Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Growth, incidence of bacterial kidney disease and immunological function of salmonids reared in captivity Mazur, Carl François 1991

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1991_A6_7 M39.pdf [ 8.46MB ]
Metadata
JSON: 831-1.0098617.json
JSON-LD: 831-1.0098617-ld.json
RDF/XML (Pretty): 831-1.0098617-rdf.xml
RDF/JSON: 831-1.0098617-rdf.json
Turtle: 831-1.0098617-turtle.txt
N-Triples: 831-1.0098617-rdf-ntriples.txt
Original Record: 831-1.0098617-source.json
Full Text
831-1.0098617-fulltext.txt
Citation
831-1.0098617.ris

Full Text

GROWTH, INCIDENCE OF BACTERIAL KIDNEY DISEASE AND IMMUNOLOGICAL FUNCTION OF SALMONIDS REARED IN CAPTIVITY C a r l F r a n c o i s Mazur B . S c , M c G i l l U n i v e r s i t y , 1986. A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE THE FACULTY OF GRADUATE STUDIES (DEPARTMENT OF ANIMAL SCIENCE) We accept t h i s t h e s i s as conforming t o the r e q u i r e d s t a n d a r d THE UNIVERSITY OF BRITISH COLUMBIA A p r i l , 1991. (c) C a r l F. Mazur, 1991. i n In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of Animal Science The University of British Columbia Vancouver, Canada Date April 26. 1991  DE-6 (2/88) ii ABSTRACT P a c i f i c salmon r e a r e d commercially o f f of the c oas t_. o f _ B r i t i s h Columbia. s u f f e r_ j g r ea t_ „mo r t a 1 i ty__lo.s.s e s_ t o B a c t e r i a l Kidney Disease (BKD), caused by the d i p l o b a c i l l u s b a c t e r i u m Renibacterium salmqninarum. T h i s t h e s i s i n v e s t i g a t e s the e f f e c t s o f environmental c o n d i t i o n s on the growth performance and d i s e a s e s u s c e p t i b i l i t y o f salmonids r e a r e d i n c a p t i v i t y . I found t h a t growth r a t e o f chinook salmon was s i g n i f i c a n t l y h i g h e r i n f i s h f e d t o 100 compared t o 67 % of s a t i a t i o n d u r i n g the f i r s t 175 days o f s a l t w a t e r r e a r i n g but not d u r i n g the f i r s t w i n t e r . Feed c o v e r s i o n r a t e was s i g n i f i c a n t l y h i g h e r f o r f i s h f e d a t 100 % o f s a t i a t i o n compared t o 67 % o f s a t i a t i o n and h i g h e r d u r i n g the w i n t e r compared t o summer and f a l l , i r r e s p e c t i v e o f f e e d i n g l e v e l . M o r t a l i t y r a t e s were s i g n i f i c a n t l y h i g h e r d u r i n g the summer than d u r i n g the f a l l o r w i n t e r , i r r e s p e c t i v e o f e x p e r i m e n t a l treatment. The l a s t BKD sampling p e r i o d (day 263) r e v e a l e d t h a t i n f e c t i o n r a t e s were d i r e c t l y p r o p o r t i o n a l t o s t o c k i n g d e n s i t i e s o f 1.5 t o 4 kg*m~3. H a t c h e r y - r e a r e d chinook salmon h e l d i n fre s h w a t e r a q u a r i a had s i g n i f i c a n t l y lower h e m a t o c r i t and plasma C o r t i s o l c o n c e n t r a t i o n i n c r e a s e s i n response t o i n c r e a s e d s t o c k i n g d e n s i t y than d i d t h e i r w i l d c o u n t e r p a r t s . Crowding o f iii h a t c h e r y - r e a r e d and w i l d chinook salmon r e s u l t e d i n e q u a l l y i n c r e a s e d m o r t a l i t y r a t e s f o r both groups o f f i s h . Day 33 plasma C o r t i s o l c o n c e n t r a t i o n s i n A t l a n t i c salmon h e l d a t t h r e e s t o c k i n g d e n s i t i e s were d i r e c t l y p r o p o r t i o n a l t o s t o c k i n g d e n s i t i e s o f 8 t o 64 kg*m~3. The a b i l i t y o f a n t e r i o r kidney lymphocytes from t h e s e f i s h t o produce a n t i b o d y - p r o d u c i n g c e l l s was i n v e r s l y p r o p o r t i o n a l t o the d e n s i t y a t which the f i s h were h e l d . iv TABLE OF CONTENTS A b s t r a c t i i L i s t o f T a b l e s v i L i s t o f F i g u r e s v i i Acknowledgements v i i i G e n e r a l i n t r o d u c t i o n 1 Chapter 1: Growth and d i s e a s e s u s c e p t i b i l i t y o f chinook salmon r e a r e d commercially i n s a l t water 2 I n t r o d u c t i o n 3 M a t e r i a l s and Methods 4 F i s h 4 Seacages 5 S t o c k i n g d e n s i t i e s 5 Feeding l e v e l s 6 Water q u a l i t y 6 M o r t a l i t i e s 7 Length and weight measurements 7 S p e c i f i c growth r a t e 8 Feed c o n v e r s i o n r a t e 8 C o n d i t i o n f a c t o r 8 M o r t a l i t y r a t e 9 BKD d i a g n o s t i c s 9 Data a n a l y s e s 10 R e s u l t s 11 Water q u a l i t y 11 S t o c k i n g d e n s i t y e f f e c t s 11 Feeding l e v e l e f f e c t s 13 Seasonal e f f e c t s 14 R e g r e s s i o n analyses 16 D i s c u s s i o n 17 S t o c k i n g d e n s i t y 18 Feeding l e v e l 19 Seasonal e f f e c t s 22 Chapter 1: C o n c l u s i o n s 34 V Chapter 2: E n d o c r i n e response of crowded chinook salmon and immunological response o f crowded A t l a n t i c salmon 35 I n t r o d u c t i o n 36 Experiment 1: Crowding e f f e c t s on h a t c h e r y - r e a r e d and w i l d chinook salmon 37 M a t e r i a l s and Methods 37 R e s u l t s 40 D i s c u s s i o n 42 Experiment 2: E n d o c r i n e and immune response o f crowded A t l a n t i c salmon 49 M a t e r i a l s and Methods 49 R e s u l t s 51 D i s c u s s i o n 52 Chapter 2: C o n c l u s i o n s 56 Gene r a l C o n c l u s i o n s and recommendations 57 References 59 Appendix 1 66 AppendixII 72 Appendix I I I 76 vi LIST OF TABLES -3 T a b l e 1: Mean s t o c k i n g d e n s i t i e s (kg«m ) o f chinook salmon f e d t o 67 and 100 % o f s a t i a t i o n and r e a r e d a t f o u r s t o c k i n g d e n s i t i e s i n s a l t water f o r 272 days 25 T a b l e 2: Time t o death o f 50 % o f w i l d and h a t c h e r y -r e a r e d chinook salmon p o p u l a t i o n s h e l d a t 8, -3 . . . 32 and 64 kg«m i n f r e s h water c o n t a i n i n g 0.05 mg/L Cu 45 vii LIST OF FIGURES F i g u r e 1 - Farm water temperatures d u r i n g the expe r i m e n t a l summer p e r i o d 26 F i g u r e 2 - Farm d i s s o l v e d oxygen and v i s i b i l i t y measurements d u r i n g the summer p e r i o d . . . . 27 F i g u r e 3 - Feed c o n v e r s i o n r a t e s o f each chinook salmon treatment group d u r i n g the t h r e e s a l t w a t e r r e a r i n g p e r i o d s 28 F i g u r e 4 - Mean weights o f each chinook salmon treatment group a t the end o f the t h r e e s a l t w a t e r r e a r i n g p e r i o d s 29 F i g u r e 5 - Number o f BKD i n f e c t e d f i s h among samples of 30 chinook from each treatment 30 F i g u r e 6 - S p e c i f i c growth r a t e s o f a l l chinook salmon treatment groups d u r i n g the t h r e e s a l t w a t e r r e a r i n g p e r i o d s . . . 31 F i g u r e 7 - C o n d i t i o n f a c t o r s o f a l l chinook salmon treatment groups a t the end o f the t h r e e s a l t w a t e r r e a r i n g p e r i o d s 32 F i g u r e 8 - M o r t a l i t y r a t e s o f a l l chinook salmon treatment groups d u r i n g the t h r e e s a l t -water r e a r i n g p e r i o d s 33 F i g u r e 9 - Hematocrit v a l u e s o f w i l d and h a t c h e r y -r e a r e d chinook salmon exposed t o environmental changes 46 F i g u r e 10 - Plasma C o r t i s o l c o n c e n t r a t i o n o f w i l d and h a t c h e r y - r e a r e d c h i n o o k salmon exposed t o e n v i r o n m e n t a l c h a n g e s 47 F i g u r e 11 - Cumulative m o r t a l i t i e s o f w i l d and h a t c h e r y - r e a r e d chinook salmon s t o c k e d a t t h r e e d e n s i t i e s i n copper la d e n water 48 F i g u r e 12 - Plasma C o r t i s o l c o n c e n t r a t i o n and APC number changes i n A t l a n t i c salmon exposed t o environmental changes 55 viii ACKNOWLEDGEMENTS I am p l e a s e d t o acknowledge Dr. G.K. Iwama f o r h i s generous support and encouragement throughout the p r e p a r a t i o n o f t h i s t h e s i s . His enthusiasm f o r e x c e l l e n t r e s e a r c h , blended w i t h h i s c o n t i n u e d p u r s u i t o f a bal a n c e d l i f e , has been an i n s p i r a t i o n t o me. I wish t o acknowledge the l a t e Dr. J.R. B r e t t f o r d e s i g n i n g the f i e l d experiment performed and d i s c u s s e d as the f i r s t c h a p t e r o f t h i s t h e s i s , and Donald T i l l a p a u g h f o r a l l o w i n g me t o p a r t i c i p a t e i n i t ' s e x e c u t i o n . The generous a s s i s t a n c e o f Dr. C.B. Schreck, Dr. A. Maule and S. B r a d f o r d i n t e a c h i n g me the l a b o r a t o r y procedure f o r the second c h a p t e r o f t h i s t h e s i s i s g r e a t f u l l y acknowledged. The d a i l y a s s i s t a n c e o f Jim McGeer, N i c k B e r n i e r , and the stud e n t s i n the l a b , i n the areas o f computer and l a b ana l y s e s i s g r e a t l y a p p r e c i a t e d . L a s t l y , and most i m p o r t a n t l y , I want t o thank my w i f e , C a r o l , who d i d not i n f r e q u e n t l y show g r e a t p a t i e n c e and share her wonderful humor d u r i n g the t r y i n g times l e a d i n g t o the comp l e t i o n o f t h i s e x e r c i s e . 1 General i n t r o d u c t i o n F i s h l o s s e s t o b a c t e r i l a kidney d i s e a s e , the most important f i s h d i s e a s e a f f e c t i n g the B r i t i s h Columbia a q u a c u l t u r e i n d u s t r y , have t o t a l e d as much as $30-40M a n n u a l l y ( P e n n e l l , 1987) and have t h r e a t e n e d the economic v i a b i l i t y o f the i n d u s t r y . I t has l o n g been known t h a t f i s h s t r e s s a s s o c i a t e d w i t h environmenta 1 c hange r e s.u I t s i n inpre.asjeil_sjasc.epJtibility__to__dis.e.as.e_ (Wedemeyer, 1970; Snieszko, 1974). F i s h are f a r more s u s c e p t i b l e t o environmental s t r e s s o r s than are homeothermic animals due t h e i r a q u a t i c h a b i t a t and e c t o t h e r m i c nature ( T r u s t , 1986). F i s h r e a r e d under a q u a c u l t u r e c o n d i t i o n s are o f t e n s u b j e c t e d t o environmental changes, o r s t r e s s o r s , such as water q u a l i t y d e t e r i o r a t i o n , c o m p e t i t i o n between f i s h , p h y s i c a l h a n d l i n g , changes i n ambient temperature, and crowding. Few experiments have been conducted which p o i n t t o the mechanisms l e a d i g t o d i s e a s e s u s c e p t i b i l i t y i n f i s h p o p u l a t i o n s ( P i c k e r i n g , 1987). Most o f the evidence gathered c o n c e r n i n g these types o f s t r e s s o r s and t h e i r e f f e c t s on the s u s c e p t i b i l i t y of f i s h t o d i s e a s e s has been a n e c d o t a l . The o b j e c t i v e of t h i s t h e s i s was t o q u a n t i f y f i s h growth, f e e d c o n v e r s i o n r a t e , d i s e a s e s u s c e p t i b i l i t y and immunological parameters of f i s h r e a r e d under 2 d i f f e r e n t environmental c o d i t i o n s , i n an e f f o r t t o assess the e f f e c t s which environmental p e r t u r b a t i o n s may have on f i s h performance. The f i r s t experiment i n v e s t i g a t e d the e f f e c t s o f f e e d i n g l e v e l , s t o c k i n g d e n s i t y and s e a s o n a l changes on the performance o f chinook salmon (Oncorhynchus tshawytscha) r e a r e d a t a s a l t w a t e r farm. Chinook salmon were i n i t i a l l y s t o c k e d a t f o u r d e n s i t i e s r a n g i n g from 0.044 t o 0.144 kg«m" 3 and f e d t o 67 and 100 % o f s a t i a t i o n f o r a p e r i o d o f 272 days (June 8/88 t o March 8/89). They were monitored f o r growth r a t e , mean weight, f e e d c o n v e r s i o n r a t e , m o r t a l i t y r a t e and i n c i d e n c e o f b a c t e r i a l kidney d i s e a s e a t r e g u l a r i n t e r v a l s d u r i n g the ex p e r i m e n t a l p e r i o d . The second experiment examined the e f f e c t s o f r e a r i n g d e n s i t y on h e m a t o c r i t , plasma C o r t i s o l c o n c e n t r a t i o n and m o r t a l i t y r a t e s o f w i l d and h a t c h e r y -r e a r e d chinook samon h e l d a t t h r e e s t o c k i n g d e n s i t i e s i n f r e c h w a t e r a q u a r i a i n the l a b o r a t o r y . The t h i r d experiment e x p l o r e d the e f f e c t o f r e a r i n g d e n s i t y on plasma C o r t i s o l c o n c e n t r a t i o n and number o f a n t i b o d y - p r o d u c i n g c e l l s i n A t l a n t i c salmon (Salmo salar) r e a r e d a t t h r e e s t o c k i n g d e n s i t i e s i n fr e s h w a t e r t a n k s . 3 CHAPTER 1: Growth and d i s e a s e s u s c e p t i b i l i t y o f chinook salmon r e a r e d commercially i n s a l t water. 4 I n t r o d u c t i o n The a v a i l a b i l i t y o f an o p t i m a l r e a r i n g environment i s o f utmost importance f o r the maintenance o f h e a l t h y organisms under c u l t u r e c o n d i t i o n s . S t o c k i n g d e n s i t y can be manipulated by the f i s h c u l t u r i s t , and has been shown t o be one o f the most important v a r i a b l e s a f f e c t i n g the performance o f c u l t u r e d salmonids. S t o c k i n g d e n s i t y has been shown t o a f f e c t the growth (Papoutsoglou e t a l . , 1987; Soderberg, 1986; Wallace e t a l . , 1988; K j a r t a n s s o n e t a l . , 1988; R e f s t i e and K e t t e l s e n , A., 1976; R e f s t i e , 1977), s u r v i v a l (Soderberg, 1986), and some p h y s i o l o g i c a l and immunological parameters ( L a i d l e y and L e a t h e r l a n d , 1988; K j a r t a n s s o n e t a l , 1988; P i c k e r i n g and P o t t i n g e r , 1987; Strange and Schreck, 1978) o f salmonids r e a r e d i n c apt i v i t y . F j e e j i i . n g _ l e ^ growth r a t e and body c o m p o s i t i o n (Storebaken and Autreng, 1987; B r e t t e t a l . , 1969; Parazo, 1990), as w e l l as the antibody product ion__„abi.lit;yL o.f„_fish (Henken, 1987). Inadequate l e v e l s o f some amino a c i d s , v i t a m i n s and m i n e r a l s have a l s o been shown t o r e s u l t i n i m p a i r e d f i s h immune response (Hardie e t a l . , 1990; L a n d o l t , 1989) and d i s e a s e r e s i s t a n c e (Hudson e t a l . , 1974; Latham 1975; Wilgus, 1980). The main o b j e c t i v e s o f t h i s experiment were t o i n v e s t i g a t e the e f f e c t s o f s t o c k i n g d e n s i t y , f e e d i n g 5 l e v e l and s e a s o n a l changes on the s p e c i f i c growth r a t e , mean weight, feed c o n v e r s i o n , c o n d i t i o n f a c t o r , m o r t a l i t y r a t e and i n c i d e n c e o f b a c t e r i a l k i dney d i s e a s e (BKD) i n chinook salmon (Oncorhynchus tshawytscha) r e a r e d i n i n t e n s i v e seacage c u l t u r e c o n d i t i o n s a t a salmon farm i n B r i t i s h Columbia, Canada, f o r a p e r i o d o f 272 days. Furthermore, m u l t i p l e r e g r e s s i o n a n a l y s e s were performed t o d e r i v e models which p r e d i c t s p e c i f i c growth r a t e , mean weights, f e e d c o n v e r s i o n r a t e s , and m o r t a l i t y r a t e s as a f u n c t i o n o f f e e d i n g l e v e l and r e a r i n g d e n s i t y . These models may a l l o w b e t t e r p r e d i c t i o n o f f e e d c o s t s , farm i n v e n t o r i e s and r e a r i n g space requiremed f o r chinook salmon r e a r e d i n s a l t water, a t environmental c o n d i t i o n s s i m i l a r t o those d e s c r i b e d i n the p r e s e n t experiment. M a t e r i a l s and Methods The experiment was conducted a t K a n i s h Aquafarms L t d . a commercial f i s h farm a t Quadra I s l a n d , l o c a t e d a t the n o r t h e r n end o f G e o r g i a S t r a i t between Vancouver I s l a n d and the main l a n d o f B.C., Canada. Fish S e a s p r i n g hatchery, a commercial smolt producer on Vancouver I s l a n d , s u p p l i e d 65,000 monosex female 6 chinook salmon smolts. Monosex female chinook were produced by an i n d i r e c t technique i n v o l v i n g androgen treatment o f the brood parents d u r i n g sex d i f f e r e n t i a t i o n which r e s u l t s i n the p r o d u c t i o n o f g e n o t y p i c females w i t h phenotypic male c h a r a c t e r i s t i c s . These XX males are grown t o m a t u r i t y and t h e i r sperm, which c o n t a i n o n l y female chromosomes, i s used t o f e r t i l i z e normal ova which thus produce monosex female o f f s p r i n g (Donaldson, 1986). Monosex female chinook salmon produced by t h i s t e chnique were r e a r e d i n c o n s t a n t 10 °C f r e s h water a t the h a t c h e r y u n t i l they completed s m o l t i f i c a t i o n . The smolts (mean weight 10.7 g) were flown by h e l i c o p t e r t o the e x p e r i m e n t a l seacage s i t e a t K a n i s h Aquafarms on June 6 and 7, 1988 and d i v i d e d i n t o 13 seacages. Seacages The e x p e r i m e n t a l seacages used t o h o l d the f i s h 3 were the f o l l o w i n g : 12 cages had 720 m c a p a c i t i e s , measured 12 m by 6 m and were 10 m deep. The c o n t r o l 3 seacage had a c a p a c i t y o f 360 m , measured 6 m by 6 m and was 10 m deep. The seacages were c o n s t r u c t e d o f 1 cm mesh f l e x i b l e n y l o n n e t t i n g suspended from f l o a t i n g g a l v a n i z e d s t e e l walkways. Stocking densities Four d i f f e r e n t s t o c k i n g d e n s i t i e s were e s t a b l i s h e d 7 when the f i s h were t r a n s f e r r e d t o s a l t water. Four cages r e c e i v e d 3,000 f i s h , f o u r r e c e i v e d 5,000 f i s h and f o u r 7,000 f i s h , r e s u l t i n g i n t h r e e i n i t i a l s t o c k i n g d e n s i t i e s o f 0.044, 0.074 and 0.104 kg-m . The c o n t r o l seacage r e c e i v e d 5,000 f i s h , r e s u l t i n g i n an _3 i n i t i a l c o n t r o l s t o c k i n g d e n s i t y o f 0.144 kg*m . T h i s c o n t r o l s t o c k i n g d e n s i t y was chosen because i t was the normal d e n s i t y a t the farm i n p r e v i o u s y e a r s . The _3 maximum d e n s i t y reached on the farm was 4.03 kg«m , a t t a i n e d by the c o n t r o l group o f f i s h a t the end o f the experiment on March 8/1989; 272 days a f t e r t r a n s f e r t o s a l t water. D e n s i t y t r a n s i t i o n s which o c c u r r e d d u r i n g the experiment are shown i n Tab l e 1. Feeding levels Two groups o f f i s h a t each d e n s i t y , and a l l f i s h i n the c o n t r o l group, were f e d t o 100% o f s a t i a t i o n w h i l e the two o t h e r groups a t each d e n s i t y were f e d t o 67% o f s a t i a t i o n . S a t i a t i o n l e v e l was determined by suspending a b a f f l e d f e e d c a p t u r i n g t r a y measuring 80 cm by 90 cm a t the bottom of the seacage d u r i n g f e e d i n g and r a i s i n g t h i s t r a y t o the s u r f a c e t o i n s p e c t i t f o r uneaten f e e d a f t e r f e e d i n g . T h i s procedure enabled us t o a d j u s t the r a t i o n l e v e l and ensure t h a t the f i s h were f u l l y f e d w i t h l i t t l e food going uneaten. A l l f i s h were hand f e d w i t h commercially a v a i l a b l e dry p e l l e t s f o r salmon (Moore-Clark I n c . ) . 8 Water quality Summer temperature and d i s s o l v e d oxygen measurements were taken w i t h an e l e c t r o n i c remote s e n s i n g r e c o r d e r (Aquamate 1000, A p p l i e d Microsystems L t d . , Sidney, B.C.). These measurements were r e g u l a r l y checked f o r accuracy a g a i n s t measurements taken w i t h a mercury thermometer and a m o d i f i e d w i n k l e r assay (HACH K i t ) performed on water samples brought t o the s u r f a c e w i t h a Van Dorn water c o l l e c t i n g b o t t l e . V i s i b i l i t y measurements were taken w i t h a S e c c h i d i s c throughout the summer p e r i o d . A Nansen open p l a n k t o n sampling net was used t o sample p l a n k t o n i n the top 5 m o f the water column on June 12/88 and June 22/88, d u r i n g the two densest a l g a e blooms which o c c u r r e d a t the farm t h a t summer. Mortalities M o r t a l i t i e s from the seacages were c o l l e c t e d by a scuba d i v e r t w i c e per week d u r i n g the summer months and once p e r week d u r i n g the w i n t e r months. These m o r t a l i t i e s were brought t o the s u r f a c e , counted and taken away from the seacage s i t e f o r d i s p o s a l . Length and weight measurements The mean weight of the f i s h t r a n s f e r r e d from the h a t c h e r y t o the s a l t w a t e r r e a r i n g s i t e was o b t a i n e d by 9 weighing approximately 100 f i s h from each h a t c h e r y r e a r i n g u n i t and c o u n t i n g the number o f f i s h i n the sample. T h i s procedure was performed immediately p r i o r t o the t r a n s f e r o f these f i s h t o the s a l t w a t e r r e a r i n g s i t e and a l l o w e d us t o c a l c u l a t e the mean weight o f the f i s h a t t h a t time. A t l e a s t s i x t y f i s h from each seacage were sampled f o r l e n g t h and weight 71, 175 and 272 days a f t e r i n t r o d u c t i o n t o s a l t water. F o r the purposes o f t h i s experiment, t o t a l l e n g t h was determined as b e i n g from the t i p o f the snout t o the t i p o f the t a i l when the t a i l i s spread out n o r m a l l y . A random sample o f f i s h was taken from each seacage by p a s s i n g a 1 cm mesh n y l o n s e i n e net through the seacage, r e s u l t i n g i n the c a p t u r e o f a p o p u l a t i o n subsample w h i l e l e a v i n g the remainder o f the f i s h r e l a t i v e l y u n d i s t u r b e d . The f i s h sampled from each seacage were d i p - n e t t e d from the s e i n e net and a n a e s t h e t i z e d i n a 50 L p l a s t i c box c o n t a i n i n g 25 L of a e r a t e d s a l t water and 0.25 mL/L 2-phenoxyethanol ( B e l l , 1987). The f i s h were r e t u r n e d t o t h e i r r e s p e c t i v e seacages a f t e r r e c o v e r y from a n a e s t h e s i a i n a 50 L a e r a t e d s a l t w a t e r r e c o v e r y box. Specific growth rate S p e c i f i c growth r a t e was c a l c u l a t e d f o r each r e a r i n g p e r i o d a c c o r d i n g t o the formula: 10 1) SGR = (In Wt L - In Wt Q) X 100 t where, SGR i s s p e c i f i c growth r a t e (%/day), Wtfc i s mean weight a t time t , Wtg i s mean weight a t time 0 and t i s time i n days. Feed conversion rate Feed c o n v e r s i o n r a t e was c a l c u l a t e d f o r each growth p e r i o d a c c o r d i n g t o the formula: 2) FCR = Feed (kg) / Biomass i n c r e a s e (kg) where FCR i s f e e d c o n v e r s i o n r a t e f o r the g i v e n r e a r i n g p e r i o d , f e e d i s the weight (kg) o f fe e d f e d t o the f i s h p o p u l a t i o n and Biomass i n c r e a s e i s the d i f f e r e n c e between the i n i t i a l and f i n a l biomass o f the p o p u l a t i o n f o r t h a t p e r i o d . Biomass was c a l c u l a t e d as the number of f i s h i n the seacage X mean weight o f the f i s h i n the p o p u l a t i o n . The number of f i s h i n the seacage was determined as the i n i t i a l number minus the accumulated m o r t a l i t i e s t o t h a t date. Condition factor F i s h c o n d i t i o n f a c t o r was c a l c u l a t e d f o r each sampling p e r i o d a c c o r d i n g t o the formula: 3) CF = Wt / L e n g t h 3 X 100 where CF i s c o n d i t i o n f a c t o r , Wt i s t h e mean weight o f the f i s h p o p u l a t i o n ( g ) , and Length i s the mean l e n g t h (cm) of the f i s h p o p u l a t i o n . 