Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Activity measures of free-ranging grizzly bears (Ursus arctos) in the Flathead drainage McCann, Robert Keith 1991

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
UBC_1991_A6_7 M32.pdf [ 6.01MB ]
Metadata
JSON: 1.0098597.json
JSON-LD: 1.0098597+ld.json
RDF/XML (Pretty): 1.0098597.xml
RDF/JSON: 1.0098597+rdf.json
Turtle: 1.0098597+rdf-turtle.txt
N-Triples: 1.0098597+rdf-ntriples.txt
Original Record: 1.0098597 +original-record.json
Full Text
1.0098597.txt
Citation
1.0098597.ris

Full Text

ACTIVITY  MEASURES  GRIZZLY IN  OF  BEARS  FREE-RANGING  (Ursus  THE FLATHEAD  arctos)  DRAINAGE  by ROBERT B.Sc,  The  K E I T H MCCANN  University  A THESIS  SUBMITTED  of  British  IN  PARTIAL  THE REQUIREMENTS  Columbia,  FULFILMENT  FOR T H E D E G R E E  MASTER OF  OF  SCIENCE  in THE  F A C U L T Y OF G R A D U A T E  (Department  We  accept to  this  the  of  Animal  thesis  required  THE UNIVERSITY  Science)  as  Keith  conforming  standard  OF B R I T I S H  April © Robert  STUDIES  COLUMBIA  1991 McCann,  1991  1985  OF  In  presenting  this  thesis  in  degree at the University of  partial  fulfilment  British Columbia,  freely available for reference and study. copying  of  department  this or  thesis by  for scholarly  his  publication of this thesis  or  her  DE-6 (2/88)  Apcuu  requirements  for  purposes  an  may be It  is  granted  for extensive  by the head  understood  that  for financial gain shall not be allowed without  AWVAAV^  <  X_AtLUC£-  a°\ m i  advanced  I agree that the Library shall make it  representatives.  The University of British Columbia Vancouver, Canada Date  the  I further agree that permission  permission.  Department of  of  of  my  copying  or  my written  ABSTRACT  Between collected  1984  on  15  and  1988,  different  4756 h o u r s  g r i z z l y bears  Flathead  drainage  of  southeastern  adjacent  portions  of  Montana.  aid  of  portable  chart  motion-sensitive remote  sensing  grizzly,  both  assumptions  of  a  the  study  method  employed  quantitative  in  British  that  collars.  data  Columbia  chart  measures  of  bear  activity  objectives  of  this  study  the  the  output  as  and  in  with  many b e n e f i t s  intractable  were  and  collected  collection  translating  data  arctos)  recorded the  While  a n i m a l as of  activity  (Ursus  Data were  recorders  radio  of  from  stem  from  the  the  recordings  may a f f e c t  into  conclusions  drawn. Major validity  of  recordings collars  procedures of  into  signal  patterns  quantitative  assess  whether  active  to  and age  related  and  sex  seasonal  activity season, In grizzly  and the  absence  bears  used  estimating  percent  to  values  differences  of  food  of  solar  to  active  found by  as  of  bear  bout in  energetic a n d 3) of  chart  radio  activity;  functions  the  continuous  lengths  concurrent visual  chart  time  active  and  inactive  other  assess  2)  were  to  related  requirements  to  document  sex,  age,  cycle.  interpret of  to  translate  type;  and r e c o r d e d s i g n a l  procedures  definitions  measures  in  1)  from m o t i o n - s e n s i t i v e  and p a t t e r n s daily  to  and i n a c t i v e  differences  budgets  the  employed  were:  observations  patterns,  the  recordings  of  validity  was  of  assessed  by  (%TA) u n d e r v a r y i n g bouts,  researchers.  and by  Estimates  c o m p a r i n g %TA of  %TA w e r e  iii s t a b l e over the range Stability active  resulted  and  for this  > 30 min  study agreed with r e s u l t s  55%  portion  of the  examined.  f r o m b e a r s s p e n d i n g most o f t h e i r  i n a c t i v e bouts  the non-denning about  o f a c t i v i t y bout d e f i n i t i o n s  duration.  time i n  Estimates of  on o t h e r p o p u l a t i o n s .  o f t h e y e a r , g r i z z l y b e a r s were  a c t i v e b o u t s t o be m o n i t o r e d  differed  in their  entirety,  b e a r s f r e q u e n t l y moved o u t o f r a n g e  recorder.  The  distribution  of a c t i v i t y  f r o m many o t h e r s t u d i e s  d a r k n e s s by b e a r s i n t h e f a l l , related  While  because  of the  not s t r o n g l y t i e d  Activity  Seasonal t r e n d s i n a c t i v i t y budgets  i n the  conformed  Significant  exists  individual variation be  related  activity  to  physiological  f o r denning.  i n both  activity  t o body s i z e , or to  was  sunrise.  f r e q u e n c y dependent  foraging strategies,  competitive a b i l i t y  f o r d e f e n d a b l e r e s o u r c e s among  of bears.  may  morning  after  requirements  classes  of  a c t i v i t y peak  c h a n g e s i n b e a r s n e c e s s i t a t e d by  and may  cycle  or to avoidance of hunters.  g e n e r a l l y r e a c h e d a p e a k 1 o r more h o u r s  p a t t e r n s and b u d g e t s ,  chart  A g r e a t e r use  evening, the morning  to sunrise.  when  o v e r t h e 24-hour  a c t i v i t y p a t t e r n s were g e n e r a l l y b i m o d a l w i t h and  against  compared t o o t h e r s e a s o n s ,  to available daylight  peaks i n morning  active  i n that bears i n the Flathead  were a c t i v e m o s t l y i n d a y l i g h t h o u r s .  be  Over  time.  A n a l y s e s o f b o u t d u r a t i o n s were p l a g u e d b y a b i a s  active,  %TA  to  differing sex-age  1 iv  TABLE  OF CONTENTS  Page ABSTRACT  i i  TABLE  iv  O F CONTENTS  LIST  OF TABLES  vi  LIST  OF FIGURES  LIST  OF APPENDICES  v i i i xii  ACKNOWLEDGEMENTS CHAPTER  1: i)  ii) iii) iv) V) CHAPTER  2: i)  ii)  x i i i  AN OVERVIEW GENERAL INTRODUCTION  1  STUDY  AREA  4  FIELD  PROCEDURES  6  D I S T R I B U T I O N OF DATA LITERATURE CITED  CHAPTER  METHODS  20  RESULTS  3: i)  ii)  RECORDINGS 15  Interpretation of  Statistical  V)  FROM CHART  INTRODUCTION  Stability  iv)  12  ASSESSING ACTIVITY  Chart  iii)  8  Activity  20 Estimates  28  Analyses  30  AND D I S C U S S I O N  31  CONCLUSIONS  42  LITERATURE CITED  45  BOUT  LENGTHS  INTRODUCTION  48  METHODS  54  Analyses  Within  Seasons  54  V  A n n u a l a n d Among S e a s o n s A n a l y s e s iii)  RESULTS  57  A n n u a l and S e a s o n a l Analyses iv) V)  ii)  iii)  iv)  V)  Within  Trends  Seasons  59 59  DISCUSSION  65  LITERATURE CITED  71  CHAPTER 4: A C T I V I T Y i)  56  BUDGETS AND  PATTERNS  INTRODUCTION  74  METHODS  77  Comparisons  of Activity  Patterns  78  Comparisons  of Activity  Budgets  79  RESULTS  80  Activity  Patterns  80  Activity  Budgets  85  DISCUSSION  94  Activity  Patterns  Activity  Budgets  LITERATURE CITED  96 103 109  CHAPTER 5: OVERALL CONCLUSIONS  113  APPENDIX  115  vi  L I S T OF  TABLES Page  Table  Table  Table  Table  Table  Table  Table  Table  Table  1.  D i s t r i b u t i o n o f r e c o r d e d d a t a (sum o f a c t i v e and i n a c t i v e b o u t d u r a t i o n s ) b y p o p u l a t i o n component and month f o r 1984 t h r o u g h 1988 combined, i n d e c i m a l h o u r s . Number o f b e a r s i n e a c h monthly sample a r e i n b r a c k e t s . ....  10  D i s t r i b u t i o n o f r e c o r d e d d a t a (sum o f a c t i v e and i n a c t i v e b o u t d u r a t i o n s ) by p o p u l a t i o n component and s e a s o n f o r 1984 t h r o u g h 1988 combined, i n d e c i m a l h o u r s . Number o f b e a r s i n e a c h s e a s o n a l sample a r e i n b r a c k e t s .  11  3. Means, s t a n d a r d e r r o r s o f t h e means, and r a n g e s o f p e r c e n t o f t i m e a c t i v e by s e x - a g e c l a s s , and o v e r a l l , c a l c u l a t e d from complete 24-hour s a m p l e s on g r i z z l y b e a r s  34  2  4.  5.  Means, s t a n d a r d e r r o r s o f t h e means, and r a n g e s o f p e r c e n t o f t i m e a c t i v e by month, c a l c u l a t e d f r o m c o m p l e t e 2 4 - h o u r s a m p l e s on g r i z z l y bears  37  P e r c e n t o f t i m e a c t i v e b y p o p u l a t i o n component and s e a s o n a s d e t e r m i n e d by c o m p l e t e a c t i v e and i n a c t i v e b o u t s ( c o l u m n s u n d e r C) and a s d e t e r m i n e d by a l l a v a i l a b l e d a t a ( c o l u m n s under A). Samples s i z e s o f complete b o u t s a r e in brackets  58  6. T e s t s o f n o n p a r a m e t r i c m u l t i p l e c o n t r a s t s f o r d u r a t i o n s o f complete i n a c t i v e bouts w i t h i n seasons. Values are t e s t s t a t i s t i c s (value of c o n t r a s t d i v i d e d by i t s s t a n d a r d e r r o r )  62  7. T e s t s o f n o n p a r a m e t r i c m u l t i p l e c o n t r a s t s f o r d u r a t i o n s o f complete a c t i v e bouts w i t h i n seasons. Values are t e s t s t a t i s t i c s (value of c o n t r a s t d i v i d e d by i t s s t a n d a r d e r r o r )  63  8. M i x e d m o d e l n e s t e d - f a c t o r i a l A n a l y s i s o f Variance of a c t i v i t y patterns f o r g r i z z l y bears over seasons. SA C l a s s r e p r e s e n t s t h o s e s e x age c l a s s e s ( s u b a d u l t m a l e s , s u b a d u l t f e m a l e s , a d u l t f e m a l e s ) f o r w h i c h t h e r e were s u f f i c i e n t data to t e s t  81  9.  M i x e d model n e s t e d - f a c t o r i a l A n a l y s i s o f V a r i a n c e o f a c t i v i t y p a t t e r n s f o r sex-age  vii c l a s s e s o f g r i z z l y bears over e a r l y the b e r r y season  summer a n d  T a b l e 10. M i x e d m o d e l n e s t e d - f a c t o r i a l A n a l y s i s o f V a r i a n c e o f a c t i v i t y budgets f o r g r i z z l y bears over seasons. SA C l a s s r e p r e s e n t s t h o s e s e x age c l a s s e s ( s u b a d u l t m a l e s , s u b a d u l t f e m a l e s , a d u l t f e m a l e s ) f o r w h i c h t h e r e were s u f f i c i e n t data t o test Table  11. M i x e d m o d e l n e s t e d - f a c t o r i a l A n a l y s i s o f V a r i a n c e o f a c t i v i t y budgets f o r sex-age c l a s s e s o f g r i z z l y b e a r s o v e r e a r l y summer and t h e b e r r y season  84  88  93  viii  L I S T OF FIGURES Page Figure  Figure  Figure  1. T y p i c a l p u l s e mode p a t t e r n s o b t a i n e d f r o m b e a r s w e a r i n g 2.5-min r e s e t d e l a y c o l l a r s , a) A c t i v e p u l s e modes i n t e r s p e r s e d w i t h b r i e f i n a c t i v e p u l s e modes (marked b y a r r o w s ) , a n d b) i n a c t i v e p u l s e modes i n t e r s p e r s e d w i t h a c t i v e p u l s e modes o f a p p r o x i m a t e l y t h e 2.5-min r e s e t d e l a y period. One i n c h o f c h a r t t r a c e r e p r e s e n t s about 4 min  23  2. E x a m p l e s o f a s s i g n m e n t o f a c t i v i t y b o u t s ( u p p e r c o n t i n u o u s l i n e ) t o p u l s e mode p a t t e r n s ( l o w e r b r o k e n s e r i e s ) o b t a i n e d f r o m b e a r s w e a r i n g 2.5min r e s e t d e l a y c o l l a r s . Read f r o m l e f t t o r i g h t : U = unknown b o u t ; A = a c t i v e b o u t ( a s m e a s u r e d when f o l l o w i n g b o u t i s unknown); I = i n a c t i v e b o u t ( n o t e a d d i t i o n o f 2.5 m i n c o r r e c t i o n ) ; A = a c t i v e bout (note s u b t r a c t i o n o f 2.5 m i n when f o l l o w i n g b o u t i s i n a c t i v e ) ; I = i n a c t i v e bout; A = a c t i v e bout. One i n c h of c h a r t t r a c e r e p r e s e n t s about 4 min  24  3. T y p i c a l p u l s e mode p a t t e r n s o b t a i n e d f r o m b e a r s w e a r i n g 5-s r e s e t d e l a y c o l l a r s , a) A c t i v e p u l s e mode p a t t e r n s h o w i n g f r e q u e n t s w i t c h i n g b e t w e e n a c t i v e a n d i n a c t i v e p u l s e s , a n d b) a l t e r n a t i n g a c t i v e and i n a c t i v e ( s o l i d lower t r a c e ) p u l s e mode p a t t e r n s . One i n c h o f c h a r t t r a c e r e p r e s e n t s about 4 min  26  Figure  4. E x a m p l e s o f a s s i g n m e n t o f a c t i v i t y b o u t s ( u p p e r c o n t i n u o u s l i n e ) t o p u l s e mode p a t t e r n s ( l o w e r b r o k e n s e r i e s ) o b t a i n e d f r o m b e a r s w e a r i n g 5-s reset delay c o l l a r s . Read f r o m l e f t t o r i g h t : I = i n a c t i v e b o u t ; U = unknown b o u t ( n o t e t h e i n c l u s i o n o f p u l s e mode p a t t e r n s t o o s h o r t t o c l a s s i f y a t e i t h e r e n d o f t h e unknown b o u t ) ; A = a c t i v e b o u t ( n o t e i n a c t i v e p u l s e mode p a t t e r n s w i t h d u r a t i o n s < 2.5 m i n ) ; I = i n a c t i v e b o u t ( n o t e a c t i v e p u l s e mode p a t t e r n s w i t h d u r a t i o n s < 1 min); A = a c t i v e bout. One i n c h of c h a r t t r a c e r e p r e s e n t s about 4 min 27  Figure  5. a) P e r c e n t o f t o t a l a c t i v e t i m e a s d i s t r i b u t e d between a c t i v e b o u t s o f d i f f e r e n t d u r a t i o n s and s e a s o n s , a n d b) p e r c e n t o f t o t a l i n a c t i v e t i m e a s d i s t r i b u t e d between i n a c t i v e b o u t s o f d i f f e r e n t d u r a t i o n s and seasons  33  ix Figure  Figure  6. P e r c e n t o f t i m e a c t i v e b y month f o r a) a d u l t males, b ) a d u l t f e m a l e s , c) s u b a d u l t males, and d) s u b a d u l t f e m a l e s a s c a l c u l a t e d f r o m a l l data  36  7. A n n u a l p e r c e n t o f t i m e a c t i v e b y h o u r o f t h e d a y f o r a) a d u l t m a l e s , b) a d u l t f e m a l e s , c) s u b a d u l t m a l e s , a n d d) s u b a d u l t f e m a l e s . F o r h o u r s o f t h e d a y , 1 = 0000-0100; 2 = 01000200 e t c  38  Figure  8  Figure  9, N o t c h e d b o x p l o t s o f c o m p l e t e a) a c t i v e , a n d b) i n a c t i v e , bout d u r a t i o n s p o o l e d a c r o s s seasons, f o r subadult females, a d u l t females, subadult males, and a d u l t males. O u t s i d e v a l u e s were o m i t t e d t o emphasize n o t c h e s about t h e medians. For any 2 boxes w i t h n o t c h e s about t h e medians t h a t do n o t o v e r l a p , t h e 2 m e d i a n s a r e s i g n i f i c a n t l y d i f f e r e n t a t a p p r o x i m a t e l y a 95% confidence l e v e l  60  10. N o t c h e d b o x p l o t s o f c o m p l e t e a) a c t i v e , a n d b) i n a c t i v e , bout d u r a t i o n s p o o l e d a c r o s s sex-age c l a s s e s , f o r s p r i n g ( S P ) , e a r l y summer ( E S ) , b e r r y season (BS), and f a l l ( F A ) . O u t s i d e v a l u e s were o m i t t e d t o e m p h a s i z e n o t c h e s a b o u t the medians. F o r any 2 boxes w i t h n o t c h e s about t h e medians t h a t do n o t o v e r l a p , t h e 2 medians a r e s i g n i f i c a n t l y d i f f e r e n t a t a p p r o x i m a t e l y a 95% c o n f i d e n c e l e v e l  61  11. F i r s t o r d e r i n t e r a c t i o n b e t w e e n s e a s o n s a n d d i e l p e r i o d s from A n a l y s i s o f V a r i a n c e o f g r i z z l y bear a c t i v i t y p a t t e r n s over seasons (Table 7 ) . P l o t t e d v a l u e s a r e p r e d i c t e d c e l l means  83  12. F i r s t o r d e r i n t e r a c t i o n b e t w e e n a g e c l a s s e s and d i e l p e r i o d s f r o m A n a l y s i s o f V a r i a n c e o f g r i z z l y b e a r a c t i v i t y p a t t e r n s f o r sex-age c l a s s e s o v e r e a r l y summer a n d t h e b e r r y s e a s o n (Table 8 ) . P l o t t e d v a l u e s a r e p r e d i c t e d c e l l means  86  Figure  Figure  Figure  Figure  Annual p e r c e n t o f time a c t i v e by d i e l p e r i o d f o r a) a d u l t m a l e s , b) a d u l t f e m a l e s , c ) s u b a d u l t m a l e s , a n d d) s u b a d u l t f e m a l e s 40  13. S e c o n d o r d e r i n t e r a c t i o n b e t w e e n s e a s o n s , s e x c l a s s e s , and d i e l p e r i o d s from A n a l y s i s o f Variance o f g r i z z l y bear a c t i v i t y patterns f o r s e x - a g e c l a s s e s o v e r e a r l y summer a n d t h e b e r r y s e a s o n ( T a b l e 8 ) . Sex x d i e l p e r i o d i n t e r a c t i o n s a r e p l o t t e d f o r a) e a r l y summer,  X  a n d b) t h e b e r r y s e a s o n , p r e d i c t e d c e l l means. Figure  Figure  Figure  Figure  Figure  Figure  Figure  14  15,  16,  17,  18,  19,  20,  Plotted values  are 87  F i r s t o r d e r i n t e r a c t i o n b e t w e e n s e a s o n s and q u a r t e r day p e r i o d s from A n a l y s i s o f V a r i a n c e of g r i z z l y bear a c t i v i t y budgets over seasons (Table 9). Plotted values are predicted c e l l means  90  S e c o n d o r d e r i n t e r a c t i o n b e t w e e n s e a s o n s , SA c l a s s e s , and q u a r t e r d a y p e r i o d s f r o m A n a l y s i s of V a r i a n c e of g r i z z l y bear a c t i v i t y budgets over seasons (Table 9 ) . SA c l a s s x d i e l p e r i o d i n t e r a c t i o n s a r e p l o t t e d f o r a) s p r i n g , b) e a r l y summer, c) t h e b e r r y s e a s o n , and d) f a l l . P l o t t e d v a l u e s a r e p r e d i c t e d c e l l means  91  F i r s t o r d e r i n t e r a c t i o n b e t w e e n age c l a s s e s and q u a r t e r d a y p e r i o d s f r o m A n a l y s i s o f Variance of g r i z z l y bear a c t i v i t y budgets f o r s e x - a g e c l a s s e s o v e r e a r l y summer and t h e b e r r y season (Table 10). Plotted values are p r e d i c t e d c e l l means  95  P e r c e n t o f t i m e a c t i v e by h o u r o f t h e d a y i n s p r i n g f o r a) s u b a d u l t f e m a l e s , b) a d u l t f e m a l e s , and c) s u b a d u l t m a l e s . Arrows i n d i c a t e a p p r o x i m a t e t i m e s o f s u n r i s e and sunset. P l o t s were composed f r o m a l l s p r i n g data c o l l e c t e d . F o r h o u r s o f t h e day, 1 = 0000-0100; 2 = 0100-0200 e t c  98  P e r c e n t o f time a c t i v e by h o u r o f t h e day i n e a r l y summer f o r a) s u b a d u l t f e m a l e s , b) a d u l t f e m a l e s , c) s u b a d u l t m a l e s , and d) a d u l t m a l e s . Arrows i n d i c a t e approximate times o f s u n r i s e and s u n s e t . P l o t s were composed f r o m a l l e a r l y summer d a t a c o l l e c t e d . For hours of the day, 1 = 0000-0100; 2 = 0100-0200 e t c  99  P e r c e n t o f t i m e a c t i v e by h o u r o f t h e day i n t h e b e r r y s e a s o n f o r a) s u b a d u l t f e m a l e s , b) a d u l t f e m a l e s , c) s u b a d u l t m a l e s , and d) a d u l t m a l e s . Arrows i n d i c a t e approximate t i m e s o f s u n r i s e and s u n s e t . P l o t s were composed f r o m a l l b e r r y s e a s o n d a t a c o l l e c t e d . F o r h o u r s o f t h e day, 1 = 0000-0100; 2 = 0100-0200 e t c P e r c e n t o f t i m e a c t i v e by h o u r o f t h e day i n f a l l f o r a) s u b a d u l t f e m a l e s , b) a d u l t f e m a l e s , and c) s u b a d u l t m a l e s . Arrows i n d i c a t e a p p r o x i m a t e t i m e s o f s u n r i s e and sunset. P l o t s were composed f r o m a l l f a l l  100  xi  data collected. For hours of 0000-0100; 2 = 0100-0200 e t c  the  day,  1 = 101  xii  LIST  OF APPENDICES  Page Appendix  1.  D a t a t o t a l s (sum o f d u r a t i o n s ) by b e a r , decimal hours  a c t i v e and i n a c t i v e bout y e a r , and season, in 115  xiii ACKNOWLEDGEMENTS Many p e o p l e h a v e made c o n t r i b u t i o n s t o t h i s p r o j e c t - I c a n o n l y t h a n k a few e x p l i c i t l y . F i r s t , I t h a n k D r . D. M. S h a c k l e t o n , my s u p e r v i s o r , f o r t h e o p p o r t u n i t y t o do t h i s study and f o r h i s h e l p f u l i n s i g h t s . S p e c i a l thanks goes t o Dr. B r u c e N. M c L e l l a n who f i r s t s u g g e s t e d t h e s t u d y t o p i c , p r o v i d e d v a l u a b l e a d v i c e a n d e x p e r t i s e on a l l a s p e c t s o f t h e r e s e a r c h , a n d c o l l e c t e d some o f t h e d a t a u s e d i n t h i s p r o j e c t . B r u c e , a n d h i s w i f e , C e l i n e Doyon, a l s o made a v a i l a b l e a n e x c e l l e n t f i e l d camp. A d d i t i o n a l l o g i s t i c a l s u p p o r t came f r o m Dr. C h r i s S e r v h e e n o f t h e U.S. F i s h a n d W i l d l i f e S e r v i c e a n d Ray D e M a r c h i o f t h e B.C. W i l d l i f e B r a n c h . Dan C a r n e y a r r i v e d i n t h e f i e l d a t s e v e r a l opportune times and p r o v i d e d t i m e l y a d v i c e , g o o d s t o r i e s a n d a n o c c a s i o n a l chew. Tom R a d a n d t h e l p e d w i t h some o f t h e f i e l d work i n 1988. D r . M. G r i e g a n d S. K i t a o f t h e U.B.C. C o m p u t i n g C e n t e r , a n d D r . Ray P e t e r s o n a l l provided s t a t i s t i c a l advice a t various stages o f the project. D i s c u s s i o n s w i t h F. W. Hovey a n d F. L. B u n n e l l c o n t r i b u t e d t o some o f t h e a p p r o a c h e s u s e d .  1 CHAPTER 1: AN  OVERVIEW  GENERAL INTRODUCTION Continuing  e x p a n s i o n o f human p u r s u i t s i n t o t h e r a n g e  of the g r i z z l y bear survival ability  (Ursus  o f many g r i z z l y  arctos)  indicates that  populations  will  o f humans a n d b e a r s t o c o e x i s t .  populations intrusion  depend on t h e Studies  i n environments t h a t have a h i g h  such as Yellowstone N a t i o n a l  suggest t h a t bears are capable  t h e i r behavior  not only t o avoid areas  but t o take  humans i s l o w .  on g r i z z l y  level  o f human  Park and European  game r e s e r v e s ,  use  continued  of  modifying  o f p r e d i c t a b l e human  a d v a n t a g e o f t i m e s when d i s t u r b a n c e Whether s u c h m o d i f i c a t i o n o f  towards g r e a t e r a c t i v i t y  during  impinges on f o r a g i n g e f f i c i e n c y  behavior  t h e hours o f darkness and e f f e c t i v e l y  lowers the  c a r r y i n g c a p a c i t y o f t h e environment i s u n c l e a r . there  i s a need f o r g r e a t e r understanding  bears modify t h e i r behavior and  how o t h e r  Currently,  o f when a n d how  t o avoid contact with  humans,  f a c t o r s s u c h a s sex, age, and t i m e o f y e a r  a f f e c t b o t h t h e amount a n d s c h e d u l i n g Ultimately,  from  of activity.  t h e r e l a t i o n s h i p between b e h a v i o r  and p o p u l a t i o n  demography n e e d s t o b e d e t e r m i n e d . The  i n f l u e n c e o f human p r e d a t i o n  reproductive 1981) the  p o t e n t i a l such as t h e g r i z z l y  i s obvious. grizzly  species  on a s p e c i e s w i t h low ( B u n n e l l and T a i t  Of l e s s c e r t a i n t y i s t h e a d a p t a b i l i t y o f  to habitat modifications  i s g e n e r a l l y regarded  (Knight  1980).  as h i g h l y v e r s a t i l e ,  The as i s  2 demonstrated by i t s e x t e n s i v e h i s t o r i c a l social  solitary  system, omnivorous food h a b i t s , and g r e a t m o b i l i t y  (Knight access and  range,  1980).  However, t h e b e a r s '  to a variety  Of  equal  activity fitness  over  a life  occurring failures  cycle,  i n food  i s a contentious  patterns  budgets r e s u l t i n g  In general,  could arise  from c r i t i c a l  This  i s s u e f o r many s p e c i e s due t o t h e  (Shank 1 9 7 9 ) .  demographic e f f e c t s exclusion  of behavior  reproductive  i n l i n k i n g d i s r u p t i o n o f behavior  consequences  to alleviate  u n c e r t a i n t y i s w h e t h e r t h e p r e s e n c e o f human  through a l t e r a t i o n  difficulty  cycle,  resources.  imposes a c o s t i n terms o f reduced  question  depends on  o f h a b i t a t s w i t h i n a given annual  an even g r e a t e r v a r i e t y  stochastically  survival  t o demographic  detrimental  from 2 broad  sources;  habitats, or altered  activity  i n a lowered n e t energy s t a t u s .  Many  s t u d i e s have demonstrated b e h a v i o r a l r e s p o n s e s by w i l d l i f e s p e c i e s t o human a c t i v i t y Archibald  e t a l . 1987; f l i g h t  physiological al.  (e.g.,  responses  responses,  (e.g.,  1982), b u t n o t demographic While i n d i c e s o f animal  spatial  distributions, Churchill  c a r d i a c r a t e s , MacArthur e t consequences.  c o n d i t i o n and demographic  parameters can r e v e a l t h e s i g n i f i c a n c e o f both human r e l a t e d b e h a v i o r a l d i s t u r b a n c e these  c a n be c o s t l y  effects,  and time consuming.  h a b i t a t and estimating  Twenty-four hour  a c t i v i t y b u d g e t s a r e m e a s u r e s o f how a n i m a l s time i n t o v a r i o u s behaviors  1982;) o r  partition  (Boy a n d Duncan 1 9 7 9 ) .  component o f b i o e n e r g e t i c s , a c t i v i t y b u d g e t s  have  their  As a  3 application  i n p o p u l a t i o n dynamics, h a b i t a t  assessment of resource 1985;  J a c o b s e n and  theoretical 1982).  development impacts  W i g g i n s 1982)  and  manipulation, (Hudson and  the development  time-energy budget models  (Jacobsen  A c t i v i t y p a t t e r n s denote the temporal  of a c t i v i t y  over  the  24-hour c y c l e .  and  indicators  c o n d i t i o n s may  Quantifying  u l t i m a t e l y permit  o f s t r e s s p l a c e d on  environment  (Roth  1983).  utility,  these  status.  However, e v i d e n c e  of  To  be  Previous has  r e s e a r c h on documented  demographics Shackleton  as  i n f l u e n c e d by  (McLellan  roads,  and  a unique opportunity  against grizzly  occurrence schedules The  f o r g r i z z l i e s may  o f bear-human e n c o u n t e r s  The  to link  short-term,  and study  activity Knowledge reduce  improve  of  the  research  ( H a r t i n g 1987). m a i n f o c u s o f t h i s r e s e a r c h was  temporal d i s t r i b u t i o n s activity  spatial  Flathead  also help and  bears  population  p a r a m e t e r s t o a w e l l documented p o p u l a t i o n . a c t i v i t y patterns  general  1989a, 1989b, 1989c; M c L e l l a n  1989a, 1989b, 1988a, 1 9 8 8 b ) .  