UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The use of the kelp, Macrocystis integrifolia, as a soil amendment and foliar spray upon selected crops Temple, Wayne Douglas 1989

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1989_A1 T45.pdf [ 13.06MB ]
Metadata
JSON: 831-1.0098239.json
JSON-LD: 831-1.0098239-ld.json
RDF/XML (Pretty): 831-1.0098239-rdf.xml
RDF/JSON: 831-1.0098239-rdf.json
Turtle: 831-1.0098239-turtle.txt
N-Triples: 831-1.0098239-rdf-ntriples.txt
Original Record: 831-1.0098239-source.json
Full Text
831-1.0098239-fulltext.txt
Citation
831-1.0098239.ris

Full Text

THE USE OF THE KELP, M a c r o c y s t i s i n t e g r i f o 1 i a , AS A SOIL AMENDMENT AND FOLIAR SPRAY UPON SELECTED CROPS by Wayne Douglas Temple B . S c , The U n i v e r s i t y of B r i t i s h Columbia A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY i n THE FACULTY OF GRADUATE STUDIES Department of S o i l S c i e n c e U n i v e r s i t y of B r i t i s h Columbia We a c c e p t t h i s t h e s i s as c o n f o r m i n g to the r e q u i r e d s t a n d a r d THE UNIVERSITY OF BRITISH COLUMBIA May 1989 (f ) Wayne Douglas Temple In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department The University of British Columbia Vancouver, Canada DE-6 (2/88) ABSTRACT In t h i s i n v e s t i g a t i o n the c o a s t a l B.C. k e l p , M a c r o c y s t i s i n t e g r i f o l i a , was e v a l u a t e d f o r i t s p o t e n t i a l use as a s o i l amendment and f o l i a r s p r a y i n cr o p p r o d u c t i o n . The k e l p s o i l amendment was a p p l i e d f r e s h to a f i n e -t e x t u r e d d e l t a i c s o i l w i t h a p p l i c a t i o n s of 0, 7.5, 15, 30, 60 and 120 t h a - 1 . S o i l c h e m i c a l , p h y s i c a l , crop growth and n u t r i t i o n a l r e s p o n s e s were c h a r a c t e r i z e d o v e r a two y e a r p e r i o d . Beans ( P h a s e o l u s v u l g a r i s ) were p l a n t e d i n the f i r s t y e a r and peas (P i sum s a t i vum) were p l a n t e d i n the second y e a r . P l a n t growth r e s p o n s e s i n c l u d e d r e d uced y i e l d s , emergence and f l o w e r i n g w i t h the 120 t h a - 1 a p p l i c a t i o n and i n c r e a s e d p l a n t m o i s t u r e c o n t e n t w i t h i n c r e a s i n g k e l p a p p l i c a t i o n s . N u t r i t i o n a l r e s p o n s e s i n c l u d e d i n c r e a s e d p l a n t e l e m e n t a l c o n c e n t r a t i o n s and uptakes o f Na, K and Cl w i t h i n c r e a s i n g s o i l a p p l i c a t i o n s of k e l p . S o i l r e s p o n s e s to i n c r e a s i n g a p p l i c a t i o n s o f k e l p i n c l u d e d sharp i n c r e a s e s i n s o i l w a t e r - s o l u b l e s a l t s , Cl , N0 3-N, e x c h a n g e a b l e K and Na, and a d e c l i n e i n s o i l pH. Subsequent greenhouse e x p e r i m e n t s s u g g e s t e d t h a t p h y t o t o x i c e f f e c t s from the 120 t h a - 1 k e l p a p p l i c a t i o n s were p r i m a r i l y - i i -i n d u c e d by h i g h l e v e l s of s o l u b l e s a l t s , but an unknown p h y t o t o x i c s u b s t a n c e may be i m p l i c a t e d . S o i l a e r a t i o n i n c r e a s e d w i t h k e l p a p p l i c a t i o n up to 60 t h a - 1 , but d e c l i n e d w i t h the 120 t h a " 1 a p p l i c a t i o n . The use of KL i n t e q r i f o l i a as a p r o c e s s e d c o n c e n t r a t e f o r s u b s equent d i l u t i o n w i t h water and f o l i a r a p p l i c a t i o n (2 and 4 L h a - 1 ) to the bean (P^ v u l g a r i s ) c r o p r e s u l t e d i n i n c r e a s e d h a r v e s t a b l e bean y i e l d s i n each o f two f i e l d s e a s o n s . E v i d e n c e i s p r e s e n t e d which s u p p o r t s the t h e o r y t h a t growth p r o m o t i n g phytohormone-1ike s u b s t a n c e s e x t r a c t e d from the k e l p may, i n p a r t , be a c t i v e c o n s t i t u e n t s o f the k e l p c o n c e n t r a t e . F i e l d crop n u t r i t i o n a l r e s p o n s e s to k e l p f o l i a r s p r a y s i n c l u d e d reduced shoot e l e m e n t a l c o n c e n t r a t i o n s , but i n c r e a s e d u p t a k e s , s u g g e s t i n g g r e a t e r d r y m a t t e r a c c u m u l a t i o n per u n i t e l e m e n t . Crop growth and n u t r i t i o n a l r e s p o n s e s between growing seasons were not c o n s i s t e n t . A greenhouse e x p e r i m e n t d e m o n s t r a t e d t h a t many of the k e l p f o l i a r s p r a y e f f e c t s upon c r o p growth, development and n u t r i t i o n c o u l d be dependent on s o i l m o i s t u r e r e g i m e s . - i i i -TABLE OF CONTENTS Page ABSTRACT i i LIST OF TABLES x i i i LIST OF FIGURES xv ACKNOWLEDGEMENTS . x v i i CHAPTER ONE: LITERATURE REVIEW 1 1.1 H i s t o r i c a l Background 1 1.2 Types of K e l p A p p l i c a t i o n s i n A g r i c u l t u r a l Crop P r o d u c t i on 5 1.2.1 S o i l Amendment 5 1.2.2 Crop F o l i a r S p r a y s 6 1.3 Overview of E x p e r i m e n t a l R e s u l t s 8 1.3.1 Kelp as a S o i l Amendment 8 1.3.2 E f f e c t s of K e l p E x t r a c t s and C o n c e n t r a t e s on Seeds 11 1.3.3 E f f e c t s o f Kelp E x t r a c t s on S h e l f - L i f e of F r u i t 12 1.3.4 E f f e c t s of K e l p F o l i a r S p r a y s on Crop Growth, Development and N u t r i t i o n 14 1.3.5 A c t i v e C o n s t i t u e n t s of K e l p F o l i a r S p r a y s ..21 - i v -TABLE OF CONTENTS Page 1.4 Summary • • • • 27 CHAPTER TWO: KELP FROM BRITISH COLUMBIA COASTAL WATERS FOR USE IN AGRICULTURAL CROP PRODUCTION 30 2.1 I n t r o d u c t i o n 30 2.2 B i o l o g y of the Ke l p M a c r o c y s t i s i n t e g r i f o l i a .... 34 2.3 H a r v e s t i n g S t r a t e g y , Government C o n t r o l s and E n v i r o n m e n t a l and S o c i a l I m p l i c a t i o n s 41 CHAPTER THREE: THE KELP, M a c r o c y s t i s i n t e g r i f o l i a , AS A SOIL AMENDMENT 46 3.1 E f f e c t s o f K e l p ( M a c r o c y s t i s i n t e g r i f o l i a ) on S o i l C hemical P r o p e r t i e s and Crop Responses 46 3.1.1 I n t r o d u c t i o n 46 3.1.2 M a t e r i a l s and Methods 46 3.1.3 R e s u l t s 53 3.1.4 Di s c u s s i o n 63 3.1.5 Concl u s i ons 69 - v -TABLE OF CONTENTS Page 3.2 The S h o r t - T e r m E f f e c t s o f F r e s h K e l p ( M a c r o c y s t i s i n t e q r i f o l i a ) on P h y s i c a l P r o p e r t i e s of a F i n e - T e x t u r e d S o i l 71 3.2.1 I n t r o d u c t i o n 71 3.2.2 M a t e r i a l s and Methods 72 3.2.3 R e s u l t s 74 3.2.4 D i s c u s s i o n 76 3.3 Induced S a l t T o x i c i t y to Beans w i t h K e l p ( M a c r o c y s t i s i n t e g r i f o l i a ) S o i l Amendments 78 3.3.1 I n t r o d u c t i o n 78 3.3.2 M a t e r i a l s and Methods 79 3.3.3 R e s u l t s 84 3.3.4 D i s c u s s i o n 92 3.3.5 Concl u s i o n s 95 CHAPTER FOUR: THE KELP, M a c r o c y s t i s i n t e g r i f o 1 i a . AS A CROP FOLIAR SPRAY 96 4.1 E f f e c t s o f Two Kelp ( M a c r o c y s t i s i n t e g r i f o l i a and E c k l o n i a maxima) F o l i a r S p r a y s on Bean Crop Growth and N u t r i t i o n 96 4.1.1 I n t r o d u c t i o n 96 - v i -TABLE OF CONTENTS Page 4.1.2 M a t e r i a l s and Methods - 98 4.1.3 R e s u l t s and D i s c u s s i o n I l l 4.1.4 C o n c l u s i o n s 128 4.2 E f f e c t s of Two Kelp ( M a c r o c y s t i s i n t e g r i f o l i a and E c k l o n i a maxima) C o n c e n t r a t e s on Bean Growth and N u t r i t i o n Under V a r y i n g S o i l M o i s t u r e Regimes ... 130 4.2.1 I n t r o d u c t i o n 130 4.2.2 M a t e r i a l s and Methods 132 4.2.3 R e s u l t s 136 4.2.4 D i s c u s s i o n 148 4.2.5 C o n c l u s i o n s 155 SUMMARY 157 LITERATURE CITED 160 APPENDIX 1 1981 Kelp s o i l amendment a n a l y s i s o f v a r i a n c e c a l c u l a t e d MSE, means and F - v a l u e s f o r bean growth r e s p o n s e s 172 APPENDIX 2 1982 Ke l p s o i l amendment a n a l y s i s of v a r i a n c e c a l c u l a t e d MSE, means and F - v a l u e s f o r pea growth r e s p o n s e s 173 - v i i -TABLE OF CONTENTS Page APPENDIX 3 1981 K e l p s o i l amendment a n a l y s i s of v a r i a n c e c a l c u l a t e d MSE, means and F - v a l u e s f o r bean e l e m e n t a l c o n c e n t r a t i o n s 174 APPENDIX 4 1981 K e l p s o i l amendment a n a l y s i s of v a r i a n c e c a l c u l a t e d MSE, means and F - v a l u e s f o r bean e l e m e n t a l uptake 175 APPENDIX 5 1982 K e l p s o i l amendment a n a l y s i s of v a r i a n c e c a l c u l a t e d MSE, means and F - v a l u e s f o r pea e l e m e n t a l c o n c e n t r a t i o n 176 APPENDIX 6 1982 K e l p s o i l amendment a n a l y s i s of v a r i a n c e c a l c u l a t e d MSE, means and F - v a l u e s f o r pea e l e m e n t a l uptake 177 APPENDIX 7 1981 Kelp s o i l amendment a n a l y s i s o f v a r i a n c e c a l c u l a t e d MSE, means and F - v a l u e s f o r s o i l c h e m i c a l p r o p e r t i e s 178 APPENDIX 8 1982 K e l p s o i l amendment a n a l y s i s of v a r i a n c e c a l c u l a t e d MSE, means and F - v a l u e s f o r s o i l c h e m i c a l p r o p e r t i e s 179 APPENDIX 9 1981 and 1982 Kelp s o i l amendment a n a l y s i s of v a r i a n c e c a l c u l a t e d mean square terms, means and F - v a l u e s f o r f i e l d s o i l s t r u c t u r e e f f e c t s 180 - v i i i -TABLE OF CONTENTS Page APPENDIX 10 K e l p s o i l amendment greenhouse e x p e r i m e n t I: K e l p a p p l i c a t i o n * i n c u b a t i o n p e r i o d . A n a l y s i s of v a r i a n c e c a l c u l a t e d MSE and F - v a l u e s f o r p l a n t growth and s o i l c h e m i c a l e f f e c t s 181 APPENDIX 11 Kelp s o i l amendment greenhouse e x p e r i m e n t I: K e l p a p p l i c a t i o n * i n c u b a t i o n p e r i o d . C u r v i l i n e a r e f f e c t s and c a l c u l a t e d mean v a l u e s f o r p l a n t growth and s o i l c h e m i c a l e f f e c t s 182 APPENDIX 12 K e l p s o i l amendment greenhouse e x p e r i m e n t I I : K e lp a p p l i c a t i o n * s o i l l e a c h i n g . A n a l y s i s of v a r i a n c e c a l c u l a t e d MSE and F - v a l u e s f o r p l a n t growth and s o i l c h e m i c a l e f f e c t s 183 APPENDIX 13 K e l p s o i l amendment greenhouse e x p e r i m e n t I I : K e l p a p p l i c a t i o n * s o i l l e a c h i n g . C u r v i l i n e a r s i g n i f i c a n t e f f e c t s and c a l c u l a t e d mean v a l u e s f o r p l a n t growth and s o i l c h e m i c a l e f f e c t s 184 - i x -TABLE OF CONTENTS Page APPENDIX 14 1983 k e l p f o l i a r s p r a y a n a l y s i s of v a r i a n c e and c o v a r i a n c e c a l c u l a t e d mean s q u a r e s , F - v a l u e s and t r e a t m e n t mean v a l u e s f o r bean cr o p growth r e s p o n s e s 185 APPENDIX 15 1983 k e l p f o l i a r s p r a y a n a l y s i s o f v a r i a n c e and c o v a r i a n c e c a l c u l a t e d mean s q u a r e , F - v a l u e s and mean and a d j u s t e d mean v a l u e s f o r bean crop l e a f & stem and pod e l e m e n t a l c o n c e n t r a t i o n 186 APPENDIX 16 1983 k e l p f o l i a r s p r a y a n a l y s i s o f v a r i a n c e a n d , c o v a r i a n c e c a l c u l a t e d mean s q u a r e s , F - v a l u e s and mean or a d j u s t e d mean v a l u e s f o r bean crop l e a f & stem and pod e l e m e n t a l uptake 187 APPENDIX 17 1984 k e l p f o l i a r s p r a y a n a l y s i s of v a r i a n c e c a l c u l a t e d mean s q u a r e s , F - v a l u e s and t r e a t m e n t mean v a l u e s f o r bean growth r e s p o n s e s 188 APPENDIX 18 1984 k e l p f o l i a r s p r a y a n a l y s i s of v a r i a n c e and c o v a r i a n c e c a l c u l a t e d mean s q u a r e s , F - v a l u e s and t r e a t m e n t mean or a d j u s t e d mean f o r bean l e a f & stem and pod e l e m e n t a l c o n c e n t r a t i o n s 189 - x -TABLE OF CONTENTS Page APPENDIX 19 1984 k e l p f o l i a r s p r a y a n a l y s i s o f v a r i a n c e and c o v a r i a n c e c a l c u l a t e d mean s q u a r e s , F - v a l u e s and t r e a t m e n t mean f o r bean l e a f & stem and pod e l e m e n t a l uptake 190 APPENDIX 20 1983 and 1984 k e l p f o l i a r s p r a y f i e l d t r i a l s s o i l a n a l y s i s of b l o c k and p l o t c o m p o s i t e s a t s e e d i n g and h a r v e s t 191 APPENDIX 21 K e l p f o l i a r s p r a y greenhouse e x p e r i m e n t : S o i l m o i s t u r e * k e l p f o l i a r s p r a y a n a l y s i s of v a r i a n c e c a l c u l a t e d MSE and F - v a l u e s f o r p l a n t growth r e s p o n s e s 192 APPENDIX 22 K e l p f o l i a r s p r a y greenhouse e x p e r i m e n t : S o i l m o i s t u r e * k e l p f o l i a r s p r a y t r e a t m e n t mean v a l u e s f o r bean growth and development and s i g n i f i c a n t c o n t r a s t s 193 APPENDIX 23 K e l p f o l i a r s p r a y greenhouse e x p e r i m e n t : S o i l m o i s t u r e * k e l p f o l i a r s p r a y a n a l y s i s of v a r i a n c e c a l c u l a t e d MSE and F - v a l u e s f o r l e a f & stem and bean pod e l e m e n t a l c o n c e n t r a t i o n s 194 - x i -TABLE OF CONTENTS Page APPENDIX 24 K e l p f o l i a r s p r a y greenhouse e x p e r i m e n t : S o i l m o i s t u r e * k e l p f o l i a r s p r a y mean v a l u e s and s i g n i f i c a n t c o n t r a s t s f o r l e a f & stem and bean pod e l e m e n t a l c o n c e n t r a t i o n s 195 APPENDIX 25 K e l p f o l i a r s p r a y greenhouse e x p e r i m e n t : S o i l m o i s t u r e * k e l p f o l i a r s p r a y a n a l y s i s of v a r i a n c e c a l c u l a t e d MSE and F - v a l u e s f o r l e a f & stem and bean pod e l e m e n t a l uptake 196 APPENDIX 26 K e l p f o l i a r s p r a y greenhouse e x p e r i m e n t : S o i l m o i s t u r e * k e l p f o l i a r s p r a y t r e a t m e n t mean v a l u e s and s i g n i f i c a n t c o n t r a s t s f o r l e a f & stem and bean pod e l e m e n t a l uptake 197 - x i i -LIST OF TABLES Page T a b l e 1 Commercial k e l p f o l i a r s p r a y s 3 T a b l e 2 S e a s o n a l v a r i a t i o n of c h e m i c a l c o n s t i t u e n t s of M a c r o c y s t i s i n t e g r i f o l i a 40 T a b l e 3 K e l p (M. i n t e g r i f o l i a ) e l e m e n t a l c o n c e n t r a t i on 54 T a b l e 4 1981 bean e l e m e n t a l c o n c e n t r a t i o n 57 T a b l e 5 1981 bean e l e m e n t a l uptake 58 T a b l e 6 1982 pea growth and e l e m e n t a l c o n c e n t r a t i o n and uptake 60 T a b l e 7 1981 s o i l c h e m i c a l p r o p e r t i e s 61 T a b l e 8 1982 s o i l c h e m i c a l p r o p e r t i e s 62 T a b l e 9 Flow c h a r t f o r the p r e p a r a t i o n of k e l p (M. i n t e g r i f o l i a ) c o n c e n t r a t e (M) and e x t r a c t (E) 99 T a b l e 10 F r a c t i o n I, II and I I I p u r i f i c a t i o n and/or chromatography s t e p s p r i o r to phytohormonal b i o a s s a y ' 101 T a b l e 11 Summary of c y t o k i n i n or c y t o k i n i n - 1 i k e c o n c e n t r a t i o n s of v a r i o u s k e l p e x t r a c t s and c o n c e n t r a t e s 117 T a b l e 12 E l e m e n t a l c o m p o s i t i o n of dry k e l p c o n c e n t r a t e s and f o l i a r e l e m e n t a l a p p l i c a t i o n to c r o p a r e a 119 - x i i i -L I S T OF TABLES Page T a b l e 13 H a r v e s t I : shoot growth and e l e m e n t a l uptake . 140 - x i v -LIST OF FIGURES Page F i g u r e 1 K e l p s u r v e y a l o n g c o a s t a l B r i t i s h Col umbia .... 31 F i g u r e 2 H a r v e s t e d v e g e t a t i v e p o r t i o n of M a c r o c y s t i s i n t e g r i f o 1 i a 33 F i g u r e 3 M a c r o c y s t i s i n t e g r i f o l i a k e l p bed near P o r t Hardy, B.C 36 F i g u r e 4 M a c r o c y s t i s i n t e g r i f o l i a i n the water column 37 F i g u r e 5 1981 bean growth and development 55 F i g u r e 6 S o i l a e r a t i o n 75 F i g u r e 7 E x p e r i m e n t I: S o i l c h e m i c a l e f f e c t s ( A p p l i c a t i o n and I n c u b a t i o n ) 85 F i g u r e 8 E x p e r i m e n t I: Bean growth and development ( A p p l i c a t i o n * I n c u b a t i o n ) 87 F i g u r e 9 E x p e r i m e n t I I : S o i l c h e m i c a l e f f e c t s ( A p p l i c a t i o n * L e a c h i n g ) 89 F i g u r e 10 E x p e r i m e n t I I : Bean growth and development ( A p p l i c a t i o n * L e a c h i n g ) 90 F i g u r e 11 The e f f e c t s of s o i l l e a c h i n g on bean emergence 91 F i g u r e 12 1983 bean p l a n t growth 112 F i g u r e 13 1984 bean p l a n t growth 113 F i g u r e 14 Phytohormonal b i o a s s a y a c t i v i t i e s 114 - xv -LIST OF FIGURES Page F i g u r e 15 Photograph of k e l p c o n c e n t r a t e s 122 F i g u r e 16 1983 bean pod n u t r i t i o n 123 F i g u r e 17 1984 bean pod n u t r i t i o n 124 F i g u r e 18 E n v i r o n m e n t a l d a t a 127 F i g u r e 19 H a r v e s t I growth, development and n u t r i t i o n • • • • 138 F i g u r e 20 H a r v e s t II growth and development ( p l a n t & 1 e a f ) .. 141 F i g u r e 21 H a r v e s t II growth and development ( s h o o t & r o o t ) 142 F i g u r e 22 H a r v e s t II growth, development and N - n u t r i t i o n 143 F i g u r e 23 H a r v e s t II bean p l a n t s s u b j e c t e d to dry s o i l m o i s t u r e t r e a t m e n t 144 F i g u r e 24 H a r v e s t II bean p l a n t s s u b j e c t e d to f i e l d c a p a c i t y s o i l m o i s t u r e t r e a t m e n t 145 F i g u r e 25 H a r v e s t II bean p l a n t s s u b j e c t e d to wet s o i l m o i s t u r e t r e a t m e n t 146 - x v i -ACKNOWLEDGEMENTS I d e d i c a t e t h i s w o r k t o my l o v i n g p a r e n t s w h o s p a t i e n c e a n d b e n e f i c e n c e w i l l a l w a y s be a s p i r a n t . I w i s h t o t h a n k D r . A.A. Bomke whos u n d o g m a t i c g u i d a n c e d u r i n g t h e s e f o r m a t i v e b e g i n n i n g s h a d a l l o w e d f o r my f r e e d o m o f t h o u g h t a n d e x p r e s s i o n i n l e a r n i n g . I a l s o w i s h t o a c k n o w l e d g e t h e g e n e r o u s s u p p o r t o f t h e S c i e n c e C o u n c i l o f B r i t i s h C o l u m b i a a n d R e y n o l d s F a m i l y w hos c o o p e r a t i o n i n t h e c o n d u c t i n g o f my f i e l d t r i a l s was g r e a t l y a p p r e c i a t e d . - x v i i -CHAPTER ONE LITERATURE REVIEW 1 1.1 H i s t o r i c a l Background V a r i o u s l a r g e brown a l g a e ( P h a e o p h y t a : L a m i n a r i a l e s ) known as k e l p s a r e commonly used as a s o i l amendment upon the A t l a n t i c c o a s t a l l a n d s o f F r a n c e , I r e l a n d and S c o t l a n d . The g r e a t e s t a p p l i c a t i o n s are a l o n g the e n t i r e c o a s t of B r i t t a n y and nearby Channel I s l a n d s where k e l p h a r v e s t s are r i g i d l y c o n t r o l l e d (Chapman, 1970). In 1681, a r o y a l d e c r e e was i s s u e d i n F r a n c e r e g u l a t i n g the c o n d i t i o n s under which k e l p c o u l d be c o l l e c t e d . The d e c r e e s p e c i f i e d the t y p e , l o c a t i o n and use o f the k e l p . The s u c c e s s of k e l p s o i l amendments i s p a r t i c u l a r l y e v i d e n t i n the Channel I s l a n d s . T h e r e , k e l p i s mixed w i t h sand and a p p l i e d to a r e a s p r e v i o u s l y l a c k i n g p r o d u c t i v e s o i l s ( S t e p h e n s o n , 1968). In Europe, d u r i n g the s e v e n t e e n t h c e n t u r y , a k e l p t r a d e had d e v e l o p e d . At t h i s time the word " k e l p " was used to r e f e r to the b u r n t ash or po t a s h of the l a r g e brown a l g a e ; today i t d e s c r i b e s t h e s e a l g a e t h e m s e l v e s . The a l g a e of Europe used i n the k e l p t r a d e were v a r i o u s s p e c i e s o f Lami n a r i a , Fucus and Ascophyl1um. In 1910, because of d i f f i c u l t i e s w i t h German s u p p l i e s , North Americans began to use k e l p (Lami n a r i a ) o f f the P a c i f i c and A t l a n t i c C o a s t s f o r the p r o d u c t i o n o f p o t a s h . The k e l p f e r t i l i z e r t r a d e f a i l e d once f e r t i l i z e r s from i n o r g a n i c s o u r c e s c o u l d be o b t a i n e d economi c a l 1 y . D e s p i t e the c o l l a p s e of the k e l p f e r t i l i z e r market, the e s t a b l i s h e d k e l p t r a d e of Europe and North A m e r i c a formed the b ackground f o r the c u r r e n t seaweed c o l l o i d i n d u s t r y . Today the c o l l o i d i n d u s t r y p r o d u c t i o n of c a r r a g e e n a n and a l g i n , used p r i m a r i l y as s t a b i l i l z e r s i n the f o o d i n d u s t r y , i s a b i l l i o n d o l l a r i n d u s t r y (Chapman, 1970; N a y l o r , 1976). In C a l i f o r n i a a p p r o x i m a t e l y 150,000 wet tonnes of k e l p ( M a c r o c y s t i s) a r e h a r v e s t e d a n n u a l l y f o r p r o d u c t i o n o f a l g i n a t e s ( N o r t h et a l . , 1982). In the C a n a d i a n m a r i t i m e s , a p p r o x i m a t e l y 8,000 wet tonnes o f Chondrus a r e h a r v e s t e d a n n u a l l y f o r p r o d u c t i o n of c a r r a g e e n a n ( P r i n g l e and Semple, 1983). At p r e s e n t , t h e r e a r e s e v e r a l companies which p r o c e s s and produce k e l p p r o d u c t s f o r a g r i c u l t u r a l use ( T a b l e 1 ) . K e l p f o l i a r s p r a y s were f i r s t marketed d u r i n g the 1950's and 1960's. The m a n u f a c t u r e r s ' c l a i m s of the b e n e f i t s t h a t c o u l d be a c h i e v e d by the use o f t h e i r p r o d u c t s were not w e l l r e c e i v e d by the academic community, f o r t h e r e was no s c i e n t i f i c e v i d e n c e to s u p p o r t the c l a i m s . TABLE 1. COMMERCIAL KELP FOLIAR SPRAYS COMMERCIAL NAMES ORIGIN/TYPE OF KELP COUNTRIES MARKETED M a r i n u r e / A l g i t / A l g i f e r t Norway - Ascoph.yl 1 um ^ E C / J a p a n / B r i t i sh Commonwea1th Ni t r o z y m e / S e a c r o p 16 USA - Ascoph.yl 1 um USA/Canada SM3 UK - Ascoph.yl 1 um/ Lami n a r i a / Fucus B r i t i shCommonwealth/ EEC S e a s o l / A g r i k e i p A u s t r a l i a - D u r v i l l e a A u s t r a l i a / U S A Goe-mar France - L a m i n a r i a F r a n c e Keipak South A f r i c a - E c k l o n i a South A f r i c a / B r i t i s h Commonwealth/ EEC European Economic Community 4 M a n u f a c t u r e r s contended t h a t m i c r o n u t r i e n t c o n s t i t u e n t s i n the k e l p , when a p p l i e d as a f o l i a r s p r a y , were r e s p o n s i b l e f o r many o f the o b s e r v e d b e n e f i c i a l e f f e c t s on p l a n t growth ( B r i t i s h P a t e n t 664,989; S t e p h e n s o n , 1968). F a v o r a b l e r e p o r t s from f a r m e r s prompted s c i e n t i f i c i n q u i r y ( B o o t h , 1966). I t i s noteworthy t h a t the s c i e n t i f i c o p i n i o n of the time d i d not f u l l y r e c o g n i z e t h a t p l a n t n u t r i e n t s c o u l d be a b s o r b e d v i a f o l i a r s p r a y ( B o o t h , 1966). The s c i e n t i f i c community's view was b e s t d e s c r i b e d by Fogg when he w r o t e , "The r e s u l t s w i t h seaweed may s a v o u r a l i t t l e of muck and magic, but seem d e f i n i t e and worth i n v e s t i g a t i o n " ( c i t . A b e t z , 1980). As r e s e a r c h e v i d e n c e has been c o m p i l e d i n s u p p o r t o f some o f the m a n u f a c t u r e r s c l a i m s of i n c r e a s e d y i e l d s , the views o f a g r i c u l t u r a l s c i e n t i s t s have changed, but the use o f k e l p i s s t i l l c o n t r o v e r s i a l . Today the many u n s u b s t a n t i a t e d c l a i m s by m a n u f a c t u r e r s and/or d i s t r i b u t o r s s t i l l make many f a r m e r s s k e p t i c a l of k e l p use and l i m i t s c i e n t i f i c i n v e s t i g a t i o n . The e x p e r i m e n t a l e v i d e n c e w i l l be d i s c u s s e d i n d e t a i l f u r t h e r i n the t e x t . 5 1.2 Types of K e l p A p p l i c a t i o n s i n A g r i c u l t u r a l Crop P r o d u c t i o n The c h e m i c a l c o m p o s i t i o n of k e l p i s v e r y d i f f e r e n t from t h a t o f v a s c u l a r p l a n t s . The ash c o n t e n t v a r i e s from 25% to 35% d r y w e i g h t compared w i t h 5% to 6% i n hay and 4% or l e s s i n v a r i o u s g r a i n s . The f a t and p r o t e i n c o n t e n t i s a p p r o x i m a t e l y the same as i n l a n d v e g e t a t i o n (Senn and Kingman, 1978). K e l p s a r e r i c h i n c a r b o h y d r a t e s , which d i f f e r from t h o s e found i n h i g h e r p l a n t s ; a l g i n s , l a m i n a r a n s , f u c o i d a n s and m a n n i t o l s p r e d o m i n a t e (Blunden and Woods, 1969; Whyte, 1978). 1.2.1 S o i l Amendment A f t e r w i n t e r storms l a r g e q u a n t i t i e s of v e g e t a t i v e d e b r i s c a l l e d " c a s t " can be found a l o n g c o a s t l i n e s where abundant marine a l g a l r e s o u r c e s e x i s t . C a s t has been c o l l e c t e d i n many p a r t s of the w o r l d by f a r m e r s and g a r d e n e r s and a p p l i e d d i r e c t l y to the s o i l . T h i s i s the o l d e s t and most common form of seaweed s o i l amendment f o r c r o p p r o d u c t i o n . In a r e a s such as Norway, Normandy, B r i t t a n y , Wales, S c o t l a n d , E n g l a n d , I r e l a n d and the Channel I s l a n d s , l a r g e s u p p l i e s of k e l p e x i s t and a r e h a r v e s t e d , l e f t to d r y and t r a n s p o r t e d to the n e i g h b o r i n g f a r m s . R a p i d a p p l i c a t i o n s of f r e s h l y h a r v e s t e d k e l p , as opposed to composted k e l p a r e s a i d to g i v e the b e s t r e s u l t s i n cr o p p r o d u c t i o n ( M y k l e s t a d , 1964; Bo o t h , 1965; St e p h e n s o n , 1968; G u i r y , 1981). C o m m e r c i a l l y a v a i l a b l e seaweed s o i l amendments ( l i q u i d s , powders and p e l l e t s ) a l s o e x i s t , but t h e i r use i s p r i m a r i l y r e s t r i c t e d to h o r t i c u l t u r a l and d o m e s t i c home g a r d e n i n g a p p l i c a t i o n s ( A i t k e n and Senn, 1965). 1.2.2 Crop F o l i a r S p r a y s The second type o f farm use of k e l p i s f o l i a r s p r a y s . F o l i a r a p p l i c a t i o n s tend to v a r y w i t h m a n u f a c t u r e r s , but i n g e n e r a l the m a n u f a c t u r e d k e l p e x t r a c t s or c o n c e n t r a t e s a r e d i l u t e d w i t h water and a p p l i e d a t 2 to 10 L h a - 1 each a p p l i c a t i o n . Two to f o u r a p p l i c a t i o n s a p p l i e d e a r l y i n the cro p development a r e u s u a l l y recommended. The f i r s t two commercial k e l p f o l i a r s p r a y s were " M a x i c r o p " and "SM-3" m a n u f a c t u r e d i n the l a t e 1950's by M a x i c r o p L t d . and Chase O r g a n i c s L t d . , r e s p e c t i v e l y . 7 S h o r t l y a f t e r w a r d s a n o t h e r p r o d u c e r , A l g e P r o d u k t e r o f Norway, began to m a n u f a c t u r e a k e l p f o l i a r s p r a y and s u p p l i e d the p r o d u c t under a v a r i e t y of t r a d e names. A l l t h r e e companies' p r o d u c t s a r e s o - c a l l e d k e l p " e x t r a c t s " and employ a method of p r o d u c t i o n which i n v o l v e s a l k a l i h y d r o l y s i s , t e m p e r a t u r e g r e a t e r than 100°C and s l i g h t p r e s s u r e s o f a p p r o x i m a t e l y 500 kPa to cook and d i s i n t e g r a t e the h a r v e s t e d k e l p . The s e p a r a t i o n o f the b r o t h from the r e s i d u e i s a c h i e v e d by s e t t l i n g and s i p h o n i n g or f i l t e r i n g . I t i s the b r o t h or l i q u i d k e l p " e x t r a c t " t h a t i s b o t t l e d and ready f o r use a f t e r d i l u t i o n w i t h water as a f o l i a r s p r a y onto c r o p s ( B r i t i s h P a t e n t 664,989; S t e p h e n s o n , 1968). The m a n u f a c t u r e r s u s u a l l y add f o r m a l d e h y d e ( 0 . 1 % by volume) to p r e v e n t f e r m e n t a t i o n ( S t e p h e n s o n , 1968). Two r e l a t i v e l y new companies m a r k e t i n g k e l p e x t r a c t s a r e A t l a n t i c Labs of Maine (U.S.A.) and Tasbone P t y . of A u s t r a l i a w i t h the t r a d e names of " N i t r o z y m e " or "Sea Crop 16" and " S e a s o l " , r e s p e c t i v e l y . A l l t h e s e companies produce a k e l p e x t r a c t u s i n g the b a s i c methods d i s c u s s e d above, a l t h o u g h d i f f e r e n c e s do e x i s t w i t h r e s p e c t to t e m p e r a t u r e s , p r e s s u r e s , t y p e s of h y d r o l y z i n g a g e n t , q u a n t i t i e s and type of k e l p used by the i n d i v i d u a l m a n u f a c t u r e r s . 8 One company, Kelp P r o d u c t s L t d . of South A f r i c a , e s t a b l i s h e d i n the l a t e 1970's, does not produce a k e l p e x t r a c t , but p r o d u c e s a k e l p c o n c e n t r a t e c a l l e d "Kelpak 66". The method s i m p l y uses f r e s h l y h a r v e s t e d k e l p which i s washed, ground, chopped and p r e s s u r e ( g r e a t e r than 40,000 kPa) homogenized to d i s i n t e g r a t e and reduce the p a r t i c l e s i z e o f the k e l p to a p p r o x i m a t e l y 50 um. The p r o c e s s g e n e r a t e s much lower t e m p e r a t u r e s than t h a t o f the h y d r o l y s i s method (South A f r i c a n P a t e n t 78/3281). The p a t e n t c l a i m s t h a t the advantage of the i n v e n t i o n i s t h a t o r g a n i c a c t i v e c o n s t i t u e n t s , such as p l a n t growth r e g u l a t o r s , a r e l e s s l i k e l y to be d e n a t u r e d because h i g h t e m p e r a t u r e s a r e not . i n v o l v e d . Such a c l a i m has never been s u b s t a n t i a t e d . 1.3 Overview o f E x p e r i m e n t a l R e s u l t s 1.3.1 K e l p as a S o i l Amendment The use o f f r e s h k e l p as a s o i l amendment has r e c e i v e d l i t t l e a t t e n t i o n from the a g r i c u l t u r a l s c i e n c e community and many of the c l a i m s r e p o r t e d from i t s use a r e p o o r l y documented. Booth (1965) d e s c r i b e d the use of seaweed as a s o i l amendment as f o l l o w s , "While t h e r e i s an abundance of 9 e v i d e n c e to show t h a t seaweed i s w i d e l y used as manure, t h e r e i s l i t t l e s c i e n t i f i c e v i d e n c e to s u p p o r t the t r a d i t i o n a l use o f seaweed." The use of raw k e l p i n and around the B r i t i s h I s l e s i s not c o n f i n e d to s u b s i s t e n c e a g r i c u l t u r e . K e l p a d d i t i o n s to the s o i l a r e commonly p r a c t i c e d i n C o r n w a l l , A y r s h i r e and E a s t L o t h i a n . In C o r n w a l l , the k e l p i s mixed w i t h straw and composted; i n A y r s h i r e , f r e s h l y h a r v e s t e d k e l p i s s p r e a d o v e r the s o i l i n the f a l l ; and i n E a s t L o t h i a n , k e l p i s s t a c k e d i n heaps and l e f t to r o t o v e r w i n t e r p r i o r to a d d i n g to the s o i l ( B o o t h , 1965). Vast q u a n t i t i e s of the k e l p Lamenaria h.yperborea (Gunn.) F o s l i e e x i s t a l o n g the s h o r e s of Norway. In p a s t y e a r s the use of k e l p as a s o i l amendment was common p r a c t i c e but ceased w i t h the advent of i n o r g a n i c f e r t i l i z e r s . More r e c e n t l y the use o f t h i s k e l p as a s o i l amendment supplemented w i t h i n o r g a n i c f e r t i l i z e r s has been renewed as a means to add o r g a n i c m a t t e r to the s o i l and to improve the s o i l s t r u c t u r e ( M y k l e s t a d , 1963). In I r e l a n d , k e l p has been g a t h e r e d f o r hundreds of y e a r s and up u n t i l the p r e s e n t c e n t u r y was burned to produce p o t a s h as a s o u r c e . o f f e r t i l i z e r ( G u i r y , 1981). S e v e r a l o t h e r a r e a s which p r a c t i c e the use of k e l p as a s o i l amendment were d i s c u s s e d a t the b e g i n n i n g of the t e x t ( S e c t i o n 1.1). F r a n c k i (1960a, 1960b and 1964) i n v e s t i g a t e d the use of the a l g a e Pachymenia himantophora J.Ag. and D u r v i 1 1 e a  a n t a r c t i ca (Chamiss.) H a r i o t as s o i l amendments to f i v e d i f f e r e n t s o i l s i n which greenhouse tomatoes (L.. e s c u l entum) were p l a n t e d . Y i e l d s were reduced by JJ. a n t a r c t i ca i n a l l s o i l s and £ . h i m a n t o p h o r a i n c r e a s e d y i e l d s i n o n l y two s o i l s . F r a n c k i a t t r i b u t e d the reduced y i e l d s to Mn t o x i c i t y as s o i l s were d i s p e r s e d and became w a t e r l o g g e d . N i t r o g e n i m m o b i l i z a t i o n was a l s o s u s p e c t e d as a cause o f poor growth as the C/N r a t i o of the seaweeds was b 3 0 . Offermanns (1968) and C a i o z z i et a].. (1968) r e p o r t e d i n c r e a s e s i n Fe and P a v a i l a b i l i t y i n c a l c a r e o u s s o i l s which were i n c u b a t e d w i t h the k e l p M a c r o c y s t i s i n t e g r i f o l i a Bory. Blunden e_t aj_. (1968) i n v e s t i g a t e d the e f f e c t s of the p r o c e s s e d k e l p ( L a m i n a r i a spp) e x t r a c t SM-3 as f e r t i l i z e r upon the growth o f mustard ( B r a s s i c a h i r t a Monench). They c o n c l u d e d t h a t the g r o w t h - p r o m o t i n g e f f e c t s o f t h i s e x t r a c t 11 were p r i m a r i l y due to the i n o r g a n i c c o n s t i t u e n t s p r e s e n t i n the e x t r a c t , p r i m a r i l y c a t i o n s and i n p a r t i c u l a r , K. 1.3.2 E f f e c t s o f K e l p E x t r a c t s and C o n c e n t r a t e s on Seeds B u t t o n and Noyes (1964) u s i n g the k e l p ( L a m i n a r i a spp) e x t r a c t "SM-3" d e m o n s t r a t e d t h a t p r e t r e a t m e n t of c r e e p i n g f e s c u e ( F e s t u c a r u b r a L.) seeds w i t h 0.5°/. and 1% (v/v) e x t r a c t s o l u t i o n s i n c r e a s e d the r a t e of s e e d l i n g emergence. E x t r a c t s o l u t i o n s g r e a t e r than 5% (v/v) were d e t r i m e n t a l to growth and a t 18% (v/v) no s e e d l i n g s emerged. Senn and S k e l t o n (1969) r e p o r t e d t h a t seeds of l o b l o l l y p i n e ( P i nus  tae d a L.) and s a c r e d bamboo (Nandi na domesti cum Thumb.) when t r e a t e d w i t h the Norwegian k e l p e x t r a c t o f h i g h s o l u t i o n c o n c e n t r a t i o n s had i n c r e a s e d r e s p i r a t i o n r a t e s , but l i m i t e d g e r m i n a t i o n . However, g e r m i n a t i o n improved as s o l u t i o n c o n c e n t r a t i o n s were d e c r e a s e d . The a u t h o r s c o n c l u d e d t h a t k e l p e x t r a c t s may have a p o t e n t i a l use to enhance the g e r m i n a t i o n o f c e r t a i n s e e d s . Donald (1981) r e p o r t e d t h a t . s o a k i n g seeds o f Mexican p i n e ( P i nus p a t u l a S c h i e d e e_t Deppe) f o r 24 h i n a 0.2% (v/v) s o l u t i o n of the k e l p ( E c k l o n i a maximum (Osbeck) P a p e n f u s s ) c o n c e n t r a t e "Kelpak 66" improved g e r m i n a t i o n and reduced dormancy. 12 1.3.3 E f f e c t s of K e l p E x t r a c t s on S h e l f - L i f e o f F r u i t P o v o l n y (1969, 1972 and 1976) c o n d u c t e d s e v e r a l e x p e r i m e n t s i n v e s t i g a t i n g the e f f e c t s of p r e - h a r v e s t s p r a y i n g w i t h the Norwegian k e l p ( A s c o p h y l 1 um nodosum (L.) L e J o l i s ) e x t r a c t on s t o r a g e and r i p e n i n g of a p p l e s (Mai us  d o m e s t i c a L. c v . Cox's and Goldparmane) peaches (Prunus  p e r s i c a S t o k e s ) , a p r i c o t s (Prunus a r m e n i a c a L.) and tomatoes (L.ycopersi cum e s c u l e n t um M i l l . ) . A p p l y i n g two 0.8% (v/v) k e l p e x t r a c t s o l u t i o n s to Cox's a p p l e s 12 and 26 days p r i o r to h a r v e s t i n c r e a s e d the s h e l f l i f e , h a r d n e s s of f r u i t and f r u i t d i a m e t e r . There were no e f f e c t s upon a c i d or sugar c o n t e n t . No t r e a t m e n t e f f e c t s were r e c o r d e d w i t h Goldparmanes a p p l e s . P r e - h a r v e s t s p r a y i n g o f 0.5% ( v / v ) k e l p e x t r a c t s o l u t i o n t o peach and a p r i c o t t r e e s r e s u l t e d i n h a r d e r f l e s h o f both f r u i t s a t h a r v e s t , but had no e f f e c t on s t o r a g e l o s s e s of e i t h e r f r u i t s . S p r a y i n g tomato p l a n t s w i t h 0.5% ( v / v ) k e l p e x t r a c t s o l u t i o n r e s u l t e d i n a 15% i n c r e a s e i n y i e l d . S t o r a g e l o s s e s a f t e r f o u r weeks were 39% l e s s than the c o n t r o l . I t was t h i s e a r l y r e s e a r c h documenting the 13 e f f e c t i v e n e s s of d i l u t e k e l p e x t r a c t s on seed g e r m i n a t i o n , r e s p i r a t i o n and emergence and i n c r e a s e d s h e l f - l i f e of h a r v e s t e d f r u i t s which l e d Booth (1969) to p o s t u l a t e t h a t phytohormones, p a r t i c u l a r l y c y t o k i n i n s , may be a c t i v e c o n s t i t u e n t s of t h e s e k e l p e x t r a c t s . Blunden et a2. (1978) i n v e s t i g a t e d the e f f e c t s of p o s t h a r v e s t d i p p i n g s of f r u i t i n the k e l p (Lami n a r i a spp) e x t r a c t "SM-3" and c o n t r a s t e d t h i s w i t h d i p p i n g f r u i t i n a c y t o k i n i n s o l u t i o n . The p o s t - h a r v e s t t r e a t m e n t of e g g p l a n t (Solanum melonqena L . ) , avocado ( P e r s e a g r a t i ssima G a e r t n . ) and pear ( P y r u s commmunis L.) w i t h k e l p e x t r a c t or c y t o k i n i n s o l u t i o n s had no e f f e c t on r i p e n i n g . Bananas (Musa  p a r a d i s i a e a M.) and mangoes (Mangi f e r a i ndi ca L.) which were t r e a t e d w i t h c y t o k i n i n or k e l p e x t r a c t s o l u t i o n s r i p e n e d f a s t e r . P o s t - h a r v e s t t r e a t m e n t of pepper ( C a p s i cum  f r u t e s c e n s L.) gave c o n f l i c t i n g r e s u l t s w i t h the k e l p e x t r a c t s l o w i n g the r i p e n i n g p r o c e s s and c y t o k i n i n s a c c e l e r a t i n g r i p e n i n g . With lime ( C i t r u s a u r a n t i u m L . ) , both the k e l p e x t r a c t and c y t o k i n i n s o l u t i o n r e d uced the r a t e o f f r u i t r i p e n i n g . The a u t h o r s c o n c l u d e d t h a t w h i l e t h e r e i s e v i d e n c e to s u g g e s t t h a t some p h y s i o l o g i c a l r e s p o n s e s were s i m i l a r to t h o s e of e x o g e n o u s l y a p p l i e d c y t o k i n i n , t h e r e was a l s o e v i d e n c e to s u g g e s t t h a t o t h e r 14 p l a n t growth r e g u l a t o r s were a l s o p r e s e n t . 1.3.4 E f f e c t s o f K e l p F o l i a r S p r a y s on Crop Growth, Development and N u t r i t i o n P o v o l n y (1971) s p r a y e d greenhouse cucumbers (Cucumi s  s a t i v u s L.) w i t h a 0.2% (v/v) s o l u t i o n of the Norwegian k e l p (A. nodosum) e x t r a c t e i g h t times w i t h 7- to 10-day i n t e r v a l s between s p r a y i n g s . A 17% i n c r e a s e i n h a r v e s t a b l e y i e l d o f cucumbers r e s u l t e d . S i m i l a r l y , N e l s o n and van Staden (1984a) a p p l i e d a 0.2% (v/v) s o l u t i o n o f the k e l p ( E . maxima) c o n c e n t r a t e "Kelpak 66" to greenhouse cucumbers e i g h t t i m e s w i t h seven-day i n t e r v a l s between s p r a y i n g . T o t a l p l a n t d r y m a t t e r i n c r e a s e d 56%, w i t h an i n c r e a s e i n r o o t d r y we i g h t of 99%. T r e a t e d p l a n t s had g r e a t e r l e a f e l e m e n t a l P and lower N c o n c e n t r a t i o n . T r e a t e d p l a n t s had a r o o t / s h o o t r a t i o of 3.8 and the c o n t r o l s had a r a t i o o f 2.3. The a u t h o r s s u g g e s t e d a t w o - f o l d a c t i o n of the k e l p t r e a t m e n t ; f i r s t , s t i m u l a t i o n o f r o o t growth a t the expense of s h o o t growth and, secon d , i n c r e a s e d o v e r a l l p h o t o s y n t h e t i c a c c u m u l a t i o n e f f i c i e n c y of the p l a n t . F o l i a r a p p l i c a t i o n d u r i n g f r u i t development caused an i n i t i a l i n h i b i t i o n of f r u i t development and Ne l s o n and van Staden noted t h a t f o l i a r a p p l i c a t i o n s d u r i n g t h i s s t a g e of development may be i n a p p r o p r i a t e . 15 Blunden e_t al_. (1979) a p p l i e d the k e l p (Lami n a r i a spp) e x t r a c t "SM-3" a t 11.2 L h a " 1 (1.0% (v/v) s o l u t i o n ) to 16 d i f f e r e n t v a r i e t i e s of f i e l d s u gar b e e t s ( B e t a v a l q a r i s v a r mari tima L . ) . The k e l p - t r e a t e d p l a n t s had g r e a t e r r o o t s u g a r c o n t e n t , but s i m i l a r r o o t y i e l d s to the c o n t r o l . The N and K c o n c e n t r a t i o n s o f the e x t r a c t e d j u i c e were a l s o reduced by the k e l p t r e a t m e n t . Blunden and W i l d g o o s e (1977) c o n d u c t e d p o t a t o (Solanum tuberosum L.) f i e l d t r i a l s u s i n g the same k e l p e x t r a c t and c o n t r a s t e d i t s f o l i a r t r e a t m e n t e f f e c t s t o i t s p r e v i o u s l y d e t e r m i n e d c y t o k i n i n - 1 i k e phytohormone a c t i v i t y of 125 mg L " 1 ( k i n e t i n e q u i v a l e n c e ) . Both the k e l p e x t r a c t s and k i n e t i n s o l u t i o n s were d i l u t e d w i t h water and a p p l i e d a t k e l p e x t r a c t e q u i v a l e n t s o f 11.22 and 5.61 L h a - 1 , r e s p e c t i v e l y . Both the k e l p e x t r a c t and k i n e t i n t r e a t m e n t s i n c r e a s e d the y i e l d s o f p o t a t o e s w i t h the 11.22 L h a - 1 a p p l i c a t i o n h a v i n g the g r e a t e s t e f f e c t . These r e s e a r c h e r s c o n c l u d e d t h a t the phytohormone c y t o k i n i n may be an a c t i v e c o n s t i t u e n t o f k e l p e x t r a c t s , a l t h o u g h i t was not d e m o n s t r a t e d t h a t the y i e l d r e s p o n s e s were caused by the same p l a n t p h y s i o l o g i c a l e f f e c t s , such as d e l a y e d s e n e s c e n c e or a l t e r e d s h o o t / r o o t r a t i o s . 