Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Net primary production of lodgepole pine (Pinus Contort A var. Latifolia engelm.) in some ecosystems… Comeau, Philip George 1986

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1986_A1 C65.pdf [ 14.55MB ]
Metadata
JSON: 831-1.0097116.json
JSON-LD: 831-1.0097116-ld.json
RDF/XML (Pretty): 831-1.0097116-rdf.xml
RDF/JSON: 831-1.0097116-rdf.json
Turtle: 831-1.0097116-turtle.txt
N-Triples: 831-1.0097116-rdf-ntriples.txt
Original Record: 831-1.0097116-source.json
Full Text
831-1.0097116-fulltext.txt
Citation
831-1.0097116.ris

Full Text

c NET PRIMARY PRODUCTION OF LODGEPOLE PINE (PINUS CONTORTA VAR. LATIFOLIA ENGELM.) IN SOME ECOSYSTEMS IN SOUTHEASTERN BRITISH COLUMBIA by PHILIP GEORGE COMEAU B . S c , U n i v e r s i t y of V i c t o r i a , Canada, 1976 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY i n FACULTY OF GRADUATE STUDIES Department of F o r e s t r y We accept t h i s t h e s i s as conforming to the r e q u i r e d standard UNIVERSITY OF BRITISH COLUMBIA February, 1986 © P h i l i p George Comeau, 1986 7 S In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of the requirements f o r an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, I agree that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and study. I f u r t h e r agree that p e r m i s s i o n f o r e x t e n s i v e copying of t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the Head of my Department or by h i s or her r e p r e s e n t a t i v e s . I t i s understood t h a t copying or p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be allowed without my w r i t t e n p e r m i s s i o n . Department of F o r e s t r y U n i v e r s i t y of B r i t i s h Columbia 2075 Wesbrook Pl a c e Vancouver, Canada V6T 1W5 Date: February, 1986 A b s t r a c t R e l a t i o n s h i p s between net primary p r o d u c t i o n and t r e e canopy parameters were i n v e s t i g a t e d i n 30 unmanaged stands of lodgepole pine (Pinus contort a v a r . I atifolia Engelm.) growing on s i t e s with two c o n t r a s t i n g hygrotopes ( s o i l moisture regimes) and two c o n t r a s t i n g trophotopes ( s o i l n u t r i e n t regimes) i n southeastern B r i t i s h Columbia. Sampled stands were between 50 and 130 years- o f - a g e . Estimates of aboveground p r o d u c t i o n (ANPP) were obtained f o r a l l 30 stands, and estimates of t o t a l (aboveground p l u s belowground) p r o d u c t i o n (TNPP) were obtained f o r four stands. ANPP ranged from 2.2 to 4.4 t h a _ 1 y r _ 1 f o r the x e r i c hygrotopes and from 2.9 to 7.4 t h a ~ 1 y r ~ 1 f o r the s i t e s with mesic hygrotopes. V a r i a t i o n i n ANPP was e x p l a i n e d by v a r i a t i o n i n stand f o l i a g e biomass, stand d e n s i t y , and age. M u l t i p l e r e g r e s s i o n equations f i t t e d to data from each hygrotope d i f f e r e d s i g n i f i c a n t l y (a=0.05). The high e r r a t e s of ANPP observed i n stands from mesic s i t e s were a t t r i b u t e d to the l a r g e r q u a n t i t i e s of f o l i a g e biomass and to g r e a t e r ANPP per kg of f o l i a g e ( F o l i a g e E f f i c i e n c y ) than i n stands from the x e r i c s i t e s . T o t a l net primary p r o d u c t i o n ranged from 7.9 to 11.9 t h a " 1 y r _ 1 i n four stands. Belowground net primary p r o d u c t i o n averaged 60% of TNPP on the two x e r i c s i t e s and 42% of TNPP on the two mesic s i t e s . T h i s d i f f e r e n c e i n p r o d u c t i o n a l l o c a t i o n between the two hygrotopes e x p l a i n s some of the i i between-site v a r i a t i o n i n f o l i a g e e f f i c i e n c y which was not accounted f o r by v a r i a t i o n i n f o l i a g e biomass. On the x e r i c s i t e s , where moisture d e f i c i e n c i e s appear to be l i m i t i n g p r o d u c t i o n , a m u l t i p l e r e g r e s s i o n equation u s i n g f o l i a g e biomass, stand d e n s i t y , and stand age p r o v i d e d a b e t t e r p r e d i c t i o n of ANPP than d i d an equation which used f o l i a g e n i t r o g e n content, stand d e n s i t y and stand age. Stand f o l i a g e biomass and stand d e n s i t y were s i g n i f i c a n t v a r i a b l e s i n d e s c r i b i n g v a r i a t i o n i n f o l i a g e n i t r o g e n e f f i c i e n c y (ANPP per kg of f o l i a g e n i t r o g e n ; an e x t e n s i o n of the concept of " n i t r o g e n p r o d u c t i v i t y " ) . E i t h e r f o l i a g e e f f i c i e n c y or f o l i a g e n i t r o g e n e f f i c i e n c y , i n combination with data on the a l l o c a t i o n of TNPP o f f e r p o t e n t i a l l y u s e f u l a l t e r n a t i v e s to carbon budgets as d r i v i n g f u n c t i o n s f o r s i m u l a t i o n models.of f o r e s t p r o d u c t i o n . Table of Contents A b s t r a c t i i Table of Contents i v L i s t of T a b l e s v i i i L i s t of F i g u r e s x L i s t of Appendices . . . . . x i i i Acknowledgements x i v 1. I n t r o d u c t i o n 1 1.1 O b j e c t i v e s and Hypotheses 4 1.2 Design of the T h e s i s 6 1.3 Terminology 7 2. Study Area and Sample Stand C h a r a c t e r i s t i c s 8 2.1 I n t r o d u c t i o n 8 2.2 L o c a t i o n and General C h a r a c t e r i s t i c s 9 2.3 Methods of Sample S i t e S e l e c t i o n and D e s c r i p t i o n 11 2.3.1 Sampling, d e s c r i p t i o n , and a n a l y s i s of s o i l p r o p e r t i e s 14 2.4 C h a r a c t e r i s t i c s of the S e l e c t e d Stands 16 2.5 Summary 21 3. Regression Equations f o r E s t i m a t i n g the Component Biomass of Lodgpole Pine Trees 24 3.1 I n t r o d u c t i o n 24 3.2 L i t e r a t u r e Review 25 3.3 O b j e c t i v e s and Hypotheses 27 3.4 Methods 28 3.5 R e s u l t s and D i s c u s s i o n 32 3.5.1 Tree Biomass 32 3.5.2 Development of Regression Equations 34 i v 3.5.3 T e s t i n g of Regression Equations 35 3.6 Summary 47 Aboveground Tree Biomass and Produ c t i o n i n lodgepole pine Ecosystems 49 4.1 I n t r o d u c t i o n 49 4.2 L i t e r a t u r e Review 51 4.2.1 Net Primary P r o d u c t i o n and F o l i a g e E f f i c i e n c y 51 4.2.2 F a c t o r s I n f l u e n c i n g the Amount of F o l i a g e C a r r i e d By a Stand 53 4.2.3 Tree Pro d u c t i o n as a Fu n c t i o n of the Amount of F o l i a g e 55 4.3 O b j e c t i v e s and Hypotheses 57 4.4 Methods 58 4.4.1 Stand Measurements 58 4.5 R e s u l t s and D i s c u s s i o n ..61 4.5.1 Stand C h a r a c t e r i s t i c s 61 4.5.2 Biomass and Biomass D i s t r i b u t i o n 61 4.5.3 Prod u c t i o n and Pr o d u c t i o n A l l o c a t i o n 67 4.5.4 R e l a t i o n s h i p s Between ANPP and F o l i a g e Biomass 70 4.5.5 General D i s c u s s i o n 82 4.6 Summary 83 4.7 C o n c l u s i o n 84 R e l a t i o n s h i p s Between Aboveground Net Primary Prod u c t i o n and F o l i a g e N i t r o g e n Content 85 5.1 I n t r o d u c t i o n ...' 85 5.2 L i t e r a t u r e Review 86 5.3 O b j e c t i v e s and Hypotheses 89 5.4 Methods 89 5.5 R e s u l t s and D i s c u s s i o n 91 5.5.1 F o l i a g e N i t r o g e n C o n c e n t r a t i o n s and Content .91 5.5.2 R e l a t i o n s h i p s Between Aboveground Net Primary P r o d u c t i o n and F o l i a g e Nitrogen Content 97 5. 6 Summary 114 5.7 Con c l u s i o n s .. 116 D i s t r i b u t i o n of Biomass and Production Between Aboveground and Belowground Components 118 6.1 I n t r o d u c t i o n 118 6.2 L i t e r a t u r e Review 119 6.2.1 Biomass D i s t r i b u t i o n and Pr o d u c t i o n A l l o c a t i o n 119 6.3 O b j e c t i v e s and Hypotheses 122 6.4 Methods 122 6.5 R e s u l t s and D i s c u s s i o n 127 6.5.1 Biomass D i s t r i b u t i o n 127 6.5.2 Seasonal P a t t e r n s of Small and F i n e Root Biomass 130 6.5.3 Production of F i n e and Small Roots 140 6.5.4 Prod u c t i o n A l l o c a t i o n 143 6.5.5 General D i s c u s s i o n ' 145 6.6 Summary 149 6.7 Co n c l u s i o n s 151 A Simple Model of Net Primary Production i n Lodgepole Pine Ecosystems 152 7.1 I n t r o d u c t i o n 152 7.2 A Model of Stand F o l i a g e Biomass 153 7.3 Model I 156 7.3.1 T o t a l Net Primary Production 156 v i 7.3.2 Aboveground Net Primary P r o d u c t i o n 157 7.4 Model II 1 57 7.4.1 Aboveground Net Primary P r o d u c t i o n 157 7.5 E v a l u a t i o n of Model C a l c u l a t i o n s 158 7.6 Co n c l u s i o n s 162 8. Co n c l u s i o n s 165 REFERENCES 169 APPENDICES 178 v i i Table L i s t of Tables Page 2.1 Table showing the major f l o r i s t i c r e l a t i o n s h i p s f o r stands sampled f o r each edatope 17 2.2 A summary of the ranges of s o i l and stand c h a r a c t e r i s t i c s f o r each of the four edatopes 19 3.1 The d i s t r i b u t i o n of sampled t r e e s by hygrotope, trophotope, stand age and d e n s i t y 29 3.2 Summary of the ranges of s e l e c t e d v a l u e s f o r sampled lodgepole pine t r e e s 33 3.3 V a r i a b l e s s i g n i f i c a n t at 5% and 1% i n biomass r e g r e s s i o n equations f o r lodgepole pine 36 3.4 Comparison of biomass r e g r e s s i o n equations between two hygrotopes 37 3.5 F i n a l a d d i t i v e biomass r e g r e s s i o n equations f o r lodgepole pine 39 4.1 Ranges i n stand c h a r a c t e r i s t i c s , aboveground biomass, and biomass d i s t r i b u t i o n f o r lodgepole pine stands sampled i n each edatope 62 4.2 Ranges i n aboveground net primary p r o d u c t i o n f o r the lodgepole pine stands sampled i n each edatope 63 4.3 Comparison of equations f o r ANPP f i t t e d to data from each of the four edatopes and two hygrotopes 72 4.4 Comparison of equations f o r p r e d i c t i n g net stem p r o d u c t i o n f o r the four edatopes 74 4.5 Comparison of equations p r e d i c t i n g f o l i a g e p r o d u c t i o n f i t t e d to data from each of the four edatopes 76 4.6 Comparison of equations d e s c r i b i n g f o l i a g e e f f i c i e n c y (FE(ANPP)) f i t t e d to data from each of the four edatopes. 81 5.1 Ranges of n i t r o g e n c o n c e n t r a t i o n s and f o l i a g e n i t r o g e n content f o r the 30 lodgepole pine stands sampled. ...92 5.2 Comparison of equations f i t t e d to aboveground net primary p r o d u c t i o n data f o r each edatope i n r e l a t i o n to f o l i a g e n i t r o g e n content 99 5.3 Comparison of equations f i t t e d t o stem p r o d u c t i o n data fo r each hygrotope i n r e l a t i o n to f o l i a g e n i t r o g e n content 102 v i i i 5.4 Comparison of equations f i t t e d to f o l i a g e p r o d u c t i o n data f o r each hygrotope i n r e l a t i o n to f o l i a g e n i t r o g e n content 104 5.5 Comparison of equations f i t t e d to f o l i a g e n i t r o g e n e f f i c i e n c y (FNE(ANPP)) data f o r each hygrotope and trophotope 108 5.6 Comparison of equations f i t t e d to f o l i a g e n i t r o g e n e f f i c i e n c y ( f o l i a g e p r o d u c t i o n ) (FNE(F)) data f o r each hygrotope and trophotope 113 6.1 C h a r a c t e r i s t i c s of the 4 lodgepole pine stands s e l e c t e d f o r measurement of f i n e and small root p r o d u c t i o n . .124 6.2 The d i s t r i b u t i o n of t r e e biomass in 4 lodgepole pine ecosystems 1 28 6.3 The d i s t r i b u t i o n of t o t a l net primary p r o d u c t i o n i n 4 lodgepole pine ecosystems ..142 7.1 ANPP f o r h y p o t h e t i c a l 70-year-old stands growing on two hygrotopes p r e d i c t e d using the two models 159 i x L i s t of F i g u r e s F i g u r e Page 2.1 L o c a t i o n of the study area and sample p l o t s i n B r i t i s h Columbia 10 2.2 Edatopic g r i d f o r the Dry Southern C o r d i l l e r a n Montane Spruce b i o g e o c l i m a t i c subzone of B r i t i s h Columbia showing the general p o s i t i o n of each of the ecosystem assoc i a t ions 13 3.1 S c a t t e r of t o t a l stem biomass ( o u t s i d e bark) a g a i n s t b a s a l area x height f o r 44 sampled lodgepole pine t r e e s . 40 3.2 S c a t t e r of stemwood ( i n s i d e bark) biomass a g a i n s t b a s a l area x height f o r 44 sampled lodgepole pine t r e e s . ..41 3.3 S c a t t e r of f o l i a g e biomass a g a i n s t sapwood ba s a l area x he i g h t f o r 44 sampled lodgepole pine t r e e s 42 3.4 S c a t t e r of the biomass of 2-year-old f o l i a g e a g a i n s t sapwood b a s a l area x height f o r 44 sampled lodgepole pine t r e e s . 