Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The effects of slashburning on soil mineralizable nitrogen on two sites in the lower Fraser Valley Douglas, Mary-Jane 1989

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1989_A6_7 D68.pdf [ 7.38MB ]
Metadata
JSON: 831-1.0097456.json
JSON-LD: 831-1.0097456-ld.json
RDF/XML (Pretty): 831-1.0097456-rdf.xml
RDF/JSON: 831-1.0097456-rdf.json
Turtle: 831-1.0097456-turtle.txt
N-Triples: 831-1.0097456-rdf-ntriples.txt
Original Record: 831-1.0097456-source.json
Full Text
831-1.0097456-fulltext.txt
Citation
831-1.0097456.ris

Full Text

THE EFFECTS OF SLASHBURNING ON SOIL MINERALIZABLE NITROGEN ON TWO SITES IN THE LOWER FRASER VALLEY By MARY-JANE DOUGLAS B . S c , The U n i v e r s i t y o f A l b e r t a , 1979 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n THE FACULTY OF GRADUATE STUDIES (Department o f S o i l Science) We accept t h i s t h e s i s as conforming t o the r e q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA J u l y 1989 <Q Mary-Jane Douglas, 1989 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of <S&/ ( S<^?csi cut. The University of British Columbia Vancouver, Canada DE-6 (2/88) ABSTRACT The e f f e c t o f s l a s h b u r n i n g on s o i l m i n e r a l i z a b l e n i t r o g e n , expressed both as a c o n c e n t r a t i o n (MN) and on a kg ha"1 b a s i s (MNKG), was determined f o r a hardwood s i t e and a c o n i f e r s i t e i n the lower F r a s e r V a l l e y o f B r i t i s h Columbia. Burning appeared t o reduce both MN and MNKG i n the f o r e s t f l o o r o f the hardwood s i t e ; however, the r e l a t i v e p r o p o r t i o n o f MN t o t o t a l n i t r o g e n (TN) l o s t v a r i e d between the two p l o t s on t h i s s i t e . T h i s r e s u l t was a t t r i b u t e d t o a d i f f e r e n c e i n burnin g i n t e n s i t y a t the two l o c a t i o n s . R e s u l t s were a l s o s i m i l a r f o r the m i n e r a l s o i l , but d i f f e r e n c e s were not as d i s t i n c t . The s i t e was resampled i n the second y e a r and d i f f e r e n c e s between treatments were much l a r g e r . In the f o r e s t f l o o r o f the c o n i f e r s i t e , t he immediate e f f e c t of b u r n i n g was t o i n c r e a s e MN but decrease MNKG. MN decreased by the end of the f i r s t month a f t e r b u r n i n g , d u r i n g which a s u b s t a n t i a l amount o f r a i n f e l l . In the m i n e r a l s o i l , d i f f e r e n c e s between the two sampling p e r i o d s were not so d i s t i n c t . T o t a l n i t r o g e n (TN), o r g a n i c carbon (OC), and the pH measured i n both water (pHH) and i n CaC l2 (pHC) were a l s o measured t o determine i f any l i n e a r r e l a t i o n s h i p e x i s t e d between these s o i l v a r i a b l e s and m i n e r a l i z a b l e n i t r o g e n . TN showed a c o n s i s t e n t s i g n i f i c a n t l i n e a r c o r r e l a t i o n w i t h MN, w h i l e the ot h e r s o i l v a r i a b l e s d i d n o t . The decrease i n MN on these two s i t e s f o l l o w i n g b u r n i n g has s i g n i f i c a n t i m p l i c a t i o n s f o r r e g e n e r a t i n g these s i t e s . i i i TABLE OF CONTENTS Page ABSTRACT i i TABLE OF CONTENTS i i i LIST OF TABLES '.. V LIST OF FIGURES . v i i LIST OF APPENDICES v i i i LIST OF ABBREVIATIONS i x ACKNOWLEDGEMENTS . X INTRODUCTION 1 EFFECTS OF BURNING ON SOIL NITROGEN ...10 E f f e c t s of Burning on T o t a l N i t r o g e n 10 E f f e c t s o f Burning on " A v a i l a b l e " N i t r o g e n 14 E f f e c t s o f Burning on M i n e r a l i z a b l e N i t r o g e n 18 SITE 1 METHODS (Vedder Mountain Hardwood S i t e ) 22 S i t e S e l e c t i o n and D e s c r i p t i o n 22 Pre-Burn Sampling 25 Method o f Burning 30 Post-Burn Sampling 32 Sampling i n Second Year . 35 Lab o r a t o r y A n a l y s i s 35 S t a t i s t i c a l Methods 38 SITE 1 RESULTS AND DISCUSSION (Vedder Mountain Hardwood S i t e ) . . 4 1 Immediate E f f e c t s o f Burning on the F o r e s t F l o o r 41 Immediate E f f e c t s o f Burning on the M i n e r a l S o i l 47 D i f f e r e n c e s between Treatments i n the F o r e s t F l o o r i n t he Second Year 53 D i f f e r e n c e s between Treatments i n the M i n e r a l S o i l i n t he Second Year.... ..59 Summary 65 SITE 2 METHODS (M i s s i o n Tree Farm C o n i f e r S i t e ) 66 S i t e S e l e c t i o n and D e s c r i p t i o n . 66 Pre-Burn Sampling 67 Method o f Burning 71 Post-Burn Sampling ...71 One-Month Post-Burn Sampling 72 i v Page Laboratory Analysis 73 S t a t i s t i c a l Analysis 75 SITE 2 RESULTS AND DISCUSSION (Mission Tree Farm Conifer Site).78 Forest Floor 78 Mineral S o i l 84 Summary 89 SUMMARY AND CONCLUSIONS 91 RECOMMENDATIONS 93 LITERATURE CITED 94 V LIST OF TABLES Page Tabl e 1 F u e l Loading of Vedder Mountain Hardwood S i t e 28 Tab l e 2 Vedder Mountain F o r e s t F l o o r S t a t i s t i c s (Year 1) 42 T a b l e 3 Ranking of P l o t s o f Vedder Mountain F o r e s t F l o o r i n Year 1 43 Tab l e 4 Percentage D i f f e r e n c e s between Treatments i n the F o r e s t F l o o r i n Year 1 44 T a b l e 5 Spearman C o r r e l a t i o n C o e f f i c i e n t s f o r the F o r e s t F l o o r i n Year 1 44 T a b l e 6 Vedder Mountain M i n e r a l S o i l S t a t i s t i c s (Year 1) 48 Tab l e 7 Ranking of P l o t s o f Vedder Mountain M i n e r a l S o i l i n Year 1 49 T a b l e 8 Percentage D i f f e r e n c e s between Treatments i n the M i n e r a l S o i l i n Year 1 50 T a b l e 9 Spearman C o r r e l a t i o n C o e f f i c i e n t s f o r the M i n e r a l S o i l i n Year 1 50 Tab l e 10 Vedder Mountain F o r e s t F l o o r S t a t i s t i c s (Year 2) . 54 Tab l e 11 Ranking o f P l o t s o f Vedder Mountain F o r e s t F l o o r i n Year 2 55 T a b l e 12 Percentage D i f f e r e n c e s between Treatments i n the F o r e s t F l o o r i n Year 2 56 T a b l e 13 Spearman C o r r e l a t i o n C o e f f i c i e n t s f o r the F o r e s t F l o o r i n Year 2 56 T a b l e 14 Vedder Mountain M i n e r a l S o i l S t a t i s t i c s (Year 2) 60 T a b l e 15 Ranking of P l o t s o f Vedder Mountain M i n e r a l S o i l i n Year 2 61 T a b l e 16 Percentage D i f f e r e n c e s between Treatments i n the M i n e r a l S o i l i n Year 2 62 T a b l e 17 Spearman C o r r e l a t i o n C o e f f i c i e n t s f o r the M i n e r a l S o i l i n Year 2 62 v i Page Table 18 M i s s i o n Tree Farm F u e l Loading and Consumption 69 Ta b l e 19 Comparison of M i s s i o n f o r e s t f l o o r data c o l l e c t e d d u r i n g t h r e e c o n s e c u t i v e days w i t h v a r y i n g amounts of r a i n f a l l (p-values) 77 Ta b l e 20 Comparison o f M i s s i o n m i n e r a l s o i l d ata c o l l e c t e d d u r i n g t h r e e c o n s e c u t i v e days w i t h v a r y i n g amounts of r a i n f a l l (p-values) 77 Table 21 M i s s i o n Tree Farm F o r e s t F l o o r S t a t i s t i c s 79 Table 22 M i s s i o n Tree Farm F o r e s t F l o o r Rankings 80 Ta b l e 23 Percentage D i f f e r e n c e s between Sample Groups i n the F o r e s t F l o o r 81 Ta b l e 24 Spearman C o r r e l a t i o n C o e f f i c i e n t s f o r the F o r e s t F l o o r 81 Table 25 M i s s i o n Tree Farm M i n e r a l S o i l S t a t i s t i c s 85 Table 26 M i s s i o n Tree Farm M i n e r a l S o i l Rankings 86 Ta b l e 27 Percentage D i f f e r e n c e s between Sample Groups i n the M i n e r a l S o i l 87 Ta b l e 28 Spearman C o r r e l a t i o n C o e f f i c i e n t s f o r the M i n e r a l S o i l — 87 v i i LIST OF FIGURES Page Figure 1 Location of Study Sites 23 v i i i LIST OF APPENDICES Page APPENDIX 1 S o i l D e s c r i p t i o n s f o r S i t e 1 101 APPENDIX 2 L i s t o f V e g e t a t i o n on S i t e 1 105 APPENDIX 3 C a l c u l a t i o n o f F u e l Loading on S i t e 1 107 APPENDIX 4 Comparison o f Treatment Means 109 APPENDIX 5 Vedder Mountain F o r e s t F l o o r Data (Year 1) 110 APPENDIX 6 Vedder Mountain M i n e r a l S o i l Data (Year 1) 112 APPENDIX 7 Vedder Mountain F o r e s t F l o o r Data (Year 2) 114 APPENDIX 8 Vedder Mountain M i n e r a l S o i l Data (Year 2) 116 APPENDIX 9 S o i l D e s c r i p t i o n f o r S i t e 2 118 APPENDIX 10 L i s t o f V e g e t a t i o n on S i t e 2 119 APPENDIX 11 C a l c u l a t i o n of M i s s i o n Tree Farm F u e l Loading 12 6 APPENDIX 12 M i s s i o n Tree Farm F o r e s t F l o o r Data 127 APPENDIX 13 M i s s i o n Tree Farm M i n e r a l S o i l Data 128 ix LIST OF ABBREVIATIONS BUI Buildup Index CKG Organic carbon (kg ha"1) C/N Organic carbon to t o t a l nitrogen r a t i o DC Drought Code DMC Duff Moisture Code FFMC Fine Fuel Moisture Code FWI F i r e Weather Index ISI I n i t i a l Spread Index MN Anaerobic mineralizable nitrogen (mg kg"1) MNKG Anaerobic mineralizable nitrogen (kg ha"1) MN/TN Anaerobic mineralizable nitrogen to t o t a l nitrogen r a t i o (%) OC Organic carbon (%) pHC pH measured i n 0.01 M CaCl 2 pHH pH measured i n d i s t i l l e d water TN Total nitrogen (%) TNKG Total nitrogen (kg ha"1) X ACKNOWLEDGEMENTS I would l i k e t o thank Mr. Ted Holtby o f Cattermole Timber L t d . f o r the i n i t i a l encouragement t o undertake t h i s s t u d y . I would l i k e t o acknowledge the f i n a n c i a l support o f the Canadian F o r e s t S e r v i c e , the B.C. M i n i s t r y o f F o r e s t s , and B r i t i s h Columbia F o r e s t Products L t d . The a d v i c e and a s s i s t a n c e i n the l a b o r a t o r y was p r o v i d e d by E v e l i n e W olterson, Rosemary Lowe, P a t t i C a r b i s , and J u l i e L a n s i q u o t . The a s s i s t a n c e o f C a r o l P r i c e - C h a r l a n d and Mike Curran i n the f i e l d i s a l s o g r a t e f u l l y a p p r e c i a t e d . A d v i c e w i t h s t a t i s t i c a l a n a l y s i s was p r o v i d e d by Dr. Hans S c h r e i e r , R e i d C a r t e r , and Pet e r Schumaker, P i n g Mah, and L i s a Kan of the S t a t i s t i c a l C o n s u l t i n g and Research L a b o r a t o r y . The guidance and support o f my t h e s i s s u p e r v i s o r , Dr. T. M. B a l l a r d i s g r a t e f u l l y acknowledged. I would a l s o l i k e t o thank my committee members, Dr. L. M. L a v k u l i c h , Dr. L. E. Lowe, and Dr. Hans S c h r e i e r f o r t h e i r v a l u a b l e a d v i c e throughout t h i s study. The a d v i c e and support o f Sherry Ulansky, Wayne Temple, and Chuck Bulmer, i n a d d i t i o n t o numerous o t h e r f e l l o w graduate s t u d e n t s , i s a l s o g r a t e f u l l y a p p r e c i a t e d . I. would l i k e t o g i v e s p e c i a l thanks t o my p a r e n t s , Margaret and E a r l Rasmussen f o r t h e i r support and encouragement throughout my graduate program. F i n a l l y , I would a l s o l i k e t o acknowledge my dear f r i e n d , Anxious Moments, whose f r i e n d s h i p p r o v i d e d the i n c e n t i v e t o complete t h i s program. 1 INTRODUCTION S l a s h b u r n i n g i s an important management t o o l used i n B r i t i s h Columbia t o remove s l a s h f o l l o w i n g a l o g g i n g o p e r a t i o n , and on some s i t e s , t o reduce the depth o f f o r e s t f l o o r . F e l l e r (1982) o u t l i n e s o t h e r uses f o r t h i s management t o o l such as t o decrease the r i s k o f f i r e h a z a r d , t o f a c i l i t a t e the r e g e n e r a t i o n o f a s i t e , t o induce a set-back i n competing v e g e t a t i o n , t o h e l p e l i m i n a t e i n s e c t or d i s e a s e problems, and t o enhance g r a z i n g p o t e n t i a l o f an a r e a . However, one of the problems a s s o c i a t e d w i t h b u r n i n g i s the removal o f a s u b s t a n t i a l p o r t i o n o f the s i t e n i t r o g e n , e i t h e r by v o l a t i l i z a t i o n o r by subsequent m i n e r a l i z a t i o n and l e a c h i n g . There has been some concern t h a t burning may e v e n t u a l l y d e p l e t e s i t e n i t r o g e n , and reviews by Ahl g r e n and Ahl g r e n (1960), Raison (1979), and Wells e t a l . (1979) i n d i c a t e t h e r e have been many s t u d i e s which have r e p o r t e d the e f f e c t s o f burnin g on t h i s s o i l n u t r i e n t . These reviews a l s o show r e s u l t s r e p o r t e d i n the l i t e r a t u r e t o be c o n t r a d i c t o r y , depending upon the type o f s i t e , the i n t e n s i t y of the burn, and the depth o f sampling. R e s u l t s r e p o r t e d f o r the f o r e s t f l o o r a l s o o f t e n d i f f e r from those r e p o r t e d f o r t h e m i n e r a l s o i l . Much o f the r e s e a r c h has ce n t e r e d around the e f f e c t s of bu r n i n g on t o t a l n i t r o g e n . However, t o t a l n i t r o g e n i s not thought o f as a good measure of the a c t u a l n i t r o g e n a v a i l a b l e f o r p l a n t uptake (Bremner 1965). T h e r e f o r e , some r e s e a r c h has a l s o s t u d i e d 2 the e f f e c t s o f f i r e on the " a v a i l a b l e " form o f n i t r o g e n . The methods used t o determine t h i s " a v a i l a b l e " form o f n i t r o g e n u s u a l l y i n v o l v e e i t h e r the use of i n d i c a t o r p l a n t s t o determine n i t r o g e n uptake from these burned s o i l s o r the d e t e r m i n a t i o n o f exchangeable ammonium. The drawback of u s i n g exchangeable ammonium as a measure of " a v a i l a b l e " n i t r o g e n i s t h a t i t does not r e p r e s e n t the n i t r o g e n t h a t may be p o t e n t i a l l y a v a i l a b l e f o r p l a n t uptake i n the longer term. S e v e r a l i n c u b a t i o n techniques have been developed t o determine t h i s " p o t e n t i a l l y a v a i l a b l e " n i t r o g e n o r " m i n e r a l i z a b l e " n i t r o g e n as i t i s a l s o c a l l e d . The a e r o b i c i n c u b a t i o n method, d e s c r i b e d by Bremner (1965), i n v o l v e s i n c u b a t i n g a sample a t a temperature between 25°C and 35°C f o r a p e r i o d o f 14 days, w h i l e m a i n t a i n i n g i t at approximately 40% t o 60% of i t s moisture h o l d i n g c a p a c i t y . The c o n c e n t r a t i o n s o f NH4-N and N03-N are measured f o l l o w i n g i n c u b a t i o n . A m o d i f i c a t i o n o f t h i s method was developed by S t a n f o r d and Smith (1972) who incubated samples f o r 30 weeks. During t h i s p e r i o d , t h e samples were p e r i o d i c a l l y leached u s i n g 0.01 M CaCl2 and a "minus-N" s o l u t i o n . C o n c e n t r a t i o n s o f NH4-N and N03-N i n the l e a c h a t e s were then measured and a " n i t r o g e n m i n e r a l i z a t i o n p o t e n t i a l " was c a l c u l a t e d f o r each sample. S t a n f o r d (1982) f e l t t h i s method more c l o s e l y r e p r e s e n t e d the long-term c a p a c i t y o f the s o i l t o supply n i t r o g e n f o r p l a n t uptake. However, the major drawback o f t h i s method i s the lo n g time p e r i o d r e q u i r e d f o r the i n c u b a t i o n . 3 An a n a e r o b i c i n c u b a t i o n method was developed by Waring and Bremner (1964), and i n v o l v e s i n c u b a t i n g samples under waterlogged c o n d i t i o n s a t 30°C f o r a p e r i o d o f two weeks. S e v e r a l advantages o f t h i s method i n c l u d e : 1) the need f o r d e t e r m i n i n g the moisture-h o l d i n g c a p a c i t y o f a sample i s e l i m i n a t e d , 2) m i n e r a l i z a t i o n i s g e n e r a l l y more r a p i d under anaerobic c o n d i t i o n s and t h e r e f o r e a one-week i n c u b a t i o n p e r i o d may be adequate, and 3) o n l y ammonium-n i t r o g e n need be measured s i n c e , under an a e r o b i c c o n d i t i o n s , l i t t l e o r no n i t r a t e should be produced. M o d i f i c a t i o n s of these i n c u b a t i o n methods have a l s o been used i n the f i e l d (Van Praag and Weissen 1973, Popovic 1980, Powers 1980). A sample i s c o l l e c t e d and p l a c e d i n a p l a s t i c bag f o l l o w i n g the removal of p l a n t r o o t s . The sample i s then b u r i e d and i n c u b a t e d f o r a p e r i o d of time f o l l o w i n g which the amount of n i t r o g e n m i n e r a l i z e d i s determined. S e v e r a l s t u d i e s have been c a r r i e d out t o determine the c o r r e l a t i o n between these i n c u b a t i o n methods. Waring and Bremner (1964) found a c l o s e r e l a t i o n s h i p between r e s u l t s o b t a i n e d w i t h the a n a e r o b i c i n c u b a t i o n method and w i t h the a e r o b i c i n c u b a t i o n procedure u s i n g 39 Black E a r t h s o i l s from D a r l i n g Downs, Queensland. Keeney and Bremner (1966) found a h i g h e r c o r r e l a t i o n f o r c u l t i v a t e d Iowa s o i l s data between an a e r o b i c i n c u b a t i o n at 30°C f o r 14 days and an anaerobic i n c u b a t i o n a t 40°C f o r 7 days, than between an a e r o b i c and anaerobic i n c u b a t i o n a t 30°C f o r 14 days. 4 The need f o r r e l a t i n g these procedures t o p l a n t uptake i s important i f they are t o be used as an index of n i t r o g e n a v a i l a b i l i t y . Keeney and Bremner (1966) found a good c o r r e l a t i o n between samples incubated e i t h e r a e r o b i c a l l y f o r 14 days a t 30°C or a n a e r o b i c a l l y f o r 7 days a t 40°C and n i t r o g e n uptake by Lolium  m u l t i f l o r u m (common r y e g r a s s ) . L a t h w e l l e t a l . (1972) found a s i g n i f i c a n t c o r r e l a t i o n between n i t r o g e n m i n e r a l i z e d a e r o b i c a l l y a t 24°C f o r 16 weeks and N uptake by corn p l a n t s i n t r o p i c a l s o i l s . However, Fox and P i e k i e l e k (1984) found a poor c o r r e l a t i o n between m i n e r a l i z a b l e n i t r o g e n f o l l o w i n g a 7-day an a e r o b i c i n c u b a t i o n and n i t r o g e n a v a i l a b i l i t y measured i n the f i e l d . Reviews by Bremner (1965), Keeney (1980), Keeney (1982), and S t a n f o r d (1982) summarize ot h e r s t u d i e s which have determined the u s e f u l n e s s o f these i n c u b a t i o n procedures f o r p r e d i c t i n g a v a i l a b l e s o i l n i t r o g e n i n a g r i c u l t u r a l s o i l s . S t u d i e s have a l s o determined the u s e f u l n e s s o f these methods f o r p r e d i c t i n g n i t r o g e n a v a i l a b i l i t y i n f o r e s t s o i l s . Z o t t l (1960) found a c l o s e c o r r e l a t i o n between the n i t r o g e n m i n e r a l i z e d d u r i n g a 6-week a e r o b i c i n c u b a t i o n and the n i t r o g e n content of spruce and p i n e needles i n B a v a r i a . He a l s o found a good c o r r e l a t i o n between n i t r o g e n m i n e r a l i z e d and the s i t e index of p i n e and spruce stands a t 100 y e a r s . Van Praag and Weissen (1973) found d i f f e r e n c e s i n the n i t r o g e n m i n e r a l i z a t i o n r a t e s of beechwood and spruce o r g a n i c l a y e r s when samples were incubated a e r o b i c a l l y f o r 6 weeks e i t h e r i n the l a b o r a t o r y or i n the f i e l d . 5 The a n a e r o b i c i n c u b a t i o n method has been used s u c c e s s f u l l y i n the P a c i f i c Northwest t o p r e d i c t the response o f Pseudotsuqa  m e n z i e s i i (Mirb.) Franco ( D o u g l a s - f i r ) t o n i t r o g e n f e r t i l i z a t i o n . Shumway and A t k i n s o n (1978) found no response t o f e r t i l i z a t i o n when m i n e r a l i z a b l e n i t r o g e n v a l u e s (obtained u s i n g the anaerobic i n c u b a t i o n technique) were g r e a t e r than 46 ppm. Powers (1980) a l s o used the anae r o b i c i n c u b a t i o n method t o determine the c o r r e l a t i o n between m i n e r a l i z a b l e n i t r o g e n and s i t e p r o d u c t i v i t y o f Pinus  ponderosa Laws, (ponderosa pine) stands on v o l c a n i c , m e t a v o l c a n i c , and metasedimentary s o i l s i n n o r t h e r n C a l i f o r n i a . He found a s i g n i f i c a n t c o r r e l a t i o n f o r a mesic temperature range when v a l u e s f o r m i n e r a l i z a b l e n i t r o g e n ranged between 0 and 12 ppm. He a l s o found t h a t m i n e r a l i z a b l e n i t r o g e n v a l u e s , determined u s i n g the ana e r o b i c method, were r e l a t e d t o c o n c e n t r a t i o n s o f n i t r o g e n i n the f o l i a g e o f r e c e n t l y matured ponderosa p i n e and Pinus i e f f r e y i Grev. & B a l f . ( J e f f r e y pine) n e e d l e s . C o r r e l a t i o n s between the i n c u b a t i o n methods have a l s o been s t u d i e d i n f o r e s t s o i l s . Van Praag and Weissen (1973) found v a l u e s f o r m i n e r a l i z a b l e n i t r o g e n from a 6-week a e r o b i c i n c u b a t i o n i n the l a b o r a t o r y were s i m i l a r t o those o b t a i n e d f o r an a e r o b i c i n c u b a t i o n i n t h e f i e l d i n a spruce s t a n d . Powers (1980) found the v a l u e s f o r n i t r o g e n m i n e r a l i z e d from an anaerobic i n c u b a t i o n a t 30°C f o r 14 days t o be c l o s e l y c o r r e l a t e d w i t h r e s u l t s f o r an anaerobic i n c u b a t i o n i n the f i e l d . However, he c a u t i o n s t h a t f i e l d temperatures must be c o n s i d e r e d when i n t e r p r e t a t i n g r e s u l t s o f the 6 l a b o r a t o r y i n c u b a t i o n . He a l s o found s i m i l a r r e s u l t s f o r samples inc u b a t e d a n a e r o b i c a l l y a t 30°C f o r 14 days t o those incubated a n a e r o b i c a l l y a t 40°C f o r 7 days. Smith e t a l . (1981) found a l i n e a r r e l a t i o n s h i p between an a e r o b i c i n c u b a t i o n and an anaerobic i n c u b a t i o n c a r r i e d out a t 35°C f o r e i t h e r 7 or 14 days i n both a g r i c u l t u r a l and f o r e s t s o i l s from Washington s t a t e . However, a poor c o r r e l a t i o n was found between the 7-day and the 14-day i n c u b a t i o n r e s u l t s w i t h t h e f o r e s t s o i l s . S e v e r a l problems are a s s o c i a t e d w i t h t h e s e i n c u b a t i o n p r o c e d u r e s . A f l u s h o f m i n e r a l i z a t i o n may occur f o l l o w i n g r e w e t t i n g o f a i r - d r i e d s o i l s ( B i r c h 1960, 1964, Stevenson 1956, S o u l i d e s and A l l i s o n 1961, B a r t l e t t and James 1980). D r y i n g may r e s u l t i n the decrease o f some s o i l m i c r o b i a l p o p u l a t i o n s , w h i l e o t h e r s may be l e s s a f f e c t e d . The t u r n o v e r o f m i c r o b i a l biomass, i n a d d i t i o n t o the r e l e a s e o f f r e e amino a c i d s upon d r y i n g , may r e s u l t i n a supply o f r e a d i l y a v a i l a b l e m a t e r i a l , thus a l l o w i n g f o r an i n c r e a s e i n the remaining m i c r o b i a l p o p u l a t i o n s (Stevenson 1956). Keeney and Bremner (1966) compared d i f f e r e n c e s i n m i n e r a l i z a b l e n i t r o g e n v a l u e s f o r f i e l d - m o i s t samples and a i r - d r i e d samples u s i n g t h r e e d i f f e r e n t i n c u b a t i o n methods. S o i l s were incubated a e r o b i c a l l y f o r 14 days a t 30°C, a n a e r o b i c a l l y f o r 14 days a t 30°C, and a n a e r o b i c a l l y f o r 7 days a t 40°C. R e s u l t s showed g r e a t e r amounts of m i n e r a l i z a b l e n i t r o g e n were produced i n the a i r -d r i e d s o i l s than the f i e l d - m o i s t s o i l s when inc u b a t e d under e i t h e r a e r o b i c c o n d i t i o n s o r anaerobic c o n d i t i o n s a t 30°C f o r 14 days. However, under anaerobic c o n d i t i o n s a t 40°C f o r 7 days, s l i g h t l y l e s s n i t r o g e n was m i n e r a l i z e d i n the a i r - d r i e d samples than i n the f i e l d - m o i s t samples. The l e n g t h o f time the a i r - d r i e d sample remains i n s t o r a g e may a l s o a f f e c t the amount o f n i t r o g e n m i n e r a l i z e d d u r i n g an i n c u b a t i o n . B i r c h (1960) found i n c r e a s i n g amounts o f n i t r o g e n m i n e r a l i z e d w i t h i n c r e a s i n g time i n s t o r a g e . Keeney and Bremner (1966) found n i t r o g e n m i n e r a l i z a t i o n i n c r e a s e d w i t h i n c r e a s i n g time i n s t o r a g e f o r t h e i r t h r e e i n c u b a t i o n procedures up t o a p e r i o d of 24 weeks. Beyond t h i s t i me, f u r t h e r i n c r e a s e s i n m i n e r a l i z a b l e n i t r o g e n were found when samples were incubated a e r o b i c a l l y a t 30°C f o r 2 weeks w h i l e decreases o c c u r r e d when samples were incubated a n a e r o b i c a l l y e i t h e r f o r 2 weeks a t 30°C or f o r 1 week a t 40°C. C o r n f i e l d (1964) found no d i f f e r e n c e i n amount of m i n e r a l i z a b l e n i t r o g e n between samples s t o r e d e i t h e r one week or 12 weeks. Powers (1980) found t h a t , by i n c l u d i n g the i n i t i a l e x t r a c t a b l e ammonium as p a r t o f the m i n e r a l n i t r o g e n c o n s i d e r e d p o t e n t i a l l y a v a i l a b l e , samples c o u l d be s t o r e d f o r up t o a year w i t h no change i n m i n e r a l i z a b l e n i t r o g e n . Powers (1984) showed the amount of e x t r a c t a b l e ammonium tends t o i n c r e a s e over time w h i l e the n i t r o g e n m i n e r a l i z e d d u r i n g i n c u b a t i o n d e c r e a s e s . However, the t o t a l amount o f m i n e r a l n i t r o g e n d i d not change s i g n i f i c a n t l y . T h e r e f o r e , he recommends i n c l u d i n g t h i s i n i t i a l e x t r a c t a b l e ammonium as p a r t o f the p o t e n t i a l l y m i n e r a l i z a b l e n i t r o g e n t o reduce the e f f e c t o f sample p r e t r e a t m e n t . 