Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Financial analysis of a potential scallop culture operation in British Columbia Pugh, J. David 1988

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1989_A6_7 P83.pdf [ 7.64MB ]
Metadata
JSON: 831-1.0097541.json
JSON-LD: 831-1.0097541-ld.json
RDF/XML (Pretty): 831-1.0097541-rdf.xml
RDF/JSON: 831-1.0097541-rdf.json
Turtle: 831-1.0097541-turtle.txt
N-Triples: 831-1.0097541-rdf-ntriples.txt
Original Record: 831-1.0097541-source.json
Full Text
831-1.0097541-fulltext.txt
Citation
831-1.0097541.ris

Full Text

FINANCIAL ANALYSIS OF A POTENTIAL SCALLOP CULTURE OPERATION IN BRITISH COLUMBIA by J. DAVID PUGH B. Sc., University of B r i t i s h Columbia 1976 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Department of A g r i c u l t u r a l Mechanics) We accept t h i s thesis as conforming to the required standard THE © UNIVERSITY OF BRITISH COLUMBIA October, 1988 Copyright J. David Pugh, 1988 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, 1 agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of The University of British Columbia Vancouver, Canada DE-6 (2/88) ABSTRACT A f i n a n c i a l model, developed in ASEASY AS spreadsheet software for application in s h e l l f i s h aquaculture, i s used to evaluate the p r o f i t a b i l i t y of culturing c e r t a i n scallops in B.C. Growth and su r v i v a l data are obtained from a project which cultured mixed populations of rock scallops (Hinnites  multiruqosis), pink scallops (Chlamys rubida), and spiny scallops (C_i. her i c i a ) . Cost data i s derived from accounts of Japanese scallop culture and from examples of oyster long l i n e culture in B.C. Product prices are estimated from Vancouver sales of fis h e r y caught Chlamys and of east coast fresh adductor muscles. Given the estimated costs and assuming that seed i s avai l a b l e , i t i s concluded that producing whole, l i v e , 5-7 cm Chlamys and Hinnites would be p r o f i t a b l e , assuming that Hinnites substitutes for Chlamys in t h i s market segment. Lantern net culture, s l i g h t l y more pr o f i t a b l e than pearl net and ear hanging methods, exhibits an average annual net p r o f i t during years four and five of $72,192, based on production from one m i l l i o n seed per year, but the net present value i s lower than that achieved by investing funds at 10% per year (compounded quarterly) for seven years. A 20% increase in s e l l i n g price to $0.26/scallop r e s u l t s in an annual net p r o f i t greater than $100,000 for lantern net production of whole, 5-7 cm scallops, while the break even price i s projected to be $0.13/scallop. S i g n i f i c a n t improvement in f i n a n c i a l performance can be achieved by reducing labour cost, which i s 33% of t o t a l costs for lantern net culture. However, doubling labour cost s t i l l does not reduce the net p r o f i t to zero. Increasing the growth rate by 175%, to approximately that of the Japanese weathervane scallop, increases the average annual p r o f i t from producing whole, 5-7 cm scallops, to $88,963. It i s concluded that marketing the shucked meats of the mixed population of Chlamys and Hinnites from the above project i s not p r o f i t a b l e . From the limited data ava i l a b l e , production of faster growing, 8-9 cm rock scallops for shucking i s not p r o f i t a b l e unless a price equivalent to $0.18/scallop i s achieved. Production of 10-11 cm weathervane scallops for shucking i s projected to provide a net p r o f i t of $36,981, but further delineation of f i n a n c i a l f e a s i b i l i t y must await data from ongoing culture projects. - i v -TABLE OF CONTENTS ABSTRACT i i LIST OF TABLES v i LIST OF FIGURES v i i ACKNOWLEDGEMENTS ix INTRODUCTION 1 LITERATURE REVIEW 2 Scallop Biology and Culture Summary 2 B r i t i s h Columbia Scallops 4 Production and Marketing 5 THEORY FORMULATION 8 OBJECTIVE 9 JUSTIFICATION 9 METHODS 10 Software 10 Hardware Requirements 10 Model Structure and Input 11 1. Alternate Scenarios 11 2. Production Submodel 13 3.Systems Submodel 16 4.Financial Submodel 22 Output 28 Experimental 29 -v-RESULTS AND DISCUSSION 30 Whole Scallops 30 S e n s i t i v i t y Analyses 33 Shucked Scallops 43 S e n s i t i v i t y Analyses 45 Other Scenarios 45 Production of Shucked Rock Scallops 45 Production of Shucked Weathervanes 47 SUMMARY 50 BIBLIOGRAPHY 54 APPENDICES 58 A. Model L i s t i n g and User T u t o r i a l 58 B. Market Data Compilation 100 C. Cost Documentation 106 - v i -LIST OF TABLES Table Page 1. Scallop culture systems dimensions and labour requirements. 17 2. Scallop culture systems component cost and economic l i f e . 17 3. Comparison of alternate culture systems producing whole, 5-7 cm Chlamys and Hinnites scallops from one m i l l i o n seed per year. 19 4. Fixed asset expenditures for a s c a l l o p operation culturing 400,000 to two m i l l i o n seed per year. 23 5. Fixed costs for a scallop operation culturing 400,000 to two m i l l i o n seed per year by alternate systems (no in-house processing). 25 6. Variable costs for the production of whole, 5-7 cm Chlamys and Hinnites scallops from one m i l l i o n seed per year by alternate systems (no in-house processing). 27 7. Projected annual income statement averaged over years four and fiv e for the production of whole, 5-7 cm Chlamys and Hinnites scallops from one m i l l i o n seed per year by alternate systems (no in -house processing) 31 8. Projected f i n a n c i a l performance of alternate systems producing whole, 5-7 cm Chlamys and Hinnites scallops from one m i l l i o n seed per year (unless otherwise s p e c i f i e d ) . 31 9. Projected annual income statement averaged over years four and fiv e for the production of shucked scallops from one m i l l i o n seed per year by lantern nets (in-house processing). 44 10. Projected f i n a n c i a l performance of alternate operations producing shucked scallops from one m i l l i o n seed per year 48 - v i i -LIST OF FIGURES Figure Page 1. Examples of Suspended Scal lop Culture Systems. 3 2. Long Line System for Scal lop C u l t u r e . 3 3. U . S . Scal lop Supply and Consumption 1977-1986. 6 4. Difference Between the Number of Scal lops Seeded Minus Sales and M o r t a l i t i e s for an Operation Producing Whole Chlamys and Hinnites Scallops from One M i l l i o n Seed per Year. 14 5. Projected Cumulative Cash Flow for the Production of Whole, 5-7 cm Chlamys and Hinnites Scallops from One M i l l i o n Seed per Year in Alternate Culture Systems (No In-House Processing) . 32 6. S e n s i t i v i t y of the Projected Annual Net P r o f i t to Key Var iables for the Production of Whole, 5-7 cm Chlamys and Hinnites Scallops from One M i l l i o n Seed per Year in Lantern Nets (No In-House Process ing) . 34 7. S e n s i t i v i t y of the Projected Net Present Value (Over Seven Years at a Discount of 10%) to Changes in Key Variables for the Production of Whole, 5-7 cm Chlamys and Hinnites Scal lops from One M i l l i o n Seed per Year in Lantern Nets (No In-House Process ing) . 35 8. Projected Cumulative Cash Flows, at D i f f e r e n t Values of Key V a r i a b l e s , for the Production of Whole, 5-7 cm Chlamys and Hinnites Scallops from One M i l l i o n Seed per Year in Lantern Nets. 37 9. Projected Cumulative Cash Flows for the Production of Whole, 5-7 cm Chlamys and Hinnites Scal lops at Various Scales of Production in Lantern Nets. 42 10. S e n s i t i v i t y of the Projected Annual Net P r o f i t to S e l l i n g Pr ice for the Production of Shucked Scal lops from One M i l l i o n Seed per Year in Lantern Nets (In-House Processing) . 46 - v i i i -11. S e n s i t i v i t y of the Projected Net Present Value (Over Seven Years at a Discount of 10%) to S e l l i n g Price for the Production of Shucked Scallops from One M i l l i o n Seed per Year in Lantern Nets (In-House Processing). 46 12. Projected Cumulative Cash Flows for the Production of Shucked Rock and Japanese Weathervane Scallops from One M i l l i o n Seed per Year in Lantern Nets. 48 - l x -ACKNOWLEDGEMENTS Appreciation i s extended to Dr. John Zahradnik, Department of Bio-Resource Engineering, for his patient assistance in the development of the thesis and in the review of the many draughts; to Dr. Len Staley, Professor emeritus, Department of Bio-Resource Engineering, for his d i r e c t i o n and constructive c r i t i c i s m ; and to Dr. B i l l Tomlinson, Department of Commerce and Business Administration, for his assistance. INTRODUCTION -1-Scallop culture, in experimental stages in various parts of the world, i s well established in Japan ( V e n t i l l a , 1982). A recent bibliography has compiled scallop l i t e r a t u r e by geographic region (Hodgson et a l , 1988). Attempts are now underway in B r i t i s h Columbia to culture both native and Japanese species (Zaharadnik, 1985; Anon, 1988). Growth and su r v i v a l data, generated from a project c u l t u r i n g mixed populations of the native rock scallop (Hinnites multirugosis), and pink and spiny scallops (Chlamys  rubida , C^ h e r i c i a ) , (Zahradnik, 1985), i s incorporated in a computer model of a scallop operation. Data from the culture of the Japanese weathervane scallop (Patinopectin yessoensis) ( V e n t i l l a , 1982; Taguchi, 1976; Anon, 1988) and from B.C. oyster long l i n e culture (Field and Drinnan, 1988; Pobran, 1986; F r a l i c k , 1979; Humphries, 1976) also serve as input into the model, which i s then used to analyze the economic f e a s i b i l i t y of potential segments of scall o p culture in B r i t i s h Columbia. Alternate scenarios considered in the study include producing the above species by lantern net, ear hanging, or -2-pearl net methods, and marketing them whole ( l i v e , at 5 to 7 cm s i z e ) , or shucked. The s e n s i t i v i t y of f i n a n c i a l parameters to changes in growth and s u r v i v a l rates, culture density, scale of operation, s e l l i n g prices, and cost categories i s investigated for the scenario found to be the most p r o f i t a b l e . LITERATURE REVIEW Scallop Biology and Culture Summary The Japanese weathervane scallop (P^ yessoensis). has been cultured in Japan for over twenty years (Taguchi, 1976; Yamamoto, 1977a and b; V e n t i l l a , 1982; Magoon and Vining, 1981). Seed, (young s c a l l o p s ) , are obtained from hatcheries or from nature. Adult scallops are induced to spawn in a hatchery by manipulating their environment, t y p i c a l l y by r a i s i n g the water temperature. After f e r t i l i z a t i o n , the l a r v a l scallops swim f r e e l y for approximately one month, and then s e t t l e on an appropriate substrate, c a l l e d cultch, which in nature includes old s h e l l s , rocks, or wood. After a few months, they detach, and remain mobile for the rest of adult l i f e . In hatcheries or in nature, l a r v a l scallops are c o l l e c t e d on p l a s t i c cultch in small mesh bags. When the scallops detach inside the bag, they are too large to exit through the mesh. Juvenile scallops 1 to 10 mm in width are then placed in pearl nets (Fig. 1) for an intermediate grow out culture stage, then either stocked in natural beds for subsequent harvest by fishermen, or cultured -3-F i g . l . E x a m p l e s o f S u s p e n d e d S c a l l o p C u l t u r e S y s t e m s . ( S o u r c e s : V e n t i l l a ( 1 9 8 2 ) ; Magoon and V i n i n g ( 1 9 8 1 ) ) L a n t e r n n e t (7 o r 10 l e v e l ) E a r h a n g i n g P e a r l n e t 100-150cm — 50cm-F i g . 2 . L o n g L i n e S y s t e m f o r S c a l l o p C u l t u r e ( S o u r c e : T a g u c h i (1976)) -4-in alternate adult grow out long-line systems (Fig. 1 and 2). They feed on plankton borne by t i d a l currents and are harvested at a width of 10 cm after two years on long l i n e s . B r i t i s h Columbia Scallops Of the approximately 10 species of scallops native to B.C., a few are potential culture candidates: weathervane scallops (Patinopectin caurinus), pink and spiny scallops (Chlamys rubida, C. h e r i c i a ) , and rock scallops (Hinnites  multirugosis). These species range along the west coast of Canada and the United States (Bourne, 1969), the weathervanes occuring on sandy bottom 10 to 100 m. deep, Chlamys from subtidal to 200 m. deep, and rock scallops on rocky seabed up to 25 m. deep. Rock scallops do not completely detach aft e r setting for a few months, as do other scallops. Instead, they go through a short semi-motile, crawling stage. Then, they cement to rocks, and remain thus for the rest of their l i v e s . Natural seed a c q u i s i t i o n has been achieved in B.C. (Zahradnik, 1985). Two to three hundred pink, spiny and rock scallop seed of 4 to 18 mm. width were coll e c t e d per cultch unit at 15 to 20 m. depth. In grow out culture in pearl and -5-lantern nets, mixed populations of these species achieved average growth rates in the f i r s t two years of up to 28.4 mm per year. Experimental projects culturing rock scallops are also in progress in C a l i f o r n i a (Leighton and Phleger, 1977; Phleger and Leighton, 1980), Washington (Rhee, 1988), and B.C. (Anon, 1988). B.C. and C a l i f o r n i a researchers have also propagated rock scallops in hatcheries, and the Japanese weathervane scallop (P^ yessoensis) has been imported and propagated In B.C. (Bourne, 1986). Production and Marketing Substantial international markets exist for scallops (Envirocon, 1984). From 1977 to 1986, the U.S. consumed almost a l l of i t s own sca l l o p meat production of 16 m i l l i o n kg. annually (Fig. 3), composed mainly of east coast sea scallops (70%) and smaller c a l i c o (bay) scallops (30%) (data from the U.S.Department of Commerce, NMFS; Anon, 1977-1987). Minor production comes from an Alaskan weathervane fishery. During the same period, U.S. production formed only 45% of i t s consumption, and an average of 14 m i l l i o n kg. of scallop meats per year was imported. From 1979 to 1981, Canada produced 10 m i l l i o n kg. per year of scallop meats from east coast f i s h e r i e s and exported 80% frozen to the U.S., comprising -6-F i g . 3. U.S. S c a l l o p Supply and Consumption, 1977-1986. (Source: data from F i s h e r i e s of the U.S., Anon (1977-1987) • A C o 30.33 70.88 W UJ 60.00 50.00 40.00 30.00 r 20.08 10.00 h 0.00 JL 1977 1978 1979 1980 1981 1988 1983 1984 1983 1986 0 U.S. LMCINC3 • IMPORTS 0 CONSUMPTION 73-79% of U.S. imports (Anon, 1980-1982). The U.S. a l s o Imports minor amounts from Great B r i t a i n , Europe, and South America. In North America only the adductor muscle i s marketed. Imports are frozen because of the d i s t a n c e to market. Only 317,000 kg (2 %) of domestic production were f r o z e n per year i n the U.S. during the period 1980 to 1986 (Anon, 1981-1987). Even large U.S. harvests are sold f r e s h , s u g g e s t i n g that there i s p o t e n t i a l growth of the fresh market segment. -7 -Vancouver f i s h markets o b t a i n sea and bay s c a l l o p meats ( a d d u c t o r s o n l y ) from the U . S . and Canadian e a s t c o a s t . An e a r l i e r s u r v e y of Vancouver f i s h markets ( H a m i l t o n , 1981) r e v e a l e d t h a t most imports of e a s t c o a s t s c a l l o p a d d u c t o r s were f r o z e n , but w h o l e s a l e r s r e p o r t i n c r e a s i n g f r e s h a d d u c t o r s a l e s , and buy f r e s h s c a l l o p s when t h e y are a v a i l a b l e . The c u r r e n t Vancouver w h o l e s a l e p r i c e f o r sea s c a l l o p a d d u c t o r s , 50-100 per k g , i s $17.50/kg, r a n g i n g over the l a s t year from a p p r o x i m a t e l y $15 t o $20/kg (Appendix B ) . Bay and c a l i c o s c a l l o p s w h o l e s a l e f o r $10.45/kg, r a n g i n g from a p p r o x i m a t e l y $8.25 t o $12.10/kg. A minor and s p o r a d i c f i s h e r y i n G e o r g i a S t r a i t c o n t r i b u t e s f r e s h whole 5-7 cm Chlamys (pink and s p i n y s c a l l o p s ) to the Vancouver market (Bourne and Harbo, 1987). They a re s o l d to f i s h shops and r e s t a u r a n t s as a s p e c i a l t y f o o d , i n B . C . , A l b e r t a and the western U . S . ( N e l s o n , p e r s . comm., 1988) a t a c u r r e n t w h o l e s a l e p r i c e of $6.60/kg (Appendix B ) . T h e i r market s i z e i s 5 to 7 cm, or about 26 per k g , and t h e y are commonly s e r v e d b o i l e d or i n b r o t h s , o f t e n In the s h e l l . W h o l e s a l e r s s t a t e t h a t s u p p l y problems p r e v e n t market e x p a n s i o n , and one thought t h a t h i s p o t e n t i a l market c o u l d be 1300-1800 kg per week ( N e l s o n , p e r s . comm., 1988). Other s o f t p a r t s of s c a l l o p s , i n c l u d i n g v i s c e r a , m a n t l e , and gonads are marketed i n Japan and p a r t s of E u r o p e . E x p e r i m e n t s m a r k e t i n g s o f t p a r t s o ther t h a n the a d d u c t o r from -8-east coast f i s h e r i e s have proven unsucessful (Caddy and Radley-Walters, 1972; Smallowitz, pers. comm., 1988). These products require longer shucking times and are more perishable. THEORY FORMULATION Propositions-Computer modeling can be used as a tool for analyzing systems, including a g r i c u l t u r a l and aquacultural operations (Allen et. a l . , 1984) -Scallops have been cultured in Japan and other parts of the world -Some v a r i e t i e s of scallops are native to B.C.. Native and Japanese scallop culture i s ph y s i c a l l y feasible in B.C.. -Oysters are cul t i v a t e d in B.C. on long l i n e s . -Data are available from B.C. scallop and oyster long l i n e culture projects, and from Japanese scallop culture. Assumptions-A computer model can be constructed which i s a reasonable approximation to scallop culture in B.C. -Scallop culture costs are s i m i l i a r to oyster long l i n e culture. -Oyster long l i n e culture i s p r o f i t a b l e in B.C. -Japanese culture technology can be transferred to B.C. Hypotheses-B.C. scallop culture can be p r o f i t a b l e . -A computer model is a legitimate tool for analyzing the f i n a n c i a l f e a s i b i l i t y of scallop culture in B.C. -9-OBJECTIVE The objective o£ t h i s study i s to construct a microcomputer model to investigate the f i n a n c i a l f e a s i b i l i t y (see Methods) of sc a l l o p culture alternatives in B.C. Culture system alternatives include lantern net, pearl net, and ear hanging methods culturing one m i l l i o n seed per year. Marketing options include whole or shucked scallops. The model w i l l incorporate growth and s u r v i v a l data obtained primarily from a project involving the culture of H_j_ multirugosis and Chlamys scallops (Zahradnik, 1985). Other data w i l l be obtained from accounts of Japanese weathervane scal l o p culture ( V e n t i l l a , 1982; Taguchi, 1976; Anon, 1988), and of B.C. oyster culture operations (F i e l d and Drinnan, 1988; Pobran, 1986; F r a l i c k , 1979; Humphries, 1976). It i s also expected that the f i n a n c i a l model can be used by growers, possibly through extension or f i n a n c i a l services. JUSTIFICATION Ex i s t i n g culture technology, l o c a l (and imported) scallops which are potential culture candidates, and established markets for scallops, form the basis for a potential scallop culture industry in B.C. F i n a n c i a l modeling of a scallop culture operation in B.C. i s appropriate at t h i s point in the development o£ the industry because: data on growth and s u r v i v a l rates are available and more data w i l l become available from projects in progress; cost data are available from l o c a l oyster long l i n e culture; and a market exists from which prices can be estimated. On the other hand, a computer model can be a helpful tool in examining the ef f e c t s of potential changes in the value of variables which might remain poorly defined u n t i l commercial scale operations begin. METHODS Software The spreadsheet software "ASEASY AS" was chosen to construct the model. The main reason for thi s choice i s that i t s language and features c l o s e l y resemble those of other related software packages that are in widespread use in the business world. In addition, ASEASY i s in the public domain, and i s a r e l i a b l e package (TRIUS Inc., 1987). Hardware Requirements An IBM compatible computer with at least 640 kilobytes (K) of random access memory (RAM) and two floppy disk drives is required to run the model. -11-Model Structure and Input The model can be used in two forms. The long form i s composed of five submodels, and includes more features for broader applications (see t u t o r i a l in Appendix A). The short form has four submodels, and i s used for t h i s study. Results from each submodel are stored in a summary submodel, which is then incorporated in subsequent models. This structure i s used because the model i s too large to be held in 640 K RAM. A large model is required because production variables were calculated for each of twelve s h e l l f i s h stocks in two age classes (juvenile and adult). The model time structure is based on quarterly (three month) i n t e r v a l s . The s t a r t i n g month and year can be s p e c i f i e d , and the dates for 28 subsequent quarters are automatically calculated. (The model can be lengthened i f i t is s p l i t into more submodels, or i f a larger RAM is used.) 1.Alternate Scenarios The study operation is a farm culturing rock, pink and spiny scallops, at growth and survival rates s p e c i f i e d in Zahradnik (1985). Study scenario alternatives Include culture by lantern net, ear hanging, and pearl net methods, i n i t i a l l y -12-at a production rate o£ one m i l l i o n seed per year. Marketing options include s e l l i n g whole, l i v e , 5 to 7 cm scallops, or shucked scallops. Processing options chosen for the study are: -no processing for the whole, l i v e product ( i e . -dl r e c t sales to the processor or wholesaler). This choice is made because Vancouver market data for whole scallops i s based on ex-vessel sales to a wholesaler. -in-house processing for the shucked product. There are no l o c a l examples of whole scallop sales to a processor for the shucked market. Costs are determined from accounts of oyster shucking costs (F i e l d and Drinnan, 1988; Pobran, 1986; F r a l i c k , 1979). The s e n s i t i v i t y of f i n a n c i a l parameters to changes in growth and mortality rates, culture density, scale of operation (400,000-2,000,000 seed per year), scallop s e l l i n g price, and cost categories i s investigated for the most pr o f i t a b l e system. The sections below summarize the calculations of each submodel. A detailed description of the model i s in Appendix A, in which the production submodel, discussed below, i s e n t i t l e d "PRODSIMP". Study parameters and input (often in parentheses following mention of an input parameter) are included for an operation c u l t u r i n g whole, 5-7 cm scallops from one m i l l i o n seed per year. Note i s made when input i s changed in subsequent models. 2.Production Submodel -13-From user s p e c i f i e d seed size (10 mm. width), average growth rate (7.1 mm./quarter, Zahradnik, 1985), and the timing of each seeding, the average scallop size in each stock versus time is calculated (for detailed c a l c u l a t i o n s , see Appendix A, "PRODSIMP" submodel). In the long form of the model, the ef f e c t s of density and season on growth can be incorporated i f and when these data become avai l a b l e . The model calculates numbers of scallops from the following data (see Appendix A): -number and timing of seeding for each stock- Culture operations are compared i n i t i a l l y at a stocking schedule of one m i l l i o n seed (10 mm.size) each f a l l . The model accepts input of any numbers of seed in any of the 28 quarters. Thus, the e f f e c t s of a f a i l u r e in the seed supply or of more than one seeding per year could be modeled. -mortality rate (4.7% per quarter)-The o v e r a l l mortality rate for the mixed study population was 25% in 18 months (Zahradnik, 1985), which i s equivalent to a mortality rate of of 4.7% per quarter. -maximum juvenile scallop size (30 mm.) -minimum market size (50 mm.)