43 3.5 S c a t t e r of branch biomass a g a i n s t sapwood b a s a l area x he i g h t f o r 44 sampled lodgepole pine t r e e s 44 3.6 S c a t t e r of coarse root biomass a g a i n s t b a s a l area x height f o r 42 sampled lodgepole pine t r e e s 45 4.1 The s c a t t e r of stand f o l i a g e biomass a g a i n s t stand d e n s i t y f o r lodgepole pine stands on x e r i c and mesic s i t e s 66 4.2 The r e l a t i o n s h i p between aboveground net primary p r o d u c t i o n and stand d e n s i t y f o r 30 lodgepole pine stands 69 4.3 The r e l a t i o n s h i p between aboveground net primary p r o d u c t i o n and stand f o l i a g e biomass f o r 30 lodgepole pine stands 71 4.4 The r e l a t i o n s h i p between net stem p r o d u c t i o n and stand f o l i a g e biomass f o r lodgepole pine i n the 30 sampled stands 75 4.5 The r e l a t i o n s h i p between lodgepole pine f o l i a g e p r o d u c t i o n and stand f o l i a g e biomass f o r the sampled stands 77 4.6 The r e l a t i o n s h i p between f o l i a g e e f f i c i e n c y (FE(ANPP)) and stand f o l i a g e biomass f o r the 30 sampled lodgepole pine stands 79 x 4.7 The r e l a t i o n s h i p between f o l i a g e e f f i c i e n c y (FE(ANPP)) and stand d e n s i t y f o r the 30 lodgepole pine stands sampled 80 5.1 The v a r i a t i o n of f o l i a g e n i t r o g e n c o n c e n t r a t i o n s with needle age f o r lodgepole pine stands from each edatope. 94 5.2 The p a t t e r n of f o l i a g e biomass estimated f o r each needle age c l a s s f o r lodgepole pine stands from each edatope. 95 5.3 The v a r i a t i o n of f o l i a g e n i t r o g e n content with needle age f o r lodgepole pine stands from each edatope 96 5.4 The r e l a t i o n s h i p between aboveground net primary p r o d u c t i o n and f o l i a g e n i t r o g e n content f o r the 30 sampled lodgepole pine stands 98 5.5 The r e l a t i o n s h i p between net stem p r o d u c t i o n and f o l i a g e n i t r o g e n content f o r the 30 lodgepole pine stands sampled 101 5.6 The r e l a t i o n s h i p between f o l i a g e p r o d u c t i o n and stand f o l i a g e n i t r o g e n content f o r the sampled stands. ...105 5.7 The r e l a t i o n s h i p between f o l i a g e n i t r o g e n e f f i c i e n c y (FNE(ANPP)) and stand f o l i a g e biomass f o r the 30 sampled lodgepole pine stands 106 5.8 The r e l a t i o n s h i p between f o l i a g e n i t r o g e n e f f i c i e n c y (FNE(ANPP)) and stand d e n s i t y f o r the 30 lodgepole pine stands sampled 107 5.9 The r e l a t i o n s h i p between f o l i a g e n i t r o g e n e f f i c i e n c y f o r f o l i a g e (FNE(F)) and stand f o l i a g e biomass 111 5.1 0 The r e l a t i o n s h i p between f o l i a g e n i t r o g e n e f f i c i e n c y f o r f o l i a g e (FNE(F)) and stand d e n s i t y f o r the 30 lodgepole pine stands sampled 112 6.1 The d i s t r i b u t i o n of t r e e biomass between aboveground and belowground components in 4 lodgepole pine ecosystems. 1 29 6.2 The r e l a t i o n s h i p between the r a t i o of coarse root:aboveground biomass and stand d e n s i t y f o r 30 sampled lodgepole pine stands 131 6.3 The seasonal p a t t e r n s of lodgepole pine l i v e f i n e and small root (<5 mm) biomass i n f o r e s t f l o o r h o r i z o n s f o r each of the 4 sampled stands 133 6.4 The seasonal p a t t e r n s of lodgepole pine l i v e f i n e and small root (<5 mm) biomass i n the upper 40 cm of m i n e r a l s o i l f o r each of the 4 sampled stands 134 x i 6.5 Seasonal p a t t e r n s of s o i l temperature at 30 cm depth f o r each of the 4 sampled stands 136 6.6 The r e l a t i o n s h i p between l i v e f i n e and s m a l l root (<5 mm) biomass of lodgepole pine (mineral s o i l and f o r e s t f l o o r ) and s o i l temperature (at 30 cm depth) f o r the 4 lodgepole pine stands and 4 sample dates 137 6.7 Seasonal p a t t e r n s of s o i l moisture content f o r each of the 4 sampled stands 138 6.8 The s c a t t e r of l i v e f i n e and small root (<5 mm) biomass of lodgepole pine a g a i n s t s o i l moisture f o r the 4 lodgepole pine stands and 4 sample dates 139 6.9 The d i s t r i b u t i o n of p r o d u c t i o n between aboveground and belowground components i n each of the 4 stands sampled. 1 44 6.10 The r e l a t i o n s h i p s of FE(ANPP) and FE(TNPP) to stand f o l i a g e biomass f o r the 4 sampled lodgepole pine stands. 147 6.11 The r e l a t i o n s h i p s of FNE(ANPP) and FNE(TNPP) to stand f o l i a g e biomass f o r the 4 sampled lodgepole pine stands. . 148 7.1 The r e l a t i o n s h i p between f o l i a g e biomass and stand d e n s i t y i n a 20-year-old lodgepole pine stand 154 7.2 V a r i a t i o n i n ANPP with stand d e n s i t y p r e d i c t e d u sing Model I f o r 70-year-old stands growing on x e r i c and mesic s i t e s 161 x i i L i s t of Appendices Appendix Page I G l o s s a r y 179 II C r i t e r i a f o r the i d e n t i f i c a t i o n of hygrotope and trophotope c l a s s e s 183 I I I V e g e t a t i o n c h a r a c t e r i s t i c s of the 30 lodgepole p i n e stands sampled 191 IV S e l e c t e d e c o l o g i c a l s i t e c h a r a c t e r i s t i c s of the 30 lodgepole pine stands sampled 203 V S o i l and stand c h a r a c t e r i s i t c s f o r each of the 30 lodgepole pine stands sampled 210 VI Biomass data from i n d i v i d u a l sampled t r e e s 215 VII Aboveground and coarse root biomass data f o r the 30 lodgepole pine stands sampled 221 VIII Aboveground and coarse root p r o d u c t i o n data f o r the 30 lodgepole pine stands sampled 223 IX Autumn n i t r o g e n c o n c e n t r a t i o n s , biomass, needle weight, and n i t r o g e n content f o r each f o l i a g e age c l a s s i n each sampled stand 225 X F i n e and small root biomass f o r each p l o t and each sample date 230 XI L i s t of p l a n t s p e c i e s c i t e d i n the t e x t 231 x i i i Acknowledgements I wish t o express my g r a t i t u d e to P r o f e s s o r J.P. Kimmins f o r the v a l u a b l e advice and suggestions which he has prov i d e d throughout the course of t h i s r e s e a r c h p r o j e c t . I am a l s o indebted to the numerous other i n d i v i d u a l s who have pro v i d e d a d v i c e or a s s i s t e d i n f i e l d and l a b work. S p e c i a l thanks are extended to Ann Comeau f o r the many hours spent a s s i s t i n g with f i e l d and l a b work, f o r t y p i n g of the t h e s i s and f o r her moral support. T h i s r e s e a r c h p r o j e c t was made p o s s i b l e by support from s e v e r a l o r g a n i z a t i o n s . Personal support through most of the d u r a t i o n of t h i s p r o j e c t was p r o v i d e d by the B.C. Science C o u n c i l i n the form of a G.R.E.A.T. Award (1983-1986), by the Vancouver Foundation i n the form of a Van Dusen Graduate F e l l o w s h i p (1982-1983), and by the U.B.C. F a c u l t y of F o r e s t r y i n the form of t e a c h i n g a s s i s t a n t s h i p s . F i e l d accomodation and f u e l f o r v e h i c l e s was pr o v i d e d i n pa r t by Crestbrook F o r e s t I n d u s t r i e s L t d . and f i n a n c i a l support f o r other expenses and s a l a r i e s f o r t e c h n i c a l a s s i s t a n t s came from the B.C. M i n i s t r y of F o r e s t s , Environment Canada (Environment 2000 Program), and the B.C. Science C o u n c i l . x i v Chapter 1 INTRODUCTION Lodgepole pine (Pi nus contort a Doug.) i s the p r i n c i p a l t r e e s p e c i e s on over 26 m i l l i o n h e c t a r e s of f o r e s t l a n d i n western Canada and the Un i t e d S t a t e s (Wheeler and C r i t c h f i e l d 1984). I t s range i s ce n t e r e d i n B r i t i s h Columbia but extends southward through C a l i f o r n i a , northward through the Yukon, and eastward to the f o o t h i l l s of the Rocky Mountains. The I n t e r i o r or Rocky Mountain v a r i e t y of lod g e p l e pine (Pinus contort a v a r . I atifolia Engelm.) occupies the major p o r t i o n of both the t o t a l range and the commercial range of the s p e c i e s . Lodgepole pine tends to be p a r t i c u l a r l y important i n f i r e - d o m i n a t e d and f i r e - a f f e c t e d a r e a s . In B r i t i s h Columbia, lodgepole pine occurs through a l l of the f o r e s t e d b i o g e o c l i m a t i c zones of the i n t e r i o r where i t i s g e n e r a l l y c o n s i d e r e d to be a s e r a i s p e c i e s ( K r a j i n a et a l . 1982). The s e r o t i n o u s nature of i t s cones f a c i l i t a t e s r a p i d r e g e n e r a t i o n of the s p e c i e s f o l l o w i n g f i r e (Brown 1976). T h i s s p e c i e s can t h r i v e under a broad range of edaphic c o n d i t i o n s ranging from wet organic s o i l s to very r a p i d l y d r a i n e d outwash d e p o s i t s . Lodgepole pine i s an important f o r e s t resource r e p r e s e n t i n g approximately 1.21 b i l l i o n c u b i c meters of mature s t a n d i n g timber and 26% of the mature softwood timber volume i n the B.C. i n t e r i o r ( C o u n c i l of F o r e s t I n d u s t r i e s of B r i t i s h Columbia 1985). In 1984, 15.8 m i l l i o n c u b i c meters of lodgepole pine were h a r v e s t e d i n the B.C. i n t e r i o r , 1 2 r e p r e s e n t i n g 33% of i n t e r i o r l o g p r o d u c t i o n and 21.2% of l o g p r o d u c t i o n f o r B.C. ( C o u n c i l of F o r e s t I n d u s t r i e s of B r i t i s h Columbia 1985). In both cases, i t i s exceeded in both volume and percentage importance only by the spruces. Kennedy (1984) r e p o r t e d that lumber and plywood p r o d u c t i o n of lodgepole pine had a value of $600 m i l l i o n i n 1982 and the t o t a l annual value of lodgepole pine products were $2.4 b i l l i o n or 11% of the value of Canadian wood p r o d u c t i o n . The abundant supply of seed o f t e n present i n stands of lodgepole pine f r e q u e n t l y leads to the establishment of very high d e n s i t y stands f o l l o w i n g f i r e . At high d e n s i t i e s ( i n excess of 50,000 t r e e s h a " 1 ) , i n d i v i d u a l t r e e dominance i s o f t e n not expressed and s e l f t h i n n i n g proceeds extremely s l o w l y , r e s u l t i n g i n very dense stands which grow very s l o w l y . T h i s c o n d i t i o n i s termed growth r e p r e s s i o n (Keane 1985). E a r l y c o n t r o l of stand d e n s i t y by spacing, even under l e s s extreme c o n d i t i o n s of s t o c k i n g , o f f e r s one of the best methods by which usable wood y i e l d s can be improved, r o t a t i o n s shortened, or f i n a n c i a l r e t u r n s improved (Forest Research C o u n c i l of B r i t i s h Columbia 1983). Our a b i l i t y to p r e d i c t stand responses t o , and evaluate c o s t s and b e n e f i t s of, spacing on a s i t e s p e c i f i c b a s i s , are as yet very l i m i t e d ( F o r e s t Research C o u n c i l of B r i t i s h Columbia 1983). Most a v a i l a b l e methods f o r p r e d i c t i n g stand responses to spacing have been based on e m p i r i c a l evidence. These e m p i r i c a l "models" tend to l a c k the f l e x i b i l i t y needed to p r o v i d e u s e f u l p r e d i c t i o n s over a wide range of s i t e and 3 stand c o n d i t i o n s . The m a j o r i t y of stand growth models c u r r e n t l y a v a i l a b l e f o r p r e d i c t i o n of lodgepole pine growth responses are based on e m p i r i c a l y i e l d - a g e - s t a n d d e n s i t y r e l a t i o n s h i p s (eg. Dahms 1983). Such models perform w e l l under the circumstances and c o n d i t i o n s f o r which c a l i b r a t i o n data were obtained but they cannot make acc u r a t e p r e d i c t i o n s under c o n d i t i o n s where one or more of the major growth determinants not accounted f o r i n the model vary s i g n i f i c a n t l y (Kimmins 1985; Kimmins and S c o u l l a r 1984). Cole (1975) suggests that "only a combined e c o n o m i c - b i o l o g i c a l s i m u l a t i o n model....can comprehend a l l of the b i o l o g i c a l responses and c o s t - b e n e f i t r e l a t i o n s h i p s i n v o l v e d " . In order to f a c i l i t a t e p r e d i c t i o n of the r e s u l t s of untested stand treatments, models are needed which combine mechanistic ( p h y s i o l o g i c a l ) process m o d e l l i n g , s i m p l i f i e d process r e l a t i o n s h i p s , and e m p i r i c a l r e l a t i o n s h i p s at the ecosystem l e v e l of complexity. The development of such e c o s y s t e m - l e v e l models r e q u i r e s the e v a l u a t i o n and t e s t i n g of p o t e n t i a l d r i v i n g f u n c t i o n s and a s s o c i a t e d p r o c e s s e s . The implementation of complex m e c h a n i s t i c , p h y s i o l o g i c a l l y - b a s e d models of f o r e s t growth and y i e l d has not proceeded due to the complex a r r a y of i n t e r a c t i o n s of environmental, g e n e t i c and p h y s i o l o g i c a l f a c t o r s and pro c e s s e s . The use of process r e l a t i o n s h i p s such as t o t a l net primary p r o d u c t i o n (TNPP) per kg of f o l i a g e biomass, i n p l a c e of a c t u a l measurements of the p h y s i o l o g i c a l p r o c e s s e s 4 i n v o l v e d (photosynthesis and r e s p i r a t i o n ) , o f f e r s an a l t e r n a t i v e approach which can be implemented more r a p i d l y than t r u l y mechanistic models. These r e l a t i o n s h i p s form the b a s i s of h y b r i d models (Ingestad et a l . 