Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Effects of historical land use change on soils in the Fraser lowland of British Columbia and Washington Goldin, Alan 1986

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1986_A1 G64.pdf [ 27.55MB ]
Metadata
JSON: 831-1.0097291.json
JSON-LD: 831-1.0097291-ld.json
RDF/XML (Pretty): 831-1.0097291-rdf.xml
RDF/JSON: 831-1.0097291-rdf.json
Turtle: 831-1.0097291-turtle.txt
N-Triples: 831-1.0097291-rdf-ntriples.txt
Original Record: 831-1.0097291-source.json
Full Text
831-1.0097291-fulltext.txt
Citation
831-1.0097291.ris

Full Text

EFFECTS OF HISTORICAL LAND USE CHANGE ON SOILS IN THE FRASER LOWLAND OF BRITISH COLUMBIA AND WASHINGTON By ALAN GOLDIN B.S., Antioch C o l l e g e , 1969 M.A.T., Harvard U n i v e r s i t y , 1971 B.S., U n i v e r s i t y of Montana, 1974 M.S., U n i v e r s i t y of Montana, 1976 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY i n THE FACULTY OF GRADUATE STUDIES (Department of S o i l Science) We accept t h i s t h e s i s as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA May 1986 © Alan G o l d i n , 1986 ABSTRACT Four o b j e c t i v e s were e s t a b l i s h e d f o r t h i s study: 1) to examine h i s t o r i c a l changes i n land c l e a r i n g during the period 19^3 to 1983, 2) to determine the e f f e c t s of the conversion from woodland to a g r i c u l t u r e on s o i l p r o p e r t i e s during t h i s period and i t s i n f l u e n c e on s o i l genesis, 3) to determine the e f f e c t s of land use on s o i l v a r i a b i l i t y , and 4) to determine the e f f e c t s of a p o l i t i c a l boundary on a l l of the above. The study i s unique i n i t s examination of temporal changes i n s o i l p r o p e r t i e s based on the i n t e r p r e t a t i o n of h i s t o r i c a l land use changes and the e f f e c t s of an i n t e r n a t i o n a l boundary and consequent management d i f f e r e n c e s on s e v e r a l parent m a t e r i a l s . S o i l s were c o l l e c t e d from the surface 0.2 m by s t r a t i f i e d random sampling using a 900 m 2 g r i d . P l o t s were chosen i n d u p l i c a t e and represent the two co u n t r i e s (Canada and the United S t a t e s ) , the three parent m a t e r i a l s ( a l l u v i u m , outwash, and g l a c i a l m a r i n e d r i f t ) , and the f i v e land c l e a r i n g age groups (cleared between 1943 and 1955, between 1955 and 1966, between 1966 and 1976, between 1976 and 1983, and not c l e a r e d , i . e . , woodland). The s o i l s were analyzed f o r pH i n H 20 and CaCl2, c a l c i u m , magnesium, potassium, phosphorus, organic matter (OM), and nitrogen. C l e a r i n g and the development of land on outwash s o i l s a f t e r the mid-19^0s was much more r a p i d and management more i n t e n s i v e i n Canada than i n the USA as a r e s u l t of the r a p i d growth i n l o c a l p o p u l a t i o n , markets, and technology. Most of the a l l u v i a l s o i l s were clea r e d p r i o r to 1920 on both s i d e s of the I n t e r n a t i o n a l Boundary and have been used predominantly f o r d a i r y farming since that time. Few d i f f e r e n c e s have occurred i n c l e a r i n g p r a c t i c e s by country a f t e r 1920. During the 1940s g l a c i a l m a r i n e s o i l s were l a r g e l y i n woodland and i i subsequent c l e a r i n g was slow. They are used p r i n c i p a l l y f o r woodland and p a s t u r e . The most important v a r i a b l e s f o r d i s t i n g u i s h i n g the v a r i a t i o n as a whole are pH, Ca, Mg, K, OM, and N. Only pH and OM are important i n expressing a l i n e a r r e l a t i o n s h i p w i t h t i m e - s i n c e - c l e a r i n g . Time-s i n c e - c l e a r i n g can be p r e d i c t e d from s o i l p r o p e r t i e s , but the degree of p r e d i c t a b i l i t y , which i s commonly 60%, depends on parent m a t e r i a l and country. V a r i a b i l i t y i s i n the order a l l u v i u m < outwash < g l a c i a l m a r i n e . In comparison to CVs reported i n the l i t e r a t u r e , those i n t h i s study are lower f o r OM and N, and comparable f o r bulk d e n s i t y , pH, Ca, Mg, K, and P. No pa t t e r n w i t h time occurs among the four c u l t i v a t e d age groups, nor i s there a time trend by land use f o r any of the parent m a t e r i a l s . V a r i a b i l i t y d i f f e r e n c e s due to country are a l s o mixed i n s p i t e of management d i f f e r e n c e s . Commonly 50 to 80% of the v a r i a t i o n w i t h i n a l l c u l t i v a t e d s o i l s combined i s w i t h i n any i n d i v i d u a l 0.09 ha c u l t i v a t e d p l o t . Many v a r i a b l e s on each parent m a t e r i a l have CVs l a r g e r than 80 and so r e q u i r e more than 1000 samples to estimate t h e i r r e s p e c t i v e means w i t h i n 5% of t h e i r o r i g i n a l values and more than 60 samples to estimate the means w i t h i n 20%. The p r i n c i p a l anthropogenic e f f e c t s on s o i l genesis are the f o l l o w i n g : 1) pH increases d r a m a t i c a l l y on a l l s o i l s from i n i t i a l l e v e l s i n woodland. 2) The l e v e l s of c a t i o n s are determined by the i n i t i a l f e r t i l i t y of the s o i l . Both outwash and g l a c i a l m a r i n e s o i l s have low i n i t i a l f e r t i l i t y and increase 2 to 15 times a f t e r c u l t i v a t i o n i n p r o p o r t i o n to the degree of management. 3) Cation i i i l e v e l s decrease from i n i t i a l l e v e l s on a l l u v i a l woodland s o i l s , which have high f e r t i l i t y . A quasi-steady s t a t e f o r most v a r i a b l e s i s reached i n about 15 to 25 years. 4) C u l t i v a t i o n r e s u l t s i n l o s s e s of OM of 20% a f t e r 35 years on a l l s o i l s , the l a r g e s t l o s s coming i n the f i r s t 15 years. 5) N l e v e l s are i n c o n s i s t e n t . 6) Steady s t a t e f o r OM and N i s not apparent w i t h i n 35 years. 7) C:N narrows on a l l s o i l s from about 15:1 to about 12:1. 8) C u l t i v a t i o n increases bulk d e n s i t y by 26% to 58$. 9) D i f f e r e n c e s by country are greatest on outwash s o i l s , where the higher i n t e n s i t y of management i n Canada leads to higher l e v e l s of a l l s o i l chemical p r o p e r t i e s . Trends i n s o i l p r o p e r t i e s w i t h time are s i m i l a r by country, d i f f e r i n g mainly by degree. i v TABLE OF CONTENTS Part ABSTRACT LIST OF TABLES LIST OF FIGURES AND PLATES ACKNOWLEDGEMENTS 1.0 INTRODUCTION 1 1.0.1 Land Use 1 1.0.2 C u l t i v a t i o n and S o i l P r o p e r t i e s 2 1.0.3 E f f e c t s of N a t i o n a l D i f f e r e n c e s on Management and S o i l s 3 1.0.4 S o i l V a r i a b i l i t y 4 1.1 Major Questions Addressed i n This Study 5 1.2 H i s t o r i c a l and P o l i t i c a l Geography 6 1.2.1 I n t r o d u c t i o n and Purpose 6 1.2.2 Pre-1846 H i s t o r y 6 1.2.3 Establishment of the I n t e r n a t i o n a l Boundary and 8 E f f e c t s of the Gold Rush 1.2.4 E f f e c t s of the R a i l r o a d 9 1.2.5 Modern Per s p e c t i v e s 10 1.3 A g r i c u l t u r a l H i s t o r y 12 1.3.1 Pre-1846 H i s t o r y 12 1.3.2 E f f e c t s of the Gold Rush on A g r i c u l t u r e and Settlement 13 1.3.3 E f f e c t s of Vegetation, F l o o d i n g , and A c c e s s i b i l i t y 14 1.3.4 Farmers, Farms, and Crops 17 1.3.4.1 D a i r y i n g and P o u l t r y 20 Page i i z i x v i i i z x i i 1.3-4.2 Strawberries and Raspberries 21 1.3.5 E f f e c t s of the Growth of Transp o r t a t i o n , Population, 21 and Technology 2.0 LITERATURE REVIEW 25 2.1 Land Use Change and Monitoring 25 2.2 Anthropogenic S o i l s 28 2.2.1 General B e n e f i c i a l and D e t r i m e n t a l E f f e c t s of 28 C u l t i v a t i o n 2.2.2 C l a s s i f i c a t i o n and Processes of Anthropogenic S o i l s 29 2.2.3 R e l a t i o n s h i p s between Agro-ecosystems and Unmanaged 31 Systems 2.2.3.1 General Fluxes of Organic Matter Constituents 31 2.2.3.2 S p e c i f i c Losses of C, N, and P 32 2.2.4 E f f e c t s of Land Use P r a c t i c e s on S o i l P r o p e r t i e s 34 2.3 S o i l V a r i a b i l i t y 35 2.3.1 I n t r o d u c t i o n 35 2.3.2 Importance of S o i l V a r i a b i l i t y 36 2.3.3 Sources of S o i l V a r i a b i l i t y 37 2.3.4 Systematic and Random V a r i a b i l i t y 37 2.3.5 V a r i a b i l i t y of Chemical, P h y s i c a l , and F e r t i l i t y 38 Parameters 2.3.6 V a r i a b i l i t y i n S e r i e s , Map U n i t s , and Landscapes 39 2.3.7 S t a t i s t i c s 40 2.3.8 Magnitude of V a r i a b i l i t y (CVs) 42 2.3.9 V a r i a b i l i t y and S i z e of Sampling Area 45 2.3.10 Number of Samples to Estimate a Mean 46 v i 2.3-11 E f f e c t s of C u l t i v a t i o n 48 3-0 ENVIRONMENTAL SETTING 50 3.1 Climate 50 3.2 Physiography, Geology, Vegetation, and S o i l s 53 3.2.1 Physiography and Geology 53 3.2.2 Vegetation 55 3.2.3 S o i l s 56 4.0 METHODS 67 4.1 S i t e S e l e c t i o n 67 4.1.1 Number of Samples 68 4.1.2 Determination of Land C l e a r i n g Age Groups 70 4.1.3 Sampling 76 4.1.3.1 L i t t e r l a y e r and the weighted average 78 4.2 Laboratory Analyses 81 4.2.1 Sample Preparation 81 4.2.2 pH 81 4.2.3 P, Ca, Mg, and K 81 4.2.4 Organic Matter 83 4.2.5 Nitrogen 84 4.3 Map D i g i t i z a t i o n 85 4.4 S t a t i s t i c a l Methods 85 4.4.1 P r i n c i p a l Component and C l u s t e r Analyses 90 4.4.2 M u l t i p l e Regression 92 v i i 4.4.3 Discriminant A n a l y s i s 5.0 RESULTS AND DISCUSSION 93 95 5.1 Land C l e a r i n g Study 95 5.1.1 Land C l e a r i n g P r i o r to 1920 95 5.1.2 Land C l e a r i n g A f t e r 1920 96 5.1.2.1 Outwash s o i l s 99 5.1.2.2 A l l u v i a l s o i l s 105 5.1.2.3 G l a c i a l m a r i n e s o i l s 105 5.1.2.4 Morainal s o i l s 106 5.2 Procedural Checks 111 5.2.1 R e l a t i o n s h i p between Organic Matter and Leco Carbon 111 5.2.2 D u p l i c a t i o n of Samples 115 5.3 A n a l y s i s of Parent M a t e r i a l , Age and Country 116 5.3.1 Introductory Comparison of Age and Country D i f f e r e n c e s 116 by Parent M a t e r i a l 5.3-1.1 Q u a l i t y of the Data 117 5.3.2 Age and Country A n a l y s i s by Parent M a t e r i a l 119 5.3.2.1 Outwash S o i l s 119 5-3.2.2 A l l u v i a l S o i l s 122 5.3.2.3 G l a c i a l m a r i n e S o i l s 129 5-3.2.4 Bulk d e n s i t y 131 5.3.2.5 L i t t e r Layer 135 5.3-2.6 Summary of A n a l y s i s of Parent M a t e r i a l s 135 5.3.3 Comparison of A r e a l and Concentration Measurements 138 5.3.4 Determination of S i m i l a r i t y Among P l o t s 141 5.3.5 A n a l y s i s of P l o t S i m i l a r i t y by Parent M a t e r i a l 142 v i i i 5.3.6 A n a l y s i s of A l l P l o t s 149 5.4 P r e d i c t i o n of Time-Since-Clearing 150 5.4.1 P r e d i c t i o n Test 154 5.5 E f f e c t s of Land Use, Parent M a t e r i a l and Country on S o i l 154 Genesis 5.5.1 I n i t i a l L e vels of S o i l P r o p e r t i e s 155 5.5.2 E f f e c t s of Management on the D i r e c t i o n of Change 156 of S o i l P r o p e r t i e s 5.5.3 E f f e c t s of Country 163 5.6 A n a l y s i s of V a r i a b l e s 164 5.6.1 Grouping and R e l a t i o n s h i p s Among the V a r i a b l e s 165 5.6.2 V a r i a b l e s As D i s c r i m i n a t o r s of Land C l e a r i n g Age Groups 165 5.7 C l a s s i f i c a t i o n Testing of Age Groups 170 5.8 S o i l V a r i a b i l i t y 170 5.8.1 A n a l y s i s of Parent M a t e r i a l s 172 5.8.1.1 Results of A n a l y s i s 172 5.8.1.2 Di s c u s s i o n of V a r i a b i l i t y by Parent M a t e r i a l 175 5.8.2 V a r i a b i l i t y of Age 177 5.8.3 V a r i a b i l i t y of Land Use 177 5.8.4 V a r i a b i l i t y of Country 178 5.8.5 Summary of V a r i a b i l i t y by Parent M a t e r i a l , Age, 178 and Country 5.8.6 V a r i a b i l i t y According to Si z e o f Study P l o t 180 5.8.7 Comparison of Concentration w i t h A r e a l V a r i a b i l i t y 180 5.9 Number of Samples Required to Estimate Population Means 183 i x 6.0 SUMMARY AND CONCLUSIONS 186 6.1 Summary 186 6.1.1 Summary of Parent M a t e r i a l , Age, and Land Use A n a l y s i s 186 6.1.2 Summary o f Anthropogenic E f f e c t s on S o i l Genesis 187 6.2 Conclusions 189 6.3 A p p l i c a t i o n s and Suggestions f o r Future Research 196 6.3.1 A p p l i c a t i o n s 196 6.3.2 Suggestions f o r Future Research 197 7.0 LITERATURE CITED 198 8.0 APPENDICES 215 8.1 Appendix A: T y p i c a l Pedon D e s c r i p t i o n s 216 8.2 Appendix B: Procedural t e s t s and Kolmgorov-Smirnov Tests 221 of Normality 8.3 Appendix C: A n a l y s i s of P l o t , Age and R e p l i c a t e on 236 Concentration basis 8.4 Appendix D: A n a l y s i s of P l o t , Age, Land Use, Country, 273 and R e p l i c a t e (measurements i n kg ha-1) 8.5 Appendix E: M u l t i v a r i a t e S t a t i s t i c s 294 8.6 Appendix F: A n a l y s i s o f V a r i a b i l i t y by P l o t 299 (measurements i n concentration), A n a l y s i s of V a r i a b i l i t y by Age and Country (measurements i n kg ha -1) 8.7 Appendix G: Raw Data 305 x LIST OF TABLES Table T i t l e Page Table 1. Population of major centers w i t h i n and nearby 11 the Fraser Lowland, 1881 to 1981 (Bureau of the Census 1982, Dalichow 1972, S t a t i s t i c s Canada 1974, S t a t i s t i c s Canada 1982). Table 2. Size of farms i n Whatcom County, WA 1900 to 19 1982 (Washington State Department of A g r i c u l t u r e 1956, Bureau of the Census 1961 to 1984). Table 3. Number of farms and land area of s t r a w b e r r i e s 22 and r a s p b e r r i e s i n Whatcom County, WA (Bureau of the Census 1942 through 1984). Table 4. Temperature and p r e c i p i t a t i o n data 1951 to 1980 at 51 White Rock, B.C., B l a i n e , WA, A b b o t s f o r d , B.C., and Clearbrook, WA. Table 5. Parent m a t e r i a l and s o i l s i n the study area. 58 Table 6. C l a s s i f i c a t i o n of s o i l s i n the study area of 59 Whatcom County, WA (Goldin 1986, S o i l Survey S t a f f 1975). Table 7. C l a s s i f i c a t i o n of s o i l s i n the study area, Lower 59 Fraser V a l l e y , B r i t i s h Columbia (Luttmerding 1981b, Canada S o i l Survey Committee 1978). Table 8. Land c a p a b i l i t y c l a s s e s f o r map u n i t s from major 60 s o i l s i n the study area (Goldin 1986, K l i n g e b i e l and Montgomery 1973). Table 9. A g r i c u l t u r a l c a p a b i l i t y c l a s s e s f o r major s o i l s i n 60 the study area (Luttmerding, 1985, personal communication, Keng 1983). Table 10. Information of a e r i a l photographs used i n land 67 c l e a r i n g study and p l o t l o c a t i o n s . Table 11. Breakdown of outwash s o i l s by age. Old raspberry 119 p l o t (RASP) not included i n summary c a l c u l a t i o n s . Table 12. Breakdown of outwash s o i l s by country. 122 Table 13. Breakdown of a l l u v i a l s o i l s by age. 124 Table 14. Breakdown of a l l u v i a l s o i l s by country. 126 Table 15. Breakdown of g l a c i a l m a r i n e s o i l s by age. 129 Table 16. Breakdown of g l a c i a l m a r i n e s o i l s by country. 131 Table 17. E f f e c t s of t i m e - s i n c e - c l e a r i n g on bulk d e n s i t y f o r 133 outwash, a l l u v i a l , and g l a c i a l m a r i n e s o i l s . Table 18. M u l t i p l e range t e s t i n g of two-way a n a l y s i s of 138 variance performed on e n t i r e data s e t , c u l t i v a t e d s o i l s only, m i n e r a l s o i l s only, and m i n e r a l plus weighted average s o i l s f o r each v a r i a b l e and separated by parent m a t e r i a l and country. Table 19. S o i l and s i t e c h a r a c t e r i s t i c s f o r each c l u s t e r 143 group f o r outwash s o i l s derived from c l u s t e r a n a l y s i s . Table 20. S o i l and s i t e c h a r a c t e r i s t i c s f o r each c l u s t e r 145 group f o r a l l u v i a l s o i l s d erived from c l u s t e r a n a l y s i s . Table 21. S o i l and s i t e c h a r a c t e r i s t i c s f o r each c l u s t e r 147 group f o r g l a c i a l m a r i n e s o i l s d e r i v e d from c l u s t e r a n a l y s i s . Table 22. T i m e - s i n c e - c l e a r i n g equations derived from 153 stepwise m u l t i p l e r e g r e s s i o n f o r Canada, the USA, and both c o u n t r i e s combined. Table 23- Mean l e v e l s of s o i l c o n s t i t u e n t s i n woodland s o i l s 155 on outwash, a l l u v i a l , and g l a c i a l m a r i n e s o i l s . Table 24. Summary of p r i n c i p a l component a n a l y s i s f o r 165 outwash, a l l u v i a l , and g l a c i a l m a r i n e s o i l s . Table 25. C l a s s i f i c a t i o n r e s u l t s f o r outwash s o i l s . 171 Table 26. C l a s s i f i c a t i o n r e s u l t s f o r a l l u v i a l s o i l s . 171 Table 27. C l a s s i f i c a t i o n r e s u l t s f o r g l a c i a l m a r i n e s o i l s . 171 Table 28. C o e f f i c i e n t s of v a r i a t i o n (%) f o r chemical and 173 p h y s i c a l v a r i a b l e s of outwash, a l l u v i a l , and g l a c i a l m a r i n e s o i l s by age. Table 29- C o e f f i c i e n t s of v a r i a t i o n (%) f o r chemical and 179 p h y s i c a l v a r i a b l e s of outwash, a l l u v i a l , and g l a c i a l m a r i n e s o i l s by country. Table 30. Ratios of i n d i v i d u a l c u l t i v a t e d p l o t CV to CV of 180 a l l c u l t i v a t e d s o i l s . Table 31. Number of samples required to estimate each 185 v a r i a b l e on outwash, a l l u v i a l , and g l a c i a l m a r i n e s o i l s w i t h i n +5? and +20% of the population mean at the 95% confidence l i m i t u s i n g the e n t i r e data set (e) and c u l t i v a t e d s o i l s only (c). x i i Table A1. T y p i c a l pedon of the B r i s c o t s e r i e s . 217 Table A2. T y p i c a l pedon of the K i c k e r v i l l e s e r i e s . 218 Table A3. T y p i c a l pedon of the Whatcom s e r i e s . 219 Table B1. Results of Mann-Whitney-U t e s t comparing o r i g i n a l s 222 (0) w i t h d u p l i c a t e s (D) of mineral s o i l s f o r a l l parent m a t e r i a l s (60 p l o t s ) . P r o b a b i l i t y i s correcte d f o r t i e s . Table B2. Results of Mann-Whitney-U t e s t comparing o r i g i n a l s 223 (0) w i t h d u p l i c a t e s (D) of l i t t e r l a y e r s f o r a l l parent m a t e r i a l s (12 p l o t s ) . P r o b a b i l i t y i s correcte d f o r t i e s . Table B3. Results of Wilcoxon matched-pairs signed-ranks 224 t e s t comparing o r i g i n a l s (0) w i t h d u p l i c a t e s (D) of m i n e r a l s o i l s f o r a l l parent m a t e r i a l s (60 p l o t s ) . Table B4. Results of Wilcoxon matched-pairs signed-ranks 225 t e s t comparing o r i g i n a l s (0) w i t h d u p l i c a t e s (D) of l i t t e r l a y e r s f o r a l l parent m a t e r i a l s (12 p l o t s ) . Table B5. Results of Kolmogorov-Smirnov Goodness of F i t t e s t 226 f o r outwash s o i l s using a l l samples. Table B6. Results of Kolmogorov-Smirnov Goodness of F i t t e s t 226 f o r outwash s o i l s using p l o t means. Table B7. Results of Kolmogorov-Smirnov Goodness of F i t t e s t 226 f o r a l l u v i a l s o i l s using a l l samples. Table B8. Results of Kolmogorov-Smirnov Goodness of F i t t e s t 227 f o r a l l u v i a l s o i l s using p l o t means. Table B9. Results of Kolmogorov-Smirnov Goodness of F i t t e s t 227 f o r g l a c i a l m a r i n e s o i l s using a l l samples. Table B10. Results of Kolmogorov-Smirnov Goodness of F i t 227 t e s t f o r g l a c i a l m a r i n e s o i l s using p l o t means. Table B11. Results of Kolmogorov-Smirnov Goodness of F i t 228 t e s t f o r outwash s o i l s using a l l samples. C u l t i v a t e d s o i l s only. Table B12. Results of Kolmogorov-Smirnov Goodness of F i t 228 t e s t f o r outwash s o i l s using p l o t means. C u l t i v a t e d s o i l s only. Table B13. Results of Kolmogorov-Smirnov Goodness of F i t 228 t e s t f o r a l l u v i a l s o i l s using a l l samples. C u l t i v a t e d s o i l s only. x i i i Table B14. Results of Kolmogorov-Smirnov Goodness of F i t 229 t e s t f o r a l l u v i a l s o i l s using p l o t means. C u l t i v a t e d s o i l s only. Table B15. Results of Kolmogorov-Smirnov Goodness of F i t 229 t e s t f o r g l a c i a l m a r i n e s o i l s using a l l samples. C u l t i v a t e d s o i l s only. Table B16. Results of Kolmogorov-Smirnov Goodness of F i t 229 t e s t f o r g l a c i a l m a r i n e s o i l s using p l o t means. C u l t i v a t e d s o i l s only. Table C1. Breakdown of outwash s o i l s by p l o t . 237 Table C2. Student-Newman-Keuls m u l t i p l e range t e s t on 239 outwash s o i l s by p l o t w i t h i n each age group. P l o t p a i r s l i s t e d are those showing a s i g n i f i c a n t d i f f e r e n c e at the 0.05 percent l e v e l of s i g n i f i c a n c e . Table C3. Student-Newman-Keuls M u l t i p l e Range Test performed 241 on outwash s o i l s on each v a r i a b l e by age. Table C4. Student-Newman-Keuls M u l t i p l e Range Test performed 243 on outwash s o i l s on each v a r i a b l e by age ex c l u d i n g p l o t s 4, 6, 7, and 8. Table C5. Student-Newman-Keuls M u l t i p l e Range Test performed 245 on c u l t i v a t e d , woodland, m i n e r a l , and m i n e r a l plus weighted average outwash s o i l s f o r each v a r i a b l e by age. Table C6. Breakdown of outwash s o i l s by r e p l i c a t e . 247 Table C7. Breakdown of a l l u v i a l s o i l s by p l o t . 249 Table C8. Student-Newman-Keuls m u l t i p l e range t e s t on 251 a l l u v i a l s o i l s by p l o t w i t h i n each age group. P l o t p a i r s l i s t e d are those showing a s i g n i f i c a n t d i f f e r e n c e at the 0.05 percent l e v e l of s i g n i f i c a n c e . Table C9. Student-Newman-Keuls M u l t i p l e Range Test performed 252 on a l l u v i a l s o i l s on each v a r i a b l e by age. Table C10. Student-Newman-Keuls M u l t i p l e Range Test 254 performed on c u l t i v a t e d , woodland, m i n e r a l , and m i n e r a l plus weighted average a l l u v i a l s o i l s f o r each v a r i a b l e by age. Table C11. Breakdown of a l l u v i a l s o i l s by r e p l i c a t e . 256 Table C12. Breakdown of g l a c i a l m a r i n e s o i l s by p l o t . 258 x i v Table C13- Student-Newman-Keuls m u l t i p l e range t e s t on g l a c i a l m a r i n e s o i l s by p l o t w i t h i n each age group. P l o t p a i r s l i s t e d are those showing a s i g n i f i c a n t d i f f e r e n c e at the 0.05 percent l e v e l o f s i g n i f i c a n c e . Table C14. Student-Newman-Keuls M u l t i p l e Range Test performed on g l a c i a l m a r i n e s o i l s on each v a r i a b l e by age. Table C15. Student-Newman-Keuls M u l t i p l e Range Test performed on c u l t i v a t e d , woodland, m i n e r a l , and mi n e r a l plus weighted average g l a c i a l m a r i n e s o i l s f o r each v a r i a b l e by age. Table C16. Breakdown of g l a c i a l m a r i n e s o i l s by r e p l i c a t e . Table C17. Student-Newman-Keuls M u l t i p l e Range Test performed on l i t t e r l a y e r s f o r each v a r i a b l e separated by parent m a t e r i a l . Table C18. S i g n i f i c a n t d i f f e r e n c e s among parent m a t e r i a l s and c u l t i v a t e d land c l e a r i n g age groups f o r Canada, the USA, and both c o u n t r i e s combined f o r each v a r i a b l e . E n t r i e s i n d i c a t e s i g n i f i c a n c e at 0.05 l e v e l . 260 261 263 265 267 269 Table D1. Breakdown of outwash, a l l u v i a l , and g l a c i a l m a r i n e 274 s o i l s by age. Measurements i n kg h a - 1 . Table D2. Breakdown of outwash s o i l s by p l o t . Measurements 276 i n kg ha-1. Table D3. Student-Newman-Keuls M u l t i p l e Range Test performed 277 on outwash s o i l s on each v a r i a b l e by age. Measurements i n kg ha-1. Table D4. Student-Newman-Keuls M u l t i p l e Range Test performed 279 on outwash s o i l s on each v a r i a b l e by land use. Measurements i n kg ha-1. Table D5. Breakdown of outwash s o i l s by country. 281 Measurements i n kg ha-1. Table D6. Breakdown of a l l u v i a l s o i l s by p l o t . Measurements 282 i n kg ha-1. Table D7. Student-Newman-Keuls M u l t i p l e Range Test on 283 a l l u v i a l s o i l s performed on each v a r i a b l e by age. Measurements i n kg ha-1. xv Table D8. Student-Newman-Keuls M u l t i p l e Range Test performed 285 on a l l u v i a l s o i l s on each v a r i a b l e by land use. Measurements i n kg ha-1. Table D9. Breakdown of a l l u v i a l s o i l s by country. 287 Measurements i n kg ha-1. Table D10. Breakdown of g l a c i a l m a r i n e s o i l s by p l o t . 288 Measurements i n kg ha-1. Table D11. Student-Newman-Keuls M u l t i p l e Range Test on 289 g l a c i a l m a r i n e s o i l s performed on each v a r i a b l e by age. Measurements i n kg ha-1. Table D12. Student-Newman-Keuls M u l t i p l e Range Test 291 performed on g l a c i a l m a r i n e s o i l s on each v a r i a b l e by land use. Measurements i n kg ha-1. Table D13. Breakdown of g l a c i a l m a r i n e s o i l s by country. 293 Measurements i n kg ha-1. Table E1. Canonical d i s c r i m i n a n t f u n c t i o n s f o r outwash s o i l s . 295 Table E2. Canonical d i s c r i m i n a n t f u n c t i o n s f o r a l l u v i a l s o i l s . 295 Table E3« Canonical d i s c r i m i n a n t f u n c t i o n s f o r g l a c i a l m a r i n e 295 s o i l s . Table E4. Standardized c a n o n i c a l d i s c r i m i n a n t f u n c t i o n and 296 t o t a l s t r u c t u r e c o e f f i c i e n t s f o r outwash s o i l s . Table E5. Standardized c a n o n i c a l d i s c r i m i n a n t f u n c t i o n and 296 t o t a l s t r u c t u r e c o e f f i c i e n t s f o r a l l u v i a l s o i l s . Table E6. Standardized c a n o n i c a l d i s c r i m i n a n t f u n c t i o n and 296 t o t a l s t r u c t u r e c o e f f i c i e n t s f o r g l a c i a l m a r i n e s o i l s . Table E7. P r i n c i p a l component a n a l y s i s f o r outwash s o i l s . 297 The a n a l y s i s e x t r a c t e d two f a c t o r s . Table E8. P r i n c i p a l component a n a l y s i s f o r a l l u v i a l s o i l s . 297 The a n a l y s i s e x t r a c t e d two f a c t o r s . Table E9. P r i n c i p a l component a n a l y s i s f o r g l a c i a l m a r i n e 298 s o i l s . The a n a l y s i s e x t r a c t e d two f a c t o r s . Table F1. C o e f f i c i e n t s of v a r i a t i o n (%) f o r chemical and 300 p h y s i c a l v a r i a b l e s of outwash s o i l s by p l o t . Table F2. C o e f f i c i e n t s of v a r i a t i o n {%) f o r chemical and 301 p h y s i c a l v a r i a b l e s of a l l u v i a l s o i l s by p l o t . x v i Table F3. C o e f f i c i e n t s of v a r i a t i o n (%) f o r chemical and p h y s i c a l v a r i a b l e s of g l a c i a l m a r i n e s o i l s by p l o t . 302 Table F4. C o e f f i c i e n t s of v a r i a t i o n (%) f o r chemical and p h y s i c a l v a r i a b l e s of outwash, a l l u v i a l , and g l a c i a l m a r i n e s o i l s by age (measurements i n kg ha-1). 303 Table F5. C o e f f i c i e n t s of v a r i a t i o n (%) f o r chemical and p h y s i c a l v a r i a b l e s of outwash, a l l u v i a l , and g l a c i a l m a r i n e s o i l s by country (measurements i n kg ha-1). 304 Table G1. Raw data - outwash s o i l s . 306 Table G2. Raw data - a l l u v i a l s o i l s . 314 Table G3. Raw data - g l a c i a l m a r i n e s o i l s . 321 Table G4. Raw data - o r i g i n a l s and d u p l i c a t e s . 328 x v i i LIST OF FIGURES AND PLATES Figure T i t l e Page F i g . 1. Mean annual water budget at Clearbrook, WA s t a t i o n . 52 F i g . 2. Map of the study area. 54 F i g . 3 . S o i l map of the outwash s o i l s . North i s at the top of 61 the f i g u r e . Scale i s approximately 1:25 000. F i g . 4. S o i l map of the a l l u v i a l s o i l s . North i s at the top of 62 the f i g u r e . Scale i s approximately 1:28 000. F i g . 5. S o i l map of the g l a c i a l m a r i n e s o i l s . North i s at the 63 top of the f i g u r e . Scale i s approximately 1:19 000. F i g . 6 . S o i l map of the morainal s o i l s . North i s at the top of 64 the f i g u r e . Scale i s approximately 1:17 000. F i g . 7. Land c l e a r i n g map of the outwash s o i l s . c= c l e a r e d 72 before 1943. North i s at the top of the f i g u r e . Scale i s approximately 1:25 000. Fi g . 8. Land c l e a r i n g map of the a l l u v i a l s o i l s . c= c l e a r e d 73 before 1943- North i s at the top of the f i g u r e . S c a l e i s approximately 1:28 000. F i g . 9. Land c l e a r i n g map of the g l a c i a l m a r i n e s o i l s . c= c l e a r e d 74 before 1943. North i s at the top of the f i g u r e . Scale i s approximately 1:19 000. F i g . 10. Land c l e a r i n g map of the morainal s o i l s . c= c l e a r e d 75 before 1943. Negative signs r e f e r to r e v e r s i o n to woodland i n t h a t age grouping. North i s at the top of the f i g u r e . Scale i s approximately 1:17 000. F i g . 11. Sampling scheme. 77 F i g . 12. C i r c u l a r flow chart of s t a t i s t i c a l methods. 87 F i g . 13. R e l a t i v e amounts of woodland on outwash, a l l u v i a l , 97 g l a c i a l m a r i n e , and morainal s o i l s i n 1943, 1955, 1966, 1976, and 1983 i n Canada. Fi g . 14. R e l a t i v e amounts of woodland on outwash, a l l u v i a l , 98 g l a c i a l m a r i n e , and morainal s o i l s i n 1943, 1955, 1966, 1976, and 1983 i n the United States. F i g . 15. Linear r e g r e s s i o n of organic matter (0M) on Leco 111 carbon (LC) f o r m i n e r a l s o i l s . F i g . 16. Linear r e g r e s s i o n of organic matter (0M) on Leco 112 carbon (LC) f o r l i t t e r l a y e r s . r r i i i F i g . 17. Linear r e g r e s s i o n of organic matter (OM) on Leco 113 carbon (LC) f o r mineral s o i l s and l i t t e r l a y e r s . F i g . 18. C l u s t e r diagram f o r outwash s o i l s . 142 F i g . 19. C l u s t e r diagram f o r a l l u v i a l s o i l s . 144 F i g . 20. C l u s t e r diagram f o r g l a c i a l m a r i n e s o i l s . 146 F i g . 21. C l u s t e r diagram f o r a l l s o i l s . 149 F i g . 22. Trends f o r pH (H 2 o) l e v e l s w i t h time f o r outwash 158 (0) , a l l u v i a l ( A ), and g l a c i a l m a r i n e (G) s o i l s . F i g . 23. Trends f o r K l e v e l s w i t h time f o r outwash ( 0 ) , a l l u v i a l 158 (A), and g l a c i a l m a r i n e (G) s o i l s . Values i n mg kg-1. F i g . 24. Trends f o r OM l e v e l s w i t h time f o r outwash (0), a l l u v i a l 159 (A), and g l a c i a l m a r i n e (G) s o i l s . Values i n %. F i g . 25. Trends f o r N l e v e l s w i t h time f o r outwash ( 0 ) , a l l u v i a l 159 (A), and g l a c i a l m a r i n e (G) s o i l s . Values i n %. Fi g . 26. D i s c r i m i n a n t a n a l y s i s s c a t t e r p l o t of outwash s o i l s 167 using a l l seven land c l e a r i n g age groups (1=1950, 2=1960, 3=1970, 4=1980, 5=woodland, 6=weighted average, 7 = l i t t e r l a y e r ) . F i g . 27. D i s c r i m i n a n t a n a l y s i s s c a t t e r p l o t of a l l u v i a l s o i l s 168 using a l l seven land c l e a r i n g age groups (1=1950, 2=1960, 3=1970, 4=1980, 5=woodland, 6=weighted average, 7 = l i t t e r l a y e r ) . F i g . 28. D i s c r i m i n a n t a n a l y s i s s c a t t e r p l o t of g l a c i a l m a r i n e 169 s o i l s using a l l seven land c l e a r i n g age groups (1=1950, 2=1960, 3=1970, 4=1980, 5=woodland, 6=weighted average, 7 = l i t t e r l a y e r ) . F i g . 29. Average CV f o r seven chemical v a r i a b l e s on outwash 176 (0), a l l u v i a l (A), and g l a c i a l m a r i n e (G) s o i l s u s i n g c u l t i v a t e d s o i l s only. F i g . 30. Three-dimensional diagram showing v a r i a b i l i t y of Mg 181 (avg. CV=51) on p l o t 42 on g l a c i a l m a r i n e s o i l s , age group 1950. P l o t i s 30m x 30 m (see F i g . 1 1, Appendix G). Values i n mg kg-1. Fi g . 31. Three-dimensional diagram showing v a r i a b i l i t y o f 0M 182 (avg. CV=20) on p l o t 42 on g l a c i a l m a r i n e s o i l s , age group 1 950. P l o t i s 30 m x 30 m (see F i g . 11, Appendix G). Values i n %. xxx F i g . B1 . Normal p l o t s of pH (CaCl 2) u s i n g samples (A) and 230 p l o t means (B) from a l l outwash s o i l s . F i g . B2. Normal p l o t s of pH (CaCl 2) u s i n g samples (A) and 231 p l o t means (B) from c u l t i v a t e d outwash s o i l s . F i g . B3. Normal p l o t s of Mg usin g samples (A) and p l o t means 232 (B) from a l l outwash s o i l s . F i g . B4. Normal p l o t s of Mg usin g samples (A) and p l o t means 233 (B) from c u l t i v a t e d outwash s o i l s . F i g . B5. Normal p l o t s of OM usin g samples (A) and p l o t 234 means (B) from a l l outwash s o i l s . F i g . B6. Normal p l o t s of OM using samples (A) and p l o t 235 means (B) from c u l t i v a t e d outwash s o i l s . PLATES P l a t e 1. Woodland s i t e on outwash s o i l s ( p l o t 20). 79 P l a t e 2. S i t e l o c a t i o n s i n c u l t i v a t e d f i e l d on outwash s o i l s 80 ( p l o t 11). Photograph taken from 155°. P l a t e 3. Bulk d e n s i t y sampling ( p l o t 53). Crop i s 80 s t r a w b e r r i e s . P l a t e 4. 1943 a e r i a l photograph of the outwash area. Scale 100 i s approximately 1:24 000. North i s at the top of the page. P l a t e 5. 1955 a e r i a l photograph of the outwash area. Scale 101 i s approximately 1:24 000. North i s at the top of the page. P l a t e 6. 1966 a e r i a l photograph of the outwash area. Scale 102 i s approximately 1:24 000. North i s at the top of the page. P l a t e 7. 1976 a e r i a l photograph of the outwash area. Scale 103 i s approximately 1:24 000. North i s at the top of the page. P l a t e 8. 1981 a e r i a l photograph of the outwash area. Scale 104 i s approximately 1:24 000. North i s at the top of the page. P l a t e 9. 1981 a e r i a l photograph of the a l l u v i a l area. Scale 107 i s approximately 1:24 000. North i s at the top of the page. P l a t e 10. 1981 a e r i a l photograph of the g l a c i a l m a r i n e area. 108 Scale i s approximately 1:24 000. North i s at the top of the page. The upper photo i s the west h a l f and the lower photo the east h a l f . P l a t e 11. 1981 a e r i a l photograph of the morainal area. 109 Scale i s approximately 1:24 000. North i s at the top o f the page. x x i ACKNOWLEDGEMENTS I am very f o r t u n a t e to have received the a s s i s t a n c e of s e v e r a l agencies and i n s t i t u t i o n s i n both the United States and Canada i n support of my Ph.D. program. I am g r a t e f u l to the U n i v e r s i t y of B r i t i s h Columbia, which i s the g r a n t i n g i n s t i t u t i o n , f o r i t s f a c u l t y and f a c i l i t i e s . I a l s o thank Western Washington U n i v e r s i t y , the USDA S o i l Conservation S e r v i c e i n Washington St a t e , and the B.C. M i n i s t r y of Environment f o r t h e i r cooperation. In p a r t i c u l a r , I wish to express my thanks to Les L a v k u l i c h , my research s u p e r v i s o r , who helped to develop my program at UBC. His advice, moral and f i n a n c i a l support, and personal i n t e r e s t were much appreciated during the course of the Ph.D. program. Not many would have undertaken a commuting American student and worked out a program that would f i t between a f u l l - t i m e job and a f a m i l y . Thanks to my other committee members, Hans S c h r e i e r and A r t Bomke f o r t h e i r good humor i n b o l s t e r i n g my s p i r i t s and f o r t h e i r c r i t i c a l reviews of a l l the d r a f t s of t h i s t h e s i s . I appreciate the comments and tho u g h t f u l i n s i g h t of A l f Siemens of the Department of Geography i n the i n t r o d u c t o r y s e c t i o n s of the t h e s i s . Thanks to Bernie von Sp i n d l e r , Ev Wolterson, Patty C a r b i s , and Sandy Brown f o r h e l p i n g w i t h the l a b analyses at UBC. Many thanks to Dean John M i l e s at Huxley College f o r a l l o w i n g me to share the college's word processor and use i t s l a b o r a t o r y f a c i l i t i e s , t o Axel Franzmann f o r h e l p i n g w i t h some of the l a b analyses, and t o Rai Peterson and Linda Sheaffer f o r s e t t i n g up work spaces f o r me i n t h e i r l a b s . x x i i Gene Hoerauf of the Geography Department at WWU was extremely h e l p f u l i n d i g i t i z i n g and f i n a l i z i n g the maps and many of the f i g u r e s . He processed the photographs, and provided computer a s s i s t a n c e f o r map com p i l a t i o n . Evelyn A l b r e c h t i n the Computer Center helped w i t h the data a n a l y s i s w i t h SPSS-X. The S o i l Conservation Service allowed me to work on an adjusted schedule f o r the three years of my Ph.D. program so I could do both my job and my Ph.D. I want to acknowledge Lynn Brown, State C o n s e r v a t i o n i s t , f o r h i s w i l l i n g n e s s to support t h i s e f f o r t . Many thanks to Jim Carley, State S o i l S c i e n t i s t , f o r h i s encouragement and f l e x i b i l i t y , and h i s e f f o r t s to develop and coordinate a s u f f i c i e n t workload to mainta i n my p o s i t i o n i n Bellingham. I am g r a t e f u l to the l a t e Dr. Rog Parsons f o r h i s unswerving encouragement of my p u r s u i t of a Ph.D. I wish to acknowledge Mark Sondheim and Herb Luttmerding o f the B.C. M i n i s t r y of Environment f o r p r o v i d i n g maps, computer and i n t e r p r e t a t i v e i n f o r m a t i o n on the s o i l s of the Lower Fraser V a l l e y . My wife Barbara took on many e x t r a burdens and, w i t h my c h i l d r e n Josee, age 6, and Jeremy, age 4, put up w i t h the s t r e s s of my h e c t i c schedule. Jeremy has only known h i s f a t h e r as h a l f student, h a l f employee, h a l f i n Vancouver, h a l f i n Bellingham, and always w i t h work to do. Two f i n a l thank yous: f i r s t , to my 1968 Volvo f o r s t a y i n g i n c o n d i t i o n t o make the many t r i p s across the border, and second, to Premier B i l l Bennett f o r t i m i n g Expo 86 so as to give me the i n c e n t i v e to f i n i s h t h i s t h e s i s to avoid the t o u r i s t crush at the border. x x i i i 1 .0 INTRODUCTION Man has had an e x t r a o r d i n a r y e f f e c t on the t e r r e s t r i a l ecosystem. In p a r t i c u l a r , he has destroyed p r a i r i e and f o r e s t , and replaced them w i t h a g r i c u l t u r a l systems to feed a growing population. Regardless of the q u a l i t y and d i r e c t i o n of t h i s change, i t has nonetheless a l t e r e d the biogeochemical system. The process of s o i l formation assumes a wholl y d i f f e r e n t character and d i r e c t i o n as a r e s u l t of man's a c t i v i t i e s (Nadezhdin 1961). The e f f e c t s of land c l e a r i n g (designated c l e a r c u t t i n g i f land grows back t o f o r e s t ) i s discussed i n much of the f o r e s t s o i l s l i t e r a t u r e (Weetman and Webber 1972, W i l l 1968, and Boyle and Ek 1972). These i n c l u d e changes i n d i v e r s i t y and abundance of b i o l o g i c a l s p e c i e s , e f f e c t s on the l o c a l h y d r o t h e r m a l - c l i m a t i c system due to the replacement of l a r g e wooded species w i t h pasture or cropland, l o s s of biomass, and changes i n the boundary l a y e r e f f e c t between s o i l and atmosphere (Oke 1978). I f burned and converted to a g r i c u l t u r e , n i t r o g e n i s v o l a t i l i z e d and bases are added to the s o i l v i a the ash residue ( P r i t c h e t t 1979, Wells 1971, V i r o 1974). 1.0.1 Land Use Although a e r i a l photographs have been used f o r many years to describe land use (Marschner 1950), only a few st u d i e s have examined s e q u e n t i a l land use changes and most use only two time periods and cover a la r g e area. Rump (1983) examined land use change between 1961 and 1976 f o r Canada, Frey and D i l l (1971) between 1952 and 1969 f o r the M i s s i s s i p p i v a l l e y , Latham (1979) between 1958 and 1977 f o r the State of Pennsylvania, B i r c h and Wharton (1982) between 1952 and 1979 f o r the State o f Ohio, Coppleman et a l . (1978) between 1952 and 1979 1 f o r the State of New Hampshire, and Zeimetz et a l . (1976) between 1960 and 1970 f o r 53 counties i n the United States. Some s t u d i e s have developed mathematical models f o r p r e d i c t i n g land use (Roberts et a l . 1979, Lindsay and Dunn 1979), i n c l u d i n g one by Civco and Kennard (1983), who c o r r e l a t e d land use change w i t h land resource data. A few st u d i e s have looked a t short-term land use trends i n a g r i c u l t u r a l area, such as F r a z i e r and Shovic (1979) between 1966 and 1974 i n Whatcom County, WA, and others i n urban areas, such as Civco and Kennard (1983) between 1950 and 1980 i n M a n s f i e l d , Conn. Many have used the c a p a b i l i t e s of Landsat and other d i g i t a l imagery, but these s t u d i e s are a l l l e s s than 15 years old (Odenyo and P e t t r y 1977, Adeniyi 1980). None have examined land use changes i n an i n t e r n a t i o n a l boundary re g i o n and none have examined r e l a t i o n s h i p s w i t h s o i l s data gathered contemporaneously w i t h the land use a n a l y s i s . No s t u d i e s have developed a pre-1945 h i s t o r i c a l basis of land use p r i o r to the r a p i d land use changes which occurred a f t e r World War I I . 1.0.2 C u l t i v a t i o n and S o i l P r o p e r t i e s C u l t i v a t i o n r e s u l t s i n the homogenization of the s o i l surface to the depth of the plow l a y e r . I t r e s u l t s i n new f a c t o r s capable of i m p a r t i n g new p r o p e r t i e s to the s o i l that d i d not develop i n the n a t u r a l environment. This a c t i o n d i s r u p t s s o i l h o r i z o n a t i o n and the sys t e m a t i c pedologic d i f f e r e n t i a t i o n w i t h i n the plow l a y e r . The a d d i t i o n of chemical amendments - l i m e , manure, chemical f e r t i l i z e r s , p e s t i c i d e s , and the l i k e - has profound e f f e c t s on the chemical, p h y s i c a l , and b i o l o g i c a l p r o p e r t i e s of the s o i l (Brady 1985). The d i r e c t i o n of any change i n chemical f e r t i l i t y between the 2 v i r g i n and the c u l t i v a t e d s o i l depends on the i n i t i a l f e r t i l i t y ( i n a sense, the parent m a t e r i a l ) , the amount and type of amendment and manipulation, and the amount of time the s o i l i s c u l t i v a t e d . For example, the parent m a t e r i a l i n M o l l i s o l s formed under p r a i r i e vegetation are more f e r t i l e than parent m a t e r i a l s of Spodosols formed under coniferous vegetation (Buol et a l . 1980). G e n e r a l l y , a l l u v i a l s o i l s are f e r t i l e , as w e l l as a c c e s s i b l e , which are the reasons they have been e x p l o i t e d i n ancient times. The degree of management plays a key, but f r e q u e n t l y unknown and u n c o n t r o l l e d r o l e under f i e l d c o n d i t i o n s . The time f o r pedogenesis since the i n i t a l s t a t e i s as important f o r t h i s "new" pedon as f o r any under n a t u r a l c o n d i t i o n s (Jenny 1941). Management manipulations can have a strong impact on s o i l s . Witness the r e c l a m a t i o n of much of Holland and Denmark from the sea, the development of Japanese gardens, the dyking of many r i v e r s to r e c l a i m f l o o d p l a i n s f o r farmland, and the a d d i t i o n s of s o i l amendments- e s p e c i a l l y the extreme cases of the plaggen and a n t h r o p i c epipedons ( B i d w e l l and Hole 1965, S o i l Survey S t a f f 1975). 1.0.3 E f f e c t s of N a t i o n a l D i f f e r e n c e s on Management and S o i l s D i f f e r e n t c u l t u r e s have d i f f e r e n t aims and methods f o r c u l t i v a t i o n . This d i f f e r e n c e has not been reported i n the s o i l s l i t e r a t u r e . Whereas many st u d i e s have documented United States' or Canadian trends, few have examined them j o i n t l y and none of these have been p e d o l o g i c a l i n o r i e n t a t i o n , w i t h the exception of G o l d i n (1983). A p o l i t i c a l boundary and the r e s u l t i n g e f f e c t s on markets, p o p u l a t i o n , and economics can i n f l u e n c e the i n t e n s i t y of c u l t i v a t i o n , the type of crops grown, and u l t i m a t e l y the degree of management. What e f f e c t i n 3 s o i l p r o p e r t i e s and v a r i a b i l i t y r e s u l t from d i f f e r e n c e s i n management, and i n p a r t i c u l a r , what d i f f e r e n c e s are caused by an i n t e r n a t i o n a l boundary? 1.0.4 S o i l V a r i a b i l i t y S o i l s are i n h e r e n t l y v a r i a b l e w i t h i n a pedon and between pedons (W i l d i n g and Drees 1983). Some of t h i s v a r i a b i l i t y i s s y s t e m a t i c both v e r t i c a l l y w i t h i n a pedon (which i s the reason f o r s o i l horizons) and h o r i z o n t a l l y across the landscape (which i s the reason f o r mapping d i f f e r e n t kinds of s o i l s ) . C u l t i v a t i o n , through homogenization, has a major i n f l u e n c e on v a r i a b i l i t y by i n c r e a s i n g the s i m i l a r i t y between plow l a y e r s of various s o i l s . But how does i t a f f e c t the r o l e of the o r i g i n a l parent m a t e r i a l ? Many previous s t u d i e s have been c a r r i e d out i n s o i l s p a t i a l v a r i a b i l i t y , i n c l u d i n g two major l i t e r a t u r e reviews (Beckett and Webster 1971, W i l d i n g and Drees 1983) and one proceedings of a workshop (Nielson and Bouma 1985). These s t u d i e s have examined the v a r i a b i l i t y w i t h i n one s o i l s e r i e s ( B a l l and W i l l i a m s 1968, Campbell 1978, and W i l d i n g et a l . 1964) or w i t h i n a map u n i t (Crosson and Protz 1974, W i l d i n g et a l . 1965, N o r t c l i f f 1978, W i l l i a m s and Rayner 1977, and Bascomb and J a r v i s 1976), and evaluated the e f f e c t s of v a r i a b i l i t y i n p r o f i l e and landscape development (Huddleston and Riecken 1973, Harradine 1949, and P r o t z et a l . 1968). A b a s i c premise of these s t u d i e s of s p a t i a l v a r i a b i l i t y i s that the s p a t i a l s t r u c t u r e i s preserved over time. Not much research a t t e n t i o n has been paid to t h i s issue beyond seasonal d i f f e r e n c e s (Wagenet 1985). Nor have s t u d i e s considered land use h i s t o r y . The main c o n s i d e r a t i o n has been the named s o i l i n the map u n i t . Is there 4 a d i f f e r e n c e i n v a r i a b i l i t y between land c l e a r e d i n 1950 versus land c l e a r e d i n 1980 on the same s o i l ? Is the d i f f e r e n c e more than n a t u r a l v a r i a b i l i t y w i t h i n the s o i l ? A major unknown v a r i a b l e i n t h i s study i s the management p r a c t i c e s : amount and frequency of a p p l i c a t i o n of l i m e , manure or f e r t i l i z e r , and changes i n land ownership. Land management superimposes i t s own v a r i a b i l i t y onto that already present i n the s o i l . 1.1 Major Questions Addressed i n This Study 1. Are there d i f f e r e n c e s i n land use and land c l e a r i n g on d i f f e r e n t s o i l s ? 2. Can we e s t a b l i s h a r e l a t i o n s h i p between s o i l p r o p e r t i e s and the t i m e - s i n c e - c l e a r i n g from woodland and land conversion to a g r i c u l t u r e ? 3. Can we p r e d i c t t i m e - s i n c e - c l e a r i n g based on s o i l p r o p e r t i e s ? 4. What e f f e c t does management have on s o i l p r o p e r t i e s and does i t a f f e c t s o i l genesis? 5. Which v a r i a b l e s are most important f o r d i s t i n g u i s h i n g each s o i l ? 6. Are c e r t a i n s o i l s more v a r i a b l e ? How does v a r i a b i l i t y r e l a t e to parent m a t e r i a l and c u l t i v a t i o n ? 7. What i s the temporal f a c t o r i n s o i l v a r i a b i l i t y , that i s , how does v a r i a b i l i t y vary w i t h t i m e - s i n c e - c l e a r i n g ? 8. What i s the e f f e c t of land use on s o i l v a r i a b i l i t y ? 9- How do s o i l s mapped i n Canada compare i n v a r i a b i l i t y to the same s o i l mapped i n the United States? 10. How many samples must a farmer take to get a handle on v a r i a b i l i t y ? 5 1.2 H i s t o r i c a l and P o l i t i c a l Geography 1.2.1 I n t r o d u c t i o n and Purpose This study examines the i n f l u e n c e of an I n t e r n a t i o n a l Boundary on land use and land c l e a r i n g p r a c t i c e s . I t seeks to demonstrate that d i f f e r e n c e s i n inherent s o i l f e r t i l i t y and landscape and ve g e t a t i o n f e a t u r e s , as w e l l as c u l t u r a l and economic h i s t o r y , have a f f e c t e d how farmers c l e a r land and manage s o i l s and a f f e c t s o i l s p r o p e r t i e s . The purpose of t h i s s e c t i o n i s to e s t a b l i s h an h i s t o r i c a l background f o r the geographical, c u l t u r a l , n a t i o n a l , and a g r i c u l t u r a l d i f f e r e n c e s i n land c l e a r i n g and land management p r a c t i c e s on s e v e r a l landscapes i n the Fraser Lowland of Canada and the United States. I t w i l l emphasize the more common a g r i c u l t u r a l uses and crops: d a i r y , pasture, hay, vegetables, r a s p b e r r i e s , and s t r a w b e r r i e s . 1.2.2 Pre-1846 H i s t o r y The Fraser Lowland i s a physiographic f e a t u r e along the P a c i f i c Coast bisected by the i n t e r n a t i o n a l boundary between the United States and Canada at the F o r t y - N i n t h p a r a l l e l (Armstrong 1981, Armstrong et a l . 1983). I t has an area of approximately 3500 km2, of which about 2600 km2 are north of the Boundary, and has been p o l i t i c a l l y d i v i d e d between the Lower Fraser V a l l e y i n Canada and western Whatcom County i n the United States. The establishment of the Boundary i n 1846 post-dated a generation of e x p l o r a t i o n , e x p l o i t a t i o n , and s c a t t e r e d settlement during which the Lowland functioned w i t h no i n t e r n a l p o l i t i c a l d i f f e r e n t i a t i o n (Minghi 1964). The Forty-Ninth p a r a l l e l i s an antecedent boundary according t o Hartshorne (1936) si n c e the 6 boundary preceded development of settlement, t r a n s p o r t a t i o n , and c u l t u r a l patterns other than Indian. A minor exception i s the F o r t Langley area, where the Hudson's Bay Company had an outpost s t a r t i n g i n 1827. Had no boundary been drawn n e i t h e r people nor the c u l t u r a l landscape would show any s i g n i f i c a n t change near the F o r t y - N i n t h p a r a l l e l (Jones 1937). The d i s s i m i l a r i t i e s have been engendered by the Boundary. The end of the 18th century found the vast region west of the Rockies and north of C a l i f o r n i a unexplored, uninhabited except by numerous Indian bands, and without e f f e c t i v e sovereignty. The c o a s t a l f r i n g e had been explored p e r i o d i c a l l y by Spanish and E n g l i s h e x p e d i t i o n s e a r l i e r i n the f o u r t h quarter of the century (Roth 1926), but the competition among the great powers f o r sovereignty over the empire began w i t h the c r o s s - c o n t i n e n t a l journeys of Mackenzie i n 1793 and Lewis and C l a r k i n 1805. At f i r s t Spain and Russia were i n the race, but by 1824 the s t r u g g l e was waged s o l e l y between the United States and B r i t a i n (Minghi 1962). As a r e s u l t of the J o i n t Occupancy Treaty of 1818 f o l l o w i n g the War of 1812, the I n t e r n a t i o n a l Boundary between the United States and B r i t i s h North America was extended westwards to the Rocky Mountain Divide. The land beyond to the West was "to be f r e e and open f o r settlement to s u b j e c t s of both c o u n t r i e s " (Deutsch 1960), although American settlement was discouraged by the Hudson's Bay Company. During the next few decades, the Hudson's Bay Company, the r e p o s i t o r y of B r i t i s h a u t h o r i t y i n North America, grew to dominate the e n t i r e r e g i o n north of the Columbia by i t s undisputed pre-eminence i n the f u r trade. The dense f o r e s t and rugged t e r r a i n of the area emphasized the importance of the navigable r i v e r s , n otably the Fraser 7 and the Nooksack r i v e r s i n the Fra s e r Lowland, as e s s e n t i a l routes of t r a n s p o r t a t i o n and the Columbia River provided the l i n k between the sea and the i n t e r i o r . S everal f o r t s were e s t a b l i s h e d to promote the f u r trade i n c l u d i n g Fort Vancouver along the Columbia River i n 1825 and F o r t Langley along the Fraser River i n 1827. In the e a r l y 1840s the overland m i g r a t i o n of American s e t t l e r s i n t o Oregon increased the American b e l i e f i n Manifest Destiny. T h i s , combined w i t h the weakening s t a t u s of the Hudson's Bay Company, due to the d w i n d l i n g f u r trade and l a c k of population surplus c r o s s i n g the Canadian f r o n t i e r to c l a i m the P a c i f i c Coast, changed the balance of c o n t r o l i n favor of the United States i n i t s e f f o r t s to a r r i v e at a settlement of sovereignty during the j o i n t occupancy. 