-Marketing of a stock begins when the average size of scallops in that stock i s greater than the minimum market s i z e . As scallops are sold -14-throughout the year from the stock, the average si z e marketed is larger than the minimum market size. -quarterly market targets-The number of scallops sold per stock per quarter (after the minimum market s i z e has been achieved) can be specified for each quarter. This permits the investigation of alternate marketing scenarios, for example, reducing sales during periods when a lower scallop price is expected, or stopping sales due to red tide. For the study, a constant quarterly market target i s chosen which depletes the stock after 4 quarters. At a seeding rate of one mi l l i o n seed per year, t h i s figure i s 174,000 scallops, but this w i l l vary with changing production, growth and survival rates. F i g . 4 1200000 Difference Between the Number of Scallops Seeded Minus Sales and Mortalities for an Operation Producing Whole Chlamys and Hinnites Scallops from One M i l l i o n Seed per Year. 12 16 Quarter -15-From the above data, the numbers of juvenile and adult s c a l l o p s , sales and m o r t a l i t i e s , by stock, are calculated (See Appendix A). To check that scallops introduced to the system equal those leaving, the difference between scallops seeded minus sales and m o r t a l i t i e s during the year preceding each quarter i s plotted in F i g . 4. When the system reaches a steady state after 9 quarters, t h i s difference becomes zero. Revenue i s calculated as sales times the price per s c a l l o p . After the f i r s t quarter, revenue is increased by an i n f l a t i o n rate for price (5% per year). The long form of the model also incorporates seasonal v a r i a t i o n in prices and the e f f e c t s of size on price i f and when these data are a v a i l a b l e . The Vancouver wholesale price for whole pink scallops of about 38 g. weight ranges from $6.05 to $7.15/kg (Appendix B). At a wholesale markup of 15% (Archibald, 1988), the ex-farm price i s $5.25 to $6.22/kg., and a price of $5.75/kg is used in the study. The weight of the two year old mixed populations range from approximately 38 g. for 67 mm (height) Chlamys to 88 g. for 86 mm rocks (Zahradnik, 1985), tr a n s l a t i n g into $0.22/pink scallop and $0.50/rock scallop i f the same price per kilogram applies in both cases. Because the market for whole scallops might be limited to the smaller (5-7 cm) Chlamys. the study price i s $0.22/scallop. Rock scallops, of d i f f e r e n t external appearance than Chlamys, are assumed to substitute for them in t h i s market. 3.Systems Submodel -16-The culture systems investigated are lantern net, pearl net, and ear hanging culture methods (Fig. 2). Pearl net culture i s investigated because i t i s gaining popularity in Japan ( V e n t i l l a , 1982). The systems submodel accepts physical data ( V e n t i l l a , 1982) and labour requirements (discussed later) for alternate culture systems (Table 1; F i g . 1 and 2). Included in Table 1 are the following calculated values: -the number and spacing between buoy l i n e s i s calculated from the in-water weight (50% of normal weight, Albrecht, 1985) per hanging l i n e and the f l o t a t i o n of each buoy, both of which can be altered. The average ln-water weight of the adult hanging culture systems used in th i s study i s approximated by the weight of marketable Chlamys scallops (40 g, Zahradnik, 1985) multiplied by the number of scallops per hanging unit. -the anchor l i n e length is calculated as three times the depth at high t i d e . Data on system component costs and economic l i v e s are entered into the model (Table 2). Cost information i s documented in l i t e r a t u r e references or ln Appendix C. -17 -T a b l e 1 . S c a l l o p C u l t u r e s y s t e m s d i m e n s i o n s a n d l a b o u r r e q u i r e m e n t s . L a n t e r n E a r P e a r l n e t h a n g i n g n e t D e p t h t o Seabed(m) 30 30 30 H a n g i n g u n i t - N u m b e r o f l a y e r s 10 N . A . 10 H o r i z o n t a l s u r f a c e ( s q m) 2 . 0 3 N . A . 1 . 26 S h e l l / s u r f a c e a r e a r a t i o 0 . 8 N . A . 0 . 8 # s h e l l s / e a r h a n g i n g l i n e N . A . 200 N . A . 50% w e i g h t w i t h s h e l l s ( k g ) 20 8 12 . 5 Buoy w o r k i n g f l o t a t i o n ( k g ) 215 215 215 L e n g t h ( m ) - L o n g l i n e 200 200 200 H a n g i n g l i n e 1 10 10 B a l l a s t l i n e 0 0 0 Buoy l i n e 1 1 1 M a r k e r buoy l i n e 5 5 5 A n c h o r l i n e 90 90 90 S p a c i n g ( m ) - L o n g l i n e 15 15 15 H a n g i n g l i n e 1 0 . 3 0 . 5 B u o y l i n e 1 0 . 7 5 8 . 1 8 . 6 M a r k e r buoy l i n e IS 16 16 L a b o u r ( h r / 1 0 0 0 s h e l l s ) S e e d - J u v e n i l e N . A . N . A . 0 . 1 A d u l t 0 . 3 3 . 2 0 . 3 M a i n t a i n / y r - J u v e n i l e 0 . 6 N . A . N . A . A d u l t 1 . 6 0 . 04 1 . 6 H a r v e s t 1 . 4 0 . 3 1 . 4 N . A . = Not a p p l i c a b l e . R e f e r t o F i g . 1 and 2 f o r c o m p o n e n t i d e n t i f i c a t i o n . S o u r c e s : V e n t i l l a , 1982 ; F i e l d a n d D r i n n a n , 1 9 8 8 ; P o b r a n , 1986 ; F r a l i c k , 1 9 7 9 . Z a h r a d n i k , 1 9 8 5 ; I n n o v a t i v e A q u a c u l t u r e P r o d u c t s L t d . , 1 9 8 7 . T a b l e 2. S c a l l o p c u l t u r e s y s t e m s c o m p o n e n t c o s t a n d e c o n o m i c l i f e . E c o n o m i c L i f e ( Y r ) C o s t / U n i t L a n t e r n n e t s ( 1 0 l a y e r ) 10 $34 . 00 / h a n g i n g u n i t E a r h a n g i n g 5 $ 1 . 00 / t i e - o n s t r i n g s P e a r l n e t s ( l O ) 5 $ 2 1 . 25 / h a n g i n g u n i t L i n e s ( m ) - L o n g l i n e ( 1 6 mm) 5 $ 0 . 60 / m O t h e r l i n e s ( 6 mm) 5 $ 0 . 10 / m A n c h o r ( 1 6 mm) 5 $ 0 . 60 / m B u o y s - L o n g l i n e 10 $50 . 00 / B u o y M a r k e r 10 $50 . 00 / B u o y A n c h o r s + h a r d w a r e 20 $ 1 7 5 . 00 / A n c h o r B a l l a s t 20 $ 1 . 00 / B a l l a s t R e f e r t o F i g . 1 and 2 f o r c o m p o n e n t i d e n t i f i c a t i o n . S o u r c e s : P o b r a n , 1986 ; F r a l i c k , 1 9 7 9 ; A p p e n d i x C . -18-The c a l c u l a t e d v a l u e s and data d e s c r i b e d above, p l u s the d e s i r e d c u l t u r e d e n s i t y (80% coverage of the h o r i z o n t a l net s u r f a c e by s h e l l s , Zahradnik (1985), or 200 s h e l l s per hanging l i n e f o r ear hanging c u l t u r e ) are used to c a l c u l a t e the q u a r t e r l y m a t e r i a l requirements f o r each o£ e l e v e n components of j u v e n i l e and a d u l t c u l t u r e systems, and, i f s p e c i f i e d , f o r seed a c q u i s i t i o n systems ( d e t a i l e d c a l c u l a t i o n s are i n Appendix A). The number of items which need r e p l a c i n g f o r each c u l t u r e system component i s c a l c u l a t e d as the i n v e n t o r y i n the previous quarter d i v i d e d by the economic l i f e i n q u a r t e r s . For each c u l t u r e system component, the number purchased i s c a l c u l a t e d as the number r e q u i r e d minus i n v e n t o r y . Expenditures are c a l c u l a t e d as the number purchased m u l t i p l i e d by the u n i t c o s t f o r each component, a d j u s t e d by the i n f l a t i o n r a t e (5% f o r t h i s s t u d y ) . The average annual expenditures f o r each c u l t u r e system component from years 4 to 5, when a steady s t a t e has been achieved, i s presented i n Table 3. D e p r e c i a t i o n f o r each component f o r each q u a r t e r i s c a l c u l a t e d as the i n v e n t o r y i n the p r e v i o u s q u a r t e r d i v i d e d by the economic l i f e ( i n q u a r t e r s ) m u l t i p l i e d by the u n i t c o s t , m u l t i p l i e d by an i n f l a t i o n f a c t o r f o r c o s t s . The t o t a l annual average d e p r e c i a t i o n f o r a l l c u l t u r e system components from years 4 to 5 i s shown i n a summary of f i x e d c o s t s (Table 5 ). -19-Table 3. Comparison of alternate culture systems producing whole, 5-7 cm Chlamys and Hinnites scallops from one m i l l i o n seed per year. Annual average(years 4-5)  Lantern net Ear hanging Pearl net Expenditures:* -Juvenile culture units $2,095 $2,095 $2,095 -Adult culture units 4,485 1,493 8,699 -Long/anchor li n e s 319 529 281 -Other lines 127 1,513 432 -Bouys 1,031 2,174 961 -Anchors, b a l l a s t 208 618 240 -Total $8,266 $8,421 $12,709 Culture labour (hours) - I n s t a l l l i n e s 12 12 12 -Stock-Juvenile 100 100 100 -Adult 260 2,770 260 -Maintain-Juvenile 429 429 429 -Adult 1,443 36 1,443 -Harvest 974 209 974 -Total 3,218 3,585 3,218 * Expenditures are the product of the number purchased times the unit cost times an i n f l a t i o n factor for each culture system component. The labour required per unit of production, estimated below, forms input into the model (Table 1): l.seed acquisitlon-none (purchase seed). 2.long l i n e deployment-12 man hours/100 m. 3.seeding juvenile culture system (pearl nets)-the rate of seeding oyster seed into trays i s about 0.1 hour per 1000 seed (Field and Drinnan, 1988), corroborated by V e n t i l l a , -20-(1982), who reports that Japanese farmers harvest and sort one m i l l i o n s c a l l o p seed in 180 hours (0.18 hours/1000 seed). (It is assumed that seeding would take less time than harvesting and sorting.) 4. seeding adult culture systems-the value of 3.2 hours/1000 s h e l l s for ear hanging scallops is derived from V e n t i l l a , 1982. Seeding other adult culture systems is assumed to be equivalent to one juvenile culture system thinning (0.3 hours/thinning, see below). 5. juvenile system maintenance (cleaning and thinning)-Humphries (1976) estimates that the average f i r s t year labour requirement for cleaning and thinning oysters i s 0.3 hours/1000 s h e l l s per thinning, based on approximately 1 hour/5 l e v e l culture unit. In Japan, juvenile scallops are thinned from zero to four times in the f i r s t year of culture ( V e n t i l l a , 1982), but the trend i s to fewer (1 or 2) thinnings because of recent lower growth rates, (necessitating fewer thinnings), and because i t i s desireable to handle the s h e l l s as l i t t l e as possible. This study s p e c i f i e s 2 thinnings (0.6 hour/1000 s h e l l s ) per year during juvenile culture. Although each thinning is l i k e l y done over a short period in r e a l l i f e , thinnings are allocated evenly for each quarter for the purpose of the model. 6. adult maintenance (cleaning and thinning)-Humphries (1976) estimates that the average second year labour requirement for tray cultured oysters i s 2.6 hours/1000 -21-s h e l l s per thinning, based on approximately 1 hour per 5 l e v e l culture unit. However, F i e l d and Drinnan (1988) report that retraying oysters takes the equivalent of from 0.25 to 1.6 hours per 1000 oysters, depending on s i z e . Because larger s h e l l s take longer to handle, the larger figure (1.6 hr/1000) is used. No data were obtained on the number of thinnings carried out for adult scallop culture in Japan. It is assumed that fewer thinnings are required for adult than for juvenile culture, and 1 thinning (1.6 hours/1000 she l l s ) per year i s s p e c i f i e d for the study. The labour required for maintenance of ear hanging culture, for which no thinning i s required, is assumed to be the same as for s t r i n g culture of oysters, 20 hours/8907 l i t r e s shucked oysters/year (Pobran, 1986), or 0.04 hours/shell/year. 7.harvesting-it i s estimated that 21 hours are needed to harvest 15,000 tray cultured oysters (derived from F r a l i c k , 1979), and t h i s rate, or 1.4 hours/1000 s h e l l s , is used for net cultured scallops. The estimate of the labour requirements for the harvest of ear hung scallops is assumed to be the same as that for s t r i n g cultured oysters, which i s 0.067 hours per s t r i n g of approximately 200 s h e l l s ( F r a l i c k , 1979), or 0.03 hours/1000 s h e l l s . In corroboration, a range of 0.1 to 0.4 hours/1000 s h e l l s i s derived from data in F i e l d and Drinnan (1988). For the purpose of the model, harvest labour is computed per 1000 scallops marketed quarterly. In r e a l i t y , harvest labour i s a function of the number of scallops which are screened to obtain the number of scallops marketed. The number screened is a trade-off between screening the entire stock each harvest to obtain the largest scallops, involving prohibitive labour costs, or harvesting the f i r s t scallops encountered each harvest, with no screening. The l a t t e r practice leaves some scallops unthinned for a year, necessitates marketing smaller s i z e s , and leads to an increasing average market size in the year that a stock is marketed. The t o t a l hours of labour required for culture, calculated as the product of the hours required per 1000 s h e l l s times the number of s h e l l s (Table 3), i s carried forward to the f i n a n c i a l submodel, where i t is multiplied times the hourly labour rate ($10/hour including benefits) and an i n f l a t i o n factor (see Table 6). 4.Financial Submodel Oyster culture cost data is updated from F i e l d and Drinnan (1988), Pobran (1986), F r a l i c k (1979), and Humphries -23-(1976) and modified where appropriate. Other cost data are documented in Appendix B. A l l cost categories can be inputs, and are automatically adjusted by an i n f l a t i o n rate (5%/year for the study) which can also be an input. Fixed asset expenditures for a scal l o p farm culturing 400,000 to two m i l l i o n seed per year appear in Table 4. A land lease i s included regardless of processing choice, because a land-based f a c i l i t y for storage or caretaker residence i s advantageous. Land and foreshore lease a c q u i s i t i o n costs are c a p i t a l i z e d . An o f f i c e and storage building i s budgeted at $25,000, or, i f in-house processing Table 4. Fixed asset expenditures for a scal l o p operation culturing 400,000 to one m i l l i o n seed per year Expend- Economic Retirement Deprec diture l i f e ( Y r ) value i a t i o n Incorporation $1,000 Lease acqusition-land 3,000 -foreshore 5,000 Building 25,000* 30,000 30 $0 $833 Vessels-10 m. 15 20,000 667 -5 m. 5,000 15 0 333 Outboard motor 2,500 5 0 500 High pressure pump 4,000 10,000** $85,000 5 0 800 Pickup truck 10 0 1,000 $4,133 Total * Add $25,000 for processing building ** Add $10,000 for a refrigerated van instead of a pickup truck, for in -house processing. For culture system expenditures, see Tables 2 and 3. Sources: Pobran,1986; F r a l i c k , 1979. -24-is s p e c i f i e d , these functions are included in the cost of a processing f a c i l i t y ($50,000: Pobran,1986; F r a l i c k , 1979). A 10 m. used boat equipped with a hydraulic l i n e p uller can be obtained for $30,000, and a 5 m. s k i f f for $5,000, with a 25 horsepower outboard motor valued at $2,500. A high pressure pump with power source ($4,000) is needed for cleaning scallops and gear ( V e n t i l l a , 1982). A used pickup truck can be purchased for $10,000, or a used refrig e r a t e d van can be purchased for $20,000 i f in-house processing i s chosen. Table 5 contains fixed cost data for a scal l o p operation culturing 400,000 to two m i l l i o n seed per year in lantern net, ear hanging, and pearl net systems. F i r s t quarter fixed costs are entered in the model (see Table 5, Lantern net) and values for subsequent quarters are automatically updated by an i n f l a t i o n factor (5%/year). The annual average fixed costs from years 4 to 5 (ie-when the system has reached a steady state) are also l i s t e d in Table 5 in i n f l a t e d , future d o l l a r s . Depreciation Is calculated on a straight l i n e basis (Table 4). Culture system depreciation i s brought forward from the Systems submodel (see pg.17). The p r o v i n c i a l government foreshore lease rent i s $200/year, based on a p r o v i n c i a l fee scale (Pobran, 1986). Managerial and c l e r i c a l costs do not represent part time s t a f f , but form part of the owner's compensation. -25-Table 5. Fixed costs for a scallop operation culturing 400,000 to two m i l l i o n seed per year by alternate systems (no in-house processing). Lantern net: $ / f i r s t quarter Lease taxes and rent 125 Property taxes 125 Insurance-vehicle 150 - l i a b i l i t y 250 -building 100 Depreciation-culture system 0 -other 0 - t o t a l 0 Administrative-manager 1000 - c l e r i c a l 500 -accountant 250 - o f f i c e overhead 300 Operating supplies 300 Maintenance (2% of CC) 402 Total fixed costs 3,502 Annual average (years 4-5) Future $ % Total 637 0.5% 637 0.5 765 0.6 1,275 1.0 510 0.4 8,151 7 4,133 3.4 12,284 10 5,098 4.1 2,549 2.1 1,275 1.0 1,530 1.2 1,530 1.2 2,134 1.7 30,224 25 Ear Hanging and Pearl Net: Annual average  Ear Hanging Future $ % Total (vr 4-5) Pearl Net Future $ % Total cost* Lease taxes and rent 637 0.5% 637 0. 5% Property taxes 637 0.5 637 0. 5 Insurance-vehicle 765 0.6 765 0. 6 - l i a b i l i t y 1, 275 1.0 1, 275 1. 0 -building 510 0.4 510 0. 4 Depreciation-cult, sys .8, 288 12, 510 -other 4, 133 4, 133 - t o t a l 12, 421 11 16, 643 14 Administrative-mgr. 5, 098 4.1 5, 098 4. 1 - c l e r i c a l 2, 549 2.1 2, 549 2. 1 -accountant 1, 275 1.0 1, 275 1. 0 - o f f i c e overhead 1, 530 1.2 1, 530 1. 2 Operating supplies 1, 530 1.2 1/ 530 1. 2 Maintenance (2% xCC) 2, 134 1.7 1, 929 1. 7 Total fixed costs 30, 361 25 34, 738 28 Including taxes. Depreciation figures are from Table 4. Sources: Pobran,1986; F r a l i c k , 1979. -26-Malntenance c o s t s are c a l c u l a t e d as 2% o£ the c u m u l a t i v e c a p i t a l e x p e n d i t u r e . F i x e d c o s t s a s s o c i a t e d w i t h p r o c e s s i n g are i t e m i z e d i n T a b l e 9. V a r i a b l e c o s t s f o r an o p e r a t i o n p r o d u c i n g whole , 5 t o 7 cm Chlamys and H i n n i t e s s c a l l o p s from one m i l l i o n seed per y e a r , w i t h no i n - h o u s e p r o c e s s i n g , are l i s t e d i n T a b l e 6. F i r s t q u a r t e r v a r i a b l e c o s t s are e n t e r e d i n the model (see T a b l e 6) and v a l u e s f o r subsequent q u a r t e r s are a u t o m a t i c a l l y updated by an i n f l a t i o n f a c t o r (5% / y e a r ) . The a n n u a l average v a r i a b l e c o s t s from y e a r s 4 to 5 ( ie -when the system has reached a s t e a d y s t a t e ) are a l s o l i s t e d i n T a b l e 6 i n i n f l a t e d , f u t u r e d o l l a r s . The c o s t f o r 10 to 35 mm. o y s t e r seed ($0.02 / s e e d , I n n o v a t i v e A q u a c u l t u r e L t d . , 1987) i s used f o r the p r i c e of s c a l l o p seed i n the s t u d y because s c a l l o p seed c o s t s are unknown. However, h a t c h e r y produced s c a l l o p seed i s not y e t a v a i l a b l e c o m m e r c i a l l y . N a t u r a l s e e d , p o s s i b l y too s p o r a d i c to be a r e l i a b l e s o u r c e , might be a cheaper a l t e r n a t i v e , but no d a t a on the c o s t s of n a t u r a l seed a c q u i s i t i o n are a v a i l a b l e . The c u l t u r e l a b o u r r e q u i r e m e n t i n hours i s brought forward from the systems submodel (Table 3) and m u l t i p l i e d by the l a b o u r r a t e of $10 /hour ( i n c l u d i n g b e n e f i t s ) . F u e l i s consumed a t a r a t e of 5.7 l i t r e s per 1000 s c a l l o p s produced per y e a r , ( d e r i v e d from P o b r a n , 1986), or a p p r o x i m a t e l y 5.7 l i t r e s/1000 s c a l l o p s on the f a r m . F u e l c o s t i s $ 0 . 3 0 / l i t r e . M i s c e l l a n e o u s -27-costs are calculated as 5% of the variable production costs. Transport to the processor costs about $0.10/kg., or, for 40 g. pinks, $4/1000 scall o p s . Costs associated with processing and marketing are outlined in Table 9 (see Results). The model calculates loan interest and p r i n c i p a l payments for up to two loans, from input of the p r i n c i p a l , term, and interest rate. However, no loans are included in the study. There i s also a provision for the c a l c u l a t i o n of bad debts from a bad debts r a t i o (zero in the study). Table 6. Variable costs for the production of whole, 5 to 7 cm Chlamys and Hinnites scallops from one m i l l i o n seed per year by alternate systems (no in-house processing). Lantern net: $ / f i r s t Annual average (years4-5) quarter Future $ % Total cost* Seed 20,000 25,019 20 Culture labour: 2,547 41,199 33 Fuel 214 1,758 1.4 Miscellaneous 285 850 0.7 Transport 0 3,548 2.8 Total 23,045 72,374 58 Ear hanqinq: Seed 20,000 25,019 20 Culture labour: 2,547 46,307 36 Fuel 214 1,758 1.4 Miscellaneous 285 914 0.7 Transport 0 3,548 2.8 Total 23,902 $77,546 61 Pearl net: Seed 20,000 25,019 20 Culture labour 2,547 41,141 32 Fuel 214 1,758 1.4 Miscellaneous 285 849 0.7 Transport 0 3,548 2.8 Total 23,902 72,316 57 •Including taxes. Output -28-The f i n a n c i a l submodel calculates an income statement for each quarter and year. Systems are evaluated, in part, by comparing th e i r projected annual income statements averaged over years four and five (Table 6). Losses are carried forward for five years for income tax estimation. A tax rate of 22% i s used for businesses with less than $200,000 p r o f i t per year. The quarterly, annual, and cumulative cash flows are also calculated. Systems are compared on the basis of the cumulative cash flow over 7 years (Table 7, F i g . 4). Also, the i n i t i a l investment required to sustain the project u n t i l i t can pay for i t s e l f , defined as an amount equal to the minimum quarterly cumulative cash flow over seven years, and the simple payback period, calculated as the time at which the cumulative cash flow becomes po s i t i v e , are recorded for alternate culture systems (Table 7. See also F i g . 4). The net present value (NPV) of the cash flow i s calculated quarterly, based on a discount rate of 10% which can be changed. Systems are compared on the basis of the NPV over 7 years (Table 7). Experimental -29-The f i n a n c i a l performance of alternate culture systems (lantern net, pearl net, or ear hanging) supplying alternate markets (whole versus shucked fresh) are evaluated with respect to the output variables mentioned above. The effects of changes in the values of the following input variables on f i n a n c i a l performance are determined: -revenue (price) -grow out labour costs - c a p i t a l costs (less culture system) -seed cost -scale of operation -growth and mortality rates, -culture density The production of rock and Japanese scallops for the shucked market i s also investigated, using preliminary growth data (Zahradnik, 1985; Anon, 1988). - 3 0 -RESULTS AND DISCUSSION  Whole scallops Assuming that Hinnites scallops, which have a d i f f e r e n t external appearance from Chlamys scallops, are acceptable substitutes for Chlamys consumers, production of the mixed population of the two types as described in Zahradnik (1985), at a seeding rate of one m i l l i o n per year, for the whole, l i v e market at 5 to 7 cm s i z e , appears to be pr o f i t a b l e with each of the culture systems studied (Tables 7 and 8). However, the NPV over seven years, at a discount rate of 10%, is negative for each system. The projected f i n a n c i a l performance (defined in "Methods", see page 29), s i m i l i a r for each system (Table 8, Fi g . 5), is best for lantern net culture, which yie l d s the highest average annual net p r o f i t between years 4 and 5 of $72,192, the highest seven year cumulative cash flow of $189,058, the best NPV over seven years of ($70,587), the least i n i t i a l investment of $219,967, and the shortest payback period of 4.5 years. Ear hanging culture exhibits the poorest f i n a n c i a l performance, with an average annual net p r o f i t of $68,050, a seven year cumulative cash flow of $150,981, an NPV overt seven years of ($87,194), an i n i t i a l investment of $227,143, and a payback period of 5.25 years. The results for pearl net culture were obtained by using an economic l i f e of 5 years for pearl nets. If the economic l i f e i s lengthened to 10 years, as spe c i f i e d for -31-T a b l e 7. P r o j e c t e d a n n u a l income s tatement averaged over y e a r s f o u r and f i v e f o r the p r o d u c t i o n of whole , 5 to 7 cm Chlamys and H i n n i t e s s c a l l o p s from one m i l l i o n seed per year by a l t e r n a t e systems (no i n - h o u s e p r o c e s s i n g ) . F u t u r e $  L a n t e r n net Ear hanging P e a r l net Revenue 195,152 195,152 195,152 F i x e d c o s t s - d e p r e c i a t i o n 12, 284 12, 421 16, 643 - o t h e r 17, 940 17, 940 17, 940 - t o t a l 30, 224 30, 361 34, 583 V a r i a b l e c o s t s - s e e d 25, 019 25, 019 25, 019 - l a b o u r 41, 199 46, 307 41, 141 - o t h e r 6, 156 6, 220 6r 156 - t o t a l 72, 374 77, 546 72, 316 T o t a l C o s t s 102, 598 107, 908 106, 898 Net pre tax p r o f i t 92, 554 87, 244 88, 253 Taxes 20, 362 19, 194 19, 416 A f t e r tax p r o f i t 72, 192 68, 050 68, 838 T a b l e 8. P r o j e c t e d f i n a n c i a l performance of a l t e r n a t e systems p r o d u c i n g whole , 5-7 cm Chlamys and H i n n i t e s s c a l l o p s from one m i l l i o n seed per year ( u n l e s s o t h e r w i s e s p e c i f i e d ) . System Annual Cash NPV I n i t i a l Payback Net f l o w (7 Yr) i n v e s t - p e r i o d p r o f i t (7 Yr) ment (Yr) L a n t e r n net Ear hanging P e a r l net -5 Yr l i f e -10 Yr l i f e $72,192 68,050 68,838 72,036 $189,058 150,981 169,030 187,130 ($70,587) (87,194) (75,585) (71,455) $219,967 227,143 222,023 221,119 4.5 5.25 4.5 4.5 Growth r a t e ( m m / q u a r t e r ) 4.3 (Chlamys) $21,134 8.5 ( H i n n i t e s ) 81,206 12.5(1^ yess.) 88,963 S c a l e ( S e e d / y r ) 400,000 $17,082 2,000,000 160,803 (167,775) ($162,636) $283,705 >7 280,342 (38,797) 210,975 3.8 352,842 (15,441) 185,256 3.3 ($38,797) ($97,160) $149,780 >7 563,446 (28,445) 337,706 3.3 NPV=net p r e s e n t v a l u e ; d i s c o u n t rate=10%, compounded q u a r t e r l y -32-lantern nets (Table 2), then the f i n a n c i a l performance improves (Table 8). The s i m i l a r i t y of the cumulative cash flow, the i n i t i a l investment required, and the payback period for each culture system is evident in F i g . 