Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Effects of historical land use change on soils in the Fraser lowland of British Columbia and Washington Goldin, Alan 1986

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1986_A1 G64.pdf [ 27.55MB ]
Metadata
JSON: 831-1.0097291.json
JSON-LD: 831-1.0097291-ld.json
RDF/XML (Pretty): 831-1.0097291-rdf.xml
RDF/JSON: 831-1.0097291-rdf.json
Turtle: 831-1.0097291-turtle.txt
N-Triples: 831-1.0097291-rdf-ntriples.txt
Original Record: 831-1.0097291-source.json
Full Text
831-1.0097291-fulltext.txt
Citation
831-1.0097291.ris

Full Text

EFFECTS OF HISTORICAL LAND USE CHANGE ON SOILS IN THE FRASER LOWLAND OF BRITISH COLUMBIA AND WASHINGTON By ALAN GOLDIN B.S.,  A n t i o c h C o l l e g e , 1969  M.A.T., Harvard U n i v e r s i t y , 1971 B.S.,  U n i v e r s i t y o f Montana, 1974  M.S., U n i v e r s i t y o f Montana, 1976  A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Department o f S o i l S c i e n c e )  We a c c e p t t h i s t h e s i s as conforming to the required  standard  THE UNIVERSITY OF BRITISH COLUMBIA May 1986 © A l a n G o l d i n , 1986  ABSTRACT Four o b j e c t i v e s were e s t a b l i s h e d f o r t h i s study: historical  changes i n l a n d c l e a r i n g d u r i n g the p e r i o d  t o d e t e r m i n e t h e e f f e c t s o f the c o n v e r s i o n  1) t o examine 19^3 t o 1983, 2)  from woodland t o a g r i c u l t u r e  on s o i l p r o p e r t i e s d u r i n g t h i s p e r i o d and i t s i n f l u e n c e on s o i l genesis, and  3) t o d e t e r m i n e t h e e f f e c t s o f l a n d use on s o i l v a r i a b i l i t y ,  4) t o d e t e r m i n e t h e e f f e c t s o f a p o l i t i c a l boundary on a l l o f t h e  above.  The s t u d y i s unique i n i t s e x a m i n a t i o n o f t e m p o r a l changes i n  s o i l p r o p e r t i e s based on t h e i n t e r p r e t a t i o n o f h i s t o r i c a l  l a n d use  changes and t h e e f f e c t s o f an i n t e r n a t i o n a l boundary and consequent management d i f f e r e n c e s on s e v e r a l p a r e n t m a t e r i a l s . S o i l s were c o l l e c t e d from t h e s u r f a c e 0.2 m by s t r a t i f i e d random s a m p l i n g u s i n g a 900 m represent  2  grid.  P l o t s were chosen i n d u p l i c a t e and  the two c o u n t r i e s (Canada and t h e U n i t e d S t a t e s ) , t h e t h r e e  p a r e n t m a t e r i a l s ( a l l u v i u m , outwash, and g l a c i a l m a r i n e d r i f t ) , and t h e five  l a n d c l e a r i n g age groups ( c l e a r e d between 1943 and 1955, between  1955  and 1966, between 1966 and 1976, between 1976 and 1983, and n o t  c l e a r e d , i.e., woodland). The  s o i l s were a n a l y z e d  f o r pH i n H 0 and CaCl2, c a l c i u m , 2  magnesium, p o t a s s i u m , phosphorus, o r g a n i c m a t t e r (OM), and n i t r o g e n . C l e a r i n g and the development o f l a n d on outwash s o i l s a f t e r the mid-19^0s was much more r a p i d and management more i n t e n s i v e i n Canada than i n t h e USA as a r e s u l t o f the r a p i d g r o w t h i n l o c a l m a r k e t s , and t e c h n o l o g y .  population,  Most o f t h e a l l u v i a l s o i l s were c l e a r e d  p r i o r t o 1920 on both s i d e s o f the I n t e r n a t i o n a l Boundary and have been used p r e d o m i n a n t l y f o r d a i r y f a r m i n g d i f f e r e n c e s have o c c u r r e d  since that time.  i n c l e a r i n g p r a c t i c e s by c o u n t r y  Few a f t e r 1920.  D u r i n g t h e 1940s g l a c i a l m a r i n e s o i l s were l a r g e l y i n woodland and  ii  subsequent c l e a r i n g was s l o w . and  They a r e used p r i n c i p a l l y f o r woodland  pasture. The  most i m p o r t a n t v a r i a b l e s f o r d i s t i n g u i s h i n g t h e v a r i a t i o n as  a whole a r e pH, Ca, Mg, K, OM, and N. expressing  Only pH and OM a r e i m p o r t a n t i n  a linear relationship with time-since-clearing.  Time-  s i n c e - c l e a r i n g can be p r e d i c t e d from s o i l p r o p e r t i e s , but t h e degree o f p r e d i c t a b i l i t y , w h i c h i s commonly 60%, depends on p a r e n t m a t e r i a l and  country. V a r i a b i l i t y i s i n t h e o r d e r a l l u v i u m < outwash < g l a c i a l m a r i n e .  I n c o m p a r i s o n t o CVs r e p o r t e d  i n t h e l i t e r a t u r e , those i n t h i s s t u d y  are l o w e r f o r OM and N, and comparable f o r bulk d e n s i t y , pH, Ca, Mg, K, and P.  No p a t t e r n w i t h t i m e o c c u r s among t h e f o u r c u l t i v a t e d age  groups, n o r i s t h e r e a t i m e t r e n d by l a n d use f o r any o f the p a r e n t materials.  V a r i a b i l i t y d i f f e r e n c e s due t o c o u n t r y  a r e a l s o mixed i n  s p i t e o f management d i f f e r e n c e s . Commonly 50 t o 80% o f the v a r i a t i o n w i t h i n a l l c u l t i v a t e d s o i l s combined i s w i t h i n any i n d i v i d u a l 0.09 ha c u l t i v a t e d p l o t .  Many  v a r i a b l e s on each p a r e n t m a t e r i a l have CVs l a r g e r than 80 and so r e q u i r e more than 1000 samples t o e s t i m a t e  t h e i r r e s p e c t i v e means  w i t h i n 5% o f t h e i r o r i g i n a l v a l u e s and more than 60 samples t o estimate The  t h e means w i t h i n 20%. p r i n c i p a l a n t h r o p o g e n i c e f f e c t s on s o i l g e n e s i s a r e the  f o l l o w i n g : 1) pH i n c r e a s e s d r a m a t i c a l l y on a l l s o i l s f r o m  initial  l e v e l s i n woodland. 2) The l e v e l s o f c a t i o n s a r e d e t e r m i n e d by t h e i n i t i a l f e r t i l i t y o f the s o i l .  Both outwash and g l a c i a l m a r i n e  soils  have low i n i t i a l f e r t i l i t y and i n c r e a s e 2 t o 15 t i m e s a f t e r c u l t i v a t i o n i n p r o p o r t i o n t o t h e degree o f management. 3) C a t i o n iii  l e v e l s decrease  from i n i t i a l l e v e l s on a l l u v i a l woodland s o i l s , w h i c h  have h i g h f e r t i l i t y . reached  A q u a s i - s t e a d y s t a t e f o r most v a r i a b l e s i s  i n about 15 t o 25 y e a r s . 4) C u l t i v a t i o n r e s u l t s i n l o s s e s o f  OM o f 20% a f t e r 35 y e a r s on a l l s o i l s , t h e l a r g e s t l o s s coming i n the first  15 y e a r s . 5) N l e v e l s a r e i n c o n s i s t e n t . 6) Steady s t a t e f o r OM  and N i s not apparent from about 15:1 by 26% t o 58$.  w i t h i n 35 y e a r s .  t o about 12:1.  7) C:N n a r r o w s on a l l s o i l s  8) C u l t i v a t i o n i n c r e a s e s b u l k d e n s i t y  9) D i f f e r e n c e s by c o u n t r y are g r e a t e s t on outwash  s o i l s , where the h i g h e r i n t e n s i t y o f management i n Canada l e a d s t o higher l e v e l s of a l l s o i l chemical properties.  Trends i n s o i l  p r o p e r t i e s w i t h t i m e a r e s i m i l a r by c o u n t r y , d i f f e r i n g m a i n l y degree.  iv  by  TABLE OF CONTENTS Part  Page  ABSTRACT  ii  LIST OF TABLES  zi  LIST OF FIGURES AND PLATES  xviii  ACKNOWLEDGEMENTS  zxii  1.0 INTRODUCTION  1  1.0.1 Land Use  1  1.0.2 C u l t i v a t i o n and S o i l P r o p e r t i e s  2  1.0.3 E f f e c t s o f N a t i o n a l D i f f e r e n c e s on Management and S o i l s  3  1.0.4 S o i l V a r i a b i l i t y  4  1.1 Major Q u e s t i o n s Addressed i n T h i s Study  5  1.2 H i s t o r i c a l and P o l i t i c a l Geography  6  1.2.1 I n t r o d u c t i o n and Purpose  6  1.2.2 Pre-1846 H i s t o r y  6  1.2.3 E s t a b l i s h m e n t  8  o f t h e I n t e r n a t i o n a l Boundary and  E f f e c t s o f the G o l d Rush 1.2.4 E f f e c t s o f the R a i l r o a d  9  1.2.5 Modern P e r s p e c t i v e s  10  1.3 A g r i c u l t u r a l H i s t o r y  12  1.3.1 Pre-1846 H i s t o r y  12  1.3.2 E f f e c t s o f t h e Gold Rush on A g r i c u l t u r e and S e t t l e m e n t  13  1.3.3 E f f e c t s o f V e g e t a t i o n ,  14  F l o o d i n g , and A c c e s s i b i l i t y  1.3.4 Farmers, Farms, and Crops 1.3.4.1 D a i r y i n g and P o u l t r y  17 20  1.3-4.2 S t r a w b e r r i e s and R a s p b e r r i e s  21  1.3.5 E f f e c t s o f t h e Growth o f T r a n s p o r t a t i o n , P o p u l a t i o n , and Technology  21  2.0 LITERATURE REVIEW  25  2.1 Land Use Change and M o n i t o r i n g  25  2.2 A n t h r o p o g e n i c S o i l s  28  2.2.1 G e n e r a l B e n e f i c i a l and D e t r i m e n t a l E f f e c t s o f  28  Cultivation 2.2.2 C l a s s i f i c a t i o n and P r o c e s s e s o f A n t h r o p o g e n i c S o i l s  29  2.2.3 R e l a t i o n s h i p s between Agro-ecosystems  31  and Unmanaged  Systems 2.2.3.1 G e n e r a l F l u x e s o f O r g a n i c M a t t e r C o n s t i t u e n t s  31  2.2.3.2 S p e c i f i c Losses o f C, N, and P  32  2.2.4 E f f e c t s o f Land Use P r a c t i c e s on S o i l P r o p e r t i e s  34  2.3 S o i l V a r i a b i l i t y  35  2.3.1 I n t r o d u c t i o n  35  2.3.2 Importance  36  of S o i l V a r i a b i l i t y  2.3.3 Sources o f S o i l V a r i a b i l i t y  37  2.3.4 S y s t e m a t i c and Random V a r i a b i l i t y  37  2.3.5 V a r i a b i l i t y o f C h e m i c a l , P h y s i c a l , and F e r t i l i t y  38  Parameters 2.3.6 V a r i a b i l i t y i n S e r i e s , Map U n i t s , and Landscapes  39  2.3.7 S t a t i s t i c s  40  2.3.8 Magnitude  of Variability  (CVs)  42  2.3.9 V a r i a b i l i t y and S i z e o f S a m p l i n g Area  45  2.3.10 Number o f Samples t o E s t i m a t e a Mean vi  46  2.3-11 E f f e c t s o f C u l t i v a t i o n  48  3-0  ENVIRONMENTAL SETTING  50  3.1  Climate  50  3.2  P h y s i o g r a p h y , Geology, V e g e t a t i o n , and S o i l s  53  3.2.1  Physiography and Geology  53  3.2.2  Vegetation  55  3.2.3  Soils  56  4.0 METHODS  67  4.1  67  Site Selection  4.1.1  Number o f Samples  68  4.1.2  D e t e r m i n a t i o n o f Land C l e a r i n g Age Groups  70  4.1.3  Sampling  76  4.1.3.1 L i t t e r l a y e r and the weighted average 4.2  Laboratory Analyses  78 81  4.2.1  Sample P r e p a r a t i o n  81  4.2.2  pH  81  4.2.3  P, Ca, Mg, and K  81  4.2.4  Organic Matter  83  4.2.5  Nitrogen  84  4.3 Map D i g i t i z a t i o n  85  4.4  85  S t a t i s t i c a l Methods  4.4.1  P r i n c i p a l Component and C l u s t e r A n a l y s e s  90  4.4.2  M u l t i p l e Regression  92 vii  4.4.3 D i s c r i m i n a n t  Analysis  93  5.0 RESULTS AND DISCUSSION  95  5.1 Land C l e a r i n g Study  95  5.1.1 Land C l e a r i n g P r i o r  t o 1920  95  5.1.2 Land C l e a r i n g A f t e r 1920  96  5.1.2.1 Outwash s o i l s  99  5.1.2.2 A l l u v i a l s o i l s 5.1.2.3 G l a c i a l m a r i n e 5.1.2.4 M o r a i n a l 5.2 P r o c e d u r a l  105 soils  105  soils  106  Checks  111  5.2.1 R e l a t i o n s h i p between O r g a n i c M a t t e r and Leco Carbon  111  5.2.2 D u p l i c a t i o n o f Samples  115  5.3 A n a l y s i s o f P a r e n t M a t e r i a l , Age and Country  116  5.3.1 I n t r o d u c t o r y  116  Comparison o f Age and Country D i f f e r e n c e s  by P a r e n t M a t e r i a l 5.3-1.1 Q u a l i t y o f t h e Data  117  5.3.2 Age and Country A n a l y s i s by P a r e n t M a t e r i a l  119  5.3.2.1 Outwash S o i l s  119  5-3.2.2 A l l u v i a l S o i l s  122  5.3.2.3 G l a c i a l m a r i n e S o i l s  129  5-3.2.4 B u l k d e n s i t y  131  5.3.2.5 L i t t e r L a y e r  135  5.3-2.6 Summary o f A n a l y s i s o f P a r e n t M a t e r i a l s  135  5.3.3 Comparison o f A r e a l and C o n c e n t r a t i o n  Measurements  138  5.3.4 D e t e r m i n a t i o n o f S i m i l a r i t y  Among P l o t s  141  5.3.5 A n a l y s i s o f P l o t S i m i l a r i t y  by P a r e n t M a t e r i a l  142  viii  5.3.6 A n a l y s i s o f A l l P l o t s  149  5.4 P r e d i c t i o n o f T i m e - S i n c e - C l e a r i n g  150  5.4.1 P r e d i c t i o n T e s t  154  5.5 E f f e c t s o f Land Use, P a r e n t M a t e r i a l and Country on S o i l Genesis  154  5.5.1 I n i t i a l L e v e l s o f S o i l P r o p e r t i e s  155  5.5.2 E f f e c t s o f Management on t h e D i r e c t i o n o f Change of S o i l Properties  156  5.5.3 E f f e c t s o f Country  163  5.6 A n a l y s i s o f V a r i a b l e s  164  5.6.1 G r o u p i n g and R e l a t i o n s h i p s Among t h e V a r i a b l e s  165  5.6.2 V a r i a b l e s As D i s c r i m i n a t o r s o f Land C l e a r i n g Age Groups  165  5.7 C l a s s i f i c a t i o n T e s t i n g o f Age Groups  170  5.8 S o i l V a r i a b i l i t y  170  5.8.1 A n a l y s i s o f P a r e n t M a t e r i a l s  172  5.8.1.1 R e s u l t s o f A n a l y s i s  172  5.8.1.2 D i s c u s s i o n o f V a r i a b i l i t y by P a r e n t M a t e r i a l  175  5.8.2 V a r i a b i l i t y o f Age  177  5.8.3 V a r i a b i l i t y  177  o f Land Use  5.8.4 V a r i a b i l i t y o f Country  178  5.8.5 Summary o f V a r i a b i l i t y by P a r e n t M a t e r i a l , Age, and Country  178  5.8.6 V a r i a b i l i t y A c c o r d i n g  180  t o S i z e o f Study P l o t  5.8.7 Comparison o f C o n c e n t r a t i o n  with Areal V a r i a b i l i t y  5.9 Number o f Samples Required t o E s t i m a t e P o p u l a t i o n Means  ix  180  183  6.0 SUMMARY AND CONCLUSIONS  186  6.1 Summary  186  6.1.1 Summary o f P a r e n t M a t e r i a l , Age, and Land Use A n a l y s i s  186  6.1.2 Summary o f A n t h r o p o g e n i c E f f e c t s on S o i l G e n e s i s  187  6.2 C o n c l u s i o n s  189  6.3 A p p l i c a t i o n s and S u g g e s t i o n s f o r F u t u r e Research  196  6.3.1 A p p l i c a t i o n s  196  6.3.2 S u g g e s t i o n s f o r F u t u r e Research  197  7.0 LITERATURE CITED  198  8.0 APPENDICES  215  8.1 Appendix A: T y p i c a l Pedon D e s c r i p t i o n s  216  8.2 Appendix B: P r o c e d u r a l t e s t s and Kolmgorov-Smirnov of Normality  Tests  221  8.3 Appendix C: A n a l y s i s o f P l o t , Age and R e p l i c a t e on Concentration basis  236  8.4 Appendix D: A n a l y s i s o f P l o t , Age, Land Use, Country, and R e p l i c a t e (measurements i n kg ha-1)  273  8.5 Appendix E: M u l t i v a r i a t e S t a t i s t i c s  294  8.6 Appendix F: A n a l y s i s o f V a r i a b i l i t y by P l o t (measurements i n c o n c e n t r a t i o n ) , A n a l y s i s o f V a r i a b i l i t y by Age and Country (measurements i n kg h a 1 )  299  8.7 Appendix G: Raw Data  305  -  x  LIST OF TABLES Table  Title  Page  Table 1. P o p u l a t i o n o f major c e n t e r s w i t h i n and nearby the F r a s e r Lowland, 1881 t o 1981 (Bureau o f the Census 1982, D a l i c h o w 1972, S t a t i s t i c s Canada 1974, S t a t i s t i c s Canada 1982).  11  Table 2. S i z e o f f a r m s i n Whatcom County, WA 1900 t o 1982 (Washington S t a t e Department o f A g r i c u l t u r e 1956, Bureau o f the Census 1961 t o 1984).  19  Table 3. Number o f f a r m s and l a n d a r e a o f s t r a w b e r r i e s and r a s p b e r r i e s i n Whatcom County, WA (Bureau o f t h e Census 1942 through 1984).  22  Table 4. Temperature and p r e c i p i t a t i o n d a t a 1951 t o 1980 a t W h i t e Rock, B.C., B l a i n e , WA, A b b o t s f o r d , B.C., and C l e a r b r o o k , WA.  51  Table 5. Parent m a t e r i a l and s o i l s i n t h e s t u d y a r e a .  58  Table 6. C l a s s i f i c a t i o n o f s o i l s i n t h e s t u d y a r e a o f Whatcom County, WA ( G o l d i n 1986, S o i l Survey S t a f f 1975).  59  Table 7. C l a s s i f i c a t i o n o f s o i l s i n t h e s t u d y a r e a , Lower F r a s e r V a l l e y , B r i t i s h Columbia ( L u t t m e r d i n g 1981b, Canada S o i l Survey Committee 1978).  59  Table 8. Land c a p a b i l i t y c l a s s e s f o r map u n i t s from major s o i l s i n t h e s t u d y a r e a ( G o l d i n 1986, K l i n g e b i e l and Montgomery 1973).  60  T a b l e 9. A g r i c u l t u r a l c a p a b i l i t y c l a s s e s f o r major s o i l s i n t h e s t u d y a r e a ( L u t t m e r d i n g , 1985, p e r s o n a l c o m m u n i c a t i o n , Keng 1983).  60  Table 10. I n f o r m a t i o n o f a e r i a l photographs used i n l a n d c l e a r i n g s t u d y and p l o t l o c a t i o n s .  67  Table  11. Breakdown o f outwash s o i l s by age. O l d r a s p b e r r y p l o t (RASP) n o t i n c l u d e d i n summary c a l c u l a t i o n s .  119  Table 12. Breakdown o f outwash s o i l s by c o u n t r y .  122  Table 13. Breakdown o f a l l u v i a l s o i l s by age.  124  Table 14. Breakdown o f a l l u v i a l s o i l s by c o u n t r y .  126  Table 15. Breakdown o f g l a c i a l m a r i n e s o i l s by age.  129  Table 16. Breakdown o f g l a c i a l m a r i n e s o i l s by  country.  131  T a b l e 17. E f f e c t s o f t i m e - s i n c e - c l e a r i n g on b u l k d e n s i t y f o r outwash, a l l u v i a l , and g l a c i a l m a r i n e s o i l s .  133  T a b l e 18. M u l t i p l e range t e s t i n g o f two-way a n a l y s i s o f v a r i a n c e performed on e n t i r e d a t a s e t , c u l t i v a t e d s o i l s o n l y , m i n e r a l s o i l s o n l y , and m i n e r a l p l u s w e i g h t e d average s o i l s f o r each v a r i a b l e and s e p a r a t e d by p a r e n t m a t e r i a l and c o u n t r y .  138  Table 19. S o i l and s i t e c h a r a c t e r i s t i c s f o r each c l u s t e r group f o r outwash s o i l s d e r i v e d f r o m c l u s t e r analysis.  143  T a b l e 20. S o i l and s i t e c h a r a c t e r i s t i c s f o r each c l u s t e r group f o r a l l u v i a l s o i l s d e r i v e d f r o m c l u s t e r analysis.  145  Table 21. S o i l and s i t e c h a r a c t e r i s t i c s f o r each c l u s t e r group f o r g l a c i a l m a r i n e s o i l s d e r i v e d from c l u s t e r analysis.  147  Table 22. T i m e - s i n c e - c l e a r i n g e q u a t i o n s d e r i v e d from s t e p w i s e m u l t i p l e r e g r e s s i o n f o r Canada, t h e USA, and both c o u n t r i e s combined.  153  T a b l e 23- Mean l e v e l s o f s o i l c o n s t i t u e n t s i n woodland s o i l s on outwash, a l l u v i a l , and g l a c i a l m a r i n e s o i l s .  155  Table 24. Summary o f p r i n c i p a l component a n a l y s i s f o r outwash, a l l u v i a l , and g l a c i a l m a r i n e s o i l s .  165  Table 25. C l a s s i f i c a t i o n  r e s u l t s f o r outwash s o i l s .  171  T a b l e 26. C l a s s i f i c a t i o n  results for alluvial soils.  171  Table 27. C l a s s i f i c a t i o n  results f o rglacialmarine s o i l s .  171  Table 28. C o e f f i c i e n t s o f v a r i a t i o n (%) f o r c h e m i c a l and p h y s i c a l v a r i a b l e s o f outwash, a l l u v i a l , and g l a c i a l m a r i n e s o i l s by age.  173  Table 29- C o e f f i c i e n t s o f v a r i a t i o n (%) f o r c h e m i c a l and p h y s i c a l v a r i a b l e s o f outwash, a l l u v i a l , and g l a c i a l m a r i n e s o i l s by country.  179  T a b l e 30. R a t i o s o f i n d i v i d u a l c u l t i v a t e d p l o t CV t o CV o f a l l cultivated soils.  180  T a b l e 31. Number o f samples r e q u i r e d t o e s t i m a t e each v a r i a b l e on outwash, a l l u v i a l , and g l a c i a l m a r i n e s o i l s w i t h i n +5? and +20% o f the p o p u l a t i o n mean a t t h e 95% c o n f i d e n c e l i m i t u s i n g t h e e n t i r e d a t a s e t (e) and c u l t i v a t e d s o i l s o n l y ( c ) .  185  xii  T a b l e A1. T y p i c a l pedon o f the B r i s c o t s e r i e s .  217  T a b l e A2. T y p i c a l pedon o f the K i c k e r v i l l e s e r i e s .  218  T a b l e A3. T y p i c a l pedon o f t h e Whatcom s e r i e s .  219  T a b l e B1. R e s u l t s o f Mann-Whitney-U t e s t comparing o r i g i n a l s (0) w i t h d u p l i c a t e s (D) o f m i n e r a l s o i l s f o r a l l p a r e n t m a t e r i a l s (60 p l o t s ) . P r o b a b i l i t y i s corrected f o r ties.  222  T a b l e B2. R e s u l t s o f Mann-Whitney-U t e s t comparing o r i g i n a l s (0) w i t h d u p l i c a t e s (D) o f l i t t e r l a y e r s f o r a l l p a r e n t m a t e r i a l s (12 p l o t s ) . P r o b a b i l i t y i s corrected f o r t i e s .  223  T a b l e B3. R e s u l t s o f W i l c o x o n m a t c h e d - p a i r s s i g n e d - r a n k s t e s t comparing o r i g i n a l s (0) w i t h d u p l i c a t e s (D) o f m i n e r a l s o i l s f o r a l l p a r e n t m a t e r i a l s (60 p l o t s ) .  224  T a b l e B4. R e s u l t s o f W i l c o x o n m a t c h e d - p a i r s s i g n e d - r a n k s t e s t comparing o r i g i n a l s (0) w i t h d u p l i c a t e s (D) o f l i t t e r l a y e r s f o r a l l p a r e n t m a t e r i a l s (12 p l o t s ) .  225  T a b l e B5. R e s u l t s o f Kolmogorov-Smirnov Goodness o f F i t t e s t f o r outwash s o i l s u s i n g a l l samples.  226  T a b l e B6. R e s u l t s o f Kolmogorov-Smirnov Goodness o f F i t t e s t f o r outwash s o i l s u s i n g p l o t means.  226  T a b l e B7. R e s u l t s o f Kolmogorov-Smirnov Goodness o f F i t t e s t f o r a l l u v i a l s o i l s u s i n g a l l samples.  226  T a b l e B8. R e s u l t s o f Kolmogorov-Smirnov Goodness o f F i t t e s t f o r a l l u v i a l s o i l s u s i n g p l o t means.  227  T a b l e B9. R e s u l t s o f Kolmogorov-Smirnov Goodness o f F i t t e s t f o r g l a c i a l m a r i n e s o i l s u s i n g a l l samples.  227  T a b l e B10. R e s u l t s o f Kolmogorov-Smirnov Goodness o f F i t t e s t f o r g l a c i a l m a r i n e s o i l s u s i n g p l o t means.  227  T a b l e B11. R e s u l t s o f Kolmogorov-Smirnov Goodness o f F i t t e s t f o r outwash s o i l s u s i n g a l l samples. C u l t i v a t e d s o i l s only.  228  Table B12. R e s u l t s o f Kolmogorov-Smirnov Goodness o f F i t t e s t f o r outwash s o i l s u s i n g p l o t means. C u l t i v a t e d s o i l s only.  228  T a b l e B13. R e s u l t s o f Kolmogorov-Smirnov Goodness o f F i t t e s t f o r a l l u v i a l s o i l s u s i n g a l l samples. C u l t i v a t e d s o i l s only.  228  xiii  Table B14. R e s u l t s o f Kolmogorov-Smirnov Goodness o f F i t t e s t f o r a l l u v i a l s o i l s u s i n g p l o t means. C u l t i v a t e d s o i l s only.  229  Table B15. R e s u l t s o f Kolmogorov-Smirnov Goodness o f F i t t e s t f o r g l a c i a l m a r i n e s o i l s u s i n g a l l samples. C u l t i v a t e d s o i l s only.  229  Table B16. R e s u l t s o f Kolmogorov-Smirnov Goodness o f F i t t e s t f o r g l a c i a l m a r i n e s o i l s u s i n g p l o t means. C u l t i v a t e d s o i l s only.  229  Table C1. Breakdown o f outwash s o i l s by p l o t .  237  T a b l e C2. Student-Newman-Keuls m u l t i p l e range t e s t on outwash s o i l s by p l o t w i t h i n each age group. P l o t p a i r s l i s t e d a r e those s h o w i n g a s i g n i f i c a n t d i f f e r e n c e a t the 0.05 p e r c e n t l e v e l o f s i g n i f i c a n c e .  239  T a b l e C3. Student-Newman-Keuls M u l t i p l e Range Test performed on outwash s o i l s on each v a r i a b l e by age.  241  T a b l e C4. Student-Newman-Keuls M u l t i p l e Range Test performed on outwash s o i l s on each v a r i a b l e by age e x c l u d i n g p l o t s 4, 6, 7, and 8.  243  T a b l e C5. Student-Newman-Keuls M u l t i p l e Range Test performed on c u l t i v a t e d , woodland, m i n e r a l , and m i n e r a l p l u s w e i g h t e d average outwash s o i l s f o r each v a r i a b l e by age.  245  T a b l e C6. Breakdown o f outwash s o i l s by r e p l i c a t e .  247  T a b l e C7. Breakdown o f a l l u v i a l s o i l s by p l o t .  249  T a b l e C8. Student-Newman-Keuls m u l t i p l e range t e s t on a l l u v i a l s o i l s by p l o t w i t h i n each age group. P l o t p a i r s l i s t e d a r e those showing a s i g n i f i c a n t d i f f e r e n c e a t t h e 0.05 p e r c e n t l e v e l o f s i g n i f i c a n c e .  251  T a b l e C9. Student-Newman-Keuls M u l t i p l e Range T e s t performed on a l l u v i a l s o i l s on each v a r i a b l e by age.  252  T a b l e C10. Student-Newman-Keuls M u l t i p l e Range Test performed on c u l t i v a t e d , woodland, m i n e r a l , and m i n e r a l p l u s w e i g h t e d average a l l u v i a l s o i l s f o r each v a r i a b l e by age.  254  T a b l e C11. Breakdown o f a l l u v i a l s o i l s by r e p l i c a t e .  256  T a b l e C12. Breakdown o f g l a c i a l m a r i n e  258  xiv  s o i l s by p l o t .  T a b l e C13- Student-Newman-Keuls m u l t i p l e range t e s t on g l a c i a l m a r i n e s o i l s by p l o t w i t h i n each age group. P l o t p a i r s l i s t e d a r e those s h o w i n g a s i g n i f i c a n t d i f f e r e n c e a t the 0.05 p e r c e n t l e v e l of significance.  260  Table C14. Student-Newman-Keuls M u l t i p l e Range T e s t performed on g l a c i a l m a r i n e s o i l s on each v a r i a b l e by a g e .  261  Table C15. Student-Newman-Keuls M u l t i p l e Range T e s t performed on c u l t i v a t e d , woodland, m i n e r a l , and m i n e r a l p l u s w e i g h t e d average g l a c i a l m a r i n e s o i l s f o r each v a r i a b l e by age.  263  T a b l e C16. Breakdown o f g l a c i a l m a r i n e  265  s o i l s by r e p l i c a t e .  T a b l e C17. Student-Newman-Keuls M u l t i p l e Range T e s t performed on l i t t e r l a y e r s f o r each v a r i a b l e s e p a r a t e d by p a r e n t m a t e r i a l .  267  T a b l e C18. S i g n i f i c a n t d i f f e r e n c e s among p a r e n t m a t e r i a l s and c u l t i v a t e d l a n d c l e a r i n g age groups f o r Canada, t h e USA, and both c o u n t r i e s combined f o r each v a r i a b l e . E n t r i e s i n d i c a t e s i g n i f i c a n c e a t 0.05 l e v e l .  269  Table D1. Breakdown o f outwash, a l l u v i a l , and g l a c i a l m a r i n e s o i l s by age. Measurements i n kg h a .  274  T a b l e D2. Breakdown o f outwash s o i l s by p l o t . i n kg ha-1.  276  - 1  Measurements  T a b l e D3. Student-Newman-Keuls M u l t i p l e Range T e s t performed on outwash s o i l s on each v a r i a b l e by age. Measurements i n kg ha-1.  277  Table D4. Student-Newman-Keuls M u l t i p l e Range T e s t performed on outwash s o i l s on each v a r i a b l e by l a n d use. Measurements i n kg ha-1.  279  Table D5. Breakdown o f outwash s o i l s by c o u n t r y . Measurements i n kg ha-1.  281  Table D6. Breakdown o f a l l u v i a l s o i l s by p l o t . i n kg ha-1.  282  Measurements  Table D7. Student-Newman-Keuls M u l t i p l e Range T e s t on a l l u v i a l s o i l s p e r f o r m e d on each v a r i a b l e by age. Measurements i n kg ha-1. xv  283  Table D8. Student-Newman-Keuls M u l t i p l e Range T e s t performed on a l l u v i a l s o i l s on each v a r i a b l e by l a n d use. Measurements i n kg ha-1.  285  Table D9. Breakdown o f a l l u v i a l s o i l s by c o u n t r y . Measurements i n kg ha-1.  287  T a b l e D10. Breakdown o f g l a c i a l m a r i n e s o i l s by p l o t . Measurements i n kg ha-1.  288  T a b l e D11. Student-Newman-Keuls M u l t i p l e Range T e s t on g l a c i a l m a r i n e s o i l s performed on each v a r i a b l e by age. Measurements i n kg ha-1.  289  T a b l e D12. Student-Newman-Keuls M u l t i p l e Range Test p e r f o r m e d on g l a c i a l m a r i n e s o i l s on each v a r i a b l e by l a n d use. Measurements i n kg ha-1.  291  T a b l e D13. Breakdown o f g l a c i a l m a r i n e s o i l s by c o u n t r y . Measurements i n kg ha-1.  293  T a b l e E1. C a n o n i c a l d i s c r i m i n a n t f u n c t i o n s f o r outwash s o i l s .  295  T a b l e E2. C a n o n i c a l d i s c r i m i n a n t f u n c t i o n s f o r a l l u v i a l s o i l s .  295  T a b l e E3« C a n o n i c a l d i s c r i m i n a n t f u n c t i o n s f o r g l a c i a l m a r i n e soils.  295  T a b l e E4. S t a n d a r d i z e d c a n o n i c a l d i s c r i m i n a n t f u n c t i o n and t o t a l s t r u c t u r e c o e f f i c i e n t s f o r outwash s o i l s .  296  T a b l e E5. S t a n d a r d i z e d c a n o n i c a l d i s c r i m i n a n t f u n c t i o n and total structure coefficients for a l l u v i a l soils.  296  T a b l e E6. S t a n d a r d i z e d c a n o n i c a l d i s c r i m i n a n t f u n c t i o n and t o t a l structure coefficients for glacialmarine soils.  296  T a b l e E7. P r i n c i p a l component a n a l y s i s f o r outwash s o i l s . The a n a l y s i s e x t r a c t e d two f a c t o r s .  297  T a b l e E8. P r i n c i p a l component a n a l y s i s f o r a l l u v i a l s o i l s . The a n a l y s i s e x t r a c t e d two f a c t o r s .  297  T a b l e E9. P r i n c i p a l component a n a l y s i s f o r g l a c i a l m a r i n e soils. The a n a l y s i s e x t r a c t e d two f a c t o r s .  298  Table F1. C o e f f i c i e n t s o f v a r i a t i o n (%) f o r c h e m i c a l and p h y s i c a l v a r i a b l e s o f outwash s o i l s by p l o t .  300  T a b l e F2. C o e f f i c i e n t s o f v a r i a t i o n {%) f o r c h e m i c a l and p h y s i c a l v a r i a b l e s o f a l l u v i a l s o i l s by p l o t .  301  xvi  T a b l e F3. C o e f f i c i e n t s o f v a r i a t i o n (%) f o r c h e m i c a l and p h y s i c a l v a r i a b l e s o f g l a c i a l m a r i n e s o i l s by p l o t .  302  T a b l e F4. C o e f f i c i e n t s o f v a r i a t i o n (%) f o r c h e m i c a l and p h y s i c a l v a r i a b l e s o f outwash, a l l u v i a l , and g l a c i a l m a r i n e s o i l s by age (measurements i n kg ha-1).  303  T a b l e F5. C o e f f i c i e n t s o f v a r i a t i o n (%) f o r c h e m i c a l and p h y s i c a l v a r i a b l e s o f outwash, a l l u v i a l , and g l a c i a l m a r i n e s o i l s by c o u n t r y (measurements i n kg ha-1).  304  Table G1. Raw d a t a - outwash s o i l s .  306  Table G2. Raw d a t a - a l l u v i a l  314  soils.  T a b l e G3. Raw d a t a - g l a c i a l m a r i n e  soils.  T a b l e G4. Raw d a t a - o r i g i n a l s and d u p l i c a t e s .  xvii  321 328  LIST OF FIGURES AND Figure  PLATES  Title  Page  Fig.  1. Mean annual water budget a t C l e a r b r o o k , WA  station.  Fig.  2. Map  Fig.  3 . S o i l map o f the outwash s o i l s . North i s a t the top o f t h e f i g u r e . S c a l e i s a p p r o x i m a t e l y 1:25 000.  61  Fig.  4. S o i l map o f the a l l u v i a l s o i l s . North i s a t the top o f t h e f i g u r e . S c a l e i s a p p r o x i m a t e l y 1:28 000.  62  Fig.  5. S o i l map o f the g l a c i a l m a r i n e s o i l s . North i s a t the t o p o f t h e f i g u r e . S c a l e i s a p p r o x i m a t e l y 1:19 000.  63  Fig.  6. S o i l map o f the m o r a i n a l s o i l s . North i s a t the t o p o f t h e f i g u r e . S c a l e i s a p p r o x i m a t e l y 1:17 000.  64  Fig.  7. Land c l e a r i n g map o f the outwash s o i l s . c= c l e a r e d b e f o r e 1943. N o r t h i s a t the t o p o f the f i g u r e . S c a l e i s a p p r o x i m a t e l y 1:25 000.  72  Fig.  8. Land c l e a r i n g map o f the a l l u v i a l s o i l s . c= c l e a r e d b e f o r e 1943- N o r t h i s a t the top o f t h e f i g u r e . S c a l e i s a p p r o x i m a t e l y 1:28 000.  73  Fig.  9. Land c l e a r i n g map o f the g l a c i a l m a r i n e s o i l s . c= c l e a r e d b e f o r e 1943. N o r t h i s a t the t o p o f t h e f i g u r e . S c a l e i s a p p r o x i m a t e l y 1:19 000.  74  Fig.  10. Land c l e a r i n g map o f b e f o r e 1943. N e g a t i v e woodland i n t h a t age the f i g u r e . S c a l e i s  75  Fig.  11. Sampling scheme.  77  Fig.  12. C i r c u l a r f l o w c h a r t o f s t a t i s t i c a l methods.  87  Fig.  13.  R e l a t i v e amounts o f woodland on outwash, a l l u v i a l , g l a c i a l m a r i n e , and m o r a i n a l s o i l s i n 1943, 1955, 1966, 1976, and 1983 i n Canada.  97  Fig.  14. R e l a t i v e amounts o f woodland on outwash, a l l u v i a l , g l a c i a l m a r i n e , and m o r a i n a l s o i l s i n 1943, 1955, 1966, 1976, and 1983 i n t h e U n i t e d S t a t e s .  98  Fig.  15. L i n e a r r e g r e s s i o n o f o r g a n i c m a t t e r (0M) on Leco carbon (LC) f o r m i n e r a l s o i l s .  111  Fig.  16. L i n e a r r e g r e s s i o n o f o r g a n i c m a t t e r carbon (LC) f o r l i t t e r l a y e r s .  112  o f the s t u d y a r e a .  52 54  the m o r a i n a l s o i l s . c= c l e a r e d signs r e f e r to r e v e r s i o n to g r o u p i n g . North i s a t the top o f a p p r o x i m a t e l y 1:17 000.  rriii  (0M) on Leco  Fig.  17. L i n e a r r e g r e s s i o n o f o r g a n i c m a t t e r (OM) on Leco carbon (LC) f o r m i n e r a l s o i l s and l i t t e r l a y e r s .  113  Fig.  18. C l u s t e r diagram f o r outwash s o i l s .  142  Fig.  19. C l u s t e r diagram f o r a l l u v i a l s o i l s .  144  Fig.  20. C l u s t e r diagram f o r g l a c i a l m a r i n e s o i l s .  146  Fig.  2 1 . C l u s t e r diagram f o r a l l s o i l s .  149  Fig.  22. Trends f o r pH ( H o ) l e v e l s w i t h time f o r outwash ( 0 ) , a l l u v i a l ( A ) , and g l a c i a l m a r i n e (G) s o i l s .  158  Fig.  23. Trends f o r K l e v e l s w i t h t i m e f o r outwash ( 0 ) , a l l u v i a l ( A ) , and g l a c i a l m a r i n e (G) s o i l s . V a l u e s i n mg k g - 1 .  158  Fig.  24. Trends f o r OM l e v e l s w i t h t i m e f o r outwash ( 0 ) , a l l u v i a l 159 ( A ) , and g l a c i a l m a r i n e (G) s o i l s . V a l u e s i n %.  Fig.  25. Trends f o r N l e v e l s w i t h t i m e f o r outwash ( 0 ) , a l l u v i a l ( A ) , and g l a c i a l m a r i n e (G) s o i l s . V a l u e s i n %.  159  Fig.  26. D i s c r i m i n a n t a n a l y s i s s c a t t e r p l o t o f outwash s o i l s u s i n g a l l seven l a n d c l e a r i n g age groups (1=1950, 2=1960, 3=1970, 4=1980, 5=woodland, 6=weighted average, 7 = l i t t e r l a y e r ) .  167  Fig.  27. D i s c r i m i n a n t a n a l y s i s s c a t t e r p l o t o f a l l u v i a l s o i l s u s i n g a l l s e v e n l a n d c l e a r i n g age groups (1=1950, 2=1960, 3=1970, 4=1980, 5=woodland, 6=weighted average, 7 = l i t t e r l a y e r ) .  168  Fig.  28. D i s c r i m i n a n t a n a l y s i s s c a t t e r p l o t o f g l a c i a l m a r i n e s o i l s u s i n g a l l seven l a n d c l e a r i n g age groups (1=1950, 2=1960, 3=1970, 4=1980, 5=woodland, 6=weighted average, 7 = l i t t e r l a y e r ) .  169  Fig.  29. Average CV f o r seven c h e m i c a l v a r i a b l e s on outwash (0), a l l u v i a l (A), and g l a c i a l m a r i n e (G) s o i l s using c u l t i v a t e d s o i l s only.  176  2  F i g . 30. T h r e e - d i m e n s i o n a l d i a g r a m showing v a r i a b i l i t y o f Mg (avg. CV=51) on p l o t 42 on g l a c i a l m a r i n e s o i l s , age g r o u p 1950. P l o t i s 3 0 m x 30 m ( s e e F i g . 1 1, A p p e n d i x G). V a l u e s i n mg kg-1.  181  F i g . 31. T h r e e - d i m e n s i o n a l d i a g r a m s h o w i n g v a r i a b i l i t y o f 0M (avg. CV=20) on p l o t 42 on g l a c i a l m a r i n e s o i l s , age g r o u p 1 950. P l o t i s 30 m x 30 m ( s e e F i g . 11, A p p e n d i x G). V a l u e s i n %.  182  xxx  Fig.  B 1 . Normal p l o t s o f pH ( C a C l ) i g samples (A) and p l o t means (B) f r o m a l l outwash s o i l s .  230  Fig.  B2. Normal p l o t s o f pH ( C a C l ) u s i n g samples (A) and p l o t means (B) from c u l t i v a t e d outwash s o i l s .  231  Fig.  B3. Normal p l o t s o f Mg u s i n g samples (A) and p l o t means (B) from a l l outwash s o i l s .  232  F i g . B4. Normal p l o t s o f Mg u s i n g samples (A) and p l o t means (B) from c u l t i v a t e d outwash s o i l s .  233  Fig.  B5. Normal p l o t s o f OM u s i n g samples (A) and p l o t means (B) f r o m a l l outwash s o i l s .  234  Fig.  B6. Normal p l o t s o f OM u s i n g samples (A) and p l o t means (B) f r o m c u l t i v a t e d outwash s o i l s .  235  2  u  s  n  2  PLATES P l a t e 1. Woodland s i t e on outwash s o i l s ( p l o t 2 0 ) .  79  P l a t e 2. S i t e l o c a t i o n s i n c u l t i v a t e d f i e l d on outwash s o i l s ( p l o t 11). Photograph t a k e n from 155°.  80  P l a t e 3. B u l k d e n s i t y s a m p l i n g ( p l o t 53). strawberries.  80  Crop i s  P l a t e 4. 1943 a e r i a l photograph o f the outwash a r e a . S c a l e i s a p p r o x i m a t e l y 1:24 000. N o r t h i s a t the t o p o f t h e page.  100  P l a t e 5. 1955 a e r i a l photograph o f the outwash a r e a . S c a l e i s a p p r o x i m a t e l y 1:24 000. N o r t h i s a t the t o p o f t h e page.  101  P l a t e 6. 1966 a e r i a l photograph o f the outwash a r e a . S c a l e i s a p p r o x i m a t e l y 1:24 000. N o r t h i s a t the t o p o f t h e page.  102  P l a t e 7. 1976 a e r i a l photograph o f the outwash a r e a . S c a l e i s a p p r o x i m a t e l y 1:24 000. N o r t h i s a t t h e t o p o f t h e page.  103  P l a t e 8. 1981 a e r i a l photograph o f the outwash a r e a . S c a l e i s a p p r o x i m a t e l y 1:24 000. N o r t h i s a t t h e t o p o f t h e page.  104  P l a t e 9. 1981 a e r i a l photograph o f the a l l u v i a l a r e a . S c a l e i s a p p r o x i m a t e l y 1:24 000. N o r t h i s a t t h e t o p o f t h e page.  107  P l a t e 10. 1981 a e r i a l photograph o f the g l a c i a l m a r i n e a r e a . S c a l e i s a p p r o x i m a t e l y 1:24 000. N o r t h i s a t the top o f the page. The upper photo i s the west h a l f and t h e lower photo t h e e a s t h a l f .  108  P l a t e 11. 1981 a e r i a l photograph o f the m o r a i n a l a r e a . S c a l e i s a p p r o x i m a t e l y 1:24 000. N o r t h i s a t t h e t o p o f t h e page.  109  xxi  ACKNOWLEDGEMENTS I am v e r y f o r t u n a t e t o have r e c e i v e d the a s s i s t a n c e o f s e v e r a l a g e n c i e s and i n s t i t u t i o n s i n both the U n i t e d S t a t e s and Canada i n s u p p o r t o f my Ph.D.  program.  I am g r a t e f u l t o the U n i v e r s i t y  o f B r i t i s h C o l u m b i a , w h i c h i s the g r a n t i n g i n s t i t u t i o n , f o r i t s f a c u l t y and  facilities.  I a l s o thank Western Washington U n i v e r s i t y ,  the USDA S o i l C o n s e r v a t i o n  S e r v i c e i n Washington S t a t e , and the B.C.  M i n i s t r y o f Environment f o r t h e i r  cooperation.  I n p a r t i c u l a r , I w i s h t o e x p r e s s my thanks t o Les L a v k u l i c h , my r e s e a r c h s u p e r v i s o r , who helped  t o d e v e l o p my program a t UBC. H i s  a d v i c e , m o r a l and f i n a n c i a l s u p p o r t ,  and p e r s o n a l i n t e r e s t were much  a p p r e c i a t e d d u r i n g the c o u r s e o f the Ph.D.  program.  Not many would  have undertaken a commuting American s t u d e n t and worked out a program t h a t would f i t between a f u l l - t i m e j o b and a f a m i l y .  Thanks t o my  o t h e r committee members, Hans S c h r e i e r and A r t Bomke f o r t h e i r good humor i n b o l s t e r i n g my s p i r i t s and f o r t h e i r c r i t i c a l r e v i e w s o f a l l the d r a f t s o f t h i s t h e s i s .  I a p p r e c i a t e the comments and t h o u g h t f u l  i n s i g h t o f A l f Siemens o f the Department o f Geography i n the i n t r o d u c t o r y s e c t i o n s o f the t h e s i s .  Thanks t o B e r n i e  von S p i n d l e r ,  Ev W o l t e r s o n , P a t t y C a r b i s , and Sandy Brown f o r h e l p i n g w i t h the l a b analyses  a t UBC.  Many thanks t o Dean John M i l e s a t Huxley C o l l e g e f o r a l l o w i n g me t o share the c o l l e g e ' s word p r o c e s s o r facilities,  and  use  i t s laboratory  t o A x e l Franzmann f o r h e l p i n g w i t h some o f the l a b  a n a l y s e s , and t o R a i P e t e r s o n  and L i n d a S h e a f f e r f o r s e t t i n g up work  spaces f o r me i n t h e i r l a b s .  xxii  Gene Hoerauf o f the Geography Department a t WWU was e x t r e m e l y h e l p f u l i n d i g i t i z i n g and f i n a l i z i n g t h e maps and many o f t h e f i g u r e s . He processed compilation.  t h e photographs, and p r o v i d e d computer a s s i s t a n c e f o r map E v e l y n A l b r e c h t i n t h e Computer Center helped  w i t h the  d a t a a n a l y s i s w i t h SPSS-X. The schedule  S o i l Conservation  S e r v i c e a l l o w e d me t o work on an a d j u s t e d  f o r t h e t h r e e y e a r s o f my Ph.D. program so I c o u l d do both my  j o b and my Ph.D.  I want t o acknowledge Lynn Brown, S t a t e  C o n s e r v a t i o n i s t , f o r h i s w i l l i n g n e s s t o support  this effort.  Many  thanks t o J i m C a r l e y , S t a t e S o i l S c i e n t i s t , f o r h i s encouragement and f l e x i b i l i t y , and h i s e f f o r t s t o d e v e l o p and c o o r d i n a t e a s u f f i c i e n t w o r k l o a d t o m a i n t a i n my p o s i t i o n i n B e l l i n g h a m .  I am g r a t e f u l t o the  l a t e Dr. Rog Parsons f o r h i s u n s w e r v i n g encouragement o f my p u r s u i t o f a Ph.D. I w i s h t o acknowledge Mark Sondheim and Herb L u t t m e r d i n g  o f the  B.C. M i n i s t r y o f E n v i r o n m e n t f o r p r o v i d i n g maps, computer and i n t e r p r e t a t i v e i n f o r m a t i o n on t h e s o i l s o f the Lower F r a s e r V a l l e y . My w i f e B a r b a r a t o o k on many e x t r a burdens and, w i t h my c h i l d r e n Josee, age 6, and Jeremy, age 4, put up w i t h the s t r e s s o f my h e c t i c schedule.  Jeremy has o n l y known h i s f a t h e r as h a l f s t u d e n t , h a l f  employee, h a l f i n Vancouver, h a l f i n B e l l i n g h a m , and a l w a y s w i t h work t o do. Two f i n a l thank yous: f i r s t , t o my 1968 Volvo f o r s t a y i n g i n c o n d i t i o n t o make t h e many t r i p s a c r o s s t h e b o r d e r , and second, t o P r e m i e r B i l l Bennett f o r t i m i n g Expo 86 s o as t o g i v e me t h e i n c e n t i v e to  f i n i s h t h i s t h e s i s t o a v o i d t h e t o u r i s t c r u s h a t t h e border.  xxiii  1.0  INTRODUCTION  Man has had an e x t r a o r d i n a r y e f f e c t on t h e t e r r e s t r i a l e c o s y s t e m . In p a r t i c u l a r , he has d e s t r o y e d  p r a i r i e and f o r e s t , and r e p l a c e d  w i t h a g r i c u l t u r a l s y s t e m s t o feed a g r o w i n g p o p u l a t i o n .  Regardless o f  the q u a l i t y and d i r e c t i o n o f t h i s change, i t has n o n e t h e l e s s the b i o g e o c h e m i c a l  system.  them  altered  The process o f s o i l f o r m a t i o n assumes a  w h o l l y d i f f e r e n t c h a r a c t e r and d i r e c t i o n as a r e s u l t o f man's activities  (Nadezhdin 1961).  The e f f e c t s o f l a n d c l e a r i n g ( d e s i g n a t e d  c l e a r c u t t i n g i f land  grows back t o f o r e s t ) i s d i s c u s s e d i n much o f t h e f o r e s t s o i l s l i t e r a t u r e (Weetman and Webber 1972, W i l l 1972).  1968, and B o y l e and Ek  These i n c l u d e changes i n d i v e r s i t y and abundance o f b i o l o g i c a l  s p e c i e s , e f f e c t s on t h e l o c a l h y d r o t h e r m a l - c l i m a t i c s y s t e m due t o t h e r e p l a c e m e n t o f l a r g e wooded s p e c i e s w i t h p a s t u r e o r c r o p l a n d , l o s s o f b i o m a s s , and changes i n the boundary l a y e r e f f e c t between s o i l and atmosphere (Oke 1978).  I f burned and c o n v e r t e d  to agriculture,  n i t r o g e n i s v o l a t i l i z e d and bases a r e added t o t h e s o i l v i a the a s h residue  1.0.1  ( P r i t c h e t t 1979, W e l l s  1971, V i r o 1974).  Land Use A l t h o u g h a e r i a l photographs have been used f o r many y e a r s t o  d e s c r i b e l a n d use (Marschner 1950), o n l y a few s t u d i e s have examined s e q u e n t i a l l a n d u s e changes and most use o n l y t w o t i m e p e r i o d s and cover a l a r g e area.  Rump (1983) examined l a n d use change between 1961  and 1976 f o r Canada, Frey and D i l l  (1971) between 1952 and 1969 f o r  t h e M i s s i s s i p p i v a l l e y , Latham (1979) between 1958 and 1977 f o r t h e State o f Pennsylvania, for  B i r c h and Wharton (1982) between 1952 and 1979  t h e S t a t e o f Ohio, Coppleman e t a l . (1978) between 1952 and 1979  1  for  t h e S t a t e o f New Hampshire, and Z e i m e t z e t a l . (1976) between 1960  and  1970 f o r 53 c o u n t i e s i n t h e U n i t e d S t a t e s .  Some s t u d i e s have  developed m a t h e m a t i c a l models f o r p r e d i c t i n g l a n d use (Roberts 1979,  et a l .  L i n d s a y and Dunn 1979), i n c l u d i n g one by C i v c o and Kennard  (1983), who c o r r e l a t e d l a n d use change w i t h l a n d r e s o u r c e s t u d i e s have looked a t s h o r t - t e r m a r e a , such as F r a z i e r and S h o v i c  data.  A few  l a n d use t r e n d s i n a g r i c u l t u r a l (1979) between 1966 and 1974 i n  Whatcom County, WA, and o t h e r s i n urban a r e a s , such as C i v c o and Kennard (1983) between 1950 and 1980 i n M a n s f i e l d , Conn.  Many have  used t h e c a p a b i l i t e s o f Landsat and o t h e r d i g i t a l i m a g e r y , b u t t h e s e s t u d i e s a r e a l l l e s s than 15 y e a r s o l d (Odenyo and P e t t r y 1977, Adeniyi  1980).  None have examined l a n d use changes i n an i n t e r n a t i o n a l boundary r e g i o n and none have examined r e l a t i o n s h i p s w i t h s o i l s data contemporaneously w i t h t h e l a n d use a n a l y s i s .  gathered  No s t u d i e s have  developed a pre-1945 h i s t o r i c a l b a s i s o f l a n d use p r i o r t o t h e r a p i d l a n d use changes which o c c u r r e d  a f t e r W o r l d War I I .  