For a given parameter, group means with the same letter do not differ significantly from one another at the p < 0.05 level. Population N.  ferrupinea ssp.  BWF STL PL5 YEW SEY  1.53 1.53 1.68 1.74 1.68 1.74 1.53 1.21 1.53 1.53 1.58  OSW  PER HUM  SKY ROT STV  Averages ± S.E. N.  A ± S.E.  ± ± ± ± ± ± ± ± ± ± ±  P  Hobs  Hexp  F  ferrupinea  0.16 0.14 0.17 0.17 0.15 0.17 0.15 0.09 0.17 0.18 0.18  1.57 ± 0.04a  0.368 0.368 0.421 0.421 0.421 0.474 0.316 0.158 0.316 0.316 0.316 0.354a ±0.024  0.063 0.067 0.058 0.064 0.088 0.077 0.051 0.022 0.066 0.044 0.073  0.089 0.092 0.125 0.133 0.157 0.126 0.082 0.026 0.101 0.049 0.142  0.O6lab 0.lO2a ±0.005 ±0.012  0.292* 0.272* 0.536*** 0.519*** 0.439*** 0.389** 0.378** 0.154 0.347** 0.102 0.486*** 0 .356a ±0.041  ferrupinea ssp. alabella  GVC TRO MUR  YNP LL WAT MOS FRE ALV TET Averages ± S.E.  1.53 1.63 1.47 1.58 1.53 1.63 1.47 1.53 1.47 1.32  ± ± ± ± ± ± ± ± ± ±  0.17 0.15 0.15 0.14 0.14 0.12 0.12 0.18 0.12 0.10  1.52 ± 0.03a  0.316 0.421 0.316 0.421 0.368 0.473 0.368 0.368 0.316 0.263  0.054 0.054 0.053 0.104 0.086 0.090 0.062 0.076 0.076 0.054  0.079 0.110 0.125 0.121 0.139 0.128 0.121 0.105 0.104 0.073  0.363a ±0.019  0.070b ±0.006  0.llla ±0.006  Table 3.3 continued next page  0.316* 0.509*** 0.576*** 0.140 0.319*** 0.297** 0.488*** 0.410* 0.269* 0.260 0.358a ±0.040  140 Sunimary of intrapopulational genetic continued. Table 3.3 variation in 34 populations of North American Menziesia. Population .  A ± S.E.  P  Hexp  Hobs  F  pilosa 0.368 0.316 0.158 0.474 0.316 0.316 0.158 0.316 0.316 0.421 0.211 0.263 0.158  0.076 0.041 0.023 0.042 0.066 0.087 0.062 0.065 0.042 0.051 0.038 0.035 0.029  0.103 0.053 0.034 0.060 0.080 0.104 0.053 0.072 0.081 0.095 0.051 0.048 0.030  1.35 ± 0.03b  0.292a ±0.023  0.051a ±0.005  0 067b ±0 .007  0. 222a ±0.046  1.47 ± 0.03  0.333 ±0 .015  0 .060 ±0 003  0.091 ±0.006  0.305 ±0.027  WBR DOL CAP JEN MIN MTL WTM MIT PIS WSM LEC BB LWS  1.42 1.32 1.16 1.42 1.37 1.42 1.21 1.47 1.37 1.58 1.32 1.32 1.21  Averages ± S.E. Grand Averages ± S.E.  ± ± ± ± ± ± ± ± ± ± ± ± ±  0.14 0.08 0.06 0.08 0.11 0.12 0.09 0.14 0.10 0.13 0.13 0.10 0.09  .  .  0.262 0.226 0.324 0.300 0.175 0.163 —0.170 0.097 0.481*** 0.463*** 0.255 0.271 0.033  IDH-l  LAP-i  MDH-3  .  .  .  .  .  .  MDH-4  .  .  .  .  .  .  .  .  ...  .  .  .  .  .  .  .  .  .  .  .  .  .  .  ...  ...  .  .  ...  •  783 • 0 c 1.000 a 0789 0.752 —0.037 c 0943 l.OOO 000 • 1 b -0.121 0.041 4 • 0 a 46 —0.121 0.789 —0.038 402 —0.039 • 0 a 629 • 0 a —0.040 1000 c c 000 • 1 0.096 892 • 0 c —0.070 b 0660 -0.129 0.116 0.477 1.000 0.080 .  0843 —0.054 a —0.114 915 • 0 c 0.365 0.045 c —0.038 0704 727 • 0 c 731 • 0 c a 0485 0664 a 722 • 0 c a 0457 0.046 718 —0.018 • 0 a 0.169 0.780 -0.062 —0.037 663 —0.047 O. 0.061 0.653 —0.625 0.000 c 1000 0.181  ferruQinea ssp. alabella  ...  1.000 1.000 0.780  .  .  Table 3.4 continued next page  YNP LL WAT MOS FRE ALV TET  MUR  GVC TRO  yj.  STV  SKY ROT  HUN  PER  OSW  BWF STL PL5 YEW SEY  ji. ferrupinea ssp. ferruainea  Pop.  —0.064 0.284 0.123 -0.086 —0.028 —0.220 0.043 —0.061 -0.157 0.166  —0.110 —0.082 0.027 0.088 0.178 0.101 -0.022 0.208 0.081 0.022 —0.072  PGI-2 PGM-2  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  ...  .  .  .  .  .  .  .  .  ...  .  .  .  .  .  .  0.781 c 7 • 0 29 —0.039 a 1000 000 —0.054 • 1 c c 0769  ...  1.000 833 • 0 c 000 • 1 c  861 • 0 c  .  912 • 0 c  .  c 6 • 0 97 0.468 0.301 —0.038 c 0756 0.352 775 • 0 c 0.527 c 0.270 0673 712 • 0 c 0.472 618 • 0 b  Locus PGM-1  .  .  .  ..  ..  .  —0.073 0.000 —0.019 0.357 527 • 0 c 0.102 0.000  6PGD-l  .  .  .  .  .  .  .  .  .  .  .  0.634 480 —0.099 • 0 c 0.297 0.263 c 0759 c 0660 0.389 —0.054 1.000 c 0388 0.159  .  .  .  .  SkDH-1  1000 a 1.000 753 • 0 b a 0780 0.351 0766 -0.036 c —0.038 0.206 —0.064 1.000 778 • 0 c 0.470  0.522 0.650 1.000  6PGD-2  TPI-1  Table 3.4. Fixation indices (F) for all polymorphic loci in populations of North ?merican Menziesia. Positive values indicate that observed heterozygotes are fewer than expected from Hardy-Weinberg expectations; negative values indicate an excess of heterozygotes. Deviations from random mating are shown at the following levels of significance: a p < 0.05; b p < 0.01; c p < 0.001. Blank entries represent monomorphic loci.  WSM LEC BB LWS  MIT  WTM  WBR DOL CAP JEN MIN MTL  .  .  .  IDH-1  j. pilosa  Pop.  .  .  a 7 • 0 20 0.651 1.000 0.000  ...  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  ...  .  .  ..  .  —0.037 —0.037  MDH-4  PGI-2  (F)  .  .  .  .  .  .  .  .  .  ...  .  .  ...  .  .  .  .  .  .  .  Locus PGM-1  .  .  .  .  .  .  .  .  .  .  .  .  .  .  ..  ...  .  ...  .  PGM-2  .  .  .  .  -0.216 —0.134 0.292 -0.038 0.640 0.000 —0.086  .  0.112 —0.038 1.000 1.000  6PGD-i  .  .  .  .  .  .  .  .  .  .  0.655  .  .  0.616  ...  ...  ...  0.000  .  0.650  ...  .  .  6PGD-2  SkDH-1  .  .  .  .  0.650 0.183 -0.022 —0.264 -0.147 -0.037 0.524  .  —0.093  TPI-1  for all polymorphic loci in populations of  000 • 1 c —0.004 —0.072 —0.038 0.200 000 —0.037 • 1 a —0.037 —0.065 —0.020 —0.161 —0.059 -0.046 —0.114 b 7 • 0 44 1.000 465 -0.036 • 0 _ c 706 • 0 c 0733 b a 1000 0.194 a 1000 0.659 0.267 0.023 782 • 0 a 0.052 000 • 1 a 0.270 —0.106 —0.094  MDH-3  0.619 0.065 1.000 0.466 0.472 1.000 —0.047 0.416 0.432 b 0475 0710 a  LAP-i  Table 3.4 continued. Fixation indices Menziesia. North American  143 Table 3.5. Allele frequencies summarized by geographic region for North American Menziesia. Refer to Fig. 3.1 for locus and allele designations. Population codes are given in Table 3.1. LocusAllele  CST  CAS  Regiona RN  NBR  SBR  AAT—1A B  1.0000 0  1.0000 0  1.0000 0  0 1.0000  0 1.0000  AAT—2A  1.0000  1.0000  1.0000  1.0000  1.0000  ALD—1A  1.0000  1.0000  1.0000  1.0000  1.0000  ALD—2A  1.0000  1.0000  1.0000  1.0000  1.0000  G3PDH—1A  1.0000  1.0000  1.0000  1.0000  1.0000  HK—2A  1.0000  1.0000  1.0000  1.0000  1.0000  IDH—lA B C  0 0.9843 0.0157  0 1.0000 0  0.0340 0.9347 0.0313  0 1.0000 0  0 1.0000 0  LAP—lA B C D  0.2517 0 0.7483 0  0.1953 0 0.7895 0.0152  0.3617 0.0033 0.6221 0.0130  0.1212 0 0.8788 0  0.0315 0 0.9663 0.0021  MDH—3A B C D  0.0175 0.0752 0 0.9073  0.0340 0.0563 0 0.9097  0 0.0098 0 0.9902  0 0.1397 0.0054 0.8548  0 0.1109 0 0.8891  MDH—4A B C  0.1241 0.0507 0.8253  0.0828 0.0940 0.8231  0.1011 0.0570 0.8419  0 0.0135 0.9865  0.0398 0.0313 0.9289  PGI—1A  1.0000  1.0000  1.0000  1.0000  1.0000  PGI—2A B C D B F G  0.0577 0.2813 0.5175 0.0491 0 0.0943 0  0.0825 0.1431 0.4658 0.1542 0 0.1544 0  0.0017 0.2964 0.5471 0.0016 0.0016 0.0880 0.0635  0 0.3685 0.5642 0 0 0.0673 0  0.0334 0.2656 0.6631 0 0 0.0380 0  Table 3.5 continued next page  144 V  Table 3.5 continued. Allele frequencies summarized by geographic region for North American Menziesia. LocusAllele  CST  CAS  Regiona RN  NBR  SBR  PGM-1A B C  0.0122 0.6729 0.3148  0.0074 0.8611 0.1315  0 0.7996 0.2004  0 0.9839 0.0161  0.0021 0.9665 0.0335  PGM-2A B  0.9494 0.0506  1.0000 0  0.9610 0.0390  0.9622 0.0378  1.0000 0  6PGD-1A B C D  0 0 1.0000 0  0 0 0.9811 0.0189  0.0229 0.0700 0.9039 0.0033  0.0054 0.0108 0.9273 0.0565  0.0063 0.0041 0.9038 0.0858  6PGD-2A B C D  0 0.9159 0 0.0841  0 0.9210 0 0.0790  0 0.5243 0 0.4757  0.0081 0.9891 0.0028 0  0 0.9750 0.0063 0.0188  SkDH-1A B C  0 0.9582 0.0418  0 0.9211 0.0789  0.0033 0.9870 0.0097  0 1.0000 0  0 1.0000 0  SOD-lA  1.0000  1.0000  1.0000  1.0000  1.0000  TPI-1A B  0 1.0000  0 1.0000  0 1.0000  0.0673 0.9327  0.0713 0.9287  aGeographic regions include the following populations:  Western North America CST  Coast  BWF, PER,  HUN  STL, ROT,  CAS  Cascades:  SKY,  RN  Rockies:  TRO, MIJR, FRE, ALV,  PL5,  YEW,  STy,  GVC  SEY,  OSW,  LL, YNP, WAT, MOS, TET  Eastern North America NBR  N. Blue Ridge:  WBR, DOL, CAP,  SBR  S. Blue Ridge:  WThI, MIT,  JEN, MIN, MTL  PIS, WSM,  LEC,  BB,  LWS  145 Nei’s genetic diversity statistics for North American Table 3.6. Menziesia taxa. Gene diversities are presented for each poly morphic locus as well as pooled values over all loci. HT = total gene diversity within a taxon; Hs = gene diversity within popula tions of a taxon; DT = gene diversity between populations within a taxon; GST = coefficient of gene differentiation. Locus AAT-1  Taxon M. All  0 0 0 0  0 0 0 0.472  0 0 0 1.000  ferruainea ssp. ferruainea jy. ferruginea ssp. alabella pilosa All  0.023 0.108 0 0.040  0.022 0.103 0 0.037  0.001 0.006 0 0.003  0.029 0.051 0 0.067  ferrualnea ssp. ferruainea M. ferruainea ssp. alabella M. pilosa All  0.38i 0.470 0.158 0.346  0.296 0.374 0.138 0.259  0.086 0.095 0.020 0.087  0.225 0.203 0.127 0.252  M.  ferruainea ssp. ferruainea ferruainea ssp. alabella M. pilosa All  0.143 0.065 0.226 0.155  0.131 0.057 0.207 0.138  0.012 0.007 0.019 0.016  0.083 0.114 0.083 0.106  ferruainea ssp. ferrupinea ferruainea ssp. alabella M. pilosa All  0.325 0.264 0.084 0.221  0.295 0.238 0.071 0.193  0.030 0.026 0.013 0.029  0.093 0.099 0.157 0.129  ferruainea ssp. ferruainea ferrupinea ssp. alabella M. pilosa All  0.647 0.630 0.525 0.602  0.580 0.582 0.482 0.543  0.067 0.049 0.043 0.059  0.103 0.077 0.083 0.098  Iyi. ferruainea ssp. ferruainea M. ferruainea ssp. alabella M. Dilosa All  0.412 0.296 0.047 0.261  0.337 0.184 0.045 0.181  0.074 0.112 0.002 0.080  0.180 0.378 0.043 0.308  ferruainep ssp. ferruainea j. ferruainea ssp. alabella yj. pilosa All  0.071 0.066 0.044 0.059  0.069 0.063 0.040 0.056  0.002 0.003 0.004 0.003  0.023 0.045 0.081 0.047  IDH-l  .  LAP-i  .  .  . .  PGI-2  .  PGM-1  PGM-2  GST  0 0 0 0.472  .  MDH-4  DST  ferrupinea ssp. ferrupinea ferrupinea ssp. alabella pilosa  .  MDH-3  HT  .  Table 3.6 continued next page  146 Table 3.6 continued. Nei’s genetic diversity statistics for North American Menziesia taxa. Gene diversities are presented for each polymorphic locus as well as pooled values over all loci. HT = total gene diversity within a taxon; Hs = gene diversity within populations of a taxon; DST = gene diversity between populations within a taxon; GST = coefficient of gene differentiation. Locus  Taxon  HT  Hs  DST  GST  6PGD-1  N. ferrupinea ssp. ferrupinea N. ferruainea ssp. alabella M. pilosa All  0 0.166 0.161 0.114  0 0.135 0.145 0.095  0 0.031 0.016 0.019  0 0.186 0.100 0.165  6PGD-2  ferrupinea ssp. ferruainea j. ferrupinea ssp. alabella M. pilosa All  0.152 0.484 0.036 0.262  0.142 0.386 0.033 0.172  0.011 0.098 0.002 0.090  0.070 0.203 0.066 0.343  SkDH-l  N.  ferrupinea ssp. ferrupinea ferruainea ssp. alabella N. pilosa All  0.112 0.028 0 0.046  0.099 0.027 0 0.040  0.013 0.001 0 0.006  0.114 0.050 0 0.127  TPI-1  M. f erruainea ssp. ferruainea M. f errupinea ssp. alabella N. pilosa All  0 0 0.127 0.051  0 0 0.117 0.045  0 0 0.010 0.006  0 0 0.082 0.121  All loci  M. ferruainea ssp. ferruainea M. ferruainea ssp. alabella M. pilosa All  0.119 0.136 0.074 0.139  0.104 0.113 0.067 0.093  0.016 0.023 0.007 0.046  0.130 0.166 0.092 0.331  .  I I I. I lICj I IHIll-’ i ID IP) I I I I I I I I I I I I I C) I I CD 10) I ‘.0 I I I I I I I I I I I I I I lCD I. I CD I—) I ‘-0 I I I I I I I I I I I I I I I I I I-h  ‘-.0  •  0  CD H CD  •  C)  H P1  CD H-  H P1  IQ  •  d  CD I CD.  I I I  II II I’ II I II l-hh I II I Ii 1j I II l I II H- I II I II H-CD I II I II I CD II I P1 Ii I II II lCD II lCD II ld II I. II I II I MII I II II I I II I II I II I HII I 3IlI I • II I II I MDII I II l-’5II I 1-5 Ii I ltD II ltD ii I ‘d H- II 1 lI CD I II IQ II • ‘-0 I H II ‘.D II Ic)) CD I ItJ II II IICD I IlII I II— II lb)) II I II I II I II I II I Iii I • II CD I II • I Idil ‘.0 I IH- II Li-) I IHII U) I 10 II I CDII I ISDIl  CD l CD.  H-  H ti  CD -  3 l-j l.Q •CDl—’ HCD P1— Cr H-SD 0 3  CDcI)  I-to’t3 Ct’d H-CD 3 -‘5 3( Ct N H-CCI-5 H-  0 H- C  —  t—HP1 CD X 51 CD P1CD  CDrt  P1 ( Ct H H-  CD (1) f-t I-5 HC) Ct HCD -‘5 H 51 H-P) CD  Ct  Z—cQ OHCD  C)H(DCD(DCDCJ)  JICD  ctQ J H- • (DC’) rr rtPiZ  •  CD-’ CD cf CD (DH3C)W  t3 13 (DCDP)  •  .—  CD C)] 0)  •  I CD  CD CD  •  CD  -  CD L\i ‘.0  C) .  —  ‘.0 ‘-.0 0)  •  0) I CD  ‘.0  •  CD  -  O  -  ‘0  •  CD  IP)P)  Il—CD  I-3  CD H-  IH’IS)) ItJ  IQ  Xii  II I IP)ll  —  •  MI0II II CD I Hh II CD I II CI II I II I-S H- I II l II H-fl) I ii i I II I Ii I II I II I ii lll C) CDII • IPill ‘..O Ill CO I II I H II I II — I(DlI CD I II • I Ct II ‘.0 I H- II (51 I çt II Ik< ii O I I II CD I - II • ll-’5il ‘-0 IP1ul ‘.0 lI -0 I II ICDlI 1—lI I Ii I II I II Ill C) I CD II . IPII CD I II H I II -0 I II I H—Il ICI)Il CD I c-C ii pIll • 0 lII CD loll H CDII I I II CD I - II • l’5II CD I S)) II i IlI ‘-.0 I II ICDII I-Il  d  d •  CD I CD.  CD I CD.  CD  I CD lCD I CO I I I I I I— IC) I I I CD I• I CD IJ I H iI  I  I  I 0 lCD IS)) I I I I I I I I I IC) l• IO I D I F.\.) I I— I CD I • I ‘.0 I -I ‘.0 I I H I. IC) lCD I CD l— I I  HH  lid  I I I. I  3H  -  Pit’)  C) CD CD  51 H Cl) Ct SD  H— C)  •CD  H-CD  CD N P1 H-Z  51  OS))  XCD  H çt f-t P)H  C) CD P1 3  CD çt CD Ct t’i H C) CD II H  Q(Q  Z  (D(D CC’S))  rt  (D  crw  (Q CD  Ob  ) i-3  H  148 Dendrogram of North American Menziesia populations, Fig. 3.2. grouped by geographic regions, based on a UPGMA cluster Population membership analysis of Nei’s genetic identities. in these regions is defined in Table 3.5.  0.92  0.94  GENETIC IDENTITY 0.96  0.98  1.00  L  COAST CASCADES ROCKIES N. BLUE RIDGE  L  S.BLUE RIDGE  149  0.904  0.920  0.936  GENETIC IDENTITY 0.952 0.968  0.984  1.000 r—BWF STL  _fi—  GVC  osw SKY  EEWAT WBR EDOL MI N  —  BB CAP LWS LEC  [  3  JEN WSM MIT MTL  V  PIS  —LIL  WTM  Dendrogram of populations of North American Menziesia based on a UPGMA cluster analysis of Nei’s genetic The cophenetic Population codes as in Table 3.1. identities. correlation coefficient is 0.924. Fig.  3.3.  I  I I I I I I I I I I I I I I I I I I I I I I I I I I I I  I I I  C)  C)  F-’ U F1  O 01  i  F) F)  1 C) C) C) C) I  CD  CI)LiHW(!)  LiLillI I1 1 FI I I t\) 1-s) C) Li ILi I I I I I I I I  I  IjGLiJ’  IC))  10  IHIH  Ici  .  1’J  .  