1981) which may a l s o i n c o r p o r a t e p h y s i o l o g i c a l process submodels and e m p i r i c a l submodels. Agren (1983) and Ingestad et a l . (1981) present the idea of using r e l a t i o n s h i p s between pr o d u c t i o n and f o l i a g e n i t r o g e n content to d r i v e models of f o r e s t growth. Although models u s i n g t h i s kind of i n f o r m a t i o n are under development (FORCYTE-11, Kimmins and S c o u l l a r , 1984), there has not yet been any thorough t e s t i n g of the u n i v e r s a l i t y of such growth r e l a t i o n s h i p s . Data are not c u r r e n t l y a v a i l a b l e to t e s t the a p p l i c a t i o n of such r e l a t i o n s h i p s to lodgepole pine growing on a d i v e r s i t y of s i t e s . 1.1 OBJECTIVES AND HYPOTHESES The major o b j e c t i v e of t h i s t h e s i s was to e v a l u a t e the v a r i a t i o n of net primary p r o d u c t i o n of lodgepole pine i n r e l a t i o n to v a r i a t i o n i n s i t e c o n d i t i o n s . A second o b j e c t i v e was to examine v a r i a t i o n i n the r e l a t i o n s h i p s between aboveground net primary p r o d u c t i o n and f o l i a g e biomass and between aboveground net primary p r o d u c t i o n and f o l i a g e n i t r o g e n content i n r e l a t i o n to v a r i a t i o n i n s i t e c o n d i t i o n s . T h i s i n f o r m a t i o n i s needed both to improve our understanding of p r o d u c t i o n i n lodgepole pine ecosystems and to allow the e v a l u a t i o n of p r o d u c t i o n r e l a t i o n s h i p s which 5 may be u s e f u l as d r i v i n g f u n c t i o n s i n models s i m u l a t i n g f o r e s t p r o d u c t i o n . Four hypotheses were developed f o l l o w i n g a review of the c u r r e n t l i t e r a t u r e ( t h i s l i t e r a t u r e w i l l be reviewed i n the subsequent c h a p t e r s ) : 1 . Within a p a r t i c u l a r b i o g e o c l i m a t i c subzone, s o i l moisture a v a i l a b i l i t y ( c h a r a c t e r i z e d by hygrotopes) determines the maximum amount of f o l i a g e which can be supported by any p a r t i c u l a r lodgepole pine stand. T h e r e f o r e , s i t e s with mesic moisture regimes w i l l support more f o l i a g e biomass than s i t e s having x e r i c moisture regimes. 2. R e l a t i o n s h i p s between aboveground net primary p r o d u c t i o n (ANPP) and f o l i a g e biomass i n lodgepole pine stands w i l l be of a p a r a b o l i c form, with maximum ANPP achieved at l e v e l s of f o l i a g e biomass below the maximum amount of f o l i a g e which can be c a r r i e d by these stands. These r e l a t i o n s h i p s w i l l vary a c c o r d i n g to edaphic c o n d i t i o n s . 3. There i s a u n i v e r s a l l i n e a r r e l a t i o n s h i p between ANPP and the amount of n i t r o g e n c o n t a i n e d i n t r e e f o l i a g e ( f o l i a g e n i t r o g e n content) f o r lodgepole pine ecosystems. 4. In lodgepole pine ecosystems, the a l l o c a t i o n of net primary p r o d u c t i o n to belowground t r e e components w i l l be g r e a t e r on s i t e s with x e r i c hygrotopes than on s i t e s -with mesic hygrotopes. 6 1.2 DESIGN OF THE THESIS The four hypotheses presented above d e a l with a complex and d i v e r s e a r r a y of i n f o r m a t i o n . For t h i s reason the t h e s i s i s s u b d i v i d e d i n t o e i g h t c h a p t e r s . Chapter 2 reviews s i t e and stand s e l e c t i o n and the c h a r a c t e r i s t i c s of the study area and of the t h i r t y stands s e l e c t e d f o r measurement. Achievement of the resea r c h o b j e c t i v e s and t e s t i n g of the four hypotheses r e q u i r e d the development of r e g r e s s i o n e s t i m a t o r s of lodgepole pine component biomass and p r o d u c t i o n f o r the s t u d i e d stands. The development of these e s t i m a t o r s i s reviewed i n Chapter 3. In Chapter 4, the v a r i a t i o n i n ANPP i s examined i n r e l a t i o n to s i t e and stand f a c t o r s , and r e l a t i o n s h i p s between net primary p r o d u c t i o n and stand f o l i a g e biomass are ev a l u a t e d . A d i s c u s s i o n of the r e l a t i o n s h i p between ANPP and the f o l i a g e n i t r o g e n content of lodgepole pine i s presented i n Chapter 5. The r e s u l t s of a study of belowground p r o d u c t i o n i n two stands from x e r i c and two stands from mesic hygrotopes are presented and d i s c u s s e d i n Chapter 6. Chapter 7 p r o v i d e s an i n t e g r a t i o n and a synopsis of the r e s u l t s of the t h e s i s r e s e a r c h and p r e s e n t s a simple s i m u l a t i o n model which i n t e g r a t e s many of the f i n d i n g s . C o n c l u s i o n s of t h i s r e s e a r c h are presented i n chapter 8. 7 1.3 TERMINOLOGY A number of t e c h n i c a l terms are used i n t h i s t h e s i s . In some cases i t was f e l t necessary t o provide new names f o r , or to r e d e f i n e , terms a l r e a d y i n use. Any new terms w i l l be d e f i n e d when they are f i r s t presented and e x p l a n a t i o n s w i l l be given f o r d e v i a t i o n s from the standard d e f i n i t i o n s of e x i s t i n g terminology. To a i d the reader i n i d e n t i f y i n g synonymous terminology, a g l o s s a r y summarizing these d e f i n i t i o n s and synonymous terms i s presented i n Appendix I. Chapter 2 STUDY AREA AND SAMPLE STAND CHARACTERISTICS. 2.1 INTRODUCTION T e s t i n g of the hypotheses presented i n Chapter 1 r e q u i r e d that stand measurements be conducted w i t h i n an area of r e l a t i v e l y uniform c l i m a t e , with v a r i a t i o n i n s o i l moisture a v a i l a b i l i t y w i t h i n the area being l a r g e l y a t t r i b u t a b l e t o edaphic ( s o i l ) f a c t o r s . The b i o g e o c l i m a t i c - ecosystem c l a s s i f i c a t i o n developed f o r southeastern B r i t i s h Columbia ( U t z i g et a l . 1983) p r o v i d e s a b a s i s f o r i d e n t i f y i n g such c l i m a t i c areas and f o r d e a l i n g with edaphic v a r i a t i o n w i t h i n these c l i m a t i c a r e a s . B i o g e o c l i m a t i c subzones p r o v i d e a s u b d i v i s i o n of the landscape i n t o areas of r e l a t i v e l y homogeneous c l i m a t e , and ecosystem a s s o c i a t i o n s c h a r a c t e r i z e v a r i a t i o n i n climax or mature V e g e t a t i o n , a s s o c i a t e d with v a r i a t i o n i n s o i l p r o p e r t i e s , w i t h i n each subzone. Edatopes are used to c h a r a c t e r i z e combinations of hygrotopes ( " s o i l moisture regimes") and trophotopes ( " s o i l n u t r i e n t regimes"). The c l a s s i f i c a t i o n system i s based on enduring s i t e c h a r a c t e r i s t i c s such as c l i m a t e and s o i l s , but u t i l i z e s v e g e t a t i o n to i d e n t i f y and c h a r a c t e r i z e major c l a s s e s of these parameters. The c l a s s i f i c a t i o n system f a c i l i t a t e s the i d e n t i f i c a t i o n of the major p h y s i c a l f a c t o r s i n f l u e n c i n g f o r e s t p r o d u c t i v i t y ( U t z i g et a l . 1983). 8 9 In southeastern B r i t i s h Columbia, p a r t i c u l a r l y i n the southern Rocky Mountains, lodgepole pine r e p r e s e n t s a major and important f o r e s t resource and occurs e x t e n s i v e l y on a v a r i e t y of s i t e s . T h i s region was i d e a l f o r study due to the e x i s t e n c e of stands of lodgepole pine on s o i l s d e r i v e d from both c a l c a r e o u s and non-calcareous parent m a t e r i a l s . P r e l i m i n a r y management i n t e r p r e t a t i o n s have been a t t a c h e d to ecosystem c l a s s i f i c a t i o n s i n many p a r t s of the p r o v i n c e . There i s , however, a lack of i n f o r m a t i o n on the f u n c t i o n a l c h a r a c t e r i s t i c s of these ecosystems and of the r e l a t i o n s h i p s between ecosystem dynamics, p a r t i c u l a r l y p r o d u c t i o n dynamics, and the c l a s s i f i c a t i o n u n i t s . T h i s study p r o v i d e s some i n i t i a l i n f o r m a t i o n on p r o d u c t i o n dynamics w i t h i n a few ecosystem u n i t s . 2.2 LOCATION AND GENERAL CHARACTERISTICS The study was conducted i n the Dry Southern C o r d i l l e r a n Montane Spruce b i o g e o c l i m a t i c subzone (MSa) of southeastern B.C. T h i s subzone i s l o c a t e d at e l e v a t i o n s between 1000 m and 1500 m i n the southeastern corner of B r i t i s h Columbia ( F i g u r e 2.1). I t occupies t h i s narrow e l e v a t i o n a l band along the western sl o p e s and v a l l e y s of the Rocky Mountains and the e a s t e r n s l o p e s and v a l l e y s of the P u r c e l l Mountains from near Golden ( l a t i t u d e 51° 40' N) south to the U.S. border (49° N). T h i s subzone was s e l e c t e d because of the abundance of lodgepole pine on a d i v e r s i t y of s i t e s . F i g u r e 2.1. L o c a t i o n of the study area and sample p l o t s (©) i n B r i t i s h Columbia. The c l i m a t e of t h i s b i o g e o c l i m a t i c subzone i s moderately c o o l and dry. Mean summer temperatures (May-September) range from 10°C to 12°C and winter temperatures (November-March) range from -5.7°C to -7.7°C. Mean annual p r e c i p i t a t i o n ranges from 462 mm to 764 mm, summer p r e c i p i t a t i o n (May-September) ranges from 216 mm to 296 mm, and summer (May-September) p o t e n t i a l e v a p o t r a n s p i r a t i o n i s approximately 400 mm (B.C. M i n i s t r y of F o r e s t s 1980). Within t h i s b i o g e o c l i m a t i c subzone, Engelmann spruce (Picea engelmannii ) and subalpine f i r (Abies lasiocarpa) are c o n s i d e r e d to be the c l i m a t i c climax t r e e s p e c i e s . D o u g l a s - f i r (Pseudotsuga menziesii), western l a r c h (Larix occi dent al i s) and lodgepole pine are important s e r a i s p e c i e s due to widespread f i r e s i n the past ( U t z i g et a l . 1983). Dominant s o i l s i n t h i s area are E u t r i c B r u n i s o l s , D y s t r i c B r u n i s o l s and Grey L u v i s o l s (Canada S o i l Survey Committee 1978), with s o i l development depending l a r g e l y upon the nature of the parent m a t e r i a l . There i s a d i v e r s i t y of parent m a t e r i a l s i n the area i n c l u d i n g c o l l u v i a l , f l u v i a l , m o r a i n a l , g l a c i o - f l u v i a l and g l a c i o - l a c u s t r i n e d e p o s i t s (Wittneben 1980). 2.3 METHODS OF SAMPLE SITE SELECTION AND DESCRIPTION Sampled stands were s e l e c t e d to c h a r a c t e r i z e each of four edatopes (combinations of hygrotope and tr o p h o t o p e ) : x e r i c - " p o o r " , x e r i c - " r i c h " , mesic-"poor" and m e s i c - " r i c h " . 1 2 These four edatopes c h a r a c t e r i z e two ecosystem a s s o c i a t i o n s ( F i g u r e 2 .2) . The s i t e s with x e r i c moisture regimes were c h a r a c t e r i s t i c of the "Juniperus - Arct ostaphyl os" ecosystem a s s o c i a t i o n and mesic s i t e s were c h a r a c t e r i s t i c of the "Menzi es i a - Aster" ecosystem a s s o c i a t i o n ( U t z i g et a l . 