11 Mortality rate M o r t a l i t y r a t e s f o r each treatment and r e a r i n g p e r i o d were c a l c u l a t e d a c c o r d i n g t o the f ormula: 4) MR = ( ( f i s h number - f i s h number^)/fish number )/t X 100 7 o t o where MR i s the m o r t a l i t y r a t e (%/day), f i s h number Q i s the number o f f i s h a t the b e g i n n i n g o f the r e a r i n g p e r i o d , f i s h number t i s the f i s h number a t the end o f the r e a r i n g p e r i o d , and t i s l e n g t h o f the r e a r i n g p e r i o d ( d a y s ) . BKD Diagnostics Whole kidneys from a sample o f 30 chinook salmon smolts from each o f the r e a r i n g u n i t s a t the h a t c h e r y were removed from the f i s h p r i o r t o t r a n s p o r t o f the f i s h p o p u l a t i o n s t o the s a l t w a t e r s i t e . Whole kidneys from a sample of 30 f i s h from each treatment a t the s a l t w a t e r s i t e were a l s o removed from the f i s h f o r BKD d i a g n o s t i c s a t 69, 171 and 263 days p o s t t r a n s f e r t o s a l t water. The kidneys were a s e p t i c a l l y e x c i s e d by c u t t i n g a l o n g t h e i r l e n g t h w i t h a s t e r i l e s c a l p e l and t e a s i n g the t i s s u e away from the d o r s a l musculature. These whole kidneys were a s e p t i c a l l y p l a c e d i n p l a s t i c bags, t r a n s p o r t e d and s t o r e d on i c e f o r a p e r i o d o f 24 h b e f o r e s c r e e n i n g f o r Renibacterium salmoninarum by q u a n t i t a t i v e f l u o r e s c e n t a n t i b o d y t e c h n i q u e (QFAT) ( C v i t a n i c h , 1987). QFAT i s a d i r e c t f l u o r e s c e n t 12 a n t i b o d y t e c h n i q u e s i m i l a r t o t h a t d e s c r i b e d by B u l l o c k , G r i f f i n and Stuckey (1980) w i t h the f o l l o w i n g m o d i f i c a t i o n s : 1) The e n t i r e kidney i s homogenized and used as the t i s s u e source f o r smears, as opposed t o h e a v i l y i n f e c t e d kidney t i s s u e ; 2) x y l e n e i s used as a p r e - s t a i n i n g wash t o improve s t a i n i n g q u a l i t y ; and 3) smears are s t a i n e d f o r 1 h as opposed t o 5 min. T h i s procedure was performed by the s t a f f a t Anadromous Inc., a p r i v a t e f i s h d i s e a s e d i a g n o s t i c s l a b o r a t o r y . Data analysis A n a l y s i s o f v a r i a n c e (Sokal and R o l h f , 1966) w i t h r e j e c t i o n l e v e l o f p<0.05 was performed on a l l d a t a c o l l e c t e d from t h i s experiment except f o r d a t a c o l l e c t e d from the s i n g l e c o n t r o l group o f f i s h . Duncan's m u l t i p l e range t e s t s (Zar, 1984) were performed where s i g n i f i c a n t between-group d i f f e r e n c e s were found. The d a t a p o i n t s i n t h i s t h e s i s are d i g n i f i c a n t l y d i f f e r e n t a t the p<0.05 l e v e l i f they do not share a common l e t t e r . M u l t i p l e l i n e a r r e g r e s s i o n a n a l y s e s (Zar, 1984) were performed t o d e r i v e e q u a t i o n s which d e s c r i b e s p e c i f i c growth r a t e , f e e d c o n v e r s i o n r a t i o , body weight and m o r t a l i t y r a t e as f u n c t i o n s of f e e d i n g l e v e l and s t o c k i n g d e n s i t y f o r each r e a r i n g p e r i o d . Chi-square t e s t s (Duncan, Knapp and M i l l e r , 1983) were used t o compare the p r o p o r t i o n s o f BKD i n f e c t e d f i s h t o h e a l t h y f i s h among the f o u r s t o c k i n g 13 d e n s i t i e s f e d t o 100 % o f s a t i a t i o n and the t h r e e s t o c k i n g d e n s i t i e s f e d t o 67 % o f s a t i a t i o n . R e s u l t s Water q u a l i t y Water temperature r e a d i n g s from 1 and 20 m r e v e a l e d t h a t the water temperature a t 1 m v a r i e d from a maximum o f 16.8 °C i n June t o a minimum o f 7.3 °C i n March. The temperature a t 20 m d i d not v a r y as g r e a t l y over the e x p e r i m e n t a l p e r i o d ( F i g . 1 ) . The water column was temperature s t r a t i f i e d d u r i n g the summer months but not the w i n t e r months. D i s s o l v e d oxygen (DO) l e v e l s taken a t 1 and 20 m d u r i n g the summer i n d i c a t e d t h a t s u r f a c e water DO l e v e l s d i d not f a l l below 8 ppm w h i l e l e v e l s a t 20 m d i d drop t o 5.5 ppm ( F i g . 2 ) . V i s i b i l i t y d u r i n g the summer months ranged from 1 t o 10+ m ( F i g . 2 ) . Water samples were examined under a c o v e r s l i p w i t h a compound microscope and r e v e a l e d t h a t the most abundant p l a n k t o n s p e c i e p r e s e n t d u r i n g the summer alga e blooms was Chaetoceros sp. (Round, 1973). The Chaetoceros s p e c i e s p r e s e n t had a s p i r a l c h a i n s t r u c t u r e and a p p a r e n t l y had no d e l e t e r i o u s e f f e c t on the f i s h a t the farm, as no mass m o r t a l i t i e s o c c u r r e d d u r i n g the alga e bloom. 14 S t o c k i n g d e n s i t y e f f e c t s S t o c k i n g d e n s i t y was found t o have a s i g n i f i c a n t e f f e c t on feed^conv:ersion^Eate v-^-mea-n-—wei-ghts—•and* i n c i d e n c e o f b a c t e r i a l kidney,.disease,., The f e e d c o n v e r s i o n r a t e o f f i s h r e a r e d a t low d e n s i t y (1.3 ± 0.045 i n c r e a s i n g t o 1.75 ± 0.069 k g « n T 3 , mean ± SD) and f e d t o 100 % o f s a t i a t i o n from November 29/88 t o March 8/89 (175 t o 272 days pos t t r a n s f e r t o s a l t water) was s i g n i f i c a n t l y h i g h e r than t h a t o f f i s h r e a r e d a t medium d e n s i t y (1.9 ± 0.12 i n c r e a s i n g t o 2.77 ± 0.093 kg-m , mean ± SD) and a l s o f e d t o 100 % o f s a t i a t i o n ( F i g . 3 ) . Feed c o n v e r s i o n r a t e s o f a l l ex p e r i m e n t a l treatments are g i v e n i n Appendix I I . The mean weights o f f i s h f e d t o 100 % o f s a t i a t i o n from August 17/88 t o March 8/89 were s i g n i f i c a n t l y a f f e c t e d by s t o c k i n g d e n s i t y . Mean weights o b t a i n e d from f i s h sampled on November 29/88 (day 175) and March 8/89 (day 272) showed t h a t f i s h r e a r e d a t low d e n s i t y (0.31 ± 0.01 kg-m - 3 i n c r e a s i n g t o 1.75 ± 0.069 kg^m" 3, mean ± SD) weighed s i g n i f i c a n t l y more than f i s h r e a r e d a t h i g h d e n s i t y (0.68 ± 0.02 i n c r e a s i n g t o 3.48 ± 0.17 -3 kg-m , mean ± SD) d u r i n g the same time p e r i o d ( F i g . 4) . Mean weights o f f i s h from each e x p e r i m e n t a l treatment are g i v e n i n Appendix I I . QFAT a n a l y s i s o f whole kidney samples c o l l e c t e d on February 27/89 (day 263) from f i s h f e d t o 100 % o f s a t i a t i o n r e v e a l e d t h a t the i n f e c t i o n r a t e (11 o f 30 15 f i s h screened) among f i s h r e a r e d a t the c o n t r o l d e n s i t y _3 (2.75 i n c r e a s i n g t o 4.03 kg«m ) from November 29/88 (day 175) t o March 8/89 (day 272) was s i g n i f i c a n t l y h i g h e r than the i n f e c t i o n r a t e (1 o f 30 f i s h screened) observed i n f i s h r e a r e d a t low d e n s i t y (1.3 ± 0.045 -3 i n c r e a s i n g t o 1.75 ± 0.002 kg*m , mean ± SD), medium -3 d e n s i t y (1.9 ± 0.12 i n c r e a s i n g t o 2.77 ± 0.093 kg«m , mean ± SD) (4 o f 30 f i s h screened) o r h i g h d e n s i t y -3 (2.52 ± 0.1 i n c r e a s i n g t o 3.48 ± 0.17 kg«m , mean ± SD) (2 o f 30 f i s h screened) ( F i g . 5) BKD da t a o b t a i n e d from f i s h f e d t o 67 % o f s a t i a t i o n and sampled on day 263 a l s o showed t h a t s t o c k i n g d e n s i t y had a s i g n i f i c a n t e f f e c t on the BKD i n f e c t i o n r a t e o f those f i s h . The i n f e c t i o n r a t e (4 o f 30 f i s h t e s t e d ) among f i s h r e a r e d a t h i g h d e n s i t y (1.70 ± 0.025 i n c r e a s i n g t o 2.28 ± _3 0.084 kg'in , mean ± SD) d u r i n g the p e r i o d o f November 29/88 (day 175) t o March 8/89 (day 272) was s i g n i f i c a n t l y h i g h e r than the i n f e c t i o n r a t e (0 o f 30 f i s h t e s t e d ) observed among f i s h r e a r e d a t low d e n s i t y (0.84 ± 0.03 i n c r e a s i n g t o 1.12 ± 0.002 kg*m~ 3, mean ± SD) a t t h a t time. The i n f e c t i o n r a t e (1 o f 30 f i s h t e s t e d ) among the f i s h r e a r e d a t medium d e n s i t y (1.39 ± -3 0.06 i n c r e a s i n g t o 1.89 ± 0.05 kg«m , mean ± SD) was between the i n f e c t i o n r a t e s o f f i s h r e a r e d a t h i g h and low d e n s i t y and was not s t a t i s t i c a l l y d i f f e r e n t from e i t h e r o f those groups ( F i g . 5 ) . Data on the number o f BKD i n f e c t e d f i s h from the d i f f e r e n t treatments a t each 16 sampling p e r i o d i s shown i n Appendix I I . Fee d i n g l e v e l e f f e c t s F eeding l e v e l had a s i g n i f i c a n t e f f e c t on growth r a t e , f e e d c o n v e r s i o n r a t e , mean f i s h weights and c o n d i t i o n f a c t o r . S p e c i f i c growth r a t e was s i g n i f i c a n t l y h i g h e r f o r f i s h f e d t o 100 % compared t o 67 % o f s a t i a t i o n d u r i n g the p e r i o d o f June 8/88 (day 1) t o August 17/88 (Day 71), i r r e s p e c t i v e o f the s t o c k i n g d e n s i t y a t which the f i s h were r e a r e d ( F i g . 6 ) . S p e c i f i c growth r a t e d a t a f o r a l l treatment groups i s shown i n appendix I I . F i s h f e d t o 100 % o f s a t i a t i o n had s i g n i f i c a n t l y h i g h e r f e e d c o n v e r s i o n r a t e s than f i s h f e d t o 67 % o f s a t i a t i o n (p<0.05). F i s h weight samples taken on November 29/88 (day 175) and March 8/89 (day 272) show t h a t f i s h f e d t o 100 % o f s a t i a t i o n had s i g n i f i c a n t l y h i g h e r mean weights than f i s h f e d t o 67 % of s a t i a t i o n , i r r e s p e c t i v e o f d e n s i t y a t which the f i s h were r e a r e d ( F i g . 4 ) . Appendix I I shows mean weight v a l u e s f o r a l l treatment groups throughout the experiment. F i s h f e d a t 100 % o f s a t i a t i o n had s i g n i f i c a n t l y h i g h e r c o n d i t i o n f a c t o r s than f i s h f e d a t 67 % o f s a t i a t i o n (p<0.05). Appendix I I shows the c o n d i t i o n 17 f a c t o r d a t a f o r a l l treatments throughout the experiment. Comparison of the BKD i n f e c t i o n r a t e s i n f i s h r e a r e d a t each s t o c k i n g d e n s i t y r e v e a l e d no s i g n i f i c a n t d i f f e r e n c e between the f i s h f e d t o 67 and 100 % o f s a t i a t i o n (p<0.05). R e f e r t o appendix I I f o r d a t a on the number o f BKD i n f e c t e d f i s h from each treatment a t each sampling p e r i o d . Seasonal e f f e c t s Water temperature, body s i z e and p o s s i b l y p h o t o p e r i o d changes which o c c u r r e d d u r i n g the e x p e r i m e n t a l p e r i o d r e s u l t e d i n s i g n i f i c a n t changes i n a l l o f the performance parameters measured i n t h i s experiment. S i g n i f i c a n t decreases i n s p e c i f i c growth r a t e were observed a t each c o n s e c u t i v e s a l t w a t e r sampling p e r i o d from August 17/88 t o March 8/89, i r r e s p e c t i v e of r e a r i n g d e n s i t y o r f e e d i n g l e v e l a t which the f i s h were r e a r e d ( F i g . 6 ) . Feed c o n v e r s i o n r a t e s o b t a i n e d f o r the November 29/88 (day 175) t o March 8/89 (day 272) r e a r i n g p e r i o d were s i g n i f i c a n t l y h i g h e r (p<0.05) than the f e e d c o n v e r s i o n r a t e s o b t a i n e d f o r the f i r s t two r e a r i n g p e r i o d s ; June 8/88 (day 1) t o November 29/88 (day 175), i r r e s p e c t i v e of the s t o c k i n g d e n s i t i e s o r f e e d i n g 18 l e v e l s a t which the f i s h were r e a r e d ( F i g . 3 ) . F i s h weights of a l l treatment groups i n c r e a s e d s i g n i f i c a n t l y w i t h each r e a r i n g p e r i o d (p<0.05) ( F i g . 4 ) . Season s i g n i f i c a n t l y a f f e c t e d the c o n d i t i o n f a c t o r o f f i s h r e a r e d a t low d e n s i t y throughout the e x p e r i m e n t a l p e r i o d . F i s h r e a r e d a t low d e n s i t y (0.044 -3 -3 kg-m i n c r e a s i n g t o 1.75 ± 0.069 kg*m , mean ± SD) and f e d t o 67 o r 100 % o f s a t i a t i o n throughout the experiment had s i g n i f i c a n t l y h i g h e r c o n d i t i o n f a c t o r s when sampled on November 29/88 (day 175) compared t o the p r e v i o u s v a l u e s o b t a i n e d from the August 17/89 (day 71) samples ( F i g . 7 ) . F i s h maintained a t low s t o c k i n g d e n s i t y and f e d t o 67 % o f s a t i a t i o n r e t u r n e d t o the s i g n i f i c a n t l y lower c o n d i t i o n f a c t o r s , r e c o r d e d on day 71, when sampled on March 8/89 (day 272). R e f e r t o Appendix I I f o r c o n d i t i o n f a c t o r v a l u e s o f a l l treatment groups throughout the e x p e r i m e n t a l p e r i o d . Seasonal changes s i g n i f i c a n t l y a f f e c t e d m o r t a l i t y r a t e s and r e s u l t e d i n s i g n i f i c a n t l y lower r a t e s d u r i n g t h e f a l l and w i n t e r p e r i o d s , from August 17/88 (day 71) t o March 8/89 (day 272), compared t o June 8/88 (day 1) t o August 17/88 (day 71) r a t e s ( F i g . 8 ) . R e f e r t o appendix I I f o r m o r t a l i t y r a t e v a l u e s o f a l l treatment groups throughout the experiment. Kidney samples taken f o r BKD QFAT d i a g n o s i s on August 17/88 (day 71) and November 29/89 (day 175) 19 r e v e a l e d no d e t e c t a b l e BKD among any o f the treatment groups. F i s h sampled and screened f o r BKD on February 27/89 (day 263) had i n f e c t i o n l e v e l s r a n g i n g from 0 o f 30 f i s h screened i n f i s h f e d t o 67 % o f s a t i a t i o n and r e a r e d a t low d e n s i t y (0.84 ± 0.033 i n c r e a s i n g t o 1.12 -3 ± 0.002 kg*m , mean ± SD) f o r the p e r i o d o f November 29/88 (day 175) t o March 8/89 (day 272), t o 11 of 30 f i s h screened i n f i s h f e d t o 100 % o f s a t i a t i o n and r e a r e d a t the c o n t r o l d e n s i t y (2.75 i n c r e a s i n g t o 4.03 -3 kg*m ) d u r i n g the same p e r i o d ( F i g . 5 ) . Re g r e s s i o n A n a l y s i s M u l t i p l e l i n e a r r e g r e s s i o n a n a l y s i s was performed t o generate equations t h a t p r e d i c t s p e c i f i c growth r a t e , f e e d c o n v e r s i o n r a t e , and m o r t a l i t y r a t e f o r each o f the t h r e e r e a r i n g p e r i o d s as a f u n c t i o n o f f e e d i n g l e v e l expressed as perc e n t o f s a t i a t i o n and s t o c k i n g d e n s i t y a t the s t a r t i n g date o f each r e a r i n g p e r i o d . S i m i l a r r e g r e s s i o n equations were generated t o p r e d i c t the mean weight o f the f i s h p o p u l a t i o n a t the end of each r e a r i n g p e r i o d as a f u n c t i o n o f f e e d i n g l e v e l and the i n i t i a l s t o c k i n g d e n s i t y a t time o f f i s h t r a n s f e r t o s a l t water. These r e g r e s s i o n e q u a t i o n s may not be v a l i d f o r o t h e r f i s h o r d i f f e r e n t r e a r i n g c o n d i t i o n s . Equations generated f o r days 1 t o 71 ap p l y t o monosex female chinook salmon t r a n s f e r r e d form f r e s h t o s a l t water a t an average weight o f 10.7 g on June 8, 20 i n i t i a l l y s t o c k e d a t 0.044 t o 0.104 kg*m~ , r e a r e d a t a mean summer s u r f a c e water temperature o f 13 °C and f e d at 67 t o 100 % o f s a t i a t i o n . E q uations f o r the second r e a r i n g p e r i o d o f August 17 t o November 29 (days 72 t o 175) a p p l y t o monosex female Chinook salmon w i t h average i n i t i a l weights of 54.0 t o 78.8 g on August 17, average weights o f 175.6 t o 331.5 g on November 29, . . -3 st o c k e d a t r e a r i n g d e n s i t i e s o f 0.23 t o 0.7 kg*m on August 17, r e a r e d a t an average s u r f a c e water temperature o f 11 °C and f e d a t 67 t o 100 % o f s a t i a t i o n . Equations generated f o r the t h i r d r e a r i n g p e r i o d o f November 29 t o March 8 (days 175 t o 272) a p p l y t o monosex female chinook salmon i n i t i a l l y w eighing 175.6 t o 331.5 g on November 29, s t o c k e d a t . . -3 d e n s i t i e s o f 0.802 t o 2.62 kg*m a t t h a t time, f e d a t 67 t o 100 % o f s a t i a t i o n and r e a r e d i n s a l t water w i t h an average s u r f a c e water temperatures o f 8°C f o r the 98 day r e a r i n g p e r i o d . T a b l e s o f r e g r e s s i o n e quations are shown i n Appendix I . D i s c u s s i o n The mean weight o f the f i s h i s o f utmost importance t o the farmer as i t determines the c r o p v a l u e . Mean weight of a f i s h p o p u l a t i o n i s a f u n c t i o n the c u m u l a t i v e s p e c i f i c growth r a t e s o f t h a t p o p u l a t i o n over time. D i f f e r e n t treatments i n t h i s experiment may 21 r e s u l t i n d i f f e r e n t s p e c i f i c growth r a t e s d u r i n g one season o f the r e a r i n g c y c l e and l e a d t o s i m i l a r s p e c i f i c growth r a t e s as environmental c o n d i t i o n s change. T h i s phenomenon prompted me t o monitor and d i s c u s s the s p e c i f i c growth r a t e and mean weights f o r each treatment group s e p a r a t e l y , d e s p i t e the c o r r e l a t i o n between these two parameters. S t o c k i n g d e n s i t y The l a c k o f s t o c k i n g d e n s i t y e f f e c t on s p e c i f i c growth r a t e and f e e d c o n v e r s i o n r a t e s d u r i n g the f i r s t 175 days o f s a l t w a t e r r e a r i n g suggests t h a t these s t o c k i n g d e n s i t i e s d i d not r e s u l t i n e x p e n d i t u r e of energy r e l a t e d t o the s t r e s s o f f r e q u e n t b e h a v i o r a l i n t e r a c t i o n s between f i s h d e s c r i b e d by Schreck (1982). The s i g n i f i c a n t d i f f e r e n c e i n f e e d c o n v e r s i o n between the low and medium r e a r i n g d e n s i t y f i s h f e d t o 100 % o f s a t i a t i o n d u r i n g the w i n t e r i s d i f f i c u l t t o i n t e r p r e t . The s i g n i f i c a n t e f f e c t o f r e a r i n g d e n s i t y on mean weights o f f i s h f e d t o 100 and 67 % o f s a t i a t i o n and sampled on days 175 and 272 may be due t o energy h a v i n g been a l l o c a t e d t o what Schreck (1982) terms ' r e s i s t a n c e and compensation d u r i n g s t r e s s ' , due t o i n c r e a s e d b e h a v i o r a l i n t e r a c t i o n s i n the h i g h r e a r i n g d e n s i t y groups o f f i s h . Fenderson and Carpenter (1971) found t h a t the main f a c t o r which depressed f e e d i n g r a t e s i n 22 salmonids was s o c i a l i n t e r a c t i o n . S i m i l a r d e p r e s s i o n o f f e e d i n g r a t e s i n f i s h r e a r e d a t the h i g h e s t d e n s i t i e s i n the p r e s e n t experiment may have r e s u l t e d i n lower mean weights among those f i s h . B a c t e r i a l kidney d i s e a s e , caused by the gram-p o s i t i v e d i p l o b a c i l l u s J?eniJbacterium salmoninarum (Sanders and F r y e r 1980), i s e s t i m a t e d t o r e s u l t i n l o s s e s o f $30 t o $40M worth o f chinook and coho salmon t o the B.C. a q u a c u l t u r e i n d u s t r y a n n u a l l y ( P e n n e l l , 1987). The i n c r e a s e i n R. salmoninarum p r e v a l e n c e i n t h e f i s h r e a r e d a t the h i g h e s t d e n s i t y i s c o n s i s t e n t w i t h the r e p o r t s o f Wedemeyer (1970) and S n i e s z k o (1974) which showed t h a t suboptimal r e a r i n g environments are h i g h l y c o r r e l a t e d "with i n c r e a s e d s u s c e p t i b i l i t y o f f i s h t o d i s e a s e s . P i c k e r i n g and P o t t i n g e r (1987) observed t h a t crowding causes a pro l o n g e d decrease i n white b l o o d c e l l counts i n the c i r c u l a t i n g b l o o d o f salmonids. T h i s decrease i n white b l o o d c e l l c o n c e n t r a t i o n s may have l e a d t o a decrease i n the f i s h ' s a b i l i t y t o overcome i n f e c t i o n by R. salmoninarum. S t r e s s caused by i n c r e a s e d numbers o f s o c i a l i n t e r a c t i o n s , c a t e g o r i z e d as an environmental s t r e s s o r (Noakes and L e a t h e r l a n d , 1977) may have a c t e d s i m i l a r l y t o acute the s t r e s s o r s s t u d i e d by B a r t o n e t a l . (1985). Acute s t r e s s o r s l e a d t o i n c r e a s e s i n plasma C o r t i s o l c o n c e n t r a t i o n s which have been shown t o r e s u l t i n immunosuppression ( P i c k e r i n g (1987). The 23 i n c r e a s e d R. salmoninarum i n f e c t i o n r a t e observed i n the h i g h e s t d e n s i t y group o f f i s h i n t h i s study may have been the r e s u l t o f immunosuppression caused by s t r e s s a s s o c i a t e d w i t h a suboptimal r e a r i n g environment. I t i s a l s o p o s s i b l e t h a t the BKD ba c t e r i u m was h o r i z o n t a l l y t r a n s f e r e d from f i s h t o f i s h by f i s h i n a d v e r t a n t l y e a t i n g the fe c e s o f i n f e c t e d f i s h d u r i n g the f e e d i n g 'frenzy' which occures d u r i n g f e e d i n g . Feeding l e v e l S p e c i f i c growth r a t e , the pe r c e n t i n c r e a s e i n body weight "per day, i s o f i n t e r e s t t o f i s h c u l t u r i s t s and farmers who need t o p r e d i c t f i s h food requirements throughout the r e a r i n g p e r i o d and f i s h weights a t h a r v e s t time. The f i n d i n g t h a t s p e c i f i c growth r a t e was s i g n i f i c a n t l y a f f e c t e d by r a t i o n s i z e d u r i n g the summer months i s c o n s i s t e n t w i t h the work o f B r e t t e t a l . (1969) who found t h a t s p e c i f i c growth r a t e i s d i r e c t l y p r o p o r t i o n a l t o r a t i o n s i z e i n sockeye salmon (Oncorhynchus nerka) and t h a t t h i s a f f e c t was g r e a t e r i n f i s h r e a r e d a t 15 °C than i n f i s h r e a r e d a t 5, 10 o r 20 °C. B r e t t ' s (1969) o b s e r v a t i o n t h a t r a t i o n s i z e had the l e a s t e f f e c t on growth r a t e when ambient temperature was maintained a t 5 °C i s c o n s i s t e n t w i t h our f i n d i n g o f no s i g n i f i c a n t d i f f e r e n c e between the 24 s p e c i f i c growth r a t e s o f chinook f e d a t 67 % and 100 % o f s a t i a t i o n d u r i n g the w i n t e r growth p e r i o d . Feed c o n v e r s i o n r a t e i s important t o f i s h farmers a t t e m p t i n g t o minimize p r o d u c t i o n c o s t s . The l a c k o f s i g n i f i c a n t d i f f e r e n c e between the f e e d c o n v e r s i o n r a t e s o f f i s h f e d t o 67 and 100 % o f s a t i a t i o n d u r i n g t h e summer months suggests t h a t chinook salmon may have the a b i l i t y t o d e p o s i t much of the f e e d energy consumed d u r i n g t h e i r f i r s t summer and f a l l seasons o f s a l t w a t e r r e a r i n g . T h i s a b i l i t y would be e v o l u t i o n a r l y a d a p t i v e f o r f i s h such as chinook salmon which have access t o a more abundant food supply d u r i n g the summer and f a l l months and may d e p o s i t energy s t o r e s which might i n c r e a s e t h e i r chance of s u r v i v a l d u r i n g the fo o d -l i m i t e d w i n t e r p e r i o d . Our f i n d i n g t h a t f i s h f e d t o 100 % o f s a t i a t i o n d u r i n g the w i n t e r growth s t a n z a had a s i g n i f i c a n t l y h i g h e r f e e d c o n v e r s i o n r a t e than f i s h f e d t o 67 % o f s a t i a t i o n i s c o n s i s t e n t w i t h the f i n d i n g s o f B r e t t e t a l . (1969) who found t h a t sockeye salmon m a i n t a i n e d on a low r a t i o n and r e a r e d a t 5 °C have i n c r e a s e d a s s i m i l a t i o n ( d i g e s t i o n ) e f f i c i e n c y . L o v e l l (1989) a l s o showed an i n v e r s e r e l a t i o n s h i p between f e e d i n g r a t e and f e e d e f f i c i e n c y . F u r t h e r agreement w i t h our f i n d i n g s are the observed i n c r e a s e s i n l o s s o f f e c a l , u r i n a r y , g i l l waste, and heat energy (Smith, 1989) and decreased d i g e s t i o n e f f i c i e n c y ( B r e t t and Groves, 1979) 25 as f e e d i n g r a t i o n s approach maximum i n t a k e . The s i g n i f i c a n t i n c r e a s e i n fe e d c o n v e r s i o n r a t e d u r i n g the w i n t e r p e r i o d , r e g a r d l e s s o f f e e d i n g l e v e l o r r e a r i n g d e n s i t y , i s c o n s i s t e n t w i t h the f i n d i n g o f B r e t t e t a l . (1969) who showed t h a t maximum food i n t a k e d e c l i n e s a t a g r e a t e r r a t e than maintenance energy requirement as temperature d e c r e a s e s . These events r e s u l t i n a net l o s s o f s t o r a b l e energy per u n i t o f food i n t a k e as temperature d e c r e a s e s . The l a c k o f s i g n i f i c a n t d i f f e r e n c e i n mean weights between the chinook f e d t o 67 and 100 % o f s a t i a t i o n a t the end o f the summer growth p e r i o d i s p r o b a b l y due t o i n s u f f i c i e n t time f o r s i z e d i f f e r e n c e s t o develop between the s e two groups o f f i s h . The f a l l and w i n t e r sampling p e r i o d s c l e a r l y show the expected s i g n i f i c a n t d i f f e r e n c e s between the f i s h f e d t o 67 and 100 % of s a t i a t i o n . One sho u l d note t h a t t h e r e was no s i g n i f i c a n t d i f f e r e n c e between the w i n t e r s p e c i f i c growth r a t e o f f i s h f e d a t 67% and 100% o f s a t i a t i o n . The s i g n i f i c a n t e f f e c t o f f e e d i n g l e