C)  C) C) C) Ui I-’ U ‘O UI ‘O  C)  ‘‘1’1 tiQti L’iCt)L1  H  ii I M F1  )  -  il loll I C) II frtiICll I CO II I II 10)11 I I—a II IHII I (0 II IHII (01(011 C)) I II I II WI II WI II I II • lOll I II CII IQ H I Hil C)) I C)) II lcTll CDIHII I—l0II H I II C)) I II I II I II I II I II I II I t1j II lII I CD II IlI I C II I CD II I II I C) II I ‘< II I II ItIII —II I H 1 II I—II I II I II  t O  •  Ct  CD  (QQ  I-j  H-I-h  -  CDCD  ir  i-3 C)) HtJ< F-CD CD  H I  C))  C)  CDC)Ct C))Q  H-1-H  Q.  CCDC CDU)  —  —  1 MFC) Cr H, 0 0Q,  CD  C))OZ’Z 0  •  F-’ CD C)) Mi Ct C)) F-’ 0JH-H’ 0 0 H’ CD C CO H’ I—’ CD C)) 0 Cl) çt t—t H—  CD1Cc-t  t’J CD (Ott) rtF--H- C)) Z CD ift C)) -C) ctH‘< CDC)) c°-io (001--ti 1 0 h(Q’tl frj CD (QtJF-’CD0< 0C))  •  tYkD CD F-l) W CD --(Q • DCDIW i 0 •CCD• l—CJ)  C)) IH-  jF1b )H  kDC  WHC)3  •  t’l  I 1 I a 01 I I I I I I 11+ I I• L.-) I C) I I I  C) 1 F•  11+  ‘O  tJ • W  X  0)  C))  Ct  F—i J)F-  I+  I I I I I I I I I I I I I I I IHI <‘ 1 I F) C) I I I I I  I I I I I I I  I I I 1 I I I I I  F) • a) C)  o i  F1 •  Q, H  I.)  IC))  10  IHIF—  Ici  I  a) F1  W •  F-’ • C) F)  H • ‘0 C)  CD IH’ C))  1t3  IC))  IF-I  •  CO Cl)  C))  (0  Il-ti  -  ‘-3  lcl  I  II II II X II It-tb I II II I II I II II I II II I II I II I II (01 II (01 II I II ‘d I II II I-hi II I II I II ‘1 II I-i I I II I II 1- I II i I II I II I II I II I II I II I II I II F-) I I-L II • IHII O’ I (Q II C’ I II I Ct II I II I Lii II Cl) II I I CfII I H11 I-’ I CTh II IMC))II W I 0 Ct II ‘..D I CI) II I (011 I II I OIl I Mill I II lD2II I I l- II I IC)) II I I Cr II I I II IHII I II  I  •  Cl)  rt  1-C))CD Ct CD C) CD H1 CD (I)  0C  CD 1H H CD)CD • I—’ -t CD CD <LIIMi f-tW CtCD t—hH-  ICDC))  0 lCD tQ. I3 0 Cl) IN —. II—’—  çt H- C)) OCt C)) CD CDCl) Ct  CDCDH  H, CD CDCO  r-h  0)1-1, t H 00 fr HCD CDZ— 0  t3C))CD  Q  0  ‘  FC))fr rtCD CD CD  C)  H H• C) Ct (D F—i 0) CflI—(DW  C))  CDO  151 Table 3.11. Levels of intrapopulational genetic variation in North American Menziesia compared to average values summarized from other studies. Included are: the mean number of alleles! locus (A); the percentage of polymorphic loci (P); and mean expected heterozygosity (Hexp).  Category  A (S.E)  P (S.E)  Hexp (S.E)  1.57 (0.04)  35.4 (2.4)  0.102 (0.012)  1.52 (0.03)  36.3 (1.9)  0.111 (0.006)  j. oilosa  1.35 (0.03)  29.2 (2.3)  0.067 (0.007)  widely distributed taxa a  1.72 (0.07)  43.0 (3.3)  0.159 (0.013)  regionally distributed taxa a  1.55 (0.04)  36.4 (2.0)  0.118 (0.007)  endemic taxa a  1.39 (0.03)  26.3 (2.1)  0.063 (0.006)  long-lived woody taxa a  1.79 (0.012)  50.0 (2.5)  0.149 (0.009)  short-lived woody taxa a  1.55 (0.12)  31.3 (6.7)  0.094 (0.021)  sexual reproducers a  1.53 (0.03)  34.9 (1.3)  0.114 (0.005)  outcrossed-animal pollinated a taxa  1.54 (0.03)  35.9 (1.8)  0.124 (0.008)  mixed-animal pollinated a taxa  1.43 (0.04)  29.2 (2.5)  0.090 (0.010)  Vaccinium sect. Cvanococcus b  2.82 (0.17)  48.2 (2.6)  0.148 (0.038)  Leioohvllum buxifolium c  1.89 (0.120)  64.6 (6.3)  0.108 (0.018)  Menziesia M. ferrupinea ssp. M.  ferrupinea  ferrupinea ssp. alabella  Sources: a Hamrick and Godt c Strand and Wyatt  (1989); b Breuderle et al. (1991)  (1991);  152 Chapter 4 Concluding Remarks  4.1 Objectives Revisited  One of the primary objectives of this study was to describe the patterns and quantify the degree of morphological and isozyme variation present in North American Menziesia. Morphological,  flavonoid and isozyme data are now available to  assess the interrelationships between the eastern and western North American species. among the data sets.  There is a high degree of congruence  In all cases,  the amount of variation  observed within populations greatly exceeds the amount of variation among populations.  This pattern is typical of  species that are sexual diploid outcrossers.  The levels of  isozyme variation within populations and the degree of variation among populations also agrees well with reported figures for outcrossed animal-pollinated taxa  (Hamrick and  Godt 1989) Clinal variation is common in the North American species, particularly  .  ferruainea.  morphological analyses,  This was most apparent in the  though similar variation trends were  observed in the allele frequencies of certain polymorphic loci,  namely PGI-2,  6PGD-l,  IDH-l, and PGM-2.  While some  morphological variation can be related to ecological and environmental factors,  there is sufficient discontinuous  variation in western North American Menziesia to allow the recognition of two subspecies of  .  ferrupinea.  The two  subspecies have a very high genetic identity (0.99)  and  IC))  •  —  ‘)  H ‘-O CX)  CD  Cl  H  <  HC)  H-,  0  0  CD  -  CD LI  CF H-  H-  (Q  C))  C)  ft CD  CD  U)  5  (Q  <  C))  hI C))  U)  0  HU)  C)) Cl)  CD U)  C)) tH-  (Q  C)) H  C)  U)  ft  H-  CD H U)  H-  (Q  0  H  0  ‘  C) H-  H-,  CD  CD  hI  (5  Cl  Cl)  i  CD  0 hI ‘(5  0  H  0  CD C)) Cl) CD  HU)  ft H-  5  ‘(5  5  CD hI HC) C))  C) C-j  C))  0  ‘(5  ‘Q  ft  II  0  F-  0  U)  5  0  C))  C))  Cl)  ft  H-  ft  H-  H-,  0  S  ft 0  CD  ft CD  CF  C)  CD  ft  ft  Q  ()  H-  0  ft  C)  Cl) CD  C)  H  0  ti  H-  ft ‘<  U)  II  CD  H  tQ  ft 0 ft C)) H  H-,  0  U)  H  CD  FCD  CD  0  ft HC)  CD  CD 3  0  Cl)  ft  C))  ‘(5 F-  H-  —  —  <  Ct  U) H-  I-  CD  Cl H-  C)  H-  CD ft  i  H-CD  Cl  II  ft CD  0  ‘  CD  )-  H  0  0  C)  HU)  C))  0 H  ‘<  çt  ii  IC))  -  <  lCn  kD  C) 0  ti  < CD  HU)  lH-  lCD  H-  CD Q  H-  Hft  HC) CF  CD Q  I  ‘tS  H-  CD  0 ft  5  0  ti ‘1  ft  Q  C))  ft 0  0 0  ‘1  0  ft  H-  ‘<  <1  CD  HC)  H  H HH-, CD  H-  C))  (1)  ti CD ‘1  ICE) kn  1i IN IH-  lCD  CD  C))  fr HC)  -  o  H-  ft  HC))  ‘1  )  <  -  kD  CD  ft  <  •  CD H  H Cl)  CD C) ft  ‘(5  hI CD U)  IC))  Ii--  H H  -h  t3  Cl)  U)  I  0  IC))  Ij—  lCD  IH  IQ  U) U)  1(1)  -  C))  Cl <  Cl) ft  CD  ft  I-h  0  ft  Cl) C)  ‘(5  U)  C))  tQ  H-  ft  U)  CD  ‘-  CD  ft  H  H ‘<  H C)) ‘1  C)  H-  ft  I  C))  CE)  o  Cl  C))  H-  C)  H  CD ft  CD  (Q  Hft  E  -  0  I—i  U)  H-  U)  HCD  C)  CD  U)  CD  i C)  CD  Q  CD hI  <  Cl H-  C)  CD ft H-  CD  0  CD  CD  hI  CD  Cl  CD  0  i C) ft  ><  U)  ft C))  Q.  CT)  C)) ft  Ct) H  I-  <  Cl) Cl) H  0  C) H  ‘-i-  H-  0  ft  CD  ft  CD CD i  ft  tY (D  -  ItS  l  CD  CD  CD  (-.3  L)  CD  0  fi-  r-’  -D  CD  S  0  hh  (C  H-  C)  h  U)  (E)  ft Hft H-  CD  H-  Q  C))  U)  CD U)  H  CD  CD hI ft  CD  HU)  ft  H-  H-  II  1M  I  CE) ‘-  ft  CD U)  0  M-  C) ft  HU) ft H-  Q N  (  0  J  H ft  •  H H lI IQ IH1i lCD IC))  -  t-  ft 0  CD  C)) I-j  S  C) 0  ft  <  HH H-  C)) tY  H-  C))  CD  k<  0  HU)  H  0  U)  CD H  <  Cl)  H  Cl  CD  <  U) CD hI  0  (5  hI  CD  0  H  Ci)  C))  Q  C))  -  CD U)  ‘—a  H-  0  ‘  ti  Q  H-  0  0  <  C))  H  fr1-  C) ft  HU) ft H-  Q.  5  CD ft  hI  CD  ‘(5 H  H-  U)  U)  C))  ‘<  C) C)) H H  H-  0  H  0  ti  0  CD  F-  C))  H-  h  C))  <  (I) Cl) U)  H  HCl)  )) ft  ft  hI  HCD U)  C)  ‘(I CD  5  0  h  H-  c  CD H  <  H-  hI CD I— C)) ft  C)’  HU)  IC))  IH 10 k1  C1  I  HC))  C)  H  C))  C1 C))  Ci  t.-  tO  ft CD t-  P)  fl  t-  -  H-  Cl  CD  ft  hI CD U) CD  ‘(5  U)  H-  H-  lCD  I  H-  0  CD U)  C) H-  CD  ‘  Cl)  C))  C)  H-  CT)  ft  0  (1)  ft  C))  0  H-  H-  C)) ft  I-  ))  0  ft  CD ‘<  i  CX  ‘-0  H  C—’  C))  ft  Cl)  W 0  --  X  C))  C))  Cr  C)  H-  H-,  H-  C)  CD  ‘  U)  C))  II  H-  CD  tQ CD  CD ‘1  <  H-  CD  ‘<  N  0  HU)  C))  ft  I-  ft CD  C))  tQ ‘1  H-  CD  Cl)  H  0  (5 Cl)  ft 0  IC))  lCD  t3  H  -  t  Cl  H-  0 0  <  H 0)  H-  H-  0  U)  hI  CD  ft  C)) ft  C) H-CD  X  H CD  ‘  5  C) 0  ft 0 0  t  M-  C))  H-CD  Q  HN H-  C) 0 (Q Z  II CD  F-  tI  CD  CD  (5  U)  tr C))  U)  CD  U)  C))  ‘(5  0  ft  Z’ CD  ft  CD CD  ft  CD  J’  0  H-  ft  C)  ft H-  CD  Cl) t-  H-,  HM  Q  H  C))  HC)  Q  C)  0  CI  0 ‘1  S  •  CD U)  C) C)) Cl  U)  C)  CD hI  J  ft  0  U)  CD  ft  H-  hI  ft  C))  U) ‘<  i-t  0  CD  0  N  0  I-j I-  C))  C))  U)  H-  II CE)  CD  ft  X  CD  C)  U) H  H  CD  H H  H U)  CD U)  H-  C)  CD  U)  U)  CD  ft  CD CD  CD  CD  tQ  C)  CD  CD  CD  LQ  H-  Q Q  C)  H (-.3  H  0 H  H  ti  H  H  CD  H  Cr  <  H  0  HU)  HCr t3  ‘<  H  CD  H H-  U)  Il  U)  0  I-h  ti  C))  CD  CD  Cr  CD  i I  H-  I-j  0  3  CQ  M  CD ‘I  H-  5  H-  CD  -  Cr  Cr I  Cr I  •  I  H-  CD  H  H  <  II  H  CD  CD  ‘Q  0  Ii I—  tE  M  0  CD  I ‘I  Ct  C))  F-  0  H-  c  <  H  H(Q  CD  3  Cr  0 Il  frh  Cr  a 0  a  )  I.<  a  Cl CD  Cr CD  C))  •  IC))  H-Hi) C) 0 P0  a  CD  C!)  CD  C!)  d  C) IU)  Cr  a  C))  I--h  CD  C)) i-c  H0  CD  Il CD  <  H U)  CD  Ct  H CD  HQ  H C))  0  ti  H-  Cr  J  Cr  Ct  C)  Cr  Cr CD U)  0  ‘I CD  a  Ct  C’)  C)  c-t  Cl)  5  H-  Cr  CD U)  CD  H-t  U) C5  H-  ><  CD  LQ  CD Q H-  CD  I-j  tJ CD  C) C))  CD  U)  H-  II  Hi  Cl)  U) CD  HI-h  Q  H  C)  0  Cr H-  H C))  0  CD  Cr  0  ti 11 0  C))  0  I-h  0  H-  Cl  H-  U)  H-  •  M CD  U)  C))  I)  II  CD  Ct  C)) ti  C)  H-  0 Il CD ci  H  C))  I-  U)  Cl)  ‘I  0  Ct  M H  CD  I—h  C)) a  CD  l.Q  Ct  CD Il C)) a  Cr  a 0  H-  Il l-j  C))  çt  Il-h  çt  CD  Cr  (Q  (0 ><  Cr  CD  II  Q  Cr  C))  5  CD  ti  CD  C))  Il CD  CD  0  H-  Cr  i C))  0  H0  H  5  H-  Cr  H-  C))  c3 0  U)  CD  Ct  0  II  C) C) C)  c1 0  H  Cr  C)) ‘-C  ti  H-  5  C)) ‘-<  CD  (  C)  l-  II  CD  H  H  Cr H0  Ha  U) Cr i-C  CD  II  CD  t-3  •  U)  H Cl  C)l  CD  H-  5  C))  C))  U’  Cl  C))  0 0 i U)  I  0 C))  5  CD U) HC)  H-  Q (Q CD  H-  C!)  CD  c-t  H-  Ct  H-  C/)  Ct  C))  Ct  H-  C))  CD  H  C)) t  Cr  H-  U)  H-  C)  U)  CD  C  H  CD  Cr  I-h  0  CD  C)) i ‘-0  I-C  H CD  H  C))  H-Il  U)  0  Cr H-  C))  5  C!)  <  CD  tY  a  i  5  C)  U)  C))  IC Cn IC)  IH-  1(1  -  I  -  C)’ H C)) a Z HC))  d  CD  Cr  H  H  CD  h  CD  H-  Cr  ‘<  H  0  ‘1 Cl)  a a  0  Q  C))  0  H-  Cr  II H-  HU) Ct  I-  5  U)  0  H-  HCr  Z ci  0  C)  i CD  H-  d  H  C))  U)  Cl  H  a 0  0  Cr  çt C!)  C!)  CD  Il  0  C)  U) H-  CD  H  a 0 0  5  Il 0  M)  i ‘-Q  H-  (Q  C))  H-  CD  5  Cr U)  C))  Ct  U)  3  C))  C/)  CD a  C!)  CD  -  -  Il-h  I  C)) HtY H-CD  0 H-  ‘<  CD Cr  H-  t  C))  C))  U)  CD  U)  U)  C))  C5  a 0  0  II  CD  tQ  H-  Cr  Cl)  CD  CD  ç-t  H  0  H-  C)) Cr  H-  C)) Il  a  CD rt H-  CD  I-h  0  U)  H  CD  CD  H  H H  i-  H-CD  ci  CD  CD  J  <  C!) CD i-i  0 t5  ci  C))  CD ci  c-t  a  X  CD  CD  I-  CD  a  H-  H0  Cr  Il H-  Ct  U)  ci  Q.  0 C))  l-  C))  •  CD  0  t  H-  Cr  U)  CD  II  CD  çt  HS  C))  HC!)  -  Cl)  C)) ‘Q CD  Ct  U)  C)) H  H0  U) U)  a CD  a  U)  Cr CD  C))  H  Cr 0  Hci ci H CD  5  S  0 Il  ui  G-  5  H  C)) U) Cr  CD  H  Cr  C))  C C)) H  CD  H H-  C)  Ha  H-  H-  N  CD  H-  0  CD  0  CD  CD  Ct  a  -  CD Il  CD  0  U)  C  C)  -  Cr U)  0  a  ‘-Q  H-  II  Ct  0  ii  Q  CD  C)) C!)  Cl)  II  ‘< CD C)  H-C) 1 CD  U)  II  C)  a  0  HCD C!)  a  CD  ‘  C!)  0 0  CD  I-’-  H  ) I  H  CD II  Cr  0  Cr 0  CD ci  I-i  ti C))  5  a 0  Cl)  Il  U)  ‘-<  HH HCr  C))  H-  C)) Il  <  C)  H-  CD  Ct  CD  )  U) U)  H CD  U)  I-C  C)  0  c-I-  Cr 11 CD  CD ii C) H  CD  )  C))  U)  H-  Il  CD  CD  Ct  Ct  C))  H-Ct  <  C))  C!)  0  Cr  <  H  CD C)) ‘1  Cr 0 0  C!)  H-  Cr  H  CD ci  Cr  TJ 0 H H H-  I  ci  H-  <  H  CD  II  C)  H  C)) ‘I CD  Ha  H CD U)  a  ‘ti CD  U)  CD CD  Cr II  5  CD l-  H0 C!) ti  tC  C))  ci  C))  Cl)  CD ‘-C  H-  0  a  0  CD ci  Cr  C))  H  5  C) a C)  Q CD  Q.  H CD  0  z  i-  II  0  <  i-c  1J C) Q  3  Cr CD II  C))  t3 CD CD  U) 0  C)  C)) H H-  CD  <  C))  -<  H Cr  U)  l-j  CD  <  H  ci  a  CD Cr H  CD  H  C))  Cr  0  Cr  M  Q  Cl)  H  CD  CD  H  l-’  CD  0  Cl  CD  C U) U)  a  U)  H-  CD  Q I.Q  U)  C)  II  C))  CD  Q CD  ‘<  t  l-  U)  M,  0  II  CD  C))  H-  C)) tI  H  a  5  CD  Cr  Cr  Ct  C)) C!)  Ct  0  a  H-  C/)  U) c-r  ci  Cr  Q  CD  H-CD  Cl)  w  H U,  (Q CD  1-5 P1  CD I—5  <  CD 0  I-S  0  •  Q  C) CD  0  3  0  i-c  ‘ti  H CD U) U)  C)  CD CD  t.  CD  <  P1  P1 CI CD  C)  ><  C) H 51 CD ‘-S •-  CD  cv  H3  cv J CD  H-  Q  HU) c-ICD  CD  U)  P1  •  i-c CD  1-5  0 C) C)  3 H  P1  0  l-  ‘Z3  K)  IS))  U) U)  0  H  P1 cv  cv  H-  P1  —  CD cv ICD P1 c-F  I-  H  P1  IH IC  IH-  K)  •  It  Q  P1  i  CD  CT  0  CD  cv  0  CD U)  (Q  P1  C)  CD  I-c  J CD  Cl)  cv P1 H-  0  HP1  H P1 C)  ‘ti P1  (I  U) cv P1 t5 H CD  CD  ‘j  CD l-  Q.  H3 tC  H, 0 H H 0  CD l-  <  <  Q.  ti CD IHCD 3 C) CD  CD  CD  P1 <  U)  P1  ‘1 CD  P1  U) CD  CD  cv  P1  c-F  cv  H CD  P1  tY  ‘1 0  ti  HCl)  51 H-C U) c-F cv cv -5 H HCD 3 ty CD Si cv C) HU) C) • 3 P1 H  3  cv  Q  1  0  U)  CD  c-v  CQ  H 0  P1  U)  0  Hc-v H-  Q.  C) 0  P1 U)  -  H CD  P1  ><  CD  0  Dl  CD  P1 I-  CD  0  C)  CD  CD  <  P1  U) H-  N H-  H,  0  U)  tQ  H-  C)  II  CD  Q.  U)  Q.  CD  H P1  (Q  0  H P1 i  H cv  •  ‘-<  CD -5 U) Hc-v  <  H-  51  C)  CD cv H-  CD  (Q  Q  Hc-v CD  cv CD  0  Dl iCD  U)  0  H P1 cv H-  ‘ti  ‘ti 0  Hc-F HCD U)  H-CD c-F >< c-F H HCD  H-  Z  < (Q CD  P1  CD P1  •  U)  I-  CD P1  H  -  cv  P1  •  Cfl  U) CD  H  P1  CD ‘-5  <  U) CD  cv  tI P1 U)  CD  cv  I-  CD  <  0  U)  CD  CD  c-F  H-  -  -  3  M  H-CD H 1 H IH0 H-  CD  Q  P1  HU) 0 H P1 cv CD  P1 cv  CD  Cl) 0 I  •  I  H,  0  CD 3 c-v U)  CD  <1  C  CD  <  p1 U) U) H-  Q.  P1  0  c-v H-  P1  HU) 0 H  CD  cv  H  Q  H c-t CD  CD U)  CD  P1  U)  cv  CD 3  <  Cl)  cv H0  P1  C) H-  P1  H  (Q  CD  H CD HCl) ct 0 C) CD  ‘-ii  1  P1  CD U)  Q  U) C) P1  P1  C)  CD  cv  H-  P1  H,  0  <  HCD cv  P1 II  <  CD  cv  c-v 0  U) CD  0  ti  CD U)  I-j  P1  H CD C) c-v  M  I-i CD  P1  <  H P1 cv H0  ti Si  I ‘ti 0  H-  Hc-v  H,  0  U)  CD H  <  H CD  i-  ‘1 CD P1 cv CD  Q  CD U) cv  cv J CD  H  •  Cl) H-  cv H0  Z  N H-  HP1  HH-cv H P1 cv HU)  Si  5y  3  cv P1 H-  0 5i  -  0  Hc-v H-  Q.  Q.  