8 Time o f y e a r of sampling may a l s o a f f e c t the amount of n i t r o g e n m i n e r a l i z e d d u r i n g an i n c u b a t i o n . E l l i s (1974) s t u d i e d the changes i n m i n e r a l i z a b l e n i t r o g e n over time i n m i n e r a l s o i l c o l l e c t e d from a woodlot of Acer saccharum Marsh (sugar maple), a p l a n t a t i o n o f Pinus r e s i n o s a A i t . (red pine) and Pinus strobus L. ( e a s t e r n white p i n e ) , a c u l t i v a t e d p a s t u r e , and an abandoned a g r i c u l t u r a l f i e l d . He found more p r o d u c t i o n o f m i n e r a l i z a b l e n i t r o g e n d u r i n g the s p r i n g f o l l o w i n g snowmelt f o l l o w e d by a d e c l i n e d u r i n g the p e r i o d o f v e g e t a t i v e growth. A s i m i l a r peak o c c u r r e d i n t h e autumn d u r i n g the p e r i o d of v e g e t a t i v e senescence. Powers (1984) a l s o found seasonal v a r i a t i o n i n m i n e r a l i z a b l e n i t r o g e n w i t h v a r i a t i o n i n s o i l temperature. These i n c u b a t i o n procedures have r e c e n t l y been used t o determine th e e f f e c t s o f b u r n i n g on m i n e r a l i z a b l e n i t r o g e n . Burger and P r i t c h e t t (1984) s t u d i e d the d i f f e r e n c e s i n m i n e r a l i z a b l e n i t r o g e n f o l l o w i n g b u r n i n g , i n combination w i t h o t h e r s i t e p r e p a r a t i o n t e c h n i q u e s . Vance and Henderson (1984) s t u d i e d the e f f e c t s o f long-term burn i n g on m i n e r a l i z a b l e n i t r o g e n . Both of t h e s e s t u d i e s used m o d i f i c a t i o n s of the a e r o b i c i n c u b a t i o n t e c h n i q u e . To d a t e , no r e s u l t s have been r e p o r t e d on the e f f e c t s of b u r n i n g on m i n e r a l i z a b l e n i t r o g e n determined by the anaerobic i n c u b a t i o n technique developed by Waring and Bremner (1964). The purpose of t h i s study was t h e r e f o r e t o determine the e f f e c t s of s l a s h b u r n i n g on m i n e r a l i z a b l e n i t r o g e n u s i n g the anaerobic 9 i n c u b a t i o n t e c h n i q u e . The study was s e t up as an e x p l o r a t o r y study which may s e r v e as a b a s i s f o r f u r t h e r s t u d i e s . The problems of sample pretreatment were acknowledged but c o n s i d e r e d o f minor importance as a l l samples were t r e a t e d i n a s i m i l a r f a s h i o n . A l s o , the i n c u b a t i o n method was used merely as a comparison between t r e a t m e n t s . Two s i t e s were chosen f o r t h i s s t u d y . The f i r s t s i t e supported a stand o f hardwoods and was p a r t o f a " r e h a b i l i t a t i o n " p r o j e c t t o c o n v e r t the stand t o a p l a n t a t i o n o f c o n i f e r s . T h i s i n v o l v e d s l a s h i n g t h e hardwoods and b u r n i n g t h e s i t e under h o t , summer c o n d i t i o n s i n an attempt t o s e t back any competing v e g e t a t i o n . The s i t e appeared t o have a medium r a t e of decomposition as shown by the moder humus form. The second s i t e o r i g i n a l l y supported a stand o f c o n i f e r s , and had been logged the year p r i o r t o b u r n i n g . The purpose f o r burning t h i s s i t e was t o prepare the s i t e f o r p l a n t i n g and t o reduce the depth o f f o r e s t f l o o r . The mor humus form i n d i c a t e d a slow r a t e o f decomposition on t h i s s i t e . The q u e s t i o n s t o be answered by t h i s study were as f o l l o w s : 1) how d i d b u r n i n g a f f e c t s o i l m i n e r a l i z a b l e n i t r o g e n on a) a hardwood s i t e w i t h a moderate decomposition r a t e and on b) a c o n i f e r s i t e w i t h a much slower r a t e of decomposition, 2) what are the d i f f e r e n c e s between treatments a f t e r a p e r i o d o f t i m e , and 3) how d i d o t h e r s o i l v a r i a b l e s r e l a t e t o these changes i n m i n e r a l i z a b l e n i t r o g e n w i t h burning? 10 EFFECTS OF BURNING ON SOIL NITROGEN E f f e c t s o f Burning on T o t a l N i t r o g e n Many s t u d i e s have c o n c e n t r a t e d on the e f f e c t s o f burnin g on t o t a l n i t r o g e n , p a r t i c u l a r l y i n the m i n e r a l s o i l , and r e s u l t s r e p o r t e d are o f t e n c o n t r a d i c t o r y . A u s t i n and B a i s i n g e r (1955) found a 67% decrease i n the c o n c e n t r a t i o n o f t o t a l n i t r o g e n i n the top 2 in c h e s (5 cm) of m i n e r a l s o i l f o l l o w i n g the bu r n i n g o f c o a s t a l s i t e s i n Oregon. Two years l a t e r , the c o n c e n t r a t i o n o f t o t a l n i t r o g e n had i n c r e a s e d but was s t i l l o n l y 75% o f the o r i g i n a l c o n t r o l . Samples taken a t the 2 i n c h (5 cm) depth and the 6 t o 12 i n c h (15 t o 30 cm) depth showed l e s s d i f f e r e n c e between the c o n t r o l and burned p l o t s . T a r r a n t (1956) r e p o r t e d p r e l i m i n a r y r e s u l t s of a study i n the D o u g l a s - f i r r e g i o n which i n d i c a t e d t h a t t o t a l n i t r o g e n content o f the mi n e r a l s o i l was g r e a t l y reduced by severe b u r n i n g . S t . John and Rundel (1976) s t u d i e d a Sequoiadendron  gicfanteum ( L i n d l . ) Buchholz ( g i a n t sequoia) s i t e i n northern C a l i f o r n i a and found a decrease i n the t o t a l n i t r o g e n c o n c e n t r a t i o n of the top 10 cm of m i n e r a l s o i l w i t h b u r n i n g . They a t t r i b u t e d t h i s l o s s t o the v o l a t i l i z a t i o n o f the n i t r o g e n . Adams and Boyle (1980), however, found i n c r e a s e s i n t o t a l n i t r o g e n i n t h e top 24 cm of mi n e r a l s o i l f o l l o w i n g the bu r n i n g of a Quercus ru b r a L. (northern r e d oak) and Populus g r a n d i d e n t a t a Michx. ( b i g t o o t h aspen) stand i n M i c h i g a n . There was a f u r t h e r i n c r e a s e i n t o t a l n i t r o g e n c o n c e n t r a t i o n over the next two months which they a t t r i b u t e d e i t h e r t o the downward t r a n s l o c a t i o n of o r g a n i c compounds along a temperature g r a d i e n t d u r i n g the burn, or t o the n i t r o g e n f i x a t i o n r e p o r t e d by Jorgensen and W e l l s (1971). K o v a c i c e t a l . (1986) found no s i g n i f i c a n t d i f f e r e n c e s i n t o t a l n i t r o g e n i n the top 5 cm of the m i n e r a l s o i l w i t h the burning of a ponderosa p i n e s i t e i n New Mexico. Other s t u d i e s have r e p o r t e d r e s u l t s o f changes i n t o t a l n i t r o g e n w i t h b u r n i n g i n both the f o r e s t f l o o r and the m i n e r a l s o i l . R e s u l t s a g a i n appeared v a r i a b l e . Beaton (1959) found a decrease i n t o t a l n i t r o g e n c o n c e n t r a t i o n f o l l o w i n g b u r n i n g of an 0 h o r i z o n c o l l e c t e d from a D o u g l a s - f i r stand i n the southern I n t e r i o r o f B r i t i s h Columbia. However, changes i n the m i n e r a l s o i l were v a r i a b l e . DeByle (1976) found s i m i l a r r e s u l t s f o r a D o u g l a s - f i r / L a r i x o c c i d e n t a l i s N u t t . (western l a r c h ) s i t e i n the n o r t h e r n Rocky Mountains. More than a t h i r d o f the n i t r o g e n i n the f o r e s t f l o o r was removed by b u r n i n g and a f u r t h e r decrease o c c u r r e d over the f o l l o w i n g y e a r , which he a t t r i b u t e d t o l e a c h i n g and e r o s i o n o f t h i s s o i l l a y e r . However, the top 10 cm o f m i n e r a l s o i l showed l i t t l e change immediately f o l l o w i n g b u r n i n g and over the f o l l o w i n g y e a r . G r i e r (1975) s t u d i e d the e f f e c t s o f the E n t i a t w i l d f i r e and found a decrease i n the n i t r o g e n content o f both the f o r e s t f l o o r and the m i n e r a l s o i l . As compared t o an adjacent unburned a r e a , o n l y 3% o f the n i t r o g e n remained i n t h e f o r e s t f l o o r f o l l o w i n g b u r n i n g and o n l y 2/3 of the n i t r o g e n remained i n the m i n e r a l s o i l . 12 W e l l s (1971) s t u d i e d the e f f e c t s o f long-term b u r n i n g on s i t e s i n t he South C a r o l i n a C o a s t a l P l a i n . S e v e r a l b u r n i n g regimes were s t u d i e d i n c l u d i n g an unburned c o n t r o l , p e r i o d i c w i n t e r and summer burns which were burned f o u r times i n 20 y e a r s , and annual wint e r and summer bur n s . T o t a l n i t r o g e n decreased i n the f o r e s t f l o o r w i t h i n c r e a s i n g b u r n i n g frequency. However, t h e r e appeared t o be an i n c r e a s e i n t o t a l n i t r o g e n i n the top 2 inc h e s (5 cm) o f the mi n e r a l s o i l . She f e l t t h i s i n c r e a s e might be due t o the i n c r e a s e i n n i t r o g e n f i x a t i o n on the s i t e f o l l o w i n g b u r n i n g . Mroz e t a l . (1980) burned samples o f r e d p i n e , Tsuga  canadensis (L.) C a r r . ( e a s t e r n hemlock), and D o u g l a s - f i r / w e s t e r n l a r c h o r g a n i c l a y e r s i n the l a b o r a t o r y and found the o v e r a l l l o s s of t o t a l n i t r o g e n from these l a y e r s was i n s i g n i f i c a n t . However, l o o k i n g a t the i n d i v i d u a l h o r i z o n s , l a r g e l o s s e s o f t o t a l n i t r o g e n o c c u r r e d i n the 01 h o r i z o n , f o l l o w e d by some g a i n i n the 02 h o r i z o n . They a t t r i b u t e d t h i s i n c r e a s e t o the downward movement of o r g a n i c compounds along a temperature g r a d i e n t d u r i n g the burn. Other s t u d i e s r e p o r t e d i n c r e a s e s i n t o t a l n i t r o g e n c o n c e n t r a t i o n i n the f o r e s t f l o o r f o l l o w i n g b u r n i n g . F u l l e r e t a l . (1955) found the t o t a l n i t r o g e n c o n c e n t r a t i o n i n the f o r e s t f l o o r o f a ponderosa p i n e s i t e i n no r t h e r n A r i z o n a i n c r e a s e d w i t h l i g h t b u r n i n g . The e f f e c t on the top 2 inches (5 cm) o f m i n e r a l s o i l , however, was v a r i a b l e . Knight (1966) found h i s r e s u l t s v a r i e d depending upon whether the v a l u e s were expressed as a c o n c e n t r a t i o n o r on a kg ha"1 b a s i s . 13 He found an i n c r e a s e i n the t o t a l n i t r o g e n c o n c e n t r a t i o n i n samples heated a t v a r i o u s temperatures but when expressed on a weight b a s i s , t h e r e was a decrease i n t o t a l n i t r o g e n f o l l o w i n g b u r n i n g . Boyle (1973) found no s i g n i f i c a n t change i n t o t a l n i t r o g e n , expressed on a weight b a s i s , i n the top 20 cm o f m i n e r a l s o i l of a Pinus banksiana Lamb, (jac k pine) s i t e i n W i s c o n s i n . Klemmedson e t a l . (1962) found t h a t l i g h t b u r n i n g d i d not a f f e c t the amount of t o t a l n i t r o g e n i n columns o f m i n e r a l s o i l p l a c e d throughout a ponderosa p i n e stand i n n o r t h e r n C a l i f o r n i a . However, an i n t e n s e burn appeared t o cause an i n c r e a s e i n t o t a l n i t r o g e n i n the m i n e r a l s o i l , and these g a i n s appeared t o i n c r e a s e w i t h i n c r e a s i n g time the columns remained i n the ground. They p o s t u l a t e d t h a t t h i s i n c r e a s e was due t o the downward l e a c h i n g of n i t r o g e n o u s compounds from the f o r e s t f l o o r . There was a l o s s o f 124 l b ac'1 (141 kg ha"1) of n i t r o g e n from the f o r e s t f l o o r w i t h b u r n i n g on t h i s s i t e . S e v e r a l authors have noted changes i n t o t a l n i t r o g e n w i t h d i f f e r e n t b u r n i n g temperatures. Knight (1966) found an i n c r e a s e i n t o t a l n i t r o g e n c o n c e n t r a t i o n when samples were burned at temperatures up t o 500°C. However, a decrease o c c u r r e d beyond 500°C. When expressed on a kg ha"1 b a s i s , t o t a l n i t r o g e n decreased above temperatures o f 200°C and was minimal a t 700°C. White e t a l . (1973) a l s o found a decrease i n the t o t a l n i t r o g e n content of the f o r e s t f l o o r and top 4 cm of m i n e r a l s o i l i n a ponderosa p i n e stand i n South Dakota above temperatures o f 200°C. Between a t h i r d and t w o - t h i r d s of the t o t a l n i t r o g e n c o n c e n t r a t i o n was l o s t a t temperatures between 200°C and 400°C and l i t t l e t o t a l n i t r o g e n 14 remained above temperatures o f 500°C. Dunn and DeBano (1977) burned samples of c h a p a r r a l s o i l s i n a m u f f l e furnace i n the l a b o r a t o r y and found a decrease i n t o t a l n i t r o g e n a t temperatures g r e a t e r than 200°C up t o 500°C where l i t t l e t o t a l n i t r o g e n remained. T h e r e f o r e , the e f f e c t s o f b u r n i n g on t o t a l n i t r o g e n appear t o v a r y depending upon the type o f m a t e r i a l b e i n g burned, the burning i n t e n s i t y , the time of sampling f o l l o w i n g the b u r n , as w e l l as the sampling depth. E f f e c t s o f Burning on " A v a i l a b l e " N i t r o g e n F i r e i s o f t e n c o n s i d e r e d t o be a m i n e r a l i z i n g agent (Ahlgren and A h l g r e n 1960, Raison 1979) by r e l e a s i n g n i t r o g e n o u s compounds t i e d up i n complex o r g a n i c matter. S i n c e v e r y l i t t l e o f the t o t a l n i t r o g e n i s c o n s i d e r e d t o be a v a i l a b l e f o r uptake by p l a n t s , t h i s a v a i l a b i l i t y i s v e r y important f o r p l a n t growth. Some r e s e a r c h has t h e r e f o r e been c a r r i e d out t o study the e f f e c t s o f b u r n i n g on the a v a i l a b l e forms of n i t r o g e n . Most o f the r e s e a r c h has c o n c e n t r a t e d mostly on the changes i n t h e m i n e r a l s o i l w i t h b u r n i n g . E a r l y work by Vlamis e t a l . (1955) i n v o l v e d the use o f pot s t u d i e s w i t h l e t t u c e and b a r l e y as i n d i c a t o r p l a n t s . The s u r f a c e 8 inches (20 cm) o f m i n e r a l s o i l was c o l l e c t e d from a ponderosa p i n e s i t e i n the S i e r r a Nevada f o o t h i l l s which had been burned the p r e v i o u s y e a r . R e s u l t s showed an 15 i n c r e a s e d supply o f n i t r o g e n t o these p l a n t s . The same s i t e s were sampled the f o l l o w i n g y e a r and although n i t r o g e n was s t i l l more a v a i l a b l e i n s o i l s from the burned a r e a , the d i f f e r e n c e between the burned and unburned s o i l s was not as g r e a t . Vlamis and Gowans (1961) conducted a s i m i l a r pot study, a g a i n u s i n g l e t t u c e and b a r l e y p l a n t s as i n d i c a t o r s p e c i e s . The s u r f a c e 8 in c h e s (20 cm) of m i n e r a l s o i l was c o l l e c t e d from burned and unburned brush s i t e s i n n o r t h e r n C a l i f o r n i a . R e s u l t s showed an i n c r e a s e d supply of n i t r o g e n i n the burned s o i l s . C h r i s t e n s e n (1973) found the c o n c e n t r a t i o n o f ammonium i n the upper 2 cm o f a burned c h a p a r r a l s o i l i n n o r t h e r n C a l i f o r n i a was h i g h e r than i n an adj a c e n t unburned c o n t r o l , and remained h i g h over the f o l l o w i n g y e a r . He f e l t t h a t n i t r o g e n m i n e r a l i z a t i o n on unburned c h a p a r r a l s i t e s was p o s s i b l y i n h i b i t e d , e i t h e r by t o x i n s p r e s e n t i n c h a p a r r a l s o i l s , o r by the h i g h l i g n i n content o f the c h a p a r r a l shrubs; thus a c c o u n t i n g f o r an i n c r e a s e d ammonium c o n c e n t r a t i o n on the burned s i t e s . S t . John and Rundel (1976) found a h i g h e r ammonium c o n c e n t r a t i o n i n the top 10 cm o f the m i n e r a l s o i l o f a burned g i a n t sequoia s i t e i n n o r t h e r n C a l i f o r n i a , which remained e l e v a t e d u n t i l t he f o l l o w i n g s p r i n g . They a t t r i b u t e d t h i s i n c r e a s e e i t h e r t o the r e l e a s e o f ammonium f o l l o w i n g b u r n i n g , o r t o the p r o d u c t i o n o f ammonium by s o i l microbes f o l l o w i n g b u r n i n g . W e l l s (1971) c a l c u l a t e d the r a t i o o f n i t r o g e n uptake by Pinus  taeda L. ( l o b l o l l y pine) s e e d l i n g s as a percentage o f t o t a l n i t r o g e n i n the s o i l t o determine d i f f e r e n c e s i n " a v a i l a b l e " n i t r o g e n w i t h long-term b u r n i n g . She found t h i s r a t i o was h i g h e r i n s o i l s taken from the p e r i o d i c w i n t e r burn than f o r e i t h e r the 16 c o n t r o l s o i l s or the s o i l s c o l l e c t e d from the annual summer burn. Some r e s e a r c h has a l s o r e p o r t e d changes i n " a v a i l a b l e " n i t r o g e n w i t h b u r n i n g i n the f o r e s t f l o o r . V i r o (1974) found an i n c r e a s e i n the t o t a l amount o f ammonium i n the humus l a y e r of M v r t i l l u s spp. s i t e s i n F i n l a n d immediately f o l l o w i n g b u r n i n g , but t h i s dropped t o pre-burn l e v e l s t h r e e y e a r s a f t e r the burn. Some l e a c h i n g o f the ammonium i n t o the top 10 cm o f the m i n e r a l s o i l a l s o o c c u r r e d over the f o l l o w i n g two y e a r s . Jurgensen e t a l . (1981) found i n c r e a s e s i n both the ammonium c o n c e n t r a t i o n and the t o t a l amount of ammonium on a weight b a s i s i n the f o r e s t f l o o r immediately f o l l o w i n g the b u r n i n g of a D o u g l a s - f i r / W e s t e r n l a r c h s i t e i n western Montana. A steady d e c l i n e o c c u r r e d over the f o l l o w i n g y e a r t o preburn l e v e l s . S i m i l a r r e s u l t s were found i n the m i n e r a l s o i l , a lthough maximum l e v e l s o f ammonium were found l a t e r i n the y e a r , p r o b a b l y due t o the downward l e a c h i n g of the ammonium from the f o r e s t f l o o r . Mroz e t a l . (1980) found no d i f f e r e n c e i n ammonium c o n c e n t r a t i o n immediately f o l l o w i n g the b u r n i n g of samples of red p i n e , e a s t e r n hemlock and D o u g l a s - f i r / w e s t e r n l a r c h f o r e s t f l o o r m a t e r i a l i n t h e l a b o r a t o r y . However, when expressed on a weight b a s i s , the ammonium a c t u a l l y decreased i n the o r g a n i c l a y e r s . De Bano e t a l . (1979) found a decrease i n the t o t a l amount of ammonium-nitrogen i n c h a p a r r a l l i t t e r burned i n the l a b o r a t o r y , but an i n c r e a s e i n the m i n e r a l s o i l below. They p o s t u l a t e d t h i s i n c r e a s e was due e i t h e r t o the d e s t r u c t i o n of amino a c i d s i n the 17 l i t t e r and the m i n e r a l s o i l , o r the p r o d u c t i o n o f ammonia upon b u r n i n g which then moved downward along a temperature g r a d i e n t i n t o the m i n e r a l s o i l . In a f i e l d experiment, an i n c r e a s e i n the t o t a l amount of ammonium i n the f o r e s t f l o o r was found f o l l o w i n g b u r n i n g , and t h i s appeared t o i n c r e a s e w i t h d e c r e a s i n g b u r n i n g i n t e n s i t y . The m i n e r a l s o i l a l s o showed an i n c r e a s e i n ammonium but the i n c r e a s e appeared g r e a t e r w i t h a more severe b u r n i n g i n t e n s i t y . K o v a c i c e t a l . (1986) found t h a t time o f sampling f o l l o w i n g b u r n i n g was v e r y important. They c o l l e c t e d samples p r i o r t o b u r n i n g , immediately f o l l o w i n g b u r n i n g , and t h i r t y days f o l l o w i n g b u r n i n g from a ponderosa p i n e s i t e i n New Mexico. They found an i n c r e a s e i n e x t r a c t a b l e ammonium i n the top 5 cm o f the mi n e r a l s o i l immediately f o l l o w i n g b u r n i n g which appeared t o be h i g h e r on the areas w i t h the g r e a t e s t b u r n i n g i n t e n s i t y . They a t t r i b u t e d t h i s i n c r e a s e t o the thermal decomposition o f p r o t e i n i n the s o i l o r g a n i c matter found by R u s s e l l e t a l . (1974) who found a r e l e a s e of ammonia from o r g a n i c matter a t temperatures above 100°C. The ammonium c o n c e n t r a t i o n s on t h i s s i t e remained h i g h e r than the pre-burn c o n c e n t r a t i o n s t h i r t y days f o l l o w i n g b u r n i n g . However, t h e r e was a s l i g h t decrease i n ammonium c o n c e n t r a t i o n over t h i s p e r i o d o f time on the i n t e n s e l y burned s i t e which was f o l l o w e d by an i n c r e a s e i n the n i t r a t e - n i t r o g e n c o n c e n t r a t i o n . Dunn and DeBano (1977) f u r t h e r e x p l o r e d the r e l a t i o n s h i p between b u r n i n g temperatures and r e l e a s e o f ammonia i n burned c h a p a r r a l l i t t e r . They found an i n c r e a s e i n ammonium c o n c e n t r a t i o n 18 above temperatures o f 100°C which c o n t i n u e d up t o temperatures o f 300°C. Beyond t h i s p o i n t , a decrease i n ammonium o c c u r r e d u n t i l l i t t l e remained a t 500°C. C a i r n s (1963) had a l s o o b t a i n e d s i m i l a r r e s u l t s f o l l o w i n g h e a t i n g i n the l a b o r a t o r y o f a l k a l i S o l o n e t z and S o l o d i c s o i l samples from A l b e r t a . An i n c r e a s e i n ammonium c o n c e n t r a t i o n o c c u r r e d when s o i l s were heated a t 110°C, but l i t t l e change o c c u r r e d when they were heated t o 55°C. K i t u r and Frye (1983) found a s i m i l a r i n c r e a s e i n e x t r a c t a b l e ammonium i n A f r i c a n s o i l s up t o temperatures o f 200°C. Above t h i s temperature, l o s s o f ammonium o c c u r r e d . E f f e c t s o f Burning on M i n e r a l i z a b l e N i t r o g e n A few s t u d i e s have examined the e f f e c t s o f burnin g on the n i t r o g e n m i n e r a l i z e d by i n c u b a t i o n p r o c e d u r e s . C a i r n s (1963) inc u b a t e d s o i l s i n the l a b o r a t o r y f o r 4 weeks f o l l o w i n g h e a t i n g t o e i t h e r 55°C o r 110°C. He found a g r e a t e r i n c r e a s e i n ammonium i n those samples heated t o 110°C than i n those heated t o 55°C. V i r o (1974) s t u d i e d a s e r i e s o f s i t e s which had been burned one y e a r p r i o r t o sampling up t o a p e r i o d o f 50 ye a r s p r i o r t o sampling. He found samples c o l l e c t e d from a s i t e burned the p r e v i o u s y e a r produced l e s s ammonium than samples c o l l e c t e d from s i t e s burned 12 ye a r s p r i o r t o sampling when inc u b a t e d a e r o b i c a l l y at 20°C f o r a p e r i o d o f 6 weeks. Samples c o l l e c t e d from the s i t e 19 burned 50 ye a r s p r i o r t o sampling appeared t o have s i m i l a r l e v e l s o f ammonium f o l l o w i n g i n c u b a t i o n t o those c o l l e c t e d from the unburned c o n t r o l a r e a . Mroz e t a l . (1980) incubated burned samples o f r e d p i n e l i t t e r i n t he l a b o r a t o r y a t 20°C f o r p e r i o d s o f 3 days t o 5 weeks. There was an i n c r e a s e i n the ammonium c o n c e n t r a t i o n t h r e e days f o l l o w i n g b u r n i n g . However, t h i s l e v e l o f ammonium r e t u r n e d t o pre-burn l e v e l s over the next 14 days. The 01 l a y e r o f the burned hemlock o r g a n i c l a y e r s showed an i n c r e a s e i n ammonium c o n c e n t r a t i o n d u r i n g the f i r s t 14 days o f the i n c u b a t i o n , and t h i s l e v e l remained s i g n i f i c a n t l y h i g h e r than the c o n t r o l samples f o r the d u r a t i o n of the i n c u b a t i o n . The ammonium c o n c e n t r a t i o n i n the D o u g l a s - f i r / w e s t e r n l a r c h O l l a y e r decreased d u r i n g the f i r s t t h r e e days o f the i n c u b a t i o n , but then i n c r e a s e d over the next 14 days t o hear pre-burn l e v e l s . There a l s o appeared t o be g a i n s o f ammonium i n the 02 l a y e r o f t h i s l i t t e r immediately f o l l o w i n g the burn, but t h i s was f o l l o w e d by a decrease t h r e e days a f t e r b u r n i n g . Dunn e t a l . (1979) incubated the samples burned by DeBano et a l . (1979) i n a growth chamber f o r approximately one yea r under c o n d i t i o n s which s i m u l a t e d those o f a c h a p a r r a l s i t e . They found a g r e a t e r i n c r e a s e i n the t o t a l amount of ammonium i n burned samples than i n the c o n t r o l samples d u r i n g the i n c u b a t i o n . They a t t r i b u t e d t h i s i n c r e a s e , p a r t i c u l a r l y i n the i n t e n s e l y burned samples, i n i t i a l l y t o an i n c r e a s e o f the h e t e r o t r o p h i c b a c t e r i a p o p u l a t i o n , and l a t e r t o an i n c r e a s e i n the p o p u l a t i o n o f f u n g i . They a l s o found t h a t ammonium l e v e l s i n the i n t e n s i v e l y burned samples seemed t o reach a constant l e v e l , which they f e l t was due t o the presence o f a l e s s r e a d i l y m i n e r a l i z a b l e m a t e r i a l . Burger and P r i t c h e t t (1984) used the i n c u b a t i o n method developed by S t a n f o r d and Smith (1972) t o determine the e f f e c t of v a r i o u s s i t e p r e p a r a t i o n techniques on m i n e r a l i z a b l e n i t r o g e n i n the top 20 cm o f m i n e r a l s o i l o f a southern p i n e stand i n F l o r i d a . The s i t e was burned and f u r t h e r s u b j e c t e d t o a d d i t i o n a l s i t e p r e p a r a t i o n t e c h n i q u e s . P a r t of t h i s burned s i t e was chopped u s i n g a r o l l i n g drum w h i l e the remainder of the s i t e was windrowed, d i s c e d , and then bedded. An a djacent uncut stand was used as a c o n t r o l . Although the e f f e c t of b u r n i n g alone on m i n e r a l i z a b l e n i t r o g e n was not determined, no s i g n i f i c a n t d i f f e r e n c e was found between the c o n t r o l area and the chopped and burned s i t e . There was, however, s i g n i f i c a n t l y l e s s n i t r o g e n m i n e r a l i z e d from the more i n t e n s t i v e l y t r e a t e d s i t e . A decrease i n s u b s t r a t e q u a l i t y of the remaining m a t e r i a l was thought t o be the reason f o r t h i s decrease i n m i n e r a l i z a b l e n i t r o g e n . Vance and Henderson (1984) used a m o d i f i c a t i o n o f the a e r o b i c i n c u b a t i o n t echnique d e s c r i b e d by Bremner (1965) t o determine the e f f e c t s o f long-term burn i n g treatments on m i n e r a l i z a b l e n i t r o g e n i n an Quercus spp. and Carya spp. (oak-hickory) s i t e i n M i s s o u r i . Samples, which i n c l u d e d the 02 h o r i z o n and the top 5 cm of the A h o r i z o n , were c o l l e c t e d from areas which had been burned e i t h e r a n n u a l l y o r p e r i o d i c a l l y , every f o u r y e a r s . Samples were incubated f o r a p e r i o d o f 28 days. Lower q u a n t i t i e s o f m i n e r a l i z a b l e n i t r o g e n were found i n samples c o l l e c t e d from e i t h e r t h e a n n u a l l y burned o r the p e r i o d i c a l l y burned s i t e s than from the c o n t r o l a r e a . These r e s e a r c h e r s a l s o f e l t t h a t s u b s t r a t e q u a l i t y had decreased f o l l o w i n g the burn, which r e s u l t e d i n l e s s m i n e r a l i z a b l e n i t r o g e n i n these samples. T h e r e f o r e , i t apppears t h a t b u r n i n g may remove a s i g n i f i c a n t p o r t i o n o f the r e a d i l y m i n e r a l i z a b l e n i t r o g e n , l e a v i n g behind a more r e c a l c i t r a n t m a t e r i a l . I t a l s o appears t h a t b u r n i n g i n t e n s i t y may be an important f a c t o r i n the removal of t h i s form o f n i t r o g e n . Many h e c t a r e s are burned a n n u a l l y i n B r i t i s h Columbia. Some of th e s e areas are burned f o l l o w i n g l o g g i n g o p e r a t i o n s t o remove s l a s h , w h i l e o t h e r h i g h l y p r o d u c t i v e areas which now support stands of hardwoods are i n the pr o c e s s o f be i n g " r e h a b i l i t a t e d " t o c o n i f e r o u s p l a n t a t i o n s . T h e r e f o r e , r e s e a r c h i s needed t o determine the e f f e c t s o f t h i s type o f treatment on the m i n e r a l i z a b l e n i t r o g e n on t h e s e s i t e s , p a r t i c u l a r l y s i n c e t h i s has important i m p l i c a t i o n s f o r s i t e r e g e n e r a t i o n . 