1983). T h i s range of edatopes r e p r e s e n t s the range of s i t e s over which lodgepole pine stands t y p i c a l l y occur i n t h i s subzone. Hygrotopes and trophotopes were i n f e r r e d from s o i l and s i t e c h a r a c t e r i s t i c s observed i n the f i e l d , as o u t l i n e d by Walmsley et a l . (1980) (Appendix I I ) . In t h i s a rea, s i t e s with mesic hygrotopes g e n e r a l l y occur on medium t e x t u r e d , w e l l d r a i n e d , g l a c i a l t i l l m a t e r i a l s . X e r i c hygrotopes g e n e r a l l y c h a r a c t e r i z e s i t e s with r a p i d l y d r a i n e d , coarse t e x t u r e d s o i l s of g l a c i o - f l u v i a l or c o l l u v i a l o r i g i n . "Rich" (permesotrophic) and "poor" (submesotrophic) trophotopes were d i s t i n g u i s h e d p r i m a r i l y by the presence or absence, r e s p e c t i v e l y , of f r e e c a l c i u m carbonates w i t h i n the root zone (upper 40 cm). The presence of f r e e c a l c i u m carbonates was i n d i c a t e d by e f f e r v e s c e n c e of s o i l or rock m a t e r i a l f o l l o w i n g a d d i t i o n of a 10% h y d r o c h l o r i c a c i d s o l u t i o n . Secondary c h a r a c t e r i s t i c s used i n the assessment of trophotope i n c l u d e d coarse fragment l i t h o l o g y , s o i l t e x t u r e , and s o i l o r ganic matter content, as o u t l i n e d by Walmsley et a l . (1980) (Appendix I I ) . In t h i s subzone, " r i c h " (permesotrophic) trophotopes are p r i m a r i l y a s s o c i a t e d w i t h parent m a t e r i a l s d e r i v e d from c a l c a r e o u s sedimentary 13 M S a Ul o Ul oc H co 5 IE Subhydrlc SOIL NUTRIENT REGIME Oligotrophia SiibirwtoirapNc Metotropriic Permetotrophic Eutrophic (Very Poor) (Poorl (Mtdltim) (Rich) (Very Rich) Very Xeric O Xcnc Subxerle 2 SubmtMC 3 Metlc 4 O Subhygric 5 Hygrlc 1962 A s » o c i o t i u n » I and 4 o c c u p y v e r y SKTMIOT loo i je t o l soil molslurtt a n d n u l r t e n l t . F i g u r e 2.2. Ed a t o p i c g r i d f o r the Dry Southern C o r d i l l e r a n Montane Spruce b i o g e o c l i m a t i c subzone of B r i t i s h Columbia showing the gen e r a l p o s i t i o n of each of the ecosystem a s s o c i a t i o n s (From U t z i g et a l . 1983). 14 bedrock m a t e r i a l s and are most common i n the Rocky Mountains. "Poor" (submesotrophic) trophotopes i n t h i s area are a s s o c i a t e d with s o i l parent m a t e r i a l s d e r i v e d p r i m a r i l y from metamorphic and igneous bedrock ( g u a r t z i t e and g r a n o d i o r i t e ) which are common i n the P u r c e l l Mountains. Sample p l o t s were s e l e c t e d on s i t e s c h a r a c t e r i s t i c of each of the four edatopes. Stands were chosen to c h a r a c t e r i z e the range of stand d e n s i t i e s normally found on these s i t e s , but stands e x h i b i t i n g r e p r e s s e d growth a s s o c i a t e d with very high stand d e n s i t i e s were excluded pending the r e s u l t s of r e s e a r c h on growth r e p r e s s i o n i n lodgepole pine (Keane 1985) which was underway elsewhere. S e l e c t e d stands were over 50 years of age s i n c e the m a j o r i t y of stands i n the study area were i n the 50 to 150 year age range. T h i s age c l a s s was a l s o s e l e c t e d i n order to a v o i d younger stands which might not yet have achieved f u l l canopy development. Stands with evidence of recent m o r t a l i t y due to a t t a c k by mountain pine b e e t l e {Dendroctonus ponder os ae Hopk.) were avoided. 2.3.1 SAMPLING, DESCRIPTION, AND ANALYSIS OF SOIL PROPERTIES F o r e s t f l o o r o rganic h o r i z o n s (L,F and H h o r i z o n s ) were sampled a t f i v e randomly s e l e c t e d p o i n t s i n each p l o t u s ing a 25 cm x 25 cm s t e e l frame and a k n i f e . F o l l o w i n g c o l l e c t i o n , the t h i c k n e s s of org a n i c m a t e r i a l was measured at the c o r n e r s of the sample hole and l i v e green p l a n t m a t e r i a l was removed. Samples were oven-dried at 70°C f o r 15 48 hours and weighed. Nitrogen c o n c e n t r a t i o n s were determined i n the F o r e s t Ecology Laboratory at U.B.C. using a m o d i f i e d semi-micro K j e l d a h l d i g e s t i o n i n c o n j u n c t i o n with d e t e r m i n a t i o n of n i t r o g e n , as ammonium, using a Technicon Automatic Analyser (Warner and Jones 1970; Technicon Instrument C o r p o r a t i o n 1977). M i n e r a l s o i l samples were c o l l e c t e d from each s o i l h o r i z o n i n the root zone (upper 40 cm) from f i v e randomly l o c a t e d p o i n t s i n each p l o t . Samples of h o r i z o n s below 40 cm depth were obtained from one s o i l p i t per p l o t excavated down i n t o the parent m a t e r i a l . Samples were allowed to a i r - d r y f o l l o w i n g c o l l e c t i o n . In the l a b o r a t o r y , m i n e r a l s o i l samples were oven-dried at 70°C f o r 48 hours and ground to pass a 2 mm s i e v e . For each m i n e r a l s o i l sample, pH was determined in 1:2 s o i l : w a t e r s l u r r y using a g l a s s - e l e c t r o d e pH meter. T o t a l ( K j e l d a h l ) n i t r o g e n c o n c e n t r a t i o n s of s o i l samples were determined using the m o d i f i e d semi-micro K j e l d a h l procedure. The e s t i m a t i o n of root zone n i t r o g e n content i n kg ha" 1 r e q u i r e d measurement of s o i l dry bulk d e n s i t y f o r the f i n e f r a c t i o n (<2 mm). Two samples of each h o r i z o n i n the root zone were excavated using a t r o w e l , the volume of the sample was determined by l i n i n g the hole with a p l a s t i c bag, f i l l i n g i t with water and measuring the volume of water with a graduated c y l i n d e r . F o l l o w i n g c o l l e c t i o n , the samples (of about 1 l i t r e volume) were s i e v e d to separate f i n e s o i l f r a c t i o n s from coarse fragments (>2 mm). Each f r a c t i o n was 16 then oven-dried at 70°C f o r 48 hours and weighed. The measurement of t r e e p r o d u c t i o n , which was undertaken i n each of these stands, i s d i s c u s s e d i n Chapter 4. 2.4 CHARACTERISTICS OF THE SELECTED STANDS The major f l o r i s t i c c h a r a c t e r i s t i c s of each of the four edatopes and the f l o r i s t i c r e l a t i o n s h i p s between the four edatopes are summarized i n Table 2.1. X e r i c s i t e s , which belong to the "Juniperus - Arct ostaphyl os" ecosystem a s s o c i a t i o n ( U t z i g et a l . 1983), were c h a r a c t e r i z e d by the presence of Juniperus communis and high percent cover values of Ar ct ost aphyl os uva-ursi and Calamagrostis rubescens. Mesic s i t e s , belonging to the "Menziesia - Aster" a s s o c i a t i o n , d i f f e r e d from the x e r i c s i t e s i n the presence of Lonicera utahensis, Cornus canadensis, and PtiIium crista-castrensis. In many of the o l d e r lodgepole pine stands growing on mesic s i t e s , continuous c a r p e t s of f e a t h e r mosses {Pt i I i um c r i s t a-cas tr e ns i s , Hylocomium splendens and Pleurozium schreberi) have developed. Four p l a n t community types, c o r r e s p o n d i n g ' t o the four edatopes, are c h a r a c t e r i z e d i n t a b l e 2.1. The m e s i c - r i c h edatope i s c h a r a c t e r i z e d by a "Vaccini um myrtillus - Cornus canadensis" p l a n t community type, and the mesic - poor edatope by a "Vacci ni um s copar i um - Cornus canadensis" p l a n t community type. X e r i c - r i c h and x e r i c - poor edatopes are c h a r a c t e r i z e d as "Arct ostaphyl os uva-ursi - Astragalus 17 Table 2.1 Table showing the major - f l o r i s t i c r e l a t i o n s h i p s between stands sampled -for each edatope. (Presence c l a s s e s are 1=1-20%, 11=21-40%, 111=41-60%, IV=61-80%, V=81-100%; mean percent cover i s i n d i c a t e d by the a r a b i c numbers). EDATOPE Mesic Xeric SPECIES "Rich" "Poor" 'Rich' "Poor" Species common to al1 4 edatopes Pinus contorts Pleurozium schreberi Calamagrostis rubescens Linnaea boreal is Shepherdia canadensis Sp i raea betul i -fol i a Pelt igera aphthosa Pyrola chlorantha V 43.7 V 42.5 V 16.9 7.0 V V IV V IV 5.9 2.0 1 .8 .5 V 40.3 V 46.6 IV 5.2 V 18.1 IV 9.0 V 6.6 V 1.8 V .6 V 29.8 V 18.7 V 30.0 V 10.9 18.3 3.9 2.4 .3 V IV V IV V 37.1 V 6.1 IV 20.1 V 7.7 IV 16.0 IV 4.3 V 2.7 V .4 Mesic Cornus canadensis Pti1iurn crista-castrensis Lonicera utahensis V 8.0 V 21.0 IV 6.9 IV 4.8 V .8 V 2.7 I .1 II .1 II .7 III .6 Mesic - "Rich* Vacc i n i um myr t i11 us IV 2.2 II 1 .0 Mesic - "Poor" Yaccinium scoparium II .4 Menziesia -ferruginea III .8 Alnus v i r i d i s sinuata III 1.3 Rhytidiopsis robusta I .1 Uaccinium membranaceurn II .2 V 20.7 V 19.6 V 11.5 V 4.1 V 1 .9 I .5 III 17.9 I .4 II .2 I .1 III .6 Xeric Arctostaphylos uva-ursi II .4 V 14.9 IV 13.6 Xeric - 'Rich-Astragal us miser Hedysarum sulphurescens III 1.0 Juniperus scopulorum Achillea millefolium I .1 Antennaria microphylla IV 1 .5 V .9 IV .6 IV .4 IV .4 I .1 I .1 Xeric - "Poor' Carex concinnoides II .2 I .1 Stereocaulon tomentosum II .9 IV 3.8 V .5 "Rich* Fragaria virginiana IV .8 I .1 V 4.5 II 3.0 18 miser" and "A r c t o s t a p h y l os uva-ursi - Car ex conci nnoi des " p l a n t community types, r e s p e c t i v e l y . S i t e s with x e r i c moisture regimes were a s s o c i a t e d with r a p i d l y d r a i n e d s o i l s developed i n g r a v e l l y g l a c i o - f l u v i a l , or s a n d y - s k e l e t a l g l a c i a l t i l l , or c o l l u v i a l m a t e r i a l s . X e r i c - " r i c h " s i t e s showed strong evidence of c a l c i u m carbonates w i t h i n 10 cm of the s o i l s u r f a c e and s o i l s on these " r i c h " s i t e s were predominantly E u t r i c B r u n i s o l s . S o i l s of the x e r i c - " p o o r " s i t e s were p r i m a r i l y D y s t r i c B r u n i s o l s . S o i l pH, n i t r o g e n c o n c e n t r a t i o n s , and estimates of n i t r o g e n content f o r each p l o t are given i n Appendix V. Mesic s i t e s were a s s o c i a t e d with g e n t l e s l o p e s and compacted g l a c i a l t i l l parent m a t e r i a l s , although i n a few cases mesic s i t e s were found on f l u v i a l or g l a c i o - f l u v i a l m a t e r i a l s . S o i l s were w e l l to moderately-well d r a i n e d (Appendix I V ) . M e s i c - " r i c h " s i t e s showed evidence of carbonates w i t h i n 20 cm of the s o i l s u r f a c e and s o i l s were e i t h e r E u t r i c B r u n i s o l s or B r u n i s o l i c Grey L u v i s o l s . S o i l s a s s o c i a t e d with the mesic-"poor" s i t e s were D y s t r i c B r u n i s o l s or B r u n i s o l i c Grey L u v i s o l s . Table 2.2 o u t l i n e s the ranges of measurements of f o r e s t f l o o r biomass, s o i l pH, and n i t r o g e n contents and c o n c e n t r a t i o n s f o r each edatope. Comparison of mean values fo r the mesic and x e r i c s i t e s showed s i g n i f i c a n t l y (a-0.05) higher v a l u e s of f o r e s t f l o o r t h i c k n e s s , f o r e s t f l o o r mass, f o r e s t f l o o r n i t r o g e n content, and root zone bulk d e n s i t y fo r the mesic s i t e s . -Mean root zone coarse fragment percent T a b l e 2 . 2 . A summary of the ranges of s o i l and s tand c h a r a c t e r i s t i c s f o r each of the four e d a t o p e s . Edatope LFH Root Zone (upper 40cm) C horizon Total Stand Weight W. N pH CF. NX N pH CF. NX N mi SI Density Age <t ha"1) 00 (kg ha-1) CA) CA) (kg ha"1) CA) CA) (kg ha-1) (t ha^yr"1) (ntflOO) (trees ha"1) (yrs) Mesic-'Poor" mean 28.9 0.920 260 5.3 19 0.072 1797 5.7 37 0.020 2057 2.82 23.1 1485 83 min 17.8 0.690 227 5.1 10 0.057 1262 5.1 15 0.016 1497 1.99 19.6 372 67 max 34.8 1.171 302 5.8 35 0.097 2340 7.2 80 0.025 2568 3.91 26.4 2474 106 esic-"Rich' mean 33.2 0.961 320 6.5 18 0.097 2831 7.1 28 0.071 3152 2.51 19.5 2096 91 min 26.7 0.777 249 5.9 5 0.075 1363 6.1 5 0.027 1639 1.35 16.2 1107 64 max 44.7 1.165 457 7.2 45 0.132 5047 7.7 50 0.130 5365 3.53 21.3 3292 116 eric-'Poor* mean 20.7 0.933 190 5.5 44 0.077 1601 5.3 55 0.024 1791 1.58 17.4 1807 82 min 17.1 0.720 133 4.4 30 0.042 364 4.6 35 0.012 557 1.15 9.2 356 70 max 27.8 1.179 203 6.2 70 0.116 2483 5.8 75 0.036 2616 1.95 20.8 6352 92 Xeric-'Rich' mean 27.4 0.978 272 6.5 33 0.096 2336 7.1 59 0.045 2607 1.27 16.4 1533 89 min 17.8 0.784 140 6.0 15 0.063 1474 6.5 35 0.025 1614 0.75 14.3 383 53 max 36.7 1.265 378 6.8 45 0.152 5196 7.5 85 0.096 5572 1.65 17.6 3584 121 LFH weight = dry weight (70°C> of soil organic horizons (t ha-1); W. = nitrogen concentration CA oi oven-dry weight) ; N = nitrogen content (kg ha-1); pH - soil pH in 1:2 soil water slurry; CF. = coarse fragment content (volume 'A)', Total N = LFH • Root Zone N (kg ha"1); MAI = stand mean annual increment (t ha^yr"1). 