P1  H  •  0  I-  Q  C) P1  CD p1  H-  CD h i-  H,  •  I  CD  I-  CD  P1  H-  51  CD  U) CD 1-5  t  0  0  c-F H-  S)1  H-  l-j  P1  <  CD cv HC)  CD  (Q  M  0  CD H U)  <  H CD  CD  c-v  CQ  3  H-  H-  P1  ti H  X  CD  CD  51  CD  I-  CD  Q  U) H-  C) C)  CD  P1 H U) 0  U) c-v  CD U)  CD U) U)  I-  0  Cl) CD H CD C) cv H-  •  —  —a ‘—0  H  P1  ‘<  J si cv  CD C) c-F  H,  M  CD  Q  H  P1  I-  CD  cv  H,  0  H cv  CD U)  1-5  P1  U)  P1  1Q  cv H-  P)  0  Q  P1  i-  0  H, I  U)  c1 H0  P1  H-  <  CD  HZ  cv  H  U)  CD  H-  51  H  Si  0  C)  U)  Si H Dl cv H0  ‘tI  ‘ti Q  H-  Hc-F  cv U)  P1  Hcv  P1  H CD  Hc1 Dl  U)  H  0  <  HH Hc-F  Dl  0 3 Cñ  P1 HH  P1 <  CD  c-F  H-  CD U) U)  H-  C)  P1 cv  C U)  H-  Z  CD  0  LC  HU) H-  <  Q.  tY  U)  ‘< -  P1 H H  cv  CD  1j <  -  C) C)  0  P1  C)  0 ‘ti ‘<  C) P1  P1 I-5 CT HP1 H  ti  CD 1-5  Q  I-j  0  U)  Q  0  0  U) CD  Q CD  H,  0  Cl)  P1 ILQ H-  CD  cf  CQ  H 0  P1  tY CD U) cv  U)  0  1-5  CQ  cv CD 3  M  0  N HCD U) HP1  CD  C) CD  C/) H-  •  cv U)  P1  ‘z3 H  H  P1  3  I-  P1 cv CD  -c  P1  CD  H  I-  U)  H, H,  0  Z C)  M  Cn CD H  H,  0  ct H0  Si  H-  1-5  HU) c-F  0 c-F HC)  cv  0  ‘ c-F  H CD  CD  c-F  H-  H c-v U)  CD U)  i-  ‘-<  Hc-F  ‘-5 P1  < (Q  U) Dl H  I-  HU) cI CD  U) CD CD  Q  -  CD H H  Cl)  H CD  t  H-C P1 H H P1 cv ‘-< H-  c-F  0 ct CD  HU)  N HCD U) H-  CD  CD 1-5  CD cv  ‘< CD c-v  Q  3  CD  H-  CD  c-F  CD  Q  CD CD  0 c-v  P) U)  H cv  •  CD CD U)  H c-n c-fl  0 I-f,  I-s  H 0  P1  CD  ti•  H-  P1  i-  C  H,  CD  c-v  cv 0  (Q  H-  0  Cl)  I-j  CD  H,  Cl)  P1  c-F 1j  ‘-  CD  0  H  P1 H  H0  U)  0 C) C) P1  CD  •  I  CD  CO  Cl)  CI)  C)  Cl)  CI) ti CI)  C  CO  0  CD LI  S  Cr )  CD  -  U) Lti CD C) HCD U)  ti  ‘ti CI)  C  Cl)  o  LI CD  CI)  LI  ‘<  0 LI  LI  Cr J CD H-  S  0  CI)  LI HC) CI)  CD  5rr  0  Hi  <  CD  JD)  CD  Cr  CD II  <  CD  0  101 lIl  LI  Mi  CI)  Z  H ‘-<  ICr  ‘ti LI  LI CI)  CO  0  CD LI  Cr  CI)  Cr  X  CD  Cl  CD CI)  Cl)  5  CD  Cr  H01  CD  5  0  hi, LI  Cl  < CD  H  0  CD  CD  <  0 CI)  II  CD  Cr  LI  Cr HC) l H CI)  C))  C5  H  •  CI)  CD IHC)  ‘1 çr  0  Q  CI)  ti CI)  CI)  C-  H-  CD  C)  H l)-  Cr  II  0 Cr  CD CI)  CI)  Cr CI x CI)  C) CI)  CD II H-  ‘  I-i  Cr  0  CO  0  II  S  CD  -)  r1 CD r Il  Cr  CD  Cr  CD CO CD  CI)  CI) ti  CD  H Cl) Il  H-  0  CO H-  C)  0  Cl) ç-r  H  Il CI)  5  •  ID) I3 ICl lIl ID)  ICr  ltl  1(1)  Cr  I  Cl)  CD  C)  CI)  CO  0  II  S  CD  CO  CD C) H(D  ti  CO  CD  C-t  CD  Cr  0  -  •  •  5 l  Hi C) Cr  CO  Q H-  HCr CD  Q  CO  CD  (0  CD  Cr  hli I-i 0  H-  CD I-i  5  U) 0  H  CI)  Cr  H-  CD Cl) CD  CD  ii  0  Cr  CD  CD ‘1  Cr  -  HC)  II  CD  II  Cr  Cr  0  Cl)  CI)  CI)  Cl)  Cr C  Cl)  Il ti  H  1<  II  CD  CD (I)  l)  C)  H-  C)  CO Ci CD  CT)  rt  C) 0  CI)  Cr  Hi  o  •  o  H Cr Hhi, H  I  CI)  CI) H  C)  (0 5 H-H-C FS HH 0 HH ti  [ [ 5’  CD  CI)  Cr  CO  Cl)  0  CO HH-, HC) CI) Cr H-  CD II  H-  Q  H  CI)  4C HC)  0  H  0  HCl)  II  H-  Cl  CD  Ct  CD  CD CO  LI  ‘ti  IC))  IH-  1(0  IHkD  IN  1i  kD  I  0 Hi  CO  H-  Cl)  ‘<  H  CI)  CI)  HC)  Cr  Cl  CI)  H  5  0  C)  H  CD H  •  .0  H LO  Cr  Cl  G) 0  Cl  CI)  I-i HC)  5  CI)  -  ICI)  CD  CD  (Q  Cr  CI)  d  I-I  1 F-  CI) CD  C)  Cl)  CI)  CO  c  H  Cr  0  CI Cl) CD  5  H-  CD  CD  CO  H  Cl) H  CD LI  i  (0 CD  CO  01  CD  II  Cr  HCr  ç-r  CD  CD  Il CD  (  CI)  H-  Cl)  H-  Cl)  H-  H-  CI)  LI HC)  CD  ‘I Cr  0  H-  0  H-  HCI) Cr  D)  <  HC)  Cr  CD  Q CD  Cl)  C)  CD  hi, H  H-  Cr  CI) H-  0 ‘I  Li.  5  CD  Cr  CD  LI  ‘<  II  0  ff  HCO  CD  Hi  H H-  Q  CI)  0  H-  Cr  H-  I-  Cr  Cl)  Q  HC)  ‘ti  Co rr  II CI)  Q  II  CD  0  0  (1 N H-C  C)  LQ  CD II  S  Hi  CD  I P)  H  CI)  II  ‘tI CIl  F>J  II  Cr CD  )  C)  5  -  CD  CO Cr  ‘<  CO  (0  H-  Q  CD  CD  II  Cr  Cr  l-’ Cl)  D)  CD  CI)  Hrr  0  H-  CO  C) F-  C) 0  H  H  —  ‘)  CD LI (0  CD  C)  II  -•  tJ  —3  H D  5  H-  CO  HN  -.  1’i  ‘0 -  01  0 0  —  ‘-<  H  ç CO  0  H-  <  CD  II  CD  Cr  S  CD  C)  0  Q  t3 CD CD  CO  CI)  s  C) -r CO  CO  Li.  H-  Q  i  CI)  HC)  hç  5  CD  Cr  II  0  CI)  Cl) HCI  I-  CD  Cr  0  H-  0  H-  H)) Cr  ‘1  < )J  Hi  0  LI  CD  Cr  ) Cr  ‘ti  U)  H-  ‘—3  •  Cl) HCl)  ‘<  H  Cl)  C)  H-  Cr  HCl)  Cl  H CI  C)  CD  Cr  0  Q.  CI) Cl) CD  -  1i Ft IC1) I Fl 111  lCD  J  •  l  CD  CO  CD  CI)  ‘  D)  0  Cr  H  C) D) H  0 (Q H-  C H  II  0  5  II  CI)  HH  S  Cl) H-  Cr  Cl)  0  5  CO  CD C) HCD  ti  CO  C) CI  H-  I-I  CD  Cl)  LI  Cr  0  Z  CD  Cr 5  Cl)  H-  0  IH-  1(1  •  l  Cr 3 CI) Cr  (Q  H-  Cr  CD  t-  CD  çr  H-  Cl)  1-’-  f-t  H  <  ç-t  H-  HH  h H)  )  Hi  Hi  0  H Cl)  CD  CD <  H  H 1 F-  D)  II  CD  <  0  I-i  CD  H 0  CO  -  r  C)  H-  D)  C Cl)  H  H-  0  Cl  CD  H CI) C)  (Q  H-  Cl)  Cl)  II  ‘I  Cl)  Cl)  CD  I-  CD HCr  <  C-r H-  CI)  H  CD  II  H-  CD Cl  çt  H  LI CD CO  CO  H  CI)  0  II  ‘ti  Cr  CD  5  0  HI-  CD  H CD  Cr  Cl)  •  Ct  CO  CD  CD  Cr  H-  Cr  CO  p  H-  Cl) C)  CI  ‘ti  ‘tI  CD  Cr  H-  CD  <  Cl) H-  Cr CD  CD  Cl) Cl)  CD  CD H-Il CO CD  i-3  H-CD H ‘<  0  Cr  CD C)  CD H  CO  ‘1  CD  CD  0  r-i,  Cr  CI) C) C) 0  Cr  II  CI)  (5  H-  Q.  H  0  C)  <  CI)  Cr Cl)  Cl)  LI  ç-r  CD  Cl  CI)  C) CD CO  CI)  CI) Cl  CI) C) H D) H  H  Q  C) CD  CD  H  hi,  H  0 i CO  (0  -  -r  H  CI)  C) Cr  jJ  Mi  a.,  H U]  :):‘  C)  CD  H  I-  U)  •  U)  fr-c  CD  H  9)  2)  c-Ic-I-  c-I-  c-I-  F-’  CD  CD  CD  0 :i  (-I H  9)  (Q  0  H-  H-  cI  9) U)  ‘  0  c-I  H-  U)  HtQ J c-I  U)  H-  CD Q  I çIj  2)  9) H  c-I-  c-t  CD  9)  0 H  CD  0  Ci)  H H-  2)  H  9)  H-  I-  c-I U)  CD  <  C)  CD  Z  2)  CD  CD  CD  b  c-I-  0  CD  0  H  U)  cr H-  9)  H-  2) C)  H  t  H  Q  ‘ti  0  cr  CD  9)  CD  2)  9) 1Q 9) C) CD  HH, I  2) <  Ci)  2)  c-I-  0  ‘i  9)  U)  2)  ‘o  D  H  —  I  2)  < CD  t  co  co  •  I-i  CD  rr  U)  CD  H-  0  H2)  fIH-  I-  -  U)  CD  9)  c  f-If1  9)  Cx)  H O  U)  c-I-  CD  CD  Ho  9)  o ( CD o  (I-  ‘-<  I-  Iti  9)  <  H  9)  o  f-t  H-  9)  H  0 Q  0  13  -‘  0  9) C) CD  I-  CD  fI-  U)  0  CD  C-I-  13  H-  •  C)  R’  •  I--c  IC)  I IH-  i2)  k 113lCD I-c  KU [::  I  H  0  U)  CD  13  H-  Q  c-t  I--c  0  13  I--c  CD  I-fl çr  CD  13  H  •  H0 13  CD tQ  cI-  I--c  C)  H-  f-I-  U)  Z  Cj  I--c I-fl  —  HH-  I  f-I-  CD I-fl  H-  U)  U)  ‘1  0  H-  9)  H  ‘ti  H, H  9)  H,  0  N  CD  I--c  19) 0  I—’ 0  C)  H  I--c  0  c-r  9)  U)  H-  f-I-  U)  ‘ti 9)  H-  f-I-  H 2)  ‘tS  ‘ti 0  IH-  KU  IH  Ii.10  2)  •  fJ  o  H  ü  13  çt  c-I-  H  H  xID-’  CD  c-I-  I--c fI  9)  1:-’  9)  c-I  9) >‘ 9)  c-I-  CD 0  c-I-  ci  H  I-fl f-II--c  H-  0  CD H  0  H-  f-I-  13-’  CD  0  C:I  H-  9) H  CD  CD  I--c  Ii  9)  C)  H0 13  fI  9)  I--c H-  9)  <  H  9)  H H  C)  H,  0  U)  I--c  CD  c-I cI  ti 2)  II  1<  p  Ct-  0)  0  m  CD  CD  rr  <  ,  cI-  U)  I--c  13  CD  I—I-  H,  I-c  0  H,  •  C)  H-  H-,  0  CD  13  0  U)  13-  H0  c-t  CD C)  I-fl  f-I-  13 CD  CD  c-I-  13  U)  CD 9)  H ‘< H-  frj  2)  U H  H-  f-I-  Ct) 13  c-I-  0  c-I-  13.  H HtQ  H(Q  H,  CD  H-  h  H 0 ‘1 CD Q.  Ct’  CD  H  HH  c-II-fl  F’  ci  I-fl  CD  II  CD  13  c-I-  -  CD 0’  H-  H, H-  II  C) H 9)  CD CD 13  CD  <  13 9)  I-fl  0 13  H-  U)  9) H  13 H-  CD  h  CD  d  ci t5 tJ ‘-<  I-  U)  13  H-  <  fI-  U) H-  I--c  CD  <  H-  0’  C)  H-  cI-  CD  13  CD  (Q  (Q  13  H-  13  I-c  CD  I-fl fI-  13  i  ?J 0  H,  0  ‘<  9)  -  hc  CD  <  00  CD  X 0  HH  2)  fI  CD  0’  C)  rt H  9)  CD  I-fl c-I  ‘<  I-fl  0  H  13  H-  13 CD  H  2)  CD  13  CD CD  CD  9)  13  c-I-  2)  13.  c-r  (Q  13  H  0  I-c  (0  f-I-  ci  H H  2)  13  U)  CD  13-  c-I-  0  cI-  CD  Q  2)  13  CD  CD  I-fl  2)  13  13 C)  C CD  H 0  c-I-  H-  f-II--c  0 13  C)  13  CD  a  ‘-Q  CD  H  0  13  C) 0  Q  CD  U) 0  H CD  1Y H-  x 9)  2)  f-I  c-I  13 C)  ci  I-fl  H-  0’  H  9)  ID  13 CD  H  13  f-I-  0  C)  I-h  0  I--c  CD  13 ci  0’  CD  f-I-  H  13  H H  H  13  c-I-  CD  I I--c  C) ci  CD  ID’  0  c-I  H-  U)  9) 0’ 0  0’  ci  fI-  U)  U)  13’  c-I-  F’ f-I-  ci  CD U)  I-  9)  U)  ID’  I--c f-I-  0  13  I-’-  ‘-<  H  II  9)  F’  ci  HC)  II c-I-  9)  0  (0  H  9) 13 0  c-I  U)  I--c  0 CD  13  ci  I—  CD  f-I f-I-  CD  c5’  F’  9)  13  H-  CD  H-  f-I-  H-  13 0’  CD  H-  H çI-  I-  ‘ti ci  ‘-< I--c  F’  CD  H-  c-I  9)  CD U)  U)  13’ 9)  CD U)  I--c  (1)  2)  CD  f-I0  U)  I) I-  CD  9) ‘ti ‘ti  9) CD  f-I-  13  ci  H-  C)  I-fl  ci  13  CD  (0  13• CD  H,  0  I--c  H-  N  13  c-IH-  CD  i-i-  0  I-I) HI-fl  CD  c-I-  CD  c-I-  I-h  0  c-I-  CD 13  13  F’  H  H-  H,  H  ci  ‘-ij  13  CD  d  CD  •  ><  F’  C)  HH-  H  H-  0  c-I-  I--c  9)  I—’  H-  13  H-  U)  I-fl  CD  H-  ‘ti CD C)  U)  CD  H  (0  13  U) H-  9)  H,  0  U)  CD  ‘  cl  <  H 0  13’  H  C) 9)  0 H 0 (0 H  ‘ti  i--c  13  0  F’ ‘-<  13  0  I-fl  2)  13-j  I--c  CD  ‘  CD  I--c  2)  9)  H F’  13-j  0  H-  I-fl  2)  H  I  9) 13 0  I--c  H, F’  H  H  13  13  c-I  C)  13  H  c-I-  HU)  0’  c-I  13  0 U)  CD  13-’  f-I  HU)  9)  I--c  2) 13 0’  c-I  CD  I  HCD U)  CD C)  I-fl  —1  F’  Cl  H-  C C))  C))  CD U) CD  ‘t3  <  Fl  H-  H-  0 I-h  ‘<  0  0  Ct C))  H CD  C))  CD  CD H  ‘<  C))  H-  U)  N HCD  H,  0  Cl  C  U) I-f  HU)  Cf  CD  C)  0 Cl  CD U)  C)  ti  Fl  C))  CD  HCl  o  U)  C  H-  Ct  o  I-  Cf  Cl  ti  H-  CD  U) HU)  ‘<  U)  H-  C) F-  H-  Cl CD  rti  C))  Cn  HC)  Ct  HU)  Cl  C))  C) H  Cl)  Cr  0  Cl  Ct CD  Fl  CD tS CD  Q  HCD U)  C)  CD  ‘Ci  U)  CD U) CD  C C)) ‘t5 C))  0 Cf  CD U) CD U)  CD  ti  0 I—I,  0  H-  Ct  C))  H-  C))  >  CD  Fl  Cn CD  0  Ct  3’  :3’  CD  Ct  ‘<  I-h  H-  C)) Fl  C) H  0  Ct  H  CD  C) H  CD  H  Fl  H  0  H-  E  Fl  0 0  I  IF-A IC IFl IC  IM,  ItJ IH-  IF-A  IC)  0  Fl  Cl  CD  Cl  J  Cl  C)) 3  •  W 0 3 L  Ct  0 Fl  Fl  Ct CD  U)  CD  H-  0  H-  Ct  Cl  CD  Cl  H-  <  0  Fl  H  H  ‘  Fl  C)  H  0  Fl  U)  C  C))  Cr  Cl 0  H  CD  )C)  U)  0  Cr H-  C Fl  CD U)  H-  C)  U) ‘Ci CD  ‘<  ICY’  Fl  C  U)  Cl  CD  Ct  Fl CD H C))  H  Fl C))  CD  <  U) CD  CD  Fl  C))  CD  CD  U) Fl H-.  0  Ct  Ct  CD  0 H,  ‘-<  Cr  Fl HCD  U)  H-  Cl  Fl  HH C))  U) H-  Hc-f  Cl  H  C  0  C)  C)  H-  Fl H-. C))  C))  <  H  Z C)  H-  H  C)  Cl  C))  Fl 0  I-h  0  ti H CD U)  C))  CD  Cr  C)) CD  •  C))  Fl  Ct  Fl  C  “j  U) H-CD  CD  N H-  CD  CD Fl HC)  H  Ct CD  S))  F-I,  I-  F-hO  <  ti H  H0  Fl  (I) H P  Fl  Ct  -  F-  C)) H-  Ct  C) CD Fl  C))  U)  CD  Fl  O  CD  C CD çt  <  M  0  C))  (C)  U) H-  C  H  H-  CD Cr C))  Cl  H-  Q  CD  H-  C)  CD  3  CD CD  t3  CD  <1  C))  0  Ct  C))  Cr  H CD  C))  C)  U)  C))  CD  (C)  H C)) Fl  C))  0  (C)  H-  Ct  CD Fl C))  0  ‘ti Fl  3 U)  Fl  CD  Fl  CD  H-  U)  Cl  CD H  Fl ‘-C)  Ct  HU)  H P  :3’  C)  <  H,  0  3  Fl  CD  çt Ct  C))  ‘ti  Cl  C)  CD  ‘ti Fl  U)  CD  Cl  H  Cl  C)  0  Q  C)  C)  H  Q  Cr  C)) Fl  CD  H-  H0  Ct  H-Fl HC) C)) 3’  C))  F-h H 0 Fl  C) C))  H-  Fl  CD  J  Cr  0 Fl  Ct  C)  Cr  Fl  CD C)  ti  ‘ti  C))  Cl  H  0 C  H Cr  Cf  C) U)  ti  3  C))  U) Cr  CD  C  Fl  CD c-r Ct CD  0  Ct  Ct  Cr Ct  •  C))  C)  H-  Fl  CD  Fl Cr  0  3  Fl  CD  Ct Ct  C))  C)) 3  H-  <  Cl  C  U) Cf  Ct  Ct  0 Fl  CD  Cr  H  Q  U)  CD Fl  CD  CD Ct  H-  Cl  Cr HC) CD  0  C  CD  0 Z  (Q  U)  p  U)  I-h  0  C)  C)) Fl CD  Cf  C))  Fl  çt  0  H-  C  C))  ‘  U)  HCf  CD  C)  U) H-  Ct  CD  U)  CD  H-  C)  Fl  H 0  I-h  CD  Ct  h  0  Ct  3  CD  0  )—  CD  <  Cl CD  CD  U)  0  0 Fl  I-h  CD  Ct  Cl  H-  C))  Cl  C)  C)  0 0 Cl  (Q  C))  HU)  HCD U) H C)  N  ct  Ct  CD  <1  CD  0  Ct  H CD  Ct C))  C)  Fl CD H  Fl CD  C))  0  C)) Fl HC)) Y H-ct HC)  LQ Fl  0  CD  Q  Fl  C)) ‘<  )< C))  Cf C)  I-h  0  U)  ‘C3  C  C)  1Q  Ct CD  C))  C)) Fl  HU)  Cl  CD  CD  U)  c-f  H-  CD Cl  <  Fl  CD  U)  0  H-  C))  0 Fl  I-b  H H-  C))  C)  Q.  C)  ‘-Q 0  Z Cl U)  CD  C) Fl  Fl  CD  CD  Fl  rr  CD  -3  C  U)  Cl  C))  U)  Cl  3  C)  H  U)  H  C)) Fl H 0 Cf Ct CD  C)  CD CD  C  IC  CD  Cr  H-  Ct  CD  Fl  CI)  ‘t3  C))  U)  C) CD  F-b CD Fl CD  M  1 H-  Hc-f  CD  Q  Fl CI)  U)  HCt  H,  0  C C)  Fl  CD  <  0  U)  C  0  (C) CD  0  J 0  <  F-  1’J  C)  Fl  Fl CD  CD  I-  CD  I IC lCD ICr I lCD IC))  H-  U)  H CD  H-  H,  Fl 0  Q  H-  0  0  <  ]  H C))  —  H  0  P  (I)  I—i  H  CD  -  )) C) CD C)) CD  U)  0  CD  Cr  3  H-  C b’  U) J’ Fl  HI  U) CD  CD CD  Fl IC) Fl  CD  CD  ‘-Q  H-  F-  C) H-  Fl  Cr  HC)  0 Cf  0  C))  N CD  C  H-  —  Fl U)  C  IC))  t  1i IC))  Cf IH-  IC)  lCD  Ici  lCD IC))  I  [-t  IC lCD  It  U)  CD  <  H  0  <  H-  Ct  0  H-  CD  C)) fl  ()  0 ç-t D CD Fl  CD CD •  H (-n 3’  Cf  HCr  CD  Cl  C) H  H-  0  C)  0  c-f  CD C)) Fl  C)) ‘ti ‘ti  C)  U) H  N HCD  CD  H  Cl  CD  CD Fl  U)  0  H 0  H C))  Fl  C))  <1  H,  0  CD U)  H-  C Cl  Ct  U)  Fl  Cf 3’ CD  0  CD  U)  CD  Cr  H3  CD Cl  <  CD Fl  U)  0  0  H-  ft  Fl H-  C))  <  -j,  0  U)  CD Fl  Cr  ç-t  C))  F  CD Fl C) H  CD  tQ  159  the group.  In addition,  relating the Japanese species to the  North American taxa of Menziesia using DNA,  electrophoretic,  and flavonoid sources of data would aid in resolving evolutionary trends within the genus as well as among the eastern Asian and North American floras as a whole. It is important to carry out these further studies considering the high genetic identities observed between the western North American and Appalachian species of Menziesia. This contrasts with the low genetic identities observed among other disjunct taxa in Liriodendron, Liauidambar, Apastache, and Datisca as discussed in Chapter 3.4.2. divergence in Menziesia ferruinea,  .  Examining DNA  pilosa,  and M.  oentandra would permit one to estimate the possible times of divergence among these species which could then be compared to the isozyme data obtained in this study.  Since Menziesia is  the first eastern Asian and North American disjunct genus of shrubs to be examined in biosystematic detail,  it is important  to examine other shrubby genera exhibiting the same pattern of distribution to form a comparative database. species pairs in Rhododendron, Cladothamnus, name but a few,  Vicariant or Vaccinium,  to  could serve as good examples worthy of  detailed study. Finally,  deviations from random mating in Menziesia,  despite relatively high levels of gene flow,  differ from the  results found in other ericaceous shrubs, notably: (Breuderle et al. 1991)  .  1991)  Vaccinium  and Leioohvllum (Strand and Wyatt  A closer examination of the breeding biology of  160  Menziesia would help determine which factors contribute to reduced total genetic diversity and the trend towards inbreeding within populations.  ID  H  Ii-  • -  CD  P_I’tIO HCDN  CD0 CDM H  QCl)-  O H ODW G-H-CrH • CrH-’D JQCX)  (X)H-OQ.  -(DFOCD 0  OP)  1 •.H--  LflCrCr  CD  IF—<  H Q. CD F— H —0 lN  W•  -  II (DH (DO  C-JlfrhCD L’i •(Q  •.Cr H(-)OP_I tIF(71CDQ I OQ  ‘-OW.  —-JPiPi.  b1  •  CX)  Cr  CD  CrCD CD  I.<  Cfl  C)P_I CD< P_IO CD —0 •H-  OP_I CrCD  -Cl P_I Cr (I)P_I C)CI  CD  _ICD  •..  P_IF-a  (1  HC)j  1.  —i  CD H-H N  CD  NI) H-.  ICDW  IX  CDQ. II H-C-i C).  