5. The greater labour requirement for the seeding of ear hanging culture Is offset by the lower maintenance and harvest labour (Table 1), resulting in s i m i l a r labour requirements for each system (Table 3). Labour costs, however, are poorly defined for scallop culture. Culture system c a p i t a l costs are lowest for ear hanging and lantern net systems at over $8,000 Fi g . 5. Projected Cumulative Cash Flow for the Production of Whole, 5-7 cm Chlamys and Hinnites Scallops from One M i l l i o n Seed per Year in Alternate Culture Systems (No In-House Processing). $309, 003 I : : ' •• : : ! ; 1 ; ; \ ; ! ' • \ \ • i \ : ! 1 ; ) • • \ 1 g$200,000 ^ $100, 000 lit (fl ° $0 m '^ $100,000) itJ 3 0 1 2 3 4 5 6 7 9 9 10111213141516171819 202122 23 2425 26 27 28 Quarter 0 LANTEFN NET • EAR HANGING 0 PEARL NET -33-per year, and highest for pearl net culture (with an economic l i f e of 5 years) at over $12,000 per year. The annual expenditure for pearl net culture i s reduced to over $8,000 i f the economic l i f e of pearl nets i s extended to 10 years. A 5 year l i f e for pearl nets i s sp e c i f i e d by Innovative Aquaculture Products Ltd., 1986, while a 10 year l i f e i s sp e c i f i e d for lantern nets. Japanese weathervane culture by ear hanging i s reported to increase soft tissue yields and su r v i v a l by 8-10% and 50% respectively compared to lantern net culture ( V e n t i l l a , 1982). If the same e f f e c t applies to scallop culture in B.C., ear hanging would be more p r o f i t a b l e . However, no d e f i n i t e statement can be made regarding the r e l a t i v e p r o f i t a b i l i t y of each of the study culture systems with the present data. S e n s i t i v i t y Analyses On the basis of s l i g h t l y better performance in each category, lantern net culture i s chosen for subsequent analyses. The s e n s i t i v i t y of net p r o f i t and NPV to changes in price, labour costs, seed costs, and c a p i t a l costs (excluding culture apparatus costs, which are r e l a t i v e l y well defined), culture density, growth and mortality rates, and scale of operation i s shown in F i g . 6 and 7 respectively. A large range of potential changes i s used because some variables are - 3 4 -F i g . 6 . S e n s i t i v i t y of the P r o j e c t e d Annual Net P r o f i t to Key V a r i a b l e s f o r the P r o d u c t i o n of Whole, 5 - 7 cm Chlamys and H i n n i t e s S c a l l o p s from One M i l l i o n Seed per Year i n Lantern Nets (No. In-House P r o c e s s i n g ) . $100,000 60x 80X • LABOUR COSTS 100X 120X 140X CHANGE OF: 0 CAPITAL COSTS • SEED COSTS 160X 1S0X 200X I DENSITV $250,000 $200,000 ( M $150,000 •$100,000 <t $50,000 $0 ($30,000) 40X 60X 80X 100X 1£0X 140X 160X 180X 2005C CHANGE IN: 0 PRICE 0 GROWTH RATE 0 MORTALITY RATE • SCALE OF OPERATION -35-Fig. 7 . S e n s i t i v i t y of the Projected Net Present Value (Over Seven Years at a Discount of 10%) to Changes in Key Variables for the Production of Whole, 5-7 cm Chlamys and Hinnites Scallops from One M i l l i o n Seed per Year in Lantern Nets (No In-House Processing). $8 (550,300) ($100,000) (5150,000) ($200,000) 40% 60% 80% 100% 120X 140% 160% 180% 200% PERQNT CHANGE OF: 0 LABOUR COSTS 0 CAPITAL COSTS • SEED COSTS I CULTURE DENSITY ($200,000) ($230,000) 4 0 X 6 0 X 8 ® * 100X 1£8X 140Z 1£0K 180% 200% CHANGE IN! 0 PRICE 0 GROWTH RATE 0 MORTALITY RATE • SCALE OF OPERATION -36-poorly defined. The following discussions apply to production from one m i l l i o n seed per year, unless stated otherwise. Price changes have the largest e f f e c t on p r o f i t ; a 20% increase in price to $0.26/scallop increases the annual net p r o f i t to over $100,000 (Fig. 6). On the other hand, at 60% of the expected price ($0.13/scallop), the operation breaks even. In comparison, the Vancouver wholesale price i s estimated to range from 85%-120% of the current price (Appendix B). A price increase of approximately 40% to $0.31/scallop leads to a positive NPV over seven years, at a discount rate of 10% (Fig. 7). Although a scallop price increase does not increase the i n i t i a l investment required, i t reduces the payback period and increases the cash flow (Fig. 8a). If the expected ex-farm price of $5.75/kg for whole scallops remains constant for larger sized scallops, then the price per scallop w i l l be higher for larger scallops. The p r o f i t a b i l i t y of culturing larger scallop species over the same period as the study population can be evaluated by refering to the s e n s i t i v i t y curves with respect to price. For example, two year 88 g rock scallops, (preliminary data, Zahradnik, 1985), would be $0.50/scallop. The net p r o f i t from t h e i r exclusive production i s projected to be greater than $220,000 annually (Fig. 6), while the NPV i s over $100,000 - 3 7 -F i g . 8. Projected Cumulative Cash Flows, at Different Values of Key Variables, for the Production of Whole, 5-7 cm Chlamys Scallops from One M i l l i o n Seed per Year in Lantern Nets. 3 $ 7 0 0 , 0 0 0 o a. PRICE <$/Scallop) J$100.000 I M "£$100,000) C$300,0003 0 1 2 3 4 5 6 7 8 9 10111213141516171819 20 2122 23 24 25 26 27 28 Quarter 0 $0.11 • $0.22 0 $0.33 b. AVERAGE GROWTH RATE (Ml/Quarter) 3$400,000 °$300,000 *** $200,000 •§$100,000 <3 * $^100,000) jt $200.000) -$5300,000) $400,0000 (5500,300) a i 2 3 4 5 6 7 8 9 ia 1112 13 1415 1617 1819 20 21 22 23 24 25 26 27 28 Quarter 0 4.3(Chla*us) 0 7.1<r1!x*i) *8.3(H!mItn) • 12.3<P. y t n . ) -38-(Flg. 7). (These arguments are based on scallop price changes only. They do not include the extra costs due to increased culture system requirements, which are a function of s h e l l area, (see the Systems Submodel section) for producing the larger (7-9 cm) rock s c a l l o p . The inclusion of these costs would not change the conclusion substantially.) Similar arguments predict even greater p r o f i t a b i l i t y culturing large (10 cm, 150 g) Japanese weathervanes, which also can be produced in two years (Anon, 1988), and which might be more appealing to consumers because they have the t r a d i t i o n a l scallop shape, unlike rock scallops. There i s no known example of a market for whole, large scallops, and the assumption of a constant price per kg forms the only basis for the above price estimate. Of the cost categories, labour costs most af f e c t p r o f i t . If labour costs can be reduced to 60% of expected, the net p r o f i t increases by 18% (Fig 6). On the other hand, labour costs must increase over 200% before the p r o f i t becomes zero. An even greater margin of safety is indicated for increases In seed costs. Increases in c a p i t a l costs (excluding culture apparatus costs, which are r e l a t i v e l y well defined) do not s i g n i f i c a n t l y reduce net p r o f i t (Fig. 6). This i s to be expected because depreciation of fixed assets, other than culture apparatus, Is -39-only 3.4% of annual t o t a l cost during years 4 to 5 (Table 5). However, because these expenditures are made at the beginning of the operation, and because a long period elapses before sales begin, changes in c a p i t a l costs a f f e c t NPV, over seven years, more than do changes in labour costs (Fig. 7). Changes in the average growth rate have more impact on p r o f i t a b i l t y than changes in cost components, a doubling of growth rate leading to a 40% increase in net p r o f i t to over $100,000 (Fig. 6) for the production of whole, 5-7 cm scal l o p s . At an average growth rate of approximately 3 mm/quarter, or 40% of the rate used in the study, the operation breaks even. A growth rate of 4.3 mm/quarter, or 60% of the study growth rate, represents the average growth rate (in mm of s h e l l height) of three year old spiny scallops in nature (Bourne and Harbo, 1987). Pink scallops measured in the same study had a s l i g h t l y lower rate of growth. At the above growth rate, an operation producing spiny scallops would make an annual net p r o f i t of $21,134 (Fig. 6), and an NPV of ($162,636), (Fig. 7; Table 8) At an average quarterly growth rate for rock scallops of approximately 8.5 mm/quarter, (120% of that used in the study), derived from preliminary data (Zahradnik, 1985; Anon, -40-1988), an annual net p r o f i t of approximately $81,206 and an NPV of ($38,797) are achieved (Table 8; F i g . 6 and 7) for the production of whole, 5-7 cm rock scallops ($0.22 each), assuming that rock scallops substitute for pink scallops in that market. (Si m i l i a r r e s u l t s would be achieved given the average growth rate of wild three year old weathervane scal l o p s , P^ caurinus, in Georgia S t r a i t , approximately 8 mm/quarter, measured as the height from the hinge to the ventral margin (MacDonald and Bourne, 1987), although even higher growth might be expected for scallops in culture ( V e n t i l l a , 1982)). Using an approximation for the average quarterly growth rate of Japanese weathervane scallops (P_^ yessoensis) of 12.5 mm/quarter (Anon, 1988; V e n t i l l a , 1982), or 176% of the growth rate used in the study, an average annual p r o f i t of $88,963 and NPV over seven years of ($15,441) are achieved (Table 8; F i g . 6 and 7). from production for the whole, 5-7 cm market at $0.22 per sc a l l o p . The projected cumulative cash flows for the culture of Chlamys, rock and Japanese weathervane scallops for the whole, 5-7 cm market, at the estimated growth rates, are represented in F i g . 8b by the curves for growth at 4.3, 8.5 and 12.5 mm/quarter. Increasing growth rates a f f e c t cash flow p o s i t i v e l y (Fig. 8b) by reducing the culture system -41-expenditures, by shortening the time before sales begin, and by reducing the number of m o r t a l i t i e s , assuming the same mortality rate for culture at d i f f e r e n t growth rates. These multiple effects of changes in growth rates r e s u l t in non-linear effects on p r o f i t and NPV. (Fig. 6 and 7). Although doubling the study mortality rate to 9.4% per quarter approximately halves the net p r o f i t (Fig. 6) for the production of the above population, the p r o f i t i s s t i l l p o s i t i v e . Higher mortality rates reduce culture system requirements, and therefore raise the minimum cumulative cash flow s l i g h t l y ( i e . - lower the i n i t i a l investment), but also reduce the ov e r a l l cumulative cash flow by reducing income (Fig. 8c). A larger scale of operation increases the p r o f i t (Fig. 6), but a f f e c t s the NPV less (Fig. 7). The e f f e c t of increasing scale i s to reduce the proportion of fixed costs, which i s 25% of t o t a l costs for the culture of one m i l l i o n seed per year in lantern nets (Table 5). The cumulative cash flow from various scales of production is shown in F i g . 9; as the scale increases, the i n i t i a l investment and cash flow increase, and the payback period declines. (See also Table 8). There i s a s l i g h t increase in net p r o f i t with increasing culture density (the r a t i o of s h e l l area to horizontal net -42-F i g Projected Cumulative Cash Flows for the Production of Whole, 5-7 cm Chlamys and Hinnites Scallops at Various Scales of Production in Lantern Nets. 3 $600,000 O 5500,000 to$400,000 £$300,000 IS $200,000 °«1Q0,000 ® $0 £5100,300} itf $800,000) [$300,000) ($400,000) 0 1 2 3 4 5 6 7 8 9 1011121314 IS 16171819 20 2122 23 24 25 26 27 28 Quarter 0 400,000 SEED A t • 1,000,000 SEED AT 0 1,600,000 SEED AT • 2,000,000 SEED AT area) (Fig. 6). Increasing culture density has a stronger e f f e c t on the NPV because early culture system expenditures are reduced, (Fig. 7). Both curves (Fig. 6 and 7) are limited by the e f f e c t at i n f i n i t e culture density, or zero culture system costs. However, no data exist to determine the effect of culture density on the mortality rate of the study population . While a r a t i o of 1.2 Chlamys and Hinnites s h e l l area per net area has been achieved without s i g n i f i c a n t m o r t a l i t i e s , (Zahradnik, pers. comm., 1988), the growth and s u r v i v a l of Japanese weathervanes i s density dependant ( V e n t i l l a , 1982), perhaps, at least partly, due to high regional culture density. shucked scallops -43-Prelimihary estimates indicate poor p r o f i t a b i l i t y for producing shucked scallop meats from the study populations of Chlamys and Hinnites. There are approximately 154 scallop adductor muscles per kg from two year old cultured Chlamys scallops (Zahradnik, 1985). The average 1977 to 1986 U.S. ex-vessel price for fresh c a l i c o scallop adductors, which range in size from 110-220/kg, was $4.57/kg (1987 $C), assuming an exchange rate of 80% (Anon, 1977-1987; Appendix B). At this price, two year old cultured Chlamys scallops would be $0.03/scallop, much too low to enable their production to be p r o f i t a b l e . In Vancouver , which i s a smaller market, the current wholesale price for c a l i c o and bay scallops i s about $10.50/kg of meats, or, at a t h e o r e t i c a l wholesale markup of 15% (Archibald, 1988), $9.09/kg to the farmer. The equivalent ex-farm price per scallop would be $0.06. A production scenario is constructed using t h i s price, the study growth rate of 7.1 mm per quarter (Zahradnik, 1985), a minimum market size of 50 mm (which results in an average market size of about 65 mm), and in-house processing. Processing costs are itemized in the income statement (Table 9) to provide unity to the discussion. The operation i s projected to lose $96,961 per year (Table 9). This projection does not account for the fact that the mixed population of Chlamys and Hinnites have a higher average adductor y i e l d than Chlamys alone, which could re s u l t in a higher pr i c e . -44-Table 9. Projected annual income statement averaged over years four and five for the production of shucked scallops from one m i l l i o n seed per year by lantern nets (in-house processing). Species Chlamys/ Hinnites P. Hinnites yessoens: Growth Rate (mm/quarter) 7.1 8.5 12. 5 Min. market size(cm) 50 70 90 Adductor weight(g) 6.5 9.6 20 Price ($/scallop) 0.06 0.13 0.26 Revenue 53,223 $104,730 $175,828 Fixed costs* -processing-heat 1,020 1,020 1,020 e l e c t r i c i t y 1,020 1,020 1,020 supplies 510 510 510 -depreciation 15,192 24,801 26,827 -other 18,820 18,820 18,820 - t o t a l fixed costs 36,562 46,171 48,197 Variable costs**-seed 25,019 25,019 25,019 -culture labour 41,199 44,295 36,177 -shuck/grade/pack 19,515 17,724 14,878 -packaging 11,753 10,674 8,960 -market transport 9,979 9,063 7,608 -other 6,157 6,245 5,048 - t o t a l variable costs 113,622 113,020 97,690 Total Costs 150,184 159,191 145,887 Net pre tax p r o f i t (96,961) (54,461) 29,942 Taxes 0 0 9,491 After tax p r o f i t ($96,961) ($54,461) $20,451 * F i r s t quarter fixed processing costs are allocated as: -heat $200 - e l e c t r i c i t y $200 -supplies $100 -depreciation Derived from data in Table 3. ** Variable processing costs are based on the following values derived from data for shucked oysters (Field and Drinnan, 1988): -shuck/grade/pack- 2.2 hours per 1,000 scall o p s . -packaging materials- $13.25/1000 scallops. -market transport- $11.25/1000 scall o p s . Other costs are derived as documented in the "Model Structure and Input" section. -45-S e n s i t i v i t y analyses An ex-farm price of $0.18/scallop, or $18/kg of adductors, is required for the operation to break even (Fig. 10), and a positive NPV (10% discount rate) occurs over a price of $0.33/scallop ($33/kg) (extrapolated from F i g . 11). Other Scenarios Production of Shucked Rock Scallops A more optimistic estimate of the p r o f i t a b i l i t y of producing shucked scallops can be made by using preliminary data for rock scallop culture. The y i e l d of adductor per two year old, 80-90 mm cultured rock scal l o p , derived from preliminary data, i s approximately lOg, or 100 adductors per kg (Zahradnik, 1985). This i s in the lower range of sizes of adductors which s e l l wholesale at approximately $15-20/kg in Vancouver (Appendix B). (Sea scallop adductors, 66-88 per kg, currently wholesale for $17.50/kg). Assuming a wholesale markup of 15%, the farmer would get $13-17/kg, or $0.13-.0.17 per s c a l l o p . A production scenario i s constructed using the lower price, an average growth rate of 8.5 mm per quarter (Zahradnik, 1985; Anon, 1988), a minimum market size of 70 mm (which results in an average market size of about 80-90 mm), and in-house processing. Processing costs are itemized in the Income statement (Table 9). -46-Fig. 10. $700,000 $693,893 £2] $308,880 lu O$400,000 K fc $308,808 [£$800,800 J$100,000 <£ = m ^$100,000) ($200,080) S e n s i t i v i t y of the Projected Annual Net P r o f i t to Selling Price for the Production of Shucked Scallops from One M i l l i o n Seed per Year in Lantern Nets (In-House Processing). \ ' : L "™ ' 50X 100X 0 OtrWS/HINNITES 150X 200X 250X 300X PRICE CHANGE • HINNITES 350X 400X 450K 0 P. YESSOENSIS F i g . 11. S e n s i t i v i t y of the Projected Net Present Value (Over Seven Years at a Discount of 10%) to S e l l i n g Price for the Production of Shucked Scallops from One Mi l l i o n Seed per Year in Lantern Nets (In-House Processing). $500,000 $400,000 $300,080 /+i $800,000 C Q$100,808 > $8 ^ $100,000) ^$200,808) $300,000) ($408,888) ($500,808) SOX 100K 0 O^ WS/HINNITES 150X S00X 250X 300K PRICE CHANGE • HINNITES 3S0X 400X 4S0X 4 P. YESSOENSIS -47-Using the above data, the average annual net p r o f i t between years 4 and 5 from an operation producing shucked meats from one m i l l i o n rock scallop seed per year is ($54,461) (Table 9). S e n s i t i v i t y analysis shows that, with current cost estimates, a price of approximately $0.20/scallop is required for the operation to break even (Fig. 10). This break even price i s higher than that for producing whole, 5-7 cm scallops because the former requires a longer culture period and more culture system area. The projected f i n a n c i a l performance of the operation i s summarized in Table 10, and the cumulative cash flow is in F i g . 12. Production of Shucked Weathervanes In Japan, P^ yessoensis, which grow to 10 cm in two years (ie-an average growth rate of 12.5 mm quarter) y i e l d a 20-25 g. adductor muscle ( V e n t i l l a , 1982; Taguchi, 1976). Using a y i e l d of 20 g and an ex-farm price of $17/kg, (the upper range of expected producer prices found in Vancouver, which should be expected for high q u a l i t y , large adductors), results in a price per scallop of $0.34. Although the re s u l t s of the study up to t h i s point are based on a culture density of 0.8 sca l l o p s h e l l area per net area for Chlamys and Hinnites (Zahradnik, 1985), the area r a t i o recommended for Japanese weathervanes i s 0.3 ( V e n t i l l a , 1982). - 4 8 -F i g . 1 2 . P r o j e c t e d C u m u l a t i v e C a s h F l o w s f o r t h e P r o d u c t i o n o f S h u c k e d R o c k a n d J a p a n e s e W e a t h e r v a n e S c a l l o p s f r o m One M i l l i o n S e e d p e r Y e a r i n L a n t e r n N e t s . 3$200,000 ° $100,000 S0 $100,000) < 5 « 0 0 , 0 0 0 ) ^$300,000) ,3*400,000) -$5500,000) ^5600,000) ($700,000) 0 1 2 3 4 5 6 7 8 9 10111213141516171819 20 2122 23 24 25 26 27 28 Quarter • ROCK 0 UERTHERUANEC0.3)! • UEPTHERVflNEC0.8)1 * N u m b e r s i n p a r e n t h e s e s i n d i c a t e c u l t u r e d e n s i t y ( r a t i o o f s h e l l t o c u l t u r e s y s t e m a r e a s ) . T a b l e 1 0 . P r o j e c t e d f i n a n c i a l p e r f o r m a n c e o f a l t e r n a t e o p e r a t i o n s p r o d u c i n g s h u c k e d s c a l l o p s f r o m one m i l l i o n s e e d p e r y e a r . A n n u a l N e t p r o f i t C a s h f l o w (7 Y r ) NPV (7 Y r ) I n i t i a l i n v e s t -ment R o c k s c a l l o p ( $ 5 4 , 4 6 1 ) ( $ 6 5 0 , 9 2 8 ) ( $ 3 2 0 , 3 2 1 ) $ 6 5 0 , 9 2 8 W e a t h e r v a n e - d e n s l t y * = . 8 8 5 , 2 6 3 1 5 5 , 4 1 6 ( 1 3 7 , 5 4 5 ) 302 ,604 - d e n s i t y = . 3 3 6 , 9 8 1 ( 4 2 9 , 5 0 3 ) ( 3 9 2 , 2 5 1 ) 6 3 6 , 3 3 6 P a y b a c k p e r i o d ( Y r ) 5 . 5 >7 >7 * D e n s l t y = t h e r a t i o o f s h e l l a r e a t o c u l t u r e s y s t e m a r e a . -49-Using the above data, plus a minimum market size of 90 mm (which results in an average market size of 100-110 mm), a p r o f i t a b i l i t y of $36,981 per year i s indicated for the production of shucked Japanese weathervane scallops (Table 9), but at negative NPV and cumulative cash flow over seven years (Table 10). Increasing the s e l l i n g price 130% to $0.44/scallop results in a net p r o f i t of over $100,000, while the break-even price i s approximately 80% of the expected s e l l i n g p r i ce, or $0.27/scallop, derived from F i g . 10. In comparison, the average annual wholesale price of fresh sea scallops in New York between 1977 and 1986 ranged from 60% to 130% of the average price (Anon, 1977-1987; Appendix B). The annual p r o f i t increases to $85,263 (Table 10; F i g . 10) at a culture density of 0.8 scallop s h e l l area to culture system area. Although the cumulative cash flow i s now p o s i t i v e , with a payback period of 5.75 years, (Fig. 12: Table 10), the NPV remains negative. At both de n s i t i e s , the operation incurs a poor cash flow in the i n i t i a l stages, r e s u l t i n g in a negative NPV, and requiring high i n i t i a l investments. This i s due to increased culture system requirements for growing the larger scallops (Table 10; F i g . 12). -50-SUMMARY The culture of the mixed population of chlamya and Hinnites described in Zahradnik, 1985, for the whole, 5-7 cm market, from one m i l l i o n seed per year, is projected to be p r o f i t a b l e for lantern net, ear hanging, and pearl net culture methods, assuming that rock scallops substitute for Chlamys in t h i s market segment, and that seed can be obtained at the projected cost. Although i t i s not possible to determine the r e l a t i v e p r o f i t a b i l i t y of each system because there is too much uncertainty in culture labour cost estimates, lantern net culture i s s l i g h t l y better in f i n a n c i a l performance, with an annual average net p r o f i t of $71,354, a seven year cumulative cash flow of $190,122, an NPV over seven years (at a discount rate of 10%, compounded quarterly) of ($70,468), and a payback period of 4.5 years. Labour i s the largest cost component at 32% and 36% of t o t a l cost, including tax, for ear hanging and pearl net culture respectively. Seed costs are 20% and depreciation 11-14% of t o t a l costs. Although labour and seed costs are poorly defined, doubling either does not reduce the steady state annual net p r o f i t to zero. A projected negative NPV for culture with each of the systems at production levels from 400,000-2,000,000 seed per year indicates that an investor would get a better rate of return by investing the same funds at a 10% annual interest rate (compounded quarterly) for seven years, p a r t i c u l a r l y i f extra compensation i s expected because of the r i s k of s t a r t i n g a new type of business. The low NPV i s a r e s u l t of the approximately two year period before sales begin, the r e l a t i v e e f f e c t of which w i l l diminish with time, ie.