1.2.3 Establishment of the I n t e r n a t i o n a l Boundary and E f f e c t s of the Gold Rush In 1846 the Oregon Treaty was signed e s t a b l i s h i n g the I n t e r n a t i o n a l Boundary at the Forty-Ninth P a r a l l e l , thus extending westward the boundary set i n 1818. P r i o r to t h i s date the de f a c t o boundary d i v i d i n g Hudson's Bay a c t i v i t y from areas of s i g n i f i c a n t American settlement was the Columbia River. This t r e a t y forced a r e o r i e n t a t i o n of the Hudson's Bay Company trade routes. The route up the Columbia to the various f o r t s i n the Okanagan had to be abandoned f o r the more hazardous route up the Fraser River. However, i t took u n t i l 1859 before Fort Vancouver was abandoned and f o r the B r i t i s h sphere of i n f l u e n c e to s h r i n k up to the Forty-Ninth P a r a l l e l and f o r the Boundary t o achieve i t s b a s i c f u n c t i o n as a r e a l p o l i t i c a l d i v i d e r (Minghi 1962). Before the di s c o v e r y of gold on the shores of the Fraser River i n 8 1 8 5 8 , the Fraser Lowland contained only Hudson's Bay f o r t s and Indian v i l l a g e s . By 1850 there were s t i l l no more than 500 whites between the Columbia and the I n t e r n a t i o n a l Boundary (Gibbard 1937) . Many of the miners, the l a r g e s t group of which came from C a l i f o r n i a , became the f i r s t s e t t l e r s i n the Fraser Lowland. The disco v e r y of gold was the s i n g l e most important impetus f o r the i n i t i a l r u r a l and urban settlement of consequence i n the Lowland (Siemens 1968). In order to r e t a i n c o n t r o l of sovereignty over t h i s l a rge i n f l u x o f population, the government of B r i t i s h Columbia was proclaimed on 19 November 1858, and consequently, the t r a d i n g p r i v i l e g e s of the Hudson's Bay Company were f o r m a l l y revoked. Whatcom County was created by the Washington T e r r i t o r i a l L e g i s l a t u r e on 9 March 1854 only one year a f t e r Washington T e r r i t o r y was separated from Oregon T e r r i t o r y . During the period 1858 to 1885 B r i t i s h Columbia was f u n c t i o n a l l y a part of the United States' west coast. B r i t i s h Columbia's sea l i n k s w i t h B r i t a i n had never been strong (having to be reached by way of Cape Horn) and the c o n t i n u i n g b a r r i e r e f f e c t of the Rockies excluded the colony from the u n i f i e d sphere of the r e s t of B r i t i s h North America. During much of t h i s period the e n t i r e P a c i f i c Coast was under the economic p u l l of C a l i f o r n i a , e s p e c i a l l y a f t e r the completion of the Union P a c i f i c R a i l r o a d i n 1869 which l i n k e d C a l i f o r n i a w i t h the eastern United States. Inadequate t r a n s p o r t a t i o n f a c i l i t i e s was the primary f a c t o r l i m i t i n g economic growth of the Lowland. 1.2.4 E f f e c t s of the R a i l r o a d The completion of the Canadian P a c i f i c R a i l r o a d (CPR) i n 1885 ended t h i s era of f e a r of encroachment of American s e t t l e r s , c a p i t a l , and p o l i t i c a l c o n t r o l . The completion of the CPR gave 9 i n t e g r i t y to the Boundary by p r o v i d i n g a Canadian access to B r i t i s h Columbia and gave importance to east-west movement, increased p o t e n t i a l markets, and enhanced immigration. The i n c o r p o r a t i o n of the c i t y of Vancouver i n 1886 at the terminus of the Canadian P a c i f i c l i n e had a profound i n f l u e n c e on the growth of the Canadian Fraser Lowland, i n c l u d i n g the d e c l i n e of importance of New Westminster. With increased markets came the c o n s t r u c t i o n of the bridge over the Fraser River at New Westminster i n 1904 and the completion of the B r i t i s h Columbia E l e c t r i c Railway (B.C.E.R.) i n 1910. These c l a r i f i e d the east-west t r a n s p o r t a t i o n l i n k and f o s t e r e d the produce-to-market s o l e l y w i t h i n the Canadian Fraser Lowland. Due t o i t s l o c a t i o n across the uplands, the B.C.E.R. opened a g r i c u l t u r a l , and e v e n t u a l l y suburban settlement, away from the Fraser R i v e r , where previous settlement and t r a n s p o r t a t i o n l i n k s were concentrated. Between 1890 and 1893 three major r a i l l i n e s were constructed across Whatcom County to connect w i t h the CPR. During the l a t e 1890s the Great Northern and Northern P a c i f i c Railways were extended from S e a t t l e through Whatcom County t o Canada and consequently increased market o u t l e t s f o r lumber and farm products on the U.S. segment. 1.2.5 Modern Pe r s p e c t i v e s Some l i m i t e d but rat h e r i l l u s i v e d i f f e r e n c e s i n settlement patterns e x i s t at the present time (Minghi 1964). In the f i r s t h a l f of the t w e n t i e t h century, the boundary was not an important b a r r i e r to a c c e s s i b i l i t y . During t h i s time the urban p o p u l a t i o n i n the Canadian segment increased r a p i d l y , p a r t i c u l a r l y i n Vancouver, being considerably l a r g e r than the e n t i r e U.S. segment a f t e r the t u r n of the 1 0 century (Table 1). Since World War I I , however, the change of gre a t e s t s i g n i f i c a n c e to the character of the two parts of the border region has been the r e s t r i c t i o n on population movement due to immi g r a t i o n laws and as a r e s u l t , p opulation c i r c u l a t i o n has tended to conform to the boundary (Minghi 1964). Table 1. Population of major centers w i t h i n and nearby the Fraser Lowland, 1881 to 1981 (Bureau of the Census 1982, Dalichow 1972, S t a t i s t i c s Canada 1974, S t a t i s t i c s Canada 1982). Pop u l a t i o n i n Thousands Year Location 1881 1891 1901 1911 1921 1931 1941 1951 1961 1971 1981 Vancouver 1 14 29 121 163 255 284 358 408 426 414 Lower Fraser V a l l e y 8 42 54 183 257 380 449 649 907 1133 1342 Bellingham <1 8 11 24 26 31 29 34 35 39 46 Whatcom County 3 19 24 50 51 59 60 67 70 82 107 S e a t t l e 4 42 81 237 315 365 368 468 557 530 494 Some h i s t o r i c a l and p h y s i c a l d i f f e r e n c e s have a l s o a f f e c t e d the d i f f e r e n t i a l development. The Canadian segment contains the navigable waters of the Fraser River and d i r e c t east-west r a i l r o a d and highway systems. The Nooksack River i s not navigable f o r shipping. U n t i l the 1970s the c l o s e s t east-west route to the south was 100 km d i s t a n t . Without a low mountain pass to the east, the U.S. segment i s not the terminus f o r any t r a n s p o r t a t i o n l i n k . Bellingham has been e c l i p s e d by S e a t t l e f o r t h i s r o l e f o r r a i l i n the 1870s, f o r water ( e s p e c i a l l y as 11 the t a k e o f f point f o r steamers to Alaska f o r the gold rush i n the l a t e 1890s), and f o r major east-west highways during the t w e n t i e t h century. The economic i n f r a s t r u c t u r e and the s t r a t e g i c l o c a t i o n of the Lowland w i t h respect to other n a t i o n a l and c u l t u r a l features i n Canada and the United States has l e d to the establishment of d i f f e r e n t networks i n the two segments of the region. What may be an economic i n c e n t i v e on one side of the Boundary may not be on the other. The most obvious d i f f e r e n c e between the segments i s the preponderence of popula t i o n , and thus a l a r g e market, i n the Canadian segment, where about one m i l l i o n people l i v e . South of the Boundary the Fraser Lowland has more a g r i c u l t u r a l character and i s i n h a b i t e d by about 100 000 people. 1 .3 A g r i c u l t u r a l H i s t o r y 1.3.1 Pre-1846 H i s t o r y The e a r l i e s t a g r i c u l t u r a l a c t i v i t y i n the Fraser Lowland occurred i n 1828 at the Hudson's Bay Company farm at F o r t Langley, where employees grew a v a r i e t y of vegetable, meat, d a i r y , and g r a i n products f o r the Fort t r a d e r s and the f u r brigade. Although the t r a d i t i o n a l p o l i c y of the Hudson's Bay Company was c o n t r o l of the f u r trade, the gre a t e s t p r o f i t s were from the f i s h e r i e s and the farm (White 1937). A f t e r the p r e l i m i n a r y a c t i v i t y around the F o r t , a g r i c u l t u r e was expanded to the Langley P r a i r i e i n the 1830s. Other farms of the Hudson's Bay Company i n the region were opened beginning i n 1825. U n t i l the mid 1840s, t h i s company and a s u b s i d i a r y , The Puget's Sound A g r i c u l t u r a l Company, dominated a g r i c u l t u r a l development i n the region. The terms set by the Company 12 f o r a c q u i r i n g p r i v a t e land discouraged prospective s e t t l e r s . For t h i s reason settlement was slow. Farming done by s e t t l e r s was of l i t t l e importance u n t i l a f t e r 1846 (Olsen, 1970). In 1851 there were only 15 independent s e t t l e r s and by 1856 only 30 (Dalichow 1972). The Nooksack Indians took up the c u l t i v a t i o n of the white potato, which was probably introduced t o them by Hudson's Bay f u r t r a p p e r s , who were i n the area i n the 1840s. These Indians were the f i r s t farmers on the U.S. segment. 1.3.2 E f f e c t s of the Gold Rush on A g r i c u l t u r e and Settlement The f i r s t permanent s e t t l e r s on the U.S. segment came i n 1852 to the Bellingham Bay area. Farming s t a r t e d s h o r t l y t h e r e a f t e r . A c t u a l settlement commenced w i t h the f i r s t i n f l u x of gold miners. In 1858 about 25 000 gold seekers invaded the area, most a r r i v i n g by s h i p from San Francisco. This number e v e n t u a l l y grew to 60 000 (Dalichow 1972). They came as t r a n s i e n t s but a good p r o p o r t i o n remained as s e t t l e r s s p u r r i n g the development of a g r i c u l t u r e and commerce. U n t i l the gold rush there was l i t t l e market f o r farm produce. The r e s u l t i n g demand f o r food at the gold mines r e s u l t e d i n very l a r g e exchanges of l i v e s t o c k and farm products. The h i s t o r y of a g r i c u l t u r a l land settlement beginning about i860 was d i f f e r e n t on e i t h e r side of the Boundary. In Canada pre-emption was the p r i n c i p a l means of settlement w h i l e homesteading was i n the USA. The r a t i o n a l e t h a t B r i t a i n wanted the colony to pay f o r land during a period when land was e s s e n t i a l l y d i s t r i b u t e d f r e e south of the Boundary l e d to southward migration. The belated replacement of pre-emption by homesteading i n the e a r l y 1870s d i d l i t t l e to d e t r a c t from the i n i t i a l a t t i t u d e s of the r e l a t i o n s h i p between people and land. 13 Population growth was slow before 1870. Lack of easy overland a c c e s s i b i l i t y t o the area and the d i f f i c u l t y of c l e a r i n g the dense f o r e s t s kept i m m i g r a t i o n to a minimum. The f i r s t attempts at systemat i c farming on the Canadian segment i n the Fraser Lowland were made i n the C h i l l i w a c k and Sumas v a l l e y s about 1862 (Winter 1968). By 1863 there were 250 farms under c u l t i v a t i o n (Gibbard 1937). By 1866, 1970 ha were being farmed i n the C h i l l i w a c k and Sumas areas. As e a r l y as 1868 d a i r y i n g was put on a commercial b a s i s i n the Sumas d i s t r i c t (White 1937). E a r l y farming faced the problems of l a c k of sh i p p i n g and t r a n s p o r t a t i o n f a c i l i t i e s , the cost of c l e a r i n g and r e c l a i m i n g , and the l a c k of adequate markets. Settlement and farming on the U.S. segment began i n i860 mainly around Lynden and Ferndale (Smelser 1970). Permanent settlement proceeded s l o w l y . By 1880 only 3100 persons were i n the county. About 1200 ha were c l e a r e d f o r farming by 1887. In the h e a v i l y f o r e s t e d areas, settlement a c c e l e r a t e d a f t e r the 1877 removal of l o g jams on the Nooksack R i v e r , which a l s o e f f e c t i v e l y opened the Nooksack to steamboat t r a n s p o r t a t i o n . 1.3.3 E f f e c t s of Vegetation, F l o o d i n g , and A c c e s s i b i l i t y As l o g g i n g operations removed the timber from the U.S. Lowland, i n c r e a s i n g numbers of loggers and n e w l y - a r r i v e d land seekers from the East and Europe took up farms on cut-over stumpland that was o f f e r e d at low p r i c e s by timber companies (Washington State Department of A g r i c u l t u r e 1956). In many cases, the choice of farm s i t e s was in f l u e n c e d as much by p r o x i m i t y t o lo g g i n g camps and s a w m i l l s , where food and forage were i n demand, and by p r o x i m i t y to r i v e r t r a n s p o r t a t i o n and t r a i l s as by s o i l f e r t i l i t y (Pierson 1953). 14 In any new area, such as the Fraser Lowland, the trend of land settlement i s to occupy the most f e r t i l e , most a c c e s s i b l e , and/or most e a s i l y c l e a r e d s o i l s at the s t a r t and from these, the settlement spreads by stages to lands that must be reclaimed and brought under c u l t i v a t i o n w i t h e v e r - i n c r e a s i n g degrees of d i f f i c u l t y and cost. In the Fraser Lowland, the s e t t l e r s took up pre-emption of land along the banks of the Fraser River and Bellingham Bay, f o r easy access to water t r a n s p o r t a t i o n . Only a few roads e x i s t e d ; they were poorly maintained and v i r t u a l l y impassable d u r i n g the wet winter season. The lowland areas were farmed f i r s t not only because of t h e i r p r o x i m i t y to the r i v e r and t h e i r high f e r t i l i t y and moisture, but a l s o t h e i r ease of conversion from " p r a i r i e " to a g r i c u l t u r e , although they were r e a l l y low, swampy areas covered w i t h low brush and ferns. The t h r e a t of f l o o d s was outweighed by the advantages of a c c e s s i b i l i t y to r i v e r t r a n s p o r t and the l i g h t vegetation cover. The vegetation c o n s i s t e d of grasses and shrubs ( w i l l o w , hardhack, and crabapple), which could g e n e r a l l y t o l e r a t e the r e g u l a r f l o o d i n g (North et a l . 1979). The shrubs were knocked over w i t h team-drawn chains and then burned or plowed under and l e f t f o r two or three years to decompose (Pierson 1953). Although c l e a r i n g was r e l a t i v e l y easy i n the f l o o d p l a i n , the s o i l s needed to be drained. "Under-drains" (ditches 40 cm wide and 45 to 75 cm deep l e a d i n g to a drainage d i t c h or slough) were necessary f o r a g r i c u l t u r a l development (Brown 1971). The annual f r e s h e t of the Fraser w i t h i t s attendent d e s t r u c t i o n was a major problem f o r the Fraser Lowland farmer w e l l i n t o the 1930s. This phenomenon was much diminished on the s m a l l e r Nooksack River. Although s u i t a b l e f o r a g r i c u l t u r e , the " p r a i r i e s " became l e s s 1 5 a t t r a c t i v e to prospective s e t t l e r s due to the t h r e a t of floods. The e a r l y a g r i c u l t u r a l communities and i s o l a t e d farms tended to be l o c a t e d on the f l a n k s of the adjacent upland (Howell Jones 1966). Various l o c a l and organized dyking p r o j e c t s began i n 1878 but the b i g f l o o d i n 1894 l e d to a s u b s t a n t i a l i n t e g r a t e d system. A generation l a t e r came the d r a i n i n g of Sumas Lake i n 1924 which removed the impediment to east-west t r a n s p o r t a t i o n , decreased the mosquito p o p u l a t i o n , exposed 12 000 ha of new and v a l u a b l e farmland, and secured a g r i c u l t u r e on a year-round basis on the annually flooded lands around the periphery of the lake (Siemens 1968). The h e a v i l y wooded g l a c i a l uplands c o n s i s t e d predominantly of f o r e s t , mostly D o u g l a s - f i r , grand f i r , and western redcedar, w i t h minor amounts of western hemlock (North et a l . 1979). Logging was not as important an i n d u s t r y i n the Canadian Lowland as i t was i n the United States. To the Canadian farmer these stands of timber were a detriment r a t h e r than an asset. In the United S t a t e s , on the other hand, g e n e r a l l y the farmers moved i n as the loggers removed the f o r e s t . This timber was destined f o r C a l i f o r n i a due to demand from the 1849 C a l i f o r n i a gold rush, from Oregon i n t h e i r growth i n the 1850s to 1880s, and from New England and the Great Lake s t a t e s i n 1890 to 1910 since t h e i r timber resources were depleted (Minghi 1962, Smelser 1970). By 1925 denudation of the f o r e s t e d area i n the U.S. Lowland was complete and the farmers replaced them. A f t e r i n d i v i d u a l upland areas were logged, the many discarded logs and massive stumps made the logged areas s t i l l very d i f f i c u l t to c l e a r , e s p e c i a l l y before the widespread use of dynamite and the i n t r o d u c t i o n of the b u l l d o z e r i n 16 the 1940s (Siemens 1968). In the e a r l y days the cost of stump removal g r e a t l y exceeded the value of the raw land. During the middle 1930s before b u l l d o z e r s came i n t o use, the cost was $200 to $370 per ha. In 1946 the cost by the b u l l d o z e r method ranged between $100 and $200 per ha. The s i z e of the b u l l d o z e r and the amount of dynamite used i n f l u e n c e d how much of the substratum was brought up w i t h the stump. From the beginning farming has been i n t e n s i v e since c l e a r i n g the f o r e s t was slow and d i f f i c u l t work and i t o f t e n took a f a m i l y two or three generations of ownership before a l l the t r e e s were cut and burned and the stumps removed. The timber was cut and the s l a s h p i l e d i n windrows. Sometimes grass or g r a i n was planted between the windrows. Brushy stump pasture was common. During timber harvest some l i t t e r was incorporated i n t o the s o i l and some bulldozed i n t o the windrows. A f t e r d r y i n g out f o r two or three years, the windrows were burned. The remaining s l a s h was e i t h e r hauled away or p i l e d and burned and then hauled away. No s p e c i a l e f f o r t was made to spread the ashes ( W i l l i a m Bonsen, 1985, S o i l Conservation S e r v i c e , personal communication). The c o n t i n u a l process of stump removal absorbed a l a r g e part of the farmer's energy and c a p i t a l and l i m i t e d him to s m a l l areas of cropland. 1.3.4 Farmers, Farms, and Crops No n a t i o n a l group has surpassed the a g r i c u l t u r a l i n f l u e n c e to the Lowland made by the Hollanders. They a r r i v e d i n the U.S. segment i n 1898 and i n the 1930s and i n Canada a f t e r 1945. The Dutch, w i t h t h e i r extensive knowledge of wetland farming, occupied and drained land which might otherwise have remained u n s e t t l e d (Smelser 1970, Ginn 17 1967). As a r e s u l t they have r e v i t a l i z e d the d a i r y i n d u s t r y . The e a r l y farms were mixed e n t e r p r i s e s p r o v i d i n g subsistence to the farm f a m i l y , r a i s i n g d a i r y c a t t l e and other l i v e s t o c k , fodder crops, g r a i n s , vegetables and f r u i t , and sometimes marketing some of t h e i r surpluses (Hayward 1983, Smelser 1970). The e a r l y stage of commercial a g r i c u l t u r e was c h a r a c t e r i z e d by a period of experimentation. In 1885 there were about 400 ha of improved farmland i n Whatcom County and i n 1887 about 1200 ha (Roth 1926). By the 1920s the a g r i c u l t u r a l economy was based p r i m a r i l y on l i v e s t o c k , p r i n c i p a l l y the d a i r y and p o u l t r y i n d u s t r i e s . Hay and pasture crops were the most important and have remained so, being grown on at l e a s t 70% of the cropland s i n c e then. The remaining cropland has been d i v i d e d among s m a l l g r a i n s , vegetables, potatoes, f r u i t s , and b e r r i e s . Non-crop pasture ( l i g h t l y wooded stumpland and stumpland kept c l e a r e d of growing t r e e s ) which was pastured were major features u n t i l the 1950s. The d i s t i n c t i o n between non-crop pasture and timberland was i l l - d e f i n e d ( P i e r s o n 1 953)-Rotations between hay and pasture and cropland were common i n the 1940s, when the recommendation was to grow legumes f o r the e q u i v a l e n t of one year f o r each two year period the land was used i n i n t e r - t i l l e d crops or s m a l l g r a i n s (Poulson and Flannery 1953). The major trends i n the a g r i c u l t u r a l p a t t e r n i n the Lowland i n recent years have been a r e d u c t i o n i n the number of i n d i v i d u a l farm u n i t s w i t h a corresponding increase i n average farm s i z e (Bureau of the Census 1942, 1947, 1952, 1961, 1967, 1972, 1977, 1981, 1984) (Table 2). Two f a c t o r s are p r i m a r i l y r e s p o n s i b l e : 1) marginal a g r i c u l t u r a l a c t i v i t i e s have become economically p r o h i b i t i v e because of e s c a l a t i n g o p e r a t i o n a l c o s t s , and 2) s u b d i v i s i o n of land f o r 18 Table 2. S i z e of farms i n Whatcom County, WA, 1900 to 1982 (Washington St a t e Department of A g r i c u l t u r e 1956, Bureau of the Census 1961 to 1984). Year Size of farm Year S i z e of farm Year S i z e of farm (ha) (ha) (ha) 1900 38 1940 17 1964 26 1910 20 1945 17 1969 30 1920 21 1950 19 1974 35 1925 19 1954 20 1978 36 1930 17 1959 24 1982 32 suburban homes (Smelser 1970). Whatcom County farms were e s t a b l i s h e d from 65 to 130 ha homesteads and from the s a l e by lumber companies at the t u r n of the century of 8 to 15 ha logged-over p a r c e l s to employees who became pa r t - t i m e s e t t l e r s (Stepleton et a l . 1976). In order to reserve the m a j o r i t y of the province's a r a b l e land f o r f u t u r e a g r i c u l t u r a l use, the Government of B r i t i s h Columbia passed the Environment and Land Use Act i n 1971. The Government f r o z e a g r i c u l t u r a l land w i t h i n the province i n 1972 and e s t a b l i s h e d A g r i c u l t u r a l Land Reserves (ALR) i n 1973. Approximately 75% of land w i t h i n the Canadian Fraser Lowland i s w i t h i n the ALR (Manning and Eddy 1979). Several consequences of the land freeze are the decrease i n marginal farms and t h e i r purchase f o r hobby farms or t h e i r regrowth to woodland. S i m i l a r l e g i s l a t i o n does not e x i s t f o r the State of Washington, which has provided f i n a n c i a l i n c e n t i v e s through s p e c i a l tax assessments to enhance p r e s e r v a t i o n . Some counties, have enacted a g r i c u l t u r a l preservation-type l e g i s l a t i o n . A notable example i s King County which has sought to preserve a g r i c u l t u r a l land through the 19 process of buying development r i g h t s of farms. 1 . 3 . 4 . 1 D a i r y i n g and P o u l t r y D a i r y i n g and p o u l t r y have been the dominant farm i n d u s t r i e s f o r many years. In 1964 about 88% of cropland supported the d a i r y i n d u s t r y o f the U.S. segment. Factors e x p l a i n i n g the continued predominance of the d a i r y i n d u s t r y are the f o l l o w i n g : 1) C l i m a t i c and topographic c h a r a c t e r i s t i c s are i d e a l l y s u i t e d - m i l d , wet w i n t e r and r e l a t i v e l y long growing season r e s u l t i n q u a l i t y growth of pasture crops. Low r e l i e f enables easy h a r v e s t i n g of s i l a g e and movement of c a t t l e . 2) Dairymen have a long h e r i t a g e of d a i r y s k i l l s . 3) Improvement i n t r a n s p o r t a t i o n and the increased population i n western Washington and the Vancouver m e t r o p o l i t a n area have brought the Lowland w i t h i n the f r e s h m i l k market of the major urban centers. P r i o r to the 1950s c a t t l e were g e n e r a l l y pastured i n winter. Since then farmers have found that c u t t i n g hay f i e l d s f o r s i l a g e f u r n i s h e s high q u a l i t y succulent feed and reduces the feed l o s s e s caused by o c c a s i o n a l wet weather during hay h a r v e s t i n g . They a l s o discovered t h a t l i v e s t o c k eat s i l a g e more completely than hay. As a r e s u l t s i l a g e production has increased. For i n s t a n c e , the 1949 production was about 23 000 tonnes which increased to 96 000 tonnes by 1959 (Smelser 1970). Since 1955, when Whatcom County was the l e a d i n g egg-producing county i n the United S t a t e s , i t s s t a t u s , although not i t s production, has dropped d r a m a t i c a l l y . This i s due to t e c h n o l o g i c a l advances and the enormous in c r e a s e i n p o u l t r y r a i s i n g i n C a l i f o r n i a and the southeastern USA, which have more fav o r a b l e c l i m a t e s . 2 0 1.3.4.2 Strawberries and Raspberries The c u l t i v a t i o n of the strawberry p l a n t i n the Fraser Lowland began about 1880 and soon f r e s h s t r a w b e r r i e s were shipped to Canadian P r a i r i e markets. Discovery of a s p e c i a l process to preserve the b e r r i e s r e s u l t e d i n heavy shipment of processed b e r r i e s to jam f a c t o r i e s on the B r i t i s h I s l e s (White 1937). Dramatic increases i n the land area of r a s p b e r r i e s and s t r a w b e r r i e s began i n the 1940s, l e v e l l e d i n the 1960s, and increased again i n the 1970s i n both cou n t r i e s . The de v a s t a t i n g freezes i n 1950, 1955, and 1964 have had major e f f e c t s on land area planted to these f r o s t - s e n s i t i v e p l a n t s . In 1940 there were only 215 ha of s t r a w b e r r i e s and 20 ha of r a s p b e r r i e s i n the U.S. segment. The land area of s t r a w b e r r i e s has dropped considerably a f t e r the freezes w h i l e raspberry area continues to grow i n t o the 1980s (Table 3). In 1964 the area f o r r a s p b e r r i e s i n the Canadian Lowland was 600 ha and f o r s t r a w b e r r i e s 550 ha. However, the freeze of 1964 reduced strawberry area to 90 ha i n 1965 (Dalichow 1972). Two s i g n i f i c a n t changes l e d to t h i s i n c r e a s e i n production f o r r a s p b e r r i e s : 1) a s h i f t from f r e s h to processed marketing, and 2) the i n t r o d u c t i o n of the raspberry p i c k i n g machine, which reduced p i c k i n g costs considerably. Process marketing has increased strawberry production i n the Fraser Lowland, but without mechanical p i c k i n g high labor costs make production expensive and r i s k y (Dalichow 1972). 1.3.5 E f f e c t s of the Growth of T r a n s p o r t a t i o n , Population, and Technology The r a t e at which development took place i n the Fraser Lowland has been r e l a t e d to an increased demand f o r l o c a l products afforded by 21 Table 3. Number of farms and land area of s t r a w b e r r i e s and r a s p b e r r i e s i n Whatcom County, WA (Bureau of the Census 1942 through 1984). Year Crop Strawberries Raspberries 1940 1945 1949 1959 1964 1978 1982 farms 338 226 364 175 172 20 19 ha 215 220 925 530 325 210 140 farms 152 321 214 135 103 85 81 ha 18 88 206 177 441 400 523 a growing population. Improvement i n t r a n s p o r t l i n k s t o New Westminster and Vancouver, p a r t i c u l a r l y the b u i l d i n g of the bridge i n 1904 across the Fraser River at New Westminster connecting the farming communities on the south s i d e of the Fraser w i t h t h e i r n a t u r a l markets on the north and the completion of the B.C. E l e c t r i c Railway to C h i l l i w a c k i n 1910, gave farmers on the Canadian s i z e b e t t e r access to market and s t i m u l a t e d f u r t h e r settlement (Howell Jones 1966). The c o n s t r u c t i o n of the r a i l r o a d s through Whatcom County i n the 1890s spurred growth and increased markets there as w e l l . The importance of the automobile began i n f u l l force a f t e r World War I I . By 1950, 50% of the a g r i c u l t u r a l output of B r i t i s h Columbia was produced i n the Fraser Lowland (Winter 1968). L o n g - l a s t i n g e f f e c t s of wartime i n c e n t i v e k i n d l e d the economic resurgence which marked the 1950s. The amount of land i n Canadian farming reached i t s h i s t o r i c a l peak i n 1951 and d u r i n g the period 1961 to 1976, most of the s i g n i f i c a n t changes i n a g r i c u l t u r a l land use have taken place. There has been i n c r e a s i n g m e t r o p o l i t a n dominance, a renewed upsurge of u r b a n i z a t i o n , and massive highway development, which l e d t o urban sprawl and increased pressure on a g r i c u l t u r a l land i n the Fraser Lowland, p a r t i c u l a r l y on the Canadian s i d e . In the Fraser Lowland, and i n the United States and Canada i n general, d e s p i t e the d e c l i n i n g land base, a g r i c u l t u r a l production has been g e n e r a l l y r i s i n g through improved v a r i e t i e s , greater use of chemicals, improved farming techniques, and more i n t e n s i v e use of the land (McCuaig and Manning 1982). There have been tremendous changes i n a g r i c u l t u r a l technology, o r g a n i z a t i o n , farm s i z e , and marketing. Technological improvements have been made i n f e r t i l i z e r s , f o o d s t u f f s , breeding, and farm methods and machinery (Ginn 1967). Equipment f o r i r r i g a t i n g crops and pasture has expanded g r e a t l y since 1945. In the U.S. segment between 1949 and 1954 the amount of i r r i g a t e d pasture t r i p l e d to 1460 ha (Washington State Department of A g r i c u l t u r e 1956). The number of i r r i g a t e d farms rose from 176 i n 1950 t o 597 i n 1959 and has f l u c t u a t e d since then being 525 farms i n 1982 i r r i g a t i n g over 12 000 ha (Bureau of the Census 1984). The amount of l i m e used (unreported i n the United S t a t e s Census of A g r i c u l t u r e before 1964) increased from i t s use on j u s t under 770 ha i n 1964 to a maximum of more than 2800 ha before decreasing to about 1400 ha i n 1982. The amount of l i m e used i n the Canadian segment since World War I I was impacted by the l i m e subsidy, which was introduced i n the e a r l y 1960s and e l i m i n a t e d i n the e a r l y 1970s. On the U.S. segment costs f o r l i m i n g and f e r t i l i z e r were shared by the f e d e r a l government from the e a r l y 1950s to the mid 1960s and were based on a s o i l t e s t . Commercial f e r t i l i z e r has been the dominant amendment f o r b e r r i e s on the U.S. segment, whereas manure ( p a r t i c u l a r l y from p o u l t r y ) has 23 been dominant i n Canada. In some cases the manure i s broadcast and i n oth e r s , i t i s a p p l i e d adjacent to the p l a n t s . I t i s spread w i t h a "honey wagon" or with a s p r i n k l e r on pastureland. S p e c i a l i z a t i o n i s widespread w i t h mixed farming almost e l i m i n a t e d and replaced by s i n g l e commodity type e n t e r p r i s e s (Ginn 1967). T o t a l farms i n Whatcom County was about 1300 i n 1900, reached a maximum of 4900 i n the 1940s and has decreased to 4000 i n the mid 1950s and 1610 i n 1982. At the same time the average s i z e d e c l i n e d from 38 ha i n 1910 to 17 i n the mid 1940s and increased to a maximum of 36 i n 1978 before d e c l i n i n g t o 32 i n 1982 (Bureau of the Census 1984) (Tables 2 and 3). This change i s a r e s u l t of the change from general farming of l i v e s t o c k w i t h hay and g r a i n to more i n t e n s i v e s p e c i a l i z e d d a i r y , p o u l t r y , and vegetable farming (Washington State Department of A g r i c u l t u r e 1965, Bureau of the Census 1984). Some farms have returned to woodland whereas others have been subdivided and converted to hobby farms or second homes. The markets and s t i m u l i f o r production on the two s i d e s of the Lowland are very d i f f e r e n t . For i n s t a n c e , produce from C a l i f o r n i a can be grown, shipped, and s o l d as cheaply and c o m p e t i t i v e l y as that i n the U.S. Lowland, whereas duty i s imposed to supply them to the market i n Canada, g i v i n g the advantage to l o c a l Canadian produce. Although a g r i c u l t u r a l production i n the Lowland i s centered p r i m a r i l y around d a i r y i n g and b e r r i e s , these are destined f o r consumers dominantly w i t h i n the Lowland i n Canada and f o r consumers south of the Lowland (the Puget Sound region) i n the United States. From d i s t r i b u t i o n p o i n t s i n S e a t t l e , f r e s h and processed products are shipped to eastern markets (Washington State Department of A g r i c u l t u r e 1965), as they are destined f o r e a s t e r n Canadian markets from Vancouver. 2.0 LITERATURE REVIEW 2.1 Land Use Change and Monitoring M o n i t o r i n g change i n renewable resources have been common i n n a t u r a l resource management of wetlands, mammal populations, v e g e t a t i o n , w i l d l i f e h a b i t a t , f o r e s t m o r t a l i t y , and r e c r e a t i o n ( B e l l and Atterbury 1983). A e r i a l photographs have been used f o r many years f o r d e s c r i b i n g land use (Marschner 1950) and f o r monitoring land use change (Reeves et a l . 1975). E a r l y s t u d i e s of airphoto comparison a n a l y s i s i n the United States i n c l u d e Gibbs and Husch (1956) f o r f o r e s t land and D i l l (1959) on a g r i c u l t u r a l land and P h i l p o t t s (1957) f o r a g r i c u l t u r a l land i n Canada. They have proven t o be a valuable source of data on land use, p a r t i c u l a r l y i n o b t a i n i n g h i s t o r i c a l data that could not be gained otherwise. In the l a s t 15 years Landsat data has proven valuable by p r o v i d i n g reasonable d e t a i l at l e v e l I and sometimes l e v e l I I c l a s s i f i c a t i o n (Odenyo and P e t t r y 1977, Anderson e t a l . 1972). S t r a t i f i e d random techniques have been accepted as the most appr o p r i a t e method of sampling i n land-use s t u d i e s using remote imagery, so th a t s m a l l e r areas can be s a t i s f a c t o r i l y represented (Zonneveld 1974, van Genderen and Lock 1977). Roberts et a l . (1979) present a model to a l l o w environmental e v a l u a t i o n of a d e c i s i o n t o convert present land use to another category. Our use of the land i s regulated by p h y s i c a l , e c o l o g i c a l , socioeconomic and p o l i t i c a l systems. I t i s often d i f f i c u l t to i d e n t i f y the e f f e c t on land use of any of these systems. A t r a d i t i o n a l planning t o o l i s the land use and n a t u r a l resource inventory. A shortcoming of these i n v e n t o r i e s i s t h e i r p o i n t - i n - t i m e 25 nature w i t h no reference to trends. R e p e t i t i v e i n v e n t o r i e s , such as those by Coppleman et a l . (1978) and B i r c h and Wharton (1982), on the other hand, permit an a n a l y s i s of the s p a t i a l and temporal v a r i a t i o n s i n l a n d use. Changes i n land use are, t o a large extent, a r e f l e c t i o n of how s o c i e t y responds to socioeconomic, i n s t i t u t i o n a l , and management p r a c t i c e s , and thus, they provide e s s e n t i a l input f o r an o b j e c t i v e e v a l u a t i o n f o r such p r a c t i c e s (Adeniyi 1980). M o n i t o r i n g change and trends throughout the n a t u r a l resource f i e l d s can increase the understanding and management of these resources which are c o n s t a n t l y changing, being modified by man, i n s e c t and disease i n f e s t a t i o n , and c a t a s t r o p h i c events. P r e d i c t a b i l i t y i s a major outcome of these analyses. Some i n v e s t i g a t o r s have stud i e d the causes and i n t e r r e l a t i o n s h i p s of land use (Fabos et a l . 1973), some have attempted to develop mathematical models f o r p r e d i c t i n g land use change (Lindsay and Dunn 1979) and others to combine causes w i t h modeling (Civco and Kennard 1983). The Canada Land Use M o n i t o r i n g Program (CLUMP) was e s t a b l i s h e d t o monitor the amount, l o c a t i o n , and type of change i n Canada on n a t i o n a l and r e g i o n a l s c a l e s (Rump 1983). The time i n t e r v a l s of f i v e years f o r urban areas and 10 year f o r r u r a l areas were found appropriate. Land use data were compiled from the i n t e r p r e t a t i o n of a e r i a l photographs. Various sampling techniques have been used t o c o l l e c t land use data from a e r i a l photographs. Berry (1962) reviewed papers on the r e l a t i v e e f f i c i e n c y of s e v e r a l methods, i n c l u d i n g dot g r i d s and point t r a n s e c t s . Zeimetz et a l . (1976) c a l c u l a t e d land use change f o r 53 26 counties over a period of 10 years using a two-stage area-point scheme. Ro s e n f i e l d (1982) compiled and discussed the methodology of sample design which i s a p p l i c a b l e to determination of change i n area of land-use and land-cover c a t e g o r i e s . Latham (1979, as reported by Ro s e n f i e l d 1982) reported on the r e s u l t s of a p r e l i m i n a r y experiment of sampling the 1958 and 1977 land-use and land-cover maps f o r the State of Pennsylvania using c a t e g o r i e s from Anderson et a l . (1972). This study i s the f i r s t a v a i l a b l e instance of two s e q u e n t i a l s e t s of s i m i l a r land-use and land-cover c l a s s i f i c a t i o n and mapping f o r as large an area as an e n t i r e s t a t e . F r a z i e r and Shovic (1979) examined land use change on a g r i c u l t u r a l lands i n northwestern Whatcom County, WA using a e r i a l photography taken i n 1966 and 1974. No s i g n i f i c a n t changes occurred i n the amount of prime land, whereas nonprime land had a considerable r e d u c t i o n i n pasture countywide, p r i m a r i l y a t the expense of decreases i n f o r e s t and in c r e a s e s i n row crops. Most of the conversions were to hay. The authors found the changes i n Whatcom County to be s u b t l e and not s t r i c t l y comparable to changes i n other counties described by Z e i m e t z e t a l . (1976). Frey and D i l l (1971) used point sampling and a e r i a l photo i n t e r p r e t a t i o n to study land use change i n the lower M i s s i s s i p p i River a l l u v a l p l a i n . They used a e r i a l photos from about 1950 and 1969 w i t h the basic o b j e c t i v e to o b t a i n data on the conversion of f o r e s t land to cropland. S c h r e i e r et a l . (1982) examined land use changes at 3 to 5 year i n t e r v a l s between 1969 and 1981 using a e r i a l photographs. These changes were c o r r e l a t e d w i t h s o i l survey i n f o r m a t i o n and r e l a t e d t o 27 raspberry y i e l d and management h i s t o r y and s o i l c o n d i t i o n s i n the Abbotsford, B r i t i s h Columbia area. Civco and Kennard (1983) assessed land use change i n Connecticut to p r e d i c t trends using mathematical modeling t o i d e n t i f y those parameters and past land use trends that best account f o r current land use patterns. Various p h y s i c a l , b i o l o g i c a l , and c u l t u r a l parameters were used. Land use at approximately ten-year i n t e r v a l s between 1950 and 1980 were d e l i n e a t e d through i n t e r p r e t a t i o n of a e r i a l photographs. A n a l y s i s of the data i n d i c a t e d that land use i s s t a b i l i z i n g , although a g r i c u l t u r a l land decreased d r a m a t i c a l l y d u r i n g the 30-year period. 2.2 Anthropogenic S o i l s 2.2.1 General B e n e f i c i a l and Detrimental E f f e c t s of C u l t i v a t i o n Man i s able to modify the n a t u r a l development of s o i l s very suddenly and d i r e c t l y as a r e s u l t of c u l t i v a t i o n . C u l t i v a t i o n to a g e n e r a l l y standardized depth r e s u l t s i n a homogenized brown or black upper h o r i z o n w i t h an abrupt lower l i m i t (Duchaufour 1982). Anthropogenic i n f l u e n c e s began during e a r l y man's di g g i n g i n quest f o r food and the accumulation of s h e l l s and bone refuse i n middens, thereby i n c r e a s i n g the s o i l ' s P content and pH l e v e l . Lime and other amendments have been used f o r hundreds of years i n Europe ( B i d w e l l and Hole 1965). B i d w e l l and Hole (1965) suggest a number of b e n e f i c i a l and d e t r i m e n t a l e f f e c t s ( a l b e i t they agree these are value judgments) of the i n f l u e n c e of man on the f i v e f a c t o r s of s o i l formation. Man can even be considered as the s i x t h independent s o i l - f o r m i n g f a c t o r (Yaalon and Yaron 1966). These i n f l u e n c e s i n c l u d e adding 28 f e r t i l i z e r s , removing n u t r i e n t s t i e d up i n p l a n t s , i r r i g a t i n g and d r a i n i n g , loosening s o i l by plowing and compacting i t . Whitney (1925, as reported by B i d w e l l and Hole 1965) noted that the Japanese have valued t h e i r o l d e s t c u l t i v a t e d lands most h i g h l y . The r e c l a m a t i o n of Danish heath f o r a g r i c u l t u r a l crop production i l l u s t r a t e s the improvement of v i r g i n s o i l by human operators (Akin 1963). On the other hand, Hobbs and Brown (1957, as reported by B i d w e l l and Hole 1965) demonstrated the dramatic l o s s of N over a 45 year period i n Kansas. The degree of change i s dependent on the inputs and removals. Simonson (1951) i n d i s c u s s i n g from a broad perspective the changes i n s o i l s f o l l o w i n g c u l t i v a t i o n , s t a t e d "we should be hard pressed to prove that the net r e s u l t had been e i t h e r good or bad." 2.2.2 C l a s s i f i c a t i o n and Processes of Anthropogenic S o i l s G e n e r a l l y the upper manipulated part of the s o i l i s c a l l e d the plow l a y e r . I t does not i n f l u e n c e c l a s s i f i c a t i o n a c cording to S o i l  Taxonomy ( S o i l Survey S t a f f 1975). U s u a l l y the r e s u l t s of man's i n t e r v e n t i o n on s o i l s are viewed as d e v i a t i o n s from the normal s o i l (Yaalon and Yaron 1966). In s o i l mapping these d e v i a t i o n s are ignored or, i f severe, denoted by phase names l i k e eroded, s a l i n e , and so f o r t h ( S o i l Conservation Service 1980). Extreme inputs and a l t e r a t i o n over long periods of time can r e s u l t i n anthropic (very high P content) or plaggen (very high organic matter content) horizons. These man-induced changes i n s o i l p r o p e r t i e s can be studi e d i n a syst e m a t i c framework by u t i l i z i n g a process-response model. The theory o f metapedogenesis o u t l i n e d by Yaalon and Yaron (1966) s t a r t s w i t h the n a t u r a l s o i l as the parent m a t e r i a l transformed by a v a r i e t y 29 of a g r i c u l t u r a l p r a c t i c e s . I t d i f f e r s from the theory of pedogenesis i n t h a t pedogenetic processes a c t s l o w l y over a prolonged period of time, whereas metapedogenetical f a c t o r s a c t on s o i l f o rmation w i t h a str o n g and u s u a l l y r a p i d e f f e c t . Also, the metapedogenetical processes are mostly r e v e r s i b l e . In stud y i n g these processes e x p e r i m e n t a l l y , i t may be p o s s i b l e t o p r e d i c t a s o i l ' s response to var i o u s management p r a c t i c e s . Frequent manipulations, c h a r a c t e r i s t i c of agro-ecosystems, r e s u l t i n p e r t u r b a t i o n s of energy f l u x e s , n u t r i e n t dynamics, and h y d r o l o g i c c y c l e s . Management of s o i l - p l a n t systems a l t e r s o x i d a t i o n - r e d u c t i o n r e l a t i o n s by a l t e r i n g a e r a t i o n s t a t u s through t i l l a g e , i r r i g a t i o n and drainage, and by reducing i n p u t s of f i x e d carbon as energy sources (Juma and M c G i l l 1986). Furthermore, t i l l a g e r e s u l t s i n comminution and i n c o r p o r a t i o n of organic residues i n t o the Ap horizon. I t d i s r u p t s s o i l aggregates, inc r e a s e s a e r a t i o n , p u l v e r i z e s r e s i d u e s , exposes new surfaces to microorganisms (Ridley and He d l i n 1968) and t h i s promotes r a p i d o x i d a t i o n of organic carbon (Rovira and Graecen 1957). Two net r e s u l t s of such t r a n s f e r s are increased r a t e s of decomposition of crop residues (Shields and Paul 1973, Sain and Broadbent 1977) and greater access to organic m a t e r i a l s f o r s o i l organisms (Van Veen and Paul 1981). The t i l l a g e r o l e played by s o i l animals i n the n a t u r a l system i s played, i n pa r t , by machinery i n the agrosystem. Decomposition of organic m a t e r i a l s have been s t u d i e d i n almost a l l ecosystems and has been reviewed e x t e n s i v e l y (Hunt 1977, Singh and Gupta 1977, S w i f t et a l . 1979, M c G i l l et a l . 1981b). Juma and M c G i l l (1986) c l a s s i f y the d i f f e r e n c e s i n s o i l development processes and n u t r i e n t c y c l i n g i n agro-ecosystems versus unmanaged ecosystems i n terms of a d d i t i o n s , removals, t r a n s f o r m a t i o n s , 30 and t r a n s f e r s . Most s t u d i e s have been done i n the P r a i r i e s , p a r t i c u l a r l y i n Saskatchewan and A l b e r t a . No work has been published on the e f f e c t s of c u l t i v a t i o n on changes i n carbon or nitrogen contents i n s o i l s of B r i t i s h Columbia and western Washington State. 2.2.3 R e l a t i o n s h i p s between Agro-ecosystems and Unmanaged Systems 2.2.3.1 General Fluxes of Organic Matter Constituents Managed agro-ecosystems d i f f e r from unmanaged systems i n t h a t root production and l i t t e r i n p u t s of carbon are f r e q u e n t l y reduced and in p u t s of n i t r o g e n are increased by management, and thereby decreasing the C:N, although organic matter may decrease or increase depending on management p r a c t i c e s and the o r i g i n a l organic matter content r e l a t i v e to the new steady s t a t e . The type of t i l l a g e , cropping methods and r o t a t i o n s , and crop residues returned to the s o i l s are a l l important f a c t o r s a f f e c t i n g organic matter l e v e l s i n s o i l s . Grasses and legumes i n r o t a t i o n decrease l o s s e s of organic matter through high below-ground primary production ( M c G i l l and Hoyt 1977) and help m a i n t a i n organic matter concentrations i n s o i l . Continuous pasture i n c r e a s e s organic matter concentrations as does long term a d d i t i o n s of manure. A p p l i c a t i o n of i n o r g a n i c f e r t i l i z e r reduces organic matter lo s s e s by i n c r e a s i n g production and r e t u r n of residues (Jenkinson and Johnson 1976, as reported by Juma and M c G i l l 1986). Managed systems have greater inputs of nitrogen than unmanaged systems and consequently have gre a t e r l o s s e s of n i t r o g e n under steady s t a t e c o n d i t i o n s . The amount of n i t r o g e n l o s t i n a managed system i s a f u n c t i o n of time and r a t e of a p p l i c a t i o n , cropping system, and 31 moisture regime ( A l l i s o n 1966, Cameron et a l . 1978, Campbell and Paul 1 9 7 8 ) . The content of organic matter i n a s o i l r e f l e c t s the balance between a d d i t i o n s and removals. I t can be r e l a t e d to d i f f e r e n t moisture regimes at various landscape l o c a t i o n s . The d i r e c t i o n of change depends upon the previous organic matter l e v e l as w e l l as the a g r i c u l t u r a l system (Robertson 1983). The c o n c e n t r a t i o n of carbon i s g e n e r a l l y measured at p a i r e d s i t e s but since s p a t i a l v a r i a b i l i t y i s not measured, the observed changes cannot be d i r e c t l y a t t r i b u t e d to b i o l o g i c a l a c t i v i t y (Juma and M c G i l l 1986) . 2 . 2 . 3 . 2 S p e c i f i c Losses of C, N, and P The d e p l e t i o n of organic matter i n c u l t i v a t e d s o i l s has been demonstrated by a comparison of the carbon and n i t r o g e n contents i n a c u l t i v a t e d s o i l w i t h a s i m i l a r s o i l t hat remained i n permanent pasture or v i r g i n v egetation (Shutt 1925, Newton et a l . 1945, Haas et a l . 1957, Wang et a l . 1984). The reported l o s s i s about 1% of the organic carbon per year f o r the f i r s t 20 to 30 years of c u l t i v a t i o n . The magnitude of N l o s s i s s i m i l a r but l o s s e s are more dependent on c r o p p i n g p r a c t i c e s . Newton et a l . (1945) reported that a f t e r more than 20 years of cropping, s o i l s i n western Canadian p r a i r i e s had l o s t an average of 20% carbon i n the top 30 cm of s o i l and 18$ n i t r o g e n i n the top 15 cm. In Saskatchewan, carbon a d d i t i o n s to n a t i v e grassland were 1.6 times that of a s s o c i a t e d land continuously cropped t o c e r e a l s (Voroney et a l . 1981). Nitrogen i n p u t s were 2 to 2 0 times higher i n c u l t i v a t e d grassland s o i l s i n A l b e r t a than i n n a t i v e grasslands (Clark et a l . 1 9 8 0 ) . 32 The f a t e of P a s s o c i a t e d w i t h organic matter l o s s during c u l t i v a t i o n has received much l e s s a t t e n t i o n . S o i l P i s p r i m a r i l y l o s t from the organic f r a c t i o n u n t i l t h i s f r a c t i o n i s depleted s u f f i c i e n t l y t o a l l o w d i s s o l u t i o n of a p a t i t e to occur (Tiessen et a l . 1982). Much of the l i t e r a t u r e agrees w i t h these trends, but i n d i v i d u a l data show great v a r i a t i o n . Carbon l o s s e s range from 0 to 2.5$ and N from 0 to 2% per year and the l o s s e s depend on the i n i t i a l amounts and on s o i l t e x t u r e (Tiessen et a l . 1982). The reported temporal extent of degradation before e q u i l i b r i u m ranges from 22 years (Shutt 1925) to 70 years ( M a r t e l and Paul 1974), although more recent s t u d i e s suggest lo s s e s may continue (Paul and Van Veen 1978, Voroney et a l . 1981, Tiessen et a l . 1982). Wang et a l . (1984) s t u d i e d the e f f e c t s of potato c u l t i v a t i o n i n New Brunswick on the s o i l p r o p e r t i e s used f o r c l a s s i f y i n g p o d z o l i c s o i l s . A f t e r 40 years of c u l t i v a t i o n the organic carbon content was reduced by h a l f and i t s range was decreased. S o i l pH was r a i s e d s l i g h t l y due to l i m i n g . Over 90% of the f o r e s t e d s o i l s were c l a s s i f i e d as Podzols, whereas only 73% of the c u l t i v a t e d s o i l s were. Juma and M c G i l l (1986) i n a worldwide comparison of c u l t i v a t e d with u n c u l t i v a t e d s i t e s , showed th a t the concentration of organic carbon decreased by 13 t o 60%. They a l s o showed bulk d e n s i t y to be i n v e r s e l y p r o p o r t i o n a l to organic carbon w i t h t h i s r e l a t i o n s h i p p a r t l y dependent on c u l t i v a t i o n time. Gregorich and Anderson (1986) evaluated the e f f e c t s of c u l t i v a t i o n on the amount, decomposition, and r e d i s t r i b u t i o n of organic matter i n four catenas i n Saskatchewan - one n a t i v e p r a i r i e and three c u l t i v a t e d since 1910, 1930, and 1961. They reported 33 s u b s t a n t i a l reductions i n ni t r o g e n as a r e s u l t of continuing c u l t i v a t i o n . These l o s s e s were i n excess of the amount removed by g r a i n and straw. On the other hand, long term phosphorus f e r t i l i z a t i o n maintained t o t a l P i n the A horizon of c u l t i v a t e d s o i l s at l e v e l s s i m i l a r to the n a t i v e s o i l . Reduction of carbon due to m i n e r a l i z a t i o n occurred due to c u l t i v a t i o n w i t h the l a r g e s t p o r t i o n l o s t i n the e a r l y years. The 1910 f i e l d had the lowest organic carbon content. C u l t i v a t i o n a l s o increased the bulk d e n s i t y , or compacted the s o i l . The authors a l s o i n d i c a t e d an increase i n v a r i a b i l i t y of s o i l s w i t h i n the c u l t i v a t e d catenas. These d i f f e r e n c e s are apparent between the n a t i v e versus the three c u l t u r a l landscapes but there was no c o n s i s t e n t pattern among the l a t t e r three. Some of t h e i r reported l o s s e s were due to e r o s i o n , but c u l t i v a t i o n alone reduced inputs of residues, enhanced c o n d i t i o n s f o r m i n e r a l i z a t i o n by plowing and a e r a t i n g , and removed n u t r i e n t s i n crops and l o s s of n u t r i e n t s by le a c h i n g . M c G i l l et a l . (1981a) reported the organic matter content of many A l b e r t a s o i l s was reduced by 50% w i t h c u l t i v a t i o n . This was confirmed by Anderson et a l . (1986) i n Saskatchewan along w i t h i n c r e a s e s i n bulk d e n s i t y of 30 t o 40%. Some of t h e i r catenas had concentrations of organic carbon 75% lower than the n a t i v e s o i l . 