Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The effect of electrical stimulation on some parameters of postmortem avian muscle Sundeen, Garfield Byron 1987

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1988_A1 S96.pdf [ 9.25MB ]
Metadata
JSON: 831-1.0098194.json
JSON-LD: 831-1.0098194-ld.json
RDF/XML (Pretty): 831-1.0098194-rdf.xml
RDF/JSON: 831-1.0098194-rdf.json
Turtle: 831-1.0098194-turtle.txt
N-Triples: 831-1.0098194-rdf-ntriples.txt
Original Record: 831-1.0098194-source.json
Full Text
831-1.0098194-fulltext.txt
Citation
831-1.0098194.ris

Full Text

THE EFFECT OF ELECTRICAL STIMULATION ON SOME PARAMETERS OF POSTMORTEM AVIAN MUSCLE By GARFIELD BYRON SUNDEEN B.Sc. (Agr..), The U n i v e r s i t y of B r i t i s h C o l u m b i a , 1973 M . S c , The U n i v e r s i t y of B r i t i s h C o l u m b i a , 1978 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY i n THE FACULTY OF GRADUATE STUDIES (Department of Food S c i e n c e ) We a c c e p t t h i s t h e s i s as c o n f o r m i n g t o the r e q u i r e d s t a n d a r d THE UNIVERSITY OF BRITISH COLUMBIA 1987 © G a r f i e l d Byron Sundeen, 1987 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department The University of British Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 DE-6(3/81) i i ABSTRACT Four s t u d i e s were c o n d u c t e d to a s s e s s the use of e l e c t r i c a l s h o ck on s e v e r a l p a r a m e t e r s of a v i a n m u s c l e t h a t c o n t r i b u t e to i t s u l t i m a t e q u a l i t y . In the p r e l i m i n a r y s t u d y , the e f f e c t of p r e s l a u g h t e r e l e c t r i c s t u n n i n g on the t e n d e r n e s s of b r o i l e r s p r o c e s s e d and h a n d l e d i n a s t a n d a r d c o m m e r c i a l manner was a s s e s s e d . The t e n d e r n e s s of cooked b r e a s t m uscle samples was e v a l u a t e d by Kramer s i n g l e b l a d e s h e a r f o r c e v a l u e s . T h i s e v a l u a t i o n i n d i c a t e d t h a t samples from the e l e c t r i c a l l y s t u n n e d b i r d s were s i g n i f i c a n t l y more t e n d e r than t h o s e f r o m the no s t u n c o n t r o l s (p< 0 . 0 1 ) . The e f f e c t s of v a r y i n g the d u r a t i o n , f r e q u e n c y and v o l t a g e of a p o s t - e x s a n g u i n a t i o n s t i m u l a t o r y c u r r e n t on the d e v e l o p m e n t of r i g o r m o r t i s and the postmortem g l y c o l y t i c r a t e were i n v e s t i g a t e d i n Study One. The pH of m u s c l e homogenates at v a r i o u s postmortem s a m p l i n g t i m e s was used as an i n d e x of g l y c o l y s i s whereas r i g o r d e v e lopment was m o n i t o r e d by t h e i s o m e t r i c t e n s i o n t e c h n i q u e . Postmortem g l y c o l y s i s i n B i c e p s  f e m o r i s and P e c t o r a l i s maj or samples was a c c e l e r a t e d by e l e c t r i c a l s t i m u l a t i o n , as was the time c o u r s e of r i g o r d e v e l o p m e n t . P e c t o r a l i s major samples from t r e a t e d c a r c a s s e s r e q u i r e d s i g n i f i c a n t l y l e s s time to d e v e l o p maximum t e n s i o n i i i t han c o n t r o l samples (p<0.05). A l t h o u g h B i c e p s f e m o r i s samples from s t i m u l a t e d c a r c a s s e s a l s o e x h i b i t e d d e c r e a s e s i n the time r e q u i r e d to a c h i e v e maximum t e n s i o n when compared to c o n t r o l s , t h e s e d i f f e r e n c e s were not s i g n i f i c a n t . P e c t o r a l i s maj or samples f r o m c a r c a s s e s t r e a t e d w i t h 70V f o r 2 m i n u t e s at e i t h e r 40 or 80 p u l s e s / s d e v e l o p e d s i g n i f i c a n t l y l o w e r t e n s i o n than c o n t r o l samples (p<0.05). No s i g n i f i c a n t d i f f e r e n c e s due to the v o l t a g e or t o t a l number of p u l s e s were o b s e r v e d f o r e i t h e r the time r e q u i r e d to a c h i e v e maximum t e n s i o n or the maximum t e n s i o n d e v e l o p e d . The i n f l u e n c e of e l e c t r i c a l s t i m u l a t i o n on the de v e l o p m e n t of r i g o r was f u r t h e r examined i n Study Two. R i g o r d e v e l o p m e n t a g a i n was m o n i t o r e d by the i s o m e t r i c t e n s i o n t e c h n i q u e and changes i n m e t a b o l i t e c o n t e n t s f o r b o t h muscle t y p e s were d e t e r m i n e d by e n z y m a t i c a n a l y t i c a l t e c h n i q u e s . E l e c t r i c a l s t i m u l a t i o n r e d u c e d the time r e q u i r e d by B i c e p s f e m o r i s and P e c t o r a l i s maj or samples to r e a c h maximum t e n s i o n but t h i s d e c r e a s e was o n l y s i g n i f i c a n t f o r the l a t t e r ( p<0.05). The amount of i s o m e t r i c t e n s i o n d e v e l o p e d by b o t h m u s c l e t y p e s was s i m i l a r l y r e d u c e d by e l e c t r i c a l s t i m u l a t i o n . The i n i t i a l g l y c o g e n and ATP c o n t e n t s of b o t h m u s c l e s were r e d u c e d by e l e c t r i c a l s t i m u l a t i o n , as were t h e i r ATP c o n t e n t s a t s u b s e q u e n t s a m p l i n g p e r i o d s . S e v e r a l c o r r e l a t i o n s between the p a r a m e t e r s of i s o m e t r i c t e n s i o n and m e t a b o l i t e c o n t e n t s i v were n o t e d and r e g r e s s i o n e q u a t i o n s were d e v e l o p e d to e x p r e s s the s i g n i f i c a n t r e l a t i o n s h i p s . No s i g n i f i c a n t d i f f e r e n c e s due to e l e c t r i c a l s t i m u l a t i o n i n the r a t e of i s o m e t r i c t e n s i o n r e l e a s e were o b s e r v e d , but P e c t o r a l i s maj or samples from s t i m u l a t e d c a r c a s s e s r e l e a s e d t h e i r d e v e l o p e d t e n s i o n more r a p i d l y than t h e i r r e s p e c t i v e B i c e p s f e m o r i s s a m p l e s . In the f i n a l s t u d y , Study T h r e e , the e f f e c t of e l e c t r i c a l s t i m u l a t i o n on muscle p r o t e o l y t i c a c t i v i t y was a s s e s s e d by two a n a l y t i c a l methods f o r TCA s o l u b l e m a t e r i a l . In a d d i t i o n , changes i n p r o t e i n e x t r a c t a b i l i t y , d i s p e r s i b i l i t y and h y d r o p h o b i c i t y were f o l l o w e d i n c o n t r o l and t r e a t e d samples d u r i n g s t o r a g e f o r one day at 2°C. E l e c t r i c a l s t i m u l a t i o n s i g n i f i c a n t l y r e d u c e d the time r e q u i r e d to r e a c h maximum t e n s i o n (p<0.05) and d e c r e a s e d the maximum t e n s i o n a c h i e v e d f o r P e c t o r a l i s maj or and B i c e p s f e m o r i s muscle s a m p l e s . P e c t o r a l i s maj or samples from t r e a t e d c a r c a s s e s a g a i n r e l e a s e d t h e i r d e v e l o p e d t e n s i o n f a s t e r than t h e i r r e s p e c t i v e B i c e p s f e m o r i s s a m p l e s . When the m u s c l e samples were a n a l y s e d f o r n o n p r o t e i n n i t r o g e n , n e i t h e r measure i n d i c a t e d a s i g n i f i c a n t t r e a t m e n t e f f e c t . In a s i m i l a r manner, n e i t h e r e x t r a c t a b l e p r o t e i n , p r o t e i n d i s p e r s i b i l i t y nor p r o t e i n h y d r o p h o b i c i t y were a f f e c t e d by e l e c t r i c a l s t i m u l a t i o n . TABLE OF CONTENTS Page ABSTRACT TABLE OF CONTENTS LIS T OF TABLES 11 v i i LIST OF FIGURES ACKNOWLEDGEMENTS INTRODUCTION LITERATURE REVIEW x x i 1 3 1 . 1 . 1 1 . 7 1 . 8 E l e c t r i c a l E f f e c t s ort E f f e c t s on E f f e c t s on E f f e c t s on E f f e c t s on E f f e c t s of hot b o n i n g E f f e c t s on p r o p e r t i e s E f f e c t s on s t i m u l a t i o n meat t e n d e r n e s s meat f l a v o u r h e a t r i n g f o r m a t i o n q u a l i t y g r a d e s r e t a i l c a s e l i f e e l e c t r i c a l s t i m u l a t i o n on meat q u a l i t y f u r t h e r m a n u f a c t u r i n g postmortem g l y c o l y s i s an d 2 . 2 , 2, 2, 3, 3, 3, The mechanism of improved meat t e n d e r n e s s The p r e v e n t i o n of c o l d s h o r t e n i n g M y o f i b r i l l a r d i s r u p t i o n I n c r e a s e d p r o t e o l y t i c a c t i v i t y I s o m e t r i c t e n s i o n d e v elopment and p o u l t r y meat q u a l i t y I s o m e t r i c t e n s i o n d e v e l o p m e n t F a c t o r s a f f e c t i n g p o u l t r y meat q u a l i t y Obj e c t i v e s MATERIALS AND METHODS 4.1 P r e l i m i n a r y Study 4.2 S t u d y One 4.3 Study Two 4.4 Study T h r e e 4.5 S t a t i s t i c a l a n a l y s i s RESULTS AND DISCUSSION 5.1 P r e l i m i n a r y Study 5.2 Study One 5 . 3 Study Two 5.4 Study T h r e e 3 3 7 8 8 10 12 15 18 23 23 25 26 35 35 39 42 44 44 45 49 52 56 58 58 59 77 102 v i Page SUMMARY AND CONCLUSIONS 115 LIST OF REFERENCES 117 APPENDIX 1: Home e v a l u a t i o n r a t i n g form 193 APPENDIX 2: T a b l e 25: The e f f e c t of t o t a l number of p u l s e s and v o l t a g e on postmortem pH d e c l i n e 195 APPENDIX 3: C o r r e l a t i o n m a t r i c e s 197 APPENDIX 4: ANOVA Stu d y One 203 APPENDIX 5: ANOVA Study Two 226 v i i L I S T OF TABLES Page T a b l e 1. V o l t a g e , f r e q u e n c y and d u r a t i o n p a r a m e t e r s of the p o s t - e x s a n g u i n a t i o n e l e c t r i c a l shock ( S t u d y One) 47 T a b l e 2. V o l t a g e , f r e q u e n c y and d u r a t i o n p a r a m e t e r s of t h e p o s t - e x s a n g u i n a t i o n e l e c t r i c a l shock ( S t u d y Two) 50 T a b l e 3. The a n a l y s i s of v a r i a n c e models used f o r d a t a a n a l y s i s i n Study One and Study Two 57 T a b l e 4. Mean s c o r e s and s t a n d a r d d e v i a t i o n s f r o m home e v a l u a t i o n of t e n d e r n e s s , j u i c i n e s s and a c c e p t a b i l i t y of l e g s and t h i g h s 59 T a b l e 5. The e f f e c t of e l e c t r i c a l s t i m u l a t i o n on s e v e r a l postmortem p a r a m e t e r s of a v i a n m u scle ( S t u d y One) 68 T a b l e 6. The e f f e c t of v o l t a g e of the p o s t -e x s a n g u i n a t i o n e l e c t r i c a l shock on s e v e r a l postmortem p a r a m e t e r s of a v i a n m u s c l e ( S t u d y One) 70 T a b l e 7. The e f f e c t of t h e t o t a l number of p u l s e s of the p o s t - e x s a n g u i n a t i o n e l e c t r i c a l shock on s e v e r a l postmortem p a r a m e t e r s of a v i a n m u s c l e ( S t u d y .One) 71 T a b l e 8. Duncan's New M u l t i p l e Range A n a l y s i s of t r e a t m e n t means from Study One 72 T a b l e 9. The e f f e c t of e l e c t r i c a l s t i m u l a t i o n on the dev e l o p m e n t of r i g o r m o r t i s i n a v i a n m uscle ( S t u d y Two) 78 T a b l e 10. The e f f e c t of v o l t a g e of the p o s t -e x s a n g u i n a t i o n e l e c t r i c shock on i s o m e t r i c t e n s i o n d e v elopment i n a v i a n m uscle ( S t u d y Two) 79 T a b l e 11. The e f f e c t of the t o t a l number of p u l s e s of the p o s t - e x s a n g u i n a t i o n e l e c t r i c shock on i s o m e t r i c t e n s i o n development i n a v i a n m u s c l e ( S t u d y Two) 80 T a b l e 12. The e f f e c t of g l y c o g e n , ATP muscle ( S t u d y e l e c t r i c a l s t i m u l a t i o n on and HMP c o n t e n t of a v i a n Two ) 81 v i i i T a b l e 13. The e f f e c t of v o l t a g e of the p o s t -e x s a n g u i n a t i o n e l e c t r i c shock on the g l y c o g e n , ATP and HMP c o n t e n t of a v i a n m u scle ( S t u d y Two) 82 T a b l e 14. The e f f e c t of the t o t a l number o f p u l s e s of the p o s t - e x s a n g u i n a t i o n e l e c t r i c shock on the g l y c o g e n , ATP and HMP c o n t e n t of a v i a n muscle ( S t u d y Two) 83 T a b l e 15. Duncan's New M u l t i p l e Range A n a l y s i s of t r e a t m e n t means from Study Two 85 T a b l e 16. Mean d i f f e r e n c e v a l u e s of s e v e r a l postmortem p a r a m e t e r s of a v i a n muscle ( S t u d y Two) 86 T a b l e 17. S t e p w i s e l i n e a r r e g r e s s i o n e q u a t i o n s and t h e i r s i g n i f i c a n c e l e v e l s f o r the p a r a m e t e r s examined i n S t u d y Two 95 T a b l e 18. R e g r e s s i o n l i n e p a r a m e t e r s f o r t e n s i o n r e l e a s e ( d e p e n d e n t v a r i a b l e ) v e r s u s time post-maximum t e n s i o n ( i n d e p e n d e n t v a r i a b l e ) f o r a v i a n m uscle from Study Two 98 T a b l e 19. L i n e c o m p a r i s o n a n a l y s i s f o r the a r c s i n e t r a n s f o r m a t i o n of t e n s i o n r e l e a s e ( d e p e n d e n t v a r i a b l e ) v e r s u s t i m e post-maximum t e n s i o n ( i n d e p e n d e n t v a r i a b l e ) f r o m Study Two 99 T a b l e 20. The e f f e c t of e l e c t r i c a l s t i m u l a t i o n on the de v e l o p m e n t of r i g o r m o r t i s i n a v i a n m u s c l e ( S t u d y T h r e e ) 102 T a b l e 21. R e g r e s s i o n l i n e p a r a m e t e r s f o r t e n s i o n r e l e a s e ( d e p e n d e n t v a r i a b l e ) v e r s u s time post-maximum t e n s i o n ( i n d e p e n d e n t v a r i a b l e ) f o r a v i a n m uscle from Study T h r e e 104 T a b l e 22. L i n e c o m p a r i s o n a n a l y s i s f o r t h e a r c s i n e t r a n s f o r m a t i o n of t e n s i o n r e l e a s e ( d e p e n d e n t v a r i a b l e ) v e r s u s time post-maximum t e n s i o n ( i n d e p e n d e n t v a r i a b l e ) from Study T h r e e 105 T a b l e 23. The e f f e c t of e l e c t r i c a l e x t e n t of p r o t e o l y s i s i n ( S t u d y T h r e e ) s t i m u l a t i o n on the a v i a n m u s c l e 107 i x T a b l e 24. The e f f e c t of e l e c t r i c a l s t i m u l a t i o n on e x t r a c t a b l e p r o t e i n , p r o t e i n d i s p e r s i b i l i t y and p r o t e i n h y d r o p h o b i c i t y i n P e c t o r a l i s  maj or ( S t u d y T h r e e ) 111 T a b l e 25. The e f f e c t of t o t a l number of p u l s e s and v o l t a g e on postmortem pH d e c l i n e 196 T a b l e 26. C o r r e l a t i o n m a t r i x f o r p a r a m e t e r s s t u d i e d f o r the C o n t r o l group from Study Two 198 T a b l e 27. C o r r e l a t i o n m a t r i x f o r p a r a m e t e r s s t u d i e d f o r c a r c a s s e s s h o c k e d wi t h 70V ( 4 0 s - 1 ) f o r 60s ( S t u d y Two) 199 T a b l e 28. C o r r e l a t i o n m a t r i x f o r p a r a m e t e r s s t u d i e d f o r c a r c a s s e s s h o c k e d wi t h 70V ( 4 0 s - 1 ) f or 120s ( S t u d y Two) 200 T a b l e 29. C o r r e l a t i o n m a t r i x f o r p a r a m e t e r s s t u d i e d f o r c a r c a s s e s s h o c k e d w i t h 140V ( 4 0 s ~ l ) f o r 60s ( S t u d y Two) 201 T a b l e 30. C o r r e l a t i o n m a t r i x f o r p a r a m e t e r s s f o r c a r c a s s e s s h o c k e d w i t h 140V (40 120s ( S t u d y Two) t u d i s - l ) ed f o r 202 L I S T OF FIGURES Page F i g u r e 1A. The e f f e c t of e l e c t r i c a l s t i m u l a t i o n on postmortem pH d e c l i n e f o r the B i c e p s  f e m o r i s : the e f f e c t of the t o t a l number of p u l s e s 6 1 F i g u r e IB. The e f f e c t of e l e c t r i c a l s t i m u l a t i o n on postmortem pH d e c l i n e f o r the B i c e p s  f e m o r i s : t h e e f f e c t of v o l t a g e 62 F i g u r e 2A. The e f f e c t of e l e c t r i c a l s t i m u l a t i o n on postmortem pH d e c l i n e f o r the P e c t o r a l i s maj o r ; the e f f e c t of the t o t a l number of p u l s e s 63 F i g u r e 2B. The e f f e c t of e l e c t r i c a l s t i m u l a t i o n on postmortem pH d e c l i n e f o r the P e c t o r a l i s m a j o r : the e f f e c t of v o l t a g e 64 x i ACKNOWLEDGEMENTS The a u t h o r would l i k e to e x p r e s s h i s most s i n c e r e a p p r e c i a t i o n to h i s a d v i s o r , Dr. J . F . R i c h a r d s , P r o f e s s o r , Department of Food S c i e n c e , f o r h i s c o n t i n u e d g u i d a n c e and s u p p o r t d u r i n g the c o u r s e of t h i s s t u d y . He i s a l s o g r a t e f u l f o r the c o n t i n u e d i n t e r e s t and encouragement of the members of h i s g r a d u a t e c o m m i t t e e : D r . R. F i t z s i m m o n s , Department of P o u l t r y S c i e n c e , Dr. M.A. Tung, Department of Food S c i e n c e , and D r . J . V a n d e r s t o e p , Department of Food S c i e n c e . The a u t h o r w i s h e s to thank Mr. Mel Hudson and the s t a f f of the p o u l t r y f a r m f o r t h e i r a s s i s t a n c e i n t h i s s t u d y . The t e c h n i c a l a s s i s t a n c e of Ms. A i l e e n W r i g h t , Mr. John Dyer and Mr. D a l b i r B a i n s as w e l l as the computer a s s i s t a n c e p r o v i d e d by M i s s Lynne R o b i n s o n a r e g r e a t l y a p p r e c i a t e d . To my t y p i s t , BDB, I would l i k e to e x p r e s s a s p e c i a l n o t e of th a n k s . For the p a t i e n c e and u n d e r s t a n d i n g of my f r i e n d s , my t h a n k s . - 1 -INTRODUCTION I t has r e c e n t l y been e s t i m a t e d t h a t , w i t h i n f i v e y e a r s , s i x t y per c e n t of c o m m e r c i a l l y p r o d u c e d p o u l t r y w i l l be p r o c e s s e d as i n d i v i d u a l l y - q u i c k - f r o z e n p o u l t r y p a r t s (P.P. F i s e t , 1 9 85). T h e r e i s , however, c o n c e r n f o r the q u a l i t y of t h e s e p r o d u c t s : they t e n d to be s i g n i f i c a n t l y t o u g h e r . The p r o b a b l e r e a s o n s f o r t h i s r e d u c e d t e n d e r n e s s i n c l u d e s h o r t e n i n g r e l a t e d to p r e - r i g o r e x c i s i o n of m uscle from bone, c o l d s h o r t e n i n g and/or thaw r i g o r . In v i e w of t h i s f a c t , p r o c e s s i n g methods s h o u l d be d e v e l o p e d w h i c h m i n i m i z e or e l i m i n a t e t h e s e phenomena. The use of an a d d i t i o n a l e l e c t r i c a l s h o c k , i . e . e l e c t r i c a l s t i m u l a t i o n , may p r o v i d e p o u l t r y p r o c e s s o r s w i t h the r e q u i r e d p r o c e s s . E l e c t r i c a l s t i m u l a t i o n of a n i m a l c a r c a s s e s i m m e d i a t e l y a f t e r d e a t h or a f t e r c a r c a s s d r e s s i n g i s a p r o c e d u r e t h a t has r e c e i v e d c o n s i d e r a b l e a t t e n t i o n y e t l i m i t e d c o m m e r c i a l p r a c t i c e i n t h e C a n a d i a n meat i n d u s t r y . Most of the l i t e r a t u r e c o n f i r m s t h a t e l e c t r i c a l s t i m u l a t i o n m a r k e d l y a c c e l e r a t e s the r a t e of postmortem g l y c o l y s i s , but p r e s e n t s c o n f l i c t i n g d a t a r e g a r d i n g t e n d e r n e s s improvement i n cooked lamb, mutton, goat or b e e f . R e c e n t r e v i e w s by A s h g a r and H e n r i c k s o n ( 1 9 8 2 ) , C r o s s ( 1 9 7 9 ) , P e a r s o n and D u t s o n ( 1 9 8 5 ) , and Seideman and C r o s s (1982) have s u g g e s t e d t h r e e p o s s i b l e mechanisms by w h i c h e l e c t r i c a l s t i m u l a t i o n c o u l d i n f l u e n c e - 2 -meat t e n d e r n e s s - by the r e d u c t i o n of c o l d s h o r t e n i n g , by the d i s r u p t i o n of m y o f i b r i l s or by i n c r e a s e d a c t i v i t y of p r o t e o l y t i c enzymes. Busch et a l . (1972) and Jungk et a l . (1974) were the f i r s t to e x t e n s i v e l y use the i s o m e t r i c t e c h n i q u e to f o l l o w the time c o u r s e of r i g o r m o r t i s . T h i s t e c h n i q u e ' s s e n s i t i v i t y to changes i n postmortem s h o r t e n i n g p r o v i d e s an i m p o r t a n t a n a l y t i c a l t o o l f o r m e a s u r i n g t h o s e f a c t o r s of r i g o r d e v e l o p m e n t w h i c h i n f l u e n c e s u b s e q u e n t cooked meat t e n d e r n e s s . L i t t l e i n f o r m a t i o n i s a v a i l a b l e on the use of e l e c t r i c a l s t i m u l a t i o n f o r p o u l t r y , and the i s o m e t r i c t e n s i o n t e c h n i q u e has been used i n the s t u d i e s r e p o r t e d h e r e i n to a s s e s s i t s e f f e c t on r i g o r d e v e l o p m e n t i n b r o i l e r m u s c l e . - 3 -LITERATURE REVIEW  1. E l e c t r i c a l S t i m u l a t i o n The e a r l i e s t r e p o r t e d use of e l e c t r i c i t y to k i l l t u r k e y s was by B e n j a m i n F r a n k l i n i n 1749 (Lopez and H e r b e r t , 1975), and the f i r s t p a t e n t s f o r i t s use as an a i d to improve the t e n d e r n e s s of meat were g r a n t e d to Harsham and D e a t h e r a g e (1951) and to R e n t s c h l e r ( 1 9 5 1 ) . S u b s e q u e n t r e s e a r c h has f o c u s e d on t h e p a r a m e t e r s of the e l e c t r i c a l s h ock n e c e s s a r y f o r i m p r o v e d e f f i c i e n c y and t h e i r e f f e c t s on meat q u a l i t y . 1.1 The e f f e c t of e l e c t r i c a l s t i m u l a t i o n on meat t e n d e r n e s s 1.1.1 Beef S e v e r a l w o r k e r s have r e p o r t e d t h a t e i t h e r h i g h v o l t a g e ( B u s c h et a l . , 1967; C r o s s e t a l . , 1984; E l g a s i m e t a l . , 1981; G r e a t h o u s e e t a l . , 1983; H o s t e t l e r e t a l . , 1982; Judge et a l . , 1980; M c K e i t h e t a l . , 1980b, 1981b; Naewbanji et a l . , 1983; S a v e l l e t a l . , 1977 , 1978c, 1981; S o n a i y a and S t o u f f e r , 1982 ) or low v o l t a g e ( B o u t o n et a l . , 1978, 1980; P o w e l l et a l . , 1984 ; S a v e l l e t a l . , 1978b; T a y l o r and C o r n e l l , 1985; T a y l o r and M a r s h a l l , 1980) e l e c t r i c a l s t i m u l a t i o n can improve the i n s t r u m e n t a l l y a s s e s s e d t e n d e r n e s s of cooked b e e f - an improvement g e n e r a l l y c o n f i r m e d by s e n s o r y e v a l u a t i o n . C r o s s - 4 -e t a l . ( 1984 ) s u g g e s t e d t h a t the use of h i g h v o l t a g e e l e c t r i c a l s t i m u l a t i o n c o u l d p a r t i a l l y compensate f o r d e f i c i e n c i e s i n b u l l meat q u a l i t y at h e a v i e r c a r c a s s w e i g h t s , whereas D e v i n e and C h r y s t a l l (1984) c a u t i o n e d t h a t no improvement would be n o t e d i f a n i m a l s were s t r e s s e d . p r i o r to s l a u g h t e r . Smith et a l . (1979) r e p o r t e d i m p r o v e d t e n d e r n e s s r a t i n g s f o r c a l v e s i r r e s p e c t i v e of d r e s s i n g s t y l e ( h i d e - o n v s . h i d e - o f f ) , w h i l e M c K e i t h et a l . (1980a) s u g g e s t e d t h a t cows and s t e e r s c o u l d be e l e c t r i c a l l y s t i m u l a t e d e i t h e r as i n t a c t or s p l i t c a r c a s s e s . S e v e r a l o t h e r w o r k e r s , however, have s u g g e s t e d t h a t t h e r e was no p a r t i c u l a r a d v a n t a g e f o r e l e c t r i c a l l y s t i m u l a t e d beef c a r c a s s e s . Bowles Axe et a l . (1983) r e p o r t e d t h a t e l e c t r i c a l s t i m u l a t i o n d i d not c o n s i s t e n t l y r e d u c e s h e a r f o r c e v a l u e s of u n f r o z e n and f r o z e n Lon g i s s imus d o r s i and Semimembranosus s t e a k s . J e r e m i a h et a l . (1985) a l s o n o t e d t h a t n e i t h e r d e l a y e d c h i l l i n g nor e l e c t r i c a l s t i m u l a t i o n p r o d u c e d c o n s i s t e n t , m e a n i n g f u l a l t e r a t i o n s i n the t e n d e r n e s s of t h r e e b o v i n e m u s c l e s . S i m i l a r l y , no s i g n i f i c a n t d i f f e r e n c e s i n Warner B r a t z l e r s h e a r f o r c e v a l u e s , were f o u n d f o r s t e a k s from t h r e e g r a d e s of C a n a d i a n beef a f t e r c o m m e r c i a l h a n d l i n g (Wood and F r o e h l i c h , 1983). These l a t t e r a u t h o r s c o n c l u d e d t h a t c a r c a s s g r a d e s i g n i f i c a n t l y i n f l u e n c e d s e n s o r y t e n d e r n e s s . R i l e y e t a l . (1982) examined the e f f e c t of e l e c t r i c a l s t i m u l a t i o n on C h o i c e b e e f c a r c a s s e s and c o n c l u d e d t h a t i t - 5 -c o u l d not improve t h o s e m u s c l e s w h i c h were a l r e a d y t e n d e r . T h i s v a r i a b l e r e s p o n s e was a l s o o b s e r v e d by M c K e i t h e t a l . ( 1 9 8 1 a ) , who s u g g e s t e d t h a t e l e c t r i c a l s t i m u l a t i o n d i d not a f f e c t the t e n d e r n e s s of the major m u s c l e s of the arm r e g i o n but s i g n i f i c a n t l y r e d u c e d the s h e a r f o r c e v a l u e s of m u s c l e s l o c a t e d i n the h i n d q u a r t e r . A l t h o u g h e l e c t r i c a l s t i m u l a t i o n s i g n i f i c a n t l y i mproved s h e a r f o r c e v a l u e s and s e n s o r y p a n e l t e n d e r n e s s r a t i n g s when compared to u n s t i m u l a t e d c a r c a s s e s , no s i g n i f i c a n t d i f f e r e n c e s were o b s e r v e d i n t h o s e p a r a m e t e r s f o r t r e a t e d and c o n t r o l c a r c a s s e s t h a t had been s i m i l a r l y aged f o r 28 days ( T a y l o r and C o r n e l l , 1 9 8 5). 1.1.2 Lamb or mutton The e a r l i e s t s t u d i e s on lamb c a r c a s s e s , u s i n g e x t r e m e l y h i g h v o l t a g e s (3600V f o r one m i n u t e ) to overcome the h i g h r e s i s t a n c e of the f l e e c e , d e m o n s t r a t e d t h a t e l e c t r i c a l s t i m u l a t i o n c o u l d r e d u c e s h e a r f o r c e v a l u e s f o r l e g and l o i n m u s c l e s when compared to t h e i r r e s p e c t i v e c o n t r o l s ( C h r y s t a l l and H a g y a r d , 1975, 1976). S i m i l a r improvements have been n o t e d when e i t h e r low ( C h r y s t a l l e t a l . , 1984; L e w i s and B a b i k e r , 1983) or h i g h ( C h r y s t a l l e t a l . , 1984) v o l t a g e s have been u s e d . Bouton e t a l . (1984) i n d i c a t e d t h a t e l e c t r i c a l s t i m u l a t i o n can - 6 -improve the t e n d e r n e s s of mutton, but the e f f e c t may be a t r a n s i e n t one as no d i f f e r e n c e s i n Warner B r a t z l e r s h e a r v a l u e s were o b s e r v e d a f t e r a g e i n g c o n t r o l and t r e a t e d c a r c a s s e s f o r f o u r days at 0 ° C . 1.1.3 Pork T h e r e i s l i m i t e d i n f o r m a t i o n on t h e e f f e c t of e l e c t r i c a l s t i m u l a t i o n on pork c a r c a s s q u a l i t y . W e s t e r v e l t and S t o u f f e r ( 1978), e x a m i n i n g L o n g i s s i m u s muscle at 24 h o u r s postmortem, c o u l d n ot d e t e c t any t e n d e r n e s s d i f f e r e n c e s due to s t i m u l a t i o n and f u r t h e r s u g g e s t e d t h a t , as the L o n g i s s i m u s i s a l r e a d y t e n d e r , l i t t l e improvement s h o u l d be e x p e c t e d . On the o t h e r hand, G i g i e l and James (1984) o b s e r v e d improved t e n d e r n e s s of the Long i s s imus f o r b o t h c o n v e n t i o n a l l y and r a p i d l y c h i l l e d c a r c a s s e s . 1.1.4 Goat S a v e l l e t a l . (1977) r e p o r t e d t h a t , a l t h o u g h the e l e c t r i c a l s t i m u l a t i o n of g o a t s s i g n i f i c a n t l y r e d u c e d Warner B r a t z l e r s h e a r f o r c e v a l u e s and im p r o v e d s e n s o r y p a n e l t e n d e r n e s s of L o n g i s s i m u s d o r s i m u s c l e s when compared to c o n t r o l s , t h e s e d i f f e r e n c e s were not of the same magnitude f o r the m u s c l e s of the l e g s . - 7 -1.2 The e f f e c t of e l e c t r i c a l s t i m u l a t i o n on meat f l a v o u r 1.2.1 Beef In g e n e r a l , e l e c t r i c a l s t i m u l a t i o n has had l i t t l e d e t r i m e n t a l e f f e c t on t h e f l a v o u r and j u i c i n e s s of e i t h e r s t e a k s or r o a s t s f a b r i c a t e d f r o m s t e e r s (Bowles Axe et a l . , 1983; C a l k i n s et a l . , 1982; E l g a s i m et a l . , 1981; G i l b e r t and Davey, 1976; G r i f f i n e t a l . , 1981; J e r e m i a h and M a r t i n , 1982a) and b u l l s ( C r o s s et a l . , 1983; J e r e m i a h and M a r t i n , 1 982a). S i g n i f i c a n t improvements i n s e n s o r y r a t i n g s of m y o f i b r i l l a r t e n d e r n e s s , amount of c o n n e c t i v e t i s s u e , f l a v o u r d e s i r a b i l i t y and o v e r a l l p a l a t a b i l i t y have, however, been n o t e d f o r L o n g i s s i m u s s t e a k s p r e p a r e d f r o m e l e c t r i c a l l y s t i m u l a t e d s t e e r c a r c a s s e s ( C a l k i n s et a l . , 1 9 8 3 ) . A l t h o u g h e l e c t r i c a l s t i m u l a t i o n i m p r o v e d s e n s o r y t e n d e r n e s s p a r a m e t e r s and d i d not a f f e c t f l a v o u r , a s l i g h t n e g a t i v e e f f e c t on j u i c i n e s s s c o r e s has a l s o been o b s e r v e d ( C r o s s et a l . , 1984). 1.2.2 Pork C r e n w e l g e et a l . ( 1984 ) d i d not o b s e r v e any e f f e c t due to e l e c t r i c a l s t i m u l a t i o n on c o o k i n g l o s s , c o o k i n g time or p a l a t a b i l i t y of pork Lon g i s s imus m u s c l e . On t h e o t h e r hand, t h e s e a u t h o r s f o u n d t h a t e l e c t r i c a l l y s t i m u l a t e d m u s c l e s were p a l e r and l e s s f i r m , and e x h i b i t e d i n c r e a s e d s e p a r a t i o n when compared to u n t r e a t e d m u s c l e s a t 8, 11 and 21 h o u r s - 8 -p o s t - s t i m u l a t i o n . 1.3 The e f f e c t of e l e c t r i c a l s t i m u l a t i o n on h e a t r i n g  f ormat i o n The f o r m a t i o n of a d ark c o a r s e band, or "heat r i n g " , i n beef t h a t has been c h i l l e d too r a p i d l y has been a t t r i b u t e d to the d i f f e r e n t i a l c h i l l r a t e w i t h i n the r i b e y e m u scle ( S m i t h , 1 9 85). The mechanism f o r i t s f o r m a t i o n i s u n c l e a r but a r e c e n t s t u d y has s u g g e s t e d an i n t e r a c t i o n between a s l o w e r postmortem g l y c o l y t i c r a t e i n the d ark band a r e a ( w h i c h would i n c r e a s e the w a t e r h o l d i n g c a p a c i t y of t h e muscle and r e s u l t i n a t h i n n e r s u r f a c e l a y e r of f l u i d to r e f l e c t l e s s i n c i d e n t l i g h t ) a n d c o l d s h o r t e n i n g , the p r o b a b l e cause of the m y o f i b r i l l a r r e c e s s i o n w i t h i n the band ( O r c u t t et a l . , 1984). Both h i g h v o l t a g e and low v o l t a g e s t i m u l a t i o n have been f o u n d e f f e c t i v e i n d e c r e a s i n g the s e v e r i t y and i n c i d e n c e of h e a t r i n g i n b u l l s , s t e e r s and cows ( C r o s s et a l . , 1984; M c K e i t h et a l . , 1980a,b; O r c u t t et a l . , 1984; Salm et a l . , 1981; S a v e l l et a l . , 1 9 7 8 a ) . 1.4 The e f f e c t o f e l e c t r i c a l s t i m u l a t i o n on q u a l i t y g r a d e s 1.4.1 Beef The major e n t i c e m e n t i n the U n i t e d S t a t e s to use e l e c t r i c a l s t i m u l a t i o n has been the p r o c e s s ' e f f e c t on a p p e a r a n c e , s i n c e - 9 -m a r b l i n g and c o l o u r i n f l u e n c e the q u a l i t y g r a de a c a r c a s s i s a s s i g n e d ( M a r s h , 1985). S e v e r a l r e p o r t s have i n d i c a t e d a s i g n i f i c a n t improvement due to h i g h v o l t a g e e l e c t r i c a l s t i m u l a t i o n In l e a n m a t u r i t y , l e a n c o l o u r , l e a n t e x t u r e and m a r b l i n g s c o r e s f o r s t e e r s ( C a l k i n s e t a l . , 1980; C r o s s and T e n n e n t , 1980; C r o s s et a l . , 1983; M c K e i t h e t a l . , 1980a, 1981b; Salm e t a l . , 1981; S l e p e r e t a l . , 1983; S t i f f l e r e t a l . , 1984; Tang and H e n r i c k s o n , 1980), b u l l s ( C r o u s e et a l . , 1983; K l a s t r u p e t a l . , 1984; S l e p e r e t a l . , 1983), h e i f e r s ( K l a s t r u p et a l . , 1984; M c K e i t h et a l . , 1981b), and mature cows ( M c K e i t h et a l . , 1 9 8 0 a , b ) . Low v o l t a g e s t i m u l a t i o n of s t e e r s ( M c K e i t h e t a l . , 1981b; S a v e l l et a l . , 1978b; S t i f f l e r e t a l . , 1984 ) and h e i f e r s ( M c K e i t h et a l . , 1981b; S a v e l l e t a l . , 1978c) has a l s o i m p r o v e d t h e s e g r a d e - d e t e r m i n i n g c h a r a c t e r i s t i c s . E l e c t r i c a l s t i m u l a t i o n of beef has not g e n e r a l l y r e s u l t e d i n h i g h e r - t h a n - j u s t i f l e d c a r c a s s g r a d e s ( C a l k i n s et a l . , 1980; C r o u s e e t a l . , 1983; Salm e t a l . , 1981), a l t h o u g h M c K e i t h e t a l . (1981a) and M c K e i t h e t a l . (1982) have r e p o r t e d i m p roved g r a d e s f o r t r e a t e d beef and v e a l , r e s p e c t i v e l y . I t would appear t h a t the o b s e r v e d c o l o u r enhancement i n e l e c t r i c a l l y s t i m u l a t e d c a r c a s s e s c a n n o t be e x p l a i n e d by changes i n t o t a l pigment c o n c e n t r a t i o n , but by a h i g h e r p e r c e n t a g e of o x y m y o g l o b i n i n t r e a t e d c a r c a s s e s (Tang and H e n r i c k s o n , 1 9 8 0 ) . S l e p e r et a l . (1983) r e c e n t l y s u g g e s t e d t h a t e l e c t r i c a l s t i m u l a t i o n may i n f l u e n c e m u s c l e c o l o u r by d e c r e a s i n g a n a e r o b i c m e t m y o g l o b i n - r e d u c i n g a c t i v i t y and - 10 -i n d u c i n g more m e t m y o g l o b i n f o r m a t i o n . 1.4.2 Pork J o h n s o n e t a l . (1982) r e p o r t e d l i g h t e r c o l o u r e d ham m u s c l e s and s o f t e r t e x t u r e d l o i n eyes when e l e c t r i c a l l y s t i m u l a t e d , s t r e s s - s u s c e p t i b l e , s h o r t - f a s t e d p i g s were compared to u n s t i m u l a t e d c a r c a s s e s . No s i g n i f i c a n t d i f f e r e n c e s i n thaw or cook l o s s , Warner B r a t z l e r s h e a r f o r c e v a l u e s or s e n s o r y p a l a t a b i l i t y r a t i n g s were o b s e r v e d between the c o n t r o l and s t i m u l a t e d . c a r c a s s e s . 1.5 The e f f e c t of e l e c t r i c a l s t i m u l a t i o n on r e t a i l c a s e l i f e 1.5.1 Beef The r e t a i l c a s e l i f e of ground beef p r e p a r e d f r o m e l e c t r i c a l l y s t i m u l a t e d c a r c a s s e s was not s i g n i f i c a n t l y i n f l u e n c e d by the t r e a t m e n t , whereas top round s t e a k s from t h o s e same c a r c a s s e s were b r i g h t e r and e x h i b i t e d l e s s s u r f a c e d i s c o l o r a t i o n t h a n t h o s e f r o m c o n t r o l s when s t o r e d under i d e n t i c a l d i s p l a y c o n d i t i o n s ( H a l l et a l . , 1980). However, J e r e m i a h and M a r t i n (1982b) o b s e r v e d no s i g n i f i c a n t d i f f e r e n c e s i n l e a n c o l o u r , the e x t e n t of s u r f a c e d i s c o l o r a t i o n , r e t a i l a c c e p t a b i l i t y , d r i p l o s s or r e t a i l c a s e l i f e f o r b o n e l e s s r i b s t e a k s f a b r i c a t e d f r o m s t i m u l a t e d or c o n t r o l c a r c a s s e s . A l t h o u g h Ockerman and S z c z a w i n s k i (1983) i n d i c a t e d t h a t e l e c t r i c a l s t i m u l a t i o n d e c r e a s e d the a e r o b i c p l a t e c ount v a l u e s f o r b eef i n o c u l a t e d w i t h a mixed m i c r o f l o r a , s e v e r a l o t h e r s t u d i e s have r e p o r t e d no s i g n i f i c a n t r e d u c t i o n i n e i t h e r i n i t i a l or t e r m i n a l b a c t e r i a l numbers due to e l e c t r i c a l s t i m u l a t i o n ( H a l l e t a l . , 1980; J e r e m i a h and M a r t i n , 1982b; K o t u l a , 1980; R i l e y et a l . , 1982 ) . In a d d i t i o n , e l e c t r i c a l s t i m u l a t i o n has no a p p a r e n t e f f e c t on e i t h e r the w e i g h t l o s s of vacuum-packaged s u b p r i m a l s or the s h r i n k l o s s of r e t a i l c u t s p r e p a r e d from them and d i s p l a y e d f o r two to t h r e e days ( R i l e y et a l . , 1982 ) . 1.5.2 Lamb or mutton R i l e y et a l . (1980a) f o u n d no s i g n i f i c a n t changes i n the w e i g h t l o s s e s of vacuum-packaged w h o l e s a l e c u t s ( l e g s , l o i n s , r a c k s and s h o u l d e r s ) due to s t i m u l a t i o n . These a u t h o r s a l s o r e p o r t e d t h a t e l e c t r i c a l s t i m u l a t i o n i m p r oved muscle c o l o u r , d e c r e a s e d s u r f a c e d i s c o l o r a t i o n and i m p r o v e d the a p p e a r a n c e of b o n e l e s s l o i n chops p r e p a r e d from o l d - c r o p lambs, and d i d not d e t r i m e n t a l l y a f f e c t the q u a l i t y of t h o s e f r o m s p r i n g lambs. In a n o t h e r s t u d y , l o i n chops from wether c a r c a s s e s t h a t had been e l e c t r i c a l l y s t i m u l a t e d were more d e s i r a b l e i n a p p e a r a n c e and had l o w e r b a c t e r i a l c o u n t s t h a n t h e i r n o n - s t i m u l a t e d c o u n t e r p a r t s ( R i l e y et a l . , 1980b). - 12 -1.5.3 Pork C r e n w e l g e e t a l . (1984) i n d i c a t e d t h a t a l t h o u g h t h e r e were no s i g n i f i c a n t d i f f e r e n c e s i n s h e a r f o r c e v a l u e s or p a l a t a b i l i t y r a t i n g s , e l e c t r i c a l s t i m u l a t i o n had a d e t r i m e n t a l e f f e c t on pork q u a l i t y . L o n g i s s i m u s m u s c l e s from t r e a t e d c a r c a s s e s were p a l e r and e x h i b i t e d i n c r e a s e d m u scle s e p a r a t i o n when compared to c o n t r o l s . These n e g a t i v e e f f e c t s were r e d u c e d i f t h e s e c a r c a s s e s were r a p i d l y , r a t h e r t h a n c o n v e n t i o n a l l y , c h i l l e d . E l e c t r i c a l s t i m u l a t i o n of i n o c u l a t e d pork t i s s u e d i d not a f f e c t b a c t e r i a l growth a f t e r t h r e e days of s t o r a g e at 0-2°C, nor d i d i t s i g n i f i c a n t l y i n f l u e n c e the t h e r m o r e s i s t a n c e of S t r e p t o c o c c u s f a e c a l i s . T h e r e was a s l i g h t d e c r e a s e i n the t h e r m o r e s i s t a n c e of L a c t o b a c i l l u s p i a n t a r u m and Pseudomonas  p u t r e f a c e i n s , a l t h o u g h no a t t e m p t s were made to e x p l a i n t h i s v a r i a b l e r e s p o n s e (Ockerman and S z c z a w i n s k i , 1984). 1.6 The e f f e c t of e l e c t r i c a l s t i m u l a t i o n and hot b o n i n g on  meat q u a l i t y 1.6.1 Beef "Hot b o n i n g i s a r e l a t i v e l y new p r o c e s s of c a r c a s s f a b r i c a t i o n t h a t i n v o l v e s the r e m o v a l of l e a n meat and f a t from bone p r i o r to c h i l l i n g " ( C r o s s and Seideman, 1985). S e v e r a l s t u d i e s have r e p o r t e d on the i n t e r a c t i o n of e l e c t r i c a l s t i m u l a t i o n and hot - 13 -b o n i n g and c o n c l u d e d t h a t s t e a k s (Lyon et a l . , 1983 ) or r o a s t s (Ray e t a l . , 1982) p r e p a r e d from s t i m u l a t e d , h o t - b o n e d meat were c o m p a r a b l e i n t e n d e r n e s s to t h e i r c o u n t e r p a r t c o n t r o l s . The b e n e f i c i a l e f f e c t of s t i m u l a t i o n a p p e a r e d to d i m i n i s h i f t r e a t e d and c o n t r o l c u t s were aged f o r at l e a s t f i v e days (Seideman e t a l . , 1979; T a y l o r et a l . , 1981). B a b i k e r and L a w r i e (1983) r e c e n t l y r e p o r t e d t h a t a c o m b i n a t i o n of e l e c t r i c a l s t i m u l a t i o n and h i g h t e m p e r a t u r e a g e i n g - i . e . , 30°C or 40°C f o r f i v e h o u r s p r i o r to c h i l l i n g - s i g n i f i c a n t l y i m p r o v e d the t e n d e r n e s s of hot boned L o n g i s s i m u s m u s c l e o v e r c o n t r o l s p r o c e s s e d i n the t r a d i t i o n a l manner. C l a u s e t a l . (1984) d e m o n s t r a t e d t h a t e l e c t r i c a l s t i m u l a t i o n i n c o m b i n a t i o n w i t h hot b o n i n g d i d not s i g n i f i c a n t l y i n f l u e n c e the m u s c l e d i s p l a y c o l o u r of p o l y v i n y l c h l o r i d e packaged s t e a k s o v e r a f i v e day p e r i o d , a l t h o u g h s t i m u l a t i o n t e n d e d to m i n i m i z e the m u s c l e d a r k e n i n g e f f e c t of hot b o n i n g . In a l a t e r s t u d y t h e s e same a u t h o r s c o n f i r m e d t h a t a c c e p t a b l e m u s c l e d i s p l a y c o l o u r c o u l d be m a i n t a i n e d d u r i n g 14 days of s t o r a g e ( C l a u s e t a l . , 1 9 85). Seideman et a l . (1979) and T a y l o r et a l . (1981) f o u n d t h a t when e l e c t r i c a l l y s t i m u l a t e d , hot boned beef was compared to s i m i l a r l y aged c o n t r o l s , no d e t e c t a b l e changes were o b s e r v e d f o r o v e r a l l f l a v o u r d e s i r a b i l i t y . T h i s l a c k of t r e a t m e n t e f f e c t on p a l a t a b i l i t y was a l s o r e p o r t e d by Hawrysh and Wolfe (1985) f o r mature and young cows, a l t h o u g h the p a l a t a b i l i t y of - 14 -e l e c t r i c a l l y s t i m u l a t e d , mature cows d i d a p p r o a c h t h a t of young, c o n t r o l c a r c a s s e s . S h i v a s e t a l . (1985) r e c e n t l y n o t e d t h a t the i n t e n s i t y of beef f l a v o u r was g r e a t e r i n s t e a k s p r e p a r e d f r o m c o n t r o l b u l l Semimembranosus m u s c l e when compared to t h o s e f r om e l e c t r i c a l l y s t i m u l a t e d , hot boned m u s c l e s . The c o m b i n a t i o n of e l e c t r i c a l s t i m u l a t i o n and hot b o n i n g would appear to have a v a r i a b l e e f f e c t on the m i c r o b i a l q u a l i t y of meat. B e r r y and K o t u l a (1982) f o u n d no major m i c r o b i a l p r o b l e m s due to t r e a t m e n t when s t r i p l o i n or eye of round m u s c l e s were h e l d under vacuum p a c k a g i n g f o r seven days at 3°C. On the o t h e r hand, e l e c t r i c a l s t i m u l a t i o n s i g n i f i c a n t l y e x t e n d e d the s h e l f l i f e of ground beef (by t h r e e d a y s ) but d i d not a l t e r the n a t u r e of the s p o i l a g e f l o r a ( R a c c a c h and H e n r i c k s o n , 1 9 8 0 ) . 1.6.2 Lamb S t e r n (1980) examined the e f f e c t of hot b o n i n g and e l e c t r i c a l s t i m u l a t i o n on the m i c r o b i a l q u a l i t y of v a r i o u s lamb c u t s and c o n c l u d e d t h a t the l a t t e r d i d not s i g n i f i c a n t l y i n f l u e n c e s u r f a c e b a c t e r i a l numbers. 1.6.3 Pork Reagan and H o n i k e l (1985) r e c e n t l y d e m o n s t r a t e d t h a t top and - 15 -b o t t o m hams from hot p r o c e s s e d c a r c a s s e s , a l o n e or i n c o m b i n a t i o n w i t h e l e c t r i c a l s t i m u l a t i o n , e x h i b i t e d l o w e r l e v e l s of purge a f t e r vacuum p a c k a g i n g and s t o r a g e t h a n c o n t r o l s a m p l e s . L o i n chops p r o d u c e d by c o n v e n t i o n a l p r o c e s s i n g of e l e c t r i c a l l y s t i m u l a t e d c u t s were a l s o r a t e d as b e i n g l e s s j u i c y t h a n chops from c o n t r o l c a r c a s s e s , but no o t h e r d i f f e r e n c e s i n s e n s o r y f l a v o u r , t e n d e r n e s s , d e s i r a b i l i t y , or Warner B r a t z l e r s h e a r v a l u e s were n o t e d . These a u t h o r s s u g g e s t e d t h a t the use of c o n d i t i o n i n g or a c o m b i n a t i o n of e l e c t r i c a l s t i m u l a t i o n and r a p i d c h i l l i n g c o u l d p r o d u c e c u t s from hot p r o c e s s e d c a r c a s s e s e q u a l or s u p e r i o r to t h o s e from c o n v e n t i o n a l l y p r o c e s s e d s y s t e m s . 1.7 The e f f e c t of e l e c t r i c a l s t i m u l a t i o n on f u r t h e r  m a n u f a c t u r i n g p r o p e r t i e s 1.7.1 Beef In a s t u d y w h i c h u t i l i z e d a model ground beef s y s t e m , C o n t r e r a s and H a r r i s o n (1981) f o u n d t h a t ground beef p r e p a r e d from e l e c t r i c a l l y s t i m u l a t e d , hot boned m u s c l e was more s e n s i t i v e to m e t m y o g l o b i n f o r m a t i o n and had l o w e r m i c r o b i a l c o u n t s . These a u t h o r s r e p o r t e d l a t e r t h a t c o n v e n t i o n a l l y c h i l l e d and e l e c t r i c a l l y s t i m u l a t e d , hot boned ground b e e f had c o m p a r a b l e c o o k i n g and s e n s o r y p r o p e r t i e s ( C o n t r e r a s et a l . , 1 9 8 1 ) . S i m i l a r l y , e l e c t r i c a l s t i m u l a t i o n d i d not e x e r t a n e g a t i v e i n f l u e n c e on the p h y s i c a l , s e n s o r y or c o o k i n g - 16 -p r o p e r t i e s of ground b e e f from U t i l i t y g r a d e c a r c a s s e s boned at one, t h r e e and 24 h o u r s postmortem ( C r o s s and Te n n e n t , 1981). B e r r y and S t i f f l e r ( 1 9 8 1 ) , however, n o t e d i n c r e a s e d f r e e z i n g l o s s e s when ground b e e f p a t t i e s were made from e l e c t r i c a l l y s t i m u l a t e d , r a t h e r than c o n t r o l , c a r c a s s e s . The per c e n t s a l t - s o l u b l e p r o t e i n of beef Semimembranosus muscle was more a f f e c t e d by r i g o r s t a t e and t e m p e r a t u r e t r e a t m e n t than by e l e c t r i c a l s t i m u l a t i o n ( T e r r e l l e t a l . , 1982a), and when c l o d s , f l a n k s and p l a t e s f r o m s t i m u l a t e d s i d e s were used to p r e p a r e f r a n k f u r t e r s , t h e r e were no s i g n i f i c a n t d i f f e r e n c e s i n t h e i r e x t e r n a l v i s u a l c o l o u r , o v e r a l l d e s i r a b i l i t y and p r o c e s s s h r i n k a g e when compared to t h o s e p r e p a r e d f r o m c o n t r o l s i d e s ( T e r r e l l et a l . , 1982b). A r e c e n t s t u d y has i n d i c a t e d t h a t b o t h the e m u l s i f y i n g c a p a c i t y and t h e r m a l e m u l s i o n s t a b i l i t y of p r e b l e n d e d m u s c l e i n a model s y s t e m were d e c r e a s e d by e l e c t r i c a l s t i m u l a t i o n ( C h o i e t a l . , 1 984). I t was s u g g e s t e d t h a t t h e r a p i d postmortem pH d e c l i n e o b s e r v e d i n s t i m u l a t e d m u s c l e s may change p r o t e i n s o l u b i l i t y and t h u s d e c r e a s e t h e i r s a l t - s o l u b l e p r o t e i n c o n t e n t compared to c o n t r o l m u s c l e s . 1.7.2 Lamb I t would a p p e a r t h a t t h e r e a r e no major b e n e f i c i a l or d e t r i m e n t a l e f f e c t s on f u n c t i o n a l p r o p e r t i e s of lamb m u s c l e due to e l e c t r i c a l s t i m u l a t i o n ( W h i t i n g e t a l . , 1981). - 17 -E l e c t r i c a l s t i m u l a t i o n i n c r e a s e d s a r c o m e r e l e n g t h but had few c o n s i s t e n t or s i g n i f i c a n t e f f e c t s on w ater h o l d i n g c a p a c i t y , p r o t e i n s o l u b i l i t y , e m u l s i f y i n g c a p a c i t y , g e l s t r e n g t h , c o o k i n g l o s s and b i n d i n g s t r e n g t h . F u r t h e r m o r e , f r a n k f u r t e r s m a n u f a c t u r e d from m u s c l e s of e l e c t r i c a l l y s t i m u l a t e d , r a p i d l y c h i l l e d c a r c a s s e s e x h i b i t e d s l i g h t l y i m p r o v e d e m u l s i o n s t a b i l i t y but no s i g n i f i c a n t changes i n smokehouse w e i g h t l o s s , Warner B r a t z l e r s h e a r f o r c e v a l u e s , cook l o s s or s e n s o r y p r o p e r t i e s when compared to t h o s e from n o n - s t i m u l a t e d c a r c a s s e s . 1.7.3 Pork B o t h t u m b l i n g and e l e c t r i c a l s t i m u l a t i o n enhanced the d i s t r i b u t i o n of sodium n i t r i t e and sodium c h l o r i d e i n b a c o n , but the c o n t e n t s of each of t h e s e c u r e i n g r e d i e n t s were h i g h l y r e l a t e d to s t o r a g e time and a n a t o m i c a l l o c a t i o n - the c o n t e n t of n i t r i t e and s a l t was g r e a t e r i n the l e a n p o r t i o n (Ockerman and D o w i e r c i a l , 1980). E l e c t r i c a l s t i m u l a t i o n has a l s o s i g n i f i c a n t l y i m p r oved the a b s o r p t i o n and m i g r a t i o n of n i t r i t e , s a l t and g l u c o s e i n t o a l l d e p t h s of c y l i n d r i c a l samples p r e p a r e d from e i t h e r c o l d boned (Ockerman and K w i a t e k , 1985a,c) or hot boned m u s c l e s (Ockerman and K w i a t e k , 1 9 8 5 b , c ) . - 18 -1.8 The e f f e c t of e l e c t r i c a l s t i m u l a t i o n on postmortem  g l y c o l y s i s 1.8.1 Beef The s t u d y of the e f f e c t of e l e c t r i c a l s t i m u l a t i o n on postmortem g l y c o l y s i s i n beef muscle - f o r t h a t m a t t e r , muscle from any s p e c i e s - has been c o m p l i c a t e d by the h i g h v a r i a b i l i t y t h a t n o r m a l l y e x i s t s i n the r a t e of pH d e c l i n e and of l a c t a t e p r o d u c t i o n . B e n d a l l (1978) examined t h e s e r a t e s i n beef c a r c a s s e s and r e p o r t e d t h a t f o r L o n g i s s i m u s d o r s i , B i c e p s  f e m o r i s , Semimembranosus and T r i c e p s b r a c h i i m u s c l e s the t i m e r e q u i r e d to r e a c h pH 6.0 from an i n i t i a l v a l u e of pH 7.1 ra n g e d between 8 to 16 h o u r s . When t h e s e v a l u e s were compared a f t e r t e m p e r a t u r e c o r r e c t i o n ( t o 3 8 ° C ) , t h e r e was s t i l l a t w o - f o l d v a r i a b i l i t y . T h i s r a t e of pH d e c l i n e was m i n i m a l at 10-12°C and i n c r e a s e d w i t h i n c r e a s i n g t e m p e r a t u r e s g r e a t e r than 13°C ( J e a c o c k e , 1 977 ) . Many of the e a r l y s t u d i e s m o n i t o r e d the e f f e c t of s t i m u l a t i o n on g l y c o l y s i s by d e t e r m i n i n g the change i n m u s c l e pH t h a t o c c u r r e d d u r i n g t h e e l e c t r i c a l shock ( A p H ) and a f t e r the s t i m u l a t i o n had c e a s e d ( d p H / d t ) . McCollum and H e n r i c k s o n (1977) o b s e r v e d t h a t e l e c t r i c a l s t i m u l a t i o n s i g n i f i c a n t l y a c c e l e r a t e d the r a t e of pH d e c l i n e i n Long i s s imus d o r s i , Semimembranosus and S u p r a s p i n a t u s m u s c l e s when compared to c o n t r o l m u s c l e s . Low v o l t a g e s t i m u l a t i o n a l s o e f f e c t i v e l y - 19 -enhanced the postmortem g l y c o l y t i c r a t e i n beef c a r c a s s e s ( N i c h o l s and C r o s s , 1980; Shaw and W a l k e r , 1977; V o g e l e t a l . , 1 9 8 5 ) . S e v e r a l s t u d i e s have i n d i c a t e d a more r a p i d c a t a b o l i s m of h i g h - e n e r g y p h o s p h a t e compounds - c r e a t i n e p h o s p h a t e and a d e n o s i n e t r i p h o s p h a t e ( C a l k i n s e t a l . , 1982, 1983; V o g e l e t a l . , 1985; W i l l e t a l . , 1979) - and g l y c o g e n ( S w a t l a n d , 1975, 1977) due to e l e c t r i c a l s t i m u l a t i o n . C h r y s t a l l and D e v i n e (1978) s u g g e s t e d t h a t the p u l s e f r e q u e n c y of the e l e c t r i c a l shock had a c o n s i d e r a b l e e f f e c t on the magn i t u d e of the pH d e c l i n e d u r i n g s t i m u l a t i o n ( ApH) and t h a t dpH/dt was u n a f f e c t e d by the s u b t l e t i e s of the s t i m u l a t i o n c o n d i t i o n s . A l t h o u g h a r e v i e w of the s i m i l a r i t i e s and d i f f e r e n c e s between m u s c l e f i b r e t y p e s i s beyond the scope of t h i s r e p o r t , c l a s s i c a l l y " w h i t e " m u s c l e s have r e s p o n d e d more r e a d i l y to e l e c t r i c a l s t i m u l a t i o n t h a n " r e d " m u s c l e s . T h i s has been c o n f i r m e d h i s t o c h e m i c a 1 l y ( S w a t l a n d , 1981) and by pH measurements ( D e v i n e e t a l . , 1 984a). I t has r e c e n t l y been s u g g e s t e d t h a t e l e c t r i c a l s t i m u l a t i o n w i l l o n l y be e f f e c t i v e i n i m p r o v i n g c a r c a s s c h a r a c t e r i s t i c s i f the m u s c l e s have not been s e v e r e l y d e p l e t e d of t h e i r g l y c o g e n s t o r e s due to s t r e s s ( C r o s s e t a l . , 1983). - 20 -1.8.2 Lamb or mutton E l e c t r i c a l l y s t i m u l a t e d lamb c a r c a s s e s e x h i b i t e d h i g h l y a c c e l e r a t e d r a t e s of l a c t i c a c i d p r o d u c t i o n and i n c r e a s e d r a t e s of e n e r g y - r i c h p h o s p h a t e t u r n o v e r when compared to u n s t i m u l a t e d c a r c a s s e s ( B e n d a l l , 1 9 76). These c a r c a s s e s a l s o had a r a p i d , immediate f a l l i n m u scle pH and a s u s t a i n e d r a t e of pH d e c l i n e t h a t was two to t h r e e t i m e s t h a t o b s e r v e d i n c o n t r o l s . T h i s a c c e l e r a t i o n of postmortem pH d e c l i n e has a l s o been o b s e r v e d i n c a r c a s s e s w h i c h have r e c e i v e d e x t r e m e l y h i g h v o l t a g e ( C h r y s t a l l and H a g y a r d , 1975) or low v o l t a g e s t i m u l a t i o n ( D e v i n e et a l . , 1984b; R a s h i d et a l . , 1 983a,b). In one of the e a r l i e s t s t u d i e s of e l e c t r i c a l s t i m u l a t i o n , C a r s e (1973) s u g g e s t e d t h a t o n l y the v o l t a g e of the e l e c t r i c a l shock i n f l u e n c e d the p o s t - s t i m u l a t i o n g l y c o l y t i c r a t e . A more r e c e n t s t u d y by C h r y s t a l l et a l . ( 1 9 8 0 ) , however, f o u n d t h a t the r e s p o n s e of lamb l e g m u s c l e s was a f f e c t e d b o t h by d e l a y i n a p p l i c a t i o n and by the s t i m u l a t i n g v o l t a g e . The l a t t e r a u t h o r s c o n c l u d e d t h a t most of the s t i m u l a t o r y e f f e c t was i n d i r e c t , i . e . , t h r o u g h the n e r v o u s s y s t e m , and i t would appear t h a t a f u n c t i o n a l n e r v o u s s y s t e m i s p a r t i c u l a r l y c r i t i c a l to the e f f e c t i v e n e s s of low v o l t a g e s y s tems ( M o r t o n and Newbold, 1 9 8 2 ) . - 21 -1.8.3 O t h e r s p e c i e s D e v i n e and C h r y s t a l l (1984) o b s e r v e d t h a t the s t i m u l a t i o n of a n a e s t h e t i z e d r a t s p r i o r to s l a u g h t e r was l e s s e f f e c t i v e i n a c c e l e r a t i n g postmortem g l y c o l y s i s t h a n s t i m u l a t i o n a f t e r s l a u g h t e r . I t was a l s o n o t e d t h a t , by 30 m i n u t e s postmortem, e l e c t r i c a l s t i m u l a t i o n c e a s e d to have an e f f e c t on pH d e c l i n e . E l e c t r i c a l s t i m u l a t i o n has a l s o enhanced the pH d e c l i n e i n r a b b i t s k e l e t a l m u s c l e ( B e n d a l l , 1976; Horgan and K u y p e r s , 1985) a l t h o u g h h i g h v o l t a g e s may be r e q u i r e d f o r the g r e a t e r d e c l i n e . 