-the NPV should improve subsequent to seven years. The high p r o f i t to i n i t i a l investment r a t i o substantiates t h i s . At t h i s point, i t i s not possible to predict which costs might be reduced to increase p r o f i t a b i l i t y , although i t might be possible to reduce the number of thinnings ( V e n t i l l a , 1982). P o t e n t i a l l y higher adductor y i e l d and s u r v i v a l rate might make ear hanging culture more pr o f i t a b l e . Net p r o f i t and NPV for an operation producing whole, 5-7 cm scallops in lantern nets i s most sensitive to changes in p r i c e . A break even price of $0.13/scallop contrasts with the estimated current producer price in Vancouver of $0.22/scallop (assuming a wholesale markup of 15%). The market for t h i s product i s small and i s supply limited, so i t is not possible to estimate future market size or pr i c e . However, the market for cultured f i s h products tends to expand with production, as evidenced by the market for farmed salmon. It is probable t h l t cultured scallops w i l l command a premium price due to better q u a l i t y control and predictable supply. At a slower growth rate equal to that for wild Chlamys, the culture of whole, 5-7 cm scallops in lantern nets shows a p r o f i t of over $20,000 per year. F i n a n c i a l performance improves at higher growth rates estimated for rock and Japanese weathervane scallops, assuming that these scallops substitute for Chlamys in the whole, 5-7 cm market. Japanese weathervane production i s projected to y i e l d a net p r o f i t of $88,963 and an NPV over seven years of ($15,441). Because p r o f i t a b i l i t y i s improved by higher growth rates, scallop culture w i l l benefit from breeding programs which develop higher growth rates and y i e l d s . If the price per kg of whole scallops remains constant for larger scallops, the price per scallop i s greater for larger scallops, and, with a production cycle of approximately two years, the culture of larger rock and Japanese weathervane scallops exclusively leads to annual net p r o f i t s over $220,000 and positive NPV's. However, -53-there is no known market for larger size whole scallops. Production of shucked Chlamys and Hinnites scallops from the mixed population described in Zahradnik (1985) is not p r o f i t a b l e . A price of $0.18/scallop i s required for the operation to break even. Production of larger shucked rock scallops (Hinnites) exclusively r e s u l t s in a loss of over $50,000 per year, based on preliminary growth and y i e l d data. Shucked Japanese weathervane production, however, shows a net p r o f i t of $36,981 and $85,263 at culture densities ( s h e l l area/culture system area) of 0.3 and 0.8. Growth, s u r v i v a l , and adductor y i e l d data from ongoing projects i s required to further Investigate the f i n a n c i a l f e a s i b i l i t y of the culture of rock and Japanese weathervane scallo p s . Of c r i t i c a l importance ln the production of shucked scallops i s the adductor y i e l d , which i s r e f l e c t e d in the price per s c a l l o p in t h i s study. Potential market size and prices need better d e f i n i t i o n , p a r t i c u l a r l y in western North American c i t i e s other than Vancouver. North American price variations with season and with sca l l o p s i z e , which can be expected because such relationships exist on the U.S. east coast (Appendix B), need to be examined. -54-BIBLIOGRAPHY Albrecht, Ken, 1985. Untitled discussion of oyster long l i n e culture system costs. B.C. S h e l l f i s h Mariculture Newsletter, 5(2):9-14. B.C. Ministry of Environment, V i c t o r i a , B.C. Allen, P. Geoffrey, L.W. Botsford, A.M.Schuur, and W.E. Johnson, 1984. Bioeconomics of Aquaculture. E l s e v i e r , N.Y. Anon., 1988. B.C. Eyes Scallops as Potential Winner. Canadian Aquaculture, 4(5):53 Anon, 1977-1988. Monthly Labor Review. U.S. Department of Labor, Bureau of Labour S t a t i s t i c s , Washington, D.C. Anon, 1977-1987. Fisheries of the U.S. National Marine Fisheries Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce. Washington. D.C. Anon, 1977-1987b. Fishery Market Newsletter (New York). National Marine Fisheries Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce. Washington. D.C. Anon, 1981-1987. Current Fisheries S t a t i s t i c s : Frozen Fisheries Products. National Marine Fisheries Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce. Washington. D.C. Anon, 1980-1982. Current Economic Analysis Series; S h e l l f i s h Market Review. National Marine Fisheries Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce. Washington. D.C. Archibald, Alan, 1988. Pen to Pan: Negotiating the D i s t r i b u t i o n Dilemma. Canadian Aquaculture 4(1):31 Bourne, Niel S., 1969. Scallop Resources of B r i t i s h Columbia. Fisheries Research Board of Canada, Technical Report No. 104:60 , 1986. Scallop Culture Program. The B r i t i s h Columbia Mariculture Newsletter, 6(2):17-18. -55-Bourne, N.S., and R. M. Harbo, 1987. Size Limits for Pink and Spiny Scallops. In R. M. Harbo and G.S. Jamieson, eds. Status of Invertebrate f i s h e r i e s off the P a c i f i c Coast of Canada (1985/86). Canadian Technical Report of Fisheries and Aquatic Sciences No. 1576. Caddy, J.F., and Radley-Walters, 1972. Manuscript Report No. 1202, Journal of the Fisheries Research Board of Canada. Cheney, Daniel P., and T.F. Mumford, 1986. S h e l l f i s h and Seaweed Harvests of Puget Sound. Washington Sea Grant Program, University of Washington, Seattle. Envirocon, 1984. Potential for Aquaculture Endeavours in B r i t i s h Columbia. Prepared for The Science Council of B.C., Burnaby, B.C. F i e l d , J., and R.W. Drinnan, 1988. Off-Bottom Oyster Culture in B r i t i s h Columbia: Culture Methods, Harvesting, Processing and Industry Costs. Aquaculture Information B u l l e t i n No. 21, B.C. Ministry of Agriculture and F i s h e r i e s , V i c t o r i a , B.C. F r a l i c k , J.E., 1979. The B.C. Oyster Industry: P o l i c y Analysis for Coastal Resource Management, Volume 2. Economic Analysis of the B.C. Oyster Industry. Technical Report No. 20, Westwater Research Center, University of B.C., Vancouver, B.C. Hamilton, Linda D., 1981. Scallops: Potential for Mariculture in B r i t i s h Columbia. Information Report No.3, Marine Resources Branch, B.C. Ministry of Environment, V i c t o r i a , B.C. Hodgson, C.A., Niel S. Bourne, and D. Mottershead, 1988. A Selected Bibliography of Scallop L i t e r a t u r e . Canadian Manuscript Report of Fisheries and Aquatic Sciences No. 1965. Humphries, M., 1976. The Production and Marketing of Tray-Cultured Raft Oysters in B r i t i s h Columbia. Technical Report No. 90, Fishermen's Service Branch, Fisheries and Marine Service, Environment Canada. Innovative Aquaculture Products Ltd., 1987. Better Products for Farming the Sea: For S h e l l f i s h Farmers. Company products catalogue. Lasqueti Island, B.C. ., 1986. Comparison of Oyster Trays. The B.C. Aquaculture Newsletter, 6(4):13-14. B.C. Ministry of Environment, V i c t o r i a , B.C. -56-Leighton, David L., and C.F. Phleger, 1977. The Purple-Hinged Rock Scallop: A New Candidate for Marine Aquaculture. Proceedings of the 8 t h Annual Meeting of the World Mariculture Society, San Jose, C a l i f o r n i a . M a cDonald, B.A., and N. F. Bourne, 1987. Growth, reproductive output, and energy p a r t i t i o n i n g in weathervane scallops, Patinopecten caurinus, from B r i t i s h Columbia. Canadian Journal of Fisheries and Aquatic Sciences, 44(1):152-160. Magoon, C , and R. Vining, 1981. Introduction to S h e l l f i s h Aquaculture of The Puget Sound Area. State of Washington Department of Natural Resources, Division of Marine Land Management. Nelson, Greg, 1988. (Pers. comm.) Salesperson, Token Seafoods Ltd. Vancouver, B.C. Phleger, C.F., and D.L. Leighton, 1980. Studies to Refine Hatchery and Ocean Rearing Methods for The Purple-Hinged Rock Scallop. University of C a l i f o r n i a Sea Grant Program, Biennial Report 1978-1980. Pobran, T.T., 1986. Oyster Farming in B r i t i s h Columbia; A Financial Information Guide. B.C. Ministry of Agriculture and F i s h e r i e s , Aquaculture and commercial Fisheries Branch, V i c t o r i a , B.C. Rhee, Yung Wook, 1988. Ear-Hanging The Purple-Hinged Rock Scallop. Canadian Aquaculture, 4(4):B4 Smallowitz, Ron, 1988. U.S. Department of Commerce, National Marine Fisheries Service, Gloucester, N.Y. Taguchi, Kisaburo, 1976. Japanese Scallop Culture Techniques Boost Y i e l d . Australian F i s h e r i e s , March, 1976:20-23. TRIUS Inc., 1987. AS-EASY-AS, Version 3.00. Lynn, Mass. V e n t i l l a , R.F., 1982. The Scallop Industry in Japan. Advances in Marine Biology 20:309-383 Yamamoto, G., 1977a. B i o l o g i c a l Research on Scallops. In Aquaculture in Shallow Seas, T. Imai, ed., National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Washington, D.C. , 1977b. Techniques of Scallop Culture. In Aquaculture in Shallow Seas, T. Imai, ed., National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Washington,D.C. -57-Zahradnik, John .w., 1985. Performance of Systems for Commercial Scallop Aquaculture in B r i t i s h Columbia. Science Council of B.C. Research Grant No. 49(RC-2) and No. 45(RC-4). , 1988. (Pers. comm.) Professor, Department of Bio-Resource Engineering, University of B r i t i s h Columbia, Vancouver, B.C. -58-APPENDIX A. Model L i s t i n g and User T u t o r i a l ASEASY AS i s a p u b l i c domain, spreadsheet software which has language and f e a t u r e s c l o s e l y resembling those of Lotus-123. I t Is assumed t h a t the user i s f a m i l i a r with ASEASY, (or with Lotus-123), and has the ASEASY users manual, which can be obtained from TRIUS Inc. (1987). (The m a i l i n g address appears when the software i s loaded). An IBM compatible computer with 640 K RAM and two f l o p p y d i s k d r i v e s i s r e q u i r e d . To s t a r t , boot DOS ( t h i s c a p a b i l i t y can be i n c o r p o r a t e d on the ASEASY working d i s k ) , then type "ASEASY/O" ( c a p i t a l s not r e q u i r e d ) . The "/O" op t i o n leaves p a r t of the program on the d i s k , which f r e e s up 70 K of RAM. The d i s k must remain i n the d e f a u l t d r i v e , which can be s p e c i f i e d as per i n s t r u c t i o n s i n the ASEASY manual. Load the f i r s t submodel, which w i l l be GROWTH i f the long form of the model i s used, or PRODSIMP i f the sho r t form i s used. I f the sh o r t form i s used, s k i p s e c t i o n 1 below, and go to s e c t i o n 2. Once each submodel i s loaded, macros a i d i n the running of c u l t u r e s c e n a r i o s . 1. LONG FORM OF THE MODEL GROWTH SUBMODEL Operating I n s t r u c t i o n s A f t e r the GROWTH submodel i s loaded (approximately 10-15 minutes on a PC), press " A l t " and "A" si m u l t a n e o u s l y to b r i n g up the main macro menu. The f o l l o w i n g subheadings are d i s p l a y e d on the sc r e e n : INPUT- p r e s s i n g "RETURN" when "INPUT" i s h i g h l i g h t e d w i l l b r i n g up a menu which p r o v i d e s c h o i c e s f o r the f o l l o w i n g data i n p u t : SEEDSIZE -enter the seed s i z e CULTURE-enter the c u l t u r e d e n s i t y f o r j u v e n i l e and a d u l t c u l t u r e , d e f i n e d as the s h e l l area over the c u l t u r e system a r e a . TIME-model time s t r u c t u r e - i n p u t s t a r t month (1-12), and s t a r t year(19 ), and the model w i l l c a l c u l a t e the month and year f o r each of 28 subsequent q u a r t e r s . iNFLATORS-input the annual i n f l a t i o n r a t e f o r c o s t s and f o r s e l l i n g p r i c e . PLANT-input the number of seed placed i n c u l t u r e f o r each of 12 sto c k s at the chosen date f o r seeding. - 5 9 -G R O W T H - e n t e r a g r o w t h c u r v e - i n p u t s h e l l s i z e (mm) a t e a c h o f 20 q u a r t e r s ( s h e l l s i z e must i n c r e a s e e a c h q u a r t e r , i f e v e n s l i g h t l y , f o r t h e f u n c t i o n t o w o r k ) . D E N S I T Y - i n p u t g r o w t h ( l i n e 102) v e r s u s c u l t u r e d e n s i t y ( l i n e 1 0 1 ) , a n d t h e s t a n d a r d g r o w t h r a t e ( C 1 0 4 ) . The A S E A S Y t a b l e f u n c t i o n w i l l c a l c u l a t e t h e r e l a t i v e g r o w t h r a t e c o r r e s p o n d i n g t o t h e f i r s t c u l t u r e d e n s i t y e n t r y l o w e r t h a n t h e one c h o s e n f o r i n v e s t i g a t i o n . N o t e : j u v e n i l e , n o t a d u l t c u l t u r e d e n s i t y i s u s e d t o d e t e r m i n e t h e e f f e c t o f d e n s i t y on g r o w t h . Q U A R T E R - e n t e r t h e r e l a t i v e g r o w t h ( l i n e 110) o v e r t h e q u a r t e r p r e c e d i n g e a c h m o n t h o f t h e y e a r ( l i n e 109 ) . S U M M A R Y - c h o o s i n g "SUMMARY" f r o m t h e m a i n menu menu w i l l u p d a t e t h e Summary s u b m o d e l w i t h t h e r e s u l t s o f new e n t r i e s i n t h e G r o w t h s u b m o d e l . T h i s w i l l n o t o c c u r on t h e f i r s t t r y i f a f i l e t i t l e d " S u m m a r y " d o e s n o t e x i s t on t h e d i s k - i t w i l l t h e s e c o n d t i m e . T a b l e s i n t h e G r o w t h s u b m o d e l c a n be v i e w e d b y m o v i n g t h e c u r s o r t o t h e i r s p r e a d s h e e t c e l l l o c a t i o n s ( T a b l e 2 ) . P r i n t o u t s , g r a p h s , a n d g r a p h p r i n t o u t s c a n be made a c c o r d i n g t o t h e i n s t r u c t i o n s p r o v i d e d i n t h e A S E A S Y m a n u a l ( T R I U S I n c . , 1987) . G r o w t h S u b m o d e l L i s t i n g ( T a b l e 2) S p r e a d s h e e t s a r e a r r a y s o f c e l l s w h i c h h a v e e i t h e r t e x t o r v a l u e s i n t h e m . The v a l u e s a r e e i t h e r n u m b e r s , o r f o r m u l a e w h i c h r e s u l t i n n u m b e r s , e i t h e r o f w h i c h c a n be d i s p l a y e d . The s u b m o d e l l i s t i n g s ( T a b l e s 1 - 6 ) d i s p l a y f o r m u l a e a s t h e y e x i s t i n t h e s p r e a d s h e e t , u n l e s s t h e y a r e r e p e a t e d a c r o s s a r o w , i n w h i c h c a s e o n l y t h e f i r s t f o r m u l a i s p r i n t e d . The f u n c t i o n s o f f o r m u l a e a r e s u m m a r i z e d i n t h e a p p r o p r i a t e s e c t i o n s , a n d a d e t a i l e d e x p l a n a t i o n c a n be o b t a i n e d f r o m t h e A S E A S Y m a n u a l . T a b l e s 1-6 show o n l y a few o f t h e 28 q u a r t e r s i n e a c h s p r e a d s h e e t b e c a u s e o f s p a c e l i m i t a t i o n s . The f i r s t 55 l i n e s o f t h e G r o w t h s u b m o d e l a r e p a r t o f t h e l i s t i n g f o r t h e Summary s u b m o d e l ( T a b l e 1 ) . A d d r e s s D e s c r i p t i o n C12 I n p u t t h e i n i t i a l s e e d s i z e (mm h e i g h t ) . C28 & 29 I n p u t t h e j u v e n i l e a n d a d u l t c u l t u r e d e n s i t y ( s h e l l / c u l t u r e s y s t e m a r e a ) C45 & 46 I n p u t t h e s t a r t m o n t h ( 1 - 1 2 ) a n d t h e s t a r t y e a r ( 1 9 _ ) . - 6 0 -L i n e L i n e L i n e L i n e C53 & 47 48 49 50 54 L i n e s 53 -54 L i n e L i n e R a n g e 56 57 D75 t o L i n e 94 L i n e 95 D96 L i n e 9 7 L i n e s C103 1 0 1 - 1 0 2 L i n e 105 L i n e s 1 0 9 - 1 1 0 L i n e s L i n e s 1 1 1 - 1 1 2 1 1 4 - 1 2 5 D i s p l a y s t h e number o f t h e q u a r t e r f r o m 0 - 2 8 . C a l c u l a t e s t h e m o n t h ( 1 - 1 2 ) e n d i n g e a c h q u a r t e r . C a l c u l a t e s t h e y e a r (19 ) . C a l c u l a t e s t h e d a t e e n d i n g e a c h q u a r t e r . I n p u t i n f l a t i o n r a t e s f o r c o s t s a n d s e l l i n g p r i c e . C a l c u l a t e s a n i n f l a t i o n m u l t i p l e f o r c o s t s a n d f o r s e l l i n g p r i c e f o r e a c h q u a r t e r . D i s p l a y s t h e d a t e c a l c u l a t e d i n l i n e 5 0 . S u m m a r i z e s t h e s e e d i n g s c h e d u l e i n p u t b e l o w . A F 8 6 . I n p u t t h e number o f s e e d p l a c e d i n c u l t u r e f o r e a c h o f 12 s t o c k s a t t h e c h o s e n d a t e f o r s e e d i n g . F o r e a c h o f 20 q u a r t e r s ( l i n e 9 3 ) , i n p u t t h e e x p e c t e d s h e l l s i z e (mm h e i g h t ) . E a c h q u a r t e r must h a v e a c o r r e s p o n d i n g s i z e , a n d s i z e s must i n c r e a s e e a c h q u a r t e r , h o w e v e r s m a l l . C o r r e c t s t h e g r o w t h c u r v e f o r t h e e f f e c t s o f c u l t u r e d e n s i t y b y m u l t i p l y i n g b y a d e n s i t y f a c t o r d e t e r m i n e d i n c e l l C 9 6 . G i v e n t h e j u v e n i l e c u l t u r e d e n s i t y ( c e l l C 2 8 ) , c a l c u l a t e s a m u l t i p l e , f r o m d a t a on g r o w t h v e r s u s c u l t u r e d e n s i t y ( l i n e s 1 0 1 - 1 0 5 ) , w i t h w h i c h t o c o r r e c t t h e g r o w t h c u r v e The c o r r e c t e d g r o w t h c u r v e i s o f f s e t t o e n a b l e a t a b l e f u n c t i o n t o a p p l y t h e g r o w t h c u r v e t o e a c h s t o c k ( l i n e s 1 1 4 - 1 2 5 ) . I n p u t g r o w t h ( l i n e 102) v e r s u s c u l t u r e d e n s i t y ( l i n e 101) . I n p u t t h e s t a n d a r d a v e r a g e g r o w t h r a t e , a g a i n s t w h i c h g r o w t h a t v a r y i n g c u l t u r e d e n s i t i e s a r e c o m p a r e d r e l a t i v e g r o w t h a t v a r y i n g c o m p a r e d t o t h e c h o s e n When t h e j u v e n i l e c u l t u r e i n t o t h e m o d e l , c e l l D96 c h o o s e s t h e a p p r o p r i a t e g r o w t h m u l t i p l e . I n p u t g r o w t h v e r s u s s e a s o n r e l a t i o n s h i p . The a v e r a g e g r o w t h i n t h e p r e c e d i n g 3 m o n t h s (1 q u a r t e r ) , e x p r e s s e d a s a m u l t i p l e o f t h e a v e r a g e a n n u a l g r o w t h r a t e , i s c a l c u l a t e d f o r e a c h month o f t h e y e a r . F o r e a c h m o d e l d a t e , t h e c o r r e s p o n d i n g s e a s o n a l g r o w t h m u l t i p l e i s c a l c u l a t e d . The s h e l l s i z e i s c a l c u l a t e d f o r e a c h s t o c k a t e a c h q u a r t e r , g i v e n t h e s e e d s i z e ( C 1 2 ) , t h e number a n d t i m i n g o f e a c h s e e d i n g ( l i n e s 7 5 - 8 6 ) , a n d d e n s i t y a n d s e a s o n a l e f f e c t s on g r o w t h , i f a n y . C a l c u l a t e s t h e c u l t u r e d e n s i t i e s s t a n d a r d g r o w t h , d e n s i t y i s e n t e r e d -61-T a b l e 1. Summary submodel p a r t i a l l i s t i n g . Column: B L i n e 5 SUMMARY SUBMODEL 25-Nov-B8 C D E F 8 H J 6 7 PARAMETER INPUT SECTION 8 Type i n c h a n g e , p r e s s E n t e r . 9 A f t e r changes a r e made, p r e s s " A l t A " . 10 11 Growth Submodel: 12 Seed S i z e ( m s ) 10 13 14 P r o d u c t i o n Submodel: 15 Maximum Juv.Size(mm) 30 16 Market s i z e (mm) 50 17 M o r t a l i t i e s / Q u a r t e r 4.707. 18 P r i c e / S h e l l f i s h $ 0 . 2 2 23 PARAMETER INPUT SECTION 24 Type i n c h a n g e , p r e s s E n t e r . 25 A f t e r changes a r e made, p r e s s " A l t A " . 26 27 28 Systems Submodel: 29 S h e l l / N e t A r e a - J u v . 0 . 8 30 A d u l t 0 . 8 31 S e e d i n g O p t i o n s - l . P u r c h a s e 32 - 2 . N a t u r a l Set 33 Choice= 1 34 35 F i n a n c i a l Submodel: 36 D i s c o u n t Rate/Yr 10.007. 37 Labour Rate/Hr $ 1 0 . 0 0 38 P r o c e s s i n g 0 p t i o n s - l . W h o l e S h e l l 39 - 2 . S h u c k e d 40 - 3 . C u s t o m P r o c e s s i n g 41 - 4 . Buyer p r o c e s s e s 42 Choice= 4 19 20 21 22 43 44 MODEL TIME STRUCTURE 45 S t a r t M o n t h ( l - 1 2 ) 46 S t a r t Year (19_ _) 47 I n t e r v a l 48 Month 49 Year 50 Date 51 52 INFLAT0RS 53 C o s t s ( R a t e / Y e a r = 54 S a l e s ( R a t e / Y e a r = 5.00X1 5.00X1 10 89 0 1 2 3 +$C$45 SIF(D48+3>12,D48+3-12,D48+3) +$C$46 @IF(D48+3<=12,D49,D49+1) @DATE(D49,D48,1) Apr 90 J u l 90 +D53*(l+$C$53/4) + D 5 4 » ( l + $ C $ 5 4 / 4 ) 1 .04 1.04 4 5 6 1 4 90 91 91 Oct 90 Jan 91 Apr 91 1 . 0 5 1 . 0 5 1 . 0 6 1 . 0 6 1 .08 1 . 0 8 -62-T a b l e 2 . Growth submodel p a r t i a l l i s t i n g . Column 8 : B L i n e 8 68 69 70 GROWTH SUBMODEL 71 72 73 SEEDING SCHEDULER'S) 74 75 76 77 78 79 80 81 82 83 84 85 86 87 Stock 1 2 3 4 5 6 7 8 9 10 11 12 § D A T E ( D 4 9 , D 4 8 , 1 ) 1.00E+06 Apr 90 J u l 90 Oct 90 Jan 91 1.00E+06 89 90 91 92 GROWTH CURVE(Shell Width,mm) 93 Quarter P r e - S e e d K S e e d ) 2 3 4 5 94 Growth (BIB) - S t a n d a r d ( I n p u t ) 0 10 17 24 31 38 95 C o r r e c t e d for S h e l l / N e t D e n s i t y * +D94tJD$96 17 24 31 38 96 S h e l l / N e t D e n s i t y Growth F a c t o r » = § H T A B L E ( $ D E N S I T Y J , D 1 0 1 . , W 1 0 5 , 4 ) 97 O f f s e t 0 +F95 24 31 38 45 98 * S e e Data B e l o v 99 100 GROWTH VS SHELL/NET AREAL DENSITY 101 D e n s i t y ( S h e l l Area/Net Area) 0 . 0 5 0 . 1 0 0 . 2 0 0 . 3 0 0 . 4 0 0 . 5 0 102 Growth(ma/Quarter) 7 7 7 7 7 7 103 104 S t a n d a r d Ave Growth/Quarter 7 .1 (mol) 105 R e l a t i v e Growth(Width) +D102/tC$104 106 107 108 SEASONAL 6R0WTH MULTIPLE 109 « o n t h ( l - 1 2 ) 110 Growth H u l t i p l e ( 3 s o . r u n n i n g average) 111 Model Date Q a r t e r l y Growth M u l t i p l e 1 Oct 89 Jan 90 2 1 Apr 90 i H T A B L E ( D 4 8 , * E $ 1 0 9 . . t P * 1 1 0 , l ) 1 . 0 0 3 1 J u l 90 1 1 .00 4 1 Oct 90 1 1 . 