area provides  evidence  of  o v e r t b e h a v i o r a l r e s p o n s e s t o human d i s t u r b a n c e , distributions  as  altered  i n themselves  the population.  Flathead River drainage  of  t h e i r use  a c t i v i t y parameters need t o r e f e r e n c e d  known p o p u l a t i o n i n the  on  Wiggins  a g i v e n p o p u l a t i o n by i t s  a c t i v i t y budgets or p a t t e r n s are not of detrimental e f f e c t s  of  distribution  a c t i v i t y parameters of a s p e c i e s under a v a r i e t y environmental  White  t o document  ( a c t i v i t y patterns)  ( a c t i v i t y budgets) of g r i z z l y  and  bears  amount  over  the  the of 24-  4  h o u r c y c l e a s f u n c t i o n s o f sex, age c l a s s , daily  solar cycle.  durations o f both was  A d d i t i o n a l hypotheses  season, concerned  a c t i v e and i n a c t i v e p e r i o d s .  not p o s s i b l e t o correlate recorded  and t h e  However, i t  signal patterns  from  motion-sensitive c o l l a r s with concurrent observations of g r i z z l y bears  due t o t h e d i f f i c u l t y  ranging bears. procedures  Therefore,  following  i t was n e c e s s a r y  free-  to first  employed t o t r a n s l a t e c h a r t r e c o r d i n g s  measures o f bear hypotheses  of observing  activity  through  o t h e r means.  assess  into  Specific  a r e d e l i n e a t e d and a p p r a i s e d i n each o f t h e chapters.  STUDY AREA The  study  Flathead River  a r e a was c e n t e r e d a l o n g t h e N o r t h (114° 8 5  extreme s o u t h e a s t  B.  i n this  ofthe  W; 49° 1' N) w h i c h d r a i n s t h e  corner of B r i t i s h  p a r t s o f northwestern population  1  Fork  Columbia,  Montana, U. S. A.  Canada, a n d  The g r i z z l y  a r e a has been under study  bear  s i n c e 1978 b y  N. M c L e l l a n a n d o t h e r s o f t h e F l a t h e a d G r i z z l y P r o j e c t  ( M c L e l l a n 1989a, 1989b, 1989c; M c L e l l a n a n d S h a c k l e t o n 1989a, 1989b, 1988a, 1 9 8 8 b ) . study  area a r e determined  bears  c a p t u r e d and c o l l a r e d  area.  T h e s e home r a n g e s  Boundaries  to theproject's  b y t h e home r a n g e s i n a 264 km  2  of grizzly  central trapping  d e f i n e a n a r e a o f 2820 km  (McLellan  1989a) s p a n n i n g  Montana.  Monitoring o f bears  conducted  w i t h i n a subset  2  t h e i n t e r n a t i o n a l boundary for activity  study  with  d a t a was  area of approximately  1000  5 km .  This  east,  the  2  s u b s e t was McDonald  extensions The along  30  hills  f r o m 1350 level in  10  (Whitefish)  north  Flathead  a 5 to  rolling  km  b o u n d e d by  River  km  and  excess of  Range on  15  km  benches.  south.  i n the  2800 m a b o v e s e a  north  level  warm summers.  elevations  on  by  to  flats,  1100 to  range  m above  and  are  short  i n the  cool  and of  the  Alpine  The  fall  an  T u n d r a Zone w h i c h h a s  average f r o s t  mean a n n u a l p r e c i p i t a t i o n o f Wildfires  around the  beetle  i n f e s t a t i o n s and  in  1970s and  successional  1980s  lodgepole  100  turn  of the  logging  i n the  (Pinus  lower e l e v a t i o n s .  Englemann s p r u c e  gXauca),  f i r (Abies  subalpine  (Pinus  cm  a l b i c u a l i s ) are  < 60  harsh area and  days,  coupled  with  again  have r e s u l t e d  contorta)  dominating  (Picea enqelmannii and  abundant,  and  1979).  m i d - 1 9 0 0 s and  lasiocarpa)  locally  of the  (Farley  century,  ( Z a g e r e t a l . 1983) pine  a  °C i n J a n u a r y  free period - 150  long  uppermost  Approximate c l i m a t o l o g i c a l f e a t u r e s  °C i n J u l y ,  Zone  and  Higher elevations  summers.  sea  elevations  either side  cold winters  i n c l u d e mean d a i l y t e m p e r a t u r e s o f -15  pine  river  E n g e l m a n n S p r u c e - S u b a l p i n e F i r Zone w i t h  cold winters  the  area  Montane S p r u c e B i o g e o c l i m a t i c  moderately short,  < 16  parallel.  study  Lower e l e v a t i o n s  characterized  climate.  with  49th  by  M o u n t a i n r a n g e s r i s e up  the  the  V a l l e y bottom e l e v a t i o n s  level  l i e within  the  west,  flows south through the  (B.C.M.O.F. 1988)  within  the  south of the  h a r b o r numerous s i d e d r a i n a g e s . study area  C l a r k Range on  wide v a l l e y c h a r a c t e r i z e d  m above sea  i n the  and  the  white  x  bark  becoming  in  6  common a t h i g h e r e l e v a t i o n s a n d i n s i d e d r a i n a g e s . (Laryx occidentalism  and a l p i n e l a r c h  scattered  t h e lower  throughout  respectively.  (Laryx l v a l l i ) a r e  and upper e l e v a t i o n s ,  Many h i g h e l e v a t i o n s i t e s ,  particularly  b o r d e r i n g on t h e F l a t h e a d B a s i n , h a v e s p a r s e are dominated by h u c k l e b e r r y Human i m p a c t s by  3 political  extensive clearcut but has l i t t l e  those  t r e e cover and  (Vaccinium g l o b u l a r e ) .  i n t h e study  boundaries.  Larch  area a r e sharply d e l i n e a t e d  The Canadian s i d e h a s undergone  l o g g i n g and e x p l o r a t i o n f o r o i l and gas  human s e t t l e m e n t .  d i v i d e d between a r u r a l  The American s i d e i s  environment a l o n g t h e west s i d e o f  the F l a t h e a d R i v e r and t h e r e l a t i v e l y p r i s t i n e w i l d e r n e s s o f G l a c i e r N a t i o n a l Park on t h e e a s t s i d e o f t h e r i v e r . the  e x c e p t i o n o f t h e park,  throughout  t h e study  area  b i g game h u n t i n g  With  occurs  and i n c l u d e s h u n t i n g f o r  grizzlies. F I E L D PROCEDURES G r i z z l y bears Flathead Grizzly  were c a p t u r e d  Project i n Aldrich  t r a p s and o u t f i t t e d w i t h activity  collars  Both c o l l a r  by personnel  either  f o o t snares  164 - 166 MHz).  a m e r c u r y t i p - s w i t c h t h a t when  a c t i v a t e d b y movement c h a n g e d f r o m a n i n a c t i v e rate o f approximately  or culvert  2.5-min o r 5-s r e s e t d e l a y  (Telonics Ltd, Arizona;  types u t i l i z e d  ofthe  signal  50 p u l s e s p e r m i n t o a n a c t i v e  pulse r a t e o f approximately  75 p u l s e s p e r m i n .  p u l s e r a t e c h a n g e d f r o m i n a c t i v e t o a c t i v e mode  pulse signal  While t h e  7  instantaneously, f o r t h e time to  the signal  delay period  i n a c t i v e mode.  r e m a i n e d i n a c t i v e p u l s e mode  (2.5-min o r 5-s) b e f o r e r e t u r n i n g  S u b s e q u e n t movement b y t h e b e a r  e x p i r y o f t h e d e l a y p e r i o d caused the beginning  the c o l l a r s  of the delay p e r i o d without  before  to reset to  interruption of  t h e a c t i v e p u l s e mode. S i g n a l p u l s e modes a n d a m p l i t u d e s collars data  o f i n d i v i d u a l bears  r e c o r d i n g systems  consisted  o f a TR-2  processor,  housed  that  each  t e l e m e t r y r e c e i v e r , a TDP-2 d i g i t a l dual channel  Instruments  i n a water r e s i s t a n t ,  batteries  were r e c o r d e d u s i n g 2 r e m o t e  (Telonics L t d , Arizona)  and a R u s t r a c k  (Gulton Graphic  t r a n s m i t t e d from t h e  Division, metal  o r CF12V5PP r e c h a r g e a b l e  strip New  case.  chart  data  recorder  Hampshire)  a l l  Twelve v o l t c a r  batteries  (Eagle-Picher  I n d u s t r i e s , M i s s o u r i ) were u s e d t o power t h e r e c o r d i n g systems.  The c h a r t r e c o r d e r s were s e t t o r u n a t a c h a r t  s p e e d o f 16 i n (40.6 cm) p e r h level  (actual  speed v a r i e d w i t h  o f b a t t e r y charge and ambient t e m p e r a t u r e ) .  speed even i s o l a t e d  occurrences  a c t i v e p u l s e mode were r e a d i l y  of individual  f r o m a number o f  f a v o r a b l e l o c a t i o n s g e n e r a l l y on h i l l  sessions noted conditions, location  tops  from a h i g h e l e v a t i o n f i r e  above s e a l e v e l )  overlooking the study  the bear's  date,  start  5 s periods of  identifiable.  D a t a c o l l e c t i o n was c o n d u c t e d  when a v a i l a b l e  At this  lookout  area.  identification,  and s t o p time  and benches, and (2100 m  Recording  general  weather  o f t h e r e c o r d i n g , and  f r o m w h i c h t h e r e c o r d i n g was t a k e n .  Whenever  8 possible,  t h e b e a r was r e l o c a t e d u s i n g t e l e m e t r y .  were c h e c k e d range, chart  Recorders  f r e q u e n t l y t o e n s u r e t h a t t h e b e a r was  a n d t o mark t i m e c h e c k s o n t h e c h a r t s speed.  Sampling  opportunistic  for calibrating  o f i n d i v i d u a l b e a r s was  and d a t a c o l l e c t i o n  frequently  on a s u b j e c t  was  continuous u n t i l  t h e b e a r went o u t o f r a n g e o r an  sample  24 h) was o b t a i n e d .  (at least  sessions varied greatly  i n length  still in  Individual  adequate recording  f r o m < 1 h t o > 48 h .  DISTRIBUTION OF DATA Activity  r e c o r d i n g s on g r i z z l i e s u s e d  in this  study  were c o l l e c t e d  o v e r 5 c o n s e c u t i v e y e a r s f r o m 1984 t h r o u g h t o  1988.  o f 4757 h o f r e c o r d e d d a t a were  A total  w i t h t h e m a j o r i t y o b t a i n e d i n 1987 a n d 1988 of t o t a l ,  respectively).  collected  (60.6% a n d 23.5%  D a t a were c o l l e c t e d  o n 15  i n d i v i d u a l b e a r s , b u t due t o t h e l o n g t i m e s p a n o v e r w h i c h d a t a were a c q u i r e d , subadults  several  i n d i v i d u a l s passed  (1 - 4 y o f age) t o a d u l t s  changed r e p r o d u c t i v e s t a t u s . that  from  (> 5 y o l d ) a n d ( o r )  For a n a l y t i c a l purposes,  o c c u r r e d i n more t h a n 1 s e x - a g e o r r e p r o d u c t i v e  were t r e a t e d Appendix  as independent  1 outlines total  individuals within  each  class class.  time o f recorded data f o r  i n d i v i d u a l s by y e a r and season and i n d i c a t e s  s e x , age  and r e p r o d u c t i v e s t a t u s .  on  within hours.  bears  Pooled data t o t a l s  sex-age c l a s s e s ranged  class,  individuals  f r o m 41.5 h o u r s t o 641.9  9 Dates October, this den  o f data c o l l e c t i o n  and f o r a d u l t  from  entrance.  i n t h e s p r i n g and e n t e r dens l a t e r  were s p a r s e i n b o t h A p r i l females wearing  activity  Additionally, and October collars  y e a r l i n g s d u r i n g t h e study  phenological  development  i n the f a l l  (Table 1).  Few  males adult  were w i t h c u b s - o f - t h e - y e a r  (Table 1).  Based bear  on forage  and d i e t a r y change o f t h e b e a r s  ( M c L e l l a n p e r s . comm.), t h e p e r i o d  from den emergence t o den  e n t r a n c e was p a r t i t i o n e d  into  emergence t o t h e a v e r a g e  date o f green-up  four seasons:  summer - May 10 t o t h e a v e r a g e 24; 3) b e r r y s e a s o n - J u l y  1) s p r i n g  - den  on May 9; 2) e a r l y  d a t e o f b e r r y r i p e n i n g on 25 t o t h e a v e r a g e  bears leaving high elevation berry f i e l d s 4) f a l l  sexes  dens  d a t a on a d u l t  o f major g r i z z l y  s p e c i e s and observed h a b i t a t  and  t o 27  from den emergence t o  A d u l t m a l e s g e n e r a l l y emerge f r o m  ( M c L e l l a n p e r s . comm.).  July  13 A p r i l  females and s u b a d u l t s o f b o t h  approximately covers the period  earlier  or  range  on S e p t e m b e r 19;  - S e p t e m b e r 20 t o d e n e n t r a n c e .  were c o n d u c t e d w i t h i n o r among s e a s o n s  date o f  Most a n a l y s e s  (Table 2 ) .  Table  1. D i s t r i b u t i o n o f r e c o r d e d d a t a (sum o f a c t i v e a n d i n a c t i v e b o u t d u r a t i o n s ) by p o p u l a t i o n component a n d month f o r 1984 t h r o u g h 1988 c o m b i n e d , i n d e c i m a l h o u r s . Number o f b e a r s i n e a c h m o n t h l y sample a r e i n b r a c k e t s . a  Population Component  April  A l l Adult Females  157.98 (3)  470. 88 (4)  175.07 (3)  64.52 (1)  166. 57 (1)  37.45 (2)  —  —  21.90 (1)  70.42 (1)  65.25  57.95 (1)  81.93 (2)  52 .33 (2)  b w i t h COYS  —  with yearlings  Mav  ——  June  July 296.15 (4)  (1)  August 224.17 (4)  Sept 253.32 (4)  Oct 126. 05 (4)  --  93.47 (2)  304. 32 (4)  67.20 (3)  230.90 (3)  166.22 (3)  149.48 (2)  73. 72 (2)  Adult Males  16.02 (2)  149. 88 (3)  111.23 (2)  163.17 (2)  252.08 (2)  87.47 (3)  51. 82 (3)  Subadult Females  38.60 (2)  258. 62 (3)  159.13 (4)  170.50 (2)  176.52 (4)  231.17 (4)  122. 25 (3)  Subadult Males  74.68 (1)  49. 30 (3)  166.48 (4)  138.72 (3)  168.70 (3)  285.98 (4)  181. 02 (4)  287.28 (8)  928. 68 (11)  611.91 (11)  768.54 (11)  821.47 (11)  857.94 (12)  481. 14 (11)  alone o r with 2-year-olds  T0TAL  C  Some b e a r s a p p e a r i n more t h a n 1 p o p u l a t i o n component due t o c h a n g e s i n a g e c l a s s and r e p r o d u c t i v e s t a t u s o v e r t h e sample y e a r s . b  c  COYS =  cubs-of-the-year.  TOTAL = sum o f a d u l t f e m a l e s , a d u l t m a l e s , s u b a d u l t f e m a l e s , Number o f b e a r s r e p r e s e n t s u n i q u e i n d i v i d u a l s .  subadult  males.  Table  2. D i s t r i b u t i o n o f r e c o r d e d d a t a (sum o f a c t i v e and i n a c t i v e b o u t d u r a t i o n s ) by p o p u l a t i o n component and s e a s o n f o r 1984 t h r o u g h 1988 combined, i n d e c i m a l h o u r s . Number o f b e a r s i n e a c h s e a s o n a l sample a r e i n b r a c k e t s . a  Population Component  Sprinq  Early Summer  Berry Season  Fall  A l l Adult Females  221.18 (3)  , 826.47 (4)  399.18 (5)  256.83 (4)  66.93 (1)  201.62 (2)  with  COYS  b  —  21.90 (1)  135.68 (1)  93.48 (1)  98.77 (2)  154.25 (2)  489.18 (4)  305.70 (4)  136.17 (2)  52.63 (2)  316.80 (3)  393.43 (2)  68.82 (3)  Subadult females  230.48 (3)  361.55 (4)  313.53 (5)  251.27 (4)  Subadult Males  90.05 (2)  291.62 (5)  477.33 (4)  205.88 (4)  594.34 (9)  1796.44 (13)  1583.47 (13)  782.80 (12)  with yearlings  alone or with 2-year-olds Adult Males  TOTAL°  —  Some b e a r s a p p e a r i n more t h a n 1 p o p u l a t i o n component due t o c h a n g e s i n age c l a s s and r e p r o d u c t i v e s t a t u s o v e r t h e sample y e a r s . b c  COYS =  cubs-of-the-year.  TOTAL = sum o f a d u l t f e m a l e s , a d u l t m a l e s , s u b a d u l t f e m a l e s , Number o f b e a r s r e p r e s e n t s u n i q u e i n d i v i d u a l s .  subadult  males,  12 LITERATURE CITED A r c h i b a l d , W. R., R. E l l i s , a n d A. N. H a m i l t o n . 1987. Responses o f g r i z z l y b e a r s t o l o g g i n g t r u c k t r a f f i c i n the K i m s q u i t R i v e r v a l l e y , B r i t i s h Columbia. I n t . Conf. B e a r R e s . a n d Manage. 7:251-257. Boy,  V., a n d P. Duncan. 1979. T i m e - b u d g e t s o f Camarque h o r s e s . 1. D e v e l o p m e n t a l c h a n g e s i n t h e t i m e - b u d g e t s o f f o a l s . B e h a v i o u r 71:187-202.  B r i t i s h C o l u m b i a M i n i s t r y o f F o r e s t s , 1988. B i o g e o c l i m a t i c z o n e s o f B r i t i s h C o l u m b i a 1988. B r i t i s h C o l u m b i a M i n i s t r y o f F o r e s t s , V i c t o r i a , B r i t i s h Columbia. 1:2,000,000 c o l o r e d map. B u n n e l l , F. L . , a n d D. E . N. T a i t . 1981. P o p u l a t i o n d y n a m i c s o f b e a r s - i m p l i c a t i o n s . I n D y n a m i c s o f l a r g e mammal p o p u l a t i o n s . E d i t e d by. C. W. F o w l e r a n d T. D. S m i t h . J o h n W i l e y & S o n s I n c . , New Y o r k , New Y o r k . pp. 75-98. C h u r c h i l l , B. P. 1982. W i n t e r h a b i t a t s e l e c t i o n a n d u s e o f c l e a r c u t s by e l k i n t h e White R i v e r d r a i n a g e o f s o u t h e a s t e r n B r i t i s h C o l u m b i a . M.Sc. T h e s i s , U n i v . o f B r i t i s h C o l u m b i a , V a n c o u v e r , B r i t i s h C o l u m b i a . 95 p p . F a r l e y , A. L . 1979. A t l a s o f B r i t i s h C o l u m b i a : p e o p l e , e n v i r o n m e n t a n d r e s o u r c e u s e . UBC P r e s s , V a n c o u v e r , B r i t i s h C o l u m b i a . 136 pp. H a r t i n g , A. L. 1987. A c t i v i t y p a t t e r n s . I n G r i z z l y b e a r compendium. E d i t e d b y M. N. L e F r a n c , M. B. Moss, K. A. P a t n o d e , a n d W. C. Sugg. U.S. N a t i o n a l W i l d l i f e F e d e r a t i o n , W a s h i n g t o n , D.C. p p . 33-35. H e r r e r o , S. 1972. I n t r o d u c t i o n t o t h e b i o l o g y a n d management o f b e a r s . I n t . C o n f . B e a r R e s . a n d Manage. 2:11-18. H e r r e r o , S. 1976. C o n f l i c t s b e t w e e n man a n d g r i z z l y b e a r s i n the n a t i o n a l parks o f North America. I n t . Conf. Bear R e s . a n d Manage. 3:121-145.  13 Hudson, R. J . , and R. G. W h i t e . 1985. P r e f a c e . I n B i o e n e r g e t i c s o f w i l d h e r b i v o r e s . E d i t e d by. R. J . H u d s o n a n d R. G. W h i t e . CRC P r e s s , B o c a R a t o n , F l o r i d a . 314 p p . J a c o b s e n , N. K,. a n d A. D. W i g g i n s . 1982. T e m p o r a l and p r o c e d u r a l i n f l u e n c e s on a c t i v i t y e s t i m a t e d by t i m e s a m p l i n g . J . W i l d l . Manage. 46:313-324. K n i g h t , R. R. 1980. B i o l o g i c a l c o n s i d e r a t i o n s i n t h e d e l i n e a t i o n o f c r i t i c a l h a b i t a t . I n t . Conf. Bear Res. and Manage. 4:1-3. M a c A r t h u r , R. A., V. G e i s t , and R. H. J o h n s t o n . 1982. C a r d i a c and b e h a v i o r a l r e s p o n s e s o f mountain sheep t o human d i s t u r b a n c e . J . W i l d l . Manage. 46:351-358. M c L e l l a n , B. N. 1989a. D y n a m i c s o f a g r i z z l y b e a r p o p u l a t i o n during a period of i n d u s t r i a l resource e x t r a c t i o n . I. D e n s i t y a n d a g e - s e x c o m p o s i t i o n . Can. J . Z o o l . 67:18561860. M c L e l l a n , B. N. 1989b. D y n a m i c s o f a g r i z z l y b e a r p o p u l a t i o n during a period of i n d u s t r i a l resource e x t r a c t i o n . I I . M o r t a l i t y r a t e s a n d c a u s e s o f d e a t h . Can. J . Z o o l . 67:1861-1864. M c L e l l a n , B. N. 1989c. D y n a m i c s o f a g r i z z l y b e a r p o p u l a t i o n during a period of i n d u s t r i a l resource extraction. I I I . N a t a l i t y a n d r a t e o f i n c r e a s e . Can. J . Z o o l . 67:18651868. M c L e l l a n , B. N., a n d D. M. S h a c k l e t o n . 1988a. G r i z z l y b e a r s and r e s o u r c e - e x t r a c t i o n i n d u s t r i e s : e f f e c t s o f r o a d s on b e h a v i o u r , h a b i t a t u s e a n d demography. J . A p p l . E c o l . 25:451-460. M c L e l l a n , B. N., a n d D. M. S h a c k l e t o n . 1988b. A c o m p a r i s o n o f g r i z z l y b e a r h a r v e s t d a t a from Montana and s o u t h e a s t e r n B r i t i s h Columbia. W i l d l . Soc. B u l l . 16:371-375.  14 M c L e l l a n , B. N., a n d D. M. S h a c k l e t o n . 1989a. G r i z z l y b e a r s and r e s o u r c e - e x t r a c t i o n i n d u s t r i e s : h a b i t a t displacement i n response t o s e i s m i c e x p l o r a t i o n , timber h a r v e s t i n g a n d r o a d m a i n t e n a n c e . J . A p p l . E c o l . 26:371380.  M c L e l l a n , B. N., a n d D. M. S h a c k l e t o n . 1989b. Immediate r e a c t i o n s o f g r i z z l y b e a r s t o human a c t i v i t i e s . W i l d l . S o c . B u l l . 17:269-274. Roth,  H. U. 1983. D i e l a c t i v i t y o f a r e m n a n t p o p u l a t i o n o f E u r o p e a n brown b e a r s . I n t . C o n f . B e a r R e s . a n d Manage. 5:223-229.  Shank, C. C. 1979. H u m a n - r e l a t e d b e h a v i o r a l d i s t u r b a n c e t o n o r t h e r n l a r g e mammals: a b i b l i o g r a p h y a n d r e v i e w . F o o t h i l l s P i p e l i n e s ( S o u t h Yukon) L t d . , C a l g a r y , A l b e r t a . 253 p p .  Z a g e r , P. E . , C. J o n k e l , a n d J . H a b e c k . 1983. L o g g i n g a n d w i l d f i r e i n f l u e n c e on g r i z z l y b e a r h a b i t a t i n n o r t h w e s t e r n M o n t a n a . I n t . C o n f . B e a r R e s . a n d Manage. 5:124-132.  15 CHAPTER 2:  ASSESSING A C T I V I T Y FROM CHART RECORDINGS INTRODUCTION  The  use  patterns respect  of  of biotelemetry free-ranging  to the  t o study a c t i v i t y budgets  a n i m a l s has  number o f s t u d i e s and  Obvious advantages t o remote s e n s i n g e l i m i n a t i o n of observer 2)  freedom from the  s u b j e c t which can  be  observer  dangerous animals. monitored analog  the  1)  subject's  observation  of  (and  dense  the  subject,  3)  s a f e t y i n the  and  case of p o t e n t i a l l y  D i s a d v a n t a g e s stem from r e l a t i n g behavioral  signal pulse  s t a t e of the  rate)  hence i n a c c u r a c i e s ) , w h i l e  particular behavioral S u c h b i a s e s may  evolve  states  1977),  from sampling techniques,  with  this  individual collars  animal.  collars  to detect  black  bear  and  uncertainty  Wiggins  state  ( S m i t h 1986; or  ( J a c o b s e n and  Lindzey  favour  1982).  the  inability  and  the  Meslow  from temporal changes i n Wiggens 1 9 8 2 ) .  Coupled  sensitivity  of  o f most t i p - s w i t c h  movement on more t h a n one  work on  (e.g.,  b i a s e s may  are p o t e n t i a l d i f f e r e n c e s i n the  Previous and  procedural  the  from r u l e s employed t o c a t e g o r i z e  to a behavioral  subjects' behavior  introduce  ( J a c o b s e n and  analog  the  the  t o darkness,  part of the  or  behavior,  c o m p r o m i s e d due  t o the  integrity,  species.  reduction  Instantaneous changes i n the v a r i a b l e m o n i t o r e d signal  with  number o f  include  the  need f o r d i r e c t  c o v e r o r m o b i l i t y on increased  e f f e c t s on  been e x t e n s i v e  and  plane.  biotelemetric monitoring  (Ursus americanus) a c t i v i t y  of  grizzly  e i t h e r used  the  16  signal  integrity  of f i x e d pulse rate c o l l a r s  of a c t i v i t y  (e.g., B j a r v a l l  H u b e r 1986;  Harting  1977; that  A m s t r u p and  1985;  and  Schleyer  R o t h 1983;  Lindzey  indicator  Roth  and  and  Meslow  Beecham 1 9 7 6 ) , e m p l o y e d t i p - s w i t c h c o l l a r s  collar  1983;  an  S a n d e g r e n 1987;  a l t e r n a t e b e t w e e n 2 p u l s e modes  d e p e n d i n g on  as  (slow  and  fast)  o r i e n t a t i o n (e.g., H a r t i n g  1985;  G a r s h e l i s e t a l . 1982;  G a r s h e l i s and  Pelton  1980), o r used t i p - s w i t c h c o l l a r s w i t h v a r i o u s r e s e t periods  ranging  from 1 t o 5 min  A y r e s e t a l . 1986;  S m i t h 1986;  (Clevenger  studies, collection  periodically  sampling  (time-sampling)  and  t h e b e a r s h o u l d be sampling  between s t u d i e s .  of data  collars'  as  a c t i v e or  of radio c o l l a r  continuous  monitoring  r e f e r s to the  of the behaviors  coarse-grained  was  not  activity  data  via  s i g n a l s (as u s e d  recording of  of i n t e r e s t ) ,  however, i t  involved only c l a s s i f y i n g behavior Studies u t i l i z i n g  signal  g e n e r a l l y used q u a l i t a t i v e r u l e s t o  assign  state.  Rules  here  all-  above s t u d i e s , r e s o l u t i o n o f b e h a v i o r and  Both  was  extensive.  e i t h e r a c t i v e or i n a c t i v e . integrity  inactive.  (1986) c o l l e c t e d  monitoring  In a l l the  patterns  i n t e r v a l s between samples v a r i e d g r e a t l y  Only Smith  done m a n u a l l y and  involved  signal pulse  continuous  occurrences  In  employing v a r i o u s r u l e s t o determine i f classified  p e r i o d and  1990;  G a r s h e l i s e t a l . 1982).  the previous  the  et a l .  delay  used t o determine the  bear f o r t i p - s w i t c h c o l l a r s ,  state of  generally relied  t h e number o f p u l s e mode c h a n g e s p e r u n i t t i m e  on  was as  the  counting  and  17 classifying  as i n a c t i v e t h o s e samples  some minimum number o f c h a n g e s . active  samples'  have termed  this  demonstrated that  Assignment  o r i n a c t i v e was i n d e p e n d e n t  following  assignment.  increased, With  less  than  o f a sample a s  of the previous or  Jacobsen  and Wiggins  (1982)  " i n s t a n t a n e o u s t i m e - s a m p l i n g " and have  f o rw h i t e - t a i l e d deer  (Odocoileus virqinianus)  i t i s unbiased i n estimating time  increasingly  containing  i n activity,  but i s  i n a c c u r a t e as i n t e r v a l s between samples a r e  o r t h e sample d u r a t i o n  i s decreased.  t h e e x c e p t i o n o f C l e v e n g e r e t a l . (1990),  studies  using time delay reset c o l l a r s d i d not a s s i g n a c t i v i t y t o a l l samples  instantaneously.  F o r some s a m p l e s ,  on t h e s i g n a l p u l s e mode m o n i t o r e d ,  assignment  s t a t e depended on a f u t u r e sample m e e t i n g  some  depending  of activity criteria.  T h i s p r o t o c o l was d e s i g n e d t o d i f f e r e n t i a t e b e t w e e n a set  collar  i n a c t i v e mode b y b r i e f movement o f a n i n a c t i v e b e a r a s  opposed Smith  to a collar  s e t i n a c t i v e mode b y a n a c t i v e  bear.  (1986) a n d G a r s h e l i s e t a l . ( 1 9 8 2 ) , when u n a b l e t o  instantaneously assign a c t i v i t y  s t a t e t o a sample,  t h e s i g n a l p u l s e mode a f t e r a t i m e i n t e r v a l slightly  longer than the c o l l a r ' s  Hence, t h e f u t u r e s a m p l e r e q u i r e d not part  active  the active  period.  