1.8.4 G e n e r a l c o n s i d e r a t i o n s S e v e r a l a u t h o r s have a d v o c a t e d c a u t i o u s i n t e r p r e t a t i o n of the d a t a r e p o r t e d f o r any e x a m i n a t i o n of muscle m e t a b o l i s m . B e n d a l l (1978) f o u n d t h a t beef m u s c l e s n o r m a l l y e x h i b i t h i g h v a r i a b i l i t y i n the r a t e s of pH d e c l i n e and of l a c t i c a c i d p r o d u c t i o n . T h i s same a u t h o r s u g g e s t e d l a t e r t h a t the postmortem d e c l i n e i n the r a t i o of c r e a t i n e p h o s p h a t e to c r e a t i n e was a c t u a l l y much f a s t e r t h a n a n t i c i p a t e d f r o m the d e c l i n e i n m u s c l e pH ( B e n d a l l , 1 9 79). In a r a t h e r e l e g a n t s t u d y , H i n t z e t a l . (1982) f o u n d t h a t i n d i v i d u a l r a t muscle f i b r e s v a r i e d s u f f i c i e n t l y to p r o d u c e an a l m o s t c o n t i n u o u s s p e c t r u m of m e t a b o l i t e l e v e l s . - 22 -The mechanism by w h i c h e l e c t r i c a l s t i m u l a t i o n e x e r t s i t s e f f e c t on postmortem b i o c h e m i c a l r e a c t i o n s r e m a i n s u n c l e a r . Some r e s e a r c h r e p o r t s have s u g g e s t e d t h a t the a c c e l e r a t i o n of the g l y c o l y t i c r a t e r e s u l t s from e i t h e r h i g h e r p h o s p h o r y l a s e <a l e v e l s ( B e n d a l l , 1979) or h i g h e r a c t i v i t y of t h i s enzyme d u r i n g (Newbold and S m a l l , 1985) or a f t e r (Horgan and K u y p e r s , 1985 ) s t i m u l a t i o n . C l a r k e et a l . ( 1980) r e p o r t e d a s i g n i f i c a n t i n c r e a s e i n the b i n d i n g of c e r t a i n g l y c o l y t i c enzymes to the a c t i n f i l a m e n t s of Psoas m u s c l e s from e l e c t r i c a l l y s t i m u l a t e d b e e f c a r c a s s e s and s u g g e s t e d t h a t g l y c o l y s i s i n s t i m u l a t e d m u s c l e s may r e f l e c t g r e a t e r c a t a l y t i c e f f e c t i v e n e s s as the r e q u i r e d m e t a b o l i c i n t e r m e d i a t e s would be h i g h l y c o n c e n t r a t e d w i t h i n the m i c r o e n v i r o n m e n t of t h i s ' p a r t i c l e ' . E l e c t r i c a l s t i m u l a t i o n may a l s o cause permanent a l t e r a t i o n s i n t h e s a r c o p l a s m i c r e t i c u l u m , w h i c h i n t u r n c o u l d i n c r e a s e the c y t o p l a s m i c c a l c i u m c o n c e n t r a t i o n ( J o s e p h et a l . , 1980; Tume, 1979, 1980). S e v e r a l p a r a l l e l s have been n o t e d between e l e c t r i c a l s t i m u l a t i o n and a n o t h e r newer p r o c e s s i n g a i d , p r e r i g o r p r e s s u r i z a t i o n . The l a t t e r p r o c e s s has a l s o a c c e l e r a t e d the c a t a b o l i s m of c r e a t i n e p h o s p h a t e , a d e n o s i n e t r i p h o s p h a t e and g l y c o g e n i n b e e f Semimembranosus m u s c l e s when compared to u n t r e a t e d c o n t r o l s . The r a t e of ATP t u r n o v e r f o r p r e r i g o r p r e s s u r i z e d m u s c l e s was a p p r o x i m a t e l y t h r e e t i m e s the r a t e o b s e r v e d f o r e l e c t r i c a l l y s t i m u l a t e d m u s c l e s ( E l k h a l i f a et - 23 -a l . , 1 9 8 4 a , b ) . H o h o r s t (1981) s u g g e s t e d t h a t some a l t e r a t i o n s i n the s a r c o p l a s m i c r e t i c u l u m of p r e s s u r e t r e a t e d m u s c l e s may be r e s p o n s i b l e f o r i t s e f f e c t on postmortem g l y c o l y s i s . 2. The mechanism of improved meat t e n d e r n e s s E l e c t r i c a l s t i m u l a t i o n has been the s u b j e c t of a number of e x c e l l e n t r e v i e w s and t h e s e s h o u l d be r e f e r r e d to f o r more d e t a i l e d d e s c r i p t i o n s of the p r o c e s s ' e f f e c t on m u s c l e b i o c h e m i s t r y , b i o p h y s i c s and meat q u a l i t y ( A s h g a r and H e n r i c k s o n , 1982; C r o s s , 1979; P e a r s o n and D u t s o n , 1985; Seideman and C r o s s , 1 9 8 2 ) . As p r e v i o u s l y n o t e d , t h e s e r e v i e w s have s u g g e s t e d t h r e e p o s s i b l e mechanisms by w h i c h e l e c t r i c a l s t i m u l a t i o n c o u l d i n f l u e n c e meat t e n d e r n e s s : (1) by the r e d u c t i o n of c o l d s h o r t e n i n g ; (2) by the d i s r u p t i o n of the m y o f i b r i l s , o r ; ( 3 ) by the i n c r e a s e d a c t i v i t y of p r o t e o l y t i c enzymes. 2.1 The p r e v e n t i o n of c o l d s h o r t e n i n g The c o l d s h o r t e n i n g phenomenon has been d e s c r i b e d as the t e n d e n c y of p r e r i g o r m u s c l e s to s h o r t e n when t h e i r t e m p e r a t u r e has been r e d u c e d below about 15° to 19°C ( L o c k e r and H a g y a r d , 1963). T h i s t e n d e n c y i s g r e a t e r as the m u scle t e m p e r a t u r e a p p r o a c h e s the f r e e z i n g p o i n t s u c h t h a t muscle s h o r t e n i n g at 2°C can be as g r e a t as t h a t w h i c h o c c u r s at 3 7 ° C . Cooked meat from c o l d s h o r t e n e d m u scle was s i g n i f i c a n t l y t o u g h e r t h a n t h a t - 24 -f r o m p o s t r i g o r m u s c l e s exposed to s i m i l a r t e m p e r a t u r e s . Two mechanisms have been p r o p o s e d f o r c o l d s h o r t e n i n g . A c c o r d i n g to C a s s e n s and Newbold (1967) p r e r i g o r m u s c l e ' s s a r c o t u b u l a r s y s t e m r e l e a s e s more C a + ^ i n t o the s a r c o p l a s m at low t e m p e r a t u r e s and t h e r e b y s t i m u l a t e s muscle c o n t r a c t i o n w h i l e t h e r e i s a r e l a t i v e l y h i g h ATP c o n c e n t r a t i o n . On the o t h e r hand, Buege and Marsh (1975) s u g g e s t e d t h a t the phenomenon can be a t t r i b u t e d to the r e l e a s e of C a + ^ from m i t o c h o n d r i a under a n o x i c c o n d i t i o n s . These l a t t e r a u t h o r s b e l i e v e t h a t a l t h o u g h the s a r c o t u b u l a r s y s tems of r e d and w h i t e m u s c l e f i b r e s a r e b o t h s t i l l c a p a b l e of a c c u m u l a t i n g C a + 2 i o n s , the more numerous m i t o c h o n d r i a i n r e d m u s c l e s would r e l e a s e more C a + 2 i o n s t h a n c o u l d be e f f e c t i v e l y r e a b s o r b e d by i t s s a r c o t u b u l a r s y s t e m . C o l d s h o r t e n i n g has been d e m o n s t r a t e d i n b o t h r e d (Buege and M a r s h , 1975; C a s s e n s and Newbold, 1967; C o r n f o r t h et a l . , 1980; L o c k e r and H a g y a r d , 1963; Marsh et a l . , 1974; M i c k e l s o n , 1983) and w h i t e m u s c l e s ( D r a n s f i e l d and L o c k y e r , 1985; Smith et a l . , 1969 ; Wood and R i c h a r d s , 1 9 74b). The r e d u c e d t e n d e n c y of p r e d o m i n a n t l y w h i t e m u s c l e s to e x h i b i t t h i s phenomenon may r e f l e c t l o w e r m i t o c h o n d r i a l numbers and a more e x t e n s i v e l y d e v e l o p e d s a r c o t u b u l a r s y s t e m ( C o r n f o r t h e t a l . , 1980; L a w r i e , 1979) . B e n d a l l et a l . (1976) s u g g e s t e d t h a t c o l d s h o r t e n i n g s h o u l d - 25 -not o c c u r to any s i g n i f i c a n t e x t e n t once the pH of the muscle r e a c h e d l e s s t h a n pH 6.0 and d e m o n s t r a t e d t h a t the major m u s c l e s of the f o r e l i m b , back and t h i g h from e l e c t r i c a l l y s t i m u l a t e d , u n d r e s s e d b e e f c a r c a s s e s r e a c h e d pH 6.0 w i t h i n one h o u r , and pH 5.7 w i t h i n 2.5 h o u r s a f t e r s t i m u l a t i o n . Davey et a l . (1976) r e p o r t e d t h a t m u s c l e s from s t i m u l a t e d beef c a r c a s s e s r e a c h e d r i g o r w e l l b e f o r e t h e i r i n t e r n a l t e m p e r a t u r e a p p r o a c h e d the t e m p e r a t u r e range n o r m a l l y a s s o c i a t e d w i t h c o l d s h o r t e n i n g . The p r e v e n t i o n of c o l d s h o r t e n i n g has a l s o been c i t e d by G i l b e r t and Davey (1976) and G i l b e r t e t a l . (1977) as the mechanism f o r t e n d e r n e s s improvement i n hot boned b e e f from e l e c t r i c a l l y s t i m u l a t e d c a r c a s s e s . 2.2 M y o f i b r i l l a r d i s r u p t i o n S e v e r a l r e p o r t s have s u g g e s t e d t h a t one p o s s i b l e mechanism f o r the i m p r o v e d t e n d e r n e s s of e l e c t r i c a l l y s t i m u l a t e d m u s c l e s was s e v e r e m y o f i b r i l l a r d i s r u p t i o n . T h i s d i m i n i s h e d s t r u c t u r a l i n t e g r i t y , o b s e r v e d w i t h b o t h l i g h t and e l e c t r o n m i c r o s c o p y , has been a t t r i b u t e d to the d e v e l o p m e n t of ' c o n t r a c t u r e bands' w i t h c o n c o m i t a n t s t r e t c h i n g or t e a r i n g of the m y o f i b r i l s on e i t h e r s i d e of the band ( F a b i a n s s o n et a l . , 1985; S o n a i y a e t a l . , 1982; Sorinmade e t a l . , 1982; W i l l e t a l . , 1980). S a v e l l et a l . (1978a) s u g g e s t e d t h a t t h i s m y o f i l a m e n t s t r e t c h i n g would t h e r e f o r e l o w e r the r e s i s t a n c e to e i t h e r chewing or m e c h a n i c a l s h e a r i n g . - 26 -Marsh e t a l . (1981) i n d i c a t e d t h a t m y o f i b r i l l a r d i s r u p t i o n was the s o l e r e a s o n f o r the enhanced t e n d e r n e s s i n c a r c a s s e s w h i c h were s t i m u l a t e d at a normal f r e q u e n c y (50-60 H z ) , whereas the e f f e c t was n e g l i g i b l e a t l o w e r f r e q u e n c i e s (2 H z ) . The c o n t r i b u t i o n of m y o f i b r i l l a r d i s r u p t i o n to t e n d e r n e s s improvement a l s o a p p e a r e d to be g r e a t e r when s i d e s r a t h e r t h a n i n t a c t c a r c a s s e s were e l e c t r i c a l l y s t i m u l a t e d , even though the m u s c l e s from the c a r c a s s e s were as t e n d e r as t h e i r c o u n t e r p a r t s f r o m the s i d e s ( M c K e i t h e t a l . , 1 9 8 0 a ) . ' C o n t r a c t u r e bands' have r e c e n t l y been r e p o r t e d i n m u s c l e samples f r o m c o n t r o l c a r c a s s e s - a f i n d i n g t h a t s u g g e s t s the bands a r e a common a r t e f a c t i n t i s s u e t h a t has been i m p r o p e r l y p r e p a r e d f o r m i c r o s c o p y s t u d i e s and t h e r e f o r e not a s p e c i f i c e f f e c t of e l e c t r i c a l s t i m u l a t i o n ( F a b i a n s s o n and L i b e l i u s , 1985 ) . George e t a l . ( 1980 ) had e a r l i e r o b s e r v e d t h a t m u s c l e s from e l e c t r i c a l l y s t i m u l a t e d beef c a r c a s s e s d i d not e x h i b i t m y o f i b r i l l a r damage and f u r t h e r n o t e d i r r e g u l a r bands of d e n a t u r e d s a r c o p l a s m i c p r o t e i n s on m y o f i b r i l l a r s u r f a c e s w h i c h might a c c o u n t f o r the dark bands o b s e r v e d i n l i g h t m i c r o s c o p y . 2.3 I n c r e a s e d p r o t e o l y t i c a c t i v i t y 2.3.1 G e n e r a l c o n s i d e r a t i o n s S e v e r a l r e v i e w a r t i c l e s on the postmortem changes w h i c h o c c u r - 27 -d u r i n g the a g e i n g or c o n d i t i o n i n g of meat have a p p e a r e d i n the l i t e r a t u r e ( A s h g a r and Y e a t e s , 1978; E t h e r i n g t o n , 1981; P a r r i s h and L u s b y , 1983; P e a r s o n et a l . , 1 9 8 3 ) . Cheng and P a r r i s h (1977) have d e s c r i b e d the p r i m a r y m o d i f i c a t i o n s a s : (1) the r e m o v a l or d i s a p p e a r a n c e of the Z l i n e from the m y o f i b r i l ; (2) the f r a g m e n t a t i o n of the m y o f i b r i l at or n e a r the Z d i s c ; ( 3 ) the d e g r a d a t i o n of t r o p o n i n T and the a p p e a r a n c e of a 30,000 d a l t o n p r o t e i n ; and, (4) changes i n the e x t r a c t a b i l i t y of C p r o t e i n and a l p h a - a c t i n i n . B a r r e t t (1978) has a l s o s u g g e s t e d t h a t the a c i d i c l y s o s o m a l p r o t e i n a s e s , c a t h e p s i n B and c a t h e p s i n D, a r e c a p a b l e of h y d r o l y s i n g a c t i n and m y o s i n , and t h a t c a t h e p s i n B can i n a c t i v a t e the enzymes g l u c o k i n a s e , f r u c t o s e d i p h o s p h a t a s e and a l d o l a s e . On the o t h e r hand, A s h g a r and Y e a t e s (1978) and B e c h t e l and P a r r i s h (1983) d i d not o b s e r v e any s i g n i f i c a n t changes i n e i t h e r s a r c o p l a s m i c or the major c o n t r a c t i l e p r o t e i n s r e s p e c t i v e l y . I t would a p p e a r t h a t l a r g e s t r u c t u r a l changes i n the m o l e c u l a r a r c h i t e c t u r e of the m u s c l e a r e not n e c e s s a r y f o r the p r o m o t i o n of t e n d e r n e s s ( A s h g a r and Y e a t e s , 1978; G o l l e t a l . , 1983; Marsh, 1981; P e a r s o n et a l . , 1 9 83). I s h i u r a e t a l . (1982) s u g g e s t e d t h a t the i n i t i a l s t e p of the d e g r a d a t i o n of i n t r a c e l l u l a r p r o t e i n s was a n o n - l y s o s o m a l p r o c e s s and a t t r i b u t e d t h i s i n i t i a t i o n to a c a l c i u m - a c t i v a t e d n e u t r a l p r o t e a s e . P a r r i s h and L u sby (1983) a g r e e d t h a t the c a l c i u m - a c t i v a t e d p r o t e a s e was p r o b a b l y the p r o t e a s e of c o n s e q u e n c e i n e a r l y postmortem m u s c l e , but s e v e r a l a u t h o r s - 28 -have s t r e s s e d a c o o p e r a t i v e mechanism between the n e u t r a l p r o t e a s e and l y s o s o m a l enzymes ( E t h e r i n g t o n , 1981; O u a l i and V a l i n , 1981; P e a r s o n e t a l . , 1 9 83). 2.3.2 The r o l e of l y s o s o m a l enzymes T h r e e d i s t i n c t r e g i o n s of a u t o l y t i c a c t i v i t y have been o b s e r v e d i n v e r t e b r a t e s k e l e t a l m u s c l e : at a l k a l i n e , n e u t r a l and a c i d i c pH c o n d i t i o n s ( D r a b i k o w s k i e t a l . , 1 9 77). The a c t i v i t y of s e r i n e p r o t e a s e s i s optimum at a l k a l i n e pH l e v e l s , but as t h e s e enzymes a r e c o n t a i n e d i n the mast c e l l s of c o n n e c t i v e t i s s u e , t h e i r c o n t r i b u t i o n to the postmortem d e g r a d a t i o n of the m y o f i b r i l i s l i m i t e d ( D r a b i k o w s k i e t a l . , 1977; D a y t o n e t a l . , 1981a; G o l l e t a l . , 1 9 8 2 ) . T h i r t e e n l y s o s o m a l p e p t i d e h y d r o l a s e s have been i d e n t i f i e d and s e v e n of t h e s e have been l o c a t e d i n s i d e s k e l e t a l m u scle c e l l s : c a t h e p s i n s A,B,C,D,H,L and l y s o s o m a l c a r b o x y p e p t i d a s e B ( G o l l e t a l . , 1983 ) . The p r o t e o l y t i c a c t i v i t i e s of c a t h e p s i n s A and C have been d e m o n s t r a t e d o n l y f o r s y n t h e t i c p e p t i d e s or d e r i v a t i v e s of d i p e p t i d e s r e s p e c t i v e l y , and t h e s e two enzymes have not been a s s i g n e d a major postmortem r o l e . S i m i l a r l y , a l i m i t e d r o l e has been s u g g e s t e d f o r c a t h e p s i n H, as i t s pH optimum i s h i g h e r t h a n the u l t i m a t e pH v a l u e r e p o r t e d f o r mu s c l e ( P e a r s o n e t a l . , 1 9 8 3 ) . S e v e r a l a u t h o r s have s u g g e s t e d t h a t the most a c t i v e l y s o s o m a l - 29 -p r o t e a s e s i n postmortem muscle a r e c a t h e p s i n s B,D, and L ( D u t s o n , 1983; E t h e r i n g t o n , 1981; G o l l e t a l . , 1983; P e a r s o n et a l . , 1983 ) . C a t h e p s i n B and c a t h e p s i n D h y d r o l y s e b o t h a c t i n and myosin at the r e s p e c t i v e pH o p t i m a of pH 5.2 and pH 4.0, whereas c a t h e p s i n L i s c a p a b l e of d e g r a d i n g myosin heavy c h a i n s , a c t i n , a l p h a - a c t i n i n , t r o p o n i n T and t r o p o n i n I at a l o w e r pH optimum. Dutson and L a w r i e (1974) examined the r e l e a s e of l y s o s o m a l enzymes i n beef L o n g i s s i m u s d o r s i m u scle at one h o u r , 24 h o u r s , 5 d a y s , 7 days and 14 days postmortem and f o u n d i n c r e a s i n g f r e e b e t a - g l u c u r o n i d a s e a c t i v i t y w i t h i n c r e a s e d s t o r a g e - an i n c r e a s e a s s o c i a t e d w i t h i m p r o v e d t e n d e r n e s s . I t has been r e c e n t l y s u g g e s t e d t h a t the a c i d i c c o n d i t i o n of postmortem m u s c l e not o n l y i n c r e a s e s c a t h e p t i c a c t i v i t y but d e n a t u r e s or a l l o w s c o n f i g u r a t i o n a l changes i n m y o f i b r i l l a r p r o t e i n s s u c h t h a t they a r e more s u s c e p t i b l e to p r o t e o l y t i c a t t a c k ( Y a t e s et a l . , 1983). 2.3.3 The r o l e of c a l c i u m - a c t i v a t e d n e u t r a l p r o t e a s e s Dayton et a l . (1976a) were the f i r s t to i s o l a t e a c a l c i u m - d e p e n d e n t n e u t r a l p r o t e a s e from p o r c i n e s k e l e t a l m u s c l e , and I s h i u r a et a l . (1978) p u r i f i e d and p a r t i a l l y c h a r a c t e r i z e d a s i m i l a r p r o t e a s e from c h i c k e n . A l t h o u g h t h i s c a l c i u m a c t i v a t e d f a c t o r (CAF or CANP - c a l c i u m a c t i v a t e d n e u t r a l p r o t e a s e ) has been f o u n d i n non-muscle c e l l s s uch as - 30 -r a t k i d n e y , p o r c i n e k i d n e y and e r y t h r o c y t e s , and human e r y t h r o c y t e s ( S a s a k i e t a l . , 1983) and human p l a t e l e t s ( S z p a c e n k o e t a l . , 1981), i t has a l s o been i m p l i c a t e d or i s o l a t e d i n s t r i a t e d m u s c l e s of beef (Cheng and P a r r i s h , 1977, 1978a,b; Koohmaraie e t a l . , 1984b; O l s o n e t a l . , 1977; P a r r i s h e t a l . , 1981), c h i c k e n ( I s h i u r a e t a l . , 1978, 1979, 1982; Kawashima e t a l . , 1984; N a g a i n i s and W o l f e , 1982; N a g a i n i s e t a l . , 1983; S u z u k i , K. et a l . , 1981a,b), hamster ( B a r t h and E l c e , 1 9 8 1 ) , p ork ( D a y t o n e t a l . , 1976a,b, 1981b; D a y t o n and S c h o l l m e y e r , 1981; R e v i l l e e t a l . , 1976), r a b b i t ( A z a n z a e t a l . , 1979; Busch e t a l . , 1972; H a t t o r i and T a k a h a s h i , 1982; Inomata e t a l . , 1983, 1984; Kang et a l . , 1978, 1980; Kawashima e t a l . , 1984; O k i t a n i e t a l . , 1974; Reddy et a l . , 1975; Reddy e t a l . , 1983; S u z u k i e t a l . , 1982; T s u j i and I m a h o r i , 1981; V i d a l e n c e t a l . , 1983), and r a t (Fagan e t a l . , 1 9 8 3 ) . A z a n z a e t a l . (1979) and I s h i u r a e t a l . (1978) b o t h s u g g e s t e d t h a t CAF i s a s i n g l e 80,000 d a l t o n p o l y p e p t i d e , but the m a j o r i t y of r e p o r t s have i n d i c a t e d t h a t i t has a m o l e c u l a r w e i g h t of 110K and c o n t a i n s two p o l y p e p t i d e c h a i n s of 80K and 30K d a l t o n s ( D a y t o n e t a l . , 1976a,b; G o l l e t a l . , 1983; Inomata e t a l . , 1984; Kawashima et a l . , 1984; S a s a k i e t a l . , 1983; T s u j i and I m a h o r i , 1981; T s u j i e t a l . , 1981; Wheelock, 1 9 8 2 ) . T s u j i and I m a h o r i (1981) s u g g e s t e d t h a t o n l y the 80K d a l t o n p o l y p e p t i d e was n e c e s s a r y f o r p r o t e o l y t i c a c t i v i t y , but t h a t t h e e x i s t e n c e of the 30K d a l t o n c h a i n was r e q u i r e d f o r maximum a c t i v i t y . - 31 -T h e r e i s g e n e r a l agreement now t h a t two forms of t h i s c a l c i u m - a c t i v a t e d n e u t r a l p r o t e a s e e x i s t i n s k e l e t a l m u s c l e . C a l p a i n I I r e q u i r e s m i l l i m o l a r l e v e l s of C a + 2 f o r maximum a c t i v i t y i n the range of pH 6.0-7.5 ( A z a n z a e t a l . , 1979; Busch et a l . , 1972; Cheng and P a r r i s h , 1977; D a y t o n et a l . , 1976a; Inomata e t a l . , 1984; I s h i u r a e t a l . , 1978; M e l l g r e n , 1980; M e l l g r e n et a l . , 1979, 1982; O k i t a n i et a l . , 1974; Reddy et a l . , 1975; S a s a k i et a l . , 1983; T s u j i and I m a h o r i , 1981; Wheelock, 1982), whereas c a l p a i n I i s c o m p l e t e l y a c t i v e at m i c r o m o l a r l e v e l s of C a + 2 , has o p t i m a l a c t i v i t y at n e u t r a l pH and would a p p e a r to be a c t i v e o v e r a b r o a d e r pH r a n g e , from pH 5.5 to pH 8.5 ( D a y t o n et a l . , 1981b; Inomata et a l . , 1983, 1984; Kawashima e t a l . , 1984; M e l l g r e n , 1980; M e l l g r e n et a l . , 1979; S a s a k i et a l . , 1983; Wheelock, 1982). A l t h o u g h two e a r l i e r s t u d i e s s u g g e s t e d t h a t c a l p a i n I was d e r i v e d f r o m the a u t o l y s i s of c a l p a i n I I ( S u z u k i , K. et a l . , 1 9 81a,b), s e v e r a l r e c e n t r e p o r t s have c o n c l u d e d t h a t the d i f f e r e n c e s between c a l p a i n I and c a l p a i n I I a r e s u b s t a n t i a l , and t h a t i t i s u n l i k e l y one r e s u l t s from the l i m i t e d p r o t e o l y s i s or p h o s p h o r y l a t i o n of the o t h e r (Inomata et a l . , 1983, 1984; S a s a k i et a l . , 1983; Wheelock, 1982 ). Kawashima et a l . (1984) o b s e r v e d b o t h c a l p a i n I and c a l p a i n I I a c t i v i t y i n r a b b i t s k e l e t a l m u s c l e , whereas c h i c k e n muscle c o n t a i n e d o n l y a n e u t r a l p r o t e a s e s i m i l a r to r a b b i t c a l p a i n I I , though i t s c a l c i u m s e n s i t i v i t y was s i g n i f i c a n t l y h i g h e r . - 32 -R e v i l l e et a l . (1976) f i r s t s u g g e s t e d t h a t CAF was not l o c a t e d i n a membrane-bound s u b c e l l u l a r p a r t i c l e and t h a t i t s a c t i v i t y must t h e r e f o r e be r e g u l a t e d by the i n t r a c e l l u l a r C a + 2 c o n c e n t r a t i o n . A r e c e n t s t u d y has c o n f i r m e d by an immunocytochemica1 t e c h n i q u e t h a t CAF i s l o c a t e d i n d i s c r e t e a r e a s of the c y t o p l a s m of c u l t u r e d m y o b l a s t s and at the Z d i s c s of m y o f i b r i l s . The r e g u l a t i o n of i t s a c t i v i t y , however, i s more complex t h a n o r i g i n a l l y p o s t u l a t e d : s t r i a t e d m u s c l e s a l s o c o n t a i n a p r o t e i n i n h i b i t o r of CAF whose i^n v i v o f u n c t i o n s r e m a i n u n c l e a r ( G o l l et a l . , 1983; O k i t a n i et a l . , 1976; O t s u k a and G o l l , 1980; P e a r s o n et a l . , 1 9 8 3 ) . The a c t i v i t y of the c a l p a i n s on m y o f i b r i l l a r p r o t e i n s i s a p p a r e n t l y v e r y s p e c i f i c . The most n o t i c e a b l e e f f e c t when m y o f i b r i l s were i n c u b a t e d w i t h e i t h e r c r u d e or p u r i f i e d c a l p a i n p r e p a r a t i o n s was the r e m o v a l or d i s a p p e a r a n c e of the Z d i s c ( B u s c h et a l . , 1972; D a y t o n et a l . , 1976a,b; Kang et a l . , 1978; Reddy e t a l . , 1975, 1 9 8 3 ) . S e v e r a l s t u d i e s have examined t h i s o c c u r r e n c e w i t h sodium d o d e c y l s u l p h a t e -p o l y a c r y l a m i d e g e l e l e c t r o p h o r e s i s and d e m o n s t r a t e d the r e l e a s e of s e v e r a l p r o t e i n s t h a t a r e t h o u g h t r e s p o n s i b l e f o r the i n t e g r i t y of the Z d i s c : a l p h a - a c t i n i a ( G o l l et a l . , 1982; Kang et a l . , 1978; Reddy et a l . , 1975, 1983), z e e l i n ( B u l l a r d e t a l . , 1981), and z - n i n ( S u z u k i , A. et a l . , 1981, 1 9 83). The c a l p a i n s have e x h i b i t e d some h y d r o l y t i c a c t i v i t y toward Z d i s c a c t i n ( N a g a i n i s and W o l f e , 1982; N a g a i n i s et a l . , 1983), - 33 -n e b u l i n (Robson e t a l . , 1984), desmin (O'Shea e t a l . , 1979), and f i l a m i n ( D a v i e s et a l . , 1978), but the s i g n i f i c a n c e of t h i s a c t i v i t y to postmortem t e n d e r i z a t i o n i s unknown ( G o l l e t a l . , 1 983). Busch et a l . (1972) s u g g e s t e d t h a t the c a l c i u m - s p e c i f i c r e m o v a l of Z l i n e s f r o m r a b b i t s k e l e t a l m u s c l e was p r o b a b l y r e s p o n s i b l e f o r the d e c l i n e of i s o m e t r i c t e n s i o n and t h a t the p r o c e s s was o p e r a t i v e i m m e d i a t e l y a f t e r d e a t h . R e c e n t s t u d i e s have r e p o r t e d c o n t r a d i c t o r y r e s u l t s w i t h r e s p e c t to c a l p a i n a c t i v i t y i n s t o r e d m u s c l e : one s t u d y f o u n d a d e c r e a s e i n c a l p a i n a c t i v i t y ( O l s o n e t a l . , 1977), whereas S u z u k i et a l . (1982) f o u n d t h a t the y i e l d and a c t i v i t y of c r u d e CAF of s t o r e d m u s c l e was h i g h e r t h a n muscle i m m e d i a t e l y postmortem, even though t h e r e were no s i g n i f i c a n t d i f f e r e n c e s i n the time c o u r s e of a c t i v i t y , or the pH and C a + 2 d e p e n d e n c i e s . A n o t h e r s t u d y has i n d i c a t e d t h a t the a c t i v i t y of c a l p a i n I I was n e a r l y c o n s t a n t when r a b b i t m uscle was s t o r e d f o r s i x days at 4°C, but p r o g r e s s i v e l y d e c r e a s i n g l e v e l s of b o t h c a l p a i n I and the CAF i n h i b i t o r were a l s o n o t e d ( V i d a l e n c e t a l . , 1983). 2.3.4 P r o t e o l y t i c a c t i v i t y i n e l e c t r i c a l l y s t i m u l a t e d m u s c l e s In t h e i r r e v i e w on the use of e l e c t r i c a l s t i m u l a t i o n to improve meat q u a l i t y , Seideman and C r o s s (1982) commented t h a t the enzymes r e s p o n s i b l e f o r aged meat t e n d e r n e s s were a l s o r e s p o n s i b l e f o r the t e n d e r n e s s of e l e c t r i c a l l y s t i m u l a t e d - 34 -meat and t h a t an enhanced r a t e and/or d u r a t i o n of p r o t e o l y s i s due to l y s o s o m a l p r o t e i n a s e s was p o s s i b l e i n s t i m u l a t e d m u s c l e s . A l t h o u g h the i n i t i a l d e g r a d a t i o n of the Z l i n e has been a t t r i b u t e d to c a l c i u m - d e p e n d e n t n e u t r a l p r o t e a s e a c t i v i t y , E t h e r i n g t o n (1981) b e l i e v e s t h a t t h e r e i s a l e s s e r c o n t r i b u t i o n f r o m t h i s p a r t i c u l a r enzyme i n e l e c t r i c a l l y s t i m u l a t e d m u s c l e s , as t h e s e can e x h i b i t pH v a l u e s i n the l o w e r end of the enzyme's e f f e c t i v e pH r a n g e . S e v e r a l a u t h o r s p o s t u l a t e d t h a t the r e l a t i v e c o n t r i b u t i o n of the l y s o s o m a l enzymes may be enhanced i n s t i m u l a t e d m u s c l e s f o l l o w i n g the r a p i d d e p l e t i o n of g l y c o g e n and e a r l y a c i d i f i c a t i o n of the m u s c l e ( D u t s o n e t a l . , 1980a,b; E t h e r i n g t o n , 1 9 8 1 ; Kang e t a l . , 1983; S m i t h et a l . , 1979; Wu e t a l . , 1 985). D u t s o n et a l . (1980b) r e p o r t e d a s i g n i f i c a n t i n c r e a s e i n the per c e n t f r e e a c t i v i t y f o r b o t h b e t a - g l u c u r o n i d a s e and c a t h e p s i n C when s t i m u l a t e d lamb s i d e s were compared to c o n t r o l s at one hour p o stmortem. A l t h o u g h c o n c o m i t a n t d e c r e a s e s i n b o t h the s p e c i f i c s e d i m e n t a b l e and t o t a l a c t i v i t i e s of b o t h enzymes were o b s e r v e d , t h e r e were no s i g n i f i c a n t d i f f e r e n c e s i n the s p e c i f i c a c t i v i t y of the s u p e r n a t a n t due to s t i m u l a t i o n . These a u t h o r s s u g g e s t e d t h a t , even though more l y s o s o m a l enzymes were r e l e a s e d i n s t i m u l a t e d m u s c l e s , t h e y were a l s o more s u s c e p t i b l e , t o a u t o l y s i s at the r e l a t i v e l y h i g h body t e m p e r a t u r e s . H i g h e r s o l u b l e a c t i v i t i e s - 35 -of b e t a - g l u c u r o n i d a s m u s c l e s from e l e c t r i been r e p o r t e d (Wu et e and c a t h e p s i n B f o r c a l l y s t i m u l a t e d beef a l . , 1 9 8 5). L o n g i s s i m u s d o r s i c a r c a s s e s have a l s o Salm et a l . (1983) r e c e n t l y i n d i c a t e d t h a t m u s c l e s from e l e c t r i c a l l y s t i m u l a t e d b e e f c a r c a s s e s e x h i b i t e d enhanced d e g r a d a t i o n of a l p h a - a c t i n i n and t r o p o n i n T as w e l l as an i n c r e a s e d r a t e of a p p e a r a n c e f o r a 30K d a l t o n p r o t e i n t h a t has p r e v i o u s l y s e r v e d as i n d i c a t o r of postmortem t e n d e r n e s s improvement. T h i s b e n e f i t due to s t i m u l a t i o n was e l i m i n a t e d i f the c a r c a s s e s were r a p i d l y c h i l l e d . In an e a r l i e r s t u d y , p r o n o u n c e d Z l i n e d e g r a d a t i o n was o b s e r v e d as e a r l y as 24 h o u r s i n e l e c t r i c a l l y s t i m u l a t e d c a r c a s s e s t h a t had been h e l d at 16°C f o r 12 h o u r s p r i o r to c h i l l i n g ( E l g a s i m et a l . , 1981). When e l e c t r i c a l s t i m u l a t i o n was combined w i t h h i g h t e m p e r a t u r e c o n d i t i o n i n g , i n c r e a s e d d e g r a d a t i o n of m y o f i b r i l l a r p r o t e i n s - e s p e c i a l l y m y o s i n , myosin l i g h t c h a i n 2 and t r o p o n i n T - was o b s e r v e d ( B a b i k e r , 1 9 8 5 ) . 3. I s o m e t r i c t e n s i o n d e v e l o p m e n t and p o u l t r y meat q u a l i t y  3.1 I s o m e t r i c t e n s i o n d e v e l o p m e n t In a d d i t i o n to l o s i n g e x t e n s i b i l i t y , u n r e s t r a i n e d m u s c l e s h o r t e n s d u r i n g r i g o r d e v e l o p m e n t and the e x t e n t of the c o n t r a c t i o n i s dependent on the p r e s e n c e of ATP and on - 36 -t e m p e r a t u r e . The mechanism of t h i s postmortem s h o r t e n i n g i s b e l i e v e d to be the same as m u s c u l a r c o n t r a c t i o n jin v i v o , t h e p r e s e n t l y - k n o w n d e t a i l s of w h i c h can be fo u n d i n r e c e n t r e v i e w s (Cohen, 1975; Murray and Weber,1974, 1980). T h i s o c c u r r e n c e has l e d to the de v e l o p m e n t of a new t e c h n i q u e to f o l l o w the time c o u r s e of r i g o r : i s o m e t r i c t e n s i o n d e v e l o p m e n t . Busch e t a l . (1967) and Jungk e t a l . (1967) f i r s t r e p o r t e d the p a t t e r n of postmortem i s o m e t r i c t e n s i o n d e v e l o p m e n t and d e c l i n e i n b o v i n e and r a b b i t m u s c l e . T h i s p a t t e r n has been f u r t h e r d e m o n s t r a t e d to be a w i d e s p r e a d phenomenon o c c u r r i n g i n b o v i n e ( B u s c h e t a l . , 1967, 1972; Jungk e t a l . , 1967, 1974; Nuss and W o l f e , 1981; Okubanjo and S t o u f f e r , 1975), c h i c k e n (Khan, 1974; Khan and Kim, 1975; Sundeen e t a l . , 1980; W h i t i n g and R i c h a r d s , 1975, 1978a,b,c; Wood and R i c h a r d s , 1974a,b, 1975), p o r c i n e ( B u s c h e t a l . , 1972; Schmidt e t a l . , 1968, 1970), r a b b i t ( B u s c h e t a l . , 1972; Jungk e t a l . , 1 9 7 4 ) , and t u r k e y m u s c l e (Jungk and M a r i o n , 1970; M a r i o n , 1971; V a n d e r s t o e p and R i c h a r d s , 1 9 7 4 ) . The most f r e q u e n t l y r e p o r t e d p a r a m e t e r s a r e the time to maximum t e n s i o n and the amount of maximum t e n s i o n d e v e l o p e d . Most of the i n d i c a t e d s t u d i e s i n v e s t i g a t e d the r e s p o n s e to v a r i o u s t r e a t m e n t s as w e l l as the r e l a t i o n s h i p to m e t a b o l i t e l e v e l s . A l t h o u g h Busch e t a l . (1972) d e v e l o p e d the i s o m e t r i c t e n s i o n t e c h n i q u e to q u a n t i t a t i v e l y m o n i t o r the time c o u r s e of r i g o r , - 37 -i t was r e c o g n i z e d t h a t the amount of t e n s i o n d e v e l o p e d was p r o b a b l y n ot l i n e a r l y r e l a t e d to the de g r e e of s h o r t e n i n g . These a u t h o r s s u g g e s t e d t h a t , as the t r a n s d u c e r s of the r i g o r o m e t e r were c a p a b l e of m e a s u r i n g m i c r o d i s p l a c e m e n t s , s m a l l v a r i a t i o n s may l e a d to a l a r g e e f f e c t on i s o m e t r i c t e n s i o n . A r e c e n t s t u d y on the k i n e t i c s of r i g o r o n s e t i n beef muscle n o t e d t h a t i n d i v i d u a l f i b r e s w i t h i n a f i b r e b u n d l e e n t e r i n t o r i g o r a t d i f f e r e n t t i m e s postmortem and f u r t h e r s u g g e s t e d t h a t f o r c e g e n e r a t i o n d u r i n g r i g o r o n s e t o c c u r s by the s u c c e s s i v e making and b r e a k i n g of t e n s i o n - g e n e r a t i n g c r o s s b r i d g e s ( J e a c o c k e , 1984). D e c r e a s i n g the pH of the b u f f e r m a r k e d l y r e d u c e s the time r e q u i r e d to d e v e l o p maximum t e n s i o n i n b o t h r a b b i t P soas ( B u s c h e t a l . , 1972) and c h i c k e n P e c t o r a l i s m u s c l e (Wood and R i c h a r d s , 1 9 7 4 a ) . Busch et a l . (1972) a l s o r e p o r t e d t h a t the maximum t e n s i o n d e v e l o p e d by r a b b i t Psoas m u s c l e s was u n a f f e c t e d by b u f f e r pH i n t h e range of pH 5.5-7.0. However, Wood and R i c h a r d s (1974a) s u g g e s t e d t h a t the amount of t e n s i o n d e v e l o p e d by c h i c k e n P e c t o r a l i s muscle s t r i p s a t pH 6.3 was l e s s than t h a t a c h i e v e d a t pH 5.8; the maximum t e n s i o n s d e v e l o p e d a t b o t h of t h e s e pH l e v e l s were i n t u r n s m a l l e r than t h a t d e v e l o p e d a t pH 6.7. S e v e r a l s t u d i e s have been c o n d u c t e d on the e f f e c t of t e m p e r a t u r e on the de v e l o p m e n t of i s o m e t r i c t e n s i o n . When S e m i t e n d i n o s u s and Psoas muscle s t r i p s from beef c a r c a s s e s - 38 -were ex p o s e d to e n v i r o n m e n t a l t e m p e r a t u r e s of 2, 16 and 37°C, i s o m e t r i c t e n s i o n d e v e l o p m e n t was maximal at 2°C and m i n i m a l at 16°C ( B u s c h e t a l . , 1967). Nuss and W o l f e (1981) r e c e n t l y o b s e r v e d t h a t b e e f B i c e p s f e m o r i s m u s c l e s e x h i b i t e d d e c r e a s i n g t i m e s to maximum t e n s i o n as the t e m p e r a t u r e v a r i e d from 0 to 37°C, whereas the maximum t e n s i o n d e v e l o p e d i n c r e a s e d o n l y as the t e m p e r a t u r e was r a i s e d beyond 15°C. Jungk and M a r i o n (1970) d i d not o b s e r v e a s i g n i f i c a n t l i n e a r r e l a t i o n s h i p between t e m p e r a t u r e and the time to maximum t e n s i o n i n t u r k e y m u s c l e s t r i p s , even though t e m p e r a t u r e s i g n i f i c a n t l y i n f l u e n c e d the amount of t e n s i o n d e v e l o p e d . The e f f e c t of m u s c l e f i b r e t y p e on i s o m e t r i c t e n s i o n d e v e l o p m e n t has been examined by a number of a u t h o r s and i t would a p p e a r t h a t m u s c l e s t r i p s composed of p r e d o m i n a n t l y r e d muscle f i b r e s a r e c a p a b l e of d e v e l o p i n g more i s o m e t r i c t e n s i o n than t h o s e w i t h a h i g h e r p r o p o r t i o n of w h i t e f i b r e s ( B u s c h e t a l . , 1972 ; W h i t i n g and R i c h a r d s , 1975 ). I t has r e c e n t l y been s u g g e s t e d , however, t h a t i s o m e t r i c t e n s i o n p a r a m e t e r s a r e i n f l u e n c e d to a g r e a t e r e x t e n t by t e m p e r a t u r e , r a t h e r than by m u s c l e f i b r e t y p e (Nuss and W o l f e , 1981). The n a t u r e of t h e r e l a t i o n s h i p s t h a t e x i s t between m e t a b o l i t e c o n c e n t r a t i o n s , i s o m e t r i c t e n s i o n p a r a m e t e r s and cooked meat s h e a r f o r c e v a l u e s i s s u b j e c t to wide v a r i a t i o n . A l t h o u g h Busch e t a l . (1967) o b s e r v e d r e l a t i v e l y s m a l l changes i n ATP c o n t e n t d u r i n g l a r g e t e n s i o n d e v elopment i n beef - 39 -S e m i t e n d i n o s u s m u s c l e s at 2°C, t h e r e was no s i g n i f i c a n t d i f f e r e n c e between the ATP c o n t e n t of m u s c l e s h e l d at 2°C and t h o s e h e l d at 16°C, where t e n s i o n d e v e l o p e d was m i n i m a l ; t h e s e a u t h o r s r e p o r t e d t h a t no d i r e c t r e l a t i o n s h i p e x i s t e d between m u s c l e ATP c o n t e n t and s h e a r r e s i s t a n c e . Lee et a l . ( 1976 ) fo u n d t h a t i n i t i a l g l y c o g e n l e v e l s and the postmortem g l y c o l y s i s r a t e were s i g n i f i c a n t l y c o r r e l a t e d w i t h the s h e a r v a l u e of ground m u s c l e - an a s s o c i a t i o n o b s e r v e d by o t h e r w o r k e r s (de Fr e m e r y , 1966; Khan and Kim, 1975). Khan (1974) r e p o r t e d t h a t t h e u l t i m a t e s h e a r f o r c e a p p e a r e d to be d i r e c t l y p r o p o r t i o n a l t o the maximum i s o m e t r i c t e n s i o n d e v e l o p e d , whereas Wood (1973) f o u n d t h a t s h e a r had a p o s i t i v e r e l a t i o n s h i p w i t h b o t h t e n s i o n and t i m e . S i g n i f i c a n t p o s i t i v e a s s o c i a t i o n s between the time to maximum t e n s i o n w i t h ATP and/or g l y c o g e n c o n t e n t were n o t e d by Sundeen e t a l . ( 1 9 8 0 ) , but n e i t h e r maximum t e n s i o n nor the time to maximum t e n s i o n c o u l d be d i r e c t l y r e l a t e d to the d e c l i n e i n muscle ATP or g l y c o g e n c o n t e n t a c c o r d i n g to a r e c e n t s t u d y on s e l e c t e d beef m u s c l e s (Nuss and W o l f e , 1981). 3.2 F a c t o r s a f f e c t i n g p o u l t r y meat q u a l i t y T h e r e a r e a number of r e p o r t s a v a i l a b l e i n the l i t e r a t u r e t h a t d e s c r i b e the antemortem and postmortem f a c t o r s w h i c h i n f l u e n c e the u l t i m a t e q u a l i t y of p o u l t r y meat. Lee et a l . (1976) r e p o r t e d t h a t when b r o i l e r s were exposed to h e a t ( 3 8 ° C ) , c o l d (4°C) or extreme c o l d (-20°C) f o r s i x h o u r s b e f o r e s l a u g h t e r , - 40 -b o t h the h e a t and c o l d t r e a t m e n t s a d v e r s e l y a f f e c t e d t e n d e r n e s s , a l t h o u g h the i n c r e a s e i n t o u g h n e s s was o n l y s i g n i f i c a n t f o r the h e a t t r e a t m e n t . B r e a s t m u s c l e s e x c i s e d from h e a t s t r e s s e d b r o i l e r s had h i g h e r i n i t i a l g l y c o g e n c o n t e n t and m u s c l e pH and s i g n i f i c a n t l y l o w e r u l t i m a t e pH when compared to c o n t r o l s . Wood (1973) d i d not o b s e r v e any s i g n i f i c a n t d i f f e r e n c e s i n i s o m e t r i c t e n s i o n p a r a m e t e r s due to antemortem e n v i r o n m e n t a l t e m p e r a t u r e s , even though m u s c l e s from h e a t - s t r e s s e d b r o i l e r s r e q u i r e d l e s s time to d e v e l o p maximum t e n s i o n t h a n t h o s e from c o n t r o l s ; c o l d - s t r e s s e d m u s c l e s e x h i b i t e d i n c r e a s e d t i m e s to maximum t e n s i o n when compared to c o n t r o l s . S e v e r a l s t a g e s i n the c o m m e r c i a l p r o c e s s i n g of p o u l t r y can e x e r t a s i g n i f i c a n t i n f l u e n c e on the f i n a l p r o d u c t q u a l i t y . Ma and A d d i s (1973) and Ma e t a l . (1971) n o t e d t h a t t u r k e y s w h i c h were a l l o w e d to s t r u g g l e f r e e l y e x h i b i t e d e l e v a t e d e l e c t r i c a l s t i m u l a t o r y r e s p o n s e t h r e s h o l d s , d e c r e a s e d c o n t r a c t i l i t y d u r a t i o n and an a c c e l e r a t e d r i g o r o n s e t . These a u t h o r s a l s o o b s e r v e d a c l e a r t e n d e n c y f o r i n c r e a s e d s h e a r f o r c e v a l u e s as the time r e q u i r e d to r e a c h r i g o r d e c r e a s e d . In a l a t e r s t u d y , b r e a s t muscle from c o m m e r c i a l l y p r o c e s s e d b r o i l e r s t h a t were e l e c t r i c a l l y s t u n n e d had s i g n i f i c a n t l y l o w e r s h e a r v a l u e s when compared to n o — s t u n c o n t r o l s a f t e r a g e i n g f o r 24 hou r s at 2°C (Lee e t a l . , 1979). S i g n i f i c a n t , s m a l l i n c r e a s e s i n b r o i l e r t o u g h n e s s have been - 41 -o b s e r v e d when e i t h e r the s c a l d t e m p e r a t u r e or t h e s c a l d i n g t i m e i s i n c r e a s e d ( P o o l e t a l . , 1959), and a s i m i l a r a d v e r s e a f f e c t on t e n d e r n e s s has been r e p o r t e d f o r c a r c a s s e s exposed to s e v e r e m e c h a n i c a l f e a t h e r p l u c k i n g ( P o o l e t a l . , 1959; de Fremery, 1 9 6 6 ) . Wood (1973) s u g g e s t e d t h a t f r e e s t r u g g l e , hot s c a l d t e m p e r a t u r e s and m e c h a n i c a l p l u c k i n g can have an a d d i t i v e , a d v e r s e e f f e c t on the p a r a m e t e r s of i s o m e t r i c t e n s i o n d e v e l o p m e n t . Y a t e s e t a l . ( 1976 ) f o u n d no s i g n i f i c a n t d i f f e r e n c e s i n e i t h e r t e n d e r n e s s or f l a v o u r among 42 s t r a i n c r o s s e s of b r o i l e r s t h a t were r e a r e d , p r o c e s s e d and e v a l u a t e d under u n i f o r m c o n d i t i o n s , but d i d o b s e r v e a s i g n i f i c a n t sex e f f e c t : cooked P e c t o r a l i s m u s c l e s e x c i s e d f r o m f e m a l e s were s i g n i f i c a n t l y t o u g h e r than t h o s e e x c i s e d f r o m m a l e s . May et a l . (1962) r e p o r t e d t h a t 72 week o l d c h i c k e n s were s i g n i f i c a n t l y l e s s t e n d e r than 10 week o l d c h i c k e n s and t h a t the d i f f e r e n c e p e r s i s t e d t h r o u g h o u t c a r c a s s a g e i n g . In g e n e r a l , the changes w h i c h o c c u r d u r i n g the a g e i n g or c o n d i t i o n i n g of p o u l t r y a r e t h o u g h t to be s i m i l a r to t h o s e i n o t h e r meat a n i m a l s : b o t h t u r k e y ( K l o s e e t a l . , 1959) and b r o i l e r (May et a l . , 1962; P o o l e t a l . , 1959; S t e w a r t et a l . , 1948; van den B e r g e t a l . , 1963, 1964a,b) t e n d e r n e s s improve w i t h postmortem s t o r a g e . Van den Berg e t a l . (1963, 1964a) s u g g e s t e d t h a t t h e t e n d e r i z a t i o n of c h i c k e n b r e a s t and l e g - 42 -m u s c l e s o c c u r s w i t h i n two days postmortem and t h a t l e g m u s c l e s e x h i b i t an a d d i t i o n a l t e n d e r i z a t i o n 2-5 days l a t e r . 3.3 Obj e c t i v e s A l t h o u g h t h e r e i s c o n s i d e r a b l e l i t e r a t u r e a v a i l a b l e on the use of e l e c t r i c a l s t i m u l a t i o n i n the p r o c e s s i n g of s e v e r a l a n i m a l s p e c i e s , o n l y a few r e p o r t s e x i s t f o r p o u l t r y . T h i s l a c k of i n f o r m a t i o n , t o g e t h e r w i t h the s e n s i t i v i t y of the i s o m e t r i c t e n s i o n measurement t e c h n i q u e to changes i n postmortem s h o r t e n i n g and the r e c o g n i z e d i n t e r r e l a t i o n s h i p s between m e t a b o l i t e a v a i l a b i l i t y and m u s c l e c o n t r a c t i o n , p r o v i d e d the impetus f o r the r e s e a r c h p r e s e n t e d i n t h i s t h e s i s . The p r i m a r y o b j e c t i v e s f o r the t h e s i s were, t h e r e f o r e , (1) to a s s e s s the i n f l u e n c e of p r e s l a u g h t e r e l e c t r i c s t u n n i n g i n a c o m m e r c i a l o p e r a t i o n on p o u l t r y t e n d e r n e s s , (2) to examine how r i g o r d e v e l o p m e n t , as m o n i t o r e d by the i s o m e t r i c t e n s i o n t e c h n i q u e , i s a f f e c t e d by the v o l t a g e , f r e q u e n c y and d u r a t i o n of a p o s t - e x s a n g u i n a t i o n e l e c t r i c s h o c k , (3 ) to d e t e r m i n e the e f f e c t of e l e c t r i c a l s t i m u l a t i o n on post-mortem g l y c o l y s i s as measured by pH and by changes i n the c o n c e n t r a t i o n s of s e v e r a l m u scle m e t a b o l i t e s , (4) to a s s e s s whether some f u n c t i o n a l p r o p e r t i e s or the r a t e of p r o t e o l y s i s of a v i a n m u s c l e s were a l t e r e d by e l e c t r i c a l s t i m u l a t i o n , and - 43 -to f u r t h e r e v a l u a t e the r e l a t i o n s h i p s among s e v e r a l c h e m i c a l and b i o p h y s i c a l c h a r a c t e r i s t i c s of p o s t m o r t a v i a n m uscle and how t h e s e might be i n f l u e n c e d by e l e c t r i c a l s t i m u l a t i o n . - 44 -MATERIALS AND METHODS 4.1 P r e l i m i n a r y Study A p r e l i m i n a r y s t u d y was c o n d u c t e d i n o r d e r to d e t e r m i n e i f d i f f e r e n c e s c o u l d be o b s e r v e d i n the t e n d e r n e s s of m u s c l e samples from c h i c k e n b r o i l e r s p r o c e s s e d and h a n d l e d i n a s t a n d a r d c o m m e r c i a l o p e r a t i o n w i t h or w i t h o u t p r e s l a u g h t e r e l e c t r i c s t u n n i n g . A t o t a l of 44 c a r c a s s e s were t e s t e d . Twenty-two b i r d s were p r o c e s s e d i n the s t a n d a r d manner w i t h e l e c t r i c a l s t u n n i n g b e f o r e and a f t e r b l e e d i n g . a t a l o c a l p o u l t r y p r o c e s s i n g p l a n t . F o r each e l e c t r i c shock of t h i s d o u b l e s t u n n i n g p r o c e s s , a c o m m e r c i a l s t u n n e r was used to d e l i v e r 70V DC f o r a d u r a t i o n of 2s. The o t h e r 22 b i r d s were not e l e c t r i c a l l y s t u n n e d , but were o t h e r w i s e s i m i l a r l y p r o c e s s e d . The c a r c a s s e s were wing t a g g e d , p acked i n i c e and i m m e d i a t e l y t r a n s p o r t e d to the Department of Food S c i e n c e at UBC. They were h e l d a p p r o x i m a t e l y 24 h o u r s i n i c e i n a r e f r i g e r a t e d c o o l e r , i n d i v i d u a l l y bagged, f r o z e n at -10°C and h e l d a t -10°C u n t i l a n a l y s e d . A l l a n a l y s e s were c o m p l e t e d w i t h i n 30 days of s l a u g h t e r . T e n d e r n e s s measurements were p e r f o r m e d i n a manner s i m i l a r to t h a t r e p o r t e d by de Fremery and P o o l ( 1 9 6 0 ) . S i n g l e b r e a s t m u s c l e s ( P . maj or and P_. m i n o r ) were e x c i s e d from thawed c a r c a s s e s , p l a c e d between two aluminum p l a t e s h e l d a p a r t at a - 45 -c o n s t a n t t h i c k n e s s , immersed i n b o i l i n g w ater f o r 10 m i n u t e s , t h e n c o o l e d i n c o l d t a p w a t e r f o r f i v e m i n u t e s . S t r i p s of p a r a l l e l f i b r e s , 10 mm w i d e , were p r e p a r e d from the cooked meat. R e s i s t a n c e to c u t t i n g was measured' on an I n s t r o n U n i v e r s a l T e s t i n g I n s t r u m e n t (Model 1122, I n s t r o n E n g i n e e r i n g C o r p o r a t i o n , C a n t o n , MA) f i t t e d w i t h a Kramer s i n g l e b l a d e s h e a r a t t a c h m e n t . A l l s h e a r t e s t s were p e r f o r m e d w i t h a c r o s s h e a d speed of 100 mm/min and a f u l l s c a l e l o a d s e n s i t i v i t y of 10 k g . A minimum of s i x s h e a r t e s t s per b i r d was o b t a i n e d . Leg and t h i g h p o r t i o n s were a l s o e x c i s e d f r o m the thawed c a r c a s s e s and were randomly a l l o c a t e d to members of the Food S c i e n c e d e p a r t m e n t f o r home e v a l u a t i o n . A t o t a l of 22 p a i r s of samples were e v a l u a t e d . The j u d g e s were asked to p r e p a r e the p o r t i o n s i n any manner t h e y p r e f e r r e d and e v a l u a t e the samples f o r t e n d e r n e s s , j u i c i n e s s and o v e r a l l a c c e p t a b i l i t y u s i n g an e i g h t p o i n t s c a l e f r o m most d e s i r e d to l e a s t d e s i r e d . F o r the p u r p o s e of a n a l y s i s , the e v a l u a t i o n l e v e l s were a s s i g n e d the v a l u e s 1 to 8, w i t h the most d e s i r a b l e c a t e g o r y h a v i n g the v a l u e 1 (See A p p e n d i x 1 ) . 4.2 S t u d y One The p u r p o s e of t h i s s t u d y was to a s s e s s the i n f l u e n c e of s e v e r a l c h a r a c t e r i s t i c s of the p o s t - e x s a n g u i n a t i o n e l e c t r i c shock on some c h e m i c a l and b i o p h y s i c a l p a r a m e t e r s of a v i a n - 46 -m u s c l e . The e f f e c t of the v o l t a g e , f r e q u e n c y and d u r a t i o n of t h i s shock on post-mortem g l y c o l y s i s (as measured by pH), r i g o r d e v e l o p m e n t , f i b r e t e n s i l e s t r e n g t h and s u b s e q u e n t s h e a r f o r c e v a l u e s of cooked samples was t h e r e f o r e examined. 4.2.1 S a m p l i n g p r o c e d u r e The s a m p l i n g of the c o m m e r c i a l s t r a i n b r o i l e r s i n the f i r s t s t u d y began at 6 weeks of age and c o n t i n u e d u n t i l t h e e x p e r i m e n t was c o m p l e t e d , when the b i r d s were 12 weeks o l d . One b i r d was r andomly s e l e c t e d f r o m the penned f l o c k on a d a i l y b a s i s , p l a c e d head f i r s t i n a p l a s t i c f u n n e l ( t o m i n i m i z e s t r u g g l i n g ) , e x s a n g u i n a t e d by an o u t s i d e neck c u t t h r o u g h the c a r o t i d a r t e r y and j u g u l a r v e i n , and a l l o w e d to b l e e d f r e e l y . U n s t i m u l a t e d b i r d s s e r v e d as c o n t r o l s w h i l e e l e c t r i c a l l y s t i m u l a t e d b i r d s were a s s i g n e d to one of the t r e a t m e n t s d e s c r i b e d i n T a b l e 1. A t o t a l of 52 b r o i l e r s were used i n t h i s s t u d y : 12 c o n t r o l s and 40 t r e a t e d ( f i v e b i r d s per t r e a t m e n t ) . E l e c t r i c a l s t i m u l a t i o n was p e r f o r m e d u s i n g a s t i m u l a t o r m a n u f a c t u r e d by the B i o - R e s o u r c e E n g i n e e r i n g D e p a r t m e n t . M o d i f i c a t i o n s were made i n the d e s i g n of a c o m m e r c i a l l y a v a i l a b l e f i s h s t i m u l a t o r ( E l e c t r o - F i s h e r ) s u c h t h a t ( a ) the p u l s e f r e q u e n c y c o u l d be v a r i e d from 40 to 80 s - i ; (b) the - 47 -ran g e f o r p u l s e w i d t h was 4 to 8 ms; and ( c ) 0 to 150V DC c o u l d be d i r e c t e d to the o u t p u t c o n n e c t o r . T h i s o u t p u t c u r r e n t was d e l i v e r e d by the a t t a c h m e n t of one e l e c t r o d e clamp to a l e g and a n o t h e r clamp to the s k i n e x p o s e d by the o u t s i d e neck c u t . T a b l e 1: V o l t a g e , f r e q u e n c y and d u r a t i o n p a r a m e t e r s of the p o s t - e x s a n g u i n a t i o n e l e c t r i c a l shock ( S t u d y One) T r e a t m e n t V o l t a g e 1 F r e q u e n c y D u r a t i on T o t a l number number (V) ( p u l s e s / s ) ( s ) of p u l s e s 1 70 40 60 2400 2 70 80 60 4800 3 140 40 60 2400 4 140 80 60 4800 5 70 40 120 4800 6 70 80 120 9600 7 140 40 120 4800 8 140 80 120 9600 I C o n s t a n t p u l s e w i d t h of 4 ms 4.2.2 I s o m e t r i c t e n s i o n measurement The d e v e l o p m e n t and d e c l i n e of i s o m e t r i c t e n s i o n u s i n g an E&M 6 - c h a n n e l p h y s i o g r a p h ( m a n u f a c t u r e d N a r c o - B i o - S y s t e m s I n c . , H o u s t o n , TX) f i t t e d w i t h was m o n i t o r e d by i s o m e t r i c - 48 -t r a n s d u c e r s . T h r e e P e c t o r a l i s maj or and B i c e p s f e m o r i s muscle s t r i p s f r o m each b i r d were p r e p a r e d f o r t e n s i o n measurement i m m e d i a t e l y a f t e r e x s a n g u i n a t i o n and s t i m u l a t i o n t r e a t m e n t a c c o r d i n g to the method of Wood and R i c h a r d s ( 1 9 7 4 a ) . T e n s i o n was a l l o w e d to d e v e l o p at ambient t e m p e r a t u r e , i n p h o s p h a t e b u f f e r pH 7.2, i o n i c s t r e n g t h 0.15 (G o m o r i , 1955). The maximum time l a p s e from e x s a n g u i n a t i o n to the a t t a c h m e n t of s t r i p s was 20 m i n u t e s . 