v e l on body weight measured d u r i n g the w i n t e r p e r i o d i s t h e r e f o r e a r e f l e c t i o n o f the h i g h e r s p e c i f i c growth r a t e s o f f i s h f e d a t 100 % o f s a t i a t i o n d u r i n g the summer and f a l l growth p e r i o d s . The observed p a t t e r n o f h i g h e r c o n d i t i o n f a c t o r s i n the f i s h f e d t o 100 % o f s a t i a t i o n compared t o those f e d t o 67 % i s c o n s i s t e n t w i t h the r e p o r t t h a t w e l l f e d f i s h w i l l have a h i g h e r c o n d i t i o n 26 f a c t o r than f i s h o f the same l e n g t h on a lower p l a n o f n u t r i t i o n ( P i p e r e t a l . , 1986). Seasonal e f f e c t s Water temperature, p r o b a b l y the s i n g l e most important f a c t o r a f f e c t i n g f i s h energy requirements (Smith, 1989), changed over the cou r s e o f t h i s experiment. Water temperature s i g n i f i c a n t l y a f f e c t s the f e e d c o n v e r s i o n e f f i c i e n c y o f salmonids. B r e t t e t a l . , (1969) showed t h a t sockeye salmon m a i n t a i n e d on a low r a t i o n have i n c r e a s e d a s s i m i l a t i o n ( d i g e s t i o n ) e f f i c i e n c y when r e a r e d a t 5 °C compared t o 10 °C t o 20 °C. B r e t t (1971) put f o r t h the h y p o t h e s i s t h a t sockeye salmon " undergo a d i u r n a l v e r t i c a l m i g r a t i o n t o thermoregulate and i n c r e a s e b i o e n e r g e t i c e f f i c i e n c y . Water temperature was c l o s e l y monitored over the course o f t h i s experiment and may have c o n t r i b u t e d t o some o f the s e a s o n a l performance c h a r a c t e r i s t i c d i f f e r e n c e s observed i n t h i s experiment. Our o b s e r v a t i o n t h a t s p e c i f i c growth r a t e o f chinook salmon was reduced d u r i n g the w i n t e r growth s t a n z a compared t o the summer and f a l l r a t e s i s c o n s i s t e n t w i t h the r e p o r t s o f B r e t t e t a l . (1969) who showed t h a t s p e c i f i c growth r a t e i s d i r e c t l y p r o p o r t i o n a l t o water temperature and i n v e r s e l y p r o p o r t i o n a l t o f i s h s i z e . The o b s e r v a t i o n by H i g g i n s and T a l b o t (1985) t h a t salmon w i l l e a t when they can 27 see food suggests t h a t the f i s h had a shortened d a i l y f e e d i n g p e r i o d d u r i n g the s h o r t e r d a y l i g h t hours of the w i n t e r months. The l a t t e r phenomenon c o u l d l e a d t o reduced s p e c i f i c growth r a t e s d u r i n g the w i n t e r season due t o l a c k o f f e e d i n g time a l o n e . G a s t r i c emptying time i n j u v e n i l e sockeye salmon has been shown t o decrease from 147 h a t 3 °C t o 18 h a t 23 °C ( B r e t t and Higgs, 1970). T h i s o b s e r v a t i o n a l s o suggests t h a t the f i s h w i l l e a t l e s s d u r i n g the w i n t e r compared t o the summer and c o u l d a l s o be a simple e x p l a n a t i o n f o r why s p e c i f i c growth r a t e was lower i n d u r i n g w i n t e r compared t o the summer p e r i o d . B r e t t e t a l . (1969) showed t h a t food i n t a k e decreases due t o r e d u c t i o n s i n ambient water temperature o c c u r f a s t e r than does the maintenance energy requirements o f the f i s h . J o b l i n g (1988) s t a t e s t h a t the maximum amount of food energy a v a i l a b l e f o r growth and o t h e r a c t i v i t i e s can be c a l c u l a t e d t a k i n g the d i f f e r e n c e between the maintenance energy requirements and the food energy i n t a k e . These two phenomena l e a d t o a net decrease i n the energy a v a i l a b l e f o r growth as water temperature decreases d u r i n g the w i n t e r months. These phenomena h e l p t o e x p l a i n why the w i n t e r f e e d c o n v e r s i o n r a t e s were s i g n i f i c a n t l y h i g h e r than the summer o r f a l l r a t e s . The h i g h l y s i g n i f i c a n t s e a s o n a l d i f f e r e n c e s i n f i s h weights i n d i c a t e t h a t the f i s h i n t h i s experiment 28 e x p e r i e n c e d s i g n i f i c a n t growth d u r i n g the e x p e r i m e n t a l p e r i o d . M o r t a l i t y r a t e s a re a primary concern t o the f i s h farmer as hig h r a t e s can s e v e r e l y c u r t a i l the p r o f i t a b i l i t y o f a f i s h farm o p e r a t i o n . The s i g n i f i c a n t l y h i g h e r summer m o r t a l i t y r a t e s observed may have been p a r t l y due t o the i n c r e a s e d v i a b i l i t y o f the common i n f e c t i o u s organisms a t the farm d u r i n g the p e r i o d o f warm water temperatures. Renibacterium salmoninarum, the c a u s a t i v e agent o f BKD has been shown t o grow b e s t i n c u l t u r e when main t a i n e d a t 1 5 ° C (E v e l y n e t a l . , 1989) and (Roy and Amend, 1977) have shown t h a t Vibrio sp. can be s u c c e s s f u l l y i n c u b a t e d a t 21 °C. Bar t o n e t al . ( 1 9 8 5 ) showed t h a t C o r t i s o l l e v e l s i n c r e a s e d u r i n g the s p r i n g s m o l t i f i c a t i o n p e r i o d o f coho salmon and Maule e t a l . (1987) have shown t h a t the immune system o f coho salmon changes d u r i n g p a r r t o smolt t r a n s f o r m a t i o n and a f t e r i m p l a n t a t i o n o f C o r t i s o l . F i s h w i t h h i g h e r plasma C o r t i s o l t i t e r s had reduced s p l e n i c lymphocytes, s p l e n i c plaque forming c e l l s , c i r c u l a t i n g l e u c o c y t e s and h i g h e r m o r t a l i t y r a t e s when exposed t o V. anguillarum. These demonstrated forms o f immunosuppression may be p a r t l y r e s p o n s i b l e f o r the h i g h e r m o r t a l i t y r a t e s observed d u r i n g the summer p e r i o d o f the pr e s e n t experiment. 29 TABLE 1 Mean s t o c k i n g d e n s i t i e s (kg*m~ ) o f chinook salmon f e d t o 67 and 100 % o f s a t i a t i o n and r e a r e d i n s a l t water a t f o u r s t o c k i n g d e n s i t i e s f o r 272 days. (June 8/88 t o March 8/89). Mean ± (SD), N=2. D e n s i t y group R a t i o n l e v e l June 8/88 August 17/88 November 29/88 March 8/89 Low 100 % 0.044 (0) 0.31 (0.01) 1.305 (0.045) 1.75 (0.069) Low 67 % 0.044 (0) 0.24 (0.01) 0.8345 (0.0325) 1.12 (0.002) Medium 100 % 0.074 (0) 0.505 (0.015) 1.9 (0.12) 2.77 (0.093) Medium 67 % 0.074 (0) 0.39 (0) 1.39 (0.06) 1.89 (0.047) High 100 % 0.104 (0) 0.68 (0.02) 2.52 (0.1) 3.48 (0.17) High 67 % 0.104 (0) 0.525 (0.005) .1.695 (0.025) 2.28 (0.084) * C o n t r o l 100 % 0.144 0.8 2.75 4.03 (Highest)  *The c o n t r o l d e n s i t y was c a l c u l a t e d from one group of f i s h o n l y and t h e r e f o r e has no c o r r e s p o n d i n g s t a n d a r d d e v i a t i o n v a l u e . Figure l : Farm water temperatures during the experimental summer period. O Q) 0 (U Q) (TJ March 7 Experimental period (Days) o IC 0) cd t-4 Q) a) a o o o 43 a> •a .a Q) 0) F i g u r e 3: F e e d c o n v e r s i o n r a t e s of e a c h c h i n o o k s a l m o n t r e a t m e n t g r o u p d u r i n g t h e t h r e e s a l t w a t e r r e a r i n g p e r i o d s . 3.0 2.5 2.0 1.5 1.0 0.5 0.0 Feeding level ( % of satiation ) EZ2 67 % I I 100 % a a J , i a PL i Low Med High C June 8/88 -August 17/88 Low Med High August 17/88 -November 20/88 Low Med High C November 20/88 - Maroh 8/80 Mean ± SD, N=2, a=0.05. Density / Rearing period F i g u r e 4 : M e a n w e i g h t s of e a c h c h i n o o k s a l m o n s a l m o n t r e a t m e n t g r o u p a t t h e e n d of t h e t h r e e s a l t w a t e r r e a r i n g p e r i o d s . t>0 bo • r H s 3 500 400 300 200 100 0 Feeding level ( % of satiation ) 67 % I I 100 % a a a a 1 I 1 Low lied High C A u g u s t 17/88 o d Low Med High C N o v e m b e r 2 9 / 8 8 e f o d Low Med High C M a r c h 8/89 Mean ± SD, N=2, a=0.05 Density / Sampling date 34 Figure 5: Number of BKD i n f e c t e d f i s h among samples of 30 chinook from each treatment group. 15 o CO ll 0 3 r3 o o 10 Rearing density A Low v Medium • High o Control (Highest) FW Feeding level 100 % O c SW 15 O CO ~3 o <u o 10 5 -Rearing density A Low v Medium • Higii FW SW April' 27/88 Feeding level 67 % / _ _ v a b • — —' «• 69 171 263 Salt—-water rearing (days) F i g u r e 6: S p e c i f i c g r o w t h r a t e s of a U c h i n o o k s a l m o n t r e a t m e n t g r o u p s d u r i n g t h e t h r e e s a l t w a t e r r e a r i n g p e r i o d s . <d 0) O bi) O K •i—i . «M — ' • r-H O 0) 00 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 a Low Med High c June B/88 -August 17/88 o d d d o d Feeding level ( % of satiation ) V77) 87 % I I 100 % - e e e e n Loir Med High August 17/88 -November 29/88 Low Med High C November 20/88 -March 8/88 Mean ± SD, N=2, a-0.05. Density / Rearing period Figure 7: Condition factor of all chinook salmon treatment groups at the end of the three saltwater rearing periods. 2.5 u o -4-> o <d rt O +» •i-t TJ rt o o o o 0 9 fl o 2.0 -1.5 -1.0 0.5 0.0 Feeding level ( % of satiation ) EZ2 67 % I I 100 % I Loir Med High C Low Med High Low Med High C 71 Mean ± SD, N=2, a=0.05 175 272 Density / Sampling day cd w cd >> =3 O 0.035 0.030 - T 0.025 0.020 -0.015 0.010 -0.005 0.000 Figure 0: Mortality rates of all chinook salmon treatment groups during the three salt-water rearing periods. Feeding level ( % of satiation ) E2I 67% I I 100 % d e f b o d d e f 1 e i Low Med High C June 8/88 -August 17/88 Low Med High C August 17/88 -November 20/88 Low Med High C November 20/88 - March 8/80 Mean ± SD, N=2, ct=0.05. Density / Rearing period 38 Chapter 1: C o n c l u s i o n s T h i s experiment, conducted w i t h monosex female chinook salmon r e a r e d i n s a l t water f o r a p e r i o d o f 272 days, showed t h a t r e a r i n g c o n d i t i o n s have a s i g n i f i c a n t e f f e c t on parameters o f economical importance t o f i s h f armers. F i s h f e d t o 100 % o f s a t i a t i o n e x p e r i e n c e d s i g n i f i c a n t l y h i g h e r growth r a t e s d u r i n g the i n i t i a l months o f s a l t w a t e r r e a r i n g compared t o f i s h f e d t o 67 % of s a t i a t i o n . F i s h f e d t o 67 and 100 % o f s a t i a t i o n grow a t the same r a t e d u r i n g the f i r s t w i n t e r o f s a l t w a t e r r e a r i n g . Seasonal changes o c c u r r i n g over the f i r s t n i n e months o f chinook salmon s a l t w a t e r r e a r i n g i e . , d e c r e a s e d water temperature and i n c r e a s e d body weight, r e s u l t i n i n c r e a s e d f e e d c o n v e r s i o n r a t e s d u r i n g the months of December t o February. M o r t a l i t y r a t e i s s i g n i f i c a n t l y h i g h e r d u r i n g the summer than d u r i n g the f a l l o r w i n t e r . I n c i d e n c e o f BKD among 200 t o 400 g chinook salmon a f t e r n ine months o f s a l t w a t e r r e a r i n g i s d i r e c t l y p r o p o r t i o n a l t o s t o c k i n g d e n s i t i e s -3 i n the range o f 1.5 t o 4 kg-m 39 C H A P T E R 2 : E n d o c r i n e response o f crowded chinook salmon and immunological response of crowded A t l a n t i c salmon. 40 I n t r o d u c t i o n F i s h s t r e s s o r s such as h a n d l i n g (Barton e t a l . 1986), crowding and confinement ( P i c k e r i n g and P o t t i n g e r , 1989) and h i g h ambient water copper c o n c e n t r a t i o n s (Schreck and L o r z , 1978) have been a s s o c i a t e d w i t h increases i n plasma C o r t i s o l c o n c e n t r a t i o n . High b l o o d C o r t i s o l concentrations have been shown t o r e s u l t i n both lymphocytopenia ( P i c k e r i n g e t a l . 1984) and s u s c e p t i b i l i t y o f brown t r o u t (Salmo trutta) t o Saprolegnia i n f e c t i o n and f u r u n c u l o s i s ( P i c k e r i n g and Duston, 1983). Maule e t a l . (1989), furthermore, showed t h a t acute s t r e s s and a s s o c i a t e d i n c r e a s e s i n plasma C o r t i s o l concentrations can a f f e c t both the a b i l i t y o f lymphocytes from the a n t e r i o r kidney t o generate a n t i b o d y - p r o d u c i n g c e l l s (APC) in vitro, and i s a s s o c i a t e d w i t h lower d i s e a s e r e s i s t a n c e i n j u v e n i l e chinook salmon (Oncorhynchus tshawytscha). The o b j e c t i v e o f the experiments d e s c r i b e d here was t o i n v e s t i g a t e the e f f e c t o f crowding on the plasma C o r t i s o l c o n c e n t r a t i o n and m o r t a l i t y r a t e o f w i l d and h a t c h e r y - r e a r e d chinook salmon and the e f f e c t o f c h r o n i c crowding on the plasma C o r t i s o l c o n c e n t r a t i o n and number o f APC's i n A t l a n t i c salmon (Salmo salar). 41 Experiment 1: Crowding e f f e c t s on h a t c h e r y - r e a r e d and w i l d chinook salmon. M a t e r i a l s and Methods Chinook salmon from B i g Qualicum r i v e r , s i t u a t e d on the e a s t c o a s t o f Vancouver I s l a n d , were used f o r t h i s experiment. W i l d and h a t c h e r y - r e a r e d f i s h , weighing 3.9 ± 0.87 g and 5.7 ± 1.5 g (mean ± SD), r e s p e c t i v e l y , were c a p t u r e d a t a f i s h c o u n t i n g fence on the B i g Qualicum r i v e r and from a raceway a t the h a t c h e r y . The h a t c h e r y - r e a r e d f i s h had been r e a r e d a t d e n s i t i e s o f 0.9 kg«m J , a t ponding time i n January _3 1990, t o 10.5 kg*m on the sampling day (May 13, 1990). Water temperatures d u r i n g the r e a r i n g p e r i o d i n c r e a s e d from 4.9°C i n January t o 11.9 °C on sampling day. H a t c h e r y - r e a r e d f i s h were f e d Oregon M o i s t P e l l e t (OMP) a t a r a t e o f 0.82% t o 2.93% o f body weight per day as temperature and f i s h s i z e i n c r e a s e d from January t o May 1990. T h i r t y o f these f i s h were r a p i d l y d i p - n e t t e d from the raceway and p l a c e d i n water c o n t a i n i n g 200 mg/L 3-aminobenzoic a c i d e t h y l e s t e r methanesulfonate (MS-222) b u f f e r e d w i t h an e q u a l amount of sodium b i c a r b o n a t e . T h i s l e t h a l c o n c e n t r a t i o n o f a n e s t h e t i c has been shown t o i m m o b i l i z e f i s h w i t h o u t e l i c i t i n g an i n c r e a s e i n plasma C o r t i s o l c o n c e n t r a t i o n 42 (Barton e t a l . 1985). The same procedure was used t o a n e s t h e t i z e w i l d f i s h as they were c a p t u r e d a t the f i s h c o u n t i n g fence d u r i n g t h e i r n o c t u r n a l downstream m i g r a t i o n t o the ocean. T h i r t y w i l d f i s h were caught i n a fine-mesh d i p net p l a c e d a t the lower end o f a 1.5 m trou g h a t t a c h e d t o the f i s h c o u n t i n g f e n c e . These f i s h were handled l e s s than 10 s and immediately p l a c e d i n a the l e t h a l c o n c e n t r a t i o n o f (MS-222). Weight and f o r k l e n g t h were measured on a l l h a t c h e r y - r e a r e d and w i l d f i s h sampled. Blood samples were taken from a l l sampled f i s h by s e v e r i n g the c a u d a l peduncle and u s i n g a h e p a r i n i z e d c a p i l l a r y tube t o draw b l o o d from the v a s c u l a t u r e . The plasma was s e p a r a t e d by c e n t r i f u g a t i o n a t 13,000 g f o r 3 m and s t o r e d a t -20°C f o r l a t e r C o r t i s o l assay. One t h o u s a n d l i v e w i l d chinook salmon and one thousand h a t c h e r y - r e a r e d chinook salmon were t r a n s p o r t e d by t r u c k from B i g Qualicum r i v e r t o the U n i v e r s i t y o f B r i t i s h Columbia (UBC) a q u a c u l t u r e f a c i l i t y where they were al l o w e d t o a c c l i m a t e f o r a p e r i o d o f t e n days p r i o r t o e x p e r i m e n t a t i o n . T h i s s h o r t a c c l i m a t i o n p e r i o d was chosen i n an e f f o r t t o have the w i l d f i s h r e t a i n t h e i r " w i l d n e s s " f o r the ex p e r i m e n t a l t r i a l s . A l l f i s h were ma i n t a i n e d on n a t u r a l p h o t o p e r i o d a t a l l times. The f i s h were t r a n s f e r r e d t o 12 e x p e r i m e n t a l a q u a r i a a f t e r the t e n day a c c l i m a t i o n p e r i o d . Each aquarium r e c e i v e d 1 L/m of d e c h l o r i n a t e d Vancouver c i t y 43 water (11-13 °C, pH 6.1, T o t a l hardness 4.2 mg/L, [ 0 2 ] 10 ppm, [copper] 0.05 mg/L ). The s t o c k i n g d e n s i t i e s used were c o n t r o l l e d by v a r y i n g the water volume i n which the 12 groups o f f i s h o f equal biomass were h e l d . The a q u a r i a used were f o u r 37.8 L a q u a r i a , f o u r 9.5 L a q u a r i a and f o u r 4.75 L a q u a r i a . W i l d and ha t c h e r y -r e a r e d f i s h were sto c k e d i n t o the a q u a r i a i n o r d e r t o . . -3 ach i e v e s t o c k i n g d e n s i t i e s o f 8, 32 and 64 kg«m Each treatment was r e p l i c a t e d one time. Bl o o d samples were taken a t f o u r times: 1) a t the f i s h c o u n t i n g fence and hatch e r y raceway; 2) p r i o r t o t r a n s f e r r i n g t h e f i s h from the UBC f i s h h o l d i n g f a c i l i t y t o the a q u a r i a ; 3) immediately a f t e r t r a n s p o r t t o the a q u a r i a ; 4) a f t e r f i v e days o f h o l d i n g a t t h e i r r e s p e c t i v e d e n s i t i e s . Water c h e m i s t r y a n a l y s i s performed a f t e r the ex p e r i m e n t a l t r i a l r e v e a l e d t h a t the water c o n t a i n e d 0.05 mg/L o f copper. T h i s copper c o n c e n t r a t i o n i s w e l l i n excess o f 0.006 mg/L, the recommended maximum t o l e r a b l e copper c o n c e n t r a t i o n f o r salmonids (Wedemeyer, 1977). Hematocrit, packed c e l l volume, v a l u e s were o b t a i n e d by drawing b l o o d from the seve r e d c a u d a l peduncle v a s c u l a t u r e i n t o a h e p a r i n i z e d c a p i l l a r y tube. These tubes were then c e n t r i f u g e d a t 13,000 G f o r 3 minutes w i t h a m i c r o - h e m a t o c r i t c e n t r i f u g e and plasma samples stored a t -20 °C for later Cortisol assay. 125 C o r t i s o l c o n c e n t r a t i o n s were determined by iJ-<--J 44 radioimmunoassay k i t s (Baxter H e a l t h c a r e Corp., Cambridge, Mass.) The radioimmunoassay c o m p e t i t i v e b i n d i n g p r i n c i p l e s o f Yall o w and Berson (1971) are the b a s i s o f t h i s t e s t . The procedure i n v o l v e s the 125 following s t e p s ; 1) an I - l a b e l e d C o r t i s o l t r a c e r i s mixed w i t h e i t h e r a standard C o r t i s o l c o n c e n t r a t i o n , r a n g i n g from 0 t o 600 ng/mL, or an unknown sample, and in c u b a t e d i n a tube w i t h i n n e r walls c o a t e d w i t h C o r t i s o l a n t i b o d i e s ; 2) incubation i s all o w e d t o proceed f o r 45 minutes a t 37 °C; 3) contents of the tubes a re decanted and the gamma e m i s s i o n from each tube i s counted w i t h a gamma counter; 4) gamma emissions counted from tubes c o n t a i n i n g s t a n d a r d C o r t i s o l concentrations are used t o generate a st a n d a r d curve; 5) the standard curve i s used to determine C o r t i s o l concentrations i n the unknown samples. Data a n a l y s i s A n a l y s i s o f v a r i a n c e w i t h a r e j e c t i o n l e v e l o f p<0.05 was performed on a l l d a t a c o l l e c t e d from t h e s e experiments. Duncan's m u l t i p l e range t e s t s were performed where s i g n i f i c a n t between-group differences were found. Pearson c o r r e l a t i o n c o e f f i c i e n t (Zar, 1984) was computed t o t e s t f o r a c o r r e l a t i o n between plasma C o r t i s o l c o n c e n t r a t i o n and f i s h weights o f a l l chinook salmon from t h i s experiment. 45 R e s u l t s B l o o d samples o b t a i n e d from h a t c h e r y - r e a r e d f i s h _3 h e l d a t 8 ( c o n t r o l d e n s i t y ) , 32 and 64 kg*m i n d i c a t e no s i g n i f i c a n t d i f f e r e n c e i n h e m a t o c r i t v a l u e s o f f i s h h e l d a t thes e t h r e e d e n s i t i e s f o r a p e r i o d o f f i v e days ( F i g . 9). Hematocrit v a l u e s o b t a i n e d from w i l d f i s h , -3 however, showed t h a t f i s h h e l d a t 32 and 64 kg«m had s i g n i f i c a n t l y h i g h e r h e m a t o c r i t v a l u e s than the c o n t r o l _3 group o f f i s h h e l d a t 8 kg«m ( F i g . 9). A s i g n i f i c a n t d i f f e r e n c e i n the h e m a t o c r i t v a l u e s o f w i l d and h a t c h e r y - r e a r e d f i s h was e v i d e n t a f t e r f i v e days o f -3 h o l d i n g a t 32 and 64 kg*m , w i l d f i s h having s i g n i f i c a n t l y h i g h e r h e m a t o c r i t v a l u e s than t h e i r h a t c h e r y - r e a r e d c o u n t e r p a r t s ( F i g - 9)« Plasma C o r t i s o l c o n c e n t r a t i o n s o b t a i n e d from w i l d f i s h m i g r a t i n g a t n i g h t were s i g n i f i c a n t l y h i g h e r than the c o n c e n t r a t i o n s from h a t c h e r y - r e a r e d f i s h a t 10 A.M. ( F i g . 10). A s i g n i f i c a n t decrease i n plasma C o r t i s o l c o n c e n t r a t i o n was observed i n w i l d f i s h t r a n s p o r t e d t o the UBC a q u a c u l t u r e f a c i l i t y and a c c l i m a t e d f o r a p e r i o d t e n days ( F i g . 10). P o s t - t r a n s p o r t plasma C o r t i s o l concentrations o f w i l d and hatchery-reared f i s h were e q u a l and both s i g n i f i c a n t l y h i g h e r than p r e -t r a n s p o r t c o n c e n t r a t i o n s ( F i g . 10). C o r t i s o l c o n c e n t r a t i o n s measured f i v e days a f t e r the f i s h were t r a n s f e r r e d t o the e x p e r i m e n t a l h o l d i n g d e n s i t i e s -3 i n d i c a t e t h a t w i l d f i s h s t o c k e d a t 32 and 64 kg*m had 46 s i g n i f i c a n t l y h i g h e r C o r t i s o l v a l u e s than f i s h h e l d a t the c o n t r o l d e n s i t y o f 8 kg«m ( F i g . 10). Hatchery-r e a r e d f i s h h e l d a t 64 kg*m~3 had s i g n i f i c a n t l y h i g h e r Cortisol concentrations than hatchery-reared f i s h h e l d -3 -3 at e i t h e r the c o n t r o l d e n s i t y (8 kg*m ) o r 32 kg«m ( F i g . 10). W i l d f i s h h e l d a t 8 and 32 kg-m" 3 had s i g n i f i c a n t l y h i g h e r plasma C o r t i s o l v a l u e s than t h e i r h a t c h e r y - r e a r e d c o u n t e r p a r t s h e l d a t the same s t o c k i n g d e n s i t i e s . W i l d and h a t c h e r y - r e a r e d f i s h h e l d a t 64 _3 kg*m had e q u a l l y e l e v a t e d plasma C o r t i s o l c o n c e n t r a t i o n s ( F i g . 