16 Kotze and J o u b e r t (1980) i n v e s t i g a t e d the growth and n u t r i t i o n a l e f f e c t s o f the k e l p (E. maxima) c o n c e n t r a t e "Kelpak 66" on greenhouse grown rye ( S e c a l e c e r e a l e L.) and cabbage ( B r a s s i ca o l e r a c e a v a r . c a p i t a t a L . ) . The p l a n t s were p o t t e d i n t o s o i l s a t two d i f f e r e n t f e r t i l i z e r a p p l i c a t i o n s (0.042 and 0.42 g of 3-1-5 f e r t i l i z e r per 350g of d r y loam s o i l ) and s p r a y e d e v e r y two weeks w i t h 0.3%, 0.2% and 0.1% (v/v) k e l p c o n c e n t r a t e s o l u t i o n s . Root growth i n c r e a s e s were r e c o r d e d w i t h cabbage p l a n t s which had r e c e i v e d h i g h e r f e r t i l i z e r a p p l i c a t i o n s o n l y . No e f f e c t s upon shoot growth were measured. Rye p l a n t s grown i n the h i g h e r f e r t i l i t y s o i l and s p r a y e d w i t h the 0.2% and 0.1% k e l p s o l u t i o n had g r e a t e r d r y shoot and r o o t w e i g h t s . P l a n t shoot uptake of Ca, Mg, K, Zn and Cu o n l y i n c r e a s e d i n the h i g h e r f e r t i l i t y s o i l . The a u t h o r s c o n c l u d e d t h a t k e l p f o l i a r t r e a t m e n t s were most e f f e c t i v e f o r p l a n t s which were grown i n s o i l s w i t h adequate f e r t i l i t y and t h a t the r e s p o n s e c o u l d not be a t t r i b u t e d to m i n e r a l n u t r i t i o n o f the k e l p . P l a n t r e s p o n s e s would p r o b a b l y be dependent on type of p l a n t , weather c o n d i t i o n s and time of a p p l i c a t i o n d u r i n g c r o p d e v e l o p m e n t . D i l u t i o n of the c o n c e n t r a t e p r i o r to a p p l i c a t i o n a l s o a p p e a r s to be an i m p o r t a n t f a c t o r c o n t r o l l i n g c r o p r e s p o n s e , w i t h h i g h e r d i l u t i o n s h a v i n g the g r e a t e r g r o w t h - p r o m o t i n g e f f e c t s . 17 F e a t o n b y - S m i t h and van Staden (1983a) a l s o i n v e s t i g a t e d the i n t e r a c t i v e e f f e c t s of s p r a y i n g a 0.2% (v/v) k e l p ( E . maxima) c o n c e n t r a t e s o l u t i o n o f "Kelpak 66" and s o i l f e r t i l i z e r a p p l i c a t i o n s on greenhouse grown s w i s s c h a r d ( B e t a v u l g a r i s v a r . c i c l a L . ) . F e r t i l i z a t i o n enhanced the y i e l d s o f the c r o p o v e r t h o s e growing i n u n f e r t i l i z e d s o i l s , but a d d i t i o n a l i n c r e a s e s i n p l a n t y i e l d s were o b t a i n e d w i t h k e l p t r e a t e d p l a n t s grown i n w e l l f e r t i l i z e d s o i l s . These r e s e a r c h e r s a l s o measured the c y t o k i n i n - 1 i k e a c t i v i t y of the p l a n t r o o t and s h o o t . The shoot c y t o k i n i n - 1 i k e a c t i v i t y was i n v e r s e l y r e l a t e d to shoot y i e l d , w i t h the k e l p - t r e a t e d p l a n t s h a v i n g the l o w e s t a c t i v i t y . Root c y t o k i n i n - 1 i k e a c t i v i t y was lower f o r t h o s e p l a n t s which had r e c e i v e d both the f e r t i l i z e r and k e l p f o l i a r t r e a t m e n t and g r e a t e r f o r t h o s e p l a n t s which had o n l y r e c e i v e d e i t h e r f e r t i l i z e r or k e l p f o l i a r t r e a t m e n t s . The a u t h o r s c o n c l u d e d t h a t low shoot l e v e l s of a c t i v e c y t o k i n i n s i n k e l p - t r e a t e d p l a n t s s u g g e s t t h a t t h e s e compounds were b e i n g r a p i d l y m e t a b o l i z e d d u r i n g p e r i o d s o f a c t i v e shoot growth and t h a t the p r o v i s i o n of N r e s u l t e d i n an i n c r e a s e i n the e x p o r t o f c y t o k i n i n s from the r o o t to the s h o o t . N e l s o n and van Staden (1984b) a p p l i e d a 0.2% (v/v) k e l p (E. maxima) c o n c e n t r a t e s o l u t i o n of "Kelpak 66" e i g h t times 18 to wheat ( T r i t i c u m a e s t i v u m L.) p l a n t s grown i n the g r e e n h o u s e . K e l p - t r e a t e d p l a n t s had g r e a t e r g r a i n w e i g h t s and g r e a t e r t h i c k n e s s of the v a s c u l a r b u n d l e , but s i m i l a r o v e r a l l culm d i a m e t e r s and h e i g h t s to u n t r e a t e d p l a n t s . The a u t h o r s mention the p o t e n t i a l use o f the k e l p c o n c e n t r a t e to i n c r e a s e straw s t r e n g t h and t h a t o t h e r a c t i v e compounds, b e s i d e s c y t o k i n i n , may a l s o be i m p l i c a t e d . Gupta and MacLeod (1982) i n v e s t i g a t e d the e f f e c t o f the k e l p (A. nodosum) e x t r a c t "Sea Crop 16" upon the y i e l d s of wheat (T. a e s t i vum) and pea ( P i sum s a t i vum L.) under both f i e l d and greenhouse c o n d i t i o n s * Y i e l d s o f n e i t h e r c r o p were a f f e c t e d by the k e l p ' f o l i a r a p p l i c a t i o n . The l a c k of a growth r e s p o n s e was a t t r i b u t e d , p o s s i b l y , to f a v o u r a b l e growth c o n d i t i o n s , s i n c e e n v i r o n m e n t a l s t r e s s has been h y p o t h e s i z e d as a p o s s i b l e f a c t o r c o n t r o l l i n g the e f f i c a c y o f the t r e a t m e n t . F e a t o n b y - S m i t h and van Staden (1987) i n v e s t i g a t e d the e f f e c t s o f the k e l p ( E . maxima) c o n c e n t r a t e "Kelpak 66" on b a r l e y (Hordeum v u l g a r e L.) grown i n a growth chamber. Both the 0.2% and 4% (v/v) s o l u t i o n s , a p p l i e d once two weeks a f t e r emergence, were e f f e c t i v e i n i n c r e a s i n g g r a i n y i e l d s . The g r a i n y i e l d i n c r e a s e w i t h the 0.4% s o l u t i o n was 19 p r i m a r i l y r e l a t e d to i n c r e a s e d number of e a r s , whereas the y i e l d i n c r e a s e "caused by the 0.2% s o l u t i o n was p r i m a r i l y r e l a t e d to i n c r e a s e d number of g r a i n s per e a r . The n i t r o g e n c o n t e n t o f the g r a i n was reduced as y i e l d s were enhanced by the k e l p t r e a t m e n t . These r e s u l t s d e m o n s t r a t e the i m p o r t a n c e of d i l u t i o n of the k e l p c o n c e n t r a t e p r i o r to a p p l i c a t i o n upon the y i e l d components which ar e a f f e c t e d . The d e c r e a s e d N c o n c e n t r a t i o n of the g r a i n i n r e l a t i o n to d r y m a t t e r y i e l d i n c r e a s e s s u g g e s t a l a c k of a v a i l a b l e N to m a i n t a i n g r a i n p r o t e i n a t the h i g h e r y i e l d s or a n u t r i t i o n a l d i l u t i o n e f f e c t ( g r e a t e r dry m a t t e r a c c u m u l a t i o n per u n i t N). F e a t o n b y - S m i t h and van Staden (1983b) a p p l i e d a 0.2% ( v / v ) s o l u t i o n of the k e l p ( E . maxima) c o n c e n t r a t e "Kelpak 66" to greenhouse tomato (j. . e s c u l entum) p l a n t s grown i n n e m a t o d e - i n f e s t e d s o i l s . The f i r s t f o l i a r s p r a y t r e a t m e n t o c c u r r e d a t t r a n s p l a n t (0.1 m h e i g h t s e e d l i n g s ) w i t h f o u r o t h e r f o l i a r t r e a t m e n t s r a n g i n g from two to f i v e s p r a y s a t 15-day i n t e r v a l s between a p p l i c a t i o n s . Growth of p l a n t s which r e c e i v e d one or two s p r a y s was not a f f e c t e d ; however, r o o t and s h o o t w e i g h t s of p l a n t s which r e c e i v e d t h r e e to f i v e s p r a y i n g s had i n c r e a s e d by a p p r o x i m a t e l y 80%. These r e s u l t s s u g g e s t t h a t numbers and/or t i m i n g o f a p p l i c a t i o n s may a l s o be an i m p o r t a n t f a c t o r c o n t r o l l i n g the e f f i c a c y o f 20 k e l p f o l i a r t r e a t m e n t . Whether the nematodes caused a s t r e s s which e l i c i t e d a p l a n t r e s p o n s e to the k e l p f o l i a r t r e a t m e n t i s not known. Abet z and Young (1983) a p p l i e d the k e l p (A. nodosum) e x t r a c t " M a x i c r o p " a t 3, 6 and 9 L ha-1 to f i e l d - g r o w n l e t t u c e ( L a c t u c a spp) and c a u l i f l o w e r ( B r a s s i c a o l e r a c e a v a r . b o t r y t i s L . ) . K e l p e x t r a c t t r e a t m e n t s had no e f f e c t on y i e l d s , o f c a u l i f l o w e r , but s i g n i f i c a n t l y a f f e c t e d d e v e l o p m e n t . K e l p t r e a t e d p l a n t s formed fewer heads, but the w e i g h t of the i n d i v i d u a l heads i n c r e a s e d . Erasmus e_t a_l_. (1982) i n v e s t i g a t e d the combined e f f e c t s 14 o f s p r a y i n g s i m u l t a n e o u s l y the C l a b e l l e d h e r b i c i d e 2-m e t h y l - 4 - c h l o r o p h e n o x y a c e t i c a c i d (MCPA) and the k e l p ( E . maxima) c o n c e n t r a t e "Kelpak 66" to d e t e r m i n e whether k e l p t r e a t m e n t s would a d v e r s e l y a f f e c t the h e r b i c i d e a b s o r p t i o n i f i t was to be used i n a tank mix. The t e s t p l a n t s were beans ( P h a s e o l u s v u l g a r i s L.) and wheat (T. a e s t i vum). Each was t r e a t e d w i t h and w i t h o u t 0.1% and 0.2% (v/v) s o l u t i o n s of k e l p c o n c e n t r a t e and w i t h 1.0 ul [ 1 4 C ] MCPA and i n c u b a t e d f o r 24 h i n the greenhouse p r i o r to h a r v e s t . With wheat the m a j o r i t y o f the r e c o v e r e d r a d i o a c t i v i t y was i n the l e a f wash w i t h the k e l p t r e a t m e n t d o i n g l i t t l e to h i n d e r or promote 21 the uptake o f MCPA. With the b r o a d - l e a f e d bean p l a n t s MCPA was t a k e n up and d i s t r i b u t e d t h r o u g h o u t the p l a n t . The 0.1% s o l u t i o n o f k e l p c o n c e n t r a t e i n d u c e d the g r e a t e s t bean p l a n t uptake of MCPA. The a u t h o r s c o n c l u d e d t h a t the s e l e c t i v i t y of the h e r b i c i d e was not d e t r i m e n t a l when used i n tandem w i t h the k e l p c o n c e n t r a t e . 1.3.5 A c t i v e C o n s t i t u e n t s o f K e l p F o l i a r S p r a y s Blunden (1977) examined the e l e m e n t a l c o m p o s i t i o n s of k e l p e x t r a c t s and c o n c l u d e d t h a t k e l p f o l i a r s p r a y s c o u l d not s u p p l y a s i g n i f i c a n t p r o p o r t i o n o f the annual r e q u i r e m e n t s of m a c r o n u t r i e n t s to a c r o p . Blunden s t a t e s t h a t the s p r a y c o u l d p o s s i b l y s u p p l y an amount o f l i m i t i n g n u t r i e n t s to c o r r e c t a m a r g i n a l d e f i c i e n c y o n l y . I t i s because k e l p c o n c e n t r a t e s and e x t r a c t s a r e used a t such low c o n c e n t r a t i o n s and t h a t the r e c o r d e d growth r e g u l a t i n g r e s p o n s e s ( i . e . enhanced p l a n t emergence, growth, seed g e r m i n a t i o n and r e s p i r a t i o n , a l t e r e d development and d e l a y e d r i p e n i n g ) t y p i f y phytohormonal r e s p o n s e s , t h a t p l a n t growth r e g u l a t o r s or phytohormones ar e b e l i e v e d to be a c t i v e c o n s t i t u e n t s . S anderson and Jameson (1986) measured the c y t o k i n i n -22 l i k e a c t i v i t y ( t o b a c c o c a l l u s b i o a s s a y ; k i n e t i n e q u i v a l e n c e ) of the k e l p (A. nodosum) e x t r a c t " M a x i c r o p " a t 1.3 mg L _ 1 («10 M). Much of the a c t i v i t y c o - c h r o m a t o g r a p h e d w i t h z e a t i n , z e a t i n r i b o s i d e , i s o p e n t e n y l a d e n i n e , g l u c o s i d e s and t h e i r d i h y d r o d e r i v a t i v e s . The a u t h o r s c o n t e n d t h a t the c y t o k i n i n s c o n t a i n e d i n " M a x i c r o p " a r e p h y s i o l o g i c a l l y a c t i v e and " i f taken up by the p l a n t , would not i m m e d i a t e l y be d e g r a d e d to i n a c t i v e compounds" and t h a t the q u a n t i t i e s p r e s e n t a r e " s t i l l of s u f f i c i e n t c o n c e n t r a t i o n to be p h y s i o l o g i c a l l y a c t i v e " . Whether t h e s e compounds a r e p h y s i o l o g i c a l l y a c t i v e under f i e l d c o n d i t i o n s has y e t to be d e m o n s t r a t e d . F e a t o n b y - S m i t h and van Staden (1983b) measured the c y t o k i n i n - 1 i k e a c t i v i t y (soybean c a l l u s b i o a s s a y ; k i n e t i n e q u i v a l e n t ) of "Kelpak 66" a t 516 ng i n 20 g f r e s h w e i g h t of k e l p ( E . maxima) c o n c e n t r a t e (=26 ug L " 1 or « 1 0 ~ 7 M). Much of the a c t i v i t y c o - chromatographed w i t h z e a t i n and z e a t i n r i b o s i d e and subsequent h i g h p r e s s u r e chromatography a n a l y s i s a l s o d e t e c t e d z e a t i n , z e a t i n r i b o s i d e , d i h y d r o z e a t i n and i s o p e n t e n y l a d e n i n e . F e a t o n b y - S m i t h and van S t a d e n (1984) a l s o i n v e s t i g a t e d , u s i n g paper chromatography and soybean c a l l u s b i o a s s a y t e c h n i q u e s , the s e a s o n a l c y t o k i n i n c o m p o s i t i o n a l changes i n the k e l p E. 23 maxima from which "Kelpak 66" i s p r o d u c e d . Q u a l i t a t i v e and q u a n t i t a t i v e v a r i a t i o n s i n p l a n t c y t o k i n i n c o m p o s i t i o n were s i m i l a r to t h o s e of t e r r e s t r i a l p l a n t s w i t h much of the c y t o k i n i n p r e s e n t as g l y c o s i d e d u r i n g p e r i o d s o f l i t t l e growth and as " f r e e " c y t o k i n i n s d u r i n g p e r i o d s o f r a p i d growth. The c o n c e n t r a t i o n of p l a n t growth r e g u l a t o r s i n the k e l p e x t r a c t or c o n c e n t r a t e appear to be dependent on the s e a s o n a l h a r v e s t date or the k e l p ' s p h y s i o l o g i c a l age a t the time o f h a r v e s t . F i n n i e and van Staden (1985) a p p l i e d 1%, 0.25%, 0.17% and 0.1% (v/v) s o l u t i o n s of the k e l p ( j i . maxima) c o n c e n t r a t e "Kelpak 66" to J_n v i t r o c u l t u r e d tomato (J.. e s c u l entum) r o o t s . The 1% s o l u t i o n ' w a s i n h i b i t o r y , whereas the 0.25% and 0.17% s o l u t i o n s were s t i m u l a t o r y w i t h the 0.1% s o l u t i o n h a v i n g no e f f e c t . These r e s e a r c h e r s were a b l e to mimic the same growth r e s p o n s e s w i t h z e a t i n . Other phytohormones such as a u x i n s , a b s c i s i c a c i d and g i b b e r e l l i c a c i d had no such m i m i c k i n g e f f e c t . As was the case w i t h the k e l p c o n c e n t r a t e the h i g h s o l u t i o n c o n c e n t r a t i o n s of z e a t i n (>10~ 6 M) were i n h i b i t o r y , whereas lower c o n c e n t r a t i o n s ( 1 0 ~ 8 and 1 0 ~ 1 0 M) were s t i m u l a t o r y . The k e l p c o n c e n t r a t e was a l s o a u t o c l a v e d or ashed p r i o r to a p p l i c a t i o n . A s h i n g r e s u l t e d i n a complete l o s s o f any r o o t growth r e s p o n s e but a u t o c l a v i n g 24 had no e f f e c t . These r e s u l t s s u g g e s t t h a t the a c t i v e c o n s t i t u e n t s o f t h i s i n v e s t i g a t i o n a r e r e l a t i v e l y s t a b l e o r g a n i c compounds. When the c o n c e n t r a t e was paper chromatographed and the e l u a t e of each s t r i p a p p l i e d to the tomato r o o t s t h e r e were two f r a c t i o n s which were s t i m u l a t o r y . The f r a c t i o n which c o n t a i n e d p o l a r compounds had the g r e a t e s t e f f e c t upon r o o t l e n g t h , w h i l e the l e s s p o l a r f r a c t i o n had i t s g r e a t e s t e f f e c t upon l a t e r a l r o o t i n i t i a t i o n . The l e s s p o l a r f r a c t i o n a l s o c o - c h r o m a t o g r a p h e d w i t h z e a t i n . The a u t h o r s c o n c l u d e d t h a t the _E. maxima k e l p c o n c e n t r a t e c o n t a i n s more than one a c t i v e c o n s t i t u e n t , each of which may cause d i f f e r e n t growth e f f e c t s . I t would be i n c o r r e c t to assume t h a t the m i m i c k i n g e f f e c t s o f the k e l p c o n c e n t r a t e r e l a t i v e to known c y t o k i n i n a r e v i a the same mechanism. The f a c t t h a t the k e l p c o n c e n t r a t e e f f e c t s upon tomato r o o t growth was o v e r one o r d e r o f magnitude ( 1 % t o 0.1% s o l u t i o n c o n c e n t r a t i o n ) , whereas the z e a t i n c o n c e n t r a t i o n s were ov e r f o u r o r d e r s o f magnitude (10 to 1 0 ~ 1 0 M), c o u l d s u g g e s t they a r e n o t . The d i l u t i o n e f f e c t s o b t a i n e d w i t h the k e l p c o n c e n t r a t e c o u l d have been r e l a t e d to growth i n h i b i t o r s , which upon i n c r e a s i n g d i l u t i o n become l e s s e f f e c t i v e than t h a t of the g r o w t h - p r o m o t i n g s u b s t a n c e ( s ) . 25 Tay e t aj_. (1985) i s o l a t e d , i d e n t i f i e d and . q u a n t i f i e d s e v e r a l c y t o k i n i n s i n the k e l p ( D u r v i l l e a p o t a t o r u m (Lab i l l . ) A r e s c h . ) e x t r a c t " S e a s o l " ( o r " A g r i k e l p " ) u s i n g 3 heavy i s o t o p e [ H ] - l a b e l l e d c y t o k i n i n s to d e t e r m i n e e x t r a c t i o n r e c o v e r y and b i o a s s a y d e t e c t i o n p r o c e d u r e s c o u p l e d to gas chromatography-mass s p e c t r o m e t r i c a n a l y s i s (GC-MS). T r a n s - z e a t i n , t r a n s - z e a t i n r i b o s i d e , d i h y d r o t r a n s -z e a t i n , d i h y d r o t r a n s - z e a t i n r i b o s i d e , i s o p enty1adenine and i s o p e n t e n y 1 a d e n o s i n e were i d e n t i f i e d a t c o n c e n t r a t i o n s of 0.70, 7.01, 1.06, 36.6, 2.06 and 15.9 ug L - 1 of e x t r a c t , r e s p e c t i v e l y . T h i s was the f i r s t d e f i n i t i v e r e p o r t on the i d e n t i f i c a t i o n of c y t o k i n i n s i n a l g a e and t h a t the o b s e r v e d low q u a n t i t i e s ( » 1 0 ~ 7 M) a r e I n s u f f i c i e n t ^ be the o n l y compounds r e s p o n s i b l e f o r b e n e f i c i a l e f f e c t s o f " S e a s o l " upon p l a n t s , a l t h o u g h no s u p p o r t i n g e v i d e n c e was p r e s e n t e d f o r the l a t t e r argument. C y t o k i n i n - 1 i k e compounds have a l s o been d e t e c t e d i n the k e l p s E c k ! o n i a r a d i a t a (C. Ag) J . Ag and Fucus v e s i c u l o s u s L. ( J e n n i n g s , 1969a). C y t o k i n i n s have a l s o been d e t e c t e d i n the s e a w a t e r i n which t h e s e p l a n t s grow ( K e n t z e r et a 1., 1980). A u x i n - l i k e and g i bberel1in-1ike s u b s t a n c e s have been d e t e c t e d i n numerous marine a l g a e ( A u g i e r , 1976a and 1976b; T a y l o r and W i l k i n s o n , 1977). In a d d i t i o n to t h e s e p l a n t 26 growth p r o m o t e r s , p l a n t growth a n t a g o n i s t s have a l s o been d e t e c t e d . J e n n i n g s (1969b) e x t r a c t e d an u n i d e n t i f i e d compound from the k e l p E. r a d i a t a , which i n h i b i t e d the stem e l o n g a t i o n o f dwarf maize p l a n t s t r e a t e d w i t h g i b b e r e l l i c a c i d . G i b b e r e l l i c a c i d n o r m a l l y promotes stem growth of t h e s e p l a n t s . The a u t h o r c o n c l u d e d t h a t the compound a c t e d s p e c i f i c a l l y as an a n t a g o n i s t to g i b b e r e l 1 i n - c o n t r o l 1 e d growth. N e l s o n and van Staden (1984b, 1985) o b s e r v e d a t h i c k e n i n g o f the culm d i a m e t e r of wheat (T. a e s t i v u m ) p l a n t s which were t r e a t e d w i t h the k e l p [E. maxima) c o n c e n t r a t e "Kelpak 66" and s u g g e s t e d t h i s r e s p o n s e might be a t t r i b u t e d to 1 - a m i n o c y c l o p r o p a n e - l - c a r b o x y l i c a c i d (ACC), which they d e t e c t e d i n the k e l p c o n c e n t r a t e a t 9.29 nmol m l - 1 . ACC i s the p r e c u r s o r to the v o l a t i l e phytohormone e t h y l e n e which the a u t h o r s i n d i c a t e can a l s o cause a t h i c k e n i n g of wheat culms. The a u t h o r s doubt t h a t c y t o k i n i n s a r e the o n l y a c t i v e c o n s t i t u e n t s o f k e l p c o n c e n t r a t e s , p a r t i c u l a r l y i n view of the many p l a n t p h y s i o l o g i c a l and d e v e l o p m e n t a l e f f e c t s caused by k e l p a p p l i c a t i ons. A g r e a t amount of c a u t i o n must be used when comparing b i o a s s a y a c t i v i t y l e v e l s of phytohormones p r e s e n t e d by v a r i o u s r e s e a r c h e r s . B i o a s s a y r e s u l t s can be v e r y 27 m i s l e a d i n g f o r they a r e i n f l u e n c e d by many f a c t o r s such as the p r e s e n c e of growth i n h i b i t o r s , p u r i t y of e x t r a c t s and the p r e s e n c e of s a l t s or o t h e r u n i d e n t i f i e d compounds which can mimic what are b e l i e v e d to be phytohormone r e s p o n s e s ( N o r r i s , 1976). B i o a s s a y s were never i n t e n d e d f o r q u a n t i f i c a t i o n , but f o r r e l a t i v e c o m p a r i s o n s between e x t r a c t e d samples or t o d e t e c t phytohormones i n p a r t i c u l a r f r a c t i o n s p r i o r to p h y s i o c h e m i c a l methods of q u a n t i f i c a t i o n . When b i o a s s a y r e s u l t s a r e p r e s e n t e d as the o n l y means of a n a l y s i s the term " l i k e " s h o u l d be used as the s u f f i x to the p a r t i c u l a r phytohormone i n q u e s t i o n . 1.4 Summary A l t h o u g h k e l p has been used i n a g r i c u l t u r e f o r hundreds of y e a r s , r e s e a r c h e f f o r t s a r e r e l a t i v e l y r e c e n t . With the i n c r e a s e d use of i n o r g a n i c f e r t i l i z e r s i n the p a s t s e v e r a l decades the common p r a c t i c e of u s i n g k e l p as a s o i l amendment or f o r the p r o d u c t i o n of p o t a s h has d e c r e a s e d , a l t h o u g h i t s use as a s o i l amendment s t i l l p e r s i s t s i n some c o a s t a l r e g i o n s . Documented f i e l d t r i a l s i n which k e l p has been used as a s o i l amendment are r e l a t i v e l y few. T h i s i s p r o b a b l y r e l a t e d to (a) the few g e o g r a p h i c r e g i o n s i n which abundant s u p p l i e s of the r e s o u r c e a r e a v a i l a b l e , (b) 28 t r a d i t i o n a l uses h a v i n g been l o s t w i t h the advent o f i n o r g a n i c f e r t i l i z e r s and (c) the d i f f i c u l t y of c o n d u c t i n g l a r g e f i e l d p l o t t r i a l s s i n c e they i n v o l v e v a s t q u a n t i t i e s of k e l p . V a r i o u s s p e c i e s of k e l p have a l s o been p r o c e s s e d i n t o e x t r a c t s or c o n c e n t r a t e s f o r subsequent d i l u t i o n w i t h water and a p p l i e d as a c r o p f o l i a r s p r a y . Treatment e f f e c t s on c r o p y i e l d , f r u i t s h e l f - l i f e , seed g e r m i n a t i o n and development have been documented. The a c t i v e growth-p r o m o t i n g or r e g u l a t i n g components have y e t to be i d e n t i f i e d , a l t h o u g h many of the p l a n t d e v e l o p m e n t a l r e s p o n s e s s u g g e s t t h a t s e v e r a l p l a n t g r o w t h - r e g u l a t i n g s u b s t a n c e s , i n p a r t i c u l a r c y t o k i n i n s , may be i m p l i c a t e d . I t has y e t to be c o n c l u s i v e l y d e m o n s t r a t e d t h a t such compounds d e t e c t e d i n the c o n c e n t r a t e s or e x t r a c t s a r e d i r e c t l y r e s p o n s i b l e f o r crop r e s p o n s e s . The c o n c e n t r a t i o n o f the k e l p i n s o l u t i o n a l s o appears to be an i m p o r t a n t f a c t o r c o n t r o l l i n g i t s e f f i c a c y i n p r o m o t i n g c r o p growth and d e v e l o p m e n t . High c o n c e n t r a t i o n s of k e l p have been found to be i n h i b i t o r y , w h i l e lower c o n c e n t r a t i o n s promote c r o p g rowth. E v i d e n c e s u g g e s t s t h a t k e l p f o l i a r t r e a t m e n t s a r e most 29 e f f e c t i v e when s o i l s a r e f e r t i l e or a d e q u a t e l y f e r t i l i z e d . S e v e r a l f o l i a r s p r a y s a r e u s u a l l y r e q u i r e d and b e s t r e s u l t s have been o b t a i n e d w i t h e a r l y f o l i a r a p p l i c a t i o n s , as opposed t o f o l i a r a p p l i c a t i o n s d u r i n g p l a n t m a t u r a t i o n . The i n t e r a c t i o n between t i m i n g and q u a n t i t i e s o f a p p l i c a t i o n to v a r i o u s c r o p s has y e t to be f u l l y i n v e s t i g a t e d . Not a l l p l a n t s t e s t e d respond to k e l p f o l i a r t r e a t m e n t s , but whether t h i s i s due to the type of crop or to the k e l p c o n c e n t r a t i o n s i n s o l u t i o n , q u a n t i t y and/or t i m i n g of a p p l i c a t i o n to the crop has y e t to be d e t e r m i n e d . Many o f the p o s i t i v e growth and d e v e l o p m e n t a l r e s p o n s e s to k e l p f o l i a r t r e a t m e n t have been c o n d u c t e d under c o n t r o l l e d growth c o n d i t i o n s ( i . e . greenhouse and growth chamber e x p e r i m e n t s ) , whereas p o s i t i v e r e s p o n s e s i n f i e l d e x p e r i m e n t s have been r e l a t i v e l y few. Such r e s u l t s s u g g e s t t h a t g r o w t h - l i m i t i n g e n v i r o n m e n t a l f a c t o r s ( e g . l i g h t , t e m p e r a t u r e , d r o u g h t , w a t e r - l o g g i n g , s a l t , d i s e a s e and/or p e s t s ) may a l s o be i m p o r t a n t f a c t o r s c o n t r o l l i n g the e f f i c a c y o f k e l p f o l i a r t r e a t m e n t s . CHAPTER TWO KELP FROM BRITISH COLUMBIA COASTAL WATERS FOR USE IN AGRICULTURAL CROP PRODUCTION 30 2.1 I n t r o d u c t i o n C o a s t a l B r i t i s h Columbia has one o f the most abundant and d i v e r s e p o p u l a t i o n s of s a l t water a l g a e . T h i s abundance and d i v e r s i t y i s r e l a t e d to the n u t r i e n t r i c h medium i n which the a l g a e grow. N u t r i e n t s a r e br o u g h t i n t o t h i s m arine e n v i r o n m e n t p r i m a r i l y as a r e s u l t o f u p w e l l i n g and s u r f a c e water d i s c h a r g e . U p w e l l i n g i s r e l a t e d t o p r e v a i l i n g winds c r e a t i n g c u r r e n t s a l o n g the c o n t i n e n t a l s h e l f which b r i n g n u t r i e n t s up to the c o a s t a l f r i n g e s . The l a r g e e s t a b l i s h e d and p r e s e n t l y u n e x p l o i t e d k e l p beds ( F i g u r e 1) of c o a s t a l B r i t i s h Columbia a r e l i t e r a l l y the " f o r e s t s of the s e a " and a r e an i n t e g r a l p a r t o f marine c o a s t a l e n v i r o n m e n t . An u n d e r s t a n d i n g o f the l i f e h i s t o r y of t h e s e a l g a e and how they i n t e g r a t e w i t h t h e i r e n v i r o n m e n t i s f undamental i f we a r e to manage them as a renewable r e s o u r c e and make a p p r o p r i a t e d e c i s i o n s as to how, when and where to h a r v e s t . KELP SURVEY ALONG COASTAL (S u r v e y d a t e s i n b r a c k e t s ; BRITISH COLUMBIA a f t e r Coon, 1983) 31 FIGURE 1. 32 Two k e l p s , N e r e o c y s t i s l u e t k e a n a (Mert.) P o s t , ejt Rupr. and M a c r o c y s t i s i n t e g r i f o l i a B ory, c o u l d be used i n a g r i c u l t u r a l c r o p p r o d u c t i o n because they a r e abundant and e a s i l y h a r v e s t e d . The k e l p N. l u e t k e a n a i s by f a r the most abundant w i t h an e s t i m a t e d annual s t a n d i n g c r o p of a p p r o x i m a t e l y 500,000 m e t r i c tonnes c o v e r i n g 11,600 ha (Foreman, 1984). T h i s p l a n t i s an annual and i t s r e p r o d u c t i v e organs a r e l o c a t e d on l a m i n a near the s u r f a c e . H a r v e s t of the s t a n d i n g c r o p i s t h e r e f o r e r e s t r i c t e d to one c u t t i n g i n the f a l l a f t e r the p l a n t has r e l e a s e d i t s s p o r e s . The amount h a r v e s t e d can be no g r e a t e r than 20% of the t o t a l s t a n d , and h a r v e s t s s h o u l d be p e r f o r m e d i n 100 m c r o s s - c u r r e n t w i d t h s so t h a t u n h a r v e s t e d p l a n t s can seed the h a r v e s t e d a r e a (Foreman, 1984). The k e l p M. i n t e g r i f o l i a ( F i g u r e 2) i s much l e s s abundant than \±. 1 uetkeaha w i t h an e s t i m a t e d annual s t a n d i n g c r o p o f a p p r o x i m a t e l y 34,600 m e t r i c tonnes c o v e r i n g 2,300 ha (Coon, 1982). The p l a n t has a p e r e n n i a l h o l d f a s t which s e c u r e s i t to a rock s u b s t r a t e . S e a s o n a l s t a n d e s t a b l i s h m e n t i s not p r i m a r i l y by s p o r e s , as i s the case w i t h N. 1uetkeana, but from i t s p e r e n n i a l h o l d f a s t . HARVESTED VEGETATIVE PORTION OF THE KELP M a c r o c y s t i s i n t e g r i f o l i a FIGURE 2. U n l i k e N. 1uetkeana the r e p r o d u c t i v e organs or s p o r o p h y l l s of M. i n t e g r i f o l i a a r e l o c a t e d near the base of the p l a n t and a r e not removed d u r i n g h a r v e s t . Because of t h e s e growth and d e v e l o p m e n t a l d i f f e r e n c e s between the k e l p s , h a r v e s t s o f the e s t a b l i s h e d M. i n t e g r i f o l i a s t a n d s are l e s s r e s t r i c t e d and s e v e r a l h a r v e s t s of the same beds d u r i n g a growing season a r e p o s s i b l e (Coon, 1983). I t i s because of the l e s s r e s t r i c t i v e h a r v e s t i n g s t r a t e g i e s t h a t M. i n t e g r i f o l i a was s e l e c t e d as the k e l p to i n v e s t i g a t e f o r i t s p o t e n t i a l use i n crop p r o d u c t i o n as a s o i l amendment ( C h a p t e r 3) and crop f o l i a r s p r a y ( C h a p t e r 4 ) . 2.2 B i o l o g y o f the K e l p M a c r o c y s t i s i n t e g r i f o l i a T hree s p e c i e s o f the genus M a c r o c y s t i s a r e g e n e r a l l y r e c o g n i z e d i n the w o r l d : M. p y r i f e r a , M. a u g u s t i f o l i a and M. i n t e g r i f o l i a . T h e i r d i s t r i b u t i o n s i n c l u d e c o a s t a l r e g i o n s o f P e r u , C h i l e , A r g e n t i n a , South A u s t r a l i a , New Z e a l a n d (South I s l a n d ) , South A f r i c a and A n t a r c t i c a . In North A m e r i c a , the genus o c c u r s o n l y on the P a c i f i c C o a s t , w i t h M. i n t e g r i f o l i a e x t e n d i n g from Kodiak I s l a n d i n A l a s k a to the Monterey P e n i n s u l a , C a l i f o r n i a . M. i n t e g r i f o l i a i s the o n l y s p e c i e s of t h i s genus on j the. c o a s t o f B r i t i s h Columbia ( B o l d and Wynne, 1978). The a l g a i s r e s t r i c t e d to 35 r e g i o n s where o n l y s l i g h t s e a s o n a l v a r i a t i o n s i n s eawater t e m p e r a t u r e s and s a l i n i t y e x i s t . These e n v i r o n m e n t a l r e s t r i c t i o n s p r e v e n t the growth of the a l g a i n J o h n s t o n and G e o r g i a S t r a i t s . Lower v e r t i c a l d i s t r i b u t i o n i s n o r m a l l y l i m i t e d to 10 m below mean z e r o t i d e and i s o f t e n c o n t r o l l e d by l a c k of a p p r o p r i a t e s u b s t r a t e or by the upper g r a z i n g l i m i t of the sea u r c h i n S t r o n g y l o c e n t r o t u s f r a n c i s c a n u s ( D r u e h l , 1978). F i g u r e 3 d e p i c t s a major s t a n d o f M. i n t e g r i f o l i a near P o r t Hardy, B.C. The p l a n t s p o r o p h y t e ( F i g u r e 4) can exceed 33 m i n l e n g t h and 50 kg i n w e i g h t . The b a s a l p o r t i o n ( h o l d f a s t ) of M a c r o c y s t i s i s p e r e n n i a l and c a p a b l e o f r e g e n e r a t i n g a d d i t i o n a l s t i p e s each growing s e a s o n . The b l a d e s ( l a m i n a e ) i n i t i a l l y undergo l o n g i t u d i n a l d i v i s i o n and d i v i d e i n w a r d l y to g i v e r i s e to the r e p r o d u c t i v e s p o r o p h y l l s . The o u t e r b l a d e s c o n t i n u e to s p l i t g i v i n g r i s e to a p r o c e s s i o n o f s t e r i l e v e g e t a t i v e b l a d e s . These b l a d e s e v e n t u a l l y reach the top o f the water column and then c o n t i n u e to s p l i t a l o n g the s u r f a c e . Each of the v e g e t a t i v e b l a d e s i s m a i n t a i n e d a t or near the water column s u r f a c e by a gas f i l l e d p n eumatocyst a t the p o i n t where i t a t t a c h e s to the s t i p e . The b l a d e s can r e a c h 0.40 m i n l e n g t h (Lobban, 1978b). M a c r o c v s t i s i n t e g r i f o l i a KELP BED NEAR PORT HARDY, B. FIGURE 3. M a c r o c v s t i s i n t e g r i f o l i a IN THE WATER COLUMN ( a f t e r Whyte, 1978) FIGURE 4 . 38 The r e p r o d u c t i v e l i f e c y c l e of M a c r o c y s t i s. l i k e many marine p l a n t s , i s o b s c u r e and t i m i n g of the v a r i o u s r e p r o d u c t i v e s t a g e s i s riot w e l l d e f i n e d . The l i f e c y c l e i n v o l v e s the r e l e a s e of m o t i l e z o o s p o r e s from the mature s p o r a n g i a o f the s p o r o p h y t e . These s e t t l e on the sea bottom and d e v e l o p i n t o m i c r o s c o p i c male and female gametophytes. The f l a g e l l a t e d s p e r m a t o z o i d of the male gametophyte f e r t i l i z e s the egg i n the oogonium of the fema l e gametophyte, r e s u l t i n g i n the f o r m a t i o n of a z y g o t e . The z y g o t e then d e v e l o p s i n t o the s p o r o p h y t e or g i a n t k e l p p r e v i o u s l y d e s c r i b e d ( B o l d and Wynne, 1978). S p o r o p h y t i c growth o c c u r s from F e b r u a r y to the end of O c t o b e r and the growth p a t t e r n i s s i g m o i d a l , w i t h maximum growth o c c u r r i n g i n the e a r l y s p r i n g . J u l y to September tends to be the most a c t i v e p e r i o d f o r z o o s p o r e r e l e a s e . D u r i n g the w i n t e r , many of the f r o n d s become damaged and d e t a c h e d from the h o l d f a s t as a r e s u l t o f s t o r m s , t h e r e f o r e , a v a s t m a j o r i t y of the e s t a b l i s h e d canopy i s no g r e a t e r than 6 months i n age (Lobban, 1978a and 1978b). Smith e_t aj_. (1983) i n v e s t i g a t e d the s e a s o n a l p h o t o s y n t h e t i c p e r f o r m a n c e of M. i n t e g r i f o l i a . Peak p h o t o s y n t h e t i c p e r f o r m a n c e o c c u r r e d from A p r i l to J u l y and d e c l i n e d t h e r e a f t e r . Such t r e n d s i n p h o t o s y n t h e t i c 39 p e r f o r m a n c e were i n v e r s e l y c o r r e l a t e d w i t h ambient seawater t e m p e r a t u r e . R o s s e l and S r i v a s t a v a (1984) and Wheeler and S r i v a s t a v a (1984) examined the s e a s o n a l v a r i a t i o n s o f v a r i o u s c h e m i c a l c o n s t i t u e n t s of M. i n t e g r i f o l i a o ver a two-year p e r i o d ( T a b l e 2 ) . Marked s e a s o n a l t r e n d s i n a s h , a l g i n a t e , m a n n i t o l , B, N, P and K c o n c e n t r a t i o n s e x i s t e d . N, P and K c o n c e n t r a t i o n s were h i g h i n w i n t e r and lower i n summer w i t h B h a v i n g a r e v e r s e t r e n d . The c o n c e n t r a t i o n s and ranges f o r Na, S r , Fe, As, A l , Zn, Mn, Cu and Co a r e a l s o p r e s e n t e d i n T a b l e 2 and d i s p l a y e d no s e a s o n a l t r e n d s . The p l a n t d e m o n s t r a t e d an a b i l i t y to c o n c e n t r a t e the e l e m e n t s ( i n d e c r e a s i n g o r d e r ) P, Fe, As, A l , Mn, Cu, K and B o v e r ambient seawater l e v e l s . L e a c h i n g the p l a n t t i s s u e w i t h w a t e r , a c i d or methanol s u g g e s t e d t h a t the a l k a l i m e t a l s Na and K a r e p r e s e n t p r i m a r i l y as i n o r g a n i c s a l t s w h i l e d i v a l e n t Ca, Mg and Sr were bound to a l g i n i c a c i d . The ash c o n t e n t was a t a minimum i n the summer and a maximum d u r i n g f a l l and e a r l y w i n t e r . K e l p m a n n i t o l and a l g i n a t e v a r y s e a s o n a l l y and i n v e r s e l y to t h a t of s e a s o n a l ash c o n t e n t s . High l e v e l s of N and K i n th k e l p s u g g e s t t h a t i t c o u l d be an i d e a l s o i l amendment f o r the c o a s t a l or i s o l a t e d i s l a n d 40 TABLE 2. SEASONAL VARIATION OF CHEMICAL CONSTITUENTS OF M a c r o c y s t i s i n t e g r i f o l i a (APICAL 2 m) (after Rossel and Srivastava, 1984 and Wheeler and Srivastava, 1984) % mg kg" 1 Chemical constituents: Month Ash Mannitol Alginate N P K B January 40.5 4.0 24.0 2.10 0.56 10 125 February 41.0 5.0 26.0 2.64 0.59 8 100 March 38.0 14.0 25.0 2.94 0.46 7 120 Apri 1 32.0 15.0 24.0 1.15 0.33 6 210 May 30.0 15.0 29.0 1.12 0.59 5 380 June 28.0 14.5 30.0 1.59 0.33 5 165 July 24.0 16.0 31.0 0.83 0.26 5 160 August 25.0 16.5 26.0 0.94 0.20 3 200 September 30.0 9.5 23.5 2.54 0.33 4 200 October 32.0 5.0 23.0 2.62 0.36 6 140 November Not sampled December 42.0 2.0 22.0 2.26 0.50 8 110 b0ther elements Average Range Na % 3.55 2.2-•4.5 Sr mg kg - 622 570- 923 Fe mg kg~ 127 37-•923 As mg kg - 85 57- 120 Al mg kg -; 47 0-226 Zn mg kg -; 23 5- 112 Mn mg kg~ 7 3- 15 Cu mg kg -; 5 0- 15 Co mg kg~l < 2 — a A l l measurements expressed on dry weight basis. bNo seasonal trends. 41 communities of B r i t i s h C o l u m b i a . Such a s o i l amendment may a l s o be u s e f u l f o r f a r m e r s or g a r d e n e r s who use o r g a n i c s u pplements to i n o r g a n i c f e r t i l i z e r s or on t h e i r own. The k e l p ' s N and K c o n c e n t r a t i o n s a r e a t t h e i r h i g h e s t from the f a l l to l a t e s p r i n g , t h e r e f o r e h a r v e s t i n g d u r i n g t h i s p e r i o d would a s s u r e a k e l p s o i l amendment w i t h the h i g h e s t m i n e r a l m a t t e r . The abundance of the k e l p would a l s o make i t i d e a l l y s u i t e d f o r subsequent p r o c e s s i n g and use as a cr o p f o l i a r s p r a y . 2.3 H a r v e s t i n g S t r a t e g y , Government C o n t r o l s and E n v i r o n m e n t a l and S o c i a l I m p l i c a t i o n s A q u a c u l t u r e a l o n g the B r i t i s h Columbia c o a s t i s c u r r e n t l y p r o g r e s s i n g from the r e s e a r c h and development s t a g e to a c o t t a g e i n d u s t r y . The B.C. M i n i s t r y of E n v i r o n m e n t , based on t h e i r e c o l o g i c a l impact a s s e s s m e n t s , has f o r m u l a t e d v a r i o u s laws and r e g u l a t i o n s w i t h r e g a r d to h a r v e s t i n g and p r o c e s s i n g of marine p l a n t s as d e f i n e d i n the F i s h e r i e s A c t , C h a p t e r 137 and F i s h e r i e s A c t R e g u l a t i o n s 140/76. Annual changes i n s t a n d i n g c r o p s of k e l p a r e r e l a t e d to g r o w t h - l i m i t i n g e n v i r o n m e n t a l c o n d i t i o n s , p r i m a r i l y s a l i n i t y 42 and t e m p e r a t u r e , some of which were d i s c u s s e d p r e v i o u s l y . Knowledge o f l o n g term f l u c t u a t i o n s i s i m p o r t a n t i n p l a n n i n g r e s o u r c e a l l o c a t i o n s and i n d u s t r i a l d e v e l o p m e n t . Such i n f o r m a t i o n would be used to a s s e s s the i n v e n t o r y of a s t a n d i n g c r o p p r i o r to the h a r v e s t and s e t t i n g of quotas (Coon, 1983). The B.C. M i n i s t r y of Environment has i n v e s t i g a t e d and d e v e l o p e d a h a r v e s t i n g s t r a t e g y f o r M. i nteg r i f o l i a which i s based on 100% or b e t t e r r e c o v e r y of the s t a n d i n g c r o p s a f t e r h a r v e s t (Coon, 1983). Areas which a r e h a r v e s t e d once a y e a r s h o u l d be c u t 4.5 m above the seabed i n May, June or J u l y . A r e a s which a r e cut l a t e r than J u l y produce h i g h e r y i e l d s , but do not u s u a l l y o b t a i n complete s t a n d e s t a b l i s h m e n t by f a l l . M. i n t e g r i f o l i a r e g e n e r a t e s w e l l when i t i s h a r v e s t e d s e v e r a l t i m e s over i t s growing season as l o n g as c u t s a r e made g r e a t e r than 4.5 m above the seabed. Repeated h a r v e s t s w i t h i n the k e l p bed ( i . e . May and August or May, J u l y and September c u t t i n g s c h e d u l e s ) can be p r a c t i c e d . M u l t i p l e or s i n g l e h a r v e s t s which o c c u r 1.5 or 3.0 m above the seabed r e s u l t i n poor r e g e n e r a t i o n and complete s t a n d e s t a b l i s h m e n t by f a l l i s seldom a c h i e v e d (Coon, 1982 and 1983). 