0 0 5 1 Jan 91 1 - 6 3 -T a b l e 2 ( c o n t i n u e d ) . Growth submodel p a r t i a l l i s t i n g . Column: 8 L i n e 113 114 SHELL SIZE(mm)-Stock 1 115 2 U S 3 117 4 118 5 119 6 120 7 121 8 122 9 123 10 124 11 125 12 126 127 128 129 130 131 MACRO SECTION 132 133 \ 0 134 135 136 \A 137 138 139 140 (HOME) {MENUCALL}C140 ,' 89 Jan 90 Apr 90 J u l 90 Oct 90 Jan 91 Apr 91 J u l 91 10 17 24 31 38 45 53 60 0 0 0 0 10 17 24 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 INPUT SUMMARY Input chanUpdate Summary submodel. {MENUCALL>/f xSUMMARY. WKS*r A l . . AF57,<-SEEDSIZE CULTURE TIME INFLATORSPLANT GROWTH DENSITY QUARTER Input s e e d l n p u t c u l l n p u t s t a l n p u t annEnter t h e E n t e r a growth c u r v e . o r each s e e d i n {6OTO}B7'k{{60T0}A23{6OTO}A44{60T0}A52{G0T0}B73{GOT0}B92{GOTO}B92 ,'{6OT0}DlOr - 6 4 -PRODUCT SUBMODEL O p e r a t i n g i n s t r u c t i o n s . L o a d t h e P r o d u c t s u b m o d e l f r o m i t s d i s k . P r e s s " A l t " a n d " A " t o b r i n g up t h e m a i n menu ( b e l o w ) . M e r g e t h e Summary s u b m o d e l b y s e l e c t i n g SUMMARY a n d t h e n M E R G E . E n t e r d a t a u s i n g t h e INPUT s u b m e n u , a n d e x p o r t t h e Summary s u b m o d e l by s e l e c t i n g SUMMARY a n d EXPORT f r o m t h e m a i n m e n u . M a i n menu Sub menus I N P U T - J U V M A X - I n p u t t h e u p p e r s i z e l i m i t t o t h e j u v e n i l e s i z e c l a s s . M A R K E T - I n p u t t h e m i n i m u m m a r k e t s i z e ( t h e a v e r a g e s h e l l s i z e i n a s t o c k a f t e r w h i c h m a r k e t i n g b e g i n s ) . M O R T S - I n p u t t h e p r o p o r t i o n o f t h e s t o c k w h i c h become m o r t a l i t i e s p e r q u a r t e r . T A R G E T - E n t e r t h e d e s i r e d q u a r t e r l y s a l e s t a r g e t p e r s t o c k . P R I C E S I Z E - E n t e r a g r o w t h v e r s u s s h e l l s i z e (mm) c u r v e . S E A S O N - E n t e r a g r o w t h v e r s u s m o n t h c u r v e . S U M M A R Y - M E R G E - m e r g e t h e Summary s u b m o d e l t o i n c o r p o r a t e u p d a t e d d a t a f r o m t h e G r o w t h s u b m o d e l . ( C a u t i o n - i f t h e u s e r " e x p o r t s " t h e Summary s u b m o d e l ( s e e b e l o w ) p r i o r t o t h i s s t e p , he w i l l e r a s e t h e new S u m m a r y ) . - E X P O R T - U p d a t e t h e Summary s u b m o d e l a f t e r a l l e n t r i e s h a v e b e e n m a d e . P r o d u c t S u b m o d e l L i s t i n g : ( T a b l e 3 ) . The f i r s t 55 l i n e s o f t h e P r o d u c t s u b m o d e l a r e p a r t o f t h e l i s t i n g o f t h e Summary s u b m o d e l ( T a b l e 1 ) . L i n e s 5 8 - 6 5 a r e l i s t e d w i t h t h e P r o d s i m p s u b m o d e l l i s t i n g ( T a b l e 4 ) . C e l l a d d r e s s D e s c r i p t i o n D 5 8 - A F 5 8 D 6 0 - A F 6 0 C15 C16 C17 C18 D 5 9 - A F 5 9 E n t e r t h e maximum j u v e n i l e s i z e (mm). E n t e r t h e a v e r a g e m i n i m u m m a r k e t s i z e (mm). E n t e r t h e m o r t a l i t y r a t e p e r q u a r t e r . E n t e r t h e p r i c e p e r s h e l l f i s h ( $ ) . Sums t h e number o f j u v e n i l e s h e l l f i s h f r o m a l l s t o c k s . Sums t h e number o f a d u l t s h e l l f i s h f r o m a l l a d u l t s t o c k s . Sums t h e t o t a l j u v e n i l e s h e l l a r e a f r o m a l l s t o c k s . -65-Sums t h e t o t a l a d u l t s h e l l a r e a f r o m a l l s t o c k s . Sums t h e t o t a l s a l e s f r o m a l l s t o c k s . Sums t h e m o r t a l i t i e s f r o m a l l s t o c k s . Sums t h e r e v e n u e f r o m a l l s t o c k s . C o m p u t e s t h e a n n u a l a v e r a g e s o f t h e v a r i a b l e s d i s c u s s e d a b o v e , f r o m y e a r s 4 t o 5 . C o m p u t e s t h e a v e r a g e number o f s h e l l f i s h w h i c h e n t e r t h e s y s t e m p e r y e a r , o v e r y e a r s 4 a n d 5, m i n u s t h e a v e r a g e number o f s h e l l f i s h w h i c h l e a v e t h e s y s t e m p e r y e a r o v e r t h e same p e r i o d (Number s e e d e d , c e l l C 5 7 , - s a l e s , c e l l C 6 2 , - m o r t a l i t i e s , c e l l C 6 4 ) . T h i s s h o u l d e q u a l z e r o . The n u m b e r s o f s h e l l s i n t h e j u v e n i l e s i z e c l a s s a r e c a l c u l a t e d f o r e a c h s t o c k , g i v e n t h e s e e d s i z e ( c e l l D 1 2 ) , t h e maximum j u v e n i l e s i z e ( c e l l D 1 5 ) , a n d t h e m o r t a l i t y r a t e ( c e l l D 1 7 ) . The f o r m u l a p r i n t e d i n c e l l D131 ( T a b l e 3) i s c o p i e d o v e r t h e r a n g e D 1 3 1 - A F 1 4 2 . The n u m b e r s o f s h e l l s i n t h e a d u l t s i z e c l a s s a r e c a l c u l a t e d f o r e a c h s t o c k , g i v e n t h e maximum j u v e n i l e s i z e ( c e l l D 1 5 ) , t h e m o r t a l i t y r a t e ( c e l l D 1 7 ) , a n d t h e number o f s a l e s f r o m e a c h s t o c k ( l i n e s 1 7 5 - 1 8 6 ) . The f o r m u l a p r i n t e d i n c e l l D144 ( T a b l e 3) i s c o p i e d o v e r t h e r a n g e D 1 4 4 - A F 1 5 5 . The number o f m o r t a l i t i e s f r o m e a c h s t o c k . E n t e r t h e d e s i r e d s a l e s t a r g e t p e r s t o c k f o r e a c h q u a r t e r . The number o f s h e l l f i s h s o l d a r e c a l c u l a t e d f o r e a c h s t o c k , g i v e n t h e a v e r a g e s h e l l s i z e i n e a c h s t o c k ( l i n e s 1 1 4 - 1 2 5 ) , t h e m i n i m u m a v e r a g e m a r k e t s i z e ( c e l l C 1 6 ) , t h e q u a r t e r l y m a r k e t t a r g e t ( l i n e 1 7 4 ) , a n d t h e number i n e a c h a d u l t s t o c k ( l i n e s 1 4 4 - 1 5 5 ) . The f o r m u l a p r i n t e d i n c e l l D175 ( T a b l e 3) i s c o p i e d o v e r t h e r a n g e D 1 7 5 - A F 1 8 6 . I n p u t p r i c e ( l i n e 194) v e r s u s s i z e (mm) ( l i n e 193) f u n c t i o n . D i s p l a y s n u m b e r s f o r 14 m o n t h s f r o m November (-2 t o 1 2 ) . I n p u t p r i c e d a t a f o r t h e m o n t h s i n l i n e 1 9 7 . The m o n t h s November a n d D e c e m b e r (-2 a n d - 1 ) a r e u s e d t o c a l c u l a t e t h e 3 m o n t h r u n n i n g a v e r a g e p r i c e i n l i n e 2 0 1 . C o m p u t e s t h e a v e r a g e a n n u a l p r i c e f r o m d a t a i n l i n e 1 9 8 . - 6 6 -L i n e 200 L i n e 201 L i n e 203 L i n e s 207 -218 L i n e s 221 -232 L i n e s 235 -246 L i n e s 2 1 6 - 2 3 5 C o m p u t e s t h e r a t i o o f t h e m o n t h l y p r i c e ( l i n e 198) t o t h e a v e r a g e p r i c e ( c e l l C 1 9 9 ) . C o m p u t e s t h e a v e r a g e p r i c e f o r t h e p r e c e d i n g 3 m o n t h s ( i e . - l q u a r t e r ) f o r e a c h m o n t h o f t h e y e a r . U s e s a t a b l e f u n c t i o n t o s e l e c t t h e s e a s o n a l p r i c e m u l t i p l e ( l i n e 200) c o r r e s p o n d i n g t o t h e m o n t h e n d i n g e a c h o f t h e 28 q u a r t e r s . The r e v e n u e f r o m e a c h s t o c k i s c a l c u l a t e d , g i v e n t h e s a l e s f r o m e a c h s t o c k ( l i n e s 1 7 5 - 1 8 6 ) a n d t h e p r i c e p e r s h e l l f i s h ( l i n e 1 9 4 ) , w h i c h i n t u r n d e p e n d s on t h e s h e l l s i z e ( l i n e 1 9 3 ) . The f o r m u l a p r i n t e d i n c e l l D207 ( T a b l e 3) i s c o p i e d o v e r t h e r a n g e D 2 0 7 - A F 2 1 8 . A s s u m i n g a c i r c u l a r s h a p e , t h e t o t a l s h e l l a r e a i n e a c h j u v e n i l e s t o c k i s c a l c u l a t e d . The f o r m u l a p r i n t e d i n c e l l D221 ( T a b l e 3) i s c o p i e d o v e r t h e r a n g e D 2 2 1 - A F 2 3 2 . A s s u m i n g a c i r c u l a r s h a p e , t h e t o t a l s h e l l a r e a i n e a c h a d u l t s t o c k i s c a l c u l a t e d . The f o r m u l a p r i n t e d i n c e l l D235 ( T a b l e 3) i s c o p i e d o v e r t h e r a n g e D 2 3 5 - A F 2 4 6 . M a c r o s e c t i o n . The m a c r o " \ 0 " p l a c e s t h e c u r s o r a t c e l l A l (HOME) when t h e m o d e l i s l o a d e d . The " \ A " m a c r o a i d s i n r u n n i n g t h e m o d e l ( s e e O p e r a t i n g I n s t r u c t i o n s ) D e s c r i p t i o n s of the Systems and F i n a n c i a l submodels f o l l o w a d e s c r i p t i o n of the Prodsimp submodel, which i s a shortened v e r s i o n of the Growth and Product submodels. T a b l e 2 . P r o d u c t submodel p a r t i a l l i s t i n g . - 6 7 -C o l u s n : B C D E F G H I J r L i n e 130 JUVENILE STOCKS**) Oct 89 Jan 90 Apr 90 J u l 90 Oct 90 Jan 91 Apr 91 J u l 91 131 S t o c k 1 1000000 953000 908209 0 0 0 0 0 132 2 § I F ( D 1 1 5 > = =$JUVMAX,0,D76+C132*(1-tMORTRATE)) 953000 908209 0 133 3 0 0 0 0 0 0 0 0 134 4 0 0 0 0 0 0 0 0 135 5 0 0 0 0 0 0 0 0 136 6 0 0 0 0 0 0 0 0 137 7 0 0 0 0 0 0 0 0 13B 8 0 0 0 0 0 0 0 0 139 9 0 0 0 0 0 0 0 0 140 10 0 0 0 0 0 0 0 0 141 11 0 0 0 0 0 0 0 0 142 12 0 0 0 0 0 0 0 0 143 144 ADULT STOCKS(S)- S t o c k 1 0 0 0 865523 824844 786076 575130 374099 145 2 § I F ( D 1 1 5 < $ J U V M A X I 0 , ( C 1 3 2 + C 1 4 5 ) * ( 1 - * H 0 R T R A T E ) - •D176) 0 865523 146 3 0 0 0 0 0 0 0 0 147 4 0 0 0 0 0 0 0 0 148 5 0 0 0 0 0 0 0 0 149 6 0 0 0 0 0 0 0 0 150 7 0 0 0 0 0 0 0 0 151 8 0 0 0 0 0 0 0 0 152 9 0 0 0 0 0 0 0 0 153 10 0 0 0 0 0 0 0 0 154 11 0 0 0 0 0 0 0 0 155 12 0 0 0 0 0 0 0 0 156 157 MORTALITIES 158 Stock 1 0 47000 44791 42686 40680 38768 36946 27031 159 2 (C132*C145)*$M0RTRATE 0 47000 44791 42686 160 3 0 0 0 0 0 0 0 0 161 4 0 0 0 0 0 0 0 0 162 5 0 0 0 0 0 0 0 0 163 6 0 0 0 0 0 0 0 0 164 7 0 0 0 0 0 0 0 0 165 8 0 0 0 0 0 0 0 0 166 9 0 0 0 0 0 0 0 0 167 10 0 0 0 0 0 0 0 0 168 11 0 0 0 0 0 0 0 0 169 12 0 0 0 0 0 0 0 0 -68-T a b l e 2 ( c o n t i n u e d ) . P r o d u c t submodel p a r t i a l l i s t i n g . C o l u o n : B C D E F G H I J K L i n e 173 SALES(S) Oct 89 Jan 90 Apr 90 J u l 90 Oct 90 Jan 91 Apr 91 J u l 91 174 Q u a r t e r l y S a l e s T a r g e t / S t o c k 174000 174000 174000 174000 174000 174000 174000 174000 175 S t o c k 1 0 0 0 0 0 0 174000 174000 176 2 SIF(D115<$MARKET,0 (8IF(C145*(1-$M0RTRATE)<D*174,C145*(1-$M0RTRATE),D$174 177 3 0 0 0 0 0 0 0 0 178 4 0 0 0 0 0 0 0 0 179 5 0 0 0 0 0 0 0 0 180 6 0 0 0 0 0 0 0 0 181 7 0 0 0 0 0 0 0 0 182 8 0 0 0 0 0 0 0 0 183 9 0 0 0 0 0 0 0 0 184 10 0 0 0 0 0 0 0 0 185 11 0 0 0 0 0 0 0 0 186 12 0 0 0 0 0 0 0 0 187 188 189 Type i n c h a n g e , p r e s s E n t e r . 190 A f t e r changes a r e o a d e , p r e s s " A l t A " . 191 192 PRICE VERSUS SHELL SIZE 193 S h e l l S i z e ( o D ) 0 10 20 30 40 50 60 70 80 194 P r i c e / S h e l l $ 0 . 3 0 $ 0 . 3 0 $ 0 . 3 0 $ 0 . 3 0 $ 0 . 3 0 $ 0 . 3 0 $ 0 . 3 0 195 196 PRICE VERSUS SEASON 197 M o n t h d - - 2 -1 1 2 3 4 5 6 7 198 D a t a ( P r i c e / U n i t ) $ 1 . 0 0 4 1 . 0 0 $ 1 . 0 0 $ 1 . 0 0 $ 1 . 0 0 $ 1 . 0 0 $ 1 . 0 0 $ 1 . 0 0 $ 1 . 0 0 199 Average(Honths 1-12 o n l y ) I A V 8 ( E 1 9 8 . . P 1 9 8 ) 200 M o n t h l y P r i c e / A v e r a g e +C19B/$C$199 1 1 1 1 1 1 1 1 201 3 Month Running Average 8AVG(C200..E200)1 1 1 1 1 1 202 Date Oct 89 Jan 90 Apr 90 J u l 90 Oct 90 Jan 91 Apr 91 J u l 91 203 S e a s o n a l P r i c e M u l t i p l e 8 H T A B L £ ( D 4 8 , $ E $ 1 9 7 . . $ P $ 2 0 1 , 4) 1 1 1 1 204 205 206 REVENUE Oct 89 Jan 90 Apr 90 J u l 90 Oct 90 Jan 91 Apr 91 J u l 91 207 S t o c k 1 $0 $0 $0 $0 $0 $0 $ 5 2 , 2 0 0 $ 5 2 , 2 0 0 208 2 +D176*IHTABLE(D115,$C$193..$R$194,1)*D204 $0 $0 $0 209 3 $0 $0 $0 $0 $0 $0 $0 $0 210 4 $0 $0 $0 $0 $0 $0 $0 $0 211 5 t o $0 $0 $0 $0 $0 $0 $0 212 6 $0 $0 $0 $0 $0 $0 $0 $0 213 7 $0 $0 $0 $0 $0 $0 $0 $0 214 8 $0 $0 $0 $0 $0 $0 $0 $0 215 9 $0 $0 $0 $0 $0 $0 $0 $0 216 10 $0 $0 $0 $0 $0 $0 $0 $0 217 11 $0 $0 $0 $0 $0 $0 $0 $0 218 12 $0 $0 $0 $0 $0 $0 $0 $0 -69-T a b l e 2 ( c o n t i n u e d ) . P r o d u c t submodel p a r t i a l l i s t i n g . Column: B C D E F 6 H I J K L i n e 220 JUVENILE SHELL AREACsq a) Oct 89 Jan 90 Apr 90 J u l 90 Oct 90 Jan 91 Apr 91 J u l 91 221 S t o c k 1 79 219 418 0 0 0 0 0 222 2 ( D 1 1 5 / 2 » 0 . 0 0 1 ) A 2 * § P I * D 1 3 2 0 79 219 418 0 223 3 0 0 0 0 0 0 0 0 224 4 0 0 0 0 0 0 0 0 225 5 0 0 0 0 0 0 0 0 226 6 0 0 0 0 0 0 0 0 227 7 0 0 0 0 0 0 0 0 228 8 0 0 0 0 0 0 0 0 229 9 0 0 0 0 0 0 0 0 230 10 0 0 0 0 0 0 0 0 231 11 0 0 0 0 0 0 0 0 232 12 0 0 0 0 0 0 0 0 233 234 ADULT SHELL AREACsq • ) Oct 89 Jan 90 Apr 90 J u l 90 Oct 90 Jan 91 Apr 91 J u l 91 235 Stock 1 0 0 0 666 955 1278 1250 1047 236 2 ( D 1 1 5 / 2 * 0 . 0 0 1 ) A 2 » e P I * D 1 4 5 0 0 0 666 237 3 0 0 0 0 0 0 0 0 23B 4 0 0 0 0 0 0 0 0 239 5 0 0 0 0 0 0 0 0 240 6 0 0 0 0 0 0 0 0 241 7 0 0 0 0 0 0 0 0 242 8 0 0 0 0 0 0 0 0 243 9 0 0 0 0 0 0 0 0 244 10 0 0 0 0 0 0 0 0 245 11 0 0 0 0 0 0 0 0 246 12 0 0 0 0 0 0 0 0 247 248 249 250 MACRO SECTION 251 252 \ 0 (HONE} \A {HENUCALL}C256 ,' INPUT UPDATE SUMMARY Input p a r a R e c a l c u l a M e r g e or e x p o r t Summary s u b m o d e l . u l a t i o n . CHENUCALLJC260* MERGE EXPORT Merge SummUpdate Summary submodel. {HOME}/f IBS/f xSUMMARY. H K S T A I . . AF65'W -70-2. SHORT FORM OF THE MODEL PRODSIMP SUBMODEL O p e r a t i n g I n s t r u c t i o n s T h e P r o d s i m p s u b m o d e l i s a s i m p l i f i e d c o m b i n a t i o n o f t h e G r o w t h a n d P r o d u c t s u b m o d e l s o f t h e l o n g f o r m o f t h e m o d e l . I t a c c e p t s i n p u t o f a n a v e r a g e g r o w t h r a t e o n l y , a n d d o e s n o t i n c l u d e d e n s i t y a n d s e a s o n a l e f f e c t s on g r o w t h , o r p r i c e v e r s u s s i z e o r s e a s o n . A f t e r t h e PRODSIMP s u b m o d e l i s l o a d e d ( a p p r o x i m a t e l y 5 -10 m i n u t e s on a P C ) , p r e s s " A l t " a n d " A " s i m u l t a n e o u s l y t o b r i n g up t h e m a i n m a c r o m e n u . The f o l l o w i n g s u b h e a d i n g s a r e d i s p l a y e d on t h e s c r e e n : I N P U T - p r e s s i n g " R E T U R N " when " I N P U T " i s h i g h l i g h t e d w i l l b r i n g up a menu w h i c h p r o v i d e s c h o i c e s f o r t h e f o l l o w i n g d a t a i n p u t : S E E D S I Z E - e n t e r t h e s e e d s i z e J U V M A X - e n t e r t h e u p p e r s i z e l i m i t t o t h e j u v e n i l e s i z e c l a s s . M A R K E T - i n p u t t h e m i n i m u m m a r k e t s i z e ( t h e a v e r a g e s h e l l s i z e i n a s t o c k a f t e r w h i c h m a r k e t i n g b e g i n s ) . M O R T S - i n p u t t h e p r o p o r t i o n o f t h e s t o c k w h i c h become m o r t a l i t i e s p e r q u a r t e r . P R I C E - e n t e r t h e e x p e c t e d p r i c e p e r s c a l l o p . T I M E - m o d e l t i m e s t r u c t u r e - i n p u t s t a r t m o n t h ( 1 - 1 2 ) , a n d s t a r t y e a r ( 1 9 ) , a n d t h e m o d e l w i l l c a l c u l a t e t h e m o n t h a n d y e a r f o r e a c h o f 28 s u b s e q u e n t q u a r t e r s I N F L A T O R S - e n t e r t h e a n n u a l i n f l a t i o n r a t e s f o r c o s t s a n d f o r s e l l i n g p r i c e . P L A N T - e n t e r t h e number o f s e e d p l a c e d i n c u l t u r e f o r e a c h o f 12 s t o c k s a t t h e c h o s e n d a t e f o r s e e d i n g . G R O W T H - e n t e r t h e a v e r a g e g r o w t h r a t e a n d s i z e 1 i m i t . T A R G E T - E n t e r t h e d e s i r e d q u a r t e r l y s a l e s t a r g e t p e r s t o c k f o r e a c h o f t h e 28 q u a r t e r s . S U M M A R Y - c h o o s i n g "SUMMARY" f r o m t h e m a i n menu menu w i l l u p d a t e t h e Summary s u b m o d e l w i t h t h e r e s u l t s o f new e n t r i e s i n t h e P r o d s i m p s u b m o d e l . T h i s w i l l n o t o c c u r on t h e f i r s t t r y i f a f i l e t i t l e d " S u m m a r y " d o e s n o t e x i s t on t h e d i s k - i t w i l l t h e s e c o n d t i m e . T a b l e s i n e a c h s u b m o d e l c a n be v i e w e d b y m o v i n g t h e c u r s o r t o t h e i r s p r e a d s h e e t c e l l l o c a t i o n s ( T a b l e s 1 - 6 ) . P r i n t o u t s , g r a p h s , a n d g r a p h p r i n t o u t s c a n be made a c c o r d i n g t o t h e i n s t r u c t i o n s p r o v i d e d i n t h e A S E A S Y m a n u a l ( T R I U S I n c . , 1 9 8 7 ) . - 7 1 -F r o d s l m p S u b m o d e l L i s t i n g ( T a b l e 4) S p r e a d s h e e t s a r e a r r a y s o f c e l l s w h i c h h a v e e i t h e r t e x t o r v a l u e s i n t h e m . The v a l u e s a r e e i t h e r n u m b e r s , o r f o r m u l a e w h i c h r e s u l t i n n u m b e r s , e i t h e r o f w h i c h c a n be d i s p l a y e d . The s u b m o d e l l i s t i n g s ( T a b l e s 1 -6 ) d i s p l a y f o r m u l a e a s t h e y e x i s t i n t h e s p r e a d s h e e t , u n l e s s t h e y a r e r e p e a t e d a c r o s s a r o w , i n w h i c h c a s e o n l y t h e f i r s t f o r m u l a i s p r i n t e d . The f u n c t i o n s o f f o r m u l a e a r e s u m m a r i z e d i n t h e a p p r o p r i a t e s e c t i o n s , a n d a d e t a i l e d e x p l a n a t i o n c a n be o b t a i n e d f r o m t h e A S E A S Y m a n u a l . The f i r s t 55 l i n e s o f t h e P r o d s i m p s u b m o d e l a r e p a r t o f t h e l i s t i n g f o r t h e Summary s u b m o d e l ( T a b l e 1 ) . C e l l a d d r e s s D e s c r i p t i o n C12 C15 C16 C17 C18 C45 & 46 L i n e 47 L i n e 48 L i n e 49 L i n e 50 C53 & 54 L i n e s 53 -54 D 5 6 - A F 5 6 D 5 7 - A F 5 7 D 5 8 - A F 5 8 D 5 9 - A F 5 9 D 6 0 - A F 6 0 D 6 1 - A F 6 1 D 6 2 - A F 6 2 D 6 4 - A F 6 4 D 6 5 - A F 6 5 D 6 6 - A F 6 6 I n p u t t h e i n i t i a l s e e d s i z e (mm h e i g h t ) . E n t e r t h e maximum j u v e n i l e s i z e (mm). E n t e r t h e a v e r a g e minimum m a r k e t s i z e (mm). E n t e r t h e m o r t a l i t y r a t e p e r q u a r t e r . E n t e r t h e p r i c e p e r s h e l l f i s h ( $ ) . I n p u t t h e s t a r t m o n t h ( 1 - 1 2 ) a n d t h e s t a r t y e a r (19 ) . D i s p l a y s t h e number o f t h e q u a r t e r f r o m 0 - 2 8 . C a l c u l a t e s t h e month ( 1 - 1 2 ) e n d i n g e a c h q u a r t e r . C a l c u l a t e s t h e y e a r (19 ) . C a l c u l a t e s t h e d a t e e n d i n g e a c h q u a r t e r . I n p u t i n f l a t i o n r a t e s f o r c o s t s a n d s e l l i n g p r i c e . C a l c u l a t e s a n i n f l a t i o n m u l t i p l e f o r c o s t s a n d f o r s e l l i n g p r i c e f o r e a c h q u a r t e r . D i s p l a y s t h e d a t e c a l c u l a t e d i n l i n e 5 0 . S u m m a r i z e s t h e s e e d i n g s c h e d u l e i n p u t b e l o w . Sums t h e number o f j u v e n i l e s h e l l f i s h f r o m a l l s t o c k s . Sums t h e number o f a d u l t s h e l l f i s h f r o m a l l s t o c k s . Sums t h e t o t a l j u v e n i l e s h e l l a r e a f r o m a l l s t o c k s . Sums t h e t o t a l a d u l t s h e l l a r e a f r o m a l l s t o c k s . Sums t h e t o t a l s a l e s f r o m a l l s t o c k s . Sums t h e m o r t a l i t i e s f r o m a l l s t o c k s . Sums t h e r e v e n u e f r o m a l l s t o c k s . F o r e a c h q u a r t e r , t h e d i f f e r e n c e b e t w e e n t h e number o f s h e l l s s e e d e d m i n u s s a l e s a n d m o r t a l i t i e s i s c a l c u l a t e d . When t h e s y s t e m has r e a c h e d s t e a d y s t a t e , t h i s d i f f e r e n c e s h o u l d e q u a l z e r o . - 7 2 -D 6 7 - A F 6 7 C a l c u l a t e s t h e d i f f e r e n c e b e t w e e n t h e number o f s h e l l s s e e d e d ( l i n e 57) m i n u s s a l e s ( l i n e 62) a n d m o r t a l i t i e s ( l i n e 64) i n t h e y e a r p r e c e d i n g e a c h q u a r t e r . When t h e s y s t e m h a s r e a c h e d s t e a d y s t a t e , t h i s d i f f e r e n c e s h o u l d e q u a l z e r o . C 5 7 - C 6 7 C o m p u t e s t h e a n n u a l a v e r a g e s o f t h e v a r i a b l e s d i s c u s s e d a b o v e , f r o m y e a r s 4 t o 5 . L i n e s 7 5 - 8 6 I n p u t t h e number o f s e e d p l a c e d i n c u l t u r e f o r e a c h o f 12 s t o c k s a t t h e c h o s e n d a t e f o r s e e d i n g . C92 E n t e r t h e a v e r a g e g r o w t h r a t e ( m m / q u a r t e r ) . C93 E n t e r t h e l i m i t t o s i z e (mm). L i n e s 9 4 - 1 0 5 A v e r a g e s h e l l s i z e f o r e a c h s t o c k - T h e f o r m u l a i n c e l l D94 ( T a b l e 4 ) , c o p i e d o v e r t h e r a n g e D 9 4 - A F 1 0 5 , i s s u m m a r i z e d a s : i f t h e s e e d i n g s c h e d u l e f o r s t o c k 1 i n t h a t q u a r t e r i s g r e a t e r t h a n o r e q u a l t o (>=) 0 , t h e n t h e s h e l l s i z e i s t h e s e e d s i z e ( $ C $ 1 2 ) . I f t h e a v e r a g e s h e l l s i z e f o r t h a t s t o c k i n t h e p r e v i o u s q u a r t e r ( c e l l C94) i s >= 0, t h e n t h e s h e l l s i z e e q u a l s t h e p r e v i o u s s i z e p l u s t h e q u a r t e r l y g r o w t h i n c r e m e n t ( $ C $ 9 2 ) , u n l e s s t h e g r o w t h l i m i t ($C$93) h a s b e e n r e a c h e d . L i n e s 1 1 2 - 1 2 3 Numbers i n j u v e n i l e s t o c k s - T h e f o r m u l a p r i n t e d i n c e l l D112 ( T a b l e 4 ) , c o p i e d o v e r t h e r a n g e D 1 1 2 - A F 1 2 3 , i s s u m m a r i z e d a s : i f t h e a v e r a g e s h e l l s i z e i n t h e s t o c k ( c e l l D94) <= t h e maximum j u v e n i l e s i z e ( c e l l $ D $ 1 5 ) , t h e n t h e number o f j u v e n i l e s h e l l f i s h i n t h a t s t o c k i n t h a t q u a r t e r i s c a l c u l a t e d a s t h e number i n t h e p r e v i o u s q u a r t e r t i m e s ( 1 - t h e m o r t a l i t y r a t e , c e l l $ C $ 1 7 ) , p l u s t h e number s e e d e d i n t h a t s t o c k i n t h a t q u a r t e r ( D 7 5 ) . L i n e s 1 2 5 - 1 3 6 N u m b e r s i n a d u l t s t o c k s - T h e f o r m u l a p r i n t e d i n c e l l D125 ( T a b l e 4 ) , c o p i e d o v e r t h e r a n g e D 1 2 5 - A F 1 3 6 , i s s u m m a r i z e d a s : i f t h e a v e r a g e s h e l l s i z e i n t h e s t o c k ( c e l l D94) >= t h e maximum j u v e n i l e s i z e ( c e l l $ D $ 1 5 ) , t h e n t h e number o f a d u l t s h e l l f i s h i n t h a t s t o c k i n t h a t q u a r t e r i s c a l c u l a t e d a s t h e number o f j u v e n i l e a n d a d u l t s h e l l f i s h i n t h a t s t o c k i n t h e p r e v i o u s q u a r t e r ( c e l l s C112 a n d C125) t i m e s ( 1 - t h e m o r t a l i t y r a t e , c e l l $ C $ 1 7 ) , m i n u s t h e number o f s a l e s f r o m t h a t s t o c k i n t h a t q u a r t e r ( c e l l D 1 4 0 , s e e b e l o w ) . L i n e 139 E n t e r t h e d e s i r e d s a l e s t a r g e t p e r s t o c k f o r e a c h q u a r t e r . L i n e s 1 4 0 - 1 5 1 S a l e s - T h e f o r m u l a p r i n t e d i n c e l l D140 ( T a b l e 4 ) , c o p i e d o v e r t h e r a n g e D 1 4 0 - A F 1 5 1 , i s s u m m a r i z e d a s : i f t h e a v e r a g e s i z e o f -73-s h e l l f i s h i n t h a t s t o c k ( c e l l D94) i s >= t h e m i n i m u m a v e r a g e m a r k e t s i z e ( $ C $ 1 6 ) , t h e n t h e number o f s a l e s f r o m t h a t s t o c k i n t h a t q u a r t e r i s t h e q u a r t e r l y m a r k e t t a r g e t ( D $ 1 3 9 ) . I f t h e number o f a d u l t s h e l l f i s h r e m a i n i n g i n t h a t s t o c k ( c a l c u l a t e d a s t h e number o f a d u l t s i n t h e p r e v i o u s q u a r t e r t i m e s ( 1 - m o r t a l i t y r a t e , c e l l $C$17) t o a v o i d c i r c u l a r c e l l r e f e r e n c e s w h i c h t h e s o f t w a r e c a n n o t h a n d l e ) i s l e s s t h a n t h e q u a r t e r l y m a r k e t t a r g e t , t h e n t h e number s o l d i s t h e number o f a d u l t s r e m a i n i n g i n t h a t s t o c k . L i n e s 1 5 5 - 1 6 6 R e v e n u e - T h e f o r m u l a p r i n t e d i n c e l l D155 ( T a b l e 4 ) , c o p i e d o v e r t h e r a n g e D 1 5 5 - A F 1 6 6 , i s s u m m a r i z e d a s : t h e p r o d u c t o f s a l e s f r o m t h a t s t o c k (D140) t i m e s t h e p r i c e p e r s c a l l o p ( $ C $ 1 8 , o r " P R I C E " ) t i m e s t h e i n f l a t i o n f a c t o r f o r p r i c e s ( D $ 5 4 ) . L i n e s 1 7 4 - 1 8 5 J u v e n i l e s h e l l a r e a - A s s u m i n g a c i r c u l a r s h a p e , t h e t o t a l s h e l l a r e a i n e a c h j u v e n i l e s t o c k i s c a l c u l a t e d . The f o r m u l a p r i n t e d i n c e l l D174 ( T a b l e 4) i s c o p i e d o v e r t h e r a n g e D 1 7 4 - A F 1 8 5 . L i n e s 1 8 8 - 1 9 9 A d u l t s h e l l a r e a - A s s u m i n g a c i r c u l a r s h a p e , t h e t o t a l s h e l l a r e a i n e a c h a d u l t s t o c k i s c a l c u l a t e d . The f o r m u l a p r i n t e d i n c e l l D188 ( T a b l e 4) i s c o p i e d o v e r t h e r a n g e D 1 8 8 - A F 1 9 9 . L i n e s 2 0 2 - 2 1 3 M o r t a l i t i e s - T h e number o f m o r t a l i t i e s f r o m e a c h s t o c k a r e c a l c u l a t e d , g i v e n t h e m o r t a l i t y r a t e ( c e l l $ C $ 1 7 ) , a n d t h e n u m b e r s i n e a c h j u v e n i l e a n d a d u l t s t o c k . The f o r m u l a p r i n t e d i n c e l l D202 ( T a b l e 4) i s c o p i e d o v e r t h e r a n g e D 2 0 2 - A F 2 1 3 . L i n e s 2 1 6 - 2 3 5 M a c r o s e c t i o n - T h e m a c r o " \ 0 " p l a c e s t h e c u r s o r a t c e l l A l (HOME) when t h e m o d e l i s l o a d e d . The " \ A " m a c r o a i d s i n r u n n i n g t h e m o d e l ( s e e O p e r a t i n g I n s t r u c t i o n s ) T a b l e 4 . P r o d s i a p s u b a o d e l p a r t i a l l i s t i n g . -74-C o l u a n : B C D E F 6 H I J K L i n e 56 PRODUCTION SUHMARY Oct 89 Jan 90 Apr 90 J u l 90 Oct 90 Jan 91 Apr 91 J u l 91 57 S e e d i n g S c h e d u l e d ) 1000000 § S U H ( D 8 6 . . D 7 5 ) 0 0 1000000 0 0 0 58 S t o c k s ( # ) - J u v e n i l e 2861209 8SUH(D112..D123) 908209 0 1000000 953000 908209 0 59 A d u l t 3608189 8SUM(D125..D136) 0 865523 824844 786076 575130 1239622 60 S h e l l A r e a ( s q . a . ) - J u v e n i 715 8SUH(D174..D185) 418 0 79 219 418 0 61 A d u l t 5836 8SUM(D188..D199) 0 666 955 1278 1250 1713 62 S a l e s - N u a b e r o f S h e l l f i s h 695938 8SUM(D140..AI151) 0 0 0 0 17.400ft 174Q00 63 Adductor Muscle(Kg) 64 T o t a l M o r t a l i t i e s 304062 8SUH(D202..D213) 44791 42686 40680 85768 81737 59717 65 Revenue $135,152 9SUM(D155..D166) $0 * 0 SO * 0 $41,242 J 4 1 . 7 3 3 66 Stock In/out D i f f e r e n c e 0 +D57-D64-DS2 -44731 -42636 353320 -85768 .•ier7m -243717 67 .Annual 0 8SUM(A66..D66) 308209 865523 824844 786075 575130 374099 69 70 PR0DSIMP SUBMODEL 25-Nov-7 1 ' « _ 72 73 SEEDING SCHEDULER's) 74 75 Stock 1 75 2 77 3 78 4 79 5 80 6 81 7 82 3 83 9 84 10 85 11 86 12 87 Oct 89 Jan 90 Apr 90 J u l 90 Oct 90 Jan 91 Apr 91 J u l 91 1.00E+06 1.00E+06 89 90 91 SHELL SIZE(aa) Oct 89 Jan 90 Apr 90 J u l 90 Oct 90 Jan 91 Apr 91 J u l 91 92 G r o w t h ( a a / Q u a r t e r ) 7.1 93 Growth L i a i t ( a a ) 80 94 S t o c k 1 e i F ( D 7 5 > 0 , $ C $ 1 2 , 8 I F ( C 3 4 > 0 , § I F ( C 3 4 + $ C $ 9 2 < $ C $ 9 3 , C 9 4 + * C $ 9 2 , $ C $ 9 3 ) , 0 ) ) 95 2 0 0 0 0 10 17 24 31 96 3 0 0 0 0 0 0 0 0 97 4 0 0 0 0 0 0 0 0 98 5 0 0 0 0 0 0 0 0 99 6 0 0 0 0 0 0 0 0 100 7 0 0 0 0 0 0 0 0 101 8 0 0 0 0 0 0 0 0 102 9 0 0 0 0 0 0 0 0 103 10 0 0 0 0 0 0 0 0 104 11 0 0 0 0 0 0 0 0 -75-T a b l e 4 ( c o n t i n u e d ) . Prodsimp submodel p a r t i a l l i s t i n g . Column: B C D E L i n e 111 JUVENILE STOCKS(i) 112 113 114 115 116 117 118 119 120 121 122 123 124 125 ADULT STOCKS(#)-126 127 128 129 130 131 132 133 134 135 136 137 138 SALES(#) 139 Q u a r t e r l y S a l e s T a r g e t / S t o c k 140 S t o c k 1 141 2 142 3 143 4 144 5 145 6 146 7 147 8 14B 9 149 10 150 11 151 12 Stock 1 2 3 4 5 6 7 8 9 10 11 12 S t o c k 1 2 3 4 5 6 7 8 9 10 11 12 Oct 89 Jan 90 Apr 90 J u l 90 SIF(D94>=tC$15,0,D75+C112Kl-$C$17)) Oct 90 1000000 0 0 0 0 0 0 0 0 0 0 Jan 91 0 953000 0 0 0 0 0 0 0 0 0 0 Apr 91 0 908209 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Oct 89 174000 0 0 0 0 0 0 0 0 0 0 0 Jan 90 174000 0 0 0 0 0 0 0 0 0 0 0 Apr 90 174000 0 0 0 0 0 0 0 0 0 0 0 J u l 90 174000 0 0 0 0 0 0 0 0 0 0 0 Oct 90 174000 0 0 0 0 0 0 0 0 0 0 0 Jan 91 174000 0 0 0 0 0 0 0 0 0 0 0 Apr 91 174000 § I F ( D 9 4 < t C * 1 6 , 0 , i I F ( C 1 2 5 * ( l - f C $ 1 7 X D $ 1 3 9 , C 1 2 5 * ( l - t C t l 7 ) , D J 1 3 9 ) ) J u l 91 0 0 0 0 0 0 0 0 0 0 0 0 8IF(D94<*C$15,0,(C112+C125)*(1-$C*17)-D140) 786076 575130 374099 865523 0 0 0 0 0 0 0 0 0 0 J u l 91 174000 174000 0 0 0 0 0 0 0 0 0 0 0 -76-T a b l e 4 ( c o n t i n u e d ) . Prodsimp submodel p a r t i a l l i s t i n g . Column: B C D E F G H I J L i n e 154 REVENUE 32782 32874 32964 33055 33147 33239 33329 155 S t o c k 1 +D140*tPRICE*AIt54 0 to to to • 4 1 , 2 4 2 156 2 $0 $0 to to to to $0 157 3 tO $0 $0 to to to to 158 4 $0 $0 $0 to to to to 159 5 $0 $0 to to to to to 160 6 to $0 to to to to to 161 7 tO to to to to to to 162 8 $0 $0 to to to to to 163 9 $0 10 to to to $0 to 164 10 $0 $0 to to to to to 165 11 $0 tO to to to to to 166 12 $0 to to to to to to 167 168 169 170 171 172 173 JUVENILE SHELL AREACsq ID) Oct 89 Jan 90 Apr 90 J u l 90 Oct 90 Jan 91 Apr 91 174 S t o c k 1 79 219 418 0 0 0 0 175 2 ( D 9 5 / 2 * 0 . 