ui0 • CD Cr  H-  W ZP_I  I  t.-)  oCr— •.H-  P_I•  I OP_IW Cr H  -  0  Oi H-  CD H-C)  CD C)< CDfrCD  H•CD  F-cj)k1J HCD< H-  OWi  H-L’J  CDQ  Cr(QP. •CD  rr (D CDP).D  5—D  HCDF—  C)  Q.. P_I rp  flCD OCr CD  Cr  •  QH-  HIP_I p_I 5F—  fr.  Q_I CDF--  C)P)CD • ctF— HIP_I  j f-t  CrP  -  HW O{O  p’  ••  CD(Q <CDCr 1 CD flCD  I—I I—P)H  PPQj  <  p_I  OC5P)  I’CI’CI(D HCD-  •0  n  H-• CD  C  Ct  PC 1 ---H-. I— H-H-.  C)  ICDH--  IH1c1-  iP’CD  W  0  WQ-QP) i 0  ICD P_I  O  (DO CrH-  CD H-  WCD F—CI) P_ICr  (DO  •• CD  p_IpJ—  C  H-Ci  •  CD npF— • P)HCDr  ‘IiH-CTh  I3  Cr•  ICDH-  I())Ii  P5  IH----H-. ICDIx’0  CDHIC)i CrC H  2Cr  IF—P)CD  Cl)  CD C)<  0  W 0  CDCD Q  Q  P_I  H--  C)  :Icn  •  C)•  H-I-i  CDti  II  W  t-P_I.  tY———-.J 0  P_IH CDD  •  W 0 Cr  •  HP_I Cr H0 —CD H-i 00(l) HP)• QC) CD  II  Cr  H-  0  0  F-  P_I  C)  H-  CD C) H-  • Cr  Y1  I-h  0  k<  Q.  •.  CDC)C) CD )P)CI) •CDCr  I-P)H-  -fr  H-CDt  CDIj Q.CrP_I  O1P  O)—O  P)(Q CD  H-O’-<  C)Hc1P)H-O  CDH-’  CI)  CD  Cr QIHC) Cr  QP)  ‘IP)CD  CD  CIPiCD  )CDk<  Pi CD  COCDi I IP) t’JICr (J1CDIH-CD  —I-i W H- H IØ OH•• O ))O  OCDP)  iZ•  I-’f-CD. OCDC  QC  HI-  CD ‘1  —]H ‘O • Cr h  I  P_I  •  10  H  F-ND o —1  •.  ui  <• • •  CDW  0  P_I C4CD(1  •  (DW•  •xJ  CDCr P)JThI  H-Qi Q.OQ  OP)P)  F—  Q.fl-  P_I  CDCDQ.  OH-CD  OCr  •  iCDC.  CDCri  H-CI)IHHCr—  Cr  H-Hr- 0 • H-  CT F—-  HOH-I—(flC) I H(r  (C5’-.  U1H-G) Iorr(DW “CD• CD  -  0  •  I-  •  Cl)  tI(/)  P_ICr CrP P_ICr CD  P_ICD f—Q.  CrCr  CD IH-  OCD  H-Cr  H-  t’JO  CDW CDCD  CrP_I P_ICr CrF-  (r  CrCr CD Q.CD  H-P.)  CD  C  •.  •  I—a  n  •  0  Cr.  CD(Q  o•  H-H-C  H(DP)i CD <J  <  c-rP)  •  CDCr I  •  I-  Cr CD  I-  0  •  CD  H I—i Lii  •  ‘CI  •  flH-CD  (()CCD •3  •-CDCD Cr  0  flW  CD IQ-•  H-C)  H H-CD CDCr H  JI)  ‘<  (QW  H-O P_I  H-H  cr H-  —.O oH  H-CD  P)1  LJ.13  P)  H-  iF-a  ‘CI  CD CDCD CD13<  CD  )  0 Cr  CD  Oi H-iCD CD  <0  Cr  CDCD  CD  0 Wli  H-  CD  Cr ••H-  flP_I  t-rJ  P)O  0  I-.  CD  H  CDC1  i t C)H-  H  F-  P)  I-  P)’-j  CIH-O H-F-CD  H  0  p_I  ‘-  c-t  H-  CD3i  F-CD  CD  <•  I  H-F-P_I  GCD  •.  F- < F—s H-QPD Cl) I- c-r (D  0  PJCDH-.  CD  H-  fO  II  CL)  W  Cr  Q  •  CD-h  CD  ICD  IQct Io  IO IQ-.CD 10 1Q.C) ICD IiF—  IDCD  I-hCr H IXjCj)  —JO  -CD  g-r< WH-H 10(1)  H  (JPiCD  •.  IC)O H-cO l— ci. HH CC3  Cr_I  Cr 0  .  OCD.  Cr  C)0  CD CflCDCI) 030  0  (1)  (1)  162 Breuderle, L.P., N. Vorsa, and J.R. Ballington. 1991. Population genetic structure in diploid blueberry Vaccinium section Cvanococcus (Ericaceae) Amer. J. Bot. 78: 230—237. .  Brown, A.II.D. 1979. Enzyme polymorphism in plant populations. Theor. Pop. Biol. 15: 1-42. Calder, J.A. and R.L. Taylor. 1956. New taxa and nomenclatural changes with respect ot the flora of the Canad. J. Queen Charlotte Islands, British Columbia. Bot. 43: 1387—1400. Calder, J.A. and R.L. Taylor. 1968. Flora of the Queen Charlotte Islands. Part 1. Systematics of the Vascular Plants. Ottawa: Queen’s Printer. Canada Department of Energy, Mines, and Resources. National Atlas of Canada, 4th revised edition. Macmillan Co. Chan,  1974. The Ottawa:  S.S., R.W. McCreight, J.D. Walstad, and T.A. Spies. 1986. Evaluating forest vegetative cover with Forest computerized analysis of fisheye photographs. Sci. 32: 1085—1091.  Chang, C. and D.E. Giannasi. 1991. sect. Palmata series Palmata.  Foliar flavonoids of Acer Syst. Bot. 16: 225-241.  Cheliak, W.M. and J.A. Pitel. 1984. Techniques for starch gel electrophoresis of enzymes from forest tree species. Agric. Canada Forestry Service, Petawawa Nat. For. Inst. Information Report PI-X-42. “Ghost ears” (Exobasidium sp. af fin. Compton, B.D. 1991. vaccinii) and fool’s huckleberries (Menziesia ferruciinea): a unique report of mycophagy on the central unpublished m.s. coast of British Columbia. 1988. DISSPLA User’s Computer Associates International. San Diego: Computer Associates Manual for version 10.5. International (formerly ISSCO). Variation in the seed protein profiles Crawford, D.J. 1976. Biochem. Syst. Ecol. 4: 169of Chenopodium fremonii. 172. Crawford, D.J. 1985. Electrophoretic data and plant speciation. Syst. Bot. 10: 405-416. Plant Molecular systematics: Crawford, D.J. 1990. macromolecular approaches. New York: John Wiley and Sons Inc.  163 Flavonoid chemistry of Crawford, D.J. and T.J. Mabry. 1978. Chenopodium fremontii. Infraspecific variation and systematic implications at the interspecific level. Biochem. Syst. Ecol. 6: 189-192. Allozyme variation in Crawford, D.J. and H.D. Wilson. 1977. Chenopodium fremontii. Syst. Bot. 2: 180-190. Crow,  Basic concepts in population, quantitative, J.F. 1986. and evolutionary genetics. New York: W.H. Freeman and Co.  Daubenmire, R. 1978. to North America.  Plant geography with special reference New York: Academic Press, Inc.  Davis, M.B. 1983. Quaternary history of deciduous forests of Ann. Missouri Bot. eastern North America and Europe. Gard. 70: 550-563. 1984. Studies in Crataeaus Dickinson, T.A. and J.B. Phipps. L. (Rosaceae: Maloideae) IX. Short shoot leaf heteroblasty in Crataeaus crus-aalli L. sensu lato. Canad. J. Bot. 62: 1775-1780. Flavonoid races of Clavtonia virainica Doyle, J.J. 1983. Amer. J. Bot. 70: 1085-1091. (Portulacaceae) .  1984a. Karyotypic variation of eastern North Doyle, J.J. Amer. J. Bot. 71: American Clavtonia chemical races. 970—978. l984b. Leaf morphology of Clavtonia virainica: Doyle, J.J. Canad. J. Bot. 62: 1469racial and clinal variation. 1473. Natural interspecific Doyle, J.J. and J.L. Doyle. 1988. hybridization in eastern North American Clavtonia. Amer. J. Bot. 75: 1238—1246. 1984. Evolution of Doyle, J.J., R.J. Beachy, and H.W. Lewis. rDNA in Claytonia polyploid complexes. Pp. 321-341, in Orlando: Academic Plant Biosystematics, W.F. Grant, ed. Press Inc. Dunn,  1964. Multiple contrasts using rank sums. O.J. Technometrics 6: 241-252.  Atlas of British Columbia. Farley, A. 1979. University of British Columbia Press.  Vancouver:  Persistence of plants in unglaciated Fernald, M.L. 1925. Mem. Amer. Acad. Arts. Sci. 15: areas of boreal America. 239—242.  M  c-CC)..  HCD  .  C3  •  C!)  -  •  M CD  CDc-C 1<  •  CD C).. C)..  Q.P)H  P1  C!)M H- H-  O  c-C  P)c-CMi  H-  M  H  H-CD5 CDHC1)  II  ‘jc))  MHCDH  0 H CD  C  Hc-t H-  CD  CD 0 0  C!)  -.)I-hCD iIHPlF-O OH-Ic-CHH  Q  H0  D)rC  DiO  •  •  H-C ‘ijOMi Di’t3 Di  c-C  C!)D)  CI)H-  (DO  C!)P)CnCD H-• c-C  000  -h’  M •OH-  CDQ..Cfl  P)C  •D)c-C H-  CDM MCD  CDH-H ODi  C!)  MCD  ‘-  H-MHOH-  I-hMCH  <  CCDHCC  H-i  CI)x’ 0 Mici  c-rc-r-  MH C!)))  < CD  H3O 0 Mi  CDQ M C)  MZH-’O H-00---1  cZ.F— i• H-  D)MO f-Cc-C .  rt  H  C)CD M  CD < H’• H C!)i—  0 MiC) M  C!)  1H CflH  CD CD  MCD H-  ci 1M  (Dc-C  c))  Cn. •.  COD  (-C  Dl  H  C)..  Dl  0 CD  HCD 1< .Ho’Q •CD  M •(D c-C —.)H•• 0  (DO  j  Jo  HH  CO  CD O <c-C  •  M• Q Q  H  •H  C!)  O  c-C. H-  ciH  OCD  IH-  H  0 c-r c-r  C)  c-CM 00 OC  • Di  0  Cn  HH(DO  <•  M•  c-tH  •  D  b  MCD  P)f—”  )  P)CD-  flQ  II  0  C)  H-H  M  C)CDM  1  C)  )HCfl0 c-CO D CD1-Q. -hMS • f-fliH-  .  0 f—<  fl—  c-C  M  C)  <  -  0 Di  H  CD M  MO •M c-C  CZ  PlO ‘<Mi H  (DCC!) ?C-h Hci C!)ZrJ CJOC  CD Mi DiH C - M Di  Mi (Dc-C Mc1 CD • ‘CD  iP)Hc-ta  MrC  (Dc-Cm  <  c-tOM  D) C!) C Mc-C(D  H  ))  C C -5 f-C WHHO  Cfl<  CDCl)  <  CDO MO  WrtM-. •H  •  H  CDH IOC!)OD iH-CDU1 Ln  -  LJcC) —C!)tI  ••)  -  OH t-OD —1 “OD  -<  .  (D  Z  -  ‘<  <  M  M  )  C)  C)  CD  H-H  (TIC!)C!) (J1c-CMi .. CD  CDCD  MiQ 0 C c-C CDMc-C  H-CD CD C)  O)H-O  CnP c-CH C!)  (DtYO  c-C • JC!) ciC-.4  c-C ZH-t CC’  •  QCcn MO (DIe (QCDOH CDPl  Di H  C!)CD  I)O• Q.CD (DO)  OOC-  Cnc-t.  (DH)Cfl’j  CD  t-.  MCi)  CD  C!)  CD  Hc-CHC!) Mi GCDODCD H • . Q  çt  0 rr  C)  •  •  c-t-  c-C  c)) DiC!) HOc-C OCDM P)P) O CDHPit5  Di  (QO  P)L3j  M  C)..  CD  Hc-Cc-C  C H-.H•H<iO CD. Di H  MCI. P1  OPIH c-CQ..H U-  C!)  Di (D00 Mi C C DiO CD Di  Di H  OH-H. C  ‘ c-tO’. CDOH’ HH - H-HDi <0 c-to Di H-. Mc-C  H-C MiMi  Lfl(Q  ()Q  t- H o J. H-c)) OH HM HD) •.  •  QQ.U1H  CDHCtTI . ) .oO CD IC  ci  H-  C C MDi  ‘-<D)M  O)Di rt CDDiQ. rt CDbJ  (1)  -CDO  H-c-C c-Cc-C  O M W CM ••H-  i<M  CDCD  (DC!) Cti  ZP)CD  .  0• (--‘M  ciH-l-  1I1I)  CPQ..  j—.]  (51 (DJ  H  ciCDD  (Q  H-MOD)  CDQJ • •- O -h. Qç1  rtOCfl H•0tF-H-CD0’-< C!)FC!). JCDH•H-  H-  c-C  H rt  C)  ))F— MO-  C!) C)CTht—tiO  I—a CD  C)  Di  MO I—he H-C P1(C) M —())  o  CJ)  (ii .  —)iD HQOD  H IDiI—  -  ••Di.  C)M  C  çCH  •  tiJi C0  ‘--  OH-Q •  Cl)H-P)  •  t3 QC-  CH (DFF— Lirt H-0J  ())  i-  0  G)  H  .o  <  Cl)  M’< CD C!)  ‘uc-C  ‘<i H-  Hc-Ce  C!)  MC  (DO  H H-  C!)  CDH-  MD) H-H c1’< Cn  Di  CDCD  c-C  •H••D)  •  Hc<  (Dc-C  (QH  1ci  H-  )M .  (DOD  ‘< •  CC) LQ.  H.  C  0  CD-  0  C)  ‘-<  .c)) H N C C  c-CO  C!) H-  ‘<c-C  C)..  Di  H  M  CD  ci H0.C!)  C)..  (I) c-C  •P)  -  C  H C H  Di  C  •H  0 HH ci oct  CD  H.D . c-C  CD  C!)H  CD• MC  tI  H-  Cfl  C!) H-Cl) C!)c-C  p1j HCD  )  0.  c-Cai  IH-H  c))  H  <.  OD)  C H-  rrJj)  M  CD o•  -)c-CJ cQ • Q  I  MQ7 U1P). OQJ  F— •.M  HF-P)(D  C)  0‘ti C)) rrlQ. H-CD  li.  C)) li  I-j(D  0U)H  <  H-CD  •  HU) I-j  ‘<  C)) li ‘t<H-C  00liI-  CD’< H-HOU) C))  liC  U)C))  OH-  o  .C)) 0 HI-h H-  CDCD U)  Cr  lit-h  C))  H-  F-’ U)  CO  H-hi  Cr0  00  I-h  I-jU)  1t’  c-f J  li  ..(D-f(D (DU) I—’ I Cf . CI) I-j CD  U)liIC)  H-  HH  liCDU]li ZU)CD CD  H-CrtOCr  Cr  H  H-  tO U)WQ Cr’.Ot-h :C)) I  •  I-jQ  (D(D.  Crci-C  frjH-’ICr  Cli  ‘-  U)CThF— ..(D •  CDliiCD U) CItQ 0-liH-CD cl liCr C))(D (QC)) Cr . HI—I MiHC C))j (DU) CflC)) U).  liCDliF—’<  (-i)  CtH-H-. H-CI-j 0 li  I.QC))  C))  (DO  tIH-C-tc-t  L3iti  .  iCr  I-t,U)  WC)) tO li  F-hj  H CU)  ••Z C  I-j’.D t’J. C)  CCDQi  )c-t’.0  CI  C))  U) H-C  (DH-0 —0li  U1(t 1.  C  tj  HH  li  C) CD  C U)  •  C)) Cr  0  I-j HI-h H-  H-  •  ‘-0  —)  (Xl I  Q.CD  CD C)) —1li<  oI-j  bN —1C))’-<  Q.  I-I  C))H-U)  0  •  frjU) HH 0’.o -fQ) W C Cr.  H-’-< U)C-4 CflI-jfrj OH-•  liCD liU)0 • (D  H-Ce  lilU) • OC))  liH-• QC)U) I-C)  CICD  H-I-ti I-i C)) H-Z  U)  CD  o. 1 r-  -  U)HOCt H-  Ch  H- C  .C)) H  C))li CrQj  .  (DC)-’ CD U)Q  I-I  0 Cr  1C))  C))t-j  C  CD <H C’.D F—’ lit’.) c-f. H-  lili  C))”< H.  H(D H-li  —Jrr. -]CD II-jC)) Mli ‘.OH-CI <Dli •CDJ  t’.)CDJ  •.  -o0  <  (D  U) U)  tQj• I-i C U) HU). I-jrt Cr C)) uJ ctH H LjCDD 0 t-hH-liU)  < CDE  H-  c-  CD  CD  H-C lit-i  U)ij  C).’  rr I-<t  C—)  M)  ‘.0  CD  ‘U)  U). HCr  I-jcf  CDH’ ‘.0 (OD lia) H-.  .. I-j •  U)clC  H-li <H(D(fl  (DC))  (DC)) I-jH-  <  frjQ. CD  Cr00  CDC))U)  0<  tQ  IO H-J. H0 —c))li JHQ. I-j H-< OC)). WI-jJ OH-.  C)).  NtQ 4 H-I-jC  D Q-  QC))  H0  H (DO I-j C cti  cl.  C)) rr  (DCI  C)) U)li  (DO U). Cr  0C)<  I-jo rr  00  Oti(D  0  H-  C)  Hçt C)  Qj  ‘.0 to I  ..  .0 Hi H C)  CU)  C CI W(D  •  ‘<CI U) Cr  U)  C))  •‘<  O CDHC)— CDH—Cr  C))C))  CIH-  I  H to H  .  ••l  —tQli I-j 00 0’ I-h —Ct  C  OCr Ht-hH-  CDU)0 • C))  H-H-I-h OH-  U)U) CrH-  H-U)  liI-jC))  NCDH  Cr0  CO  C))H-I-j U)C))CD  .  U)0i  I-jC)) H-I-I  CO  (D<  CD c-f  —li  CD I-jiJ H-li N ‘<  .  C)) NliH-C)) (DC)) U) flfrj(fl CDC)H-HC))hj — . 1)i C C))C)). H-li crQ. H CD H-D liCr)  ‘.0 WOD CU]  C))’<CD.  ‘deli  0 H-  liCDCDCI  c10 H-.  C)  Hr’1C OC) •CDC))• H-3 — CDC) H-U)li  •F---  HICDH c<CD  rt çt  0  li’-c)  •  CD -  I-jCr  (DC))  li  li CI  C))  0 H- U)  H  H-U)’.0 0Cr H-  c-rH---.)  C))frj’.o  C)I-jCr . H-CDH  I I>J<C)). (DC))O  WOC))C  HCD HCr0Cr —1H-DCr  CD(D <HCrH•Hli Dli (DC)) Lii QQI-j c-t CCD HCrI-•CDHOM,C)) rjc-r(D ‘<C)) Q U) CrF—H-C. •CDU)rftl f—tQ0• DCDh  liI-jH-’-< liCD(I• •f-rCflUi H•  tflI-jH-. . 00-1 5li• JU)  rrrtrtC-.  IH(Q —(D C))CDF—”  P’ H-  Cl) .0  C))li  I-jo  i-RH-  U)  U)  c-to . (I)  U)0  U) CD  I-jcfl Crct  OCD  F—Yfr W(DQ CD H • ‘jC)) C))0 OHH-C) t-tiH H0I-t, C  Ic-rU)  H  W’<. —) •.H-  (Q—.J  0H •0  00r—  U)3 -j. 0 U)  00.  (1)  U) JC))j JH-Q. H  C))  rtC-  0  i  0i.  -  CD  li  .  IX  •  j.  H-U)  frj CD  H. C)  I  U)  li  C))  C))  CD  CD  li  H-  I  I0  INH  •DCr  CD  IC!>  H-IHli U)  Cr  H-,  -C  OH  U)  . U)C)U) . U]  li  C))  Cr H-  fJ.ç-f  CU)  U)Q  Cr  •  ttHCD (D.C))(fl U)hiiCr U). H-C)>  ctH HU) Q.CD CDCI’0 (flU)ON  Il-li  0 C  U)0’ti’.0  IJH-H-H H-Cli’-O OH  CI  -0C  C)) Cr. 1 li-  Irrrji  Qct  HCflO  H  C))  ‘<  H-I-j U) H-  (1)  <  CDQ.liH-  (DCDCI  U)  H-N  Cr0  CICDC))H  liti 0. liQ’<  H  -li<HI-  U)I-jU)C))Q ‘H-’-0 Cli OH liCX) ‘.0 H-(DHC))I-j’-i. c-f‘CD U)C)0li  •  40 CDH-Q. I-jIc-t  C))  li  . frj-F1 C))U)t C))U). li.(1) Q-j o •I-jH-i CDCDCI OU)U) .. H - l CD • U)QI-dCi H-I.Q 5•  (D  II HU) I0 tCDH 0I-C))-  C))  0.  ••C• C))  IJf-.  M  ICItS H-Q. H-ECU  H-  CU  HP) CUft OH-  (DO CUtS CD  CD  C)  tS Q  —C))  •  UltS W(D  MCD  3 ft U)  CU  H  ‘CI  tS  H-  0  CD  tS  H-lU)  Q  CU  •(Q  HO ,li MO ‘U) HU) OiHMtS  H HCD CX)<  CU’CI  H-  00 tSO  ftlCU ft  IH-  tLiIFM)  ICI  HH 0 U)><  Mi  WU) W I(Q  <  CD ii  3  J’  U)d  HOCD  ftF-)  O< CDCD .. ‘1 U)  H  Q.CU  QCD CUr-S tiU)  ‘C3  ftHU)  W 0  FCU  CD•  o-  CDO  f—  0  U)  0•  •  HU) U)F— 0o CD f— H-.  0.  frJ  H3 C),-  CD  j •.  H-  H-  li CC))  •  -1  CD  MH  MQ M U1Q  itS  WC))  (D(Q  Hr-c  OCD  Q U)’< CU H—I ft  0 t’i  ><C) 0  H-  CDft  •.  F-LU)  (-JCU  H-< QC)) 3ti H-  ft  OCD  ‘tJ  •  H----  D  ‘‘<H  (Jlft  Oft f-HC)  <CD  O< IH-<  OH-  G)  CD 11  )ft ,TP)(D  I><  ItJ’-o 13CX) Ii—  C)Q. fs)Q  H  ft  C)  •  U-.  H-H-CU  OCD•  clQ.  IiQ CD H•Zj  HU)  H-  H3  <  CD  CD  1<  ft  Q.H H-  U)ftCI’ CDH-  CDCUP)  rtHrt  tSHti C)) C)C) tSHft H-OCD ftU)li CDCD çiHC) ‘<0 Cr) ftti’CI CUCDCU  ‘ICUCU  OH-’ t-h’tS U) ft H H-) CD—1 ‘-C) U)• CDCD U)< ftCDC) CDlitS’  U)ti  C1HH-Or-h  oftC))  CU  HOHfl  I 1i LCD  OU)’<CU CD I— “0CD HC1(-.) H-13 C)OC)• 4 C—.]  CD  -3U)P)CD Ii><CDQ. 4 CCC) H-•  ) C)  •  ‘-.0  H C)  HI-h  C)  CU  critS’  ft  H  oO  U1Z  —Ift C)Y’ “CD  •..  tiCD H-li CU ft OCD ft I—h H 00 CUt-S tiC)) QU)  U)-3 U)CD 0  H-  aD •L..>  ft H0’  C)  3 CD(Q  CD  Qj  C)CD  LQ  CD  tSrt  ftH0  (QO  H-U) 3  tS’ft  H CUCU U)  ‘CI  OCD H-,  <  Ii U)tS H-CU ftft ‘<H-  CD  H-H<ft  C  ..  (1)0 (DC)) CULftQ. rtCD —i CDH-  C-tM  U)aD  H DD  ft  •  O  Z•  P) (DC)CD U)Hh U)M,( H-C)  C)  F-  O  CDtS’ tSHft’CI U)U)  U)  H-li UH-CD —JH-H IC)C)) c’ft COO H•QQ  •.()  -  CD U)ft HCIHU1CDC)  fttS  H-(P OftCD  .  