f o r d e c i s i o n m a k i n g was In contrast,  only systematically,  s a m p l e o c c u r r e d b e t w e e n two i n a c t i v e  classified  resampled  equal t o or  time delay r e s e t  o f t h e s y s t e m a t i c s a m p l i n g scheme.  A y r e s e t a l . (1986) s a m p l e d  that  state  a n d i f one  samples,  they  s a m p l e a s i n a c t i v e on t h e a s s u m p t i o n  i t was o n l y a b r i e f  c o m f o r t movement b y t h e b e a r .  When  18  f u t u r e samples behavioral  must be  state  i t i s termed  ( J a c o b s e n and W i g g i n s conditional  However, c a u t i o n  S t u d i e s on t h e e f f e c t s  accurate account  Wiggins  F o l l o w i n g Altmann  and  (1974),  from t h e c o l l e c t i o n  for  in activity  a more  (Jacobsen  and  continuous  of focal  animal  by s p e c i f i c  (focal)  i n d i v i d u a l s o v e r a s a m p l e p e r i o d o f known l e n g t h . are suited to studies of behavioral  sequences,  Such d a t a  amount  and  o f t i m e s p e n t i n v a r i o u s b e h a v i o r s , and d u r a t i o n s o f  b e h a v i o r a l bouts  (Altmann  1974).  c o n t i n u o u s d a t a t e n d s t o be to collect  the data  However, t h e c o l l e c t i o n  l i m i t e d by t h e e f f o r t  ( J a c o b s e n and W i g g i n s  In coarse-grained studies of a c t i v i t y inactive),  required  1982). (active  diverse behaviors with diverse energetic  are pooled i n t o the a c t i v e  state  from compromising  vs costs  (much l e s s v a r i a t i o n i s  e x p e c t e d among t h o s e b e h a v i o r s p o o l e d i n t o Aside  among  involves recording all-occurrences of the  behaviors o f i n t e r e s t performed  percent  delay  rules.  sequencing  t h a n does sampling a t i n t e r v a l s  1982).  may  1982).  offers  o f t i m e e x p e n d i t u r e s and  monitoring results samples  reset  time-sampling to underestimate time ( J a c o b s e n and W i g g i n s  of  (1982)  as a s t r o n g t e n d e n c y  Continuous monitoring of a c t i v i t y  activities  and W i g g i n s  c o n d i t i o n a l time-sampling  i s warranted  has been demonstrated  of  time-sampling"  applicable to studies u t i l i z i n g  and d i f f e r e n t  conditional  1982).  "conditional  t i m e - s a m p l i n g by J a c o b s e n  n o t be d i r e c t l y collars  examined p r i o r t o assignment  inactivity).  time-energy budgets,  a  problem  of  19 a r i s e s when w o r k i n g bout  with continuous  l e n g t h s t h a t c a n be  energetically warrant  expensive  special  d a t a i n t e r m s o f minimum  recognized. activity  For instance,  of short duration should  r e c o g n i t i o n as s h o u l d s h o r t b o u t s  interspersed within vigorous a c t i v i t y . activity  s t u d i e s on any  monitoring.  However,  s p e c i e s have employed  S o r o k i n and  Berger  (1939),  min.  Cederlund  capreolus) a l s o d i d not recognize bouts included  such  Cederlund  and  Lemnell  These l a t t e r  and  active behavior, with b r i e f 1 min  analog,  of  (Lepus  r e c o g n i z e d as  Smith  distinct  3  (1986) s t u d i e d  o c c u r r e n c e s o f < 1 min  in interpreting  a s s h o r t e r and  duration  i t i s expected  that the e r r o r r a t e  increase.  Alternatively,  classification will  the  s h o r t e r a c t i v i t y bouts  But,  errors  are  in activity  in classification  random i f t h e mean e s t i m a t e s o f a c t i v i t y  unbiased.  continuous  bouts.  classification will must be  but r a t h e r  recognized all-occurrences of  Because u n c e r t a i n t y e x i s t s  recognized  < 5 min  2 studies also distinguished  h i b e r n a t i n g black bears  monitored  (Capreolus  and m o u n t a i n h a r e s  types of a c t i v e behavior.  r e c o r d e d as  lasted > 5  (1980) p r e s e n t e d r e s u l t s  t i m i d u s ) . w i t h a c t i v i t y b o u t s > 2 min  different  time-  short bouts with adjacent a c t i v i t y c a t e g o r i e s .  a c t i v i t y m o n i t o r i n g on r o e d e e r  units.  continuous  that  (1981) i n work w i t h r o e d e e r  rest  few  studying  b u d g e t s o f humans r e c o r d e d e v e r y a c t i v i t y  of  are to  be  systematic errors i n  b i a s t h e means b u t w i l l  not a f f e c t  the  20 results and  of significance testing,  direction Specific  the  stability  definitions trends  p r o v i d e d t h a t t h e magnitude  o f e r r o r s a r e comparable a c r o s s objectives of this  samples.  c h a p t e r were t o : 1) a s s e s s  of chart interpretations with  varying  o f minimum b o u t d u r a t i o n ; 2) d e s c r i b e  general  i n a c t i v i t y b u d g e t s a n d p a t t e r n s ; a n d 3) a s s e s s t h e  validity  o f procedures  used t o i n t e r p r e t  recorded  samples o f bear  comparisons with previous  activity,  continuous  through  chart  qualitative  r e s e a r c h on a c t i v i t y  of bears.  METHODS Chart I n t e r p r e t a t i o n Field Activity  procedures  were a s d e s c r i b e d i n C h a p t e r  c o l l a r s used i n t h i s  2.5-min r e s e t d e l a y t y p e s respectively).  s t u d y were e i t h e r o f 5-s o r  ( 8 2 % a n d 18% o f r e c o r d e d  while  i f d a t a were t o b e  F o r t h e 2.5-min r e s e t d e l a y c o l l a r s ,  detectable  data,  I n t e r p r e t a t i o n o f c h a r t r e c o r d i n g s h a d t o be  c o n s i s t e n t between t h e 2 c o l l a r t y p e s pooled.  1.  i n a c t i v e d u r a t i o n had a lower  t h e minimum  b o u n d o f 2.5 m i n  a c t i v e p e r i o d s meant t h a t t h e b e a r was t r i g g e r i n g t h e  tip-switch at least  once every  2.5 m i n .  D a t a f r o m t h e 5-s  r e s e t d e l a y c o l l a r s were i n t e r p r e t e d i n a manner c o n s i s t e n t with these  restrictions.  T h e r e was l i t t l e collared  bears  observe  ( b e a r s w e a r i n g 2.5-min r e s e t d e l a y  were n e v e r o b s e r v e d ) . and  opportunity t o d i r e c t l y  simultaneously  When c o l l a r e d  recorded  bears  or listened  collars  c o u l d be  t o with  observed  a receiver,  21 it  was  apparent t h a t bears  w e a r i n g 5-s r e s e t d e l a y  c o u l d be a c t i v e f o r a l m o s t 1 min w i t h o u t switch had  f r o m i n a c t i v e mode.  differential  Therefore,  reliability  collars  tripping the t i p -  signal pulse  patterns  of the information that  they  contained  - a c t i v e p u l s e modes i n d i c a t e d movement b u t s h o r t  durations  o f i n a c t i v e p u l s e modes d i d n o t p r e c l u d e  by  movement  the bear. Based on t h e l i m i t a t i o n s  collars delay and  and t h e o b s e r v a t i o n s  collars,  o f t h e 2.5-min r e s e t o f bears  minimum d u r a t i o n s  w e a r i n g 5-s r e s e t  f o r recognition of active  i n a c t i v e b o u t s were c h o s e n t o b e 1 m i n a n d 2.5 m i n ,  respectively.  A c t i v e b o u t s were m e a s u r e d t o a s h o r t e r  d u r a t i o n t o account reliability.  f o r the d i f f e r e n t i a l  consistent with exclusive,  persisted  categorized into  a c t i v e and i n a c t i v e  quantitative rules.  assigned  i n information  Interpretation of charts consisted of 2 steps.  P u l s e mode p a t t e r n s were f i r s t  then  those  s t a t e s b a s e d on  Categorized  patterns  for at least  p a t t e r n s t o o s h o r t t o be r e c o g n i z e d  as b o u t s were  the bears* unknown they  were  t h e r e s p e c t i v e minimum d u r a t i o n Categorized  adjacent  mutually  as a c t i v e o r i n a c t i v e bouts i f t h e p a t t e r n  2.5 min) r e q u i r e d f o r r e c o g n i t i o n .  with  delay  recognizable bouts.  Durations  p u l s e mode combined  > 5 m i n , where  s t a t e c o u l d n o t be d e t e r m i n e d , were r e c o r d e d  bouts,  occurred  (1 o r  as  s h o r t e r d u r a t i o n s were i n t e r p o l a t e d a c r o s s i f between l i k e b o u t s ,  o c c u r r e d between u n l i k e  bouts.  or s p l i t  evenly  i f they  22 B e c a u s e t h e r e was v a r i a t i o n  i n t h e c h a r t speeds, due t o  the  level  o f b a t t e r y charge and (or) ambient  the  chart distance that represented  w i t h i n and between c h a r t s . c a l c u l a t e d between time  temperature,  a given duration varied  A v e r a g e c h a r t s p e e d was  c h e c k s on t h e c h a r t s a n d c a l i p e r s  were s e t t o t h e d i s t a n c e s t h a t r e p r e s e n t e d  the durations  u s e d t o d i f f e r e n t i a t e p u l s e mode p a t t e r n s a n d b o u t s . P u l s e mode p a t t e r n s d i f f e r e d c o l l a r types  g r e a t l y between t h e 2  and n e c e s s i t a t e d d i f f e r e n t  rules f o r  categorizing patterns into the 2 states.  Specific  rules f o r  e a c h c o l l a r t y p e were a s f o l l o w s :  a)  2.5-min R e s e t The  Delay  Collars  2.5-min d e l a y p e r i o d g r e a t l y c o n s t r a i n e d t h e  frequency  w i t h w h i c h t h e p u l s e modes c o u l d a l t e r n a t e .  Movement w h i c h t r i p p e d t h e t i p - s w i t c h r e s u l t e d a c t i v e mode o f 2.5 m i n .  i n a minimum  However, t h e d e l a y p e r i o d d i d n o t  a p p l y t o i n a c t i v e p u l s e modes a n d t h e c o l l a r  could return to  i n a c t i v e mode f o r v e r y b r i e f p e r i o d s b e f o r e b e e n t r i p p e d b y movement a g a i n  (Fig. 1).  Because o f t h e r e s e t d e l a y p e r i o d ,  p o i n t s o f c h a n g e i n p u l s e mode f r o m a c t i v e t o i n a c t i v e biased  i n d i c a t o r s o f when t h e b e a r  Therefore, beginning end  movement.  a c o r r e c t i o n o f 2.5 m i n was a d d e d t o t h e o f a n y i n a c t i v e p u l s e mode a n d s u b t r a c t e d f r o m t h e  o f t h e p r e c e d i n g p u l s e mode  required  ceased  were  2.5 m i n c o r r e c t i o n ,  (Fig. 2).  any o c c u r r e n c e  Because o f t h e of inactive  p u l s e mode was r e c o g n i z e d a s a n i n a c t i v e b o u t .  Active pulse  Figure  1. T y p i c a l p u l s e mode p a t t e r n s o b t a i n e d f r o m b e a r s w e a r i n g 2.5-min r e s e t d e l a y collars, a) A c t i v e p u l s e modes i n t e r s p e r s e d w i t h b r i e f i n a c t i v e p u l s e modes (marked b y a r r o w s ) , and b) i n a c t i v e p u l s e modes i n t e r s p e r s e d w i t h a c t i v e p u l s e modes o f a p p r o x i m a t e l y t h e 2.5-min r e s e t d e l a y p e r i o d . One i n c h o f c h a r t t r a c e r e p r e s e n t s about 4 min.  I  Figure  2. Examples o f a s s i g n m e n t o f a c t i v i t y b o u t s (upper c o n t i n u o u s l i n e ) t o p u l s e mode p a t t e r n s ( l o w e r b r o k e n s e r i e s ) o b t a i n e d f r o m b e a r s w e a r i n g 2.5-min reset delay c o l l a r s . Read from l e f t t o r i g h t : U = unknown b o u t ; A = a c t i v e b o u t ( a s measured when f o l l o w i n g b o u t i s unknown); I = i n a c t i v e b o u t ( n o t e a d d i t i o n o f 2.5 m i n c o r r e c t i o n ) ; A = a c t i v e b o u t ( n o t e s u b t r a c t i o n o f 2.5 min when f o l l o w i n g b o u t i s i n a c t i v e ) ; I = i n a c t i v e b o u t ; A = a c t i v e b o u t . One i n c h o f c h a r t t r a c e r e p r e s e n t s a b o u t 4 min.  25 modes t h a t p r e c e d e d active  i n a c t i v e b o u t s were r e c o g n i z e d  b o u t when t h e d u r a t i o n b e t w e e n t h e f i r s t  mode a n d t h e r e s e t When a c t i v e  delay  correction  a s an  active  pulse  was > 1 m i n ( F i g . 2 ) .  p u l s e modes p r e c e d e d a b o u t c l a s s i f i e d  as  unknown, t h e l a s t movement b y t h e b e a r t o t r i g g e r t h e t i p s w i t c h was assumed t o b e a t t h e l a s t active  b o u t was r e c o g n i z e d  was > 3.5 m i n t h u s active  active  p u l s e mode.  An  i f t h e a c t i v e p u l s e mode d u r a t i o n  ensuring  that the subject minimally  f o r > 1 min ( F i g . 2 ) .  was  I f t h e p u l s e mode d u r a t i o n was  < 3.5 m i n , t h e a c t i v e p u l s e modes were p o o l e d  with the  unknown b o u t .  b)  5-s R e s e t D e l a y  Collars  P u l s e mode p a t t e r n s were much more v a r i a b l e reset  delay  collars  and a c t i v e b e a r s  c h a r a c t e r i z e d by frequent  g e n e r a l l y had a p a t t e r n  s w i t c h i n g back and f o r t h between  active  and i n a c t i v e p u l s e s  active  bears  patterns  (Fig. 3).  d i d demonstrate a steady  consistent with  f o r 5-s  the active  I n some i n s t a n c e s , active  pulse.  s t a t e were where  p u l s e modes o c c u r r e d w i t h i n 2.5 m i n o f e a c h o t h e r . active with  b o u t was r e c o g n i z e d  the active  An  s t a t e had a d u r a t i o n > 1 min, as measured active  4).  o f i n a c t i v e p u l s e modes > 2.5 m i n , a s  pulse t o the l a s t  measured from t h e f i r s t recognized  active  i f a pulse pattern consistent  from t h e f i r s t Durations  Pulse  to the last  as i n a c t i v e bouts  active  pulse  inactive pulse,  (Fig 4).  (Fig.  were  ~~r~  —1  Figure  3. T y p i c a l p u l s e mode p a t t e r n s o b t a i n e d f r o m b e a r s w e a r i n g 5-s r e s e t d e l a y collars, a) A c t i v e p u l s e mode p a t t e r n s h o w i n g f r e q u e n t s w i t c h i n g between a c t i v e and i n a c t i v e p u l s e s , and b ) a l t e r n a t i n g a c t i v e and i n a c t i v e ( s o l i d l o w e r t r a c e ) p u l s e mode p a t t e r n s . One i n c h o f c h a r t t r a c e r e p r e s e n t s about 4 min.  Figure  4. Examples o f a s s i g n m e n t o f a c t i v i t y b o u t s ( u p p e r c o n t i n u o u s l i n e ) t o p u l s e mode p a t t e r n s ( l o w e r b r o k e n s e r i e s ) o b t a i n e d f r o m b e a r s w e a r i n g 5-s r e s e t delay collars. Read from l e f t t o r i g h t : I = i n a c t i v e b o u t ; U = unknown b o u t ( n o t e t h e i n c l u s i o n o f p u l s e mode p a t t e r n s t o o s h o r t t o c l a s s i f y a t e i t h e r end o f t h e unknown b o u t ) ; A = a c t i v e b o u t ( n o t e i n a c t i v e p u l s e mode p a t t e r n s w i t h d u r a t i o n s <2.5 m i n ) ; I = i n a c t i v e b o u t ( n o t e d u r a t i o n <1 m i n o f a c t i v e p u l s e mode p a t t e r n s w i t h i n i n a c t i v e b o u t ) ; A = a c t i v e b o u t . One i n c h o f c h a r t t r a c e r e p r e s e n t s about 4 min.  28 F o r e a c h r e c o r d e d s a m p l e on a b e a r , t h e l e n g t h on c h a r t o f each bout  ( i n c l u d i n g unknown b o u t s ) was  t h e n e a r e s t 1.0  and e n t e r e d s e q u e n t i a l l y  file  mm  along with the chart  measured t o  into a  computer  s p e e d and b o u t c a t e g o r y .  Data  f i l e s w e r e s u b s e q u e n t l y c o l l a t e d w i t h i n f o r m a t i o n on age,  reproductive status,  c o l l a r t y p e , and d a t e .  t i m e s o f r e c o r d i n g s and t h e s t a r t i n g  and  i n Mountain  a c t i v e and  D a y l i g h t Time.  each b o u t ' s measured l e n g t h by t h e c h a r t  min.  Time o f  multiplying  speed t o  d u r a t i o n o f t i m e , and  summing by b o u t c a t e g o r y .  time a c t i v e  determined as t o t a l  was  Starting  T o t a l d u r a t i o n s spent i n  i n a c t i v e b o u t s were d e t e r m i n e d by  (%TA)  sex,  stopping times of  e a c h b o u t were c a l c u l a t e d t o t h e n e a r e s t 1.0 d a y was  the  determine Percent of  time  i n the  active  time  i n both  b o u t c a t e g o r y d i v i d e d by t h e sum  of t o t a l  a c t i v e and  A l l c o n t i n u o u s 24-hour  inactive categories.  samples o f b e a r a c t i v i t y o f sample coded  a s unknown b o u t s ) were  Stability Chart  t h a t were 98%  <  2%  identified.  of A c t i v i t y Estimates to  and r e p e a t a b l e c h a r a c t e r i z a t i o n o f t h e  chart pulse patterns.  S h o r t a c t i v e and  not represent true a c t i v i t y  b o u t s may  (i.e.,  i n t e r p r e t a t i o n r u l e s were d e s i g n e d p r i m a r i l y  permit a d e t a i l e d  animal.  complete  i n a c t i v e bouts  s t a t e s on t h e p a r t  Short a c t i v e bouts o c c u r r i n g w i t h i n only r e f l e c t  may  of the  long  inactive  b r i e f h e a d movements o r c o m f o r t  movements o f a r e s t i n g b e a r .  Short inactive  i n t e r s p e r s e d b e t w e e n l o n g a c t i v e b o u t s may  bouts  be due  to  collar  29  insensitivity being  t o movement i n c e r t a i n p l a n e s  i n a vigilant  state.  o r t o t h e animal  To a s s e s s t h e i m p a c t classification  of  potential  errors i n activity  on r e s u l t a n t  estimates  o f %TA, I w r o t e a c o m p u t e r p r o g r a m t h a t  permitted  me t o i n c r e a s e t h e minimum d u r a t i o n s r e q u i r e d f o r recognition (active, to  o f bouts.  inactive,  The d u r a t i o n s o f a l l 3 b o u t  unknown) c o u l d be v a r i e d .  d u r a t i o n s were d e t e r m i n e d  by t h o s e  types  Lower b o u n d s  used t o i n t e r p r e t the  charts. D e c i s i o n r u l e s were a p p l i e d b y t h e p r o g r a m ' s to  the data  through  i n hierarchical  the data.  algorithm  fashion i n successive  In the f i r s t  pass,  passes  t h e d u r a t i o n o f each  b o u t was c h e c k e d a g a i n s t t h e new r e s p e c t i v e minimum d u r a t i o n and  coded as a success  Bouts f a i l i n g a  failure  pass analyzed  between a d j a c e n t  they best represented  classification  different  singly single  and p o o l e d ,  o r i n groups between f a i l u r e s were  s u c c e s s f u l bouts.  t h e groups o f f a i l u r e s  s u c c e s s f u l bouts,  All  either  I n t h e second pass,  or split  activity  t o meet t h e new minimum d u r a t i o n w e r e c o d e d a s  and c o u l d o c c u r  successes. with  i f i t met t h e minimum d u r a t i o n .  pooled  The t h i r d  as t o t h e type o f  i n r e l a t i o n t o bounding split  or assigned  an  activity  as r e q u i r e d .  5-s r e s e t d e l a y c o l l a r d a t a were a n a l y z e d selected sets of d e f i n i t i o n s with  under 5  respect to  minimum b o u t d u r a t i o n s r e q u i r e d f o r r e c o g n i t i o n : s e t #1 a c t i v e b o u t s = 1 m i n , i n a c t i v e b o u t s = 2.5 m i n , m i s s i n g b o u t s = 5 m i n ( t h i s s e t was i d e n t i c a l  to the chart  30 interpretation rules); i n a c t i v e bouts a c t i v e bouts, min;  s e t #4  bouts,  = 2.5  min;  bout  = 5.0  s e t #5  s e t #3  a l l=  5.0  inactive  bouts,  Sets of d e f i n i t i o n s  b u t were d e s i g n e d t o encompass a  were  range  d e f i n i t i o n s t o permit e x p l o r a t i o n o f t h e impact  varying definitions  on  r u l e s on  effect %TA  of the d i f f e r e n t  was  of  %TA.  Statistical The  Analyses s e t s o f bout  i n v e s t i g a t e d w i t h i n each  definition  season u s i n g  fixed  m o d e l r e p e a t e d m e a s u r e s a n a l y s e s o f v a r i a n c e ( H i c k s 1982, 239),  where p o o l e d d a t a f o r e a c h  s e x - a g e c l a s s were  s u b j e c t s on w h i c h r e p e a t e d m e a s u r e s were t a k e n .  i n %TA  between sex,  mixed model n e s t e d - f a c t o r i a l 1982,  p.  233),  individuals variance.  and  to and  rules)  and  to  individuals  test  in a  a n a l y s i s of v a r i a n c e (Hicks  d i f f e r e n c e s b e t w e e n months  and  i n a mixed model r e p e a t e d measures a n a l y s i s Analyses based  were u n b a l a n c e d square  age  analyses. Bjerring  on c o m p l e t e  with missing c e l l s .  root transformed  of  24-hour r e c o r d i n g s Data were  ( S o k a l and R o h l f 1981,  A n a l y s e s were p e r f o r m e d 1978).  p.  the  (the 5 s e t s o f  Complete 24-hour r e c o r d i n g s were u s e d  differences  -  and m i s s i n g  - a c t i v e bouts, min.  min,  min;  and m i s s i n g b o u t s ,  i n a c t i v e bouts,  a l l = 10.0  arbitrarily  - a c t i v e b o u t s = 2.5  missing bouts  - a c t i v e bouts,  and m i s s i n g b o u t s ,  of  min,  i n a c t i v e bouts,  a l l = 7.5  selected  s e t #2  o n UBC  arcsine p.  427)  GENLIN  D i f f e r e n c e s b e t w e e n means w e r e  prior  (Grieg  31  investigated 51).  w i t h Newman-Keuls  range t e s t s  T h e a l p h a l e v e l f o r a l l t e s t s was RESULTS AND  to the d i f f e r e n t sets  Subadult males i n the s p r i n g in  %TA  %TA t e n d e d t o b e  of definitions  A d u l t males i n t h e f a l l  "subjects"  #5 a n d #1, r e s p e c t i v e l y .  were c h a r a c t e r i z e d  #2 a n d  range #5,  ( 3 4 . 5 % - 37.2%) a n d  ( 3 0 . 8 % - 33.2%) showed t h e n e x t l a r g e s t  between s e t s  tested.  demonstrated the l a r g e s t  ( 5 4 . 3 % - 62.3%) b e t w e e n d e f i n i t i o n s e t s  respectively. spring  0.05.  DISCUSSION  From a p r a c t i c a l p e r s p e c t i v e , resistant  ( H i c k s 1982, p .  ranges  A l l 3 of these  b y s m a l l amounts o f d a t a .  A n a l y s e s o f v a r i a n c e showed s i g n i f i c a n t d i f f e r e n c e s %TA among t h e s e t s and  fall,  of d e f i n i t i o n s i n both the berry  However, t h e l a r g e s t  among t h e s e t s  to  1.38%  of d e f i n i t i o n s i n both  absolute difference  o f d e f i n i t i o n s was  (2.28% f o r s p r i n g , season,  season  w i t h %TA f o r d e f i n i t i o n s e t #1 b e i n g s i g n i f i c a n t l y  l e s s t h a n %TA f o r a l l o t h e r s e t s seasons.  in  0.75% f o r e a r l y  for fall).  more h o u r s o f a c t i v i t y  i n every  summer, 0.85%  Absolute differences  the t o t a l hours of a c t i v i t y  absolute difference  small  data  i n %TA  season f o r berry  were  related  i n each season - t h e  d a t a , t h e l e s s was t h e l a r g e s t  - s u g g e s t i n g an a v e r a g i n g - o u t  effect.  L a r g e c h a n g e s i n %TA were p r e c l u d e d b y t h e d i s t r i b u t i o n s o f active  and i n a c t i v e t i m e a c r o s s b o u t s o f d i f f e r e n t  durations. the  Under t h e r u l e s used  most f r e q u e n t l y  occurring  f o r chart  interpretation,  b o u t d u r a t i o n s were t h o s e < 5  32 min,  b u t most o f t h e b e a r s ' t i m e was  (Fig.  5a a n d 5 b ) .  Consequently,  spent  never  i n bouts  more t h a n  > 30 m i n  about  15%  o f t h e d a t a were a t r i s k o f b e e n r e i n t e r p r e t e d b y t h e program.  Without independent  concurrent v i s u a l signals)  estimates of a c t i v i t y  observations of g r i z z l y bears  t h e r e were no c r i t e r i a  definitions  over another.  for selection  and r e c o r d e d  o f one s e t o f  However, g i v e n t h e s m a l l  d i f f e r e n c e s b e t w e e n e s t i m a t e s o f %TA, t h e o r i g i n a l i n t e r p r e t a t i o n s were deemed a c c e p t a b l e a n d u s e d subsequent  %TA f o r a l l d a t a c o m b i n e d was  evenly d i s t r i b u t e d  t o daytime hours. the d i e l 53.7%.  over the d i e l  Applying equal  cycle resulted  for a l l  54.3%  a n d 55.1%  55.4%.  (adult  importance  t o each hour o f  females),  55.3%  (subadult  A total  o f 44  r e p r e s e n t i n g 22% o f t h e e n t i r e  data  s e t , were o b t a i n e d a n d u s e d  to test  age,  and i n d i v i d u a l b e a r s .  i n d i v i d u a l bears  significant.  Estimates  Only  o f %TA c a l c u l a t e d  effects  from  a l l d a t a combined  (Table 3).  were  calculated  r e p o r t e d by  (1985; 15% - 7 4 % ) .  All (weighted  24-  Ranges o f %TA f o r  c o m p l e t e 2 4 - h o u r s a m p l e s were s i m i l a r t o t h o s e Hechtel  o f sex,  complete  h o u r samples were s i m i l a r t o unweighted e s t i m a t e s from  %TA o f  f o r s e x - a g e c l a s s e s w e r e 47.3%  (subadult females).  complete 24-hour samples,  D a t a were  c y c l e b u t were b i a s e d  i n an u n w e i g h t e d o v e r a l l  Unweighted estimates  (adult males), males),  chart  analyses.  Overall not  (e.g.,  s e x - a g e c l a s s e s showed a d e f i n i t e t r e n d f o r %TA b y h o u r o f t h e day) t o i n c r e a s e t o a maximum  Bout Durations  100-1  LU  F  5 <  I UL  o £  100-1  80-  LU  80-  LU >  70  8080-  <  60-  z  e  6040-  o LL  30-  UJ  u  ZZ] <5 min ES3 >5 min,<10 min E D >10 min <15 min K B >15 min,<30 min >30 min  LU  u  20-  QC LU CL  •m SPRING  Figure  5.  EARLY SUMMER  BERRY SEASON  FALL  DC LU 0.  SPRING  EARLY SUMMER  BERRY SEASON  FALL  a) P e r c e n t o f t o t a l a c t i v e t i m e a s d i s t r i b u t e d b e t w e e n a c t i v e b o u t s o f d i f f e r e n t d u r a t i o n s a n d s e a s o n s , a n d b) p e r c e n t o f t o t a l i n a c t i v e t i m e a s d i s t r i b u t e d between i n a c t i v e b o u t s o f d i f f e r e n t d u r a t i o n s and s e a s o n s .  oo oo  34  Table  3. Means, s t a n d a r d e r r o r s o f t h e means, a n d r a n g e s o f p e r c e n t o f time a c t i v e by sex-age c l a s s , and o v e r a l l , c a l c u l a t e d from complete 24-hour samples on g r i z z l y b e a r s .  Sex-acre  class  X  SE  n  Rancre  Adult  males  48.2  7.0  5  26.4 - 65.3  Adult  females  50.0  5.4  15  11.7 - 82.3  Subadult  males  53.2  4.1  10  23.6 - 67.7  Subadult  females  55.6  4.4  14  17.8 - 73.3  52.3  2.6  44  11.7 - 82.3  Overall  35  around J u l y  and  August f o l l o w e d by  S e p t e m b e r and  October  similarly  in April  low  ( F i g . 6).  