1.0.2 C u l t i v a t i o n and S o i l P r o p e r t i e s C u l t i v a t i o n r e s u l t s i n the h o m o g e n i z a t i o n o f the s o i l s u r f a c e t o the depth o f t h e plow l a y e r .  I t r e s u l t s i n new f a c t o r s c a p a b l e o f  i m p a r t i n g new p r o p e r t i e s t o t h e s o i l t h a t d i d n o t d e v e l o p i n t h e n a t u r a l environment. systematic  T h i s a c t i o n d i s r u p t s s o i l h o r i z o n a t i o n and t h e  p e d o l o g i c d i f f e r e n t i a t i o n w i t h i n t h e plow l a y e r .  a d d i t i o n of chemical  amendments - l i m e , manure, c h e m i c a l  The  fertilizers,  p e s t i c i d e s , and t h e l i k e - has profound e f f e c t s on the c h e m i c a l , p h y s i c a l , and b i o l o g i c a l p r o p e r t i e s o f t h e s o i l The  d i r e c t i o n o f any change i n c h e m i c a l 2  (Brady 1985).  f e r t i l i t y between t h e  v i r g i n and the c u l t i v a t e d s o i l depends on the i n i t i a l f e r t i l i t y  (in a  sense, the parent m a t e r i a l ) , the amount and type o f amendment and m a n i p u l a t i o n , and the amount of t i m e the s o i l i s c u l t i v a t e d .  For  example, the parent m a t e r i a l i n M o l l i s o l s formed under p r a i r i e v e g e t a t i o n are more f e r t i l e than p a r e n t m a t e r i a l s o f Spodosols formed under c o n i f e r o u s v e g e t a t i o n (Buol et a l . 1980).  Generally,  alluvial  s o i l s a r e f e r t i l e , as w e l l as a c c e s s i b l e , w h i c h are the reasons they have been e x p l o i t e d i n a n c i e n t t i m e s . a key, but f r e q u e n t l y unknown and conditions. important  The  The degree o f management p l a y s  u n c o n t r o l l e d r o l e under f i e l d  t i m e f o r pedogenesis s i n c e the i n i t a l s t a t e i s as  f o r t h i s "new"  pedon as f o r any under n a t u r a l c o n d i t i o n s  (Jenny 1941). Management m a n i p u l a t i o n s  can have a s t r o n g i m p a c t on s o i l s .  W i t n e s s the r e c l a m a t i o n o f much o f H o l l a n d and Denmark from the  sea,  the development o f Japanese gardens, the d y k i n g o f many r i v e r s t o r e c l a i m f l o o d p l a i n s f o r f a r m l a n d , and the a d d i t i o n s of s o i l amendments- e s p e c i a l l y the extreme cases o f the plaggen and epipedons ( B i d w e l l and 1.0.3  Hole 1965,  anthropic  S o i l Survey S t a f f 1975).  E f f e c t s o f N a t i o n a l D i f f e r e n c e s on Management and  Soils  D i f f e r e n t c u l t u r e s have d i f f e r e n t aims and methods f o r cultivation. literature.  T h i s d i f f e r e n c e has not been r e p o r t e d i n the  soils  Whereas many s t u d i e s have documented U n i t e d S t a t e s ' o r  Canadian t r e n d s , few  have examined them j o i n t l y and none o f these have  been p e d o l o g i c a l i n o r i e n t a t i o n , w i t h the e x c e p t i o n o f G o l d i n  (1983).  A p o l i t i c a l boundary and the r e s u l t i n g e f f e c t s on m a r k e t s , p o p u l a t i o n , and economics can i n f l u e n c e the i n t e n s i t y o f c u l t i v a t i o n , the type c r o p s grown, and u l t i m a t e l y the degree o f management.  3  of  What e f f e c t i n  s o i l p r o p e r t i e s and v a r i a b i l i t y r e s u l t f r o m d i f f e r e n c e s i n management, and  i n p a r t i c u l a r , what d i f f e r e n c e s are caused by an i n t e r n a t i o n a l  boundary? 1.0.4  Soil  Variability  S o i l s are i n h e r e n t l y v a r i a b l e w i t h i n a pedon and between pedons ( W i l d i n g and Drees 1983).  Some of t h i s v a r i a b i l i t y i s  systematic  b o t h v e r t i c a l l y w i t h i n a pedon (which i s the r e a s o n f o r s o i l and h o r i z o n t a l l y a c r o s s  horizons)  the l a n d s c a p e (which i s the r e a s o n f o r mapping  d i f f e r e n t kinds of s o i l s ) .  C u l t i v a t i o n , t h r o u g h h o m o g e n i z a t i o n , has  m a j o r i n f l u e n c e on v a r i a b i l i t y by i n c r e a s i n g the s i m i l a r i t y between plow l a y e r s o f v a r i o u s s o i l s .  But how  does i t a f f e c t the r o l e o f  the  o r i g i n a l parent m a t e r i a l ? Many p r e v i o u s  s t u d i e s have been c a r r i e d out i n s o i l  spatial  v a r i a b i l i t y , i n c l u d i n g two m a j o r l i t e r a t u r e r e v i e w s ( B e c k e t t Webster 1971,  W i l d i n g and  workshop ( N i e l s o n and  Drees 1983)  Bouma 1985).  and  one  proceedings of a  These s t u d i e s have examined  v a r i a b i l i t y w i t h i n one s o i l s e r i e s ( B a l l and W i l l i a m s 1978,  and  W i l d i n g et a l . 1964)  Protz  1974,  1977,  and  o r w i t h i n a map  W i l d i n g e t a l . 1965,  Bascomb and  R i e c k e n 1973,  Nortcliff  1968,  1978,  and  and  W i l l i a m s and  Rayner  the e f f e c t s of  landscape development (Huddleston  H a r r a d i n e 1949,  the  Campbell  u n i t (Crosson  J a r v i s 1976), and e v a l u a t e d  v a r i a b i l i t y i n p r o f i l e and  and  and  P r o t z et a l . 1968).  A b a s i c p r e m i s e o f t h e s e s t u d i e s of s p a t i a l v a r i a b i l i t y i s t h a t the s p a t i a l s t r u c t u r e i s p r e s e r v e d o v e r time. a t t e n t i o n has  Not much  been p a i d t o t h i s i s s u e beyond s e a s o n a l  (Wagenet 1985).  Nor  have s t u d i e s c o n s i d e r e d  m a i n c o n s i d e r a t i o n has  l a n d use  been the named s o i l i n the map 4  research  differences history. unit.  The  Is there  a  a d i f f e r e n c e i n v a r i a b i l i t y between l a n d c l e a r e d i n 1950 c l e a r e d i n 1980  on the same s o i l ?  v a r i a b i l i t y w i t h i n the  versus land  I s the d i f f e r e n c e more than n a t u r a l  soil?  A major unknown v a r i a b l e i n t h i s s t u d y i s the management p r a c t i c e s : amount and f r e q u e n c y of a p p l i c a t i o n of l i m e , manure or f e r t i l i z e r , and  changes i n l a n d o w n e r s h i p .  s u p e r i m p o s e s i t s own  1.1  Land management  v a r i a b i l i t y onto t h a t a l r e a d y  p r e s e n t i n the  soil.  M a j o r Q u e s t i o n s Addressed i n T h i s Study 1. Are t h e r e d i f f e r e n c e s i n l a n d use and  different  l a n d c l e a r i n g on  soils?  2. Can  we  e s t a b l i s h a r e l a t i o n s h i p between s o i l p r o p e r t i e s  the t i m e - s i n c e - c l e a r i n g f r o m woodland and  land conversion  and  to  agriculture? 3. Can we  p r e d i c t t i m e - s i n c e - c l e a r i n g based on s o i l  properties?  4. What e f f e c t does management have on s o i l p r o p e r t i e s and i t affect soil  does  genesis?  5. Which v a r i a b l e s are most i m p o r t a n t f o r d i s t i n g u i s h i n g each soil? 6. Are c e r t a i n s o i l s more v a r i a b l e ?  How  does v a r i a b i l i t y r e l a t e  t o p a r e n t m a t e r i a l and c u l t i v a t i o n ? 7. What i s the t e m p o r a l f a c t o r i n s o i l v a r i a b i l i t y , t h a t i s , how does v a r i a b i l i t y v a r y w i t h  time-since-clearing?  8. What i s the e f f e c t o f l a n d use on s o i l 9- How  do s o i l s mapped i n Canada compare i n v a r i a b i l i t y t o  same s o i l mapped i n the U n i t e d 10. How  variability?  States?  many samples must a f a r m e r t a k e t o get a handle on  variability? 5  the  1.2 H i s t o r i c a l and P o l i t i c a l Geography 1.2.1 I n t r o d u c t i o n and Purpose T h i s s t u d y examines the i n f l u e n c e o f an I n t e r n a t i o n a l Boundary on l a n d use and l a n d c l e a r i n g p r a c t i c e s .  I t seeks t o d e m o n s t r a t e t h a t  d i f f e r e n c e s i n i n h e r e n t s o i l f e r t i l i t y and landscape  and v e g e t a t i o n  f e a t u r e s , as w e l l as c u l t u r a l and economic h i s t o r y , have a f f e c t e d how farmers The  c l e a r l a n d and manage s o i l s and a f f e c t s o i l s p r o p e r t i e s . purpose o f t h i s s e c t i o n i s t o e s t a b l i s h an h i s t o r i c a l  background f o r t h e g e o g r a p h i c a l , c u l t u r a l , n a t i o n a l , and a g r i c u l t u r a l d i f f e r e n c e s i n l a n d c l e a r i n g and l a n d management p r a c t i c e s on s e v e r a l landscapes States.  i n the F r a s e r Lowland o f Canada and t h e U n i t e d  I t w i l l emphasize t h e more common a g r i c u l t u r a l uses and  crops: d a i r y , p a s t u r e , hay, vegetables,  r a s p b e r r i e s , and  strawberries. 1.2.2 Pre-1846 H i s t o r y The  F r a s e r Lowland i s a p h y s i o g r a p h i c f e a t u r e a l o n g t h e P a c i f i c  Coast b i s e c t e d by t h e i n t e r n a t i o n a l boundary between t h e U n i t e d S t a t e s and Canada a t the F o r t y - N i n t h p a r a l l e l (Armstrong al.  1983).  I t has an a r e a o f a p p r o x i m a t e l y  1981, Armstrong e t  3500 km2, o f w h i c h about  2600 km2 a r e n o r t h o f the Boundary, and has been p o l i t i c a l l y d i v i d e d between t h e Lower F r a s e r V a l l e y i n Canada and w e s t e r n Whatcom County i n the United States.  The e s t a b l i s h m e n t o f the Boundary i n 1846 p o s t -  dated a g e n e r a t i o n o f e x p l o r a t i o n , e x p l o i t a t i o n , and s c a t t e r e d s e t t l e m e n t d u r i n g w h i c h t h e Lowland f u n c t i o n e d w i t h no i n t e r n a l p o l i t i c a l d i f f e r e n t i a t i o n ( M i n g h i 1964).  The F o r t y - N i n t h p a r a l l e l i s  an a n t e c e d e n t boundary a c c o r d i n g t o Hartshorne  6  (1936) s i n c e t h e  boundary preceded development o f s e t t l e m e n t , t r a n s p o r t a t i o n , and c u l t u r a l p a t t e r n s o t h e r than I n d i a n .  A minor e x c e p t i o n i s the F o r t  L a n g l e y a r e a , where the Hudson's Bay Company had an o u t p o s t  starting  i n 1827.  cultural  Had no boundary been drawn n e i t h e r people nor the  landscape would show any s i g n i f i c a n t change near the F o r t y - N i n t h parallel  (Jones  1937).  The  d i s s i m i l a r i t i e s have been engendered by  the Boundary. The  end o f the 18th c e n t u r y found the v a s t r e g i o n west o f the  R o c k i e s and n o r t h o f C a l i f o r n i a u n e x p l o r e d ,  u n i n h a b i t e d except  numerous I n d i a n bands, and w i t h o u t e f f e c t i v e s o v e r e i g n t y .  by  The c o a s t a l  f r i n g e had been e x p l o r e d p e r i o d i c a l l y by Spanish and E n g l i s h e x p e d i t i o n s e a r l i e r i n the f o u r t h q u a r t e r o f the c e n t u r y (Roth  1926),  but the c o m p e t i t i o n among the g r e a t powers f o r s o v e r e i g n t y o v e r  the  e m p i r e began w i t h the c r o s s - c o n t i n e n t a l j o u r n e y s o f M a c k e n z i e i n and L e w i s and C l a r k i n 1805.  At f i r s t S p a i n and R u s s i a were i n the  r a c e , but by 1824 the s t r u g g l e was S t a t e s and  Britain  1793  waged s o l e l y between the U n i t e d  ( M i n g h i 1962).  As a r e s u l t o f the J o i n t Occupancy T r e a t y o f 1818 f o l l o w i n g the War  of 1812,  the I n t e r n a t i o n a l Boundary between the U n i t e d S t a t e s  B r i t i s h N o r t h A m e r i c a was Divide.  The  extended westwards t o the Rocky M o u n t a i n  l a n d beyond t o t h e West was  "to be f r e e and open f o r  s e t t l e m e n t t o s u b j e c t s o f both c o u n t r i e s " (Deutsch A m e r i c a n s e t t l e m e n t was D u r i n g the next few  and  discouraged  1960),  although  by the Hudson's Bay Company.  decades, the Hudson's Bay Company, the  r e p o s i t o r y o f B r i t i s h a u t h o r i t y i n N o r t h A m e r i c a , grew t o dominate the e n t i r e r e g i o n n o r t h o f the C o l u m b i a by i t s u n d i s p u t e d pre-eminence i n the f u r t r a d e .  The dense f o r e s t and rugged t e r r a i n o f the  area  emphasized the i m p o r t a n c e o f the n a v i g a b l e r i v e r s , n o t a b l y the F r a s e r 7  and t h e Nooksack r i v e r s i n t h e F r a s e r Lowland, as e s s e n t i a l r o u t e s o f t r a n s p o r t a t i o n and t h e C o l u m b i a R i v e r p r o v i d e d t h e l i n k between t h e sea and t h e i n t e r i o r .  S e v e r a l f o r t s were e s t a b l i s h e d t o promote the  f u r t r a d e i n c l u d i n g F o r t Vancouver a l o n g t h e C o l u m b i a R i v e r i n 1825 and F o r t Langley  a l o n g t h e F r a s e r R i v e r i n 1827.  I n t h e e a r l y 1840s the o v e r l a n d m i g r a t i o n o f American s e t t l e r s i n t o Oregon i n c r e a s e d t h e American b e l i e f i n M a n i f e s t D e s t i n y .  This,  combined w i t h t h e weakening s t a t u s o f the Hudson's Bay Company, due t o the d w i n d l i n g f u r t r a d e and l a c k o f p o p u l a t i o n s u r p l u s c r o s s i n g t h e Canadian f r o n t i e r t o c l a i m the P a c i f i c C o a s t , changed t h e balance o f control i n favor of the United States i n i t s e f f o r t s t o a r r i v e at a settlement  o f s o v e r e i g n t y d u r i n g t h e j o i n t occupancy.  1.2.3 E s t a b l i s h m e n t  o f t h e I n t e r n a t i o n a l Boundary and E f f e c t s o f t h e  G o l d Rush I n 1846 t h e Oregon T r e a t y was s i g n e d e s t a b l i s h i n g t h e I n t e r n a t i o n a l Boundary a t t h e F o r t y - N i n t h P a r a l l e l , thus  extending  westward t h e boundary s e t i n 1818. P r i o r t o t h i s d a t e t h e de f a c t o boundary d i v i d i n g Hudson's Bay a c t i v i t y from areas o f s i g n i f i c a n t American s e t t l e m e n t was the C o l u m b i a R i v e r .  This t r e a t y forced a  r e o r i e n t a t i o n o f t h e Hudson's Bay Company t r a d e r o u t e s .  The r o u t e up  the C o l u m b i a t o the v a r i o u s f o r t s i n t h e Okanagan had t o be abandoned f o r t h e more hazardous r o u t e up t h e F r a s e r R i v e r .  However, i t t o o k  u n t i l 1859 b e f o r e F o r t Vancouver was abandoned and f o r the B r i t i s h sphere o f i n f l u e n c e t o s h r i n k up t o t h e F o r t y - N i n t h P a r a l l e l and f o r the Boundary t o a c h i e v e (Minghi  i t s b a s i c f u n c t i o n as a r e a l p o l i t i c a l d i v i d e r  1962).  B e f o r e t h e d i s c o v e r y o f g o l d on t h e s h o r e s o f the F r a s e r R i v e r i n 8  1858,  t h e F r a s e r Lowland c o n t a i n e d o n l y Hudson's Bay f o r t s and  villages.  Indian  By 1850 t h e r e were s t i l l no more than 500 w h i t e s between  t h e C o l u m b i a and t h e I n t e r n a t i o n a l Boundary (Gibbard 1937).  Many o f  the m i n e r s , the l a r g e s t group o f which came f r o m C a l i f o r n i a , became t h e f i r s t s e t t l e r s i n t h e F r a s e r Lowland.  The d i s c o v e r y o f g o l d  was  the s i n g l e most i m p o r t a n t i m p e t u s f o r the i n i t i a l r u r a l and urban s e t t l e m e n t o f consequence i n t h e Lowland (Siemens 1968).  In order to  r e t a i n c o n t r o l of s o v e r e i g n t y o v e r t h i s l a r g e i n f l u x o f p o p u l a t i o n , the government o f B r i t i s h C o l u m b i a was p r o c l a i m e d on 19 November 1858, and c o n s e q u e n t l y , t h e t r a d i n g p r i v i l e g e s o f the Hudson's Bay Company were f o r m a l l y revoked.  Whatcom County was c r e a t e d by the  Washington T e r r i t o r i a l L e g i s l a t u r e on 9 March 1854 o n l y one year a f t e r Washington T e r r i t o r y was s e p a r a t e d f r o m Oregon  Territory.  D u r i n g the p e r i o d 1858 t o 1885 B r i t i s h C o l u m b i a was a p a r t o f t h e U n i t e d S t a t e s ' west coast.  functionally  B r i t i s h Columbia's s e a l i n k s  w i t h B r i t a i n had never been s t r o n g (having t o be reached by way o f Cape Horn) and the c o n t i n u i n g b a r r i e r e f f e c t of t h e R o c k i e s e x c l u d e d the c o l o n y from the u n i f i e d sphere o f the r e s t o f B r i t i s h N o r t h America.  D u r i n g much o f t h i s p e r i o d t h e e n t i r e P a c i f i c Coast was  under the economic p u l l of C a l i f o r n i a , e s p e c i a l l y a f t e r the c o m p l e t i o n o f t h e Union P a c i f i c R a i l r o a d i n 1869 w h i c h l i n k e d C a l i f o r n i a w i t h the eastern United States.  Inadequate t r a n s p o r t a t i o n f a c i l i t i e s was the  p r i m a r y f a c t o r l i m i t i n g economic g r o w t h o f t h e Lowland. 1.2.4  E f f e c t s o f the R a i l r o a d The c o m p l e t i o n o f the Canadian P a c i f i c R a i l r o a d (CPR) i n  1885 ended t h i s e r a o f f e a r o f encroachment o f A m e r i c a n s e t t l e r s , c a p i t a l , and p o l i t i c a l c o n t r o l .  The c o m p l e t i o n o f the CPR 9  gave  i n t e g r i t y t o t h e Boundary by p r o v i d i n g a Canadian a c c e s s t o B r i t i s h C o l u m b i a and gave i m p o r t a n c e t o e a s t - w e s t movement, i n c r e a s e d p o t e n t i a l m a r k e t s , and enhanced i m m i g r a t i o n . The i n c o r p o r a t i o n o f t h e c i t y o f Vancouver  i n 1886 a t t h e  t e r m i n u s o f t h e Canadian P a c i f i c l i n e had a profound i n f l u e n c e on t h e g r o w t h o f the Canadian F r a s e r Lowland, i n c l u d i n g t h e d e c l i n e o f i m p o r t a n c e o f New W e s t m i n s t e r .  W i t h i n c r e a s e d markets came t h e  c o n s t r u c t i o n o f the b r i d g e o v e r t h e F r a s e r R i v e r a t New W e s t m i n s t e r i n 1904 and t h e c o m p l e t i o n o f t h e B r i t i s h C o l u m b i a E l e c t r i c R a i l w a y (B.C.E.R.) i n 1910.  These c l a r i f i e d  the east-west t r a n s p o r t a t i o n  link  and f o s t e r e d t h e p r o d u c e - t o - m a r k e t s o l e l y w i t h i n t h e Canadian F r a s e r Lowland.  Due t o i t s l o c a t i o n a c r o s s t h e u p l a n d s , t h e B.C.E.R. opened  a g r i c u l t u r a l , and e v e n t u a l l y suburban s e t t l e m e n t , away from t h e F r a s e r R i v e r , where p r e v i o u s s e t t l e m e n t and t r a n s p o r t a t i o n l i n k s were concentrated. Between 1890 and 1893 t h r e e major r a i l l i n e s were c o n s t r u c t e d a c r o s s Whatcom County t o connect w i t h t h e CPR.  D u r i n g t h e l a t e 1890s  the Great N o r t h e r n and N o r t h e r n P a c i f i c R a i l w a y s were extended  from  S e a t t l e t h r o u g h Whatcom County t o Canada and c o n s e q u e n t l y i n c r e a s e d market  o u t l e t s f o r lumber and farm p r o d u c t s on t h e U.S. segment.  1.2.5 Modern P e r s p e c t i v e s Some l i m i t e d but r a t h e r i l l u s i v e d i f f e r e n c e s i n s e t t l e m e n t p a t t e r n s e x i s t a t t h e p r e s e n t t i m e ( M i n g h i 1964).  In the f i r s t  half  o f the t w e n t i e t h c e n t u r y , t h e boundary was n o t an i m p o r t a n t b a r r i e r t o accessibility.  D u r i n g t h i s t i m e t h e urban p o p u l a t i o n i n t h e Canadian  segment i n c r e a s e d r a p i d l y , p a r t i c u l a r l y i n Vancouver, b e i n g c o n s i d e r a b l y l a r g e r t h a n t h e e n t i r e U.S. segment a f t e r t h e t u r n o f t h e 10  century  (Table  1). S i n c e W o r l d War I I , however, t h e change o f  g r e a t e s t s i g n i f i c a n c e t o the c h a r a c t e r o f the two p a r t s o f the b o r d e r r e g i o n has been t h e r e s t r i c t i o n on p o p u l a t i o n movement due t o immigration  l a w s and as a r e s u l t , p o p u l a t i o n c i r c u l a t i o n has tended t o  conform t o t h e boundary  (Minghi  1964).  T a b l e 1. P o p u l a t i o n o f major c e n t e r s w i t h i n and nearby t h e F r a s e r Lowland, 1881 t o 1981 (Bureau o f t h e Census 1982, D a l i c h o w 1972, S t a t i s t i c s Canada 1974, S t a t i s t i c s Canada 1982). P o p u l a t i o n i n Thousands Year 1881  1891  1901  1911  1921  1931  1941  1951  1961  1971  1981  Vancouver  1  14  29  121  163  255  284  358  408  426  414  Lower F r a s e r Valley  8  42  54  183  257  380  449  649  907 1133 1342  <1  8  11  24  26  31  29  34  35  39  46  Whatcom County  3  19  24  50  51  59  60  67  70  82  107  Seattle  4  42  81  237  315  365  368  468  557  530  494  Location  Bellingham  Some h i s t o r i c a l and p h y s i c a l d i f f e r e n c e s have a l s o a f f e c t e d t h e d i f f e r e n t i a l development.  The Canadian segment c o n t a i n s the n a v i g a b l e  w a t e r s o f t h e F r a s e r R i v e r and d i r e c t e a s t - w e s t r a i l r o a d and highway systems.  The Nooksack R i v e r i s n o t n a v i g a b l e f o r s h i p p i n g .  U n t i l the  1970s t h e c l o s e s t e a s t - w e s t r o u t e t o t h e south was 100 km d i s t a n t . W i t h o u t a low mountain pass t o t h e e a s t , t h e U.S. segment i s n o t t h e t e r m i n u s f o r any t r a n s p o r t a t i o n l i n k .  Bellingham  has been e c l i p s e d by  S e a t t l e f o r t h i s r o l e f o r r a i l i n t h e 1870s, f o r w a t e r ( e s p e c i a l l y as  11  the t a k e o f f p o i n t f o r s t e a m e r s t o A l a s k a f o r t h e g o l d r u s h i n t h e l a t e 1890s), and f o r major e a s t - w e s t highways d u r i n g the t w e n t i e t h  century.  The economic i n f r a s t r u c t u r e and t h e s t r a t e g i c l o c a t i o n o f t h e Lowland w i t h r e s p e c t t o o t h e r n a t i o n a l and c u l t u r a l f e a t u r e s i n Canada and t h e U n i t e d S t a t e s has l e d t o t h e e s t a b l i s h m e n t n e t w o r k s i n t h e two segments o f the r e g i o n .  of d i f f e r e n t  What may be an economic  i n c e n t i v e on one s i d e o f the Boundary may not be on t h e o t h e r . The  most o b v i o u s d i f f e r e n c e between the segments i s t h e  preponderence o f p o p u l a t i o n , and thus a l a r g e market, i n t h e Canadian segment, where about one m i l l i o n people l i v e .  South o f the Boundary  the F r a s e r Lowland has more a g r i c u l t u r a l c h a r a c t e r and i s i n h a b i t e d by about 100 000 people. 1.3 A g r i c u l t u r a l H i s t o r y 1.3.1 Pre-1846 H i s t o r y The  e a r l i e s t a g r i c u l t u r a l a c t i v i t y i n t h e F r a s e r Lowland o c c u r r e d  i n 1828 a t t h e Hudson's Bay Company f a r m a t F o r t L a n g l e y , where employees grew a v a r i e t y o f v e g e t a b l e , meat, d a i r y , and g r a i n f o r t h e F o r t t r a d e r s and t h e f u r b r i g a d e .  Although  products  the t r a d i t i o n a l  p o l i c y o f the Hudson's Bay Company was c o n t r o l o f the f u r t r a d e , t h e g r e a t e s t p r o f i t s were f r o m t h e f i s h e r i e s and t h e f a r m (White 1937). A f t e r t h e p r e l i m i n a r y a c t i v i t y around t h e F o r t , a g r i c u l t u r e was expanded t o t h e Langley  P r a i r i e i n t h e 1830s.  Other f a r m s o f the Hudson's Bay Company i n t h e r e g i o n were opened b e g i n n i n g i n 1825. U n t i l t h e mid 1840s, t h i s company and a s u b s i d i a r y , The Puget's Sound A g r i c u l t u r a l Company, dominated a g r i c u l t u r a l development i n t h e r e g i o n .  12  The t e r m s s e t by t h e Company  for  a c q u i r i n g p r i v a t e land discouraged  r e a s o n s e t t l e m e n t was  slow.  F a r m i n g done by s e t t l e r s was  i m p o r t a n c e u n t i l a f t e r 1846  (Olsen,  independent s e t t l e r s and  1856  The  I n 1851  o n l y 30 (Dalichow  were i n the a r e a i n the 1840s.  little  the U.S.  fur trappers, first  Bay a r e a .  Settlement  segment came i n 1852  Farming s t a r t e d s h o r t l y t h e r e a f t e r .  s e t t l e m e n t commenced w i t h t h e f i r s t i n f l u x o f g o l d miners. about 25 000 g o l d s e e k e r s San F r a n c i s c o .  potato,  segment.  f i r s t permanent s e t t l e r s on the U.S.  the B e l l i n g h a m  15  1972).  These I n d i a n s were the  E f f e c t s o f the Gold Rush on A g r i c u l t u r e and The  of  this  t h e r e were o n l y  p r o b a b l y i n t r o d u c e d t o them by Hudson's Bay  f a r m e r s on 1.3.2  by  1970).  For  Nooksack I n d i a n s took up the c u l t i v a t i o n o f the w h i t e  which was who  prospective s e t t l e r s .  invaded  to  Actual  In  1858  the a r e a , most a r r i v i n g by s h i p f r o m  T h i s number e v e n t u a l l y grew t o 60 000  (Dalichow  1972).  They came as t r a n s i e n t s but a good p r o p o r t i o n remained as s e t t l e r s s p u r r i n g the development of a g r i c u l t u r e and r u s h t h e r e was for  commerce.  l i t t l e market f o r f a r m produce.  U n t i l the g o l d  The r e s u l t i n g demand  food a t the g o l d mines r e s u l t e d i n very l a r g e exchanges o f  l i v e s t o c k and  farm  products.  The h i s t o r y o f a g r i c u l t u r a l l a n d s e t t l e m e n t  b e g i n n i n g about  i860  was  d i f f e r e n t on e i t h e r s i d e o f the Boundary.  was  the p r i n c i p a l means o f s e t t l e m e n t w h i l e homesteading was i n the  USA.  The  I n Canada p r e - e m p t i o n  r a t i o n a l e t h a t B r i t a i n wanted the c o l o n y t o pay f o r l a n d  d u r i n g a p e r i o d when l a n d was  e s s e n t i a l l y d i s t r i b u t e d free south of  the Boundary l e d t o southward m i g r a t i o n .  The  belated replacement of  p r e - e m p t i o n by homesteading i n the e a r l y 1870s d i d l i t t l e t o d e t r a c t f r o m the i n i t i a l a t t i t u d e s o f the r e l a t i o n s h i p between people and  13  land.  P o p u l a t i o n g r o w t h was s l o w b e f o r e 1870. Lack o f easy o v e r l a n d a c c e s s i b i l i t y t o t h e a r e a and t h e d i f f i c u l t y  o f c l e a r i n g t h e dense  f o r e s t s k e p t i m m i g r a t i o n t o a minimum. The f i r s t a t t e m p t s a t s y s t e m a t i c f a r m i n g on t h e Canadian segment i n t h e F r a s e r Lowland were made i n t h e C h i l l i w a c k and Sumas v a l l e y s about 1862 ( W i n t e r 1968). By  1863 t h e r e were 250 f a r m s under c u l t i v a t i o n ( G i b b a r d 1937).  By  1866, 1970 ha were b e i n g farmed i n t h e C h i l l i w a c k and Sumas a r e a s . As e a r l y a s 1868 d a i r y i n g was put on a c o m m e r c i a l b a s i s i n t h e Sumas district  (White 1937).  E a r l y f a r m i n g f a c e d t h e problems o f l a c k o f  s h i p p i n g and t r a n s p o r t a t i o n f a c i l i t i e s ,  t h e c o s t o f c l e a r i n g and  r e c l a i m i n g , and t h e l a c k o f adequate markets. S e t t l e m e n t and f a r m i n g on t h e U.S. segment began i n i860 m a i n l y around Lynden and F e r n d a l e ( S m e l s e r 1970). proceeded s l o w l y .  Permanent s e t t l e m e n t  By 1880 o n l y 3100 persons were i n t h e county.  About 1200 ha were c l e a r e d f o r f a r m i n g by 1887. I n t h e h e a v i l y f o r e s t e d a r e a s , s e t t l e m e n t a c c e l e r a t e d a f t e r t h e 1877 r e m o v a l o f l o g jams on t h e Nooksack R i v e r , w h i c h a l s o e f f e c t i v e l y opened t h e Nooksack to  steamboat  transportation.  1.3.3 E f f e c t s o f V e g e t a t i o n , F l o o d i n g , and A c c e s s i b i l i t y As l o g g i n g o p e r a t i o n s removed t h e t i m b e r f r o m t h e U.S. Lowland, i n c r e a s i n g numbers o f l o g g e r s and n e w l y - a r r i v e d l a n d s e e k e r s f r o m the E a s t and Europe took up f a r m s on c u t - o v e r stumpland t h a t was o f f e r e d at  low p r i c e s by t i m b e r companies (Washington S t a t e Department o f  A g r i c u l t u r e 1956).  I n many c a s e s , t h e c h o i c e o f f a r m s i t e s was  i n f l u e n c e d a s much by p r o x i m i t y t o l o g g i n g camps and s a w m i l l s , where food and f o r a g e were i n demand, and by p r o x i m i t y t o r i v e r t r a n s p o r t a t i o n and t r a i l s  as by s o i l  f e r t i l i t y ( P i e r s o n 1953).  14  I n any new  a r e a , such as the F r a s e r Lowland, the t r e n d o f l a n d  s e t t l e m e n t i s t o occupy the most f e r t i l e , most a c c e s s i b l e , and/or most e a s i l y c l e a r e d s o i l s at the s t a r t and f r o m t h e s e , the  settlement  s p r e a d s by s t a g e s t o l a n d s t h a t must be r e c l a i m e d and brought under c u l t i v a t i o n w i t h e v e r - i n c r e a s i n g degrees o f d i f f i c u l t y and  cost.  In  the F r a s e r Lowland, the s e t t l e r s took up p r e - e m p t i o n o f l a n d a l o n g the banks o f the F r a s e r R i v e r and transportation.  Only a few  Bellingham  Bay,  roads e x i s t e d ; they were p o o r l y  and v i r t u a l l y i m p a s s a b l e d u r i n g the wet The  f o r easy a c c e s s  to water maintained  w i n t e r season.  l o w l a n d a r e a s were farmed f i r s t not o n l y because o f t h e i r  p r o x i m i t y t o the r i v e r and t h e i r h i g h f e r t i l i t y and m o i s t u r e ,  but a l s o  t h e i r ease o f c o n v e r s i o n from " p r a i r i e " t o a g r i c u l t u r e , a l t h o u g h  they  were r e a l l y l o w , swampy areas covered  The  t h r e a t o f f l o o d s was  w i t h low brush and f e r n s .  outweighed by the advantages o f a c c e s s i b i l i t y t o  r i v e r t r a n s p o r t and the l i g h t v e g e t a t i o n cover.  The  vegetation  c o n s i s t e d o f g r a s s e s and s h r u b s ( w i l l o w , hardhack, and  crabapple),  w h i c h c o u l d g e n e r a l l y t o l e r a t e the r e g u l a r f l o o d i n g (North et a l . 1979).  The  shrubs were knocked o v e r w i t h team-drawn c h a i n s and  burned or plowed under and l e f t f o r two (Pierson  or t h r e e y e a r s t o decompose  1953).  Although  c l e a r i n g was  s o i l s needed t o be d r a i n e d . t o 75 cm  then  r e l a t i v e l y easy i n the f l o o d p l a i n , the "Under-drains"  deep l e a d i n g t o a d r a i n a g e  ( d i t c h e s 40 cm  d i t c h o r s l o u g h ) were  f o r a g r i c u l t u r a l development (Brown 1971). F r a s e r w i t h i t s a t t e n d e n t d e s t r u c t i o n was F r a s e r L o w l a n d f a r m e r w e l l i n t o the 1930s.  The  wide and necessary  annual f r e s h e t of  T h i s phenomenon was  much  s u i t a b l e f o r a g r i c u l t u r e , the " p r a i r i e s " became l e s s  1 5  the  a major problem f o r the  d i m i n i s h e d on the s m a l l e r Nooksack R i v e r . Although  45  a t t r a c t i v e t o p r o s p e c t i v e s e t t l e r s due t o the t h r e a t o f f l o o d s . e a r l y a g r i c u l t u r a l communities  The  and i s o l a t e d f a r m s tended t o be l o c a t e d  on t h e f l a n k s o f the a d j a c e n t upland ( H o w e l l Jones 1966).  Various  l o c a l and o r g a n i z e d d y k i n g p r o j e c t s began i n 1878 but the b i g f l o o d i n 1894 l e d t o a s u b s t a n t i a l i n t e g r a t e d system.  A g e n e r a t i o n l a t e r came  the d r a i n i n g o f Sumas Lake i n 1924 w h i c h removed the impediment t o e a s t - w e s t t r a n s p o r t a t i o n , decreased the mosquito 12 000 ha o f new  p o p u l a t i o n , exposed  and v a l u a b l e f a r m l a n d , and s e c u r e d a g r i c u l t u r e on a  year-round b a s i s on the a n n u a l l y f l o o d e d l a n d s around the p e r i p h e r y o f the l a k e  (Siemens  1968).  The h e a v i l y wooded g l a c i a l uplands c o n s i s t e d p r e d o m i n a n t l y o f f o r e s t , m o s t l y D o u g l a s - f i r , grand f i r , and w e s t e r n r e d c e d a r , w i t h minor amounts o f w e s t e r n hemlock (North e t a l . 1979). not as i m p o r t a n t an i n d u s t r y i n the Canadian Lowland United States.  Logging as i t was  was i n the  To the Canadian f a r m e r t h e s e s t a n d s o f t i m b e r were a  d e t r i m e n t r a t h e r than an a s s e t .  I n the U n i t e d S t a t e s , on the o t h e r  hand, g e n e r a l l y the f a r m e r s moved i n as the l o g g e r s removed the forest.  T h i s t i m b e r was d e s t i n e d f o r C a l i f o r n i a due t o demand from  the 1849 C a l i f o r n i a g o l d r u s h , from Oregon i n t h e i r growth i n the 1850s t o 1880s, and f r o m New  England and t h e G r e a t Lake s t a t e s i n  1890 t o 1910 s i n c e t h e i r t i m b e r r e s o u r c e s were d e p l e t e d ( M i n g h i Smelser By  1962,  1970). 1925 d e n u d a t i o n o f the f o r e s t e d a r e a i n the U.S. Lowland  complete and t h e f a r m e r s r e p l a c e d them.  was  A f t e r i n d i v i d u a l upland areas  were l o g g e d , the many d i s c a r d e d l o g s and massive stumps made the logged a r e a s s t i l l  very d i f f i c u l t t o c l e a r , e s p e c i a l l y b e f o r e the  w i d e s p r e a d use o f dynamite and the i n t r o d u c t i o n o f the b u l l d o z e r i n  16  the 1940s (Siemens 1968).  I n the e a r l y days the c o s t o f stump  r e m o v a l g r e a t l y exceeded the v a l u e o f the raw l a n d . 1930s b e f o r e b u l l d o z e r s came i n t o use, the c o s t was ha.  I n 1946 the c o s t by the b u l l d o z e r method ranged  $200 per ha.  The  D u r i n g the  middle  $200 t o $370 per between $100  and  s i z e o f the b u l l d o z e r and the amount o f d y n a m i t e  used i n f l u e n c e d how  much o f the s u b s t r a t u m was  brought up w i t h the  stump. From the b e g i n n i n g f a r m i n g has been i n t e n s i v e s i n c e c l e a r i n g the f o r e s t was  s l o w and d i f f i c u l t work and i t o f t e n took a f a m i l y two  three generations of ownership  b e f o r e a l l the t r e e s were c u t and  burned and the stumps removed. i n windrows. windrows.  windrows. burned.  The t i m b e r was  Sometimes g r a s s o r g r a i n was  B r u s h y stump p a s t u r e was  some l i t t e r was  or  c u t and the s l a s h  piled  p l a n t e d between the  common.  During timber harvest  i n c o r p o r a t e d i n t o the s o i l and some b u l l d o z e d i n t o the  A f t e r d r y i n g o u t f o r two o r t h r e e y e a r s , the windrows were  The r e m a i n i n g s l a s h was  burned and then h a u l e d away.  e i t h e r h a u l e d away o r p i l e d  No s p e c i a l e f f o r t was  and  made t o spread  the  ashes ( W i l l i a m Bonsen, 1985, S o i l C o n s e r v a t i o n S e r v i c e , p e r s o n a l communication).  The c o n t i n u a l p r o c e s s o f stump r e m o v a l absorbed  a  l a r g e p a r t o f the farmer's energy and c a p i t a l and l i m i t e d him t o s m a l l areas of cropland.  1.3.4  Farmers, Farms, and  Crops  No n a t i o n a l group has s u r p a s s e d the a g r i c u l t u r a l i n f l u e n c e t o the Lowland made by t h e H o l l a n d e r s .  They a r r i v e d i n t h e U.S.  1898 and i n the 1930s and i n Canada a f t e r 1945.  segment i n  The Dutch, w i t h t h e i r  e x t e n s i v e knowledge o f w e t l a n d f a r m i n g , o c c u p i e d and d r a i n e d l a n d w h i c h m i g h t o t h e r w i s e have remained u n s e t t l e d (Smelser 1970,  17  Ginn  1967).  As a r e s u l t they have r e v i t a l i z e d the d a i r y i n d u s t r y .  The e a r l y f a r m s were mixed e n t e r p r i s e s p r o v i d i n g s u b s i s t e n c e t o t h e f a r m f a m i l y , r a i s i n g d a i r y c a t t l e and o t h e r l i v e s t o c k , f o d d e r c r o p s , g r a i n s , v e g e t a b l e s and f r u i t , and sometimes m a r k e t i n g some o f t h e i r s u r p l u s e s (Hayward 1983, commercial  a g r i c u l t u r e was  experimentation.  Smelser  1970).  The e a r l y s t a g e o f  c h a r a c t e r i z e d by a p e r i o d o f  I n 1885 t h e r e were about 400 ha o f improved  i n Whatcom County and i n 1887 about 1200 ha (Roth 1926). 1920s the a g r i c u l t u r a l economy was  based p r i m a r i l y on  p r i n c i p a l l y the d a i r y and p o u l t r y i n d u s t r i e s .  farmland  By the  livestock,  Hay and p a s t u r e c r o p s  were t h e most i m p o r t a n t and have remained so, b e i n g grown on a t l e a s t 70% o f the c r o p l a n d s i n c e then.  The r e m a i n i n g c r o p l a n d has been  d i v i d e d among s m a l l g r a i n s , v e g e t a b l e s , p o t a t o e s , f r u i t s , and Non-crop p a s t u r e ( l i g h t l y wooded stumpland o f g r o w i n g t r e e s ) w h i c h was 1950s.  and stumpland  berries.  kept c l e a r e d  p a s t u r e d were m a j o r f e a t u r e s u n t i l the  The d i s t i n c t i o n between non-crop p a s t u r e and t i m b e r l a n d  was  i l l - d e f i n e d ( P i e r s o n 1 953)R o t a t i o n s between hay and p a s t u r e and c r o p l a n d were common i n the 1940s, when the recommendation was t o grow legumes f o r the e q u i v a l e n t o f one year f o r each two year p e r i o d the l a n d was c r o p s o r s m a l l g r a i n s ( P o u l s o n and F l a n n e r y  used i n i n t e r - t i l l e d  1953).  The m a j o r t r e n d s i n the a g r i c u l t u r a l p a t t e r n i n the Lowland i n r e c e n t y e a r s have been a r e d u c t i o n i n the number o f i n d i v i d u a l  farm  u n i t s w i t h a c o r r e s p o n d i n g i n c r e a s e i n average farm s i z e (Bureau o f t h e Census 1942, (Table 2).  Two  1947,  1952,  1961,  1967,  1972,  1977,  1981,  1984)  f a c t o r s a r e p r i m a r i l y r e s p o n s i b l e : 1) m a r g i n a l  a g r i c u l t u r a l a c t i v i t i e s have become e c o n o m i c a l l y p r o h i b i t i v e because o f e s c a l a t i n g o p e r a t i o n a l c o s t s , and 2) s u b d i v i s i o n o f l a n d f o r 18  T a b l e 2. S i z e o f f a r m s i n Whatcom County, WA, 1900 t o 1982 (Washington S t a t e Department o f A g r i c u l t u r e 1956, Bureau o f the Census 1961 t o 1984). Year  S i z e o f farm (ha)  Year  S i z e o f farm (ha)  Year  S i z e o f farm (ha)  1900  38  1940  17  1964  26  1910  20  1945  17  1969  30  1920  21  1950  19  1974  35  1925  19  1954  20  1978  36  1930  17  1959  24  1982  32  suburban homes ( S m e l s e r 1970). from 65 t o 130 ha homesteads  Whatcom County f a r m s were e s t a b l i s h e d  and from the s a l e by lumber companies a t  the t u r n o f t h e c e n t u r y o f 8 t o 15 ha l o g g e d - o v e r p a r c e l s t o employees who became p a r t - t i m e s e t t l e r s  ( S t e p l e t o n e t a l . 1976).  In o r d e r t o r e s e r v e t h e m a j o r i t y o f t h e province's a r a b l e l a n d f o r f u t u r e a g r i c u l t u r a l use, t h e Government o f B r i t i s h C o l u m b i a passed the  Environment and Land Use A c t i n 1971. The Government f r o z e  agricultural  l a n d w i t h i n t h e p r o v i n c e i n 1972 and e s t a b l i s h e d  Agricultural  Land Reserves (ALR) i n 1973.  A p p r o x i m a t e l y 75% o f l a n d  w i t h i n t h e Canadian F r a s e r Lowland i s w i t h i n t h e ALR (Manning and Eddy 1979).  S e v e r a l consequences o f t h e l a n d f r e e z e a r e t h e d e c r e a s e i n  m a r g i n a l f a r m s and t h e i r purchase f o r hobby f a r m s o r t h e i r r e g r o w t h t o woodland.  S i m i l a r l e g i s l a t i o n does n o t e x i s t f o r t h e S t a t e o f  Washington, w h i c h has p r o v i d e d f i n a n c i a l i n c e n t i v e s through s p e c i a l t a x assessments t o enhance p r e s e r v a t i o n . agricultural  Some c o u n t i e s , have e n a c t e d  preservation-type l e g i s l a t i o n .  A n o t a b l e example i s K i n g  County w h i c h has sought t o p r e s e r v e a g r i c u l t u r a l l a n d t h r o u g h t h e  19  p r o c e s s o f buying development r i g h t s o f farms. 1.3.4.1  D a i r y i n g and P o u l t r y  D a i r y i n g and p o u l t r y have been t h e dominant farm i n d u s t r i e s f o r many y e a r s .  I n 1964 about 88% o f c r o p l a n d s u p p o r t e d  i n d u s t r y o f the U.S. segment.  the d a i r y  Factors e x p l a i n i n g the continued  predominance o f t h e d a i r y i n d u s t r y a r e t h e f o l l o w i n g : 1) C l i m a t i c and t o p o g r a p h i c c h a r a c t e r i s t i c s a r e i d e a l l y s u i t e d - m i l d , wet w i n t e r and r e l a t i v e l y l o n g g r o w i n g season r e s u l t i n q u a l i t y g r o w t h o f p a s t u r e crops.  Low r e l i e f enables easy h a r v e s t i n g o f s i l a g e and movement o f  c a t t l e . 2) Dairymen have a l o n g h e r i t a g e o f d a i r y s k i l l s .  3)  Improvement i n t r a n s p o r t a t i o n and t h e i n c r e a s e d p o p u l a t i o n i n w e s t e r n Washington and t h e Vancouver m e t r o p o l i t a n a r e a have brought t h e Lowland w i t h i n t h e f r e s h m i l k market o f the major urban c e n t e r s . P r i o r t o t h e 1950s c a t t l e were g e n e r a l l y p a s t u r e d i n w i n t e r . S i n c e then f a r m e r s  have found t h a t c u t t i n g hay f i e l d s f o r s i l a g e  f u r n i s h e s h i g h q u a l i t y s u c c u l e n t feed and reduces t h e f e e d l o s s e s caused by o c c a s i o n a l wet weather d u r i n g hay h a r v e s t i n g .  They a l s o  d i s c o v e r e d t h a t l i v e s t o c k e a t s i l a g e more c o m p l e t e l y than hay. As a r e s u l t s i l a g e p r o d u c t i o n has i n c r e a s e d .  F o r i n s t a n c e , t h e 1949  p r o d u c t i o n was about 23 0 0 0 tonnes w h i c h i n c r e a s e d t o 96 0 0 0 tonnes by 1959  (Smelser  1970).  S i n c e 1955, when Whatcom County was the l e a d i n g e g g - p r o d u c i n g county i n t h e U n i t e d S t a t e s , i t s s t a t u s , a l t h o u g h n o t i t s p r o d u c t i o n , has dropped d r a m a t i c a l l y .  T h i s i s due t o t e c h n o l o g i c a l advances and  the enormous i n c r e a s e i n p o u l t r y r a i s i n g i n C a l i f o r n i a and t h e s o u t h e a s t e r n USA, w h i c h have more f a v o r a b l e c l i m a t e s .  20  1.3.4.2 S t r a w b e r r i e s and R a s p b e r r i e s The  c u l t i v a t i o n o f the s t r a w b e r r y p l a n t i n t h e F r a s e r Lowland  began about 1880 and soon f r e s h s t r a w b e r r i e s were s h i p p e d P r a i r i e markets.  D i s c o v e r y o f a s p e c i a l process  b e r r i e s r e s u l t e d i n heavy shipment o f processed f a c t o r i e s on t h e B r i t i s h I s l e s  (White 1937).  t o Canadian  t o preserve the b e r r i e s t o jam  Dramatic increases i n  t h e l a n d a r e a o f r a s p b e r r i e s and s t r a w b e r r i e s began i n t h e 1940s, l e v e l l e d i n t h e 1960s, and i n c r e a s e d a g a i n i n t h e 1970s i n both countries.  The d e v a s t a t i n g f r e e z e s i n 1950, 1955, and 1964 have had  major e f f e c t s on l a n d a r e a p l a n t e d t o t h e s e f r o s t - s e n s i t i v e p l a n t s . In 1940 t h e r e were o n l y 215 ha o f s t r a w b e r r i e s and 20 ha o f r a s p b e r r i e s i n t h e U.S. segment. The l a n d a r e a o f s t r a w b e r r i e s has dropped c o n s i d e r a b l y a f t e r t h e f r e e z e s w h i l e r a s p b e r r y area  continues  t o grow i n t o t h e 1980s (Table 3). I n 1964 t h e a r e a f o r r a s p b e r r i e s i n the Canadian Lowland was 600 ha and f o r s t r a w b e r r i e s 550 ha.  However,  the f r e e z e o f 1964 reduced s t r a w b e r r y a r e a t o 90 ha i n 1965 (Dalichow 1972). Two s i g n i f i c a n t changes l e d t o t h i s i n c r e a s e i n p r o d u c t i o n f o r r a s p b e r r i e s : 1) a s h i f t f r o m f r e s h t o processed  marketing,  and 2) t h e  i n t r o d u c t i o n o f the r a s p b e r r y p i c k i n g machine, w h i c h reduced p i c k i n g costs considerably.  Process marketing  has i n c r e a s e d  strawberry  p r o d u c t i o n i n the F r a s e r Lowland, but w i t h o u t m e c h a n i c a l p i c k i n g h i g h l a b o r c o s t s make p r o d u c t i o n e x p e n s i v e  and r i s k y  (Dalichow  1972).  1.3.5 E f f e c t s o f the Growth o f T r a n s p o r t a t i o n , P o p u l a t i o n , and Technology The  r a t e a t w h i c h development took p l a c e i n t h e F r a s e r Lowland  has been r e l a t e d t o an i n c r e a s e d demand f o r l o c a l p r o d u c t s 21  a f f o r d e d by  T a b l e 3. Number o f farms and l a n d a r e a o f s t r a w b e r r i e s and r a s p b e r r i e s i n Whatcom County, WA (Bureau o f the Census 1942 t h r o u g h 1984). Year 1940  1945  1949  1959  1964  1978  1982  farms  338  226  364  175  172  20  19  ha  215  220  925  530  325  210  140  farms  152  321  214  135  103  85  81  18  88  206  177  441  400  523  Crop Strawberries  Raspberries ha  a growing population.  Improvement i n t r a n s p o r t l i n k s t o  New  W e s t m i n s t e r and Vancouver, p a r t i c u l a r l y the b u i l d i n g o f the b r i d g e i n 1904 a c r o s s t h e F r a s e r R i v e r a t New W e s t m i n s t e r c o n n e c t i n g t h e f a r m i n g c o m m u n i t i e s on the s o u t h s i d e o f the F r a s e r w i t h t h e i r n a t u r a l markets on the n o r t h and the c o m p l e t i o n o f the B.C. E l e c t r i c R a i l w a y t o C h i l l i w a c k i n 1910, gave f a r m e r s on the Canadian s i z e b e t t e r a c c e s s t o market and s t i m u l a t e d f u r t h e r s e t t l e m e n t ( H o w e l l Jones 1966).  The  c o n s t r u c t i o n o f the r a i l r o a d s through Whatcom County i n the 1890s s p u r r e d g r o w t h and i n c r e a s e d markets t h e r e as w e l l . The i m p o r t a n c e o f the a u t o m o b i l e began i n f u l l f o r c e a f t e r W o r l d War  II.  