43 The e n v i r o n m e n t a l impacts of h a r v e s t i n g k e l p on n i n e c o m m e r c i a l l y v a l u a b l e f i s h s p e c i e s which o c c u r i n or around k e l p s t a n d s were examined by the B.C. M i n i s t r y o f E n v i r o n m e n t . P r e l i m i n a r y f i n d i n g s have d e m o n s t r a t e d t h a t b l a c k cod, h e r r i n g and chum, j u v e n i l e coho and sockeye salmon were found i n equal or g r e a t e r numbers i n n o n - k e l p h a b i t a t s . Grey cod, l i n g cod and j u v e n i l e p i n k and l a r g e r coho salmon were found more f r e q u e n t l y i n the k e l p h a b i t a t , but the M i n i s t r y has c o n c l u d e d t h a t p a r t i a l removal of the k e l p canopy by h a r v e s t i n g would not r e s u l t i n a d e t e r i o r a t e d h a b i t a t f o r t h e s e f i s h (Coon, 1983). The F i s h e r i e s A c t s t i p u l a t e s t h a t marine p l a n t s a r e "common" p r o p e r t y , owned and managed by the P r o v i n c e o f B r i t i s h Columbia on b e h a l f of the c i t i z e n s o f B.C. The r e g u l a t o r y power l i e s w i t h the M i n i s t r y o f the E nvironment and r e g u l a t i o n s p r o v i d e f o r ( a f t e r Coon, 1983): 1. l i c e n s e f e e s and r e p o r t i n g r e q u i r e m e n t s f o r both h a r v e s t i n g and p r o c e s s i n g s e c t o r s , 2. payment of r o y a l t i e s ( c u r r e n t l y $1 per tonne) on h a r v e s t e d marine p l a n t s , 3. h a r v e s t l i c e n s i n g on the b a s i s of s p e c i e s g r o u p s , 4. d e f i n i t i o n of h a r v e s t a r e a , 5. s e t t i n g of h a r v e s t quota f o r the s p e c i e s group i n h a r v e s t a r e a , 44 6. d e s i g n a t i o n of a p p r o v e d h a r v e s t equipment, 7. d e s i g n a t i o n o f the manner i n which h a r v e s t i n g may be c a r r i e d o u t , 8. c l o s i n g a r e a s when n e c e s s a r y f o r c o n s e r v a t i o n p u r p o s e s . A l a r g e s c a l e k e l p i n d u s t r y i n B.C. has y e t to be e s t a b l i s h e d , a l t h o u g h h a r v e s t i n g of M a c r o c y s t i s has been p r a c t i s e d i n C a l i f o r n i a s i n c e 1910, w i t h 150,000 tonnes h a r v e s t e d per annum. At p r e s e n t the B.C. M i n i s t r y o f the E n v i r o n m e n t has s e t a maximum annual h a r v e s t quota o f 5,000 wet t o n n e s . U n t i l the e n v i r o n m e n t a l a s s e s s m e n t of s m a l l s c a l e h a r v e s t i n g v e n t u r e s d e m o n s t r a t e s t h a t the k e l p h a b i t a t and s t a n d i n g c r o p w i l l not d e t e r i o r a t e w i t h time the quota w i l l not be i n c r e a s e d (Coon, 1983). Development of a k e l p r e s o u r c e i n d u s t r y i n B.C. has been slow as a r e s u l t of p o l i t i c a l and l e g a l u n c e r t a i n t i e s between the P r o v i n c i a l and F e d e r a l Governments and the Haida I n d i a n N a t i o n . An i n f o r m a l w o r k i n g agreement between the F e d e r a l Department of F i s h e r i e s and Oceans and the B.C. M i n i s t r y o f the E nvironment p r o v i d e s f o r p r o v i n c i a l l i c e n s i n g o f commercial marine p l a n t h a r v e s t i n g upon review by the f e d e r a l c o u n t e r p a r t . The Haida N a t i o n , however, has 45 made f o r m a l c l a i m s of ownership to a l l o f B.C. c o a s t a l m arine r e s o u r c e s , i n c l u d i n g the k e l p r e s o u r c e . D e s p i t e t h e s e u n c e r t a i n t i e s , the p r o v i n c i a l government i n v i t e s k e l p development p r o p o s a l s s i n c e a q u a c u l t u r a l development i s deemed e s s e n t i a l to the p r o g r e s s o f B.C. c o a s t a l communities (Coon, 1983). 46 CHAPTER THREE THE KELP, M a c r o c v s t i s i n t e g r i f o l i a . AS A SOIL AMENDMENT 3.1 E f f e c t s o f K e l p ( M a c r o c v s t i s i n t e g r i f o l i a ) on S o i l C h e m i c a l P r o p e r t i e s and Crop Responses 3.1.1. I n t r o d u c t i o n Q u a n t i t a t i v e i n v e s t i g a t i o n s i n t o the use o f f r e s h k e l p as a s o i l amendment have been few. The o b j e c t i v e o f t h i s i n v e s t i g a t i o n was to d e t e r m i n e the immediate two y e a r e f f e c t s o f a s i n g l e a p p l i c a t i o n o f f r e s h k e l p , M a c r o c y s t i s  i n t e g r i f o l i a B ory, a p p l i e d to a f i n e - t e x t u r e d s o i l on cr o p growth and n u t r i t i o n a l r e s p o n s e s and s o i l c h e m i c a l p r o p e r t i e s . 3.1.2 M a t e r i a l s and methods On June 19, 1981 k e l p (M. i n t e g r i f o l i a ) was h a r v e s t e d j u s t o f f s h o r e and south o f P o r t Hardy, B r i t i s h Columbia (N l a t i t u d e 50° 43'; w l o n g i t u d e 127° 2 0 ' ) . The k e l p was c u t one metre beneath the s u r f a c e of the water w i t h a m e c h a n i c a l h a r v e s t e r . In the r e a r o f the h a r v e s t e r the k e l p was chopped i n t o p i e c e s of l e s s than 40 mm and dropped i n t o a 47 barge below. The k e l p was then p l a c e d i n p l a s t i c - l i n e d t o t e s on the deck of a t r u c k , c o v e r e d and t r a n s p o r t e d to the s t u d y s i t e on Westham I s l a n d , B.C., p a r t of the F r a s e r R i v e r d e l t a (N l a t i t u d e 49° 05'; W l o n g i t u d e 1 2 3 ° 1 0 ' ) . Grab samples o f k e l p were taken from each o f the s i x t o t e s on the day of a p p l i c a t i o n and p l a c e d i n z i p - l o c k p l a s t i c bags. The bags were p l a c e d i n an i c e box, t r a n s p o r t e d back to the l a b o r a t o r y and s t o r e d i n the f r e e z e r a t -15°C. The k e l p was thawed and then d r i e d a t 70°C i n a f o r c e d a i r oven to a c o n s t a n t w e i g h t f o r e l e m e n t a l a n a l y s i s and m o i s t u r e c o n t e n t d e t e r m i n a t i o n . The s o i l i s c l a s s i f i e d as Westham S i C L (35% c l a y , 55% s i l t , 10% s a n d ) , S a l i n e , Rego-Humic G l e y s o l (U.S. eq. Humic H a p l a q u e p t ) , and i s formed i n marine and d e l t a i c a l l u v i a l d e p o s i t s o v e r sand ( L u t t m e r d i n g , 1981). Two days p r i o r to k e l p a p p l i c a t i o n , c o m p o s i t e (16 c o r e s ) s o i l samples were taken from each p l o t . S o i l samples were taken to a depth of 0.20 m, l e f t to a i r dry and p a s s e d t h r o u g h a 2 mm s i e v e . The Westham 0-0.20 m l a y e r had a b u l k d e n s i t y o f 1000 kg m" 3, pH (1:2 s p i l : w a t e r ) of 5.0, an e f f e c t i v e (pH 5.0) c a t i o n exchange c a p a c i t y of 13.1 c m o l + k g - 1 , t o t a l N c o n t e n t of 0.21%, Bray P l - e x t r a c t a b l e P o f 69.9 mg k g - 1 , e x c h a n g e a b l e 48 K, Mg, Na, Ca a n d Mn c o n c e n t r a t i o n s o f 0 . 8 1 , 1.5, 0 . 2 1 , 7.2 a n d 0 . 0 4 6 c m o l + k g - 1 , r e s p e c t i v e l y ; CI c o n c e n t r a t i o n o f 120 mg k g - 1 ; e l e c t r i c a l c o n d u c t i v i t y ( E C ) o f 0.30 dS m" 1; NH^-N c o n c e n t r a t i o n o f 1 0 . 3 mg k g - 1 a n d N 0 3 - N c o n c e n t r a t i o n o f 1 0 . 8 mg k g - 1 . M e t h o d s o f s o i l a n a l y s i s a r e d e s c r i b e d b e l o w . On 24 J u n e , k e l p was a p p l i e d t o p l o t s a t 0, 7 . 5 , 1 5 , 3 0 , 60 a n d 120 t h a - 1 w e t w e i g h t . A l l p l o t s r e c e i v e d a c o n c u r r e n t b r o a d c a s t a p p l i c a t i o n o f 2 0 0 k g h a - 1 o f 0 - 4 5 - 0 . T h e 4 m x 7 m p l o t s w e r e a r r a n g e d i n a r a n d o m i z e d c o m p l e t e b l o c k d e s i g n w i t h f o u r b l o c k s . E i g h t d a y s a f t e r t h e k e l p was b r o a d c a s t on t h e s o i l s u r f a c e , c o m p o s i t e s o i l s a m p l e s w e r e t a k e n f r o m t h e 0 - 0 . 2 0 m s o i l l a y e r b e n e a t h t h e k e l p f r o m e a c h o f t h e 0, 60 a n d 120 t h a " 1 p l o t s . N i n e d a y s a f t e r t h e k e l p a p p l i c a t i o n t h e p l o t s w e r e d i s k e d t o a d e p t h o f 0.15 m. S e v e n d a y s a f t e r d i s k i n g , f i e l d b e a n s ( P h a s e o l u s v u l g a r i s L. c v . G a l a m o r ) w e r e i n o c u l a t e d ( R h i z o b i um 1 e g u m i n o s a r u m b i o v a r p h a s e o l i ) a n d p l a n t e d t o a d e p t h o f 35 mm i n 0.60 m w i d e r o w s a l o n g t h e l e n g t h o f e a c h p l o t . I n t h e s e c o n d y e a r ( 1 9 8 2 ) t h e p l o t s w e r e m o l d b o a r d p l o u g h e d i n e a r l y A p r i l , d i s k e d , a n d i n o c u l a t e d ( R h i z o b i u m 1 e g u m i n o s a r u m ' b i o v a r 1 e g u m i n o s a r u m ) f i e l d p e a s ( P i sum s a t i vum L . c v . C o r o n e t ) p l a n t e d on t h e 6 May ( D a y 1) t o a d e p t h o f 35 mm. T h e p l o t s r e c e i v e d no a d d i t i o n a l m i n e r a l f e r t i l i z e r o r k e l p 49 d u r i n g the second y e a r . Composite s o i l and b u l k d e n s i t y samples (0-0.20 m) were taken from each p l o t f i v e days p r i o r to s e e d i n g of peas i n the second y e a r . S t a n d a r d farm m a c h i n e r y was used f o r the p l o u g h i n g , d i s k i n g and p l a n t i n g . Two row s u b - p l o t s 1 m l o n g f o r m e a s u r i n g emergence and f l o w e r i n g were s y s t e m a t i c a l l y e s t a b l i s h e d i n the 0, 60 and 120 t h a - 1 t r e a t m e n t s 1 m i n from a p l o t b o r d e r . In each of the two y e a r s , emergence was d e t e r m i n e d by c o u n t i n g the number of p l a n t s a t the t w o - l e a f s t a g e . The two l e a f s t a g e was d e f i n e d as the time a t which the two l e a v e s were f u l l y open and p e r p e n d i c u l a r to the embryonic stem a x i s . The emerged p l a n t s a t the two l e a f s t a g e were marked and r e c o r d e d on a map a t a p p r o x i m a t e l y the same time o f day. From the mapped sequence of emerging p l a n t s , ten p l a n t s were randomly s e l e c t e d f o r d a t e o f emergence and f l o w e r i n g c o u n t s d u r i n g the f i r s t y e a r . F l o w e r i n g measurements were not made i n the second y e a r . D u r i n g f l o w e r i n g (Day 45 i n 1981 and Day 48 i n 1982) a t r a n s e c t was l a i d a l o n g two rows i n which ten t i s s u e samples were c o l l e c t e d randomly from each o f the 0, 30, 60 and 120 t h a ' 1 p l o t s i n 1981 and the 0, 15, 30, 60 and 120 t h a - 1 p l o t s i n 1982. The t i s s u e samples taken a t f l o w e r i n g i n the f i r s t y e a r c o n s i s t e d o f the newest, f u l l y open t r i f o l i a t e ( t h r e e l e a v e s ) and the whole p l a n t i n the 50 second y e a r . At h a r v e s t , one kg combined l e a f and stem and m a r k e t a b l e (>80 mm) bean or pea pod samples were randomly c o l l e c t e d from the h a r v e s t e d m a t e r i a l from each p l o t f o r d e t e r m i n a t i o n of dry m a t t e r y i e l d s and e l e m e n t a l compos i t i on. H a r v e s t o c c u r r e d on 19 September, 1981 (Day 72) and 16 J u l y , 1982 (Day 7 3 ) . D u r i n g h a r v e s t , s u b - p l o t s m e a s u r i n g 1.20 m x 2.00 m the f i r s t y e a r and 2.00 m x 2.00 m the second y e a r were e s t a b l i s h e d s y s t e m a t i c a l l y i n the c e n t r e of each p l o t . F r e s h w e i g h t s of the whole s h o o t s and pods were o b t a i n e d i n the f i e l d . Grab samples o f pea pods were taken i n the second y e a r and shucked to d e t e r m i n e f r e s h pea y i e l d and f o r subsequent d r y w e i g h t d e t e r m i n a t i o n . Composite s o i l samples (0-0.20 m) were taken from each of the p l o t s on the h a r v e s t d a t e s . Crop samples were br o u g h t i n from the f i e l d i n paper bags and d r i e d a t 70°C i n a f o r c e d a i r oven. A l l p l a n t m a t e r i a l was ground i n a s t a i n l e s s s t e e l W i l e y m i l l and p a s s e d t h r o u g h a 1 mm s i e v e p r i o r to e l e m e n t a l a n a l y s i s . A 1.000 g sample of p l a n t t i s s u e was d i g e s t e d ( P a r k i n s o n and A l l e n , 1975) and K, Mn, Fe, Zn, Na, Cu, Pb, A l , Ca and Mg c o n c e n t r a t i o n s d e t e r m i n e d w i t h the P e r k i n - E l m e r 330 a t o m i c 51 a b s o r p t i o n s p e c t r o p h o t o m e t e r . Copper and Pb were d e t e r m i n e d on k e l p m a t e r i a l o n l y . N i t r o g e n and P were d e t e r m i n e d c o l o u r i m e t r i c a l l y u s i n g a T e c h n i c o n A u t o a n a l y z e r II ( T e c h n i c o n , 1974a). Carbon was d e t e r m i n e d w i t h a Leco A n a l y z e r (Leco Manual, 1959) and k e l p S w i t h a F i s h e r S A n a l y z e r Model 475 ( S u l p h u r I n s t r u c t i o n M a n u a l ) . For S d e t e r m i n a t i o n , a p p r o x i m a t e l y 50 mg of k e l p p l a n t t i s s u e was p l a c e d i n a r e s i s t a n c e - t y p e f u r n a c e h e l d a t 1350°C i n which S was q u a n t i t a t i v e l y c o n v e r t e d to S 0 2 « The S O 2 was a b s o r b e d and q u a n t i f i e d u s i n g an a u t o m a t i c b u r e t t e c o u p l e d w i t h a m i c r o p r o c e s s o r which c a l c u l a t e d the % S ( S u l p h u r I n s t r u c t i o n M a n u a l ) . K e l p B was d e t e r m i n e d u s i n g the azomethine-H method ( W o l f , 1974). Bean Cl was d e t e r m i n e d w i t h an O r i o n h a l i d e e l e c t r o d e model 94-17 c h l o r i d e probe ( O r i o n I n s t r u c t i o n Manual) a f t e r r e f l u x i n g 1.000 g o f p l a n t m a t e r i a l i n 50.0 mL o f d i s t i l l e d water f o r 30 min., f i l t e r i n g t h r o u g h t a Whatman #42 and making to a 50 mL volume. A l l e l e m e n t a l c o n c e n t r a t i o n s a r e e x p r e s s e d on a dry we i g h t b a s i s . E l e m e n t a l uptakes a r e c a l c u l a t e d by m u l t i p l y i n g e l e m e n t a l c o n c e n t r a t i o n by d r y m a t t e r a c c u m u l a t i o n . The e x c h a n g e a b l e c a t i o n s K, Mg, Ca, Mn and Na were e x t r a c t e d w i t h 1 M NH.OAc a d j u s t e d to pH 5.0 (Chapman, 52 1965b) w i t h a subsequent CEC d e t e r m i n a t i o n (Chapman, 1965a). C a t i o n s were d e t e r m i n e d by the P e r k i n - E l m e r 330 a t o m i c a b s o r p t i o n u n i t w i t h NH 4 c o n c e n t r a t i o n f o r CEC d e t e r m i n a t i o n d e t e r m i n e d c o l o u r i m e t r i c a l l y w i t h the T e c h n i c o n A u t o a n a l y z e r II ( T e c h n i c o n , 1974b). T o t a l N was d e t e r m i n e d u s i n g the K j e l d a h l d i s t i l l a t i o n method (Bremner, 1965). S o i l samples of 10.0 g were e x t r a c t e d w i t h 100.0 mL o f 2M KC1 f o r NH^-N and N0 3-N d e t e r m i n a t i o n . Both N0 3~N and NH^-N were d e t e r m i n e d c o l o u r i m e t r i c a l l y , w i t h NO^-N u s i n g the cadmium r e d u c t i o n method c o u p l e d w i t h a T e c h n i c o n A u t o a n a l y z e r II ( T e c h n i c o n , 1977). A 2:1 ( w a t e r : s o i l v/w) e x t r a c t was used i n pH d e t e r m i n a t i o n s (Peech, 1965). E l e c t r i c a l c o n d u c t i v i t y (EC) and s o l u b l e CI c o n c e n t r a t i o n were d e t e r m i n e d by s h a k i n g 25.0 g of s o i l w i t h 50.0 mL o f d i s t i l l e d water f o r 1 h, l e a v i n g i t to s t a n d o v e r n i g h t and f i l t e r i n g t h r o u g h a Whatman #42 f i l t e r p a p e r . S u p e r n a t a n t CI and EC were then d e t e r m i n e d w i t h an O r i o n h a l i d e e l e c t r o d e - model 94-17 c h l o r i d e probe ( O r i o n I n s t r u c t i o n Manual) w i t h EC measurements made w i t h a Radiometer Type CDM2c c o n d u c t i v i t y meter ( J a c k s o n , 1956). A v a i l a b l e P was d e t e r m i n e d c o l o u r i m e t r i c a l l y f o l l o w i n g e x t r a c t i o n w i t h 0.03M NH^F i n 0.025M HCl ( O l s e n and Deans, 1965). A l l q u a n t i t a t i v e measurements were based on a i r d r y w e i g h t . R a i n f a l l d a t a was o b t a i n e d from Environment Canada, D e l t a Ladner South Weather S t a t i o n . 53 Data were s u b j e c t e d to a n a l y s i s o f v a r i a n c e w i t h k e l p a p p l i c a t i o n t r e n d e f f e c t s p a r t i t i o n e d i n t o l i n e a r ( R / L ) , q u a d r a t i c (R/Q), c u b i c (R/C) and r e s i d u a l (R/R) or d e v i a n t (R/D) where a p p l i c a b l e . S t a t i s t i c a l s i g n i f i c a n c e was d e t e r m i n e d a t the 5% l e v e l and c o e f f i c i e n t s of v a r i a t i o n (CV) g i v e n . 3.1.3 R e s u l t s The 1981 and 1982 a n a l y s i s of v a r i a n c e c a l c u l a t e d mean squ a r e e r r o r (MSE), means and F - v a l u e s f o r bean and pea crop growth and e l e m e n t a l c o n c e n t r a t i o n s and uptake r e s p o n s e s and s o i l c h e m i c a l p r o p e r t i e s a r e p r e s e n t e d i n A p p e n d i c e s 1 - 8 . The e l e m e n t a l c o m p o s i t i o n of the P o r t Hardy k e l p used i n t h i s i n v e s t i g a t i o n i s p r e s e n t e d i n T a b l e 3. D u r i n g the f i r s t g rowing season the 120 t h a " 1 a p p l i c a t i o n o f f r e s h k e l p s i g n i f i c a n t l y r e d uced emergence and f l o w e r i n g ( F i g u r e 5 ) . The bean p l a n t s i n p l o t s which had r e c e i v e d 120 t h a " 1 o f f r e s h k e l p were d a r k e r green ( v i s u a l o b s e r v a t i o n ) than p l a n t s i n p l o t s w i t h o t h e r a p p l i c a t i o n s . D u r i n g the f i r s t g r owing season f r e s h and d r y combined l e a f and stem, 54 TABLE 3: KELP (M. i n t e g r i f o l i a ) ELEMENTAL CONCENTRATIONS PORT HARDY KELP SOOKE KELP DESCRIBED IN SECTION DESCRIBED IN SECTION 3.1.2 3.3.2 ELEMENT CONCENTRATION 2CV CONCENTRATION n = 6 n = l c % 27.3 7.00 27.2 N % 2.3 5.5 2.4 P % 0.4 2.8 0.41 K % 8.8 , 4.1 8.4 Ca % 1.21 8.59 1.12 Mg % 0.76 3.5 0.71 Na % 2.82 5.18 2.74 S % 1.0 20 0.90 CI % 17 1.2 18.0 Fe mg kg"} 442 34 360 Al mg kg"} 392 38 330 B mg kg } 147 2.4 174 Zn mg kg"} 12 42 10 Mn mg kg"} 8 30 9 Cu mg kg -} <1 <1 Pb mg k g " 1 <1 <1 C o n c e n t r a t i o n e x p r e s s e d on d r y weight of k e l p : wet k e l p c o n t a i n e d 11% d r y m a t t e r . C o e f f i c e n t of v a r i a t i o n 50-25' F R E S H Y I E L D , R / L , R / Q C V = 16 S H O O T " i r " R / L , R / Q ' " " C V = 19 P O D 6.0 3:0-T-i r DRY Y I E L D R / L , CV = I 8 R / L , C V = I 7 -n — r R / L , R / Q C V = 2 I S H O O T - ^ L E A F S T E M , B E A N ' P O D 40 30 20 H A R V E S T INDEX R / L , C V = 6 . 6 R / L , C V = I I I 1 1— 0 15 30 60 — r 120 • F R E S H 1 D R Y 8.0-» 7.0-if) £ 6.0-t" MOISTURE C O N T E N T R / L , cv = 5 . : ' S H O O T L E A F '— - o a S> S T E M R / L , C V = 6 . 9 ~\ I 1 1— 0 15 30 60 — 1 — 120 K E L P A P P L I C A T I O N ( t h a " 1 ) LEGEND: The e f f e c t s o f i n c r e a s i n g s o i l a p p l i c a t i o n s o f f r e s h k e l p (M. i n t e g r i f o l i a ) on bean growth and d e v e l o p m e n t . FIGURE 5. m a r k e t a b l e (>80 mm) bean pods, t o t a l s h oot y i e l d s and h a r v e s t i n d e x ( p e r c e n t a g e o f the p l a n t w e i g h t which i s m a r k e t a b l e beans) had l i t t l e r e s p o n s e to i n c r e a s i n g k e l p a p p l i c a t i o n s t h r o u g h to 60 t h a - 1 and were reduced w i t h the 120 t h a - 1 a p p l i c a t i o n . The shoot m o i s t u r e c o n t e n t i n c r e a s e d w i t h i n c r e a s i n g k e l p a p p l i c a t i o n . I n c r e a s i n g k e l p a p p l i c a t i o n s r e s u l t e d i n s i g n i f i c a n t i n c r e a s e s i n bean t r i f o l i a t e c o n c e n t r a t i o n s o f K, C I , Na and Mn a t f l o w e r i n g ; combined bean l e a f and stem K, C I , Fe and Zn and bean pod Mn and Zn a t h a r v e s t o f the f i r s t growing season ( T a b l e 4 ) . At h a r v e s t o f the f i r s t y e a r combined bean l e a f and stem uptake of K i n i t i a l l y i n c r e a s e d w i t h i n c r e a s i n g k e l p a p p l i c a t i o n s t h r o u g h to 60 t h a " 1 and then s u b s e q u e n t l y d e c r e a s e d , as d i d the combined l e a f and stem d r y m a t t e r y i e l d s , w i t h the 120 t h a " 1 k e l p a p p l i c a t i o n ( T a b l e 5 ) . Bean pod uptake o f N, P, K, Ca, Mg, Fe and Zn ( T a b l e 5) f o l l o w e d c l o s e l y t h a t o f bean pod and combined l e a f and stem dr y m a t t e r y i e l d s . In the subsequent growing season i n c r e a s i n g k e l p Kelp Application (t h a - 1 ) : TABLE 4. 0 1981 BEAN 7.5 ELEMENTAL 15 CONCENTRATION. 30 60 Sign i f i c a n t 120 Trend Effect CV Flowering ( t r i f o l i a t e ) : K (%) 3.3 a a 3.2 3.7 3.8 R/L 11 CI (%) 0.88 a a 1.10 1.20 1.40 R/L 20 Na (mg kg -}) 140 a a 160 180 210 R/L 25 Mn (mg kg - 1) 35 a a 54 47 66 R/L 36 Harvest (leaf & stem): K {%) 2.4 3.3 2.7 2.6 3.2 3.2 R/L;R/Q 15 CI (%) 0.88 1.30 1.30 1.40 1.50 1.70 R/L 29 Fe (mg kg - J) 180 180 220 170 210 240 R/L 21 Zn (mg kg - 1) 36 36 40 37 40 41 R/L 11 Harvest (bean pod): Mn (mg kg-f) 21 21 24 24 23 31 R/L 21 Zn (mg kg - 1) 30 30 32 32 32 35 R/L 8.0 aNot sampled. Kelp Application (t h a - 1 ) : TABLE 5. 1981 BEAN ELEMENTAL UPTAKE. 0 7.5 15 30 60 Leaf & Stem: K (kg ha" 1) 110 Bean pod N (kg ha" 1) 42.4 P (kg ha" 1) 5.4 K (kg ha" 1) 37 Ca (kg ha - 1) 5.8 Mg (kg ha" 1) 3.3 Fe (g ha" 1) 150 Zn (g ha" 1) 48 110 130 130 150 41.6 44.9 44.8 44.7 5.4 5.6 5.8 5.4 36 38 43 35 5.7 5.8 6.8 5.5 3.1 3.4 3.6 2.8 110 120 130 120 46 51 52 50 S i g n i f i c a n t 120 Trend E f f e c t CV 110 R/Q 18 30.0 R/L;R/Q 22 3.4 R/L;R/Q 23 25 R/L;R/Q 27 3.6 R/L;R/Q 26 2.0 R/L 25 84 R/L 30 33 R/L;R/Q 22 cn CO 59 a p p l i c a t i o n s had no r e s i d u a l e f f e c t s on pea emergence, h a r v e s t i n d e x and f r e s h / d r y w e i g h t r a t i o s . The o n l y growth v a r i a b l e to be s i g n i f i c a n t l y a f f e c t e d was combined d r y pea l e a f and stem y i e l d , which d e c r e a s e d w i t h the 120 t h a - 1 k e l p a p p l i c a t i o n ( T a b l e 6 ) . Na c o n c e n t r a t i o n a t f l o w e r i n g and Na and K c o n c e n t r a t i o n s a t h a r v e s t were a l s o i n c r e a s e d i n the combined pea l e a f and stem f o l i a g e . The Na uptake i n i t i a l l y i n c r e a s e d w i t h the 30 and 60 t h a - 1 k e l p a p p l i c a t i o n s and then s u b s e q u e n t l y d e c r e a s e d , as d i d the combined l e a f and stem d r y m a t t e r y i e l d s , w i t h the 120 t ha" 1 k e l p a p p l i c a t i o n ( T a b l e 6 ) . S o i l samples from 0-0.20 m taken e i g h t days a f t e r the k e l p a p p l i c a t i o n ( T a b l e 7, p r e - s e e d i n g 1981) i n d i c a t e d t h a t i n c r e a s i n g a p p l i c a t i o n s of k e l p r e s u l t e d i n s i g n i f i c a n t l i n e a r i n c r e a s e s i n the s o i l EC, N0 3~N and s o l u b l e Cl and a d e c r e a s e i n s o i l pH. NH^-N c o n c e n t r a t i o n s e i g h t days a f t e r k e l p a p p l i c a t i o n a v e r a g e d 7.3 mg k g " 1 and were not a f f e c t e d by k e l p t r e a t m e n t s . By h a r v e s t 1981, NH^-N i n c r e a s e d w i t h i n c r e a s i n g k e l p a p p l i c a t i o n s . I n c r e a s i n g k e l p a p p l i c a t i o n s c o n t i n u e d to have an e f f e c t on s o i l N0 3-N, s o l u b l e Cl and EC u n t i l p r e - s e e d i n g 1982 ( T a b l e 8 ) . The s o i l e x c h a n g e a b l e K, Mg, Na and Mn a t h a r v e s t 1981 TABLE 6. 1982 PEA GROWTH AND ELEMENTAL CONCENTRATION AND UPTAKE. Si g n i f i c a n t Kelp Application (t h a - 1 ) : 0 7.5 15 30 60 120 Trend Effect CV Growth Response: Dry leaf & stem (t ha" 1) 3.29 3.11 3.26 3.25 3.16 2.71 R/L 12 Elemental Concentrations: Flowering (leaf & stem) Na (mg kg" 1) 560 a 520 620 610 650 R/L 20 Harvest (leaf & stem); Na (mg kg" 1) 900 850 920 1100 1100 1100 R/L;R/Q 16 K (%) 2.8 3.2 2.8 3.1 3.3 3.4 R/L 13 Elemental Uptakes: Harvest (leaf & stem); Na (kg ha" 1) 3.0 2.7 3.0 3.7 3.5 3.1 R/Q 22 aNot sampled. TABLE 7. 1981 SOIL CHEMICAL PROPERTIES. Sig n i f i c a n t Kelp Application (t ha" 1): 0 7.5 15 30 60 120 Trend Effect CV Preseedinq 1981: NO3-N (mg kg" 1) 31 a a a 50 78 R/L 43 pH (2:1 w a t e n s o i l ) 5.7 a a a 5.1 5.2 R/L 9.2 Soluble Cl (mg kg" 1) 140 a a a 1000 1600 R/L 80 EC (dS n r 1 ) 0.48 a a a 1.7 2.4 R/L 61 Harvest 1981: NO3-N (mg kg - 1) 19 21 22 31 32 31 R/L;R/Q . 28 NH4-N (mg kg" 1) 3.7 4.4 4.0 4.1 3.9 6.7 R/L 38 pH (2:1 watensoil) 5.2 5.0 5.0 4.9 4.9 4.4 R/L 8.1 Soluble Cl (mg kg - 1) 260 390 430 560 600 820 R/L 40 EC (dS n r 1 ) 0.52 0.60 0.63 0.80 0.98 1.40 R/L 39 Exchangeables (cmol+ k g - 1 ) ; K 0.85 0.83 0.95 0.93 1.2 1.8 RL/R/Q 33 Na 0.30 0.36 0.35 0.50 0.61 0.87 R/L 43 Mg 1.5 1.5 1.5 1.5 1.6 1.7 R/L 27 Mn 0.045 0.044 0.048 0.048 0.055 0.060 R/L 26 aNot sampled. TABLE 8. 1982 SOIL CHEMICAL PROPERTIES. S i g n i f i c a n t Kelp A p p l i c a t i o n ( t h a - 1 ) : 0 7.5 15 30 60 120 Trend E f f e c t CV Preseedlng 1982; N 0 3 - N (mg k g " 1 ) 18 18 17 17 18 21 R/L 10 S o l u b l e CI (mg k g " 1 ) 210 190 170 220 220 230 R / L 12 EC (dS ITT1) 0.31 0.34 0.33 0.36 0.34 0.40 R/L 12 Exchangeables ( c m o l + k g - 1 ] >; K 0.73 0.87 0.83 0.85 1.0 1.6 R / L ; R / Q 33 Na 0.21 0.20 0.19 0.24 0.27 0.29 R/L 20 Mn 0.045 0.039 0.044 0.048 0.050 0.055 R / L 5.3 Harvest 1982; Exchangeables ( c m o l + k g - 1 ) ; K 0.79 0.87 0.88 0.98 1.0 1.3 R/L 28 Na 0.26 0.22 0.21 0.29 0.31 0.36 R/L 23 Mn 0.042 0.036 0.040 0.043 0.046 0.048 R / L 19 cn ro 63 i n c r e a s e d l i n e a r l y w i t h i n c r e a s i n g k e l p a p p l i c a t i o n s ( T a b l e 7 ) . L i n e a r i n c r e a s e s f o r e x c h a n g e a b l e Mn, Na and K were r e c o r d e d a t p r e - s e e d i n g and h a r v e s t 1982 ( T a b l e 8 ) . A v a i l a b l e s o i l P and e x c h a n g e a b l e Ca were not i n f l u e n c e d by k e l p a p p l i c a t i o n s a t any time w i t h t h i s s o i l . The s o i l pH a t p r e - s e e d i n g and h a r v e s t 1982 was not a f f e c t e d by k e l p a p p l i c a t i o n s . The s i t e r e c e i v e d 978 mm of p r e c i p i t a t i o n from O c t o b e r 1981 to A p r i l ( i n c l u s i v e ) 1982. 3.1 . 4 D i s c u s s i o n The l a c k of any bean p l a n t y i e l d r e s p o n s e s to i n c r e a s i n g k e l p a p p l i c a t i o n s , t h r o u g h to 60 t h a - 1 , i s p r o b a b l y r e l a t e d to the i n i t i a l l y h i g h f e r t i l i t y of the Westham s o i l . E i g h t days a f t e r a p p l i c a t i o n of k e l p , M. i n t e g r i f o l i a , s h a r p i n c r e a s e s i n s o i l water s o l u b l e s a l t s (EC) and CI and a d e c r e a s e i n pH were r e c o r d e d . Many of the c r o p growth and n u t r i t i o n a l r e s p o n s e s were i n d i c a t i v e of p l a n t s growing i n s o i l of i n c r e a s i n g s a l i n i t y . A c c o r d i n g to L e v i t t (1980) both d r o u g h t and s a l t s t r e s s cause p l a n t d e h y d r a t i o n and s e v e r a l mechanisms to t o l e r a t e t h e s e c o n d i t i o n s have e v o l v e d . One mechanism i s o s m o r e g u l a t i o n , 64 i n which p l a n t t i s s u e K c o n c e n t r a t i o n i s i n c r e a s e d i n an e f f o r t to m a i n t a i n t u r g o r . A n o t h e r r e s p o n s e o f the p l a n t to h i g h i n t e r n a l s a l t c o n c e n t r a t i o n s i s to d i l u t e the s a l t s w i t h w a t e r , which i n c r e a s e s the p l a n t m o i s t u r e c o n t e n t . A c c o r d i n g to B h i v a r e and N i m b a l k a r (19 8 4 ) , beans (P.. v u l g a r i s ) showed an i n c r e a s e d m o i s t u r e c o n t e n t i n r e s p o n s e to s a l t s t r e s s . In t h i s i n v e s t i g a t i o n , both c r o p K c o n c e n t r a t i o n and uptake and m o i s t u r e c o n t e n t s i n c r e a s e d as k e l p a d d i t i o n s i n c r e a s e d s o i l l e v e l s of s o l u b l e s a l t s (EC) and e x c h a n g e a b l e K. Bean cr o p emergence, f l o w e r i n g , h a r v e s t i n d e x and y i e l d r e s p o n s e s were a l l reduced w i t h 120 t h a - 1 a p p l i c a t i o n of k e l p . Maas and Hoffman (1977) have r e c o r d e d s i m i l a r growth e f f e c t s w i t h beans grown i n s a l t s o l u t i o n s . P l a n t s which had r e c e i v e d the 120 t h a - 1 a p p l i c a t i o n were v e r y dark green i n a p p e a r a n c e and a c c o r d i n g to H a j r i s u l i h a (1980) t h i s i s c h a r a c t e r i s t i c o f Cl t o x i c i t y . Subsequent greenhouse e x p e r i m e n t s by the a u t h o r ( S e c t i o n 3.3) s u p p o r t the h y p o t h e s i s t h a t many o b s e r v e d p l a n t growth r e s p o n s e s documented i n t h i s f i e l d i n v e s t i g a t i o n were s a l t i n d u c e d . The k e l p Na c o n c e n t r a t i o n was 2.82%. I n c r e a s i n g k e l p a p p l i c a t i o n s i n c r e a s e d s o i l e x c h a n g e a b l e Na and Na c o n c e n t r a t i o n of the bean t r i f o l i a t e and combined pea l e a f and stem p l a n t t i s s u e . Bean Na c o n c e n t r a t i o n s i n c r e a s e d much l e s s than t h o s e of peas and no e f f e c t s were r e c o r d e d i n e i t h e r the bean l e a f and stem or pod f o l i a g e a t h a r v e s t . Beans have been r e p o r t e d to r e t a i n Na i n the r o o t s and b a s a l p o r t i o n s of the stems ( J a c o b y , 1964) and to exude Na from t h e i r r o o t s t o a v o i d Na t o x i c i t y ( L e s s a n i and M a r s c h n e r , 1978). T h i s c o u l d e x p l a i n the v e r y low l e v e l s of Na i n the combined bean l e a f and stem and u n d e t e c t a b l e l e v e l s i n the bean pod. In the second y e a r , combined pea d r y l e a f and stem y i e l d s were reduced i n re s p o n s e to the 120 t h a - 1 a p p l i c a t i o n s o f k e l p . The i n c r e a s e d combined l e a f and stem Na c o n c e n t r a t i o n s w i t h i n c r e a s i n g k e l p a p p l i c a t i o n s and sub s e q u e n t d e c r e a s e i n shoot Na uptake w i t h 120 t h a - 1 k e l p a p p l i c a t i o n s u g g e s t t h a t Na t o x i c i t y may have o c c u r r e d . Bean f o l i a r c o n c e n t r a t i o n s of Fe, Zn and Mn i n c r e a s e d w i t h i n c r e a s i n g a p p l i c a t i o n s of k e l p . Maas e_t aj_. (1972) have d e m o n s t r a t e d a p o s i t i v e c o r r e l a t i o n between p l a n t e l e m e n t a l c o n c e n t r a t i o n of Fe, Mn and Zn w i t h h i g h , s a l t -i n d u c e d , o s m o t i c p o t e n t i a l s o f the growth media. The i n c r e a s i n g s o l u b l e s a l t (EC) w i t h i n c r e a s i n g k e l p a p p l i c a t i o n s may have a l s o caused the o b s e r v e d d e c l i n e i n s o i l pH and subsequent i n c r e a s e s i n the a v a i l a b i l i t y of m i c r o n u t r i e n t s . The i n c r e a s e s i n f o l i a r c o n c e n t r a t i o n s of Fe, Zn and Mn w i t h the 120 t h a " 1 k e l p a p p l i c a t i o n may a l s o 66 be r e l a t e d to i t s reduced bean d r y m a t t e r p r o d u c t i o n . F u t u r e i n v e s t i g a t i o n s s h o u l d make an e f f o r t to d e t e r m i n e both B and Mo f o l i a r c o n c e n t r a t i o n s . T h e , k e l p d i d s u p p l y a s i g n i f i c a n t amount of B to the s o i l and the s u b s equent i n c r e a s e i n s o i l a c i d i t y w i t h l a r g e k e l p a p p l i c a t i o n s c o u l d a l s o a f f e c t the a v a i l a b i l i t y of Mo. I n c r e a s e s i n s o i l e x c h a n g e a b l e Mn and Mn c o n c e n t r a t i o n s i n the bean t r i f o l i a t e and pods and pea pods grown on the Westham s o i l were o b s e r v e d . There was a l s o an i n c r e a s e i n pea pod Mn uptake w i t h i n c r e a s i n g k e l p a p p l i c a t i o n i n the second y e a r . N e u t r a l , Cl c o n t a i n i n g s a l t s , such as KC1 and N a C l , can cause i n c r e a s e d Mn c o n c e n t r a t i o n s o f p l a n t s and l e v e l s o f Mn i n a c i d i c s o i l s ( T i s d a l e .e_t aj_. , 1985). A c c o r d i n g to K r i s h n a m u r t i and Huang (1987) KC1 a p p l i c a t i o n s to v a r i o u s c l a s s e s of temperate and t r o p i c a l s o i l s can g r e a t l y i n c r e a s e the r e l e a s e and a v a i l a b i l i t y o f Mn. I n c r e a s e d Mn r e l e a s e by KC1 were a t t r i b u t e d to the c o m p l e x i n g of M n + 2 by C l " to form M n C l + . F r a n c k i (1960a, 1960b, and 1964) a l s o r e p o r t e d l a r g e i n c r e a s e s i n s o i l e x c h a n g e a b l e Mn and Mn c o n c e n t r a t i o n i n tomato p l a n t s a s s o c i a t e d w i t h l a r g e a p p l i c a t i o n s of the a l g a e Pachymenia  h i m a n t o p h o r a and D u r v i 1 1 e a a n t a r c t i c a . F r a n c k i a t t r i b u t e d r e d u c e d y i e l d s to Mn t o x i c i t y and N i m m o b i l i z a t i o n . The C/N 67 r a t i o s o f t h e s e a l g a e were h i g h , but t h e i r Mn c o n c e n t r a t i o n was <5 mg k g - 1 , which i s lower than the k e l p used i n t h i s i n v e s t i g a t i o n . F r a n c k i c l a i m e d t h a t the a d d i t i o n o f k e l p caused s o i l p a r t i c l e s to d i s p e r s e and the s o i l to become w a t e r l o g g e d . P r o l o n g e d w a t e r l o g g i n g can d e c r e a s e the s o i l redox p o t e n t i a l and i n c r e a s e the c o n c e n t r a t i o n o f the p l a n t a v a i l a b l e M n 2 + form (Bohn et aj_, 1979). F r a n c k i made no r e f e r e n c e to s a l t s as a cause of reduced y i e l d s or i n c r e a s e d s o i l l e v e l s of Mn, a l t h o u g h K, Na and CI c o n c e n t r a t i o n s i n the a l g a e were h i g h . The use of the f r e s h k e l p , M. i n t e g r i f o l i a , as a s o i l amendment r a p i d l y i n c r e a s e d the s o i l s u p p l y of a v a i l a b l e N. E i g h t days a f t e r the k e l p was a p p l i e d , N0 3~N c o n c e n t r a t i o n s o f the s o i l u n d e r l y i n g the y e t u n i n c o r p o r a t e d f r e s h k e l p i n c r e a s e d l i n e a r l y and s h a r p l y w i t h i n c r e a s i n g a p p l i c a t i o n s . The low C/N r a t i o (11.9) o f the k e l p p r o b a b l y r e s u l t e d i n r a p i d d e c o m p o s i t i o n and net m i n e r a l i z a t i o n o f a p p r o x i m a t e l y 30% o f the k e l p ' s t o t a l N. A c c o r d i n g to Whyte (198 1 ) , M. i n t e g r i f o l i a l o s t 23% of i t s t o t a l N a f t e r one f r e s h water washing and 31% a f t e r f o u r . Whyte c o n c l u d e d t h a t N may be p r e s e n t i n the k e l p as N0 3-N or low m o l e c u l a r w e i g h t p o l y m e r i c N forms which r e a d i l y l e a c h . 68 C a i o z z i et. aj_. (1968) r e p o r t e d i n c r e a s e s i n a v a i l a b l e P w i t h the use o f k e l p as a s o i l amendment to c a l c a r e o u s s o i l s . In t h i s i n v e s t i g a t i o n , k e l p P c o n c e n t r a t i o n was low (0.40%) and i n c r e a s i n g k e l p a p p l i c a t i o n s had no m e a s u r a b l e e f f e c t on the a v a i l a b l e s o i l P or bean shoot uptake up to 60 t h a " 1 . A s l i g h t d e c l i n e i n shoot P u p t a k e , i n r e s p o n s e to d e c l i n i n g y i e l d s , was r e c o r d e d w i t h the 120 t h a " 1 k e l p a p p l i c a t i o n . The f a c t t h a t no p o s i t i v e e f f e c t s were measured may be r e l a t e d to the h i g h l e v e l s of a v a i l a b l e P (69 mg Kg" 1) of the Westham s o i l . The k e l p M. i n t e g r i f o l i a , used as a s o i l amendment i n t h i s i n v e s t i g a t i o n , i n c r e a s e d s o i l N, K, C l , Mn and Mg which may be b e n e f i c i a l f o r cr o p p r o d u c t i o n . I n c r e a s i n g l e v e l s of s o i l s o l u b l e s a l t s ( E C ) , Cl and e x c h a n g e a b l e Na w i t h i n c r e a s i n g k e l p a p p l i c a t i o n s c o u l d e v e n t u a l l y i n h i b i t the growth of s a l t s e n s i t i v e c r o p s . C a u t i o n i s i n o r d e r when s o i l s a r e amended w i t h l a r g e q u a n t i t i e s of k e l p i m m e d i a t e l y p r i o r t o s e e d i n g . In a d d i t i o n , r e s i d u a l e f f e c t s of k e l p -d e r i v e d s o l u b l e s a l t s may be h i g h e r i n o t h e r a r e a s than i n c o a s t a l B r i t i s h C o l u m b i a , where h i g h w i n t e r r a i n f a l l c o n s i s t e n t l y l e a c h e s s a l t s from s o i l s w i t h adequate i n t e r n a l d r a i n a g e . Economics would p r o b a b l y l i m i t l a r g e - s c a l e d o m e s t i c use of t h i s k e l p as a s o i l amendment to more. 69 i s o l a t e d i s l a n d communities such as the Queen C h a r l o t t e I s l a n d s or to Vancouver I s l a n d r e g i o n s where the c l o s e p r o x i m i t y to the k e l p r e s o u r c e c o u l d make i t v i a b l e to h a r v e s t and t r a n s p o r t to the farm. A l t e r n a t e l y the k e l p c o u l d be d r i e d and packaged as an o r g a n i c f e r t i l i z e r s upplement f o r use i n gr e e n h o u s e s and where o r g a n i c f a r m i n g i s p r a c t i c e d or on h o u s e h o l d p l a n t s , urban g a r d e n s , lawns, g o l f c o u r s e s and n u r s e r i e s . 3.1.5 C o n c l u s i o n s Many of the s o i l and cr o p growth and n u t r i t i o n a l r e s p o n s e s t o i n c r e a s i n g a p p l i c a t i o n s of f r e s h k e l p , M. i n t e g r i f o l i a . were i n d i c a t i v e of i n c r e a s i n g s o i l s o l u b l e s a l t s . S o i l N03-N, K, Mn, Na, Cl and EC i n c r e a s e d w i t h the q u a n t i t y of k e l p a p p l i e d . Bean cr o p Cl and K c o n c e n t r a t i o n and uptake and m o i s t u r e c o n t e n t s i n c r e a s e d as k e l p a d d i t i o n s i n c r e a s e d . In the f i r s t season bean cr o p growth r e s p o n s e s such as y i e l d s , emergence, h a r v e s t index and f l o w e r i n g were not r e d u c e d u n t i l 120 t h a - 1 o f k e l p was a p p l i e d to the s o i l . Pea growth and n u t r i t i o n a l r e s p o n s e s was a l s o a d v e r s e l y e f f e c t e d w i t h the 120 t h a - 1 k e l p a p p l i c a t i o n i n the second y e a r . Na c o n c e n t r a t i o n at f l o w e r i n g and Na and K c o n c e n t r a t i o n s a t h a r v e s t i n c r e a s e d i n the combined pea l e a f 70 and stem f o l i a g e . T h i s k e l p had a low C/N r a t i o (11.9) and i s comparable to h i g h q u a l i t y b a r n y a r d manure i n N c o n c e n t r a t i o n ( 2 . 3 % ) , of which a p p r o x i m a t e l y 30% was r e a d i l y a v a i l a b l e as NO^-N soon a f t e r a p p l i c a t i o n . T h i s k e l p i s one of the most c o n c e n t r a t e d o r g a n i c s o u r c e s o f K, c o n t a i n i n g 8.8%. The k e l p i s low i n P (0.4% P) and s u p p l e m e n t a r y phosphate f e r t i l i z a t i o n may be n e c e s s a r y on P d e f i c i e n t s o i l s . Farm use of g r e a t e r than 60 t h a - 1 o f f r e s h M. i n t e q r i f o l i a as a s o i l amendment may reduce the y i e l d s of s a l t - s e n s i t i v e c r o p s seeded i m m e d i a t e l y a f t e r k e l p a p p l i c a t i o n . 3.2 The S h o r t - T e r m E f f e c t s o f F r e s h K e l p ( M a c r o c y s t i s  i n t e g r i f o l i a ) on P h y s i c a l P r o p e r t i e s o f a F i n e -T e x t u r e d S o i l 71 3.2.1 I n t r o d u c t i o n In a f i e l d p l o t i n v e s t i g a t i o n f r e s h k e l p (M. i n t e g r i f o l i a ) was b r o a d c a s t and i n c o r p o r a t e d i n t o a s i l t y c l a y loam s o i l i n the Lower F r a s e r V a l l e y o f B r i t i s h C olumbia (see S e c t i o n 3.1). Whyte (1978) has shown t h a t M. i n t e g r i f o l i a c o n t a i n s a h i g h c o n c e n t r a t i o n of p o l y s a c c h a r i d e s , i n c l u d i n g c e l l u l o s e , f u c o i d a n s and a l g i n s . L o n g - c h a i n m o l e c u l e s , such as p o l y s a c c h a r i d e s , a r e i m p o r t a n t i n the f o r m a t i o n of s o i l a g g r e g a t e s and the i n c o r p o r a t i o n of an o r g a n i c s o i l amendment c o n t a i n i n g p o l y s a c c h a r i d e s may have b e n e f i c i a l e f f e c t s on s o i l s t r u c t u r e (Hi 11 e l , 1980). S t r o n g l y - a g g r e g a t e d s o i l s g e n e r a l l y have a h i g h volume of a i r - f i l l e d p o r e s which have the c a p a c i t y to d r a i n q u i c k l y and to remain a i r f i l l e d f o r much of the t i m e . Low s o i l a e r a t i o n w i l l l i m i t the r a t e o f d i f f u s i o n of gases i n t o and out o f the s o i l because a g r e a t e r p r o p o r t i o n of the gases must be exchanged t h r o u g h the water phase, which has a r e l a t i v e l y lower r a t e of gas d i f f u s i o n . Adequate r o o t and 72 m i c r o o r g a n i s m r e s p i r a t i o n r e q u i r e s t h a t the s o i l be a e r a t e d so t h a t oxygen does not become d e f i c i e n t and to p r e v e n t an e x c e s s of c a r b o n d i o x i d e from d e v e l o p i n g i n the r o o t zone. M o r e o v e r , s o i l a e r a t i o n has become a l i m i t i n g f a c t o r to c r o p p r o d u c t i v i t y as s o i l n u t r i e n t and water l i m i t a t i o n s have been r e d u c e d w i t h i n c r e a s e d use of f e r t i l i z e r s and i r r i g a t i on (Hi 11 e l , 1980). The o b j e c t i v e of t h i s s t u d y was to a s s e s s the s t r u c t u r a l e f f e c t s of the k e l p , M. i n t e q r i f o l i a , s o i l amendment on a f i n e - t e x t u r e d s o i l . M o d i f i c a t i o n to s o i l s t r u c t u r e o v e r two y e a r s was e v a l u a t e d by m e a s u r i n g b u l k and p a r t i c l e d e n s i t y , and a e r a t i o n and t o t a l p o r o s i t y . 3.2.2 M a t e r i a l s and methods The method of k e l p h a r v e s t and s o i l i n c o r p o r a t i o n , s o i l and p l o t d e s c r i p t i o n and t y p e s o f c r o p s used i n the 1981 and 1982 f i e l d t r i a l s a r e d e s c r i b e d i n S e c t i o n 3.1.2. At f l o w e r i n g (Day 45 i n 1981 and Day 48 i n 1982) a l i n e t r a n s e c t , w i t h t h r e e randomly s e l e c t e d p o s i t i o n s a l o n g i t , was e s t a b l i s h e d a l o n g each l e n g t h o f the 0, 30, 60 and 120 t h a - 1 t r e a t e d p l o t s , 1.5 m i n from the p l o t b o r d e r . At each 73 p o i n t a l o n g the t r a n s e c t a 75 mm d i a m e t e r c o r e (76 mm i n l e n g t h ) sub-sample were taken from a depth of 50 mm i n t o the p l o u g h zone (0-0.20 m). Each c o r e was e x c a v a t e d , p l a c e d i n a p l a s t i c bag, put i n t o a c a r d b o a r d i c e - c r e a m c o n t a i n e r and t r a n s p o r t e d back to the l a b o r a t o r y i n an i c e b o x . A l l 48 c o r e samples were then p l a c e d i n the c o o l e r a t 10°C u n t i l a n a l y s i s . T o t a l p o r o s i t y was d e t e r m i n e d by s u s p e n d i n g the c o r e s on a metal g r a t e and s l o w l y (24 h) a l l o w i n g the water l e v e l to r i s e to the top of the c o r e , a f t e r which they were q u i c k l y weighed. The s a t u r a t e d c o r e s were then p l a c e d upon a t e n s i o n t a b l e and a l l o w e d to d r a i n f o r 12 h a t a water p o t e n t i a l of -6.0 kPa and weighed. The w e i g h t l o s s of the c o r e s between s a t u r a t i o n and a f t e r b e i n g f r e e l y d r a i n e d was used to d e t e r m i n e the s o i l a e r a t i o n (Vomoci1,1965). Bulk d e n s i t y was d e t e r m i n e d by the c o r e method d e s c r i b e d by B l a k e ( 1 9 6 5 ) . The w e i g h t d i f f e r e n c e between t h a t o f the oven-d r i e d and water s a t u r a t e d c o r e (0 kPa) was used to c a l c u l a t e the t o t a l p o r o s i t y . P a r t i c l e d e n s i t y was, c a 1 c u 1 a t e d by u s i n g the t o t a l p o r o s i t y and b u l k d e n s i t y f o r each c o r e . R a i n f a l l d a t a were o b t a i n e d from Environment Canada, D e l t a Ladner South Weather S t a t i o n . A e r a t i o n and t o t a l p o r o s i t y measurements were made 74 s i m u l t a n e o u s l y on samples from w i t h i n each b l o c k of the f i e l d e x p e r i m e n t . A l l d a t a were s u b j e c t e d to a n a l y s i s of v a r i a n c e w i t h k e l p a p p l i c a t i o n e f f e c t s p a r t i t i o n e d i n t o l i n e a r ( R / L ) , q u a d r a t i c (R/Q) and d e v i a n t (R/D) components. S t a t i s t i c a l s i g n i f i c a n c e was d e t e r m i n e d a t the 5% l e v e l and c o e f f i c i e n t o f v a r i a t i o n s (CV) g i v e n . 