22 SITE 1 METHODS (Vedder Mountain Hardwood S i t e ) S i t e S e l e c t i o n and D e s c r i p t i o n The hardwood s i t e was s e l e c t e d on Vedder Mountain, near C h i l l i w a c k , B.C. a t 1 2 2° 3' 45" W and 4 9° 3' 15" N (see F i g u r e 1) i n the P a c i f i c Ranges v a r i a n t o f the D r i e r Maritime subzone of the C o a s t a l Western Hemlock b i o g e o c l i m a t i c zone (CWHa2) (Nuszdorfer e t a l . 1985). The area p r e v i o u s l y supported a stand o f Acer  macrophyllum Pursh ( b i g - l e a f maple) , B e t u l a p a p y r i f e r a Marsh (paper b i r c h ) , and Alnus r u b r a Bong, (red a l d e r ) , w i t h an u n d e r s t o r y of Tsuqa h e t e r o p h y l l a (Raf.) S a r g . (western hemlock). Small patches of Thuja p l i c a t a Donn ex D. Don i n Lamb, (western redcedar) and Pseudotsuaa m e n z i e s i i (Mirb.) Franco ( D o u g l a s - f i r ) were a l s o p r e s e n t . The area had o r i g i n a l l y been logged i n the 1930's and subsequent attempts t o r e f o r e s t the area w i t h c o n i f e r s had f a i l e d . Consequently, the area had regenerated w i t h hardwoods. Vedder Mountain i s p a r t of the Cascade Range (Armstrong 1960, Comar and K e l l e y 1962, Comar e t a l . 1962) w i t h bedrock c o n s i s t i n g o f green graywacke, conglomerate, s h a l e , and arkose (Luttmerding 1981). In a d d i t i o n , the northwest s i d e o f the mountain a l s o has a s t r i p o f metamorphosed r o c k . T h i s bedrock m a t e r i a l i s covered by a post-Vashon d e p o s i t c a l l e d "Sumas t i l l " which i s g e n e r a l l y Figure 1 Location of Study Sites to U) l e s s than 25 f e e t (8 m) i n depth (Armstrong 1960). The f i n e e a r t h f r a c t i o n was determined by Armstrong (1960) as c o n s i s t i n g o f approximately 63% sand, 33% s i l t , and 4% c l a y . O v e r l y i n g t h i s t i l l m a t e r i a l i s an e o l i a n veneer r a n g i n g from 10" t o 5 f e e t (0.25 t o 3 m) t h i c k (Comar and K e l l e y 1962). T h i s m a t e r i a l appears t o have o r i g i n a t e d from the g l a c i a l outwash area near the p r e s e n t day A b b o t s f o r d a i r p o r t and may a l s o c o n t a i n some v o l c a n i c ash (Luttmerding 1981). The p r o p o s a l t o burn t h i s area was p a r t o f a r e h a b i l i t a t i o n p r o j e c t t o c o n v e r t the hardwood stand t o a c o n i f e r o u s p l a n t a t i o n . The area had been s l a s h e d d u r i n g the s p r i n g o f 1984 and bu r n i n g was scheduled f o r the summer of the same y e a r . Because o f the "high brush hazard" on t h i s s i t e , the o b j e c t i v e was t o o b t a i n a h i g h i n t e n s i t y burn which would s e t back any competing v e g e t a t i o n u n t i l the c o n i f e r o u s s e e d l i n g s c o u l d become e s t a b l i s h e d . The area was o r i g i n a l l y scheduled t o be t r e a t e d u s i n g a browning agent ( g l y p h o s a t e ) ; however, t h i s p a r t o f the p r o p o s a l was e l i m i n a t e d due t o p u b l i c p r e s s u r e . Three major v e g e t a t i o n types were p r e s e n t on the a r e a . One area supported a stand predominantly o f paper b i r c h , b i g l e a f maple, w i t h an u n d e r s t o r y o f western hemlock and patches o f western redcedar and D o u g l a s - f i r . A second area c o n s i s t e d o f an open stand o f r e d a l d e r and b i g l e a f maple wi t h Oplopanax h o r r i d u s (Smith) Miq. ( d e v i l ' s club) i n the u n d e r s t o r y , and a t h i r d area i n c l u d e d an o l d firewood c u t t i n g permit which had re v e g e t a t e d mainly w i t h shrubby s p e c i e s i n c l u d i n g Rubus s p e c t a b i l i s Pursh (salmonberry) and Rubus  p a r v i f l o r u s N u t t . ( t h i m b l e b e r r y ) . Research p l o t s were p l a c e d o n l y i n t h e f i r s t two v e g e t a t i o n t y p e s . Pre-Burn Sampling C i r c u l a r p l o t s were s e t out i n a f a s h i o n s i m i l a r t o those used f o r p l a n t i n g i n s p e c t i o n s , r e g e n e r a t i o n s u r v e y s , and waste assessment s u r v e y s . A r a d i u s o f 8 m was chosen, r e s u l t i n g i n a p l o t s i z e o f 0.02 ha. One p l o t was e s t a b l i s h e d i n each of the f i r s t two v e g e t a t i o n types d e s c r i b e d above. The p l o t a t L o c a t i o n 1 was randomly l o c a t e d i n the f i r s t cover type a t 480 m e l e v a t i o n . The s l o p e o f the p l o t was 40%. The p l o t a t L o c a t i o n 2 was randomly l o c a t e d i n the second f o r e s t type a t 380 m e l e v a t i o n . The s l o p e of t h i s p l o t was 45%. The aspect f o r both p l o t s was W-NW. S o i l p i t s were dug i n each p l o t and the s o i l s were c l a s s i f i e d a c c o r d i n g t o the Canada System of S o i l C l a s s i f i c a t i o n (1978) as O r t h i c Humo-Ferric P o d z o l s . They appeared t o be o f the Lonzo Creek s o i l s e r i e s as mapped by Luttmerding (1980a). These s o i l s c o n s i s t of e o l i a n d e p o s i t s 20 t o 50 cm t h i c k , u n d e r l a i n by a c o a r s e , compacted g l a c i a l t i l l . There a l s o appeared t o be some downslope mixing o f the e o l i a n d e p o s i t s w i t h the g l a c i a l t i l l . The humus form was c l a s s i f i e d a c c o r d i n g t o K l i n k a e t . a l (1981) as a "mullmoder" a t both l o c a t i o n s . T h i s type o f humus form c o n s i s t s o f an "Fa" h o r i z o n which c o n t a i n s m a t e r i a l s p a r t i a l l y comminuted by s o i l fauna, and a sm a l l amount o f f u n g a l hyphae may a l s o be p r e s e n t . The endorganic h o r i z o n (Ah) i n t h i s t ype o f humus form i s t h i c k e r than the combined t h i c k n e s s o f the F and H l a y e r s . The d e s c r i p t i o n s f o r the two s o i l p i t s a re g i v e n i n Appendix 1. Understory s p e c i e s and pe r c e n t cover were a l s o recorded f o r each o f the p l o t s . L a t i n names and a u t h o r i t i e s f o r the herbaceous s p e c i e s were taken from H i t c h c o c k and C r o n q u i s t (1973), and from V i t t e t a l . (1988) f o r the moss s p e c i e s . The p l o t a t L o c a t i o n 1 was predominantly covered by Montia s i b i r i c a (L.) Howell ( S i b e r i a n miner's l e t t u c e ) (75%), f o l l o w e d by Pol y s t i c h u m muniturn (Kaulf.) P r e s l (swordfern) ( 8 % ) , Sambucus racemosa L. ( e l d e r b e r r y ) ( 3 % ) , and D i c e n t r a formosa (Andr.) Walp. ( b l e e d i n g heart) ( 2 % ) . The remaining s p e c i e s , each o f which c o n t r i b u t e d l e s s than 2% t o the cover o f the p l o t , are l i s t e d i n Appendix 2. The moss s p e c i e s i n c l u d e d R h v t i d i a d e l p h u s t r i q u e t r u s (Hedw.) Warnst., R h y t i d i a d e l p h u s l o r e u s (Hedw.) Warnst., K i n d b e r q i a oreaana ( S u l l . ) Ochyra, Isothecium s t o l o n i f e r u m . and Plaqiomnium i n s i q n e ( M i t t . ) Kop. At L o c a t i o n 2, the p l o t was a l s o covered mainly by S i b e r i a n miner's l e t t u c e (60%), Rubus p a r v i f l o r u s N u t t . (thimbleberry) ( 2 0 % ) , swordfern (15%), Galium b o r e a l e L. (nor t h e r n bedstraw) (1 0 % ) , and A c h l y s t r i p h y l l a (Smith) DC. ( v a n i l l a l e a f ) which covered 8% of the p l o t . The remaining s p e c i e s , which covered l e s s than 2% o f the p l o t , a re a l s o l i s t e d i n Appendix 2. The moss s p e c i e s c o v e r i n g t h i s p l o t i n c l u d e d R h y t i d i a d e l p h u s t r i q u e t r u s . R h y t i d i a d e l p h u s l o r e u s . HYlocomium splendens (Hedw.) B.S.G., and 27 Plaqiomnium i n s i g n e . An attempt was a l s o made t o measure f u e l l o a d i n g o f both p l o t s . T h i s was accomplished by measuring i n d i v i d u a l p i e c e s i z e o f the l a r g e f u e l s over the whole p l o t and then e s t i m a t i n g the volume o f the s l a s h u s i n g Smalian's formula (Watts 1983) shown below: T V + / T RT2 V = L 2 where Rg i s the bottom r a d i u s o f the p i e c e , RT i s the top r a d i u s of the p i e c e , L i s the l e n g t h of the p i e c e , and V i s the volume es t i m a t e d by the e q u a t i o n . C a l c u l a t i o n s f o r the two p l o t s are shown i n Appendix 3. A summary o f these c a l c u l a t i o n s i s shown i n T a b l e 1. The t o t a l volume o f s l a s h a t L o c a t i o n 1 was 7.8 m3. Of t h i s t o t a l , 6.6 m3 o r 84% was paper b i r c h , 0.7 m3 or 9% was r e d a l d e r , 0.4 m3 or 5% was a dead western redcedar l o g , and 0.1 m3 or approximately 2% was b i g l e a f maple. At L o c a t i o n 2, the t o t a l volume was 3.3 m3 of which 1.9 m3 or 58% was b i g l e a f maple, 0.6 m3 or 19% was "uncured" ( r e c e n t l y slashed) r e d a l d e r , 0.5 m3 o r 16% was "cured" r e d a l d e r , which had been on the ground f o r s e v e r a l y e a r s , and 0.3 m3 o r 8% was paper b i r c h . 28 Ta b l e 1 F u e l Loading o f the Vedder Mountain Hardwood S i t e PLOT 1 SPECIES BIRCH ALDER (uncured) MAPLE CEDAR VOLUME (m3) 6.6 0.7 0.1 0.4 VOLUME (%) 84 9 2 5 VOLUME (tonnes ha"1) 183.8 13.9 4.3 6.9 TOTAL 7.8 208.9 PLOT 2 BIRCH 0.3 8 7.3 ALDER (uncured) 0.6 19 12.0 ALDER (cured) 0.5 16 8.9 MAPLE 1.9 58 57.9 TOTAL 3.3 86.1 The volume o f s l a s h was a l s o converted t o tonnes ha u s i n g v a l u e s f o r r e l a t i v e d e n s i t i e s o f these s p e c i e s . The r e l a t i v e d e n s i t i e s f o r r e d a l d e r (both cured and uncured) as w e l l as f o r the cedar was taken from unpublished data o b t a i n e d from F e l l e r ( p e r s . comm.). R e l a t i v e d e n s i t y v a l u e s f o r paper b i r c h and b i g - l e a f maple were not a v a i l a b l e . However, P o r t e r (1981) l i s t e d v a l u e s f o r B e t u l a a l l e q h a n i e n s i s B r i t t o n (yellow b i r c h ) and Acer saccharum (sugar maple) which are a p p a r e n t l y s i m i l a r t o those f o r paper b i r c h and b i g l e a f maple (Wilson p e r s . comm.). C a l c u l a t i o n s f o r the f u e l l o a d i n g expressed as tonnes ha"1 are a l s o shown i n Appendix 3. The t o t a l f u e l l o a d i n g f o r L o c a t i o n 1 was c a l c u l a t e d as 208.9 tonnes ha"1 and 86.1 tonnes ha"1 f o r L o c a t i o n 2. S o i l samples were randomly c o l l e c t e d a l o n g t r a n s e c t l i n e s r a d i a t i n g from the c e n t e r o f the p l o t . Pre-burn s o i l sampling was c a r r i e d out J u l y 15 t o 17, 1984. Stumps and areas o f decayed wood were avoided w h i l e sampling. F o r e s t f l o o r samples were c o l l e c t e d a t each p o i n t by removing a l l the m a t e r i a l t o the top of the m i n e r a l s o i l h o r i z o n . At t i m e s , i t was d i f f i c u l t t o d i f f e r e n t i a t e between the bottom o f the f o r e s t f l o o r l a y e r and the top of the m i n e r a l s o i l h o r i z o n because o f the presence o f a dense r o o t mat i n the m i n e r a l s o i l . The depth o f the f o r e s t f l o o r was recorded a t each sampling p o i n t . A s m a l l t r o w e l was used t o excavate the m i n e r a l s o i l samples t o a depth o f 20 cm. A t o t a l o f 20 m i n e r a l s o i l samples and twenty f o r e s t f l o o r samples were c o l l e c t e d from each p l o t . 30 Bulk d e n s i t y samples were a l s o c o l l e c t e d . F o r e s t f l o o r b u l k d e n s i t y samples were c o l l e c t e d by c a r e f u l l y removing a sample of known area w i t h a sharp k n i f e . A metal r i n g was used t o determine the known a r e a . The e n t i r e sample was then p l a c e d i n t o a sample bag t o be taken t o the l a b o r a t o r y f o r a n a l y s i s . The f o r e s t f l o o r depth was a l s o r e corded a t each sample p o i n t . F i v e f o r e s t f l o o r b u l k d e n s i t y samples were c o l l e c t e d from each p l o t . M i n e r a l s o i l b u l k d e n s i t y samples were c o l l e c t e d u s i n g the e x c a v a t i o n method. Approximately 1 l i t e r o f m i n e r a l s o i l was excavated and p l a c e d i n t o a p l a s t i c bag. The volume o f the h o l e was then determined by l i n i n g the h o l e w i t h a t h i n p l a s t i c bag and measuring the amount of water r e q u i r e d t o f i l l t he h o l e . Method o f Burning The area was slashburned J u l y 25, 1984 w i t h the f o l l o w i n g F i r e Weather I n d i c e s : FFMC DMC DC IS I BUI FWI 88 45 241 9 61 23 These i n d i c e s were c a l c u l a t e d by the B.C. M i n i s t r y o f F o r e s t s based upon weather data c o l l e c t e d a t the A b b o t s f o r d a i r p o r t . The f o l l o w i n g d e s c r i p t i o n s f o r these i n d i c e s are from F e l l e r (1985). The FFMC (Fi n e F u e l M o i s t u r e Code) i s an i n d i c a t i o n o f the moisture content of the f i n e fuels and L layer of the forest f l o o r . I t i s calculated based upon d a i l y observations (collected at 12:00 noon standard time) of temperature, r e l a t i v e humidity, windspeed, and r a i n f a l l . The DMC (Duff Moisture Code) represents the moisture content of the medium sized fuels and the "loosely compacted forest f l o o r layers". Daily measurements of temperature, r e l a t i v e humidity, and r a i n f a l l are used to calculate t h i s index. The DC (Drought Code) represents a r a t i n g of the moisture content of the "deep, compacted forest f l o o r layers" as well as the larger fuels greater than 15 cm i n diameter. I t i s calculated using d a i l y measurements of temperature and r a i n f a l l . These three components are then used to c a l c u l a t e the I n i t i a l Spread Index (ISI), the Buildup Index (BUI), and f i n a l l y the F i r e Weather Index (FWI). The ISI i s calculated using the FFMC and the windspeed, and i s used as an i n d i c a t i o n of the rate of f i r e spread. The BUI i s calculated using the DMC and the DC, and i s used an an i n d i c a t i o n of the actual amount of f u e l a v a i l a b l e for the f i r e . This index also estimates the depth of burn. The FWI i s calculated using the ISI and the BUI, and represents a r a t i n g of the f r o n t a l f i r e i n t e n s i t y . A drip-torch, suspended from a helicopter, was used to i g n i t e the block. Inside the tank of the drip-torch was a j e l l i e d gas which was i g n i t e d by an e l e c t r i c spark before dropping to the ground. Due to some technical d i f f i c u l t i e s with the dr i p torch, l i g h t i n g of the block was interrupted f o r approximately 20 minutes. This was long enough for the f i r e to lose convection, r e s u l t i n g i n areas o f the b l o c k not be i n g burned. A l s o , s i n c e a browning agent had not been used, some areas were not s u f f i c i e n t l y d r y t o c a r r y the f i r e . Post-Burn Sampling The two r e s e a r c h p l o t s were l o c a t e d i n the areas which d i d not b u r n . T h e r e f o r e , new p l o t s had t o be e s t a b l i s h e d i n the burned areas and were p l a c e d , as c l o s e as p o s s i b l e , t o the o r i g i n a l p l o t s . At the f i r s t l o c a t i o n , the burned p l o t was p l a c e d approximately 40 m a c r o s s the s l o p e from the o r i g i n a l p l o t . At the second l o c a t i o n , the burned p l o t had t o be p l a c e d approximately 40 m s l i g h t l y u p h i l l from the o r i g i n a l p l o t . The o r i g i n a l p l o t s were now d e s i g n a t e d as the " c o n t r o l " p l o t s . S o i l p i t s were a g a i n dug i n both o f the new p l o t s t o determine the s i m i l a r i t y o f the s o i l s t o those i n the c o n t r o l p l o t s . These s o i l s were a l s o c l a s s i f i e d as O r t h i c Humo-Ferric P o d z o l s ; however, the m a t e r i a l u n d e r l y i n g the l o e s s capping i n these p l o t s was ver y c o a r s e - t e x t u r e d w i t h a h i g h percentage o f g r a v e l s and s t o n e s . T h e r e f o r e , i t appeared t h a t the s o i l s on the two burned p l o t s had had some l o c a l f l u v i a l i n f l u e n c e , perhaps d u r i n g the r e c e s s i o n of the g l a c i e r . These s o i l s were a l s o mapped by Luttmerding (1980a) as b e i n g p a r t o f the Lonzo Creek s o i l s e r i e s . Both the A b b o t s f o r d and the Marble H i l l s o i l s e r i e s a re d e s c r i b e d as c o n s i s t i n g o f an e o l i a n capping over g l a c i o f l u v i a l m a t e r i a l . However, a c c o r d i n g t o Luttmerding (1980a), these l a t t e r s o i l s g e n e r a l l y occur a t lower 33 e l e v a t i o n s . There a g a i n appeared t o be some mixing o f the e o l i a n m a t e r i a l w i t h the g l a c i o f l u v i a l m a t e r i a l below. The d e s c r i p t i o n s o f the s o i l p i t s f o r these burned p l o t s are a l s o g i v e n i n Appendix 1. Post-burn s o i l sampling took p l a c e August 2 and 3, 1984 and the s i t e had r e c e i v e d no p r e c i p i t a t i o n p r i o r t o post-burn sampling. Samples were a g a i n randomly c o l l e c t e d a l o n g t r a n s e c t l i n e s r a d i a t i n g from the c e n t e r o f the p l o t . Twenty f o r e s t f l o o r samples and twenty m i n e r a l s o i l samples were c o l l e c t e d from each o f the new p l o t s . Sampling the f o r e s t f l o o r c o n s i s t e d of c o l l e c t i n g the ash l a y e r and any remaining f o r e s t f l o o r m a t e r i a l . Most o f the f o r e s t f l o o r had burned o f f over much o f the p l o t s and, a t t i m e s , d i s c r i m i n a t i n g between the ash l a y e r and the top o f the m i n e r a l s o i l proved t o be d i f f i c u l t . The m i n e r a l s o i l was a g a i n sampled t o a depth o f 20 cm. S l a s h measurements were not made on these new p l o t s . However, the author e s t i m a t e s the f u e l l o a d i n g on these p l o t s p r i o r t o b u r n i n g was a t l e a s t t h r e e t o f o u r times the amount on the c o n t r o l p l o t s . Ash b u l k d e n s i t y samples were not c o n s i d e r e d i n the o r i g i n a l p r o p o s a l . T h e r e f o r e , samples were c o l l e c t e d two y e a r s l a t e r from a r e c e n t l y burned area adjacent t o t h i s b l o c k . T h i s area had a l s o been burned u s i n g a h e l i c o p t e r d r i p - t o r c h ; however, a browning agent had been applied to the site 60 days prior to burning. The Fire Weather Indices for this burn were also obtained from the B.C. Ministry of Forests and were similar as shown below: FFMC DMC DC ISI BUI FWI ) 80 55 312 1 76 5 The ash bulk density samples were collected from this site 25 days following burning. A sample was again collected using a metal ring of known area, and the depth of the ash and any remaining forest floor was recorded for each sample. A second burned area adjacent to the original site was also sampled. Burning had been carried out using a helicopter drip-torch, and the site had been sprayed with a browning agent 35 days prior to burning. The Fire Weather Indices for this burn were as follows: FFMC DMC DC 87 25 229 Values for the ISI, BUI, and FWI were not available for this site. Samples were collected from this site 36 days following burning. Although the author views the values f o r these ash bulk density samples with caution because of the high winds following burning and during sampling, the re s u l t s f o r the two s i t e s appeared s i m i l a r and do give some i n d i c a t i o n of the bulk density values for ash from a deciduous s i t e . Mineral s o i l bulk densities were c o l l e c t e d from the burned p l o t s , again using the excavation method. Sampling i n the Second Year The four p l o t s were again sampled July 5 and 6, 1985. P r e c i p i t a t i o n measurements were not recorded on the actual s i t e ; however, records from the nearby Abbotsford a i r p o r t (elevation 58 m) indicated a r a i n f a l l of 1363.9 mm had occurred during t h i s period of time. Laboratory Analysis Samples f o r chemical analysis were a i r - d r i e d i n the laboratory and the mineral s o i l s were sieved through a 2-mm sieve. Forest f l o o r samples were ground with a Wiley m i l l excluding large twigs, chunks of wood, and cones. A l l samples were then stored i n a i r - t i g h t p l a s t i c containers u n t i l they could be analyzed i n the laboratory. M o i s t u r e content o f the samples was determined i n order t h a t r e s u l t s c o u l d be r e p o r t e d on an oven-dry b a s i s . Approximately 3 g o f a f o r e s t f l o o r sample o r 5 g o f m i n e r a l s o i l were oven-dried o v e r n i g h t a t 105°C. Samples were c o o l e d i n a d e s i c c a t o r b e f o r e w eighing. Bulk d e n s i t y samples were weighed f o l l o w i n g oven-drying o v e r n i g h t a t 105°C. M i n e r a l s o i l samples were then s i e v e d and the f i n e p o r t i o n of s o i l , the coarse fragments, and the r o o t s and o t h e r d e b r i s such as c h a r c o a l were weighed i n d i v i d u a l l y i n o r d e r t h a t c o a r s e fragment-free b u l k d e n s i t y v a l u e s c o u l d be c a l c u l a t e d (Nuszdorfer 1981). The d e n s i t y assumed f o r c o a r s e fragments was 2650 kg m"3 and an approximate volume of the r o o t s was determined u s i n g water d i s p l a c e m e n t . Coarse fragments were a l s o removed from the f o r e s t f l o o r samples and weighed s e p a r a t e l y t o determine c o a r s e fragment-free b u l k d e n s i t y v a l u e s f o r the f o r e s t f l o o r . MN ( m i n e r a l i z a b l e n i t r o g e n ) was determined u s i n g a m o d i f i c a t i o n o f the anaerobic i n c u b a t i o n method o f Waring and Bremner (1964). A 3.0 g sample of m i n e r a l s o i l o r a 0.75 g of f o r e s t f l o o r was p l a c e d i n t o a d i s p o s a b l e p l a s t i c t u b e . Enough d i s t i l l e d water was then added t o the tube t o wet the sample and the s o l u t i o n was mixed u s i n g a v o r t e x mixer. The tube was then c o m p l e t e l y f i l l e d w i t h d i s t i l l e d water, t i g h t l y s e a l e d , and p l a c e d i n an i n c u b a t o r a t 30°C f o r 14 days. Upon completion of the incubation, the sample was transferred to a 60 ml bo t t l e and the tube was rinsed using 3 M KCl. The volume of 3 M KCl needed to a t t a i n a f i n a l s o l u t i o n concentration of 1 M KCl was calculated, and t h i s amount was used to rinse the tube. The bot t l e s were then t i g h t l y sealed and shaken at low speed on a reciprocating shaker for 2 hours. The solutions were f i l t e r e d using #41 Whatman f i l t e r paper and stored overnight i n the re f r i g e r a t o r . NH4-N i n the samples was determined c o l o r i m e t r i c a l l y the following day using a Technicon Autoanalyzer II (Technicon Instruments Inc. 1974). To reduce the e f f e c t of sample pretreatment on the amount of MN, the i n i t i a l extractable ammonium i n the s o i l was not subtracted from the amount of nitrogen mineralized during the incubation. Instead, the t o t a l mineral nitrogen following the incubation, as suggested by Powers (1980), was used as the measure of p o t e n t i a l l y mineralizable nitrogen. Due to the large number of samples from t h i s s i t e , analyses for MN were run without duplication. TN ( t o t a l nitrogen) , OC (organic carbon) , pHH (the pH measured i n d i s t i l l e d water) , and pHC (the pH measured i n 0.01 M CaCl 2) were also determined. A single analysis was done for these variables. TN was determined by digesting 4.0 g of mineral s o i l or 0.5 g of forest f l o o r i n 15 mL concentrated s u l f u r i c acid f or 45 minutes at 420°C (Lavkulich 1978) . Nitrogen as NH4-N was then determined c o l o r i m e t r i c a l l y using a Technicon Autoanalyzer I I . 38 OC was determined using the Walkley-Black wet-oxidation method which tends to exclude most of the less oxidizable forms of carbon such as charcoal ( A l l i s o n 1965). Mineral s o i l s were ground to 0.074 mm (200 mesh), and a 0.3 g sample of mineral s o i l was digested i n 20 mL of K 2Cr 20 7 or a 0.2 g sample of forest f l o o r was digested i n 30 mL of K 2Cr 20 7. Twice the volume of H2S04 was then added to the soluti o n to provide heat for the reaction. T i t r a t i o n with a standardized solution of FeS04 determined unreduced Cr 20 7 2", and the amount of OC present i n the sample could then be calculated. The pHH and pHC of the samples were determined using a 1:2 s o l i d : s o l u t i o n r a t i o for the mineral s o i l s and a 1:8 r a t i o f o r the forest f l o o r samples. Duplicates were done on samples with the highest and lowest values i n each plot , and r e s u l t s were found to be s i m i l a r f o r the duplicates. The concentration values for MN, TN, and OC were also calculated on an areal basis (kg ha"1) . S t a t i s t i c a l Methods Results i n the l i t e r a t u r e reporting the e f f e c t s of burning on s o i l nutrients are often expressed e i t h e r as a concentration or on an areal basis, or sometimes both. Knight (1966) found that the e f f e c t of burning on t o t a l nitrogen varied depending upon how the r e s u l t s were expressed. Therefore, the nutrient values for t h i s study expressed both as a concentration and on an areal basis (kg ha"1) were s t a t i s t i c a l l y analyzed. S t a t i s t i c a l analysis was c a r r i e d out using the SYSTAT s t a t i s t i c a l package (Wilkinson 1988). The data were checked for normality and several of the variables were not normally d i s t r i b u t e d . Transformations did not improve the r e s u l t . Homogeneity of variance was also examined. A r u l e of thumb i s that the largest variance within the data set should be no larger than four (maximum of five) times the smallest variance to which i t i s being compared (Schumaker pers. comm.). Following t h i s r u le, several variables were found which did not have homogeneous variances and transformations again did not improve the r e s u l t . Therefore nonparametric s t a t i s t i c s were used to analyze these data. The data were analyzed separately for each year. The data fo r the four p l o t s sampled i n each year (two control p l o t s and two burned plots) were i n i t i a l l y analyzed using the nonparametric equivalent of the one-way analysis of variance (the Kruskal-Wallis t e s t ) . The accepted s i g n i f i c a n c e l e v e l was 0.05. In order to determine the differences between the i n d i v i d u a l p l o t s , a Mann-Whitney U t e s t was then used. However, Zar (1984) discusses the danger of committing a Type I error when using two-sample tests f o r more than two means. Therefore, the alpha value accepted for these two-sample tests must be reduced (Kan pers. comm.). The c a l c u l a t i o n f o r t h i s acceptable s i g n i f i c a n c e l e v e l i s shown i n Appendix 4. The acceptable equivalent two-sample alpha value for the Mann-Whitney U tes t s was calculated to be 0.004, corresponding to an alpha value of 0.05 for the multi-sample analysis. The mean values for each p l o t were then l i s t e d i n descending order for each s o i l v a r i a b l e . S t a t i s t i c a l differences between the pl o t s were indicated using l e t t e r s , i . e . data f o r plot s with d i f f e r e n t l e t t e r s are s t a t i s t i c a l l y d i f f e r e n t at the 0.05 sig n i f i c a n c e l e v e l . Percentage differences i n MN, MNKG, TN, TNKG, OC, and CKG between treatments were also calculated and expressed as a percentage of the control p l o t values. The nonparametric Spearman Rank Correlation t e s t was used to determine l i n e a r correlations between MN or MNKG and the other s o i l v ariables measured. The re s u l t s f or the mineral s o i l showed i d e n t i c a l c o r r e l a t i o n r e s u l t s for both MN and MNKG. Therefore only r e s u l t s f o r MN i n the mineral s o i l are reported. 