By 1950, 50% o f the a g r i c u l t u r a l o u t p u t o f B r i t i s h Columbia  was  produced i n the F r a s e r Lowland ( W i n t e r 1968).  Long-lasting  e f f e c t s o f w a r t i m e i n c e n t i v e k i n d l e d the economic r e s u r g e n c e w h i c h marked the 1950s.  The amount o f l a n d i n Canadian f a r m i n g reached i t s  h i s t o r i c a l peak i n 1951 and d u r i n g the p e r i o d 1961 t o 1976, most o f the s i g n i f i c a n t changes i n a g r i c u l t u r a l l a n d use have t a k e n p l a c e . has been i n c r e a s i n g m e t r o p o l i t a n dominance, a renewed  There  upsurge o f  u r b a n i z a t i o n , and m a s s i v e highway development, w h i c h l e d t o urban  s p r a w l and i n c r e a s e d p r e s s u r e on a g r i c u l t u r a l  land i n the Fraser  Lowland, p a r t i c u l a r l y on the Canadian s i d e . I n t h e F r a s e r Lowland, and i n t h e U n i t e d S t a t e s and Canada i n g e n e r a l , d e s p i t e the d e c l i n i n g l a n d base, a g r i c u l t u r a l p r o d u c t i o n has been g e n e r a l l y r i s i n g t h r o u g h improved v a r i e t i e s , g r e a t e r use o f c h e m i c a l s , improved f a r m i n g t e c h n i q u e s , and more i n t e n s i v e use o f the l a n d (McCuaig and Manning in agricultural  1982).  There have been tremendous  t e c h n o l o g y , o r g a n i z a t i o n , f a r m s i z e , and m a r k e t i n g .  T e c h n o l o g i c a l improvements have been made i n f e r t i l i z e r s , b r e e d i n g , and farm methods and m a c h i n e r y (Ginn 1967). i r r i g a t i n g c r o p s and p a s t u r e has expanded U.S. segment between  foodstuffs,  Equipment f o r  g r e a t l y s i n c e 1945.  I n the  1949 and 1954 the amount o f i r r i g a t e d p a s t u r e  t r i p l e d t o 1460 ha (Washington S t a t e Department 1956).  changes  of Agriculture  The number o f i r r i g a t e d f a r m s r o s e from 176 i n 1950 t o 597 i n  1959 and has f l u c t u a t e d s i n c e t h e n b e i n g 525 f a r m s i n 1982 i r r i g a t i n g over  12 000 ha (Bureau o f the Census  1984).  The amount o f l i m e used ( u n r e p o r t e d i n t h e U n i t e d S t a t e s Census of A g r i c u l t u r e b e f o r e 1964) i n c r e a s e d from i t s use on j u s t under  770  ha i n 1964 t o a maximum o f more than 2800 ha b e f o r e d e c r e a s i n g t o about 1400 ha i n 1982.  The amount o f l i m e used i n the Canadian  segment s i n c e W o r l d War I I was i m p a c t e d by the l i m e s u b s i d y , w h i c h i n t r o d u c e d i n the e a r l y 1960s and e l i m i n a t e d i n the e a r l y 1970s.  was On  the U.S. segment c o s t s f o r l i m i n g and f e r t i l i z e r were shared by the f e d e r a l government b a s e d on a s o i l  from the e a r l y 1950s t o the mid 1960s and were  test.  C o m m e r c i a l f e r t i l i z e r has been the dominant amendment f o r b e r r i e s on t h e U.S. segment, whereas manure ( p a r t i c u l a r l y from p o u l t r y ) has  23  been dominant i n Canada.  I n some cases t h e manure i s b r o a d c a s t and i n  o t h e r s , i t i s a p p l i e d a d j a c e n t t o the p l a n t s .  I t i s spread w i t h a  "honey wagon" o r w i t h a s p r i n k l e r on p a s t u r e l a n d . S p e c i a l i z a t i o n i s w i d e s p r e a d w i t h mixed f a r m i n g a l m o s t e l i m i n a t e d and r e p l a c e d by s i n g l e commodity t y p e e n t e r p r i s e s (Ginn 1967).  Total  f a r m s i n Whatcom County was about 1300 i n 1900, reached a maximum o f 4900 i n the 1940s and has d e c r e a s e d t o 4000 i n the mid 1950s and 1610 i n 1982.  At the same t i m e the average s i z e d e c l i n e d from 38 ha  i n 1910 t o 17 i n t h e mid 1940s and i n c r e a s e d t o a maximum o f 36 i n 1978 b e f o r e d e c l i n i n g t o 32 i n 1982 (Bureau o f the Census ( T a b l e s 2 and 3).  1984)  T h i s change i s a r e s u l t o f the change from  general  f a r m i n g o f l i v e s t o c k w i t h hay and g r a i n t o more i n t e n s i v e s p e c i a l i z e d d a i r y , p o u l t r y , and v e g e t a b l e f a r m i n g (Washington S t a t e Department A g r i c u l t u r e 1965, Bureau o f the Census  1984).  of  Some f a r m s have  r e t u r n e d t o woodland whereas o t h e r s have been s u b d i v i d e d and c o n v e r t e d t o hobby f a r m s o r second homes. The markets and s t i m u l i f o r p r o d u c t i o n on the two s i d e s o f the Lowland are v e r y d i f f e r e n t .  F o r i n s t a n c e , produce f r o m C a l i f o r n i a can  be grown, s h i p p e d , and s o l d as c h e a p l y and c o m p e t i t i v e l y as t h a t i n t h e U.S. L o w l a n d , whereas d u t y i s imposed t o s u p p l y them t o t h e market i n Canada, g i v i n g the advantage t o l o c a l Canadian produce.  Although  a g r i c u l t u r a l p r o d u c t i o n i n t h e Lowland i s c e n t e r e d p r i m a r i l y around d a i r y i n g and b e r r i e s , t h e s e a r e d e s t i n e d f o r consumers d o m i n a n t l y w i t h i n t h e L o w l a n d i n Canada and f o r consumers s o u t h o f the Lowland (the Puget Sound r e g i o n ) i n the U n i t e d S t a t e s .  From d i s t r i b u t i o n  p o i n t s i n S e a t t l e , f r e s h and p r o c e s s e d p r o d u c t s a r e s h i p p e d t o e a s t e r n markets (Washington S t a t e Department  o f A g r i c u l t u r e 1965), as t h e y a r e  d e s t i n e d f o r e a s t e r n Canadian m a r k e t s f r o m Vancouver.  2.0 LITERATURE REVIEW 2.1 Land Use Change and M o n i t o r i n g M o n i t o r i n g change i n r e n e w a b l e r e s o u r c e s  have been common i n  n a t u r a l r e s o u r c e management o f w e t l a n d s , mammal p o p u l a t i o n s , v e g e t a t i o n , w i l d l i f e h a b i t a t , f o r e s t m o r t a l i t y , and r e c r e a t i o n ( B e l l and A t t e r b u r y  1983).  A e r i a l photographs have been used f o r many  y e a r s f o r d e s c r i b i n g l a n d use (Marschner 1950) and f o r m o n i t o r i n g l a n d use change (Reeves e t a l . 1975).  E a r l y studies of airphoto  c o m p a r i s o n a n a l y s i s i n t h e U n i t e d S t a t e s i n c l u d e Gibbs and Husch (1956) f o r f o r e s t l a n d and D i l l  (1959) on a g r i c u l t u r a l l a n d and  P h i l p o t t s (1957) f o r a g r i c u l t u r a l l a n d i n Canada.  They have proven t o  be a v a l u a b l e s o u r c e o f d a t a on l a n d use, p a r t i c u l a r l y i n o b t a i n i n g h i s t o r i c a l d a t a t h a t c o u l d n o t be gained  otherwise.  I n t h e l a s t 15  y e a r s Landsat d a t a has proven v a l u a b l e by p r o v i d i n g r e a s o n a b l e  detail  a t l e v e l I and sometimes l e v e l I I c l a s s i f i c a t i o n (Odenyo and P e t t r y 1977, Anderson e t a l . 1972). S t r a t i f i e d random t e c h n i q u e s  have been a c c e p t e d as t h e most  a p p r o p r i a t e method o f s a m p l i n g i n l a n d - u s e s t u d i e s u s i n g remote i m a g e r y , s o t h a t s m a l l e r a r e a s can be s a t i s f a c t o r i l y (Zonneveld 1974, van Genderen and Lock 1977).  represented  Roberts e t a l . (1979)  present  a model t o a l l o w e n v i r o n m e n t a l e v a l u a t i o n o f a d e c i s i o n t o  convert  p r e s e n t l a n d use t o a n o t h e r  category.  Our use o f t h e l a n d i s r e g u l a t e d by p h y s i c a l , e c o l o g i c a l , s o c i o e c o n o m i c and p o l i t i c a l systems.  I t i s often d i f f i c u l t to  i d e n t i f y t h e e f f e c t on l a n d use o f any o f t h e s e systems. t r a d i t i o n a l p l a n n i n g t o o l i s t h e l a n d use and n a t u r a l inventory.  A shortcoming o f these i n v e n t o r i e s i s t h e i r 25  A  resource point-in-time  n a t u r e w i t h no r e f e r e n c e t o t r e n d s .  R e p e t i t i v e i n v e n t o r i e s , such as  t h o s e by Coppleman e t a l . (1978) and B i r c h and Wharton (1982), on t h e o t h e r hand, p e r m i t an a n a l y s i s o f t h e s p a t i a l and t e m p o r a l  variations  i n land use. Changes i n l a n d use a r e , t o a l a r g e e x t e n t , a r e f l e c t i o n o f how s o c i e t y responds t o s o c i o e c o n o m i c , i n s t i t u t i o n a l , and management p r a c t i c e s , and t h u s , t h e y p r o v i d e e s s e n t i a l i n p u t f o r an o b j e c t i v e e v a l u a t i o n f o r such p r a c t i c e s ( A d e n i y i 1980).  M o n i t o r i n g change and  t r e n d s throughout t h e n a t u r a l r e s o u r c e f i e l d s can i n c r e a s e t h e u n d e r s t a n d i n g and management o f t h e s e r e s o u r c e s w h i c h are c o n s t a n t l y c h a n g i n g , b e i n g m o d i f i e d by man, i n s e c t and d i s e a s e i n f e s t a t i o n , and c a t a s t r o p h i c events. analyses.  P r e d i c t a b i l i t y i s a major outcome o f t h e s e  Some i n v e s t i g a t o r s have s t u d i e d the causes and  i n t e r r e l a t i o n s h i p s o f l a n d use (Fabos e t a l . 1973), some have a t t e m p t e d t o d e v e l o p m a t h e m a t i c a l models f o r p r e d i c t i n g l a n d use change ( L i n d s a y and Dunn 1979) and o t h e r s t o combine causes w i t h modeling  ( C i v c o and Kennard  1983).  The Canada Land Use M o n i t o r i n g Program (CLUMP) was e s t a b l i s h e d t o m o n i t o r t h e amount, l o c a t i o n , and type o f change i n Canada on n a t i o n a l and r e g i o n a l s c a l e s (Rump 1983).  The t i m e i n t e r v a l s o f f i v e y e a r s  f o r urban a r e a s and 10 y e a r f o r r u r a l a r e a s were found a p p r o p r i a t e . Land use d a t a were c o m p i l e d from the i n t e r p r e t a t i o n o f a e r i a l photographs. V a r i o u s s a m p l i n g t e c h n i q u e s have been used t o c o l l e c t l a n d use d a t a from a e r i a l photographs.  B e r r y (1962) r e v i e w e d papers on t h e  r e l a t i v e e f f i c i e n c y o f s e v e r a l methods, i n c l u d i n g d o t g r i d s and p o i n t transects.  Z e i m e t z e t a l . (1976) c a l c u l a t e d l a n d use change f o r 53  26  c o u n t i e s o v e r a p e r i o d o f 10 y e a r s u s i n g a two-stage scheme.  R o s e n f i e l d (1982) c o m p i l e d  and d i s c u s s e d the methodology o f  sample d e s i g n w h i c h i s a p p l i c a b l e t o d e t e r m i n a t i o n o f l a n d - u s e and l a n d - c o v e r  area-point  o f change i n a r e a  categories.  Latham (1979, as r e p o r t e d by R o s e n f i e l d 1982) r e p o r t e d on t h e r e s u l t s o f a p r e l i m i n a r y experiment o f sampling l a n d - u s e and l a n d - c o v e r  t h e 1958 and 1977  maps f o r t h e S t a t e o f P e n n s y l v a n i a  c a t e g o r i e s from Anderson e t a l . (1972).  using  T h i s s t u d y i s the f i r s t  a v a i l a b l e i n s t a n c e o f two s e q u e n t i a l s e t s o f s i m i l a r land-use and land-cover  c l a s s i f i c a t i o n and mapping f o r as l a r g e an a r e a as an  entire state. F r a z i e r and S h o v i c  (1979) examined l a n d use change on  a g r i c u l t u r a l lands i n northwestern  Whatcom County, WA u s i n g a e r i a l  photography taken i n 1966 and 1974.  No s i g n i f i c a n t changes o c c u r r e d  i n t h e amount o f p r i m e l a n d , whereas nonprime l a n d had a c o n s i d e r a b l e r e d u c t i o n i n p a s t u r e c o u n t y w i d e , p r i m a r i l y a t t h e expense o f d e c r e a s e s i n f o r e s t and i n c r e a s e s i n row c r o p s . hay.  The a u t h o r s  not s t r i c t l y  Most o f t h e c o n v e r s i o n s  were t o  found t h e changes i n Whatcom County t o be s u b t l e and  comparable t o changes i n o t h e r c o u n t i e s d e s c r i b e d by  Z e i m e t z e t a l . (1976). Frey and D i l l (1971) used p o i n t s a m p l i n g  and a e r i a l photo  i n t e r p r e t a t i o n t o s t u d y l a n d use change i n t h e l o w e r M i s s i s s i p p i R i v e r alluval plain.  They used a e r i a l photos from about 1950 and 1969 w i t h  the b a s i c o b j e c t i v e t o o b t a i n d a t a on t h e c o n v e r s i o n o f f o r e s t l a n d t o cropland. S c h r e i e r e t a l . (1982) examined l a n d use changes a t 3 t o 5 year i n t e r v a l s between 1969 and 1981 u s i n g a e r i a l photographs. changes were c o r r e l a t e d w i t h s o i l  These  survey i n f o r m a t i o n and r e l a t e d t o  27  r a s p b e r r y y i e l d and management h i s t o r y and s o i l c o n d i t i o n s i n t h e Abbotsford, B r i t i s h Columbia area. C i v c o and Kennard (1983) a s s e s s e d l a n d use change i n C o n n e c t i c u t to p r e d i c t t r e n d s u s i n g m a t h e m a t i c a l  modeling t o i d e n t i f y  p a r a m e t e r s and p a s t l a n d use t r e n d s t h a t best account use p a t t e r n s . were used. and  those  f o r current land  V a r i o u s p h y s i c a l , b i o l o g i c a l , and c u l t u r a l p a r a m e t e r s  Land use a t a p p r o x i m a t e l y t e n - y e a r i n t e r v a l s between 1950  1980 were d e l i n e a t e d t h r o u g h i n t e r p r e t a t i o n o f a e r i a l  photographs.  A n a l y s i s o f the d a t a i n d i c a t e d t h a t l a n d use i s s t a b i l i z i n g , a g r i c u l t u r a l l a n d decreased 2.2 Anthropogenic  although  d r a m a t i c a l l y d u r i n g t h e 30-year p e r i o d .  Soils  2.2.1 G e n e r a l B e n e f i c i a l and D e t r i m e n t a l E f f e c t s o f C u l t i v a t i o n Man i s a b l e t o m o d i f y t h e n a t u r a l development o f s o i l s suddenly  and d i r e c t l y as a r e s u l t o f c u l t i v a t i o n .  very  Cultivation to a  g e n e r a l l y s t a n d a r d i z e d depth r e s u l t s i n a homogenized brown o r b l a c k upper h o r i z o n w i t h an a b r u p t l o w e r l i m i t (Duchaufour 1982). Anthropogenic  i n f l u e n c e s began d u r i n g e a r l y man's d i g g i n g i n quest f o r  food and t h e a c c u m u l a t i o n o f s h e l l s and bone r e f u s e i n middens, t h e r e b y i n c r e a s i n g t h e s o i l ' s P content and pH l e v e l .  Lime and o t h e r  amendments have been used f o r hundreds o f y e a r s i n Europe ( B i d w e l l and Hole 1965). B i d w e l l and Hole (1965) suggest a number o f b e n e f i c i a l and d e t r i m e n t a l e f f e c t s ( a l b e i t t h e y agree these a r e v a l u e judgments) o f the i n f l u e n c e o f man on t h e f i v e f a c t o r s o f s o i l f o r m a t i o n .  Man can  even be c o n s i d e r e d as t h e s i x t h independent s o i l - f o r m i n g f a c t o r (Yaalon and Yaron 1966).  These i n f l u e n c e s i n c l u d e a d d i n g  28  fertilizers,  r e m o v i n g n u t r i e n t s t i e d up i n p l a n t s , i r r i g a t i n g and  d r a i n i n g , l o o s e n i n g s o i l by p l o w i n g and c o m p a c t i n g i t .  Whitney  as r e p o r t e d by B i d w e l l and Hole 1965) noted t h a t t h e Japanese v a l u e d t h e i r o l d e s t c u l t i v a t e d l a n d s most h i g h l y .  (1925,  have  The r e c l a m a t i o n o f  Danish heath f o r a g r i c u l t u r a l crop p r o d u c t i o n i l l u s t r a t e s t h e improvement o f v i r g i n s o i l by human o p e r a t o r s ( A k i n 1963).  On the  o t h e r hand, Hobbs and Brown (1957, as r e p o r t e d by B i d w e l l and Hole 1965) demonstrated Kansas.  t h e d r a m a t i c l o s s o f N over a 45 y e a r p e r i o d i n  The degree o f change i s dependent on t h e i n p u t s and r e m o v a l s .  Simonson (1951) i n d i s c u s s i n g from a broad p e r s p e c t i v e t h e changes i n s o i l s f o l l o w i n g c u l t i v a t i o n , s t a t e d "we s h o u l d be hard p r e s s e d t o prove t h a t the n e t r e s u l t had been e i t h e r good o r bad."  2.2.2  C l a s s i f i c a t i o n and P r o c e s s e s o f A n t h r o p o g e n i c  Soils  G e n e r a l l y t h e upper m a n i p u l a t e d p a r t o f the s o i l i s c a l l e d the plow l a y e r .  I t does n o t i n f l u e n c e c l a s s i f i c a t i o n a c c o r d i n g t o S o i l  Taxonomy ( S o i l Survey S t a f f 1975).  U s u a l l y t h e r e s u l t s o f man's  i n t e r v e n t i o n on s o i l s a r e viewed as d e v i a t i o n s from t h e normal (Yaalon and Yaron 1966).  soil  I n s o i l mapping t h e s e d e v i a t i o n s a r e  i g n o r e d o r , i f s e v e r e , denoted by phase names l i k e eroded, s a l i n e , and so f o r t h  ( S o i l C o n s e r v a t i o n S e r v i c e 1980).  Extreme i n p u t s and  a l t e r a t i o n o v e r l o n g p e r i o d s o f t i m e can r e s u l t i n a n t h r o p i c (very h i g h P c o n t e n t ) o r plaggen ( v e r y h i g h o r g a n i c m a t t e r c o n t e n t ) horizons. These man-induced changes i n s o i l p r o p e r t i e s can be s t u d i e d i n a s y s t e m a t i c framework by u t i l i z i n g a p r o c e s s - r e s p o n s e model. t h e o r y o f metapedogenesis  The  o u t l i n e d by Y a a l o n and Yaron (1966) s t a r t s  w i t h t h e n a t u r a l s o i l as t h e p a r e n t m a t e r i a l t r a n s f o r m e d by a v a r i e t y  29  of a g r i c u l t u r a l p r a c t i c e s .  I t d i f f e r s from t h e t h e o r y o f pedogenesis  i n t h a t pedogenetic processes a c t s l o w l y over a prolonged period o f t i m e , whereas m e t a p e d o g e n e t i c a l f a c t o r s a c t on s o i l f o r m a t i o n  with a  s t r o n g and u s u a l l y r a p i d e f f e c t .  Also, the metapedogenetical  processes are mostly r e v e r s i b l e .  I n s t u d y i n g these p r o c e s s e s  experimentally,  i t may be p o s s i b l e t o p r e d i c t a s o i l ' s response t o  v a r i o u s management p r a c t i c e s . Frequent m a n i p u l a t i o n s , i n perturbations cycles.  c h a r a c t e r i s t i c o f agro-ecosystems, r e s u l t  o f energy f l u x e s , n u t r i e n t dynamics, and h y d r o l o g i c  Management o f s o i l - p l a n t systems a l t e r s o x i d a t i o n - r e d u c t i o n  r e l a t i o n s by a l t e r i n g a e r a t i o n s t a t u s t h r o u g h t i l l a g e , i r r i g a t i o n and drainage,  and by r e d u c i n g  (Juma and M c G i l l 1986).  i n p u t s o f f i x e d carbon as energy s o u r c e s F u r t h e r m o r e , t i l l a g e r e s u l t s i n comminution  and i n c o r p o r a t i o n o f o r g a n i c r e s i d u e s  i n t o t h e Ap h o r i z o n .  d i s r u p t s s o i l aggregates, increases a e r a t i o n , p u l v e r i z e s  It residues,  exposes new s u r f a c e s t o m i c r o o r g a n i s m s ( R i d l e y and H e d l i n 1968) and t h i s promotes r a p i d o x i d a t i o n o f o r g a n i c 1957).  carbon ( R o v i r a and Graecen  Two n e t r e s u l t s o f such t r a n s f e r s a r e i n c r e a s e d  decomposition of crop residues Broadbent  rates of  ( S h i e l d s and P a u l 1973, S a i n and  1977) and g r e a t e r a c c e s s t o o r g a n i c m a t e r i a l s f o r s o i l  o r g a n i s m s (Van Veen and P a u l 1981).  The t i l l a g e r o l e played  by s o i l  a n i m a l s i n t h e n a t u r a l system i s p l a y e d , i n p a r t , by machinery i n the agrosystem.  D e c o m p o s i t i o n o f o r g a n i c m a t e r i a l s have been s t u d i e d i n  a l m o s t a l l ecosystems and has been r e v i e w e d e x t e n s i v e l y (Hunt 1977, S i n g h and Gupta  1977, S w i f t e t a l . 1979, M c G i l l e t a l . 1981b).  Juma and M c G i l l (1986) c l a s s i f y t h e d i f f e r e n c e s i n s o i l development  p r o c e s s e s and n u t r i e n t c y c l i n g i n agro-ecosystems  unmanaged ecosystems i n t e r m s o f a d d i t i o n s , r e m o v a l s , 30  versus  transformations,  and t r a n s f e r s .  Most s t u d i e s have been done i n the  p a r t i c u l a r l y i n Saskatchewan and A l b e r t a .  Prairies,  No work has  been p u b l i s h e d  on the e f f e c t s o f c u l t i v a t i o n on changes i n carbon or n i t r o g e n contents  2.2.3  i n s o i l s o f B r i t i s h C o l u m b i a and w e s t e r n Washington S t a t e .  R e l a t i o n s h i p s between Agro-ecosystems and Unmanaged Systems 2.2.3.1 G e n e r a l F l u x e s o f O r g a n i c M a t t e r  Constituents  Managed a g r o - e c o s y s t e m s d i f f e r from unmanaged s y s t e m s i n t h a t r o o t p r o d u c t i o n and  l i t t e r i n p u t s o f carbon a r e f r e q u e n t l y reduced  i n p u t s o f n i t r o g e n a r e i n c r e a s e d by management, and t h e r e b y the C:N,  a l t h o u g h o r g a n i c m a t t e r may  decreasing  d e c r e a s e o r i n c r e a s e depending on  management p r a c t i c e s and the o r i g i n a l o r g a n i c m a t t e r c o n t e n t t o the new The  and  relative  steady s t a t e .  type o f t i l l a g e , c r o p p i n g methods and r o t a t i o n s , and  r e s i d u e s r e t u r n e d t o the s o i l s are a l l i m p o r t a n t organic matter l e v e l s i n s o i l s .  G r a s s e s and  crop  factors affecting  legumes i n r o t a t i o n  d e c r e a s e l o s s e s o f o r g a n i c m a t t e r t h r o u g h h i g h below-ground  primary  p r o d u c t i o n ( M c G i l l and Hoyt 1977) and h e l p m a i n t a i n o r g a n i c m a t t e r concentrations i n s o i l .  Continuous p a s t u r e i n c r e a s e s o r g a n i c m a t t e r  c o n c e n t r a t i o n s as does l o n g t e r m a d d i t i o n s o f manure.  A p p l i c a t i o n of  i n o r g a n i c f e r t i l i z e r reduces o r g a n i c m a t t e r l o s s e s by i n c r e a s i n g p r o d u c t i o n and  r e t u r n o f r e s i d u e s ( J e n k i n s o n and Johnson 1976,  r e p o r t e d by Juma and  as  M c G i l l 1986).  Managed s y s t e m s have g r e a t e r i n p u t s o f n i t r o g e n than unmanaged s y s t e m s and c o n s e q u e n t l y state conditions.  have g r e a t e r l o s s e s of n i t r o g e n under  steady  The amount o f n i t r o g e n l o s t i n a managed system i s  a f u n c t i o n o f t i m e and r a t e of a p p l i c a t i o n , c r o p p i n g s y s t e m , and  31  m o i s t u r e regime ( A l l i s o n 1966, Cameron e t a l . 1978,  Campbell  and  1978).  Paul  The c o n t e n t o f o r g a n i c m a t t e r i n a s o i l r e f l e c t s the balance between a d d i t i o n s and r e m o v a l s .  I t can be r e l a t e d t o d i f f e r e n t  m o i s t u r e r e g i m e s a t v a r i o u s l a n d s c a p e l o c a t i o n s . The d i r e c t i o n o f change depends upon the p r e v i o u s o r g a n i c m a t t e r l e v e l as w e l l as t h e a g r i c u l t u r a l system  (Robertson 1983).  The c o n c e n t r a t i o n o f carbon i s  g e n e r a l l y measured at p a i r e d s i t e s but s i n c e s p a t i a l v a r i a b i l i t y i s not measured, the observed changes cannot be d i r e c t l y a t t r i b u t e d t o biological activity  (Juma and M c G i l l 1 9 8 6 ) .  2 . 2 . 3 . 2 S p e c i f i c L o s s e s o f C, N, and P The d e p l e t i o n o f o r g a n i c m a t t e r i n c u l t i v a t e d s o i l s has been demonstrated by a c o m p a r i s o n o f the carbon and n i t r o g e n c o n t e n t s i n a c u l t i v a t e d s o i l w i t h a s i m i l a r s o i l t h a t remained i n permanent o r v i r g i n v e g e t a t i o n (Shutt 1925, 1957,  Wang e t a l . 1984).  Newton e t a l . 1945,  The r e p o r t e d l o s s i s about  pasture  Haas e t a l . 1% o f the  o r g a n i c carbon per year f o r the f i r s t 20 t o 30 y e a r s o f c u l t i v a t i o n . The magnitude  o f N l o s s i s s i m i l a r but l o s s e s a r e more dependent on  cropping practices. Newton e t a l . (1945) r e p o r t e d t h a t a f t e r more than 20 y e a r s o f c r o p p i n g , s o i l s i n w e s t e r n Canadian p r a i r i e s had l o s t an average o f 20% c a r b o n i n the t o p 30 cm o f s o i l and 18$ n i t r o g e n i n the t o p 15 cm. I n Saskatchewan,  carbon a d d i t i o n s t o n a t i v e g r a s s l a n d were 1.6  times  t h a t o f a s s o c i a t e d l a n d c o n t i n u o u s l y cropped t o c e r e a l s (Voroney e t al.  1981).  N i t r o g e n i n p u t s were 2 t o 20 t i m e s h i g h e r i n c u l t i v a t e d  grassland s o i l s i n A l b e r t a than i n n a t i v e grasslands 1980).  32  (Clark et a l .  The f a t e o f P a s s o c i a t e d w i t h o r g a n i c m a t t e r l o s s d u r i n g c u l t i v a t i o n has r e c e i v e d much l e s s a t t e n t i o n . S o i l P i s p r i m a r i l y l o s t f r o m the o r g a n i c f r a c t i o n u n t i l t h i s f r a c t i o n i s d e p l e t e d s u f f i c i e n t l y t o a l l o w d i s s o l u t i o n o f a p a t i t e t o occur  (Tiessen et a l .  1982). Much o f the l i t e r a t u r e agrees w i t h t h e s e t r e n d s , but d a t a show g r e a t v a r i a t i o n .  individual  Carbon l o s s e s range from 0 t o 2.5$  and  N  from 0 t o 2% per year and the l o s s e s depend on the i n i t i a l amounts and on s o i l t e x t u r e ( T i e s s e n et a l . 1982). of degradation to  s u g g e s t l o s s e s may Tiessen  reported temporal  b e f o r e e q u i l i b r i u m ranges from 22 y e a r s  70 years ( M a r t e l and  1981,  The  extent  (Shutt  1925)  P a u l 1974), a l t h o u g h more r e c e n t s t u d i e s  continue  ( P a u l and Van Veen 1978,  Voroney e t a l .  e t a l . 1982).  Wang e t a l . (1984) s t u d i e d the e f f e c t s o f p o t a t o c u l t i v a t i o n i n New  B r u n s w i c k on the s o i l p r o p e r t i e s used f o r c l a s s i f y i n g p o d z o l i c  soils.  A f t e r 40 y e a r s o f c u l t i v a t i o n the o r g a n i c c a r b o n c o n t e n t  reduced by h a l f and i t s range was s l i g h t l y due  to l i m i n g .  decreased.  S o i l pH was  was  raised  Over 90% o f the f o r e s t e d s o i l s were  c l a s s i f i e d as P o d z o l s , whereas o n l y 73% o f the c u l t i v a t e d s o i l s were. Juma and M c G i l l (1986) i n a w o r l d w i d e c o m p a r i s o n o f c u l t i v a t e d w i t h u n c u l t i v a t e d s i t e s , showed t h a t the c o n c e n t r a t i o n o f o r g a n i c carbon d e c r e a s e d by  13 t o 60%.  They a l s o showed b u l k d e n s i t y t o be  i n v e r s e l y p r o p o r t i o n a l t o o r g a n i c carbon w i t h t h i s r e l a t i o n s h i p p a r t l y dependent on c u l t i v a t i o n G r e g o r i c h and  time.  Anderson (1986) e v a l u a t e d the e f f e c t s o f  c u l t i v a t i o n on the amount, d e c o m p o s i t i o n ,  and r e d i s t r i b u t i o n o f  o r g a n i c m a t t e r i n f o u r catenas i n Saskatchewan - one n a t i v e p r a i r i e and t h r e e c u l t i v a t e d s i n c e 1910,  1930,  and  33  1961.  They r e p o r t e d  s u b s t a n t i a l r e d u c t i o n s i n n i t r o g e n as a r e s u l t o f c o n t i n u i n g cultivation.  These l o s s e s were i n e x c e s s o f the amount removed by  g r a i n and s t r a w .  On t h e o t h e r hand, l o n g term phosphorus  f e r t i l i z a t i o n maintained  t o t a l P i n the A horizon o f c u l t i v a t e d s o i l s  at l e v e l s s i m i l a r t o the native s o i l .  R e d u c t i o n o f carbon due t o  m i n e r a l i z a t i o n o c c u r r e d due t o c u l t i v a t i o n w i t h t h e l a r g e s t p o r t i o n l o s t i n t h e e a r l y years. content. the s o i l .  The 1910 f i e l d  had t h e l o w e s t  organic  carbon  C u l t i v a t i o n a l s o i n c r e a s e d t h e b u l k d e n s i t y , o r compacted The a u t h o r s a l s o i n d i c a t e d an i n c r e a s e i n v a r i a b i l i t y o f  s o i l s w i t h i n the c u l t i v a t e d catenas. These d i f f e r e n c e s a r e apparent between t h e n a t i v e versus t h e t h r e e c u l t u r a l l a n d s c a p e s but t h e r e was no c o n s i s t e n t p a t t e r n among the l a t t e r three.  Some o f t h e i r r e p o r t e d l o s s e s were due t o e r o s i o n ,  but c u l t i v a t i o n a l o n e reduced i n p u t s o f r e s i d u e s , enhanced c o n d i t i o n s for  m i n e r a l i z a t i o n by p l o w i n g and a e r a t i n g , and removed n u t r i e n t s i n  c r o p s and l o s s o f n u t r i e n t s by l e a c h i n g . M c G i l l e t a l . (1981a) r e p o r t e d t h e o r g a n i c m a t t e r content A l b e r t a s o i l s was reduced by 50% w i t h c u l t i v a t i o n .  T h i s was  o f many confirmed  by Anderson e t a l . (1986) i n Saskatchewan a l o n g w i t h i n c r e a s e s i n b u l k d e n s i t y o f 30 t o 40%. Some o f t h e i r c a t e n a s had c o n c e n t r a t i o n s o f o r g a n i c carbon 75% l o w e r than t h e n a t i v e 2.2.4  soil.  E f f e c t s o f Land Use P r a c t i c e s on S o i l P r o p e r t i e s L a v k u l i c h and Rowles (1971) examined t h e e f f e c t o f d i f f e r e n t l a n d  use p r a c t i c e s on a s o i l  i n t h e F r a s e r Lowland, B r i t i s h Columbia.  Except f o r t h e A h o r i z o n , t h e m o r p h o l o g i c a l  features of the s o i l s  formed under n a t u r a l r e g e n e r a t i o n o f c o n i f e r o u s s p e c i e s was s i m i l a r t o the c u l t i v a t e d s o i l s c l e a r e d about 50 y e a r s p r e v i o u s l y . 34  In the  s u r f a c e l a y e r t h e c u l t i v a t e d s i t e had pH v a l u e s two u n i t s g r e a t e r the f o r e s t e d s i t e as a r e s u l t o f r e p e a t e d a p p l i c a t i o n s o f l i m e . a l s o found h i g h e r n i t r o g e n , n a r r o w e r C:N r a t i o , h i g h e r o r g a n i c and  than They  matter  phosphorus c o n t e n t s , and h i g h e r exchangeable Ca and Mg i n t h e  c u l t i v a t e d s o i l s r e s u l t i n g f r o m agronomic p r a c t i c e s . values  were v a r i a b l e .  2.3 S o i l 2.3.1  Bulk d e n s i t y  Variability  Introduction S o i l v a r i a b i l i t y i s a n a t u r a l landscape a t t r i b u t e t h a t o c c u r s  both w i t h i n and between pedons. philosophy  of s o i l scientists,  I t i s an outcome o f t h e b a s i c w h i c h i s t h a t s o i l i s a f u n c t i o n o f the  i n t e r a c t i o n of the s o i l f o r m i n g f a c t o r s : c l i m a t e , parent m a t e r i a l , topography, o r g a n i s m s , and t i m e . combination of experimental  V a r i a t i o n can be a t t r i b u t e d t o some  e r r o r , seasonal  v a r i a t i o n , and s p a t i a l  v a r i a t i o n , a l t h o u g h t h e l a t t e r i s the l a r g e s t ( B a l l and W i l l i a m s 1968, can  C l i n e 1944, Cameron e t a l . 1971).  Large s p a t i a l  obscure p o s s i b l e monthly d i f f e r e n c e s (Frankland The  e t a l . 1963).  l a t e r a l v a r i a b i l i t y of s o i l s i n a landscape i s the b a s i s f o r  differentiating principal  variability  and mapping s o i l s .  reason f o r d i f f e r e n t i a t i n g  The v e r t i c a l v a r i a b i l i t y i s the horizons  within a soil.  understanding o f l a t e r a l v a r i a b i l i t y i s a p r e r e q u i s i t e f o r t r e n d sequences i n p r o f i l e s a m p l i n g (Drees and W i l d i n g  An developing  1973).  Soil  v a r i a b i l i t y i s not t h e same a t a l l depths, n o r does i t change w i t h d e p t h i n t h e same way f o r a l l p r o p e r t i e s a t a l l seasons (Raupach 1951, Towner 1968, Cameron e t a l . 1971, C i p r a e t a l . 1972, Hammond e t a l . 1958,  and Mader 1963).  35  2.3.2  Importance o f S o i l  Variability  Knowledge o f the v a r i a b i l i t y o f s o i l s h e l p s t o understand r e l i a b i l i t y of c o m p o s i t i o n and r e l a t i o n s h i p s among s o i l s and predictions  descriptions  s o i l p r o p e r t i e s , and  f o r c r o p y i e l d s and  i n developing c r i t e r i a  The  f o r o t h e r management t e c h n i q u e s .  c l a s s d i f f e r e n t i a e , to q u a n t i f y  I t i s used  p e d o g e n e s i s , and  to  analysis  Drees 1 9 8 3 ) .  and  i n a b i l i t y to deal with s p a t i a l v a r i a b i l i t y prevents s o i l users matching s o i l requirements to s o i l  and,  t o p r e d i c t s o i l b e h a v i o r and  therefore, 1985).  As a r e s u l t , t h e r e has  characteristics  performance (Uehara e t  been a g r o w i n g p r e s s u r e by  of s o i l surveys f o r q u a n t i f i c a t i o n of s p a t i a l v a r i a b i l i t y c o n f i d e n c e l i m i t s f o r s o i l map 1978).  of  variance s t a t i s t i c s for s p e c i f i e d  from a c c u r a t e l y  al.  of  I t i s important  d i f f e r e n t i a t e s y s t e m a t i c from random e r r o r i n l a n d f o r m (Wilding  the  the r e l i a b i l i t y  s o i l interpretations.  t o e s t i m a t e c e n t r a l tendency and and  units,  f o r the a p p l i c a t i o n o f f e r t i l i z e r , the i n p u t  i r r i g a t i o n , d r a i n a g e , and  classes  of s o i l map  the  u n i t s and  s o i l properties  This i s a p a r t i c u l a r l y v a l i d request considering  found much l e s s t h a n the r e q u i r e d S p r i n g e r 1965, Crosson and  W i l d i n g e t a l . 1965,  P r o t z 1974,  and  map  unit p u r i t y (Powell  Amos and  Bascomb and  Whiteside  users  and (Miller studies and  1975,  J a r v i s 1976).  V a r i a b i l i t y a l s o l i m i t s e f f o r t s t o a p p l y remote s e n s i n g t o mapping o f s o i l s .  MacDowall e t a l . ( 1 9 7 2 ) s t u d i e d  m o i s t s o i l s u r f a c e s and greatly influenced  reflectance  found t h a t even s m a l l v a r i a t i o n s i n  refectance.  have  K r i s t o f and  the  from texture  Zachary ( 1 9 7 4 ) found  that  i n some i n s t a n c e s s p e c t r a l v a r i a t i o n s were g r e a t e r w i t h i n s e r i e s than between s e r i e s .  36  2.3.3 Sources o f S o i l  Variability  B e c k e t t and Webster (1971) d i s c u s s t h e s o u r c e s o f s o i l v a r i a b i l i t y , f r o m t h o s e w h i c h a f f e c t s m a l l volumes o f s o i l t o o t h e r s which i n t r o d u c e long-range g r a d a t i o n s but a l l o f which r e s u l t from differences i n the f i v e s o i l forming factors.  For i n s t a n c e , parent  m a t e r i a l may v a r y o v e r s h o r t d i s t a n c e s , such as a l l u v i a l d e p o s i t s , o r more g r a d u a l l y such as broad o u t c r o p s o f s e d i m e n t a r y rock. formed on t r a n s p o r t e d m a t e r i a l s a r e more v a r i a b l e than t h o s e i n s i t u from bedrock (Robinson and L l o y d 1915).  Soils weathered  Drees and W i l d i n g  (1973) showed t h e v a r i a b i l i t y i n g e o l o g i c a l u n i t s t o be i n t h e o r d e r l o e s s < t i l l < outwash.  Mausbach e t a l . (1980) found t h a t l o e s s  were l e s s v a r i a b l e than r e s i d u a l and a l l u v i a l s o i l s .  soils  Many b i o l o g i c a l  a c t i v i t i e s , i n c l u d i n g t r e e - t h r o w , b u r r o w i n g a n i m a l s , and stem f l o w , introduce heterogeneity i n s o i l s .  The e f f e c t s o f a l l these a r e  s u p e r i m p o s e d , i n c l u d i n g s o u r c e s o f v a r i a b i l i t y s u b j e c t t o human management: p l o w i n g , i r r i g a t i o n , d r a i n a g e , f e r t i l i z a t i o n ( S m i t h e t al.  1952).  H a r r a d i n e (1949) s u g g e s t s t h a t s o i l v a r i a b i l i t y  decreases  w i t h t h e age o f the l a n d s c a p e , but h i s d a t a a r e n o t c o n c l u s i v e .  2.3.4 S y s t e m a t i c and Random  Variability  Some v a r i a b i l i t y i s s y s t e m a t i c and i s a f u n c t i o n o f l a n d f o r m s , geomorphic e l e m e n t s , s o i l f o r m i n g f a c t o r s , and t h e i r i n t e r a c t i o n . Mapping s o i l s i s p o s s i b l e as a r e s u l t o f the s y s t e m a t i c c o n c u r r e n t change o f s o i l s and l a n d s c a p e s .  I t s purpose i s t o group areas t h a t  have g r e a t e r homogeneity f o r s e l e c t e d s o i l p r o p e r t i e s and l e s s v a r i a b i l i t y t h a n t h e continuum as a whole, so t h a t t h e y can be managed more u n i f o r m l y .  Systematic s o i l v a r i a b i l i t y a l s o occurs a t the  m i c r o l e v e l i n terms o f m i c r o f a b r i c and p h y s i c a l - c h e m i c a l c o m p o s i t i o n  37  (Miller  e t a l . 1971, Brewer 1976).  Associated  with systematic  v a r i a b i l i t y , simultaneously  and  c o n c u r r e n t l y , a r e those changes i n s o i l p r o p e r t i e s t h a t a r e random and cannot be r e l a t e d t o a known cause.  I n s o i l s u r v e y random e f f e c t s  o f t e n have ranges e x c e e d i n g t h e l i m i t s d e f i n e d i n t h e map u n i t , and are r e f e r r e d t o as i n c l u s i o n s .  2.3.5 V a r i a b i l i t y  o f C h e m i c a l , P h y s i c a l , and F e r t i l i t y  R e s e a r c h e r s have been s t u d y i n g s o i l v a r i a b i l i t y 1900s (Montgomery 1913, Robinson and L l o y d  Parameters  since the e a r l y  1915, P e n d l e t o n 1919). An  abundance o f s t u d i e s i n s o i l s p a t i a l v a r i a b i l i t y has o c c u r r e d the l a s t 25 y e a r s .  Most o f the a t t e n t i o n has f o c u s e d on s o i l  v a r i a b i l i t y as a means t o f u r t h e r q u a n t i f y p e d o l o g i c  concepts and t o  b e t t e r understand t h e c a u s a l f a c t o r s f o r s o i l d i s t r i b u t i o n and  within  landscape e v o l u t i o n .  These have been d i s c u s s e d  l i t e r a t u r e r e v i e w s (Beckett  patterns  i n two m a j o r  and Webster 1971, W i l d i n g and Drees 1 9 8 3 ) ,  a s e c t i o n o f a t e x t ( F r i d l a n d 1 9 7 2 ) , and one p r o c e e d i n g s o f a workshop ( N i e l s e n and Bouma 1985). The m a j o r i t y o f papers have examined t h e s p a t i a l v a r i a b i l i t y o f s o i l c h e m i c a l p r o p e r t i e s and s o i l  physical  p r o p e r t i e s , e s p e c i a l l y s o i l water (Hammond e t a l . 1 9 5 8 , Andrew and S t e r n s 1 9 6 3 , J a c o b and K l u t e  1 9 5 6 , Mason e t a l . 1957, M c l n t y r e and  Tanner 1959, Greminger e t a l . 1 9 8 5 , N i e l s e n e t a l . 1973, V i e i r a e t a l . 1981,  Peck 1 9 8 3 , Byers and Stephens 1 9 8 3 , Russo and B r e s l e r 1 9 8 1 , and  Gajem e t a l . 1981).  Drees and W i l d i n g  (1977) examined t h e v a r i a b i l i t y  (1978) and W i l l i a m s  of elemental  and Rayner  properties.  S p a t i a l v a r i a b i l i t y o f s o i l p r o p e r t i e s a f f e c t s s o i l performance (Warrick  and Gardner 1983).  A uniform a p p l i c a t i o n of s o i l  38  amendment  i n a s p a t i a l l y v a r i a b l e s o i l r e s u l t s i n o v e r - a p p l i c a t i o n i n some areas and u n d e r - a p p l i c a t i o n i n o t h e r s .  As a r e s u l t ,  s o i l v a r i a b i l i t y has a l s o been expressed soil  t e s t i n g f o r agronomic purposes  and  K l u t e 1956,  2.3-6  Rigney  and  by s t u d i e s concerned  (Waynick and Sharp  Reed 1946,  V a r i a b i l i t y i n S e r i e s , Map  practical interest i n  Lloyd  U n i t s , and  Landscapes  Davis  1978,  1936,  Harradine  and McCracken 1962, and (Amos and W h i t e s i d e 1969,  and Cuanalo  has  B a l l and W i l l i a m s  Jacob and K l u t e 1956,  Ike and C l u t t e r  1968,  1975,  Mader  de l a C. 1975,  1978,  Nelson  units  McCormack and  P o w e l l and S p r i n g e r 1965,  Nortcliff  1963,  Lee e t a l . 1975,  Crosson and P r o t z 1974,  W i l d i n g e t a l . 1965,  and  1968,  W i l d i n g e t a l . 1964) and w i t h i n map  B a n f i e l d and Bascomb 1976, 1976).  1949,  Hammond e t a l . 1958,  Andrew and S t e a r n s 1963,  Wilding  variation  w i t h i n i n d i v i d u a l s o i l s both w i t h i n s e r i e s (Robinson  1915,  Campbell  Jacob  Cameron et a l . 1971).  C o n s i d e r a b l e e f f o r t has been made t o e v a l u a t e the expected  1919,  with  Webster  W i l l i a m s and Rayner  Webster and B u t l e r 1976,  1977,  Bascomb and  Jarvis  V a r i a b i l i t y w i t h i n and between m o r p h o l o g i c a l l y s i m i l a r pedons  been documented by Mausbach e t a l . (1980), Drees and W i l d i n g  (1973),  and Smeck and W i l d i n g (1980).  Others have examined  the  e f f e c t s o f v a r i a b i l i t y i n p r o f i l e and landscape development (Huddleston and  Riecken  1973,  Harradine  1949,  P r o t z et a l . 1968,  Walker e t a l . 1968a, Walker e t a l . 1968b). Most e a r l y s t u d i e s on s o i l v a r i a b i l i t y were concerned surface layer.  Recent  w i t h the  s t u d i e s i n d i c a t e t h a t v a r i a b i l i t y changes w i t h  depth and t h a t the C h o r i z o n i s more v a r i a b l e than the A h o r i z o n (Mausbach e t a l . 1980)-  Classifying soils  i s a l s o designed  to  reduce  v a r i a b i l i t y i n each grouping, a l t h o u g h some groups are more v a r i a b l e  39  than others.  F o r i n s t a n c e , Mausbach e t a l . (1980) found t h a t  S p o d o s o l s were more v a r i a b l e than I n c e p t i s o l s and E n t i s o l s , w h i c h i n t u r n were more v a r i a b l e t h a n A l f i s o l s and M o l l i s o l s .  2.3.7  Statistics Many o f our c u r r e n t c o n v e n t i o n a l s t a t i s t i c a l methods come from  Snedecor (1940) and Snedecor and Cochran (1967), and a r e d e s i g n e d t o a n a l y z e o b s e r v a t i o n s o b t a i n e d i n t h e f i e l d w h i c h a r e assumed t o be independent and n o r m a l l y d i s t r i b u t e d .  The c o e f f i c i e n t o f v a r i a t i o n  (CV) has been an i m p o r t a n t s t a t i s t i c used t o compare s o i l p r o p e r t y v a r i a t i o n among d i f f e r e n t parameters.  I t i s d e f i n e d as t h e d i s p e r s i o n  r e l a t i v e t o t h e mean (the s t a n d a r d d e v i a t i o n d i v i d e d by t h e mean and e x p r e s s e d as a percentage).  I t compares d i s p e r s i o n o f d i f f e r e n t  soil  p r o p e r t i e s f r e e from s c a l e f a c t o r s , b u t i t assumes n o r m a l f r e q u e n c y d i s t r i b u t i o n , no c o v a r i a n c e between t h e mean and s t a n d a r d d e v i a t i o n , and d a t a where t h e mean does not approach z e r o .  However, s o i l  o b s e r v a t i o n s a r e n o t n e c e s s a r i l y s p a t i a l l y independent and f r e q u e n c y f u n c t i o n s a r e u s u a l l y n o t n o r m a l but f r e q u e n t l y skewed l o g n o r m a l o r gamma d i s t r i b u t i o n s ( W i l d i n g and Drees  1983).  G e o s t a t i s t i c a l t h e o r y ( a l s o known as r e g i o n a l i z e d t h e o r y ) has been developed t o a n a l y z e s o i l s p a t i a l  variable  variability  (Matheron 1963, V i e i r a e t a l . 1983, W a r r i c k and Gardner 1983, McBratney  1985, G u t j a h r 1985, V a l d i n e t a l . 1983, Shumway 1985,  Campbell 1978).  The use o f t h i s t h e o r y i n pedology i s r e l a t e d t o t h e  need t o c h a r a c t e r i z e n o t o n l y t h e mean o f a p r o p e r t y and i t s d e v i a t i o n , b u t how i t changes over d i s t a n c e , i t s s p a t i a l dependence, and i t s r e l a t i o n s h i p t o n e i g h b o r i n g v a l u e s .  Implementation of  g e o s t a t i s t i c s t o the s t u d y o f s o i l v a r i a b i l i t y r e q u i r e s t h a t samples  40  be c o l l e c t e d a t e q u a l i n t e r v a l s a l o n g s e v e r a l s t r a i g h t l i n e t r a n s e c t s . S t a t i s t i c a l t h e o r i e s c a l l e d a u t o c o r r e l a t i o n and s e m i - v a r i a n c e a r e b e i n g e x p l o r e d as a means t o more c o n c i s e l y and c o m p l e t e l y  describe  changes i n s o i l p r o p e r t i e s over d i s t a n c e (Webster and Cuanalo de l a C. 1975, and  V i e i r a e t a l . 1981, Lanyon and H a l l 1981, C a m p b e l l 1978, Burgess  Webster 1980, and Webster and Burgess 1980).  These s t u d i e s have  shown t h a t t h e r e i s s p a t i a l dependence o f many s o i l p r o p e r t i e s , i n v a l i d a t i n g t h e use o f c o n v e n t i o n a l samples.  s t a t i s t i c s based on independent  However, t h e r e appears t o be no c l e a r t r e n d i n t h e degree o f  s p a t i a l dependence s i n c e i t v a r i e s f o r each v a r i a b l e and s t u d y and may be a f u n c t i o n o f time.  For instance, c o r r e l a t i o n distances  v a r y from 230 m f o r s o i l t e x t u r e t o 5 m f o r w a t e r content 1985).  A l s o , the a p p l i c a t i o n o f k r i g i n g , another  technique,  area  can r e s u l t i n l e s s a c c u r a t e  (Wierenga  geostatistical  p r e d i c t i o n s than t h e ones  obtained  by t h e i n t e r p r e t a t i o n o f a s o i l map (Bregt and Bouma 1986 as  reported  by Bouma 1985).  W i l d i n g , d u r i n g t h e d i s c u s s i o n p e r i o d f o l l o w i n g the p r e s e n t a t i o n o f h i s paper ( W i l d i n g 1985), e x p r e s s e d some o f t h e d i s a d v a n t a g e s o f m u l t i v a r i a t e s t a t i s t i c s , such a s o r d i n a t i o n and c l u s t e r a n a l y s i s , a s f o l l o w s : 1) a s i n g l e measure o f s i m i l a r i t y i n v o l v e s enormous l o s s o f i n f o r m a t i o n , 2) s e l e c t i o n , measurement, and c o d i n g o f m u l t i p l e c h a r a c t e r s a r e h i g h l y s u b j e c t i v e , and 3) many d i f f e r e n t k i n d s o f c h a r a c t e r s must e n t e r i n t o t a x o n o m i c c l a s s i f i c a t i o n .  