3.2.3 R e s u l t s The a n a l y s i s of v a r i a n c e , c a l c u l a t e d mean square terms, means and F - v a l u e s f o r a l l s o i l s t r u c t u r e v a r i a b l e s a r e p r e s e n t e d i n Appendix 9. I n c r e a s i n g a p p l i c a t i o n s o f k e l p had no s i g n i f i c a n t e f f e c t on the b u l k and p a r t i c l e d e n s i t y or t o t a l p o r o s i t y of the s o i l o v e r two y e a r s . The 1981 mean b u l k and p a r t i c l e -3 -3 d e n s i t y and t o t a l p o r o s i t y were 981 kg m , 2430 kg m and 3 - 3 0.597 m m r e s p e c t i v e l y , whereas i n 1982 they were 915 kg m"3, 2470 kg m"3 and 0.630 m 3 m"3 r e s p e c t i v e l y . The 1981 a e r a t i o n p o r o s i t y ( F i g u r e 6) i n c r e a s e d s i g n i f i c a l l y w i t h k e l p a p p l i c a t i o n s up to the 60 t h a - 1 and then d e c r e a s e d w i t h the 120 t h a - 1 a p p l i c a t i o n . The mean s o i l a e r a t i o n of 3 - 3 the s o i l i n the second y e a r was 0.22 m m SOIL AERATION 0.14-1 1 . , 0 30 60 120 KELP APPLICATION ( t h a H ) LEGEND: The e f f e c t s of s o i l i n c o r p o r a t e d f r e s h k e l p (M. i n t e g r i f o l i a ) a p p l i c a t i o n s on s o i l a e r a t i o n p o r o s i t y . FIGURE 6. 3.2.4 D i s c u s s i o n 76 The e f f e c t of k e l p on a e r a t i o n may be r e l a t e d to i t s c h e m i c a l c o m p o s i t i o n . T h i s k e l p has a h i g h c o n t e n t o f p o l y s a c c h a r i d e s . Two o f t h e s e a r e a l g i n s a t 18% ( d r y weight b a s i s ) and f u c o i d a n s a t 3.3% (Whyte, 1978). These a r e e x t r e m e l y s t i c k y and v i s c o u s . Such c o n s t i t u e n t s may a c t as "cementing a g e n t s " and reduce the s l a k i n g of a g g r e g a t e s caused by the r e p e a t e d w e t t i n g and d r y i n g o f the s o i l ( H i l l e l , 1980). I n c r e a s e d a g g r e g a t e s t a b i l i t y f o l l o w i n g k e l p a p p l i c a t i o n c o u l d have reduced the i n f i l l i n g o f i n t e r a g g r e g a t e p o r e s by c r u m b l i n g a g g r e g a t e s . Such a r e d u c t i o n o f the s o i l a e r a t i o n c o u l d r e s u l t i n i n c r e a s e d w a t e r - f i l l e d p o r e s and water r e t e n t i o n . A p o s s i b l e e x p l a n a t i o n f o r a l a c k of a t r e a t m e n t e f f e c t on s o i l a e r a t i o n i n the second y e a r may be r e l a t e d to the d i f f e r e n t w eather c o n d i t i o n s p r e v a l e n t d u r i n g the two y e a r s . In 1981, the t o t a l r a i n f a l l from time of k e l p a p p l i c a t i o n (June 24) u n t i l c o r e s a m p l i n g (August 22) was 69 mm. In the s u b s e q u e n t y e a r ( 1 9 8 2 ) , the c u m u l a t i v e r a i n f a l l from d i s k i n g (May 4) u n t i l c o r e s a m p l i n g (June 23) was o n l y 16 mm. The lower r a i n f a l l o f the second y e a r c o u l d e x p l a i n the r e l a t i v e l y h i g h e r a e r a t i o n and t o t a l p o r o s i t y and lower bulk d e n s i t y as a g g r e g a t e s l a k i n g may have been m i n i m a l . 77 The r e d u c t i o n i n s o i l a e r a t i o n p o r o s i t y a s s o c i a t e d w i t h the 120 t h a - 1 k e l p a p p l i c a t i o n may be r e l a t e d to the h i g h l e v e l of Na and K s a l t s a s s o c i a t e d w i t h the k e l p . The 120 t h a - 1 k e l p a p p l i c a t i o n s u p p l i e d a t o t a l o f 1160 and 373 kg h a - 1 of K and Na, r e s p e c t i v e l y . T h i s q u a n t i t y of monovalent c a t i o n s c o u l d have caused the a g g r e g a t e s to s l a k e or d i s p e r s e more r e a d i l y upon w e t t i n g , w i t h a s u b s e q u e n t f i l l i n g o f a e r a t i o n p o r e s and an i n c r e a s e i n i n t e r s t i t i a l w ater ( H i l l e l , 1980). Such an e f f e c t of k e l p - d e r i v e d s a l t s on the s o i l s t r u c t u r e needs to be i n v e s t i g a t e d . 3.3 Induced S a l t T o x i c i t y to Beans w i t h K e l p ( M a c r o c y s t i s  i n t e g r i f o l i a) S o i l Amendments 3.3.1 I n t r o d u c t i o n A f i e l d i n v e s t i g a t i o n c o n d u c t e d ( S e c t i o n 3.1) i n the Lower F r a s e r V a l l e y , B r i t i s h C o l u m b i a , has shown re d u c e d emergence, f l o w e r i n g and y i e l d s of beans (P_. v u l g a r i s ) w i t h an a p p l i c a t i o n of 120 t h a - 1 of f r e s h k e l p (M. i n t e g r i f o l i a ) . P l a n t i n h i b i t i o n a s s o c i a t e d w i t h t h i s k e l p a p p l i c a t i o n may have been due to n u t r i e n t i m m o b i l i z a t i o n , unknown p h y t o t o x i n s and/or h i g h s a l t c o n c e n t r a t i o n s . N u t r i e n t a v a i l a b i l i t y ( J a n s s o n , 1971) or p h y t o t o x i n s ( P a t r i c k , 1971) can have an i n h i b i t o r y e f f e c t on p l a n t emergence, g e r m i n a t i o n and development. L e v e l s o f p h y t o t o x i n s and n u t r i e n t a v a i l a b i l i t y may v a r y w i t h i n c u b a t i o n p e r i o d as the k e l p decomposes. Thus, i n c u b a t i n g k e l p t r e a t e d s o i l f o r i n c r e a s i n g l e n g t h s o f time p r i o r to s e e d i n g c o u l d a l t e r emergence, growth and development of p l a n t s . The o b j e c t i v e s of t h i s s t u d y were (a) to d e t e r m i n e the e f f e c t s on s o i l c h e m i c a l p r o p e r t i e s and the growth of beans (P. v u l g a r i s ) when k e l p (M. i n t e g r i f o l i a) i s a p p l i e d i n 79 i n c r e a s i n g q u a n t i t i e s and i n c u b a t i o n p e r i o d s p r i o r to s e e d i n g , and (b) to e v a l u a t e the e f f e c t s of s u b s e q u e n t l e a c h i n g on the r e s p o n s e of beans to d i f f e r e n t k e l p a p p l i c a t i ons. 3.3.2 M a t e r i a l s arid Methods Ke l p (M. i n t e g r i f o l i a ) was h a r v e s t e d o f f s h o r e from Sooke, B r i t i s h Columbia (N l a t i t u d e 48°15'; W l o n g i t u d e 1 2 3 ° 4 5 ' ) . The k e l p was p l a c e d i n z i p - l o c k p l a s t i c bags and t r a n s p o r t e d i n an i c e b o x back to the l a b o r a t o r y i n V a n c o u v e r . The e l e m e n t a l c o m p o s i t i o n of the Sooke k e l p i s p r e s e n t e d i n T a b l e 3. Methods of e l e m e n t a l a n a l y s i s a r e the same as t h o s e d e s c r i b e d i n S e c t i o n 3.1.2. Twelve hours a f t e r h a r v e s t the k e l p was c u t i n t o p i e c e s l e s s than 40 mm, weighed i n t o a p p r o p r i a t e measures f o r each o f the p o t s , p l a c e d i n z i p - l o c k p l a s t i c bags and kept f r o z e n a t -70°C u n t i l 24 h p r i o r to m i x i n g w i t h the s o i l . A b u l k s o i l sample was removed from the 0-0.20 m zone of the p l o u g h l a y e r of the Westham s o i l d e s c r i b e d i n S e c t i o n 3.1.2. Three b u l k d e n s i t y c o r e samples were taken from the immediate a r e a and d r i e d i n a f o r c e d a i r oven a t 105°C f o r 48 h f o r b u l k d e n s i t y d e t e r m i n a t i o n ( B l a k e , 1965). Sub-80 samples o f the bul k s o i l were s i m i l a r l y d r i e d to d e t e r m i n e m o i s t u r e c o n t e n t . F i e l d - m o i s t s o i l e q u i v a l e n t to 2.0 kg of dry s o i l was added to 2.3 L p l a s t i c p o t s a c h i e v i n g a b u l k _3 d e n s i t y o f 1000 kg m and s o i l m o i s t u r e m a i n t a i n e d a t a p p r o x i m a t e l y -33 to -36 kPa t h r o u g h o u t the e x p e r i m e n t by w a t e r i n g d a i l y . Each pot was amended by m i x i n g i n t o the s o i l a p p l i c a t i o n s e q u i v a l e n t to 200 kg h a - 1 o f 0-45-0 and 0, 15, 60 or 120 t h a " 1 of wet k e l p u s i n g the f i e l d b u l k _3 d e n s i t y of 1000 kg m f o r the 0-0.20 m d e p t h . E x p e r i m e n t I: The f o u r k e l p a p p l i c a t i o n s were e s t a b l i s h e d i n f a c t o r i a l c o m b i n a t i o n w i t h subsequent i n c u b a t i o n p e r i o d s of 1, 3 or 5 weeks p r i o r s e e d i n g . S i x r e p l i c a t e s o f each t r e a t m e n t were p l a c e d i n a greenhouse i n a c o m p l e t e l y randomized d e s i g n . One day p r i o r to s e e d i n g , s o i l c o r e s were take n to a depth of 50 mm to g i v e 40 g of s o i l f o r pH, Cl and e l e c t r i c a l c o n d u c t i v i t y (EC) d e t e r m i n a t i o n . Bean (£. v u l g a r i s c v . Galamor) seeds were wet t e d and i n o c u l a t e d ( R h i z o b i um 1egumi nosarum b i o v a r p h a s e o l i ) j u s t p r i o r to sowing t h r e e seeds per pot a t a depth o f 40 mm. I n c u b a t i o n p e r i o d s were timed so t h a t a l l p o t s were sown a t the same t i m e . The seed, phosphate f e r t i l i z e r , i n o c u l a n t , k e l p and s o i l used i n t h i s e x p e r i m e n t were the same as t h o s e used i n a companion f i e l d p l o t i n v e s t i g a t i o n ( S e c t i o n 3 . 1 ) . 81 Emergence was a s s e s s e d each day by c o u n t i n g the number of p l a n t s a t the t w o - l e a f s t a g e i n each of the p o t s . The t w o - l e a f s t a g e was d e f i n e d as the time a t which the two l e a v e s were f u l l y open and p e r p e n d i c u l a r to the embryonic stem a x i s . A f t e r f u l l emergence each pot was s e l e c t i v e l y t h i n n e d to two p l a n t s per p o t . At h a r v e s t (Day 74) bean p l a n t s were c l i p p e d a t the s o i l s u r f a c e and weighed i m m e d i a t e l y . The beans were then removed and weighed. The p l a n t m a t e r i a l was then p l a c e d i n paper bags, d r i e d a t 70°C i n a f o r c e d a i r oven to a c o n s t a n t w e i g h t and weighed i m m e d i a t e l y f o r m o i s t u r e d e t e r m i n a t i o n . One day a f t e r h a r v e s t , s o i l c o r e s w e i g h i n g a p p r o x i m a t e l y 100 g were c o m p o s i t e d from each o f the p o t s r e c e i v i n g 0, 60 and 120 t h a - 1 a p p l i c a t i o n s o f k e l p . A 10.0 g sub-sample f o r NH^-N and N0 3-N a n a l y s i s was then t a k e n , w i t h the r e s t of the s o i l r e t u r n e d t o the p o t s . Pots were at f i e l d c a p a c i t y (-33 kPa) a t the time o f s a m p l i n g . E x p e r i m e n t II: P r i o r to the commencement of t h i s e x p e r i m e n t t h r e e o f the s i x r e p l i c a t e s from each of the t h r e e i n c u b a t i o n p e r i o d s f o r each k e l p a p p l i c a t i o n ( e x c l u d i n g the 15 t h a - 1 a p p l i c a t i o n ) t r e a t m e n t of E x p e r i m e n t I were randomly a s s i g n e d to the l e a c h e d and the r e m a i n i n g t h r e e to the u n l e a c h e d t r e a t m e n t s , g i v i n g n i n e r e p l i c a t i o n s f o r each of the r e m a i n i n g a p p l i c a t i o n s ; 0, 60 and 120 t h a - 1 . P r i o r to l e a c h i n g the s o i l both the l e a c h e d and u n l e a c h e d t r e a t m e n t s were t e s t e d f o r homogeneity o f p l a n t emergence ( t w o - l e a f s t a g e ) and s o i l CI c o n c e n t r a t i o n s , EC and pH u s i n g the methods d e s c r i b e d i n E x p e r i m e n t I. The o n l y s i g n i f i c a n t d i f f e r e n c e ( t - t e s t ) between the two groups was t h a t the p o t s to be l e a c h e d had a s l i g h t l y h i g h e r EC (1.44 vs 1.24 dS m~ The s o i l i n each pot was t h o r o u g h l y t i l l e d , a f t e r which the l e a c h e d pot r e c e i v e d a volume of tap water equal to 3 -3 t w i c e i t s t o t a l p o r o s i t y o f 0.58 m m (assuming a s o i l _3 p a r t i c l e d e n s i t y o f 2650 kg m ). The l e a c h e d s o i l s took t h r e e weeks to r e t u r n to f i e l d c a p a c i t y , and the u n l e a c h e d s o i l s were m a i n t a i n e d a t f i e l d c a p a c i t y d u r i n g t h i s p e r i o d . The s o i l was s u b s e q u e n t l y t i l l e d and a l l o w e d to e q u i l i b r i a t e f o r one week. The s o i l s were then sampled as d e s c r i b e d f o r E x p e r i m e n t I and a n a l y z e d f o r pH, EC and C I . The f o l l o w i n g day, e i g h t bean seeds were sown to a depth o f 40 mm and the emergence to the two l e a f s t a g e measured as p r e v i o u s l y d e s c r i b e d . Once the p l a n t s i n a l l t r e a t m e n t s had r e a c h e d 83 the two l e a f s t a g e , they were t h i n n e d to two p l a n t s per p o t . At h a r v e s t (Day 41) p l a n t w e i g h t s and m o i s t u r e c o n t e n t s and s o i l NH 4-N and N0 3~N c o n c e n t r a t i o n s were d e t e r m i n e d . S o i l pH, EC, C I , NH^-N and N0 3-N were d e t e r m i n e d u s i n g t h o s e methods d e s c r i b e d i n S e c t i o n 3.1.2. S o i l t e m p e r a t u r e s were measured w i t h s i l i c o n d i o d e s (Hinshaw and F r i t s c h e n , 1970) p l a c e d v e r t i c a l l y a t the a p p r o x i m a t e c e n t r e of t h r e e p o t s r e c e i v i n g 0 and t h r e e r e c e i v i n g the 120 t h a - 1 k e l p a p p l i c a t i o n . A l l d a t a were s u b j e c t e d to a n a l y s i s o f v a r i a n c e . In E x p e r i m e n t I, a p p l i c a t i o n e f f e c t s i n c l u d e d l i n e a r (R/L) and q u a d r a t i c (R/Q) or d e v i a n t (R/D), where a p p l i c a b l e , w i t h i n c u b a t i o n e f f e c t s p a r t i t i o n e d i n t o l i n e a r (INC/L) and d e v i a n t (INC/D). I n t e r a c t i o n s between a p p l i c a t i o n and i n c u b a t i o n i n c l u d e d INC/L*R/L, INC/L*R/Q, INC/L*R/D, INC/D*R/L, INC/D*R/Q and INC/D*R/D. In E x p e r i m e n t I I , a p p l i c a t i o n e f f e c t s were p a r t i t i o n e d i n t o l i n e a r (R/L) and d e v i a n t (R/D) w i t h l e a c h i n g (LCH) by a p p l i c a t i o n i n t e r a c t i o n s i n c l u d i n g R/L*LCH and R/D*LCH. S t a t i s t i c a l s i g n i f i c a n c e was d e t e r m i n e d a t the 5% l e v e l and c o e f f i c i e n t s o f v a r i a t i o n (CV) g i v e n . 3.3.3 R e s u l t s 84 The a n a l y s i s o f v a r i a n c e , c a l c u l a t e d mean square e r r o r s , means and F - v a l u e s f o r c u r v i l i n e a r and t r e a t m e n t e f f e c t s upon the growth and s o i l c h e m i c a l v a r i a b l e s of E x p e r i m e n t s I and II a r e p r e s e n t e d i n A p p e n d i c e s 10 - 13. The d a i l y means of ambient r e l a t i v e h u m i d i t y f o r E x p e r i m e n t I and E x p e r i m e n t II were 75% and 65%, r e s p e c t i v e l y . Average d a i l y maximum t e m p e r a t u r e s f o r Ex p e r i m e n t I and f o r Exp e r i m e n t II were 26°C and 33°C, r e s p e c t i v e l y . N i g h t l y minimum t e m p e r a t u r e s were 18°C f o r both e x p e r i m e n t s . S o i l t e m p e r a t u r e s f o l l o w e d ambient t e m p e r a t u r e s c l o s e l y , but on av e r a g e were 1-2°C below peak ambient t e m p e r a t u r e s . E x p e r i m e n t I: S o i l EC and CI c o n c e n t r a t i o n s i n c r e a s e d w i t h i n c r e a s i n g q u a n t i t i e s o f k e l p a p p l i e d ( F i g u r e 7 ) . I n c u b a t i o n p e r i o d had no e f f e c t on EC, however, s o i l CI c o n c e n t r a t i o n s were s i g n i f i c a n t l y h i g h e r f o l l o w i n g the t h r e e and f i v e week p e r i o d s than the one week i n c u b a t i o n p e r i o d . I n c u b a t i o n had no s i g n i f i c a n t e f f e c t upon s o i l N0 3~N but i n c u b a t i o n d i d a f f e c t s o i l NH^-N c o n c e n t r a t i o n s w i t h NH^-N l e v e l s f o r the 120 t h a - 1 k e l p a p p l i c a t i o n d e c r e a s i n g w i t h EXPERIMENT I S O I L C H E M I C A L E F F E C T S ( A p p l i c a t i o n I n c u b a t i o n ) N 0 3 - N I5H I cn E 7.51 N H 4 - N I N C / L • * R / L C V = 83 I wk. ^ 3 w k . 5wk. 0 15 — I — 6 0 K E L P A P P L I C A T I O N ( t h a " 1 ) —r~ 120 LEGEND: The e f f e c t s o f s o i l i n c o r p o r a t e d f r e s h k e l p (M. i n t e g r i f o l i a ) a p p l i c a t i o n s and v a r y i n g i n c u b a t i o n p e r i o d s (1 , 3 and 5 weeks) of k e l p i n the s o i l on s o i l c h e m i c a l p r o p e r t i e s . F I G U R E 7. 86 i n c r e a s i n g i n c u b a t i o n p e r i o d ( F i g u r e 7 ) . S o i l N0 3-N and NH 4~ N c o n c e n t r a t i o n s i n c r e a s e d w i t h i n c r e a s i n g k e l p a d d i t i o n s . P l a n t emergence between days 12 to 16 was not a f f e c t e d i by i n c u b a t i o n p e r i o d , but was reduced w i t h the 120 t h a - 1 k e l p a p p l i c a t i o n ( F i g u r e 8 ) . The l e a v e s of p l a n t s r e c e i v i n g the 60 and 120 t h a - 1 a p p l i c a t i o n s were s m a l l e r and d a r k e r g r e e n i n c o l o u r a t the two l e a f s t a g e than i n the c o n t r o l and the 15 t h a - 1 a p p l i c a t i o n . The symptoms were most pronounced a t the 120 t h a - 1 a d d i t i o n . I n c u b a t i o n p e r i o d had no e f f e c t on bean y i e l d s , but bean y i e l d s were reduced w i t h both the 60 and 120 t h a " 1 k e l p a p p l i c a t i o n s . Shoot r e s p o n s e s to i n c u b a t i o n p e r i o d were s m a l l i n c o m p a r i s o n to the e f f e c t of i n c r e a s i n g k e l p a p p l i c a t i o n s . A r e d u c t i o n i n shoot y i e l d s w i t h the one week i n c u b a t i o n o c c u r r e d w i t h the 120 t h a - 1 a p p l i c a t i o n , whereas both the 60 and 120 t h a - 1 a p p l i c a t i o n s , when i n c u b a t e d f o r t h r e e and f i v e week p e r i o d s , r e d u c e d y i e l d s . The m o i s t u r e c o n t e n t s of the shoot and beans ( f r e s h w e i g h t / d r y w e i g h t r a t i o s ) was a l s o i n c r e a s e d w i t h i n c r e a s i n g k e l p a p p l i c a t i o n s , w h i l e i n c u b a t i o n p e r i o d had no e f f e c t . E x p e r i m e n t I I : S o i l samples taken a f t e r l e a c h i n g and one day p r i o r to s e e d i n g d e c r e a s e d i n pH and i n c r e a s e d i n EC and E X P E R I M E N T I B E A N GROWTH A N D D E V E L O P M E N T ( A p p l i c a t i o n • * I n c u b a t i o n ) 100-o D a> 50 o E M E R G E N C E R/L , CV = I9 87 DAY T — r B E A N POD W E I G H T R/L, CV = 27 8.0-* • > s V -^6.0-o 4.0 M O I S T U R E C O N T E N T R/L, CV = 2.8 BEAN POD SHOOT R/L, CV = 2.0 T — r 0 15 I 60 I 120 K E L P A P P L I C A T I O N ( t h a - 1 ) LEGEND: The e f f e c t s o f s o i l i n c o r p o r a t e d f r e s h k e l p (M. i n t e g r i f o l i a ) a p p l i c a t i o n s and v a r y i n g i n c u b a t i o n p e r i o d s (1, 3 and 5 weeks) of k e l p i n the s o i l p r i o r to s e e d i n g on bean growth and development. FIGURE 8. 88 Cl c o n c e n t r a t i o n w i t h i n c r e a s i n g q u a n t i t i e s o f k e l p added ( F i g u r e 9 ) . The l e a c h e d s o i l s had h i g h e r s o i l pH, lower EC and Cl c o n c e n t r a t i o n s i n comparison to s o i l s which were not 1eached. P l a n t emergence was g r e a t e r w i t h the l e a c h e d s o i l as compared to u n l e a c h e d s o i l s ( F i g u r e s 10 and 11). The l e a f symptoms o b s e r v e d i n E x p e r i m e n t I were a g a i n e v i d e n t w i t h beans grown on s o i l s which had not been l e a c h e d . P l a n t l e a v e s from s o i l s which had been l e a c h e d became c h l o r o t i c by f l o w e r i n g (Day 41) a t which time the e x p e r i m e n t was t e r m i n a t e d . I n c r e a s i n g k e l p a p p l i c a t i o n s i n c r e a s e d the f r e s h w e i g h t y i e l d s i n l e a c h e d s o i l s but y i e l d s were reduced i n u n l e a c h e d s o i l s ( F i g u r e 10). Shoot d ry m a t t e r y i e l d s f o l l o w e d s i m i l a r but l e s s pronounced t r e n d s . The p l a n t s grown on l e a c h e d s o i l s had a lower shoot m o i s t u r e c o n t e n t than t h o s e grown on u n l e a c h e d s o i l s , and i n both groups of s o i l s s hoot m o i s t u r e c o n t e n t was i n c r e a s e d w i t h i n c r e a s i n g a p p l i c a t i o n s of k e l p ( F i gure 10). S o i l samples taken a t h a r v e s t (Day 41) from u n l e a c h e d p o t s i n c r e a s e d i n N0 3-N c o n c e n t r a t i o n w i t h i n c r e a s i n g k e l p amendments ( F i g u r e 9 ) . The l e a c h e d s o i l s had l e s s N0,-N E X P E R I M E N T U 89 S O I L C H E M I C A L E F F E C T S ( A p p l i c a t i o n - * L e a c h i n g ) NOT LEACHED o L E A C H E D CI 1500" i o> E 7 5 0 H o •¥=-R/L *- LCH CV = 98 . -o 3.0-to 1.5 -N 0 3 - N 0 6 0 120 0 6 0 120 K E L P A P P L I C A T I O N ( t h a " 1 ) LEGEND: The e f f e c t s o f s o i l I n c o r p o r a t e d f r e s h k e l p (M. i n t e g r i f o l i a ) a p p l i c a t i o n s and s o i l water l e a c h i n g ( l e a c h e d and not l e a c h e d ) on s o i l c h e m i c a l p r o p e r t i e s . FIGURE 9 90 E M E R G E N C E EXPERIMENT H B E A N G R O W T H A N D D E V E L O P M E N T ( A p p l i c a t i o n L e a c h i n g ) R/L-H-LCH CV = 34 NOT LEACHED o o L E A C H E D S H O O T W E I G H T R/L-*LCH 8.0-:6.o-4.0' M O I S T U R E C O N T E N T R/D * LCH CV = 3.7. I 60 I 120 K E L P A P P L I C A T I O N ( t h a - 1 ) LEGEND: The e f f e c t s o f s o i l I n c o r p o r a t e d f r e s h k e l p (M. i n t e g r i f o l i a ) a p p l i c a t i o n s and s o i l water l e a c h i n g ( l e a c h e d and not l e a c h e d ) on bean growth and d e v e l o p m e n t . FIGURE 1 0 . THE EFFECTS OF SOIL LEACHING ON BEAN EMERGENCE (DAY 1 0 ) LEGEND: F r e s h k e l p (M. i n t e g r i f o l i a ) a p p l i c a t i o n s to the s o i l a r e as i n d i c a t e d a c r o s s the f r o n t ( C o n t r o l = 0 t ha" k e l p a p p l i c a t i o n ) . The r e a r row of p o t s were l e a c h e d w i t h volume of water equal to t w i c e i t s t o t a l p o r o s i t y ( 2 x P T ) w h i l e the f r o n t row of pots were not l e a c h e d . FIGURE 1 1 . than the n o n - l e a c h e d s o i l s and no N0 3-N i n c r e a s e s o c c u r r e d w i t h i n c r e a s i n g k e l p a p p l i c a t i o n s . The e f f e c t i v e n e s s of s y m b i o t i c N f i x a t i o n was not e v a l u a t e d . 3.3.4 D i s c u s s i o n In t h i s i n v e s t i g a t i o n ( E x p e r i m e n t I) bean p l a n t r e s p o n s e to the q u a n t i t y of k e l p a p p l i e d was s i g n i f i c a n t l y i n f l u e n c e d by the l e n g t h of time the k e l p had i n c u b a t e d i n the s o i l p r i o r to s e e d i n g . The one week i n c u b a t i o n g r e a t l y r e d u c e d shoot y i e l d s w i t h the 120 t h a - 1 a p p l i c a t i o n , w h i l e the t h r e e and f i v e week i n c u b a t i o n p e r i o d s r e d u c e d y i e l d s w i t h both the 60 and 120 t h a - 1 k e l p a p p l i c a t i o n . These r e s u l t s s u g g e s t t h a t c o n c u r r e n t w i t h i n c r e a s i n g q u a n t i t i e s of k e l p , a n o t h e r unknown growth i n h i b i t i n g mechanism may be i m p l i c a t e d i n r e d u c i n g s hoot y i e l d s . The a p p a r e n t l a g time i n the p h y t o t o x i c r e s p o n s e w i t h the one week i n c u b a t i o n (60 t h a - 1 a p p l i c a t i o n ) may be r e l a t e d to the r a t e of s a l t d i f f u s i o n or b i o t i c r e l e a s e of t o x i n s . The dominant i n f l u e n c e on bean pod growth, however, was r e l a t e d to q u a n t i t i e s of k e l p a p p l i e d , s i n c e no s i g n i f i c a n t i n c u b a t i o n i n t e r a c t i o n was r e c o r d e d w i t h t h i s v a r i a b l e . The r e d uced bean emergence and y i e l d s e x p e r i e n c e d i n 93 t h i s i n v e s t i g a t i o n a p peared to be r e l a t e d to c o n c u r r e n t i n c r e a s e s i n s o i l s o l u b l e s a l t s and Cl c o n c e n t r a t i o n s . A c c o r d i n g to H a j r i s u l i h a (1980) bean p l a n t s e x p e r i e n c i n g Cl t o x i c i t y have s m a l l e r l e a v e s and a r e d a r k e r i n c o l o u r . Rao (1980) r e p o r t e d t h a t s a l t s t r e s s causes p h y s i o l o g i c a l changes i n e a r l y s e e d l i n g growth (second l e a f s t a g e ) o f P h a s e o l u s r a d i a t u s . The t r a n s l o c a t i o n o f r e s e r v e f o o d p r o d u c t s and the a c t i v i t y of enzymes r e s p o n s i b l e f o r m e t a b o l i z a t i o n of f o o d r e s e r v e s i n the c o t y l e d o n were r e d u c e d , r e s u l t i n g i n s t u n t e d growth and reduced emergence of s e e d l i n g s . The same growth symptoms were o b s e r v e d i n E x p e r i m e n t s I and II (not l e a c h e d s o i l s ) w i t h the 120 t h a - 1 k e l p a p p l i c a t i o n and s u p p o r t the h y p o t h e s i s t h a t the reduced emergence and y i e l d s e x p e r i e n c e d w i t h i n c r e a s i n g k e l p a p p l i c a t i o n s a r e r e l a t e d to i n c r e a s e s i n s o i l s o l u b l e s a l t s . E x p e r i m e n t II d e m o n s t r a t e d t h a t l e a c h i n g s o l u b l e s a l t s (EC) from the s o i l removed the k e l p r e l a t e d i n h i b i t i o n o f emergence a t the 120 t h a - 1 a p p l i c a t i o n . The l e a c h i n g a l s o removed much of the s o i l N0 3-N and the p l a n t s a p p e a r e d N-d e f i c i e n t a t f l o w e r i n g . V i s u a l o b s e r v a t i o n s i n d i c a t e d poor n o d u l a t i o n f o r a l l t r e a t m e n t s , hence the r a p i d r e s p o n s e to r e d u c e d s o i l m i n e r a l N. Shoot d r y w e i g h t s a t f l o w e r i n g were s l i g h t l y i n c r e a s e d by i n c r e a s i n g k e l p a p p l i c a t i o n i n l e a c h e d 94 s o i l s but were reduced i n u n l e a c h e d s o i l s . Shoot m o i s t u r e c o n t e n t s were i n c r e a s e d by i n c r e a s i n g k e l p a p p l i c a t i o n and were lower i n p l a n t s grown on l e a c h e d s o i l s . Shoot m o i s t u r e c o n t e n t s p r o b a b l y r e f l e c t e d a water d i l u t i o n r e s p o n s e to i n t e r n a l p l a n t s a l t a c c u m u l a t i o n . L e v i t t (1980) d i s c u s s e s t h i s phenomenon as a s t r a t e g y i n which p l a n t s t o l e r a t e s o i l s a l t s t r e s s . L e a c h i n g the s o i l a l s o r e d uced the s o i l a c i d i t y , which i m p l i e s t h a t some of the measured s o i l a c i d i t y may have been s a l t i n d u c e d . I t ^ w o u l d be i n c o r r e c t to e x t r a p o l a t e a l l the r e s u l t s of t h i s g reenhouse pot s t u d y d i r e c t l y to a f i e l d s i t u a t i o n . Under f i e l d c o n d i t i o n s p l a n t r o o t s may a v o i d a r e a s o f the s o i l w i t h h i g h l e v e l s of s o l u b l e s a l t s . In a g reenhouse s t u d y , r o o t s a r e c o n f i n e d to the p o t s i n which they d e v e l o p and l e a c h i n g i s p r e v e n t e d . T h i s s t u d y does i n d i c a t e t h a t l e a c h i n g the s o i l w i t h a volume of water equal to t w i c e the t o t a l s o i l p o r o s i t y w i l l remove the growth i n h i b i t i n g e f f e c t s of k e l p a p p l i c a t i o n s up to 120 t h a - 1 . The volume of water used to l e a c h the s o i l s i n t h i s i n v e s t i g a t i o n was a p p r o x i m a t e l y the same amount of r a i n f a l l which f e l l upon the Westham S o i l between the 1981 and 1982 f i e l d season ( S e c t i o n 3.1). T h i s i n v e s t i g a t i o n does s u p p o r t the h y p o t h e s i s t h a t many of the r e p o r t e d crop growth e f f e c t s 95 documented i n the f i e l d e x p e r i m e n t ( S e c t i o n 3.1) were p r i m a r i l y r e l a t e d to i n c r e a s i n g s o i l w a t e r - s o l u b l e s a l t w i t h i n c r e a s i n g k e l p a p p l i c a t i o n s . 3.3.5 C o n c l u s i o n s K e l p , M. i n t e g r i f o l i a , a p p l i c a t i o n o f 120 t h a - 1 r e d u c e d emergence and y i e l d s o f beans (P_. v u l g a r i s ) under greenhouse c o n d i t i o n s . The reduced emergence and y i e l d s t h a t were measured w i t h t h e s e l a r g e k e l p a p p l i c a t i o n s appear to be m a i n l y r e l a t e d to s a l t or Cl t o x i c i t y , a l t h o u g h an unknown growth i n h i b i t o r ( s ) may a l s o be i m p l i c a t e d . P l a n t growth r e s p o n s e s to s o i l s a l t s t r e s s , such as r e duced emergence, s t u n t e d growth, i n c r e a s e d m o i s t u r e c o n t e n t and the dark g r e e n c o l o u r of p l a n t t i s s u e , were o b s e r v e d i n t h i s i n v e s t i g a t i o n . L e a c h i n g the s o i l t o remove the s o l u b l e s a l t s r e d uced or e l i m i n a t e d t h e s e p l a n t symptoms. CHAPTER FOUR 96 THE KELP, M a c r o c y s t i s i n t e g r i f o l i a , AS A CROP FOLIAR SPRAY. 4.1 E f f e c t s o f Two K e l p ( M a c r o c y s t i s i n t e g r i f o l i a and E c k l o n i a maxima) F o l i a r S p r a y s on Bean Crop Growth and N u t r i t i o n . 4.1.1 I n t r o d u c t i o n F i e l d s t u d i e s were d e s i g n e d to i n v e s t i g a t e the p o t e n t i a l use of the k e l p , M a c r o c y s t i s i n t e g r i f o l i a B ory, p r o c e s s e d as a c o n c e n t r a t e f o r use as a k e l p f o l i a r s p r a y on bean ( P h a s e o l u s v u l g a r i s L.) crop p r o d u c t i v i t y . The k e l p i t s e l f was h a r v e s t e d i n the s p r i n g , which a s s u r e d t h a t k e l p p l a n t s were a c t i v e l y g r o w i n g , h e a l t h y ( N o r t h and Zimmerman, 1984) and o f the same p h y s i o l o g i c a l age. H a r v e s t i n g the k e l p , M. i nteg r i f o l i a. i n the s p r i n g a l s o a l l o w s f o r complete k e l p s t a n d r e e s t a b l i s h m e n t i n the f a l l by sub s e q u e n t growth a f t e r h a r v e s t (Coon, 1983). S p r i n g h a r v e s t t a k e s advantage o f a time i n which f i s h p r o c e s s i n g p l a n t f a c i l i t i e s a l o n g the B.C. c o a s t a r e u n d e r u t i l i z e d , t h e r e f o r e , a p o t e n t i a l k e l p p r o c e s s i n g o p e r a t i o n w i t h i n t h e s e p l a n t s would be co m p l i m e n t a r y and c o u l d enhance t h e i r v i a b i l i t y (D. C r u i c k s h a n k , p e r s o n a l c o m m u n i c a t i o n ) . S e a f o o d P r o d u c t s Company, 97 The M. i n t e g r i f o l i a k e l p c o n c e n t r a t e was compared to a crude e x t r a c t of the c o n c e n t r a t e . T h i s was a t e s t o f the h y p o t h e s i s t h a t n a t u r a l growth p r o m o t i n g phytohormones, such as a u x i n , g i b b e r e l l i n s and c y t o k i n i n s , may be a c t i v e c o n s t i t u e n t s . T h i s e x t r a c t was s u b s e q u e n t l y b i o a s s a y e d f o r the p r e s e n c e o f g r o w t h - p r o m o t i n g phytohormones c y t o k i n i n , a u x i n and g i b b e r e l 1 i n - 1 i k e s u b s t a n c e s . The c o m m e r c i a l l y a v a i l a b l e South A f r i c a n k e l p ( E c k l o n i a maxima (Osbeck) P a p e n f u s s ) c o n c e n t r a t e , "Kelpak 66", was a p p l i e d as an a l r e a d y documented and e f f e c t i v e c o m p a r i s o n . Crop r e s p o n s e s to "Kelpak 66" i n c l u d e i n c r e a s e d seed g e r m i n a t i o n and growth and a l t e r e d p l a n t development and n u t r i t i o n ( K o t z e and J o u b e r t , 1980; Do n a l d , 1981; F e a t o n b y - S m i t h and van S t a d e n , 1983a and 1983b; and Ne l s o n and van S t a d e n , 1984a and 1984b). C y t o k i n i n - 1 i k e s u b s t a n c e s have a l s o been d e t e c t e d i n the k e l p c o n c e n t r a t e and a r e s u s p e c t e d to be a c t i v e c o n s t i t u e n t s ( F e a t o n b y - S m i t h and van S t a d e n , 1983b; F i n n i e and van S t a d e n , 1985). 4.1.2 M a t e r i a l and Methods 98 P l o t e x p e r i m e n t a l d e s i g n and s t a t i s t i c a l a n a l y s i s : 1983 F i e l d T r i a l : On May 13, 1983 f r e s h k e l p , M. i n t e g r i f o l i a , was h a r v e s t e d near E x e c u t i o n Rock, j u s t west of the B a m f i e l d Marine S t a t i o n , B r i t i s h C olumbia (N l a t i t u d e 4 8 °49'; W l o n g i t u d e 1 2 5 ° 1 1 1 ) . The r a p i d l y growing a p i c a l p o r t i o n of the p l a n t was h a r v e s t e d , c o u n t i n g t w e l v e laminae back from the s c i m i t a r apex ( t o p 1.5 m). A p p r o x i m a t e l y 24 h e a l t h y a p i c a l p o r t i o n s o f the p l a n t were s e l e c t e d from the k e l p bed and i m m e d i a t e l y cut to p i e c e s l e s s than 40 mm i n s i z e . The cut k e l p was mixed t h o r o u g h l y and 1 kg p o r t i o n s p l a c e d i n z i p l o c k p l a s t i c bags, a i r - v e n t e d and put on i c e i n a c o o l e r and t r a n s p o r t e d back to the marine s t a t i o n . The k e l p was then i m m e d i a t e l y f r o z e n (-15°C) and t r a n s p o r t e d the next day on i c e to the U n i v e r s i t y of B r i t i s h C o l u m b i a , where i t was t r a n s f e r r e d to a f r e e z e r a t -70°C. T a b l e 9 o u t l i n e s the p r o c e d u r e used f o r the p r e p a r a t i o n of the e x p e r i m e n t a l k e l p (M. i n t e g r i f o l i a ) c o n c e n t r a t e and i t s e x t r a c t . The X - p r e s s (AB B i o t e c ) used to p r o c e s s the k e l p i n t o a c o n c e n t r a t e a p p l i e s the p r i n c i p l e o f f r e e z e f r a c t u r i n g (-25°C) under h i g h p r e s s u r e (200,000 to 600,000 kPa) which c a u s e s c r y s t a l l i z e d water to undergo r a p i d phase TABLE 9. 1983 FLOW CHART FOR THE PREPARATION OF THE M. i n t e g r i f o l i a KELP CONCENTRATE (M) AND EXTRACT (E) Remove 1 kg kelp from -70°C freezer Pass frozen chunks^through a meat grinder X-press ground kelp KELP CONCENTRATE (M) To 100 g of kelp concentrate add 100 mL of dist i l led water Add 400 mL l(JO% methanol St ir for 12 h at 4"C Fi l ter and wash residue with 50 nt 100% methanol Roto-evaporate methanol at 35°C until water remains (-100 mL) Adjust aqueous solution to pH 3 Partition 3 X (= volurc) against ethyl acetate Ethyl acetate fraction I Partition 3 X against 50 mL 3% NaHC03 NaHC03 fraction Acidified to pH 2.5 with HCl I Partition 3 X (= volurc) against diethyl ether / \ NaHCOj Ether fraction DISCARD FRACTION IV \ Aqueous fraction I partition 3 x (= volurc) against diethyl ether / \ Ethyl acetate fraction Aqueous fraction Ether DISCARD FRACTION V FRACTION I I I FRACTION I FRACTION I I \ / Carbine and roto-evaporate at 35°C t i l l near dryness Take up in 50 mL 100% methanol and store at -70°C CRUDE KELP EXTRACT (E) 100 changes and f o r c e s the k e l p t h r o u g h a s m a l l o r i f i c e (1.0mm). The r e s u l t i n g e f f e c t i s d i s i n t e g r a t i o n of p l a n t c e l l w a l l s and membranes and reduced p a r t i c l e s i z e . The r e s u l t i n g c o n c e n t r a t e or mash (M) was then s u b j e c t e d to a s e r i e s of e x t r a c t i o n p r o c e d u r e s ( T a b l e 9) to p roduce the crude k e l p e x t r a c t ( E ) . T h i s e x t r a c t i o n p r o c e d u r e was d e s i g n e d by the a u t h o r and used methods commonly employed i n phytohormonal a n a l y s i s . I t i s based upon the r e c o v e r y c o e f f i c i e n t s of the v a r i o u s phytohormones f o r p a r t i c u l a r s o l v e n t s a t d e f i n e d pH as d e s c r i b e d by Murakami, 1970; Mann and J a w o r s k i , 1970; Hemberg, 1974; Atsumi e_t aj_. , 1976; C i h a e_t a_l_. , 1977 ; and Walton et. a 1 . . 1979. In s e p a r a t e e x t r a c t i o n s the v a r i o u s f r a c t i o n s I, II and I I I l i s t e d i n T a b l e 9 were then f u r t h e r p u r i f i e d and/or c h r o m a t o g r a p h e d p r i o r to b i o a s s a y d e t e c t i o n u s i n g methods o u t l i n e d i n T a b l e 10. The methods o u l i n e d i n T a b l e 10 were d e s i g n e d by R a d l e y (UBC Dept. of P l a n t Sc., p e r s o n a l c o m m u n i c a t i o n ) . F r a c t i o n s IV and V were a l s o t e s t e d f o r b i o a s s a y a c t i v i t y . Known n a t u r a l phytohormones were a l s o c h r o m a t o g r a p h e d as o u t l i n e d i n T a b l e 10 f o r use as r e f e r e n c e c o m p a r i s o n s to d e t e c t e d a c t i v i t i e s i n the k e l p phytohormonal f r a c t i o n s . A l l s t a n d a r d s and r e f e r e n c e s were o b t a i n e d from TABLE 10 . FRACTIONS I , I I AND I I I PURIFICATION AND/OR CHROMATOGRAPHY STEPS PRIOR TO PHYTOHORMONAL BIOASSAY. G i b f a e r e l l i n Chromatography Steps F r a c t i o n I R o t o - e v a p o r a t e a t 35"C u n t i 1 near d r y n e s s . Take up i n 3^mL volumes (3 x ) and a p p l y as a s t r i p w i t h a 1.0 mL s y r i n g e t o Whatman 3 mm chromatography p a p e r . Develop i n ascend ing s o l v e n t ( i s o p r o p a n o l : N H 4 0 H : w a t e r : : 1 0 : 1 : 1 ) by volume t o a h e i g h t o f 10 cm. A i r d r y deve loped chromato-g raphy paper i n fume hood. Cut deve loped paper i n t o 10 equal w i d t h s t r i p s ( 0 - 1 . 0 R f ) p a r a l l e l t o s o l v e n t f r o n t . I P l a t e one end- o f each s t r i p i n t o 50* ace tone and e l u t e the s t r i p s as a w i c k , a l l o w i n g the s o l v e n t t o descend , c o l l e c t i n g 1.0 mL f rom o t h e r end o f each s t r i p . Known s tanda rds 1n 50% ace tone a re made a t t h i s t i m e . I Proceed w i t h G i b b e r e l l i n R ice S e e d l i n g Sheath E l o n g a t i o n B ioassay d e s c r i b e d by Murakami , 1970. Each o f the Rf samples and s t a n d a r d s a re a p p l i e d as a 1.0 uL d rop t o each o f 5 r i c e s e e d l i n g s f o r each o f t he 3 r e p l i c a t e s . C y t o k i n i n P u r i f i c a t i o n and Chromatography Steps F r a c t i o n s I and I I combined R o t o - e v a p o r a t e a t 35°C u n t i 1 near d r y n e s s . Take up i n 50 mL o f 80% e thano l a t pH 2 .5 and a p p l y t o Dowex-50W c a t i o n exchange column (bed volume 135 mL) p laced i n a c o l d chamber (4°C) us ing methods d e s c r i b e d by van S taden, 1976. I Run sample down t o top o f column a t a r a t e o f 10 mL i r 1 . I Add 350 mL o f d i s t i l l e d and degassed w a t e r and run down t o top o f column a t a r a t e o f 30 mL t r 1 . | Add 200 mL o f 80% e t h a n o l and run down t o top o f column a t a r a t e o f 20 mL I r 1 . I E l u t e sample o f f exchange column w i t h 1 L o f 3N NH40H i n 50% e t h a n o l . R o t o - e v a p o r a t e c o l l e c t e d sample a t 35*C t i l l near d r y n e s s . | App ly as a s t r i p w i t h a s y r i n g e t o a s i 1 i ca ge l ( K i e s e l g e l 60 F 254; Merck) f o r thm l a y e r chromatography (TLC) as d e s c r i b e d by Rademacher and Graebe, 1984. Develop i n ascend ing s o l v e n t ( c h l o r o f o r m : m e t h a n o l 17:3 by volume) t o a h e i g h t o f 10 cm. J A i r d r y deve loped TLC p l a t e i n fume hood. Cut p l a t e i n t o 10 equal w i d t h s t r i p s ( 0 - 1 . 0 R f ) p a r a l l e l t o s o l v e n t f r o n t and scrape g e l o f f each s t r i p i n t o 10 mL t e s t t u b e s . | E l u t e each o f t he s t r i p e s w i t h 2 mL o f 100% m e t h a n o l ; c e n t r i f u g e and decant (3 x ) . I S p l i t each o f t he 6 mL c o l l e c t e d e l u a t e i n t o t h r e e 2 mL p o r t i o n s , p l a c i n g t h e n i n t o 5 . 5 cm p e t r i d i s h e s wh ich c o n t a i n two #1 Whatman f i l t e r p a p e r s . 2 mL p o r t i o n s i n t r i p l i c a t e o f known s t a n d -a r d s i n 100% methanol a re p l a c e d i n d i s h e s a t t h i s s t e p . ! Each d i s h i s a i r d r i e d 1n a fume hood f o r 16 h. Aux in Chromatography Steps F r a c t i o n I I I R o t o - e v a p o r a t e a t 35°C u n t i 1 near d r y n e s s . I Take up i n 3 mL v o l . (3 x) and a p p l y as a s t r i p w i t h s y r i n g e t o a s i l i c a ge l p l a t e ( K i e s e l g e l 60 F 254) f o r TLC as d e s c r i b e d by Rademacher and Graebe, 1984. Develop i n a s c e n d i n g s o l v e n t ( i s o p r o p a n o l : N H 4 0 H : w a t e r 1 0 : 1 : 1 by volume) t o a h e i g h t o f 10 cm. j A i r d r y deve loped TLC p l a t e i n fume hood. Cut deve loped p l a t e i n t o 10 equal w i d t h s t r i p s ( 0 - 1 . 0 R f ) p a r a l l e l t o s o l v e n t • f r o n t and scrape ge l o f f each s t r i p i n t o 10 mL t e s t t u b e s . E l u t e each o f the 10 s t r i p s w i t h 3 mL o f ace tone and c e n t r i f u g e . | Decant o f f e l u a t e . / \ Dry down Wash s i l i c a ge l acetone r e s i d u e w i t h e l u a t e 6 mL o f us ing a 0 .01 M KH2PO4 st ream b u f f e r (pH 6 . 