41 SITE 1 RESULTS AND DISCUSSION (Vedder Mountain Hardwood S i t e ) Immediate E f f e c t s o f Burning on the F o r e s t F l o o r The mean, standard d e v i a t i o n , c o e f f i c i e n t o f v a r i a t i o n , minimum v a l u e , and maximum v a l u e f o r each s o i l v a r i a b l e i n the f o r e s t f l o o r o f the f o u r p l o t s a re pre s e n t e d i n Table 2. S t a t i s t i c a l d i f f e r e n c e s between the p l o t s a re shown i n Table 3. Percentage d i f f e r e n c e s between treatments are g i v e n i n Tabl e 4 and s i g n i f i c a n t l i n e a r c o r r e l a t i o n s between e i t h e r MN o r MNKG and the oth e r s o i l v a r i a b l e s a re presented i n Table 5. Both MN and MNKG were s i g n i f i c a n t l y l e s s i n the burned p l o t s a t both l o c a t i o n s . The mean d i f f e r e n c e i n MN between treatments was 43% a t L o c a t i o n 1 and 32% a t L o c a t i o n 2. MNKG averaged 90% l e s s i n the burned p l o t a t L o c a t i o n 1 and 92% l e s s i n the burned p l o t a t L o c a t i o n 2. No r e s u l t s were found i n the l i t e r a t u r e which r e p o r t e d the e f f e c t o f burnin g on MN i n the f o r e s t f l o o r . The r e s u l t s r e p o r t e d by Vance and Henderson (1984) and Burger and P r i t c h e t t (1984) i n m i n e r a l s o i l appear t o be s i m i l a r t o the r e s u l t s f o r the f o r e s t f l o o r i n t h i s s t u d y . Most o f the r e a d i l y m i n e r a l i z a b l e n i t r o g e n appears t o have been l o s t by b u r n i n g . A p r o p o r t i o n o f both TN and TNKG a l s o appeared t o have been l o s t due t o b u r n i n g . The mean v a l u e s f o r TN averaged 30% l e s s i n the burned p l o t a t L o c a t i o n 1 and 33% l e s s i n the burned p l o t a t TABLE 2 VEDDER MOUNTAIN FOREST FLOOR STATU MN MNKG TN CONTROL MEAN 995.5 225.0 1.58 LOC 1 SD 219.8 62.9 0.24 MAX 1325.8 392.1 2.02 MIN 586.1 134.6 1.13 CV (%) 22.1 28.0 15.2 CONTROL MEAN 1127.6 265.1 1.92 LOC 2 SD 287.1 118.0 0.28 MAX 1716.4 569.7 2.50 MIN 555.8 101.5 1.15 CV (%) 25.5 44.5 14.4 BURNED MEAN 569.0 22.7 1.10 LOC 1 SD 271.1 28.1 0.31 MAX 1020.3 110.8 1.79 MIN 128.5 0.9 0.65 CV (%) 47.6 123.9 28.0 BURNED MEAN 766.6 21.4 1.29 LOC 2 SD 239.3 14.6 0.27 MAX 1256.4 53.1 1.77 MIN 408.1 3.4 0.68 CV (%) 31.2 68.3 20.6 ICS (YEAR 1) TNKG OC CKG PHH PHC C/N MN/TN 3573 46.6 106000 5.05 4.66 30.1 6.31 771 4.1 23000 0.25 0.26 4.7 1.12 5105 52.1 156000 5.65 5.30 39.8 8.30 2241 35.5 53000 4.40 4.00 23.8 4.43 21.6 8.8 21.5 4.97 5.58 15.7 17.7 4494 47.7 111000 5.38 5.03 25.4 5.85 1636 4.3 35000 0.28 0.26 5.1 1.05 7064 54.3 174000 5.80 5.40 46.1 8.06 2090 39.7 64000 4.85 4.55 20.6 4.27 36.4 9.0 31.7 5.22 5.17 20.2 17.9 390 26.8 10300 6.94 6.63 24.5 4.96 468 10.0 12500 0.70 0.72 8.1 1.59 1942 45.7 49600 8.10 7.75 52.3 7.59 43.9 12.9 875 5.35 4.90 16.3 1.95 120 37.1 121 10.0 10.9 33.0 32.0 362 33.0 9600 6.78 6.41 25.7 5.95 256 7.8 7400 0.39 0.43 3.9 1.22 1076 45.9 29000 7.35 6.95 35.1 8.97 88.4 14.5 2040 5.80 5.25 20.9 3.79 70.9 23.7 77.1 5.80 6.64 15.3 20.5 T a b l e 3 Ranking of P l o t s o f Vedder Mountain F o r e s t F l o o r i n Year 1 a* a b b MN 1127.6 995.5 766.6 568.9 C2 C l B2 B l a b c c TN 1.92 1.58 1.29 1.10 C2 C l B2 B l a a b b OC 47.7 46.6 33.0 26.8 C2 C l B2 B l a a b b MNKG 265.1 225.0 22.7 21.4 C2 C l B l B2 a a b b TNKG 4494 3573 390 362 C2 C l B l B2 a a b b CKG 111,000 106,000 10,000 9590 C2 C l B l B2 a a b c pHH 6.94 6.78 5.38 5.05 B l B2 C2 C l a a b e pHC 6.63 6.41 5.03 4.66 B l B2 C2 C l a b b b C/N 30.1 25.7 25.4 24.5 C l B2 C2 B l a a a a MN/TN 6.31 5.95 5.85 4.96 C l B2 C2 B l C l = c o n t r o l p l o t , l o c a t i o n 1 C2 = c o n t r o l p l o t , l o c a t i o n 2 B l = burned p l o t , l o c a t i o n 1 B2 = burned p l o t , l o c a t i o n 2 * Denotes s i g n i f i c a n t d i f f e r e n c e a t 0.05 s i g n i f i c a n c e l e v e l . 44 T a b l e 4 Percentage D i f f e r e n c e s between Treatments i n the F o r e s t F l o o r i n Year 1 VARIABLE LOC 1 LOC 2 MN 43% 32% MNKG 90% 92% TN 30% 33% TNKG 89% 92% OC 43% 31% CKG 90% 91% Tab l e 5 Spearman C o r r e l a t i o n C o e f f i c i e n t s f o r the F o r e s t F l o o r i n Year 1 VARIABLE C l C 2 B l B 2 MN TN 0.623** 0.555* 0.776** 0.689** OC 0.314 0.426 0.701** 0.817** pHH -0.002 -0.054 -0.619** -0.080 pHC -0.030 0.058 -0.651** -0.208 C/N -0.364 -0.171 0.529* 0.203 MNKG TNKG 0.744** 0.913** 0.982** 0.949** CKG 0.755** 0.824** 0.971** 0.946** pHH -0.225 -0.287 -0.728** -0.230 pHC -0.210 -0.181 -0.760** -0.318 C/N -0.026 -0.344 0.710** 0.477* n = 20 n = 20 n = 20 n = 20 n = 20 rs @ 0.05 = 0.447 rc @ 0.01 = 0.570 45 L o c a t i o n 2. TNKG was 89% lower i n the burned p l o t a t the f i r s t l o c a t i o n and 92% lower i n the burned p l o t a t the second l o c a t i o n . Although a measure o f t o t a l n i t r o g e n does not n e c e s s a r i l y r e f l e c t t h a t p o r t i o n o f the n i t r o g e n which i s r e a d i l y m i n e r a l i z a b l e , a s i g n i f i c a n t l i n e a r c o r r e l a t i o n was found between MN and TN and between MNKG and TNKG. The l o s s o f both m i n e r a l i z a b l e n i t r o g e n (MN and MNKG) and t o t a l n i t r o g e n (TN and TNKG) from t h i s s i t e may have been the r e s u l t o f b u r n i n g i n t e n s i t y . I f temperatures exceeded 400°C, much of the t o t a l n i t r o g e n as w e l l as the ammonium-nitrogen would have been l o s t . However, the r a t i o o f MN/TN f o l l o w i n g b u r n i n g appeared d i f f e r e n t : a t the two l o c a t i o n s f o l l o w i n g b u r n i n g . Although the d i f f e r e n c e s were not s i g n i f i c a n t , the r a t i o appeared s l i g h t l y lower i n the burned p l o t a t L o c a t i o n 1, but s l i g h t l y h i g h e r i n the burned p l o t a t L o c a t i o n 2. T h e r e f o r e , b u r n i n g i n t e n s i t y may have been l e s s a t the second l o c a t i o n than a t the f i r s t . T h i s i s c o n c e i v a b l e s i n c e the second l o c a t i o n was l o c a t e d more a t the base o f a s l o p e , thus more downslope seepage might have been r e c e i v e d by these p l o t s . A h i g h e r percentage o f decayed wood on the p l o t s a t L o c a t i o n 2 g i v e s some evidence o f t h i s h y p o t h e s i s . Both OC and CKG were a l s o s i g n i f i c a n t l y lower i n the burned p l o t s a t the two l o c a t i o n s . OC was 43% lower i n the burned p l o t a t L o c a t i o n 1 and 31% lower i n the burned p l o t a t L o c a t i o n 2. CKG was 90% l e s s i n the burned p l o t a t the f i r s t l o c a t i o n and 91% l e s s i n t he burned p l o t a t the second l o c a t i o n . The r e l a t i o n s h i p between MN and OC showed a s i g n i f i c a n t l i n e a r c o r r e l a t i o n o n l y i n the burned p l o t s a t the two l o c a t i o n s , w h i l e CKG showed a s i g n i f i c a n t l i n e a r c o r r e l a t i o n w i t h MNKG i n a l l f o u r p l o t s . The C/N r a t i o i s o f t e n used as an i n d i c a t i o n o f the a b i l i t y o f a s o i l t o m i n e r a l i z e n i t r o g e n (Brady 1984, T i s d a l e e t a l . 1985, P r i t c h e t t 1979). However, Lamb (1975) found a poor r e l a t i o n s h i p between the C/N r a t i o and the a b i l i t y o f f o r e s t s o i l s t o m i n e r a l i z e n i t r o g e n . Youngberg (1978) found n i t r o g e n was taken up by D o u g l a s - f i r s e e d l i n g s from f o r e s t l i t t e r w i t h wide C/N r a t i o s . No s i g n i f i c a n t l i n e a r c o r r e l a t i o n was found between the C/N r a t i o and MN i n e i t h e r o f the c o n t r o l p l o t s o r i n the burned p l o t a t L o c a t i o n 2 i n t h i s s t u d y . There was, however, a s i g n i f i c a n t l i n e a r c o r r e l a t i o n between these v a r i a b l e s i n the burned p l o t a t L o c a t i o n 1. A s i g n i f i c a n t l i n e a r c o r r e l a t i o n was found between the C/N r a t i o and MNKG f o r both o f the burned p l o t s , but not i n the c o n t r o l p l o t s . However, the s i g n i f i c a n t c o r r e l a t i o n s were p o s i t i v e , i n d i c a t i n g t h a t as the C/N r a t i o decreased, the a b i l i t y o f the s o i l t o m i n e r a l i z e n i t r o g e n a l s o d ecreased. T h e r e f o r e , i t appears t h a t n i t r o g e n m i n e r a l i z a t i o n on t h i s s i t e was not d i r e c t l y c o n t r o l l e d by t he C/N r a t i o . Both t h e pHH and the pHC were s i g n i f i c a n t l y h i g h e r i n the burned p l o t s than the c o n t r o l p l o t s a t the two l o c a t i o n s . In a c i d f o r e s t s o i l s , one would expect an i n c r e a s e i n n i t r o g e n m i n e r a l i z a t i o n w i t h an i n c r e a s e i n pH; however, b u r n i n g appeared t o decrease MN w h i l e i n c r e a s i n g the pH. The pHH v a l u e s f o r the 47 control p l o t s at the two locations averaged 5.1 and 5.4, respectively and therefore may not have been a l i m i t i n g factor for nitrogen mineralization on t h i s s i t e p r i o r to burning. Results of the c o r r e l a t i o n t e s t showed a s i g n i f i c a n t negative l i n e a r c o r r e l a t i o n i n the burned p l o t at Location 1, but no relati o n s h i p i n the other three p l o t s . The reason for these r e s u l t s i s unclear, but the lack of a rel a t i o n s h i p i n the burned p l o t s may indicate that much of the r e a d i l y mineralizable nitrogen was removed by burning. The evidence for a d i f f e r e n t burning i n t e n s i t y at the two locations was also shown by the s i g n i f i c a n t l y higher pHH and pHC i n the burned p l o t at Location 1. Immediate E f f e c t s of Burning on the Mineral S o i l The mean, standard deviation, c o e f f i c i e n t of v a r i a t i o n , minimum value, and maximum value for each s o i l v a r i a b le i n the mineral s o i l of the four p l o t s are given i n Table 6. S t a t i s t i c a l differences between the plots are shown i n Table 7. Percentage differences between treatments are given i n Table 8 and s i g n i f i c a n t l i n e a r c o r r e l a t i o n s between eithe r MN or MNKG and the other s o i l v a r iables are presented i n Table 9. Differences between treatments were not as d i s t i n c t for MN or MNKG i n the mineral s o i l . MN was s i g n i f i c a n t l y l e s s only i n the T A B L E 6 V E D D E R M O U N T A I N M I N E R A L S O I L S T A T I S T I C S ( Y E A R 1 ) M N M N K G T N T N K G O C C K G P H H P H C C / N M N / T N C O N T R O L M E A N 1 1 4 . 4 1 8 2 . 9 0 . 3 8 6 1 0 9 8 . 5 1 3 6 0 0 0 5 . 3 4 5 . 0 5 2 2 . 0 2 . 9 5 L O C 1 S D 3 9 . 6 6 3 . 3 0 . 1 0 1 5 8 7 2 . 9 4 7 0 0 0 0 . 3 8 0 . 4 0 3 . 4 0 . 5 4 M A X , 1 8 2 . 3 2 9 1 . 5 0 . 5 9 9 3 6 5 1 5 . 3 2 4 5 0 0 0 5 . 9 5 5 . 7 0 2 7 . 4 3 . 9 4 M I N 4 4 . 2 7 0 . 6 0 . 2 4 3 7 6 3 5 . 1 8 1 0 0 0 4 . 6 5 4 . 2 5 1 7 . 9 1 . 8 8 C V ( % ) 3 4 . 6 3 4 . 6 2 5 . 9 2 6 . 0 3 4 . 4 3 4 . 4 7 . 0 4 7 . 8 3 1 5 . 3 1 8 . 2 C O N T R O L M E A N 1 2 3 . 4 1 3 4 . 2 0 . 4 2 4 5 9 4 7 . 9 8 6 0 0 0 5 . 1 2 4 . 7 4 1 8 . 6 2 . 8 6 L O C 2 S D 4 0 . 0 4 3 . 5 0 . 0 7 7 5 5 1 . 7 1 9 0 0 0 0 . 2 4 0 . 2 8 2 . 0 0 . 5 6 M A X 1 9 4 . 3 2 1 1 . 4 0 . 5 2 5 6 8 3 1 1 . 2 1 2 2 0 0 0 5 . 5 5 5 . 1 5 2 3 . 0 3 . 8 8 M I N 6 7 . 5 7 3 . 4 0 . 3 2 3 4 5 1 5 . 8 6 3 0 0 0 4 . 6 5 4 . 1 5 1 5 . 2 2 . 0 9 C V ( % ) 3 2 . 4 3 2 . 4 1 6 . 4 1 6 . 4 2 2 . 2 2 2 . 2 4 . 7 6 5 . 8 0 1 0 . 8 1 9 . 4 B U R N E D M E A N 8 3 . 6 1 2 0 . 4 0 . 2 9 4 1 6 4 6 . 1 8 8 0 0 0 5 . 1 1 4 . 8 0 2 0 . 8 2 . 8 9 L O C 1 S D 3 1 . 1 4 4 . 8 0 . 1 0 1 3 6 3 2 . 5 3 6 0 0 0 0 . 3 7 0 . 3 3 2 . 1 0 . 6 1 M A X 1 4 8 . 6 2 1 4 . 0 0 . 5 1 7 3 6 9 1 3 . 1 1 8 8 0 0 0 5 . 8 0 5 . 4 0 2 5 . 5 4 . 4 6 M I N 3 7 . 6 5 4 . 2 0 . 1 7 2 4 6 2 3 . 6 5 2 0 0 0 4 . 3 5 4 . 2 0 1 7 . 8 1 . 8 6 C V ( % ) 3 7 . 2 3 7 . 2 3 2 . 9 3 2 . 7 4 0 . 6 4 0 . 6 7 . 3 0 6 . 7 7 1 0 . 1 2 1 . 0 B U R N E D M E A N 8 0 . 5 9 6 . 7 0 . 2 5 2 9 7 3 5 . 5 6 6 0 0 0 5 . 0 2 4 . 6 3 2 2 . 2 3 . 1 9 L O C 2 S D 3 3 . 1 3 9 . 8 0 . 0 5 5 5 7 1 . 2 1 4 6 0 0 0 . 2 2 0 . 2 9 2 . 0 0 . 9 0 M A X 1 5 5 . 8 1 8 7 . 1 0 . 3 2 3 7 8 1 7 . 6 9 1 0 0 0 5 . 3 5 5 . 0 0 2 5 . 6 5 . 5 0 M I N 3 7 . 8 4 5 . 4 0 . 1 5 1 8 1 0 3 . 0 3 6 0 0 0 4 . 4 5 3 . 8 5 1 9 . 4 2 . 3 5 C V ( % ) 4 1 . 1 4 1 . 1 1 8 . 6 1 8 . 7 2 2 . 1 2 2 . 1 4 . 3 9 6 . 3 1 9 . 0 2 8 . 3 T a b l e 7 Ranking of P l o t s o f Vedder Mountain M i n e r a l S o i l i n Year 1 a* ab ab b MN 123.4 114.4 83.6 80.5 C2 C l B l B2 a a ab b TN 0.42 0.38 0.29 0.25 C2 C l B l B2 a a ab b OC 8.5 7.9 6.1 5.5 C l C2 B l B2 a ab b b . MNKG 183.0 134.2 120.4 96.7 C l C2 B l B2 a b be c TNKG 6109 4594 4164 2973 C l C2 B l B2 a b b b CKG 136,000 88,000 86,000 66,000 C l B l C2 B2 a a a a pHH 5.34 5.12 5.11 5.02 C l C2 B l B2 a ab ab b pHC 5.05 4.80 4.72 4.63 C l , B l C2 B2 a a a b C/N 22.2 22.0 20.8 18.6 B2 C l B l C2 a a a a MN/TN 3.19 2.95 2.88 2.86 B2 C l B l C2 C l = c o n t r o l p l o t , l o c a t i o n 1 C2 = c o n t r o l p l o t , l o c a t i o n 2 B l = burned p l o t , l o c a t i o n 1 B2 = burned p l o t , l o c a t i o n 2 * Denotes s i g n i f i c a n t d i f f e r e n c e a t 0.05 s i g n i f i c a n c e l e v e l . 50 Table 8 Percentage D i f f e r e n c e s between Treatments i n the M i n e r a l S o i l i n Year 1 VARIABLE LOC 1 LOC 2 MN 27% 36% MNKG 34% 28% TN 24% 42% TNKG 32% 35% OC 28% 30% CKG 35% 23% Tab l e 9 Spearman C o r r e l a t i o n C o e f f i c i e n t s f o r the M i n e r a l S o i l i n Year 1 VARIABLE C l C 2 B l B 2 MN TN 0.860** 0.898** 0.824** 0.815** OC 0.718** 0.897** 0.730** 0.676** pHH 0.193 -0.103 -0.592* -0.182 pHC 0.369 0.019 -0.479* -0.058 C/N 0.159 0.407 0.143 0.076 n = 17 n = 17 n = 18 n = 16 n = 16 r s r s § 0.05 0.01 = 0.503 0.635 n = 17 r s r s § @ 0.05 0.01 = 0.485 0.615 n = 18 r s r s @ § 0.05 0.01 = 0.472 0.600 n = 20 r s r s § @ 0.05 0.01 = 0.447 0.570 51 burned p l o t a t L o c a t i o n 2. The d i f f e r e n c e between treatments a t t h i s l o c a t i o n was 36%. MN was 27% lower i n the burned p l o t a t the f i r s t l o c a t i o n . MNKG was s i g n i f i c a n t l y lower i n the burned p l o t a t L o c a t i o n 1 and the d i f f e r e n c e between treatments averaged 34%. However, d i f f e r e n c e s between treatments a t L o c a t i o n 2, which averaged 28%, were not s i g n i f i c a n t . T h i s l o s s o f some of the r e a d i l y m i n e r a l i z a b l e n i t r o g e n i n the m i n e r a l s o i l w i t h b u r n i n g a l s o supports the r e s u l t s found by Vance and Henderson (1984) and Burger and P r i t c h e t t (1984). TN was a l s o s i g n i f i c a n t l y l e s s i n the burned p l o t s a t both l o c a t i o n s . There was an average o f 24% l e s s TN i n t h e burned p l o t a t the f i r s t l o c a t i o n and 42% l e s s i n the burned p l o t a t the second l o c a t i o n . TNKG was a l s o s i g n i f i c a n t l y l e s s i n t h e burned p l o t s at both l o c a t i o n s , but the d i f f e r e n c e s between the c o n t r o l p l o t at L o c a t i o n 2 and the burned p l o t a t L o c a t i o n 1 were not s i g n i f i c a n t . D i f f e r e n c e s i n TNKG averaged o f 32% l e s s i n the burned p l o t at L o c a t i o n 1 and 35% l e s s i n the burned p l o t a t L o c a t i o n 2. A s i g n i f i c a n t l i n e a r c o r r e l a t i o n was found between MN and TN i n the m i n e r a l s o i l f o r a l l f o u r p l o t s . T h e r e f o r e , i t a l s o appears t h a t l o s s o f MN was a l s o r e l a t e d t o TN l o s s . S i g n i f i c a n t l i n e a r c o r r e l a t i o n s have a l s o been r e p o r t e d i n the l i t e r a t u r e between the amount of n i t r o g e n m i n e r a l i z e d d u r i n g an i n c u b a t i o n and the t o t a l n i t r o g e n i n a g r i c u l t u r a l s o i l s (Robinson 1967, Hague and Walmsley 1972, Fox and P i e k i e l e k 1984), i n c h a p a r r a l s o i l (Marion et a l . 1981), and i n f o r e s t s o i l s (Powers 1980). Although no s i g n i f i c a n t d i f f e r e n c e s were found between treatments i n the MN/TN r a t i o , the burned p l o t a t L o c a t i o n 1 again had a s l i g h t l y lower r a t i o than the c o n t r o l p l o t , w h i l e . a t the second l o c a t i o n , the r a t i o of the burned p l o t was s l i g h t l y h i g h e r . T h i s a g a i n i n d i c a t e s the p o s s i b i l i t y o f d i f f e r e n t burning i n t e n s i t i e s between the two l o c a t i o n s . W e l l s (1971) c a l c u l a t e d the r a t i o o f n i t r o g e n uptake by l o b l o l l y p i n e s e e d l i n g s as a percentage of t o t a l s o i l n i t r o g e n and found t h a t n i t r o g e n uptake was h i g h e r i n the p e r i o d i c a l l y burned s i t e s than on the a n n u a l l y burned, i . e . a d i f f e r e n t b u r n i n g i n t e n s i t y . The d i f f e r e n c e s between treatments f o r OC and CKG were a l s o determined and r e s u l t s f o r OC were a l s o not as d i s t i n c t i n the m i n e r a l s o i l . There was 28% l e s s OC i n the burned p l o t a t the f i r s t l o c a t i o n , although t h i s d i f f e r e n c e was not s i g n i f i c a n t . At the second l o c a t i o n , these d i f f e r e n c e s were s i g n i f i c a n t and t h e r e was 30% l e s s OC i n the burned p l o t a t t h i s l o c a t i o n . CKG was s i g n i f i c a n t l y lower i n the burned p l o t a t L o c a t i o n 1, averaging 35%, but no s i g n i f i c a n t d i f f e r e n c e s were found between treatments at the second l o c a t i o n , which averaged 23% l e s s i n the burned p l o t . The l i n e a r r e l a t i o n s h i p between MN and OC i n the m i n e r a l s o i l was a l s o s i g n i f i c a n t f o r a l l f o u r p l o t s . A s i m i l a r l i n e a r r e l a t i o n s h i p was found by Powers (1980) f o r MN determined u s i n g an a n a e r o b i c i n c u b a t i o n and s o i l carbon determined by l o s s - o n - i g n i t i o n i n unburned f o r e s t s o i l s . There was no s i g n i f i c a n t l i n e a r c o r r e l a t i o n between MN and the C/N r a t i o i n the mineral s o i l for any of the p l o t s . The values for t h i s r a t i o ranged from an average of 19 to 22. No s i g n i f i c a n t differences were found between treatments i n the mineral s o i l . The lower pHH and pHC values i n the two burned plots are probably due to s i t e v a r i a b i l i t y rather than treatment. The s i t e had received no p r e c i p i t a t i o n between the pre-burn and post-burn sampling times and probably minimal, i f any, downward movement of basic cations into the mineral s o i l would have occurred which would increase the pH. A s i g n i f i c a n t negative l i n e a r c o r r e l a t i o n was also found i n the mineral s o i l between MN and these two variables only i n the burned p l o t at Location 1, again i n d i c a t i n g that pH i n the mineral s o i l was probably not a s i g n i f i c a n t factor i n nitrogen mineralization on t h i s s i t e . Differences between Treatments i n the Forest Floor i n the Second Year The mean, standard deviation, c o e f f i c i e n t of v a r i a t i o n , minimum value, and maximum value for each s o i l v a r i a b l e i n the forest f l o o r of the four p l o t s i n the second year are given i n Table 10. S t a t i s t i c a l differences between the p l o t s are shown i n Table 11. Percentage differences between treatments are given i n Table 12 and s i g n i f i c a n t l i n e a r c o rrelations between eithe r MN or MNKG and the other s o i l variables are presented i n Table 13. 54 T A B L E 1 0 V E D D E R M O U N T A I N F O R E S T F L O O R S T A T I S T I C S ( Y E A R 2 ) M N M N K G T N T N K G O C C K G P H H P H C C / N M N / T N C O N T R O L M E A N 1 3 9 1 . 8 1 7 1 . 7 1 . 9 5 2 4 1 6 5 0 . 5 6 2 5 0 0 5 . 5 9 5 . 2 5 2 6 . 0 7 . 1 5 L O C 1 S D 3 4 4 . 9 7 6 . 8 0 . 1 6 9 7 3 2 . 5 2 5 4 0 0 0 . 1 7 0 . 1 8 1 . 6 1 . 6 8 M A X 2 1 5 5 . 3 3 0 9 . 5 2 . 3 1 4 2 9 5 5 4 . 3 1 1 3 0 0 0 5 . 9 5 5 . 5 5 2 8 . 8 1 1 . 7 M I N 9 5 3 . 7 5 0 . 5 1 . 6 4 7 1 7 4 3 . 4 2 0 2 0 0 5 . 2 0 4 . 8 5 2 1 . 9 4 . 9 4 C V ( % ) 2 4 . 8 4 4 . 7 8 . 3 4 0 . 3 5 . 0 4 0 . 6 3 . 0 9 3 . 3 4 6 . 1 2 3 . 5 C O N T R O L M E A N 1 2 4 8 . 5 1 3 1 . 5 2 . 0 2 2 2 1 5 5 1 . 2 5 6 0 0 0 5 . 7 4 5 . 3 6 2 5 . 5 6 . 2 0 L O C 2 S D 2 4 6 . 2 3 9 . 8 0 . 1 6 8 2 9 2 . 8 1 9 3 0 0 0 . 2 7 0 . 2 8 2 . 8 1 . 1 8 M A X 1 8 7 3 . 7 2 1 6 . 5 2 . 2 5 4 0 2 2 5 4 . 7 9 0 0 0 0 6 . 0 5 5 . 7 5 3 2 . 5 8 . 9 1 M I N 1 0 2 6 . 2 6 2 . 2 1 . 6 5 6 9 8 4 4 . 7 1 6 9 0 0 4 . 8 5 4 . 4 5 2 1 . 3 4 . 9 0 C V ( % ) 1 9 . 7 3 0 . 3 8 . 1 3 7 . 4 5 . 4 3 4 . 5 4 . 7 5 5 . 2 5 1 0 . 8 1 9 . 0 B U R N E D M E A N 1 7 2 . 9 3 . 3 1 . 1 7 2 2 6 3 5 . 5 6 7 3 0 6 . 1 4 5 . 7 5 3 1 . 0 1 . 5 0 L O C 1 S D 3 6 . 4 3 . 6 0 . 2 5 2 4 1 6 . 5 7 3 5 0 0 . 2 6 0 . 3 2 5 . 1 0 . 2 3 M A X 2 5 8 . 6 1 3 . 2 1 . 6 1 8 9 7 4 9 . 7 2 7 1 0 0 6 . 6 0 6 . 4 5 4 4 . 0 2 . 0 5 M I N 1 1 8 . 1 0 . 4 0 . 6 0 2 0 . 5 2 5 . 1 8 5 1 5 . 6 5 5 . 2 5 2 5 . 4 1 . 1 2 C V ( % ) 2 1 . 1 1 0 8 . 3 2 1 . 0 1 0 7 1 8 . 3 1 0 9 4 . 2 1 5 . 6 3 1 6 . 4 1 5 . 0 B U R N E D M E A N 1 8 0 . 7 5 . 2 1 . 1 9 3 1 9 3 8 . 9 1 0 5 0 0 6 . 3 5 6 . 0 5 3 3 . 2 1 . 5 2 L O C 2 S D 6 4 . 7 5 . 0 0 . 1 8 2 4 8 4 . 8 8 0 0 0 0 . 2 4 0 . 2 6 4 . 4 0 . 4 8 M A X 3 1 3 . 7 2 2 . 1 1 . 4 9 1 1 7 9 4 8 . 8 3 5 7 0 0 6 . 7 5 6 . 4 5 4 4 . 6 2 . 5 9 M I N 5 8 . 8 0 . 6 0 . 8 4 8 5 . 2 3 1 . 5 3 2 8 0 5 . 9 5 5 . 6 5 2 6 . 0 0 . 6 4 C V ( % ) 3 5 . 8 9 6 . 6 1 5 . 1 7 7 . 8 1 2 . 3 7 5 . 7 3 . 7 0 4 . 3 3 1 3 . 2 3 1 . 8 55 T a b l e 11- Ranking o f P l o t s o f Vedder Mountain F o r e s t F l o o r i n Year 2 - a* a b b MN 1391.8 1248.5 180.7 172.9 C l C2 B2 B l a a b b TN 2.02 1.95 1.19 1.17 C2 C l B2 B l a a b b OC 51.2 50.5 38.9 35.5 C2 C l B2 B l a a b b MNKG 171.7 131.5 5.2 3.3 C l C2 B2 B l a a b b TNKG 2416 2215 319 226 C l C2 B2 B l a a b b CKG 62,500 56,000 10,500 6730 C l C2 B2 B l a a b b pHH 6.35 6.14 5.74 5.59 B2 B l C2 C l a a b b pHC 6.05 5.75 5.36 5.25 B2 B l C2 C l a a b b C/N 33.2 31.0 26.0 25.5 B2 B l C l C2 a a b b MN/TN 7.15 6.20 1.52 1.50 C l C2 B2 B l C l = c o n t r o l p l o t , l o c a t i o n 1 C2 = c o n t r o l p l o t , l o c a t i o n 2 B l = burned p l o t , l o c a t i o n 1 B2 = burned p l o t , l o c a t i o n 2 * Denotes s i g n i f i c a n t d i f f e r e n c e a t 0.05 s i g n i f i c a n c e l e v e l . 56 Tabl e 12 Percentage D i f f e r e n c e s between Treatments i n the F o r e s t F l o o r i n Year 2 VARIABLE LOC 1 LOC 2 MN 88% 86% MNKG 98% 96% TN 40% 41% TNKG 91% 86% OC 30% 24% CKG 89% 81% Tab l e 13 Spearman C o r r e l a t i o n C o e f f i c i e n t s f o r the F o r e s t F l o o r i n Year 2 VARIABLE MN TN OC pHH pHC C/N C 1 0.266 -0.140 -0.081 0.150 -0.347 C 2 0.310 0.489* 0.626** 0.633** -0.356 B 1 0.765** 0.711** -0.273 -0.132 -0.352 B 2 0.410 0.529* -0.673** -0. 671** 0.089 MNKG TNKG CKG pHH pHC C/N 0.866** 0.857** -0.148 -0.083 -0.368 0.875** 0.780** -0.275 -0.205 -0.341 0.989** 0.988** 0. 060 0.166 -0.365 0.911** 0.926** -0. 500* -0.482* 0. 