U)CD ft—’-<  ‘<CUCI  (flCD  C)  lH-) .C)C)  ItiD  lCD— lQC1]f-  I  CD’  M,CUQ  ft0C4 tç 0CDQ  CUCD C) CDX. Y’Cs) (DO’  Hft. ftt3 H-. CD CU ‘C5ft  O  0  ‘1  ‘-D  H-  U)  ‘-5  CU  U)  .  3  lU)  H IC)  IH-  H-  3 N H-  M  FCD  CD  .  .  .  .  U) cyr.’  OPcn  ••  HH-  U)H C)) U) 0ft  Qr’  CD Ci.h5  .  CDQ.N 1< Ii  tSO  H CUU)  . -  C)CDH CDti’-D CUH-’.r. CDOH —CU.  ——1  H  0  Ml-5  HU)H U) • ••r-h  J’00  ft OH-H  H  H-  I-i  CD  •  0 Ii  •  —:t  CD  lhh o CD  COOft  H-CD CD ‘-0U)CI’ W CD •.  ‘CICD  U)  r  —)CD C)C)  .  ft  OtS’CD  ‘T’Q  0  J’  0  Q.  ftliU) ‘<ftO  U)U H-CUe  -c  CD-  tSCD H-U)  (Dli 1 ..ftC-  ftZtS  CUC) C)) ft  H-CD  CD CUtS  CU  CDCD  H CUft  flCUZ CUQ HY’U) H-  ‘CI  CDHC U)H-Ii CDO. CUP)  C) HO  •‘ij  U)LQ  CDOCU•  CtC)  U).  H-CU.C) C) (QCD fti)<.  U)H-U1C)  -o  11JF-C)  H ft C)  CDft  I)QC)) -hc  tj  CU  bCI i)U) NH-fl ii).  H-H SIlU)<  •  1-5 HU)  C))  F-  CI’  0  F-  N HCD U) HC))  CD  FaD W  •  C  E  CD H-P U). fti-3 HCD• 1iCUCU  -  0 CD  •  •  i—-  CD  0  0  CU”CD II NH-U)  CDft liOft  rtC))  CU’-<  tO®.  C ft.  C)) H-Q CUQ.  H-CU  CDU)  UCUft  H-  (Qr-t,. H-ICUO•  CD0i-t,i  Q.  .OC-tCDCD 1 U)Q . ft  H‘iH  0 U) HHCD  Cj  l-  CDft  ‘CI H C))  .  CDO U)H-,  (DO C) ZCD tSU) H-HU)  rt  lh0 rJ  ft Oti  ‘<CD U)H H-CD U)C)  CUtQ CD  ftC)) H-ti <C) CD  CUrt  tJ .C).  C)’-o —JQC)  L.J  cOCUF-  ••  cr0‘N ‘<Cs) —:is. —ICD •.U).  Ocorr  WH-’-  )  CD  ri-O tY-Dl  (DHIlZ CD P1  -  CDO  1<  CD Hci-  -  ‘ii Dl Il  Il  0  •  5  CD < CD Il-ct  F-’-ri-O  Cfl CDH HDl CDbrt -MCUH  0M0  cr<PlQ  ri-HH-OCD H-Cl)S <DlO HI-h 0  00  <0<  Dl  H-Hct  P1ci-riP1O c1-0O 00  0M-  MCDCD H-McirtM H-’<Cl CD ‘<  P1  IlIl 0 OHOQ5CD OCU 0 <IlIl OQP)  •  05—5  <QO P)  Ob0 l-1,HP) OH  flQ.,t-t, O  bH 0 H-H-CJ)CD P)CD(DP)O  H-cl-H ri-J’< ‘-<  W I—’ZiH-•  O  OQL’J—J  H-CD  ‘-D  OH  c0  WOIN  hhOF—I(D F—YIi  Qfl  H-  çr  P) II  H-Yri-t(D ri-H-DlCD. H- ) IHCD. IP) (I) H  H-Il CDP)  CD(D•  0rt  jj  CtH---  0  Cl)  C11—’  CDP)  )  5  ci-H-  0  •  0U1  CD•  0-  ‘  -5  (0  H-H (QH•  H-C  II  C)OW DlQl 5CDCD 3-C)P)  • •--  CZ •  (Q (I)  Q  H-  • •  H-  Dl  -  )  CUCD  -  C  C) ‘-oP) I  —  M(Q  CD  0  HCfl ciH-  II  CC)  c-i-  0  P1  CU  --H-  •  Cl  Hn0  5  pl  CD  CUM-O  Q,  Dl t5 0 Q  •.  Il  I-h 0  Dl ciH0  (Q  CU  0  H P1 M Oct Cl) CD • Il  l  50.  3< CD  ]O H-O  Q.,I—  P1  OP) IlO çtrt HHPlO  ‘JIl  •  HLQ ‘<H-H-  O-  CD•  I X0  C) O(  OH  IlO  -  tQ Il  ‘<13i  I-i  CDQ CD  P)  i  0  P) 0  C-’-)  Dl. ci-  --J  5O  ‘dF-  DlIj  I-i  0-  Dl CDM, Q..HP)  rtO H-I-h 0 CDl O’ I-hP)  iiO OH CI) -CD c-iMCI)  MO  0(l)  H----)  CD CD‘1  C) P1 Il  OIl 00  CD •  Cl flHP1CD O OP)  •M-,  ci-’.o  CD• P)i--hriH-Il0  CD  ‘1  CD•  Il—  (y-  OH  H. HN  Il-  •O  CD M(Q—’ MCD Q  c-t  CDCD5 (DCI) HOQ. O ciPlO O riMH 00 Pl 0 O  QH‘-ii Il-Q (D• ‘I tQ CDQ CD• 0-  Q(n  H-DlhF<i Dl(r l-jOH-Oj CDHOLQ. HH- J ri-P1IlCD• ‘<OU)  j  IJ  CD  P) CD  I:-’  CDCDIl  OP)  CD .  I—’ P1 ciH0  ‘CiH  H‘O  ci-tQ  O  t’J ‘0 HO P)F-  H-  o-IlU1Ci 10 ‘octH U]D •fr O  Cfl  ‘-<CD-  •  ——  00  0 (Dc-I-  CD • OH-  H-Ot5  rt00  Il —(OH iCDo  IP1Cl)  CD. H IIiCUtlj DlIlH HInII--ClP1 flH-CD 0<-  OCii  QO 0H O•  OQPl c-i-  Q p)-  LJ  H-H-CD  ri-0 • ri-CU H-S HOIl U] F-’--(DO  M-C-i  CIQt’  •  MOP) U1H clH()1P)CDO Hcl-Cfl tO DlCD • QCn  0 Q. HO  H-HU1O  ..ctlQ.  00HQH tO 0 t’  OIl.  H•ri-l1 CDCD  HiO  0  HCl)  0CD  txjc-i-p)  P)•  < i tJ  OH--  Cl) H 2.CD ZOCI) ctCD CDII  0  0rtCr.  o  aCD .• O ri-CD C-’-) ciCO HW 0 I  —G)  U.  ri-H-. -CD  OClPl  li  •CUo  C-ci-H  —O. • OLi OH CH5rtCU OH-CD Mi• CD  0 OH-’-] P1•  (Dci-c-t: OOP) I-j(D  (D(Q  —tTt-j  CD  O  i HOZCD OHCD H-.QCD  ICDCD  I(f)H-  -h’<  Oct.  •OHH-I--a OP1CDIl H•  OS  0 (-,JCDCD ODH-  c1  HCD  P1  CD •  c-iDl 0  I-h  0  —J ‘CD M< CiHC)CD •H0  M  (.‘-)LYl W. •-  H HCDH cr  P1.  Dlfri-Hii I-Q  CI  H.  Q-fl  Q. H-  •  I-  H-  Il  H-  50  OCD hc-i• M0 II  rt  .<  0 4 C-  •  Ct)  Cl  Z-<  Q  (DO MIl •O  ,  -t o-< Pl0 --Il H(-‘->P)O ‘DH ‘-005 (DO  OCD-—1 H-CU. P1 cc H-PlO  O5a-  CDi-— Cl) ‘-D  >‘çt  Dl  0’<.  H- ri-  rrH-  H-DlCD CflH--  P)frO  ri-OM-,  5  (D•  H (!)i(D  H-  I:-’  -  H-  Ji I-’HO OP1 (DCD .fl 0 CI)M O 0 . CD HtOp)  CD  • CD  Mci-  5 (DO  CDH CD  CUCD  H-Il 00 P1H CU ciH‘-30 M  II  OH O rtIl HCD r H(DO  j  CDt’-) Il.  1—Q.• I O Mp1F— -OCD’-O ri- u  WP).  H-  4 t-  1H IH  H H< HCI) COIl (0 HO M a’O •CD  •-Q.  CD3 ri-CD • CD O OH ci-M -H 0  (ñCD  —CU  H-CU P)c-i OH 00 CU CD  OIl  H 0<  00  ‘  —0  ICDF-  IP)P)  Qzj  1c3•  (.)  IOD  —I-  hi IJ  H  I:—’ CD  168 Michaux,  A.  1803.  Menziesia Smithii.  Fl. Bor. Am.  1:  235.  Mickelson, D.M., L. Clayton, D.S. Fullerton, and H.W. Borns, Jr. 1983. The Late Wisconsin glacial record of the Laurentide ice sheet in the United States. Pp. 3-37, in Late Ouaternarv environments of the United States, volume 1. The Late Pleistocene, ed. S.C. Porter. Minneapolis: University of Minnesota Press. Mizushima, M. 1972. Taxonomic comparison of vascular plants found in western North America and Japan. Pp. 83-91, in Floristics and Paleofloristics of Asia and Eastern North America, ed. A. Graham. Amsterdam: Elsevier Publishing Co. Mueller-Dombois, D. and H. Ellenberg. 1974. Aims and methods of vegetation ecology. New York: Wiley. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473-497. Nei, M. 1972. Genetic distance between populations. Naturalist 106: 283-292.  Amer.  Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Nati. Acad. Sci. U.S.A. 70: 33213323. Nei, M. 1987. Molecular evolutionary genetics. Columbia University Press.  New York:  Nikias, K.J. and D.E. Giannasi. 1978. Angiosperm paleobiochemistry of the Succor Creek Flora (Miocene) Oregon, USA. Amer. J. Bot. 65: 943-952. Ohwi,  1965. Flora of Japan J. Smithsonian Institution.  (in English).  Washington:  Orlóci, L. 1978. Multivariate analysis in vegetation research, 2nd. ed. The Hague: Dr. W. Junk B.V. Packer, J.G. 1983. Flora of Alberta, second edition. Toronto: University of Toronto Press. Parks, C.R. and J.F. Wendel. 1990. Molecular divergence between Asian and North American species of Liriodendron (Magnol±aceae) with implications for interpretation of fossil floras. Amer. J. Bot. 77: 1243-1256. Parks, C.R., N.G. Miller, J.F. Wendel, and K.M. McDougal. 1983. Genetic divergence within the genus Liriodendron (Magnoliaceae). Ann. Missouri Bot. Gard. 70: 658-666.  169 Peck,  M.E. 1941. A manual of the higher plants of Oregon. Portland: Binfords and Mort.  Pilou, E.C. 1984. The interpretation of ecological data: a primer on classification and ordination. New York: John Wiley and Sons. Porter, S.C., K.L. Pierce, and T.D. Hamilton. 1983. Late Wisconsin mountain glaciation in the western United Pp. 71-114, in Late Ouaternarv Environments of States. the United States, Volume 1. The Late Pleistocene, ed. Minneapolis: The University of Minnesota S.C. Porter. Press. Powell, C.L. 1982. The effects of the ericoid mycorrhizal fungus Pezizella ericae (Read) on the growth and nutrition of seedlings of blueberry (Vaccinium corvmbosum J. Amer. Soc. Hort. Sci. 107: 1012-1015. L.) .  Prest, V.K. 1984. The Late Wisconsinan glacier complex. Pp. 22-36, in Ouaternarv stratiaraohv of Canada A Canadian contribution to IGCP Proiect 24, ed. R.J. Fulton. Geological Survey of Canada paper 84-10. Supply Ottawa: and Services Canada. -  Radford, A.E., H.E. Ahies, and C.R. Bell. 1968. Manual of the vacular flora of the Carolinas. Chapel Hill: University of North Carolina Press. Rehder, A. 1940. Manual of cultivated trees and shrubs hardy in North America, 2nd. ed. New York: Macmillan. Rohlf, F.J. 1977. Vegetatio 34:  A note on the measurement of redundancy. 63-64.  Rohlf, F.J. 1988. NTSYS-pc: numerical taxonomy and Setauket NY: multivariate analysis system, version 1.50. Exeter Publishing, Ltd. Rosendahl, O.C. 1963. Trees and shrubs of the Upper Midwest. Minneapolis: University of Minnesota Press. Salisbury, R.A. urceolaris.  1806. Menziesia alobularis and Parad. Lond. tab. 44.  jvj.  Schnabel, A. and J.L. Hamrick. 1990. Comparative analysis of population genetic structure in Ouercus macrocarpa and Q. crambelii (Fagaceae) Syst. Bot. 15: 240-251. .  Slatkin, M. 1985. Evolution 39: Smith,  J.E.  1791.  Rare alleles as indicators of gene flow. 53-65. Plantae Icones med. p1.  56.  •  Z ‘-<M-  H-clH-  CI  C)  HCT H-H0  QC))  H-hi  XC))  PD  H  I-h  c-C  OCD  •  00 C-f  Whi  •  OQ C H 1 -  .  CICi  C))I—h  CD  flHC) UI  •  HCD I.. Ui  •(t) C)  C)  0C))  c-rhi • HC)  OW  c-C  CiC)  •  Ohh C) hi  I  ‘-OCD  hi  H-)  <  CT)CD H-CI c-C  (DC)) I-Ic-C  <<  H-H-  cf  HH  CD  C))Q  C))  —  •  C))  CDM C)) CD  00  C))  I—hLQC)) hiH-C))j tQCfl  H-H-’-D  Xhi(X)  C))QO  C))Ci HCD c-CCtCD H-Cfl ‘tI• F-’ —CD H Cl)  C))W I. H-Qj C) .  C))  a-CD0  ••i  H-. H-  OC))  0  c-CF—”  C))’<  C))Cfl C-t CIH-O F—fli  -C)O  MM-,CnC) —JI-h.- • C• CD hi Cl)  iCi  ‘-3hiCI  H-  <  (DO HCI  I-’  ‘-<‘ti  N’<  HCDO  •  IQ L-) ‘(I  0c-C  F—1iCi  CDr-tC) (D  L.JH,  M0  —JO H-r-WQ,  iF—’CflC)) CDH-Fl CC)C!)Fl • c-C 0  FlCDCDCJ  —]JO (Jc-t. •.Cfl  WH0 Cl-CDF— •H-’-O ‘-I  ‘iCIO-  .  •C)Q  •CD(I r’CD CH-l-  CD(DCD Fl(D  HQCD  •  Cl)  CDN CflHH-  Fl:iQj  QCD  QC).  Cl-H-Fl(DLI1  HO— CDH  H(D-Cn  H  0  Cl)  CD  CDcrCDF-’I-I I—i OCi •C))’(l.  CD(D C)Fl  IlCiCi)GC)C-t  U1ZH-C))  I—F-t-iCDC)) (D(DH 1-h CflFl •CflCDr-iHF-A  F-t)  (D3tJ  C)  CnjC))fl  .  ‘CJ) •-H0 i<H C))ct G LflrZFlHcICDH-cfl  —  —Qi.  0c-r. )I-’-ICl)  F-U)’j  j  t’i  tQQjCl) H-cr  •  0<H(IC))  H-H-  H-(QL’J  HCn0F-fl rtHO-  $‘t5. ctOOL’i H-F--  <i3OrrH H00j  •  C))  CD-  H(D Cfl H-Cl)  • -3 0  UI  C))  c-C.  C))  CI  1-J(D 0H-hl • F—---  ‘—0 C)) IC))  1s)H-i-3 H0• -•t” • CX)H•  I—Cl-  CD 0 ct<IH-C))ct C)FlHCñH-(fl C))-  CDZ Cj)  Q  Ci)  H-C)) Cfl cl.  Cn t 1 1HH-  (DOL’J  ZH N0 H-h.  CD  1-)  0i  0) C)  i50 H.  I-I HCflHQ-ci —)t3c-t —ICflH-  •.lC))C))  WT)<  —110  p-C)  IC)H-  c-tI(Dct  03CD  WICJi  •  C,II—’-  ‘-lIC))O •F• I  CDII—’CX)  k)’D  •  FlW(D C) UI (DH-I-C))-’0 (000  C)’(Q. (Q(DLi  QI-h  HI-h H-  C)  CD  ‘ti  H-C)) HCT)  CI  0CI  H,JH-  0  •C  ••  (l)O  U’(I •  C))i  ctQ  (I  H-, ‘-oi H-cl  0 Fl  0  •  CDCl-C)) Cfl  H-C))c-t  •D2 Cl) HCAM-, •H-  C) IC))  CD  0-3  -H-’(I H i—frl CDH-CIG) Cl) Cl) ‘(lCD  <  c-C  Cl)  •  ‘—3  H-H-O 0.  —CCI  UI  C))CflC))  QH-D • I-t)cr  I(--cr. IJCD  IC)Cl)  C))•  I<H-  IOW  IHrt  ct  Hflcn  (DC)C)H  CDH-  •flCflH-. I-h  I)COC”  CDIC))hhC))C) C))I’(-  IHH  ‘tjIcIHC)-  H  rt  HjC)flC0  ct  )—  0  HCDCl)  Cl)  Cl-  C) CD  C))  Cl)  0  Cl) 0 H  Ci) 0 H  Cl)  ‘(I Ht’I  CD I-I H-H C)-D 0O H-H  CflC))  CDH  (IC)  UiC)) • ti  ‘-DCDCD I HO U90o  OctF— •.F-. CD Ui  c-C  •  H-  ‘-iv  ‘tIFl  H-I-i DC)) (D  c-C  F—  CflM,’< c’ C) •Cflcl C)ct  OCl) -h.  H-j H. HCD CflF-O C)—J H  .  C))IJ  CI•  (fl  F-’-  u1 JC)) H-ti NQ. C) (D  (,JI-.  00  -_)C)  IFJ<-  WCD  CD  0 CD Cfl Cfl t5 I-h  Cl)  Cl) çr  Cl)  •  CDCD C))C)) CDC))  C)CnL11  C)’-<•  H-Cfl  t’JH--  C))  Cl)  ct.  C))  H-0 F--’  0 CI  CD Q  H  L-JM—1 I  1iQ  ..(D  C)  Q  •  OHOF-h I-’H-  N  ‘<H o c-COT) •H (Q  0  H-  0  :i  H  C) 0  H  0  X  0  c-C C))  H  C) C))  hi  CD  Ci  Q  b-.)  C)))-0  C))  .  (DH c-r HCl)D) Ct H-  C) Cf)C))  Cl)  t•  I-  •  C)i OCI  H C’J)C))  C)•  Fl  C)).  C))  Cl) CD C)) cC Cl)  (DC))  c-to l-c-t  j(Q C))  H C))-3 c-Cl)) H-Cl) Oc-r ZI--”  II  C)).  H-H C)O —i <O  C)).  F  tQ•  C) 1-J3 0)0  C)  Cl) CD  .  ‘<  I-  Cl-  CD  00 •  UI CThH-  Hc-t H-  0  C))  H-, H  IHØ, IC))  IF-Hi  I(DC))  •<  —--tQ  I—3O  I  HQ<  CDL0C) “HCD CnC)) 11  •‘(  WctF— o 0 c-tCfl  CD H C))D a H C)-  CD  I-i.  C)  •  ‘IIM,  rtç.  H  I 0 •  •  •.C  C)’1 0  H-  C)  C)) C)  .  iJJ Fl•  tn  CT)  C)) H tQ-  0  0 C)) H Cl)—  Cl)  Cl)  (flLJ-  CIW  CDCl)H-Q <Cflj•’  •  —D  C) UI (Dc’-  C)OCI  (Q’<C)) C)-)  C))Ij  H-H-. -hCl)t1  CJ)JC))CD  H—C)Cn  ft  H  0  Cl)  OliL’I  Cl)  —-1  (l)C))  UiIC)JOQ  ‘r)IlP)  OCD• CtIl  CtP)  CD  ON  OH (DCC)  IlCX) ‘-<0)  CDF—  CD  HP)  Ct  CDCD CD  (I)  II  LII  hrr  OH< O’-<O  WIC)  0,CI)  •CD  Il  H-O• •N H(D  H  0  OCOH  Cl) ‘-< •  II  H-Hi  (f)H-’-D  0  P)H-CD CDP)Ct  —liH0  IlOCID  CDCt’-Q C))HHCtO liCDC)) rtCflH (1)  H-CDCD Q.O Ct H ‘(!)O  QctQ  H-  H‘CS CtC:O • liIl  (DCDlI  liCD  ••P)Ct COli ( Ct) • 0 (l)HH • CtCt  rI-H• OH  Illi  rtH-,  flH  )>O  OHCt  <(QliCD •  <H-H-Ct CDliO  liCt  0 Ct H-  •Il CCI) I-P) O’CI•  E  CD  CD  3Cl)  CD  U)P)’z3 CnP)Pi  H  0.  H-P)  CD QHQ. CDO OcD—cn HI-rt OH-.P-I QO Ct  H-  HC))O CtCflIl  0i  IIli  WICD  CSli  0IC))  • rJ. cnO  Illi  (DCDQ.  CtP) SCDli  •H‘1  CliCD  ‘I rtH  Mi(D  ‘<OQ-  CDLQIl IlCD Il CD  CD  li•  DI--. HH-’-rj  H-li  H-Or ICD• H H OP)•  P)-  liftP)  H-H-I-s  t’-)1Q •. ICI (.)ICt  HI  COO —CtCt (DIl P)IlO  Ili(DH ICDP)CD  IC)  [-rli IC))C1  IQlicX —1 IC)) ICI)C))•  IC))co  OH  <  HL’IQ OCn C HO •M-  O  CO’li  CD  0  COO rr  <<  DliCt  li•  WIliCtC/)  O)ICtZ  H-li 0Q  H-  H  ICI  J• CD  ••IQOP)I--hC4 WICI) -  H-’-O COD O  Wf-  •  J•  •  CDLII  iCD rtP)  0  ‘<P) OCOli [-hH-Q  •  Ct  OCOH  tjiliCD.  OC-  (DCI)  (QO  (X • f-P) •li Q-P)  I0•  OH-h  •  .  I0li H-CDCn  P)i CI)li CtPJ  CDNli i<li •H P)CD CCc1• H-P)•  ••-z H-. —JP) —irr  -DOliCD  ‘F-HCD  J’E P)  3CD  CD H  CD H  ‘Q  0  0  W<  II CO  0  ‘-< •  ••  Q  Hli  Q  CD C))  Cl) •  H-  CI)  <  H  C))  C))  C)) Ct  1  Ct 0  II  0  ‘z H  X  LII  f-----1 CD  I F— CDD Cfl—1  li  1C-i H-. CO O•  1’  CD  <  ‘-3  •  •  li  II  C))(t)  H-  CD  P)Q -JCQ  o-OCS’ QIl ••IlH-  CD  S(QQ.  Oli  CtCtP)  CD’-<H  OO I-  IlliCt H-  CS  HOCt QQ.F— CDPi  liCt IlQli li  C< • 0 P)Il  •  CDCDO IlIlO CDCtCD  li-3L’J  H-HCOliCD  ‘-3  P).  li1110 CDCD  •  0  li  I—i  Ctli (DCL)  (OCt  CDI--h  C))  •.COO H-Il —JC))HW (Q IP)H‘-olili  a  CD IlCt lili oCD  CDCOO CtCtli  lIP)  OCDCI)  Illi< CD b  CDct CD H-  QO  HCtCD  OCD’  CI• HCtd X<CD Ii liCn  H-Ui HP)  OH-  O-  c-rh H-LII Cn. rrtl H-. CDO I-I H-COH  ZHCD OF—’-<  HH-, I-h  ‘-3  (-tUi  liOD CDI-  Ct’tIH  OH-  Ct H-W (Dct. CO  Q  —JHili<  I-OOP)CD  Hi  H-  ‘-3  lio  li  0  0CI) W  Il  HCD  t-çi •.  li  •CD  •J II C-iC • 0 WCI) 00 Ct  li  li  (1)  -Q  (I)  •li  lI--h W C’Ct  coO  li  liCl)  H-J  kU) CO H-HO Cl)CDI--h • X Ct  HOC)  Ct  P)Cfl(D  CDli  CtH-(D  CDCDO liotQ  P)OH-  tQCO’-< ‘CH  C))  C)) HCD lI—  OO3 liCD  Ctli03 H-C))Ui  IlCt H- H- H OC))’-D  Cl)(D• ctli  Il—P)  CDQH  ‘)  •  ILIKDCJ a\ZIlO DH-1J  -o(QIli• 4 Ili  H-I. UiliIH-  ••NOt3I  OH-  H-eli (-JH Q  OCli lictH-P)  tP)C ct• H-  f-P)H-l  Oli  <P)H---  I_’P)  ‘< Ct Cl)  ‘-<Cl) O’CS CD ‘-00 ‘-OH“(Cl Cl)  li -3(D O  li C)) Qfl  OG’ P)•  C)) (-QO .  