4.2.3. pH measurement Samples were o b t a i n e d from b o t h B i c e p s f e m o r i s and P e c t o r a l i s  maj or m u s c l e s at 0, 0.5, 1.0, 2.0, 4.0 and 6.0 h o u r s postmortem f o r pH d e t e r m i n a t i o n s . One to two grams of muscle were b l e n d e d w i t h 10 mL of n e u t r a l i z e d 0.005 M sodium i o d o a c e t i c a c i d s o l u t i o n ( B e n d a l l , 1973) and the pH of the r e s u l t i n g homogenate e v a l u a t e d u s i n g an Accumet Model 230 pH/ion meter ( F i s h e r S c i e n t i f i c Co., P i t t s b u r g h , P A ) . 4.2.4 T e n s i l e p r o p e r t i e s and t e n d e r n e s s measurements The m u s c l e samples used f o r i s o m e t r i c t e n s i o n measurements were e x c i s e d f r o m the B i c e p s f e m o r i s and P e c t o r a l i s maj or from the same s i d e of the c a r c a s s of each b i r d . The r e m a i n d e r of the c a r c a s s was c o v e r e d w i t h Saran wrap, packed i n d r a i n e d c r u s h e d i c e and h e l d i n a c o l d room at 2°C f o r 24 h o u r s . - 49 -M u s c l e s t r i p s were then e x c i s e d f r o m the p r e v i o u s l y sampled P e c t o r a l i s maj or to e v a l u a t e t e n s i l e p r o p e r t i e s u s i n g a method s i m i l a r to t h a t of S t a n l e y et a l . ( 1 9 7 1 ) . The I n s t r o n U n i v e r s a l T e s t i n g I n s t r u m e n t (Model 1122) was f i t t e d w i t h t y p e 2A f i b r e clamps and t e n s i l e l o a d c e l l 'B' (maximum l o a d c a p a c i t y , 500 k g ) . A minimum of 10 s t r i p s were c u t from the P e c t o r a l i s maj or of each b i r d s u c h t h a t m u scle f i b r e s were a p p r o x i m a t e l y p a r a l l e l . Each s t r i p was c u t to a l e n g t h of 5 cm and w e i g h e d . S t r i p s were p l a c e d i n the clamps such t h a t t h e i r i n i t i a l s e p a r a t i o n was 3.5 cm and s u b s e q u e n t l y e x t e n d e d at a r a t e of 20 cm/min. The f o r c e r e q u i r e d to b r e a k each s t r i p was c a l c u l a t e d as gram f o r c e p e r cm^ c r o s s - s e c t i o n a l a r e a . The i n i t i a l c r o s s - s e c t i o n a l a r e a ( i . e . , p r i o r to t e n s i o n i n g ) was c a l c u l a t e d f r o m a p r e v i o u s l y d e t e r m i n e d r e l a t i o n s h i p f o r c r o s s - s e c t i o n a l a r e a and the w e i g h t of the m u s c l e s t r i p (Wood, 1973). T e n d e r n e s s measurements f o r the r e m a i n i n g i n t a c t P e c t o r a l i s major were p e r f o r m e d on cooked samples a c c o r d i n g to the method d e s c r i b e d i n t h e p r e l i m i n a r y s t u d y , i . e . , w i t h the s i n g l e b l a d e s h e a r c e l l . 4.3 S t u d y Two T h i s s t u d y was c o n d u c t e d i n o r d e r to f u r t h e r examine the e f f e c t s of e l e c t r i c a l s t i m u l a t i o n on the development of r i g o r m o r t i s as a s s e s s e d by the i s o m e t r i c t e n s i o n t e c h n i q u e . The - 50 -changes i n the c o n c e n t r a t i o n s of s e v e r a l m uscle m e t a b o l i t e s , due to s t i m u l a t i o n and i n r e l a t i o n to r i g o r d e v e l o p m e n t , were a l s o d e t e r m i n e d . 4.3.1 S a m p l i n g p r o c e d u r e The s a m p l i n g p r o c e d u r e of the s e c o n d s t u d y was i d e n t i c a l to t h a t of the f i r s t e x c e p t t h a t the e l e c t r i c a l l y s t i m u l a t e d b i r d s were a s s i g n e d to one of the t r e a t m e n t s d e s c r i b e d i n T a b l e 2. A t o t a l of 50 b r o i l e r s was u s e d : 10 c o n t r o l s and 40 t r e a t e d (10 b i r d s per t r e a t m e n t ) . The b i r d s were 6 and 17 weeks of age at t h e i n i t i a t i o n and c o m p l e t i o n of the e x p e r i m e n t , r e s p e c t i v e l y . T a b l e 2: V o l t a g e , f r e q u e n c y and d u r a t i o n p a r a m e t e r s of the p o s t - e x s a n g u i n a t i o n e l e c t r i c a l shock ( S t u d y Two) T r e a t m e n t V o l t a g e l F r e q u e n c y D u r a t i o n T o t a l number number (V) ( p u l s e s / s ) ( s ) of p u l s e s 1 70 40 60 2400 2 70 40 120 4800 3 140 • 40 60 2400 4 140 40 120 4800 ^ C o n s t a n t p u l s e w i d t h of 4 ms 4.3.2 M u s c l e p r e p a r a t i o n The p r e p a r a t i o n of P e c t o r a l i s maj or and B i c e p s f e m o r i s muscle s t r i p s f o r i s o m e t r i c t e n s i o n measurements was p e r f o r m e d as i n - 51 -S t u d y One. Samples of each muscle t y p e f o r m e t a b o l i t e a n a l y s i s were a l s o o b t a i n e d at 0, 2 and 6 h o u r s p o s t -s t i m u l a t i o n . An a d d i t i o n a l sample from the P e c t o r a l i s maj or was o b t a i n e d f o r g l y c o g e n d e t e r m i n a t i o n at 0.0 h o u r s postmortem. These samples were f r o z e n i n l i q u i d n i t r o g e n (LN2), s t o r e d i n aluminum f o i l e n v e l o p e s a t -35°C and s u b s e q u e n t l y powdered a c c o r d i n g to the method of B o r c h e r t and B r i s k e y (1965) as m o d i f i e d by V a n d e r s t o e p and R i c h a r d s ( 1 9 7 4 ) . The f r o z e n samples were removed and p u l v e r i z e d i n a macro model V i r t i s h o m o g e n i z e r (The V i r t i s Co. I n c . , G a r d i n e r , NY) f o r 1.5 m i n u t e s at 11,000 rpm. Care was t a k e n to e n s u r e the sample r e m a i n e d f r o z e n at a l l t i m e s . The powdered sample was r e p l a c e d i n aluminum f o i l p a c k a g e s and s t o r e d at -35°C u n t i l e x t r a c t e d . 4.3.3 M e t a b o l i t e a n a l y s i s T i s s u e ATP d e t e r m i n a t i o n s were c o n d u c t e d f o l l o w i n g the method of Lamprecht and T r a u t s c h o l d (1963) as m o d i f i e d by Wood ( 1 9 7 3 ) . M u s c l e g l y c o g e n was e x t r a c t e d from powdered samples by an e n z y m a t i c method u t i l i z i n g amylo a l p h a - 1 , 4 a l p h a - 1 , 6 g l u c o s i d a s e ( D a l r y m p l e and Hamm, 1973) and d e t e r m i n e d as D - g l u c o s e by the method of P f l e i d e r e r ( 1 9 6 3 ) . A d e n o s i n e 5 ' - d i p h o s p h a t e (A-6521 ), a d e n o s i n e 5 ' - t r i p h o s p h a t e ( A - 6 1 4 4 ) , amylo a l p h a - 1 , 4 a l p h a - 1 , 6 g l u c o s i d a s e ( A - 3 5 1 4 ) , g l u c o s e 6-phosphate d e h y d r o g e n a s e (G-8878), h e x o k i n a s e (H-5125) and b e t a - n i c o t i n a m i d e a d e n i n e d i n u c l e o t i d e p h o s p h a t e (N-0505) f o r - 52 -t h e s e enzyme a n a l y s e s were p u r c h a s e d f rom Sigma C h e m i c a l s ( S t . L o u i s , MO). A l l a b s o r b a n c e measurements were made w i t h a C a r y 210 r e c o r d i n g s p e c t r o p h o t o m e t e r ( V a r i a n A s s o c i a t e s Co. I n c . , P a o l o A l t o , C A ) . 4.4 S t u d y T h r e e The e f f e c t of e l e c t r i c a l s t i m u l a t i o n on the r a t e of p r o t e o l y s i s and some f u n c t i o n a l p r o p e r t i e s of a v i a n m u s c l e s was examined i n t h i s s t u d y . The r a t e of p r o t e o l y s i s was measured by the r e l e a s e of TCA s o l u b l e m a t e r i a l whereas the i n f l u e n c e on f u n c t i o n a l p r o p e r t i e s was a s s e s s e d by u s i n g the i n d i c e s of p r o t e i n e x t r a c t a b i l i t y , d i s p e r s i b i l i t y and h y d r o p h o b i c i t y . 4.4.1 S a m p l i n g p r o c e d u r e The s a m p l i n g of the White L e g h o r n males used i n the t h i r d s t u d y began at t w e l v e weeks of age and c o n t i n u e d u n t i l t h e e x p e r i m e n t was c o m p l e t e d , at 14 weeks of age. U n s t i m u l a t e d b i r d s s e r v e d as c o n t r o l s w h i l e e l e c t r i c a l l y s t i m u l a t e d b i r d s r e c e i v e d a 140V shock f o r one m i n u t e (40 p u l s e s / s , 4 msec p u l s e w i d t h ) . A t o t a l of 10 b i r d s was u s e d : f i v e c o n t r o l s and f i v e t r e a t e d . The p r e p a r a t i o n of P e c t o r a l i s maj or and B i c e p s f e m o r i s m u s c l e s t r i p s f o r i s o m e t r i c t e n s i o n measurements was p e r f o r m e d as i n - 53 -S tudy One. Samples of each muscle were o b t a i n e d at 1, 6 and 24 h o u r s p o s t - s l a u g h t e r and i m m e d i a t e l y a n a l y s e d f o r TCA s o l u b l e m a t e r i a l . An a d d i t i o n a l sample of the P e c t o r a l i s  maj or was e x c i s e d at each s a m p l i n g time and examined f o r e x t r a c t a b l e p r o t e i n , p r o t e i n d i s p e r s i b i l i t y and h y d r o p h o b i c i t y . 4.4.2 C h e m i c a l t e s t s 4.4.2.a TCA s o l u b l e m a t e r i a l TCA s o l u b l e m a t e r i a l was p r e p a r e d as d e s c r i b e d by S t r a n g e et a l . ( 1 9 7 7 ) , e x c e p t t h a t 6 g samples of b o t h m u s c l e t y p e s were b l e n d e d w i t h 15 mL of 20 per c e n t t r i c h o l o r o a c e t i c a c i d f o r one m i n u t e . The f i l t r a t e s were a s s a y e d w i t h the f o l l o w i n g methods . T y r o s i n e e q u i v a l e n t s were a n a l y s e d i n t r i p l i c a t e a c c o r d i n g to t h e method of S t r a n g e et a l . ( 1977 ) . A 2.5 mL a l i q u o t of the f i l t r a t e was mixed w i t h 2.5 mL d i s t i l l e d w a t e r , 10 mL 0.5N NaOH and 3 mL F o l i n r e a g e n t . A f t e r i n c u b a t i o n at room t e m p e r a t u r e f o r 15 m i n u t e s , the a b s o r b a n c e was measured a t 660 nm and the t y r o s i n e e q u i v a l e n t s were c a l c u l a t e d as mg T y r / g m u s c l e . The t r i c h o l o r o a c e t i c a c i d - s o l u b l e m a t e r i a l was a l s o a n a l y s e d , i n t r i p l i c a t e , u s i n g the t r i n i t r o b e n z e n e s u l f o n i c a c i d method - 54 -(Kwan et a l . , 1 9 8 3 ) . A 0.2 mL a l i q u o t of the e x t r a c t was mixed w i t h 2.0 mL of 0.05 M Na 2B407 b u f f e r (pH 9.2) and 1.0 mL of 4.0 mM TNBS. The m i x t u r e was a l l o w e d to s t a n d at ambient t e m p e r a t u r e f o r 30 m i n u t e s and the r e a c t i o n was t e r m i n a t e d by the a d d i t i o n of 1.0 mL of 2.0 M NaH2P04 c o n t a i n i n g 18 mM Na2S03« The a b s o r b a n c e was measured at 420 nm and the r e s u l t s e x p r e s s e d as mg g l y c i n e / g m u s c l e . 4.4.2.b M u s c l e e x t r a c t p r e p a r a t i o n S a l t e x t r a c t s of p e c t o r a l i s maj or m u s c l e samples were p r e p a r e d a c c o r d i n g to the method of L i - C h a n et a l . (1984) w i t h some minor m o d i f i c a t i o n s . M u s c l e s were ground by a s i n g l e pass t h r o u g h a meat g r i n d e r f i t t e d w i t h a p l a t e w i t h 3/16 i n c h h o l e s . F i f t e e n grams of the ground meat sample were added to 150 mL of 6.1 mM Na 2HP04, 3.9 mM NaH 2P04, 0.6 M N a C l , 1 mM MgCl2» and 0.02 per c e n t sodium a z i d e e x t r a c t i n g b u f f e r (pH 6.5), and the m i x t u r e was homogenized at 3,300 rpm f o r 30 s e c o n d s u s i n g a Brinkman P o l y t r o n (Brinkman I n s t r u m e n t s , R e x d a l e , ON). The homogenate was a l l o w e d to s t a n d at 4°C f o r one h o u r , c e n t r i f u g e d f o r 15 m i n u t e s at 10,000 x g (4°C) and f i l t e r e d t h r o u g h g l a s s w o o l . The e x t r a c t s were a n a l y s e d f o r p r o t e i n c o n t e n t u s i n g the b i u r e t - p h e n o l s p e c t r o p h o t o m e t r i c method (Brewer et a l . , 1974 ). - 55 -4.4.2.C P r o t e i n d i s p e r s i b i l i t y A l i q u o t s of the above m u s c l e e x t r a c t s were c e n t r i f u g e d a t 27,000 x g f o r 30 m i n u t e s and the p r o t e i n c o n t e n t of the s u p e r n a t a n t s was d e t e r m i n e d a c c o r d i n g to the method d e s c r i b e d i n s e c t i o n 4.4.2.b. The per c e n t p r o t e i n d i s p e r s i b i l i t y was c a l c u l a t e d as 100 x [ ( p r o t e i n c o n t e n t of s u p e r n a t a n t ) / ( p r o t e i n c o n t e n t of the u n c e n t r i f u g e d s a m p l e ) ] . 4.4.2.d P r o t e i n h y d r o p h o b i c i t y P r o t e i n s u r f a c e h y d r o p h o b i c i t y was d e t e r m i n e d by the method of K a t o and N a k a i ( 1 9 8 0 ) , w h i c h u t i l i z e s c i s - p a r i n a r i c a c i d (CPA, M o l e c u l a r P r o b e s , J u n c t i o n C i t y , OR) as a f l u o r e s c e n t p r o b e . A l i q u o t s of the m u scle e x t r a c t s were d i l u t e d w i t h the p r e v i o u s l y d e s c r i b e d e x t r a c t i n g b u f f e r s u c h t h a t a range of p r o t e i n c o n c e n t r a t i o n s was a c h i e v e d , namely 0.001% to 0.0275% p r o t e i n . Ten m i c r o l i t r e s of c i s - p a r i n a r i c a c i d were added t o 2.0 mL of the d i l u t e d e x t r a c t s and the c i s - p a r i n a r i c a c i d p r o t e i n c o n j u g a t e s were e x c i t e d at 325 nm and t h e i r r e l a t i v e f l u o r e s c e n t i n t e n s i t y was measured at 420 nm i n an Aminco-Bowman s p e c t r o p h o t o f l u o r o m e t e r ( A m e r i c a n I n s t r u m e n t Co., I n c . , S i l v e r S p r i n g s , MD) . A s t a n d a r d c o n s i s t i n g of 10 /XL of c i s - p a r i n a r i c a c i d i n 2 mL of decane was used to a d j u s t the f l u o r e s c e n t i n t e n s i t y to 75 i n 100 f u l l s c a l e , whereas c i s - p a r i n a r i c a c i d i n b u f f e r s e r v e d to a d j u s t the i n t e n s i t y of the b l a n k at 1.0. The net r e l a t i v e f l u o r e s c e n t i n t e n s i t y f o r - 56 -each d i l u t i o n was c a l c u l a t e d by s u b t r a c t i n g the i n t e n s i t y of the p r o t e i n d i l u t i o n f r o m t h a t of the same d i l u t i o n w i t h added c i s - p a r i n a r i c a c i d . A Monroe 1880 programmable c a l c u l a t o r (Monroe, The C a l c u l a t o r Co, Orange, NJ) was used to c a l c u l a t e (by l i n e a r r e g r e s s i o n a n a l y s i s ) the i n i t i a l s l o p e of the net r e l a t i v e f l u o r e s c e n t i n t e n s i t y v e r s u s the p e r c e n t a g e of p r o t e i n . T h i s i n i t i a l s l o p e was d e f i n e d as S 0 . 4.5 S t a t i s t i c a l a n a l y s i s A Monroe 1880 programmable c a l c u l a t o r was used f o r l i n e a r r e g r e s s i o n a n a l y s i s f o r the d e t e r m i n a t i o n of p r o t e i n h y d r o p h o b i c i t y . A l l o t h e r s t a t i s t i c a l a n a l y s e s were p e r f o r m e d on the U n i v e r s i t y of B r i t i s h C o l u m b i a Amdahl 470 V/8 mainframe computer. The d a t a , e x c l u d i n g t h a t f o r the p r e l i m i n a r y s t u d y , were a n a l y z e d u s i n g a n a l y s i s of v a r i a n c e f o r a f i x e d e f f e c t s model and m u l t i p l e c o m p a r i s o n s among the means were done u s i n g the Duncan p r o c e d u r e of the same s t a t i s t i c a l p a c k a g e , i . e . , UBC MFAV (Halm and L e , 1975). The computer o u t p u t s f o r b o t h Study One and Study Two have been i n c l u d e d as A p p e n d i c e s 4 and 5, and i n d i c a t e t h a t the e f f e c t of e l e c t r i c a l s t i m u l a t i o n on each measured v a r i a b l e was a s s e s s e d a c c o r d i n g to the a n a l y s i s of v a r i a n c e models o u t l i n e d i n T a b l e 3. - 57 -T a b l e 3: The a n a l y s i s of v a r i a n c e models used f o r d a t a a n a l y s i s i n S t u d y One and Study Two D e g r e e s of f r e e d o m S o u r c e of v a r i a t i o n S t udy One Study Two T r e a t m e n t 8 4 C o n t r o l / T r e a t e d 1 1 V o l t a g e 1 1 T o t a l p u l s e s 3 1 V o l t a g e x p u l s e s 3 1 E r r o r 1 4 3 45 T o t a l 51 49 the e r r o r term was used to t e s t the s i g n i f i c a n c e of a l l of the above terms - 58 -RESULTS AND DISCUSSION 5.1 P r e l i m i n a r y Study The s h e a r f o r c e d a t a i n d i c a t e d t h a t the a v e r a g e s h e a r f o r c e f o r cooked P e c t o r a l i s maj or samples from c o n t r o l b i r d s (3.40 ± 1.06 kg) was s i g n i f i c a n t l y (p<0.01) g r e a t e r than t h o s e f r o m s t u n n e d b i r d s (2.67 ± 0.66 k g ) , as d e t e r m i n e d by a S t u d e n t ' s t t e s t . T h i s s u g g e s t s t h a t the e x c l u s i o n of p r e s l a u g h t e r s t u n n i n g f r o m the p r o c e s s i n g o p e r a t i o n r e s u l t e d i n a d e c r e a s e i n the t e n d e r n e s s of b r e a s t m u s c l e s a m p l e s . De Fremery and P o o l (1960) s u g g e s t e d t h a t e l e c t r i c a l s t u n n i n g would be e x p e c t e d to h a s t e n postmortem g l y c o l y s i s and t h e r e f o r e c o n t r i b u t e to i n c r e a s e d t o u g h n e s s , but the c a r c a s s e s used i n t h e i r s t u d y were " s t u n n e d " w i t h h i g h v o l t a g e s f o r t o t a l s of 15 t o 30 m i n u t e s . Lee et a l . (1979) r e p o r t e d t h a t e l e c t r i c a l l y s t u n n e d , c o m m e r c i a l l y p r o c e s s e d b r o i l e r s y i e l d e d b r e a s t meat samples w i t h s h e a r f o r c e v a l u e s t h a t were 30 per c e n t l o w e r than t h o s e from no s t u n c o n t r o l s a f t e r a g e i n g f o r 24 h o u r s at 2°C. T h i s e f f e c t of s t u n n i n g can be a t t r i b u t e d to the r e d u c e d d e g r e e of f r e e s t r u g g l e of the b i r d s i m m e d i a t e l y b e f o r e and a f t e r the commencement of b l e e d i n g - a f a c t o r w h i c h has been i d e n t i f i e d as c o n t r i b u t i n g to the development of t o u g h n e s s (Khan, 1977; Ma et a l . , 1971; Ma and A d d i s , 1973; Wood, 197 3 ) . - 59 -T a b l e 4: Mean s c o r e s and s t a n d a r d d e v i a t i o n s from home e v a l u a t i o n of t e n d e r n e s s , j u i c i n e s s and a c c e p t a b i l i t y of l e g s and t h i g h s T e n d e r n e s s J u i c i n e s s O v e r a l l a c c e p t a b i l i t y S t u n n e d ( n = 22 ) 2 . 32 ± 0.58 1 2.65 ± 0.81 2. 28 ± 0.66 No-stun(n=22) 2.66 ± 0.90 3.00 ± 1.00 2. 55 ± 0.81 mean ± s t a n d a r d d e v i a t i o n The r e s u l t s f r o m the home e v a l u a t i o n of l e g s and t h i g h s s u g g e s t e d t h a t cooked samples p r e p a r e d from the s t u n n e d b i r d s were more t e n d e r , j u i c i e r and more a c c e p t a b l e when compared to c o n t r o l s ( T a b l e 4 ) . A l t h o u g h the d a t a from t h i s consumer p a n e l gave l e s s c o n c l u s i v e e v i d e n c e of an e f f e c t from the e x c l u s i o n of s t u n n i n g , i t d i d s u g g e s t a s i m i l a r t r e n d . W h i l e the home e v a l u a t i o n may be more r e p r e s e n t a t i v e of t y p i c a l consumer r e a c t i o n , i t was a much l e s s c o n t r o l l e d e x p e r i m e n t w i t h many c o n f o u n d i n g f a c t o r s , such as d i f f e r e n t methods of p r e p a r a t i o n , d i f f e r e n t c o o k i n g p r o c e d u r e s and n o n - u n i f o r m i t y of p a r t i c i p a n t s w i t h r e s p e c t to age, sex, e t c . 5.2 Study One 5.2.1 The e f f e c t of e l e c t r i c a l s t i m u l a t i o n on muscle pH E l e c t r i c a l s t i m u l a t i o n a c c e l e r a t e d the r a t e of pH d e c l i n e f o r b o t h B i c e p s f e m o r i s and P e c t o r a l i s maj or m u s c l e samples - 60 -( F i g u r e s 1 and 2 ) . When the pH v a l u e s were p o o l e d a c c o r d i n g to v o l t a g e ( F i g u r e s IB, 2B), n e a r l y i d e n t i c a l p a t t e r n s of pH d e c l i n e were o b t a i n e d f o r e l e c t r i c a l l y s t i m u l a t e d m u s c l e s , whereas pH v a l u e s p o o l e d on the b a s i s of the t o t a l number of p u l s e s y i e l d e d s l i g h t l y d i f f e r e n t p a t t e r n s of d e c l i n e ( F i g u r e s 1A, 2 A ) . I t s h o u l d be n o t e d t h a t the i n i t i a l pH v a l u e s of the p r e s e n t s t u d y might more a p p r o p r i a t e l y be d e s i g n a t e d as 0.25 hour s a m p l e s , as the samples f o r pH a n a l y s e s were p r e p a r e d c o n c u r r e n t l y w i t h the samples e x c i s e d f o r i s o m e t r i c t e n s i o n measurements. A l l sample p r e p a r a t i o n s were c o m p l e t e d w i t h i n 20 m i n u t e s of s l a u g h t e r . F u r t h e r , the s t a n d a r d e r r o r b a r s a r e o n l y shown f o r the c o n t r o l d a t a f o r c l a r i t y of p r e s e n t a t i o n of the f i g u r e s . (See A p p e n d i x 2 f o r the means and s t a n d a r d e r r o r s f o r pH.) As a l l of the s t i m u l a t e d m u s c l e s had l o w e r i n i t i a l pH v a l u e s , i t would a p p e a r t h a t t h i s a c c e l e r a t i o n o c c u r s i n the two s t a g e s p r e v i o u s l y n o t e d i n lamb ( C h r y s t a l l e t a l . , 1980) and beef ( C h r y s t a l l and D e v i n e , 1978), where d r a m a t i c c h a n ges, b o t h d u r i n g s t i m u l a t i o n ( A p H ) and a f t e r s t i m u l a t i o n ( d p H / d t ) , were o b s e r v e d . - 61 -pH 6.3 -6.1 -5.9 -5.7 -5.5 Time postmortem (h) F i g u r e 1A. The e f f e c t of e l e c t r i c a l s t i m u l a t i o n on postmortem pH d e c l i n e f o r the B i c e p s f e m o r i s : the e f f e c t of the t o t a l number of p u l s e s c o n t r o l (n = 1 2 ) 0 O 4800 p u l s e s (n = 2 0 ) • — — • 2400 p u l s e s (n=10)A A , 9600 p u l s e s (n = 10)O~-O B a r s d e n o t e ± one s t a n d a r d e r r o r . - 62 -pH 6.3 -6.1 5.9 -5.7 5.5 Time postmortem (h) F i g u r e IB. The e f f e c t of e l e c t r i c a l s t i m u l a t i o n on postmortem pH d e c l i n e f o r the B i c e p s f e m o r i s : the e f f e c t of v o l t a g e c o n t r o l ( n = 1 2 ) 0 140 V (n = 20 ) • • O 70 V (n = 20)A- A B a r s d e n o t e ± one s t a n d a r d e r r o r . - 63 -F i g u r e 2A. The e f f e c t of e l e c t r i c a l s t i m u l a t i o n on postmortem pH d e c l i n e f o r the P e c t o r a l i s maj o r : the e f f e c t o f the t o t a l number of p u l s e s c o n t r o l (n = 12) O O , 2400 p u l s e s (n = 1 0 ) A A , 4800 p u l s e s (n = 2 0 ) D 0 , 9600 p u l s e s (n = 1 0 ) O - - 0 B a r s d e n o t e ± one s t a n d a r d e r r o r . - 64 -PH 6.3 6.1 5.9 5.7 -5.5 2 4 Time postmortem (h) F i g u r e 2B. The e f f e c t of e l e c t r i c a l s t i m u l a t i o n on postmortem pH d e c l i n e f o r the P e c t o r a l i s maj o r : the e f f e c t of v o l t a g e c o n t r o l (n = 1 2 ) 0 — O 140 V (n = 20 ) • • 70 V (n = 20) A A B a r s d e n o t e ± one s t a n d a r d e r r o r . - 6 5 -B e n d a l l (1978) d e m o n s t r a t e d h i g h v a r i a b i l i t y i n the r a t e s of pH d e c l i n e and of l a c t i c a c i d p r o d u c t i o n i n s e l e c t e d b e e f m u s c l e s and f u r t h e r r e p o r t e d t h a t w i t h i n a p a r t i c u l a r m u scle t h e r e were at l e a s t two, and more l i k e l y t h r e e , p a t t e r n s of postmortem pH d e c l i n e . One of the e a r l i e s t s t u d i e s on e l e c t r i c a l s t i m u l a t i o n s u g g e s t e d t h a t the v o l t a g e of t h e e l e c t r i c a l s h ock was c r i t i c a l f o r the a c c e l e r a t i o n of g l y c o l y t i c r a t e ( C a r s e , 1973), whereas B e n d a l l et a l . (1976) c o n c l u d e d t h a t the t o t a l number of p u l s e s was i m p o r t a n t . L a t e r s t u d i e s have i n d i c a t e d t h a t b o t h h i g h ( C h r y s t a l l and H a g y a r d , 1975; C h r y s t a l l et a l . , 1980) and low v o l t a g e s t i m u l a t i o n ( D e v i n e et a l . , 1984a; F a b i a n s s o n and L i b e l i u s , 1985; R a s h i d et a l . , 1983a,b) can be e q u a l l y e f f e c t i v e i n a c c e l e r a t i n g the g l y c o l y t i c r a t e . C h r y s t a l l and D e v i n e (1978) f o u n d t h a t a p r o t r a c t e d postmortem d e l a y i n s t i m u l a t i o n r e d u c e d the m a g n i t u d e of the e v e n t u a l ApH when the s t i m u l u s was a p p l i e d . These a u t h o r s s u g g e s t e d t h a t most of the s t i m u l a t o r y e f f e c t was t h r o u g h the n e r v o u s s y s t e m and s e v e r a l r e c e n t s t u d i e s have s u p p o r t e d t h e i r view t h a t the p ostmortem decay i n n e r v e f u n c t i o n makes i t e s s e n t i a l t h a t low v o l t a g e s t i m u l a t i o n be a p p l i e d s h o r t l y a f t e r d e a t h - 66 -( C h r y s t a l l et a l . , 1980; D e v i n e et a l . , 1979 ; Morton and Newbold, 1982). As a l l of the b r o i l e r s used i n t h i s s t u d y were s t i m u l a t e d w i t h i n f i v e m i n u t e s of e x s a n g u i n a t i o n , the d e l a y f a c t o r s h o u l d not s i g n i f i c a n t l y i n f l u e n c e the d a t a o b t a i n e d . C h i c k e n P e c t o r a l i s maj or m u s c l e i s composed of p r e d o m i n a n t l y f a s t - t w i t c h g l y c o l y t i c f i b r e s and the B i c e p s f e m o r i s i s h i g h l y e n r i c h e d i n s l o w - t w i t c h o x i d a t i v e f i b r e s ( L e b h e r z et a l . , 1 9 7 8 ) . Thus, the d i f f e r e n t p a t t e r n s of pH d e c l i n e p r o b a b l y r e f l e c t t h e s e m u s c l e f i b r e d i f f e r e n c e s , r a t h e r than any e f f e c t of the v o l t a g e , f r e q u e n c y or d u r a t i o n of the s t i m u l a t o r y s h o c k . D e v i n e et a l . (1984a) i n d i c a t e d t h a t f a s t t w i t c h C u taneus t run c i m u s c l e s from e l e c t r i c a l l y s t i m u l a t e d ox c a r c a s s e s e x h i b i t e d a l a r g e A p H and an a c c e l e r a t e d pH d e c l i n e ( d p H / d t ) , w h i l e s l o w t w i t c h M a s s e t e r m u s c l e s from t h e s e c a r c a s s e s had n e i t h e r a d i s t i n c t A p H nor an i n c r e a s e d r a t e of pH d e c l i n e . T h i s m i n i m a l r e s p o n s e to e l e c t r i c a l s t i m u l a t i o n by p r e d o m i n a n t l y s l o w t w i t c h f i b r e s was a l s o o b s e r v e d by H o u l i e r et a l . ( 1 9 8 0 ) . As p r e v i o u s l y i n d i c a t e d , m u s c l e g l y c o g e n s t o r e s and i n i t i a l pH v a l u e s a r e l o w e r i f a n i m a l s have been s e v e r e l y s t r e s s e d p r i o r to s l a u g h t e r and, i n the c a s e o f p o u l t r y , by f r e e s t r u g g l e . A d d i t i o n a l l y , C r o s s et a l . ( 1983 ) s u g g e s t e d t h a t e l e c t r i c a l s t i m u l a t i o n w i l l o n l y be e f f e c t i v e i f the m u s c l e s have n o t been s e v e r e l y d e p l e t e d of t h e i r g l y c o g e n s t o r e s . A l t h o u g h - 6 7 -c a r e was ta k e n d u r i n g h a n d l i n g and a t t e m p t s were made to m i n i m i z e f r e e s t r u g g l e , each of t h e s e f a c t o r s may have c o n t r i b u t e d somewhat to the e f f e c t of s t i m u l a t i o n on the i n i t i a l pH v a l u e s and p a t t e r n s of pH d e c l i n e . 5.2.2 The e f f e c t of e l e c t r i c a l s t i m u l a t i o n on i s o m e t r i c t e n s i o n p a r a m e t e r s Both B i c e p s f e m o r i s and P e c t o r a l i s maj or samples from e l e c t r i c a l l y s t i m u l a t e d b i r d s e x h i b i t e d n o r m a l p a t t e r n s of postmortem i s o m e t r i c t e n s i o n d e v e lopment and d e c l i n e . The a v e r a g e time to maximum t e n s i o n f o r b o t h B i c e p s f e m o r i s and P e c t o r a l i s maj or samples was d e f i n i t e l y i n f l u e n c e d by e l e c t r i c a l s t i m u l a t i o n ( T a b l e 5 ) . P e c t o r a l i s maj or samples e x c i s e d f r o m e l e c t r i c a l l y s t i m u l a t e d c a r c a s s e s r e q u i r e d s i g n i f i c a n t l y l e s s time to d e v e l o p maximum i s o m e t r i c t e n s i o n than t h o s e f r o m c o n t r o l b i r d s (p<0.05, T a b l e 8 ) . A s i m i l a r r e d u c t i o n due to s t i m u l a t i o n i n the a v e r a g e time r e q u i r e d was e x h i b i t e d by B i c e p s f e m o r i s samples ( T a b l e 5 ) . I t would a p p e a r , however, t h a t t h i s m u scle was l e s s s e n s i t i v e to the e l e c t r i c s h ock or t h e e f f e c t i v e n e s s of the shock was d i f f e r e n t f o r the two mu s c l e t y p e s , s i n c e o n l y 50 p er c e n t of the t r e a t m e n t means were s i g n i f i c a n t l y d i f f e r e n t f r o m the c o n t r o l v a l u e (p<0.05, T a b l e 8 ) . B i c e p s f e m o r i s samples from c a r c a s s e s t h a t were s t i m u l a t e d one mi n u t e w i t h e i t h e r 70V or 140V a t 80 p u l s e s / s or 140V at 40 p u l s e s / s and two m i n u t e s w i t h 140V a t 80 p u l s e s / s r e q u i r e d s i g n i f i c a n t l y l e s s time to Table 5: The ef f e c t of e l e c t r i c a l stimulation on several postmortem parameters of avian muscle (Study One) Treatment 1 2 3 4 5 6 7 8 70V,60s 70V,60s 140V,60s 140V,60s 70V,120s 70V,120s 140V,120s 140V,120s Parameter Muscle Control 4 0 s - 1 8 0 s - 1 4 0 s - 1 8 0 s - 1 4 0 s - 1 80s" 1 4 0 s - 1 8 0 s - 1 Fprob (n=12) (n=5) (n=5) (n=5) (n=5) (n=5) (n=5) (n=5) (n=5) TMT(min)l P M 4 274 95 113 88 108 112 73 200 105 (±133)6 (± 44) (± 70) (± 31) (± 35) (± 55) (± 20) (±172) (± 31) BF 5 332 234 149 107 122 168 177 236 152 (±218) (±129) (±117) (± 44) (± 43) (±113) (±113) (±145) (± 90) .001 .070 MT(g/cm 2) 2 P M BF 72.5 51.1 50.5 45.6 66.4 38.1 39.7 54.3 55.4 .022 (±19.6) (±24.7) (±21.2) (±15.7) (±13.2) (±20.2) (±16.6) (±25.8) (± 9.5) 71.0 42.7 64.6 33.8 71.6 38.2 46.0 58.2 57.3 .062 (±29.8) (±22.0) (±28.9) (±21.4) (±21.6) (±21.8) (±20.9) (± 9.6) (±26.4) FTS PM 0.97 1.11 1.24 1.12 1.21 1.12 1.18 1.13 1.15 (kg/cm 2)3 (±0.23) (±0.180 (±0.19) (±0.16) (±0.28) (±0.11) (±0.04) (±0.09) (±0.19) .185 KramerShear PM Force (kg) 2.66 2.43 2.50 2.46 2.44 2.95 2.45 2.23 2.50 (±0.70) (±0.17) (±0.48) (±0.08) (±0.33) (±1.22) (±0.21) (±0.24) (±0.78) .791 1 time to maximum tension 2 maximum isometric tension developed 3 f i b r e t e n s i l e strength 4 Pe c t o r a l i s maj or 5 Biceps femoris 0 values within parentheses are standard deviations - 69 -d e v e l o p t e n s i o n than t h o s e f r o m c o n t r o l c a r c a s s e s ( p<0.05). No s i g n i f i c a n t d i f f e r e n c e s due to v o l t a g e or the t o t a l number of p u l s e s were o b s e r v e d . A n a l y s i s of v a r i a n c e i n d i c a t e d a s i g n i f i c a n t t r e a t m e n t e f f e c t on the amount of i s o m e t r i c t e n s i o n d e v e l o p e d by P e c t o r a l i s  maj or samples ( T a b l e 5 ) , such t h a t m u s c l e s t r i p s f r o m c a r c a s s e s s t i m u l a t e d f o r two m i n u t e s w i t h a 70V, 40 or 80 p u l s e s / s shock d e v e l o p e d s i g n i f i c a n t l y l e s s t e n s i o n than t h o s e from c o n t r o l s (p<0.05, T a b l e 8 ) . No s i g n i f i c a n t t r e a t m e n t e f f e c t was o b s e r v e d f o r the B i c e p s f e m o r i s s a m p l e s . However, mu s c l e s t r i p s f r o m c a r c a s s e s t r e a t e d f o r one minute w i t h 140V at a f r e q u e n c y of 40 p u l s e s / s d e v e l o p e d s i g n i f i c a n t l y l e s s t e n s i o n than t h o s e f r o m c a r c a s s e s s t i m u l a t e d f o r the same l e n g t h of time (one m i n u t e ) and at the same v o l t a g e (140V) but at a f r e q u e n c y of 80 p u l s e s / s (p<0.05, T a b l e 8 ) . N e i t h e r v o l t a g e ( T a b l e 6) n o r the t o t a l number of p u l s e s ( T a b l e 7) i n f l u e n c e d t h e amount of t e n s i o n d e v e l o p e d by e i t h e r m u scle typ e . T h e r e a r e s e v e r a l p o s s i b l e e x p l a n a t i o n s f o r t h i s e f f e c t of e l e c t r i c a l s t i m u l a t i o n on i s o m e t r i c t e n s i o n d e v e l o p m e n t . The f i r s t would c o n s i d e r the e f f e c t of s t i m u l a t i o n on the s t r u c t u r a l and c e l l u l a r i n t e g r i t y of the m u s c l e c e l l s . T h i s p o s s i b i l i t y c a n n o t be c o m p l e t e l y d i s r e g a r d e d as h i s t o l o g i c a l e x a m i n a t i o n s were n o t p e r f o r m e d on any of the s a m p l e s . U l t r a s t r u c t u r a l s t u d i e s have shown r e g i o n s of s u p e r -- 70 -T a b l e 6: The e f f e c t of v o l t a g e of the p o s t - e x s a n g u i n a t i o n e l e c t r i c a l shock on s e v e r a l postmortem p a r a m e t e r s of a v i a n m u s c l e ( S t u d y One) V o l t a g e P a r a m e t e r M u s c l e C o n t r o l 70V 140V F pr ob (n=12) (n=20) (n=20) TMT ( m i n ) l PM^ 2 7 4 ± 1 3 3 6 98± 49 126± 94 0.351 B F 5 332*218 181*112 154* 98 0.558 MT ( g / c m 2 ) 2 PM 72.5*19.6 44.8*20.1 55.4*17.5 0.088 BF 71.0*29.8 47.9*24.0 55.2*23.6 0.344 FTS (kg/cm2)3 PM 0.97*0.23 1 .16*0.12 1.15*0 .18 0.915 Kramer Shear PM 2 . 66±0.70 2.58*0.65 2.41*0.42 0 . 360 F o r c e (kg) 1 tim e to maximum t e n s i o n o maximum i s o m e t r i c t e n s i o n d e v e l o p e d 3 f i b r e t e n s i l e s t r e n g t h ^ P e c t o r a l i s maj or B i c e p s f e m o r i s D mean ± s t a n d a r d d e v i a t i o n T a b l e 7: The e f f e c t of the t o t a l number of p u l s e s of the p o s t - e x s a n g u i n a t i o n e l e c t r i c a l shock on s e v e r a l postmortem p a r a m e t e r s of a v i a n m u s c l e ( S t u d y One) T o t a l number of p u l s e s P a r a m e t e r M u s c l e C o n t r o l (n=12) 2400 (n=10) 4800 40x120 (n=10) 60x80 (n=10) 9600 (n=10) VxP F p r o b F p r o b TMT ( m i n ) 1 P M 4 B F 5 2 7 4 ± 1 3 3 6 332*218 92± 36 169±110 156*129 202±128 111± 52 135± 84 89± 30 164± 97 0.350 0.777 0.635 0.526 MT ( g / c m 2 ) 2 PM BF 72.5±19.6 48.3*19.7 46.2±23.5 58.5*18.6 47.5±15.2 0.468 0.513 71.0*29.8 38.2*21.0 48.2±19.0 6 8 . 1 ± 2 4 . 4 51.7±23.2 0.064 0.610 FTS PM 0.97*0.23 1.11±0.16 1.13±0.10 1.22±0.22 1.16±0.13 0.539 0.998 (kg/cm 2) Kramer PM 2.66±0.70 2.45*0.13 2.59*0.92 2.46±0.39 2.47±0.54 0.950 0.445 Shear F o r c e (kg) . « 1 time to maximum t e n s i o n 2 maximum i s o m e t r i c t e n s i o n d e v e l o p e d 3 f i b r e t e n s i l e s t r e n g t h ^ P e c t o r a l i s maj or 5 B i c e p s f e m o r i s 6 mean * s t a n d a r d d e v i a t i o n - 72 -T a b l e 8: Duncan's New M u l t i p l e Range A n a l y s i s of t r e a t m e n t means from Study One Par a m e t e r M u s c l e TMT 1 PM 3 T r e a t m e n t means 5 6 3 1 8 4 5 2 < C (p<0.05) BF^ T r e a t m e n t means 3 4 2 8 < C (p<0.05) MT 2 PM Tr e a t m e n t mean 6 < C and 5 < 4,C (p<0.05) T r e a t m e n t mean,V 6 70V, 140V < C (p<0.05) BF T r e a t m e n t mean 3 < 4 (p<0.05) T r e a t m e n t mean.TNP 7 2400<C (p<0.05) 1 time to maximum t e n s i o n 2 maximum i s o m e t r i c t e n s i o n d e v e l o p e d 3 P e c t o r a l i s maj or 4 B i c e p s f e m o r i s 5 as d e s i g n a t e d i n T a b l e 1 0 v o l t a g e 7 t o t a l number of p u l s e s - 73 -c o n t r a c t u r e , d e p l e t e d g l y c o g e n c o n t e n t and s w o l l e n m i t o c h o n d r i a when m u s c l e samples have been p r e p a r e d from e i t h e r ox ( D e v i n e et a l . , 1984a) or s t e e r ( W i l l et a l . , 1980) c a r c a s s e s soon a f t e r s t i m u l a t i o n . I f the m u s c l e s e x c i s e d from t r e a t e d c a r c a s s e s c o n t a i n e d numerous r e g i o n s of s u p e r c o n t r a c t u r e , and t h e r e f o r e r e g i o n s e x h i b i t i n g c o n c o m i t a n t t e a r i n g of n e i g h b o u r i n g s a r c o m e r e s , they may not p o s s e s s the s t r u c t u r a l i n t e g r i t y r e q u i r e d to d e v e l o p and m a i n t a i n i s o m e t r i c t e n s i o n . T h i s p o s s i b i l i t y may not d e s e r v e g r e a t e m p h a s i s , as (1) a n o r m a l p a t t e r n of d e v e l o p m e n t and d e c l i n e was shown by b o t h m u s c l e t y p e s e x c i s e d from s t i m u l a t e d c a r c a s s e s ; (2) some of the e l e c t r i c a l l y s t i m u l a t e d m u s c l e s were c a p a b l e of d e v e l o p i n g t e n s i o n s s i m i l a r to t h o s e of c o n t r o l s ; and, (3) s u p e r c o n t r a c t u r e has o f t e n been o b s e r v e d i n b o v i n e M a s s e t e r , a l t h o u g h t h i s m u scle i s o t h e r w i s e l i t t l e a f f e c t e d by s t i m u l a t i o n ( D e v i n e et a l . , 1984a). A s e c o n d e x p l a n a t i o n c o n s i d e r s the e f f e c t of e l e c t r i c a l s t i m u l a t i o n on the a v a i l a b i l i t y or c o n c e n t r a t i on of the major m e t a b o l i t e s w h i c h have a r o l e i n postmortem s h o r t e n i n g : ATP and g l y c o g e n . S e v e r a l s t u d i e s have i n d i c a t e d a more r a p i d c a t a b o l i s m of h i g h - e n e r g y p h o s p h a t e compounds - c r e a t i n e p h o s p h a t e and a d e n o s i n e t r i p h o s p h a t e ( C a l k i n s et a l . , 19 82, 1983; V o g e l et a l . , 1985; W i l l e t a l . , 1979) and g l y c o g e n ( S w a t l a n d , 1975, 1977) due to s t i m u l a t i o n . A d d i t i o n a l l y , c l a s s i c a l l y ' w h i t e ' m u s c l e s , s u c h as the P e c t o r a l i s m a j o r , a l s o r e s p o n d more r e a d i l y to e l e c t r i c a l s t i m u l a t i o n than ' r e d ' - 74 -m u s c l e s , s u c h as the B i c e p s f e m o r l s . ( D e v i n e et a l . , 1984a; S w a t l a n d , 1981) The n o t i c e a b l e d e c r e a s e i n the a v e r a g e time to maximum t e n s i o n e x h i b i t e d by b o t h P e c t o r a l i s maj or and B i c e p s f e m o r i s samples of t r e a t e d b i r d s c o n f i r m s an i n c r e a s e d r a t e of postmortem g l y c o l y s i s . Two r e p o r t s have n o t e d t h a t much of the v a r i a t i o . n i n t h e time to maximum t e n s i o n c o u l d be e x p l a i n e d by d i f f e r e n c e s i n the i n i t i a l ATP c o n t e n t . Sundeen e t a l . (1980) o b s e r v e d s i g n i f i c a n t p o s i t i v e c o r r e l a t i o n s between the time to maximum t e n s i o n and ATP, w h i l e V a n d e r s t o e p and R i c h a r d s (1974) r e p o r t e d t h a t a p p r o x i m a t e l y f i f t y per c e n t of the o b s e r v e d v a r i a t i o n s i n the time to maximum t e n s i o n c o u l d be e x p l a i n e d by d i f f e r e n c e s i n the i n i t i a l ATP c o n t e n t of t u r k e y P e c t o r a l i s  maj o r . M u s c l e g l y c o g e n c o n t e n t has a l s o been s i g n i f i c a n t l y a s s o c i a t e d w i t h the time to maximum t e n s i o n (Sundeen et a l . , 1980) . An a c c e l e r a t e d r a t e of g l y c o l y s i s and a low e r i n i t i a l m e t a b o l i t e c o n c e n t r a t i o n i n the s t i m u l a t e d samples may a l s o e x p l a i n the r e d u c e d maximum t e n s i o n v a l u e s a c h i e v e d i n t h e s e s a m p l e s . These c o n s i d e r a t i o n s p r o v i d e d the b a s i s f o r t h e d e s i g n and e x e c u t i o n of the s e c o n d s t u d y . - 75 -5.2.3 The e f f e c t of e l e c t r i c a l s t i m u l a t i o n on f i b r e t e n s i l e s t r e n g t h and s h e a r v a l u e s N e i t h e r m u s c l e b r e a k s t r e n g t h nor Kramer s i n g l e b l a d e s h e a r f o r c e v a l u e s were i n f l u e n c e d by e l e c t r i c a l s t i m u l a t i o n ( T a b l e s 5, 6, 7 ) . A c c o r d i n g to B u s c h et a l . (1972) the p e r i o d of d e c l i n e i n i s o m e t r i c t e n s i o n c o r r e s p o n d s to the r e s o l u t i o n of r i g o r , and s e v e r a l a u t h o r s have s u g g e s t e d a s i g n i f i c a n t r o l e f o r c a t h e p t i c enzymes i n t h i s ' r e s o l u t i o n ' or a g e i n g p r o c e s s ( D u t s o n , 1983; E t h e r i n g t o n , 1981; G o l l et a l . , 1983; P e a r s o n et a l . , 1983 ) . E i n o and S t a n l e y ( 1973 ) n o t e d t h a t an i n c r e a s e i n m u s c l e b r e a k s t r e n g t h may be a s s o c i a t e d w i t h a d e c r e a s e i n t o t a l c a t h e p t i c a c t i v i t y , but c o n t r a d i c t o r y d a t a were l a t e r r e p o r t e d by W i l l e t a l . (1980) who f o u n d t h a t d e c r e a s i n g c a t h e p t i c a c t i v i t y was a s s o c i a t e d w i t h d e c r e a s e s i n m u scle b r e a k s t r e n g t h of d y s t r o p h i e d m u s c l e s a m p l e s . S e v e r a l r e p o r t s have s u g g e s t e d t h a t l a r g e s t r u c t u r a l changes i n the m o l e c u l a r a r c h i t e c t u r e of m u s c l e a r e not n e c e s s a r y f o r the p r o m o t i o n of meat t e n d e r n e s s ( A s h g a r and Y e a t e s , 1978; G o l l e t a l . , 1983; Marsh, 1981; P e a r s o n et a l . , 1 9 83). A l t h o u g h i t a p p e a r s t h e r e was s u f f i c i e n t enzyme a c t i v i t y i n a l l of the m u s c l e samples to r e s u l t i n a d e c l i n e i n i s o m e t r i c t e n s i o n , t h i s a c t i v i t y may not have p r o c e e d e d f a r enough i n one day to p r o d u c e the n e c e s s a r y s t r u c t u r a l changes f o r a d i f f e r e n c e i n f i b r e t e n s i l e s t r e n g t h to be o b s e r v e d . The l a c k of a s i g n i f i c a n t e f f e c t due to s t i m u l a t i o n a l s o may r e f l e c t - 76 -t h a t o t h e r f a c t o r s , e.g., c o n n e c t i v e t i s s u e c o n t e n t , can c o n t r i b u t e to m u s c l e b r e a k s t r e n g t h . The l a c k of an e f f e c t on the t e n d e r n e s s of cooked P e c t o r a l i s  maj or m u s c l e c o r r o b o r a t e s the f i n d i n g s of s e v e r a l s t u d i e s w h i c h have i n d i c a t e d t h a t e l e c t r i c a l s t i m u l a t i o n does not p r o d u c e c o n s i s t e n t m e a n i n g f u l a l t e r a t i o n s i n t e n d e r n e s s (Bowles Axe et a l . , 1983; J e r e m i a h e t a l . , 1985; Wood and F r o e h l i c h , 1 9 8 3 ) . R i l e y e t a l . (1982) f o u n d t h a t e l e c t r i c a l s t i m u l a t i o n c o u l d n ot improve t h o s e m u s c l e s w h i c h were a l r e a d y t e n d e r . C h r y s t a l l and D e v i n e (1985) r e c e n t l y a d v o c a t e d the use of e l e c t r i c a l s t i m u l a t i o n o n l y when the p r e r i g o r m u s c u l a t u r e of a c a r c a s s i s l i k e l y to be exp o s e d to c o n d i t i o n s t h a t c o u l d g i v e r i s e to thaw r i g o r or c o l d s h o r t e n i n g , and not f o r t e n d e r n e s s improvement a l o n e . In the p r e s e n t s t u d y , s h e a r f o r c e v a l u e s were d e t e r m i n e d a f t e r h o l d i n g the c a r c a s s e s f o r 24 h o u r s at 2°C. A l t h o u g h the l e n g t h s of the a g e i n g p e r i o d were d i f f e r e n t f o r the c o n t r o l and s t i m u l a t e d c a r c a s s e s ( as the t r e a t e d b i r d s r e q u i r e d l e s s time to r e a c h maximum t e n s i o n ) , s u f f i c i e n t time had o b v i o u s l y e l a p s e d f o r the t e n d e r i z a t i o n of the c o n t r o l s as w e l l . Khan (1974) s u g g e s t e d t h a t p o u l t r y b r e a s t m u s c l e o n l y needed a 20 hour postmortem a g e i n g p e r i o d to a c h i e v e minimum s h e a r f o r c e v a l u e s . - 77 -5.3 St u d y Two 5.3.1 The e f f e c t of e l e c t r i c a l s t i m u l a t i o n on i s o m e t r i c t e n s i o n p a r a m e t e r s E l e c t r i c a l s t i m u l a t i o n m a r k e d l y a c c e l e r a t e d the time c o u r s e of r i g o r d e v e l o p m e n t i n P e c t o r a l i s maj or samples ( T a b l e 9 ) . Each t r e a t m e n t mean was s i g n i f i c a n t l y l e s s than t h a t f o r c o n t r o l samples (p<0.05, T a b l e 1 5 ) . I t would appear t h a t the v o l t a g e of the e l e c t r i c shock i s an i m p o r t a n t p a r a m e t e r , as P e c t o r a l i s  maj or m u s c l e s e x c i s e d f r o m c a r c a s s e s t h a t had been s t i m u l a t e d w i t h e i t h e r 70V or 140V r e q u i r e d s i g n i f i c a n t l y l e s s t i m e to d e v e l o p maximum t e n s i o n when compared to c o n t r o l s (p<!0.05, T a b l e s 10, 1 5 ) . A l t h o u g h e l e c t r i c a l s t i m u l a t i o n a l s o r e d u c e d the time r e q u i r e d f o r B i c e p s f e m o r i s samples to r e a c h maximum t e n s i o n , no s i g n i f i c a n t d i f f e r e n c e s were n o t e d ( T a b l e s 9, 1 5 ) . The amount of i s o m e t r i c t e n s i o n d e v e l o p e d by P e c t o r a l i s maj or samples d i d not a p p e a r to be s i g n i f i c a n t l y a f f e c t e d by e l e c t r i c a l s t i m u l a t i o n even though a r e d u c t i o n was o b s e r v e d ( T a b l e s 9, 1 5 ) . B i c e p s f e m o r i s samples from e l e c t r i c a l l y s t i m u l a t e d c a r c a s s e s , however, t e n d e d to d e v e l o p l e s s i s o m e t r i c t e n s i o n . F o r muscle s t r i p s e x c i s e d from c a r c a s s e s s t i m u l a t e d f o r one mi n u t e w i t h 140V a t a f r e q u e n c y of 40 p u l s e s / s , t h i s d i f f e r e n c e was s i g n i f i c a n t (p<!0.05, T a b l e s 9, 1 5 ) . The l a c k of a s i g n i f i c a n t t r e a t m e n t e f f e c t may be T a b l e 9: The e f f e c t of e l e c t r i c a l s t i m u l a t i o n on the d e v e l o p m e n t of r i g o r m o r t i s i n a v i a n muscle ( S t u d y Two) Treatmen t 2 Pa r a m e t e r M u s c l e C o n t r o l 70V, 60s 4 0 s ~ l 70V, 120s 4 0 s - 1 140V, 60s 4 0 s - 1 140V, 120s 4 0 s - 1 F prob TMT ( m i n ) 1 PM 3 B F 4 289± 7 8 5 402±198 124± 74 365±155 9 8 ± 47 3 4 1 ± 2 4 6 144± 31 296*261 152± 87 278±165 0.001 0.673 MT ( g / c m 2 ) 2 PM BF 50.6±11.5 47 .0±15.7 35.2±21 . 7 42.2±16.1 38.7±19.8 37.8±15.4 42.7± 7.1 28.4± 1 5 . 2 42.0±11.6 35.3±12.3 0. 248 0.084 1 time to maximum t e n s i o n 2 maximum i s o m e t r i c t e n s i o n d e v e l o p e d 3 P e c t o r a l i s maj or 4 B i c e p s f e m o r i s 5 mean (n=10) ± s t a n d a r d d e v i a t i o n - 79 -a t t r i b u t e d to the o b s e r v e d , l a r g e v a r i a t i o n s i n the d e v e l o p e d t e n s i o n ( T a b l e 9 ) . O t h e r than the p r e v i o u s l y n o t e d v o l t a g e e f f e c t f o r P e c t o r a l i s maj or s a m p l e s , n e i t h e r the v o l t a g e nor the t o t a l number of p u l s e s of the e l e c t r i c shock s i g n i f i c a n t l y i n f l u e n c e d the p a r a m e t e r s of i s o m e t r i c t e n s i o n d e v e l o p m e n t ( T a b l e s 10, 1 1 ) . T a b l e 10: The e f f e c t of v o l t a g e of the p o s t - e x s a n g u i n a t i o n e l e c t r i c shock on i s o m e t r i c t e n s i o n d e v e l o p m e n t i n a v i a n m u scle ( S t u d y Two) V o l t a g e P a r a m e t e r M u s c l e C o n t r o l 70V 140V F prob (n=10) (n=20) (n=20) T M T ( m i n ) 1 PM 3 289± 7 8 5 111± 62 148± 64 0.087 BF ^  402*198 353*200 289±212 0. 320 M T ( g / c m 2 ) 2 PM 50.6*11.5 36.9±20.3 42.6± 9.5 0.250 BF 47.0*15.7 40.0±15.5 31.8*13.9 0.092 time to maximum t e n s i o n maximum i s o m e t r i c t e n s i o n d e v e l o p e d P e c t o r a l i s maj or B i c e p s f emor i s mean ± s t a n d a r d d e v i a t i o n - 80 -T a b l e 11: The e f f e c t of the t o t a l number of p u l s e s of the p o s t - e x s a n g u i n a t i o n e l e c t r i c shock on i s o m e t r i c t e n s i o n d e v e l o p m e n t i n a v i a n m uscle ( S t u d y Two) T o t a l number of p u l s e s VxP P a r a m e t e r M u s c l e C o n t r o l 2400 4800 F p r o b F p r o b (n=10) (n -20) (n=20) T M T ( m i n ) 1 PM 3 289± 7 8 5 134± 56 125± 73 0.669 0.433 B F 4 402*198 331±212 310*206 0. 754 0. 962 MT(g/cm2)2 P M 50.6±11.5 39.2*16.3 40.5*15.9 0.816 0.637 BF 47.0*15.7 35.3*16.8 36.5*13.6 0.802 0.240 1 time to maximum t e n s i o n 2 maximum i s o m e t r i c t e n s i o n d e v e l o p e d 3 P e c t o r a l i s maj or 4 B i c e p s f emo r i s 5 mean * s t a n d a r d d e v i a t i o n 5.3.2 The e f f e c t of e l e c t r i c a l s t i m u l a t i o n on m u s c l e me t a b o l i t e s S e v e r a l s i g n i f i c a n t t r e a t m e n t e f f e c t s on the m e t a b o l i t e c o n t e n t s of b o t h m u s c l e t y p e s were o b s e r v e d i n t h i s s t u d y ( T a b l e 1 2 ) . E l e c t r i c a l s t i m u l a t i o n d e c r e a s e d the i n i t i a l g l y c o g e n c o n t e n t s of b o t h P e c t o r a l i s maj or and B i c e p s f e m o r i s s a m p l e s , and f o r P e c t o r a l i s maj or samples from c a r c a s s e s s h o c k e d f o r one minute w i t h e i t h e r 70 or 140V t h i s r e d u c t i o n was s i g n i f i c a n t (p<0.05, T a b l e 1 5 ) . The t o t a l number of p u l s e s f o r each of t h e s e t r e a t m e n t s was 2400, and when the d a t a was p o o l e d on t h i s b a s i s , t h o s e c a r c a s s e s w h i c h r e c e i v e d 2400 p u l s e s had a s i g n i f i c a n t l y l o w e r i n i t i a l g l y c o g e n c o n t e n t (p<0.05, T a b l e 15) than e i t h e r the c o n t r o l s or t h o s e w h i c h r e c e i v e d 4800 p u l s e s . T a b l e 12: The e f f e c t of e l e c t r i c a l s t i m u l a t i o n on g l y c o g e n , ATP and HMP c o n t e n t of a v i a n m u scle ( S t u d y Two) Treatmen t 1 2 3 4 M e t a b o l i t e Mus c l e Time 1 Con t ro1 70V, 60s 70V, 120s 140V, 60s 140V, 120s F pro 4 0 s - 1 4 0 s - 1 4 0 s - 1 4 0 s - 1 G l y c o g e n 2 PM 5 0 16 . 0 0 ± 6 . 0 0 7 9.94*3.38 12.62*6.78 8.78*3.18 12.76*2.71 0. 013 B F 6 0 7 .48*2.99 5.60*2.93 5.40*3.64 3.08*1.11 5.50*2.70 0. 025 A T P 3 PM 0 2 .96±1.00 0.99*0.43 0.98*0.30 1 .22*0.43 0.96*0.54 0. 001 2 2 .85±1.99 0.39*0.11 0.51*0.20 0.46*0.11 0.53*0.16 0. 001 6 0 .70±0.38 0.50*0.17 0.60*0.20 0.62*0.21 0.58*0.13 0. 408 BF 0 1 .65*0.61 1 .15*0.68 0.88*0.38 0.47*0.11 0.58*0.26 0. 001 2 0 .43±0.28 0.42*0.12 0.37*0 .12 0.32*0.05 0.31*0.07 0. 248 6 0 .32*0.16 0.29*0.11 0.36*0.09 0.26*0.11 0.32*0.08 0. 450 HMP^ PM 0 0 .68*0.47 0. 15*0.12 0.45*0.42 0.29*0.21 0.75*1.47 0. 286 2 0 .21*0.23 0.81*0.73 1 .16*0.99 0.94*0.71 1 .38*1.09 0. 028 6 0 .85±0.74 2.45*1.30 2.89*1.80 3.05*1 .74 3.54*0.96 0. 001 BF 0 0 .61*0.39 0.81*0.71 0.55*0.45 0.57*0.70 0.80*0.90 0. 820 2 0 .24*0.32 0.26*0.35 0.26*0.30 0.47*0.43 0. 36*0.16 0. 488 6 0 .71*0.60 0.65*0.74 0.76±0.74 0.59*0.54 0.87*0.32 0. 874 1 time p o s t s l a u g h t e r i n ho u r s 2 m i c r o m o l e g l y c o s y l u n i t s / g wet weight 3 m i c r o m o l e / g wet w e i g h t 4 hexose monophosphate i n m i c r o m o l e / g wet w e i g h t 5 Pec t o r a l i s maj o r 6 B i c e p s f e m o r i s 7 mean (n=10) * s t a n d a r d d e v i a t i o n - 82 -T a b l e 13: The e f f e c t of v o l t a g e of the p o s t - e x s a n g u i n a t i o n e l e c t r i c shock on the g l y c o g e n , ATP and HMP c o n t e n t of a v i a n m u s c l e ( S t u d y Two) V o l t a g e M e t a b o l i t e M u s c l e T i m e l C o n t r o l 70V 140V F prob (n=10) (n=20) (n=20) A T P 3 HMP 4 PM 5 0 16. 0 0 ± 6 . OO 7 1 1 . 2 8 ± 5 . 40 10. 7 7 ± 3 . 52 0. 733 B F 6 0 7 . 4 8 ± 2 . 99 5. 50±3 . 22 4. 30±2 . 36 0. 180 PM 0 2. 96±1 . 00 0. 9 9 ± 0 . 36 1 . 0 9 ± 0 . 49 0. 587 2 2. 85±1 . 99 0. 4 5 ± 0 . 17 0. 5 0 ± 0 . 14 0. 867 6 0. 7 0 ± 0 . 38 0. 5 4 ± 0 . 19 0. 6 0 ± 0 . 17 0. 488 BF 0 1 . 6 5 ± 0 . 61 1 . 0 2 ± 0 . 55 0. 5 2 ± 0 . 20 0. 001 2 0. 4 3 ± 0 . 28 0. 4 0 ± 0 . 12 0. 3 1 ± 0 . 06 0. 088 6 0. 32±0. 16 0. 3 2 ± 0 . 10 0. 29±0. 10 0. 433 PM 0 0. 6 8 ± 0 . 47 0. 3 0 ± 0 . 34 0. 52±1 . 01 0. 318 2 0. 2 1 ± 0 . 23 0. 9 8 ± 0 . 87 1. 16±0. 93 0. 419 6 0. 8 5 ± 0 . 74 2. 6 7± 1 . 55 3. 30±1 . 39 0. 156 BF 0 0. 6 1 ± 0 . 39 0. 6 8 ± 0 . 59 0. 6 9 ± 0 . 80 0. 964 2 0. 2 4 ± 0 . 32 0. 2 6 ± 0 . 32 0. 4 2 ± 0 . 32 0. 135 6 0. 7 1 ± 0 . 60 0. 71±0. 72 0. 73±0. 45 0. 