083 n = 20 n = 20 n = 20 n = 20 n = 20 rs @ 0.05 = 0.447 r0 @ 0.01 = 0.570 57 D i f f e r e n c e s between treatments f o r both MN and MNKG were again s i g n i f i c a n t i n the f o r e s t f l o o r i n the second y e a r . MN was 88% l e s s i n the burned p l o t a t L o c a t i o n 1 and 86% lower i n the burned p l o t a t L o c a t i o n 2. MNKG was 98% l e s s i n the burned p l o t a t L o c a t i o n 1 and 96% l e s s i n the burned p l o t a t L o c a t i o n 2. T h i s g r e a t e r d i f f e r e n c e between treatments may have been due t o a combination o f f a c t o r s . The remaining MN i n the burned p l o t s may have been leached out o f t h i s l a y e r over t h e y e a r , p a r t i c u l a r l y w i t h the r a i n f a l l r e c e i v e d by the s i t e . A l s o , t h i s n i t r o g e n may have been taken up by v e g e t a t i o n r e i n v a d i n g t he p l o t s . There a l s o appeared t o be s l i g h t l y h i g h e r MN i n the c o n t r o l p l o t s i n the second y e a r . V i t o u s e k (1981) and Matson and Vi t o u s e k (1981) d i s c u s s t he i n c r e a s e i n n i t r o g e n m i n e r a l i z a t i o n when f o r e s t e d areas are c l e a r c u t . The e f f e c t of h i g h e r temperature and mo i s t u r e , the a d d i t i o n o f more r e a d i l y m i n e r a l i z a b l e l i t t e r f a l l from herbaceous s p e c i e s r e i n v a d i n g the s i t e , and the f a c t t h a t once the t r e e s are removed, l e s s n u t r i e n t s are taken up, may c o n t r i b u t e t o g r e a t e r n i t r o g e n m i n e r a l i z a t i o n once the o v e r s t o r y i s removed. T h i s appears t o have been the r e s u l t i n the c o n t r o l p l o t s . S i g n i f i c a n t d i f f e r e n c e s between treatments were a l s o found f o r b oth TN and TNKG. At the f i r s t l o c a t i o n , TN was 40% l e s s i n the burned p l o t and 41% l e s s i n the burned p l o t a t the second l o c a t i o n . TNKG was 91% lower i n the burned p l o t a t L o c a t i o n 1 and 86% lower i n the burned p l o t a t L o c a t i o n 2. TN a l s o appeared t o be h i g h e r i n the c o n t r o l p l o t s i n the second y e a r , i n d i c a t i n g t h a t l i t t e r f a l l from the herbaceous s p e c i e s r e i n v a d i n g t h e p l o t s may 58 have been added over the y e a r . A s i g n i f i c a n t l i n e a r c o r r e l a t i o n was found between MN and TN onl y i n the burned p l o t a t L o c a t i o n 1. However, t h e r e was a s i g n i f i c a n t l i n e a r c o r r e l a t i o n between MNKG and TNKG i n a l l f o u r p l o t s . The MN/TN r a t i o was now s i g n i f i c a n t l y lower i n the burned p l o t s a t the two l o c a t i o n s . T h e r e f o r e , t h i s supports the hy p o t h e s i s t h a t much of the m i n e r a l i z a b l e n i t r o g e n had been l o s t from the burned p l o t s . OC and CKG were a l s o s i g n i f i c a n t l y lower i n both o f the burned p l o t s i n the second y e a r . D i f f e r e n c e s between treatments showed t h e r e was 30% l e s s OC i n the burned p l o t a t L o c a t i o n 1 and 24% l e s s i n t he burned p l o t a t L o c a t i o n 2. CKG was 89% l e s s i n the burned p l o t a t L o c a t i o n 1 and 81% l e s s i n the burned p l o t a t L o c a t i o n 2. A s i g n i f i c a n t l i n e a r c o r r e l a t i o n was found between OC and MN i n a l l p l o t s except the c o n t r o l p l o t a t L o c a t i o n 1, but CKG was s i g n i f i c a n t l y l i n e a r l y c o r r e l a t e d w i t h MNKG i n a l l f o u r p l o t s . The C/N r a t i o was s i g n i f i c a n t l y h i g h e r i n both burned p l o t s which may have been due t o the l o s s o f n i t r o g e n from these p l o t s , e i t h e r by l e a c h i n g o r p l a n t uptake, o r p o s s i b l y the a d d i t i o n of l i t t e r f a l l from r e i n v a d i n g s p e c i e s may have added more carbon t o these p l o t s . However, the average v a l u e s f o r t h i s r a t i o ranged from 26 t o 33 f o r the fo u r p l o t s . No s i g n i f i c a n t l i n e a r 59 c o r r e l a t i o n was found between either MN or MNKG and the C/N r a t i o i n any of the p l o t s . Both the pHH and the pHC remained s i g n i f i c a n t l y higher i n the burned pl o t s i n the second year and were p o s i t i v e l y l i n e a r l y correlated with MN i n the control p l o t at Location 2. However, a s i g n i f i c a n t negative l i n e a r c o r r e l a t i o n was found between these variables and MN i n the burned p l o t at the same locati o n . No s i g n i f i c a n t l i n e a r c o r r e l a t i o n was found f o r eit h e r p l o t at Location 1. A s i g n i f i c a n t negative l i n e a r c o r r e l a t i o n was found between MNKG and both pHH and pHC only i n the burned p l o t at Location 2. Differences between Treatments i n the Mineral S o i l i n the Second Year The mean, standard deviation, c o e f f i c i e n t of v a r i a t i o n , minimum value, and maximum value f o r each s o i l v a r i a b l e i n the forest f l o o r of the four plots i n the second year are given i n Table 14. S t a t i s t i c a l differences between the p l o t s are shown i n Table 15. Percentage differences between treatments are given i n Table 16 and s i g n i f i c a n t l i n e a r correlations between ei t h e r MN or MNKG and the other s o i l variables are presented i n Table 17. Differences between treatments i n the mineral s o i l i n the second year were more d i s t i n c t than they were i n the f i r s t year. 60 T A B L E 1 4 V E D D E R M O U N T A I N M I N E R A L S O I L S T A T I S T I C S ( Y E A R 2 ) M N M N K G T N T N K G O C C K G P H H P H C C / N M N / T N C O N T R O L M E A N 1 5 1 . 4 2 4 2 . 0 0 . 4 3 6 1 3 0 1 0 . 0 1 6 0 0 0 0 5 . 5 4 5 . 0 3 2 2 . 7 3 . 4 5 L O C 1 S D 5 2 . 4 8 3 . 8 0 . 1 2 1 8 9 8 3 . 6 5 7 0 0 0 0 . 3 5 0 . 4 0 4 . 5 0 . 4 4 M A X 2 5 8 . 9 4 1 4 . 0 0 . 6 6 1 0 6 0 0 1 7 . 1 2 7 3 0 0 0 6 . 1 5 5 . 7 5 3 2 . 1 3 . 9 9 M I N 8 1 . 9 1 3 0 . 9 0 . 2 6 4 0 7 6 4 . 7 7 5 0 0 0 5 . 0 0 4 . 4 5 1 6 . 6 2 . 6 5 C V ( % ) 3 4 . 6 3 4 . 6 2 7 . 5 2 7 . 4 3 5 . 8 3 5 . 8 6 . 3 2 7 . 9 5 2 0 . 0 1 2 . 7 C O N T R O L M E A N 1 3 1 . 1 1 4 2 . 6 0 . 4 1 4 4 5 4 8 . 1 8 7 6 0 0 5 . 3 9 4 . 8 4 1 9 . 8 3 . 1 4 L O C 2 S D 4 5 . 2 4 9 . 2 0 . 0 8 9 1 2 1 . 6 1 7 1 0 0 0 0 . 2 3 0 . 2 3 1 . 6 0 . 6 1 M A X 2 2 7 . 4 2 4 7 . 4 0 . 5 9 6 4 2 3 1 1 . 4 1 2 4 0 0 0 5 . 7 5 5 . 2 0 2 4 . 0 4 . 1 5 M I N 6 8 . 9 7 5 . 0 0 . 3 0 3 2 0 6 5 . 7 6 2 0 0 0 4 . 9 5 4 . 4 5 1 7 . 5 2 . 1 4 C V ( % ) 3 4 . 5 3 4 . 5 2 0 . 5 2 0 . 5 1 9 . 6 9 . 5 4 . 3 4 4 . 8 0 8 . 3 1 9 . 5 B U R N E D M E A N 7 1 . 0 1 0 2 . 2 0 . 2 9 4 1 0 6 6 . 2 8 9 0 0 0 5 . 5 9 5 . 0 4 2 1 . 7 2 . 4 6 L O C 1 S D 2 3 . 6 3 3 . 9 0 . 0 6 8 8 4 1 . 6 2 3 3 0 0 0 . 2 7 0 . 2 8 1 . 9 0 . 4 3 M A X 1 3 1 . 5 1 8 9 . 4 0 . 4 0 5 8 0 3 9 . 7 1 3 9 0 0 0 6 . 2 5 5 . 6 5 2 7 . 4 3 . 2 6 M I N 3 2 . 0 4 6 . 0 0 . 2 0 2 8 6 4 4 . 1 6 0 0 0 0 5 . 0 5 4 . 5 5 1 9 . 4 1 . 6 1 C V ( % ) 3 3 . 2 3 3 . 2 2 1 . 4 2 1 . 5 2 6 . 1 2 6 . 1 4 . 7 7 5 . 4 6 8 . 9 1 7 . 6 B U R N E D M E A N 7 8 . 1 9 3 . 9 0 . 2 5 3 0 5 1 5 . 6 6 8 0 0 0 5 . 3 6 4 . 7 9 2 2 . 1 3 . 0 6 L O C 2 S D 2 0 . 6 2 4 . 7 0 . 0 5 5 5 8 1 . 1 1 2 7 0 0 0 . 1 5 0 . 1 5 1 . 6 0 . 4 6 M A X 1 2 4 . 1 1 4 9 . 1 0 . 3 4 4 0 4 9 7 . 6 9 1 6 0 0 5 . 6 5 5 . 0 5 2 6 . 5 3 . 8 6 M I N 4 0 . 7 4 8 . 8 0 . 1 8 2 1 7 4 3 . 6 4 3 0 0 0 5 . 1 5 4 . 5 0 1 9 . 8 2 . 2 5 C V ( % ) 2 6 . 3 2 6 . 3 1 8 . 1 1 8 . 3 1 8 . 9 1 8 . 8 2 . 7 8 3 . 2 2 7 . 3 1 5 . 1 61 Tabl e 15 Ranking of P l o t s o f Vedder Mountain M i n e r a l S o i l i n Year 2 a* a b b MN 151.4 131.1 78.1 71.0 C l C2 B2 B l a a b b TN 0.43 0.41 0.29 0.25 C l C2 B l B2 a a b b OC 9.9 8.1 6.2 5.6 C l C2 B l B2 a b be c MNKG 242.0 142.6 102.2 93.9 C l C2 B l B2 a b b c TNKG 6930 4454 4106 3050 C l C2 B l B2 a b b c CKG 159,000 89,000 88,000 67,000 C l B l C2 B2 a ab ab b pHH 5.59 5.54 5.39 5.36 B l C l C2 B2 a ab ab b pHC 5.04 5.03 4.84 4.79 B l C l C2 B2 a a a b C/N 22.7 22.1 21.7 19.8 C l B l B2 C2 a a a b MN/TN 3.45 3.14 3.06 2.46 C l C2 B2 B l C l = c o n t r o l p l o t , l o c a t i o n 1 C2 = c o n t r o l p l o t , l o c a t i o n 2 B l = burned p l o t , l o c a t i o n 1 B2 = burned p l o t , l o c a t i o n 2 * Denotes s i g n i f i c a n t d i f f e r e n c e a t 0.05 s i g n i f i c a n c e l e v e l . 62 Table 16 Percentage D i f f e r e n c e s between Treatments i n the M i n e r a l S o i l i n Year 2 VARIABLE LOC 1 LOC 2 MN 53% 40% MNKG 58% 34% TN 34% 38% TNKG 41% 32% OC 58% 31% CKG 44% 23% Tab l e 17 Spearman C o r r e l a t i o n C o e f f i c i e n t s f o r the M i n e r a l S o i l i n Year 2 VARIABLE C 1 C 2 B 1 B 2 MN TN 0.938** 0.890** 0.821** 0.829** OC 0.813** 0.889** 0.833** 0.782** pHH 0.112 -0.174 -0.132 0.321 pHC 0.177 -0.049 -0.060 0.527* C/N 0.347 -0.087 0.218 0.065 n = 17 n = 20 n = 20 n = 20 n = 17 rs @ 0.05 = 0.485 rs § 0.01 = 0.615 n = 20 rs @ 0.05 = 0.447 rs @ 0.01 = 0.570 63 The burned p l o t s a t both l o c a t i o n s now had s i g n i f i c a n t l y l e s s MN than the c o n t r o l p l o t s . At L o c a t i o n 1, the d i f f e r e n c e s between treatments averaged 53%, w h i l e a t L o c a t i o n 2 the mean d i f f e r e n c e was 40%. For MNKG, the d i f f e r e n c e between the c o n t r o l p l o t a t L o c a t i o n 2 and the burned p l o t a t L o c a t i o n 1 was not s i g n i f i c a n t ; however, the d i f f e r e n c e s between treatments a t the two l o c a t i o n s were s i g n i f i c a n t . MNKG was 58% lower i n the burned p l o t a t L o c a t i o n 1 and 34% l e s s i n the burned p l o t a t L o c a t i o n 2. S i m i l a r t o the r e s u l t s found i n the f o r e s t f l o o r , t h e r e appeared t o be s l i g h t l y h i g h e r MN and MNKG i n the c o n t r o l p l o t s i n the second y e a r , but l e s s i n the burned p l o t s . T h e r e f o r e , the i n c r e a s e i n s o i l temperature, m o i s t u r e , and r e a d i l y decomposable herbaceous l i t t e r may have c o n t r i b u t e d t o t h i s i n c r e a s e d m i n e r a l i z a b l e n i t r o g e n on the c o n t r o l p l o t s . There was probably a l s o some l e a c h i n g o f the remaining m i n e r a l i z a b l e n i t r o g e n from the burned p l o t s , o r p o s s i b l y uptake of t h i s n i t r o g e n by v e g e t a t i o n r e i n v a d i n g the p l o t s . TN was a l s o s i g n i f i c a n t l y l e s s i n the burned p l o t s a t the two l o c a t i o n s . The burned p l o t a t l o c a t i o n 1 had 34% l e s s TN i n the second y e a r w h i l e L o c a t i o n 2 had 38% l e s s TN. S i m i l a r t o r e s u l t s f o r MNKG, t h e r e were no s i g n i f i c a n t d i f f e r e n c e s i n TNKG between the c o n t r o l p l o t a t L o c a t i o n 2 and the burned p l o t a t L o c a t i o n 1. However, t h e r e were s i g n i f i c a n t d i f f e r e n c e s between the treatments a t the two l o c a t i o n s . TNKG was 41% lower i n the burned p l o t at L o c a t i o n 1 and 32% lower i n the burned p l o t a t L o c a t i o n 2. 64 A s i g n i f i c a n t l i n e a r c o r r e l a t i o n was again found between MN and TN i n a l l four p l o t s . The r a t i o of MN/TN i n the mineral s o i l i n year 2 was s i g n i f i c a n t l y lower i n the burned p l o t at the f i r s t l o c a t i o n while no s i g n i f i c a n t differences were found between treatments at the second lo c a t i o n . This may again support the hypothesis that burning i n t e n s i t y was d i f f e r e n t at the two locations. The differences between treatments i n OC i n the second year were s i g n i f i c a n t . The burned p l o t at the f i r s t l o c a t i o n averaged 58% less OC than the control p l o t , while at the second location there was 31% less OC i n the burned p l o t . Similar to MNKG and TNKG, no s i g n i f i c a n t differences were found between the burned plot at Location 1 and the control p l o t at Location 2; however, differences between the treatments at the two locations were s i g n i f i c a n t . CKG was 44% lower i n the burned p l o t at Location 1 and 23% lower i n the burned p l o t at Location 2. A s i g n i f i c a n t l i n e a r c o r r e l a t i o n was again found between MN and OC fo r a l l four p l o t s i n the second year. The C/N r a t i o i n the second year appeared s i m i l a r for a l l pl o t s , ranging from 20 to 22. No s i g n i f i c a n t l i n e a r correlations were found between t h i s r a t i o and MN. Both pHH and pHC showed no s i g n i f i c a n t differences between treatments i n the second year, although there was a s l i g h t increase i n t hese v a l u e s i n the burned p l o t s . The Ah h o r i z o n which averaged 7 cm may have b u f f e r e d the s o i l from any s i g n i f i c a n t change i n pH f o l l o w i n g b u r n i n g . A s i g n i f i c a n t p o s i t i v e l i n e a r c o r r e l a t i o n was found between MN and the pHC o n l y i n the burned p l o t a t L o c a t i o n 2. Summary Burning appeared t o decrease both the c o n c e n t r a t i o n and the t o t a l amount o f m i n e r a l i z a b l e n i t r o g e n on t h i s s i t e ; t he degree t o which appeared t o be r e l a t e d t o burnin g i n t e n s i t y . TN and TNKG a l s o appeared t o decrease w i t h b u r n i n g and showed a s i g n i f i c a n t l i n e a r c o r r e l a t i o n w i t h MN or MNKG f o r most o f th e p l o t s . However, the remaining s o i l v a r i a b l e s showed v a r i a b l e r e s u l t s which d i d not c o n s i s t e n t l y c o r r e l a t e w i t h e i t h e r MN o r MNKG. The r e s u l t s r e l a t i v e t o these v a r i a b l e s are probably obscured by the f a c t t h a t p r i o r t o b u r n i n g , a l a r g e p r o p o r t i o n o f the n i t r o g e n may have been r e a d i l y a v a i l a b l e and i n the burned p l o t s , most o f the m i n e r a l i z a b l e n i t r o g e n had been removed. 66 SITE 2 METHODS (Mission Tree Farm Conifer Site) S i t e Selection and Description The co n i f e r s i t e i s located on the Mission Tree Farm at 122° 22 1 20" W and 49° 17' 30" N (see Figure 1) at an elevation of 580 m i n the Windward Montane Maritime variant of the wetter subzone of the Coastal Western Hemlock biogeoclimatic zone (Nuszdorfer et a l . 1985). The area was logged i n 1984 and o r i g i n a l l y supported a stand of western redcedar, western hemlock, and Abies amabilis (Dougl. ex Loud.) Forbes (Amabilis f i r ) . S i t e preparation for planting was the reason for burning the s i t e , with s p e c i f i c objectives of reducing slash loading, and removing 25-50% of the "duff". Therefore, a moderate i n t e n s i t y autumn burn was planned. The s i t e i s located on Mt. Crickmer which i s part of the P a c i f i c Ranges of the Coast Mountains (Luttmerding 1981). The Coast Mountains are composed of plutonic rocks including quartz d i o r i t e , granite, and granodiorite (Roddick 1965) as c i t e d by Luttmerding (1981). Luttmerding (1981) indicates t h i s bedrock i s covered by a complex including a morainal blanket arid e i t h e r a veneer or a blanket of c o l l u v i a l material. This morainal material may be part of the "Surrey t i l l " deposit described by Armstrong (1960) which he found consisted of approximately 57% sand, 41% 67 s i l t , and 2% clay. Pre-Burn Sampling Points were established at 8 m i n t e r v a l s along a g r i d , and at these points, t r i a n g u l a r micro-plots were then l a i d out. Each leg of the t r i a n g l e was three meters i n length and the orientation of the p l o t was randomly selected. Twenty plo t s were selected for t h i s study. Vegetation type and percent cover were recorded f o r each plot and are l i s t e d i n Appendix 6, again using the l a t i n names and a u t h o r i t i e s given by Hitchcock and Cronquist (1973) f o r the herbaceous species and those given by V i t t et a l . (1988) for the moss species. The understory species varied i n each i n d i v i d u a l p l o t ; however, the most commonly occurring species included Vaccinium spp. (blueberry), T i a r e l l a t r i f o l i a t a L. (three-leaved foam flower), and Blechnum spicant (L.) Roth (deer fern). Other species occurring with less frequency included Rubus s p e c t a b i l i s Pursh (salmonberry), Sambucus racemosa L. (elderberry), Vaccinium  parvifolium Smith (red huckleberry), Gornus canadensis L. (bunchberry), Polystichum muniturn (Kaulf.) P r e s l . (swordfern), Pteridium aquilinum (L.) Kuhn (bracken fern), and Athyrium  f i l i x - f e m i n a (L.) Roth (lady fern). 68 Various f u e l s i z e classes were also measured along each leg of the t r i a n g l e , using a modification of the methods of Trowbridge et a l . (1985) . The f u e l loading of each p l o t was calculated by the Canadian Forest Service i n V i c t o r i a using a modification of the l i n e i n t e r s e c t sampling method (De Jong 1986). Formulas for the c a l c u l a t i o n are shown i n Appendix 11. Samples were c o l l e c t e d from the s i t e to determine r e l a t i v e densities of the f u e l s , and fuel loading was then expressed as tonnes ha"1. The r e s u l t s of the fuel loading f o r each p l o t are shown i n Table 18. The mean f u e l loading for the 0 to 7.0 cm s i z e class was 32.7 tonnes ha"1. Above 7.0 cm, the average f u e l loading was 128.6 tonnes ha"1 and the mean t o t a l f u e l loading of the twenty pl o t s was 161.3 tonnes ha"1. The s o i l was c l a s s i f i e d as a Duric Ferro-Humic Podzol according to the Canadian System of S o i l C l a s s i f i c a t i o n (1978). Luttmerding (1980b) mapped the s o i l s i n t h i s area as a complex of the Strachan and Burwell s o i l s e r i e s . Both of these s o i l s e r i e s developed from moderately coarse-textured t i l l , with some mixing of c o l l u v i a l material. The subsoil i s usually very dense. The Burwell s o i l s e r i e s i s described as having a well developed layer of organic material above t h i s dense layer, which was also found on t h i s s i t e . A f u l l d e s c r i p t i o n of the s o i l i s given i n Appendix 9. The humus form ranged from a Hemihumimor to a Humimor (Klinka et a l . 1981). The Hemihumimor humus form consists of an H horizon, ranging between 30 and 70% of the t o t a l thickness of the F and H horizons. Fungal mycelia are often present. The Humimor humus TABLE 18 MISSION TREE FARM FUEL LOADING AND CONSUMPTION PLOT F0T70PR F70UPPR F0T70PS F70UPPS tonnes ha %CONS AVGLIT AVGDUFF AVGDOB RESIDUFF %CONS FUELS (cm) FF 1 52.3 168.7 1.5 53.1 75.3 1.4 13.3 3.5 9.8 26.4 2 55.0 81.3 3.6 14.5 86.7 0.6 9.4 2.5 6.8 26.7 3 14.8 46.8 3.8 35.8 35.7 0.6 11.8 2.6 9.3 21.7 4 39.8 49.6 3.8 24.9 67.9 1.3 10.3 2.6 7.7 25.5 6 38.1 547.4 8.5 229.4 59.4 0.7 14.6 4.1 10.6 27.8 7 39.6 57.3 1.8 35.2 61.8 1.1 8.5 3.6 4.8 42.8 8 19.2 110.4 2.9 86.8 30.8 1.3 16.4 1.7 14.8 10.3 9 17.6 62.5 7.9 3.3 86.0 1.3 7.6 2.4 5.2 32.0 10 34.8 219.3 10.9 13.2 90.5 0.7 8.6 2.9 5.6 34.3 11 34.7 53.3 2.8 32.7 59.7 0.8 5.8 2.3 3.5 39.4 12 21.6 312.6 2.2 172.2 47.8 0.9 12.2 2.6 9.6 21.0 14 38.4 33.0 1.5 8.6 85.9 1.3 6.3 3.1 3.2 49.5 15 21.9 2.3 6.0 0.8 71.7 0.7 14.4 2.2 12.2 15.2 18 16.0 121.4 4.9 87.0 33.1 0.8 8.7 2.4 6.3 27.1 20 36.1 24.8 1.7 23.1 59.2 0.9 15.7 2.1 13.8 13.1 22 42.7 60.8 7.5 19.6 73.8 0.9 8.8 2.6 6.2 29.5 23 42.3 121.2 11.2 33.5 72.6 0.9 12.2 2.4 9.9 19.5 24 27.6 251.0 2.8 209.8 23.7 1.2 10.8 2.4 7.9 21.8 25 25.1 196.7 5.2 68.2 66.9 0.9 11.9 2.6 9.3 22.0 26 37.0 51.3 12.3 5.3 80.2 1.4 25.1 3.7 21.4 14.7 MEAN 32.7 128.6 5.1 57.8 63.4 1.0 11.6 2.7 8.9 26.0 F0T70PR = Pre-burn fuel loading 0 to 7.0 cm size class F70UPPR = Pre-burn fuel loading larger than 7.0 cm size class F0T70PS = Post-burn fuel loading 0 to 7.0 cm size class F70UPPS = Post-burn fuel loading larger than 7.0 cm size class %CONS FUELS = Percent fuel consumption AVGLIT = Average litter depth AVGDUFF = Average "duff" depth AVGDOB = Average depth of burn RESIDUFF = Post-burn "duff" depth %CONS FF = Percent consumption of the forest floor form contains an H horizon which comprises more than 70% of the t o t a l thickness of the F and H horizons. Fungal mycelia are also present. Preburn s o i l sampling took place during the middle of September, 1985. S o i l samples were c o l l e c t e d from the mid-point of each leg of the t r i a n g l e and from the center of the micro-plot, fo r a t o t a l of four forest f l o o r and four mineral s o i l samples from each micro-plot. The forest f l o o r sample was c o l l e c t e d to the top of the mineral s o i l and the mineral s o i l was c o l l e c t e d to a depth of 15 cm. Bulk density samples were also c o l l e c t e d p r i o r to burning. For the forest f l o o r bulk density samples, a l l the material inside a metal r i n g of known area was c o l l e c t e d and placed i n a p l a s t i c bag f o r l a t e r analysis i n the laboratory. Mineral s o i l bulk density samples were c o l l e c t e d with the excavation method, using glass beads to determine the volume of the hole. Eight duff pins were placed i n each micro-plot to determine the amount of forest f l o o r consumed by the f i r e . Each pin was inserted so the cross-bar of the duff pin j u s t touched the top of the forest f l o o r . 71 Method of Burning The area was burned October 9, 1985 with the following F i r e Weather Indices: FFMC DMC DC ISI BUI FWI 80 8 65 1.5 12 1 A drip-torch, suspended from a helicopter, was also used for i g n i t i o n . The f u e l appeared to burn f a i r l y uniformly. Post-Burn Sampling Following the burn, measurements were taken from the duff pins. The ash layer was c a r e f u l l y scraped away below each duff pin and a measurement was taken from the cross-bar to the top of the remaining forest f l o o r . The depth of burn and percent consumption of the forest f l o o r were calculated, and r e s u l t s are shown i n Table 18. The average forest f l o o r consumption for a l l twenty micro-plots was 26%. Post-burn measurements were also taken of the various fuel s i z e classes and percent f u e l consumption was calculated. Results are again shown i n Table 18. The average f u e l consumption for a l l s i z e classes was 63%. C o l l e c t i o n of the post-burn s o i l samples commenced the day following slashburning. This was also the beginning of a period of intense r a i n f a l l which continued throughout the post-burn sampling. Samples from only seven plots were c o l l e c t e d the day following burning, and another seven plots were sampled the second day following burning. The s i t e received 51.3 mm of p r e c i p i t a t i o n during t h i s period of time. The s i x remaining pl o t s were sampled seven days following burning, and the s i t e had received a t o t a l of another 160.8 mm of r a i n f a l l between the second and t h i r d sampling. One-Month Post-Burn Sampling There was some concern the variable p r e c i p i t a t i o n received by the s i t e during the post-burn sampling period might have affected the r e s u l t s of the nutrient concentrations being measured. A t h i r d sampling was therefore c a r r i e d out one month following burning, on November 15 and 16, 1985. The amount of p r e c i p i t a t i o n received by the s i t e between the second and t h i r d sampling was not d i r e c t l y measured on the s i t e . Therefore, t h i s information was obtained from a weather s t a t i o n on Red Mountain, across the lake from the s i t e . Unfortunately these measurements were only recorded u n t i l October 31 of that year. These records indicated that a t o t a l of 186.8 mm had f a l l e n on Red Mountain from October 15 to October 31, 1985. Additional records were therefore obtained from the Environment Canada weather sta t i o n at Westminster Abbey i n Mission. R a i n f a l l records taken at t h i s l ocation indicated that 395.6 mm had f a l l e n from October 15 u n t i l November 15, 1985 when the t h i r d sampling took place. Of t h i s 395.6 mm, 263.8 mm had f a l l e n at t h i s l o c a t i o n from October 15 u n t i l October 31, 1985. The c o l l e c t i o n of ash bulk density samples at t h i s s i t e was again not considered at the time of the post-burn sampling. Therefore samples were c o l l e c t e d at a l a t e r date from a burned s i t e i n the Chehalis v a l l e y which o r i g i n a l l y had s i m i l a r forest cover. This s i t e had been burned July 31, 1986 under the following F i r e Weather Indices: FFMC DMC DC ISI BUI FWI 86.6 30.1 162.2 2.6 41.1 6.8 These samples were c o l l e c t e d from t h i s s i t e 36 days following burning. The author again questions the r e l i a b i l i t y of these samples, p a r t i c u l a r l y with the lengthy time period between burning and sampling of the ash layer. However, these r e s u l t s do give some in d i c a t i o n of ash bulk density values from a s i t e of t h i s type. Laboratory Analysis Following sampling, the s o i l samples were taken to the laboratory and a i r - d r i e d . The mineral s o i l s were then sieved through a 2-mm sieve and the forest f l o o r material was ground using 74 a Wiley m i l l . Large chunks of wood, cones, and twigs were excluded from the sample. Samples were then stored i n a i r - t i g h t p l a s t i c containers u n t i l analysis could be c a r r i e d out. Chemical analysis was c a r r i e d out using a composite sample for each micro-plot made from the four i n d i v i d u a l samples. An equal weight of a i r - d r i e d s o i l was taken from the in d i v i d u a l samples for t h i s composite sample. Gravimetric moisture content was determined so r e s u l t s could be expressed on an oven-dried basis. A 5.0 g sample of mineral s o i l or a 3.0 g sample of forest f l o o r was oven-dried over-night at 105°C. The samples were then placed i n a desiccator to cool before being weighed. Coarse fragment-free bulk density values were determined for the mineral s o i l and the forest f l o o r , again using the method of Nuszdorfer (1981). The same s o i l variables were analyzed f o r t h i s s i t e , including MN, TN, OC, pHH and pHC. To improve confidence i n the re s u l t s , duplicate samples were analyzed for MN and the average value for the two r e s u l t s was used i n the s t a t i s t i c a l analysis. Analyses for the remaining s o i l variables were determined using a single analysis. Nutrient values were also calculated on a kg ha"1 basis. 75 S t a t i s t i c a l Analysis As f o r S i t e 1, both the concentration data and the data expressed on a kg ha"1 basis were s t a t i s t i c a l l y analyzed. The data were checked f o r normality and homogeneity of variance. Again, some of the variables did not have homogeneous variances and therefore nonparametric s t a t i s t i c s were used. Since the same plots were sampled each time, a Friedman's t e s t was used to determine differences between the three groups of samples. A s i g n i f i c a n c e l e v e l of 0.05 was chosen as the acceptable l e v e l f o r t h i s t e s t . For those s o i l variables which were found to have s i g n i f i c a n t differences with the Friedman's t e s t , the differences between the pai r s of samples were then determined using a Wilcoxon's paired-sample t e s t . In order to prevent the p o s s i b i l i t y of committing a Type I error when using these two-sample t e s t s , the accepted s i g n i f i c a n c e l e v e l was again reduced according to the c a l c u l a t i o n shown i n Appendix 4. The accepted alpha value for these two-sample tests was 0.008. The means for the three sampling groups were l i s t e d i n descending order for each s o i l v a r i a b le and s t a t i s t i c a l differences were again indicated using d i f f e r e n t l e t t e r s . Percentage differences between the groups were calculated as a percentage of the pre-burn values. Since the s i t e received varying amounts of p r e c i p i t a t i o n during the immediate post-burn sampling, the v a r i a b i l i t y of these 76 samples c o l l e c t e d on the separate days was examined. The seven plo t s sampled on the f i r s t day following burning were grouped together, the seven pl o t s sampled two days following burning comprised a second group, and the remaining s i x p l o t s sampled seven days following burning comprised a t h i r d group. The nonparametric equivalent of the one-way analysis of variance (the Kruskal-Wallis test) was then used to determine i f differences existed between these groups for the immediate post-burn samples. The same analysis was also c a r r i e d out on these groups f o r the pre-burn samples as well as on the one month post-burn samples to confirm that any differences which might e x i s t i n the immediate post-burn samples were due to r a i n f a l l , and not to s i t e v a r i a b i l i t y . Results showed no s i g n i f i c a n t differences between these groups for any of the sampling dates (see Tables 15 and 16) . Therefore, i t was concluded that r a i n f a l l between sampling times had l i t t l e e f f e c t on these samples, and the twenty samples of the immediate post-burn sampling were considered as one group. A Spearman's rank c o r r e l a t i o n t e s t was again used to determine l i n e a r c o r r e l a t i o n s between MN or MNKG and the other s o i l v a r i a b l e s . Results for MN and MNKG were again i d e n t i c a l i n the mineral s o i l . Therefore, only the r e s u l t s f o r MN are reported. Table 19 Comparison of Mission forest f l o o r data c o l l e c t e d during three consecutive days with varying amounts of r a i n f a l l (p-values). VARIABLE TRT 1 TRT 2 TRT 3 MN 0.408 0.980 0.909 MNKG 0.508 0.663 0.876 TN 0.177 0.376 0.572 TNKG 0.991 0.510 0.599 OC 0.977 0.745 0.961 CKG 0.860 0.645 0.946 pHH 0.463 0.893 0.791 pHC 0.574 0.920 0.699 Table 20 Comparison of Mission mineral s o i l data c o l l e c t e d during three consecutive days with varying amounts of r a i n f a l l (p-values). VARIABLE TRT 1 TRT 2 TRT 3 MN 0.528 0.199 0.282 MNKG 0.528 0.199 0.282 TN 0.838 0.071 0.374 TNKG 0.838 0.071 0.374 OC 0.513 0.104 0.938 CKG 0.513 0.104 0.938 pHH 0.921 0.756 0.858 pHC 0.944 0.882 0.978 78 SITE 2 RESULTS AND DISCUSSION (Mission Tree Farm Conifer Site) Forest Floor The mean, standard deviation, c o e f f i c i e n t of v a r i a t i o n , and minimum and maximum values for the forest f l o o r i n each sample group are shown i n Table 21. S t a t i s t i c a l differences between groups are shown i n Table 22, percentage differences between sample groups are shown i n Table 23, and the Spearman c o r r e l a t i o n c o e f f i c i e n t s are presented i n Table 24. MN was 18% higher i n the forest f l o o r immediately following burning, although t h i s increase was not s i g n i f i c a n t . A subsequent decrease occurred over the following t h i r t y days to a mean value which was 20% lower than the pre-burn value. Kovacic et a l . (1986) found a s i m i l a r increase i n the concentration of extractable-ammonium i n the mineral s o i l immediately following the intense burning of a ponderosa pine s i t e i n New Mexico. This increase i n ammonium-nitrogen immediately following burning was at t r i b u t e d to the physiochemical process found by Russell et a l . (1974). A subsequent decrease i n ammonium-nitrogen also occurred i n t h e i r study over the following month, but the concentration of nitrate-nitrogen i n the s o i l increased over t h i s time. 79 T A B L E 2 1 M I S S I O N T R E E F A R M F O R E S T F L O O R S T A T I S T I C S M N M N K G T N T N K G O C C K G P H H P H C C / N M N / T N M E A N 4 9 6 . 