0 0 1 ) A 2 * § P I * D 1 1 3 0 79 219 418 176 3 0 0 0 0 0 0 0 177 4 0 0 0 0 0 0 0 178 5 0 0 0 0 0 0 0 179 6 0 0 0 0 0 0 0 180 7 0 0 0 0 0 0 0 181 8 0 0 0 0 0 0 0 182 9 0 0 0 0 0 0 0 183 10 0 0 0 0 0 0 0 184 11 0 0 0 0 0 0 0 185 12 0 ' 0 0 0 0 0 0 186 187 ADULT SHELL AREACsq i ) Oct 89 Jan 90 Apr 90 J u l 90 Oct 90 Jan 91 Apr 91 188 S t o c k 1 ( D 9 4 / 2 * 0 . 0 0 1 ) A 2 » § P I * D 1 2 5 666 955 1278 1250 189 2 0 0 0 0 0 0 0 190 3 0 0 0 0 0 0 0 191 4 0 0 0 0 0 0 0 192 5 0 0 0 0 0 0 0 193 6 0 0 0 0 0 0 0 194 7 0 0 0 0 0 0 0 195 8 0 0 0 0 0 0 0 196 9 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 -77-T a b l e 4 ( c o n t i n u e d ) . P r o d s i s p submodel p a r t i a l l i s t i n g . Column: B C D E F 6 H I J K L i n e HORTALITIES(t) Oct 89 Jan 90 Apr 90 J u l 90 Oct 90 Jan 91 Apr 91 J u l 91 202 S t o c k 1 (C112+C125)*$C*17 44791 42686 40680 38768 36946 27031 203 2 0 0 0 0 0 47000 44791 42686 204 3 0 0 0 0 0 0 0 0 205 4 0 0 0 0 0 0 0 0 206 5 0 0 0 0 0 0 0 0 207 6 0 0 0 0 0 0 0 0 208 7 0 0 0 0 0 0 0 0 209 8 0 0 0 0 0 0 0 0 210 9 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 MACRO SECTION \ 0 {HONE} \A {HENUCALUC220* INPUT UPDATE SUMMARY Input chanUpdate CuUpdate SUMMARY Submodel w i t h c a l c u l a t i o n s from PRODSIMP Submodel /wgrm (CALC) / f x S U H M A R Y . H K S * r A l . . A F 6 5 V {MENUCALD/wgra'' SEEDSIZE JUVMAX MARKET MORTS PRICE TIME INFLATORSPLANT GROWTH Input t h e Input t h e l n p u t t h e l n p u t t h e l n p u t p r i I n p u t s t a l n p u t c o s l n p u t s e e l n p u t t h e {GOTO}B7'k{{G0TO}B7'k{GOT0}B7,'{GOTO}B7,'{GOTO}B7,{GOTO}B44{6OTO}B52{GOTO}B73{GOTO}B9r - 7 8 -5Y5TEMS SUBMODEL O p e r a t i n g I n s t r u c t i o n s - L o a d the Systems submodel , and p r e s s " A l t " and " A " to b r i n g up the main menu. Merge the Summary submodel by s e l e c t i n g SUMMARY and then MERGE. E n t e r data u s i n g the INPUT sub menu, and then s e l e c t EXPORT from the SUMMARY sub menu to update the summary submodel . Main Sub Menus Menu INPUT- DENSITY-Enter the c u l t u r e d e n s i t y (the r a t i o of s h e l l a r e a / c u l t u r e system area) f o r j u v e n i l e and a d u l t c u l t u r e . SOURCE-choose a seed source from e i t h e r na t ure or a h a t c h e r y . LABOUR- S E E D - e n t e r the l a b o u r r e q u i r e d to i n s t a l l l o n g l i n e s (hours/100 m) and to m a i n t a i n and h a r v e s t (hours/1000 seed) seed a c q u i s i t i o n s y s t e m s . - 1-GROWOUT-enter the l a b o u r r e q u i r e d to i n s t a l l l o n g l i n e s f o r grow out c u l t u r e (hours/100 m). - 2-GROWOUT-enter the l a b o u r r e q u i r e d f o r s e e d i n g , m a i n t a i n i n g , and h a r v e s t i n g a l t e r n a t e j u v e n i l e and a d u l t c u l t u r e systems (hours/1000 s e e d ) . DIMENSIONS-input seed a c q u i s i t i o n , j u v e n i l e and a d u l t c u l t u r e systems d i m e n s i o n s . C O S T - i n p u t c o s t and economic l i f e d a t a f o r c u l t u r e s y s t e m s . SUMMARY- MERGE-merge the Summary submodel to i n c o r p o r a t e updated i n f o r m a t i o n from the P r o d u c t (or Prodsimp) submodel . ( C a u t i o n - d o not " e x p o r t " the Summary submodel p r i o r to " m e r g i n g " i t . ) Systems Submodel L i s t i n g (Table 5). The f i r s t 55 l i n e s of the Systems submodel are l i s t e d as p a r t of the Summary submodel (Table 1). - 7 9 -A d d r e s s D e s c r i p t i o n C33 Range C 6 9 - C 8 7 C 2 9 - C 3 0 E n t e r t h e c u l t u r e d e n s i t y f o r j u v e n i l e a n d a d u l t c u l t u r e , c a l c u l a t e d a s t h e r a t i o o f t h e s h e l l a r e a t o t h e c u l t u r e s y s t e m a r e a . E n t e r " 1 " i f s e e d i s t o be p u r c h a s e d , o r " 2 " i f s e e d i s t o be a c q u i r e d f r o m n a t u r e . D 6 9 - A F 8 7 . S u m m a r i z e s c u l t u r e s y s t e m r e q u i r e m e n t s a n d d e p r e c i a t i o n ( c a l c u l a t e d b e l o w ) , t h e a r e a o f t h e s e a b e d c o v e r e d b y l o n g l i n e s ( a n c h o r s e x c l u d e d ) , a n d t h e r a t i o o f s h e l l t o s e a b e d a r e a . C o m p u t e s t h e a n n u a l a v e r a g e o v e r y e a r s 4 -5 f o r t h e v a r i a b l e s a b o v e . L i n e s 9 0 - 1 0 1 L a b o u r R e q u i r e m e n t s : L i n e s 9 0 - 9 1 Sum o f t h e t o t a l q u a r t e r l y l a b o u r ( h o u r s ) r e q u i r e d f o r s e e d a c q u i s i t i o n ( L i n e 90) a n d f o r j u v e n i l e a n d a d u l t c u l t u r e ( L i n e 91) ( c a l c u l a t e d b e l o w ) . C e l l s C90 a n d C91 c a l c u l a t e t h e a n n u a l a v e r a g e s o f t h e s e t o t a l s d u r i n g y e a r s 4 t o 5 . L i n e 93 The l a b o u r ( h o u r s ) r e q u i r e d f o r i n s t a l l i n g s e e d a c q u i s i t i o n l o n g l i n e s = t h e r a t e i n h o u r s / 1 0 0 m o f l i n e ( c e l l $C$93) t i m e s t h e l e n g t h o f l o n g l i n e r e q u i r e d f o r s e e d a c q u i s i t i o n ( l i n e 243) d i v i d e d b y 1 0 0 . L i n e 94 I f s e e d i s t o be a c q u i r e d f r o m n a t u r e , ( $ C $ 3 3 > 1 ) , t h e n t h e l a b o u r ( h o u r s ) r e q u i r e d f o r m a i n t a i n i n g s e e d a c q u i s i t i o n s y s t e m s = t h e r a t e i n h o u r s / 1 0 0 0 s e e d ( c e l l $C$94) t i m e s t h e number o f s e e d ( l i n e 57) d i v i d e d b y 1 0 0 0 . L i n e 95 I f s e e d i s t o be a c q u i r e d f r o m n a t u r e , ( $ C $ 3 3 > 1 ) , t h e n t h e l a b o u r ( h o u r s ) r e q u i r e d f o r h a r v e s t i n g s e e d a c q u i s i t i o n s y s t e m s = t h e r a t e i n h o u r s / 1 0 0 0 s e e d ( c e l l $C$95) t i m e s t h e number o f s e e d ( l i n e 57) d i v i d e d b y 1 0 0 0 . L i n e 97 The l a b o u r ( h o u r s ) r e q u i r e d f o r i n s t a l l i n g g r o w o u t l o n g l i n e s , f o r j u v e n i l e a n d a d u l t c u l t u r e s y s t e m s = r a t e i n h o u r s / 1 0 0 m o f l i n e ( c e l l $C$97) t i m e s t h e l e n g t h o f l o n g l i n e r e q u i r e d f o r a d u l t a n d j u v e n i l e c u l t u r e ( l i n e 240) d i v i d e d b y 1 0 0 . L i n e s 98 The l a b o u r ( h o u r s ) r e q u i r e d f o r s e e d i n g j u v e n i l e c u l t u r e = t h e r a t e i n h o u r s / 1 0 0 0 s e e d ( c e l l $C$125) t i m e s t h e number o f s e e d ( l i n e 57) d i v i d e d b y 1 0 0 0 . L i n e 99 The l a b o u r ( h o u r s ) r e q u i r e d f o r s e e d i n g a d u l t c u l t u r e = t h e r a t e i n h o u r s / 1 0 0 0 s e e d ( c e l l $C$126) t i m e s t h e number s e e d e d d i v i d e d by 1 0 0 0 . ( The number s e e d e d i s t h e d i f f e r e n c e b e t w e e n t h e a d u l t s i n t h e c u r r e n t q u a r t e r m i n u s t h e a d u l t s i n t h e p r e v i o u s q u a r t e r p l u s m o r t a l i t i e s ( l a s t a d u l t * $ C $ 1 7 ) , p l u s s a l e s . ) -80-L i n e s 1 0 0 - 1 0 1 The l a b o u r ( h o u r s ) r e q u i r e d f o r m a i n t a i n i n g j u v e n i l e o r a d u l t c u l t u r e = t h e r a t e i n h o u r s / 1 0 0 0 s e e d / y e a r ($H$125 o r $ l $ 1 2 6 ) ( d i v i d e d b y 4 q u a r t e r s / y e a r ) t i m e s t h e number i n j u v e n i l e o r a d u l t c u l t u r e ( l i n e 58 o r 5 9 ) . L i n e 102 The l a b o u r ( h o u r s ) r e q u i r e d f o r h a r v e s t i n g = t h e r a t e i n h o u r s / 1 0 0 0 s e e d ( $ J $ 1 2 6 ) t i m e s t h e n u m b e r s h a r v e s t e d ( l i n e 62) d i v i d e d b y 1 0 0 0 . C 9 8 - C 1 0 2 The a n n u a l a v e r a g e o v e r y e a r s 4 -5 f o r e a c h l a b o u r c o m p o n e n t i s c a l c u l a t e d . Range B 1 0 8 - J 1 2 3 . J u v e n i l e a n d a d u l t c u l t u r e s y s t e m s d a t a : F o r a l t e r n a t e c u l t u r e s y s t e m s , i n p u t d a t a on t h e c o s t a n d t h e c u l t u r e a r e a p e r h a n g i n g u n i t , e c o n o m i c l i f e , a n d t h e l a b o u r r e q u i r e m e n t s ( h o u r s / 1 0 0 0 s h e 6 f s ) t o s e e d , m a i n t a i n , a n d h a r v e s t . L i n e s 1 2 5 - 1 2 6 T r a n s f e r t h e a b o v e d a t a f o r t h e j u v e n i l e a n d a d u l t c u l t u r e s y s t e m s o f c h o i c e . D a t a i n t h e s e l i n e s a r e u s e d i n s u b s e q u e n t c a l c u l a t i o n s . L i n e s 1 3 1 - 1 5 2 C u l t u r e s y s t e m s d i m e n s i o n s : E n t e r s y s t e m d i m e n s i o n s f o r s e e d a c q u i s i t i o n a n d j u v e n i l e a n d a d u l t c u l t u r e . Do n o t e n t e r v a l u e s i n c e l l s D 1 3 1 , E 1 3 1 , C 1 4 0 , C 1 4 4 - E 1 4 4 , a n d C 1 4 8 - E 1 4 8 , w h i c h c o n t a i n f o r m u l a e . L i n e s 1 5 8 - 1 6 7 S y s t e m s c o s t a n d r e p l a c e m e n t d a t a : E n t e r s y s t e m c o s t a n d e c o n o m i c l i f e d a t a . Do n o t e n t e r v a l u e s i n c e l l s C 1 5 9 - E 1 5 9 a n d C 1 6 0 - E 1 6 0 , w h i c h c o n t a i n r e f e r e n c e s t o o t h e r c e l l s . L i n e s 1 7 2 - 1 8 1 S e e d a c q u i s i t i o n m a t e r i a l r e q u i r e m e n t s : E a c h f o r m u l a i n t h e s e c t i o n c a l c u l a t i n g s e e d a c q u i s i t i o n m a t e r i a l r e q u i r e m e n t s i s q u a l i f i e d b y t h e a r g u m e n t " I f s e e d a c q u i s i t i o n f r o m n a t u r e i s s p e c i f i e d . . . " ($C$33>1) L i n e s 1 8 6 - 1 9 7 J u v e n i l e c u l t u r e m a t e r i a l r e q u i r e m e n t s : The f o r m u l a e d e s c r i b e d b e l o w a p p e a r i n t h e f i r s t c e l l o f e a c h l i n e , a n d a r e c o p i e d a c r o s s t h e l i n e f o r 28 c e l l s . L i n e 186 J u v e n i l e c u l t u r e a p p a r a t u s - t h e r e q u i r e d h o r i z o n t a l s u r f a c e a r e a e q u a l s t h e number o f j u v e n i l e s i n s t o c k d i v i d e d b y t h e d e s i r e d c u l t u r e d e n s i t y ( $ C $ 2 9 ) . L i n e 187 The number o f j u v e n i l e c u l t u r e u n i t s = t h e r e q u i r e d a r e a ( l i n e 186) d i v i d e d b y t h e a r e a p e r u n i t ( $ C $ 1 2 5 ) . L i n e 188 The l e n g t h o f l o n g l i n e r e q u i r e d f o r j u v e n i l e c u l t u r e = t h e number o f j u v e n i l e u n i t s ( l i n e 187) t i m e s t h e s p a c i n g b e t w e e n u n i t s ( $ D $ 1 4 7 ) . L i n e 190 The t o t a l l e n g t h o f l i n e r e q u i r e d t o h a n g b a l l a s t b e l o w t h e c u l t u r e u n i t s = t h e number o f h a n g i n g u n i t s r e q u i r e d ( l i n e 187) t i m e s t h e l e n g t h p e r h a n g i n g u n i t ( $ D $ 1 4 1 ) . -81-L i n e 191 The t o t a l l e n g t h o f l i n e r e q u i r e d t o s e c u r e l o n g l i n e b u o y s = t h e number o f b u o y s r e q u i r e d ( l i n e 194) t i m e s t h e l e n g t h p e r b u o y l i n e ( $ D $ 1 4 2 ) . L i n e 192 The t o t a l l e n g t h o f l i n e r e q u i r e d t o s e c u r e m a r k e r b u o y s = t h e number o f m a r k e r b u o y s r e q u i r e d ( l i n e 195) t i m e s t h e l e n g t h p e r m a r k e r b u o y l i n e ( $ D $ 1 4 3 ) . L i n e 193 The t o t a l l e n g t h o f a n c h o r l i n e = t h e l e n g t h p e r a n c h o r l i n e ($D$144) t i m e s t h e number o f a n c h o r s r e q u i r e d ( l i n e 1 9 6 ) . L i n e 194 The number o f l o n g l i n e b u o y s r e q u i r e d e q u a l s t h e l e n g t h o f l o n g l i n e r e q u i r e d f o r j u v e n i l e c u l t u r e ( l i n e 188) d i v i d e d b y t h e s p a c i n g b e t w e e n l o n g l i n e b u o y s ( $ D $ 1 4 9 ) . L i n e 195 The number o f m a r k e r b u o y s r e q u i r e d e q u a l s t h e l e n g t h o f l o n g l i n e r e q u i r e d f o r j u v e n i l e c u l t u r e ( l i n e 188) d i v i d e d b y t h e s p a c i n g b e t w e e n m a r k e r b u o y s ( $ D $ 1 5 0 ) . L i n e 196 The number o f a n c h o r s f o r j u v e n i l e c u l t u r e = t h e number o f l o n g l i n e s t i m e s ( l i n e 82) t i m e s t w o . L i n e 197 The number o f b a l l a s t w e i g h t s r e q u i r e d f o r j u v e n i l e c u l t u r e u n i t s i s t h e same a s t h e number o f c u l t u r e u n i t s ( l i n e 1 8 7 ) . L i n e s 2 0 1 - 2 1 3 A d u l t c u l t u r e m a t e r i a l s r e q u i r e m e n t s : The c a l c u l a t i o n s i n l i n e s 1 8 6 - 1 9 7 f o r j u v e n i l e c u l t u r e a r e r e p e a t e d i n t h i s s e c t i o n f o r a d u l t c u l t u r e . L i n e s 219 -284 M a t e r i a l o r d e r s , i n v e n t o r i e s , c o s t s , a n d d e p r e c i a t i o n : The m a t e r i a l r e q u i r e m e n t s , r e p l a c e m e n t s , o r d e r s , i n v e n t o r y , e x p e n d i t u r e s , a n d d e p r e c i a t i o n f o r c u l t u r e s y s t e m c o m p o n e n t s a r e c a l c u l a t e d a s i n t h e e x a m p l e g i v e n f o r c u l t c h u n i t s b e l o w . L i n e 219 B r i n g s f o r w a r d t h e q u a r t e r l y c u l t c h u n i t r e q u i r e m e n t s f r o m l i n e 1 7 2 . L i n e 220 The number o f c u l t c h u n i t s w h i c h n e e d t o be r e p l a c e d a r e c a l c u l a t e d a s t h e p r e v i o u s i n v e n t o r y d i v i d e d b y t h e e c o n o m i c l i f e i n q u a r t e r s ( D 1 5 8 * 4 ) . L i n e 221 C u l t c h u n i t i n v e n t o r y i s c a l c u l a t e d a s t h e p r e v i o u s i n v e n t o r y , p l u s o r d e r s ( l i n e 2 2 2 ) , m i n u s d e p r e c i a t i o n , o r r e p l a c e m e n t s ( l i n e 2 2 0 ) . L i n e 222 C u l t c h u n i t o r d e r s a r e c a l c u l a t e d , i f n e e d e d ( i e - i f r e q u i r e m e n t s a r e l e s s t h a n t h e l a s t i n v e n t o r y ( l i n e 221) m i n u s u n i t s t h a t n e e d r e p l a c i n g ( l i n e 2 2 0 ) ) , a s t h e number o f c u l t c h u n i t s r e q u i r e d ( l i n e 2 1 9 ) , m i n u s t h e l a s t i n v e n t o r y ( l i n e 2 2 1 ) , p l u s t h e n u m b e r s t h a t n e e d r e p l a c i n g . - 8 2 -L i n e 223 The q u a r t e r l y e x p e n d i t u r e f o r c u l t c h u n i t s i s c a l c u l a t e d a s t h e o r d e r ( l i n e 222) t i m e s t h e c o s t p e r u n i t (E158) t i m e s a n i n f l a t i o n f a c t o r f o r c o s t s ( l i n e 5 3 ) . L i n e 224 The q u a r t e r l y d e p r e c i a t i o n f o r c u l t c h u n i t s i s c a l c u l a t e d a s t h e number t h a t n e e d r e p l a c i n g ( l i n e 220) t i m e s t h e c o s t p e r u n i t (E158) t i m e s a n i n f l a t i o n f a c t o r f o r c o s t s ( l i n e 5 3 ) . C u l t c h u n i t s , a n d o t h e r c u l t u r e s y s t e m c o m p o n e n t s ( s e e b e l o w ) , a r e d e p r e c i a t e d f r o m t h e moment o f p u r c h a s e . -83-T a b l e 5 . S y s t e t s submodel p a r t i a l l i s t i n g . C o l u m : L i n e 68 SYSTEMS SUMMARY 69 C o s t s - C u l t c h U n i t s $0 70 J u v e n i l e C u l t u r e U n i t s $ 2 , 0 9 5 71 A d u l t C u l t u r e U n i t s $ 4 , 4 8 5 72 Long L i n e s , Anchor L i n e s $319 73 Other L i n e s $127 74 Bouys $1,031 75 A n c h o r s , B a l l a s t $208 76 T o t a l C u l t u r e S y s t e i Cost $ 8 , 2 6 6 77 D e p r e c i a t i o n $8,151 78 C u l t u r e U n i t s ( i ) - S e e d 0 79 J u v e n i l e 709 80 A d u l t 3594 81 Long L i n e s ( # ) - S e e d 0 82 J u v e n i l e 4 83 A d u l t 19 84 Seabed Covered ( h a ) - J u v 1 85 A d u l t 4 86 S h e l l Area/Seabed A r e a - J u v 0 87 A d u l t 1 88 39 LABOR REQUIREMENTS(HR) 90 T o t a l Seed A c q u i s i t i o n 91 T o t a l Srov Out C u l t u r e 92 93 S e e d - I n s t a l l L i n e s ( H r / 1 0 0 •= 94 M a i n t a i n ( H r / 1 0 0 0 S h e l l s = 95 H a r v e s t ( H r / 1 0 0 0 S h e l l s = 96 6 r o v Out: 97 I n s t a l l L i n e s ( H r / 1 0 0 •= 98 S e e d - J u v e n i l e ( A n n u a l a v e . = 99 A d u l t ( A n n u a l average= 100 H a i n t a i n - J u v e n i l e ( A n n a v e . 1 101 A d u l t ( A n n u a l ave= 102 H a r v e s t ( A n n u a l ave.= Oct 89 +0223 +0229 +D235 Jan 90 $0 $3,079 $0 +AJ241+D259+AJ247 +D253 $148 +D265+D271 $639 +0277+0283 $146 eSUH(D75..D$4,061 Apr 90 $0 $ 4 , 5 3 5 $0 $180 $218 $929 $568 $ 6 , 4 3 0 J u l 90 $0 $0 $14,472 $256 $0 $ 1 , 4 5 5 $373 $16,556 Oct 90 $0 $0 $6,731 $280 $0 $ 1 , 8 9 9 $656 $ 9 , 5 6 7 Jan 91 $0 $0 $7,725 $329 $0 $2,469 $760 $11,283 Apr 91 $0 $1,760 $81 $227 $202 $1,001 $608 $3,878 +D224+D230+0236+AJ242+AJ248+D254+D260+0266+D272+D278+D284 +D172 0 0 0 0 0 0 +D187 217 414 0 78 217 414 +D203 0 0 410 588 787 770 « I F ( D 1 7 3 = 0 , 0 , 8 I N T ( D 1 7 3 / $ C $ 1 3 9 ) + 1 ) 0 0 0 eTF(D188=0,0,eINT(D188/$0$l39)+l) 1 1 2 e T F ( D 2 0 4 = 0 , 0 , « I N T ( D 2 0 4 / $ E $ 1 3 9 ) + l ) 3 4 4 8 I F ( D 8 2 = 0 , 0 , § I F ( D 8 2 = l , $ D $ 1 3 9 * $ D $ 1 4 6 / 1 0 0 0 0 , ( D 8 2 - l ) t $ D $ 1 3 9 t $ D $ 1 4 6 / 1 0 0 0 0 ) ) « I F ( D 8 3 = 0 , 0 , « I F ( D 8 3 = 1 , $ E $ 1 3 9 * $ E $ 1 4 6 / 1 0 0 0 0 , ( D 8 3 - 1 ) * $ E $ 1 3 9 * $ E $ 1 4 6 / 1 0 0 0 0 ) ) eTF(D84=0,0,D60/(D84*10000)) « I F ( D 8 5 = 0 , 0 , 0 6 1 / ( 0 8 5 * 1 0 0 0 0 ) ) Oct 89 Jan 90 Apr 90 Jul 90- Oct 90 Jan 91 Anr 91 0 M U H ( D 9 3 . . D 9 5 ) 0 0 3231 8SUM(D97..D102) 149 S31 Oct 89 Jan 90 Apr 90 J u l 90 12 +0243/100*$C$93 0 0 0.1 ($C$33>1)*$C$94*D57/1000 0 0 0.18 ($C$33>1)*057/1000*$C$95 0 0 12 +D240/100*$C$97 12 26 100 +$8$125*0$57/1000 0 0 260 (D59*(1-$C$17)+062)/!000*$S$125 429 ($H$125*D$58/1000)/4 0 1443 ($I$126*D$59/1000)/4 346 974 +$J$126*062/1000 0 0 0 SOS Oct 90 0 0 29 100 0 150 330 0 0 493 Jan 91 0 0 36 0 0 143 314 0 0 6A C i . J Apr 91 0 0 15 0 0 136 230 244 -84-T a b l e 5 . Systems submodel p a r t i a l l i s t i n g . Column: B L i n e 104 SYSTEMS SUBMODEL 26-Nov-8B 105 _ 105 107 108 JUVENILE AND ADULT CULTURE SYSTEMS DATA BASE 109 110 SYSTEM 111 112 113 Mexican T r a y s ( 5 L a y e r s ) 114 Kosiplett<5 L a y e r s ) 115 Pocket 116 L a n t e r n d O L a y e r s ) 117 P e a r l ( 1 0 N e t s W u v e n i l e 118 A d u l t 119 M c N i c o l d O L a y e r s ) 120 Ear Hanging 121 Bondo 122 Other 123 Other 124 125 MODEL SYSTEMS-Juvenile 126 A d u l t 127 (Input System Data from above T a b l e ) 128 129 CULTURE SYSTEM DIMENSIONS System Hanging U n i t Labour(Hours/1000 Seed) 9 C u l t u r e Economic Cost Seed M a i n t a i n / Y e a r H a r v e s t A r e a ( J i A 2 ) L i f e ( Y r ) J u v e n i l e A d u l t 1 1.71 20 $ 5 5 . 0 0 0 . 3 0 . 6 1 . 6 1 .4 2 2 . 5 0 20 $ 7 5 . 0 0 0 . 3 0 . 6 1 . 6 1.4 7 0 . 4 5 10 $ 7 , 0 0 0 . 3 0 . 6 1 . 6 1.4 4 2 . 0 3 10 $ 3 4 . 0 0 0 . 3 0 . 6 1 . 6 1 .4 5 1 .26 5 $ 2 1 . 2 5 0 . 1 0 . 6 1 . 6 1.4 5 1 .26 5 $ 2 1 . 2 5 0 . 3 0 . 6 1 . 6 1 .4 6 1.27 20 $ 2 4 . 0 0 0 . 3 0 . 6 1 . 6 1 .4 7 8 5 $ 1 . 0 0 3 . 2 N.A. 0 . 0 4 0 . 3 9 10 5 1 .26 5 $ 2 1 . 2 5 0 . 1 0 . 6 1 . 6 -4 2 . 0 3 10 $ 3 4 . 0 0 0 . 3 0 . 6 1 . 6 1 . 4 130 Seed J u v e n i l e A d u l t 131 C u l t u r e System # +C125 +C126 132 Depth t o Seabed(m) 30 30 30 133 # S e e d / C u l t c h U n i t 300 NA NA 134 1 C u l t c h U n i t s / H a n g i n g L i n e 10 NA NA 135 # of S h e l l s / E a r Hanging L i n e ( O p t i o n a l ) N A NA 200 136 Bouy Working F l o t a t i o n ( k g ) 215 215 215 137 50Z*Hanging U n i t Weight (kg) NA 1 2 . 5 20 138 139 Length(ai)-Long L i n e 50 200 200 140 Hanging L i n e +C134*C152+2 10 1 141 B a l l a s t L i n e 0 0 0 142 Bouy L i n e 1 1 1 143 Marker Bouy L i n e 10 5 5 144 Anchor L i n e ($C$132*3)+$C$132*3+$C$132*C 145 146 S p a c i n g ( m ) - L o n g L i n e 15 15 15 147 Hanging L i n e 1 0 . 5 1 . 0 148 B a l l a s t L i n e +C147 +D147 +E147 149 Bouy L i n e 4 8 . 6 10.7 150 Marker Bouy L i n e 16 16 16 151 Anchor L i n e N.A. N.A. N.A. 152 C u l t c h U n i t s on Hanging L i n e 0 . 5 N.A. N.A. -85-T a b l s 5 . Systems submodel p a r t i a l l i s t i n g . Column: 6 C D E F 6 H I J L i n e 155 CULTURE SYSTEMS MATERIAL REPLACEMENT AND COST DATA 156 Economic 157 L i f e ( Y r ) Cost / U n i t 158 C u l t c h U n i t s 5 $ 4 . 0 0 /Bag 159 J u v e n i l e C u l t u r e System » +C125 +$E$125 +$F$125 /Hanging L i n e 160 A d u l t C u l t u r e System I +C126 H E $ 1 2 6 +F126 /Hanging L i n e 161 L i n e s ( m ) - L o n g L i n e 5 4 0 . 6 0 /m 162 H a n g i n g , B a l l a s t & Bouy L i n e 5 $ 0 . 1 0 /• 163 Anchor 5 $ 0 . 6 0 /• 164 Bouys-Long L i n e 10 $ 5 0 . 0 0 /Bouy 165 Marker 10 $ 5 0 . 0 0 /Bouy 166 A n c h o r s t Hardware 20 $175.00 /Anchor 167 B a l l a s t 20 $ 1 . 0 0 / B a l l a s t 168 169 170 SEED ACQUISITION SYSTEM MATERIAL REQUIREMENTS 171 Oct 89 Jan 90 Apr 90 J u l 90 Oct 90 Jan 91 Apr 91 172 C u l t c h U n i t s ( i ) ($C$33>1)*D57/$C$133 0 ' 0 173 L i n e s ( m ) - L o n g L i n e ($C$33)1)*D57/($C$133*$C$140/$0$152)*$C$147 0 0 174 Hanging L i n e ($C$33>1)*D172/$C$134*$C$140 0 0 175 Bouy L i n e +D178*$C$142 0 0 176 Marker Bouy L i n e +D179*$C$143 0 0 177 Anchor L i n e s +D180*$C$144 0 0 178 B o u y s ( S ) - L o n g L i n e +D173/$0$149 0 0 179 Marker +D173/$0$150 0 0 180 Anchors + H a r d w a r e ( i ) +081*2 0 0 181 B a l l a s t ( l ) +D172/$C$134 0 0 182 183 JUVENILE CULTURE SYSTEM MATERIAL REQUIREMENTS 184 Oct 89 Jan 90 Apr 90 J u l 90 Oct 90 Jan 91 Apr 91 185 186 J u v e n i l e C u l t u r e System(m A 2) +D60/$DENSITYJ 522 0 98 274 522 187 Number of Hanging U n i t s +D186/$D$125 414 0 78 217 414 188 L i n e s ( m ) - L o n g L i n e +D187*$D$147 207 0 39 109 207 189 Hanging L i n e +D187*$D$140 4144 0 779 2171 4144 190 B a l l a s t L i n e +D187*$D$141 0 0 0 0 0 191 Bouy L i n e +D194*$D$142 24 0 5 13 24 192 Marker Bouy L i n e +D195*$D$143 65 0 12 34 65 193 Anchor L i n e s +D196*$D$144 360 0 180 180 360 194 B o u y s ( i ) - L o n g L i n e +D188/$P$149 24 0 5 13 24 195 Marker +D188/$P$150 13 0 2 7 13 196 Anchors + H a r d w a r e ( i ) +D82*2 4 0 2 2 4 197 B a l l a s t(t) +D187 414 0 78 217 414 -86-T a b l e 5 ( c o n t i n u e d ) . Systems submodel p a r t i a l l i s t i n g . Column: B C D L i n e 199 ADULT CULTURE SYSTEM MATERIAL RE8UIREMENTS 200 201 A d u l t C u l t u r e System(fflA2) 202 (Non Ear hanging systems o n l y ) 203 Number of Hanging U n i t s 204 L i n e s ( m ) - L o n g L i n e 205 206 207 20B 209 Oct 89 Jan 90 Apr 90 ($E$13K>7)*D61/$DENSITYA J u l 90 Oct 90 Jan 91 Apr 91 Hanging L i n e B a l l a s t L i n e Bouy L i n e Marker Bouy L i n e Anchor L i n e s 210 B o u y s d ) - L o n g L i n e 211 Marker 212 A n c h o r s + H a r d w a r e d ) 213 B a l l a s t(I) 214 215 CULTURE SYSTEMS MATERIAL REQUIREMENT,REPLACEMENT, 216 INVENTORY, ORDER, AND COST SCHEDULES. 