10). Pearson c o r r e l a t i o n c o e f f i c i e n t f o r plasma C o r t i s o l c o n c e n t r a t i o n v s . f i s h weight was -0.09017 a t a p r o b a b i l i t y l e v e l o f p<0.18 i n d i c a t i n g no s i g n i f i c a n t c o r r e l a t i o n between plasma C o r t i s o l c o n c e n t r a t i o n and f i s h weight. A l l chinook salmon t r a n s f e r r e d t o water w i t h h i g h Cu c o n c e n t r a t i o n d i e d w i t h i n 15 days o f the t r a n s f e r . V i s u a l o b s e r v a t i o n o f dead f i s h r e v e a l e d heavy mucus accumulation on the g i l l s o f thes e f i s h . No s i g n i f i c a n t d i f f e r e n c e was found between the t i m e - t o -death f o r 50 % o f the w i l d and h a t c h e r y - r e a r e d f i s h p o p u l a t i o n s . A s i g n i f i c a n t d i f f e r e n c e was found between the ti m e - t o - d e a t h o f 50 % o f the p o p u l a t i o n s o f f i s h s t o c k e d a t d i f f e r e n t d e n s i t i e s (p<0.01). Cumulative m o r t a l i t i e s o f w i l d and h a t c h e r y - r e a r e d chinook salmon h e l d a t 8, 32 and 64 kg-m - 3 are shown i n -3 F i g u r e 11. F i s h h e l d a t 8 kg«m had s i g n i f i c a n t l y 47 l o n g e r s u r v i v a l times (9.3 ± 2.2 days, mean ± SD) than d i d f i s h h e l d a t 32 o r 64 kg-m"3 (5.5 ± 0.43 and 3.9 ± 1.33 days r e s p e c t i v e l y ) , data are shown i n T a b l e 2. D i s c u s s i o n The s i g n i f i c a n t l y h i g h e r h e m a t o c r i t v a l u e s observed i n w i l d chinook salmon h e l d a t 32 and 64 kg«m~ 3 f o r f i v e days compared t o t h e i r c o h o r t s h e l d a t 8 _3 kg«m may have been the r e s u l t confinement s t r e s s (Mazeaud and Mazeaud, 1981). Mazeaud, Mazeaud and Donaldson (1977) showed t h a t the r e l e a s e o f catecholamines i n t o c i r c u l a t i o n i s a common s t r e s s response i n f i s h . Catecholamines have been shown t o cause f i s h RBC's t o s w e l l (Nikinmaa, 1982; B a r o i n e t a l . , 1984; L i n g and W e l l s , 1985). Such RBC s w e l l i n g may have c o n t r i b u t e d t o the e l e v a t e d h e m a t o c r i t v a l u e s i n the f i s h h e l d a t the h i g h e r d e n s i t i e s . The s i g n i f i c a n t d i f f e r e n c e between the h e m a t o c r i t v a l u e s o f -3 w i l d and h a t c h e r y - r e a r e d f i s h h e l d a t 32 and 64 kg*m may have been due t o d i f f e r e n c e s i n the s t r e s s response t o crowding between these two groups o f f i s h . K a l l e b e r g (1958) found t h a t j u v e n i l e w i l d A t l a n t i c salmon (Salmo salar) and brown t r o u t (Salmo trutta) are more a g g r e s s i v e than h a t c h e r y - r e a r e d f i s h i n a stream s i t u a t i o n . The g r e a t e r i n c r e a s e i n h e m a t o c r i t l e v e l s of w i l d compared t o h a t c h e r y - r e a r e d chinook i n our study may have been due t o a s i m i l a r h i g h e r a g g r e s s i o n 48 o r s t r e s s l e v e l on the p a r t o f the w i l d chinook, o r due t o the presence o f g r e a t e r numbers o f w i l d compared t o h a t c h e r y - r e a r e d f i s h i n each aquarium. The s i g n i f i c a n t l y h i g h e r plasma C o r t i s o l l e v e l s i n m i g r a t i n g chinook compared t o t h e i r h a t c h e r y - r e a r e d c o u n t e r p a r t s may have been due t o environmental s t r e s s o r s , i . e . p r e d a t o r s and hazardous o b s t a c l e s , t o which the w i l d m i g r a t i n g chinook were exposed. The s i g n i f i c a n t decrease i n plasma C o r t i s o l c o n c e n t r a t i o n of w i l d chinook brought t o the UBC a q u a c u l t u r e f a c i l i t y suggests t h a t the r i v e r environment d i d c o n t r i b u t e t o the h i g h e r C o r t i s o l v a l u e s found during m i g r a t i o n . The observed decrease i n plasma C o r t i s o l may, however, also have been influenced by r e p o r t e d s e a s o n a l v a r i a t i o n s i n r e s t i n g salmonid plasma C o r t i s o l c o n c e n t r a t i o n s . Barton e t a l . (1985) showed endogenous r e d u c t i o n s o f plasma C o r t i s o l c o n c e n t r a t i o n s i n r e s t i n g coho salmon d u r i n g the summer months, the time frame over which our b l o o d samples were c o l l e c t e d . The i n c r e a s e i n plasma C o r t i s o l c o n c e n t r a t i o n o f w i l d and h a t c h e r y - r e a r e d chinook a f t e r t r a n s p o r t a t i o n i s c o n s i s t e n t w i t h the f i n d i n g s o f B a r t o n e t a l . (1986), B a r t o n e t a l . (1985), Davis and P a r k e r (1986) and Robertson e t a l . (1988) who found s i g n i f i c a n t e l e v a t i o n s i n plasma C o r t i s o l c o n c e n t r a t i o n s i n handled and/or t r a n s p o r t e d f i s h . A l l f i s h t r a n s f e r r e d t o water w i t h a h i g h 49 concentration of waterborne Cu (0.05 mg/L) had s i g n i f i c a n t increases i n plasma C o r t i s o l concentration, regardless of the stocking density at which they were h e l d . Plasma C o r t i s o l increases observed were c h a r a c t e r i s t i c of those seen i n s t r e s s e d f i s h (Barton e t a l . 1986; Barton e t a l . 1985) and may have been caused by i n c r e a s e d p i t u i t a r y - i n t e r r e n a l a c t i v i t y (Donaldson and Dye, 1975; Schreck and L o r z , 1978). A c c l i m a t i o n t o c a p t i v e rearing c o n d i t i o n s may have contributed to the s i g n i f i c a n t l y lower plasma C o r t i s o l c o n c e n t r a t i o n s i n crowded h a t c h e r y - r e a r e d chinook compared t o t h e i r w i l d c o u n t e r p a r t s h e l d i n a s i m i l a r rearing environment. M o r t a l i t i e s observed i n these t r i a l s were p r o b a b l y due t o t h e h i g h Cu c o n c e n t r a t i o n found i n t h e ambient water. The observed l e v e l o f 0.05 mg/L i s r o u g h l y 9x the t o l e r a b l e l i m i t r e p o r t e d by Wedemeyer (1977). Lewis and Lewis (1971) r e p o r t e d t h a t Cu causes a decrease i n the s a l t c o n c e n t r a t i o n o f the b l o o d serum and can weaken o r be f a t a l t o f i s h . Death i n f i s h exposed t o t o x i c l e v e l s of heavy metals have a l s o been thought t o be due t o e x c e s s i v e mucus s e c r e t e d by the g i l l s , r e s u l t i n g i n s u f f o c a t i o n o f the f i s h (Plonka and N e f f 1969). The heavy mucus s e c r e t i o n observed on the g i l l s o f the dead f i s h from t h i s experiment may have caused the f i s h t o d i e of s u f f o c a t i o n . The d i r e c t r e l a t i o n s h i p between m o r t a l i t y r a t e and 50 f i s h s t o c k i n g d e n s i t y i n d i c a t e s t h a t t h e s e chinook salmon were d e l e t e r i o u s l y a f f e c t e d by crowding. The maintenance o f e q u a l water q u a l i t y i n a l l groups o f f i s h suggests t h a t an a s p e c t of crowding such as i n c r e a s e d numbers of b e h a v i o r a l i n t e r a c t i o n s l e a d i n g t o s t r e s s (Schreck, 1982) may have d e l e t e r i o u s l y a f f e c t e d the f i s h h e l d a t the h i g h e r s t o c k i n g d e n s i t i e s . 51 T a b l e 2 Time t o death o f 50% of w i l d and h a t c h e r y -r e a r e d chinook salmon p o p u l a t i o n s h e l d a t 8, 32 and 64 _3 kg'in i n f r e s h water c o n t a i n i n g 50 ppm Cu. Mean ± SD, N=4. H o l d i n g d e n s i t y Time t o 50 % m o r t a l i t y _3 (kg • m ) (days)  8 9.3 ± 2.2 a 32 5.5 ± 0.43 b 64 3.9 ± 1.33 b Figure 0: Hematocrit values of wild and hatchery-reared chinook salmon exposed to environmental changes. Big Qualicum Chinook U e a n * S D « N = 3 2 2 ~ 3 0 . | | Hatchery post—transport Figure 10: Plasma C o r t i s o l c o n c e n t r a t i o n of wild and h a t c h e r y - r e a r e d chinook salmon exposed to environmental changes. 500 450 -400 -350 300 -250 -200 150 h 100 50 0 a r h . r a o e w a 7 Big Qualloum Chinook I | Hatchery H mid '///////, r 1 v e r Pre -transport b Post -transport Mean ± SE, N=»20, a=»0.05 e b o 1 d 1 I 8 | 32 | ( K g / m 8 ) Five days post—transport 64 t Figure 11: Cumulative mortalities of wild and hatchery-reared chinook salmon stocked at three densities in cppper—laden fresh water. Mean ± SD. N=2. Days post-transfer 55 Experiment 2: Endocrine and immune response of crowded A t l a n t i c salmon. M a t e r i a l s and Methods T h i s experiment was performed u s i n g A t l a n t i c salmon r e a r e d from eggs at the UBC a q u a c u l t u r e f a c i l i t y and weighing an average o f 4.9 ± 0.93 g (mean ± SD) a t the time o f the experiment. These f i s h were r e a r e d i n _3 f i b e r g l a s s raceways stocked a t 35 kg*m p r i o r t o t r a n s f e r t o the e x p e r i m e n t a l d e n s i t i e s o f 8, 32 and 64 -3 . . . . kg«m . The experimental s t o c k i n g d e n s i t i e s were e s t a b l i s h e d by h o l d i n g 239 f i s h i n e i t h e r a whole, 1/4 or 1/8 o f a 200 L o v a l f i b e r g l a s s tank, each h o l d i n g 146, 36.5 and 18.75 L o f water, r e s p e c t i v e l y . Nylon s c r e e n i n g (1 cm mesh s i z e ) was used t o d i v i d e the whole tanks i n t o f r a c t i o n s . A l l f i s h h o l d i n g u n i t s r e c e i v e d 2 L/min o f d e c h l o r i n a t e d Vancouver c i t y water (11-13 °C, pH 6.1, [O2] 11 ppm), 2x the flow r a t e recommended by P i p e r e t a l . (1986). The c o n c e n t r a t i o n i n the f i s h tanks was maintained a t o r above 10 ppm a t a l l t i m e s . The f i s h were main t a i n e d on n a t u r a l p h o t o p e r i o d . Blood samples were taken from the f i s h a t f o u r t i m e s : 1) p r i o r t o t r a n s f e r from the r e a r i n g t r o u g h ; 2) a f t e r 0.5 h o f h a n d l i n g / t r a n s p o r t a t i o n t o the e x p e r i m e n t a l h o l d i n g u n i t s ; 3) 5 days p o s t t r a n s f e r t o the e x p e r i m e n t a l d e n s i t i e s ; and 4) 33 days po s t 56 t r a n s f e r . Plasma from each o f these samples was assayed f o r C o r t i s o l c o n c e n t r a t i o n as d e s c r i b e d f o r the f i r s t experiment. The Jerne h e m o l y t i c plaque assay, as d e s c r i b e d by T r i p p e t a l . (1987), was used t o determine the e f f e c t o f r e a r i n g d e n s i t y on the f i s h ' s a b i l i t y t o generate APC's in vitro. B r i e f l y , head kidney t i s s u e was a s e p t i c a l l y h a r v e s t e d and p l a c e d i n a t e s t tube c o n t a i n i n g t i s s u e c u l t u r e medium (TCM) composed o f RPMI 1640 w i t h L-glutamine and b i c a r b o n a t e (GIBCO, Grand I s l a n d , NY, USA) supplemented w i t h 10% (v/v) f e t a l c a l f serum (B.A. B i o p r o d u c t s , W a l k e r v i l l e , MD, U.S.A.), 100 mg gen t a m i c i n s u l p h a t e / L (Sigma Chemical Co., St L o u i s , MO, U.S.A.), 50 jumol 2-mercaptoethanol/L (MCB Ma n u f a c t u r i n g Chemists, Inc., C i n c i n n a t i , OH, U.S.A.). 4.0 pmol adenosine/L, 9.0 umol c y t o s i n e / L , 9.0 umol thymidine/L and 9.0 umol guanosine/L (Sigma). The kidney t i s s u e was homogenized by g e n t l y a s p i r a t i n g i t w i t h a 1 ml s y r i n g e . T i s s u e d e b r i s was all o w e d t o s e t t l e t o the bottom o f the t e s t tube and supernatants c o n t a i n i n g lymphocytes were c o l l e c t e d , washed by 7 c e n t r i f u g a t i o n i n TCM and resuspended t o 2 X 10 c e l l s / m l i n TCM. The lymphocyte number i n TCM was determined u s i n g a Neubauer hemocytometer. F i f t y uh o f c e l l s u s p e n s i o n were t r a n s f e r r e d t o w e l l s o f a 96-we l l , f l a t - b o t t o m m i c r o c u l t u r e p l a t e (Corning G l a s s Works, C o r n i n g , NY, U.S.A.) and t o t h i s s uspension was added e i t h e r 50 uL o f TCM ( n e g a t i v e c o n t r o l s ) o r TCM 57 c o n t a i n i n g t r i n i t r o p h e n y l a t e d l i p p o p o l y s a c h a r i d e (TNP-LPS) as an a n t i g e n source (0,4ug/mLj Jacobs & M o r r i s o n , 1975). C e l l c u l t u r e s were i n c u b a t e d a t 17 °C i n an a i r t i g h t gasbox (C.B.S. S c i e n t i f i c , D e l Mar, CA, U.S.A.) w i t h b l o o d gas mixture (10% 0 2, 10% C 0 2 and 80% N,) and f e d 20 juL o f f e e d i n g c o c k t a i l ( T i t t l e and R i t t e n b e r g , 1978) every o t h e r day. The c e l l s were ha r v e s t e d , washed w i t h TCM by c e n t r i f u g a t i o n and resuspended i n TCM a f t e r 7 days o f i n c u b a t i o n . The Cunningham Plaque assay was used t o d e t e c t lymphocytes s e c r e t i n g anti-TNP a n t i b o d i e s (Cunningham and Szenberg, 1968). The procedure c o n s i s t s o f mi x i n g 100/jL lymphocyte suspension, 25 uL TNP-coated sheep r e d b l o o d c e l l s (SRBC) ( R i t t e n b e r g & P r a t t , 1969) and 25 uh d i l u t e d coho salmon (Oncorhynchus kisutch) serum as a complement source and p l a c i n g the mi x t u r e i n a Cunningham s l i d e chamber. Anti-TNP a n t i b o d y s e c r e t e d by a n t i b o d y p r o d u c i n g c e l l s d e r i v e d form the kidney lymphocytes becomes bound t o nearby TNP-SRBC d u r i n g the two hour i n c u b a t i o n p e r i o d a t 17 °C. T h i s b i n d i n g r e s u l t s i n the a c t i v a t i o n o f the complement cascade, l e a d i n g t o the l y s i s o f the nearby TNP-SRBC. Lympohocytes s e c r e t i n g anti-TNP a n t i b o d y are d e t e c t e d by the h o l e (plaque) they c r e a t e , i n the lawn o f TNP-SRBC and are counted under a d i s s e c t i n g microscope. Plaque counts are r e l a t i v e t o the t o t a l p o p u l a t i o n o f lymphocytes p l a t e d . Lymphocyte v i a b i l i t y , a s s e s s e d by 58 t r y p a n b l u e e x c l u s i o n a n d h e m o c y t o m e t e r c e l l c o u n t s , r e m a i n e d a b o v e 90% i n a l l t r i a l s . R e s u l t s R e s u l t s f r o m t h e e x p e r i m e n t p e r f o r m e d w i t h A t l a n t i c s a l m o n i n d i c a t e t h a t a 0.5 h t r a n s p o r t a t i o n p e r i o d d i d n o t r e s u l t i n a s i g n i f i c a n t i n c r e a s e o f mean p l a s m a C o r t i s o l c o n c e n t r a t i o n ( F i g . 12). C o r t i s o l c o n c e n t r a t i o n s o b t a i n e d f r o m f i s h h e l d a t 8, 32 a n d 64 -3 kg*m f o r 33 d a y s i n d i c a t e t h a t f i s h r e a r e d a t 64 _3 k g « m h a d s i g n i f i c a n t l y h i g h e r p l a s m a C o r t i s o l c o n c e n t r a t i o n s a n d a r e d u c e d a b i l i t y t o p r o d u c e a n t i b o d y p r o d u c i n g c e l l s c o m p a r e d t o t h e f i s h r e a r e d a t -3 8 a n d 32 k g « m ( F i g . 12). D i s c u s s i o n R e s u l t s f r o m t h e A t l a n t i c s a l m o n t r i a l d e m o n s t r a t e t h a t t h e s e f i s h c a n b e d i p - n e t t e d a n d t r a n s p o r t e d f o r a p e r i o d o f 0.5 h w i t h o u t e l i c i t i n g a l a r g e C o r t i s o l r e s p o n s e t y p i c a l o f t h o s e s e e n a f t e r t r a n s p o r t a t i o n a n d a c u t e h a n d l i n g o f r a i n b o w t r o u t ( P i c k e r i n g a n d P o t t i n g e r 1989) o r c h i n o o k s a l m o n ( B a r t o n e t a l . 1986). T h e e l e v a t e d p l a s m a C o r t i s o l v a l u e s f i v e d a y s p o s t -t r a n s f e r i n t h e f i s h s t o c k e d a t t h e l o w e s t d e n s i t y (8 -3 k g « m ) i s d i f f i c u l t t o e x p l a i n . One w o u l d h a v e 59 expected these f i s h t o have r e t u r n e d t o b a s e l i n e plasma C o r t i s o l c o n c e n t r a t i o n s w i t h i n 6 h (Barton e t a l . 1986) t o 8 h ( P i c k e r i n g and P o t t i n g e r 1989). Measurement o f plasma C o r t i s o l c o n c e n t r a t i o n s 5 days a f t e r t r a n s p o r t a t i o n i n f i s h s t o c k e d a t 32 and 64 kg«m~ 3 showed t h a t these c o n c e n t r a t i o n s were not s i g n i f i c a n t l y h i g h e r than p r e - t r a n s p o r t b a s e l i n e v a l u e s . T h i s f i n d i n g i s i n agreement w i t h P i c k e r i n g and P o t t i n g e r (1989) and Bart o n e t a l . (1986) who showed the r e t u r n o f plasma C o r t i s o l concentrations t o "normal" b a s e l i n e v a l u e s w i t h i n 8 h o f the s t r e s s f u l event. The continued increase i n plasma C o r t i s o l concentrations i n _3 f i s h s t o c k e d a t 64 kg«m suggests t h a t t h e s e f i s h were e x p e r i e n c i n g s t r e s s throughout the d u r a t i o n o f the experiment. These f i n d i n g s a re c o n s i s t e n t w i t h those o f P i c k e r i n g and P o t t i n g e r (1989) who found b l o o d C o r t i s o l c o n c e n t r a t i o n s remained e l e v a t e d f o r up t o 4 weeks i n brown t r o u t (Salmo trutta). C o n f i n e d h o l d i n g a r e a was p r o b a b l y the s t r e s s o r which e l i c i t e d t he s i g n i f i c a n t l y h i g h e r plasma C o r t i s o l concentrations i n -3 the group o f f i s h h e l d a t 64 kg*m -3 The f i n d i n g t h a t f i s h s t o c k e d a t 64 kg«m had s i g n i f i c a n t l y h i g h e r plasma C o r t i s o l c o n c e n t r a t i o n and s i g n i f i c a n t l y suppressed a b i l i t y t o produce APC's -3 compared t o the f i s h s t o c k e d a t 8 and 32 kg«m i s c o n s i s t e n t w i t h the f i n d i n g s o f Maule e t a l . (1987) who found t h a t coho salmon w i t h e l e v a t e d plasma C o r t i s o l 60 c o n c e n t r a t i o n s had s i g n i f i c a n t l y lower numbers of plaque forming c e l l s compared t o f i s h w i t h low plasma C o r t i s o l c o n c e n t r a t i o n s . These same authors r e p o r t t h a t the plasma C o r t i s o l c o n c e n t r a t i o n i n c r e a s e s observed d u r i n g the s m o l t i f i c a t i o n p e r i o d are c o r r e l a t e d w i t h a r e d u c t i o n i n number o f the plaque forming c e l l s (PFC). Plaque forming c e l l s are the same as a n t i b o d y - p r o d u c i n g c e l l s which we measured f o r t h i s experiment. Maule e t a l . (1987) a l s o found t h a t f i s h -3 r e a r e d a t h i g h d e n s i t y (1941 fish«m ) had lower plasma C o r t i s o l c o n c e n t r a t i o n s and s i g n i f i c a n t l y h i g h e r PFC numbers than those r e a r e d a t low d e n s i t y (647 f i s h - m " 3 ). The d e n s i t y e f f e c t d i f f e r e n c e s between our f i n d i n g s and those of Maule e t a l . (1987) may be due t o s p e c i e s and/or s e a s o n a l d i f f e r e n c e s between the two experiments. Maule e t a l . (1987) performed t h e i r experiments w i t h coho salmon {Oncorhynchus kisutch) d u r i n g the month o f June, w h i l e the salmon were i n the p r o c e s s o f s m o l t i f i c a t i o n and endogenous plasma C o r t i s o l l e v e l s were e l e v a t e d . We performed our experiment w i t h A t l a n t i c salmon d u r i n g the month o f J u l y , when b a s e l i n e plasma C o r t i s o l c o n c e n t r a t i o n s were low, i n d i c a t i n g t h a t the f i s h were not i n the p r o c e s s o f s m o l t i f i c a t i o n . K a a t t a r i and T r i p p (1987) r e p o r t t h a t the c e l l u l a r mechanism of g l u c o c o r t i c o i d immunosuppression i n f i s h i n v o l v e s the a v a i l a b i l i t y o f f a c t o r s which induce the d i f f e r e n t i a t i o n o f a n t i b o d y -61 p r o d u c i n g c e l l s p r e c u r s o r s t o a n t i b o d y - p r o d u c i n g c e l l s . They showed t h a t the a d d i t i o n o f media c o n t a i n i n g what are thought t o be i n t e r l e u k i n s , produced by i n c u b a t i o n o f a n t e r i o r kidney lymphocytes w i t h a n t i g e n s , r e s u l t s i n the r e s t o r a t i o n o f the a n t i b o d y response, d e s p i t e the presence o f p h y s i o l o g i c a l l y h i g h l e v e l s o f exogenous C o r t i s o l . R e s u l t s o f the p r e s e n t experiment show the e x i s t e n c e o f an i n v e r s e r e l a t i o n s h i p between plasma C o r t i s o l c o n c e n t r a t i o n and APC number produced from a n t e r i o r kidney lymphocytes. F a c t o r s thought t o be n e c e s s a r y f o r the d i f f e r e n t i a t i o n o f APC p r e c u r s o r s t o APC' s may have been i n h i b i t e d by the presence o f h i g h plasma C o r t i s o l c o n c e n t r a t i o n s observed i n the f i s h r e a r e d a t h i g h s t o c k i n g d e n s i t y . Plasma Cortisol (ng/ml) OQ P APC / miUion lymphocytes 63 Chapter 2: C o n c l u s i o n s The experiments performed i n t h i s c h a p t e r show t h a t crowding has a s i g n i f i c a n t e f f e c t on the p h y s i o l o g y o f salmonids r e a r e d i n c a p t i v i t y . W i l d and h a t c h e r y - r e a r e d chinook salmon have i n c r e a s e d h e m a t o c r i t v a l u e s and plasma C o r t i s o l c o n c e n t r a t i o n s as w e l l as reduced s u r v i v a l times when s t o c k i n g d e n s i t y i s i n c r e a s e d . H a t c h e r y - r e a r e d f i s h were found t o have lower plasma C o r t i s o l c o n c e n t r a t i o n s than t h e i r w i l d c o u n t e r p a r t s when h e l d a t c o n t r o l and medium d e n s i t y . The decreased s u r v i v a l time o f both h a t c h e r y - r e a r e d and w i l d chinook salmon h e l d a t h i g h s t o c k i n g d e n s i t i e s suggests t h a t crowding had a d e l e t e r i o u s l y a f f e c t on the f i s h . The decreased a n t i b o d y - p r o d u c i n g c e l l numbers i n A t l a n t i c salmon c h r o n i c a l l y h e l d a t h i g h s t o c k i n g d e n s i t i e s suggests t h a t crowding a l s o suppresses the a n t i b o d y p r o d u c i n g c e l l number component of the s p e c i f i c immune system. 64 G e n e r a l c o n c l u s i o n s and recommendations The s a l t w a t e r r e a r i n g experiment conducted w i t h chinook salmon r e v e a l s t h a t r e a r i n g c o n d i t i o n s have a s i g n i f i c a n t e f f e c t on parameters o f economical importance t o f i s h farmers. F i s h f e d t o 100 % o f s a t i a t i o n e x p e r i e n c e s i g n i f i c a n t l y h i g h e r f i s h growth d u r i n g the i n i t i a l months of s a l t w a t e r r e a r i n g compared t o f i s h f e d t o 67 % o f s a t i a t i o n , but f i s h f e d a t the two l e v e l s e x p e r i e n c e the same growth r a t e d u r i n g the f i r s t w i n t e r o f s a l t w a t e r r e a r i n g . Seasonal changes o c c u r r i n g d u r i n g the f i r s t n i ne months o f chinook salmon s a l t w a t e r r e a r i n g i e . , decreased water temperature and p h o t o p e r i o d , i n c r e a s e d body weight, r e s u l t i n s i g n i f i c a n t l y h i g h e r f e e d c o n v e r s i o n r a t e s d u r i n g the w i n t e r than d u r i n g the summer o r f a l l . We recommend t h a t an e f f i c i e n t method of r e d u c i n g chinook salmon f e e d c o s t i s t o fe e d the f i s h a t 67 % o f s a t i a t i o n d u r i n g the f i r s t w i n t e r o f s a l t w a t e r r e a r i n g , when growth r a t e s o f f i s h f e d t o 67 and 100 % of s a t i a t i o n were not s i g n i f i c a n t l y d i f f e r e n t . A r e d u c t i o n o f f e e d i n g r a t e s a t t h i s time would be e s p e c i a l l y advantageous as fe e d c o n v e r s i o n r a t e s were found t o be h i g h e s t d u r i n g the w i n t e r . M o r t a l i t y r a t e was s i g n i f i c a n t l y h i g h e r d u r i n g the summer than d u r i n g the f a l l o r w i n t e r . We recommend t h a t f i s h be handled 65 as i n f r e q u e n t l y as p o s s i b l e d u r i n g the summer p e r i o d . I n c i d e n c e o f BKD a f t e r nine months o f s a l t w a t e r r e a r i n g was d i r e c t l y p r o p o r t i o n a l t o s t o c k i n g d e n s i t i e s o f 1.5 -3 t o 4 kg*m . We recommend t h a t the s t o c k i n g d e n s i t i e s o f 200 t o 400 g chinook salmon r e a r e d i n s a l t water be reduced b e f o r e f i s h growth renders the s t o c k i n g d e n s i t y _3 g r e a t e r than 3 kg*m Experiments performed w i t h f r e s h w a t e r f i s h showed t h a t crowding has a s i g n i f i c a n t e f f e c t on the p h y s i o l o g y o f salmonids r e a r e d i n c a p t i v i t y . W i l d and h a t c h e r y - r e a r e d chinook salmon have i n c r e a s e d plasma C o r t i s o l c o n c e n t r a t i o n s and reduced s u r v i v a l times when h e l d a t h i g h s t o c k i n g d e n s i t i e s . Lower plasma C o r t i s o l c o n c e n t r a t i o n s i n h a t c h e r y - r e a r e d f i s h h e l d a t the same s t o c k i n g d e n s i t y as t h e i r w i l d c o u n t e r p a r t s may have been due t o a c c l i m a t i o n t o c a p t i v e r e a r i n g c o n d i t i o n s by the h a t c h e r y - r e a r e d f i s h . The decreased s u r v i v a l time of f i s h h e l d a t the h i g h e r s t o c k i n g d e n s i t y suggests t h a t crowding has a d e l e t e r i o u s l y a f f e c t on the f i s h . The d ecreased a n t i b o d y - p r o d u c i n g c e l l numbers i n A t l a n t i c salmon c h r o n i c a l l y h e l d a t h i g h s t o c k i n g d e n s i t i e s suggests t h a t crowding a l s o a f f e c t s the immune f u n c t i o n o f f i s h . F i v e t o 10 g A t l a n t i c salmon r e a r e d i n f r e s h water and stocked a t d e n s i t i e s lower _3 than 64 kg*m may be more immune competent than f i s h s t o c k e d above 64 kg*m~^. 66 References B a r o i n , A., Garcia-Romeu, F., Lamare, T. & M o t a i s , R. 1984. Hormone-induced c o t r a n s p o r t w i t h s p e c i f i c p h a r m a c o l o g i c a l p r o p e r t i e s i n e r y t h r o c y t e s of rainbow t r o u t , Salmo gairdneri. F. P h y s i o l . , Lond. 350, 137-157. Barton, B.A. Schreck, C.B. Ewing, R.D. Hemmingsen, A.R. and P a t i n o , R. 1985. Changes i n Plasma C o r t i s o l d u r i n g S t r e s s and S m o l t i f i c a t i o n i n Coho Salmon, Oncorhynchus kisutch. Gen. Comp. E n d o c r i n o l . 59: 468-471. Barton, B.A., Schreck, C.B., and S i g i m o n d i , L.A. 1986. M u l t i p l e acute d i s t u r b a n c e s evoke cumula t i v e p h y s i o l o g i c a l s t r e s s responses i n j u v e n i l e chinook salmon. Trans. Am. F i s h . Soc. 115: 245-251. Barton, B.A., Schreck, C.B., Ewing, R.D., Hemmingsen, A.R. and P a t i n o , R. 1985. Changes i n Plasma C o r t i s o l d u r i n g s t r e s s and s m o l t i f i c a t i o n i n coho salmon, Oncorhynchus kisutch. Gen. and Comp. E n d o c r i n o l . 