a marked d e c l i n e  L e v e l s o f %TA  with the exception of  through  were  subadult  females,  however, r e c o r d e d d a t a t o t a l s w e r e s m a l l f o r b o t h  subadult  females  and  a d u l t m a l e s i n t h i s month  (see  Table  1) • Using was  c o m p l e t e 2 4 - h o u r s a m p l e s t o t e s t months  excluded  their  due  to only 1 observation), individuals,  interaction,  resulted  i n s i g n i f i c a n t month  i n d i v i d u a l main e f f e c t s .  A range t e s t  means f o r months r e s u l t e d  i n only A p r i l  l e s s than August. of A p r i l ,  May  (Table 4). months  and  Bears  J u n e may  being  and  significantly i n t h e months  be b i a s e d t o w a r d s  inactivity  e x h i b i t more f r e q u e n t movements i n t h e s e Shackleton  1989)  out of range of the r e c o r d e r s .  and  restricted  their  f r e q u e n t l y went  Consequently,  overrepresent the behavior  periodically  activity  complete  of bears  that  to localized  A n n u a l a c t i v i t y p a t t e r n s by h o u r o f t h e d a y s t r o n g l y bimodal  f o r low  a d i u r n a l minimum i n %TA  a r o u n d 1400  2100  o f %TA  y e a r and  d a t a on d i f f e r e n t throughout  and o f %TA  Shifts  and  i n peak  b e t w e e n 2000 -  between t h e d i f f e r e n t  T i m e s o f s u n r i s e and  distributed  hours.  b e t w e e n 0700 - 0900 h o u r s and  h o u r s were a p p a r e n t  classes.  nocturnal levels  areas.  were  f o r a l l sex-age c l a s s e s ( F i g . 7 ) ,  showed c o n s i s t e n t t r e n d s  levels  and  on t h e p r e d i c t e d  Complete samples o b t a i n e d  ( M c L e l l a n and  s a m p l e s may  (October  sex-age  sunset vary throughout  the  s e x - a g e c l a s s e s were n o t e q u a l l y  t h e months o f d a t a c o l l e c t i o n .  To  PERCENT OF TIME ACTIVE  PERCENT OF TIME ACTIVE  PERCENT OF TIME ACTIVE  PERCENT OF TIME ACTIVE  H.  (D  o» o & n> c 3  i - rt rt  o  0) t—' r t 0) H W 9 - (D P> 0> 3 O Oi r t HPJ <  — (D  0, o 3  C  M rt rt  M) H i  (D O S H 01 l_< p) (0 ^01 (1) 01 e M O rt 9) t— 9 O 0> C M I— (D 0) 01 rt(0 1  1  n o.  O J= 3  M rt  0) (0  M M) M  3  0) rt  H-  o>  dt m o  1  37  Table  4. Means, s t a n d a r d e r r o r s o f t h e means, a n d r a n g e s o f p e r c e n t o f t i m e a c t i v e b y month, c a l c u l a t e d f r o m c o m p l e t e 24-hour samples on g r i z z l y b e a r s .  Month  X  SE  n  Rancre  April  30.7  15.3  2  15.5 - 46.0  May  47.4  3.4  9  33.1 - 62.1  June  34.5  8.7  4  17.7 - 54.4  July  69.0  5.2  5  55.7 - 82.3  August  62.3  3.7  11  26.4 - 71.8  September  50.1  4.9  12  11.7 - 73.3  October  42.8  __ _  1  90-  90  80  Ii  70  2  F LL O  eo  • • l  B0-|  30  ioH 0  Ik  1 ii  40  20  1  ll  •i  llm  •111  80  80 70H 80  LU  2 F  60 403020 10 0  Figure  80 40 30  • i i iI I  10 0  1 2 3 4 6 6 7 8 9 10 11 12 13 14 15 16 17 IB 192021222324 TIME OF DAY  100-  *  90  < LU  III 1111  40 30 20-|  i i  2 3 4 6 8 7 8 9 K> 11 12 13 14 16 18 17 18 19 20 21 22 23 24 TIME OF DAY  ri  I  111  i i  •ill  i i  lilii in  1 2 3 4 6 S 7 S 9 10 11 12 13 H 18 16 17 18 1920 21222324 TIME OF DAY  d  lJllllllllllfciiii l • Ml -J lilii I »1  o JLU O  L  iisllii i Ji Pi iiiIII it i i i •••I i li I i  i l l  80  5  1 !  JI  80  MH  11 J  Hi  70  100 90 H  b  10 0  •  l  Iii I —  1 2 3 4 8 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 TIME OF DAY  7. A n n u a l p e r c e n t o f t i m e a c t i v e b y h o u r o f t h e d a y f o r a) a d u l t m a l e s , b) a d u l t f e m a l e s , c ) s u b a d u l t m a l e s , a n d d) s u b a d u l t f e m a l e s . F o r h o u r s o f t h e d a y , 1 • 0000-0100; 2 = 0100-0200 e t c .  U) 00  39 standardize the data with p e r i o d s were d e f i n e d .  respect t o s o l a r events,  Morning and e v e n i n g  four  diel  (crepuscular)  p e r i o d s were e a c h 3 h l o n g a n d e x t e n d e d f r o m 1.5 h b e f o r e , to  1.5 h a f t e r ,  s u n r i s e and s u n s e t  respectively.  i n t e r v e n i n g d u r a t i o n s between t h e s e assigned spite  crepuscular periods  as d i u r n a l and n o c t u r n a l p e r i o d s  o f t h e strong bimodal patterns  adult  ( F i g . 8) w h i l e t h e  s e x - a g e c l a s s e s showed s m a l l a n d i n c o n s i s t e n t  differences  i n %TA b e t w e e n d i u r n a l a n d c r e p u s c u l a r  periods.  A c t i v i t y peaks f o r a d u l t s males tended t o be narrow while that  the other extended  into the diurnal period. s t u d i e s , average a c t i v i t y measures a r e over  v a r y i n g p o r t i o n s o f t h e s p r i n g , summer a n d f a l l . many e s t i m a t e s (1983) f o u n d  a r e s i m i l a r t o those  E u r o p e a n brown b e a r s  time as c a l c u l a t e d from a l l d a t a . adequate data  reported here.  Roth  t o be a c t i v e 47% o f t h e For 7 data  o f 53%.  Roth and Huber  sets  (1986)  a v e r a g e a c t i v e l e v e l s o f E u r o p e a n brown b e a r s for a 2-year-old  female and 4 - y e a r - o l d  Combined means o f f u l l y  with  reported  o f 6 1 % a n d 49%  male, r e s p e c t i v e l y .  a c t i v e behavior  a c t i v e behavior  of the Rockies  However,  g r o u p e d b y b e a r a n d month, h e c a l c u l a t e d a  mean a c t i v e l e v e l  stationary  ( F i g . 7)  s e x - a g e c l a s s e s d i s p l a y e d much w i d e r p e a k s  Among o t h e r  estimate  were  (Fig. 8). In  (Fig. 7), only  m a l e s showed a s t r o n g c r e p u s c u l a r p a t t e r n remaining  The  f o rg r i z z l i e s  and a s s o c i a t e d on t h e e a s t  front  (Aune a n d S t i v e r s 1 9 8 3 ) , r e s u l t e d i n a n  o f 11.9 h o f a c t i v i t y p e r 2 4 - h o u r c y c l e  Aune a n d Kasworm (1989) c o n c l u d e d  that g r i z z l i e s  (49.6%). on t h e e a s t  vQ  PERCENT O F TIME ACTIVE  PERCENT O F TIME ACTIVE  PERCENT O F TIME ACTIVE  PERCENT O F TIME ACTIVE  C  CD CO  3 3  fl> 01  PJ  - T3 fl> 0 ^ — o CD cn 3 £ ft cr  ca o & M>  c  rt rt H3 CD M  P>  n> o  01 ft  -  PJ  3  H<J  (D  & er &  — o. 01 (D cr  pj *rJ CL CD H" H -  rt O 0< H) C 3D oHi PJ M (D PJ  01 ^ P>  O.  3  PJ 1  HCD 01  PJ  41 front  o f t h e R o c k i e s were i n v o l v e d  activity  o v e r a 24-hour p e r i o d  (1983) f o u n d g r i z z l i e s average  active  50.0%).  level  - 62.5%).  Schleyer  8 - 12 h p e r d a y  a  yearly  (33.3  H a r t i n g (1985) a l s o w o r k e d i n Y e l l o w s t o n e  probability  1985).  grizzlies  activity  0.61  (calculated  From d i r e c t  (calculated  64.0%  (Gebhard 1985).  and  40%  from  activity  level  The  of  a c t i v e e s t i m a t e s were Phillips  (calculated  1987),  from d a t a  M o s t o b s e r v a t i o n s made by H e c h t e l  were o b t a i n e d p r i o r t o m i d - J u n e . observed  a c r o s s t h e months  observational studies  f r o m d a t a o f T a b l e 1,  1982),  spring to f a l l of  the  f r o m d a t a o f F i g . 10,  i n northern A l a s k a , annual  77.5%  For a female  Hechtel  of  (1985)  grizzly  (1985) r e p o r t e d an  55%.  general pattern of v a r i a t i o n  months r e p o r t e d h e r e ,  in activity  i s similar to that  over  found by H a r t i n g  (1985) f o r Y e l l o w s t o n e g r i z z l i e s where a c t i v e  levels  increased  and  declined July  f r o m May  t h r o u g h t o a peak i n J u l y ,  t h r o u g h t o September.  and A u g u s t  and  black bears grizzly  High d a i l y  active  coincide with the occurrence of  b e h a v i o r by g r i z z l y b e a r s Garshelis  -  and d i d  e s t i m a t e , however,  of b e a r s been a c t i v e averaged  o f h i s s t u d y was  Hechtel  (41.6  - 15 h o f v i g o r o u s  i n Yellowstone to e x h i b i t  o f about  n o t p r e s e n t an a v e r a g e  Harting  i n 10  (Watts  and J o n k e l  then levels  in  hyperphagic  1988).  P e l t o n (1980) f o u n d a s i m i l a r p a t t e r n f o r  i n t h e G r e a t Smoky M o u n t a i n s .  Studies  on  a n d b l a c k b e a r s s u p p o r t a g e n e r a l t r e n d o f low  daily  42  active  levels  Schleyer  i n post-  a n d p r e - d e n n i n g months  (e.g.,  1983; A m s t r u p a n d Beecham 1 9 7 6 ) .  Bimodal a c t i v i t y p a t t e r n s by hour o f t h e day o r d i e l period  a r e commonly r e p o r t e d  grizzlies 1983;  i n the literature  (Aune a n d Kasworm 1989; H a r t i n g 1985; S c h l e y e r  R o t h 1983) a n d b l a c k b e a r s  G a r s h e l i s and P e l t o n 1980). studies bears  f o r both  ( a n d among b e a r s  (Ayres  e t a l . 1986;  The m a i n d i f f e r e n c e among  w i t h i n s t u d i e s ) t e n d s t o be w h e t h e r  a r e r e l a t i v e l y more a c t i v e d u r i n g t h e n o c t u r n a l  s e p a r a t i n g t h e bimodal peaks o r d u r i n g t h e d i u r n a l Such v a r i a t i o n several 1986;  in activity  Harting  1985) a n d l e v e l  Kasworm 1989; R o t h  hours.  p a t t e r n s may be a p r o d u c t  f a c t o r s including foraging behavior  (Ayres  o f human d i s t u r b a n c e  hours  of  et a l . (Aune a n d  1983).  ^  CONCLUSIONS The  consequences o f p o t e n t i a l  classification  errors i n activity  a p p e a r t o be s m a l l b a s e d on t h e a s s u m p t i o n  t h a t t h e l o n g e r t h e minimum d u r a t i o n r e q u i r e d f o r r e c o g n i t i o n t h e more l i k e l y correctly.  t h e bout i s t o be  Under t h e bout d e f i n i t i o n s  o f a c t i v e and i n a c t i v e p u l s e p a t t e r n s recognized, time.  accounted  examined, l e s s than  f o r a small percent  durations t h e minimums  of the bears'  The i n f l u e n c e o f a b i a s t o a c t i v e b o u t s i n t h e c h a r t  interpretation  r u l e s i n t r o d u c e d by r e c o g n i t i o n o f b o u t s  t o > 1 min a l s o appears minimal. with  classified  the g r e a t e s t frequency  Short  i n the data  a c t i v e bouts but t h e i r  down  occur  influence  43 on e s t i m a t e s o f %TA weighted errors  in direct  i s minimal because the bouts  are  proportion to their duration.  Systematic  i n c l a s s i f i c a t i o n using time-sampling, l i k e l y  have a g r e a t e r e f f e c t because  e a c h sample  would  i s weighted  equally. Ideally,  statistical  comparisons  s h o u l d be b a s e d on c o m p l e t e  24-hour  of a c t i v i t y  samples  budgets  of a c t i v i t y  capture complete d i e l  c y c l e s and t o s t a n d a r d i z e t h e  of time t h a t  encompasses.  are rare  All  However, s u c h  i n t h e d a t a and a r e p o o r l y d i s t r i b u t e d  months a n d samples  a sample  individuals.  alpha levels,  as w e l l  samples  across  from m i s s i n g  as assumptions  o f no  be c o m p r o m i s e d  such as t h i s observation  one,  ( G r i e g and B j e r r i n g  correlations  1978).  ranges,  In a study  d e t e r m i n a t i o n o f what c o n s t i t u t e s  i s not straightforward.  c h a r t s and r e t a i n i n g have r e s u l t e d  24-hour  cells.  b e t w e e n means f o r r a n g e t e s t s b a s e d on s t u d e n t i z e d may  duration  A n a l y s e s b a s e d on c o m p l e t e  were u n b a l a n c e d and s u f f e r e d  e a c h sample  i n a sample  samples  to a small p o r t i o n of the t o t a l  data base.  would  thousands.  independent. restricts  an of the  a s an o b s e r v a t i o n  However, t h e s e a r e u n l i k e l y t o be hand, t h e u s e o f 2 4 - h o u r  Time-sampling  size of several  to  On  the other  statistical Analyses of  w i t h i n and between seasons a r e p r e s e n t e d l a t e r compromise between t h e 2 above n o t e d extremes  and r e l y  tests %TA on  a  in  observations. G e n e r a l a c t i v i t y measures p r e s e n t e d h e r e a r e w e l l w i t h i n the range o f r e s u l t s  from o t h e r s t u d i e s .  Comparisons  44  w i t h o t h e r s t u d i e s and to alternative verification do  e x p l o r a t i o n of the s e n s i t i v i t y  definitions  of bouts  o f p u l s e mode p a t t e r n s and  s t r e n g t h e n t h e assumption  adequately  do  q u a n t i f i e d by  t h a t bear  t h e methods I  not  of  %TA  replace visual  actual behavior, a c t i v i t y has used.  been  but  45 LITERATURE  CITED  A l t m a n n , J . 1974. O b s e r v a t i o n a l s t u d y o f b e h a v i o r : m e t h o d s . B e h a v i o u r 49:227-265. A m s t r u p , S. C., a n d J . Beecham. r a d i o - c o l l a r e d black bears 40:340-348.  sampling  1976. A c t i v i t y p a t t e r n s o f i n I d a h o . J . W i l d l . Manage.  Aune, K., a n d T. S t i v e r s . 1983. R o c k y M o u n t a i n f r o n t g r i z z l y b e a r m o n i t o r i n g a n d i n v e s t i g a t i o n . Mont. Dep. F i s h , W i l d l . a n d P a r k s . H e l e n a , M o n t a n a . 180 p p . Aune, K., a n d W. Kasworm. 1989. F i n a l r e p o r t : e a s t f r o n t g r i z z l y b e a r s t u d y . Mont. Dep. F i s h , W i l d l . a n d P a r k s . H e l e n a , M o n t a n a . 332 p p . A y e r s , L . E . , L. S. Chow, a n d D. M. G r a b e r . 1986. B l a c k b e a r a c t i v i t y p a t t e r n s a n d human i n d u c e d m o d i f i c a t i o n s i n S e q u o i a N a t i o n a l P a r k . I n t . C o n f . B e a r R e s . a n d Manage. 6:151-1654. B j a r v a l l , A., a n d F. S a n d e g r e n . 1987. E a r l y e x p e r i e n c e s w i t h t h e f i r s t r a d i o - m a r k e d brown b e a r s i n Sweden. I n t . C o n f . B e a r R e s . a n d Manage. 7:9-12. C e d e r l u n d , G. roe deer  1981. D a i l y a n d s e a s o n a l a c t i v i t y p a t t e r n o f i n a b o r e a l h a b i t a t . V i l t r e v y 11:315-353.  C e d e r l u n d , G., a n d P. A. L e m n e l l . 1980. A c t i v i t y r e c o r d i n g of radio-tagged animals. Biotelemetry P a t i e n t Monitg. 7:206-214. C l e v e n g e r , A. P., F. J . P u r r o y , a n d M. R. P e l t o n . 1990. Movement a n d a c t i v i t y p a t t e r n s o f a E u r o p e a n brown b e a r i n t h e C a n t a b r i a n Mountains, S p a i n . I n t . Conf. Bear. R e s . a n d Manage. 8:205-211. G a r s h e l i s , D. L . , a n d M. R. P e l t o n . 1980. A c t i v i t y o f b l a c k b e a r s i n t h e G r e a t Smoky M o u n t a i n s N a t i o n a l P a r k . J . Mammal. 61:8-19.  46 G a r s h e l i s , D. L., H. B. Q u i g l e y , C. R. V i l l a r r u b i a , and M. R. P e l t o n . 1982. A s s e s s m e n t o f t e l e m e t r i c m o t i o n s e n s o r s f o r s t u d i e s o f a c t i v i t y . Can. J . Z o o l . 60:18001805. G e b h a r d , J . G. 1982. A n n u a l a c t i v i t i e s and b e h a v i o r g r i z z l y b e a r (Ursus a r c t o s ) f a m i l y i n n o r t h e r n M.Sc. T h e s i s . Univ. Alaska, Fairbanks, Alaska.  of a Alaska. 218 pp.  G r i e g , M., and J . B j e r r i n g . 1978. UBC GENLIN - a g e n e r a l l e a s t s q u a r e s a n a l y s i s o f v a r i a n c e program. Computing Centre. Univ. of B r i t i s h Columbia, Vancouver, B r i t i s h C o l u m b i a . 48 pp. H a r t i n g , A. L. 1985. R e l a t i o n s h i p s b e t w e e n a c t i v i t y p a t t e r n s and f o r a g i n g s t r a t e g i e s o f Y e l l o w s t o n e g r i z z l y b e a r s . M.Sc. T h e s i s , Mont. S t a t e U n i v . , Bozeman, M o n t a n a . 103 pp.  H e c h t e l , J . L. 1985. A c t i v i t y and f o o d h a b i t s o f g r o u n d g r i z z l y b e a r s i n A r c t i c A l a s k a . M.Sc. U n i v . Montana, M i s s o u l a , M o n t a n a . 74 pp.  barrenThesis.  H i c k s , C. R. 1982. F u n d a m e n t a l c o n c e p t s i n t h e d e s i g n o f e x p e r i m e n t s . 3 r d edn. H o l t , R i n e h a r t and W i n s t o n , New Y o r k , New Y o r k . 425 pp. J a c o b s e n , N. K., and A. D. W i g g i n s . 1982. T e m p o r a l and p r o c e d u r a l i n f l u e n c e s on a c t i v i t y e s t i m a t e d b y t i m e s a m p l i n g . J . W i l d l . Manage. 46:313-324. L i n d z e y , F. G., and E. C. Meslow. 1977. Home r a n g e and h a b i t a t u s e by b l a c k b e a r s i n s o u t h w e s t e r n W a s h i n g t o n . J . W i l d l . Manage. 41:413-425. M c L e l l a n , B. N., and D. M. S h a c k l e t o n . 1989. G r i z z l y bears and r e s o u r c e - e x t r a c t i o n i n d u s t r i e s : h a b i t a t displacement i n response to seismic e x p l o r a t i o n , timber h a r v e s t i n g and r o a d m a i n t e n a n c e . J . A p p l . E c o l . 26:371380.  P h i l l i p s , M. K. 1987. B e h a v i o r and bears i n northeastern Alaska. Manage. 7:159-167.  h a b i t a t use of g r i z z l y I n t . C o n f . B e a r Res. and  47 R o t h , H. U. 1983. D i e l a c t i v i t y o f a remnant p o p u l a t i o n o f E u r o p e a n brown b e a r s . I n t . C o n f . B e a r Res. and Manage. 5:223-229. R o t h , H. U., and D. H u b e r . 1986. D i e l a c t i v i t y o f brown bears i n P l i t v i c e Lakes N a t i o n a l Park, Y u g o s l a v i a . I n t . C o n f . B e a r Res. and Manage. 6:177-181. S c h l e y e r , B. 0. 1983. A c t i v i t y p a t t e r n s o f g r i z z l y b e a r s i n t h e Y e l l o w s t o n e e c o s y s t e m and t h e i r r e p r o d u c t i v e b e h a v i o r , p r e d a t i o n and u s e o f c a r r i o n . M.Sc. Thesis, Mont. S t a t e U n i v . , Bozeman, M o n t a n a . 13 0 pp. S o k a l , R. R., and F. J . R o h l f . 1981. B i o m e t r y . 2nd edn. H. F r e e m a n and Co. New Y o r k , New Y o r k . 859 pp.  W.  S m i t h , T. R. 1986. A c t i v i t y and b e h a v i o r o f d e n n e d b l a c k bears i n the lower M i s s i s s i p p i R i v e r v a l l e y . I n t . Conf. B e a r R e s . and Manage. 6:137-143. S o r o k i n , P. A., and C. Q. B e r g e r . 1939. T i m e - b u d g e t s o f human b e h a v i o r . H a r v a r d U n i v e r s i t y P r e s s , C a m b r i d g e , Massachusetts. 204 pp. W a t t s , P. D., and C. J o n k e l . 1988. E n e r g e t i c c o s t o f w i n t e r d o r m a n c y i n g r i z z l y b e a r . J . W i l d l . Manage. 52:654-656.  48  CHAPTER 3: BOUT LENGTHS INTRODUCTION Time-energy status.  budgets  d e t e r m i n e an organism's  Coarse-grained a c t i v i t y budgets which  a c t i v e and i n a c t i v e b e h a v i o r a l  states lack  energetic  resolve  only  information  concerning t h e e n e r g e t i c costs o r gains o f time spent i n either behavior.  Despite t h i s  limitation,  broad  e x p e c t a t i o n s o f how g r i z z l y b e a r s manage t h e i r t i m e may b e derived  from t h e o r e t i c a l  considerations,  o b s e r v a t i o n s g a i n e d from i n t e r s p e c i f i c c h a p t e r , t h e emphasis i n a c t i v e bouts. with e x p l i c i t l y  active translate frequencies  studies.  empirical In this  i s on t h e l e n g t h s o f b o t h a c t i v e a n d  Although t o t a l i n a later  determinant o f bout  and from  time a c t i v e w i l l  c h a p t e r , i t i s a l s o an important  l e n g t h s because  i n t o changes  (and hence,  be d e a l t  changes  i n total  time  i n a c t i v e bout d u r a t i o n s , i n  changes  i n i n a c t i v e bout  lengths),  or i n both. T h e o r e t i c a l treatments o f time a l l o c a t i o n ( B u n n e l l and G i l l i n g h a m acquisition  i s a fundamental  (Herbers 1981).  The t o t a l  ( s e a r c h i n g and consuming specific  1985; H e r b e r s  factors  1981).  are rare  However,  energy  component o f t i m e - b u d g e t  theory  time b e a r s spend  food)  likely  foraging  depends on  (weight, sex, age, r e p r o d u c t i v e  individual status)  t h a t d e t e r m i n e e n e r g e t i c r e q u i r e m e n t s and c o n s t r a i n t s , and on e n v i r o n m e n t a l f a c t o r s t h a t  limit  for resolving  (see r e v i e w i n B u n n e l l and  energy problems  the individual's options  49  Gillingham  1985).  F o r a g i n g b o u t l e n g t h s may b e v i e w e d  function of gut size, and G i l l i n g h a m that  1985).  a mammal s p e n d s  Harestad  i n g e s t i o n and d i g e s t i o n r a t e s  (Bunnell  G e n e r a l l y , most o f t h e a c t i v e i s devoted t o foraging  time  ( B u n n e l l and  1 9 8 9 ) , w h i l e most n o n f o r a g i n g t i m e i s s p e n t  (Herbers 1981).  Consequently, t o t a l  resting  time a c t i v e should  r e l a t e broadly t o factors determining t o t a l foraging,  as a  time spent  and b o t h a c t i v e and i n a c t i v e bout l e n g t h s s h o u l d  r e l a t e t o f a c t o r s d e t e r m i n i n g f o r a g i n g bout l e n g t h s and foraging frequency. The  i m p o r t a n c e o f body w e i g h t  an i n t e r s p e c i f i c p e r s p e c t i v e . several physical environment Therefore,  that  As body w e i g h t  but a t different  increases,  rates  (Demment  environment  Among s p e c i e s ,  i n d i f f e r e n t ways  daily  energetic  intake  (Demment 1983) b e c a u s e  requirements s c a l e t o metabolic weight  (Kleiber  increase  energy 1975, p .  G u t c a p a c i t y , however, i n c r e a s e s n e a r l i n e a r l y  body w e i g h t  (Demment 1 9 8 3 ) .  These g e n e r a l  r a t e s may b e somewhat d i f f e r e n t Demment  consequence  1983; H u e s n e r  of this  1982).  (Feldman  although the a n d McMahon  The f u n c t i o n a l  r e l a t i o n s h i p between g u t s i z e and  metabolic requirement i s that  with  relationships  w i t h body w e i g h t a p p l y w i t h i n s p e c i e s a s w e l l ,  1983;  (Demment  one s i g n i f i c a n c e o f b e i n g h e a v i e r i s  but a t a decreasing r a t e  actual  1983).  animals of d i f f e r e n t weights are required t o  requirements f o r t o t a l  202).  from  r e l a t i o n s h i p s between an o r g a n i s m and i t s  change,  respond t o t h e i r 1983).  i s g e n e r a l l y viewed  smaller individuals  must  50 e x h i b i t h i g h e r r a t e s of passage meet t h e i r  energy  requirements  than l a r g e r (Demment  W i t h i n g r i z z l y bears, weight and  age.  Based  d i c t a t e d by weight,  i s covariate with both  across d i f f e r e n t  on a b s o l u t e e n e r g e t i c and  assuming  classes.  their total  an  identical  intensively age  f o r themselves  S t o n o r o v and  Stokes  selective in  1972),  ( e . g . , E g b e r t and o r c) b y  Stokes  f o r a g i n g more  ( B u n n e l l and G i l l i n g h a m 1 9 8 5 ) .  by w e i g h t  lactation  energetic  alone.  The  other  sex-  A d u l t f e m a l e s must c o n t e n d  1978),  1985)  ( L l o y d e t a l . 1978).  and n u t r i t i v e and  inefficiencies  due  or to t h e i r  throughout  requirements  f o r growth  their  with  gestation  S u b a d u l t s have  a r e p o t e n t i a l l y hampered b y  increased  (Lloyd  et  foraging  t o i n e x p e r i e n c e ( B u n n e l l and G i l l i n g h a m smaller size.  of 2 g r i z z l y yearlings  was  due  profitable  t h e i n c r e a s e d e n e r g e t i c and n u t r i t i v e demands o f  al.  reduce  c l a s s e s have a d d i t i o n a l e n e r g e t i c requirements t o those  determined  and  sex-  and m e t a b o l i c  r e q u i r e m e n t ) , b) b y e x p r o p r i a t i n g t h e most  1976;  be  (a s t r a t e g y a v a i l a b l e t o them  t o t h e r e l a t i o n s h i p between g u t c a p a c i t y  foraging patches  forage type  f o r example,  f o r a g i n g t i m e a) b y b e i n g l e s s  f o r a g e components consumed  larger  time f o r a g i n g than other  However, a d u l t m a l e s may,  sex  requirements  c l a s s e s o f b e a r s , a d u l t m a l e s may  e x p e c t e d t o s p e n d more t o t a l  to  1983).  A d u l t s are l a r g e r than s u b a d u l t s , males are  than females.  age  individuals  Gebhard  that  t h a t he  observed  a c t i v e year, the s m a l l e r female  yearling  less efficient  i n a f a m i l y group  (1982) n o t e d  t h a n was  h e r male s i b l i n g ,  and  both  51 yearlings  were l e s s  foraging  for  important but  f o o d s s u c h as total  efficient  r o o t s and  time a c t i v e ,  t h a n t h e i r m o t h e r when  physically  ground s q u i r r e l s .  An into  strategies individual  individual d e p e n d on as  be  active  and  amount o f  d e t e r m i n e d by  a  food that  the  can  independent of fill  c o m p e n s a t e by  bears of  significance  t h e i r gut  active with  time  inactive  at which  bite  the  size  faster,  sizes  on  the  Ingestion rates  rate,  on  and  bite  also  scales  able to size  of  bite  the  such size  physical  bite  size.  body s i z e  sized fill  i s not  berries  will  as  on  on  to  different  their bite  different of  rate  i n small clusters,  increasing  total  taken i n each b i t e  some f o o d t y p e s s u c h a s  bears should  the  bite  capacity,  essentially  requirement  on  mouth s i z e  singly  the  be  provided that  or  of  absolute upper l i m i t  distributed  For  of  same f o r a g e s h o u l d be  same r a t e ,  However, f o r  gut  and  requirements,  alternate  forage c h a r a c t e r i s t i c s ) ,  to  age  components o f h a n d l i n g t i m e  assumption that  f e e d i n g on the  function  subduing prey,  fashion similar  at  bouts that  empties i t s gut.  mouth s i z e w h i c h s e t s an Under the  of  abilities.  s e a r c h t i m e , on  p u r s u i n g and  (the  and  broadly a  fills  extract  Predictions  i n energy  bear's p a r t i t i o n i n g  a sequence of  bouts, w i l l  to  t h e r e f o r e , must i n c o r p o r a t e s e x ,  reproductive status differences foraging  difficult  bears their  are  size  unless larger  gut  limiting.  that  bear,  in  is  so  small  bears  can  rate. the  being smaller w i l l  f o r more f o r a g i n g b o u t s due  same f o r a g e  be to  expressed higher  type, in  a  passage  52 r a t e s n e e d e d t o meet t h e i r m e t a b o l i c r e q u i r e m e n t s . covariate  n a t u r e o f s i z e and age i n d i c a t e s t h a t  bears w i l l that  have a d d i t i o n a l e n e r g e t i c  should  bouts.  