He proposes t h a t  i t s p o t e n t i a l f u t u r e use may r e s u l t f r o m h i g h speed computers and increased  f o c u s on q u a n t i f i c a t i o n o f s o i l p a r a m e t e r s ( W i l d i n g 1985).  41  2.3.8 Magnitude o f V a r i a b i l i t y  (CVs)  B e c k e t t and Webster (1971) summarized most o f the pre-1970 literature  on s o i l v a r i a b i l i t y , most of w h i c h concerned v a r i a b i l i t y i n  s o i l f e r t i l i t y measurements o f s u r f a c e h o r i z o n s i n f i e l d s o f s i m i l a r soils.  They s e p a r a t e d p r o p e r t i e s i n t o t h r e e groups on the b a s i s o f  this variability:  1) the group w i t h the l e a s t v a r i a b i l i t y c o n s i s t e d o f  c o n t e n t s of sand, s i l t and c l a y , p l a s t i c  and l i q u i d l i m i t s ,  horizon  t h i c k n e s s , and t o t a l P, 2) the i n t e r m e d i a t e group c o n s i s t e d o f o r g a n i c m a t t e r , c a t i o n exchange c a p a c i t y , and n i t r o g e n , and 3) t h e most v a r i a b l e group c o n s i s t e d o f a v a i l a b l e P, Mg, Ca, and K.  Adams and  W i l d e (1976) proposed a d d i n g t o t a l Ca and K t o group 1, t o t a l N,  total  exchangeable bases, p e r c e n t base s a t u r a t i o n and P r e t e n t i o n t o group 2 and exchangeable Na t o group 3-  N i e l s e n e t a l . (1973) and Bascomb and  J a r v i s (1976) p l a c e d b u l k d e n s i t y i n t o group 1 w i t h a CV commonly o f about 8 i n a map  unit.  Smeck and W i l d i n g (1980) r e p o r t e d t h e CV f o r  b u l k d e n s i t y a t the pedon l e v e l  i s about 2.  W i l d i n g and Drees (1978) and W i l d i n g and Drees (1983) e l a b o r a t e d on the q u a n t i f i c a t i o n o f the t h r e e v a r i a b i l i t y g r o u p i n g s , a l t h o u g h t h e y warn a g a i n s t comparing t h e magnitude o f s p a t i a l v a r i a b i l i t y i n the  literature  because few s c i e n t i s t s use comparable s a m p l i n g schemes  or o b s e r v a t i o n a l i n t e r v a l s .  The a u t h o r s developed g e n e r a l g u i d e s t o  be used i n t h e absence o f o n - s i t e i n f o r m a t i o n .  They add more s o i l  p r o p e r t i e s t o the above l i s t and p r e s e n t t h e number o f pedons  required  t o e s t i m a t e the p o p u l a t i o n mean w i t h i n 10$ u s i n g a 95$ c o n f i d e n c e interval.  They s u g g e s t group 1, t o w h i c h t h e y add s o i l pH, has a CV  of l e s s t h a n 15 r e q u i r i n g l e s s t h a n 10 pedons t o e s t i m a t e the mean; group 2, a CV between  15 and 35, and r e q u i r i n g 10 t o 35 pedons; and  42  group 3, a CV more than 35, r e q u i r i n g more than 35 pedons, and w h i c h t h e y moved o r g a n i c m a t t e r  to  content.  G e n e r a l l y , exchangeable c a t i o n s (or s i m i l a r p a r a m e t e r s such as a v a i l a b l e Ca, Mg and K) have been shown t o e x h i b i t the v a r i a b i l i t y , and Webster 1971).  t o t a l P, b u l k d e n s i t y , and  and  pH the l e a s t ( B e c k e t t  and  However, s i n c e pH i s a l o g a r i t h m i c f u n c t i o n , i t i s  not a p p r o p r i a t e t o compare i t s CV w i t h CVs Beckett  greatest  of a r i t h m e t i c f u n c t i o n s .  Webster (1971) p r e s e n t CV v a l u e s  from the  literature.  They found t h a t some p r o p e r t i e s , p a r t i c u l a r l y those a f f e c t e d  by  management, were c o n s i s t e n t l y more v a r i a b l e than o t h e r s . For A horizons  the range i n CVs  f o r the v a r i o u s s o i l p r o p e r t i e s are  the  f o l l o w i n g : pH 6 t o 56, o r g a n i c m a t t e r 21 t o 51, t o t a l P 24 t o 45,  Ca  29 t o 63, Mg  are  low  41 t o 121, and K 21 t o 99.  f o r pH  because the range f o r pH i n s o i l i s narrow and the zero s c a l e f o r  pH i s f a r below the n o r m a l range. pH and and  They f e l t t h e CVs  A l t h o u g h the r e l a t i o n s h i p between  p a r e n t m a t e r i a l m i g h t be d e f i n e d , t h a t between v a r i a t i o n o f  p a r e n t m a t e r i a l i s l e s s c l e a r (Campbell 1979).  The  pH  properties  most a f f e c t e d by management, the ones p l a c e d i n group 3, were c o n s i s t e n t l y more v a r i a b l e t h a n o t h e r s .  T o p s o i l s appeared t o  be  s l i g h t l y l e s s v a r i a b l e than s u b s o i l s . More r e c e n t l y , Mausbach et a l . (1980) found pH t o be the l e a s t v a r i a b l e p r o p e r t y w i t h an average CV of 9 and o r g a n i c carbon t o be most v a r i a b l e w i t h an average CV of more than 100. noted t h a t t h e i r C V s  These a u t h o r s  were i n c l o s e agreement w i t h t h o s e i n o t h e r  s t u d i e s (Ike and C l u t t e r 1968, Wilding  the  Nelson and McCracken 1962,  and  e t a l . 1964).  Beckett  and  Webster (1971) have noted t h a t o t h e r a u t h o r s have t e s t e d  the d i f f e r e n c e s i n v a r i a b i l i t y by a n a l y s i s of v a r i a n c e  43  ( W i l d i n g et  al.  1963)  1965, Andrew and S t e a r n s  and found the F r a t i o  s i g n i f i c a n t f o r some p r o p e r t i e s but not f o r o t h e r s .  was  Since  s i g n i f i c a n c e depends on the number o f samples as w e l l as t h e magnitude o f the d i f f e r e n c e s between p o p u l a t i o n s and t h e i r v a r i a n c e s , c a u t i o n must be used i n i n t e r p r e t i n g the  results.  I n s t u d i e s p u b l i s h e d a f t e r 1970,  Crosson and  P r o t z (1974)  r e p o r t e d CVs f o r pH i n the Ap o f 3 t o 5 and f o r o r g a n i c m a t t e r i n t h i s h o r i z o n o f 20 t o 34. t o 15 f o r pH and  Cameron e t a l . (1971) r e p o r t e d CVs o f 7  19 t o 33 f o r exchangeable K.  Exchangeable Ca,  and K were the most v a r i a b l e i n a s t u d y o f t h r e e map  units i n  Zealand, r a n g i n g f r o m 5 t o 60%, exchangeable K s h o w i n g the v a r i a t i o n (Lee e t a l . 1975). t o 6$.  Belebrov  T o t a l P and  Mg, New  greatest  b u l k d e n s i t y ranged from 2  (1972) i n e x a m i n i n g a r a b l e s o i l s r e p o r t e d CVs  12 f o r o r g a n i c m a t t e r c o n t e n t and Lee e t a l . (1975) and  of 7 to  2 t o 4 f o r pH i n w a t e r .  T i e s s e n e t a l . (1982) have examined  e f f e c t s of v a r i a b i l i t y expressed obtained  content  the  on a w e i g h t v e r s u s a volume b a s i s ,  by c o r r e c t i n g w e i g h t d a t a f o r changes i n b u l k d e n s i t y .  Both  s t u d i e s showed a s l i g h t i n c r e a s e i n v a r i a b i l i t y , and t h u s g r e a t e r s e p a r a t i o n between groups.  I n c u l t i v a t e d s o i l s the cause c o u l d be  the  i n c r e a s e s i n b u l k d e n s i t y f r o m the n a t i v e s o i l and the i n c r e a s e s i n the s t a n d a r d  d e v i a t i o n o f the d a t a due  depths ( T i e s s e n e t a l . 1982). be e x p r e s s e d  The  to v a r i a b i l i t y of h o r i z o n  b a s i c u n i t s i n which l e v e l s are to  depend on the purpose o f t h e i n v e s t i g a t i o n .  instance, concentration data  For  (wt./wt.) can g i v e a measure o f  the  s t a b i l i t y and t u r n o v e r o f o r g a n i c m a t t e r , whereas volume d a t a (wt./vol.) g i v e s an i n d i c a t i o n o f abundance o f o r g a n i c m a t t e r r e l a t i v e t o p l a n t r o o t i n g volume.  C a r r y i n g t h i s one s t e p f u r t h e r t o f i e l d  44  l e v e l (wt./(area-solum depth)) g i v e s a measure o f t o t a l  amounts o f  o r g a n i c m a t t e r l o s t from a s o i l due t o t h e combined e f f e c t s o f m i n e r a l i z a t i o n and e r o s i o n ( T i e s s e n e t a l . 1982). W i l d i n g and Drees (1983) made t h e f o l l o w i n g g e n e r a l i z a t i o n s about soil variability:  1) r e l i a b i l i t y i n a c c u r a t e l y p r e d i c t i n g  soil  p r o p e r t i e s d e c r e a s e s w i t h d e p t h , p a r t l y r e s u l t i n g from l e s s  ground  t r u t h c o n t r o l a t depth, 2) s p a t i a l v a r i a b i l i t y i s c l o s e l y a l l i e d w i t h the  p a r e n t m a t e r i a l from w h i c h t h e s o i l s a r e formed, 3) s t a t i c  soil  p r o p e r t i e s a r e l e s s v a r i a b l e t h a n dynamic ones ( o r g a n i c m a t t e r , t e x t u r e , and b u l k d e n s i t y v e r s u s s o i l m o i s t u r e c o n t e n t , N, P, and exchangeable  c a t i o n s ) , and 4) p r o p e r t i e s w h i c h can be q u a n t i f i e d o r  c l o s e l y c a l i b r a t e d t o a s t a n d a r d a r e l e s s v a r i a b l e than t h o s e w h i c h are  2.3.9  qualitative  Variability  ( t e x t u r e and pH v e r s u s s t r u c t u r e and c o n s i s t e n c e ) .  and S i z e o f S a m p l i n g  Area  Examining s o i l v a r i a b i l i t y i n r e l a t i o n t o s i z e of sampling area, B e c k e t t and Webster ( 1 9 7 D i n d i c a t e t h a t s o i l v a r i a b i l i t y i n c r e a s e s w i t h t h e s i z e o f a r e a sampled, even w i t h i n a r e a s r e g a r d e d as a s i n g l e map u n i t .  They i n d i c a t e t h a t as much as h a l f the v a r i a b i l i t y p r e s e n t  w i t h i n 1 ha c o u l d a l r e a d y be p r e s e n t w i t h i n a few square meters.  For  c u l t i v a t e d a r e a s , t h e p r o p o r t i o n c o u l d be two t o f o u r t i m e s l a r g e r . For c u l t i v a t e d a r e a s , f o r i n s t a n c e , t h e y e x t r a c t e d t h e f o l l o w i n g median v a l u e s o f CVs f o r t o p s o i l : p o t a s s i u m CV=35 f o r 0.01 ha and 70 f o r a s i n g l e f i e l d and n i t r o g e n o r o r g a n i c m a t t e r CV=10 t o 20 f o r 0.01 ha and 25 t o 30 f o r a s i n g l e f i e l d .  Young (1973) proposed t h a t more  than h a l f the t o t a l v a r i a b i l i t y w i t h i n a large area occurs w i t h i n o r e v e n 10 m2. W i l d i n g and Drees (1978) p r e s e n t d a t a t o i l l u s t r a t e t h a t t h e  45  1 ha  magnitude of v a r i a b i l i t y g e n e r a l l y i n c r e a s e s f a c t o r from l a b o r a t o r y analyses map  unit.  with increasing scale  t o the pedon t o the s e r i e s and  CVs f o r most p r o p e r t i e s i n map  u n i t s are c e n t e r e d  soil  on 25  40, s e r i e s concepts are commonly 50 t o 70% o f t h e s e v a l u e s , and commonly e x h i b i t CVs  of 5 t o 10 o r l e s s .  More s p e c i f i c a l l y ,  f o l l o w i n g a r e some a p p r o x i m a t e CVs f o r the map pedon, r e s p e c t i v e l y : pH 10,  49, 29,  exchangeable K 58, 29,  9 ( W i l d i n g and  G i b s o n e t a l . (1983) and  and  the  u n i t , s e r i e s , and  6; exchangeable Mg  67, 50, 9;  and  G i l t r a p e t a l . (1983) examined  the  38,  Drees 1978).  v a r i a b i l i t y , r e s p e c t i v e l y , of a map  found the s m a l l e s t a r e a (0.1 ha) e x h i b i t e d the l o w e s t  whereas the medium s i z e a r e a e x h i b i t e d v a r i a n c e s g i v e n i n the whole map  pedons  8, 2; o r g a n i c m a t t e r i n t h e Ap h o r i z o n  19, 5; exchangeable Ca  c h e m i c a l and m o r p h o l o g i c a l  to  unit,  variability,  i n e x c e s s of those  unit.  2.3.10 Number o f Samples t o E s t i m a t e a Mean I t has  been g e n e r a l l y a c c e p t e d t h a t the number o f samples  c u r r e n t l y used f o r c h a r a c t e r i z i n g s o i l s i s i n a d e q u a t e f o r e s t a b l i s h i n g l i m i t s o f s o i l p r o p e r t i e s (Nelson and 1968, may  Crosson and  P r o t z 1974).  McCracken 1962,  On the o t h e r hand, the d e r i v e d  be i m p r a c t i c a l and l e s s a c c u r a t e mean e s t i m a t e s  accepted.  Protz et a l .  F o r i n s t a n c e , Crosson and  number  w i l l have t o be  P r o t z (1974) r e p o r t t h a t o v e r  100  samples would be r e q u i r e d t o d e t e c t s i g n i f i c a n t d i f f e r e n c e s f o r many t h i c k n e s s and u n i t s and  c o l o r p a r a m e t e r s even at the 80$ l e v e l between two  o v e r 5000 f o r pH i n H o. 2  Nelson and  i n d i c a t e t h a t a c o m p o s i t e sample based on for  determination  o f K and  P within  The number of o b s e r v a t i o n s  map  McCracken (1962)  15 s i t e s was  accurate  enough  25%.  needed t o c h a r a c t e r i z e s o i l  46  properties  i n a s a m p l i n g u n i t depends on the p o p u l a t i o n v a r i a n c e o f the p r o p e r t y , the c o n f i d e n c e l i m i t s chosen, and the p r o b a b l e e r r o r o f t o l e r a n c e about t h e mean t h a t i s a c c e p t a b l e  ( W i l d i n g and Drees 1983,  F i g . 4.4).  T h i s number can be e s t i m a t e d u s i n g the f o r m u l a n= 4[(CV)(x)/1 OoJ 2/L2, where n = number o f s a m p l e s , CV = c o e f f i c i e n t of v a r i a t i o n i n p e r c e n t , x = mean o f p r o p e r t y i n the s p e c i f i c group, and L = d e s i r e d l i m i t o f v a r i a t i o n i n p e r c e n t (Snedecor sample s i z e t o a percentage where p=desired  percentage  and Cochran 1967).  i.e.,  the  o f the mean, s u b s t i t u t e p t i m e s x f o r L, o f t h e mean.  the f o r m u l a n=4 [(CV)/1 OoJ -2/p2. where t2=F=tabulated  To r e l a t e  C a n c e l l a t i o n o f the x y i e l d s  Another e x p r e s s i o n i s n = 2 t 2 s 2  F v a l u e s f o r the p a r t i c u l a r p r o b a b i l i t y  80$ o r 95$, s=standard  d-2,  level,  d e v i a t i o n o f the s o i l p r o p e r t y , and  d=the  d i f f e r e n c e i n means o f two s i m i l a r l y drawn samples ( S t e e l and T o r r i e 1980). The  95$ p r o b a b i l i t y l e v e l i s g e n e r a l l y used f o r most b i o l o g i c a l  c a l c u l a t i o n s , whereas 80$ may studies.  be more r e a l i s t i c f o r many s o i l s  Mausbach e t a l . (1980), f o r example, found t h a t n i n e t o more  than 100 m o r p h o l o g i c a l l y matched samples were needed t o e s t a b l i s h content  (at the 95$ c o n f i d e n c e l e v e l ) t o w i t h i n +2$.  The  clay  following  a u t h o r s a l s o propose numbers o f samples t o e s t i m a t e the p o p u l a t i o n means w i t h i n c e r t a i n l i m i t s :  W i l d i n g e t a l . (1964), W i l d i n g e t a l .  (1965), C a m p b e l l (1978), Mausbach e t a l . (1980), Drees and (1973),  Crosson  and  W i l l i a m s (1968), Lee  Wilding  P r o t z (1973), Cameron e t a l . (1971), B a l l e t a l . (1975), and Reed and Rigney  and  (1947).  I n a d d i t i o n t o the number o f samples t o e f f i c i e n t l y e s t i m a t e the p r o p e r t i e s o f a s o i l , C a m p b e l l (1978) a d v i s e s t h a t i t i s n e c e s s a r y e s t i m a t e the minimum d i s t a n c e between s a m p l e s , w h i c h the t h e o r y o f regionalized variables w i l l  do.  47  to  2.3.11 E f f e c t s o f C u l t i v a t i o n Superimposed upon the e f f e c t o f t h e s e n a t u r a l s o i l f a c t o r s are the a c t i v i t i e s of man. the s o i l d i r e c t l y , man e x h i b i t e d by s o i l s .  By m o d i f y i n g  forming  h i s e n v i r o n m e n t , or  a l s o i n f l u e n c e s the degree o f  variability  Hemingway (1955) showed t h a t v a r i a n c e  increased  g r e a t l y where manure, l i m e , o r f e r t i l i z e r had  been a p p l i e d .  C u l t i v a t i o n makes a m a j o r i m p a c t on s o i l s and  s o i l v a r i a b i l i t y through  the h o m o g e n i z a t i o n o f the s u r f a c e upper 0.15  t o 0.2 m,  s o i l s d e c r e a s e s and  layer.  I n the p r o c e s s o f m i x i n g the  the d i s s i m i l a r i t y between s u r f a c e l a y e r s of the s y s t e m a t i c  v a r i a b i l i t y i s v a s t l y reduced.  s o i l p r o p e r t i e s much a f f e c t e d by management, the component o f v a r i a n c e properties.  various For  between-field  tends t o be g r e a t e r t h a n t h a t o f more d u r a b l e  Of the wide v a r i e t y o f f a c t o r s i n f l u e n c i n g the v a r i a t i o n  o f the c h e m i c a l f a c t o r s , i t i s l a r g e l y t h o s e u n r e p o r t e d i n the o r i g i n a l s t u d i e s , p r i n c i p a l l y s o i l management p r a c t i c e s , t h a t are most l i k e l y t o be among the most s i g n i f i c a n t (Campbell 1979). In c u l t i v a t e d s o i l s ,  B e l e b r o v (1972) found t h a t the  i n f l u e n c e on the n a t u r e o f v a r i a b i l i t y i s the degree o f  main cultivation,  w h i c h i s more s i g n i f i c a n t t h a n the degree of p o d z o l i z a t i o n . presents  He  d a t a s h o w i n g v a r i a b i l i t y o f s o i l p r o p e r t i e s t o be l o w e r i n  c u l t i v a t e d sod-podzolic  s o i l s than n o n c u l t i v a t e d .  He e x p l a i n e d  this  by n o t i n g t h a t d i f f e r e n c e s i n the d i s t r i b u t i o n o f r o o t s y s t e m s and s o i l t h i c k n e s s and  p r o d u c t i v i t y , a l l of w h i c h i n f l u e n c e  the  v a r i a b i l i t y o f o r g a n i c m a t t e r c o n t e n t , a r e g r e a t l y l e v e l e d out annual plowing.  by  D i f f e r e n c e s i n m i c r o t o p o g r a p h y can r e s u l t i n q u i t e  substantial differences i n s o i l v a r i a b i l i t y N i e l s e n e t a l . 1983).  (Kachanoski et a l . 1985,  K a c h a n o s k i et a l . (1985), on  48  comparing a  native grassland for  w i t h one c u l t i v a t e d f o r 30 y e a r s found an i n c r e a s e  bulk d e n s i t y i n value  (1.14 t o 1.19 Mg/m3) and v a r i a b i l i t y  (CV=5.3 t o CV = 8.8) and a d e c r e a s e f o r c a r b o n c o n t e n t (38.0 t o 30.2 mg/g and CV=22.7 t o CV=20.0) i n t h e A h o r i z o n . S i n g h e t a l . (1985) s t u d i e d t h e v a r i a b i l i t y o f m i c r o n u t r i e n t s between a c u l t i v a t e d s i t e and i t s n a t i v e p r a i r i e c o u n t e r p a r t i n Saskatchewan.  They found a h i g h degree o f v a r i a b i l i t y and as a r e s u l t  l a r g e numbers o f samples would be r e q u i r e d t o o b t a i n a p r e c i s e estimate  o f t h e mean, w h i c h would be c r i t i c a l as d e f i c i e n c y l e v e l s a r e  approached.  T o p s o i l s were l e s s v a r i a b l e than s u b s o i l s and t h e  c u l t i v a t e d s i t e was s l i g h t l y l e s s v a r i a b l e t h a n i t s n a t i v e counterpart. A b a s i c premise o f these s t u d i e s o f s p a t i a l v a r i a b i l i t y i s that the s p a t i a l s t r u c t u r e i s p r e s e r v e d o v e r time. examined s e a s o n a l  Although e a r l y studies  v a r i a t i o n , n o t much r e s e a r c h a t t e n t i o n has f o c u s e d  on d i f f e r e n t i a t i n g s p a t i a l s o i l v a r i a b i l i t y i n g e n e r a l f r o m t h a t i n temporally  d i f f e r e n t f i e l d s o f the same s o i l s (Wagenet 1985).  H a r r a d i n e (1949) gave some i n s i g h t i n t o v a r i a b i l i t y on a l a r g e s c a l e of s o i l development but i n t e r m s o f changes i n v a r i a b i l i t y due t o c u l t i v a t i o n t i m e ( i n t e n s o f y e a r s ) , t h e t e m p o r a l i s s u e beyond seasonal  change, has n o t been a d d r e s s e d .  l a n d use h i s t o r y .  Nor have s t u d i e s  considered  Another a s p e c t o f s o i l v a r i a b i l i t y t h a t has not  been a d d r e s s e d i s the e f f e c t o f a p o l i t i c a l boundary and thus d i f f e r e n c e s i n management on t h e same s o i l as t h e y a f f e c t s o i l variability.  These w i l l be some o f the i s s u e s addressed i n t h i s  study.  49  3.0 ENVIRONMENTAL SETTING 3.1 C l i m a t e The F r a s e r Lowland, w h i c h l i e s w i t h i n t h e m i d d l e l a t i t u d e zone o f w e s t e r l y w i n d s , i s g r e a t l y i n f l u e n c e d by i t s p r o x i m i t y t o the P a c i f i c Ocean and the S t r a i t o f G e o r g i a .  A c c o r d i n g t o Koppen's c l i m a t i c  c l a s s i f i c a t i o n s y s t e m , t h e Lowland l i e s d o m i n a n t l y w i t h i n t h e C f b c l i m a t i c r e g i o n (humid c l i m a t e w i t h warm summer) ( S t r a h l e r and S t r a h l e r 1983) and T h o r n t h w a i t e ' s m a r i n e w e s t - c o a s t c l i m a t i c r e g i o n ( T h o r n t h w a i t e 1948).  C o n s i d e r a b l e c l i m a t i c changes o c c u r i n t h e  Lowland as a r e s u l t o f t h e Cascade and C o a s t Mountains t o t h e e a s t and n o r t h and t h e O l y m p i c and Vancouver I s l a n d Ranges t o t h e west and southwest. I n w i n t e r f r e q u e n t c y c l o n i c s t o r m s , w h i c h o r i g i n a t e i n the A l e u t i a n Low, sweep a c r o s s t h e n o r t h P a c i f i c t o s t r i k e I s l a n d and t h e c o a s t o f Washington.  Vancouver  O r o g r a p h i c l i f t i n g o f the m o i s t  a i r r e s u l t s i n heavy p r e c i p i t a t i o n on t h e windward  w e s t e r n s l o p e s and  c r e a t e s a marked r a i n shadow on the l e e w a r d e a s t e r n s l o p e s .  Because  of t h e s e t o p o g r a p h i c b a r r i e r s , a n n u a l p r e c i p i t a t i o n i s l o w e s t on t h e w e s t e r n margins (from the r a i n shadow) and i n c r e a s e s e a s t w a r d from the l i f t i n g o f t h e a i r masses f a c i n g t h e Cascade and Coast Ranges. P r e c i p i t a t i o n ranges from about 1100 t o about 1500 mm i n t h e s t u d y area.  The p r e c i p i t a t i o n and t e m p e r a t u r e r e c o r d s f o r White Rock,  B.C. and B l a i n e , WA i n t h e w e s t e r n p a r t o f the s t u d y a r e a and A b b o t s f o r d , B.C. and C l e a r brook, WA i n t h e c e n t r a l p a r t a r e g i v e n i n T a b l e 4. W i n t e r s i n t h e Lowland a r e c l o u d y and m i l d . ranges a r e s m a l l and n o r m a l l y do n o t exceed 9° C.  50  D i u r n a l temperature The l o w e s t  Table 4. Temperature and p r e c i p i t a t i o n d a t a 1951 t o 1980 a t W h i t e Rock, B.C., B l a i n e , WA, A b b o t s f o r d , B.C., and C l e a r b r o o k , WA. White Rock ( e l e v . 35 m) Month  Blaine ( e l e v . 25 m)  Avg. Avg. Temp. P r e c i p . oc mm  Clearbrook ( e l e v . 20 m)  Abbotsford ( e l e v . 60 m)  Avg. Avg. Temp. P r e c i p . mm oc  Avg. Avg. Temp. P r e c i p . oc mm  Avg. Avg. Temp. P r e c i p . mm oc  January February March April May June  2.7 4.6 5.5 8.4 11.6 14.0  155.1 108.7 92.8 65.2 55.8 48.8  2.3 4.7 6.0 8.8 12.2 14.9  157.6 127.1 100.3 81.4 62.2 54.6  1.3 4.2 5.6 8.6 12.2 14.9  207.3 163.8 145.0 104.1 72.9 59.9  1.8 4.6 5.8 8.8 12.2 14.8  146.8 116.9 101.7 86.2 73.8 57.8  July August September October November December  16.1 15.9 13-7 10.0 6.0 4.1  29.8 45.3 63.8 110.9 147.4 169.2  16.8 16.4 13.8 10.0 6.1 3.8  33-5 45.4 69.8 134.8 163.4 179.9  16.9 16.7 14.4 10.1 5.7 3.1  37.8 49.0 86.0 170.4 190.5 215.1  16.9 16.6 14.2 9.9 5.6 3.1  38.0 54.0 81.4 123.2 148.6 160.0  Year  9.4  1092.8  9.7  1210.1  9.5  1502.4  1188.6  9.5  t e m p e r a t u r e s and t h e s t r o n g e s t winds a r e u s u a l l y r e c o r d e d when c o l d c o n t i n e n t a l p o l a r a i r masses from t h e A r c t i c surge through t h e F r a s e r R i v e r Canyon and s p r e a d o u t o v e r t h e Lowland. a i r a r e known i n t h e US as " N o r t h e a s t e r s . " e v e r r e c o r d e d i n W h i t e Rock i s - 2 0 . 0 , -21.1  These i n v a s i o n s  The l o w e s t  i n Blaine -18.3,  temperature i n Abbotsford  and i n C l e a r b r o o k i s - 2 0 . 0 o C . Summers a r e warm and r e l a t i v e l y d r y .  temperature  f o r the four  s i t e s a r e 20.7,  The mean maximum J u l y 2 2 . 6 , 2 3 . 4 , and 2 3 . 8 0 c ,  r e s p e c t i v e l y , whereas t h e mean m o n t h l y t e m p e r a t u r e 16.5,  of cold  1 7 . 0 , and 16.60c,  respectively.  f o r J u l y i s 16.1,  I n l a t e spring the north  P a c i f i c high pressure system, s h i f t i n g northward  over t h e r e g i o n ,  r e s t r i c t s most c y c l o n i c s t o r m s t o more n o r t h e r l y l a t i t u d e s .  51  Prevailing westerly and northwesterly winds from t h i s high pressure system bring r e l a t i v e l y d r i e r a i r into the Lowland about May.  The  annual water budget for Clearbrook shows that i r r i g a t i o n i s often needed during the summer months (Fig. 1).  The average growing season  o f about 150 days, May through September,  i s s u f f i c i e n t for the crops  grown in the Lowland ( P h i l l i p s 1966, Environment Canada 1982).  JAN  FEB  MAR  APR  MAY  JUN  JUL  AUG  S£P  Fig. 1. Mean annual water budget at Clearbrook, WA  52  OCT  NOV  station.  DCC  3.2 P h y s i o g r a p h y , Geology, V e g e t a t i o n , and S o i l s 3.2.1  P h y s i o g r a p h y and Geology The F r a s e r Lowland forms the s o u t h w e s t e r n c o r n e r o f the P a c i f i c  Coast m a i n l a n d o f Canada and t h e a d j o i n i n g n o r t h w e s t e r n c o r n e r o f t h e c o n t i n e n t a l U n i t e d S t a t e s ( F i g . 2). I t i s a t r i a n g u l a r a r e a covered w i t h Q u a t e r n a r y s u r f i c i a l d e p o s i t s t h a t have r e l a t i v e l y l o w r e l i e f . The F r a s e r Lowland i s bounded on the n o r t h by t h e Coast M o u n t a i n s , on the  s o u t h e a s t by t h e Cascade and Chuckanut mountains, and on t h e west  by t h e S t r a i t o f G e o r g i a . Most o f the u p l a n d a r e a s , w h i c h c o n s i s t o f u n c o n s o l i d a t e d d e p o s i t s , a r e below 175 m i n e l e v a t i o n , and owe t h e i r o r i g i n and form t o g l a c i a l and/or marine p r o c e s s e s (Armstrong 1981).  Four major  flat-  bottomed v a l l e y s t r a n s e c t t h e F r a s e r Lowland: t h e v a l l e y s o f t h e F r a s e r and t h e N i c o m e k l r i v e r s , w h i c h l i e w h o l l y i n Canada, t h e v a l l e y of t h e Nooksack R i v e r , w h i c h l i e s w h o l l y i n t h e U n i t e d S t a t e s , and t h e Sumas V a l l e y , w h i c h averages 5 km i n w i d t h and o v e r l a p s the I n t e r n a t i o n a l Boundary 25 km t o t h e n o r t h e a s t and 10 km t o t h e southwest. The s t u d y a r e a c o n s i s t s o f r o l l i n g d r i f t - c a p p e d u p l a n d s , a hummocky g l a c i a l m a r i n e d r i f t p l a i n , and t h e n e a r l y l e v e l  glaciofluvial  t e r r a c e s o v e r l o o k i n g t h e broad f l o o d p l a i n o f the Sumas V a l l e y .  Part  of t h e Sumas V a l l e y was impounded by Lake Sumas, w h i c h was d r a i n e d i n 1924.  The topography r e s u l t s from s e v e r a l g l a c i a t i o n s ,  submergence and rebound, and p o s t g l a c i a l f l u v i a l a c t i o n .  marine Aeolian  v e n e e r s , m o d i f i e d by v o l c a n i c a s h , p r o b a b l y from Mount Mazama i n s o u t h w e s t e r n Oregon ( L i d s t r o m 1972) cover and a r e i n c o r p o r a t e d i n t o many o f the P l e i s t o c e n e d e p o s i t s (Armstrong 1981).  53  The  e l e v a t i o n o f t h e s t u d y a r e a ranges f r o m 8 t o 160 m.  S p e c i f i c a l l y , t h e e l e v a t i o n range f o r the f l o o d p l a i n i s 8 t o 14 m, f o r the outwash t e r r a c e s 45 t o 60 m, f o r t h e g l a c i a l m a r i n e d r i f t to  p l a i n s 50  85 m, and f o r t h e i c e - c o n t a c t m o r a i n a l d e p o s i t s 70 t o 160 m. The f i r s t s t u d y o f t h e boundary a r e a was made by B r i t i s h and  U n i t e d S t a t e s g e o l o g i s t s as p a r t o f the F i r s t I n t e r n a t i o n a l Boundary Commission 1857-1861 (Daly 1912, S m i t h and C a l k i n s 1904). 3.2.2 V e g e t a t i o n The n a t u r a l v e g e t a t i o n on t h e f l o o d p l a i n o f the F r a s e r Lowland i s d e s c r i b e d by North e t a l . (1979) based on d e s c r i p t i o n s by t h e f i r s t l a n d s u r v e y o r s o f the R o y a l E n g i n e e r s .  Common names o n l y were used.  In t h e f l o o d p l a i n t h e v e g e t a t i o n had t o adapt t o t h e annual riverine flooding.  I t consisted of grass, w i l l o w (Salix  spp.),  hardhack ( S p i r e a d o u g l a s i i var. m e n z i e s i i (Hook.) P r e s l ) and ( p r o b a b l y M a l u s spp.).  crabapple  The g l a c i a t e d uplands were dominated by  D o u g l a s - f i r (Pseudotsuga m e n z i e s i i (Mirb.) F r a n c o ) , grand f i r (Abies g r a n d i s (Dougl.) L i n d l . ) , w e s t e r n redcedar  (Thuja p l i c a t a  r e d a l d e r (Alnus r u b r a Bong.) w i t h minor o c c u r r e n c e s hemlock (Tsuga h e t e r o p h y l l a (Raf.) Sarg.), sitchensis  (Bong.) C a r r . ) , dogwood  of western  S i t k a spruce  (probably  Donn), and  (Picea  Cornus n u t t a l l i i  T. & G.), p i n e ( P i n u s s p p . ) , a n d h a w t h o r n e ( C r a t a e g u s  spp.).  undergrowth c o n s i s t e d o f s a l a l ( G a u l t h e r i a s h a l l o n Pursh),  Aud. ex The  Oregon-  grape ( p r o b a b l y B e r b e r i s nervosa P u r s h ) , and v i n e maple (Acer circinatum Pursh). In some cases l o g g i n g o f the u p l a n d s r e s u l t e d i n second g r o w t h f o r e s t c o n s i s t i n g o f D o u g l a s - f i r , w e s t e r n r e d c e d a r , r e d a l d e r , some w e s t e r n hemlock and grand f i r w i t h an u n d e r g r o w t h o f w e s t e r n 55  swordfern  ( P o l y s t i c h u m muni turn (Kaulf.) K. P r e s l . ) ,  western  ( P t e r i d i u m a q u i l i n u m (L.) Kuhn), r e d h u c k l e b e r r y  brackenfern (Vaccinium  p a r v i f o l i u m J.E. S m i t h ) , s a l a l , v i n e maple, and Oregon-grape ( G o l d i n F r a n k l i n and Dyrness 1973, K r a j i n a  1985,  1970).  When t h e l a n d was c l e a r e d f o r a g r i c u l t u r e , t h e i n i t i a l s t a g e was c h a r a c t e r i z e d by e x p e r i m e n t a t i o n .  Crops such as sugar b e e t s ,  hops and f l o w e r b u l b s were once grown c o m m e r c i a l l y (Smelser  flax, 1970).  G r a d u a l l y f a r m e r s s e t t l e d on hay and p a s t u r e f o r d a i r y i n g and c a s h crops.  F l u c t u a t i n g markets,  mechanization  (such as t h e r a s p b e r r y  p i c k e r and f r e e z e p r o c e s s i n g ) , s p e c i a l i z a t i o n (such as c o n v e r s i o n o f p a s t u r e t o s i l a g e o p e r a t i o n s ) , and weather ( f r o s t s i n t h e 1950s and 1960s d e v a s t a t e d s t r a w b e r r y o p e r a t i o n s ) have been i m p o r t a n t f a c t o r s i n changing the choice of crops. The dominant c r o p s grown i n t h e F r a s e r Lowland i n t h e 1980s a r e p a s t u r e , v e g e t a b l e s (peas, beans, s i l a g e c o r n , seed p o t a t o e s , and c a r r o t s ) , and b e r r i e s ( r a s p b e r r i e s , s t r a w b e r r i e s , and b l u e b e r r i e s ) . The  p r i n c i p a l s p e c i e s grown f o r p a s t u r e a r e o r c h a r d g r a s s ( D a c t y l i s  glomerata  L.), t i m o t h y (Phleum p r a t e n s e L.), p e r e n n i a l r y e ( L o l i u m  perenne L.), f e s c u e ( F e s t u c a spp.), w h i t e c l o v e r ( T r i f o l i u m L.),  repens  A l s i k e c l o v e r ( T r i f o l i u m h y b r i d u m L.), and r e d c l o v e r ( T r i f o l i u m  p r a t e n s e L.). 3.2.3  Soils The  f i e l d mapping f o r the s o i l s u r v e y o f the Lower F r a s e r V a l l e y  a r e a was completed  i n the e a r l y  1970s ( L u t t m e r d i n g 198la,b,c).  The  f i e l d mapping f o r t h e s o i l s u r v e y o f the Whatcom County Area was completed  i n 1982 ( G o l d i n 1986).  The s o i l s mapped i n t h e s t u d y  on each p a r e n t m a t e r i a l a r e l i s t e d i n T a b l e 5 ( G o l d i n 1986, 56  area  Luttmerding  1981a).  The p a i r e d s o i l s between Canada and t h e U n i t e d  S t a t e s , such as L i c k m a n and Mt Vernon, have been c o r r e l a t e d a c r o s s the I n t e r n a t i o n a l Boundary ( F i g s . 3-6) ( G o l d i n and L u t t m e r d i n g  1985).  Except f o r t h e m o r a i n a l p a r e n t m a t e r i a l , t h e s o i l s sampled were s e l e c t e d f r o m these.  S a m p l i n g o f t h e E v e r e t t and Bose s o i l s was  e l i m i n a t e d s i n c e t h e e n t i r e sequence o f f o u r l a n d c l e a r i n g ages was not found.  The u n d e r l i n e d s o i l s were sampled.  the s o i l s i s g i v e n i n T a b l e s 6 and 7 and t h e i r capability  The c l a s s i f i c a t i o n o f l a n d and  agricultural  c l a s s e s i n T a b l e s 8 and 9, r e s p e c t i v e l y .  T y p i c a l pedons f o r the B r i s c o t , K i c k e r v i l l e , and Whatcom  soils  f r o m t h e Whatcom County s o i l s u r v e y a r e g i v e n i n Appendix A V  along  w i t h p e r t i n e n t landscape  data.  Pedons f o r t h e Canadian c o u n t e r p a r t s  are g i v e n i n L u t t m e r d i n g  (1981b).  C h a r a c t e r i z a t i o n data f o r the  Canadian s o i l s a r e g i v e n i n L u t t m e r d i n g the K i c k e r v i l l e (1985).  (1981c).  Laboratory data f o r  and Whatcom s o i l s a r e g i v e n i n N e t t l e t o n e t a l .  A d d i t i o n a l i n f o r m a t i o n can be o b t a i n e d from the N a t i o n a l S o i l  Survey L a b o r a t o r y o f USDA's S o i l C o n s e r v a t i o n S e r v i c e under l a b o r a t o r y numbers S81WA-073-015 and S81WA-073-007, r e s p e c t i v e l y .  1/ T a b l e s r e f e r r e d t o i n t h e t e x t t h a t a r e l o c a t e d i n t h e appendices are designated w i t h the l e t t e r a s s o c i a t e d w i t h the a p p r o p r i a t e a p p e n d i x , i . e . , A1 i s t h e f i r s t t a b l e i n Appendix A.  57  Table  5. P a r e n t m a t e r i a l and s o i l s i n t h e s t u d y Alluvium  Glacial  area. Outwash  Canada  United States  Canada  United  Lickman  Mt Vernon  Abbotsford  Kickerville  Buckerfield  Sumas  Marble H i l l  Kickerville  Bates  Puget  Defehr  Vedder  Oridia  Coghlan  Vye  Briscot  Calkins  Pangborn  Glacialmarine  States  Pangborn  Drift  Morainal  Deposits  Canada  United States  Canada  United States  Whatcom  Whatcom  Bose  E v e r e t t hard substratum  Nicholson  Whatcom  Heron  Scat  Labounty  Scat  Ross  Sunshine  Columbia  Boosey  Bose  Everett  Judson  Clipper  Sunshine  Tromp Hampton  58  Table 6. C l a s s i f i c a t i o n o f s o i l s i n t h e s t u d y a r e a o f Whatcom County, WA ( G o l d i n 1986, S o i l Survey S t a f f 1 9 7 5 ) . Series  Classification  Briscot  Coarse-loamy, mixed, n o n a c i d , m e s i c A e r i e F l u v a q u e n t s  K i c k e r v i l l e Coarse-loamy, mixed, mesic T y p i c H a p l o r t h o d s Mt. Vernon  Coarse-loamy, m i x e d , m e s i c F l u v a q u e n t i c  Oridia  C o a r s e - s i l t y , mixed, n o n a c i d , mesic A e r i e F l u v a q u e n t s  Puget  F i n e - s i l t y , mixed, n o n a c i d , mesic A e r i e Fluvaquents  Sumas  F i n e - s i l t y o v e r sandy o r s a n d y - s k e l e t a l , mixed, n o n a c i d , mesic Aerie Fluvaquents  Whatcom  F i n e - l o a m y , mixed, m e s i c A q u a l f i c H a p l o r t h o d s  T a b l e 7.  Haploxerolls  C l a s s i f i c a t i o n o f s o i l s i n the s t u d y a r e a , Lower F r a s e r V a l l e y , B r i t i s h C o l u m b i a ( L u t t m e r d i n g 1 9 8 1 b , Canada S o i l Survey Committee 1978).  Series  Classification  Abbotsford  O r t h i c H u m o - F e r r i c P o d z o l , c o a r s e - l o a m y o v e r sandys k e l e t a l (or c o a r s e - s i l t y o v e r s a n d y - s k e l e t a l ) , mixed, a c i d (or n e u t r a l ) , m i l d subhumid (or humid)  Bates  G l e y e d E l u v i a t e d M e l a n i c B r u n i s o l , f i n e - s i l t y (or f i n e s i l t y o v e r s a n d y ) , mixed, a c i d (or n e u t r a l ) , m i l d s u b a q u i c (or perhumid)  B u c k e r f i e l d O r t h i c Humic G l e y s o l , f i n e - s i l t y (or f i n e - s i l t y o v e r s a n d y ) , mixed, n e u t r a l , m i l d a q u i c Lickman  E l u v i a t e d E u t r i c B r u n i s o l , c o a r s e - l o a m y , mixed, n e u t r a l , m i l d subhumid (or humid)  M a r b l e H i l l O r t h i c H u m o - F e r r i c P o d z o l , c o a r s e - s i l t y o v e r sandys k e l e t a l (or c o a r s e - l o a m y o v e r s a n d y - s k e l e t a l ) , mixed, a c i d , m i l d humid (or subhumid) Vedder  O r t h i c G l e y s o l , f i n e - s i l t y o v e r sandy (or f i n e - s i l t y ) , mixed, n e u t r a l (or a c i d ) , m i l d a q u i c (or p e r a q u i c )  Vye  G l e y e d Gray L u v i s o l , f i n e - s i l t y o v e r sandy (or f i n e s i l t y ) , mixed, n e u t r a l (or a c i d ) , m i l d s u b a q u i c (or a q u i c )  Whatcom  L u v i s o l i c Humo-Ferric P o d z o l , f i n e - s i l t y (or f i n e - l o a m y ) (or c o a r s e - l o a m y ) , mixed, n e u t r a l , m i l d perhumid (or subaquic)  59  T a b l e 8. Land c a p a b i l i t y c l a s s e s f o r map u n i t s from major s o i l s i n t h e s t u d y area ( G o l d i n 1 9 8 6 , K l i n g e b i e l and Montgomery 1973).  Land Capability Class  S o i l map u n i t  2w  B r i s c o t s i l t loam, d r a i n e d , 0 t o 2 p e r c e n t  3e  E v e r e t t g r a v e l l y sandy loam, hard s u b s t r a t u m , percent slopes  2c  K i c k e r v i l l e s i l t loam, 0 t o 3 p e r c e n t  2w  Mt Vernon f i n e sandy loam, 0 t o 2 p e r c e n t  slopes  2w  O r i d i a s i l t loam, d r a i n e d , 0 t o 2 p e r c e n t  slopes  2w  Sumas s i l t loam, d r a i n e d , 0 t o 2 p e r c e n t  2e  Whatcom s i l t loam, 3 t o 8 p e r c e n t  slopes 2 to 8  slopes  slopes  slopes  Table 9« A g r i c u l t u r a l c a p a b i l i t y c l a s s e s f o r m a j o r s o i l s i n t h e s t u d y a r e a ( L u t t m e r d i n g , 1985, p e r s o n a l c o m m u n i c a t i o n , Keng 1983). Unimproved  Improved  Soil  3A  1  Abbotsford  2WA  1  Bates  5AP o r 4AP  4PA  Bose  4W  2WD  Buckerfield  2A  1  Lickman  2A  1  Marble  4W  2WD o r 3WD  Vedder  2WA 3A  1  Vye  1 o r 2T  Whatcom  60  Hill  F i g . 3 . S o i l map o f t h e outwash s o i l s . N o r t h i s a t t h e top o f t h e f i g u r e . S c a l e i s a p p r o x i m a t e l y 1:25 000.  61  F i g . 4. S o i l map o f t h e a l l u v i a l s o i l s . N o r t h i s a t t h e t o p o f t h e f i g u r e . S c a l e i s a p p r o x i m a t e l y 1:28 000.  62  CANADA USA |  20  F i g . 6. S o i l map o f the m o r a i n a l s o i l s . North i s a t the top o f the f i g u r e . S c a l e i s a p p r o x i m a t e l y 1:17 000.  64  S o i l l e g e n d f o r F i g s . 3 t o 6. Map Symbol 1 2 3 4 5  S o i l o r Map Abbotsford s o i l s Abbotsford-Defehr Annis s o i l s Annis-Buckerfield Bates s o i l s  Unit  complex complex  6 7 8 9 10  Bates: shallow v a r i a n t s o i l s B a t e s - B u c k e r f i e l d complex Bates-Fadden complex Bates-Lickman complex Bates-Lickman-Vye complex  11 12 13 14 15  Bates-Vye complex Bose s o i l s B r i s c o t s i l t loam, d r a i n e d , 0 t o 2 p e r c e n t Buckerfield soils B u c k e r f i e l d - P r e s t complex  16 17 18 19 20  Calkins s o i l s C l i p p e r s i l t loam, 0 t o 2 p e r c e n t s l o p e s Columbia s o i l s Coughlan-Defehr complex E v e r e t t g r a v e l l y sandy loam, hard s u b s t r a t u m , percent slopes  21 22 24 25  E v e r e t t v e r y g r a v e l l y sandy loam, 8 t o 15 p e r c e n t E v e r e t t complex, 2 t o 8 p e r c e n t s l o p e s Fadden s o i l s Hampton s i l t loam, 0 t o 1 p e r c e n t s l o p e s Heron s o i l s  26 27 28 28A 29 30  Heron-Boosey s o i l s Kennedy s o i l s K i c k e r v i l l e s i l t loam, 0 t o 3 p e r c e n t s l o p e s K i c k e r v i l l e s i l t loam, 3 t o 8 p e r c e n t s l o p e s Labounty s i l t loam, d r a i n e d , 0 t o 2 p e r c e n t s l o p e s Lickman s o i l s  31 32  Lickman: s h a l l o w v a r i a n t s o i l s Lickman-Bates complex Lickman-Lickman:shallow v a r i a n t complex Mt. Vernon f i n e sandy loam, 0 t o 2 p e r c e n t Nicholson s o i l s  23  33 34 35 36 37 38 39  40  slopes  2 to 8  slopes  Nicholson-Whatcom-Scat complex O r i d i a s i l t loam, d r a i n e d , 0 t o 2 p e r c e n t s l o p e s Pangborn muck, d r a i n e d , 0 t o 2 p e r c e n t s l o p e s Puget s i l t loam, d r a i n e d , 0 t o 2 p e r c e n t s l o p e s Ross s o i l s 65  slopes  41 42 43 44 45  Ross-Judson complex Scat s o i l s Scat-Heron complex S c a t - S u n s h i n e complex Scat-Whatcom complex  46 47 48 49 50  Sumas s i l t loam, 0 t o 2 p e r c e n t s l o p e s Sunshine s o i l s Sunshine-Whatcom complex Tromp loam, 0 t o 2 p e r c e n t s l o p e s Vedder s o i l s  51 52 53 54 55  Vedder: s h a l l o w v a r i a n t s o i l s V e d d e r - B u c k e r f i e l d complex Vedder-Vye complex Vye s o i l s Vye: s h a l l o w v a r i a n t s o i l s  56 57 58 59 60  Vye-Bates complex V y e - B u c k e r f i e l d complex Vye-Vedder complex V y e - V e d d e r : s h a l l o w v a r i a n t complex Vye-Vye: s h a l l o w v a r i a n t complex  61 62 63 64 65  Whatcom Whatcom Whatcom Whatcom Whatcom  66 67 68 69 70 71  Whatcom-Labounty s i l t loams, 0 t o 8 p e r c e n t s l o p e s Whatcom-Nicholson complex Whatcom-Nicholson-Scat complex Whatcom-Scat complex Whatcom-Scat complex, s t e e p l y s l o p i n g Whatcom-Sunshine complex  s i l t loam, s i l t loam, s i l t loam, s i l t loam, soils  0 t o 3 percent slopes 3 t o 8 percent slopes 8 t o 15 p e r c e n t s l o p e s 30 t o 60 p e r c e n t s l o p e s  66  4.0 METHODS 4.1 S i t e  Selection  The a r e a s u b j e c t t o h i s t o r i c a l l a n d use change a n a l y s i s i s w i t h i n 4 km o f t h e F o r t y - N i n t h p a r a l l e l , e x t e n d i n g from about 4 km e a s t o f the S t r a i t o f G e o r g i a t o about 40 km e a s t .  The s i t e s were l o c a t e d on  f o u r p a r e n t m a t e r i a l s and t h e p r i n c i p a l s o i l s were c o r r e l a t e d on both s i d e s o f the border ( G o l d i n and L u t t m e r d i n g 1985).  Interpretations  o f l a n d use were made a t a p p r o x i m a t e l y 10-year i n t e r v a l s u s i n g medium scale aerial  photographs.  The photographs  w h i c h were used i n t h e l a n d c l e a r i n g s t u d y and  f o r p l o t l o c a t i o n s a r e l i s t e d i n Table 10. The t o p o g r a p h i c maps used  T a b l e 10. I n f o r m a t i o n o f a e r i a l photographs and p l o t l o c a t i o n s . Date  Scale  1940  1:30 000  1943  Color o r B&W  used i n l a n d c l e a r i n g s t u d y  Flight direction  Contractor  B&W  east-west  P r o v i n c e o f B.C.  1 :12 000  B&W  north-south  U.S. Army Corps o f E n g r s .  1954  1:20 000  B&W  north-south  P r o v i n c e o f B.C.  1955  1 :20 000  B&W  east-west  ASCS*  1963  1:12 000  B&W  east-west  P r o v i n c e o f B.C.  1966  1 :20 000  B&W  east-west  ASCS  1976  1:24 000  color  north-south  Wash. Dep. N a t l . Res.  1983  1:15 000  B&W  east-west  P r o v i n c e o f B.C.  1983  1:12 000  color  north-south  Wash. Dep. N a t l . Res.  1984  1:15 000  B&W  east-west  P r o v i n c e o f B.C.  ASCS = USDA A g r i c u l t u r a l C o n s e r v a t i o n S t a b i l i z a t i o n S e r v i c e  67  were t h e 1:25 000 Q2G/1 M i s s i o n and 92G/2 New W e s t m i n s t e r map  sheets  i n Canada and t h e 1:24 000 B l a i n e , B e r t r a n d Creek, Lynden, and Sumas q u a d r a n g l e s and t h e 1:62 500 Van Zandt quadrangle i n t h e U n i t e d States.  Land use p a t t e r n s were c o n f i r m e d w i t h l a n d owners and l o n g -  time r e s i d e n t s o f t h e area. The  s i z e o f the a r e a on each parent m a t e r i a l was d i c t a t e d by t h e  f o l l o w i n g needs: 1) t o be w i t h i n 4 km o f t h e 49th p a r a l l e l , 2) t o be on t h e c o r r e l a t e d s o i l ( s ) , and 3) t o have a l l o f the l a n d c l e a r i n g c a t e g o r i e s w i t h i n t h e area.  I n Canada, r e p l i c a t e s a m p l i n g  o f t h e 1980  c l e a r i n g age on outwash and t h e 1970 c l e a r i n g age on g l a c i a l m a r i n e d r i f t , and i n t h e USA t h e 1980 c l e a r i n g age on g l a c i a l m a r i n e d r i f t o c c u r r e d i n t h e same  polygon.  The s o i l s on t h e f o l l o w i n g f o u r parent m a t e r i a l s were s t u d i e d f o r l a n d use changes between 1943 and 1983: a l l u v i u m , g l a c i a l outwash, g l a c i a l m a r i n e d r i f t and m o r a i n a l .  However, t h e s o i l s on the m o r a i n a l  m a t e r i a l were n o t s u b j e c t t o s o i l a n a l y s e s because t h e f i v e r e q u i r e d groupings  o f l a n d c l e a r i n g were n o t found.  f r e q u e n t r e c o n v e r s i o n t o woodland.  I n f a c t , t h e r e was  This e l i m i n a t i o n l e f t only three  parent m a t e r i a l s t o be used f o r s o i l  analyses.  4.1.1 Number o f Samples The number o f samples t o be o b t a i n e d was based on t h e i n h e r e n t v a r i a b i l i t y o f t h e d a t a , t h e s m a l l e s t t r u e d i f f e r e n c e d e s i r e d t o be d e t e c t e d , and t h e s i g n i f i c a n c e l e v e l a t w h i c h t h e two means would be c o n s i d e r e d s i g n i f i c a n t l y d i f f e r e n t ( S o k a l and R o h l f 1981).  From  p r e v i o u s s t u d i e s , t h e c o e f f i c i e n t o f v a r i a t i o n o f the v a r i a b l e s b e i n g examined ranged f r o m l e s s than  10 t o more than 35 ( W i l d i n g 1985).  c o n s e r v a t i v e v a l u e o f 30 was chosen t o use f o r sample s i z e  68  A  determination.  The s t u d y used a f a c t o r i a l d e s i g n and was d e s i g n e d t o  be 80% c e r t a i n o f d e t e c t i n g a 5% d i f f e r e n c e between two o f the 30 means (3 p a r e n t m a t e r i a l s x 2 c o u n t r i e s x 5 l a n d c l e a r i n g age groups) a t the 5% l e v e l o f s i g n i f i c a n c e . soils  studies  A c e r t a i n t y o f 80% i s r e a s o n a b l e f o r  1985).  (Wilding  Sample s i z e d e t e r m i n a t i o n i s an i t e r a t i v e p r o c e s s based on the f o l l o w i n g f o r m u l a ( S o k a l and R o h l f , n = 2[{<T/S )2 t „ ^  +  1981):  t2(1-P),^]  2  where n = number o f r e p l i c a t i o n s C~=  true standard d e v i a t i o n  S=  the s m a l l e s t t r u e d i f f e r e n c e t h a t i s d e s i r e d t o d e t e c t  -r\ = degrees o f freedom o f t h e sample s t a n d a r d d e v i a t i o n  with  "a" groups and "n" r e p l i c a t i o n s per group o< = s i g n i f i c a n c e l e v e l P = desired p r o b a b i l i t y that a difference w i l l  be found t o be  significant ^o<  and t 2 ( 1 - P ) , ^ \  = v a l u e s from a two t a i l e d t - t a b l e w i t h  0\ degrees o f freedom and c o r r e s p o n d i n g t o p r o b a b i l i t i e s o f o< and 2 ( 1 - P ) , r e s p e c t i v e l y . Assuming about 100 samples a r e chosen f o r the f i r s t w i t h -v\= a(n-1) = 3 0 ( 1 0 0 - 1 ) = 2 9 7 0 , we f i n d  CP = 3 0 Y / 1 0 0  iteration  and  df= 5 Y / 1 0 0 and t h u s G~/J~=6. Thus, n = 2 (6)2[  n = 2 (6)2  n =  t  >  0  5  )  2  9  7  0  +  t2(1-0.80),297ol  2  (1.960 + 0.842)2  565  The second i t e r a t i o n would l e a d t o a s i m i l a r r e s u l t .  I f this  v a l u e were rounded up t o 600, t h e n f o r each o f the 30 g r o u p s , we must t a k e 20 s a m p l e s , o r two r e p l i c a t e s o f 10 each.  69  Such a sample s i z e  would be s u f f i c i e n t f o r u n d e r s t a n d i n g v a r i a b i l i t y and showing d i f f e r e n c e s among the d a t a w i t h o u t b e i n g o v e r w h e l m i n g f o r f i e l d sampling.  A s i m i l a r sample s i z e c o u l d be o b t a i n e d g r a p h i c a l l y  d i r e c t l y from a s e t o f curves i n d i c a t i n g p r e s c r i b e d c o n f i d e n c e and the degrees o f freedom r e q u i r e d t o e s t i m a t e t h e s t a n d a r d d e v i a t i o n w i t h i n a s t a t e d percentage  o f i t s t r u e v a l u e (Greenwood and Sandomire  1950).  P l o t s were chosen i n d u p l i c a t e t o r e p r e s e n t the two c o u n t r i e s (Canada and  the U n i t e d S t a t e s ) , the t h r e e parent m a t e r i a l s ( a l l u v i u m ,  outwash, and g l a c i a l m a r i n e d r i f t ) , and t h e f i v e age c l e a r i n g groups ( c l e a r e d between 1943 and and  1976,  between 1976  and  T h i s amounted t o 60 p l o t s .  1955, between 1955 and 1983,  1966, between  and not c l e a r e d , i . e . , woodland).  The l i t t e r l a y e r s from the 12 woodland  p l o t s were a n a l y z e d s e p a r a t e l y and a l s o i n c o m b i n a t i o n as a average w i t h the woodland m i n e r a l s o i l . i n the o l d e s t f i e l d  An a d d i t i o n a l p l o t was  F i e l d work was  from mid-March t o m i d - A p r i l 1985 b e f o r e the ground was  undertaken worked f o r the  season.  D e t e r m i n a t i o n o f Land C l e a r i n g Age  Groups  The o r i g i n a l i n t e n t o f t h i s s t u d y was pasture.  taken  l o c a t e d i n the s t u d y a r e a t o see i f  t r e n d s c o n t i n u e d p r i o r t o 1943 as w e l l .  4.1.2  weighted  c o n t i n u o u s l y c u l t i v a t e d f o r r a s p b e r r i e s i n the  s t a t e o f Washington s i n c e t h i s was  growing  1966  t o s e p a r a t e c r o p l a n d and  However, because o f the f a r m i n g p r a c t i c e i n the 1940s and  1950s o f f r e q u e n t r o t a t i o n s between hay and p a s t u r e and c r o p l a n d a t a recommended c y c l e o f legumes f o r the e q u i v a l e n t o f one year f o r each two y e a r s t h e l a n d was 1953), i t was  in intertilled  c r o p s (Poulson and  Flannery  d e c i d e d t h a t s e p a r a t i n g t h e s e l a n d uses over a t e n - y e a r  p e r i o d w i t h a e r i a l photographs was  not p o s s i b l e .  Some s e p a r a t i o n s  would have been made between unimproved u n t i l about  1960, and improved  p a s t u r e , w h i c h was common  pasture.  As a r e s u l t t h e v a r i a b l e  b e i n g t e s t e d was t i m e - s i n c e - c l e a r i n g and c o n v e r s i o n t o a g r i c u l t u r e r a t h e r than t h e a c t u a l c r o p grown. The c a t e g o r i e s o f l a n d use a r e s i m i l a r t o those used i n the l e v e l I I c l a s s i f i c a t i o n o f Anderson  e t a l . (1972), a l b e i t w i t h  fewer  c a t e g o r i e s : c r o p l a n d and p a s t u r e , mixed f o r e s t l a n d , and water (lakes).  Farmsteads  were n o t s e p a r a t e d .  Land use change d e l i n e a t i o n s were d e t e r m i n e d by f i r s t a l l t h e woodland areas on t h e 19^3 photography woodland a r e a s on t h e 1955 photography.  comparing  with the remaining  In the i n t e r p r e t a t i o n  p r o c e s s , i m a g e r y f o r t h e two d a t e s b e i n g a n a l y z e d were i n t e r p r e t e d i n concert.  I n t e r p r e t a t i o n s were u s u a l l y a c c o m p l i s h e d m o n o c u l a r l y .  Areas c l e a r e d p r i o r t o 19^3 a r e denoted  by "C".  The c l e a r e d  areas  were l o g g e d between 19^3 and 1955 and a r e d e l i n e a t e d on t h e map a s "50" ( F i g s . 7-10).  The woodland a r e a s on t h e 1955 photographs  were  compared w i t h t h e r e m a i n i n g woodland a r e a s on t h e 1966 photography. The a r e a s c l e a r e d o f woodland were l o g g e d , t h e r e f o r e , between 1955 and 1966 and d e l i n e a t e d as "60" on t h e map.  The amount o f c l e a r e d l a n d as  of 1966 t h u s i n c l u d e s t h e d e l i n e a t i o n s marked "C", "50", and "60". The a r e a s marked "70", "80", and "W" were i n woodland as o f 1966. T h i s procedure was c o n t i n u e d f o r t h e c l e a r e d areas between 1966 and  1976 and between 1976 and 1983. These a r e a s were d e l i n e a t e d as  "70" and "80," r e s p e c t i v e l y .  The r e m a i n i n g woodland a r e a s , w h i c h  have  remained e s s e n t i a l l y unlogged between 19^3 and 1983, were d e s i g n a t e d as "W."  The minimum s i z e d e l i n e a t i o n ranged from  on photo s c a l e .  1 t o 3 ha depending  Any l a n d use which c o v e r e d an a r e a s m a l l e r than t h e  71  F i g . 7. Land c l e a r i n g map o f the outwash s o i l s . c= c l e a r e d b e f o r e North i s a t the top o f the f i g u r e . Scale i s approximately 1:25 000.  72  1943.  F i g . 8. Land c l e a r i n g map o f the a l l u v i a l s o i l s . c= c l e a r e d b e f o r e N o r t h i s a t the top o f t h e f i g u r e . S c a l e i s a p p r o x i m a t e l y 1:28 000.  73  1943.  F i g . 9. Land c l e a r i n g map o f the g l a c i a l m a r i n e s o i l s . c= c l e a r e d b e f o r e 19^3. N o r t h i s at the top of the f i g u r e . S c a l e i s a p p r o x i m a t e l y 1:19 000. 74  F i g . 10. Land c l e a r i n g map o f the m o r a i n a l s o i l s . c= c l e a r e d b e f o r e 19^3. N e g a t i v e s i g n s r e f e r t o r e v e r s i o n t o woodland i n t h a t age g r o u p i n g . North i s a t the top o f the f i g u r e . S c a l e i s a p p r o x i m a t e l y 1:17 000.  75  minimum s i z e was c l a s s i f i e d w i t h t h e a d j a c e n t use i n t h e most l o g i c a l matter possible.  No f i e l d c h e c k i n g was made t o v e r i f y t h e a c c u r a c y o f  photo i n t e r p r e t a t i o n , a l t h o u g h d i s c u s s i o n s  were c a r r i e d o u t w i t h  landowners f o r v e r i f i c a t i o n . The l a n d  c l e a r i n g maps used t h e 1955 photography ( s c a l e 1:20 000)  as t h e base map.  Areas w h i c h were i n woodland i n 1 943 but c l e a r e d  1955 were t r a n s f e r r e d  onto a mylar overlay  a e r i a l photo i n t e r p r e t a t i o n . and  cleared  delineated  o f the 1955 f l i g h t u s i n g  The a r e a s o f woodland on t h e 1955 photos  by 1966 were d e l i n e a t e d  by-side analysis.  by  The a r e a s c l e a r e d  n e x t by v i s u a l c o m p a r a t i v e s i d e by t h e 1976 and 1983 photos were  s i m i l a r l y . The l a n d c l e a r i n g maps can be p r i n t e d a t any  s c a l e ; t h e y were p r i n t e d  at the d i s i g n a t e d  s c a l e s i n F i g s . 7 t o 10 t o  m a x i m i z e map s i z e on the page. The p r i n c i p a l c r i t e r i o n used t o s e l e c t t h e p l o t s from the "50," "60,"  "70," "80," and "W"  correlated s o i l .  was t h a t t h e p l o t had t o be on t h e  P r i o r i t y was g i v e n t o t h e l a r g e r a r e a s w h i c h were  c l e a r e d from f u l l y stocked stands. practiced consistent  Areas w i t h l a n d owners who  management over t e n y e a r s o r more and who knew  about t h e l a n d h i s t o r y were p r e f e r r e d . a r e a s were a v o i d e d . of land  S o i l i n c l u s i o n s and  disturbed  The p l o t c e n t e r was chosen t o a v o i d edge e f f e c t s  c l e a r i n g and s o i l .  4.1.3 Sampling The sample s i t e l o c a t i o n a t each p l o t f o l l o w e d 11.  t h e scheme i n F i g .  The s i t e s were f i x e d f r o m n i n e 10 m by 10 m p l o t g r i d s .  On each  10 m by 10 m g r i d , t h e s i t e c o o r d i n a t e s were p i c k e d from a random numbers t a b l e w i t h t h e o r i g i n as t h e l o w e r l e f t corner.  The  tenth  s i t e was p i c k e d from the e n t i r e 30 m by 30 m g r i d and t h e random 76  1(4,7) 10m 2(5,3)  3(4,0)  6(6,7),  P l o t Center x  10m 30m  5(4,3) 4(9,2)  o J0(12,12)  7(8,7) 9(1,5)  10m  8(9,0) . . .o •10m-  -10m-  • 10m-  -30mD i s t a n c e and a z i m u t h from p l o t c e n t e r t o each sample s i t e Site 1 2 3 4 5 6 7 8 9 10  Distance  (m)  16.3 8.0 10.9 6.7 2.3 11.3 10.9 14.6 11.6 4.3  Azimuth (o) 317 0 56 242 206 80 221 165 150 225  F i g . 11. Sampling scheme.  77  numbers c o o r d i n a t e s m u l t i p l i e d by t h r e e and measured from t h e l o w e r left.  N o r t h i s a t the t o p o f the f i g u r e .  The a z i m u t h from the c e n t e r  o f the g r i d was d e t e r m i n e d f o r each s i t e l o c a t i o n on t h e f i x e d sequence.  T h i s sample g r i d was used on a l l p l o t s .  I n the f i e l d  a  tape and compass were used t o l o c a t e t h e sample s i t e s ( P l a t e s 1 and 2). Three o f the 10 s i t e s on each p l o t were s e l e c t e d f o r d e t e r m i n a t i o n o f b u l k d e n s i t y by the e x c a v a t i o n method ( P l a t e 3).  The  s i t e s were chosen u s i n g a random numbers t a b l e and were d i f f e r e n t f o r each  plot. Samples a t each s i t e were e x t r a c t e d w i t h a t r o w e l from a h o l e  approximately  10 cm i n d i a m e t e r and 20 cm deep.  On the woodland  s i t e s , the l i t t e r l a y e r was c o l l e c t e d s e p a r a t e l y from the 0 t o 20 cm mineral s o i l .  I n some c a s e s , i t was d i f f i c u l t  t o d i s t i n g u i s h and  s e p a r a t e the p a r t i a l l y decomposed o r g a n i c m a t e r i a l from the m i n e r a l soil.  Volumes at t h e s i t e s i n w h i c h b u l k d e n s i t y was d e t e r m i n e d  averaged about 1400 mL but ranged from about 1000 t o 2200 mL. 4.1.3.1 L i t t e r l a y e r and t h e weighted average The l i t t e r l a y e r i s a p o t e n t i a l n u t r i e n t p o o l f o r a g r i c u l t u r a l purposes.  Whether i t i s used depends on t h e l a n d c l e a r i n g p r a c t i c e s .  S i n c e woodland l i t t e r i s sometimes i n c o r p o r a t e d i n t o the s o i l the c l e a r i n g p r o c e s s , a w e i g h t e d average p l o t was  during  created  s t a t i s t i c a l l y f r o m the w e i g h t e d average o f 2 cm o f l i t t e r (the average l i t t e r t h i c k n e s s ) mixed w i t h 20 cm o f s o i l . " p l o t " was t o s i m u l a t e the s o i l and l i t t e r l a y e r .  The purpose o f t h i s  c o n d i t i o n s o f m i x i n g the m i n e r a l  soil  T h i s t h e o r e t i c a l " p l o t " was used i n most o f the  a n a l y s e s a l o n g w i t h the sampled  plots.  78  P l a t e 1. Woodland s i t e on outwash s o i l s  79  (plot 20).  Plate  Plate  2. S i t e l o c a t i o n s i n c u l t i v a t e d f i e l d on outwash s o i l s 11). Photograph taken from 1550.  3.  B u l k d e n s i t y s a m p l i n g ( p l o t 53).  80  (plot  Crop i s s t r a w b e r r i e s .  4.2 L a b o r a t o r y  4.2.1  Analyses  Sample P r e p a r a t i o n The s o i l s were i m m e d i a t e l y a i r - d r i e d .  crushed The  Samples were weighed,  w i t h a r o l l i n g p i n , and s i e v e d through a b r a s s 2 mm s i e v e .  c o a r s e f r a g m e n t s r e t a i n e d i n t h e s i e v e were r e w e i g h e d t o  determined  t h e c o a r s e f r a g m e n t content.  were used f o r a l l c h e m i c a l  The s i e v e d , a i r - d r i e d samples  analyses.  4.2.2 pH The  1:2 pH i n w a t e r was d e t e r m i n e d  w i t h 20 mL d i s t i l l e d  water.  by m i x i n g 10 g m i n e r a l s o i l  The pH o f t h e l i t t e r l a y e r s was i n a 1:10  s o i l : w a t e r r a t i o u s i n g 2 g s o i l and 20 g water.  The s o i l - w a t e r  s o l u t i o n was mixed f o r 15 m i n u t e s and e q u i l i b r a t e d f o r 1 hour.  pH was  measured w i t h an O r i o n I o n a l y z e r s p e c i f i c i o n pH meter, model 404 w i t h an O r i o n g l a s s pH e l e c t r o d e 91-62. A f t e r the 1:2 pH i n w a t e r was r u n , 0.5 mL 4M C a C l  2  w  a  added t o  s  t h e m i x t u r e , mixed f o r 15 m i n u t e s , e q u i l i b r a t e d f o r an hour, a f t e r w h i c h t h e pH o f the s o i l - C a C l  2  w  a  s  t  a  k  e  n  i  n  t n e  r  a  t  i  o  o  f  1 j 2  .  This  r a t i o was chosen t o a l l o w s u f f i c i e n t s l u r r y f o r an a c c u r a t e r e a d i n g . 4.2.3 P, Ca, Mg, and K A s o i l e x t r a c t f o r d e t e r m i n i n g P, Ca, Mg, and K was produced u s i n g t h e method o f M e h l i c h (1978), w h i c h uses NH4F, NH4 » C1  Lanthanum compensating s o l u t i o n was not used. every 25 e x t r a c t i o n s .  H C 1  »  a  n  d  H 0 A c  *  B l a n k s were made about  S i n c e M e h l i c h (1978) has shown a l i n e a r  relation-  s h i p w i t h o t h e r methods, and s i n c e t h e p r i m a r y f o c u s o f t h i s t h e s i s i s an i n t e r s t u d y comparison,  and a l s o s i n c e t h e M e h l i c h e x t r a c t a n t can o b t a i n  these f o u r n u t r i e n t s i n one e x t r a c t , i t was d e c i d e d t o use t h i s method. 81  P was d e t e r m i n e d c o l o r i m e t r i c a l l y on a Bausch and Lomb S p e c t r o n i c 20 a t w a v e l e n g t h 880 nm.  The c o l o r i n d i c a t o r was a s o l u t i o n o f  T a r t r a t e - M o l y b d a t e - A s c o r b i e a c i d (T-M-A) as d e s c r i b e d by M e h l i c h (1978).  The p r e s c r i b e d r a t i o o f s o i l e x t r a c t t o w o r k i n g s o l u t i o n o f  T-M-A was 2:26 i n o r d e r t o f i t w i t h i n t h e range o f s t a n d a r d s o f 0 t o 10 mg kg-1.  F o r e x t r a c t s t h a t were o u t s i d e t h i s range, a n o t h e r 28 mL  of w o r k i n g s o l u t i o n was added.  I f t h i s d i l u t e d s o l u t i o n was s t i l l  more t h a n 10 mg kg-1, t h e P c o n t e n t was d e t e r m i n e d u s i n g a 1:10 d i l u t i o n of the o r i g i n a l extract.  The b l a n k s f o r P a l l measured zero.  Each e x t r a c t was d i l u t e d 1:10 and 1:100 and t h e a p p r o p r i a t e d i l u t i o n was used t o d e t e r m i n e Ca, Mg, and K.  The c o n t e n t o f t h e s e  c a t i o n s was d e t e r m i n e d on an a t o m i c a b s o r p t i o n s p e c t r o p h o t o m e t e r The AA was s e t t o 1.0 mg kg-1 f o r Ca a n d Mg a n d t o 2.0 f o r K. c u r v e - c o r r e c t e d t o 2.0 and 4.0 mg k g ^ , r e s p e c t i v e l y . -  I t was  A l l the b l a n k s  were n e a r l y z e r o ( w i t h i n the range o f o b s e r v a t i o n f o r t h e s e on t h e AA) e x c e p t Ca a t t h e 1:10 d i l u t i o n .  (AA).  elements  I n t h i s case t h e l e v e l o f  the b l a n k was 7 mg kg-1. When t h e e x t r a c t a n t was l e f t i n the g l a s s b o t t l e o f the a u t o m a t i c p i p e t o r , t h e f l u o r i d e f r o m t h e NH4 e x t r a c t e d c a l c i u m from t h e b o t t l e . F  As a r e s u l t , v a l u e s o b t a i n e d f o r b l a n k s i n t h e s e cases ranged from 40 to  70 mg kg-1.  When the samples w i t h t h e "contaminated" e x t r a c t a n t  were a n a l y z e d i n t h e same b a t c h a s samples c o n t a i n i n g f r e s h e x t r a c t a n t , t h e d i f f e r e n c e s were w i t h i n t h e range o f t h e AA u n i t . This i n d i c a t e s that the s o i l s probably buffered t h i s e x t r a c a l c i u m , w h i c h t h e b l a n k s c o u l d n o t do. V a l u e s f o r Mg and K were n o t a f f e c t e d by t h e r e s i d e n c e t i m e i n t h e g l a s s b o t t l e . for  When t h e r e s i d e n c e t i m e  Ca was l e s s t h a n one hour, t h e b l a n k s ranged from 5 t o 7 mg kg-1.  82  4.2.4  Organic  Matter  No e f f o r t was made t o f r a c t i o n a t e the v a r i o u s o r g a n i c m a t e r i a l s . L o s s - o n - i g n i t i o n (LOI) was  used as an e s t i m a t e o f o r g a n i c  matter.  LOI i s used i n e c o l o g i c a l s t u d i e s f o r the a n a l y s i s o f o r g a n i c l a y e r s (Covington  1981, G o s z e t a l . 1976).  I t i s e a s y and r a p i d :  40  samples can be a n a l y z e d i n about two hours o f a c t u a l t e c h n i c i a n t i m e . However, f o r s o i l s t u d i e s LOI o n l y e s t i m a t e s the amount o f o r g a n i c matter  s i n c e h e a t i n g t o t e m p e r a t u r e s above 150°  C w i l l drive o f f  h y g r o s c o p i c w a t e r and d r i v e out i n t e r c r y s t a l l i n e w a t e r f r o m c r y s t a l l i n e c l a y s and a l l o p h a n e .  The r e l i a b i l i t y o f the  depends on the amount and type of c l a y . organic matter  c o n t e n t , however, may  The  estimate  v a r i a b i l i t y i n the  hide these d i f f e r e n c e s .  A l t h o u g h l o s s - o n - i g n i t i o n has been w i d e l y d i s m i s s e d as crude and inadequate  as an e s t i m a t o r o f o r g a n i c m a t t e r i n n o n c a l c a r e o u s  ( J a c k s o n 1958,  soils  Robinson 1949), B a l l (1964) found e x c e l l e n t  c o r r e l a t i o n between LOI and o r g a n i c c a r b o n f o r a range o f o r g a n i c m a t t e r and c l a y c o n t e n t s and p a r e n t m a t e r i a l s .  He d e t e r m i n e d LOI  850OC and a t 375oC and found a c o r r e l a t i o n c o e f f i c i e n t between LOI o r g a n i c carbon o f 0.99.  P a r e n t m a t e r i a l and c l a y m i n e r a l o g y  at and  d i d not  s i g n i f i c a n t l y a f f e c t the r e g r e s s i o n e q u a t i o n s . The d e t e r m i n a t i o n was i n w e i g h t o f an o v e n - d r i e d for  s i x hours at 600© c.  sample per p l o t ) was  made on a l l samples by m e a s u r i n g the l o s s sample a f t e r h e a t i n g i t i n a m u f f l e A 10%  sample (a random s e l e c t i o n o f  used t o c o r r e l a t e the o r g a n i c m a t t e r  furnace one  content  e s t i m a t e d by l o s s - o n - i g n i t i o n w i t h carbon content u s i n g the Leco carbon a n a l y z e r . The  p r o c e d u r e used i s as f o l l o w s :  83  1. Weigh empty c r u c i b l e s . 2. Add a p p r o x i m a t e l y  5 t o 10 g o f m i n e r a l s o i l ( o r 1 t o 5 g  o r g a n i c s o i l ) and oven-dry a t 105°C f o r f i v e  hours.  3. P l a c e samples i n d e s i c c a t o r f o r two hours and then  reweigh.  4. P l a c e s a m p l e s i n t o m u f f l e f u r n a c e and h e a t f o r 5 t o 6 hours a t 600oC. 5. Turn o f f f u r n a c e and l e t c o o l o v e r n i g h t . 6. P l a c e samples i n d e s i c c a t o r f o r two hours and t h e n 7. 0M=  ( o v e n - d r i e d w e i g h t minus m u f f l e d  weight x  reweigh.  weight)/oven-dried  100%.  Weights f r o m carbon r e s i d u e s f r o m f i n g e r p r i n t s and m o i s t u r e a i r - d r i e d c r u c i b l e s were found t o be s m a l l e r than the t h r e e  on  decimal  a c c u r a c y o f the M e t t l e r PE 160 balance used f o r measurement. The s a m p l e s f o r Leco carbon were prepared  by g r i n d i n g the a i r -  d r i e d samples w i t h m o r t a r and p e s t l e and p a s s i n g them through a micrometer sieve.  Samples were p l a c e d i n a c r u c i b l e and  a Leco carbon a n a l y z e r  combusted i n  ( L a v k u l i c h 1978).  A r e g r e s s i o n e q u a t i o n was  c a l c u l a t e d t o d e f i n e the r e l a t i o n s h i p  between Leco c a r b o n and o r g a n i c m a t t e r 4.2.5  150  as e s t i m a t e d by l o s s - o n - i g n i t i o n .  Nitrogen N i t r o g e n was  d e t e r m i n e d c o l o r i m e t r i c a l l y by a u t o a n a l y z e r  f o l l o w i n g L a v k u l i c h (1978). CuSO^ s  6j  a n  d  The  d i g e s t i o n mix  c o n c e n t r a t e d H2S04.  The samples were d i g e s t e d on a  T e c h n i c o n B l o c k D i g e s t o r , Model BD-20. run on the a u t o a n a l y z e r . s o i l s and  2.00  c o n s i s t e d o f K2S04>  E x t r a c t s were s t o r e d and  Sample s i z e was  g f o r the woodland l i t t e r  84  4.00 g f o r the layers.  mineral  then  4.3 Map  Digitization  G e n e r a l i z e d l a n d c l e a r i n g maps were produced by e x a m i n i n g t h e a e r i a l photos t o see when t h e l a n d was c l e a r e d o f woodland.  These  maps a r e g e n e r a l i z e d because 1) s c a l e d i f f e r s on t h e photos o f each y e a r , 2) l a r g e d i s t o r t i o n particularly  and t h u s reduced r e s o l u t i o n i s p r e s e n t  f o r t h e 1940s t o 1960s photos from Canada, 3) no chance  f o r f i e l d c h e c k s , 4) no c l e a r f e a t u r e s t o match photos and no r e l i e f t o see s t e r e o , and 5) v e r y l i t t l e s i d e l a p - r a n g i n g as l o w as 15$, b u t commonly 35$. The s o i l maps were d i g i t i z e d f r o m t h e o r i g i n a l 1976 field  s h e e t s (1:24 000 a e r i a l photographs) i n t h e USA and from the  p u b l i s h e d o r t h o p h o t o s (1:25 000) i n Canada ( L u t t m e r d i n g 1981a). The maps were d i g i t i z e d on a T e k t r o n i x 4954 g r a p h i c s t a b l e t d i g i t i z e r and t h e n computer-generated u s i n g a T e k t r o n i x 4662 pen plotter.  The r e s o l u t i o n o f the d i g i t i z e r i s 0.25 mm which a t a photo  s c a l e o f 1:24 000 i s about 6 m.  The maps d i g i t i z e d were t h e s o i l maps  f o r t h e f o u r p a r e n t m a t e r i a l s and t h e t h r e e l a n d c l e a r i n g maps ( a l l p a r e n t m a t e r i a l s but m o r a i n a l ) .  From t h e d i g i t i z e d l a n d  clearing  maps, t h e a r e a f o r each l a n d c l e a r i n g p e r i o d was d e t e r m i n e d based on the map  l i n k e d polygons e s t a b l i s h e d w i t h UTM c o o r d i n a t e s i n t h e d i g i t i z e d files.  4. 4 S t a t i s t i c a l Methods Data f r o m the AA were c o n v e r t e d t o mg kg-1 i n t h e s o i l by d e d u c t i n g t h e b l a n k , m u l t i p l y i n g by t h e a p p r o p r i a t e d i l u t i o n and t h e r a t i o o f s o i l s o l u t i o n t o o r i g i n a l  factor  soil.  The d a t a f o r Ca, Mg, K, P, 0M, and N were c o n v e r t e d t o an a r e a l b a s i s (kg ha-1) by m u l t i p l y i n g t h e c o n c e n t r a t i o n by the mean b u l k d e n s i t y f o r t h e p l o t and a g a i n by 10-3. F o r d e t e r m i n i n g t h e a r e a l  85  v a l u e s f o r t h e w e i g h t e d average p l o t s , a b u l k d e n s i t y o f 400 kg m"-  3  was assumed f o r t h e l i t t e r l a y e r . range as l o w as 200 kg m-3 (Brady  Bulk d e n s i t i e s of organic l a y e r s 1985, P r i t c h e t t 1979).  I n much o f  the l i t e r a t u r e o n l y changes i n t h e c o n c e n t r a t i o n s o f C, N, and P r e s u l t i n g from c u l t i v a t i o n are reported.  T i e s s e n e t a l . (1982)  r e p o r t e d l o s s e s o f these n u t r i e n t s i n both c o n c e n t r a t i o n and volume. S i n c e c u l t i v a t i o n i n c r e a s e s b u l k d e n s i t y (Davidson  e t a l . 1967, De  Haan 1977, T i e s s e n e t a l . 1982), t h e c o n v e r s i o n from c o n c e n t r a t i o n t o area-based o r g a n i c m a t t e r budgets w i t h a s i n g l e c o n v e r s i o n f a c t o r o b s c u r e s r e l a t i o n s h i p s and can i n c r e a s e the v a r i a b i l i t y o f the r e s u l t s ( T i e s s e n e t a l . 1982). The  d a t a were e n t e r e d on an IBM 4341-1 computer w i t h VS1  o p e r a t i n g system and t h e s t a t i s t i c s were r u n u s i n g SPSS-X r e l e a s e 2.1 f o r IBM OS and MVS (SPSS Inc. 1985). The  s t a t i s t i c a l t e s t s used i n t h i s s t u d y a r e presented  i n the  f l o w c h a r t o f F i g . 12. Both u n i v a r i a t e and m u l t i v a r i a t e s t a t i s t i c a l procedures were p e r f o r m e d on t h e d a t a t o examine t h e e f f e c t s and r e l a t i o n s h i p s among t h e c h e m i c a l and p h y s i c a l v a r i a b l e s and f a c t o r s (parent m a t e r i a l , t i m e - s i n c e - c l e a r i n g , and c o u n t r y ) s i n g l y and i n combination,  r e s p e c t i v e l y . The f o l l o w i n g u n i v a r i a t e t e s t s were r u n :  1) l i n e a r r e g r e s s i o n f o r Leco c a r b o n v e r s u s o r g a n i c m a t t e r as estimated each  by l o s s - o n - i g n i t i o n on a 10$ randomly s e l e c t e d sample from  plot, 2) N o n p a r a m e t r i c Mann-Whitney t e s t and t h e W i l c o x o n p a i r e d  c o m p a r i s o n t e s t o f o r i g i n a l s versus d u p l i c a t e s t o examine t h e a n a l y t i c a l p r o c e d u r e s on the 10$ sample i n 1), 3) One-way and two-way a n a l y s i s o f v a r i a n c e t o d e t e r m i n e  86  P.C., C l u s t e r , D i s c r i m i n a n t CONCLUSIONS  z  p.c. Analysis  Cluster Analysis  Analysis  I  Regression CONCLUSIONS  Discriminant Analysis Chemical Variables  Age OM Leco Carbon  Correlation 10$ random sample from each p l o t  X  Originals Duplicates  X  Kolmogorov-Smirnov Goodness o f F i t T e s t  Mann-Whitney Wilcoxon  X  TOTAL DATA SET  Procedural Analysis CONCLUSIONS ANOVA  SNK mean,std dev,CV  Physical Variables  Country  Chemical P l o t Variables  Age  PhysicalChemical Variables  Plot  Country  ANOVA CONCLUSIONS Soil Variability CONCLUSIONS Fig.  12. C i r c u l a r f l o w c h a r t o f s t a t i s t i c a l  87  methods.  Age  F i g . 12 ( c o n ' t ) . C o n c l u s i o n s d e r i v e d from c i r c u l a r f l o w  chart.  ANOVA 1. Goodness o f f i t r e l a t i v e t o the n o r m a l curve o f sample d a t a and p l o t means u s i n g t h e t o t a l d a t a s e t and the c u l t i v a t e d s o i l s  only.  2. S i g n i f i c a n t d i f f e r e n c e s among p l o t s , p a r e n t m a t e r i a l s , age, and c o u n t r y by i n d i v i d u a l p h y s i c a l and c h e m i c a l v a r i a b l e s . SOIL VARIABILITY 1. Which v a r i a b l e s c o n t r i b u t e most t o t o t a l v a r i a b i l i t y and how do t h e i r v a r i a b i l i t i e s compare.  Which p a r e n t m a t e r i a l , c o u n t r y , and age  group a r e the most v a r i a b l e . 2. D i f f e r e n c e s  i n v a r i a b i l i t y due t o c o n c e n t r a t i o n  and a r e a l bases.  3. E f f e c t s o f p a r e n t m a t e r i a l , t i m e - s i n c e - c l e a r i n g , c o u n t r y , and l a n d use on v a r i a b i l i t y . 4. Number o f samples r e q u i r e d  f o r a given l e v e l of p r e c i s i o n .  REGRESSION 1. R e l a t i o n s h i p between o r g a n i c m a t t e r and Leco c a r b o n . 2. R e l a t i o n s h i p s  between a l l c h e m i c a l v a r i a b l e s i n d i v i d u a l l y and  combined v e r s u s t i m e - s i n c e - c l e a r i n g f o r each p a r e n t m a t e r i a l . PRINCIPAL COMPONENT ( P . C . ) ,  CLUSTER, AND DISCRIMINANT ANALYSES  1. Which v a r i a b l e s a r e most i m p o r t a n t . 2. Which v a r i a b l e s most d i s c r i m i n a t e t h e p l o t s . 3- Which p l o t s a r e most s i m i l a r . 4. How good were the o r i g i n a l age g r o u p i n g s . PROCEDURAL ANALYSIS 1. C o r r e l a t i o n o f o r i g i n a l s w i t h d u p l i c a t e s f o r each v a r i a b l e . 2. R e l a t i o n s h i p between p o p u l a t i o n s 3.  o f o r i g i n a l s and d u p l i c a t e s .  E f f e c t s of a n a l y t i c a l procedure.  88  s i g n i f i c a n t d i f f e r e n c e s o f each v a r i a b l e by p l o t , p a r e n t m a t e r i a l , age,  l a n d u s e , and c o u n t r y u s i n g the e n t i r e d a t a s e t , o n l y t h e  c u l t i v a t e d s o i l s , o n l y t h e m i n e r a l s o i l s , and o n l y t h e m i n e r a l p l u s the c r e a t e d w e i g h t e d average  soils  soil,  4) Student-Newman-Keuls m u l t i p l e range t e s t t o t e s t s i g n i f i c a n c e between each p l o t , age, and l a n d use on each parent m a t e r i a l , 5) Kolmogorov-Smirnov goodness o f f i t t e s t s f o r a l l d a t a t o t e s t n o r m a l i t y by sample f o r each v a r i a b l e and a g a i n f o r t h e p l o t means. T h i s was r e p e a t e d e x a m i n i n g o n l y t h e c u l t i v a t e d s o i l s .  N o r m a l i t y was  a l s o determined g r a p h i c a l l y . 6) Pearson c o r r e l a t i o n c o e f f i c i e n t s f o r Leco carbon v e r s u s and f o r o r i g i n a l s versus d u p l i c a t e s f o r a l l c h e m i c a l  OM  a n a l y s e s , and  7) mean, s t a n d a r d d e v i a t i o n , and c o e f f i c i e n t o f v a r i a t i o n by c o n c e n t r a t i o n and a r e a l bases (kg ha-1) u s i n g t h e e n t i r e d a t a s e t , o n l y t h e c u l t i v a t e d s o i l s , o n l y t h e m i n e r a l s o i l s , and o n l y t h e m i n e r a l s o i l s p l u s t h e c r e a t e d w e i g h t e d average s o i l , each broken down by p a r e n t  m a t e r i a l , age, l a n d use, c o u n t r y , and r e p l i c a t e .  Three c a t e g o r i e s o f m u l t i v a r i a t e procedures were used i n t h i s study:  1) p r i n c i p a l component and c l u s t e r a n a l y s e s , 2) m u l t i p l e  r e g r e s s i o n , and 3) d i s c r i m i n a n t a n a l y s i s . parametric w i t h d i f f e r e n t assumptions.  Each o f t h e s e t e s t s a r e  They can be e i t h e r p u r e l y  d e s c r i p t i v e o r used as d e s c r i p t i v e s t a t i s t i c s .  I n a d d i t i o n t o the  f u n d a m e n t a l a s s u m p t i o n o f random s a m p l i n g o f the p o p u l a t i o n , t h r e e o t h e r s a r e common among t h e t e c h n i q u e s : m u l t i v a r i a t e n o r m a l i t y , independence o f e r r o r t e r m s o r r e s i d u a l s , and when more than one f i x e d group i s a n a l y z e d , such as i n d i s c r i m i n a n t a n a l y s i s , homogeneity o f variance-covariance  m a t r i c e s among groups (Neff and Marcus 1980).  89  The  discriminant  a n a l y s i s i s v e r y r o b u s t and  s t r o n g l y adhered t o ( K l e c k a Multivariate normality  t h e s e a s s u m p t i o n s need not  1975). i m p l i e s t h a t each v a r i a b l e  i n d i v i d u a l l y i s n o r m a l l y d i s t r i b u t e d and p o i n t s on any Marcus 1980). or t o any  treated  the p r o j e c t i o n s o f the  data  l i n e i n the space a r e n o r m a l l y d i s t r i b u t e d (Neff Univariate  be  t e s t s can  be a p p l i e d  to separate  and  variables  l i n e a r combination to t e s t f o r m u l t i v a r i a t e normality.  u n i v a r i a t e t e s t s do not guarantee m u l t i v a r i a t e n o r m a l i t y  since  a r e based on samples from the m u l t i v a r i a t e space and the d a t a  The  they may  s t i l l be non-normal i n a d i r e c t i o n not sampled; m u l t i v a r i a t e t e s t s complicated, lengthy, The  and  a r e o n l y a p p r o x i m a t e (Neff and  g e n e r a l i z a t i o n of the C e n t r a l L i m i t Theorem t o  Marcus 1980).  multivariate  p r o b l e m s j u s t i f i e s the use o f p a r a m e t r i c p r o c e d u r e s when the d i s t r i b u t i o n i s not e x t r e m e l y non-normal.  are  variable  Large sample s i z e , such as  i n t h i s s t u d y , i s s u f f i c i e n t t o make the d i s t r i b u t i o n o f sample means r e l a t i v e l y n o r m a l l y d i s t r i b u t e d (Neff and  4.4.1  P r i n c i p a l Component and  Cluster  P r i n c i p a l component a n a l y s i s was  Marcus 1980).  Analyses used t o examine the i n t e r -  r e l a t i o n s h i p s e x h i b i t e d i n the s o i l c h e m i c a l data. to resolve simpler  complex r e l a t i o n s h i p s i n t o the i n t e r a c t i o n of f e w e r  components and  behind the  I t s g e n e r a l aim  t o i s o l a t e and i d e n t i f y the c a u s a l  c o r r e l a t i o n s (Kim  1975).  g i v e n s e t o f v a r i a b l e s i n t o a new  The  factors  set of composite v a r i a b l e s  No p a r t i c u l a r a s s u m p t i o n about the u n d e r l y i n g i s required.  and  I t transforms mathematically  p r i n c i p a l components t h a t are o r t h o g o n a l ( u n c o r r e l a t e d )  the  or  t o each  structure of  is  other.  variables  purpose i s t o f i n d the b e s t l i n e a r c o m b i n a t i o n of  v a r i a b l e s w h i c h would account f o r more o f the v a r i a n c e  90  i n the d a t a as  a whole than any o t h e r l i n e a r c o m b i n a t i o n o f v a r i a b l e s . The f i r s t p r i n c i p a l component i s the b e s t summary o f l i n e a r r e l a t i o n s h i p s e x h i b i t e d i n the data. second  The second  component i s t h e  b e s t l i n e a r c o m b i n a t i o n which i s o r t h o g o n a l t o the f i r s t .  Subsequent components are d e f i n e d s i m i l a r l y u n t i l a l l the v a r i a n c e i n the d a t a i s e x p l a i n e d . Although t h i s s t u d y measures o n l y e i g h t c h e m i c a l v a r i a b l e s (pH i n H20 and CaCl2» > Ca  M  S» K, P, OM, and N), p r i n c i p a l component a n a l y s i s  was used t o d e s c r i b e t h e i r i n t e r r e l a t i o n s h i p s and i n the p r o c e s s , t o determine  how the v a r i a b l e s are c o r r e l a t e d and how much each component  c o n t r i b u t e s t o the t o t a l v a r i a n c e . C l u s t e r a n a l y s i s was used t o examine r e l a t i o n s h i p s and g r o u p i n g s among t h e p l o t s .  I t s purpose was t o i d e n t i f y those p l o t s  which  c l u s t e r e d i n t o d e f i n a b l e groups u s i n g the e i g h t measured s o i l  chemical  p r o p e r t i e s t o see i f t h e r e were d i s t i n c t i v e groupings by age o r p a r e n t m a t e r i a l and t o see how t h e s e c l u s t e r s r e l a t e d t o the a p r i o r i separations. equal  The v a r i a b l e s were c o n s i d e r e d s i m u l t a n e o u s l y and w i t h  weight. S e v e r a l methods o f c l u s t e r a n a l y s i s e x i s t .  An a g g l o m e r a t i v e  method was used s i n c e i t j o i n s t h e two n e a r e s t (most s i m i l a r ) i t e m s into a single cluster.  U n i t s a r e grouped t o g e t h e r based on  s i m i l a r i t e s i n p r o p e r t i e s on the b a s i s o f d i s t a n c e s computed between c e n t r o i d s o f the p l o t s o r v a r i a b l e s i n n - d i m e n s i o n a l properties.  space o f a l l s o i l  The average l i n k a g e method i s t h e most commonly used  h i e r a r c h i c a l c l u s t e r i n g t e c h n i q u e ( M a s s a r t and Kaufmann 1983) and was used i n t h i s  study.  There a r e no s t a n d a r d methods f o r d e t e r m i n i n g the number o f c l u s t e r s t o be c r e a t e d i n t h e v a r i o u s c l u s t e r t e c h n i q u e s , j u s t as  91  t h e r e a r e no s t a n d a r d s f o r t h e number o f components t o r e t a i n i n p r i n c i p a l component purpose o f t h e  analysis.  The chosen number depends on the  research.  4.4.2 M u l t i p l e R e g r e s s i o n The r e l a t i o n s h i p between t i m e - s i n c e - c l e a r i n g and each s o i l c h e m i c a l v a r i a b l e was examined both i n d i v i d u a l l y u s i n g l i n e a r regression  and i n t o t a l u s i n g m u l t i p l e r e g r e s s i o n and p a r t i a l  correlation.  The p r i n c i p a l use o f t h e m u l t i p l e r e g r e s s i o n  t h a t m a t t e r the l i n e a r r e g r e s s i o n )  (and f o r  was as a d e s c r i p t i v e t o o l t o f i n d  the b e s t l i n e a r p r e d i c t i o n e q u a t i o n and t o e v a l u a t e i t s p r e d i c t i o n accuracy.  I t i s o f t h e f o r m Y» = A + B  +  1 X 1  B2X2  + ... + BkXk, w h e r e  Y' r e p r e s e n t s t h e e s t i m a t e d v a l u e f o r Y, A i s t h e Y i n t e r c e p t , and B i are the p a r t i a l r e g r e s s i o n c o e f f i c i e n t s . The a n a l y s i s was t w o f o l d :  t o f o c u s on the p r e d i c t i o n o f the  dependent v a r i a b l e ( t i m e - s i n c e - c l e a r i n g )  and i t s o v e r a l l dependence on  the s e t o f independent v a r i a b l e s as w e l l as t o c o n c e n t r a t e on t h e e x a m i n a t i o n o f the r e l a t i o n s h i p between the dependent v a r i a b l e and each p a r t i c u l a r independent v a r i a b l e .  The l a t t e r procedure  controls  the v a r i a t i o n i n t h e r e m a i n i n g v a r i a b l e s and examines the p a r t i a l coefficients.  For instance,  a partial  i n the e q u a t i o n Y' = A + B -| + 1X  B2X2  regression  s t a n d s f o r the e x p e c t e d change i n  Y w i t h a change o f one u n i t i n X i when X 2 otherwise controlled for.  c o e f f i c i e n t , say B 1  i s  h  e  l  d  The l a r g e r the p a r t i a l  constant or regression  c o e f f i c i e n t , t h e more i n f l u e n c e i t s c o r r e s p o n d i n g independent v a r i a b l e has on the dependent v a r i a b l e . Stepwise m u l t i p l e regression  was the procedure f o l l o w e d .  c o m b i n a t i o n o f f o r w a r d and backward e l i m i n a t i o n m u l t i p l e 92  It i s a  regression.  A f t e r p a s s i n g the t e s t s of t o l e r a n c e , w h i c h i s the p r o p o r t i o n of a variable's variance i n the e q u a t i o n , was  entered.  not accounted f o r by o t h e r independent v a r i a b l e s  the v a r i a b l e w i t h the s m a l l e s t p r o b a b i l i t y o f F  value  V a r i a b l e s a l r e a d y i n the e q u a t i o n were removed i f the  c a l c u l a t e d F v a l u e was process continued e l i g i b l e f o r entry  l a r g e r t h a n the c r i t i c a l value chosen.  This  u n t i l no v a r i a b l e s needed t o be removed and none were (SPSS Inc. 1983,  SPSS Inc. 1985).  values  chosen were the f o l l o w i n g : 0.01  F, and  0.10  The  critical  f o r t o l e r a n c e , 0.05  for entry  f o r r e m o v a l F, s i n c e t h e y are commonly used l e v e l s  (Weisberg 1980).  4.4.3  Discriminant Discriminant  Analysis a n a l y s i s was  a p p l i e d t o the seven l a n d c l e a r i n g age  groups (the 4 groups of c u l t i v a t e d s o i l s , the woodland m i n e r a l the l i t t e r l a y e r , and s o i l and  mineral  l i t t e r l a y e r ) on each of the t h r e e p a r e n t m a t e r i a l s  s e p a r a t e l y and respect  the w e i g h t e d average o f the woodland  soil,  i n t o t a l i n o r d e r t o examine t h e i r d i f f e r e n c e s w i t h  t o the e i g h t c h e m i c a l v a r i a b l e s measured i n t h i s study.  The  a n a l y s i s i n t h e o r y p e r m i t s an e v a l u a t i o n o f the d i f f e r e n c e s between the groups, a measurement of how  w e l l the v a r i a b l e s are a b l e  to  d i s t i n g u i s h between the groups, and the i d e n t i f i c a t i o n o f which v a r i a b l e s a r e t h e most p o w e r f u l d i s c r i m i n a t o r s .  The  use  of  d i s c r i m i n a n t a n a l y s i s i s very common f o r r e s e a r c h p r o b l e m s i n the s o c i a l sciences  (SPSS Inc. 1983,  increasingly useful i n s o i l The  SPSS Inc. 1985)  science  and  i s becoming  (Webster 1977).  purpose of d i s c r i m i n a n t a n a l y s i s i n t h i s s t u d y was  twofold:  1) a n a l y s i s f o r m e a s u r i n g the s u c c e s s w i t h w h i c h the d i s c r i m i n a t i n g v a r i a b l e s a c t u a l l y d i s c r i m i n a t e when combined i n t o d i s c r i m i n a n t 93  functions  and 2) c l a s s i f i c a t i o n , f i r s t t o i d e n t i f y the v a r i a b l e s  d i f f e r e n t i a t e the f u n c t i o n s  which  and then t o c l a s s i f y the o r i g i n a l s e t o f  cases t o see how many o f the o r i g i n a l p l o t s were c l a s s i f i e d  correctly  based on p r o b a b i l i t y o f membership. The m a t h e m a t i c a l o b j e c t i v e i s t o w e i g h t and l i n e a r l y combine the d i s c r i m i n a t i n g v a r i a b l e s i n a way t h a t the groups a r e f o r c e d s t a t i s t i c a l l y d i s t i n c t as p o s s i b l e .  t o be as  The hope i s t o f i n d a s i n g l e  d i m e n s i o n t o c l u s t e r each group u s i n g one o r more l i n e a r c o m b i n a t i o n s o f the v a r i a b l e s .  These d i s c r i m i n a n t  functions  a r e o f the form  d i i Z i + di2Z2 + «. + d i 7 Z 7 , where D i i s t h e s c o r e on  =  discriminant  f u n c t i o n i , the d's a r e the w e i g h t i n g c o e f f i c i e n t s , and the Z's a r e the s t a n d a r d i z e d analysis. multiple  v a l u e s o f the 7 d i s c r i m i n a t i n g v a r i a b l e s used i n the  Discriminant regression  analysis i s r e a l l y a special application of  (Klecka  Stepwise discriminant  1975). a n a l y s i s was chosen s i n c e the independent  v a r i a b l e s are e n t e r e d o r removed from the a n a l y s i s i n d i v i d u a l l y on t h e b a s i s o f t h e i r d i s c r i m i n a t i n g power.  The s t e p w i s e d i s c r i m i n a n t  a n a l y s i s methods v a r y i n t h e i r s e l e c t i o n c r i t e r i a . method was  chosen t o maximize the E u c l i d e a n  c a n o n i c a l space when the c a n o n i c a l have v a r i a n c e  The  distance  Mahalonobis  squared i n the  v a r i a t e s have a l l been s c a l e d t o  o f one w i t h i n groups (Neff and Marcus 1980).  This  was  double-checked w i t h the d i r e c t method i n w h i c h a l l t h e independent v a r i a b l e s a r e e n t e r e d i n t o the' a n a l y s i s  94  concurrently.  5.0 RESULTS AND DISCUSSION 5.1 Land C l e a r i n g Study T h i s s t u d y examines t h e changes i n l a n d use on a s m a l l p a r t o f the F r a s e r Lowland i n t h e U n i t e d S t a t e s and Canada.  The sample i s  b i a s e d s i n c e i t was r e q u i r e d t o o v e r l a p t h e I n t e r n a t i o n a l Boundary and be s t r a t i f i e d by p a r e n t m a t e r i a l . year incremental  I t i n c l u d e s o n l y a r e a s w i t h a 10-  t i m e sequence o f c o n v e r s i o n  a g r i c u l t u r e i n the period  f r o m woodland t o  19^3 t o 1983.  5.1.1 Land C l e a r i n g P r i o r t o 1920 D u r i n g t h e p r o c e s s o f l a n d c l e a r i n g , g e n e r a l l y man c l e a r s t h e most a c c e s s i b l e and e a s i e s t c l e a r e d s o i l s f i r s t , a l t h o u g h n e a r n e s s t o market, s o i l f e r t i l i t y , c u l t u r a l f e a t u r e s , and secondary employment can a l s o be i m p o r t a n t .  I n t h e F r a s e r L o w l a n d , t h e f l o o d p l a i n was  c l e a r e d f i r s t s i n c e i t was f e r t i l e and t h e s c a t t e r e d brush and woodland were e a s i l y removed.  The d e n s e l y f o r e s t e d u p l a n d  soils  f o l l o w e d b u t t h e outwash s o i l s , because o f t h e i r b e t t e r d r a i n a g e c h a r a c t e r i s t i c s than t h e g l a c i a l m a r i n e s o i l s and t h e i r more r o c k - f r e e n a t u r e than t h e m o r a i n a l  s o i l s , continued  t o be c l e a r e d once  i r r i g a t i o n became p r o m i n e n t and t h e market f o r b e r r i e s The  increased.  l o c a t i o n o f t r a n s p o r t a t i o n routes i s v i t a l t o understanding  the sequence o f l a n d c l e a r i n g .  Since a l l u v i a l s o i l s are adjacent t o  r i v e r t r a n s p o r t , w h i c h has been t h e p r i n c i p a l means o f e x p l o r i n g an unknown r e g i o n , t h e s e a r e f r e q u e n t l y s u b j e c t t o i n i t i a l c l e a r i n g . Transportation  t o the i n t e r i o r , u s u a l l y r e s u l t i n g from r a i l r o a d  c o n s t r u c t i o n and l o g g i n g a c t i v i t i e s , promotes c l e a r i n g o f upland areas.  T h i s sequence h e l d t r u e i n t h e F r a s e r Lowland, where t h e  Canadian P a c i f i c R a i l w a y a l o n g t h e F r a s e r R i v e r and w a t e r a c c e s s  95  along  the F r a s e r and Nooksack R i v e r s and B e l l i n g h a m s e t t l e m e n t a l o n g these w a t e r  Bay c o n c e n t r a t e d  bodies.  I t was n o t u n t i l the c o n s t r u c t i o n o f the B.C. E l e c t r i c  Railway  and t h e e x t e n s i o n o f t h r e e major r a i l l i n e s t h r o u g h Whatcom County a c r o s s the upland a r e a s about t h e t u r n o f the c e n t u r y t h a t the g l a c i a t e d a r e a s c o u l d be e x p l o i t e d f o r woodland and a g r i c u l t u r e t o any g r e a t degree.  Subsequent a v a i l a b i l i t y  f o r m a t i o n of drainage  of irrigation  water, the  d i s t r i c t s , and t h e i n c r e a s i n g s o p h i s t i c a t i o n o f  markets promoted the advance o f a g r i c u l t u r e i n c e r t a i n a r e a s .  