X3  •  UI 0 Ct  •  P)  C C 1 t WCt ‘CC)) P).  tt  0  I-i.  M  li  H-P)  .  N H-  0 li-  H-  CO  ‘-3  a-  li  Ct U) •H -O  HP)  ‘tIe  P)O  H-Il  C)) QLIi  li•  C).  CDli  ctP)  (D• Cl)  •  WCD  HO c  HCnfrc  H  ()  ‘-3 I) < (1)  I1C1  “I--h  coo  LJ  -  Xli  H-’C3Ct OHH liCDO  OHCtP)  HOIl  C))  OH-  CDCt H-C) LIICD <Cfl<  C  .  C)) H  II  C)) Ct  CDH  CtCl)  Ct  (flU) H C/)Cl)  HP) H-li liP) OH  H Q-C))G)  C)) CL) CtCOli  “Ct HHO  C))CD  P)CD lili  11 0  •  C:  H Od  ‘-<• • Cl)  CDCDU  (n’-< H ‘‘o  HH. Oli  OH-co NOOD -<liUi  H HC/) Ct H  (DC))  O<H liO•  ColiC) CDli  P)P)(l  •  Cnli  H-3i t5O•  liP)Q.  D)H-li  CtP)  OH ti ‘-<O•  ctD)  I’rJH  H-P)I-  CnQ  E’rJO  0 I—h Hi  rJ)  U1H-CD. ‘-O0Ci WP)CD. • F-fli  iOI--t  H--  rP)  Ct Cl)  <  P)U  H-J  U) c-I-Mi  H  <  .•c-t  0  SI  CD  c-I-  OiOM CDP) IO  c-to  ••CDCD  o->CTh  Cl)  0 i (1) H  c-t< H-  H-P) C1)M  HCl) c-i0  i>CI C) .HC)  •H-  P)OF3 MiCD  P)HM 5Qc-I•MH-  HP)  HP) C)c-t  0H MCD  .  Cl)  M  (1)  c-I-  -  OU) •c-IHC) U)  Hc-t H-  -  U)  -M  -3 - ‘-Q  M  >-O  Hc-t  (1)0  (11(1)  5  ‘-<Mi  (1)  ••CD  HU) bc-I-  0 U) ><  c-I-CD  P) c1U)  <..  L’J>-)  0  ‘<  05  CDM  M’ CDM ,QO  Hi  (1)  CD H-3 H-.. C)  (1)1’] HC1)  CDM • 00 SL1I  F—hht-h  ..U)  H-O  c-tU)Cn c-I-H-  HP)< CDc-I-CD c-tH-M  U)c-r  ZOHCD CD U)Q.  •(,)  (f<  (nc-I-HH-M  CDQ c-I-CD HO OCDQ.  CDtQ•  H- CX>  •c-I-’-o  j’ZI  5  0  c-tM (1) • C)  (1)0  Q.H-  0(1)  0(1) M•  ‘-0 I—hCD  H0  •  CD H  U]  0  U) H--  CDD) MO  H<3  HH  (1)frh  COCD (-RQ lCD  (1)5 ‘-<  CD  H<  tS  O(D  SIP) U)  SI  U)M-,  00  tCO  CD  t-J  -  •CD5  c-I-  O 0 (1)  Oc-I-  P) SIc-I  Mc-IOH-  c-I-J  CncI-  H-U)O  (1•  MH-H-  H 0 M P)HSIU)  [IJ  0Cl (1)’-< .0  M•  I-hCD O  ‘0  HD  0  CDMC1  M “ICD flHc1O0P)  j  • CD H  .  Ui  0  U) H--  MO  CDCO  <  H-  HH  U) O c-I-c-I• O CDt-li  WtQc’  MM H-H-CD C)  CDCD  CD  c-ttQ  -c-t O CD LYMHM  CCfl  M(-)H(-  OSIP)  CflCD(D U)  H-M5  HI ’i CDMI OCD MO  H-. C)  H- O l-tO  C)o  P)H  CD•  C c-I-.  CDO  DCl  H  CDU)C  •  <  Cn  H-.  U)  •I-O •  H 5 •-o ‘ —]  (1)  L’J H  H o CD —)  MH-Cfl.  5ui  •  P)CD  CD  (DO MMCI c-tc-.  CD  I-h  I-h  0  0 H  F-  0  CD OM5M-,FOC U) cI-M.  Z-  CD  H  0  c-I-  Q.  •  lCD  1< IS  c-I(1) H-IH CnKnSI .pJ IN  • IN (1)(1) . CJic-I-HCl) 0 OH-i  ‘tjUiH-  H  ‘CI SI•P)  H-  P)’-dU)  Cl)  <  C) 0 H  . LII  c-nd)  U)I  Cl)ICD I-<c-I  .IF:-1  5  CDI-h  0 LIIHH-SI OU) C)  .0  —<  P)H CDP)  c-I-U)  H-•  SI CD’I  H-  O5o HCD.  N0 (&<(X)  OH  M0  U).  CD. P CD) 0.  H-H  (1)  •• 5  (1). C) CD (1)0 CD  U)’  Q  •IiW O•  W —  i  ic-I-P)  ‘-0(1)  H-fl —1Z  H-  •  c-I-.  U)  c3CD •.C)’-  H  H  CD H  U)L’ICn  MCJ  CD c-I-  U)cQ.  C) 0 O• M M HQ-CDCD CDQ.HCD  U)O  H-OHOHOZ  Ij H• Ci-  QclCD ctP) •.  HHM CII  M  O-  CD H-H-H  CD  ‘-0  •  NCD H  I-’  -  I-h  0  •  c-I-  H’t  CDCD  c-I-Cl)  H-.  5  c-I-c-I  05 I-CD HiP)  Li H(1)H-  .•5  U)  OM  <O  N  .0  M H-i  H-H  •H  U)  U)CQ  CD  H-  c-I-U)  c-r QC)  MO H-ç  U)H  i-i  c-I  OH-  0  CD0 ct.  M I-hO H-U) LIICO c-I-h  ‘-0  U)  ‘-DCD •CD  cn•  IP)d —Ic-I-M IIP)HI-’•• C) H CD  c>jQ  ••IQIM< HICD.  ‘I 1(1) WIQ  • OH-P) i Q  H  c-I-  QQ F—5.  M  LIJH.  U) CD  ‘CD W5D HU)  oCD  Cl)  ‘  CD (1)  H-  .  M-  o  0 MOO c-I-H-. M CD M  P)Cn (Qc-t  H-  P)F— M  ‘ii M(1)I-hCDP)  CD. U)C) U).  0 O<  CDc-t 0 H-CD  c-I-  c-I-  CDP c-I-CDc-I-CDc-IP)QU)CDH-  0  U)CDCD-  C)O CD CDH(Q CD5CDCD  U)< c-tH-c-IH-OMO<  H,H-iCD.  •H-  •  U)U)P) U).  CDQ.H  MCDV  CD U)  SIOCn  MOH H-HO  OH-c-I-  U) OWCD  Oc-I-CD  0 SI ••j. H (1) H-0  P)H•D  H  ctU)  OS. MCD  ‘-d  Cn OSI  U)HCD  4 C 0 HH-. c-IH E  H-CDP)M c-IMU]H CD CX> H OCDLIICDW  k<  •Ji  CD CD MP)MU)•  (1) cr.  U)c-I-  d’  H-CD  (t)c-I-  U)  c-I-  (I) c-I-  Cf)lP)  •  Ø•  CD  CD CD  CD M(  H-c-I H-  c-r  CO  H  ‘<  CD  Oc-Ic-I-H(D<  C)  c-IOCD MiM (1)  M5 CD Hc-r  <M CDc•I-  (1)..  C)CD0  (1)  <-  (I-  P)O - M  H->tI  SM. OCD  H SI  OCDD  flH  cfl  3H-  Cl)H.  H-tYC)  c-I-.  Mi H-tI-  H  CD H  5  H0  0  0 I-h  CDU)  0  c-I  H  P)H•  CDH  .  .  CDM  -  0(1)  CD  H-  w  M  (1) H-tQ H-  •H-1j  MW CD U)FU)H  i0  H OH-H  CD 0•  )J(J)IJ  C)I7c  OIQ c-I M 0 ••  I-<Z  H  P)  173  1981. Paleoclimatic significance of the Wolfe, J.A. Oligocene and Neogene floras of the northwestern United Pp. 79-101, in Paleobotanv, paleoecolocw, and States. evolution, ed. K.J. Niklas. New York: Praeger. Wolfe, J.A. 1985. Distribution of major vegetational types Pp. 357-375, in The carbon cycle during the Tertiary. and atmospheric C0 : natural variations Archean to 2 American Present, eds. E.T.Sundquist and W.S. Broecker. Geophysical Union Geophysical Monograph 32. 1987a. An overview of the origins of the modern Wolfe, J.A. vegetation and flora of the northern Rocky Mountains. Ann. Missouri Bot. Gard. 74: 785-803. 1987b. Late Cretaceous-Cenozoic history of Wolfe, J.A. deciduousness and the terminal Cretaceous event. Paleobiology 13: 215-226. 1967. Wolfe, J.A. and E.B. Leopold. Neogene and early Quaternary vegetation of northwestern North America and Pp. 193-206, in The Bering Land northeastern Asia. Stanford: Stanford University Bridae, ed. D.M. Hopkins. Press. Wood,  1972. Morphology and phytogeography: the C.E. Ann. classical approach to the study of dijunctions. Missouri Bot. Gard. 59: 107-124.  Wright, S. 1951. The genetical structure of populations. Ann. Eugenics 15: 323-354. Zar,  J.H. 1984. Biostatistical analysis, second edition. Englewood Cliffs NJ: Prentice-Hall, Inc.  On the significance of Pacific Zhengyi, Wu. 1983. Ann. Missouri Bot. Gard. intercontinental discontinuity. 70: 577—590.  174  Appendix 1 Summary of Voucher Specimens Examined Table A1.1. Summary of Lending Institutions from which Menziesia specimens were obtained.  North American Herbaria ALA ALTA CAS DS GA GH HSC ID IDS JEPS/UC MONT MONTU NY ORE OSC PAC PENN/PH R1I TENN UAC UBC UNCC US USFS UVIC VPI WS WTU WVA  University of Alaska, Fairbanks AK University of Alberta, Edmonton AB California Academy of Sciences, San Francisco CA Dudley Herbarium of Stanford University (at CAS) University of Georgia, Athens GA Gray Herbarium, Harvard University, Cambridge MA Humboldt State University, Arcata CA University of Idaho, Moscow ID Idaho State University, Pocatello ID University of California/Jepson Herbaria, Berkeley CA Montana State University, Bozeman MT University of Montana, Missoula MT New York Botanical Garden, Bronx, New York NY University of Oregon, Eugene OR Oregon State University, Corvallis OR Pennsylvania State University, University Park PA Academy of Natural Sciences of Philadelphia PA Rocky Mountain Herbarium, U. of Wyoming, Laramie WY University of Tennessee, Knoxville TN University of Calgary, Calgary AB University of British Columbia, Vancouver BC University of North Carolina, Charlotte NC United States National Herbarium, Smithsonian Institution, Washington, DC United States Forest Service Herbarium (at RN) University of Victoria, Victoria BC Virginia Polytechnic Institute, Blacksburg VA Washington State University, Pullman WA University of Washington, Seattle WA West Virginia University, Morgantown WV  Japanese Herbaria KYO SHIN TI  Kyoto University, Kyoto, Japan Shinshu University, Matsumoto, Japan University of Tokyo, Tokyo, Japan  175 Table A1.2. Summary of voucher specimens examined in the study of North American Menziesia. Field sites are high lighted in bold. Specimens marked with an asterisk were not used in morphornetric analyses, but are representative of populations analyzed electrophoretically.  Vouchers of Menziesia ferruginea,  sens.  lat.  Alaska  AKO1  Talkeetna Quad, (RN 185258)  AKO2  Kenai Peninsula, Palmer Creek Road, J.H. Langenheim 4256 (WTU 174238)  AKO3  Ketchikan,  AKO4  Sitka, above North Sandy Cove, 153 (DS 491616)  AKO5  Talkeetna.  AKO6  Juneau Quad, Mt. Roberts. (ALA 1490)  AKO7  Wrangell Quad, Kuiu Island, Washington Bay. W.J. Eyerdam 5383 (WTU 291382).  AKO8  Talkeetna Quad, Little Susitna River, J. Kelly s.n. (ID 42320).  AKO9  Cordova Quad, (RN 219258)  AK1O  Ketchikan,  Curry.  Yes Bay.  A. Nelson & R.A. Nelson 4152  M.W. Gorman 72  J.P. Anderson 7614  Chugach Mtns.  Hyder.  south of Hope.  alt.  (ORE 67742). 610 m.  D.B.  Butts  (PH 809744).  A. Nelson & R.A. Nelson 4407  alt.  185 m.  G.M. Frohne 49-427  K. Whited 1234  (CAS 130669).  Alberta  ABO1  Jasper National Park, (ALTA 13943)  LL  Banff National Park, Lake Louise, alt. 1800 m. T.C. Wells 1151, 1169, 1177, 1184 (UBC)  WAT  Waterton Lakes National Park, near Akimina Pass, T.C. Wells 1190, 1219 (UBC) 1680 m.  Sunwapta Falls.  Table A1.2 continued next page  E.H. Moss 9476  alt.  176 Table Al.2 continued. voucher specimens.  Summary of North American Menziesia  British Columbia  BCO1  Vancouver Island, (UVIC 22926)  BCO2  Blunden Harbour, Indian village site W.B. Schofield 85739 (UBC Vl9l374)  BCO3  Forward Harbour, Douglas Bay. (UBC V19l370)  BCO4  Queen Charlotte Islands, between Sandspit and Copper Bay. J.A. Calder, D.B.O. Savile & R.L. Taylor 23201 (UBC 124575)  BCO5  Haines Road, mile 47. (UBC 109904)  BCO6  10 miles SSW of Hells Bells Cr., between Terrace and New Hazelton. J.A. Calder, D.B.O. Savile & J.M. Ferguson 14825 (WS 234762)  BCO7  N bank of Iskut River, 15 km NW of junction with Forrest Kerr River, alt. 320-415 m. W. Gorman 1469 (UBC V1769l4)  SEY  Mt. (BCO8) F. Szy s.n.  SEY*  Mt. Seymour Provincial Park, trail to Goldie Lake and Flower Lake, alt. 960 m. T.C. Wells & M.E. Hiebert 1762 (UBC).  BCO9  Cheam Lake,  BC1O  Stein River Valley near Lytton, V.J. Krajina 1662 (UBC 75935).  BWF  Brandywine Falls Provincial Park, Daisy Lake trail, alt. 785 m. T.C. Wells 1725-1729, 1733, 1735, 1739-1741, 1744—1745, 1747—1752, 1754 (UBC)  STL  Alice Lake Provincial Park, Stump Lake trail, T.C. Wells 707, 711, 717, 726, 729, 733, 738, (UBC).  near Coombs.  A.F.  T.R. Ashlee s.n.  W.B.  Schofield 85561  Szczawinski s.n.  Seymour Provincial Park, (UBC 83481).  alt 20 m.  (abandoned).  alt.  V.J. Krajina 602  Table A1.2 continued next page  alt.  1130 m.  (UBC 88069).  245-365 m.  alt 210 m. 740—741  177 Table A1.2 continued. voucher specimens.  Summary of North American Menziesia  PL5  Cypress Provincial Park, trails near Parking Lot 5, 760 m. T.C. Wells 662, 1010, 1017 (UBC)  YEW*  Cypress Provincial Park, trail to Yew Lake from Cypress T.C. Wells 1042 (UBC) Bowl, alt. 970 m.  ROT  Manning Provincial Park, Rein Orchid Trail, alt 1200 m. T.C. Wells 745, 750, 754, 759—760, 762, 766 (UBC)  SKY  Manning Provincial Park, Flats, alt. 1450-1600 m.  SPA  Wells Gray Provincial Park, Spahats Creek, T.C. Wells 810, 812, 814 (UBC)  TRO  Wells Gray Recreation Area, Trophy Mountain Access Road, km 6.7, alt 1350 m. T.C. Wells 821 (UBC)  MUR  Wells Gray Provincial Park, Murtle Lake Road, 13 km W of Blue River, alt. 1000 m. T.C. Wells 873 (UBC).  GNP  Glacier National Park, Mountain Creek campsite, 810 m. T.C. Wells 1121—1123, 1126, 1129, 1132, 1137, 1140, 1143, 1145 (UBC)  YNP*  Yoho National Park, roadside turnout past bridge, E over the Kicking Horse River on the way to Takkakaw Falls, alt. 1290 m. T.C. Wells 889 (UBC).  alt.  Skyline Trail from Strawberry T.C. Wells 799, 808 (UBC) alt.  570 m.  alt. 1134,  California  CAO1  Humboldt Co., Arcata, Community Forest main access road, L.P. Janesway 237 (HSC 77388). 170 m.  CAO2  Del Norte Co.,  HUM  Humboldt Co., Humboldt State Redwood Forest, Prairie T.C. Wells 628, 637, 639 (UBC) Creek Trail, alt 125 m.  Wilson Creek.  C.B. Wolf 825  (DS 159386).  Idaho  IDOl  Lernhi Co., Gibbonsville Pass. (ORE 67693)  1D02  Shoshone Co., road from Bearskull to Roundtop. C.B. Wilson 506 (IDS)  Table A1.2 continued next page  A. Cronquist 6810  178 Table A1.2 continued. voucher specimens.  Summary of North American Menziesia  1D03  Idaho Co., SE of Harpster. (WS 176978)  1D04  Idaho Co., Seven Devils Mountains, Dry Diggings Camp. A. Nelson & R.A. Nelson 2971 (RN 178443)  FRE  Shoshone Co., along road 2 miles W of Freezeout (1D05) P. Sullivan 22 (ID 087766) Saddle.  FRE*  Shoshone Co., Crater Peak, along road just east of Freezeout Saddle, alt. 1750 m. S. Brunsfeld s.n. (WS).  MOS  Latah Co., Moscow Mountain, Randle Flats Road, 11 km from jct. with ID Hwy. 8, alt. 1520 m. T.C. Wells 17151722 (UBC)  R.F. Daubeninire 47143  Montana  MTO1  Powell Co.,  Ovando.  MTO2  Missoula Co., (UBC 167142)  MTO3  Park Co., Yellowstone Valley. (MONT 35513)  MTO4  Lake Co., south fork Lost Creek, Swan Valley, J.A. Antos 215 (MONTU 80026) 1080 m.  MTO5  Glacier Co., Summit, Glacier National Park. J.W. Blankinship s.n. (MONT 4229).  MTO6  Flathead Co., Swan Range, Little Creek of Addition Creek, alt. 1980 m. E. Chadwick s.n. (MONTU 71159).  MTO7  Ravalli Co., Big Creek Lake, (MONTU 81714)  MTO8  Sanders Co.,  MTO9  Lincoln Co., Leigh Lake, Cabinet Mtns. Wilderness Area, D.W. Woodland 847 (MONTU 60494). alt. 1676 m.  MT1O  Flathead Co., (DS 156665)  J.C. Kirkwood 1239a  Pattee Canyon,  Thompson Falls.  Bigfork,  915 m.  Table A1.2 continued next page  alt.  (UC 352086). M.  1550 m.  Keller 374  P.H. Hawkins s.n.  alt.  1788 m.  Booth s.n.  alt.  B. Ranz 70  (MONT 40495).  M.E. Jones 8796  179 Table A1.2 continued. voucher specimens.  Summary of North American Menziesia  MT11  Ravalli Co., Lost Horse Pass, 2981 (ORE 67692)  MT12  Powell Co., Monture Canyon near Ovando, J.E. Kirkwood 2162 (MONTU 16378).  ALV  Missoula Co., Alva Lake campground, Lob National Forest, alt. 1350 m. T.C. Wells 1228—1230, 1232, 1235, 1237—1238, 1240, 1247—1248, 1252 (UBC)  alt.  1800 m. alt.  J.B.  Leiberg  1525 m.  Oregon  GVC  Clackamas Co., Government Camp, jct. with Hwy. (ORO1) 26, alt. 1185 m. W.L. Stern & K.L. Chambers 33 (OSC 109785)  0R02  Hood River Co., (ORE 67719)  Lost Lake.  L.F. Henderson s.n.  0R03  Hood River Co., (WTU 12463)  Lost Lake.  J.W. Thompson 11191  OSW  Tilamook Co., Oswald West State Park, trail to Cape Falcon, alt. 125 m. T.C. Wells 1009 (UBC)  BEV  Lincoln Co., Beverly Beach State Park, T.C. Wells 623-624 (UBC)  PER  Lane Co., Cape Perpetua, Giant Spruce Trail, T.C. Wells 926, 939 (UBC).  