2.2.4 E f f e c t s of Land Use P r a c t i c e s on S o i l P r o p e r t i e s L a v k u l i c h and Rowles (1971) examined the e f f e c t of d i f f e r e n t land use p r a c t i c e s on a s o i l i n the Fraser Lowland, B r i t i s h Columbia. Except f o r the A hori z o n , the morphological f e a t u r e s of the s o i l s formed under n a t u r a l regeneration of coniferous species was s i m i l a r to the c u l t i v a t e d s o i l s c l e a r e d about 50 years p r e v i o u s l y . In the 34 surface l a y e r the c u l t i v a t e d s i t e had pH values two u n i t s greater than the f o r e s t e d s i t e as a r e s u l t of repeated a p p l i c a t i o n s of l i m e . They a l s o found higher n i t r o g e n , narrower C:N r a t i o , higher organic matter and phosphorus contents, and higher exchangeable Ca and Mg i n the c u l t i v a t e d s o i l s r e s u l t i n g from agronomic p r a c t i c e s . Bulk d e n s i t y values were v a r i a b l e . 2.3 S o i l V a r i a b i l i t y 2.3.1 I n t r o d u c t i o n S o i l v a r i a b i l i t y i s a n a t u r a l landscape a t t r i b u t e t h a t occurs both w i t h i n and between pedons. I t i s an outcome of the b a s i c philosophy of s o i l s c i e n t i s t s , which i s that s o i l i s a f u n c t i o n of the i n t e r a c t i o n of the s o i l forming f a c t o r s : c l i m a t e , parent m a t e r i a l , topography, organisms, and time. V a r i a t i o n can be a t t r i b u t e d to some combination of experimental e r r o r , seasonal v a r i a t i o n , and s p a t i a l v a r i a t i o n , although the l a t t e r i s the l a r g e s t ( B a l l and W i l l i a m s 1968, C l i n e 1944, Cameron et a l . 1971). Large s p a t i a l v a r i a b i l i t y can obscure p o s s i b l e monthly d i f f e r e n c e s (Frankland et a l . 1963). The l a t e r a l v a r i a b i l i t y of s o i l s i n a landscape i s the ba s i s f o r d i f f e r e n t i a t i n g and mapping s o i l s . The v e r t i c a l v a r i a b i l i t y i s the p r i n c i p a l reason f o r d i f f e r e n t i a t i n g horizons w i t h i n a s o i l . An understanding of l a t e r a l v a r i a b i l i t y i s a p r e r e q u i s i t e f o r developing trend sequences i n p r o f i l e sampling (Drees and W i l d i n g 1973). S o i l v a r i a b i l i t y i s not the same at a l l depths, nor does i t change w i t h depth i n the same way f o r a l l p r o p e r t i e s at a l l seasons (Raupach 1951, Towner 1968, Cameron et a l . 1971, C i p r a et a l . 1972, Hammond et a l . 1958, and Mader 1963). 35 2.3.2 Importance of S o i l V a r i a b i l i t y Knowledge of the v a r i a b i l i t y o f s o i l s helps to understand the r e l i a b i l i t y of composition and d e s c r i p t i o n s of s o i l map u n i t s , the r e l a t i o n s h i p s among s o i l s and s o i l p r o p e r t i e s , and the r e l i a b i l i t y of p r e d i c t i o n s f o r crop y i e l d s and s o i l i n t e r p r e t a t i o n s . I t i s important i n developing c r i t e r i a f o r the a p p l i c a t i o n of f e r t i l i z e r , the input of i r r i g a t i o n , drainage, and f o r other management techniques. I t i s used to e s t i m a t e c e n t r a l tendency and variance s t a t i s t i c s f o r s p e c i f i e d c l a s s e s and c l a s s d i f f e r e n t i a e , to q u a n t i f y pedogenesis, and to d i f f e r e n t i a t e s y s t e m a t i c from random e r r o r i n landform a n a l y s i s ( W i l d i n g and Drees 1983). The i n a b i l i t y t o deal w i t h s p a t i a l v a r i a b i l i t y prevents s o i l users from a c c u r a t e l y matching s o i l requirements to s o i l c h a r a c t e r i s t i c s and, t h e r e f o r e , t o p r e d i c t s o i l behavior and performance (Uehara et a l . 1985). As a r e s u l t , there has been a growing pressure by users of s o i l surveys f o r q u a n t i f i c a t i o n of s p a t i a l v a r i a b i l i t y and confidence l i m i t s f o r s o i l map u n i t s and s o i l p r o p e r t i e s ( M i l l e r 1978). This i s a p a r t i c u l a r l y v a l i d request c o n s i d e r i n g s t u d i e s have found much l e s s than the r e q u i r e d map u n i t p u r i t y (Powell and Springer 1965, W i l d i n g et a l . 1965, Amos and Whiteside 1975, Crosson and P r o t z 1974, and Bascomb and J a r v i s 1976). V a r i a b i l i t y a l s o l i m i t s e f f o r t s to apply remote sensing to the mapping of s o i l s . MacDowall et a l . (1972) s t u d i e d r e f l e c t a n c e from moist s o i l surfaces and found that even s m a l l v a r i a t i o n s i n t e x t u r e g r e a t l y i n f l u e n c e d refectance. K r i s t o f and Zachary (1974) found that i n some instances s p e c t r a l v a r i a t i o n s were greater w i t h i n s e r i e s than between s e r i e s . 36 2.3.3 Sources of S o i l V a r i a b i l i t y Beckett and Webster (1971) d i s c u s s the sources of s o i l v a r i a b i l i t y , from those which a f f e c t s m a l l volumes of s o i l to others which introduce long-range gradations but a l l of which r e s u l t from d i f f e r e n c e s i n the f i v e s o i l forming f a c t o r s . For i n s t a n c e , parent m a t e r i a l may vary over short d i s t a n c e s , such as a l l u v i a l d e p o s i t s , or more g r a d u a l l y such as broad outcrops of sedimentary rock. S o i l s formed on transported m a t e r i a l s are more v a r i a b l e than those weathered i n s i t u from bedrock (Robinson and Lloyd 1915). Drees and W i l d i n g (1973) showed the v a r i a b i l i t y i n g e o l o g i c a l u n i t s to be i n the order l o e s s < t i l l < outwash. Mausbach et a l . (1980) found t h a t l o e s s s o i l s were l e s s v a r i a b l e than r e s i d u a l and a l l u v i a l s o i l s . Many b i o l o g i c a l a c t i v i t i e s , i n c l u d i n g tree-throw, burrowing animals, and stem f l o w , introduce heterogeneity i n s o i l s . The e f f e c t s of a l l these are superimposed, i n c l u d i n g sources of v a r i a b i l i t y s u b j e c t to human management: plowing, i r r i g a t i o n , drainage, f e r t i l i z a t i o n (Smith et a l . 1952). Harradine (1949) suggests t h a t s o i l v a r i a b i l i t y decreases w i t h the age of the landscape, but h i s data are not con c l u s i v e . 2.3.4 Systematic and Random V a r i a b i l i t y Some v a r i a b i l i t y i s s y s t e m a t i c and i s a f u n c t i o n of landforms, geomorphic elements, s o i l forming f a c t o r s , and t h e i r i n t e r a c t i o n . Mapping s o i l s i s p o s s i b l e as a r e s u l t of the s y s t e m a t i c concurrent change of s o i l s and landscapes. I t s purpose i s to group areas t h a t have greater homogeneity f o r s e l e c t e d s o i l p r o p e r t i e s and l e s s v a r i a b i l i t y than the continuum as a whole, so th a t they can be managed more u n i f o r m l y . Systematic s o i l v a r i a b i l i t y a l s o occurs at the m i c r o l e v e l i n terms of m i c r o f a b r i c and p h y s i c a l - c h e m i c a l composition 37 ( M i l l e r et a l . 1971, Brewer 1976). Associated w i t h s y s t e m a t i c v a r i a b i l i t y , s i m ultaneously and concu r r e n t l y , are those changes i n s o i l p r o p e r t i e s that are random and cannot be r e l a t e d to a known cause. In s o i l survey random e f f e c t s o f t e n have ranges exceeding the l i m i t s d efined i n the map u n i t , and are r e f e r r e d t o as i n c l u s i o n s . 2.3.5 V a r i a b i l i t y o f Chemical, P h y s i c a l , and F e r t i l i t y Parameters Researchers have been st u d y i n g s o i l v a r i a b i l i t y since the e a r l y 1900s (Montgomery 1913, Robinson and Lloyd 1915, Pendleton 1919). An abundance of s t u d i e s i n s o i l s p a t i a l v a r i a b i l i t y has occurred w i t h i n the l a s t 25 years. Most of the a t t e n t i o n has focused on s o i l v a r i a b i l i t y as a means t o f u r t h e r q u a n t i f y pedologic concepts and to b e t t e r understand the causal f a c t o r s f o r s o i l d i s t r i b u t i o n patterns and landscape e v o l u t i o n . These have been discussed i n two major l i t e r a t u r e reviews (Beckett and Webster 1971, W i l d i n g and Drees 1983) , a s e c t i o n of a t e x t ( F r i d l a n d 1972) , and one proceedings of a workshop (Nielsen and Bouma 1985). The m a j o r i t y of papers have examined the s p a t i a l v a r i a b i l i t y of s o i l chemical p r o p e r t i e s and s o i l p h y s i c a l p r o p e r t i e s , e s p e c i a l l y s o i l water (Hammond et a l . 1958, Andrew and Sterns 1963, Jacob and Klute 1956, Mason et a l . 1957, Mclntyre and Tanner 1959, Greminger et a l . 1985, N i e l s e n et a l . 1973, V i e i r a et a l . 1981, Peck 1983, Byers and Stephens 1983, Russo and B r e s l e r 1981 , and Gajem et a l . 1981). Drees and W i l d i n g (1978) and W i l l i a m s and Rayner (1977) examined the v a r i a b i l i t y of elemental p r o p e r t i e s . S p a t i a l v a r i a b i l i t y of s o i l p r o p e r t i e s a f f e c t s s o i l performance (Warrick and Gardner 1983). A uniform a p p l i c a t i o n of s o i l amendment 3 8 i n a s p a t i a l l y variable s o i l r e s u l t s i n over-application i n some areas and under-application i n others. As a r e s u l t , p r a c t i c a l i n t e r e s t i n s o i l v a r i a b i l i t y has also been expressed by studies concerned with s o i l t e s t i n g f o r agronomic purposes (Waynick and Sharp 1919, Jacob and Klute 1956, Rigney and Reed 1946, Cameron et a l . 1971). 2.3-6 V a r i a b i l i t y i n Se r i e s , Map Units, and Landscapes Considerable e f f o r t has been made to evaluate the v a r i a t i o n expected w i t h i n i n d i v i d u a l s o i l s both w i t h i n s e r i e s (Robinson and Lloyd 1915, Davis 1936, Harradine 1949, B a l l and Williams 1968, Campbell 1978, Hammond et a l . 1958, Jacob and Klute 1956, Mader 1963, Andrew and Stearns 1963, Ike and C l u t t e r 1968, Lee et a l . 1975, Nelson and McCracken 1962, and Wilding et a l . 1964) and w i t h i n map units (Amos and Whiteside 1975, Crosson and Protz 1974, McCormack and Wilding 1969, Wilding et a l . 1965, Powell and Springer 1965, Webster and Cuanalo de l a C. 1975, N o r t c l i f f 1978, Williams and Rayner 1977, Banfield and Bascomb 1976, Webster and Butler 1976, Bascomb and J a r v i s 1976). V a r i a b i l i t y within and between morphologically s i m i l a r pedons has been documented by Mausbach et a l . (1980), Drees and Wilding (1973), and Smeck and Wilding (1980). Others have examined the e f f e c t s of v a r i a b i l i t y i n p r o f i l e and landscape development (Huddleston and Riecken 1973, Harradine 1949, Protz et a l . 1968, Walker et a l . 1968a, Walker et a l . 1968b). Most e a r l y studies on s o i l v a r i a b i l i t y were concerned with the surface layer. Recent studies i n d i c a t e that v a r i a b i l i t y changes with depth and that the C horizon i s more variable than the A horizon (Mausbach et a l . 1980)- C l a s s i f y i n g s o i l s i s a l s o designed to reduce v a r i a b i l i t y i n each grouping, although some groups are more variable 39 than others. For ins t a n c e , Mausbach et a l . (1980) found t h a t Spodosols were more v a r i a b l e than I n c e p t i s o l s and E n t i s o l s , which i n tu r n were more v a r i a b l e than A l f i s o l s and M o l l i s o l s . 2.3.7 S t a t i s t i c s Many of our current conventional s t a t i s t i c a l methods come from Snedecor (1940) and Snedecor and Cochran (1967), and are designed t o analyze observations obtained i n the f i e l d which are assumed to be independent and normally d i s t r i b u t e d . The c o e f f i c i e n t of v a r i a t i o n (CV) has been an important s t a t i s t i c used t o compare s o i l property v a r i a t i o n among d i f f e r e n t parameters. I t i s defined as the d i s p e r s i o n r e l a t i v e to the mean (the standard d e v i a t i o n d i v i d e d by the mean and expressed as a percentage). I t compares d i s p e r s i o n of d i f f e r e n t s o i l p r o p e r t i e s f r e e from s c a l e f a c t o r s , but i t assumes normal frequency d i s t r i b u t i o n , no covariance between the mean and standard d e v i a t i o n , and data where the mean does not approach zero. However, s o i l o bservations are not n e c e s s a r i l y s p a t i a l l y independent and frequency f u n c t i o n s are u s u a l l y not normal but f r e q u e n t l y skewed l o g normal or gamma d i s t r i b u t i o n s ( W i l d i n g and Drees 1983). G e o s t a t i s t i c a l theory (also known as r e g i o n a l i z e d v a r i a b l e theory) has been developed to analyze s o i l s p a t i a l v a r i a b i l i t y (Matheron 1963, V i e i r a et a l . 1983, Warrick and Gardner 1983, McBratney 1985, Gutjahr 1985, V a l d i n et a l . 1983, Shumway 1985, Campbell 1978). The use of t h i s theory i n pedology i s r e l a t e d to the need to c h a r a c t e r i z e not only the mean of a property and i t s d e v i a t i o n , but how i t changes over d i s t a n c e , i t s s p a t i a l dependence, and i t s r e l a t i o n s h i p to neighboring values. Implementation of g e o s t a t i s t i c s to the study of s o i l v a r i a b i l i t y r e q u i r e s that samples 40 be c o l l e c t e d at equal i n t e r v a l s along s e v e r a l s t r a i g h t l i n e t r a n s e c t s . S t a t i s t i c a l t h e o r i e s c a l l e d a u t o c o r r e l a t i o n and semi-variance are being explored as a means to more c o n c i s e l y and completely describe changes i n s o i l p r o p e r t i e s over distance (Webster and Cuanalo de l a C. 1975, V i e i r a et a l . 1981, Lanyon and H a l l 1981, Campbell 1978, Burgess and Webster 1980, and Webster and Burgess 1980). These s t u d i e s have shown th a t there i s s p a t i a l dependence of many s o i l p r o p e r t i e s , i n v a l i d a t i n g the use of conventional s t a t i s t i c s based on independent samples. However, there appears to be no c l e a r t r e n d i n the degree of s p a t i a l dependence since i t v a r i e s f o r each v a r i a b l e and study area and may be a f u n c t i o n of time. For in s t a n c e , c o r r e l a t i o n distances vary from 230 m f o r s o i l t e x t u r e t o 5 m f o r water content (Wierenga 1985). A l s o , the a p p l i c a t i o n of k r i g i n g , another g e o s t a t i s t i c a l technique, can r e s u l t i n l e s s accurate p r e d i c t i o n s than the ones obtained by the i n t e r p r e t a t i o n of a s o i l map (Bregt and Bouma 1986 as reported by Bouma 1985). W i l d i n g , d u r i n g the d i s c u s s i o n period f o l l o w i n g the pr e s e n t a t i o n of h i s paper (Wilding 1985), expressed some of the disadvantages of m u l t i v a r i a t e s t a t i s t i c s , such as o r d i n a t i o n and c l u s t e r a n a l y s i s , as f o l l o w s : 1) a s i n g l e measure of s i m i l a r i t y i n v o l v e s enormous l o s s of i n f o r m a t i o n , 2) s e l e c t i o n , measurement, and coding of m u l t i p l e characters are h i g h l y s u b j e c t i v e , and 3) many d i f f e r e n t kinds of characters must enter i n t o taxonomic c l a s s i f i c a t i o n . He proposes that i t s p o t e n t i a l f u t u r e use may r e s u l t from high speed computers and increased focus on q u a n t i f i c a t i o n of s o i l parameters ( W i l d i n g 1985). 41 2.3.8 Magnitude of V a r i a b i l i t y (CVs) Beckett and Webster (1971) summarized most of the pre-1970 l i t e r a t u r e on s o i l v a r i a b i l i t y , most of which concerned v a r i a b i l i t y i n s o i l f e r t i l i t y measurements of surface horizons i n f i e l d s of s i m i l a r s o i l s . They separated p r o p e r t i e s i n t o three groups on the basis of t h i s v a r i a b i l i t y : 1) the group w i t h the l e a s t v a r i a b i l i t y c o n s i s t e d of contents of sand, s i l t and c l a y , p l a s t i c and l i q u i d l i m i t s , h o r i z o n t h i c k n e s s , and t o t a l P, 2) the i n t e r m e d i a t e group c o n s i s t e d of organic matter, c a t i o n exchange c a p a c i t y , and n i t r o g e n , and 3) the most v a r i a b l e group c o n s i s t e d of a v a i l a b l e P, Mg, Ca, and K. Adams and Wilde (1976) proposed adding t o t a l Ca and K to group 1, t o t a l N, t o t a l exchangeable bases, percent base s a t u r a t i o n and P r e t e n t i o n to group 2 and exchangeable Na to group 3- N i e l s e n et a l . (1973) and Bascomb and J a r v i s (1976) placed bulk d e n s i t y i n t o group 1 w i t h a CV commonly of about 8 i n a map u n i t . Smeck and W i l d i n g (1980) reported the CV f o r bulk d e n s i t y a t the pedon l e v e l i s about 2. W i l d i n g and Drees (1978) and W i l d i n g and Drees (1983) elaborated on the q u a n t i f i c a t i o n of the three v a r i a b i l i t y groupings, although they warn ag a i n s t comparing the magnitude of s p a t i a l v a r i a b i l i t y i n the l i t e r a t u r e because few s c i e n t i s t s use comparable sampling schemes or o b s e r v a t i o n a l i n t e r v a l s . The authors developed general guides to be used i n the absence of o n - s i t e i n f o r m a t i o n . They add more s o i l p r o p e r t i e s to the above l i s t and present the number of pedons r e q u i r e d to e s t i m a te the population mean w i t h i n 10$ us i n g a 95$ confidence i n t e r v a l . They suggest group 1, to which they add s o i l pH, has a CV of l e s s than 15 r e q u i r i n g l e s s than 10 pedons to estimate the mean; group 2, a CV between 15 and 35, and r e q u i r i n g 10 to 35 pedons; and 42 group 3, a CV more than 35, r e q u i r i n g more than 35 pedons, and to which they moved organic matter content. G e n e r a l l y , exchangeable c a t i o n s (or s i m i l a r parameters such as a v a i l a b l e Ca, Mg and K) have been shown to e x h i b i t the g r e a t e s t v a r i a b i l i t y , and t o t a l P, bulk d e n s i t y , and pH the l e a s t (Beckett and Webster 1971). However, since pH i s a l o g a r i t h m i c f u n c t i o n , i t i s not a p p r o p r i a t e to compare i t s CV w i t h CVs of a r i t h m e t i c f u n c t i o n s . Beckett and Webster (1971) present CV values from the l i t e r a t u r e . They found t h a t some p r o p e r t i e s , p a r t i c u l a r l y those a f f e c t e d by management, were c o n s i s t e n t l y more v a r i a b l e than others. For A horizons the range i n CVs f o r the various s o i l p r o p e r t i e s are the f o l l o w i n g : pH 6 to 56, organic matter 21 t o 51, t o t a l P 24 t o 45, Ca 29 to 63, Mg 41 t o 121, and K 21 t o 99. They f e l t t h e CVs f o r pH are low because the range f o r pH i n s o i l i s narrow and the zero s c a l e f o r pH i s f a r below the normal range. Although the r e l a t i o n s h i p between pH and parent m a t e r i a l might be defined, t h a t between v a r i a t i o n of pH and parent m a t e r i a l i s l e s s c l e a r (Campbell 1979). The p r o p e r t i e s most a f f e c t e d by management, the ones placed i n group 3, were c o n s i s t e n t l y more v a r i a b l e than others. T o p s o i l s appeared to be s l i g h t l y l e s s v a r i a b l e than s u b s o i l s . More r e c e n t l y , Mausbach et a l . (1980) found pH to be the l e a s t v a r i a b l e property w i t h an average CV of 9 and organic carbon t o be the most v a r i a b l e w i t h an average CV of more than 100. These authors noted t h a t t h e i r CVs were i n c l o s e agreement w i t h those i n other s t u d i e s (Ike and C l u t t e r 1968, Nelson and McCracken 1962, and W i l d i n g e t a l . 1964). Beckett and Webster (1971) have noted that other authors have t e s t e d the d i f f e r e n c e s i n v a r i a b i l i t y by a n a l y s i s of variance ( W i l d i n g et 43 a l . 1965, Andrew and Stearns 1963) and found the F r a t i o was s i g n i f i c a n t f o r some p r o p e r t i e s but not f o r others. Since s i g n i f i c a n c e depends on the number of samples as w e l l as the magnitude of the d i f f e r e n c e s between populations and t h e i r v a r i a n c e s , c a u t i o n must be used i n i n t e r p r e t i n g the r e s u l t s . I n s t u d i e s published a f t e r 1970, Crosson and P r o t z (1974) reported CVs f o r pH i n the Ap of 3 to 5 and f o r organic matter content i n t h i s h orizon of 20 t o 34. Cameron et a l . (1971) reported CVs of 7 to 15 f o r pH and 19 to 33 f o r exchangeable K. Exchangeable Ca, Mg, and K were the most v a r i a b l e i n a study of three map u n i t s i n New Zealand, ranging from 5 to 60%, exchangeable K showing the g r e a t e s t v a r i a t i o n (Lee et a l . 1975). T o t a l P and bulk d e n s i t y ranged from 2 to 6$. Belebrov (1972) i n examining arable s o i l s reported CVs of 7 to 12 f o r organic matter content and 2 t o 4 f o r pH i n water. Lee et a l . (1975) and Tiessen et a l . (1982) have examined the e f f e c t s of v a r i a b i l i t y expressed on a weight versus a volume b a s i s , obtained by c o r r e c t i n g weight data f o r changes i n bulk density. Both s t u d i e s showed a s l i g h t i n c r e a s e i n v a r i a b i l i t y , and thus greater s e p a r a t i o n between groups. In c u l t i v a t e d s o i l s the cause could be the increases i n bulk d e n s i t y from the n a t i v e s o i l and the increases i n the standard d e v i a t i o n of the data due to v a r i a b i l i t y of horizon depths (Tiessen et a l . 1982). The b a s i c u n i t s i n which l e v e l s are to be expressed depend on the purpose of the i n v e s t i g a t i o n . For i n s t a n c e , c o n c e n t r a t i o n data (wt./wt.) can give a measure of the s t a b i l i t y and turnover of organic matter, whereas volume data (wt./vol.) g i v e s an i n d i c a t i o n of abundance of organic matter r e l a t i v e to p l a n t r o o t i n g volume. C a r r y i n g t h i s one step f u r t h e r t o f i e l d 44 l e v e l (wt./(area-solum depth)) gives a measure of t o t a l amounts of organic matter l o s t from a s o i l due to the combined e f f e c t s of m i n e r a l i z a t i o n and erosion (Tiessen et a l . 1982). W i l d i n g and Drees (1983) made the f o l l o w i n g g e n e r a l i z a t i o n s about s o i l v a r i a b i l i t y : 1) r e l i a b i l i t y i n a c c u r a t e l y p r e d i c t i n g s o i l p r o p e r t i e s decreases w i t h depth, p a r t l y r e s u l t i n g from l e s s ground t r u t h c o n t r o l at depth, 2) s p a t i a l v a r i a b i l i t y i s c l o s e l y a l l i e d w i t h the parent m a t e r i a l from which the s o i l s are formed, 3) s t a t i c s o i l p r o p e r t i e s are l e s s v a r i a b l e than dynamic ones (organic matter, t e x t u r e , and bulk d e n s i t y versus s o i l moisture content, N, P, and exchangeable c a t i o n s ) , and 4) p r o p e r t i e s which can be q u a n t i f i e d or c l o s e l y c a l i b r a t e d to a standard are l e s s v a r i a b l e than those which are q u a l i t a t i v e (texture and pH versus s t r u c t u r e and consistence). 2.3.9 V a r i a b i l i t y and Si z e of Sampling Area Examining s o i l v a r i a b i l i t y i n r e l a t i o n to s i z e of sampling area, Beckett and Webster ( 1 97D i n d i c a t e that s o i l v a r i a b i l i t y i ncreases with the s i z e of area sampled, even w i t h i n areas regarded as a s i n g l e map u n i t . They i n d i c a t e that as much as h a l f the v a r i a b i l i t y present w i t h i n 1 ha could already be present w i t h i n a few square meters. For c u l t i v a t e d areas, the p r o p o r t i o n could be two to four times l a r g e r . For c u l t i v a t e d areas, f o r i n s t a n c e , they e x t r a c t e d the f o l l o w i n g median values of CVs f o r t o p s o i l : potassium CV=35 f o r 0.01 ha and 70 f o r a s i n g l e f i e l d and ni t r o g e n or organic matter CV=10 to 20 f o r 0.01 ha and 25 t o 30 f o r a s i n g l e f i e l d . Young (1973) proposed that more than h a l f the t o t a l v a r i a b i l i t y w i t h i n a large area occurs w i t h i n 1 ha or even 10 m2. W i l d i n g and Drees (1978) present data to i l l u s t r a t e that the 45 magnitude of v a r i a b i l i t y g e n e r a l l y i n c r e a s e s w i t h i n c r e a s i n g s c a l e f a c t o r from l a b o r a t o r y analyses to the pedon t o the s e r i e s and s o i l map u n i t . CVs f o r most p r o p e r t i e s i n map u n i t s are centered on 25 t o 40, s e r i e s concepts are commonly 50 t o 70% of these values, and pedons commonly e x h i b i t CVs of 5 to 10 or l e s s . More s p e c i f i c a l l y , the f o l l o w i n g are some approximate CVs f o r the map u n i t , s e r i e s , and pedon, r e s p e c t i v e l y : pH 10, 8, 2; organic matter i n the Ap horizon 38, 19, 5; exchangeable Ca 49, 29, 6; exchangeable Mg 67, 50, 9; and exchangeable K 58, 29, 9 ( W i l d i n g and Drees 1978). Gibson et a l . (1983) and G i l t r a p et a l . (1983) examined the chemical and morphological v a r i a b i l i t y , r e s p e c t i v e l y , of a map u n i t , and found the s m a l l e s t area (0.1 ha) e x h i b i t e d the lowest v a r i a b i l i t y , whereas the medium s i z e area e x h i b i t e d variances i n excess of those given i n the whole map u n i t . 2.3.10 Number of Samples to Estimate a Mean I t has been g e n e r a l l y accepted that the number of samples c u r r e n t l y used f o r c h a r a c t e r i z i n g s o i l s i s inadequate f o r e s t a b l i s h i n g l i m i t s of s o i l p r o p e r t i e s (Nelson and McCracken 1962, P r o t z et a l . 1968, Crosson and P r o t z 1974). On the other hand, the derived number may be i m p r a c t i c a l and l e s s accurate mean estimates w i l l have to be accepted. For i n s t a n c e , Crosson and P r o t z (1974) re p o r t that over 100 samples would be r e q u i r e d t o detect s i g n i f i c a n t d i f f e r e n c e s f o r many thi c k n e s s and c o l o r parameters even at the 80$ l e v e l between two map u n i t s and over 5000 f o r pH i n H 2o. Nelson and McCracken (1962) i n d i c a t e t h a t a composite sample based on 15 s i t e s was accurate enough f o r d e t e r m i n a t i o n of K and P w i t h i n 25%. The number of observations needed to c h a r a c t e r i z e s o i l p r o p e r t i e s 46 i n a sampling u n i t depends on the population variance of the property, the confidence l i m i t s chosen, and the probable e r r o r of tolerance about the mean t h a t i s acceptable ( W i l d i n g and Drees 1983, F i g . 4.4). This number can be estimated u s i n g the formula n= 4[(CV)(x)/1 OoJ 2/L2, where n = number of samples, CV = c o e f f i c i e n t of v a r i a t i o n i n percent, x = mean of property i n the s p e c i f i c group, and L = d e s i r e d l i m i t of v a r i a t i o n i n percent (Snedecor and Cochran 1967). To r e l a t e the sample s i z e t o a percentage of the mean, s u b s t i t u t e p times x f o r L, where p=desired percentage of the mean. C a n c e l l a t i o n of the x y i e l d s the formula n=4 [(CV)/1 OoJ -2/p2. Another expression i s n = 2t2s2 d-2, where t2=F=tabulated F values f o r the p a r t i c u l a r p r o b a b i l i t y l e v e l , i.e., 80$ or 95$, s=standard d e v i a t i o n of the s o i l property, and d=the d i f f e r e n c e i n means of two s i m i l a r l y drawn samples ( S t e e l and T o r r i e 1980). The 95$ p r o b a b i l i t y l e v e l i s g e n e r a l l y used f o r most b i o l o g i c a l c a l c u l a t i o n s , whereas 80$ may be more r e a l i s t i c f o r many s o i l s s t u d i e s . Mausbach et a l . (1980), f o r example, found t h a t nine t o more than 100 m o r p h o l o g i c a l l y matched samples were needed to e s t a b l i s h c l a y content (at the 95$ confidence l e v e l ) t o w i t h i n +2$. The f o l l o w i n g authors a l s o propose numbers of samples to estimate the population means w i t h i n c e r t a i n l i m i t s : W i l d i n g et a l . (1964), W i l d i n g et a l . (1965), Campbell (1978), Mausbach et a l . (1980), Drees and W i l d i n g (1973), Crosson and P r o t z (1973), Cameron et a l . (1971), B a l l and W i l l i a m s (1968), Lee et a l . (1975), and Reed and Rigney (1947). In a d d i t i o n t o the number of samples to e f f i c i e n t l y e s t i m a t e the p r o p e r t i e s of a s o i l , Campbell (1978) advises t h a t i t i s necessary to estimate the minimum distance between samples, which the theory of r e g i o n a l i z e d v a r i a b l e s w i l l do. 47 2.3.11 E f f e c t s of C u l t i v a t i o n Superimposed upon the e f f e c t of these n a t u r a l s o i l forming f a c t o r s are the a c t i v i t i e s of man. By modifying h i s environment, or the s o i l d i r e c t l y , man a l s o i n f l u e n c e s the degree of v a r i a b i l i t y e x h i b i t e d by s o i l s . Hemingway (1955) showed that variance increased g r e a t l y where manure, l i m e , or f e r t i l i z e r had been a p p l i e d . C u l t i v a t i o n makes a major impact on s o i l s and s o i l v a r i a b i l i t y through the homogenization of the surface l a y e r . In the process of mixing the upper 0.15 to 0.2 m, the d i s s i m i l a r i t y between surface l a y e r s of various s o i l s decreases and the s y s t e m a t i c v a r i a b i l i t y i s v a s t l y reduced. For s o i l p r o p e r t i e s much a f f e c t e d by management, the between-field component of variance tends t o be greater than that of more durable p r o p e r t i e s . Of the wide v a r i e t y of f a c t o r s i n f l u e n c i n g the v a r i a t i o n of the chemical f a c t o r s , i t i s l a r g e l y those unreported i n the o r i g i n a l s t u d i e s , p r i n c i p a l l y s o i l management p r a c t i c e s , t h a t are most l i k e l y t o be among the most s i g n i f i c a n t (Campbell 1979). In c u l t i v a t e d s o i l s , Belebrov (1972) found that the main i n f l u e n c e on the nature of v a r i a b i l i t y i s the degree of c u l t i v a t i o n , which i s more s i g n i f i c a n t than the degree of p o d z o l i z a t i o n . He presents data showing v a r i a b i l i t y o f s o i l p r o p e r t i e s to be lower i n c u l t i v a t e d sod-podzolic s o i l s than n o n c u l t i v a t e d . He explained t h i s by n o t i n g t h a t d i f f e r e n c e s i n the d i s t r i b u t i o n of root systems and s o i l t h i c k n e s s and p r o d u c t i v i t y , a l l of which i n f l u e n c e the v a r i a b i l i t y o f organic matter content, are g r e a t l y l e v e l e d out by annual plowing. D i f f e r e n c e s i n microtopography can r e s u l t i n q u i t e s u b s t a n t i a l d i f f e r e n c e s i n s o i l v a r i a b i l i t y (Kachanoski et a l . 1985, N i e l s e n et a l . 1983). Kachanoski et a l . (1985), on comparing a 48 n a t i v e grassland w i t h one c u l t i v a t e d f o r 30 years found an increase f o r bulk d e n s i t y i n value (1.14 to 1.19 Mg/m3) and v a r i a b i l i t y (CV=5.3 t o CV = 8.8) and a d e c r e a s e f o r carbon c o n t e n t (38.0 t o 30.2 mg/g and CV=22.7 to CV=20.0) i n the A horizon. Singh et a l . (1985) s t u d i e d the v a r i a b i l i t y of m i c r o n u t r i e n t s between a c u l t i v a t e d s i t e and i t s na t i v e p r a i r i e counterpart i n Saskatchewan. They found a high degree of v a r i a b i l i t y and as a r e s u l t large numbers of samples would be re q u i r e d to o b t a i n a p r e c i s e estimate of the mean, which would be c r i t i c a l as d e f i c i e n c y l e v e l s are approached. T o p s o i l s were l e s s v a r i a b l e than s u b s o i l s and the c u l t i v a t e d s i t e was s l i g h t l y l e s s v a r i a b l e than i t s n a t i v e counterpart. A b a s i c premise o f these s t u d i e s of s p a t i a l v a r i a b i l i t y i s that the s p a t i a l s t r u c t u r e i s preserved over time. Although e a r l y s t u d i e s examined seasonal v a r i a t i o n , not much research a t t e n t i o n has focused on d i f f e r e n t i a t i n g s p a t i a l s o i l v a r i a b i l i t y i n general from t h a t i n te m p o r a l l y d i f f e r e n t f i e l d s of the same s o i l s (Wagenet 1985). Harradine (1949) gave some i n s i g h t i n t o v a r i a b i l i t y on a l a r g e s c a l e of s o i l development but i n terms of changes i n v a r i a b i l i t y due to c u l t i v a t i o n time ( i n tens of years), the temporal is s u e beyond seasonal change, has not been addressed. Nor have s t u d i e s considered land use h i s t o r y . Another aspect of s o i l v a r i a b i l i t y that has not been addressed i s the e f f e c t of a p o l i t i c a l boundary and thus d i f f e r e n c e s i n management on the same s o i l as they a f f e c t s o i l v a r i a b i l i t y . These w i l l be some of the i s s u e s addressed i n t h i s study. 49 3.0 ENVIRONMENTAL SETTING 3.1 Climate The Fraser Lowland, which l i e s w i t h i n the middle l a t i t u d e zone o f we s t e r l y winds, i s g r e a t l y i n f l u e n c e d by i t s p r o x i m i t y to the P a c i f i c Ocean and the S t r a i t of Georgia. According to Koppen's c l i m a t i c c l a s s i f i c a t i o n system, the Lowland l i e s dominantly w i t h i n the Cfb c l i m a t i c r e g i o n (humid c l i m a t e w i t h warm summer) ( S t r a h l e r and S t r a h l e r 1983) and Thornthwaite's marine west-coast c l i m a t i c r e gion (Thornthwaite 1948). Considerable c l i m a t i c changes occur i n the Lowland as a r e s u l t of the Cascade and Coast Mountains to the east and north and the Olympic and Vancouver I s l a n d Ranges to the west and southwest. In w i n t e r frequent c y c l o n i c storms, which o r i g i n a t e i n the A l e u t i a n Low, sweep across the north P a c i f i c to s t r i k e Vancouver I s l a n d and the coast of Washington. Orographic l i f t i n g o f the moist a i r r e s u l t s i n heavy p r e c i p i t a t i o n on the windward western slopes and creates a marked r a i n shadow on the leeward eastern slopes. Because of these topographic b a r r i e r s , annual p r e c i p i t a t i o n i s lowest on the western margins (from the r a i n shadow) and increases eastward from the l i f t i n g of the a i r masses f a c i n g the Cascade and Coast Ranges. P r e c i p i t a t i o n ranges from about 1100 t o about 1500 mm i n the study area. The p r e c i p i t a t i o n and temperature records f o r White Rock, B.C. and B l a i n e , WA i n the western part of the study area and Abbotsford, B.C. and Clear brook, WA i n the c e n t r a l part are given i n Ta b l e 4. Winters i n the Lowland are cloudy and m i l d . D i u r n a l temperature ranges are s m a l l and normally do not exceed 9° C. The lowest 50 Table 4. Temperature and p r e c i p i t a t i o n data 1951 to 1980 at White Rock, B.C., B l a i n e , WA, Abbotsford, B.C., and Clearbrook, WA. White Rock B l a i n e Abbotsford Clearbrook ( e l e v . 35 m) ( e l e v . 25 m) ( e l e v . 60 m) ( e l e v . 20 m) Month Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Temp. P r e c i p . Temp. P r e c i p . Temp. P r e c i p . Temp. P r e c i p . oc mm oc mm oc mm oc mm January 2.7 155.1 2.3 157.6 1.3 207.3 1.8 146.8 February 4.6 108.7 4.7 127.1 4.2 163.8 4.6 116.9 March 5.5 92.8 6.0 100.3 5.6 145.0 5.8 101.7 A p r i l 8.4 65.2 8.8 81.4 8.6 104.1 8.8 86.2 May 11.6 55.8 12.2 62.2 12.2 72.9 12.2 73.8 June 14.0 48.8 14.9 54.6 14.9 59.9 14.8 57.8 J u l y 16.1 29.8 16.8 33-5 16.9 37.8 16.9 38.0 August 15.9 45.3 16.4 45.4 16.7 49.0 16.6 54.0 September 13-7 63.8 13.8 69.8 14.4 86.0 14.2 81.4 October 10.0 110.9 10.0 134.8 10.1 170.4 9.9 123.2 November 6.0 147.4 6.1 163.4 5.7 190.5 5.6 148.6 December 4.1 169.2 3.8 179.9 3.1 215.1 3.1 160.0 Year 9.4 1092.8 9.7 1210.1 9.5 1502.4 9.5 1188.6 temperatures and the strongest winds are u s u a l l y recorded when cold c o n t i n e n t a l p o l a r a i r masses from the A r c t i c surge through the Fraser R i v e r Canyon and spread out over the Lowland. These i n v a s i o n s of c o l d a i r are known i n the US as "Northeasters." The lowest temperature ever recorded i n White Rock i s - 2 0 . 0 , i n B l a i n e - 1 8 . 3 , i n Abbotsford -21.1 and i n Clearbrook i s - 2 0 . 0 o C . Summers are warm and r e l a t i v e l y dry. The mean maximum J u l y temperature f o r the four s i t e s are 20.7, 22 .6 , 2 3 . 4 , and 23 .80c, r e s p e c t i v e l y , whereas the mean monthly temperature f o r J u l y i s 16.1, 16.5, 17 .0 , and 16.60c, r e s p e c t i v e l y . I n l a t e s p r i n g the north P a c i f i c high pressure system, s h i f t i n g northward over the r e g i o n , r e s t r i c t s most c y c l o n i c storms to more n o r t h e r l y l a t i t u d e s . 51 Prevailing westerly and northwesterly winds from this high pressure system bring relatively drier air into the Lowland about May. The annual water budget for Clearbrook shows that irrigation is often needed during the summer months (Fig. 1). The average growing season of about 150 days, May through September, is sufficient for the crops grown in the Lowland (Phillips 1966, Environment Canada 1982). JAN FEB MAR APR MAY JUN JUL AUG S£P OCT NOV DCC Fig. 1. Mean annual water budget at Clearbrook, WA station. 52 3.2 Physiography, Geology, Vegetation, and S o i l s 3.2.1 Physiography and Geology The Fraser Lowland forms the southwestern corner of the P a c i f i c Coast mainland of Canada and the a d j o i n i n g northwestern corner of the c o n t i n e n t a l United States ( F i g . 2). I t i s a t r i a n g u l a r area covered w i t h Quaternary s u r f i c i a l d e posits that have r e l a t i v e l y low r e l i e f . The Fraser Lowland i s bounded on the north by the Coast Mountains, on the southeast by the Cascade and Chuckanut mountains, and on the west by the S t r a i t of Georgia. Most of the upland areas, which c o n s i s t of unconsolidated d e p o s i t s , are below 175 m i n e l e v a t i o n , and owe t h e i r o r i g i n and form to g l a c i a l and/or marine processes (Armstrong 1981). Four major f l a t -bottomed v a l l e y s t r a n s e c t the Fraser Lowland: the v a l l e y s of the Fraser and the Nicomekl r i v e r s , which l i e w h o l l y i n Canada, the v a l l e y of the Nooksack R i v e r , which l i e s w h o l l y i n the United S t a t e s , and the Sumas V a l l e y , which averages 5 km i n width and overlaps the I n t e r n a t i o n a l Boundary 25 km to the northeast and 10 km to the southwest. The study area c o n s i s t s of r o l l i n g d r i f t - c a p p e d uplands, a hummocky g l a c i a l m a r i n e d r i f t p l a i n , and the n e a r l y l e v e l g l a c i o f l u v i a l t e r r a c e s o v e r l o o k i n g the broad f l o o d p l a i n of the Sumas V a l l e y . Part of the Sumas V a l l e y was impounded by Lake Sumas, which was drained i n 1924. The topography r e s u l t s from s e v e r a l g l a c i a t i o n s , marine submergence and rebound, and p o s t g l a c i a l f l u v i a l a c t i o n . A e o l i a n veneers, m o d i f i e d by v o l c a n i c ash, probably from Mount Mazama i n southwestern Oregon (Lidstrom 1972) cover and are inc o r p o r a t e d i n t o many of the P l e i s t o c e n e d e p o s i t s (Armstrong 1981). 53 The e l e v a t i o n of the study area ranges from 8 to 160 m. S p e c i f i c a l l y , the e l e v a t i o n range f o r the f l o o d p l a i n i s 8 t o 14 m, f o r the outwash t e r r a c e s 45 to 60 m, f o r the g l a c i a l m a r i n e d r i f t p l a i n s 50 to 85 m, and f o r the i c e - c o n t a c t morainal deposits 70 t o 160 m. The f i r s t study of the boundary area was made by B r i t i s h and United States g e o l o g i s t s as part of the F i r s t I n t e r n a t i o n a l Boundary Commission 1857-1861 (Daly 1912, Smith and C a l k i n s 1904). 3.2.2 Vegetation The n a t u r a l vegetation on the f l o o d p l a i n of the Fraser Lowland i s described by North et a l . (1979) based on d e s c r i p t i o n s by the f i r s t land surveyors of the Royal Engineers. Common names only were used. In the f l o o d p l a i n the vegetation had to adapt to the annual r i v e r i n e f l o o d i n g . I t c o n s i s t e d of grass, w i l l o w ( S a l i x spp.), hardhack (Spirea d o u g l a s i i var. m e n z i e s i i (Hook.) P r e s l ) and crabapple (probably Malus spp.). The g l a c i a t e d uplands were dominated by D o u g l a s - f i r (Pseudotsuga m e n z i e s i i (Mirb.) Franco), grand f i r (Abies  grandis (Dougl.) L i n d l . ) , western redcedar (Thuja p l i c a t a Donn), and red a l d e r (Alnus rubra Bong.) w i t h minor occurrences of western hemlock (Tsuga h e t e r o p h y l l a (Raf.) Sarg.), S i t k a spruce (Picea s i t c h e n s i s (Bong.) Carr.), dogwood (probably Cornus n u t t a l l i i Aud. ex T. & G.), p i n e ( P i n u s spp.), and hawthorne (Cr a t a e g u s spp.). The undergrowth co n s i s t e d of s a l a l ( G a u l t h e r i a s h a l l o n Pursh), Oregon-grape (probably B e r b e r i s nervosa Pursh), and vine maple (Acer  c i r c i n a t u m Pursh). In some cases l o g g i n g o f the uplands r e s u l t e d i n second growth f o r e s t c o n s i s t i n g o f D o u g l a s - f i r , western redcedar, red a l d e r , some western hemlock and grand f i r w i t h an undergrowth of western swordfern 55 (Polystichum muni turn (Kaulf.) K. P r e s l . ) , western brackenfern ( P t e r i d i u m aquilinum (L.) Kuhn), red huckleberry (Vaccinium  p a r v i f o l i u m J.E. Smith), s a l a l , vine maple, and Oregon-grape (Goldin 1985, F r a n k l i n and Dyrness 1973, K r a j i n a 1970). When the land was c l e a r e d f o r a g r i c u l t u r e , the i n i t i a l stage was c h a r a c t e r i z e d by experimentation. Crops such as sugar beets, f l a x , hops and f l o w e r bulbs were once grown commercially (Smelser 1970). Gradually farmers s e t t l e d on hay and pasture f o r d a i r y i n g and cash crops. F l u c t u a t i n g markets, mechanization (such as the raspberry p i c k e r and freeze processing), s p e c i a l i z a t i o n (such as conversion of pasture to s i l a g e o p e r a t i o n s ) , and weather ( f r o s t s i n the 1950s and 1960s devastated strawberry operations) have been important f a c t o r s i n changing the choice of crops. The dominant crops grown i n the Fraser Lowland i n the 1980s are pasture, vegetables (peas, beans, s i l a g e corn, seed potatoes, and c a r r o t s ) , and b e r r i e s ( r a s p b e r r i e s , s t r a w b e r r i e s , and b l u e b e r r i e s ) . The p r i n c i p a l species grown f o r pasture are orchard grass ( D a c t y l i s  glomerata L.), timothy (Phleum pratense L.), p e r e n n i a l rye (Lolium  perenne L.), fescue (Festuca spp.), white c l o v e r ( T r i f o l i u m repens L.), A l s i k e c l o v e r ( T r i f o l i u m hybridum L.), and red c l o v e r ( T r i f o l i u m  p r a t e n s e L.). 3 . 2 . 3 S o i l s The f i e l d mapping f o r the s o i l survey of the Lower Fraser V a l l e y area was completed i n the e a r l y 1970s (Luttmerding 198la,b,c). The f i e l d mapping f o r the s o i l survey o f the Whatcom County Area was completed i n 1982 (Goldin 1986). The s o i l s mapped i n the study area on each parent m a t e r i a l are l i s t e d i n Table 5 (Goldin 1986, 56 Luttmerding 1981a). The paired s o i l s between Canada and the United S t a t e s , such as Lickman and Mt Vernon, have been c o r r e l a t e d across the I n t e r n a t i o n a l Boundary (Figs. 3-6) (Goldin and Luttmerding 1985). Except f o r the morainal parent m a t e r i a l , the s o i l s sampled were s e l e c t e d from these. Sampling of the Eve r e t t and Bose s o i l s was e l i m i n a t e d since the e n t i r e sequence of four land c l e a r i n g ages was not found. The underlined s o i l s were sampled. The c l a s s i f i c a t i o n of the s o i l s i s given i n Tables 6 and 7 and t h e i r land and a g r i c u l t u r a l c a p a b i l i t y c l a s s e s i n Tables 8 and 9, r e s p e c t i v e l y . T y p i c a l pedons f o r the B r i s c o t , K i c k e r v i l l e , and Whatcom s o i l s from the Whatcom County s o i l survey are given i n Appendix A V along w i t h p e r t i n e n t landscape data. Pedons f o r the Canadian counterparts are given i n Luttmerding (1981b). C h a r a c t e r i z a t i o n data f o r the Canadian s o i l s are given i n Luttmerding (1981c). Laboratory data f o r the K i c k e r v i l l e and Whatcom s o i l s are given i n N e t t l e t o n et a l . (1985). A d d i t i o n a l i n f o r m a t i o n can be obtained from the N a t i o n a l S o i l Survey Laboratory of USDA's S o i l Conservation Service under l a b o r a t o r y numbers S81WA-073-015 and S81WA-073-007, r e s p e c t i v e l y . 1/ Tables r e f e r r e d t o i n the t e x t t h a t are l o c a t e d i n the appendices are designated w i t h the l e t t e r a s s o c i a t e d w i t h the appropriate appendix, i . e . , A1 i s the f i r s t t a b l e i n Appendix A. 57 Table 5. Parent m a t e r i a l and s o i l s i n the study area. A l l u v i u m Canada United States Lickman Mt Vernon Buckerfield Sumas Bates Puget Vedder Oridia Vye Briscot Pangborn G l a c i a l Outwash Canada United States Abbotsford Kickerville Marble H i l l Kickerville Defehr Coghlan C a l k i n s Pangborn G l a c i a l m a r i n e D r i f t  Canada United States Whatcom Whatcom Nicholson Whatcom Scat Labounty Ross Columbia Bose Judson Sunshine Hampton Morainal Deposits Canada United States Bose Eve r e t t hard substratum Heron Scat Sunshine Boosey Ever e t t C l i p p e r Tromp 58 Table 6. C l a s s i f i c a t i o n of s o i l s i n the study area of Whatcom County, WA ( G o l d i n 1986, S o i l Survey S t a f f 1 9 7 5 ) . S e r i e s C l a s s i f i c a t i o n B r i s c o t Coarse-loamy, mixed, nonacid, mesic A e r i e Fluvaquents K i c k e r v i l l e Coarse-loamy, mixed, mesic Typic Haplorthods Mt. Vernon Coarse-loamy, mixed, mesic Fluvaquentic H a p l o x e r o l l s O r i d i a C o a r s e - s i l t y , mixed, nonacid, mesic A e r i e Fluvaquents Puget F i n e - s i l t y , mixed, nonacid, mesic A e r i e Fluvaquents Sumas F i n e - s i l t y over sandy or s a n d y - s k e l e t a l , mixed, nonacid, mesic A e r i e Fluvaquents Whatcom Fine-loamy, mixed, mesic A q u a l f i c Haplorthods Table 7. C l a s s i f i c a t i o n of s o i l s i n the study area, Lower Fraser V a l l e y , B r i t i s h Columbia (Luttmerding 1981b, Canada S o i l Survey Committee 1978). S e r i e s C l a s s i f i c a t i o n Abbotsford O r t h i c Humo-Ferric Podzol, coarse-loamy over sandy-s k e l e t a l (or c o a r s e - s i l t y over s a n d y - s k e l e t a l ) , mixed, a c i d (or n e u t r a l ) , m i l d subhumid (or humid) Bates Gleyed E l u v i a t e d Melanic B r u n i s o l , f i n e - s i l t y (or f i n e -s i l t y over sandy), mixed, a c i d (or n e u t r a l ) , m i l d subaquic (or perhumid) B u c k e r f i e l d O r t h i c Humic G l e y s o l , f i n e - s i l t y (or f i n e - s i l t y over sandy), mixed, n e u t r a l , m i l d aquic Lickman E l u v i a t e d E u t r i c B r u n i s o l , coarse-loamy, mixed, n e u t r a l , m i l d subhumid (or humid) Marble H i l l O r t h i c Humo-Ferric Podzol, c o a r s e - s i l t y over sandy-s k e l e t a l (or coarse-loamy over s a n d y - s k e l e t a l ) , mixed, a c i d , m i l d humid (or subhumid) Vedder O r t h i c G l e y s o l , f i n e - s i l t y over sandy (or f i n e - s i l t y ) , mixed, n e u t r a l (or a c i d ) , m i l d aquic (or peraquic) Vye Gleyed Gray L u v i s o l , f i n e - s i l t y over sandy (or f i n e -s i l t y ) , mixed, n e u t r a l (or a c i d ) , m i l d subaquic (or aquic) Whatcom L u v i s o l i c Humo-Ferric Podzol, f i n e - s i l t y (or fine-loamy) (or coarse-loamy), mixed, n e u t r a l , m i l d perhumid (or subaquic) 59 Table 8. Land c a p a b i l i t y c l a s s e s f o r map u n i t s from major s o i l s i n the study area (Goldin 1986, K l i n g e b i e l and Montgomery 1973). Land C a p a b i l i t y S o i l map u n i t Class 2w B r i s c o t s i l t loam, d r a i n e d , 0 to 2 percent slopes 3e E v e r e t t g r a v e l l y sandy loam, hard substratum, 2 to 8 percent slopes 2c K i c k e r v i l l e s i l t loam, 0 t o 3 percent slopes 2w Mt Vernon f i n e sandy loam, 0 to 2 percent slopes 2w O r i d i a s i l t loam, d r a i n e d , 0 t o 2 percent slopes 2w Sumas s i l t loam, drained, 0 to 2 percent slopes 2e Whatcom s i l t loam, 3 to 8 percent slopes Table 9« A g r i c u l t u r a l c a p a b i l i t y c l a s s e s f o r major s o i l s i n the study area (Luttmerding, 1985, personal communication, Keng 1983). Unimproved Improved S o i l 3A 1 Abbotsford 2WA 1 Bates 5AP or 4AP 4PA Bose 4W 2WD B u c k e r f i e l d 2A 1 Lickman 2A 1 Marble H i l l 4W 2WD or 3WD Vedder 2WA 1 Vye 3A 1 or 2T Whatcom 60 F i g . 3 . S o i l map of the outwash s o i l s . North i s a t the top of the f i g u r e . Scale i s approximately 1:25 000. 61 F i g . 4. S o i l map o f the a l l u v i a l s o i l s . North i s a t the top o f the f i g u r e . Scale i s approximately 1:28 000. 62 C A N A D A U S A | 20 F i g . 6. S o i l map o f the morainal s o i l s . North i s at the top of the f i g u r e . Scale i s approximately 1:17 000. 64 S o i l legend f o r F i g s . 3 to 6. Map Symbol 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 28A 29 30 31 32 33 34 35 36 37 38 39 40 S o i l or Map Unit Abbotsford s o i l s Abbotsford-Defehr complex Annis s o i l s A n n i s - B u c k e r f i e l d complex Bates s o i l s Bates: shallow v a r i a n t s o i l s B a t e s - B u c k e r f i e l d complex Bates-Fadden complex Bates-Lickman complex Bates-Lickman-Vye complex Bates-Vye complex Bose s o i l s B r i s c o t s i l t loam, drained, 0 t o 2 percent slopes B u c k e r f i e l d s o i l s B u c k e r f i e l d - P r e s t complex C a l k i n s s o i l s C l i p p e r s i l t loam, 0 to 2 percent slopes Columbia s o i l s Coughlan-Defehr complex Ev e r e t t g r a v e l l y sandy loam, hard substratum, 2 to 8 percent slopes E v e r e t t very g r a v e l l y sandy loam, 8 t o 15 percent slopes E v e r e t t complex, 2 to 8 percent slopes Fadden s o i l s Hampton s i l t loam, 0 t o 1 percent slopes Heron s o i l s Heron-Boosey s o i l s Kennedy s o i l s K i c k e r v i l l e s i l t loam, 0 t o 3 percent slopes K i c k e r v i l l e s i l t loam, 3 to 8 percent slopes Labounty s i l t loam, drained, 0 to 2 percent slopes Lickman s o i l s Lickman: shallow v a r i a n t s o i l s Lickman-Bates complex Lickman-Lickman:shallow v a r i a n t complex Mt. Vernon f i n e sandy loam, 0 to 2 percent slopes Nicholson s o i l s Nicholson-Whatcom-Scat complex O r i d i a s i l t loam, d r a i n e d , 0 t o 2 percent slopes Pangborn muck, drained, 0 to 2 percent slopes Puget s i l t loam, d r a i n e d , 0 t o 2 percent slopes Ross s o i l s 6 5 41 Ross-Judson complex 42 Scat s o i l s 43 Scat-Heron complex 44 Scat-Sunshine complex 45 Scat-Whatcom complex 46 Sumas s i l t loam, 0 to 2 percent slopes 47 Sunshine s o i l s 48 Sunshine-Whatcom complex 49 Tromp loam, 0 to 2 percent slopes 50 Vedder s o i l s 51 Vedder: shallow v a r i a n t s o i l s 52 Vedder-Buckerfield complex 53 Vedder-Vye complex 54 Vye s o i l s 55 Vye: shallow v a r i a n t s o i l s 56 Vye-Bates complex 57 Vye-Buckerfield complex 58 Vye-Vedder complex 59 Vye-Vedder:shallow v a r i a n t complex 60 Vye-Vye: shallow v a r i a n t complex 61 Whatcom s i l t loam, 0 to 3 percent slopes 62 Whatcom s i l t loam, 3 t o 8 percent slopes 63 Whatcom s i l t loam, 8 to 15 percent slopes 64 Whatcom s i l t loam, 30 t o 60 percent slopes 65 Whatcom s o i l s 66 Whatcom-Labounty s i l t loams, 0 t o 8 percent slopes 67 Whatcom-Nicholson complex 68 Whatcom-Nicholson-Scat complex 69 Whatcom-Scat complex 70 Whatcom-Scat complex, s t e e p l y s l o p i n g 71 Whatcom-Sunshine complex 66 4.0 METHODS 4.1 S i t e S e l e c t i o n The area subject to h i s t o r i c a l land use change a n a l y s i s i s w i t h i n 4 km of the For t y - N i n t h p a r a l l e l , extending from about 4 km east of the S t r a i t of Georgia to about 40 km east. The s i t e s were lo c a t e d on four parent m a t e r i a l s and the p r i n c i p a l s o i l s were c o r r e l a t e d on both sides of the border (Goldin and Luttmerding 1985). I n t e r p r e t a t i o n s of land use were made at approximately 10-year i n t e r v a l s using medium s c a l e a e r i a l photographs. The photographs which were used i n the land c l e a r i n g study and f o r p l o t l o c a t i o n s are l i s t e d i n Table 10. The topographic maps used Table 10. Information of a e r i a l photographs used i n land c l e a r i n g study and p l o t l o c a t i o n s . Date Scale Color or B&W F l i g h t d i r e c t i o n Contractor 1940 1:30 000 B&W east-west Province of B.C. 1943 1 :12 000 B&W north-south U.S. Army Corps of Engrs. 