20 was s i g n i f i c a n t l y lower f o r the mesic s i t e s than the x e r i c s i t e s . F o r e s t f l o o r o r ganic h o r i z o n s ranged i n t h i c k n e s s between 1.7 cm and 8.9 cm with s u b s t a n t i a l o v e r l a p being evident amongst the four edatopes and f o r e s t f l o o r biomass ranged from 17.1 to 44.8 t h a " 1 . F o r e s t f l o o r n i t r o g e n c o n c e n t r a t i o n s (0.69% to 1.26%) and f o r e s t f l o o r n i t r o g e n content (133 to 457 kg ha" 1) were a l s o s i m i l a r f o r the four edatopes, although " r i c h " s i t e v a l u e s f o r each hygrotope covered a broader range than d i d "poor" s i t e s . For each of the trophotopes, higher maximum value s of f o r e s t f l o o r n i t r o g e n content were found on mesic hygrotopes than on x e r i c hygrotopes. T o t a l ( K j e l d a h l ) n i t r o g e n c o n c e n t r a t i o n s (0.42% to 0.15%) and content (364 to 5195 kg ha" 1) i n the upper 40 cm of mi n e r a l s o i l (root zone) d i d not show c l e a r d i f f e r e n c e s between trophotopes or hygrotopes. However, value s from the " r i c h " trophotopes (1363 to 5196 kg ha' 1) tended to be higher than those from the "poor" trophotopes (364 to 2483 kg h a " 1 ) . Root zone pH f o r the "poor" trophotopes ranged from 4.4 to 6.2 (mean = 5.4) compared with 5.9 to 7.2 (mean = 6.5) fo r the " r i c h " trophotopes. Parent m a t e r i a l pH was s i g n i f i c a n t l y g r e a t e r (a=0.05) f o r the " r i c h " trophotope (mean = 7.1) than f o r the "poor" (mean = 5.5) trophotope. Average s i t e index v a l u e s f o r r e f e r e n c e age 100 were c a l c u l a t e d f o l l o w i n g Hegyi et a l . (1979). Mesic s i t e s are c h a r a c t e r i z e d as Medium to Good s i t e c l a s s e s (SI = 16.2 to 26.4 m at lOOyrs) and x e r i c s i t e s as Poor s i t e c l a s s e s (SI = 21 9.2 to 20.8 m at lOOyrs) (B.C. M i n i s t r y of F o r e s t s 1981). The ranges of s i t e index values f o r each edatope are given i n Table 2.2. The higher s i t e index values found f o r "poor" trophotopes w i t h i n each moisture regime may r e f l e c t d i f f e r e n c e s i n stand d e n s i t i e s sampled (the high s i t e index val u e s were g e n e r a l l y a s s o c i a t e d with very low d e n s i t i e s ) , i n a c t u a l s i t e q u a l i t y , and i n c l i m a t i c c o n d i t i o n s . Reane (1985) showed a strong i n v e r s e r e l a t i o n s h i p between t r e e h eight and stand d e n s i t y . Mean annual increment (MAI), c a l c u l a t e d as stem biomass d i v i d e d by stand age, a l s o v a r i e d s u b s t a n t i a l l y . On mesic s i t e s , MAI ranged from 1.35 to 3.91 t h a ^ y r " 1 while on x e r i c s i t e s , v a l u e s ranged from 0.75 to 1.95 t h a _ 1 y r " 1 . Stand d e n s i t i e s of sampled stands ranged from 356 to 6352 t r e e s h a " 1 , and age ranged from 53 to 121 years (Table 2.2). 2.5 SUMMARY T h i r t y stands were sampled d u r i n g the course of t h i s r e s e a r c h i n the Dry Southern C o r d i l l e r a n Montane Spruce b i o g e o c l i m a t i c subzone of southeastern B.C. Seven to e i g h t stands were s e l e c t e d to c h a r a c t e r i z e each of four edatopes (combinations of two hygrotopes and two trophotopes) o c c u r r i n g w i t h i n t h i s subzone. Stands s e l e c t e d ranged i n age from 53 to 121 years and d e n s i t i e s ranged from 356 to 6352 t r e e s h a " 1 . Mesic- hygrotopes (moisture regimes) were t y p i c a l l y a s s o c i a t e d with medium t e x t u r e d g l a c i a l t i l l m a t e r i a l s and 22 w e l l to moderately-well d r a i n e d , loamy s o i l s . X e r i c hygrotopes were t y p i c a l l y r a p i d l y d r a i n e d , sandy, g l a c i o - f l u v i a l m a t e r i a l s . "Poor" and " r i c h " trophotopes were d i s t i n g u i s h e d by the presence of f r e e c a l c i u m carbonates i n the root zone (upper 40 cm) to i d e n t i f y the l a t t e r . The pH of root zone mineral s o i l s ranged from 4.4 to 6.2 f o r "poor" trophotopes and from 5.9 to 7.2 f o r " r i c h " trophotopes. Mean pH of the parent m a t e r i a l was s i g n i f i c a n t l y higher on the " r i c h " (7.1) than on the "poor" (5.5) trophotopes. F o r e s t f l o o r organic h o r i z o n (LFH) weight ranged from 17.1 to 44.7 t ha" 1 with s u b s t a n t i a l o v e r l a p between the four edatopes. Nitrogen ( t o t a l K j e l d a h l Nitrogen) content i n f o r e s t f l o o r h o r i z o n s ranged from 133 to 457 kg ha" 1 and n i t r o g e n content i n the upper 40 cm of the mi n e r a l s o i l •ranged from 364 to 5196 kg h a " 1 . F o r e s t f l o o r weight and s o i l n i t r o g e n content were s i g n i f i c a n t l y higher on the mesic than on the x e r i c s i t e s . The four edatopes represent two ecosystem a s s o c i a t i o n s d e s c r i b e d by U t z i g et a l . 1983. The "Juniperus -Arctostaphylos" ecosystem a s s o c i a t i o n c h a r a c t e r i z e s the s i t e s with x e r i c hygrotopes and the "Menzi esi a - Aster" ecosystem a s s o c i a t i o n c h a r a c t e r i z e s the mesic s i t e s . Mesic s i t e s were c l a s s e d as Medium to Good s i t e c l a s s e s with S i t e Index v a l u e s of 16.2 to 26.4 (m at 100 years) and mean annual increment ranging from 1.35 to 3.91 t h a " 1 y r " 1 . X e r i c s i t e s were l a r g e l y c h a r a c t e r i z e d as Poor s i t e c l a s s e s , 23 measured S i t e Index values ranged from 9.2 to 20.8 (m at 100 years) and mean annual increment ranged from 0.75 to 1.95 t h a ~ 1 y r ~ 1 . These data i n d i c a t e both a s u b s t a n t i a l o v e r l a p i n p r o d u c t i o n v a l u e s between the two edatopes and a s u b s t a n t i a l amount of v a r i a t i o n w i t h i n each hygrotope and ecosystem a s s o c i a t i o n . T h i s o v e r l a p and v a r i a t i o n a r i s e s from the i n f l u e n c e of both stand and s i t e f a c t o r s on the a c t u a l achieved r a t e of t r e e p r o d u c t i o n . The c o n t r i b u t i o n of these f a c t o r s to the v a r i a t i o n s i n stand p r o d u c t i v i t y i s addressed in the f o l l o w i n g c h a p t e r s . Chapter 3 REGRESSION EQUATIONS FOR ESTIMATING THE COMPONENT BIOMASS OF LODGPOLE PINE TREES. 3.1 INTRODUCTION In r e s e a r c h p r o j e c t s r e q u i r i n g estimates of t r e e p r o d u c t i o n and biomass, i t i s o f t e n n e i t h e r p o s s i b l e nor p r a c t i c a l to u t i l i z e the harvest technique. H a r v e s t i n g e n t i r e stands i s d e s t r u c t i v e , time consuming, and expensive. Such an approach l i m i t s the number of stands which can be sampled and p r e c l u d e s the p o s s i b i l i t y of f u r t h e r r e s e a r c h i n the sampled stands. The most common a l t e r n a t i v e method i n v o l v e s the use of r e g r e s s i o n equations to estimate t o t a l and component t r e e biomass using n o n - d e s t r u c t i v e t r e e measurements. Researchers have f r e q u e n t l y used e x i s t i n g , p u b l i s h e d equations to a v o i d the c o s t of producing t h e i r own equations. However, s e v e r a l s t u d i e s suggest that some r e g r e s s i o n equations, p a r t i c u l a r l y those f o r crown components, cannot be u n i v e r s a l l y a p p l i e d (Johnstone 1971; Whitehead et a l . 1984; A l b r e k t s o n 1984) and i t may be necessary f o r r e s e a r c h e r s to develop t h e i r own equations. Due to the l a c k of u n i v e r s a l l y a c c e p t a b l e equations f o r e s t i m a t i n g the biomass of crown and coarse root components of lodgepole pine, i t was necessary to undertake sampling f o r the development of s u i t a b l e , l o c a l l y - a p p l i c a b l e biomass equations f o r these components. A d d i t i o n a l i n f o r m a t i o n , a l s o not a v a i l a b l e from the l i t e r a t u r e , was r e q u i r e d f o r the 24 25 e s t i m a t i o n of f o l i a g e by age c l a s s ( e s s e n t i a l to the e s t i m a t i o n of f o l i a g e n i t r o g e n content) and f o r the e s t i m a t i o n of f o l i a g e and branch p r o d u c t i o n . T h i s chapter b r i e f l y reviews the l i t e r a t u r e on t r e e biomass r e g r e s s i o n equations p e r t i n e n t to t h i s study and d e s c r i b e s how r e g r e s s i o n s were produced f o r the study stands. 3.2 LITERATURE REVIEW Equations f o r p r e d i c t i n g t r e e biomass are f r e q u e n t l y based upon r e a d i l y measured parameters such as diameter at breast h e i g h t (DBH) and t r e e h e i g h t . P r e d i c t i v e equations based upon these e x t e r n a l l y measured v a r i a b l e s have been s u c c e s s f u l l y a p p l i e d i n e s t i m a t i n g stem biomass. There i s , however, a s u b s t a n t i a l body of evidence to suggest that diameter and height cannot p r o v i d e e s t i m a t o r s of the biomass of crown components which are a c c e p t a b l y a c c u r a t e f o r stands that d i f f e r s i g n i f i c a n t l y i n s i t e or stand c h a r a c t e r i s t i c s from the stand f o r which the r e g r e s s i o n e s t i m a t o r s were developed (Satoo and Madgwick 1982). In an e a r l y p u b l i c a t i o n on t h i s s u b j e c t , K i t t r e d g e (1944) demonstrated that the l o g a r i t h m i c r e l a t i o n s h i p s between f o l i a g e biomass and t r e e diameter d i f f e r e d f o r each l o c a t i o n i n which he sampled Pi nus strobus and Pi nus banksiana. Johnstone (1971) prese n t s s i m i l a r r e s u l t s f o r lodgepole pine i n southwestern A l b e r t a u s i n g l o g a r i t h m i c a l l y transformed r e l a t i o n s h i p s between the two dependent v a r i a b l e s , f o l i a g e biomass and 26 branch biomass, and the independent v a r i a b l e , diameter squared times height (D 2H). The r e l a t i o n s h i p s between f o l i a g e biomass and sapwood b a s a l area ( G r i e r and Waring 1974) have r e c e n t l y become popular as the b a s i s f o r p r e d i c t i n g stand f o l i a g e biomass. Kaufmann and Troendle (1981) present equations f o r e s t i m a t i n g l e a f area of lodgepole pine t r e e s using a l i n e a r r e l a t i o n s h i p between l e a f area and sapwood b a s a l area (based upon nine t r e e s ) . T h e i r sample t r e e s were taken from a range of s i t e s . No comparison of the r e l a t i o n s h i p s between d i f f e r e n t s i t e s was made. Satoo and Madgwick (1982) suggest that i f f o l i a g e biomass i s c a u s a l l y r e l a t e d to the a b i l i t y of a stem to t r a n s p o r t water, then f a c t o r s which a f f e c t the a b i l i t y of the stem to conduct water w i l l be as important as the conducting c r o s s - s e c t i o n a l a r e a . Recent s t u d i e s c o n f i r m that both s i t e and stand c o n d i t i o n s i n f l u e n c e the simple l i n e a r r e l a t i o n s h i p s between f o l i a g e biomass or f o l i a g e area and sapwood b a s a l a r e a . G r a n i e r (1981) found that the r a t i o of l e a f biomass to sapwood b a s a l area d i f f e r e d i n thinned and unthinned stands of D o u g l a s - f i r . S i m i l a r l y , the r a t i o of f o l i a g e to sapwood area v a r i e d amongst f e r t i l i z e r and t h i n n i n g treatments f o r D o u g l a s - f i r (B r i x and M i t c h e l l 1983). Leaf area/sapwood area r e l a t i o n s h i p s have been found to vary s u b s t a n t i a l l y i n lodgepole pine stands of d i f f e r i n g d e n s i t y due to v a r i a t i o n i n s p e c i f i c l e a f area (Keane 1985; Pearson 1982). D i f f e r e n c e s i n sapwood p e r m e a b i l i t y were 27 found to account f o r p a r t of t h i s v a r i a t i o n (Whitehead et a l . 1984; A l b r e k t s o n 1984). Current evidence suggests that simple r e l a t i o n s h i p s between crown biomass and sapwood area should be a p p l i e d only a f t e r c a r e f u l e v a l u a t i o n . The biomass of coarse r o o t s (>5 mm) i s commonly estimated using DBH and t r e e height as independent v a r i a b l e s , u s i n g e i t h e r l o g a r i t h m i c t r a n s f o r m a t i o n s or polynomial equations (Santantonio et a l . 