5.1.2 Land C l e a r i n g a f t e r 1920 The  major l a n d c l e a r i n g o c c u r r e d  s o i l s , immediately soils,  p r i o r t o 1940 on the a l l u v i a l  a f t e r W o r l d War I I on t h e outwash and g l a c i a l m a r i n e  and i n t h e 1950s and 1960s on t h e v e r y g r a v e l l y m o r a i n a l  deposits.  On a l l s o i l s t h e t r e n d i s an i n c r e a s e i n a g r i c u l t u r a l l a n d a t t h e expense o f woodland ( F i g s . 13 and 14) and i s p a r t i c u l a r l y e v i d e n t on the outwash s o i l s .  These r e s u l t s a r e c o n t r a r y t o t h e f i n d i n g s o f  Coppleman e t a l . (1978),  B i r c h and Wharton (1982), and C i v c o and  Kennard (1983), a l l o f whom found t h a t a g r i c u l t u r a l l a n d decreased d r a m a t i c a l l y o v e r t h e t i m e p e r i o d they s t u d i e d .  I n t h e F r a s e r Lowland  post-war p o p u l a t i o n and market g r o w t h has promoted t h e i n c r e a s e o f agricultural The  land.  p a t t e r n o f c l e a r i n g i s s i m i l a r i n t h e USA and Canada on t h e  outwash and a l l u v i a l s o i l s .  On t h e g l a c i a l m a r i n e and m o r a i n a l  soils,  s i g n i f i c a n t l y more l a n d has been c l e a r e d i n Canada as a r e s u l t o f a g r e a t e r abundance o f hobby f a r m s and a more u r b a n i z e d  population  (Hayward, 1983). D a i r y f a r m i n g i s the dominant l a n d use on t h e a l l u v i a l s o i l s i n 96  84 80 76 74 72 68 64 60 56 52 48  2  40 36 32 28 24 20 16 12 8  1943 1966 1983 1955 1976 Outwash  Fig.  1943 1966 1983 1955 1976 Alluvial  1943 1966 1983 1955 1976 Glacialmarine  1943 1966 1983 1955 1976 Morainal  13. R e l a t i v e a m o u n t s o f w o o d l a n d o n o u t w a s h , a l l u v i a l , g l a c i a l m a r i n e , a n d m o r a i n a l s o i l s i n 1 9 4 3 , 1 9 5 5 , 1966, a n d 1983 i n C a n a d a .  97  1976,  84 80 76 74 72 68 64 60 56 52 48 44 40 36 32 28 24 20 16 12 8 4 0 1943 1966 1983 1955 1976 Outwash  Fig.  1943 1966 1983 1955 1976 Alluvial  1943 1966 1983 1955 1976 Glacialmarine  1943 1966 1983 1955 1976 Morainal  14. R e l a t i v e a m o u n t s o f w o o d l a n d o n o u t w a s h , a l l u v i a l , g l a c i a l m a r i n e , a n d m o r a i n a l s o i l s i n 1 9 4 3 , 1 9 5 5 , 1966, 1976, a n d 1983 i n t h e U n i t e d S t a t e s .  98  both t h e USA and Canada.  On t h e o t h e r t h r e e p a r e n t m a t e r i a l s , l a n d  c l e a r i n g has been more e x t e n s i v e and l a n d use more i n t e n s i v e i n Canada.  These l a n d uses i n Canada v e r s u s t h e USA a r e b e r r i e s  versus  g r a s s , hay, and some b e r r i e s on t h e outwash s o i l s ; p a s t u r e and some c r o p l a n d and woodland v e r s u s woodland and some p a s t u r e and c r o p l a n d on the g l a c i a l m a r i n e s o i l s ; and h o m e s i t e s , p a s t u r e , and woodland v e r s u s woodland and some p a s t u r e on t h e m o r a i n a l s o i l s .  5.1.2.1 Outwash S o i l s The economic r e s u r g e n c e o f the 1950s i s e x e m p l i f i e d by t h e amount of l a n d c l e a r i n g and e x p l o i t a t i o n o f t h e outwash s o i l s agriculture.  (550 ha) f o r  The r a p i d change i n l a n d use on t h e outwash s o i l s  r e s u l t s from t h e h i g h percentage  o f woodland i n 1940, t h e i n c r e a s e d  use o f i r r i g a t i o n a f t e r World War I I , and t h e r a p i d post-war p o p u l a t i o n , markets, The  growth i n  and t e c h n o l o g y .  h o l d i n g s appear t o be l a r g e r i n t h e U n i t e d S t a t e s .  a crude h i s t o r i c a l p e r s p e c t i v e o f t h e a e r i a l  photographs,  Based on  parcel size  has changed on t h e s e s o i l s from about 10 t o 25 ha i n 1943 t o 5 t o 15 ha i n t h e U n i t e d S t a t e s i n 1983 and from about 10 t o 60 ha t o l e s s than  10 ha d u r i n g t h i s p e r i o d i n Canada. In t h e e a r l y 1940s o n l y 25$ o f t h e l a n d had been c l e a r e d o f  t i m b e r f o r use as p a s t u r e i n Canada but over 60$ i n t h e USA ( P l a t e 4). By t h e mid-1950s about 80$ had been c l e a r e d i n both c o u n t r i e s m o s t l y for  p a s t u r e but some b e r r i e s were grown ( P l a t e 5).  By t h e mid-1960s  woodland remained on o n l y 5$ o f t h e Canadian s t u d y a r e a and 10$ o f t h e U.S. s t u d y a r e a and l i t t l e has been c l e a r e d s i n c e then ( P l a t e 6). The f r e e d r a i n a g e o f t h e s e s o i l s , t h e a v a i l a b i l i t y o f w a t e r f o r i r r i g a t i o n , t h e i n t r o d u c t i o n o f the r a s p b e r r y p i c k i n g machine, and t h e 99  P l a t e 4. 1943 a e r i a l photograph o f the outwash a r e a . S c a l e i s a p p r o x i m a t e l y 1:24 000. North i s a t the t o p o f the page.  100  P l a t e 5. 1955 a e r i a l photograph o f t h e outwash a r e a . S c a l e i s a p p r o x i m a t e l y 1:24 000. North i s a t t h e t o p o f the page.  101  1 02  P l a t e 7. 1976 a e r i a l photograph o f t h e outwash area. S c a l e i s a p p r o x i m a t e l y 1:24 000. North i s a t t h e t o p o f the page.  1 03  s h i f t f r o m f r e s h t o p r o c e s s e d m a r k e t i n g l e d t o t h e c l e a r i n g o f much o f the s t u d y a r e a on t h e s e s o i l s f o r b e r r y p r o d u c t i o n .  At p r e s e n t about  90$ o f Canadian l a n d i s used f o r b e r r i e s , whereas i n t h e USA about 20$ i s used  f o r b e r r i e s and about 70$ f o r hay ( P l a t e s 7 and 8 ) .  5.1.2.2 A l l u v i a l S o i l s At t h e b e g i n n i n g o f the s t u d y p e r i o d , woodland o c c u p i e d o n l y about 15 t o 20$ o f t h e s t u d y a r e a on a l l u v i u m (1660 ha).  Although  most o f the a l l u v i a l s o i l s were c l e a r e d p r i o r t o 1 9 4 3 , t e c h n o l o g i c a l advances i n t h e d a i r y i n d u s t r y , improved demand from t h e l a r g e r post-war  t r a n s p o r t a t i o n , and i n c r e a s e d  population l e d to further clearing.  The i n c r e a s e i n Dutch o w n e r s h i p t h r o u g h i m m i g r a t i o n has a l s o been i m p o r t a n t i n r e v i t a l i z i n g t h e d a i r y i n d u s t r y (Ginn 1 9 6 7 ) .  By t h e m i d -  1950s more than 90$ o f t h e a l l u v i a l s o i l s had been c l e a r e d and were used f o r p a s t u r e and some g r a s s and c o r n s i l a g e . l e s s than 5$ has s u p p o r t e d woodland.  S i n c e t h e mid-1960s  S i m i l a r c l e a r i n g schedules  o c c u r r e d i n t h e two c o u n t r i e s . P a s t u r e was t h e common l a n d use p r i o r t o t h e 1960s, a f t e r which g r a s s s i l a g e p r o d u c t i o n has become t h e principal  practice  (Smelser  1970) ( P l a t e 9).  The c o n v e r s i o n from p a s t u r e t o hay and s i l a g e was c o n f i r m e d by F r a z i e r and S h o v i c (1979) who s t u d i e d l a n d use changes i n Whatcom County between 1966 and 1974.  They found a s i g n i f i c a n t decrease i n  c r o p l a n d a s w e l l as p a s t u r e and an i n c r e a s e i n hay p r o d u c t i o n .  They  c o n c l u d e d t h i s change t o be i n d i c a t i v e o f a g r o w t h i n d a i r y i n g : more c a t t l e b e i n g r a i s e d i n t e n s i v e l y and fewer c a t t l e on open p a s t u r e s .  5.1.2.3 G l a c i a l m a r i n e S o i l s On s o i l s formed i n g l a c i a l m a r i n e d e p o s i t s (1050 ha) t h e dominant  105  l a n d use has been woodland and p a s t u r e .  These s o i l s have d r a i n a g e and  s l o p e l i m i t a t i o n s and have not been e x p l o i t e d a g r i c u l t u r a l l y t o a large extent except f o r pasture.  I n t h e 1940s about 75$ o f t h e U.S.  s t u d y a r e a and about 65% o f the Canadian were i n woodland. percentages  These  dropped t o 70% and 45$, r e s p e c t i v e l y i n the 1950s.  Land  c l e a r i n g i n Canada c o n t i n u e s but has n e a r l y ceased i n the USA s i n c e the 1970s w i t h a r e s u l t i n g r e l a t i v e woodland amount o f about 60$ and 20$,  r e s p e c t i v e l y i n t h e 1980s.  A l s o a t t h i s t i m e the use o f t h e s e s o i l s  f o r b e r r i e s and c o l e c r o p s i n Canada began t o i n c r e a s e due t o h i g h e r l a n d p r i c e s on more s u i t a b l e s o i l s .  About 15$ o f the c l e a r e d l a n d i s  a r a b l e c r o p l a n d a t p r e s e n t ( P l a t e 10).  5.1.2.4 M o r a i n a l S o i l s On the m o r a i n a l d e p o s i t s (360 ha) l a n d use change has s t a g n a t e d i n t h e USA s i n c e the 1940s.  I n f a c t , n e a r l y as much p a s t u r e has  r e v e r t e d t o woodland (5$) as has woodland been c l e a r e d (8$). I n Canada the p r o x i m i t y o f these d e p o s i t s t o the e x p a n s i o n o f t h e White Rock u r b a n complex has r e s u l t e d i n l a n d c l e a r i n g m o s t l y f o r urban development and hobby f a r m s (Hayward 1983).  About 40$ was c l e a r e d by  1943 and 10$ more has been c l e a r e d e v e r y 10 y e a r s s i n c e then.  The  m o r a i n a l s o i l s have l o w s u i t a b i l i t y f o r a g r i c u l t u r e due t o s l o p e , low a v a i l a b l e w a t e r c a p a c i t y , and h i g h r o c k f r a g m e n t c o n t e n t ( G o l d i n 1986, L u t t m e r d i n g , 1985, p e r s o n a l communication).  The low c a p a b i l i t y o f the  l a n d f o r f a r m i n g i s r e f l e c t e d i n t h e f a c t t h a t t h e r e has been about as much c r o p l a n d abandoned (50 ha) as l a n d u t i l i z e d  (60 ha) i n t h e USA.  The l a r g e m a j o r i t y has remained i n woodland, a l t h o u g h n o t managed f o r timber production.  About 55$ i n Canada and 25$ i n t h e USA have been  c l e a r e d o f t i m b e r ( P l a t e 11).  1 06  P l a t e 9. 1981 a e r i a l photograph o f the a l l u v i a l area. S c a l e i s a p p r o x i m a t e l y 1:24 000. North i s a t the t o p o f the page.  107  107 ex.  1981 a e r i a l photograph o f the g l a c i a l m a r i n e area. S c a l e i a p p r o x i m a t e l y 1:24 000. N o r t h i s a t the t o p o f the page. The upper photo i s the west h a l f and t h e l o w e r photo the east half.  108  . 1981 a e r i a l photograph o f the m o r a i n a l a r e a . S c a l e i a p p r o x i m a t e l y 1:24 000. North i s a t the t o p o f the p  109  5.2 P r o c e d u r a l  5.2.1  Checks  R e l a t i o n s h i p Between O r g a n i c M a t t e r and Leco  Carbon  The r e l a t i o n s h i p between o r g a n i c m a t t e r c o n t e n t (OM) and Leco carbon (LC) was  e s t a b l i s h e d by r u n n i n g on the Leco c a r b o n a n a l y z e r a  s t r a t i f i e d random 10$ sample- one randomly chosen sample f r o m each plot  ( L a v k u l i c h 1978).  One r e g r e s s i o n l i n e was e s t a b l i s h e d f o r the  m i n e r a l s o i l s , one f o r t h e woodland samples combined.  l i t t e r l a y e r s , and one f o r a l l  The l i n e s ( F i g s . 15-17) have e q u a t i o n s and  c o e f f i c i e n t s o f d e t e r m i n a t i o n o f %LC  = 0.405(OM) - 0.710, r 2 = . 8 6 ;  %LC = 0 . 4 1 7 ( O M ) - 2.492, r 2 = . 8 9 ; and $LC = 0.388(OM) - 0.578, r 2 = . 9 8 , respectively. Ball  (1964),  These r 2 v a l u e s are comparable t o t h o s e d e t e r m i n e d by and a r e s u f f i c i e n t l y c l o s e t o 1 t o use  loss-on-ignition  as a v a l i d e s t i m a t o r o f t h e o r g a n i c m a t t e r c o n t e n t . The d i f f e r e n c e between the v a l u e s o f OM i s due t o s e v e r a l s o u r c e s : 1) use o f a 2 mm  and LC by Leco a n a l y s i s s i e v e d sample on  OM  v e r s u s a 150 m i c r o m e t e r crushed and s i e v e d sample on Leco, 2) ovend r i e d sample used on OM  v e r s u s a i r - d r i e d on Leco, 3) p o s s i b l e l o s s o f  w e i g h t by r e m o v a l o f OH- i n s t r u c t u r a l water from amorphous m a t e r i a l and c r y s t a l l i n e c l a y s , 4) p o s s i b l e l o s s o f e l e m e n t a l c a r b o n , and o t h e r losses.  The d i s c r i m i n a t i o n o f o r g a n i c m a t t e r l o s s f r o m w e i g h t l o s s o f  w a t e r and OH-  i s based on t h e s e l e c t i o n o f t e m p e r a t u r e .  d r i v e n o f f at 600OC. these temperatures.  Both a r e  The m i n e r a l s o i l i s assumed t o be unchanged a t However, d i f f e r e n t i a l t h e r m a l a n a l y s i s shows t h a t  w a t e r i s d r i v e n o f f from m i n e r a l s o i l a t t h i s t e m p e r a t u r e and s o the d i s c r i m i n a t i o n between o r g a n i c and m i n e r a l m a t t e r i s f a r f r o m (Jackson  1958).  11 0  complete  I  i r  • •  <M  IT-  (j) (31) H08HV3 0331  Fig. 15. Linear regression o f organic matter (OM) on Leco carbon (LC) for mineral s o i l s .  111  e i »1  •c  I  I c > •  o  *  c  C-  (j) (on) Noaavo 033i  F i g . 16. L i n e a r r e g r e s s i o n o f o r g a n i c m a t t e r (OM) on Leco c a r b o n (LC) for l i t t e r layers.  112  I  -0  IT I «  1  e i 4- I  •• i <o  •«  e  o  Fig. 17. Linear regression o f organic matter (OM) on Leco carbon (LC) for mineral s o i l s and l i t t e r layers.  113  5.2.2 D u p l i c a t i o n o f Samples The samples on w h i c h t h e OM-LC a n a l y s e s for  were r u n were a l s o used  d u p l i c a t i o n i n o r d e r t o check t h e p r o c e d u r a l  techniques.  Comparison o f t h e h i s t o g r a m s o f t h e d i f f e r e n c e s between t h e o r i g i n a l s and d u p l i c a t e s w i t h t h e r e s p e c t i v e n o r m a l c u r v e f o r each v a r i a b l e i n d i c a t e s the d i s t r i b u t i o n o f d i f f e r e n c e s f o r a l l v a r i a b l e s i s s u f f i c i e n t l y d i f f e r e n t from n o r m a l i t y t o warrant the nonparametric Mann-Whitney-U t e s t . t-test.  T h i s t e s t i s 95$ as p o w e r f u l as t h e p a r a m e t r i c  E x a m i n a t i o n o f t h e Mann-Whitney-U t e s t (Tables B1 and B2)  i n d i c a t e s t h a t f o r each v a r i a b l e no s i g n i f i c a n t d i f f e r e n c e e x i s t s between t h e o r i g i n a l s and t h e d u p l i c a t e s f o r t h e 60 m i n e r a l  s o i l s (20  on each p a r e n t m a t e r i a l ) and t h e 12 l i t t e r l a y e r s (4 on each p a r e n t m a t e r i a l ) , i n d i c a t i n g t h a t t h e y came f r o m t h e same When t h e o r i g i n a l s were r e g r e s s e d  population.  a g a i n s t t h e d u p l i c a t e s f o r each  c h e m i c a l v a r i a b l e , t h e Pearson c o r r e l a t i o n c o e f f i c i e n t s ranged from 0.937 t o 0.996 f o r t h e m i n e r a l  s o i l s (except  K f o r w h i c h r=0.832) and  from 0.914 t o 0.997 f o r t h e woodland l i t t e r l a y e r s (except r=0.804).  Since  the populations  P f o r which  were found t o be h i g h l y c o r r e l a t e d as  w e l l as b e i n g n o t s i g n i f i c a n t l y d i f f e r e n t , an a n a l y s i s was used t o check p r o c e d u r a l  d i f f e r e n c e s u s i n g t h e d i f f e r e n c e i n p o p u l a t i o n means.  T e s t i n g t h e d i f f e r e n c e o f two p o p u l a t i o n means i s much more s e n s i t i v e than t e s t i n g t h e means t h e m s e l v e s , on t h e o r d e r o f 11 000$ ( S o k a l and Rohlf  1981).  I n a p a i r e d c o m p a r i s o n a n a l y s i s such as t h i s , we e x p e c t  c o r r e l a t i o n between t h e v a r i a b l e s (as d e s c r i b e d s h a r e s a common e x p e r i e n c e ,  above) s i n c e each p a i r  i.e., sampled from t h e same  S i n c e t h e s e d i f f e r e n c e s were a l s o n o t n o r m a l l y n o n p a r a m e t r i c W i l c o x o n t e s t was t h e a p p r o p r i a t e  114  container.  d i s t r i b u t e d , the a n a l y s i s t o use and  a c c o u n t s f o r t h i s c o r r e l a t i o n ( T a b l e s B3 and T h i s t e s t shows a s i g n i f i c a n t s y s t e m a t i c  B4). procedural  e f f e c t since  the o r i g i n a l i s found t o be more t h a n the d u p l i c a t e f o r a l l v a r i a b l e s e x c e p t P, f o r w h i c h the d u p l i c a t e i s more than the o r i g i n a l , and N, f o r w h i c h t h e r e i s no s i g n i f i c a n t d i f f e r e n c e .  K and  for  P are c l o s e t o  showing no s i g n i f i c a n t d i f f e r e n c e w i t h t w o - t a i l e d p r o b a b i l i t i e s o f 0.03  and  0.04,  respectively.  No e x p l a n a t i o n  can  be g i v e n f o r t h i s  d i f f e r e n c e s i n c e the o r i g i n a l s and d u p l i c a t e s were contemporaneously.  The  analyzed  d i f f e r e n c e i n the means of the o r i g i n a l  and  d u p l i c a t e o f the woodland samples a r e not s i g n i f i c a n t l y d i f f e r e n t . The  o p t i o n s f o r c o r r e c t i n g the d a t a are t o t a k e the average o f  the o r i g i n a l and d u p l i c a t e o r t o d e c r e a s e the o r i g i n a l by a s p e c i f i e d amount.  The  average of a l l the v a l u e s  d u p l i c a t e s were made on o n l y  cannot be t a k e n s i n c e  10$ o f the sample.  D e c r e a s i n g a l l of the  v a l u e s would be p u r p o s e l e s s s i n c e t h i s s t u d y i s concerned  with  r e l a t i v e values.  original  values 5.3 5.3.1  Therefore,  i t was  d e c i d e d t o r e t a i n the  unaltered.  A n a l y s i s o f P a r e n t M a t e r i a l , Age Introductory  Comparison o f Age  and and  Country Country D i f f e r e n c e s  by  Parent  Material The  e f f e c t s o f c l e a r i n g and  of c a t i o n s f r o m ash and  burning  (gaseous l o s s e s o f N,  inputs  l i t t e r r e s i d u e s ) have r e s u l t e d i n a wide  s p e c t r u m o f v a l u e s on the s o i l s o f the t h r e e p a r e n t m a t e r i a l s .  The  t y p e o f equipment used f o r l a n d c l e a r i n g a l s o can be i n f l u e n t i a l . e f f e c t s a r e compounded by amendments subsequent t o h a r v e s t . i n s t a n c e , on the g l a c i a l m a r i n e s o i l s the change between the woodland p l o t s and  the p l o t s c l e a r e d i n 1980, 11 5  1970,  1960,  and  The  For uncleared 1950  is  more c o n s i s t e n t t h a n t h e outwash s o i l s , f o r w h i c h s i z e a b l e e x i s t between c l e a r e d  p l o t s o f d i f f e r e n t ages.  On a l l t h r e e p a r e n t m a t e r i a l s , pH l e v e l s i n c r e a s e s i n c e - c l e a r i n g from about 5 y e a r s ( c l e a r e d years (cleared  differences  with  time-  1976 t o 1983) t o about 35  1943 t o 1955) due t o l i m i n g and/or manuring.  On t h e  o t h e r hand, OM l e v e l s d e c r e a s e due t o 1) l o s s o f biomass by c r o p r e m o v a l and d e c o m p o s i t i o n o f r e s i d u e s , due  2) i n c r e a s e d  microbial  activity  t o h i g h e r pH and an improved n u t r i e n t s t a t u s from amendments, and  3) i n c r e a s e d  c o n t a c t o f o r g a n i c m a t t e r w i t h t h e atmosphere f o l l o w i n g  t i l l a g e , w h i c h l e a d s t o m i n e r a l i z a t i o n and, t h u s , a d e c r e a s e i n o r g a n i c matter.  These t r e n d s a r e s i m i l a r t o t h o s e r e p o r t e d  (Brady 1985, Juma and M c G i l l 1986). v e r y l a r g e and c o n t i n u o u s a d d i t i o n s  i n the l i t e r a t u r e  R e d u c t i o n i n OM may be o f f s e t by o f manure.  A l s o , the q u a l i t y of  the manure and t h e p a r t i c l e s i z e and q u a l i t y o f l i m i n g m a t e r i a l may be quite variable.  Large v a r i a t i o n s i n many o f t h e n u t r i e n t s may r e s u l t  f r o m the d i f f e r e n t i a l s p r e a d i n g o f t h e s e amendments. 5.3.1.1 Q u a l i t y o f t h e Data S t a t i s t i c a l a n a l y s e s o f the 280 samples on each p a r e n t  material  (10 samples on each o f t h e 16 c u l t i v a t e d , 4 woodland, 4 w e i g h t e d average p l o t s , and t h e 4 l i t t e r l a y e r s ) , i n d i c a t e s t h a t t h e f r e q u e n c y d i s t r i b u t i o n s o f t h e v a r i a b l e s (H20 pH, C a C l 2 P > H  and  N) d i f f e r s i g n i f i c a n t l y f r o m n o r m a l i t y  Ca  >  M  S> > > K  p  (Tables B5-B10).  0 M  >  However,  when t h e means o f each o f t h e 28 p l o t s a r e examined, most o f t h e v a r i a b l e s on each p a r e n t m a t e r i a l e x h i b i t n o r m a l i t y of s i g n i f i c a n c e .  The n o r m a l i t y  C e n t r a l L i m i t Theorem.  a t t h e 0.05 l e v e l  a c h i e v e d u s i n g means r e s u l t s f r o m t h e  The o n l y e x c e p t i o n s a r e OM and N on a l l p a r e n t  m a t e r i a l s , Mg on outwash, and Ca and K on g l a c i a l m a r i n e 116  soils.  The  major problem w i t h t h e n o r m a l i t y o f OM and N i s t h e v a s t d i f f e r e n c e between t h e i r l e v e l s i n m i n e r a l s o i l s and i n t h e l i t t e r l a y e r , f o r which v a l u e s a r e 3 t o 8 times g r e a t e r . When t h e c u l t i v a t e d s o i l s a r e c o n s i d e r e d a l o n e , a g r e a t e r degree o f n o r m a l i t y by sample i s a c h i e v e d . n o r m a l i t y by sample:  N on a l l t h r e e parent m a t e r i a l s , OM on outwash  and g l a c i a l m a r i n e s o i l s , pH (CaCl2^ alluvial soils.  The f o l l o w i n g v a r i a b l e s e x h i b i t  a  n  d  K  o  n  outwash s o i l s , and Ca on  When t h e means o f t h e c u l t i v a t e d p l o t s a r e examined,  a l l t h e v a r i a b l e s on a l l p a r e n t m a t e r i a l s e x h i b i t n o r m a l i t y a t t h e 0.05 l e v e l  of s i g n i f i c a n c e  (Tables B11-B16).  G r a p h i c n o r m a l p l o t s f o r pH (CaCl2)> Mg, and OM f o r outwash s o i l s u s i n g a l l samples, t h e means o f a l l p l o t s , a l l c u l t i v a t e d s a m p l e s , and t h e means o f a l l c u l t i v a t e d p l o t s a r e used t o r e p r e s e n t t h e range i n data d i s t r i b u t i o n .  The s t r a i g h t e r t h e l i n e t h e more t h e d a t a  a p p r o x i m a t e a n o r m a l curve ( F i g s . B1-B6). a n o r m a l curve under a l l f o u r a n a l y s e s .  The d a t a f o r pH a p p r o x i m a t e Mg and OM a r e non-normal f o r  a l l s a m p l e s , but a p p r o x i m a t e n o r m a l i t y when p l o t means a r e used. These graphs d e m o n s t r a t e t h e g r e a t e r tendency t o w a r d n o r m a l i t y u s i n g d a t a f r o m t h e more homogeneous c u l t i v a t e d s o i l s and a l s o u s i n g p l o t means as opposed t o i n d i v i d u a l samples. S i n c e a l l the a n a l y s e s o f v a r i a n c e (ANOVA) a r e based on p l o t means, and t h e means f o l l o w t h e n o r m a l d i s t r i b u t i o n , t h e a s s u m p t i o n o f n o r m a l i t y has been a c h i e v e d .  F o r t h o s e few p l o t s o r v a r i a b l e s t h a t do  n o t , t h e ANOVA i s b e i n g used w i t h an i n v a l i d assumption.  However, s i n c e  most o f t h e a n a l y s e s a r e s o h i g h l y s i g n i f i c a n t , and s i n c e t h e ANOVA i s a v e r y r o b u s t t e s t , p a r t i c u l a r l y when sample s i z e s a r e e q u a l , and t h e d a t a c l o s e t o n o r m a l , such a s i n t h i s s t u d y , i t i s s t i l l a p p r o p r i a t e t o use t h e  11 7  test. the  The  n o n - n o r m a l i t y r e s u l t s p r i n c i p a l l y f r o m the i n c l u s i o n  of  l i t t e r l a y e r w i t h the m i n e r a l s o i l , so c a u t i o n s h o u l d be used i n  i n t e r p r e t i n g the r e s u l t s when the  5.3.2  Age  and  Country A n a l y s i s  e n t i r e d a t a s e t i s examined.  by P a r e n t  Material  5.3.2.1 Outwash S o i l s Analysis  o f p l o t s ; The  w i t h i n each age (1950  p l o t p a i r s showing s i g n i f i c a n t  group are the most i m p o r t a n t t o c o n s i d e r .  g r o u p i n g ) , p l o t 4 (1960  p l o t 7 (1980  g r o u p i n g ) are  grouping), p l o t  (Table  Plot  grouping),  increasing  age  g r o u p i n g s as a r e s u l t o f  of amendments ( f e r t i l i z e r , manure, and  their  lime)  o f age;  The  g e n e r a l p a t t e r n f o r each v a r i a b l e  time-since-clearing  are the f o l l o w i n g :  pH,  Ca,  with  K, and  i n c r e a s e i m m e d i a t e l y a f t e r c l e a r i n g then l e v e l o f f a f t e r about y e a r s , Mg  P  15  i n c r e a s e s i m m e d i a t e l y a f t e r c l e a r i n g t h e n appears t o l e v e l  o f f a f t e r about 5 y e a r s , and  OM  and  N generally  increase immediately after clearing  (Table  decrease a f t e r  an  11).  c u l t i v a t e d s o i l s as a w h o l e have h i g h e r pH, h i g h e r l e v e l s  c a t i o n s and  P, and  l o w e r l e v e l s o f OM  w e i g h t e d average s o i l s (Table C5). i n woodland to 16 i n 5 y e a r s and and  and  C4).  Analysis  The  6  c o n s i d e r a b l y more f e r t i l e t h a n t h e i r  counterparts i n t h e i r respective heavier applications  8 (1970  differences  15 a f t e r  15 y e a r s .  mineralization  The  N t h a n the  C:N  woodland  or  d e c r e a s e s from n e a r l y  19  t h e n seems t o l e v e l o f f t o between  T h i s r e s u l t s from the h i g h e r l e v e l s o f  14  carbon  i n c u l t i v a t e d t h a n i n woodland s o i l s , w h i c h c o n t a i n more  r e s i s t a n t C compounds. application  and  of  Other f a c t o r s  of manure and  s o i l s have a p o t e n t i a l C:N  w h i c h w i l l reduce the  C:N  the g r o w t h of c r o p s , such as legumes. below 12 based on the 11 8  are  the  These  old raspberry plot.  T a b l e 11. Breakdown o f outwash s o i l s by age. i n c l u d e d i n summary c a l c u l a t i o n s .  Old raspberry  p l o t (RASP) n o t  Variable PH H20  Age#  PH CaCl2  Ca  mean s t d dev  mean s t d dev  mean  std dev  1275 450 828 1235 754 866 848 587 378 452 49 80 230 154 2038 1141  125 72 84 84 71 36 83 552  38 28 44 53 49 27 43 273  200 230 242 220 193 80 117 493  21 53 78 92 72 22 29 180  78 70 72 140  44 44 44 201  221 193 180 225  77 89 87 152  mean  std dev  RASP 1950 1960 1970 1980 woodland wt. a v g . litter  6.3 6.2 6.1 6.2 5.7 5.0 5.0 5.0  0.4 0.4 0.5 0.2 0.5 0.4 0.4 0.5  5.9 5.5 5.5 5.8 5.1 4.4 4.4 4.4  0.3 0.4 0.5 0.3 0.5 0.3 0.3 0.5  cult. mineral min.+avg. TOTAL  6.0 5.8 5.7 5.6  0.5 0.6 0.6 0.7  5.5 5.3 5.1 5.0  0.5 0.6 0.7 0.7  702 571 514 732  Mg mg kg-1  854 808 751 974  K mean s t d dev  Variable p mg kg-1  Age  OM  N  %  %  C:N  mean s t d dev mean s t d dev mean s t d dev mean s t d dev RASP 1950 1960 1970 1980 woodland wt. a v g . litter  85 152 102 176 47 31 38 108  47 153 94 190 55 37 34 35  10.1 7.5 8.5 8.3 10.0 9.6 14.4 61.5  1.4 0.7 1.5 1.7 1.7 2.2 2.7 14.8  .280 .164 .187 .182 .209 .175 .285 1.381  .045 .024 .046 .044 .051 .044 .054 .334  11.9 14.2 14.7 14.5 16.0 18.9 17.7 16.9  0.5 1.1 1.2 1.4 1.5 5.9 2.8 1.7  cult. mineral min.+avg. TOTAL  119 102 91 93  141 132 124 115  8.6 8.8 9.7 17.1  1.7 1.9 2.9 19.2  .186 .184 .200 .369  .045 .045 .060 .436  14.8 15.6 16.0 16.1  1.5 3.3 3.3 3.1  # 1950 1960 1970 1980  = = = =  cleared cleared cleared cleared  between between between between  1943 1955 1966 1976  and and and and  1955 1966 1976 1983  11 9  The woodland m i n e r a l s o i l i s s i g n i f i c a n t l y d i f f e r e n t from most o f the c u l t i v a t e d s o i l s f o r a l l v a r i a b l e s except Mg, OM, the weighted  and N, and  average s o i l s f o r a l l v a r i a b l e s e x c e p t Mg.  The  from  1980  group i s the o n l y age group s h o w i n g s i g n i f i c a n t d i f f e r e n c e s f o r most o f the v a r i a b l e s (Table C18).  The  cause i s i t s c l o s e a s s o c i a t i o n i n  t i m e w i t h woodland, w h i c h has a l r e a d y been noted t o be d i f f e r e n t . A l t h o u g h p l o t s 4,  6,  7,  and  t h e i r r e s p e c t i v e age g r o u p i n g s  8 show s i g n i f i c a n t d i f f e r e n c e s w i t h i n (Table C2), when t h e s e p l o t s a r e removed  f r o m the a n a l y s i s , the g e n e r a l p a t t e r n o f changes i n c o n c e n t r a t i o n over t i m e r e m a i n about the same (Tables C3 and A n a l y s i s o f l a n d use; l i t t e r , weighted  C4).  The d a t a i n d i c a t e f o u r d i s t i n c t i v e  groups;  average s o i l s , woodland s o i l s , and c u l t i v a t e d  soils.  When l a n d use i s examined, i t i s c l e a r t h a t the c u l t i v a t e d s o i l s  are  s i g n i f i c a n t l y d i f f e r e n t from the o t h e r t h r e e f o r pH, c a t i o n s , and  P  ( T a b l e C5).  The  l i t t e r l a y e r i s s i g n i f i c a n t l y d i f f e r e n t from  the  o t h e r s f o r a l l v a r i a b l e s except pH, f o r w h i c h i t d i f f e r s o n l y f r o m cultivated soils.  T h i s l a c k o f d i f f e r e n t i a t i o n i s due i t s e x p r e s s i o n  as a l o g a r i t h m and t o the narrow range o f pH i n t h e s e s o i l s . woodland and w e i g h t e d average groups are t h e most s i m i l a r . expected  s i n c e the w e i g h t e d  The This i s  average s o i l i s 91$ woodland m i n e r a l  soil  by d e f i n i t i o n and d i f f e r s o n l y by i t s 9% i n f l u e n c e o f t h e l i t t e r layer.  The  l i t t e r l a y e r i s d i s t i n c t i v e from the o t h e r s by i t s  d i f f e r e n t c o m p o s i t i o n , b e i n g composed o f o r g a n i c compounds as compared to  the d o m i n a n t l y  s i l i c a t e m i n e r a l s i n the m i n e r a l s o i l .  The  c u l t i v a t e d s o i l s are d i s t i n g u i s h e d by v a r y i n g degrees o f management and s o i l amendments, t h e r e b y c h a n g i n g  the l e v e l s o f the s t u d y  v a r i a b l e s , w h i c h are e a s i l y a l t e r e d by management.  120  A n a l y s i s of country  and  r e p l i c a t e ; As e x p e c t e d f r o m the  ences i n l a n d use i n the two are examined, the two  c o u n t r i e s , when o n l y the c u l t i v a t e d s o i l s  c o u n t r i e s a r e s i g n i f i c a n t l y d i f f e r e n t a t the P<  l e v e l f o r a l l v a r i a b l e s e x c e p t OM close to s i g n i f i c a n c e , having shows no d i f f e r e n c e due e x c e p t pH and The  C:N  to country  These v a r i a b l e s a r e o f 0.07  (Table  are s i g n i f i c a n t l y  12).  and  0.06.  C:N  very also  However, a l l v a r i a b l e s  d i f f e r e n t by r e p l i c a t e (Table  o f the s o i l s i n the USA  l o w e r t h a n t h a t i n Canada (U.S.  may  and N.  F values  rock fragment content  mean=13.3,  differ-  i s significantly  mean=9.3, s t d dev = 3-5;  s t d dev=3«9; F r a t i o = 4 6 . 3 ,  F value=.000).  be e x p l a i n e d by the more common usage i n the USA  C6).  Canada This difference  of s m a l l d o z e r s  t o c l e a r l a n d w h i c h l e a v e the s u b s t r a t u m more i n t a c t than u s i n g l a r g e r ones ( D a r r e l l E h l e r s , f a r m e r , 1985,  personal  communication).  5.3.2.2 A l l u v i a l S o i l s A n a l y s i s o f p l o t s ; A f t e r a n a l y z i n g the p l o t s w i t h i n each l a n d c l e a r i n g age  group, o n l y p l o t s 25 i n the  1970  group and  were s i g n i f i c a n t l y d i f f e r e n t from t h e i r c o u n t e r p a r t s C8).  P l o t 25 was  s i g n i f i c a n t l y l o w e r and  F i e l d observations  37 i n woodland  (Tables C7  p l o t 37 s i g n i f i c a n t l y  and higher.  p r o v i d e no e x p l a n a t i o n f o r t h e s e d i f f e r e n c e s .  A n a l y s i s o f age; The g e n e r a l t r e n d w i t h i n c r e a s i n g t i m e - s i n c e c l e a r i n g a r e t h a t pH,  Ca, Mg,  and K i n c r e a s e o r r e m a i n n e a r l y a t  woodland l e v e l s f o r 5 t o 15 y e a r s (Table  13).  pH d e c r e a s e s s l i g h t l y  after  15 y e a r s , whereas the c a t i o n l e v e l s drop a b r u p t l y a f t e r  years  before l e v e l l i n g o f f .  the  pH.  o r g a n i c m a t t e r c o n s t i t u e n t s (OM  l e v e l s f o r 15 y e a r s  25  S t e a d y s t a t e appears t o be reached w i t h i n  35 y e a r p e r i o d f o r the c a t i o n s and  the two  15 t o  and then i n c r e a s e .  121  and  P l e v e l s are e r r a t i c  and  N) d e c r e a s e f r o m woodland  0.001  Table 12. Breakdown o f outwash s o i l s by c o u n t r y . Variable Country  Ca  pH H 0  PH  2  CaC12  mean s t d dev  mean s t d dev  Mg .-1-—mg kg"  mean s t d dev  mean s t d dev  mean s t d dev  E n t i r e data s e t Combined Canada USA F ratio F prob.  5.6  0.7  5.0  0.7  732  974  140  201  225  152  5.6 5.6  0.8 0.5  5.1 5.0  0.9 0.5  864 600  955 979  124 157  132 251  232 218  135 167  0.03 .8668  1.07 .3020  5.22 .0231  0.53 .4667  1.93 1660  Cultivated s o i l s only Combined Canada USA F ratio F prob.  6.0 6.2 5.8  0.5 0.4 0.4  36.4 .0000  5.5 5.7 5.3  0.5 0.4 0.4  50.8 .0000  702  854  78  44  221  77  1127 1013 277 275  104 51  41 28  264 179  69 59  52.4 .0000  91 .7 .0000  71 .0 .0000  Mineral s o i l s only Combined Canada USA F ratio F prob.  5.8 5.9 5.7  0.6 0.7 0.4  5.29 .0225  5.3 5.4 5.1  0.6  571  808  70  44  193  89  0.7 0.5  905 1009 237 263  88 51  50 28  225 161  100 64  12.5 .0005  41.0 .0000  40.0 .0000  28.7 .0000  M i n e r a l s o i l s p l u s weighted average o n l y Combined  5.7  0.6  5.1  0.7  514  751  72  44  180  87  Canada USA  5.7 5.7  0.8 0.4  5.2 5.0  0.8 0.5  778 251  964 250  82 62  62 38  204 157  103 60  F ratio F prob.  0.59 .4433  4.86 .0284  33.7 .0000 122  12.9 .0004  18.4 .0000  Variable Country  P mg kg-1 meani  OM %  N %  std dev  mean  std dev  93  115  17.1  19.2  145 42  142 34  17.0 17.2  18.6 19.8  C:N  mean  std dev  mean  std dev  .369  . 436  16.1  3.1  • 365 .373  414 458  15.9 16.3  2.2 3.8  E n t i r e data set Combined Canada USA F ratio F prob.  70.2 • 0000  0. 01 • 9036  1.36 .2439  0.03 .8680  C u l t i v a t e d s o i l s only Combined  119  141  8.6  1.7  .186  045  14.8  1.5  Canada USA  205 33  158 13  8.8 8.3  1.5 1.9  .192 .179  034 054  14.8 14.9  1.6 1.3  94.1 0000  F ratio F prob.  3. 44 .0655  0.40 .5293  3.73 .0554  Mineral s o i l s only Combined  102  132  8.8  1 .9  .184  .045  15.6  3-3  Canada USA  172 31  157 16  9.1 8.5  1 .9 1 .8  .191 .176  .037 .051  15.3 15.9  2.1 4.1  F ratio F prob.  80.3 .0000  4.34 .0384  5. 76 .0173  M i n e r a l s o i l s p l u s weighted average Combined Canada USA F ratio F prob.  1. 42 .2352  only  91  124  9. 7  2.9  .200  .060  16.0  3-3  152 30  152 17  10. 0 9. 5  3.0 2.8  .207 .194  .055 .064  15.7 16.2  2.2 4.1  75.3  • 0000  1.76  3.11 .0792  • 1858  123  1.80 .1815  T a b l e 13- Breakdown o f a l l u v i a l s o i l s by age. Variable  Age*  H  pH 20  pH CaCl2  Ca  Mg mg k g  K - 1  mean  std dev  mean  std dev  mean  std dev  mean  std dev  mean  std dev  1950 1960 1970 1980 woodland wt. a v g . litter  5.8 5.8 6.1 6.0 5.5 5.5 5.8  0.4 0.2 0.3 0.2 0.5 0.5 0.6  5.2 5.2 5.6 5.4 4.9 4.9 5.3  0.3 0.2 0.3 0.3 0.5 0.5 0.7  855 283 836 330 867 424 1068 326 996 590 1120 605 2354 1066  481 368 392 604 670 708 1093  145 115 59 153 271 277 437  175 - 184 257 235 286 321 676  138 98 150 127 168 168 300  cult. mineral min.+avg. TOTAL  5.9 5.8 5.8 5.8  0.3 0.4 0.4 0.5  5.4 5.3 5.2 5.2  0.3 0.4 0.4 0.5  906 924 957 1157  461 503 537 617  154 201 228  213 228 243 305  133 143 151 235  354 412 454 759  330  Variable Age  P mg kg-1  OM %  N %  C:N  mean s t d dev mean s t d dev mean s t d dev mean s t d de 1950 1960 1970 1980 woodland wt. a v g . litter  21 72 34 40 29 38 129  12 61 24 24 22 26 83  8.9 8.8 7.8 10.1 12.7 16.7 56.8  1.7 1.3 1.5 1.6 4.3 4.6 12.5  .243 .232 .203 .241 .299 .389 1 .303  cult. mineral min.+avg. TOTAL  42 39 39 52  40 37 35 55  8.9 9.7 10.8 17.4  1.7 2.9 4.2 17.2  .230 .234 .267 .416  # 1950 1960 1970 1980  = = = =  cleared cleared cleared cleared  between between between between  1943 and 1955 and 1966 and 1976 and  1955 1966 1976 1983 124  .057 .042 .047 .043 .091 .098 • 352  12.0 12.2 12.3 14.0 14.6 15.2 17.0  1.4 1.2 1.7 2.2 4.0 3.1 3.4  .050 .066 .090 .396  12.6 13.0 13.4 13-9  1.8 2.5 2.8 3.1  Except f o r P and  pH,  the  l e v e l s of a l l v a r i a b l e s  are  below  the  o r i g i n a l l e v e l s i n woodland, i n d i c a t i n g t h a t management i s d e c r e a s i n g the  general f e r t i l i t y  of t h e s e s o i l s .  m a r k e d l y from the o t h e r two increased after clearing. be due  These management e f f e c t s d i f f e r  s o i l s , where f e r t i l i t y l e v e l s The  difference  On  a l l u v i a l s o i l s Mg  t o n e a r l y h a l f of woodland l e v e l s and about o n e - t h i r d . i n the  1950  of c u l t i v a t i o n . differences  The  C:N  g r o u p i n g w i t h no  and  are n o t i c e d and  l i t t e r l a y e r f o r pH,  Mg,  i n woodland  group i s d i s t i n c t i v e .  and  N and  o n l y f r o m the  and  litter  most s i m i l a r groups are the  OM  N i n the  and  N.  These d i f f e r e n c e s litter  r e s u l t f r o m the v e r y h i g h l e v e l s  i s so s i m i l a r , b e i n g used d o m i n a n t l y f o r d a i r y . h o l d s t r u e when o n l y the  ultimately  P i n the  USA  confounds the  significance  s e t s show s i m i l a r d i f f e r e n c e s  125  considered  However, t h e s e  by r e p l i c a t e , w h i c h  (Table C11).  by c o u n t r y and  relationship  by c o u n t r y w i t h h i g h e r  (Table 14).  a l s o show s i g n i f i c a n t d i f f e r e n c e s  since land  This  c u l t i v a t e d s o i l s are  P are s i g n i f i c a n t l y d i f f e r e n t  l e v e l s o f Ca i n Canada and variables  of  r e p l i c a t e : A h i g h degree o f s i m i l a r i t y i s  t o be e x p e c t e d between c o u n t r i e s on t h i s p a r e n t m a t e r i a l  s i n c e o n l y Ca and  only  layer.  A n a l y s i s o f c o u n t r y and  generally  layer  woodland  w e i g h t e d average s o i l s , as e x p e c t e d , w h i c h show d i f f e r e n c e s and  few  c u l t i v a t e d s o i l s as a group show  K, OM, The  to  compared v e r y  from the woodland, w e i g h t e d a v e r a g e ,  P (Table C10).  f o r OM  use  K decrease  s i g n o f l e v e l l i n g o f f a f t e r 35 y e a r s  no one The  and  N c o n t e n t s d e c r e a s e by  When the f o u r c u l t i v a t e d groups are  significant differences  f o r Ca and  OM  d e c r e a s e s s t e a d i l y f r o m 14.6  A n a l y s i s o f l a n d use:  and  s o i l s appears t o  more t o the d i f f e r e n t i n i t i a l f e r t i l i t y l e v e l s a t c l e a r i n g than  t o s p e c i f i c management p r a c t i c e s .  12.0  between the  are  The  replicate.  other data  T a b l e 14. Breakdown o f a l l u v i a l s o i l s by c o u n t r y . Variable pH Country  H  pH CaCl2  2 0  mean s t d dev  mean s t d dev  Ca  mean s t d dev  Mg mg k g  K - 1  mean s t d dev  mean s t d dev  E n t i r e data set Combined  5.8  0.5  5.2  0.5  1157  759  617  330  Canada USA  5.9 5.7  0.4 0.5  5.4 5.1  0.4 0.5  1321  775 708  617 617  F ratio F prob.  15.3 .0001  26.5 .0000  992  13-7 .0003  305  235  340  316  321  295  241 229  0.00 .9956  0.56 .4555  C u l t i v a t e d ;s o i l s o n l y Combined  5.9  0.3  5.4  0.3  906  354  461  154  213  133  Canada USA  5.9 6.0  0.3 0.3  5.4 5.3  0.3 0.3  1057 756  307 334  453 470  180 123  193  128  233  136  F ratio F prob.  2.06 .1532  1.82 .1797  35.3 .0000  0.47 .4925  3.66 .0576  Mineral s o i l s only Combined  5.8  0.4  5.3  0.4  924  412  503  201  228  143  Canada USA  5.9 5.8  0.3 0.5  5.3 5.2  0.4 0.4  1089 759  214 339  495 511  214 187  224 231  147 140  F ratio F prob.  0.79 .3737  6.32 .0127  M i n e r a l and weighted average  38.2 .0000  0.31 .5789  0.15 .7015  s o i l s only  Combined  5.8  0.4  5.2  0.4  957  454  537  228  247  152  Canada USA  5.9 5.7  0.4 0.5  5.3 5.1  0.4 0.4  1130 784  478 354  530 544  235 222  250 245  158 147  F ratio F prob.  5.58 .0190  12.7 .0004  40.7 .0000  126  0.22 .6409  0.05 .8230  Variable Country  P mg kg-1  OM %  N %  C:N  mean s t d dev mean s t d dev mean s t d dev mean s t d dev E n t i r e data s e t Combined  52  55  17.4  17.2  .416  .396  13-9  3-1  Canada USA  52 52  57 54  17.7 17.2  17.2 17.2  .433 .400  .399 .394  13.5 14.3  2.2 3-8  F ratio F prob.  0.00 .9834  0.06 .8085  0.49 .4845  3.95 .0479  C u l t i v a t e d s o i l s only Combined  42  40  8.9  1 .7  .230  .050  12.6  1 .8  Canada USA  32 52  22 50  9.0 8.8  1 .6 1 .8  .242 .218  .059 .036  12.3 12.9  1 .8 1 .9  F ratio F prob.  10.5 .0014  0.70 .4028  9.07 .0030  4.30 • 0396  M i n e r a l s o i l s only Combined  39  37  9.7  2. 9  .243  .066  13.0  2. 5  Canada USA  33 45  21 47  9.8 9.5  2. 7 3. 0  .255 .075 .231 ' .053  12.7 13.3  1. 8 3. 1  F ratio F prob.  5.47 .0204  0.40 .5280  6. 67 .0105  2. 95 .0875  M i n e r a l and weighted average s o i l s o n l y Combined  39  35  10.8  4.2  .268  .090  13.4  2.8  Canada USA  36 42  22 45  10.7 10.7  4.3 4.3  .280 .256  .098 .079  13.1 13.7  1.9 3.4  F ratio F prob.  2.19 .1405  0. 31 .5775  4.52 .0345 127  3.15 .0773  5.3.2.3 G l a c i a l m a r i n e S o i l s A n a l y s i s o f p l o t s ; Only two p l o t s show s i g n i f i c a n t d i f f e r e n c e s from o t h e r s i n t h e i r r e s p e c t i v e age g r o u p i n g s : p l o t 41 i n the  1950  g r o u p i n g and p l o t 52 i n the 1970 g r o u p i n g , b o t h b e i n g s i g n i f i c a n t l y h i g h e r ( T a b l e s C12 and C13).  P l o t 41 i s s i g n i f i c a n t l y h i g h e r i n K and  P than o t h e r p l o t s s i n c e t h i s was  the main p l o t i n which c a t t l e were  b e i n g a c t i v e l y p a s t u r e d and w i n t e r e d .  T h i s added component c o u l d come  from hay brought from o t h e r f i e l d s and a l s o from i n t e r n a l c y c l i n g from l o w e r i n the  profile.  A n a l y s i s o f age: W i t h i n c r e a s i n g t i m e - s i n c e - c l e a r i n g , pH i n c r e a s e s and OM  steadily  s t e a d i l y d e c r e a s e s as a r e s u l t o f l i m i n g and  increased C mineralization, respectively.  The g l a c i a l m a r i n e  soils  show a more c o n s i s t e n t t r e n d t h a n t h e o t h e r two p a r e n t m a t e r i a l s  since  t h e s e s o i l s a r e l e s s m a n i p u l a t e d , b e i n g used d o m i n a n t l y f o r hay and p a s t u r e and h a v i n g l i t t l e OM  d a i r y or a r a b l e c r o p l a n d .  and N l e v e l s a r e the h i g h e s t and Ca, Mg, P, and pH the l o w e s t  of the three parent m a t e r i a l s . r i s e s to nearly  The C:N r a t i o i s about 15 i n woodland,  18 i n the 1980 group, and then drops s t e a d i l y t o  i n the 1950 g r o u p i n g (Table 15).  The  h i g h r a t i o i n 1980  r e s u l t s from the d e c o m p o s i t i o n o f remnant h i g h l y  11.8  probably  carbonaceous  m a t e r i a l s , such as wood f r a g m e n t s , l e f t a f t e r l a n d c l e a r i n g .  The  uniqueness o f t h i s 1980 g r o u p i n g i s r e v e a l e d by e x a m i n i n g T a b l e  C18.  The  There  1980 group a l s o d i f f e r s from woodland f o r t h e s e v a r i a b l e s .  a r e few o t h e r d i f f e r e n c e s by age  classes.  A n a l y s i s o f l a n d u s e : B e s i d e s t h e d i f f e r e n c e s e x h i b i t e d by the l i t t e r l a y e r from the o t h e r l a n d u s e s , the most o b v i o u s d i f f e r e n c e s a r e the c u l t i v a t e d group from t h e woodland f o r a l l v a r i a b l e s e x c e p t K,  128  T a b l e 15. Breakdown o f g l a c i a l m a r i n e s o i l s by age. Variable  A  S  e #  H  pH 20  pH CaCl2  Ca  Mg mg k g  K - 1  mean  std dev  mean  std dev  mean  std dev  mean  std dev  1950 1960 1970 1980 woodland wt. a v g . litter  5.6 5.5 5.5 5.3 4.8 4.8 4.8  0.2 0.2 0.3 0.2 0.2 0.2 0.4  5.0 4.9 4.9 4.6 4.2 4.2 4.2  0.2 0.2 0.3 0.2 0.2 0.2 0.4  312 123 221 169 68 250 2065  220 104 232 189 71 106 700  128 82 99 93 49 93 532  87 66 61 60 37 50 231  179 145 163 114 107 146 538  120 82 82 53 40 49 240  cult. mineral min.+avg. TOTAL  5.5 5.3 5.2 5.2  0.3 0.4 0.4 0.4  206 204 178 193 191 183 458 727  101 90 91 154  71 69 66 187  150 142 142 199  90 84 79 181  4.9 0. 3 4.7 0.4 4.6 0. 4 4.6 0.4  Variable Age  P mg kg-1  OM %  N %  C:N  mean s t d dev mean s t d dev mean s t d dev mean s t d dj 1950 1960 1970 1980 woodland wt. a v g . litter  31 7 23 4 2 7 51  40 11 15 4 4 5 32  10.2 10.4 11.0 12.3 12.5 17.0 61.4  2.3 2.0 1.8 3.5 3.4 4.2 15.3  .290 .255 .264 .237 .295 .401 1.461  .080 .052 .047 .069 .114 .128 .366  11.8 13.6 14.1 17.8 15.0 16.0 16.0  1.3 1.3 1.2 2.6 2.1 2.0 2.0  cult. mineral min.+avg. TOTAL  16 13 12 18  25 23 21 26  11.0 11.3 12.2 19.2  2.6 2.9 3.8 18.5  .261 .268 .290 .458  .065 .078 .101 .443  14.3 14.4 14.6 14.8  2.8 2.7 2.5 2.5  # 1950 1960 1970 1980  = = = =  cleared cleared cleared cleared  between between between between  1943 and 1955 and 1966 and 1976 and  1955 1966 1976 1983  129  mean s t d dev  OM,  and N and the c u l t i v a t e d group f r o m the w e i g h t e d  except Ca, Mg,  and K (Table C15).  average f o r a l l  L i k e the o t h e r parent m a t e r i a l s ,  t h e most s i m i l a r groups are the woodland and weighted  average.  A n a l y s i s o f c o u n t r y and r e p l i c a t e ; The g l a c i a l m a r i n e s o i l s a r e i n t e r m e d i a t e among t h e t h r e e p a r e n t m a t e r i a l s i n t h e i r s o i l and l a n d use d i f f e r e n c e s by c o u n t r y .  Although d o m i n a n t l y used f o r p a s t u r e ,  Canadian g l a c i a l m a r i n e s o i l s have more a r a b l e c r o p l a n d . c u l t i v a t e d s o i l s a r e examined, Mg, i n t h e USA  (Table 16).  Reduced OM  P, and OM,  are s i g n i f i c a n t l y higher  c o n t e n t i n Canada can be e x p l a i n e d  by l a r g e r l o s s e s due t o c u l t i v a t i o n ; t h e r e i s no apparent t h e l o w e r P and Mg  reason f o r  c o n t e n t s (except p o s s i b l e d i f f e r e n c e s i n the amount  of d o l o m i t i c l i m i n g materials). other data sets.  