CC  Lane Co.,  Cape Creek,  alt.  100 m.  alt 40 m. alt.  225 m.  T.C. Wells 948  (UBC).  Washington  WAO1  Wahkiakum Co.,  Cathlamet.  WAO2  Ferry Co., Twin Lakes, (WS 138301)  WAO3  Thurston Co., (WS 123508)  Black Hills,  WAO4  Skamania Co., (WS 137812)  Chiquash Mountains.  A.S. Foster s.n.  alt 1220 m.  Table Al.2 continued next page  alt.  H.  730 m.  W.N.  (WS 65591).  St. John 8920 F.G. Meyer 1637  Suksdorf s.n.  180 Table A1.2 continued. voucher specimens.  Summary of North American Menziesia  WAO5  Whatcom Co., Wiser Lake. (WS 138301)  STV  Chelan Co., Stevens Pass, Sno-Pac Road near Hwy 2, 1235 m. T.C. Wells 1677—1678, 1680—1686 (UBC)  W.N.  Suksdorf s.n.  alt.  Wyoming  WYO1  Teton Co., N slope of Signal Mtn. near Jackson Hole, alt. 2100 m. J.F. & M.S. Reed 2743 (RN 214762)  WYO2  Teton Co., Paint Brush Canyon, SW of Leigh Lake, alt. 2285-2380 m. F,W. Pennell & R.L. Schaeffer 24294 (PH 853589)  TET  Teton Co., (WYO3) 838 (RN 316235)  TET*  Teton Co., along eastern shore of String Lake, 2100 m. T.C. Wells 1265 (UBC)  Jenny Lake,  alt.  1980 m.  R. Lichvar alt.  Vouchers of Menziesia Dilosa Georgia  BB  Union Co., Brasstown Bald, parking lot, alt. 1375 m. 1566, 1568 (UBC)  trail from SE corner of T.C. Wells 1557-1558, 1561,  LWS  Union Co., Lake Winfield Scott, 1.6-2.5 km from camp trailhead, 1538, 1541, 1544, 1550 (UBC)  Slaughter Gap Trail, alt. 950 m. T.C. Wells  Maryland  MDO1  Allegany Co., Dans Rock, 2 km ESE of Midland. R.M. Downs 8770 (UNCC 348227).  MDO2  Garrett Co.,  Jennings.  MDO3  Garrett Co., (GH)  Sampson Rock,  WBR  Garrett Co., Walnut Bottom Road, 200 m E of intersection with Hwy. 135, alt 750 m. T.C. Wells 1273-1276 (UBC)  Table Al.2 continued next page  W.  Stone 3704 alt.  885 m.  (GH). S.R. Hill 12402  181 Table A1.2 continued. voucher specimens.  Summary of North American Menziesia  North Carolina  NCO1  Mitchell Co., E of Carver’s Gap, Roan Mtn. D.E. Boufford 2203 (UNCC 467046).  NCO2  Macon Co., Chesnut Ridge, E of Highlands. R.K. Godfrey, J.E. O’Connell & H. Wright 51760 (GA 57531).  NCO3  Ashe Co., 1.5 mi. E of Brownwood. (GA 64957)  NCO4  Watauga Co., 3 mi. E of Blowing Rock, W.B. Fox & R.K. Godfrey 3396 (NY).  NCO5  Watauga Co., 5.3 mi. NNW of Laxon. J.A. Duke 47677 (UNCC 167913).  MIT  Yancey Co., Mt. Mitchell, Deep Gap Trail to Mt. Craig, T.C. Wells 1440, 1453, 1458 (UBC) alt. 1950 m.  PIS  Haywood Co., Mt. T.C. Wells 1470,  WSM  Macon Co., Whitesides Mountain, 1365 m. T.C. Wells 1508, 1514,  E.W. Wood &  A.E. Radford 34310  N of US Rte.  221.  A.E. Ahies &  Pisgah summit trail, alt. 1478, 1482, 1502 (UBC)  1565 m.  summit trail, alt. 1519, 1530 (UBC)  Pen.nsylvani a  E. Diffenbauch s.n.  PAO1  Lebanon Co., (PH 002995)  PAO2  Schuylkill Co., 1.5 mi. S of Valley View, along Rausch Cr. below Bear Mtn. P.R. Wagner 1677 (PENN).  PAO3  Dauphin Co., 2 mi. NE of Wiconisco, D. Berkheimer 14764 (PAC 59123).  PAO4  Dauphin Co., 2.5 mi. ESE of Millersburg, D. Berkheimer 13683 (PENN).  alt.  PAO5  Dauphin Co., along Rattling Cr., H. Wilkens 8262 (PH 002997)  S of Lykens.  PAO6  Somerset Co., 1.25 mi. W of Pleasant Union on 160 near Laurel Run. E.T. Wherry s.n. (PENN).  PAO7  Bedford Co., alt. 760 m.  Cold Spring.  alt.  0.5 mi.  370 m.  130 m.  0.4 mi. ESE of Martin Hill Fire Tower, D. Berkheimer 6399 (PENN)  Table Al.2 continued next page  182  continued. Table A1.2 voucher specimens.  Summary of North American Menziesia  Tennessee  TNO1  Carter Co., s.n.  Roan Mountain,  alt.  1920 m.  H.M. Jennison  (TENN).  TNO2  Sevier Co., between Porter’s Flat and the Sawteeth. T.S. Patrick & E. Rothberger 4445 (GA 163926).  LEC  Sevier Co., above Alum Cave Bluffs to Mt. LeConte sunirnit, alt. 2020 m. T.C. Wells 1572-1573, 1580 (UBC).  Virginia  VAO1  Rockbridge Co., (NY).  K. Castro 814  VAO2  Bedford Co., Sharptop, 18633 (US 1533407)  VAO3  Floyd-Patrick Co. (VPI 59255)  line,  Rocky Knob.  F.R. Fosberg 33565  VAO4  Floyd-Patrick Co. (VPI 29065)  line,  Rocky Knob.  C.K. Dale s.n  VAO5  Giles Co., Angels Rest Mtn., SW of Pearisburg, 1065 m. J.M. Fogg 11511 (PENN).  VAO6  Roanoke Co., Little Brushy Mtn., P.O. C.E. Wood 2405 (PENN).  VAO7  Page Co., Stony Man Mtn., SE of Luray. F.W. Pennell 13336 (PH 728222)  JEN  Warren Co., Jenkins Gap, Shenandoah Parkway, alt. T.C. Wells 1312, 1316, 1325, 1327, 1332 (UBC)  RKN  Floyd-Patrick Co. line, Blueridge Parkway, Rocky Knob, roadside turnout, alt. 880 m. 1402 (UBC)  MTIJ  Giles Co., Road 613, 7 km from Mountain Lake, alt. 1060 m. T.C. Wells 1601—1602, 1607, 1611, 1623 (UBC)  WTM  Grayson Co., White Top Mtn., summit area along the Appalachian Trail, alt. 1535 m. T.C. Wells 1406, 1414, 1419, 1422, 1431, 1434—1436 (UBC)  near Marble Springs. Peaks of Otter.  Table A1.2 continued next page  ca.  W.W.  Eggleston  alt.  2 mi. WNW of Salem  E.T. Wherry & 760 m.  10 km S of T.C. Wells  183 continued. Table A1.2 voucher specimens.  Summary of North American Menziesia  West Virgina WVO1  Grant Co.,  WVO2  Pocahontas Co., (WVA).  WVO3  Pocahontas Co., W of Durbin on the Staunton Pike. A. Rehder s.n. (GH).  DOL  Grant Co., Dolly Sods, alt 1125 m. 1285, 1289, 1290, 1292, 1309 (UBC)  CAP  Hampshire Co., Capon Springs, 1334, 1341, 1358, 1360 (USC)  MIN  Pocahontas Co., forestry road near Minnehaha Springs, alt. 820 m. T.C. Wells 1374, 1384, 1390, 1399, 1401 (UBC).  Greenland Gap.  H.A. Davis 8606  Cranberry Glades.  alt.  J.L.  (WTU 136863).  Sheldon 3839  T.C. Wells 1280, 520 m.  T.C. Wells  184  Table A1.3. i.  Summary of Japanese Menziesia voucher specimens.  ciliicalvx  CIOl  Honshu, Kyoto.  C102  Honshu, Kyoto Prefecture, Kyoto-shi, summit of Mt. Hiei-zan to Seiryu—ji, 500 m. N. Fukuoka 7691 (SHIN).  CIO3  Honshu, Gifu Prefecture, Shirotori-cho, Gujo-gun, vicinity of Nagataki, alt. 600 m. H. Takahashi, H. Takano & E. Nishio 344 (SHIN).  C104  Honshu, Nagano Prefecture, Okuwa-mura, Kiso-gun, between Noziri and Mt. Aterayama, alt 500-800m. G. Murata & H. Nishimura 129 (KYO 324-07).  C105  Honshu, Nagano Prefecture, Tatsuno-cho, Kamiina-gun, Otaki-sawa, alt. 1700 m. T. Umaba 103055 (SHIN 70352).  C106  Honshu, Nagano Prefecture, Hase-mura, Kamiina-gun, Kokuken-tani, alt 1470-1490 m. T. Umaba 100303 (SHIN).  Shiga Prefecture, Otu-shi, Mt. Hiei, T. Shimizu 7153 (SHIN).  NE of  en route from Sakyo-ku, alt.  M. multiflora MUO1  Honshu, Nagano Prefecture, Sakae-mura, Shimominochi-gun, around Nonomi Pond, alt. 1100 m. T. Shimizu 18963 (SHIN)  MUO2  Honshu, Nagano Prefecture, Sakae-mura, Shimominochi-gun, Hirataki to Nonomi Pond, 800-1100 m. T. Shimizu 18910 (SHIN)  MtJO3  Honshu, Akita Prefecture, Kisagata-cho, Yuri-gun, Shishigahama, N slope of Mt. Chokai-san, alt 400-500 m. N. Fukuoka 12320 (KYO 324-21).  MUO4  Honshu, Yamagata Prefecture, Kaminoyama-shi, Mt. Zizo-yama in the Zaoo Mtns, alt. 1400-1700 m. G. Murata & H. Koyama 41229 (KYO 324-20).  MtJQ5  Honshu, Aomori Prefecture, Aomori-shi, Mt. Hakkoda, Sugayu. S. Okamnoto s.n. (KYO 324-26).  MrJO6  Honshu, Gifu Prefecture, vicinity of Kakode, alt. K. Yamashita 256 (SHIN).  Table A1.3 continued next page  Itadori-mura, Mugi-gun, 400 m. N. Fukuoka &  near  185 Table A1.3 specimens.  continued.  Summary of Japanese Menziesia voucher  MUO7  Honshu, Nagano Prefecture, Matsumoto-shi, alt. 1900-2000 m. T. Shimizu 279 (SHIN)  MUO8  Honshu, Nagano Prefecture, Yamanouti-machi, Shimo-takai gun, Mt. Iwasuge to Mt. Terakoya in the Shiga Heights, alt. 1700—2000m. T. Shimizu 17703 (SHIN)  MTJO9  Honshu, Nagano Prefecture, Yamanouti-machi, Shimo-takai gun, Mt. Iwasuge to Mt. Terakoya in the Shiga Heights, alt. 1700-2000m. T. Shimizu 17699 (SHIN)  MUlO  Honshu, Nagano Prefecture, Fujimi-cho, Suwa-gun, Shirozare, between Mt. Kamanashi to Mt. Shiraiwa, 2100 m. T. Shimizu 26573 (SHIN)  Chausu-yama,  alt.  Mull  Honshu, Nagano Prefecture, Kawakami-mura, Minamisaku gun, near Jumoji Pass, alt. 1800 m. T. Shimizu 13802 (SHIN)  MU12  Honshu, Niigata Prefecture, Yuno-tani-mura, Kitauonuma gun, Mt. Ogura-yama, Shiori-toga to Komanoyu, alt. 1000 m. S. Kitamura & G. Murata 2866 (KYO 324-15).  MtJ13  Honshu, Ishikawa Prefecture, Siramine-mura, Ishikawa gun, Mt. Sunagozen-yama, Haku-san Mtns, alt. 8001200 m. N. Kurosaki 12882 (KYO 324-14)  .  oentandra  PEO1  Honshu, Nagano Prefecture, Oomachi-shi, on the ascent of Mt. Gaki, SW of Qomachi, alt. 1180-1400 m. T. Shimizu 18113 (SHIN)  PEO2  Honshu, Nagano Prefecture, Hase-mura, Kamiina-gun, Mt. Shiraiwa, alt. 1500-1990 m. T. Shimizu 22972 (SHIN)  PEO3  Honshu, Nagano Prefecture, Kiyo-sato-mura, Minamisaku gun, Nembagahara, alt. 1300-2000 m. T. Shimizu 7765 (SHIN)  PEO4  Hokkaido, Nemuro-sityo, Nemuro-shi, Ottyshimisaki F. Yamazaki 2560 (TI H87—312) (Ochiishi-saki) .  PEO5  Honshu, Shizuoka Prefecture, Shizuoka-shi, Mt. Akaishi. K. Asano 18677 (TI H87-3(4)).  Table Al.3 continued next page  186 Table A1.3 specimens.  continued.  Summary of Japanese Menziesia voucher  PEO6  Hokkaido, Kamikawa-sityo, Tokiwa-mura, Nakagawa-gun, vicinity of Otoineppu, Nakagawa Enshurin, alt. 100 m. G. Murata, H. Koyama & T. Yahara 38440 (KYO 324-38).  PEO7  Hokkaido, Rumoi-sityo, Horonobe-cho, Teshio-gun, Nupuromapporo, Hokkaido-daigaku, Teshio Enshurin, 200 m. G. Murata, H. Koyama & T. Yahara 38258 (KYQ 324-39)  alt.  PEO8  Honshu, Tochigi Prefecture, Nasu-machi, Nasu-gun, between Santogoya-onsen and Mt. Asahi, alt. 1500 m. G. Murata 18244 (KYO 324-34)  PEO9  Honshu, Nagano Prefecture, Kami-mura, Shimoina-gun, Kitamata-sawa, alt. 1100-1200 m. K. Oso, K. Takumi & I. Fujii 126134 (SHIN)  PE1O  Honshu, Tochigi Prefecture, Nikko-shi, 101431 (KYO 324-32)  .  Nikko.  T. Makino  ourourea  PUO1  Kyushu, Miyazaki Prefecture, Takatiho-cho, Nisiusuki gun, between Gokasyo and the summit of Mt. Sobo, alt. 1600 m. S. Hatusima, S. Sako & Kawnabe 22690 (KYO 324—42)  000000100 011111011 000000000 000000010 000000110 010111011 000000000 000001011 000000000 000000011 100000000 000000000 000100000 001100000 101100100 101000000 000000000  PL5; 4) 05W; 6) PER; 7) HUM; 5) BEV; 8) ROT; 9) SKY; SPA; 13) TRO; 14) MUR; 15) GNP; 16) LL; WAT; 17) 18) MOS;  00000000011 00000001100 00000010000 10001100010 00000000000 00000001101 10010100000 00000001000 10000000010 00000000000 01101000000 00000010000 00000000010 00000000000 11100000010 11111100000 0 000000001 0  a Populat 0 1234567891011121314151617181920  Table A2.1 continued next page  1) BWF; 2) STL; 3) 10) STV; 11) GVC; 12) 19) ALV; 20) TET  apopulat ion Codes:  Trees Abies amabalis Abies lasiocarpa Acer circinatum Alnus rubra Larix occidentalis Picea enqelmanii Picea sitchensis Pinus contorta Pooulus trichocarpa Pooulus tremuloides Pseudotsuaa menziesii Sequoia semoervirens Sorbus sitchensis Taxus brevifolia Thuip olicata Tsuaa heteroohvlla Tsuaa mertensiana  Taxon  Table A2.1. Species association matrix for western North American Menziesia sites. 1 = presence; 0 = absence. Nomenclature follows Hitchcock and Cronquist (1973).  Summary of Ecological Parameters for the North American Menziesia Field Sites  Appendix 2  H  4 5 6  7 8  1) BWF; 2) STL; 3) 10) STy; 11) GVC; 12) 19) ALV; 20) TET  apopulat ion Codes: PL5; 4) OSW; SPA; 13) TRO;  5) BEV; 6) PER; 14) MUR; 15) GNP;  7) HUN; 8) ROT; 16) LL; 17) WAT;  9) SKY; 18) MOS;  00 00 00 00 00 00 00 00 00 00 00 00  10000000000000000000 00000010000000000000 01000010000000000000 00000000000000001010  3  Other Cladina spp. Oxalis orepana Polystichum Inunitum Xerpphyllum tenax  2  010110000000000000 000000000000000001 000000010000000000 000000000000000100 000000000000001001 000000001000010000 000000100000001001 000000000000001000 001000000100001110 010000100000000000 110010100100000000 000000000000000101  1  Populationa 91011121314151617181920  Shrubs Gautheria shallon Holodiscus discolor Ledum c1andu1osum Ledum aroenlandicum Lonicera involucrata Rhododendron albiflorum Rubus Darviflorus Rubus Dedatus Vaccinium mernbranaceum Vaccinium ovalifolium Vaccinium parvifolium Vaccinium scoparium  Taxon  Table A2.1 continued. Species association matrix for western North American Menziesia 1 = presence; 0 = absence sites.  OD  Table A2.2 continued next page  o o  1 1  o o o o  1  o  1 1  o o 1 o o o o 1 o o o o 1 o o o  0  o  0 0 0  o  a  0 0 0 i  0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1  a  0  o  1 0 0 0 0 0 0 0 i 0 0 0 0  o o o  0 1 0  o  0 0 1 0 0  a  0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 1 0 0  a  0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0  a  0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0  1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0  0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0  1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0  0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0  Population WBR DOL CAP JEN MIN RKN MTL WTM MIT PIS WSM LEC BB  0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1  LWS  Species association matrix for eastern North American Menziesia sites. 0 = absence. Nomenclature follows Gleason (1952).  Trees Abies fraseri Acer oennsvlvanica Acer rubrum Betula allegheniensis Carva alabra Cornus florida Crataegus ounctata Hamamelis virainiana hex decidua hex montana Liriodendron tulipif era MaQnolia fraseri Nvssa sylvatica Ostrva virainigna Oxvdendron arboreum Picea rubens Pinus strobus Prunus serotina Ouercus alba Quercus coccinea Quercus muhlenberaii Quercus orinus Ouercus rubra Ouercus velutina Robinia oseudoacacia Sassifras albidum Sorbus americana Tsua canadensis  Taxon  Table A2.2. 1= presence;  I1  1 0 0 0 1 1 0 1 0 0 0 0 0  Other Cladinaarbuscula Fragaria virginiana  1 0  1 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0  1 0 0 0 1 0 0 0 0 1 0 0 0  1 0 0 0 0 0 0 0 0 1 0 0 0  1 0 1 1 1 0 0 0 0 0 0 0 0  1 0 0 0 0 0 0 0 0 0 0 0 1  0 0 0 0 0 0 1 1 0 0 0 0 0  0 0 0 1 0 0 0 0 1 0 0 0 0  0 0 0 1 1 0 0 0 0 0 1 0 0  0 0 1 1 0 0 0 0 0 0 1  0 0  1 1 0 1 1 0 0 0 0 0 0  0 0  0 0 0 1 0 0 0 0 0 0 1  Population WBR DCL CAP JEN MIN RKN MTL WThI MIT PIS WSM LEC BB  Shrubs Kalmialatifolip Prunus oennsylvanica Rhododendron calendulaceum Rhododendron catawbinense Rhododendron maximum Rhododendronrpseum Rosa spp. Rubusspp. Vacciniumcorvrnbosum Vacciniumpallidum Viburnumalnifolia  Taxon  0 0  0 0 1 1 0 0 0 0 0 0 1  LWS  Table A2.2 continued. Species association matrix for eastern North American Menziesia sites. 