1954 1:20 000 B&W north-south Province of B.C. 1955 1 :20 000 B&W east-west ASCS* 1963 1:12 000 B&W east-west Province of B.C. 1966 1 :20 000 B&W east-west ASCS 1976 1:24 000 c o l o r north-south Wash. Dep. N a t l . Res. 1983 1:15 000 B&W east-west Province of B.C. 1983 1:12 000 c o l o r north-south Wash. Dep. N a t l . Res. 1984 1:15 000 B&W east-west Province of B.C. ASCS = USDA A g r i c u l t u r a l Conservation S t a b i l i z a t i o n S e r v i c e 67 were the 1:25 000 Q2G/1 M i s s i o n and 92G/2 New Westminster map sheets i n Canada and the 1:24 000 B l a i n e , Bertrand Creek, Lynden, and Sumas quadrangles and the 1:62 500 Van Zandt quadrangle i n the United States. Land use patterns were confirmed w i t h land owners and long-time r e s i d e n t s of the area. The s i z e of the area on each parent m a t e r i a l was d i c t a t e d by the f o l l o w i n g needs: 1) to be w i t h i n 4 km of the 49th p a r a l l e l , 2) to be on the c o r r e l a t e d s o i l ( s ) , and 3) t o have a l l of the land c l e a r i n g c a t e g o r i e s w i t h i n the area. In Canada, r e p l i c a t e sampling of the 1980 c l e a r i n g age on outwash and the 1970 c l e a r i n g age on g l a c i a l m a r i n e d r i f t , and i n the USA the 1980 c l e a r i n g age on g l a c i a l m a r i n e d r i f t occurred i n the same polygon. The s o i l s on the f o l l o w i n g four parent m a t e r i a l s were s t u d i e d f o r land use changes between 1943 and 1983: a l l u v i u m , g l a c i a l outwash, g l a c i a l m a r i n e d r i f t and morainal. However, the s o i l s on the morainal m a t e r i a l were not subject to s o i l analyses because the f i v e r e q u i r e d groupings of land c l e a r i n g were not found. In f a c t , there was frequent reconversion to woodland. This e l i m i n a t i o n l e f t o n l y three parent m a t e r i a l s to be used f o r s o i l analyses. 4.1.1 Number of Samples The number of samples to be obtained was based on the inherent v a r i a b i l i t y of the data, the s m a l l e s t true d i f f e r e n c e d e s i r e d to be detected, and the s i g n i f i c a n c e l e v e l at which the two means would be considered s i g n i f i c a n t l y d i f f e r e n t (Sokal and Rohlf 1981). From previous s t u d i e s , the c o e f f i c i e n t of v a r i a t i o n of the v a r i a b l e s being examined ranged from l e s s than 10 to more than 35 (Wilding 1985). A conservative value of 30 was chosen t o use f o r sample s i z e 68 determination. The study used a f a c t o r i a l design and was designed to be 80% c e r t a i n of d e t e c t i n g a 5% d i f f e r e n c e between two of the 30 means (3 parent m a t e r i a l s x 2 countries x 5 land c l e a r i n g age groups) at the 5% l e v e l of s i g n i f i c a n c e . A c e r t a i n t y of 80% i s reasonable f o r s o i l s s t u d i e s (Wilding 1985). Sample s i z e d e t e r m i n a t i o n i s an i t e r a t i v e process based on the f o l l o w i n g formula (Sokal and Rohlf, 1981): n = 2[{<T/S )2 t„ ^ + t 2 ( 1 - P ) , ^ ] 2 where n = number of r e p l i c a t i o n s C~= true standard d e v i a t i o n S= the s m a l l e s t true d i f f e r e n c e that i s d e s i r e d to detect -r\ = degrees of freedom of the sample standard d e v i a t i o n w i t h "a" groups and "n" r e p l i c a t i o n s per group o< = s i g n i f i c a n c e l e v e l P = d e s i r e d p r o b a b i l i t y that a d i f f e r e n c e w i l l be found t o be s i g n i f i c a n t o^< and t2(1-P),^\ = values from a two t a i l e d t - t a b l e w i t h 0\ degrees of freedom and corresponding to p r o b a b i l i t i e s of o< and 2 ( 1-P), r e s p e c t i v e l y . Assuming about 100 samples are chosen f o r the f i r s t i t e r a t i o n w i t h -v\= a(n-1) = 30(100-1) = 2 9 7 0 , we f i n d CP = 30Y/100 and df= 5Y/100 and thus G~/J~=6. Thus, n = 2 ( 6 ) 2 [ t > 0 5 ) 2 9 7 0 + t 2 ( 1 - 0 . 8 0 ) , 2 9 7 o l 2 n = 2 ( 6 ) 2 ( 1 . 960 + 0 .842)2 n = 565 The second i t e r a t i o n would lead t o a s i m i l a r r e s u l t . I f t h i s value were rounded up to 600, then f o r each of the 30 groups, we must take 20 samples, or two r e p l i c a t e s of 10 each. Such a sample s i z e 69 would be s u f f i c i e n t f o r understanding v a r i a b i l i t y and showing d i f f e r e n c e s among the data without being overwhelming f o r f i e l d sampling. A s i m i l a r sample s i z e could be obtained g r a p h i c a l l y d i r e c t l y from a set of curves i n d i c a t i n g p r e s c r i b e d confidence and the degrees of freedom r e q u i r e d to estimate the standard d e v i a t i o n w i t h i n a s t a t e d percentage of i t s true value (Greenwood and Sandomire 1950). P l o t s were chosen i n d u p l i c a t e to represent the two countries (Canada and the United S t a t e s ) , the three parent m a t e r i a l s ( a l l u v i u m , outwash, and g l a c i a l m a r i n e d r i f t ) , and the f i v e age c l e a r i n g groups (cleared between 1943 and 1955, between 1955 and 1966, between 1966 and 1976, between 1976 and 1983, and not c l e a r e d , i.e., woodland). This amounted t o 60 p l o t s . The l i t t e r l a y e r s from the 12 woodland p l o t s were analyzed s e p a r a t e l y and a l s o i n combination as a weighted average w i t h the woodland m i n e r a l s o i l . An a d d i t i o n a l p l o t was taken i n the o l d e s t f i e l d continuously c u l t i v a t e d f o r r a s p b e r r i e s i n the s t a t e of Washington s i n c e t h i s was l o c a t e d i n the study area t o see i f trends continued p r i o r to 1943 as w e l l . F i e l d work was undertaken from mid-March to m i d - A p r i l 1985 before the ground was worked f o r the growing season. 4.1.2 Determination of Land C l e a r i n g Age Groups The o r i g i n a l i n t e n t of t h i s study was to separate cropland and pasture. However, because of the farming p r a c t i c e i n the 1940s and 1950s of frequent r o t a t i o n s between hay and pasture and cropland at a recommended c y c l e of legumes f o r the e q u i v a l e n t of one year f o r each two years the land was i n i n t e r t i l l e d crops (Poulson and Flannery 1953), i t was decided that s e p a r a t i n g these land uses over a ten-year period w i t h a e r i a l photographs was not p o s s i b l e . Some separations would have been made between unimproved pasture, which was common u n t i l about 1960, and improved pasture. As a r e s u l t the v a r i a b l e being t e s t e d was t i m e - s i n c e - c l e a r i n g and conversion to a g r i c u l t u r e r a t h e r than the a c t u a l crop grown. The c a t e g o r i e s of land use are s i m i l a r to those used i n the l e v e l I I c l a s s i f i c a t i o n of Anderson et a l . (1972), a l b e i t w i t h fewer c a t e g o r i e s : cropland and pasture, mixed f o r e s t land, and water (lakes). Farmsteads were not separated. Land use change d e l i n e a t i o n s were determined by f i r s t comparing a l l the woodland areas on the 19^3 photography w i t h the remaining woodland areas on the 1955 photography. In the i n t e r p r e t a t i o n process, imagery f o r the two dates being analyzed were i n t e r p r e t e d i n concert. I n t e r p r e t a t i o n s were u s u a l l y accomplished monocularly. Areas cle a r e d p r i o r to 19^3 are denoted by "C". The cleared areas were logged between 19^3 and 1955 and are d e l i n e a t e d on the map as "50" ( F i g s . 7-10). The woodland areas on the 1955 photographs were compared w i t h the remaining woodland areas on the 1966 photography. The areas c l e a r e d of woodland were logged, t h e r e f o r e , between 1955 and 1966 and d e l i n e a t e d as "60" on the map. The amount of clear e d land as of 1966 thus i n c l u d e s the d e l i n e a t i o n s marked "C", "50", and "60". The areas marked "70", "80", and "W" were i n woodland as of 1966. This procedure was continued f o r the clear e d areas between 1966 and 1976 and between 1976 and 1983. These areas were d e l i n e a t e d as "70" and "80," r e s p e c t i v e l y . The remaining woodland areas, which have remained e s s e n t i a l l y unlogged between 19^3 and 1983, were designated as "W." The minimum s i z e d e l i n e a t i o n ranged from 1 to 3 ha depending on photo s c a l e . Any land use which covered an area s m a l l e r than the 71 F i g . 7. Land c l e a r i n g map of the outwash s o i l s . c= c l e a r e d before 1943. North i s at the top of the f i g u r e . Scale i s approximately 1:25 000. 72 F i g . 8. Land c l e a r i n g map o f the a l l u v i a l s o i l s . c= c l e a r e d before 1943. North i s a t the top of the f i g u r e . Scale i s approximately 1:28 000. 73 F i g . 9. Land c l e a r i n g map of the g l a c i a l m a r i n e s o i l s . c= cleared before 19^3. North i s at the top of the f i g u r e . Scale i s approximately 1:19 000. 74 F i g . 10. Land c l e a r i n g map of the morainal s o i l s . c= c l e a r e d before 19^3. Negative s i g n s r e f e r to r e v e r s i o n to woodland i n that age grouping. North i s at the top o f the f i g u r e . Scale i s approximately 1:17 000. 75 minimum s i z e was c l a s s i f i e d w i t h the adjacent use i n the most l o g i c a l matter p o s s i b l e . No f i e l d checking was made to v e r i f y the accuracy of photo i n t e r p r e t a t i o n , although d i s c u s s i o n s were c a r r i e d out w i t h landowners f o r v e r i f i c a t i o n . The land c l e a r i n g maps used the 1955 photography (s c a l e 1:20 000) as the base map. Areas which were i n woodland i n 1 943 but cleared by 1955 were t r a n s f e r r e d onto a mylar ov e r l a y of the 1955 f l i g h t using a e r i a l photo i n t e r p r e t a t i o n . The areas of woodland on the 1955 photos and c l e a r e d by 1966 were d e l i n e a t e d next by v i s u a l comparative s i d e -by-side a n a l y s i s . The areas clea r e d by the 1976 and 1983 photos were d e l i n e a t e d s i m i l a r l y . The land c l e a r i n g maps can be p r i n t e d a t any s c a l e ; they were p r i n t e d at the d i s i g n a t e d s c a l e s i n Figs. 7 to 10 to maximize map s i z e on the page. The p r i n c i p a l c r i t e r i o n used to s e l e c t the p l o t s from the "50," "60," "70," "80," and "W" was t h a t the p l o t had t o be on the c o r r e l a t e d s o i l . P r i o r i t y was given t o the l a r g e r areas which were c l e a r e d from f u l l y stocked stands. Areas w i t h land owners who p r a c t i c e d c o n s i s t e n t management over ten years or more and who knew about the land h i s t o r y were pref e r r e d . S o i l i n c l u s i o n s and d i s t u r b e d areas were avoided. The p l o t center was chosen t o avoid edge e f f e c t s of land c l e a r i n g and s o i l . 4.1.3 Sampling The sample s i t e l o c a t i o n a t each p l o t f o l l o w e d the scheme i n F i g . 11. The s i t e s were f i x e d from nine 10 m by 10 m p l o t g r i d s . On each 10 m by 10 m g r i d , the s i t e coordinates were picked from a random numbers t a b l e w i t h the o r i g i n as the lower l e f t corner. The tenth s i t e was picked from the e n t i r e 30 m by 30 m g r i d and the random 76 1(4,7) 2 ( 5 , 3 ) 10m 3 ( 4 , 0 ) 6 ( 6 , 7 ) , 4 ( 9 , 2 ) P l o t Center x 5 ( 4 , 3 ) o J 0 ( 1 2 , 1 2 ) 10m 30m 7 ( 8 , 7 ) 9 ( 1 , 5 ) 8(9,0) . . . o 10m •10m- -10m--30m-• 10m-Distance and azimuth from p l o t center t o each sample s i t e S i t e Distance (m) Azimuth (o) 1 16.3 317 2 8.0 0 3 10.9 56 4 6.7 242 5 2.3 206 6 11.3 80 7 10.9 221 8 14.6 165 9 11.6 150 10 4.3 225 F i g . 11. Sampling scheme. 77 numbers coordinates m u l t i p l i e d by three and measured from the lower l e f t . North i s at the top of the f i g u r e . The azimuth from the center of the g r i d was determined f o r each s i t e l o c a t i o n on the f i x e d sequence. This sample g r i d was used on a l l p l o t s . In the f i e l d a tape and compass were used t o l o c a t e the sample s i t e s ( P l a t e s 1 and 2). Three of the 10 s i t e s on each p l o t were s e l e c t e d f o r determination of bulk d e n s i t y by the excavation method (P l a t e 3). The s i t e s were chosen us i n g a random numbers t a b l e and were d i f f e r e n t f o r each p l o t . Samples at each s i t e were e x t r a c t e d w i t h a t r o w e l from a hole approximately 10 cm i n diameter and 20 cm deep. On the woodland s i t e s , the l i t t e r l a y e r was c o l l e c t e d s e p a r a t e l y from the 0 t o 20 cm mi n e r a l s o i l . In some cases, i t was d i f f i c u l t to d i s t i n g u i s h and separate the p a r t i a l l y decomposed organic m a t e r i a l from the m i n e r a l s o i l . Volumes at the s i t e s i n which bulk d e n s i t y was determined averaged about 1400 mL but ranged from about 1000 to 2200 mL. 4.1.3.1 L i t t e r l a y e r and the weighted average The l i t t e r l a y e r i s a p o t e n t i a l n u t r i e n t pool f o r a g r i c u l t u r a l purposes. Whether i t i s used depends on the land c l e a r i n g p r a c t i c e s . Since woodland l i t t e r i s sometimes incorporated i n t o the s o i l during the c l e a r i n g process, a weighted average p l o t was created s t a t i s t i c a l l y from the weighted average of 2 cm of l i t t e r (the average l i t t e r t h i c k n e s s ) mixed w i t h 20 cm of s o i l . The purpose of t h i s " p l o t " was to s i m u l a t e the s o i l c o n d i t i o n s of mixing the m i n e r a l s o i l and l i t t e r l a y e r . This t h e o r e t i c a l " p l o t " was used i n most of the analyses along w i t h the sampled p l o t s . 78 P l a t e 1. Woodland s i t e on outwash s o i l s ( p l o t 20). 79 P l a t e 2. S i t e l o c a t i o n s i n c u l t i v a t e d f i e l d on outwash s o i l s ( p l o t 11). Photograph taken from 1550. P l a t e 3. Bulk d e n s i t y sampling ( p l o t 53) . Crop i s s t r a w b e r r i e s . 80 4.2 Laboratory Analyses 4.2.1 Sample P r e p a r a t i o n The s o i l s were immediately a i r - d r i e d . Samples were weighed, crushed w i t h a r o l l i n g p i n , and sieved through a brass 2 mm sieve. The coarse fragments r e t a i n e d i n the sieve were reweighed to determined the coarse fragment content. The sieved, a i r - d r i e d samples were used f o r a l l chemical analyses. 4.2.2 pH The 1:2 pH i n water was determined by mixing 10 g m i n e r a l s o i l w ith 20 mL d i s t i l l e d water. The pH of the l i t t e r l a y e r s was i n a 1:10 s o i l : w a t e r r a t i o u s i n g 2 g s o i l and 20 g water. The s o i l - w a t e r s o l u t i o n was mixed f o r 15 minutes and e q u i l i b r a t e d f o r 1 hour. pH was measured w i t h an Orion Ionalyzer s p e c i f i c i o n pH meter, model 404 w i t h an Orion glass pH el e c t r o d e 91-62. A f t e r the 1:2 pH i n water was run, 0.5 mL 4M C a C l 2 w a s added to the mixture, mixed f o r 15 minutes, e q u i l i b r a t e d f o r an hour, a f t e r which the pH of the s o i l - C a C l 2 w a s t a k e n i n t n e r a t i o o f 1 j 2 . This r a t i o was chosen to a l l o w s u f f i c i e n t s l u r r y f o r an accurate reading. 4.2.3 P, Ca, Mg, and K A s o i l e x t r a c t f o r determining P, Ca, Mg, and K was produced us i n g the method of Mehlich (1978), which uses NH4F, NH4 C 1» H C 1 » a n d H 0 A c * Lanthanum compensating s o l u t i o n was not used. Blanks were made about every 25 e x t r a c t i o n s . Since Mehlich (1978) has shown a l i n e a r r e l a t i o n -s h i p w i t h other methods, and sin c e the primary focus of t h i s t h e s i s i s an i n t e r s t u d y comparison, and a l s o since the Mehlich e x t r a c t a n t can o b t a i n these four n u t r i e n t s i n one e x t r a c t , i t was decided t o use t h i s method. 81 P was determined c o l o r i m e t r i c a l l y on a Bausch and Lomb Spectronic 20 a t wavelength 880 nm. The c o l o r i n d i c a t o r was a s o l u t i o n of Tartrate-Molybdate-Ascorbie a c i d (T-M-A) as described by Mehlich (1978). The pre s c r i b e d r a t i o of s o i l e x t r a c t to working s o l u t i o n of T-M-A was 2:26 i n order t o f i t w i t h i n the range of standards of 0 to 10 mg kg-1. For e x t r a c t s that were outside t h i s range, another 28 mL of working s o l u t i o n was added. I f t h i s d i l u t e d s o l u t i o n was s t i l l more than 10 mg kg-1, the P content was determined u s i n g a 1:10 d i l u t i o n of the o r i g i n a l e x t r a c t . The blanks f o r P a l l measured zero. Each e x t r a c t was d i l u t e d 1:10 and 1:100 and the appr o p r i a t e d i l u t i o n was used to determine Ca, Mg, and K. The content of these c a t i o n s was determined on an atomic a b s o r p t i o n spectrophotometer (AA). The AA was s e t t o 1.0 mg kg-1 f o r Ca and Mg and t o 2.0 f o r K. I t was curve-corrected to 2.0 and 4.0 mg k g - ^ , r e s p e c t i v e l y . A l l the blanks were n e a r l y zero ( w i t h i n the range of ob s e r v a t i o n f o r these elements on the AA) except Ca at the 1:10 d i l u t i o n . In t h i s case the l e v e l of the blank was 7 mg kg-1. When the e x t r a c t a n t was l e f t i n the g l a s s b o t t l e of the automatic p i p e t o r , the f l u o r i d e from the NH4F e x t r a c t e d calcium from the b o t t l e . As a r e s u l t , values obtained f o r blanks i n these cases ranged from 40 to 70 mg kg-1. When the samples w i t h the "contaminated" e x t r a c t a n t were analyzed i n the same batch as samples c o n t a i n i n g f r e s h e x t r a c t a n t , the d i f f e r e n c e s were w i t h i n the range of the AA u n i t . This i n d i c a t e s that the s o i l s probably buffered t h i s e x t r a c a l c i u m , which the blanks could not do. Values f o r Mg and K were not a f f e c t e d by the residence time i n the g l a s s b o t t l e . When the residence time f o r Ca was l e s s than one hour, the blanks ranged from 5 to 7 mg kg-1. 82 4.2.4 Organic Matter No e f f o r t was made to f r a c t i o n a t e the various organic m a t e r i a l s . L o s s - o n - i g n i t i o n (LOI) was used as an estimate of organic matter. LOI i s used i n e c o l o g i c a l s t u d i e s f o r the a n a l y s i s of organic l a y e r s (Covington 1981, Gosz et a l . 1976). I t i s easy and r a p i d : 40 samples can be analyzed i n about two hours of a c t u a l t e c h n i c i a n time. However, f o r s o i l s t u d i e s LOI only estimates the amount of organic matter s i n c e h e a t i n g t o temperatures above 150° C w i l l d r i v e o f f hygroscopic water and d r i v e out i n t e r c r y s t a l l i n e water from c r y s t a l l i n e c l a y s and allophane. The r e l i a b i l i t y o f the e s t i m a t e depends on the amount and type of clay. The v a r i a b i l i t y i n the organic matter content, however, may hide these d i f f e r e n c e s . Although l o s s - o n - i g n i t i o n has been widely dismissed as crude and inadequate as an e s t i m a t o r of organic matter i n noncalcareous s o i l s (Jackson 1958, Robinson 1949), B a l l (1964) found e x c e l l e n t c o r r e l a t i o n between LOI and organic carbon f o r a range of organic matter and c l a y contents and parent m a t e r i a l s . He determined LOI at 850OC and at 375oC and found a c o r r e l a t i o n c o e f f i c i e n t between LOI and organic carbon of 0.99. Parent m a t e r i a l and c l a y mineralogy d i d not s i g n i f i c a n t l y a f f e c t the r e g r e s s i o n equations. The d e t e r m i n a t i o n was made on a l l samples by measuring the l o s s i n weight of an oven-dried sample a f t e r heating i t i n a m u f f l e furnace f o r s i x hours at 600© c. A 10% sample (a random s e l e c t i o n of one sample per p l o t ) was used to c o r r e l a t e the organic matter content estimated by l o s s - o n - i g n i t i o n w i t h carbon content using the Leco carbon a n a l y z e r . The procedure used i s as f o l l o w s : 8 3 1. Weigh empty c r u c i b l e s . 2. Add a p p r o x i m a t e l y 5 t o 10 g o f m i n e r a l s o i l (or 1 t o 5 g organic s o i l ) and oven-dry at 105°C f o r f i v e hours. 3. Place samples i n d e s i c c a t o r f o r two hours and then reweigh. 4. Place samples i n t o m u f f l e furnace and heat f o r 5 to 6 hours at 600oC. 5. Turn o f f furnace and l e t c o o l overnight. 6. Place samples i n d e s i c c a t o r f o r two hours and then reweigh. 7. 0M= (oven-dried weight minus muffled weight)/oven-dried weight x 100%. Weights from carbon residues from f i n g e r p r i n t s and moisture on a i r - d r i e d c r u c i b l e s were found to be s m a l l e r than the three decimal accuracy of the M e t t l e r PE 160 balance used f o r measurement. The samples f o r Leco carbon were prepared by g r i n d i n g the a i r -d r i e d samples w i t h mortar and p e s t l e and passing them through a 150 micrometer sieve. Samples were placed i n a c r u c i b l e and combusted i n a Leco carbon analyzer ( L a v k u l i c h 1978). A r e g r e s s i o n equation was c a l c u l a t e d to define the r e l a t i o n s h i p between Leco carbon and organic matter as estimated by l o s s - o n - i g n i t i o n . 4.2.5 Nitrogen Nitrogen was determined c o l o r i m e t r i c a l l y by auto analyzer f o l l o w i n g L a v k u l i c h (1978). The d i g e s t i o n mix consisted of K2S04> CuSO^ s 6 j a n d concentrated H2S04. The samples were digested on a Technicon Block Digestor, Model BD-20. E x t r a c t s were stored and then run on the auto analyzer. Sample s i z e was 4.00 g f o r the m i n e r a l s o i l s and 2.00 g f o r the woodland l i t t e r l a y e r s . 84 4.3 Map D i g i t i z a t i o n Generalized land c l e a r i n g maps were produced by examining the a e r i a l photos to see when the land was clear e d of woodland. These maps are ge n e r a l i z e d because 1) s c a l e d i f f e r s on the photos of each year, 2) la r g e d i s t o r t i o n and thus reduced r e s o l u t i o n i s present p a r t i c u l a r l y f o r the 1940s to 1960s photos from Canada, 3) no chance f o r f i e l d checks, 4) no c l e a r f e a t u r e s to match photos and no r e l i e f to see s t e r e o , and 5) very l i t t l e s i d e l a p - ranging as low as 15$, but commonly 35$. The s o i l maps were d i g i t i z e d from the o r i g i n a l 1976 f i e l d sheets (1:24 000 a e r i a l photographs) i n the USA and from the published orthophotos (1:25 000) i n Canada (Luttmerding 1981a). The maps were d i g i t i z e d on a Tektronix 4954 graphics t a b l e t d i g i t i z e r and then computer-generated using a Tektronix 4662 pen p l o t t e r . The r e s o l u t i o n of the d i g i t i z e r i s 0.25 mm which a t a photo s c a l e of 1:24 000 i s about 6 m. The maps d i g i t i z e d were the s o i l maps f o r the four parent m a t e r i a l s and the three land c l e a r i n g maps ( a l l parent m a t e r i a l s but morainal). From the d i g i t i z e d land c l e a r i n g maps, the area f o r each land c l e a r i n g p e r i o d was determined based on the l i n k e d polygons e s t a b l i s h e d w i t h UTM coordinates i n the d i g i t i z e d map f i l e s . 4. 4 S t a t i s t i c a l Methods Data from the AA were converted to mg kg-1 i n the s o i l by deducting the blank, m u l t i p l y i n g by the appropriate d i l u t i o n f a c t o r and the r a t i o of s o i l s o l u t i o n t o o r i g i n a l s o i l . The data f o r Ca, Mg, K, P, 0M, and N were converted to an a r e a l b a s i s (kg ha-1) by m u l t i p l y i n g the conc e n t r a t i o n by the mean bulk d e n s i t y f o r the p l o t and again by 10-3. For determining the a r e a l 85 values f o r the weighted average p l o t s , a bulk d e n s i t y of 400 kg m"-3 was assumed f o r the l i t t e r l a y e r . Bulk d e n s i t i e s of organic l a y e r s range as low as 200 kg m-3 (Brady 1985, P r i t c h e t t 1979). In much of the l i t e r a t u r e o n l y changes i n the concentrations of C, N, and P r e s u l t i n g from c u l t i v a t i o n are reported. Tiessen et a l . (1982) reported l o s s e s of these n u t r i e n t s i n both c o n c e n t r a t i o n and volume. Since c u l t i v a t i o n increases bulk d e n s i t y (Davidson et a l . 1967, De Haan 1977, Tiessen et a l . 1982), the conversion from concentration to area-based organic matter budgets w i t h a s i n g l e conversion f a c t o r obscures r e l a t i o n s h i p s and can increase the v a r i a b i l i t y o f the r e s u l t s ( T i e s s e n et a l . 1982). The data were entered on an IBM 4341-1 computer w i t h VS1 op e r a t i n g system and the s t a t i s t i c s were run using SPSS-X re l e a s e 2.1 f o r IBM OS and MVS (SPSS Inc. 1985). The s t a t i s t i c a l t e s t s used i n t h i s study are presented i n the flow chart of F i g . 12. Both u n i v a r i a t e and m u l t i v a r i a t e s t a t i s t i c a l procedures were performed on the data to examine the e f f e c t s and r e l a t i o n s h i p s among the chemical and p h y s i c a l v a r i a b l e s and f a c t o r s (parent m a t e r i a l , t i m e - s i n c e - c l e a r i n g , and country) s i n g l y and i n combination, r e s p e c t i v e l y . The f o l l o w i n g u n i v a r i a t e t e s t s were run: 1) l i n e a r r e g r e s s i o n f o r Leco carbon versus organic matter as estimated by l o s s - o n - i g n i t i o n on a 10$ randomly s e l e c t e d sample from each p l o t , 2) Nonparametric Mann-Whitney t e s t and the Wilcoxon paired comparison t e s t of o r i g i n a l s versus d u p l i c a t e s to examine the a n a l y t i c a l procedures on the 10$ sample i n 1), 3) One-way and two-way a n a l y s i s of variance to determine 86 P.C., C l u s t e r , Discriminant A n a l y s i s CONCLUSIONS z p . c . A n a l y s i s C l u s t e r A n a l y s i s I D i s c r i m i n a n t A n a l y s i s Regression CONCLUSIONS C o r r e l a t i o n Kolmogorov-Smirnov Goodness of F i t Test Chemical V a r i a b l e s Age 10$ random sample from each p l o t X OM Leco Carbon O r i g i n a l s Duplicates TOTAL DATA SET X Mann-Whitney Wilcoxon ANOVA SNK X Procedural A n a l y s i s CONCLUSIONS mean,std dev,CV P h y s i c a l V a r i a b l e s Country Chemical P l o t Age V a r i a b l e s ANOVA CONCLUSIONS P h y s i c a l -Chemical P l o t Country Age V a r i a b l e s S o i l V a r i a b i l i t y CONCLUSIONS F i g . 12. C i r c u l a r flow chart of s t a t i s t i c a l methods. 87 F i g . 12 ( c o n ' t ) . Conclusions d e r i v e d from c i r c u l a r flow c h a r t . ANOVA 1. Goodness of f i t r e l a t i v e t o the normal curve of sample data and p l o t means using the t o t a l data set and the c u l t i v a t e d s o i l s o n l y . 2. S i g n i f i c a n t d i f f e r e n c e s among p l o t s , parent m a t e r i a l s , age, and country by i n d i v i d u a l p h y s i c a l and chemical v a r i a b l e s . SOIL VARIABILITY 1. Which v a r i a b l e s c o n t r i b u t e most to t o t a l v a r i a b i l i t y and how do t h e i r v a r i a b i l i t i e s compare. Which parent m a t e r i a l , country, and age group are the most v a r i a b l e . 2. D i f f e r e n c e s i n v a r i a b i l i t y due t o conc e n t r a t i o n and a r e a l bases. 3. E f f e c t s of parent m a t e r i a l , t i m e - s i n c e - c l e a r i n g , country, and land use on v a r i a b i l i t y . 4. Number of samples required f o r a given l e v e l of p r e c i s i o n . REGRESSION 1. R e l a t i o n s h i p between organic matter and Leco carbon. 2. R e l a t i o n s h i p s between a l l chemical v a r i a b l e s i n d i v i d u a l l y and combined versus t i m e - s i n c e - c l e a r i n g f o r each parent m a t e r i a l . PRINCIPAL COMPONENT (P.C.), CLUSTER, AND DISCRIMINANT ANALYSES 1. Which v a r i a b l e s are most important. 2. Which v a r i a b l e s most d i s c r i m i n a t e the p l o t s . 3- Which p l o t s are most s i m i l a r . 4. How good were the o r i g i n a l age groupings. PROCEDURAL ANALYSIS 1. C o r r e l a t i o n of o r i g i n a l s w i t h d u p l i c a t e s f o r each v a r i a b l e . 2. R e l a t i o n s h i p between populations of o r i g i n a l s and d u p l i c a t e s . 3 . E f f e c t s of a n a l y t i c a l procedure. 88 s i g n i f i c a n t d i f f e r e n c e s of each v a r i a b l e by p l o t , parent m a t e r i a l , age, land use, and country u s i n g the e n t i r e data s e t , only the c u l t i v a t e d s o i l s , o n l y the mineral s o i l s , and only the mineral s o i l s plus the created weighted average s o i l , 4) Student-Newman-Keuls m u l t i p l e range t e s t to t e s t s i g n i f i c a n c e between each p l o t , age, and land use on each parent m a t e r i a l , 5) Kolmogorov-Smirnov goodness of f i t t e s t s f o r a l l data to t e s t n o r m a l i t y by sample f o r each v a r i a b l e and again f o r the p l o t means. This was repeated examining o n l y the c u l t i v a t e d s o i l s . N o r m a l i t y was a l s o determined g r a p h i c a l l y . 6) Pearson c o r r e l a t i o n c o e f f i c i e n t s f o r Leco carbon versus OM and f o r o r i g i n a l s versus d u p l i c a t e s f o r a l l chemical analyses, and 7) mean, standard d e v i a t i o n , and c o e f f i c i e n t of v a r i a t i o n by concentration and a r e a l bases (kg ha-1) using the e n t i r e data s e t , on l y the c u l t i v a t e d s o i l s , o n l y the mi n e r a l s o i l s , and o n l y the mineral s o i l s plus the created weighted average s o i l , each broken down by parent m a t e r i a l , age, land use, country, and r e p l i c a t e . Three c a t e g o r i e s of m u l t i v a r i a t e procedures were used i n t h i s study: 1) p r i n c i p a l component and c l u s t e r analyses, 2) m u l t i p l e r e g r e s s i o n , and 3) d i s c r i m i n a n t a n a l y s i s . Each of these t e s t s are parametric w i t h d i f f e r e n t assumptions. They can be e i t h e r purely d e s c r i p t i v e or used as d e s c r i p t i v e s t a t i s t i c s . In a d d i t i o n to the fundamental assumption of random sampling of the pop u l a t i o n , three others are common among the techniques: m u l t i v a r i a t e n o r m a l i t y , independence of e r r o r terms or r e s i d u a l s , and when more than one f i x e d group i s analyzed, such as i n d i s c r i m i n a n t a n a l y s i s , homogeneity of variance-covariance matrices among groups (Neff and Marcus 1980). The 89 d i s c r i m i n a n t a n a l y s i s i s very robust and these assumptions need not be s t r o n g l y adhered t o (Klecka 1975). M u l t i v a r i a t e n o r m a l i t y i m p l i e s that each v a r i a b l e t r e a t e d i n d i v i d u a l l y i s normally d i s t r i b u t e d and the p r o j e c t i o n s of the data points on any l i n e i n the space are n o r m a l l y d i s t r i b u t e d (Neff and Marcus 1980). U n i v a r i a t e t e s t s can be a p p l i e d to separate v a r i a b l e s or t o any l i n e a r combination t o t e s t f o r m u l t i v a r i a t e n o r m a l i t y . The u n i v a r i a t e t e s t s do not guarantee m u l t i v a r i a t e n o r m a l i t y since they are based on samples from the m u l t i v a r i a t e space and the data may s t i l l be non-normal i n a d i r e c t i o n not sampled; m u l t i v a r i a t e t e s t s are complicated, lengthy, and are o n l y approximate (Neff and Marcus 1980). The g e n e r a l i z a t i o n of the C e n t r a l L i m i t Theorem to m u l t i v a r i a t e problems j u s t i f i e s the use of parametric procedures when the v a r i a b l e d i s t r i b u t i o n i s not extremely non-normal. Large sample s i z e , such as i n t h i s study, i s s u f f i c i e n t to make the d i s t r i b u t i o n of sample means r e l a t i v e l y n ormally d i s t r i b u t e d (Neff and Marcus 1980). 4.4.1 P r i n c i p a l Component and C l u s t e r Analyses P r i n c i p a l component a n a l y s i s was used to examine the i n t e r -r e l a t i o n s h i p s e x h i b i t e d i n the s o i l chemical data. I t s general aim i s to r e s o l v e complex r e l a t i o n s h i p s i n t o the i n t e r a c t i o n of fewer and s i m p l e r components and t o i s o l a t e and i d e n t i f y the c a u s a l f a c t o r s behind the c o r r e l a t i o n s (Kim 1975). I t transforms mathematically the given set of v a r i a b l e s i n t o a new set of composite v a r i a b l e s or p r i n c i p a l components th a t are orthogonal (uncorrelated) to each other. No p a r t i c u l a r assumption about the u n d e r l y i n g s t r u c t u r e of v a r i a b l e s i s required. The purpose i s t o f i n d the best l i n e a r combination of v a r i a b l e s which would account f o r more of the variance i n the data as 90 a whole than any other l i n e a r combination of v a r i a b l e s . The f i r s t p r i n c i p a l component i s the best summary of l i n e a r r e l a t i o n s h i p s e x h i b i t e d i n the data. The second component i s the second best l i n e a r combination which i s orthogonal to the f i r s t . Subsequent components are defined s i m i l a r l y u n t i l a l l the variance i n the data i s explained. Although t h i s study measures only e i g h t chemical v a r i a b l e s (pH i n H20 and CaCl2» C a> MS» K, P, OM, and N), p r i n c i p a l component a n a l y s i s was used to describe t h e i r i n t e r r e l a t i o n s h i p s and i n the process, to determine how the v a r i a b l e s are c o r r e l a t e d and how much each component c o n t r i b u t e s to the t o t a l variance. C l u s t e r a n a l y s i s was used t o examine r e l a t i o n s h i p s and groupings among the p l o t s . I t s purpose was t o i d e n t i f y those p l o t s which c l u s t e r e d i n t o d e f i n a b l e groups using the e i g h t measured s o i l chemical p r o p e r t i e s t o see i f there were d i s t i n c t i v e groupings by age or parent m a t e r i a l and t o see how these c l u s t e r s r e l a t e d to the a p r i o r i separations. The v a r i a b l e s were considered simultaneously and with equal weight. Several methods of c l u s t e r a n a l y s i s e x i s t . An agglomerative method was used s i n c e i t j o i n s the two nearest (most s i m i l a r ) items i n t o a s i n g l e c l u s t e r . U nits are grouped together based on s i m i l a r i t e s i n p r o p e r t i e s on the basis of dist a n c e s computed between c e n t r o i d s of the p l o t s or v a r i a b l e s i n n-dimensional space of a l l s o i l p r o p e r t i e s . The average l i n k a g e method i s the most commonly used h i e r a r c h i c a l c l u s t e r i n g technique (Massart and Kaufmann 1983) and was used i n t h i s study. There are no standard methods f o r determining the number of c l u s t e r s to be created i n the various c l u s t e r techniques, j u s t as 91 there are no standards f o r the number of components to r e t a i n i n p r i n c i p a l component a n a l y s i s . The chosen number depends on the purpose of the research. 4.4.2 M u l t i p l e Regression The r e l a t i o n s h i p between t i m e - s i n c e - c l e a r i n g and each s o i l chemical v a r i a b l e was examined both i n d i v i d u a l l y using l i n e a r r e g r e s s i o n and i n t o t a l using m u l t i p l e r e g r e s s i o n and p a r t i a l c o r r e l a t i o n . The p r i n c i p a l use of the m u l t i p l e r e g r e s s i o n (and f o r that matter the l i n e a r regression) was as a d e s c r i p t i v e t o o l to f i n d the best l i n e a r p r e d i c t i o n equation and to evaluate i t s p r e d i c t i o n a c c u r a c y . I t i s of the form Y» = A + B 1 X 1 + B 2 X 2 + ... + BkXk, where Y' represents the estimated value f o r Y, A i s the Y i n t e r c e p t , and B i are the p a r t i a l r e g r e s s i o n c o e f f i c i e n t s . The a n a l y s i s was t w o f o l d : t o focus on the p r e d i c t i o n of the dependent v a r i a b l e ( t i m e - s i n c e - c l e a r i n g ) and i t s o v e r a l l dependence on the set of independent v a r i a b l e s as w e l l as to concentrate on the examination of the r e l a t i o n s h i p between the dependent v a r i a b l e and each p a r t i c u l a r independent v a r i a b l e . The l a t t e r procedure c o n t r o l s the v a r i a t i o n i n the remaining v a r i a b l e s and examines the p a r t i a l c o e f f i c i e n t s . For i n s t a n c e , a p a r t i a l r e g r e s s i o n c o e f f i c i e n t , say B 1 i n the equation Y' = A + B 1 X-| + B 2 X 2 stands f o r the expected change i n Y with a change of one u n i t i n X i when X 2 i s h e l d constant or otherwise c o n t r o l l e d f o r . The l a r g e r the p a r t i a l r e g r e s s i o n c o e f f i c i e n t , the more i n f l u e n c e i t s corresponding independent v a r i a b l e has on the dependent v a r i a b l e . Stepwise m u l t i p l e r e g r e s s i o n was the procedure f o l l o w e d . I t i s a combination of forward and backward e l i m i n a t i o n m u l t i p l e r e g r e s s i o n . 92 A f t e r passing the t e s t s of t o l e r a n c e , which i s the p r o p o r t i o n of a v a r i a b l e ' s variance not accounted f o r by other independent v a r i a b l e s i n the equation, the v a r i a b l e w i t h the s m a l l e s t p r o b a b i l i t y of F value was entered. V a r i a b l e s already i n the equation were removed i f the c a l c u l a t e d F value was l a r g e r than the c r i t i c a l value chosen. This process continued u n t i l no v a r i a b l e s needed to be removed and none were e l i g i b l e f o r entry (SPSS Inc. 1983, SPSS Inc. 1985). The c r i t i c a l values chosen were the f o l l o w i n g : 0.01 f o r t o l e r a n c e , 0.05 f o r entry F, and 0.10 f o r removal F, since they are commonly used l e v e l s (Weisberg 1980). 4.4.3 D i s c r i m i n a n t A n a l y s i s D i s c r i m i n a n t a n a l y s i s was a p p l i e d t o the seven land c l e a r i n g age groups (the 4 groups of c u l t i v a t e d s o i l s , the woodland mineral s o i l , the l i t t e r l a y e r , and the weighted average of the woodland m i n e r a l s o i l and l i t t e r l a y e r ) on each of the three parent m a t e r i a l s s e p a r a t e l y and i n t o t a l i n order t o examine t h e i r d i f f e r e n c e s w i t h respect to the e i g h t chemical v a r i a b l e s measured i n t h i s study. The a n a l y s i s i n theory permits an e v a l u a t i o n of the d i f f e r e n c e s between the groups, a measurement of how w e l l the v a r i a b l e s are able to d i s t i n g u i s h between the groups, and the i d e n t i f i c a t i o n of which v a r i a b l e s are the most powerful d i s c r i m i n a t o r s . The use of d i s c r i m i n a n t a n a l y s i s i s very common f o r research problems i n the s o c i a l sciences (SPSS Inc. 1983, SPSS Inc. 1985) and i s becoming i n c r e a s i n g l y u s e f u l i n s o i l science (Webster 1977). The purpose of d i s c r i m i n a n t a n a l y s i s i n t h i s study was t w o f o l d : 1) a n a l y s i s f o r measuring the success w i t h which the d i s c r i m i n a t i n g v a r i a b l e s a c t u a l l y d i s c r i m i n a t e when combined i n t o d i s c r i m i n a n t 93 f u n c t i o n s and 2) c l a s s i f i c a t i o n , f i r s t t o i d e n t i f y the v a r i a b l e s which d i f f e r e n t i a t e the f u n c t i o n s and then t o c l a s s i f y the o r i g i n a l set of cases to see how many of the o r i g i n a l p l o t s were c l a s s i f i e d c o r r e c t l y based on p r o b a b i l i t y o f membership. The mathematical o b j e c t i v e i s to weight and l i n e a r l y combine the d i s c r i m i n a t i n g v a r i a b l e s i n a way that the groups are forced to be as s t a t i s t i c a l l y d i s t i n c t as p o s s i b l e . The hope i s to f i n d a s i n g l e dimension to c l u s t e r each group using one or more l i n e a r combinations of the v a r i a b l e s . These d i s c r i m i n a n t f u n c t i o n s are of the form = d i i Z i + di2Z2 + «. + di7Z7, where Di i s the score on d i s c r i m i n a n t f u n c t i o n i , the d's are the we i g h t i n g c o e f f i c i e n t s , and the Z's are the standardized values of the 7 d i s c r i m i n a t i n g v a r i a b l e s used i n the a n a l y s i s . D i s c r i m i n a n t a n a l y s i s i s r e a l l y a s p e c i a l a p p l i c a t i o n o f m u l t i p l e r e g r e s s i o n (Klecka 1975). Stepwise d i s c r i m i n a n t a n a l y s i s was chosen since the independent v a r i a b l e s are entered or removed from the a n a l y s i s i n d i v i d u a l l y on the b a s i s of t h e i r d i s c r i m i n a t i n g power. The stepwise d i s c r i m i n a n t a n a l y s i s methods vary i n t h e i r s e l e c t i o n c r i t e r i a . The Mahalonobis method was chosen t o maximize the Euclidean distance squared i n the cano n i c a l space when the can o n i c a l v a r i a t e s have a l l been s c a l e d to have variance of one w i t h i n groups (Neff and Marcus 1980). This was double-checked w i t h the d i r e c t method i n which a l l the independent v a r i a b l e s are entered i n t o the' a n a l y s i s concurrently. 94 5.0 RESULTS AND DISCUSSION 5.1 Land C l e a r i n g Study This study examines the changes i n land use on a s m a l l part of the Fraser Lowland i n the United States and Canada. The sample i s biased s i n c e i t was required to overlap the I n t e r n a t i o n a l Boundary and be s t r a t i f i e d by parent m a t e r i a l . I t in c l u d e s only areas w i t h a 10-year increm e n t a l time sequence of conversion from woodland to a g r i c u l t u r e i n the period 19^3 to 1983. 5.1.1 Land C l e a r i n g P r i o r to 1920 During the process of land c l e a r i n g , g e n e r a l l y man c l e a r s the most a c c e s s i b l e and e a s i e s t c l e a r e d s o i l s f i r s t , although nearness to market, s o i l f e r t i l i t y , c u l t u r a l f e a t u r e s , and secondary employment can a l s o be important. In the Fraser Lowland, the f l o o d p l a i n was cle a r e d f i r s t s i n c e i t was f e r t i l e and the s c a t t e r e d brush and woodland were e a s i l y removed. The densely f o r e s t e d upland s o i l s f o l l o w e d but the outwash s o i l s , because of t h e i r b e t t e r drainage c h a r a c t e r i s t i c s than the g l a c i a l m a r i n e s o i l s and t h e i r more ro c k - f r e e nature than the morainal s o i l s , continued to be cl e a r e d once i r r i g a t i o n became prominent and the market f o r b e r r i e s increased. The l o c a t i o n of t r a n s p o r t a t i o n routes i s v i t a l to understanding the sequence of land c l e a r i n g . Since a l l u v i a l s o i l s are adjacent to r i v e r t r a n s p o r t , which has been the p r i n c i p a l means of e x p l o r i n g an unknown r e g i o n , these are f r e q u e n t l y s u b j e c t t o i n i t i a l c l e a r i n g . T r a n s p o r t a t i o n to the i n t e r i o r , u s u a l l y r e s u l t i n g from r a i l r o a d c o n s t r u c t i o n and log g i n g a c t i v i t i e s , promotes c l e a r i n g of upland areas. This sequence held true i n the Fraser Lowland, where the Canadian P a c i f i c Railway along the Fraser River and water access along 95 the Fraser and Nooksack Rivers and Bellingham Bay concentrated settlement along these water bodies. I t was not u n t i l the c o n s t r u c t i o n of the B.C. E l e c t r i c Railway and the extension of three major r a i l l i n e s through Whatcom County across the upland areas about the t u r n of the century t h a t the g l a c i a t e d areas could be e x p l o i t e d f o r woodland and a g r i c u l t u r e to any great degree. Subsequent a v a i l a b i l i t y o f i r r i g a t i o n water, the form a t i o n of drainage d i s t r i c t s , and the i n c r e a s i n g s o p h i s t i c a t i o n of markets promoted the advance of a g r i c u l t u r e i n c e r t a i n areas. 5.1.2 Land C l e a r i n g a f t e r 1920 The major land c l e a r i n g occurred p r i o r to 1940 on the a l l u v i a l s o i l s , immediately a f t e r World War I I on the outwash and g l a c i a l m a r i n e s o i l s , and i n the 1950s and 1960s on the very g r a v e l l y morainal deposits. On a l l s o i l s the trend i s an increase i n a g r i c u l t u r a l land at the expense of woodland (Figs. 13 and 14) and i s p a r t i c u l a r l y evident on the outwash s o i l s . These r e s u l t s are contrary to the f i n d i n g s of Coppleman et a l . (1978), B i r c h and Wharton (1982), and Civco and Kennard (1983), a l l of whom found that a g r i c u l t u r a l land decreased d r a m a t i c a l l y over the time period they studied. In the Fraser Lowland post-war population and market growth has promoted the increase of a g r i c u l t u r a l l a n d . The p a t t e r n of c l e a r i n g i s s i m i l a r i n the USA and Canada on the outwash and a l l u v i a l s o i l s . On the g l a c i a l m a r i n e and morainal s o i l s , s i g n i f i c a n t l y more land has been c l e a r e d i n Canada as a r e s u l t of a greater abundance of hobby farms and a more urbanized population (Hayward, 1983). Dairy farming i s the dominant land use on the a l l u v i a l s o i l s i n 96 84 80 76 74 72 68 64 60 56 52 48 2 40 36 32 28 24 20 16 12 8 1943 1966 1983 1955 1976 Outwash 1943 1966 1983 1955 1976 A l l u v i a l 1943 1966 1983 1955 1976 G l a c i a l m a r i n e 1943 1966 1983 1955 1976 M o r a i n a l F i g . 13. R e l a t i v e amounts o f wood l and on o u t w a s h , a l l u v i a l , g l a c i a l m a r i n e , and m o r a i n a l s o i l s i n 1943, 1955, 1966, 1976, and 1983 i n Canada. 97 84 80 76 74 72 68 64 60 56 52 48 44 40 36 32 28 24 20 16 12 8 4 0 1943 1966 1983 1955 1976 Outwash 1943 1966 1983 1955 1976 A l l u v i a l 1943 1966 1983 1955 1976 G l a c i a l m a r i n e 1943 1966 1983 1955 1976 M o r a i n a l F i g . 14. R e l a t i v e amounts o f wood l and on o u t w a s h , a l l u v i a l , g l a c i a l m a r i n e , and m o r a i n a l s o i l s i n 1943, 1955, 1966, and 1983 i n t h e U n i t e d S t a t e s . 1976, 98 both the USA and Canada. On the other three parent m a t e r i a l s , land c l e a r i n g has been more extensive and land use more i n t e n s i v e i n Canada. These land uses i n Canada versus the USA are b e r r i e s versus grass, hay, and some b e r r i e s on the outwash s o i l s ; pasture and some cropland and woodland versus woodland and some pasture and cropland on the g l a c i a l m a r i n e s o i l s ; and homesites, pasture, and woodland versus woodland and some pasture on the morainal s o i l s . 5.1.2.1 Outwash S o i l s The economic resurgence of the 1950s i s e x e m p l i f i e d by the amount of land c l e a r i n g and e x p l o i t a t i o n of the outwash s o i l s (550 ha) f o r a g r i c u l t u r e . The r a p i d change i n land use on the outwash s o i l s r e s u l t s from the high percentage of woodland i n 1940, the increased use of i r r i g a t i o n a f t e r World War I I , and the r a p i d post-war growth i n populati o n , markets, and technology. The holdings appear to be l a r g e r i n the United States. Based on a crude h i s t o r i c a l p erspective of the a e r i a l photographs, p a r c e l s i z e has changed on these s o i l s from about 10 to 25 ha i n 1943 to 5 to 15 ha i n the United States i n 1983 and from about 10 to 60 ha t o l e s s than 10 ha during t h i s period i n Canada. In the e a r l y 1940s only 25$ of the land had been c l e a r e d of timber f o r use as pasture i n Canada but over 60$ i n the USA ( P l a t e 4). By the mid-1950s about 80$ had been c l e a r e d i n both c o u n t r i e s mostly f o r pasture but some b e r r i e s were grown (P l a t e 5). By the mid-1960s woodland remained on only 5$ of the Canadian study area and 10$ of the U.S. study area and l i t t l e has been c l e a r e d s i n c e then ( P l a t e 6). The f r e e drainage of these s o i l s , the a v a i l a b i l i t y of water f o r i r r i g a t i o n , the i n t r o d u c t i o n of the raspberry p i c k i n g machine, and the 99 P l a t e 4. 1943 a e r i a l photograph of the outwash area. S c a l e i s approximately 1:24 000. North i s at the top of the page. 100 P l a t e 5. 1955 a e r i a l photograph of the outwash area. Scale i s approximately 1:24 000. North i s at the top of the page. 101 1 02 P l a t e 7. 1976 a e r i a l photograph of the outwash area. Scale i s approximately 1:24 000. North i s at the top of the page. 1 03 s h i f t from f r e s h to processed marketing l e d to the c l e a r i n g of much of the study area on these s o i l s f o r berry production. At present about 90$ of Canadian land i s used f o r b e r r i e s , whereas i n the USA about 20$ i s used f o r b e r r i e s and about 70$ f o r hay (Plates 7 and 8 ) . 5.1.2.2 A l l u v i a l S o i l s At the beginning o f the study p e r i o d , woodland occupied only about 15 to 20$ of the study area on a l l u v i u m (1660 ha). Although most of the a l l u v i a l s o i l s were c l e a r e d p r i o r to 1943, t e c h n o l o g i c a l advances i n the d a i r y i n d u s t r y , improved t r a n s p o r t a t i o n , and increased demand from the l a r g e r post-war population l e d to f u r t h e r c l e a r i n g . The i n c r e a s e i n Dutch ownership through i m m i g r a t i o n has a l s o been important i n r e v i t a l i z i n g the d a i r y i n d u s t r y (Ginn 1967) . By the mid-1950s more than 90$ of the a l l u v i a l s o i l s had been cle a r e d and were used f o r pasture and some grass and corn s i l a g e . Since the mid-1960s l e s s than 5$ has supported woodland. S i m i l a r c l e a r i n g schedules occurred i n the two c o u n t r i e s . Pasture was the common land use p r i o r to the 1960s, a f t e r which grass s i l a g e production has become the p r i n c i p a l p r a c t i c e (Smelser 1970) ( P l a t e 9). The conversion from pasture to hay and s i l a g e was confirmed by F r a z i e r and Shovic (1979) who s t u d i e d land use changes i n Whatcom County between 1966 and 1974. They found a s i g n i f i c a n t decrease i n cropland as w e l l as pasture and an in c r e a s e i n hay production. They concluded t h i s change to be i n d i c a t i v e of a growth i n d a i r y i n g : more c a t t l e being r a i s e d i n t e n s i v e l y and fewer c a t t l e on open pastures. 5.1.2.3 G l a c i a l m a r i n e S o i l s On s o i l s formed i n g l a c i a l m a r i n e deposits (1050 ha) the dominant 105 land use has been woodland and pasture. These s o i l s have drainage and slope l i m i t a t i o n s and have not been e x p l o i t e d a g r i c u l t u r a l l y t o a la r g e extent except f o r pasture. In the 1940s about 75$ of the U.S. study area and about 65% of the Canadian were i n woodland. These percentages dropped to 70% and 45$, r e s p e c t i v e l y i n the 1950s. Land c l e a r i n g i n Canada continues but has n e a r l y ceased i n the USA since the 1970s w i t h a r e s u l t i n g r e l a t i v e woodland amount of about 60$ and 20$, r e s p e c t i v e l y i n the 1980s. Also at t h i s time the use of these s o i l s f o r b e r r i e s and cole crops i n Canada began t o increase due to higher land p r i c e s on more s u i t a b l e s o i l s . About 15$ of the c l e a r e d land i s arable cropland at present ( P l a t e 10). 