217 § I F < $ E $ 1 3 1 O 7 , D 2 0 1 / $ D $ 1 2 6 , D 5 9 / $ E $ 1 3 5 ) + D 2 0 3 » $ E $ 1 4 7 +D203*$E$140 +D203*$E$141 +D210*tE$142 + D 2 1 1 » $ E $ 1 4 3 +D212*$E$144 +D204/$Q$149 eiF(D204<=0,0,eiF(D204/tQ$150<=l,2,SINT(D204/$Q$150)+l @ I F ( D 2 0 4 < = 0 , 0 , e I N T ( D 2 0 4 / $ E $ 1 3 9 ) » 2 + 2 > +D203 ) ) 218 Oct 89 Jan 90 Apr 90 J u l 90 Oct 90 Jan 91 Apr 91 219 C u l t c h U n i t s - R e q u i r e d ) +D172 0 0 0 220 R e p l a c e ( D e p r e c i a t e ) d ) +C221/($D$158*4) 0 0 0 221 I n v e n t o r y d ) +C221+D222-D220 0 0 0 222 O r d e r - i § I F ( D 2 1 9 < = C 2 2 1 - D 2 2 0 , 0 , D 2 1 9 - C 2 2 1 + D 2 2 0 ) 0 0 223 Cost +D222t$E$158*D53 « 0 $0 $0 224 D e p r e c i a t i o n +D220*$E$158*D53 t o $0 $0 225 J u v e n i l e C u l t u r e U n i t s - R e q u i r e d ) +D187 78 217 414 225 R e p l a c e ( D e p r e c i a t e ) d ) + C 2 2 7 / ( t D $ 1 5 9 » 4 ) 20 19 18 227 I n v e n t o r y ( i ) +C227+D228-D226 374 355 414 228 0 r d e r - # § I F ( D 2 2 5 < = C 2 2 7 - D 2 2 6 , 0 , D 2 2 5 - C 2 2 7 + D 2 2 6 ) 0 77 229 Cost +D228*$F$125*D53 t o $0 $ 1 , 7 6 0 230 D e p r e c i a t i o n +D226*$E$159*D53 1440 $423 $407 231 A d u l t C u l t u r e U n i t s - R e q u i r e d ) +D203 588 787 770 232 R e p l a c e ( D e p r e c i a t e ) d ) +C233/($D$160*4) 10 15 20 233 I n v e n t o r y d ) +C233+D234-D232 588 787 770 234 O r d e r - * @IF(D23K=C233-D232,0,D231-C233+D232) 214 2 235 Cost +D234*$Ftl26*D53 $6,731 $ 7 , 7 2 5 $81 236 D e p r e c i a t i o n +D232*$E$160*D53 $366 $532 $721 237 6row Out Long L i n e ( m ) - R e q u i r e +D204+D188 896 977 238 R e p l a c e ( D e p r e c i a t e ) + C 2 3 9 / ( » D $ 1 6 1 * 4 ) 31 45 239 I n v e n t o r y +C239+D240-D238 896 977 240 Order-Length(m) @IF(D237<=C239-D238,0,D237-C239+D238) 300 126 241 Cost + D 2 4 0 * t E * 1 6 1 » D 5 3 $191 $81 242 D e p r e c i a t i o n +D238*$E$161*D53 $20 $29 243 Seed A c q u i s . Long L i n e ( m ) - R e q u i r e +D173 0 0 244 R e p l a c e ( D e p r e c i a t e ) + C 2 4 5 / ( t D * 1 6 1 » 4 ) 0 0 245 I n v e n t o r y +C245+D246-D244 0 0 246 Order-Length(m) @IF(D243<=C245-D244,0,D243-C245+D244) 0 0 247 Cost +D246*tE$161*D53 $0 $0 -87-T a b l e 5 ( c o n t i n u e d ) . Systems submodel p a r t i a l l i s t i n g . Column: B C D E F G H I J CULTURE SYSTEMS MATERIAL REQUIREMENT,REPLACEMENT, INVENTORY, ORDER, AND COST SCHEDULES. L i n e 249 Other L i n e s ( m ) - R e q u i r e + D 1 7 4 + D 1 7 5 + D 1 7 6 + 8 S U H ( D 1 8 9 . . D 1 9 2 ) + § S U M ( D 2 0 5 . . D 2 0 8 ) 5319 250 R e p l a c e ( D e p r e c i a t e ) +C251/($D$162*4) 191 181 251 I n v e n t o r y +C251+D252-D250 3629 5319 252 Order-Length(m) eTF(D249<=C251-D250,0,D249-C251+D250) 0 1871 253 Cost +D252*$E$162*D53 $0 $202 254 D e p r e c i a t i o n +D250*$E$162*D53 * 2 0 $20 255 Anchor L i n e ( m ) - R e q u i r e +D209+D193+D177 900 1080 256 R e p l a c e ( D e p r e c i a t e ) +C257/($D$163*4) 36 45 257 I n v e n t o r y +C257+D25B-D256 900 1080 258 Order-Length(m) @IF(D255<=C257-D256,0,D255-C257+D256) 216 225 259 Cost +D258*$E$163*D53 $138 $145 260 D e p r e c i a t i o n +D256*$E$163*D53 $23 $29 261 Long L i n e B o u y s - R e q u i r e ( i ) +D210+AJ194+D178 86 96 262 R e p l a c e ( D e p r e c i a t e ) d ) +C263/($D$164*4) 1 2 263 I n v e n t o r y * * ) +C263+D264-D262 86 96 264 O r d e r - i § I F ( D 2 6 1 < = C 2 6 3 - D 2 6 2 , 0 , D 2 6 1 - C 2 6 3 + D 2 6 2 ) 28 12 265 Cost +D264*$E$164*053 $ 1 , 4 9 3 $646 266 D e p r e c i a t i o n +D262*$E$164*D53 $79 $116 267 Marker B o u y s - R e q u i r e ( S ) +D211+AJ195+D179 57 62 268 R e p l a c e ( D e p r e c i a t e ) d ) +C269/($D$165*4) 1 1 269 I n v e n t o r y * * ) +C269+D270-D268 57 62 270 O r d e r - * @IF(D267<=C269-D268,0,D267-C269+D268) 18 7 271 Cost + D 2 7 0 * * E » 1 6 5 * D 5 3 $976 $355 272 D e p r e c i a t i o n +D268*$E$165*D53 $52 $76 273 A n c h o r s + H a r d w a r e - R e q u i r e * * ) +D212+AJ196+D180 10 12 274 R e p l a c e ( D e p r e c i a t e ) * * ) +C275/($D$166*4) 0 0 275 ' I n v e n t o r y * * ) +C275+D276-D274 10 12 276 O r d e r - * @IF(D273<=C275-D274,0,D273-C275+D274) 2 2 277 Cost +D276*$E*166*053 $391 $401 278 D e p r e c i a t i o n + D 2 7 4 * « E t l 6 6 * 0 5 3 $19 $24 279 B a l l a s t - R e q u i r e ( S ) +D213+AJ197+D181 1004 1184 280 R e p l a c e ( D e p r e c i a t e ) ( * ) +C281/($D$167*4) 8 13 281 I n v e n t o r y * * ) +C281+D282-D2B0 1004 1184 282 O r d e r - * 11F (D279<=C281-D280,0, D279-C281+D280) 346 192 283 Cost +D282*tE$167*D53 $369 $207 284 D e p r e c i a t i o n + D 2 8 0 * « E $ 1 6 7 * D 5 3 $9 $14 -88-T a b l e 5 ( c o n t i n u e d ) . Systems submodel p a r t i a l l i s t i n g . Column: B C D E F 6 H I J L i n e 312 MACRO SECTION 313 314 \ 0 (HONE) 315 316 \A {MENUCALL}C318'V 317 318 INPUT SUMMARY 319 Input chanSummary Submodel 320 {MENUCALL >{MENUCALL>C330^ 321 322 323 DENSITY SOURCE LABOUR DIMENSIONCOST 324 Input juveChoose a Input l a b l n p u t seed a c q u i s i t i o n , j u v e n i l e , and a d u l t cu 325 {G0T0}B23 ,'{G0T0}B23{MENUCALL{G0T0}B12{G0T0}B155 ,' 326 327 328 329 330 MERGE EXPORT 331 Merge SummUpdate Summary Submodel 332 (HOME} /f xSUMHARY. WKS*r A l . . A F l O l " ' 333 /ffflSUMMARY.UKS"' 334 335 336 337 338 339 340 SEED 1-6R0H0UT2-GR0H0UT 341 Input s e e d l n p u t g r o l n p u t growout l a b o u r (hr/1000 s h e l l s ) / 1 0 0 m . ) . 342 {GOTO}B89V{GOTO}B89{GOTO}6113 ,'{GOTO}C108 ,'{GOTO}6113 ,' I - 8 9 -F I N A N C E SUBMODEL O p e r a t i n g I n s t r u c t i o n s - L o a d t h e F i n a n c e s u b m o d e l , a n d p r e s s " A l t " a n d " A " t o b r i n g up t h e m a i n m e n u . M e r g e t h e Summary s u b m o d e l b y s e l e c t i n g SUMMARY a n d t h e n M E R G E . E n t e r d a t a u s i n g t h e INPUT s u b menu b e l o w . R e f e r t o T a b l e 6 f o r t h e l o c a t i o n o f m o d e l s e c t i o n s . P r i n t o u t s o f t a b l e s a n d g r a p h s c a n be made a c c o r d i n g t o t h e i n s t r u c t i o n s i n t h e A S E A S Y m a n u a l ( T R I U S , 1987) . M a i n  Menu I N P U T -SUMMARY -Sub Menus D I S C O U N T - e n t e r t h e a n n u a l d i s c o u n t r a t e , w h i c h i s c o m p o u n d e d q u a r t e r l y i n t h e m o d e l . L A B O U R - e n t e r t h e l a b o u r r a t e p e r h o u r , i n c l u d i n g b e n e f i t s . P R O C E S S - c h o o s e f r o m t h e p r o c e s s i n g o p t i o n s l i s t e d i n T a b l e 6 . D E P R E C I A T E - e n t e r d e p r e c i a t i o n d a t a . A S S E T S - e n t e r t h e f i x e d a s s e t e x p e n d i t u r e s ( e x c l u d i n g t h o s e f o r c u l t u r e s y s t e m s , w h i c h a r e b r o u g h t f o r w a r d f r o m t h e S y s t e m s s u b m o d e l ) . C - V A L U E - e n t e r t h e p r o p o r t i o n o f o r i g i n a l c o s t w i t h w h i c h t o v a l u e t h e r e m a i n i n g c u l t u r e s y s t e m a t w i n d - u p a t t h e e n d o f 7 y e a r s . J - V A L U E - e n t e r t h e a v e r a g e p r o j e c t e d p r i c e p e r j u v e n i l e s h e l l f i s h a t t h e e n d o f 7 y e a r s . A - V A L U E - e n t e r t h e a v e r a g e p r o j e c t e d p r i c e p e r a d u l t s h e l l f i s h a t t h e e n d o f 7 y e a r s . L O A N S - e n t e r t h e p r i n c i p a l , i n t e r e s t , a n d t e r m o f up t o two l o a n s . F I X E D - e n t e r c u r r e n t e s t i m a t i o n s o f f i x e d c o s t s ( t h e m o d e l m o d i f i e s a l l c o s t s i n s u b s e q u e n t q u a r t e r s b y a n i n f l a t i o n f a c t o r f o r c o s t s ) . M A I N T A I N - e n t e r t h e p r o p o r t i o n o f f i x e d c o s t s u s e d t o c a l c u l a t e m a i n t e n a n c e c o s t s . V A R I A B L E - - e n t e r t h e c o s t p e r u n i t o f p r o d u c t i o n f o r t h e v a r i a b l e c o s t c a t e g o r i e s . B A D D E B T - e n t e r t h e p r o p o r t i o n o f g r o s s r e v e n u e p r o j e c t e d t o be u n r e c o v e r a b l e . T A X - e n t e r t h e t a x r a t e f o r a b u s i n e s s n e t t i n g l e s s t h a n $ 2 0 0 , 0 0 0 p e r y e a r . S E N S I T I V l T Y - i n v e s t i g a t e c h a n g e s i n f i n a n c i a l p e r f o r m a n c e b y e n t e r i n g s i n g l e c h a n g e s i n r e v e n u e , l a b o u r c o s t , c a p i t a l c o s t , a n d s e e d c o s t . M E R G E - m e r g e t h e Summary s u b m o d e l t o i n c o r p o r a t e u p d a t e d i n f o r m a t i o n f r o m t h e S y s t e m s s u b m o d e l . - 9 0 -S E N S I T I V I T Y - a n a l y z e t h e s e n s i t i v i t y o f a n n u a l n e t p r o f i t b e t w e e n y e a r s 4 - 5 , t h e NPV a n d c u m u l a t i v e c a s h f l o w a t t h e e n d o f s e v e n y e a r s , a n d t h e i n i t i a l i n v e s t m e n t ( o r t h e m i n i m u m c u m u l a t i v e c a s h f l o w ) t o 40-200% c h a n g e s i n t h e v a r i a b l e s l i s t e d i n t h e f o l l o w i n g s u b m e n u : REVENUE L A B O U R - l a b o u r c o s t s . C A P I T A L - c a p i t a l c o s t s , e x c l u d i n g c u l t u r e s y s t e m c o s t s . S E E D - s e e d c o s t s . F i n a n c e S u b m o d e l L i s t i n g ( T a b l e 6 ) . The f i r s t 91 l i n e s o f t h e F i n a n c e s u b m o d e l f o r m p a r t o f t h e Summary s u b m o d e l ( T a b l e 1 ) . A d d r e s s D e s c r i p t i o n C36 E n t e r t h e a n n u a l d i s c o u n t r a t e , whch i s c o m p o u n d e d q u a r t e r l y b y t h e m o d e l . C37 E n t e r t h e l a b o u r r a t e p e r h o u r , i n c l u d i n g b e n e f i t s . C42 C h o o s e f r o m t h e p r o c e s s i n g o p t i o n s l i s t e d i n T a b l e 6 . L i n e s 1 0 1 - 1 0 7 E n t e r t h e e c o n o m i c l i f e a n d r e t i r e m e n t v a l u e o f f i x e d a s s e t s . L i n e s 1 1 0 - 1 5 1 F i x e d a s s e t s - E n t e r f i x e d a s s e t e x p e n d i t u r e s , e x c e p t f o r c u l t u r e s y s t e m c o s t s , w h i c h a r e b r o u g h t f o r w a r d f r o m t h e S y s t e m s s u b m o d e l b y t h e Summary s u b m o d e l . E x p e n d i t u r e s i n e a c h a s s e t c l a s s a r e summed, a n d m u l t i p l i e d b y a f a c t o r ( " C A P M U L T " , o r c e l l $ C $ 2 6 9 ) , a l l o w i n g i n v e s t i g a t i o n o f c h a n g e s i n f i n a n c i a l p e r f o r m a n c e due t o a c h a n g e i n c a p i t a l c o s t s ( e x c l u d i n g c u l t u r e s y s t e m c o s t s , w h i c h a r e r e l a t i v e l y w e l l d e f i n e d ) . The s t r a i g h t l i n e d e p r e c i a t i o n i s c a l c u l a t e d b y c l a s s f o r e a c h q u a r t e r . L a n d a n d f o r e s h o r e a c q u i s i t i o n c o s t s a r e n o t d e p r e c i a t e d . L i n e s 1 4 1 - 1 4 2 C a l c u l a t e s t h e f i x e d a s s e t q u a r t e r l y a n d c u m u l a t i v e e x p e n d i t u r e s , l e s s t h o s e f o r c u l t u r e s y s t e m s . L i n e s 1 4 3 - 1 4 4 D i s p l a y s t h e t o t a l q u a r t e r l y e x p e n d i t u r e s a n d d e p r e c i a t i o n f o r c u l t u r e s y s t e m s , b r o u g h t f o r w a r d f r o m t h e S y s t e m s s u b m o d e l . L i n e s 1 4 5 - 1 4 6 Sums t h e t o t a l f i x e d a s s e t ( i n c l u d i n g c u l t u r e s y s t e m s ) q u a r t e r l y a n d c u m u l a t i v e e x p e n d i t u r e s . L i n e 147 Sums t h e t o t a l f i x e d a s s e t ( i n c l u d i n g c u l t u r e s y s t e m ) d e p r e c i a t i o n . -91-C148 & D148 D148 e s t i m a t e s t h e v a l u e o f t h e c u l t u r e s y s t e m a t w i n d - u p a t t h e e n d o f 7 y e a r s b y c a l c u l a t i n g t h e t o t a l c u l t u r e s y s t e m e x p e n d i t u r e s m i n u s t h e t o t a l c u l t u r e s y s t e m d e p r e c i a t i o n , m u l t i p l i e d b y a p r o p o r t i o n o f t h e o r i g i n a l c o s t ($C$148) t h a t i s e x p e c t e d on d i s p o s i t i o n . C 1 4 9 , C 1 5 0 , D149 e s t i m a t e s t h e w i n d - u p v a l u e o f s h e l l f i s h & D 1 4 9 . i n v e n t o r y a t t h e end o f 7 y e a r s b y summing t h e t o t a l number o f j u v e n i l e s t i m e s t h e p r o j e c t e d a v e r a g e p r i c e p e r j u v e n i l e ( $ C $ 1 4 9 ) , p l u s t h e number o f a d u l t s t i m e s t h e p r o j e c t e d a v e r a g e p r i c e p e r a d u l t ( $ C $ 1 5 0 ) . D151 Sums t h e book v a l u e o f e a c h a s s e t c l a s s a t t h e e n d o f 7 y e a r s , w h i c h f o r most c l a s s e s i s c a l c u l a t e d a s t h e o r i g i n a l o u t l a y m i n u s t h e t o t a l d e p r e c i a t i o n o v e r 7 y e a r s . The v a l u e o f i n c o r p o r a t i o n a n d l a n d a n d f o r e s h o r e a t t h e e n d o f 7 y e a r s i s deemed t o be t h e c o s t o f a c q u i s i t i o n . A l s o i n c l u d e d i s t h e w i n d - u p v a l u e o f c u l t u r e s y s t e m s (D148) a n d o f s h e l l f i s h i n v e n t o r y ( D 1 4 9 ) . L i n e s 1 5 4 - 1 6 5 L o a n s - C a l c u l a t e s t h e q u a r t e r l y i n t e r e s t , p r i n c i p a l , a n d t o t a l p a y m e n t s f o r e a c h o f two l o a n s a n d t h e i r t o t a l , g i v e n d a t a on t h e q u a r t e r l y i n t e r e s t r a t e , p r i n c i p a l , a n d t e r m f o r e a c h l o a n i n c o l u m n C . L i n e s 1 6 9 - 1 8 6 F i x e d c o s t s - E n t e r f i r s t q u a r t e r f i x e d c o s t s i n c o l u m n F , e x c e p t f o r : - d e p r e c i a t i o n ( l i n e 174) i s b r o u g h t f o r w a r d f r o m l i n e 147 - f i r s t q u a r t e r p r o c e s s i n g f i x e d c o s t s a r e i n p u t i n c e l l s C 1 7 5 - C 1 7 7 , a n d a r e i n c l u d e d i n t h e r a n g e F 1 7 5 - A H 1 7 7 i f i n - h o u s e p r o c e s s i n g i s s p e c i f i e d i n c e l l C 4 2 . - m a i n t e n a n c e c o s t s a r e c o m p u t e d a s a q u a r t e r l y p e r c e n t ( t h e a n n u a l p e r c e n t , C 1 8 6 , d i v i d e d b y 4) o f c a p i t a l c o s t s ( l i n e 1 4 2 ) . A l l f i x e d c o s t s a r e m u l t i p l i e d b y a n i n f l a t i o n f a c t o r f o r c o s t s ( l i n e 5 3 ) . Columms D a n d E d i s p l a y t h e a n n u a l a v e r a g e f i x e d c o s t s , i n f u t u r e d o l l a r s a n d a s a p e r c e n t o f t o t a l c o s t s ( i n c l u d i n g t a x e s ) o v e r y e a r s 4 a n d 5 . L i n e 188 T o t a l s f i x e d c o s t s . - 9 2 -L i n e s 1 9 3 - 2 1 1 V a r i a b l e c o s t s L i n e 193 L i n e s 1 9 4 - 1 9 5 L i n e 197 L i n e 211 L i n e 213 L i n e 16 5 L i n e 2 2 1 - 2 3 7 C o l u m n s D a n d E c o m p u t e t h e a n n u a l a v e r a g e v a r i a b l e c o s t s f r o m y e a r s 4 t o 5 i n f u t u r e d o l l a r s a n d a s a p e r c e n t o f t o t a l c o s t s ( i n c l u d i n g t a x e s ) . V a r i a b l e c o s t s p e r u n i t o f p r o d u c t i o n c a n be i n p u t i n c o l u m n C . A l l v a r i a b l e c o s t s a r e m u l t i p l i e d b y a n i n f l a t i o n f a c t o r f o r c o s t s ( l i n e 5 3 ) . S e e d c o s t - i f s e e d i s p u r c h a s e d ( $ C $ 3 3 = 1 ) , t h e n s e e d c o s t = t h e c o s t p e r s e e d ( c e l l $C$193) t i m e s t h e number s e e d e d ( l i n e 57) t i m e s a n i n f l a t i o n f a c t o r f o r c o s t s ( l i n e 53) t i m e s a m u l t i p l e ( " $ S E E D M U L T " , o r c e l l $ C $ 2 7 0 ) , c h a n g e s i n w h i c h a l l o w t h e i n v e s t i g a t i o n o f t h e e f f e c t s o f c h a n g e s i n s e e d S e e d c o s t s c o s t - i f s e e d i s a c q u i r e d f r o m n a t u r e ( $ C $ 3 3 > 1 ) / t h e n t h e s e e d c o s t i s t h e sum o f : - t r a n s p o r t c o s t ( l i n e 1 9 5 ) - t h e number s e e d e d ( l i n e 5 7 ) , d i v i d e d b y 1 0 0 0 , t i m e s t h e c o s t / 1 0 0 0 s e e d f o r t r a n s p o r t a t i o n ($C$194) t i m e s t h e i n f l a t i o n f a c t o r ( l i n e 53) t i m e s " S E E D M U L T " ( s e e a b o v e ) , - l a b o u r c o s t ( l i n e 1 9 5 ) - t h e number o f h o u r s r e q u i r e d f o w s e e d a c q u i s i t i o n , b r o u g h t f o r w a r d f r o m t h e S y s t e m s s u b m o d e l ( l i n e 92) t i m e s t h e h o u r l y l a b o u r r a t e ( " $ L A B O U R " , o r c e l l $ C $ 3 7 ) , t i m e s t h e i n f l a t i o n f a c t o r ( l i n e 53) t i m e s " S E E D M U L T " ( s e e 53) t i m e s " S E E D M U L T " a b o v e ) . L a b o u r - T h e c u l t u r e l a b o u r r e q u i r e m e n t i n h o u r s , b r o u g h t f o r w a r d f r o m t h e S y s t e m s s u b m o d e l ( l i n e 93) t i m e s t h e h o u r l y l a b o u r r a t e ( " $ L A B O U R " , o r c e l l $ C $ 3 7 ) , t i m e s t h e i n f l a t i o n f a c t o r f o r c o s t s ( l i n e 5 3 ) , t i m e s a m u l t i p l i e r ( " $ L A B M U L T " , o r c e l l $C$268) c h a n g e s i n w h i c h a l l o w t h e i n v e s t i g a t i o n o f t h e e f f e c t s o f c h a n g e s i n l a b o u r c o s t s . T o t a l s t h e v a r i a b l e c o s t s . S u m m a r i z e s t h e i n t e r e s t e x p e n s e s f r o m l i n e 1 6 2 . Bad d e b t s - C a l c u l a t e s t h e q u a r t e r l y l o s s e s due t o bad d e b t s a s t h e p r o d u c t o f q u a r t e r l y r e v e n u e t i m e s a p r o j e c t e d p r o p o r t i o n t h a t i s u n r e c o v e r a b l e ( c e l l $ C $ 1 6 5 ) . The a n n u a l a v e r a g e o v e r y e a r s 4 -5 i s i n c o l u m n D . Income s t a t e m e n t - C o n t a i n s t h e i n c o m e s t a t e m e n t f o r e a c h o f t h e 28 q u a r t e r s . The a v e r a g e a n n u a l i n c o m e s t a t e m e n t o v e r y e a r s 4 -5 i s c o m p u t e d i n c o l u m n s C a n d D . - 9 3 -L i n e 221 R e v e n u e - b r o u g h t f o r w a r d f r o m l i n e 65 , r e v e n u e i s m u l t i p l i e d b y a m u l t i p l e ( " $ R E V M U L T " , o r c e l l $ C $ 2 6 7 ) , c h a n g e s i n w h i c h a l l o w a n i n v e s t i g a t i o n o f t h e e f f e c t s o f c h a n g e s i n r e v e n u e . C235 T a x r a t e - T h e t a x r a t e f o r b u s i n e s s e s w i t h l e s s t h a n $ 2 0 0 , 0 0 0 p e r y e a r , 22%, i s e n t e r e d i n C 2 3 5 . L i n e s 241 -254 C a s h f l o w s u m m a r y . L i n e 255 C o m p u t e s t h e a n n u a l c a s h f l o w . L i n e 256 C o m p u t e s t h e c u m u l a t i v e c a s h f l o w . C257 & C258 D i s p l a y t h e c u m u l a t i v e c a s h f l o w a t t h e e n d o f s e v e n y e a r s , e x c l u d i n g a n d i n c l u d i n g t h e s a l e o f a s s e t s . C262 C a l c u l a t e s t h e i n i t i a l i n v e s t m e n t r e q u i r e d , d e f i n e d a s t h e minimum c u m u l a t i v e c a s h f l o w o v e r 7 y e a r s . C263 & C264 C a l c u l a t e s t h e n e t p r e s e n t v a l u e o f t h e o p e r a t i o n a t t h e e n d o f 7 y e a r s , w i t h a n d w i t h o u t a v a l u a t i o n o f a s s e t s . , u s i n g t h e d i s c o u n t r a t e e n t e r e d i n t o c e l l C 3 6 . Range B 2 6 6 - R 3 2 3 . C a l c u l a t e s c h a n g e s i n t h e a v e r a g e a n n u a l n e t p r o f i t o v e r y e a r s 4 - 5 , t h e 7 y e a r NPV a n d c u m u l a t i v e c a s h f l o w , a n d t h e i n i t i a l i n v e s t m e n t r e q u i r e d , t o 40-200% c h a n g e s i n r e v e n u e , l a b o u r c o s t s , c a p i t a l c o s t s ( e x c l u d i n g c u l t u r e s y s t e m c o s t s ) , a n d s e e d c o s t s . R e s u l t s a r e d i s p l a y e d i n c o l u m n s C t o H . T h e s e s e n s i t i v i t y a n a l y s e s must be u p d a t e d m a n u a l l y , w h i c h c a n be d o n e u s i n g t h e S E N S I T I V I T Y s u b m e n u . L i n e s 3 7 4 - 3 9 6 M a c r o s e c t i o n . T a b l e & ( c o n t i n u e d ) . F i n a n c i a l s u b a o d e l p a r t i a l l i s t i n g . C o l u s n : B C D E F 8 H L i n e Oct 83 Jan 30 Apr 90 J u l 30 Oct 30 153 LOANS 154 Loan 1 - I n t e r e s t 8 Q u a r t e r l y Rate= 0 . 0 2 $0 +$C$154*D157 $0 $0 $0 155 - P r i n c i p a l P a y n e n t s $0 +E156-E154 $0 $o $0 156 - T o t a l Payments e T e r a ( Q u a r t e r s ) = 0 $0 8IF(D157<=0,0,6PHT($C$157,$C$154,$C$155)) 157 - B a l a n c e : P r i n c i p a l $0 +C157 +D157-E155 $0 t o $o 158 Loan 2 - I n t e r e s t 8 Q u a r t e r l y Rate= 0 . 0 2 $0 +$C$158*D1&1 $0 to $0 159 - P r i n c i p a l Payments $0 +E160-E158 $0 $0 $0 160 - T o t a l Payments § T e r a ( Q u a r t e r s ) = 0 $0 8IF(D161<=0,0,8PHT($C$161, r $C$158,$C$160)) 161 - B a l a n c e : P r i n c i p a l $0 +C161 $0 $0 $0 $0 162 T o t a l - I n t e r e s t +D15B+D154 $0 $0 $0 $0 163 - P r i n c i p a l Payments +D159+D155 $0 $0 $0 $0 164 - T o t a l P a y a e n t s +D160+D156 $0 $0 $0 $0 165 - B a l a n c e +0161+0157 $0 $0 $0 $0 166 167 168 FIXED COSTS 169 Lease Taxes + Rent 170 P r o p e r t y Taxes 171 I n s u r a n c e - V e h i c l e 172 L i a b i l i t y 173 B u i l d i n g s 174 D e p r e c i a t i o n 175 P r o c e s s i n g - E l e c t r i c i t y 175 Heat 177 S u p p l i e s 178 C a r e t a k e r 179 A d a i n i s t r a t i v e - H a n a g e r 180 C l e r i c a l 181 A c c o u n t a n t 182 O f f i c e Overhead 183 Phone 184 O p e r a t i n g S u p p l i e s 185 186 H a i n t e n a n c e ( 2 of C a p i t a l C o s t s / Y r 187 188 T o t a l F i x e d C o s t s Annual Average(Yr 4 - 5 ) Oct 89 Jan 90 Apr 90 § A V G ( V 1 6 9 . . A C 1 6 9 ) * 4 $125 +$F169*E$53 $128 $637 +D170/($C$229+$CS234)+$F170*E$53 $128 $765 0 . 6 2 $150 +$F171*E$53 $154 $ 1 , 2 7 5 1 . 0 2 $250 +$F172*E$53 $256 $510 0 . 4 2 $100 +$F173*E$53 $103 $ 1 2 , 0 3 9 9.32+D147 +E147 $1 ,276 $200 $0 0.02($C$42<=2)*$C175*0$53 $0 $200 $0 0.02($C$42<=2)*$C176*D$53 $0 $100 $0 0 . 0 2 ( $ C $ 4 2 < = 2 ) * $ C 1 7 7 » 0 $ 5 3 $0 $0 0 . 0 2 $0 +$F17B*E$53 $0 $ 5 , 0 9 8 4 . 2 2 $ 1 , 0 0 0 +$F179*E$53 $ 1 , 0 2 5 $ 2 , 5 4 9 2 . 1 2 $500 +$F180*E$53 $513 $ 1 , 2 7 5 1 .02 $250 +$F18UE$53 $256 $765 0 . 6 2 $150 +$F1B2*E$53 $154 $765 0 . 6 2 $150 +$F183*E$53 $154 $ 1 , 5 3 0 1.22 $300 +$F$184*E53 $308 22 $2,134 1.72+$C$186/4*0142 $402 $408 $29,979 242 $ 3 , 5 0 2 $ 4 , 5 6 7 $4,861 - 9 5 -T a b l e 6 . F i n a n c i a l submodel p a r t i a l l i s t i n g . C o l u e n : B C D E F s H L i n e 101 DEPRECIATION SCHEDULE Economic R e t i r e m e n t 102 L i f e ( Y r ) V a l u e 103 B u i l d i n g s 30 $0 104 V e s s e l s 15 $ 2 0 , 0 0 0 105 V e h i c l e s 10 $0 106 Small E n g i n e s 5 $0 107 C u l t u r e S y s t e m s , L i n e s 5 $0 108 Bouys 10 $0 109 A n c h o r s , H e i g h t s , B a l l a s t 20 $0 110 111 FIXED ASSETS Oct 89 Jan 30 Apr 30 J u l 30 Oct 30 112 I n c o r p o r a t o n $ 1 , 0 0 0 113 L a n d - L e a s e A c q u i s i t i o n d n d u d i n g Survey) $ 3 , 0 0 0 114 P u r c h a s e $0 115 T o t a l § S U N ( D 1 1 4 . . D 1 1 3 ) * $ C A P N U L T $0 $0 $0 116 C u m u l a t i v e +C116+D115 $ 3 , 0 0 0 $ 3 , 0 0 0 $ 3 , 0 0 0 $ 3 , 0 0 0 117 F o r e s h o r e Lease A c q u i s i t i o n d n d u d i n g Surv5000 118 8 u i l d i n g s ( L a n d / B a r g e ) - C a r e t a k e r P r o c e s s i n g O f f i c e / S t o r a g e Other T o t a l O u t l a y D e p r e c i a t i o n Book V a l u e at 7 Y e a r s 119 120 121 122 123 124 125 V e s s e l s - S c o w s 126 10 i Boat ft Equipment 127 S k i f f 128 Other 129 T o t a l O u t l a y 130 D e p r e c i a t i o n 131 Book V a l u e at 7 Y e a r s 132 S m a l l E n g i n e s - O u t b o a r d E n g i n e s ) 0 0 25000 0 8 S U N ( D 1 2 1 . . D 1 1 8 ) * $ C A P « U L T $0. 0 ( D 1 2 2 - $ D $ 1 0 3 ) / ( $ C $ 1 0 3 » 4 ) + D 1 2 2 - § S U n ( D 1 2 3 . . A F 1 2 3 ) 0 30000 5000 8SUIKD127..D125)*$CAPMULT $0 0 ( $ D $ 1 2 9 - $ D $ 1 0 4 ) / ( $ C $ 1 0 4 » 4 ) +D129-8SUN(D130..AF130) 2500 $0 $0 +$E$123 $0 $0 +$E$130 H f r e q u i r e d 4 0 0 0 } $0 133 High P r e s s u r e Pump 134 Other 135 T o t a l O u t l a y 136 D e p r e c i a t i o n 137 V e h i d e s - V a n ( s ) 138 P i c k u p ( s ) 139 Other 140 T o t a l O u t l a y 141 D e p r e c i a t i o n 142 Book V a l u e at 7 Y e a r s 143 T o t a l F i x e d A s s e t s , L e s s C u l t u r e System 144 C u m u l a t i v e 145 T o t a l C u l t u r e Systems E x p e n d i t u r e s 146 T o t a l F i x e d A s s e t E x p e n d i t u r e s 147 C u m u l a t i v e F i x e d A s s e t E x p e n d i t u r e s 148 V a l u e at 7 Y e a r s - C u l t u r e systems 0 . 5 ( § S U N ( D 1 4 5 . . A F 1 4 5 ) - 9 S U « ( F 1 7 4 . . A H 1 7 4 ) ) * C 1 4 8 149 I n v e n t o r y " V a l u F J u v e ¥ i l e ( P r i c " e = $ 0 . 1 5 +AFS3*C149+AF59*C150 150 A d u l t ( P r i c e = $ 0 . 1 0 151 T o t a l Book V a l u e at 7 Y e a r s +D112+D115+D117+D124+D131+0142+D143+D143 § S U M D 1 3 4 . . D 1 3 2 ) * $ C A P M U L T 0 (D135-D106)/(C106*4) 0 10000 8SUN(D139..D137)*$CAP!1ULT $0 0 ($D$140-$D$105)/($C$105*4) +D140-8SUIND141..AF141) (DU2+D115+0122+D123+D135+D140) +C144+D143 $ 8 0 , 5 0 0 $ 8 0 , 5 0 0 +D78 $4,061 $ 6 , 4 3 0 •D143+D145 $4,061 $ 6 , 4 3 0 +C147+0146 $87,204 $93,634 +$E$136 $0 f $ E » 1 4 1 $0 $ 8 0 , 5 0 0 $ 1 6 , 5 5 6 $ 1 6 , 5 5 6 $110,190 $0 $ 8 0 , 5 0 0 $ 9 , 5 6 7 $ 9 , 5 6 7 $113,757 T a b l e 6 ( c o n t i n u e d ) . F i n a n c i a l s u b m o d e l p a r t i a l l i s t i n g . Column: D H L i n e 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 VARIABLE COSTS Seed-Pur c hase(Cost/Seed= C o l l e c t - T r a n s p o r t ( 1 / 1 0 0 0 Seed= $ 0 . 0 0 -Labour Oct 89 Jan 90 Apr 90 J u l 90 Oct 90 C o s t / u n i t Annual Average(Yr 4 - 5 ) Oct 89 Jan 90 Apr 90 $ 0 . 0 2 @AV6(V193..AC193)*4 ($C$33=1)*$C$193*D57*D53*$SEEDMULT $0 0.OX($C$33 >1)*D57/1000*$C$194*D53 $0 0.0X($C$33=2)*D90*$LAB0UR*$LA8HULT*D53 Labour(Grow Out) F u e l - L i t r e s / 1 0 0 0 S h e l l s / Y r = 5 . 7 P r i c e / L i t r e = $ 0 . 