59, 468-471. B e l l , G.R. 1987. An o u t l i n e o f a n e s t h e t i c s and a n e s t h e s i a f o r salmonids, a guide f o r f i s h c u l t u r i s t s i n B r i t i s h Columbia. Can Tech. Rep. F i s h Aquat. S c i . No. 1534. B o u t i l i e r , R.G., Dobson, G., Hoeger, U., and R a n d a l l , D.J. 1988. Acute exposure t o graded l e v e l s o f hypoxia i n rainbow t r o u t (Salmo gairdneri): m e t a b o l i c and r e s p i r a t o r y a d a p t a t i o n s . R e s p i r . P h y s i o l . 71, 69-82. B r e t t , J.R. 1971. E n e r g e t i c responses o f salmon t o temperature. A study o f some thermal r e l a t i o n s i n the p h y s i o l o g y and f r e s h w a t e r e c o l o g y o f sockeye salmon (Oncorhynchus n e r k a ) . Am. Z o o l . 11, 99-113. B r e t t , J.R. and Groves, T.D.D. 1979. In F i s h P h y s i o l o g y (W.S. Hoar, D.J. R a n d a l l , and J.R. B r e t t , e d s . ) , V o l V I I I . pp. 279-352/ Academic P r e s s , New York. B r e t t , J.R., and Higgs., D.A. 1970. E f f e c t o f temperature on the r a t e o f g a s t r i c d i g e s t i o n i n f i n g e r l i n g sockeye salmon, Oncorhynchus nerka. J . F i s h . Res. Bd. Canada 27: 1767-1779. B r e t t , J.R., Shelborn, J.E., and Shoop, C T . 1969. 67 Growth r a t e and body composition o f f i n g e r l i n g sockeye salmon, Oncorhynchus nerka, i n r e l a t i o n t o temperature and r a t i o n s i z e . J . F i s h . Res. Bd. Canada 26: 2363-2394. Cunningham, A . J . and Szenberg, A. 1968. F u r t h e r improvements i n the plaque t e c h n i q u e f o r d e t e c t i n g s i n g l e a n t i b o d y - f o r m i n g c e l l s . Immunology, 14, 599. C v i t a n i c h , J . 1987. Renibacterium salmoninarum "Bar forms" and t h e i r assessment by q u a n t i t a t i v e FAT. Am. F i s h . Soc. F i s h H e a l t h S e c t i o n News L e t t e r . 15/1, p 4. Dalmaz, Y., Pequignot, J.M., Cottet-Emard, J.M. T a v i t i a n , E., and P e y r i n , L. 1987. S u s t a i n e d enhancement of the catecholamine dynamics i n r a t c a r o t i d b o d i e s , a d r e n a l s , sympathetic g a n g l i a and t a r g e t organs under long-term moderate hypoxia. Biomed. Biochim A c t a 12, 899-902. Davi s , K.B., and Parker, N.C. 1986. Plasma c o r t i c o s t e r o i d s t r e s s response o f f o u r t e e n s p e c i e s o f warmwater f i s h t o t r a n s p o r t a t i o n . T r a n s . Am. F i s h . Soc. 115:495-499. Dick, P.T., and Dixon, D.G. 1985. Changes i n c i r c u l a t i n g b l o o d c e l l l e v e l s o f rainbow t r o u t , Salmo gairdnerl Richardson, f o l l o w i n g acute and c h r o n i c exposure t o copper. J . F i s h . B i o l . 26, 475-481. Donaldson, E.M. 1981. The p i t u i t a r y - i n t e r r e n a l a x i s as an i n d i c a t o r of s t r e s s i n f i s h . Pages 11-47 in A.D. P i c k e r i n g , e d i t o r . S t r e s s and f i s h . Academic P r e s s . London. Donaldson, E.M. 1986. The i n t e g r a t e d development and a p p l i c a t i o n o f c o n t r o l l e d r e p r o d u c t i o n t e c h n i q u e s i n P a c i f i c salmonid a q u a c u l t u r e . F i s h P h y s i o l o g y and B i o c h e m i s t r y v o l . 2, nos. 1-4, pp 9-24. Donaldson, E.M. and Dye, H.M. 1975. C o r t i c o s t e r o i d c o n c e n t r a t i o n s i n sockeye salmon (Oncorhynchus nerka) exposed t o low c o n c e n t r a t i o n s of copper. J . F i s h . Res. Bd. Can. 32, 533-539. Duncan, R.C., Knapp, R.G. and M i l l e r , M.C. 1983. I n t r o d u c t o r y b i o s t a t i s t i c s f o r the h e a l t h s c i e n c e s . John W i l e y and Sons., Toronto. E v e l y n , T.P.T., B e l l , G.R. P r o s p e r i - P o r t a , L. and Ketcheson J.E. 1989. A simple t e c h n i q u e f o r 68 a c c e l e r a t i n g the growth o f the kidney d i s e a s e b a c t e r i u m J?enii>acterium salmoninarum on a commonly used c u l t u r e medium (KDM2). D i s . Aquat. Org. 7:231-234. Fenderson, O.C. and Carpenter, M.R. 1971. E f f e c t s o f crowding on the b e h a v i o r o f j u v e n i l e h a t c h e r y and w i l d l a n d l o c k e d A t l a n t i c salmon (Salmo salar L.) Anim. Behav. 19, 439-447. Fenderson, O.C. and Carpenter, R.M., 1971. E f f e c t s o f crowding i n the b e h a v i o r of j u v e n i l e h a t c h e r y and w i l d l a n d l o c k e d A t l a n t i c salmon (Salmo salar L . ) . Anim. Behav., 19:439-447. Har d i e , L . J . , F l e t c h e r , T.C. and Secombes C.J. 1990. The e f f e c t o f V i t a m i n E on the immune response o f the A t l a n t i c Salmon (Salmo s a l a r L . ) . A q u a c u l t u r e , 87 1-13. Henken, A.M., T i g g h e l a a r , A . J . and Van Muiswinkel, W.B. 1987. E f f e c t s o f f e e d i n g l e v e l on a n t i b o d y p r o d u c t i o n i n A f r i c a n c a t f i s h , C l a r i a s g a r i e p i n u s B u r c h e l l , a f t e r i n j e c t i o n o f Y e r s i n i a r u c k e r i 0-a n t i g e n . J . F i s h D i s e a s e s . 11, 85-88. Hudson, R.J., Saben, H.S. and E m s l i e 1974. P h y s i o l o g i c a l and environmental i n f l u e n c e s on immunity. The V e t e r i n a r y B u l l e t i n 44:119-128. Jacobs, D.M. and M o r r i s o n , D.C. 1975. S t i m u l a t i o n o f a T-independent primary a n t i - h a p t e n response in vitro by T N P - l i p o p o l y s a c c h a r i d e (TNP-LPS). J . of Immunology 144, 360-364. Jacobsen, P. and B e r l i n d , L. 1988. P e r s i s t e n c e o f o x y t e t r a c y c l i n e i n sediments from f i s h farms. A q u a c u l t u r e , 70:365-370. J o b l i n g , M. 1988. A review o f the P h y s i o l o g i c a l and N u t r i t i o n a l E n e r g e t i c s o f Cod, Gadus morhua L., w i t h P a r t i c u l a r Reference t o Growth Under Farmed C o n d i t i o n s . A q u a c u l t u r e , 70: 1-19. K a a t t a r i , S.L. and T r i p p , R.A. 1987. C e l l u l a r mechanisms o f g l u c o c o r t i c o i d immunosuppression i n salmon. J . F i s h B i o l . 31(Supplement A ) , 129-132. K a l l e b e r g , H. 1958. O b s e r v a t i o n i n a stream tank o f t e r r i t o r i a l i t y and c o m p e t i t i o n i n j u v e n i l e salmon and t r o u t (Salmo salar L. and S. trutta L.) Rep. I n s t . Freshwat. Res. Drottningholm 39, 55-98. K j a r t a n s s o n , H, F i v e l s t a d , S., Thomassen, J.M. and 69 Smith, M.J. 1988. E f f e c t s of d i f f e r e n t s t i c k i n g d e n s i t i e s on p h y s i o l o g i c a l parameters and growth o f a d u l t A t l a n t i c salmon (Salmo s a l a r L.) r e a r e d i n c i r c u l a r t a n k s . A q u a c u l t u r e , 73: 261-274. L a i d l e y , C.W. and L e a t h e r l a n d , J.F. 1988. Cohort sampling, a n a e s t h e s i a and s t o c k i n g - d e n s i t y e f f e c t s on plasma C o r t i s o l , t h y r o i d hormone, m e t a b o l i t e and i o n l e v e l s i n rainbow t r o u t , Salmo gairdneri R i c h a r d s o n . J . F i s h B i o l . 33: 73-88. L a n d o l t , M.L. 1989. The r e l a t i o n s h i p Between D i e t and the Immune Response o f F i s h . A q u a c u l t u r e , 79: 193-206. Latham, M.C. 1975. N u t r i t i o n and i n f e c t i o n i n N a t i o n a l development. S c i e n c e 188:561-565. Lee, E.G.-H. and Gordon, M.R. 1987. Immunofluorescence s c r e e n i n g o f Renibacterium salmoninarum i n the t i s s u e s and eggs o f farmed chinook salmon spawners. A q u a c u l t u r e , 65: 7-14. Lewis, S.D., and Lewis, W.M. 1971. The e f f e c t o f z i n c and copper on the o s m o l a l i t y of b l o o d serum o f the c h annel c a t f i s h , J c t a l u r u s punctatus Rafinesque, and Golden s h i n e r , Notemigonus crysoleucas M i t c h i l l . Trans. Amer. F i s h . S o c , 4, 639-643. L i n g , N. and W e l l s , R.M.G. 1985. Plasma catecholamines and e r y t h r o c y t e s w e l l i n g f o l l o w i n g c a p t u r e s t r e s s i n a marine t e l e o s t f i s h . Comp. Biochem. P h y s i o l . V o l . 82c, No. 1, 231-234. L o v e l l , T. 1989. N u t r i t i o n and f e e d i n g o f f i s h . pp. 199-203. Van Nostrand R e i n h o l d : New York. Maule, A.G., Schreck, C.B., and K a a t t a r i , S.L. 1987. Changes i n the immune system of coho salmon (Oncorhynchus kisutch) d u r i n g the parr-to-smolt transformation and a f t e r implantation of C o r t i s o l . Can. J . F i s h . Aquat. S c i . 44, 161-166. Maule, A.G., T r i p p , R.A., K a a t t a r i , S.L. and Schreck, C.B. 1989. S t r e s s a l t e r s immune f u n c t i o n and d i s e a s e r e s i s t a n c e i n chinook salmon (Oncorhynchus tshawytscha). J . E n d o c r i n o l . 120, 135-142. Mazeaud, M.M. and Mazeaud, F. 1981. A d r e n e r g i c responses t o s t r e s s i n f i s h . In S t r e s s and f i s h . (A.D. P i c k e r i n g , e d . ) , pp 49-75. Academic Press London/New York. Mazeaud, M.M., Mazeaud, F. & Donaldson, E.M. 1977. 70 Primary and secondary e f f e c t s o f s t r e s s i n f i s h : Some new data w i t h a g e n e r a l review. T r a n s . Amer. F i s h Soc. 106. 201-212. Nikinmaa M. 1982. E f f e c t s o f a d r e n a l i n e on r e d c e l l volume and c o n c e n t r a t i o n g r a d i e n t o f protons a c r o s s the r e d c e l l membrane i n the rainbow t r o u t , Salmo gairdneri. Molec. p h y s i o l . 2, 287-297. Noakes, D.L.G. and L e a t h e r l a n d , J.F. 1977. S o c i a l dominance and i n t e r r e n a l c e l l a c t i v i t y i n rainbow t r o u t , Salmo g a i r d n e r i ( P i s c e s , Salmonidae). Env. B i o l . F i s h 2:131-136. Papoutsoglou, S.E., Papaparaskeva-Papoutsoglou, E. and M.N. A l e x i s . 1987. E f f e c t o f d e n s i t y on growth r a t e and p r o d u c t i o n rainbow t r o u t (Salmo g a i r d n e r i R i ch.) over a f u l l r e a r i n g p e r i o d . A q u a c u l t u r e , 66:9-17. Parazo, M.M. 1990. E f f e c t o f D i e t a r y P r o t e i n and Energy L e v e l on Growth, P r o t e i n U t i l i z a t i o n and Carcass Composition o f R a b b i t f i s h , Siganus guttatus. A q u a c u l t u r e , 86: 41-49. P e n n e l l , W. 1987. Research p r i o r i t i e s i n the B r i t i s h Columbia salmon farming i n d u s t r y . B.C. Salmon Farmers A s s o c i a t i o n . P e r r y , S.F., and Wood, C M . 1989. C o n t r o l and c o o r d i n a t i o n o f gas t r a n s f e r i n f i s h e s . Can. J . Z o o l . 67:2961-2970. P i c k e r i n g , A.D. 1984. C o r t i s o l - i n d u c e d lymphocytopenia i n brown t r o u t , Salmo trutta L. Gen. Comp. E n d o c r i n o l . 53: 252-259. P i c k e r i n g , A.D. 1987. S t r e s s responses and d i s e a s e r e s i s t a n c e i n farmed f i s h . Aquanor 1987 Trondheim, Proc. Conf. 3:35-49. P i c k e r i n g , A.D. 1987. S t r e s s responses and d i s e a s e r e s i s t a n c e i n farmed f i s h . Aqua Nor 1987 Trondheim. Proc. Conf. 3:35-49. P i c k e r i n g , A.D. and Duston, J . 1983. A d m i n i s t r a t i o n o f C o r t i s o l t o b r o w n t r o u t , Salmo trutta L., and i t s e f f e c t s on the s u s c e p t i b i l i t y t o Saprolegnia i n f e c t i o n and f u r u n c u l o s i s . J . F i s h B i o l . 23: 163-175. P i c k e r i n g , A.D. and P o t t i n g e r , T.G. 1987. Crowding causes prolonged l e u c o p e n i a i n salmonid f i s h , d e s p i t e i n t e r r e n a l a c c l i m a t i o n . J . F i s h B i o l . 30: 71 701-712. P i c k e r i n g , A.D. and P o t t i n g e r , T.G. 1989. S t r e s s responses and d i s e a s e r e s i s t a n c e i n salmonid f i s h : E f f e c t s o f c h r o n i c e l e v a t i o n o f plasma C o r t i s o l . F i s h P h y s i o l , and Biochem. v o l . 7 no. 1-4, 253-258. P i p e r , R.G., McElwain, I.B., Orme, L.E., McCraren, J.P., Fowler, L.G., and Leonard, J.R. 1986. Fish Hatchery Management. Dept. o f the I n t e r i o r , U.S. F i s h and W i l d l i f e S e r v i c e : Washington, D.C. R e f s t i e , T. 1977. E f f e c t o f d e n s i t y on growth and s u r v i v a l o f rainbow t r o u t . A q u a c u l t u r e , 11: 329-334. R e f s t i e , T. and K i t t e l s e n , A. 1976. E f f e c t o f d e n s i t y on growth and s u r v i v a l o f a r t i f i c i a l l y r e a r e d A t l a n t i c salmon. A q u a c u l t u r e , 8:319-326. R i t t e n b e r g , M.B. and P r a t t , K. 1969. A n t i -t r i n i t r o p h e n y l (TNP) plaque assay. Primary response o f BALB/c mice t o s o l u b l e and p a r t i c u l a t e immunogen. Proceedings o f the S o c i e t y o f B i o l o g i c a l Medicine 132, 575-578. Robertson, L., Thomas, P., arid A r n o l d , C.R. 1988. Plasma C o r t i s o l and secondary s t r e s s responses of c u l t u r e d Red Drum (Sciaenops ocellatus) t o s e v e r a l t r a n s p o r t a t i o n procedures. A q u a c u l t u r e , 68, 115-130. Round, F.E. 1973. The biology of the Algae. Edward Arnold. London Sanders, J.E. and F r y e r , J.L. 1980. R e n i b a c t e r i u m salmoninarum gen. nov., sp. nov., the c a u s a t i v e agent o f b a c t e r i a l kidney d i s e a s e i n salmonid f i s h e s . I n t . J . S y s t . B a c t e r i o l . 30, 496-502. SAS I n s t i t u t e I nc. SAS/STAT User's Guide, Release 6.03 edition. Cary, NC:SAS I n s t i t u t e Inc., 1988. 1028 pp. Schreck, C.B. 1981. S t r e s s and compensation i n t e l e o s t e a n f i s h e s : Response t o s o c i a l and p h y s i c a l f a c t o r s . In S t r e s s and f i s h (A.D. P i c k e r i n g , e d . ) , pp 295-321. Academic p r e s s : London/New York. Schreck, C.B. 1982. S t r e s s and r e a r i n g o f salmonids. A q u a c u l t u r e , 28, 241-249. 72 Schreck, C.B. and L o r z , H.W. 1978. S t r e s s response o f coho salmon (Oncorhynchus kisutch) e l i c i t e d by cadmium and copper and p o t e n t i a l use o f C o r t i s o l as an i n d i c a t o r o f s t r e s s . J . F i s h . Res. Bd. Can. 35, 1124-1129. Schreck, C.B., 1982. S t r e s s and r e a r i n g o f salmonids. A q u a c u l t u r e , 28 (1982) 241-249. Smith, R.R. 1989. N u t r i t i o n a l E n e r g e t i c s . In F i s h N u t r i t i o n ( J . E . H a l v e r , e d . ) , pp. 1-31. Academic P r e s s : New York/London. Sniesko, S.F., 1972. N u t r i t i o n a l f i s h d i s e a s e s . In F i s h N u t r i t i o n ( J . E . H a l v e r , e d . ) , pp. 403-437. Academic P r e s s : New York/London. Sn i e s z k o , S.F. 1974. The e f f e c t s of environmental s t r e s s on outbreaks of i n f e c t i o u s d i s e a s e s o f f i s h e s . J . F i s h B i o l . 6, 197-208. Soderberg, R.W. 1986. E f f e c t s of r e a r i n g d e n s i t y on growth and s u r v i v a l of l a k e t r o u t . Prog. F i s h C u l t . 48: 30-32. Sokal R. R. and R o h l f F . J . 1966. Biometry. Freeman San F r a n c i s c o . Storebakken, T., and Austreng, E. 1987. R a t i o n L e v e l f o r Salmonids I . Growth, S u r v i v a l , Body Composition, and Feed C o n v e r s i o n i n A t l a n t i c Salmon F r y and F i n g e r l i n g s . A q u a c u l t u r e , 60: 189-206. Strange, R.J., Schreck, C. B. 1978. C o r t i s o l c o n c e n t r a t i o n s i n c o n f i n e d j u v e n i l e Chinook salmon (Oncorhynchus tshawytscha). Trans. Am. F i s h . Soc. 107,812-819. Thorpe, J.E., McConway, M.G., M i l e s , M.S., and Muir, J.S. 1987. D i e l and s e a s o n a l changes i n r e s t i n g plasma C o r t i s o l l e v e l s i n J u v e n i l e A t l a n t i c salmon, Salmo salar L. Gen. Comp. E n d o c r i n o l . 65, 19-22. T i t t l e , T.V. and Rittenberg,M.B. 1978. E x p r e s s i o n o f IgG memory response in vitro t o thymus-independent a n t i g e n s . C e l l u l a r Immunology 35, 180-184. T r i p p , R.A., Maule, A.G., Schreck, C.B. and K a a t t a r i , S.L. 1987. C o r t i s o l mediated s u p p r e s s i o n o f salmonid lymphocyte responses in vitro. Dev. and Comp. Immunology. 11, 565-576. 73 T r u s t , T . J . 1986. Pathogenesis of i n f e c t i o u s d i s e a s e s of f i s h . Ann. Rev. M i c r o b i o l . 40: 479-502. Wallace, J . C , Kolbeinshaven, A.G., and Reinsnes, T.G. The e f f e c t s o f S t o c k i n g D e n s i t y on E a r l y Growth i n A r c t i c Charr, Salvelinus alpinus (L.) Aq u a c u l t u r e , 73: 101-110. Wedemeyer, G. 1970. The r o l e o f s t r e s s i n the d i s e a s e r e s i s t a n c e o f f i s h e s . Spec. P u b i s . Am. F i s h . Soc. 5, 30-35. Wedemeyer, G.A. 1977. Environmental requirements f o r f i s h h e a l t h , Pages 41-55 in Proceedings o f t h e I n t e r n a t i o n a l Symposium on Diseases o f C u l t u r e d Salmonids, Tavolek, Inc. S e a t t l e , Washington. Wilgus, H.S. 1980. Di s e a s e , n u t r i t i o n - i n t e r a c t i o n . P o u l t r y S c i e n c e 59:772-781. Zar, J . H. 1984. Biostatistical analysis. P r e n t i c e -H a l l . Toronto. 74 Appendix I Feed c o n v e r s i o n r a t e s (Feed:Fish) o f chinook salmon f e d t o 67 and 100 % o f s a t i a t i o n and r e a r e d i n s a l t water a t f o u r s t o c k i n g d e n s i t i e s f o r 272 days. Means ± SD. N=2. June 8/88- Feedina l e v e l (% o f s a t i a t i o n ) August 17/88 D e n s i t y 100 67 Low 1 .03 ± 0.05 a 0.84 ± 0. 0 3 a Medium 1 .06 ± 0.05 a 0.83 ± 0. 0 1 a High 1 .14 ± 0.05 a 0.90 ± 0. 0 1 a * C o n t r o l 1 .4 August 17/88- Feedina l e v e l (% o f s a t i a t i o n ) November 29/88 D e n s i t y 100 67 Low 1 .18 + 0. . l a 1. 0 + 0 .03 a Medium 1 .29 + 0. . l l a b 0. 88 + 0 .05 a High 1 .30 + 0. . 0 3 a b 1. 05 + 0 .02 a * C o n t r o l 1 .64 November 29/88 Feedina l e v e l (% of s a t i a t i o n ) - March 8/89 D e n s i t v 100 67 . l l b c Low 2 .65 + 0. ,06 d 1. 84 + 0 Medium 2 .00 + 0. .14 C 1. 92 + 0 .35 C High 2 .23 + 0. , 0 7 c d 1. 96 + 0 .32 C * C o n t r o l 1 .15 The c o n t r o l f e e d c o n v e r s i o n r a t e v a l u e f o r each r e a r i n g p e r i o d was c a l c u l a t e d from one group o f f i s h and t h e r e f o r e has no c o r r e s p o n d i n g s t a n d a r d d e v i a t i o n . Values w i t h d i f f e r e n t s u p e r s c r i p t s are s i g n i f i c a n t l y d i f f e r e n t a t the p<0.05 l e v e l . 75 Mean weights (g) o f chinook salmon f e d t o 67 and 100 % o f s a t i a t i o n and r e a r e d a t f o u r s t o c k i n g d e n s i t i e s i n s a l t water f o r 272 days. Means ± SD. N=2. June 8/88 Feedina l e v e l o f s a t i a t i o n ) D e n s i t y 100 67 Low 10.7 10.7 Medium 10.7 10.7 High 10.7 10.7 * C o n t r o l 10.7 August 17/88 Feedina l e v e l f % o f s a t i a t i o n ) D e n s i t y 100 67 Low 75.6 ± 3.2 a 58.2 ± 1.9 a Medium 74.0 ± 2.5 a 57.0 ± 0.3 a High 71.2 ± 2.4 a 54.5 ± 0.5 a * C o n t r o l 62.8 November 29/88 Feedina l e v e l (% o f s a t i a t i o n ) D e n s i t y 100 i l Low 319.8 ± 11.7 d 204.8 ± 7.5 b Medium 281.9 ± 1 7 . 5 c d 205.5 ± 9.0 b High 272.9 ± 3.5 C 179.0 ± 3.4 b * C o n t r o l 202.8 March 8/88 Feedina l e v e l f% o f s a t i a t i o n ) D e n s i t v 100 62 Low 440.6 ± 6.8 f 282.7 ± 5 . 4 c d Medium 415.9 ± 7 . 7 e f 284.6 ± 3 . 6 c d High 385.8 ± 8.5 e 246.3 ± 6.7 C * C o n t r o l 293.6 Mean weight v a l u e s f o r the c o n t r o l group o f f i s h has no c o r r e s p o n d i n g s t a n d a r d d e v i a t i o n v a l u e because o n l y one c o n t r o l group o f f i s h was r e a r e d f o r t h i s experiment. Values w i t h d i f f e r e n t s u p e r s c r i p t s are s i g n i f i c a n t l y d i f f e r e n t a t the p<0.05 l e v e l . 76 B a c t e r i a l kidney d i s e a s e p r e v a l e n c e i n f i s h a t the ha t c h e r y p r i o r t o t r a n s p o r t a t i o n t o the s a l t w a t e r s i t e and a t t h r e e s a l t w a t e r sampling times. (Number o f i n f e c t e d f i s h / number o f f i s h sampled). A p r i l 27/88 Hatchery r e a r i n g u n i t (35 days b e f o r e Round tank # 2 8 C a p i l a n o t r o u g h #21 t r a n s f e r t o 3/99 1/30 s a l t water)  August 15/88 Fe e d i n a l e v e l (% o f s a t i a t i o n ) (day 69) D e n s i t y 100 67 Low 0/30 0/30 Medium 0/30 0/30 High 0/30 0/30 C o n t r o l 0/30 * November 25/88 Feedina l e v e l (% o f s a t i a t i o n ) (day 171) De n s i t y " 100 67 Low 0/30 0/30 Medium 0/30 0/30 High 0/30 0/30 * C o n t r o l 0/30  February 27/88 Feedina l e v e l (% o f s a t i a t i o n ) (day 262) D e n s i t y 100 67 Low l / 3 0 a b 0/30 a Medium 4/30 b 1 / 3 0 a b High 2 / 3 0 a b 4/30 b * C o n t r o l l l / 3 0 c  The c o n t r o l d e n s i t y was the h i g h e s t r e a r i n g d e n s i t y throughout the experiment. Values w i t h d i f f e r e n t s u p e r s c r i p t s are s i g n i f i c a n t l y d i f f e r e n t a t the p<0.05 l e v e l . 77 S p e c i f i c growth r a t e s (%/day) o f chinook salmon f e d t o 67 and 100 % o f s a t i a t i o n and r e a r e d a t f o u r s t o c k i n g d e n s i t i e s i n s a l t water f o r 272 days. Means ± SD. N=2. June 8/88 - Feeding l e v e l (% o f s a t i a t i o n ) August 17/88 D e n s i t y 100 67 Low 2.72 ± 0.055 a 2.35 ± 0.04 b Medium 2.69 ± 0.045 a 2.33 ± 0.005 b High * C o n t r o l 2.63 ± 0.049 a 2.26 ± 0.01 b 2.49 - — August 17/88 -November 29/88 Feedina l e v e l (% o f s a t i a t i o n ) D e n s i t y 100 67 1.20 ± 0.0049 c d Low 1.38 ± 0.075 C Medium 1.28 ± 0.025 c d 1.22 ± 0.04 c d High 1.28 ± 0.04 c d 1.14 ± 0.025 d * C o n t r o l 1.13 November 29/88 Feedina l e v e l (% o f s a t i a t i o n ) - March 8/88 D e n s i t y 100 67 Low 0.33 ± 0.02 e 0.33 ± 0.02 e Medium 0.40 ± 0.045 e 0.34 ± 0.055 e High * C o n t r o l 0.35 ± 0.01 e 0.33 ± 0.045 e 0.38 - — * C o n t r o l s p e c i f i c growth r a t e v a l u e s have no s t a n d a r d d e v i a t i o n because o n l y one c o n t r o l group o f f i s h was r e a r e d f o r t h i s experiment. Values w i t h d i f f e r e n t s u p e r s c r i p t s a re s i g n i f i c a n t l y d i f f e r e n t a t the p<0.05 l e v e l . 78 C o n d i t i o n f a c t o r s o f chinook salmon f e d t o 67 and 100 % of s a t i a t i o n and r e a r e d a t f o u r s t o c k i n g d e n s i t i e s f o r 272 days. Means t SD. N=2. August 17/88 Feedina l e v e l (% of s a t i a t i o n ) D e n s i t y 100 67 Low 1.49 ± 0.06 a 1.36 ± 0.04 a Medium 1.45 ± 0.015 1.34 ± 0.005 High 1.46 ± 0.04 1.36 ± 0.15 * C o n t r o l 1.34 November 29/88 Feedina l e v e l (% of s a t i a t i o n ) D e n s i t y 100 67 Low 1.715 ± 0.045 b 1.685 ± 0.025 b Medium 1.635 ± 0.045 1.5 ± 0.01 High 1.58 ± 0.04 1.55 ± 0.09 * C o n t r o l 1.62 March 8/88 Feedina l e v e l (% of s a t i a t i o n ) D e n s i t v 100 67 Low 1.575 ± 0.005 a b 1.45 ± 0.02 a Medium 1.585 ± 0.035 1.44 ± 0.02 High 1.555 ± 0.025 1.47 ± 0.04 * C o n t r o l 1.43 * C o n d i t i o n f a c t o r v a l u e s f o r the c o n t r o l group o f f i s h has no c o r r e s p o n d i n g s t a n d a r d d e v i a t i o n v a l u e because o n l y one c o n t r o l group of f i s h was r e a r e d f o r t h i s experiment. Values w i t h d i f f e r e n t s u p e r s c r i p t s a re s i g n i f i c a n t l y d i f f e r e n t a t the p<0.05 l e v e l . 79 M o r t a l i t y r a t e s (%/day) o f chinook salmon f e d t o 67 and 100 % o f s a t i a t i o n and r e a r e d a t f o u r s t o c k i n g d e n s i t i e s i n s a l t water f o r 272 days. Means ± SD. N-2. June 8/88 - Feedina l e v e l (% o f s a t i a t i o n ) August 17/88 D e n s i t y 100 67 Low 0.024 ± 0.0016 a 0.026 ± 0.004 a Medium 0.021 ± 0.0006 b c 0.023 ± 0.0003 a b High 0.025 ± 0.003 a 0.027 ± 0.0003 a * C o n t r o l 0.008 August 17/88 - Feedina l e v e l (% o f s a t i a t i o n ) November 29/88 D e n s i t y 100 67 Low 0.007 ± 0 . 0 0 3 d e f 0.004 ± 0 . 0 0 0 0 7 d e f Medium 0.013 ± 0 . 0 0 1 2 b c d 0.008 ± 0 . 0 0 0 4 d e f High 0.009 ± 0.00014 a- 1 0.008 ± 0 . 0 0 2 4 d e f * C o n t r o l 0.004 November 29/88 Feedina l e v e l !% o f s a t i a t i o n ) - March 8/88 D e n s i t y 100 67 Low 0.002 + 0.0004 f 0.005 ± 0 . 0 0 0 6 d e f Medium 0.002 ± 0.0002 f 0.008 ± 0 . 0 0 0 3 d e f High 0.004 ± 0.00013 e f 0.012 ± 0 . 0 0 2 c d e * C o n t r o l 0.002 C o n t r o l f e e d c o n v e r s i o n r a t e v a l u e s do not have st a n d a r d d e v i a t i o n s because o n l y one group o f f i s h was r e a r e d under c o n t r o l c o n d i t i o n s f o r t h i s experiment. Values w i t h d i f f e r e n t s u p e r s c r i p t s are s i g n i f i c a n t l y d i f f e r e n t a t the p<0.05 l e v e l . 