5.1.2.4 Morainal S o i l s On the morainal deposits (360 ha) land use change has stagnated i n the USA since the 1940s. In f a c t , n e a r l y as much pasture has reverted to woodland (5$) as has woodland been c l e a r e d (8$). In Canada the p r o x i m i t y of these deposits to the expansion of the White Rock urban complex has r e s u l t e d i n land c l e a r i n g mostly f o r urban development and hobby farms (Hayward 1983). About 40$ was cleared by 1943 and 10$ more has been c l e a r e d every 10 years s i n c e then. The morainal s o i l s have low s u i t a b i l i t y f o r a g r i c u l t u r e due to slope, low a v a i l a b l e water c a p a c i t y , and high rock fragment content (Goldin 1986, Luttmerding, 1985, personal communication). The low c a p a b i l i t y of the land f o r farming i s r e f l e c t e d i n the f a c t that there has been about as much cropland abandoned (50 ha) as land u t i l i z e d (60 ha) i n the USA. The l a r g e m a j o r i t y has remained i n woodland, although not managed f o r timber production. About 55$ i n Canada and 25$ i n the USA have been cl e a r e d of timber ( P l a t e 11). 1 06 P l a t e 9. 1981 a e r i a l photograph of the a l l u v i a l area. Scale i s approximately 1:24 000. North i s at the top of the page. 107 107 ex. 1981 a e r i a l photograph of the g l a c i a l m a r i n e area. Scale i approximately 1:24 000. North i s at the top of the page. The upper photo i s the west h a l f and the lower photo the e a s t h a l f . 108 . 1981 a e r i a l photograph of the morainal area. S c a l e i approximately 1:24 000. North i s at the top of the p 109 5.2 Procedural Checks 5.2.1 R e l a t i o n s h i p Between Organic Matter and Leco Carbon The r e l a t i o n s h i p between organic matter content (OM) and Leco carbon (LC) was e s t a b l i s h e d by running on the Leco carbon analyzer a s t r a t i f i e d random 10$ sample- one randomly chosen sample from each p l o t ( L a v k u l i c h 1978). One r e g r e s s i o n l i n e was e s t a b l i s h e d f o r the m i n e r a l s o i l s , one f o r the woodland l i t t e r l a y e r s , and one f o r a l l samples combined. The l i n e s (Figs. 15-17) have equations and c o e f f i c i e n t s of d e t e r m i n a t i o n of %LC = 0.405(OM) - 0.710, r2= . 8 6 ; %LC = 0 .417(OM) - 2.492, r 2 = . 8 9 ; and $LC = 0.388(OM) - 0.578, r 2 = . 9 8 , r e s p e c t i v e l y . These r2 values are comparable to those determined by B a l l ( 1 9 6 4 ) , and are s u f f i c i e n t l y c l o s e t o 1 t o use l o s s - o n - i g n i t i o n as a v a l i d e s t i m a t o r of the organic matter content. The d i f f e r e n c e between the values of OM and LC by Leco a n a l y s i s i s due to s e v e r a l sources: 1) use of a 2 mm sieved sample on OM versus a 150 micrometer crushed and sieved sample on Leco, 2) oven-d r i e d sample used on OM versus a i r - d r i e d on Leco, 3) p o s s i b l e l o s s o f weight by removal of OH- i n s t r u c t u r a l water from amorphous m a t e r i a l and c r y s t a l l i n e c l a y s , 4) p o s s i b l e l o s s of elemental carbon, and other l o s s e s . The d i s c r i m i n a t i o n of organic matter l o s s from weight l o s s of water and OH- i s based on the s e l e c t i o n of temperature. Both are d r i v e n o f f at 600OC. The m i n e r a l s o i l i s assumed to be unchanged at these temperatures. However, d i f f e r e n t i a l thermal a n a l y s i s shows that water i s d r i v e n o f f from m i n e r a l s o i l at t h i s temperature and so the d i s c r i m i n a t i o n between organic and m i n e r a l matter i s f a r from complete (Jackson 1958). 11 0 I i r • • <M IT-(j) (31) H08HV3 0331 Fig. 15. Linear regression of organic matter (OM) on Leco carbon (LC) for mineral s o i l s . 111 e i » 1 •c I I c > • o c * C-(j) (on) Noaavo 033i F i g . 16. Linear r e g r e s s i o n o f organic matter (OM) on Leco carbon (LC) f o r l i t t e r l a y e r s . 112 I -0 IT I « 1 e i 4- I • • i <o • « e o Fig. 17. Linear regression of organic matter (OM) on Leco carbon (LC) for mineral soils and l i t t e r layers. 113 5.2.2 D u p l i c a t i o n o f Samples The samples on which the OM-LC analyses were run were a l s o used f o r d u p l i c a t i o n i n order to check the procedural techniques. Comparison of the histograms of the d i f f e r e n c e s between the o r i g i n a l s and d u p l i c a t e s w i t h the r e s p e c t i v e normal curve f o r each v a r i a b l e i n d i c a t e s the d i s t r i b u t i o n of d i f f e r e n c e s f o r a l l v a r i a b l e s i s s u f f i c i e n t l y d i f f e r e n t from n o r m a l i t y to warrant the nonparametric Mann-Whitney-U t e s t . This t e s t i s 95$ as powerful as the parametric t - t e s t . Examination of the Mann-Whitney-U t e s t (Tables B1 and B2) i n d i c a t e s that f o r each v a r i a b l e no s i g n i f i c a n t d i f f e r e n c e e x i s t s between the o r i g i n a l s and the d u p l i c a t e s f o r the 60 mineral s o i l s (20 on each parent m a t e r i a l ) and the 12 l i t t e r l a y e r s (4 on each parent m a t e r i a l ) , i n d i c a t i n g that they came from the same population. When the o r i g i n a l s were regressed against the d u p l i c a t e s f o r each chemical v a r i a b l e , the Pearson c o r r e l a t i o n c o e f f i c i e n t s ranged from 0.937 t o 0.996 f o r the min e r a l s o i l s (except K f o r which r=0.832) and from 0.914 to 0.997 f o r the woodland l i t t e r l a y e r s (except P f o r which r=0.804). Since the populations were found t o be h i g h l y c o r r e l a t e d as w e l l as being not s i g n i f i c a n t l y d i f f e r e n t , an a n a l y s i s was used to check procedural d i f f e r e n c e s using the d i f f e r e n c e i n popul a t i o n means. T e s t i n g the d i f f e r e n c e of two popul a t i o n means i s much more s e n s i t i v e than t e s t i n g the means themselves, on the order of 11 000$ (Sokal and Rohlf 1981). In a paired comparison a n a l y s i s such as t h i s , we expect c o r r e l a t i o n between the v a r i a b l e s (as described above) si n c e each p a i r shares a common experience, i.e., sampled from the same container. Since these d i f f e r e n c e s were a l s o not normally d i s t r i b u t e d , the nonparametric Wilcoxon t e s t was the appropriate a n a l y s i s to use and 1 1 4 accounts f o r t h i s c o r r e l a t i o n (Tables B3 and B4). This t e s t shows a s i g n i f i c a n t s y s t e m a t i c procedural e f f e c t since the o r i g i n a l i s found to be more than the d u p l i c a t e f o r a l l v a r i a b l e s except P, f o r which the d u p l i c a t e i s more than the o r i g i n a l , and f o r N, f o r which there i s no s i g n i f i c a n t d i f f e r e n c e . K and P are c l o s e to showing no s i g n i f i c a n t d i f f e r e n c e w i t h t w o - t a i l e d p r o b a b i l i t i e s of 0.03 and 0.04, r e s p e c t i v e l y . No e x p l a n a t i o n can be given f o r t h i s d i f f e r e n c e s i n c e the o r i g i n a l s and d u p l i c a t e s were analyzed contemporaneously. The d i f f e r e n c e i n the means of the o r i g i n a l and d u p l i c a t e of the woodland samples are not s i g n i f i c a n t l y d i f f e r e n t . The o p t i o n s f o r c o r r e c t i n g the data are to take the average of the o r i g i n a l and d u p l i c a t e or t o decrease the o r i g i n a l by a s p e c i f i e d amount. The average of a l l the values cannot be taken since d u p l i c a t e s were made on only 10$ of the sample. Decreasing a l l of the values would be purposeless since t h i s study i s concerned w i t h r e l a t i v e values. Therefore, i t was decided to r e t a i n the o r i g i n a l values u n a l t e r e d . 5.3 A n a l y s i s of Parent M a t e r i a l , Age and Country 5.3.1 Introductory Comparison of Age and Country D i f f e r e n c e s by Parent M a t e r i a l The e f f e c t s of c l e a r i n g and burning (gaseous l o s s e s of N, inputs of c a t i o n s from ash and l i t t e r r e s i d ues) have r e s u l t e d i n a wide spectrum of values on the s o i l s of the three parent m a t e r i a l s . The type of equipment used f o r land c l e a r i n g a l s o can be i n f l u e n t i a l . The e f f e c t s are compounded by amendments subsequent to harvest. For i n s t a n c e , on the g l a c i a l m a r i n e s o i l s the change between the uncleared woodland p l o t s and the p l o t s c l e a r e d i n 1980, 1970, 1960, and 1950 i s 11 5 more c o n s i s t e n t than the outwash s o i l s , f o r which s i z e a b l e d i f f e r e n c e s e x i s t between c l e a r e d p l o t s of d i f f e r e n t ages. On a l l three parent m a t e r i a l s , pH l e v e l s increase w i t h time-s i n c e - c l e a r i n g from about 5 years (cleared 1976 to 1983) t o about 35 years (cleared 1943 to 1955) due t o l i m i n g and/or manuring. On the other hand, OM l e v e l s decrease due to 1) l o s s of biomass by crop removal and decomposition of r e s i d u e s , 2) increased m i c r o b i a l a c t i v i t y due t o higher pH and an improved n u t r i e n t s t a t u s from amendments, and 3) increased contact of organic matter w i t h the atmosphere f o l l o w i n g t i l l a g e , which leads to m i n e r a l i z a t i o n and, thus, a decrease i n organic matter. These trends are s i m i l a r to those reported i n the l i t e r a t u r e (Brady 1985, Juma and M c G i l l 1986). Reduction i n OM may be o f f s e t by very l a r g e and continuous a d d i t i o n s of manure. A l s o , the q u a l i t y of the manure and the p a r t i c l e s i z e and q u a l i t y of l i m i n g m a t e r i a l may be quit e v a r i a b l e . Large v a r i a t i o n s i n many of the n u t r i e n t s may r e s u l t from the d i f f e r e n t i a l spreading of these amendments. 5.3.1.1 Q u a l i t y of the Data S t a t i s t i c a l analyses of the 280 samples on each parent m a t e r i a l (10 samples on each of the 16 c u l t i v a t e d , 4 woodland, 4 weighted average p l o t s , and the 4 l i t t e r l a y e r s ) , i n d i c a t e s that the frequency d i s t r i b u t i o n s of the v a r i a b l e s (H20 pH, CaCl2 PH> C a> MS> K> p> 0 M> and N) d i f f e r s i g n i f i c a n t l y from n o r m a l i t y (Tables B5-B10). However, when the means of each of the 28 p l o t s are examined, most of the v a r i a b l e s on each parent m a t e r i a l e x h i b i t n o r m a l i t y a t the 0.05 l e v e l of s i g n i f i c a n c e . The n o r m a l i t y achieved u s i n g means r e s u l t s from the C e n t r a l L i m i t Theorem. The only exceptions are OM and N on a l l parent m a t e r i a l s , Mg on outwash, and Ca and K on g l a c i a l m a r i n e s o i l s . The 1 1 6 major problem with the n o r m a l i t y of OM and N i s the vast d i f f e r e n c e between t h e i r l e v e l s i n m i n e r a l s o i l s and i n the l i t t e r l a y e r , f o r which values are 3 to 8 times g r e a t e r . When the c u l t i v a t e d s o i l s are considered alone, a greater degree of n o r m a l i t y by sample i s achieved. The f o l l o w i n g v a r i a b l e s e x h i b i t n o r m a l i t y by sample: N on a l l three parent m a t e r i a l s , OM on outwash and g l a c i a l m a r i n e s o i l s , pH (CaCl2^ a n d K o n outwash s o i l s , and Ca on a l l u v i a l s o i l s . When the means of the c u l t i v a t e d p l o t s are examined, a l l the v a r i a b l e s on a l l parent m a t e r i a l s e x h i b i t n o r m a l i t y at the 0.05 l e v e l of s i g n i f i c a n c e (Tables B11-B16). Graphic normal p l o t s f o r pH (CaCl2)> Mg, and OM f o r outwash s o i l s u sing a l l samples, the means of a l l p l o t s , a l l c u l t i v a t e d samples, and the means of a l l c u l t i v a t e d p l o t s are used to represent the range i n data d i s t r i b u t i o n . The s t r a i g h t e r the l i n e the more the data approximate a normal curve (Figs. B1-B6). The data f o r pH approximate a normal curve under a l l four analyses. Mg and OM are non-normal f o r a l l samples, but approximate n o r m a l i t y when p l o t means are used. These graphs demonstrate the greater tendency toward n o r m a l i t y u s i n g data from the more homogeneous c u l t i v a t e d s o i l s and a l s o using p l o t means as opposed t o i n d i v i d u a l samples. Since a l l the analyses of variance (ANOVA) are based on p l o t means, and the means f o l l o w the normal d i s t r i b u t i o n , the assumption of n o r m a l i t y has been achieved. For those few p l o t s or v a r i a b l e s that do not, the ANOVA i s being used w i t h an i n v a l i d assumption. However, since most of the analyses are so h i g h l y s i g n i f i c a n t , and sin c e the ANOVA i s a very robust t e s t , p a r t i c u l a r l y when sample s i z e s are equal, and the data c l o s e t o normal, such as i n t h i s study, i t i s s t i l l a p p ropriate t o use the 11 7 t e s t . The non-normality r e s u l t s p r i n c i p a l l y from the i n c l u s i o n of the l i t t e r l a y e r w i t h the m i n e r a l s o i l , so c a u t i o n should be used i n i n t e r p r e t i n g the r e s u l t s when the e n t i r e data s e t i s examined. 5 .3.2 Age and Country A n a l y s i s by Parent M a t e r i a l 5.3.2.1 Outwash S o i l s A n a l y s i s of p l o t s ; The p l o t p a i r s showing s i g n i f i c a n t d i f f e r e n c e s w i t h i n each age group are the most important to consider. P l o t 6 (1950 grouping), p l o t 4 (1960 grouping), p l o t 8 (1970 grouping), and p l o t 7 (1980 grouping) are considerably more f e r t i l e than t h e i r counterparts i n t h e i r r e s p e c t i v e age groupings as a r e s u l t of t h e i r heavier a p p l i c a t i o n s of amendments ( f e r t i l i z e r , manure, and lime) ( T a b l e C4). A n a l y s i s of age; The general p a t t e r n f o r each v a r i a b l e w i t h i n c r e a s i n g t i m e - s i n c e - c l e a r i n g are the f o l l o w i n g : pH, Ca, K, and P i n c r e a s e immediately a f t e r c l e a r i n g then l e v e l o f f a f t e r about 15 years, Mg i n c r e a s e s immediately a f t e r c l e a r i n g then appears t o l e v e l o f f a f t e r about 5 years, and OM and N g e n e r a l l y decrease a f t e r an i n c r e a s e immediately a f t e r c l e a r i n g (Table 11). The c u l t i v a t e d s o i l s as a whole have higher pH, higher l e v e l s of c a t i o n s and P, and lower l e v e l s of OM and N than the woodland or weighted average s o i l s (Table C5). The C:N decreases from n e a r l y 19 i n woodland to 16 i n 5 years and then seems t o l e v e l o f f to between 14 and 15 a f t e r 15 years. This r e s u l t s from the higher l e v e l s of carbon m i n e r a l i z a t i o n i n c u l t i v a t e d than i n woodland s o i l s , which c o n t a i n more r e s i s t a n t C compounds. Other f a c t o r s which w i l l reduce the C:N are the a p p l i c a t i o n of manure and the growth of crops, such as legumes. These s o i l s have a p o t e n t i a l C:N below 12 based on the o l d raspberry p l o t . 1 1 8 Table 11. Breakdown of outwash s o i l s by age. Old raspberry p l o t (RASP) not included i n summary c a l c u l a t i o n s . Mg K mg kg-1 Age# RASP 1950 1960 1970 1980 woodland wt. avg. l i t t e r c u l t . mineral min.+avg. TOTAL Age RASP 1950 1960 1970 1980 woodland wt. avg. l i t t e r c u l t . m i n eral min.+avg. TOTAL PH H20 mean st d dev 6.3 0.4 6.2 0.4 6.1 0.5 6.2 0.2 5.7 0.5 5.0 0.4 5.0 0.4 5.0 0.5 6.0 0.5 5.8 0.6 5.7 0.6 5.6 0.7 p mg kg-1 PH CaCl2 mean s t d dev 5.9 0.3 5.5 0.4 5.5 0.5 5.8 0.3 5.1 0.5 4.4 0.3 4.4 0.3 4.4 0.5 5.5 0.5 5.3 0.6 5.1 0.7 5.0 0.7 V a r i a b l e Ca mean s t d  dev 1275 450 828 1235 754 866 848 587 378 452 49 80 230 154 2038 1141 702 854 571 808 514 751 732 974 mean st d dev 125 38 72 28 84 44 84 53 71 49 36 27 83 43 552 273 78 44 70 44 72 44 140 201 mean s t d  dev 200 21 230 53 242 78 220 92 193 72 80 22 117 29 493 180 221 77 193 89 180 87 225 152 V a r i a b l e OM N C:N % % mean st d dev mean s t d dev mean s t d dev mean s t d dev 85 47 10.1 1.4 .280 .045 11.9 0.5 152 153 7.5 0.7 .164 .024 14.2 1.1 102 94 8.5 1.5 .187 .046 14.7 1.2 176 190 8.3 1.7 .182 .044 14.5 1.4 47 55 10.0 1.7 .209 .051 16.0 1.5 31 37 9.6 2.2 .175 .044 18.9 5.9 38 34 14.4 2.7 .285 .054 17.7 2.8 108 35 61.5 14.8 1.381 .334 16.9 1.7 119 141 8.6 1.7 .186 .045 14.8 1.5 102 132 8.8 1.9 .184 .045 15.6 3.3 91 124 9.7 2.9 .200 .060 16.0 3.3 93 115 17.1 19.2 .369 .436 16.1 3.1 1 1 9 # 1950 = c l e a r e d between 1943 and 1955 1960 = cl e a r e d between 1955 and 1966 1970 = c l e a r e d between 1966 and 1976 1980 = cl e a r e d between 1976 and 1983 The woodland mineral s o i l i s s i g n i f i c a n t l y d i f f e r e n t from most of the c u l t i v a t e d s o i l s f o r a l l v a r i a b l e s except Mg, OM, and N, and from the weighted average s o i l s f o r a l l v a r i a b l e s except Mg. The 1980 group i s the only age group showing s i g n i f i c a n t d i f f e r e n c e s f o r most of the v a r i a b l e s (Table C18). The cause i s i t s c l o s e a s s o c i a t i o n i n time w i t h woodland, which has already been noted t o be d i f f e r e n t . Although p l o t s 4, 6, 7, and 8 show s i g n i f i c a n t d i f f e r e n c e s w i t h i n t h e i r r e s p e c t i v e age groupings (Table C2), when these p l o t s are removed from the a n a l y s i s , the general p a t t e r n of changes i n c o n c e n t r a t i o n over time remain about the same (Tables C3 and C 4 ) . A n a l y s i s of land use; The data i n d i c a t e four d i s t i n c t i v e groups; l i t t e r , weighted average s o i l s , woodland s o i l s , and c u l t i v a t e d s o i l s . When land use i s examined, i t i s c l e a r that the c u l t i v a t e d s o i l s are s i g n i f i c a n t l y d i f f e r e n t from the other three f o r pH, c a t i o n s , and P (Table C5). The l i t t e r l a y e r i s s i g n i f i c a n t l y d i f f e r e n t from the others f o r a l l v a r i a b l e s except pH, f o r which i t d i f f e r s only from c u l t i v a t e d s o i l s . This l a c k of d i f f e r e n t i a t i o n i s due i t s expression as a l o g a r i t h m and to the narrow range of pH i n these s o i l s . The woodland and weighted average groups are the most s i m i l a r . This i s expected s i n c e the weighted average s o i l i s 91$ woodland m i n e r a l s o i l by d e f i n i t i o n and d i f f e r s only by i t s 9% i n f l u e n c e of the l i t t e r l a y e r . The l i t t e r l a y e r i s d i s t i n c t i v e from the others by i t s d i f f e r e n t composition, being composed of organic compounds as compared to the dominantly s i l i c a t e m i n e r a l s i n the m i n e r a l s o i l . The c u l t i v a t e d s o i l s are d i s t i n g u i s h e d by varying degrees of management and s o i l amendments, thereby changing the l e v e l s of the study v a r i a b l e s , which are e a s i l y a l t e r e d by management. 120 A n a l y s i s of country and r e p l i c a t e ; As expected from the d i f f e r -ences i n land use i n the two c o u n t r i e s , when only the c u l t i v a t e d s o i l s are examined, the two c o u n t r i e s are s i g n i f i c a n t l y d i f f e r e n t at the P< 0.001 l e v e l f o r a l l v a r i a b l e s except OM and N. These v a r i a b l e s are very c l o s e to s i g n i f i c a n c e , having F values of 0.07 and 0.06. C:N a l s o shows no d i f f e r e n c e due to country (Table 12). However, a l l v a r i a b l e s except pH and C:N are s i g n i f i c a n t l y d i f f e r e n t by r e p l i c a t e (Table C6). The rock fragment content of the s o i l s i n the USA i s s i g n i f i c a n t l y lower than t h a t i n Canada (U.S. mean=9.3, s t d dev = 3-5; Canada mean=13.3, s t d dev=3«9; F ratio=46 .3 , F value=.000). This d i f f e r e n c e may be explained by the more common usage i n the USA of s m a l l dozers to c l e a r land which leave the substratum more i n t a c t than us i n g l a r g e r ones ( D a r r e l l E h l e r s , farmer, 1985, personal communication). 5.3.2.2 A l l u v i a l S o i l s A n a l y s i s of p l o t s ; A f t e r a n a l y z i n g the p l o t s w i t h i n each land c l e a r i n g age group, only p l o t s 25 i n the 1970 group and 37 i n woodland were s i g n i f i c a n t l y d i f f e r e n t from t h e i r counterparts (Tables C7 and C8). P l o t 25 was s i g n i f i c a n t l y lower and p l o t 37 s i g n i f i c a n t l y higher. F i e l d observations provide no e x p l a n a t i o n f o r these d i f f e r e n c e s . A n a l y s i s of age; The general trend w i t h i n c r e a s i n g t i m e - s i n c e -c l e a r i n g are that pH, Ca, Mg, and K i n c r e a s e or remain n e a r l y at woodland l e v e l s f o r 5 to 15 years (Table 13). pH decreases s l i g h t l y a f t e r 15 years, whereas the c a t i o n l e v e l s drop a b r u p t l y a f t e r 15 t o 25 years before l e v e l l i n g o f f . Steady s t a t e appears to be reached w i t h i n the 35 year period f o r the c a t i o n s and pH. P l e v e l s are e r r a t i c and the two organic matter c o n s t i t u e n t s (OM and N) decrease from woodland l e v e l s f o r 15 years and then in c r e a s e . 121 Table 12. Breakdown of outwash s o i l s by country. Country pH H 20 mean s t d dev PH CaC12 mean s t d dev V a r i a b l e Ca mean s t d dev Mg .-1--—mg kg" mean s t d dev mean s t d dev E n t i r e data s et Combined 5.6 0.7 Canada 5.6 0.8 USA 5.6 0.5 F r a t i o 0.03 F prob. .8668 5.0 0.7 5.1 0.9 5.0 0.5 1.07 .3020 732 974 864 955 600 979 5.22 .0231 140 201 124 157 132 251 1.93 1660 225 152 232 135 218 167 0.53 .4667 C u l t i v a t e d s o i l s only Combined 6.0 0.5 5.5 0.5 702 854 78 44 221 77 Canada 6.2 0.4 5.7 0.4 1127 1013 104 41 264 69 USA 5.8 0.4 5.3 0.4 277 275 51 28 179 59 F r a t i o 36.4 50.8 52.4 91 .7 71 .0 F prob. .0000 .0000 .0000 .0000 .0000 M i n e r a l s o i l s only Combined 5.8 0.6 5.3 0.6 571 808 70 44 193 89 Canada 5.9 0.7 5.4 0.7 905 1009 88 50 225 100 USA 5.7 0.4 5.1 0.5 237 263 51 28 161 64 F r a t i o 5.29 12.5 41.0 40.0 28.7 F prob. .0225 .0005 .0000 .0000 .0000 M i n e r a l s o i l s p l u s weighted average only Combined 5.7 0.6 5.1 0.7 514 751 72 44 180 87 Canada 5.7 0.8 5.2 0.8 778 964 82 62 204 103 USA 5.7 0.4 5.0 0.5 251 250 62 38 157 60 F r a t i o 0.59 4.86 33.7 12.9 18.4 F prob. .4433 .0284 .0000 .0004 .0000 122 V a r i a b l e Country P OM N C:N mg kg-1 % % mean i s t d mean std mean st d mean std dev dev dev dev E n t i r e data set Combined 93 115 17.1 19.2 .369 . 436 16.1 3.1 Canada 145 142 17.0 18.6 • 365 414 15.9 2.2 USA 42 34 17.2 19.8 .373 458 16.3 3.8 F r a t i o 70.2 0. 01 0.03 1.36 F prob. • 0000 • 9036 .8680 .2439 C u l t i v a t e d s o i l s only Combined 119 141 8.6 1.7 .186 045 14.8 1.5 Canada 205 158 8.8 1.5 .192 034 14.8 1.6 USA 33 13 8.3 1.9 .179 054 14.9 1.3 F r a t i o 94.1 3. 44 3.73 0.40 F prob. 0000 .0655 .0554 .5293 Mi n e r a l s o i l s only Combined 102 132 8.8 1 .9 .184 .045 15.6 3-3 Canada 172 157 9.1 1 .9 .191 .037 15.3 2.1 USA 31 16 8.5 1 .8 .176 .051 15.9 4.1 F r a t i o 80.3 4.34 5. 76 1. 42 F prob. .0000 .0384 .0173 .2352 M i n e r a l s o i l s p l u s weighted average only Combined 91 124 9. 7 2. 9 .200 .060 16.0 3-3 Canada 152 152 10. 0 3. 0 .207 .055 15.7 2.2 USA 30 17 9. 5 2. 8 .194 .064 16.2 4.1 F r a t i o 75.3 1.76 3.11 1.80 F prob. • 0000 • 1858 .0792 .1815 123 Table 13- Breakdown of a l l u v i a l s o i l s by age. V a r i a b l e pH pH Ca Mg K Age* H20 CaCl2 mg k g - 1 mean st d mean st d mean st d mean st d mean std dev dev dev dev dev 1950 5.8 0.4 5.2 0.3 855 283 481 145 175 138 1960 5.8 0.2 5.2 0.2 836 330 368 115 - 184 98 1970 6.1 0.3 5.6 0.3 867 424 392 59 257 150 1980 6.0 0.2 5.4 0.3 1068 326 604 153 235 127 woodland 5.5 0.5 4.9 0.5 996 590 670 271 286 168 wt. avg. 5.5 0.5 4.9 0.5 1120 605 708 277 321 168 l i t t e r 5.8 0.6 5.3 0.7 2354 1066 1093 437 676 300 c u l t . 5.9 0.3 5.4 0.3 906 354 461 154 213 133 mineral 5.8 0.4 5.3 0.4 924 412 503 201 228 143 min.+avg. 5.8 0.4 5.2 0.4 957 454 537 228 243 151 TOTAL 5.8 0.5 5.2 0.5 1157 759 617 330 305 235 V a r i a b l e Age P OM N C:N mg kg-1 % % mean st d dev mean st d dev mean std dev mean std de 1950 21 12 8.9 1.7 .243 .057 12.0 1.4 1960 72 61 8.8 1.3 .232 .042 12.2 1.2 1970 34 24 7.8 1.5 .203 .047 12.3 1.7 1980 40 24 10.1 1.6 .241 .043 14.0 2.2 woodland 29 22 12.7 4.3 .299 .091 14.6 4.0 wt. avg. 38 26 16.7 4.6 .389 .098 15.2 3.1 l i t t e r 129 83 56.8 12.5 1 .303 • 352 17.0 3.4 c u l t . 42 40 8.9 1.7 .230 .050 12.6 1.8 mine r a l 39 37 9.7 2.9 .234 .066 13.0 2.5 min.+avg. 39 35 10.8 4.2 .267 .090 13.4 2.8 TOTAL 52 55 17.4 17.2 .416 .396 13-9 3.1 # 1950 = clear e d between 1943 and 1955 1960 = c l e a r e d between 1955 and 1966 1970 = cl e a r e d between 1966 and 1976 1980 = c l e a r e d between 1976 and 1983 124 Except f o r P and pH, the l e v e l s of a l l v a r i a b l e s are below the o r i g i n a l l e v e l s i n woodland, i n d i c a t i n g t h a t management i s decreasing the general f e r t i l i t y of these s o i l s . These management e f f e c t s d i f f e r markedly from the other two s o i l s , where f e r t i l i t y l e v e l s are i ncreased a f t e r c l e a r i n g . The d i f f e r e n c e between the s o i l s appears to be due more to the d i f f e r e n t i n i t i a l f e r t i l i t y l e v e l s at c l e a r i n g than to s p e c i f i c management p r a c t i c e s . On a l l u v i a l s o i l s Mg and K decrease to n e a r l y h a l f of woodland l e v e l s and OM and N contents decrease by about one-third. The C:N decreases s t e a d i l y from 14.6 i n woodland to 12.0 i n the 1950 grouping w i t h no s i g n of l e v e l l i n g o f f a f t e r 35 years of c u l t i v a t i o n . When the four c u l t i v a t e d groups are compared very few d i f f e r e n c e s are n o t i c e d and no one group i s d i s t i n c t i v e . A n a l y s i s of land use: The c u l t i v a t e d s o i l s as a group show s i g n i f i c a n t d i f f e r e n c e s from the woodland, weighted average, and l i t t e r l a y e r f o r pH, Mg, K, OM, and N and o n ly from the l i t t e r l a y e r f o r Ca and P (Table C10). The most s i m i l a r groups are the woodland and weighted average s o i l s , as expected, which show d i f f e r e n c e s o n ly f o r OM and N. These d i f f e r e n c e s r e s u l t from the very high l e v e l s of OM and N i n the l i t t e r l a y e r . A n a l y s i s of country and r e p l i c a t e : A high degree of s i m i l a r i t y i s to be expected between co u n t r i e s on t h i s parent m a t e r i a l since land use i s so s i m i l a r , being used dominantly f o r d a i r y . This r e l a t i o n s h i p g e n e r a l l y holds true when only the c u l t i v a t e d s o i l s are considered s i n c e only Ca and P are s i g n i f i c a n t l y d i f f e r e n t by country w i t h higher l e v e l s of Ca i n Canada and P i n the USA (Table 14). However, these v a r i a b l e s a l s o show s i g n i f i c a n t d i f f e r e n c e s by r e p l i c a t e , which u l t i m a t e l y confounds the s i g n i f i c a n c e (Table C11). The other data se t s show s i m i l a r d i f f e r e n c e s by country and r e p l i c a t e . 125 Table 14. Breakdown of a l l u v i a l s o i l s by country. V a r i a b l e pH pH Ca Mg K Country H 2 0 CaCl2 mg k g - 1 mean s t d dev mean s t d dev mean s t d dev mean s t d dev mean s t d dev E n t i r e data set Combined 5.8 0.5 5.2 0.5 1157 759 617 330 305 235 Canada USA 5.9 0.4 5.7 0.5 5.4 0.4 5.1 0.5 1321 775 992 708 617 340 617 321 316 241 295 229 F r a t i o F prob. 15.3 .0001 26.5 .0000 13-7 .0003 0.00 .9956 0.56 .4555 C u l t i v a t e d ; s o i l s only Combined 5.9 0.3 5.4 0.3 906 354 461 154 213 133 Canada USA 5.9 0.3 6.0 0.3 5.4 0.3 5.3 0.3 1057 307 756 334 453 180 470 123 193 128 233 136 F r a t i o F prob. 2.06 .1532 1.82 .1797 35.3 .0000 0.47 .4925 3.66 .0576 M i n e r a l s o i l s only Combined 5.8 0.4 5.3 0.4 924 412 503 201 228 143 Canada USA 5.9 0.3 5.8 0.5 5.3 0.4 5.2 0.4 1089 214 759 339 495 214 511 187 224 147 231 140 F r a t i o F prob. 0.79 .3737 6.32 .0127 38.2 .0000 0.31 .5789 0.15 .7015 M i n e r a l and weighted average s o i l s only Combined 5.8 0.4 5.2 0.4 957 454 537 228 247 152 Canada USA 5.9 0.4 5.7 0.5 5.3 0.4 5.1 0.4 1130 478 784 354 530 235 544 222 250 158 245 147 F r a t i o F prob. 5.58 .0190 12.7 .0004 40.7 .0000 0.22 .6409 0.05 .8230 126 V a r i a b l e Country P OM N C:N mg kg-1 % % mean s t d dev mean s t d dev mean s t d dev mean s t d dev E n t i r e data set Combined 52 55 17.4 17.2 .416 .396 13-9 3-1 Canada 52 57 17.7 17.2 .433 .399 13.5 2.2 USA 52 54 17.2 17.2 .400 .394 14.3 3-8 F r a t i o 0.00 0.06 0.49 3.95 F prob. .9834 .8085 .4845 .0479 C u l t i v a t e d s o i l s only Combined 42 40 8.9 1 .7 .230 .050 12.6 1 .8 Canada 32 22 9.0 1 .6 .242 .059 12.3 1 .8 USA 52 50 8.8 1 .8 .218 .036 12.9 1 .9 F r a t i o 10.5 0.70 9.07 4.30 F prob. .0014 .4028 .0030 • 0396 M i n e r a l s o i l s only Combined 39 37 9.7 2. 9 .243 .066 13.0 2. 5 Canada 33 21 9.8 2. 7 .255 .075 12.7 1. 8 USA 45 47 9.5 3. 0 .231 ' .053 13.3 3. 1 F r a t i o 5.47 0. 40 6. 67 2. 95 F prob. .0204 .5280 .0105 .0875 M i n e r a l and weighted average s o i l s only Combined 39 35 10.8 4.2 .268 .090 13.4 2.8 Canada 36 22 10.7 4.3 .280 .098 13.1 1.9 USA 42 45 10.7 4.3 .256 .079 13.7 3.4 F r a t i o 2.19 0. 31 4.52 3.15 F prob. .1405 .5775 .0345 .0773 127 5.3.2.3 G l a c i a l m a r i n e S o i l s A n a l y s i s o f p l o t s ; Only two p l o t s show s i g n i f i c a n t d i f f e r e n c e s from others i n t h e i r r e s p e c t i v e age groupings: p l o t 41 i n the 1950 grouping and p l o t 52 i n the 1970 grouping, both being s i g n i f i c a n t l y higher (Tables C12 and C13). P l o t 41 i s s i g n i f i c a n t l y higher i n K and P than other p l o t s since t h i s was the main p l o t i n which c a t t l e were being a c t i v e l y pastured and wintered. This added component could come from hay brought from other f i e l d s and a l s o from i n t e r n a l c y c l i n g from lower i n the p r o f i l e . A n a l y s i s of age: With i n c r e a s i n g t i m e - s i n c e - c l e a r i n g , pH s t e a d i l y i n c r e a s e s and OM s t e a d i l y decreases as a r e s u l t of l i m i n g and increased C m i n e r a l i z a t i o n , r e s p e c t i v e l y . The g l a c i a l m a r i n e s o i l s show a more c o n s i s t e n t trend than the other two parent m a t e r i a l s since these s o i l s are l e s s manipulated, being used dominantly f o r hay and pasture and having l i t t l e d a i r y or arable cropland. OM and N l e v e l s are the highest and Ca, Mg, P, and pH the lowest of the three parent m a t e r i a l s . The C:N r a t i o i s about 15 i n woodland, r i s e s to n e a r l y 18 i n the 1980 group, and then drops s t e a d i l y t o 11.8 i n the 1950 grouping (Table 15). The high r a t i o i n 1980 probably r e s u l t s from the decomposition of remnant h i g h l y carbonaceous m a t e r i a l s , such as wood fragments, l e f t a f t e r land c l e a r i n g . The uniqueness of t h i s 1980 grouping i s revealed by examining Table C18. The 1980 group a l s o d i f f e r s from woodland f o r these v a r i a b l e s . There are few other d i f f e r e n c e s by age c l a s s e s . A n a l y s i s of land use: Besides the d i f f e r e n c e s e x h i b i t e d by the l i t t e r l a y e r from the other land uses, the most obvious d i f f e r e n c e s are the c u l t i v a t e d group from the woodland f o r a l l v a r i a b l e s except K, 128 Table 15. Breakdown of g l a c i a l m a r i n e s o i l s by age. V a r i a b l e pH pH Ca Mg K A S e # H20 CaCl2 mg k g - 1 mean s t d mean s t d mean s t d mean s t d mean s t d  dev dev dev dev dev 1950 5.6 1960 5.5 1970 5.5 1980 5.3 woodland 4.8 wt. avg. 4.8 l i t t e r 4.8 0.2 5.0 0.2 0.2 4.9 0.2 0.3 4.9 0.3 0.2 4.6 0.2 0.2 4.2 0.2 0.2 4.2 0.2 0.4 4.2 0.4 312 220 128 123 104 82 221 232 99 169 189 93 68 71 49 250 106 93 2065 700 532 87 179 120 66 145 82 61 163 82 60 114 53 37 107 40 50 146 49 231 538 240 c u l t . 5.5 0.3 4.9 0. 3 206 204 101 71 150 90 mineral 5.3 0.4 4.7 0. 4 178 193 90 69 142 84 min.+avg. 5.2 0.4 4.6 0. 4 191 183 91 66 142 79 TOTAL 5.2 0.4 4.6 0.4 458 727 154 187 199 181 V a r i a b l e Age P OM N C:N mg kg-1 % % mean std dev mean std dev mean std dev mean std dj 1950 31 40 10.2 2.3 .290 .080 11.8 1.3 1960 7 11 10.4 2.0 .255 .052 13.6 1.3 1970 23 15 11.0 1.8 .264 .047 14.1 1.2 1980 4 4 12.3 3.5 .237 .069 17.8 2.6 woodland 2 4 12.5 3.4 .295 .114 15.0 2.1 wt. avg. 7 5 17.0 4.2 .401 .128 16.0 2.0 l i t t e r 51 32 61.4 15.3 1.461 .366 16.0 2.0 c u l t . 16 25 11.0 2.6 .261 .065 14.3 2.8 mine r a l 13 23 11.3 2.9 .268 .078 14.4 2.7 min.+avg. 12 21 12.2 3.8 .290 .101 14.6 2.5 TOTAL 18 26 19.2 18.5 .458 .443 14.8 2.5 # 1950 = clear e d between 1943 and 1955 1960 = c l e a r e d between 1955 and 1966 1970 = clear e d between 1966 and 1976 1980 = c l e a r e d between 1976 and 1983 129 OM, and N and the c u l t i v a t e d group from the weighted average f o r a l l except Ca, Mg, and K (Table C15). Like the other parent m a t e r i a l s , the most s i m i l a r groups are the woodland and weighted average. A n a l y s i s of country and r e p l i c a t e ; The g l a c i a l m a r i n e s o i l s are i n t e r m e d i a t e among the three parent m a t e r i a l s i n t h e i r s o i l and land use d i f f e r e n c e s by country. Although dominantly used f o r pasture, Canadian g l a c i a l m a r i n e s o i l s have more arable cropland. When on l y the c u l t i v a t e d s o i l s are examined, Mg, P, and OM, are s i g n i f i c a n t l y higher i n the USA (Table 16). Reduced OM content i n Canada can be explained by l a r g e r l o s s e s due to c u l t i v a t i o n ; there i s no apparent reason f o r the lower P and Mg contents (except p o s s i b l e d i f f e r e n c e s i n the amount of d o l o m i t i c l i m i n g m a t e r i a l s ) . S i m i l a r d i f f e r e n c e s hold f o r the other data sets. L i k e the other parent m a t e r i a l s , d i f f e r e n c e s by r e p l i c a t e confound the a n a l y s i s (Table C16). 5.3.2.4 Bulk Density Increases i n bulk d e n s i t y due to c u l t i v a t i o n are commonly reported i n the l i t e r a t u r e (Brady 1985). Bulk d e n s i t y g e n e r a l l y in c r e a s e s i n p r o p o r t i o n to the amount of c u l t i v a t i o n and i s i n v e r s e l y p r o p o r t i o n a l to the organic matter content, although the r e l a t i o n s h i p i s p a r t l y dependent on c u l t i v a t i o n time (Juma and M c G i l l 1986, Gregorich and Anderson 1986). Bulk d e n s i t y i n c r e a s e s i n t h i s study by an average of 26$ on a l l u v i a l s o i l s , 36$ on g l a c i a l m a r i n e s o i l s , and 58$ on outwash s o i l s . These changes are as great or greater than those reported by Tiessen et a l . (1982) and Brady (1985), which range from 14 to 30$. The l a r g e change i n bulk d e n s i t y on the outwash and g l a c i a l m a r i n e s o i l s probably r e s u l t s from the very low values i n the uncropped s t a t e , which are much lower than those reported (930 to 1210 130 Table 16. Breakdown of g l a c i a l m a r i n e s o i l s by country. V a r i a b l e pH pH Ca Mg Country H 2 0 CaC12 mg k g - 1 -mean s t d mean s t d mean s t d mean s t d mean s t d  dev dev dev dev dev E n t i r e data set Combined Canada USA F r a t i o F prob. 5.2 0.4 5.2 0.5 5.2 0.4 0.09 .7656 4.6 0.4 4.6 0.5 4.6 0.4 0.48 .4870 458 727 385 615 532 820 2.90 .0897 1 54 187 129 183 179 189 5.21 .0232 199 181 186 168 211 192 1.37 .2421 C u l t i v a t e d s o i l s only Combined 5.5 0.3 4. 9 0.3 206 204 101 71 150 90 Canada 5.5 0.3 4. 9 0.3 182 202 72 48 145 83 USA 5.5 0.2 4. 8 0.3 230 204 130 78 156 96 F r a t i o 0. 46 1. 77 2. 24 31 .8 0. 58 F prob. .4974 .1856 .1365 .0000 .4489 Mi n e r a l s o i l s only Combined 5.3 0.4 4.7 0.4 179 193 90 69 142 84 Canada 5.4 0.4 4.8 0.4 158 189 67 47 135 79 USA 5.3 0.4 4.7 0.4 199 196 114 78 148 89 F r a t i o 0.48 1. 60 2.25 26.2 1. 19 F prob. .4888 .2081 .1351 .0000 .2766 M i n e r a l p l u s weighted average s o i l s only Combined 5.2 0.4 4.6 0.4 191 183 91 66 142 79 Canada 5.3 0.4 4.7 0.4 167 179 70 50 135 75 USA 5.2 0.4 4.6 0.4 214 185 111 73 150 83 F r a t i o 0. 55 1. 76 4. 04 25.7 2.26 F prob. .4574 .1861 .0457 .0000 .1337 131 V a r i a b l e Country P OM N C:N mg kg-1 % % mean s t d dev mean st d dev mean st d dev mean st d dev E n t i r e data set Combined 18 26 19.3 18.5 .458 .443 14.8 2.5 Canada 13 17 17.3 16.0 .400 .374 15.1 2.6 USA 23 32 21.2 20.5 .516 .498 14.5 2.4 F r a t i o 1.37 11.5 4.84 3.22 F prob. .2421 .0008 .0286 .0739 C u l t i v a t e d s o i l s only Combined 16 25 11.0 2.6 .261 .065 14.3 2.8 Canada 9 14 10.4 2.2 .248 .064 14.3 2.7 USA 23 31 11.5 2.9 .274 .064 14.3 2.8 F r a t i o 13-4 6.78 6.72 0.37 F prob. .0003 .0101 .0104 .8486 Mi n e r a l s o i l s only Combined 13 23 11.3 2.9 .268 .078 14.4 2.7 Canada USA 8 12 19 28 10.5 12.0 2.4 3.1 .245 .066 .291 .083 14.6 14.2 2.7 2.6 F r a t i o 11.2 14. 8 18.5 1. 09 F prob. .0010 .0002 .0000 .2975 M i n e r a l s o i l s p l u s weighted average s o i l Combined 12 21 12.2 3.8 .290 .101 14.6 2.5 Canada 8 12 11.2 3.1 .259 .076 14.8 2.6 USA 17 27 13.2 4.1 .322 .114 14.3 2.4 F r a t i o 10.8 17.9 25.9 2. 73 F prob. .0012 .0000 .0000 .1001 1 32 kg m-3) i n Tiessen et a l . (1982) and Brady (1985). The l a r g e s t i n c r e a s e occurs immediately a f t e r c l e a r i n g - from 15$ on g l a c i a l m a r i n e to 54$ on outwash s o i l s . Bulk d e n s i t y values appear t o l e v e l o f f i n 25 t o 35 years but not u n t i l i n c r e a s i n g by 69$ on outwash, 33$ on a l l u v i a l , and 56$ on g l a c i a l m a r i n e s o i l s . Bulk d e n s i t y values are s i g n i f i c a n t l y lower f o r woodland s o i l s on each parent m a t e r i a l (Table 17). G e n e r a l l y the 1980 age s o i l s have the next lowest bulk d e n s i t y ( s i g n i f i c a n t l y lower on g l a c i a l m a r i n e s o i l s ) . A l l u v i a l s o i l s have s i g n i f i c a n t l y higher bulk d e n s i t y i n woodland and a f t e r c u l t i v a t i o n , averaging about 1200 kg m-3, compared to 960 on g l a c i a l m a r i n e and 920 on outwash c u l t i v a t e d s o i l s . Bulk d e n s i t y between each parent m a t e r i a l i s s i g n i f i c a n t l y d i f f e r e n t at the 0.05 l e v e l of s i g n i f i c a n c e except between outwash and g l a c i a l m a r i n e Table 17. E f f e c t s of t i m e - s i n c e - c l e a r i n g on bulk d e n s i t y f o r outwash, a l l u v i a l , and g l a c i a l m a r i n e s o i l s . Age 1950 1960 1970 1980 Outwash 890 986 911 895 Alluvium Bulk d e n s i t y (kg m-3) 1270 1177 1229 1112 G l a c i a l m a r i n e 1045 1096 934 811 woodland 582 avg. c u l t i v a t e d 921 $ i n c r e a s e from 58 woodland 953 1197 26 704 960 36 S i g n . d i f f . at 0.05 woodland w i t h a l l others woodland w i t h a l l others woodland w i t h a l l others 1980 w i t h a l l others 1970 w i t h 1950, 1960 C u l t i v a t e d s o i l s only Canada 914 USA 928 Sign. d i f f . at 0.05 no 1232 11 61 no 1014 908 yes 133 s o i l s f o r the two cou n t r i e s combined (921 versus 960 kg m-3) and f o r the USA only (928 versus 908 kg m~3). 5.3.2.5 L i t t e r Layer The l i t t e r l a y e r of the a l l u v i a l s o i l s , as i s true f o r i t s woodland mineral s o i l , i s more f e r t i l e than the outwash or g l a c i a l m a r i n e counterparts. The f o l l o w i n g p r o p e r t i e s are s i g n i f i c a n t l y higher i n the l i t t e r f o r a l l u v i a l s o i l s : pH, Mg, and K. P i s s i g n i f i c a n t l y lower i n the g l a c i a l m a r i n e l i t t e r l a y e r than outwash or a l l u v i a l l i t t e r l a y e r s (Table C17). These d i f f e r e n c e s are due t o the high n a t u r a l l e v e l s i n the a l l u v i a l s o i l s (Luttmerding 1981c). 5.3.2.6 Summary of A n a l y s i s of Parent M a t e r i a l s On each parent m a t e r i a l , a l l p l o t s and a l l land c l e a r i n g age groups are s i g n i f i c a n t l y d i f f e r e n t from each other at the P< 0.001 l e v e l f o r each v a r i a b l e ( T a b l e s 11, 13, 15, C1, C7, and C12). A l l parent m a t e r i a l s make the l a r g e s t changes i n the f i r s t f i v e years a f t e r c l e a r i n g , except 0M on outwash s o i l s , Ca, Mg, and OM on a l l u v i a l s o i l s , and K, P, and 0M on g l a c i a l m a r i n e s o i l s , which make t h e i r l a r g e s t changes between 5 and 15 years. The delayed change i n 0M i s probably due to the r e s i d u a l organic m a t e r i a l l e f t a f t e r c l e a r i n g and burning. A f t e r 15 t o 25 years the anthropogenic system appears to reach a quasi-steady s t a t e f o r pH, Ca, and K on a l l u v i a l s o i l s . Other v a r i a b l e s decrease f o r 15 t o 25 years and then increase. Outwash s o i l s reach a quasi-steady s t a t e a f t e r 15 years f o r cat i o n s and pH. Cation l e v e l s on both outwash and g l a c i a l m a r i n e s o i l s at l e a s t double and pH incr e a s e s d r a m a t i c a l l y due to c u l t i v a t i o n . 0M l e v e l s are the 134 lowest a f t e r 35 years. On g l a c i a l m a r i n e s o i l s , the l a r g e s t l e v e l s f o r pH and c a t i o n s and the s m a l l e s t f o r OM occur a f t e r 35 years, although the change i s not continuous. Cations g e n e r a l l y i n c r e a s e w i t h time but the p a t t e r n i s obscure. The l a r g e s t l o s s of OM i s i n the f i r s t 15 years on a l l parent m a t e r i a l s , ranging from 12$ on g l a c i a l m a r i n e s o i l s to 40$ on a l l u v i a l s o i l s . A s i m i l a r p a t t e r n of r a p i d i n i t i a l l o s s i s reported by Gregorich and Anderson (1986). OM g e n e r a l l y continues to decrease f o r the e n t i r e 35 year study p e r i o d on outwash and g l a c i a l m a r i n e s o i l s , but i n c r e a s e s a f t e r 15 years on a l l u v i a l s o i l s , apparently from large a d d i t i o n s of manure or h i g h - f e r t i l i t y forage crops. Losses o f OM are about 20$ on outwash and g l a c i a l m a r i n e s o i l s a f t e r 35 years. A l l u v i a l s o i l s l o s e up to 40$ of the i n i t i a l OM i n 15 years, but rebound t o the same 20$ l o s s a f t e r 35 years. These values are comparable t o those of Shutt (1925), Newton et a l . (1945), Haas et a l . (1957), and Wang et a l . (1984). L o s s e s o f OM and N can even be reversed as i n d i c a t e d by the o l d raspberry p l o t on outwash s o i l s , which has even higher OM and N values than the woodland s o i l s . N l e v e l s i n c r e a s e r a p i d l y f o r 5 years then g e n e r a l l y decrease on outwash s o i l s . N decreases f o r 15 years on a l l u v i a l and 5 years on g l a c i a l m a r i n e s o i l s and then increases. Again, improvements i n manure management may a f f e c t t h i s change i n d i r e c t i o n . Steady s t a t e f o r the organic c o n s t i t u e n t s i s not apparent w i t h i n 35 years, which compares w i t h observations of Paul and Van Veen (1978), Voroney e t a l . (1981), and T i e s s e n e t a l . (1982). The C:N narrows w i t h time to about 12:1 a f t e r 35 years on a l l s o i l s a f t e r a continuous drop from about 15:1, w i t h a minor exception on g l a c i a l m a r i n e s o i l s . This t r e n d i s t y p i c a l when woodland i s 135 converted to a g r i c u l t u r e (Duchaufour 1982). There i s no apparent l e v e l l i n g o f f . The o l d raspberry p l o t has a C:N of about 12, which i s comparable to the 35 year values on a l l u v i a l and g l a c i a l m a r i n e s o i l s , and which could be the steady s t a t e value f o r a l l three s o i l s . The l i t e r a t u r e g e n e r a l l y does not examine the anthropogenic e f f e c t s on trends i n the l e v e l of c a t i o n s a f t e r c u l t i v a t i o n , except f o r the i n i t i a l increase a f t e r c l e a r i n g . L a v k u l i c h and Rowles (1971) have shown th a t Ca and Mg increase due t o c u l t i v a t i o n on s o i l s s i m i l a r to the outwash s o i l s i n t h i s study. On the a l l u v i a l s o i l s at l e a s t one of the c u l t i v a t e d years i s l e s s than the i n i t i a l l e v e l i n woodland f o r a l l v a r i a b l e s except pH, which i s the reverse. The l e v e l s of c a t i o n s on the a l l u v i a l s o i l s are about one-half to t w o - t h i r d s of the o r i g i n a l , whereas the outwash and g l a c i a l m a r i n e c u l t i v a t e d s o i l s are 2 t o 15 times higher than t h e i r r e s p e c t i v e woodland. pH and P are a l s o at c o n s i d e r a b l y higher l e v e l s on the c u l t i v a t e d outwash and g l a c i a l m a r i n e s o i l s than t h e i r r e s p e c t i v e o r i g i n a l woodland s o i l s . The decrease from woodland l e v e l s a f t e r c u l t i v a t i o n i n a l l u v i a l s o i l s p a r t l y stems from the i n i t i a l high f e r t i l i t y i n these s o i l s . That i s , management appears to d i s r u p t most the s o i l s w i t h the highest n a t u r a l f e r t i l i t y l e v e l s and t o improve most the s o i l s of low n a t u r a l f e r t i l i t y . I n a comparison of c u l t i v a t e d and woodland s o i l s on the three parent m a t e r i a l s , i t should be borne i n mind th a t the woodland s o i l s formed i n a l l u v i u m have much higher l e v e l s of pH, Ca, Mg, K, and P than those on e i t h e r outwash or g l a c i a l m a r i n e s o i l s . The c u l t i v a t e d a l l u v i a l s o i l s are as high or higher i n c a t i o n s and P and lower i n OM and N than g l a c i a l m a r i n e s o i l s , and i n comparison w i t h outwash s o i l s , 136 c u l t i v a t e d a l l u v i a l s o i l s have higher l e v e l s of Mg and N, and comparable l e v e l s of K and OM. C u l t i v a t e d outwash s o i l s are the highest by f a r i n pH, Ca, and P r e s u l t i n g from t h e i r more i n t e n s i v e management. S i m i l a r trends f o r these s o i l s are reported i n Luttmerding (1981c). A l l u v i a l and g l a c i a l m a r i n e s o i l s are the most d i f f e r e n t , l a c k i n g s i g n i f i c a n t d i f f e r e n c e s at the 0.05 l e v e l only f o r OM i n Canada usi n g the e n t i r e data set and the mineral plus weighted average s o i l s and f o r N i n Canada usi n g m i n e r a l s o i l s o n ly and c u l t i v a t e d s o i l s only (Table 18). In s p i t e of d i f f e r e n c e s i n parent m a t e r i a l , and thus, i n d i c a t i n g the s t r o n g i n f l u e n c e of management, outwash and a l l u v i u m are the most s i m i l a r , l a c k i n g s i g n i f i c a n t d i f f e r e n c e s i n pH, Ca, K, OM, and N. These s i m i l a r i t i e s occurred f o r the USA, Canada, and both c o u n t r i e s combined. The main s i m i l a r i t i e s between outwash and g l a c i a l m a r i n e s o i l s are i n Ca and K l e v e l s f o r U.S. s o i l s using various data s e t s . 5 . 3 .3 Comparison of A r e a l and Concentration Measurements The conversion of concentration (mg kg-1) to an a r e a l (kg ha"1) measurement i s p r o p o r t i o n a l to the bulk d e n s i t y (kg ha-1=mg kg-1 x bulk d e n s i t y ( i n kg m-3) x 0.2 m s o i l t h ickness x 10-6 kg m g - 1 x 10^ m 2 ha-1). The purpose of the a r e a l measurement i s to express the f l u x i n s o i l p r o p e r t i e s on a volume basis. Any d i f f e r e n c e s between land c l e a r i n g age groups, land use, or country on each parent m a t e r i a l are due p r i n c i p a l l y to changes i n bulk density. As noted e a r l i e r , bulk d e n s i t y increases w i t h t i m e - s i n c e - c l e a r i n g (Table 17), but the major d i f f e r e n c e s between these two types of measurements are caused by the low bulk d e n s i t i e s of the woodland m i n e r a l s o i l , the l i t t e r l a y e r , and the weighted average s o i l . 137 Table 18. M u l t i p l e range t e s t i n g of two-way a n a l y s i s of variance performed on e n t i r e data s e t , c u l t i v a t e d s o i l s only, m i n e r a l s o i l s only, and mineral plus weighted average s o i l s f o r each v a r i a b l e and separated by parent m a t e r i a l and country. p_H (H291 Parent Countries Combined Canada United S t a t e s M a t e r i a l a l l u v i u m g l a c i a l . a l l u v i u m g l a c i a l , a l l u v i u m g l a c i a l . outwash m# m e,w,m a l l u v i u m pH ( C a C l 2 ) Parent Countries Combined Canada United States M a t e r i a l a l l u v i u m g l a c i a l . a l l u v i u m g l a c i a l , a l l u v i u m g l a c i a l . outwash m w,m m,c a l l u v i u m Ca Parent Countries Combined Canada United S t a t e s M a t e r i a l a l l u v i u m g l a c i a l . a l l u v i u m g l a c i a l , a l l u v i u m g l a c i a l . outwash m,c e,w,m,c all u v i u m Mg Parent Countries Combined Canada United States M a t e r i a l a l l u v i u m g l a c i a l . a l l u v i u m g l a c i a l , a l l u v i u m g l a c i a l . outwash e e a l l u v i u m 138 K Parent Countries Combined Canada United States M a t e r i a l a l l u v i u m g l a c i a l . a l l u v i u m g l a c i a l , a l l u v i u m g l a c i a l . outwash c m e,w,m a l l u v i u m P Parent Countries Combined Canada United S t a t e s M a t e r i a l a l l u v i u m g l a c i a l . a l l u v i u m g l a c i a l , a l l u v i u m g l a c i a l . outwash a l l u v i u m OM Parent Countries Combined Canada United S t a t e s M a t e r i a l a l l u v i u m g l a c i a l . a l l u v i u m g l a c i a l , a l l u v i u m g l a c i a l . outwash e e,c e e,c a l l u v i u m e,w N Parent Countries Combined Canada United S t a t e s M a t e r i a l a l l u v i u m g l a c i a l . a l l u v i u m g l a c i a l , a l l u v i u m g l a c i a l . outwash e a l l u v i u m m,c # e, c, m, or w denote p a i r s of parent m a t e r i a l s that do not d i f f e r s i g n i f i c a n t l y at the 0.05 l e v e l . (e=entire data s e t , c = c u l t i v a t e d s o i l s o n l y , m=mineral s o i l s only, w=mineral plus weighted average s o i l s only, g l a c i a l . = g l a c i a l m a r i n e ) 139 The bulk d e n s i t y of the l i t t e r l a y e r was not measured i n the f i e l d . I t was estimated t o be 400 kg m-3 from values given i n Brady (1985) and P r i t c h e t t (1979). The bulk d e n s i t y of the weighted average " p l o t " i s the weighted average of the l i t t e r l a y e r and the woodland mineral s o i l , which has the lowest bulk d e n s i t y of the m i neral s o i l s . In s p i t e of the d i f f e r e n c e s i n bulk d e n s i t y , very few s i g n i f i c a n t d i f f e r e n c e s between c u l t i v a t e d and woodland s o i l s by land c l e a r i n g age group or land use have been a f f e c t e d (Tables 12, 14, 16, C3, C5, C6, C9-11, C14, C15, D1-D13). Most of the change i n s i g n i f i c a n t d i f f e r e n c e s between the c o n c e n t r a t i o n and a r e a l bases occur w i t h the l i t t e r l a y e r and weighted average s o i l . These r e s u l t s are contrary to the f i n d i n g s of Lee et a l . (1975) and Tiessen et a l . (1982), who found th a t a r e a l measurements showed more d i f f e r e n c e s than those on a c o n c e n t r a t i o n b a s i s . However, t h e i r s t u d i e s were i n t e p h r i c s o i l s i n pasture i n New Zealand and grassland s o i l s i n Saskatchewan, which are q u i t e d i f f e r e n t from the s o i l s i n t h i s study. 5.3.4 Determination of S i m i l a r i t y Among P l o t s C l u s t e r a n a l y s i s i s used t o examine the s i m i l a r i t i e s among the p l o t s f o r each parent m a t e r i a l s e p a r a t e l y and combined. I t c l u s t e r s f i r s t the p l o t s most s i m i l a r , grouping together two p l o t s or a p l o t w i t h a group of p l o t s at each stage. The l a s t ones added are the most d i s s i m i l a r . The a n a l y s i s uses the 16 c u l t i v a t e d and 4 woodland p l o t s , the 4 weighted average " p l o t s " , and the 4 l i t t e r l a y e r s on each parent m a t e r i a l . On the outwash and g l a c i a l m a r i n e s o i l s , the f i r s t p l o t s grouped are the woodland and weighted average p l o t s and those p l o t s having 140 s i m i l a r c h a r a c t e r i s t i c s to woodland mineral s o i l s , t h a t i s , low pH and low l e v e l s of c a t i o n s . G e n e r a l l y these are the r e c e n t l y c l e a r e d p l o t s and those having few s o i l amendments. On a l l u v i a l s o i l s the l e a s t f e r t i l e p l o t s are c l u s t e r e d f i r s t whether c u l t i v a t e d , woodland, or weighted average s o i l . The l a s t ones c l u s t e r e d are the l i t t e r l a y e r s on a l l parent m a t e r i a l s . These groupings confirm the s i g n i f i c a n c e t e s t i n g by p l o t s , p a r t i c u l a r l y on the outwash s o i l s , where s i g n i f i c a n t d i f f e r e n c e s are noted among c u l t i v a t e d p l o t s 4, 6, and 8 from those i n t h e i r r e s p e c t i v e age c l a s s e s . Their very high f e r t i l i t y l e v e l s (mostly Ca, Mg, K, and P) r e s u l t i n t h e i r c l u s t e r i n g w i t h the l i t t e r l a y e r s . 