1977). Johnstone (1971) showed that equations f o r coarse root biomass of lodgepole pine d i f f e r e d l i t t l e between d i f f e r e n t stands. Pearson (1982) found, however, t h a t the r e l a t i o n s h i p between lodgepole pine coarse root biomass and stem b a s a l area d i f f e r e d between stands of d i f f e r e n t d e n s i t y . 3.3 OBJECTIVES AND HYPOTHESES On the b a s i s of t h i s review, i t was decided that s i n c e no s u i t a b l e g e n e r a l r e g r e s s i o n equations were a v a i l a b l e , r e g r e s s i o n equations f o r the e s t i m a t i o n of component biomass and p r o d u c t i o n of lodgepole pine had to be developed f o r the study area. Because of the p o s s i b l e e f f e c t s of s i t e q u a l i t y (hygrotope and trophotope), sampling was r e q u i r e d on a v a r i e t y of s i t e s . The o b j e c t i v e s of t h i s phase of the study were, t h e r e f o r e , to develop r e g r e s s i o n e s t i m a t o r s of lodgepole pine component biomass and to t e s t whether equations f i t t e d to data from c o n t r a s t i n g edatopes were s i g n i f i c a n t l y d i f f e r e n t . 28 3.4 METHODS Trees were sampled from a v a r i e t y of stands s e l e c t e d to c h a r a c t e r i z e the range of s i t e s ( x e r i c to mesic hygrotopes, and submesotrophic to permesotrophic t r o p h o t o p e s ) , stand d e n s i t i e s (400 to 10,000 t r e e s per h e c t a r e ) , t r e e diameters (5 cm to 45 cm DBH), and ages (20 to 150 years) throughout the g e o g r a p h i c a l range of the study a r e a . The number of t r e e s sampled i n each stand ranged from 2 to 12. Trees were s e l e c t e d i n each stand to t y p i f y the range of t r e e s i z e s and crown p o s i t i o n s p r e s e n t . In t o t a l , 13 stands and 68 t r e e s were sampled (Table 3.1). The d i s t r i b u t i o n of sample t r e e s by s i t e , stand age, and stand d e n s i t y was not uniform due to the lac k of a v a i l a b i l i t y of s u i t a b l e stands and t'rees. Stands e x h i b i t i n g damage from mountain pine b e e t l e or heavy dwarf m i s t l e t o e i n f e c t i o n s were r e j e c t e d . Trees s e l e c t e d f o r coarse root sampling were hand excavated around the stump and l a r g e root system and then p u l l e d over using e i t h e r a tr u c k mounted e l e c t r i c winch ( f o r small or medium t r e e s ) or a c a t e r p i l l a r t r a c t o r ( f o r l a r g e t r e e s ) . Trees s e l e c t e d f o r sampling of aboveground components only were f e l l e d u s i n g a chainsaw. Care was taken d u r i n g the f a l l i n g of these t r e e s to a v o i d l o s s of branches. A f t e r f a l l i n g , the l i v e crown of each t r e e was s u b d i v i d e d , by crown l e n g t h , i n t o equal lower, middle, and upper crown t h i r d s . L i v e branches were removed a c c o r d i n g to crown p o s i t i o n and f r e s h weighed using a p o r t a b l e s p r i n g 29 T a b l e 3 . 1 . T h e d i s t r i b u t i o n o f s a m p l e d t r e e s by h y g r o t o p e , t r o p h o t o p e , s t a n d a g e , a n d d e n s i t y . Numbers i n d i c a t e the number o-f s a m p l e t r e e s f r o m e a c h l o c a t i o n . T r o p h o t o p e 'Poor" "Rich" Hygrotope Stand Densi ty Stand Density Age Tota l L M H L M H (years) 4 <50 4 Xer i c to - 5 - - 8 3 50 - 85 16 Subxer ic >85 2 7 <50 7 Submesic to - 8 - - 4 5 50 - 85 17 Mes ic 4 - - 10 6 >85 22 Tota l 2 17 0 2 22 25 68 Stand Density C l a s s e s : L = <600 t rees /ha M = 600 to 2500 t rees /ha H = >2500 t rees /ha Measurements o-f the biomass o-f every component (coarse r o o t s , stem, branches, and -fol iage) were not obtained -for a l l 68 t r e e s . Coarse root biomass was measured -for 42 t rees and aboveground biomass was measured -for 44 t r e e s . 30 s c a l e . Three branches or a minimum of 1 kg of branches (or the e n t i r e crown p o r t i o n where i t weighed l e s s than 1 kg) were randomly drawn from each crown p o r t i o n , f i e l d weighed, and then t r a n s p o r t e d to the f i e l d l a b o r a t o r y f o r s e p a r a t i o n of f o l i a g e (by age c l a s s ) and branch m a t e r i a l . Fresh weights of each component were determined, on the day of sampling, to the nearest 0.1 g using an e l e c t r o n i c t o p - l o a d i n g balance. Branch and f o l i a g e samples were then oven - d r i e d f o r 48 hours at 70°C and reweighed. D i s c s , approximately 4 cm i n t h i c k n e s s , were cut from the stem of each f e l l e d t r e e at the base, 1.3 m, one-half way between 1.3 m and lowest l i v e branch, at the lowest l i v e branch, at the base of the midcrown t h i r d , and at the base of the upper crown t h i r d . Heights above stem base were recorded f o r each of these p o s i t i o n s . Sapwood widths, heartwood diameter, i n s i d e bark diameter and o u t s i d e bark diameter were measured on f r e s h l y cut d i s c s a long both north-south and east-west axes. The volume of the e n t i r e stem ( o u t s i d e b a r k ) , wood volume ( i n s i d e b a r k ) , and heartwood volume were c a l c u l a t e d u s i n g the Smalian equation of the form: V = Z.(n(ri 2 + r. + 1 2 ) / 2 ) x 1. where: V = component volume; r ^ = r a d i u s of stem d i s c ; and 1^ = l e n g t h of stem s e c t i o n between i and i+1. The volumes of sapwood and bark components were estimated by 31 s u b t r a c t i o n . Stem biomass was estimated from the c a l c u l a t e d volume and the measured d e n s i t y ( s p e c i f i c g r a v i t y ) of sapwood, heartwood, and bark samples taken from each d i s c . D e n s i t y was determined by measurement of water displacement by wax-coated a i r - d r y samples fo l l o w e d by oven-drying at 70°C f o r 72 hours and weighing (F o r e s t Products Laboratory 1956). Values were converted to a f r e s h volume b a s i s using the r e l a t i o n s h i p between stem diameters of d i s c s when f r e s h and f o l l o w i n g a i r - d r y i n g . Fresh d i s c diameter averaged 1.06 times that of a i r - d r y d i s c s . F o l l o w i n g e x t r a c t i o n of root masses from the s o i l , a l l r o o t s l e s s than 5 mm were removed and the diameter of a l l broken r o o t s l a r g e r than 5 mm was measured. T o t a l f r e s h weight of each root mass was determined i n the f i e l d u s ing s p r i n g s c a l e s . Samples of root m a t e r i a l were c o l l e c t e d f o r the d e t e r m i n a t i o n of f r e s h weight:dry weight r a t i o s . The f o l l o w i n g equation was used to estimate the dry weight of root m a t e r i a l l a r g e r than 5 mm which was l o s t as a r e s u l t of breakage: B = 3.0919 x D + 0.573 x D 3 - 293.89 x D 5 ( G i l l 1983) where B i s the root biomass l o s t i n grams and D i s root diameter at the p o i n t of breakage i n cm. G i l l (1983) developed t h i s equation from measurements of biomass/diameter r e l a t i o n s h i p s of e i g h t -lodgepole pine root 32 systems manually excavated on both x e r i c and mesic s i t e s . Root masses were excavated, measured and weighed f o r a t o t a l of 42 t r e e s d u r i n g 1982, 1983 and 1984. Aboveground stem and f o l i a g e measurements were made on a t o t a l of 44 t r e e s . Due to sampling problems, not a l l of the t r e e s sampled f o r coarse root biomass were sampled f o r aboveground biomass and coarse r o o t s were not excavated f o r a l l t r e e s sampled f o r aboveground biomass. 3.5 RESULTS AND DISCUSSION 3.5.1 TREE BIOMASS Table 3.2 summarizes the range i n measured v a l u e s f o r the sampled t r e e s . Tree diameter (DBH) ranged from 1.75 cm to 37.0 cm, height ranged from 2.7 m to 28.2 m, height to crown base ranged from 1.2 m to 19.6 m, and t r e e sapwood bas a l area at 1.3 m ranged from 2.12 cm 2 to 526.17 cm 2. T o t a l f o l i a g e biomass v a r i e d from 0.04 kg to 36.65 kg, branch biomass from 0.02 kg to 84.62 kg, stemwood biomass from 1.51 t o 470.92 kg, bark biomass from 1.0 kg to 40.8 kg and coarse root biomass from 0.06 kg to 287.2 kg. Weighted average values f o r d e n s i t y were: f o r bark, 0.676 g cm" 3; f o r sapwood, 0.476 g cm - 3; and f o r heartwood, 0.469 g cm" 3. Table 3.2. Summary of the ranges of s e l e c t e d v a l u e s f o r sampled lodgepole pine t r e e s . Var i abl e n mini mum max i mum mean Diameter o u t s i d e bark 44 1 . 75 37.00 15.40 (cm 31.3 m) Diameter i n s i d e bark 44 1 . 64 36.23 14.85 (cm 31.3 m) Basal area (cm^) 44 2. 39 1075.10 237.5? Sapwood basal area (cm^) 44 2. 12 526.17 122.52 Height (m> 44 2. 70 28.20 17.23 Height to crown base (m) 44 1 . 20 19.60 10 .02 Age (years) 44 20 147 83.4 Biomass (kg oven d r i e d 3 70°C) Fol i age t o t a l 44 0 . 04 36.65 4.97 1-year-old 44 0 . 00 6.62 0.91 2-y e a r - o l d 44 0 . 00 5.50 1 .03 3-ye a r - o l d 44 0 . 01 7.68 0 .85 4-ye a r - o l d 44 0 . 00 5.21 0 .56 5-y e a r - o l d 44 0 . 00 3.39 0.39 6-year-ol d 44 0 . 00 3.60 0.31 Branches 44 0 . 02 84.62 9.78 Hear twood 40 0 . 05 224.73 42.51 Sapwood 40 3. 05 322.41 69.56 Stem i nsi de bark 44 1 . 51 470.92 113.13 Stem o u t s i d e bark 44 5. 55 507.26 126.71 Bark 44 1 . 00 40 .80 13.58 Coarse r o o t s (>5mm) 42 0. 06 278.18 37.14 Branch Pr o d u c t i o n (kg y r - 1 ) 44 0.001 0.74 0.16 34 3.5.2 DEVELOPMENT OF REGRESSION EQUATIONS I n i t i a l t e s t i n g of the r e l a t i o n s h i p between crown f o l i a g e biomass and sapwood area at breast height showed s u b s t a n t i a l v a r i a t i o n . T h i s appeared to be r e l a t e d to t r e e s i z e and height to crown base, both of which r e f l e c t the e f f e c t s of stand d e n s i t y . F o l i a g e biomass i s s t r o n g l y i n f l u e n c e d by the moisture a v a i l a b l e to i t ( G r i e r and Running 1977) and the a b i l i t y of sapwood to supply water to the crown i s determined by i t s c a p a c i t y to s t o r e water and to conduct water through a given c r o s s - s e c t i o n a l area, both of which are r e l a t e d to sapwood volume. Consequently, a t h i r d v a r i a b l e (height) was added to the r e g r e s s i o n equations to account f o r sapwood volume. V a r i a b l e s t e s t e d f o r p r e d i c t i n g aboveground component biomass were: sapwood area, b a s a l area, age, sapwood area x he i g h t , sapwood area x height to base of l i v e crown, b a s a l area x h e i g h t , and b a s a l area x height to base of l i v e crown. The v a r i a b l e (basal area x h e i g h t ) 2 was added to de a l with the c u r v i l i n e a r nature of the r e l a t i o n s h i p between stem biomass components and b a s a l area times h e i g h t . V a r i a b l e s e l e c t i o n u sing backwards s e l e c t i o n p r o v i d e d by the MIDAS s t a t i s t i c a l package (Fox and Guire 1976) f o r each component i n d i c a t e d that n e i t h e r age, sapwood area nor b a s a l area were s i g n i f i c a n t (a =0.05) i n the p r e d i c t i o n of the biomass of any i n d i v i d u a l component. Basal area x height to base of l i v e crown was dropped from the p r e d i c t i v e equations s i n c e i t was found to be h i g h l y c o r r e l a t e d with both b a s a l 35 area x height and sapwood area x height to base of l i v e crown. F i n a l equations f o r aboveground components were made a d d i t i v e by r e t a i n i n g a l l independent v a r i a b l e s that were s i g n i f i c a n t i n any one component equation i n a l l equations (Kozak 1970). Table 3.3 o u t l i n e s the v a r i a b l e s s e l e c t e d f o r p r e d i c t i n g the biomass of each component. 