higher  foraging  s i m i l a r requirement  of longer  f o r more o r l o n g e r  u n i t t i m e i s e x p e c t e d when a d u l t  i nthe  foraging  (a s t r a t e g y  animals with absolutely  requirements), perhaps a t t h e cost  costs,  by s e l e c t i v e l y  q u a l i t y components o f t h e f o r a g e  available to smaller  A  i n required  y o u n g e r b e a r s may o f f s e t a n i n c r e a s e  number o f f o r a g i n g b o u t s r e q u i r e d , on  smaller  requirements f o r growth  intensify the d i f f e r e n t i a l  Smaller,  The  lower  energetic  foraging  bouts.  foraging bouts p e r  females i n c u r  reproductive  especially lactation.  The  above arguments have been f o r m u l a t e d  restriction reproductive generally  forage  classes of bears.  true.  herbivores) species,  of identical  types across Within  under t h e sex-age and  s e a s o n s t h i s may b e  However, u n l i k e many s p e c i e s  t h a t p e r s i s t e n t l y consume s i m i l a r  bears e x h i b i t dramatic s h i f t s  throughout t h e annual c y c l e Pearson 1975).  (Bunnell  V a r i a t i o n i n food  influence both t o t a l  i n food  (e.g., forage habits  a n d H a m i l t o n 1983;  types  i s expected t o  time a c t i v e and t h e p a r t i t i o n i n g o f  t i m e i n t o a c t i v e and i n a c t i v e bouts t h r o u g h s e a r c h i n g handling  times.  reproductive selectivity seasons.  and  The p o t e n t i a l f o r d i f f e r e n t sex-age o r  classes t o increase i s also likely  or decrease  constrained  forage  differentially  among  53  Predicting total  time a c t i v e , through i n t e g r a t i o n o f  m e t a b o l i c r e q u i r e m e n t s d e t e r m i n e d by weight, age, and reproductive foraging gut  status,  strategy,  with the influences  physical ability,  o f forage  type,  and t h e c a p a c i t y  of the  i n r e l a t i o n t o m e t a b o l i c r e q u i r e m e n t s i s a complex  Many o t h e r  factors  activities,  (e.g.,  weather) l i k e l y  Determining a p r i o r i active  available daylight, exert  important  mating  influences.  how i n d i v i d u a l s p a r t i t i o n t o t a l  i n t o d i s c r e t e packages and i n t e r s p e r s e  w i t h d i s c r e t e packages o f i n a c t i v i t y  task.  these  time bouts  i s perhaps  impossible.  My i n t e n t was n o t t o g e n e r a t e a s e t o f t e s t a b l e  predictions  through deduction, but rather  t o provide a theoretical  framework from w h i c h e x p e c t a t i o n s durations  could  of differences  i n bout  be g e n e r a t e d .  A n a l y s e s between sex-age c l a s s e s may i n d i c a t e g e n e r a l  differences  throughout the year  i n how b e a r s o f d i f f e r e n t  sexes and ages respond t o t h e i r environment.  I f food  influenced  through  bout lengths,  t h i s may b e r e v e a l e d  c o m p a r i s o n s c o n d u c t e d among s e a s o n s . that within within  sex-age o r r e p r o d u c t i v e resting  to resolve  constraints.  i n bout lengths  t h e i r energetic  I f d i f f e r e n t food  may b e b r o a d l y seasons.  foods,  should r e f l e c t  c l a s s e s packaged f o r a g i n g and r e q u i r e m e n t s and  types influenced  packaging d i f f e r e n t l y f o r s p e c i f i c  across  Under t h e assumption  any season a l l b e a r s f o r a g e d on s i m i l a r  season d i f f e r e n c e s  type  classes  this  of bears,  i n d i c a t e d by a l a c k o f c o n s i s t e n t  this  trends  how  54 My s p e c i f i c age  o b j e c t i v e s were t o : 1) a s s e s s w h e t h e r s e x -  c l a s s e s o f bears  differed  d u r a t i o n s on an a n n u a l a c t i v e bout  differences bears  basis;  durations pooled  f u n c t i o n o f season;  i n i n a c t i v e and a c t i v e  2) a s s e s s w h e t h e r i n a c t i v e a n d f o r a l l bears v a r i e d  as a  a n d 3) t e s t w i t h i n s e a s o n s f o r  i n i n a c t i v e and a c t i v e bout  of different  bout  d u r a t i o n s among  sex, age and r e p r o d u c t i v e s t a t u s .  METHODS Analyses  o f a c t i v i t y bout  chart recorded a c t i v i t y  d u r a t i o n s were c o n d u c t e d  data o f g r i z z l y bears.  on  Active  bouts  were d e f i n e d a s p u l s e mode p a t t e r n s c o n s i s t e n t w i t h t h e active bouts  s t a t e t h a t h a d a minimum d u r a t i o n o f 1 m i n .  Inactive  were d e f i n e d a s p a t t e r n s c o n s i s t e n t w i t h t h e i n a c t i v e  s t a t e t h a t h a d a minimum d u r a t i o n o f 2.5 m i n .  Only  bouts  A c t i v e and  o f each t y p e were used  i n a c t i v e bouts recording unknown  session, o r those  were e x c l u d e d .  assigned as  Separate, but  f o r a c t i v e bouts and  bouts.  For analyses conducted  Within  Seasons  on e a c h o f t h e 4 s e a s o n a l  l i n e a r models o f sources  u n d e r two a p p r o a c h e s : and  o r end o f a  i n t e r r u p t e d by bouts  a n a l y s e s were c o n d u c t e d  Analyses  sets,  a t the beginning  (due t o m i s s i n g d a t a )  identical inactive  i n progress  i n the analyses.  complete  data  o f v a r i a t i o n were d e r i v e d  1) a n e s t e d - f a c t o r i a l m o d e l w i t h s e x  age c l a s s e s a s c r o s s e d main e f f e c t s  and i n d i v i d u a l  bears  55  nested within  sex-age c l a s s combinations,  a n d 2) a  h i e r a r c h i c a l model w i t h t h e h i g h e s t l e v e l component) composed o f 6 t r e a t m e n t s females w i t h y e a r l i n g s , males,  s u b a d u l t males,  fully  (population  (females w i t h  cubs,  females without o f f s p r i n g ,  adult  and s u b a d u l t f e m a l e s ) , w i t h  i n d i v i d u a l bears nested within the treatments. Exploratory analyses of the data indicated that the distributions to  the right  o f b o t h a c t i v e a n d i n a c t i v e b o u t s w e r e skewed and l e p t o k u r t o t i c  S o k a l a n d R o h l f 1981, p . 1 1 7 ) . were a t t e m p t e d 1981,  ( g l a n d g2 b o t h  Transformations t o normality  by u s i n g powers < 1  (Velleman and H o a g l i n  p . 48) a n d a s s e s s e d w i t h L i l l i e f o r s • s  Wilkinson  1989, p . 6 0 4 ) .  found and nonparametric However, n o n p a r a m e t r i c  positive;  test  (P =  0.05;  No s u i t a b l e t r a n s f o r m a t i o n s were  a l t e r n a t i v e s were  utilized.  t e c h n i q u e s a r e g e n e r a l l y awkward  when  a p p l i e d t o complex models (Conover  1971, p . 274) a n d may n o t  lend themselves  Nonparametric  one-way 1971,  t o such a n a l y s e s .  analysis of variance (Kruskal-Wallis tests;  p . 256) were u s e d t o t e s t  each bout type  season, w i t h i n d i v i d u a l b e a r s as l e v e l s of  interest.  (Gibbons  within  o f t h e main  nonparametric m u l t i p l e  effect  i n f e r e n c e s were u s e d .  p r o c e d u r e was t h a t  simultaneous  The advantage  of t h i s  individuals representing a level  ( e . g . , a s e x o r age c l a s s )  from  comparisons  1985, p . 181; Dunn 1964) w h i c h p e r m i t  statistical  Conover  To e x t e n d t h e s e t o f c o n c l u s i o n s drawn  Kruskal-Wallis tests,  effect  analogs t o  o f an  c o u l d be p o o l e d and  56 compared t o o t h e r p o o l e d i n d i v i d u a l s r e p r e s e n t i n g level  of the  effect.  C o n t r a s t s were d e v e l o p e d t o t e s t  effects  with the structure of the data outlined Adjustment in  another  of the alpha l e v e l  i n accordance  i n t h e above  f o r each t e s t  of a  contrast,  a c c o r d a n c e w i t h t h e number o f c o n t r a s t s t e s t e d  each s e a s o n a l data s e t , encouraged parsimony of t e s t s performed.  Therefore,  r a t e o f 0.10  was  within  i n t h e number  a subset of contrasts  permitted exploration of p o t e n t i a l i n t h e i n t r o d u c t i o n was  models.  developed.  d i f f e r e n c e s as An  that  outlined  experimentwise  error  m a i n t a i n e d f o r each s e a s o n a l a n a l y s i s .  A n n u a l and Among S e a s o n s A n a l y s e s Comparisons sex-age all  o f a c t i v e and  i n a c t i v e b o u t l e n g t h s among  c l a s s e s on a n a n n u a l b a s i s were p e r f o r m e d b y  d a t a w i t h i n each sex-age  pooling  c l a s s by bout t y p e .  D i f f e r e n c e s among s e a s o n s w e r e e x p l o r e d b y p o o l i n g a l l d a t a within  each s e a s o n by bout t y p e .  As w i t h a n a l y s e s c o n d u c t e d  within  seasons, the d i s t r i b u t i o n s  o f b o u t l e n g t h s were  skewed t o t h e r i g h t extend beyond n o t c h e d box 1978)  and  leptokurtotic.  the exploratory data analysis procedure of  plots  ( W i l k i n s o n 1988,  which p r o v i d e d comparisons  plots provide visual  p . 206;  McGill  et a l .  of h e u r i s t i c value.  summaries o f d a t a w i t h t h e e n d s  box  representing the q u a r t i l e s  box  r e p r e s e n t i n g t h e median.  comparisons  Analyses d i d not  b e t w e e n 2 sample  Box of the  and t h e l i n e b i s e c t i n g N o t c h e d box p l o t s  the  enable  m e d i a n s a t a p p r o x i m a t e l y 95%  57  confidence  ( M c G i l l e t a l . 1978).  However, t h e e r r o r r a t e i s  not a d j u s t e d f o r m u l t i p l e comparisons 1981,  p. 74).  The p r a c t i c a l  (Velleman and H o a g l i n  consequence  of this  i s t h a t any  2 box p l o t s w i t h o v e r l a p p i n g c o n f i d e n c e i n t e r v a l s w i l l be  significantly  adjusted at  different  i f pairwise error rates are  i n order t o maintain the experimentwise  0.05.  never  error  rate  However, 2 box p l o t s w i t h n o n - o v e r l a p p i n g  confidence  i n t e r v a l s may  adjustments  n o t be d i f f e r e n t  i f such  a r e made.  RESULTS The u s e o f c o m p l e t e  bouts i n these analyses probably  b i a s e d r e s u l t s towards  bouts o f shorter duration.  b o u t s w e r e more l i k e l y  t o b e i n t e r r u p t e d b y m i s s i n g d a t a due  to signal  interference,  t o frequency d r i f t ,  moving b e h i n d o b s t a c l e s .  Longer  o r t o the bear  An e x p e c t a t i o n t h a t  a lower  p e r c e n t a g e o f a c t i v e b o u t s t h a n i n a c t i v e b o u t s w o u l d be complete  due t o t h e b e a r s  expressed  1  movements was o n l y  ( 7 7 % o f a l l a c t i v e b o u t s were c o m p l e t e v e r s u s 79%  of a l l i n a c t i v e bouts).  However, c o m p l e t e  a c c o u n t e d f o r 70.3% o f t h e t o t a l w h i l e complete total  from complete  that calculated  inactive  recorded inactive  a c t i v e bouts accounted f o r only  recorded a c t i v e time.  calculated  weakly  Percent of time  bouts time,  54.1% o f t h e  active  bout d a t a t e n d e d t o be h i g h e r t h a n  from a l l a v a i l a b l e d a t a i n t h e s p r i n g b u t  lower i n t h e remaining 3 seasons  (Table 5 ) .  Table  5. P e r c e n t o f t i m e a c t i v e by p o p u l a t i o n component and season as d e t e r m i n e d by c o m p l e t e a c t i v e a n d i n a c t i v e b o u t s ( c o l u m n s u n d e r C) and a s d e t e r m i n e d b y a l l a v a i l a b l e d a t a (columns u n d e r A ) . Samples s i z e s o f complete bouts a r e i n b r a c k e t s .  Population Component C A l l Adult Females b  with  Early Summer  Spring  COYS  with yearlings  A  C  Berry Season A  C 54.1 (544)  51.0 (455)  47.7  47.6 (1639)  56. 6  38.5 (119)  29.1  42.9 (475)  41. 0  64.3 (96)  81. 5  67.3 (66)  —  —  —  Fall  A  C  65. 3  A  39.5 (555)  47.1  12.6 (8)  86.8  76. 4  54.0 (188)  59.6  —  55.1 (336)  55.8  48.0 (1068)  56. 1  52.3 (478)  61. 9  33.5 (359)  31.6  Adult Males  49.2 (130)  33.2  45.9 (971)  45. 3  46.9 (496)  54. 9  42.3 (171)  37.2  Subadult females  52.4 (666)  53 .8  50.8 (846)  54. 1  54.2 (318)  73. 8  46.8 (542)  47.3  Subadult Males  60.5 (243)  51.9  51.7 (363)  68. 6  53.1 (716)  61. 0  32.5 (335)  35.2  52.9 (1494)  49.4  48.5 (3819)  56. 0  52.1 (2074)  63. 1  40.8 (1603)  43.2  alone or with 2-year-olds  All  Bears  Some b e a r s a p p e a r i n more t h a n 1 p o p u l a t i o n component due t o c h a n g e s i n age c l a s s and r e p r o d u c t i v e s t a t u s o v e r t h e sample y e a r s . COYS =  cubs-of-the-year.  59 Annual On  and S e a s o n a l  an a n n u a l b a s i s ,  r e s p e c t t o median a c t i v e 9b)  Trends  sex-age c l a s s e s d i d not d i f f e r  with  ( F i g . 9a), o r median i n a c t i v e ( F i g .  b o u t d u r a t i o n s as i n d i c a t e d by o v e r l a p p i n g n o t c h e s  on  boxplots. For  a l l b e a r s p o o l e d by s e a s o n , m e d i a n a c t i v e  durations  showed a t r e n d  ( F i g . 10a)  t h r o u g h t o t h e b e r r y s e a s o n and  of d e c l i n i n g  increasing  from  in fall,  median d u r a t i o n s i n t h e b e r r y season s i g n i f i c a n t l y in  spring.  I n a c t i v e bout d u r a t i o n s d i s p l a y e d  significant  changes  s i g n i f i c a n c e may alpha l e v e l s  ( F i g . 10b)  n o t be  seasonally,  with less  s e a s o n and d e c l i n i n g  in  than  although of  pairwise  R e g a r d l e s s , median  d u r a t i o n s o f i n a c t i v e b o u t s showed a n o p p o s i t e t r e n d a c t i v e bouts; increasing  spring  several  s t a b l e t o adjustments  f o r m u l t i p l e comparisons.  bout  from s p r i n g through t o t h e  to berry  fall.  A n a l y s e s W i t h i n Seasons With the exception of a c t i v e bouts i n f a l l , Wallis tests significant least  one  o f b o t h a c t i v e and (P < 0.05)  individual  i n a c t i v e bout  i n each season,  differed  fall  a c t i v e bouts  l e n g t h s were  indicating that  from t h e o t h e r s .  were g e n e r a t e d f o r e a c h K r u s k a l - W a l l i s t e s t including  bouts.  Contrasts  of  Many more  d i f f e r e n c e s w e r e f o u n d among c o n t r a s t s t e s t i n g b o u t s t h a n among a c t i v e  at  ( T a b l e s 6 and  ( f o r the purpose  consistent trends across seasons).  Kruskal-  detecting  significant inactive  7)  a  b  •a  CO CO  CO CO  <  <  s 9  A 9  III  a < i  LU  a <  scf-  i  x iu  CO  SCT-  x  LU CO  AC?-  •a  ACf—I  10  20  30  40  50  ACTIVE BOUT DURATION (min)  Figure  60  10  1  20  1  30  1  1  1  40  50  60  INACTIVE BOUT DURATION (min)  9. N o t c h e d box p l o t s o f c o m p l e t e a) a c t i v e , and b) i n a c t i v e , b o u t d u r a t i o n s pooled a c r o s s seasons, f o r subadult females, a d u l t females, s u b a d u l t males, and a d u l t m a l e s . O u t s i d e v a l u e s were o m i t t e d t o e m p h a s i z e n o t c h e s a b o u t t h e m e d i a n s . F o r any 2 boxes w i t h n o t c h e s a b o u t t h e m e d i a n s t h a t do n o t o v e r l a p , t h e 2 medians a r e s i g n i f i c a n t l y d i f f e r e n t a t a p p r o x i m a t e l y a 95% confidence l e v e l .  I  b  {I  FA  z  FA -  z o  B S  O  CO  3 CO  CO < LU CO  ES SP  BS ES SP  •{I i  0  10  20  30  40  50  ACTIVE BOUT DURATION (min)  Figure  60  0  10  20  30  40  50  1—  60  INACTIVE BOUT DURATION (min)  1 0 . N o t c h e d box p l o t s o f c o m p l e t e a) a c t i v e , and b) i n a c t i v e , b o u t d u r a t i o n s p o o l e d a c r o s s s e x - a g e c l a s s e s , f o r s p r i n g ( S P ) , e a r l y summer ( E S ) , b e r r y s e a s o n (BS), and f a l l ( F A ) . O u t s i d e v a l u e s were o m i t t e d t o e m p h a s i z e n o t c h e s a b o u t t h e medians. F o r any 2 b o x e s w i t h n o t c h e s a b o u t t h e m e d i a n s t h a t do n o t o v e r l a p , t h e 2 medians a r e s i g n i f i c a n t l y d i f f e r e n t a t approximately a 95% confidence l e v e l .  Table  6. T e s t s o f n o n p a r a m e t r i c m u l t i p l e c o n t r a s t s f o r d u r a t i o n s o f c o m p l e t e i n a c t i v e bouts w i t h i n seasons. Values are t e s t s t a t i s t i c s (value of the c o n t r a s t d i v i d e d by i t s s t a n d a r d e r r o r ) .  Spring  Contrast 1) a d u l t m a l e 2) a d u l t  female -  3) a d u l t M - a d u l t 4) s u b a d u l t  a  subadults  3.12 a  Early Summer  Berry Season  -4.10  0.26  -1.58  0.84  -0.31  -0.48  -1.32  subadults  3.25  -1.92  F  1.10  -2.56  M - subadult  a  F  a  a  Fall  -3.51  1.76  -0.81  -0.21  —  5) a d u l t  F alone - adult  F & coys  0.76  0.59  —  6) a d u l t  F alone - adult  F & yrls  —  1.55  1.19  7) a d u l t  F & coys - a d u l t  —  1.17  —  —  -0.76  -1.92  8) a d u l t M - a d u l t  female  F & yrls alone  0.86  a  -2.77  d e n o t e s s i g n i f i c a n c e a t an e x p e r i m e n t w i s e e r r o r r a t e =  0.10.  Note: M = males, F = females, coys = c u b s - o f - t h e - y e a r , y r l s  = yearlings.  2 .10  Table  7.  T e s t s of nonparametric m u l t i p l e c o n t r a s t s f o r d u r a t i o n s of complete a c t i v e bouts w i t h i n seasons. Values are t e s t s t a t i s t i c s (value of the c o n t r a s t d i v i d e d by i t s s t a n d a r d error). Spring  Contrast 1)  adult M  -  subadults  2)  adult  F -  subadults  3)  adult M - adult  4)  subadult  5)  M  -1.57 1.12 ,  Berry Season  2.05  0.96  -1.00  -0.09  0.11  0.76  -1.02  -0.76  -1.03  a 3.05 -0.67  -2.14  F  Early Summer  a  -0.002  - subadult  F  adult  F alone - adult  F  & coys  0.41  -0.53  6)  adult  F alone - adult F  & yrls  —  -1.02  7)  adult  F & coys - a d u l t  —  -0.72  —  8)  adult M  -0.28  0.74  - adult  F  2.41  F &  alone  yrls  -2.17  —  -0.02  a d e n o t e s s i g n i f i c a n c e a t an Note: M = males, F =  experimentwise e r r o r r a t e =  Fall  0.10.  females, coys = cubs-of-the-year, y r l s  =  yearlings.  -0.48  -0.87  64  a)  E f f e c t s o f Age Age  and  e f f e c t s were e x a m i n e d b y t e s t i n g p o o l e d a d u l t  pooled adult  together  females each a g a i n s t  (contrasts  1 and 2 o f T a b l e s 6 and 7 ) .  i n a c t i v e b o u t s were s i g n i f i c a n t l y female a d u l t s not  than subadults,  significantly  female a d u l t s  different.  but only  subadults  was s i g n i f i c a n t .  contrast  were n o t s i g n i f i c a n t  b)  were  I n e a r l y summer, b o t h m a l e a n d i n a c t i v e bouts  t e s t i n g a d u l t males  than against  A c t i v e b o u t s tended t o be  females a g a i n s t  Contrasts  In spring,  while a c t i v e bout lengths  the contrast  testing adult  pooled  f o r b o t h male and  o f e i t h e r sex than f o r subadults  significant.  berry  longer  tended t o have s h o r t e r  subadults  for adults  a l l subadults  males  testing adults  longer  but only the  subadults against  was subadults  f o r i n a c t i v e o r a c t i v e bouts i n the  season o r i n f a l l .  E f f e c t s o f Sex The  subadult  e f f e c t s o f s e x were t e s t e d w i t h i n age c l a s s e s  (contrasts  3 and 4 o f T a b l e s 6 and 7 ) .  Adult  males and a d u l t  their  e a r l y summer i n a c t i v e b o u t l e n g t h s  f o r a d u l t males. shorter  a d u l t and  females d i f f e r e d s i g n i f i c a n t l y  Within  subadults,  w h i c h were  only i n shorter  males had s i g n i f i c a n t l y  i n a c t i v e b o u t s than females and s i g n i f i c a n t l y  a c t i v e bouts i n spring. differences  found.  T h e r e were no o t h e r  longer  significant  65 c)  E f f e c t s of Reproductive Not  a l l contrasts  reproductive (contrasts  status  Status  involving adult  could  be t e s t e d  i n each  season  5, 6, a n d 7 o f T a b l e s 6 a n d 7 ) .  t e s t i n g d i f f e r e n c e s between a d u l t status  females o f d i f f e r e n t  were n e v e r s i g n i f i c a n t .  Contrasts  females o f d i f f e r i n g trend,  however,  was f o r f e m a l e s w i t h o u t o f f s p r i n g t o h a v e l o n g e r  inactive  bouts and s h o r t e r yearlings. against  a c t i v e bouts than females w i t h cubs o r  Results  a d u l t males  paralleled  A general  f o r females without o f f s p r i n g (contrast  tested  8 o f T a b l e s 6 a n d 7)  results f o r a l l adult  a d u l t males.  However, most d a t a  those without  offspring.  females t e s t e d f o r adult  against  f e m a l e s were  from  DISCUSSION On a n a n n u a l b a s i s ,  sex-age c l a s s e s  significantly  i n median d u r a t i o n s  a c t i v e bouts.  However, c o n t r a s t s  within did  seasons revealed  exist i n spring  some w i t h i n apparently data  that  of either inactive or t e s t i n g sex-age  classes  some s i g n i f i c a n t d i f f e r e n c e s  a n d e a r l y summer.  season d i f f e r e n c e s cancelled  d i d not d i f f e r  When v i e w e d  among s e x - a g e  annually,  classes  e a c h o t h e r o u t o r e l s e w e r e masked b y  pooling. S e a s o n a l a n a l y s e s i n d i c a t e d marked d i f f e r e n c e s i n  i n a c t i v e bout durations classes pooled. the  berry  among s e a s o n s f o r a l l s e x - a g e  F o r a c t i v e bout durations,  s e a s o n were s i g n i f i c a n t l y  only  different.  s p r i n g and The t r e n d  66 from s p r i n g through t o t h e b e r r y season f o r a c t i v e  bout  d u r a t i o n s t o d e c r e a s e , was c o n t r a r y t o e x p e c t a t i o n s d e r i v e d from e s t i m a t e s o f p e r c e n t o f time a c t i v e d a t a by season  (Table 5 ) .  f o ra l l available  An a p p a r e n t b i a s  f o r complete  bouts t o s e r i o u s l y underrepresent a c t i v e bouts o f long d u r a t i o n was m o s t p r o n o u n c e d early  f o r t h e b e r r y season and f o r  summer a s i n d i c a t e d b y t h e m a g n i t u d e o f t h e  d i s c r e p a n c i e s b e t w e e n t h e v a l u e s o f %TA c a l c u l a t e d a v a i l a b l e data f o r a l l bears season and e a r l y bouts  trends  ( 6 3 . 1 % a n d 56.0% f o r t h e b e r r y  summer, r e s p e c t i v e l y )  ( 5 2 . 1 % a n d 48.5% f o r t h e b e r r y  summer, r e s p e c t i v e l y ) .  from a l l  and from  complete  season and e a r l y  These d i s c r e p a n c i e s  paralleled  from s p r i n g through t o t h e b e r r y season f o r an  increase  i n %TA ( T a b l e 5) a n d a g r e a t e r p e r c e n t a g e o f t o t a l  a c t i v e t i m e s p e n t i n b o u t s > 30 m i n d u r a t i o n . calculated  T h i s was  f r o m a l l a v a i l a b l e d a t a a n d showed t h e p e r c e n t o f  total  a c t i v e t i m e i n b o u t s > 30 m i n was 68.9% i n s p r i n g ,  78.9%  i n early  in  fall.  decrease  summer, 89.3% i n t h e b e r r y s e a s o n , a n d 67.6%  The t r e n d  f o r median a c t i v e bout d u r a t i o n s t o  from s p r i n g through t o t h e b e r r y season appeared t o  be a c o n s e q u e n c e o f a b i a s a g a i n s t periodic  signal  loss.  l o n g a c t i v e b o u t s due t o  This resulted  from f r e q u e n c y d r i f t o r  b e a r s m o v i n g b e h i n d o b s t a c l e s a n d c a u s e d many l o n g bouts t o be c l a s s i f i e d study o f a g r i z z l y  family  noted that g r i z z l i e s bouts  i n July  as incomplete.  I n an o b s e r v a t i o n a l  i n n o r t h e r n A l a s k a , Gebhard  displayed  and August  active  (1982)  l o n g e r a c t i v e and i n a c t i v e  t h a n i n t h e p r e c e d i n g months.  From  67  S e p t e m b e r t o d e n n i n g he o b s e r v e d interspersed with observations  long a c t i v e bouts  short i n a c t i v e bouts,  were hampered  by i n c r e a s i n g  While seasons d e f i n e s h i f t s bears, may  significant variation  still  exist  (1985) d a t a seasonal Alaska  use  among y e a r s  food types  utilized  v a r i e d among y e a r s .  different  by g r i z z l y b e a r s  by  seasons Hechtel's  However,  in arctic  annual v a r i a t i o n McLellan  cannot  (1989)  d i f f e r e n c e s i n t h e amount o f  h a b i t a t s r e c e i v e d b y s e x , age a n d i n the Flathead.  i n h a b i t a t use suggest  reproductive  Indirectly,  these  d i f f e r e n c e s i n food  types  (or) abundance. Differences  bout l e n g t h s .  i n food types  Schleyer  on c a r c a s s e s were  h a v e b e e n shown t o a f f e c t  (1983) n o t e d  significantly  that grizzlies  foods.  W h i l e d i f f e r e n c e s were  (1987) a l s o f o u n d  grizzlies  l o n g e r a n d more f r e q u e n t  availability  due t o g u t p i l e s  kill  utilizing  insignificant,  than  t o have  (indicating  other bears.  shorter  The  and g r e a t e s t i n t h e  of ungulates,  and c r i p p l e d  other  Phillips  f e e d i n g on c a r c a s s e s  of c a r r i o n i s seasonal  s p r i n g due t o w i n t e r  bears  rest periods  intervening a c t i v e periods)  feeding  l e s s a c t i v e and e x h i b i t e d  more s p o r a d i c a c t i v i t y p a t t e r n s t h a n  fall  within  o r among i n d i v i d u a l s .  from i n d i v i d u a l v a r i a t i o n .  c l a s s e s of g r i z z l y bears  and  i n foraging a c t i v i t i e s  i n food types  s i g n i f i c a n t within-season  differences  darkness.  indicated that the quantities of various  be s e p a r a t e d found  however,  and a g a i n  animals  from  i n the  hunting.  68  Simple conclusions effects for  on  a c t i v e and  c o n c e r n i n g w i t h i n - s e a s o n sex  i n a c t i v e bout durations  at l e a s t 2 reasons.  contrasts  First,  (e.g.,  s p r i n g was  from 1 b e a r ) .  in  several  bouts are  biased,  analyses within  although the  influence  evidence suggests that  for spring  effects  on  of  age  and  sex  and  a c t i v e and  1  in  individual variation  Second, complete  seasons i s d i f f i c u l t  from  s u b a d u l t males  Consequently,  c o n f o u n d s some i n t e r p r e t a t i o n s .  