2 1 3 9 . 2 1 . 6 1 4 5 9 8 4 9 . 5 1 4 2 0 0 0 4 . 4 4 3 . 8 1 3 1 . 3 3 . 0 9 S D 1 0 7 . 2 3 8 . 2 0 . 2 3 1 5 5 2 3 . 6 4 2 1 0 0 0 . 1 9 0 . 2 4 4 . 6 0 . 4 7 M A X 7 5 1 . 8 2 4 4 . 8 1 . 9 6 9 5 1 3 5 4 . 7 2 6 7 0 0 0 4 . 8 5 4 . 2 5 4 5 . 0 4 . 0 1 M I N 3 3 8 . 6 8 4 . 6 1 . 1 5 2 8 4 1 4 0 . 1 1 0 2 0 0 0 4 . 1 5 3 . 4 5 2 4 . 2 2 . 5 1 C V ( % ) 2 1 . 6 2 7 . 4 1 4 . 1 3 3 . 8 7 . 2 2 9 . 7 4 . 3 5 6 . 2 2 1 4 . 5 1 5 . 2 M E A N 5 8 6 . 8 5 3 . 5 1 . 6 7 1 6 0 9 4 4 . 7 4 4 0 0 0 4 . 9 6 4 . 2 7 2 6 . 9 3 . 5 1 S D 1 5 2 . 2 1 6 . 0 0 . 2 3 6 2 9 7 . 3 2 0 0 0 0 0 . 5 6 0 . 6 1 3 . 8 0 . 8 0 M A X 8 5 2 . 6 8 3 . 6 2 . 0 7 3 0 8 7 5 5 . 9 9 0 0 0 0 6 . 1 5 5 . 7 0 3 3 . 4 5 . 8 8 M I N 3 3 2 . 4 2 4 . 9 1 . 1 4 5 2 5 2 9 . 2 1 3 0 0 0 4 . 1 5 3 . 4 0 2 0 . 3 2 . 4 9 C V ( % ) 2 5 . 9 3 0 . 0 1 3 . 5 . 3 9 . 1 1 6 . 2 4 5 . 4 1 1 . 3 1 4 . 2 1 4 . 2 2 2 . 9 M E A N 3 9 8 . 4 3 5 . 7 1 . 4 9 1 3 3 9 4 1 . 5 3 7 0 0 0 4 . 8 4 4 . 0 6 2 7 . 9 2 . 6 5 S D 1 1 3 . 4 2 0 . 6 0 . 2 2 7 3 4 7 . 3 2 0 0 0 0 0 . 3 5 0 . 3 9 3 . 4 0 . 5 4 M A X 6 0 3 . 8 8 0 . 3 1 . 8 8 3 3 1 7 5 2 . 5 8 8 0 0 0 5 . 6 5 5 . 0 5 3 4 . 1 3 . 4 7 M I N 1 9 1 . 9 7 . 6 1 . 0 2 4 3 0 2 7 . 7 1 1 5 0 0 4 . 0 5 3 . 3 5 2 2 . 2 1 . 6 8 C V (%> 2 8 . 5 5 7 . 7 1 5 . 0 5 4 . 8 1 7 . 7 5 4 . 0 7 . 2 6 9 . 6 0 1 2 . 1 2 0 . 2 T a b l e 22 M i s s i o n Tree Farm F o r e s t F l o o r Rankings a* a b MN 586.8 496.2 398.5 T2 T l T3 a a b TN 1.67 1.61 1.49 T2 T l T3 a b c OC 49.5 44.7 41.5 T l T2 T3 a b c MNKG 139.2 53.5 35.7 T l T2 T3 a b b TNKG 4598 1609 1339 T l T2 T3 a b b CKG 142,000 44,000 37,000 T l T2 T3 a a b pHH 4.96 4.84 4.44 T2 T3 T l a a b pHC 4.27 4.06 3.81 T2 T3 T l a b b C/N 31.3 27.9 26.9 T l T3 T2 a ab b MN/TN 3.51 3.09 2.65 T2 T l T3 T l = pre-burn samples T2 = post-rburn samples T3 = one-month post-burn samples * Denotes s i g n i f i c a n t d i f f e r e n c e a t 0.05 s i g n i f i c a n c e l e v e l . 81 Tabl e 23 Percentage D i f f e r e n c e s between Sample Groups i n the F o r e s t F l o o r VARIABLE TRT 1 - 2 TRT 1 - 3 MN +18% -20% MNKG -62% -73% TN +4% -7% TNKG -65% -71% OC -10% -16% CKG -69% -74% Tab l e 24 Spearman C o r r e l a t i o n C o e f f i c i e n t s f o r the F o r e s t F l o o r VARIABLE T 1 T 2 T 3 MN TN OC pHH pHC C/N 0.741** 0.002 -0.085 -0.132 -0.702** 0.492* -0.035 0. 369 0.349 •0.456* 0.713** 0.478* -0.117 -0.176 -0.038 MNKG TNKG CKG pHH pHC C/N 0.774** 0.411 -0.070 •0.231 -0.528* 0.826** 0.749** -0.212 -0.224 0.185 0.902** 0.901** -0.376 -0.420 -0.053 n = 20 n = 20 n = 20 n = 20 rs @ 0.05 = 0.447 rc @ 0.01 = 0.570 82 The increase i n MN i n t h i s study immediately following burning may also be the r e s u l t of t h i s release of ammonia found by Russell et a l . (1974) and Dunn and DeBano (1977). Although the temperatures were not measured during the burn, i t i s possible that temperatures were below 400° or 500°C which appears to be the temperature range at which ammonium-nitrogen i s l o s t by burning. The subsequent decrease i n MN over the next t h i r t y days i s l i k e l y due to the leaching of the available nitrogen, caused by the large amount of p r e c i p i t a t i o n received by the s i t e during t h i s time. I t i s possible that some n i t r i f i c a t i o n could have occurred over t h i s time; however, temperatures on t h i s s i t e d i d not appear to be conducive to promoting n i t r i f i c a t i o n between the two post-burn sampling times. MNKG was 62% lower than the pre-burn value, immediately following burning, and t h i s was also followed by a further decrease over the next 30 days to a mean value which was 73% less than the preburn average. Approximately 26% of the forest f l o o r had been removed by the f i r e , and therefore one would expect a decrease i n MNKG. A s i m i l a r increase i n TN occurred immediately following burning. This increase was 4% higher than the pre-burn average, but was not s i g n i f i c a n t . A s i g n i f i c a n t decrease to a mean value of 7% of the pre-burn average occurred over the following 30 days. TNKG was 65% lower than the pre-burn value immediately following burning, and again decreased over the following month to a mean 83 value which was 71% less than the pre-burn average. These re s u l t s were s i m i l a r to those found by Knight (1966) who found an increase i n TN when Douglas-fir l i t t e r was burned between temperatures of 100°C and 500°C. However, TNKG decreased above temperatures of 200°C. A s i g n i f i c a n t p o s i t i v e l i n e a r c o r r e l a t i o n was found between MN and TN and between MNKG and TNKG for a l l three groups of samples. Therefore, i t appears that burning affected these variables i n a s i m i l a r manner. However, the MN/TN r a t i o showed a s l i g h t but i n s i g n i f i c a n t increase i n the forest f l o o r immediately following burning, in d i c a t i n g that the r e l a t i v e proportion of MN l o s t was less than the amount of TN l o s t . T h i r t y days following the burn, however, t h i s r a t i o decreased to below the pre-burn mean value. Both OC and CKG were also lower following burning. OC was 10% le s s than the pre-burn average immediately following burning, and further decreased over the following month to an average which was 16% lower than the pre-burn average. CKG was 69% less immediately following the burn, and 74% lower than the pre-burn value t h i r t y days following the f i r e . These decreases were a l l s i g n i f i c a n t l y l e s s than the pre-burn average. OC showed a s i g n i f i c a n t l i n e a r c o r r e l a t i o n with MN only i n the samples c o l l e c t e d t h i r t y days following the burn. CKG correlated with MNKG for the two post-burn sampling times. 84 However, the C/N r a t i o showed a s i g n i f i c a n t negative l i n e a r c o r r e l a t i o n with MN for the pre-burn samples and the immediate post-burn samples, in d i c a t i n g that t h i s r a t i o may have had some e f f e c t on nitrogen mineralization i n these samples. No s i g n i f i c a n t l i n e a r c o r r e l a t i o n was found for the samples c o l l e c t e d 30 days following the burn. MNKG only correlated l i n e a r l y with the C/N r a t i o i n the pre-burn samples. The C/N r a t i o was s i g n i f i c a n t l y lower i n both groups of post-burn samples. However, the values for t h i s r a t i o ranged from 31 for the pre-burn samples to 27 for the post-burn samples. Both the pHH and pHC increased s i g n i f i c a n t l y with burning, then decreased over the following t h i r t y days to a l e v e l which remained s i g n i f i c a n t l y higher than the pre-burn average. No s i g n i f i c a n t l i n e a r correlations were found between eithe r pHH or pHC and MN or MNKG. Mineral S o i l The mean, standard deviation, c o e f f i c i e n t of v a r i a t i o n , and minimum and maximum values f o r the mineral s o i l i n each sample group are shown i n Table 25. S t a t i s t i c a l differences between groups are given are Table 26, percentage differences between sample groups are shown i n Table 27, and the Spearman c o r r e l a t i o n c o e f f i c i e n t s are presented i n Table 28. 85 i T A B L E 2 5 M I S S I O N T R E E F A R M M I N E R A L S O I L S T A T I S T I C S M N M N K G T N T N K G O C C K G P H H P H C C / N M N / T N M E A N 1 0 0 . 3 5 3 . 5 0 . 4 0 2 1 4 0 1 3 . 4 7 2 0 0 0 4 . 3 9 3 . 8 8 3 3 . 6 2 . 4 9 S D 2 6 . 1 1 3 . 9 0 . 0 5 2 7 9 2 . 3 1 2 3 0 0 0 . 1 6 0 . 1 7 4 . 8 0 . 5 0 M A X 1 7 2 . 8 9 2 . 2 0 . 5 1 2 7 0 0 1 8 . 2 9 7 0 0 0 4 . 7 5 4 . 2 5 4 5 . 8 3 . 6 3 M I N 6 6 . 5 3 5 . 5 0 . 3 1 1 6 3 4 8 . 7 4 6 0 0 0 4 . 1 0 3 . 6 0 2 4 . 2 1 . 9 1 C V ( % ) 2 6 . 0 2 6 . 0 1 3 . 0 1 3 . 0 1 7 . 1 1 7 . 1 3 . 6 5 4 . 3 6 1 4 . 2 2 0 . 1 M E A N 9 5 . 3 5 0 . 9 0 . 3 8 2 0 4 5 1 2 . 3 6 5 6 0 0 4 . 5 1 3 . 9 5 3 2 . 0 2 . 4 7 S D 2 7 . 0 1 4 . 4 0 . 0 6 2 9 3 2 . 5 1 3 1 2 3 0 . 2 1 0 . 2 1 3 . 7 0 . 4 7 M A X 1 8 6 . 8 9 9 . 7 0 . 5 2 2 7 9 0 2 0 . 0 1 0 7 0 0 0 5 . 0 0 4 . 3 5 4 0 . 2 3 . 5 7 M I N 6 0 . 1 3 2 . 1 0 . 3 1 1 6 4 4 9 . 6 5 1 1 0 0 4 . 1 5 3 . 5 5 2 5 . 8 1 . 6 3 C V ( % ) 2 8 . 3 2 8 . 3 1 4 . 4 1 4 . 3 2 0 . 0 2 0 . 0 4 . 6 4 5 . 3 2 1 1 . 6 1 8 . 9 M E A N 8 1 . 9 4 3 . 7 0 . 3 3 1 7 7 2 1 0 . 1 5 4 0 0 0 4 . 5 8 4 . 0 1 3 0 . 7 2 . 4 6 S D 1 9 . 6 1 0 . 5 0 . 0 5 2 7 4 1 . 1 5 9 0 0 0 . 1 3 0 . 1 2 3 . 2 0 . 3 8 M A X 1 2 8 . 8 6 8 . 8 0 . 4 7 2 4 8 3 1 2 . 2 6 5 0 0 0 4 . 8 0 4 . 2 0 3 7 . 3 3 . 4 8 M I N 5 2 . 8 2 8 . 2 0 . 2 7 1 4 5 6 7 . 8 4 2 0 0 0 4 . 3 5 3 . 7 5 2 6 . 3 1 . 9 4 C V ( % ) 2 3 . 9 2 3 . 9 1 5 . 4 1 5 . 5 1 0 . 9 1 0 . 9 2 . 8 6 2 . 9 9 1 0 . 4 1 5 . 6 I Table 26 Mission Tree Farm Mineral S o i l Rankings a* a a MN 100.3 95.3 81.9 TI T2 T3 a a b TN 0.40 0.38 0.33 TI T2 T3 a a b OC 13.4 12.3 10.1 TI T2 T3 a a a MNKG 53.5 50.9 43.7 TI T2 T3 a a b TNKG 2139 2045 1772 TI T2 T3 a a b CKG 72,000 66,000 54,000 TI T2 T3 a a b pHH 4.58 4.51 4.39 13 T2 TI a ab b pHC 4.01 3.95 3.88 T3 T2 TI a a a C/N 33.6 32.1 30.7 TI T2 T3 a a a MN/TN 2.49 2.47 2.46 TI T2 T3 TI = pre-burn samples T2 = post-burn samples T3 = one-month post-burn samples * Denotes s i g n i f i c a n t difference at 0.05 si g n i f i c a n c e l e v e l . 87 Tabl e 27 Percentage D i f f e r e n c e s between Sample Groups i n the M i n e r a l S o i l VARIABLE TRT 1 - 2 TRT 1 - 3 MN -5% -18% MNKG -5% -18% TN -4% -17% TNKG -4% -17% OC -8% -25% CKG -8% -25% Ta b l e 28 Spearman C o r r e l a t i o n C o e f f i c i e n t s f o r the M i n e r a l S o i l VARIABLE T 1 T 2 T 3 MN TN OC pHH pHC C/N 0.678** 0.561* 0.510* 0.480* -0.005 0.478* 0.159 0.524* 0.317 •0.260 0, 0, 0. 0, 807** 447* 112 019 -0.562* n = 20 n = 20 n = 20 n = 20 rs @ 0.05 = 0.447 rs § 0.01 = 0.570 88 No s i g n i f i c a n t differences were found i n ei t h e r MN or MNKG i n the mineral s o i l with burning, although both were 5% lower than the pre-burn average immediately following burning, and 18% lower t h i r t y days following the burn. Both TN and TNKG also showed s i m i l a r trends. The immediate post-burn average was 5% lower than the pre-burn average and decreased to a mean value which was 17% lower over the following month. This decrease i n the one-month post-burn samples was s i g n i f i c a n t l y lower than the pre-burn mean. A s i g n i f i c a n t l i n e a r c o r r e l a t i o n was found between MN and TN for the three groups of samples, i n d i c a t i n g that losses of TN with burning were s i m i l a r to those of MN. The MN/TN r a t i o appeared lower i n the two groups of post-burn samples although these differences were not s i g n i f i c a n t . Both OC and CKG were also lower i n the burned samples. Immediately following burning, these variables were 8% lower than the pre-burn average, and decreased to a mean value of 25% lower than the pre-burn average over the next t h i r t y days. A s i g n i f i c a n t l i n e a r c o r r e l a t i o n was found between OC and MN i n both the pre-burn samples and one-month post-burn samples, but not i n the samples c o l l e c t e d immediately following burning. No s i g n i f i c a n t changes were found i n the C/N r a t i o with burning, and a s i g n i f i c a n t l i n e a r c o r r e l a t i o n was found between 89 this ratio and MN only in the samples collected one month following burning. Both the pHH and pHC were higher immediately following burning and again increased over the next thirty days. In contrast to the forest floor, a significant positive linear correlation was found between MN and pHH in the pre-burn samples and those collected immediately following burning. For pHC, a significant linear correlation was found only in the pre-burn samples. Summary In summary, there was an increase in MN in the forest floor immediately following burning, but this was accompanied by a decrease over the following month, possibly due to the leaching of inorganic nitrogen from this layer. However, no significant changes in MN were found in the mineral s o i l , except for slight decreases. One might expect an increase in MN in the mineral soil to occur i f there had been leaching of the inorganic nitrogen from the forest floor. It is possible that nitrification could have occurred during the thirty days following burning; however, conditions did not appear conducive to nitrification. It is also possible that this MN was leached beyond the 15 cm depth of the mineral soil sampled, or some may have been lost by surface erosion. Further study would 90 be required to determine the true fate of the MN. Approximately one quarter of the forest f l o o r was removed by burning and therefore the decrease i n MNKG i s to be expected. Both TN and TNKG followed s i m i l a r trends to MN and MNKG. However, the remaining s o i l variables measured did not show a consistent l i n e a r r e l a t i o n s h i p to eit h e r MN or MNKG. Possibly the e f f e c t s of these other s o i l variables were obscured by the loss of MN from the s i t e upon burning. Further study would be required to determine t h e i r r e l a t i o n s h i p to MN on t h i s s i t e . 91 SUMMARY AND CONCLUSIONS This study was intended as an exploratory study to determine how slashburning would a f f e c t s o i l mineralizable nitrogen. The ef f e c t s which burning had on s o i l mineralizable nitrogen on the hardwood s i t e were d i f f e r e n t from those found on the coni f e r s i t e . Also, the r e s u l t s varied depending upon whether the s o i l variables were expressed as a concentration or on a mass-per-unit-area basis. S i g n i f i c a n t l y less mineralizable nitrogen, expressed both as a concentration and on a mass-per-unit-area basis, was found i n the forest f l o o r of the burned pl o t s on the hardwood s i t e but differences between treatments i n the mineral s o i l were not as d e f i n i t e . The r a t i o of mineralizable nitrogen to t o t a l nitrogen was s l i g h t l y higher at Location 2 than at Location 1, possibly i n d i c a t i n g a difference i n burning i n t e n s i t y at the two locations on t h i s s i t e . The concentration of mineralizable nitrogen increased s l i g h t l y immediately following burning on the conifer s i t e ; however, on a mass-per-unit-area basis, mineralizable nitrogen decreased. Thirty days following the burn, accompanied by a substantial amount of r a i n f a l l , mineralizable nitrogen, expressed e i t h e r as a concentration or on a mass-per-unit-area basis was s i g n i f i c a n t l y l e s s than the pre-burn average. No s i g n i f i c a n t differences were found i n the mineral s o i l on the conifer s i t e . 92 Although i t has been reported i n the l i t e r a t u r e that t o t a l nitrogen i s not a good measure of "available" nitrogen, i t did correlate well with mineralizable nitrogen for both s i t e s i n t h i s study. Therefore, as t o t a l nitrogen i s more quickly and e a s i l y measured, i t ' s in t e r p r e t i v e usefulness as a surrogate for mineralizable nitrogen may deserve re-evaluation. Shumway and Atkinson (1978) found that growth of coastal Washington and Oregon Douglas-fir stands tended not to respond to nitrogen f e r t i l i z a t i o n when s o i l mineralizable nitrogen values were greater than 46 ppm. The values for mineralizable nitrogen found for both s i t e s i n t h i s study were much higher than t h i s c r i t i c a l value suggesting that nitrogen might not be l i m i t i n g tree growth on these s i t e s . The r e s u l t s found i n t h i s study have implications for the regeneration of these s i t e s . RECOMMENDATIONS 93 Several recommendations are suggested f o r future studies. 1) Both control plots and plots scheduled f o r burning should have been established and sampled both before and a f t e r burning. This would then allow one to monitor the changes i n mineralizable nitrogen over time following burning. 2) The measurement of the inorganic nitrogen before incubation may have given a better i n d i c a t i o n of which nitrogen "pools" were a c t u a l l y affected by burning. 3) A f e r t i l i z a t i o n study s i m i l a r to the one evaluated by Shumway and Atkinson (1978) i s recommended to determine whether burning a c t u a l l y "damaged" these two s i t e s by removing most of the "ava i l a b l e " (mineralizable) nitrogen. 4) S o i l mineralizable nitrogen should be monitored over the long term on both of these s i t e s to determine the long-term e f f e c t which burning had on t h i s important s o i l nutrient. 94 LITERATURE CITED Adams, P.W. and J.R. Boyle. 1980. E f f e c t s of f i r e on s o i l nutrients i n clearcut and whole-tree harvest s i t e s i n central Michigan. S o i l S c i . Soc. Am. J . 44:847-850. Ahlgren, I.F. and C.E. Ahlgren. 1960. Ecolog i c a l e f f e c t s of forest f i r e s . Bot. Rev. 26:483-533. A l l i s o n , L.E. 1965. Organic carbon. p. 1367-1378. In: CA. Black et a l . (ed.) Methods of s o i l analysis. Part 2: Chemical and microbiological properties. Agronomy Monograph No. 9. ASA, Madison, WI. Armstrong, J.E. 1960. S u r f i c i a l geology of Sumas Map-Area, B r i t i s h Columbia. 92 G/l. Geological Survey of Canada. Department of Mines and Technical Surveys. 27 p. Austin, R.C. and D.H. Baisinger. 1955. Some e f f e c t s of burning on forest s o i l s of western Oregon and Washington. J . For. 53(4):275-280. B a r t l e t t , R. and B. James. 1980. Studying dried, stored s o i l samples - some p i t f a l l s . S o i l S c i . Soc. Am. J . 44:721-724. Beaton, J.D. 1959. The influence of burning on the s o i l i n the timber range area of Lac Le Jeune, B r i t i s h Columbia. I I . Chemical properties. Can. J . S o i l S c i . 39:6-11. Birch, H.F. 1960. N i t r i f i c a t i o n i n s o i l s a f t e r d i f f e r e n t periods of dryness. Plant S o i l 12:81-96. Birch, H.F. 1964. Mineralisation of plant nitrogen following alternate wet and dry conditions. Plant S o i l 20:43-49. Boyle, J.R. 1973. Forest s o i l chemical changes following f i r e . Commun. i n S o i l S c i . Plant Anal. 4(5):369-374. Brady, N.C. 1984. The nature and properties of s o i l s . Macmillan Publishing Company, New York. 750 p. Bremner, J.M. 1965. Nitrogen a v a i l a b i l i t y indexes, p. 1324-1345. In: C A. Black et a l . (ed.) Methods of s o i l analysis. Part 2: Chemical and microbiological properties. Agronomy Monograph No. 9. ASA, Madison, WI. Burger, J.A. and W.L. P r i t c h e t t . 1984. E f f e c t s of c l e a r f e l l i n g and s i t e preparation on nitrogen mineralization i n a southern pine stand. S o i l S c i . Soc. Am. J . 48:1432-1437. Cairns, R.R. 1963. Nitrogen mineralization i n Solonetzic s o i l samples and some influencing factors. Can. J . S o i l S c i . 43:387-392. 95 Canadian S o i l Survey Committee, Subcommittee on S o i l C l a s s i f i c a t i o n . 1978. The Canadian system of s o i l c l a s s i f i c a t i o n . Can. Dep. Agric. Publ. 1646. Supply and Services Canada. Ottawa, Ont. 164 p. Christensen, N.L. 1973. F i r e and the nitrogen cycle i n C a l i f o r n i a chaparral. Science 181:66-68. Comar, V.K. and C.C. Kelley. 1962. S o i l survey of the Sumas municipality. Preliminary report No. 5. B r i t i s h Columbia Department of Agriculture. 61 p. Comar, V.K., P.N. Sprout, and C.C. Kelley. 1962. S o i l survey of the Chilliwack map-area. Preliminary report No. 4. B r i t i s h Columbia Department of Agriculture. 92 p. Cornfield, A.H. 1964. E f f e c t of period of a i r - d r y storage of s o i l s on the subsequent accumulation of mineral nitrogen during incubation. Plant S o i l 20:260-264. DeBano, L.F., G.E. Eberlein, and P.H. Dunn. 1979. E f f e c t s of burning on chaparral s o i l s : I. S o i l nitrogen. S o i l S c i . Sen Am. J . 43:504-509. DeByle, N.V. 1976. S o i l f e r t i l i t y as affected by broadcast burning following c l e a r c u t t i n g i n 1 northern Rocky Mountain l a r c h / f i r forests, p. 447-464. In: Proc. T a l l Timbers Ehe Ecology Conference and F i r e and Land Management Symposium, No. 14. De Jong, R.J. 1986. Fuel loading and consumption. Unpublished report. 7 p. Dunn, P.H. and L.F. DeBano. 1977. F i r e ' s e f f e c t on b i o l o g i c a l and chemical properties of chaparral s o i l s . p. 75-84. In: Proc. Symp. on Environmental Consequences of F i r e and Fuel Management i n Mediterranean Ecosystems. Palo Alto, CA. Dunn, P.H., L.F. DeBano, and G.E. Eberlein. 1979. E f f e c t s of burning on chaparral s o i l s : I I . S o i l microbes and nitrogen mineralization. S o i l S c i . Soc. Am. J . 43:509-514. E l l i s , R.C. 1974. The seasonal pattern of nitrogen and carbon mineralization i n forest and pasture s o i l s i n southern Ontario. Can. J . S o i l S c i . 54:15-28. F e l l e r , M.C. 1982. The ecological e f f e c t s of slashburning with p a r t i c u l a r reference to B r i t i s h Columbia: a l i t e r a t u r e review. Province of B r i t i s h Columbia, Ministry of Forests. Land Mangement Report No. 13. 60 p. F e l l e r , M.C. 1985. Forest f i r e science and management. Forestry 327 Laboratory Manual. Faculty of Forestry, University of B r i t i s h Columbia, Vancouver, B.C. 312 p. 96 Fox, R.H. and W.P. Piekielek. 1984. Relationships among anaerobically mineralized nitrogen, chemical indexes, and nitrogen a v a i l a b i l i t y to corn. S o i l S c i . Soc. Am. J . 48:1087-1090. F u l l e r , W.H., S. Shannon, and P.S. Burgess. 1955. E f f e c t of burning on c e r t a i n forest s o i l s of northern Arizona. For. S c i . l(l):44-50. Grier, C C . 1975. W i l d f i r e e f f e c t s on nutrient d i s t r i b u t i o n and leaching i n a coniferous ecosystem. Can. J . For. Res. 5:599-607. Hague, I. and D. Walmsley. 1972. Incubation studies on mineralization of organic sulphur and organic nitrogen. Plant S o i l 37:255-264. Hitchcock, C L . and A. Cronquist. 1973. Flora of the P a c i f i c Northwest. University of Washington Press, Seattle. 730 p. Jorgensen, J.R. and CG. Wells. 1971. Apparent nitrogen f i x a t i o n i n s o i l influenced by prescribed burning. S o i l S c i . Soc. Am. Proc. 35:806-810. Jurgensen, M.F., A.E. Harvey, and M.J. Larsen. 1981. E f f e c t s of prescribed f i r e on s o i l nitrogen l e v e l s i n a cutover Douglas-fir/Western l a r c h forest. USDA For. Serv. Intermt. For. and Range Exp. Stn. Res. Pap. INT-275. Keeney, D.R. 1980. Prediction of s o i l nitrogen a v a i l a b i l i t y i n forest ecosystems: a l i t e r a t u r e review. For. S c i . 26:159-171. Keeney, D.R. 1982. N i t r o g e n - a v a i l a b i l i t y indices. p. 711-733. In: A.L. Page et a l . (ed.) Methods of s o i l analysis. Part 2. Chemical and microbiological properties. Agronomy Monograph No. 9. (2nd E d i t i o n ) . ASA-SSSA, Madison, WI. Keeney, D.R. and J.M. Bremner. 1966. Comparison and evaluation of laboratory methods of obtaining an index of s o i l nitrogen a v a i l a b i l i t y . Agron. J . 58:498-503. Kitur, B.K. and W.W. Frye. 1983. E f f e c t s of heating on s o i l chemical properties and growth and nutrient composition of corn and m i l l e t . S o i l S c i . Soc. Am. J . 47:91-94. Klemmedson, J.O., A.M. Schultz, H. Jenny, and H.H. Biswell. 1962. E f f e c t of prescribed burning of forest l i t t e r on t o t a l s o i l nitrogen. S o i l S c i . Soc. Am. Proc. 26:200-202. Klinka, K., R.N. Green, R.L. Trowbridge, and L.E. Lowe. 1981. Taxonomic c l a s s i f i c a t i o n of humus forms i n ecosystems i n B r i t i s h Columbia, F i r s t Approximation. Province of B r i t i s h Columbia, Ministry of Forests, Land Management Report No. 8. 54 p. 97 Knight, H. 1966. Loss of nitrogen from the forest f l o o r by burning. For. Chron. 42:149-152. Kovacic, D.A., D.M. Swift, J.E. E l l i s , and T.E. Hakonson. 1986. Immediate e f f e c t s of prescribed burning on mineral s o i l nitrogen i n ponderosa pine of New Mexico. S o i l S c i . 141:71-76. Lamb, D. 1975. Patterns of nitrogen mineralization i n the forest f l o o r of stands of Pinus radiata on d i f f e r e n t s o i l s . J . Ecol. 63:615-625. Lathwell, D.J., H.D. Dubey, and R.H. Fox. 1972. Nitrogen-supplying power of some t r o p i c a l s o i l s of Puerto Rico and methods for i t s evaluation. Agron. J . 