4 ) o f N2 c o n t a i n i n g g a s . 2% sucrose and ^ c e n t r i f u g e . Combine the e l u a t e s f o r each o f t he 10 samples . S p l i t each o f t h e 6 mL c o l l e c t e d e l u a t e i n t o t h r e e 2 mL p o r t i o n s , p l a c i n g them i n t o 3.5 cm p e t r i d i s h e s . 2 mL p o r t i o n s i n t r i p l i c a t e o f known s t a n d a r d i n b u f f e r / sucrose s o l u t i o n a re p l a c e d i n d i s h e s a t t h i s s t e p . Proceed w i t h Aux in Avena C o l e o p t i l e S t r a i g h t Growth. Test B ioassay as d e s c r i b e d by N i t s c h and N i t s c h , 1956. Each o f t he Rf samples a r e a p p l i e d t o t e n 6 .0 mm c o l e o p t i l e segments i n each d i s h . 101 Add 2 . 0 mL o f 0 .013 M sodium phosphate b u f f e r (pH 6 . 3 ) t o each d i s h and p roceed w i t h C y t o k i n i n Amaran-t h u s C o t y l e d o n B e t a - C y a n i n P r o d u c t i o n B ioassay as d e s c r i b e d by B i d d i n g t o n and Thomas, 1973. Each o f t he Rf samples and s tanda rds a r e a p p l i e d t o 10 c o t y l e d o n s i n each d i s h . Sigma Che m i c a l Co., S t . L o u i s , M i s s o u r i . 102 The M. i n t e g r i f o l i a k e l p c o n c e n t r a t e (M) and i t s e x t r a c t (E) were s t o r e d a t -70°C and thawed j u s t p r i o r to b e i n g a p p l i e d to the c r o p f o l i a g e a t 2 and 4 L h a - 1 ( k e l p c o n c e n t r a t e e q u i v a l e n t ) d i l u t e d w i t h water 1:500 and 1:250 (W/V), r e s p e c t i v e l y . The 4 L h a - 1 a p p l i c a t i o n s f o r M and E a r e r e f e r r e d to as Ml and E l and the 2 L h a - 1 a p p l i c a t i o n s a r e r e f e r r e d to as M2 and E2, r e s p e c t i v e l y . The South A f r i c a n g. maxima k e l p c o n c e n t r a t e , "Kelpak 66" ( K ) , ( m a n u f a c t u r e d by K e l p P r o d u c t s L t d . , P.O. Box 465, Cape Town 8000, South A f r i c a ) , was a p p l i e d a t 4 L h a - 1 , d i l u t e d 1:250 (W/V) w i t h w a t e r . The c o n t r o l s (C) were s p r a y e d w i t h an e q u i v a l e n t volume of w a t e r . A l l f o l i a r t r e a t m e n t s were a p p l i e d u s i n g a " S o l o " backpack s p r a y e r on days 21, 36, 50 and 64 a f t e r sowing. Canopy t e m p e r a t u r e s a t the time of s p r a y i n g were 15° , 2 2 ° , 23° and 21°C, r e s p e c t i v e l y . The p l o t s were l o c a t e d on R e y n e l d a Farms, Westham I s l a n d , L a d n e r , B r i t i s h C o l u m b i a . The s o i l was d e s c r i b e d i n the p r e v i o u s k e l p s o i l amendment f i e l d e x p e r i m e n t s ( S e c t i o n 3.1.2). Each p l o t measured 2.4 x 4.0 m ( s p r a y i n g a r e a ) w i t h f o u r rows of i n o c u l a t e d ( R h i z o b i um 1egumi nosarum b i o v a r p h a s e o l i ) bush beans (P_. v u l g a r i s cv. G a l a m o r ) , spaced 0.6 m 103 a p a r t , p l a n t e d to a depth of 35 mm on June 15, 1983. The t o t a l p l o t a r e a measured 36.0 x 9.0 m w i t h two rows of p l o t s (12 i n each) s e p a r a t e d by a 1.0 m walkway. A boundary row of beans s e p a r a t e d each of the p l o t s p r a y i n g a r e a s . P l o t s were s p l i t i n t o 4 b l o c k s (2 b l o c k s per row of p l o t s ) u s i n g a randomized complete b l o c k d e s i g n f o r each of the 6 f o l i a r t r e a t m e n t s . At sowing s o i l pH, %C, %N, a v a i l a b l e (mg k g - 1 ) P, K, Ca, Mg, Fe, Cu, Mn and Zn were 4.6, 2.7, 0.28, 60, 280, 970, 140, 170, 10, 54 and 5.0 r e s p e c t i v e l y . Methods of s o i l a n a l y s i s a r e d e s c r i b e d l a t e r i n the t e x t . P r i o r to s e e d i n g , 200 kg h a " 1 of 0-0-60 was b r o a d c a s t and i n c o r p o r a t e d and d u r i n g s e e d i n g 300 kg h a - 1 of 11-51-0 was banded 50 mm to the s i d e and below the s e e d . At h a r v e s t , September 8, 1983 (Day 8 6 ) , 2.0 m s t r i p s were s y s t e m a t i c a l l y h a r v e s t e d from the m i d d l e a r e a o f each of the two c e n t r e rows of each p l o t . The h a r v e s t e d p l a n t m a t e r i a l (combined l e a f and stem and m a r k e t a b l e beans) were weighed and randomly sampled f o r dry w e i g h t and e l e m e n t a l a n a l y s i s u s i n g the same methods d e s c r i b e d i n the p r e v i o u s k e l p s o i l amendment i n v e s t i g a t i o n ( S e c t i o n 3.1.2). Measured crop growth r e s p o n s e s at m a t u r i t y i n c l u d e d f r e s h and d r y w e i g h t s of s h o o t , l e a f and stem and bean y i e l d s , h a r v e s t i n d e x and f r e s h / d r y w e i g h t r a t i o s . M i n e r a l n u t r i t i o n a l 104 r e s p o n s e s i n c l u d e the bean and combined l e a f and stem e l e m e n t a l c o n c e n t r a t i o n and uptake of N, P, K, Ca, Mg, Fe, Cu, Mn and Zn. P l a n t growth, development, e l e m e n t a l c o n c e n t r a t i o n s and uptake v a r i a b l e s o f the samples t a k e n a t h a r v e s t were s u b j e c t e d t o a n a l y s i s of v a r i a n c e w i t h t r e a t m e n t means s e p a r a t e d i n t o s i n g l e degree of freedom c o m p a r i s o n s of C vs (Ml + M2 + E l + E2 + K) , K vs (Ml + M2 + E l + E 2 ) , (Ml + M2) vs ( E l + E 2 ) , (Ml + E l ) vs (M2 + E2) and (Ml + E2) vs (M2 + E l ) . S i g n i f i c a n c e was a t %5 l e v e l and c o e f f i c i e n t s of v a r i a t i o n (CV) g i v e n . 1984 F i e l d T r i a l : The 1984 f i e l d t r i a l t r e a t m e n t s i n c l u d e d (a) f o u r of the t r e a t m e n t s i n the 1983 f i e l d t r i a l , which i n c l u d e d the c o n t r o l , X - p r e s s e d k e l p (M. i n t e g r i f o l i a ) c o n c e n t r a t e ( a p p l i e d a t 2 and 4 L h a " 1 ) and the commercial k e l p c o n c e n t r a t e "Kelpak 66" ( a p p l i e d a t 4 L h a " 1 ) and (b) a k e l p c o n c e n t r a t e from M. i n t e g r i f o l i a . p r e p a r e d from an a l t e r n a t i v e method ( a p p l i e d a t 2 and 4 L h a " 1 ) which c o u l d be a p p r o p r i a t e f o r commercial m a n u f a c t u r e o f such a p r o d u c t . The a l t e r n a t i v e method a l l o w e d f o r the p a r t i c l e s i z e of the k e l p c o n c e n t r a t e to be c a r e f u l l y c o n t r o l l e d by c e n t r i f u g a l d i s p e r s i o n and h i g h p r e s s u r e h o m o g e n i z a t i o n . The d i s p e r s i o n / 105 h o m o g e n i z a t i o n method of p r o d u c i n g the k e l p c o n c e n t r a t e i n t h i s i n v e s t i g a t i o n was: 1. m i n c i n g the k e l p w i t h a meat g r i n d e r which reduced the k e l p to a p a r t i c l e s i z e o f a p p r o x i m a t e l y 10 mm i n d i a m e t e r ; 2. d i s s o l v i n g the p r e s e r v a t i v e (sodium b e n z o a t e ) and b u f f e r (mono-ammonium phosphate b u f f e r ) i n water (9 p a r t s k e l p s l u r r y to 1 p a r t water c o n t a i n i n g the p r e s e r v a t i v e s and b u f f e r by volume) and m i x i n g to g i v e a f i n a l c o n c e n t r a t i o n of 0.1% (w/w) p r e s e r v a t i v e and 0.3% (w/w) b u f f e r ; 3. s u b j e c t i n g the k e l p s l u r r y c o n t a i n i n g the b u f f e r and p r e s e r v a t i v e s to h i g h speed c e n t r i f u g a l d i s p e r s i o n (Brinkman Manual) which reduced and f u r t h e r l i q u i f i e d the k e l p to p a r t i c l e s of l e s s than 1 mm i n s i z e ; 4. s u b j e c t i n g the l i q u i f i e d k e l p to h i g h p r e s s u r e (25,000 kPa) h o m o g e n i z a t i o n u s i n g a s i n g l e s t a g e homogenizer ( G a u l i n Manual) which reduced the p a r t i c l e s i z e o f the k e l p to a p p r o x i m a t e l y 50 to 100 um. T h i s homogenized M. i n t e g r i f o l i a k e l p or "SeaSpray" (S) 106 was then b o t t l e d and s t o r e d a t room t e m p e r a t u r e (20 C) to s i m u l a t e s h e l f s t o r a g e p r i o r to i t s use i n the f i e l d i n v e s t i g a t i o n . P h o t o g r a p h s were taken of the v a r i o u s c o n c e n t r a t e s u s i n g a l i g h t m i c r o s c o p e w i t h a m i c r o m e t e r i n s e r t e d f o r p a r t i c l e s i z e d e t e r m i n a t i o n . K e l p (M. i n t e g r i f o l i a ) was h a r v e s t e d on May 14, 1984 u s i n g the same methods and a r e a of k e l p h a r v e s t d e s c r i b e d i n the 1983 f i e l d t r i a l i n v e s t i g a t i o n . The X - p r e s s method and the s t o r a g e c o n d i t i o n s of the k e l p c o n c e n t r a t e or mash (M) were d e s c r i b e d i n the 1983 f i e l d t r i a l i n v e s t i g a t i o n . Both o f the M. i n t e g r i f o l i a c o n c e n t r a t e s (S and M) were a p p l i e d to the crop a t r a t e s of 2 and 4 L h a " 1 ( w i t h S b e i n g a d j u s t e d to M e q u i v a l e n t because of the a d d i t i o n a l water i n the p r o c e s s i n g p r o c e d u r e ) d i l u t e d w i t h water 1:500 and 1:250 (W/V), r e s p e c t i v e l y . The 4 L h a - 1 a p p l i c a t i o n f o r S and M a r e r e f e r r e d to as SI and Ml and the 2 L h a - 1 a p p l i c a t i o n s a r e r e f e r r e d to as S2 and M2. The South A f r i c a n c o m m e r c i a l l y produced k e l p (E_. maxima) c o n c e n t r a t e , Kelpak 66, was a p p l i e d a t 4 L h a " 1 (K) d i l u t e d 1:250 (W/V) w i t h w a t e r . The c o n t r o l (C) was s p r a y e d w i t h an e q u i v a l e n t volume o f w a t e r . A l l f o l i a r t r e a t m e n t s were a p p l i e d to p l o t s r e p l i c a t e d t h r e e times w i t h i n each of two b l o c k s u s i n g 107 a " S o l o " backpack s p r a y e r a t m i d - a f t e r n o o n on days 14, 28, 42 and 56 a f t e r sowing. Canopy t e m p e r a t u r e s a t the time of s p r a y i n g were 2 2 ° , 2 0 ° , 20° and 18°C, r e s p e c t i v e l y . Ambient d a i l y mean t e m p e r a t u r e and p r e c i p i t a t i o n d a t a were s u p p l i e d by E n v i r o n m e n t Canada, L a d n e r - S o u t h S t a t i o n , l o c a t e d 5 km from the p l o t s i t e . The p l o t s were l o c a t e d i n a d i f f e r e n t p a r t of the f i e l d from t h o s e of the p r e v i o u s 1983 f i e l d t r i a l e x p e r i m e n t . The t y p e o f c r o p , s o i l s e r i e s , methods of seed i n o c u l a t i n g and sowing, f e r t i 1 i z e r t y p e s and a p p l i c a t i o n s , were as d e s c r i b e d i n the 1983 f i e l d t r i a l . The c r o p was seeded on J u l y 13, 1984. Each p l o t measured 4.8 x 6.0 m ( s p r a y i n g a r e a ) w i t h 8 rows spaced 0.6 m a p a r t w i t h a boundary row p l a c e d between each of the p l o t s . The t o t a l p l o t a r e a was 54.4 x 20.0 m w i t h t h r e e rows of p l o t s (12 i n each) s e p a r a t e d by 1.0 m walkways r u n n i n g between the l e n g t h o f the p l o t s . At sowing, s o i l pH, %C, %N, a v a i l a b l e P, K, Ca, Mg, Fe, Cu, Mn and Zn (mg k g - 1 ) were 5.6, 1.9, 0.11, 50, 220, 1500, 260, 160, 9.5, 54 and 5.5, r e s p e c t i v e l y . Methods of s o i l a n a l y s i s a r e d i s c u s s e d l a t e r i n the t e x t . On September 29, 1984 ( f i n a l h a r v e s t ) 2.0 m s t r i p s were s y s t e m a t i c a l l y h a r v e s t e d from the m i d d l e r e g i o n of each of 108 the two c e n t r a l rows of each p l o t , u s i n g the same methods d e s c r i b e d i n the 1983 f i e l d t r i a l i n v e s t i g a t i o n . The h a r v e s t e d p l a n t m a t e r i a l s (combined l e a f and stem and m a r k e t a b l e bean) were weighed and sampled f o r d r y we i g h t d e t e r m i n a t i o n and e l e m e n t a l c o n c e n t r a t i o n a n a l y s i s u s i n g methods d e s c r i b e d i n the p r e v i o u s k e l p s o i l amendment i n v e s t i g a t i o n ( S e c t i o n 3.1.2). On Days 13, 20, 27, 34, 41, 48, 55, 62, 69, and 76 a f t e r sowing, t w e l v e s o i l c o r e samples (0-0.20 m) were taken from w i t h i n the immediate p l o t a r e a and p l a c e d i n s o i l m o i s t u r e c a n s . The s o i l s were d r i e d a t 105°C f o r 24 hours f o r s o i l m o i s t u r e d e t e r m i n a t i o n . A s o i l m o i s t u r e r e t e n t i o n c u r v e was c o n s t r u c t e d f o r the s o i l u s i n g the porous p l a t e e x t r a c t i o n method as d e s c r i b e d by R i c h a r d s ( 1 9 6 5 ) . Measured s o i l m o i s t u r e c o n t e n t s were t r a n s f o r m e d i n t o s o i l t e n s i o n u n i t s (kPa) by use of the c o n s t r u c t e d s o i l m o i s t u r e r e t e n t i o n c u r v e . P l a n t growth, d e v e l o p m e n t a l , e l e m e n t a l c o n c e n t r a t i o n and uptake v a r i a b l e s were s u b j e c t e d to a n a l y s i s o f v a r i a n c e w i t h t r e a t m e n t means s e p a r a t e d i n t o s i n g l e degree o f freedom c o m p a r i s o n s of C vs (Ml + M2 + SI + S2 + K ) , K vs (Ml + M2 + SI + S 2 ) , (Ml + M2) vs (SI + S 2 ) , (Ml + SI) vs (M2 + S 2 ) , 109 and (Ml + S2) vs (M2 + S I ) . S i g n i f i c a n c e ' w a s a t the 5% l e v e l and c o e f f i c i e n t s o f v a r i a t i o n (CV) g i v e n . S o i l pH, °/.N, %C and a v a i l a b l e P, K, Ca, Mg, Fe, Cu, Mn and Zn were used as s o i l c o v a r i a t e s f o r both 1983 and 1984 c r o p d r y y i e l d v a r i a b l e s . . The c o v a r i a t e s used f o r each e l e m e n t a l uptake and c o n c e n t r a t i o n f o r both the combined l e a f and stem and bean pod p l a n t t i s s u e were s o i l pH, %C and the measured s o i l c o v a r i a t e f o r the p a r t i c u l a r f o l i a r n u t r i e n t i n q u e s t i o n . A n a l y s e s o f c o v a r i a n c e were i n t e r p r e t e d a c c o r d i n g to L i t t l e and H i l l s ( 1 9 7 8 ) . L e a f and S o i l A n a l y s e s : Combined l e a f and stem samples were a n a l y z e d f o r t o t a l N, P, K, Ca, Mg, Fe, Cu, Mn and Zn c o n c e n t r a t i o n s and s u b s e q u e n t l y used f o r c a l c u l a t i n g the e l e m e n t a l u p t a k e s u s i n g methods d e s c r i b e d i n S e c t i o n 3.1.2. The M. i n t e g r i f o l i a and JE. maxima k e l p c o n c e n t r a t e s were d r i e d a t 70°C f o r d r y weight d e t e r m i n a t i o n and ground u s i n g a m o r t a r and p e s t l e . One gram (1.000 g) of k e l p was then a n a l y z e d f o r e l e m e n t a l c o n c e n t r a t i o n u s i n g the same methods as above f o r the bean samples. The M. i nteg r i f o l i a phytohormonal e x t r a c t (E) was a l s o a n a l y z e d f o r the above el e m e n t s by p l a c i n g 5.00 mL ( t h e e q u i v a l e n c e o f 10 g d r y of k e l p ) i n a d i g e s t i o n t u b e , d r y i n g o f f the methanol w i t h a 110 stream o f a i r and then p r o c e e d i n g w i t h the d i g e s t i o n . A l l p l a n t e l e m e n t a l c o n c e n t r a t i o n s were e x p r e s s e d on a d r y wei g h t b a s i s . One day p r i o r to the f i r s t f o l i a r s p r a y i n g f o u r s o i l c o r e samples (0-0.20 m) were taken s y s t e m a t i c a l l y from between the rows o f each p l o t and c o m p o s i t e s made f o r each of the b l o c k s . On the h a r v e s t d a t e , 12 s o i l samples (0-0.20 m) were s y s t e m a t i c a l l y taken from each p l o t and c o m p o s i t e d . Each of the a i r d r i e d s o i l samples was a n a l y z e d f o r pH, %C, t o t a l %N and a v a i l a b l e P, K, Ca, Mg, Fe, Cu, Mn and Zn (mg k g " 1 ) . The methods of a n a l y s i s f o r s o i l pH, %C, a v a i l a b l e P and %N were d e s c r i b e d i n the p r e v i o u s k e l p s o i l amendment f i e l d i n v e s t i g a t i o n ( S e c t i o n 3.2.1). A v a i l a b l e s o i l K, Ca and Mg were d e t e r m i n e d by e x t r a c t i n g 5.000 g of s o i l w i t h 50.0 mL o f Morgan's E x t r a c t i o n S o l u t i o n u s i n g methods d e s c r i b e d by G r e w e l i n g and Peech ( 1 9 6 5 ) . A v a i l a b l e Fe, Cu, Mn and Zn were d e t e r m i n e d by e x t r a c t i n g 10.000 g of s o i l w i t h 50.0 mL of 0.1M HCl u s i n g methods d e s c r i b e d by F i s k e l l ( 1 9 6 5 ) . S o i l e x t r a c t c o n c e n t r a t i o n s o f K, Ca, Mg, Fe, Cu, Mn and Zn were d e t e r m i n e d u s i n g a P e r k i n and Elmer 330 a t o m i c a b s o r p t i o n s p e c t r o p h o t o m e t e r . I l l 4.1.3. R e s u l t s and D i s c u s s i o n 1983 and 1984 a n a l y s i s o f v a r i a n c e and c o v a r i a n c e F-v a l u e s , mean square e r r o r and t r e a t m e n t means and a d j u s t e d means f o r p l a n t y i e l d s , e l e m e n t a l c o n c e n t r a t i o n and uptake v a r i a b l e s a r e p r e s e n t e d i n A p p e n d i c e s 14 t h r o u g h 19. Under 1983 and 1984 f i e l d c o n d i t i o n s both the M. i n t e g r i f o l i a and E_. maxima k e l p c o n c e n t r a t e s (S, M and K) or the phytohormonal e x t r a c t ( E ) , a p p l i e d a t e i t h e r 2 or 4 L h a - 1 , as a f o l i a r s p r a y , were e f f e c t i v e i n i n c r e a s i n g f r e s h and d r y m a r k e t a b l e bean pod y i e l d s ( F i g u r e s 12 and 1 3 ) . Shoot y i e l d i n c r e a s e s were r e l a t e d to i n c r e a s e d bean pod y i e l d as combined l e a f and stem y i e l d s were not a f f e c t e d . In 1983 the M. i n t e g r i f o l i a k e l p c o n c e n t r a t e (M) was more e f f e c t i v e i n i n c r e a s i n g d r y bean pod y i e l d s than i t s phytohormonal e x t r a c t ( E ) . C y t o k i n i n , g i b b e r e l 1 i n and a u x i n - l i k e s u b s t a n c e s were d e t e c t e d i n the c h r o m a t o g r a p h i c f r a c t i o n s o f the M. i n t e g r i f o l i a phytohormonal e x t r a c t , which c o n s i s t e d o f f r a c t i o n s I, II and I I I s u b s e q u e n t l y combined ( F i g u r e 14). A c t i v e Rf v a l u e s f o r c y t o k i n i n matched c l o s e l y t h o s e o f z e a t i n (Z) and i t s r i b o s i d e (ZR) and i s o p e n t e n y l a d e n i n e (IPA) and i t s r i b o s i d e ( I P A R ) . A c t i v e Rf v a l u e s f o r g i b b e r e l l i n were d e t e c t e d i n the broad c e n t r a l r e g i o n of the 1 1 2 1983 BEAN PLANT GROWTH t ha-4 0 -35-30' F R E S H SHOOT C v s M I + M2 + E I + E 2 + K CV = 8 .2 5.0-4.0-3.0-DRY SHOOT C vs MI + M 2 + EI + E2 + K CV = 15 2 0 -FRESH B E A N POD C vs M I + M 2 + E I + E 2 + K CV = 15 t h a " 1 15-10 1.5-1.2 -0.9 DRY B E A N POD C vs MI + M 2 + E I + E 2 + K Ml + M2 vs E l + E 2 CV = 17 C Ml M2 El E2 K C Ml M2 El E2 K F O L I A R T R E A T M E N T S F O L I A R T R E A T M E N T L E G E N D : C o n t r o l ( C ) ; M. i n t e g r i f o l i a k e l p c o n c e n t r a t e p r o d u c e d w i t h a n X - P r e s s a n d a p p l i e d a t 4 L h a " 1 ( M l ) a n d 2 L h a - 1 ( M 2 ) ; M. i n t e g r i f o l i a p h y t o h o r m o n a l e x t r a c t a p p l i e d a t a k e l p c o n c e n t r a t e w e i g h t e q u i v a l e n c e o f 4 L h a - 1 ( E l ) a n d 2 L h a - 1 ( E 2 ) a n d E . m a x i m a k e l p c o n c e n t r a t e a p p l i e d a t 2 L h a - 1 ( K ) . F I G U R E 1 2 . 113 1984 BEAN PLANT GROWTH 50-t ha - I 45-40-FRESH SHOOT C vs M I + M2 + SI + S 2 + K CV = 10 C Ml M2 SI S2 K 20-t h a -I 15-FRESH BEAN POD C vs M I + M2 + S I + S 2 + K CV = 16 10-1.6-1.2-0.8-DRY BEAN POD C vs M I + M2 + SI + S2 + K CV = 17 C Ml M2 SI S2 K C Ml M2 SI S2 K FOLIAR TREATMENTS FOLIAR TREATMENT LEGEND: C o n t r o l ( C ) ; M. i n t e q r i f o l i a k e l p c o n c e n t r a t e p r o d u c e d w i t h an X- P r e s s and a p p l i e d a t 4 L h a " 1 (Ml) and 2 L h a " 1 (M2); M. i n t e g r i f o l i a k e l p c o n c e n t r a t e produced by d i s p e r s i o n / h o m o g e n i z a t i o n method and a p p l i e d a t 4 L h a " 1 (SI) and 2 L h a " 1 (S2) and E. maxima k e l p c o n c e n t r a t e a p p l i e d a t 2 L h a " 1 ( K ) . FIGURE 13. PHYTOHORMONAL BIOASSAY ACTIVITIES 114 g 20 < CYTOKININ BIOASSAY AMARANTHUS COTYLEDON BETA-CYANIN PRODUCTION FRACTIONS I +H Z IPA 10 ZR IPAR BA 10"" 10" X z GIBBERELLIN BIOASSAY RICE SEEDLING SHEATH ELONGATION FRACTION I I 16-1 E 12 GA, a GA, I O " 7 I O " 6 AUXIN BIOASSAY AVENA COLEOPTILE STRAIGHT GROWTH FRACTION 311 TEST 9 -7 -I A A I A A T T — i — 0.5 — I — 1.0 El il Li TV V o DISCARD STANDARDS FRACTIONS (M) PHYTOHORMONAL BIOASSAY LEGEND: H i s t o g r a m s a r e phytohormone-l i k e a c t i v i t i e s o f the M. i n t e g r i f o l i a e x t r a c t (E) f o r each of 10 e l u t e d chromatograph s e c t i o n s ( Rf) o f FRACTIONS I, II and/or I I I , d e s c r i b e d i n T a b l e 9. Shaded b a r s a r e a c t i v i t y l e v e l s f o r d i s c a r d f r a c t i o n s (IV and V) and s t a n d a r d s (M) used (BA, b e n z y l a d e n i n e ; GA3, g i b b e r e l l i c a c i d 3 and IAA, i n d o l e a c e t i c a c i d ) . H o r i z o n t a l b a r s above each o f the h i s t o g r a m s a r e the Rf r e g i o n s f o r the chromatographed s t a n d a r d s (Z, z e a t i n ; ZR, z e a t i n r i b o s i d e ; IPA, i s o p e n t e n y l a d e n i n e ; IPAR i s o p e n t e n y l a d e n i n e r i b o s i d e ; GA3, g i b b e r e l l i c a c i d 3 and IAA, i n d o l e a c e t i c a c i d ) . FIGURE 14. 115 c h romatograph (Rf 0.4 to 0.8) w i t h the known g i b b e r e l l i n GA 3 c h r o m a t o g r a p h i n g from Rf 0.5 to 0.7 of t h i s r e g i o n . A c t i v e Rf v a l u e s f o r a u x i n match c l o s e l y t h a t of i n d o l e a c e t i c a c i d ( I A A ) . No c y t o k i n i n and a u x i n - l i k e b i o a s s a y a c t i v i t i e s were d e t e c t e d i n the d i s c a r d f r a c t i o n s IV and V, which were e x c l u d e d form the phytohormonal e x t r a c t , a l t h o u g h some g i b b e r e l l i c - 1 i k e a c t i v i t y was d e t e c t e d . A c c o r d i n g to F i n n i e and van Staden (1985) the c o n c e n t r a t i o n o f the JE. maxima c o n c e n t r a t e i n s o l u t i o n i s an i m p o r t a n t f a c t o r c o n t r o l l i n g the growth r e g u l a t i n g e f f i c a c y . A 1:100 ( v / v ) d i l u t i o n ( k e l p c o n c e n t r a t e : w a t e r ) was i n h i b i t o r y , w h i l e h i g h e r d i l u t i o n s (1:400 to 1:600) were growth p r o m o t i n g . Upon c h r o m a t o g r a p h i n g the E. maxima, k e l p c o n c e n t r a t e t h e y a l s o d e m o n s t r a t e d t h a t s e v e r a l growth r e g u l a t i n g s u b s t a n c e s were p r e s e n t , each of which e l i c i t e d d i f f e r e n t p l a n t growth and d e v e l o p m e n t a l r e s p o n s e s . S i m i l a r l y , F e a t o n b y - S m i t h and van Staden (1987) a l s o d e m o n s t r a t e d d i f f e r e n c e s i n b a r l e y g r a i n y i e l d components (number of e a r s and number of g r a i n s e a r " 1 ) w i t h v a r y i n g d i l u t i o n s of the JE. maxima c o n c e n t r a t e (1 :250 and 1:500 d i l u t i o n s ) . In t h i s i n v e s t i g a t i o n the d i f f e r e n c e s i n m a r k e t a b l e d r y bean y i e l d s between the M. i n t e g r i f o l i a k e l p c o n c e n t r a t e (M) and i t s phytohormonal e x t r a c t (E) may be 116 r e l a t e d t o a l t e r e d c o n c e n t r a t i o n s of one or more a c t i v e growth r e g u l a t i n g s u b s t a n c e s . Such e f f e c t s c o u l d have been caused by (a) Tow or v a r y i n g e x t r a c t i o n e f f i c i e n c y f o r p a r t i c u l a r growth r e g u l a t i n g s u b s t a n c e s from the c o n c e n t r a t e , (b) o m i s s i o n o f growth r e g u l a t i n g s u b s t a n c e s from the e x t r a c t , (c) p r e s e n c e of i n h i b i t o r y s u b s t a n c e s and/or (d) d e a c t i v a t i o n o f growth r e g u l a t i n g s u b s t a n c e s d u r i n g the e x t r a c t i o n p r o c e d u r e . As was d i s c u s s e d e a r l i e r i n the i n t r o d u c t i o n ( S e c t i o n 4.1.1) the c y t o k i n i n phytohormones have been s u s p e c t e d t o be a c t i v e c o n s t i t u e n t s , of k e l p f o l i a r t r e a t m e n t s . However, i t has not been d e m o n s t r a t e d t h a t c y t o k i n i n - 1 i k e s u b s t a n c e s d e t e c t e d i n t h e s e c o n c e n t r a t e s or e x t r a c t s a r e i n d e e d p h y s i o l o g i c a l l y a c t i v e under f i e l d or greenhouse c o n d i t i o n s . T a b l e 11 summarizes c y t o k i n i n and c y t o k i n i n - 1 i k e c o n c e n t r a t i o n s r e c o r d e d f o r v a r i o u s k e l p e x t r a c t s and c o n c e n t r a t e s used as f o l i a r s p r a y s , i n c l u d i n g the M. i n t e g r i f o l i a c o n c e n t r a t e . The range of the c y t o k i n i n - 1 i k e e q u i v a l e n t c o n c e n t r a t i o n s g i v e n f o r the M. i n t e g r i f o l i a c o n c e n t r a t e i s r e l a t e d to the f r e s h w e i g h t o f k e l p c o n c e n t r a t e which was e x t r a c t e d and chromatographed p r i o r to the c a l l u s b i o a s s a y . The lower the weight o f the k e l p i n the e x t r a c t to be chromatographed the h i g h e r the c y t o k i n i n -TABLE 11. SUMMARY OF CYTOKININ OR CYTOKININ-LIKE CONCENTRATIONS OF VARIOUS KELP EXTRACTS AND CONCENTRATES  TRADE NAME TYPE OF CYTOKININ/ METHOD REFERENCE KELP CYTOKININ-LIKE OF CONCENTRATION ANALYSIS  S e a s o l or A g r i k e i p Durvi11ea p o t a t o rum 63 ug L "1 * ( 1 0 " 7 M) GC/MS Tay e t a l . , 1985 Maxi crop Ascophy11um nodosum 1300 yg L "1 ( 1 0 ~ 6 M) Tobacco cal1 us bi o a s s a y Sanderson and Jameson, 1986 Kelpak 66 E c k l o n i a max ima ** _ i 26 y9 L ( 1 0 ~ 7 M) Soybean c a l l us bi o a s s a y F e a t o n b y -Smi th and van S t a d e n , 1983 SeaSpray M a c r o c y s t i s i n t e q r i f o l i a 84-1680 U9 L~ ( 1 0 " 7 to 10" 6 1 M) Soybean cal1 us bi o a s s a y R a d l e y ( p e r s o n a l comm.) * -1 Approximate molar c o n c e n t r a t i o n s i n b r a c k e t s (219 g mole ). C a l c u l a t i o n s based on 1000 g of k e l p c o n c e n t r a t e l i t r e 118 l i k e a c t i v i t y c a l c u l a t e d , w i t h the lower a c t i v i t y v a l u e b e i n g r e l a t e d to h i g h e r k e l p e q u i v a l e n t w e i g h t s i n the e x t r a c t (R. R a d l e y , 1987, UBC Dept. of P l a n t Sc., p e r s o n a l c o m m u n i c a t i o n ) . These r e s u l t s d e m o n s t r a t e t h a t the methods chosen can g r e a t l y i n f l u e n c e the c a l c u l a t e d b i o a s s a y a c t i v i t i e s and m i s l e a d i n g r e s u l t s which can be o b t a i n e d when b i o a s s a y s a r e used i n q u a n t i f y i n g a c t i v i t y l e v e l s . For t h e s e r e a s o n s the c o n c e n t r a t i o n s of the v a r i o u s p h y t o hormone-1ike s u b s t a n c e s which were d e t e c t e d i n the phytohormonal e x t r a c t (E) of t h i s i n v e s t i g a t i o n a r e not p r e s e n t e d . The e f f e c t i v e n e s s of t h i s phytohormonal e x t r a c t i n p r o m o t i n g the bean y i e l d s s u p p o r t s , i n p a r t , the t h e s i s t h a t phytohormones or o r g a n i c compounds may be a c t i v e c o n s t i t u e n t s o f the M. i n t e g r i f o l i a k e l p c o n c e n t r a t e . R e s e a r c h e f f o r t s d i r e c t e d a t f u r t h e r p u r i f i c a t i o n and f r a c t i o n a t i o n o f the v a r i o u s phytohormones, i n p a r t i c u l a r c y t o k i n i n s , u s i n g p h y s i o c h e m i c a l methods of a n a l y s i s w i t h known e x t r a c t i o n e f f i c i e n c i e s p r i o r to f o l i a r a p p l i c a t i o n a r e w a r r a n t e d . N u t r i e n t l e v e l s ' i n the phytohormonal e x t r a c t were below the l i m i t s - • o f d e t e c t i o n , and i t i s d o u b t f u l t h a t the s m a l l q u a n t i t i e s o f n u t r i e n t - elements - a p p l i e d to the f o l i a g e v i a the pure k e l p c o n c e n t r a t e s ( T a b l e 12) would s i g n i f i c a n t l y TABLE 12. ELEMENTAL COMPOSITION OF DRY KELP CONCENTRATES AND FOLIAR ELEMENTAL APPLICATION TO CROP AREA ELEMENTAL CONCENTRATIONS ELEMENTAL APPLICATIONS OF CONCENTRATES ELEMENT UNIT M. i n t e g r i f o l i a E. maxima UNIT M. i n t e g r i f o l i a E. maxima N % 1.00 32.6 P % 0.23 4.3 K % 8.5 3.3 Ca % 1.2 0.21 Mg % - 0.82 0.10 Fe mg kg": 560 5 Cu mg kg": 4 4 Mn mg kg": 10 3 Zn mg k g " 1 21 10 Dry m a t t e r 7. 10.2 22.0 kg ha \ 0.0081 1.14 kg ha"J 0.0019 0.15 kg ha" 1 0.070 0.080 kg ha } 0.0010 0.004 kg h a " 1 0.006 0.002 g ha"} 0.460 0.009 g ha"} 0.003 0.007 g ha" 1 0.008 0.005 g ha" 1 0.017 0.017 Kg ha" 1 0..81 1.76 c o n t r i b u t e to the t o t a l shoot m i n e r a l n u t r i e n t r e q u i r e m e n t . The E.. maxima c o n c e n t r a t e was found to have r e l a t i v e l y h i g h d r y w e i g h t N and P c o n c e n t r a t i o n s . These h i g h l e v e l s a r e r e l a t e d to the a d d i t i o n of mono-ammonium phosphate and a n i t r o g e n f e r t i l i z e r d u r i n g i t s m a n u f a c t u r e . Blunden (1977) examined the e l e m e n t a l c o m p o s i t i o n of v a r i o u s k e l p e x t r a c t s and c o n c l u d e d t h a t the q u a n t i t i e s of k e l p f o l i a r s p r a y a p p l i e d c o u l d not s u p p l y a s i g n i f i c a n t p o r t i o n o f the annual r e q u i r e m e n t s of m a c r o n u t r i e n t s to a c r o p , but c o u l d perhaps s u p p l y an amount of l i m i t i n g n u t r i e n t to c o r r e c t a m a r g i n a l d e f i c i e n c y o n l y . K o t z e and J o u b e r t (1980) i n t h e i r i n v e s t i g a t i o n of rye and cabbage c o n c l u d e d t h a t because k e l p f o l i a r s p r a y s were found to be e f f e c t i v e o n l y on s o i l s which were f e r t i l i z e d , the r e s p o n s e c o u l d not be a t t r i b u t e d to the m i n e r a l n u t r i t i o n of the k e l p . F i n n i e and van Staden (1985) have a l s o d e m o n s t r a t e d t h a t the e f f e c t i v e n e s s of a k e l p f o l i a r s p r a y to promote growth i s l o s t s ubsequent to the a s h i n g of the k e l p c o n c e n t r a t e . A l t h o u g h i t i s d o u b t f u l t h a t the h e i g h t e n e d r e s p o n s e s o b t a i n e d from the use of k e l p f o l i a r s p r a y s c o u l d be a t t r i b u t e d to the m i n e r a l c o n s t i t u e n t s of the k e l p , i t has not y e t been d e m o n s t r a t e d t h a t s y n e r g i s t i c e f f e c t s between i t s m i n e r a l n u t r i e n t e lements and growth r e g u l a t i n g 121 s u b s t a n c e s do not e x i s t . Recent i n v e s t i g a t i o n s have documented s y n e r g i s t i c e f f e c t s on p l a n t growth to f o l i a r a p p l i c a t i o n s o f v a r i o u s elements w i t h phytohormones ( M a r s c h n e r , 1982; Mengel and K.irkby, 1982; Neuman and Nooden, 1983). The c o m m e r c i a l l y produced E. maxima k e l p c o n c e n t r a t e (K) and the e x p e r i m e n t a l M. i n t e g r i f o l i a k e l p c o n c e n t r a t e (S) p r o d u c e d by the d i s p e r s i o n / h o m o g e n i z a t i o n method had a s i m i l a r p h y s i c a l a p p e a r a n c e and r e l a t i v e l y u n i f o r m p a r t i c l e s i z e (50 to 100 um; F i g u r e 15). The " X - p r e s s e d " M. i n t e g r i f o l i a c o n c e n t r a t e was e f f e c t i v e i n d i s i n t e g r a t i n g or d i s r u p t i n g p l a n t c e l l w a l l m a t e r i a l , but p a r t i c l e s i z e s were n o n - u n i f o r m and many were l a r g e enough to p l u g f o l i a r a p p l i c a t o r n o z z l e s . The s m a l l e s t most commonly used farm f o l i a r a p p l i c a t o r n o z z l e s have 50 mesh s i z e (298 um) f i l t e r s ( B r a n d t I n d u s t r i e s L t d . ) S i n c e the M. i n t e g r i f o l i a c o n c e n t r a t e p r o d u c e d by the d i s p e r s i o n / h o m o g e n i z a t i o n method was e f f e c t i v e i n i n c r e a s i n g m a r k e t a b l e bean y i e l d s , i t c o u l d be a p r a c t i c a l m a n u f a c t u r i n g t e c h n i q u e . R e l a t i v e to the u n t r e a t e d c o n t r o l , k e l p f o l i a r t r e a t e d p l a n t s had s i m i l a r n u t r i t i o n a l r e s p o n s e s ( F i g u r e 16 and 17). N u t r i t i o n a l r e s p o n s e s to k e l p f o l i a r t r e a t m e n t , r e l a t i v e to 122 PHOTOGRAPHS OF KELP CONCENTRATES ( a l l p h o t o g r a p h s a t same m a g n i f i c a t i o n ) FIGURE 15 1983 B E A N POD N U T R I T I O N E L E M E N T A L C O N C E N T R A T I O N 123 2-5-1 2.0-K C vs MI+ M2 + EI+ E2+K El + M2 vs E2+ Ml CV = 13 1.5 E L E M E N T A L U P T A K E 30-i kg ha" N C vs Ml + M2+ EI+ E2+K MI + M2 vs EI + E2 CV = 12 25-20-4.5-i kg h a - 1 3.5 H P C vs Ml + M2+ El + E2+ K CV = 14 2.5-15 - i g ha" 1 10 H CU C vs MI+M2 + EI + E2 + K MI+ M2 vs EI+ E2 CV = 19 C Ml M2 El E2 K C Ml M2 El E2 K F O L I A R T R E A T M E N T S FOLIAR TREATMENT LEGEND: C o n t r o l ( C ) ; M. i n t e g r i f o l i a k e l p c o n c e n t r a t e p r o d u c e d by an X- P r e s s and a p p l i e d a t 4 L h a - 1 (Ml) and 2 L h a " 1 (M2); M. i n t e g r i f o l i a k e l p c o n c e n t r a t e p r o d u c e d by d i s p e r s i o n / h o m o g e n i z a t i o n method and a p p l i e d a t 4 L h a - 1 (SI) and 2 L h a - 1 (S2) and E. maxima k e l p c o n c e n t r a t e a p p l i e d a t 2 L h a - 1 ( K ) . FIGURE 16. 124 1984 B E A N POD NUTRITION 3 4 -mgkg"1 3 2 - | r-l 30 28 E L E M E N T A L C O N C E N T R A T I O N Zn C vs MI + M2 + SI+S2+K CV = 6.2 n n kg ha 40-1 •i 35 -3 0 -25 E L E M E N T A L U P T A K E C vs MI+ M2+ SI +S2 +K CV = 17 n 4.0-1 kgha - 1 3.5-3.0-1 2.5 Mg C vs MI + M2 + SI + S2 + K K vs MI + M2 + SI+ S2 CV = 18 C Ml M2 S I S2 K C Ml M2 SI S2 K F O L I A R T R E A T M E N T S FOLIAR TREATMENT LEGEND: C o n t r o l ( C ) ; M. i n t e g r i f o l i a k e l p c o n c e n t r a t e p r o d u c e d by an X- P r e s s and a p p l i e d a t 4 L h a - 1 (Ml) and 2 L h a - 1 (M2); M. i n t e g r i f o l i a k e l p c o n c e n t r a t e p r o d u c e d by d i s p e r s i o n / h o m o g e n i z a t i o n method and a p p l i e d a t 4 L h a " 1 ( S I ) and 2 L h a " 1 (S2) and E. maxima k e l p c o n c e n t r a t e a p p l i e d a t 2 L h a " 1 ( K ) . FIGURE 17. 125 the u n t r e a t e d p l a n t s , i n c l u d e d reduced bean pod K c o n c e n t r a t i o n s and enhanced uptake of N, P and Cu i n 1983, whereas, i n 1984 bean pod Zn c o n c e n t r a t i o n s were red u c e d as K and Mg uptake was i n c r e a s e d . Such k e l p f o l i a r s p r a y e f f e c t s upon e l e m e n t a l c o n c e n t r a t i o n s may be r e l a t e d to g r e a t e r dry m a t t e r a c c u m u l a t i o n per u n i t element or " d i l u t i o n e f f e c t s " as d e s c r i b e d by J a r r e l l and B e v e r l y ( 1 9 8 1 ) . I t has been d e m o n s t r a t e d t h a t e l e m e n t a l c o n c e n t r a t i o n can i n c r e a s e and uptake d e c r e a s e as p l a n t d r y m a t t e r y i e l d s d e c l i n e i n r e s p o n s e to any f a c t o r t h a t l i m i t s g rowth, be i t l i g h t , b i o t a , m o i s t u r e , t e m p e r a t u r e or a n u t r i e n t ( M a r t i n and Matocha, 1973; G e r a k i s e_t aj_. , 1975). T h e r e f o r e , r e l a t i v e to k e l p t r e a t e d p l a n t s , the c o n t r o l p l a n t s may have e x p e r i e n c e d g r e a t e r s t r a i n or more l i m i t e d g r owth. A l t h o u g h the n u t r i t i o n a l e f f e c t s were s i m i l a r between the 1983 and 1984 f i e l d t r i a l the p a r t i c u l a r m i n e r a l n u t r i e n t e f f e c t e d was d i f f e r e n t . Such q u a l i t a t i v e d i s s i m i l a r i t i e s may be r e l a t e d to d i f f e r e n c e s i n the p l a n t growth e n v i r o n m e n t between s e a s o n s . A c c o r d i n g to M a r t i n and Matocha (1973) the c h e m i c a l c o m p o s i t i o n o f any p l a n t i s a r e s u l t of the i n t e r a c t i o n of n u t r i e n t s u p p l y and p l a n t growth. The s o i l c h e m i c a l a n a l y s i s of the p l o t a r e a 126 i n d i c a t e s t h a t the 1984 p l o t s i t e , compared to the 1983 p l o t s i t e , had h i g h e r s o i l pH (5.6 vs 4.6) and a v a i l a b l e Ca (1500 mg k g - 1 vs 970 mg k g - 1 ) and lower %C ( 1 . 9 % vs 2.7%) and t o t a l %N (0.11% vs 0.28%). The weather c o n d i t i o n s i n the two y e a r s were a l s o d i f f e r e n t ( F i g u r e 1 8). The 1983 f i e l d season s t a r t e d o f f w i t h an i n i t i a l s h o r t d r y p e r i o d d u r i n g emergence f o l l o w e d by a l o n g wet, c o o l and o v e r c a s t growth e n v i r o n m e n t . The 1984 f i e l d season s t a r t e d o f f w i t h a p r o l o n g e d d r y p e r i o d f o l l o w e d by a s h o r t c o o l and wet growth p e r i o d d u r i n g seed s e t . Many e n v i r o n m e n t a l f a c t o r s such as s o i l m o i s t u r e , l i g h t , ambient t e m p e r a t u r e s , b i o t a and h u m i d i t y can have a . s i g n i f i c a n t e f f e c t upon subsequent growth, development and/or m i n e r a l n u t r i t i o n (Woodward and Begg, 1976; T i n k e r 1980; J a r r e l l and B e v e r l y , 1981). T h e r e f o r e , under f i e l d c o n d i t i o n s weather may be an i m p o r t a n t f a c t o r c o n t r o l l i n g k e l p f o l i a r s p r a y t r e a t m e n t e f f e c t s upon growth, development or m i n e r a l n u t r i t i o n a l r e s p o n s e s . Abetz (1980) s t a t e d t h a t growth r e s p o n s e s to v a r i o u s k e l p e x t r a c t s were g r e a t e s t when c r o p s e n c o u n t e r an e n v i r o n m e n t a l s t r e s s such as d r o u g h t . Gupta and MacLeod (1982) i n d i c a t e d t h a t i n t h e i r f i e l d t r i a l the l a c k o f any wheat growth r e s p o n s e to k e l p f o l i a r t r e a t m e n t may have been r e l a t e d to the f a v o u r a b l e 127 " 'OO-i SOIL MOISTURE (0-20cm kPa ENVIRONMENTAL DATA o 1983 (15 JUNE TO 5 AUG.) -400 I i i i i i i i i i i i • — • 1984 (13 JULY TO 27 SEP.) LEGEND: F i e l d e n v i r o m e n t a l c o n d i t i o n s d u r i n g the growth p e r i o d s o f 1983 and 1984. FIGURE 18. 128 e n v i r o n m e n t a l growth c o n d i t i o n s f o r t h a t p a r t i c u l a r growing s e a s o n . C o n t r o l l e d e n v i r o n m e n t i n v e s t i g a t i o n s documenting the i n t e r a c t i v e e f f e c t s or e f f i c i e n c y of k e l p f o l i a r s p r a y t r e a t m e n t s w i t h the p h y s i c a l e n v i r o n m e n t a r e w a r r a n t e d . In 1983 t h e r e were no m i n e r a l n u t r i t i o n a l d i f f e r e n c e s between the E. maxima and M. i n t e g r i f o l i a k e l p f o l i a r t r e a t m e n t s . In 1984 the E. maxima, r e l a t i v e to the M. i n t e g r i f o l i a , k e l p c o n c e n t r a t e f o l i a r t r e a t m e n t s had lower bean pod Mg uptake ( F i g u r e 17). Such a r e s p o n s e may have been r e l a t e d to lower y i e l d s w i t h the E.. maxima f o l i a r t r e a t m e n t . Such d i s s i m i 1 i a r i t i e s between f i e l d s e a s o n s may a l s o i m p l y t h a t under d i f f e r i n g e n v i r o n m e n t a l c o n d i t i o n s the E. maxima and M. i n t e g r i f o l i a k e l p f o l i a r t r e a t m e n t e f f e c t s upon growth, development and m i n e r a l n u t r i t i o n may d i v e r g e . In 1983, p l a n t s which were t r e a t e d w i t h the M. i n t e g r i f o l i a k e l p c o n c e n t r a t e , r e l a t i v e to i t s phytohormonal e x t r a c t , had g r e a t e r dry bean pod y i e l d s and N and Cu u p t a k e s , p r o b a b l y as a r e s u l t o f i n c r e a s e d bean pod y i e l d s ( F i g u r e 16). 4.1.4 C o n c l u s i o n s Under 1983 and 1984 f i e l d c o n d i t i o n s both the M. 129 i n t e g r i f o l i a and E_. maxima k e l p c o n c e n t r a t e , a p p l i e d a t e i t h e r 2 or 4 L h a - 1 as a f o l i a r s p r a y , i n c r e a s e d the y i e l d s of m a r k e t a b l e beans. A crude phytohormonal e x t r a c t of the M. i nteg r i f o l i a was a l s o e f f e c t i v e i n i n c r e a s i n g m a r k e t a b l e bean y i e l d s , a l t h o u g h l e s s e f f e c t i v e than i t s pure k e l p c o n c e n t r a t e . C y t o k i n i n , a u x i n and g i b b e r e l 1 i n - 1 i k e s u b s t a n c e s were d e t e c t e d i n the c h r o m a t o g r a p h i c f r a c t i o n s of the M. i n t e g r i f o l i a phytohormonal e x t r a c t . In each f i e l d season the q u a l i t a t i v e m i n e r a l n u t r i t i o n a l r e s p o n s e s to k e l p f o l i a r t r e a t m e n t , r e l a t i v e to the c o n t r o l s , i n c l u d e d reduced bean pod e l e m e n t a l c o n c e n t r a t i o n s and g r e a t e r m i n e r a l u p t a k e s as dry m a t t e r y i e l d s i n c r e a s e d . Q u a l i t a t i v e d i f f e r e n c e s between the two f i e l d s e a s o n s v a r i e d w i t h r e s p e c t to the p a r t i c u l a r m i n e r a l e l e m e n t s a f f e c t e d . The n u t r i t i o n a l r e s p o n s e s to k e l p f o l i a r t r e a t m e n t , r e l a t i v e to the u n t r e a t e d p l a n t s , i n c l u d e d reduced bean pod K c o n c e n t r a t i o n s as the uptake of N, P, and Cu were enhanced i n 1983, whereas, i n 1984 bean pod Zn c o n c e n t r a t i o n s were reduced as K and Mg uptake was i n c r e a s e d . Bean p l a n t m i n e r a l n u t r i t i o n a l r e s p o n s e s to the E. maxima f o l i a r t r e a t m e n t d i d not d i f f e r from t h o s e of the M. i nteg r i f o l i a f o l i a r t r e a t m e n t i n the 1983 f i e l d t r i a l , but d i f f e r e n c e s were e x p e r i e n c e d i n the 1984 f i e l d t r i a l . 