active  of t h i s b i a s  to assess.  on  the  Available  e a r l y summer, i n a c t i v e bout  the lengths  confounded. Significant differences  between sex-age c l a s s e s simply  i n terms of  size relations. a d u l t b e a r s may  S i g n i f i c a n t l y longer indicate that  foraging  more f r e q u e n t l y .  b o u t s by the  adults.  of primary  to  explain  t y p e s and  i n a c t i v e bouts  r e l a t i o n s h i p s between  Size  f o r the  body by  gut  subadults  related differences  a l s o account  longer  in  inactive  However, s i m i l a r d i f f e r e n c e s d i d n o t  i n s p i t e of the forage items  carrion; McLellan Significant  durations  difficult  metabolic requirements r e s u l t i n  c a r r i o n may  fall  are  i n t e r a c t i o n s between f o o d  and  access to  i n i n a c t i v e bout  in spring  capacity  in  elusive  effects tested  a l m o s t a l l d a t a on  age  are  were p r i m a r i l y o r w h o l l y composed o f d a t a  individual  are  and  occur  2 seasons b e i n g s i m i l a r i n terms  (Hedvsarum s u l p h u r e s e n c e r o o t s  and  1989). differences  s u b a d u l t m a l e s and  subadult  i n s p r i n g bout lengths f e m a l e s may  s i z e d i f f e r e n c e s b e t w e e n m a l e s and  reflect  females.  sex  between related  Subadults  males  69  likely  do n o t h a v e t h e same o p t i o n s  foraging  t i m e s a s do a d u l t m a l e s  profitable  foraging  sites).  t h e i r dens i n t h e s p r i n g , period  o f hypophagia  normal  ingestion  be  a v a i l a b l e f o r reducing  (e.g.,  expropriating  Additionally, after  g r i z z l y b e a r s u n d e r g o a 2 - 3 week  ( N e l s o n e t a l . 1983) b e f o r e  rates.  leaving  Some d i f f e r e n c e s  resuming  i n the spring  due t o s a m p l i n g b e a r s i n d i f f e r e n t p h y s i o l o g i c a l Differences  reverse  between a d u l t s  states.  and s u b a d u l t s t e n d e d t o  t h e m s e l v e s i n e a r l y summer a s compared t o s p r i n g .  Both reduced c a r r i o n a v a i l a b i l i t y activity  could  predominantly adults.  accounts o f courting  S t e l m o c k a n d Dean 1986; H e c h t e l  bears  o f mating  explanations.  occurs almost wholly w i t h i n  season and i n v o l v e s observational  or the influence  be i n v o k e d as a p o t e n t i a l  Mating a c t i v i t y  total  may  the early Some  ( P h i l l i p s 1987;  1985) i n d i c a t e t h a t  t i m e a c t i v e and t h e d i s t r i b u t i o n o f t i m e i n t o  bouts are modified  during  courtship.  increased  reproductively  both activity  S i g n i f i c a n t l y shorter  i n a c t i v e b o u t s o f a d u l t m a l e s compared t o a d u l t reflect  summer  f e m a l e s may  movements b y m a l e s a s t h e y s e a r c h f o r  a v a i l a b l e females.  A failure  f o r increased  movements b y a d u l t m a l e s t o b e a p p a r e n t a s s i g n i f i c a n t l y longer  a c t i v e bouts, could  range o f t h e r e c o r d i n g The variance  berry  b e due t o t h e i r m o v i n g o u t o f  unit.  season represents  i n primary  food  the period  with the least  t y p e s consumed a n d w i t h t h e most  r e s t r i c t e d movements b y b e a r s .  A lack of significant  d i f f e r e n c e s between sex-age c l a s s e s  o f bears i n t h i s  season  70  may  be due  and  excretion.  process, berries  t o t h e r e l a t i o n s h i p between r a t e s o f While  transit  ingestion of berries  i n d i c a t i o n o f h a v i n g been d i g e s t e d .  C e s s a t i o n o f f o r a g i n g b o u t s may behavior of bears  marked w e i g h t not merely Bout on  n o t be due  r e s p o n d i n g t o immediate m e t a b o l i c  and  ( B u n n e l l and  from  fill. and  indicate that bears  lengths are t h e r e f o r e uncoupled  full'  t o gut  i n the b e r r y season  gains achieved, also  such requirements  until  slow  t i m e s t h r o u g h t h e g u t a r e s h o r t w i t h many  showing l i t t l e  hyperphagic  is a  ingestion  Gillingham  1985).  the are  requirements.  from p r e d i c t i o n s  simple r u l e s  The  such as  based  'feed  71 LITERATURE  CITED  B u n n e l l , F. L . , a n d M. P. G i l l i n g h a m . 1985. F o r a g i n g b e h a v i o r : dynamics o f d i n i n g o u t . I n B i o e n e r g e t i c s o f w i l d h e r b i v o r e s . E d i t e d b y R. j . H u d s o n a n d R. G. W h i t e . CRC P r e s s , B o c a R a t o n , F l o r i d a , p p . 53-79. B u n n e l l , F. L . , a n d T. H a m i l t o n . 1983. F o r a g e d i g e s t i b i l i t y and f i t n e s s i n g r i z z l y b e a r s . I n t . Conf. Bear Res. and Manage. 5:179-185. B u n n e l l F. L . , a n d A. S. H a r e s t a d . 1989. A c t i v i t y b u d g e t s a n d body w e i g h t i n mammals: how s l o p p y c a n mammals be? C u r r . Mammal. 2:245-305. C o n o v e r , W. J . 1971. P r a c t i c a l n o n p a r a m e t r i c s t a t i s t i c s . J o h n W i l e y a n d S o n s , I n c . , New Y o r k , New Y o r k . 462 p p . Demment, M. W. body s i z e  1983. F e e d i n g e c o l o g y a n d t h e e v o l u t i o n o f o f b a b o o n s . A f r . J . E c o l . 21:219-233.  Dunn, O. J . 1964. M u l t i p l e c o n t r a s t s u s i n g r a n k T e c h n o m e t r i c s 6:241-252.  sums.  E g b e r t , A. L . , a n d A. W. S t o k e s . 1976. The s o c i a l b e h a v i o r o f brown b e a r s o n an A l a s k a n s a l m o n s t r e a m . I n t . C o n f . B e a r R e s . a n d Manage. 3:41-56. Feldman, H. A., a n d T. A. McMahon. 1983. The 3/4 mass exponent f o r metabolism i s not a s t a t i s t i c a l a r t i f a c t . R e s p . P h y s i o l . 52:149-163. G e b h a r d , J . G. 1982. A n n u a l a c t i v i t i e s a n d b e h a v i o r o f a g r i z z l y bear (Ursus a r c t o s ) f a m i l y i n n o r t h e r n A l a s k a . M.Sc. T h e s i s . U n i v . A l a s k a , F a i r b a n k s , A l a s k a . 218 pp. G i b b o n s , J . D. 1985. N o n p a r a m e t r i c methods f o r q u a n t i t a t i v e a n a l y s i s . 2nd e d n . A m e r i c a n S c i e n c e s P r e s s , I n c . , Columbus, O h i o . 481 pp.  H e c h t e l , J . L. 1985. A c t i v i t y and f o o d h a b i t s o f g r o u n d g r i z z l y b e a r s i n A r c t i c A l a s k a . M.Sc. U n i v . Montana, M i s s o u l a , M o n t a n a . 74 pp. H e r b e r s , J . M. 1981. Time r e s o u r c e s O e c o l o g i a . 49:252-262.  and  barrenThesis.  laziness in  animals  H e u s n e r , A. A. 1982. E n e r g y m e t a b o l i s m and b o d y s i z e . t h e 0.75 mass e x p o n e n t o f K l e i b e r ' s e q u a t i o n a s t a t i s t i c a l a r t i f a c t ? R e s p . P h y s i o l . 48:1-12.  I.  Is  K l e i b e r , M. 1975. The f i r e o f l i f e : an i n t r o d u c t i o n t o a n i m a l e n e r g e t i c s . K r i e g e r Pub. Co., H u n t i n g t o n , New Y o r k . 453 pp. L l o y d , L. E . , B. E . M c D o n a l d , and E . W. Crampton. 1978. F u n d a m e n t a l s o f n u t r i t i o n . 2nd edn. W. H. Freeman and Company, San F r a n c i s c o , C a l i f o r n i a . 466 pp. M c L e l l a n , B. N. 1989. E f f e c t s o f r e s o u r c e e x t r a c t i o n i n d u s t r i e s on b e h a v i o r and p o p u l a t i o n d y n a m i c s o f g r i z z l y bears i n the Flathead drainage, B r i t i s h C o l u m b i a and M o n t a n a . Ph.D. Thesis, Univ. of B r i t i s h C o l u m b i a , V a n c o u v e r , B r i t i s h C o l u m b i a . 115 pp. McGill, of  R., box  J . W. T u k e y , and W. A. L a r s e n . 1978. V a r i a t i o n s p l o t s . The A m e r i c a n S t a t i s t i c i a n 32:12-16.  N e l s o n , R. A., G. E . F o l k , E. W. P f e i f f e r , J . J . C r a i g h e a d , C. J . J o n k e l , and D. L. S t e i g e r . 1983. Behavior, b i o c h e m i s t r y , and h i b e r n a t i o n i n b l a c k , g r i z z l y , and p o l a r b e a r s . I n t . C o n f . B e a r Res and Manage. 5:284-290 P e a r s o n , A. M. 1975. The n o r t h e r n i n t e r i o r g r i z z l y ( U r s u s a r c t o s L ) . Can. W i l d l . S e r v . Rep. S e r . 86 pp. P h i l l i p s , M. K. 1987. B e h a v i o r and bears i n northeastern Alaska. Manage. 7:159-167.  bear No. 34.  h a b i t a t use o f g r i z z l y I n t . C o n f . B e a r Res. and  73 S c h l e y e r , B. 0. 1983. A c t i v i t y p a t t e r n s o f g r i z z l y b e a r s i n t h e Y e l l o w s t o n e ecosystem and t h e i r r e p r o d u c t i v e b e h a v i o r , p r e d a t i o n a n d u s e o f c a r r i o n . M.Sc. T h e s i s , Mont. S t a t e U n i v . , Bozeman, M o n t a n a . 130 p p . S o k a l , R. R., a n d F. J . R o h l f . 1981. B i o m e t r y . 2nd e d n . W. H. Freeman a n d Company, New Y o r k , New Y o r k . 859 p p . S t e l m o c k , J . J . , a n d F. C. Dean. 1986. Brown b e a r a c t i v i t y a n d h a b i t a t u s e , D e n a l i N a t i o n a l P a r k - 1980. I n t . C o n f . B e a r R e s . a n d Manage. 6:155-168. S t o n o r o v D., a n d A. W. S t o k e s . 1972. S o c i a l b e h a v i o r o f t h e A l a s k a brown b e a r . I n t . C o n f . B e a r R e s . a n d Manage. 2:232-242. V e l l e m a n , P. F., a n d D. C. H o a g l i n . 1981. A p p l i c a t i o n s , b a s i c s , and computing o f e x p l o r a t o r y d a t a a n a l y s i s . D u x b u r y P r e s s , B o s t o n , M a s s a c h u s e t t s . 354 p p . W i l k i n s o n , L . 1989. S y s t a t : t h e s y s t e m Systat, Inc., Evanston, I l l i n o i s . W i l k i n s o n , L. 1988. S y g r a p h . I l l i n o i s . 980 pp.  Systat,  for statistics. 822 p p .  Inc., Evanston,  74  CHAPTER 4:  A C T I V I T Y BUDGETS AND  PATTERNS  INTRODUCTION Major reductions i n the g r i z z l y last to  150  years,  relatively  and  the r e s t r i c t i o n  large wilderness  g r i z z l i e s may  bears'  range over  of current  areas,  has  populations  indicated  that  r e q u i r e s e c l u s i o n f r o m humans i n o r d e r 1980).  the  However, most o c c u p i e d  to  survive  (Knight  grizzly  habitat  l i e s w i t h i n a r e a s managed u n d e r i n t e g r a t e d l a n d  management p h i l o s o p h i e s w h i c h p u r s u e i n c r e a s e d d e v e l o p m e n t , or e l s e w i t h i n parks use  by  humans.  drainage of  t h a t are under i n c r e a s i n g r e c r e a t i o n a l  Recent s t u d i e s i n the F l a t h e a d  of southeastern  B r i t i s h C o l u m b i a and  River adjacent  Montana have documented o v e r t b e h a v i o r a l r e s p o n s e s  grizzlies  t o human a c t i v i t i e s  1989a, 1 9 8 9 b ) , and c l o s e t o roads exploration  ( M c L e l l a n and  h a b i t a t l o s s due  b u i l t t o support  ( M c L e l l a n and  n e g a t i v e demographic responses  l o g g i n g and  of h a b i t a t s  petroleum  1988).  of the g r i z z l y  However, population  t h e s e human i n t r u s i o n s h a v e n o t b e e n d e m o n s t r a t e d 1989;  McLellan  therefore,  and  supported  were due A prima  1988).  i s t h a t g r i z z l i e s can  human a c t i v i t y is  Shackleton  i f the  by  the  latter  fact  coexist with  aphorism t h a t g r i z z l i e s can  humans i s s l o w l y b e i n g  (McLellan  some l e v e l  i s properly controlled.  ( M c L e l l a n and  r e p l a c e d by  to  implication  t h a t a l l known g r i z z l y  t o human p r e d a t i o n facie  The  by  Shackleton  t o avoidance  Shackleton  areas  This  mortalities  Shackleton not  of  adapt  the r e a l i z a t i o n  1988). to  that  the  75  problem with with  a d a p t a b i l i t y p r i m a r i l y l i e s with people, not  bears. In areas  o f h i g h human u s e , mammals a v o i d  f r o m humans b y s w i t c h i n g t h e i r times  when human a c t i v i t y  activity  i s minimal  a v o i d a n c e o f humans b y g r i z z l y b e a r s populations 1987;  other than  the Flathead  M a t t s o n e t a l . 1987; H a r d i n g  Servheen bears  (1981) n o t e d  and M c L e l l a n  harassment  t o l o c a t i o n s and  ( G e i s t 1971).  has been r e p o r t e d f o r (e.g., A r c h i b a l d e t a l .  a n d Nagy 1 9 8 0 ) .  t h a t d a r k n e s s may p r o v i d e  and S h a c k l e t o n  (1988) f o u n d  d u r i n g t h e day.  Several recent  However,  cover f o r that  d i d u s e h a b i t a t s n e a r r o a d s s i g n i f i c a n t l y more o f t e n the n i g h t than  Spatial  bears during  studies of  a c t i v i t y budgets and p a t t e r n s o f g r i z z l y p o p u l a t i o n s i n N o r t h A m e r i c a and Europe have i n d i c a t e d t h a t n o c t u r n a l a c t i v i t y by bears  increased  may b e a n a d a p t a t i o n  t o avoid  human a c t i v i t y  (Clevenger  1989;  Bjarvall  a n d S a n d e g r e n 1987; R o t h a n d H u b e r 1986; R o t h  1983)  a n d may r e d u c e t h e e x t e n t  avoidance experienced  e t a l . 1990; Aune a n d Kasworm  o f h a b i t a t l o s s due t o  by p o p u l a t i o n s  ( M c L e l l a n and S h a c k l e t o n  coexisting with  humans  1988).  A c t i v i t y budget d a t a have been f r e q u e n t l y suggested  as  a means o f s t u d y i n g r e l a t i o n s h i p s b e t w e e n t h e e n v i r o n m e n t ( i n c l u d i n g human i n d u c e d classes social  of individuals classes),  disturbances)  (e.g.,  and p o p u l a t i o n s ,  sex, age, r e p r o d u c t i v e o r  and i n d i v i d u a l s t h e m s e l v e s  ( R o t h 1983;  J a c o b s e n a n d W i g g i n s 1982; Boy a n d Duncan 1979; E b e r h a r d t 1977).  Roth  (1983) s u g g e s t e d  that quantifying  activity  76  patterns  o f a s p e c i e s under v a r y i n g environmental  ( i n c l u d i n g human i n t r u s i o n ) may p e r m i t some parameters  use, b a s e l i n e  by i t s environment.  information  on a c t i v i t y  However, t o b e o f  parameters  must  s t a t u s , and be i n d e x e d t o h a b i t a t p r o d u c t i v i t y ,  the intensity  population's information  a n d t y p e o f human i n t r u s i o n s , a n d t o t h e  demographic s t a t u s . i s missing  Previous  Frequently,  o r i s known o n l y  such  s t u d i e s o f g r i z z l y b e a r a c t i v i t y p a t t e r n s and  i n d i v i d u a l b e a r s , and r e l a t i v e l y monitored.  and d e t r a c t e d  e f f e c t s due t o c o n f o u n d i n g .  sums o f t o t a l  from e x a m i n a t i o n s  o f seasonal  Detailed, quantitative  environment,  may r e v e a l c o n s t r a i n t s p l a c e d and a l l o w  identification  o r e s s e n t i a l environmental f a c t o r s i n t h e i r  cycle.  C o m p a r i s o n s among d i f f e r e n t critical  periods  i n the l i f e  state, cycle.  and t h e d i s t r i b u t i o n Specific  annual  s e x and age c l a s s e s c a n cycle of the species.  T h i s chapter addresses time a l l o c a t i o n g r i z z l y bears with respect t o t o t a l  o n them  of c r i t i c a l  periods  reveal  time  o n how much t i m e b e a r s a l l o c a t e t o a c t i v i t y ( a s  opposed t o i n a c t i v i t y ) by t h e i r  small  numbers o f  T h i s has g e n e r a l l y prevented e x p l o r a t i o n o f sex  age e f f e c t s ,  information  vital  qualitatively.  b u d g e t s h a v e f r e q u e n t l y b e e n hampered b y s m a l l  and  on a  f o r v a r i a t i o n due t o f a c t o r s s u c h a s s e x , a g e , a n d  reproductive to  activity  t o be used as i n d i c a t o r s o f s t r e s s p l a c e d  particular population  account  conditions  i n free-ranging  time spent  i n the active  o f a c t i v e t i m e o v e r t h e 24-hour  o b j e c t i v e s were t o : 1) compare  activity  b u d g e t s among s e x a n d age c l a s s e s o f g r i z z l y b e a r s  both  77  w i t h i n and activity  among s e a s o n s ;  over the d i e l  2)  compare d i s t r i b u t i o n s  c y c l e among s e x and  g r i z z l y b e a r s b o t h w i t h i n and qualitatively budgets  compare d i e l  age  among s e a s o n s ;  of  classes  and  3)  a c t i v i t y p a t t e r n s and  of  to  activity  f o r the Flathead g r i z z l y population with other  documented p o p u l a t i o n s .  METHODS Field analysis  budgets complete  recording  Ideally,  statistical  24-hour samples darkness  comparisons  were l i m i t e d  cycle  of a c t i v i t y  and  of  so as t o  However, c o m p l e t e  i n number  have r e s u l t e d  seasons.  (44 s a m p l e s ,  signals  Time-sampling  i n s e v e r a l thousand  previous studies u t i l i z i n g  warranted.  As  24-hour  o r o n l y 22%  "observations".  While  o f independence  collar  time-samples  i s not  likely  a compromise b e t w e e n t h e s e 2 e x t r e m e s  4 mutually e x c l u s i v e time p e r i o d s .  as  treatments of the  c o n c e p t o f a n o b s e r v a t i o n , t h e 2 4 - h o u r c y c l e was into  of  across could  observations i n analytical  data, the assumption  time  the charts  individual  on  encompass  time-sampling of radio  f r e q u e n t l y have used  independent  activity  s h o u l d be b a s e d  t h e d a t a b a s e ) and were p o o r l y d i s t r i b u t e d i n d i v i d u a l s and  Chart  2.  standardize the duration of  a sample encompasses.  samples  1.  s e s s i o n s on b e a r s v a r i e d g r e a t l y i n  and p a t t e r n s o v e r t h e d i e l  d a y l i g h t and that  i n Chapter  followed the r u l e s presented i n Chapter  Individual length.  p r o c e d u r e s were a s d e s c r i b e d  i n the  stratified  However, t h i s d i d  78 not  exclude  some i n t e r d e p e n d e n c i e s e x i s t i n g w i t h i n t h e d a t a .  For each time active  p e r i o d sampled  (%TA) was d e t e r m i n e d  f o r each bear,  percent  o f time  as t o t a l  time  i n the active  c a t e g o r y d i v i d e d b y t h e sum o f t o t a l  time  i n both  inactive  categories.  completely if  bout  a c t i v e and  Many t i m e p e r i o d s were n o t s a m p l e d  d e p e n d i n g on when t h e r e c o r d i n g was i n i t i a t e d o r  t h e s i g n a l was l o s t .  Any t i m e p e r i o d f o r w h i c h < 75% o f  t h e p e r i o d ' s d u r a t i o n was r e c o r d e d was r e j e c t e d  from  analyses. Comparisons o f A c t i v i t y Activity daily  "diel and  into  and d a r k n e s s .  4 time p e r i o d s  p e r i o d s " ) was b a s e d  evening  from  p a t t e r n s were e x a m i n e d w i t h  cycle of daylight  24-hour c y c l e  diel  respectively.  on s u n r i s e and s u n s e t .  the year.  model n e s t e d - f a c t o r i a l For both  males) as t r e a t m e n t s with d i e l  i n each d i e l  were c o n d u c t e d  s p r i n g and f a l l ,  3 sex-age c l a s s e s ( a d u l t  extended  periods varied i n  analyses of variance  a d u l t males.  Morning  Comparisons o f a c t i v i t y  active  sex-age c l a s s e s and seasons  of the  s u n r i s e and sunset,  D i u r n a l and n o c t u r n a l d i e l  (percent o f time  data t o t e s t  Stratification  p e r i o d s were e a c h 3 h l o n g and  length throughout  233).  respect t o the  ( h e r e a f t e r r e f e r r e d t o as  1.5 h b e f o r e , t o 1.5 h a f t e r ,  patterns  Patterns  t h e r e were  period)  with  among  a mixed  ( H i c k s 1982, p . insufficient  The a n a l y s i s t e s t e d t h e r e m a i n i n g females,  subadult  females,  o f a m a i n e f f e c t w h i c h was  p e r i o d s and seasons.  I n d i v i d u a l bears  subadult  factorial (3 a d u l t  79 females,  3 subadult  within their For  r e s p e c t i v e sex-age  to test  nested-factorial and d i e l  bears  2 subadult  season, data  a l l 4 sex-age c l a s s e s .  analysis of variance  period as crossed  (2 a d u l t m a l e s ,  subadult  females),  m a l e s ) were  3 adult  nested  nested  class.  e a r l y summer a n d t h e b e r r y  sufficient  age,  females,  were  A mixed model  t e s t e d seasons, sex,  factors with i n d i v i d u a l  females,  3 subadult  males, 2  within their  respective  sex-age  class.  Comparisons o f A c t i v i t y  Budgets  A c t i v i t y budgets c o u l d n o t be a s s e s s e d analyses length  s i n c e t h e 4 time periods  o f time a c t i v e .  period observation proportion  represented, different  periods  C o n v e r s i o n o f %TA f o r e a c h  by  o f a 24-hour c y c l e t h a t t h e p e r i o d  w o u l d h a v e meant t h a t d i f f e r e n t p e r i o d s h a d  could vary.  ("quarter days"),  A s a n a l t e r n a t i v e , 4 new t i m e each 6 h i n d u r a t i o n  A n a l y s e s were c o n d u c t e d a s d e s c r i b e d  All  diel  t o a c t u a l time a c t i v e , o r weighting  (0500 - 1100,  - 1700, 1700 - 2300, 2300 - 0500; MDT) w e r e  replaced  actual  p o t e n t i a l ranges over which t h e values o f  observations  1100  u s e d were n o t o f e q u a l  a n d mean %TA f o r m a i n e f f e c t s d i d n o t r e f l e c t  duration  the  from t h e above  by a q u a r t e r  analyses  disproportionate  above w i t h  defined. diel  periods  day e f f e c t .  o f a c t i v i t y budgets and p a t t e r n s had numbers o f i n d i v i d u a l b e a r s w i t h i n  sex-age  80 c l a s s e s a n d u n e q u a l numbers o f o b s e r v a t i o n s Analyses  comparing a c t i v i t y  patterns  seasons a l s o s u f f e r e d from m i s s i n g m a l e s i n s p r i n g were r e p r e s e n t e d Under t h e s e different  on  individuals.  a n d b u d g e t s among a l l 4  cells  by o n l y  (notably, 1  individual).  c o n d i t i o n s t h e T y p e 1 e r r o r r a t e may  than that  conservative.  intended,  Some e f f e c t s w i t h i n a n a l y s e s  must b e i n t e r p r e t e d w i t h  p e r f o r m e d on UBC GENLIN arcsine 1981,  also failed to  with  level  levels  Analyses  values  ( S o k a l and  were  with Rohlf  D i f f e r e n c e s b e t w e e n means were i n v e s t i g a t e d  Newman-Keuls  alpha  caution.  Results,  ( G r i e g a n d B j e r r i n g 1978)  square root transformed  p . 427) .  be  a n d c a n be e i t h e r more o r l e s s  meet t h e a s s u m p t i o n o f h o m o g e n e i t y o f v a r i a n c e . therefore,  subadult  range t e s t s  f o r a l l t e s t s was  (Hicks  1982, p . 5 1 ) .  0.05.  A l lreported  The activity  a r e b a c k - t r a n s f o r m e d p r e d i c t e d means o f %TA ± SEM  r a t h e r t h a n o b s e r v e d means. complexity  Due t o t h e l a r g e number a n d  o f some i n t e r a c t i o n s , i n t e r p r e t a t i o n s o f  i n t e r a c t i o n s were made w i t h  respect t o trends  only.  RESULTS Activity For analyses  a c t i v i t y patterns, of variance  interactions seasons activity  levels  interactions  the effects  are the d i e l  including diel  (Table  Patterns  involving diel  i n the  p e r i o d main e f f e c t s and  period.  Comparisons over a l l 4  8) i n d i c a t e d s i g n i f i c a n t among d i e l  of interest  periods.  d i f f e r e n c e s i n bear  However,  first  order  p e r i o d s were s i g n i f i c a n t f o r  81  Table  8. M i x e d m o d e l n e s t e d - f a c t o r i a l A n a l y s i s o f V a r i a n c e of a c t i v i t y patterns f o r g r i z z l y bears over seasons. SA C l a s s r e p r e s e n t s t h o s e s e x - a g e c l a s s e s ( s u b a d u l t males, subadult females, a d u l t females) f o r which t h e r e were s u f f i c i e n t d a t a t o t e s t .  Source o f variation  d.f.  Season SA C l a s s Diel Period Bear(SA Class) S e a s o n x SA C l a s s Season x D i e l P e r i o d SA C l a s s x D i e l P e r i o d Season x Bear(SA C l a s s )  3 2 3 5 6 9 6 13  S e a s o n x SA C l a s s Diel Period  F  Prob.  1. 228 0. 021 10. 000 0. 860 0. 250 0. 248 0. 172 0. 102  12. 018 0. 024 57. 228 11. 474 2. 451 3. 496 0. 982 1. 363  <0.001* 0.976 <0.001 <0.001 0.083 0.004 0.471 0.176  18  0. 087  1. 221  0.299  Diel Period x Bear(SA Class)  15  0. 175  2. 332  0.004  Season x D i e l P e r i o d x Bear(SA Class)  34  0. 071  0. 947  0.556  Residual  309  0.075  Total  423  Tested Tested ^ Tested Tested Tested a  e  M.S.  c  €  £  C  c  C  x  a g a i n s t Season x Bear(SA C l a s s ) a g a i n s t Bear(SA Class) a g a i n s t D i e l P e r i o d x Bear(SA Class) a g a i n s t Season x D i e l P e r i o d x Bear(SA against Residual  Class)  82  both all  seasons  and i n d i v i d u a l b e a r s  other factors,  indicated  levels  (16.0 ± 2 . 8 % ) ,  activity  i n t h e evening period  similarly  and a peak i n  the lowest a c t i v i t y  levels  W i t h i n any s e a s o n  i n activity  t h i s was n o t t r u e .  Large  l e v e l s was e v i d e n t among s e a s o n s i n W i t h i n any i n d i v i d u a l , n o c t u r n a l  p e r i o d s p o o l e d over seasons  were a l w a y s  For  the nocturnal a c t i v i t y  7 of the 8 individuals,  were t h e l o w e s t v a l u e s o v e r a l l  adult  Four bears  females)  activity  were  l e v e l s were t h e h i g h e s t i n t h e e v e n i n g p e r i o d ( F i g .  the morning p e r i o d .  12.3%).  periods  (80.3 ± 2 . 3 % ) .  i n nocturnal periods ( F i g . 11).  1 1 ) , however, among s e a s o n s variation  over  f o r t h e morning and d i u r n a l p e r i o d s  Regardless o f season, bears  Pooled  f o rthe 4 d i e l  ± 2.8% a n d 69.4 ± 3.1%, r e s p e c t i v e l y ) ,  activity  for  levels  low n o c t u r n a l a c t i v i t y  high a c t i v i t y (68.7  activity  (Table 8 ) .  