5 . 3 . 5 A n a l y s i s of P l o t S i m i l a r i t y by Parent M a t e r i a l Four groupings are made f o r each parent m a t e r i a l ( F i g . 18-20, Tables 19-21). The f e r t i l i t y l e v e l i n c r e a s e s from group 1 to group 4. The p r i n c i p a l v a r i a b l e s d i f f e r e n t i a t i n g the c l u s t e r s are Ca, Mg, K, and P, which i n c r e a s e markedly from c l u s t e r 1 to c l u s t e r 4 f o r a l l parent m a t e r i a l s . pH, OM, and N are q u i t e v a r i a b l e except f o r c l u s t e r 4 f o r a l l parent m a t e r i a l s and a l s o c l u s t e r 3 of a l l u v i u m which has the c h a r a c t e r i s t i c s of the l i t t e r l a y e r (low pH, high OM, and N l e v e l s ) . The m i neral s o i l s that c l u s t e r w i t h the l i t t e r l a y e r s , such as outwash p l o t s 4, 6, 7, and 8 have h i g h l e v e l s o f Ca, Mg, K, and P r e l a t i v e to other mineral p l o t s , but d i f f e r from the l i t t e r l a y e r i n t h e i r c l u s t e r i n pH, OM, and N. Ten of the 12 l i t t e r l a y e r s c l u s t e r i n group 4, 11 of the 12 weighted average p l o t s c l u s t e r i n groups 1 and 2, and 10 of the 12 woodland p l o t s c l u s t e r i n group 1. The i n d i v i d u a l , land c l e a r i n g age groups are s c a t t e r e d throughout the c l u s t e r groups, i n d i c a t i n g no 141 Plot Number 8 6 4 L10 L9 L20 L16 2 19 7 3 1 W16 14 W20 15 17 13 11 5 20 10 9 18 12 W10 W916 . 18. Cluster diagram for outwash s o i l s . 142 Table 19. S o i l and s i t e c h a r a c t e r i s t i c s f o r each c l u s t e r group f o r outwash s o i l s derived from c l u s t e r a n a l y s i s . Group 1 Group 2 Group 3 Group 4 Number of p l o t s 8 8 5 7 1950 2 1 1 1960 2 1 1 Number i n 1970 1 2 1 each land 1980 1 2 1 c l e a r i n g age group woodland 4 wt. avg. 2 2 l i t t e r 4 pH (H2°) 5.1 5.7 6.3 5.5 pH (Ca C l 2 ) 4.6 5.0 5 . 8 5.0 Ca (mg k g - 1 ) 73 254 882 1924 Mg (mg kg-1) 38 67 86 371 V a r i a b l e K (mg kg-1) 80 183 229 415 P (mg kg-1) 75 32 114 216 OM (%) 10.2 10.2 8.9 38.8 N (%) .195 .213 .191 .873 S o i l group Member p l o t s i n each group 1 9 , 10, 12, 16, 18 , 20, W9, W10 2 5, 11, 13, 14, 15, 17, W16, W20 3 1, 2, 3, 7, 19 4 4, 6, 8 , L9, L10, L16, L20 143 Plot Number L 3 7 L33 L40 L 3 5 W37 37 38 W33 33 31 30 2 8 39 32 25 24 3« 29 3,6 26 21 WHO 10 27 W35 35 23 22 u F i g . 19 . Cluster diagram for a l l u v i a l s o i l s . Table 20. S o i l and s i t e c h a r a c t e r i s t i c s f o r each c l u s t e r group f o r a l l u v i a l s o i l s derived from c l u s t e r a n a l y s i s . Group 1 Group 2 Group 3 Group Number of p l o t s 14 8 4 2 , 1950 3 1 1960 2 2 Number i n 1970 3 1 each land 1980 2 2 c l e a r i n g age group woodland 2 1 wt. avg. 2 1 1 l i t t e r 2 2 pH ( H 2 0 ) pH (CaCl2> 5.3 5.1 1:2 5.8 5.2 6.2 5.8 V a r i a b l e Ca (mg kg-1) Mg (mg kg-1) K (mg kg-1) P (mg kg-1) 701 433 314 46 1194 508 172 27 1694 841 506 97 3120 1404 611 100 0M (*) N (%) 10.6 .254 9.8 .259 35.4 .767 59.8 1.473 S o i l group Member p l o t s i n each group 1 21, 22, 23, 24, 25, 26, 27, 29, 34, 35, 36, 40, W35, W40 2 28, 30, 31, 32, 33, 38, 39, W33 3 37, L35, L40, W37 4 L33, L37 145 Plot Number L51 L55 L61 L46 41 59 52 50 W55 46 W57 W46 W6l 54 45 43 53 42 60 56 55 48 61 47 51 44 58 57 F i g . 20. Cluster diagram for glacialmarine s o i l s . 146 Table 21. S o i l and s i t e c h a r a c t e r i s t i c s f o r each c l u s t e r group f o r g l a c i a l m a r i n e s o i l s derived from c l u s t e r a n a l y s i s . Group 1 Group 2 Group 3 Group 4 Number of p l o t s 13 8 3 4 1950 1 1 2 1960 3 Number i n 1970 3 1 each land 1980 2 1 c l e a r i n g age group woodland 4 wt. avg. 4 l i t t e r 4 pH ( H 2 0 ) 5.2 5.1 5.7 4.8 pH (CaCl2> 4.6 4.5 5.1 4.2 Ca (mg kg- 1) 83 263 465 2065 Mg (mg kg-1) 69 92 184 532 V a r i a b l e K (mg kg-1) 115 143 258 538 P (mg kg-1) 8 7 47 51 OM (%) 11.1 14.6 10.7 61.4 N (%) .260 .340 .286 1.461 S o i l group Member p l o t s i n each group 1 42, 43, 44, 47, 48, 51, 53, 55, 56, 57, 58, 60, 61 2 45, 46, 50, 54, W46, W55, W57, ' W61 3 41, 52, 59 4 L46, L55, L57, L61 147 trend i n s o i l p r o p e r t i e s w i t h time. The only p a t t e r n i s t h a t , except f o r the h i g h l y f e r t i l e p l o t s 4, 6, and 8, they do not c l u s t e r w i t h the l i t t e r l a y e r . In general, c l u s t e r 1 i n c l u d e s the woodland p l o t s and the low f e r t i l i t y c u l t i v a t e d p l o t s i n each parent m a t e r i a l , c l u s t e r 2 i n c l u d e s the weighted average p l o t s and the medium f e r t i l i t y c u l t i v a t e d p l o t s , c l u s t e r 3 g e n e r a l l y i n c l u d e s the high f e r t i l i t y c u l t i v a t e d p l o t s , but on a l l u v i u m a l s o i n c l u d e s a weighted average and a woodland p l o t , and two l i t t e r l a y e r s , and c l u s t e r 4 i s composed of the l i t t e r l a y e r s and the very h i g h l y f e r t i l e p l o t s 4, 6, and 8. 5.3.6 A n a l y s i s of A l l P l o t s When a l l p l o t s are analyzed together, the c l u s t e r diagram which i s produced shows seven apparent groupings. S i m i l a r to the a n a l y s i s by parent m a t e r i a l , the l e a s t f e r t i l e p l o t s are c l u s t e r e d f i r s t ( F i g . 21). A l l the g l a c i a l m a r i n e m i neral s o i l s c l u s t e r i n the f i r s t three groups (54$ i n group 1) and the outwash m i n e r a l s o i l s p r i n c i p a l l y i n the f i r s t f our groups (67$ i n groups 1 and 2). The only exceptions are the h i g h l y f e r t i l e p l o t s 4, 6, and 8, which were anomalies i n the c l u s t e r a n a l y s i s of outwash s o i l s , and which are the most f e r t i l e of a l l the m i n e r a l p l o t s . They c l u s t e r i n group 6. The a l l u v i a l s o i l s are the most f e r t i l e of the parent m a t e r i a l s , c l u s t e r i n g the highest i n groups 3, 4, and 5. A l l the l i t t e r l a y e r s except one (for p l o t 10) c l u s t e r i n groups 6 and 7. The woodland p l o t s of outwash and g l a c i a l m a r i n e s o i l s are among the l e a s t f e r t i l e of a l l the p l o t s and c l u s t e r i n group 1. A l l u v i u m had the most f e r t i l e woodland s o i l s , c l u s t e r i n g i n groups 4, 5, and 6, higher than a l l the g l a c i a l m a r i n e and most of the outwash 148 * 2 45 t 5 -F i g . 21. C l u s t e r diagram f o r a l l s o i l s . 149 c u l t i v a t e d s o i l s . L i k e the c l u s t e r a n a l y s i s by parent m a t e r i a l , the c u l t i v a t e d s o i l s show no o r d e r i n g by land c l e a r i n g age. 5.4 P r e d i c t i o n of Time-Since-Clearing The purpose of developing a r e l a t i o n s h i p between ti m e - s i n c e -c l e a r i n g and the e i g h t measured chemical v a r i a b l e s i s t w o f o l d : f i r s t , i f the chemical values are known, the c l e a r i n g date of the f i e l d i n question can be p r e d i c t e d , and second, knowing the date of c l e a r i n g , the approximate chemical p r o p e r t i e s can be pre d i c t e d w i t h i n inherent l e v e l s of s o i l v a r i a b i l i t y . I t can a l s o be used to estimate f u t u r e l e v e l s of s o i l p r o p e r t i e s , assuming a l i n e a r r e l a t i o n s h i p w i t h time and a s u f f i c i e n t l y l a r g e r2 t o make a r e l i a b l e p r e d i c t i o n . The approximate t i m e - s i n c e - c l e a r i n g used w i t h the study data was determined from the land c l e a r i n g age group by s u b t r a c t i n g the year from 1985. Therefore, the land c l e a r i n g p e r i o d 1976-1983 was assigned a value of 5, the 1966-1976 period and value of 15, and so f o r t h . The r e g r e s s i o n equations provide i n s i g h t i n t o the importance o f the v a r i a b l e s as p r e d i c t o r s . The importance of any one v a r i a b l e depends on the parent m a t e r i a l and the e f f e c t s of management. Based on the c o r r e l a t i o n c o e f f i c i e n t s , the most important v a r i a b l e s f o r e x p l a i n i n g the t o t a l variance appear t o be pH and K f o r outwash, Mg and OM (both n e g a t i v e l y c o r r e l a t e d ) on a l l u v i a l , and pH (CaCl2) o n g l a c i a l m a r i n e s o i l s . The l e a s t important v a r i a b l e s f o r p r e d i c t i o n , besides the ones excluded from each equation, are N on outwash, pH on a l l u v i a l , and N and Mg on g l a c i a l m a r i n e s o i l s . None of the equations give a p r e d i c t a b i l i t y of more than 75$, and i s more commonly 60$. A l l r e g r e s s i o n equations are s i g n i f i c a n t at P 0.001 l e v e l . On outwash s o i l s f o r the cou n t r i e s combined, a l l v a r i a b l e s enter 1 50 the equation except Ca and the r e s u l t i n g r 2 i s 0.62, i n d i c a t i n g t h a t 62$ of the v a r i a t i o n i n t i m e - s i n c e - c l e a r i n g (t) i s a s s o c i a t e d w i t h r e g r e s s i o n (Table 22). The v a r i a b l e having the best p r e d i c t i v e value i s pH (%()), which e x p l a i n s 38% of the variance. When only the Canadian data are examined, 75% of the t o t a l variance i s e x p l a i n e d , w i t h pH (H 2o) alone e x p l a i n i n g 47$ of the t o t a l . In t h i s case Ca, OM, and N are l e f t out of the equation. In the USA the v a r i a b l e e x p l a i n i n g most of the variance i s K, accounting f o r 35% of the t o t a l variance. The t o t a l variance explained by the equation i s 66$. Ca, Mg, P, and N are not i n the equation. In a l l equations Ca seems to have no p r e d i c t i v e value, probably due t o i t s high v a r i a b i l i t y . T i m e - s i n c e - c l e a r i n g has a s t r o n g dependence on pH (some combination of pH (CaCl2) and pH (H"20))- I f c i s a l s 0 d i r e c t l y p r o p o r t i o n a l to the l e v e l of K i n a l l three equations. The other v a r i a b l e s are m i s s i n g from at l e a s t one of the equations, which g e n e r a l l y show that time i s d i r e c t l y p r o p o r t i o n a l to P and N and i n v e r s e l y p r o p o r t i o n a l t o Mg and OM. The chemical data f o r the a l l u v i a l s o i l s have f a r l e s s p r e d i c t i v e c a p a b i l i t y , being able to e x p l a i n only 59$ of the t o t a l variance i n Canada, 39$ i n the USA, and 34$ i n the c o u n t r i e s combined (Table 22). The most important v a r i a b l e i n the equation f o r Canadian a l l u v i a l s o i l s and i n both c o u n t r i e s combined i s Mg, which e x p l a i n s 42$ and 17$ of the t o t a l v ariance, r e s p e c t i v e l y . Ca and P have no p r e d i c t i v e value i n these two equations, and thus, are excluded from the equation. In the U.S. equation OM i s the most important v a r i a b l e , but e x p l a i n s only 17$ of the t o t a l variance. On the a l l u v i a l s o i l s Mg, K, and OM are i n a l l three equations, 151 although Mg and K have ne a r l y zero c o e f f i c i e n t s and so have l i t t l e e f f e c t on p r e d i c t i o n . The equations show that time i s d i r e c t l y p r o p o r t i o n a l t o the pH f a c t o r (pH (H2O) l e s s pH ( C a C ^ ) ' N» p» a n d C a and i n v e r s e l y p r o p o r t i o n a l to OM. On the g l a c i a l m a r i n e s o i l s the chemical data can p r e d i c t the t i m e - s i n c e - c l e a r i n g w i t h an accuracy of about 59$ f o r the countries combined, 60$ f o r Canada, and 67$ f o r the USA (Table 22). pH (CaCl 2) i s the most important v a r i a b l e i n each equation, accounting f o r 46, 34 and 60$ of the t o t a l variance, r e s p e c t i v e l y . Ca i s excluded from the equations f o r the countries combined and f o r the USA. In the equation f o r the USA, only pH (CaCl 2) and P are used f o r p r e d i c t i n g t i m e - s i n c e -c l e a r i n g . T i m e - s i n c e - c l e a r i n g of g l a c i a l m a r i n e s o i l s i s s t r o n g l y dependent on pH (CaCl 2) i n a l l equations and d i r e c t l y p r o p o r t i o n a l to P and N and i n v e r s e l y p r o p o r t i o n a l t o OM, Mg, and Ca i n one or two of the equations. The p r i n c i p a l commonality among the three parent m a t e r i a l s i n the r e l a t i o n s h i p between t i m e - s i n c e - c l e a r i n g and the eigh t v a r i a b l e s i s the major d i r e c t r e l a t i o n s h i p w i t h a pH f a c t o r , the minor d i r e c t r e l a t i o n s h i p w i t h N and P, and the i n v e r s e r e l a t i o n s h i p w i t h OM. The inc r e a s e i n pH w i t h t i m e - s i n c e - c l e a r i n g can be explained by the greater number of years of l i m i n g and/or manuring, both of which increase pH. OM decreases w i t h t i m e - s i n c e - c l e a r i n g due to m i n e r a l i z a t i o n o f C from c u l t i v a t i o n , l o s s of biomass from crop removal, increased contact o f OM w i t h the atmosphere, and s t i m u l a t e d m i c r o b i a l a c t i v i t y . P and N would increase due t o in c r e a s e s i n f e r t i l i z a t i o n w i t h i n c r e a s i n g time, but these r e l a t i o n s h i p s are not borne out when r e v i e w i n g the r e l a t i o n s h i p between P and N l e v e l s w i t h age (Tables 11, 13, and 15). The p r e d i c t i o n of f u t u r e l e v e l s of s o i l p r o p e r t i e s r e q u i r e s a 1 52 Table 22. T i m e - s i n c e - c l e a r i n g equations derived from stepwise m u l t i p l e r e g r e s s i o n f o r Canada, the USA, and both countries combined. Outwash s o i l s Combined (r2=o.62, s t d . error=8.10)# t=26.4H20pH- 17.6CaCl2P H- 0.2Mg+ 0.1K+ 0.02P- 1.8(0M)+ 50.5N- 45.4 Canada (r2=0.75, s t d . error=6.6l) t=28.4H20pH - l4.1CaCl2P H " °' 2 MS + °- 4 k + 0.1P - 73-9 United States (r2=0.66, s t d . error=7-7D t=23.6H20pH - l4.2CaC12P H + °- 1 K " 2.1(0M) - 46.3 A l l u v i a l s o i l s Combined (r2=0.34, s t d . error=10.62) t=15.6H20pH - 11.5CaCl2P H - 0.03Mg + 0.02K - 1.6(0M) + 78.3N - 2.1 Canada (r2=0.59, s t d . error=8.37) t= -0.04Mg + 0.02K - 3.5(OM) + 148.5N + 33-3 United States (r2=0.39, s t d . error=10.35) t = 0.02Ca - 0.02Mg -0.04K + 0.1P -1.3(0M) + 30.5 Gl a c i a l m a r i n e s o i l s Combined (r2=0.59, s t d . error=8.3D t=l8.5CaCl2P H " °-°3Mg + 0.1P - 2.2(0M) + 81.5N - 67.2 Canada (r2=0.60, s t d . error=8.36) t=19.2CaCl2P H "0-02Ca -0.05Mg -3.0(0M) +143.1N - 73-2 United States (r2=0.67, s t d . error=7.42) t=22.9CaCl2P H + 0 ' 1 P " 9 3 ' 8 * In these equations the land c l e a r i n g period 1976-1983 was assigned an average t i m e - s i n c e - c l e a r i n g value of 5 years, the 1966-1976 period a value of 15, the 1955-1966 pe r i o d a value o f 25, and the 1943-1955 period a value of 35 years. These values are de r i v e d from s u b t r a c t i n g the approximate middle value i n each period from 1985. 153 r e l i a b l e l i n e a r r e l a t i o n s h i p w i t h time. The v a r i a b l e s showing the most l i n e a r r e l a t i o n s h i p are pH and OM, but the i n d i v i d u a l time-pH (CaCl2^ e 9 u a t i o n s n a v e r 2 values of 0.60 t o l e s s than 0.05 (std. error=0.2Q t o 0.57) and i n d i v i d u a l time-OM equations have values of 0.10 to 0.22 (std. error=1.65 to 2.78), i n d i c a t i n g a low r e l i a b i l i t y f o r p r e d i c t i o n . 5.4.1 P r e d i c t i o n T e s t An e x t r a p l o t was taken on outwash s o i l s w i t h i n the U.S. par t of the study area i n a f i e l d t h a t has been c u l t i v a t e d continuously i n ra s p b e r r i e s since 1951. I t was cl e a r e d before 1940. I t i s the most f e r t i l e of the U.S. p l o t s and c l u s t e r s i n group 3 i n the c l u s t e r a n a l y s i s of the outwash s o i l s . When comparing the data f o r t h i s p l o t w i t h the other outwash land c l e a r i n g age groups, the l e v e l s of pH, Ca, Mg, and C:N (mean 11.9, s t d dev 0.5) i n d i c a t e an age of c l e a r i n g p r i o r to 1950 (Table 11). However, l e v e l s of K, P, 0M, and N i n d i c a t e an age o f post-1970. Since the dominant f a c t o r s i n the m u l t i p l e r e g r e s s i o n equations f o r outwash s o i l s are pH, K, N, and OM, i t would seem that an age near 1970 would be pre d i c t e d . Entry of the data i n t o the equation of both co u n t r i e s combined r e s u l t s i n a t i m e - s i n c e -c l e a r i n g o f about 10 years (or an age of about 1975). When the U.S. equation i s used, the t i m e - s i n c e - c l e a r i n g i s about 17 years, or an age of about 1968. Since Ca has been shown t o be of l i t t l e p r e d i c t i v e value, and thus not used i n the equations, the t i m e - s i n c e - c l e a r i n g i s not as high as would be expected. 5.5 E f f e c t s of Land Use, Parent M a t e r i a l and Country on S o i l Genesis The d i r e c t i o n of any change i n chemical f e r t i l i t y between the v i r g i n and the c u l t i v a t e d s o i l depends on the i n i t i a l f e r t i l i t y ( i n a 1 54 sense, the parent m a t e r i a l ) , and the amount and type of amendment and manipulation. Two c o n t r o l groups were used on each parent m a t e r i a l to assess the e f f e c t s of management on genesis. One, the mineral woodland s o i l , was sampled i n the f i e l d ; the other, the weighted average s o i l , was s t a t i s t i c a l l y derived by weig h t i n g the th i c k n e s s of the m i n e r a l s o i l w i t h the average t h i c k n e s s of the l i t t e r l a y e r . 5.5.1 I n i t i a l Levels of S o i l P r o p e r t i e s A l l u v i a l woodland s o i l s have the highest l e v e l s of c a t i o n s , organic matter c o n s t i t u e n t s (OM and N), and pH (Table 23). The l e v e l s of Mg are 14 to 20 times those i n outwash and g l a c i a l m a r i n e s o i l s and more than f i v e times the l e v e l s of even the most f e r t i l e outwash or g l a c i a l m a r i n e c u l t i v a t e d age groups and even higher than the l i t t e r l a y e r s on these s o i l s (Tables 11, 13, 15). The most l i k e l y e x p l a n a t i o n l i e s w i t h the d i f f e r e n c e s i n inherent f e r t i l i t y and i n t h e i r poorer drainage, which decreases the amount of l e a c h i n g of Mg and the other c a t i o n s . The l e v e l s of Ca and K are a l s o higher i n a l l u v i a l l i t t e r . S i m i l a r trends f o r these s o i l s are reported i n L u t t m e r d i n g (1981c). Table 23. Mean l e v e l s of s o i l c o n s t i t u e n t s i n woodland m i n e r a l s o i l s on outwash, a l l u v i a l , and g l a c i a l m a r i n e s o i l s . Parent PH pH Ca Mg K P OM N M a t e r i a l H20 CaC12 mg kg-1 % % Outwash 5.0 4.4 49 36 80 47 10.0 .209 A l l u v i a l 5.5 4.9 996 670 286 29 12.7 .299 G l a c i a l m a r i n e 4.8 4.2 68 49 107 2 12.5 .295 1 55 Outwash and g l a c i a l m a r i n e woodland s o i l s are low f o r a l l v a r i a b l e s except OM and N. Levels of organic c o n s t i t u e n t s and c a t i o n s i n the l i t t e r l a y e r s of these s o i l s are q u i t e high, but these l e v e l s have not been r e t a i n e d t o any extent i n the u n d e r l y i n g m i n e r a l s o i l . Only the h i g h l y f e r t i l e p l o t s 4, 6, 7, and 8 surpass the a l l u v i a l woodland f o r Ca and K. The outwash and g l a c i a l m a r i n e woodland s o i l s are very s i m i l a r except f o r the extremely low values o f P and the higher values of OM on the g l a c i a l m a r i n e s o i l s . The a p p l i c a t i o n of amendments to these s o i l s f o r any age group d i d not r a i s e the l e v e l s of c a t i o n s to those of the a l l u v i a l woodland s o i l . This d i s c u s s i o n c l e a r l y i n d i c a t e s t h a t the i n i t i a l f e r t i l i t y at t=0, i s c r u c i a l to an understanding o f the anthropogenic e f f e c t s on s o i l genesis. The f e r t i l i t y l e v e l s f o r the woodland or weighted average c o n t r o l i n t h i s study are i n the order a l l u v i u m » g l a c i a l m a r i n e >_ outwash. 5.5.2 E f f e c t s of Management on the D i r e c t i o n of Change of S o i l P r o p e r t i e s A l l three s o i l s make the l a r g e s t changes i n the f i r s t f i v e years a f t e r c l e a r i n g , except OM on outwash s o i l s , Ca, Mg, and OM on a l l u v i a l s o i l s , and K, P, and OM on g l a c i a l m a r i n e s o i l s , which make t h e i r l a r g e s t changes between 5 and 15 years. The delayed change i n OM i s probably due to the r e s i d u a l organic m a t e r i a l l e f t a f t e r c l e a r i n g and burning. This was evident i n the f i e l d , where a l l the outwash and most of the 1980 g l a c i a l m a r i n e p l o t s had r e s i d u a l charcoal. The 1980 a l l u v i a l p l o t s had no c h a r c o a l , which i s i n d i c a t e d i n the data by the l a r g e s t drop i n OM among the three s o i l s between the woodland group and the 1980 group. None of the 1970 s i t e s had any c h a r c o a l evident. These trends are d e t a i l e d i n Tables 11, 13, and 15 and summaries of 1 56 r e p r e s e n t a t i v e v a r i a b l e s i l l u s t r a t e d i n Figs. 22 to 25. On a l l u v i a l s o i l s pH and Ca in c r e a s e s l i g h t l y a f t e r 5 t o 15 years, and then appear to reach a quasi-steady s t a t e i n 15 to 25 years. K l e v e l s decrease f o r 25 years, then l e v e l o f f . The i n i t i a l i n c r e a s e could come from the f l u s h of n u t r i e n t s from the lo g g i n g s l a s h . Mg seems to be t i e d c l o s e l y w i t h o r g a n i c matter as a l l u d e d to above since Mg, OM, and N a l l drop d r a m a t i c a l l y f o r 15 years and then appear t o increase. As opposed to a l l u v i a l s o i l s , l e v e l s of c a t i o n s on outwash s o i l s reach a quasi-steady s t a t e a f t e r 15 years f o r c a t i o n s and pH. A f t e r 5 to 15 years of i n t e n s i v e management of outwash s o i l s f o r b e r r i e s , the l e v e l s of Ca and K are comparable on the two s o i l s . On both outwash and g l a c i a l m a r i n e s o i l s , c a t i o n l e v e l s are at l e a s t double and pH incre a s e s d r a m a t i c a l l y due to c u l t i v a t i o n . On g l a c i a l m a r i n e s o i l s , the l a r g e s t l e v e l s f o r pH and the s m a l l e s t f o r OM occur a f t e r 35 years, although the change i s not continuous. P l e v e l s increase w i t h time on outwash s o i l s , but are e r r a t i c on both a l l u v i a l and g l a c i a l m a r i n e s o i l s . OM decreases on a l l three s o i l s . Higher l e v e l s of OM and N are p o s s i b l e as i n d i c a t e d by t h e i r l e v e l s on the o l d raspberry p l o t on outwash s o i l s . When the weighted average p l o t s are used as the c o n t r o l , the trends on the three parent m a t e r i a l s p l o t s are l e s s dramatic f o r the g l a c i a l m a r i n e and outwash s o i l s and more so f o r the a l l u v i a l s o i l s . On the a l l u v i a l s o i l s l e v e l s of c a t i o n s and organic matter c o n s t i t u e n t s drop s t e a d i l y from weighted average values. On outwash s o i l s the f i r s t f i v e years of c u l t i v a t i o n do not show the vast d i f f e r e n c e s , and so seem to be more r e a l i s t i c . Changes i n OM and N 1 57 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 -•A woodland 1976 to 1983 1966 to 1976 1955 to 1966 1943 to 1955 Land C l e a r i n g Period F i g . 22. Trends f o r pH (H2°) l e v e l s w i t h time f o r outwash (0), a l l u v i a l (A), and g l a c i a l m a r i n e (G) s o i l s . K mg/kg 300 250 200 150 100 50 0 woodland 1976 to 1983 1966 to 1976 1955 to 1966 1943 to 1955 Land C l e a r i n g Period F i g . 23- Trends f o r K l e v e l s w i t h time f o r outwash (0), a l l u v i a l (A), and g l a c i a l m a r i n e (G) s o i l s . 158 OM 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9-5 9.0 8.5 8.0 7.5 .1 woodland "1976 t o 1983 1966 t o 1976 1955 t o 1966 1943 t o 1955 B e f o r e 1943 Land C l e a r i n g P e r i o d F i g . 24. T r e n d s f o r OM l e v e l s w i t h t i m e f o r outwash ( 0 ) , a l l u v i a l (A), and g l a c i a l m a r i n e (G) s o i l s . N (*) woodland T 9 7 6 1966 1955 1943 B e f o r e t o t o t o t o 1943 1983 1976 1966 1955 Land C l e a r i n g P e r i o d F i g . 25. T r e n d s f o r H l e v e l s w i t h t i m e f o r outwash ( 0 ) , a l l u v i a l (A), and g l a c i a l m a r i n e (G) s o i l s . 159 l e v e l s seem more consistent. On g l a c i a l m a r i n e s o i l s the use of the weighted average as the t=0 c o n t r o l leads to decreases i n Ca, K, and P and the same l e v e l of Mg a f t e r f i v e years of c u l t i v a t i o n . The l a r g e s t l o s s of OM i s i n the f i r s t 15 years on a l l parent m a t e r i a l s , ranging from 12$ on g l a c i a l m a r i n e s o i l s to 40$ on a l l u v i a l s o i l s . A s i m i l a r p a t t e r n of r a p i d i n i t i a l l o s s i s reported by Gregorich and Anderson (1986). OM g e n e r a l l y continues to decrease f o r the e n t i r e 35 year study period on outwash and g l a c i a l m a r i n e s o i l s , but i n c r e a s e s a f t e r 15 years on a l l u v i a l s o i l s , apparently from large a d d i t i o n s of manure. The amount of degradation of OM and N i s a f u n c t i o n o f cropping systems and moisture regimes ( A l l i s o n 1966, Campbell and Paul 1978), which d i f f e r by parent m a t e r i a l , and p a r t l y depends on i n i t i a l l e v e l s (Robertson 1983). These l o s s e s r e s u l t mainly from i n c r e a s e d m i n e r a l i z a t i o n , removal of biomass, and s t i m u l a t e d m i c r o b i a l a c t i v i t y due to the improved f e r t i l i t y and a c i d i t y c o n d i t i o n s of c u l t i v a t e d s o i l s (Juma and M c G i l l 1986). Losses of OM are about 20$ on outwash and g l a c i a l m a r i n e s o i l s a f t e r 35 years. A l l u v i a l s o i l s lose up to 40$ of the i n i t i a l OM i n 15 years, but rebound t o the same 20$ l o s s a f t e r 35 years. These values are comparable to those of Shutt (1925), Newton et a l . (1945), Haas et a l . (1957), and Wang et a l . (1984). The s o i l s and ecosystem described by Wang et a l . (1984) (podzol i c s o i l s converted from coniferous f o r e s t to a g r i c u l t u r e ) are most s i m i l a r to those i n t h i s study. Losses of OM and N can even be reversed as i n d i c a t e d by the o l d raspberry p l o t on outwash s o i l s , which has even higher OM and N values than the woodland s o i l s . 1 60 N l e v e l s i n c r e a s e r a p i d l y f o r 5 years then g e n e r a l l y decrease on outwash s o i l s . N decreases f o r 15 years on a l l u v i a l and 5 years on g l a c i a l m a r i n e s o i l s and then increases. Again, the a p p l i c a t i o n of manure may a f f e c t t h i s change i n d i r e c t i o n . These r e s u l t s are contrary to those reported i n s t u d i e s of grassland s o i l s , which show a continuous decrease i n N l e v e l s w i t h i n c r e a s i n g time and probably i n t e n s i t y of c u l t i v a t i o n (Hobbs and Brown 1957, Newton et a l . 1945, Voroney e t a l . 1981). Shutt (1925) found e q u i l i b r i u m f o r these organic c o n s t i t u e n t s was reached a f t e r 22 years and M a r t e l and Paul (1974) a f t e r 70 years. Others suggest l o s s e s may continue (Paul and Van Veen 1978, Voroney et a l . 1981, Tiessen et a l . 1982), which appears to be the case i n t h i s study a f t e r 35 years. However, these s t u d i e s were made i n a p r a i r i e -g r a i n ecosystem as compared to the f o r e s t - p a s t u r e ( b e r r i e s ) ecosystem i n t h i s study. The C:N narrows w i t h time to about 12:1 a f t e r 35 years on a l l s o i l s a f t e r a continuous drop from about 15:1, w i t h a minor exception on g l a c i a l m a r i n e s o i l s . This trend i s t y p i c a l when woodland i s converted to a g r i c u l t u r e (Duchaufour 1982). There i s no apparent l e v e l l i n g o f f . The o l d raspberry p l o t has a C:N of about 12, which i s comparable to the 35 year values on a l l u v i a l and g l a c i a l m a r i n e s o i l s , and which could be the steady s t a t e value f o r a l l three s o i l s . The immediate f l u s h from the wood ash increases the contents of Ca, Mg, K, and P since the l i t t e r i s c o n s i d e r a b l y higher i n these elements than the mineral s o i l . The l i t e r a t u r e g e n e r a l l y does not examine the anthropogenic e f f e c t s on trends i n the l e v e l of c a t i o n s a f t e r c u l t i v a t i o n , except f o r the i n i t i a l increase a f t e r c l e a r i n g . L a v k u l i c h and Rowles (1971) have shown that Ca and Mg i n c r e a s e due to 1 61 c u l t i v a t i o n on s o i l s s i m i l a r to the outwash s o i l s i n t h i s study. How long the l e v e l s remain high depends on management and s o i l p r o p e r t i e s , such as drainage, c u l t i v a t i o n , and the a p p l i c a t i o n of amendments; t h e r e f o r e , many of the trends are e r r a t i c . The major e f f e c t s of management are i n d i c a t e d by the general lack of d i s t i n c t patterns i n the data a f t e r f i v e years. The o n l y sequences of means th a t are not e r r a t i c a f t e r c l e a r i n g and c u l t i v a t i o n are the pH and OM sequences on g l a c i a l m a r i n e s o i l s . On both the g l a c i a l m a r i n e and outwash s o i l s , the in c r e a s e i n f e r t i l i t y a f t e r c l e a r i n g i s s t r o n g l y dependent on the amount of amendment. On a l l u v i a l s o i l s amendments are needed j u s t to maint a i n the l e v e l s of f e r t i l i t y at the time they were clear e d . Time appears to play a r o l e i n the l e v e l of the v a r i a b l e s mostly i n the f i r s t 5 to 15 years, a f t e r which the degree of management plays the major r o l e . Bulk d e n s i t y i n c r e a s e s i n t h i s study by an average of 26$ on a l l u v i a l s o i l s , 36% on g l a c i a l m a r i n e s o i l s , and 58$ on outwash s o i l s . These changes are as great or greater than those reported by Tiessen et a l . (1982) and Brady (1985), which range from 14 to 30$. The la r g e change i n bulk d e n s i t y on the outwash and g l a c i a l m a r i n e s o i l s probably r e s u l t s from the very low values i n the uncropped s t a t e , which are much lower than those reported (930 t o 1210 kg m-3) i n Tiessen et a l . (1982) and Brady (1985), who reported on a l r e a d y - c l e a r e d s o i l s . The l a r g e s t i n c r e a s e occurs immediately a f t e r c l e a r i n g - from 15$ on g l a c i a l m a r i n e to 54$ on outwash s o i l s . Bulk d e n s i t y values appear to l e v e l o f f i n 25 t o 35 years but not u n t i l i n c r e a s i n g by 69$ on outwash, 33$ on a l l u v i a l , and 56$ on g l a c i a l m a r i n e s o i l s . Except f o r the C:N on a l l s o i l s and pH and OM on g l a c i a l m a r i n e 1 62 s o i l s , the trends i n the data are not l i n e a r . Therefore, r e l i a b l e p r e d i c t i o n of f u t u r e l e v e l s of any v a r i a b l e i s not p o s s i b l e i n t h i s study since r2 values are g e n e r a l l y l e s s than 0.20. Some quasi-steady s t a t e s have been reached, but these w i l l hold o n l y as long as the land use i s cropland or pasture. The C:N appears to be l e v e l l i n g o f f to a value between 11.5 and 12.0. In summary, the most c o n s i s t e n t trends among the parent m a t e r i a l s are the decrease i n OM and C:N and the in c r e a s e i n pH over time. The l e v e l s of Ca, Mg, and K depend on the i n i t i a l f e r t i l i t y l e v e l . They decrease when i n i t i a l l e v e l s are high ( a l l u v i a l s o i l s ) and increase when i n i t i a l l e v e l s are low (outwash and g l a c i a l m a r i n e s o i l s ) . 5.5.3 E f f e c t s of Country The d i f f e r e n t degree of management between c o u n t r i e s can be explored by comparing the l e v e l s of s o i l p r o p e r t i e s on the c u l t i v a t e d s o i l s . The outwash s o i l s have the g r e a t e s t d i f f e r e n c e i n land use between c o u n t r i e s - mostly b e r r i e s i n Canada and mostly pasture i n the USA. The higher i n t e n s i t y o f management i n Canada i s revealed i n the s i g n i f i c a n t l y higher l e v e l s of a l l p r o p e r t i e s , except OM and N. Although these two p r o p e r t i e s are higher i n Canada, they b a r e l y miss s i g n i f i c a n c e , having F p r o b a b i l i t i e s of 0.07 and 0.06, r e s p e c t i v e l y . On a l l u v i a l s o i l s the c u l t i v a t e d p l o t s are managed f o r d a i r y i n a pasture-corn s i l a g e r o t a t i o n i n both countries. This s i m i l a r management r e s u l t s i n s i g n i f i c a n t d i f f e r e n c e s only f o r Ca and P. P o s s i b l y these d i f f e r e n c e s r e s u l t from d i f f e r e n t i a l a p p l i c a t i o n of l i m e and the w i n t e r i n g o f c a t t l e , or from large v a r i a b i l t y i n the data. The g l a c i a l m a r i n e s o i l s appeared to have s i m i l a r management i n t e n s i t i e s i n the f i e l d : mostly pasture w i t h recent a r a b l e 163 c u l t i v a t i o n on some p l o t s . The U.S. s o i l s have s i g n i f i c a n t l y higher l e v e l s of Mg, P, OM, and N. OM and N are lower i n Canada p o s s i b l y because the two 1980 Canadian s i t e s have much l e s s r e s i d u a l charcoal than t h e i r corresponding U.S. s i t e s . As compared w i t h the countries combined, the r e l a t i o n s h i p of changes i n s o i l p r o p e r t i e s w i t h t i m e - s i n c e - c l e a r i n g on Canadian and U.S. s o i l s are very s i m i l a r , although some changes may be more dramatic, such as Ca (19-593-1223-1304-1387 mg kg-1 f o r the woodland-1980-1970-1960-1950 sequence) and P (41-72-322-167-261 mg kg-1) on outwash s o i l s i n Canada due to heavy f e r t i l i z a t i o n , and others l e s s dramatic, such as Ca (80-162-472-204-269 mg kg-1) i n the USA. Only one trend has changed: P l e v e l s s t e a d i l y increase i n the USA on outwash s o i l s (21-23-29-37-44 mg kg-1) i n s t e a d of being e r r a t i c , probably r e f l e c t i n g the more c o n s i s t e n t land use and f e r t i l i z e r a p p l i c a t i o n i n the USA across age cl a s s e s . Other minor d i f f e r e n c e s are the r i s e i n pH on outwash 1970 s o i l s i n the USA, the high 1950 values f o r Ca (992 mg kg-1) and Mg (613 mg kg-1) on U.S. a l l u v i a l s o i l s , and the r i s e i n pH i n Canada i n 1970 on g l a c i a l m a r i n e s o i l s . These s l i g h t d i f f e r e n c e s probably r e s u l t from s l i g h t d i f f e r e n c e s i n management. 5.6 A n a l y s i s of V a r i a b l e s The de t e r m i n a t i o n of any s i m i l a r i t i e s among the i n d i v i d u a l eight v a r i a b l e s or the predominance of one or s e v e r a l of them can be important i n understanding the complex r e l a t i o n s h i p s among v a r i a b l e s and the s o i l s . Mathematical equations d e r i v e d from p r i n c i p a l component a n a l y s i s can be used t o describe t h e i r i n t e r r e l a t i o n s h i p s and to determine how the v a r i a b l e s are c o r r e l a t e d . This a n a l y s i s can 164 a l s o i n d i c a t e which v a r i a b l e s are the most important t o measure and whether t h i s importance d i f f e r s by parent m a t e r i a l . 5.6.1 Grouping and R e l a t i o n s h i p s Among the V a r i a b l e s The r e s u l t s of the p r i n c i p a l component a n a l y s i s are s i m i l a r f o r the three parent m a t e r i a l s , i n d i c a t i n g the v a r i a b l e s are a c t i n g i n s i m i l a r f a s h i o n i n a f f e c t i n g the variance i n the data (Tables 24, E7-E9). Two f a c t o r s , each composed of s e v e r a l v a r i a b l e s , were e x t r a c t e d f o r each parent m a t e r i a l . The v a r i a b l e s e x p l a i n i n g most of the v a r i a t i o n are those which dominate Factor 1 (Ca, Mg, K, OM, and N), which e x p l a i n s about h a l f of the variance. pH dominates Factor 2, which e x p l a i n s about one-fourth of the variance. P i s the l e a s t defined v a r i a b l e and has the s m a l l e s t l o a d i n g and f i n a l communality, i n d i c a t i n g i t i s not very u s e f u l i n e x p l a i n i n g v a r i a t i o n i n the data set. This l a c k o f d e f i n i t i o n of P confirms the f i n d i n g s of the m u l t i p l e r e g r e s s i o n . Table 24. Summary of p r i n c i p a l component a n a l y s i s f o r outwash, a l l u v i a l , and g l a c i a l m a r i n e s o i l s . Parent M a t e r i a l Outwash A l l u v i a l F actor 1 2 Gl a c i a l m a r i n e 1 2 Percent of variance accounted f o r 54.0 31.7 53.6 25.7 65.0 23.1 Dominant v a r i a b l e s Ca, Mg, OM, N pH (H20), pH (CaCl2>»Ca» p Ca, Mg, K, P, OM, N pH (H20), pH (CaCl2 ) Ca, Mg, K, P, OM, N pH (H20), pH ( C a C ^ 5.6.2 V a r i a b l e s As D i s c r i m i n a t o r s of Land C l e a r i n g Age Groups The eig h t v a r i a b l e s were only moderately e f f e c t i v e d i s c r i m i n a t o r s 1 65 i n s e p a r a t i n g and c l a s s i f y i n g the land c l e a r i n g age groups, being most s u c c e s s f u l i n d i f f e r e n t i a t i n g the l i t t e r l a y e r . A trend from group 1 (1950 age group) to group 6 (weighted average group) i s i n d i c a t e d , but there i s no c l e a r d i s c r i m i n a t i o n . Function 1 i s c l e a r l y the most powerful of the f u n c t i o n s produced, accounting f o r 82$ of the t o t a l d i s c r i m i n a t i n g power f o r outwash s o i l s , 90% f o r a l l u v i a l s o i l s , and 85$ f o r g l a c i a l m a r i n e s o i l s (Tables E1 - E 3 ) . This f u n c t i o n achieves a reasonable s e p a r a t i o n along the h o r i z o n t a l a x i s between group 7 (the l i t t e r l a y e r ) and the remaining s i x groups (Figs. 26-28). There i s a t r e n d from group 6 (weighted average p l o t s ) on the r i g h t to group 1 (1950 group) on the l e f t , but no c l e a r s e p a r a t i o n of the group c e n t r o i d s (denoted by *) i s e v i d e n t . Function 2 has f a r l e s s d i s c r i m i n a t i n g power and l e s s u t i l i t y f o r e x p l a i n i n g group d i f f e r e n c e s . I t e x p l a i n s only 15$ of the t o t a l variance f o r outwash s o i l s , 6$ f o r a l l u v i a l s o i l s , and 11$ f o r g l a c i a l m a r i n e s o i l s . When compared w i t h the f i r s t f u n c t i o n , i t contains only 7 t o 18 percent of the explanatory power. The s e p a r a t i o n achieved by Function 2 i s f a r l e s s d i s t i n c t i v e , p u l l i n g group 6 s l i g h t l y down and group 1 up. The l a c k of s e p a r a t i o n of groups 1 through 6 confirms that a f t e r c l e a r i n g , d i f f e r e n c e s i n management are more important than time i n d i f f e r e n t i a t i n g the p l o t s . In d i s c r i m i n a t i n g among the land age c l e a r i n g groups, the dominant v a r i a b l e s f o r outwash s o i l s c o n t r i b u t i n g t o Function 1 are OM and N, f o r a l l u v i a l s o i l s OM, and f o r g l a c i a l m a r i n e s o i l s OM and Ca. The dominant ones i n Function 2 are pH (CaCl 2) and K f o r outwash s o i l s , Mg and pH (CaCl2^ (which operate i n opposite d i r e c i o n s ) f o r a l l u v i a l s o i l s , and pH (CaCl 2) and pH (H20) f o r g l a c i a l m a r i n e s o i l s (Tables E4-1 66 CANON OU OUT x' INDICATES A GPCUP CENTRDID [CAL CISCRIMINANT FUNCTION 1 # 0 4.0 o • J 12.0 DUT -X X 12.0 B. C 4.0 .0 -4.0 3 1 1322 3224 **422 2242 331*4 1 5466 555666 " 4456*66 55*566666 56656 5 6 5 7 7 7 7 77 7 7 7 77 7 77 77* 7 7 7 7 777 7 7 7 7 7 7 7 7 7 7 -3.0 -12. 0 OUT X X*-OUT .0 4.0 8 .0 12 .0 X -X OUT Fig. 26. Discriminant analysis scatterplot of cut wast.soils using a l l seven land clearing age groups (1=1950, 2=1960, 3-1970, 4=1980, 5=woodland, 6=weighted average, 7=litter layer). 167 * IKCIC4TES A GPCUP CENTROIC CANON o u OUT X 12.0 8.0 4.0 X+ .0 -4. C -8.0 -12.0 CAL DISCRIMINANT FUNCTICN I #0 o.u 12.0 — OUT -X X 3 3 2 233 34*3 1*4116 24*5666 6 45656666 456*6*66 5566666 6 55566 6 5 6 77 77 7 77 7 7 7 7 777 7 CUT X x+-OUT 4.C 8.0 12.0 X -X OUT F i g . 27. Discriminant analysis scatterplot B seven land clearing age groups (1=19 50 , 2-196), 3-197°' H=1980 , 5=woodland, 6=wei«hted average, 7=litter layer). 168 * INDICATES A GRCUP CENTROID CANONICAL C ISCPIPINANT FUNCTION 1 OUT .C 4.0_ J9.0 _H*2 OUT X 12.0 OUT -X X 8.0 4. C .0 -4 .0 -8.0 -12. C I 1111 211311 3*3114 34*3634 343* 53664 566 25466*666 54*66666 56656 5 6 6 7 7 7 77 7 7 7 7 7 7 77 •77 7 77 1 77 7 7 7 CUT X OUT .0 4.0 8.0 12.0 X -X OUT Fig. 28. Discriminant analysis scatterplot of glacialmarine soils using a l l seven land clearing age groups (1s 1950, 2s 1960, 3= 1970, 4=1980, Sswoodland, 6=weighted average, 7=litter layer). 169 E6). These r e s u l t s seem to d i f f e r somewhat from those obtained i n the p r i n c i p a l component a n a l y s i s because each a n a l y s i s has a d i f f e r e n t purpose. The d i s c r i m i n a n t a n a l y s i s i n d i c a t e s that the p r i n c i p a l v a r i a b l e s are OM and pH i n that they d i s t i n g u i s h the land c l e a r i n g ages groups. P r i n c i p a l component a n a l y s i s seeks to e x p l a i n the v a r i a t i o n of the data as a whole, re g a r d l e s s of t h e i r r e l a t i o n s h i p to age groups. Ca, Mg, K, OM, and N serve i n t h i s r o l e . The important v a r i a b l e s i n m u l t i p l e r e g r e s s i o n are the same as f o r the d i s c r i m i n a n t a n a l y s i s because both analyses attempt to develop a r e l a t i o n s h i p between t i m e - s i n c e - c l e a r i n g and the l e v e l s of the chemical v a r i a b l e s . In a l l three cases, P seems to be of l i t t l e value i n d i f f e r e n t i a t i n g the d a t a . 5.7 C l a s s i f i c a t i o n Testing of Age Groups The d i s c r i m i n a n t a n a l y s i s was performed to determine whether the data alone can d i f f e r e n t i a t e the land c l e a r i n g age groups. Using the c a l c u l a t e d d i s c r i m i n a n t score f o r each land c l e a r i n g age group, the a n a l y s i s c o r r e c t l y p r e d i c t e d the c o r r e c t group f o r an average of 64$ of the outwash, 61$ of the a l l u v i a l , and 63$ of the g l a c i a l m a r i n e age groups (Tables 25-27). The l a c k of se p a r a t i o n among the c u l t i v a t e d p l o t s i n Fi g s . 26 to 28 and the 36 to 39$ m i s c l a s s i f i c a t i o n i s not s u r p r i s i n g c o n s i d e r i n g the amount of v a r i a b i l i t y w i t h i n the age groups. P o s s i b l y , other v a r i a b l e s could improve the c l a s s i f i c a t i o n . 5.8 S o i l V a r i a b i l i t y The i n t e r p r e t a t i o n of s o i l v a r i a b i l i t y i s p r i n c i p a l l y through the examination of the c o e f f i c i e n t of v a r i a t i o n . As reported i n the l i t e r a t u r e , v a r i a b i l i t y i s i n f l u e n c e d by such f a c t o r s as parent 1 70 Table 25. C l a s s i f i c a t i o n r e s u l t s f o r outwash s o i l s . P r e d i c t e d group membership (%) l i t t e r A c t u a l group 1950 1960 1970 1980 wood- wt. land avg 1950 55 20 25 1960 27 38 20 15 1970 10 38 50 2 1980 2 15 17 45 20 woodland 7 83 weighted average 5 12 83 l i t t e r 5 Table 26. C l a s s i f i c a t i o n r e s u l t s f o r a l l u v i a l s o i l s . P r e d i c t e d group membership A c t u a l group 1950 1960 1970 1980 wood- wt. land avg 1950 35 10 12 20 23 1960 12 68 8 10 2 1970 2 10 70 18 1980 20 5 25 30 20 woodland 5 8 64 23 weighted average 3 8 28 61 10 95 l i t t e r l i t t e r 98 Table 27. C l a s s i f i c a t i o n r e s u l t s f o r g l a c i a l m a r i n e s o i l s . P r e d i c t e d group membership (%) l i t t e r A c t u a l group 1950 1960 1970 1980 wood- wt. land avg 1950 49 18 31 2 1960 2 60 15 23 1970 20 15 58 2 5 1980 30 2 53 10 woodland 2 8 63 27 weighted average 2 5 28 65 l i t t e r 2 98 171 m a t e r i a l and s i z e of the sampling area (Beckett and Webster 1971, W i l d i n g 1985). The CVs f o r c u l t i v a t e d s o i l s are g e n e r a l l y c o n s i d e r a b l y l e s s than those f o r the e n t i r e data set ( T o t a l CVs) (Table 28). This d i f f e r e n c e between the data s e t s i s expected since the c u l t i v a t e d s o i l s are more homogeneous than the e n t i r e data s e t , which i n c l u d e s the anomalous l i t t e r l a y e r . The only exceptions are pH and P. T o t a l CVs are extremely high (except pH since i t i s a l o g a r i t h m i c v a r i a b l e ) r e s u l t i n g from the combination of two s i g n i f i c a n t l y d i f f e r e n t populations (the l i t t e r l a y e r and the mi n e r a l s o i l ) (Table 28). T o t a l CVs on outwash s o i l s are more than 100 (except K, which i s 67), range from 50 to 110 on a l l u v i a l , and are more than 90 on g l a c i a l m a r i n e s o i l s . CVs are g e n e r a l l y highest f o r the groupings w i t h those p l o t s that have n e a r l y zero sample values i n the same way tha t Singh et a l . (1985) show high CVs f o r low l e v e l s of m i c r o n u t r i e n t s . 5.8.1 A n a l y s i s of Parent M a t e r i a l s 5.8.1.1 Results of A n a l y s i s The CVs f o r the v a r i a b l e s on outwash s o i l s range from 12 f o r H^Q, pH to 143 f o r Mg using the e n t i r e data set. When using only the c u l t i v a t e d s o i l s , the range i n CVs i s from 7 f o r pH ( H 2 0 ) to 122 f o r Ca (Table 28). The v a r i a b l e s w i t h CVs more than 100 usin g the e n t i r e data set are Ca, Mg, P, OM, and N. When using only the c u l t i v a t e d s o i l s , Ca and P are the only v a r i a b l e s w i t h CVs l a r g e r than 100 (Table F1). On the a l l u v i a l s o i l s CVs range from 9 f o r pH (H 2o) to 106 f o r P, which has the only CV l a r g e r than 100 when using the e n t i r e data set. When only the c u l t i v a t e d s o i l s are examined, P has the l a r g e s t CV at 99 ( T a b l e F2). 1 72 Table 28. C o e f f i c i e n t s of v a r i a t i o n (%) f o r chemical and p h y s i c a l v a r i a b l e s of outwash, a l l u v i a l , and g l a c i a l m a r i n e s o i l s by age. Parent Age# RF BD pH1+ pH2 Ca Mg K P OM N M a t l . 1950 34 19 6 8 149 38 23 101 10 15 1960 25 10 8 8 115 52 32 92 18 25 1970 31 10 4 6 69 62 42 108 20 24 1980 48 12 8 9 120 66 38 116 17 24 woodland — 14 8 7 163 73 28 119 23 25 l i t t e r — — 9 11 56 49 36 32 24 19 wt. avg. — — 8 7 67 52 25 90 19 24 c u l t . 13 7 9 122 56 35 119 20 24 mineral 21 10 12 141 63 46 130 21 25 min.+avg. — — 11 13 146 61 48 136 30 30 TOTAL — 12 14 133 143 67 124 112 118 AVG(TOTAL)~ 5 5 59 33 21 45 14 15 AVG(CULT) -- — 4 4 64 31 19 43 12 14 1950 — 11 7 7 33 30 79 59 19 24 1960 — 9 3 4 40 31 57 84 14 18 1970 — 13 4 6 49 15 58 69 19 23 1980 — 12 4 5 31 25 54 60 16 18 woodland — 20 10 9 59 40 59 78 34 30 l i t t e r — — 11 13 45 40 44 64 22 25 wt. avg. — — 10 10 54 39 52 68 28 27 c u l t . 12 5 6 39 33 62 95 19 22 mineral — 16 7 8 45 40 62 95 30 27 min.+avg. — — 8 8 47 42 62 91 38 34 TOTAL — — 9 10 66 53 77 106 99 95 AVG(TOTAL) 3 4 27 17 38 47 19 20 AVG(CULT) — — 3 3 25 14 36 46 17 19 G l a c i a l - 1950 50 13 marine 1960 47 15 1970 71 12 1980 36 17 woodland — 17 l i t t e r wt. avg. c u l t . — 18 mineral — 21 min.+avg. — TOTAL AVG(TOTAL)— AVG(CULT) --4 4 70 68 4 4 85 81 5 6 105 62 5 5 112 64 5 6 105 75 9 11 34 43 5 6 42 54 5 6 99 70 7 8 108 76 8 9 96 72 8 9 160 121 4 5 66 44 3 4 79 48 67 127 23 27 56 158 19 20 50 65 17 18 46 103 29 29 37 147 27 39 45 63 25 32 34 72 25 25 60 151 24 25 59 168 25 29 56 170 31 35 91 144 96 97 36 74 17 20 38 86 17 20 1 73 # 1950 = clea r e d between 19^3 and 1955 1960 = c l e a r e d between 1955 and 1966 1970 = clea r e d between 1966 and 1976 1980 = c l e a r e d between 1976 and 1983 woodland = woodland mineral s o i l l i t t e r = woodland l i t t e r l a y e r wt. avg. = weighted average of woodland m i n e r a l s o i l and l i t t e r c u l t . = c u l t i v a t e d s o i l s o nly: c l e a r e d between 1943 and 1983 mineral = c u l t i v a t e d s o i l s plus woodland mineral s o i l min.+avg. = mineral s o i l s plus weighted average s o i l + pH1= pH i n H 2 Q pH2= pH i n CaC12 1 74 The CVs on the g l a c i a l m a r i n e s o i l s range from 8 f o r pH (H2^ ^° 160 f o r Ca u s i n g the e n t i r e data set and from 5 f o r pH ( H 2 0 ) t o 151 f o r P using only the c u l t i v a t e d s o i l s (Table F3). 5.8.1.2 Discuss i o n of V a r i a b i l i t y by Parent M a t e r i a l In comparison t o CVs reported i n the l i t e r a t u r e , those i n t h i s study are lower f o r OM and N, e x c l u d i n g the l i t t e r l a y e r from the c a l c u l a t i o n s (Beckett and Webster 1971, W i l d i n g and Drees 1978, W i l d i n g and Drees 1983). Values f o r bulk d e n s i t y , Ca, Mg, K, P, and pH are comparable to values i n the l i t e r a t u r e , although bulk d e n s i t y and Ca values may be s l i g h t l y higher and Mg values s l i g h t l y lower (Mausbach et a l . 1980, Lee et a l . 1975). The lower CVs of organic matter i n t h i s study may be a t t r i b u t e d to the l a r g e r sample s i z e f o r the l o s s - o n - i g n i t i o n method of determining organic matter (averaging 6 to 10 g) compared to about 2 g used i n the Leco carbon a n a l y s i s and 0.1 to 2.0 g f o r the Walkley-Black method. When making these comparisons, the c a u t i o n suggested by Campbell (1979) should be heeded, t h a t few s c i e n t i s t s use comparable sampling schemes or o b s e r v a t i o n a l i n t e r v a l s , and so the magnitude of s o i l v a r i a b i l i t y i s not n e c e s s a r i l y comparable. An examination of the average p l o t CVs i n t h i s study i n d i c a t e s that v a r i a b i l i t y i s i n the order a l l u v i u m <^  outwash <^  g l a c i a l m a r i n e (Tables F1-F3, F i g . 29). The CVs f o r pH are comparable, f o r Ca and Mg g l a c i a l m a r i n e > outwash > a l l u v i a l s o i l s , f o r K, OM, and N g l a c i a l m a r i n e = a l l u v i u m > outwash, and f o r P g l a c i a l m a r i n e > a l l u v i u m = outwash (Tables F1-F3). These r e l a t i o n s h i p s hold whether c o n s i d e r i n g o nly the c u l t i v a t e d s o i l s or the e n t i r e data set. For the most part these f i n d i n g s support the conclusions of 1 75 Avg. CV C u l t . S o i l s Only 84 80 76 72 68 64 60 56 52 48 44 40 36 32 28 24 20 16 12 8 4 0 0 A G Ca 0 A G Mg A G K A G P 0 A G OM 0 A G N V a r i a b l e F i g . 29. Average CV f o r s i x chemical v a r i a b l e s on outwash (0), a l l u v i a l (A), and g l a c i a l m a r i n e (G) s o i l s using c u l t i v a t e d s o i l s o n l y . 1 76 Mausbach et a l . (1980) t h a t Spodosols (outwash and g l a c i a l m a r i n e s o i l s ) are more v a r i a b l e than E n t i s o l s ( a l l u v i a l s o i l s ) . The r e s u l t s t h a t l o e s s s o i l s (upper s o l a of the outwash and g l a c i a l m a r i n e s o i l s ) are more v a r i a b l e than a l l u v i a l s o i l s are contrary to t h e i r conclusions. However, t h e i r study examines mostly s e v e r a l meter deep loe s s s o i l s i n the U.S. p r a i r i e s , whereas the s o i l s i n t h i s study are dominated by loe s s only i n the upper 0.5 m approximately. 5.8.2 V a r i a b i l i t y of Age In general woodland v a r i a b i l i t y i s l a r g e r than v a r i a b i l i t y on each of the c u l t i v a t e d age groups f o r each parent m a t e r i a l f o r bulk d e n s i t y and the e i g h t chemical v a r i a b l e s . With few exceptions, no pat t e r n occurs among the four c u l t i v a t e d age groups. This i s f o r t u n a t e since previous s t u d i e s i n s o i l v a r i a b i l i t y have not considered age as one of the v a r i a b l e s . This r e s u l t confirms previous observations that trends have been infrequent w i t h i n the c u l t i v a t e d age grouping. 