3 0 M i s c e l l a n e o u s ( X of V a r i a b l e C o s t s / Y r = 5X T r a n s p o r t - T o P r o c e s s o r ( $ / 1 0 0 0 = To H a r k e t ( $ / 1 0 0 0 Aniraals= P r o c e s s i n g - L a b o u r L i v e , CI eart/Pac k, Hr /1000= Shuck/Grade/Pack(Hr/10Q0= Custom P r o c e s s i n g ( $ / 1 0 0 0 S h e l l s = P a c k a g i n g ( $ / 1 0 0 0 Animals= Brokerage(X= T o t a l V a r i a b l e C o s t s INTEREST PROVISION FOR BAD DEBTS: Rate= ( A f t e r 2 Yr=Expense) $ 4 . 0 0 $ 1 1 . 2 5 $41,147 33.52+D91*$LAB0UR*$LABHULT*D53 $ 1 , 7 5 8 1. 4X(D58+D59)/8000*$C$199*$C$200*D53 $849 0.7X+$C$201/4*8Sl)M(F200. .F193) $ 3 , 5 4 8 2.9X+D62/1000*$C$202*D53 $0 0 . 0 X ( $ C $ 4 2 O 4 ) * D 6 2 / 1 0 0 0 * $ C $ 2 0 3 * D 5 3 0 . 6 $0 0.0X($C$42=l)*$C$205*$LAB0URtD62/1000*D53 2 . 2 $0 0.0X($C$42=2)*$C$206*$LAB0UR*D62/1000*D53 $ 0 . 0 0 $0 0 . 0 X ( $ C $ 4 2 = 3 ) » $ C $ 2 0 7 * D 6 2 / 1 0 0 0 * 0 5 3 $ 1 3 . 2 5 $0 0 . 0 X ( $ C $ 4 2 O 4 ) * $ C $ 2 0 8 * D 6 2 / 1 0 0 0 * D 5 3 OX $0 0.0X+$C$209*D65*053 $ 7 2 , 3 2 2 +0211/($C$229+$C$234)8SUH(G210..G193) $0 +0213/($C$229+$C$234) $0 +F162 OX $0 0X+E221*$C$215 $0 $0 INCOME STATEMENT Revenue C o s t s - F i x e d , L e s s D e p r e c i a t i o n D e p r e c i a t i o n V a r i a b l e P r o v i s i o n f o r Bad Debts I n t e r e s t Expenses T o t a l C o s t s , L e s s Taxes Net P r e - T a x P r o f i t ( L o s s ) 5 Year Running T o t a l 5 Yr L o s s C a r r y Forward T a x e s : Rate up t o $ 2 0 0 , 0 0 0 Revenue/Yr= A f t e r Tax P r o f i t - Q u a r t e r l y Annual Oct 89 Jan 90 Apr 90 J u l 90 § A V G ( U 2 2 1 . . A B 2 2 1 ) * 4 $ 1 7 , 9 4 0 $ 1 2 , 0 3 9 $ 7 2 , 3 2 2 $0 $0 $ 1 0 2 , 3 0 0 $ 9 2 , 8 5 2 $20,427 22X-$72,424 +D65*$REVMULT $0 $0 $0 15X+F188-D147 ($1, ,126) ( $ 1 , 276) $ 3 , 6 3 0 10X+D147 «. ,126 «, 276 $ 1 , 4 9 3 59X+F211 «. ,748 «. 724 $ 6 , 7 8 6 0X+F215 $0 $0 $0 0X+F213 $0 $0 $0 8SUM(E228..E223) 724 $ 1 1 , 9 0 9 +E221-E229 ( $ 1 , 7 4 8 ) ($1 ,724) ($11 ,909) +E231 ( $ 2 4 , 7 8 5 ) ( $ 2 6 , 5 0 8 ) ($38,417) 8IF(D232<0,0232+E231,E231) ($38,417) 17X"IF(E233<=0,0,E233*$C$235) $0 $0 +E231-E234 ($1 ,748) ($1 ,724) ($11 ,909) - 8SUN(E236..H236) -97-Tafale 6 ( c o n t i n u e d ) . F i n a n c i a l submodel p a r t i a l l i s t i n g . Column: 8 C D E F G H L i n e Oct 89 Jan 90 Apr 90 J u l 90 Oct 30 239 CASH FLOW SUMMARY Oct 89 Jan 90 Apr 90 J u l 90 Oct 90 240 241 S a l e s , L e s s Bad Debts +D65*$REVMULT -F215 $0 $0 $0 $0 242 C u m u l a t i v e S a l e s +C242+D241 to $0 $0 $0 243 244 C o s t s - F i x e d , L e s s D e p r e c i a t i o n +E223 ($1 ,126) ( $ 1 , 2 7 6 ) $ 3 , 6 3 0 $ 3 , 6 7 6 245 V a r i a b l e +F211 $1 ,748 $1,724 $ 6 , 7 8 6 $28,121 246 Loan P a y m e n t s - I n t e r e s t +D162 $0 to $0 $0 247 P r i n c i p a l +D163 to $0 $0 $0 248 F i x e d A s s e t E x p e n d i t u r e s +D145 $ 3 , 3 8 6 $ 4 , 9 6 9 $ 1 3 , 8 8 7 $ 8 , 5 2 1 249 Taxes +AL234 $0 $0 $0 $0 251 T o t a l O u t l a y @SUH(D250. .0244)t4,008 $ 5 , 4 1 7 $ 2 4 , 3 0 3 $40,317 252 C u m u l a t i v e O u t l a y +C252+D251 $109,824 $115,240 $ 1 3 9 , 5 4 3 $179,860 253 254 Cash F l o w - Q u a r t e r l y +D241-D251 ( $ 4 , 0 0 8 ) ( $ 5 , 4 1 7 ) ( $ 2 4 , 3 0 3 ) ($40,317) 255 Annual - - - ($139,543) -256 C u m u l a t i v e +C256+D254 ( $ 1 0 9 , 8 2 4 ) ( $ 1 1 5 , 2 4 0 ) ($139,543) ($179,860) 257 7 Year +AF256 258 7 Y e a r , i n c l u d i n g a s s e t s +AG256 259 260 261 FINANCIAL ANALYSES 262 Investment R e q u i r e d @ A B S ( § M I N ( D 2 5 6 . . A G 2 5 6 ) ) 263 Net P r e s e n t V a l u e - N o wind-up @NPV($DISC0UNT,$D254..AF254) 264 H i n d - u p at 7 y e a r s @NPV($DISC0UNT,$D254..AG254) 265 266 SENSITIVITY ANALYSIS M u l t i p l e 267 Revenue 1 268 Labour C o s t s 1 269 C a p i t a l C o s t s 1 270 Seed C o s t s 1 271 272 V a r i a b l e X of Cash X of 273 Expected Flow I n i t i a l P r o f i t Expected NPV 274 V a l u e (7Yr) Investment ( Y e a r s 4 - 5 ) V a l u e (7Yr) 275 +$AF$256 +$C$264 276 Revenue 40X ($365,560)+P276 +R276 40X ($201,989) 277 607. ($178,202) $226,064 $ 6 , 6 9 0 60X ($157,306) 278 80X $ 6 , 2 1 5 $219,967 $ 3 9 , 2 4 1 80X ($114,034) 279 100X $190,122 $219,967 $71 ,354 100X ( $ 7 0 , 4 6 8 ) 280 120X $ 3 6 1 , 9 4 5 $219,967 $101,798 120X ( $ 3 0 , 1 4 5 ) 281 140X $ 5 3 2 , 1 5 3 $219,967 $132,241 140X $ 9 , 3 4 9 282 160X $702,361 $219,967 $ 1 6 2 , 6 8 5 160X $ 4 8 , 8 4 3 283 180X $873,129 $219,967 $193,129 180X $ 8 8 , 6 2 5 284 200X $ 1 , 0 4 4 , 2 4 1 $219,967 $ 2 2 3 , 5 7 2 200X $128,536 T a b l e 6 ( c o n t i n u e d ) . F i n a n c i a l submodel p a r t i a l l i s t i n g . -98-T a b l e 6 ( c o n t i n u e d ) . F i n a n c i a l submodel p a r t i a l l i s t i n g . Column: B C D E F G H L i n e Oct 89 Jan 90 Apr 90 J u l 90 Oct 90 285 Z of Cash I of 28S Expected Flow I n i t i a l P r o f i t Expected NPV 287 V a l u e (7Yr) Investment (Years 4 - 5 ) V a l u e (7Yr) 288 289 Labour 407. $313,651 $ 2 0 5 , 5 0 6 $ 9 0 , 8 7 6 402 ( $ 3 4 , 7 5 5 ) 290 602 $273,013 $210,326 $ 8 4 , 3 6 9 602 ( $ 4 6 , 3 8 3 ) 291 802 $ 2 3 2 , 3 6 3 $215,146 $77,861 802 ($58,017) 292 1002 $190,122 $219,967 $71 ,354 1002 ( $ 7 0 , 4 6 8 ) 293 1202 $147,502 $224,787 $ 6 4 , 7 8 3 1202 ( $82,97 9) 294 1402 $102,245 $ 2 2 9 , 6 0 7 $57,775 1402 ( $ 9 6 , 0 9 7 ) 295 1602 $ 5 6 , 9 8 8 $ 2 3 4 , 4 2 8 $ 5 0 , 7 6 7 1602 ($109,214) 296 1802 $11,731 $ 23 9,24 8 $ 4 3 , 7 5 8 180X ($122,332) 297 2002 ( $ 3 3 , 5 2 6 ) $ 2 4 4 , 0 6 8 $ 3 6 , 7 5 0 2002 ($135,449) 298 2 of Cash 2 of 299 E x p e c t e d Flow I n i t i a l P r o f i t E x p e c t e d NPV 300 V a l u e (7Yr) Investment ( Y e a r s 4 - 5 ) V a l u e (7Yr) 301 302 C a p i t a l C o s t s 402 $ 2 5 0 , 5 5 2 $170,187 $ 7 2 , 3 5 3 402 ( $ 1 8 , 9 3 2 ) 303 L e s s C u l t u r e System 602 $ 2 3 0 , 4 0 8 $186,780 $ 7 2 , 0 2 0 602 ($36,111) 304 802 $ 2 1 0 , 2 6 5 $203,374 $71 ,687 802 ( $ 5 3 , 2 8 9 ) 305 1002 $190,122 $219,967 $71,354 1002 ( $ 7 0 , 4 6 8 ) 306 1202 $ 1 6 9 , 9 7 8 $ 2 3 6 , 5 6 0 $71,021 1202 ($87,647) 307 1402 $ 1 4 9 , 8 3 5 $ 2 5 3 , 1 5 3 $ 7 0 , 6 8 8 1402 ($104,825) 308 1602 $129,691 $269,746 $ 7 0 , 3 5 5 1602 ($122,004) 309 1802 $109,548 $ 2 8 6 , 3 4 0 $ 7 0 , 0 2 2 1802 ($139,183) 310 2002 $ B 9 , 4 0 5 $ 3 0 2 , 9 3 3 $ 6 9 , 6 8 9 2002 ($156,361) 311 2 of Z of 312 Expected I n i t i a l P r o f i t Expected NPV 313 V a l u e Investment ( Y e a r s 4 - 5 ) V a l u e (7Yr) 314 315 Seed C o s t s 402 $285,214 $ 1 9 5 , 0 4 8 $ 8 3 , 2 0 9 402 ( $ 3 4 , 4 2 6 ) 316 602 $ 2 5 4 , 0 5 5 $203,354 $ 7 9 , 2 5 8 602 ( $ 4 6 , 1 6 3 ) 317 802 $222,217 $211,660 $ 7 5 , 3 0 6 802 ( $ 5 8 , 2 5 0 ) 318 1002 $190,122 $219,967 $71 ,354 1002 ( $ 7 0 , 4 6 8 ) 319 1202 $153,954 $228,273 $ 6 6 , 7 2 5 1202 ( $ 8 3 , 5 6 3 ) 320 1402 $115,149 $ 2 3 6 , 5 7 9 $ 6 1 , 6 5 9 1402 ( $ 9 7 , 2 6 5 ) 321 1602 $ 7 6 , 3 4 4 $244,886 $ 5 6 , 5 9 2 1602 ($110,967) 322 1802 $ 3 7 , 5 3 9 $ 2 5 3 , 1 9 2 $ 5 1 , 5 2 6 180Z ( $ 1 2 4 , 6 6 9 ) 323 2002 ( $ 1 , 2 6 6 ) $261,498 $ 4 6 , 4 5 9 2002 ($138,371) -99-T a b l e 6 ( c o n t i n u e d ) . F i n a n c i a l submodel p a r t i a l l i s t i n g . Column: B C D E F l i n e 374 MACRO SECTION 375 376 \ 0 {HOME} 377 37B 379 380 \A {MENUCALL}C382 ,' MAIN MENU INPUT SUMMARY SENSITIVITY Input changeMerge SummarConduct s e n s i t i v i t y a n a l y s e s . {MENUCALL}c3/whc ,'{H0ME} {HENUCALL}C394* /f niSUHIiARY. HKB"' {80T0}219^ INPUT SUBMENU DISCOUNT LABOUR PROCESS DEPRECIATE Input P r o d u c l n p u t t h e l a l n p u t p r o c e l n p u t d e p r e c i a t i o n d a t a . {G0T0}B23V {60T0>B23''' {60T0>B23* {G0T0}B96 , k { G O T O ^ * {60TQJC37* {G0T0)C42'W {G0T0JC10P SENSITIVITY SUBMENU REVENUE LABOUR CAPITAL SEED Update s e n s i U p d a t e s e n s i U p d a t e sensUpdate s e n s i t i v i t y a n a l y s e s w . r . t . seed / d t H E S C } c 2 7 / d t l { E S C k 2 8 / d t H E S C k 3 / d t l { E S C } c 3 1 4 . . d 3 2 3 , ' { E S C } c 2 7 0 , ' / d t U E S C } G - 1 0 0 -A P P E N D I X B . MARKET DATA C O M P I L A T I O N .  E a s t e r n U . S . The a v e r a g e a n n u a l U . S . e x - v e s s e l p r i c e ( i n 1987 $US) o f s e a s c a l l o p s f r o m 1 9 7 7 - 1 9 8 6 was $ 4 . 8 7 / l b o f a d d u c t o r m u s c l e s , r a n g i n g f r o m $ 3 . 0 4 / l b i n 1977 t o $ 6 . 2 2 / l b i n 1 9 8 3 . C a l i c o s c a l l o p s a v e r a g e d $ 1 . 6 6 / l b o f a d d u c t o r s , r a n g i n g b e t w e e n $ 0 . 6 0 i n 1984 t o $ 3 . 3 5 i n 1 9 7 9 . ( F i g . 1 , T a b l e 1) ( A n o n , 1 9 7 7 - 1 9 8 7 ) . I n C a n a d i a n d o l l a r s , t h e a v e r a g e 1 9 7 7 - 1 9 8 7 U . S . e x - v e s s e l p r i c e s o f s e a a n d c a l i c o s c a l l o p s , a t a n e x c h a n g e r a t e o f 80%, were C$.13.40 / k g a n d C $ 4 . 5 7 / k g r e s p e c t i v e l y . S e a s c a l l o p a d d u c t o r s f r o m t h e U . S . f i s h e r y m u s t a v e r a g e a m i n i m u m o f 3 0 / l b , b y r e g u l a t i o n s d e s i g n e d t o c o n s e r v e s t o c k s , a n d t h e c a l i c o a d d u c t o r s r a n g e f r o m 5 0 - 1 0 0 / l b ( S m a l l o w i t z p e r s . c o m m . , 1 9 8 8 ) . M o n t h l y New Y o r k w h o l e s a l e f r e s h s c a l l o p p r i c e s ( T a b l e s 2 a n d 3 ; F i g . 2 ) , o b t a i n e d f r o n F i s h e r y M a r k e t N e w s l e t t e r ( A n o n , 1 9 7 7 - 1 9 8 7 b ) , were c a l c u l a t e d a s t h e m i d - p o i n t o f t h e r a n g e o f p r i c e s i n t h e week p r e c e d i n g t h e f i r s t T h u r s d a y o f e a c h m o n t h , a n d c o n v e r t e d t o 1987 p r i c e s u s i n g t h e C o n s u m e r s P r i c e I n d e x i n T a b l e 5 . The a v e r a g e a n n u a l w h o l e s a l e p r i c e o f s e a s c a l l o p a d d u c t o r s f r o m 1 9 7 7 - 1 9 8 7 was $ 5 . 7 3 / l b (1987 U S $ , o r C$ 1 5 . 7 6 / k g ) , r a n g i n g f r o m $ 3 . 8 5 t o $ 6 . 9 8 ( C $ 1 0 . 5 9 - $ 1 9 . 2 0 / k g ) ; t h a t f o r c a l i c o ( " b a y s o u t h " ) s c a l l o p a d d u c t o r s was 1987 $US 4 . 5 5 / l b (C$ 1 2 . 5 1 / k g ) , r a n g i n g f r o m $ 2 . 0 8 t o $ 6 . 5 7 / l b ( C $ 5 . 7 2 - $ 1 8 . 0 7 / k g ) . The r a t i o o f w h o l e s a l e t o e x - v e s s e l p r i c e s f o r c a l i c o s c a l l o p s , 2 . 7 4 , i s h i g h e r t h a n t h a t f o r s e a s c a l l o p s , 1 . 1 8 , b e c a u s e c a l i c o s c a l l o p s a r e s h u c k e d a s h o r e , w h i l e s e a s c a l l o p s a r e s h u c k e d a t s e a . The m o n t h l y New Y o r k w h o l e s a l e p r i c e o f f r e s h s h u c k e d s e a s c a l l o p a d d u c t o r s , a v e r a g e d o v e r t h e p e r i o d 1977 t o 1 9 8 7 , f l u c t u a t e d f r o m $ 4 . 9 6 / l b ( C $ 1 3 . 6 4 / k g ) i n J u n e t o $ 6 . 6 4 / l b ( C $ 1 8 . 2 6 / k g ) i n J a n u a r y ( F i g . 3 ; T a b l e 3 ) . The J u n e p r i c e , 87% o f t h e a v e r a g e p r i c e o f $ 5 . 7 3 ( a b o v e ) , i s l o w b e c a u s e t h e s e a s c a l l o p f i s h e r y o c c u r s i n t h e s p r i n g a n d s u m m e r . The J a n u a r y p r i c e i s 116% o f t h e a v e r a g e p r i c e . The New Y o r k w h o l e s a l e p r i c e o f f r o z e n s c a l l o p a d d u c t o r s v a r i e s w i t h t h e a d d u c t o r c o u n t ( t h e number p e r p o u n d ) ( F i g . 4 ; T a b l e 4 ) . No d a t a were o b t a i n e d on t h e e f f e c t o f a d d u c t o r s i z e o n t h e p r i c e o f f r e s h s c a l l o p s e x c e p t f o r t h e b r o a d p r i c e d i f f e r e n c e s b e t w e e n s e a a n d c a l i c o s c a l l o p s , w h i c h i s a l s o a f u n c t i o n o f q u a l i t y d i f f e r e n c e s . -101-Table 1. U.S. e x - v e s s e l s c a l l o p p r i c e s . 1987 $US/lb. SEA CALICO 1977 3.04 1.73 1978 4 . 29 2 . 39 1979 5.12 3.35 1980 5.30 1981 4.59 1.19 1982 4.31 1.21 1983 6.22 1.43 1984 5.80 0.60 1985 4.9 8 1.06 1986 5.05 1.98 AVERAGE: 4.87 1. 66 P r i c e s were converted to 1987$ by us i n g the CPI i n t a b l e $. Sources: F i s h e r i e s of The U.S., NMFS, (Anon, 1977-1987). -102-Table 2. Monthly New York fresh wholesale bay scal l o p p r i c e s . 1987 U.S.i/lb of adductor t u s c i e JAN FEB m APR HAY JUNE JULY AU6 SEPT OCT NOV OEC ANNUAL 1977 2.17 4.90 5.81 4.24 4.05 3.84 4.41 4.86 4.62 6.09 6.40 7.45 4.90 1978 S.01 4.41 4.26 5.45 9.36 8.07 7.57 5.60 5.23 6.57 7.45 6.18 1979 5.62 5.86 6.62 6.94 6.86 6.00 5.64 7.61 7.24 6.04 7.11 7.31 6.57 1980 8.03 6.75 6.30 6.41 6.44 4.90 4.55 6.57 6.17 6.12 5.73 5.52 6.12 1981 5.06 4.98 4.87 4.19 3.14 3.03 2.85 4.22 3.58 3.03 2.95 3.81 1982 4.37 2.93 3.23 2.92 3.63 3.00 2.84 3.20 2.98 3.19 4.71 4.73 3.48 1983 4.50 3.27 4.72 3.96 4.82 6.43 6.76 8.78 5.71 3.73 3.44 2.32 4.87 1984 2.79 1.88 2.29 2.55 2.79 1.85 1.50 1.57 1.59 2.30 1.72 2.16 2.08 1985 2.69 2.75 2.37 2.49 2.62 4.09 3.76 4.87 4.92 5.17 5.21 5.92 3.90 1986 5.50 4.68 5.09 5.36 4.69 4.54 4.54 4.99 5.15 4.76 4.64 4.63 4.88 1987 4.19 4.00 3.00 3.31 3.19 3.25 3.56 3.50 3.81 3.13 2.88 2.69 3.38 MINIMUM: 2.17 1.88 2.29 2.49 2.62 1.85 1.50 1.57 1.59 2.30 1.72 2.16 2.08 AVERAGE: 4.54 4.14 4.42 4.41 4.70 4.47 4.38 4.94 4.70 4.61 4.49 4.83 4.56 HA 11 HUN: 8.03 6.75 6.62 6.94 8.36 8.07 7.57 8.78 7.24 6.57 7.11 7.45 6.57 P r i c e i s the l i d - p o i n t of the range of p r i c e s i n the week preceding the f i r s t Thursday of of each •onth, converted to 1987$ with the CPI in Table 5. Sources: F i s h e r y Market Newsletter (NY), NHFS, Anon (1977-1987b)) Bureau of Labor S t a t i s t i c s , Anon (1977-1988) -103-Table 3. Monthly New York fresh wholesale sea sc a l l o p p r i c e s . 1987 U.S.*/lb of adductor l u s c l e JAN FEB HAS APR NAY JUNE JULY AU6 SEPT OCT NOV DEC ANNUAL 1977 4.17 4.32 3.96 3.84 3.30 3.15 3.12 3.85 3.75 4.01 4.22 4.48 3.85 1978 5.50 5.01 4.17 4.53 3.92 3.92 5.28 4.99 5.38 5.89 5.77 6.04 5.03 1979 6.73 6.41 6.76 5.55 5.48 5.03 5.75 5.66 6.09 6.08 6.36 6.11 6.00 1980 6.68 6.48 6.32 5.97 5.21 4.98 5.46 6.11 6.86 6.80 7.87 7.28 6.33 1981 7.25 7.18 7.45 6.99 5.76 5.71 5.43 4.52 5.42 5.50 5.37 5.62 6.02 1982 6.18 5.40 4.90 3.95 4.45 4.63 4.81 4.45 4.93 5.82 5.91 6.02 5.12 1983 6.94 5.22 5.66 6.36 6.13 6.48 7.25 7.71 7.95 8.13 8.28 7.71 6.98 1984 7.83 6.50 7.03 7.19 5.88 5.86 5.62 5.42 7.03 7.02 6.26 6.85 6.54 1985 7.48 6.60 6.43 5.64 S.35 5.04 4.77 5.73 5.45 5.96 6.04 5.93 5.87 1986 7.05 6.39 5.51 5.86 4.96 5.32 5.19 5.33 6.57 6.62 6.87 7.25 6.08 1987 7.17 6.85 6.17 4.80 4.60 4.45 4.37 5.13 4.92 4.85 4.63 4.42 5.20 HINIHUH: 4.17 4.32 3.96 3.84 3.30 3.15 3.12 3.85 3.75 4.01 4.22 4.42 3.85 AVERAGE: 6.64 6.03 5.85 5.52 5.00 4.96 5.19 5.35 5.85 6.06 6.14 6.16 5.73 MAXIMUM: 7.83 7.18 7.45 7.19 6.13 6.48 7.25 7.71 7.95 8.13 8.28 7.71 6.98 P r i c e i s the • i d - p o i n t of the range of p r i c e s in the veek preceding the f i r s t Thursday of of each tonth, converted to 1987$ with the CPI i n Table 5. Sources: F i s h e r y Market Newsletter (NY), NMFS, Anon (1977-19B7b)) Bureau of Labor S t a t i s t i c s , Anon (1977-1988) -104-u o o 3 TJ TJ <X t» O \ W 13 Vt oo a 8.00 7.00 6.00 5.00 4.00 3.00 2.00 1.00 0.00 F I G . 4 . F R O Z E N S C A L L O P W H O L E S A L E P R I C E S SOURCE: TABLE 4; ANON, 1977-1987b. 1 1 1 1 1 1 1 1 I 1 1 J I L J L J L 15 25 35 40 50 60 70 80 90 100 115 Count (No. of M e a t s / l b ) 0 AVERAGEQ) • MAXIMUM * MINIMUM T a b l e 4 . Annual U . S . w h o l e s a l e p r i c e s o f f r o z e n sea s c a l l o p s by count per pound. 1987 U S $ / l b of a d d u c t o r m u s c l e s . C 0 U N T ( § / l b ) : 10/20 20/30 30/40 30/50 40/60 50/70 60/80 70/90 80/100 90/110 100/130 HID POINT: 15 25 35 40 50 60 70 80 90 100 115 1980 5 . 2 1 5 . 7 0 4 . 9 5 5 . 0 1 1981 6 . 7 3 5 . 5 0 5 . 4 8 5 . 3 5 5 . 2 5 4 . 8 1 5 . 0 5 4 . 8 7 4 . 8 2 4 . 9 0 1982 5 . 4 6 5 . 6 1 4 . 6 6 4 . 1 2 4 . 3 7 3 . 3 5 3 . 6 1 3 . 6 0 3 . 7 4 1983 5 . 4 1 6.71 5 . 2 7 4.77 1984 5 . 7 5 5 . 0 2 5 . 1 2 4 . 1 3 4 . 5 2 2 . 9 4 4 . 5 2 2 . 6 6 1985 4 . 6 3 4 . 7 2 4 . 3 4 4 . 7 5 3.11 2 . 2 9 2 . 2 1 2 . 7 5 19B6 5 . 4 6 5 . 6 1 4 . 6 6 4 . 1 2 4 . 3 7 3 . 3 5 3.61 3 . 6 0 3 . 7 4 1987 5.41 6.71 5 . 2 7 4 . 7 7 MAXIMUM: 6 . 7 3 5 . 7 5 6.71 5 . 3 5 5 . 7 0 5 . 2 7 5 . 0 5 5 . 0 1 4 . 8 2 4 . 9 0 2 . 7 5 AVERAGE: 5 . 5 7 5 . 4 3 5 . 3 7 4 . 7 8 4 . 4 9 4 . 5 0 3 . 5 0 4 . 4 5 3 . 2 3 4 , 1 3 2 . 7 5 MINIMUM: 4 . 6 3 4 . 7 2 4 . 3 4 4 . 1 2 3.11 3 . 3 5 2 . 2 9 3 . 6 0 2 . 2 1 3 . 7 4 2 . 7 5 Annual p r i c e i s t h e average of monthly p r i c e s , which a r e d e f i n e d a s t h e p r i c e on t h e f i r s t Thursday o f each month, ex-warehouse (New Y o r k ) i n customary w h o l e s a l e q u a n t i t i e s . The p r i c e s a r e c o n v e r t e d t o 1987$ u s i n g t h e CPI i n T a b l e 5 . S o u r c e s : F i s h e r y Market N e w s l e t t e r , NMFS (Anon, 1977-19875), Bureau of Labour S t a t i s t i c s (Anon, 1977-1988). -105-T a b l e 5 . U . S . Consumer p r i c e i n d e x , a l l i t e m s , a l l urban wage e a r n e r s ( C P I - U ) , U . S . c i t y a v e r a g e . 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 J a n u a r y 175.3 187.2 2 0 4 . 7 2 3 3 . 2 2 6 0 . 5 2 8 2 . 5 2 9 3 . 1 3 0 5 . 2 316.1 3 2 8 . 4 3 3 3 . 1 F e b r u a r y 177.1 188.4 207.1 2 3 6 . 4 2 6 3 . 2 2 8 3 . 4 2 9 3 . 2 3 0 6 . 6 317.4 3 2 7 . 5 3 3 4 . 4 March 178.2 189.8 2 0 9 . 1 2 3 9 . 8 2 6 5 . 1 2 8 3 . 1 2 9 3 . 4 3 0 7 . 3 3 1 8 . 8 3 2 6 . 0 3 3 5 . 9 A p r i l 179.6 191.5 2 1 1 . 5 2 4 2 . 5 2 6 6 . 8 2 8 4 . 3 2 9 5 . 5 3 0 8 . 8 320.1 3 2 5 . 3 3 3 7 . 7 Hay 1 8 0 . 6 1 9 3 . 3 214.1 2 4 4 . 9 2 6 9 . 0 287.1 2 9 7 . 1 3 0 9 . 7 3 2 1 . 3 3 2 6 . 3 3 3 8 . 7 June 181.1 1 9 5 . 3 2 1 6 . 6 2 4 7 . 6 2 7 1 . 3 2 9 0 . 6 2 9 8 . 1 3 1 0 . 7 3 2 2 . 3 3 2 7 . 9 3 4 0 . 1 J u l y 182.6 196.7 2 1 8 . 9 2 4 7 . 8 2 7 4 . 4 2 9 2 . 2 2 9 9 . 3 311.7 3 2 2 . 8 3 2 8 . 0 3 4 0 . 8 August 1 8 3 . 3 197.8 221.1 2 4 9 . 4 2 7 6 . 5 2 9 2 . 8 3 0 0 . 3 3 1 3 . 0 3 2 3 . 5 3 2 8 . 6 3 4 2 . 7 September 1 8 4 . 0 1 9 9 . 3 2 2 3 . 4 2 5 1 . 7 2 7 9 . 3 2 9 3 . 3 3 0 1 . 8 3 1 4 . 5 3 2 4 . 5 3 3 0 . 2 3 4 4 . 4 October 1 8 4 . 5 2 0 0 . 9 2 2 5 . 4 2 5 3 . 9 2 7 9 . 9 2 9 4 . 1 3 0 2 . 6 3 1 5 . 3 3 2 5 . 5 3 3 0 . 5 3 4 5 . 3 November 185.4 2 0 2 . 0 2 2 7 . 5 2 5 6 . 2 2 8 0 . 7 2 9 3 . 6 3 0 3 . 1 3 1 5 . 3 3 2 6 . 6 3 3 0 . 8 3 4 5 . 8 December 186.1 2 0 2 . 9 2 2 9 . 9 2 5 8 . 4 2 8 1 . 5 2 9 2 . 4 3 0 3 . 5 3 1 5 . 5 3 2 7 . 4 331.1 3 4 5 . 7 ANNUAL: 181.5 195.4 217 .4 2 4 6 . 8 2 7 2 . 3 2 8 9 . 1 2 9 8 . 4 311.1 3 2 2 . 2 3 2 8 . 4 3 4 0 . 4 S o u r c e : M o n t h l y Labour R e v i e w , U . S . Department of L a b o u r . ( A n o n , 1 9 7 8 - 1 9 8 8 ) . -106-V a n c o u v e r V a n c o u v e r s c a l l o p a d d u c t o r s a r e o b t a i n e d m a i n l y f r o m e a s t e r n C a n a d a a n d t h e U . S . , b o t h f r e s h a n d f r o z e n . A t e l e p h o n e s u r v e y o f w h o l e s a l e r s i n d i c a t e d t h a t t h e c u r r e n t p r i c e f o r f r e s h s e a s c a l l o p a d d u c t o r s ( 5 0 - 1 0 0 p e r kg) i s a p p r o x i m a t e l y $ 1 7 . 5 0 / k g , r a n g i n g f r o m a p p r o x i m a t e l y $ 1 5 . 0 0 t o $ 2 0 . 0 0 ( T a b l e 6 ) . The p r i c e o f b a y o r c a l i c o s c a l l o p s (up t o 220 p e r k g ) i s $ 1 0 . 4 5 , r a n g i n g f r o m $ 8 . 7 0 t o $ 1 0 . 4 5 . W h o l e C h l a m y s s c a l l o p s , c a u g h t i n a l o c a l f i s h e r y , a r e a b o u t $ 6 . 6 0 / k g , r a n g i n g o v e r t h e y e a r f r o m $ 5 . 5 0 t o $ 7 . 7 0 / k g T a b l e 6). T a b l e 6. C u r r e n t V a n c o u v e r s c a l l o p p r i c e s . Whole C h l a m y s ( " S w i m m e r s " ) . W h o l e s a l e r C o n t a c t # /kg P r i c e / k g Range A l b i o n F i s h e r i e s S u s a n J a r d i n e 26 $ 6 . 6 0 $ 5 . 5 0 - 6 . 6 0 Man M i n g S e a f o o d s 26 $ 5 . 7 2 S e a p o r t C r o w n S t e v e B r o c k 26 $ 6 . 4 9 V a n c o u v e r S h e l l f i s h Howard S a f f r i c k 26 $ 6 . 6 0 $ 6 . 0 5 - 6 . 6 0 T o k e n S e a f o o d s G r e g N e l s o n $ 6 . 4 9 $ 6 . 0 5 - 7 . 7 0 S h u c k e d a d d u c t o r s - 1 0 0 t o 2 2 0 / k g ( B a y a n d c a l i c o s c a l l o p s ) W h o l e s a l e r C o n t a c t tt/kg P r i c e / k g Range A l b i o n F i s h e r i e s S u s a n J a r d i n e 220 $ 1 0 . 4 5 $ 8 . 6 9 - 1 0 . 4 5 L i o n s G a t e s m a l l $ 1 0 . 4 5 B l u n d e l l S e a f o o d s P h i l W i l l i a m s o n 1 7 5 - 2 2 0 ' $10 .12 $ 1 0 . 1 2 D a n d G S e a f o o d s J o h n W i l l c o t 1 3 0 - 1 7 5 $ 1 2 . 1 0 $ 8 . 2 5 - 1 2 . 1 0 S h u c k e d a d d u c t o r s - 5 0 t o 1 0 0 / k g ( S e a s c a l l o p s ) W h o l e s a l e r C o n t a c t # /kg P r i c e / k g Range A l b i o n F i s h e r i e s B l u n d e l l S e a f o o d s D a n d G S e a f o o d s S u s a n J a r d i n e 66 -88 P h i l W i l l i a m s o n 44 -88 J o h n W i l l c o t 66 -88 $ 1 7 . 4 9 $ 1 7 . 4 9 $ 1 7 . 8 2 $ 1 6 . 5 0 - 1 9 . 8 0 $ 1 8 . 1 5 $ 1 5 . 4 0 - 1 8 . 7 0 - 1 0 7 -A P P E N D I X C . COST DOCUMENTATION The c o s t o f o y s t e r s e e d a n d m i s c e l l a n e o u s c u l t u r e s y s t e m c o m p o n e n t c o s t s a r e d o c u m e n t e d b e l o w . C u r r e n t p r i c e s f r o m H o y l e I n d u s t r i e s f o r t w i s t e d 3 - s t r a n d p o l y e t h y l e n e r o p e a r e : D i a m e t e r ( m m ) R o l l ( m ) P r i c e ( $ / r o l l ) P r i c e ( $ / m ) 5 638 3 7 . 1 9 0 .06 6 366 37 . 80 0 . 1 0 8 366 5 6 . 7 6 0 . 1 6 10 366 8 8 . 2 0 . 2 4 13 366 1 4 2 . 0 8 0 . 39 16 366 2 2 6 . 8 8 0 . 6 2 19 366 307 .44 0 .84 25 366 5 1 7 . 0 8 1 . 4 1 Skcfry Bay Lai q u e t l Island B.C. VOR 2JO Canada phono: P a r k s v l l l e Mobile? CURRENT PRICES NOVEMUKR 19ST Innovative Aquaculture Products,u,i. product d e s c r i p t i o n u n i t case It l n p r i c e p r i c e c a s e OTSTRR LARVAE (eyed) per n i l l i o n 125. 00 LARGB SINGLE OYSTER SEED(40am] «/lb. a. 75 MEDIUM SINGLE OYSTER SEED (25mm] »/J b a. 75 SMALL SINGLE OYSTER SEED(15am] (/lb 15. 50 SEEDED OYSTER CULTCH BAGS a . oo FILTER BAGS (5 or 50 micron] to. 00 BONGO FILTERS ( £ 0 2 micron] ao. oo ALGAE PASTB (per gram) . 50 LANTERN NETS (lOcomp. ] IPmn 50. 00 125. 00 1 0 LANTERN NETS (10 corop. ) a 1 mm 10. 00 310. 00 10 LANTERN NETS (10 corop. ) 30mm 35. 00 897. 00 10 LANTERN NETS ( 5 corop. ) 9om 30. 00 510. 00 20 LANTERN NETS ( 5 comp. ) 1 anm 25. 00 425. 00 20 LANTBRH SETS ( 5 comp. ) a 1mm 25. 00 425. 00 a o LANTERN NETS 1 5 comp. ) 30mm 20. do 340. 00 20 "PfiAfiL NHT3~ ' 3rom 3. 00 510. 00 aoo PEAHI. NETS 4, 5mm 2. 50 485. 00 aoo PRASIT NETS 8mm 50 435. 00 aoo PKAHL NETS 'J nwn " 2._00 340. oo' aoo POCKET NETS (6 p o c K e t ) 24mm a. so POCKET NETS (6 p o c K e t ) 30mro 7. 00 ONION BAGS ( J a p a n e s e 3mm] "HBXIOAN BBSTTNG TRAY 1. 20 500. 00 500 1 1. 00 (on r e q u e s t ) • I I »>r I c • • m i * (|un t « 4 i n C a n a d i a n f u n d s , C O f ) . • • l a n d , u n l i t i o t f) • r a r r a n t j a a i a o t « a i • m a t l * torn i i x i u i t i • I I (ir k i i • 1 1 r - t , - . i t o c h a n g e w i t h o u t n o t t r i Our SHALL CULTCHLESS SINGLE o y s t e r seed-lings can be grown i n PEARL NETS or NESTING TRAYS w i t h screen l n trie bottom. They are 10-35mm, weigh 0.6gm a v e r a g e e a c h a n d I h e r e a r e about 770 per pound. T h i s seed costs about $20/1000 o CO I and are sold by the pound weight. Orders for t h i s product should be placed well i n advance as demand is h i g h and a 15X depo-s i t is r e q u i r e d on confirmed orders . - 109 -AQUACULTURE FLOTATION The FL068 and FL550 are proven products, designed specifically for the aqua-culture industry. Only virgin polyethylene is used in their manufacture. Durable one piece construction makes them tough and easy to handle. FEATURES: • Ready to Use • Reliable • Inexpensive • Impact Resistant • Will not deteriorate from: • Wear • Gasoline Attack • Infestation • Sunlight (U/V rays) X X X DIMENSIONS TOTAL BUOYANCY WORKING BUOYANCY 23" x 46" 570 lbs. 427 lbs. • PL550 available with c u s t o m e r 1.0 molded m. • -'<_550 suitable for use as *narr 'loatation. 1 6 " dia. 6 8 lbs. 51 lbs. rl_068 d e s i g n e d 'or use with scal lop aickup wheel s y s l e m FL068 a n d FL550 available n yellow or orange 'or use as marker b u o y s 1 rem LIMITCO WARRANTY ON ALL NORTHWEST PLASTICS LTO PRODUCTS. N O R T H W E S T P L A S T I C S L T D . 224 0 CAYER STREET, COQUITLAU. B.C. -110-P R I C E L I S T J A N U A R Y 1 . 1 5 L O N G L I N E F L O A T 5 QBPER Q U A N T I T Y I - 2*«t 2 5 © -5"©e - « W IOOO a n d o v f f njuo^e J -S O - <?9 j O O - 2*? 5i£>0 a n d o v e r q u o t e d P R I C E i 9-65" e^s upon request. *7i-35 e a . s • 2 5 ea. $57. I © e a . 95 e a . * # * F O E C O D ' J I T L A M , B . C . 5 S U B J E C T T O C H A N G E W I T H O U T N O T I C E . * A R E E X C L U S I V E O F A N Y A P P L I C A B L E T A X E S 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0097541/manifest

Comment

Related Items