64: 763-766. Lavkulich, L.M. 1978. Methods manual. Pedology laboratory. Department of S o i l Science. University of B r i t i s h Columbia, Vancouver, B.C. 224 p. Luttmerding, H.A. 1980a. S o i l s of the Langley-Vancouver map area. B r i t i s h Columbia S o i l Survey, Report No. 15. Volume 1. S o i l Map Mosaics and Legend, Lower Fraser Valley. Province of B r i t i s h Columbia, Ministry of Environment, RAB B u l l e t i n 18. Luttmerding, H.A. 1980b. S o i l s of the Langley-Vancouver Map Area. B r i t i s h Columbia S o i l Survey, Report No. 15. Volume 2. S o i l Maps and Legend, Southern Sunshine Coast and Southern Coast Mountains. Province of B r i t i s h Columbia, Ministry of Environment, RAB B u l l e t i n 18. Luttmerding, H.A. 1981. S o i l s of the Langley-Vancouver map area. B r i t i s h Columbia S o i l Survey, Report No. 15. Volume 3. Description of the S o i l s . Province of B r i t i s h Columbia, Ministry of Environment, RAB B u l l e t i n 18. 227 p. Marion, G.M., J . Kummerow, and P.C. M i l l e r . 1981. Predicting nitrogen mineralization i n chaparral s o i l s . S o i l S c i Soc. Am. J . 45:956-961. Matson, P.A. and P.M. Vitousek. 1981. Nitrogen mineralization and n i t r i f i c a t i o n potentials following c l e a r c u t t i n g i n the Hoosier National Forest, Indiana. For. S c i . 27(4):781-791. Mroz, G.D., M.F. Jurgensen, A.E. Harvey, and M.J. Larsen. 1980. E f f e c t s of f i r e s on nitrogen i n forest f l o o r horizons. S o i l S c i . Soc. Am. J . 44:395-400. Nuszdorfer, F.C. 1981. Bulk density, p. 49-51. In: K. Klinka, R.N. Green, R.L. Trowbridge, and L.E. Lowe. 1981. Taxonomic c l a s s i f i c a t i o n of humus forms i n ecosystems i n B r i t i s h Columbia, F i r s t Approximation. Province of B r i t i s h Columbia, Ministry of Forests, Land Management Report No. 8. 98 Nuszdorfer, F.C., K.L. Kassay, and A.M. Scagel. 1985. Biogeoclimatic units of the Vancouver Forest Region. Queen's Prin t e r . One map sheet. Popovic, B. 1980. Mineralization of nitrogen i n incubated s o i l samples from an old Scots pine forest, p. 411-418. In: T. Persson (ed) Structure and function of northern coniferous forests - an ecosystem study. Ecol. B u l l . 32. Porter, A.W. 1981. Strength and physical properites of wood. p. 75. In: E.J. Mullins and T.S. McKnight (eds.) Canadian woods: t h e i r properties and uses. Third E d i t i o n . University of Toronto Press, Toronto. Powers, R.F. 1980. Mineralizable s o i l nitrogen as an index of nitrogen a v a i l a b i l i t y to forest trees. S o i l S c i . Soc. Am. J . 44:1314-1320. Powers, R.F. 1984. Sources of v a r i a t i o n i n mineralizable s o i l nitrogen. p. 25-31. In: Nitrogen assessment workshop. Regional Forest N u t r i t i o n Research Project Rep. No. 2. College of Forest Resources, University of Washington. P r i t c h e t t , W.L. 1979. Properties and management of forest s o i l s . John Wiley and Sons, New York. 500 p. Raison, R.J. 1979. Modification of the s o i l environment by vegetation f i r e s , with p a r t i c u l a r reference to nitrogen transformations: a review. Plant S o i l 51:73-108. Robinson, J.B.D. 1967. S o i l p a r t i c l e - s i z e f r a c t i o n s and nitrogen mineralization. J . S o i l S c i . 18(1):109-117. Roddick, J.A. 1965. Vancouver North, Coquitlam and P i t t Lake Map-Areas, with s p e c i a l emphasis on the evolution of the plutonic rocks. Memoir 335, Geological Survey of Canada, Department of Mines and Technical Surveys, Ottawa. Russell, J.D., A.R. Fraser, J.R. Watson, and J.W. Parsons. 1974. Thermal decomposition of protein i n s o i l organic matter. Geoderma 11:63-66. St. John, T.V. and P.W. Rundel. 1976. The r o l e of f i r e as a mineralizing agent i n a Sierran coniferous f o r e s t . Oecologia 25:35-45. Shumway, J . and W.A. Atkinson. 1978. Predicting nitrogen f e r t i l i z e r response i n unthinned stands of Douglas-fir. Commun. i n S o i l S c i . Plant Anal. 9(6):529-539. Smith, J.L., B.L. McNeal, E.J. Owens, and G.O. Klock. 1981. Comparison of nitrogen mineralized under anaerobic and aerobic conditions f or some a g r i c u l t u r a l and forest s o i l s of Washington. Commun. i n S o i l S c i . Plant Anal. 12(10):997-1009. 99 Soulides, D.A. and F.E. A l l i s o n . 1961. E f f e c t of drying and freezing s o i l s on carbon dioxide production, ava i l a b l e mineral nutrients, aggregation, and b a c t e r i a l population. S o i l S c i . 91:291-298. Stanford, G. 1982. Assessment of s o i l nitrogen a v a i l a b i l i t y , p. 651-688. In: F.J. Stevenson (ed.) Nitrogen i n a g r i c u l t u r a l s o i l s . Agronomy Monograph No. 22. ASA-CSSA-SSSA, Madison, WI. Stanford, G. and S.J. Smith. 1972. Nitrogen mineralization p o t e n t i a l s of s o i l s . S o i l S c i . Soc. Am. Proc. 36:465-472. Stevenson, I.L. 1956. Some observations on the microbial a c t i v i t y i n remoistened a i r - d r i e d s o i l s . Plant S o i l 8:170-182. Tarrant, R.F. 1956. E f f e c t s of slash burning on some s o i l s of the Douglas-fir region. S o i l S c i . Soc. Am. Proc. 20:408-411. Technicon Instruments, Inc. 1974. Ammoniacal nitrogen/BD digests. I n d u s t r i a l Method no. 321-74A. Tisdale, S.L., W.L. Nelson, and J.D. Beaton. 1985. S o i l f e r t i l i t y and f e r t i l i z e r s . Fourth e d i t i o n . Macmillan Publishing Company, New York. 754 p. Trowbridge, R. , B. Hawkes, A. Macadam, and J . Parminter. 1985. F i e l d handbook for prescribed f i r e assessments i n B r i t i s h Columbia, F i r s t Approximation. Unpublished report. 65 p. Van Praag, H.J. and F. Weissen. 1973. Elements of a functional d e f i n i t i o n of oligotroph humus based on the nitrogen n u t r i t i o n of forest stands. J . Appl. Ecol. 10:569-583. Vance, E.D. and G.S. Henderson. 1984. S o i l nitrogen a v a i l a b i l i t y following long-term burning i n an oak-hickory forest. S o i l S c i . Soc. Am. J . 48:184-190. Viro, P.J. 1974. E f f e c t s of forest f i r e on s o i l . p. 7-45. In: T.T. Kozlowski and C.E. Ahlgren (eds.) F i r e and ecosystems. Academic Press, New York. Vitousek, P.M. 1981. Clear-cutting and the nitrogen cycle. p. 631-642. In: F.E. Clark and T. Rosswall (eds.) T e r r e s t r i a l nitrogen cycles. Ecol. B u l l e t i n 33. V i t t , D.H., J.E. Marsh, and R.B. Bovey. 1988. Mosses, lichens, and ferns of northwest North America. Lone Pine Publishing Company, Edmonton, Alberta. 296 p. Vlamis, J . and K.D. Gowans. 1961. A v a i l a b i l i t y of nitrogen, phosphorus, and s u l f u r a f t e r brush burning. J . Range Mgt. 14(l):38-40. 100 Vlamis, J . , H.H. Biswell, and A.M. Schultz. 1955. E f f e c t s of prescribed burning on s o i l f e r t i l i t y i n second growth ponderosa pine. J . For. 53(12):905-909. Waring, S. A. and J.M. Bremner. 1964. Ammonium production i n s o i l under waterlogged conditions as an index of nitrogen a v a i l a b i l i t y . Nature 201: 951-952. Watts, S.B. (ed.). 1983. Forestry handbook for B r i t i s h Columbia. Fourth e d i t i o n . The Forest Undergraduate Society, Faculty of Forestry, University of B r i t i s h Columbia, Vancouver, B.C. 611 P-Wells, C.G. 1971. Ef f e c t s of prescribed burning i n s o i l chemical properties and nutrient a v a i l a b i l i t y . p. 86-97. In: Prescribed burning symposium proceedings. USDA For. Serv. S.E. For. Exp. Stn. Asheville, N.C. Wells, C.G., R.E. Campbell, L.F. DeBano, C.E. Lewis, R.L. Fredricksen, E.C. Franklin, R.C. Fro e l i c h , P.H. Dunn. 1979. Ef f e c t s of f i r e on s o i l - a state-of-knowledge review. USDA FS Gen. Tech. Rep. WO-7. 34 p. White, E.M., W.W. Thompson, and F.R. Gartner. 1973. Heat ef f e c t s on nutrient release from s o i l s under ponderosa pine. J . Range Manage. 26(l):22-24. Wilkinson, L. 1988. SYSTAT: The system for s t a t i s t i c s . Systat, Inc., Evanston, I I . Youngberg, C T . 1978. Nitrogen mineralization and uptake from Douglas-fir forest f l o o r s . S o i l S c i . Soc. Am. J . 42:499-502. Zar, J.H. 1984. B i o s t a t i s t i c a l Analysis. Second Ed i t i o n . Prentice-Hall, Inc., New Jersey. 718 p. Z o t t l , H. 1960. Die Mine r a l s t i c k s t o f f a n l i e f e r u h g i n Fichten-und Kiefernbestanden Bayerns. Forstwiss. Cbl. 79:221-236. 101 APPENDIX 1 S o i l Descriptions f o r S i t e 1 SOIL PIT 1C (Control plot , Location 1) Orthic Humo-Ferric Podzol (CSSC 1978) with a Mullmoder humus form (Klinka et a l . 1981) developed on parent material consisting of eolian material overlying compacted g l a c i a l t i l l . Horizon Lv Depth (cm) 9 - 6 Description loose decidous and herbaceous l i t t e r ; few arthropods; abrupt, wavy boundary; 1 - 5 cm thick. Fa 6 - 1 Hr Ah B f l Bf2 1 - 0 0 - 8 8 - 2 0 20 - 50 H C g i 50 + moist; s l i g h t l y matted; abundant very fin e and f i n e roots; p l e n t i f u l medium roots; few arthropods and fungal hyphae; gradual, wavy boundary; 4 - 6 cm. moist, s l i g h t l y greasy; abundant very f i n e and fin e roots, p l e n t i f u l medium roots; no v i s i b l e b i o t a ; gradual, i r r e g u l a r boundary; 1 - 2 cm. very dark brown (10 YR 2/2 m) ; SiL; weak, fin e , subangular blocky; f r i a b l e ; abundant very f i n e , f i n e , and medium roots, few coarse roots; 10% gravel; gradual, wavy boundary; 6 - 9 cm thick. reddish brown (5 YR 4/3 m); SiL; weak, fine , subangular blocky; f r i a b l e ; p l e n t i f u l very f i n e , f i n e , and coarse roots, abundant medium roots; 10% gravel, 5% cobbles; gradual, wavy boundary; 10 - 15 cm thick; charcoal present. dark brown (7.5 YR 4/4 m) ; SiL; weak, fine , subangular blocky; f r i a b l e ; p l e n t i f u l very fi n e , f i n e , and coarse roots, abundant medium roots; 10% gravel, 5% cobbles; abrupt, i r r e g u l a r boundary; 25 - 35 cm thick. grayish brown (10 YR 5/2 m) ; L; common, medium, prominent, yellowish red (5 YR 5/6 m) mottles; moderate, medium, subangular blocky; f r i a b l e ; very few medium and coarse roots; 20% gravel, 5% cobbles, 5% stones. 102 SOIL PIT 2C (Control p l o t , Location 2) Orthic Humo-Ferric Podzol (CSSC 1978) with a Mullmoder humus form (Klinka et a l . 1981) developed on parent material consisting of eolian material overlying compacted g l a c i a l t i l l . Horizon Depth (cm) Description Lv Fa Hr Ah B f l Bf2 IIC 7.5 - 6 6 - 1.5 1.5 - 0 0 - 8 8 - 2 3 23 - 40 40 + loose deciduous and herbaceous l i t t e r ; few arthropods; cl e a r , wavy boundary; 1 — 2 cm thick. moist; s l i g h t l y matted; abundant very fin e and f i n e roots, p l e n t i f u l medium roots; few coarse roots; gradual, wavy boundary; 2 -^ 6 cm thick. moist; s l i g h t l y greasy; abundant very fin e , f i n e and medium roots, p l e n t i f u l coarse roots; gradual, i r r e g u l a r boundary; 1 - 2 cm thick. very dark brown (10 YR 2/2 m) ; SiL; weak, fin e , subangular blocky; f r i a b l e ; abundant very f i n e , f i n e , medium and coarse roots; 5% gravel; gradual, wavy boundary; 7 - 9 cm thick. very dark grayish brown (10 YR 3/2 m); SiL; weak, fin e , subangular blocky; f r i a b l e ; p l e n t i f u l very f i n e , f i n e , and coarse roots, abundant medium roots; 20% gravel, 10% cobbles, 5% stones; gradual, wavy boundary; 12 - 18 cm thick. dark yellowish brown (10 YR 3/4 m); L; weak, fin e , subangular blocky; f r i a b l e ; p l e n t i f u l very f i n e , f i n e , and coarse roots, abundant medium roots; 2 0% gravel, 10% cobbles, 5% stones; abrupt, wavy boundary; 15 - 19 cm thick. grayish brown (10 YR 5/2 m) ; L; massive, firm; 20% gravel, 10% cobbles, 5% stones. 103 SOIL PIT IB (Burned p l o t , Location 1) Orthic Humo-Ferric Podzol (CSSC 1978) developed from parent material consisting of eolian material overlying g l a c i o f l u v i a l material. Horizon Depth (cm) Description Ash Ah 2 - 0 0 - 6.5 material remaining was the product of combustion of the L,F,H layers. very dark brown (10YR 2/2 m) ; SiL; weak, fi n e , subangular blocky; f r i a b l e ; abundant very f i n e and fi n e roots, p l e n t i f u l medium roots, and few coarse roots; gradual, wavy boundary; 2 - 11 cm thick. B f l 6.5 - 41.5 Bf2 41.5 - 60 IIC 60 + dark yellowish brown (10YR 3/4 m); SiL; weak, f i n e , subangular blocky; f r i a b l e ; few very f i n e roots, abundant fine roots, p l e n t i f u l medium and coarse roots; 15% gravel, 20% cobbles, 5% stones; gradual, wavy boundary; 3 8 - 4 5 cm thick; charcoal present. dark yellowish brown (10YR 4/4 m) ; L; weak, fin e , subangular blocky; very f r i a b l e ; p l e n t i f u l very f i n e and coarse roots, abundant f i n e and medium roots; 5% gravel, 10% cobbles; 5% stones; abrupt, wavy boundary; 10 - 20 cm thick; charcoal present. brown (10YR 4/3 m) ; S; structureless; loose; very few medium and coarse roots; 40% gravel, 20% cobbles, 10% stones. 104 SOIL PIT 2B (Burned plot , Location 2) Orthic Humo-Ferric Podzol (CSSC 1978) developed from parent material consisting of eolian material overlying g l a c i o f l u v i a l material. Horizon Depth Description (cm) Ash 2 - 0 material remaining was the product of combustion of the L,F,H layers. Ah 0 - 5 dark brown (7.5 YR 3/2 m) ; SiL; weak, fin e , subangular blocky; f r i a b l e ; abundant very f i n e and f i n e roots, p l e n t i f u l medium roots, few coarse roots; gradual, wavy boundary; 4 - 6 cm thick. B f l 5 - 2 9 dark reddish brown (5 YR 3/4 m) ; SiL; weak, fin e , subangular blocky; f r i a b l e ; p l e n t i f u l very f i n e and coarse roots, abundant fi n e and medium roots; 10% gravel, 5% cobbles; gradual, wavy boundary; 28 - 30 cm thick. Bf2 2 9 - 4 0 dark yellowish brown (10YR 3/4 m); LS; weak, fi n e , subangular blocky; f r i a b l e ; p l e n t i f u l very f i n e and coarse roots, abundant fi n e and medium roots; 10% gravel, 5% cobbles; abrupt, i r r e g u l a r boundary; 32 - 37 cm thick. IIC 40 + dark yellowish brown (10 YR 4/4 m); S; structureless; loose; few medium roots, very few coarse roots; 25% gravel, 5% cobbles. APPENDIX 2 L i s t o f V e g e t a t i o n on S i t e PLOT 1 SPECIES Shrubs Sambucus racemosa L. Rubus s p e c t a b i l i s Pursh Rubus p a r v i f l o r u s N u t t . Acer macrophvllum Pursh (Stump sprout) Herbs Montia s i b i r i c a (L.) Howell D i c e n t r a formosa (Andr.) Walp. Galium b o r e a l e L. Tolmiea m e n z i e s i i (Pursh) T.&G. S m i l a c i n a a m p l e x i c a u l i s (L.) Desf. Ferns Pol v s t i c h u m muniturn  Athvrium f i l i x - f e m i n a (L.) Roth P t e r i d i u m acruilinum (L.) Kuhn D r v o p t e r i s a s s i m i l i s (Jacq.) Woyner Mosses R h y t i d i a d e l p h u s t r i q u e t r u s (Hedw.) Warnst R h y t i d i a d e l p h u s l o r e u s (Hedw.) Warnst. K i n d b e r q i a oreqana ( S u l l . ) Ochyra Isothecium s t o l o n i f e r u m  PIaqiomnium i n s i q n e ( M i t t . ) Kop. 106 PLOT 2 SPECIES % COVER Shrubs Rubus p a r v i f l o r u s Nutt. 20 Acer macrophyllum Pursh 2 (Stump sprout) Oplopanax horridus (Smith) Miq. 2 Sambucus racemosa L. 1 Rubus s p e c t a b i l i s Pursh 1 Herbs Montia s i b i r i c a (L.) Howell 60 Galium boreale L. 10 Achlys t r i p h y l l a (Smith) DC. 8 Actaea rubra (Ait.) W i lld. W 1 Smilacina amplexicaulis (L.) Desf. < l Ferns Polystichum muniturn 15 Mosses Rhytidiadelphus triquetrus (Hedw.) Warnst. Rhytidiadelphus loreus (Hedw.) Warnst. Hylocomium splendens (Hedw.) B.S.G. Plaqiomnium insiqne (Mitt.) Kop. APPENDIX 3 Calculation of Fuel Loading on Site 1 107 PLOT 1 SPECIES R BUTT R TOP LENGTH CONDITION VOL VOL REL DEN FUEL LOADING FUEL LOADING (m) (m) (m) (m3) (X) (kg m"3) (kg ha"1) (tonnes ha"1) BIRCH 0.10 0.08 8.0 TREE 0.21 560 5770 0.06 0.03 8.3 II 0.06 560 1643 0.12 0.04 11.1 II 0.28 560 7811 0.09 0.02 14.0 II 0.19 560 5234 0.08 0.04 12.6 II 0.16 560 4433 0.12 0.04 12.2 II 0.31 560 8585 0.10 0.04 14.3 II 0.26 560 7296 0.13 0.06 14.3 H 0.46 560 12893 0.20 0.08 14.3 11 1.04 560 29183 0.20 0.14 8.0 II 0.75 560 20970 0.08 0.02 14.0 II 0.15 560 4187 0.05 0.01 16.0 II 0.07 560 1830 0.23 0.12 9.9 II 1.05 560 29304 0.17 0.08 8.0 II 0.44 560 12421 0.09 0.01 11.7 II 0.15 560 4220 0.14 0.06 11.5 » 0.42 560 11735 0.09 0.04 12.0 H 0.18 560 5120 0.10 0.07 10.5 II 0.25 560 6881 0.08 0.03 4.0 II 0.05 560 1284 0.09 0.05 6.5 H 0.11 560 3030 TOTAL 6.57 83.8 183831 ALDER 0.11 0.05 9.8 TREE 0.22 380 4270 0.09 0.05 8.4 it 0.14 380 2657 0.08 0.06 6.0 ii 0.09 380 1791 0.15 0.08 6.0 H 0.27 380 5175 183.8 TOTAL 0.73 9.3 13894 13.9 MAPLE 0.10 0.01 9.0 TREE 0.14 600 4284 TOTAL 0.14 1.8 4284 4.3 CEDAR 0.20 0.15 4.0 DEAD LOG 0.39 350 6872 TOTAL 0.39 5.0 6872 6.9 TOTAL 7.83 TOTAL 208880 208.9 R BUTT Radius of the butt R TOP Radius of the top VOL Volume REL DEN Relative Density PLOT 2 108 SPECIES R BUTT R TOP LENGTH CONDITION VOL VOL REL DEN FUEL LOADING (m) (m) (m) (ill3) (X) (kg ra*3) (kg ha"1) BIRCH 0.11 0.07 8.1 TREE 0.22 560 6056 0.06 0.04 5.6 II 0.05 560 1281 TOTAL 0.26 7.9 7337 ALDER 0.04 0.03 2.8 TREE 0.01 400 220 0.06 0.05 4.8 II 0.05 390 897 (uncured) 0.15 0.10 10.0 II 0.51 380 9700 0.05 0.04 4.3 II 0.03 390 540 0.05 0.03 5.7 II 0.03 390 594 TOTAL 0.63 18.8 11950 0.06 0.04 9.2 DEAD LOG 0.08 350 1315 0.05 0.03 5.7 II 0.03 350 532 (cured) 0.06 0.04 2.1 II 0.02 350 300 0.09 0.05 6.8 II 0.11 340 1925 0.06 0.04 6.6 II 0.05 350 943 0.10 0.06 10.0 H 0.21 340 3632 0.04 0.03 3.2 H 0.01 360 226 TOTAL 0.52 15.5 8874 MAPLE 0.07 0.05 5.5 TREE 0.06 600 1918 0.05 0.02 8.0 II 0.04 600 1093 0.13 0.11 1.7 II 0.08 600 2323 0.10 0.05 8.8 II 0.17 600 5184 0.05 0.02 9.6 H 0.04 600 1312 0.13 0.08 6.0 11 0.22 600 6588 0.10 0.07 6.7 M 0.16 600 4704 0.12 0.08 5.3 II 0.17 600 5195 0.13 0.05 12.1 H 0.37 600 11062 0.10 0.03 12.3 U 0.21 600 6318 0.05 0.02 8.0 M 0.04 600 1093 0.05 0.03 6.3 U 0.03 600 1009 0.06 0.02 5.0 H 0.03 600 943 0.18 0.08 5.0 H 0.30 600 9142 TOTAL 1.93 57.9 57884 TOTAL 3.33 TOTAL 86045 (tonnes ha"1) 7.3 12.0 8.9 57.9 86.0 R BUTT Radius of the butt R TOP Radius of the top VOL Volume REL DEN Relative Density APPENDIX 4 Comparison of Treatment Means 109 To determine the number of pair-wise comparisons, the following equation i s used: I! (I - 2)! 21 where I = number of treatments K = number of pair-wise comparisons To determine the "new" acceptable alpha value (a*), the accepted s i g n i f i c a n c e l e v e l i s divided by the number of pair-wise comparisons: a* = a / K Example: For four treatment means, K = 6. In order to obtain a s i g n i f i c a n c e l e v e l of 0.05, a si g n i f i c a n c e l e v e l of 0.008 should be accepted for the pair-wise t e s t s . For a two-tailed t e s t , a si g n i f i c a n c e l e v e l of a/2 or 0.004 should be accepted. APPENDIX 5 VEDDER MOUNTAIN FOREST FLOOR DATA (YEAR 1) SOIL SAM YR PLOT TRT MN MNKG TN TNKG OC CKG PHH PHC C/N MN/TN 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1191.4 899.5 1325.8 892.8 1091.9 1197.1 885.5 1085.8 844.7 999.4 586.1 1072.9 1199.4 1156.5 1170.8 635.0 1171.9 1131.0 599.1 773.3 1452.3 879.8 1487.4 1520.9 936.6 1372.1 1078.5 1716.4 1245.4 830.2 555.8 893.5 1205.6 944.8 1104.1 1178.8 1070.1 1292.7 854.4 933.1 651.7 803.3 530.7 1012.0 1020.3 860.4 211.1 515.4 852.4 582.4 343.1 813.1 713. 251. 385. 479. 128. 653.4 262.1 309.7 .7 .0 6 5 5252.5 171.6 224.8 245.9 208.2 152.2 168.9 276.1 179.0 275.3 173.9 227.3 279.6 392.1 272.9 134.6 273.2 263.6 165.0 163.9 409.7 262.8 345.6 403.8 171.0 318.8 340.1 569.7 413.3 261.8 101.5 177.9 220.1 141.1 183.2 176.1 213.1 236.0 156.0 201.3 26.5 21.8 7.2 61.8 110.8 11.7 4.3 10.5 46.3 31.6 2.3 22.1 58.1 1.7 2.6 3.3 0.9 26.6 1.8 2.1 1.44 1.41 1.88 1.63 1.47 1.76 1.69 1.65 1.84 1.26 1.26 1.74 1.83 1.51 1.65 1.13 2.02 1.68 1.35 1.35 2.22 2.05 2.11 2.50 1.75 1.99 2.13 2.13 1.97 1.90 1.15 1.62 2.03 1.73 1.65 1.85 1.87 1.82 2.00 1.88 1.05 1.33 1.18 1.72 1.79 1.14 0.73 1.26 1.12 1.03 1.12 1.31 1.14 0.82 1.05 1.18 0.66 1.08 0.67 0.65 3041.5 2679.8 3181.1 4480.1 2807.6 2241.0 3227.3 4195.1 3905.4 3470.9 3727.9 3694.8 4259.5 5105.0 3835.1 2395. 4704. 3926. 3723. 2864.0 6264.5 6123.6 4892.2 6632.7 3200.5 4625.4 6711.2 7064.4 6543.6 5994.1 2090.1 3217.5 3704.8 2584.6 2730.3 2756.1 3731.4 3316.7 3655.0 4044.8 427.4 360.4 159.6 1049.7 1942.2 154.3 147.9 255.8 609.8 561.3 75.7 354.5 925.1 55.5 71.5 80.1 44.8 438.0 45.6 43.9 47.9 48.9 48.1 50.0 52.0 42.0 47.2 44.3 48.6 49.9 43.5 48.3 52.1 46.0 44.6 45.0 48.6 49.2 35.5 40.3 54.3 48.1 49.2 51.5 39.7 48.2 47.3 51.0 52.4 46.1 52.7 41.7 52.1 43.0 42.3 48.1 43.9 50.0 50. 41. 33. 30. 24. 43. 45.7 27.9 38.0 24.0 32.3 21.7 20.2 29.9 35.0 13.4 20.6 22.9 12.9 34.8 13.0 12.9 101504.6 93202.6 81600.3 137756.4 99215.5 53338.8 90036.8 112683.5 102944.7 137541.5 129084.4 102330.9 121367.2 156023.8 103916.4 95272.2 113343.0 114771.3 97675.2 85465.0 153139 143758 114364 136869 72520 112051.6 149291.8 169416.4 173821.9 145250.9 96249.6 82964.4 95079.8 64222.9 70276.3 71913.5 87362.3 91257.3 92594.1 90468.2 13635.7 8230.4 3319.6 26520.0 49648.0 3779.4 7739.3 4891.1 17525.2 11757.8 1370.3 8122.5 28505.6 906.6 1396.1 1551.0 876.0 14150.6 879.9 875.2 5.00 4.95 5.25 4.95 4.40 5.25 5.15 5.10 5.05 4.80 5.10 4.85 4.85 5.30 5.30 5.65 5.00 4.95 5.10 4.95 .00 .05 .75 .50 5.60 5.55 5.70 4.95 4.85 5.15 5.25 5.55 5.25 5.55 5.45 5.30 5.70 5.35 5.25 5.80 6.40 6.85 6.65 6.30 6.65 6.85 5.35 7.25 6.35 7.15 7.50 5.95 6.45 7.60 7.85 7.35 8.10 7.00 7.85 7.30 4.65 4.55 4.75 4.55 4.00 4.85 4.80 4.65 4.75 4.50 4.75 4.45 4.40 4.95 4.95 5.30 4.65 4.60 4.65 4.50 4.75 4.65 5.40 5.25 5.20 5.20 5.35 4.65 4.55 .85 .95 .15 .90 .15 5.10 4.95 5.35 4.95 4.85 5.35 6.30 6.65 6.45 5.95 6.25 6.50 4.90 6.95 6.10 6.90 7.30 5.40 6.20 7.35 7.35 6.95 7.75 6.65 7.60 7.00 33.4 34.8 25.7 30.7 35.3 23.8 27.9 26.9 26.4 39.6 34.6 27.7 28.5 30.6 27.1 39.8 24.1 29.2 26.2 29.8 24.4 23.5 23.4 20.6 22.7 24.2 22.2 24.0 26.6 24.2 46.1 25.8 25.7 24.8 25. 26. 23. 27. 25. 22.4 31.9 22.8 20.8 25.3 25.6 24.5 52.3 19.1 28.7 20.9 18.1 22.9 30.8 16.3 19.5 19.4 19.6 32.3 19.3 19.9 8.30 6.40 7.07 5.49 7.42 6.79 5.23 6.58 4.58 7.93 4.66 6.15 6.56 .68 .12 .62 .81 .71 .43 5.72 6.54 4.29 7.06 6.09 5.34 6.89 5.07 8.06 6.32 4.37 4.85 5.53 5.94 5.46 6.71 6.39 5.71 7.12 4.27 4.98 6.21 6.05 4.51 5.89 5.70 7.56 2.91 4.10 7.59 5.63 3.08 6.23 6.28 3.07 3.66 4.06 1.95 6.07 3.90 4.79 APPENDIX 5 VEDDER MOUNTAIN FOREST FLOOR DATA (YEAR 1) SOIL SAM YR PLOT TRT MN MNKG TN TNKG OC CKG PHH PHC C/N MN/TN 1 1 4 2 604.9 12.3 1.06 216.2 26.3 5354.6 7.35 6.90 24.8 5.70 2 1 4 2 1026.1 27.8 1.46 395.0 35.2 9544.6 6.85 6.50 24.2 7.05 3 1 4 2 570.7 23.2 1.35 547.6 32.0 13045.6 6.90 6.55 23.8 4.24 4 1 4 2 757.3 51.4 1.59 1076.3 43.5 29482.3 5.80 5.25 27.4 4.77 5 4 2 813.6 11.0 1.54 208.3 32.7 4436.9 7.15 6.75 21.3 5.30 6 4 2 1251.6 17.0 1.67 227.1 34.9 4740.0 6.95 6.55 20.9 7.48 7 4 2 494.1 3.4 1.30 88.4 30.2 2046.0 7.00 6.55 23.2 3.79 8 4 2 653.3 13.3 1.38 280.0 32.0 6510.6 7.05 6.65 23.3 4.75 9 4 2 691.0 14.1 1.28 260.0 34.7 7066.6 6.55 6.15 27.2 5.41 10 4 2 1256.4 34.1 1.40 380.3 45.9 12455.3 6.10 5.55 32.7 8.97 11 4 2 539.6 11.0 1.07 217.3 27.4 5570.8 6.45 6.25 25.6 5.05 12 4 2 899.2 18.3 1.30 263.8 42.1 8571.7 6.75 6.40 32.5 6.94 13 4 2 761.6 25.8 1.38 468.9 35.1 11918.9 7.35 6.95 25.4 5.51 14 4 2 1118.2 53.1 1.77 838.7 40.0 19008.2 6.95 6.55 22.7 6.33 15 4 2 701.7 19.0 1.27 345.3 34.8 9434.7 7.15 6.85 27.3 5.52 16 4 2 808.6 16.5 1.22 249.0 32.4 6600.7 6.70 6.45 26.5 6.61 17 4 2 780.3 47.6 1.18 722.9 41.6 25373.9 6.35 5.95 35.1 6.59 18 4 2 631.1 12.8 0.90 182.7 22.9 4657.5 6.60 6.30 25.5 7.03 19 1 4 2 565.5 7.7 0.97 131.1 21.6 2937.3 6.75 6.55 22.4 5.85 20 1 4 2 408.1 8.3 0.68 137.6 14.5 2959.0 6.85 6.60 21.5 6.04 APPENDIX 6 VEDDER MOUNTAIN MINERAL SOIL DATA (YEAR 1) SOIL SAM YR PLOT TRT MN MNKG TN TNKG OC CKG PHH PHC C/N MN/TN 95.2 118.9 100.4 44.2 115.2 86.7 126.9 127.6 182.3 76.9 169.1 118.3 150.4 182.1 83.8 64.4 102.9 136.5 162.6 67.5 89.6 138.1 154.7 176.2 104.9 194.3 83.5 79.0 113.0 77.4 118.2 180.9 89.7 130.9 93.7 84.3 70.4 76.1 69.2 148.6 44.1 94.2 121.6 68.3 133.0 106.7 52.5 81.8 72.0 106.2 37.6 43.7 152.2 190.0 160.6 70.6 184.1 138.6 202.8 204.0 291. 123. 270. 189. 240.4 291.2 133.9 103.0 164.5 148.5 176.9 73.4 97.5 150.2 168.3 191.6 114.1 211.4 90.8 86.0 122.9 84.2 128.6 196.7 97.5 142.4 135.0 121.4 101.3 109.7 99.6 214.0 63.5 135.7 175.2 98.4 191.5 153.8 75.6 117.8 103.7 153.0 54.2 63.0 0.46 0.41 0.34 0.24 0.38 0.32 0.32 0.35 0.59 0.29 0.48 0.37 0.46 0.57 0.32 0.28 0.33 .50 .45 .32 .35 0.49 0.52 0.52 0.38 0.50 0.33 0.38 0.41 0.36 0.40 0.49 0.39 0.40 0.35 0.31 0.27 0.22 0.25 0.40 0.17 0.29 0.43 0.29 0.51 0.31 0.22 0.18 0.24 0.39 0.20 0.19 7358.3 6605.8 5385.0 3762.8 6070.6 5150.8 5150.8 5652.5 9365.1 4565.5 7642.6 5953.5 7375.0 9080.8 5100.7 4431.7 5201.0 5444.1 4920.2 3450.9 3815.4 5330.2 5649.1 5683.2 4145.7 5444.1 3530.7 4122.9 4464.6 3952.1 4339.3 5318.8 4191.2 4293.8 4968.0 4487.7 3872.3 3151.9 3572.1 5703.4 2461.5 4112.5 6198.7 4172.5 7369.4 4457.7 3151.9 2641.6 3482.1 5568.3 2911.7 2671.6 9.7 9.6 7.7 6.5 7.2 6.2 5.8 6.3 15.3 5.5 12.4 9.3 9.7 13.0 6. 5. 8. 9. 8.1 5.8 5.8 7.4 9.3 10.8 6.7 10.5 6.4 6.6 7.0 6.2 7.0 11.2 8.3 7.6 7.7 5.8 6.1 3.9 4.7 8.2 3.6 6.3 9.2 6.9 13.1 6.0 3.9 3.6 4.5 8.0 4.1 4.1 155103.5 153884.5 122744.7 103117.8 114344.5 98384.9 93211.8 101026.5 244611.2 88589. 197664. 148905. 155619. 208451. 99815.8 80884.4 142191.2 99466.9 87833.2 62746.0 63569.7 80868.7 101238.1 117114.2 72556.2 114642.9 70010.0 71582.7 76375.5 67463.9 75926.1 122131.7 89930.1 82441.3 110701.1 83670.4 88393.4 56137.7 66990.1 118323.1 52118.3 90202.2 132908.3 98944.4 188275.6 86383.7 56640.2 52556.3 64450.3 115324.6 58953.1 59452.9 4.90 4.75 4.95 4.65 5.35 5.30 5.30 5.25 5.60 5.45 5.45 5.85 5.95 5.20 5.75 5.40 5.75 5.05 4.90 4.90 5.10 5.35 5.15 4.95 5.55 5.30 4.90 5.30 5.25 5.50 5.25 4.85 4.65 5.10 5.05 5.10 5.20 4.80 5.20 5.25 5.25 4.60 4.85 5.05 4.35 5.20 5.45 5.50 5.05 4.60 5.65 5.80 4.65 4.50 4.75 4.25 4.95 4.95 4.90 4.90 5.40 5.05 5.30 5.55 5.70 5.10 5.50 4.90 5.45 4.80 4.45 4.60 .55 .95 .95 .70 .15 4.95 4.35 4.90 .95 .00 .95 .45 .15 .70 4  5  4  4  4  4  4.85 4.90 4.90 4.35 4.90 5.00 4.85 4.20 4.65 4.80 4.20 4.90 5.10 4.95 4.75 4.50 5.25 5.40 21.1 23.3 22.8 27.4 18.8 19.1 18.1 17.9 26.1 19.4 25.9 25.0 21.1 23.0 19.6 18.3 27.3 18.3 17.9 18.2 16.7 15.2 17.9 20.6 17.5 21.1 19.8 17.4 17.1 17.1 17.5 23.0 21.5 19.2 22.3 18.6 22.8 17.8 18.8 20.7 21.2 21.9 21.4 23.7 25.5 19.4 18.0 19.9 18.5 20.7 20.2 22.3 2.07 2.88 2.98 1.88 3.03 2.69 .94 .61 .11 .69 .54 .18 3.26 3.21 2.63 2.32 3.16 2.73 3.60 2.13 2.56 2.82 2.98 3.37 2.75 3.88 2.57 2.09 2.75 2.13 2.96 3.70 2.33 3.32 2.72 2.71 2.62 3.48 2.79 3.75 2.58 3.30 2.83 2.36 2.60 45 40 46 98 75 1.86 2.36 APPENDIX 6 VEDDER MOUNTAIN MINERAL SOIL DATA (YEAR 1) SOIL SAM YR PLOT TRT MN MNKG TN TNKG OC CKG PHH PHC C/N MN/TN 2 1 1 4 2 78.9 94.8 0.28 3371.8 6.8 82104.3 4.95 4.65 24.4 2.81 2 2 1 4 2 65.5 78.6 0.19 2268.5 3.9 47100.2 5.15 4.75 20.8 3.47 2 3 1 4 2 66.8 80.2 0.28 3297.4 6.6 78786.3 5.00 4.65 23.9 2.43 2 4 1 4 2 68.5 82.3 0.23 2727.2 5.8 69910.9 5.15 4.80 25.6 3.02 2 5 4 2 92.6 111.2 0.29 3495.8 6.3 75551.4 4.85 4.45 21.6 3.18 2 6 4 2 155.5 186.8 0.28 3396.6 6.1 72814.1 5.10 4.75 21.4 5.50 2 8 1 4 2 76.6 92.1 0.31 3669.3 7.6 91312.9 4.45 3.85 24.9 2.51 2 9 1 4 2 85.9 103.2 0.27 3223.1 5.8 70159.8 5.15 4.95 21.8 3.20 2 10 1 4 2 68.8 82.7 0.25 3012.3 5.3 64187.5 4.95 4.60 21.3 2.75 2 12 1 4 2 155.8 187.1 0.32 3780.9 7.0 84592.7 4.90 4.45 22.4 4.95 2 13 1 4 2 64.4 77.4 0.21 2466.9 5.0 60040.1 5.00 4.40 24.3 3.14 2 14 4 2 43.9 52.8 0.19 2243.7 4.5 53736.1 4.75 4.25 23.9 2.35 2 16 4 2 76.3 91.6 0.25 3037.1 4.9 58961.8 5.00 4.75 19.4 3.02 2 18 .4 2 55.8 67.0 0.23 2801.6 4.6 55560.9 5.30 5.00 19.8 2.39 2 19 4 2 95.6 114.9 0.25 2962.7 5.0 59957.2 5.35 4.85 20.2 3.88 2 20 4 2 37.8 45.4 0.15 1809.9 3.0 36151.1 5.20 4.85 20.0 2.51 APPENDIX 7 VEDDER MOUNTAIN FOREST FLOOR DATA (YEAR 2) SOIL SAM YR PLOT TRT MN MNKG TN TNKG OC CKG PHH PHC C/N MN/TN 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1201.0 1634.1 1279.0 1912.8 2155.3 1344.3 2071.6 1460.7 1243.0 1398.0 1663.4 953.7 1243.2 1044.0 1226.2 988.1 1548.0 1244. 