901 * ti m e p o s t s l a u g h t e r i n h o u r s 2 m i c r o m o l e g l y c o s y l u n i t s / g wet w e i g h t 3 m i c r o m o l e / g wet w e i g h t 4 hexose monophosphate i n m i c r o m o l e / g wet w e i g h t 5 P e c t o r a l i s maj o r 6 B i c e p s f emor i s 7 mean ± s t a n d a r d d e v i a t i o n T a b l e 14: The e f f e c t of the t o t a l number of p u l s e s of t h e p o s t - e x s a n g u i n a t i o n e l e c t r i c shock on the g l y c o g e n , ATP and HMP c o n t e n t of a v i a n m u scle ( S t u d y Two) T o t a l number of p u l s e s M e t a b o l i t e M u s c l e Time 1 Con t ro1 2400 4800 F prob F prob (n=10) (n=20) (n=20) VxP G l y c o g e n 2 PM 5 0 1 6 . 0 0 ± 6 . 0 0 7 9.36*3.25 12.69*5.03 0.030 0.666 B F 6 0 7.48±2.99 4.35*2.52 5.45±3.12 0.220 0.146 A T P 3 PM 0 2.96±1.00 1 . 11±0.44 0.97*0.42 0.486 0.527 2 2.85±1 .99 0.42±0.11 0.52±0.17 0.732 0.932 6 0.70±0.38 0.56±0.20 0 . 5 9 ± 0 . 17 0.671 0. 366 BF 0 1.65±0.61 0.81±0.59 0.73±0.35 0.557 0.201 2 0.43±0.28 0.37±0.11 0 . 3 4 ± 0 . 10 0.510 0. 696 6 0.32±0.16 0.28±0.11 0.34±0.08 0.089 0.897 HMP 4 PM 0 0.6 8±0.4 7 0.22*0.18 0.60±1.03 0.096 0.732 2 0.21±0.23 0.87*0.71 1.27±1 .02 0.125 0.866 6 0.85*0.74 2.75±1.53 3.22*1.44 0. 289 0.953 BF 0 0.61±0.39 0.69*0.70 0.68*0.71 0.944 0.240 2 0.24±0.32 0.36*0.40 0.31*0.24 0.596 0.643 6 0.71±0.60 0.62*0.63 0.82±0.56 0.317 0.678 1 time p o s t s l a u g h t e r i n hours 5 P e c t o r a l i s maj or 2 m i c r o m o l e g l y c o s y l u n i t s / g wet w e i g h t 6 B i c e p s f e m o r i s 3 m i c r o m o l e / g wet w e i g h t 7 mean ± s t a n d a r d d e v i a t i o n 4 hexose monophosphate i n m i c r o m o l e / g wet weight - 84 -E l e c t r i c a l s t i m u l a t i o n s i g n i f i c a n t l y d e c r e a s e d the i n i t i a l ATP c o n t e n t of P e c t o r a l i s maj or and B i c e p s f e m o r i s samples ( T a b l e 1 2 ) . Duncan's m u l t i p l e range a n a l y s i s i n d i c a t e d t h a t each t r e a t m e n t mean, f o r b o t h m u s c l e t y p e s , was s i g n i f i c a n t l y l e s s than t h e i r r e s p e c t i v e c o n t r o l v a l u e s (p<0.05, T a b l e 1 5 ) . A s i g n i f i c a n t v o l t a g e e f f e c t was a l s o n o t e d f o r the B i c e p s  f e m o r i s s a m p l e s : the i n i t i a l c o n t e n t of t h o s e b i r d s r e c e i v i n g 140V was s i g n i f i c a n t l y l o w e r than t h a t f o r t h o s e r e c e i v i n g 70V, and b o t h were s i g n i f i c a n t l y lower than the v a l u e s f o r the c o n t r o l b i r d s (p<0.05). The ATP v a l u e s of P e c t o r a l i s maj or samples at two h o u r s postmortem were a l s o s i g n i f i c a n t l y a f f e c t e d by e l e c t r i c a l s t i m u l a t i o n and each t r e a t m e n t mean was s i g n i f i c a n t l y l o w e r than c o n t r o l v a l u e s ( T a b l e 1 5 ) . No s i g n i f i c a n t d i f f e r e n c e s were o b s e r v e d f o r the hexose monophosphate c o n t e n t of B i c e p s f e m o r i s samples a t any postmortem s a m p l i n g t i m e , but e l e c t r i c a l s t i m u l a t i o n s i g n i f i c a n t l y i n c r e a s e d the 2 and 6 hour hexose monophosphate c o n t e n t of P e c t o r a l i s maj or samples (p<0.05). P e c t o r a l i s maj or samples from c a r c a s s e s s t i m u l a t e d f o r two m i n u t e s w i t h e i t h e r 70 or 140V had s i g n i f i c a n t l y g r e a t e r hexose monophosphate c o n t e n t when compared to c o n t r o l s at two h o u r s postmortem (p<0.05, T a b l e 1 5 ) . A l l of the samples f r o m t r e a t e d b i r d s had s i g n i f i c a n t l y g r e a t e r c o n c e n t r a t i o n s than c o n t r o l s at s i x h o u r s postmortem (p<0.05, T a b l e 1 5 ) . J - 85 -T a b l e 15: Duncan's New M u l t i p l e Range A n a l y s i s of t r e a t m e n t means from Study Two P a r a m e t e r M u s c l e TMTl PM 4 Treatmen t mean s 6 2 1 3 4 < C (p<0. 05) T r e a tmen t mean s , V 70V,140V < C (P<0. 05) MT 2 BF5 Treatmen t mean 3 < C (p<0. 05) " ,v 140V < C (p<0. 05) G l y c o g e n PM Treatmen t mean s 3 1 < C (p<0. 05) " , TNP 7 2400 < 4800, C (p<0. 05) BF •t t i 3 < C (p<0. 05) ATP -0 hour PM Treatmen t mean s 4 2 1 3 < C (p<0. 05) -0 hour BF *• 3 4 < 1 (p<0. 05) II 3 4 2 1 < C (p<0. 05) " ,v 140V < 70V < C (p<0. 05) HMP -2 hour 3 PM Treatmen t mean s 1 3 2 4 < C (p<0. 05) -2 hour PM Treatmen t mean s C < 2 4 (p<0. 05) -6 hour PM C < 1 2 3 4 (p<0. 05) time to maximum t e n s i o n maximum i s o m e t r i c t e n s i o n d e v e l o p e d hexose monophosphate c o n t e n t , time p o s t s l a u g h t e r P e c t o r a l i s maj or B i c e p s f e m o r i s as d e s i g n a t e d i n T a b l e 2 t o t a l number of p u l s e s 5.3.2.a The i n f l u e n c e of muscle t y p e In an a t t e m p t to e l u c i d a t e the n a t u r e of r e s p o n s e to e l e c t r i c a l s t i m u l a t i o n by the d i f f e r e n t m u s c l e t y p e s , mean d i f f e r e n c e v a l u e s f o r the examined postmortem p a r a m e t e r s were c a l c u l a t e d , t e s t e d f o r s i g n i f i c a n c e ( t t e s t ) and a r e p r e s e n t e d - 86 -i n T a b l e 16. F o r b o t h c o n t r o l and e l e c t r i c a l l y s t i m u l a t e d c a r c a s s e s , P e c t o r a l i s maj or samples r e q u i r e d s i g n i f i c a n t l y l e s s time to d e v e l o p maximum t e n s i o n than B i c e p s f e m o r i s samples (p<0.05). The P e c t o r a l i s maj or samples from c a r c a s s e s s h o c k e d f o r one or two m i n u t e s w i t h 140 V d e v e l o p e d s i g n i f i c a n t l y more t e n s i o n than t h e i r r e s p e c t i v e B i c e p s  f e m o r i s samples (p<0.01 and p<0.05, r e s p e c t i v e l y ) . T a b l e 16: Mean d i f f e r e n c e v a l u e s of s e v e r a l postmortem p a r a m e t e r s of a v i a n m u s c l e ( S t u d y T w o ) 1 Treatmen t P a r a m e t e r C o n t r o l 70V,60s 70V,120s 140V,60s 140V,120s 4 0 s - 1 4 0 s - 1 4 0 s - 1 4 0 s - 1 TMT 2 -113* -215** -204* -152* -126* MT 3 3. 64 -2.17 6. 40 14.3** 6.77* G l y c o g e n 8.50** 4.34** 7.23 5.70** 7.26** ATP -0 hour -2 hour -6 hour 1.32** 2.69** 0.39* -0.16 -0.03 -0.21** 0.10 0.14* 0.24** 0.75** 0.14** 0.35** 0.39** 0.23** 0.26** HMP -0 hour -2 hour -6 hour 0.07 -0.04 0. 14 -0.66** 0.47 1.80** -0. 10 0.91** 2.12** -0.28 0.47* 2.46** -0.06 1.02** 2.67** 1 d i f f e r e n c e c a l c u l a t e d as the v a l u e of the p a r a m e t e r f o r the P e c t o r a l i s maj or minus t h a t of the B i c e p s f e m o r i s 2 t i m e to maximum t e n s i o n 3 maximum i s o m e t r i c t e n s i o n d e v e l o p e d 4 means based on n=10 **, * s i g n i f i c a n t at the 1 and 5% l e v e l of p r o b a b i l i t y r e s p e c t i v e l y - 87 -As e x p e c t e d , P e c t o r a l i s maj or samples from c o n t r o l b i r d s had a s i g n i f i c a n t l y h i g h e r i n i t i a l g l y c o g e n c o n t e n t than B i c e p s  f e m o r i s s a m p l e s . T h i s r e l a t i o n s h i p was not a f f e c t e d by e l e c t r i c a l s t i m u l a t i o n . F a b i a n s s o n and L a s e r R e u t e r s w a r d (1985) r e c e n t l y s u g g e s t e d t h a t e l e c t r i c a l s t i m u l a t i o n s i g n i f i c a n t l y l o w e r e d the s o l u b l e g l y c o g e n c o n t e n t of m u s c l e . A l t h o u g h a more r a p i d c a t a b o l i s m of g l y c o g e n would be e x p e c t e d i n P e c t o r a l i s maj or s a m p l e s , the d i f f e r e n c e s i n i n i t i a l g l y c o g e n c o n t e n t a r e s u f f i c i e n t to a c c o u n t f o r the r e l a t i o n s h i p between the B i c e p s f e m o r i s and P e c t o r a l i s maj or samples to remain u n a f f e c t e d by s t i m u l a t i o n . Whereas c o n t r o l P e c t o r a l i s maj or samples had s i g n i f i c a n t l y g r e a t e r ATP c o n t e n t than B i c e p s f e m o r i s samples at each p ostmortem s a m p l i n g p e r i o d (p<0.05), o n l y the P e c t o r a l i s maj or samples from T r e a t m e n t s 3 and 4 e x h i b i t e d a s i m i l a r p a t t e r n . The m a g n i t u d e s of the d i f f e r e n c e f o r the l a t t e r were g e n e r a l l y s m a l l e r than t h a t of the c o n t r o l s a m p l e s . No s i g n i f i c a n t d i f f e r e n c e s i n hexose monophosphate v a l u e s were o b s e r v e d f o r the c o n t r o l b i r d s at any s a m p l i n g p e r i o d . However, P e c t o r a l i s  maj or samples from e l e c t r i c a l l y s t i m u l a t e d c a r c a s s e s had s i g n i f i c a n t l y h i g h e r hexose monophosphate c o n t e n t s than t h e i r r e s p e c t i v e B i c e p s f e m o r i s samples a t two and s i x h o u r s postmortem (p<0.05). A c c o r d i n g t o Marsh (1985) " t h e r e i s no r e a s o n to suppose t h a t - 88 -t h e f i n a l c o m p o s i t i o n of a p r e v i o u s l y s t i m u l a t e d m u s c l e , once i t i s i n r i g o r , d i f f e r s i n any way f r o m t h a t of a c o r r e s p o n d i n g n o n s t i m u l a t e d one i n the same ' s e t ' c o n d i t i o n " . I t would f o l l o w , t h e r e f o r e , t h a t the d i f f e r e n c e s i n e i t h e r i s o m e t r i c t e n s i o n p a r a m e t e r s or muscle m e t a b o l i t e c o n c e n t r a t i o n s r e f l e c t the e f f e c t o f ' s t i m u l a t i o n on the b i o c h e m i c a l and b i o p h y s i c a l e v e n t s of p r e r i g o r m u s c l e . The f i n d i n g s of the p r e s e n t s t u d y on the time to maximum t e n s i o n s u p p o r t the o b s e r v a t i o n by Schmidt e t a l . (1970) t h a t p o r c i n e m u s c l e s w i t h a h i g h e r p r o p o r t i o n of g l y c o l y t i c f i b r e s ( L o n g i s simus) r e q u i r e l e s s time to a c h i e v e maximum t e n s i o n than t h o s e composed p r e d o m i n a n t l y of s l o w - t w i t c h , o x i d a t i v e f i b r e s ( V a s t u s l a t e r a l i s ) . F u r t h e r e v i d e n c e of t h i s d i f f e r e n c e has been i n d i c a t e d f o r m e c h a n i c a l l y s k i n n e d r a t muscle f i b r e s ( S t e p h e n s o n and W i l l i a m s , 1981), as w e l l as f o r c h i c k e n ( W h i t i n g and R i c h a r d s , 1978) and be e f m u s c l e s ( B u s c h et a l . , 1967 ) . The r e s u l t s f o r the amount of maximum t e n s i o n d e v e l o p e d a r e l e s s c o n c l u s i v e , as the P e c t o r a l i s maj or samples from c a r c a s s e s s t i m u l a t e d f o r two m i n u t e s a c h i e v e d h i g h e r t e n s i o n v a l u e s than t h e i r c o r r e s p o n d i n g B i c e p s f e m o r i s s a m p l e s . W h i t i n g and R i c h a r d s (1975) f o u n d the c h i c k e n P e c t o r a l i s maj or samples d e v e l o p e d more t e n s i o n than B i c e p s f e m o r i s s a m p l e s , but a s i g n i f i c a n t d i f f e r e n c e i n maximum t e n s i o n was n o t d e m o n s t r a t e d i n a l a t e r s t u d y ( W h i t i n g and R i c h a r d s , 1 9 7 8 a ) . - 89 -Busch et a l . (1972) o b s e r v e d t h a t r e d f i b r e s i s o l a t e d f r o m p o r c i n e S e m i t e n d i n o s u s m u s c l e d e v e l o p e d s i g n i f i c a n t l y g r e a t e r maximum t e n s i o n than w h i t e f i b r e s from the same muscle when 1 mM C a + 2 was added to the s u r r o u n d i n g b u f f e r or i f t h e m u s c l e s were ex p o s e d to an ambient t e m p e r a t u r e of 2°C. The i n c r e a s e d maximum t e n s i o n o b s e r v e d f o r the P e c t o r a l i s maj or samples from c a r c a s s e s s t i m u l a t e d f o r two m i n u t e s may r e f l e c t a g r e a t e r p r o p o r t i o n of the m u s c l e f i b r e s b e i n g a c t i v a t e d by the s t i m u l u s . The m e t a b o l i t e changes n o t e d i n the p r e s e n t s t u d y a r e i n a c c o r d w i t h the numerous r e p o r t s t h a t i n d i c a t e an a c c e l e r a t i o n of postmortem g l y c o l y s i s f o l l o w i n g e l e c t r i c a l s t i m u l a t i o n , and s u p p o r t the f i n d i n g s of S w a t l a n d (1975, 1977) and D e v i n e et a l . (1984a) t h a t c l a s s i c a l l y w h i t e f i b r e s r e s p o n d more d r a m a t i c a l l y to e l e c t r i c a l s t i m u l a t i o n than do r e d f i b r e s . In t h e i r s t u d y of postmortem g l y c o l y s i s i n p r e r i g o r ground b o v i n e and r a b b i t m u s c l e , D a l r y m p l e and Hamm (1975) f o u n d t h a t g l y c o g e n , g l u c o s e , g l u c o s e - 6 - p h o s p h a t e , f r u e t o s e - 6 - p h o s p h a t e and l a c t a t e c o n s t i t u t e d more than n i n e t y - f i v e p e r c e n t of the t o t a l g l y c o l y t i c m e t a b o l i t e s at a l l t i m e s . More r e c e n t l y H i n t z et a l . ( 1982 ) s u g g e s t e d t h a t , as (1) more m e c h a n i c a l work i s p e r f o r m e d per u n i t time by f a s t - t w i t c h m u s c l e s and (2) the m a i n t e n a n c e of i s o m e t r i c t e n s i o n i n f a s t - t w i t c h m u s c l e s expends more h i g h - e n e r g y p h o s p h a t e compounds when compared to s l o w - t w i t c h m u s c l e s , the m e t a b o l i c changes r e p o r t e d f o r t h e s e - 90 -f i b r e s r e f l e c t not o n l y the e n e r g y demand but a l s o t h e i r e n z y m i c c a p a c i t y to meet i t . I t has been e s t i m a t e d t h a t d u r i n g low v o l t a g e s t i m u l a t i o n of beef c a r c a s s e s t h e r e i s a t e n - f o l d i n c r e a s e i n the r a t e of e n e r g y c o n s u m p t i o n , and t h a t i m m e d i a t e l y f o l l o w i n g s t i m u l a t i o n , the r a t e of e n e r g y c o n s u m p t i o n i s s t i l l two t i m e s t h a t f o u n d i n c o n t r o l m u s c l e s ( F a b i a n s s o n and L a s e r R e u t e r s w a r d , 1 9 8 5 ) . The l e v e l s of the g l y c o l y t i c enzymes - s p e c i f i c a l l y a l d o l a s e , e n o l a s e , g l y c e r a l d e h y d e 3-phosphate d e h y d r o g e n a s e and p h o s p h o r y l a s e - i n a d u l t c h i c k e n b r e a s t m u s c l e a r e t h r e e to f o u r t i m e s h i g h e r than the l e v e l s r e p o r t e d i n l e g m u s c l e s and r e f l e c t i n c r e a s e d r e l a t i v e r a t e s of s y n t h e s i s of the enzyme p r o t e i n s ( L e b h e r z et a l . , 1 9 78). The mechanism f o r the a c c e l e r a t i o n of the g l y c o l y t i c r a t e i n s t i m u l a t e d m u s c l e r e m a i n s u n c l e a r , but s e v e r a l r e p o r t s have s u g g e s t e d e i t h e r h i g h e r p h o s p h o r y l a s e a_ l e v e l s ( Ben da 11 , 1 9 7 9 ) , h i g h e r p h o s p h o r y l a s e a_ a c t i v i t y (Horgan and K u y p e r s , 1 9 8 5 ; Newbold and S m a l l , 1985) or g r e a t e r c a t a l y t i c e f f e c t i v e n e s s of 'bound' g l y c o l y t i c enzymes ( C l a r k e et a l . , 1 9 8 0 ) . The marked a n a e r o b i c g l y c o l y t i c p o t e n t i a l of P e c t o r a l i s maj or samples may t h e r e f o r e e x p l a i n t h e more d r a m a t i c changes i n m e t a b o l i t e c o n c e n t r a t i o n s compared to t h o s e n o t e d i n the B i c e p s f e m o r i s s a m p l e s . As w i t h the i n i t i a l pH v a l u e s of Study One, the '0 h o u r ' m e t a b o l i t e v a l u e s of the p r e s e n t s t u d y might more a p p r o p r i a t e l y be d e s i g n a t e d as 0.25 hour s a m p l e s , as the - 91 -samples f o r m e t a b o l i t e a n a l y s e s were a l s o p r e p a r e d c o n c u r r e n t l y w i t h the samples e x c i s e d f o r i s o m e t r i c t e n s i o n measuremen t s. The ATP v a l u e s f o r c o n t r o l P e c t o r a l i s maj or samples were s i g n i f i c a n t l y h i g h e r than t h o s e f o r c o n t r o l B i c e p s f e m o r i s at e ach s a m p l i n g time and p r o b a b l y r e f l e c t a g r e a t e r c a p a b i l i t y of the P e c t o r a l i s maj or to p r o d u c e ATP t h r o u g h g l y c o l y s i s . H i n t z et a l . (1982) r e p o r t e d t h a t the ATP c o n t e n t of ' r e d ' m u scle f i b r e s was l o w e r than t h a t of ' w h i t e ' m u s c l e f i b r e s i n the r a t . T h i s d i f f e r e n c e due to m u s c l e f i b r e t y p e was p a r t i c u l a r l y e v i d e n t at two h o u r s postmortem ( T a b l e 16), and a s i m i l a r e l e v a t i o n i n the ATP c o n t e n t of P e c t o r a l i s maj or samples at two h o u r s postmortem was n o t e d by W h i t i n g and R i c h a r d s ( 1 9 7 8 b ) . The ATP c o n t e n t of P e c t o r a l i s maj or samples was s i g n i f i c a n t l y h i g h e r i n s t i m u l a t e d c a r c a s s e s than f o r the c o r r e s p o n d i n g B i c e p s f e m o r i s samples f o r n i n e out of t w e l v e s a m p l i n g t i m e s X t r e a t m e n t s ( T a b l e 1 6 ) . A l t h o u g h the d i f f e r e n c e s between f i b r e t y p e s i n a n a e r o b i c p o t e n t i a l a r e l i k e l y to p e r s i s t i n s t i m u l a t e d c a r c a s s e s (and t h e r e f o r e h i g h e r ATP v a l u e s might be e x p e c t e d i n p r e d o m i n a n t l y w h i t e m u s c l e s ) , i t i s more l i k e l y t h a t the h i g h e r v o l t a g e u s e d i n T r e a t m e n t s 3 and 4 was more e f f e c t i v e i n s t i m u l a t i n g the B i c e p s f e m o r i s m u s c l e s of t h e s e c a r c a s s e s than the l o w e r v o l t a g e used i n T r e a t m e n t s 1 and 2. The i n i t i a l ATP c o n t e n t s of B i c e p s f e m o r i s samples from - 92 -c a r c a s s e s s t i m u l a t e d w i t h 140 V were s i g n i f i c a n t l y lower than t h o s e from c o n t r o l s or c a r c a s s e s s t i m u l a t e d w i t h 70V (p<0.05, T a b l e 1 5 ) . I t i s a p p a r e n t t h a t t h e i r l e v e l s r e m a i n e d l o w e r t h r o u g h o u t t h e s a m p l i n g p e r i o d . The r e s u l t s of the p r e s e n t s t u d y a r e not i n a c c o r d w i t h t h o s e of B e n d a l l (1976) and B e n d a l l et a l . ( 1 9 7 6 ) , w h o r e p o r t e d t h a t the t o t a l number of p u l s e s was c r i t i c a l f o r the a c c e l e r a t i o n of g l y c o l y s i s i n lamb and b e e f , r e s p e c t i v e l y . However, a v o l t a g e e f f e c t has been d e m o n s t r a t e d f o r lamb c a r c a s s e s ( C a r s e , 1 9 73). No s i g n i f i c a n t d i f f e r e n c e s i n hexose monophosphate c o n t e n t s were e x h i b i t e d by the P e c t o r a l i s maj or and B i c e p s f e m o r i s samples from c o n t r o l b i r d s at any postmortem s a m p l i n g t i m e s . In t h e c a s e of e l e c t r i c a l l y s t i m u l a t e d c a r c a s s e s , however, d r a m a t i c changes were n o t e d . The i n i t i a l hexose monophosphate c o n t e n t s of e l e c t r i c a l l y s t i m u l a t e d P e c t o r a l i s m a j o r samples were l o w e r than t h o s e of t h e i r r e s p e c t i v e B i c e p s f e m o r i s s a m p l e s . The d i f f e r e n c e was s i g n i f i c a n t f o r m u s c l e samples from c a r c a s s e s s t i m u l a t e d w i t h 70V f o r one m i n u t e (p<0.01, T a b l e 1 6 ) . T h i s a g a i n r e f l e c t s the d i f f e r e n t i a l r e s p o n s e to s t i m u l a t i o n . The P e c t o r a l i s maj or samples p r o b a b l y had h i g h e r h i g h - e n e r g y p h o s p h a t e t u r n o v e r r a t e s d u r i n g s t i m u l a t i o n ( H i n t z et a l . , 1982) which would l o w e r t h e i r i n i t i a l v a l u e s . The d i f f e r e n c e between the two m u s c l e s a p p e a r e d to d i m i n i s h w i t h i n c r e a s e d v o l t a g e , p o s s i b l y due to a more e f f e c t i v e s t i m u l a t i o n of the B i c e p s f e m o r i s at h i g h e r v o l t a g e s . - 93 -Wit h the e x c e p t i o n of the two hour samples from c a r c a s s e s s t i m u l a t e d w i t h 70V f o r one m i n u t e , the P e c t o r a l i s maj or samples from e l e c t r i c a l l y s t i m u l a t e d c a r c a s s e s c o n t a i n e d more hexose monophosphate than t h e i r c o u n t e r p a r t B i c e p s f e m o r i s samples when sampled at e i t h e r two or s i x h o u r s postmortem. The h i g h e r hexose monophosphate c o n t e n t s i n P e c t o r a l i s maj or samples may be e x p l a i n e d by a g r e a t e r a c c e l e r a t i o n of postmortem g l y c o l y s i s due t o s t i m u l a t i o n a nd/or by an i n a c t i v a t i o n of some of the g l y c o l y t i c enzymes due to the r a p i d a c i d i f i c a t i o n of s t i m u l a t e d m u s c l e s . S e v e r a l s t u d i e s have p r o v i d e d e v i d e n c e f o r the a c c e l e r a t i o n of g l y c o l y s i s ( F a b i a n s s o n and L a s e r R e u t e r s w a r d , 1985; H i n t z e t a l . , 1982; V o g e l e t a l . , 1985 ) . H i n t z e t a l . ( 1982 ) s u g g e s t e d t h a t the b a l a n c e e x i s t i n g between t h e a c t i v a t i o n of p h o s p h o f r u c t o k i n a s e due to d i m i n i s h i n g ATP and c r e a t i n e p h o s p h a t e l e v e l s and the i n h i b i t i o n of t h i s same enzyme due to a d e c l i n e i n m u s c l e pH would s i g n i f i c a n t l y i n f l u e n c e m e t a b o l i t e l e v e l s . 5.3.2b M e t a b o l i t e c o n c e n t r a t i o n s and i s o m e t r i c t e n s i o n p a r a m e t e r s The r e l a t i o n s h i p between i s o m e t r i c t e n s i o n p a r a m e t e r s and m e t a b o l i t e c o n c e n t r a t i o n s can be seen when the c o r r e l a t i o n c o e f f i c i e n t s d e t e r m i n e d f o r t h i s s t u d y a r e ex a m i n e d . S i g n i f i c a n t t e n s i o n and c o r r e l a t i o n s between the m e t a b o l i t e c o n t e n t s were p a r a m e t e r s of i s o m e t r i c f o u n d f o r b o t h muscle - 94 -t y p e s i n c o n t r o l and t r e a t e d b i r d s ( s e e A p p e n d i x 3, T a b l e s 26 to 3 0 ) . T h i s d a t a was then s u b j e c t e d to s t e p w i s e l i n e a r r e g r e s s i o n a n a l y s i s . A l t h o u g h s e v e r a l p o t e n t i a l i n d e p e n d e n t v a r i a b l e s were o r i g i n a l l y i m p l i c a t e d , i t i s e v i d e n t t h a t s i m p l e r e g r e s s i o n s b e s t e x p r e s s the s i g n i f i c a n t r e l a t i o n s h i p s ( T a b l e 1 7 ) . Fo r c o n t r o l P e c t o r a l i s maj or mu s c l e s a m p l e s , the time r e q u i r e d to d e v e l o p maximum t e n s i o n was s i g n i f i c a n t l y d e pendent on the i n i t i a l g l y c o g e n c o n t e n t (F p r o b . = .037, r 2 = .438), w h i l e the e x t e n t of r i g o r d e v e l o p m e n t (maximum i s o m e t r i c t e n s i o n ) a p p e a r s to be h i g h l y s i g n i f i c a n t l y r e l a t e d to the i n i t i a l ATP c o n t e n t (F p r o b . = .002, r 2 = . 7 2 3 ) . B i c e p s f emo r i s m u s c l e samples e x h i b i t e d a s i g n i f i c a n t r e l a t i o n s h i p between the time to maximum t e n s i o n and t h e 6-hour ATP c o n t e n t (F p r o b . = .030, r 2 = . 466 ) . The o n l y common r e l a t i o n s h i p n o t e d f o r t r e a t e d b i r d s was f o r the B i c e p s f e m o r i s samples from c a r c a s s e s t h a t r e c e i v e d a t o t a l of 2400 p u l s e s w i t h e i t h e r 70V or 140V: t h e i r i n i t i a l h e xose monophosphate c o n t e n t s i g n i f i c a n t l y i n f l u e n c e s the time r e q u i r e d by t h e s e s t r i p s to d e v e l o p maximum t e n s i o n s u c h t h a t an i n c r e a s e i n hexose monophosphate c o n t e n t e x t e n d s the r e q u i r e d t i m e . F o r c a r c a s s e s s t i m u l a t e d w i t h 70V, 51 per c e n t (F p r o b . = .020) of the v a r i a t i o n i n t h e time to maximum t e n s i o n c o u l d be e x p l a i n e d by d i f f e r e n c e s i n i n i t i a l HMP c o n t e n t ; a p p r o x i m a t e l y 60 per c e n t (F p r o b . = .009) of the - 95 -T a b l e 17: S t e p w i s e l i n e a r r e g r e s s i o n e q u a t i o n s and t h e i r s i g n i f i c a n c e l e v e l s f o r the p a r a m e t e r s examined i n Study Two T r e a t m e n t Mus c l e F p r o b . r 2 C o n t r o l PM 2 MT = 28. 23 + 7. 56 (0 -ATP) 0. 037 .438 TMT = 112. 7 + 11 . 03 (0-- G l y c ) 0. 002 .723 B F 3 TMT = 127. 5 + 859. 9 (6 -ATP) 0. 030 .466 7 0 V , 6 0 s l PM MT = 52. 49 — 21 . 43 (2--HMP) 0. 018 .524 B F TMT = 238. 4 + 157 (0 -HMP) 0. 020 .513 70V, 1 2 0 s 1 PM TMT = 112. 6 — 12. 61 (0--ATP ) 0. 022 . 503 B F TMT = 98. 6 + 44. 97 (0 - G l y c ) 0. 035 .445 1 40V,60s 1 B F TMT = 131 . 4 + 287 . 8 (0 -HMP) 0. 009 . 59 6 140V,120s 1 p M MT = 51 . 5 _ 6. 81 (2 -HMP) 0. 045 .413 PM TMT = 49. 1 + 106 CO--ATP) 0. 037 .437 B F MT = 16. 1 + 33. 4 CO--ATP) 0. 023 .494 1 40 p u l s e s / s 2 P e c t o r a l i s maj or 3 B i c e p s f emor i s - 96 -v a r i a t i o n i n the time to maximum t e n s i o n was a t t r i b u t e d to i n i t i a l HMP c o n t e n t s i n B i c e p s f e m o r i s samples from c a r c a s s e s r e c e i v i n g a 140V s h o c k . I t i s i n t e r e s t i n g to n o t e t h a t the P e c t o r a l i s maj or samples from b o t h of t h e s e t r e a t m e n t s had s i g n i f i c a n t l y l o w e r i n i t i a l g l y c o g e n c o n t e n t than c o n t r o l s ( T a b l e 1 5 ) . F o r c a r c a s s e s w h i c h r e c e i v e d a 140V shock f o r 2 m i n u t e s , the t i m e to maximum t e n s i o n and the amount of maximum t e n s i o n d e v e l o p e d were dependent on the i n i t i a l ATP c o n t e n t f o r the P e c t o r a l i s maj or (F p r o b . = 0.037 , r 2 = 0.437 ) and B i c e p s  f e m o r i s (F p r o b . = 0.023 , r 2 = .494), r e s p e c t i v e l y . As the n a t u r e of t h e r e l a t i o n s h i p s t h a t n o r m a l l y e x i s t between i s o m e t r i c t e n s i o n p a r a m e t e r s and m e t a b o l i t e c o n c e n t r a t i o n s i s s u b j e c t to wide v a r i a t i o n , i t i s d i f f i c u l t to compare the r e s u l t s of the p r e s e n t s t u d y w i t h p r e v i o u s o n e s . B e n d a l l (1973) n o t e d t h a t m u s c l e s w i t h low i n i t i a l pH, ATP and c r e a t i n e p h o s p h a t e v a l u e s g e n e r a l l y e x h i b i t e d s h o r t e n e d r i g o r t i m e s and f u r t h e r s u g g e s t e d t h a t g l y c o g e n and c r e a t i n e p h o s p h a t e t o g e t h e r were f a r more e f f e c t i v e i n m a i n t a i n i n g the postmortem ATP c o n t e n t of m u s c l e than e i t h e r of them s e p a r a t e l y . V a n d e r s t o e p and R i c h a r d s (1974) r e p o r t e d a s i g n i f i c a n t a s s o c i a t i o n between i n i t i a l ATP c o n t e n t and the time to maximum t e n s i o n i n t u r k e y P e c t o r a l i s maj o r , w h i l e Sundeen et a l . (1980) l a t e r d e m o n s t r a t e d s i g n i f i c a n t p o s i t i v e a s s o c i a t i o n s f o r the time to maximum t e n s i o n w i t h ATP and/or - 97 -g l y c o g e n c o n t e n t f o r c h i c k e n P e c t o r a l i s maj o r . 5 . 3 . 2 . C T e n s i o n r e l e a s e p a t t e r n s The raw d a t a ( e x p r e s s e d as a d e c i m a l f r a c t i o n of the maximum t e n s i o n a c h i e v e d ) , as w e l l as a l o g a r i t h m i c and an a r c s i n e t r a n s f o r m a t i o n , f o r the r e l e a s e of i s o m e t r i c t e n s i o n post-maximum i n b o t h muscle t y p e s was s u b j e c t e d to l i n e a r r e g r e s s i o n a n a l y s i s , and the r e g r e s s i o n l i n e p a r a m e t e r s f o r each group a r e p r e s e n t e d i n T a b l e 18. Upon c l o s e r e x a m i n a t i o n of the a r c s i n e t r a n s f o r m a t i o n ( T a b l e 19), no s i g n i f i c a n t d i f f e r e n c e s i n the r a t e of i s o m e t r i c t e n s i o n r e l e a s e were n o t e d when B i c e p s f e m o r i s and P e c t o r a l i s maj or samples from e l e c t r i c a l l y s t i m u l a t e d b i r d s were compared to t h e i r r e s p e c t i v e c o n t r o l s . However, s e v e r a l s i g n i f i c a n t d i f f e r e n c e s were o b s e r v e d f o r the i n t e r c e p t s . When B i c e p s f emo r i s and P e c t o r a l i s maj or samples from c o n t r o l b i r d s were compared, no s i g n i f i c a n t d i f f e r e n c e s i n e i t h e r the r a t e of t e n s i o n r e l e a s e or the mag n i t u d e of the i n t e r c e p t s were o b s e r v e d . T h i s c o n t r a s t s w i t h the e f f e c t n o t e d i n e l e c t r i c a l l y s t i m u l a t e d c a r c a s s e s : when c o m p a r i s o n s were made w i t h i n a p a r t i c u l a r t r e a t m e n t , a l l P e c t o r a l i s maj or samples e x h i b i t e d a s i g n i f i c a n t l y more r a p i d r e l e a s e of i s o m e t r i c t e n s i o n than t h e i r r e s p e c t i v e B i c e p s f e m o r i s samples (p<0.05, T a b l e 1 9 ) . Table 18: Regression l i n e parameters for tension release (dependent v a r i a b l e ) versus time post-maximum tension (independent variable) for avian muscle from Study Two Raw data Y' = log(lOOxY) Y' = ArcsinA /T~  Muscle Treatment 3 Intercept slope r 2 s i g Intercept slope r 2 s i g Intercept slope r 2 s i g Control 0.950 -0.054 .155 AAA 1.986 -0.045 .118 AAA 80.08 -5.18 .242 AAA 1 0.965 -0.053 .151 AAA 2.004 -0.057 .092 AA 81.88 -5.59 .271 AAA 2 0.977 -0.050 .567 AAA 1.992 -0.026 .548 AAA 82.00 -5.13 .593 AAA 1 3 0.884 -0.069 .163 AAA 1.946 -0.073 .091 AA 75.29 -6.36 .228 AAA VO 4 0.936 -0.044 .320 AAA 1.969 -0.023 .281 AAA 78.61 -4.70 .411 *** 0 0 Control 0.989 -0.085 .518 AAA 2.007 -0.055 .426 AAA 82.73 -7.50 .618 A* A 1 1 0.912 -0.110 .268 AAA 1.935 -0.144 .120 AA 76.75 -9.60 .307 AAA 2 0.949 -0.082 .651 AAA 1.986 -0.051 .562 AAA 78.61 -7.00 .650 AAA 3 0.947 -0.120 .570 AAA 2.018 -0.110 .339 AAA 78.77 -9.51 .602 AAA 4 0.983 -0.107 .854 AAA 2.008 -0.068 .785 •kick 80.79 -8.50 .824 AAA 1 Biceps femoris 2 P e c t o r a l i s maj or 3 as indicated in Table 2 4 AAA^  AAS A s i g n i f i c a n t at the 0.1, 1 and 5% l e v e l of p r o b a b i l i t y , r e s p e c t i v e l y T a b l e 19: L i n e c o m p arison a n a l y s i s f o r the a r c s i n e t r a n s f o r m a t i o n of t e n s i o n r e l e a s e ( d ependent v a r i a b l e ) v e r s u s time post-maximum t e n s i o n ( i n d e p e n d e n t v a r i a b l e ) f r o m Study Two Comparison Homogeneity of r e s i d u a l v a r i a n c e s S l o p e s I n t e r c e p t s I . W i t h i n m u s c l e f i b r e ( a ) B i c e p s f e m o r i s t y p e s (b) Con t r o l v s . Treatment 1 NS NS NS Con t r o l vs . 2 A A A NS NS Con t r o l vs . 3 NS NS C > 3 A A » C o n t r o l v s . 4 * * * NS NS T r e a tmen t 1 vs . 3 NS NS 1 > 3 A A Treatmen t 2 v s . 3 NS NS 2 > 3 * * * T r e a t m e n t 2 vs . 4 NS NS 2 > 4 * Treatmen t 3 vs . 4 *** NS 3 > 4 A A P e c t o r a l i s maj or Con t r o l v s . T reatment 1 NS NS C > 1 A A A Con t r o l vs . 2 NS NS C > 2 * Con t r o l vs . 3 NS NS C > 3 * * * Con t r o l vs . 4 A A A NS C > 4 A A Treatmen t 1 vs . 2 AAA NS 1 < 2 A T r e a t m e n t 1 vs . 4 * * * NS 1 < 4 A Treatmen t 2 vs . 3 NS 2 > 3 , * 2 < 3 A A T r e a tmen t 2 vs . 4 ** 2 > 4 ,* NS Treatmen t 3 vs . 4 AAA NS 3 < 4 A A » I I . W i t h i n t r e a t m e n t groups C o n t r o l Treatmen t BF vs PM 1, 2, 3, 4, AAA NS NS AAA AAA NS NS BF > PM,* BF > PM,*** BF > PM,* BF > PM,*** BF >PM,* NS BF >PM,*** BF < PM,*** AAA A A 5% s i g n i f i c a n t at the 0.1, 1 and NS i n d i c a t e s n o n s i g n i f i c a n c e . Note: A l l of the s l o p e s are n e g a t i v e ; t h e r e f o r e , i f r a p i d r e l e a s e i n the P e c t o r a l i s maj_o_r sample. l e v e l of p r o b a b i l i t y , r e s p e c t i v e l y . BF > PM, t h i s i n d i c a t e s a more - 100 -J e a c o c k e (1984) s u g g e s t e d t h a t f o r c e g e n e r a t i o n d u r i n g r i g o r o n s e t o c c u r s by the s u c c e s s i v e making and b r e a k i n g of t e n s i o n - g e n e r a t i n g c r o s s b r i d g e s . On the o t h e r hand, the d e c l i n e i n maximum i s o m e t r i c t e n s i o n i s t h o u g h t to c o r r e s p o n d w i t h the r e s o l u t i o n of r i g o r ( B u s c h et a l . 1 9 7 2 ) . S e v e r a l s t u d i e s have r e p o r t e d t h a t m u s c l e s which r a p i d l y d e v e l o p t h e i r maximum t e n s i o n a l s o l o s e t h e i r a b i l i t y to m a i n t a i n t h i s t e n s i o n more r a p i d l y than do t h o s e m u s c l e s w h i c h go i n t o r i g o r s l o w l y . T h i s has been d e m o n s t r a t e d i n s e v e r a l s p e c i e s i n c l u d i n g b e e f ( B u s c h et a l . , 1967), c h i c k e n (Wood and R i c h a r d s , 1974a) and t u r k e y (Jungk and M a r i o n , 1 9 7 0 ) . Wood and R i c h a r d s (1974a) a l s o i n d i c a t e d t h a t , a l t h o u g h the amount of t e n s i o n r e l e a s e d by 2 h o u r s post-maximum t e n s i o n was s i g n i f i c a n t l y c o r r e l a t e d w i t h the amount r e l e a s e d at 3 to 12 h o u r s post-maximum t e n s i o n , i t was not i n d i c a t i v e of the t e n d e r n e s s d i f f e r e n c e s among b i r d s . Lowe et a l . (1948) i n d i c a t e d t h a t the t e n d e r n e s s of the b r e a s t i n c r e a s e d f a s t e r than t h a t of the t h i g h , and i t was o r i g i n a l l y b e l i e v e d t h a t t h e s e d i f f e r e n t i a l r a t e s of t e n d e r i z a t i o n of b r e a s t and l e g m u s c l e s would be d e t e c t e d upon a n a l y s i s of the t e n s i o n r e l e a s e d by the c o n t r o l P e c t o r a l i s maj or and B i c e p s  f e m o r i s s a m p l e s . Both S t e w a r t et a l . ( 1948) and P o o l e t a l . (1959) f o u n d t h a t m o s t , . i f not a l l , of the t e n d e r i z a t i o n of p o u l t r y m u s c l e s o c c u r r e d w i t h i n 24 h o u r s postmortem, but van den B e r g et a l . (1963, 1964a) s u g g e s t e d t h a t l e g m u s c l e s e x h i b i t e d an a d d i t i o n a l t e n d e r i z a t i o n upon f u r t h e r s t o r a g e . - 101 -A l t h o u g h the c o n t r o l P e c t o r a l i s maj or samples t e n d e d to r e l e a s e t h e i r t e n s i o n more q u i c k l y , i . e . s l i g h t l y more n e g a t i v e s l o p e s , than B i c e p s f e m o r i s s a m p l e s , the s i g n i f i c a n t d i f f e r e n c e s i n t h e h o m o g e n e i t y of r e s i d u a l v a r i a n c e s of the d e v e l o p e d r e g r e s s i o n l i n e s p r e c l u d e v a l i d c o m p a r i s o n s . L a r g e v a r i a t i o n s i n t e n s i o n r e l e a s e r a t e s f o r c h i c k e n P e c t o r a l i s  maj or samples have a l r e a d y been r e p o r t e d (Wood and R i c h a r d s , 1 9 74a). As p r e v i o u s l y n o t e d , P e c t o r a l i s maj or samples from a l l of the t r e a t e d b i r d s e x h i b i t e d more r a p i d t e n s i o n r e l e a s e than d i d t h e i r r e s p e c t i v e B i c e p s f e m o r i s samples ( T a b l e 1 9 ) . When the h o m o g e n e i t y of r e s i d u a l v a r i a n c e s was a l s o examined, however, s i g n i f i c a n t d i f f e r e n c e s i n t e n s i o n r e l e a s e r a t e s due to mu s c l e f i b r e t y p e were o b s e r v e d o n l y i n c a r c a s s e s s t i m u l a t e d w i t h 70V f o r one or two m i n u t e s (p<I!0.05, T a b l e 1 9 ) . A l t h o u g h Busch et a l . (1972) s u g g e s t e d t h a t a c a l c i u m - s t i m u l a t e d p r o c e s s may be r e s p o n s i b l e f o r d e c r e a s i n g the maximum i s o m e t r i c t e n s i o n and t h a t t h i s p r o c e s s i s o p e r a t i v e i m m e d i a t e l y a f t e r d e a t h , s e v e r a l a u t h o r s s t r e s s t h a t t e n d e r i z a t i o n i s a c o o p e r a t i v e mechanism between the r e c e n t l y d i s c o v e r e d n e u t r a l p r o t e a s e s and l y s o s o m a l enzymes ( E t h e r i n g t o n , 1981; O u a l i and V a l i n , 1981; P e a r s o n e t a l . , 1983). - 102 -5.4 St u d y T h r e e 5.4.1 The e f f e c t of e l e c t r i c a l s t i m u l a t i o n on i s o m e t r i c t e n s i o n p a r a m e t e r s E l e c t r i c a l s t i m u l a t i o n s i g n i f i c a n t l y d e c r e a s e d the a v e r a g e time to maximum t e n s i o n i n P e c t o r a l i s maj or and B i c e p s f e m o r i s samples (F p r o b . = .001 and F p r o b . = .019, r e s p e c t i v e l y ) and r e d u c e d the e x t e n t of r i g o r d e v e l o p m e n t ( i . e . , maximum i s o m e t r i c t e n s i o n ) i n b o t h m u s c l e s ( T a b l e 2 0 ) . These r e s u l t s g e n e r a l l y s u p p o r t t h e o b s e r v a t i o n s of the p r e v i o u s e x p e r i m e n t s and s u g g e s t t h a t the most c o n s i s t e n t e f f e c t of e l e c t r i c a l s t i m u l a t i o n i s to enhance the r a t e of r i g o r d e v e l o p m e n t . T a b l e 20: The e f f e c t of e l e c t r i c a l s t i m u l a t i o n on the de v e l o p m e n t of r i g o r m o r t i s i n a v i a n m u scle ( S t u d y T h r e e ) Treatmen t  P a r a m e t e r M u s c l e C o n t r o l E S 1 F prob T M T ( m i n ) 2 PM 4 279 ± 7 2 6 117 ± 8 0.001 BF5 301 ± 85 172 ± 49 0.019 MT(g/cm2)3 P M 6 3 . 4 ± 7.8 51.1 ± 15.0 0.140 BF 65.2 ± 14.0 36.6 ± 26.9 0.069 s _ 1 ) f o r 60s 1 e l e c t r i c a l l y s t i m u l a t e d w i t h 140V (40 2 time to maximum t e n s i o n 3 maximum i s o m e t r i c t e n s i o n d e v e l o p e d 4 P e c t o r a l i s maj or 5 B i c e p s f e m o r i s 6 mean (n=5) ± s t a n d a r d d e v i a t i o n - 103 -The raw d a t a , e x p r e s s e d as a d e c i m a l f r a c t i o n of the maximum t e n s i o n a c h i e v e d , as w e l l as an a r c s i n e t r a n s f o r m a t i o n , f o r the r e l e a s e of i s o m e t r i c t e n s i o n post-maximum t e n s i o n i n b o t h m u s c l e t y p e s was s u b j e c t e d to the same r e g r e s s i o n a n a l y s i s as t h a t i n Study Two and the r e s u l t s a r e p r e s e n t e d i n T a b l e s 21 and 22. No s i g n i f i c a n t d i f f e r e n c e s i n the r a t e of t e n s i o n r e l e a s e were o b s e r v e d when B i c e p s f e m o r i s and P e c t o r a l i s maj or samples from e l e c t r i c a l l y s t i m u l a t e d c a r c a s s e s were compared to t h e i r r e s p e c t i v e c o n t r o l s , but s i g n i f i c a n t l y d i f f e r e n t i n t e r c e p t v a l u e s were n o t e d (p<0.01 and p<0.05, r e s p e c t i v e l y , T a b l e 2 2 ) . When t h e s e two m u s c l e t y p e s were compared w i t h i n a t r e a t m e n t g r o u p , t h e P e c t o r a l i s maj or samples r e l e a s e d t h e i r d e v e l o p e d t e n s i o n s i g n i f i c a n t l y (p<0.01, T a b l e 22) f a s t e r than B i ceps f e m o r i s samples i n b o t h the c o n t r o l and t r e a t e d b i r d s . When the r e s u l t s f r o m Study T h r e e ( T a b l e s 21, 22) were compared to t h o s e o b t a i n e d i n Study Two ( T r e a t m e n t 3: T a b l e s 17, 18) some s i m i l a r i t i e s were i d e n t i f i e d . F o r b o t h m u s c l e t y p e s , samples from e l e c t r i c a l l y s t i m u l a t e d c a r c a s s e s t e n d e d to r e l e a s e t h e i r d e v e l o p e d t e n s i o n more r a p i d l y than d i d t h o s e from c o n t r o l c a r c a s s e s . W i t h i n a t r e a t m e n t , s i m i l a r i n c r e a s e s i n t e n s i o n r e l e a s e r a t e s were n o t e d when P e c t o r a l i s maj or were compared to B i c e p s f e m o r i s s a m p l e s . In Study Two, v a l i d c o m p a r i s o n s c o u l d not be made as t h e r e was s i g n i f i c a n t h e t e r o g e n e i t y i n the r e s i d u a l v a r i a n c e s , whereas the T a b l e 21: R e g r e s s i o n l i n e p a r a m e t e r s f o r t e n s i o n r e l e a s e ( d e p e n d e n t v a r i a b l e ) v e r s u s t i m e post-maximum t e n s i o n ( i n d e p e n d e n t v a r i a b l e ) f o r a v i a n m u s c l e from Study T h r e e Raw d a t a Y' = A r c s i n A/T Mus c l e Treatmen t I n t e r c e p t S l o p e r 2 s i g 4 I n t e r c e p t S l o p e r 2 s i g B F 1 Con t r o l E S 3 0.998 0.967 -0.031 -0.058 0.696 0.380 A A A A 85.61 81 .99 -4.16 -5 .79 0.720 0.446 A A A A PM 2 C o n t r o l ES 1.023 0.970 -0.126 -0.130 0.766 0.731 AA 85.01 79.91 -10.11 -9 . 86 0.805 0.735 A A A A 1 B i ceps f em o r i s 2 P e c t o r a l i s maj or 3 e l e c t r i c a l l y s t i m u l a t e d w i t h 140V ( 4 0 s - l ) f o r 60s 4 * * ( A s i g n i f i c a n t a t the 1 and 5% l e v e l of p r o b a b i l i t y , r e s p e c t i v e l y T a b l e L i n e c o m p a r i s o n a n a l y s i s f o r the (dependent v a r i a b l e ) v e r s u s time from Study Three a r c s i n e t r a n s f o r m a t i o n of t e n s i o n post-maximum t e n s i o n ( i n d e p e n d e n t r e l e a s e v a r i a b l e ) Comparison Homogeneity o f r e s i d u a l v a r i a n c e s S l o p e s I n t e r c e p t s I . W i t h i n muscle f i b r e t y p e s ( a ) B i c e p s f e m o r i s C v s . ES (b) P e c t o r a l i s maj o r , C v s . ES I I . W i t h i n t r e a t m e n t groups (a ) C o n t r o l , BF v s . PM (b) ES, BF v s . PM NS NS NS NS NS NS BF > PM,** BF >PM,** C >ES , ** C >ES,* BF >PM,** BF >PM,** 1 a l l of the s l o p e s a r e n e g a t i v e ; t h e r e f o r e , i f BF>PM, t h i s i n d i c a t e s a more r a p i d r e l e a s e i n the P e c t o r a l i s maj or sample **, * s i g n i f i c a n t a t the 1 and 5% l e v e l of p r o b a b i l i t y , r e s p e c t i v e l y . NS i n d i c a t e s n o n - s i g n i f i c a n c e - 106 -r e g r e s s i o n l i n e s d e v e l o p e d i n Study T h r e e e x h i b i t e d h o m o g e n e i t y i n r e s i d u a l v a r i a n c e s . 5.4.2 The e f f e c t of e l e c t r i c a l s t i m u l a t i o n on TCA s o l u b l e m a t e r i a l • An a t t e m p t was made to d e t e r m i n e whether the e a r l y d i f f e r e n c e s i n the r a t e s of t e n s i o n r e l e a s e c o u l d be d e t e c t e d when the m u s c l e samples were a n a l y s e d f o r n o n p r o t e i n n i t r o g e n . As can be seen i n T a b l e 23, n e i t h e r measure of TCA s o l u b l e m a t e r i a l ( i . e . , mg g l y c i n e / g or mg T y r e q u i v a l e n t s / g ) e x h i b i t e d a s i g n i f i c a n t d i f f e r e n c e or even a d i s c e r n i b l e t r e n d due to t r e a t m e n t , s a m p l i n g time or m u s c l e t y p e . T h i s l a c k of s i g n i f i c a n c e s h o u l d be i n t e r p r e t e d w i t h c a u t i o n as (1) a v e r y s h o r t p e r i o d of time had e l a p s e d ( i . e . , 24 h o u r s ) , and (2) the i n i t i a l changes d u r i n g the r e s o l u t i o n of r i g o r may have been s u f f i c i e n t to r e l e a s e some of the d e v e l o p e d t e n s i o n , but may not have been a c c o m p a n i e d by a s i g n i f i c a n t r e l e a s e of t r i c h l o r o a c e t i c a c i d s o l u b l e m a t e r i a l . B a r r e t t (1977) s u g g e s t e d t h a t w i t h i n the l y s o s o m a l s y s t e m , p r o t e o l y s i s may be i n i t i a t e d by e n d o p e p t i d a s e s and c o m p l e t e d by e x o p e p t i d a s e s . Two r e p o r t s have d e m o n s t r a t e d the r e l e a s e of l y s o s o m a l enzymes d u r i n g the postmortem s t o r a g e of b e e f L o n g i s s i m u s m u s c l e s from u n s t i m u l a t e d ( D utson and L a w r i e , 1974) or e l e c t r i c a l l y s t i m u l a t e d c a r c a s s e s ( D utson e t a l . , 1 980). I t was assumed i n the p r e s e n t s t u d y t h a t the T a b l e 23: The e f f e c t of e l e c t r i c a l s t i m u l a t i o n on the e x t e n t o f p r o t e o l y s i s i n a v i a n muscle ( S t u d y T h r e e ) TCA S o l u b l e m a t e r i a l Time p o s t s l a u g h t e r 1 hour 6 h o u r s 24 h o u r s M u s c l e T r e a t m e n t mg G l y / g mg T y r mg G l y / g mg T y r mg G l y / g mg T y r e q u i v a l e n t s / g e q u i v a l e n t s / g e q u i v a l e n t s / g PM 1 C o n t r o l 5 . 4 3 ± 2 . 3 6 4 0.33±0.13 6.10±1.26 0.43±0.14 5.61*2.46 0.42±0.14 E S 3 4.83±0.58 0.32*0.09 5.49±0.53 0.42±0.11 5.32*2.42 0.42±0.08 BF2 C o n t r o l 4.39±1.11 0.30±0.08 6.55±1.76 0.40*0.13 4.79±1.60 0.30±0.07 ES 4.95*0.57 0.31*0.08 5.11*0.43 0.36±0.10 4.93*2.67 0.32±0.04 1 P e c t o r a l i s maj or 2 B i c e p s f e m o r i s 3 e l e c t r i c a l l y s t i m u l a t e d w i t h 140V ( 4 0 s - l ) f o r 60s 4 mean (n=5) ± s t a n d a r d d e v i a t i o n - 108 -a c t i v i t i e s of the c a l c i u m - a c t i v a t e d n e u t r a l p r o t e a s e ( s ) and the r e l e a s e d l y s o s o m a l enzymes would p r o c e e d as p o s t u l a t e d f o r i n v i v o p r o t e o l y s i s . The a p p a r e n t l y d i s c o r d a n t f i n d i n g s of s i g n i f i c a n t d i f f e r e n c e s i n t h e t e n s i o n r e l e a s e r a t e s between B i c e p s f e m o r i s and P e c t o r a l i s maj or samples w i t h i n a t r e a t m e n t group and y e t no d i s c e r n i b l e t r e n d i n TCA s o l u b l e m a t e r i a l may be e x p l a i n e d as f o l l o w s : ( a ) the e x o p e p t i d a s e s and p r o t e i n s may be e x t e n s i v e l y d e g r a d e d b e f o r e a s i g n i f i c a n t i n c r e a s e i n f r e e amino a c i d s o c c u r s and o n l y a few s e l e c t i v e c l e a v a g e s by the e n d o p e p t i d a s e s may be n e c e s s a r y to a l t e r the p r o t e i n s t e r e o s t r u c t u r e ( A s h g a r and H e n r i c k s o n , 1982); and, (b) when t r i c h l o r o a c e t i c a c i d i s used to s e p a r a t e the p r o d u c t s of p r o t e o l y s i s , e i t h e r t h e low c o n c e n t r a t i o n or r e l a t i v e l y h i g h m o l e c u l a r w e i g h t s of t h e p r o d u c t s of e n d o p e p t i d a s e a c t i o n r e s u l t s i n t h e i r p r e c i p i t a t i o n - l e a v i n g o n l y the amino a c i d s f r o m e x o p e p t i d a s e a c t i v i t y ( B a r r e t t , 1977). O t h e r c o n t r i b u t i n g f a c t o r s to the l a c k of c o n s i s t e n c y between the p o s s i b l e i n d i c e s of t e n d e r i z a t i o n would i n c l u d e the n a t u r a l v a r i a b i l i t y i n t e n d e r i z a t i o n r a t e s and the r e l a t i v e l y s h o r t p e r i o d f o r t h e a n a l y s e s . A l t h o u g h Lowe e t a l . (1948) s u g g e s t e d t h a t the t e n d e r n e s s of t h i g h m u s c l e s i n c r e a s e d l e s s - 109 -r a p i d l y than t h a t of the b r e a s t s , t h e y a l s o r e p o r t e d t h a t a l l of the c a r c a s s e s f r o m a p a r t i c u l a r aged group d i d not e x h i b i t t h e same e x t e n t of d i s i n t e g r a t i o n when examined w i t h l i g h t m i c r o s c o p y . Hay et a l . (1973c) and H i k i d a (1978) b o t h n o t e d d i f f e r e n t t e n d e r i z a t i o n r a t e s i n a v i a n m u s c l e s due to m u s c l e f i b r e t y p e . A b b o t t e t a l . (1977) i n d i c a t e d t h a t the ' w h i t e ' p o r t i o n of p o r c i n e S e m i t e n d i n o s u s a p p e a r e d to be s l i g h t l y more l a b i l e to a u t o l y s i s but u l t r a s t r u e t u r a l changes o c c u r r e d i n the same sequence as i n the ' r e d ' p o r t i o n of the same m u s c l e . Khan and van den B e r g (1964) r e p o r t e d t h a t the n o n p r o t e i n n i t r o g e n f o r b o t h b r e a s t and l e g m u s c l e s of c h i c k e n s i n c r e a s e d w i t h i n c r e a s i n g s t o r a g e ( o v e r a 7 week p e r i o d ) at 0, 2 or 5°C. A s i m i l a r i n c r e a s e i n t y r o s i n e e q u i v a l e n t s was i n d i c a t e d f o r s t o r e d b e e f by Cohen ( 1 9 8 4 ) , who a l s o n o t e d t h a t the peak t y r o s i n e e q u i v a l e n t v a l u e c o i n c i d e d w i t h the a t t a i n m e n t of maximum t e n d e r n e s s . As the c h i c k e n c a r c a s s e s of the p r e s e n t s t u d y were e v a l u a t e d o n l y d u r i n g the f i r s t 24 h o u r s postmortem, i t i s l i k e l y t h a t s u f f i c i e n t p r o t e o l y t i c a c t i v i t y had o c c u r r e d i n a l l of the muscle samples to a c c o u n t f o r t e n s i o n r e l e a s e , but t h a t l o n g e r a g e i n g would be r e q u i r e d i n o r d e r to c h e m i c a l l y d e t e c t the r e s o l u t i o n of r i g o r . - n o -5.4.3 The e f f e c t of e l e c t r i c a l s t i m u l a t i o n on e x t r a c t a b l e p r o t e i n , p r o t e i n d i s p e r s i b i l i t y and p r o t e i n h y d r o p h o b i c i t y I t had o r i g i n a l l y been b e l i e v e d t h a t the a c c e l e r a t i o n of postmortem g l y c o l y s i s due to e l e c t r i c a l s t i m u l a t i o n may be s u f f i c i e n t to a f f e c t the f u n c t i o n a l p r o p e r t i e s of s a l t - s o l u b l e p r o t e i n s . As can be seen i n T a b l e 24, e l e c t r i c a l s t i m u l a t i o n d i d n o t a f f e c t the e x t r a c t a b l e p r o t e i n , p r o t e i n d i s p e r s i b i l i t y or p r o t e i n h y d r o p h o b i c i t y of P e c t o r a l i s maj or samples at any postmortem s a m p l i n g t i m e . A l t h o u g h the e x t r a c t a b l e p r o t e i n would a p p e a r to i n c r e a s e w i t h i n c r e a s e d time postmortem f o r samples from b o t h c o n t r o l and e l e c t r i c a l l y s t i m u l a t e d c a r c a s s e s , i t was not a s i g n i f i c a n t t r e n d . I t s h o u l d a l s o be n o t e d t h a t the e x t r a c t e d p r o t e i n was h i g h l y s o l u b l e . S e v e r a l s t u d i e s have s u g g e s t e d i m p r o v e d f u n c t i o n a l i t y f o r p r o t e i n s from p r e - r i g o r m u scle (Hamm, 1982; Wood et a l . , 1984). Thus, a c l o s e e x a m i n a t i o n of the time c o u r s e of r i g o r i n the samples of t h i s s t u d y may o f f e r some e x p l a n a t i o n f o r the r e s u l t s . The h i g h d i s p e r s i b i l i t y of the e x t r a c t a b l e p r o t e i n f o r the one hour samples from e l e c t r i c a l l y s t i m u l a t e d and c o n t r o l b i r d s may be e x p e c t e d as b o t h a r e i n a p r e r i g o r s t a t e , a l t h o u g h the samples from the t r e a t e d b i r d s have p r o b a b l y p r o c e e d e d f u r t h e r i n t o r i g o r as th e y a c h i e v e d maximum t e n s i o n a p p r o x i m a t e l y one Table 24: The e f f e c t of e l e c t r i c a l stimulation on extractable protein, protein d i s p e r s i b i l i t y and protein hydrophobicity in Pectoralis major (Study Three) Time post-stimulation 1 hour 6 hours 24 hours Treatment Extractable Protein Protein Extractable Protein Protein Extractable Protein Protein protein d i s p e r s i - hydropho- protein d i s p e r s i - hydropho- protein d i s p e r s i - hydropho-(%) b i l i t y ( % ) b i c i t y (%) b i l i t y ( % ) b i c i t y (%) b i l i t y ( % ) b i c i t y Control 2.40±0.49 2 97±12 162±101 2.56±0.46 104±12 113±24 2.77±0.63 100±20 112±46 ESJ 2.16±0.24 99±10 89±39 2.25*0.13 99± 8 113±54 2.37*0.53 100±28 148±47 1 e l e c t r i c a l l y stimulated with 140V (40s !) for 60s 2 mean (n=5) ± standard deviation - 112 -hour l a t e r ( T a b l e 2 0 ) . On the o t h e r hand, the 6 and 24 hour samples i n e ach t r e a t m e n t have been e x c i s e d f r o m p o s t r i g o r m u s c l e , t h u s t h e i r s o l u b l e p r o t e i n c o n t e n t would r e f l e c t not Ok. o n l y the e x t e n t of r i g o r d e v e l o p m e n t but the d e g r e e of p r o t e o l y s i s t h a t has o c c u r r e d . These r e s u l t s t e n d to s u p p o r t the o b s e r v a t i o n s of Gaska and R e g e n s t e i n (1982) who f o u n d t h a t r i g o r s t a t e was u n i m p o r t a n t f o r t h e i r t i m e d e m u l s i f i c a t i o n s t u d i e s w i t h c h i c k e n b r e a s t m u s c l e . However, G a l l u z o and R e g e n s t e i n (1978) had i n d i c a t e d e a r l i e r t h a t p r o t e i n was more r e a d i l y e x t r a c t e d from u n c o n t r a c t e d c h i c k e n m y o f i b r i l s . A r e c e n t s t u d y w i t h b e e f S t e r n o m a n d i b u l a r i s m uscle d e m o n s t r a t e d t h a t as p o s t - s l a u g h t e r time b e f o r e e x t r a c t i o n i n c r e a s e d t h e r e was a d e c r e a s e i n s a l t - e x t r a c t a b l e p r o t e i n (Wood et a l . , 1 9 8 4). T e r r e l l et a l . (1982a) a l s o r e p o r t e d t h a t the per c e n t s o l u b l e p r o t e i n of b eef Semimembranosus muscle was more a f f e c t e d by r i g o r s t a t e and t e m p e r a t u r e than by e l e c t r i c a l s t i m u l a t i o n . P r o t e i n s o l u b i l i t y i s o f t e n used as an i n d i c a t o r of o t h e r f u n c t i o n a l p r o p e r t i e s and i t s i m p o r t a n c e on the e m u l s i f y i n g c a p a c i t y of meat e m u l s i o n s ystems and on the b i n d i n g and g e l a t i o n p e r f o r m a n c e i n comminuted meat p r o d u c t s has been d e s c r i b e d by K i n s e l l a (1976) and Schmidt et a l . ( 1 9 8 1 ) , r e s p e c t i v e l y . S e v e r a l r e c e n t s t u d i e s have i n d i c a t e d t h a t the h y d r o p h o b i c i t y of the e x t r a c t e d p r o t e i n may a l s o c o n t r i b u t e to t h e s e f u n c t i o n a l p r o p e r t i e s . L i - C h a r f et a l . (1984) f o u n d t h a t b o t h p r o t e i n s o l u b i l i t y and h y d r o p h o b i c i t y were u s e f u l - 113 -p r e d i c t o r s of e m u l s i f y i n g a c t i v i t y i n d e x and e m u l s i f y i n g c a p a c i t y , and d e m o n s t r a t e d l a t e r t h a t the e m u l s i f y i n g c a p a c i t y of p r o t e i n s i n s a l t e x t r a c t s from beef top round and r o c k f i s h f i l l e t were i m p r o v e d under c o n d i t i o n s w h i c h f a v o u r e d c o m b i n a t i o n s of h i g h d i s p e r s i b i l i t y , h y d r o p h o b i c i t y and s u l f h y d r y l c o n t e n t ( L i - C h a n e t a l . , 1985). The i n t e r p r e t a t i o n of the p r o t e i n h y d r o p h o b i c i t y d a t a i s d i f f i c u l t as t h e r e a r e a number of c o n t r i b u t i n g f a c t o r s . The measurement of s u r f a c e or e f f e c t i v e h y d r o p h o b i c i t y was p e r f o r m e d u s i n g c i s - p a r i n a r i c a c i d (CPA) as the f l u o r e s c e n t probe ( K a t o and N a k a i , 1 9 8 0 ) . S i n c e CPA i s composed of an u n s a t u r a t e d a l i p h a t i c h y d r o c a r b o n c h a i n , i t has been s u g g e s t e d t h a t t h i s p r o be measures the c o n t r i b u t i o n to p r o t e i n h y d r o p h o b i c i t y by e x p o s e d a l i p h a t i c amino a c i d r e s i d u e s (Hayakawa and N a k a i , 1 9 85). T h e r e f o r e , as the m u s c l e s d e v e l o p e d and r e s o l v e d r i g o r m o r t i s , one might e x p e c t changes i n p r o t e i n s u r f a c e p r o p e r t i e s . The h y d r o p h o b i c i t y of the s a l t - e x t r a c t e d p r o t e i n s of the one hour P e c t o r a l i s maj or samples from c o n t r o l b i r d s was a l m o s t t w i c e the v a l u e o b s e r v e d f o r the same samples from the t r e a t e d c a r c a s s e s . However, t h i s d i f f e r e n c e was not s i g n i f i c a n t , p r o b a b l y due to the h i g h s a m p l e - t o - s a m p l e v a r i a b i l i t y (See T a b l e 2 4 ) . The l o w e r one hour v a l u e s f o r the t r e a t e d sampled would s u g g e s t a d e c r e a s e i n the a c c e s s i b i l i t y of h y d r o p h o b i c g r o u p s , w h i c h i n t u r n may r e f l e c t a g r e a t e r d e g r e e of r i g o r d e v e lopment when t h e s e samples a r e compared to c o n t r o l s . S i m i l a r p r o t e i n - 114 -h y d r o p h o b i c i t y v a l u e s were n o t e d f o r c o n t r o l and e l e c t r i c a l l y s t i m u l a t e d m u s c l e s a t 6 h o u r s postmortem, w h i l e the v a l u e o b t a i n e d f o r the t r e a t e d samples at 24 h o u r s was somewhat h i g h e r than t h o s e o b s e r v e d f o r e i t h e r i t s r e s p e c t i v e c o n t r o l or 6 hour t r e a t e d s a m p l e s . T h i s r e s u l t s u g g e s t s an i n c r e a s e d a c c e s s i b i l i t y to a l i p h a t i c h y d r o p h o b i c r e g i o n s f o r the s t i m u l a t e d m u s c l e s w i t h postmortem a g e i n g . In t h i s s t u d y , p r o t e i n h y d r o p h o b i c i t y was d e t e r m i n e d at a c o n s t a n t pH of 6.3, but the m u s c l e samples may have p o s s e s s e d d i f f e r e n t pH v a l u e s w h i c h would have c o n t r i b u t e d to the r e s u l t s , p a r t i c u l a r l y i n t h o s e samples i n the i s o e l e c t r i c pH r a n g e 4.5 - 5.5. L i - C h a n et a l . (1985) have r e c e n t l y s u g g e s t e d changes In p h y s i o c h e m i c a 1 d e s c r i p t o r p a r a m e t e r s as w e l l as f u n c t i o n a l p r o p e r t i e s due to s p e c i e s . The r e l a t i o n s h i p s between i s o m e t r i c t e n s i o n p a r a m e t e r s , p r o t e i n f u n c t i o n a l p r o p e r t i e s and a g e i n g r e q u i r e f u r t h e r s t u d y . I t i s s u g g e s t e d t h a t s u c h a p r o j e c t c o n s i d e r a l a r g e r sample s i z e ( t o r e d u c e v a r i a b i l i t y ) , a l o n g e r a g e i n g p e r i o d , b o t h m u s c l e f i b r e t y p e s and the same e l e c t r i c a l s t i m u l a t i o n c o n d i t i o n s u s e d i n t h i s s t u d y . - 115 -SUMMARY AND CONCLUSIONS Cooked b r e a s t m u s c l e s from e l e c t r i c a l l y s t u n n e d b r o i l e r c a r c a s s e s were more t e n d e r than t h o s e p r e p a r e d f r o m n o n - s t u n n e d c o n t r o l s when e v a l u a t e d i n s t r u m e n t a l l y . The r e s u l t s f r o m a home e v a l u a t i o n of l e g s and t h i g h s a l s o s u g g e s t e d t h a t samples from s t u n n e d c a r c a s s e s were more t e n d e r , j u i c y and a c c e p t a b l e than c o n t r o l s a m p l e s . The r a t e of postmortem g l y c o l y s i s i n b r o i l e r c a r c a s s e s was a c c e l e r a t e d by e l e c t r i c a l s t i m u l a t i o n . T h i s i n c r e a s e d r a t e , as measured by dpH/dt, was o b s e r v e d f o r b o t h B i c e p s f e m o r i s and P e c t o r a l i s maj or m u scle s a m p l e s . N e i t h e r f i b r e t e n s i l e s t r e n g t h nor s h e a r f o r c e v a l u e s of Pec t o r a l i s maj or samples a p p e a r e d to be a f f e c t e d by e l e c t r i c a l s t i m u l a t i o n . E l e c t r i c a l s t i m u l a t i o n i n f l u e n c e d the time c o u r s e of r i g o r d e v e l o p m e n t . Both B i c e p s f e m o r i s and P e c t o r a l i s maj or samples from c o n t r o l c a r c a s s e s r e q u i r e d l o n g e r to r e a c h maximum t e n s i o n than t h e i r r e s p e c t i v e samples from t r e a t e d c a r c a s s e s . E l e c t r i c a l s t i m u l a t i o n d i d not a p pear to a f f e c t the r a t e of i s o m e t r i c t e n s i o n r e l e a s e f o r e i t h e r m u scle t y p e a l t h o u g h P e c t o r a l i s maj or samples from t r e a t e d c a r c a s s e s d i d r e l e a s e t h e i r d e v e l o p e d t e n s i o n at a s i g n i f i c a n t l y f a s t e r r a t e than - 116 -t h e i r r e s p e c t i v e B i c e p s f e m ori s s a m p l e s . S e v e r a l s i g n i f i c a n t t r e a t m e n t e f f e c t s on the m e t a b o l i t e c o n t e n t s of b o t h muscle t y p e s were o b s e r v e d i n t h i s s t u d y . E l e c t r i c a l s t i m u l a t i o n s i g n i f i c a n t l y d e c r e a s e d the i n i t i a l g l y c o g e n and ATP c o n t e n t s and a c c e l e r a t e d the postmortem d i s a p p e a r a n c e of ATP i n P e c t o r a l i s maj or and B i c e p s femor i s m u s c l e s a m p l e s . F o r P e c t o r a l i s maj or samples t h i s was a c c o m p a n i e d by a s i g n i f i c a n t i n c r e a s e i n hexose monophosphate c o n t e n t when t r e a t e d b i r d s were compared to c o n t r o l s . E l e c t r i c a l s t i m u l a t i o n d i d n o t s i g n i f i c a n t l y a l t e r the e x t r a c t a b l e p r o t e i n , p r o t e i n d i s p e r s i b i l i t y nor p r o t e i n h y d r o p h o b i c i t y d u r i n g s t o r a g e at 2°C f o r one day. The r a t e of p r o t e o l y s i s , as measured by TCA s o l u b l e m a t e r i a l , a l s o a p p e a r e d to be u n a f f e c t e d by e l e c t r i c a l s t i m u l a t i o n . On the b a s i s of t h i s d a t a i t can be c o n c l u d e d t h a t the use of e l e c t r i c a l s t u n n i n g d u r i n g the c o m m e r c i a l p r o c e s s i n g of b r o i l e r s can enhance the t e n d e r n e s s of the r e s u l t a n t p r o d u c t . I t would a l s o a p p e a r t h a t the use of e l e c t r i c a l s t i m u l a t i o n can i n f l u e n c e s e v e r a l postmortem c h e m i c a l and b i o p h y s i c a l p a r a m e t e r s r e l a t e d to the t e x t u r a l q u a l i t y of a v i a n m u s c l e . - 117 -LIST OF REFERENCES A b b o t t , M.T., A.M. P e a r s o n , J . F . P r i c e and G.R. Hooper. 