80 Appendix I I Mean weight (g) r e g r e s s i o n equations c a l c u l a t e d from mean weight d a t a o f chinook salmon f e d t o 67 and 100 % of s a t i a t i o n and r e a r e d a t f o u r s t o c k i n g d e n s i t i e s i n s a l t water f o r 272 days (June 8/88 t o March 8/89). Equations p r e d i c t mean weights a t each sampling day as a f u n c t i o n o f f e e d i n g l e v e l and s t o c k i n g d e n s i t y . Independent v a r i a b l e s *** Sampling f e e d i n g l e v e l I n i t i a l s t o c k i n g _3 day (% o f s a t i a t i o n ) density(kg«m ) August 17/88 *0.9453 **0.9109 **0.0343 Mean weight = 26.9455 + 0.516 (Feeding l e v e l ) - 67.5 ( I n i t i a l s t o c k i n g d e n s i t y ) November 29/88 -*0.9386 **0.8553 **0.0832 Mean weight = 48.0655 + 2.8828 (Feeding l e v e l ) - 605.833 ( I n i t i a l s t o c k i n g d e n s i t y ) March 8/89 *0.9814 **0.9189 **0.0625 Mean weight = 37.3915 + 4.3293 (Feeding l e v e l ) - 760.4117 ( I n i t i a l s t o c k i n g d e n s i t y ) * Model R-square ** P a r t i a l R-square * * * I n i t i a l s t o c k i n g d e n s i t y i s the s t o c k i n g d e n s i t y on June 8/88 when f i s h where t r a n s f e r r e d t o s a l t water. These e q u a t i o n s are v a l i d f o r f i s h f e d from 67 t o 100 % _3 o f s a t i a t i o n and s t o c k e d a t 0.044 t o 0.104 kg«m . 81 S p e c i f i c growth r a t e (%/day) r e g r e s s i o n e quations c a l c u l a t e d from mean weight d a t a o f chinook salmon f e d a t 67 and 100 % o f s a t i a t i o n and r e a r e d a t t h r e e s t o c k i n g d e n s i t i e s f o r 175 days i n s a l t water (June 8/88 t o November 29/88). Equations p r e d i c t s p e c i f i c growth r a t e as a f u n c t i o n o f f e e d i n g l e v e l and s t o c k i n g d e n s i t y . Independent v a r i a b l e s *** R e a r i n g Feeding l e v e l S t o c k i n g d e n s i t y -3 p e r i o d (% o f s a t i a t i o n ) (kg• m )  June 8/88 -August 17/88 *0.9556 **0.920 **0.0353 S p e c i f i c growth r a t e = 1.6785 + 0.01106 (Feeding l e v e l ) - 1.45833 ( S t o c k i n g d e n s i t y ) August 17/88 -November 29/88 *0.6973 **0.5429 **0.1545 S p e c i f i c growth r a t e = 0.96481 + 0.0047 (Feeding l e v e l ) - 0.24951 ( S t o c k i n g d e n s i t y ) * Model R-square ** P a r t i a l R-square *** S t o c k i n g d e n s i t y a t s t a r t date o f each r e a r i n g p e r i o d . The above r e g r e s s i o n e quations are v a l i d f o r f i s h f e d a t 67 t o 100 % o f s a t i a t i o n and s t o c k e d a t 0.044 t o -3 0.104 kg-m f o r the f i r s t r e a r i n g p e r i o d and 0.24 ± _3 0.01 t o 0.68 ± 0.02 kg«m (mean ± SD) f o r the second r e a r i n g p e r i o d . 82 Feed c o n v e r s i o n r a t e (Feed(kg):biomass i n c r e a s e ( k g ) ) r e g r e s s i o n equations c a l c u l a t e d from d a t a o f chinook salmon f e d t o 67 and 100 % o f s a t i a t i o n and r e a r e d i n s a l t water a t t h r e e s t o c k i n g d e n s i t i e s f o r 272 days (June 8/88 t o March 8/89). Equations p r e d i c t f e e d c o n v e r s i o n r a t i o f o r each r e a r i n g p e r i o d as a f u n c t i o n o f f e e d i n g l e v e l and s t o c k i n g d e n s i t y . Independent v a r i a b l e s R e a r i n g Feeding l e v e l S t o c k i n g d e n s i t y p e r i o d (% o f s a t i a t i o n ) (kg*m~ 3 )  June 8/88 -August 17/88 *0.8891 **0.8075 **0.0816 Feed c o n v e r s i o n r a t e = 0.30688 + 0.00662(Feeding l e v e l ) + 1.41667 ( S t o c k i n g d e n s i t y ) August 17/88 -November 29/88 *0.7051 **0.7051 Feed c o n v e r s i o n r a t e = 0.40823 +0.00843(Feeding l e v e l ) November 29/88 - March 8/89 *0.3050 **0.3050 Feed c o n v e r s i o n r a t e = 1.13182 + 0.01152(Feeding l e v e l ) * Model R-square ** . , P a r t i a l R-square The above r e g r e s s i o n e quations are v a l i d f o r f i s h f e d a t 67 t o 100 % o f s a t i a t i o n and s t o c k e d a t 0.044 t o _3 0.104 kg«m when t r a n s f e r r e d t o s a l t water on June 8/88. 83 M o r t a l i t y r a t e (%/day) r e g r e s s i o n e quations c a l c u l a t e d from monosex female chinook salmon m o r t a l i t y r a t e d a t a c o l l e c t e d d u r i n g the 201 day (August 17.88 t o March 8/89) s a l t w a t e r r e a r i n g p e r i o d . Equations p r e d i c t m o r t a l i t y r a t e d u r i n g the two r e a r i n g p e r i o d s as a f u n c t i o n o f f e e d i n g l e v e l and s t o c k i n g d e n s i t y . Independent v a r i a b l e s *** R e a r i n g Feeding l e v e l S t o c k i n g d e n s i t y -3 p e r i o d (% o f s a t i a t i o n ) (kg• m )  August 17/88-November 29/88 *0.3055 ** 0.3055 M o r t a l i t y r a t e = 0.00305 + 0.0116 ( S t o c k i n g d e n s i t y ) November 29/88 - March 8/89 *0.7599 **0.6071 **0.1528 M o r t a l i t y r a t e = 0.01973 - 0.00023 (Feeding l e v e l ) + 0.00325 ( S t o c k i n g d e n s i t y ) * Model R-square * * P a r t i a l R-square *** S t o c k i n g d e n s i t y a t s t a r t o f r e a r i n g p e r i o d . The above r e g r e s s i o n equations are v a l i d f o r f i s h f e d a t 67 t o 100 % of s a t i a t i o n and s t i c k e d a t 0.24 ± 0.01 t o 0.68 ± 0.02 kg«m" 3 (mean ± SD) f o r the f i r s t r e a r i n g p e r i o d and 0.84 ± 0.03 t o 2.52 ± 0.1 kg«m (mean ± SD) f o r the second r e a r i n g p e r i o d . 84 Appendix I I I The d a t a shown i n t h i s appendix i s the raw data c o l l e c t e d f o r the experiment performed i n the f i r s t c h a p t e r o f t h i s t h e s i s . The data i s arranged i n e l e v e n columns r e p r e s e n t i n g the f o l l o w i n g parameters; from l e f t t o r i g h t : 1) o b s e r v a t i o n number; 2) treatment number; 3) r e p e t i t i o n number; 4) r e l a t i v e d e n s i t y ; 5) season (see n o t e ) ; 6) f e e d i n g l e v e l (% o f s a t i a t i o n ) ; 7) i n i t i a l weight (grams) on June 8/88 ( t h i s i s a mean weight v a l u e f o r the f i s h p o p u l a t i o n ) ; 8) i n d i v i d u a l l e n g t h a t the end o f the season (see n o t e ) ; 9) i n d i v i d u a l weight a t the end o f the season (see n o t e ) ; 10) i n d i v i d u a l c o n d i t i o n f a c t o r a t the end o f the season (see n o t e ) ; 11) i n d i v i d u a l s p e c i f i c growth r a t e s i n c e June 8/88. Note For the purposed o f t h i s d a t a s e t , s e a s o n a l p e r i o d s a re d e f i n e d as: Summer: F a l l : Winter: June 8/88 - August 17/88 August 18/88 - November 29/88 November 30/88 - March 8/89. 85 £ S c o < o m S - r m « 5 S S 2 5 S S S 2 3 S 2 S £ £ S S 5 £ ( o 3 S S s 3 t o S « ^ 5 5 S S u > S CD to eo «». « <o u» eo •» « (o » i = 2 2 2 2 2 2 2 2 2 2 2 2 2 = 2 2 2 2 2 2 2 2 2 2 £ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 £ £ 2 2 2 2 2 2 2 2 £ £ £ i i i i i i i i i i i i i y JJIJJJJJJJJJJJJJJJJJJJJiJJJSJJJJJJJJJJiJ CM cu — m«w — — — — — — — rv — — — — — *•" — — — — — — — — — — — — — — — — — — cu — — — — — — — — — — — — — — oj — — — fm. « e • i s - * m o eo is ifl id m o co m <s <o to tp o os 10 cu ^  in in w ^ t n ^ i n o m co u» to in cn *<* m coco 22222 22222222 2 22 2 2 22 22 2 umniiMmiii i imii i i imii i i i i immiiimmnm J i J I I I J J J J J J J I I J J J J J J I J J J I i J J J J J J i J I J I J J i J J J J J J J J J J J J J J J J J 86 o i o i ~ o > o i e a > - o n i a i s - > > . > . a o o n i a i n n « . o o - n < v n r u i o i u o i % o i O ( » v t < > - e i M o n i o i o o i K - i s n a > i v o i o o - 3 — ru — — cv — — oj m oj — fMr^rwrucMftjnj — ru — ru ry — — f\J — r\j — — ——o — r u — r y a j — r u r u r u i » » « » 3 « » - * » o » i s " n B a o i » i » « i « « i » « * ^ » » » 3 « i » i n o « » » e « « i e e » a e ' " " e « 0 « i - « o » « i s co t s ^ c a c o e o ^ c o ^ t a c o u i c o t n c D ' ^ c o t r i ta<B+*'*in&ai**m'+.**(Oin v o a i ' V N i n K K N K c O N O f u a s c a to co 2 2 2 2 2 2 2 = 2 2 2 2 2 2 2 2 2 2 = 2 2 2 2 = 2 2 2 = l l l l l l l l l l l l l l l l i l i l i l l i l l l l l l l l l l i l l l l i l l l l l l i l i i l l l l i l l i i i i i i l i i i i i i i i i i i i i i i i i i i nninnnnzninnnninninnnnnnnnnnnnni n j n i N N f l i n i ( U M A r A j n j n j n j ( U ( \ i t u ( u n i n i n t n i » 2 : S S 2 S 2 S = - ~ S S - § S S S i S ~ S = 5 o S S 5 ~ S S S 2 £ S S ^ S 2 2 2 S J S S S S S J S S a S i S S S S — — — — n j r u n i n i — t u — m m - — — r u m f u — n j r u t u — — — <M — t M f t i f t i r t j — cu — f u e u c M — — — — flj — e\i — — — — a i — CM — <\J cu CM — CM c » a> eo CM ^ — o e a n i f l O « » * - f t i o - v a o o v n a a - t a - c o c o * co co « r <*» co t o m co co co co <o <o ( o c o ^ c o i n c f l a v m r o c o c o <o co i o to »-» c s u) ^ to o N . a ) <a r * . 3 to o CD CD * • N . m co i n O N i N ' v i o ea t o a i ^ « ^ n » a eg <^ to c o c s ^ a o c o 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 E 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 s s s i l l l l l l l l l i l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l i niiii iuiniiniii iniii i i i i i i i i i i inHiiii i i i i i i i i i i i i i i J J J J J J J J I J J J i J i J J i J i J J i J i J J J J J i l J i J J J J J J J i i i i J J i J J J J J J J J J J 2 3 3 234 2 3 5 2 36 237 2 36 2 3 9 2 4 0 24 I 242 2 4 3 244 2 4 5 246 247 248 249 2 5 0 251 2 5 2 253 254 2 5 5 256 25? 258 2 5 9 2 6 0 261 262 2 6 3 264 2 6 5 266 267 268 269 2 7 0 27 I 272 2 7 3 274 2 7 5 276 277 2 7 6 279 2 8 0 281 282 2 8 3 284 2 8 5 286 287 288 289 2 9 0 2 2 2 2 l o w s m r c r l o w s m m r l o w 60101' l o w e m m r l o w s m m r l o w s m m r l o w s m m r l o w s m m r m e d E m m r m e d B u i m r m e d s m m r m e d s m i n r m e d s m u i r m e d s m m r m e d s m m r m e d 6mmr m e d s m m r m e d s m m r m e d 6 m u i r m e d s m m r m e d s m m r m e d s m m r m e d s m m r m e d s m m r m e d s m m r m e d s m m r m e d 6 m m r m e d s m m r m e d s m m r m e d s m m r m e d s m m r m e d s m m r m e d s m m r m e d s m m r m e d E i n m r m e d s m m r m e d s m m r m e d s m m r m e d s m m r m e d s m m r m e d s m m r m e d s m i n r m e d s m m r m e d s m m r m e d s m m r m e d s m m r m e d s m m r m e d s m m r m e d s m m r m e d s m m r m e d s m m r m e d s m m r m e d s m m r m e d s m i n r m o d s m m r m e d s m m r raed s m m r m e d s m m r 100 100 100 100 100 100 100 100 6 6 6 8 6 6 6 6 6 0 6 6 6 6 6 6 6 6 6 8 6 6 6 6 6 6 6 6 6 6 6 8 6 U 6 6 6 6 6 6 6 6 6 8 6 6 6 6 6 6 10. 7 14 8 4 5 . 1 . 3 9 1 55 10.7 IB 3 B4 . 4 8 1 9 0 10. 7 17 7 8 0 9 . 4 6 2 11 10 .7 17 B 78 5 . 3 9 2 06 10.7 IB 1 79 9 . 3 5 2 06 10.7 ia 1 8 3 7 .41 2 13 10.7 17 72 7 . 4 8 2 0 2 10.7 IB 5 89 4 . 41 2 19 10. 7 IB 56 1 . 37 2 30 10. 7 14 .5 42 0 . 4 0 1 92 10. 7 17 66 3 . 3 5 2 S3 r 10. 7 15 .8 49 3 . 2 5 2 12 ' 10. 7 16 . 8 66 7 41 2 54 1 10. 7 17 . 8 BB 2 1.21 2 57 i IO. 7 15 . 8 54 1 . 3 5 2 25 t 10. 7 16 . 2 58 8 . 34 2 32 1 10. 7 13 28 2 1.20 1 35 1 10. 7 IB .4 62 5 1.42 2 45 1 10. 7 15 . 9 52 9 1.32 2 22 1 10. 7 16 67 5 . 4 0 2 34 ' 10. 7 18 6 0 2 1.47 2 40 1 10. 7 15 .8 51 5 1.31 2 18 t 10. 7 18 .6 57 5 1.26 2 34 7 10 7 18 66 1.37 2 30 r io. 7 16 . 2 56 3 1.32 2 31 t to. 7 17 .7 72 9 1.31 2 67 1 10. 7 IB 60 6 1.23 2 16 t 10. 7 IB . 2 64 7 1.29 2 27 1 10. 7 IB .4 57 1 1.29 2 33 t 10. 7 15 . 3 49 7 1.39 2 13 r io. 7 15 . 7 52 2 1.35 2 20 r io. 7 15 .4 51 1 1.40 2 17 t 10 7 IB .6 58 2 1. 30 2 35 r io. 7 16 . 2 39 9 1. 14 1 83 7 10. 7 16 . 8 57 3 1.21 2 33 t 10. 7 15 .4 42 2 1. IB 1 9 1 r io. 7 16 5 3 8 1.31 2 24 1 10. 7 17 .4 87 1 .27 2 55 t 10. 7 15 . 2 44 & . 27 1 98 t 10 7 IB . 1 68 7 1.4 1 2 3B 1 10. 7 16 .4 6 0 1 1.36 2 40 1 10. 7 16 45 8 1.36 2 0 2 r io. 7 IB . 9 64 9 1.34 2 5 0 i io. 7 13 . 3 28 4 . 2 1 1 38 r io. 7 IB . 2 5 9 1 1.39 2 37 r io. 7 15 .7 5 0 9 . 3 2 2 17 r io. 7 IB . 8 61 B . 3 0 2 43 ' 10 . 7 16 . 8 66 . 3 9 2 53 r io. 7 17 . 1 71 7 . 4 3 2 64 r io. 7 15 5 51 5 . 3 8 2 18 1 10. 7 16 . 2 62 3 1.47 2 45 1 10. 7 16 . 3 68 9 1.36 2 37 1 10. 7 IB . 7 62 3 1.34 2 45 1 10. 7 17 . 8 74 9 1.33 2 70 1 10. 7 IB .6 8 3 7 . 39 2 48 r io. 7 18 . 3 84 6 1.38 2 87 r io. 7 15 . 9 58 9 1.47 2 37 1 10. 7 14 . 3 36 a 1.26 1 72 281 292 2 9 3 294 2 9 5 296 297 298 299 300 301 302 303 304 305 308 30? 308 309 310 311 312 3 1 3 314 3 1 5 316 317 318 319 320 321 322 323 324 325 320 327 328 329 330 331 332 333 334 335 336 337 338 339 340 34 I 342 343 344 345 348 347 348 I m e d I m e d I m e d I m e d I m e d I m e d I m a d I m e d I m e d 1 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 n e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d 2 m e d BDimr 6D»r Bmrar s m m r s m m r s m m r s m m r s m m r s m m r e m m r s m m r s m m r s m m r s m m r s m m r s m m r s m m r s m m r s m m r s i u m r s m n i r e m m r s m m r s m m r s m m r s m m r s m m r s m m r s m m r s m m r s m m r s m m r a m m r s m m r s m m r s m m r s m m r s m m r s m m r 6mmr s m m r e m m r s o m r s m m r s m m r s m m r s m m r s m m r s m m r s m m r s m m r s m m r s m m r s m o i r s m m r e m m r s m m r s m m r 10 10 10 10. 10 10 10 10 10 10 10 10. 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10 to. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10 . 10. 10 . 10. 10. 10. 10. 10 . 10 . 15 .9 16 .4 1 4 . 8 1 6 . 2 1 6 . 9 5 7 . I 5 B . 9 15. 16 18. 17. 16 17. 1 6 . 8 15 .8 15 .6 15 .8 1 6 . 8 18 .2 1 6 . 2 15 14 14 .2 1 8 . 3 16 .6 17 .6 17 14. 3 17 .6 16 18 1 4 . 8 I B . I 16.a 18 1 4 . 3 16 .2 1 4 . 9 1 6 . 3 12 .5 17 1 5 . 8 .4 . 2 .4 .7 .3 16 1 5 . 8 17. 15 . I B . 16. 17. 16. 16. 18. 15. 14. 1 5 . 8 1 7 . 5 17. I 17 .2 15. I I5.fi 37 58 62 58 58 81 6 9 . 6 5 8 . 5 64 .0 6 1 . 7 5 2 . I 4 8 . 8 5 4 . 3 0 4 . 8 8 8 . I 5 5 . I 3 4 . 7 3 5 . 2 3 3 . 8 5 4 . 2 5 9 . 4 7 2 . 3 6 7 . 4 3 8 . 7 8 0 . I 5 5 . 3 8 0 . 3 4 4 . 3 S B . 5 5 9 . 3 5 5 . 3 3 8 . 8 5 4 . 8 4 4 . 5 5 8 . 4 2 5 . 8 6 4 . 3 5 5 . 8 7 0 . 4 4 6 . 4 6 5 . I 5 3 . 5 7 4 . 6 5 6 . 6 5 0 . 7 5 1 . 5 5 4 . 4 5 8 . 2 4 6 . 6 3 6 . B 5 5 . 7 6 9 . 9 7 0 . 4 6 7 . 5 4 5 . I 6 4 . 4 42 2 . 3 3 . 2 9 . 15 . 37 . 3 0 . 5 1 . 30 . 4 9 . 39 . 38 2 . 3 2 1.74 . 30 . 32 . 2 9 . 38 . 37 . 4 3 . 3 0 . 0 3 . 2 5 . 30 . 33 . 37 . 47 . 35 . 3 8 . 37 . 35 . 2 5 . 3 5 . 3 1 . 3 8 . 3 4 . 3 2 . 4 8 . 15 . 4 4 . 3 9 . 2 9 35 48 38 36 98 60 38 30 2 . 5 0 43 20 11 28 5 0 9 0 28 63 28 1.65 IB 1.60 2 2 2 2 25 38 65 58 32 1.79 60 28 80 1.97 31 38 28 . 3 3 1.79 29 2 . 2 7 35 1.98 35 2 . 3 6 . 3 2 1.22 49 29 62 04 51 24 70 32 IB . 2 3 2 . 1 8 •26 2 . 2 6 . 3 9 2 . 3 5 . 3 0 2 . 0 4 . 3 1 1.72 •4 1 2 . 2 9 30 2 . 6 1 . 4 1 2 . 6 2 33 2 . 5 8 31 2 . 0 0 . 7 0 2 . 4 9 o o 88 2 S S S S S S S g S S S S S S 2 S « 3 S 2 2 S 5 g S isotouiio « cn ^ to m <o m ifl ai'-.CTco'-*'-»m<o ^ a o t o i f l o ^ t s i n o o o i a>N*.o>iDQ<riONinoo}io ^ CD aa = 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 = 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 i§§i§§i§i§§3§i§§Ii§§i§§i§iiii§§§§ii§§§§i§§§§§§§i§i§§§§§§i l i m i n i i i i n u i i i i i i m i i i i i i i i i i i t i i i i i t i i i n m i t n n i IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII^IIII^IIIIIIIIIIIIII — — — ——— — — —— — —— — — — — ftic\i«ic\i«jcv«e\i«ivo*«ini«jc\i«\j««ojcucu« N U n n w f l i t t i ( n * r ' n o * i e - f f l i O ' n < o i f l f f l - i o i D « f l l C C ' v ' , ' ^ ^ t \ J i n i s O K f l ) ( O w m K O - « i o u l » v 5 « - f t l w " l o C ' cuajrxjcvnjcuajcucucvnjcvni — nicvinjfunjmnjcuninjnitu - njcuninii<imru(MCunituninjmfljEUAii<i(u(ufljn)n(ur>)(v-flinioim ™ . . . . . ""• • - • . T . . . c . .7 . . .<uS • • 2^^. c^^-So"^™— *^S"'",™*'r '^"'-o o i - o - a i f l o ^ - o i M o o u i T n i - i s - o o n i M O - »o«in"«jon» c « cv — nj cu co <o o> m » o » e « l O o a N i g M a i i i i i g ^ M a T s g i v i o a M % ^ r » a 0 s o g o o i IO CO ~ m is co T a co » cn ». a o» 2 2 2 2 2 £ = 2 2 2 2 2 2 2 2 2 2 2 = = 2 = 2 = 2 2 2 2 2 2 2 2 = 2 2 2 2 2 2 = 2 2 2 2 = 2 2 2 = 2 2 2 2 = 2 2 = 2 «sssssssss«siiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii§iiiiiSii llililliillillilllllllllllllllllllllllllllillllllllllillll IIIIIllIlIIIIIsIIllIlllIIIlIIIIIllIIIIIIIIlslIIIlllIIsllll ( u n j o j n i n x v m n j c u t M n i n i 1 465 466 467 466 469 470 47 1 472 47 3 474 475 476 477 478 479 480 481 4B2 483 484 485 486 487 468 489 490 49 I 492 493 494 495 496 497 498 499 500 50 I 502 503 504 505 506 507 508 509 5 10 511 512 5 13 514 515 5 16 517 518 5 19 520 521 522 2 mad 6mmr 100 10. 2 mad sailor 100 10. 2 mad Gmmr 100 10. 2 wed Gmmr 100 10. 2 m8(1 Gmmr 100 10. 2 mail smmr 100 10. 2 mad smicr 100 10. 2 in ed smmr 100 10. 2 reed smmr 100 10. 2 mad smmr 100 10. 2 wed smmr 100 10. 2 mad 6 mini' 100 10 2 mad Gmmr 100 10, 2 med smmr 100 10. 2 mad Gmmr 100 10 2 ined soinir 100 10. 67 67 67 67 87 67 67 87 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67-67 67 67 67 67 67 67 67 67 67 87 67 87 67 S 1 I i lu'' smmr 5 1 high smmr 5 1 high s m m r 5 1 high soimr S t high Gmmr 5 1 i>loi> Gmmr 5 1 high smmr 5 1 hlflli Gmmr 5 1 I i loll s m m r 5 1 M Q I I Eiuuir 5 1 II IQII Gmmr 5 1 II loli Gomir 5 1 high s m m r 5 1 high smmr 5 1 high smmr 5 1 high 6ni mr 5 1 h Igh smmr S 1 high Gianir 5 1 IllQll smmr 5 1 h Igh Gmmr 5 1 high Gmmr 5 1 h Igh Gmmr 5 1 I i Igh Gmmr S 1 high smmr 5 1 high Gmmr 5 1 high s m m r 5 1 high Gmmr S 1 high s m m r 5 1 high Gmmr 5 1 high Gmmr 5 1 high s m m r 5 1 h IQII Gmmr* 5 1 high 6nimr 5 1 high Gmmr 5 1 high smmr 5 1 high smmr 5 1 high 6mmr 5 1 high a m m r 5 1 high s m m r 5 1 high sonar S 1 hloh smmr 5 1 high smmr 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 10.7 10.7 10.7 10. 7 I.3S 1.45 1.41 1.52 1.29 1.63 .46 1.31 1.63 1.57 10. 7 10. 7 10. 7 10 7 10. 7 10.7 10. 7 10. 7 10. 7 10.7 15 45 4 17.7 00.4 16.8 67 16.9 73.6 17.9 81.8 1.43 18.8 84.7 1.27 15 43.7 17.9 87.7 17 71.6 I 15.7 50.6 I 18.9 73.7 IB. I 93.2 IB 88.9 1.49 16.9 69.2 1.43 16.1 101 1.71 17.2 73.8 1.45 15.5 47.8 I 16 54.6 I 15.2 50.4 I 15.0 44.7 I 16.6 70.3 I 16.4 57.9 I 15.9 65.5 I 15.9 55.2 I 15.8 51.7 I 5 64.1 I 3 30.6 I I 58.7 I 01 80 65 68 63 87 1.95 2.92 10.7 10.7 10. 7 10. 7 10. 7 10.7 10.7 10. 7 10.7 10.7 10. 7 10.7 10. 10. 10.7 10. 7 10.7 10. 7 10. 10. . 7 . 7 10.7 10.7 16. 13. 16. 17. 16. 16. 10.7 15 15.7 15.4 15.5 16.4 17.3 16. 3 34 44 13 64 16 68 01 91 2.59 3. 12 2.68 28 2 07 2.27 2. 15 1.99 54 2.61 16.8 70.6 I 2 72.4 I I 56.6 I 4 60.2 I 16.9 69.9 I 15.9 51.2 I 16.6 67.7 I 14.4 41.3 I 15.6 53.8 I 17.7 74.6 I 46.6 I 14.6 4 1.8 I 15.7 55.8 I 14.9 43.6 I 51 7 I 48.3 I 50.4 I 15.6 58.3 I 17.7 79. I I 14.8 42.7 I 15.9 54.6 I 16 55.3 I 16 47.2 I 17.2 67.5 I 58.2 I 69.4 I 61.2 I 14.8 48.3 15. I 46.2 10.7 17. I 70.7 .31 . 38 .37 .31 .43 . 30 .41 .49 .42 .36 . 36 .45 .27 .43 . 36 .42 .35 . 36 .29 .44 .32 . 34 .32 .35 .45 .43 .32 . 36 .35 . IS . 33 . 32 . 34 .41 35 29 2B 19 49 I . 46 2. 2. 2. 2. 2. 2. 2. 2. I. 2. 2. 2. I. 2. I. 2. 2. 2. 2. 2. I. 2. 2. 2. 2. 2. 2. 2. 49 2.09 34 2.03 41 2.62 . 36 .62 .66 .31 . 40 .61 17 .5b .00 .24 . 70 .05 .89 .29 .95' 19 .09 15 . 35 . 78 .92 . 26 .20 .08 .56 . 35 60 .42 623 524 525 528 527 528 629 530 531 632 533 534 S35 538 637 530 539 540 54 I 542 543 514 645 546 547 548 549 550 551 552 553 554 555 556 557 550 559 560 561 662 563 S64 SOS 568 567 568 569 570 57 I 672 573 574 575 576 S77 578 579 660 gh smmr 67 10.7 16 .5 66 6 1 .53 2 58 ah Gmmr 67 10.7 14 . 1 32 1 . 14 1 52 gh 6 nmr 67 10.7 14 .9 41 9 1 .27 1 90 gh smmr 87 10.7 16 .8 83 .8 1 .35 2 48 gh smmr 67 10.7 15 .5 SI 2 1 .37 2 17 gh s m m r 67 10.7 16 .7 60 S 1 . 30 2 41 gh smmr 67 10.7 IS .8 53 .6 1 . 36 2 24 gh smmr 67 10.) 15 .2 47 . 1 1 .34 2 06 gh smmr 67 10.) 15 46 1 1 .37 2 03 gh smmr 87 10.) 18 4 59 6 1 .35 2 39 gh smmr 67 10.1 14 .5 40 7 1 .34 1 66 gh Gmmr 67 10.) 18 57 3 1 .40 2 33 gh smuir 67 10.) 16 . 1 SS 1 . 32 2 27 gh Gmnr 67 10.) IB .2 56 7 1 .33 2 32 gh s m m r 67 10.7 IS .3 43 3 1 .21 1 94 gh smmr 67 10.7 IS 37 .3 1 . II 1 73 gh smoir 67 10.7 IS .2 45 1 .28 2 00 gh smair 67 10.) 17 .2 76 7 1 .51 2 74 gh 6iumr 67 10.) 15 .4 46 S 1 .27 2 04 gh Gmmr 67 10.) IS .8 54 .6 1 . 39 2 27 gh smmr 87 10.) 14 38 .9 1 .42 1 79 gh smmr 67 10.) 15 .0 SI 5 1 . 36 2 18 Oh smmr 67 10. i 16 . 1 57 .0 1 . 38 2 )4 gh smmr 67 10.7 IS .8 58 7 1 .49 2 36 gh smmr 67 10. 7 15 . 3 49 6 1 . 38 2 13 gh smmr 07 10.7 17 . 1 72 .2 1 . 44 2 65 gh saimr 67 10. 7 15 . 4 47 S 1 30 2 1)7 gh smmr 67 10.7 16 .8 61 5 1 30 2 4] gh smmr 67 10. 7 16 .5 68 1 1 47 2 S3 gh smmr 67 10. 7 16 . 3 59 6 1 38 2 39 gh smmr 67 10.7 IS 45 1 33 2 00 gh Gmmr 67 10.7 16 2 55 8 1 31 2 29 gh smmr 67 10. 7 16 4 61 8 1 40 2 44 gh smmr 67 10. 7 16 4 61 4 1 39 2 43 gh smiar 67 10. 7 16 .3 61 2 1 4 1 2 42 gh smmr 67 10.7 16 .6 62 1 36 2 44 gh smmr 67 10.7 15 .6 55 9 1 42 2 30 gh smoir 67 10. 7 16 .8 65 1 1 37 2 SI gh 6iaiar 67 10 7 17 .7 73 1 1 . 32 2 6) gh s m m r 67 10.7 16 .9 63 7 1 32 2 48 Oh smmr 67 10.7 IS .8 64 4 1 38 2 26 gh smmr 67 10.7 14 5 38 8 1 27 1 79 gh s m m r 67 10.7 16 .3 59 S 1 37 2 36 gh smmr 67 10.7 17 09 5 1 4 1 2 60 gh s m m r 67 10.7 18 S 60 4 1 34 2 40 gh smmr 87 10.7 18 69 8 1 48 2 39 Qh 6mmr - 67 10. 7 15 9 20 8 0 52 0 92 gh smmr 67 10. 7 18 76 4 1 31 2 73 gh 6mrar 67 10. 7 14 .5 36 1 1 IB 1 69 gh soimr 67 10.7 IS .8 52 9 1 34 2 22 gh Gmmr 67 10.7 18 4 64 3 1 48 2 49 gh Baimr 67 10. 7 16 .5 62 2 1 38 2 44 gh smmr 67 10.7 IB .5 59 6 1 33 2 39 gh smuir 67 10.7 14 .8 41 9 1 29 1 90 gh smmr 67 10.7 17 64 7 1 32 2 SO Oh smmr 67 10.7 15 .2 42 3 1 20 1 91 gh smmr 67 10.7 17 .2 64 3 1 .28 2 49 gh smmr 67 10.) 16 .8 70 9 1 .50 2 63 581 582 583 584 585 586 587 568 569 590 591 592 593 594 595 596 59/ 598 599 600 601 602 603 604 60S 606 60 ; 608 609 6 10 6 I I 612 613 6 14 6 15 6 16 6 17 6 18 619 620 621 622 623 624 625 626 62/ 628 629 6 30 631 632 633 634 635 6 36 637 638 5 5 5 5 5 5 5 5 S 5 5 5 5 5 S 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 gh smmr 67 10 7 IS a 13 8 0 35 0 35 gh smoir 67 10. 7 15 1 41 9 1 22 1 90 gh 6mmr 67 10.7 16 3 68 7 1 36 2 36 gh soimr 67 10.7 15 44 4 1 32 1 98 gh smmr 67 10.7 16 55 3 1 35 2 28 Oh smmr 87 10.7 17 63 1 1 26 2 46 gh smmr 67 10.7 15 .4 47 4 1 30 2 07 gh 6mmr 67 10.7 15 .5 46 3 1 24 2 03 gh smmr 67 10.7 16 .6 67 2 1 .42 2 55 gh smmr 87 10.7 16 .4 S3 3 1 21 2 23 9h 6mmr 67 10.7 16 .8 63 5 1 34 2 47 Oh smmr 67 10.1 17 .7 78 6 1 .38 2 73 gi> smmr 67 10. J 15 .7 54 3 1 .40 2 26 gh smmr 67 10.) 18 . 1 57 8 1 . 39 2 34 gh smmr 67 10.7 IS .5 47 6 1 .28 2 07 gh smmr 67 10.7 IS .5 50 6 1 .36 2 16 gh smmr 67 10.7 IS .8 S3 2 1 . 35 2 23 gh smmr 67 10.7 15 .4 47 6 1 .30 2 07 gi> smmr 67 10.7 IS .8 63 7 1 .36 2 24 Ol' smmr 67 10.7 IS .6 48 9 1 .29 2 11 gh smmr 100 10.7 16 81 5 1 .50 2 43 gh smmr 100 10.7 13 .4 33 7 1 .40 1 59 gh smmr too 10.1 18 .5 97 8 1 .54 3 07 gh smmr 100 10. J 17 .2 73 4 1 .44 2 67 gh smmr 100 10.! 17 .8 79 2 1 .40 2 78 Oh smmr 100 10.) 18 .2 63 3 1 . 38 2 85 gh smmr 100 10 J 17 .8 78 4 1 .44 2 77 gh 6mmr 100 10.) 17 .2 68 5 1 35 2 58 gi smnir 100 10.i 18 .6 04 3 1 .47 3 02 gh 8 III 1111 100 10 J 17 .3 71 6 1 .38 2 64 Oil soimr 100 10.) 16 .3 59 4 1 .37 2 38 gh smmr 100 10.) 17 .9 72 6 1 .27 2 66 gh smmr 100 10.) 16 . 7 62 1 .33 2 44 Oh smmr 100 10.7 IS . 1 50 1 .45 2 14 gh smmr 100 10.7 17 . 1 80 4 1 .61 2 80 gh smmr 100 10.7 17 .5 76 3 1 4 1 2 7 1 gh smoir 100 10.7 16 .2 62 6 1 .47 2 4S Oh 6 in m r 100 10.7 17 .8 62 4 1 46 2 84 gh soimr 100 10.7 IS 4 52 3 1 43 2 20 oh 6mmr 100 10.7 18 .3 65 2 1 .39 2 88 gh smmr 100 10.7 17 75 6 1 54 2 72 Qh smmr 100 10.7 17 .5 77 7 1 45 2 75 gh smmr 100 10.7 17 . 1 74 5 1 .49 2 70 gh smoir 100 10.7 16 .8 71 1 1 SO 2 63 gh smmr 100 10.7 17 .4 72 1 1 37 2 66 gh sioinr 100 10.7 18 .2 65 6 1 42 2 89 gh smmr 100 10.7 IS .3 48 6 1 36 2 10 gh smmr 100 10.7 19 1 97 1 1 39 3 06 gh smmr 100 10.7 17 61 2 1 25 2 42 Oh smmr 100 10.7 17 1 75 9 1 52 2 72 gh smmr 100 10.7 16 3 59 6 1 38 2 39 gh soimr 100 10.7 18 .4 107 1 71 3 19 gh smmr 100 10.7 16 49.5 1 21 2 13 gh smmr I0O 10.7 18 .8 96 3 1 48 3 08 Oh smmr 100 10. 7 10 9 1 10 1 63 3 24 Oil smmr 100 10. 7 18 1 76 2 1 29 2 73 gh 6oimr 100 10.7 16 a 63 6 1 34 2 48 gh smmr 100 10. 7 16 5 55 3 1 23 2 28 639 640 841 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 656 659 660 661 662 663 664 665 660 66 7 66B 669 670 67 I 872 673 874 675 676 677 678 679 680 68 I 662 663 684 665 680 887 668 689 690 691 692 093 694 695 696 ilgh smoir 100 10.7 IS . 3 SO 1 . 40 2 14 iloh smoir 100 10.) 18 .3 51 4 1. 19 2 18 ilgh smoir 100 10.7 16 . 1 52 .3 1.25 2 20 ilgh smmr 100 10.7 16 .9 65 1 I.3S 2 .51 ilgh smmr 100 10.) 15 .8 49 .2 1.25 2 12 ilgh smmr too 10.) 17 .a 84 .5 1.50 2 87 ilgh smmr 100 10.) 18 .6 S3 .2 1. 16 2 23 ilgh smmr 100 10.) 13 35 . 3 16 1 1 .86 • Igh smmr 100 10.) 17 .8 82 7 1.4/ 2 84 ilgh smmr 100 10. ) 17 .3 69 8 1. 35 2 60 ilgh smmr 100 10.) 18 84 4 1.45 2 8/ ilgh smmr 100 10. J 16 .6 75 5 .65 2 / | ilgh smmr 100 10] 18 .4 60 7 1. 38 2 4 1 ilgh smmr 100 10.) 16 . 3 64 1 1.48 2 49 ilgh soioir 100 10.7 17 . 1 68 8 . 3B 2 58 ilgh 6 iiimr UK) 10.) 18 .5 84 1 . 33 2 80 88 ilgh smmr 100 10.7 ia 05 3 .48 2 ilgh smmr 100 10.7 16 .5 56 3 .25 2 31 ilgh smmr too 10.7 IB .a 5fi 9 .24 2 3/ ilgh smmr 100 10.7 13 . 3 28 4 .21 36 ilgh soimr 100 10.7 IS .2 42 3 .20 1 9 1 ilgh smmr 100 10.7 15 .8 50 3 . 32 2 15 ilgh smmr 100 10. 1 17 . 1 70 7 . 4 1 2 62 ilgh soimr 100 10.7 19 104 SI 3 15 ilgh smmr 100 10.) 