When o n l y the  S i m i l a r d i f f e r e n c e s h o l d f o r the  L i k e t h e o t h e r p a r e n t m a t e r i a l s , d i f f e r e n c e s by  r e p l i c a t e confound the a n a l y s i s (Table  C16).  5.3.2.4 B u l k D e n s i t y I n c r e a s e s i n b u l k d e n s i t y due t o c u l t i v a t i o n a r e commonly r e p o r t e d i n t h e l i t e r a t u r e (Brady  1985).  Bulk d e n s i t y g e n e r a l l y  i n c r e a s e s i n p r o p o r t i o n t o the amount o f c u l t i v a t i o n and i s i n v e r s e l y p r o p o r t i o n a l t o the o r g a n i c m a t t e r  c o n t e n t , a l t h o u g h the r e l a t i o n s h i p  i s p a r t l y dependent on c u l t i v a t i o n t i m e (Juma and M c G i l l G r e g o r i c h and Anderson 1986).  1986,  Bulk d e n s i t y i n c r e a s e s i n t h i s study  an average o f 26$ on a l l u v i a l s o i l s , 36$ on g l a c i a l m a r i n e s o i l s , 58$ on outwash s o i l s .  by  and  These changes are as g r e a t o r g r e a t e r than  t h o s e r e p o r t e d by T i e s s e n e t a l . (1982) and Brady (1985), w h i c h range from 14 t o 30$.  The l a r g e change i n b u l k d e n s i t y on t h e outwash and  g l a c i a l m a r i n e s o i l s p r o b a b l y r e s u l t s from the v e r y low v a l u e s i n the uncropped s t a t e , w h i c h a r e much l o w e r t h a n those r e p o r t e d (930 t o 130  1210  Table 16. Breakdown o f g l a c i a l m a r i n e s o i l s by c o u n t r y . Variable pH Country  H  pH CaC12  2 0  mean  Ca  std dev  mean  std dev  mean  std dev  Mg mg k g  - 1  -  mean  std dev  mean s t d dev  Entire data s e t Combined  5.2  0.4  4.6  0.4  458  727  1 54  187  199  181  Canada USA  5.2 5.2  0.5 0.4  4.6 4.6  0.5 0.4  385 532  615 820  129 179  183 189  186 211  168 192  F ratio F prob.  0.09 .7656  0.48 .4870  2.90 .0897  5.21 .0232  1.37 .2421  C u l t i v a t e d s o i l s only Combined  5.5  0.3  4. 9  0.3  206  204  101  71  150  90  Canada USA  5.5 5.5  0.3 0.2  4. 9 4. 8  0.3 0.3  182 230  202 204  72 130  48 78  145 156  83 96  F ratio F prob.  0.46 .4974  1. 77 .1856  2. 24 .1365  31 .8 .0000  0.58 .4489  Mineral s o i l s only Combined  5.3  0.4  4.7  0.4  179  193  90  69  142  84  Canada USA  5.4 5.3  0.4 0.4  4.8 4.7  0.4 0.4  158 199  189 196  67 114  47 78  135 148  79 89  F ratio F prob.  0.48 .4888  1. 60 .2081  2.25 .1351  26.2 .0000  1. 19 .2766  M i n e r a l p l u s weighted average s o i l s o n l y Combined  5.2  0.4  4.6  0.4  191  183  91  66  142  79  Canada USA  5.3 5.2  0.4 0.4  4.7 4.6  0.4 0.4  167 214  179 185  70 111  50 73  135 150  75 83  F ratio F prob.  0.55 .4574  1. 76 .1861  4.04 .0457  131  25.7 .0000  2.26 .1337  Variable Country  P mg kg-1  OM %  N %  C:N  mean s t d dev mean s t d dev mean s t d dev mean s t d dev E n t i r e data s e t Combined  18  26  19.3  18.5  .458  .443  14.8  2.5  Canada USA  13 23  17 32  17.3 21.2  16.0 20.5  .400 .516  .374 .498  15.1 14.5  2.6 2.4  F ratio F prob.  1.37 .2421  11.5 .0008  4.84 .0286  3.22 .0739  C u l t i v a t e d s o i l s only Combined  16  25  11.0  2.6  .261  .065  14.3  2.8  Canada USA  9 23  14 31  10.4 11.5  2.2 2.9  .248 .274  .064 .064  14.3 14.3  2.7 2.8  F ratio F prob.  13-4 .0003  6.78 .0101  6.72 .0104  0.37 .8486  Mineral s o i l s only Combined  13  23  11.3  2.9  .268  .078  14.4  2.7  Canada USA  8 19  12 28  10.5 12.0  2.4 3.1  .245 .291  .066 .083  14.6 14.2  2.7 2.6  F ratio F prob.  11.2 .0010  14. 8 .0002  18.5 .0000  1. 09 .2975  M i n e r a l s o i l s p l u s weighted average s o i l Combined  12  21  12.2  3.8  .290  .101  14.6  2.5  Canada USA  8 17  12 27  11.2 13.2  3.1 4.1  .259 .322  .076 .114  14.8 14.3  2.6 2.4  F ratio F prob.  10.8 .0012  17.9 .0000  25.9 .0000  1 32  2. 73 .1001  kg m-3)  i n Tiessen  et a l . (1982) and  Brady (1985).  The  largest  i n c r e a s e o c c u r s i m m e d i a t e l y a f t e r c l e a r i n g - from 15$ on g l a c i a l m a r i n e t o 54$ on outwash s o i l s .  B u l k d e n s i t y v a l u e s appear t o l e v e l o f f i n  25 t o 35 y e a r s but not u n t i l i n c r e a s i n g by 69$ on outwash, 33$ a l l u v i a l , and  on  56$ on g l a c i a l m a r i n e s o i l s .  B u l k d e n s i t y v a l u e s a r e s i g n i f i c a n t l y l o w e r f o r woodland s o i l s on each p a r e n t m a t e r i a l (Table  17).  G e n e r a l l y the  1980  the n e x t l o w e s t bulk d e n s i t y ( s i g n i f i c a n t l y l o w e r on soils).  A l l u v i a l s o i l s have s i g n i f i c a n t l y h i g h e r  age  s o i l s have  glacialmarine  bulk d e n s i t y i n  woodland and a f t e r c u l t i v a t i o n , a v e r a g i n g about 1200 kg m 3, -  t o 960 on g l a c i a l m a r i n e and  compared  920 on outwash c u l t i v a t e d s o i l s .  Bulk  d e n s i t y between each p a r e n t m a t e r i a l i s s i g n i f i c a n t l y d i f f e r e n t a t the 0.05  l e v e l o f s i g n i f i c a n c e e x c e p t between outwash and  glacialmarine  T a b l e 17. E f f e c t s o f t i m e - s i n c e - c l e a r i n g on b u l k d e n s i t y f o r outwash, a l l u v i a l , and g l a c i a l m a r i n e s o i l s . Age  Outwash 890 986 911 895  1950 1960 1970 1980 woodland avg. c u l t i v a t e d $ i n c r e a s e from woodland Sign. d i f f . at 0.05  582 921 58 woodland w i t h a l l others  Alluvium B u l k d e n s i t y (kg 1270 1177 1229 1112 953 1197 26 woodland w i t h a l l others  Glacialmarine m-3) 1045 1096 934 811 704 960 36 woodland w i t h a l l others 1980 w i t h a l l o t h e r s 1970 w i t h 1950, 1960  C u l t i v a t e d s o i l s only Canada USA S i g n . d i f f . a t 0.05  914 928 no  1232 11 61 no 133  1014 908 yes  s o i l s f o r t h e two c o u n t r i e s combined (921 v e r s u s 960 k g m-3) and f o r the USA o n l y (928 v e r s u s 908 kg m~3).  5.3.2.5 L i t t e r The l i t t e r  Layer  l a y e r o f the a l l u v i a l  woodland m i n e r a l s o i l ,  s o i l s , as i s true f o r i t s  i s more f e r t i l e t h a n t h e outwash o r  g l a c i a l m a r i n e c o u n t e r p a r t s . The f o l l o w i n g p r o p e r t i e s a r e s i g n i f i c a n t l y higher i n the l i t t e r f o r a l l u v i a l s o i l s :  pH, Mg, and K.  P i s s i g n i f i c a n t l y l o w e r i n t h e g l a c i a l m a r i n e l i t t e r l a y e r than outwash o r a l l u v i a l l i t t e r l a y e r s ( T a b l e C17).  These d i f f e r e n c e s a r e  due  soils  t o the high n a t u r a l l e v e l s i n the a l l u v i a l  ( L u t t m e r d i n g 1981c).  5.3.2.6 Summary o f A n a l y s i s o f P a r e n t M a t e r i a l s On each p a r e n t m a t e r i a l , a l l p l o t s and a l l l a n d c l e a r i n g age groups a r e s i g n i f i c a n t l y d i f f e r e n t from each o t h e r a t t h e P < 0.001 l e v e l f o r e a c h v a r i a b l e ( T a b l e s 11, 13, 15, C1, C7, a n d C 1 2 ) . A l l p a r e n t m a t e r i a l s make t h e l a r g e s t changes i n t h e f i r s t  five  y e a r s a f t e r c l e a r i n g , e x c e p t 0M on outwash s o i l s , Ca, Mg, and OM on a l l u v i a l s o i l s , and K, P, and 0M on g l a c i a l m a r i n e s o i l s , w h i c h make t h e i r l a r g e s t changes between 5 and 15 y e a r s .  The d e l a y e d change i n  0M i s p r o b a b l y due t o t h e r e s i d u a l o r g a n i c m a t e r i a l l e f t  after  c l e a r i n g and b u r n i n g . A f t e r 15 t o 25 y e a r s t h e a n t h r o p o g e n i c system appears t o r e a c h a q u a s i - s t e a d y s t a t e f o r pH, Ca, and K on a l l u v i a l  soils.  v a r i a b l e s d e c r e a s e f o r 15 t o 25 y e a r s and then i n c r e a s e . soils  Other Outwash  r e a c h a q u a s i - s t e a d y s t a t e a f t e r 15 y e a r s f o r c a t i o n s and pH.  C a t i o n l e v e l s on both outwash and g l a c i a l m a r i n e s o i l s a t l e a s t and pH i n c r e a s e s d r a m a t i c a l l y due t o c u l t i v a t i o n .  134  double  0M l e v e l s a r e t h e  l o w e s t a f t e r 35 years.  On g l a c i a l m a r i n e s o i l s , t h e l a r g e s t l e v e l s f o r  pH and c a t i o n s and the s m a l l e s t f o r OM t h e change i s not c o n t i n u o u s .  occur a f t e r 35 y e a r s , a l t h o u g h  Cations generally increase with  time  but the p a t t e r n i s o b s c u r e . The  l a r g e s t l o s s o f OM  i s i n the f i r s t  15 y e a r s on a l l parent  m a t e r i a l s , r a n g i n g f r o m 12$ on g l a c i a l m a r i n e s o i l s t o 40$ on soils.  alluvial  A s i m i l a r p a t t e r n o f r a p i d i n i t i a l l o s s i s r e p o r t e d by  G r e g o r i c h and Anderson (1986).  OM  g e n e r a l l y continues to decrease  for  the e n t i r e 35 y e a r s t u d y p e r i o d on outwash and g l a c i a l m a r i n e s o i l s , but i n c r e a s e s a f t e r 15 y e a r s on a l l u v i a l s o i l s , a p p a r e n t l y f r o m l a r g e a d d i t i o n s o f manure o r h i g h - f e r t i l i t y Losses o f OM a f t e r 35 y e a r s .  forage crops.  are about 20$ on outwash and g l a c i a l m a r i n e s o i l s Alluvial  s o i l s l o s e up t o 40$ o f the i n i t i a l OM  y e a r s , but rebound t o t h e same 20$ l o s s a f t e r 35 y e a r s .  i n 15  These v a l u e s  a r e comparable t o t h o s e o f S h u t t (1925), Newton e t a l . (1945), Haas e t a l . ( 1 9 5 7 ) , and Wang e t a l . (1984).  L o s s e s o f OM and N can e v e n be  r e v e r s e d as i n d i c a t e d by the o l d r a s p b e r r y p l o t on outwash s o i l s , which has even h i g h e r OM and N v a l u e s t h a n the woodland  soils.  N l e v e l s i n c r e a s e r a p i d l y f o r 5 y e a r s then g e n e r a l l y d e c r e a s e outwash s o i l s .  N d e c r e a s e s f o r 15 y e a r s on a l l u v i a l and  g l a c i a l m a r i n e s o i l s and then i n c r e a s e s . management may  5 years  on  on  A g a i n , improvements i n manure  a f f e c t t h i s change i n d i r e c t i o n .  S t e a d y s t a t e f o r the o r g a n i c c o n s t i t u e n t s i s not apparent w i t h i n 35 y e a r s , w h i c h compares w i t h o b s e r v a t i o n s o f P a u l and Van Veen ( 1 9 7 8 ) , V o r o n e y e t a l . ( 1 9 8 1 ) , and T i e s s e n e t a l . ( 1 9 8 2 ) . The C:N n a r r o w s w i t h t i m e t o about 12:1 a f t e r 35 y e a r s on a l l s o i l s a f t e r a c o n t i n u o u s drop f r o m about 15:1, w i t h a minor e x c e p t i o n on g l a c i a l m a r i n e s o i l s .  T h i s t r e n d i s t y p i c a l when woodland i s 135  converted to a g r i c u l t u r e levelling off.  The  (Duchaufour 1982).  o l d raspberry  There i s no  p l o t has a C:N  comparable t o the 35 year v a l u e s on a l l u v i a l and and which c o u l d be the s t e a d y s t a t e v a l u e  apparent  of about 12, w h i c h i s glacialmarine  f o r a l l three  soils,  soils.  The l i t e r a t u r e g e n e r a l l y does not examine the a n t h r o p o g e n i c e f f e c t s on t r e n d s i n the l e v e l of c a t i o n s a f t e r c u l t i v a t i o n , e x c e p t f o r the i n i t i a l increase a f t e r c l e a r i n g . have shown t h a t Ca and  Mg i n c r e a s e due  L a v k u l i c h and  Rowles (1971)  t o c u l t i v a t i o n on s o i l s s i m i l a r  t o the outwash s o i l s i n t h i s s t u d y . On the a l l u v i a l s o i l s a t l e a s t one  o f the c u l t i v a t e d y e a r s i s  l e s s t h a n t h e i n i t i a l l e v e l i n woodland f o r a l l v a r i a b l e s e x c e p t which i s the r e v e r s e . about o n e - h a l f  The  pH,  l e v e l s o f c a t i o n s on the a l l u v i a l s o i l s a r e  t o t w o - t h i r d s of the o r i g i n a l , whereas the outwash  and  g l a c i a l m a r i n e c u l t i v a t e d s o i l s are 2 t o 15 t i m e s h i g h e r than t h e i r r e s p e c t i v e woodland.  pH and  P are a l s o at c o n s i d e r a b l y  higher  levels  on the c u l t i v a t e d outwash and g l a c i a l m a r i n e s o i l s than t h e i r r e s p e c t i v e o r i g i n a l woodland s o i l s .  The  d e c r e a s e f r o m woodland l e v e l s  a f t e r c u l t i v a t i o n i n a l l u v i a l s o i l s p a r t l y stems from the i n i t i a l f e r t i l i t y i n these s o i l s .  high  That i s , management appears t o d i s r u p t most  the s o i l s w i t h the h i g h e s t n a t u r a l f e r t i l i t y l e v e l s and t o improve most the s o i l s o f low n a t u r a l  fertility.  I n a comparison o f c u l t i v a t e d and  woodland s o i l s on the  three  p a r e n t m a t e r i a l s , i t s h o u l d be borne i n mind t h a t the woodland s o i l s formed i n a l l u v i u m have much h i g h e r  l e v e l s o f pH, Ca, Mg,  t h a n t h o s e on e i t h e r outwash or g l a c i a l m a r i n e s o i l s . a l l u v i a l s o i l s a r e as h i g h o r h i g h e r  i n c a t i o n s and  The P and  K, and  P  cultivated lower i n  OM  and N t h a n g l a c i a l m a r i n e s o i l s , and i n c o m p a r i s o n w i t h outwash s o i l s ,  136  c u l t i v a t e d a l l u v i a l s o i l s have h i g h e r l e v e l s o f Mg l e v e l s o f K and OM.  and  N, and  comparable  C u l t i v a t e d outwash s o i l s are the h i g h e s t  by f a r i n  pH, Ca, and P r e s u l t i n g f r o m t h e i r more i n t e n s i v e management. trends  f o r t h e s e s o i l s are r e p o r t e d  Similar  i n L u t t m e r d i n g (1981c).  A l l u v i a l and g l a c i a l m a r i n e s o i l s are the most d i f f e r e n t , l a c k i n g s i g n i f i c a n t d i f f e r e n c e s a t the 0.05  l e v e l o n l y f o r OM  the e n t i r e d a t a s e t and t h e m i n e r a l  p l u s w e i g h t e d average s o i l s  for  N i n Canada u s i n g m i n e r a l  (Table  18).  s o i l s o n l y and  i n Canada u s i n g and  c u l t i v a t e d s o i l s only  I n s p i t e of d i f f e r e n c e s i n p a r e n t m a t e r i a l , and  i n d i c a t i n g the s t r o n g i n f l u e n c e o f management, outwash and  thus,  alluvium  are t h e most s i m i l a r , l a c k i n g s i g n i f i c a n t d i f f e r e n c e s i n pH, Ca,  K,  OM,  both  and  N.  These s i m i l a r i t i e s o c c u r r e d  c o u n t r i e s combined.  f o r the USA,  The main s i m i l a r i t i e s between outwash and  g l a c i a l m a r i n e s o i l s a r e i n Ca and K l e v e l s f o r U.S. various 5.3.3  Canada, and  soils  using  data sets.  Comparison o f A r e a l and C o n c e n t r a t i o n The  conversion  of concentration  (mg  Measurements  kg-1)  t o an a r e a l (kg  ha"1)  measurement i s p r o p o r t i o n a l t o the b u l k d e n s i t y (kg ha-1=mg kg-1  x  bulk d e n s i t y ( i n kg m-3)  10^  m  2  ha-1).  in soil  The  t h i c k n e s s x 10-6  kg  m g  -1  x  purpose o f the a r e a l measurement i s t o e x p r e s s the  p r o p e r t i e s on a volume b a s i s .  c l e a r i n g age due  x 0.2 m s o i l  Any  d i f f e r e n c e s between l a n d  groups, l a n d use, o r c o u n t r y on each p a r e n t m a t e r i a l  p r i n c i p a l l y t o changes i n b u l k d e n s i t y .  As noted e a r l i e r ,  d e n s i t y i n c r e a s e s w i t h t i m e - s i n c e - c l e a r i n g (Table  are  bulk  17), but the major  d i f f e r e n c e s between t h e s e two t y p e s o f measurements are caused by low  flux  the  b u l k d e n s i t i e s o f the woodland m i n e r a l s o i l , the l i t t e r l a y e r , and  the w e i g h t e d average  soil.  137  T a b l e 18. M u l t i p l e range t e s t i n g o f two-way a n a l y s i s o f v a r i a n c e p e r f o r m e d on e n t i r e d a t a s e t , c u l t i v a t e d s o i l s o n l y , m i n e r a l s o i l s o n l y , and m i n e r a l p l u s w e i g h t e d a v e r a g e s o i l s f o r each v a r i a b l e and s e p a r a t e d by p a r e n t m a t e r i a l and c o u n t r y .  p_H  (H291  Parent Material  Countries alluvium  outwash alluvium  Combined glacial.  m#  Canada alluvium glacial, m  United alluvium  States glacial.  e,w,m  pH ( C a C l ) 2  Parent Material  Countries alluvium  outwash alluvium  m  Combined glacial.  Canada alluvium glacial, w,m  United alluvium  States glacial.  m,c  Ca Parent Material  Countries alluvium  Combined glacial.  outwash alluvium  Canada alluvium glacial,  United alluvium  m,c  States glacial. e,w,m,c  Mg Parent Material outwash alluvium  Countries alluvium  Combined glacial.  Canada alluvium glacial,  e  e  138  United alluvium  States glacial.  K Parent Material  C o u n t r i e s Combined alluvium glacial.  outwash alluvium  Canada alluvium glacial,  c  United States alluvium glacial.  m  e,w,m  P  Parent Material  Countries alluvium  Combined glacial.  Canada alluvium glacial,  United alluvium  States glacial.  Parent Material  Countries alluvium  Combined glacial.  Canada alluvium glacial,  United alluvium  States glacial.  outwash alluvium  e  outwash alluvium  OM  e,c  e e,w  e,c  N  Parent Material  C o u n t r i e s Combined alluvium glacial.  Canada alluvium glacial,  outwash alluvium  United States alluvium glacial. e  m,c  # e, c, m, o r w denote p a i r s o f p a r e n t m a t e r i a l s t h a t do n o t d i f f e r s i g n i f i c a n t l y a t the 0.05 l e v e l . (e=entire d a t a s e t , c = c u l t i v a t e d s o i l s o n l y , m=mineral s o i l s o n l y , w = m i n e r a l p l u s w e i g h t e d average s o i l s only, glacial.=glacialmarine)  139  The field.  b u l k d e n s i t y of the l i t t e r l a y e r was I t was  (1985) and  e s t i m a t e d t o be 400  P r i t c h e t t (1979).  The  kg m-3  not measured i n the  f r o m v a l u e s g i v e n i n Brady  bulk density  o f the w e i g h t e d average  " p l o t " i s the w e i g h t e d average o f the l i t t e r l a y e r and  the  woodland  m i n e r a l s o i l , w h i c h has the l o w e s t b u l k d e n s i t y o f the m i n e r a l s o i l s . I n s p i t e o f the d i f f e r e n c e s i n b u l k d e n s i t y , v e r y few s i g n i f i c a n t d i f f e r e n c e s between c u l t i v a t e d and group o r l a n d use  woodland s o i l s by l a n d c l e a r i n g  have been a f f e c t e d  C9-11, C14,  C15,  differences  between the c o n c e n t r a t i o n  l i t t e r l a y e r and the  D1-D13).  (Tables 12,  16, C3,  C5,  C6,  a r e a l bases o c c u r w i t h  the  Most o f the change i n s i g n i f i c a n t and  w e i g h t e d average s o i l .  f i n d i n g s o f Lee  14,  e t a l . (1975) and  These r e s u l t s are  contrary  T i e s s e n e t a l . (1982), who  t h a t a r e a l measurements showed more d i f f e r e n c e s t h a n those on concentration p a s t u r e i n New  basis.  age  to  found  a  However, t h e i r s t u d i e s were i n t e p h r i c s o i l s i n  Zealand and  grassland  s o i l s i n Saskatchewan, w h i c h  are  q u i t e d i f f e r e n t from the s o i l s i n t h i s s t u d y .  5.3.4  D e t e r m i n a t i o n o f S i m i l a r i t y Among P l o t s C l u s t e r a n a l y s i s i s used t o examine the s i m i l a r i t i e s among the  p l o t s f o r each p a r e n t m a t e r i a l s e p a r a t e l y  and  combined.  f i r s t the p l o t s most s i m i l a r , g r o u p i n g t o g e t h e r two w i t h a group o f p l o t s at each stage. most d i s s i m i l a r . p l o t s , the parent  The  The  a n a l y s i s uses the  It clusters  p l o t s or a p l o t  l a s t ones added are 16 c u l t i v a t e d and  4 w e i g h t e d average " p l o t s " , and  the  the  4 woodland  4 l i t t e r l a y e r s on each  material.  On the outwash and  glacialmarine  s o i l s , the f i r s t p l o t s grouped  are the woodland and w e i g h t e d average p l o t s and  140  those p l o t s h a v i n g  s i m i l a r c h a r a c t e r i s t i c s t o woodland m i n e r a l s o i l s , t h a t i s , low low  l e v e l s of cations.  and  those h a v i n g few  G e n e r a l l y t h e s e are  s o i l amendments.  On  the r e c e n t l y  pH  cleared  a l l u v i a l s o i l s the  and plots  least  f e r t i l e p l o t s are c l u s t e r e d  f i r s t whether c u l t i v a t e d , woodland, o r  w e i g h t e d average s o i l .  l a s t ones c l u s t e r e d  on a l l p a r e n t  The  are t h e l i t t e r  layers  materials.  These g r o u p i n g s c o n f i r m the s i g n i f i c a n c e  t e s t i n g by  plots,  p a r t i c u l a r l y on the outwash s o i l s , where s i g n i f i c a n t d i f f e r e n c e s n o t e d among c u l t i v a t e d p l o t s 4, 6, and r e s p e c t i v e age Mg, 5.3.5  K,  and  classes.  8 from those i n t h e i r  T h e i r very high f e r t i l i t y  P) r e s u l t i n t h e i r c l u s t e r i n g w i t h the  A n a l y s i s o f P l o t S i m i l a r i t y by P a r e n t  l e v e l s (mostly litter  The  fertility  principal variables  and  P, w h i c h i n c r e a s e m a r k e d l y from c l u s t e r pH,  d i f f e r e n t i a t i n g the  OM,  and  4 f o r a l l p a r e n t m a t e r i a l s and the  c h a r a c t e r i s t i c s o f the  levels).  The  N are  o f the  and  Mg,  (low  4.  K,  1 to c l u s t e r 4 f o r a l l cluster  a l s o c l u s t e r 3 of a l l u v i u m w h i c h pH,  h i g h OM,  and  has  N  l i t t e r layers,  8 h a v e h i g h l e v e l s o f Ca, Mg,  r e l a t i v e t o o t h e r m i n e r a l p l o t s , but  Ten  c l u s t e r s are Ca,  m i n e r a l s o i l s t h a t c l u s t e r w i t h the  t h e i r c l u s t e r i n pH, OM,  ( F i g . 18-20,  quite v a r i a b l e except f o r  l i t t e r layer  as o u t w a s h p l o t s 4, 6, 7, and  layers.  l e v e l i n c r e a s e s from group 1 t o group  The  parent m a t e r i a l s .  Ca,  Material  Four g r o u p i n g s are made f o r each p a r e n t m a t e r i a l T a b l e s 19-21).  are  d i f f e r from the  such  K, and  P  l i t t e r layer  in  N.  12 l i t t e r l a y e r s  c l u s t e r i n group 4,  w e i g h t e d average p l o t s c l u s t e r i n groups 1 and  2, and  11 o f the 10 of the  woodland p l o t s c l u s t e r i n group 1.  The  groups are s c a t t e r e d  c l u s t e r groups, i n d i c a t i n g  t h r o u g h o u t the  141  12 12  individual, land c l e a r i n g  age no  P l o t Number 8 6 4 L10  .  L 9 L 2 0 L 1 6 2 19 7 3 1 W16 14 W20  1 8 . C l u s t e r diagram f o r outwash  soils.  142  15 17  13 11 5 20 10 9 18 12 W10 W916  Table 19. S o i l and s i t e c h a r a c t e r i s t i c s f o r each c l u s t e r group f o r outwash s o i l s d e r i v e d from c l u s t e r a n a l y s i s . Group 1  Group 2  Group 3  Group 4  8  8  5  7  2 2  1 1 2 1  1 1 1  Number o f p l o t s  Number i n each l a n d clearing age group  1950 1960 1970 1980 woodland wt. a v g . litter  Variable  4 2  2  4.6  5.7 5.0  6.3 5.8  5.5 5.0  73 38 80 75  254 67 183 32  882 86 229 114  1924 371 415 216  10.2 .195  10.2 .213  8.9 .191  38.8 .873  5.1  2  (mg (mg (mg (mg  2  4  pH (H2°) pH ( C a C l ) Ca Mg K P  1 1  kg ) kg-1) kg-1) kg-1)  OM (%) N (%)  - 1  S o i l group  Member p l o t s i n each group  1  9,  10, 12, 16, 1 8 , 20, W9, W10  2  5, 11, 13, 14, 15, 17, W16, W20  3  1, 2, 3, 7, 19  4  4, 6, 8 , L 9 , L10, L16, L20  143  P l o t Number L37  L33  L40  L35  W37  37  38 W33  33  31  30  28  39  32  25 24  3« 29  3,6  26  21  WHO  10  27  W35  u  Fig.  19.  C l u s t e r diagram f o r a l l u v i a l  soils.  35  23  22  Table 20. S o i l and s i t e c h a r a c t e r i s t i c s f o r each c l u s t e r group f o r a l l u v i a l s o i l s d e r i v e d from c l u s t e r a n a l y s i s . Group 1  Group 2  Group 3  14  8  4  2  3  2  1 2 1 2  2 2  1 1  1 2  2  5.8 5.2  6.2 5.8  Number o f p l o t s  Number i n each l a n d clearing age group  , 1950 1960 1970 1980  2 3  woodland wt. a v g . litter pH ( H ) pH (CaCl2>  5.3  Ca Mg K P  701 433 314 46  1194 508 172 27  1694 841 506 97  3120 1404 611 100  10.6 .254  9.8 .259  35.4 .767  59.8 1.473  2 0  Variable  (mg (mg (mg (mg  kg-1) kg-1) kg-1) kg-1)  0M (*) N (%)  S o i l group  Group  1:2  5.1  Member p l o t s i n each group  1  21, 22, 23, 24, 25, 26, 27, 29, 34, 35, 36, 40, W35, W40  2  28, 30, 31, 32, 33, 38, 39, W33  3  37, L35, L40, W37  4  L33, L37  145  P l o t Number L51  L55  F i g . 20.  L61  L46  41  59 52 50 W55  46 W57  W46  C l u s t e r diagram f o r g l a c i a l m a r i n e  146  W6l  54 45 43 53 42  soils.  60 56  55  48 61  47 51  44 58  57  Table 21. S o i l and s i t e c h a r a c t e r i s t i c s f o r each c l u s t e r group f o r g l a c i a l m a r i n e s o i l s d e r i v e d from c l u s t e r a n a l y s i s .  Number o f p l o t s  Number i n each l a n d clearing age group  1950 1960 1970 1980  Group 4  13  8  3  4  1  1  2  2  1  (mg (mg (mg (mg  1  4 4  2 0  kg- ) kg-1) kg-1) kg-1) 1  OM (%) N (%)  S o i l group  Group 3  4  pH ( H ) pH (CaCl2>  Variable  Group 2  3 3  woodland wt. a v g . litter  Ca Mg K P  Group 1  5.2 4.6  5.1 4.5  5.7 5.1  4.8 4.2  83  69 115 8  263 92 143 7  465 184 258 47  2065 532 538 51  11.1 .260  14.6 .340  10.7 .286  61.4 1.461  Member p l o t s i n each group  1  42, 43, 44, 47, 48, 51, 53, 55, 56, 57, 58, 60, 61  2  45, 46, 50, 54, W46, W55, W57, 'W61  3  41, 52, 59  4  L46, L55, L57, L61  147  trend i n s o i l properties for  with  time.  The  the h i g h l y f e r t i l e p l o t s 4, 6, and  litter  only pattern  8, t h e y do not  i s t h a t , except cluster with  layer.  In general,  c l u s t e r 1 includes  the woodland p l o t s and  the  low  f e r t i l i t y c u l t i v a t e d p l o t s i n each p a r e n t m a t e r i a l , c l u s t e r 2 the w e i g h t e d average p l o t s and cluster 3 generally on a l l u v i u m  includes  the h i g h f e r t i l i t y c u l t i v a t e d p l o t s ,  but  a w e i g h t e d average and a woodland p l o t ,  and  c l u s t e r 4 i s composed of the l i t t e r l a y e r s  and  also includes  l i t t e r l a y e r s , and  the  v e r y h i g h l y f e r t i l e p l o t s 4,  Analysis  includes  the medium f e r t i l i t y c u l t i v a t e d p l o t s ,  two  5.3.6  the  6, and  8.  of A l l P l o t s  When a l l p l o t s are a n a l y z e d t o g e t h e r , the c l u s t e r d i a g r a m which i s produced shows seven a p p a r e n t g r o u p i n g s .  S i m i l a r t o the a n a l y s i s  p a r e n t m a t e r i a l , the  l e a s t f e r t i l e p l o t s are c l u s t e r e d  A l l the g l a c i a l m a r i n e  mineral s o i l s  (54$  i n group 1) and  f o u r groups (67$  f e r t i l e p l o t s 4, 6, and o f outwash s o i l s , and plots. o f the  2).  The  8, w h i c h were a n o m a l i e s i n the c l u s t e r  They c l u s t e r i n group 6.  The  alluvial  the  litter  7.  The  woodland p l o t s of outwash and  among the  5, and  mineral  a r e the most f e r t i l e and  5.  ( f o r p l o t 10) c l u s t e r i n groups glacialmarine  l e a s t f e r t i l e o f a l l the p l o t s and  A l l u v i u m had  soils  highly  analysis  c l u s t e r i n g the h i g h e s t i n groups 3, 4,  l a y e r s e x c e p t one  first  o n l y e x c e p t i o n s are the  All 6 and  p r i n c i p a l l y i n the  w h i c h are the most f e r t i l e of a l l the  parent m a t e r i a l s ,  ( F i g . 21).  c l u s t e r i n the f i r s t t h r e e groups  the outwash m i n e r a l s o i l s  i n groups 1 and  first  by  148  are  c l u s t e r i n group 1.  the most f e r t i l e woodland s o i l s ,  6, h i g h e r than a l l the g l a c i a l m a r i n e  soils  and  c l u s t e r i n g i n groups 4, most o f the outwash  *  2  45  t  5-  F i g . 21. C l u s t e r d i a g r a m f o r a l l  soils.  149  cultivated soils.  L i k e t h e c l u s t e r a n a l y s i s by p a r e n t m a t e r i a l , t h e  c u l t i v a t e d s o i l s show no o r d e r i n g by l a n d c l e a r i n g age. 5.4 P r e d i c t i o n o f The  Time-Since-Clearing  purpose o f d e v e l o p i n g  a r e l a t i o n s h i p between  time-since-  c l e a r i n g and t h e e i g h t measured c h e m i c a l v a r i a b l e s i s t w o f o l d :  first,  i f the c h e m i c a l v a l u e s a r e known, t h e c l e a r i n g d a t e o f the f i e l d i n question  can be p r e d i c t e d , and second, knowing t h e date o f c l e a r i n g ,  the a p p r o x i m a t e c h e m i c a l p r o p e r t i e s can be p r e d i c t e d w i t h i n l e v e l s of s o i l v a r i a b i l i t y .  inherent  I t can a l s o be used t o e s t i m a t e  future  l e v e l s o f s o i l p r o p e r t i e s , assuming a l i n e a r r e l a t i o n s h i p w i t h time and  a s u f f i c i e n t l y l a r g e r 2 t o make a r e l i a b l e p r e d i c t i o n . The  a p p r o x i m a t e t i m e - s i n c e - c l e a r i n g used w i t h t h e s t u d y d a t a was  d e t e r m i n e d from t h e l a n d c l e a r i n g age group by s u b t r a c t i n g t h e y e a r from 1985.  Therefore,  the land c l e a r i n g p e r i o d  1976-1983 was  assigned  a v a l u e o f 5, t h e 1966-1976 p e r i o d and v a l u e o f 15, and s o f o r t h . The  r e g r e s s i o n equations provide  the v a r i a b l e s as p r e d i c t o r s .  i n s i g h t i n t o the importance o f  The i m p o r t a n c e o f any one v a r i a b l e  depends on t h e p a r e n t m a t e r i a l and t h e e f f e c t s o f management.  Based  on t h e c o r r e l a t i o n c o e f f i c i e n t s , t h e most i m p o r t a n t v a r i a b l e s f o r e x p l a i n i n g t h e t o t a l v a r i a n c e appear t o be pH and K f o r outwash, Mg and  OM (both n e g a t i v e l y c o r r e l a t e d ) on a l l u v i a l ,  glacialmarine soils.  and pH (CaCl2)  o n  The l e a s t i m p o r t a n t v a r i a b l e s f o r p r e d i c t i o n ,  b e s i d e s t h e ones e x c l u d e d f r o m each e q u a t i o n , a l l u v i a l , and N and Mg on g l a c i a l m a r i n e s o i l s .  a r e N on outwash, pH on None o f the e q u a t i o n s  g i v e a p r e d i c t a b i l i t y o f more than 75$, and i s more commonly 60$. A l l regression  equations are s i g n i f i c a n t at P  0.001 l e v e l .  On o u t w a s h s o i l s f o r t h e c o u n t r i e s combined, a l l v a r i a b l e s e n t e r 1 50  t h e e q u a t i o n e x c e p t Ca and t h e r e s u l t i n g r 2 i s 0.62,  indicating that  62$ o f the v a r i a t i o n i n t i m e - s i n c e - c l e a r i n g ( t ) i s a s s o c i a t e d w i t h r e g r e s s i o n (Table 22).  The  v a r i a b l e h a v i n g the best p r e d i c t i v e  i s pH ( % ( ) ) , w h i c h e x p l a i n s 38% o f the v a r i a n c e .  value  When o n l y the  Canadian d a t a are examined, 75% o f t h e t o t a l v a r i a n c e i s e x p l a i n e d , w i t h pH (H o) 2  a l o n e e x p l a i n i n g 47$ o f the t o t a l .  and N a r e l e f t out o f the e q u a t i o n .  I n t h e USA  I n t h i s case Ca, the  variable  e x p l a i n i n g most o f the v a r i a n c e i s K, a c c o u n t i n g f o r 35% o f the variance. Mg,  total  The t o t a l v a r i a n c e e x p l a i n e d by the e q u a t i o n i s 66$.  P, and N a r e not i n the e q u a t i o n .  OM,  Ca,  I n a l l e q u a t i o n s Ca seems t o  have no p r e d i c t i v e v a l u e , p r o b a b l y due t o i t s h i g h v a r i a b i l i t y . T i m e - s i n c e - c l e a r i n g has a s t r o n g dependence on pH (some combination  o f pH (CaCl2) and  pH (H"2 0))  Ifc  i s  a  l  s  0  directly  p r o p o r t i o n a l t o the l e v e l of K i n a l l t h r e e e q u a t i o n s .  The  other  v a r i a b l e s a r e m i s s i n g f r o m a t l e a s t one o f the e q u a t i o n s , w h i c h g e n e r a l l y show t h a t t i m e i s d i r e c t l y p r o p o r t i o n a l t o P and N and i n v e r s e l y p r o p o r t i o n a l t o Mg and The  OM.  c h e m i c a l d a t a f o r the a l l u v i a l s o i l s have f a r l e s s p r e d i c t i v e  c a p a b i l i t y , b e i n g a b l e t o e x p l a i n o n l y 59$ o f t h e t o t a l v a r i a n c e i n Canada, 39$ i n the USA,  and  34$ i n the c o u n t r i e s combined (Table 22).  The most i m p o r t a n t v a r i a b l e i n the e q u a t i o n f o r Canadian a l l u v i a l s o i l s and i n both c o u n t r i e s combined i s Mg, of t h e t o t a l v a r i a n c e , r e s p e c t i v e l y .  w h i c h e x p l a i n s 42$ and  Ca and P have no  17$  predictive  v a l u e i n t h e s e two e q u a t i o n s , and t h u s , a r e e x c l u d e d from the equation.  I n t h e U.S. e q u a t i o n OM  i s t h e most i m p o r t a n t v a r i a b l e ,  but  e x p l a i n s o n l y 17$ o f the t o t a l v a r i a n c e . On the a l l u v i a l s o i l s Mg, K, and OM  151  are i n a l l three equations,  a l t h o u g h Mg and K have n e a r l y zero c o e f f i c i e n t s and so have l i t t l e e f f e c t on p r e d i c t i o n .  The e q u a t i o n s show t h a t t i m e i s d i r e c t l y  p r o p o r t i o n a l t o t h e pH f a c t o r (pH ( H 2 O ) l e s s pH ( C a C ^ ) ' » » N  and  p  a  n  d  C a  i n v e r s e l y p r o p o r t i o n a l t o OM. On t h e g l a c i a l m a r i n e s o i l s the c h e m i c a l d a t a can p r e d i c t the  t i m e - s i n c e - c l e a r i n g w i t h an a c c u r a c y o f about 59$ f o r t h e c o u n t r i e s combined, 60$ f o r Canada, and 67$ f o r t h e USA (Table 22). pH ( C a C l ) 2  i s t h e most i m p o r t a n t v a r i a b l e i n each e q u a t i o n , a c c o u n t i n g and  60$ o f the t o t a l v a r i a n c e , r e s p e c t i v e l y .  f o r 46, 34  Ca i s e x c l u d e d from the  e q u a t i o n s f o r t h e c o u n t r i e s combined and f o r t h e USA.  I n the equation  f o r the USA, o n l y pH ( C a C l ) and P a r e used f o r p r e d i c t i n g t i m e - s i n c e 2  clearing.  Time-since-clearing  dependent on pH ( C a C l ) i 2  n  of glacialmarine s o i l s i s strongly  a l l e q u a t i o n s and d i r e c t l y p r o p o r t i o n a l t o P  and N and i n v e r s e l y p r o p o r t i o n a l t o OM, Mg, and Ca i n one o r two o f t h e equations. The p r i n c i p a l c o m m o n a l i t y among t h e t h r e e p a r e n t m a t e r i a l s i n t h e r e l a t i o n s h i p between t i m e - s i n c e - c l e a r i n g and t h e e i g h t v a r i a b l e s i s t h e major d i r e c t r e l a t i o n s h i p w i t h a pH f a c t o r , t h e minor d i r e c t r e l a t i o n s h i p w i t h N and P, and t h e i n v e r s e r e l a t i o n s h i p w i t h OM.  The  i n c r e a s e i n pH w i t h t i m e - s i n c e - c l e a r i n g can be e x p l a i n e d by t h e g r e a t e r number o f y e a r s o f l i m i n g and/or manuring, both o f w h i c h i n c r e a s e pH. OM d e c r e a s e s w i t h t i m e - s i n c e - c l e a r i n g due t o m i n e r a l i z a t i o n o f C from c u l t i v a t i o n , l o s s o f biomass from c r o p r e m o v a l , i n c r e a s e d w i t h t h e atmosphere, and s t i m u l a t e d m i c r o b i a l a c t i v i t y .  c o n t a c t o f OM P and N would  i n c r e a s e due t o i n c r e a s e s i n f e r t i l i z a t i o n w i t h i n c r e a s i n g t i m e , but t h e s e r e l a t i o n s h i p s a r e n o t borne o u t when r e v i e w i n g t h e r e l a t i o n s h i p between P and N l e v e l s w i t h age (Tables  11, 13, and 15).  The p r e d i c t i o n o f f u t u r e l e v e l s o f s o i l p r o p e r t i e s r e q u i r e s a 1 52  T a b l e 22. T i m e - s i n c e - c l e a r i n g e q u a t i o n s d e r i v e d from s t e p w i s e m u l t i p l e r e g r e s s i o n f o r Canada, t h e USA, and both c o u n t r i e s combined. Outwash s o i l s Combined (r2=o.62, s t d . error=8.10)# t=26.4H20pH- 17.6CaCl2P - 0.2Mg+ 0.1K+ 0.02P- 1.8(0M)+ 50.5N- 45.4 H  Canada (r2=0.75, s t d . e r r o r = 6 . 6 l ) t=28.4H20pH - l4.1CaCl2P  H  " °' S 2M  +  °-  4 k  + 0.1P - 73-9  U n i t e d S t a t e s (r2=0.66, s t d . error=7-7D t=23.6H20pH - l4.2CaC12P Alluvial  H  +  °-  " 2.1(0M) -  1 K  46.3  soils Combined (r2=0.34, s t d . error=10.62)  t=15.6H20pH - 11.5CaCl2P - 0.03Mg + 0.02K - 1.6(0M) + 78.3N - 2.1 H  Canada (r2=0.59, s t d . error=8.37) t= -0.04Mg + 0.02K - 3.5(OM) + 148.5N +  33-3  U n i t e d S t a t e s (r2=0.39, s t d . error=10.35) t = 0.02Ca - 0.02Mg -0.04K + 0.1P -1.3(0M) + 30.5 Glacialmarine  soils Combined (r2=0.59, s t d . error=8.3D  t = l 8 . 5 C a C l 2 P " °-°3Mg + 0.1P - 2.2(0M) + 81.5N - 67.2 H  Canada (r2=0.60, s t d . error=8.36) t=19.2CaCl2P  H  "0-02Ca -0.05Mg -3.0(0M) +143.1N - 73-2  U n i t e d S t a t e s (r2=0.67, s t d . error=7.42) t=22.9CaCl2P  H  + 0  '  1 P  "  9 3  '  8  * I n t h e s e e q u a t i o n s the l a n d c l e a r i n g p e r i o d 1976-1983 was a s s i g n e d an a v e r a g e t i m e - s i n c e - c l e a r i n g v a l u e o f 5 y e a r s , t h e 1966-1976 p e r i o d a v a l u e o f 15, t h e 1955-1966 p e r i o d a v a l u e o f 25, and t h e 1943-1955 p e r i o d a v a l u e o f 35 years. These v a l u e s a r e d e r i v e d f r o m s u b t r a c t i n g the a p p r o x i m a t e m i d d l e v a l u e i n each p e r i o d from 1985. 153  r e l i a b l e l i n e a r r e l a t i o n s h i p w i t h time.  The v a r i a b l e s s h o w i n g t h e  most l i n e a r r e l a t i o n s h i p a r e pH and OM, b u t t h e i n d i v i d u a l time-pH (CaCl2^ 9 e  u  a  t  i  o  n  s  n  a  v  e  r  2  v a l u e s o f 0.60 t o l e s s than 0.05 ( s t d .  error=0.2Q t o 0.57) and i n d i v i d u a l time-OM e q u a t i o n s have v a l u e s o f 0.10  t o 0.22 ( s t d . error=1.65 t o 2.78), i n d i c a t i n g a l o w r e l i a b i l i t y  for  prediction.  5.4.1  Prediction  Test  An e x t r a p l o t was t a k e n on outwash s o i l s w i t h i n t h e U.S. p a r t o f the s t u d y a r e a i n a f i e l d t h a t has been c u l t i v a t e d c o n t i n u o u s l y i n raspberries fertile  since  1951. I t was c l e a r e d  b e f o r e 1940. I t i s t h e most  o f t h e U.S. p l o t s and c l u s t e r s i n group 3 i n t h e c l u s t e r  a n a l y s i s o f the outwash s o i l s .  When c o m p a r i n g t h e d a t a f o r t h i s p l o t  w i t h t h e o t h e r outwash l a n d c l e a r i n g age groups, t h e l e v e l s o f pH, Ca, Mg, and C:N (mean 11.9, s t d dev 0.5) i n d i c a t e an age o f c l e a r i n g p r i o r t o 1950 (Table 11). age  o f post-1970.  regression  However, l e v e l s o f K, P, 0M, and N i n d i c a t e an S i n c e t h e dominant f a c t o r s i n t h e m u l t i p l e  e q u a t i o n s f o r outwash s o i l s a r e pH, K, N, and OM, i t would  seem t h a t an age near 1970 would be p r e d i c t e d . i n t o t h e e q u a t i o n o f both c o u n t r i e s  E n t r y o f the d a t a  combined r e s u l t s i n a  c l e a r i n g o f about 10 y e a r s (or an age o f about 1975). e q u a t i o n i s used, t h e t i m e - s i n c e - c l e a r i n g  time-since-  When t h e U.S.  i s about 17 y e a r s , o r an age  o f about 1968. S i n c e Ca has been shown t o be o f l i t t l e  predictive  v a l u e , and t h u s n o t used i n t h e e q u a t i o n s , t h e t i m e - s i n c e - c l e a r i n g i s not  as h i g h a s would be expected.  5.5  E f f e c t s o f Land Use, The  P a r e n t M a t e r i a l and Country on S o i l G e n e s i s  d i r e c t i o n o f any change i n c h e m i c a l f e r t i l i t y  between t h e  v i r g i n and t h e c u l t i v a t e d s o i l depends on t h e i n i t i a l f e r t i l i t y 1 54  (in a  sense, t h e p a r e n t m a t e r i a l ) , and t h e amount and type o f amendment and manipulation.  Two c o n t r o l groups were used on each parent m a t e r i a l t o  a s s e s s t h e e f f e c t s o f management on g e n e s i s .  One, t h e m i n e r a l  woodland s o i l , was sampled i n t h e f i e l d ; the o t h e r , t h e w e i g h t e d average s o i l , was s t a t i s t i c a l l y d e r i v e d by w e i g h t i n g t h e t h i c k n e s s o f the m i n e r a l s o i l w i t h t h e average t h i c k n e s s o f the l i t t e r l a y e r .  5.5.1  I n i t i a l Levels of S o i l Properties Alluvial  woodland s o i l s have t h e h i g h e s t l e v e l s o f c a t i o n s ,  o r g a n i c m a t t e r c o n s t i t u e n t s (OM and N), and pH (Table  23).  The l e v e l s o f Mg a r e 14 t o 20 t i m e s those i n outwash and g l a c i a l m a r i n e s o i l s and more t h a n f i v e t i m e s t h e l e v e l s o f even t h e most f e r t i l e outwash o r g l a c i a l m a r i n e c u l t i v a t e d age groups and even h i g h e r than the l i t t e r l a y e r s on t h e s e s o i l s  (Tables 11, 13, 15). The most l i k e l y  e x p l a n a t i o n l i e s w i t h t h e d i f f e r e n c e s i n i n h e r e n t f e r t i l i t y and i n t h e i r poorer d r a i n a g e , w h i c h d e c r e a s e s t h e amount o f l e a c h i n g o f Mg and  the o t h e r c a t i o n s .  alluvial  litter.  Luttmerding  The l e v e l s o f Ca and K a r e a l s o h i g h e r i n  S i m i l a r trends f o r these s o i l s  are reported i n  (1981c).  T a b l e 23. Mean l e v e l s o f s o i l c o n s t i t u e n t s i n woodland m i n e r a l on outwash, a l l u v i a l , and g l a c i a l m a r i n e s o i l s . Parent  Ca  Mg K mg kg-1  4.4  49  36  5.5  4.9  996  670  286  4.8  4.2  68  49  107  pH  Material  PH H20  CaC12  Outwash  5.0  Alluvial Glacialmarine  1 55  80  P  OM %  soils N %  47  10.0  .209  29  12.7  .299  12.5  .295  2  Outwash and g l a c i a l m a r i n e woodland s o i l s a r e l o w f o r a l l v a r i a b l e s e x c e p t OM and N.  L e v e l s o f o r g a n i c c o n s t i t u e n t s and c a t i o n s  i n t h e l i t t e r l a y e r s o f t h e s e s o i l s a r e q u i t e h i g h , but t h e s e l e v e l s have not been r e t a i n e d t o any e x t e n t  i n the u n d e r l y i n g m i n e r a l  soil.  Only t h e h i g h l y f e r t i l e p l o t s 4, 6, 7, and 8 s u r p a s s the a l l u v i a l woodland f o r Ca and K.  The outwash and g l a c i a l m a r i n e woodland s o i l s  are v e r y s i m i l a r e x c e p t f o r t h e e x t r e m e l y low v a l u e s o f P and t h e higher  v a l u e s o f OM on the g l a c i a l m a r i n e s o i l s .  The a p p l i c a t i o n o f  amendments t o t h e s e s o i l s f o r any age group d i d not r a i s e t h e l e v e l s o f c a t i o n s t o t h o s e o f the a l l u v i a l woodland  soil.  This d i s c u s s i o n c l e a r l y i n d i c a t e s that the i n i t i a l f e r t i l i t y at t=0, i s c r u c i a l t o an u n d e r s t a n d i n g o f the a n t h r o p o g e n i c e f f e c t s on s o i l genesis.  The f e r t i l i t y l e v e l s f o r t h e woodland o r w e i g h t e d  average c o n t r o l i n t h i s s t u d y a r e i n the o r d e r alluvium » 5.5.2  glacialmarine  >_  outwash.  E f f e c t s o f Management on t h e D i r e c t i o n o f Change o f S o i l  Properties  A l l t h r e e s o i l s make t h e l a r g e s t changes i n t h e f i r s t f i v e y e a r s a f t e r c l e a r i n g , e x c e p t OM on outwash s o i l s , Ca, Mg, and OM on a l l u v i a l s o i l s , and K, P, and OM on g l a c i a l m a r i n e s o i l s , w h i c h make t h e i r l a r g e s t changes between 5 and 15 y e a r s .  The d e l a y e d change i n OM i s  p r o b a b l y due t o t h e r e s i d u a l o r g a n i c m a t e r i a l l e f t a f t e r c l e a r i n g and burning.  T h i s was e v i d e n t i n the f i e l d , where a l l the outwash and  most o f t h e 1980 g l a c i a l m a r i n e p l o t s had r e s i d u a l c h a r c o a l .  The  1980  a l l u v i a l p l o t s had no c h a r c o a l , w h i c h i s i n d i c a t e d i n t h e d a t a by the l a r g e s t drop i n OM among t h e t h r e e s o i l s between t h e woodland group and the 1980 group.  None o f the 1970 s i t e s had any c h a r c o a l  evident.  These t r e n d s a r e d e t a i l e d i n T a b l e s 11, 13, and 15 and summaries o f  1 56  representative  variables illustrated  i n F i g s . 22 t o 25.  On a l l u v i a l s o i l s pH and Ca i n c r e a s e s l i g h t l y a f t e r 5 t o 15 y e a r s , and then appear t o r e a c h a q u a s i - s t e a d y years.  K l e v e l s d e c r e a s e f o r 25 y e a r s ,  s t a t e i n 15 t o 25  then l e v e l o f f .  The i n i t i a l  i n c r e a s e c o u l d come from t h e f l u s h o f n u t r i e n t s f r o m t h e l o g g i n g slash.  Mg seems t o be t i e d c l o s e l y w i t h o r g a n i c m a t t e r as a l l u d e d t o  above s i n c e Mg, OM, and N a l l drop d r a m a t i c a l l y f o r 15 y e a r s and t h e n appear t o i n c r e a s e . As opposed t o a l l u v i a l s o i l s , l e v e l s o f c a t i o n s on outwash reach a quasi-steady  s t a t e a f t e r 15 y e a r s f o r c a t i o n s and pH.  soils After 5  t o 15 y e a r s o f i n t e n s i v e management o f outwash s o i l s f o r b e r r i e s , t h e l e v e l s o f Ca and K a r e comparable on t h e two s o i l s .  On both outwash  and g l a c i a l m a r i n e s o i l s , c a t i o n l e v e l s a r e a t l e a s t double and pH increases  d r a m a t i c a l l y due t o c u l t i v a t i o n .  On g l a c i a l m a r i n e  soils,  the l a r g e s t l e v e l s f o r pH and t h e s m a l l e s t f o r OM occur a f t e r 35 y e a r s , a l t h o u g h t h e change i s n o t continuous.  P l e v e l s increase  with  t i m e on outwash s o i l s , but a r e e r r a t i c on both a l l u v i a l and glacialmarine soils.  OM d e c r e a s e s on a l l t h r e e s o i l s .  Higher l e v e l s  o f OM and N a r e p o s s i b l e as i n d i c a t e d by t h e i r l e v e l s on t h e o l d raspberry  p l o t on outwash s o i l s .  When t h e w e i g h t e d average p l o t s a r e used as the c o n t r o l , t h e t r e n d s on t h e t h r e e p a r e n t m a t e r i a l s p l o t s a r e l e s s d r a m a t i c f o r t h e g l a c i a l m a r i n e and outwash s o i l s and more s o f o r t h e a l l u v i a l On t h e a l l u v i a l s o i l s l e v e l s o f c a t i o n s and o r g a n i c  soils.  