peaks o c c u r r i n g  the remaining 4 bears  a bimodal  1 s u b a d u l t male, 2  activity  female,  Comparisons between e a r l y w i t h s e x and age f a c t o r i a l ,  2 subadult females,  summer a n d t h e b e r r y  also resulted  o r d e r i n t e r a c t i o n between d i e l p e r i o d involving  (Table 9 ) .  level  season,  1  from  period.  d i f f e r e n c e s among d i e l p e r i o d s ( T a b l e 9 ) .  significant  pattern with  an i n c r e a s i n g a c t i v i t y  the morning through t o t h e evening  order interaction  levels  i n t h e morning and e v e n i n g p e r i o d s ,  (1 a d u l t  s u b a d u l t male) e x h i b i t e d  active.  ( r a n g e : 6.8 ± 9.2% t o 28.1 ±  (1 s u b a d u l t f e m a l e ,  displayed  the least  season,  i n significant However, a  and age, and a  first second  sex and d i e l p e r i o d  The p a t t e r n o f a c t i v i t y  across  were diel  I  morning  diurnal  evening  nocturnal  DIEL PERIOD  Figure  11. F i r s t o r d e r i n t e r a c t i o n b e t w e e n s e a s o n s a n d d i e l p e r i o d s f r o m A n a l y s i s o f Variance o f g r i z z l y bear a c t i v i t y p a t t e r n s over seasons (Table 7 ) . P l o t t e d v a l u e s a r e p r e d i c t e d c e l l means.  CO  84  Table  9. M i x e d m o d e l n e s t e d - f a c t o r i a l A n a l y s i s o f V a r i a n c e o f a c t i v i t y p a t t e r n s f o r sex-age c l a s s e s o f g r i z z l y b e a r s o v e r e a r l y summer a n d t h e b e r r y s e a s o n .  Source o f variation  d.f.  M.S.  F  Prob. 0.162* 0.7357 0.671 <0.001 <0.001 0.334  Season Sex Age Diel Period B e a r ( S e x x Age) S e a s o n x Sex S e a s o n x Age Sex x Age Sex x D i e l P e r i o d Age x D i e l P e r i o d S e a s o n x B e a r ( S e x x Age) S e a s o n x Sex x Age Season x D i e l P e r i o d Sex x Age x D i e l P e r i o d  1 1 1 3 6 1 1 1 3 3 6 1 3 3  0. 908 0. 082 0.,130 10.,758 0.,654 0.,394 0.,002 0.,150 0..342 0..645 0..356 0..321 0..032 0,.142  2. 548 0. 126 0. 120 88. 970 8. 122 1. 105 0. 005 0. 229 2. 830 5. 333 4. 429 0. 900 0. 478 1. 176  S e a s o n x Sex x Diel Period  3  0..237  3. 503  0.038  d  S e a s o n x Age x Diel Period  3  0,.021  0. 317  0.813  d  S e a s o n x Sex x Age x Diel Period  3  0..014  0. 205  0.891  d  18  0,.121  1. 503  0.087  6  17  0..068  0. 842  0.643  6  Residual  313  0,.080  Total  391  Diel Period x B e a r ( S e x x Age) Season x D i e l P e r i o d B e a r ( S e x x Age)  * Tested Tested ^ Tested Tested Tested e  C  e  a  ° '  9  4  6  K  0.649 0.068 0.008 <0.001 0.380* 0.702 0.347 C  C  e  C  x  a g a i n s t S e a s o n x B e a r ( S e x x Age C l a s s ) a g a i n s t B e a r ( S e x x Age C l a s s ) a g a i n s t D i e l P e r i o d x B e a r ( S e x x Age C l a s s ) a g a i n s t S e a s o n x D i e l P e r i o d x B e a r ( S e x x Age) against Residual  85 periods pooled over a l l other f a c t o r s d i s t r i b u t i o n with a c t i v i t y 3.5%  i n t h e n o c t u r n a l and  while a c t i v i t y w e r e 80.0 The that for  levels  levels  ± 2.8% age  and  x diel  indicated  o f 19 ± 2.9%,  ± 2.6%  and  71.6  period  evening periods  interaction  ( F i g . 12)  in a l ldiel  indicated  p e r i o d s except  t h e n o c t u r n a l p e r i o d when t h e y were l e s s a c t i v e  diel  Adults displayed  a bimodal  activity  periods while subadults exhibited  activity  b e t w e e n t h e m o r n i n g and  activity  peak i n the evening p e r i o d .  c l a s s e s showed l i t t l e nocturnal period  difference  ( F i g . 13a  in activity  and b ) .  period.  contrasted  In both seasons,  levels  over  summer, m a l e and  female  s h a r p l y b e t w e e n m o r n i n g and  exhibited  effects  of seasons,  bears.  No  i n the  be  evening  activity  levels  diurnal periods.  over a l l 4  significant differences q u a r t e r d a y p e r i o d s , and  differences  to  a peak  Budgets  Comparisons o f a c t i v i t y budgets indicated  the  than they d i d i n  females  i n the morning than  Activity  ( T a b l e 10)  i n the  i n the evening p e r i o d , males tended  In e a r l y  sex  R e s p e c t i v e l y , sex  p e r i o d s i n the b e r r y season  s l i g h t l y more a c t i v e  an  Across seasons,  remaining d i e l  activity  difference in  d i u r n a l p e r i o d s and  t o have h i g h e r a c t i v i t y  summer.  than  pattern across  little  c l a s s e s tended  the e a r l y  ±  respectively.  s u b a d u l t s were more a c t i v e  adults.  in  bimodal  diurnal periods respectively,  i n t h e m o r n i n g and 84.7  a  seasons  i n t h e main individual  i n a c t i v i t y were a p p a r e n t  f o r the  100  Age Class subadults adults  morning  diurnal  evening  nocturnal  DIEL PERIOD  Figure  1 2 . F i r s t o r d e r i n t e r a c t i o n between a g e c l a s s e s a n d d i e l p e r i o d s f r o m A n a l y s i s of Variance o f g r i z z l y bear a c t i v i t y p a t t e r n s f o r sex-age c l a s s e s over e a r l y summer a n d t h e b e r r y s e a s o n ( T a b l e 8.) P l o t t e d v a l u e s a r e p r e d i c t e d c e l l means.  Figure  13. Second o r d e r i n t e r a c t i o n between s e a s o n s , s e x c l a s s e s , a n d d i e l p e r i o d s from A n a l y s i s o f V a r i a n c e o f g r i z z l y b e a r a c t i v i t y p a t t e r n s f o r s e x - a g e c l a s s e s o v e r e a r l y summer and t h e b e r r y s e a s o n ( T a b l e 8) . Sex x d i e l p e r i o d i n t e r a c t i o n s a r e p l o t t e d f o r a) e a r l y summer, and b) t h e b e r r y season. P l o t t e d v a l u e s a r e p r e d i c t e d c e l l means.  88  Table  10. M i x e d m o d e l n e s t e d - f a c t o r i a l A n a l y s i s o f V a r i a n c e o f a c t i v i t y budgets f o r g r i z z l y bears over seasons. SA C l a s s r e p r e s e n t s t h o s e s e x - a g e c l a s s e s ( s u b a d u l t males, subadult females, a d u l t females) f o r which t h e r e were s u f f i c i e n t d a t a t o t e s t .  Source o f variation  d.f.  Season SA C l a s s Q u a r t e r Day Bear(SA Class) S e a s o n x SA C l a s s S e a s o n x Q u a r t e r Day SA C l a s s x Q u a r t e r Day Season x Bear(SA C l a s s )  3 2 3 5 6 9 6 12  S e a s o n x SA C l a s s x Q u a r t e r Day Q u a r t e r Day x Bear(SA Class) Season x Quarter Bear(SA Class)  F  Prob.  1. 021 0. 008 8. 460 1. 131 0. 127 0. 282 0. 159 0. 051  20 .143 0 .007 43 .202 16 .239 2 .500 4 .306 0 .812 0 .728  <0.001 0.993 <0.001 <o.ooi 0.083 <0.001 0.577 0.724  18  0. 140  2 .137  0.027  15  0. 196  2 .811  <0.001  e  35  0. 065  0 .939  0.571  6  316  Total  430  Tested Tested ^ Tested Tested Tested e  against against against against against  a  C e a d C 6  J  Day x  Residual  a  M.S.  0. 070  Season x Bear(SA C l a s s ) Bear(SA Class) Q u a r t e r Day x B e a r ( S A C l a s s ) S e a s o n x Q u a r t e r Day x B e a r ( S A Residual  Class)  89  sex-age c l a s s e f f e c t . involved  i n significant  interpreted  berry  a l l main e f f e c t s  were  i n t e r a c t i o n s a n d c o u l d n o t be  reliably.  Seasonal spring,  However,  activity  l e v e l s were 41.0 ± 3.5% i n t h e  58.7 ± 2.1% i n t h e e a r l y  s e a s o n a n d 44.1 ± 3.2%  summer, 64.4 ± 2.5% i n t h e  i n the f a l l .  A first  order  i n t e r a c t i o n between s e a s o n s and q u a r t e r day p e r i o d s , and a second order and  i n t e r a c t i o n between seasons,  q u a r t e r d a y p e r i o d s were s i g n i f i c a n t I n s p r i n g and f a l l ,  activity  c l a s s e s were g e n e r a l l y lower in  early  notable bears  The most which  t h e y were i n t h e e a r l y ( F i g . 14).  i n t e r a c t i o n was c o m p l e x ( F i g . 15a a c t i v i t y budgets,  sex-age  t o be l e s s a c t i v e a c r o s s q u a r t e r day p e r i o d s  the s p r i n g than  i n early  summer o r t h e b e r r y  b e t w e e n 1100 - 1700 h o u r s . s p r i n g and e a r l y  considerably, while  day  than  t h e y were i n o t h e r  b e t w e e n 2300 - 0500 h o u r s  second order  c l a s s e s tended  levels.  ( F i g . 14).  were more a c t i v e t h a n  With respect t o seasonal  females  sex-age  a c r o s s q u a r t e r day p e r i o d s  i n t h e b e r r y season than  The  period,  over  B e a r s w e r e a l s o more a c t i v e a c r o s s q u a r t e r d a y  summer, e x c e p t  except  l e v e l s pooled  summer a n d t h e b e r r y s e a s o n  i n the f a l l  periods  in  (Table 10).  e x c e p t i o n was b e t w e e n 2300 - 0500 h o u r s d u r i n g  seasons.  d).  sex-age c l a s s e s  During  summer a c t i v i t y  o n l y t h e low a c t i v i t y  i n the b e r r y season overlapped In the f a l l ,  bears  p e r i o d s encompassing  were l e s s  this levels level  with active  season q u a r t e r day overlapped of adult  spring  activity  i n the quarter  0500 - 1100 a n d 1700 - 2300  hours,  IOO-I 90-  0500-1100  1100-1700  1700-2300  2300-0500  QUARTER DAY PERIOD  Figure  14. F i r s t o r d e r i n t e r a c t i o n b e t w e e n s e a s o n s and q u a r t e r d a y p e r i o d s f r o m A n a l y s i s o f Variance o f g r i z z l y bear a c t i v i t y budgets over seasons ( T a b l e 9 ) . P l o t t e d v a l u e s a r e p r e d i c t e d c e l l means.  vo o  HX) (0  b  80 70 80 SO  u. O  403020 10  0600-1)00  1100-1700 fTOO-2300 QUARTER DAY PERIOD  0600-1100  23OO-0GOO  no  wo  tO  to  M  BO  70  70  to  to  60  60  40  40  30  30-  20-  20-  10-  10  0  Figure  0600-1100  1100-1700 1700-2300 OUARTER DAY PERIOD  2300-0600  0  1100-1700 1700-2300 OUARTER DAY PERIOD  2300-0600  Sex-Age Class subadult males subadult females adult females  0600-1100  1100-1700 1700-2300 OUARTER DAY PERIOD  2300-0600  15. Second o r d e r i n t e r a c t i o n between s e a s o n s , SA c l a s s e s , a n d q u a r t e r d a y p e r i o d s from A n a l y s i s o f V a r i a n c e o f g r i z z l y b e a r a c t i v i t y b u d g e t s o v e r s e a s o n s ( T a b l e 9 ) . SA c l a s s x d i e l p e r i o d i n t e r a c t i o n s a r e p l o t t e d f o r a) s p r i n g , b) e a r l y summer, c) t h e b e r r y s e a s o n , a n d d) f a l l . Plotted values a r e p r e d i c t e d c e l l means.  92 b u t t e n d e d t o be more a c t i v e b e t w e e n 2300 - 0500 h o u r s , t h e y were i n e a r l y -  1700  fall  summer o r t h e b e r r y s e a s o n .  hours, the a c t i v i t y  exceeded  early  level  exceeded  the a c t i v i t y  season.  S p r i n g and  level  fall  Between  f o r subadult females  summer a c t i v i t y  levels,  for adult  activity  and  females  levels  from  2300 - 0500 h o u r s  f o r which  i n the berry  sex-age  summer and t h e b e r r y  overlapped early 1100  - 1700  hours than i n the b e r r y season.  trend  classes varied  f o r one  sex-age  Pooled over seasons  periods,  activity  levels  s u b a d u l t m a l e s 55.7 adult  in  and  activity  f e m a l e s 54.6  Comparisons w i t h s e x and effects  ± 2.8%,  age  between e a r l y factorial,  (Table 11).  a s age  and  order interactions  Relationships  higher  c l a s s were  However, p o o l e d  similar  t o 71.0  ±  greatly  3.4%).  summer and t h e b e r r y  appeared  ±  over  individuals varied  resulted  (Table 11).  no  q u a r t e r day  season,  i n o n l y t h e main  i n d i v i d u a l bears  However, b o t h t h e s e m a i n  season,  between  s u b a d u l t f e m a l e s 56.0  ± 1.9%).  ± 5.4%  and  sex-age  o f q u a r t e r d a y p e r i o d s and  significant as w e l l  f o r each  q u a r t e r day p e r i o d s , ( r a n g e : 34.1  levels  class to exhibit  levels.  seasons  season  among s e a s o n s w i t h  activity  2.4%,  levels for  i n a l l q u a r t e r day p e r i o d s w i t h s u b a d u l t s i n  between t h e sex-age  (for  Activity  summer d i s p l a y i n g much h i g h e r a c t i v i t y  consistent  period  b e a r s were  i n the f a l l .  i n early  i n the  overlapped  c o n s i s t e n t l y more a c t i v e classes  1100  also  c o n s i d e r a b l y w i t h t h e e x c e p t i o n o f t h e q u a r t e r day ranging  than  in significant  been  effects, first  Only t h e main e f f e c t  of  sex  93  T a b l e 11. M i x e d model n e s t e d - f a c t o r i a l A n a l y s i s o f V a r i a n c e o f a c t i v i t y budgets f o r sex-age c l a s s e s o f g r i z z l y b e a r s o v e r e a r l y summer a n d t h e b e r r y s e a s o n . Source o f variation  d.f.  M.S.  F  Prob.  Season Sex Age Q u a r t e r Day B e a r ( S e x x Age) Season x Sex Season x Age Sex x A g e Sex x Q u a r t e r Day Age x Q u a r t e r Day S e a s o n x B e a r ( S e x x Age) S e a s o n x S e x x Age S e a s o n x Q u a r t e r Day Sex x A g e x Q u a r t e r Day  1 1 1 3 6 1 1 1 3 3 6 1 3 3  0. 469 0. 454 0. 638 8. 997 0. 591 <0. 001 0. 006 0. 083 0. 192 0. 822 0. 258 0. 396 0. 088 0. 155  1. 822 0. 767 1. 078 109. 790 7. 593 <0. 001 0. 024 0. 141 2. 344 10. 027 3. 307 1. 537 1. 584 1. 895  Season x Sex x Q u a r t e r Day  3  0. 118  2. 127  0.132  d  Season x Age x Q u a r t e r Day  3  0. 106  1. 902  0.166  d  Season x Sex x Age x Q u a r t e r Day  3  0. 026  0. 470  0.707  d  Q u a r t e r Day x B e a r ( S e x x Age)  18  0. 082  1. 052  0.401  e  S e a s o n x Q u a r t e r Day x B e a r ( S e x x Age)  18  0. 056  0. 714  0.797  6  Residual  312  0. 078  Total  391  Tested Tested ^ Tested Tested Tested  a  e  against against against against against  0.226  a  0.4155* 0.339 <0.001  C  <o.ooi 0.981 0.883 0.720 0.107 <0.001 0.004 0.261 0.228 0.167  S e a s o n x B e a r ( S e x x Age C l a s s ) B e a r ( S e x x Age C l a s s ) Q u a r t e r Day x B e a r ( S e x x A g e C l a s s ) S e a s o n x Q u a r t e r Day x B e a r ( S e x x Age) Residual  e a a  C C 6 a  C  94 c o u l d b e i n t e r p r e t e d a n d i n d i c a t e d no s i g n i f i c a n t d i f f e r e n c e between males  (56.1 ± 2.2%) a n d f e m a l e s  The f i r s t  order  q u a r t e r day p e r i o d s activity except  l e v e l s than  between  day p e r i o d s while  i n t e r a c t i o n between suggested  that subadults  ( F i g . 16).  in  order  i n t e r a c t i o n between  individuals little  2 subadult  (range  activity  Pooled  over  seasons and (1 a d u l t f e m a l e ,  1  females) e x h i b i t e d a d i s t i n c t  of absolute  d i f f e r e n c e s (RAD): 6.8 - 36.1%)  f r o m e a r l y summer t o t h e b e r r y (1 a d u l t f e m a l e ,  2 subadult  season, 3  males)  demonstrated  d i f f e r e n c e (RAD: 0.6 - 2.3%) i n a c t i v i t y ,  individuals  quarter  were a c t i v e 64.9 ± 2.3%.  individuals revealed that 4 individuals  increase  had h i g h e r  a n d s e a s o n s , a d u l t s were a c t i v e 56.6 ± 1.8%  first  a d u l t male,  age c l a s s e s and  a d u l t s i n a l l q u a r t e r day p e r i o d s  2300 - 0500  subadults The  (63.1 ± 2 . 0 % ) .  (1 a d u l t f e m a l e ,  1 a d u l t male,  1 subadult  male)  showed a d i s t i n c t  decrease  Seasonal  l e v e l s were 56.5 ± 2.0% f o r e a r l y summer  and  activity  i n activity  and 3  63.8 ± 2.2% f o r t h e b e r r y  (RAD: 5.3 - 1 6 . 3 % ) .  season.  DISCUSSION Within  a s p e c i e s , an i n d i v i d u a l ' s t o t a l  the d i s t r i b u t i o n  of activity  over  the diel  determined by i n d i v i d u a l  specific  physiological  and e n v i r o n m e n t a l  condition)  human a c t i v i t y ,  thermal  stress,  t i m e a c t i v e and  cycle are  (e.g., weight, age, sex,  food type  (e.g.,  predation,  and abundance,  a v a i l a b l e d a y l i g h t ) f a c t o r s ( B u n n e l l and G i l l i n g h a m  1985).  I  Figure  16.  F i r s t o r d e r i n t e r a c t i o n b e t w e e n age c l a s s e s and q u a r t e r d a y p e r i o d s f r o m A n a l y s i s of Variance of g r i z z l y bear a c t i v i t y budgets f o r sex-age c l a s s e s o v e r e a r l y summer and t h e b e r r y s e a s o n ( T a b l e 1 0 ) . P l o t t e d values are p r e d i c t e d c e l l means.  96 Individual sex  and  f a c t o r s assessed  t o broad  with both  these  age  in this  study  c l a s s e s , although  factors.  weight  Environmental  d e a l t w i t h were r e s t r i c t e d  t o seasons  and  a b u n d a n c e ) and  the d a i l y  and  human a c t i v i t y  tend  solar  t o be  berries,  w e r e a c c o m p a n i e d by  Similarly, resulted  and  use  change i n t h e  Most r e s e a r c h  t h e m o r n i n g s and  supports  evenings,  during the n i g h t than  H u b e r 1986; 1984;  Aune and  a c t i v i t y p a t t e r n s has  H u b e r 1986;  Schleyer  1983;  seasonal  information  1983;  regime.  d e s c r i p t i o n of  a  levels  et a l .  H u b e r 1987;  Harting  grizzly  peaks i n  activity  (Clevenger  R o t h and  1985;  1990;  Roth  and  Aune e t a l .  Substantial variation  e t a l . 1990; 1985;  S i z e m o r e 1 9 8 0 ) , and  G e b h a r d 1982;  activity  often higher  1983).  Harting  fields  accompanied by  b e e n r e p o r t e d among and  (Clevenger  R o t h and  and  S t i v e r s 1985;  Schleyer  and  Patterns  a general  1987;  forbs  disturbance.  d u r i n g t h e day  Phillips  R o t h 1983;  individuals  foods  a change i n t h e r m a l  as n o c t u r n a l o r c r e p u s c u l a r , w i t h  G u n t h e r 1990;  fall  carrion) to grasses,  o f human  type  seasons.  of unroaded h i g h e l e v a t i o n b e r r y  level  food  Thermal s t r e s s  covariate with  Activity  bears  i s covariate  (and h e n c e ,  cycle.  i n a switch to b e r r i e s being  to  factors explicitly  Changes f r o m t h e p r e d o m i n a t e s p r i n g and (Hedysarum s u l p h u r e s e n c e  were r e s t r i c t e d  Aune and Hechtel  within Kasworm  1985;  among s e a s o n s ,  i s a v a i l a b l e ( H a r t i n g 1985; Sizemore 1980).  in  Some a u t h o r s  1989;  Roth  1983;  where Schleyer have  97 related  observed d i u r n a l a c t i v i t y  i n t r u s i o n o r t o use (Clevenger  nocturnal to  avoid  o f h a b i t a t s t h a t have h i g h  e t a l . 1990;  Sandegren 1987).  Aune and  Kasworm 1989;  Many h a v e s u g g e s t e d t h a t  or crepuscular  activity  patterns,  While a c t i v i t y  activity  levels  Bjarvall  and  observed  t h e m o r n i n g and  adaptation  evening.  a l l data  ambiguous.  diel  Schleyer  (1983)  diurnal  i n s p r i n g and  nocturnal  i n the  differences  t h a n i n summer.  southern  Flathead  rather peaks  nocturnal  and  t o be  Sizemore  area  spring-summer season, b u t  i n d i u r n a l and  season.  (Clevenger  i n the  peaks  activity  (1985) o b s e r v e d Y e l l o w s t o n e g r i z z l i e s  found g r i z z l i e s  20)  sunset.  Harting  fall  -  peaks,  Evening a c t i v i t y  i n f l u e n c e s o f s e a s o n s on  of bears are  plots  17  pattern with  about s u n r i s e but  sunrise.  showed a c l o s e r r e l a t i o n s h i p t o  patterns  during  in diel  (Figs.  Morning a c t i v i t y  centered  1 o r more h a f t e r  Reported  activity  suggest strong bimodality,  levels utilizing  however, w e r e o f t e n n o t occurred  bear  expressed  g e n e r a l l y d i d d i s p l a y a bimodal a c t i v i t y  diurnal  value  F l a t h e a d were p r i m a r i l y a c t i v e  f r e q u e n t l y d i d not  of hourly  fall  cover  i s a behavioral  studies of g r i z z l y  bears i n the  d a y l i g h t hours.  in  o f human  humans.  U n l i k e most o t h e r  periods  t o reduced l e v e l s  t o be  found  activity  more (1980) more  no  i n the  summer-  Some s t u d i e s on E u r o p e a n brown b e a r s  e t a l . 1990;  activity  R o t h and  H u b e r 1986)  have  reported  by  i n d i v i d u a l bears i n f a l l  and  winter,  i n d i v i d u a l s d i d not  show c o n s i s t e n t p a t t e r n s  across  but  years.  KK) n  1 2 3 4 B 6 7 8 9 10 11 12 13 14 1B 16 17 18 19 20 21 22 23 24 A. TIME OF DAY A.  4 6 8 7 8 9 10 11 12 13 HIS 16 17 18 19 20 2122 23 24 ^ TTME OF DAY ^ 1009080-  "  G <  TO  LU  2  60  ...  fe  LU  O  30  E  20 100  Figure  tm  i11 i II  IP Ill• l iliPIII I 1 III! i  i i i  M i l lII  1 2 3 4 6 87 8 9 10 11 12 13 14 IB 18 17 18 19 20 2122 23 24 TIME 6F DAY ^  17. P e r c e n t o f t i m e a c t i v e by h o u r o f t h e d a y i n s p r i n g f o r a) s u b a d u l t f e m a l e s , b) a d u l t f e m a l e s , a n d c) s u b a d u l t m a l e s . Arrows i n d i c a t e a p p r o x i m a t e t i m e s o f s u n r i s e and s u n s e t . P l o t s were composed f r o m a l l spring data c o l l e c t e d . F o r h o u r s o f t h e d a y , 1 = 0000-0100; 2 = 0100-0200 etc.  vo 00  100 90 -| LU  8  0  J  < Ul  2  u. O  m  80 60 40 302010 0  1 2 3 4 6 8 7 8 9 to 11 12 13 14 18 18 17 18 t9 20 21 22 23 24 ^ TIME OF DAY ^ TOO  TOO  80-  11  i l  80-  R  70-  Uj  80  Eo g  40  O  30 20 10 0  Figure  II  I  II  1  1  90  <  Ii lIl  III 1  80  u. O  60 H  5  •ft  iIIl l 11 n i l i l i i  Ul  I  il in  h i in  1 2 3 4 B 8 7 8 9 10 11 T2 13 14 16 18 17 18 19 20 2122 23 24 ^ TIME OF DAY ^  40 302010 0  1  mt  i  HII  IH  1  W ill I  i i 1II llllll! §§11  1 2 3 4 6 8 7 8 9 10 11 12 13 14 18 16 17 18 19 20 21 22 23 24 ^ TIME OF 0AY ^  d  II ili n • Vpin IH i ^ ^^^ ^  11  ii HI iiiiiiill _ II  2 3 4 6 8 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2122 23 24 ^ TIME OF DAY ^  18. P e r c e n t o f t i m e a c t i v e b y X Lour o f t h e d a y i n e a r l y summer f o r a) s u b a d u l t f e m a l e s , b) a d u l t f e m a l e s , c) s u b a d u l t m a l e s , a n d d) a d u l t m a l e s . A r r o w s i n d i c a t e approximate times of s u n r i s e and s u n s e t . P l o t s were composed f r o m a l l e a r l y summer d a t a c o l l e c t e d . F o r h o u r s o f t h e d a y , 1 = 0000-0100; 2 = 0100-0200 e t c .  100-  UJ B0-  F  <  70-  LU 80-  2  E  -  o  fc- *0 S  2010n  1  ' i  90-  0-J  1 2 3 4 6 8 7 6 9 10 100-. 90U, BO-  S' ro< LU 60-  5  E o y  E  302010-  o-U  Figure  1l  1  Uj 80>  <  LU 60  2 o  |_ 40  S  III  I I M j I Hi  I  90-  20 10 0  11 12 13 14 16 18317192 10 21222324 ME OF DAY  r'T*'v'i"f"r"Y"r'i t" J  1  100  1ll  1 2 3 4 5 8 7 8 9 10 11 12 13 14 16 18 17 18 19 20 21 22 23 24 A TIME OF DAY &  19. P e r c e n t o f t i m e a c t i v e b y h o u r o f s u b a d u l t f e m a l e s , b) a d u l t f e m a l e Arrows i n d i c a t e approximate times composed from a l l b e r r y s e a s o n da 1 = 0000-0100; 2 = 0100-0200 e t c .  iiilll II•iiiiiiiiiiiiiiii I P lllllllllllllllll  iII l l  Y- Y.  V.  ' / / / / ,  V.  Y.  Ml  iiiiiniiiiini  .1  1 2 3 4 5 6 7 8 9 10 11 12 13 14 IS 16 17 18 19 20 21 22 23 24 A TIME OF DAY A  100 80 Uj 8° >  0  70  <  UJ 60-|  o |- 40 LU O  30-  S  2010-  I  IP  •••••••••1 i i | | i |  i ^  mil  ill WPP  1 2 3 4 5 8 7 8 9 10 11 12 13 14 16 18 17 18 19 20 21 22 23 24 A TIME OF DAY A  t h e d a y i n t h e b e r r y s e a s o n f o r a) , c) s u b a d u l t m a l e s , a n d d) a d u l t m a l e s . o f s u n r i s e and s u n s e t . P l o t s were a collected. F o r hours o f t h e day,  too  100-i  8070-  il  »0  iiIII  O  I I I I II  20-  11J i l lin" m  pELHIII •inI I IIin II  i  2 3 4 5 8 7 8 9 10 11 12 1314 15 18 17 18 18 20 21222324 TIME OF DAY A  2 3 4 6 6 7 8 9 10 11 12 13 14 15 18 T7 18 19 20 21222324 A TIME OF DAY A  T  100  LU  G <  Ul  80 7 0  80  Hi  60-  o  8  4030 2010 0  11 • • • l l l i p i l il M Ji L  il  2 3 4 5 8 7 8 9 10 11 12 13 14 16 16 17 18 19 20 21222324 A TIME OF DAY A  F i g u r e 2 0 . P e r c e n t o f t i m e a c t i v e b y h o u r o f t h e d a y i n f a l l f o r a) s u b a d u l t f e m a l e s , b) a d u l t f e m a l e s , and c) s u b a d u l t m a l e s . Arrows i n d i c a t e approximate times of s u n r i s e and s u n s e t . P l o t s were composed from a l l f a l l d a t a c o l l e c t e d . For  hours  o f t h e day, 1 =  0000-0100;  2 = 0100-0200 e t c .  102 In  spite  o f s p r i n g and f a l l  utilized  being s i m i l a r  by b e a r s , I found g r i z z l i e s  e x h i b i t t h e lowest nocturnal a c t i v i t y and  the highest nocturnal activity  d a y l i g h t was s h o r t e r result.  The a v a i l a b i l i t y  primarily kills  and c r i p p l e d  levels  i n the spring  i n the f a l l i s (gut p i l e s  while spring carrion  a n d w i n t e r weakened  t h e y e a r , human i n t r u s i o n  animals.  roads. fall  from  hunter  i s from  Throughout  most  i s p r e d i c t a b l e and c e n t e r e d  a l o n g t h e network o f roads, w h i l e i n t h e f a l l , much h i g h e r p r o b a b i l i t y  Available  a n d may c o n t r i b u t e t o t h i s  of carrion  animals)  foods  i n the Flathead to  i n the f a l l .  a function of sport hunting  winter k i l l s of  i n the f a l l  i n primary  b e a r s have a  o f e n c o u n t e r i n g h u n t e r s away  from  The g r e a t e r a c t i v i t y by b e a r s d u r i n g darkness  may b e a n a v o i d a n c e  i n the  r e a c t i o n t o hunter a c t i v i t y , but  may a l s o r e l a t e t o b e a r s s e a r c h i n g f o r r e m a i n s o f h u n t e r kills  a t n i g h t when h u n t i n g a c t i v i t y M c L e l l a n and S h a c k l e t o n  used  areas close  than expected  i s low.  (1988) f o u n d t h a t g r i z z l y  (0 - 250 m) t o r o a d s s i g n i f i c a n t l y  i n t h e F l a t h e a d and t h a t t h i s  less  r e p r e s e n t e d an  8.7%  loss of available habitat.  used  a r e a s n e a r r o a d s more o f t e n a t n i g h t t h a n d u r i n g t h e  day. to  H a b i t a t s c l o s e t o roads  be o f h i g h v a l u e t o bears  fall.  T h i s s t u d y , however,  made a s i g n i f i c a n t  shift  They a l s o  bears  found t h a t  (e.g., r i p a r i a n i n spring,  early  areas)  bears  tended  summer, a n d  i n d i c a t e s t h a t b e a r s have n o t  i n their  activity patterns to  e n a b l e them t o e x p l o i t h a b i t a t s n e a r r o a d s a n d s u g g e s t s  that  103 a d e q u a t e amounts o f h a b i t a t f u r t h e r away f r o m r o a d s a r e a v a i l a b l e t o support Several  authors  active during intrusion 1987;  current population  levels.  