1977. U l t r a s t r u c t u r a l changes d u r i n g a u t o l y s i s of r e d and w h i t e p o r c i n e m u s c l e . J . Food S c i . 42: 1185-1188. Abugroun, H.A., J.C. F o r r e s t , E.D. A b e r l e and M.D. Judge. 1985a. S h o r t e n i n g and t e n d e r n e s s of p r e - r i g o r h e a t e d b e e f : P a r t 1 - E f f e c t of h e a t i n g r a t e on m u s c l e s of y o u t h f u l and mature c a r c a s s e s . Meat S c i . 14: 1-13. . 1985b. S h o r t e n i n g and t e n d e r n e s s of p r e - r i g o r h e a t e d b e e f : P a r t 2 - E f f e c t of h e a t i n g r a t e on m u s c l e s of e l e c t r i c a l l y s t i m u l a t e d c a r c a s s e s . Meat S c i . 14: 15-28 Ashgar , A. and R.L. H e n r i c k s o n . 1982. Postmortem s t i m u l a t i o n of c a r c a s s e s : e f f e c t s on b i o c h e m i s t r y , b i o p h y s i c s , m i c r o b i o l o g y and q u a l i t y of meat. C.R.C. C r i t . Rev. Food S c i . N u t r . 1 8 ( 1 ) : 1-58. A s h g a r , A., J . I . M o r i t a , K. Samejima and T. Y a s u i . 1984. B i o c h e m i c a l and f u n c t i o n a l c h a r a c t e r i s t i c s of myosin from r e d and w h i t e m u s c l e s of c h i c k e n as i n f l u e n c e d by n u t r i t i o n a l s t r e s s . A g r i c . B i o l . Chem. 48: 2217-2224. - 118 -A s h g a r , A. and N.T.M. Y e a t e s . 1978. The mechanism f o r the p r o m o t i o n of t e n d e r n e s s i n meat d u r i n g the postmortem p r o c e s s : a r e v i e w . C.R.C. C r i t . Rev. Food S c i . N u t r . 10 115-145. Ashmore, C.R. 1974. P h e n o t y p i c e x p r e s s i o n of m u s c l e f i b r e t y p e s and some i m p l i c a t i o n s to meat q u a l i t y . J . Anim. S c i . 38: 1158-1164. Ashmore, C.R. and L. D o e r r . 1971a. P o s t n a t a l d e v e l o p m e n t of f i b e r t y p e s i n normal and d y s t r o p h i c s k e l e t a l muscle of the c h i c k . Exp. N e u r o l . 30: 431-446. Ashmore, C.R. and L. D o e r r . 1971b. C o m p a r a t i v e a s p e c t s of mu s c l e f i b e r t y p e s i n d i f f e r e n t s p e c i e s . Exp. N e u r o l . 31: 408-418. A z a n z a , J . - L . , J . Raymond, J.M. R o b i n , P. C o t t i n and A. D u c a s t a i n g . 1979. P u r i f i c a t i o n and some p h y s i c o - c h e m i c a l and e n z y m i c p r o p e r t i e s of a c a l c i u m i o n - a c t i v a t e d n e u t r a l p r o t e i n a s e f r o m r a b b i t s k e l e t a l m u s c l e . B iochem. J . 183: 339-347 . - 119 -B a b i k e r , S.A. 1985. E f f e c t of e l e c t r i c a l s t i m u l a t i o n , h i g h t e m p e r a t u r e c o n d i t i o n s and a g e i n g on m u s c l e m y o f i b r i l l a r p r o t e i n s . Meat. S c i . 14: 83-90. B a b i k e r , S.A. and R.A. L a w r i e . 1983. Postmortem e l e c t r i c a l s t i m u l a t i o n and h i g h t e m p e r a t u r e a g e i n g of h o t - d e b o n e d b e e f . Meat. S c i . 8: 1-20. B a r c l a y , J.K. 1982. E n e r g e t i c s of mammalian f a s t and slow t w i t c h m u s c l e s . F e d . P r o c . 41: 189-191. B a r r e t t , A . J . 1977. I n t r o d u c t i o n to the h i s t o r y and c l a s s i f i c a t i o n of t i s s u e p r o t e i n a s e s . B a r r e t t , A . J . e d . P r o t e i n a s e s i n Mammalian C e l l s and T i s s u e s . New Y o r k : N o r t h H o l l a n d P u b l i s h i n g Co., 1977. pp. 1-55. . 1978 . L y s o s o m a l p r o t e i n a s e s and t h e i r s p e c i f i c i t y . S e g a l , H. and D. D o y l e , e d s . P r o t e i n  T u r n o v e r and Lysosome F u n c t i o n . New Y o r k : Academic P r e s s , 1978. pp 295-304. B a r r e t t , and A . J . and H. K i r s c h k e . c a t h e p s i n L. Methods 1981. C a t h e p s i n E n z y m o l . 80: 535-B, c a t h e p s i n H 561 . - 120 -B a r t h , R. and J . S . E l c e . 1981. I m m u n o f l u o r e s c e n t l o c a l i z a t i o n of a c a l c i u m d ependent n e u t r a l p r o t e a s e i n hamster m u s c l e . Amer. J . P h y s i o l . 240: E493-E498. B a s s i l a K a r d o u c h e , M. and W.J. S t a d e l m a n . 1978. E f f e c t of r i g o r s t a t e , p h o s p h a t e a d d i t i o n and a g i n g on q u a l i t y of t u r k e y r o l l s . P o u l . S c i . 57: 425-432. B a t e - S m i t h , E.C. 1948. The p h y s i o l o g y and c h e m i s t r y of r i g o r m o r t i s , w i t h s p e c i a l r e f e r e n c e to the a g i n g of b e e f . Adv . Food Res. 1: 1-38. B a t e - S m i t h , E.C. and J.R. B e n d a l l . 1949. F a c t o r s d e t e r m i n i n g the time c o u r s e of r i g o r . J . P h y s i o l . 110: 47. B e c h t e l , P . J . and F.C. P a r r i s h J r . 1983. E f f e c t s of postmortem s t o r a g e and t e m p e r a t u r e on muscle p r o t e i n d e g r a d a t i o n : a n a l y s i s by SDS e l e c t r o p h o n e s i s . J . Food S c i . 48: 294-295, 297. Behnke, J.R., 0. Fennemma and R.G. C a s s e n s . postmortem m e t a b o l i s m i n f r o z e n a n i m a l J . A g r i c . Food Chem. 2 1 ( 1 ) : 5-11. 1973. R a t e s t i s s u e s . of - 121 -B e n d a l l , J.R. 1972. Consumption of O2 by the m u s c l e s of beef a n i m a l s and r e l a t e d s p e c i e s , and i t s e f f e c t on the c o l o u r of meat. J . S c i . Food A g r i c . 23: 61-72. . 1973 . Postmortem changes i n m u s c l e . Bourne, G.H., ed. The S t r u c t u r e and F u n c t i o n of M u s c l e V o l I I . New Y o r k : Academic P r e s s , 1973. pp 244-309. . 1976. E l e c t r i c a l s t i m u l a t i o n of r a b b i t and lamb c a r c a s s e s . J . S c i . Food A g r i c . 27: 819-826. . 1978. V a r i a b i l i t y i n r a t e s of pH f a l l and of l a c t a t e p r o d u c t i o n i n the m u s c l e s of c o o l i n g b eef c a r c a s s e s . Meat S c i . 2: 91-104. . 1979. R e l a t i o n s between m u s c l e pH and i m p o r t a n t b i o c h e m i c a l p a r a m e t e r s d u r i n g the postmortem changes i n mammalian m u s c l e s . Meat S c i . 3: 143-157. B e n d a l l , J.R., C.C. K e t t e r i d g e and A.R. G e o r g e . 1976. The e l e c t r i c a l s t i m u l a t i o n of beef c a r c a s s e s . J . S c i . Food A g r i c . 27: 1123-1131. - 122 -B e r r y , B.W. and A.W. K o t u l a . 1982. E f f e c t s of e l e c t r i c a l s t i m u l a t i o n , t e m p e r a t u r e of b o n i n g and s t o r a g e time on b a c t e r i a l c o u n t s and s h e l f - l i f e c h a r a c t e r i s t i c s of beef c u t s . J . Food S c i . 47: 852-857. B e r r y , B.W. and D.M. S t i f f l e r . 1981. E f f e c t s of e l e c t r i c a l s t i m u l a t i o n , b o n i n g t e m p e r a t u r e , f o r m u l a t i o n and r a t e of f r e e z i n g on s e n s o r y , c o o k i n g , c h e m i c a l and p h y s i c a l p r o p e r t i e s of ground beef p a t t i e s . J . Food S c i . 46: 1103-1106. B o r c h e r t , L . L . and E . J . B r i s k e y . 1965. P r o t e i n s o l u b i l i t y and a s s o c i a t e d p r o p e r t i e s of p o r c i n e m uscle as i n f l u e n c e d by p a r t i a l f r e e z i n g w i t h l i q u i d n i t r o g e n . J . Food S c i . 30: 138-143 . Bo u t o n , P.E., A . I . F o r d , P E f f e c t of low v o l t a g e muscle t e n d e r n e s s and V. H a r r i s and F.D. Shaw. 1978. s t i m u l a t i o n of beef c a r c a s s e s on pH. J . Food S c i . 43: 1392-1396. B o u t o n , P.E. and P.V. H a r r i s . 1972. A c o m p a r i s o n of some o b j e c t i v e methods used to a s s e s s meat t e n d e r n e s s . J . Food S c i . 37: 218-221. - 123 -B o u t o n , P.E.,. P.V. H a r r i s and J . J . M a c F a r l a n e . 1980. P r e s s u r e - h e a t t r e a t m e n t of meat: e f f e c t of p r i o r a g i n g t r e a t m e n t s on s h e a r p r o p e r t i e s . J . Food S c i . 45: 276-278. B o u t o n , P.E., P.V. H a r r i s , J . J . M a c F a r l a n e and W.R. S h o r t h o s e . 1982. I n f l u e n c e of pH on the W a r n e r - B r a t z l e r s h e a r p r o p e r t i e s of m u t t o n . Meat S c i . 6 ( 1 ) : 27-36. B o u t o n , P.E., P.V. H a r r i s and W.R. S h o r t h o s e . 1975. Changes i n s h e a r p a r a m e t e r s of meat a s s o c i a t e d w i t h s t r u c t u r a l changes p r o d u c e d by a g i n g , c o o k i n g and m y o f i b r i l l a r c o n t r a c t i o n . J . Food S c i . 40: 1122-1126. . 1984. E l e c t r i c a l s t i m u l a t i o n of m u t t o n . J . Food S c i . 49: 1011-1017. Bouton, P.E., R.R. Weste and F.D. Shaw. 1980. E l e c t r i c a l s t i m u l a t i o n of c a l f c a r c a s s e s : r e s p o n s e of v a r i o u s m u s c l e s to d i f f e r e n t waveforms. J . Food S c i . 45: 148-149. - 124 -Bowles Axe, J . E . , C . I . K a s t n e r , M.E. Dikeman, M.C. H u r t , D.H. K r o p f and G.A. M i l l i k e n . 1983. E f f e c t s of be e f c a r c a s s s t i m u l a t i o n , hot b o n i n g and a g i n g on u n f r o z e n and f r o z e n Lon g i s s imus d o r s i and S emimembr an o sus s t e a k s . J . Food S c i . 48: 332-336. B o w l i n g , R.A., G.C. S m i t h , T.R. Dutson and Z.L. C a r p e n t e r . 1978. E f f e c t s of p r e r i g o r c o n d i t i o n i n g t r e a t m e n t s on lamb muscle s h o r t e n i n g , pH and ATP. J . Food S c i . 4 3 ( 2 ) : 502-507 . Bowman, W.C. and I.G. M a r s h a l l . 1971. M u s c l e . B e l l , D.J. and B.M. Freeman, e d s . P h y s i o l o g y and B i o c h e m i s t r y of the D o m e s t i c F o w l . V o l . 2. London: Academic P r e s s , 1972. PP 707-737. Buege, D.R. and B.B. Ma r s h . 1975. M i t o c h o n d r i a l c a l c i u m and postmortem m u s c l e s h o r t e n i n g . Biochem. B i o p h y s . Res. Comm. 65: 478-482. B u l l a r d , B., J.W.S. P r i n g l e and G. S a i n s b u r y . 1981. L o c a l i z a t i o n of a new p r o t e i n i n the Z - d i s c s of i n s e c t f l i g h t and v e r t e b r a t e s t r i a t e d m u s c l e . J . P h y s i o l 317: 19P-20P. - 125 -Bus c h , W.A., D.E. G o l l and F.C. P a r r i s h J r . 1972. M o l e c u l a r p r o p e r t i e s of postmortem m u s c l e : i s o m e t r i c t e n s i o n d e v e l o p m e n t and d e c l i n e i n b o v i n e , p o r c i n e and r a b b i t m u s c l e . J . Food S c i . 37: 289-299. B u s c h , W.A., F.C. P a r r i s h J r . and D.E. G o l l . 1967. M o l e c u l a r p r o p e r t i e s of postmortem m u s c l e . 4. E f f e c t of t e m p e r a t u r e on a d e n o s i n e t r i p h o s p h a t e d e g r a d a t i o n , i s o m e t r i c t e n s i o n p a r a m e t e r s and s h e a r r e s i s t a n c e of b o v i n e m u s c l e . J . Food S c i . 32: 390-394. Bu s c h , W.A., M.H. S t r o m e r , D.E. G o l l and A. S u z u k i . 1972. C a l c i u m - s p e c i f i c r e m o v a l of Z l i n e s from r a b b i t s k e l e t a l m u s c l e . J . C e l l B i o l . 52: 367-381. C a l d w e l l , K.A. 1970. A u t o l y t i c a c t i v i t y i n aqueous e x t r a c t s of c h i c k e n s k e l e t a l m u s c l e . J . A g r i c . Food Chem. 18: 276-279. C a l d w e l l , K.A. and O.K. G r o s j e a n . 1971. L y s o s o m a l c a t h e p s i n s of c h i c k e n s k e l e t a l m u s c l e : d i s t r i b u t i o n and p r o p e r t i e s . J . A g r i c . Food Chem. 19: 108-111. - 126 -C a l k i n s , C.R., I . J . B r a n e c k y , T.R. D u t s o n , G.C. S m i t h and Z.L. C a r p e n t e r . 1983. Postmortem m u s c l e m e t a b o l i s m and meat t e n d e r n e s s . J . Food S c i . 48: 23-25, 35. C a l k i n s , C.R., T.R. D u t s o n , G.C. S m i t h and Z.L. C a r p e n t e r . 1982. C o n c e n t r a t i o n of c r e a t i n e p h o s p h a t e , a d e n i n e n u c l e o t i d e s and t h e i r d e r i v a t i v e s i n e l e c t r i c a l l y s t i m u l a t e d and n o n s t i m u l a t e d beef m u s c l e . J . Food S c i . 47: 1350-1353. C a l k i n s , C.R., J.W. S a v e l l , G.C. S m i t h and C.E. Murphey. 1980. Q u a l i t y - i n d i c a t i n g c h a r a c t e r i s t i c s of beef as a f f e c t e d by e l e c t r i c a l s t i m u l a t i o n and postmortem c h i l l i n g t i m e . J . Food S c i . 45: 1330-1332. C a r a f o l i , E. and J . T . P e n n i s t o n . 1985. The c a l c i u m s i g n a l . S c i . Amer. 253 ( 5 ) : 70-78. C a r s e , W.A. 1973. Meat q u a l i t y and the a c c e l e r a t i o n of postmortem g l y c o l y s i s by e l e c t r i c a l s t i m u l a t i o n . J . Food T e c h n o l . 8: 163-166. C a s s e n s , R.G. 1977. M u s c l e b i o c h e m i s t r y : the i m p o r t a n c e of m y o f i b e r t y p e . Food T e c h n o l . 31: 76-81. - 127 -C a s s e n s , R.G. and R.P. Newbold. 1967. T e m p e r a t u r e dependence of changes In ox m u s c l e s postmortem. J . Food S c i . 32: 13. C e c c h i , G., F. Colomo and V. L o m b a r d i . 1981. F o r c e - v e l o c i t y r e l a t i o n i n d e u t e r i u m o x i d e - t r e a t e d f r o g s i n g l e m u s c l e f i b r e s d u r i n g the r i s e of t e n s i o n i n an i s o m e t r i c t e t a n u s . J . P h y s i o l . 317: 207-221. Chaen, S., K. K o m e t a n i , T. Yamada and H. S h i m i z u . 1981. S u b s t r a t e - c o n c e n t r a t i o n d e p e n d e n c i e s of t e n s i o n , s h o r t e n i n g v e l o c i t y and ATPase a c t i v i t y of g l y c e r i n a t e d s i n g l e m u s c l e f i b e r s . J . Biochem. 90: 1611-1621. Cheng, C.-S. and F.C. P a r r i s h J r . 1977. E f f e c t changes i n m y o f i b r i l l a r p r o t e i n s on b o v i n e m u s c l e . J . Food S c i . 42: 1621-1626. of C a + Z on s k e l e t a l . 1978a. M o l e c u l a r changes i n the s a l t - s o l u b l e m y o f i b r i l l a r p r o t e i n s of b o v i n e m u s c l e . J . Food S c i . 4 3 ( 2 ) : 461-463. - 128 -. 1978b. E f f e c t s of postmortem s t o r a g e c o n d i t i o n s on m y o f i b r i l l a r ATPase a c t i v i t y of p o r c i n e r e d and w h i t e S e m i t e n d i n o s u s m u s c l e . J . Food S c i . 4 3 ( 1 ) : 17-21. C h o i , Y . I . , C.L. K a s t n e r , M.E. Dikeman, M.C. Hu r t and D.H. K r o p f . 1984. E f f e c t s of e l e c t r i c a l s t i m u l a t i o n and hot b o n i n g on f u n c t i o n a l c h a r a c t e r i s t i c s of p r e b l e n d e d beef m u s c l e i n model s y s t e m s . J . Food S c i . 49: 867-869. C h r y s t a l l , B.B. and C.E. D e v i n e . 1978. E l e c t r i c a l s t i m u l a t i o n , m uscle t e n s i o n and g l y c o l y s i s i n b o v i n e S t e r n o m a n d i b u l a r i s . Meat S c i . 2: 49-58. . 1983. E l e c t r i c a l s t i m u l a t i o n of r a t s : a model f o r e v a l u a t i n g low v o l t a g e s t i m u l a t i o n p a r a m e t e r s . Meat S c i . 9: 33-41. . 1985. E l e c t r i c a l s t i m u l a t i o n : i t s e a r l y d e v e l o p m e n t i n New Z e a l a n d . P e a r s o n , A.M. and T.R. D u t s o n , e d s . A d v a n c e s i n Meat R e s e a r c h . V o l I E l e c t r i c a l S t i m u l a t i o n . W e s t p o r t , C o n n e c t i c u t : A . V . I . P u b l i s h i n g , 1985. pp 73-119. - 129 -C h r y s t a l l , B.B., C.E. D e v i n e and C.L. Davey. 1980. S t u d i e s i n e l e c t r i c a l s t i m u l a t i o n : postmortem d e c l i n e i n n e r v o u s r e s p o n s e i n lambs. Meat S c i . 4: 69-78. C h r y s t a l l , B.B. and C . J . H a g y a r d . 1975. A c c e l e r a t e d c o n d i t i o n i n g of lamb. N.Z.J. A g r i c . ( J u n e ) : 7, 9, 41. . 1976 . E l e c t r i c a l s t i m u l a t i o n and lamb t e n d e r n e s s . N . Z . J . A g r i c . Res. 19: 7-11. C h r y s t a l l , B.B., C.T. H a g y a r d , L. Wade and S. E l l e r y . 1984. Combined low and h i g h v o l t a g e s t i m u l a t i o n of lamb. N.Z. A g r i c . Res. 27: 43-47. C l a r k e , F.M., F.D. Shaw and D.J. M o r t o n . 1980. E f f e c t of e l e c t r i c a l s t i m u l a t i o n postmortem of b o v i n e m u s c l e on the b i n d i n g of g l y c o l y t i c enzymes. B i o c h e m . J . 186: 105-109. C l a u s , J.R., D.H. K r o p f , M.C. Hunt, C.L. K a s t n e r and M.E. Dikeman. 1984. E f f e c t s of b e e f c a r c a s s e l e c t r i c a l s t i m u l a t i o n and hot b o n i n g on m u s c l e d i s p l a y c o l o u r of p o l y v i n y l c h l o r i d e p a c k aged s t e a k s . J . Food S c i . 49: 1021-1023. - 130 -. 1985 . E f f e c t s of b e e f c a r c a s s e l e c t r i c a l s t i m u l a t i o n and hot b o n i n g on d i s p l a y c o l o u r of u n f r o z e n vacuum packaged s t e a k s . J . Food S c i . 50: 881-883. Cohen, C. 1975. The p r o t e i n s w i t c h of muscle c o n t r a c t i o n . S c i . Amer. 233.(5 ): 36-45. Cohen, P. 1980. The r o l e of c a l c i u m i o n s , c a l m o d u l i n and t r o p o n i n i n the r e g u l a t i o n of p h o s p h o r y l a s e k i n a s e from r a b b i t s k e l e t a l m u s c l e . E u r . J . B i o c h e m . I l l : 563-574. Cohen, T. 1984. A g i n g of f r o z e n p a r t s of b e e f . J . Food S c i . 49: 1174-1177. C o n t r e r a s , S. and D.L. H a r r i s o n . 1981. E l e c t r i c a l s t i m u l a t i o n and hot b o n i n g : c o l o r s t a b i l i t y of ground beef i n a model s y s t e m . J . Food S c i . 46: 464-467. C o n t r e r a s , S., D.H. K r o p f and C.L. K a s t n e r . 1981. E l e c t r i c a l s t i m u l a t i o n and hot b o n i n g : c o o k i n g l o s s e s , s e n s o r y p r o p e r t i e s and m i c r o b i a l c o u n t s of ground b e e f . J . Food S c i . 46: 457-460. - 131 -C o r n f o r t h , D.P., A.M. P e a r s o n and R.A. M e r k e l . 1980. R e l a t i o n s h i p of m i t o c h o n d r i a and s a r c o p l a s m i c r e t i c u l u m to c o l d s h o r t e n i n g . Meat S c i . 4: 103-121. C r e n w e l g e , D.D., R.N. T e r r e l l , T.R. D u t s o n , G.C. S m i t h and Z.L. C a r p e n t e r . 1984. E f f e c t s of time postmortem of e l e c t r i c a l s t i m u l a t i o n and postmortem c h i l l i n g method on pork q u a l i t y and p a l a t a b i l i t y t r a i t s . J . Food S c i . 49: 294-295, 297. C r o s s , H.R. 1979. E f f e c t s of e l e c t r i c a l s t i m u l a t i o n on meat t i s s u e and m u s c l e p r o p e r t i e s - a r e v i e w . J . Food S c i . 44: 509-514. C r o s s , H.R., J.D. C r o u s e and M.D. M a c N e i l . 1984. I n f l u e n c e of b r e e d , sex, age and e l e c t r i c a l s t i m u l a t i o n on c a r c a s s and p a l a t a b i l i t y t r a i t s of t h r e e b o v i n e m u s c l e s . J . Anim S c i . 58: 1358-1365. C r o s s , H.R., S.O. Sorinmade e l e c t r i c a l s t i m u l a t i o n u n s t r e s s e d s t e e r s . J . and K. Ono. 1983. E f f e c t of on c a r c a s s e s from s t r e s s e d and Food Q u a l . 6: 73-79. - 132 -C r o s s , H.R. and S.C. Seideman. 1985. Use of e l e c t r i c a l s t i m u l a t i o n f o r hot b o n i n g of meat. P e a r s o n , A.M. and T.R. D u t s o n , e d s . A d v a n c e s i n Meat R e s e a r c h V o l . 1  E l e c t r i c a l S t i m u l a t i o n . W e s t p o r t , C o n n e c t i c u t : AVI P u b l i s h i n g , 1985. pp. 159-183. C r o s s , H.R. and I . T e n n e n t . 1980. A c c e l e r a t e d p r o c e s s i n g s y s tems f o r U.S.D.A. c h o i c e and good beef c a r c a s s e s . J . Food S c i . 45: 765-768. . 1981. E f f e c t of e l e c t r i c a l s t i m u l a t i o n and postmortem b o n i n g time on s e n s o r y and c o o k e r y p r o p e r t i e s of ground b e e f . J . Food S c i . 46: 292-293, 295. C r o u s e , J.D., S.C. Seideman and H.R. C r o s s . 1983. The e f f e c t s of c a r c a s s e l e c t r i c a l s t i m u l a t i o n and c o o l e r t e m p e r a t u r e on the q u a l i t y and p a l a t a b i l i t y of b u l l and s t e e r b e e f . J . Anim. S c i . 56: 81-90. D a l r y m p l e , R.H. and R. Hamm. 1973. A method f o r the e x t r a c t i o n of g l y c o g e n and m e t a b o l i t e s from a s i n g l e m u s c l e sample. J . Food T e c h n o l . 8: 439-444. - 133 -. 1975 . Postmortem g l y c o l y s i s i n p r e r i g o r ground b o v i n e and r a b b i t m u s c l e . J . Food S c i . 40: 850-853. Davey, C.L. and K.V. G i l b e r t . 1977. T e n s i l e s t r e n g t h and the t e n d e r n e s s of beef S t e r n o m a n d i b u l a r i s m u s c l e . Meat S c i . 1: 49-61. Davey, C.L., K.V. G i l b e r t and W.A. C a r s e . 1976. C a r c a s s e l e c t r i c a l s t i m u l a t i o n to p r e v e n t c o l d s h o r t e n i n g t o u g h n e s s i n b e e f . N. Z. J . A g r i c . Res. 19: 13-18. D a v i e s , P.J.A., D. W a l l a c h , M.C. W i l l i n g h a m , I . P a s t a r i , M. Yamaguchi and R.M. Robson. 1978. F i l a m i n - a c t i n i n t e r a c t i o n . D i s s o c i a t i o n of b i n d i n g f r o m g e l a t i n by C a + 2 - a c t i v a t e d p r o t e o l y s i s . J . B i o l . Chem. 253: 4036-4042. D a y t o n , W.R., D.E. G o l l , M.G. Z e e c e , R.M. Robson and W.J. R e v i l l e . 1976a. A c a l c i u m - a c t i v a t e d p r o t e a s e p o s s i b l y i n v o l v e d i n m y o f i b r i l l a r p r o t e i n t u r n o v e r : p u r i f i c a t i o n f r o m p o r c i n e m u s c l e . B i o c h e m . 15: 2150-2158. - 134 -D a y t o n , W.R., W.J. R e v i l l e , D.E. G o l l and M.H. S t r o m e r . 1976b. A c a l c i u m - a c t i v a t e d p r o t e a s e p o s s i b l y i n v o l v e d i n m y o f i b r i l l a r p r o t e i n t u r n o v e r : p a r t i a l c h a r a c t e r i z a t i o n of the p u r i f i e d enzyme. Biochem. 15: 2159-2167. D a y t o n , W.R., R.A. L e p l e y and J.V. S c h o l l m e y e r . 1981a. The r o l e of m uscle p r o t e o l y t i c enzymes i n d e g r a d a t i o n of the m y o f i b r i l . Rec. Meat C o n f . P r o c . 34: 17-23. D a y t o n , W.R., J.V. S c h o l l m e y e r , R.A. L e p l e y and L.R. C o r t e s . 1981b. A c a l c i u m - a c t i v a t e d p r o t e a s e p o s s i b l y i n v o l v e d i n m y o f i b r i l l a r p r o t e i n t u r n o v e r : i s o l a t i o n of a l o w - c a l c i u m r e q u i r i n g f o r m of the p r o t e a s e . B i o c h i m . B i o p h y s . A c t a 659: 48- 61. D a y t o n , W.R. and J.V. S c h o l l m e y e r . 1981. I mmunocytochemical l o c a l i z a t i o n of a c a l c i u m - a c t i v a t e d p r o t e a s e i n s k e l e t a l m u s c l e c e l l s . Exp. C e l l Res. 136: 423-433. de F r e m e r y , D. 1966. R e l a t i o n s h i p between c h e m i c a l p r o p e r t i e s and t e n d e r n e s s of p o u l t r y m u s c l e . J . A g r . Food Chem. 14: 214. - 135 -de F r e m e r y , D. and M.F. P o o l . 1960. B i o c h e m i s t r y of c h i c k e n m u s c l e as r e l a t e d to r i g o r m o r t i s and t e n d e r i z a t i o n . Food Res. 25: 73-87. D e v i n e , C.E. and B.B. C h r y s t a l l . 1984. E l e c t r i c a l s t i m u l a t i o n of r a t s : P a r t 2 - The e f f e c t of e l e c t r i c a l p a r a m e t e r s on muscle t e n s i o n and postmortem g l y c o l y s i s . Meat S c i . 10: 293-305. D e v i n e , C.E., S. E l l e r y and S. A v e r i l l . 1984a. R e s p o n s e s of d i f f e r e n t t y p e s of ox muscle to e l e c t r i c a l s t i m u l a t i o n . Meat S c i . 10: 35-51. D e v i n e , C.E., S. E l l e r y , L. Wade and B.B. C h r y s t a l l . 1984b. D i f f e r e n t i a l e f f e c t s of e l e c t r i c a l s t u n n i n g on the e a r l y p ost-mortem g l y c o l y s i s i n s h e e p . Meat S c i . 11: 301-309. Dodge, J.W. and W.T. S t a d e l m a n . 1960. R e l a t i o n s h i p s between pH, t e n d e r n e s s and m o i s t u r e l e v e l s d u r i n g e a r l y p ostmortem a g i n g of t u r k e y meat. Food T e c h n o l . 14: 43-46. - 136 -D r a b i k o w s k i , W., A. G o r e c k a and A. J a k u b i e c - P u k a . 1977. Endogenous p r o t e i n a s e s i n v e r t e b r a t e s k e l e t a l m u s c l e . I n t . J . B i o c h e m . 8: 61-71. D r a n s f i e l d , E., R.C.D. Jones and H.J.H. M a c F i e . 1981. Q u a n t i f y i n g changes i n t e n d e r n e s s d u r i n g s t o r a g e of b e e f . Meat S c i . 5: 131-137. D r a n s f i e l d , E. and D.K. L o c k y e r . 1985. C o l d - s h o r t e n i n g t o u g h n e s s i n e x c i s e d p ork m u s c l e Long i s s imus d o r s i . Meat S c i . 13: 19-32. Dukes, M.G. and D.M. J a n k y . 1984. P h y s i c a l c h a r a c t e r i s t i c s of P e c t o r a l i s s u p e r f i c i a l i s f r o m b r o i l e r c a r c a s s e s c h i l l e d i n e i t h e r water or sodium c h l o r i d e s o l u t i o n s under c o m m e r c i a l c o n d i t i o n s . J . Food S c i . 49: 849-852, 858. D u t s o n , T.R. 1983. R e l a t i o n s h i p of pH and t e m p e r a t u r e to d i s r u p t i o n of s p e c i f i c m u scle p r o t e i n s and a c t i v i t y of l y s o s o m a l p r o t e a s e s s . J . Food Biochem. 7: 223-245. D u t s o n , T.R. and R.A. L a w r i e . 1974. R e l e a s e of l y s o s o m a l enzymes d u r i n g postmortem c o n d i t i o n i n g and t h e i r r e l a t i o n s h i p to t e n d e r n e s s . J . Food T e c h n o l . 9: 43-50. - 137 -D u t s o n , T.R., A.M. P e a r s o n , R.A. M e r k e l and G.C. S p i n k . 1974. U l t r a s t r u e t u r a l postmortem changes i n n o r m a l and low q u a l i t y p o r c i n e m uscle f i b r e s . J . Food S c i . 39: 32-37. D u t s o n , T.R., G.C. S m i t h and Z.L. C a r p e n t e r . 1980a. L y s o s o m a l enzyme d i s t r i b u t i o n i n e l e c t r i c a l l y s t i m u l a t e d b o v i n e m u s c l e . J . Food S c i . 45: 1097-1098. D u t s o n , T.R., G.C. S m i t h , J.W. S a v e l l and Z.L. C a r p e n t e r . 1980b. P o s s i b l e mechanisms by w h i c h e l e c t r i c a l s t i m u l a t i o n i m p r o v e s meat t e n d e r n e s s . P r o c . 2 6 t h E u r . Mtg. Meat Res. W o r k e r s , pp 84-87. E d e l h o c h , H. 1967. S p e c t r o s c o p i c d e t e r m i n a t i o n of t r y p t o p h a n and t y r o s i n e i n p r o t e i n s . Biochem. 6: 1948-1954. E i n o , M.F. and D.W. S t a n l e y . 1973. S u r f a c e u l t r a s t r u e t u r e and t e n s i l e p r o p e r t i e s of c a t h e p s i n and c o l l a g e n a s e t r e a t e d m u s cle f i b e r s . J . Food S c i . 38: 51-55. E l g a s i m , E.A., W.H. K e n n i c k , L.A. M c G i l l , D.F. Rock and A. S o e l d n e r . 1981. E f f e c t s of e l e c t r i c a l s t i m u l a t i o n and d e l a y e d c h i l l i n g of beef c a r c a s s e s on c a r c a s s and meat c h a r a c t e r i s t i c s . J . Food S c i . 46: 340-343, 349. - 138 -\ E l k h a l i f a , E.A., A.F. A n g l e m i e r , W.H. K e n n i c k and E.A. E l g a s i m . 1984a. E f f e c t of p r e r i g o r p r e s s u r i z a t i o n on postmortem b o v i n e muscle l a c t a t e d e h y d r o g e n a s e a c t i v i t y and g l y c o g e n d e g r a d a t i o n . J . Food S c i . 49: 593-594, 597 . . 1984b. I n f l u e n c e of p r e r i g o r p r e s s u r i z a t i o n on postmortem b e e f m u s c l e c r e a t i n e p h o s p h o k i n a s e a c t i v i t y and d e g r a d a t i o n of c r e a t i n e p h o s p h a t e and a d e n o s i n e t r i p h o s p h a t e . J . Food S c i . 49: 595-597. E t h e r i n g t o n , D . J . 1981. Enzyme a c t i o n s i n the c o n d i t i o n i n g of meat. T u r k , V. and L . J . V i t a l e , e d s . P r o c e e d i n g s of the  Symposium on P r o t e i n a s e s and t h e i r I n h i b i t o r s . O x f o r d , E n g l a n d : Pergamon P r e s s , 1981. pp 279-290. F a b i a n s s o n , S. and A. L a s e r R e u t e r s w a r d . 1985. Low v o l t a g e e l e c t r i c a l s t i m u l a t i o n and postmortem e n e r g y m e t a b o l i s m i n b e e f . Meat S c i . 12: 205-223. F a b i a n s s o n , S., A. L a s e r R e u t e r s w a r d and R. L i b e l i u s . 1985. U l t r a s t r u c t u r a l and b i o c h e m i c a l changes i n e l e c t r i c a l l y s t i m u l a t e d d a r k c u t t i n g b e e f . Meat S c i . 12: 177-188. - 139 -F a b i a n s s o n , S. and R. L i b e l i u s . 1985. S t r u c t u r a l changes i n b eef L o n g i s s i m u s d or s i i n d u c e d by postmortem low v o l t a g e e l e c t r i c a l s t i m u l a t i o n . J . Food S c i . 50: 39-44. Fagan , J.M., B.A. B r o o k s and D.E. G o l l . 1983. A s s a y p r e c i s i o n and a c c u r a c y of c a l c i u m - d e p e n d e n t p r o t e i n a s e a c t i v i t y i n r a t s k e l e t a l m u s c l e . J . Food S c i . 48: 487-491. F i s c h e r , C. and R. Hamm. 1980. B i o c h e m i c a l s t u d i e s on f a s t g l y c o l y s i n g b o v i n e m u s c l e . Meat S c i . 4: 41-49. F i s e t , P.P. 1985. D i r e c t o r , M a r k e t i n g and S a l e s , B e x e l I n c . , Quebec, p e r s o n a l c o m m u n i c a t i o n . F j e l k n e r - M o d i g , S. and H. R u d e r u s . 1983a. The i n f l u e n c e of e x h a u s t i o n and e l e c t r i c a l s t i m u l a t i o n on the meat q u a l i t y of young b u l l s . P a r t 1. Postmortem pH and t e m p e r a t u r e . Meat S c i . 8: 185-201. . 1983b. The i n f l u e n c e of e x h a u s t i o n and e l e c t r i c a l s t i m u l a t i o n on the meat q u a l i t y of young b u l l s . P a r t 2. P h y s i c a l and s e n s o r y p r o p e r t i e s . Meat S c i . 8: 203-220. - 140 -G a l l u z z o , S . J . and J.M. R e g e n s t e i n . 1978. R o l e of c h i c k e n b r e a s t m u s c l e p r o t e i n s i n meat e m u l s i o n f o r m a t i o n : n a t u r a l a c t o m y o s i n , c o n t r a c t e d and u n c o n t r a c t e d m y o f i b r i l s . J . Food S c i . 43: 1766-1770. Gann, G.L. and R.A. M e r k e l . 1978. U l t r a s t r u c t u r a l changes i n b o v i n e L o n g i s s i m u s m uscle d u r i n g postmortem a g e i n g . Meat S c i . 2: 129-144. Gaska, M.T. and J.M. R e g e n s t e i n . 1982. Timed e m u l s i f i c a t i o n s t u d i e s w i t h c h i c k e n b r e a s t m u s c l e : • s o l u b l e and i n s o l u b l e m y o f i b r i l l a r p r o t e i n s . J . Food S c i . 47: 1438-1443. George, A.R., J.R. B e n d a l l and R.C.D. J o n e s . 1980. The t e n d e r i s i n g e f f e c t of e l e c t r i c a l s t i m u l a t i o n of beef c a r c a s s e s . Meat S c i . 4: 51-68. G i g i e l , A . J . and S . J . James. 1984. E l e c t r i c a l s t i m u l a t i o n and u l t r a - r a p i d c h i l l i n g of p o r k . Meat S c i . 11: 1-12. G i l b e r t , K.V. and C.L. Davey. 1976. C a r c a s s e l e c t r i c a l s t i m u l a t i o n and e a r l y b o n i n g of b e e f . N. Z. J . A g r i c . Res. 19: 429-434. - 141 -G i l b e r t , K.V., C.L. Davey and K.G. Newton. 1977. E l e c t r i c a l s t i m u l a t i o n and the hot b o n i n g of b e e f . N. Z. J . A g r i c . Res. 20: 139-143. G o l l , D.E., Y. O t s u k a , P.D. N a g a i n i s , S.K. S a t h e , J.D. Shannon and M. Muguruma. 1982. M u s c l e p r o t e i n a s e s and t h e i r p o s s i b l e r o l e s i n muscle growth and meat t e x t u r e . B i o c h e m i c a l Soc. T r a n s . 10: 280-282. G o l l , D.E., Y. O t s u k a , P.A. N a g a i n i s , J.D. Shannon, S.K. Sathe and M. Muguruma. 1983. R o l e of muscle p r o t e i n a s e s i n m a i n t e n a n c e of m u s c l e i n t e g r i t y and mass. J . Food Biochem. 7: 137-177. G o l l , D.E., M.H. S t r o m e r , D.G. O l s o n , W.R. D a y t o n , A. S u z u k i and R.M. Robson. 1974. The r o l e of m y o f i b r i l l a r p r o t e i n s i n meat t e n d e r n e s s . P r o c . Meat I n d . Res. C o n f . 1974: 75-98. Gomori, G. 1955. P r e p a r a t i o n of b u f f e r s f o r use i n enzyme s t u d i e s . Methods E n z y m o l . 1: 138-146. - 142 -G r e a t h o u s e , J.R., M.C. Hunt, M.E. Dikeman, L.R. C o r a h , C.L. K a s t n e r and D.H. K r o p f . 1983. R a l g r o - i m p l a n t e d b u l l s : p e r f o r m a n c e , c a r c a s s c h a r a c t e r i s t i c s , L o n g i s s i m u s p a l a t a b i l i t y and c a r c a s s e l e c t r i c a l s t i m u l a t i o n . J . Anim. S c i . 57: 355-363. G r i f f i n , C.L., D.M. S t i f f l e r , E.E. Ray and B.W. B e r r y . 1981. E f f e c t s of e l e c t r i c a l s t i m u l a t i o n , b o n i n g time and c o o k i n g method on beef r o a s t s . J . Food S c i . 46: 987-990. H a l l , L.C., J.W. S a v e l l and G.C. S m i t h . 1980. R e t a i l a p p e a r a n c e of e l e c t r i c a l l y s t i m u l a t e d b e e f . J . Food S c i . 45: 171-173. Halm, J . and C D . L e . 1975. UBC MFAV: A n a l y s i s of V a r i a n c e / C o v a r i a n c e . V a n c o u v e r : The U n i v e r s i t y of B r i t i s h C o l u m b i a . Hamm, R. 1982. Postmortem changes i n m u s c l e w i t h r e g a r d to p r o c e s s i n g of h o t - b o n e d b e e f . Food T e c h n o l . 3 6 ( 1 1 ) : 105-115. - 143 -Harsham, A. and F.E. D e a t h e r a g e . 1951. T e n d e r i z a t i o n of Meat. U.S. P a t e n t 2,544,681. H a r v e y , A.L. and I.G. M a r s h a l l . 1983. M u s c l e : C h a p t e r 13, Freeman, B.M., ed. P h y s i o l o g y and B i o c h e m i s t r y of the  D o m e s t i c Fowl V o l 4. London: Academic P r e s s , 1983. pp. 219-233 . H a r v e y , A.L. and D. van H e l d e n . 1981. A c e t y l c h o l i n e r e c e p t o r s i n s i n g l y and m u l t i p l y i n n e r v a t e d s k e l e t a l m u s c l e f i b r e s of the c h i c k e n d u r i n g d e v e l o p m e n t . J . P h y s i o l . 317: 397-4 1 1 . H a t t o r i , A. and K. T a k a h a s h i . 1982. C a l c i u m - i n d u c e d weakening of s k e l e t a l muscle Z d i s c s . J . Biochem. 92: 381-390. Hawrysh, Z . J . and F.H. W o l f e . 1983. E f f e c t s of low v o l t a g e e l e c t r i c a l s t i m u l a t i o n on mature cow c a r c a s s e s . P a r t 1. S e l e c t e d q u a l i t y a t t r i b u t e s of b e e f . Meat S c i 8: 119-133. . 1985. C o m p a r i s o n of the e f f e c t s of l o w - v o l t a g e e l e c t r i c a l s t i m u l a t i o n on mature and young cow c a r c a s s e s . Can. J . Anim. S c i . 65: 603-612. - 144 -Hay, J.D., R.W. C u r r i e and F.H. d i s c g e l e l e c t r o p h o r e s i s of p r o t e i n s i n sodium d o d e c y l s 987-990. W o l f e . 1973a. P o l y a c r y l a m i d e f r e s h and aged c h i c k e n m u s c l e u l f a t e . J . Food S c i . 38: Hay, J.D., R.W. C u r r i e , F.H. W o l f e and E . J . S a n d e r s . 1973b. E f f e c t of postmortem a g i n g on c h i c k e n b r e a s t m uscle s a r c o p l a s m i c r e t i c u l u m . J . Food S c i . 38: 700-704. E f f e c t of postmortem a g i n g on c h i c k e n m u s c l e Food S c i . 38: 981-986. Hayakawa, S. and S. N a k a i . 1985. R e l a t i o n s h i p s of h y d r o p h o b i c i t y and net c h a r g e to the s o l u b i l i t y of m i l k and soy p r o t e i n s . J . Food S c i . 50: 486-491. . 1973c. f i b r i l s . J . H e r r i n g , H.K., R.G. C a s s e n s and E . J . B r i s k e y . 1965. F u r t h e r s t u d i e s on b o v i n e m u s c l e t e n d e r n e s s as i n f l u e n c e d by c a r c a s s p o s i t i o n , s a r c o m e r e l e n g t h and f i b e r d i a m e t e r . J . Food S c i . 30: 1049-1054. H i g u c h i , M. and F. Y o s h i d a . 1977. Lowry d e t e r m i n a t i o n of p r o t e i n i n the p r e s e n c e of s u l f h y d r y l compounds or o t h e r r e d u c i n g a g e n t s . A n a l y t i c a l Biochem. 77: 542-547. - 145 -H i k i d a , R.S. 1978. Z l i n e e x t r a c t i o n : c o m p a r a t i v e e f f e c t s i n a v i a n s k e l e t a l m u s c l e f i b e r t y p e s . J . U l t r a s t r u c t . Res. 65: 266-278. H i n t z , C.S., M. M.-Y. C h i , R.D. F e l l , J . L . I v y , K.K. K a i s e r , C.V. Lowry and O.H. Lowry. 1982. M e t a b o l i t e changes i n i n d i v i d u a l r a t muscle f i b e r s d u r i n g s t i m u l a t i o n . Am. J . P h y s i o l . 242: 218-228. H o h o r s t , D . J. 1981. E f f e c t of p r e s s u r e t r e a t m e n t on the s a r c o p l a s m i c r e t i c u l u m of r e d and w h i t e m u s c l e s . Meat S c i . 5: 297-305. H o n i k e l , K.O., A. Hamid, C. F i s c h e r and R. Hamm. 1981. I n f l u e n c e of postmortem changes i n b o v i n e muscle on the w a t e r - h o l d i n g c a p a c i t y of b e e f . Postmortem s t o r a g e of muscle a t v a r i o u s t e m p e r a t u r e s between 0° and 30°C. J . Food S c i . 46: 23-25, 31. H o n i k e l , K.O., P. R o n c a l e s and R. Hamm. 1983. The i n f l u e n c e of t e m p e r a t u r e on s h o r t e n i n g and r i g o r o n s e t i n beef m u s c l e . Meat S c i . 8: 221-241. - 146 -Horgan , D . J . and R. K u y p e r s . 1985. Postmortem g l y c o l y s i s i n r a b b i t Long i s s imus d o r s i m u s c l e s f o l l o w i n g e l e c t r i c a l s t i m u l a t i o n . Meat S c i . 12: 225-241. H o s t e t l e r , R.L., T.R. Dutson and G.C. S m i t h . 1982. E f f e c t of e l e c t r i c a l s t i m u l a t i o n and s t e a k t e m p e r a t u r e at the b e g i n n i n g of c o o k i n g on meat t e n d e r n e s s and c o o k i n g l o s s . J . Food S c i . 47: 687-688. H o u l i e r , B., C. V a l i n , G. Monin and P. S a l e . 1980. Is e l e c t r i c a l s t i m u l a t i o n e f f i c i e n c y muscle d e p e n d e n t ? P r o c . 26th E u r . Mtg. Meat Res. W o r k e r s , pp 81-83. Hunt, M.C. and H.B. H e d r i c k . 1977. P r o f i l e of f i b e r t y p e s and r e l a t e d p r o p e r t i e s of f i v e b o v i n e m u s c l e s . J . Food S c i . 42: 513-517. H u x l e y , H.E. S c i e n c e 1969. The mechanism of m u s c u l a r 164: 1356-1366. con t r a c t i o n . - 147 -Inomata, M., M. H a y a s h i , M. Nakamura, K. I m a h o r i and S. Kawashima. 1983. P u r i f i c a t i o n and c h a r a c t e r i z a t i o n of a c a l c i u m - a c t i v a t e d n e u t r a l p r o t e a s e from r a b b i t s k e l e t a l m u s c l e w h i c h r e q u i r e s c a l c i u m i o n s of /jJA o r d e r c o n c e n t r a t i o n . J . Biochem. 93: 291-294. Inomata, M., M. Nomoto, M. H a y a s h i , M. Nakamura, K. I m a h o r i and S. Kawashima. 1984. Compa r i s o n of low and h i g h c a l c i u m r e q u i r i n g forms of the c a l c i u m - a c t i v a t e d n e u t r a l p r o t e a s e (CANP) from r a b b i t s k e l e t a l m u s c l e . J . Biochem. 95: 1661-1670. I o d i c e , A.A., J . C h i n , S. P e r k e r and I.M. W e i n s t o c k . 1972. C a t h e p s i n s A, B, C, D and a u t o l y s i s d u r i n g d e v e l o p m e n t of b r e a s t m uscle of normal and d y s t r o p h i c c h i c k e n s . A r c h . B i ochem. B i o p h y s . 152: 166-174. I s h i u r a , S., H. M u r o f u s h i , K. S u z u k i and K. I m a h o r i . 1978. S t u d i e s of c a l c i u m - a c t i v a t e d n e u t r a l p r o t e a s e from c h i c k e n s k e l e t a l m u s c l e . 1. P u r i f i c a t i o n and c h a r a c t e r i z a t i o n . J . Biochem. 84: 225-230. - 148 -I s h i u r a , S., H. S u g i t a , K. S u z u k i and K. I m a h o r i . 1979. S t u d i e s of a c a l c i u m - a c t i v a t e d n e u t r a l p r o t e a s e from c h i c k e n s k e l e t a l m u s c l e . 2. S u b s t r a t e s p e c i f i c i t y . J . B i o c h e m . 86: 579-581. I s h i u r a , S., S. T s u j i , H. M u r o f u s h i and K. S u z u k i . 1982. P u r i f i c a t i o n of an endogenous 6 8 , 0 0 0 - d a l t o n i n h i b i t o r of c a l c i u m - a c t i v a t e d n e u t r a l p r o t e a s e from c h i c k e n s k e l e t a l m u s c l e . B i o c h i m . B i o p h y s . A c t a 701: 216-223. J e a c o c k e , R.E. 1977. The t e m p e r a t u r e dependence of a n a e r o b i c g l y c o l y s i s i n beef m u s c l e h e l d i n a l i n e a r t e m p e r a t u r e g r a d i e n t . J . S c i . Food A g r i c . 28: 551-556. . 1984. The k i n e t i c s of r i g o r o n s e t i n beef muscle f i b r e s . Meat S c i . 11: 237-251. J e r e m i a h , L . E . and A.H. M a r t i n . 1982a. The e f f e c t of e l e c t r i c a l s t i m u l a t i o n on the p a l a t a b i l i t y and consumer a c c e p t a n c e of b o n e l e s s r i b s t e a k s . J . Food Q u a l . 4 ( 3 ) : 165-173. - 149 -. 1982b. The e f f e c t s of e l e c t r i c a l s t i m u l a t i o n upon the r e t a i l a c c e p t a b i l i t y and c a s e - l i f e of b o n e l e s s r i b s t e a k s . J . Food Q u a l . 4 ( 3 ) : 175-184. J e r e m i a h , L . E . , A.H. M a r t i n and A.C. M u r r a y . 1985. The e f f e c t s of v a r i o u s postmortem t r e a t m e n t s on c e r t a i n p h y s i c a l and s e n s o r y p r o p e r t i e s of t h r e e d i f f e r e n t b o v i n e m u s c l e s . Meat S c i . 12: 155-176. J o h n s o n , D.D., J.W. S a v e l l , L. W e a t h e r s p o o a and G.C. S m i t h . 1982. Q u a l i t y , p a l a t a b i l i t y and w e i g h t l o s s of pork as a f f e c t e d by e l e c t r i c a l s t i m u l a t i o n . Meat S c i 7: 43-50. J o s e p h , A.L., T.R. D u t s o n and Z.L. C a r p e n t e r . 1980. M o r p h o l o g y and c a l c i u m u p t a k e of b o v i n e s a r c o p l a s m i c r e t i c u l u m as a f f e c t e d by e l e c t r i c a l s t i m u l a t i o n and time p ostmortem. P r o c . 2 6 t h E u r . Mtg. Meat Res. Workers, pp 77-80. Judge, M.D., E.S. Reeves and E.D. A b e r l e . 1980. E f f e c t of e l e c t r i c a l s t i m u l a t i o n on t h e r m a l s h r i n k a g e t e m p e r a t u r e of b o v i n e m u s c l e c o l l a g e n . P r o c . 2 6 t h E u r . Mtg. Meat Res. W o r k e r s , pp 74-76. - 150 -Jungk, R.A. and W.W. M a r i o n . 1970. Postmortem i s o m e t r i c t e n s i o n changes and s h o r t e n i n g i n t u r k e y m u s c l e s t r i p s h e l d at v a r i o u s t e m p e r a t u r e s . J . Food S c i . 35: 143-145. Jungk, R.A., H.E. S n y d e r , D.E. G o l l and D.G. M c C o n n e l l . 1974. I s o m e t r i c t e n s i o n changes and s h o r t e n i n g i n m u s c l e s t r i p s d u r i n g postmortem a g i n g . J . Food S c i . 39: 158-161. Kang, C.G., M. Muguruma, Y. I k e u c h i , T. I t o and T. Fukazawa. 1980. E f f e c t of c a l c i u m a c t i v a t e d f a c t o r on p r o p e r t i e s of a c t i n and myosin of r a b b i t s k e l e t a l m u s c l e . A g r i c . B i o l . Chem. 44: 2077-2081 . Kang, C.G., M. Muguruma, T. I t o and T. Fukazawa. 1978. P r e p a r a t i v e s t u d y on the i s o l a t i o n of s i n g l e s a r c o m e r e s from r a b b i t s k e l e t a l m u s c l e . J . Biochem. 83: 957-960. Kang, C.K., T.H. D o n n e l l y , R.F. J o d l o w s k i and W.D. Warner. 1981. P a r t i a l p u r i f i c a t i o n and c h a r a c t e r i z a t i o n of a n e u t r a l p r o t e a s e from b o v i n e s k e l e t a l m u s c l e . J . Food S c i . 46: 702-704, 707. - 151 -Kang, J.O., T. I t o and T. Fukazawa. 1983. E f f e c t of e l e c t r i c a l s t i m u l a t i o n on postmortem p r o p e r t y change of m y o f i b r i l l a r p r o t e i n s . J . Food S c i . 48: 19-22, 32. K a t o , A. and S. N a k a i . 1980. H y d r o p h o b i c i t y d e t e r m i n e d by a f l u o r e s c e n c e probe method and i t s c o r r e l a t i o n w i t h s u r f a c e p r o p e r t i e s of p r o t e i n s . B i o c h i m . B i o p h y s . A c t a 624: 13-20. K a t o , A., N. T s u t s u i , N. M atsudomi, K. K o b a y a s h i and S. N a k a i . 1981. E f f e c t s of p a r t i a l d e n a t u r a t i o n on s u r f a c e p r o p e r t i e s of o v a l b u m i n and l y s o z y m e . A g r i c . B i o l . Chem. 45: 2755-2760. Kawashima, S., M. Nomoto, M. H a y a s h i , M. Inomata, M. Nakamura and K. I m a h o r i . 1984. C o m p a r i s o n of c a l c i u m - a c t i v a t e d n e u t r a l p r o t e a s e s from s k e l e t a l muscle of r a b b i t and c h i c k e n . J . Biochem. 95: 95-101. K e n n i c k , W.H. and E.A. E l g a s i m . 1981. T e n d e r i z a t i o n of meat by p r e - r i g o r p r e s s u r i z ' a t i o n . Rec. Mt. C o n f . P r o c . 34: 68-72. - 152 -Khan, A.W. 1974. R e l a t i o n between i s o m e t r i c t e n s i o n , p ostmortem pH d e c l i n e and t e n d e r n e s s of p o u l t r y b r e a s t meat. J . Food S c i . 39: 393-395. . 1977. Some f a c t o r s c a u s i n g v a r i a t i o n i n the t e x t u r e of s i m i l a r m u s c l e s from c o m p a r a b l e a n i m a l s . Meat S c i . 1: 169-1 76 . Khan, A.W. and A.R. F r e y . 1971. A s i m p l e method f o r f o l l o w i n g r i g o r m o r t i s d e v e l o p m e n t i n beef and p o u l t r y meat. Can. I n s t . Food S c i . T e c h n o l . J . 4 ( 4 ) : 139-142. Khan, A.W. and Y.K. Kim. 1975. E f f e c t of c a l c i u m on i s o m e t r i c t e n s i o n , g l y c o l y s i s and t e n d e r n e s s of p o u l t r y b r e a s t meat. J . Food S c i . 40: 1119-1121. Khan, A.W. and R. Nakamura. 1970. E f f e c t s of p r e - and postmortem g l y c o l y s i s on p o u l t r y t e n d e r n e s s . J . Food S c i . 35: 266-267. Khan, A.W. and L. van den B e r g . 1964. Changes i n c h i c k e n m u s c l e p r o t e i n s d u r i n g a s e p t i c s t o r a g e at a b o v e - f r e e z i n g t e m p e r a t u r e s . J . Food S c i . 29: 49-52. - 153 -K i n s e l l a , J . E . 