matter  c o n s t i t u e n t s drop s t e a d i l y f r o m w e i g h t e d average v a l u e s .  On outwash  s o i l s t h e f i r s t f i v e y e a r s o f c u l t i v a t i o n do n o t show t h e v a s t d i f f e r e n c e s , and s o seem t o be more r e a l i s t i c .  1 57  Changes i n OM and N  6.2 -•A  6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6  woodland  Fig.  1976 to 1983  1966 to 1976  1955 to 1966  Land C l e a r i n g  Period  1943 to 1955  22. Trends f o r pH (H2°) l e v e l s w i t h t i m e f o r outwash (0), a l l u v i a l (A), and g l a c i a l m a r i n e (G) s o i l s .  300 250 K  200 150  mg/kg 100 50 0 woodland  1976 to 1983  1966 to 1976  Land C l e a r i n g  1955 to 1966  1943 to 1955  Period  F i g . 23- Trends f o r K l e v e l s w i t h t i m e f o r outwash (0), a l l u v i a l (A), and g l a c i a l m a r i n e (G) s o i l s .  158  13.0 12.5 12.0 11.5 11.0 OM  10.5 10.0 9-5 9.0 8.5 8.0 7.5  .1 woodland  Land Fig.  24.  1955 to 1966  1966 to 1976  "1976 to 1983  Clearing  1943 to 1955  Before 1943  Period  T r e n d s f o r OM l e v e l s w i t h t i m e a n d g l a c i a l m a r i n e (G) s o i l s .  f o r outwash  (0), a l l u v i a l  (A),  N (*)  woodland  T976 to 1983  1966 to 1976  Land Fig.  25.  Trends and  for H  levels  glacialmarine  Clearing  with (G)  159  1955 to 1966  time  soils.  1943 to 1955  Before 1943  Period f o r outwash  (0), a l l u v i a l  (A),  l e v e l s seem more c o n s i s t e n t .  On g l a c i a l m a r i n e s o i l s t h e use o f t h e  w e i g h t e d average as t h e t=0 c o n t r o l l e a d s t o d e c r e a s e s i n Ca, K, and P and t h e same l e v e l o f Mg a f t e r f i v e y e a r s o f c u l t i v a t i o n . The l a r g e s t l o s s o f OM i s i n t h e f i r s t  15 y e a r s on a l l  parent  m a t e r i a l s , r a n g i n g from 12$ on g l a c i a l m a r i n e s o i l s t o 40$ on a l l u v i a l soils.  A s i m i l a r p a t t e r n o f r a p i d i n i t i a l l o s s i s r e p o r t e d by  G r e g o r i c h and Anderson (1986).  OM g e n e r a l l y c o n t i n u e s t o d e c r e a s e f o r  the e n t i r e 35 y e a r s t u d y p e r i o d on outwash and g l a c i a l m a r i n e s o i l s , but i n c r e a s e s a f t e r 15 y e a r s on a l l u v i a l s o i l s , a p p a r e n t l y f r o m  large  a d d i t i o n s o f manure. The amount o f d e g r a d a t i o n o f OM and N i s a f u n c t i o n o f c r o p p i n g s y s t e m s and m o i s t u r e regimes  ( A l l i s o n 1966, Campbell  and P a u l 1978),  w h i c h d i f f e r by p a r e n t m a t e r i a l , and p a r t l y depends on i n i t i a l (Robertson 1983).  levels  These l o s s e s r e s u l t m a i n l y from i n c r e a s e d  m i n e r a l i z a t i o n , r e m o v a l o f biomass, and s t i m u l a t e d m i c r o b i a l a c t i v i t y due t o t h e improved  fertility  s o i l s (Juma and M c G i l l  and a c i d i t y c o n d i t i o n s o f c u l t i v a t e d  1986).  Losses o f OM a r e about 20$ on outwash and g l a c i a l m a r i n e s o i l s a f t e r 35 y e a r s .  A l l u v i a l s o i l s l o s e up t o 40$ o f t h e i n i t i a l OM i n 15  y e a r s , b u t rebound t o t h e same 20$ l o s s a f t e r 35 y e a r s .  These v a l u e s  are comparable t o t h o s e o f S h u t t (1925), Newton e t a l . (1945), Haas e t al.  (1957), and Wang e t a l . (1984).  The s o i l s and ecosystem  by Wang e t a l . (1984) ( p o d z o l i c s o i l s c o n v e r t e d from to  described  coniferous forest  a g r i c u l t u r e ) a r e most s i m i l a r t o t h o s e i n t h i s study.  Losses o f OM  and N can even be r e v e r s e d as i n d i c a t e d by t h e o l d r a s p b e r r y p l o t on outwash s o i l s , w h i c h has even h i g h e r OM and N v a l u e s than t h e woodland soils.  1 60  N l e v e l s i n c r e a s e r a p i d l y f o r 5 y e a r s then g e n e r a l l y decrease outwash s o i l s .  N decreases  f o r 15 y e a r s on a l l u v i a l and 5 y e a r s  g l a c i a l m a r i n e s o i l s and t h e n i n c r e a s e s . manure may  on on  A g a i n , the a p p l i c a t i o n o f  a f f e c t t h i s change i n d i r e c t i o n .  These r e s u l t s a r e  c o n t r a r y t o t h o s e r e p o r t e d i n s t u d i e s o f g r a s s l a n d s o i l s , w h i c h show a c o n t i n u o u s decrease  i n N l e v e l s w i t h i n c r e a s i n g t i m e and  i n t e n s i t y o f c u l t i v a t i o n (Hobbs and Brown 1957,  probably  Newton e t a l . 1945,  V o r o n e y e t a l . 1981). S h u t t (1925) found e q u i l i b r i u m f o r t h e s e o r g a n i c c o n s t i t u e n t s was reached  a f t e r 22 y e a r s and M a r t e l and  Others suggest al.  1981,  l o s s e s may  P a u l (1974) a f t e r 70 y e a r s .  c o n t i n u e ( P a u l and Van Veen 1978,  Voroney e t  T i e s s e n e t a l . 1982), w h i c h appears t o be the case i n t h i s  s t u d y a f t e r 35 y e a r s .  However, t h e s e s t u d i e s were made i n a p r a i r i e -  g r a i n ecosystem as compared t o t h e f o r e s t - p a s t u r e ( b e r r i e s ) e c o s y s t e m in this  study.  The C:N  n a r r o w s w i t h t i m e t o about 12:1 a f t e r 35 y e a r s on a l l  s o i l s a f t e r a c o n t i n u o u s drop from about 15:1, w i t h a minor e x c e p t i o n on g l a c i a l m a r i n e s o i l s .  T h i s t r e n d i s t y p i c a l when woodland i s  c o n v e r t e d t o a g r i c u l t u r e (Duchaufour 1982). levelling off.  There i s no  The o l d r a s p b e r r y p l o t has a C:N  apparent  o f about 12, w h i c h i s  comparable t o the 35 year v a l u e s on a l l u v i a l and g l a c i a l m a r i n e s o i l s , and which c o u l d be the s t e a d y s t a t e v a l u e f o r a l l t h r e e  soils.  The i m m e d i a t e f l u s h f r o m the wood ash i n c r e a s e s the c o n t e n t s o f Ca, Mg,  K, and P s i n c e the l i t t e r i s c o n s i d e r a b l y h i g h e r i n t h e s e  elements than the m i n e r a l s o i l . examine the a n t h r o p o g e n i c  The  l i t e r a t u r e g e n e r a l l y does not  e f f e c t s on t r e n d s i n the l e v e l of c a t i o n s  a f t e r c u l t i v a t i o n , except f o r the i n i t i a l increase a f t e r  clearing.  L a v k u l i c h and Rowles (1971) have shown t h a t Ca and Mg i n c r e a s e due 1 61  to  c u l t i v a t i o n on s o i l s s i m i l a r t o t h e outwash s o i l s i n t h i s study. l o n g t h e l e v e l s r e m a i n h i g h depends on management and s o i l such as d r a i n a g e ,  How  properties,  c u l t i v a t i o n , and t h e a p p l i c a t i o n o f amendments;  t h e r e f o r e , many o f the t r e n d s a r e e r r a t i c . The major e f f e c t s o f management a r e i n d i c a t e d by t h e g e n e r a l of d i s t i n c t patterns i n the data a f t e r f i v e years.  lack  The o n l y sequences  o f means t h a t a r e n o t e r r a t i c a f t e r c l e a r i n g and c u l t i v a t i o n a r e t h e pH and OM sequences on g l a c i a l m a r i n e s o i l s .  On both t h e g l a c i a l m a r i n e  and outwash s o i l s , t h e i n c r e a s e i n f e r t i l i t y a f t e r c l e a r i n g i s s t r o n g l y dependent on t h e amount o f amendment. amendments a r e needed j u s t t o m a i n t a i n t i m e t h e y were c l e a r e d .  On a l l u v i a l  soils  the l e v e l s of f e r t i l i t y  at the  Time appears t o p l a y a r o l e i n t h e l e v e l o f  the v a r i a b l e s m o s t l y i n t h e f i r s t  5 t o 15 y e a r s , a f t e r w h i c h t h e degree  o f management p l a y s the major r o l e . B u l k d e n s i t y i n c r e a s e s i n t h i s s t u d y by an average o f 26$ on a l l u v i a l s o i l s , 36% on g l a c i a l m a r i n e s o i l s , and 58$ on outwash s o i l s . These changes a r e as g r e a t o r g r e a t e r than t h o s e r e p o r t e d  by T i e s s e n  e t a l . (1982) and Brady (1985), w h i c h range from 14 t o 30$.  The l a r g e  change i n b u l k d e n s i t y on t h e outwash and g l a c i a l m a r i n e s o i l s p r o b a b l y r e s u l t s f r o m t h e very l o w v a l u e s i n t h e uncropped s t a t e , w h i c h a r e much l o w e r than t h o s e r e p o r t e d  (930 t o 1210 kg m-3) i n T i e s s e n  (1982) and Brady (1985), who r e p o r t e d  on a l r e a d y - c l e a r e d  soils.  et a l . The  l a r g e s t i n c r e a s e o c c u r s i m m e d i a t e l y a f t e r c l e a r i n g - from 15$ on g l a c i a l m a r i n e t o 54$ on outwash s o i l s .  B u l k d e n s i t y v a l u e s appear t o  l e v e l o f f i n 25 t o 35 y e a r s but n o t u n t i l i n c r e a s i n g by 69$ on outwash, 33$ on a l l u v i a l , and 56$ on g l a c i a l m a r i n e  soils.  Except f o r t h e C:N on a l l s o i l s and pH and OM on g l a c i a l m a r i n e  1 62  s o i l s , the trends i n the data are not l i n e a r .  Therefore,  reliable  p r e d i c t i o n o f f u t u r e l e v e l s o f any v a r i a b l e i s n o t p o s s i b l e i n t h i s s t u d y s i n c e r 2 v a l u e s a r e g e n e r a l l y l e s s than 0.20.  Some q u a s i - s t e a d y  s t a t e s have been reached, b u t these w i l l h o l d o n l y as l o n g as the l a n d use i s c r o p l a n d o r p a s t u r e .  The C:N appears t o be l e v e l l i n g o f f t o a  v a l u e between 11.5 and 12.0. In summary, the most c o n s i s t e n t t r e n d s among t h e p a r e n t m a t e r i a l s are t h e d e c r e a s e i n OM and C:N and t h e i n c r e a s e i n pH o v e r t i m e . l e v e l s o f Ca, Mg, and K depend on t h e i n i t i a l f e r t i l i t y l e v e l . decrease  The They  when i n i t i a l l e v e l s a r e h i g h ( a l l u v i a l s o i l s ) and i n c r e a s e  when i n i t i a l l e v e l s a r e low (outwash and g l a c i a l m a r i n e s o i l s ) . 5.5.3  E f f e c t s o f Country The d i f f e r e n t degree o f management between c o u n t r i e s can be  e x p l o r e d by comparing t h e l e v e l s o f s o i l p r o p e r t i e s on t h e c u l t i v a t e d soils.  The outwash s o i l s have t h e g r e a t e s t d i f f e r e n c e i n l a n d use  between c o u n t r i e s - m o s t l y b e r r i e s i n Canada and m o s t l y p a s t u r e i n t h e USA.  The h i g h e r i n t e n s i t y o f management i n Canada i s r e v e a l e d i n t h e  s i g n i f i c a n t l y h i g h e r l e v e l s o f a l l p r o p e r t i e s , e x c e p t OM and N. Although  t h e s e two p r o p e r t i e s a r e h i g h e r i n Canada, t h e y b a r e l y m i s s  s i g n i f i c a n c e , h a v i n g F p r o b a b i l i t i e s o f 0.07 and 0.06, r e s p e c t i v e l y . On a l l u v i a l s o i l s the c u l t i v a t e d p l o t s a r e managed f o r d a i r y i n a p a s t u r e - c o r n s i l a g e r o t a t i o n i n both c o u n t r i e s .  This  similar  management r e s u l t s i n s i g n i f i c a n t d i f f e r e n c e s o n l y f o r Ca and P. P o s s i b l y these d i f f e r e n c e s r e s u l t f r o m d i f f e r e n t i a l a p p l i c a t i o n o f l i m e and t h e w i n t e r i n g o f c a t t l e , o r f r o m l a r g e v a r i a b i l t y i n t h e d a t a . The g l a c i a l m a r i n e s o i l s appeared t o have s i m i l a r management i n t e n s i t i e s i n the f i e l d :  mostly pasture w i t h recent arable  163  c u l t i v a t i o n on some p l o t s .  The U.S. s o i l s have s i g n i f i c a n t l y  l e v e l s o f Mg, P, OM, and N.  higher  OM and N a r e l o w e r i n Canada p o s s i b l y  because t h e two 1980 Canadian s i t e s have much l e s s r e s i d u a l c h a r c o a l than t h e i r c o r r e s p o n d i n g U.S.  sites.  As compared w i t h t h e c o u n t r i e s combined, t h e r e l a t i o n s h i p o f changes i n s o i l p r o p e r t i e s w i t h t i m e - s i n c e - c l e a r i n g on Canadian and U.S. s o i l s a r e v e r y s i m i l a r , a l t h o u g h some changes may be more dramatic,  such a s Ca (19-593-1223-1304-1387 mg kg-1 f o r the woodland-  1980-1970-1960-1950 sequence) and P (41-72-322-167-261 mg kg-1) on outwash s o i l s i n Canada due t o heavy f e r t i l i z a t i o n , and o t h e r s  less  dramatic,  Only  such a s Ca (80-162-472-204-269 mg kg-1) i n t h e USA.  one t r e n d has changed: P l e v e l s s t e a d i l y i n c r e a s e i n t h e USA on outwash s o i l s (21-23-29-37-44 mg kg-1) i n s t e a d o f b e i n g  erratic,  p r o b a b l y r e f l e c t i n g t h e more c o n s i s t e n t l a n d use and f e r t i l i z e r a p p l i c a t i o n i n t h e USA a c r o s s age c l a s s e s .  Other minor d i f f e r e n c e s  a r e the r i s e i n pH on outwash 1970 s o i l s i n t h e USA, t h e h i g h 1950 v a l u e s f o r Ca (992 mg kg-1) and Mg (613 mg kg-1) on U.S. a l l u v i a l soils,  and t h e r i s e i n pH i n Canada i n 1970 on g l a c i a l m a r i n e  soils.  These s l i g h t d i f f e r e n c e s p r o b a b l y r e s u l t f r o m s l i g h t d i f f e r e n c e s i n management.  5.6 A n a l y s i s o f V a r i a b l e s The d e t e r m i n a t i o n  o f any s i m i l a r i t i e s among t h e i n d i v i d u a l e i g h t  v a r i a b l e s o r t h e predominance o f one o r s e v e r a l o f them can be i m p o r t a n t i n u n d e r s t a n d i n g t h e complex r e l a t i o n s h i p s among v a r i a b l e s and t h e s o i l s .  M a t h e m a t i c a l e q u a t i o n s d e r i v e d from p r i n c i p a l  component a n a l y s i s can be used t o d e s c r i b e t h e i r i n t e r r e l a t i o n s h i p s and  t o d e t e r m i n e how t h e v a r i a b l e s a r e c o r r e l a t e d .  164  T h i s a n a l y s i s can  a l s o i n d i c a t e w h i c h v a r i a b l e s a r e t h e most i m p o r t a n t t o measure and whether t h i s i m p o r t a n c e d i f f e r s by p a r e n t m a t e r i a l . 5.6.1 G r o u p i n g and R e l a t i o n s h i p s Among t h e V a r i a b l e s The r e s u l t s o f the p r i n c i p a l component a n a l y s i s a r e s i m i l a r f o r the t h r e e p a r e n t m a t e r i a l s , i n d i c a t i n g t h e v a r i a b l e s a r e a c t i n g i n s i m i l a r f a s h i o n i n a f f e c t i n g the variance E9).  i n t h e d a t a (Tables 24, E7-  Two f a c t o r s , each composed o f s e v e r a l v a r i a b l e s , were  f o r each p a r e n t m a t e r i a l .  extracted  The v a r i a b l e s e x p l a i n i n g most o f the  v a r i a t i o n a r e t h o s e w h i c h dominate F a c t o r  1 (Ca, Mg, K, OM, and N),  w h i c h e x p l a i n s about h a l f o f the v a r i a n c e .  pH dominates F a c t o r 2,  w h i c h e x p l a i n s about o n e - f o u r t h o f t h e v a r i a n c e . P i s the l e a s t d e f i n e d v a r i a b l e and has the s m a l l e s t l o a d i n g and f i n a l c o m m u n a l i t y , i n d i c a t i n g i t i s n o t very u s e f u l i n e x p l a i n i n g v a r i a t i o n i n the data set. findings of the m u l t i p l e  T h i s l a c k o f d e f i n i t i o n o f P c o n f i r m s the regression.  T a b l e 24. Summary o f p r i n c i p a l component a n a l y s i s f o r outwash, a l l u v i a l , and g l a c i a l m a r i n e s o i l s . Parent Material  Factor  Percent o f variance accounted f o r 54.0  Outwash  Ca, Mg, OM, N  31.7 Alluvial Glacialmarine  1 2 1 2  pH (H20), pH (CaCl2>» » Ca  53.6  Ca, Mg, K, P, OM, N pH (H20), pH ( C a C l 2  25.7 65.0  p  )  Ca, Mg, K, P, OM, N pH (H20), pH ( C a C ^  23.1  5.6.2 V a r i a b l e s As D i s c r i m i n a t o r s  Dominant v a r i a b l e s  o f Land C l e a r i n g Age Groups  The e i g h t v a r i a b l e s were o n l y m o d e r a t e l y e f f e c t i v e d i s c r i m i n a t o r s  1 65  i n separating  and  c l a s s i f y i n g t h e l a n d c l e a r i n g age  s u c c e s s f u l i n d i f f e r e n t i a t i n g the l i t t e r l a y e r .  groups, b e i n g most  A t r e n d from group 1  group) t o group 6 ( w e i g h t e d average group) i s i n d i c a t e d , but  (1950  age  there  i s no c l e a r d i s c r i m i n a t i o n . Function  1 i s c l e a r l y the most p o w e r f u l of the  functions  produced, a c c o u n t i n g f o r 82$ of the t o t a l d i s c r i m i n a t i n g power f o r outwash s o i l s , 90% E1-E3).  (Tables  f o r a l l u v i a l s o i l s , and  85$  for glacialmarine  This function achieves a reasonable separation  the h o r i z o n t a l a x i s between group 7 (the l i t t e r l a y e r ) and  left,  but no c l e a r s e p a r a t i o n  along  the  There i s a t r e n d from group 6  r e m a i n i n g s i x groups ( F i g s . 26-28). ( w e i g h t e d average p l o t s ) on the  soils  r i g h t t o group 1 (1950  of the group c e n t r o i d s  group) on  (denoted by  the *) i s  evident. Function  2 has  f a r l e s s d i s c r i m i n a t i n g power and  e x p l a i n i n g group d i f f e r e n c e s . variance  15$  of the  f o r outwash s o i l s , 6$ f o r a l l u v i a l s o i l s , and  glacialmarine soils. contains  I t explains only  less u t i l i t y total  11$  for  When compared w i t h t h e f i r s t f u n c t i o n , i t  o n l y 7 t o 18 p e r c e n t o f the e x p l a n a t o r y  separation  for  a c h i e v e d by F u n c t i o n  group 6 s l i g h t l y down and  power.  The  2 i s far less distinctive, pulling  group 1 up.  The  lack of separation  of  groups 1 through 6 c o n f i r m s t h a t a f t e r c l e a r i n g , d i f f e r e n c e s i n management a r e more i m p o r t a n t than t i m e i n d i f f e r e n t i a t i n g the p l o t s . I n d i s c r i m i n a t i n g among t h e l a n d age  c l e a r i n g groups,  the  dominant v a r i a b l e s f o r outwash s o i l s c o n t r i b u t i n g t o F u n c t i o n N, f o r a l l u v i a l s o i l s OM,  and  The  dominant ones i n F u n c t i o n  2 a r e pH ( C a C l ) and K f o r outwash s o i l s ,  and  soils,  pH and  (CaCl2^ pH  2  pH  Ca.  2  (which operate i n opposite  ( C a C l ) and  and  OM  and  Mg  f o r g l a c i a l m a r i n e s o i l s OM  1 are  (H20)  direcions) for  alluvial  f o r g l a c i a l m a r i n e s o i l s (Tables 1 66  E4-  INDICATES A GPCUP CENTRDID CANON [CAL OU  CISCRIMINANT 0 #  FUNCTION 1 4.0 o•  J  12.0  OUT x'  DUT -X X  12.0  B. C  3 1 1322 3224 **422 2242 331*4 1 5466 555666 " 4456*66 55*566666 56656 5 6 5  4.0  .0  -4.0  7 7 7 7 7 77 7 7 7 7 7 77 7 77 77* 7 7 7 7 777 7 7 7 7 7 7 7  -3.0  -12. 0  OUT X  X*OUT  .0  8 .0  4.0  12 .0  Fig. 26. Discriminant analysis scatterplot o f cut wast.soils using a l l seven land c l e a r i n g age groups (1=1950, 2=1960, 3-1970, 4=1980, 5=woodland, 6=weighted average, 7=litter layer).  167  X -X OUT  * CANON CAL o u  OUT X  X+  IKCIC4TES A GPCUP  DISCRIMINANT 0  FUNCTICN  CENTROIC  I  12.0  o.u  #  —  OUT -X X  12.0  8.0  4.0  3 3 2 233 34*3 1*4116 24*5666 6 45656666 456*6*66 5566666 6 55566 6 5 6  .0  7  77  77 7 7 7 777  77  7  7  -4. C  -8.0  -12.0  CUT X  x+-  OUT  F i g  . B  4.C  8.0  12.0  27. Discriminant analysis scatterplot seven land clearing age groups (1=19 50 , 2-196), 3-197°' H=1980 , 5=woodland, 6=wei«hted average, 7=litter layer).  168  X -X OUT  * CANONICAL OUT OUT X  INDICATES A GRCUP CENTROID  C ISCPIPINANT .C  FUNCTION 4.0_  1  _H*2  J9.0  OUT -X X  12.0  8.0  4. C  .0  -4 .0  7 7  I 1111 211311 3*3114 34*3634 343* 53664 566 25466*666 54*66666 56656 5 6 6  7 7 7  7 77 7 7 7  77 •77 7 77 1  77  7 7 7  -8.0  -12. C  CUT X OUT  .0  4.0  8.0  12.0  Fig. 28. Discriminant analysis scatterplot o f glacialmarine s o i l s using a l l seven land clearing age groups (1s 1950, 2s 1960, 3= 1970, 4=1980, Sswoodland, 6=weighted average, 7 = l i t t e r layer).  169  X -X OUT  E6).  These r e s u l t s seem t o d i f f e r somewhat from those o b t a i n e d i n t h e  p r i n c i p a l component a n a l y s i s because each a n a l y s i s has a d i f f e r e n t purpose.  The d i s c r i m i n a n t  a n a l y s i s i n d i c a t e s that the p r i n c i p a l  v a r i a b l e s a r e OM and pH i n t h a t they d i s t i n g u i s h t h e l a n d c l e a r i n g ages groups.  P r i n c i p a l component a n a l y s i s seeks t o e x p l a i n t h e  v a r i a t i o n o f t h e d a t a as a whole, r e g a r d l e s s age  groups.  of t h e i r relationship to  Ca, Mg, K, OM, and N s e r v e i n t h i s r o l e .  variables i n multiple regression  The i m p o r t a n t  a r e t h e same as f o r t h e d i s c r i m i n a n t  a n a l y s i s because both a n a l y s e s a t t e m p t t o d e v e l o p a r e l a t i o n s h i p between t i m e - s i n c e - c l e a r i n g  and the l e v e l s o f the c h e m i c a l v a r i a b l e s .  I n a l l t h r e e c a s e s , P seems t o be o f l i t t l e v a l u e i n d i f f e r e n t i a t i n g the  data.  5.7 C l a s s i f i c a t i o n T e s t i n g o f Age Groups The d i s c r i m i n a n t a n a l y s i s was performed t o d e t e r m i n e whether t h e d a t a a l o n e can d i f f e r e n t i a t e t h e l a n d c l e a r i n g age groups. calculated discriminant  Using the  s c o r e f o r each l a n d c l e a r i n g age group, t h e  analysis c o r r e c t l y predicted  t h e c o r r e c t group f o r an average o f 64$  o f t h e outwash, 61$ o f t h e a l l u v i a l , and 63$ o f the g l a c i a l m a r i n e groups (Tables 25-27).  The l a c k o f s e p a r a t i o n  age  among t h e c u l t i v a t e d  p l o t s i n F i g s . 26 t o 28 and the 36 t o 39$ m i s c l a s s i f i c a t i o n i s n o t surprising considering groups. 5.8 S o i l  t h e amount o f v a r i a b i l i t y w i t h i n t h e age  P o s s i b l y , other v a r i a b l e s could  improve t h e c l a s s i f i c a t i o n .  Variability  The i n t e r p r e t a t i o n o f s o i l v a r i a b i l i t y i s p r i n c i p a l l y through t h e examination of the c o e f f i c i e n t o f v a r i a t i o n . l i t e r a t u r e , v a r i a b i l i t y i s influenced  As r e p o r t e d  i n the  by such f a c t o r s as p a r e n t  1 70  Table 25. C l a s s i f i c a t i o n r e s u l t s f o r outwash  A c t u a l group 1950 1960 1970 1980 woodland weighted average litter  1950  1960  55 27 10 2  20 38 38 15  soils.  P r e d i c t e d group membership 1970 1980 woodwt. land avg 25 20 50 17  15 2 45 7 5  20 83 12  (%) litter  10 83 5  95  Table 26. C l a s s i f i c a t i o n r e s u l t s f o r a l l u v i a l s o i l s .  A c t u a l group 1950 1960 1970 1980 woodland w e i g h t e d average litter  1950  1960  35 12 2 20 5 3  10 68 10 5  P r e d i c t e d group membership 1970 1980 woodwt. land avg 12 8 70 25  20 10 18 30 8 8  23 2 20 64 28  1950 1960 1970 1980 woodland w e i g h t e d average litter  23 61 98  T a b l e 27. C l a s s i f i c a t i o n r e s u l t s f o r g l a c i a l m a r i n e  A c t u a l group  litter  1950  1960  49 2 20  18 60 15 30  soils.  P r e d i c t e d group membership 1970 1980 woodwt. land avg 31 15 58 2 2  (%) litter  2  23  2 53 8 5  2  171  5 10 63 28  27 65 2  98  m a t e r i a l and s i z e o f t h e s a m p l i n g Wilding  1985).  a r e a ( B e c k e t t and Webster 1971,  The CVs f o r c u l t i v a t e d s o i l s a r e g e n e r a l l y  c o n s i d e r a b l y l e s s t h a n those f o r t h e e n t i r e d a t a s e t ( T o t a l CVs) (Table 28). T h i s d i f f e r e n c e between t h e d a t a s e t s i s expected s i n c e the c u l t i v a t e d s o i l s a r e more homogeneous than t h e e n t i r e d a t a s e t , w h i c h i n c l u d e s t h e anomalous l i t t e r l a y e r . and  P. T o t a l CVs a r e e x t r e m e l y  h i g h (except pH s i n c e i t i s a l o g a r i t h m i c  v a r i a b l e ) r e s u l t i n g from t h e c o m b i n a t i o n d i f f e r e n t populations 28).  The o n l y e x c e p t i o n s a r e pH  (the l i t t e r  o f two s i g n i f i c a n t l y  l a y e r and t h e m i n e r a l s o i l )  (Table  T o t a l CVs on outwash s o i l s a r e more than 100 (except K, w h i c h i s  67), range from 50 t o 110 on a l l u v i a l , and a r e more than 90 on glacialmarine soils.  CVs a r e g e n e r a l l y h i g h e s t f o r t h e g r o u p i n g s w i t h  those p l o t s t h a t have n e a r l y z e r o sample v a l u e s i n t h e same way t h a t S i n g h e t a l . (1985) show h i g h CVs f o r l o w l e v e l s o f m i c r o n u t r i e n t s . 5.8.1 A n a l y s i s o f Parent M a t e r i a l s 5.8.1.1 R e s u l t s o f A n a l y s i s The  CVs f o r t h e v a r i a b l e s on outwash s o i l s range f r o m 12 f o r H^Q,  pH t o 143 f o r Mg u s i n g t h e e n t i r e d a t a s e t .  When u s i n g o n l y t h e  c u l t i v a t e d s o i l s , t h e range i n CVs i s from 7 f o r pH ( H 2 0 ) t o 122 f o r Ca (Table 28). The v a r i a b l e s w i t h CVs more than 100 u s i n g t h e e n t i r e d a t a s e t a r e Ca, Mg, P, OM, and N.  When u s i n g o n l y t h e c u l t i v a t e d  soils,  Ca and P a r e t h e o n l y v a r i a b l e s w i t h CVs l a r g e r than 100 (Table F1). On t h e a l l u v i a l s o i l s CVs range from 9 f o r pH ( H o ) t o 106 f o r P, 2  w h i c h has t h e o n l y CV l a r g e r than 100 when u s i n g t h e e n t i r e d a t a s e t . When o n l y t h e c u l t i v a t e d s o i l s a r e examined, P has t h e l a r g e s t CV a t 99 ( T a b l e F 2 ) . 1 72  Table 28. C o e f f i c i e n t s o f v a r i a t i o n (%) f o r c h e m i c a l and p h y s i c a l v a r i a b l e s o f outwash, a l l u v i a l , and g l a c i a l m a r i n e s o i l s by age. Parent Matl.  Age#  RF  BD  1950 1960 1970 1980 woodland litter wt. a v g .  34 25 31 48 —  19 10 10 12 14  —  —  —  —  cult. mineral min.+avg. TOTAL  AVG(TOTAL)~ AVG(CULT) -1950 1960 1970 1980 woodland litter wt. a v g . cult. mineral min.+avg. TOTAL  — — — — —  Glacialmarine  K  P  OM  N  149 115 69 120 163 56 67  38 52 62 66 73 49 52  23  32 42 38 28 36 25  101 92 108 116 119 32 90  10 18 20 17 23 24 19  15 25 24 24 25 19 24  9 12 13 14  122 141 146 133  56 63 61 143  35 46 48 67  119 130 136 124  20 21  —  7 10 11 12  112  24 25 30 118  —  5 4  5 4  59 64  33 31  21 19  45 43  14 12  15 14  7 3 4 4 10 11 10  7 4 6 5 9 13 10  33 40 49 31 59 45 54  30 31 15 25 40 40 39  79 57 58 54 59 44 52  59 84 69 60 78 64 68  19 14 19 16 34 22 28  24 18 23 18 30 25 27  5 7 8 9  6 8 8 10  39 45 47 66  33 40 42 53  62 62 62 77  95 95 91 106  19 30 38 99  22 27 34 95  3 3  4 3  27 25  17 14  38 36  47 46  19 17  20 19  —  11 9  13  12 20 —  —  —  12 16  —  —  —  —  AVG(TOTAL) AVG(CULT) —  Mg  8 8 6 9 7 11 7  —  —  Ca  6 8 4 8 8 9 8  13 21 —  pH1+ pH2  —  30  50 47 71 36 —  13 15 12 17 17  4 4 5 5 5 9 5  4 4 6 5 6 11 6  70 85 105 112 105 34 42  68 81 62 64 75 43 54  67 56 50 46 37 45 34  127 158 65 103 147 63 72  23 19 17 29 27 25 25  27 20 18 29 39 32 25  cult. — mineral — min.+avg. — TOTAL  18 21  5 7 8 8  6 8 9 9  99 108 96 160  70 76 72 121  60 59 56 91  151 168 170 144  24 25 31 96  25 29 35 97  4 3  5 4  66 79  44 48  36 38  74 86  17 17  20 20  1950 1960 1970 1980 woodland litter wt. a v g .  AVG(TOTAL)— AVG(CULT) --  1 73  # 1950 1960 1970 1980  = = = =  cleared cleared cleared cleared  between between between between  19^3 1955 1966 1976  and and and and  1955 1966 1976 1983  woodland = woodland m i n e r a l s o i l l i t t e r = woodland l i t t e r l a y e r wt. avg. = weighted average o f woodland m i n e r a l s o i l and l i t t e r c u l t . = c u l t i v a t e d s o i l s o n l y : c l e a r e d between 1943 and 1983 m i n e r a l = c u l t i v a t e d s o i l s p l u s woodland m i n e r a l s o i l min.+avg. = m i n e r a l s o i l s p l u s weighted average s o i l + pH1= pH i n  H Q 2  pH2= pH i n CaC12  1 74  The CVs on the g l a c i a l m a r i n e s o i l s range from 160 f o r Ca u s i n g the e n t i r e d a t a s e t and from for  P u s i n g o n l y the c u l t i v a t e d s o i l s 5.8.1.2  5 f o r pH ( H 2 0 ) t o  ^° 151  (Table F3).  Discussion of V a r i a b i l i t y  In comparison  8 f o r pH ( H 2 ^  by Parent M a t e r i a l  t o CVs r e p o r t e d i n the l i t e r a t u r e , t h o s e i n t h i s  s t u d y a r e l o w e r f o r OM  and N, e x c l u d i n g the l i t t e r l a y e r from  the  c a l c u l a t i o n s ( B e c k e t t and Webster 1971, W i l d i n g and Drees  1978,  W i l d i n g and Drees 1983).  K, P,  Values f o r b u l k d e n s i t y , Ca, Mg,  and  pH are comparable t o v a l u e s i n the l i t e r a t u r e , a l t h o u g h b u l k d e n s i t y and Ca v a l u e s may  be s l i g h t l y h i g h e r and Mg v a l u e s s l i g h t l y  (Mausbach e t a l . 1980,  Lee e t a l . 1975).  m a t t e r i n t h i s s t u d y may  The l o w e r CVs o f o r g a n i c  be a t t r i b u t e d t o the l a r g e r sample s i z e f o r  t h e l o s s - o n - i g n i t i o n method o f d e t e r m i n i n g o r g a n i c m a t t e r to  lower  (averaging 6  10 g) compared t o about 2 g used i n the Leco carbon a n a l y s i s  0.1 t o 2.0 g f o r t h e W a l k l e y - B l a c k method. comparisons,  the c a u t i o n suggested  heeded, t h a t few s c i e n t i s t s observational intervals, not n e c e s s a r i l y  and  When making these  by C a m p b e l l (1979) s h o u l d be  use comparable s a m p l i n g schemes o r  and so the magnitude o f s o i l v a r i a b i l i t y i s  comparable.  An e x a m i n a t i o n o f the average p l o t CVs i n t h i s s t u d y i n d i c a t e s t h a t v a r i a b i l i t y i s i n the o r d e r a l l u v i u m <^ outwash <^ g l a c i a l m a r i n e (Tables F1-F3, F i g . 29). The CVs f o r pH a r e comparable, f o r Ca and glacialmarine >  outwash >  a l l u v i a l s o i l s , f o r K, OM,  Mg  and N  g l a c i a l m a r i n e = a l l u v i u m > outwash, and f o r P g l a c i a l m a r i n e > a l l u v i u m = outwash ( T a b l e s F1-F3).  These r e l a t i o n s h i p s h o l d whether  c o n s i d e r i n g o n l y the c u l t i v a t e d s o i l s o r the e n t i r e d a t a s e t . F o r t h e most p a r t t h e s e f i n d i n g s s u p p o r t the c o n c l u s i o n s o f 1 75  84 80 76 72 68 64 60 56 52 48 Avg. CV Cult.  44 40 36  Soils Only  32 28 24 20 16 12 8 4 0 0  A G Ca  0  A G Mg  A K  G  A P  G  0  A G OM  0  A N  Variable Fig.  29. Average CV f o r s i x c h e m i c a l v a r i a b l e s on outwash (0), a l l u v i a l (A), and g l a c i a l m a r i n e (G) s o i l s u s i n g c u l t i v a t e d soils only.  1 76  G  Mausbach e t a l . (1980) t h a t Spodosols (outwash and g l a c i a l m a r i n e s o i l s ) a r e more v a r i a b l e than E n t i s o l s ( a l l u v i a l s o i l s ) . that loess s o i l s  The r e s u l t s  (upper s o l a o f t h e outwash and g l a c i a l m a r i n e  soils)  are more v a r i a b l e than a l l u v i a l s o i l s a r e c o n t r a r y t o t h e i r conclusions.  However, t h e i r s t u d y examines m o s t l y s e v e r a l meter deep  l o e s s s o i l s i n t h e U.S. p r a i r i e s ,  whereas the s o i l s i n t h i s s t u d y a r e  dominated by l o e s s o n l y i n t h e upper 0.5 m a p p r o x i m a t e l y .  5.8.2 V a r i a b i l i t y o f Age In general  woodland v a r i a b i l i t y i s l a r g e r than v a r i a b i l i t y on  each o f t h e c u l t i v a t e d age groups f o r each p a r e n t m a t e r i a l f o r b u l k d e n s i t y and t h e e i g h t c h e m i c a l v a r i a b l e s .  W i t h few e x c e p t i o n s , no  p a t t e r n o c c u r s among t h e f o u r c u l t i v a t e d age groups. fortunate since previous considered  age  s t u d i e s i n s o i l v a r i a b i l i t y have n o t  age as one o f t h e v a r i a b l e s .  observations  This i s  This r e s u l t confirms  previous  t h a t t r e n d s have been i n f r e q u e n t w i t h i n t h e c u l t i v a t e d  grouping.  5.8.3 V a r i a b i l i t y  o f Land Use  There a r e a l s o few t r e n d s by l a n d use. When c o m p a r i n g woodland w i t h t h e c u l t i v a t e d s o i l s as a w h o l e , woodland CVs  ^  c u l t i v a t e d CVs  f o r a l l v a r i a b l e s e x c e p t K on g l a c i a l m a r i n e s o i l s and P on a l l u v i a l soils.  This observation  i s c o n t r a r y t o t h e f i n d i n g s o f B e c k e t t and  Webster (1971), who found c u l t i v a t e d s o i l s t o be more v a r i a b l e . P o s s i b l y t h e d e c r e a s e i n v a r i a b i l i t y a f t e r c u l t i v a t i o n r e s u l t s from the g r e a t e r homogeneity i n management o r c r o p s i n t h i s s t u d y as compared t o t h o s e r e p o r t e d by these a u t h o r s o r from t h e g r e a t e r heterogeneity  o f the woodland s o i l s .  The v a r i a b i l i t y o f a l l m i n e r a l  177  s o i l s combined i s g r e a t e r t h a n t h e c u l t i v a t e d s o i l s f o r a l l p a r e n t materials f o r a l l variables. 5.8.4 V a r i a b i l i t y  o f Country  Major d i f f e r e n c e s i n management between c o u n t r i e s , e s p e c i a l l y on outwash s o i l s , i s n o t r e f l e c t e d i n v a r i a b i l i t y and no t r e n d s a r e apparent (Table 29).  For i n s t a n c e , OM shows no d i f f e r e n c e s on a l l  three parent m a t e r i a l s .  The o n l y d i f f e r e n c e s i n pH and P a r e t h a t pH  i s g e n e r a l l y more v a r i a b l e i n Canada on outwash s o i l s and P i s more v a r i a b l e i n t h e USA.  Ca v a r i a b i l i t y i s g r e a t e r i n t h e USA f o r outwash  and a l l u v i u m and t h e r e v e r s e on g l a c i a l m a r i n e  5.8.5 Summary o f V a r i a b i l i t y  soils.  by P a r e n t M a t e r i a l , Age, and Country  S o i l v a r i a b i l i t y by p a r e n t m a t e r i a l , age, and c o u n t r y  i s quite  mixed p r o b a b l y due t o t h e v a r i e d l e v e l s o f management a c r o s s age groups and i n s p i t e o f d i s t i n c t management d i f f e r e n c e s i n outwash soils.  Of t h e t h r e e , p a r e n t m a t e r i a l a c c o u n t s f o r most o f the  v a r i a t i o n i n the data.  The h i g h v a r i a b i l i t y l i m i t s t h e c o n c l u s i o n s  t h a t can be drawn and a l s o t h e amount o f p r e d i c t a b i l i t y .  The o n l y  c o n c l u s i o n seems t o be i n t h e o r d e r o f average v a r i a b i l i t y among parent m a t e r i a l s f o r c u l t i v a t e d s o i l s , which i s a l l u v i u m glacialmarine  < outwash <  soils.  Another source o f s y s t e m a t i c  v a r i a b i l i t y c o u l d r e s u l t from the  l i n e a r p i l i n g o f windrows d u r i n g t h e c l e a r i n g p r o c e s s o r t h e p i l i n g o f hay,  an example o f which i s p o r t r a y e d  i n the lower l e f t center o f  P l a t e 5.  1 78  T a b l e 29. C o e f f i c i e n t s o f v a r i a t i o n (%) f o r c h e m i c a l and p h y s i c a l v a r i a b l e s o f outwash, a l l u v i a l , and g l a c i a l m a r i n e s o i l s by country. Parent Matl.  Country  BD  pH1+  pH2  Canada USA  40  37  15 8  A l l u v i u m Canada USA  45 43  G l a c i a l - Canada m a r i n e USA  39 38  Ca  Mg  K  P  0M  N  17 10  111 163  107 160  58 77  98 81  109 115  27  7 9  8  9  59 71  55 52  76 76  110 103  98 100  92  9 8  10 9  160 154  142 105  90 91  137 140  93 97  94 97  E n t i r e data s e t Outwash  Cultivated  33 98  s o i l s only  Canada USA  16 10  7 7  8 8  90 100  39  26  54  33  77 40  17 23  17 30  A l l u v i u m Canada USA  8 15  5 5  6 6  29 44  40 26  66 57  69 97  18 21  24 16  G l a c i a l - Canada m a r i n e USA  17 18  5 5  6 5  111 88  67 60  58 62  144 132  21 25  26 23  Canada USA  23 19  12 8  13 9  111 111  57 54  44 40  91 52  21 21  19 29  A l l u v i u m Canada USA  16 15  6 8  7 8  38 45  43 37  66 60  65 105  28 32  29 23  G l a c i a l - Canada m a r i n e USA  19 22  7 7  8 8  119 98  71 69  58 60  151 153  23  27 29  Outwash  M i n e r a l s o i l s only Outwash  26  M i n e r a l s o i l s p l u s weighted averagei s o i l Outwash  Canada USA  —  A l l u v i u m Canada USA  —  G l a c i a l - Canada marine USA  —  14 8  15 9  124 100  59 61  51 38  100 55  31 29  27  6 9  8 8  42 45  44 41  63 60  62 106  37 40  35 31  8 8  9 9  107 86  71 65  56 55  145 159  27 31  30 35  + pH1= pH i n H20, pH2= pH i n CaCl2 1 79  33  5.8.6  Variability Beckett  and  According  t o S i z e o f Study P l o t  Webster (1971) i n d i c a t e t h a t a t l e a s t 50% o f  v a r i a b i l i t y i s p r e s e n t w i t h i n a 0.1 ha p l o t . confirm  t h i s : CVs  80$ of the CVs and  The  the  data from t h i s  study  of i n d i v i d u a l c u l t i v a t e d p l o t s are commonly 50 t o  of a l l c u l t i v a t e d s o i l s combined (Table  30).  Figs.  30  31 i l l u s t r a t e the l a r g e w i t h i n - p l o t v a r i a b i l i t y i n t h i s s t u d y .  T h i s v a r i a t i o n i s l a r g e r t h a n the v a r i a t i o n caused by p a r e n t m a t e r i a l , age,  or country.  The  r a t i o o f i n d i v i d u a l p l o t CVs  to t o t a l c u l t i v a t e d  CV i s l e a s t on outwash s o i l s f o r a l l v a r i a b l e s e x c e p t Mg.  The  r e l a t i o n s h i p s above a r e s i m i l a r when a l l m i n e r a l s o i l s ( c u l t i v a t e d s o i l s p l u s woodland s o i l ) are examined as w e l l (Table  T a b l e 30.  28).  R a t i o s o f i n d i v i d u a l c u l t i v a t e d p l o t CV t o CV of a l l cultivated soils. V a r i a b l e (Values  i n percent)  Ca  Mg  K  P  0M  N  Outwash  50  60  55  35  60  60  Alluvium  65  45  55  50  90  90  Glacialmarine  80  70  65  55  70  80  5.8.7  Comparison o f C o n c e n t r a t i o n Tiessen  with Areal  e t a l . (1982) p o i n t out t h a t CVs  Variability d e t e r m i n e d from a r e a l  measurements are g r e a t e r than t h o s e f r o m c o n c e n t r a t i o n  values  since  the e x t r a v a r i a b i l i t y c o n t r i b u t e d by b u l k d e n s i t y i s i n c l u d e d i n the a r e a l but not i n the c o n c e n t r a t i o n measurements.  I t would be e x p e c t e d  t h a t as the CV of b u l k d e n s i t y i n c r e a s e s , v a r i a b i l i t y o f kg measurements w o u l d i n c r e a s e as a consequence. I  1 80  In g e n e r a l CVs  ha-1 by mg  kg'  Three-dimensional diagram showing v a r i a b i l i t y o f Mg (avg. C V = 5 1 ) on p l o t M 2 on glacialmarine s o i l s , age group 1 9 5 0 . P l o t i s 3 0 m x 3 0 m (see F i g . 1 1 , Appendix G). Values i n mg kg  1 8 1  Three-dimensional diagram showing v a r i a b i l i t y o f OM (avg. C V = 2 0 ) on p l o t 42 on glacialmarine s o i l s , age group 1 9 5 0 . P l o t i s 3 0 m x 3 0 m (see F i g . 1 1 , Appendix G). Values i n %.  1 8 2  and kg ha-1 are v e r y comparable when t h e CV o f b u l k d e n s i t y i s l e s s than 20.  The r e l a t i o n s h i p o f a consequent i n c r e a s e i n CV w i t h an  i n c r e a s e i n b u l k d e n s i t y CV h o l d s o n l y f o r outwash s o i l s , where f o r mg kg-1  measurements a r e g e n e r a l l y l e s s than f o r kg  measurements.  However, the r e v e r s e i s t r u e f o r a l l u v i a l  glacialmarine  soils.  CVs  ha-1 and  G e n e r a l l y , as the CV o f b u l k d e n s i t y i n c r e a s e s , the d i f f e r e n c e i n CV between the c o n c e n t r a t i o n and a r e a l measurements i n c r e a s e s . appears t o be l i t t l e d i f f e r e n c e between C V c o u n t r y ( T a b l e s F4 and 5.9  c o n c  There  and C V a r e a l by age o r  F5).  Number o f Samples Required t o E s t i m a t e P o p u l a t i o n Means The number o f samples r e q u i r e d t o e s t i m a t e a p o p u l a t i o n mean  depends on the d a t a s e t a n a l y z e d , the p a r e n t m a t e r i a l , the v a r i a b l e c o n s i d e r e d and i t s CV, and the c o n f i d e n c e l i m i t s estimation.  The  95$ c o n f i d e n c e l i m i t was  chosen f o r  chosen and sample s i z e  e s t i m a t e s were made t o be w i t h i n +5$ and +20$ o f t h e mean f o r each variable.  U s i n g 80$ a c c u r a c y i n s t e a d o f 95$, as suggested  by Cameron  et a l . (1971) w i l l reduce the number of samples r e q u i r e d by  40$.  G e n e r a l l y the e n t i r e d a t a s e t has h i g h e r CVs than the d a t a s e t f o r c u l t i v a t e d s o i l s o n l y (Table 31).  Alluvial  soils  are the l e a s t  v a r i a b l e and so r e q u i r e the s m a l l e s t number o f samples t o e s t i m a t e the p o p u l a t i o n mean o f each v a r i a b l e .  Many v a r i a b l e s on each parent  m a t e r i a l have CVs l a r g e r than 80 and so r e q u i r e more than 1000 samples to e s t i m a t e t h e i r r e s p e c t i v e means w i t h i n 5$ and more than 60 samples t o e s t i m a t e the mean w i t h i n 20$. OM,  U s i n g the e n t i r e d a t a s e t Ca, Mg,  and N r e q u i r e t h i s many samples, e x c e p t f o r Ca and Mg on  soils.  Using only c u l t i v a t e d s o i l s ,  alluvial  Ca (except a l l u v i u m ) and P a r e 1 83  P,  t h e o n l y v a r i a b l e s r e q u i r i n g so many.  These v a l u e s a r e much l e s s than  t h o s e r e p o r t e d by C r o s s o n and P r o t z (1974) and somewhat h i g h e r f o r b o t h K and P than v a l u e s r e p o r t e d by N e l s o n and McCracken (1962). I n o r d e r t o need l e s s than 20 samples t o e s t i m a t e the p o p u l a t i o n mean w i t h i n +20%, OM  t h e CV f o r a v a r i a b l e must be l e s s than 40.  Only  and N c o n s i s t e n t l y meet t h i s r e q u i r e m e n t and then o n l y f o r  cultivated soils.  R e g a r d l e s s o f the d a t a s e t used, o n l y 1 or 2 samples  a r e r e q u i r e d t o e s t i m a t e pH s i n c e i t i s a l o g a r i t h m i c measurement, and has a narrow  range.  I t appears, t h e r e f o r e , t h a t e s t i m a t i o n o f means i s a v e r y r i s k y procedure on s o i l s as v a r i a b l e as t h o s e i n t h i s s t u d y u n l e s s the sample s i z e i s l a r g e .  The inadequacy o f s a m p l i n g f o r e s t a b l i s h i n g  l i m i t s o f s o i l p r o p e r t i e s has been r e p o r t e d by Nelson and McCracken ( 1 9 6 2 ) , P r o t z e t a l . ( 1 9 6 8 ) , and C r o s s o n and P r o t z ( 1 9 7 4 ) .  The  r e s u l t s from t h i s s t u d y i n d i c a t e t h a t t o a p p r o x i m a t e the mean w i t h i n 5%, the number o f samples t a k e n was i n a d e q u a t e t o e s t i m a t e any v a r i a b l e e x c e p t b u l k d e n s i t y and pH u s i n g the e n t i r e d a t a s e t .  The  s a m p l i n g was adequate on the more homogeneous c u l t i v a t e d s o i l s except f o r Ca and P and was  b a r e l y s u f f i c i e n t f o r Mg and K.  When  a p p r o x i m a t i n g the mean t o the more r e a l i s t i c +20$, the s o i l s i n t h i s s t u d y were oversampled  by a f a c t o r o f a t l e a s t  184  3-  Table  31. Number o f s a m p l e s r e q u i r e d t o e s t i m a t e each v a r i a b l e on outwash, a l l u v i a l , and g l a c i a l m a r i n e s o i l s w i t h i n +5% and +20% o f t h e p o p u l a t i o n mean a t t h e 95% c o n f i d e n c e l i m i t u s i n g t h e e n t i r e d a t a s e t ( e ) and c u l t i v a t e d s o i l s o n l y ( c ) .  Variable  Data Set  CV  % Bulk den.  c  13  pH ( H 2 PH ( H )  e  Outwash +20% Mean +5% No. s a m p l e s  CV  %  Alluvium Mean +20? +5$ No. samples  CV  Glacialmarine Mean +20% +5$ No. s a m p l e s %  921  27  1  12  1197  23  1  18  960  54  3  12  5.6  23  1  9  5.8  13  1  8  5.2  10  1  c  7  6.0  8  1  5  5.9  4  1  5  5.5  4  1  pH pH  (CaCl2 e (CaCl ) c  14  5.0  31  2  10  5.2  16  1  9  4.6  13  1  9  5.5  13  1  6  5.4  6  1  6  4.9  6  1  Ca Ca  e c  133 122  732 702  2 830 2380  180 150  66 39  1157 906  700 243  44 15  160 99  458 206  4100 1570  260 98  Mg Mg  e c  143 56  140 78  3270 500  200 31  53 33  617 461  450 170  28 11  121 70  154 101  2340 780  150 49  K K  e c  67 35  225 221  720 200  25 12  77 62  305  950 620  59  38  91 60  199  213  150  1320 580  83 36  P P  e c  124  93  150 140  52 42  1800 1440  110  144  90  151  18 16  3320  119  2460 2270  106  119  3650  210 230  OM OM  e c  112  17.1 8.6  2000 64  130  1570 58  98 4  96 19.2 24 11.0  1470 92  92  4  99 19  17.4  20  N N  e c  118 24  .369 .186  2230 92  140 6  95 22  .416  1440 77  90 5  97 .458 25 .261  1500 100  94  0 )  2 0  )  2  95  1 85  8.9  .230  6  6  6.0 SUMMARY AND CONCLUSIONS 6.1  Summary  6.1.1 Summary o f P a r e n t M a t e r i a l , Age, and Land Use A n a l y s i s One p a r e n t m a t e r i a l and one l a n d c l e a r i n g age g r o u p i n g a r e c l e a r l y d i f f e r e n t when e x a m i n i n g t h e d i f f e r e n c e s among p a r e n t m a t e r i a l s and c u l t i v a t e d l a n d c l e a r i n g age groups f o r Canada, t h e USA, and both c o u n t r i e s combined f o r each v a r i a b l e .  Glacialmarine  s o i l s and t h e 1980 age g r o u p i n g show t h e most d i f f e r e n c e s among t h e i r c o u n t e r p a r t s and cause most o f the s i g n i f i c a n t i n t e r a c t i o n s between age and p a r e n t m a t e r i a l .  Glacialmarine  s o i l s have had t h e l e a s t  i n t e n s i v e management o f the t h r e e s o i l s s t u d i e d .  The 1980  g l a c i a l m a r i n e group i s t h e most d i f f e r e n t c o m b i n a t i o n . outwash a l s o has many s i g n i f i c a n t d i f f e r e n c e s .  The 1980  The 1980 group i s t h e  most d i f f e r e n t p r o b a b l y because i t has had t h e l e a s t amount o f t i m e t o have amendments a p p l i e d and t o take on t h e c h a r a c t e r o f a c u l t i v a t e d soil. The outwash s o i l s o f low i n t e n s i t y management show t h e most s i m i l a r i t i e s w i t h t h e g l a c i a l m a r i n e s o i l s s i n c e they a r e both g l a c i a t e d and t h e plow l a y e r s a r e d e r i v e d from l o e s s .  When t h e  outwash s o i l s a r e i n t e n s i v e l y managed, the