5.8.3 V a r i a b i l i t y of Land Use There are a l s o few trends by land use. When comparing woodland w i t h the c u l t i v a t e d s o i l s as a whole, woodland CVs ^ c u l t i v a t e d CVs f o r a l l v a r i a b l e s except K on g l a c i a l m a r i n e s o i l s and P on a l l u v i a l s o i l s . This o b s e r v a t i o n i s contrary t o the f i n d i n g s of Beckett and Webster (1971), who found c u l t i v a t e d s o i l s to be more v a r i a b l e . P o s s i b l y the decrease i n v a r i a b i l i t y a f t e r c u l t i v a t i o n r e s u l t s from the greater homogeneity i n management or crops i n t h i s study as compared to those reported by these authors or from the greater heterogeneity of the woodland s o i l s . The v a r i a b i l i t y of a l l m i n e r a l 177 s o i l s combined i s greater than the c u l t i v a t e d s o i l s f o r a l l parent m a t e r i a l s f o r a l l v a r i a b l e s . 5.8.4 V a r i a b i l i t y of Country Major d i f f e r e n c e s i n management between c o u n t r i e s , e s p e c i a l l y on outwash s o i l s , i s not r e f l e c t e d i n v a r i a b i l i t y and no trends are apparent (Table 29). For i n s t a n c e , OM shows no d i f f e r e n c e s on a l l three parent m a t e r i a l s . The only d i f f e r e n c e s i n pH and P are that pH i s g e n e r a l l y more v a r i a b l e i n Canada on outwash s o i l s and P i s more v a r i a b l e i n the USA. Ca v a r i a b i l i t y i s greater i n the USA f o r outwash and a l l u v i u m and the reverse on g l a c i a l m a r i n e s o i l s . 5.8.5 Summary of V a r i a b i l i t y by Parent M a t e r i a l , Age, and Country S o i l v a r i a b i l i t y by parent m a t e r i a l , age, and country i s q u i t e mixed probably due to the v a r i e d l e v e l s of management across age groups and i n s p i t e of d i s t i n c t management d i f f e r e n c e s i n outwash s o i l s . Of the three, parent m a t e r i a l accounts f o r most of the v a r i a t i o n i n the data. The high v a r i a b i l i t y l i m i t s the conclusions that can be drawn and a l s o the amount of p r e d i c t a b i l i t y . The only conclusion seems to be i n the order of average v a r i a b i l i t y among parent m a t e r i a l s f o r c u l t i v a t e d s o i l s , which i s a l l u v i u m < outwash < g l a c i a l m a r i n e s o i l s . Another source of systemat i c v a r i a b i l i t y could r e s u l t from the l i n e a r p i l i n g of windrows d u r i n g the c l e a r i n g process or the p i l i n g of hay, an example of which i s portrayed i n the lower l e f t center of P l a t e 5. 1 78 Table 29. C o e f f i c i e n t s of v a r i a t i o n (%) f o r chemical and p h y s i c a l v a r i a b l e s of outwash, a l l u v i a l , and g l a c i a l m a r i n e s o i l s by country. Parent Country BD pH1+ pH2 Ca Mg K P 0M N M a t l . E n t i r e data set Outwash Canada 40 15 17 111 107 58 98 109 27 USA 37 8 10 163 160 77 81 115 33 Alluvium Canada 45 7 8 59 55 76 110 98 92 USA 43 9 9 71 52 76 103 100 98 G l a c i a l - Canada 39 9 10 160 142 90 137 93 94 marine USA 38 8 9 154 105 91 140 97 97 C u l t i v a t e d s o i l s only Outwash Canada 16 7 8 90 39 26 77 17 17 USA 10 7 8 100 54 33 40 23 30 Alluvium Canada 8 5 6 29 40 66 69 18 24 USA 15 5 6 44 26 57 97 21 16 G l a c i a l - Canada 17 5 6 111 67 58 144 21 26 marine USA 18 5 5 88 60 62 132 25 23 M i n e r a l s o i l s only Outwash Canada 23 12 13 111 57 44 91 21 19 USA 19 8 9 111 54 40 52 21 29 Alluvium Canada 16 6 7 38 43 66 65 28 29 USA 15 8 8 45 37 60 105 32 23 G l a c i a l - Canada 19 7 8 119 71 58 151 23 27 marine USA 22 7 8 98 69 60 153 26 29 M i n e r a l s o i l s p l u s weighted average i s o i l Outwash Canada 14 15 124 59 51 100 31 27 USA — 8 9 100 61 38 55 29 33 A l l u v i u m Canada 6 8 42 44 63 62 37 35 USA — 9 8 45 41 60 106 40 31 G l a c i a l - Canada 8 9 107 71 56 145 27 30 marine USA — 8 9 86 65 55 159 31 35 + pH1= pH i n H20, pH2= pH i n CaCl2 1 79 5.8.6 V a r i a b i l i t y According t o S i z e of Study P l o t Beckett and Webster (1971) i n d i c a t e that at l e a s t 50% of the v a r i a b i l i t y i s present w i t h i n a 0.1 ha p l o t . The data from t h i s study confir m t h i s : CVs of i n d i v i d u a l c u l t i v a t e d p l o t s are commonly 50 to 80$ of the CVs of a l l c u l t i v a t e d s o i l s combined (Table 30). Figs. 30 and 31 i l l u s t r a t e the large w i t h i n - p l o t v a r i a b i l i t y i n t h i s study. This v a r i a t i o n i s l a r g e r than the v a r i a t i o n caused by parent m a t e r i a l , age, or country. The r a t i o of i n d i v i d u a l p l o t CVs to t o t a l c u l t i v a t e d CV i s l e a s t on outwash s o i l s f o r a l l v a r i a b l e s except Mg. The r e l a t i o n s h i p s above are s i m i l a r when a l l m i n e r a l s o i l s ( c u l t i v a t e d s o i l s plus woodland s o i l ) are examined as w e l l (Table 28). Table 30. Ratios of i n d i v i d u a l c u l t i v a t e d p l o t CV to CV of a l l c u l t i v a t e d s o i l s . V a r i a b l e (Values i n percent) Ca Mg K P 0M N Outwash 50 60 55 35 60 60 Alluvium 65 45 55 50 90 90 G l a c i a l m a r i n e 80 70 65 55 70 80 5.8.7 Comparison of Concentration w i t h A r e a l V a r i a b i l i t y Tiessen et a l . (1982) poi n t out t h a t CVs determined from a r e a l measurements are greater than those from concentration values since the e x t r a v a r i a b i l i t y c o n t r i b u t e d by bulk d e n s i t y i s i n c l u d e d i n the a r e a l but not i n the concentration measurements. I t would be expected th a t as the CV of bulk d e n s i t y i n c r e a s e s , v a r i a b i l i t y of kg ha-1 measurements would increase as a consequence. In general CVs by mg kg' I 1 80 Three-dimensional diagram showing variability of Mg (avg. C V= 5 1 ) on plot M 2 on glacialmarine soils, age group 1 9 5 0 . Plot i s 3 0 m x 3 0 m (see Fig. 1 1 , Appendix G). Values in mg kg 1 8 1 Three-dimensional diagram showing variability of OM (avg. C V= 2 0 ) on plot 42 on glacialmarine soils, age group 1 9 5 0 . Plot i s 3 0 m x 3 0 m (see Fig. 1 1 , Appendix G). Values i n %. 1 8 2 and kg ha-1 are very comparable when the CV of bulk d e n s i t y i s l e s s than 20. The r e l a t i o n s h i p o f a consequent increase i n CV w i t h an i n c r e a s e i n bulk d e n s i t y CV holds only f o r outwash s o i l s , where CVs f o r mg kg-1 measurements are g e n e r a l l y l e s s than f o r kg ha-1 measurements. However, the reverse i s t r u e f o r a l l u v i a l and g l a c i a l m a r i n e s o i l s . G e n e r a l l y , as the CV of bulk d e n s i t y i n c r e a s e s , the d i f f e r e n c e i n CV between the concentration and a r e a l measurements increases. There appears to be l i t t l e d i f f e r e n c e between C V c o n c and CVareal by age or country (Tables F4 and F5). 5.9 Number of Samples Required to Estimate P o p u l a t i o n Means The number of samples r e q u i r e d to estimate a population mean depends on the data set analyzed, the parent m a t e r i a l , the v a r i a b l e considered and i t s CV, and the confidence l i m i t s chosen f o r e s t i m a t i o n . The 95$ confidence l i m i t was chosen and sample s i z e estimates were made to be w i t h i n +5$ and +20$ of the mean f o r each v a r i a b l e . Using 80$ accuracy i n s t e a d of 95$, as suggested by Cameron et a l . (1971) w i l l reduce the number of samples required by 40$. Generally the e n t i r e data set has higher CVs than the data set f o r c u l t i v a t e d s o i l s only (Table 31) . A l l u v i a l s o i l s are the l e a s t v a r i a b l e and so r e q u i r e the s m a l l e s t number of samples to estimate the p o p u l a t i o n mean of each v a r i a b l e . Many v a r i a b l e s on each parent m a t e r i a l have CVs l a r g e r than 80 and so r e q u i r e more than 1000 samples to estimate t h e i r r e s p e c t i v e means w i t h i n 5$ and more than 60 samples to e s t i m a t e the mean w i t h i n 20$. Using the e n t i r e data set Ca, Mg, P, OM, and N r e q u i r e t h i s many samples, except f o r Ca and Mg on a l l u v i a l s o i l s . Using only c u l t i v a t e d s o i l s , Ca (except a l l u v i u m ) and P are 1 83 the only v a r i a b l e s r e q u i r i n g so many. These values are much l e s s than those reported by Crosson and Protz (1974) and somewhat higher f o r both K and P than values reported by Nelson and McCracken (1962). In order t o need l e s s than 20 samples to estimate the population mean w i t h i n +20%, the CV f o r a v a r i a b l e must be l e s s than 40. Only OM and N c o n s i s t e n t l y meet t h i s requirement and then only f o r c u l t i v a t e d s o i l s . Regardless of the data set used, only 1 or 2 samples are r e q u i r e d to estimate pH since i t i s a l o g a r i t h m i c measurement, and has a narrow range. I t appears, t h e r e f o r e , t h a t e s t i m a t i o n of means i s a very r i s k y procedure on s o i l s as v a r i a b l e as those i n t h i s study unless the sample s i z e i s l a r g e . The inadequacy of sampling f o r e s t a b l i s h i n g l i m i t s of s o i l p r o p e r t i e s has been reported by Nelson and McCracken (1962), P r o t z e t a l . (1968), and C r o s s o n and P r o t z (1974). The r e s u l t s from t h i s study i n d i c a t e t h a t to approximate the mean w i t h i n 5%, the number of samples taken was inadequate to estimate any v a r i a b l e except bulk d e n s i t y and pH using the e n t i r e data set. The sampling was adequate on the more homogeneous c u l t i v a t e d s o i l s except f o r Ca and P and was b a r e l y s u f f i c i e n t f o r Mg and K. When approximating the mean to the more r e a l i s t i c +20$, the s o i l s i n t h i s study were oversampled by a f a c t o r of at l e a s t 3-184 Table 31. Number of samples r e q u i r e d to estimate each v a r i a b l e on outwash, a l l u v i a l , and g l a c i a l m a r i n e s o i l s w i t h i n +5% and +20% of the population mean at the 95% confidence l i m i t u sing the e n t i r e data set (e) and c u l t i v a t e d s o i l s only ( c ) . V a r i a b l e Data Outwash Alluvium G l a c i a l m a r i n e Set CV Mean +5% +20% CV Mean +5$ +20? CV Mean +5$ +20% % No. samples % No. samples % No. samples Bulk den. c 13 921 27 1 12 1197 23 1 18 960 54 3 pH ( H 2 0 ) e 12 5.6 23 1 9 5.8 13 1 8 5.2 10 1 PH ( H 2 0 ) c 7 6.0 8 1 5 5.9 4 1 5 5.5 4 1 pH (CaCl2 ) e 14 5.0 31 2 10 5.2 16 1 9 4.6 13 1 pH ( C a C l 2 ) c 9 5.5 13 1 6 5.4 6 1 6 4.9 6 1 Ca e 133 732 2 830 180 66 1157 700 44 160 458 4100 260 Ca c 122 702 2380 150 39 906 243 15 99 206 1570 98 Mg e 143 140 3270 200 53 617 450 28 121 154 2340 150 Mg c 56 78 500 31 33 461 170 11 70 101 780 49 K e 67 225 720 25 77 305 950 59 91 199 1320 83 K c 35 221 200 12 62 213 620 38 60 150 580 36 P e 124 93 2460 150 106 52 1800 110 144 18 3320 210 P c 119 119 2270 140 95 42 1440 90 151 16 3650 230 OM e 112 17.1 2000 130 99 17.4 1570 98 96 19.2 1470 92 OM c 20 8.6 64 4 19 8.9 58 4 24 11.0 92 6 N e 118 .369 2230 140 95 .416 1440 90 97 .458 1500 94 N c 24 .186 92 6 22 .230 77 5 25 .261 100 6 1 85 6.0 SUMMARY AND CONCLUSIONS 6.1 Summary 6.1.1 Summary of Parent M a t e r i a l , Age, and Land Use A n a l y s i s One parent m a t e r i a l and one land c l e a r i n g age grouping are c l e a r l y d i f f e r e n t when examining the d i f f e r e n c e s among parent m a t e r i a l s and c u l t i v a t e d land c l e a r i n g age groups f o r Canada, the USA, and both c o u n t r i e s combined f o r each v a r i a b l e . G l a c i a l m a r i n e s o i l s and the 1980 age grouping show the most d i f f e r e n c e s among t h e i r counterparts and cause most of the s i g n i f i c a n t i n t e r a c t i o n s between age and parent m a t e r i a l . G l a c i a l m a r i n e s o i l s have had the l e a s t i n t e n s i v e management of the three s o i l s studied. The 1980 g l a c i a l m a r i n e group i s the most d i f f e r e n t combination. The 1980 outwash a l s o has many s i g n i f i c a n t d i f f e r e n c e s . The 1980 group i s the most d i f f e r e n t probably because i t has had the l e a s t amount of time to have amendments a p p l i e d and to take on the character of a c u l t i v a t e d s o i l . The outwash s o i l s of low i n t e n s i t y management show the most s i m i l a r i t i e s w i t h the g l a c i a l m a r i n e s o i l s since they are both g l a c i a t e d and the plow l a y e r s are derived from l o e s s . When the outwash s o i l s are i n t e n s i v e l y managed, they are more s i m i l a r to the a l l u v i a l s o i l s , although they d i f f e r i n o r i g i n . This i s confirmed by the c l u s t e r a n a l y s i s of a l l s o i l s i n which most of the g l a c i a l m a r i n e and outwash s o i l s c l u s t e r i n the low f e r t i l i t y groups. When the data f o r both c o u n t r i e s are combined, the g l a c i a l m a r i n e s o i l s and the 1980 age grouping are s i g n i f i c a n t l y lower i n pH, Ca, and K and s i g n i f i c a n t l y higher i n 0M and N. The a l l u v i a l s o i l s are s i g n i f i c a n t l y higher i n Mg because they are i n h e r e n t l y higher i n Mg, 186 as i n d i c a t e d by the comparative Mg l e v e l s i n woodland and the l i t t e r l a y e r s of the three s o i l s . Most of the s i g n i f i c a n t d i f f e r e n c e s i n P are w i t h the outwash s o i l s and they r e s u l t from the high P l e v e l s i n the h i g h l y f e r t i l e p l o t s 4, 6, 7, and 8. The g l a c i a l m a r i n e s o i l s show few s i g n i f i c a n t d i f f e r e n c e s among the age groupings, probably r e s u l t i n g from the l a c k of i n t e n s i v e management and thus, the gradual or e r r a t i c change of s o i l p r o p e r t i e s w i t h time. The conclusions are very s i m i l a r when examining the data f o r Canada only, except the g l a c i a l m a r i n e s o i l s show fewer d i f f e r e n c e s . The major d i f f e r e n c e when only the Canadian data are used i s that outwash s o i l s have s i g n i f i c a n t l y higher K i n each age grouping. This i s due to the h i g h l y f e r t i l e p l o t s 4, 6, 7, and 8, which have very high K l e v e l s . When only the data f o r the USA are used, the major d i f f e r e n c e s are w i t h K and P. The d i f f e r e n c e s are mostly w i t h the a l l u v i a l s o i l s , which are s i g n i f i c a n t l y higher, probably from the i n h e r e n t l y higher l e v e l s i n these s o i l s . The d i f f e r e n c e s on the a l l u v i a l s o i l s may r e s u l t from the d i f f e r e n t l e v e l s of f e r t i l i z e r and purchased f e e d s t u f f s . 6.1.2 Summary of Anthropogenic E f f e c t s on S o i l Genesis The p r i n c i p a l conclusions of the anthropogenic e f f e c t s on s o i l genesis by parent m a t e r i a l are the f o l l o w i n g : 1) Time appears to play a r o l e i n the l e v e l of the v a r i a b l e s mostly i n the f i r s t 5 to 15 years, when the s o i l s make the l a r g e s t changes. A f t e r t h i s , the degree of management plays the major r o l e . 2) pH increases d r a m a t i c a l l y on a l l s o i l s from i n i t i a l l e v e l s i n woodland. 3) The l e v e l s of ca t i o n s on both outwash and g l a c i a l m a r i n e s o i l s 1 87 w i t h low i n i t i a l f e r t i l i t y increase by 200 to 1500$ a f t e r c u l t i v a t i o n i n p r o p o r t i o n to the degree of management. On a l l u v i a l s o i l s , where i n i t i a l f e r t i l i t y l e v e l s are high, c u l t i v a t i o n leads to reductions of 30 to 50$. On outwash s o i l s a quasi-steady s t a t e i s reached a f t e r 15 years f o r c a t i o n s and pH. On g l a c i a l m a r i n e s o i l s pH and OM show c o n s i s t e n t patterns of increase and decrease, r e s p e c t i v e l y . The other v a r i a b l e s g e n e r a l l y increase w i t h time but the p a t t e r n i s obscure. 4) Cation l e v e l s decrease from i n i t i a l l e v e l s on a l l u v i a l woodland s o i l s , which have high f e r t i l i t y . A f t e r 15 to 25 years the anthropogenic system appears to reach a quasi-steady s t a t e f o r pH, Ca, and K. Other v a r i a b l e s decrease f o r 15 to 25 years and then increase but only to only one-half to two-thirds of woodland l e v e l s . 5) C u l t i v a t i o n r e s u l t s i n l o s s e s o f OM of 20$ a f t e r 35 years on a l l s o i l s , although a l l u v i a l s o i l s l o s e up to 40$ of the i n i t i a l OM i n the f i r s t 15 years before i n c r e a s i n g . The l a r g e s t l o s s i s i n the f i r s t 15 years on a l l s o i l s . 6) On outwash s o i l s N l e v e l s increase r a p i d l y f o r 5 years then g e n e r a l l y decrease. N decreases f o r 15 years on a l l u v i a l and 5 years on g l a c i a l m a r i n e s o i l s and then i n c r e a s e s . 7) Steady s t a t e f o r OM and N i s not apparent w i t h i n 35 years. Losses of 0M and N can be reversed and l e v e l s r e t u r n to i n i t i a l values. 8) C:N narrows on a l l s o i l s from about 15:1 to about 12:1, which appears to be the steady s t a t e l e v e l . 9) C u l t i v a t i o n increases bulk d e n s i t y by an average of 26$ on a l l u v i a l to 58$ on outwash s o i l s before l e v e l l i n g o f f i n 25 to 35 years. 10) The trends w i t h time are g e n e r a l l y not l i n e a r . 188 11) The l a c k of l i n e a r i t y and high s o i l v a r i a b i l i t y make fu t u r e p r e d i c t i o n u n r e l i a b l e f o r l e v e l s of i n d i v i d u a l v a r i a b l e s . 12) Trends i n s o i l p r o p e r t i e s w i t h time are s i m i l a r by country, d i f f e r i n g mainly by degree. 6.2 Conelusions The purpose of t h i s study was to examine some land use and s o i l p r o p e r t i e s to understand the r e l a t i o n s h i p s among parent m a t e r i a l , t i m e - s i n c e - c l e a r i n g , and management e f f e c t s i n d i f f e r e n t c o u n t r i e s on land use, s o i l genesis, and s o i l v a r i a b i l i t y . Four o b j e c t i v e s were e s t a b l i s h e d f o r t h i s study: 1) to examine h i s t o r i c a l changes i n land c l e a r i n g d u r i n g the period 19^3 to 1983, 2) to determine the e f f e c t s of the conversion from woodland to a g r i c u l t u r e on s o i l p r o p e r t i e s d u r i n g t h i s period and i t s i n f l u e n c e on s o i l genesis, 3) to determine the e f f e c t s of land use on s o i l v a r i a b i l i t y , and 4) to determine the e f f e c t s of a p o l i t i c a l boundary on a l l of the above. As w i t h other s t u d i e s , the u l t i m a t e goal has been not merely to describe the p r o p e r t i e s and v a r i a t i o n at p a r t i c u l a r l o c a t i o n s , but to understand t h e i r o r i g i n s and t h e i r i n f l u e n c e upon the uses of s o i l s and how the use of s o i l s a f f e c t s these p r o p e r t i e s . The general n u l l hypothesis proposed was that no d i f f e r e n c e s e x i s t between c o u n t r i e s and parent m a t e r i a l as a f f e c t e d by the time of land c l e a r i n g . Ten s p e c i f i c questions were proposed to address the r e l a t i o n s h i p s between s o i l p h y s i c a l and chemical p r o p e r t i e s , management, time-since-c l e a r i n g , country, and s o i l v a r i a b i l i t y . D i s c u s s i o n of these f o l l o w s : 1 . Are there differences i n land use and land clearing on different soils? D e f i n i t e changes occurred i n land use and land c l e a r i n g p r a c t i c e s 189 on the d i f f e r e n t s o i l s between 1943 and 1984. The major land c l e a r i n g occurred p r i o r to 1940 on the a l l u v i a l s o i l s , immediately a f t e r World War I I on the outwash and g l a c i a l m a r i n e s o i l s , and i n the 1950s and 1960s on the very g r a v e l l y morainal deposits. On a l l s o i l s the trend i s an increase i n a g r i c u l t u r a l land at the expense of woodland and i s p a r t i c u l a r l y evident on the outwash s o i l s . The r a p i d change i n land use on the outwash s o i l s r e s u l t s from the high percentage of woodland i n 1940, the increased use of i r r i g a t i o n a f t e r World War I I , and the r a p i d post-war growth i n popula t i o n , markets, and technology. I f the amount of c l e a r i n g f o r a g r i c u l t u r e between 1943 and 1983 i s an i n d i c a t o r of i n t e n s i t y of use, i t appears t h a t w i t h time, as a g r i c u l t u r a l land i n c r e a s e s , OM decreases and pH increases. Dairy farming i s the dominant land use on the a l l u v i a l s o i l s i n both the USA and Canada. On the other three parent m a t e r i a l s , land c l e a r i n g has been more extensive and land use more i n t e n s i v e i n Canada. These land uses i n Canada versus the USA are b e r r i e s versus grass, hay, and some b e r r i e s on the outwash s o i l s ; pasture and some cropland and woodland versus woodland and some pasture and cropland on the g l a c i a l m a r i n e s o i l s ; and homesites, pasture, and woodland versus woodland and some pasture on the morainal s o i l s . At the beginning of the study p e r i o d , woodland occupied only about 15 to 20% of the study area on a l l u v i u m . Although most of the a l l u v i a l s o i l s were clea r e d p r i o r to 1943, t e c h n o l o g i c a l advances i n the d a i r y i n d u s t r y , improved t r a n s p o r t a t i o n , and increased demand from the l a r g e r post-war population l e d to f u r t h e r c l e a r i n g . By the mid-1950s more than 90% of the a l l u v i a l s o i l s had been c l e a r e d and were used f o r pasture and some grass and corn s i l a g e . On s o i l s formed i n g l a c i a l m a r i n e deposits the dominant land use 1 90 has been woodland and pasture. These s o i l s have drainage and slope l i m i t a t i o n s and have not been e x p l o i t e d a g r i c u l t u r a l l y to a large extent except f o r pasture. Land c l e a r i n g i n Canada continues but has n e a r l y ceased i n the USA since the 1970s. On the morainal d e p o s i t s land use change has stagnated i n the USA since the 1940s. In Canada the p r o x i m i t y of these deposits to the expansion of the White Rock urban complex has r e s u l t e d i n land c l e a r i n g mostly f o r urban development and hobby farms. 2. Can we establish a relationship between s o i l properties and the time-since-clearing from woodland and land conversion to agriculture? The general p a t t e r n i n pH, OM, and C:N a f t e r land c l e a r i n g and conversion to a g r i c u l t u r e among the three parent m a t e r i a l s i s s i m i l a r to t hat presented i n the l i t e r a t u r e : increases i n pH due to l i m i n g and decreases i n OM and C:N p r i n c i p a l l y due to m i n e r a l i z a t i o n of carbon. I n c o n s i s t e n t patterns are i n d i c a t e d by N and P. The e f f e c t s on Ca, Mg, and K are determined by the i n i t i a l f e r t i l i t y l e v e l of the s o i l s . On the outwash s o i l s pH, Ca, Mg, K, and P a l l i ncrease over the woodland c o n t r o l , whereas OM and C:N decrease. N i n c r e a s e s f o r 5 years and then decreases. On a l l u v i a l s o i l s , where the woodland s o i l s have high n u t r i e n t l e v e l s themselves (higher than most of the c u l t i v a t e d outwash and g l a c i a l m a r i n e s o i l s ) , the p a t t e r n i s somewhat d i f f e r e n t . pH and Ca i n c r e a s e f o r 5 to 15 years before decreasing and K decreases before these three p r o p e r t i e s reach a quasi-steady s t a t e i n about 15 to 25 years. Mg, OM, and N decrease f o r 15 to 25 years and then increase. P l e v e l s show no trend w i t h t i m e - s i n c e - c l e a r i n g . C:N g e n e r a l l y 191 decreases w i t h time. G l a c i a l m a r i n e s o i l s show the most c o n s i s t e n t p a t t e r n f o r pH and OM, which increase and decrease, r e s p e c t i v e l y w i t h t i m e - s i n c e -c l e a r i n g . The other v a r i a b l e s g e n e r a l l y increase w i t h time but the pa t t e r n i s obscure. C:N g e n e r a l l y decreases with time. Outwash s o i l s have the g r e a t e s t d i f f e r e n c e s by country due to t h e i r l a r g e s t d i f f e r e n c e i n land use among the three parent m a t e r i a l s . Higher i n t e n s i t y of management i n Canada leads to higher l e v e l s of a l l s o i l p r o p e r t i e s . 3- Can we predict time-since-clearing based on s o i l properties? T i m e - s i n c e - c l e a r i n g can be p r e d i c t e d from s o i l p r o p e r t i e s , but the degree of p r e d i c t a b i l i t y depends on parent m a t e r i a l and country. The major p r e d i c t i n g v a r i a b l e s are pH and OM f o r a l l parent m a t e r i a l s . These v a r i a b l e s show the most l i n e a r r e l a t i o n s h i p s , but i n d i v i d u a l equations have a p r e d i c t i o n c a p a b i l i t y commonly l e s s than 20$. P r e d i c t a b i l i t y of t i m e - s i n c e - c l e a r i n g i s commonly 60$ and ranges from 34 to 75$. A l l equations are s i g n i f i c a n t at P< 0.001. P r e d i c t i o n by i n d i v i d u a l country i s b e t t e r than when combining the c o u n t r i e s , which f u r t h e r confirms the general d i f f e r e n c e s i n s o i l p r o p e r t i e s by country. The low p r e d i c t a b i l i t y of the a l l u v i a l s o i l s (only 34$ f o r both co u n t r i e s combined) probably r e s u l t s from the greater degree of homogeneity o f these s o i l s across the age cl a s s e s and the f l u c t u a t i n g n u t r i e n t l e v e l s over time. 4. What effect does management have on s o i l properties and does i t affect s o i l genesis? The e f f e c t s of management on s o i l p r o p e r t i e s are described l a r g e l y under question 2 above. The e f f e c t s of management on s o i l genesis i n c l u d e the i n t e r r u p t i o n of the n a t u r a l genesis c y c l e 1 92 ( p o d z o l i z a t i o n i n these s o i l s ) , the a d d i t i o n of amendments (a p r a c t i c e which promotes m e l a n i z a t i o n ) , and the d i s r u p t i o n of p h y s i c a l p r o p e r t i e s (compaction and the l i k e ) as evidenced by the increase i n bulk d e n s i t y . The e f f e c t s on the p h y s i c a l p r o p e r t i e s i n t u r n a f f e c t water movement and thus, the movement of s o i l s o l u t i o n . Increases i n pH, Ca, Mg, and K, and the l o s s e s of organic matter w i t h i n a short period of time can lead to c a t a s t r o p h i c changes i n m i c r o b i a l p o p u l a t i o n s , although t h i s was not measured. The e f f e c t s of management are s t r o n g l y dependent on the i n i t i a l f e r t i l i t y o f the s o i l before c u l t i v a t i o n . When i n i t i a l l e v e l s are h i g h , c u l t i v a t i o n leads to reductions of 30 to 50$ i n c a t i o n l e v e l s and increases of 200 to 1500$ when l e v e l s are low. In a l l cases OM l e v e l s decrease. These conclusions are s i m i l a r whether expressed on a concentration or an a r e a l b a s i s . The anthropogenic e f f e c t s on s o i l genesis are summarized i n s e c t i o n 6.1.2 above. 5. Which variables are most important for distinguishing each soil? The most important v a r i a b l e s e x p l a i n i n g the v a r i a t i o n as a whole are Ca, Mg, K, OM, and N, which together e x p l a i n 50 to 60$, and pH, which e x p l a i n s another 20 to 30$. However, only pH and OM are important when the v a r i a b l e s are used to express a l i n e a r r e l a t i o n s h i p w i t h t i m e - s i n c e - c l e a r i n g . P seems to be of l i t t l e value i n d i f f e r e n t i a t i n g the data. 6. Are certain s o i l s more variable? How does var i a b i l i t y relate to parent material and cultivation? As a whole, the g l a c i a l m a r i n e s o i l s are the most v a r i a b l e . When 193 comparing the average v a r i a b i l i t y among the three parent m a t e r i a l s , the CVs f o r pH are comparable, f o r Ca and Mg g l a c i a l m a r i n e > o u t w a s h > a l l u v i a l s o i l s , f o r K, OM, and N g l a c i a l m a r i n e = a l l u v i u m >outwash, and f o r P g l a c i a l m a r i n e > a l l u v i u m = outwash. These r e l a t i o n s h i p s hold whether c o n s i d e r i n g only the c u l t i v a t e d s o i l s or the e n t i r e data set. Except f o r w i t h i n - p l o t v a r i a b i l i t y , parent m a t e r i a l i s the source f o r the l a r g e s t v a r i a t i o n w i t h i n the data. More than h a l f to about 80% of the v a r i a t i o n i s d e r i v e d from w i t h i n - p l o t v a r i a b i l i t y . 7. What i s the temporal factor i n s o i l variability, that i s , how does va r i a b i l i t y vary with time-since-clearing? With few exceptions any changes i n v a r i a b i l i t y w i t h t i m e - s i n c e -c l e a r i n g f o r the e i g h t v a r i a b l e s appear to be random. The major p a t t e r n i s that v a r i a b i l i t y w i t h i n woodland s o i l s i s greater than that i n each of the c u l t i v a t e d groups, probably as a r e s u l t of the g r e a t e r v a r i a b i l i t y i n v e g e t a t i o n ( i n c l u d i n g the f o r e s t l i t t e r ) and f o r e s t a c t i v i t i e s , such as tr e e throw, d i f f e r e n t i a l l i t t e r accumulation, and logg i n g p r a c t i c e s . T i m e - s i n c e - c l e a r i n g has had l i t t l e e f f e c t probably due to the e f f o r t s of land owners t o maximize production by the a p p l i c a t i o n of amendments, which o v e r r i d e the e f f e c t s of time on s o i l p r o p e r t i e s . 8. What i s the effect of land use on s o i l variability? Woodland CVs are > c u l t i v a t e d CVs as a whole f o r a l l v a r i a b l e s except K on g l a c i a l m a r i n e s o i l s and P on a l l u v i a l s o i l s . P o s s i b l y the decrease i n v a r i a b i l i t y w i t h c u l t i v a t i o n r e s u l t s from greater homogeneity i n management or from the greater heterogeneity of the mixed stands of woodland. The v a r i a b i l i t y of a l l mineral s o i l s 1 94 combined the c u l t i v a t e d s o i l s f o r a l l parent m a t e r i a l s f o r a l l v a r i a b l e s . 9. How do s o i l s mapped i n Canada compare i n var i a b i l i t y to the same s o i l mapped i n the United States? Major d i f f e r e n c e s i n management between c o u n t r i e s , e s p e c i a l l y on outwash s o i l s , i s not r e f l e c t e d i n v a r i a b i l i t y . No trends are apparent. For in s t a n c e , OM shows no d i f f e r e n c e s on a l l three parent m a t e r i a l s . The only d i f f e r e n c e s i n pH and P are that pH i s g e n e r a l l y more v a r i a b l e i n Canada on outwash s o i l s and P i s more v a r i a b l e i n the USA. Ca v a r i a b i l i t y i s greater i n the USA f o r outwash and a l l u v i u m and the reverse on g l a c i a l m a r i n e s o i l s . 10. How many samples must a farmer take to get a handle on variability? When the c u l t i v a t e d s o i l s are combined f o r each parent m a t e r i a l , the a l l u v i a l s o i l s are the l e a s t v a r i a b l e and so r e q u i r e the s m a l l e s t number of samples to estimate the population mean of each v a r i a b l e . Many v a r i a b l e s on each parent m a t e r i a l have CVs l a r g e r than 80 and so req u i r e more than 1000 samples to estimate t h e i r r e s p e c t i v e means w i t h i n 5% and more than 60 samples to estimate the mean w i t h i n 20%. Using the e n t i r e data set Ca, Mg, P, OM, and N re q u i r e t h i s many samples, except f o r Ca and Mg on a l l u v i a l s o i l s . Using only the c u l t i v a t e d s o i l s , Ca (except a l l u v i u m ) and P are the only v a r i a b l e s r e q u i r i n g so many. In order to need l e s s than 20 samples to estimate the population mean w i t h i n +20%, the CV f o r a v a r i a b l e must be l e s s than 40. Only OM and N meet t h i s requirement and, then, only f o r c u l t i v a t e d s o i l s . Regardless of the data set used, only 1 or 2 samples are re q u i r e d to estimate pH since i t i s a l o g a r i t h m i c measurement. 1 95 I t appears, t h e r e f o r e , that e s t i m a t i o n of means i s a very r i s k y procedure on s o i l s as v a r i a b l e as those i n t h i s study unless the sample s i z e i s la r g e . Sampling of the c u l t i v a t e d s o i l s i n t h i s study was adequate to estimate a l l v a r i a b l e s except Ca and P w i t h i n 5%. When approximating the mean to the more r e a l i s t i c +20%, the s o i l s i n t h i s study were oversampled by a f a c t o r of at l e a s t 3. 6.3 A p p l i c a t i o n s and Suggestions f o r Future Research 6.3.1 A p p l i c a t i o n s Besides s c h o l a r s , the p r i n c i p a l users of t h i s t h e s i s w i l l be land planners and land managers. Understanding h i s t o r i c a l changes i n land use can a f f e c t current land use d e c i s i o n s . Proper i n t e r p r e t a t i o n of the trends i n s o i l p r o p e r t i e s can be u s e f u l t o farmers, p a r t i c u l a r l y i f these trends are c o r r e l a t e d w i t h i n p u t s i n order to o p t i m i z e the use of f e r t i l i z e r s and increase y i e l d s . These trends can be used to p r e d i c t p o t e n t i a l s o i l degradation. V a r i a b i l i t y i n f o r m a t i o n i s v a l u a b l e f o r s o i l t e s t i n g and understanding d i f f e r e n c e s i n y i e l d s on the same s o i l s . The data i n t h i s study and others i n s o i l v a r i a b i l i t y i n d i c a t e that compositing s e v e r a l samples to o b t a i n one value i s not appropriate f o r determining f e r t i l i z e r needs and that many samples are needed to approximate the mean value of a s o i l c o n s t i t u e n t . Comparative a n a l y s i s of land use and s o i l p r o p e r t i e s between co u n t r i e s i s another important a p p l i c a t i o n of t h i s t h e s i s . When land managers examine the e f f e c t s on s o i l p r o p e r t i e s , they may see th a t p r a c t i c e s c u r r e n t l y i n use i n one country may be a p p l i c a b l e or should be avoided i n the other. 1 96 6.3.2 Suggestions f o r Future Research This study has been a f i r s t step i n understanding the r e l a t i o n s h i p s between land use and s o i l s separated by a p o l i t i c a l boundary. Future research can be developed i n areas that were not examined i n t h i s study. Such follow-up s t u d i e s i n c l u d e the f o l l o w i n g : 1) Study of the s o i l below 20 cm depth. 2) Study of m i c r o n u t r i e n t s as w e l l as s u l f u r and aluminum. 3) D i f f e r e n t i a t i n g the e f f e c t s on s o i l p r o p e r t i e s of continuous cropland versus continuous pasture. 4) Study u s i n g more d i r e c t c o n t r o l of the inputs of management (chemical and p h y s i c a l ) and the c o r r e l a t i o n of these w i t h s o i l p r o p e r t i e s . The a n a l y s i s of plant t i s s u e may a l s o be u s e f u l . 5) Study of s o i l p h y s i c a l p r o p e r t i e s , p a r t i c u l a r l y s o i l water. 6) Study o f the r e l a t i o n s h i p s w i t h s o i l microorganisms. 7) Closer examination of the confounding e f f e c t s of r e p l i c a t e and country. 8) Study of n a t i o n a l d i f f e r e n c e s i n s o i l p r o p e r t i e s where land use on the same s o i l s i s more d i s t i n c t , such as between the United States and Mexico. 197 7.0 LITERATURE CITED Adams, J.A. and R.H. Wilde. 1976. V a r i a b i l i t y w i t h i n a s o i l mapping u n i t at the s o i l type l e v e l i n the Wanganui d i s t r i c t . I I . Chemical v a r i a t i o n . N.Z. J. A g r i c . Res. 1 9 : 4 3 5 - 4 4 2 . A d e n i y i , P.O. 1980. Land use change a n a l y s i s using s e q u e n t i a l a e r i a l photography and computer techniques. Photogrammetric Engr. and Remote Sensing 46: 1447-1464. Akin, W.E. 1963. Reclamation of the Danish heath. J. of S o i l and Water Conserv. 18: 97-102. A l l i s o n , F.E. 1966. The r a t e o f n i t r o g e n a p p l i e d t o s o i l s . Adv. Agron. 18: 219-258. Amos, D.F. and E.P. Whiteside. 1975. Mapping accuracy o f a contemporary s o i l survey i n an u r b a n i z i n g area. S o i l S c i . Soc. Am. Proc. 3 9 : 9 3 7 - 9 4 2 . Anderson, D.W., E.G. G r e g o r i c h , and G.E. V e r i t y . 1986. E r o s i o n and c u l t i v a t i o n e f f e c t s on the l o s s of organic matter from p r a i r i e s o i l s . I n p r e s s . Anderson, J.R., E.E. Hardy, and J.T. Roach. 1972 . A l a n d use c l a s s i f i c a t i o n system f o r use w i t h remote sensor data. U.S. Geol. Surv. C i r . 6 7 1 . Andrew, L.E. and F.W. Stearns. 1963. P h y s i c a l c h a r a c t e r i s t i c s of four M i s s i s s i p p i s o i l s . S o i l S c i . Soc. Am. Proc. 27 : 693-697. Armstrong, J.E. 1981. Post-Vashon Wisconsin g l a c i a t i o n , Fraser Lowland, B r i t i s h Columbia, Canada. G e o l o g i c a l Survey of Canada. B u l l . 322. Supply and Ser v i c e s Canada, H u l l , Que. Ar m s t r o n g , J.E., J. J . C l a g u e , and R.J. Hebda. 1985 . L a t e Q u a t e r n a r y geology of the Fraser Lowland, southwestern B r i t i s h Columbia. F i e l d t r i p 15. In D. Tempelman-Kluit (ed.) F i e l d guides to geology and mi n e r a l deposits i n the southern Canadian C o r d i l l e r a . GSA C o r d i l l e r a s e c t i o n meeting, Vancouver B.C. May 1985. West Coast Reproduction C e n t r e s Ltd., Vancouver. B a l l , D.F. 1964. L o s s - o n - i g n i t i o n as an estimate of organic matter and organic carbon i n non-calcareous s o i l s . J. S o i l S c i . 15: 84 -92 . B a l l , D.F. and W.M. W i l l i a m s . 1968. V a r i a b i l i t y of s o i l chemical p r o p e r t i e s i n two u n c u l t i v a t e d brown earths. J. S o i l S c i . 19: 379 -391 . B a n f i e l d , C.F. and C.L. Bascomb. 1976. V a r i a b i l i t y i n three areas of the Denchworth s o i l map un i t . I I . R e l a t i o n s h i p s between s o i l p r o p e r t i e s and s i m i l a r i t i e s between p r o f i l e s using l a b o r a t o r y measurements and f i e l d observations. J. S o i l S c i . 27 : 438 -450 . 1 98 Bascomb, C.L. and M.G. J a r v i s . 1976. V a r i a b i l i t y i n three areas of the Denchworth s o i l map u n i t I : P u r i t y o f the map u n i t and property v a r i a b i l i t y w i t h i n i t . J. S o i l S c i . 27: 420-437. Beckett, P.H.T. and R. Webster. 1971. S o i l v a r i a b i l i t y : A review. S o i l F e r t . 34: 1-15. Belebrov, V.P. 1972. V a r i a t i o n i n some chemical and morphological p r o p e r t i e s of sod-podzolic s o i l s w i t h i n the boundaries of elementary s o i l a r e a l s and taxonomic groups, p. 147-158. In V.N. F r i d l a n d (ed.) S o i l combinations and t h e i r genesis. Amerind Publ. Pvt. Ltd. New D e l h i , I n d i a . B e l l , J.F. and T. Atterbury. 1983. Renewable resource i n v e n t o r i e s f o r monitor i n g changes and trends. Proceedings of an i n t e r n a t i o n a l conference. C o r v a l l i s , OR, Aug. 15-19, 1983. Oregon State Univ., C o r v a l l i s . Berry, B.J.L. 1962. Sampling, coding, and s t o r i n g f l o o d p l a i n data. USDA Econ. Res. Serv. Agr. Handb. 237. B i d w e l l O.W. and F.D. Hole. 1965. Man as a f a c t o r o f s o i l f o r m a t i o n . S o i l S c i . 99: 65-72. B i r c h , T.W. and E.H. Wharton. 1982. Land use change i n Ohio, 1952-1979. USDA Forest S e r v i c e , Northeastern For. Exp. Sta. Res. B u l l . NE-70. Bouma, J. 1985. S o i l v a r i a b i l i t y and s o i l s u r v e y , p. 130-149. In D.R. N i e l s e n and J. Bouma (ed.)Soil s p a t i a l v a r i a b i l i t y . Proc. Wkshp. of ISSS and SSSA, Las Vegas, USA 30 Nov-1 Dec 84. Pudoc, Wageningen. B o y l e , J.R. and A.R. Ek. 1972. An e v a l u a t i o n of some e f f e c t s o f b o l e and branch pulpwood h a r v e s t i n g on s i t e macronutrients. Can J. For. Res. 2: 407-412. Brady, N.C. 1985. The nature and p r o p e r t i e s of s o i l s . Macmillan Co., NY. Bregt, A. and J. Bouma. 1986. S p a t i a l patterns of s o i l p h y s i c a l c h a r a c t e r i s t i c s as derived from s o i l survey and from k r i g i n g o f point d a t a . S o i l S c i . Soc. Am. J.: i n p r e s s . Brewer, R. 1976. F a b r i c and m i n e r a l analyses of s o i l s . K r i e g e r , Huntington, New York. Brown, J.A. 1971. The h i s t o r i c a l geography of South Surrey, B r i t i s h Columbia. M.A. t h e s i s . Western Washington State College, Bellingham. B u o l , S.W., F.D. Hole, and R.J. McCracken. 1980. S o i l g e n e s i s and c l a s s i f i c a t i o n . Iowa State Univ. Press, Ames. Bureau o f the Census. 1942. Si x t e e n t h census of the United S t a t e s : 1940. A g r i c u l t u r e . Vol. 1. F i r s t and second s e r i e s . State r e p o r t s . Part 6. S t a t i s t i c s f o r counties. Mountain and P a c i f i c . Dep. Commerce. U.S. Government P r i n t i n g O f f i c e , Washington, DC. 1 99 Bureau of the Census. 1947. United States census of a g r i c u l t u r e : 1945. V o l . 1. P a r t 32. Washington and Oregon. U.S. Dep. Commerce. U.S. Government P r i n t i n g O f f i c e , Washington, DC. Bureau of the Census. 1952. 1950 United States census of a g r i c u l t u r e . Vol. 1. Counties and s t a t e economic areas. Part 32. Washington and Oregon. U.S. Dep. Commerce. U.S. Government P r i n t i n g O f f i c e , Washington, DC. Bureau of the Census. 1956. United States census of a g r i c u l t u r e : 1954. Vol. 1. Counties and s t a t e economic areas. Part 32. Washington and Oregon. U.S. Dep. Commerce. U.S. Government P r i n t i n g O f f i c e , Washington, DC. Bureau of the Census. 1961. United States census of a g r i c u l t u r e 1959. V o l . 1. P a r t 46. Washington. C o u n t i e s . U.S. Dep. Commerce. U.S. Government P r i n t i n g O f f i c e , Washington, DC. Bureau of the Census. 1967. 1964 census of a g r i c u l t u r e . Vol. 1. Part 46. Washington. U.S. Dep. Commerce. U.S. Government P r i n t i n g O f f i c e , Washington, DC. Bureau o f the Census. 1977. 1974 census of a g r i c u l t u r e . Vol. 1. Geographic Area S e r i e s . Part 47. Washington State and County Data. U.S. Dep. Commerce. U.S. Government P r i n t i n g O f f i c e , Washington, DC. Bureau of the Census. 1981. 1978 census of a g r i c u l t u r e . V o l. 1. Part 47. Washington S t a t e and County Data. U.S. Dep. Commerce. U.S. Government P r i n t i n g O f f i c e , Washington, DC. Bureau of the Census. 1984. 1982 census of a g r i c u l t u r e . Vol. 1. Geographic Area S e r i e s . Part 47. Washington State and County Data. U.S. Dep. Commerce. U.S. Government P r i n t i n g O f f i c e , Washington, DC. Bureau of the Census. 1982. 1980 census of population. V ol 1. C h a r a c t e r i s t i c s of the population. Chapter B. General population c h a r a c t e r i s t i c s . Part 49. Washington. Dep. Commerce. U.S. Government P r i n t i n g O f f i c e , Washington, DC. Burgess, T.M. and R. Webster. 1980. Optimal i n t e r p o l a t i o n and i s a r i t h m i c mapping o f s o i l p r o p e r t i e s . I. The semi-variogram and p u n c t u a l k r i g i n g . J. S o i l S c i . 31: 315-331. Byers, E. and D.B. Stephens. 1983. S t a t i s t i c a l and s t o c h a s t i c a l a n a l y s i s of h y d r a u l i c c o n d u c t i v i t y and p a r t i c l e s i z e i n a f l u v i a l sand. S o i l S c i . Soc. Am. J. 47: 1072-1081. Cameron, D.R., C.G. Kowalenko, and K.C. I v a r s o n . 1 978. N i t r o g e n and c h l o r i d e d i s t r i b u t i o n and balance i n a c l a y loam s o i l . Can J. S o i l S c i . 58: 77-88. Cameron, D.R., M. Nyborg, J.A. Toogood, and D.H. L a v e r t y . 1971. Accuracy of f i e l d sampling f o r s o i l t e s t s . Can. J. S o i l S c i . 51: 165-175. 200 C a m p b e l l , CA. and E.A. P a u l . 1978. E f f e c t s o f f e r t i l i z e r N and s o i l moisture on m i n e r a l i z a t i o n , N recovery and A-values, under s p r i n g wheat grown i n s m a l l l y s i m e t e r s . Can J. S o i l S c i . 58: 39-51. Campbell, J.B. 1978. S p a t i a l v a r i a t i o n of sand content and pH w i t h i n s i n g l e contiguous d e l i n e a t i o n s of two s o i l mapping u n i t s . S o i l S c i . Soc. Am. J. 42: 460-464. Campbell, J.B. 1979- S p a t i a l v a r i a b i l i t y of s o i l s . Assoc. Am. Geog. Annals 69: 544-556. Canada S o i l Survey Committee, Subcommittee on S o i l C l a s s i f i c a t i o n f o r Canada. 1978. The Canadian system of s o i l c l a s s i f i c a t i o n . Can. Dep. Ag r i c . Publ. 1646. Supply and Se r v i c e s Canada. Ottawa, Ontario. C i p r a , J.E., O.W. B i d w e l l , D.A. Whitney, and A.M. Feyerherm. 1972. V a r i a t i o n s w i t h distance i n s e l e c t e d f e r t i l i t y measurements of pedons of w e s t e r n Kansas U s t o l l . S o i l S c i . Soc. Am. Proc. 36: 111-115. Civco, D.L. and W.C. Kennard. 1983. Assessing land use changes and p r e d i c t i n g trends through d i s c r i m i n a n t and s p a t i a l data analyses, p. 640-644. In J.F. B e l l and T. Atterbury (ed.) Renewable resource i n v e n t o r i e s f o r monitoring changes and trends. Proceedings of an i n t e r n a t i o n a l conference. C o r v a l l i s , OR, Aug. 15-19, 1983. Oregon Sta t e Univ., C o r v a l l i s . C l a r k , F.E., CV. C o l e , and R.A. Bowman. 1980. N u t r i e n t c y c l i n g . I n A.I. Bregmeyer and CM. Van Dyne (ed.) Grasslands, systems a n a l y s i s and man. Cambridge Univ. Press, Cambridge. C l i n e , M.C. 1944. P r i n c i p l e s of s o i l sampling. S o i l S c i . 58: 275-288. Coppleman, G.G., S.A. P i l g r i m , and D.M. P e s c h e l . 1978. A g r i c u l t u r e , f o r e s t , and r e l a t e d land uses i n New Hampshire, 1952-1975. N.H. Agr. Exp. S t a . Res. Rep. 64. Durham, NH. Covington W.W. 1981. Changes i n f o r e s t f l o o r organic matter and n u t r i e n t content f o l l o w i n g c l e a r c u t t i n g i n northern hardwoods. Ecology 61: 41-48. Crosson, L.S. and R. Protz. 1974. Q u a n t i t a t i v e comparison of two c l o s e l y r e l a t e d s o i l mapping u n i t s . Can. J. S o i l S c i . 54: 7-14. Dalichow, F. 1972. A g r i c u l t u r a l geography of B r i t i s h Columbia. V e r s a t i l e Publ. Co. L i m i t e d , Vancouver. Daly, R.A. 1912. Geology of the North American C o r d i l l e r a a t the Fo r t y - N i n t h p a r a l l e l . In three parts. Memoir No. 38. Dep. of Mines. G e o l o g i c a l Survey. Canada. Govt. P r i n t i n g Bureau, Ottawa. D a v i d s o n , J.M., F. Gray, and D.I. P i n s o n . 1967. Changes i n o r g a n i c matter and bulk d e n s i t y w i t h depth under two cropping systems. Agron. J. 59: 375-378. 201 Davis, F.L. 1936. A study of the u n i f o r m i t y of s o i l types and of the fundamental d i f f e r e n c e s between the d i f f e r e n t s o i l s e r i e s . Alaska A g r i c . Exp. S t a . B u l l . 244: 1-153. De Haan, S. 1977. Humus, i t s forma t i o n , i t s r e l a t i o n w i t h the m i n e r a l part of the s o i l , and i t s s i g n i f i c a n c e f o r s o i l p r o d u c t i v i t y , p. 21-30. In S o i l o r g a n i c m a t t e r s t u d i e s . I.A.E.A., Vienna. 1977. V o l . 1. Deutsch, H.J. 1960. The e v o l u t i o n of the i n t e r n a t i o n a l boundary i n the Inland Empire of the P a c i f i c Northwest. P a c i f i c Northwest Q u a r t e r l y 51 : 63-79. D i l l , H.W., J r . 1959. Use of the comparison method i n a g r i c u l t u r a l a i r p h o t o i n t e r p r e t a t i o n . Photogrammetric Engr. 25: 44-49. Drees, L.R. and L.P. W i l d i n g . 1973- Elemental v a r i a b i l i t y w i t h i n a s a m p l i n g u n i t . S o i l S c i . Soc. Am. Proc. 37: 82-87. Duchaufour, P. 1982. Pedology: Pedogenesis and c l a s s i f i c a t i o n . George A l l e n and Unwin. London. Environment Canada, Atmospheric Environment Serv i c e . 1982. Canadian Climate Normals. Temperature. Vol. 2. P r e c i p i t a t i o n . Vol. 3. 1951-1980. SI. Downsview, Ont. Fabos, J.G., R. Careaga, C. Greene, and A.S. W i l s o n . 1973- Model f o r landscape resource assessment. P a r t I. M e t r o p o l i t a n Landscape Planning Model (METLAND). Res. B u l l . No. 602. Agr. Exp. S t a . U. Mass. Amherst. F r a n k l a n d , J.C., J.D. O v i n g t o n , and C. Macrae. 1 963. S p a t i a l and seasonal v a r i a t i o n i n s o i l , l i t t e r , and ground veg e t a t i o n i n some lake d i s t r i c t woodlands. J. Ecology 51: 111-12. F r a n k l i n , J.F. and C.T. Dyrness. 1973. Natural v e g e t a t i o n of Oregon and Washington. USDA Forest Service. P a c i f i c NW For. and Rge. Exp. S t a . Tech. Rep. PNW-8. P o r t l a n d , OR. F r a z i e r , B.E. and H.F. S h o v i c . 1979. S a m p l i n g l a n d use changes on prime a g r i c u l t u r a l land i n western Whatcom County, Washington. J. S o i l and Water Conserv. 34: 25-27. F r e y , H.T. and H.W. D i l l , J r . 1971. Land use change i n the s o u t h e r n M i s s i s s i p p i a l l u v i a l v a l l e y , 1950-1969. Agr. Econ. Rpt. 215. USDA-Econ. Res. Serv. Washington, DC. F r i d l a n d , V.M. 1972. S o i l combinations and t h e i r genesis. Amerind P u b l . Pvt. L t d . New D e l h i , I n d i a . Gajem, Y.M., A.W. W a r r i c k , and D.E. Myers. 1981. S p a t i a l s t r u c t u r e o f p h y s i c a l p r o p e r t i e s of a t y p i c t o r r i f l u v e n t s o i l . S o i l S c i . Soc. Am. J. 45: 709-715. Gibbard, J.E. 1937. E a r l y h i s t o r y of the Fraser V a l l e y 1808-1885. M.A. t h e s i s . Univ. B r i t i s h Columbia. Vancouver. 202 Gibbs, C. and B. Husch. 1956. Forest and land use trends from a e r i a l photographs, 1943-1953, town of Madbury, New Hampshire. N.H. Agr. Exp. Sta. Dep. F o r e s t r y , F o r e s t r y Mimeo. 3-G i b s o n , A.R., D.J. G i l t r a p , R. Lee, and R.H. W i l d e . 1983. S o i l v a r i a b i l i t y i n Westmere s i l t loam i n r e l a t i o n to s i z e of sampling a r e a . 1. C h e m i c a l v a r i a b i l i t y . N.Z. J. S c i . 26: 99-109. G i l t r a p , D.J., A.R. G i b s o n , R.H. W i l d e , and R. Lee. 1983. S o i l v a r i a b i l i t y i n Westmere s i l t loam i n r e l a t i o n to s i z e of sampling a r e a . 2. M o r p h o l o g i c a l v a r i a b i l i t y . N.Z. J. S c i . 26: 111-119. Ginn, M. 1967. Rural Dutch immigrants i n the Lower Fraser V a l l e y . M.A. t h e s i s . Univ. B r i t i s h Columbia. Vancouver. G o l d i n , A. 1983. Comparison of some Podzols and Spodosols i n the Fra s e r Lowland, B r i t i s h Columbia and adjacent Washington State. Can. J. S o i l S c i . 63: 579-591. G o l d i n , A. 1986. S o i l survey of Whatcom County area, Washington. USDA-SCS. U.S. Government P r i n t i n g O f f i c e , Washington, DC. i n press. Go l d i n , A. and H.A. Luttmerding. 1985. C o r r e l a t i o n of s o i l s mapped i n Whatcom County, Washington, USA and the Lower Fraser V a l l e y , B r i t i s h Columbia, Canada. S o i l Survey Horizons 26(4): 3-7. Gosz, J.R., G.E. L i k e n s , and F.H. Bormann. 1976. O r g a n i c m a t t e r and n u t r i e n t dynamics of the f o r e s t f l o o r i n the Hubbard Brook Forest. Oecologia 22: 305-320. Greenwood, J.A. and M.M. Sandomire. 1950. Sample s i z e r e quired f o r e s t i m a t i n g the standard d e v i a t i o n as a per cent of i t s true value. Am. S t a t i s i c a l Assn. J. 45: 257-260. Gregorich E.G. and D.W. Anderson. 1986. I n t e r a c t i v e e f f e c t s of landscapes and c u l t i v a t i o n on s o i l p r o p e r t i e s and processes. Geoderma: i n p r e s s . G reminger, P.J., Y.K. Sud, and D.R. N i e l s e n . 1985. S p a t i a l v a r i a b i l i t y of field-measured s o i l - w a t e r c h a r a c t e r i s t i c s . S o i l S c i . Soc. Am. J. 49: 1075-1082. Gutjahr, A. 1985. S p a t i a l v a r i a b i l i t y : G e o s t a t i s t i c a l methods, p. 9-34. I n D.R. N i e l s e n and J. Bouma (ed.) S o i l s p a t i a l v a r i a b i l i t y . P r o c . Wkshp. of ISSS and SSSA, Las Vegas, USA 30 Nov-1 Dec 84. Pudoc, Wageningen. Haas, H.J., C.E. Evans, and E.F. M i l e s . 1957. N i t r o g e n and carbon changes i n great p l a i n s s o i l s as i n f l u e n c e d by cropping and s o i l t r e a t m e n t s . U.S.D.A. Tech. B u l l . 1164. Haas, H.J., D.L. Grunes, and G.A. Reichman. 1961. Phosphorus changes i n great p l a i n s s o i l s as i n f l u e n c e d by cropping and manure a p p l i c a t i o n s . S o i l S c i . Soc. Am. P r o c . 25: 214-218. 