1161. 1063. 1212. 1873. 1154. 1101. 1080. 1297. 1186.1 1096.6 1026.2 1047.4 1154.3 1422.6 1219.5 1124.5 1113.6 1237.9 1042.9 1727.9 1130.6 1719.2 126.8 211.3 127.6 215.4 171.7 258.6 200.8 203.5 186.0 159.9 148.2 209.7 159.0 151.1 185.9 166.1 167.1 118.1 123.6 167.9 178.1 173.1 203.3 222.9 274.0 142.4 307.3 309.5 184.4 88.9 193.9 50.5 237.1 110. 103. 83. 65. 105. 196.8 202.8 140.9 62.2 134.2 164.5 143.4 150.7 216.5 100.1 119.2 139.1 95.8 165.3 182.1 158.6 129.4 92.4 69.2 172.0 93.8 99.9 0.9 2.9 0.4 13.2 4.1 10.5 0.7 6.2 3.8 2.2 0.5 3.6 8.6 1.5 2.5 1.7 0.6 0.4 0.4 2.3 1.93 1.88 1.99 2.13 2.31 1.75 1.78 2.03 2.12 1.92 2.15 1.64 1.96 1.99 1.86 2.00 1.69 2.01 1.90 1.89 2.10 2.10 1.99 2.25 2.21 2.13 2.20 1.98 1.67 1.89 1.65 2.10 2.14 2.08 2.05 1.90 1.87 1.97 1.99 2.12 1.05 1.29 0.90 1.47 1.24 1.61 1.13 1.38 1.28 1.02 1.32 1.43 1.10 1.27 1.24 1.24 0.87 0.78 0.60 1.16 2857.3 1994.7 3166.2 2482. 2936. 1856. 2636. 4295.1 3147.5 1219.6 2510.8 868.8 3735.5 2103.7 1576.8 1694.3 717.3 1704.8 3221.9 3596.9 2439.9 697.8 2311.6 3356.9 2929.0 2474.3 4022.4 1811.3 1934.7 2503.9 1365.9 2444.1 3193.2 2939.8 2380.7 1416.8 1238.6 1957.9 1654.2 1229.4 71.1 175.6 30.5 897.4 294.1 653.3 38.3 420.1 260.5 138.4 44.8 242.4 598.1 128.8 168.0 126.0 29.6 26.4 20.5 157.7 48.9 49.8 50.1 52.3 50.5 48.6 47.1 53.2 52.6 51.2 51.6 43.4 50.2 53.8 51.1 50.8 47.6 50.8 51.2 54.3 52.6 50.9 51.0 53.3 52.5 53.2 49.5 53.1 54 54 51 51 50 53.6 53.2 51.4 44.7 48.0 48.7 45.2 32.0 33.6 32.9 44.4 32.9 43.9 49.7 45.1 34.8 29.2 35.9 38.3 37.4 32.2 33.4 38.5 27.9 26.1 25.1 37.1 72507.0 52767.9 79688.0 60967.7 64179.4 51445.1 69887.8 112828.5 77995.6 32561.6 60141.9 23012.7 95688.4 57001.2 43318. 43023. 20184. 43023. 86713.1 103567.5 61072.9 16902.4 59241.3 79668.2 69640.6 61742.2 90443.0 48419.8 62900 72658 42916 59471 75782.1 75539.2 61831.8 38351.0 29672.0 47761.7 40391.9 26228.6 2172.5 4555.6 1116.4 27110.5 7822.8 17874.8 1684.4 13781.5 7087.2 3964.7 1217.4 6495 20301 3275 4532 3915.1 945.3 885.5 851.1 5036.8 5.65 5.55 5.65 5.55 5.65 5.55 5.55 5.70 5.35 5.75 5.35 5.95 5.75 5.20 80 55 60 70 60 40 5.85 6.05 5.65 5.65 5.55 5.85 5.95 65 60 85 65 95 70 65 5.55 5.95 6.00 5.70 6.00 6.05 6.15 6.20 6.05 6.15 6.50 5.90 5.70 6.20 5.65 6.25 .00 .90 .35 .25 .45 .05 5.95 6.60 5.95 6.45 5.25 5.15 5.20 5.30 5.35 5.20 5.30 5.40 5.00 5.40 5.05 5.55 5.40 4.85 5.45 5.15 5.35 5.35 5.20 5.00 5.45 5.70 5.25 5.30 5.10 5.45 5.55 5.25 5.25 4.45 5.25 5.55 5.35 5.30 5.10 5.55 5.55 5.35 5.60 5.75 5.75 5.90 5.65 5.85 6.25 5.45 5.25 5.95 5.25 5.85 5.60 5.45 5.95 5.85 6.05 5.55 5.50 6.45 5.40 6.05 25.4 26.5 25.2 24.6 21.9 27.7 26.5 26.3 24.8 26.7 24.0 26.5 25.6 27.1 27.5 25.4 28.1 25.2 26.9 28.8 25.0 24.2 25.6 23.7 23.8 25.0 22.5 26.7 32.5 29.0 31.4 24.3 23.7 25.7 26.0 27.1 24.0 24.4 24.4 21.3 30.5 25.9 36.7 30.2 26.6 27.4 44.0 32.8 27.2 28.6 27.2 26.8 33.9 25.4 27.0 31.1 31.9 33.5 41.6 31.9 6.24 8.68 6.42 8.98 9.33 7.67 11.65 7.21 5.86 7.29 7.72 5.82 6.35 5.26 6.59 4.94 9.15 6.19 6.11 5.64 5.77 8.91 5.80 4.90 4.90 6.09 5.38 5.53 6.16 5.55 7.01 6.76 70 40 43 53 59 8.79 5.67 8.12 1.21 1.63 1.42 1.47 1.39 1.61 1.78 1.48 1.45 1.57 1.12 1.47 1.44 1.19 1.50 1.34 1.92 1.52 2.05 1.45 APPENDIX 7 VEDDER MOUNTAIN FOREST FLOOR DATA (YEAR 2) SOIL SAM YR PLOT TRT MN MNKG TN TNKG OC CKG PHH PHC C/N MN/TN 1 2 4 2 135.1 1.8 1.23 167.1 37.3 5059.3 6.25 5.90 30.3 1.10 2 2 4 2 271.6 22.1 1.45 1178.7 43.8 35699.2 6.20 5.85 30.3 1.88 3 2 4 2 160.8 1.6 1.08 109.4 38.0 3871.8 6.35 6.10 35.4 1.50 4 2 4 2 147.2 4.5 1.44 439.0 42.7 13039.4 6.50 6.25 29.7 1.02 5 2 4 2 228.6 4.7 1.49 303.3 38.8 7898.1 6.10 5.75 26.0 1.54 6 2 4 2 236.8 4.0 1.16 196.2 38.0 6447.5 5.95 5.65 32.9 2.05 7 2 4 2 281.5 5.7 1.33 270.8 41.8 8509.7 6.25 5.85 31.4 2.12 8 2 4 2 158.0 2.7 0.90 153.1 32.4 5488.9 6.15 5.80 35.9 1.75 9 2 4 2 224.1 8.4 1.34 501.7 48.8 18199.8 6.20 5.85 36.3 1.67 10 2 4 2 157.3 2.1 1.22 166.1 43.4 5883.6 6.35 6.10 35.4 1.29 11 2 4 2 196.3 2.7 1.29 175.2 38.0 5155.0 6.40 6.15 29.4 1.52 12 2 4 2 158.3 7.0 1.26 557.5 39.1 17265.7 6.65 6.45 31.0 1.25 13 2 4 2 58.8 0.6 0.84 85.2 32.2 3277.9 6.75 6.45 38.5 0.70 14 2 4 2 170.7 8.1 0.96 454.9 42.7 20290.4 6.15 5.75 44.6 1.78 15 2 4 2 123.0 2.1 1.10 187.3 31.7 5371.0 6.75 6.40 28.7 1.11 16 2 4 2 76.1 1.3 1.20 203.2 38.1 6469.5 6.40 6.15 31.8 0.64 17 2 4 2 146.8 3.2 1.08 234.1 31.5 6849.0 6.65 6.40 29.3 1.36 18 2 4 2 196.7 4.0 1.03 208.7 34.2 6965.5 6.60 6.25 33.4 1.92 19 2 4 2 172.2 4.1 1.10 262.3 42.9 10188.9 6.35 6.05 38.8 1.56 20 2 4 2 313.7 13.8 1.21 534.0 43.3 19103.8 6.05 5.75 35.8 2.59 APPENDIX 8 VEDDER MOUNTAIN MINERAL SOIL DATA (YEAR 2) 116 SOIL SAM YR PLOT TRT MN MNKG TN TNKG OC CKG PHH PHC C/N MN/TN 2 1 2 2 2 2 2 3 2 2 4 2 2 5 2 2 6 2 2 7 2 2 9 2 2 11 2 2 12 2 2 14 2 2 15 2 2 16 2 2 17 2 2 18 2 2 19 2 2 20 2 2 1 2 2 2 2 2 3 2 2 4 2 2 5 2 2 6 2 2 7 2 2 8 2 2 9 2 2 10 2 2 11 2 2 12 2 2 13 2 2 14 2 2 15 2 2 16 2 2 17 2 2 18 2 2 19 2 2 20 2 2 1 2 2 2 2 2 3 2 2 4 2 2 5 2 2 6 2 2 7 2 2 8 2 2 9 2 2 10 2 2 11 2 2 12 2 2 13 2 2 14 2 2 15 2 2 16 2 2 17 2 2 18 2 2 19 2 2 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 88.6 94.9 152.1 235.4 178.0 81.9 152.1 178.9 118.8 258.9 204.5 178.6 121.4 96.9 179.2 153.2 100.0 227.4 68.9 112.4 214.9 152.1 128.0 102.3 75.4 148.9 96.0 83.2 83.6 103.9 135.2 153.6 176.0 158.0 167.1 84.6 150.2 81.1 100.1 60.9 56.5 88.4 101.1 63.0 64.5 32.0 55.2 42.2 74.3 88.9 86.8 64.5 48.2 71.2 131.5 57.7 51.2 141.6 151.7 243.2 376.4 284.6 130.9 243.2 286.0 190.0 414.0 327.0 285.5 194.1 154.9 286.5 244.9 159.9 247.4 75.0 122.3 233.8 165.5 139.3 111.2 82.0 161.9 104.4 90.5 90.9 113.1 147.1 167.1 191.5 171.9 181.8 92.1 163.4 116.9 144.2 87.7 81.4 127.3 145.7 90.7 93.0 46.0 79.5 60.8 107.1 128.1 125.1 92.9 69.4 102.6 189.4 83.2 73.8 0.26 0.32 0.40 0.59 0.48 0.27 0.41 0.47 0.45 0.66 0.63 0.48 0.43 0.32 0.49 0.39 0.33 .55 .32 .38 .59 0.48 0.39 0.40 0.35 0.37 0.36 0.30 0.31 0.41 0.33 0.49 0.50 0.43 0.48 0.32 .46 .33 .36 .29 .21 .32 .33 .22 .23 .20 .26 0.22 0.35 0.35 0.37 0.25 0.28 0.26 0.40 0.27 0.21 4075.5 5081.7 6373.1 9442.3 7681.3 4259.9 6591.2 7446.5 7178.2 10566.0 10129.9 7647.8 6842.7 5098.5 7849.0 6239.0 5299.8 5956.6 3501.2 4137.8 6422.6 5229.1 4240.1 4319.7 3762.6 4001.4 3910.4 3205.6 3353.4 4456.1 3546.7 5274.5 5422.3 4694.8 5172.2 3478.5 4990.3 4693.3 5158.1 4153.5 3043.9 4603.3 4738.3 3178.8 3373.8 2864.0 3718.7 3193.8 4963.2 5083.2 5308.1 3613.7 3973.6 3808.6 5802.9 3868.6 2968.9 4.7 5.3 11.6 13.4 12.9 5.5 12.1 10.7 9.2 17.1 15.1 9.3 9.2 5.4 9.8 7.6 10.7 9.7 5.7 7.3 11.4 8.4 7.5 7.2 7.3 8.8 7.0 5.8 6.7 7.6 7.1 10.2 10.1 8.1 9.8 6.5 8.9 7.4 7.9 6.6 4.9 6.3 7.8 4.4 4.6 4.4 6.1 4.3 7.5 9.7 7.8 5.1 5.5 5.7 8.5 5.8 4.1 75030.8 84138.7 184788.3 214861.1 206205.5 87578.8 193206.1 170806.1 147058.6 272676.4 241937.8 147946.4 147058.6 87023.9 157045.9 121202.6 170362.3 105437.8 62081.9 78988.4 124298.0 91687.1 81468.0 78387.3 79393.9 96135.2 75698.8 63255.9 73210.2 82184.2 76830.0 111443.7 109558.4 88066.2 107069.9 70269.2 97040.2 106112.9 113069.1 94386.8 70139.5 90113.7 112870.4 63084.0 66263.9 62984.6 88225.6 61891.5 108696.7 139105 112572 72922 78586 81875 122868 83159.1 59748.5 5.65 5.60 5.65 5.10 5.25 5.50 6.15 6.00 5.00 6.00 6.05 5.25 5.30 5.50 5.45 5.55 5.15 5.10 5.35 5.50 5.35 5.25 5.60 5.60 5.05 4.95 5.35 5.60 5.75 5.70 5.60 5.65 5.40 5.35 5.25 5.05 5.35 5.65 5.50 5.40 5.60 5.55 5.20 5.65 5.65 5.35 5.45 5.50 5.55 5.05 5.60 5.65 5.75 5.55 5.95 6.00 6.25 5.00 5.00 5.15 4.60 4.75 4.95 5.75 5.50 4.45 5.70 5.65 4.75 4.85 4.95 4.90 5.00 4.55 4.60 4.65 4.95 4.80 4.75 5.05 5.10 4.45 4.45 4.75 5.00 5.20 5.10 5.10 5.10 4.80 4.80 4.75 4.50 4.85 5.05 4.95 4.85 5.05 4.95 4.65 5.10 5.10 4.75 4.85 4.95 5.05 4.55 5.15 5.00 5.05 5.00 5.50 5.55 5.65 18.4 16.6 29.0 22.8 26.8 20.6 29.3 22.9 20.5 25.8 23.9 19.3 21.5 17.1 20.0 19.4 32.1 17.7 17.7 19.1 19.4 17.5 19.2 18.1 21.1 24.0 19.4 19.7 21.8 18. 21. 21. 20. 18.8 20.7 20.2 19.4 22.6 21.9 22.7 23.0 19.6 23.8 19.8 19.6 22.0 23.7 19.4 21.9 27.4 21.2 20.2 19.8 21.5 21.2 21.5 20.1 3.47 2.99 3.82 3.99 3.71 3.07 3.69 3.84 2.65 3.92 3.23 3.73 2.84 3.04 3.65 3.93 3.02 4.15 2.14 2.96 3.64 3.16 3.29 2.58 2.18 4.05 2.67 2.82 2.71 2.54 4.15 3.17 3.53 3.66 3.51 2.65 3.28 2.49 2.80 2.11 2.67 2.77 3.07 2.85 2.76 1.61 2.14 1.90 2.16 2.52 2.36 2.57 1.75 2.69 3.26 2.15 2.49 APPENDIX 8 VEDDER MOUNTAIN MINERAL SOIL DATA (YEAR 2) SOIL SAM YR PLOT TRT MN MNKG TN TNKG OC CKG PHH PHC C/N MN/TN 2 1 2 4 2 40.7 48.8 0.18 2173.6 3.6 42947.6 5.15 4.65 19.8 2.25 2 2 2 4 2 95.0 114.1 0.27 3192.0 5.7 68522.3 5.20 4.65 21.5 3.57 2 3 2 4 2 104.4 125.4 0.32 3800.6 7.0 83601.6 5.65 5.05 22.0 3.30 2 4 2 4 2 87.6 105.2 0.33 3962.1 6.9 83226.5 5.40 4.85 21.0 2.66 2 5 2 4 2 60.4 72.5 0.23 2732.5 5.2 62698.5 5.40 4.80 22.9 2.66 2 6 2 4 2 74.4 89.3 0.27 3229.3 6.4 77017.9 5.30 4.70 23.9 2.77 2 7 2 4 2 64.2 77.1 0.23 2769.8 4.9 58419.2 5.50 4.85 21.1 2.78 2 8 2 4 2 73.8 88.6 0.22 2633.1 4.5 54222.1 5.60 4.95 20.6 3.37 2 9 2 4 2 75.0 90.1 0.23 2769.8 6.1 73314.6 5.15 4.50 26.5 3.25 2 10 2 4 2 84.3 101.3 0.26 3129.9 5.3 63947.2 5.25 4.65 20.4 3.24 2 11 2 4 2 102.2 122.7 0.27 3179.6 6.3 75853.7 5.40 4.95 23.9 3.86 2 12 2 4 2 100.3 120.4 0.34 4049.1 7.1 85871.6 5.30 4.85 21.2 2.98 2 13 2 4 2 60.6 72.7 0.26 3142.4 5.7 68709.8 5.15 4.55 21.9 2.32 2 14 2 4 2 68.1 81.8 0.24 2931.2 5.5 66386.4 5.35 4.80 22.6 2.79 2 15 2 4 2 94.1 113.1 0.28 3378.4 5.7 68545.6 5.50 4.95 20.3 3.35 2 16 2 4 2 124.1 149.1 0.33 3924.8 7.6 91605.5 5.50 5.00 23.3 3.80 2 17 2 4 2 58.9 70.7 0.21 2571.0 4.5 54557.3 5.45 4.85 21.2 2.75 2 18 2 4 2 71.8 86.2 0.23 2782.2 5.0 60580.6 5.40 4.85 21.8 3.10 2 19 2 4 2 71.2 85.5 0.20 2359.9 4.5 53929.4 5.40 4.75 22.9 3.62 2 20 2 4 2 52.1 62.6 0.19 2297.8 4.6 55214.5 5.20 4.60 24.0 2.72 118 APPENDIX 9 S o i l Description for S i t e 2 Duric Ferro-Humic Podzol derived from g l a c i a l t i l l parent material Horizon Depth (cm) Description L,F H 1 0 - 0 Ae 0 - 8 Bhf 8 - 1 8 Bfgjc 18 - 49 Bh/Bhf 49 - 76 Disturbed and p a r t i a l l y charred as r e s u l t of logging and slashburning. weak red (10R 5/2 m) ; abundant very fine, medium and coarse roots, p l e n t i f u l fine roots; abrupt, wavy boundary; 5 - 15 cm thick. reddish gray (5YR 5/2 m) ; SL; weak, fine, subangular blocky; nonsticky, s l i g h t l y p l a s t i c ; few very f i n e roots, very few other roots; 20% cobbles, 5% stones; abrupt, wavy boundary; 3 - 9 cm thick. very dusky red (2.5YR 2/2 m) ; SL; weak, fine subangular blocky; nonsticky, nonplastic; p l e n t i f u l very f i n e , f i n e , and medium roots, very few other roots; 15% gravel, 30% cobbles, 20% stones; abrupt, i r r e g u l a r boundary; 3 - 1 5 cm thick. strong brown (7.5YR 5/6 m) ; LS; many, fine d i s t i n c t , brown (7.5YR 5/4 m) mottles; single-grained; nonsticky, nonplastic; very few roots; 60% gravel, 30% cobbles, 25% stones; abrupt, i r r e g u l a r ( l o c a l l y broken) boundary; 20 - 33 cm thick. very dusky red (2.5YR 2/2 m); reddish brown (2.5 YR 4/4 m) ; SL; weak, fi n e , subangular blocky; nonsticky, nonplastic; few very fine and fi n e roots, very few other roots; 15% gravel, 30% cobbles, 30% stones. l i e 76 + compact (basal) t i l l , unsampled. 119 APPENDIX 10: L i s t of Vegetation on S i t e 2 PLOT 1 Slope 56% Aspect 123 deg Average forest f l o o r depth 0.135 m Shrubs. Ferns SPECIES Vaccinium spp. Rubus s p e c t a b i l i s Pursh T i a r e l l a t r i f o l i a t a L. Pyrola spp. Woodsia spp. Blechnum spicant (L.) Roth Pteridium aquilinum (L.) Kuhn % COVER 1 < 1 2 < 1 1 < 1 < 1 PLOT 2 Slope 50% Aspect 98 deg Average forest f l o o r depth 0.12 m Shrubs Seedlings Herbs Ferns SPECIES % COVER Vaccinium spp. 1 Vaccinium parvifolium Smith 1 Rubus s p e c t a b i l i s Pursh < 1 Abies amabilis (Doug ex. Loud.) Forbes < 1 T i a r e l l a t r i f o l i a t a L. 2 Cornus canadensis L. < 1 Blechnum spicant (L.) Roth 2 Woodsia spp. 1 Polystichum muniturn (Kaulf.) P r e s l . 1 Athyrium f i l i x - f e m i n a (L.) Roth < 1 PLOT 3 Slope 70% Aspect 114 deg Average forest f l o o r depth 0.13 m Shrubs Herbs SPECIES Vaccinium spp. Cornus canadensis L. T i a r e l l a t r i f o l i a t a L. % COVER 2 1 < 1 120 Ferns Blechnum spicant (L.) Roth Polvstichum muniturn (Kaulf.) Presl 1 < 1 PLOT 4 Slope 78% Aspect 102 deg Average forest f l o o r depth 0.115 m Shrubs Seedlings Herbs Ferns SPECIES Rubus s p e c t a b i l i s Pursh Tsuga heterophylla (Raf.) Sarg. T i a r e l l a t r i f o l i a t a L. Blechnum spicant (L.) Roth Polystichum muniturn (Kaulf.) Presl, Pteridium aquilinum (L.) Kuhn Woodsia spp. % COVER 1 < 1 < 1 4 4 1 1 PLOT 6 Slope 59% Aspect 106 deg Average forest f l o o r depth 0.11 m Shrubs Herbs Ferns SPECIES Vaccinium spp. T i a r e l l a t r i f o l i a t a L. Anaphalis marqaritacea (L.) B. & H. Blechnum spicant (L.) Roth Woodsia spp. % COVER 2 2 < 1 2 2 PLOT 7 Slope 67% Aspect 109 deg Average forest f l o o r depth 0.125 m Shrubs Seedlings Herbs Ferns SPECIES Gaultheria shallon Pursh Tsuga heterophylla (Raf.) Sarg. T i a r e l l a t r i f o l i a t a L. Polystichum muniturn (Kaulf.) Presl, Pteridium aquilinum (L.) Kuhn % COVER < 1 1 2 2 1 121 PLOT 8 Slope 45% Aspect 77 deg Average forest f l o o r depth 0.127 m Shrubs Seedlings Herbs Ferns SPECIES Spiraea douqlasii Hook. Tsuga heterophylla (Raf.) Sarg. Abies amabilis (Dougl. ex Loud.) Forbes Cornus canadensis L. Epilobium anqustifolium L. Athyrium f i l i x - f e m i n a (L.) Roth Polystichum muniturn (Kaulf.) P r e s l . COVER 4 1 1 2 < 1 1 < 1 PLOT 9 Slope 55% Aspect 116 deg Average forest f l o o r depth 0.105 m Shrubs Herbs Ferns SPECIES Rubus s p e c t a b i l i s Pursh Sambucus racemosa L. T i a r e l l a t r i f o l i a t a L. Epilobium anqustifolium L. Polystichum muniturn (Kaulf.) Presl, Athyrium f i l i x - f e m i n a (L.) Roth % COVER 3 1 3 1 1 < 1 PLOT 10 Slope 68% Aspect 111 deg Average forest f l o o r depth 0.12 m Shrubs Herbs Ferns SPECIES Sambucus racemosa L. Rubus s p e c t a b i l i s Pursh T i a r e l l a t r i f o l i a t a L. Epilobium anqustifolium L. Woodsia spp. COVER 4 2 3 1 122 PLOT 11 Slope 70% Aspect 109 deg Average forest f l o o r depth 0.107 m Shrubs Seedlings Ferns SPECIES % COVER Vaccinium parvifolium Smith 2 Rubus ursinus Cham. & Schlecht 1 Menziesia ferruqinea Smith. l Vaccinium spp. < l Tsuga heterophylla (Raf.) Sarg. < Abies amabilis (Dougl. ex Loud.) Forbes < Pteridium aquilinum (L.) Kuhn 2 Polystichum muniturn (Kaulf.) P r e s l . < l 1 1 PLOT 12 Slope 63% Aspect 111 deg Average forest f l o o r depth 0.106 m Shrubs Seedlings Herbs Ferns SPECIES Rubus s p e c t a b i l i s Pursh Tsuga heterophylla (Raf.) Sarg. T i a r e l l a t r i f o l i a t a L. Valeriana sitchensis Bong. Polystichum muniturn (Kaulf.) Presl Blechnum spicant (L.) Roth Athvrium f i l i x - f e m i n a (L.) Roth % COVER < 1 < 1 2 < 1 < 1 < 1 < 1 PLOT 14 Slope 51% Aspect 103 deg Average forest f l o o r depth 0.095 m Shrubs Seedlings Herbs Ferns SPECIES Vaccinium parvifolium Smith Abies amabilis (Dougl. ex Loud.) Forbes Tsuga heterophylla (Raf.) Sarg. T i a r e l l a t r i f o l i a t a L. Cornus canadensis L. T r i l l i u m ovatum Pursh Polystichum muniturn (Kaulf.) P r e s l . Blechnum spicant (L.) Roth % COVER 1 < 1 3 < 1 < 1 1 < 1 123 PLOT 15 Slope 47% Aspect 89 deg Average forest f l o o r depth 0.178 m Shrubs Herbs Ferns SPECIES Rubus s p e c t a b i l i s Pursh T i a r e l l a t r i f o l i a t a L. Cornus canadensis L. Epilobium anqustifolium L. Athryium f i l i x - f e m i n a (L.) Roth Blechnum spicant (L.) Roth % COVER 5 1 1 < 1 2 1 PLOT 18 Slope 53% Aspect 143 deg Average forest f l o o r depth 0.091 m Shrubs Seedlings Herbs SPECIES % COVER Rubus s p e c t a b i l i s Pursh 1 Sambucus racemosa L. 1 Abies amabilis (Dougl. ex Loud.) Forbes < 1 T i a r e l l a t r i f o l i a t a L. 2 PLOT 20 Slope 44% Aspect 134 deg Average forest f l o o r depth 0.109 m Shrubs Herbs Ferns SPECIES Rubus s p e c t a b i l i s Pursh Sambucus racemosa L. Vaccinium parvifolium Smith T i a r e l l a t r i f o l i a t a L. Athryium f i l i x - f e m i n a (L.) Roth Pteridium aquilinum (L.) Kuhn Blechnum spicant (L.) Roth % COVER 2 1 1 1 1 1 124 PLOT 22 Slope 30% Aspect 140 deg Average forest f l o o r depth 0.097 m Shrubs Herbs Ferns SPECIES Rubus s p e c t a b i l i s Pursh Vaccinium spp. T i a r e l l a t r i f o l i a t a L. Cornus canadensis L. Epilobium anqustifolium L. Valeriana sitchensis Bong. Athryium f i l i x - f e m i n a (L.) Roth COVER < 1 < 1 1 1 1 1 < 1 PLOT 23 Slope 31% Aspect 137 deg Average forest f l o o r depth 0.166 m Shrubs Herbs Ferns SPECIES Rubus s p e c t a b i l i s Pursh Vaccinium parvifolium Smith Vaccinium spp. T i a r e l l a t r i f o l i a t a L. Cornus canadensis L. Streptopus amplexifolius (L.) DC. Athyrium f i l i x - f e m i n a (L.) Roth Blechnum spicant (L.) Roth % COVER 3 1 1 2 1 < 1 < 1 < 1 PLOT 24 Slope 45% Aspect 144 deg Average forest f l o o r depth 0.095 m Shrubs Herbs Ferns SPECIES Vaccinium spp. Sambucus racemosa L. T i a r e l l a t r i f o l i a t a L. Blechnum spicant (L.) Roth Athryium f i l i x - f e m i n a (L.) Roth Polystichum muniturn (Kaulf.) Presl, Pteridium aquilinum (L.) Kuhn COVER 1 < 1 2 1 < 1 < 1 125 PLOT 25 Slope 45% Aspect 156 deg Average forest f l o o r depth 0.151 m Shrubs Seedlings Herbs Ferns SPECIES Vaccinium parvifolium Smith Tsuga heterophylla (Raf.) Sarg. Alnus rubra Bong. T i a r e l l a t r i f o l i a t a L. T r i l l i u m ovatum Pursh Polystichum munitum (Kaulf.) Presl. Blechnum spicant (L.) Roth Woodsia spp. % COVER < 1 1 < 1 1 1 1 < 1 < 1 PLOT 26 Slope 65% Aspect 122 deg Average forest f l o o r depth 0.215 m SPECIES % COVER Shrubs Rubus s p e c t a b i l i s Pursh < 1 Gaultheria shallon Pursh < 1 Calculation of Mission Tree Farm Fuel Loading of Small Fuels W = FACTOR * PI 2 * QMD2 * SG * (# intersections) 8 * L fue l loading (tonnes ha") quadratic mean diameter (cm), s i z e c l a s s i s p e c i f i c gravity (size c l a s s i , species j) weight factor ( r a t i o of average species composition) transect portion * # transects / p l o t Calculation of Large Fuels W = PI 2 * SG * DIA2 8 * L fue l loading (tonnes h a ) s p e c i f i c gravity (size c l a s s i , species j) piece diameter (cm), species j transect length * # intersections / p l o t Calculation of the Quadratic Mean Diameter (QMD) / (bl + 1) * (X2 b 1 + 3 - XI b 1 + 3) QMD = / \j (bl +3) * (X2 b 1 + 1 - XI b 1 + 1) APPENDIX 11 Calculation where W = QMD SQ FACTOR = L where W SG DIA2 where X2 XI b l upper si z e class l i m i t of siz e class i lower s i z e class l i m i t of s i z e c l a s s i slope (common for a l l classes) APPENDIX 12 MISSION TREE FARM FOREST FLOOR DATA SOIL SAM TRT MN MNKG TN TNKG OC CKG PHH PHC C/N MN/TN 1 2 3 4 6 7 8 , 9 10 11 12 14 15 18 20 22 23 24 25 26 1 2 3 4 6 7 8 9 10 11 12 14 15 18 20 22 23 24 25 26 1 2 3 4 6 7 8 9 10 11 12 14 15 18 20 22 23 24 25 26 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 405 .3 5 3 7 . 9 6 1 4 . 8 431.1 4 1 0 . 6 3 3 8 . 6 4 2 3 . 3 4 0 8 . 6 447 .2 4 7 0 . 0 638.1 3 9 1 . 0 4 7 8 . 7 624 .5 595.1 5 9 6 . 9 4 3 4 . 7 7 5 1 . 8 4 2 6 . 6 4 9 9 . 8 332 .4 696 .5 5 3 8 . 7 491 .2 6 2 0 . 9 4 6 3 . 0 559 .3 408.1 4 4 5 . 8 6 5 6 . 2 7 2 7 . 7 8 2 2 . 8 449 .4 4 6 6 . 9 8 5 2 . 6 8 0 3 . 7 505.1 7 4 1 . 7 6 7 8 . 7 4 7 5 . 5 191 .9 4 3 4 . 2 4 0 8 . 5 3 6 5 . 8 4 1 6 . 8 3a . 5 5 0 0 . 9 235 .5 3 1 8 . 8 406.1 599 .2 295 .4 400.1 3 4 5 . 4 5 6 . 225. 418 . 6 0 3 . 8 469 .4 532 .3 124.7 147.1 182.1 113.0 102.9 9 6 . 4 122.5 9 7 . 8 122.3 114.6 154.1 8 4 . 6 194.2 129.5 147.8 131.9 164.4 162 .7 146.8 244 .8 3 3 . 8 5 1 . 6 5 4 . 3 5 1 . 7 2 4 . 9 4 9 . 6 7 1 . 9 4 0 . 4 4 6 . 2 5 3 . 3 6 8 . 8 3 0 . 8 7 2 . 6 3 3 . 8 6 1 . 6 4 7 . 3 5 7 . 7 5 8 . 9 8 3 . 6 7 6 . 8 .5 . 2 .1 .4 . 7 .0 .5 24 . 3 0 . 4 0 . 4 4 . 19. 24 . 2 9 . 18 .9 3 5 . 6 1 2 . 7 4 9 . 7 11 .3 8 0 . 3 3 3 . 9 26 .5 7 .6 3 3 . 6 6 4 . 7 4 7 . 3 7 9 . 8 1.21 1.61 1.54 1.70 1.63 1.15 1.42 1.50 1.59 1.36 1.76 1.31 1.80 1.90 1.71 1.72 1.63 1.96 1.70 1.94 1.14 1.61 1.56 1.57 1.68 1.56 1.72 1.48 1.57 1.62 2 .07 1.40 1.69 1.67 1.88 1.94 1.48 1.95 1.94 1.91 1.02 1.32 1.49 1.32 1.74 1.37 1.45 1.25 1.54 1.38 1.73 1.16 1.65 1.61 1.71 1.34 1.47 1.74 1.62 1.88 3720.9 4394.1 4545.4 4 4 6 4 . 7 4094. 3278. 4107. 3587. 4340. 3325. 4243. 2841. 7302.2 3932 .8 4245.5 3793.5 6148.8 4233.4 5849.5 9513.2 1160.2 1194.1 1569.2 1647.9 6 7 3 . 9 1673.5 2213.1 1464.1 1624.5 1314.6 1953.6 5 2 4 . 7 2730.2 1207.5 1360.9 1145.2 1687.1 1549.5 2389.0 3087.2 1299.1 9 2 1 . 3 1458.8 1603.7 8 2 4 . 7 950.1 851 .5 1000.8 1717.4 430.1 1438.9 445.1 3317.0 1576.6 9 9 1 . 8 4 5 4 . 0 1180.4 1866.0 1631.7 2813 .7 40.1 4 7 . 6 5 1 . 8 5 0 . 7 5 2 . 9 5 1 . 8 4 9 . 4 4 3 . 3 5 4 . 7 4 8 . 4 5 0 . 7 4 7 . 6 52 .5 5 1 . 3 4 7 . 2 4 7 . 2 4 9 . 3 4 7 . 3 51 .4 5 4 . 6 2 9 . 2 4 0 . 4 4 9 . 7 38.1 4 4 . 3 5 1 . 6 53 .5 3 4 . 0 52 .5 4 3 . 0 5 0 . 6 3 4 . 6 4 6 . 3 4 2 . 2 4 6 . 4 4 1 . 5 4 7 . 5 3 9 . 7 5 2 . 0 5 5 . 9 2 8 . 4 3 9 . 9 50 .5 3 4 . 7 4 9 . 8 4 4 . 6 4 7 . 7 2 7 . 7 5 2 . 5 3 7 . 2 42 .1 3 2 . 3 4 3 . 6 4 1 . 8 4 2 . 5 3 3 . 8 4 1 . 6 4 1 . 7 4 5 . 2 5 1 . 9 123429.8 130024.7 153335.1 132787.7 132558.0 147587.4 142857.2 103691.3 149666.4 118012.7 122465.3 102955.4 213087.6 106332.3 117279.1 104305.7 186599.1 102467.8 176963.8 267257.6 29759.5 29954.9 50121.6 40165.6 17780.7 55285.9 68743.3 33677.5 54327.4 34943.3 47832.8 12958.4 74740.5 30527.4 33575.4 24470.0 54283.7 31497.0 64055.1 90333.9 36204.0 27747.0 49528.8 42150.9 23547.5 31067.3 28109.1 22237.9 58533.5 11618.3 34930.4 12409.0 87575.2 41055.7 24681.0 11473.0 33432.1 44646.8 45622.7 77782.1 4 . 7 0 4 . 4 5 4 . 3 0 4 . 3 0 4 .55 4 . 3 0 4 . 2 5 4 . 6 5 4 . 1 5 4 . 4 5 4 . 4 5 4 . 8 5 4 . 5 5 4 . 2 5 4 . 6 5 4 . 4 5 4 . 3 5 4 . 6 5 4 . 1 5 4 . 3 5 5.95 4 . 8 5 4 . 2 5 5.05 4 . 6 0 4 . 6 5 4 . 4 0 4 .75 4 . 1 5 5.05 4 . 8 5 6 .15 5.05 4 . 8 5 5 .80 5 .40 5.25 5.35 4 .55 4 . 2 5 4 .80 5 .00 4 . 4 0 5 .30 4 . 5 5 4 . 9 0 4 . 7 0 4 . 7 5 4 . 0 5 5.15 4 . 9 0 5.65 4 . 7 5 4 . 7 0 5.15 5.05 4 . 9 0 5 .00 4 . 6 0 4 . 4 5 10 85 50 75 00 65 60 10 3 .60 3 .70 3 .75 4 . 2 5 3 .95 3 .65 4 . 1 0 3 .80 3 .75 4 . 1 0 3 .45 3 .50 5.35 4 . 2 0 3 .60 4 . 3 5 3 .90 3 .90 3 .75 4 . 1 5 3 .50 4 . 3 0 4 .15 5 .70 4 . 4 5 4 . 1 0 5 .20 4 . 6 0 4 . 4 5 4 . 5 5 3 .80 3 .40 4 . 0 0 4 . 2 0 3 .50 4 . 5 5 3 . 7 0 4 . 2 0 3 .90 4 . 1 0 3 .35 4 .35 4 . 1 0 5.05 4 . 0 5 3 .95 4 . 4 5 4 . 2 5 4 . 1 0 4 . 1 5 3 .75 3 .55 3 3 . 2 2 9 . 6 3 3 . 7 2 9 . 7 3 2 . 4 4 5 . 0 3 4 . 8 2 8 . 9 3 4 . 5 3 5 . 5 2 8 . 9 3 6 . 2 2 9 . 2 2 7 . 0 2 7 . 6 27 .5 3 0 . 3 2 4 . 2 3 0 . 3 28.1 2 5 . 7 25.1 3 1 . 9 2 4 . 4 26 .4 3 3 . 0 31.1 2 3 . 0 3 3 . 4 2 6 . 6 24 .5 2 4 . 7 2 7 . 4 2 5 . 3 2 4 . 7 2 1 . 4 3 2 . 2 2 0 . 3 2 6 . 8 2 9 . 3 2 7 . 9 30 .1 3 4 . 0 2 6 . 3 2 8 . 6 3 2 . 7 3 3 . 0 2 2 . 2 34 .1 2 7 . 0 2 4 . 3 2 7 . 9 2 6 . 4 2 6 . 0 2 4 . 9 2 5 . 3 2 8 . 3 2 3 . 9 2 8 . 0 2 7 . 6 3 .35 3.35 4.01 2 .53 2.51 2.94 2 .98 2 .73 2.82 3 .45 3 . 6 3 2 .98 2 .66 3 . 2 9 3 . 4 8 3 . 4 8 2 . 6 7 .84 .51 .57 .92 .32 3 . 4 6 3 .14 3 .70 2 .96 3 .25 2 .76 2.84 4 . 0 5 3 .52 5 .88 2 .66 2.80 4 . 5 3 4 . 1 3 3 .42 3 .80 3 .50 2 .49 1.89 3 . 2 8 2.75 2 . 7 7 2 .39 2.52 3 . 4 7 1.89 2 . 0 7 2.95 3 . 4 6 2.55 2.42 2.15 2 . 6 7 1.68 2.85 3 . 4 7 2 .90 2.84 APPENDIX 13 MISSION TREE FARM MINERAL SOIL DATA SOIL SAM TRT MN MNKG TN TNKG OC CKG PHH PHC C/N MN/TN 128 2 1 1 100.6 2 2 1 115.5 2 3 1 77.5 2 4 1 69.8 2 6 1 111.3 2 7 1 75.3 2 8 1 98.4 2 9 1 92.1 2 10 1 97.1 2 11 1 98.1 2 12 1 123.3 2 14 1 85.8 2 15 1 141.9 2 18 1 77.3 2 20 1 106.0 2 22 1 115.7 2 23 1 73.4 2 24 1 107.0 2 25 1 66.5 2 26 1 172.8 2 1 2 98.2 2 2 2 100.4 2 3 2 62.6 2 4 2 60.1 2 6 2 121.8 2 7 2 73.2 2 8 2 89.9 2 9 2 73.6 2 10 2 82.4 2 11 2 101.3 2 12 2 75.0 2 14 2 90.4 2 15 2 186.8 2 18 2 97.3 2 20 2 96.1 2 22 2 90.2 2 23 2 94.6 2 24 2 111.9 2 25 2 85.3 2 26 2 115.5 2 1 3 52.8 2 2 3 83.4 2 3 3 70.1 2 4 3 74.0 2 6 3 64.3 2 7 3 128.8 2 8 3 78.7 2 9 3 66.9 2 10 3 59.6 2 11 3 70.2 2 12 3 90.2 2 14 3 77.0 2 15 3 98.0 2 18 3 58.7 2 20 3 104.1 2 22 3 73.6 2 23 3 94.0 2 24 3 104.6 2 25 3 79.6 2 26 3 109.3 53.7 0.47 2494.0 61.7 0.41 2173.0 41.4 0.38 2001.0 37.3 0.34 1817.5 59.4 0.41 2178.7 40.2 0.39 2092.7 52.5 0.37 1955.1 49.2 0.41 2207.4 51.8 0.42 2241.8 52.4 0.40 2150.0 65.8 0.43 2310.6 45.8 0.35 1874.8 75.8 0.39 2087.0 41.3 0.31 1634.0 56.6 0.51 2700.4 61.8 0.48 2574.3 39.2 0.36 1943.6 57.1 0.37 1955.1 35.5 0.35 1857.6 92.2 0.48 2545.6 52.4 0.45 2389.1 53.6 0.38 2038.9 33.4 0.39 2055.9 32.1 0.31 1666.2 65.0 0.37 1993.7 39.1 0.36 1897.7 48.0 0.38 2027.6 39.3 0.31 1643.6 44.0 0.33 1739.6 54.1 0.34 1796.1 40.1 0.38 2022.0 48.3 0.35 1858.2 99.7 0.52 2790.1 51.9 0.36 1926.0 51.3 0.36 1903.4 48.2 0.38 2038.9 50.5 0.37 1982.4 59.7 0.42 2214.0 45.5 0.44 2338.3 61.7 0.48 2581.1 28.2 0.27 1455.8 44.5 0.34 1805.6 37.4 0.28 1506.6 39.5 0.30 1585.6 34.3 0.31 1658.9 68.8 0.37 1974.9 42.0 0.31 1647.6 35.7 0.30 1602.5 31.8 0.29 1557.4 37.5 0.28 1512.2 48.1 0.36 1907.2 41.1 0.31 1647.6 52.3 0.41 2195.0 31.3 0.27 1461.4 55.6 0.47 2482.8 39.3 0.38 2025.7 50.2 0.35 1884.6 55.8 0.39 2076.5 42.5 0.30 1625.1 58.4 0.34 1822.6 15.3 81434.0 4.10 14.5 77304.1 4.40 13.5 71860.1 4.10 11.8 63224.9 4.35 14.4 76853.5 4.50 13.6 72798.7 4.25 12.3 65477.6 4.35 12.1 64764.2 4.35 15.7 83874.3 4.20 13.7 73399.5 4.50 14.0 74901.2 4.60 11.6 62098.6 4.75 17.9 95513.1 4.60 8.7 46329.9 4.40 12.3 65440.0 4.40 12.9 69044.3 4.35 13.5 72273.1 4.35 10.1 53801.3 4.40 12.0 64192.0 4.30 18.2 97266.4 4.45 14.3 76546.3 4.50 12.0 64239.8 4.65 14.0 74910.4 4.15 10.7 57324.4 4.35 11.1 59109.0 4.60 11.1 59443.6 4.40 13.6 72648.5 4.25 10.1 54052.6 4.60 13.1 69965.5 4.20 10.7 57138.5 4.80 12.8 68180.9 4.50 11.2 59629.5 5.00 20.0 106624.7 4.70 10.4 55651.3 4.45 10.4 55762.8 4.55 10.0 53271.8 4.60 9.6 51078.2 4.60 12.1 64388.5 4.60 12.7 67734.7 4.35 15.8 84354.0 4.30 9.0 48287.6 4.35 10.7 56871.6 4.65 10.4 55640.0 4.45 9.5 50825.5 4.60 10.7 57020.9 4.70 10.3 55225.4 4.60 8.9 47687.7 4.55 8.4 45062.6 4.65 10.9 58075.5 4.35 9.6 51475.3 4.80 11.3 60213.1 4.60 10.0 53312.8 4.70 11.7 62688.2 4.65 7.8 41724.9 4.55 12.2 65313.3 4.75 10.2 54550.4 4.70 10.2 54362.9 4.60 11.0 58900.5 4.50 9.2 49000.2 4.35 9.7 51737.8 4.50 3.80 32.7 2.15 3.95 35.6 2.84 3.60 35.9 2.07 3.70 34.8 2.05 3.85 35.3 2.73 3.70 34.8 1.92 3.70 33.5 2.69 4.00 29.3 2.23 3.80 37.4 2.31 3.85 34.1 2.44 4.05 32.4 2.85 4.25 33.1 2.44 4.00 45.8 3.63 4.00 28.4 2.53 4.05 24.2 2.10 4.00 26.8 2.40 3.80 37.2 2.02 4.05 27.5 2.92 3.65 34.6 1.91 3.80 38.2 3.62 4.05 32.0 2.19 4.00 31.5 2.63 3.60 36.4 1.63 3.85 34.4 1.93 3.95 29.6 3.26 3.75 31.3 2.06 3.55 35.8 2.37 4.10 32.9 2.39 3.75 40.2 2.53 4.00 31.8 3.01 4.00 33.7 1.98 4.35 32.1 2.60 4.10 38.2 3.57 4.00 28.9 2.70 4.10 29.3 2.70 4.15 26.1 2.36 4.05 25.8 2.55 4.15 29.1 2.70 3.75 29.0 1.95 3.65 32.7 2.39 3.95 33.2 1.94 4.00 31.5 2.47 3.80 36.9 2.48 4.00 32.1 2.49 4.05 34.4 2.07 4.00 28.0 3.48 4.05 28.9 2.55 4.05 28.1 2.23 3.85 37.3 2.04 4.15 34.0 2.48 4.05 31.6 2.52 4.15 32.4 2.50 4.05 28.6 2.38 4.05 28.6 2.14 4.20 26.3 2.24 4.15 26.9 1.94 4.05 28.8 2.66 4.00 28.4 2.69 3.75 30.2 2.61 3.85 28.4 3.20 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0097456/manifest

Comment

Related Items