17 .8 76 1 . 35 2 /2 ilgh smmr 100 10.7 17 . 1 69 4 . 39 2 60 ilgh smoir 100 10.7 17 .2 67 3 . 32 2 65 ilgh smmr 100 10.7 17 . 1 74 2 .48 2 69 • Igh smrar 100 10.7 17 .7 75 1 . 35 2 7 I • Igh smmr 100 10.7 17 .2 65 S .29 2 52 • Igh smmr 100 in. 7 18 .3 98 9 .6 1 3 09 ilgh smmr 100 10. 7 17 67 7 . 38 2 56 • Igh B I O tor 100 10. 7 16 . 1 50 S .43 2 38 ilgh smmr 100 in. 7 18 59 4 .45 2 38 • Igh 6ounr 100 10.7 15 48 2 .43 2 09 • loh smmr 100 10.7 17 .8 78 8 .44 2 // • Igh soimr ion 10. 7 17 .4 76 a .48 2 /4 ilgh soimr 100 10.7 18 . 1 88 5 .46 2 90 • Igh soimr 100 10.) 17 .2 71 ; .4 1 2 64 ilgh smoir 100 10.) 19 95 3 . 39 3 04 • Igh 6mmr 100 10.7 16 .4 62 1 .4 1 2 44 • Igh smmr too 10.) 13 .6 34 . 35 1 6 1 ilgh smmr 100 10.) 16 .3 90 1 .4/ 2 96 • Igh soimr 100 10.7 17 .3 71 6 .38 2 64 • Igh smmr 100 10.7 17 .2 73 4 .44 2 6/ • Igh smmr 100 10.7 15 .2 41 4 . 18 1 88 • Igh smmr 100 10.7 17 .5 73 4 . 37 2 67 • Igh smmr 100 10.1 IB .2 84 4 .40 2 87 • Igh soimr 100 10.7 17 73 .49 2 6/4 • Igh 6mmr 100 10.7 17 .8 79 2 .40 2 78 ilgh Gmmr 100 10.) 15 .4 45 3 1.24 2 00 ilgh smmr 100 10.7 16 .5 61 9 . 38 2 44 • Igh soimr 100 10.7 17 .8 70 3 .25 2 8 1 • loh 6mmr 100 10.7 IB . 1 84 7 i »03 2 8/ • Igh smmr 100 10.7 14 . 4 41 3 . 38 1 68 • Igh Gmmi' 100 10.1 IS . 7 SI 4 .33 2 16 • Igh soimr 100 10.) 17 69 5 .41 2 60 • Igh soioir 100 10.) 17 .8 ao 2 .42 2 60 O 69? 698 699 700 ?0| 702 703 704 705 706 707 708 709 7 10 7 I I 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 720 721 722 723 724 725 726 727 728 729 7 30 731 7 32 733 734 735 7 36 737 73B 7 39 740 74 I 742 743 744 745 746 747 746 749 750 751 752 753 754 Moll l.lgli I. I 0 h IQ' I l.lgli high high high high high high high high high high high high high high high high high high high ctr] C l | c l r I c l r l c l r I ctr I c l r c l r I c l r I c l r I c l r c l r I ctr I c l r c l r I c l r I c l r I c l r I c l r I c l r I c l r I c l r I c l r I c l r c l r I c l r I c l r I c l r I c i r I c l r I c l r I C t r l c tr 1 c l r smmr sroinr smmr cannr Gmmr smmr smmr Gmmr Gmmr 6011111' Goiinr Gmmr Gmmr soimr Gmmr Gmmr GUioir Gmmr Gmmr smmr Gmmr smmr Gmmr Gmmr smmr Ginmr smmr Ginmr G m m r smmr Gmmr Gmmr Gmmr soimr Ginmr Elinor Giiioir Ginmr Boimr smmr 6mmr smmr smmr smmr smmr 6mmr smmr Gmmr smmr smmr smmr soimr smmr Ginmr 610011" smmr smoir smoir too 10 100 10 100 10 100 10 100 10 too 10 100 10 100 10 100 10 100 10 100 10 100 10 100 10 100 10 100 10 100 10 100 10 100 10 100 10 100 10 100 10 100 10 100 10 100 10 69 10 99 10 99 10 99 10 99 10 99 10 99 10 99 10 99 10. 99 10 99 10 99 10. 99 10. 99 10. 09 10 99 10. 99 10. 99 10 99 10. 99 10. 99 10. 99 10. 99 10. 99 10. 99 in. 99 10. 99 10. 99 10. 99 10. 99 in. 99 10. 99 10. 99 10. 09 10. 16.6 16.S 18.5 17.0 18 17.4 17 18 16.8 19. 3 16 14.8 18.4 17.4 15 6 16.8 15.6 15. 3 17.4 17 IB.5 16.6 16.8 18.6 16.6 17.3 16 17 16. I 17.9 16.2 20.2 16.4 18.8 16 16 IB. 4 18. I 17.3 17.8 16.3 17 16.8 18.3 16 18.4 16. 7 IB 15. 3 18 15.5 14 17 16. B 17. I 13.8 IS.6 19. I 66. I 69 86. 3 75.8 83.2 72.6 70. I 83.2 89.2 100 56. 3 39.6 87.7 73. I 61.1 66.6 54.4 SO. 8 73.3 63.5 87.3 50.6 63.S 102 67.7 74.5 60. 7 83.3 98.6 88.8 63.7 125 108 66.3 64 55.9 66. 7 94.8 76. 4 95.2 61.8 68.8 78.8 91.2 63.8 101 82.6 101 61.7 89.2 54.6 47.2 73.9 71.0 64.2 33.2 98.9 116 42 2.51 54 2.59 .36 2.90 •32 2.72 43 2.65 .38 2 .43 2 43 2 .46 2 .40 3 37 2 .27 .41 .39 .55 .40 .43 .42 .39 .29 . 3B .28 .34 .58 68 6 I 85 59 11 31 1.82 92 67 42 54 26 16 67 47 02 IB 47 13 43 2.56 .44 .48 .90 .66 .55 SO SI . 74 70 4 I 01 08 94 48 4 I 22 .40 2.53 66 36 56 60 46 2. 48 2. 30 2.56 3.03 2.73 .69 3.04 43 2.44 40 2.68 66 2.77 49 2.98 56 2.46 3. I I 2 3 2 2 2 2 2 2 .61 .77 .74 . 72 .53 .47 .72 .50 52 84 12 43 05 26 OG 6B 65 .68 2.87 20 I 57 56 68 3.09 3.31 755 7 56 757 758 759 760 781 762 763 764 765 766 767 768 769 770 771 772 773 774 775 778 777 776 779 780 781 782 783 784 785 786 7B7 788 789 790 791 792 793 794 795 796 797 798 799 800 801 602 80 3 804 805 806 807 808 809 810 811 8 12 3 ctr 3 c l r 3 c tr 3 c tr 3 ctr c l r c l r ctr c l r c l r ctr c l r c tr c l r ctr ctr ctr 3 c tr 3 ctr ctr c tr ctr ctr ctr ctr ctr Ion low low low low law low low low low Ion low Ion Ion low Ion low Ion low Ian Ion Ion Ion law low low low Ion Ion low Ion low smmr sauar email' smmr smmr smoir soimr smmr smmr smmr 6 mini Guar smmr smor 6mmr smmr smmr smmr smmr smmr 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 87 87 67 87 67 87 67 67 87 67 67 67 67 99 99 99 99 89 89 99 89 89 99 99 99 99 99 99 99 99 99 99 99 99 89 99 99 99 99 10.7 10.7 III 10 10 10 10 10 10 10 tO.7 10.7 10. 7 10. 7 10.7 10.7 10.7 10.7 10.7 10. 7 10. 7 16 B 79.4 IS 53 IS.9 59.3 18.S 77.2 16.3 61.8 IS 51.7 18.8 82.3 18.8 92.7 IB 2 92.9 13.5 38. S 18.3 5 / 6 18.2 81.7 13.5 32.4 16.7 68.5 16.8 72./ 15.8 59.9 17.3 76.5 16.8 69.4 15.8 55.4 18.3 86.6 1 /9 84./ 14.8 45.6 I / . / 88.8 18 80.4 16.9 72.5 19 99.7 21 140.2 | . 24 21/.5 I. 21 143 I. 24 198.9 I. 5 119.2 I. 5 38.5 I 1.07 1.57 1.46 1.72 1.43 1.53 1.31 I 40 1.54 •I'J 33 52 32 47 I.S3 78 22 38 74 44 19 45 00 00 70 34 98 1.54 2.58 10. 7 10.7 10.7 10 7 20 14 24.5 239.8 I 23 24 1.52 1.48 152 I 40 1.41 1.48 1.47 1.60 48 50 45 I 2 I 2 I 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.7 10.7 10. 7 10.7 10.7 25 23 24 22 24 5 197.3 .5 224.7 23 184.5 5 263.7 24 223.3 24 226.2 25 240.7 .5 213.7 21 130.8 24 192 .5 260.5 24 192.3 26 269.2 25 242.5 I 5 168.3 I 15 42.6 I 24 209.2 | 26 258. I I 24 234.6 I 25 248.; I 24 220.2 I 5 217.6 I 26 272.9 I 14 82.0 3 23 219.9 I I. I. I. 51 5/ 54 44 38 20 0 63 2 52 53 52 59 62 64 54 65 41 39 77 39 S3 55 46 26 0 51 2 4/ 70 59 59 2. 2. 2. 2. 48 2. 55 02 81 2 2 2 2 2 2 2 2 2 2 2 3. .81 . 10 .83 .01 .68 .88 . 17 .03 . I I .96 22 . 12 . 14 . 16 10 .74 .98 .25 .98 .23 . 16 .9 1 .99 .08 . 19 . 17 . 19 . I I 08 24 69 15 66 39 73 80 28 90 87 01 94 90 66 10 613 814 BIS B 16 BW 818 8 19 830 821 622 823 624 B25 626 827 828 829 8 30 831 832 B33 634 63S 636 837 6 38 839 840 84 I 842 643 844 846 B46 847 B4B 849 BSO 8SI 852 853 854 855 856 857 858 859 860 86 I 862 B63 864 B65 866 867 868 669 870 8 8 i low (a l 1 67 10. 7 21 1 low 1 a 11 67 10. 7 23 6 1 low ( a l l 67 10. 7 22.5 6 1 low 1 a 1 1 67 10. 7 18.6 8 1 low 1 a 1 1 67 10. 7 24 8 1 low 1 a 1 1 67 10 7 24 8 1 low 1 a 1 1 67 10. 7 25 8 t low t a l l 6) 10 7 16 B 1 low la 1 1 67 10 7 IB.5 8 1 low 1 a 1 1 67 10 7 17 8 1 low 1 a 11 67 10 7 24.5 8 1 low 1 a 11 67 10 7 24 8 1 low 1 a 11 67 10 7 22.5 8 1 low l a l 1 67 10 7 24 8 1 low la 11 67 10 7 22 B 1 low 1 a 11 67 10 7 25 a 1 low ( a l l 67 10 7 21 8 1 low ( a l l 67 10 7 21.5 a 1 low la 1 1 67 10 7 20.S 8 1 low f a l l 67 10 7 25 a 1 low ( a l l 67 10 7 24.5 B 1 low 1 a 11 67 10 7 14. 5 B 1 low 1 a 11 67 10 7 24.5 a 1 low la 11 67 10 7 24 8 1 low (a l l 67 10 7 24 B 1 low 1 a 1 1 67 10 7 26 6 1 low 1 a 1 1 67 10 7 24 8 1 low ( a l l 67 10 7 23 8 2 low 1 a 11 67 10 7 27 B 2 low la 11 67 10 7 24.5 8 2 low f a l l 67 10 7 25.5 8 2 low 1 a 11 67 10 7 22.5 8 2 low 1 a 11 67 10 7 23.5 8 2 low f a l l 67 10 7 25.5 a 2 low 1 a 1 1 67 10 7 21. 6 8 2 low t a i l 67 10 7 24.5 8 2 low f a l l 67 10 7 24.5 8 2 low f a l l 67 10 7 16 5 8 2 low f a l l 67 10 7 13. 5 B 2 low t a i l 67 10 7 26.5 8 2 low f a l l 67 10 7 26 8 2 low f a l l 67 10 7 25 8 2 low f a l l 67 10 7 26 a 2 low f a l l 67 10 r 25 a 2 low f a l l 67 10 7 23 8 2 low f a l l 67 10 7 26 a 2 low ( a l l 67 10 7 21.5 8 2 low f a l l 67 10 7 24 a 2 low f a l l 6? 10 7 24 .5 8 2 low f a l l 67 10 7 25.5 8 2 low 1 a 11 67 10 7 22.5 6 2 low 1 a 1 1 67 10 7 25 8 2 low la II 67 10 7 23.5 8 2 low f a l l 67 10 7 25.5 a 2 low f a l l 67 10 7 25 8 2 low ( a l l 6? 10 7 24 6 2 low f a l l 67 10 7 23 a 2 low f a l l 67 10 7 24.5 147.4 I6B.7 IS/.3 62.1 232. I 298.5 244.3 49.6 87 . I 66.2 213.6 205.4 163.4 227.3 145.4 232.6 131.2 163.2 I3B.4 221.8 202.4 37.3 207.5 23/.6 18/ 26B.fi 195.4 193.6 308 244.5 242 l/S 205.4 230.U 100.6 237.3 248.6 63 28. I 282.8 276.7 24/ .6 285.6 223.S 194.3 266. a 154.8 219.8 218.1 262 160. 23/ 206. 259 229. 197 283.5 218.4 .59 .39 .38 .39 .66 . 16 .68 .21 .38 .35 .45 .49 .43 .64 .3/ .49 .42 .64 .61 .42 .38 .22 .41 . 72 .35 .63 .41 .59 .56 .66 .46 .54 .58 .45 .01 .61 .69 . IB . 14 .52 .57 SB .62 .43 .60 .52 .56 .59 .48 .58 .SB .52 .59 .56 .47 .43 2.33 1.49 1.86 1.90 1.85 1.27 2. IB 2.40 2. 1/ 1.08 1.48 1.29 2.08 2.04 1.89 2. 14 1.80 2. 12 1/4 1.93 1.82 2.08 2.01 0.90 2.03 2. 18 1.96 2.22 2.00 2.03 2.32 2. 19 2. 14 1.05 2.06 2.13 1.47 16 21 11 0. 70 2. 2. 2. 2. 2. 25 25 IB 28 09 2.03 2.22 1.88 2.11 2.1)0 2.22 1.00 2. 14 2.07 2.21 2 11 2.00 2.39 2.06 67 I 872 6/3 874 6/S 878 87/ e/a a/9 880 aai 682 B83 884 ass 888 88/ 888 889 890 891 892 89 3 894 89S 898 89/ 898 899 900 901 902 90 3 904 905 906 907 60B 909 910 911 912 913 914 915 916 917 0 18 9 19 920 921 022 923 924 925 926 927 928 low low low low low low low low low low low low low low low low low low low low low low low low low low low low low low low low low low low low low low low low low low low low low low low low low low low low low low low low low low 67 67 67 67 67 67 67 67 67 67 87 6/ 67 8/ 67 8/ 6/ 6/ 6/ 6/ 6/ 8/ 67 6/ 87 87 67 6/ 67 100 100 100 100 10 100 10 100 100 100 100 10 10 10 10 10 10 10 10 10.7 10.7 10. 7 10.7 10.7 10./ 10./ 10 10 10 10 10 10 10 10.7 10.7 10.7 10.7 10 10 10 10 10 10 10.7 10./ 100 10/ 100 10 100 100 100 10 100 10 100 100 / 10/ 10./ / / 10.7 10/ 100 10./ 100 10. .7 10.7 10.7 100 10.7 100 10 100 100 100 10 100 10 100 100 100 100 7 10. 7 10./ 7 10.7 10.7 10. 7 10./ 25. S 265 1 .60 2 21 24 196 .42 1 9a 23.5 213 a 1 .65 2 08 23 183 9 1.51 1 96 25. 1 26S a 1.66 2 23 25.5 198 2 1.20 1 93 16 52 7 1.29 1 12 15 42 1.24 0 9/ 25 5 233 4 1.41 2 09 22.5 169 6 1.66 2 01 24.5 21/ 2 1.48 2 06 26 286 5 1.83 2 26 21.5 146 6 1.48 1 61 l/.S 66 2 1.24 1 20 24. S 224 1 .52 2 08 24. S 209 6 .43 2 03 27 311 / .58 2 31 24.5 231 / .58 2 12 26 298 2 .69 2 30 17.5 68 1 .23 1 25 16 63 2 1.54 I 30 25 238 / 1.53 2 13 26 245 a 1.5/ 2 18 22.5 190 a 1.68 2 02 25 25/ 6 1.65 2 20 22.5 174 1.53 1 93 24 20/ 4 ISO 2 03 22.5 200 a . 76 2 06 25 2G6 9 . 7 1 2 23 24.5 211 5 .44 2 03 28 357 .63 2 40 28 377 . 72 2 45 28 39 1 s .78 2 49 2B 375 s .7 1 2 45 27 303 s .54 2 28 2/ 311 i .58 2 31 28.5 362 2 .56 2 40 28 306 7 1.74 2 33 2/ 317 6 .61 2 33 28 294 4 .88 2 29 27 322 6 .64 2 34 27 315 8 1.60 2 32 28.6 432 9 1.67 2 5/ 24.5 219 .4 1.49 2 0/ 26 272 3 1.55 2 22 26 298 6 1.70 2 30 25. S 251 1.51 2 16 2/ 310 3 1.58 2 30 26.5 248 / 1.34 2 11 28 265 S 1.51 2 19 2/ 321 a 1.63 2 34 2/ 304 3 I.5S 2 29 28 402 S I.6S 2 48 23.6 202 / .58 2 03 25.5 273 3 65 2 24 27 .5 319 5 .54 2 31 26 258 .4/ 2 16 2/ 282 9 .44 2 22 929 9 30 931 932 933 934 935 9 36 937 936 9 39 940 94 I 942 943 944 945 946 947 946 949 950 95 I 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 97 I 972 973 974 975 976 977 878 979 980 981 982 983 984 985 986 9 1 lOM ( a l l 100 10. 7 27 9 1 low tai l 100 10.7 28 9 1 low 1 a 11 100 10. 7 26 9 1 low 1 a 11 1011 10. 7 24 9 1 low 1 a 11 100 10. 7 29 9 1 low f a 1 100 10.7 28.5 9 1 low la 1 100 10. 7 26.5 9 1 low 1 a 1 100 10.7 23.S 9 1 low la 1 100 10.7 27.5 9 1 low 1 a 1 100 10. 7 27 9 1 low la 1 100 10. 7 27 8 1 low 1 a 1 100 10. 7 24 9 1 low fat 100 10. 7 26.5 8 1 low 1 a 1 too 10. 7 26 9 1 low 1 a 1 100 10.7 26 9 1 low I a 1 100 10.7 28 8 1 low 1 a 1 100 10. 7 28 8 1 low 1 a 1 100 10.7 25 8 1 low 1 a 1 100 10. 7 26 9 1 low 1 a 1 100 10. 7 29 8 1 low (a 1 100 10. 7 28 9 1 low 1 a 1 100 10.7 28.5 9 1 low 1 a 1 100 10.7 27.5 8 1 low la 1 100 10. 7 28.5 9 1 low 1 a 1 100 10. 7 29 a 1 low 1 a 1 100 10. 7 26 9 1 low 1 a 1 100 10. 7 28.5 9 1 low 1 a 1 100 10. 7 26.5 9 1 low f a 1 100 10.7 26 9 1 low 1 a 1 100 10. 7 27 9 1 low la 1 100 10. 7 27 9 1 low (al 100 10. 7 9 2 low 1 a 1 100 10. 7 27 9 2 low (a 1 100 10. 7 24 9 2 low I a 1 100 10.7 27 9 2 low (a 1 100 10.7 28 6 9 2 low f a 1 100 10.7 28.5 9 2 low 1 a 1 100 10. 7 28 9 2 low (a 1 100 10. 7 27 .5 9 2 low f a 1 100 10. 7 26.5 9 2 low 1 a 1 100 10. 7 27 9 2 low (a 1 100 10. 7 28 9 2 low 1 a 1 100 10. 7 26 9 2 low 1 a 1 100 10. 7 27 9 2 low l a ! too 10.7 27 5 9 2 low 1 a 1 100 10.7 30 9 2 low (a 1 100 10. 7 28 9 2 low 1 a 1 100 10. 7 26 9 2 low 1 a 1 100 10. 7 28.5 9 2 low 1 a 1 100 10. 7 25 0 2 low fa l l 100 10. 7 26.5 9 2 low la 1 100 10. 7 28 9 2 low 1 a 1 100 IO. 7 25.5 9 2 low (a 1 100 10 7 27.6 9 2 low 1 a 1 100 10. 7 27 9 2 low (a 1 100 10. 7 29 9 2 low (al l 100 10. 7 21.5 9 2 low (al l 100 10. 7 25.5 332.3 395.3 302.3 216.6 433.8 393.7 361.8 224.3 313.B 344.5 319.8 214.3 296.6 245. 2 285. 3 369.8 355.4 255.4 302 399 326 286 318 284 434.8 276.6 394.7 287.4 272.3 301.2 299.2 327 302.9 334.8 408. 3 371.2 450 356 272 318.B 37 3.7 285.9 300.6 315.6 460 401.4 305.5 390.9 248.2 332.8 363. 7 292. I 460 339.8 366.4 154. I 282.8 1.68 1.80 I 72 1.56 I .78 1.70 1.69 1.73 1.51 1.75 1.62 1.55 1.59 1.40 1.62 1.68 1.62 1.63 1.72 1.64 1.49 1.54 1.53 I. 14 1.78 1.57 1.71 1.54 1.55 1.53 1.52 2.37 2.60 2.31 07 65 1.66 2. 19 1.70 1.76 1.60 2.05 1.71 1. 46 1.61 1.70 1.63 I S3 1.52 1. 70 1.83 1.74 1.69 1.59 I. 79 161 1.76 2.21 1.73 1.50 1.55 1.58 48 44 13 30 40 33 07 28 12 26 43 40 19 31 47 32 25 31 10 55 23 48 25 2.22 2.28 2.27 35 39 38 51 42 62 42 20 32 44 26 27 30 58 61 32 47 17 39 39 30 66 39 39 1.86 2.20 087 888 089 890 891 992 893 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 I02B 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 104 I 1042 1043 1044 8 9 9 8 8 8 8 8 8 8 8 8 B 9 8 8 9 8 9 8 8 8 8 9 8 8 9 9 8 8 9 8 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 low low low low low low low low low low low low low low low Ion low low low low low low low low low low low low low low low low low low mad mad med med med med med med med med med med med med med mad med mod med med med med med med 100 100 100 100 100 100 ion 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 too 100 100 100 100 100 100 100 100 87 67 67 67 67 67 67 67 67 67 87 67 67 67 67 67 67 67 67 87 87 67 67 67 28.5 389 1 .68 2 47 27 302 8 .54 2 28 26.5 305 2 .64 2 31 27 354 8 1.80 2 43 28 370 3 .69 2 44 28 282 5 1.81 2 25 28 .5 311 2 1.67 2 32 28 280 D 1.28 2 17 26 255 5 1.45 2 18 27 294 7 1.50 2 25 28.5 345 2 1.49 2 35 27 332 2 1.69 2 37 28.5 378 5 1.63 2 43 28.5 287 3 1.54 2 25 25 248 9 1.58 2 16 27 309 4 1.57 2 30 29 460 .89 2 61 27.5 306 8 .48 2 28 27 293 7 .49 2 25 27 303 8 1.54 2 28 28 378 7 .73 2 46 2B 363 9 1.66 2 42 28 267 4 1.52 2 20 27 358 2 1.82 2 44 29.5 383 6 1.49 2 42 28.5 345 1.49 2 35 25 252 4 1.62 2 IB 28 345 4 1.57 2 37 27 295 7 1.50 2 26 24 232 2 1.68 2 14 28 308 7 .41 2 26 27 314 2 .60 2 32 28.5 460 .99 2 62 10.) 24 208 1 . 49 2 82 10.1 23 184 1.51 2 7 1 10.1 26 272 1.55 3 08 10. 24 .5 204 1. 39 2 81 10. 25 276 1.77 3 10 10. 25 230 1.47 2 92 in. 23 184 1.51 2 7 1 10. 23.5 220 1.70 2 88 10.1 26 268 1.52 3 07 10.1 22 162 1.52 2 59 10. j 21.5 190 1.91 2 74 10.1 22.5 168 1.46 2 6 1 10.) 22.5 188 1.63 2 72 10 1 24 194 1. 40 2 76 10 J 24 202 1.48 2 80 10. J 24 192 1.39 2 75 10 J 23.5 202 1 .58 2 80 10 J 23.5 204 1 .57 2 81 10. 1 24 220 1 .59 2 86 10.1 23 200 1.64 2 79 10. 1 23 218 1.79 2 87 10.1 24 218 1.56 2 86 10. 24 2 30 1.66 2 92 10.1 24 192 1.39 2 75 94 SOSCDSOO<OIO~O>OOO2SCOOSO — r u c u c u c u c u c u c u — — m t u f u t u n i c u - cu cu cu n i r u — — cu cu — c g M n - r g - M - n o i n c u r g n n i u m n c u n n i v i n N N r u r u n n i i v n c u c u c u - <M cu • • • o i w o i c u • cu r u cu cu • cu cu cu • r u cu • . r u • cu • • r u cu r u r u cu cu cu • r u r u cu • cu cu r u cu cu r u • • cu cu • cu cu •«r i n ru i n T <U m cu c u r i t o r n co co COT m c u r u r u c u cu cu r u r u r u c u r u r u c u cu r u c u c u c u 2 2222222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 s s s s s s s s s s s c ^ i i i i i l l l i i i l i i i i ini i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i o o o o o o o o o o o o o o c o o o o o o o o a o o o o o o o o o o o a o o -c » o S " o ) S S S o i S S S 2 » c o c o S S S S Z2^^^mm^m^Z^^Z^ZZZ^ZZ^^^S^Z^^Z^Z^^^2^^^SSZZ c u c u c u — c u c u r u c u c u — r u — — cu — — t u c u — r n — c u c u c u — — — r u c u — — c u c u c u c u — r u c u — c u r u — c u c u c u c u c u c u c u — c u c u r u c u • r u - cu • • r u cu • cu • cu cu • • • c u c u c u • r u cu cu cu cu • r u cu cu cu • • cu cu cu cu • cu cu • cu • • • • r u cu c o ^ ^ m mm — w t o r u -<r n t o » i f ) r g c u v i o m T t n - v m m — cu cu cu cu cu r u cu cu cu cu cu cu — cu cu cu cu c u c u cu cu c u c u c u c u 2 2 2 2 2 2 2 222 2 22 2 2 22 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2222 l i i i i i l i i i i i i i i i i i i i i i i i i i i i i l i i i i i i i n i i i i i i i i i i i i i i i i i i i — — C M t u c u r u r u c \ j r u r o r u a j r u f ^ a o c a o o o o o o o o a o a o c o a c o a c a a c o o o o o o c c o o o o o o o o a a o o o o a o o a o o o o o o I I I I I I I I I I I I I I I 1 I 1 1 1 l l l l l l l l l l l i l l l i l l i l l l l l l l l I I I l i I 16 I I 162 I 163 I 164 I 165 I 166 I 167 I 166 I 169 I WO 117 1 1172 1173 1174 1175 I 176 1177 1176 I 179 I ISO I 181 I 182 I 183 I 184 I 185 I 186 I 187 I 188 I 189 1 190 I 191 1192 I 193 I 194 I 195 I 196 I 197 I 198 I 199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 12 10 1211 1212 1213 1214 12 15 12 16 12 17 1216 med f a 1 100 10. J 28 338 1 91 3 25 med 1 a 1 100 10. ) 27 320 1 63 3 2 1 mod 1 a 1 100 10. ) 26.5 266 1 43 3 03 med 1 a 1 100 10 ] 23.5 188 1 45 2 70 mad 1 a 1 100 10. j 28 332 I 61 3 24 med 1 a 1 100 in. i 27 299 1 52 3 14 med 1 a 1 100 10. 1 27.5 372 1 . 79 3 35 mad 1 a 1 100 10. 22 20B 1 .95 2 80 med 1 a 1 100 10. 24 226 1 .83 2 87 med f a 1 100 10. 26 282 1 .60 3 09 med 1 a 1 100 10 27.5 354 1 .70 3 30 med 1 a 1 100 10. 25.5 242 1 .46 2 94 med f a 1 100 10. f 26.5 332 I .78 3 24 mod 1 a 1 100 10. 26.5 279 1 .50 3 08 med 1 a 1 ion 10. 1 24 242 1 .75 2 94 med 1 a 1 100 10. r 22 164 1 .64 2 58 med 1 a 1 ion 10. 27 318 1 .62 3 20 med 1 a 1 100 10. 27.5 364 1 .75 3 33 med 1 a 1 ion 10. 24 258 1 .65 3 00 med 1 a 1 ion 10. 2/ 310 1 .67 3 18 med 1 a 1 ion 10. 1 24.5 252 1 . 7 1 2 98 mad 1 a 1 100 10. J 28 286 1 .63 3 10 med 1 a 1 100 10. J 25 250 1 .60 2 07 med 1 a 1 100 10. J 27 300 1 .52 3 14 med (a 1 100 10. 1 27 274 1 .39 3 00 med 1 a 1 100 10. 27 .5 320 1 .54 3 21 med 1 a 1 100 10 j 26 258 1 .47 3 on med 1 a 1 100 10. j 21.5 138 1 . 39 2 4 | med la 1 100 10. J 24 218 1 .58 2 84 med 1 a 1 100 10. J 25 230 1 47 2 89 mad 1 a 1 100 10. J 28.5 274 1 .47 3 06 med 1 a 1 100 10. ] 24 208 1 50 2 80 med 1 a 1 100 10. J 25 248 1 59 2 97 med 1 a 1 100 10. J 26 320 1 82 3 21 med 1 a 1 100 10. ) 28 340 1 56 3 26 med fa 1 100 10. ) 24.5 230 I 58 2 89 med 1 a 1 100 10. 1 25 220 I 4 1 2 85 med 1 a 1 100 10.) 25 218 1 40 2 84 med 1 a 1 100 10.1 22 214 2 .01 2 83 med la 1 100 10. J 25 244 1 .58 2 95 med la 1 100 10. j 27.5 332 1 60 3 24 med la 1 100 10.) 24 234 1 69 2 9 1 med 1 a 1 100 10.) 25.5 267 1 61 3 03 med 1 a 1 100 10. ) 27 313 1 59 3 18 med f a 1 100 10.) 25 263 1 68 3 02 med la 1 100 10.) 26.5 388 2 06 3 39 med la 1 100 10.7 27 308 1 56 3 17 med la 1 100 10.7 25.5 289 1 74 3 11 med la 1 100 10.7 28 401 1 83 3 42 med 1 a 11 100 10.7 25 302 1 93 3 15 med la 1 100 10.) 27 299 1 52 3 14 med la 1 100 10. 1 28 285 1 62 3 10 med I a 1 100 10. ) 26.5 292 1 57 3 12 med 1 a 1 100 10. ) 22.5 199 1 76 2 70 med 1 a 1 100 10. ) 26 266 1 51 3 03 med 1 a 1 100 10. ) 28 369 1 68 3 34 med 1 a 1 100 10. ) 28 378 1 7 1 3 36 med 1 a 1 100 10. ) 26 361 2 05 3 32 1219 1220 1221 1222 1223 1224 1225 1226 1227 1220 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1258 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1288 1269 1270 127 I 1272 1273 1274 1275 1276 1 2 med a 1 100 10. 7 1 2 mad a | 100 10.7 1 2 med a I 100 10.7 11 2 med a | 100 10. 7 1 1 2 mad a I 100 10. 7 1 1 2 med a I 100 10. 7 1 1 2 mad a 1 100 10.7 1 1 2 med a I 100 10.7 1 1 2 med a | 100 10.7 1 1 2 med a I 100 10. 7 1 1 2 med a | 100 10.7 11 2 med a 100 10. 7 11 2 med a | 100 10.7 11 2 med a | 100 10. 7 11 2 med a I 100 10.7 1 1 2 med a I 100 10.7 11 2 med a I too 10.7 1 2 med a | 100 10. 7 1 2 med a j 100 10. 7 11 2 med a | 100 10. 7 11 2 med a | 100 10. 7 1 2 med a I 100 10. 7 1 2 med a I 100 10. 7 1 2 med a I 100 10. 7 11 2 med a | 100 10.7 11 2 med a | 100 10. 7 1 2 med a | 100 10.7 1 2 med a 1 100 10.7 1 2 med a I 100 10. 7 1 2 med a | 100 10. 7 1 2 med a | 100 10.7 1 2 med a I 100 10. 7 1 2 med a I 100 10.7 1 2 med a I 100 10.7 1 2 med a I 100 10.7 1 2 med a I 100 10.7 1 2 med a I 100 10.7 1 2 med a I 100 10.7 11 2 med a I 100 10.7 1 1 2 med a | 100 10.7 11 2 med a I 100 10. 7 1 2 med a | 100 10.7 12 1 lilgl a l 1 07 10 12 1 I. tot a l 1 67 10 12 1 M o l a l 1 67 10 12 1 Mol a 1 1 67 10 12 1 Mol a l 1 67 10 12 1 Mol a 1 1 67 10 12 1 Mol ol 1 67 10 12 1 l.lQl a l 1 67 10 12 1 Mgl a l 1 67 10 12 1 Mgl a l 1 67 10 12 1 Mol a l 1 67 10 12 1 M 0 I a l 1 67 10 12 1 Mgl a l 1 67 10 12 1 Mol al 1 67 10 12 1 Mol a l 1 67 10 12 1 Mgl a l 1 67 10 27 26 26 27 21.5 26 25 5 26.5 25.5 26 26.5 28.5 29 25.6 24 25.5 28 27.5 27 26.5 25 27 26.5 25 25 25.5 27 26 27.5 27.5 28 28 20 25.5 24.5 24 21.5 20. S 27 24.5 25 25.5 7 22.S 7 22 7 24.5 7 22.5 24 23 24 24 22 21 21 22 23 21 19.5 23 322 297 300 303 190 296 276 273 261 201 375 473 4 10 266 214 201 340 344 305 209 244 344 302 293 243 277 305 274 345 310 390 305 366 276 300 214 170 318 322 252 250 278 158 148 220 153 198 172 218 190 166 148 134 176 202 130 138 108 .64 3 69 3 .71 3 .54 3 .91 2 .68 .66 .47 .57 .48 .02 .04 .68 .60 .55 .69 .55 .65 .55 .55 .56 .75 .62 .88 .52 . 78 .75 .67 .66 .04 .55 .71 .71 .64 21 14 14 15 7 I 13 07 06 01 01 36 57 44 03 83 08 26 27 16 I I 95 27 15 12 56 2.95 .67 3 07 55 3. 16 .56 3 06 .66 1.28 19 19 38 13 07 14 83 61 20 21 71 2.go 60 2.97 .68 3.07 1.39 2.58 1.39 2.50 1.50 2.88 1.34 2.53 1.42 2.77 141 2.65 1.58 1.37 1.58 2.61 87 74 1.60 1.45 1.65 1.68 1.40 1.00 1.55 50 41 67 80 30 44 73 96 £«O»«SCOC7»^U*QSS • • cu CM r u - • cu cu cu • — cu cu • cu cu cu • r u cu • cu • ru - c u • cu CM CM • cu cu • • cu • -CM • cu • • • cu • • cu cu cu • cu cu m m ^ m m tn zO CM — -*r r*» -«a- r-i m — ^ ^ C ^ f * i m < D ^ " » C 9 M cu cu cu cu cu CU CU CM cu cu ru CU CU CU CM cu r u c u CMCU r u CUCUCU CMCU CM 2 2 2 = = 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ^ C M r u r u r u t M r M C M C M r u c M C M n i r M C M M CM CM CM — — — CU — CM — — — CU — — CU CU — — CM — — — — CM — CU — — CM — — CM — — — — CM — — — — CM CU — CM — — — CM — — CM — " CM CU CM — CM • CMCU -CM • CM CM • CU CM CU • — — — • CM CU - CU CM • CU CM CM CU CM -CM -CU • CU CM CM n CM CM ^ cu — a w a o i n j f - a o w ^ CU CU CM CU CU CM CM CM CU — — CU CM CM CM CM CU CM o o o o o o o o o c o a a o o o o o o o o o c o c < S < a c S t 0 C O < D < O C 9 t O < 0 t O < O C O < 0 < f l C O C 0 t O < 0 ( 0 ( 0 SfSffS;ffiff;§ij>;§ i l i f f a f f §§%^§§^§^§§^^§^§^§§§§§§§§^-B-§-g§ — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — _ _ . » _ _ C M C M C U C M r U C U C U C U C U C M C U C M C U C U C M C M C M C U C U C U f M C U C U C U C U C M C M C M C M C M C M C U C ^ 119 J 1194 1395 1396 1397 1396 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 14 10 14 11 14 12 14 13 14 14 14 15 14 16 14 17 14 IB 14 19 1420 142 1 1422 1423 1424 1425 14 26 1427 1426 1429 14 30 1431 1432 1433 1434 1435 14 36 1437 1438 14 39 1440 144 I 1442 1443 1444 1445 1448 1447 1446 1449 1450 y» f a 1 i 100 10. 7 28 268 .52 3 04 Ql> 1 a 1 100 10. 7 23.5 178 .37 2 65 Ql> 1 a 1 100 10. 7 24.5 208 .41 2 80 Oil 1 a 1 too 10. 7 20.5 306 .64 3 16 gli 1 a 1 100 10 7 28 272 .55 3 05 Oil 1 a 1 100 10 7 20.6 308 .66 3 17 Oil 1 a 1 100 10 7 25.6 274 .65 3 06 Oil (a 1 100 10 7 27 318 .61 3 19 Ql> 1 a 1 100 10 7 27.5 360 .73 1 12 Qli 1 a 1 100 10 7 23.5 174 . 34 2 63 Oil 1 a 1 100 10 7 20 276 .67 3 07 Oil 1 a 1 100 10 7 27.5 254 1.22 2 99 Qli 1 a 1 100 10 7 26 262 1.49 3 02 Oil 1 a 1 100 10 7 25.5 290 1.75 3 1 1 Oil < a 1 100 10 7 26.5 272 1.46 3 05 gi> 1 a 1 100 10 7 27 340 1.73 3 2G Oil 1 a 1 100 10 7 26 280 1.69 3 no gn 1 a 1 100 10 7 26 294 1.67 3 13 Oil 1 a 1 100 10 7 2B 348 1.59 3 28 9li 1 a 1 100 10 7 26.5 310 1.67 3 18 on 1 a 1 100 10 7 25. S 242 1.46 2 94 Oil 1 a 1 100 10 7 22.5 152 1.33 2 50 Oil 1 a 1 100 10 7 29 408 1.67 3 43 Qli 1 a 1 100 10 7 26 284 1.62 3 09 gii (a 1 100 10 7 28 5 398 1.72 3 41 Oil 1 a 1 100 10 7 28 6 284 1.53 3 09 Oil 1 a 1 1(10 10 7 22.5 160 1.40 2 55 0l> 1 a 1 100 10 7 26.5 288 1.55 3 11 Oil 1 a 1 100 10 7 27.6 298 1.43 3 14 gii 1 a 1 100 10 7 28 392 1. 