1976. F u n c t i o n a l p r o p e r t i e s of p r o t e i n s i n f o o d s : a s u r v e y . C r i t . Rev. Food S c i . N u t r . 7: 219. K l a s t r u p , S., H.C. C r o s s , B.D. S c h a n b a c h e r and R.W. M a n digo. 1984. E f f e c t s of c a s t r a t i o n and e l e c t r i c a l s t i m u l a t i o n on beef c a r c a s s q u a l i t y and p a l a t a b i l i t y c h a r a c t e r i s t i c s . J . Anim. S c i . 58: 75-84. K l o s e , A.A., M.F. P o o l , M.B. W i e l e , H.L. H a r r i s o n and H. L i n e w e a v e r . 1959. P o u l t r y t e n d e r n e s s 1. I n f l u e n c e of p r o c e s s i n g on t e n d e r n e s s of t u r k e y s . Food T e c h n o l . 13: 20-24. K o o h m a r a i e , M., W.H. K e n n i c k , A.F. A n g l e m i e r , E.A. E l g a s i m and T.K. J o n e s . 1984a. E f f e c t of postmortem s t o r a g e on c o l d - s h o r t e n e d b o v i n e m u s c l e : a n a l y s i s of S D S - p o l y a c r y l a m i d e g e l e l e c t r o p h o r e s i s . J . Food S c i . 49: 290-291 . K o o h m a r a i e , M., W.H. K e n n i c k , E.A. E l g a s i m and A.F. A n g l e m i e r . 1984b. E f f e c t s of postmortem s t o r a g e on m u s c l e p r o t e i n d e g r a d a t i o n : a n a l y s i s by S D S - p o l y a c r y l a m i d e g e l e l e c t r o p h o r e s i s . J . Food S c i . 49: 292-293. - 154 -. 1984c. E f f e c t of p r e r i g o r p r e s s u r i z a t i o n on the a c t i v i t y of c a l c i u m - a c t i v a t e d f a c t o r . J . Food S c i . 49: 680-684. K o t u l a , A.W. 1980. B a c t e r i a a s s o c i a t e d w i t h e l e c t r i c a l l y s t i m u l a t e d and hot boned meat. P r o c . 2 6 t h E u r . Mtg. Meat Res. W o r k e r s , pp 66-69. K u e n z e l , W.J., A.L. I n g l i n g , D.M. Denbow, J.H. W a l t h e r and M.M. S c h a e f f e r . 1978. V a r i a b l e f r e q u e n c y s t u n n i n g and a c o m p a r i s o n of t w o - b l e e d c u t time i n t e r v a l s f o r m a x i m i z i n g b l o o d r e l e a s e i n p r o c e s s e d p o u l t r y . P o u l . S c i . 57: 449-454 . Kwan, K.K.H., S. N a k a i and B . J . S k u r a . 1983. C o m p a r i s o n of f o u r methods f o r d e t e r m i n i n g p r o t e a s e a c t i v i t y i n m i l k . J . Food S c i . 48: 1418-1421. L a m p r e c h t , W. and I . T r a u t s c h o l d . 1963. A d e n o s i n e 5' t r i p h o s p h a t e . D e t e r m i n a t i o n w i t h h e x o k i n a s e and g l u c o s e - 6 - p h o s p h a t e d e h y d r o g e n a s e . Bergmeyer, H.V., e d . Methods of E n z y m a t i c A n a l y s i s . New Y o r k : Academic P r e s s , 1965. pp 543-551. - 155 -L a u r e n t , G.J., M.P. Sparrow and D.J. M i l l w a r d . 1978. T u r n o v e r of m u s c l e p r o t e i n i n the f o w l : changes i n r a t e s of p r o t e i n s y n t h e s i s and breakdown d u r i n g h y p e r t r o p h y of the a n t e r i o r and p o s t e r i o r L a t i s s i m u s dor s i m u s c l e s . B iochem. J . 176: 407-417. L a w r i e , R.A. Meat S c i e n c e . 3 r d e d i t i o n . O x f o r d , E n g l a n d : Pergamon P r e s s , 1979. Layne, E. 1957. S p e c t r o p h o t o m e t r i c and t u r b i d i m e t r i c methods f o r m e a s u r i n g p r o t e i n s . Methods E n z y m o l . 3: 447-454. L e b h e r z , G.H., M.J. Sardo , J.K. P e t e l l and J . E . S h a c k e l f o r d . 1978. S t u d i e s on the r e g u l a t i o n of p r o t e i n c o n c e n t r a t i o n s i n r e d and w h i t e s k e l e t a l m u s c l e s . S e g a l , H. and D. D o y l e , e d s . P r o t e i n T u r n o v e r and Lysosome  Fun c t i o n . New Y o r k : Academic P r e s s , 1978. pp 655-685. L e e , Y.B., G.L. H a r g u s , E.C. Hagberg and R.H. F o r s y t h e . 1976. E f f e c t of antemortem e n v i r o n m e n t a l t e m p e r a t u r e s on postmortem g l y c o l y s i s and t e n d e r n e s s i n e x c i s e d b r o i l e r b r e a s t m u s c l e . J . Food S c i . 41: 1466-1469. - 156 -Le e , Y.B., G.L. H a r g u s , J . E . Webb, D.A. R i c k a n s r u d and E.C. Ha g b e r g . 1979. E f f e c t of e l e c t r i c a l s t u n n i n g on postmortem b i o c h e m i c a l changes and t e n d e r n e s s i n b r o i l e r b r e a s t m u s c l e . J . Food S c i . 44: 1121-1122, 1128. Le w i s J r . , P.K., and S.A. B a b i k e r . 1983. E f f e c t of e l e c t r i c a l s t i m u l a t i o n and c o o k i n g t e m p e r a t u r e on the w i t h i n - s a m p l e v a r i a t i o n of c o o k i n g l o s s e s and s h e a r f o r c e of lamb. Meat S c i . 8: 317-321. L e w i s , S.E.M., F . J . K e l l y and D.F. G o l d s p i n k . 1984. P r e - and p o s t - n a t a l growth and p r o t e i n t u r n o v e r i n smooth m u s c l e , h e a r t and s l o w - and f a s t - t w i t c h s k e l e t a l m u s c l e s of the r a t . B i ochem. J . 217: 517-526. L i - C h a n , E . , S. N a k a i and D.F. Wood. 1984. H y d r o p h o b i c i t y and s o l u b i l i t y of meat p r o t e i n s and t h e i r r e l a t i o n s h i p to e m u l s i f y i n g p r o p e r t i e s . J . Food S c i . 49: 345-350. L i - C h a n , E., S. N a k a i and D.F. Wood. 1985. R e l a t i o n s h i p between f u n c t i o n a l f a t b i n d i n g , e m u l s i f y i n g and p h y s i o c h e m i c a l p r o p e r t i e s of m u s c l e p r o t e i n s : e f f e c t s of h e a t i n g , f r e e z i n g , pH and s p e c i e s . J . Food S c i . 50: 1034-1040. - 157 -L o c k e r , R.H. 1982. A new t h e o r y of t e n d e r n e s s i n meat, based on gap f i l a m e n t s . R e c i p . Meat Conf. P r o c . 35: 92-100. L o c k e r , R.H. and C . J . H a g y a r d . 1963. A c o l d s h o r t e n i n g e f f e c t i n b eef m u s c l e s . J . S c i . Food A g r i c . 14: 787. L o c k e r , R.H. and D.J.C. W i l d . 1984a. ' A g e i n g ' of c o l d s h o r t e n e d meat depends on the c r i t e r i o n . Meat S c i . 10: 235-238. . 1984b. T e n d e r i z a t i o n of meat by p r e s s u r e - h e a t i n v o l v e s w e akening of the gap f i l a m e n t s i n the m y o f i b r i l . Meat S c i . 10: 207-233. . 1984c. The f a t e of the l a r g e p r o t e i n s i n the m y o f i b r i l d u r i n g t e n d e r i z i n g t r e a t m e n t s . Meat S c i . 11: 89-108. L o p e z , C.A. and E.W. H e r b e r t . 1975. The P r i v a t e F r a n k l i n : t h e  Man and H i s F a m i l y . 1st e d . New Y o r k : W.W. N o r t o n & Co . p. 44 . - 158 -Lowe, B. 1948. F a c t o r s a f f e c t i n g the p a l a t a b i l i t y of p o u l t r y w i t h emphasis on h i s t o l o g i c a l postmortem c h a n g e s . Adv. Food Res. 1: 203-256. L u s b y , M.L., J . F . R i d p a t h , F.C. P a r r i s h J r . and R.M. Robson. 1983. E f f e c t of postmortem s t o r a g e on d e g r a d a t i o n of the m y o f i b r i l l a r p r o t e i n t i t i n i n b o v i n e L o n g i s s i m u s m u s c l e . J . Food S c i . 48: 1787-1790, 1795. L y o n , M., C.L. K a s t n e r , M.E. Dikeman, M.C. Hunt, D.H. K r o p f and J.R. Schwenke. 1983. E f f e c t s of e l e c t r i c a l s t i m u l a t i o n , a g i n g , and b l a d e t e n d e r i z a t i o n on h o t - d e b o n e d b e e f P s o a s maj or and T r i c e p s b r a c h i i m u s c l e s . J . Food S c i . 48: 131-135. Ma, R . T . - I . and P.B. A d d i s . 1973. The a s s o c i a t i o n of s t r u g g l e d u r i n g e x s a n g u i n a t i o n to g l y c o l y s i s , p r o t e i n s o l u b i l i t y and s h e a r i n t u r k e y P e c t o r a l i s m u s c l e . J . Food S c i . 38: 995-997 . Ma, R . T . - I . , P.B. A d d i s and E. A l l e n . 1971. Response t o e l e c t r i c a l s t i m u l a t i o n and postmortem changes i n t u r k e y P e c t o r a l i s maj or m u s c l e . J . Food S c i . 36: 125-129 . - 159 -M a c B r i d e , M.A. and F.C. P a r r i s h component of t e n d e r b o v i n e S c i . 42: 1627-1629. Marsh, B.B. 1977. The b a s i s of J . Food S c i . 42: 295-297. J r . 1977. The 30,000 d a l t o n L o n g i s s i m u s m u s c l e . J . Food t e n d e r n e s s i n muscle f o o d s . b e h a v i o u r of p r e r i g o r meat. 75-80. . 1981. P r o p e r t i e s and Rec. Meat C o n f . P r o c . 34: . 1985 . E l e c t r i c a l s t i m u l a t i o n r e s e a r c h : p r e s e n t c o n c e p t s and f u t u r e d i r e c t i o n s . P e a r s o n , A.M. and T.R. D u t s o n , e d s . A d v a n ces i n Meat R e s e a r c h V o l 1 E l e c t r i c a l  S t i m u l a t i o n . W e s t p o r t , C o n n e c t i c u t : A . V . I . P u b l i s h i n g , 1985. pp 277-305. Marsh, B.B. and W.A. C a r s e . 1974. Meat t e n d e r n e s s and the s l i d i n g f i l a m e n t h y p o t h e s i s . J . Food T e c h n o l . 9: 129-139 . Marsh, B.B., N.G. L e e t and M.R. D i c k s o n . 1974. The u l t r a s t r u c t u r e and t e n d e r n e s s of h i g h l y c o l d - s h o r t e n e d m u s c l e . J . Food T e c h n o l . 9: 141-147. - 160 -Marsh, B.B., J.V. L o c h n e r , G. T a k a h a s h i and D.D. K r a g n e s s . 1981. E f f e c t s of e a r l y postmortem pH and t e m p e r a t u r e on beef t e n d e r n e s s . Meat S c i . 5 ( 6 ) : 479-483. Mast, M.G. and J.H. M a c n e i l . 1983. E f f e c t of k o s h e r v e r s u s c o n v e n t i o n a l p r o c e s s i n g on y i e l d , q u a l i t y and a c c e p t a b i l i t y of b r o i l e r c h i c k e n s . J . Food S c i . 48: 1013-1015, 1024. May, K.N., R.L. S a f f l e , D.L. Downing and J . J . Powers. 1962. I n t e r r e l a t i o n s of post-mortem changes w i t h t e n d e r n e s s of c h i c k e n and p o r k . Food T e c h n o l . 16: 72-78. McCollum, P.D. and R.L. H e n r i c k s o n . 1977. The e f f e c t of e l e c t r i c a l s t i m u l a t i o n on t h e r a t e of postmortem g l y c o l y s i s i n some b o v i n e m u s c l e s . J . Food Q u a l . 1: 15-22 . M c K e i t h , F.K., G.C. S m i t h , T.R. D u t s o n , J.W. S a v e l l , R.L. H o s t e t t e r and Z.L. C a r p e n t e r . 1980a. E l e c t r i c a l s t i m u l a t i o n of i n t a c t or s p l i t s t e e r or cow c a r c a s s e s . J . Food P r o t . 43: 795-798. - 161 -M c K e i t h , F.K., G.C. S m i t h , J.W. S a v e l l , T.R. D u t s o n , Z.L. C a r p e n t e r and D.R. Hammons. 1980b. E l e c t r i c a l s t i m u l a t i o n of mature cow c a r c a s s e s . J . Anim. S c i . 5 0 ( 4 ) : 694-698. M c K e i t h , F.K., J.W. S a v e l l and G.C. S m i t h . 1981a. T e n d e r n e s s improvement of the major m u s c l e s of the beef c a r c a s s by e l e c t r i c a l s t i m u l a t i o n . J . Food S c i . 46: 1774-1776. M c K e i t h , F.K., G.C. Sm i t h , J.W. S a v e l l , T.R. D u t s o n , Z.L. C a r p e n t e r and D.R. Hammonds. 1981b. E f f e c t s of c e r t a i n e l e c t r i c a l s t i m u l a t i o n p a r a m e t e r s on q u a l i t y and p a l a t a b i l i t y of b e e f . J . Food S c i . 46: 13-18. M c K e i t h , F.K., J.W. S a v e l l , C E . Murphey and G.C. S m i t h . 1982. Enhancement of l e a n c h a r a c t e r i s t i c s of v e a l c a r c a s s e s by e l e c t r i c a l s t i m u l a t i o n . Meat S c i . 6 ( 1 ) : 65-69. M e l l g r e n , R.L. 1980. C a n i n e c a r d i a c c a l c i u m - d e p e n d e n t p r o t e a s e s : r e s o l u t i o n of two forms w i t h d i f f e r e n t r e q u i r e m e n t s f o r c a l c i u m . F.E.B.S. L e t t e r s 109: 129-133. - 162 -M e l l g r e n , R.L., J.H. A y l w a r d , S.D. K i l l i l e a and E.Y.C. L e e . 1979. The a c t i v a t i o n and d i s s o c i a t i o n of a n a t i v e h i g h m o l e c u l a r w e i g h t form of r a b b i t s k e l e t a l m u scle p h o s p h o r y l a s e p h o s p h a t a s e by endogenous c a l c i u m - d e p e n d e n t p r o t e a s e s . J . B i o l . Chem. 254: 648-652. M e l l g r e n , R.L., A. R e p e t t i , T.C. Muck and J . E a s l y . 1982. R a b b i t s k e l e t a l m u s c l e c a l c i u m - d e p e n d e n t p r o t e a s e r e q u i r i n g m i l l i m o l a r c a l c i u m . P u r i f i c a t i o n , s u b u n i t s t r u c t u r e and c a l c i u m dependent a u t o p r o t e o l y s i s . J . B i o l . Chem. 257: 7203-7209. M i c k e l s o n , J.R. 1983. C a l c i u m t r a n s p o r t by b o v i n e s k e l e t a l - m u s c l e m i t o c h o n d r i a and i t s r e l a t i o n s h i p to postmortem m u s c l e . Meat S c i . 9: 205-229. M o e l l e r , P.W., P.A. F i e l d s , T.R. D u t s o n , W.A. Landmann and Z.L. C a r p e n t e r . 1976. E f f e c t of h i g h - t e m p e r a t u r e c o n d i t i o n i n g on s u b c e l l u l a r d i s t r i b u t i o n and l e v e l s of l y s o s o m a l enzymes. J . Food S c i . 41: 216-217. . 1977. H i g h t e m p e r a t u r e e f f e c t s on l y s o s o m a l enzyme d i s t r i b u t i o n and f r a g m e n t a t i o n of b o v i n e m u s c l e . J . Food S c i . 42: 510-512. - 163 -M o l l e r , A . J . , P.E. B o u t o n , P.V. H a r r i s and P.N. J o n e s . 1983. E f f e c t of e l e c t r i c a l s t i m u l a t i o n on the t e n d e r i z a t i o n of mutton by a g i n g . J . Food S c i . 48: 874-877, 896. M o r t o n , H.C. and R.P. Newbold. 1982. Pathways of h i g h and low v o l t a g e e l e c t r i c a l s t i m u l a t i o n i n sheep c a r c a s s e s . Meat S c i . 7: 285-297. Murray, J.M. and A. Weber. 1974. The c o o p e r a t i v e a c t i o n of m u s c l e p r o t e i n s . S c i . Amer. 2 3 0 ( 2 ) : 58-71. . 1980. C o o p e r a t i v i t y of the c a l c i u m s w i t c h of r e g u l a t e d r a b b i t a c t o m y o s i n s y s t e m . M o l . C e l l . B i ochem. 35: 11-15. N a e w b a n j i , J.O., D.L. H a r r i s o n and M.B. S t o n e . 1983. R o a s t i n g v s . c o o k i n g i n an open s y s t e m : t e n d e r n e s s of b u l l A d d u c t o r m u s c l e , c o n v e n t i o n a l l y c h i l l e d or e l e c t r i c a l l y s t i m u l a t e d - hot boned. J . Food S c i . 48: 337-342. N a g a i n i s , P. and F.H. W o l f e . 1982. C a l c i u m a c t i v a t e d n e u t r a l p r o t e a s e h y d r o l y z e s Z d i s c a c t i n . J . Food S c i . 47: 1358-1364. - 164 -N a g a i n i s , P.A., F.H. W o l f e and D.E. G o l l . 1983. H y d r o l y s i s of Z d i s c a c t i n by C a + 2 - a c t i v a t e d p r o t e a s e . J . Food Biochem. 7: 247-254. N a k a i , S. 1983. S t r u e t u r e - f u n c t i o n r e l a t i o n s h i p s of f o o d p r o t e i n s w i t h an emphasis on the i m p o r t a n c e of p r o t e i n h y d r o p h o b i c i t y . J . A g r i c . Food Chem. 31: 676-683. N a k a i , S., L. Ho, M.A. Tung and J.R. Quinn . 1980. S o l u b i l i z a t i o n of r a p e s e e d , soy and s u n f l o w e r p r o t e i n i s o l a t e s by s u r f a c t a n t and p r o t e i n a s e t r e a t m e n t s . Can. I n s t . Food S c i . T e c h n o l . J . 13: 14-22. Nakamura, R. 1973. F a c t o r s a s s o c i a t e d w i t h postmortem i n c r e a s e of e x t r a c t a b l e c a l c i u m i n c h i c k e n b r e a s t m u s c l e . J . Food S c i . 38: 1113-1114. Newbold, R.P. and P.V. H a r r i s . 1972. The e f f e c t of p r e r i g o r changes on meat t e n d e r n e s s : a r e v i e w . J . Food S c i . 37: 337-340. Newbold, R.P. and L.M. S m a l l . 1985. E l e c t r i c a l s t i m u l a t i o n of post-mortem g l y c o l y s i s i n the Semi t e n d i n o s u s m uscle of s h e e p . Meat S c i . 12: 1-16. - 165 -N i c h o l l s , J . E . and H.R. C r o s s . 1980. E f f e c t s of e l e c t r i c a l s t i m u l a t i o n and e a r l y postmortem m u s c l e e x c i s i o n on pH d e c l i n e , s a r c o m e r e l e n g t h and c o l o u r i n beef m u s c l e s . J . Food P r o t . 43: 514-519. Nuss, J . I . and F.H. W o l f e . 1981. E f f e c t of postmortem s t o r a g e t e m p e r a t u r e s on i s o m e t r i c t e n s i o n , pH, ATP, g l y c o g e n and g l u c o s e - 6 - p h o s p h a t e f o r s e l e c t e d b o v i n e m u s c l e s . Meat S c i . 5: 201-213. Ockerman, H.W. and R. D o w i e r c i a l . 1980. I n f l u e n c e of t u m b l i n g and e l e c t r i c a l s t i m u l a t i o n on d i s t r i b u t i o n and c o n t e n t of sodium n i t r i t e and sodium c h l o r i d e i n b a c o n . J . Food S c i . 45: 1301-1304. Ockerman, H.W. and K. K w i a t e k . 1985a. D i s t r i b u t i o n and r a t e of m i g r a t i o n of c u r i n g i n g r e d i e n t s ( n i t r i t e , s a l t , g l u c o s e ) i n pork t i s s u e as a f f e c t e d by e l e c t r i c a l s t i m u l a t i o n . J . Food S c i . 50: 492-494. . 1985b. D i s t r i b u t i o n and r a t e of m i g r a t i o n of i n g r e d i e n t s i n hot boned pork t i s s u e as i n f l u e n c e d e l e c t r i c a l s t i m u l a t i o n . J . Food S c i . 50: 713-715. c u r i n g by - 166 -. 1985c. E f f e c t of e l e c t r i c a l s t i m u l a t i o n and b o n i n g t e m p e r a t u r e on d i s t r i b u t i o n and m i g r a t i o n of c u r i n g i n g r e d i e n t s ( n i t r i t e , s a l t , g l u c o s e ) i n pork t i s s u e . J . Food S c i . 50: 884-886, 921. Ockerman, H.W. and J . S z c z a w i n s k i . 1983. E f f e c t of e l e c t r i c a l s t i m u l a t i o n on the m i c r o f l o r a of meat. J . Food S c i . 48: 1004-1005, 1007. . 1984. E f f e c t of e l e c t r i c a l s t i m u l a t i o n of i n o c u l a t e d p o rk t i s s u e on the t h e r m o r e s i s t a n c e of L a c t o b a c i l l u s p i ant arum, P s eud omo nas p u t r e f a c i e n s and S t r e p t o c o c c u s f a e c a l i s . J . Food S c i . 49 : 288-289 . O k i t a n i , A., Y. O t s u k a , M. S u g i t a n i and M. F u j i m a k i . 1974. Some p r o p e r t i e s of n e u t r a l p r o t e o l y t i c s y s t e m i n r a b b i t s k e l e t a l m u s c l e . A g r i c . B i o l . Chem. 3 8 ( 3 ) : 573-579. Okubanjo, A.O. and J.R. S t o u f f e r . 1975. Postmortem g l y c o l y s i s and i s o m e t r i c thaw t e n s i o n d e v e l o p m e n t and d e c l i n e i n b o v i n e s k e l e t a l m u scle u n d e r g o i n g thaw r i g o r . J . Food S c i . 4 0 ( 5 ) : 955-959. - 167 -O l s o n , D.G., F.C. P a r r i s h J r . , W.R. Dayton and D.E. G o l l . 1977. E f f e c t of postmortem s t o r a g e and c a l c i u m a c t i v a t e d f a c t o r on the m y o f i b r i l l a r p r o t e i n s of b o v i n e s k e l e t a l m u s c l e . J . Food S c i . 42: 117-124. O r c u t t , M.W. and T.R. D u t s o n . 1985. Postmortem d e g r a d a t i o n of gap f i l a m e n t s at d i f f e r e n t postmortem pHs and t e m p e r a t u r e s . Meat S c i . 14: 221-241. O r c u t t , M.W., T.R. D u t s o n , D.P. C o r n f o r t h and G.C. S m i t h . 1984. F a c t o r s a f f e c t i n g the f o r m a t i o n of a d a r k , c o a r s e band ( " h e a t - r i n g " ) i n b o v i n e L o n g i s s i m u s m u s c l e . J . Anim. S c i . 58: 1366-1375. O'Shea, J.M., R.M. Robson, T.W. H u i a t t , M.K. H a r t z e r and M.H. S t r o m e r . 1979. P u r i f i e d desmin from a d u l t mammalian s k e l e t a l m u s c l e : a p e p t i d e mapping c o m p a r i s o n w i t h desmins from a d u l t mammalian and a v i a n smooth m u s c l e . Biochem. B i o p h y s . Res. Comm. 89: 972-980. O t s u k a , Y., and D.E. G o l l . 1980. P u r i f i c a t i o n of the c a l c i u m - a c t i v a t e d - p r o t e a s e - i n h i b i t o r f r o m b o v i n e c a r d i a c m u s c l e . F e d . P r o c . 39: 2044. - 168 -O u a l i , A. and C. V a l i n . 1981. E f f e c t of muscle l y s o s o m a l enzymes and c a l c i u m a c t i v a t e d n e u t r a l p r o t e i n a s e on m y o f i b r i l l a r ATPase a c t i v i t y : r e l a t i o n s h i p w i t h a g e i n g c h a n g e s . Meat S c i . 5: 233-245. P a l l a d i n o , D.K. and H.R. B a l l J r . 1979. E f f e c t s of s e l e c t e d i n o r g a n i c s a l t s on c e r t a i n t e n d e r n e s s c h a r a c t e r i s t i c s of s p e n t hen m u s c l e . J . Food S c i . 44: 322-326. P a r r i s h J r . , F.C. and M.L. L u s b y . 1983. An o v e r v i e w of a symposium on the f u n d a m e n t a l p r o p e r t i e s of muscle p r o t e i n s i m p o r t a n t i n meat s c i e n c e . J . Food Biochem. 7 ( 3 ) : 125-135. P a r r i s h J r . , F . C , C . J . S e l v i g , R.D. C u l l e r and M.G. Z e e c e . 1981. CAF a c t i v i t y , c a l c i u m c o n c e n t r a t i o n and the 30,000 d a l t o n component of t o u g h *and t e n d e r b o v i n e L o n g i s s i m u s m u s c l e . J . Food S c i . 46: 308 - 309, 311. P e a r c e , K.N. and J . E . K i n s e l l a . 1978. Emuls of p r o t e i n s : e v a l u a t i o n of a t u r b i d i m e t J . A g r i c . Food Chem. 26: 716-723. i f y i n g p r o p e r t i e s r i c t e c h n i q u e . - 169 -P e a r s o n , A.M. and T.R. D u t s o n . Advances i n Meat R e s e a r c h . V o l . 1 E l e c t r i c a l S t i m u l a t i o n . W e s t p o r t , C o n n e c t i c u t : A . V . I . P u b l i s h i n g , 1985. P e a r s o n , A.M., A.M. Wolzak and J . I . Gray. 1983. P o s s i b l e r o l e of m u s c l e p r o t e i n s i n f l a v o u r and t e n d e r n e s s of meat. J . Food B i o c h e m . 7: 199-210. P e a r s o n , D. 1968. A p p l i c a t i o n of c h e m i c a l methods f o r the a s s e s s m e n t of b e e f q u a l i t y . I I . Methods r e l a t e d to p r o t e i n breakdown. J . S c i . Food A g r i c . 19: 366-369. Penny, I . F . and E. D r a n s f i e l d . 1979. R e l a t i o n s h i p between t o u g h n e s s and t r o p o n i n T i n c o n d i t i o n e d b e e f . Meat S c i . 3: 135-149. Penny, I . F . and R. F e r g u s o n - P r y c e . 1979. Measurement of a u t o l y s i s i n b e e f m u s c l e homogenates. Meat S c i . 3: 121-134 . Pet'aja, E., E. Kukkonen and E. P u o l a n n e . 1985. E f f e c t of postmortem t e m p e r a t u r e on beef t e n d e r n e s s . Meat S c i . 12: 145-154. - 170 -P f l e i d e r e r , G. 1963. G l y c o g e n . D e t e r m i n a t i o n as D g l u c o s e w i t h h e x o k i n a s e , p y r u v a t e k i n a s e and l a c t i c d e h y d r o g e n a s e . Bergmeyer, H.U., e d . Methods of E n z y m a t i c  A n a l y s i s . New Y o r k : Academic P r e s s , 1965. pp 59-62. P o o l , M.F., D. de F r emery, A.A. C a m p b e l l and A.A. K l o s e . 1959. P o u l t r y t e n d e r n e s s . I I I n f l u e n c e of p r o c e s s i n g on t e n d e r n e s s of c h i c k e n s . Food T e c h n o l . 13: 25-29. P o o l , M.F. and A.A. K l o s e . 1969. The r e l a t i o n of f o r c e to sample d i m e n s i o n s i n o b j e c t i v e measurement of t e n d e r n e s s of p o u l t r y meat. J . Food S c i . 34: 524-526. P o w e l l , V.H., R.F. D i c k i n s o n , N.G. M c P h a i l , P.E. Bouton and P.V. H a r r i s . 1984. E v a l u a t i o n of e x t r a low v o l t a g e e l e c t r i c a l s t i m u l a t i o n systems f o r b o v i n e c a r c a s s e s . J . Food S c i . 49: 363-365, 369. R a c c a c h , M. and R.L. H e n r i c k s o n . 1980. The b a c t e r i o l o g i c a l q u a l i t y of meat from e l e c t r i c a l l y s t i m u l a t e d c a r c a s s e s . P r o c . 2 6 t h E u r . Mtg. Meat Res. Workers, pp 70-73. - 171 -R a n d a l l , C . J . 1977. Use of m e c h a n i c a l l y deboned and m a n u a l l y deboned p o u l t r y meat i n meat e m u l s i o n s : a r e v i e w . Can. I n s t . Food S c i . T e c h n o l . J . 1 0 ( 3 ) : 147. R a s h i d , N.H., R.L. H e n r i c k s o n , A. A s h g a r and P.L. C l a y p o o l . 1983a. E v a l u a t i o n of c e r t a i n e l e c t r i c a l p a r a m e t e r s f o r s t i m u l a t i n g lamb c a r c a s s e s . J . Food S c i . 48: 10-14. . 1983b. B i o c h e m i c a l and q u a l i t y c h a r a c t e r i s t i c s of o v i n e m u s c l e s as a f f e c t e d by e l e c t r i c a l s t i m u l a t i o n , hot b o n i n g and mode of c h i l l i n g . J . Food S c i . 48: 136-140. Ray, E.E., D.M. S t i f f l e r and B.W. B e r r y . 1982. E f f e c t s of e l e c t r i c a l s t i m u l a t i o n and h o t - b o n i n g on p h y s i c a l c h a n g e s , c o o k i n g time and l o s s e s , and t e n d e r n e s s of beef r o a s t s . J . Food S c i . 47: 210-213. Reagan, J.O. and K.O. H o n i k e l . 1985. Weight l o s s and s e n s o r y a t t r i b u t e s of t e m p e r a t u r e c o n d i t i o n e d and e l e c t r i c a l l y s t i m u l a t e d hot p r o c e s s e d p o r k . J . Food S c i . 50: 1568-1570. - 172 -Reddy, M.K., J.D. E t l i n g e r , M. R a b i n o w i t z , D.A. F i s c h m a n and R. Zak. 1975. Removal of Z l i n e s and a l p h a - a c t i n i n from i s o l a t e d m y o f i b r i l s by a c a l c i u m - a c t i v a t e d n e u t r a l p r o t e a s e . J . B i o l . Chem. 250: 4278-4284. Reddy, M.K., M. R a b i n o w i t z and R. Zak. 1983. S t r i n g e n t r e q u i r e m e n t f o r C a + 2 i n the r e m o v a l of Z l i n e s and a l p h a - a c t i n i n from i s o l a t e d m y o f i b r i l s by C a + 2 _ a c t i v a t e d n e u t r a l p r o t e i n a s e . B iochem. J . 209: 635-641. Rehunen, S. and M. H a r k o n e n . 1980. H i g h - e n e r g y p h o s p h a t e compounds i n human s l o w - t w i t c h and f a s t - t w i t c h m u s c l e f i b r e s . S c a n . J . C l i n . L a b . I n v e s t . 40: 45-54. R e n t s c h l e r , H.C. 1951. A p p a r a t u s and method f o r t e n d e r i z i n g meat. U.S. P a t e n t 2,544,724. R e v i l l e , W.J., D.E. G o l l , M.H. S t r o m e r , R.M. Robson and W.R. D a y t o n . 1976. A c a l c i u m - a c t i v a t e d p r o t e a s e p o s s i b l y i n v o l v e d i n m y o f i b r i l l a r p r o t e i n t u r n o v e r . S u b c e l l u l a r l o c a l i z a t i o n of the p r o t e a s e i n p o r c i n e s k e l e t a l m u s c l e . J . C e l l B i o l . 70: 1-8. - 173 -Rhee, K.S., T.R. D u t s o n and J.W. S a v e l l . 1985. E n z y m i c l i p i d p e r o x i d a t i o n i n beef m u s c l e microsomes as a f f e c t e d by e l e c t r i c a l s t i m u l a t i o n and postmortem m u s c l e e x c i s i o n t i m e . J . Food Biochem. 9: 27-36. R i l e y , R.R., J.W. S a v e l l and G.C. S m i t h . 1980a. S t o r a g e c h a r a c t e r i s t i c s of w h o l e s a l e and r e t a i l c u t s from e l e c t r i c a l l y s t i m u l a t e d lamb c a r c a s s e s . J . Food S c i . 45: 1101-1103. R i l e y , R.R., J.W. S a v e l l , G.C. S m i t h and M. S h e l t o n . 1980b. Q u a l i t y , a p p e a r a n c e and t e n d e r n e s s of e l e c t r i c a l l y s t i m u l a t e d lamb. J . Food S c i . 45: 119-121. R i l e y , R.R., J.W. S a v e l l , D.M. S t i f f l e r , J.G. E h l e r s , C. V a n d e r z a n t and G.C. S m i t h . 1982. E v a l u a t i o n of r e t a i l and p a l a t a b i l i t y c h a r a c t e r i s t i c s of e l e c t r i c a l l y s t i m u l a t e d U.S. c h o i c e beef a f t e r c o m m e r c i a l t r a n s p o r t - d i s t r i b u t i o n . J . Food P r o t . 4 5 ( 8 ) : 733-737. Robson, R.M. 1981. B i o c h e m i s t r y and m o l e c u l a r a r c h i t e c t u r e of m u s c l e c e l l 10 nm f i l a m e n t s and Z l i n e : r o l e s of desmin and a l p h a - a c t i n i n . P r o c . 3 4 t h Ann. Rec. Meat Conf. 1981: 5-11. - 174 -Robson, R.M., J.M. O'Shea, M.K. H a r t z e r , W.E. Rathbun, F. L a s a l l e , P . J . S c h r e i n e r , L . E . Kasang, M.H. S t r o m e r , M.L. L u s b y , J . F . R i d p a t h , Y.-Y. Pang, R.R. E v a n s , M.G. Z e e c e , F.C. P a r r i s h J r . and T.W. H u i a t t . 1984. R o l e of new c y t o s k e l e t a l e l e m e n t s i n m a i n t e n a n c e of muscle i n t e g r i t y . J . Food Biochem. 8: 1-24 Salm, C P . , J . C . F o r r e s t , E.D. A b e r l e , E.W. M i l l s , A.C. Snyder and M.D. J u d g e . 1983. B o v i n e muscle s h o r t e n i n g and p r o t e i n d e g r a d a t i o n a f t e r e l e c t r i c a l s t i m u l a t i o n , e x c i s i o n and c h i l l i n g . Meat S c i . 8: 163-183. Salm, C P . , E.W. M i l l s , E.S. Reeves, M.D. Judge and E.D. A b e r l e . 1981. E f f e c t of e l e c t r i c a l s t i m u l a t i o n on m u s c l e c h a r a c t e r i s t i c s of beef c a t t l e f e d on a h i g h e n e r g y d i e t f o r v a r y i n g l e n g t h s of t i m e . J . Food S c i . 46: 1284-1285, 1287 . S a s a k i , T., N. Y o s h i m a r a , T. K i k u c h i , M. H a t a n a k a , A. K i t a h a r a , T. Sakihama and T. M u r a c h i . 1983. S i m i l a r i t y and d i s s i m i l a r i t y i n s u b u n i t s t r u c t u r e s of c a l p a i n s I and I I f r o m v a r i o u s s o u r c e s as d e m o n s t r a t e d by i m m u n o l o g i c a l c r o s s - r e a c t i v i t y . J . Biochem. 94: 2055-2061. - 175 -S a v e l l , J.W., G.C. S m i t h , T.R. D u t s o n , Z.L. C a r p e n t e r and D.A. S u t e r . 1977. E f f e c t of e l e c t r i c a l s t i m u l a t i o n on p a l a t a b i l i t y of b e e f , lamb and goat meat. J . Food S c i . 42: 702-706. S a v e l l , J.W., T.R. D u t s o n , G.C. Smith and Z.L. C a r p e n t e r . 1978a. S t r u c t u r a l changes i n e l e c t r i c a l l y s t i m u l a t e d b eef m u s c l e . J . Food S c i . 43: 1606-1607, 1609. S a v e l l , J.W., G.C. Smith and Z.L. C a r p e n t e r . 1978b. Beef q u a l i t y and p a l a t a b i l i t y as a f f e c t e d by e l e c t r i c a l s t i m u l a t i o n and c o o l e r a g i n g . J . Food S c i . 43: 1666-1668 . . 1978c. E f f e c t of e l e c t r i c a l s t i m u l a t i o n on q u a l i t y and p a l a t a b i l i t y of l i g h t w e i g h t beef c a r c a s s e s . J . Anim. S c i . 46: 1221-1228. S a v e l l , J.W., F.K. M c K e i t h and G.C. S m i t h . 1981. R e d u c i n g postmortem a g i n g time of b e e f w i t h e l e c t r i c a l s t i m u l a t i o n . J . Food S c i . 46: 1777-1781. - 176 -S c h m i d t , G.R., R.G. C a s s e n s and E . J . B r i s k e y . 1968. Development of an i s o t o n i c - i s o m e t r i c r i g o r o m e t e r . J . Food S c i . 33: 239-241. . 1970. Changes i n t e n s i o n and c e r t a i n m e t a b o l i t e s d u r i n g the de v e l o p m e n t of r i g o r m o r t i s i n s e l e c t e d r e d and w h i t e s k e l e t a l m u s c l e s . J . Food S c i . 35: 571-573. S c h m i d t , G.R., R.F. Mawson and D.G. S e i g e l . 1981. F u n c t i o n a l i t y of a p r o t e i n m a t r i x i n comminuted meat p r o d u c t s . Food T e c h n o l . 3 5 ( 5 ) : 235-237. Seideman, S.C. and H.R. C r o s s . 1982. U t i l i z a t i o n of e l e c t r i c a l s t i m u l a t i o n to improve meat q u a l i t y : a r e v i e w . J . Food Q u a l . 5: 247-269. Seideman, S.C., F.C. S m i t h , T.R. D u t s o n and Z.L. C a r p e n t e r . 1979. P h y s i c a l , c h e m i c a l and p a l a t a b i l i t y t r a i t s of e l e c t r i c a l l y s t i m u l a t e d , h o t - b o n e d , vacuum-packaged b e e f . J . Food P r o t . 42: 8. Shaw, F.D. and D.J. W a l k e r . 1977. E f f e c t of low v o l t a g e s t i m u l a t i o n of beef c a r c a s s e s on muscle pH. J . Food S c i . 42: 1140-1141. - 177 -Shimada, K. and S. M a t s u s h i t a . 1980. R e l a t i o n s h i p between t h e r m o c o a g u l a t i o n of p r o t e i n s and amino a c i d c o m p o s i t i o n . J . A g r i c . Food Chem. 28: 413-417. S h i v a s , S.D., C.L. K a s t n e r , M.E. Dikeman, M.C. Hunt and D.H. K r o p f . 1985. E f f e c t s of e l e c t r i c a l s t i m u l a t i o n , h ot b o n i n g and c h i l l i n g on b u l l Semimembranosus m u s c l e . J . Food S c i . 50: 36-38. S j o s t r o m , M., S. Kidman, K. H e n r i k k s o n L a r s e n and K.A. A n g q u i s t . 1982. Z- and M-band a p p e a r a n c e i n d i f f e r e n t h i s t o c h e m i c a l l y d e f i n e d t y p e s of human s k e l e t a l m u s c l e f i b r e s . J . H i s t o c h e m . Cytochem. 30: 1-11. S l e p e r , P.S., M.C. Hunt, D.H. K r o p f , C.L. K a s t n e r and M.E. Dikeman. 1983. E l e c t r i c a l s t i m u l a t i o n e f f e c t s on m y o g l o b i n p r o p e r t i e s of b o v i n e L o n g i s s i m u s m u s c l e . J . Food S c i . 48: 479-483. Sm i t h , G.C. 1985. E f f e c t s of e l e c t r i c a l s t i m u l a t i o n on meat q u a l i t y , c o l o r , g r a d e , heat r i n g and p a l a t a b i l i t y . P e a r s o n , A.M. and T.R. D u t s o n , e d s . A d v a n c e s i n Meat  R e s e a r c h . V o l 1 E l e c t r i c a l S t i m u l a t i o n . W e s t p o r t , C o n n e c t i c u t : A . V . I . P u b l i s h i n g , 1985. pp 121-158. - 178 -S m i t h , G.C., T.R. D u t s o n , H.R. C r o s s and Z.L. C a r p e n t e r . 1979. E l e c t r i c a l s t i m u l a t i o n of h i d e - o n and h i d e - o f f c a l f c a r c a s s e s . J . Food S c i . 44: 335-338. S m i t h , M . C , M.D. Judge and W.J. S t a d l e m a n . 1969 . A " c o l d s h o r t e n i n g " e f f e c t on a v i a n m u s c l e . J . Food S c i . 34: 42-46 . S o n a i y a , E.B., J.R. S t o u f f e r and D.H. Beerman. 1982. E l e c t r i c a l s t i m u l a t i o n of mature cow c a r c a s s e s and i t s e f f e c t on t e n d e r n e s s , m y o f i b r i l p r o t e i n d e g r a d a t i o n and f r a g m e n t a t i o n . J . Food S c i . 4 7: 889-891. S o n a i y a , E.B. and J.R. S t o u f f e r . 1982. M e c h a n i c a l t e n s i o n i n g of e l e c t r i c a l l y s t i m u l a t e d c a r c a s s e s f o r improved t e n d e r n e s s . J . Food S c i . 47: 1010, 1015. Sorinmade, S.O., H.R. C r o s s , K. Cho and W.P. W e r g i n . 1982. Mechanisms of u l t r a s t r u c t u r a l changes i n e l e c t r i c a l l y s t i m u l a t e d b e e f L o n g i s s i m u s m u s c l e . Meat S c i . 6 ( 1 ) : 71-77 . - 179 -S p a n i e r , A.M. and J.W.C. B i r d . 1982. Endogenous c a t h e p s i n B i n h i b i t o r a c t i v i t y i n n o r m a l and m y o p a t h i c r e d and w h i t e s k e l e t a l m u s c l e . M u s c l e and Nerve 5: 313-320. S p i e s , J.R. 1957. C o l o r i m e t r i c p r o c e d u r e s f o r amino a c i d s . Methods E n z y m o l . 3: 467. S t a n l e y , D.W., G.P. P e a r s o n and V.E. C oxworth. 1971. E v a l u a t i o n of c e r t a i n p h y s i c a l p r o p e r t i e s of meat u s i n g a u n i v e r s a l t e s t i n g m a c h i n e . J . Food S c i . 36: 256-260. S t a n l e y , D.W. and H.O. H u l t i n . 1984. P r o t e o l y t i c a c t i v i t y i n N o r t h A m e r i c a n s q u i d and i t s r e l a t i o n to q u a l i t y . Can. I n s t . Food S c i . T e c h n o l . J . 17: 163-167. S t a u b e r , W.T., A.M. Hedge, J . J . T r o u t and B.H. S c h o t t e l i u s . 1981. I n h i b i t i o n of l y s o s o m a l f u n c t i o n i n r e d and w h i t e s k e l e t a l m u s c l e s by c h l o r o q u i n e . Exp. N e u r o l . 71: 295-306 . S t a u b e r , W.T. and B.H. S c h o t t e l i u s . 1975. B i o c h e m i c a l and p h y s i o l o g i c a l d i f f e r e n c e s between a v i a n ALD and PLD m uscle s u b c e l l u l a r f r a c t i o n s . C y t o b i o s . 14: 87-100. - 180 -S t e p h e n s o n , D.G. and D.A. W i l l i a m s . 1981. C a l c i u m - a c t i v a t e d f o r c e r e s p o n s e s i n f a s t - and slow t w i t c h s k i n n e d m u s c l e f i b r e s of the r a t at d i f f e r e n t t e m p e r a t u r e s . J . P h y s i o l . 317: 281-302. S t e r n , N.J. 1980. E f f e c t of b o n i n g , e l e c t r i c a l s t i m u l a t i o n and m e d i c a t e d d i e t on the m i c r o b i o l o g i c a l q u a l i t y of lamb c u t s . J . Food S c i . 45: 1749-1752. S t e w a r t , G.F., B. Lowe and M. M a r r . 1948. Postmortem changes i n New Y o r k d r e s s e d p o u l t r y at 35°F. U.S. Egg P o u l . Mag. 47: 542. S t i f f l e r , D.M., G.C. S m i t h , J.W. S a v e l l , T.R. D u t s o n , C.L. G r i f f i n and M.W. O r c u t t . 1984. C o m p a r i s o n of the e f f e c t s of h i g h and low v o l t a g e e l e c t r i c a l s t i m u l a t i o n on q u a l i t y - i n d i c a t i n g c h a r a c t e r i s t i c s of beef c a r c a s s e s . J . Food S c i . 49: 863-866. S t r a n g e , E.D., R.C. B e n e d i c t , J . L . Smith and C E . S w i f t . 1977. E v a l u a t i o n of r a p i d t e s t s f o r m o n i t o r i n g a l t e r a t i o n s i n meat q u a l i t y d u r i n g s t o r a g e . J . Food P r o t . 40: 843-847. - 181 -Sundeen, G., J . F . R i c h a r d s and D.B. B r a g g . 1980. The e f f e c t ' of V i t a m i n A d e f i c i e n c y on some postmortem p a r a m e t e r s of a v i a n m u s c l e . P o u l . S c i . 59 ( 10 ): 2225-2236 . S u z u k i , A. and R.G. C a s s e n s . 1980. pH s e n s i t i v i t y of myosin a d e n o s i n e t r i p h o s p h a t e s and s u b t y p e s of m y o f i b r e s i n p o r c i n e m u s c l e . H i s t o c h e m . J . 12: 687-693. S u z u k i , A., Y. Matsumoto, T. S a t o , Y. Nonami and M. S a i t o . 1982. C a l c i u m - a c t i v a t e d p r o t e a s e i n s t o r e d m u s c l e . Meat S c i . 7: 269-278. S u z u k i , A., M. S a i t o , A. O k i t a n i and Y. Nonami. 1981. Z - N i n , a new h i g h m o l e c u l a r w e i g h t p r o t e i n r e q u i r e d f o r r e c o n s t i t u t i o n of the Z d i s k . A g r i c . B i o l . Chem. 45: 2535-2542. S u z u k i , A., M. S a i t o and Y. Nonami. 1983. Im m u n o e l e c t r o n m i c r o s c o p i c l o c a l i z a t i o n of r a b b i t Z - n i n and 34,000 d a l t o n p r o t e i n i n the Z d i s k . A g r i c . B i o l . Chem. 47: 171-173. - 182 -S u z u k i , K., S. T s u j i , S. I s h i u r a , Y. K i m u r a , S. K u b o t a and K I m a h o r i . 1981a. A u t o l y s i s of c a l c i u m - a c t i v a t e d n e u t r a l p r o t e a s e of c h i c k e n s k e l e t a l m u s c l e . J . Biochem. 90: 1787-1793. S u z u k i , K., S. T s u j i , S. K u b o t a , Y. Kimura and K. I m a h o r i . 1981b. L i m i t e d a u t o l y s i s of c a l c i u m - a c t i v a t e d n e u t r a l p r o t e a s e (CANP) changes i t s s e n s i t i v i t y to c a l c i u m i o n s J . B i o c h e m . 90: 275-278. Swasdee, R.L., R.N. T e r r e l l , T.R. D u t s o n , D.D. C r e n w e l g e and G.C. S m i t h . 1983. P r o c e s s i n g p r o p e r t i e s of pork as a f f e c t e d by e l e c t r i c a l s t i m u l a t i o n , p o s t - s l a u g h t e r c h i l l i n g and m u s c l e g r o u p . J . Food S c i . 48: 150-151, 162. S w a t l a n d , H.J. 1975. R e l a t i o n s h i p s between m i t o c h o n d r i a l c o n t e n t of m u s c l e f i b r e s and p a t t e r n s of g l y c o g e n d e p l e t i o n p o s tmortem. H i s t o c h e m i c a 1 J . 7: 367-374. . 1977 . S e n s i t i v i t y of p r e r i g o r b e e f muscle to e l e c t r i c a l s t i m u l a t i o n . Can. I n s t . Food S c i . T e c h n o l . 10: 280-283. - 183 -. 1980. A n i s t r o p y and postmortem changes i n the e l e c t r i c a l r e s i s t i v i t y and c a p a c i t a n c e of s k e l e t a l m u s c l e . J . Anim. S c i . 50: 67-74. . 1981. C e l l u l a r h e t e r o g e n e i t y i n the r e s p o n s e of b e e f to e l e c t r i c a l s t i m u l a t i o n . Meat S c i . 5: 451-455. S z p a c e n k o , A., J . Kay, D.E. G o l l and Y. O t s u k a . 1981. A d i f f e r e n t f o r m of the C a + 2 - d e p e n d e n t p r o t e i n a s e a c t i v a t e d by m i c r o m o l a r l e v e l s of C a + 2 . T u r k , V. and L . J . V i t a l e , e d s . P r o c e e d i n g s of the Symposium on P r o t e i n a s e s and  t h e i r I n h i b i t o r s : S t r u c t u r e , F u n c t i o n and A p p l i e d  A s p e c t s . O x f o r d , E n g l a n d : Pergamon P r e s s , 1981. pp 151-161. Tang, B.H. and R.L. H e n r i c k s o n . 1980. E f f e c t of postmortem e l e c t r i c a l s t i m u l a t i o n on b o v i n e m y o g l o b i n and i t s d e r i v a t i v e s . J . Food S c i . 45: 1139-1141, 1145. T a y l o r , A.A., B.G. Shaw and D.B. M a c D o u g a l l . 1981. Hot d e b o n i n g b e e f w i t h and w i t h o u t e l e c t r i c a l s t i m u l a t i o n . Meat S c i . 5: 109-123. - 184 -T a y l o r , D.G. and J.G. C o r n e l l . 1985. The e f f e c t s of e l e c t r i c a l s t i m u l a t i o n on a g e i n g and on b eef t e n d e r n e s s . Meat S c i . 12: 243-251. T a y l o r , D.G. and A.G. M a r s h a l l . 1980. Low v o l t a g e e l e c t r i c a l s t i m u l a t i o n of b eef c a r c a s s e s . J . Food S c i . 45: 144-145. T e r r e l l , R.N., R. C o r r e a , R. Leu and G.C. S m i t h . 1982a. P r o c e s s i n g p r o p e r t i e s of b e e f Semimembranosus m u s c l e as a f f e c t e d by e l e c t r i c a l s t i m u l a t i o n and postmortem t r e a t m e n t . J . Food S c i . 47: 1382-1383. T e r r e l l , R.N., J.A. J a c o b s , J.W. S a v e l l and G.C. S m i t h . 1982b. P r o p e r t i e s of f r a n k f u r t e r s made from e l e c t r i c a l l y s t i m u l a t e d b e e f . J . Food S c i . 47: 344-345. T s u j i , S. and K. I m a h o r i . 1981. S t u d i e s on the c a l c i u m - a c t i v a t e d n e u t r a l p r o t e i n a s e of r a b b i t s k e l e t a l m u s c l e . 1 The c h a r a c t e r i z a t i o n of the 80K and the 30K s u b u n i t s . J . B iochem. 90: 233-240. - 185 -T s u j i , S., S. I s h i u r a , M. T a k a h i s h i - N a k a m u r a , T. Katamoto, K. S u z u k i and K. I m a h o r i . 1981. S t u d i e s on the c a l c i u m - a c t i v a t e d n e u t r a l p r o t e i n a s e of r a b b i t s k e l e t a l m u s c l e . 2. C h a r a c t e r i z a t i o n of s u l f h y d r y l g r o u p s and a r o l e of c a l c i u m i o n s i n t h i s enzyme. J . B i o c h e m . 90: 1405-141 1 . Tume, R.K. 1979. Postmortem e l e c t r i c a l s t i m u l a t i o n of m u s c l e and i t s e f f e c t s on s a r c o p l a s m i c r e t i c u l u m a d e n o s i n e t r i p h o s p h a t a s e . A u s t . J . B i o l . S c i . 32: 163-176. . 1980. E f f e c t of postmortem e l e c t r i c a l s t i m u l a t i o n on o v i n e s a r c o p l a s m i c r e t i c u l u m v e s i c l e s . A u s t . J . B i o l . S c i . 33: 43-52. van den B e r g , L., A.W. Khan and C P . L e n t z . 1963. B i o c h e m i c a l and q u a l i t y changes i n c h i c k e n meat d u r i n g s t o r a g e at a b o v e - f r e e z i n g t e m p e r a t u r e s . Food T e c h n o l . 17: 91-94. van den B e r g , L. , C P . L e n t z and A.W. Khan. 1964a. Postmortem changes i n t e n d e r n e s s and w a t e r - h o l d i n g and i o n b i n d i n g p r o p e r t i e s of p o u l t r y l e g and b r e a s t meat. Food T e c h n o l . 18: 573-575. - 186 -' . 1964b. Changes i n q u a l i t y and w a t e r - h o l d i n g and i o n - b i n d i n g p r o p e r t i e s of c h i c k e n meat d u r i n g a b o v e - f r e e z i n g s t o r a g e under a s e p t i c c o n d i t i o n s . Food T e c h n o l . 18: 729-731. V a n d e r s t o e p , J . and J . F . R i c h a r d s . 1974. Postmortem g l y c o l y t i c and p h y s i c a l changes i n t u r k e y b r e a s t m uscle Can. I n s t . Food S c i . T e c h n o l . J . 7: 120-124. V e n u g o p a l , B. and M.E. B a i l e y . 1978. L y s o s o m a l p r o t e i n a s e s m u s c l e t i s s u e and l e u k o c y t e s of meat a n i m a l s . Meat S c i 2: 227-239. V i d a l e n c , P., P. C o t t i n , N. M e r d a c i and A. D u c a s t a i n g . 1983. S t a b i l i t y of two C a + 2 - ( j e p e n d e n t n e u t r a l p r o t e i n a s e s and t h e i r s p e c i f i c i n h i b i t o r d u r i n g postmortem s t o r a g e of r a b b i t s k e l e t a l m u s c l e . J . S c i . Food A g r i c . 34: 1241-1250. V o g e l , H.J., P. L u n d b e r g , S. F a b i a n s s o n , H. Ruderus and E. T o r n b e r g . 1985. Postmortem e n e r g y m e t a b o l i s m i n b o v i n e m u s c l e s s t u d i e d by n o n - i n v a s i v e p h o s p h o r u s - 3 1 n u c l e a r m a g n e t i c r e s o n a n c e . Meat S c i . 13: 1-18. - 187 -V o u t s i n a s , L.P., E. Cheung and S. N a k a i . 1983. R e l a t i o n s h i p s of h y d r o p h o b i c i t y to e m u l s i f y i n g p r o p e r t i e s of he a t d e n a t u r e d p r o t e i n s . J . Food S c i . 48: 26-32. W a n i s k a , R.D., J.K. S h e t t y and J . E . K i n s e l l a . 1981. P r o t e i n - s t a b i l i z e d e m u l s i o n s : e f f e c t s of m o d i f i c a t i o n on the e m u l s i f y i n g a c t i v i t y of b o v i n e serum a l b u m i n i n a model s y s t e m . J . A g r i c . Food Chem. 29: 826-831. W e l b o u r n , J . L . , R.B. H a r r i n g t o n and W.J. S t a d e l m a n . 1968. R e l a t i o n s h i p s among s h e a r v a l u e s , s a r c o m e r e l e n g t h s and c o o l i n g p r o c e d u r e s i n t u r k e y s . J . Food S c i . 33: 450-452. West, R.L. 1979. E f f e c t s of h i g h t e m p e r a t u r e c o n d i t i o n i n g on m u s c l e t i s s u e . Food T e c h n o l . 33: 41-46. W e s t e r v e l t , R.G. and J.R. S t o u f f e r . 1978. R e l a t i o n s h i p s among s p i n a l c o r d s e v e r i n g , e l e c t r i c a l s t i m u l a t i o n and postmortem q u a l i t y c h a r a c t e r i s t i c s of the p o r c i n e c a r c a s s . J . Anim. S c i . 46: 1206-1211. - 188 -Wheelock, M.J. 1982. E v i d e n c e f o r two s t r u c t u r a l l y d i f f e r e n t forms of s k e l e t a l m u s c l e C a + 2 - a c t i v a t e d p r o t e a s e . J . B i o l . Chem. 257: 12471-12474. W h i t i n g , R.C. 1980. C a l c i u m u p t a k e by b o v i n e m uscle m i t o c h o n d r i a and s a r c o p l a s m i c r e t i c u l u m . J . Food S c i . 45: 288-292. W h i t i n g , R.C. and J . F . R i c h a r d s . 1975. Thaw r i g o r i n d u c e d i s o m e t r i c t e n s i o n and s h o r t e n i n g i n b r o i l e r - t y p e c h i c k e n m u s c l e s . J . Food S c i . 40: 960-963. . 1978a. C a l c i u m u p t a k e and ATPase a c t i v i t y by s a r c o p l a s m i c r e t i c u l u m of r e d and w h i t e p o u l t r y m u s c l e s . J . Food S c i . 43: 662-665. . 1978b. W a t e r - e x t r a c t a b l e c a l c i u m and z i n c i n r e d and w h i t e c h i c k e n m u s c l e d u r i n g a g i n g and thaw r i g o r . Can. I n s t . Food S c i . T e c h n o l . J . 11: 59-61. . 1978c. I n f l u e n c e of z i n c i o n s on postmortem and p h y s i c a l p r o p e r t i e s of c h i c k e n m u s c l e . Can. I n s t . Food S c i . T e c h n o l . J . 11: 62-65. - 189 -W h i t i n g , R.C., E.D. S t r a n g e , A . J . M i l l e r , R.C. B e n e d i c t , S.M. M a z e r s k y and C.E. S w i f t . 1981. E f f e c t s of e l e c t r i c a l s t i m u l a t i o n on the f u n c t i o n a l p r o p e r t i e s of lamb m u s c l e . J . Food S c i . 46: 484-487. W i l k i n s o n , J.M. 1978. The components of t r o p o n i n from c h i c k e n f a s t s k e l e t a l m u s c l e . A c o m p a r i s o n of t r o p o n i n T and t r o p o n i n I from b r e a s t and l e g m u s c l e . Biochem. J . 169: 229-238. W i l l , P.A., R.L. H e n r i c k s o n , R.D. M o r r i s o n and G.V. O d e l l . 1979. E f f e c t of e l e c t r i c a l s t i m u l a t i o n on ATP d e p l e t i o n and s a r c o m e r e l e n g t h i n d e l a y e d - c h i l l e d b o v i n e m u s c l e . J . Food S c i . 44: 1646-1648. W i l l , P.A., C.L. Ownby and R.L. H e n r i c k s o n . 1980. U l t r a s t r u c t u r a l postmortem changes i n e l e c t r i c a l l y s t i m u l a t e d b o v i n e m u s c l e . J . Food S c i . 45: 21-25. W i s k u s , K . J . , P.B. A d d i s and R . T . - I . Ma. 1973. Postmortem changes i n dark t u r k e y m u s c l e . J . Food S c i . 38: 313-315. - 190 -. 1976. D i s t r i b u t i o n of beta-R, a l p h a - R , alpha-W f i b e r s i n t u r k e y m u s c l e s . P o u l . S c i . 55: 562-572. Wood, D.F. 1973. Some postmortem a s p e c t s of b r o i l e r b r e a s t meat. PhD T h e s i s , U n i v e r s i t y of B r i t i s h C o l u m b i a . Wood, D.F., C.A. C a m p b e l l , E. L i - C h a n and S. N a k a i . 1984. H y d r o p h o b i c i t y and w a t e r - h o l d i n g p a r a m e t e r s of p r e - and p o s t - r i g o r b e e f neck m u s c l e . A b s t r a c t 38, C a n a d i a n I n s t i t u t e of Food S c i e n c e and T e c h n o l o g y 27th A n n u a l C o n f e r e n c e , V a n c o u v e r , Canada. Wood, D.F. and D.A. F r o e h l i c h . 1983. The e f f e c t of e l e c t r i c a l s t i m u l a t i o n on s e n s o r y and p h y s i c a l p r o p e r t i e s of s t e a k s from t h r e e g r a d e s of C a n a d i a n beef a f t e r c o m m e r c i a l h a n d l i n g . Can. I n s t . Food S c i . T e c h n o l . J . 16: 52-56. Wood, D.F. and J . F . R i c h a r d s . 1974a. I s o m e t r i c t e n s i o n s t u d i e s on c h i c k e n P e c t o r a l i s maj or m u s c l e . J . Food S c i . 39: 525-529. . 1974b. C o l d s h o r t e n i n g i n c h i c k e n b r o i l e r P e c t o r a l i s m a j o r . J . Food S c i . 39: 530-531. - 191 -. 1975. E f f e c t s of some antemortem s t r e s s o r s on postmortem a s p e c t s of c h i c k e n b r o i l e r P e c t o r a l i s m u s c l e . P o u l . S c i . 54: 528-531. Wu, F.Y., T.R. D u t s o n , C. V a l i n , H.R. C r o s s and S.B. S m i t h . 1985. A g i n g i n d e x , l y s o s o m a l enzyme a c t i v i t i e s and meat t e n d e r n e s s i n m u s c l e s from e l e c t r i c a l l y s t i m u l a t e d b u l l and s t e e r c a r c a s s e s . J . Food S c i . 50: 1025-1028. Wu, J . J . , T.R. Dutson and Z.L. C a r p e n t e r . 1981. E f f e c t of postmortem time and t e m p e r a t u r e on the r e l e a s e of l y s o s o m a l enzymes and t h e i r p o s s i b l e e f f e c t on b o v i n e c o n n e c t i v e t i s s u e components of m u s c l e . J . Food S c i . 46: 1132-1135. Yamamoto, K., K. Samejima and T. Y a s u i . 1977. A c o m p a r a t i v e s t u d y of the changes i n hen p e c t o r a l m u scle d u r i n g s t o r a g e at 4°C and - 2 0 ° C . J . Food S c i . 4 2 ( 6 ) : 1642-1645. Y a t e s , J.D., C.C. Brunson and J . E . Webb. 1976. R e l a t i o n s h i p s of c e r t a i n b i o c h e m i c a l , p h y s i c a l and q u a l i t y c h a r a c t e r i s t i c s of b r o i l e r m u s c l e s . P o u l . S c i . 55: 369-378. - 192 -Y a t e s , L.D., T.R. D u t s o a , J . C a l d w e l l and Z.L. C a r p e n t e r . 1983. E f f e c t of t e m p e r a t u r e and pH on the postmortem d e g r a d a t i o n of m y o f i b r i l l a r p r o t e i n s . Meat S c i . 9: 157-179. Young, O.A. 1982. F u r t h e r s t u d i e s on s i n g l e f i b r e s of b o v i n e m u s c l e s . B iochem. J . 203: 179-184. . 1984. The b i o c h e m i c a l b a s i s of f i b r e t y p e s i n b o v i n e m u s c l e . Meat S c i . 11: 123-137. - 193 -APPENDIX 1: HOME EVALUATION RATING FORM - 194 -HOME EVALUATION RATING FORM The samples you have received are from chicken b r o i l e r s processed by two d i f f e r e n t commercial methods. Please prepare the samples by the cooking method of your choice and note the d e t a i l s in the space provided. (Each taster) Please rate both samples of a designated pair and record your reactions on th i s form. If you rate more than one pair of samples, please use a separate form for each time. COOKING: METHOD: TEMPERATURE: PART SAMPLED: LEG TIME: END PT. TEMPERATURE ( i f known): THIGH LEG & THIGH TENDERNESS 1 • Extremely tender Very tender Moderately tender S l i g h t l y tender S l i g h t l y tough Moderately tough Very tough Extremely tough • JUICINESS • Extremely j u i c y Very j u i c y Moderately j u i c y S l i g h t l y j u i c y S l i g h t l y dry Moderately dry Very dry Extremely dry OVERALL ACCEPTABILITY • Extremely acceptable Very acceptable _Moderately acceptable S l i g h t l y acceptable S l i g h t l y unacceptable Moderately unaccept. Very unacceptable Extremely unaccept. COMMENTS: - 195 -APPENDIX 2: Table 25: The e f f e c t of t o t a l number of pulses and voltage on post-mortem pH decline - 196 -T a b l e 25: The e f f e c t of t o t a l number of p u l s e s and v o l t a g e on postmortem pH d e c l i n e pH Time postmortem (h) PMJ BF' Treatmen t 0 0 .5 1 2 4 6 C o n t r o l 6. 15 6. 24 6. 21 6. 06 5. 85 5. 78 TNP,2400 3 ( 0 . 0 7 ) 4 ( 0 . 07) ( 0 . 06 ) ( 0 . 08) ( 0 . 07) ( 0 . 05) 5. 90 5. 89 5. 83 5. 69 5. 68 5. 68 ( 0 . 04 ) ( 0 . 04) ( 0 . 04 ) ( 0 . 03) ( 0 . 03 ) ( 0 . 03 ) TNP,4800 5. 88 5. 88 5. 79 5. 67 5. 64 5. 65 ( 0 . 03) ( 0 . 03) ( 0 . 04) ( 0 . 02 ) ( 0 . 02 ) ( 0 . 02 ) TNP,9600 5. 82 5. 77 5. 70 5. 64 5. 62 5. 59 ( 0 . 04 ) ( 0 . 03 ) ( 0 . 04 ) ( 0 . 04) ( 0 . 04 ) ( 0 . 03 ) 70 V 5. 87 5. 85 5. 77 5. 67 5. 65 5. 63 ( 0 . 03 ) ( 0 . 03 ) ( 0 . 04 ) ( 0 . 02 ) ( 0 . 03 ) ( 0 . 02 ) 140 V 5. 87 5. 86 5. 78 5. 67 5. 64 5. 66 ( 0 . 03 ) ( 0 . 03) ( 0 . 03 ) ( 0 . 03 ) ( 0 . 02 ) ( 0 . 02 ) Con t r o l 6. 32 6. 34 6. 29 6. 14 6. 10 6. 09 TfcJP ,2400 ( 0 . 03) ( 0 . 03 ) ( 0 . 04) ( 0 . 05) ( 0 . 06 ) ( 0 . 05) 6. 15 6. 12 6. 05 6. 01 6. 02 6. 02 ( 0 . 03 ) ( 0 . 03) ( 0 . 04) ( 0 . 05) ( 0 . 06) ( 0 . 05) TNP,4800 6. 14 6. 14 6. 06 5. 99 5. 95 5. 96 ( 0 . 02) ( 0 . 02 ) ( 0 . 02 ) ( 0 . 02) ( 0 . 02 ) ( 0 . 02 ) TNP,9600 6. 13 6 . 10 6. 05 5. 96 5. 96 5. 95 ( 0 . 04) ( 0 . 