203 Hammond, L.C., W.L. P r i t c h e t t , and V. Chew. 1958. S o i l sampling i n r e l a t i o n t o s o i l heterogeneity. S o i l S c i . Soc. Am. Proc. 22: 548-552. Harradine, F.F. 1949. The v a r i a b i l i t y of s o i l p r o p e r t i e s i n r e l a t i o n to stage of p r o f i l e development. S o i l S c i . Soc. Am. Proc. 14: 302-311. Hartshorne, R. 1936. Suggestions on the terminology of p o l i t i c a l boundaries. Abstract. Annals of the Assoc. of Am. Geog. 26: 56-57. Hayward, P.M. 1983. Hobby farms i n the Lower Fraser V a l l e y . M.A. t h e s i s . Univ. B r i t i s h Columbia. Vancouver. ' ° Hemingway, R.G. 1955. S o i l sampling e r r o r s and a d v i s o r y a n a l y s i s . J. Agr. S c i . 46: 1-8. Hobbs J.A. and P.L. Brown. 1957. Nitrogen and organic carbon changes i n c u l t i v a t e d western Kansas s o i l s . Kansas Agr. Exp. Sta. B u l l . 89. Howell Jones, G.I. 1966. A century of settlement change: A study of the e v o l u t i o n of settlement patterns i n the Lower Mainland of B r i t i s h Columbia. M.A. t h e s i s . Univ. B r i t i s h Columbia, Vancouver. Huddleston, J.H. and E.F. Riecken. 1973. L o c a l s o i l - l a n d s c a p e r e l a t i o n s h i p s i n western Iowa: I. D i s t r i b u t i o n s of s e l e c t e d chemical and p h y s i c a l p r o p e r t i e s . S o i l S c i . Soc. Am. Proc. 37: 264-270. Hunt, H.W. 1977. A s i m u l a t i o n model f o r decomposition i n grasslands. E c o l . 58: 469-484. I k e , A.F. and J.L. C l u t t e r . 1968. The v a r i a b i l i t y o f f o r e s t s o i l s o f the Georgia Blue Ridge Mountains. S o i l S c i . Soc. Am. Proc. 32: 284-288. Jackson, M.L. 1958. S o i l chemical a n a l y s i s . P r e n t i c e - H a l l . Englewood C l i f f s , N.J. Jacob, W.C. and A. K l u t e . 1956. Sampling s o i l s f o r p h y s i c a l and chemical p r o p e r t i e s . S o i l S c i . Soc. Am. Proc. 20: 170-172. Jenkinson, D.S. and A.E. Johnson. 1976. S o i l organic matter i n the H o o s f i e l d continuous b a r l e y experiment. Rothamsted Report f o r 1976, p a r t 2: 87-101. Jenny, H. 1941. Factors of s o i l f ormation: A system of q u a n t i t a t i v e pedology. McGraw-Hill Book Co. New York. Jones, S.B. 1937. The C o r d i l l e r a n s e c t i o n of the Canada-United States borderland. Geographical Journal. 89:439-450. Juma, N.G. and W.B. M c G i l l . 1986. Decomposition and n u t r i e n t c y c l i n g i n agro-ecosystems. In M.J. M i t c h e l l and J.P. Nakas (ed.) M i c r o f l o r a l and f a u n a l i n t e r a c t i o n s i n n a t u r a l and agro-ecosystems. Martinus N i j h o f f / D r . W. Junk P u b l i s h e r s , The Hague, i n press. 204 K a c h a n o s k i , R.G., D.E. R o l s t o n , and E. de Jong. 1 985. S p a t i a l v a r i a b i l i t y o f a c u l t i v a t e d s o i l as a f f e c t e d by past and present microtopography. S o i l S c i . Soc. Am. J. 49: 1082-1087. Kenk, E. 1983. Land c a p a b i l i t y c l a s s i f i c a t i o n f o r a g r i c u l t u r e i n B r i t i s h Columbia. MOE Manual 1. B r i t i s h Columbia M i n i s t r y of A g r i c u l t u r e and Food and M i n i s t r y of Environment. Kelowna. Kim, J. 1 975. F a c t o r a n a l y s i s , p. 468-514. I n N.H. N i e , C.H. H u l l , J.G. J e n k i n s , K. S t e i n b r e n n e r , and D.H. Bent (ed.) SPSS: S t a t i s t i c a l package f o r the s o c i a l sciences. 2nd ed. McGraw-Hill Book Co., New York. K l e c k a , W.R. 1975. D i s c r i m i n a n t a n a l y s i s , p. 434-467. In N.H. N i e , C.H. H u l l , J.G. J e n k i n s , K. S t e i n b r e n n e r , and D.H. Bent (ed.) SPSS: S t a t i s t i c a l package f o r the s o c i a l sciences. 2nd ed. McGraw-Hill Book Co., New York. K l i n g e b i e l , A.A. and P.H. Montgomery. 1973. L a n d - c a p a b i l i t y c l a s s i f i c a t i o n . USDA-SCS Ag r i c . Handb. 210. U.S. Government P r i n t i n g O f f i c e , Washington, DC. K r a j i n a , V.J., K. K l i n k a , and J . W o r r a l l . 1982. D i s t r i b u t i o n and e c o l o g i c a l c h a r a c t e r i s t i c s of tre e s and shrubs of B r i t i s h Columbia. Univ. B r i t i s h Columbia, Vancouver. K r i s t o f , S.J. and A.L. Zachary. 1974. Mapping s o i l f e a t u r e s from m u l t i s p e c t r a l scanner data. Photogrammetric Engr. and Remote Sensing 40: 1427-1434. Lanyon, L.E. and G.F. H a l l . 1981. A p p l i c a t i o n of a u t o c o r r e l a t i o n a n a l y s i s to t r a n s e c t data from a drainage basin i n eastern Ohio. S o i l S c i . Soc. Am. J. 45: 368-373-Latham, J.P. 1979. Land use change a n a l y s i s from a r c h i v a l and c u r r e n t l y remotely sensed patterns i n Pennsylvania. Paper presented at annual meeting of American S o c i e t y o f Photogrammetry, Washington, DC, March 23. L a v k u l i c h , L.M. 1978. Methods manual, pedology l a b o r a t o r y . Dep. S o i l S c i . Univ. B r i t i s h Columbia. Vancouver, B.C. L a v k u l i c h , L.M. and CA. Rowles. 1971. E f f e c t of d i f f e r e n t land use p r a c t i c e s on a B r i t i s h Columbia Spodosol. S o i l S c i . 111: 323-329. Lee, R., J.M. B a i l e y , R.D. B a r k e r , and E.J. G i b s o n . 1975. V a r i a t i o n s i n some chemical and p h y s i c a l p r o p e r t i e s of three r e l a t e d s o i l types: Dannevirke s i l t loam, K r i w i t e a s i l t loam and Marton s i l t loam. N.Z. J. A g r i c . Res. 18: 29-36. Li d s t r o m , J.W., J r . 1972. A new model f o r the formation of Crater Lake c a l d e r a , Oregon. Ph.D. d i s s . Oregon S t a t e Univ., C o r v a l l i s . L i n d s a y , B.E. and D.L. Dunn. 1979- Land use p r o j e c t i o n s under a l t e r n a t i v e p o l i c i e s : a t r a n s i t i o n mixed approach. J. of the Northeastern Agr. Econ. Committee 8: 87 - 9 9 . 205 Luttmerding, H.A. 1981a. S o i l s of the Langley-Vancouver map area. Volume 1. S o i l map mosaics and legend, Lower Fraser V a l l e y . RAB B u l l e t i n 18. B r i t i s h Columbia M i n i s t r y of Environment, V i c t o r i a , B.C. Luttmerding, H.A. 1981b. S o i l s of the Langley-Vancouver map area. Volume 3. D e s c r i p t i o n of the s o i l s . RAB B u l l e t i n 18. B r i t i s h Columbia M i n i s t r y of Environment, V i c t o r i a , B.C. Luttmerding, H.A. 1981c. S o i l s of the Langley-Vancouver map area. Volume 6. Technical data. S o i l p r o f i l e d e s c r i p t i o n s and a n a l y t i c a l data. RAB B u l l e t i n 18. B r i t i s h Columbia M i n i s t r y of Environment, V i c t o r i a , B.C. MacDowall, J., A. Falconer, and K.P.B. Thomson. 1976. S i m u l a t i o n s t u d i e s of ERTS-A&B data f o r h y d r o l o g i c s t u d i e s i n the Lake Ontario basin, pp. 76-1 and 76-2. Abstract publ. i n 4th annual resources program r e v i e w . V o l 3. N.A.S.A., Houston. Mader, D.L. 1963 S o i l v a r i a b i l i t y - a s e r i o u s problem i n s o i l - s i t e s t u d i e s i n the N o r t h e a s t . S o i l S c i . Soc. Am. Proc. 25: 62-65. Manning, E.W. and S.S. Eddy. 1979. The a g r i c u l t u r a l land reserves of B r i t i s h Columbia: An impact a n a l y s i s . Environment Canada. Lands D i r e c t o r a t e . Ottawa. Marschner, F.J. 1950. Major land uses i n the United States. Map. USDA. M a r t e l , Y.A. and E.A. P a u l . 1974. E f f e c t s o f c u l t i v a t i o n on the organic f r a c t i o n of grassland s o i l s as determined by f r a c t i o n a t i o n and r a d i o c a r b o n d a t i n g . Can. J. S o i l S c i . 54: 419-426. Mason, D.D., J.F. L u t z , and R.G. P e t e r s o n . 1957. H y d r a u l i c c o n d u c t i v i t y as r e l a t e d to c e r t a i n s o i l p r o p e r t i e s i n a number of great s o i l groups - sampling e r r o r s i n v o l v e d . S o i l S c i . Soc. Am. Proc. 21: 554-560. Massart, D.L. and L. Kaufman. 1983- The i n t e r p r e t a t i o n of a n a l y t i c a l chemical data by the use of c l u s t e r a n a l y s i s . John Wiley and Sons, NY. Matheron, G. 1963. P r i n c i p l e s of g e o s t a t i s t i c s . Econ. Geology 58: 1246-1266. Mausbach, M.J., B.R. B r a s h e r , R.D. Yeck, and W.D. N e t t l e t o n . 1980. V a r i a b i l i t y of measured p r o p e r t i e s i n m o r p h o l o g i c a l l y matched pedons. S o i l S c i . Soc. Am. J. 44: 358-363. McBratney, A.B. 1985. The r o l e of g e o s t a t i s t i c s i n the design and a n a l y s i s of f i e l d experiments w i t h reference to the e f f e c t of s o i l p r o p e r t i e s on crop y i e l d , p. 3-8. In D.R. N i e l s e n and J. Bouma (ed.) S o i l s p a t i a l v a r i a b i l i t y . Proc. Wkshp. of ISSS and SSSA, Las Vegas, USA 30 Nov-1 Dec 84. Pudoc, Wageningen. McCormack, D.E. and L.P. W i l d i n g . 1969- V a r i a t i o n of s o i l p r o p e r t i e s w i t h i n mapping u n i t s of s o i l s w i t h c o n t r a s t i n g s u b s t r a t a i n northwestern Ohio. S o i l S c i . Soc. Am. Proc. 33: 587-593. 206 McCuaig, J.D. and E.W. Manning. 1982. A g r i c u l t u r a l land-use change i n Canada: Process and consequences. Environment Canada. Lands D i r e c t o r a t e . M i n s t e r of Supply and S e r v i c e s , Ottawa. M c G i l l , W.B., CA. C a m p b e l l , J.F. Dormaar, E.A. P a u l , and D.W. Anderson. 1981a. S o i l organic matter l o s s e s , p. 72-133. A g r i c u l t u r a l land: Our disappearing h e r i t a g e . A l b e r t a S o i l S c i . Wkshp. Proc. M c G i l l , W.B. and P.B. Hoyt. 1977. E f f e c t of forages and r o t a t i o n management of s o i l organic matter. A l b e r t a S o i l S c i . Wkshp. Proc. A l b e r t a I n s t , of Pedology, Univ. A l b e r t a Publ. No. G-77-1. M c G i l l , W.B., H.W. Hunt, R.G. Woodmansee, and J.O. Reuss. 1981b. Phoenix- A model of the dynamics of carbon and n i t r o g e n i n grassland s o i l s . In F.E. C l a r k and T. Rosswall. (ed.) T e r r e s t r i a l n i t r o g e n c y c l e s . Ecol. B u l l . (Stockholm) 33: 49-115. Mc l n t y r e , D.S. and CB. Tanner. 1959. Abnormally d i s t r i b u t e d s o i l p h y s i c a l measurements and nonparametric s t a t i s t i c s . S o i l S c i . 88: 133-137. Me h l i c h , A. 1978. New e x t r a c t a n t f o r s o i l t e s t e v a l u a t i o n of phosphorus, potassium, magnesium, c a l c i u m , sodium, manganese, and z i n c . Commun. i n S o i l S c i . and Plant A n a l y s i s 9: 477-492. M i l l e r , F.P. 1978. S o i l survey under pressure: The Maryland experience. J. S o i l Water Conserv. 33: 104-111. M i l l e r , F.P., N. Holowaychuk, and L.P. Wilding. 1971. C a n f i e l d s i l t loam, a F r a g i u d a l f : I I . Micromorphology, p h y s i c a l and chemical p r o p e r t i e s . S o i l S c i . Soc. Am. Proc. 35: 324-331. Minghi, J.V. 1962. Some aspects of the impact of an i n t e r n a t i o n a l boundary on s p a t i a l p a t t e r n s : An a n a l y s i s of the P a c i f i c Coast lowland r e g i o n of the Canada-United States boundary. Ph.D. d i s s . Univ. Washington, S e a t t l e . Minghi, J.V. 1964. The e v o l u t i o n of a border regio n : The P a c i f i c Coast s e c t i o n of the Canadian-United States boundary. The S c o t t i s h Geographical Magazine 80: 37-52. Montgomery, E.G. 1913. Experiments i n wheat breeding: Experimental e r r o r i n the nursery and v a r i a t i o n i n ni t r o g e n and y i e l d . USDA- Bur. Pl a n t Indust. B u l l . 269. Washington, DC. Nadezhdin, B.V. 1960. The problem of the p r i n c i p l e s of c l a s s i f i c a t i o n of anthropogenic s o i l s . Soviet S o i l Science 1: 49-53. Neff, N.A. and L.F. Marcus. 1980. A survey of m u l t i v a r i a t e methods f o r syst e m a t i c s . New York: p r i v a t e l y published. Nelson, L.A. and R.J. McCracken. 1962. P r o p e r t i e s of No r f o l k and Portsmouth s o i l s : S t a t i s t i c a l summarization and i n f l u e n c e on corn y i e l d s . S o i l S c i . Soc. Am. Proc. 26: 497-502. 207 N e t t l e t o n , W.D., A. G o l d i n , and R. Engel. 1985. C h a r a c t e r i z a t i o n data f o r Whatcom County, Washington: F i n a l report f o r p r o j e c t s CP81-WA239 and 255. mimeo. USDA-SCS N a t l . S o i l Surv. Lab. L i n c o l n , NE. Newton, J.D., F.A. Wyatt, and A.L. Brown. 1945. E f f e c t s o f c u l t i v a t i o n and cropping on the chemical composition of some western Canada p r a i r i e province s o i l s , Part 3. S c i . Agric. 25: 718-737. N i e l s e n , D.R., J.W. B i g g a r , and K.T. Erh. 1973. S p a t i a l v a r i a b i l i t y of field-measured s o i l - w a t e r p r o p e r t i e s . H i l g a r d i a 42: 215-259. N i e l s e n , D.R. and J. Bouma. eds. 1985. S o i l s p a t i a l v a r i a b i l i t y . P r o c. Wkshp. of ISSS and SSSA, Las Vegas, USA 30 Nov-i Dec 84. Pudoc, Wageningen. N o r t c l i f f , S. 1978. S o i l v a r i a b i l i t y and reconnaissance s o i l mapping: A s t a t i s t i c a l study i n Norfolk. J. S o i l S c i . 29: 403-417. N o r t h , M.E.A., M.W. Dunn, and J.M. Teversham. 1979. V e g e t a t i o n o f the southwestern Fraser Lowland, 1858-1880. Dep. of the Environment. Lands D i r e c t o r a t e , Vancouver, B.C. Odenyo, V.A.0. and D.E. P e t t r y . 1977. Land-use mapping by machine processing of LANDSAT-1 data. Photogrammetric Engr. and Remote Sensing 43: 515-523. Oke, T.R. 1978. Boundary l a y e r c l i m a t e s . Methuen and Co. Lt d . , London. Olsen, M.L. 1970. The beginnings of a g r i c u l t u r e i n western Oregon and western Washington. Ph.D. d i s s . Univ. Washington, S e a t t l e . P a u l , E.A. and J.A. Van Veen. 1978. The use of t r a c e r s t o d e t e r m i n e the dynamic nature of organic matter. Proc. 11th Congr. S o i l S c i . , Edmonton, A l b e r t a . Vol. 3: 61-102. Peck, A.J. 1983. F i e l d v a r i a b i l i t y of s o i l p h y s i c a l p r o p e r t i e s . Advances i n I r r i g a t i o n 2: 189-221. Pendleton, R.L. 1919. Are s o i l s mapped under a given type name by the Bureau of S o i l method c l o s e l y s i m i l a r to one another? Univ. C a l i f . P u b l . A g r i c . S c i . 3: 369-498. P h i l l i p s , E.L. 1966. Washington c l i m a t e . Cooperative Extension S e r v i c e . Wash. State Univ., Pullman, Wash. P h i l p o t t s , L.E. 1957. The use of the a e r i a l photo i n the change of land use i n southwestern Saskatchewan. Canada Dep. Agr. Marketing S e r v . Econ. Div., Ottawa. P i e r s o n , W.H. 1953- The geography of the Bellingham Lowland, Washington. Ph.D. d i s s . Department of Geography, Univ. Chicago. Research Paper No. 28. The U n i v e r s i t y of Chicago Press. 208 Poulson, E.N. and R.D. Flannery. 1953. S o i l Survey of Whatcom County, Washington. USDA Series No. 7. U.S. Government P r i n t i n g O f f i c e , Washington, DC. Powell, J.C. and M.E. Springer. 1965. Composition and p r e c i s i o n of c l a s s i f i c a t i o n of several mapping units of the Appling, C e c i l and Lloyd s e r i e s i n Walton County, Georgia. S o i l S c i . Soc. Am. Proc. 29: 454-458. P r i t c h e t t , W.L. 1979. Properties and management of f o r e s t s o i l s . John Wiley and Sons, New York. P r o t z , R., E.W. Presant, and R.W. Arnold. 1968. E s t a b l i s h m e n t of the modal p r o f i l e and measurement of v a r i a b i l i t y within a s o i l landform u n i t . Can. J. S o i l S c i . 48: 7-19. Raupach, M. 1951. Studies i n the v a r i a t i o n of s o i l reaction. III. Variations at the Waite A g r i c u l t u r a l Research I n s t i t u t e . Aust. J. A g r i c . Res. 2: 83-91. Reed, J.F. and J.A. Rigney. 1947. S o i l sampling from f i e l d s of uniform and nonuniform appearance and s o i l types. J. Agron. 39: 26-40. Reeves, R.G., A. Anson, and D. Landen. eds. 1975. Manual of remote sensing. Am. Soc. Photogrammetry, F a l l s Church, VA. R i d l e y , A.D. and R.A. H e d l i n . 1968. S o i l o r g a n i c matter and crop y i e l d s as influenced by the frequency of summerfallowing. Can. J. S o i l S c i . 48: 315-322. Rigney, J.A. and J.F. Reed. 1946. Some factors a f f e c t i n g the accuracy of s o i l sampling. S o i l S c i . Soc. Am. Proc. 10: 257-259. Roberts, M.C., J.C. Randolph, and J.R. Chisea. 1979. A land s u i t a b i l i t y model f o r the evaluation of land use change. Environmental Mgmt. 3: 339-352. Robertson, J.A. 1983- E f f e c t of management on s o i l organic matter, p. 30-34. A g r i c u l t u r a l land: Our disappearing heritage. Alberta S o i l S c i . Wkshp. Proc. Robinson, G.W. 1949. S o i l s , t h e i r o r i g i n , c o n s t i t u t i o n , and c l a s s i f i c a t i o n . Murby, London. Robinson, G.W. and W.E. Lloyd. 1915. On the probable error of sampling i n s o i l surveys. J. A g r i c . S c i . 7: 144-153. Rosenfield, G.H. 1982. Sample design f o r estimating change i n land use and land cover. Photogrammetric Engr. and Remote Sensing 48: 793-801. Roth, L.R. ed. 1926. H i s t o r y o f Whatcom County. Vol. 1. Pioneer H i s t o r i c a l Publ. Co. , Chicago. Rovira, A. and E. Graecen. 1957. The e f f e c t of aggregate d i s r u p t i o n on the a c t i v i t y of microorganisms i n the s o i l . Aust. J. Agric. Res. 8: 659-673. 209 Rump, P.C. 1983. Land use m o n i t o r i n g i n Canada, p. 460-463. In J.F. B e l l and T. Atterbury (ed.) Renewable resource i n v e n t o r i e s f o r monitori n g changes and trends. Proceedings of an i n t e r n a t i o n a l conference. C o r v a l l i s , OR, Aug. 15-19, 1983- Oregon State Univ., C o r v a l l i s . Russo, D. and E. B r e s l e r . 1981. S o i l h y d r a u l i c p r o p e r t i e s as s t o c h a s t i c processes. I. An a n a l y s i s of f i e l d s p a t i a l v a r i a b i l i t y . S o i l S c i . Soc. Am. J. 45: 682-687. Sain, R. and F.E. Broadbent. 1977. Decomposition of r i c e straw i n s o i l s as a f f e c t e d by some management f a c t o r s . J. Environ. Qual. 6: 96-100. S c h r e i e r , H., T.D. Nguyen, and M.A. Z u l k i l f l i . 1982. A n u m e r i c a l assesment of s o i l survey data f o r land management and planning. Report to B.C. Science C o u n c i l i n F u l f i l l m e n t of Grant Requirement #22. Dep. S o i l S c i . , Univ. B r i t i s h Columbia. S h i e l d s , J.A. and E.A. Paul. 1973. Decomposition of 1^C-labelled p l a n t m a t e r i a l under f i e l d c o n d i t i o n s . Can J. S o i l S c i . 53:297-306. Shumway, R.H. 1985. Times s e r i e s i n the s o i l sciences: I s there l i f e a f t e r k r i g i n g ? p. 35-60. In D.R. N i e l s e n and J. Bouma (ed.) S o i l s p a t i a l v a r i a b i l i t y . Proc. Wkshp. of ISSS and SSSA, Las Vegas, USA 30 Nov-1 Dec 84. Pudoc, Wageningen. Shutt, F.T. 1925. Influence of g r a i n growing on the n i t r o g e n and organic matter content of western p r a i r i e s o i l s of Canada. Dominion of Canada. Dep. o f A g r i c . B u l l . 44. N.S. Siemens, A.H. 1968. The process of settlement i n the Lower Fraser V a l l e y - i n i t s p r o v i n c i a l c o n t e x t , p. 27-50. In A.H. Siemens (ed.) B.C. Geographical S e r i e s , No. 9. Tantalus Research L i m i t e d , Vancouver. Simonson. R.W. 1951. The s o i l under n a t u r a l and c u l t u r a l environments. J. S o i l and Water Conserv. 6: 63-69. S i n g h , J.P., R.E. Karamanos, and R.G. K a c h a n o s k i . 1 9 8 5 . S p a t i a l v a r i a t i o n of e x t r a c t a b l e m i c r o n u t r i e n t s i n a c u l t i v a t e d and a n a t i v e p r a i r i e s o i l . Can. J. S o i l S c i . 65: 149-156. Singh, J.S. and S.R. Gupta. 1977. P l a n t decomposition and s o i l r e s p i r a t i o n i n t e r r e s t r i a l ecosystems. Bot. Rev. 43: 449-528. Smeck, N.E. and L.P. Wilding. 1980. Q u a n t i t a t i v e e v a l u a t i o n of pedon formation i n calcareous g l a c i a l deposits i n Ohio. Geoderma 24: 1-16. Smelser, C.R. 1970. Sequent occupance of the Nooksack River V a l l e y and the i n f l u e n c e of man on the r a t e of sediment d e l i v e r y t o Bellingham Bay. MSc. t h e s i s . Western Washington St a t e College, Bellingham. Smith, A.M., F.E. Moon, and K. Simpson. 1952. Methods of sampling and the establishment of experiments. B u l l . Edinb. E. S c o t l . C o l l . A g r i c . 32: 5-15. 2 1 0 Smith, G.O. and F.C. Ca l k i n s . 1904. A g e o l o g i c a l reconnaissance across the Cascade Range near the f o r t y - n i n t h p a r a l l e l . U.S. Geol. Survey B u l l . 235. Washington, DC. Snedecor, G.W. 1940. S t a t i s t i c a l methods. Iowa St a t e Univ. Press, Ames, Iowa. Snedecor, G.W. and W.G. Cochran. 1967. S t a t i s t i c a l methods (6 t h ed.). Iowa St a t e Univ. Press, Ames. S o i l Conservation S e r v i c e . 1980. S o i l survey manual. Chapter 5. Map u n i t s . U.S. Government P r i n t i n g O f f i c e , Washington, DC. S o i l Survey S t a f f . 1975. S o i l taxonomy: A b a s i c system of s o i l c l a s s i f i c a t i o n f o r making and i n t e r p r e t i n g s o i l surveys. USDA-SCS A g r i c . Handb. 436. U.S. Government P r i n t i n g O f f i c e , Washington DC. S o k a l , R.R. and F.J. R o h l f . 1981. B i o m e t r y : the p r i n c i p l e s and p r a c t i c e of s t a t i s t i c s i n b i o l o g i c a l research. W.H. Freeman and Co., San F r a n c i s c o . SPSS Inc. 1983. SPSS-X user's guide. McGraw-Hill Book Co., New York. SPSS Inc. 1985. SPSS-X re l e a s e 2.1. New procedures and f a c i l i t i e s . McGraw H i l l Book Co., New York. S t a t i s t i c s Canada. 1974. 1971 Census o f Canada. V o l . 1. P a r t 1. Population. Geographical d i s t r i b u t i o n s . I nformation Canada, Ottawa. S t a t i s t i c s Canada. 1982. 1981 Census of Canada. Population, occupied p r i v a t e d w e l l i n g s , p r i v a t e households, census f a m i l i e s i n p r i v a t e households, s e l e c t e d c h a r a c t e r i s t i c s . B r i t i s h Columbia. M i n i s t e r of Supply and S e r v i c e s , Ottawa. S t e e l , R.G.D. and J.H. T o r r i e . 1980. P r i n c i p l e s and pr o c e d u r e s o f s t a t i s t i c s . 2nd ed. McGraw-Hill Book Co., New York. S t e p l e t o n , E., W.H. Gray, C.F. E n g l e , and B.E. F r a z i e r . 1976. Whatcom County a g r i c u l t u r e : Trends i n a g r i c u l t u r a l land use. B u l l . EM 4042. Coop. Ext. Serv. Wash. S t a t e Univ., P u l l m a n . S t r a h l e r , A.N. and A.H. S t r a h l e r . 1983. Modern p h y s i c a l geography. 2nd ed. John Wiley and Sons, New York. S w i f t , M.J., O.W. H e a l , and J.M. Anderson. 1979. D e c o m p o s i t i o n i n t e r r e s t r i a l ecosystems. Univ. C a l i f . Press, Berkeley. Thornthwaite, C.W. 1948. An approach toward a r a t i o n a l c l a s s i f i c a t i o n of c l i m a t e . Geographical Review 38: 55-94. T i e s s e n , H., J.W.B. S t e w a r t , and J.R. B e t t a n y . 1982. C u l t i v a t i o n e f f e c t s on the amounts and concentrations of carbon, n i t r o g e n , and phosphorus i n grassland s o i l s . Agron. J. 74: 831-835. 21 1 Towner, CD. 1968. V a r i a b i l i t y of s o i l moisture i n the black c r a c k i n g c l a y s o i l of northwestern New South Wales. Aust. J. Exp. Ag r i c . Anim. Husb. 8: 252-254. Uehara, G., B.B. Trangmar, and R.S. Y o s t . 1985. S p a t i a l v a r i a b i l i t y o f s o i l p r o p e r t i e s , p. 61-95. ^ n D.R. N i e l s e n and J. Bouma (ed.) S o i l s p a t i a l v a r i a b i l i t y . Proc. Wkshp. of ISSS and SSSA, Las Vegas, USA 30 Nov-1 Dec 84. Pudoc, Wageningen. V a l d i n , M., S.R. V i e i r a , G. Vachaud, and D.R. N i e l s e n . 1983. The use of c o k r i g i n g w i t h l i m i t e d f i e l d s o i l observations. S o i l S c i . Soc. Am. J. 47: 175-184. Van Genderen, J.L. and B.F. Lock. 1977. Test i n g land-use map accuracy. Photogrammetric Engr. and Remote Sensing 43: 1135-1137. Van Veen, J.A. and E.A. P a u l . 1 981. O r g a n i c carbon dynamics i n grassland s o i l s . 1. Background i n f o r m a t i o n and computer s i m u l a t i o n . Can. J. S o i l S c i . 61: 185-201. V i e i r a , S.R., J.L. H a t f i e l d , D.R. N i e l s e n , and J.W. B i g g a r . 1983. G e o s t a t i s t i c a l theory and a p p l i c a t i o n to v a r i a b i l i t y of some agronomical p r o p e r t i e s . H i l g a r d i a 3: 1-75. V i e i r a , S.R., D.R. N i e l s e n , and J.W. B i g g a r . 1981. S p a t i a l v a r i a b i l i t y of field-measured i n f i l t r a t i o n r a t e . S o i l S c i . Soc. Am. J. 45: 1040-1048. V i r o , P.J. 1974. E f f e c t s o f f i r e on s o i l . p. 7-45. In T.T. K o z l o w s k i and CE. Algren (ed.) F i r e and ecosystems. Academic Press, Inc., New York. Voroney, R.P., J.A. Van Veen, and E.A. P a u l . 1981. O r g a n i c c a r b o n dynamics i n grassland s o i l s . 2. Model v a l i d a t i o n and s i m u l a t i o n of the long-term e f f e c t s of c u l t i v a t i o n and r a i n f a l l e rosion. Can. J. S o i l S c i . 61 : 21 1-224. Wagenet, R.J. 1985. Measurement and i n t e r p r e t a t i o n of s p a t i a l l y v a r i a b l e l e a c h i n g processes, p. 209-235. In D.R. N i e l s e n and J. Bouma (ed.) S o i l s p a t i a l v a r i a b i l i t y . Proc. Wkshp. of ISSS and SSSA, Las Vegas, USA 30 Nov-1 Dec 84. Pudoc, Wageningen. Walker, P.H., G.F. H a l l , and R. P r o t z . 1968a. S o i l t r e n d s and v a r i a b i l i t y across s e l e c t e d landscapes i n Iowa. S o i l S c i . Soc. Am. Proc. 32: 97-101. W a l k e r , P.H., G.F. H a l l , and R. P r o t z . 1968b. R e l a t i o n between landform parameters and s o i l p r o p e r t i e s . S o i l S c i . Soc. Am. Proc. 32: 101-104. Wang, C, H.W. Rees, and J.L. D a i g l e . 1984. C l a s s i f i c a t i o n o f P o d z o l i c s o i l s as a f f e c t e d by c u l t i v a t i o n . Can. J. S o i l S c i . 64: 229-239. Warrick, A.W. and W.R. Gardner. 1983. Crop y i e l d as a f f e c t e d by s p a t i a l v a r i a t i o n s of s o i l and i r r i g a t i o n . Water Resources Res. 19: 181-186. 212 Washington State Department of A g r i c u l t u r e . 1956. Whatcom County-A g r i c u l t u r e . County A g r i c u l t u r a l Data S e r i e s , mimeo. Olympia. Washington State Department of A g r i c u l t u r e . 1965. Whatcom County A g r i c u l t u r e . County A g r i c u l t u r a l Data S e r i e s , mimeo. Olympia. Waynick, D.D. and L.T. Sharp. 1919. V a r i a b i l i t y i n s o i l s and i t s s i g n i f i c a n c e t o past and f u t u r e s o i l i n v e s t i g a t i o n s : I I . V a r i a t i o n s i n ni t r o g e n and carbon i n f i e l d s o i l s and t h e i r r e l a t i o n to the accuracy o f f i e l d t r i a l s . C a l i f . U niv. Pubs. Agr. S c i . 4: 120-139. Webster, R. 1977. Q u a n t i t a t i v e and numerical methods i n s o i l c l a s s i f i c a t i o n and survey. Clarendon Press, Oxford. Webster, R. and T.M. Burgess. 1980. Optimal i n t e r p o l a t i o n and i s a r i t h m i c mapping o f s o i l p r o p e r t i e s . I I I . Changing d r i f t and u n i v e r s a l k r i g i n g . J. S o i l S c i . 31 : 505-524. Webster, R. and B.E. B u t l e r . 1976. S o i l c l a s s i f i c a t i o n and survey s t u d i e s a t G i n n i n d e r r a . Aust. J. S o i l Res. 14: 1-24. Webster, R. and H.E. Cuanalo de l a C. 1975. S o i l t r a n s e c t correlograms of north Oxfordshire and t h e i r i n t e r p r e t a t i o n . J. S o i l S c i . 26: 176-194. Weetman, G.F. and B. Webber. 1972. The i n f l u e n c e of wood h a r v e s t i n g on th e n u t r i e n t s t a t u s o f two s p r u c e s t a n d s . Can. J. For. Res. 2: 351-369. Weisberg, S. 1980. Applied l i n e a r r e g r e s s i o n . John Wiley and Sons, New York. W e l l s , C.G. 1971. E f f e c t s of pr e s c r i b e d burning on s o i l chemical p r o p e r t i e s and n u t r i e n t a v a i l a b i l i t y . In Proc. P r e s c r i b e d Burning Symp. USDA For. Serv., SE For. Exp. S t a . A s h e v i l l e . White, G.B. 1937. H i s t o r y of the eastern Fraser V a l l e y since 1885. M.A. t h e s i s . Univ. B r i t i s h Columbia. Vancouver. Whitney, M. 1925. S o i l and c u l t i v a t i o n . D. Van Nostrand. New York. Wierenga, P.J. 1985. S p a t i a l v a r i a b i l i t y o f s o i l - w a t e r p r o p e r t i e s i n i r r i g a t e d s o i l s , p. 112-129. In D.R. N i e l s e n and J. Bouma (ed.) S o i l s p a t i a l v a r i a b i l i t y . Proc. Wkshp. of ISSS and SSSA, Las Vegas, USA 30 Nov-1 Dec 84. Pudoc, Wageningen. W i l d i n g , L.P. 1985. S p a t i a l v a r i a b i l i t y : i t s documentation, accommodation and i m p l i c a t i o n to s o i l surveys, p. 166-194. In D.R. N i e l s e n and J. Bouma (ed.) S o i l s p a t i a l v a r i a b i l i t y . Proc. Wkshp. of ISSS and SSSA, Las Vegas, USA 30 Nov-1 Dec 84. Pudoc, Wageningen. W i l d i n g , L.P. and L.R. Drees. 1978. S p a t i a l v a r i a b i l i t y : A pedologist's viewpoint, p. 1-12. In D i v e r s i t y of s o i l s i n the t r o p i c s . S o i l S c i . Soc. Am. Spec. P u b l . 34. 213 W i l d i n g , L.P. and L.R. Drees. 1983. S p a t i a l v a r i a b i l i t y and pedology, p. 83-116. I n L.P. W i l d i n g , N.E. Smeck, and G.F. H a l l (ed.) Pedogenesis and S o i l Taxonomy. I. Concepts and i n t e r a c t i o n s . Developments i n s o i l science 11 A. E l s e v i e r Science P u b l i s h e r s , Wageningen. W i l d i n g , L.P., G.M. S c h a f e r , and R.B. Jones. 1964. M o r l e y and B l o u n t s o i l s : A s t a t i s t i c a l summary of c e r t a i n p h y s i c a l and chemical p r o p e r t i e s of some s e l e c t e d p r o f i l e s p r o f i l e s from Ohio. S o i l S c i . Soc. Am. Proc. 28: 674-679. W i l d i n g , L.P., R.B. Jones, and G.M. S c h a f e r . 1965. V a r i a t i o n o f s o i l m orphological p r o p e r t i e s w i t h i n Miami, C e l i n a , and Crosby mapping u n i t s i n w e s t - c e n t r a l Ohio. S o i l S c i . Soc. Am. Proc. 29: 711-717. W i l l , G.M. 1968. The uptake, c y c l i n g , and removal of mineral n u t r i e n t s by c r o p s o f P i n u s r a d i a t a . Proc. N.Z. E c o l . Soc. 15: 20-24. W i l l i a m s , C. and J.H. Rayner. 1977. V a r i a b i l i t y i n three areas of the Denchworth s o i l map u n i t . I I I . S o i l grouping based on chemical composition. J. S o i l S c i . 28: 180-195. Winter, G.R. 1968. A g r i c u l t u r a l development i n the Lower Fraser V a l l e y , p. 101-116. In A.H. Siemens (ed.) Lower F r a s e r V a l l e y : E v o l u t i o n of a c u l t u r a l landscape. B.C. Geographical S e r i e s , No. 9. Tantalus Research L i m i t e d , Vancouver. Yaalon, D.H. and B. Yaron. 1966. Framework f o r man-made s o i l changes-An o u t l i n e of metapedogenesis. S o i l S c i . 102: 272-277. Young, A. 1973. S o i l survey procedures i n land development planning. Geographical J. 139: 53-64. Z e i m e t z , K.A., E. D i l l o n , E.E. Hardy, and R.C. Ott e . 1976. U s i n g a r e a point samples and airphotos to estimate land use change. Ag. Econ. Res. 28: 65-74. Zonneveld, I.S. 1974. A e r i a l photography, remote sensing, and ecology. ITC J o u r n a l , 1974, P a r t 4, p. 553-560. 214 APPENDICES 215 APPENDIX A TYPICAL PEDON DESCRIPTIONS (Tables A1 to A3) 216 Table A1. T y p i c a l pedon of the Br i s c o t s e r i e s . The Briscot s e r i e s consists of very deep, a r t i f i c i a l l y drained s o i l s formed i n alluvium on floodplains. These s o i l s are coarse-loamy, mixed, nonacid, mesic Aerie Fluvaquents. The t y p i c a l pedon of B r i s c o t s i l t loam, drained, 0 to 2 percent slopes, 4.8 km south of Sumas, 120 m south and 730 m east of the northwest corner of sec. 15, T. 40 N., R. 4 E. USA. Ap—0 to 23 om; dark grayish brown (2.5Y 4/2) s i l t loam, l i g h t gray (2.5Y 7/2) dry; moderate medium subangular blocky parting to weak fin e granular structure; s l i g h t l y hard, f r i a b l e , s l i g h t l y s t i c k y , s l i g h t l y p l a s t i c ; many very f i n e , common fine and few medium roots; many very f i n e i r r e g u l a r and many very f i n e tubular pores; few f i n e pebbles; medium acid (pH 6.0); abrupt smooth boundary. C1--23 to 36 cm; dark grayish brown (2.5Y 4/2) s i l t loam, l i g h t gray (2.5Y 7/2) dry; common fine prominent mottles of yellowish brown (10YR 5/6), brownish yellow (10YR 6/6) dry; moderate coarse subangular blocky parting to weak fine granular; s l i g h t l y hard, f r i a b l e , s l i g h t l y s t i c k y , s l i g h t l y p l a s t i c ; many very f i n e , common f i n e , and few medium roots; many very f i n e i r r e g u l a r and many very f i n e tubular pores; medium acid (pH 6.0); abrupt smooth boundary. C2—36 to 56 cm; dark grayish brown (2.5Y 4/2) very f i n e sandy loam, l i g h t gray (2.5Y 7/2) dry; many large prominent mottles of yellowish brown (10YR 5/6), brownish yellow (10YR 6/6) dry; massive; s l i g h t l y hard, f r i a b l e , nonsticky, nonplastic; many very f i n e and common fi n e roots; many very f i n e i r r e g u l a r and many very f i n e tubular pores; medium acid (pH 6.0); abrupt smooth boundary. C 3 —56 to 86 cm; gray (5Y 6/1) f i n e sand, l i g h t gray (5Y 7/1) dry; many large prominent mottles of o l i v e brown (2.5Y 4/4), l i g h t yellowish brown (2.5Y 6/4) dry; massive; s o f t , f r i a b l e , nonsticky, nonplastic; common very f i n e and few medium roots; many very f i n e i r r e g u l a r pores; s l i g h t acid (pH 6.2); abrupt smooth boundary. C4—86 to 104 cm; gray (5Y 5/1) f i n e sandy loam, l i g h t gray (5Y 7/1) dry; many large prominent mottles of o l i v e brown (2.5Y 4/4), l i g h t y e l lowish brown (2.5Y 6/4) dry; massive; s l i g h t l y hard, f r i a b l e , nonsticky, nonplastic; common very f i n e roots; many very fin e i r r e g u l a r pores; s l i g h t l y acid (pH 6.4); abrupt smooth boundary. C5—104 to 150 cm; gray (5Y 5/1) and l i g h t brownish gray (2.5Y 6/2) s i l t loam, l i g h t gray (5Y 7/1 and 2.5Y 7/2) dry; many medium prominent mottles of yellowish brown (10YR 5/6), brownish yellow (10YR 6/6) dry; massive; hard, f r i a b l e , s l i g h t l y s t i c k y , s l i g h t l y p l a s t i c ; few very f i n e roots; many very f i n e i r r e g u l a r and common very f i n e tubular pores; s l i g h t l y a c i d (pH 6.4). 21 7 Table A2. T y p i c a l pedon of the K i c k e r v i l l e s e r i e s . The K i c k e r v i l l e s e r i e s c o n s i s t s of very deep, w e l l drained s o i l s formed i n l o e s s , v o l c a n i c ash, and g l a c i a l outwash. These s o i l s are coarse-loamy, mixed, mesic Typic Haplorthods. The t y p i c a l pedon of K i c k e r v i l l e s i l t loam, 0 to 3 percent slopes, 6.4 km northeast of Lynden, 15 m north and 210 m east of the southwest corner of sec. 2, T. 40 N., R. 3 E. USA. Ap—0 to 25 cm; dark brown (10YR 3/3) s i l t loam, y e l l o w i s h brown (10YR 5/4) dry; weak f i n e granular s t r u c t u r e ; s o f t , very f r i a b l e , n o n s t i c k y , n o n p l a s t i c , weakly smeary; many very f i n e r o o t s ; many very f i n e i r r e g u l a r pores; 5 percent pebbles; NaF pH 10.8; medium a c i d (pH 5.1); abrupt smooth boundary. Bw1—25 to 55 cm; dark y e l l o w i s h brown (10YR 3/4) s i l t loam, l i g h t y e l l o w i s h brown (10YR 6/4) dry; weak f i n e and medium subangular blocky s t r u c t u r e ; s o f t , very f r i a b l e , n o n s t i c k y , n o n p l a s t i c , weakly smeary; common very f i n e r o o t s ; many very f i n e i r r e g u l a r pores; 5 percent pebbles; NaF pH 11.0; medium a c i d (pH 6.0); abrupt smooth boundary. 2Bw2—55 to 80 cm; dark y e l l o w i s h brown (10YR 4/4) very g r a v e l l y loam, l i g h t y e l l o w i s h brown (10YR 6/4) dry; weak f i n e subangular blocky s t r u c t u r e ; s o f t , very f r i a b l e , n o n s t i c k y , n o n p l a s t i c , weakly smeary; few very f i n e r o o t s ; many very f i n e i r r e g u l a r pores; 40 percent pebbles and 5 percent cobbles; NaF pH 10.7; s l i g h t l y a c i d (pH 6.1); abrupt smooth boundary. 3C1—80 to 105 cm; var i e g a t e d , dominantly o l i v e brown (2.5Y 4/4) and dark g r a y i s h brown (2.5Y 4/2) extremely g r a v e l l y sand, l i g h t y e l l o w i s h brown (2.5Y 6/4) and l i g h t brownish gray (2.5Y 6/2) dry; s i n g l e g r a i n ; loose; many very f i n e i r r e g u l a r pores; 60 percent pebbles; NaF pH 10.2; medium a c i d (pH 6.0); c l e a r smooth boundary. 3C2—105 to 150 cm; variegated but dominantly dark g r a y i s h brown (2.5Y 4/2) very g r a v e l l y sand, dark g r a y i s h brown (2.5Y 4/2) and gr a y i s h brown (2.5Y 5/2) dry; s i n g l e g r a i n ; loose; many very f i n e i r r e g u l a r pores; 50 percent pebbles; NaF pH 9.7; medium a c i d (pH 5.8). 218 Table A3. T y p i c a l pedon of the Whatcom s e r i e s . The Whatcom s e r i e s c o n s i s t s of very deep, moderately w e l l drained s o i l s formed i n loe s s and v o l c a n i c ash over g l a c i a l m a r i n e d r i f t . These s o i l s are fine-loamy, mixed, mesic A q u a l f i c Haplorthods. The t y p i c a l pedon of the Whatcom s e r i e s i n an area of Whatcom-Labounty s i l t loams, 0 to 8 percent slopes, 11.2 km northeast of Bellingham; 5 m n o r t h and 180 m e a s t o f the s o u t h w e s t c o r n e r o f sec. 30, T. 39 N., R. 4 E. USA. Ap—0 to 23 cm; dark brown (10YR 3/3) s i l t loam, brown (10YR 5/3) dry; weak f i n e granular s t r u c t u r e ; s o f t , very f r i a b l e , n o n sticky, n o n p l a s t i c , weakly smeary; many very f i n e and common f i n e r o o t s ; many very f i n e i r r e g u l a r pores; 5 percent pebbles and 2 percent c o n c r e t i o n s ; NaF pH 10.1; medium a c i d (pH 5.6); abrupt smooth boundary. Bs1~23 to 33 cm; dark brown (7.5YR 4/4) s i l t loam, l i g h t brown (7.5YR 6/4) dry; weak f i n e subangular blocky s t r u c t u r e ; s o f t , very f r i a b l e , n o n s t i c k y , n o n p l a s t i c , weakly smeary; many very f i n e r o o t s ; many very f i n e i r r e g u l a r pores; 5 percent pebbles and 1 percent co n c r e t i o n s ; NaF pH 10.7; medium a c i d (pH 6.0); c l e a r smooth boundary. Bs2—3 3 to 41 cm; dark brown (7.5YR 3/4) s i l t loam, l i g h t brown (7.5YR 6/4) dry; weak f i n e subangular blocky s t r u c t u r e ; s o f t , very f r i a b l e , n o n s t i c k y , n o n p l a s t i c , weakly smeary; many very f i n e r o o t s ; many very f i n e i r r e g u l a r pores; 5 percent pebbles and 1 percent co n c r e t i o n s ; NaF pH 10.8; s l i g h t l y a c i d (pH 6.1); abrupt smooth boundary. 2Bt1—41 to 51 cm; l i g h t o l i v e brown (2.5Y 5/4) loam, pale y e l l o w (2.5Y 7/4) dry; many medium prominent mottles of dark y e l l o w i s h brown (10YR 4/4), y e l l o w i s h brown (10YR 5/4) dry; medium t h i c k p l a t y s t r u c t u r e ; s l i g h t l y hard, f r i a b l e , s l i g h t l y s t i c k y , s l i g h t l y p l a s t i c ; common very f i n e r o o t s ; many very f i n e i r r e g u l a r pores; few, t h i n patchy c l a y f i l m s on faces of peds; 5 percent pebbles; NaF pH 9.5; medium a c i d (pH 6.0); c l e a r smooth boundary. 2Bt2—51 to 66 cm; l i g h t o l i v e brown (2.5Y 5/4) loam, l i g h t gray (2.5Y 7/2) dry; many coarse prominent mottles of y e l l o w i s h brown (10YR 5/6), r e d d i s h y e l l o w (7.5YR 6/6) dry; moderate t h i c k p l a t y s t r u c t u r e ; s l i g h t l y hard, f r i a b l e , n o n s t i c k y , n o n p l a s t i c ; few very f i n e r o o t s ; many very f i n e i r r e g u l a r pores; few, t h i n patchy c l a y f i l m s on faces of peds; 10 percent pebbles; NaF pH 9.0; medium a c i d (pH 5.9); abrupt smooth boundary. 2C1—66 to 89 cm; l i g h t o l i v e gray (5Y 6/2) loam, white (5Y 8/2) dry; many medium prominent mottles of l i g h t o l i v e brown (2.5Y 5/6) moist and dry; moderate t h i c k p l a t y s t r u c t u r e ; very hard, f i r m , s l i g h t l y s t i c k y , s l i g h t l y p l a s t i c ; common very f i n e i r r e g u l a r pores; 5 percent pebbles; NaF pH 8.6; s l i g h t l y a c i d (pH 6.2); c l e a r smooth boundary. 219 2C2— 8 9 to 150 cm; dark gray (5Y 4/1) loam, l i g h t gray (5Y 7/1) dry; moderate coarse blocky s t r u c t u r e ; extremely hard, very f i r m , s l i g h t l y s t i c k y , s l i g h t l y p l a s t i c ; very few very f i n e i r r e g u l a r pores; 5 percent pebbles; NaF pH 8.9; m i l d l y a l k a l i n e (pH 7.4); s l i g h t l y e f f e r v e s c e n t . 220 APPENDIX B PROCEDURAL TESTS AND KOLMOGOROV-SMIRNOV TESTS OF NORMALITY (Tables B1 to B16, F i g . B1 to B6) 221 Table B1. Results of Mann-Whitney U t e s t comparing o r i g i n a l s (0) w i t h d u p l i c a t e s (D) of mi n e r a l s o i l s f o r a l l parent m a t e r i a l s (60 p l o t s ) . P r o b a b i l i t y i s c o r r e c t e d f o r t i e s . V a r i a b l e 0 or D Mean rank U value Z value 2 - t a i l e d H2° P H 0 64.6 1553 -1.30 .194 H20 pH D 56.4 C a C l 2 0 62.9 1656 -0.76 .449 CaCl2 D 58.1 Ca 0 62.4 1689 -0.58 .560 Ca D 58.6 Mg 0 61.6 1736 -0.33 .739 Mg D 59.4 K 0 60.3 1790 -0.05 .958 K D 60.7 P 0 60.0 1768 -0.17 .864 P D 61.0 OM 0 62.2 1700 -0.53 .598 OM D 58.8 N 0 60.4 1792 -0.39 .969 N D 60.6 222 Table B2. Results of Mann-Whitney U t e s t comparing o r i g i n a l s (0) w i t h d u p l i c a t e s (D) of l i t t e r l a y e r s f o r a l l parent m a t e r i a l s (12 p l o t s ) . P r o b a b i l i t y i s c o r r e c t e d f o r t i e s . V a r i a b l e 0 or D Mean rank H 2 0 pH 0 12.8 H 20 pH D 12.2 C a C l 2 o 12.8 CaCl2 D 1 2 , 2 Ca 0 11.9 Ca D 13.1 Mg 0 12.0 Mg D 13.0 K 0 12.1 K D 12.9 P 0 12.3 P D 12.7 OM 0 12.5 OM D 12.5 N 0 12.2 N D 12.8 U value Z value 2 - t a i l e d P 69 0.89 .861 68 0.84 .839 65 -0.40 .686 66 -0.32 .751 68 -0.26 .795 70 -0.12 .908 72 0.00 1.000 68 -0.23 .817 223 Table B3. Results of Wilcoxon matched-pairs signed-ranks t e s t comparing o r i g i n a l s (0) w i t h d u p l i c a t e s (D) of m i n e r a l s o i l s f o r a l l parent m a t e r i a l s (60 p l o t s ) . V a r i a b l e 0 or D Mean rank 0 > D 0<D 0=D Z value 2-• t a i l e d H2° P H 0 26.0 45 6 9 -4.74 .000 H20 pH D 26.2 C a C l 2 0 20.1 36 4 20 -4.19 .000 CaCl2 D 24.5 Ca 0 32.1 42 15 3 -4.14 .000 Ca D 20.4 Mg 0 31.7 42 14 4 -4.36 .000 Mg D 18.8 K 0 30.4 35 21 4 -2.17 .030 K D 25.3 P 0 24.5 23 34 3 -2.09 .037 P D 32.0 OM 0 32.0 42 17 1 -3.48 .001 OM D 25.0 N 0 26.1 27 26 7 -0.93 .926 N D 27.9 224 Table B4. Results of Wilcoxon matched-pairs signed-ranks t e s t comparing o r i g i n a l s (0) w i t h d u p l i c a t e s (D) of l i t t e r l a y e r s f o r a l l parent m a t e r i a l s (12 p l o t s ) . V a r i a b l e 0 or D Mean rank 0 >D 0 < D 0=D Z value 2 - t a i l e d H2° P H 0 3.1 4 1 7 -1.35 .178 H20 pH D 2.5 C a C l 2 0 4.2 5 2 5 -1.18 .237 CaC12 D 3.5 Ca 0 4.0 7 5 0 -0.86 .388 Ca D 10.0 Mg 0 6.0 5 7 0 -0.71 .480 Mg D 6.9 K 0 5.7 5 7 0 -0.82 .410 K D 7.1 P 0 6.8 6 6 0 -0.16 .875 P D 6.2 OM 0 6.4 7 5 0 -0.47 .638 OM D 6.6 N 0 4.0 5 7 0 -1.49 .136 N D 8.3 225 Table B5. Results of Kolmogorov-Smirnov Goodness of F i t t e s t f o r outwash s o i l s u s i n g a l l samples. V a r i a b l e Mean Std Dev K-S Z s t a t . 2 - t a i l e d Results prob. (.05 l e v e l ) H2° P H 5.7 0.7 2.05 .000 non-normal C a C l 2 p H 1) 5.1 0.7 1.55 .002 non-normal Ca (mg kg- 816 1027 3.31 .000 non-normal Mg (mg kg- 1) 150 215 4.64 .000 non-normal K (mg kg-1) 243 156 2.04 .000 non-normal P (mg kg-1) 103 122 3.09 .000 non-normal OM ($) 17.6 20.7 6.49 .000 non-normal N {%) .383 .472 6.25 .000 non-normal Table B6. Results of Kolmogorov-Smirnov Goodness of F i t t e s t f o r outwash s o i l s using p l o t means. V a r i a b l e Mean Std Dev K-S Z s t a t . 2 - t a i l e d Results prob. (.05 l e v e l ) H2° P H 5.7 0.6 0.87 .433 normal C a C l 2 p H -1) 5.1 0.6 0.46 .984 normal Ca (mg kg- 816 843 1.09 .182 normal Mg (mg kg--1) 150 201 1.66 .008 non-normal K (mg kg--1) 243 142 0.84 .477 normal P (mg kg-•1) 103 115 1.21 .107 normal OM {%) 17.6 20.2 2.20 .000 non-normal N {%) .383 .459 2.18 .000 non-normal Table B7- Results of Kolmogorov-Smirnov Goodness of F i t t e s t f o r a l l u v i a l s o i l s using a l l samples. V a r i a b l e Mean Std Dev K-S Z s t a t . 2 - t a i l e d Results prob. (.05 l e v e l ) H2° P H 5.8 0.4 1.84 .002 non-normal C a C l 2 p H - 1) 5.3 0.4 1.49 .023 non-normal Ca (mg kg- 1163 782 2.51 .000 non-normal Mg (mg kg--1) 601 336 2.67 .000 non-normal K (mg kg--1) 307 244 2.31 .000 non-normal P (mg kg--1) 54 58 2.91 .000 non-normal OM (%) 17.5 18.5 5.56 .000 non-normal N ($) .420 .424 5.48 .000 non-normal Table B8. Results of Kolmogorov-Smirnov Goodness of F i t t e s t f o r a l l u v i a l s o i l s using p l o t means. V a r i a b l e Mean Std Dev K--S Z s t a t . 2 - t a i l e d Results prob. (.05 l e v e l ) H2° P H 5.8 0.4 0.67 .762 normal C a C l 2 PH -1) 5.3 0.4 0.45 .988 normal Ca (mg kg- 1163 710 0.87 .434 normal Mg (mg kg--1) 601 314 0.94 .346 normal K (mg kg--1) 307 199 0.82 .510 normal P (mg kg--1) 54 49 1.30 .068 normal OM (%) 17.5 18.1 1.92 .001 non-normal N (%) .420 .415 1.99 .001 non-normal Table B9- Results of Kolmogorov-Smirnov Goodness of F i t t e s t f o r g l a c i a l m a r i n e s o i l s u sing a l l samples. V a r i a b l e Mean Std Dev K--S Z s t a t . 2 - t a i l e d Results prob. (.05 l e v e l ) H 20 pH 5.2 0.4 2.16 .000 non-normal C a C l 2 p H 4.6 0.4 1.64 .009 non-normal Ca (mg kg--1) 493 779 4.30 .000 non-normal Mg (mg kg--1) 164 200 3-35 .000 non-normal K (mg kg-•1) 208 193 2.99 .000 non-normal P (mg kg--1) 20 28 3.74 .000 non-normal OM (%) 19.7 19.9 5.48 .000 non-normal N (%) .467 .473 5.36 .000 non-normal Table B10. Results of Kolmogorov-Smirnov Goodness of F i t t e s t f o r g l a c i a l m a r i n e s o i l s using p l o t means. V a r i a b l e Mean Std Dev K-S Z s t a t . 2 - t a i l e d Results prob. (.05 l e v e l ) H 20 pH 5.2 0.4 0.67 .756 normal C a C l 2 p H 1) 4.6 0.4 0.58 .894 normal Ca (mg kg- 493 749 1.59 .013 non-normal Mg (mg kg- 1) 164 185 1.29 .072 normal K (mg kg-1) 208 169 1.40 .039 non-normal P (mg kg-1) 20 26 1.20 .110 normal 0M (%) 19.7 19.6 1.94 .001 non-normal N (%) .467 .469 1.91 .001 non-normal 227 Table B11. Results of Kolmogorov-Smirnov Goodness of F i t t e s t f o r outwash s o i l s using a l l samples. C u l t i v a t e d s o i l s only. V a r i a b l e Mean Std Dev K-S Z s t a t . 2 - t a i l e d Results prob. ( . 05 l e v e l ) H2° P H 6.0 0.4 1.75 . 0 0 5 non-normal C a C l 2 p H •1) 5 .5 0 . 5 1.07 • 199 normal Ca (mg kg- 702 854 2 .60 . 000 non-normal Mg (mg kg- 1) 78 44 1.83 .003 non-normal K (mg kg-1) 221 77 1.30 .069 normal P (mg kg-1) 119 141 3 -09 . 000 non-normal OM (%) 8.6 1.7 0 .82 . 520 normal N (%) .186 . 047 0 . 67 • 763 normal Table B12. Results of Kolmogorov-Smirnov Goodness of F i t t e s t f o r outwash s o i l s using p l o t means. C u l t i v a t e d s o i l s only. V a r i a b l e Mean Std Dev K-S Z s t a t . 2 - t a i l e d Results prob. (.05 l e v e l ) H2° P H 6.0 0.4 0.75 .629 normal C a C l 2 p H 5.5 0.4 0.42 .995 normal Ca (mg kg-1) 702 632 0.92 .369 normal Mg (mg kg-1) 78 38 0.78 .578 normal K (mg kg-1) 221 64 0.87 .440 normal P (mg kg-1) 119 136 1.05 .221 normal OM (*) 8.6 1.5 0.35 1.000 normal N (%) .186 .038 0.47 .979 normal Table B13. Results of Kolmogorov-Smirnov Goodness of F i t t e s t f o r a l l u v i a l s o i l s using a l l samples. C u l t i v a t e d s o i l s only. V a r i a b l e Mean Std Dev K-S Z s t a t . 2 - t a i l e d Results prob. (.05 l e v e l ) H2° P H 5.8 0.4 1.63 .010 non-normal C a C l 2 p H 1) 5.3 0.4 1.74 .005 non-normal Ca (mg kg- 924 412 0.99 .280 normal Mg (mg kg-1) 503 201 1.60 .012 non-normal K (mg kg-1) 233 145 2.08 .000 non-normal P (mg kg-1) 39 37 2.83 .000 non-normal 0M (%) 9.7 2.9 1.96 .001 non-normal N (*) .244 .066 1.15 .141 normal 228 Table B14. Results of Kolmogorov-Smirnov Goodness of F i t t e s t f o r a l l u v i a l s o i l s using p l o t means. C u l t i v a t e d s o i l s only. V a r i a b l e Mean Std Dev K-S Z s t a t . 2 - t a i l e d Results prob. ( .05 l e v e l ) H2° P H 5.8 0.4 0.51 .957 normal C a C l 2 p H •1) 5.3 0 .4 0.58 .885 normal Ca (mg kg- 924 353 0.70 .708 normal Mg (mg kg-•1) 503 188 0.85 .463 normal K (mg kg-•1) 233 109 0.60 .857 normal P (mg kg-1) 39 34 1.12 .161 normal OM {%) 9.7 2.1 0.78 .586 normal N (?) .244 .042 0.60 .862 normal Table B15. Results of Kolmogorov-Smirnov Goodness of F i t t e s t f o r g l a c i a l m a r i n e s o i l s using a l l samples. C u l t i v a t e d s o i l s o n ly. V a r i a b l e Mean Std Dev K-S Z s t a t . 2 - t a i l e d Results prob. (.05 l e v e l ) H 20 pH 5.3 0.4 1.83 .002 non-normal C a C l 2 p H 1) 4.7 0.4 1.50 .022 non-normal Ca (mg kg- 179 193 2.64 .000 non-normal Mg (mg kg- D 90 69 2.12 .000 non-normal K (mg kg-1) 142 84 1.83 .002 non-normal P (mg kg-D 13 23 3.91 .000 non-normal 0M (%) 11.3 2.8 1.12 .162 normal N (*) .268 .077 0.98 .290 normal Table B16. Results of Kolmogorov-Smirnov Goodness of F i t t e s t f o r g l a c i a l m a r i n e s o i l s using p l o t means. C u l t i v a t e d s o i l s o n l y . V a r i a b l e Mean Std Dev K-S Z s t a t . 2 - t a i l e d Results prob. (.05 l e v e l ) H2° P H 5.3 0.3 0.65 .789 normal C a C l 2 p H 1) 4.7 0.4 0.57 .898 normal Ca (mg kg- 179 154 1.09 .185 normal Mg (mg kg- 1) 90 57 0.92 .369 normal K (mg kg-1) 142 64 1.03 .241 normal P (mg kg-1) 13 22 1.26 .085 normal 0M {%) 11.3 2.1 0.55 .920 normal N (*) .268 .060 0.96 .319 normal 229 NORMAL PLCT NORMAL PLOT 1.8 l . » -.6 -1.2 -1.9 B I t 1 *.?5 11 1 1 «.5 4.75 5.?5 5.75 5 5.5 F i g . B1. Normal p l o t s of pH (CaCl2) u s i n S samples (A) and p l o t means (B) from outwash s o i l s . 230 NORMAL PLOT E X P E C T E D N 0 R M A L V A L I J E ?.« 1.6 .9 -1.6 -2.4 1 : i : I : 2 2 13 1 5 6 6 2 B 4 6 1 A B 54 n 2 6 2 4 51 3 1 1 3 3 3 3 B 4.5 5.1. 5.T 4.2 4.R 5.4 6.3 NORMAL PLOT 1.5 . 5 -.5 -1 -1.5 B 1 • 4.6 5 5.4 5.K 5.7 5.6 6.7 F i g . B2. Normal p l o t s of pH (CaCl2^ u s i n S samples (A) and p l o t means (B) from c u l t i v a t e d outwash s o i l s . 231 E X P c C T F D N 0 R M A L V & L U NORMAL PLOT -1 -2 121142 472 50 J CB • •1 422 22 11 11 21 * 5E I E C 8 :16 :4 • 3 :? : l : l :1 0 150 3 on 450 600 - 1 i + • 750 1050 900 1200 MG KG NORMAL PLOT 1.8 • E 1.2 • X P c C T N 0 P M A L -.6 + V A L U * -1.2 -1.8 1 : * • B • 2 1 : • I : + • i • I s I * • I + i • • i * * l i * ; i ; I • • 2 • • 1 1 • 2 • • 1 * + 1 • 1 • • 1 1 • • + : : i : • «-! ! : 100 300 500 700 0 200 400 600 POO F i g . B3. Normal p l o t s of Mg using samples (A) and p l o t means (B) from a l l outwash s o i l s . 232 NO°MAL BLOT 2.4 1.6 -.3 -1.6 -2.4 1 : 243 631 13 33 51 332 26 12 31 1 1 8 35 15 6 22 22 12 B 73 55 A 30 90 150 210 60 120 180 MG KG"1 240 NORMAL PLOT +--—-*--—* • —• - + -1.5 -.5 -5.5 B 4 -+-- • - * -20 6" 100 143 O 40 RO 120 XM MG KG"1 F i g . BU. Normal p l o t s of Mg using samples (A) and p l o t means (B) from c u l t i v a t e d outwash s o i l s . 233 R A L V A I U NORMAL PLOT -1 45 112 1H i 2 , n ? l 1 2 2 3 3 2? 21 11 J BC 2« * J I E C 8 7 22 3 2 1 1 1 12.5 25 37.5 50 e.2.5 75 37.5 i o n 1.8 • B NORMAL »LOT N 0 R M A L V A L 'J 1.2 + .6 » -1.2 • : 1 j X -1.3 • i 1 7 * 5 6  1 6 32 48 64 F i g . B5. Normal p l o t s o f OM usin g samples (A) and p l o t means (B) from a l l outwash s o i l s . 234 NORMAL PLOT P X P c C T E 0 N n R M A L V A L U E NORMAL PLOT I : 1.5 • * B .5 • -.5 • •I • -1.5 • 5.6 7.2 8.1 10.* 6.4 P.6 11.? F i g . B6. Normal p l o t s o f OM using samples (A) and p l o t means (B) from c u l t i v a t e d outwash s o i l s . 235 APPENDIX C ANALYSIS OF PLOT, AGE AND REPLICATE ON CONCENTRATION BASIS Tables C1 to C18 # 5 = c l e a r e d between 19^3 and 1955 6 = clear e d between 1955 and 1966 7 = c l e a r e d between 1966 and 1976 8 = clear e d between 1976 and 1983 X = uncleared woodland C = Canada U = USA + L = l i t t e r l a y e r p l o t s W=weighted average p l o t s bulk d e n s i t y i n kg m-3 Ca, Mg, K, P i n mg kg" OM, N i n % 236 Table C1. Breakdown of outwash s o i l s by p l o t . V a r i a b l e P l o t * Rock Fragments Bulk Densit kg m 3 PH H20 PH CaCl2 Ca mg kg-1 mean st d dev mean st d dev mean st d dev mean st d dev mean st d de\ 1-C5 13.9 1.3 757 29 6.6 0.2 6.1 0.2 944 430 2-C6 15.8 2.3 965 130 6.1 0.2 5.5 0.2 632 266 3-C7 11.3 2.5 1013 95 6.3 0.2 5.7 0.3 935 300 4-C6 9.4 1.9 895 44 6.6 0.5 6.0 0.5 1975 894 5-C8 17.4 6.4 919 81 5.6 0.3 5.2 0.3 169 112 6-C5 13.8 2.9 1153 108 6.2 0.5 5.6 0.5 1829 2140 7-C8 15.4 1.9 792 155 6.2 0.2 5.7 0.2 1018 462 8-C7 9.7 0.5 815 19 6.2 0.1 6.1 0.1 1511 398 9-CX 16.7 5.7 520 37 4.8 0.3 4.3 0.2 7 7 10-CX 19.4 8.3 604 33 4.7 0.3 4.2 0.3 31 29 11-U5 8.7 1.1 845 20 6.0 0.1 5.2 0.1 222 37 12-U7 8.5 3.1 883 67 6.0 0.1 5.4 0.1 64 24 13-U6 11.1 2.4 1053 23 6.1 0.1 5.5 0.1 265 31 14-U6 13.1 1.3 1032 102 5.5 0.2 5.0 0.2 143 168 15-U5 6.7 1.6 807 23 6.0 0.1 5.3 0.1 316 100 16-UX 13.3 3.6 557 98 5.4 0.3 4.9 0.3 130 127 17-U8 10.0 4.0 923 79 5.5 0.2 5.0 0.2 284 105 18-U8 7.4 4.8 945 41 5.2 0.4 4.7 0.4 40 76 19-U7 8.7 4.1 932 50 6.4 0.1 5.9 0.2 881 257 20-UX 11.2 5.9 646 110. 5.3 0.2 4.5 0.2 29 30 L9+ 4.7 0.4 4.2 0.5 1469 920 L10 4.7 0.3 4.1 0.3 1291 509 L16 — — — — 5.5 0.5 4.9 0.5 2883 1339 L20 4.9 0.2 4.4 0.3 2507 849 W9 4.8 0.3 4.3 0.2 140 87 W10 4.7 0.3 4.2 0.3 145 62 W16 — — — — 5.4 0.3 4.7 0.3 380 208 W20 — — — — 5.3 0.2 4.5 0.2 254 76 237 V a r i a b l e Mg K P OM N P l o t mean st d dev mean std dev mean st d dev mean std dev mean std de\ 1-C5 62 11 242 37 124 22 7.2 0.6 .161 .020 2-C6 75 18 192 3