1 = presence; 0 = absence.  191 Physical features of North American Menziesia field Table A2.3. Population abbreviations as in Appendix 1.2. sites. Pop. No. OTUs  Lat.  Long.  Elev. (in)  Slope (deg.)  Western North American sites BWF 19 50°01’N 123°07’W STL 49°46’N 123°07’W 9 49°24’N 123°l0’W PL5 3 1 45°46’N 123°58’W OSW 3EV 124°04’W 2 44°43’N PER 44°16’N 124°06’W 3 HUM 41°19’N 124°01’W 3 ROT 7 49°04’N 120°48’W SKY 49°03’N 120°52’W 2 5TV 47°45’N 121°04’W 9 1 45°16’N 121°45’W GVC SPA 51°43’N 120°01’w 3 TRO 1 51°45’N 119°55’W MUR 1 52°04’N 119°22’W GNP 11 51°27’N 117°28’W LL 4 51°25N 116°13’W WAT 2 49°01’N 114°OPW MOS 46°48’N 116°54’W 8 ALV 113°34’W 11 47°19N TET 1 43°46’N ll0°43’W  785 210—230 760 125 40 225-240 125 1200 1230—1400 1235 1185 570 1350 1000 810 1800 1680 1520 1350 2100  10—15 0—15 10—30 10 10 5 10—15 0—5 15—20 15 10 2.5 5 25 1-2 0—25 10 25 0 2.5  Appalachian sites WBR 4 39°28’N DOL 38°58’N 6 39°07’N CAP 4 JEN 38°46N 5 MIN 38°07’N 5 RKN 1 36°46’N MTL 37°24’N 5 WTM 8 36°39’N MIT 35°45’N 3 PIS 4 35°27’N WSM 4 35°06’N LEC 35°34’N 3 BB 34°49’N 5 4 34°42’N LWS  750 1125 520 760 820 880 1060 1535 1935—2020 1530—1600 1330—1385 1880—2020 1350-1380 940—970  5-8 0—2 15 0—10 30 30 10—25 25 5—40 20—30 20-45 0—40 20—25 5—30  79°12’W 79°19’W 78°30’W 78°12’W 79°57’W 80°24’W 80°33’W 81°34’W 82°33’W 82°46’W 83°09’W 83°22’W 83°51’W 83°58’W  Aspect  Exposure (% shade)  W N,E,SE,S,W W Sw S N,S W N,S N,E N S  w W E SE E,WNW,NW S E SE W W NW ESE WNW N N SE E ENE,E,W NW N,NE N,NW  NW ESE,WNW,NW  30—75 30—80 30—60 20 70 75 60—75 80 50—70 55—75 70 65 50 70 40—75 25—60 35-60 70 35—80 50 85—90 0—30 50—70 60—80 75—90 75 60—80 0—30 20—25 70—85 75—95 60—80 70—95 70—85  192 Table A2.4. Summary of soils found at the North American Population codes as in Appendix 1.2. Menziesia field sites. Pop. Western BWF STL PL5 OSW 3EV PER HUM  ROT SKY SW GVC SPA TRO MUR  GNP LL WAT MOS ALV TET  Soil jpea  Colour’  North American sites dark Gi Gi dark G2 grey-brown 1-14 dark 1-14 dark 1-14 dark U2 dark G2 dark G2 grey-brown G2 dark G2 dark G2 dark K-G2 light-yellow Gi dark K-G2 grey-brown K-G2 grey-brown K-G2 grey-brown A grey-brown M light-reddish M light yellow  Organic 2 Content  Relatve Depth  high medium low-medium low-medium medium high high medium medium medium medium medium low high low low low low low low  shallow medium medium deep deep deep shallow-med. medium medium medium medium medium shallow-rocky medium medium-rocky shallow-rocky shallow-rocky medium medium medium  high high low medium low medium medium high high high medium high high medium  shallow-stony shallow-stony deep medium deep medium medium shallow-stony shallow medium medium-deep shallow-stony medium deep  Appalachian sites WBR DOL CAP JEN MIN RKN  MTL MIT PIS WSM LEC BB LWS  18 18 18 U5-4 18 U5-6 18 U5-6 U5-6 1J5-4 U5-6 U5-13 U5-6 U5-6  black black yellow brown yellow brown yellow-brown brown dark with mica dark brown dark brown red-brown  -Colour: 2 predominant colour of A and or B horizons below the humic layer 2 O rganic Content: high = accumulated organic litter with a surface of undecomposed duff; medium = accumulated litter which has undergone modification; low = predominantly mineral soils Table A2.4 continued next page  193  Table A2.4 continued. Summary of soils found at the North American Menziesia field sites.  3 R elative Depth: shallow = thin, often rocky soils, < 0.3 m to the C horizon; medium = deeper soils up to 0.7 m to the C horizon; deep = soils at least 1 m to the C horizon. aSOl Type Codes (adapted from Farley 1979; Canada Dept. of Energy, Mines and Resources 1974; U.S. Dept. of the Interior Geological Survey 1970): A grey-brown podzols: well-drained acidic soils with a thin or brownish layer of clay accumulation. Moist, cool environments. Gi ferro-humic podzols: well drained, infertile, acidic soils with Al and Fe accumulated in the subsurface horizons. Surface horizons have accumulated humic material. Develops in cool and moist environments. G2 humo-ferric podzols: well drained, acidic soils with Fe and Al as the major accumulated components of the subsurface horizons. Less accumulated organic material than Gi. Develops in cool and moist environments. 18 yellow podzols to grey-brown podzols: varies from shallow lithic (rocky) soils with surface accumulated humic layers to deeper, low to moderately humic, soils. All are leached, acidic, moist soils of cool environments. 1-14 podzols: well drained acidic soils with crystalline clay minerals, and thick dark-coloured horizons. Altered subsurface horizons have lost mineral materials due to leaching. Occurs in moist, temperate environments. K shallow lithic (rocky) soils: of cold mountainous environments with moderate to steep slopes. In our study sites, humo-ferric podzols (G2) predominated. M podzols: well drained acidic soils with subsurface clay accumulation. Typically nutrient-poor. Occurs in cold to cool, moist environments. U2 brown podzols: well drained, acidic soils with surface horizons high in organic matter. Subsurface horizons with appreciable weatherable minerals and a thin layer of clay accumulation. Occurs in moist, temperate environments. gray-brown to red-yellow podzols: have medium to high U5 surface organic layers and a subsurface horizon with clay accumulation or weatherable minerals or both. Some soils (U56 dystrochrepts) are relativly infertile; others may lack mineral accumulation (U5-l3 paleudults). All are leached, acidic, moist soils of temperate to cool environments.  194 Summary of climatic factors at the North rnerican Table A2.5. Menziesia field sites. Population codes as in Table A1.2. Sources: Baldwin 1968; Canada Dept. of Energy Mines and Resources 1974; Farley 1979.  Pop.  Frost-free Days  Average Temperatures January August ±2.5°C ±1.0°C  Ave rage Precipitation cm  Western Sites  BWF STL PL5 OSW BEV PER HUN  ROT SKY STV  GVC SPA TRO MUR  GNP LL WAT MOS ALV TET  100—140 140—180 140—180 260—280 260—280 260—280 270—300 60—100 60—100 110—130 80—100 60—100 60-100 60—100 <60 <60 <60 120—160 <90 <90  -2.5 -2.5 —2.5 4.4 4.4 4.4 4.4 —7.5 —7.5 -4.0 -3.0 —5.0 -7.5 —12.5 —12.5 —17.5 —17.5 —6.7 -6.7 -12.5  15.0 15.0 17.0 16.0 16.0 16.0 16.0 15.0 15.0 15.0 15.0 17.0 15.0 15.0 15.0 12.0 12.0 16.0 16.0 13.0  150—250 150—250 150—250 205—255 205—255 205—255 160—205 150-250 150—250 80—120 75—100 80—120 75—100 100—150 150—250 75—100 100—150 40—60 50-70 95—115  —1.0 —2.0 2.0 -1.0 2.0 2.0 2.0 —1.0 -2.0 2.0 4.0 —1.5 4.0 4.0  18.0 16.0 18.0 19.0 21.0 21.0 21.0 16.0 15.0 21.0 21.0 15.0 21.0 24.0  120—135 120—135 90—110 95—120 90—110 95—120 95-120 125—145 125-145 125—145 180—205 110—130 150-165 150-165  Appalachian Sites  WBR DOL CAP JEN MIN RKN  MTL WTM  MIT PIS WSM LEC BB LWS  110—130 110—130 140—160 125—145 140—160 140—160 140—160 110—130 90-110 140—160 170—190 110—130 170-190 170—190  195  Appendix 3 Growing Menziesia Seedlings Using Sterile Culture  A3.1  Surface Sterilization and Preparation of Seeds  Techniques for growing Menziesia from seed using sterile culture were adapted from guidelines employed in coinmercial Rhododendron propagation seeds are quite fine,  (Macdonald 1986).  Since Menziesia  they require careful manipulation to  ensure proper surface sterilization,  to minimize fungal or  bacterial contamination of the agar growth media.  In early  trials, a major source of contamination came from the inclusion of small capsule fragments in the sown seeds. Consequently,  in subsequent trials,  50-100 seeds per plant  were routinely sorted from capsule fragments using a camelhair brush and were placed in 20 ml screw-cap vials.  Surface  sterilization was achieved by rinsing the seeds in 95% EtOH for 30 seconds followed by a 1:1 rinse of bleach (5.25% sodium hypochiorite) and water for 6 minutes.  The seeds were  then washed three times with sterilized distilled water to remove all traces of bleach or alcohol.  All work was done  under a laminar air-flow hood using a Pipetman suction apparatus and small aperture disposable pipette tips to change solutions.  After washing,  the vials were loosely  capped and the seeds were allowed to dry under low heat at 30°C for 24 hours.  196  A3.2  Preparation of Growth Media  Several growth media were tried to optimize seed germination and seedling growth.  Amongst these were full  strength, half strength and quarter strength solutions of Murashige and Scoog nutrient media (Murashige and Scoog 1962) and Anderson’s Rhododendron medium (Anderson 1984), along with a control with no nutrient additives. standard mixture of plant vitamins  In some trials, a  (Sigma G-2519) was added,  while growth regulators such as NAA (a-napthyleneacetic acid 0.5 mg/i) were used to optimize the root development of the seedlings.  Three different media pH levels  4.5) were tested.  (5.6,  5.0 and  All media were agar based (0.6% Difco  Bacto Agar) with 30 g/1 of sucrose added as a carbon source. Higher agar concentrations resulted in harder media that Menziesia roots had trouble penetrating, while lower concentrations were too watery.  All media were sterilized in  an autoclave at 170°C for 15-20 minutes and then poured into 250 ml sterilized glass jars under a laminar flow hood.  A3.3  Growth Conditions  After the media had cooled and solidified, sterilized seeds were sprinkled into the jars, laminar air-flow hood,  surface  again under a  after which the jars were sealed and  placed on shelves in plant growth chambers.  Two separate  temperature regimes were tested, either 25°C day/night or 19°C day/l2°C night, with a daylength of 14-16 hours.  Different  light levels were achieved by placing replicate jars on  197  shelves 0.5m to 2.Om away from a high intensity fluorescent grow-light source. High levels of germination (60-80%) were achieved using sterile culture techniques about 10-12 days after sowing on agar,  Although  regardless of the nutrient media conditions.  the highest levels of germination occurred under high light (2000 lux),  best growth after about two weeks was achieved  under shaded conditions where the jars were placed further away from the light source. 11°C night)  Cooler temperatures  gave the best results.  However,  (19°C day!  after one or two  months, plants growing in the M-S media started to die, regardless of the nutrient concentration levels.  The  degeneration of tissue began at the roots which were poorly developed and advanced to the shoot.  It appears that the  seedlings suffered from excessively high nutrient concentrations.  Lowered concentrations of N and K,  found in  Andersonas medium, worked much better and were used routinely after the trials to grow Menziesia. 5.0 or 4.5 gave best results.  The lower pH levels of  Nevertheless,  growth of the  seedlings would become arrested after the plants reached a height of 1-1.5 cm and would remain static for up to 6 months.  Root development was usually poor,  even with NAA  treatment. In an attempt to overcome this stasis, plantlets were transferred to sterilized soil  (1 part loam;  2 parts peat;  part perlite) with or without the addition of native unsterilized soil gathered from field sites.  All of the  1  198  plants were grown in the cool growth chamber, watered regularly with water and fertilized every two weeks with a quarter strength solution of 20:20:20 fertilizer.  Within two  weeks, many plants showed signs of renewed growth,  especially  in soil which had been inoculated with native soil.  This  suggested that Menziesia seedlings grew best in the presence of a mycorrhizal fungus.  The importance of mycorrhizae to  the growth of ericaceous seedlings has been documented previously,  especially in blueberry  (Powell 1982).  (Vaccinium corvmbosum L.)  Interestingly, Godo Stoyke at the University  of Alberta has shown that an endomycorrhizal fungus (Phialoceohala fortinii Wang et Wilcox)  is associated with  many subalpine ericads, and is capable of infecting the roots of Menziesia ferruginea communication).  (Stoyke and Currah 1991; personal  However,  in culture the fungus often becomes  parasitic resulting in seedling death.  A3.4  Discussion  Despite all efforts, high (up to 90%)  seedling mortality was generally  and survivors showed very slow growth,  attaining a height of 5-7 cm in the first year.  Seedlings  which did grow were used in electrophoretic work. However, the number of usable seedlings per population was too small for routine populational screening of isozymes. Nevertheless, seedlings provided a useful way of comparing the enzyme phenotypes of progeny with those of the maternal plants from which the seeds were collected.  199  It appears that Menziesia seeds germinate and grow best under low to moderate temperatures shaded conditions,  (19°C day/ll°C night),  and in low nutrient acidic media or soils.  Sustained growth may rely on the presence of mycorrhizal fungi.  even under “optimal conditions”,  However,  slow and a high degree of mortality is seen.  growth is  In fact,  field  observations reveal that seedling recruitment is low in many populations.  Some plants 10-15 cm high are three or more  years old based on counting growth scars.  Considering that a  typical Menziesia plant at maturity can produce thousands of seeds per year,  few offspring appear to survive.  This is  consistent with a slow-growing conservative K-selection plant which grows in stabilized conditions. North America at least, disturbed sites.  In tact, Menziesia in  does not appear to colonize recently  In the Clearwater Valley,  B.C., Menziesia  is absent from areas that have experienced extensive forest fires  (T. Goward,  personal communication).  Trevor Goward is  a noted naturalist in the Wells Gray-Clearwater Valley region and co-author of Nature Wells Gray  (Goward and Hickson 1989).  


Citation Scheme:


Citations by CSL (citeproc-js)

Usage Statistics



Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            async >
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:


Related Items