04 ) ( 0 . 04 ) ( 0 . 04 ) ( 0 . 04 ) ( 0 . 03 ) 70 V 6. 12 6. 11 6. 04 5. 99 5. 97 5. 96 ( 0 . 02 ) ( 0 . 02 ) ( 0 . 02) ( 0 . 03 ) ( 0 . 03) ( 0 . 03 ) 140 V 6 . 16 6. 14 6. 06 5. 98 5. 98 5 . 99 ( 0 . 02 ) ( 0 . 02 ) ( 0 . 02) ( 0 . 04) ( 0 . 03 ) ( 0 . 03 ) P e c t o r a l i s maj or B i c e p s f e m o r i s TNP, t o t a l number of p u l s e s v a l u e s w i t h i n p a r e n t h e s e s a r e s t a n d a r d e r r o r s APPENDIX 3: - 197 -CORRELATION MATRICES T a b l e 26: C o r r e l a t i o n m a t r i x f o r p a r a m e t e r s s t u d i e d f o r t h e C o n t r o l group from Study Two TMT MT Gl y c o g e n OATP 2 ATP 6ATP OHMP 2 HMP 6 HMP TMT 2 . 656* .850*** .756** .691** .416 .284 . 662* .100 MT3 .601* .608* . 622* . 622* .073 . 360 .430 .002 G l y c o g e n .134 .448 .689** .611* .192 .127 .682* .368 OATP 4 . 188 .372 .217 .913*** . 327 -. 184 . 808** -.273 2 A T P 5 -.202 .343 . 528* .734** .604* -.308 .801** -.445 6ATP 6 . 683* . 284 .245 . 291 -.045 -.283 .431 -.462 OHMP 7 -.195 .045 .622* -.469 -.017 -.095 -.471 .501 2HMP8 -.154 .014 . 690** -.302 .042 . 142 .910*** -.256 6 HMP 9 .144 .402 .724** -.142 .170 .242 .681* .820** 1 v a l u e s below d i a g o n a l were o b t a i n e d f o r the B i c e p s f e m o r i s ; v a l u e s f o r t h e P e c t o r a l i s  maj or l i e above the d i a g o n a l ; a l l v a l u e s based on n = 10 2 time to maximum t e n s i o n 3 maximum i s o m e t r i c t e n s i o n d e v e l o p e d 4 ATP c o n t e n t at Oh p o s t s l a u g h t e r 5 ATP c o n t e n t at 2h p o s t s l a u g h t e r 6 ATP c o n t e n t at 6h p o s t s l a u g h t e r 7 hexose monophosphate c o n t e n t a t Oh p o s t s l a u g h t e r 8 hexose monophosphate c o n t e n t a t 2h p o s t s 1 a u g h t e r 9 hexose monophosphate c o n t e n t at 6h p o s t s l a u g h t e r 10 * * * } * * } * s i g n i f i c a n t a t the 0.1, 1 and 5% l e v e l of p r o b a b i l i t y r e s p e c t i v e l y T a b l e 27: C o r r e l a t i o n m a t r i x f o r p a r a m e t e r s s t u d i e d f o r c a r c a s s e s s h o c k e d w i t h 70V ( 4 0 s - 1 ) f o r 60s ( S t u d y T w o ) 1 TMT MT G l y c o g e n OATP 2 ATP 6 ATP OHMP 2HMP 6HMP TMT 2 .581* .244 . 593* -.596* -.528* .040 -.442 -.447 MT 3 .066 -.119 .411 -.162 .587* -.204 -.724** -.659* G l y c o g e n . 334 -. 168 .617* .320 . 344 -.088 .435 .434 OATP 4 -.636* .279 -.203 -.150 -.190 .026 -.373 -.174 2 ATP ^  .184 . 572* .318 .471 . 342 -.030 .425 . 365 6 ATP 6 .181 .011 .770** -.121 .202 -.091 .687** .965** OHMP7 .716* -.253 . 706** -.603 .050 .630* -.056 .013 2 HMP 8 .364 -.225 .506 -.393 -.189 . 557* .788** .741** 6 HMP 9 . 307 -.200 .731** -.300 .040 .718** .748** . 896*** 2 3 4 5 6 7 8 9 10 v a l u e s below d i a g o n a l were o b t a i n e d f o r the B i c e p s f e m o r i s ; v a l u e s f o r the P e c t o r a l i s  maj or l i e above the d i a g o n a l ; a l l v a l u e s based on n = 10 time to maximum t e n s i o n maximum i s o m e t r i c t e n s i o n d e v e l o p e d ATP c o n t e n t at Oh p o s t s l a u g h t e r ATP c o n t e n t at 2h p o s t s l a u g h t e r ATP c o n t e n t at 6h p o s t s l a u g h t e r hexose monophosphate c o n t e n t at Oh hexose monophosphate c o n t e n t a t 2h hexose monophosphate c o n t e n t at 6h * * * > * * } * s i g n i f i c a n t at the 0.1, p o s t s l a u g h t e r p o s t s l a u g h t e r p o s t s l a u g h t e r 1 and 5% l e v e l of p r o b a b i l i t y r e s p e c t i v e l y T a b l e 28: C o r r e l a t i o n m a t r i x f o r p a r a m e t e r s ( 4 0 s ~ l ) f o r 120 s ( S t u d y T w o ) 1 s t u d i e d f o r c a r c a s s e s s h o c k e d w i t h 70 V TMT MT G l y c o g e n OATP 2 ATP 6 ATP OHMP 2HMP 6 HMP TMT 2 .414 -.052 . 709** .048 . 267 . 238 . 302 . 122 MT 3 .322 -.331 .362 .500 -.272 -.106 .567* -.383 G l y c o g e n . 667* .444 .186 .034 . 664* . 727 * .877*** .773** OATP 4 .312 .320 .339 .118 .392 .617 .060 .448 2 ATP 5 -.057 -.333 -.171 -.179 .042 . 122 .162 -.041 6 ATP 6 .182 .220 .152 .198 -.358 .872*** .57 1* .935*** OHMP7 .127 .155 . 431 .304 .037 -.698** . 588* .933*** 2HMP 8 .632* .254 .862*** .106 -.084 .213 .112 .700** 6 HMP ^  .636* . 302 .964*** .172 -.032 .116 . 346 .928*** * 1 v a l u e s below d i a g o n a l were o b t a i n e d f o r the B i c e p s f e m o r i s ; v a l u e s f o r the P e c t o r a l i s  maj or l i e above the d i a g o n a l ; a l l v a l u e s based on n = 10 2 time to maximum t e n s i o n 3 maximum i s o m e t r i c t e n s i o n d e v e l o p e d 4 ATP c o n t e n t at Oh p o s t s l a u g h t e r 5 ATP c o n t e n t at 2h p o s t s l a u g h t e r 6 ATP c o n t e n t at 6h p o s t s l a u g h t e r 7 hexose monophosphate c o n t e n t at Oh p o s t s l a u g h t e r 8 hexose monophosphate c o n t e n t at 2h p o s t s l a u g h t e r 9 hexose monophosphate c o n t e n t a t 6h p o s t s l a u g h t e r 10 * * * } * * f * s i g n i f i c a n t at the 0.1, 1 and 5% l e v e l of p r o b a b i l i t y r e s p e c t i v e l y T a b l e 29: C o r r e l a t i o n m a t r i x f o r p a r a m e t e r s s t u d i e d f o r c a r c a s s e s s h o c k e d w i t h 140V ( 4 0 s - 1 ) f o r 60s ( S t u d y T w o ) 1 TMT MT G l y c o g e n OATP 2 ATP 6 ATP OHMP 2HMP 6 HMP TMT 2 .143 -.202 .006 -.341 -.291 -.201 -. 174 -.238 MT 3 -.121 -.196 -.488 .021 -.239 -.253 -.077 -.337 G l y c o g e n . 243 .511 -.114 .079 .448 . 325 .486 .478 OATP 4 .367 .579* .738** .405 .217 .580* -.364 .207 2 ATP 5 .301 .443 . 545* . 568* . 340 .429 -.039 .098 6 ATP 6 .247 .052 . 566* .207 .429 .116 -.309 .948*** OHMP7 .772** -.190 .438 .311 . 105 .491 .437 .051 2 HMP 8 .145 .045 .521 .077 -.133 .543* .509 -.340 6 HMP ^  .276 .390 .718** .426 .513 . 646* .476 .745** 1 v a l u e s below d i a g o n a l were o b t a i n e d f o r the B i c e p s f e m o r i s ; v a l u e s f o r the P e c t o r a l i s  maj or l i e above the d i a g o n a l ; a l l v a l u e s based on n = 10 2 time to maximum t e n s i o n 3 maximum i s o m e t r i c t e n s i o n d e v e l o p e d 4 ATP c o n t e n t at Oh p o s t s l a u g h t e r 5 ATP c o n t e n t at 2h p o s t s l a u g h t e r 6 ATP c o n t e n t at 6h p o s t s l a u g h t e r 7 hexose monophosphate c o n t e n t at Oh p o s t s l a u g h t e r 8 hexose monophosphate c o n t e n t at 2h p o s t s l a u g h t e r 9 hexose monophosphate c o n t e n t a t 6h p o s t s l a u g h t e r 10 * * * } * * } * s i g n i f i c a n t at the 0.1, 1 and 5% l e v e l of p r o b a b i l i t y r e s p e c t i v e l y T a b l e 30: C o r r e l a t i o n m a t r i x f o r p a r a m e t e r s s t u d i e d f o r c a r c a s s e s s h o c k e d w i t h 140V ( 4 0 s - 1 ) f o r 120s ( S t u d y T w o ) 1 TMT MT Gl y c o g e n OATP 2 ATP 6 ATP OHMP 2HMP 6 HMP TMT 2 .064 -.035 .661* -.006 -.427 -.175 -.360 -.501 MT 3 .193 -.321 .539* .398 -.146 .088 -.642* -.477 G l y c o g e n .011 .177 -. 105 .035 -.386 -.602* .114 -.121 OATP 4 .229 .703** .337 .019 -.282 -.069 -.417 -.815** 2 ATP 5 .216 .421 -.026 .091 -.403 -.323 -.121 -. 129 6ATP 6 .260 .510 .022 .499 .764** .685** .477 .627** OHMP7 .164 . 346 .473 . 351 -.413 -.220 -.057 .446 2 HMP ^  .221 .389 -.185 .067 .281 .280 .368 .436 6 HMP ^  .143 -.449 -.218 -.439 .136 .031 -.337 . 350 1 2 3 4 5 6 7 8 9 10 v a l u e s below d i a g o n a l were o b t a i n e d f o r the B i c e p s f e m o r i s major l i e above the d i a g o n a l ; a l l v a l u e s based on n=10 time to maximum t e n s i o n maximum i s o m e t r i c t e n s i o n d e v e l o p e d ATP c o n t e n t at Oh p o s t s l a u g h t e r ATP c o n t e n t at 2h p o s t s l a u g h t e r ATP c o n t e n t at 6h p o s t s l a u g h t e r hexose monophosphate c o n t e n t at Oh hexose monophosphate c o n t e n t at 2h hexose monophosphate c o n t e n t a t 6h * * * > * * } * s i g n i f i c a n t at the 0.1, v a l u e s f o r the P e c t o r a l i s p o s t s l a u g h t e r p o s t s l a u g h t e r p o s t s l a u g h t e r 1 and 5% l e v e l of p r o b a b i l i t y r e s p e c t i v e l y - 203 -APPENDIX 4: ANOVA Study One The f o l l o w i n g a b r e v i a t i o n s were used f o r the computer outp i n c l u d e d i n t h i s a p p e n d i x : MTW - maximum i s o m e t r i c t e n s i o n , P e c t o r a l i s maj or MTR - maximum i s o m e t r i c t e n s i o n , B i c e p s f e m o r i s TW - time to maximum t e n s i o n , P e c t o r a l i s maj or TR - time to maximum t e n s i o n , B i c e p s f e m o r i s FTS - f i b r e t e n s i l e s t r e n g t h , P e c t o r a l i s maj o r SHKG - s h e a r f o r c e v a l u e s , k g, P e c t o r a l i s maj or V A R I A B L E N A M E S - MTW MTR TW TR F T S S H K G D A T A FORMAT ( 4 I 2 . 4 X . 2 F 6 . 2 . 3 F 6 . 1 . 2 F 6 . 3 I E L E C T R I C A L S T I M U L A T I O N S T U D Y I S O U R C E T R E A T 1 C / E X P 1 V O L T 1 P U L S E 1 V X P E R R O R T O T A L 1 3 3 4 3 51 A N A L Y S I S OF V A R I A N C E - MTW S U M SO M E A N SO 7 5 7 4 . 8 4 6 3 2 . 9 1 1 2 3 . 0 9 5 S . 7 3 8 6 2 . 17 1 5 8 8 9 . 2 3 4 6 4 . 9 4 6 . 8 5 4 6 3 2 . 9 1 1 2 3 . 0 3 1 8 . 9 1 2 8 7 . 3 9 3 6 9 . 5 1 ERROR F - V A L U E 2 . 5 6 2 4 1 2 . 5 3 8 3 . 0 3 9 1 0 . 8 6 3 0 6 0 . 7 7 7 7 6 0 . 2 2 1 9 7 E - 0 1 0 . 9 7 3 I 9 E - 0 3 O . 8 8 4 3 0 E - 0 1 0 . 4 S 7 5 G 0 . 5 1 2 8 6 G R A N D M E A N 5 5 . 2 9 8 O 4> S T A N D A R D D E V I A T I O N OF V A R I A B L E 1 I S F R E Q U E N C I E S . M E A N S . S T A N D A R D D E V I A T I O N S T R E A T 1 . F R E Q U E N C I E S 12 MN MTW 7 2 . 5 3 SO MTW 1 9 . 6 0 5 5 1 . 0 6 24 . 6 7 5 5 0 . 5 4 2 1 . 1 7 5 3 8 . 0 6 2 0 . 2 1 5 3 9 . 6 7 1 6 . 6 3 5 4 5 . 5 8 15 . 6 6 5 6 6 . 4 5 13 . 18 5 5 4 . 3 1 2 5 . 8 0 9 . . . 5 5 5 . 3 7 9 . 4 6 0 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 5 2 4 2 . 9 9 8 8 3 . 0 9 7 0 3 . 1 6 3 6 3 . 2 1 8 8 3 . 2 6 3 2 3 . 2 9 9 1 3 . 3 2 8 4 T H E R E A R E 3 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 4 . 5 . 6 . 3 . 2 , 8 . 9 ) ( 5 . 6 . 3 . 2 . 8 . 9 . 7 ) ( 3 . 2 , 8 . 9 , 7 . 1 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T 2 . 8 5 2 3 . 4 3 3 3 . 7 8 0 4 . 0 2 6 4 . 2 1 8 A L P H A = 0 . 0 5 4 . 3 7 3 4 . 5 0 4 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE THAN THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF T H A T S I Z E ) WHICH ARE L I S T E D A S F O L L O W S 5 , 3 . 6 . 2 . 9 . 1 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T , A L P H A = 0 . 0 5 4 . 6 1 7 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 4 . 5 . 6 . 3 . 2 . 8 , 9 . 7 ) ( S . 6 . 3 , 2 . 8 . 9 , 7 . I ) T I M E FOR M U L T I P L E R A N G E T E S T S I S O . 3 9 8 3 E - 0 I S E C O N D S . 1 C / E X P . 1 . . .2. . F R E Q U E N C I E S 12 4 0 MN MTW 7 2 . 5 3 S O . 13 SD MTW 1 9 . 6 0 1 9 . 3 5 1 V O L T . 1 2 . 3 F R E Q U E N C I E S 12 2 0 2 0 MN MTW 7 2 . 5 3 4 4 . 8 3 5 5 . 4 3 SD MTW 1 9 . 6 0 2 0 . 1 1 1 7 . 4 6 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 5 2 4 2 9 9 B B T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N T H E S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E O A S F O L L O W S ( 2 . 3 ) ( D S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T , A L P H A = 0 . 0 5 2 . 8 5 2 3 . 4 3 3 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R DF WHICH D I F F E R B v MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 2 . 3 ) ( 1 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T , A L P H A = 0 . 0 5 3 . 4 3 3 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E O A S F O L L O W S ( 2 , 3 ) ( 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 5 7 2 9 E - 0 2 S E C O N D S . 1 P U L S E 1 . . . 2 J . . . 4 . 5 F R E Q U E N C I E S 12 10 10 10 10 MN MTW 7 2 . 5 3 4 8 . 3 2 5 8 . 5 0 4 6 . 1 8 4 7 . 5 2 SD MTW 1 9 . 6 0 1 9 . 7 0 1 8 . 6 2 2 3 . 4 7 1 5 . 2 0 D U N C A N ' S M U L T I P L E R A N G E T E S T , R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 5 2 4 2 . 9 9 8 8 3 . 0 9 7 0 3 . 1 6 3 6 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO FOR A S U B S E T OF T H A T S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 4 . 5 , 2 . 3 ) ( 3 . 1 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 5 2 3 . 4 3 3 3 . 7 8 0 4 . 0 2 6 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO FOR A S U B S E T OF T H A T S I Z E ) W H I C H A R E L I S T E O A S F O L L O W S ( 4 . 5 . 2 , 3 ) ( 3 . 1 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 4 . 0 2 6 P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E P A I R OF WHICH D I F F E R B Y MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF T H A T S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 4 . 5 . 2 . 3 ) ( 3 . 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 7 7 2 1 E - 0 2 S E C O N D S . 1 V X P . . . 1 . . . 2 . . 1 . F R E Q U E N C I E S 12 O MN MTW 7 2 5 3 O . O SO MTW 1 9 . 6 0 0 . 0 . . 2 . F R E Q U E N C I E S O 5 MN MTW 0 . 0 5 1 . 0 6 SD MTW 0 . 0 2 4 . 6 7 . . 3 . F R E Q U E N C I E S O 5 MN MTW 0 . 0 4 5 . 5 8 SD MTW 0 . 0 1 5 . 6 6 . . . 3 . . . 4 . . . 5 0 0 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 5 5 5 5 0 . 5 4 3 8 . 0 6 3 9 . 6 7 2 1 . 1 7 2 0 . 2 1 1 6 . 6 3 5 5 5 6 6 . 4 5 5 4 . 3 1 5 5 . 3 7 1 3 . 18 2 5 . 8 0 9 . 4 G 0 E M P T Y C E L L S H A V E B E E N D E L E T E D FROM M U L T I P L E RANGE T E S T S ; ' NON E M P T Y C E L L S H A V E B E E N R E N U M B E R E D . THE F I R S T NON EMPTY C E L L B E I N G L A B E L L E D 1 AND SO O N . D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 5 2 4 2 . 9 9 8 8 3 . 0 9 7 0 3 . 1 6 3 6 3 . 2 1 8 8 3 . 2 6 3 2 3 . 2 9 9 1 3 . 3 2 8 4 T H E R E A R E 3 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 4 . 5 . 6 , 3 . 2 . 8 . 9 ) ( 5 . 6 . 3 , 2 . 8 . 9 . 7 ) ( 3 . 2 . 8 . 9 . 7 . 1) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A ' 0 . 0 5 2 . 8 5 2 3 . 4 3 3 3 . 7 8 0 4 . 0 2 6 4 . 2 1 8 4 . 3 7 3 4 , 5 0 4 4 . 6 1 7 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R B v MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 4 , 5 . 6 . 3 . 2 . 8 . 9 . 7 ) ( 6 . 3 . 2 . 8 . 9 . 7 . 1) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T , A L P H A = 0 . 0 5 4 . 6 17 i T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 4 , 5 . 6 . 3 . 2 . 8 , 9 . 7 ) ( 5 , 6 . 3 , 2 , 8 , 9 . 7 , 1) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 1 3 1 1 E - 0 1 S E C O N D S A N A L Y S I S OF V A R I A N C E S O U R C E S U M SO M E A N SO ERROR F - V A L U E PROB T R E A T 1 C / E X P 1 V O L T 1 P U L S E 1 V X P E R R O R T O T A L 8 1 1 3 3 4 3 S 1 9 7 G 7 . 3 3 4 8 9 . 7 5 4 3 . 9 1 4 6 3 8 . 7 1 0 9 5 . 0 2 5 5 9 1 . 3 5 3 5 8 1 2 2 0 . 9 3 4 8 9 . 7 5 4 3 . 9 1 1 5 4 6 . 2 3 6 4 . 9 9 5 9 5 . 1 4 2 . 0 5 15 5 . 8 6 3 8 0 . 9 1 3 9 2 2 . 5 9 8 1 0 . 6 1 3 2 9 0 . 6 2 5 8 0 E - 0 1 0 . I 9 7 4 7 E - 0 1 O . 3 4 4 4 2 0 . 6 4 5 0 0 E - 0 1 0 . 6 1 0 1 0 o G R A N D M E A N 5 6 . 0 4 0 S T A N O A R D D E V I A T I O N OF V A R I A B L E 2 I S F R E Q U E N C I E S . M E A N S . S T A N D A R D D E V I A T I O N S T R E A T . 1 . F R E Q U E N C I E S 12 MN MTR 7 I . 0 0 SD MTR 2 9 . 8 4 5 4 2 . 6 6 2 1 . 9 9 5 6 4 . 6 4 2 8 . 9 3 5 3 8 . 17 21 . 7 8 5 4 5 . 9 9 2 0 . 8 8 5 33 . 8 2 2 1 . 4 5 5 7 1 . 6 5 2 t . 6 3 5 5 8 . 15 9 . 6 0 4 5 5 7 . 3 4 2 6 . 4 0 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 5 2 4 2 . 9 9 8 8 3 . 0 9 7 0 3 . 1 6 3 6 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S , NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D AS F O L L O W S ( 6 . 4 . 2 , 5 . 9 , 8 , 3 ) ' ( 4 , 2 , 5 . 9 . 8 . 3 . 1 . 7 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 5 2 3 . 4 3 3 3 . 7 8 0 4 . 0 2 6 4 . 2 1 8 4 . 3 7 3 4 . 0 0 4 4 . G 1 7 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 6 , 4 . 2 . 5 , 9 . 8 . 3 . 1 . 7 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 4 6 1 7 T H E R E A R E 1 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 6 , 4 . 2 . 5 . 9 . 8 , 3 . 1 . 7 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S O 1 0 4 9 E - 0 1 S E C O N D S . 1 C / E X P . 1 . . . 2 . . F R E Q U E N C I E S 12 4 0 MN MTR 7 1 . 0 0 5 1 . 5 5 SD MTR 2 9 . 8 4 2 3 . 7 9 1 V O L T . 1 . . 2 . . 3 . F R E Q U E N C I E S : 12 2 0 2 0 MN MTR 7 1 . 0 0 4 7 . 8 7 5 5 . 2 4 SD MTR 2 9 . 8 4 2 4 . 0 1 2 3 . 5 9 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 5 2 4 2 . 9 9 8 8 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 2 . 3 ) ( 3 . 1 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L • S T E S T . A L P H A = 0 . 0 5 2 . B 5 2 3 . 4 3 3 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R B Y MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 2 . 3 ) ( 3 . 1) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 3 . 4 3 3 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE THAN THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D AS F O L L O W S ( 2 . 3 ) ( 3 . 1 ) T I M E FOR M U L T I P L E R A N G E 1 E S I S I S O 5 8 9 8 E - 0 2 S E C O N D S . 1 P U L S E 1 2 :> - l •> F R E Q U E N C I E S 12 10 10 10 10 MN MTR 7 1 . 0 0 3 8 . 2 4 6 8 . 1 4 4 8 . 1G 5 1 . 6 7 SD MTR 2 9 . 8 4 2 1 . 0 0 2 4 . 3 G 1 9 . 0 5 2 3 . 2 3 D U N C A N ' S M U L T I P L E R A N G E T E S T , R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 5 2 4 2 . 9 9 8 8 3 0 9 7 0 3 . 1 6 3 6 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FDR A S U B S E T OF T H A T S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 2 , 4 . 5 ) ( 4 . 5 . 3 . 1 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 5 2 3 . 4 3 3 3 . 7 8 0 4 . 0 2 6 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R B Y MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 2 . 4 , 5 ) ( 4 , 5 . 3 . 1 ) S T U D E N T I Z E D RANGE FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 4 . 0 2 6 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 2 , 4 . 5 . 3 ) ( 4 . 5 . 3 . 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 7 4 0 9 E - 0 2 S E C O N D S . 1 V X P . . 1 . F R E Q U E N C I E S MN MTR SD MTR . . 2 . F R E Q U E N C I E S MN MTR S D M T R . . 3 . F R E Q U E N C I E S MN MTR SD MTR 12 7 1 OO 2 9 . 8 4 0 0 . 0 0 . 0 0 0 . 0 0 . 0 . . . 2 O 0 . 0 0 . 0 5 4 2 . 6 6 21 . 9 9 5 3 3 . 8 2 21 . 4 5 . 3 O 0 . 0 0 . 0 5 6 4 . 6 4 2 8 . 9 3 5 7 1 . 6 5 21 . 6 3 • 4. O 0 . 0 0 . 0 5 3 8 . 17 2 1 . 7B 5 5 8 . 15 9 . 6 0 4 . . . 5 O O O 0 . 0 5 4 5 . 9 9 2 0 . 8 8 5 5 7 . 3 4 2 6 . 4 0 E M P T Y C E L L S H A V E B E E N D E L E T E D FROM M U L T I P L E RANGE T E S T S : ' NON E M P T Y C E L L S H A V E B E E N R E N U M B E R E D . THE F I R S T NON E M P T Y C E L L B E I N G L A B E L L E D 1 AND SO O N . D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 5 2 4 2 . 9 9 8 8 3 . 0 9 7 0 3 . 1 6 3 6 3 . 2 1 8 8 3 . 2 6 3 2 3 2 9 9 1 3 . 3 2 8 4 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S DF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF T H A T S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S 2 . 5 . 9 . 8 . S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T , A L P H A ^ O . O G 2 . 8 5 2 3 . 4 3 3 3 . 7 8 0 4 . 0 2 6 4 . 2 1 8 4 . 3 7 3 4 . 5 0 4 4 . 6 1 7 T H E R E A R E 1 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S , NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF T H A T S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 6 , 4 , 2 . 5 , 9 . 8 . 3 . 1 . 7 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T , A L P H A = 0 . 0 5 4 6 17 T H E R E A R E 1 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 6 , 4 , 2 . 5 . 9 . 8 . 3 . 1 , 7 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 1 1 1 3 E - 0 1 S E C O N D S . S O U R C E T R E A T 1 C / E X P 1 V O L T I P U L S E 1 V X P E R R O R T O T A L 1 1 3 3 4 3 51 A N A L Y S I S OF V A R I A N C E SUM SO 0 . 2 9 4 4 0 E * 0 6 O . 2 4 3 4 1E+0G 7 5 7 9 . 0 2 8 7 0 8 . 1 4 6 9 9 . O . 3 6 6 6 3 E + 0 6 0 . 6 6 1 0 3 E + 0 6 M E A N SO 3 6 8 0 0 . O 2 4 3 4 1 E + 0 6 7 5 7 9 . 0 9 5 6 9 . 5 4 8 9 9 . 5 8 5 2 6 . 3 ERROR F - V A L U E 4 . 3 1 6 0 2 8 . 5 4 8 O . 8 8 8 9 0 I . 1 2 2 4 0 . 5 7 4 6 4 7 0 8 2 0 E - 0 3 3 2 6 8 6 E - 0 5 3 5 1 0 4 3 5 0 6 0 6 3 4 7 9 I I—1 O I G R A N D M E A N S T A N D A R D D E V I A T I O N OF V A R I A B L E 3 I S F R E Q U E N C I E S . M E A N S . S T A N D A R D D E V I A T I O N S T R E A T F R E Q U E N C I E S MN TW SD TW 1 . 12 2 7 4 . 1 133 . 0 5 9 4 . 6 6 4 4 . 3 6 5 1 1 2 . 7 7 0 . 0 7 5 1 1 1 . 5 54 . 77 5 7 2 . 8 2 2 0 . 2 8 5 8 8 . 5 4 3 0 . 7 6 5 108 . 5 3 5 . 2 1 5 2 0 0 O 17 1 . 8 5 104 . 9 3 1 . 4 7 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 5 2 4 2 . 9 9 8 8 3 . 0 9 7 0 3 . 1 6 3 6 3 . 2 1 8 8 3 . 2 6 3 2 3 . 2 9 9 1 3 . 3 2 8 4 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S , NO P A I R OF WHICH D I F F E R BY MORE T H A N 1 HE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 5 . G . 2 . 9 . 7 . 4 . 3 . 8 ) ( 8 . 1 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 5 2 3 . 4 3 3 3 . 7 8 0 4 . 0 2 6 4 . 2 1 8 4 . 3 7 3 4 . 5 0 4 4 . 6 1 7 T H E R E A R E . 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BV MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S I 5 , 6 , 2 , 9 . 7 . 4 . 3 . 8 ) ( 8 . 1 ) 5 T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T , A L P H A = 0 . 0 5 4 . 6 17 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE THAN THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 5 . 6 , 2 . 9 . 7 . 4 . 3 . 8 ) ( 8 . 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 1 1 0 9 E - 0 1 S E C O N D S . 1 C / E X P . 1 . . . 2 . . F R E Q U E N C I E S 12 4 0 MN TW 2 7 4 . 1 1 1 1 7 SD TW 1 3 3 . 0 7 5 . 6 0 1 V O L T . . 1 . . . 2 . . . 3 . F R E Q U E N C I E S , 12 2 0 2 0 MN TW 2 7 4 . 1 9 7 . 9 4 1 2 5 . 5 SD TW 1 3 3 . 0 4 9 . 4 1 9 4 . 3 0 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 1 8 5 2 4 2 . 9 9 8 8 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S FOLLOWS ( 2 . 3 ) ( 1 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E 5 T . A L P H A = 0 . 0 5 2 . 8 5 2 3 . 4 3 3 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) WHICH A R E L I S T E O A S F O L L O W S ( 2 , 3 ) ( 1 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 0 5 3 4 3 3 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE THAN THE S H O R T E S T S I G N I F I C A N T R A N G E TOR A S U B S E T OF THAT S I Z E I W H I C H ARE L I S T E D A S F O L L O W S ( 2 . 3 ) ( 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 1 7 7 1 E - 0 1 S E C O N D S . 1 P U L S E . . . 1 . . . 2 . . . 3 . . . 4 . . . 5 F R E Q U E N C I E S 12 10 10 10 10 MN TW 2 7 4 1 9 1 6 0 1 1 0 . 6 1 5 5 . 8 8 8 . 8 4 SD TW 1 3 3 . 0 3 6 . 1 3 5 2 . 3 3 1 2 8 . 9 3 0 . 1 4 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 5 2 4 2 . 9 9 8 8 . 3 . 0 9 7 0 3 . 1 6 3 6 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E O A S FOLLOWS ( 5 . 2 . 3 . 4 ) ( 1 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T , A L P H A = 0 . 0 5 2 . 8 5 2 3 . 4 3 3 3 . 7 8 0 4 . 0 2 6 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S DF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N T H E S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 5 , 2 . 3 . 4 ) ( 1) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 4 . 0 2 6 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 5 . 2 . 3 . 4 ) ( 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 7 2 1 4 E - 0 2 S E C O N O S 1 V X P . . . 1 . . . 2 . . 1 . F R E Q U E N C I E S 12 0 MN TW. 2 7 4 . 1 0 . 0 SD TW 1 3 3 . 0 0 . 0 . . 2 . F R E Q U E N C I E S 0 5 MN TW 0 . 0 9 4 . 6 6 S D TW 0 . 0 4 4 . 3 6 . . 3 . F R E Q U E N C I E S O 5 MN TW 0 . 0 8 8 . 5 4 S D TW 0 . 0 3 0 . 7 6 . 3 . . . 4 . . . 5 0 0 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 5 5 5 1 1 2 . 7 1 1 1 . 5 7 2 . 8 2 7 0 . 0 7 5 4 . 7 7 2 0 . 2 8 5 5 5 1 0 8 . 5 2 0 0 . O 1 0 4 . 9 3 5 . 2 1 17 1 . 8 3 1 . 4 7 E M P T Y C E L L S H A V E B E E N D E L E T E D FROM M U L T I P L E R A N G E T E S T S NON E M P T Y C E L L S H A V E B E E N R E N U M 6 E R E 0 , THE F I R S T NON EMPTY C E L L B f . I N G L A B E L L E D < AND SO O N . D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR ALP1IA»0.05 2 . 8 5 2 4 2 . 9 9 8 8 3 . 0 9 7 0 3 . 1 6 3 6 3 . 2 1 8 8 3 . 2 G 3 2 3 . 2 9 9 1 3 . 3 2 8 4 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T DF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 5 . 6 , 2 . 9 . 7 . 4 . 3 . 8 ) ( 8 . 1 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 5 2 3 . 4 3 3 3 . 7 8 0 4 . 0 2 6 4 . 2 1 8 4 . 3 7 3 4 . 5 0 4 4 . 6 1 7 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S , NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 5 , 6 . 2 , 9 . 7 , 4 , 3 . 8 ) ( , 8 . 1) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T , A L P H A = 0 . 0 5 4 6 1 7 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S DF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 5 , 6 . 2 . 9 . 7 , 4 . 3 . 8 ) ( 8 , 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 1 2 4 6 E - 0 1 S E C O N D S . I CO I A N A L Y S I S OF V A R I A N C E S O U R C E SUM 5 0 M E A N SO ERROR F - V A L U E T R E A T 1 C / E X P 1 V O L T 1 P U L S E 1 V X P E R R O R T O T A L 1 3 3 4 3 51 0 . 3 2 5 4 7 E * 0 6 O . 2 4 9 9 3 E + 0 6 7 0 8 6 . 2 2 2 4 3 1 . 4 6 0 2 7 . O . 8 7 5 4 9 E + 0 6 O 1 2 0 1 0 E + 0 7 4 0 6 8 4 . 0 . 2 4 9 9 3 E * 0 6 7 0 8 6 . 2 7 4 7 6 . 9 1 5 3 4 2 . 2 0 3 6 0 . I 9 9 8 2 1 2 . 2 7 5 0 . 3 4 8 0 4 O . 3 6 7 2 3 O . 7 5 3 5 4 G 9 6 6 9 F - 0 1 1 0 B 5 2 E - 0 2 5 5 8 3 I 7 7 7 0 0 5 2 6 3 6 G R A N D M E A N 2 0 5 . 5 2 S T A N D A R D D E V I A T I O N OF V A R I A B L E 4 I S 1 5 3 . 4 5 F R E Q U E N C I E S . M E A N S . S T A N D A R D D E V I A T I O N S T R E A T F R E Q U E N C I E S 12 5 5 5 5 5 5 5 5 MN TR 3 3 2 . 1 2 3 0 . 0 1 4 8 . 7 1 6 7 . 5 1 7 7 . 2 1 0 7 . 1 1 2 1 . 6 2 3 6 5 1 5 1 . 7 SD TR 2 1 8 . 4 1 2 5 . 1 1 1 7 . 3 1 1 2 . 8 1 1 2 . 9 4 3 . 5 0 4 2 . 7 9 1 4 4 . 6 9 0 . 2 9 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 5 2 4 2 . 9 9 8 8 3 . 0 9 7 0 3 . 1 6 3 6 . 3 . 2 1 8 8 3 . 2 G 3 2 3 . 2 9 9 1 3 . 3 2 8 4 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R B Y MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 6 . 7 . 3 , 9 . 4 . 5 . 2 . 8 ) ( 4 . 5 . 2 . 8 . 1) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 5 2 3 . 4 3 3 3 . 7 8 0 4 0 2 6 4 2 1 8 4 . 3 7 3 4 5 0 4 4 . 6 1 7 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R B Y MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D AS F O L L O W S ( 6 . 7 . 3 , 9 . 4 . 5 . 2 . 8 . 1) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T , A L P H A = 0 . 0 5 4 . 6 1 7 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R B Y MORE T H A N T H E S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 6 , 7 , 3 . 9 . 4 . 5 . 2 . 8 . 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 1 0 4 8 E - 0 1 S E C O N D S . 1 C / E X P . 1 . . . 2 F R E Q U E N C I E S 12 4 0 MN TR 3 3 2 . 1 t 6 7 5 SO TR 2 1 8 . 4 1 0 4 . 5 1 V O L T . . 1 . 2 . 3 F R E Q U E N C i E S 12 2 0 2 0 MN TR 3 3 2 . 1 1 8 0 . 9 1 5 4 . 2 SD TR 2 1 8 . 4 1 1 1 . 9 9 7 . 7 0 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 5 2 4 2 . 9 9 8 8 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R B Y MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 3 , 2 ) ( 1 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T , A L P H A = 0 . 0 5 2 . 8 5 2 3 . 4 3 3 T H E R E A R E 2 HOMOGENEOUS S U B S E 1 S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R B Y MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D AS F O L L O W S ( 3 . 2 ) < 1 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T , A L P H A = 0 . 0 5 3 . 4 3 3 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 3 . 2 ) ( 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 6 1 7 2 E - 0 2 S E C O N D S . 1 P U L S E . . . t . . . 2 . . . 3 . . . 4 . . . 5 F R E Q U E N C I E S 12 10 10 10 10 MN TR 3 3 2 . 1 1 6 8 . 6 1 3 5 2 2 0 2 . 0 1 6 4 . 5 SD TR 2 1 8 . 4 1 0 9 . 5 8 4 . 4 8 1 2 7 . 6 9 7 . 3 1 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A ' O . O S 2 . 8 5 2 4 2 . 9 9 8 8 3 . 0 9 7 0 3 . 1 6 3 6 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N I S . NO P A I R OF WHICH D I F F E R BY MORE T H A N T H E S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF T H A T S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 3 . 5 . 2 , 4 ) ( D S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T , A L P H A = 0 . 0 5 2 . B 5 2 3 . 4 3 3 3 . 7 8 0 4 . 0 2 6 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S , NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 3 . 5 . 2 . 4 ) ( D S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 4 . 0 2 6 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N T H E S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D AS F O L L O W S ( 3 . 5 . 2 . 4 ) ( 5 , 2 . 4 . 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S O . 7 7 8 6 E - 0 2 S E C O N D S . 1 V X P . . . 1 . . . 2 . . . 3 . . . 4 . . . 5 . . 1 . F R E Q U E N C I E S 12 0 O 0 0 MN TR' 3 3 2 . 1 0 . 0 0 . 0 0 . 0 0 . 0 SD TR 2 1 8 . 4 0 . 0 0 . 0 0 0 0 . 0 . . 2 . F R E Q U E N C I E S 0 5 5 5 5 MN TR 0 . 0 2 3 0 . 0 1 4 8 . 7 1 6 7 . 5 1 7 7 . 2 SD TR 0 . 0 . . 3 . F R E Q U E N C I E S 0 MN TR 0 . 0 SD TR 0 . 0 1 2 5 . 1 1 1 7 . 3 5 5 107 I 12 1 . 6 4 3 . 5 0 4 2 . 7 9 1 1 2 . 8 1 1 2 . 9 5 5 2 3 6 . 5 1 5 1 . 7 1 4 4 . 6 9 0 . 2 9 E M P T Y C E L L S H A V E B E E N D E L E T E D FROM M U L T I P L E RANGE T E S T S ; ' NON EMPTY C E L L S H A V E B E E N R E N U M B E R E D . THE F I R S T NON E M P T Y C E L L B E I N G L A B E L L E D 1 AND SO O N . D U N C A N ' S M U L T I P L E R A N G E T E S T , R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 5 2 4 2 . 9 9 8 8 3 . 0 9 7 0 3 . 1 6 3 6 3 . 2 1 8 8 3 . 2 6 3 2 3 . 2 9 9 1 3 . 3 2 8 4 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 6 . 7 . 3 . 9 . 4 , 5 . 2 . 8 ) ( 4 , 5 , 2 . 8 . 1) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 5 2 3 . 4 3 3 3 . 7 B O 4 . 0 2 6 4 . 2 1 8 4 . 3 7 3 4 . 5 0 4 4 . 6 1 7 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N T H E S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 6 , 7 . 3 , 9 . 4 . 5 . 2 . 8 . 1) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T , A L P H A = 0 . 0 5 4 . 6 1 7 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S , NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 6 . 7 . 3 . 9 . 4 . 5 . 2 . 8 . 1) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 1 0 8 9 E - 0 1 S E C O N D S . A N A L Y S I S OF V A R I A N C E S O U R C E SUM SO M E A N SO ERROR F - V A L U E T R E A T 1 C / E X P 1 V O L T 1 P U L S E 1 V X P E R R O R T O T A L 8 1 1 3 3 4 3 5 I O . 4 1 7 5 8 E + 0 6 0 . 3 3 7 3 2 E + 0 6 4 0 3 . 2 3 7 6 1 2 3 . 3 7 2 7 . 5 O . 1 4 9 4 8 E + 0 7 O . 1 9 1 2 4 E + 0 7 5 2 1 9 7 . O . 3 3 7 3 2 E + 0 6 4 0 3 . 2 3 2 5 3 7 4 . 1 2 4 2 . 5 3 4 7 6 4 . 1 5 0 1 5 9 . 7 0 3 4 O . 1 1 5 9 9 E -0 . 7 2 9 9 1 0 . 3 5 7 4 2 E - O 1 - 0 1 1 8 5 0 9 3 2 7 0 3 E -9 1 4 7 4 5 3 9 8 1 9 9 0 8 2 G R A N D M E A N 1 1 1 2 . 8 S T A N D A R D D E V I A T I O N OF V A R I A B L E 5 I S 1 9 3 . 6 4 F R E Q U E N C I E S . M E A N S . S T A N D A R D D E V I A T I O N S T R E A T 1. F R E Q U E N C I E S 12 5 5 5 5 5 5 5 5 MN F T S 9 6 5 , 7 1 1 0 6 1 2 3 G . 1 1 2 0 1 1 7 9 . 1 1 1 9 12 1 4 . 1 1 3 2 . 1 1 5 0 . SD F T S 2 2 9 . 8 1 8 2 . 3 1 9 1 . 5 1 1 1 . 6 37 0 3 1 5 6 . 0 2 7 7 . 4 9 2 . 2 6 1 8 7 . 0 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 5 2 4 2 9 9 8 8 3 . 0 9 7 0 3 . 1 G 3 6 3 . 2 1 8 8 3 2 6 3 2 3 . 2 9 9 1 3 3 2 8 4 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 1 . 2 . 6 . 4 . 8 . 9 . 5 ) ( 2 , 6 . 4 . 8 . 9 . 5 . 7 . 3 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 5 2 3 . 4 3 3 3 . 7 8 0 4 . 0 2 6 4 . 2 1 8 4 . 3 7 3 4 . 5 0 4 4 . 6 1 7 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE THAN THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) WHICH ARE L I S T E D A S F O L L O W S ( 1 , 2 . 6 . 4 . 8 , 9 . 5 . 7 , 3 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 4 . 6 1 7 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 1 . 2 . 6 , 4 . 8 . 9 . 5 . 7 , 3 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 1 0 2 0 E - 0 1 S E C O N D S . 1 C / E X P . 1 . . . 2 . . F R E Q U E N C I E S 12 4 0 MN F T S 9 6 5 7 1 1 5 7 . SD F T S 2 2 9 . 8 1 5 9 . 6 1 V O L T . . 1 . 2 . . . 3 . F R E Q U E N C I E S 12 2 0 2 0 MN F T S 9 6 5 . 7 1 1 6 0 . 1 154 . S D F T S 2 2 9 . 8 1 4 2 . 9 1 7 8 . 5 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 5 2 4 2 . 9 9 8 8 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T F S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D AS F O L L O W S ( D ( 3 . 2 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 5 2 3 . 4 3 3 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) WHICH A R E L I S T E D A S F O L L O W S ( t ) ( 3 . 2 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 3 . 4 3 3 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) WHICH A R E L I S T E D A S F O L L O W S ( 1 ) ( 3 . 2 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S O . 6 0 2 9 E - 0 2 S E C O N D S . 1 P U L S E . . . 1 2 . . . 3 . . . 4 . . . 5 F R E Q U E N C I E S 12 10 10 10 10 MN F T S 9 G 5 . 7 1 1 1 2 . 1 2 2 5 . 1 1 2 6 1 1 6 5 . SD F T S 2 2 9 . 8 1 6 0 . 1 2 2 5 O 9 6 . 7 3 1 2 8 . 0 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 5 2 4 2 . 9 9 8 8 3 . 0 9 7 0 3 . 1 6 3 G T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 1 . 2 . 4 ) ( 2 . 4 . 5 , 3 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 5 2 3 . 4 3 3 3 . 7 8 0 4 . 0 2 6 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 1 . 2 . 4 , 5 ) ( 2 . 4 . 5 . 3 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 4 . 0 2 6 P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) WHICH A R E L I S T E D A S F O L L O W S ( 1 . 2 , 4 , 5 ) ( 2 , 4 . 5 , 3 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 8 7 G 3 E - 0 2 S E C O N D S . 1 V X P . . . 1 . . . 2 . . . 3 . 4 . . . 5 . . 1 . F R E Q U E N C I E S 12 0 0 0 0 MN F T S 9 6 5 . 7 0 . 0 0 . 0 O . O 0 . 0 SD F T S 2 2 9 . 8 0 . 0 . . 2 . F R E Q U E N C I E S 0 5 MN F T S 0 . 0 1 I 0 G . SD F T S 0 . 0 1 8 2 . 3 . . 3 . F R E Q U E N C I E S O 5 MN F T S 0 . 0 1 1 1 9 . SO F T S 0 . 0 I 5 G . 0 0 . 0 0 . 0 0 . 0 5 5 5 1 2 3 6 . 1 1 2 0 . 1 1 7 9 . 19 1 . 5 1 1 1 . 6 3 7 . 0 3 5 5 • 5 1 2 1 4 . 1 1 3 2 . 1 1 5 0 . 2 7 7 . 4 9 2 . 2 6 1 8 7 . 0 I E M P T Y C E L L S H A V E B E E N D E L E T E D FROM M U L T I P L E R A N G E T E S T S : ' NON E M P T Y C E L L S H A V E B E E N R E N U M B E R E D , THE F I R S T NON E M P T Y C E L L B E I N G L A B E L L E D 1 AND SO O N . D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 5 2 4 2 . 9 9 8 B 3 . 0 9 7 0 3 . 1 6 3 6 3 . 2 1 8 8 3 . 2 6 3 2 3 . 2 9 9 1 3 . 3 2 8 4 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R B Y MORE T H A N T H E S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S < 1 . 2 . 6 , 4 , 8 . 9 . 5 ) ( 2 . 6 . 4 , 8 . 9 . 5 . 7 . 3 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T , A L P H A = 0 . 0 5 2 . 8 5 2 3 . 4 3 3 3 . 7 8 0 4 . 0 2 6 4 . 2 1 8 4 . 3 7 3 4 5 0 4 4 . 6 1 7 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N T H E S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 1 , 2 . 6 , 4 , 8 , 9 . 5 . 7 , 3 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T , A L P H A = 0 . 0 5 4 . 6 1 7 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S , NO P A I R OF W H I C H D I F F E R BY MORE T H A N T H E S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) WHICH A R E L I S T E D A S F O L L O W S ( 1 . 2 , 6 , 4 , 8 , 9 , 5 , 7 . 3 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 1 0 8 6 E - 0 1 S E C O N D S . A N A L Y S I S OF V A R I A N C E - S H K G S O U R C E DF S U M SQ M E A N SO ERROR F - V A L U E PROB T R E A T 8 1 . 6 9 1 8 0 . 2 1 1 4 7 0 . 5 7 7 13 0 . 7 9 0 8 1 C / E X P 1 0 . 2 5 1 10 0 . 2 5 1 10 0 6 8 5 2 9 0 . 4 1 2 3 4 V O L T 1 0 3 1 4 0 0 O . 3 1 4 0 0 0 8 5 6 9 3 0 . 3 5 9 7 7 P U L S E 3 0 . 1 2 8 8 0 0 . 4 2 9 3 4 E - 0 1 0 . 117 17 0 . 9 4 9 5 5 V X P 3 0 . 9 9 7 8 9 0 . 3 3 2 6 3 0 . 9 0 7 7 8 0 . 4 4 5 2 1 E R R O R 4 3 1 5 . 7 5 6 0 . 3 6 6 4 2 T O T A L 5 1 1 7 . 4 4 8 G R A N D M E A N 2 . 5 3 2 2 S T A N D A R D D E V I A T I O N OF V A R I A B L E 6 I S 0 . 5 8 4 9 1 F R E Q U E N C I E S . M E A N S . S T A N D A R D D E V I A T I O N S T R E A T 1 . . . 2 . . . 3 . . . 4 . . . 5 . . . 6 . . . 7 . . . 8 . . . 9 . . . F R E Q U E N C I E S 12 5 5 5 S 5 5 5 5 MN S H K G 2 . 6 5 9 2 . 4 3 2 2 . 4 9 6 2 . 9 5 1 2 . 4 5 3 2 . J G 0 2 . 4 3 5 2 . 2 3 1 2 . 4 9 6 SD S H K G 0 . 7 0 1 2 0 . 1 7 2 6 0 . 4 7 9 9 1 . 2 2 7 0 . 2 0 6 3 0 8 4 8 3 E - 0 1 0 . 3 3 0 7 0 . 2 4 5 2 0 . 7 7 6 7 D U N C A N ' S M U L T I P L E R A N G E T E S T , R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 5 2 4 2 . 9 9 8 8 3 . 0 9 7 0 3 . 1 6 3 6 3 . 2 1 8 8 3 . 2 6 3 2 3 . 2 9 9 1 3 . 3 2 8 4 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E O A S F O L L O W S ( 8 . 2 . 7 , 5 . 6 . 3 . 9 , 1 . 4 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 5 2 3 . 4 3 3 3 . 7 8 0 4 . 0 2 6 4 . 2 1 8 4 . 3 7 3 4 . 5 0 4 4 . 6 1 7 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R B Y MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E O A S F O L L O W S ( 8 . 2 . 7 . 5 . 6 . 3 . 9 . 1 . 4 ) S T U D E N T I ZED R A N G E FOR T U K E Y ' S T E S T , A L P H A = 0 . 0 5 4 . 6 1 7 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R B Y MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 8 . 2 . 7 . 5 . 6 . 3 . 9 . 1 . 4 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 9 8 8 3 E - 0 2 S E C O N D S . 1 C / E X P . 1 . . . 2 . F R E Q U E N C I E S 12 4 0 MN S H K G 2 . 6 5 9 2 4 9 4 SD S H K G 0 . 7 0 1 2 0 5 4 9 8 1 V O L T . . 1 . . 2 . . 3 . F R E Q U E N C I E S 12 2 0 2 0 MN S H K G 2 . 6 5 9 2 . 5 8 3 2 . 4 0 6 SD S H K G 0 . 7 0 1 2 0 6 5 4 6 0 . 4 1 B B D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 5 2 4 2 . 9 9 8 8 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) WHICH ARE L I S T F O AS F O L L O W S ( 3 . 2 . 1 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A - 0 . 0 5 2 . 8 5 2 3 . 4 3 3 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R UF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 3 . 2 . 1 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 3 . 4 3 3 T H E R E A R E 1 HOMOGENEOUS S U B S E I S ( S U B S E T S OF E L E M E N T S . NO P A I R DF WHICH D I F F E R B Y MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) WHICH A R E L I S T E D A S F O L L O W S ( 3 . 2 . 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 5 2 8 6 E - 0 2 S E C O N D S . 1 P U L S E , 1 F R E Q U E N C I E S MN S H K G SD S H K G 12 2 6 5 9 0 . 7 0 1 2 10 2 . 4 4 6 O. 129 1 10 2 . 4 6 5 0 . 3 8 9 8 10 2 . 5 9 1 0 . 9 1 6 1 10 2 . 4 7 4 O . 5 3 6 2 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 5 2 4 2 . 9 9 8 8 3 . 0 9 7 0 3 . 1 6 3 6 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . ND P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 2 , 3 , 5 . 4 , l ! S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 5 2 3 . 4 3 3 3 . 7 8 0 4 . 0 2 6 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S , NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 2 . 3 . 5 . 4 . 1) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 4 . 0 2 6 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R B Y MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF T H A T S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 2 . 3 . 5 . 4 . 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 6 2 3 7 E - 0 2 S E C O N D S 1 V X P . . . 1 . . . 2 3 . . . 4 . . . 5 . . 1 . F R E Q U E N C I E S 12 O O O O MN S H K G 2 . 6 5 9 0 . 0 0 . 0 0 . 0 0 . 0 SD S H K G 0 . 7 0 1 2 0 . 0 0 . 0 0 . 0 0 . 0 F R E Q U E N C I E S MN S H K G SO S H K G . . 3 . F R E Q U E N C I E S MN S H K G SD S H K G 5 2 . 4 3 2 0 . 1 7 2 6 5 2 . 4 6 0 0 . 8 4 8 3 E - 0 1 5 2 . 4 9 6 O . 4 7 9 9 5 2 . 4 3 5 0 . 3 3 0 7 5 2 9 5 1 1 . 2 2 7 5 2 2 3 1 O . 2 4 5 2 5 2 . 4 5 3 O. 2 0 6 3 5 2 . 4 9 6 O . 7 7 6 7 E M P T Y C E L L S H A V E B E E N D E L E T E D FROM M U L T I P L E R A N G E T E S T S ; ' NON E M P T Y C E L L S H A V E B E E N R E N U M B E R E D . THE F I R S T NON E M P T Y C E L L B E I N G L A B E L L E D 1 AND SO O N . D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 5 2 4 2 . 9 9 8 8 3 . 0 9 7 0 3 1 6 3 6 3 . 2 1 8 8 3 . 2 6 3 2 3 2 9 9 1 3 3 2 8 4 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE I H A N T H E S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) WHICH ARE L I S T E D A S F O L L O W S ( 8 . 2 . 7 . 5 . 6 . 3 . 9 . 1 . 4 ) S T U D E N T 1 Z E D R A N G E S FDR N E W M A N - K E U L ' S T E S T , A L P H A = 0 . 0 5 2 . 8 5 2 3 . 4 3 3 3 . 7 8 0 4 . 0 2 6 4 . 2 1 8 4 . 3 7 3 4 . 5 0 4 4 . 6 1 7 T H E R E A R E 1 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 8 , 2 . 7 , 5 , 6 . 3 . 9 . 1 . 4 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 4 . 6 1 7 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N T H E S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) WHICH A R E L I S T E D A S F O L L O W S ( 8 . 2 . 7 . 5 . 6 . 3 . 9 . 1 . 4 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 9 9 4 9 E - 0 2 S E C O N D S . A N A L Y S I S OF V A R I A N C E S O U R C E S U M SQ ERROR F - V A L U E PROB T R E A T 1 C / E X P 1 V O L T 1 P U L S E 1 V X P E R R O R T O T A L 8 1 3 3 4 3 51 1 . 4 8 7 0 0 . 2 8 9 0 3 0 . 2 t 8 1 5 0 . 4 6 2 0 1 E - 0 1 0 . 9 3 3 G 7 1 4 . 7 4 4 1 6 . 2 3 1 1 8 5 8 8 2 8 9 0 3 2 1 8 1 5 1 5 4 0 0 E - 0 1 3 1 1 2 2 3 4 2 8 8 0 . 5 4 2 12 O 8 4 2 9 4 0 . 6 3 6 2 4 0 . 4 4 9 1 4 E - 0 1 O . 9 0 7 6 7 0 . 8 1 8 1 1 O . 3 6 3 6 8 0 . 4 2 9 4 6 0 . 9 8 7 1 8 0 . 4 4 5 2 6 G R A N D M E A N 2 . 3 1 8 1 S T A N D A R D D E V I A T I O N OF V A R I A B L E 7 I S 0 . 5 6 4 1.1 F R E Q U E N C I E S . M E A N S . S T A N D A R D D E V I A T I O N S T R E A T 1 . . . 2 . . . 3 . . . 4 . . . 5 . . . 6 . . . 7 . . . 8 . . . 9 . . . F R E Q U E N C I E S 12 5 5 5 5 5 5 5 5 MN S H C O R R 2 . 4 5 4 2 . 1 8 0 2 . 3 3 3 2 . 6 5 0 2 . 2 4 1 2 . 3 0 8 2 . 1 6 9 2 . 0 1 0 2 . 3 2 6 S D S H C O R R 0 . 6 5 5 9 0 . 2 3 6 1 0 . 4 9 6 7 1 . 1 7 2 0 . 3 3 2 4 O . 1 1 5 1 0 . 3 1 5 0 0 . 2 0 2 0 0 . 7 4 4 9 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 5 2 4 2 . 9 9 8 8 3 0 9 7 0 3 . 1 6 3 6 3 . 2 1 8 8 3 . 2 6 3 2 3 . 2 9 9 1 3 . 3 2 8 4 T H E R E A R E 1 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE THAN T H E S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T DF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 8 . 7 . 2 . 5 . 6 . 9 . 3 . 1 . 4 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 5 2 3 . 4 3 3 3 . 7 8 0 4 . 0 2 6 4 . 2 1 8 4 . 3 7 3 4 . 5 0 4 4 . 6 1 7 T H E R E A R E 1 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N T H E S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF T H A T S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 8 . 7 . 2 . 5 , 6 . 9 . 3 . I. 4 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 4 . 6 1 7 T H E R E A R E 1 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 8 . 7 . 2 . 5 . 6 , 9 . 3 . 1 . 4 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 9 9 3 5 E - 0 2 S E C O N D S . 1 C / E X P . 1 . . . 2 . . F R E Q U E N C I E S 12 4 0 MN S H C O R R 2 . 4 5 4 2 . 2 7 7 SO S H C O R R 0 . 6 5 5 9 0 . 5 3 6 1 1 V O L T . . 1 . . . 2 . . . 3 . F R E Q U E N C I E S 12 2 0 2 0 MN S H C O R R 2 . 4 5 4 . 2 . 3 5 1 2 . 2 0 3 SD S H C O R R 0 . 6 5 5 9 0 . 6 4 0 9 0 4 0 9 6 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 5 2 4 2 . 9 9 8 8 T H E R E A R E 1 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 3 , 2 . 1 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 5 2 3 . 4 3 3 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N 1 S . NO P A I R OF W H I C H D I F F E R BY MORE THAN THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 3 . 2 . 1) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 3 . 4 3 3 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R B Y MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E I W H I C H ARE L I S T E D A S F O L L O W S ( 3 . 2 . 1) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 5 3 3 9 E - 0 2 S E C O N D S . 1 P U L S E . . . 1 . . . 2 . . 3 . . . 4 . . . 5 F R E Q U E N C I E S 12 10 10 10 10 MN S H C O R R 2 . 4 5 4 2 . 2 4 4 2 . 2 5 1 2 . 3 3 0 2 . 2 8 4 SD S H C O R R O 6 5 5 9 0 . 1 9 6 7 0 . 4 0 1 5 0 . 8 6 1 8 0 . 5 4 5 7 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 5 2 4 2 . 9 9 8 8 3 . 0 9 7 0 3 . 1 6 3 6 T H E R E A R E 1 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R B Y MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 2 , 3 . 5 . 4 , 1) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 5 2 3 . 4 3 3 3 . 7 8 0 4 . 0 2 6 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N T H E S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 2 . 3 . 5 . 4 . 1 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 4 . 0 2 6 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R B Y MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 2 . 3 . 5 . 4 . 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S O . G 6 5 4 E - 0 2 S E C O N D S . 1 V X P . . . 1 . . . 2 . . . 3 . . . 4 . . . 5 . . 1 . F R E Q U E N C I E S 12 0 O 0 O MN S H C O R R 2 . 4 5 4 O . O 0 . 0 0 . 0 0 . 0 SO S H C O R R 0 . 6 5 5 9 0 . 0 0 . 0 0 . 0 0 . 0 . . 2 . F R E Q U E N C I E S 0 5 5 5 5 MN S H C O R R 0 . 0 2 . 1 8 0 2 . 3 3 3 2 . 6 5 0 2 . 2 4 1 SO S H C O R R 0 . 0 . 3 F R E Q U E N C I E S 0 MN S H C O R R 0 . 0 SO S H C O R R 0 0 0 . 2 3 6 1 0 . 4 9 6 7 S 5 2 . 3 0 8 2 . 1 6 9 0 . 145 1 O . 3 ISO 1 . 1 7 2 O . 3 3 2 4 5 5 2 . 0 1 0 2 . 3 2 6 0 . 2 0 2 0 0 . 7 4 4 9 E M P T Y C E L L S H A V E B E E N D E L E T E D FROM M U L T I P L E R A N G E T E S T S : ' NON EMPTY C E L L S H A V E B E E N R E N U M B E R E D . T H E F I R S T NON E M P T Y C E L L B E I N G L A B E L L E D 1 AND SO O N . D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 5 2 4 2 . 9 9 8 8 3 . 0 9 7 0 3 . 1 6 3 6 3 . 2 1 8 8 3 . 2 6 3 2 3 . 2 9 9 1 3 . 3 2 8 4 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N T H E S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( . 8 , 7 . 2 . 5 . 6 . 9 , 3 , 1 . 4 ) S T U D E N T I Z E D R A N G E S F D R N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 5 2 3 . 4 3 3 3 . 7 8 0 4 . 0 2 6 4 . 2 1 8 4 . 3 7 3 4 . 5 0 4 4 . 6 1 7 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S , NO P A I R OF W H I C H D I F F E R BY MORE T H A N T H E S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 8 . 7 . 2 . 5 . 6 . 9 . 3 . 1 . 4 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 4 . 6 1 7 T H E R E A R E 1 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . ND P A I R OF W H I C H D I F F E R B Y MORE T H A N T H E S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 8 , 7 . 2 . 5 . 6 . 9 . 3 . 1 . 4 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 2 3 2 6 E - 0 1 S E C O N D S . A N A L Y S I S C O M P L E T E . E x e c u t i o n t e r m i n a t e d 0 9 : 0 6 : 0 0 T = 0 . 6 9 9 R C = 0 $ 0 . 5 6 $ S I G - 2 2 6 -APPENDIX 5: ANOVA Study Two The f o l l o w i n g a b r e v i a t i o n s were used f o r the computer o u t p u t i n c l u d e d i n t h i s a p p e n d i x : BFTMT - B i c e p s f e m o r i s , time to maximum t e n s i o n PMTMT - P e c t o r a l i s maj o r , time to maximum t e n s i o n BFMT - B i c e p s f emori s , maximum i s o m e t r i c t e n s i o n PMMT - P e c t o r a l i s m a j o r , maximum i s o m e t r i c t e n s i o n BFGLY - B i c e p s f emori s, i n i t i a l g l y c o g e n PMGLY - P e c t o r a l i s maj o r , i n i t i a l g l y c o g e n OBFA - 0 hour ATP, B i c e p s f e m o r i s OPMA - 0 hour ATP, P e c t o r a l i s major IBFA - 2 hour ATP, B i c e p s f e m o r i s IPMA - 2 hour ATP, P e c t o r a l i s maj or SBFA - 6 hour ATP, B i c e p s f e m o r i s SPMA - 6 hour ATP, P e c t o r a l i s maj or Note: The s t a t i s t i c a l a n a l y s e s f o r hexose monophosphate c o n t e n t were p e r f o r m e d i n a s i m i l a r manner, w i t h a s e p a r a t e computer r u n . V A R I A B L E N A M E S - B F T M T PMTMT B F M T PMMT P V A R I A B L E N A M E S - S B F A SPMA D A T A FORMAT ( 4 I 1 . 2 X . 2 F 5 . 1 . 2 F 5 . 2 . 2 F 6 . 3 . 6 F 5 . 3 ) E L E C T R I C A L S T I M U L A T I O N S T U D V I I A N A L Y S I S OF V A R I A N C E S O U R C E SUM SO M E A N SO ERROR F - V A L U E P R O B T R E A T 1 C / E X P 1 V O L T 1 P U L S E 1 V X P E R R O R T O T A L 4 5 4 9 0 . 1 0 2 9 2 E + 0 6 5 4 1 3 7 . 4 4 3 3 6 . 4 3 4 9 . 3 1 0 2 . 7 2 0 . 1 9 6 9 5 E + 0 7 0 . 2 0 7 2 5 E + 0 7 2 5 7 3 1 . 5 4 1 3 7 . 4 4 3 3 6 . 4 3 4 9 . 3 1 0 2 . 7 2 4 3 7 6 7 . 0 . 5 8 7 9 1 1 . 2 3 6 9 1 . 0 1 3 0 0 . 9 9 3 7 4 E - 0 1 0 . 2 3 4 7 0 E - 0 2 0 . 6 7 3 0 6 O . 2 7 1 9 7 O . 3 1 9 5 7 O . 7 5 4 0 4 0 . 9 6 1 5 8 G R A N D M E A N 3 3 6 . 5 9 S T A N D A R D D E V I A T I O N OF V A R I A B L E 1 I S t o F R E Q U E N C I E S , M E A N S , S T A N D A R D D E V I A T I O N S T R E A T 1 . . . 2 . . . 3 . . . 4 . . . 5 . . . F R E Q U E N C I E S 10 10 10 10 10 MN B F T M T 4 0 2 . 4 3 6 5 . S 3 4 1 . 4 2 9 5 . 7 2 7 8 . 0 SD B F T M T 1 9 7 . 7 1 5 5 . 2 2 4 5 . 7 2 6 1 . 1 1 6 4 . 7 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 . 9 9 5 3 3 . 0 9 3 2 3 . 1 6 0 1 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N T H E S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) WHICH A R E L I S T E D A S F O L L O W S ( 5 . 4 . 3 . 2 . 1 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 4 8 3 . 4 2 8 3 . 7 7 3 4 . 0 1 8 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 5 . 4 . 3 . 2 . 1 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L 1 ' H A = 0 . 0 5 4 . 0 1 8 T H E R E A R E 1 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E F O R A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 5 . 4 . 3 , 2 . 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 2 4 2 2 E - 0 1 S E C O N D S . 1 C / E X P F R E Q U E N C I E S 10 4 0 MN B F T M T 4 0 2 . 4 3 2 0 . 1 SD B F T M T 1 9 7 . 7 2 0 6 . 7 1 V O L T . 1 . . 2 . . . 3 . F R E Q U E N C I E S 10 2 0 2 0 MN B F T M T 4 0 2 . 4 3 5 3 . 4 2 8 6 . 8 SD B F T M T 1 9 7 . 7 2 O 0 . 4 2 1 2 . 6 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 . 9 9 5 3 T H E R E A R E 1 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N I HE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 3 , 2 . 1) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 4 8 3 . 4 2 8 T H E R E A R E 1 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 3 . 2 . 1) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 3 . 4 2 8 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S , NO P A I R OF WHICH D I F F E R B Y MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E O A S F O L L O W S ( 3 . 2 . 1) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 4 9 8 7 E - 0 2 S E C O N D S . 1 P U L S E . . . 1 . . . 2 . 3 F R E Q U E N C I E S 10 2 0 2 0 MN B F T M T 4 0 2 . 4 3 3 0 . 6 3 0 9 . 7 SD B F T M T 1 9 7 . 7 2 1 2 t 2 0 6 . 2 D U N C A N ' S M U L T I P L E R A N G E T E S T , R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 . 9 9 5 3 T H E R E A R E 1 HOMOGENEOUS S U B S E T S FOR A S U B S E T OF 1 HAT S I Z E ) W H I C H ARE ( 3 . 2 . 1 ) ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E L I S T E D A S F O L L O W S S T U D E N T I Z E D R A N G E S FOR N F W M A N - K E U I . ' S 1 F S T , A1.PHA = 0 . 0 5 2 . 8 4 8 3 . 4 2 8 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BV MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 3 . 2 . 1) S T U D E N T I Z E D RANGE FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 3 . 4 2 8 T H E R E A R E 1 HOMOGENEOUS S U B S F T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N T H E S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 3 . 2 . 1) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 5 4 I 7 E - 0 2 S E C O N D S . 1 V X P . . 1 1 . 1 2 . . 1 3 . 2 1 . 2 2 . 2 3 . 3 1 . 3 2 . . 3 3 F R E Q U E N C I E S 10 O O O 10 10 0 10 10 MN B F T M T 4 0 2 . 4 0 . 0 0 . 0 0 . 0 3 6 5 . 5 3 4 1 . 4 0 . 0 2 9 5 . 7 2 7 8 . 0 S D B F T M T 1 9 7 . 7 0 . 0 0 . 0 0 . 0 1 5 5 . 2 2 4 5 . 7 0 . 0 2 6 1 . 1 1 6 4 . 7 I E M P T Y C E L L S H A V E B E E N D E L E T E D FROM M U L T I P L E R A N G E T E S T S : ' NON EMPTY C E L L S H A V E fO B E E N R E N U M B E R E D . THE F I R S T NON E M P T Y C E L L B E I N G L A B E L L E D 1 AND SO O N . fO U O D U N C A N ' S M U L T I P L E R A N G E T E 5 T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 . 9 9 5 3 3 0 9 3 2 3 . 1 6 0 1 I T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S , NO P A I R OF WHICH O I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 5 , 4 . 3 . 2 . 1) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 8 4 8 3 . 4 2 8 3 . 7 7 3 4 0 1 8 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S DF E L E M E N T 5 . NO P A I R OF W H I C H D I F F E R B Y MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 5 . 4 . 3 , 2 . 1 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 4 0 1 8 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H O I F F E R BY MORE T H A N T H E S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S 1 E D A S F O L L O W S • ( 5 . 