3.5.3 .TESTING OF REGRESSION EQUATIONS. Table 3.4 p r o v i d e s a summary of the comparison of r e g r e s s i o n equations f o r stem biomass, f o l i a g e biomass, and branch biomass between the two hygrotopes. Only data from r e p r e s e n t a t i v e x e r i c and mesic s i t e s were used i n t h i s t e s t i n order to a v o i d data from i n t e r m e d i a t e submesic and s u b x e r i c s i t e s . T h i s was done i n order to o b t a i n a c l e a r comparison between the two hygrotopes. The method of comparing r e g r e s s i o n equations used here and i n the f o l l o w i n g chapters f o l l o w s the approach presented by Zar (1974). The n u l l h y p o t h e s i s (Ho), that there i s a s i n g l e p o p u l a t i o n u n d e r l y i n g a l l k sample r e g r e s s i o n s , i s t e s t e d u s i n g : F = (SS - SS )/((m 4 l ) ( k - 1 ) ) / (SS /DF ) Sr Br hr where: SS t = the r e s i d u a l or e r r o r sum of squares f o r the equation f i t t e d t o the t o t a l data s e t ; SS = the sum of the P r e s i d u a l sums of squares f o r a l l k r e g r e s s i o n equations; m = the number of independent v a r i a b l e s ; and k = the number of Table 3.3. V a r i a b l e s s i g n i f i c a n t at 5% <*> and 17. (**> in biomass r e g r e s s i o n equations -for lodgepole p i n e . <Based upon the number of sample t r e e s i n d i c a t e d in Table 3.2.) Independent Variables Dependent variable ASWHT ASWHBC AOBHT (AOBHT)2 Foli age - total 1 2 3 A 5 6 ** ** #* ** *x ** * ** * *« * ** Branch Biomass Total Crown ** *# ** ** Stem Total Bark Inside bark Sapwood Hear twood ** ** #* ** ** ** ASWHT= Sapwood basal area at 1.3 m (cm2) x tree height (m). ASw"HBC= Sapwood basal area at 1.3 m <cm2) x height to the base of 1iwe crown <m>. A0BHT= basal area (outside bark) (cm2) x tree height (m). T a b l e 3 . 4 . C o m p a r i s o n o f b i o m a s s r e g r e s s i o n e q u a t i o n s b e t w e e n two h y g r o t o p e s . The g e n e r a l e q u a t i o n i s : Y = a + blxASUIHT + b2xASWHBC + b3xA0BHT + b 4 x A 0 B H T 2 1. Stem biomass (outside bark) (kg) Hygrotope n R' Sy.x SSreg DFreg SSt SSe DFe a bl b2 b3 b4 (xl0~4) (xlO - 4) (xlO - 2) (xlO~7) Xeric 10 0.991 4.373 10135.0 4 10231.0 96.0 5 4.0711 -37.2020 • -196.5000 3.0245 7.0566 Mesic 14 0.987 15.463 159680.0 4 161830.0 2150.0 9 5.2773 42.4870 • -161.0400 2.7283 -0.6978 pool ed 2246.0 14 Total 24 0.991 10.992 261110.0 4 263400.0 2290.0 19 2.9172 13.2590 • -129.6800 2.7951 -0.7563 F-HYG 0.055 F0.05(l),5,14 = 2 ' m > therefore , accept Ho. 2. Foliage biomass (kg) Hygrotope n R' Sy.x SSreg DFreg SSt SSe DFe a bl b2 b3 b4 (10) (xlO~3) (xl0~3) (xlO - 4) (xl0~9) Xeric 10 0.949 0.628 36.577 4 38.551 1.97 5 -10.7700 9.6342 -2.5236 -27.3350 -324.7200 Mesic 14 0.95S 1.113 234.100 4 245.240 11.14 9 4.8213 2.4998 -2.2792 -2.2005 37.8820 pool ed 13.11 14 Total 24 0.936 1.029 293.760 4 313.880 20.12 19 1.5638 3.8149 -3.8645 -1.0636 21.1390 F-HYG 1.496 F0.05(l),5,14 = 2 , 9 6 0 » therefore, accept Ho. 3. Branch biomass (kg) Hygrotope n R2 Sy.x SSreg DFreg SSt SSe DFe bl b2 b3 b4 (xlO - 3) (xlO - 2) (xl0~2) (xlO - 7) Xeric 10 0.952 1.175 137.650 4 144.560 6.91 5 Mesic 14 0.907 2.598 592.460 4 653.190 60.73 9 pooled 67.64 14 Total 24 0.905 2.101 796.990 4 880.880 83.89 19 F-HYG 0.673 F0.05(1),5,14 = 2.9*0, therefore, accept Ho. -0.3781 -2.2709 -0.4344 0.5070 1.8326 -1.7274 4.9183 -0.6049 0.1422 -0.3263 -1.0096 6.3459 -0.7428 0.1240 -0.4132 ASWHT= Sapwood basal area at 1.3 m (cn2) x tree height (m); ASWHBO Sapwood basal area at 1.3 m (cm2) x height to the base of live crown (m); A0BHT= basal area (outside bark) (c» 2 ) x tree height (m). 38 r e g r e s s i o n s . The degrees of freedom a s s o c i a t e d with F a r e : (m + 1)(k - 1) and DF . P I f the c a l c u l a t e d value of F exceeds the c r i t i c a l value of F then the n u l l h y p o t h e s i s i s r e j e c t e d . The n u l l h y p o t h e s i s that there i s a s i n g l e p o p u l a t i o n u n d e r l y i n g r e g r e s s i o n equations f o r stem, branch, and f o l i a g e biomass f o r both mesic and x e r i c s i t e s i s not r e j e c t e d (a = 0.05). For the mesic s i t e s , trophotopes were a l s o not s i g n i f i c a n t l y d i f f e r e n t . Data were not s u f f i c i e n t to allow t e s t i n g of the e f f e c t s of stand d e n s i t y or the i n c l u s i o n of stand d e n s i t y i n the equations. Height to crown base and crown l e n g t h are, however, s t r o n g l y i n f l u e n c e d by the d e n s i t y of lodgepole pine stands (Cole and Jensen 1982; Gary 1976). The i n c l u s i o n of height to crown base as a m u l t i p l i e r of t r e e sapwood b a s a l area should account, at l e a s t p a r t i a l l y , f o r the e f f e c t s of stand d e n s i t y on the r e l a t i o n s h i p s . The equations developed here cover the range of s i t e s sampled and i n c l u d e sample t r e e s both s m a l l e r and l a r g e r than those encountered i n the 30 sampled stands. F i n a l equations f o r component biomass are presented i n Table 3.5 . F i g u r e s 3.1 to 3.6 i l l u s t r a t e the s c a t t e r of dependent v a r i a b l e s a g a i n s t the major independent v a r i a b l e s . Equations were obtained to estimate t o t a l stem biomass and wood and bark s e p a r a t e l y . E s t i m a t o r s f o r t o t a l f o l i a g e biomass and the biomass of each age c l a s s of f o l i a g e (one-year-old to s i x - y e a r s - o l d ) are presented. Equations Table 3.5. F i n a l a d d i t i v e biomass r e g r e s s i o n equations f o r lodgepole p i n e . The general equation i s : Y=a+blxASWHT+b2xASWHBC+b3xA0BHT+b4xA0BHT2 Y a bl b2 b3 b4 n R2 Sy.x <kg) <x 10~3) (x 10~3) <x 10"4) (x 10~9) Stem Total 2.0437 0.2252 0.7777 262.7100 -253.0800 44 0.992 11.822 Inside Bark -0.2705 -0.1269 1.9074 232.6200 -190.6200 44 0.991 11.570 Sapwood 1 .4433 17.6290 8.2843 26.7180 -86.7230 40 0.975 12.117 Bark 2.3142 0.3521 -1.1297 30.0960 -62.4540 44 0.954 2.358 Crown Foli age Total 0.0636 3.4693 -3.7346 3.1014 -6.9911 44 0.962 1 .423 lyr 0.1588 0.5703 -0.3909 -0.3510 -0.0566 44 0.881 0.401 2yr 0.1034 0.5646 -0.5360 0.9475 -4.6603 44 0.866 0.416 3yr 0.1132 0.5881 -0.4220 -0.6508 2.2514 44 0.900 0.411 4yr -0.0313 0.5225 -0.5816 0.2122 -0.7382 44 0.934 0.256 5yr -0.0819 0.3509 -0.6045 1.1157 -2.3972 44 0.901 0.239 6yr -0.0922 0.1716 -0.3964 1.1367 -0.9814 44 0.746 0.355 Branches -1.1734 6.6103 -12.2460 29.0160 -60.7500 44 0.894 5.233 Crown Total -1.1097 10.0800 -15.9800 32.1180 -67.7420 44 0.942 5.517 Roots >5mm 4.7639 - - 55.5820 -19.5740 42 0.973 9.63? Branch Production 0.0139 0.0909 -0.0844 0.1584 -0.8104 44 0.906 0.054 A l l coe-f i i c i ents are to be multiplied by the values indicated at the top of the table. ASWHT= Sapwood basal area at 1.3 m (cm2) x tree height <m); ASWHBC= Sapwood basal area at 1.3 m (cm2) x height to the base o-f live crown (m); A0BHT= basal area (outside bark) (cm2) x tree height (m). 40 6 0 0 - i D> 500 -u o •o 3 </) w o £ o CO E Q) Co 4 0 0 -3 0 0 -2 0 0 -loo-OQj D OP • T — I 1 1 1 5000 10000 1500CL 20000 25000 30000 AOBHT (cm 2 x m) Edatope • Xeric-Rich O Mesic-Poor O Mesic-Rich F i g u r e 3.1. S c a t t e r of t o t a l stem biomass ( o u t s i d e bark) a g a i n s t b a s a l area (at 1.3 m) x height (AOBHT) f o r 44 sampled lodgepole pine t r e e s . 41 500-i g 400-o XI .g 300-'Ui c 200-(0 to D E o m E v 100-D 8 D 08 o » o cn — i 1 1 1 1 1 — 5000 10000 1500CL 20000 25000 30000 AOBHT (err/ x m) Edatope • Xeric-Rich D Mesic-Poor O Mesic-Rich F i g u r e 3.2. S c a t t e r of stemwood ( i n s i d e bark) biomass a g a i n s t b a s a l area (at 1.3 m) x height (AOBHT) f o r 44 sampled lodgepole pine t r e e s . 42 4 0 -3 0 -tn w D E g CO <D D) o 2 0 -10- • o «*DV°O 2000 4000 6000 8000-10000 12000 14000 16000 ASWHT (crri x m) Edatope • Xeric-Rich O Mesic-Poor O Mesic-Rich F i g u r e 3.3. S c a t t e r of f o l i a g e biomass a g a i n s t sapwood b a s a l area (at 1.3 m) x he i g h t (ASWHT) f o r 44 sampled lodgepole pine t r e e s . 43 D> 5 -vt V) D 4 -O CD (D O) D 3-2 o I o I C N 2 -1-o o — I 1 1 1 1 1 1 1 — 2 0 0 0 4 0 0 0 6 0 0 0 8 0 O 0 J O 0 0 0 1 2 0 0 0 1 4 0 0 0 1 6 0 0 0 ASWHT (crrT x m) Edatope • Xeric-Rich • Mesic-Poor O Mesic-Rich F i g u r e 3.4. S c a t t e r of the biomass of 2-year-old f o l i a g e a g a i n s t sapwood b a s a l area (at 1.3 m) x height (ASWHT) f o r 44 sampled lodgepole pine t r e e s . 4 4 l O O - i 80-in o 6 0 -O CD .C o c o m 4 0 -2 0 - o o •oo 1=1 o o ~ i 1 1 1 — 2000 4000 6000 8000 J 0 0 0 0 12000 14000 16000 ASWHT (cm 2 x m) Edatope • Xeric-Rich • Mesic-Poor O Mesic-Rich F i g u r e 3 . 5 . S c a t t e r of branch biomass a g a i n s t sapwood b a s a l area (at 1 . 3 m) x height (ASWHT) f o r 44 sampled lodgepole pine t r e e s . 45 3 0 0 -V) v> D E g CD IT E If) A o o © w l _ D O O 250-200-150-100-5 0 - O t 1 1 1 1 1 1 1 10000 20000 30000 4QO00 50000 60000 70000 AOBHT (cm 2 x m) Edatope • Xeric—Poor • Xeric-Rich • Mesic-Poor o Mesic-Rich F i g u r e 3.6. S c a t t e r of coarse root biomass a g a i n s t b a s a l area (at 1.3 m) x height (AOBHT) f o r 42 sampled lodgepole pine t r e e s . 46 c o u l d not be developed to estimate c u r r e n t year's f o l i a g e s i n c e the date of t r e e sampling v a r i e d d u r i n g the study. An e s t i m a t i o n of the c u r r e n t year's f o l i a g e biomass i s p r o v i d e d by m u l t i p l y i n g the r e g r e s s i o n estimate of one-year-old f o l i a g e by the r a t i o of dry weights f o r c u r r e n t year/one-year-old needles, based upon bulked autumn f o l i a g e samples c o l l e c t e d from the mid-crown of 15 t r e e s i n each stand d u r i n g October 1983. The r e s u l t i n g e stimates proved to be very c l o s e to v a l u e s measured d u r i n g l a t e summer. S i g n i f i c a n t equations c o u l d not be obtained f o r f o l i a g e age c l a s s e s between 7 and 13 y e a r s . Biomass of these age c l a s s e s was estimated f o r the t o t a l 7 year age range by s u b t r a c t i o n of the biomass of the younger age c l a s s e s from the t o t a l f o l i a g e biomass. Regression e s t i m a t o r s of branch and f o l i a g e p r o d u c t i o n were r e q u i r e d s i n c e these parameters c o u l d not be measured d i r e c t l y . Branch and f o l i a g e p r o d u c t i o n e s t i m a t e s are r e q u i r e d f o r the c a l c u l a t i o n of t o t a l aboveground and crown p r o d u c t i o n . Branch p r o d u c t i o n f o r i n d i v i d u a l sample t r e e s was estimated as the branch biomass of the l i v e crown d i v i d e d by the age of the o l d e s t l i v e branches. T h i s assumes that the biomass of branch m a t e r i a l i s i n steady s t a t e . F o l i a g e p r o d u c t i o n i s estimated as being equal to the biomass of 2-year-old f o l i a g e , s i n c e t h i s age c l a s s had the g r e a t e s t biomass of a l l age c l a s s e s of f o l i a g e p r e s e n t . The equation f o r coarse and medium root biomass i s based upon a sample of 42 t r e e s . Sampled t r e e s i n c l u d e d 47 some t r e e s which were not i n c l u d e d i n the equations f o r aboveground biomass due to l o s s of f o l i a g e or branches that o c c u r r e d d u r i n g the winching of the t r e e s . 3.6 SUMMARY Equations f o r e s t i m a t i n g the biomass of aboveground (stem and crown) and belowground coarse root (>5 mm) biomass were developed f o r lodgepole pine t r e e s based on 42 to 44 sampled t r e e s . These equations were made a d d i t i v e f o r aboveground components. Sapwood b a s a l area x he i g h t and sapwood b a s a l area x height to crown base were s i g n i f i c a n t v a r i a b l e s i n the p r e d i c t i o n of crown component biomass. Sapwood b a s a l area alone was not a s i g n i f i c a n t v a r i a b l e when examined i n c o n j u n c t i o n with the other s e l e c t e d v a r i a b l e s . Equations f o r stem, f o l i a g e , and branch biomass f i t t e d to data from each of the two hygrotopes were not s i g n i f i c a n t l y d i f f e r e n t , i n d i c a t i n g that the g e n e r a l equation f o r each component c o u l d be a p p l i e d to both hygrotopes. Tree age was not a s i g n i f i c a n t v a r i a b l e i n any of the equa t i o n s . The e f f e c t s of stand d e n s i t y on these equations c o u l d not be t e s t e d d i r e c t l y s i n c e d e t a i l e d stand measurements were not made i n every stand where t r e e s were h a r v e s t e d . The i n c l u s i o n of h e i g h t to crown base i n the equations should, however, account f o r the e f f e c t s of stand d e n s i t y over the ranges of stand d e n s i t y being s t u d i e d . The gen e r a l equations developed apply to the range of stand c o n d i t i o n s being s t u d i e d . F u r t h e r t e s t i n g of the 48 r e l a t i o n s h i p s between crown components, e s p e c i a l l y f o l i a g e biomass, sapwood area x h e i g h t , and sapwood area x height to crown base are necessary before a p p l y i n g these equations to other stand c o n d i t i o n s . Chapter 4 ABOVEGROUND TREE BIOMASS AND PRODUCTION IN LODGEPOLE PINE ECOSYSTEMS 4.1 