79 3 40 Oil 1 a 1 100 in 7 23 190 1.56 2 7 1 on 1 a 1 100 in 7 25.5 262 1.58 3 (12 Oil 1 a 1 100 10 7 29 390 1.60 3 39 gii 1 a 1 100 in 7 27 306 1.55 3 16 Qli 1 a 1 100 10 7 26 278 1.58 3 07 Oil 1 a 1 100 III 7 2 1 6 198 1.99 2 75 Oil 1 a 1 100 10 7 27 326 1.66 3 22 Oil 1 a 1 100 10 7 29 414 1.70 3 45 Oil 1 a 1 100 10 7 26 318 1.81 3 2n Oil 1 a 1 100 10 7 25.6 296 1.79 3 13 Oil t a 1 too 10 7 24.5 218 1.48 2 84 Oil f a 1 100 10 7 2B 358 I.B3 3 31 Oil 1 a 1 100 10 7 24.5 238 1.62 2 93 gii la 1 100 10 7 27 308 1.56 3 17 Oil 1 a 1 100 10 7 26.5 302 1.62 3 15 gii la 1 100 10 7 25.5 250 .51 2 97 on la 1 100 10 7 23.5 182 .40 2 67 gi> 1 a 1 100 10 7 28 348 1.69 3 28 Qli 1 a 1 100 10 7 26 278 1.57 3 07 Oil 1 a 1 100 10 7 26 292 1 68 3 12 gii 1 a 1 100 in 7 25.6 274 .65 3 118 gii 1 a 1 100 10 7 28.5 314 1.69 3 19 Qh fa 1 100 10 7 23 194 .59 2 73 gii f a 1 100 10 7 26.5 29U .58 3 1 1 Oil 1 a 1 100 10 7 27.5 328 .57 3 22 Oil f a 1 100 10 7 25 242 .55 2 64 Oil f a 1 100 10 7 28.5 300 61 3 14 Oil f a 1 100 10 7 23.5 228 .76 2 09 1451 1452 1453 1454 1465 1466 1457 1450 1459 1460 146 I 1462 1463 1464 1465 1466 1407 1468 1469 1470 147 1 1472 1473 1474 1475 1476 1477 1478 1479 14(10 1481 1402 1483 1404 1485 I486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1498 1497 1498 1499 1500 ISO I 1502 1503 1504 1505 1508 1507 1508 13 2 l> Igh ( a 1 100 10. r 27.5 13 2 Ii Qh fa 1 100 10. ' 28.5 13 2 Ii loh 1 o 1 100 10. r 24 13 2 Ii iQll 1 a 1 100 10. ' 2 8 . 5 13 2 Ii Igh 1 a 1 ion 10. 7 24.5 13 2 Ii Igli 1 a 1 ion 10. t 22.5 13 2 Ii Igli 1 a 1 100 10. 1 28.5 13 2 Ii Igh 1 a 1 100 10. r 24 13 2 II Igli 1 a 1 100 10. r 27.6 13 2 Ii Igh 1 a 1 100 10. 1 27 13 2 Ii loli I a 1 ion 10. t 25 13 2 It Igh 1 a 1 loo 10. t 26 13 2 Ii Igh la 1 1(10 10. 1 24 13 2 Ii loh 1 a 1 ton 10. 1 29 13 2 Ii Igh I a 1 100 10 1 28 13 2 Ii Igh 1 a 1 ion 10. 27 13 2 Ii Igh la 1 too 10. 25.5 13 2 Ii Igh 1 a 1 100 10. 26.5 13 2 Ii Igh la 1 100 10.1 26.5 13 2 Ii Igh 1 a 1 too 10. 25.5 13 2 Ii Igh 1 a 1 too 10. 27 13 2 Ii Igh (a 1 too 10. 26.5 13 2 Ii Igh 1 a 1 too 10. 24 13 2 Ii Igh I a 1 100 10. 19 13 2 Ii Igh 1 a 1 too 10. t 28 13 2 Ii Igh la 1 too 10. t 27 13 2 Ii Igh I a I ion 10. ' 27 13 2 Ii Igh la 1 100 10. ' 24 13 2 Ii Igh la 1 100 10. 24.5 13 2 Ii Igh f a 1 ton 10. 29 13 2 Ii Igh (a 1 100 10. 1 24.5 13 2 Ii gh 1 a I too in. i 25.5 13 2 Ii gli f a 1 ion 10.1 26.5 13 2 Ii igh I a 1 inn 10.1 25.5 13 2 Ii Igh 1 a 1 100 to. J 22 13 2 Ii Igh 1 a 1 too 10 J 27 .5 13 2 Ii Igh 1 a 1 loo 10 J 19.5 13 2 Ii Igh f a 1 100 10. j 20 13 2 Ii Igh 1 a 1 100 10 25.5 13 2 Ii Igh (a 1 100 10. ' 24.5 13 2 II loh 1 a 1 too 10. 26 13 2 Ii Igh la 1 100 10.) 26 13 2 Ii Igh (a 1 100 10 1 24.5 13 2 Ii Igh la 1 100 10.J 25.5 13 2 Ii Igh la 1 100 10.7 26 13 2 l> gh la 1 100 in.) 26.5 13 2 Ii Igh 1 a I too 10. J 25 13 2 Ii loh 1 a 1 100 10. 1 29 13 2 Ii Igh 1 a 1 100 10.) 26 13 2 Ii Igh 1 ft 1 100 10 7 24 14 3 c lr 1 1 a 1 99 10.1 22.5 14 3 c lr 1 la 1 99 10.7 20 14 3 c tr 1 1 a 1 99 10.7 19.5 14 3 c r I 1 a 1 99 10. ) 21.5 14 3 c lr 1 1 a 1 99 10.) 24 14 3 c Ii' 1 I a 1 99 10.) 24.5 14 3 c lr 1 I a 1 99 10. ) 26 5 14 3 c tr 1 1 a I 99 10. 1 19.5 364 260 198 396 228 178 220 178 318 318 242 250 178 192 182 318 262 310 280 250 338 260 234 128 280 328 332 206 212 4 36 226 232 298 264 164 330 I 12 142 284 286 248 252 232 234 264 312 246 308 244 218 104 I IB 104 162 244 250 298 120 98 t n o » t n c u c u r u * * — ^ r u c o i n ^ c u ^ r v ^ t n — ^  — ^ ^ ^ — ^ ^ ^ — r u c T t m ^ < o ^ e 8 < A i i n c u t o — ifl — — CD r u CM cj» cu »-« •*• io t u w i n v ^ — c u < u O ' * i c u e M C u — — — — • r u — • r u C • cu <u cu — cu • — r u — • • Q co cu — — O • CM • — • r u • - — — — C M — — ru — r u — c u r u r u ^ C D C D ' — c o t o t r t — c o i n * * » ^ c o — "••> — eo — — c u m - ^&t£}aa&^~&mcu^&&&'nx*in&~tv~{\ito^^Pu**\n<\t'**&&~Q3<o<fi m ^ t o ^ t n ^ ^ c o r * ) • ^ w t n ^ v ^ ^ f » i i n < o ' " i i n • ^  . m m « n m — n n « « i n • « o ^ v i f l u i ^ v ^ r v » r i f l , w u i i < n t f i ' * ' ^ r r » i ( f l i f l ( O C 3 O i O ( 0 « c f l O c o i A ^ i O O C v v « n i r U i 9 i O « r o c O O ( O M l A u i t ^ i a i A t n c D U i ^ i ^ t n t n m c s u ^ . . 0 1 . . - c u • CM r u • • r u r u • - C M • • r u r u - r u ru • • - C M - c u r u r u - c u c u c u • ru • r u cu r u - c u • • • r u r u • r u r u - r u - r u • • i f l o i n e t N 10 co m i n ^ **. cn m co c o o ^ co co co co w w r»» ru r u r u r u r u r u CM r u r u CM r u r u r u CM r u r u CM CU CM CM CM CM CM CM CM CM CM CM CM o o o o o o o o o o o o o a o a c c o o o o o o o o o o o o a s o a o o a o o o o c c s o o c o o o o o o o c o o o U t _ l > U I - t _ ' - U C , l . U ' . c u t . u t - s - u ' - u u t - u : -Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z C Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z * * * * B * B * * » « » * * * * * * B B * B * B » » B » B B B » » B » * » » * * B * B S * » B o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o c o o o o o o o o o o o o * . _ _ . « . — _ . . . — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — ~ — — — — — — — — — — — — — — — — r u c u r u r u i A t n i r r ) u > t n i A i n u ) u ) i f l i i ) i n i i ) i n c n ^ c o a O ~ C M f ^ ^ u ^ c o r ^ a 3 c 3 J O ~ r u r ^ ^ ^ c o ^ c a o i o o o r > . r ^ ^ r > . f v x N . r » . / > , r » a a o c o o c o c o a o c n i f l f l j i o » ^ c c a v ( J c o c o t < * o c o i n * « « v ' - - f y » f l c D C C D ^ a } c o w ( o i o o o G c o c a v i n - ; o v c f l u i c a v o c \ J c c i ) ' ^ » v - t o • — C M C U -c u c u c u e u r ^ r u r u r u c u c u r ^ r u c u r u c u r ^ m — — — — t o cu — c o o • rtiftnoftjOOcncovnui* - e o < ? * t » s . ^ ^ o c o — & ^r^oinct03r^C}&~&<G&&m&cvta--'**-r*-viC)*'.i£i<jaf+*r*\r~i r S . U l l i J t f ) * l O l » W C O ( O l O r ^ U ) U l C y i O r V * V r > . U l l f l * f f l O i f l 0 f f l < 0 0 ( 0 — ~ 3 U w < O C B r t O O — C O f t l N i f l v c U ^ i f l f a t f l W — CM — — cu cu — r u cu cu cu cu — — — m m — — c u c u c u — cu cu — — — r u c u c u c u — — c u c u — — cu — eu — cu — c u c u — — — m — m r u c u m m c u (vucUiOis^iovuirnuioninAJiflcoaio cu • r u - c u c u • r u - CM - • c u c u c u - c u c u • • ru • - c u c u - c u c u c u — c u • • r u cu CM CM - • CM CM • • - c u c u c u • • CM r u r u r u • - c u c u c u i n c i — m m <^ co cu m i n — r*i m *r ru — n c u •»? — c o i n CM CM CM CM CM CM CM C U C U C U C U CU C U C U CM CM C U C U C U CM CM C U C U a o o a o o o o o o o o o a o a c n a a a c n a i a c B c s c n c n c A c n o a i c n O O O O C 9 O C 9 O O 0 ) C I ) 0 ) f f l C 9 C 9 C 3 C n a C 0 C 9 O — — — — — — — — — — — IT — — — Z Z — — — — Z — Z Z — Z Z! Z — — Z^  IZ Z Z " — — — — ~ U U U *- U U — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — * . — — — — — — — — — — — — — — » e * * s i u o u u u u u u u u u u u u u o u u u o o u u u u u o o o o u o u u - I- - u (J <J u u U U U U - U - i . o o u u o u u u — — — 0 0 0 0 0 y y o — • ' t n m m t n m t n Q — — — — — — — ~ — — r u c u c u c u c M C U C M C u r u r u m m m m m 99 c o c o e n ^ c o ^ - ^ i n ^ w — OT^ronjwtncn — « ^ c o i n ^ c Q c o i n ^ c o * ^ ' * > ' p » ^ i n ^ ^ m f p » ^ i n « . » v ^ i o i f l i f l ( 0 ^ T i n ^ w ^ c • t o to O J t o -*r • • t O ' v i O 1 ^ — l O ^ u n ^ ^ r - v c / i t ^ • cu cu c u m • m • m m m • cu cn cu • f*» - c u . n m n n i n n j - m c u • cu • «•*> . m m . f»i m . . m • r u m C n o e » — i n — »•» o r i ~ O) r y K . g 1*1 O o o ^ cu O c o c u r»i m n r t c u n c w w c y r i cn r * n cu 1^1 cu cu cu m m cu r t m cu r*> m o o a o o o o o o o o a o o o o o o o o o o o o o o a c o a o o o o o o o c o o o o o a o o a o a o a o o o o a o o o o o o o 3 c o o o o o o o o o o c o o o o o o o o a o o = o a a o o o o o o o o o o o o o o c c o o o c o o o c c a o o o a a s c o o o o o a o o o o c a o o o o o o o o o o c Q a o o a a o G o a o o a o s c c o o c s c o a o c o - U U U U U U - U U U U U U U U U U U U U U U L . U U U l - U t . l - - U U U U l - l _ - ! _ U - U ^ U U U - W U i . l _ L . U l - U U U £ B * B B X X B * B * £ B B S B » £ B B B B X £ » £ » £ £ B B X X X X £ S £ £ * X £ £ £ B X B B B £ £ S X X B S * X X B B B X B B B E B B B X B B B S B B B B B B B B S B B S B B B B B B B B B B B B B B B S B B B E E B B C B B B B t O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O Q O O O O O O O O O O i S c g c o t o t o o o c o o c g t D c o o c o c D c g t a c B O n ^ i o t c i K o o i o - ^ w ^ w o - v c o c a O - W r ^ ^ u i c o ^ e a o c o c o a c a c o c o c n c n C T c n G ^ a i c > C T C J J C 3 5 c n — — f«* . . » < M - o c * " ~ w O " * " " t v C " O W • — c u c u r n r n c u c u o — e u c u — - c u — co cu cu cu — — — cu — as — cu — — cu o cu cu cu m • c u a c D ^ c u Q Q c o o c v o o c a ^ ^ c o a s O c o t a n t o S c o f f l C i w t o ^ ™ - * w < 0 — ^ ' ^ O c o C ^ o o o o c o — o i c y c u c u c n c u c u c u r ^ c u c u c v c M f t i r n a i c a i 0 > ^ i i i u i u ) O < o ^ U ) 4 3 u ) c 9 c g t o i i i u i U ) U i u ) a c B ^ cu • cu • * - cu cu cu - c u • c u cu - • - c u - cu cu cu cu cu r u • r » - • - cu cu cu • cu cu cu c u • cu cu • cu cu • • • cu cu cu - c u - c u - c u m • co »•» m u ) m eg — c s C o cn **» v co cn *«- cn t n cu <o cn co — r u cu cu m cu cu cu c u c u r i f i cu cu cu ru cu cu cu cu cu cu cu r u r f o o a c c o o o o o a a o o o o o o o o c o o o o r O i O c O C O b 3 ( O v 3 < S a 3 c O ( O C D ( 0 < 0 < O C O ( O c O ( O C Q c i } ( O a X B £ S B X S B B B B X £ B B B 2 B £ X B B £ S £ £ B B B S £ B B B S £ B B K S B * B B B B S B X B B B * B B X B £ * * B B B B B B B B * * B B B B * B * B B » B B t B I B J : » B B B B t r 5 B E B * B £ i B * « > K B B B B B B B * B o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o a o o o o o 0 0 0 0 0 0 0 0 c u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c u c v c u c u c u c u c u c u c u c ^ A i n t f i u i i A u i w i A i A u i i o u i t n t f l u i u i u j u i u i t n i n i f l u } ^ i n <o co 01 O — c u n ^ i A i O ' s c a o i a — r g r ^ v u i i o r v c o a i o - n j n v u i < a ^ c a c n C " W f « ^ i n « 3 r ^ a j C T O " < ^ ^ ^ i f l < o ^ o c a O " ™ ^ ^ ^ ^ r t l ^ r ^ f ^ f ^ f ^ l ^ r ^ r ^ r ^ r ^ I O O u 3 ( 0 ( 0 < 0 0 < O t t > < 0 ( O U ] t O ( O l O U O ( O c O < O l O O < 0 ( O u 3 ( O l S t f U > U } « r o n j r u r o r u r u r u r u r o r u r u r u r ^ F FsFFFFFFFF F FF II FF FF fFFiffFFi'i FFFFFFFFFssFFFsFFFFssFssFFFF ! ! ! ! i ! ! ! ! ! ! ! I I ! I I ! ! ! ! ! i ! ! ! ! H I l l l l l l l l l l l l l g l l l l l l l l l l l l l l l g l l l l l l l l s I I I I I I I I I I I I I I I I I I 5 5 o p o 5 5 o 5 5 5 o o 5 5 5 o o o 5 5 S 5 c 5 o 5 w 4 k i A . w u i A . r u w A - • w w r u w w U J A » w w w - w w u i 4*. - > w r u r u - w — w r u w w w w r u w 4 > - w w w w w w * > * » w r u w A > * » -illsHIIISIIIsllIs^ Fs l l l l l l l l l l l l l l l l l l l l l l l l l l ! ! ! ^ III!=I!I!III!I!I!I!=IIIIII!IIII!I!^ = 5 5 5 S 5 5 5 5 S 5 5 5 5 £ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 S 5 E 5 5 5 5 5 5 5 5 5 5 5 S 5 5 5 E 5 E E E H S 5 5 w ~ Z S S SS! £ £ £ £ £ S £ £ £ £ £ £ ru r u • r u r u - • r u r u ru u i • • r u • r u • ui r u r u r u r u • U J r o - r u r u • r u r u r u r u r u r u r u r u w r u r u • r u w ru u i r u r u u i r u r u cn w c i s a i i i u i o i n c i ^ N O n n n t t N n o a c i N N n o a u w a i r ' a ^ e a i N f f a r u CC — r u S^^^^ u|Jjg|^^2cBru<»cSwi» Z r u l n r u s r u W 001 101 - 3 - 3 — • — — • — — — ' - a — — ~ — — — — — - — — — -x s s s 2 2 S £ z SSSS 2 2 222 2 22 2 2222 2222 2222 2^ ^ s s s s s s i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i l i l l l l l i l l l l l l l l l l i l l l l l l l l l l l l l l l i i H tn to r- co c> c — m n » i o t o " - o a i o - n i n » i o t o ~ t n a ) a - M n » a t o r . t s a o - r v n » i r i t o K O O o - « r n » i r ) t a » e o o - r u — — — cu cu 2 — r w W O N - ru — ^ S — Sru^ — ruSZ^cu — t n ^ i n r ^ c n t o ^ r n — tn — — <u-^  S S S ^ S ^ S ^ S ^ S " " " ™ ^ S £ £ £ SSSSS 2 ~ S SS 5 S SS 5 S 2 2! 2 2 2 2 2: 2! 2 2 2 2 2! 2 2 2 2 2 2 2 2 2 2 2! 2! 2 2 2 2 2: 212i 212! 2 2 2i 2! 2 2! 2 2! 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 I l i i i i l i l i l l i i l i l l l i l l i l l l l i i l l l i l i l i i i l i l l I l i l l i l l i l l l i l l l l l l l l l l l l l l i i i i i i l l l l l i l l l l l l i i l l i l l i l i l l l 19/3 16 1 med 19/4 18 1 med 19 7 5 IB 1 med 1976 IB 1 med 1977 18 1 med 1976 18 1 med 1979 18 1 med I960 18 1 med 198 1 IB 2 med 1982 18 2 med 1983 18 2 med 1984 18 2 med 1985 18 2 med 1986 18 2 med 1987 IB 2 med 1988 18 2 med 1989 18 2 med 1990 18 2 med 1991 18 2 med 1992 18 2 mod 1993 18 2 med 1994 IB 2 med 1995 18 2 med 1996 18 2 med 1997 IB 2 med 1998 18 2 med 1999 IB 2 mod 2000 18 2 med 2001 IB 2 med 2002 IB 2 med 2003 18 2 med 2004 18 2 med 2005 IB 2 mod 2006 18 2 med 200 7 18 2 med 2008 IB 2 med 2009 18 2 med 2010 18 2 med 201 1 IB 2 med 2012 18 2 med 2013 18 2 med 2014 18 2 med 2015 IB 2 med 2016 18 2 med 2017 18 2 med 2018 IB 2 med 2019 18 2 med 2020 18 2 med 202 1 18 2 mod 2022 10 2 med 2023 18 2 med 2024 10 2 med 2025 18 2 mod 2026 18 2 med 202? 18 2 med 2028 10 2 med 2029 18 2 med 2030 10 2 med r 100 10.1 29 390 Wll r 100 10.1 31.5 522 Wll r 100 10. j 29.6 408 wn r 100 10 1 29 372 Wll r 100 10.1 29.5 374 Nil r 100 10.1 31.5 488 wn r 100 10.1 25 222 Wll i" 100 10.1 29 358 Wll i* 100 10. 32 642 wn r 100 10.1 31 486 wn r 100 10.1 31.5 502 wn r 100 10. t 30 390 wn r 100 10. 24.5 196 wn r 100 10.1 33 592 wn r 100 10.1 31 50B wn r 100 10. 29 392 wn r 100 10. j 29 412 wn r 100 10. 29 346 wn r 100 10. ' 32 476 wn r 100 10. 31 494 Wll r 100 10.1 29.5 432 wn r 100 10. 27.5 270 wn r 100 10. 25 260 nn r 100 10.1 31 388 Wll r 100 10.1 32 662 wn r 100 10. 30 4 10 wn r 100 10.1 30.5 476 wn r 100 10.1 31.5 582 wn r 100 10.1 26.5 264 wn r 100 10.1 32 484 wn r 100 10. 1 29 404 Wll r 100 10. 31 614 wn r 100 10.1 30.5 466 wn r 100 10. 1 27 308 Wll r 100 10. J 30.5 432 wn r 100 10. J 31 450 wn r 100 10.J 20 388 wn r 100 10. J 32 490 wn r 100 10.) 30 374 wn r 100 10.) 28 316 wn r 100 10.7 28 308 wn r 100 10.7 31 492 wn r 100 10.7 31 444 wn r 100 10.7 29.5 352 wn r 100 10.7 26 320 wn r 100 10.7 29.5 380 wn r 100 10.7 31 448 Will r 100 10.7 28. 5 356 Will r 100 10.7 29 3B6 wn r 100 10.7 29 408 wn r 100 10.7 30.5 448 Wll r 100 10.7 29 362 wn r 100 10.1 30 404 wn r 100 10.) 30 398 wn r 100 10.7 31 428 wn r 100 10.] 31 452 wn r 100 10.) 31 482 wn i 100 10. J 26.5 268 1.6 1.3 2031 1.67 141 2032 1.59 1. 32 2033 1.53 1.29 2034 1.46 1.29 2035 1.55 1.38 2036 1.42 1. 1 2037 1.4? 1.27 2038 1.65 1.42 . 2039 1.63 1. 38 2010 1.61 1.39 2041 1.44 1.3 2042 1. 33 1.05 2043 1.65 1.45 2044 1.7 1.4 2045 1.6 1 1.3 2046 1.69 1.32 204 7 1.42 1.26 2048 1.45 1.38 2049 1.66 1.39 2050 1.68 1. 34 2051 1.3 1. 17 2052 1.66 1. 16 2053 1.3 1.3 2054 1.72 1.44 20S5 1.52 1.32 2056 1.68 1.38 2057 1.86 1.45 2058 1.42 1. 16 2059 1.48 1.38 2060 1.66 1.32 200 1 1.73 1.4 21162 1.61 1. 38 206 3 1.56 1.22 2064 1.52 1.34 2065 1.51 1.35 , 2068 1.76 1.3 206? I.S 1.39 2068 1.39 1.29 2069 1.44 1.23 2070 1.4 1.22 , 207 1 1.65 1.39 2072 1.49 1.35 207 3 1.37 1.27 2074 1.46 1.23 2075 1.48 1.29 2076 1.5 1.35 207 7 1.54 1.27 2076 1.58 1.3 2079 1.67 1. 32 2080 1.58 1. 35 2081 1.48 1.28 2082 1.5 1. 32 , 2083 1.47 1.31 . 2084 1.44 1.34 2085 1.62 1.38 2086 1.65 1.38 2087 1.44 1 . 17 2088 18 2 mod wn r 100 18 2 med wn i" 100 18 2 med wn r 100 18 2 med nn r 100 18 2 med wn r 100 18 2 med Wll i" 100 18 2 med Wll r 100 18 2 med wn r 100 18 2 med wn r 100 18 2 med wn r 100 19 1 high wit Ii 67 19 1 lilgli Wll r 67 19 1 lilgh wn r 87 19 1 lilglt Wll r 67 19 1 lilgli Wll r 67 19 1 high wn r 67 19 1 high Wll r 67 19 1 high wn r 67 19 1 high Wll r 67 19 1 high wn r 67 19 1 high Wll r 67 19 1 high wn r 67 19 1 high Wll r 67 19 1 high wn r 67 19 1 high wn r 67 19 1 high wn r 67 19 1 high Wll r 67 19 1 high wn r 67 19 1 high wn r 67 19 1 high Wll r 67 19 1 high wn r 87 19 1 hloh wn r 67 19 1 high wn r 6? 19 1 high Wll r 67 19 1 hloh wn r 67 19 1 high wn r 67 19 1 high wn r 67 19 1 high wn r 67 19 1 high wn r 67 19 1 high wn r 67 19 1 high wn r 87 19 1 high Wll r 67 19 1 high wn r 67 19 1 high Wll r 67 19 1 high Wll i" 67 19 1 high wn r 87 19 1 high Wll r 67 19 1 high wn r 67 19 1 high wn r 67 19 1 high wn r 67 19 1 hloh nn r 67 19 1 high wn r 67 19 1 high nn r 67 19 1 high wn tr 67 19 1 high wn r 67 19 1 high wn tr 67 19 1 high wn r 67 19 1 high nn lr 67 10.1 30 408 1.51 1. 32 10.1 28 286 1.3 1. 19 10.1 28.5 332 1.4] 1.24 10. 32 470 1.43 1. 37 10. 30 442 1.64 1. 35 10.1 30.5 40B 1.44 1. 32 10. 32.5 520 1.51 1.41 10. r 31.5 465 1.49 1. 37 10. 32 496 1.51 1. 39 10.1 32.5 614 1.79 1.47 10 19 5 1 18 1.59 1 3.87 10. 27 .5 284 1.37 1. IB 10.1 26 282 1.6 1. 18 10.1 2? .5 290 1.39 1. 19 10.1 23 252 1.43 1. 14 10.1 27 286 1.45 1. 19 10.1 25.5 2 38 1 .44 1 . 12 10. 27 264 1.34 . 16 10.1 25.5 276 1.66 . 17 10.1 27 270 1.3? . 17 10 1 25.5 270 1 .63 117 10. j 27 292 1.48 1. 19 10. 1 26 336 1.91 .24 10.1 20 332 1.51 1.24 10.1 23.5 182 1.4 1.02 10.1 24 180 1.3 1.02 10.1 28 316 1.44 1.22 10.1 21.5 166 1.67 ( 3.99 1. 1 1 10. 1 25.5 234 1.41 10 1 26 248 1.41 . 1 i 10. 1 25.5 268 1.62 1. 16 10.1 26.5 270 1.45 . 17 10. j 27 308 1 .56 . 2 1 10.1 23 190 1.56 .04 10. 1 27.5 326 1.57 23 10. j 20.5 116 1.35 I ).8B 10.) 27 278 1.41 . 18 10.) 26.5 264 1.42 . 16 10.) 25 196 1.25 .05 10. ) 27 298 1.51 1.2 10. ) 29 344 1.41 1.25 10. 1 22 160 1.5 ( 3.96 10.1 25 208 1.33 .07 10.1 28 306 1.4 .21 10.1 24 210 152 .07 10. 1 23 178 1.45 .01 10.1 22.5 148 1.3 I 1.95 10.1 24.5 208 1.41 O? to. 28.5 356 1.54 .27 10.1 24.5 250 1. 7 . 14 10. 28 246 1.4 . 1 3 to. 23 184 1.51 103 10. r 26 258 1.46 1. 15 10. > 26 252 1.43 . 14 10. r 26 256 1.46 1. 15 10. 23.5 178 1.37 1.01 10. 26 216 1.38 .08 10. 28.6 360 1.56 .27 103 — — r u — — cn — — • c™ — — r u ^ ^ c u c u — t v c u c u • . T « — — ru rt r u •'nS to cu co • - ( o m v i n n c v i f l * • ^ i n m u i m u? — • ^ a - v c o i n r i o « m » f i n ^ • v ; v o v 3 ( 0 ( o t o o ( D v v i n < o ^ i f ) i p ^ r ^ ru ru • • ru ru ru ru ru • cu cu cu • m m tn • cu cu • cu cu • • m cu - - • cu r*> • cu m m • •runwrucumncufy • <*> cu ru cu m • • r» i»> -S S S S ~SS s SS S s s s s s a o o o o o s o o a o o o a o s o o o o o s s s s s s s s s s s s s s i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i l r u r u « i n i « i « i c \ i « i n i n i « i c v i n i c u — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — 5 ? ? S 2 S S S S S S S S | £ S S S S S S S S C U C U C U C U C U C U C U C U C U C U C U C U C U C U C U C U C U C U C U C U C U C U C U C U C U C U C ^ tBty--»fyeooco^o(D«infti*^o^»w CM • o a < M r y - a o - : C ^ rj - c c - a C C c u o c j — • — c — — C O O O J — c u o — oi c u c u — c — a» — — c — — V C O r ^ ^ r ^ r ^ S c M ^ l O ^ f ^ U ^ ^ C O •CUCU^ScoS^r^TTm^toSSSS mcu — —rnr^ cu — cucucuajcucucumcucucucu — cucucu — cuc^  m cu - • cu - • • • cu cu cu cu cu cu cu cu • cu cu cu cu cu • cu -cu • • cu cu cu cu • cu • cu • cu cu • cu cu • ru cu cu cucu cucu • cu • • ZZ SSZZ S Z 3 S S3 Z S Z S S S S S SS 2 222 222 222222 222 2 2 22 22 2 22 CO(OOi0tOCSCO0lOQCO(O(OCOiOo9lOCOcOa l i i l i l i l l i l l l l l l i l l l l l l i i i i i l l l l i l l l i l l l l l l l l l l l l l l l f l l l l l l l l l l l f l l l l ' l f l l l l l l l l l l l l l l l l l l l l l l ' l l l l — — — — — — — — — — — — ninicucucucxicuNCurucufun oo©cacafl>fflc»o)c5c3)ffl©ffl — c u m ^ t o c o ^ c a c n c - f ^ ^ ^ u ^ t o ^ c o O T a — c u m O i o i a i C O C C O O C C O C - - - — — — — — c \ j c \ i f M r u c \ j c u c u c u r \ j r \ j r ^ ^ r ^ m ^oirjftiwrtjcyfynjtycyojfti IlsIIilllsI 3 2205 2206 2207 2208 2209 22 10 2211 22 12 22 13 22 14 2215 22 16 2217 22 16 22 19 2220 222 1 2222 2223 2224 2225 2226 2227 2226 2229 2230 223 1 2232 2233 2234 2235 2236 2237 2238 2239 2240 224 I 2242 224 3 2244 2245 2246 2247 2248 2249 2250 225 1 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 0l> wnlr too 10.7 30.5 510 I B 1. 4 Oil null 111') 10.7 27 344 1 75 .25 Qli wnlr 100 10.7 31 472 1 68 . 37 Ol. wntr too 10.7 27 338 1 .72 25 Oil wnlr too 10. J 27.5 332 1.6 .24 Qli wnlr too 10.) 28 312 t .42 .22 Oil wnlr too 10. J 30.5 440 1 .55 . 34 Oil wnlr 100 10. ) 28 350 t .69 .26 gh wntr 100 10. 1 29.5 4 18 1 .63 . 32 Oh wntr too 10. J 31.5 402 1 .29 . 3 1 Oh wntr 100 10.) 25 238 1 .52 . 12 gh wntr 100 10] 30. 5 442 1 .66 . 34 Oh wnlr too 10.1 31 482 1 .62 37 gh wnlr too lO. i 30.5 476 1 .68 1. 37 gh wnlr 100 10. 29.5 394 1 .53 1. 3 Oil wntr 100 to. 27 294 1 .49 12 Oil wntr 100 10. 27 262 1 .33 1. 15 Qli wntr too to. 29 362 1 .48 1.27 gh wntr 100 10. 29 364 1 .49 1.27 gh wntr too 10. 31 4 38 1 .46 134 Qh wnlr 100 10. ' 31 478 1.6 1. 37 Qh Hill) 100 10. ' 29.5 420 1 64 1. 32 Qh wntr too to. 1 29 402 1 .65 1.31 gh wnlr 100 to. 29.5 402 1 .57 1.31 Qh wnlr 100 10. 1 29 386 1 .68 1.29 Oh mill 100 to. ' 28.6 344 1 .49 1. 25 Qh wntr 100 10. '26.5 278 1 .49 . 18 Qh wntr too 10. r 3t 434 1 .46 1. 34 Qh wnlr too to. ' 30 392 1 .46 1.3 Qli wnlr too to. r 33 614 1 .71 1. 48 Qli wntr 100 10. ' 29 426 1 .75 1.33 Qh wnlr 100 10. '28.5 366 1 .58 1.28 Qh wntr 100 10. ' 28 344 1 .57 1.25 Qh wntr 100 10. 30 4 40 1 .63 .34 Oh wnlr too to. 29 358 1 .48 1.27 Oh wntr 100 10. 31.5 684 1 .87 .44 Qli wnlr 100 10.1 30 404 1.6 .31 Qh wntr 100 10. 25 246 1 .57 . 13 Oil wnlr 100 10. j 27.6 290 1 .39 . 19 gh wnlr too 10 i 31 456 | .53 .35 gh wntr 100 10. i 30 4 16 1 .54 . 32 Qh wntr too 10.) 28 334 1 .52 .24 Qh wnlr 100 10. J 29 334 1 .37 .24 gh wntr too 10. j 29 358 | .47 .27 Oh nnlr 100 10. 28 322 1 .47 .23 Oil wntr too 10. 1 29 398 1 .83 .31 Oil wntr 100 10. 29 384 1 .5? .29 Oh wntr too 10. J 31.5 468 1.5 . 36 gii wntr too 10 1 33 606 1 .69 .46 Oh wntr too 10. 1 28.5 352 1 .52 .26 Oil wntr 100 10. j 28 350 1 .59 .26 gh wntr 100 10.1 30.5 402 | .42 .31 aii wnlr 100 10. 1 29 334 1 . 37 .24 gh wntr too 10.1 60 4 16 0 . 19 32 Oh wnlr 100 10. j 29 408 1 .67 .31 Oil wntr 100 10. ) 26.5 364 1 .67 .27 gh wntr 100 10. 1 31 464 t .56 .36 ai* wntr too 10. j 30 422 t .56 .33 2263 2264 2265 2266 2287 2268 2269 2270 227 I 2272 227 3 2274 2275 2276 2277 2278 2279 2280 2281 2202 2283 2284 2285 2288 2287 2288 2289 2290 2291 2292 2293 2294 2295 2298 2297 2298 2299 2 300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2 320 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 19 la la la 19 io 19 ig la ig IQ (gi ig la io igi io la c tr c tr c tr c tr c tr c tr c tr ctr c tr c l r c tr c l r c t l c l r c tr ctr c tr c tr c l r c tr ctr c l r c tr ctr c tr c l r c l r c l r c tr c tr c tr ctr c l r ctr c tr ctr c l r c l r c tr c tr wnlr wntr wntr wnlr wnlr wnlr wnlr wnlr wntr wnlr Willi wntr wntr wntr wntr wnlr wnlr wnlr wnlr wnlr wntr wnlr nn tr wntr wnlr wntr wntr wntr wnlr wnlr wnlr wnlr wntr wnlr nntr wntr wnlr wntr wntr wnlr wnlr wnlr wnlr wntr wntr wn li-nn I r wnlr wntr wnlr wntr wnlr wnlr wnlr wn li-nn tr wnlr wntr 100 10. 100 10. 100 10. 100 10. 100 10. 100 10. 100 10. 101) 10. 100 10. 100 10. 100 10. too 10. too to. 100 10. 100 10. 100 10. 100 10. 100 10. 99 10. 99 10. 99 10. 99 10. 99 10. 99 10. 99 10. 99 10. 89 10. 99 10. 99 10. 99 10. 89 10. 89 10. 99 10. 99 10. 99 10. 99 10. 99 10. 99 10. 99 10. 99 10. 99 10. 99 10 99 10. 99 10. 99 10. 99 10. 99 10. 89 10. 99 10. 99 10. 99 10. 99 10. 99 10 99 10. 99 10 99 10. 99 10 99 10 27.5 29.5 31 28 31 30 28 5 22.5 30 27 31 26.5 28 26 32 30 27 28.5 27 20 20.5 23 20 27 24.5 27 25 28 28 32 30.5 25 25 25.5 28.5 20.5 29 29.5 25.5 32.5 24.5 27 27 30.5 26.5 25.5 27 28 25.5 25.5 35 29 27 .5 28.5 29.5 29.5 29.5 27 276 3/4 458 320 468 4 14 372 174 402 318 440 300 324 256 508 432 272 358 312 348 342 162 290 280 220 284 202 332 368 486 4 36 254 258 260 370 128 350 319 240 506 218 266 260 356 238 244 240 330 260 144 656 380 314 270 378 386 338 258 . 33 46 .54 .48 .57 .53 .61 .53 .49 .62 40 .61 .48 .46 .55 1.6 . 38 . 39 59 .58 .48 .33 . 32 .42 1.5 .44 .29 .51 .68 .48 .54 .63 .65 .57 1.6 .49 .44 .24 .45 .47 .48 . 35 32 25 28 47 .26 1.5 .57 • I 87 .53 58 .51 .45 .47 I . 5 . 32 .31 . 17 28 . 36 .23 . 36 . 32 .28 .01 .31 22 . 34 1.2 23 . 15 . 39 .34 17 .27 .22 .25 25 98 . 19 . 18 .09 . 18 08 .24 .28 . 38 .34 . 14 . 15 . 15 .28 0.9 26 23 12 39 119 16 . 15 .27 . 12 . 13 . 13 .24 . IS .94 .49 .29 22 . 17 .29 .29 .25 . IS u) cn co ^ ^m ^ © ^ ^ ^ ^ ^ un c u **• o> to co — is o • C •a)r^t \ i5fg '"fgfycun;s — 3 o e » e ™ o i ^ i f > ^ v f l i w i f > f u < s c j , — t o m t n co i O Cu v v c ^ . ( s v ^ r t v r n ^ n v n m r c u w o — f u « » c \ ) f u ^ « f u » * f « * . — a — ~ — CM — ft)rru3fU«A»fU'^*t^ — « f g n w n (O c u « r u r u r u • cw c u n n cu • u » « • / o - n n T « c a - o w cu c u <u m <*» c u cu cu cu cu cu cn cn 0 1 cn cs> cn cn cn c n cn cn cn c n cn cn cn cn cn c n cn cn C P c n C D co cn cn cn cn cn c s cn cn cn cn cn cn c n cn c n u u u u u u u u u u u u u u u u u o u u c u r u c u r u < u c u c u r a » c u n « r u c u c u r u c u c u c u c u c u r u c u c u r u r u r u r u c v c u ' * * — n j w - r m ( o - » c o c n o c u c u c u r u r v c u r u c w c u r u c u c u c u c u c u c u c u c u c u c u 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0098617/manifest

Comment

Related Items