4 , 3 . 2 . 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S O . 7 O 8 3 E - 0 2 S E C O N D S . A N A L Y S I S OF V A R I A N C E - PMTMT S O U R C E SUM SO M E A N SO ERROR F - V A L U E PROB T R E A T 1 C / E X P 1 V O L T t P U L S E 1 V X P E R R O R T O T A L 4 5 4 9 • OS * 0 6 O . 2 2 1 I 2 E0 . 2 0 3 9 3 E * 1 3 5 8 7 . 8 2 0 . 8 4 2 7 8 2 . 2 O . 1 9 9 8 7 E + 0 6 O . 4 2 0 9 9 E + 0 G 5 5 2 ( 1 0 . O . 2 0 3 9 3 F . <-06 1 3 5 8 7 . 8 2 0 . 8 4 2 7 8 2 . 2 4 4 4 1 . 6 1 2 . 4 4 6 4 5 . 9 13 3 . 0 5 8 9 0 . 1 8 4 8 0 O . 6 2 6 3 9 0 . 6 7 3 9 1 E - 0 6 O . 2 1 9 I 8 E - 0 7 0 . 8 7 I 1 4 E - 0 1 0 . 6 6 9 3 3 0 . 4 3 2 8 3 G R A N D M E A N 1 6 1 . 3 1 S T A N D A R D D E V I A T I O N OF V A R I A B L E 2 I S 9 2 . 6 9 2 F R E Q U E N C I E S . M E A N S . S T A N D A R D D E V I A T I O N S T R E A T 1 2 . . . 3 . . . 4 . . . 5 . . . F R E Q U E N C I E S 10 10 10 10 10 MN PMTMT 2 8 9 . 0 1 2 3 . 8 9 8 . 0 8 1 4 4 . 0 1 5 1 . 6 SD PMTMT 7 7 . 8 0 7 3 . 4 9 4 7 . 2 8 3 1 . 2 6 8 6 . 8 5 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 . 9 9 5 3 3 . 0 9 3 2 3 . 1 6 0 1 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N T H E S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 3 , 2 . 4 . 5 ) < 1 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T , ALPHA«0.05 2 . 8 4 8 3 . 4 2 8 3 . 7 7 3 4 . 0 1 8 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N T H E S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 3 . 2 . 4 . 5 ) ( 1 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 4 . 0 1 8 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N T H E S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 3 . 2 . 4 . 5 ) ( 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 6 7 7 1 E - 0 2 S E C O N D S 1 C / E X P . 1 2 F R E Q U E N C I E S 10 -10 MN PMTMT 2 8 9 . 0 1 2 9 . 4 SD PMTMT 7 7 . 8 0 6 4 . 5 7 1 V O L T . . 1 . . . 2 . . . 3 . F R E Q U E N C I E S 10 2 0 2 0 MN PMTMT 2 8 9 . 0 1 1 0 . 9 1 4 7 . 8 SD PMTMT 7 7 . 8 0 6 1 . 5 7 6 3 . 6 5 D U N C A N ' S M U L T I P L E R A N G E T E S T , R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 . 9 9 5 3 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BV MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 2 , 3 ) ( D S T U D E N T I Z E O R A N G E S FOR N E W M A N - K E U L ' S T E S T , A L P H A = 0 . 0 5 2 . 8 4 8 3 4 2 8 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BV MORE THAN THE S H O R T E S T S I G N I F I C A N T R A N G E . FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S 1 ( 2. 3) < " LI S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 3 . 4 2 8 I T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 2 . 3 ) ( 1) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 5 7 0 3 E - 0 2 S E C O N D S . 1 P U L S E . . . 1 . . . 2 . . . 3 F R E Q U E N C I E S 10 2 0 2 0 MN PMTMT 2 8 9 . 0 1 3 3 . 9 1 2 4 . 8 SD PMTMT 7 7 . 8 0 5 5 . 9 3 7 3 . 3 9 D U N C A N ' S M U L T I P L E R A N G E T E S T , R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 . 9 9 5 3 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE THAN THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 3 . 2 ) ( 1 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 4 8 3 . 4 2 8 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S , NO P A I R OF WHICH D I F F E R BV MORE T H A N THE S H O R T E S T S I G N I F I C A N T RANGE FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 3 . 2 ) ( 1 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 3 . 4 2 8 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE THAN THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 3 , 2 ) ( D T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 5 7 5 5 E - 0 2 S E C O N D S 1 V X P . . 1 1 . 1 2 . 1 3 . . 2 1 . 2 2 . . 2 3 . . 3 1 . . 3 2 . . 3 3 F R E Q U E N C I E S 10 O 0 O 10 10 0 10 10 MN PMTMT 2 8 9 . 0 0 . 0 0 . 0 0 . 0 1 2 3 . 8 9 8 . 0 8 0 . 0 1 4 4 . 0 1 5 1 . 6 SD PMTMT 7 7 . 8 0 0 . 0 0 . 0 0 . 0 7 3 . 4 9 4 7 . 2 8 0 . 0 3 1 . 2 6 8 6 . 8 5 E M P T Y C E L L S H A V E B E E N D E L E T E D F R O M M U L T I P L E R A N G E T E S T S ; ' NON F.MP1Y C E L L S H A V E B E E N R E N U M B E R E D , THE F I R S T NON EMPTY C E L L B E I N G L A B E L L E D 1 AND SO O N . D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 . 9 9 5 3 3 . 0 9 3 2 3 . 1 6 0 1 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 3 . 2 . 4 . 5 ) ( 1 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A ' 0 . 0 5 2 . 8 4 8 3 . 4 2 8 3 . 7 7 3 4 . 0 1 8 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 3 . 2 . 4 . 5 ) ( 1 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 4 . 0 1 8 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R B Y MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T O r THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 3 . 2 . 4 . 5 ) ( 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 7 4 0 9 E - 0 2 S E C O N D S . A N A L Y S I S OF V A R I A N C E - RFMT S O U R C E SUM SO ERROR F - V A L I I E T R E A T 1 C / E X P 1 V O L T t P U L S E 1 V X P E R R O R T O T A L 4 5 4 9 1 9 8 5 . 4 9 8 4 . 3 9 6 6 7 . 2 4 1 4 . 2 9 2 3 1 9 . 5 1 1 0 1 3 9 . 1 2 1 2 5 . 4 9 G . 3 6 9 8 4 . 3 9 6 6 7 . 2 4 1 4 . 2 9 2 3 1 9 . 5 1 2 2 5 . 3 2 2 . 2 0 2 9 4 . 3 6 8 9 2 . 9 6 1 3 0 . 6 3 4 3 I E - 0 1 1 . 4 1 8 0 0 . 8 3 7 9 3 E - 0 1 O 4 2 2 8 I E - 0 1 0 . 9 2 1 4 7 E - 0 1 O 8 0 2 3 0 0 . 2 3 9 9 7 G R A N D M E A N 3 8 . 1 4 5 S T A N D A R D D E V I A T I O N OF V A R I A B L E 3 I S 1 5 . 7 3 0 F R E Q U E N C I E S , M E A N S , S T A N D A R D D E V I A T I O N S T R E A T 1 . . . 2 . . . 3 . . . 4 5 . . . F R E Q U E N C I E S 10 10 10 10 10 MN B F M T 4 7 . 0 2 4 2 . 2 4 3 7 . 7 8 2 S . 4 2 3 5 . 2 7 SD B F M T 1 5 . 7 3 1 6 . 1 3 1 5 . 3 7 1 5 . 2 0 1 2 . 3 2 D U N C A N ' S M U L T I P L E R A N G E T E S T , R A N G E S FOR A L P H A = 0 . 0 5 2 8 4 9 0 2 9 9 5 3 3 0 9 3 2 3 . 1 6 0 1 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 4 . 5 . 3 . 2 ) ( 5 . 3 . 2 . 1) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 4 8 3 . 4 2 8 3 . 7 7 3 4 . 0 1 8 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 4 . 5 . 3 . 2 , 1 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 4 . 0 1 8 T H E R E A R E 1 HOMOGENEOUS S U B S E T S I S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 4 . 5 , 3 . 2 . 1) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 7 1 2 2 E - 0 2 S E C O N D S . 1 C / E X P .1 2 F R E Q U E N C I E S 10 MN B F M T 4 7 . 0 2 SO B F M T 1 5 . 7 3 AO 3 5 . 9 3 1 5 . 12 1 V O L T . 1 2 . . 3 . F R E Q U E N C I E S 10 2 0 2 0 MN B F M T 4 7 . 0 2 4 0 . 0 1 3 1 . 8 4 SO B F M T 1 5 . 7 3 1 5 . 5 0 1 3 . 9 1 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 . 9 9 5 3 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S < 3 . 2 ) ( 2 , 1 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 4 8 3 . 4 2 8 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D AS F O L L O W S ( 3 . 2 ) ( 2 , I ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T , A L P H A = 0 . 0 5 3 . 4 2 8 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 3 . 2 ) ( 2 . 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 5 9 7 7 E - 0 2 S E C O N D S . 1 P U L S E . . . 1 . . . 2 . . . 3 F R E Q U E N C I E S 10 2 0 2 0 MN B F M T 4 7 . 0 2 3 5 . 3 3 3 6 . 5 2 SD B F M T 1 5 . 7 3 1 6 . 8 2 1 3 . 6 2 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 . 9 9 5 3 T H E R E A R E 1 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 2 . 3 . 1 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 4 8 3 . 4 2 8 T H E R E A R E 1 H O M O G E N E O U S S U B S E 1 S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE I H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF T H A T S I Z E ) WHICH ARE L I S T E D A S F O L L O W S I 2 . 3 . 1 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 3 . 4 2 8 T H E R E ARE 1 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R B Y MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) WHICH A R E L I S T E D A S F O L L O W S < 2 , 3 . 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 5 2 4 7 E - 0 2 S E C O N D S . 1 V X P . . 1 1 . 1 2 . . 1 3 . . 2 1 . 2 2 - . 2 3 . 3 1 . . 3 2 . . 3 3 F R E Q U E N C I E S 1 0 0 0 0 10 10 O 10 10 MN B F M T 4 7 . 0 2 0 . 0 0 . 0 0 . 0 4 2 . 2 4 3 7 . 7 8 0 . 0 2 8 . 4 2 3 5 . 2 7 SD B F M T 1 5 . 7 3 0 . 0 0 . 0 0 . 0 1 6 . 1 3 1 5 . 3 7 0 . 0 1 5 . 2 0 1 2 . 3 2 E M P T Y C E L L S H A V E B E E N D E L E T E D FROM M U L T I P L E R A N G E T E S T S : ' NON EMPTY C E L L S H A V E B E E N R E N U M B E R E D . T H E F I R S T NON E M P T Y C E L L B E I N G L A B E L L E D I AND SO O N . D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 . 9 9 5 3 3 0 9 3 2 3 . 1 6 0 1 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R B Y MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF T H A T S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 4 , 5 , 3 , 2 ) ( 5 . 3 . 2 . 1 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 4 8 3 . 4 2 8 3 . 7 7 3 4 . 0 1 8 T H E R E A R E 1 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 4 , 5 . 3 . 2 . 1 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T , A L P H A = 0 . 0 5 4 . 0 1 8 T H E R E A R E 1 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R B Y MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 4 . 5 . 3 . 2 . 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 7 I 2 2 E - O 2 S E C O N D S . A N A L Y S I S OF V A R I A N C E S O U R C E DF S U M SO M E A N T R E A T 4 1 3 3 5 . 3 3 3 3 - PMMT SQ ERROR F - V A L U E PROB . 8 3 1 . 4 0 5 2 0 . 2 4 7 6 0 1 C / E X P 1 V O L T 1 P U L S E 1 V X P E R R O R T O T A L 4 5 4 9 9 4 5 . 8 6 3 2 2 . 7 4 1 3 . 0 8 7 5 3 . 6 3 9 1 0 6 9 1 . 1 2 0 2 6 . 9 4 5 . 8 6 3 2 2 . 7 4 1 3 . 0 8 7 5 3 . 6 3 9 2 3 7 . 5 7 3 . 9 8 1 4 0 . 5 2 U M E - 0 1 1 . 3 5 8 5 0 . 2 4 9 9 4 0 . 5 5 0 B 8 E - 0 1 0 . 8 1 5 5 0 0 . 2 2 5 7 8 0 . 6 3 6 9 7 G R A N D M E A N 4 1 . 9 5 7 S T A N D A R D D E V I A T I O N OF V A R I A B L E 4 I S F R E Q U E N C I E S . M E A N S . S T A N D A R D D E V I A T I O N S T R E A T F R E Q U E N C I E S MN PMMT SD PMMT 10 5 0 . 6 6 1 1 5 3 10 3 5 . 2 1 2 1 . 7 2 10 3 8 . 6 7 19 . 8 2 10 4 3 . 2 1 7 5 0 7 10 4 2 . 0 4 1 1 . 5 8 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 . 9 9 5 3 3 . 0 9 3 2 3 . 1 6 0 1 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 2 . 3 . 5 . 4 ) ( 3 . 5 . 4 . 1 ) tsJ U> O S S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 4 8 3 . 4 2 8 3 . 7 7 3 4 . 0 1 8 T H E R E A R E 1 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) WHICH ARE L I S T E D A S F O L L O W S ( 2 , 3 . 5 . 4 . 1 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 4 . 0 1 8 T H E R E A R E 1 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E I W H I C H A R E L I S T E D A S F O L L O W S ( 2 . 3 . 5 . 4 . 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S O . G 9 0 I E - 0 2 S E C O N D S 1 C / E X P . 1 . . . 2 . . F R E Q U E N C I E S 10 MN PMMT 5 0 . 6 6 SD PMMT 1 1 . 5 3 4 0 3 9 . 7 8 1 5 . 9 2 1 V O L T 1 . . 2 . . . 3 F R E Q U E N C I E S 10 2 0 2 0 MN PMMT 5 0 . G G 3 6 . 9 4 4 2 . 6 2 SD PMMT 1 1 . 5 3 2 0 . 3 I 9 . 5 1 9 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 . 9 9 5 3 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE THAN THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF T H A T S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 2 . 3 ) < 3 . 1 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 4 8 3 . 4 2 8 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I T F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF T H A T S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 2 . 3 . 1 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 3 4 2 8 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF T H A T S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 2 . 3 . 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 5 5 7 3 E - 0 2 S E C O N D S . 1 P U L S E . . . 1 . . . 2 . 3 F R E Q U E N C I E S 1 0 2 0 2 0 MN PMMT 5 0 . 6 6 3 9 . 2 1 4 0 . 3 5 SD PMMT 1 1 . 5 3 1 6 . 3 4 1 5 . 8 9 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 8 4 9 0 2 . 9 9 5 3 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 2 . 3 . 1) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 4 8 3 4 2 8 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) WHICH A R E L I S T E D AS F O L L O W S ( 2 . 3 . 1 ) S T U D E N T 1 Z E D R A N G E FDR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 3 . 4 2 8 T H E R E A R E 1 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 2 . 3 . 1 ) NO P A I R OF W H I C H D I F F E R BY MORE T H A N THF. S H O R T E S T S I G N I F I C A N T R A N G E T I M E FOR M U L T I P L E R A N G E T E S T S I S O 5 3 9 I E - 0 2 S E C O N D S . 1 V X P 1 1 . 1 2 .1 3 . 2 1 . . 2 2 . 2 3 . . . 3 I ' . 3 2 . 3 3 F R E Q U E N C I E S 10 O O O 10 10 O 10 10 MN PMMT 5 0 . 6 6 0 . 0 0 . 0 0 . 0 3 5 . 2 1 3 8 . 6 7 0 . 0 4 3 21 4 2 . 0 4 SD PMMT 1 1 . 5 3 0 . 0 0 . 0 0 . 0 2 1 . 7 2 1 9 . 8 2 0 . 0 7 . 5 0 7 1 1 . 5 8 E M P T Y C E L L S H A V E B E E N D E L E T E D FROM M U L T I P L E R A N G E T E S T S ; ' NON EMPTY C E L L S H A V E B E E N R E N U M B E R E D . THE F I R S T NON E M P T Y C E L L B E I N G L A B E L L E D 1 AND SO O N . D U N C A N ' S M U L T I P L E R A N G E T E S T , R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 . 9 9 5 3 3 . 0 9 3 2 3 . 1 6 0 1 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE THAN T H E S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 2 , 3 . 5 , 4 ) ( 3 . 5 , 4 . 1 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 4 8 3 . 4 2 8 3 . 7 7 3 4 . 0 1 8 I T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E NS FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S U> ( 2 . 3 . 5 . 4 . 1 ) 00 S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 I 4 . 0 1 8 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF T H A T S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 2 , 3 . 5 , 4 . 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 6 9 7 9 E - 0 2 S E C O N D S A N A L Y S I S OF V A R I A N C E - B F G L Y 3 U R C E DF SUM SO M E A N SO ERROR F - V A L U E PROB T R E A T 4 9 7 5 1 3 2 4 . 3 7 8 3 . 0 9 3 6 0 . 2 4 7 4 4 E 0 1 C / E X P 1 5 3 . 4 9 7 5 3 . 4 9 7 6 . 7 8 8 8 0 . 1 2 3 9 1 E •01 V O L T 1 1 4 . 5 9 3 1 4 . 5 9 3 1 . 8 5 18 0 . 1 8 0 3 5 P U L S E 1 12 . 197 12 . 197 1 . 5 4 7 8 0 . 2 1 9 9 0 V X P 1 1 7 . 2 2 7 1 7 . 2 2 7 2 . 1 8 6 1 0 . 1 4 6 2 3 E R R O R 4 5 3 5 4 . 6 1 7 . 8 8 0 2 T O T A L 4 9 4 5 2 . 12 G R A N D M E A N 5 . 4 149 S T A N D A R D D E V I A T I O N OF V A R I A B L E 5 I S 3 . 0 3 7 6 F R E Q U E N C I E S , M E A N S . S T A N D A R D D E V I A T I O N S T R E A T 1 . . . 2 . . . 3 . . . 4 . . . 5 . . . F R E Q U E N C I E S 10 10 10 10 10 MN B F G L Y 7 . 4 8 4 5 . 6 0 6 5 . 3 9 8 3 . 0 8 5 5 . 5 0 2 S D B F G L Y | 2 . 9 9 5 2 . 9 3 1 3 . 6 4 6 1 . 1 1 5 2 . 7 0 3 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 . 9 9 5 3 3 . 0 9 3 2 3 . 1 6 0 1 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R B Y MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 4 . 3 . 5 . 2 ) ( 3 . 5 . 2 . 1) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' 5 T E S T , A L P H A = 0 . 0 5 2 . 8 4 8 3 . 4 2 8 3 . 7 7 3 4 . 0 1 8 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F D L L D W S ( 4 , 3 , 5 . 2 ) ( 3 . 5 . 2 . 1 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 4 0 1 8 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R B Y MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 4 , 3 . 5 . 2 ) ( 3 . 5 . 2 . 1) T I M E FOR M U L T I P L E RANGE T E S T S I S 0 . 7 6 8 2 E - 0 2 S E C O N D S . I C / E X P . 1 . . . 2 . . F R E Q U E N C I E S 10 4 0 MN B F G L Y 7 . 4 8 4 4 . 8 9 8 SD B F G L Y 2 . 9 9 5 2 . 8 5 5 1 V O L T > . . 2 . . . 3 . F R E Q U E N C I E S 10 2 0 2 0 MN B F G L Y 7 . 4 8 4 5 . 5 0 2 4 . 2 9 4 SD B F G L Y 2 . 9 9 5 3 . 2 2 1 2 . 3 G 4 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 . 9 9 5 3 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 3 . 2 ) ( 2 . 1 ) S T U D E N T I ZED R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 4 B 3 . 4 2 8 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E O A S F O L L O W S ( 3 . 2 ) ( 2 . 1) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 3 . 4 2 8 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 3 . 2 ) ( 2 . 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S O . S 2 2 4 E - 0 2 S E C O N D S . 1 P U L S E . . . 1 . . . 2 . . . 3 F R E Q U E N C I E S 10 2 0 2 0 MN B F G L Y 7 . 4 8 4 4 . 3 4 6 5 . 4 5 0 SD B F G L Y 2 . 9 9 5 2 . 5 1 6 3 . 1 2 4 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 8 4 9 0 2 9 9 5 3 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) WHICH A R E L I S T E D A S F O L L O W S ( 2 . 3 ) ( 3 . 1 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 4 8 3 4 2 8 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 2 . 3 ) ( 3 . 1 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 3 . 4 2 8 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T DF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 2 , 3 ) ( 3 . 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 6 3 9 3 E - 0 2 S E C O N D S . 1 V X P . . 1 1 . 1 2 . 1 3 . . 2 1 . 2 2 . 2 3 . . 3 1 . . 3 2 . . 3 3 F R E Q U E N C I E S 10 O O O 10 10'' 0 10 10 MN B F G L Y 7 . 4 8 4 0 . 0 0 . 0 0 . 0 5 . 6 0 G 5 . 3 9 8 0 . 0 3 . 0 8 5 5 . 5 0 2 S D B F G L Y 2 . 9 9 5 0 . 0 0 . 0 0 . 0 2 9 3 1 3 . 6 4 6 0 . 0 1 . 1 1 5 2 . 7 0 3 E M P T Y C E L L S H A V E B E E N D E L E T E D FROM M U L T I P L E R A N G E T E S T S ; ' NON EMPTY C E L L S H A V E B E E N R E N U M B E R E D . THE F I R S T NON EMPTY C E L L B E I N G L A B E L L E O 1 AND SO O N . D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 . 9 9 5 3 3 . 0 9 3 2 3 . 1 6 0 1 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 4 . 3 . 5 , 2 ) ( 3 . 5 . 2 . 1 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 4 8 3 . 4 2 8 3 . 7 7 3 4 . 0 1 8 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) WHICH ARE L I S T E D A S F O L L O W S ( 4 . 3 . 5 , 2 ) ( 3 . 5 . 2 . 1 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T , A L P H A = 0 . 0 5 4 . 0 1 8 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) WHICH ARE L I S T E D A S F O L L O W S ( 4 . 3 . 5 . 2 ) ( 3 , 5 . 2 . 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 7 8 1 3 E - 0 2 S E C O N D S . S O U R C E T R E A T 1 C / F X P 1 V O L T 1 P U L S E 1 V X P E R R O R T O T A L 1 4 5 4 9 A N A L Y S I S OF V A R I A N C E - PMGLY SUM SO M E A N SO ERROR F - V A L U E 3 1 4 . 6 4 196 8 6 2 . 6 0 9 7 1 10 9 8 4 . 1 8 9 3 9 9 7 . 8 4 1 3 1 2 . 5 7 8 . 6 5 9 196 8 6 2 . 6 0 9 7 1 1 0 . 9 8 4 . 1 8 9 3 2 2 . 1 7 4 3 . 5 4 7 3 8 . 8 7 7 8 O 1 1 7 6 9 5 0 0 4 9 0 . 1 8 8 9 3 O . 1 3 4 I 4 E - 0 1 O . 4 6 4 0 8 E - 0 2 0 . 7 3 3 1 5 O . 3 0 2 7 4 E - O 1 0 . 6 6 5 8 9 G R A N D M E A N 1 2 . 0 1 9 S T A N D A R D D E V I A T I O N OF V A R I A B L E 6 I S 5 . 1 7 5 4 F R E Q U E N C I E S . M E A N S . S T A N D A R D D E V I A T I O N S T R E A T 1 . . . 2 . . . 3 . . . 4 . . . 5 . . F R E Q U E N C I E S 10 10 10 10 10 MN P M G L V 1 5 . 9 9 9 . 9 4 1 1 2 . G 2 B . 7 8 2 1 7 . 7 G SD P M G L Y 5 . 9 9 B 3 . 3 8 2 6 . 7 8 4 3 . 1 7 9 2 . 7 0 8 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 . 9 9 5 3 3 . 0 9 3 2 3 . 1 6 0 1 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U E S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F T E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) WHICH ARE L I S T E D A S F O L L O W S ( 4 . 2 , 3 . 5 ) ( 3 . 5 . 1) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T , A L P H A = 0 . 0 5 2 . 8 4 8 3 . 4 2 8 3 . 7 7 3 4 0 1 8 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S , NO P A I R OF WHICH D I F F E R BY MORE THAN THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF T H A T S I Z E ) WHICH ARE L I S T E D A S F O L L O W S ( 4 , 2 . 3 . 5 ) ( 3 , 5 . 1 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 4 . 0 1 8 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S , NO P A I R OF WHICH D I F F E R B Y MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 4 , 2 , 3 . 5 ) ( 3 . 5 , I ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 7 5 2 6 E - 0 2 S E C O N D S . 1 C / E X P 1 2 . F R E Q U E N C I E S 10 4 0 MN P M G L Y 1 5 . 9 9 1 1 . 0 3 SD P M G L Y 5 . 9 9 8 4 . 5 0 6 F R E Q U E N C I E S 10 2 0 2 0 MN P M G L Y 1 5 . 9 9 1 1 . 2 8 10 7 7 SO P M G L Y 5 . 9 9 8 5 . 3 9 6 3 S 2 5 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 . 9 9 5 3 T H E R E A R E 2 HOMOGENEOUS S U R S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BV MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 3 . 2 ) ( 1) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 4 8 3 . 4 2 8 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N I HE S H O R T E S T S I G N I F I C A N T R A N G E F O R A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 3 . 2 ) ( 1 > S T U O E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 3 . 4 2 8 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S , NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S I ( 3 . 2 ) ( 1) r o 4 > T I ME FOR M U L T I P L E R A N G E T E S T S I S 0 . 5 7 1 6 E - 0 2 S E C O N D S . OJ I 1 P U L S E . . . 1 . . . 2 . 3 F R E Q U E N C I E S 1 0 2 0 2 0 MN P M G L Y 1 5 . 9 9 9 . 3 6 2 1 2 . 6 9 SD P M G L Y 5 . 9 9 8 3 . 2 4 9 5 . 0 2 8 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 . 9 9 5 3 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) WHICH ARE L I S T E D A S F O L L O W S ( 2 ) ( 3 . 1 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 4 8 3 . 4 2 8 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE THAN THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 2 ) ( 3 . 1 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 3 . 4 2 8 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H P I r F E R BV MORE [ H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D AS F O L L O W S ( 2 . 3 1 ( 3 . 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 5 8 4 6 E - 0 2 S E C O N D S . 1 V X P . . 1 1 . . 1 2 . . 1 3 . 2 1 . . 2 2 . 2 3 . 3 1 . . 3 2 . . 3 3 F R E Q U E N C I E S 1 0 O O 0 10 10 0 10 10 MN P M G L Y 1 5 . 9 9 0 . 0 0 . 0 0 . 0 9 . 9 4 1 1 2 . 6 2 0 . 0 8 . 7 8 2 1 2 . 7 G SD P M G L Y 5 . 9 9 8 0 0 0 . 0 O . O 3 . 3 8 2 6 . 7 B 4 0 . 0 3 . 1 7 9 2 . 7 0 8 E M P T Y C E L L S H A V E B E E N D E L E T E D FROM M U L T I P L E R A N G E T E S T S ; ' NON EMPTY C E L L S H A V E B E E N R E N U M B E R E D . THE F I R S T NON E M P T Y C E L L B E I N G L A B E L L E D 1 AND SO O N . D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 . 9 9 5 3 3 . 0 9 3 2 3 . 1 6 0 1 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S FOR A S U B S E T OF T H A T S I Z E ) W H I C H A R E ( 4 . 2 . 3 . 5 ) ( 3 . 5 . 1) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T , A L P H A = 0 . 0 5 2 . 8 4 8 3 . 4 2 8 3 . 7 7 3 4 . 0 1 8 ^ 4> T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ' ( 4 . 2 . 3 . 5 ) ( 3 , 5 . 1 ) S T U D E N T I Z E D RANGE F O R T U K E Y ' S T E S T . A L P H A = 0 . 0 5 4 . 0 1 8 ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E L I S T E D A S F O L L O W S T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R B Y MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) WHICH A R E L I S T E D AS F O L L O W S ( 4 , 2 . 3 , 5 ) ( 3 . 5 . 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . B 7 7 6 E - 0 2 S E C O N D S . S O U R C E T R E A T 1 C / E X P 1 V O L T 1 P U L S E 1 V X P A N A L Y S I S OF V A R I A N C E - O B F A SUM SQ M E A N SQ 8 . 9 9 5 4 2 . 2 4 8 9 6 . 1 3 9 0 6 . 1 3 9 0 2 . 4 2 6 5 2 . 4 2 6 5 0 . 7 3 7 8 8 E - O I 0 . 7 3 7 8 8 E - 0 1 0 . 3 5 6 0 8 0 . 3 5 6 0 8 ERROR F - V A L U E 1 0 . 6 4 9 2 9 . 0 7 0 1 1 . 4 9 0 'O . 3 4 9 4 1 1 . 6 8 6 1 3 7 0 2 3 E - 0 5 2 4 7 2 0 E - 0 5 1 4 6 4 8 E - 0 2 5 5 7 4 1 2 0 0 7 3 E R R O R 4 5 9 . 5 0 3 2 0 . 2 U I 8 T O T A L 4 9 1 8 . 4 9 9 G R A N D M E A N 0 . 9 4 5 3 0 S T A N D A R D D E V I A T I O N OF V A R I A B L E 7 I S 0 . 6 1 4 4 3 F R E Q U E N C I E S . M E A N S . S T A N D A R D D E V I A T I O N S T R E A T 1 . F R E Q U E N C I E S 10 10 10 10 10 MN O B F A 1 . 6 4 6 1 . 1 5 4 0 . 8 7 9 1 0 . 4 7 2 4 0 . 5 7 5 2 SD O B F A 0 . 6 0 9 7 0 . 6 8 10 0 . 3 7 6 1 0 . 1 0 8 2 0 . 2 5 9 3 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 . 9 9 5 3 3 . 0 9 3 2 3 . 1 6 0 1 T H E R E A R E 3 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 4 , 5 . 3 ) ( 3 . 2 ) ' ( D U l S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . 2 . 8 4 8 3 . 4 2 8 3 . 7 7 3 4 . 0 1 8 A L P H A = 0 . 0 5 T H E R E A R E 3 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 4 . 5 . 3 ) ( 3 . 2 ) ( 1 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 4 . 0 1 8 T H E R E A R E 3 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R B Y MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) WHICH A R E L I S T E D A S F O L L O W S ( 4 . 5 . 3 ) ( 5 . 3 . 2 ) ( 2 . 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 8 0 0 8 E - 0 2 S E C O N D S . 1 C / E X P . 1 . . .2. . F R E Q U E N C I E S 10 4 0 MN O B F A 1 . 6 4 6 O . 7 7 0 1 SD O B F A 0 . 6 0 9 7 0 . 4 8 0 7 1 V O L T . . 1 . F R E Q U E N C I E S 10 MN O B F A 1 . 6 4 6 SD O B F A 0 . 6 0 9 7 D U N C A N ' S M U L T I P L E R A N G E 2 . 8 4 9 0 2 . 9 9 5 3 . ? . . 3 . 2 0 2 0 1 . 0 1 6 0 . 5 2 3 8 0 . 5 5 3 6 0 . 2 0 0 5 T E S T , R A N G E S FOR A L P H A = 0 . 0 5 T H E R E A R E 3 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S , NO P A I R OF W H I C H D I F F E R BV MORE THAN T H E S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 3 ) ( 2 ) < 1 > S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T , A L P H A = 0 . 0 5 2 . 8 4 8 3 . 4 2 8 T H E R E A R E 3 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D AS F O L L O W S ( 3 ) ( 2 ) ( 1 ) , S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 3 . 4 2 8 £ O S T H E R E A R E 3 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H O I F F E R BY MORE THAN THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S 1 ( 3 ) ( 2 ) ( D T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 6 3 1 5 E - 0 2 S E C O N D S . 1 P U L S E . . . 1 . . . 2 . . . 3 F R E Q U E N C I E S 10 2 0 2 0 MN O B F A 1 . 6 4 6 0 . 8 1 3 0 0 . 7 2 7 1 SD O B F A 0 . 6 0 9 7 0 . 5 8 9 4 0 . 3 5 1 0 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 . 9 9 5 3 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R DF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 3 . 2 ) ( 1 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 4 8 3 . 4 2 8 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 3 . 2 ) ( 1 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 3 . 4 2 6 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R B Y MORE THAN THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 3 . 2 ) ( 1) T I M E FOR M U L T I P L E RANGE T E S T S I S 0 . 5 8 7 2 E - 0 2 S E C O N D S . 1 V X P . 1 1 . 1 2 . . 1 3 . . 2 1 . 2 2 . 2 3 . 3 1 . 3 2 . . 3 3 F R E Q U E N C I E S 10 O O 0 10 10 0 10 10 MN O B F A 1 . 6 4 6 0 . 0 0 . 0 0 . 0 1 . 1 5 4 0 . 8 7 9 1 0 . 0 0 . 4 7 2 4 0 . 5 7 5 2 SD O B F A 0 . 6 0 9 7 0 . 0 0 0 0 . 0 0 . 6 B 1 0 0 . 3 7 6 1 0 . 0 0 . 1 0 8 2 0 . 2 5 9 3 E M P T Y C E L L S H A V E B E E N D E L E T E D FROM M U L T I P L E R A N G E T E S T S : ' NON EMPTY C E L L S H A V E B E E N R E N U M B E R E D , THE F I R S T NON E M P T Y C E L L B E I N G L A B E L L E D 1 AND SO O N . O U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 . 9 9 5 3 3 . 0 9 3 2 3 . 1 6 0 1 T H E R E A R E 3 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE THAN THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 4 . 5 . 3 ) ( 3 . 2 ) ( D S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 4 8 3 4 2 8 3 . 7 7 3 4 . 0 1 8 T H E R E A R E 3 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D 1 T F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 4 . 5 , 3 ) ( 3 , 2 ) ( 1 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T , A L P H A = 0 . 0 5 4 . 0 1 8 T H E R E A R E 3 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 4 . 5 . 3 ) ( 5 , 3 , 2 ) ( 2 . 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 8 2 2 9 E - 0 2 S E C O N D S A N A L Y S I S O r V A R I A N C E - 0°MA S O U R C E SUM SO M E A N SO ERROR F - V A L U E T R E A T 1 C / E X P 1 V O L T 1 P U L S E 1 V X P E R R O R T O T A L 4 5 4 9 3 0 . 0 B 6 2 9 . 6 6 1 O . 1 0 5 9 9 O . 1 7 4 9 0 O . 144 12 1 5 . 9 6 9 4 6 . 0 5 5 7 . 5 2 1 5 2 9 . 6 6 I O . 1 0 5 9 9 O . 1 7 4 9 0 O. 144 12 O . 3 5 4 0 6 2 1 . 1 9 6 8 3 . 5 8 5 O . 2 9 8 6 7 O . 4 3 2 8 7 0 . 4 0 6 13 O . 7 0 1 0 7 E - 0 9 O . 7 9 8 3 9 L - 1 1 O . 5 8 7 4 2 O . 4 B G 2 7 O . 5 2 7 17 G R A N D M E A N 1 . 4 2 5 4 S T A N D A R D D E V I A T I O N OF V A R I A B L E 8 I S 0 . 9 6 9 4 8 F R E Q U E N C I E S . M E A N S , S T A N D A R D D E V I A T I O N S T R E A T 1 . . . 3 . . . 4 . . . F R E Q U E N C I E S 10 10 10 10 MN OPMA 2 . 9 6 6 0 . 9 9 4 9 0 . 9 8 2 7 1 . 2 1 8 SD OPMA 1 . 0 1 0 0 . 4 3 3 5 0 . 2 9 7 7 0 . 4 3 1 1 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 9 9 5 3 3 . 0 9 3 2 3 . 1 6 0 1 10 0 . 9 6 5 6 O . 5 4 10 Ki c o T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S F 1 0 R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 5 . 3 . 2 . 4 ) ( D S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 4 8 3 . 4 2 8 3 . 7 7 3 4 0 1 8 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 5 . 3 , 2 . 4 ) ( 1) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 4 . 0 1 8 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S , NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T DF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 5 . 3 , 2 . 4 ) ( D T I M E FOR M U L T I P L E R A N G E T E S T S I S O . G 8 0 9 E - 0 2 S E C O N D S 1 C / E X P . 1 . . 2 F R E Q U E N C I E S 10 4 0 MN OPMA 2 . 9 6 6 1 . 0 4 0 SD OPMA 1 . 0 1 0 0 . 4 3 0 3 1 V O L T 1 . F R E Q U E N C I E S 10 2 0 2 0 MN OPMA 2 . 9 6 6 0 . 9 8 8 8 1 . 0 9 2 S D OPMA 1 . 0 1 0 0 . 3 6 2 0 0 . 4 9 3 4 D U N C A N ' S M U L T I P L E R A N G E T E S T . 2 . 8 4 9 0 2 . 9 9 5 3 R A N G E S FOR A L P H A = 0 . 0 5 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N T H E S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 2 . 3 ) ( 1 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 4 8 3 . 4 2 8 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S , NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E O A S F O L L O W S ( 2 . 3 ) ( 1 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A ^ O . O S 3 4 2 8 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 2 . 3 ) ( 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 5 5 3 4 E - 0 2 S E C O N D S . 1 P U L S E . . . 1 F R E Q U E N C I E S 10 MN OPMA 2 . 9 6 6 SD OPMA 1 . 0 1 0 D U N C A N ' S M U L T I P L E R A N G E 2 . 8 4 9 0 2 . 9 9 5 3 . . . 2 . . . 3 2 0 2 0 1 . 1 0 6 0 . 9 7 4 1 0 . 4 3 6 1 0 . 4 2 5 1 T E S T . R A N G E S FOR A L P H A = 0 . 0 5 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N 1 HE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF T H A T S I Z E ) W H I C H ARE L I S T E D AS F O L L O W S ( 3 . 2 ) ( 1 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 4 8 3 . 4 2 8 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S u B S r I S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE I HAN THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF T H A T S I Z E ) W H I C H ARE L i S T F D A S F O L L O W S ( 3 . 2 1 ( t ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T , A L P H A = 0 . 0 5 3 . 4 2 8 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF T H A T S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 3 , 2 ) ( D T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 1 7 9 2 E - 0 1 S E C O N D S . 1 V X P . . 1 1 . . 1 2 . 1 3 . 2 1 . 2 2 . 2 3 . 3 1 . 3 2 . 3 3 F R E Q U E N C I E S 1 0 O O O 10 10 O 10 10 MN OPMA 2 . 9 6 G 0 . 0 0 . 0 0 . 0 0 . 9 9 4 9 0 . 9 8 2 7 0 . 0 1 . 2 1 8 0 . 9 6 5 G S D OPMA 1 . 0 1 0 0 . 0 0 . 0 0 . 0 0 . 4 3 3 5 0 . 2 9 7 7 0 . 0 0 . 4 3 1 1 0 . 5 4 1 0 E M P T Y C E L L S H A V E B E E N D E L E T E D FROM M U L T I P L E R A N G E T E S T S ; ' NON EMPTY C E L L S H A V E B E E N R E N U M B E R E D , THE F I R S T NON EMPTY C E L L B E I N G L A B E L L E D 1 AND SO O N . D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 . 9 9 5 3 3 . 0 9 3 2 3 . 1 6 0 1 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO FOR A S U B S E T OF T H A T S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 5 . 3 . 2 . 4 ) ( D S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 4 8 3 . 4 2 8 3 . 7 7 3 4 . 0 1 8 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO FOR A S U B S E T OF T H A T S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 5 , 3 , 2 . 4 ) ( D S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 4 . 0 1 8 P A I R OF W H I C H D I F F E R B Y MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E P A I R OF W H I C H D I F F E R BY MORE THAN THE S H O R T E S T S I G N I F I C A N T R A N G E T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S 01 E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE THAN THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF T H A T S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 5 . 3 . 2 . 4 ) ( 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 7 2 S 3 E - 0 2 S E C O N D S A N A L Y S I S OF V A R I A N C E I RF A S O U R C E ERRDR F - V A L U E T R E A T 1 C / E X P 1 V O L T 1 P U L S E 1 V X P E R R O R T O T A L 4 0 . 1 2 8 G G 0 3 2 1 G 6 E - 0 1 1 . 4 0 4 3 0 . 2 4 7 9 0 1 0 . 4 5 3 9 1 E - 0 1 0 4 5 3 9 1 E - 0 1 1 . 9 8 1 7 0 1 6 6 0 9 1 0 . 6 9 6 3 9 E - 0 1 0 G 9 G 3 9 E - 0 1 3 . 0 4 0 3 0 8 8 0 5 IE 1 0 . 1 0 0 8 1 E - 0 1 0 . 1 0 0 8 IE - 0 1 0 . 4 4 0 1 0 0 . 5 104G 1 0 . 3 5 5 3 2 E - 0 2 0 . 3 5 5 3 2 E - 0 2 0 . 1 5 5 1 3 0 . 6 9 5 5 5 4 5 I . 0 3 0 7 0 2 2 9 0 6 E - 0 1 4 9 1 I . 1 5 9 4 G R A N D M E A N 0 . 3 7 0 6 4 S T A N D A R D D E V I A T I O N OF V A R I A B L E 9 I S O 1 5 3 8 2 F R E Q U E N C I E S . M E A N S . S T A N D A R D D E V I A T I O N S T R E A T 3 . . F R E Q U E N C I E S 10 10 10 MN I B F A 0 . 4 3 0 9 0 . 4 2 2 6 0 . 3 7 2 0 SD I B F A 0 . 2 7 8 2 0 . 1 2 5 2 0 . 1 1 5 2 10 10 0 . 3 2 0 3 0 . 3 0 7 4 0 . 5 3 3 5 E - 0 1 0 . 7 3 0 6 E - 0 I D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FDR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 . 9 9 5 3 3 . 0 9 3 2 3 . 1 6 0 1 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R B Y - M O R E T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 5 . 4 . 3 . 2 . 1) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E 5 T . A L P H A = 0 . 0 5 2 . B 4 8 3 . 4 2 8 3 . 7 7 3 4 . 0 1 8 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 5 , 4 , 3 . 2 , 1 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 4 0 1 8 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N I R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 5 . 4 . 3 . 2 . 1 ) T I M E FOR M U L T I P L E RANGE T E S T S I S 0 . 6 3 0 2 E - 0 2 S E C O N D S . 1 C / E X P F R E Q U E N C I E S MN I B F A 0 . 4 3 0 9 0 . 3 5 5 6 SD I B F A 0 . 2 7 8 2 O. 1034 1 V O L T 1 . F R E Q U E N C I E S MN I B F A SD I B F A 10 0 . 4 3 0 9 0 . 2 7 8 2 2 0 0 . 3 9 7 3 0 . 1 1 9 9 2 0 0 . 3 1 3 8 0 . 6 2 6 1 E -D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FDR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 . 9 9 5 3 T H E R E A R E 1 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N T H E S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F 0 L L 0 W 5 ( 3 . 2 . 1 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 4 8 3 . 4 2 8 T H E R E A R E 1 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH O I F F E R BY MORE THAN THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 3 . 2 . 1 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 3 . 4 2 8 T H E R E A R E 1 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 3 , 2 . 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 5 0 9 2 E - 0 2 S E C O N D S . I P U L S E . . . 1 . . . 2 . . . 3 F R E Q U E N C I E S 10 2 0 2 0 MN I B F A 0 . 4 3 0 9 0 . 3 7 1 4 0 . 3 3 9 7 SO I B F A 0 . 2 7 8 2 0 . 1 0 7 3 0 . 9 9 5 6 E - 0 1 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 . 9 9 5 3 T H E R E A R E 1 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H O I F F E R B Y MORE THAN THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T DF T H A T S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 3 . 2 . 1 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 4 8 3 4 2 8 T H E R E A R E 1 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 3 . 2 . 1 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 3 . 4 2 8 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 3 . 2 . 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 5 1 8 2 E - 0 2 S E C O N D S . 1 V X P . . 1 1 . 1 2 . 1 3 . . 2 1 . . 2 2 . 2 3 . 3 1 . 3 2 . 3 3 F R E Q U E N C I E S 10 O O O 10 10 O 10 10 MN I B F A 0 . 4 3 0 9 0 . 0 0 . 0 0 . 0 0 . 4 2 2 6 0 . 3 7 2 0 0 . 0 0 . 3 2 0 3 0 . 3 0 7 4 SO I B F A 0 . 2 7 8 2 O . O 0 . 0 0 . 0 0 . 1 2 5 2 0 . 1 1 5 2 0 . 0 O . S 3 3 5 E - 0 1 0 . 7 3 0 6 E - 0 1 E M P T Y C E L L S H A V E B E E N D E L E T E D FROM M U L T I P L E R A N G E T E S T S ; ' NON EMPTY C E L L S H A V E B E E N R E N U M B E R E D , THE F I R S T NON EMPTY C E L L B E I N G L A B E L L E D I AND SO O N . D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 . 9 9 5 3 3 . 0 9 3 2 3 . 1 6 0 1 T H E R E A R E 1 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E F D R A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 5 . 4 . 3 . 2 , 1) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 4 8 3 . 4 2 8 3 . 7 7 3 4 . 0 1 8 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S , NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 5 , 4 , 3 . 2 , 1 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T , A L P H A = 0 . 0 5 4 . 0 1 8 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A [ R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E F D R A S U B S E T OF THAT S I Z E ) WHICH A R E L I S T E D A S F O L L O W S ( 5 . 4 , 3 , 2 . 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S O . 6 9 0 1 E - 0 2 S E C O N D S S O U R C E T R E A T 1 C / E X P 1 V O L T 1 P U L S E 1 V X P E R R O R A N A L Y S I S OF V A R I A N C E - IPMA SUM SO M E A N SQ 4 5 . 2 2 0 4 5 . 0 9 6 0 . 2 2 8 9 6 E - 0 I 0 . 9 6 1 3 8 E - 0 I O . 5 8 8 0 K E - O 2 3 6 . 4 9 8 1 1 . 3 0 5 4 5 . 0 9 6 O . 2 2 8 9 6 E - 0 1 0 . 9 6 1 3 8 E - 0 1 O . 5 8 8 0 6 E - 0 2 0 . 8 1 1 0 6 ERROR F - V A L U E P R O B 1 3 . 9 3 9 0 . 1 7 8 8 7 E - 0 G 5 5 . 6 0 1 0 . 2 1 5 4 0 E - 0 8 0 . 2 B 2 3 0 E - 0 1 0 . 8 6 7 3 2 0 . 1 1 8 5 3 0 . 7 3 2 2 3 0 . 7 2 5 0 5 E - 0 2 0 . 9 3 2 5 2 T O T A L 4 9 81 7 1 8 G R A N D M E A N 0 . 9 4 8 8 2 S T A N D A R D D E V I A T I O N OF V A R I A B L E 10 I S 1 . 2 9 1 4 F R E Q U E N C I E S . M E A N S , S T A N D A R D D E V I A T I O N S T R E A T 1 . . . 2 . . . 3 . . . 4 . . . 5 . . . F R E Q U E N C I E S 10 10 10 10 10 MN I P M A 2 . 8 4 8 0 3 8 8 9 O 5 1 1 3 0 . 4 F , 10 0 . 5 3 4 8 SO I P M A 1 . 9 9 2 0 . 1 1 0 1 0 . 1 9 5 3 0 . 1 0 8 5 0 . 1 5 9 7 D U N C A N ' S M U L T I P L E R A N G E T E S T , R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 . 9 9 5 3 3 . 0 9 3 2 3 . 1 G 0 1 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 2 , 4 . 3 . 5 ) ( 1 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 4 8 3 . 4 2 8 3 . 7 7 3 4 . 0 1 8 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 2 , 4 . 3 , 5 ) ( 1 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 4 0 1 8 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . ND P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 2 . 4 . 3 . 5 ) ( O T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 6 9 5 3 E - 0 2 S E C O N D S . 1 C / E X P . 1 . . . 2 . . F R E Q U E N C I E S 10 4 0 MN I P M A 2 . 8 4 8 0 . 4 7 4 0 S D I P M A 1 . 9 9 2 0 . 1 5 3 0 1 V O L T . 1 . . 2 . . . 3 F R E Q U E N C I E S 10 2 0 2 0 MN I P M A 2 . 8 4 8 0 . 4 5 0 0 0 . 4 9 7 9 SD I P M A 1 . 9 9 2 0 . 1 G 6 6 0 . 1 3 8 2 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 . 9 9 5 3 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF T H A T S I Z E ) W H I C H A R E L I S T E O AS F O L L O W S ( 2 . 3 ) ( 1 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 4 8 3 . 4 2 8 T H E R E A R E 2 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 2 , 3 1 ( D S T U D E N T I Z E D R A N G E FDR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 3 . 4 2 8 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R B Y MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 2 . 3 ) ( D T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 5 5 2 1 E - 0 2 S E C O N D S . 1 P U L S E . . . 1 . . . 2 . 3 F R E Q U E N C I E S 10 2 0 2 0 MN I P M A 2 . 8 4 8 0 . 4 2 4 9 0 . 5 2 3 0 SD I P M A 1 . 9 9 2 0 . 1 1 2 7 0 . 1 7 4 1 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 . 9 9 5 3 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE THAN THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 2 , 3 ) ( 1 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T , A L P H A = 0 . 0 5 2 . 8 4 8 3 . 4 2 8 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 2 . 3 ) ( 1) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 3 . 4 2 8 T H E R E A R E 2 HOMOGENEOUS S U B S E . ' S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BV MORE THAN THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 2 . 3 ) ( D T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 5 9 2 5 E - 0 2 S E C O N D S . 1 V X P . . 1 1 . . 1 2 . 1 3 . . 2 1 . . 2 2 . 2 3 . 3 1 . 3 2 . . 3 3 F R E Q U E N C I E S 10 0 0 O 10 10 O 10 10 MN I P M A 2 . 8 4 8 0 . 0 0 . 0 0 . 0 0 . 3 8 8 9 0 . 5 1 1 2 0 . 0 0 . 4 6 1 0 0 . 5 3 4 8 SD I P M A 1 . 9 9 2 O . O 0 . 0 0 . 0 0 . 1 1 0 1 0 . 1 9 5 3 0 . 0 0 . 1 0 8 5 0 . 1 5 9 7 E M P T Y C E L L S H A V E B E E N D E L E T E D FROM M U L T I P L E R A N G E T E S T S ; ' NON EMPTY C E L L S H A V E B E E N R E N U M B E R E D . THE F I R S T NON EMPTY C E L L B E I N G L A B E L L E D 1 AND SO O N . D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 . 9 9 5 3 3 . 0 9 3 2 3 . 1 6 0 1 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 2 , 4 . 3 . 5 ) ( 1 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T , A L P H A = 0 . 0 5 2 . 8 4 8 3 . 4 2 8 3 . 7 7 3 4 . 0 1 8 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S , NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 2 . ' 4 . 3 . 5 ) ( D S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 4 . 0 1 8 T H E R E A R E 2 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S < 2 . 4 . 3 . 5 ) < 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 7 2 5 3 E - 0 2 S E C O N D S . A N A L Y S I S OF V A R I A N C E - S B F A S O U R C E OF SUM SQ M E A N SO ERROR F - V A L U E PROB T R E A T 4 0 . 4 7 1 1 1E - 0 1 0 . 1 1 7 7 8 E - 0 1 0 . 9 3 9 18 0 4 5 0 0 4 C / E X P 1 0 . 1 1 1 3 9 E - 0 2 0 . 1 1 1 3 9 E - 0 2 0 . 8 8 8 2 5 E - 0 1 0 7 6 7 0 5 V O L T 1 0 . 7 8 4 0 0 E - 0 2 0 . 7 8 4 0 0 E - 0 2 0 . 6 2 5 1 7 0 . 4 3 3 2 8 P U L S E 1 0 . 3 7 9 4 6 E - 0 1 • 0 . 3 7 9 4 6 E - 0 1 3 . 0 2 5 8 0 8 B 7 8 5 E V X P 1 0 . 2 1 1 6 0 E - 0 3 0 . 2 1 1 6 0 E - 0 3 0 . I 6 8 7 3 E - 0 1 0 . 8 9 7 2 3 E R R O R 4 5 O 5 6 4 3 2 0 . 1 2 5 4 1 E - 0 I T O T A L 4 9 0 . 6 1 1 4 4 G R A N D M E A N O . 3 1 0 2 6 S T A N O A R O D E V I A T I O N OF V A R I A B L E 11 I S O . 1 1 1 7 1 F R E Q U E N C I E S . M E A N S . S T A N D A R D D E V I A T I O N S T R E A T 1 . 5 . . F R E Q U E N C I E S MN S B F A SD S B F A 10 O . 3 1 9 7 O . 1 5 7 0 10 O . 2 8 8 8 O . 1 1.15 10 O. 3 5 5 0 O . 8 7 8 3 E - 0 1 10 O . 2 6 5 4 O . 1 0 6 4 10 0 . 3 2 2 4 O . 8 I 1 5 E - 0 1 D U N C A N ' S M U L T I P L E R A N G E T E S T , R A N G E S FOR A L P H A = 0 0 5 2 . 8 4 9 0 2 . 9 9 5 3 3 . 0 9 3 2 3 . 1 6 0 1 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R B Y MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 4 . 2 , 1 , 5 . 3 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = O . O S 2 . 8 4 8 3 . 4 2 8 3 . 7 7 3 4 0 1 8 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE THAN THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 4 . 2 . 1 , 5 . 3 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T , A L P H A = 0 . 0 5 4 . 0 1 8 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D AS F O L L O W S ( 4 , 2 . 1 . 5 . 3 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 6 5 1 1 E - 0 2 S E C O N D S . 1 C / E X P . 1 . . . 2 . . F R E Q U E N C I E S 10 4 0 MN S B F A 0 . 3 1 9 7 0 . 3 0 7 9 SD S B F A 0 . 1 5 7 0 0 . 9 9 8 1 E - O 1 1 V O L T 1 2 . . 3 . F R E Q U E N C I E S 1 0 2 0 2 0 MN S B F A 0 . 3 1 9 7 0 . 3 2 1 9 0 . 2 9 3 9 SD S B F A 0 . 1 5 7 0 0 . 1 0 3 4 0 . 9 6 G 2 E - 0 1 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G t S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 . 9 9 5 3 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THF S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 3 . 1 . 2 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 4 8 3 . 4 2 8 T H E R E A R E 1 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N T H E S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 3 . 1 . 2 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T , A L P H A = 0 . 0 5 3 . 4 2 8 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U 8 S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 3 , 1 . 2 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 5 1 8 2 E - 0 2 S E C O N D S . 1 P U L S E . . . 1 . . . 2 . . . 3 | F R E Q U E N C I E S 10 2 0 2 0 MN S B F A 0 . 3 1 9 7 0 . 2 7 7 1 0 . 3 3 8 7 jvj SD S B F A 0 . 1 5 7 0 0 . 1 0 6 8 0 . B 3 9 8 E - 0 1 ^ 0 0 D U N C A N ' S M U L T I P L E R A N G E T E S T , R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 9 9 5 3 . T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H A R E L I S T E D A S F O L L O W S ( 2 . 1 . 3 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 4 8 3 . 4 2 8 T H E R E A R E 1 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 2 . 1 . 3 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 3 . 4 2 8 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE THAN THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 2 . 1 . 3 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 5 O 7 8 E - O 2 S E C O N D S . F R E Q U E N C I E S 10 0 O O 10 10 0 10 10 MN S B F A 0 . 3 1 9 7 0 . 0 0 . 0 O . O 0 . 2 B 8 8 0 . 3 5 5 0 0 . 0 O . 7 6 5 4 O 3 2 2 4 SD S B F A 0 . 1 5 7 0 0 . 0 0 . 0 0 . 0 * 0 . 1 1 1 5 0 . 8 7 8 3 L - 0 1 O . O 0 . 1 0 6 4 0 . 8 1 1 5 E - 0 1 E M P T Y C E L L S H A V E B E E N D E L E T E D FROM M U L T I P L E RANGE T E S T S ; ' NON E M P T Y C F L L S H A V E B E E N R E N U M B E R E D . THE F I R S T NON EMPTY C E L L B E I N G L A B E L L E D 1 AND SO O N . D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 . 9 9 5 3 3 . 0 9 3 2 3 1 6 0 1 T H E R E A R E 1 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE THAN THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D AS F O L L O W S ( 4 . 2 . 1 . 5 . 3 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 4 8 3 . 4 2 8 3 . 7 7 3 4 . 0 1 8 T H E R E A R E 1 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N T H E S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D AS F O L L O W S ( 4 . 2 . 1 . 5 . 3 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 4 . 0 1 8 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE THAN THE S H O R T E S T S I G N I F I C A N T ' R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E O A S F O L L O W S ( 4 . 2 . 1 . 5 . 3 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 7 6 0 5 E - O 2 S E C O N D S . A N A L Y S I S OF V A R I A N C E - SPMA OURCE DF S U M SO M E A N SO ERROR F - V A L U E PROB T R E A T 4 0 . 2 2 7 5 0 0 . 5 6 8 7 5 E - 0 1 1 . 0 1 7 4 0 . 4 0 8 5 7 C / E X P 1 0 . 1 4 3 2 7 0 . 1 4 3 2 7 2 . 5 6 3 0 0 . 1 1 6 3 9 V O L T 1 0 . 2 7 3 0 1 E - 0 1 0 . 2 7 3 0 I E - 0 1 0 . 4 8 8 3 8 0 . 4 8 8 2 5 P U L S E 1 0 . 1 0 2 0 8 E - 0 1 0 . 1 0 2 0 8 E - 0 1 0 . 1 8 2 6 1 0 . 6 7 1 18 V X P 1 0 . 4 6 7 17E - 0 1 0 . 4 6 7 17E - 0 1 0 . 8 3 5 7 2 0 . 3 6 5 5 0 E R R O R 4 5 2 . 5 1 5 5 0 . 5 5 9 O 0 E - 0 1 T O T A L 4 9 2 . 7 4 3 0 G R A N D M E A N 0 . 5 9 8 6 4 S T A N D A R D D E V I A T I O N OF V A R I A B L E 12 I S 0 . 2 3 G G O F R E Q U E N C I E S . M E A N S . S T A N D A R D D E V I A T I O N S T R E A T F R E Q U E N C I E S MN SPMA SD S P M A 10 0 - 7 0 5 7 O . 3 8 2 4 10 O . 4 9 5 6 0 - 1 7 3 1 10 0 . 5 9 5 9 O . 2 0 3 8 10 O . 6 1 G 2 0 . 2 1 2 6 10 0 . 5 7 9 8 O . 1 2 8 6 D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 • 2 . 9 9 5 3 3 , 0 9 3 2 3 . 1 6 0 1 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S , NO P A I R OF WHICH D I F F E R BY MORE THAN THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 2 . 5 , 3 . 4 , 1 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T , A L P H A = 0 . 0 5 2 . 8 4 8 3 . 4 2 8 3 . 7 7 3 4 . 0 1 8 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S , NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 2 . 5 , 3 , 4 . 1) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T , A L P H A = 0 . 0 5 4 . 0 1 8 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E ' FDR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 2 . 5 . 3 . 4 . 1 ) 1 0 O S T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 6 3 9 3 E - 0 2 S E C O N D S ° 1 C / E X P . 1 . . . 2 , . F R E Q U E N C I E S 10 4 0 MN SPMA 0 . 7 0 5 7 0 . 5 7 19 SD S P M A 0 . 3 8 2 4 o.1814 1 V O L T . . 1 . F R E Q U E N C I E S 1 0 MN S P M A 0 . 7 0 5 7 SD S P M A 0 . 3 8 2 4 D U N C A N ' S M U L T I P L E R A N G E 2 . 8 4 9 0 2 . 9 9 5 3 . 2 . . 3 . 2 0 2 0 O 5 4 5 7 O.. 5 9 8 0 0 . 1 9 1 1 O . 1 7 2 0 T E S T . R A N G E S FOR A L P H A = 0 . 0 5 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 2 . 3 . 1 ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 4 8 3 . 4 2 8 T H E R E A R E 1 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF T H A T S I Z E I WHICH ARF L I S T E D A S F O L L O W S ( 2 . 3 . 1 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 3 . 4 2 8 T H E R E A R E 1 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE SF IORTEST S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D AS F O L L O W S < 2 . 3 . 1 ) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 6 O 1 6 E - O 2 S E C O N D S . 1 P U L S E . . . 1 F R E Q U E N C I E S 1 0 MN S P M A 0 . 7 0 5 7 SD S P M A 0 . 3 8 2 4 D U N C A N ' S M U L T I P L E R A N G E 2 . 8 4 9 0 2 . 9 9 5 3 . . 2 . . . 3 2 0 2 0 0 . 5 5 5 9 0 . 5 8 7 8 O 1 9 8 6 O . 1 6 6 1 T E S T , R A N G E S FOR A L P H A = 0 . 0 5 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF T H A T S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 2 . 3 . I ) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 4 8 3 . 4 2 8 T H E R E A R E 1 H O M O G E N E O U S S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D AS F O L L O W S ( 2 . 3 . 1 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 3 . 4 2 8 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R DF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 2 , 3 . 1) T I M E FOR M U L T I P L E R A N G E T E S T S I S O 5 0 0 0 E - 0 2 S E C O N D S . 1 V X P . 1 1 . 2 3 . 3 2 . 3 3 F R E Q U E N C I E S MN S P M A SO S P M A 1 0 O . 7 0 5 7 0 . 3 8 2 4 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 10 0 . 4 9 5 6 O . 1731 10 O 5 9 5 9 0 . 2 0 3 8 0 . 0 0 . 0 10 0 . 6 1 6 2 0 . 2 1 2 6 10 O . 5 7 9 8 O . 1 2 8 6 E M P T Y C E L L S H A V E B E E N D E L E T E D FROM M U L T I P L E RANGE T E S T S ; ' NON E M P T Y C E L L S H A V E B E E N R E N U M B E R E D . T H E F I R S T NON EMPTY C E L L B E I N G L A B E L L E D 1 AND SO O N . D U N C A N ' S M U L T I P L E R A N G E T E S T . R A N G E S FOR A L P H A = 0 . 0 5 2 . 8 4 9 0 2 . 9 9 5 3 3 . 0 9 3 2 3 . 1 6 0 1 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE THAN THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 2 , 5 . 3 , 4 . 1) S T U D E N T I Z E D R A N G E S FOR N E W M A N - K E U L ' S T E S T . A L P H A = 0 . 0 5 2 . 8 4 8 3 . 4 2 8 3 . 7 7 3 4 . 0 1 8 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF W H I C H D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D A S F O L L O W S ( 2 , 5 . 3 . 4 . 1 ) S T U D E N T I Z E D R A N G E FOR T U K E Y ' S T E S T . A L P H A = 0 . 0 5 4 . 0 1 8 T H E R E A R E 1 HOMOGENEOUS S U B S E T S ( S U B S E T S OF E L E M E N T S . NO P A I R OF WHICH D I F F E R BY MORE T H A N THE S H O R T E S T S I G N I F I C A N T R A N G E FOR A S U B S E T OF THAT S I Z E ) W H I C H ARE L I S T E D AS F O L L O W S ( 2 . 5 , 3 , 4 , 1) T I M E FOR M U L T I P L E R A N G E T E S T S I S 0 . 6 8 2 3 E - 0 2 S E C O N D S A N A L Y S I S C O M P L E T E E x e c u t i o n t e r m i n a t e d 0 8 : 2 4 : 1 6 T = 0 . B 9 1 R C = 0 $ 0 . 8 6 $ S I G 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0098194/manifest

Comment

Related Items