have s u g g e s t e d t h a t g r i z z l i e s  d a y l i g h t hours i n environments with  (Aune a n d S t i v e r s 1989; B j a r v a l l  R o t h a n d H u b e r 1986; R o t h 1 9 8 3 ) .  a r e more l o w human  and Sandegren  Strong  evidence  i n d i c a t i n g h i g h use o f d a y l i g h t hours as normal f o r g r i z z l i e s has g e n e r a l l y been l a c k i n g . support  a preference  Results  f o rdiurnal activity  where human i n t r u s i o n i s h i g h l y l o c a l i z e d hence,  i s p r e d i c t a b l e i n space.  of this  study  i n an environment around r o a d s and  Preferences  f o rdaylight  may b e r e l a t e d t o i n c r e a s e d o p p o r t u n i t i e s f o r s e l e c t i v e foraging  ( B u n n e l l and G i l l i n g h a m  searching  efficiency.  populations resources foraging  Currently,  restricted  i ti s unclear  t o nocturnal  less effectively  than they  Comparing s e a s o n a l  foraging exploit would w i t h  other  research  activity  on g r i z z l y  levels  found  bear a c t i v i t y  due t o d i f f e r i n g  studies.  These d i f f e r e n c e s , i n p a r t , r e f l e c t  variation  i n food  definitions  resources,  t h e lowest  Schleyer  i n this  study  budgets i s  o f seasons  across  geographical  plant phenological  d u r a t i o n o f t h e denning p e r i o d .  g r i z z l y population, be  diurnal  Budgets  difficult  and  i f grizzly  patterns. Activity  with  1985), o r t o i n c r e a s e d  development,  For the Yellowstone  (1983) f o u n d a c t i v i t y  levels to  ( a p p r o x . 2.4 - 4.8 h o u r s o f a c t i v i t y p e r 24-  104 hour  period,  (March, high hours  o r 10 - 20% TA) i n p o s t - a n d p r e - d e n n i n g  and September and O c t o b e r ) .  i n April,  June,  July,  Activity  and August  (approx.  o f a c t i v i t y p e r 24-hour p e r i o d ,  were  8.0 - 12.0  o r 33 - 50% T A ) .  G r i z z l i e s were f o u n d t o b e t h e most a c t i v e were n o t t h o u g h t  levels  months  t o be r e p r e s e n t a t i v e .  i n May, b u t d a t a  H a r t i n g (1985)  also  s t u d i e d t h e a c t i v i t y p a t t e r n s o f Y e l l o w s t o n e g r i z z l i e s and also  found a c t i v i t y  (probability September  l e v e l s t o b e h i g h i n t h e summer months  of activity:  (0.52).  b e a r s were l e a s t  0.64 - 0.71) a n d l o w e r i n  I n c o n t r a s t t o S c h l e y e r ' s (1983) active  i n May  (0.52).  Flathead  r e g i o n , Sizemore  activity  l e v e l s t o be s i g n i f i c a n t l y  summer p e r i o d fall  period  (August  lower  summer, 7 1 % i n e a r l y  Hechtel  (1985),  (1982) f o u n d t h e a c t i v i t y  the following  fall,  i n the f a l l  early  a n d 83% i n l a t e  however, d i d n o t f i n d  increased a c t i v i t y  i n t h e summer-  For northern Alaskan  a f a m i l y u n i t t o b e 58% d u r i n g s p r i n g ,  late  bears  level  summer a n d fall.  a seasonal trend f o r  by t h i s  same f a m i l y u n i t i n  year.  I n f o r m a t i o n on m o n t h l y o r s e a s o n a l a c t i v i t y European  bear  i n the spring-  31) t h a n  1 t o den e n t r y ) .  g r i z z l y p o p u l a t i o n s , Gebhard of  In the southern  (1980) r e p o r t e d g r i z z l y  ( d e n emergence t o J u l y  results,  brown b e a r s  i s limited.  Roth  i n n o r t h e r n I t a l y t o be a c t i v e  summer a n d f a l l .  While  s e a s o n a l t r e n d s from  levels of  (1983) f o u n d  brown  45 - 60% o f t h e t i m e i n  data d i d not permit separation o f  individual variability,  noted t h a t t h e d a t a weakly suggested  Roth  high a c t i v i t y  (1983) levels i n  105 summer and  somewhat l o w e r a c t i v i t y  subadult  f e m a l e brown b e a r  the  time  in activity  40%  of the time  1986).  in fall.  (64%)  i n Y u g o s l a v i a spent about  i n November and  December  and  (1987) f o u n d a c t i v i t y September  m a l e brown b e a r activity period  i n Spain  l e v e l s t o be  ( R o t h and  of  about  Huber  l e v e l s t o be h i g h e s t i n  (58%) w i t h h i g h a c t i v i t y  (May  in fall/winter  Data  lowest  (31%)  budgets,  least  active.  f o r an  adult  showed  i n the post-denning  1 5 ) , h i g h e s t (43%)  16 t o A u g u s t 3 1 ) , and (September 1 t o den  i n the  slightly  lower  entry).  Most d a t a thus s u p p o r t a s e a s o n a l t r e n d activity  levels  ( C l e v e n g e r e t a l . 1990)  (den emergence t o May  breeding season  the  60%  from J u l y t o O c t o b e r d r o p p i n g t o  m a i n t a i n e d d u r i n g t h e i n t e r v e n i n g months.  (39%)  A  From a l a r g e r s a m p l e o f brown b e a r s i n Y u g o s l a v i a ,  R o t h and Huber May  levels  in grizzly  bear  w i t h p o s t - and p r e - d e n n i n g p e r i o d s b e i n g This trend  i s i n accordance with  the  b e a r s ' a n n u a l p h y s i o l o g i c a l phases p r o p o s e d by N e l s o n e t a l . (1983).  The  post-denning hypophagic  by a p e r s i s t e n c e denning  f o r up  The  i s characterized  i n the b i o c h e m i c a l changes a s s o c i a t e d  t o 3 weeks a f t e r d e n  e n t e r a p e r i o d o f normal a c t i v i t y , activity.  period  emergence. f o l l o w e d by  Bears  t i m i n g o f hyperphagic b e h a v i o r can  o f abundant, h i g h q u a l i t y  be  grizzlies  be d i f f i c u l t .  in fall  The  the  food resources.  Assessing the extent of the hyperphagic period b u d g e t d a t a may  then  hyperphagic  e x p e c t e d t o v a r y between g e o g r a p h i c a r e a s r e l a t i v e t o availability  with  low a c t i v i t y  o b s e r v e d by S c h l e y e r (1983),  from  activity  levels were  of  106  a t t r i b u t e d t o them f e e d i n g on u n g u l a t e s . to  be s i g n i f i c a n t l y  l e s s a c t i v e when u t i l i z i n g  t h a n when u s i n g o t h e r f o o d s ingestion and  B e a r s were  ( S c h l e y e r 1983),  found  carcasses  however,  r a t e s b y b e a r s a r e h i g h when f e e d i n g o n c a r c a s s e s  i t i s u n c l e a r i f t h e r e was a r e d u c t i o n i n e n e r g e t i c  i n t a k e a s s o c i a t e d w i t h t h e lower a c t i v i t y In  this  study, expected trends i n seasonal  l e v e l s were f o r s p r i n g and f a l l seasons  levels.  t o be t h e l e a s t  due t o p o s t - d e n n i n g h y p o p h a g i c  high use o f c a r r i o n were e x p e c t e d  i n both seasons.  i n early  a c t i v i t y phase.  activity active  b e h a v i o r , and t h e Higher a c t i v i t y  levels  summer a s b e a r s e n t e r e d t h e n o r m a l  The b e r r y season  abundant, h i g h q u a l i t y  represented a period of  food and r e s u l t a n t  hyperphagic  b e h a v i o r c o u p l e d w i t h l o n g h a n d l i n g t i m e s was e x p e c t e d t o increase a c t i v i t y levels  levels.  over seasons  and over e a r l y  activity  i n early  summer a n d t h e b e r r y s e a s o n .  summer a n d t h e b e r r y s e a s o n ,  s p r i n g and f a l l ,  appeared  from  consistent level  early  Higher  a s compared  t o be a c o n s i s t e n t t r e n d o v e r  sex-age c l a s s e s and i n d i v i d u a l s . levels  trends i n a c t i v i t y  were met f o r a n a l y s e s b o t h o v e r a l l 4  seasons,  to  Expected  An i n c r e a s e i n a c t i v i t y  summer t o t h e b e r r y s e a s o n was n o t  o v e r sex-age c l a s s e s o r i n d i v i d u a l s .  o f sex-age c l a s s e s ,  m a l e s showed t h e p r e d i c t e d  o n l y subadult females increase i n activity.  t h e i n t e r a c t i o n between i n d i v i d u a l s and seasons a n a l y s i s over e a r l y  summer a n d t h e b e r r y s e a s o n ,  that while individual  subadult females  responded  At the and a d u l t However, i n the indicated similarly,  107  a d u l t males d i d not. from  36.9%  i n early  M a l e #25's a c t i v i t y summer t o 73.0%  w h i l e m a l e #65's a c t i v i t y early  summer t o 25.6%  activity  l e v e l s was  foraging  strategies,  level  level  i n the b e r r y season,  d e c r e a s e d f r o m 41.9%  i n the b e r r y season.  accompanied a s m a l e #65  increased  by  This contrast i n  individual  utilized  in  differences i n  riparian  river  bottoms i n the b e r r y season r a t h e r than h i g h e l e v a t i o n b e r r y fields  like  other bears.  f r e q u e n c y dependent and to  differences  as a consequence, individuals  classes.  or  i n foraging strategies  the importance  i s not r e l a t i v e l y  size  competitors  t h e same among  s u b o r d i n a t e c l a s s o f b e a r s , and  sex-age  i n d i v i d u a l s , may  i s n o t d e f e n d a b l e by  have t h e g r e a t e s t e f f e c t  and  are l i k e l y  f o r food resources, l o s s of a large,  resource that  exist  of the berry resource  S i n c e s u b a d u l t f e m a l e s a r e t h e most s o c i a l  physically  temporal  This suggests that  poor  abundant,  dominant  on s u b a d u l t  females. Pooled over e a r l y  summer and t h e b e r r y s e a s o n ,  t e n d e d t o be more a c t i v e t h a n m a l e s , be more a c t i v e t h a n a d u l t s . a c t i v i t y budgets, general tendency  subadults tended  (1989) f o u n d  f e m a l e s , e v e n when r e p r o d u c t i v e l y or l a c t a t i n g  a  Size-related differences  less  active  f e m a l e s were e x c l u d e d  from  in selectivity,  the case of large herbivores, l a r g e r b i t e  more r a p i d  to  r e v i e w o f mammalian  a c r o s s s p e c i e s f o r a d u l t m a l e s t o be  m a l e s and p r e g n a n t  in  In t h e i r  B u n n e l l and H a r e s t a d  a c t i v e than adult  the analyses.  and  females  i n g e s t i o n r a t e s , were s u g g e s t e d a s  size  and  permitting  possible  108 contributing  factors to this  size-related  differences  r e s o u r c e s may  result.  b e more i m p o r t a n t  subadults.  1985)  by  feeders,  females,  lost  B u n n e l l and  i f they  a l s o be  Harestad  could not  between a d u l t s  to their  f o r growth, (Bunnell  that  larger  high a c t i v i t y  berry  season  may  be  bears  foraging i n the large berry f i e l d s  size  level  of bear  consistent with t h i s  #25  for  observation i f of the  Flathead of  food  quality. While  summer a n d  results  f o r sex  the b e r r y season  and  l e v e l s by  age  met  p r i m a r i l y d e p e n d e n t on t h e  level  of subadult  Activity  l e v e l s pooled  c l a s s e s over the  i n f l u e n c e o f low  females  summer and  a t t r i b u t a b l e t o sex-age c l a s s e f f e c t s .  sexes  activity on t h e  i n the berry  over a l l 4 seasons  a c t i v e p o r t i o n of the year,  early  e x p e c t a t i o n s , i t appeared  a d u l t males i n the e a r l y  activity  both  would  i n the  V a l l e y h a v e e q u a l a c c e s s t o t h e same d i s t r i b u t i o n  be  time  secure p r o f i t a b l e patches  The  and  ( e . g . , mast)  (1989) c o n c l u d e d  themselves.  patch  food  important.  among s u p e r c o n c e n t r a t e  a d v a n t a g e s a c c r u i n g t o m a l e s due be  and  foraging inefficiencies  s u b a d u l t s may  Interestingly,  bears,  i n explaining both  Increased e n e r g e t i c requirements  coupled with p o t e n t i a l Gillingham  of  i n access to high q u a l i t y  d i f f e r e n c e s b e t w e e n m a l e s and and  In the case  season.  showed no  Over t h e i r  a d u l t females  and  high  trends entire  subadults  were a c t i v e a b o u t t h e same amount o f  time.  of  to  109  LITERATURE CITED A r c h i b a l d , W. R., R. E l l i s , a n d A. N. H a m i l t o n . 1987. Responses o f g r i z z l y b e a r s t o l o g g i n g t r u c k t r a f f i c i n the K i m s q u i t R i v e r v a l l e y , B r i t i s h Columbia. I n t . Conf. B e a r R e s . a n d Manage. 7:251-257. Aune, K., T. S t i v e r s , a n d M. M a d e l . 1984. R o c k y M o u n t a i n f r o n t g r i z z l y b e a r m o n i t o r i n g a n d i n v e s t i g a t i o n . Mont. Dep. F i s h , W i l d l . a n d P a r k s . H e l e n a , M o n t a n a . 239 p p . Aune, K., a n d T. S t i v e r s . 1985. E c o l o g i c a l s t u d i e s o f t h e g r i z z l y b e a r i n t h e P i n e B u t t e P r e s e r v e . Mont. Dep. F i s h , W i l d l . a n d P a r k s . H e l e n a , M o n t a n a . 154 p p . Aune, K., a n d W. Kasworm. 1989. F i n a l r e p o r t : e a s t f r o n t g r i z z l y b e a r s t u d y . Mont. Dep. F i s h , W i l d l . a n d P a r k s . H e l e n a , M o n t a n a . 332 pp. B j a r v a l l , A., a n d F. S a n d e g r e n . 1987. E a r l y e x p e r i e n c e s w i t h the f i r s t r a d i o - m a r k e d brown b e a r s i n Sweden. I n t . C o n f . B e a r R e s . a n d Manage. 7:9-12. Boy,  V., a n d P. Duncan. 1979. T i m e - b u d g e t s o f Camargue h o r s e s . 1. D e v e l o p m e n t a l c h a n g e s i n t h e t i m e - b u d g e t s o f f o a l s . B e h a v i o u r 71:187-202.  B u n n e l l , F. L . , a n d M. P. G i l l i n g h a m . 1985. F o r a g i n g b e h a v i o r : dynamics o f d i n i n g o u t . I n B i o e n e r g e t i c s o f w i l d h e r b i v o r e s . E d i t e d by. R. J . H u d s o n a n d R. G. W h i t e . CRC P r e s s , B o c a R a t o n , F l o r i d a , p p . 53-79. B u n n e l l F. L . , a n d A. S. H a r e s t a d . 1989. A c t i v i t y b u d g e t s a n d b o d y w e i g h t i n mammals: how s l o p p y c a n mammals b e ? C u r r . Mammal. 2:245-305. C l e v e n g e r , A. P., F. J . P u r r o y , a n d M. R. P e l t o n . 1990. Movement a n d a c t i v i t y p a t t e r n s o f a E u r o p e a n brown b e a r i n t h e C a n t a b r i a n Mountains, S p a i n . I n t . Conf. Bear. R e s . a n d Manage. 8:205-211.  E b e r h a r d t , L . L . 1977. " O p t i m a l " management p o l i c i e s f o r m a r i n e mammals. W i l d l . S o c . B u l l . 5:162-169.  110 G e b h a r d , J . G. 1982. A n n u a l a c t i v i t i e s a n d b e h a v i o r g r i z z l y b e a r (Ursus a r c t o s ) f a m i l y i n n o r t h e r n M.Sc. T h e s i s . U n i v . A l a s k a , F a i r b a n k s , A l a s k a . G e i s t , V. 1971. B i g h o r n 136:61.  sheep b i o l o g y . W i l d l .  of a Alaska. 218 p p .  S o c . News.  G r i e g , M., a n d J . B j e r r i n g . 1978. UBC GENLIN - a g e n e r a l l e a s t s q u a r e s a n a l y s i s o f v a r i a n c e program. Computing Centre. Univ. o f B r i t i s h Columbia, Vancouver, B r i t i s h C o l u m b i a . 48 p p . G u n t h e r , K. A. 1990. V i s i t o r i m p a c t o n g r i z z l y b e a r a c t i v i t y i n P e l i c a n V a l l e y , Yellowstone N a t i o n a l Park. I n t . C o n f . B e a r R e s . a n d Manage. 8:73-78. H a r d i n g , L . , a n d J . A. Nagy. 1980. R e s p o n s e s o f g r i z z l y b e a r s t o h y d r o c a r b o n e x p l o r a t i o n on R i c h a r d s I s l a n d , N o r t h w e s t T e r r i t o r i e s , Canada. I n t . Conf. Bear Res. and Manage. 4:277-280. H a r t i n g , A. L . 1985. R e l a t i o n s h i p s b e t w e e n a c t i v i t y p a t t e r n s and f o r a g i n g s t r a t e g i e s o f Y e l l o w s t o n e g r i z z l y b e a r s . M.Sc. T h e s i s , Mont. S t a t e U n i v . , Bozeman, M o n t a n a . 103 pp.  H e c h t e l , J . L. 1985. A c t i v i t y a n d f o o d h a b i t s o f b a r r e n g r o u n d g r i z z l y b e a r s i n A r c t i c A l a s k a . M.Sc. T h e s i s . U n i v . Montana, M i s s o u l a , M o n t a n a . 74 p p . H i c k s , C. R. 1982. F u n d a m e n t a l c o n c e p t s i n t h e d e s i g n o f e x p e r i m e n t s . 3 r d e d n . H o l t , R i n e h a r t a n d W i n s t o n , New Y o r k , New Y o r k . 425 p p . J a c o b s e n , N. K., a n d A. D. W i g g i n s . 1982. T e m p o r a l a n d p r o c e d u r a l i n f l u e n c e s on a c t i v i t y e s t i m a t e d by t i m e s a m p l i n g . J . W i l d l . Manage. 46:313-324. K n i g h t , R. R. 1980. B i o l o g i c a l c o n s i d e r a t i o n s i n t h e d e l i n e a t i o n o f c r i t i c a l h a b i t a t . I n t . Conf. Bear Res. and Manage. 4:1-3.  Ill M a t t s o n , D. J . , R. R. K n i g h t , a n d B. M. B l a n c h a r d . 1987. The e f f e c t s o f d e v e l o p m e n t s a n d p r i m a r y r o a d s on g r i z z l y b e a r h a b i t a t u s e i n Y e l l o w s t o n e N a t i o n a l P a r k , Wyoming. I n t . C o n f . B e a r R e s . a n d Manage. 7:259-273. M c L e l l a n , B. N. 1989. D y n a m i c s o f a g r i z z l y b e a r p o p u l a t i o n during a period of i n d u s t r i a l resource extraction. I I I . N a t a l i t y a n d r a t e o f i n c r e a s e . Can. J . Z o o l . 67:18651868. M c L e l l a n , B. N., a n d D. M. S h a c k l e t o n . 1988. G r i z z l y b e a r s and r e s o u r c e - e x t r a c t i o n i n d u s t r i e s : e f f e c t s o f r o a d s on b e h a v i o u r , h a b i t a t u s e a n d demography. J . A p p l . E c o l . 25:451-460. M c L e l l a n , B. N., a n d D. M. S h a c k l e t o n . 1989a. G r i z z l y b e a r s and r e s o u r c e - e x t r a c t i o n i n d u s t r i e s : h a b i t a t displacement i n response t o s e i s m i c e x p l o r a t i o n , timber h a r v e s t i n g a n d r o a d m a i n t e n a n c e . J . A p p l . E c o l . 26:371380. M c L e l l a n , B. N., a n d D. M. S h a c k l e t o n . 1989b. I m m e d i a t e r e a c t i o n s o f g r i z z l y b e a r s t o human a c t i v i t i e s . W i l d l . S o c . B u l l . 17:269-274. N e l s o n , R. A . , G. E . F o l k , E . w. P f e i f f e r , J . J . C r a i g h e a d , C. J . J o n k e l , a n d D. L . S t e i g e r . 1983. B e h a v i o r , b i o c h e m i s t r y , and h i b e r n a t i o n i n b l a c k , g r i z z l y , and p o l a r b e a r s . I n t . C o n f . B e a r Res a n d Manage. 5:284-290. P h i l l i p s , M. K. 1987. B e h a v i o r a n d h a b i t a t u s e o f g r i z z l y b e a r s i n n o r t h e a s t e r n A l a s k a . I n t . Conf. Bear Res. and Manage. 7:159-167. Roth,  H. U. 1983. D i e l a c t i v i t y o f a r e m n a n t p o p u l a t i o n o f E u r o p e a n brown b e a r s . I n t . C o n f . B e a r R e s . a n d Manage. 5:223-229.  Roth,  H. U., a n d D. H u b e r . 1986. D i e l a c t i v i t y o f brown b e a r s i n P l i t v i c e Lakes N a t i o n a l Park, Y u g o s l a v i a . I n t . C o n f . B e a r R e s . a n d Manage. 6:177-181.  112 R o t h , H. U., a n d D. H u b e r . 1987. P a t t e r n s o f amount o f a c t i v i t y o f brown b e a r s i n Y u g o s l a v i a . A b s t r . f r o m T h i r d Congr. o f t h e C r o a t i a n B i o l . S o c , M a l i L o s i n j , Yugoslavia. S c h l e y e r , B. 0. 1983. A c t i v i t y p a t t e r n s o f g r i z z l y b e a r s i n t h e Y e l l o w s t o n e e c o s y s t e m and t h e i r r e p r o d u c t i v e b e h a v i o r , p r e d a t i o n and u s e o f c a r r i o n . M.Sc. T h e s i s , Mont. S t a t e U n i v . , Bozeman, M o n t a n a . 130 pp. S e r v h e e n , C. 1981. G r i z z l y b e a r e c o l o g y a n d management i n t h e M i s s i o n M o u n t a i n s , M o n t a n a . Ph.D. T h e s i s , U n i v . o f M o n t a n a , M i s s o u l a , M o n t a n a . 139 pp. S i z e m o r e , D. L . 1980. F o r a g i n g s t r a t e g i e s o f t h e g r i z z l y b e a r a s r e l a t e d t o i t s e c o l o g i c a l e n e r g e t i c s . M.Sc. T h e s i s , U n i v . o f Montana, M i s s o u l a , M o n t a n a . 67 pp. S o k a l , R. R., a n d F. J . R o h l f . 1981. B i o m e t r y . 2nd e d n . H. Freeman a n d Co., New Y o r k , New Y o r k . 859 pp.  W.  CHAPTER 5: Human a c t i v i t i e s The  potential  OVERALL CONCLUSIONS  can a f f e c t  c a n be c l a s s i f i e d  impacts.  Direct  bear  impacts  i n many ways.  control,  broadly into direct  t e n d t o be immediate,  i n bear m o r t a l i t i e s  impacts  bears  n e g a t i v e c o n s e q u e n c e s o f human a c t i v i t i e s on  grizzlies  result  grizzly  from  hunting,  extreme, and  poaching,  and a c c i d e n t s a l o n g roadways.  a r e a s s o c i a t e d with environmental themselves  and i n d i r e c t  Indirect  modifications that  ultimately  express  the energy  status o f t h e population, o r i n both.  Destruction or alteration  as changes i n t h e b e h a v i o r , i n  o f important  habitats are frequent  c o n s e q u e n c e s o f human s e t t l e m e n t , a g r i c u l t u r e , extraction. costly  Disturbance  flight  responses  h a b i t a t s c l o s e t o areas alter their daily severe  enough,  population size The impacts  by b e a r s ,  i n bears  o f human a c t i v i t y ,  impacts  and i n a c t i v i t y .  If  may l e a d t o d e c l i n e s i n  and p r o d u c t i v i t y .  a p o p u l a t i o n ' s s t a t u s i s time and d i f f i c u l t .  unknown p r i o r t o o p e n i n g  and i n d i r e c t However,  consuming,  Frequently, population status i s an a r e a  f o rresource  development,  p o p u l a t i o n s c a n undergo l a r g e d e c l i n e s b e f o r e  demonstratively apparent Recovery i s slow, species l i k e  avoiding  o r cause bears t o  a r e m e a s u r e d i s p o p u l a t i o n demography.  expensive,  and  result  u l t i m a t e y a r d s t i c k by which d i r e c t  determining  and r e s o u r c e  f r o m human i n t r u s i o n may r e s u l t i n  rhythms o f a c t i v i t y  indirect  problem  that declines are occurring.  i fnot impossible.  the grizzly,  i t is  Conservation of  which have low r e p r o d u c t i v e  114  potential,  will  occurrence  and p r o b a b l e  and  t o assess the  extent  of population  t o m o d i f y human a c t i v i t i e s  i f necessary.  Presently, in  d e p e n d on o u r a b i l i t y  assessing  declines early,  a c t i v i t y parameters a r e o f l i m i t e d  indirect  i m p a c t s o f human a c t i v i t i e s  utility on  bears.  T h i s study  i n d i c a t e s t h a t b e a r s p r e f e r t o u s e d a y l i g h t , and  apparently  will  activity the  t o do s o i n a r e a s  i s p r e d i c t a b l e and l o c a l i z e d .  permit  effect.  However, n o c t u r n a l  where human  The dense c o v e r o f  low e l e v a t i o n p o r t i o n s o f t h e F l a t h e a d  mitigating  also likely  a n d h e n c e , r e d u c e some i n d i r e c t  activities.  Modifications i n behavior  had a  a c t i v i t y b y b e a r s may  the exploitation of habitats unavailable  daylight  not  continue  during  i m p a c t s o f human  of a population are  i n themselves i n d i c a t i o n s o f reduced energetic s t a t u s o r  population  decline.  between g r i z z l i e s  i n the Flathead  follow a nocturnal difference daylight  The s i m i l a r i t y  activity  i n the a b i l i t y  o r darkness.  i n activity  budgets  and o t h e r p o p u l a t i o n s  schedule  would suggest  that  little  o f bears t o e x p l o i t resources i n  However,  such comparisons a r e  confounded by d i f f e r e n c e s i n h a b i t a t q u a l i t y and predominate food first  types,  and by a l a c k o f v i t a l  reproduction,  population  density)  environment.  litter that  size,  information  interbirth  ( e . g . age o f  intervals,  i n t e g r a t e s t h e animal with i t s  A p p e n d i x 1.  Bear No.  D a t a t o t a l s (sum o f a c t i v e and i n a c t i v e b o u t d u r a t i o n s ) and s e a s o n , i n d e c i m a l h o u r s .  Age c l a s s , s e x , and reproductive status  soring  e a r l y summer  by b e a r ,  berrv  year,  season  1984 46 47 48  s u b a d u l t male s u b a d u l t male subadult female  45.98  37.60 67.03 60.72  1985 25 36 38 46 47 48  — —  a d u l t male subadult female subadult female s u b a d u l t male s u b a d u l t male subadult female  6.45 — 80.82  — 15.10  142.67 37.00  19.88 4.52 49.99  8.72  1986 18 36 38 46 48  a d u l t female, y e a r l i n g s a d u l t female, C0YS subadult female a d u l t male subadult female a  4.13 43.87  41.48 21.90 17.95 10.42 24.25  Appendix Bear No.  1. C o n t i n u e d . Age c l a s s , s e x , and reproductive status  spring  early  summer  berry  season  fall  1987 25 36 38 45 46 48 58 63 64 65 67 68 69  60.65 135.67 151.32  a d u l t male a d u l t female, y e a r l i n g s a d u l t female, alone a d u l t female, alone a d u l t male a d u l t female, alone a d u l t female, alone s u b a d u l t male s u b a d u l t male a d u l t male subadult female subadult female s u b a d u l t male  38.93 125.75 31.38 106.68 121.72 146.15 90.85 44.80 38.82  1988 25 36 38 48 63 65 67 68  a  a d u l t male a d u l t female, alone a d u l t f e m a l e , COYS a d u l t female, alone s u b a d u l t male a d u l t male subadult female subadult female b  COYS = c u b s - o f - t h e - y e a r . a c c o m p a n i e d by 2 - y e a r - o l d s i n s p r i n g .  27.40 118.93 66.92 35.32 83.60 25.23 53.88 95.77  68.03 52.60 197.48 128.15 3.02 98. 60 62.20  150.47 93.45 140.65 52.43  53.87 57.28 85.55  93.37 19.23 201.53 167.25 100.28 100.83 123.12 62.57  50. 62 44.57 56.43 4.55 46.57 84 .73  

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
China 26 3
Germany 9 1
United States 6 1
Canada 3 0
Romania 1 1
Republic of Korea 1 0
Croatia 1 1
City Views Downloads
Unknown 12 2
Kunming 8 0
Shenzhen 4 3
Beijing 4 0
Ashburn 3 0
Hangzhou 3 0
Mountain View 2 0
Shanghai 2 0
Tianjin 1 0
Changsha 1 0
Guiyang 1 0
Toronto 1 0
Albany 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}
Download Stats

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0098597/manifest

Comment

Related Items