130 4.2 E f f e c t s o f Two K e l p ( M a c r o c y s t i s i n t e g r i f o l i a and E c k l o n i a maxima) F o l i a r S p r a y s on Bean Crop Growth and N u t r i t i o n Under V a r y i n g S o i l M o i s t u r e Regimes 4.2.1 I n t r o d u c t i o n Recent f i e l d p l o t t r i a l s have d e m o n s t r a t e d t h a t the South A f r i c a n k e l p (£. maxima) c o n c e n t r a t e "Kelpak 66" and the B r i t i s h Columbia k e l p (M. i n t e g r i f o l i a ) c o n c e n t r a t e , when d i l u t e d w i t h water p r i o r to f o l i a r a p p l i c a t i o n , were e f f e c t i v e i n i n c r e a s i n g bean (P. v u l g a r i s ) y i e l d s . A c c o r d i n g to A b e t z (1980) and Gupta and MacLeod (1982) k e l p f o l i a r s p r a y s may be e f f e c t i v e i n i n c r e a s i n g m a r k e t a b l e y i e l d s of v a r i o u s c r o p s under e n v i r o n m e n t a l s t r e s s c o n d i t i o n s . To the a u t h o r ' s knowledge, t h e r e has been no documented r e s e a r c h which s u p p o r t s the c l a i m t h a t k e l p f o l i a r s p r a y s a r e most e f f e c t i v e under water s t r e s s c o n d i t i o n s . E n v i r o n m e n t a l f a c t o r s , such as d r o u g h t and w a t e r l o g g i n g d e c r e a s e y i e l d s , i n c r e a s e p l a n t e l e m e n t a l c o n c e n t r a t i o n s but reduce t o t a l uptake (Mengel and Von Bra u n s h w e i g , 1972; M a t t i s o n , 1973; G e r a k i s et aj_. , 1975; M a r a i s and Wiersma, 1975; Nambiar, 1976; D a t t a , 1985). In 1983 and 1984 f i e l d t r i a l s (see S e c t i o n 4.1) such n u t r i t i o n a l e f f e c t s were r e c o r d e d w i t h c o n t r o l p l a n t s r e l a t i v e to k e l p t r e a t e d p l a n t s , which c o u l d s u g g e s t t h a t k e l p t r e a t e d p l a n t s e x p e r i e n c e d l e s s s t r a i n or e x h i b i t e d g r e a t e r t o l e r a n c e toward t h e i r growth e n v i r o n m e n t . Reduced e l e m e n t a l c o n c e n t r a t i o n s and i n c r e a s e d uptake by k e l p t r e a t e d p l a n t s , r e l a t i v e t o the u n t r e a t e d p l a n t s , c o u l d i n d i c a t e s o - c a l l e d " d i l u t i o n e f f e c t s " or g r e a t e r dry m a t t e r a c c u m u l a t i o n per u n i t element as d e s c r i b e d by J a r r e l l and B e v e r l y ( 1 9 8 1 ) . The m i n e r a l n u t r i t i o n a l r e s p o n s e s were not c o n s i s t e n t between the 1983 and 1984 f i e l d t r i a l s and may have been r e l a t e d to d i f f e r e n c e s i n p l a n t growth and d e v e l o p m e n t a l r e s p o n s e to p a r t i c u l a r growth e n v i r o n m e n t s . I n t e r a c t i v e e f f e c t s between the e n v i r o n m e n t and p l a n t may be i m p o r t a n t f a c t o r s which d e t e r m i n e the e f f i c a c y of k e l p f o l i a r s p r a y s and the t y p e s o f p l a n t growth and n u t r i t i o n a l r e s p o n s e s r e c o r d e d w i t h t h e i r use. The o b j e c t i v e of t h i s greenhouse i n v e s t i g a t i o n was to d e t e r m i n e the e f f e c t o f the k e l p s M. i n t e g r i f o l i a and E. maxima p r e p a r e d as f o l i a r s p r a y s on bean (P. v u l g a r i s ) growth, development and m i n e r a l n u t r i t i o n under v a r y i n g s o i l m o i s t u r e c o n d i t i o n s . 4.2.2 M a t e r i a l s and Methods 132 Bush beans (£. v u l g a r i s cv. Galamor) were grown i n the greenhouse f o r 62 days between May 30 and J u l y 31, 1984. T r e a t m e n t s c o n s i s t e d of t h r e e f o l i a r s p r a y s and t h r e e s o i l m o i s t u r e regimes i n a 3 x 3 f a c t o r i a l e x p e r i m e n t . There were two b l o c k s w i t h t h r e e r e p l i c a t e s w i t h i n each o f the b l o c k s . Each of the 108 p o t s i n the e x p e r i m e n t was i n i t i a l l y p l a n t e d w i t h f i v e seeds and then s e l e c t i v e l y t h i n n e d to two p l a n t s per pot on Day 12. P r i o r to p l a n t i n g , a l l the seeds were p l a c e d on a s i e v e , w e t t e d t h o r o u g h l y and i n o c u l a t e d w i t h R h i z o b i u m 1eguminosarum b i o v a r p h a s e o l i . 3 To each of the s t e r i l i z e d 0.15 m h i g h , 2300 mm p o t s , 1.95 kg of d r y sandy loam s o i l was packed to a b u l k d e n s i t y of 850 kg m~3 w i t h a t o t a l p o r o s i t y o f 0.68 m 3 m~3. A s o i l w ater r e t e n t i o n c u r v e was c o n s t r u c t e d f o r t h i s s o i l u s i n g the porous p l a t e e x t r a c t i o n method ( R i c h a r d s , 1965). The s o i l s were a n a l y s e d f o r t o t a l n i t r o g e n (°/.N), t o t a l c a r b o n (°/.C), pH and a v a i l a b l e P, K, Ca, Mg, Fe, Cu, Mn and Zn u s i n g the methods d e s c r i b e d i n the 1983 f i e l d c r o p t r i a l ( S e c t i o n 4.1.2). The s o i l had a p H of 6.6 and t o t a l %N and %C c o n c e n t r a t i o n s of 0.41 and 6.6, r e s p e c t i v e l y . A v a i l a b l e P (Br a y 1) was 200mg k g " 1 , and the a v a i l a b l e Ca, K and Mg 133 c o n c e n t r a t i o n s (Morgans E x t r a c t i o n S o l u t i o n ) were 3600, 525 and 550 mg k g - 1 , r e s p e c t i v e l y . The 0.1M HCl e x t r a c t a b l e Fe, Cu, Mn and Zn c o n c e n t r a t i o n s were 55, 5, 130, 40 mg k g - 1 , r e s p e c t i v e l y . To each pot of s o i l 145 mg o f 0-0-60 (150 kg h a " 1 e q u i v a l e n t ) and 290 mg of 11-55-0 (300 kg h a - 1 e q u i v a l e n t ) f e r t i l i z e r was added and mixed t h o r o u g h l y p r i o r to p l a n t i n g . The s o i l m o i s t u r e regimes used i n the e x p e r i m e n t were f i e l d c a p a c i t y (FC; -30 to -50 kPa) , d r y (D; -120 to -150 kPa) and wet (W; 0 t o -10 k P a ) . F o r the f i e l d c a p a c i t y and dry s o i l s , the s o i l m o i s t u r e r e t e n t i o n c u r v e was used to c a l c u l a t e the w e i g h t of s o i l e q u i v a l e n t to t h e i r r e s p e c t i v e s o i l water p o t e n t i a l s , and p o t s were weighed each day and t w i c e on sunny days to m a i n t a i n the s o i l s a t the upper end of the d e s i r e d water p o t e n t i a l range. The lower water p o t e n t i a l f o r the range of v a l u e s g i v e n f o r the f i e l d c a p a c i t y and dry s o i l t r e a t m e n t s r e l a t e to the a v e r a g e l o s s of s o i l w ater due t o e v a p o t r a n s p i r a t i on. The wet s o i l water t r e a t m e n t was m a i n t a i n e d by k e e p i n g the p o t s i n a 0.06 m hi g h d i s h f i l l e d w i t h w a t e r . The wet s o i l water p o t e n t i a l range r e p r e s e n t s the s o i l m o i s t u r e c o n t e n t from the top o f s o i l (-10 kPa) to the water t a b l e (0 kPA). 134 A l l p o t s were m a i n t a i n e d a t f i e l d c a p a c i t y from s e e d i n g u n t i l Day 17. On Day 17, dry and wet s o i l m o i s t u r e t r e a t m e n t s were i n i t i a t e d . Wet s o i l s had t h e i r pans f i l l e d w i t h water and dry s o i l s were a l l o w e d to l o s e water to t h e i r d e f i n e d water p o t e n t i a l s , w h i l e f i e l d c a p a c i t y s o i l s were m a i n t a i n e d a t t h e i r water p o t e n t i a l . during the e n t i r e e x p e r i m e n t . The p l a n t s (Day 17) had f u l l y d e v e l o p e d p r i m a r y l e a v e s , and the f i r s t t r i f o l i a t e s were b e g i n n i n g to expand. At the o n s e t of f l o w e r i n g (Day 37) the d r y and wet s o i l m o i s t u r e p e r i o d was ended and h a l f o f the p o t s were h a r v e s t e d . The r e m a i n i n g p o t s were r e - r a n d o m i z e d w i t h the d r y and wet s o i l s r e t u r n e d to f i e l d c a p a c i t y . The wet s o i l s d i d not have t h e i r pans r e f i l l e d and were not wa t e r e d u n t i l t h e i r s o i l water p o t e n t i a l had f a l l e n below f i e l d c a p a c i t y . A l l r e m a i n i n g p o t s were m a i n t a i n e d a t f i e l d c a p a c i t y u n t i l h a r v e s t (Day 6 2 ) . The f o l i a r s p r a y s c o n s i s t e d of the c o n t r o l (C) s p r a y e d w i t h w a t e r , the commercial South A f r i c a n k e l p ( E . maxima) c o n c e n t r a t e "Kelpak 66" ( K ) , and the M. i n t e g r i f o l i a e x p e r i m e n t a l k e l p c o n c e n t r a t e (S) both d i l u t e d 1:250 w i t h d i s t i l l e d w a t e r . The M. i n t e g r i f o l i a e x p e r i m e n t a l c o n c e n t r a t e (S) was produced u s i n g the d i s p e r s i o n / 135 h o m o g e n i z a t i o n method d e s c r i b e d i n the 1984 f i e l d t r i a l e x p e r i m e n t ( S e c t i o n 4.1.2). A l l s p r a y s were a p p l i e d w i t h a hand h e l d a t o m i z e r u n t i l the f o l i a g e d r i p p e d . S p r a y i n g o c c u r r e d on Days 13, 21, 39 and 49. P l a n t s were h a r v e s t e d on Days 37 ( o n s e t o f f l o w e r i n g ) and 62 ( m a t u r i t y ) . On each of the r e s p e c t i v e h a r v e s t d a t e s the p l a n t h e i g h t , number o f nodes, l e a f a r e a and shoot f r e s h w e i g h t were r e c o r d e d . The r o o t s were e x c a v a t e d the next day from each pot by c a r e f u l washing of the r o o t s . P r i o r to d r y i n g the r o o t s , n o d u l a t i o n was r a t e d on a s c a l e o f 1 to 3 by f i v e i n d e p e n d e n t o b s e r v e r s (1 = l i g h t , 2 = medium and 3 = h e a v y ) . The p l a n t l e a v e s , stems, beans ( g r e a t e r than 60 mm i n l e n g t h , f i n a l h a r v e s t o n l y ) and r o o t s were oven d r i e d a t 70°C. On the f i n a l h a r v e s t (Day 62) the number o f m a r k e t a b l e beans f o r each pot was r e c o r d e d . C a l c u l a t i o n s f o r each pot i n c l u d e d f r e s h / d r y w e i g h t r a t i o s o f the s h o o t , d r y s h o o t / r o o t r a t i o s , s p e c i f i c l e a f a r e a ( S L A - l e a f a r e a d i v i d e d by d r y l e a f w e i g h t ) and l e a f a r e a r a t i o ( L A R - l e a f a r e a d i v i d e d by the dry p l a n t w e i g h t ) . Dry samples o f l e a f p l u s stem and beans were ground t h r o u g h a s t a i n l e s s s t e e l W i l e y m i l l , (1 mm s c r e e n ) w i t h a 1.000 g sample used f o r e l e m e n t a l a n a l y s i s . The methods o f 136 d i g e s t i o n and d e t e r m i n a t i o n of N, P, K, Ca, Mg, Fe, Cu, Mn and Zn c o n c e n t r a t i o n s were d e s c r i b e d i n the k e l p s o i l amendment f i e l d t r i a l e x p e r i m e n t ( S e c t i o n 3.1.2). P l a n t growth p a r a m e t e r s , e l e m e n t a l c o n c e n t r a t i o n s and uptake v a r i a b l e s were s u b j e c t e d to a n a l y s i s o f v a r i a n c e f o r each of the two h a r v e s t s . F o l i a r t r e a t m e n t means were s e p a r a t e d u s i n g s i n g l e degree of freedom c o n t r a s t s i n t o C vs (K + S) and K vs S, and s o i l m o i s t u r e t r e a t m e n t s s e p a r a t e d i n t o FC vs (D + W) and D vs W. The i n t e r a c t i o n s were s e p a r a t e d i n t o C vs (K + S) * FC vs (D + W), C vs (K + S) * D vs W, K vs S * FC vs (D + W) and K vs S * D vs W. S t a t i s t i c a l s i g n i f i c a n c e was d e t e r m i n e d a t the 5% l e v e l and c o e f f i c i e n t s o f . v a r i a t i o n (CV) g i v e n . 4.2.3 R e s u l t s Ambient greenhouse t e m p e r a t u r e s ranged from a n i g h t time low o f 19°C to an a v e r a g e day time h i g h o f 23°C. The r e l a t i v e h u m i d i t y ranged from an a v e r a g e n i g h t time h i g h of 80% to a day time low of 63%. The a n a l y s i s of v a r i a n c e F - v a l u e s , MSE and mean v a l u e s f o r each of the measured v a r i a b l e s a r e p r e s e n t e d i n A p p e n d i c e s 21 - 26. 137 H a r v e s t I: F i g u r e 19 and T a b l e 13 d e p i c t the s i g n i f i c a n t growth and development e f f e c t s f o r t h i s h a r v e s t . The d r y p l a n t , r o o t , l e a f and stem p l u s l e a f w e i g h t s of the c o n t r o l s (C) were g r e a t e s t i n the f i e l d c a p a c i t y (FC) s o i l t r e a t m e n t as compared to dry (D) and wet (W) s o i l m o i s t u r e t r e a t m e n t s . Both the JE. maxima (K) and M. i n t e g r i f o l i a (S) k e l p f o l i a r t r e a t m e n t s i n c r e a s e d each of t h e s e v a r i a b l e s i n the d r y and wet s o i l m o i s t u r e t r e a t m e n t s w i t h the g r e a t e r i n c r e a s e s o c c u r r i n g i n the wet s o i l . Root w e i g h t s were i n c r e a s e d by the E. maxima t r e a t m e n t and M. i n t e g r i f o l i a r e g a r d l e s s of s o i l m o i s t u r e t r e a t m e n t . The E_. maxima f o l i a r t r e a t m e n t i n c r e a s e d r o o t growth more i n wet s o i l s , w h i l e the M. i n t e g r i f o l i a t r e a t m e n t i n c r e a s e d p l a n t r o o t growth more on the f i e l d c a p a c i t y s o i l . LAR was reduced by both the M. i n t e g r i f o l i a and E. maxima k e l p f o l i a r s p r a y t r e a t m e n t s r e g a r d l e s s o f s o i l m o i s t u r e t r e a t m e n t s . C o n t r o l p l a n t s had h i g h e r N and P c o n c e n t r a t i o n s i n the dr y and wet s o i l s r e l a t i v e to the f i e l d c a p a c i t y s o i l ( F i g u r e 19). Both the E_. maxima and M. i n t e g r i f o l i a f o l i a r t r e a t e d p l a n t s had lower N c o n c e n t r a t i o n s on the d r y and wet s o i l s and i n c r e a s e d N c o n c e n t r a t i o n s on f i e l d c a p a c i t y s o i l s . K e l p f o l i a r s p r a y s i n c r e a s e d P c o n c e n t r a t i o n on d r y s o i l s , but reduced P c o n c e n t r a t i o n on wet s o i l s . Shoot uptake o f N, HARVEST I GROWTH, DEVELOPMENT AND NUTRITION 138 2 0 -g p o f 15 -10 DRY PLANT „ „ v f FC vs D+W CvsS + K * { D v $ w KvsSXFC vs D + W CV=I5 T T 10 -g p o f 8.0-6.0' DRY L E A F FC vs D+W D vs W #« C vsS+K *•[ K vs S * FC vs D + W CV= 16 4.0-g p o f 3.0-2.0-DRY ROOT C vs S +K K vs S * FC vs D + W CV=2I 225H CvsK+S CV = 12 2 -I cm g ' 2 0 0 -175-L A R LEAF AND STEM ELEMENTAL CONCENTRATION 3.0-2.5-2.0" N C vsS + K Mr FC vs D+W CV=I3 0.45-% 0.40-~T~ D 0.35 CvsS + K * DvsW CV= 10 ~T~ D FC W SOIL MOISTURE TREATMENTS ~ i — FC W DAY 37 FOLIAR AND SOIL TREATMENT LEGEND: F o l i a r t r e a t m e n t s i n c l u d e C o n t r o l ( C ) , M. i n t e g r i f o l i a (S) and E. maxima ( K ) . S o i l m o i s t u r e t r e a t m e n t s i n c l u d e Dry ( D ) , F i e l d C a p a c i t y (FC) and Wet (W). FIGURE 19. 139 Ca, Mg and Zn were i n c r e a s e d by both k e l p f o l i a r s p r a y s , r e g a r d l e s s of the s o i l m o i s t u r e t r e a t m e n t s , w i t h E_. maxima t r e a t e d p l a n t s h a v i n g the g r e a t e s t Ca and Mg uptake ( T a b l e 1 3 ) . H a r v e s t I I : S i g n i f i c a n t growth and d e v e l o p m e n t a l r e s p o n s e s f o r t h i s h a r v e s t a r e d e p i c t e d i n F i g u r e s 20, 21 and 22. C o n t r o l p l a n t s of f i e l d c a p a c i t y s o i l s had h i g h e r t o t a l , l e a f , l e a f and stem, bean pod and shoot w e i g h t s and g r e a t e r l e a f a r e a , number of beans and s h o o t / r o o t r a t i o s r e l a t i v e to the d r y and wet s o i l s . C o n t r o l r o o t w e i g h t s , u n l i k e i n the f i r s t h a r v e s t , were g r e a t e s t i n the d r y and wet s o i l s , r e l a t i v e to f i e l d c a p a c i t y s o i l s . C o n t r o l LAR, SLA, n o d u l a t i o n r a t i n g and node numbers i n c r e a s e d as s o i l m o i s t u r e t r e a t m e n t s went from d r y t h r o u g h f i e l d c a p a c i t y to wet. F i g u r e s 23, 24 and 25 i l l u s t r a t e the a p p e a r a n c e of the p l a n t s j u s t p r i o r to the second h a r v e s t (Day 61) f o r d r y , f i e l d c a p a c i t y and wet s o i l m o i s t u r e t r e a t m e n t s , r e s p e c t i v e l y . P l a n t s which were t r e a t e d w i t h the the E. maxima k e l p c o n c e n t r a t e were v i s u a l l y g r e e n e r or l e s s s e n e s c e n t than the c o n t r o l s or M. i n t e g r i f o l i a f o l i a r t r e a t e d p l a n t s f o r each o f d r y , f i e l d c a p a c i t y and wet s o i l m o i s t u r e t r e a t m e n t s , a l t h o u g h t h i s g r e e n i n g e f f e c t was not as T A B L E 1 3 . HARVEST I : SHOOT GROWTH AND E L E M E N T A L U P T A K E K e l p S o n F o l i a r T r a e t m e n t s : C o n t r o l * M o i s t u r e T r e a t m e n t s : D FC W M. D 1 n t e q r 1 f o l 1 a FC W E D . m a x i m a FC W S i g n i f i c a n t C o n t r a s t s CV D r y L e a f l e a f & s t e m ( g p o t - 1 ) 9.89 1 1 . 7 & S t e m e l e m e n t a l u p t a k e (mg p o t - 1 1 1 . 1 ) 1 0 . 6 1 2 . 2 1 3 . 1 1 1 . 1 1 1 . 5 1 4 . 7 C v s S + K * F C v s D + W C v s S + K * D v s W 16 N 2 9 2 2 8 4 2 8 1 3 0 0 3 1 8 3 2 5 3 2 1 3 0 1 3 2 9 C v s S + K 15 Ca 130 150 160 140 160 180 1 5 0 170 2 3 0 C v s S + K ; K v s S 22 Mg 4 1 46 51 43 4 9 56 46 5 3 68 C v s S + K ; K v s S 21 Zn 0.31 0.41 0.53 0.36 0.43 0.61 0.36 0.45 0.70 C v s S + K 30 * S o 1 1 m o i s t u r e t r e a t m e n t s I n c l u d e D r y ( D ) , F i e l d C a p a c i t y ( F C ) a n d Wet ( W ) . i—• O 141 HARVEST IE GROWTH AND DEVELOPMENT (PLANT a LEAF) 60-DRY PLANT K vs S D vs W CV = 20 g pot-4 5 -30-— -. s • • K 12 -g pot-' 9.0H DRY L E A F K vs S CV = I9 4 0 0 0 -cm 2 3000-1 6.0- 2000 L E A F AREA C vs K+S *- D vs W KvsS#DvsW CV=22 400-c m 2 g"1 S L A CvsK+S-K-DvsW CV = 13 350-300- T " D FC —r w 80-2 -I c m £ g L A R CvsK+S *DvsW CV = 8.4 TO- r - . 60' - r D ~T— FC — r w SOIL MOISTURE TREATMENTS DAY 62 FOLIAR AND SOIL TREATMENT LEGEND: F o l i a r t r e a t m e n t s i n c l u d e C o n t r o l ( C ) , M. i n t e g r i f o l i a (S) and E. maxima ( K ) . S o i l m o i s t u r e t r e a t m e n t s i n c l u d e Dry ( D ) , F i e l d C a p a c i t y (FC) and Wet (W). FIGURE 20 142 HARVEST J£ GROWTH AND DEVELOPMENT (SHOOT a ROOT) 5 0 -g p o f 40 30 -DRY SHOOT K vs S -* D vs W CV = 21 T" T DRY ROOT Cvs K + S * FC vs D+W.-#K K vs S C 10 -7.5 5.0-SHOOT/ROOT RATIO FC vs D D vs W Cvs K+S *{r-CvsD + W CV= 26 9.0-# p o f ' 8.5-8.0-No. OF NODES C vs K+S CV = 6.7 • K ~i 1 1 1 1 r D FC W D FC W SOIL MOISTURE TREATMENTS DAY 62 FOLIAR AND SOIL TREATMENT LEGEND: F o l i a r t r e a t m e n t s i n c l u d e C o n t r o l ( C ) , M. i n t e g r i f o l i a (S) and E. maxima ( K ) . S o i l m o i s t u r e t r e a t m e n t s i n c l u d e Dry (D), F i e l d C a p a c i t y (FC) and Wet (W). FIGURE 21 HARVEST TI 143 GROWTH, DEVELOPMENT AND N - N U T R I T I O N 25 -g pot" 20 15 2.25 % 2.00 1.75 1.50 DRY L E A F ft S T E M K vs S CV =16 T X L E A F & STEM N-CONC. K vs S •* D vs W o CV = 25 ^ • « 'C T T 2.5 -NODULATION RATING K vs S * D vs W CV= 29 c :* K 30 H g pof 20 H io DRY BEAN POD K vs S -* D vs W CV =28 2 50-| K vs S * D vs W CV = I6 ..^ K 2.00-1.50 1 1 1 BEAN POD N-CONC. 30 # pof 25 ^  20-15 No. OF B E A N S C vs K + S •* FC vs D+W CV = 17 .* D FC —r W SOIL MOISTURE TREATMENTS DAY 62 FOLIAR AND SOIL TREATMENT LEGEND: F o l i a r t r e a t m e n t s i n c l u d e C o n t r o l ( C ) , M. i n t e g r i f o l i a (S) and E. maxima ( K ) . S o i l m o i s t u r e t r e a t m e n t s i n c l u d e Dry (D), F i e l d C a p a c i t y (FC) and Wet (W). FIGURE 22 HARVEST II BEAN PLANTS SUBJECTED TO DRY SOIL MOISTURE TREATMENT (DAY 62) 144 CONTROL (C) FOLIAR TREATMENT E. maxima (K) FOLIAR TREATMENT FIGURE 23. HARVEST II BEAN PLANTS SUBJECTED TO FIELD CAPACITY SOIL MOISTURE TREATMENT (DAY 6 2 ) E. maxima (K) FOLIAR TREATMENT FIGURE 24. HARVEST II BEAN PLANTS SUBJECTED TO WET SOIL MOISTURE TREATMENT (DAY 62) CONTROL (C) FOLIAR TREATMENT FIGURE 25. a p p a r e n t w i t h dry s o i l s . R e l a t i v e to the c o n t r o l s , p l a n t s which were f o l i a r s p r a y e d w i t h the M. i n t e g r i f o l i a k e l p c o n c e n t r a t e were g r e e n e r i n dry s o i l s o n l y and were v e r y c h l o r o t i c or more s e n e s c e d i n wet s o i l s . At second h a r v e s t the E. maxima t r e a t e d p l a n t s had the g r e a t e s t t o t a l , l e a f ( F i g u r e 2 0 ) , shoot ( F i g u r e 2 1 ) , combined l e a f and stem and bean w e i g h t s ( F i g u r e 22) and l e a f a r e a s ( F i g u r e 20) and bean numbers ( F i g u r e 22) i n d r y , f i e l d c a p a c i t y and wet s o i l s . The M. i n t e g r i f o l i a f o l i a r t r e a t m e n t i n c r e a s e d t h e s e v a r i a b l e s i n the d r y s o i l , but i t s e f f e c t on the f i e l d c a p a c i t y s o i l was s i m i l a r to t h a t of the c o n t r o l s and l e s s than the c o n t r o l i n the wet s o i l t r e a t m e n t . R e l a t i v e to the c o n t r o l s , both the JE. maxima and M. i n t e g r i f o l i a k e l p f o l i a r t r e a t m e n t s i n c r e a s e d the LAR and SLA i n dry s o i l and d e c r e a s e d t h e s e v a r i a b l e s i n wet s o i l ( F i g u r e 2 0 ) . S h o o t / r o o t r a t i o s o f k e l p t r e a t e d p l a n t s were h i g h e s t i n d r y s o i l but d e c l i n e d t h r o u g h f i e l d c a p a c i t y to wet s o i l m o i s t u r e t r e a t m e n t s ( F i g u r e 2 1 ) . Both k e l p f o l i a r s p r a y s reduced the number of nodes, r e g a r d l e s s o f the s o i l m o i s t u r e t r e a t m e n t s ( F i g u r e 2 1 ) . The E. maxima t r e a t e d p l a n t s i n c r e a s e d r o o t growth from d r y t h r o u g h f i e l d c a p a c i t y to wet s o i l m o i s t u r e t r e a t m e n t s , whereas, the M. i nteq r i f o l i a t r e a t e d p l a n t s had the h i g h e s t r o o t growth i n f i e l d c a p a c i t y s o i l s and l o w e s t i n d r y and wet s o i l t r e a t m e n t s . Combined l e a f and stem and bean pod N c o n c e n t r a t i o n s c l o s e l y f o l l o w e d n o d u l a t i o n r a t i n g s ( F i g u r e 2 2 ) . For both the c o n t r o l and JE. maxima t r e a t e d p l a n t s , n o d u l a t i o n and N c o n c e n t r a t i o n s were l o w e s t i n d r y s o i l s and h i g h e s t w i t h f i e l d c a p a c i t y and wet s o i l m o i s t u r e t r e a t m e n t s , whereas M. i n t e g r i f o l i a t r e a t e d p l a n t s were h i g h e s t i n d r y s o i l s and d e c l i n e d t h r o u g h f i e l d c a p a c i t y to wet s o i l s . Combined l e a f and stem and bean pod y i e l d s and bean numbers f o r M. i n t e g r i f o l i a t r e a t e d p l a n t s c l o s e l y f o l l o w e d the same t r e n d s as f o r N c o n c e n t r a t i o n s and n o d u l a t i o n r a t i n g . 4.2.4 D i s c u s s i o n Both the M. i n t e g r i f o l i a (S) and JE. maxima (K) k e l p f o l i a r s p r a y s were e f f e c t i v e i n a l t e r i n g bean (£. v u l g a r i s ) g rowth, development and n u t r i t i o n . However, major d i f f e r e n c e s e x i s t e d between the two k e l p s p r a y s w i t h r e s p e c t to e f f i c a c y under v a r y i n g s o i l m o i s t u r e r e g i m e s . At the time when the dry (D) and wet (W) s o i l m o i s t u r e t r e a t m e n t s were removed ( H a r v e s t I ) , both o f the k e l p t r e a t m e n t s were e f f e c t i v e i n i n c r e a s i n g the p l a n t and l e a f w e i g h t s of t h o s e p l a n t s which were s u b j e c t e d to d r y and wet s o i l m o i s t u r e t r e a t m e n t s . G r e a t e r i n c r e a s e s i n t o t a l l e a f and shoot w e i g h t s w i t h k e l p t r e a t e d p l a n t s s u b j e c t e d to wet, r e l a t i v e to the dry s o i l m o i s t u r e t r e a t m e n t c o n d i t i o n s , s u g g e s t t h a t the p l a n t p h y s i o l o g i c a l r e s p o n s e s to the k e l p f o l i a r s p r a y t r e a t m e n t s were not equal between the wet and dr y s o i l m o i s t u r e t r e a t m e n t s . The JE. maxima f o l i a r t r e a t m e n t was more e f f e c t i v e than the M. i n t e g r i f o l i a f o l i a r t r e a t m e n t i n i n c r e a s i n g the t o t a l p l a n t , r o o t and l e a f w e i g h t s on the wet s o i l t r e a t m e n t s , which c o u l d i n t i m a t e growth r e g u l a t i n g d i f f e r e n c e s between the k e l p f o l i a r t r e a t m e n t s t h e m s e l v e s . The lower LAR w i t h k e l p t r e a t e d p l a n t s , r e g a r d l e s s o f the s o i l m o i s t u r e t r e a t m e n t s , s u g g e s t s g r e a t e r d r y m a t t e r a c c u m u l a t i o n or net p r o d u c t i v i t y per u n i t l e a f a r e a . K e l p f o l i a r t r e a t e d p l a n t s , r e g a r d l e s s of the s o i l m o i s t u r e t r e a t m e n t s , i n c r e a s e d r o o t growth and N, Ca, Mg and Zn u p t a k e s , which c o u l d a l s o imply a g r e a t e r s u p p l y of shoot p h o t o s y n t h a t e s to enhance r o o t growth and n u t r i e n t u p t a k e . 150 A c c o r d i n g to M a r t i n and Matocha (1973) the m i n e r a l c o m p o s i t i o n of any p l a n t i s a r e s u l t o f the i n t e r a c t i o n of n u t r i e n t s u p p l y and p l a n t growth. T h e r e f o r e , any f a c t o r which l i m i t s growth, be i t l i g h t , m o i s t u r e , t e m p e r a t u r e or some n u t r i e n t may cause o t h e r n u t r i e n t s to a c c u m u l a t e . In t h i s i n v e s t i g a t i o n the h i g h e r e l e m e n t a l shoot N and P c o n c e n t r a t i o n s a t f i r s t h a r v e s t w i t h c o n t r o l p l a n t s s u b j e c t e d to the dry and wet s o i l m o i s t u r e r e g i m e s , r e l a t i v e to the f i e l d c a p a c i t y s o i l m o i s t u r e regime, s u g g e s t t h a t t h e s e e l e m e n t s had a c c u m u l a t e d as y i e l d s d e c l i n e d . In c o n t r a s t to the c o n t r o l s , shoot N c o n c e n t r a t i o n s o f k e l p t r e a t e d p l a n t s were reduced on the d r y and wet s o i l m o i s t u r e t r e a t m e n t s as y i e l d s were enhanced. T h e r e f o r e , r e l a t i v e to the c o n t r o l s , the k e l p t r e a t e d p l a n t s may have undergone a so c a l l e d " d i l u t i o n e f f e c t " showing g r e a t e r t o l e r a n c e to the s o i l m o i s t u r e s t r e s s as d r y m a t t e r y i e l d s were enhanced. These r e s u l t s , p a r t i c u l a r l y i n the dry s o i l m o i s t u r e r e g i m e s , s u p p o r t the t h e o r y t h a t the enhanced growth and reduced e l e m e n t a l c o n c e n t r a t i o n e f f e c t s of k e l p f o l i a r t r e a t m e n t s i n the 1983 and 1984 f i e l d t r i a l s ( S e c t i o n 4.1) may be d i l u t i o n e f f e c t s i n r e s p o n s e to g r e a t e r d r y m a t t e r a c c u m u l a t i o n or t o l e r a n c e to the e n v i r o n m e n t a l growth c o n d i t i o n s . Other 151 r e s e a r c h e r s (Blunden e_t. aj_. , 1979; Ne l s o n and van S t a d e n , 1984a; F e a t o n b y - S m i t h and van S t a d e n , 1987) have a l s o r e p o r t e d a r e d u c t i o n i n e l e m e n t a l N c o n c e n t r a t i o n w i t h p l a n t s t r e a t e d w i t h k e l p f o l i a r s p r a y s . The e f f e c t s of the k e l p f o l i a r t r e a t m e n t s upon shoot P c o n c e n t r a t i o n a t f i r s t h a r v e s t v a r i e d a c c o r d i n g to the s o i l m o i s t u r e t r e a t m e n t . R e l a t i v e to the c o n t r o l s , both the E_. maxima and M. i n t e g r i f o l i a k e l p f o l i a r t r e a t m e n t s i n c r e a s e d P c o n c e n t r a t i o n s on the dry s o i l and reduced P c o n c e n t r a t i o n s on the wet s o i l . Such a c o n t r a s t i n g e f f e c t on P n u t r i t i o n , w i t h r e s p e c t to s o i l m o i s t u r e , d e m o n s t r a t e d the i n f l u e n c e of the p a r t i c u l a r growth e n v i r o n m e n t on the type o f n u t r i t i o n a l r e s p o n s e . At second h a r v e s t , the E. maxima f o l i a r t r e a t m e n t i n c r e a s e d the t o t a l l e a f , shoot and bean w e i g h t s on both d r y and wet s o i l s . The M. i n t e g r i f o l i a f o l i a r t r e a t m e n t was o n l y e f f e c t i v e i n i n c r e a s i n g t h e s e growth v a r i a b l e s on the dry s o i l m o i s t u r e t r e a t m e n t . R e l a t i v e to the c o n t r o l , the M. i n t e g r i f o l i a t r e a t e d p l a n t s , s u b j e c t e d to the wet s o i l m o i s t u r e t r e a t m e n t , e x p e r i e n c e d r a p i d or a c c e l e r a t e d s e n e s c e n c e s h o r t l y a f t e r the t h i r d s p r a y i n g . Growth r e s p o n s e s i n c l u d e d reduced l e a f , stem, bean and r o o t w e i g h t s , and reduced l e a f a r e a and n o d u l a t i o n . 152 Ne l s o n and van Staden (1984a) have a l s o o b s e r v e d an i n i t i a l i n h i b i t i o n o f greenhouse cucumber d u r i n g f r u i t s e t w i t h JE. maxima t r e a t m e n t . They s u g g e s t t h a t i n a p p r o p r i a t e f o l i a r a p p l i c a t i o n s d u r i n g f r u i t s e t c o u l d have been r e s p o n s i b l e f o r the o b s e r v e d r e s p o n s e , t h e r e f o r e , k e l p f o l i a r t r e a t m e n t s s h o u l d be timed to c o i n c i d e w i t h p a r t i c u l a r growth s t a g e s , r a t h e r than a t r e g u l a r time i n t e r v a l s t h r o u g h o u t the growing p e r i o d . A p p l i c a t i o n of v a r i o u s known growth r e g u l a t i n g s u b s t a n c e s a t v a r i o u s s t a g e s and/or i n c o m b i n a t i o n a t v a r i o u s s t a g e s o f p l a n t development i s known to cause c o n f l i c t i n g and o p p o s i t e r e s u l t s and i s a f a c t o r a l s o c o n t r o l l i n g the e f f e c t i v e n e s s of t h e s e compounds (Kannan, 1980; M i s h r a and Gaur, 1985). F i n n i e and van Staden (1985) have a l s o d e m o n s t r a t e d t h a t the water d i l u t i o n r a t i o of the E.. maxima k e l p c o n c e n t r a t e to be an i m p o r t a n t f a c t o r c o n t r o l l i n g i t s e f f i c a c y . Low d i l u t i o n r a t i o s ( 1 : 1 0 0 : : k e l p c o n c e n t r a t e : w a t e r ) can have an i n h i b i t o r y e f f e c t upon r o o t growth, whereas h i g h e r d i l u t i o n r a t i o s (1:400 to 1:600) can be s t i m u l a t o r y . These r e s u l t s c o u l d a l s o s u g g e s t t h a t the growth i n h i b i t i o n s , which were e x p e r i e n c e d w i t h the M. i n t e g r i f o l i a f o l i a r t r e a t m e n t upon the wet s o i l , may have been r e l a t e d to a low water d i l u t i o n of the c o n c e n t r a t e . The f a c t t h a t the 1:250 M. i n t e g r i f o l i a 153 c o n c e n t r a t e d i l u t i o n was s t i m u l a t o r y on the d r y s o i l t r e a t m e n t , y e t i n h i b i t o r y on the wet s o i l t r e a t m e n t , c o u l d a l s o s u g g e s t t h a t o p t i m a l d i l u t i o n r a t i o s of the c o n c e n t r a t e may be dependent on the p a r t i c u l a r s o i l m o i s t u r e regime or e n v i r o n m e n t a l c o n d i t i o n s to which the p l a n t s a r e s u b j e c t e d . Such d i l u t i o n e f f e c t s c o u l d be a t t r i b u t e d to growth i n h i b i t o r s i n the c o n c e n t r a t e w h i c h , upon i n c r e a s i n g d i l u t i o n , become l e s s e f f e c t i v e than the growth p r o m o t i n g s u b s t a n c e s . F u r t h e r m o r e , the i n h i b i t i o n o f r o o t growth c o u l d a l s o a c c o u n t f o r the l o s s of n o d u l a t i o n and the l o w e r i n g o f p l a n t N c o n c e n t r a t i o n , as the s u p p l y o f shoot p h o t o s y n t h a t e s to s u p p o r t a c t i v e n u t r i e n t uptake and N f i x a t i o n may have d i m i n i s h e d . A l t h o u g h s h o o t and r o o t y i e l d r e s p o n s e s t o E. maxima and M. i n t e g r i f o l i a f o l i a r t r e a t m e n t s d i f f e r e d m a r k l y among s o i l m o i s t u r e t r e a t m e n t s , t h e i r e f f e c t s on p l a n t s h o o t / r o o t r a t i o , number of nodes, SLA and LAR were s i m i l a r . S h o o t / r o o t r a t i o s of both the E. maxima and M. i n t e g r i f o l i a f o l i a r t r e a t e d p l a n t s d e c l i n e d from d r y t h r o u g h f i e l d c a p a c i t y to wet s o i l m o i s t u r e t r e a t m e n t s , whereas SLA and LAR remained r e l a t i v e l y c o n s t a n t . Both the k e l p f o l i a r s p r a y s were a l s o e f f e c t i v e i n r e d u c i n g the number of nodes, r e g a r d l e s s o f the s o i l m o i s t u r e r e g i m e s . A l t h o u g h shoot and 154 r o o t y i e l d r e s p o n s e s between the two k e l p f o l i a r s p r a y s were q u i t e d i f f e r e n t , the p a r t i t i o n i n g of p h o t o s y n t h a t e s f o r dry m a t t e r a c c u m u l a t i o n and development was s i m i l a r . These growth, d e v e l o p m e n t a l and n u t r i t i o n a l r e s p o n s e s e s t a b l i s h t h a t , a l t h o u g h t h e r e a r e some s i m i l a r i t i e s between the two k e l p f o l i a r s p r a y s , t h e r e a r e a l s o some v e r y a p p a r e n t e f f e c t i v e d i f f e r e n c e s i n r e l a t i o n to s o i l m o i s t u r e e n v i r o n m e n t s . F i n n i e and van Staden (1985) p o s t u l a t e d t h a t s e v e r a l a c t i v e c o n s t i t u e n t s w i t h i n the k e l p c o n c e n t r a t e may be i m p l i c a t e d , some o f which e l i c i t d i f f e r e n t growth r e s p o n s e s . T h e r e f o r e , both q u a l i t a t i v e and q u a n t i t a t i v e c o m p o s i t i o n a l d i f f e r e n c e s w i t h r e s p e c t t o s u s p e c t e d a c t i v e components, such as c y t o k i n i n s or o t h e r y e t u n i d e n t i f i e d compounds, p r o v i d e a p l a u s i b l e e x p l a n a t i o n f o r d i f f e r i n g growth r e g u l a t i n g e f f e c t s which e x i s t between the two k e l p f o l i a r c o n c e n t r a t e s of t h i s i n v e s t i g a t i o n . A c t i v e c o n s t i t u e n t d i f f e r e n c e s may be r e l a t e d to the d i f f e r e n t t y p e s of k e l p u t i l i z e d and/or the p a r t i c u l a r time or p h y s i o l o g i c a l age a t which they were h a r v e s t e d and p r o c e s s e d f o r s u b s e q u e n t use as a f o l i a r s p r a y . In t h i s i n v e s t i g a t i o n the endogenous l e v e l s of phytohormones may have been a l t e r e d d i f f e r e n t l y by the 155 v a r i o u s t r e a t m e n t s . The a b i l i t y of endogenous and exogenous phytohormones to r e g u l a t e growth, p h o t o s y n t h a t e p a r t i t i o n i n g , l o n g d i s t a n c e i o n t r a n s p o r t , m o b i l i z a t i o n of p a r t i c u l a r n u t r i e n t s , and e l e m e n t a l c o n c e n t r a t i o n i n p l a n t s i s w e l l documented ( F l e t c h e r e t aj_, 1970; A d e d i p e e_t a l , 1971: S a l i s b u r y and Ross, 1978; M a r s c h n e r , 1982; C a s t r o and M a l a v o l t a , 1983; Neumann and S t e i n , 1984). T h e r e f o r e , the t ype of p l a n t growth, d e v e l o p m e n t a l and n u t r i t i o n a l r e s p o n s e s to a k e l p f o l i a r t r e a t m e n t may be e x p e c t e d to i n t e r a c t w i t h the endogenous l e v e l s o f p l a n t growth r e g u l a t o r s , s o i l n u t r i e n t s u p p l y , weather c o n d i t i o n s and w i t h the c o n c e n t r a t i o n and/or t i m i n g of the k e l p f o l i a r t r e a t m e n t i t s e l f . F u r t h e r m o r e , the s p e c i f i c r e s u l t s o f t h i s g r e enhouse e x p e r i m e n t c o u l d o n l y p e r t a i n to the p a r t i c u l a r p l a n t growth e n v i r o n m e n t and f o l i a r t r e a t m e n t s d e s c r i b e d . 4.2.5 C o n c l u s i o n s The p l a n t growth, d e v e l o p m e n t a l and n u t r i t i o n a l r e s p o n s e s i n t h i s greenhouse e x p e r i m e n t have d e m o n s t r a t e d the e f f e c t i v e n e s s of two k e l p , M. i n t e g r i f o l i a and E. maxima, f o l i a r s p r a y s as p l a n t growth r e g u l a t i n g s u b s t a n c e s . Bean growth and m i n e r a l n u t r i t i o n a l r e s p o n s e s to the k e l p , M. i n t e g r i f o l i a and E_. maxima, f o l i a r s p r a y t r e a t m e n t s were a l s o dependent upon the p a r t i c u l a r s o i l m o i s t u r e regime or e n v i r o n m e n t to which they had been s u b j e c t e d . A l t h o u g h the two k e l p f o l i a r s p r a y s had v a r y i n g and sometimes c o n t r a s t i n g e f f e c t s on bean growth and e l e m e n t a l n u t r i t i o n a l r e s p o n s e s , which were dependent upon the s o i l m o i s t u r e t r e a t m e n t , t h e i r d e v e l o p m e n t a l e f f e c t s upon the number of nodes, s h o o t / r o o t r a t i o s , LAR and SLA were q u i t e s i m i 1 a r . SUMMARY 157 S o i l Amendment: The k e l p , M. i n t e g r i f o l i a , i s one o f the most c o n c e n t r a t e d o r g a n i c s o u r c e s of K. I t i s comparable to h i g h q u a l i t y b a r n y a r d manure i n N c o n c e n t r a t i o n and much of the N i s r e a d i l y a v a i l a b l e i n the s o i l as N0 3-N soon a f t e r a p p l i c a t i o n . T h i s k e l p i s low i n P and s u p p l e m e n t a r y phosphate f e r t i l i z e r may be n e c e s s a r y on P - d e f i c i e n t s o i l s . The k e l p M. i n t e g r i f o l i a has a low C/N r a t i o ; t h e r e f o r e , c o m p o s t i n g p r i o r to i t s use as a s o i l amendment i s not n e c e s s a r y . The k e l p M. i n t e g r i f o l i a . when used f r e s h as a s o i l amendment, w i l l cause l e v e l s o f s o l u b l e s a l t s to i n c r e a s e i n the s o i l s u r f a c e h o r i z o n . No a d v e r s e e f f e c t s upon bean c r o p growth were e x p e r i e n c e d w i t h s o i l a p p l i c a t i o n s l e s s than 60 t h a - 1 f r e s h w e i g h t . K e l p a p p l i c a t i o n s g r e a t e r than 60 t h a " 1 and/or r e p e a t e d a p p l i c a t i o n s i n r e g i o n s where r a i n f a l l i s i n s u f f i c i e n t to l e a c h the s o i l c o u l d cause a r e d u c t i o n i n y i e l d s of c r o p s s e n s i t i v e to s a l t . I n c r e a s e d p l a n t shoot m o i s t u r e c o n t e n t s and Na, Cl and K c o n c e n t r a t i o n s and/or uptake w i t h i n c r e a s i n g k e l p ' a p p l i c a t i o n were i n d i c a t i v e of i n c r e a s i n g l e v e l s o f s o i l w a t e r - s o l u b l e s a l t s . T h i s - k e l p s o i l amendment i n c r e a s e d s o i l NO-j-N, K, Mg and s o i l a e r a t i o n , any o f which may be b e n e f i c i a l to cr o p p r o d u c t i o n . 158 F o l i a r S p r a y : In each of two f i e l d s easons f o u r 2 and 4 L h a - 1 a p p l i c a t i o n s of k e l p c o n c e n t r a t e , p r e p a r e d from M. i n t e g r i f o l i a , i n c r e a s e d h a r v e s t a b l e bean y i e l d s . A crude phytohormonal e x t r a c t of t h i s k e l p c o n c e n t r a t e was a l s o e f f e c t i v e i n i n c r e a s i n g m a r k e t a b l e bean y i e l d s , a l t h o u g h i t was l e s s e f f e c t i v e than the pure c o n c e n t r a t e i t s e l f . M i n e r a l n u t r i t i o n a l r e s p o n s e s to k e l p f o l i a r t r e a t m e n t , r e l a t i v e to the c o n t r o l s , i n c l u d e d g r e a t e r uptake and reduced bean pod c o n c e n t r a t i o n s of s e v e r a l elements as y i e l d s i n c r e a s e d ( d i l u t i o n e f f e c t s ) . A subsequent greenhouse e x p e r i m e n t d e m o n s t r a t e d t h a t some of the n u t r i t i o n a l and growth r e s p o n s e s to k e l p f o l i a r t r e a t m e n t may be dependent on s o i l m o i s t u r e r e g i m e s . P l a n t d e v e l o p m e n t a l e f f e c t s o f k e l p f o l i a r t r e a t m e n t on s h o o t / r o o t r a t i o , s p e c i f i c l e a f a r e a and l e a f a r e a r a t i o were a l s o dependent on s o i l m o i s t u r e t r e a t m e n t . T h e r e f o r e , the e f f e c t of weather and/or c l i m a t e on p l a n t growth and development may be an i m p o r t a n t f a c t o r c o n t r o l l i n g the e f f i c a c y of k e l p f o l i a r t r e a t m e n t s . The r e s u l t s of t h e s e f i e l d and greenhouse i n v e s t i g a t i o n s d e m o n s t r a t e the g r o w t h - r e g u l a t i n g a b i l i t y of a f o l i a r a p p l i e d M. i n t e g r i f o l i a c o n c e n t r a t e and it's p o t e n t i a l v a l u e to bean p r o d u c t i v i t y . R e s e a r c h d i r e c t e d a t a w i d e r v a r i e t y of c r o p s under v a r y i n g e n v i r o n m e n t a l c o n d i t i o n s and k e l p c o n c e n t r a t e 159 water d i l u t i o n r a t i o s , t i m i n g and q u a n t i t i e s of a p p l i c a t i o n and i d e n t i f i c a t i o n of a c t i v e c o n s t i t u e n t s i s j u s t i f i e d . Much more r e s e a r c h w i l l be r e q u i r e d b e f o r e any f i r m p r a c t i c a l recommendation c o u l d be made f o r the use o f k e l p f o l i a r s p r a y s on a wide s p e c t r u m of c r o p s . . . . ^ F u r t h e r m o r e , t h e s e i n v e s t i g a t i o n s e x e m p l i f y the need f o r i n c r e a s e d knowledge o f the complex i n t e r a c t i o n s between p l a n t development and the e n v i r o n m e n t and how p l a n t growth r e g u l a t i n g s u b s t a n c e s , such as tho s e c o n t a i n e d i n k e l p , c o u l d be used to b e n e f i t c r o p p r o d u c t i v i t y . P l a n t - e n v i r o n m e n t i n t e r a c t i o n s a r e complex and g e n e r a l l y not w e l l u n d e r s t o o d . R e l a t i v e c r o p growth i n c r e a s e s o c c u r i n r e s p o n s e to the a l l e v i a t i o n of f a c t o r ( s ) which may be l i m i t i n g growth. Kelp f o l i a r a p p l i c a t i o n s c o u l d a l s o s u p p l y g r o w t h - r e g u l a t i n g s u b s t a n c e ( s ) w h i c h , under p a r t i c u l a r e n v i r o n m e n t a l c o n d i t i o n s , may be p h y s i o l o g i c a l l y i n a p p r o p r i a t e . At p a r t i c u l a r t i m e s , a p p l i c a t i o n of some p l a n t growth r e g u l a t o r s may i n t e r f e r e w i t h the p l a n t ' s own a d a p t i v e s t r a t e g y or r e g u l a t i o n o f growth i n r e s p o n s e to i t s e n v i r o n m e n t . T h i s l a c k o f u n d e r s t a n d i n g of the p l a n t g r o w t h - r e g u l a t i n g s u b s t a n c e ( s ) and the p h y s i o l o g i c a l e f f e c t s t h a t k e l p f o l i a r t r e a t m e n t s a r e h a v i n g on p l a n t growth and development p r o b a b l y p r e c l u d e i t s f u l l a c c e p t a n c e i n t o a g r i c u l t u r a l p r a c t i c e i n the s h o r t term. LITERATURE CITED 160 AB B i o t e c . The X - p r e s s method f o r d i s i n t e g r a t i o n o f c e l l s . B i o t e c I n c . , Parklawn Dr., R o c k v i l l e , M a r y l a n d , U.S.A. A b e t z , P. 1980. Seaweed e x t r a c t s : have they a p l a c e i n A u s t r a l i a n a g r i c u l t u r e or h o r t i c u l t u r e ? J . A u s t . I n s t . A g r i c . Sc. 46: 23-29. A b e t z , P. and C L . Young. 