- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Molecular cell biology of Rubella virus structural...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Molecular cell biology of Rubella virus structural proteins Hobman, Tom Cunningham
Abstract
Rubella virus (RV) is a small, enveloped, positive-stranded RNA virus in the family Togaviridae, and bears striking similarities to the prototype alphaviruses Semliki Forest virus (SFV) and Sindbis virus (SV) in terms of genome organization and structural protein expression strategy. However unlike alphaviruses, RV infection of cultured cells is characterized by relatively long latency periods, slow replication kinetics, limited cytopathology, and the ability to establish a persistent infection in virtually every cell line capable of supporting its growth. RV virions contain three structural proteins C, E2, and El which are derived by post-translational processing of a precursor polyprotein pllO (NF₂-C-E2-El-COOH). Processing and intracellular transport of RV structural proteins has been studied by jn vitro and jn vivo expression of RV cDNAs. It was found that targeting of El and E2 into the endoplasmic reticulum was mediated by two independently functioning signal peptides. Coincident with translocation into the ER, both proteins underwent addition of N-linked glycans and proteolytic processing. C protein did not appear to play a role in the processing of pllO. Expression of the RV structural proteins in COS cells revealed that E2 exited the ER, and was transported through the Golgi to the cell surface in an El-independent manner, although coexpression of El seemed to increase the rate of transport. Conversely, El was retained in a Golgi-like region and was not found on the plasma membrane in the absence of E2. Oligonucleotide-directed mutagenesis of El and E2 cDNAs showed that El andE2 both contain three N-linked glycans respectively. Lack of glycosylation did not appear to affect the intracellular localization of the RV glycoproteins in COS cells. A number of significant differences between RV and SFV/SV structural protein expression strategies were discovered, and their possible relationship to RV virion assembly are discussed.
Item Metadata
Title |
Molecular cell biology of Rubella virus structural proteins
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1989
|
Description |
Rubella virus (RV) is a small, enveloped, positive-stranded RNA virus in the family Togaviridae, and bears striking similarities to the prototype alphaviruses Semliki Forest virus (SFV) and Sindbis virus (SV) in terms of genome organization and structural protein expression strategy. However unlike alphaviruses, RV infection of cultured cells is characterized by relatively long latency periods, slow replication kinetics, limited cytopathology, and the ability to establish a persistent infection in virtually every cell line capable of supporting its growth.
RV virions contain three structural proteins C, E2, and El which are derived by post-translational processing of a precursor polyprotein pllO (NF₂-C-E2-El-COOH). Processing and intracellular transport of RV structural proteins has been studied by jn vitro and jn vivo expression of RV cDNAs. It was found that targeting of El and E2 into the endoplasmic reticulum was mediated by two independently functioning signal peptides. Coincident with translocation into the ER, both proteins underwent addition of N-linked glycans and proteolytic processing. C protein did not appear to play a role in the processing of pllO. Expression of the RV structural proteins in COS cells revealed that E2 exited the ER, and was transported through the Golgi to the cell surface in an El-independent manner, although coexpression of El seemed to increase the rate of transport. Conversely, El was retained in a Golgi-like region and was not found on the plasma membrane in the absence of E2.
Oligonucleotide-directed mutagenesis of El and E2 cDNAs showed that El andE2 both contain three N-linked glycans respectively. Lack of glycosylation did not appear to affect the intracellular localization of the RV glycoproteins in COS cells. A number of significant differences between RV and SFV/SV structural protein expression strategies were discovered, and their possible relationship to RV virion assembly are discussed.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2011-01-13
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0098773
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.