1983. The e f f e c t s of seaweed e x t r a c t s p r a y d e r i v e d from Ascophy11um nodosum on l e t t u c e and c a u l i f l o w e r c r o p s . B o t. Mar. 26:487-492. A d e d i p e , N.O., L.A. Hunt and R.A. F l e t c h e r . 1971. E f f e c t s o f b e n z y l a d e n i n e on p h o t o s y n t h e s i s , growth and s e n e s c e n c e of the bean p l a n t . P h y s i o l . P l a n t 25:151-153. A i t k e n , J.B. and T.L. Senn. 1965. Seaweed p r o d u c t s as f e r t i l i z e r and s o i l c o n d i t i o n e r . B o t . Mar. 8:144-148. A t s u m i , S., S. K u r a i s h i and T. H a y a s h i . 1976. An improvement o f a u x i n e x t r a c t i o n p r o c e d u r e and i t s a p p l i c a t i o n to c u l t u r e d p l a n t c e l l s . P l a n t a 129:245-247. A u g i e r , H. 1976a. Les hormones des a l g u e s . E t a t a c t u a l des c o n n a i s s a n c e s I. r e c h e r c h e e t t e n t a t i v e d ' i d e n t i f i c a t i o n des a u x i n s . Bot. Mar. 19:127-143. A u g i e r , H. 1976b. Les hormones des a l g u e s . E t a t a c t u a l des c o n n a i s s a n c e s I I . r e c h e r c h e e t t e n t a t i v e d ' i d e n t i f i c a t i o n des g i b b e r e l 1 i n e s , de n a t u r e hormonale. Bot. Mar. 19:245-254. B h i v a r e , V.N. and J.D. N i m b a l k a r . 1984. S a l t s t r e s s e f f e c t s on growth and m i n e r a l n u t r i t i o n o f F r e n c h beans. P l a n t and S o i l 80:91-98. B i d d i n g t o n , N.L. and T.H. Thomas. 1973. A m o d i f i e d amaranthus b i o a s s a y f o r r a p i d d e t e r m i n a t i o n of c y t o k i n i n s i n p l a n t e x t r a c t . P l a n t 111:183-186. B l a k e , G.R. 1965. Bulk d e n s i t y ( c o r e method). j_n C A . B l a c k , ed. Methods of S o i l A n a l y s i s . V o l . I. Agronomy 9, Amer. Soc. Agron., Madison, W i s e , U.S.A., pp. 375-376. 161 B l u n d e n , G. 1977. C y t o k i n i n a c t i v i t y o f seaweed e x t r a c t s . i n D.J. F a u l k n e r and W.H F e n i c a l , ed., Marine N a t u r a l P r o d u c t s and C h e m i s t r y . Plenum Pub. C o r p . , New York, pp. 337-343. B l u n d e n , G., S.B. C h a l l e n and D.L. Woods. 1968. Seaweed e x t r a c t s as f e r t i l i z e r . J . S c i . Fd. A g r i c . 19:289-293. B l u n d e n , G., E.M. Jones and H.C. Passam. 1978. E f f e c t s of p o s t h a r v e s t t r e a t m e n t of f r u i t and v e g e t a b l e s w i t h c y t o k i n i n - a c t i v e seaweed and k i n e t i n s o l u t i o n s . B o t . Mar. 21:237-240. B l u n d e n , G. and P.B. W i l d g o o s e . 1977. The e f f e c t s of aqueous seaweed e x t r a c t and k i n e t i n on p o t a t o y i e l d s . J . S c i . Fd. A g r i c . 28:121-125. B l u n d e n , G., P.B. Wi l d g o o s e and F.E. N i c h o l s o n . 1979. The e f f e c t s o f aqueous seaweed e x t r a c t on sugar b e e t . Bot Mar. 22:539-541. B l u n d e n , B. and D.L. Woods. 1969. E f f e c t s o f c a r b o h y d r a t e s i n seaweed f e r t i l i z e r s . P r o c . 6th I n t . Seaweed Symp. pp. 647-653. Bonn, H.L., B.L. McNeal and G.A. O'Connor. 1979. S o i l C h e m i s t r y . J . W i l e y and Sons, New York. B o l d , H.C. and M..J. Wynne. 1978. I n t r o d u c t i o n to the A l g a e . P r e n t i c e - H a l l I n c . , Englewood C l i f f s , New J e r s e y , U.S.A. Booth, E. 1965. The m a n u r i a l v a l u e o f seaweed. B o t . Mar. 8:138-143. Bo o t h , E. 1966. Some p r o p e r t i e s of seaweed manures. P r o c . 5th I n t . Seaweed Symp. pp. 349-357. Booth, E. 1969. The m a n u f a c t u r e and p r o p e r t i e s o f l i q u i d seaweed e x t r a c t . P r o c . 6th I n t . Seaweed Symp. pp. 655-662. B r a n d t I n d u s t r i e s L t d . F i e l d S p r a y e r s . 705 T o r o n t o S t . , R e g i n a , Saskatchewan, Canada. Bremner, J.M. 1965. T o t a l N i t r o g e n . j_n C A . B l a c k , ed. Methods o f S o i l A n a l y s i s , V o l . I I , Agronomy 9. Amer. Soc. o f Agron., Madison, Wis., U.S.A., pp. 1171-1174. 162 Brinkman Manual. Brinkman I n s t r u m e n t D i v i s i o n , 50 G a l a x y B l v d . , R e x d a l e , Ont., Canada. B r i t i s h P a t e n t . 664,989. 1952. Improvements i n or r e l a t i n g to h o r t i c u l t u r a l a g r i c u l t u r a l f e r t i l i z e r s . B u t t o n , E.F. and C F . Noyes. 1964. E f f e c t s of seaweed e x t r a c t upon emergence and s u r v i v a l o f s e e d l i n g s of c r e e p i n g red f e s c u e . A gron. J . 56:444-445. C a i o z z i , M., P. P i e r a n a and E. Rauch. 1968. E f f e c t s of seaweed on the l e v e l s of a v a i l a b l e phosphorus and n i t r o g e n i n a c a l c a r e o u s s o i l . A g r on. J . 60:324-236. C a s t r o , P.R.C, E. M a l a v o l t a and C D . O l i v e i r a . 1983. E f f e c t s of growth r e g u l a t o r s on m i n e r a l n u t r i t i o n of t o m a t o e s . J . P l a n t N u t r . 717-724. Chapman, H.D. 1965a. C a t i o n Exchange C a p a c i t y . _i_n C A . B l a c k , ed. Methods o f S o i l A n a l y s i s , V o l . I I , Agronomy 9. Amer. Soc. o f Agron., Madison, Wis., U.S.A. pp. 894-898. Chapman, H.D. 1965b. T o t a l e x c h a n g e a b l e b a s e s . j_n C A . B l a c k , ed. Methods of S o i l A n a l y s i s , V o l . I I , Agronomy 9. Amer. Soc. of Agron., Madison, Wis. U.S.A. pp. 902-904. Chapman, V . J . 1970. Seaweeds and T h e i r Uses. 2nd ed. Methuen, New York. C i h a , A . J . , M.L. B r e n n e r and W.A. Brun. 1977. R a p i d s e p a r a t i o n and q u a n t i f i c a t i o n o f a b s c i s i c a c i d from p l a n t t i s s u e u s i n g h i g h p r e s s u r e l i q u i d c h r o m a t o g r a p h y . P l a n t P h y s i o l . 59:821-826. Coon, L.M. 1982. M a c r o c y s t i s h a r v e s t i n g s t r a t e g y i n B r i t i s h C o l u m b i a . P r o c . 11th I n t . Seaweed Symp. pp. 265 -282. Coon, L.M. 1983. M a r i n e p l a n t s i n B r i t i s h C o l u m b i a : management and development s t r a t e g i e s and c o n s t r a i n t s . B r i t i s h Columbia M a r i n e Resource B r a n c h . B.C. Min. of E n v i r . , V i c t o r i a , B.C., Canada. 32 pp. 163 D a t t a , S.C. 1985. S i m u l t a n e o u s and i n t e r m i t t e n t measurements of K, Ca and N 0 3 - i o n a b s o r p t i o n by i n t a c t bean p l a n t s ( P h a s e o l u s v u l g a r i s L.) i n a e r o b i c and a n a e r o b i c c o n d i t i o n s . P l a n t and S o i l 84: 193-199. D o n a l d , D.G.M. 1981. Dormancy c o n t r o l of Pi nus p a t u l a . South A f r i c a F o r e s t r y J . 118:14-19. D r u e h l , L.D. 1978. The d i s t r i b u t i o n o f M a c r o c y s t i s i n t e g r i f o l i a as r e l a t e d to e n v i r o n m e n t a l p a r a m e t e r s . Can. J . Bot. 56:69-79. Erasmus, D.J., W.R. N e l s o n and J . van S t a d e n . 1982. Combined use of s e l e c t e d h e r b i c i d e s and seaweed c o n c e n t r a t e . South A f r i c a J . of S c i . 78:423-424. F e a t o n b y - S m i t h , B.C. and J . van S t a d e n . 1983a. The e f f e c t s of seaweed c o n c e n t r a t e and f e r t i l i z e r on growth of Beta v u l g a r i s . Z. P f 1 a n z e n p h y s i o l . Bd. 112:115-162. F e a t o n b y - S m i t h , B.C. and J . van S t a d e n . 1983b. The e f f e c t of seaweed c o n c e n t r a t e on the growth of tomato p l a n t s i n n e m a t o d e - i n f e s t e d s o i l . S c i e n t i a H o r t . 20:137-146. F e a t o n b y - S m i t h , B.C. and J . van S t a d e n . 1984. I d e n t i f i c a t i o n and s e a s o n a l v a r i a t i o n o f endogenous c y t o k i n i n s i n E c k l o n i a maxima. Bot. Mar. 27:527-531. F e a t o n b y - S m i t h , B.C. and J . van S t a d e n . 1987. E f f e c t of seaweed c o n c e n t r a t e on g r a i n y i e l d i n b a r l e y . S. A f r . J . B o t. 53:125-128. F i n n i e , J . F . and J . van S t a d e n . 1985. E f f e c t of seaweed c o n c e n t r a t e and a p p l i e d hormone on i n v i t r o tomato r o o t s . J . P l a n t P h y s i o l . 120:215-22. F i s k e l l , J.G.A. 1965. Copper. In C A . B l a c k , ed. Methods o f S o i l A n a l y s i s , V o l . I I , Agronomy 9, Amer. Soc. o f Agron., Madison, Wis., U.S.A. Pages 1078-1089. F l e t c h e r , R.A., G. H o f s t r a and N.O. A d e d i p e . 1970. E f f e c t s of b e n z y l a d e n i n e on bean l e a f s e n e s c e n c e and the t r a n s l o c a t i o n of C - a s s i m i 1 a t e s . P h y s i o l . P l a n t 23: 1144-1148. 164 Foreman, R.E. 1984. S t u d i e s on N e r e o c y s t i s growth i n B r i t i s h C o l u m b i a , Canada. P r o c . 11th I n t . Seaweed Symp. 325-332. F r a n c k i , R.I.B. 1960a. S t u d i e s i n m a n u r i a l v a l u e s of seaweeds: I. E f f e c t s o f Pachymen i a h i m a h t o p h o r a and D u r v i 1 1 e a a n t a r c t i ca meal on p l a n t growth. P l a n t and Soi1 12:297-310. F r a n c k i , R.I.B. 1960b. S t u d i e s i n m a n u r i a l v a l u e s of seaweeds: I I . E f f e c t s of Pachymeni a h i m a n t o p h o r a and D u r v i 1 1 e a a n t a r c t i ca on the i m m o b i l i z a t i o n of n i t r o g e n i n s o i l . P l a n t and S o i l 12:311-323. F r a n c k i , R.I.B. 1964. S t u d i e s i n m a n u r i a l v a l u e o f seaweeds: I I . E f f e c t s of Pachymenia h i m a n t o p h o r a on manganese r e l e a s e and p h y s i c a l p r o p e r t i e s . P l a n t and S o i l 20:65-73. G a u l i n Manual. G a u l i n L a b o r a t o r y Homogenizer. Manton-G a u l i n M a n u f a c t u r i n g Co. I n c . , 44 G a u l i n S t r e e t , E v e r e t t , Mass., U.S.A. G e r a k i s , P.A., F.B. G u e r r e r o and W.A. W i l l i a m s . 1975. Growth, water r e l a t i o n s and n u t r i t i o n of t h r e e g r a s s l a n d a n n u a l s as a f f e c t e d by d r o u g h t . J . A p p l . E c o l . 12: 125-135. G r e w e l i n g , T. and M. Peech. 1965. Chemical S o i l T e s t . New York S t a t e C o l l e g e o f A g r i c u l t u r e . B u l l e t i n 960. G u i r y , M.D. 1981. The commercial c o l l e c t i o n and u t i l i z a t i o n of seaweeds i n I r e l a n d . P r o c . 10th I n t . Seaweed Symp. pp.675-680. Gupta, U.C. and J.A. MacLeod, 1982. E f f e c t s o f SeaCrop 16 and Ergostum on c r o p y i e l d s and c o m p o s i t i o n . Can. J . S o i l S c. 62:527-532. H a j r i s u l i h a , S. 1980. A c c u m u l a t i o n of t o x i c i t y o f c h l o r i d e i n bean p l a n t s . P l a n t and S o i l 55:133-138. Hemberg, T. 1974. P a r t i t i o n i n g of c y t o k i n i n s between e t h y l a c e t a t e and a c i d water p h a s e s . P h y s i o l . P l a n t 32:191-192. Hi 1 l e i , D. 1980. P r e s s , N.Y. Fundmentals of S o i l P h y s i c s . Academi c 165 Hinshaw, R. and L . J . F r i t s c h e n . 1970. Diodes f o r t e m p e r a t u r e measurements. J . A p p l . M e t e o r o l o g y 9:530-532. J a c k s o n , M.L. 1956. S o i l Chemical A n a l y s i s . P r e n t i c e -H a l l , I n c . , Englewood C l i f f s , N.J. J a c o b y , B. 1964. F u n c t i o n o f bean r o o t s and stems i n sodium r e t e n t i o n . P l a n t P h y s i o l . 39:445-449. 15 J a n s s o n , S.L. 1971. Use of N i n s t u d i e s o f s o i l n i t r o g e n . j_n A.D. McLaren and I. S k u i j i n s eds. B i o c h e m i s t r y , V o l . 2, M a r c e l Dekker, I n c . New York, pp. 129-166. J a r r e l l W.M. and R.B. B e v e r l y . 1981. The d i l u t i o n e f f e c t i n p l a n t n u t r i t i o n s t u d i e s . Adv.. Agron* 34: 197-224. J e n n i n g s , R.C. 1969a. C y t o k i n i n s as endogenous growth r e g u l a t o r s i n the a l g a e E c k l o n i a and Nypnea. A u s t . J . B i o l . Sc. 22:621-627. J e n n i n g s , R.C. 1969b. G i b b e r e l l i n a n t a g o n i s m by m a t e r i a l from brown a l g a . New P h y t o l . 68:683-688. Kannan, S. 1980. Mechanisms of f o l i a r uptake of p l a n t n u t r i e n t s : a c c o m p l i s h m e n t s and p r o s p e c t s . J . P l a n t N u t r . 2:717-735. K e n t z e r , T., T. Synak, K. B u r k i e w i z and A. Banas. 1980. C y t o k i n i n - 1 i k e a c t i v i t y i n seawater and Fucus  v e s i c u l o s u s L. B i o l . P l a n t . 22:218-225. K o t z e , W.A.G. and J . J o u b e r t . 1980. I n f l u e n c e o f f o l i a r s p r a y i n g w i t h seaweed p r o d u c t s on the growth and m i n e r a l n u t r i t i o n o f rye and cabbage. E i s e n b e r g J . 4:17-20. K r i s h n a m u r t i , G.S.R. and P.M. Huang. 1987. The i n f l u e n c e of p o t a s s i u m c h l o r i d e on the k i n e t i c s o f manganese r e l e a s e from s o i l s r e p r e s e n t i n g d i f f e r e n t taxonomic o r d e r s . I_n Agronomy A b s t r a c t s , 1987 Annual M e e t i n g s , A t l a n t a , GA. Amer. Soc. of A gron. p. 170. Leco Manual. 1959. I n s t r u c t i o n manual f o r o p e r a t i o n o f Leco Carbon A n a l y s e r . L a b o r a t o r y Equipment C o r p o r a t i o n . S t . J o s e p h , M i c h . , U.S.A. 166 L e s s a n i , H. and H. M a r s c h n e r . 1978. R e l a t i o n between s a l t t o l e r a n c e and l o n g d i s t a n c e t r a n s p o r t o f sodium and c h l o r i d e i n v a r i o u s c r o p s p e c i e s . A u s t . J . P l a n t P h y s i o l . 5:27-37. L e v i t t , J . 1980. Responses of P l a n t s to E n v i r o n m e n t a l S t r e s s e s . 2nd Ed. V o l . I I . Academic P r e s s , New York. L i t t l e , T.M. and F . J . H i l l s . 1978. A g r i c u l t u r a l E x p e r i m e n t a t i o n . John W i l e y and Sons, New York. Lobban, C S . 1978a. L i f e and d e a t h o f M a c r o c y s t i s s p o r o p h y t e . P h y c o l o g i a 17:196-212. Lobban, C S . 1978b. Growth of M a c r o c y s t i s i n t e g r i fo 1 i a i n B a r k l e y Sound, Vancouver I s l a n d , B.C. C a n . J . Bot. 56:2707-2711. L u t t m e r d i n g , H. 1981. S o i l s o f L a n g l e y - V a n c o u v e r Map A r e a . RAB B u l l e t i n 18, R e p o r t No. 15, B r i t i s h C olumbia S o i l S u r v e y , V o l . 3. D e s c r i p t i o n of S o i l s . Min. o f E n v i r . Assessment and P l a n n i n g D i v . , Kelowna, B.C., Canada. Maas, E.V. and G.J. Hoffman. 1977. Crop s a l t t o l e r a n c e -c u r r e n t a s s e s s m e n t . ASCE J . I r r i g . D r a i n D i v . 103: 115-134. Maas, E.V., G. Ogata and M.J. G a r b e r . 1972. I n f l u e n c e of s a l i n i t y on Fe, Mn and Zn uptake by p l a n t s . A g r o n . J . 64:793-795. Mann, J.D. and E.G. J a w o r s k l . 1970. M i n i m i z i n g l o s s o f i n d o l e a c e t i c a c i d d u r i n g p u r i f i c a t i o n of p l a n t e x t r a c t s . P l a n t a 92:285-291. M a r a i s , J.N. and D. Wiersma. 1975. Phosphorus uptake by soybean as i n f l u e n c e d by m o i s t u r e s t r e s s i n the f e r t i l i z e d zone. Agron. J . 67:777-781. M a r s c h n e r , H. 1982. E f f e c t s of m i n e r a l n u t r i t i o n on phytohormone b a l a n c e i n p l a n t s . J_n A. S c a i f e ed. P l a n t N u t r i t i o n . 1982 P r o c . I n t . P l a n t N u t r i t i o n C o l l o q u i u m , V o l . I. Commonwealth A g r i c u l t u r e Bureau, pp. 354-359. 167 M a r t i n , W.E. and J . E . Matocha. 1973. P l a n t a n a l y s i s as an a i d i n the f e r t i l i z a t i o n of f o r a g e c r o p s . j_n S o i l T e s t i n g and P l a n t A n a l y s i s . Pages 393-426. ed. L.M. Walsh and J.D. B e a t o n . S o i l Sc. Soc. o f Amer., Madison Wis. M a t t i s o n , S. 1973. I o n i c r e l a t i o n s h i p o f s o i l and p l a n t : IV. Ion uptake i n r e l a t i o n to membrane a c t i v i t y and s o i l m o i s t u r e . ACTA A g r i c Scand 23:11-16. Mengel, K. and E.A. K i r k b y . 1982. P r i n c i p l e s of P l a n t N u t r i t i o n . 3rd ed. I n t e r n a t i o n a l P o t a s h I n s t i t u t e , Swi t z e r l a n d . Mengel, K. and L.C. von B r a u n s c h w e i g . 1972. The e f f e c t of s o i l m o i s t u r e upon the a v a i l a b i l i t y o f p o t a s s i u m and i t s i n f l u e n c e on the growth of young maize p l a n t s . S o i l S c i . 114:142-148. M i s h r a , S.D. and B.K. Gaur. 1985. M o d i f i c a t i o n o f f l a g l e a f s e n e s c e n c e and y i e l d c h a r a c t e r s i n b a r l e y by g i b b e r e l l i c a c i d and k i n e t i n . J . P l a n t Growth R e g u l . 4:63-70. Murakami, Y. 1970. New r i c e s e e d l i n g t e s t f o r g i b b e r e 1 1 i n s : m i c r o d r o p method. JARQ 5:5-9. M y k l e s t a d , S. 1963. E x p e r i m e n t s w i t h seaweed as s u p p l e m e n t a l f e r t i l i z e r . P r o c . 9th I n t . Seaweed Symp. pp. 432-438. Nambiar, E.K.S. 1976. The uptake of z i n c - 6 5 by o a t s i n r e l a t i o n to s o i l water c o n t e n t and r o o t growth. A u s t . J . S o i l Res. 14:67-74. N a y l o r , I. 1976. P r o d u c t i o n , t r a d e and u t i l i z a t i o n of seaweeds and seaweed p r o d u c t s . FAO F i s h e r i e s T e c h . Paper.No. 159, 73 pp. N e l s o n , W.R. and J . van S t a d e n . 1984a. The e f f e c t o f seaweed c o n c e n t r a t e on growth of n u t r i e n t - s t r e s s e d g r e enhouse cucumbers. H o r t . S c i . 19:81-82. N e l s o n , W.R. and J . van S t a d e n . 1984b. The e f f e c t s of seaweed c o n c e n t r a t e on wheat culm. J . P l a n t P h y s i o l . 115:433-437. 168 N e l s o n , W.R. and J . van S t a d e n . 1985. 1 - a m i n o c y c l o p r o p a n e -1 - c a r b o x y l i c a c i d i n seaweed c o n c e n t r a t e . B o t . Mar. 28:415-417. Neumann, P.M. and L.D. Nooden. 1983. I n t e r a c t i o n of m i n e r a l and c y t o k i n i n s u p p l y i n c o n t r o l o f l e a f s e n e s c e n c e and seed growth i n soybean e x p l a n t s . J . P l a n t N u t r . 6:735-742. Neumann, P.M. and Z. S t e i n . 1984. R e l a t i v e r a t e s of d e l i v e r y of xylem s o l u t e to shoot t i s s u e : P o s s i b l e r e l a t i o n s h i p to s e q u e n t i a l l e a f s e n e s c e n c e . P h y s i o l . P l a n t 62:390-397. N i t s c h , J.P. and C. N i t s c h . 1956. S t u d i e s on the growth of c o l e o p t i l e and f i r s t i n t e r n o d e s e c t i o n s . A new, s e n s i t i v e , s t r a i g h t - g r o w t h t e s t f o r a u x i n . P l a n t P h y s i o l . 31:94-111. N o r r i s , R.F. 1976. E x p a n s i o n o f r a d i s h c o t y l e d o n s : an i n t e r a c t i o n between NaCl and c y t o k i n i n s . P l a n t S c i . L e t t . 6:63-68. N o r t h , W.J., V. G e r a r d and J . Kuwabara. 1982. S y n t h e t i c and D e g r a d a t i v e P r o c e s s e s i n Marine M a c r o p h y t e s . W a l t e r de G r u y t e r and Co., B e r l i n . N o r t h , W.J. and R.C. Zimmerman. 1984. I n f l u e n c e o f m a c r o n u t r i e n t and water t e m p e r a t u r e s on summertime s u r v i v a l o f M a c r o c y s t i s c a n o p i e s . P r o c . 11th I n t . Seaweed. Symp. pp. 419-428. O f f e r m a n n s , C.N. 1968. E f f e c t s of brown a l g a ( M a c r o c y s t i s i n t e g r i f o l i a ) i n i n c r e a s i n g i r o n a v a i l a b i l t i y of a s i l i c i o u s s o i l . Chem. A b s t r . 68:104216. O l s e n , S.R. and L.A. Deans. 1965. P h o s p h o r u s . j_n C A . B l a c k , ed. Methods of S o i l A n a l y s i s , V o l . I I . Agronomy 9, Amer. Soc Agron., Madison, Wis., U.S.A. pp. 1040-1041. O r i o n I n s t r u c t i o n Manual O r i o n R e s e a r c h I n c . 380 Putnam Ave., Cambridge, Mass., U.S.A. P a r k i n s o n , J.A. and S.E. A l l e n . 1975. A wet o x i d a t i o n p r o c e d u r e s u i t a b l e f o r the d e t e r m i n a t i o n of n i t r o g e n and n u t r i e n t s i n b i o l o g i c a l m a t e r i a l . Commun. S o i l S c i . and P l a n t A n a l y s i s 6:1-11. 169 P a t r i c k , Z.A. 1971. P h y t o t o x i c s u b s t a n c e s a s s o c i a t e d w i t h the d e c o m p o s i t i o n i n s o i l o f p l a n t r e s i d u e . S o i l S c i . 111:13-18. Peech, M. 1965. H y d r o g e n - i o n a c t i v i t y . j_n C A . B l a c k , ed. Methods o f S o i l A n a l y s i s . V o l . I I . Agronomy 9. Amer. Soc. of Agron., Madison, Wis., U.S.A. pp.920-923. P o v o l n y , M. 1969. E i n f l u s s des e x t r a c k t e s von s e e a l g e n auf d i e 1 a g e r u n g s f a c h i g k e i t von a e p f e l n . P r o c . 6th I n t . Seaweed Symp. pp. 703-710. P o v o l n y , M. 1971. E f f e c t s of seaweed a l g a e e x t r a c t on y i e l d o f g l a s s h o u s e cucumbers. R o s t l i n n a Vyroba 17:877-888. P o v o l n y , M. 1972. The e f f e c t s of seaweed e x t r a c t on r i p e n i n g and s t o r a g e c a p a c i t y o f peaches and a p r i c o t s . R o s t l i n n a Vyroba 18:703-710. P o v o l n y , M. 1976. The e f f e c t s of an e x t r a c t from sea a l g a e on y i e l d s , r i p e n i n g and s t o r a g e o f tomatoes. S b o r n i k U v t i z Z a h r a d n i e t v i 3:133-144. P r i n g l e , J.D. and R.E. Semple. 1983. Dragrake h a r v e s t i n g i n t e n s i t y i n I r i s h Moss (Chondrus c r i s p u s ) beds i n the s o u t h e r n g u l f o f S t . Lawrence. P r o c . 11th Seaweed Symp. pp.342-346. Rademacher, W. and J . E . Graebe. 1984. I s o l a t i o n and a n a l y s i s by gas l i q u i d chromatography of a u x i n s , g i b b e r e l 1 i n s , c y t o k i n i n s and a b s c i s i c a c i d from a s i n g l e sample o f p l a n t m a t e r i a l . B e r . D e u t s c h . B o t . .Ges. Bd. 97:75-85. Rao, G.G. 1980. P h y s i o l o g i c a l changes i n e a r l y s e e d l i n g s o f greengram ( P h a s e o l u s r a d i a t u s ) under NaCl s a l i n i t y . I n d i a n J . E x p l . B i o l . 18:320-322. R i c h a r d s , L.A. 1965. P h y s i c a l c o n d i t i o n s o f water i n s o i l i n C A . B l a c k , ed. Method of S o i l A n a l y s i s , V o l . I. Agronomy 9. Amer. Soc. of Agron., Madison, Wis., U.S.A. pp. 128-137. R o s s e l l , K. and L.M. S r i v a s t a v a . 1984. S e a s o n a l v a r i a t i o n s i n c h e m i c a l c o n s t i t u e n t s of the brown a l g a e M a c r o c y s t i s i n t e g r i f o l i a and Nereoc.ysti s 1 e u t k e a n a . Can. J . Bot. 62:2229-2236. 170 S a l i s b u r y , F.B. and C.W. Ross. 1978. P l a n t P h y s i o l o g y , 2nd Ed. Wadsworth P u b l . Comp. B e l l m o n t , C a l i f . , U.S.A. S a n d e r s o n , K .J. and P.E. Jameson. 1986. The c y t o k i n i n s i n a l i q u i d seaweed e x t r a c t : C o u l d they be a c t i v e i n g r e d i e n t s ? A c t a H o r t . 179:113-116. Senn, T.L. and A.R. Kingman. 1978. Seaweed r e s e a r c h i n cro p p r o d u c t i o n (1958-1978). C o l l e g e o f A g r i c u l t u r a l S c i e n c e s , Clemson U n i v e r s i t y , Clemson, S.C., U.S.A. Senn, T.L. and B . J . S k e l t o n . 1969. The e f f e c t o f the Norwegian seaweed on m e t a b o l i c a c t i v i t y o f c e r t a i n p l a n t s . P r o c . 6th I n t . Seaweed Symp. pp. 723-730. S m i t h , R.G., W.H. Wheeler and L.M S r i v a s t a v a . 1983. S e a s o n a l p h o t o s y n t h e t i c p e r f o r m a n c e of M a c r o c y s t i s  i n t e g r i f o l i a. J . P h y c o l . 19:352-359. South A f r i c a P a t e n t (78/3281). 1978. Wet a l g a e p r o c e s s i n g system. S t e p h e n s o n , W.A. 1968. Seaweeds i n A g r i c u l t u r e and H o r t i c u l t u r e . Faber and F a b e r , London. S u l p h u r I n s t r u c t i o n Manual. F i s h e r Model 475 S u l p h u r A n a l y z e r . F i s h e r S c i e n t i f i c Company, 711 Forb e s Avenue, P i t t s b u r g , Penn., U.S.A. Tay, S.A.B., J.K. McLeod, L.M. P a l n i and D.S. Letham. 1985. D e t e c t i o n o f c y t o k i n i n s i n seaweed e x t r a c t . Phytochem. 24:2611-2614. T a y l o r , I.E.P. and A . J . W i l k i n s o n . 1977. The o c c u r r e n c e of g i b b e r e l l i n s and g i b b e r e l 1 i n - 1 i k e s u b s t a n c e s i n a l g a e . P h y c o l o g i a 16:37-42. T e c h n i c o n . 1974a. T e c h n i c o n A u t o a n a l y z e r I I . Methodology of N i t r o g e n and Phosphorus i n BD A c i d D i g e s t . I n d u s t r i a l Method No. 334-74A. T e c h n i c o n I n d u s t r i a l Systems, T e r r y t o w n , N.Y. T e c h n i c o n . 1974b. T e c h n i c o n A u t o a n a l y z e r I I . Ammoniacal N i t r o g e n / B D D i g e s t . I n d u s t r i a l Method No. 321-74A. T e c h n i c o n I n d u s t r i a l Systems, T e r r y t o w n , N.Y. T e c h n i c o n . 1977. T e c h n i c o n A u t o a n a l y z e r I I . N i t r a t e and N i t r i t e i n S o i l E x t r a c t . I n d u s t r i a l Method No. 487-77A. T e c h n i c o n I n d u s t r i a l Systems, T e r r y t o w n , N.Y. 171 T i n k e r , P.B. 1980. R o o t - s o i l i n t e r a c t i o n i n c r o p p l a n t s . i n P.H. Nye and P.B. T i n k e r , eds. S o i l and A g r i c u l t u r e . O x f o r d - B l a c k w e l 1 S c i e n t i f i c , E n g l a n d , pp. 1-34. T i s d a l e , S.L., W.L. N e l s o n and J.D. B e a t o n . 1985. S o i l F e r t i l i t y and F e r t i l i z e r s . 4th ed. M a c m i l l a n P u b l . Co., N.Y. van S t a d e n , J . 1976. E x t r a c t i o n and r e c o v e r y o f c y t o k i n i n g l u c o s i d e s by means of a c a t i o n exchange r e s i n . P h y s i o l . P l a n t 38:240-242. V o m o c i l , J.A. 1965. P o r o s i t y . J_n C A . B l a c k , ed. Methods o f S o i l A n a l y s i s , V o l . I, Agronomy 9. Amer. Soc. o f Agron., Madison, Wis., U.S.A. pp. 299-334. Walton, D., W. Dashek and E. G a l s o n . 1979. A radioimmunoassay f o r a b s c i s i c a c i d . P l a n t a 146:139-145. Wheeler, W.N. and L.M. S r i v a s t a v a . 1984. S e a s o n a l n i t r a t e p h y s i o l o g y o f Mac r o c y s t i s i n t e g r i f o l i a . J . E x p e r . B i o l . E c o l . 79:35-50. Whyte, J.N.C. 1978. P r i m a r y o r g a n i c c h e m i c a l c o m p o s i t i o n of the marine a l g a M a c r o c y s t i s i n t e g r i f o l i a o v e r the growing s e a s o n . F i s h , and Mar. S e r . T e c h . Rep. 787. 22 pp. Whyte, J.N.C. 1981. C o m p o s i t i o n a l changes on f r e s h w a t e r l e a c h i n g of the a l g a N e r o c y s t i s 1eutkeana and M a c r o c y s t i s i n t e g r i f o l i a . Can. J . of F i s h and A q u a t i c S c i . 38:193-198. Wolf, B. 1974* Improvements i n the azomethane-H method f o r d e t e r m i n a t i o n of b o r o n . Commun. S o i l S c i . and P l a n t A n a l y s i s 5:39-44. Woodward, R.G. and J . E . Begg. 1976. The e f f e c t s of a t m o s p h e r i c h u m i d i t y on y i e l d and q u a l i t y o f soybean. A u s t . J . A g r i c . Res. 27:501-508. APPENDIX 1. 1981 KELP SOIL AMENDMENT ANALYSIS OF VARIANCE CALCULATED aMSE, MEANS AND F-VALUES FOR BEAN GROWTH RESPONSES. Measured Source F-values Curvilinear F-values Mean values growth Treat- a ~ Quad- Kelp Application t ha" 1 variables ment Block MSE Linear r a t i c Cubic Residual 0 7.5 15 30 60 120 Emergence (X of two-leaf stage) Day 10 60.0** 1.75 0.55 90.0** 30.0** 67 b b b 67 17 Day 12 11.8** 2.12 1.19 17.7** 5.89* 75 b b b 75 42 Day 14 66.3** 0.33 0.25 112** 20.2** 100 b b b 95 62 Flowering (No. P l a n t - 1 ) Day 40 6.57* 0.69 0.19 12.0* . 1.14 1.3 b b b 0.47 0.22 Day 43 11.7** 1.25 1.38 23.0** 0.39 5.3 b b b 2.9 1.3 Day 45 13.0** 1.36 3.36 25.5** 0.50 10.0 b b b 7.6 3.5 Harvest plant yields (t ha-1) Fresh leaf and stem 1.64 0.25 18.5 3.35 4.83* 4.6E-3 1.2E-3 28.3 29.3 30.1 31.2 31.2 23.9 Fresh bean pod 4.40* 0.63 5.74 14.6** 7.21* 2.7E-3 0.11 16.5 16.3 17.2 17.7 17.1 10.9 Fresh shoot 2.45 0.37 44.3 6.53* 5.69* 6.43-4 1.3E-2 44.8 45.6 47.3 49.0 48.3 34.8 Dry leaf and stem 2.39 0.81 0.49 8.39* 3.16 9.7E-2 0.18 4.72 4.79 4.78 5.13 4.71 3.55 Dry bean pod 4.17* 1.69 5.5E-2 15.5** 4.83* 0.10 0.17 1.56 1.49 1.59 1.58 1.55 0.97 Dry shoot 3.04* 1.00 0.79 11.0** 3.93 2.6E-2 0.12 6.28 6.29 6.36 6.71 6.26 4.52 Harvest Index (X) Fresh 12.6** 1.88 1.5E-4 55.1** 5.72* 0.38 1.03 36.9 35.6 36.5 36.2 35.4 31.0 Dry 1.65 1.16 5.8E-4 5.55* 1.07 0.61 0.52 25.0 23.7 25.1 23.7 24.7 20.9 Fresh/dry weight ratios Leaf and stem 2.86 2.12 0.12 11.9** 0.58 0.23 0.76 6.00 6.15 6.29 6.14 6.63 6.75 Bean pod 0.64 2.14 0.80 2.54 5.3E-2 0.41 0.10 10.6 11.0 10.9 11.2 11.1 11.6 Shoot 2.12 2.53 0.11 7.89* 1.43 0.14 0.59 7.13 7.28 7.42 7.32 7.73 7.72 *,** Significant at 5X and 1% l e v e l , respectively. a Mean square error. b Not sampled. APPENDIX 2. 1982 KELP SOIL AMENDMENT ANALYSIS OF VARIANCE CALCULATED aMSE, MEANS AND F-VALUES FOR PEA GROWTH RESPONSES. Measured Source F-•values Curvll1near F-values Mean values growth Treat- Quad- Kelp A D D I I c a t i o n t h a - 1 variables ment Block MSE Linear r a t i c Cubic Residual 0 7.5 15 30 60 120 Emergence (% two leaf stage) Day 13 1.65 1.65 2.56 0.95 2.35 — 1.63 32 b b 30 45 20 Day 15 0.83 0.83 2.00 0.70 1.43 — 0.36 82 b b 92 87 77 Harvest plant yields (t ha - 1) Fresh leaf 4 stem 1.31 4.37* 6.57 4.41 0.72 0.29 0.55 20.8 19.5 19.2 20.6 19.7 16.7 Fresh pod 0.35 1.04 16.0 0.50 0.25 2.1E-3 0.51 23.3 24.5 21.5 23.0 21.5 21.9 Fresh pea 0.42 1.11 3.40 0.30 0.33 6.5E-2 0.70 11.0 12.0 10.4 11.1 10.3 10.8 Fresh shoot 0.72 1.25 27.4 2.56 7.5E-4 5.3E-2 0.54 44.2 43.9 40.6 43.6 41.2 38.6 Dry leaf and stem 1.78 2.23 0.11 6.41* 1.49 1.2E-2 0.49 3.29 3.11 3.26 3.25 3.16 2.71 Dry pod 0.27 1.62 0.35 6.6E-3 0.46 0.24 0.32 3.73 3.93 3.62 3.82 3.52 3.87 Dry pea 0.47 1.25 0.13 0.37 0.67 0.29 0.51 2.35 2.53 2.28 2.36 2.15 2.31 Dry shoot 0.44 0.74 0.46 1.47 3.8E-4 0.23 0.25 7.02 7.04 6.88 7.16 6.68 6.57 Harvest Index (%) Fresh pod 0.56 2.36 3.2E-3 0.86 0.89 1.6E-2 0.53 52.8 55.6 51.4 52.8 52.2 56.9 Fresh pea 0.81 3.43* 8.8E-4 1.45 0.97 0.25 0.68 25.0 27.3 25.3 25.5 25.2 28.2 Dry pod 0.88 2.31 2.9E-3 2.12 1.27 2.1E-2 0.50 53.1 55.6 51.7 53.2 52.7 58.7 Dry pea 0.58 2.08 1.3E-3 7.8E-2 1.34 6.2E-2 0.71 33.5 35.9 32.7 33.0 32.3 35.1 Fresh/dry weight ratios Leaf & stem 1.03 4.79* 0. 10 1.5E-2 0.24 2.53 1.19 6.34 5.25 5.86 6.12 6.22 6.15 Pod 1.09 1.74 0.18 2.36 1.8E-3 1.44 0.82 6.26 6.25 5.79 6.04 6.09 5.73 Pea 0.54 2.11 6.6E-2 0.19 8.6E-2 0.92 0.75 4.70 4.75 4.51 4.69 4.79 4.71 Shoot 1.10 3.34* 0.12 1.33 1.5E-3 2.08 1.05 6.30 6.24 5.83 6.09 6.16 5.90 *,** Significant at 5» and 1% l e v e l , s i g n i f i c a n t l y . a Mean square error. D Not sampled. APPENDIX 3. 1981 KELP SOIL AMENDMENT ANALYSIS OF VARIANCE CALCULATED aMSE, MEANS AND F-VALUES FOR BEAN ELEMENTAL CONCENTRATIONS. Measured Source F-values Curvll 1near F-values Mean values concentration Treat-aMSE Quad- Kelp Application t h a - 1 variables ment Block Linear r a t i c Cubic Residual 0 7.5 15 30 60 120 Flowering ( T r i f o l i a t e ) N% 0.91 2.04 4.8E-2 0.71 3.1E-3 2.01 4.54 b b 4.68 4.44 4.47 PX 0.24 0.25 6.65E-2 2.20 0.14 0.38 0.30 b b 0.31 0.30 0.30 K% 4.46* 1.01 8.9E-2 9.95* 3.1E-2 3.39 3.3 b b 3.2 3.7 3.8 CaX 1.23 0.51 4.6E-2 0.76 0.19 2.76 1.8 b b 1.6 1.8 1.6 Mg% 0.92 0.17 8.9E-4 6.4E-2 0.99 1.71 0.32 b b 0.28 0.30 0.30 C1X 9.08** 1.47 2.0E-2 25.7** 1.47 8.3E-2 0.88 b b 1.10 1.20 1.40 Na mg kg" 1 3.00 3.71 1024 8.82* 3.5E-2 0.13 140 b b 160 180 210 Fe mg k g - 1 1.22 1.87 1561 2.60 0.36 0.69 220 b b 240 220 270 Mn mg kg" 1 2.73 1.26 242 6.35* 4.4E-2 1.79 35 b b 54 47 66 Zn mg kg" 1 0.97 0.48 25.0 0.50 2.14 0.26 34 b b 36 40 36 Al mg kg" 1 1.64 3.19 4856 0.81 8.5E-3 4.10 260 b b 340 260 330 Harvest (leaf & stem) NX 2.51 0.71 3.4E-2 9.61** 0.62 1.20 0.57 2.84 2.75 2.83 2.71 2.95 3.12 PX 1.20 1.93 2.1E-4 4.80* 0.29 0.38 0.26 0.23 0.24 0.23 0.23 0.24 0.25 KX 14.6** 7.3E-2 4.4E-2 55.4** 7.51* 3.33 3.43 2.4 3.3 2.7 2.6 3.2 3.2 CaX 0.65 0.86 0.10 0.10 0.12 3.7E-2 1.51 1.9 1.6 1.8 1.9 1.8 1.7 MgX 0.88 1.05 1.8E-3 1.5E-2 0.42 4.3E-2 1.97 0.34 0.31 0.37 0.34 0.35 0.33 C1X 3.31* 1.74 9.6E-2 12.4** 0.89 1.66 0.75 0.88 1.30 1.30 1.40 1.50 1.70 Na mg kg" 1 1.14 4.45* 694 3.15 0.41 0.31 0.91 160 140 160 160 170 170 Fe mg k g - 1 2.97* 1.70 1166 7.80* 0.22 1.7E-2 3.40 180 180 220 170 210 240 Mn mg kg" 1 1.20 0.61 269 3.93 9.4E-2 0.95 0.52 47 50 63 54 55 72 Zn mg k g - 1 1.43 2.34 13.2 4.54* 6.3E-2 5.4E-4 1.29 36 36 40 37 40 41 Al mg kg" 1 2.29 1.63 1862 4.75* 7.1E-2 1.1E-2 3.32 210 210 260 200 250 270 Harvest (bean pod) NX 1.26 0.60 2.8E-2 5.78* 0.16 0.17 9.2E-2 2.71 2.77 2.82 2.82 2.88 2.98 PX 0.29 1.04 5.9E-4 1.2E-2 4.8E-7 0.82 0.32 0.35 0.36 0.35 0.36 0.35 0.35 KX 1.52 2.17 8.9E-2 0.91 0.12 4.14 1.22 2.3 2.4 2.4 2.7 2.3 2.6 CaX 0.84 0.93 2.7E-3 4.1E-3 6.2E-2 1.78 1.18 0.36 0.39 0.36 0.42 0.36 0.38 MgX 1.48 1.68 5.2E-4 0.89 0.51 4.50 0.74 0.21 0.21 0.21 0.23 0.18 0.20 Na mg kg" 1 ue low detection nmit Fe mg k g - 1 1.37 2.46 173 0.36 1.55 0.65 2.13 92 72 75 82 77 87 Mn mg kg" 1 2.86 0.82 19.2 11.1** 0.54 2.15 0.22 21 21 24 24 23 31 Zn mg kg" 1 2.04 2.07 4.87 8.71** 0.10 0.83 0.28 30 30 32 32 32 35 Al mg kg" 1 2.91* 6.02** 75.5 0.11 1.28 1.60 5.77* 27 15 25 37 22 22 *,** Significant at 5X and IX l e v e l , respectively. 4 Mean square error. D Not sampled. APPENDIX 4. 1981 KELP SOIL AMENDMENT ANALYSIS OF VARIANCE CALCULATED aMSE, MEANS AND F-VALUES FOR BEAN ELEMENTAL UPTAKE. Measured Source F-values Curvilinear F-values Mean values  uptake Treat- Quad- Kelp Application t h a - 1  variables ment Block MSE Linear r a t l c Cubic Residual 0 7.5 15 30 60 120 Harvest (leaf & stem) N kg ha" 1 0.76 0.93 5.94 2.20 1.48 P kg ha" 1 1.64 1.81 2.63 4.44 2.94 K kg ha" 1 2.29 0.96 417 0.14 10.0** Ca kg h a - 1 1.68 1.20 349 3.80 1.97 Mg kg ha" 1 1.34 0.73 14.0 3.76 2.11 Cl kg ha" 1 1.26 0.55 338 0.63 3.74 Na g ha" 1 1.46 2.50 1.9E-4 0.68 4.42 Fe g ha" 1 0.39 1.10 8.5E-4 5.4E-3 0.45 Mn g ha" 1 0.32 0.12 1.1E-4 1.0E-4 0.36 Zn g ha" 1 0.76 1.29 1.42 1.51 2.08 Al g ha" 1 0.44 0.98 1.3E-6 6.1E-2 0.53 Harvest (bean pod) N kg ha" 1 2.95* 2.21 51.6 9.20** 5.27* P kg ha" 1 4.03* 2.42 0.75 15.2** 4.69* K kg ha" 1 3.33* 5.01* 41.2 10.0** 3.48 Ca kg h a - 1 4.30* 3.75* 1.00 14.1** 4.75* Mg kg h a - 1 5.05** 4.68* 0.25 19.5** 2.37 Na Concentration Fe g ha" 1 2.52 4.30* 713 7.74* 0.41 Mn g ha" 1 0.69 1.00 78.6 0.51 1.41 Zn g ha" 1 3.28* 3.53* 57.4 9.16** 6.51* Al g ha" 1 3.71* 6.23** 201 2.71 3.23 Harvest (shoot) N kg "ha"1 1.32 1.37 840 4.00 2.53 P kg ha" 1 2.86 2.42 4.94 9.36** 4.39 K kg ha" 1 2.66 2.14 489 0.31 12.0** Ca kg ha" 1 1.86 1.33 367 4.40 2.19 Mg kg ha" 1 1.99 1.14 14.6 6.16* 2.64 Fe g ha" 1 0.35 1.25 9.5E-4 9.6E-2 0.48 Mn g ha" 1 0.34 9.5E-2 1.3E-4 4.2E-3 0.42 Zn g ha" 1 1.22 1.84 1760 2.73 3.09 Al g ha" 1 0.43 1.06 1.3E-6 9.7E-2 0.63 2.7E-2 9.3E-3 134 134 135 139 139 111 5.7E-6 0.41 11 11 11 12 11 9 0.40 0.43 110 110 130 130 150 110 0.13 1.25 89 76 87 98 83 63 8.5E-2 0.36 16 15 18 18 17 12 1.37 0.28 42 62 61 72 69 61 2.3E-2 1.09 730 630 780 800 810 620 1.5E-2 0.73 850 890 1100 870 1000 880 0.78 0.24 220 240 310 280 260 250 3.5E-2 9.5E-2 170 170 190 190 190 150 1.5E-2 0.80 980 1100 1300 1000 1200 1000 2.1E-2 0.12 42.4 41.6 44.9 44.8 44.7 30.0 1.9E-2 9.6E-2 5.4 5.4 5.6 5.8 5.4 3.4 1.47 0.82 37 36 38 43 35 25 0.82 0.89 5.8 5.7 5.8 6.8 5.5 3.6 1.56 0.91 3.3 3.1 3.4 3.6 2.8 2.0 below detection. 0.88 1.79 150 110 120 130 120 84 0.82 0.36 32 32 39 39 35 30 7.3E-3 0.37 48 46 51 52 50 33 1.50 5.56* 43 24 40 60 35 24 3.0E-2 1.7E-2 176 175 180 184 184 140 3.1E-3 0.27 16 17 16 18 17.8 12 5.6E-2 0.43 150 150 170 170 180 140 0.15 1.28 95 82 93 105 89 67 0.20 0.48 20 18 21 21 19 14 1.3E-3 0.60 990 1000 1200 1000 1100 960 0.79 0.24 260 270 350 320 290 280 3.4E-2 0.14 220 220 240 240 240 180 2.9E-2 0.71 1000 1100 1300 1100 1200 1000 ,** Significant at 5% and 1% le v e l , respectively. a Mean square error. APPENDIX 5. 1982 KELP SOIL AMENDMENT ANALYSIS OF VARIANCE CALCULATED aMSE, MEANS AND F-VALUES FOR PEA ELEMENTAL CONCENTRATIONS. Measured Source F-values Curvilinear F-values Mean values concentration Treat- Quad- Kelp A D D I I c a t i o n t ha" 1 variables ment Block aMSE Linear r a t i c Cubic Residual 0 7.5 15 30 60 120 Flowering (leaf & stem) NX 1.05 5.10* 0.15 2.49 1.43 4.3E-2 0.23 3.54 b 3.48 3.65 3.59 3.13 PX 2.43 2.83 7.1E-4 3.98 1.57 Z.95 1.25 0.30 b 0.31 0.34 0.30 0.28 KX 2.02 2.15 8.4E-2 1.59 5.80* 0.69 1.2E-2 2.9 b 3.0 3.1 3.5 3.1 CaX 0.68 0.82 6.5E-3 0.44 1.48 0.36 0.48 1.0 b 1.1 1.0 1.1 1.0 Mg% 0.76 1.88 8.1E-4 0.29 2.4E-2 0.14 2.59 0.28 b 0.31 0.28 0.29 0.30 Na mg k g - 1 2.58 13.9* 4218 6.68* 0.26 5.8E-3 3.37 560 b 520 620 610 650 Fe mg kg" 1 1.25 1.71 6723 0.55 6.6E-2 3.31 1.09 180 b 240 210 150 190 Mn mg kg" 1 0.86 2.48 147 1.8E-2 8.8E-Z 1.87 1.47 25 b 39 29 25 32 Zn mg kg" 1 0.48 1.16 91.6 5.3E-2 8.8E-2 0.67 1.10 42 b 51 45 46 47 Al mg k g - 1 1.13 1.66 1.4E-4 0.28 1.2E-2 2.81 1.41 62 b 75 72 52 95 Harvest (leaf & stem) NX 1.37 1.12 9.8E-2 8.2E-2 3.2E-6 0.70 3.04 2.59 2.70 2.17 2.62 2.55 2.47 PX 1.33 1.29 6.1E-4 1.6E-2 0.64 0.62 2.70 0.20 0.20 0.16 0.19 0.18 0.19 KX 2.12 1.71 0.12 6.46* 0.57 0.17 1.69 2.8 3.2 2.8 3.1 3.3 3.4 CaX 1.81 0.64 1.1E-2 9.6E-2 1.04 3.97 1.98 0.9 1.2 1.1 1.1 1.1 1.1 MgX 0.46 1.02 1.6E-2 0.44 3.4E-2 1.00 0.41 0.16 0.19 0.20 0.18 0.18 0.20 Na mg kg" 1 6.89** 6.86** 8305 23.8** 5.88* 4.2E-2 2.36 900 850 920 1100 1100 1100 Fe mg kg" 1 1.10 0.62 2.5E-4 4.41 0.52 1.0E-2 0.28 390 440 380 300 265 220 Mn mg kg" 1 0.95 1.89 204 1.43 0.55 0.80 0.97 28 27 40 28 28 42 Zn mg kg" 1 1.15 1.64 102 1.98 0.72 2.45 0.81 45 52 55 48 48 59 Al mg k g - 1 0.69 0.41 4.0E-4 3.04 0.21 0.19 7.3E-3 570 510 490 430 420 330 Harvest (pod) NX 0.50 1.07 8.8E-2 0.52 2.0E-2 0.30 0.82 4.40 4.33 4.17 4.44 4.42 4.44 PX 1.70 0.95 2.3E-4 2.00 0.22 0.92 2.69 0.40 0.38 0.40 0.41 0.40 0.41 KX 1.39 1.68 2.3E-2 2.81 5.5E-2 9.2E-2 2.00 1.3 1.4 1.4 1.2 1.4 1.5 Ca mg k g - 1 2.75 3.11 1.30E-4 2.20 0.14 3.41 4.00* 750 890 690 660 820 660 MgX 1.79 1.61 1.8E-4 2.3E-4 0.26 2.1 3.26 0.13 0.15 0.13 0.13 0.15 0.14 Na mg kg" 1 1.01 1.74 1012 0.40 1.53 0.44 1.34 140 170 140 140 170 130 Fe mg kg" 1 0.16 4.7E-2 87.5 0.15 0.19 0.30 7.3E-2 62 60 60 62 65 62 Mn mg kg" 1 1.70 1.32 3.04 4.86* 1.65 1.57 0.2 12 13 14 13 13 16 Zn mg k g - 1 0.59 0.69 2.47 0.59 1.01 8.5E-2 0.64 27 29 28 28 29 28 Al mg kg" 1 0.40 0.45 255 0.29 0.18 1.05 0.25 17 10 12 12 12 7 *,** Significant at 5X and IX l e v e l , respectively. a Mean square error. b Not sampled. APPENDIX 6. 1982 KELP SOIL AMENDMENT ANALYSIS OF VARIANCE CALCULATED aMSE, MEANS AND F-VALUES FOR PEA ELEMENTAL UPTAKE. Measured Source F-values Treat-Curvilinear F-values Mean values Quad- Kelp Application t h a - 1 variables ment Block MSE Linear rat 1c Cubic Residual 0 7.5 15 30 60 120 Harvest (leaf S stem) N kg ha" 1 1.43 2.76 177 2.86 0.68 0.35 1.64 85.1 83.8 71.4 87.5 81.3 67.8 P kg ha" 1 1.4Z 3.24 0.90 2.89 9.5E-3 0.35 1.92 6.4 6.1 5.2 6.3 5.7 5.1 K kg ha" 1 0.58 2.37 277 9.1E-4 1.99 4.0E-2 0.45 92 99 91 100 100 92 Ca kg h a - 1 1.65 0.41 28.3 2.88 2.63 1.98 0.39 32 36 35 39 34 29 Mg kg ha" 1 0.43 7.8E-2 1.75 0.63 0.20 1.10 0.12 5.5 6.1 6.5 6.2 5.6 5.4 Na g ha" 1 1.89 5.30* 0.28 0.68 5.39* 7.6E-2 1.66 3.0 2.7 3.0 3.7 3.5 3.1 Fe g h a - 1 1.40 1.05 2.6E-5 6.33* 0.27 2.1E-2 0.19 1300 1400 1200 1000 840 600 Mn g ha" 1 0.63 1.20 1846 9.4E-2 0.15 0.88 1.00 93 86 130 94 87 110 Zn g h a - 1 0.56 0.56 953 0.11 1.4E-2 1.73 0.47 150 160 180 160 150 160 Al g ha" 1 1.02 0.84 4.2E-5 4.84* 3.9E-2 0.16 2.9E-2 1900 1600 1600 1500 1300 900 Harvest (pod) N kg ha* 1 0.24 1.91 833 5.5E-2 0.20 0.11 0.42 163 170 154 170 160 170 P kg ha" 1 0.29 1.54 5.95 0.14 0.25 0.52 0.28 15 15 15 16 14 16 K kg ha" 1 0.71 0.54 83.7 1.46 0.31 1.8E-2 0.88 47 55 49 48 51 56 Ca kg h a - 1 1.26 0.29 0.46 0.99 9.3E-2 0.57 2.34 2.8 3.5 2.5 2.5 2.8 2.5 Mg kg ha" 1 0.64 0.46 1.08 5.4E-4 0.10 8.8E-2 1.50 5.0 6.0 4.8 5.0 5.3 5.3 Na g ha" 1 0.79 0.63 1.6E4 0.32 0.24 0.12 1.64 510 550 530 520 590 510 Fe g h a - 1 0.15 0.87 2355 8.6E-2 9.5E-2 1.1E-2 0.28 230 240 220 240 220 240 Mn g h a - 1 1.62 2.55 82.2 3.72 2.39 1.33 0.33 47 52 48 51 45 61 Zn g h a - 1 0.26 1.21 343 6.0E-2 7.9E-2 0.17 0.49 100 110 100 100 100 110 Al g ha" 1 0.39 0.45 3412 0.35 0.31 0.92 0.18 46 59 44 42 51 28 Harvest (shoot) N kg ha" 1 0.42 0.94 1367 0.17 4.6E-3 3.3E-3 0.96 249 254 226 258 238 238 P kg ha" 1 0.39 0.95 8.50 5.5E-2 0.15 0.16 0.80 21 21 20 22 20 21 K kg ha" 1 0.47 1.00 416 0.26 0.80 1.0E-2 0.65 140 150 140 150 150 150 Ca kg h a - 1 1.70 0.39 29.1 3.24 2.43 1.67 0.58 35 40 38 41 37 32 Mg kg ha" 1 0.75 0.47 1.74 0.60 3.5E-2 0.66 1.22 10 12 11 11 11 11 Na kg ha" 1 1.57 5.26* 0.31 0.42 5.39* 3.3E-2 1.00 3.5 3.3 3.5 4.2 4.1 3.6 Fe g h a - 1 1.30 0.84 2.8E5 5.85* 0.28 2.3E-2 0.17 1500 1600 1500 1200 1100 840 Mn g ha - 1 0.76 1.34 m 1943 0.48 0.50 1.33 0.74 140 140 180 140 130 170 Zn g h a - 1 0.74 0.43 838 4.2E-2 9.5E-2 2.79 0.38 250 270 280 270 250 270 Al g ha" 1 1.08 0.94 4.2E5 5.03* 0.61 0.23 3.6E-2 1900 1700 1600 1500 1400 980 *,** Significant at 5% and 1% l e v e l , respectively. a Mean square error. APPENDIX 7. 1981 KELP SOIL AMENDMENT ANALYSIS OF VARIANCE CALCULATED aMSE, MEANS AND F-VALUES FOR SOIL CHEMICAL PROPERTIES. Measured s o i l variables Source F--values aMSE Curvilinear F-values Mean values Treat-ment Block Linear Quad-r a t i c Cubic Residual 0 7.5 Kelp Application t ha"l 15 30 60 120 Preseedlnq 1981: N03-N (mg kg-1) 10.5* 0.42 215 20.7** — ... 0.23 31 b b b 50 78 NH4-N (mg kg-1) 2.28 1.87 16.6 2.43 — — 2.13 3.9 b b b 9.8 8.4 N0 3 + NH4-N (mg kg" 1) 20.1** 0.70 146 40.3«« — — 1.3E-•2 35 b b b 60 86 pH (2:1 water:soil) 6.67* 2.24 6.7E-2 7.46* — — 5.89 5.7 b b b 5.1 5.2 Soluble Cl (mg kg" 1) 7.67* 0.20 2.5E5 15.1** — — 0.24 140 b b b 1000 1600 EC: (dS m-1) 10.3* 0.12 0.36 20.2** — — 0.45 0.48 b b b 1.7 2.4 Harvest 1981: NO3-N (mg kg-1) 4.33* 1.19 30.1 12.0" 7.72* 0.12 0.86 19 21 22 31 32 31 NH4-N (mg kg-1) 4.08* 5.92** 1.25 14.9** 3.87 1.02 0.29 3.7 4.4 4.0 4.1 3.9 6.7 NO3 + NH4-N 4.32* 1.46 35.6 15.2** 4.70* 0.26 0.71 23 25 26 35 36 38 pH (2:1 water:soil) 2.54 2.76 0.10 11.0** 0.15 1.50 1.2E-2 5.2 5.0 5.0 4.9 4.9 4.4 Soluble Cl (mg kg" 1) 15.7** 1.56 9723 71.6** 3.04 3.70 0.22 260 390 430 560 600 820 EC (dS m-1) 47.9** 1.09 9.4E-3 238** 0.14 0.28 0.32 0.52 0.60 0.63 0.80 0.98 1.40 Available P (mg kg-1) 1.32 9.82** 84.7 3.48 1.35 1.78 1.1E-2 71 77 80 85 82 86 Exchangeable! (cmol + kg-1): Ca 0.24 0.43 0.89 0.68 0.10 0.24 9.5E-2 7.5 7.5 7.0 7.5 7.5 7.0 HQ 4.87** 5.40* 5.5E-3 21.6** 1.17 0.68 0.45 1.5 1.5 1.5 1.5 1.6 1.7 K 55.2** 0.91 1.0E-2 266** 6.53* 0.19 1.25 0.85 0.83 0.95 0.93 1.2 1.6 Na 57.8** 5.40* 3.1E-2 284** 1.20 4.3E-3 1.73 0.30 0.36 0.35 0.50 0.61 0.87 Mn 2.93* 9.05** 0.67 12.4** 9.0E-2 9.3E-2 1.04 0.045 0.044 0.048 0.048 0.055 0.060 * , " S i g n i f i c a n t at 5% and IX l e v e l , respectively. aMean square error. °Not sampled. APPENDIX 8. 1982 KELP SOIL AMENDMENT ANALYSIS OF VARIANCE CALCULATED aMSE, MEANS AND F-VALUES FOR SOIL CHEMICAL PROPERTIES. Measured Source F-values Curvilinear F-values Mean values  son Treat- , Quad- Kelp Application t h a - 1  variables ment Block MSE Linear r a t l c Cubic Residual 0 7.5 15 30 60 120 Preseedlng 1982: N03-N (mg kg" 1) 2.41 2.03 2.50 NH4-N (mg kg" 1) , 1.83 8.50** 1.03 N0 3 + NH4-N (mg kg" 1) 1.57 . 6.41** 3.57 pH (2:1 water:so11) 1.67 0.34 0.19 Soluble CI (mg kg" 1) 6.67** 1.93 314 EC (dS m-1) 3.69* 3.54* 9.7E-4 Available P (mg kg" 1) 8.7E-2 5.08* 1.61 Exchangeables (cmol+ kg* 1) Ca 0.78 0.39 1.44 Mg 0.62 4.7E-2 3.9E-2 K 18.9** 0.77 2.3E-2 Na 16.8** 9.73" 4.0E-4 Mn 5.93" 17.9** 0.27 8.78" 2.06 2.83 0.57 12.9" 14.2" 1.9E-2 2.59 2.1E-3 87.0" 73.6" 13.5" 2.84 1.26 3.66 0.56 0.95 3.1E-2 1.5E-2 1.8E-3 1.88 6.04* 3.00 2.0E-2 5.0E-3 5.43* 1.12 4.40 3.56 3.22 0.10 0.15 0.89 0.55 1.79 5.17* 0.22 0.19 0.13 1.85 8.20" 0.48 0.15 0.58 0.15 0.55 2.77 2.65 18 3.9 22 5.4 210 0.31 73 6.5 1.2 0.73 0.21 0.045 18 2.6 21 4.6 190 0.34 75 7.0 1.3 0.87 0.20 0.039 17 2.3 19 5.2 170 0.33 72 6.5 1.3 0.83 0.19 0.044 17 1.9 20 4.9 220 0.36 78 6.5 1.2 0.85 0.24 0.048 18 2.7 20 5.7 220 0.34 74 6.0 1.1 1.0 0.27 0.050 21 2.2 23 5.1 230 0.40 75 6.0 1.3 1.6 0.29 0.055 Harvest 1982: NO3-N (mg kg" 1) 0.61 1.65 4.46 0.22 6.4E-2 1.56 0.60 17 18 17 19 17 18 HHA-H (mg kg" 1) 1.06 12.8" 4.35 2.53 8.1E-2 2.63 3.1E-2 5.4 6.5 7.1 6.8 4.8 4.6 NO3 + NH4-N (mg kg" 1) 2.14 3.92* 8.01 7.4E-2 0.59 5.36* 2.35 22 24 24 26 22 23 pH (2:1 water:so1l) 0.20 0.27 0.15 0.37 0.57 7.6E-3 3.9E-2 5.1 5.1 5.0 5.0 4.9 5.0 Soluble CI (mg kg- 1) 0.86 0.70 790 0.12 0.46 2.5E-2 1.84 220 180 210 200 190 200 EC (dS n r 1 ) 0.78 1.53 1.7E-3 0.86 . 1.0E-2 0.22 1.41 0.32 0.29 0.30 0.34 0.31 0.33 Available P (mg kg- 1) 0.63 8.62" 108 0.17 3.1E-2 0.60 1.18 68 75 80 71 74 76 Exchangeables (cmol + kg - 1) Ca 1.64 0.54 0.89 0.92 2.30 2.30 1.33 6.5 6.5 5.5 6.5 7.0 5.5 Mg 0.22 0.83 3.9E-2 0.18 0.55 0.25 5.6E-2 1.3 1.3 1.3 1.3 1.4 1.3 K 1.67 0.34 7.0E-2 8.10* 3.2E-2 0.21 3.0E-2 0.79 0.87 0.88 0.98 1.0 1.3 Na 10.9" 4.44* 1.1E-3 42.8" 0.21 3.01 4.27* 0.26 0.22 0.21 0.29 0.31 0.36 Mn 2.89 10.0" 0.27 9.15" 0.46 1.31 1.79 0.042 0.036 0.040 0.043 0.046 0.048 *," Significant at 5% and IX l e v e l , respectively. a Mean square error. APPENDIX 9. 1981 AND 1982 KELP SOIL AMENDMENT ANALYSIS OF VARIANCE CALCULATED MEAN SQUARE TERMS, MEANS AND F-VALUES FOR FIELD SOIL STRUCTURE EFFECTS. Source F-values Curvilinear F-values Mean values  Measured Treat- h Quad- Kelp Application t h a - 1 structure ment Block T*B MSE MS Linear r a t l c Deviant 0 30 60 120 variables (T) (B) (T*B) 1981 Bulk density 1.97 4.47" 2.29" 1320 3029 1.52 4.27 0.11 1010 980 955 980 (kg n r 3 ) Aeration porosity 4.22* 5.14" 2.20* 5.6E-4 1.2E-3 1.36 7.34* 3.97 0.145 0.156 0.197 0.160 (m3 nr 3) Total porosity 1.47 2.63 2.17 2.3E-4 5.1E-4 1.70 0.78 1.92 0.591 0.590 0.606 0.600 (in 3 ui" 3) P a r t i c l e density 1.85 0.77 0.51 1.4E-4 7.2E-4 4.8E-2 2.89 2.62 2470 2390 2430 2440 (kg n r 3 ) 1982 Bulk density 9.7E-2 0.65 0.56 2043 1152 2.2E-2 0.25 1.4E-2 918 914 911 916 (k9 nr 3) Aeration porosity 0.52 3.05* 0.69 7.5E-4 5.2E-2 0.22 0.43 0.90 0.212 0.211 0.222 0.215 ration Cr (m3 n r 3 ) Total porosity 0.45 0.89 0.41 2.1E-4 8.9E-5 1.6E-2 2.4E-3 1.36 0.631 0.627 0.632 0.629 ca  (m3 n r 3 ) P a r t i c l e density 0.54 4.08* 0.74 4917 3668 0.13 0.53 0.96 2490 2450 2470 2470 (kg m"3) *,** Significant at 5% and 1% l e v e l , respectively. a Mean square error for block and T*B F-ratlo denominators. b Mean Square (B*T) for treatment F-ratlo denominator. APPENDIX 10. KELP SOIL AMENDMENT GREENHOUSE EXPERIMENT I: KELP APPLICATION * SOIL INCUBATION PERIOD. ANALYSIS OF VARIANCE, CALCULATED aMSE AND F-VALUES FOR PLANT GROWTH AND SOIL CHEMICAL EFFECTS. Curvilinear F-values Source F-values Rate Incubation Rate Incubation  Measured Incuba- Quad-variables Rate tlon RMnc aMSE Linear r a t l c Deviant Linear Deviant Inc/L Inc/L Inc/L Inc/D Inc/D Inc/0 (R) (Inc) (R/L) (R/Q) (R/D) (Inc/L) (Inc/D) *R/L *R/Q *R/0 *R/L *R/Q *R/D Plant Growth Responses Emergence (X two-leaf stage) Day 12 10.3** 1.63 Day 14 4.21** 0.69 Day 16 3.40* 1.01 Day 18 0.37 1.32 Yields (X of control) Fresh shoot 16.9** Fresh bean pod 17.8** Dry shoot 42.5** Dry bean pod 26.8** Fresh/Dry Wt Ratios Bean pod 41.7** Shoot 21.2** Soil Chemical Effects N03-N (mg kg" 1) 69.8** NH4-N (mg kg" 1) 30.3** Soluble CI 125** (mg kg' 1) pH(2:l water:so1l)) .74 EC (dS m"1) 54.7** 1.17 0.28 1.44 0.14 1.05 1.87 0.80 1.38 1.01 0.78 2.52* 1.48 2.40* 0.89 0.34 0.45 0.64 0.37 0.26 0.13 203 347 164 331 1.03 2.87 1.20 0.60 203 2.44 1.86 11.0 7.39** 1.82 6.61 2.20 2.22 6.5E-2 0.61 0.10 0.22 28.1** 2.02 0.94 0.51 2.75 2.5E-2 0.10 0.23 7.7E-2 0.68 3.80 10.6** 1.95 3.1E-2 0.49 0.90 2.48 5.5E-2 0.27 3.53 0.90 1.06 7.92** 2.21 7.3E-2 0.31 1.70 0.57 0.31 6.3E-2 3.06 1.70 0.34 0.41 0.65 5.4E-2 1.37 1.27 1.50 0.15 3.0E-2 2.29 0.45 0.25 49.2** 0.78 0.72 5.7E-2 2.28 1.92 6.39* 4.13* 0.66 0.82 1.22 52.1** 1.37 8.1E-2 0.26 0.30 1.73 3.93 2.44 8.2E-2 0.16 0.57 125** 0.10 2.34 0.32 2.56 1.73 4.17* 4.57* 0.11 2.49 1.32 79.2** 1.02 0.38 0.20 8.3E-2 0.92 2.84 0.69 2.3E-3 0.24 0.64 124** 0.19 0.91 5.8E-3 2.05 1.4E-2 1.0E-2 7.0E-3 0.54 1.46 7.4E-2 62.4** 0.93 0.28 0.58 3.16 0.14 0.21 1.87 0.23 0.17 9.4E-2 139** 0.34 5.5E-3 2.40 0.29 9.5E-3 0.30 1.79 53.9** 6.73* 4.17* 0.70 6.75* 0.65 2.8E-2 2.9E-3 377** 9.1E-3 0.48 5.01* 9.77** 0.30 5.3E-3 2.8E-2 6.94* 3.25 0.39 0.69 2.24 2.27 2.4E-2 4.38* 7.24** 2.56 0.75 0.52 2.0E-2 2.23 161** 0.26 2.73 0.81 0.40 0.21 0.21 0.19 9.3E-4 1.1E-4 3.6E-3 *,** Significant at 5X and IX, respectively. a Mean square error. APPENDIX 11. KELP SOIL AMENDMENT GREENHOUSE EXPERIMENT I: KELP APPLICATION * SOIL INCUBATION PERIOD. CURVILINEAR SIGNIFICANT EFFECTS AND CALCULATED MEAN VALUES FOR PLANT GROWTH AND SOIL CHEMICAL EFFECTS. Measured 1 3 5 Curvilinear s i g n i f i c a n t effects from Appendix 10 variables Kelp Application (t ha - 1) Kelp Application (t ha" 1) Kelp Application (t ha-1) 0 15 60 120 0 15 60 120 0 15 60 120 Plant Growth Responses Emergence (X two-leaf stage) Day 12 61 61 61 17 50 66 28 22 66 72 61 22 R/L Day 14 100 87 87 55 87 94 87 87 87 94 94 72 R/L Day 16 100 94 94 72 94 94 94 94 87 94 94 72 R/L Day 18 100 100 94 87 94 94 100 100 87 94 94 87 Yields (X of control) Fresh shoot 100 103 103 61.5 100 102 85.1 84.4 100 100 78.9 68.7 R/L; Inc/L*RQ; Inc/L*RD Fresh bean pod 100 98.8 97.4 47.0 100 99.7 79.6 59.5 100 99.0 81.4 73.8 R/L Dry shoot 100 101 92.1 49.0 100 104 78.2 68.8 100 97.6 69.5 59.0 R/L; Inc/L*RQ; Inc/L*RD Dry bean pod 100 100 87.9 38.0 100 100 73.5 50.9 100 96.5 77.2 59.1 R/L Fresh/Dry Wt Ratios Bean pod 5.88 5.88 6.53 7.40 6.11 6.15 6.83 7.28 5.88 5.88 6.52 7.38 R/L Shoot 4.87 4.67 5.22 5.90 4.95 4.95 5.37 5.98 4.78 4.82 4.97 5.88 R/L Soil Chemical Effects N03-N (mg kg"}) 22 NH4-N (mg kg" 1) 2.6 Soluble Cl (mg kg-l)200 pH (2:1 watensoil) 5.3 EC (dS m-1) 0.55 a 43 77 26 a 57 78 18 a 43 80 R/L a 5.0 14 2.3 a 3.8 10 3.2 a 4.0 8.0 R/L; R/D; Inc/L; Inc/L*R/L 350 700 1100 290 450 830 1500 270 470 820 1300 R/L; Inc/D; Inc/D*R/L 5.2 5.0 5.0 5.1 4.8 5.1 5.1 5.2 5.0 5.1 5.4 Inc/D; Inc/L*R/L 1.0 1.4 2.6 0.70 1.1 1.6 2.6 0.72 1.1 1.6 2.5 R/L a Not sampled. APPENDIX 12. KELP SOIL AMENDMENT GREENHOUSE EXPERIMENT I I : KELP APPLICATION * SOIL LEACHING. ANALYSIS OF VARIANCE CALCULATED aMSE AND F-VALUES FOR PLANT GROWTH AND SOIL CHEMICAL EFFECTS. 5.29** 44.0** 4.66* 1.77 2.25 8.33** 9.00** 0.33 2.89 33.2** 6.01** 2.00 5.00* 0.78 11.65** 0.37 0.32 8.47** 2.65 1.59 0.62 2.3E-2 3.41 1.80 0.30 0.62 3.11 0.73 0.15 0.45 3.77 2.46 Soluble F-values Curvilinear F-values  Measured Rate Rate « Leaching variables Rate Leaching R*LCH MSE Linear Deviant R/L*Lch R/D*Lch (RJ (Lch) (R/L) (R/D)  Plant Growth Responses Emergence (X two-leaf stage) Day 9 Day 10 Day 11 Day 12 Yields (X of control) Fresh shoot Dry shoot Fresh/Dry Wt Ratios Shoot Soil Chemical Effects NO3-N (mg kg-1) NH4-N (mg kg-1) Soluble Cl (mg kg-1) pH (2:1 water:soil) EC (dS m-1) 14.0** 0.44 4.05* 7.32 22.8** 5.17* 7.35** 0.75 1.04 10.7** 5.32** 0.20 1.84 0.23 10.2** 0.44 76.4** 30.3** 2.54 2.15 142** 10.5** 0.51 4.56 61.8** 97.1** 59.0** 47.3 107** 16.5** 99.9** 18.0** 8.00** 5.71* 5.25** 1.78 12.3** 3.66 5.72* 4.78* 144** 281** 60.5** 1.3E--4 288** 2.6E-3 120** 0.11 44.5** 89.9** 2.19 4.1E-•2 54.1** 34.9** 4.10** 0.27 196** 353** 79.5** 3.9E-•2 391** 1.05 158** 0.76 *,** Significant at 5X and IX l e v e l , respectively. a Mean Square error. APPENDIX 13. KELP SOIL AMENDMENT GREENHOUSE EXPERIMENT I I : KELP APPLICATION * SOIL LEACHING. CURVILINEAR SIGNIFICANT EFFECTS AND CALCULATED MEAN VALUES FOR PLANT GROWTH AND SOIL CHEMICAL EFFECTS. Measured Soil not leached Soil leached Curv i l inear variables Kelp app!1cat1on(t h a - 1 ) Kelp appl icat ion ( t h a - 1 ) S ign i f i can t ef fects 0 60 120 0 60 120 from Appendix 12. Plant Growth Responses Day 9 21 2.2 1.1 23 33 40 R/D; R/L*Lch Day 10 59 44 32 63 67 72 R/L; R/L*Lch Day 11 64 63 53 67 70 74 Day 12 72 71 65 68 71 75 Yields (% of control) Fresh shoot 100 123 113 100 134 151 R/L; R/D; R/L*Lch Dry shoot 100 87.8 77.1 100 110 110 R/L * Lch Fresh/drv wt rat ios Shoot 5.18 7.00 7.24 4.71 5.65 6.62 R/L; R/D; R/D*Lch Soil Chemical Effects N0 3-N (mg kg-1) NH4-N (mg kg" 1 ) Soluble CI (mg kg-1) pH (2:1 water:so1l) EC (dS n r 1 ) 5.8 13 52 4.6 5.4 5.5 R/L; R/D; R/L*Lch; R/D*Lch 4.1 1.1 1.4 1.6 1.4 1.1 R/L; R/L*Lch; R/D*Lch 150 680 1200 40 170 270 R/L; R/L*Lch 5.4 4.4 4.7 5.7 5.2 5.4 R/L; R/D; R/L*Lch 0.44 1.4 2.6 0.23 0.46 0.71 R/L; R/L*Lch APPENDIX 14. 1983 KELP FOLIAR SPRAY ANALYSIS OF VARIANCE CALCULATED MEAN SQUARES, F-VALUES AND TREATMENT MEAN VALUES FOR BEAN GROWTH RESPONSES Measured growth variables Source F-values Treat-ment (T) Block (B) Treatment mean separation F-values CvsEl+ KvsEl E1+E2 El+Ml E1+M2 aMSE E2+M1 +E2+ vs vs vs +M2+K M1+M2 M1+M2 E2+M2 E2+M1 DTreatment mean values Ml M2 El E2 Yields (t ha-1): Dry shoot Dry bean pod Dry leaf & stem wt Fresh shoot wt Fresh bean pod Harvest Index (%) Fresh/dry wt ratio 1.66 2.29 0.33 4.67* 0.78 0.46 0.48 1.91 3.87 4.61 4.81 4.81 4.21 4.33 2.59 6.77** 2.0E-2 7.85* 0.10 4.68* 7.7E-3 0.57 1.04 1.35 1.32 1.16 1.21 1.23 1.40 1.41 0.27 2.64 0.82 2.6E-2 0.64 2.87 2.83 3.26 3.49 3.64 3.00 3.09 1.68 0.44 8.58 6.01* 0.19 1.84 0.22 0.16 33.4 38.5 38.4 37.1 35.9 36.8 2.30 4.07* 3.44 7.57* 1.4E-2 1.66 0.38 1.88 13.8 17.6 16.9 15.1 17.0 16.5 1.02 2.14 1.2E-3 0.19 0.33 0.88 0.37 3.31 26.9 29.4 27.3 24.5 28.8 28.6 1.57 4.47* 0.26 1.41 1.04 2.3E-3 1.03 4.35 8.62 8.37 8.10 7.82 8.62 8.52 *,**S1gn1fleant at 5% and IX l e v e l , respectively. aMean square error. DSee text for description of abbreviations. APPENDIX 15. 1983 KELP FOLIAR SPRAY ANALYSIS OF VARIANCE AND COVARIANCE CALCULATED MEAN SQUARES, F-VALUES AND MEAN OR ADJUSTED MEAN VALUES FOR BEAN LEAF & STEM AND POD ELEMENTAL CONCENTRATION. Measured concentration variables Soil covar-late Source F-values Treat-ment Block (T) (B) aMSE b F-values for Treatment mean separation F-values covariance CvsEl+ KvsEl E1+E2 El+Ml E1+M2 test of E2+M1 +E2+ vs vs vs regression — +M2+K M1+M2 M1+M2 E2+M2 E2+M1 equation bTreatment mean or adjusted mean values Ml M2 El E2 Leaf & stem; N X — 1.20 13.1** 3.8E-2 1.7E-3 1.61 3.1E-2 2.88 1.47 1.88 2.00 1.70 1.88 1.84 1.99 PH 2.06 12.2** 3.0E-2 4.93* 1.82 2.00 1.67 1.90 1.85 2.04 P X 0.76 5.78** 2.1E-4 0.16 1.95 2.8E-2 1.0E-•2 1.66 0.17 0.18 0.17 0.17 0.18 0.19 K X — 0.49 3.19 4.6E-2 0.40 0.27 0.21 1.35 0.21 1.8 2.0 1.8 1.9 1.8 2.0 Ca % — 0.88 15.3 9.8E-2 1.90 1.26 9.2-11 1.01 0.25 1.2 1.3 1.2 1.3 1.3 1.3 Mg X — 0.66 1.62 5.2E-4 0.87 2.21 1.9E-2 0.10 0.96 0.21 0.22 0.21 0.21 0.22 0.23 Fe mg kg-1 — 1.32 1.23 2358 3.18 0.21 0.16 1.28 1.79 210 150 150 130 190 170 PH 2.12 1.62 1235 14.6** 190 160 140 140 200 190 Cu mg kg-J 0.43 3.04 0.91 0.32 0.21 0.27 0.27 1.09 6.7 7.0 6.7 6.7 7.5 7.2 Mn mg kg-1 — 0.78 1.35 315 0.61 1.53 8.7E-2 0.94 0.73 99 100 110 100 110 120 Mn 1.28 0.56 243 5.44* 90 100 110 100 110 120 Zn mg kg-1 — 1.43 8.80** 2.83 2.6E-2 1.27 0.55 2.67 2.67 24 25 23 23 23 23 Bean Pod; N X — 0.55 5.91** 2.3E-2 0.46 1.9E-3 0.24 1.97 8.6E-2 2.04 2.01 1.93 2.07 1.94 1.99 P X — 1.16 8.25** 1.6E-4 1.4E-2 0.25 2.46 1.12 1.99 0.29 0.28 0.29 0.30 0.29 0.29 K X — 4.38* 2.47 3.4E-2 9.39** 0.17 1.8E-2 0.88 11.4** 2.2 2.0 1.7 1.6 2.0 1.9 Ca X — 1.63 2.90 1.1E-3 1.95 3.28 0.20 2.3E-2 2.72 0.47 0.46 0.44 0.44 0.48 0.42 Mg X — 2.63 1.19 1.8E-4 7.29* 6.4E-2 7.5#-2 3.3E-•4 5.75* 0.21 0.20 0.18 0.19 0.20 0.19 Fe mg kg-} — 0.69 1.52 196 1.08 1.24 0.12 0.50 0.50 80 72 72 80 70 65 Cu mg kg"1 — 0.60 7.60** 0.27 0.48 0.72 0.40 0.90 0 7.0 7.5 7.2 7.2 7.0 7.0 PH 1.02 4.3* 0.21 5.76* 6.8 7.5 7.2 7.3 7.0 7.1 Mn mg kg-1 1.12 11.7** 10.6 0.80 0.38 9.3E-2 2.82 1.50 43 39 44 42 42 41 Mn 1.68 3.73* 7.61 6.97* 41 39 45 43 42 41 Zn mg kg-1 — 0.68 1.66 7.62 0.15 0.86 8.1E-2 2.36 8.1E-3 20 20 18 20 18 18 *,"Significant at 5X and IX level, respectively. aMSE; Mean square error. DSee text for description of abbreviations. 00 CD APPENDIX 16. 1983 KELP FOLIAR SPRAY ANALYSIS OF VARIANCE AND COVARIANCE CALCULATED MEAN SQUARES, F-VALUES AND MEAN OR ADJUSTED MEAN VALUES FOR BEAN LEAF & STEM AMD POD ELEMENTAL UPTAKE. b F-values for Source F-values Treatment mean separation F-values covariance Measured Soil Treat- CvsEl+ KvsEl E1+E2 El+Ml EI+M2 test of ^Treatment m e a „ o r a d j U S t e d mean values uptake covar- ment Block aMSE E2+M1 +E2+ vs vs vs regression variables late (T) (B) +M2+K M1+M2 M1+M2 E2+M2 E2+M1 equation C Ml M2 E l E2 K Leaf & stem; N kg ha" 1 P kg ha" 1 K kg ha" 1 Ca kg h a - 1 Mg kg ha" 1 Fe g ha" 1 Cu g ha" 1 Mn g h a - 1 Zn g h a - 1 Bean pod; N kg ha" 1 P kg ha" 1 K kg ha" 1 Ca kg h a - 1 Mg kg ha" 1 Fe g ha" 1 Cu g h a - 1 Mn g h a - 1 Zn g h a - 1 — 0.80 2.13 PH 2.16 3.72* 0.66 0.65 PH 2.10 2.62 1.15 0.61 PH 1.94 1.49 1.07 1.35 PH 2.66 1.37 — ' 0.62 0.22 PH 1.77 1.83 — 0.26 0.85 PH 0.55 3.82* 0.39 0.75 PH 1.22 1.75 — 0.82 2.41 — 1.11 0.96 oH 1.97 2.43 3.15* 1.71 — 1.55 1.71 — 2.60 1.50 — 1.67 2.26 — 1.82 5.66** — 0.58 1.75 — 3.81* 3.90* — 1.53 13.5** — 1.59 0.78 151 95 1.09 0.65 154 123 58.0 37.5 1.77 1.15 4.1E4 1.7E4 29.7 20.2 4583 211 151 5.51 0.20 9.06 0.60 8.7E-2 387 1.37 52.0 14.2 1.11 1.96 2.23 2.97 1.64 0.78 1.45 3.65 1.53 9.11** 6.06* 0.33 3.11 1.88 0.52 10.1* 4.35 2.93 3.9E-3 5.7E-3 9.3E-2 2.6E-2 1.8E-2 1.0E-5 0.12 7.6E-2 1.27 1.0E-2 0.10 0.16 1.47 0.18 0.99 1.10 0.48 0.59 1.8E-3 2.54 0.36 54.4 64.4 58.3 68.4 54.8 61.9 9.86** 49.6 65.3 56.3 69.3 55.7 65.7 4.6E-4 0.73 0.62 5.0 5.9 5.8 6.2 5.4 5.8 11.1** 4.6 5.9 5.6 6.3 5.5 6.1 7.9E-2 2.20 1.17 53 66 63 71 55 62 4.79* 49 67 62 72 55 65 9.6E-3 1.47 0.90 35 43 42 46 38 43 9.19** 32 44 41 47 39 45 3.3E-2 0.86 0.55 6.2 7.2 7.1 7.6 6.5 7.2 9.00** 5.7 7.3 6.9 7.7 6.6 7.6 2.9E-2 0.34 0.17 620 500 520 480 580 520 21.5** 520 520 480 500 600 600 5.2E-2 0.17 0.17 19 23 23 25 22 22 8.02* 17 23 22 25 23 24 0.21 1.1E- 2 0.14 280 350 360 340 340 360 0.13 1.84 0.77 68 82 79 86 70 70 6.93* 63 83 77 87 71 74 4.80* 1.63 0.21 20.8 27.1 25.0 23.9 23.0 24.6 1.40 0.14 4.6E-2 3.0 3.8 3.7 3.5 3.5 3.5 3.04-2 6.2E- -2 9.43** 22 26 22 19 24 24 1.66 5.9E- •3 2.10 4.9 6.3 5.8 5.2 5.8 5.2 2.70 1.4E- •2 4.34 2.2 2.7 2.4 2.2 2.5 2.4 0.79 0.40 0.20 82 97 95 93 82 81 5.50* 1.13 1.13 7.0 10 9.2 8.5 8.5 8.5 1.82 1.00 1.1E-3 44 54 57 49 53 50 1.74 2.51 0.15 20 27 23 24 22 22 *,**S1gn1fleant at 5% and 1% l e v e l , respectively. aMean square error. bSee text for description of abbreviations. APPENDIX 17. 1984 KELP FOLIAR SPRAY ANALYSIS OF VARIANCE CALCULATED MEAN SQUARES, F-VALUES AND TREATMENT MEAN VALUES FOR BEAN GROWTH RESPONSES. C Source F-values Treatment mean separation F-values Measured Treat-bMS CvsSH KvsSl S1+S2 Sl+Ml S1+M2 treatment mean values growth ment Block T*B aMSE S2+M1 +S2+ vs vs V S — variables (T) (B) (T*B) +M2+K M1+M2 M1+M2 S2+M2 S2+M1 C Ml M2 SI S2 K Yield (t ha-1); Dry shoot 2.41 1.97 0.92 0.23 0.21 2.68 4.81 0.14 3.82 0.49 5.53 5.89 6.12 5.67 6.19 5.50 Dry bean pod 3.39 4.06 0.87 3.2E-2 2.8E-2 7.39* 6.04 2.33 1.04 0.22 1.05 1.29 1.39 1.22 1.26 1.10 Dry leaf & stem 1.07 0.62 1.41 0.15 0.22 0.40 1.63 2.3E-2 2.45 0.85 4.48 4.60 4.72 4.45 4.93 4.40 Fresh shoot 3.59 4.25 0.58 18.6 10.8 9.69* 4.24 0.30 3.12 0.61 41.6 46.6 47.9 44.7 48.2 43.7 Fresh bean pod 4.34 5.12* 0.52 4.72 2.48 12.7* 3.19 3.30 1.77 0.72 13.4 16.0 17.4 15.4 15.7 14.8 Fresh/dry wt ratio 0.66 2.42 1.20 0.17 0.20 2.91 0.17 1.3E-2 0.23 7.9E-3 7.52 7.90 7.83 7.90 7.79 7.94 Harvest index (X) 1.26 2.49 1.62 5.78 9.42 3.10 1.31 1.27 7.0E-4 0.63 18.9 21.8 22.8 21.4 20.4 20.0 * , " S i g n i f i c a n t at 5X and IX, respectively. aMSE; mean square error, used as denominator for calculation of source 8 and T*B F-values. DMS(T*B); mean square treatment * block, used as denominator of source T F-values. cSee text for description of abbreviations. CD CO APPENDIX 18. 1984 KELP FOLIAR SPRAY ANALYSIS OF VARIANCE AND COVARIANCE CALCULATED MEAN SQUARES. F-VALUES AND TREATMENT MEAN OR ADJUSTED MEAN FOR BEAN LEAF AND STEM AND POD ELEMENTAL CONCENTRATION. Source F-values Measured S o i l growth covar-varlables late Treat-ment (T) Block (B) T*B aMSE bMS (T*B) cTreatment mean separation F-values CvsSl+ KvsSl S2+M1 +S2+ +M2+K M1+M2 S1+S2 vs M1+M2 Sl+Ml vs S2+M2 S1+M2 vs S2+M1 F-value for covariance test of regression equation Ml treatment mean or adjusted mean values M2 SI S2 Leaf 4 stem; N% — 3.82 3.87 0.64 5.4E-2 3.5E-2 1.95 0.82 11.1* 1.15 4.04 2.99 2.76 2.69 2.86 3.10 2.93 PX — 6.31* 8.8E-2 1.21 3.0E-4 3.6E-4 1.8E-3 1.21 20.0** 2.01 8.26* 0.29 0.29 0.26 0.30 0.31 0.31 XC 5.29* 0.66 1.33 2.6E-4 3.5E-4 4.32* 0.29 0.29 0.26 K0.30 0.31 0.30 KX — 4.15 4.08 0.39 5.4E-2 2.1E-2 6.06 13.2* 0.50 1.9E- 4 0.98 2.7 2.5 2.5 2.5 2.6 2.8 CaX — 0.18 3.17 0.52 0.13 6.9E-2 0.28 5.6E-2 2.9E-3 0.20 0.35 1.7 1.7 1.8 1.8 1.8 1.7 PH 1.03 0.21 1.55 4.9E-2 7.6E-2 4.22** 1.7 1.6 1.9 1.9 1.9 1.9 MgX 7.65* 6.65* 0.14 2.6E-2 3.7E-4 17.1* 1.33 13.6* 0.97 5.14 0.40 0.42 0.43 0.47 0.44 0.43 Fe mg k g - 1 Mg 4.78 9.49* 0.52 1.5E-3 8.2E-4 16.4** 0.43 0.41 0.39 0.46 0.45 0.46 0.85 3.02 0.39 8614 3422 0.49 2.4E-2 1.75 1.94 7.7E-2 180 170 190 190 230 190 PH 2.09 0.70 0.52 6605 3439 8.39** 190 140 160 200 250 210 Fe 1.68 2.99 0.71 6637 4727 8.24** 180 150 160 200 260 210 Cu mg k g - 1 — 3.29 0.84 0.71 0.52 0.37 0.23 2.2E-2 13.3* 0.11 2.75 11 11 11 12 12 11 Mn mg k g - 1 — 4.40 19.6** 0.60 115 69.2 6.29 2.25 14.4* 29.E-2 6.0E-4 68 52 51 65 64 64 PH 1.18 15.5** 1.06 66.2 70.8 18.6** 66 55 57 63 62 61 Zn mg kg" 1 XC 2.26 16.9** 1.01 96.1 97.6 5.72* 68 53 53 64 64 62 — 1.34 8.2E-3 1.40 13.5 18.9 1.69 2.22 2.11 0.17 0.49 41 36 37 40 38 41 PH 0.60 1.19 1.83 10.4 19.2 8.02** 41 37 38 39 37 40 Bean pods; NX 1.90 0.67 0.30 5.9E-2 1.8E-2 4.72 1.78 1.43 1.16 0.42 3.39 3.20 3.22 3.23 3.32 3.32 PH 1.10 2.47 0.33 - 5.1E-2 1.7E-2 4.54* 3.37 3.24 3.29 3.20 3.29 3.29 XC 1.23 1.91 0.41 5.1E-2 2.1E-2 4.65* 3.39 3.22 3.26 3.21 3.31 3.29 PX 8.76* 0.85 0.13 8.7E-4 1.1E-4 2.68 12.7* 17.0** 3.1E-•3 11.4* 0.48 0.47 0.46 0.48 0.49 0.49 pH 15.0** 7.7E-3 0.15 7.2E-4 1.1E-4 5.98* 0.49 0.47 0.45 0.48 0.50 0.50 KX 1.74 5.06* 0.46 1.2E-2 5.8E-3 3.47 3.70 0.28 1.2E-•2 1.24 2.5 2.4 2.5 2.5 2.5 2.5 K 3.34 8.24* 0.51 1.0E-2 5.3E-3 6.27* 2.6 2.4 2.4 2.5 2.5 2.5 CaX 1.58 0.17 0.37 2.3E-3 8.7E-4 9.1E-2 5.65 1.72 0.23 0.23 0.56 0.58 0.58 0.57 0.56 0.54 PH 0.39 1.04 1.13 1.4E-3 5.8E-4 19.0** 0.57 0.57 0.56 0.58 0.57 0.55 Ca 0.46 0.26 0.41 6.6E-4 3.0E-4 11.6** 0.57 0.57 0.55 0.57 0.57 0.56 MgX 0.33 4.76* 2.02 1.2E-4 2.5E-4 2.6E-2 0.39 0.34 0.89 3.1E-2 0.28 0.28 0.27 0.28 0.28 0.27 Fe mg k g - 1 1.88 0.44 0.37 100 37.7 1.47 2.20 3.97 0 1.76 47 55 52 47 50 47 PH 0.82 0.38 0.56 61.1 34.5 16.2** 48 52 47 48 52 49 Cu mg kg-1 Fe 1.18 0.27 0.41 83.6 34.3 5.69* 47 53 48 47 52 48 2.47 1.96 0.52 0.69 0.36 1.5E-2 2.79 9.34* 0.11 0.11 11 11 10 12 11 11 XC 1.08 4.83* 0.77 0.54 0.42 7.46* 11 11 11 11 11 11 Mn mg kg-1 Cu 0.52 6.81* 0.98 0.57 0.57 5.91* 11 11 11 11 11 11 2.01 18.2** 0.58 24.9 14.5 3.38 0.20 6.34 7.1E- 2 7.1E-2 36 31 30 35 35 33 PH 0.41 17.9** 1.49 9.53 14.2 38.8** 35 33 33 33 33 32 XC 1.03 15.5** 0.94 20.9 19.7 5.59* 36 32 31 34 34 33 Mn 0.36 32.4** 1.33 17.3 23.0 11.5** 35 33 32 33 34 33 Zn mg k g - 1 — 4.14 2.51 0.53 3.19 1.69 9.91* 0.49 0.39 9.8E-•2 9.83* 32 31 29 29 31 31 * , " S i g n i f i c a n t at 5X and IX, respectively. aMSE; mean square error, used as denominator for calculation of source B and T*B F-values. !_• bMS(T*B); mean square treatment * block, used as denominator of source T F-values. CD cSee text for description of abbreviations. t o APPENDIX 19. 1984 KELP FOLIAR SPRAY ANALYSIS OF VARIANCE AND COVARIANCE CALCULATED MEAN SQUARES, F-VALUES AND TREATMENT MEAN OR ADJUSTED MEAN VALUES FOR BEAN LEAF AND STEM AND POD ELEMENTAL UPTAKE. Source F-values treatment mean separation F-values Measured Soil uptake covar-varlables late Treat-ment (T) Block (B) B*T aMSE bMS (T*B) CvsSl+ S2+M1 +M2+K KvsSl +S2+ M1+M2 S1+S2 vs M1+M2 Sl+Ml vs S2+M2 S1+M2 vs S2+M1 F-value for covariance test of regression equation CTreatment mean or adjusted mean values C Ml M2 SI S2 K 133 127 127 127 153 130 13 13 12 13 15 13 120 120 120 110 130 120 76 79 86 79 89 77 80 72 75 84 94 83 81 75 73 80 91 88 18 19 20 21 22 19 19 19 18 20 22 20 790 780 910 850 1200 860 850 650 710 930 1300 960 800 670 730 900 1300 960 50 49 52 53 57 50 310 240 240 290 310 280 300 250 270 280 300 270 310 240 250 280 310 270 180 170 170 180 190 180 190 160 170 180 190 180 35.7 41.2 44.7 39.0 41.8 36.7 5.1 6.2 6.4 5.8 6.2 5.5 27 32 35 30 31 28 5.9 7.5 8.2 7.0 7.1 6.0 6.0 7.3 7.7 7.2 7.3 6.3 2.9 3.6 3.8 3.5 3.5 3.0 47 72 72 57 63 52 50 57 64 60 67 55 12 14 15 14 14 13 38 40 42 42 43 36 37 42 44 41 42 35 33 41 41 36 39 34 Leaf & stem; N kg ha"} P kg ha" 1 K kg ha" 1 Ca kg ha" 1 Mg kg ha" 1 Fe g ha" 1 Cu g h a - 1 Mn g ha" 1 Zn g h a - 1 Bean pod; N kg ha" 1 P kg ha" 1 K kg ha" 1 Ca kg ha" 1 Mg kg ha; 1 Fe g ha' 1 Cu g h a - 1 Mn g h a - 1 Zn g k g - 1 pH Ca Mg PH Fe PH XC Zn 2.68 1.88 1.52 0.71 1.53 0.57 2.14* 1.22 1.11 2.16 1.70 1.80 1.93 1.74 1.15 0.92 1.20 4.27* 0.77 1.45 3.25 0.28 5.71* 7.24* 8.59** 2.63 0.48 2.49 1.08 13.5** 8.54** 10.9** 0.11 1.30 1.28 1.95 0.62 0.54 1.25 1.75 0.66 1.41 0.47 0.62 0.78 0.69 1.04 1.40 1.54 0.73 1.05 1.83 1.95 165 417 171 240 7.94 5.99 2.6E5 2.0E5 2.1E5 38.3 3051 2279 2671 419 361 2.35-2 3.83 103 225 215 422 5.25 8.51 1.2E5 1.2E5 1.6E5 26.6 3176 3194 4125 309 382 1.8E-2 0.18 0.48 0.82 4.37 0.65 0.99 1.85 0.69 0.36 0.15 0.58 0.84 4.30 4.41 4.52 0.21 0.25 3.63 4.2E-2 1.83 2.38 2.74 1.18 0.18 1.49 2.74 1.27 4.58 2.13 7.9E-2 6.99* 0.53 0.10 2.63 1.18 4.30 4.34 2.64 4.3E-2 3.1E-2 0.50 1.2E-2 0.20 8.6E-3 1.62 6.12* 1.25 33.5 42.1 2.96 2.84 0.88 1.42 1.5E-•2 __ 1.83 5.54* 0.96 0.88 0.84 5.17 2.66 0.61 0.69 2.2E- •2 „ 3.36 6.60* 0.65 22.4 14.6 7.12* 4.82 2.91 1.37 0.55 6.08* 3.46 0.44 1.64 0.73 10.7* 12.8* 5.31 0.94 0.61 pH 2.59 1.06 0.68 1.33 0.91 3.90* 6.14* 0.65 0.29 0.19 8.71* 8.25* 1.86 0.42 0.28 __ 6.07* 3.25 0.40 103 627 12.0* 9.49* 7.79 0.49 0.55 PH 2.75 0.56 0.63 159 101 2.59 6.87* 0.70 4.29 3.02 7.65* 4.20 0.13 0.69 0.30 — 0.77 3.66 0.98 62.6 61.5 0.74 2.50-2 0.32* 0.27 2.7E- •3 pH 1.26 1.20 1.08 51.5 55.9 1.68 7.36* 1.37 29.8 41.1 3.45 3.42 1.95 0.40 0.19-•3 35.3** 18.6** 8.78** 8.91** 7.06* 9.12** 4.40* 4.80** 6.47** 15.3** 6.18** * , " S i g n i f i c a n t at 5% and 1%, respectively. aMSE; mean square error, used as denominator for calculation of source B and T*B F-values. bMS(T*B); mean square treatment * block, used as denominator of source T F-values. cSee text for description of abbreviations. 191 APPENDIX 20. 1983 AND 1984 KELP FOLIAR SPRAY FIELD TRIALS SOIL ANALYSIS OF BLOCK AND PLOT COMPOSITES AT SEEDING AND HARVEST. 1983 Field Trial 1984 Field Trial Mean of Grand mean Mean of Grand mean block of plot block of plot Measured composite composite composite composite soi 1 samples samples samples samples variable at seeding at harvest at seeding at harvest n = 4 n = 24 n = 2 n = 36 pH (2:1 water:soil) 4.6 4.6 5.6 5.6 C % 2.7 2.6 1.9 1.8 N % 0.28 0.29 0.21 0.20 Available P mg kg - 1 60 59 50 50 Available cations (mg kg - 1 ) ; K 280 220 220 150 Ca 970 920 1500 1300 Mg 140 130 260 200 Fe 170 170 160 160 Cu 10 10 9.5 9.7 Mn 54 46 54 48 Zn 5.0 4.4 5.5 5.3 APPENDIX 21. KELP FOLIAR SPRAY GREENHOUSE EXPERIMENT: SOIL MOISTURE * KELP FOLIAR SPRAY ANALYSIS OF VARIANCE CALCULATED aMSE AND F-VALUES FOR PLANT GROWTH RESPONSES.  Mean Separation F-Values Source F- values "Soil Moisture F o l i a r Spray Measured uptake variables Block (B) So i l F o l i a r Moisture spray (6) (S) e * s e*s*B "MSE FC vs D+W D vs W C vs K + S K vs S Soil Moisture * F o l i a r Spray C v s K + S C v s K + S K v s S K v s S * * * « FC vs D + W D vs W FC vs D + W D vs W Harvest I; Day 37: Yields (g pot" 1) Fresh wt shoot 0.15 26.2** 4.27* 0.93 2.45* 103 1.18 51.1** 8.51** 3.7E-2 1.72 0.42 1.28 0.31 Dry wt leaf 2.34 18.0** 5.99** 4.42** 2.41* 0.69 1.5E-2 36.0** 11.1** 0.84 6.86* 4.56* 4.52* 1.75 Ory wt stem 7.4E-3 11.9** 7.83** 1.66 2.42* 0.22 0.62 23.3** 14.1** 1.50 1.34 3.12 1.84 0.32 Dry wt root 7.5E-3 3.47* 6.45** 1.96 0.69 0.31 1.95 4.99* 12.7** 0.11 0.24 2.38 4.36* 0.86 Dry wt shoot 1.18 18.0** 7.72** 3.76* 2.77* 1.47 5.0E-2 36.1** 14.2** 1.23 5.10* 4.68* 3.96 1.28 Dry wt plant 1.16 18.3** 12.1** 5.18** 2.56* 1.95 0.69 36.0** 23.6** 0.68 5.09* 7.14* 6.63* 1.85 Leaf Area (cm2 pot - 1) 4.3E-3 13.4** 1.11 0.44 2.37* 1.5E-7 1.56 25.3** 2.16 7.7E-2 0.53 0.53 0.69 6.2E-3 LAR (cm2 g"1) 1.11 3.90* 3.46* 1.28 0.65 452 6.29* 1.51 5.96* 0.97 1.28 1.97 0.86 0.99 SLA (cm2 g"1) 3.18 1.56 1.99 1.67 0.49 1499 2.97 0.15 2.75 1.23 3.18 1.30 0.80 1.41 Nodule rating 1.8E-2 10.6** 0.40 0.87 0.36 0.35 1.0E-3 21.3** 0.69 0.11 1.00 2.24 0.22 1.8E-2 Height (cm) 0.71 12.1** 1.38 0.65 1.33 32.6 0.76 24.1** 1.57 1.19 8.5E-2 6.6E-2 1.93 0.53 9 Nodes 7.90* 7.3E-2 0.29 0.14 0.49 0.18 0.10 3.6E-2 0.43 0.14 1.2E-11 7.3E-2 0.29 0.21 Fresh/dry wt rati o 5.63* 6.57** 3.00* 1.72 0.39 0.25 7.09* 6.05* 2.22 3.78 2.92 3.79 0.77 0.21 Shoot/root rat i o 5.0E-2 2.00 2.30 0.31 0.67 0.71 2.07 1.93 3.65 0.94 2.6E-2 0.67 0.40 0.16 Harvest I I , Day 62: Yields (g pot-i) Fresh wt shoot Dry wt leaf & stem Dry wt leaf Dry wt stem Dry wt root Dry wt shoot Dry wt beans Dry wt plant Leaf Area (cm 2 p o t - 1 ] LAR (cm2 g"1) SLA (cm2 g"1) Nodule Rating Height (cm) 9 Nodes Fresh/dry wt rati o Shoot/root rat i o 9 beans > 6 cm 0.37 7.86** 4.42* 3.05* 1.76 1351 13.7** 1.98 2.61 6.23* 1.85 3.83 0.67 6.34* 6.3E-2 6.16** 3.67* 1.54 1.16 6.97 11.6** 0.72 1.16 6.18* 0.45 2.08 2.3E-4 3.64 0.25 5.74** 3.00 1.32 0.72 2.59 9.63** 1.85 1.02 4.98* 0.68 1.28 0.57 2.74 1.2E-2 4.58* 2.94 1.64 1.36 1.74 9.17** 1.9E-3 0.85 5.03* 0.11 2.28 0.91 3.25 0.34 1.22 3.96* 2.43 1.09 1.44 0.33 2.10 2.21 5.70* 4.69* 1.37 0.15 3.50 0.28 5.88** 3.92* 2.43 1.71 48.3 10.9** 0.83 1.80 6.03* 1.06 2.25 0.31 6.08* 0.82 4.66* 3.34* 2.57 2.03 22.7 8.59** 0.73 1.85 4.84* 1.27 1.92 0.68 6.40* 0.33 4.54* 3.98* 2.14 1.60 57.0 8.71** 0.37 1.00 6.96* 0.36 1.43 0.20 6.58* 0.12 4.44* 2.57 2.71* 1.84 3.3E-5 8.41** 0.48 0.26 4.88* 5.0E-2 5.64* 0.13 5.03* 2.2E-5 0.36 0.42 2.45 0.92 32.8 0.41 0.31 0.85 3.3E-5 0.47 9.12** 0.12 7.1E-2 1.01 0.39 0.17 1.56 2.01 1552 6.9E-2 0.73 0.31 2.1E-2 0.16 4.24* 0.44 1.38 0.13 0.58 1.52 2.08 1.39 0.35 1.13 2.8E-2 0.93 2.11 4.2E-2 1.13 3.9E-2 7.12* 1.2E-2 9.46** 0.50 0.81 0.77 44.7 0.44 18.4** 0.11 0.89 4.5E-2 3.04 0.12 5.9E-2 2.61 0.49 3.49* 0.96 0.58 0.31 0.29 0.68 6.20* 0.78 0.73 2.19 9.8E-2 0.81 2.2E-2 0.44 0.43 0.42 0.72 8.0E-2 0.19 0.69 8.6E-2 0.78 5.2E-2 0.50 0.47 0.67 0.51 10.2** 1.79 4.52** 1.36 2.31 12.0** 8.45** 3.42 0.15 12.9** 4.62* 0.20 0.28 2.07 8.68** 2.87 3.40* 1.22 10.2 17.3** 2.6E-3 2.24 3.49 4.58* 3.78 2.73 2.52 * , " S i g n i f i c a n t at 5% and IX l e v e l , respectively. aMSE; Mean square error, used as denominator for calculation of source F-values. DSee text for description of abbreviations. to ro APPENDIX 22. KELP FOLIAR SPRAY GREENHOUSE EXPERIMENT: SOIL MOISTURE * KELP FOLIAR SPRAY TREATMENT MEAN VALUES FOR BEAN GROWTH AND DEVELOPMENT AND SIGNIFICANT CONTRASTS. Mean Growth or Development Values Measured aSo1l Moisture FC Si g n i f i c a n t treatment contrasts (From Appendix 21) growth variable C S K C aFol1ar Sprays S K C S K Soil Moisture Harvest I; Day 37: Yields (g pot" 1) Fresh wt shoot 73.6 82.7 82.4 86.4 92.6 86.5 94.7 106 110 D vs W Dry wt leaf 6.44 6.95 7.17 7.72 7.92 7.34 7.27 8.59 9.71 D vs W Dry wt stem 3.44 3.66 3.89 3.96 4.31 4.20 3.81 4.51 4.96 D vs W Dry wt root 2.51 2.84 2.84 2.85 3.63 3.01 2.52 3.25 3.68 D vs W Dry wt shoot 9.69 10.6 11.1 11.7 12.2 11.5 11.1 13.1 14.7 D vs W Dry wt plant 12.4 13.4 13.9 14.5 15.9 14.5 13.4 16.3 18.4 D vs W Leaf area 2540 2640 2690 . 2780 2930 2730 3070 3380 3410 0 vs W (cm2 pot _ 1 ) LAR (cm2 g-1) 204 196 193 190 184 186 227 206 186 FC vs D + W SLA (cm2 g-1) 395 380 376 361 369 371 421 393 352 Nodule rating 1.5 1.4 1.5 2.0 1.8 2.0 2.0 2.6 2.7 D vs W Height (cm) 41 41 43 44 44 50 50 53 51 D vs W Fresh/dry wt rati o 7.68 7.81 7.47 7.38 7.58 7.46 8.56 8.09 7.56 FC vs D + W 0 vs W Shoot/root rat i o 4.10 3.76 4.05 4.16 3.38 3.90 4.82 4.13 4.14 # Nodes 6.7 6.5 6.6 6.6 6.4 6.6 6.6 6.6 6.5 F o l i a r Spray S o i l Moisture * F o l i a r Spray C vs K + S C vs K + S C vs K + S * FC vs D + W c vs K + S * D vs W K vs s * FC vs D + W K vs s * FC vs D + W c vs K + S * FC vs D + w C vs K + S * D vs W C vs K + S * FC vs D + w C vs K + S * D vs W K vs S * FC vs D + W Harvest I I ; Day 62: Yields (g pot-l) Fresh wt shoot Dry wt leaf & stem Dry wt leaf Dry wt stem Dry wt roots Dry wt shoot Dry wt beans Dry wt plant Leaf area (cm2 pot;l) LAR (cm2 g-}) SLA (cm 2 g-1) Nodule rating Height (cm) Fresh/dry wt rati o Shoot/root rat i o # beans > I nodes 6 cm 195 253 238 16.8 20.2 19.4 8.47 9.94 9.76 8.30 9.29 9.60 6.31 4.68 4.83 33.2 42.2 40.0 16.4 22.9 20.6 39.5 46.9 44.0 2650 3330 3180 67.2 71.1 70.9 312 339 324 2.0 2.2 1.9 47 49 51 5.92 6.00 5.97 5.64 9.07 8.38 18.8 24.5 23.2 8.5 8.1 8.5 262 236 281 209 182 243 FC vs 0 + W K vs S 20.6 29.6 21.8 17.8 15.5 19.8 FC vs D + w K vs S 10.5 9.56 11.3 8.60 7.69 9.69 FC vs D + w K vs S 10.1 10.1 10.5 9.22 7.83 10.1 FC vs D + w K vs S 5.00 5.18 5.91 6.22 4.68 6.66 K vs S 44.2 40.2 47.7 36.0 30.6 42.3 FC vs D + w K vs S 23.4 20.7 25.9 18.2 15.1 22.6 FC vs D + w K vs S 49.2 45.4 53.6 42.2 35.3 49.0 FC vs D + w K vs S 3550 3220 3740 3160 2340 3250 FC vs D + w K vs S 70.2 327 2.3 54 5.93 9.43 27.0 8.7 70.8 334 2.1 52 5.87 7.94 23.3 8.4 69.8 320 2.3 53 5.88 8.07 27.8 8.5 74.3 362 2.4 62 5.94 5.70 21.8 9.0 65.3 311 1.5 55 5.97 6.49 21.0 8.2 66.4 335 2.4 59 5.75 6.46 23.3 8.2 0 vs W FC vs D + W D vsW FC vs D + W C vs K + S K vs S * D vs W C vs K + S * FC vs D K vs S * 0 VS W K vs s * D vs W K vs s * D vs W C vs K vs S * D vs W K vs s * 0 vs W C vs K + S * D vs W C vs K + S * D vs W K vs S * D vs W C vs K + S * FC vs D C vs K + S * D vs W C vs K + S * FC vs D + w + w + w t o a See text for description of abbreviations. APPENDIX 23: KELP FOLIAR SPRAY GREENHOUSE EXPERIMENT: & STEM SOIL MOISTURE * KELP FOLIAR SPRAY ANALYSIS OF VARIANCE CALCULATED aMSE AND F-VALUES FOR LEAF AND BEAN POD ELEMENTAL CONCENTRATION  Mean Separation F-Values Source F-values Measured uptake variables Block (B) Soil Moisture (6)  Foliar spray (S) e*s e*s*B MSE Soil Moisture Foliar Spray FC vs D+W D vs W C vs S K + S K vs S "So11 Moisture « Foliar Spray CvsK + S CvsK + S K v s S K v s S * * * » FC vs D + W D vs W FC V S D + W D vs W Harvest I; Day 37 Leaf + NX P» Kt Cat Mg% Fe mg kg Cu mg kg Harvest II - Day 62: Leaf + stem; NX PX KX CaX MgX Fe mg kg - 1 Cu mg kg - 1 Mn mg kg"} Zn mg kg"1 Bean pod; NX PX KX CaX MgX Fe mg kg - 1 Cu mg kg - 1 Mn mg kg - 1 5.68* 15.3** 0.15 1.93 1.77 6.9E-2 1.75 28.8** 0.28 3.1E-2 5.00** 4.0E-2 0.12 2.55 0.89 1.38 0.51 2.04 0.34 1.6E-3 2.60 0.17 0.37 0.65 0.37 4.14* 3.34 0.32 2.29 2.98 2.26 2.73* 0.45 5.8E-2 0.83 5.13* 3.32 1.20 8.34** 1.04 3.96 1.59 0.33 1.90 3.20 1.12 0.41 2.0E-2 1.83 1.98 2.42 3.97 0.58 0.24 0.68 2.97 0.19 4.30* 2.52 2.51 0.31 1.4E-3 2.53 6.07* 0.64 4.40* 4.59* 0.75 1.95 2.76 r 1 7.6E-4 2.12 1.77 0.26 0.45 2431 0.27 3.97 1.23 2.31 6.8E-3 2.2E-3 0.51 0.55 r 1 3.7E-2 8.62** 4.62* 0.80 0.47 2.00 3.89 13.3** 4.74* 4.50* 1.44 0.17 0.56 1.02 r 1 6.4E-3 2.23 1.28 1.17 0.79 1146 2.46 1.99 0.61 1.94 0.93 I.2E-3 2.30 1.45 - i 1.41 45.2** 0.62 1.30 0.44 19.9 8.21** 82.3** 0.98 0.27 0.12 0.40 2.59 2.00 Zn mg kg' 2.85 2.80 0.36 6.05* 0.10 4.73* 6.08* 4.76* 5.7E-2 2.59 1.02 0.24 1.63 0.38 5.40* 5.1E-2 6.2E-2 0.19 3.0E-2 2.30 11.4** 0.43 1.17 7.56** 9.75** 15.5** 16.0** 9.7E-3 4.35* 2.00. 1.69 2.52 12.2** 9.90** 8.25** 13.5** 0.97 1.05 6.59** 4.05* 1.12 0.50 74.1** 3.36* 0.36 2.95 1.10 8.94** 7.16** 3.53* 40.9** 14.2** 2.24 1.29 1.82 0.60 0.52 2.18 1.60 1.83 1.64 0.70 1.77 2.12 2.18 1.68 1.76 3.44* 3.25* 1.33 1.03 2.82* 0.71 1.16 0.58 1.99 0.88 0.47 0.85 0.83 1.25 1.21 1.61 1.84 2.37* 0.83 2.48* 1.27 0.67 2.79* 0.22 4.9E-4 4.1E-2 5.9E-2 2.2E-3 625 0.68 621 8.00 0.10 3.9E-4 6.2E-2 9.7E-3 2.3E-3 137 1.42 18.8 9.68 9.7E-3 4.61* 6.78* 0.39 1.1E-2 4.47* 9.13** 4.10 19.2** 1.5E-2 2.70 2.03 2.76 2.51 2.43 3.43 1.76 9.56** 5.1E-2 6.8E-3 16.1** 0.46 2.33 10.6** 10.3** 26.9** 12.9** 4.5E-2 6.00* 1.96 0.62 2.52 22.0** 16.3** 14.7** 17.4** 5.1E-2 1.56 1.88 0.97 2.00 0.37 62.4** 1.15 0.66 8.9E-6 0.52 '-3.28 3.71 0.73 31.2** 14.3** 3.71 2.11 1.90 0.54 11.3** 7.12* 0.24 0.63 85.7** 5.56* 5.5E-2 5.90* 1.69 11.6** 8.60** 6.32* 50.6** 14.2** 0.77 0.48 0.75 2.14 7.1E-2 2.90 4.40* 3.32 3.57 1.58 3.25 6.8E-2 3.0E-2 9.0E-2 7.2E-2 3.3E-4 4.62* 5.1E-2 8.8E-3 0.25 1.21 0.22 5.3E-2 0.67 2.5E-2 0.10 2.45 2.8E-2 3.21 1.03 4.28* 0.98 0.49 2.64 2.28 0.97 3.40 6.82* 0.36 1.0E-2 1.3E-2 2.1E-2 1.99 0.97 0.50 5.7E-3 0.50 1.5E-2 2.05 2.0E-2 3.1E-2 0.27 3.65 1.40 0.14 7.0E-2 *,"Significant at 5X and IX aMean square error. bSee text for description level, respectively, of abbreviations. 4.97* 5.2E-2 1.97 5.12* 1.6E-2 2.93 6.0E-2 1.20 0.13 7.37* 2.37 5.63* 6.44* 10.8** 2.46 2.92 0.56 4.13* APPENDIX 24. KELP FOLIAR SPRAY GREENHOUSE EXPERIMENT: SOIL MOISTURE * KELP FOLIAR SPRAY CALCULATED MEAN VALUES AND SIGNIFICANT CONTRASTS FOR LEAF AND BEAN POD ELEMENTAL CONCENTRATIONS Mean Concentration Values aSo1l Moisture FX Significant treatment contrasts (From Appendix 23) Measured concentration aFol1ar Sprays variable C S K C S K Harvest I; Day 37: Leaf 4 stem N% 2.99 2.78 2.91 2.42 2.60 2.63 P% 0.39 0.42 0.40 0.38 0.37 0.40 K% 3.3 3.1 3.2 2.9 2.9 3.3 Cat 1.3 1.40 1.4 1.3 1.3 1.4 MgX 0.42 0.42 0.41 0.39 0.41 0.46 Fe mg kg" J 140 170 140 160 200 160. Cu mg kg-1 6.5 7.2 7.3 6.0 6.8 8.3 Mn mg kg-1 140 160 110 160 130 140 Zn mg kg-1 32 36 32 35 35 39 Harvest II; Day 62: Leaf & stem NX 1.70 2.14 1.86 1.91 1.67 2.02 PX 0.20 0.21 0.21 0.20 0.19 0.20 K% 1.3 1.3 1.2 1.3 1.2 1.1 CaX 1.5 1.7 1.7 1.7 1.5 1.7 MgX . 0.30 0.29 0.30 0.35 0.31 0.27 Fe mg kg-1 140 170 150 160 160 140 Cu mg kg"1 2.0 3.5 5.8 2.7 2.5 5.3 Mn mg kg-1 110 120 130 120 100 120 Zn mg kg-1 21 20 20 20 17 18 Bean pods 2.02 2.26 NX 2.05 2.22 2.14 2.17 PX 0.29 0.26 0.27 0.27 0.28 0.26 KX 1.9 1.7 1.6 1.8 1.8 1.5 CaX 0.44 0.34 0.35 0.38 0.37 0.27 MgX 0.27 0.22 0.24 0.24 0.24 0.21 Fe mg kg-1 87 82 52 97 87 48 Cu mg kg-1 1.7 2.0 4.7 2.0 3.0 3.8 Mn mg kg-1 35 28 31 32 29 29 Zn mg kg-1 21 16 17 17 18 17 Soil Moisture Foliar Spray Soil Moisture * Foliar Spray 2.54 2.46 2.25 D vs W 0.43 0.41 0.37 3.3 3.0 2.8 D vs W 1.4 1.4 1.4 0.46 0.42 0.46 D vs W 170 190 190 8.5 8.3 9.5 D vs W 120 130 110 47 46 48 FC vs 1 D vs W 1.98 1.54 2.13 0.20 0.21 0.22 FC vs D + W 1.6 1.7 1.3 FC vs D + W D vs W 1.6 1.5 1.9 0.32 0.32 0.33 170 180 190 FC vs D + W D vs W 3.5 4.0 6.5 FC vs D + W D vs W 69 66 96 D vs W 22 25 24 FC vs D + W D vs W 2.21 1.80 2.42 0.28 0.30 0.29 D vs W 1.9 2.1 1.6 0.43 0.48 0.29 0.26 0.33 0.22 97 97 83 D vs H 3.8 4.2 5.2 D vs W 25 26 26 D vs W 22 25 21 FC vs D + W D vs W K vs S C vs K + S K vs S K vs S K vs S C vs K + S K vs S K vs S K vs S K vs S K vs S K vs S C V S K + S K vs S C vs K + S K vs S C vs K + S * FC vs D + W CvsK+S*DvsW C vs K + S * FC vs D + W C vs K + S * FC vs D + W K vs S * D vs W K vs S * D vs W C vs K + S * FC vs D + W K vs S * D vs W CvsK+S*DvsW K vs S * D vs W K vs S * D vs W K vs S * D vs w C vs K + S * FC vs D + W CvsK+S*DvsW K vs S * D vs W co o i aSee text for description of abbreviations. APPENDIX 25. KELP FOLIAR SPRAY GREENHOUSE EXPERIMENT: SOIL MOISTURE * KELP FOLIAR SPRAY ANALYSIS OF VARIANCE CALCULATED aMSE AND F-VALUES FOR LEAF & STEM AND BEAN POD ELEMENTAL UPTAKE - HARVEST I AND I I . Source F- values Measured uptake variables Block Soil Moisture m F o l i a r spray (S) Mean Separation F-Values "S o i l Moisture DFol1ar Spray B*S e*s*B MSE FC vs D+w D vs W C vs K + 5 K vs S Soil Moisture and Fo l i a r Spray C v s K + S C v s K + S K v s S K vs S FC vs D + W D vs W FC vs D + w D vs W Harvest I; Day 37: N 0.30 0.64 2.85 1.35 2.37* 1608 7.7E-2 1.20 5.19* 0.51 6.3E-3 1.91 1.99 1.48 P 9.2E-2 9.22** 1.48 0.24 1.31 62.5 0.38 18.0** 2.80 0.15 0.74 0.17 1.7E--2 4.3E-2 K 3.2E-2 6.02** 2.65 0.45 1.76 2475 7.3E-4 12.0** 2.83 2.46 2.9E-5 1.34 0.14 0.32 Ca 1.05 13.2** 7.22** 1.32 1.42 777 0.22 26.1** 8.58** 5.86* 0.42 2.25 0.55 2.08 Mg 0.38 18.2** 7.14** 1.12 1.20 58.0 0.48 35.9** 8.69** 5.58* 0.12 1.69 0.61 2.07 Fe 0.10 7.67** 2.40 0.95 0.64 0.42 0.18 15.1** 4.07 0.73 0.34 0.88 1.90 0.70 Cu 0.39 19.7** 11.6** 1.18 1.08 3.7E-4 2.35 37.0** 15.2** 8.00** 1.2E-3 1.94 0.29 2.48 Mn 0.20 2.08 0.31 1.05 1.42 0.19 2.88 1.28 0.12 0.51 2.14 0.70 0.45 0.91 Zn 2.05 53.2** 5.08 1.45 1.15 6.2E-3 4.21* 102** 8.38** 1.77 1.36 2.10 0.16 2.18 Harvest I I ; Day 62: Leaf & stem (mg po t - 1 ) N 0.98 0.88 1.88 1.94 0.82 1.4E-4 1.65 0.12 0.26 3.49 0.75 1.72 0.30 5.00* P 0.53 0.73 3.26* 1.01 1.40 55.4 1.22 0.24 1.94 4.57* 1.50 0.51 5.5E-•3 2.03 K 1.38 6.67** 0.55 0.88 1.06 842 0.95 12.3** 7.9E-2 1.03 0.48 1.56 0.68 0.81 Ca 1.23 1.04 4.92* 2.46 1.49 5605 2.03 6.4E-2 1.37 8.47** 2.20 1.91 3.0E-•2 5.69* Mg 2.6E-2 3.27* 1.03 2.54 0.99 126 6.17* 0.36 0.24 1.82 5.88* 0.65 1.52 2.13 Fe 2.68 1.64 0.86 2.76 0.88 0.45 0.26 3.01 0.67 1.04 2.63 0.66 0.94 2.42 Cu 3.49 3.12 73.1* 1.50 1.24 3.3E-4 1.00 5.23* 53.9* 92.3* 1.34 2.21 0.33 2.12 Mn 2.33 14.4** 4.93* 1.21 0.84 0.32 9.62** 19.2** 2.00 7.87** 1.69 0.75 6.4E- 2 2.34 Zn 0.17 2.23 3.17 1.94 0.46 4.2E-3 0.46 4.01 2.1E-2 4.33 3.42 4.7E-2 3.2E-2 2.67 Bean pod (mg p o t - 1 ) : N 1.29 1.73 2.94 2.28 1.37 2.3E-4 3.35 0.12 0.71 5.16* 0.65 1.43 0.38 6.67* P 2.50 4.77* 3.67* 2.58 2.32* 124 9.48* 6.5E-2 2.01 5.32* 2.05 0.79 5.7E- 7.44** K 1.70 7.97** 0.37 3.26 2.46* 2.8E-3 15.3** 0.57 3.7E-3 0.73 4.94* 1.77 0.17 6.14* Ca 0.17 7.45** 1.68 3.79* 0.96 84.8 12.0** 2.89 2.23 1.13 11.6** 1.94 4.7E-2 1.48 Mg 0.65 1.70 0.52 0.94 1.86 150 3.35 5.7E-2 0.94 9.3E-2 2.50 1.6E-3 1.26 4.4E-5 Fe 6.67* 2.60 4.40* 5.64** 1.31 0.17 2.96 2.24 4.11* 4.70* 8.66** 0.30 1.08 12.5** Cu 7.4E-2 6.57** 47.2** 0.72 0.84 3.9E-4 0.18 12.9** 38.8** 55.5** 9.4E-2 1.85 0.42 0.51 Mn 1.98 18.2** 5.88** 2.39 1.51 1.3E-2 22.8** 13.6** 0.27 11.4** 3.57 0.13 0.80 8.06* Zn 1.54 4.02* 6.41** 2.38 2.33* 4.1E-3 3.68 4.36* 0.72 12.1** 2.01 0.14 0.50 6.87* * , " S i g n i f i c a n t at 5% and IX l e v e l , respectively. aMSE; Mean square error. DSee text for description of abbreviations. APPENDIX 26. KELP FOLIAR SPRAY GREENHOUSE EXPERIMENT: SOIL MOISTURE * KELP FOLIAR SPRAY TREATMENT MEAN VALUES AND SIGNIFICANT CONTRASTS FOR LEAF & STEM AND BEAN POD ELEMENTAL UPTAKE. Mean Uptake Values aSo1l Moisture Signifi c a n t treatment contrasts D FC W (From Appendix 25)  Measured uptake variable C S K C aFo11ar Sprays S K C S K Soil Moisture Fo l i a r Sprav S o i l Moisture * F o l i a r Sprav Harvest I; Day 37: . Leaf & stem (mg pot" 1) N 292 300 321 284 318 301 281 325 329 C vs K + S P 39 42 44 45 46 46 48 54 55 D vs W K 330 310 360 350 360 380 360 400 420 D vs W Ca 130 140 150 150 160 170 160 180 230 D vs W C vs K + S K vs S Mg 41 43 46 46 49 53 51 56 68 D vs W C vs K + S K vs S Fe 1.4 1.8 1.6 1.9 2.5 1.8 2.0 2.5 2.8 D vs W Cu 6.5E-2 7.3E-2 8.1E-2 7.0E-2 8.5E-2 9.8E-2 9.1E-2 0.11 0.14 D vs H C vs K + S K vs S Mn 1.4 1.6 1.2 1.8 1.6 1.6 1.4 1.7 1.7 Zn 0.31 0.36 0.36 0.41 0.43 0.45 0.53 0.61 0.70 ' FC VS D + H C vs K + S D vs W Harvest I I ; Day 62: Leaf & stem (mg pot* 1) N 293 412 362 410 333 437 353 253 420 K vs S * D vs W P 34 40 41 41 38 43 35 34 43 K vs S K 220 240 230 260 260 240 270 260 270 D vs W Ca 250 340 330 350 290 370 300 240 390 K vs S K vs S * D vs W Mg 50 56 58 72 60 59 56 50 65 FC vs 0 + W C vs K + S * FC vs D + W Fe 2.4 3.2 2.8 3.3 3.1 3.0 3.1 2.7 3.8 K vs S * 0 vs W Cu 3.6E-2 6.6E-2 0.11 5.3E-2 5.2E-2 0.11 6.3E-2 6.8E-2 0.13 D vs H C vs K + S K vs S Mn 1.9 2.4 2.5 2.4 2.0 2.6 1.3 1.0 1.9 FC vs D + W K vs S D vs W Zn 0.35 _ _ 0.37 0.38 0.42 0.33 0.39 0.38 0.38 0.37 Bean pods (mg p o t - 1 ) 423 292 548 N 354 515 447 520 427 587 K vs S K vs S * D vs W P 46 59 55 64 57 67 50 44 64 FC vs D + W K vs S K vs S * D vs W K 300 380 330 420 360 390 320 290 360 FC vs D + W C vs K + S * FC vs D + W K vs S * D vs W Ca 66 77 69 88 73 70 67 64 65 FC vs D + W C vs K + S * FC vs D + W Mg 41 50 48 56 48 56 42 51 49 Fe 1.4 1.9 1.1 2.2 1.7 1.2 1.7 1.4 1.8 C vs K + S C vs K + S * FC vs D + W K vs S K vs S * D vs W Cu 3.1E-2 4.5E-2 9.1E-2 4.5E-2 5.6E-2 0.10 5.8E-2 5.6E-2 0.11 D vs W C vs K + S K vs S Mn 0.55 0.63 0.63 0.74 0.58 0.76 0.43 0.37 0.58 FC vs 0 + W K vs S K vs S * D vs W D vs W Zn 0.33 0.35 0.35 0.42 0.35 0.44 0.36 0.34 0.47 D vs W K vs S K vs S * D vs W co aSee text for description of abbreviations. 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0098239/manifest

Comment

Related Items