INTRODUCTION The t r e e biomass of a f o r e s t ecosystem i s the r e s u l t of the net primary p r o d u c t i o n of the t r e e s minus the l o s s of biomass to l i t t e r f a l l ( i n c l u d i n g r e p r o d u c t i v e s t r u c t u r e s ) , to h e r b i v o r y , to n a t u r a l m o r t a l i t y , to t h i n n i n g , and to pruning over the l i f e of the stand. Current biomass, which i s an in v e n t o r y of the m a t e r i a l present at the time of measurement, w i l l r e f l e c t the f a c t o r s and events which have i n f l u e n c e d both p r o d u c t i o n and biomass l o s s e s over the l i f e of the stand. T h i s makes biomass values alone u n s u i t a b l e as a b a s i s f o r comparing the p r o d u c t i v i t y of d i f f e r e n t s i t e s . E s timates of c u r r e n t r a t e s of net primary p r o d u c t i o n are e s s e n t i a l f o r making such comparisons. When a s s e s s i n g f o r e s t y i e l d s , l a n d managers are most o f t e n i n t e r e s t e d i n the y i e l d s of stemwood biomass or volume which can be har v e s t e d and converted i n t o e i t h e r f i b r e or solid-wood p r o d u c t s . Stemwood pr o d u c t i o n i n a f o r e s t stand can be c a l c u l a t e d as the t o t a l net primary p r o d u c t i o n (TNPP) of the stand minus the a l l o c a t i o n of p r o d u c t i o n to other aboveground (stembark, f o l i a g e , branches and r e p r o d u c t i v e s t r u c t u r e s ) and to belowground components. T o t a l net primary p r o d u c t i o n i s e q u i v a l e n t to annual net ph o t o s y n t h e s i s of the canopy minus the photosynthate 49 50 u t i l i z e d i n r e s p i r a t i o n . Both p h y s i c a l environment and stand f a c t o r s ( b i o t i c environment) have been shown to i n f l u e n c e p r o d u c t i o n and i t s a l l o c a t i o n i n f o r e s t stands (Keyes and G r i e r 1981; Santantonio and Hermann 1985). The s i l v i c u l t u r a l m a n i p u l a t i o n of stands to i n c r e a s e usable wood y i e l d s g e n e r a l l y i n v o l v e s i n c r e a s i n g net p h o t o s y n t h e t i c p r o d u c t i o n and/or i n c r e a s i n g the a l l o c a t i o n of t h i s p r o d u c t i o n to usable stemwood (Larson and Gordon 1969). An understanding of how environmental and stand f a c t o r s i n f l u e n c e f o r e s t p r o d u c t i o n and i t s a l l o c a t i o n i s e s s e n t i a l to improving our a b i l i t y to p r e d i c t the p o t e n t i a l outcome of s i l v i c u l t u r a l p r a c t i c e s . There have been s e v e r a l s t u d i e s of the e f f e c t s of environmental f a c t o r s on one or a small number of the i n d i v i d u a l components of growth and y i e l d of p a r t i c u l a r f o r e s t stands. However, few s t u d i e s have attempted to e v a l u a t e the e f f e c t s of environmental f a c t o r s on s e v e r a l of the major components of f o r e s t y i e l d s i m u l t a n e o u s l y . Only a small number of s t u d i e s of p r o d u c t i o n r e l a t i o n s h i p s and the a l l o c a t i o n of p r o d u c t i o n have been conducted i n lodgepole pine stands. In s t u d i e s by Pearson (1982) and Keane (1985), the e f f e c t of stand d e n s i t y on biomass d i s t r i b u t i o n was the major focu s . Only a l i m i t e d i n v e s t i g a t i o n of the e f f e c t s of p h y s i c a l s i t e c o n d i t i o n s on p r o d u c t i o n a l l o c a t i o n were i n c l u d e d . T h i s chapter examines the r e l a t i o n s h i p s of aboveground biomass and p r o d u c t i o n to s i t e c o n d i t i o n s i n lodgepole pine 51 stands. Chapter 6 p r e s e n t s the r e s u l t s of a study of belowground biomass and p r o d u c t i o n and t o t a l net primary p r o d u c t i o n i n four lodgepole pine stands. 4.2 LITERATURE REVIEW 4.2.1 NET PRIMARY PRODUCTION AND FOLIAGE EFFICIENCY The r a t e of net p h o t o s y n t h e s i s of a f o r e s t stand i s determined by the amount of f o l i a g e , the e f f i c i e n c y with which the f o l i a g e i n t e r c e p t s PAR ( p h o t o s y n t h e t i c a l l y a c t i v e r a d i a t i o n ) , and the average e f f i c i e n c y with which the i n t e r c e p t e d PAR i s i n c o r p o r a t e d i n t o photosynthate. Numerous s t u d i e s have shown that p h o t o s y n t h e t i c r a t e s of f o l i a g e are s t r o n g l y i n f l u e n c e d by a complex a r r a y of environmental f a c t o r s . F a c t o r s that have been shown to i n f l u e n c e p h o t o s y n t h e t i c r a t e s of c o n i f e r f o l i a g e i n c l u d e l i g h t (Helms et a l . 1974; Helms and Rutter 1979), a i r temperature (Helms 1976), moisture s t r e s s ( B r i x 1972; Helms 1976; Kozlowski and K e l l e r 1966), and m i n e r a l n u t r i t i o n , p a r t i c u l a r l y n i t r o g e n ( B r i x 1979,1981; K e l l e r 1967; L i n d e r and Troeng 1980). Any or a l l of these f a c t o r s may vary d i u r n a l l y and s e a s o n a l l y , making i t ' d i f f i c u l t and expensive to o b t a i n d i r e c t measurements o f , or to p r e d i c t , annual net p h o t o s y n t h e s i s i n a f o r e s t stand. The use of growth a n a l y s i s or p r o d u c t i o n a n a l y s i s techniques ( Z a v i t k o v s k i et a l . 1974; L e d i g 1974) o f f e r s a simpler and l e s s expensive 52 method f o r the e s t i m a t i o n of the net p h o t o s y n t h e t i c e f f i c i e n c y of stands. T h i s method i n v o l v e s e x p r e s s i n g net p r o d u c t i o n as a f u n c t i o n of the amount of f o l i a g e , with net primary p r o d u c t i o n per u n i t of f o l i a g e biomass being termed " f o l i a g e e f f i c i e n c y " (Satoo and Madgwick 1982; Waring 1983). (The term " f o l i a g e e f f i c i e n c y " i s synonymous with the term " l e a f e f f i c i e n c y " . " F o l i a g e " i s used here i n p l a c e of " l e a f " f o r the purposes of c o n s i s t e n c y with other terms ( i . e . f o l i a g e biomass, f o l i a g e n i t r o g e n c o n t e n t ) ) . The f o l i a g e e f f i c i e n c y concept can be a p p l i e d to i n d i v i d u a l component (stem, f o l i a g e , branch, and root) p r o d u c t i o n as w e l l as to t o t a l p r o d u c t i o n . I t has f r e q u e n t l y been used i n c o n j u n c t i o n with stem p r o d u c t i o n alone (Waring et a l . 1981; Waring 1983). F o l i a g e e f f i c i e n c y f o r aboveground net primary p r o d u c t i o n (FE(ANPP)) or f o r net stem p r o d u c t i o n (FE(NSP)) decreases with i n c r e a s i n g stand f o l i a g e biomass (Waring et a l 1981; Satoo and Madgwick 1982; Schroeder et a l . 1982) as a r e s u l t of reduced l i g h t i n t e n s i t i e s i n the lower canopy and i n c r e a s e d average f o l i a g e l o n g e v i t y , both of which a c t to lower mean p h o t o s y n t h e t i c r a t e s . F o l i a g e e f f i c i e n c y (FE(ANPP) and FE(NSP)) has a l s o been shown to decrease with stand age and r e l a t i v e stand d e n s i t y (Satoo and Madgwick 1982). V a r i a t i o n s i n FE(ANPP) between s i t e s would be expected i f d i f f e r e n c e s i n environmental c o n d i t i o n s on the d i f f e r e n t s i t e s r e s u l t i n changes in e i t h e r annual canopy 53 p h o t o s y n t h e s i s or i n the d i s t r i b u t i o n of p r o d u c t i o n between aboveground and belowground components (Schroeder et a l . 1982; Waring 1983). 4.2.2 FACTORS INFLUENCING THE AMOUNT OF FOLIAGE CARRIED BY A  STAND In a d d i t i o n to i n f l u e n c i n g the p h o t o s y n t h e t i c e f f i c i e n c y of f o l i a g e , environmental and stand f a c t o r s may i n f l u e n c e the amount of f o l i a g e c a r r i e d by a stand. Water Water a v a i l a b i l i t y , as r e l a t e d to c l i m a t i c c o n d i t i o n s , has been shown to s t r o n g l y i n f l u e n c e the maximum l e a f area or f o l i a g e biomass which can be supported by a stand (Gholz 1979, 1982; G r i e r and Running 1977). I t i s b e l i e v e d that where stomatal c o n t r o l i s i n s u f f i c i e n t to maintain the i n t e r n a l water p o t e n t i a l of t r e e s above a c r i t i c a l l e v e l (approximately -25 b a r s ) , t r a n s p i r a t i o n i s kept i n balance through a r e d u c t i o n i n l e a f area ( G r i e r and Running 1977). The maximum f o l i a g e biomass which can be c a r r i e d by stands w i l l be a r e s u l t of both e v a p o r a t i v e demand and s o i l water supply (Waring et a l . 1978). I t has been suggested that t h i s i n f l u e n c e of s i t e moisture on maximum f o l i a g e biomass i s independent of s p e c i e s ( G r i e r and Running 1977). For a s i n g l e s p e c i e s growing w i t h i n a s i n g l e b i o g e o c l i m a t i c subzone, e d a p h i c a l l y - c o n t r o l l e d v a r i a t i o n s i n s o i l moisture a v a i l a b i l i t y should be r e f l e c t e d i n d i f f e r e n c e s i n the maximum f o l i a g e biomass c a r r i e d by 54 stands. However, there are no p u b l i s h e d s t u d i e s which have examined the v a r i a t i o n of f o l i a g e biomass i n f u l l y - s t o c k e d stands of i n d i v i d u a l s p e c i e s i n r e l a t i o n to s o i l moisture c l a s s e s w i t h i n a l i m i t e d a r e a . N u t r i e n t s N u t r i e n t a v a i l a b i l i t y may a l s o i n f l u e n c e the amount of f o l i a g e c a r r i e d by a stand. F e r t i l i z e r a p p l i c a t i o n i n f o r e s t stands i s o f t e n accompanied by i n c r e a s e s i n f o l i a g e biomass (Albrektson et a l . 1977? B r i x 1981,1983; Turner 1977). However, p o s i t i v e growth responses to f e r t i l i z a t i o n are most commonly found i n spaced or thinned stands where stand f o l i a g e biomass has been s u b s t a n t i a l l y reduced. F e r t i l i z a t i o n appears to i n c r e a s e the rate at which canopies r e t u r n towards the s i t e maximum f o l i a g e biomass ( B r i x 1983). In areas where moisture a v a i l a b i l i t y i s the major l i m i t i n g f a c t o r to f o r e s t growth, n u t r i e n t a v a i l a b i l i t y w i l l probably i n f l u e n c e the degree to which the moisture c o n t r o l l e d maximum stand f o l i a g e biomass i s a t t a i n e d . Stand D e n s i t y Where t r e e s have had s u f f i c i e n t time to expand t h e i r crowns, the moisture determined maximum f o l i a g e biomass ( f o l i a g e c a r r y i n g c a p a c i t y ) w i l l be achieved over a wide range of stand d e n s i t i e s . Long and Turner (1975) found that i n i t i a l stand d e n s i t y i n f l u e n c e d the time t h a t was r e q u i r e d f o r D o u g l a s - f i r stands to achieve maximum f o l i a g e biomass. At extremely low d e n s i t i e s , stands may not be a b l e to achieve the s i t e maximum f o l i a g e c a r r y i n g c a p a c i t y . 55 Keane (1985) observed that f o l i a g e biomass decreased from 13 to 2 t ha" 1 as stand d e n s i t y i n c r e a s e d from 8,000 to 110,000 t r e e s ha" 1 i n 20-year-old lodgepole pine stands. Other authors have found a s i m i l a r d e c l i n e i n f o l i a g e biomass with i n c r e a s i n g d e n s i t y i n o l d e r lodgepole pine stands (Johnstone 1971; Pearson 1982). The cause of t h i s d e c l i n e i n f o l i a g e biomass i s not known although the a b i l i t y of sapwood to conduct water i s thought to be one of the f a c t o r s i n v o l v e d (Keane 1985). 4.2.3 TREE PRODUCTION AS A FUNCTION OF THE AMOUNT OF FOLIAGE Both net stemwood p r o d u c t i o n (NSP) and ANPP have been shown to be c l o s e l y r e l a t e d to the amount of f o l i a g e c a r r i e d by a stand. These r e l a t i o n s h i p s are o f t e n l i n e a r i n young or open-canopied stands (Satoo and Madgwick 1982). Satoo (1968,1971) found l i n e a r r e l a t i o n s h i p s between net stemwood p r o d u c t i o n and l e a f biomass f o r young stands of Pi nus densiflora and Larix leptolepis. A s i m i l a r p a t t e r n was found i n young f e r t i l i z e d stands of Pinus sylvestris i n Sweden ( A l b r e k t s o n et a l . 1977). Where stands achieve h i g h l e v e l s of f o l i a g e biomass and l e a f a rea, such as i n the P a c i f i c Northwest of the U n i t e d S t a t e s , i t has been suggested that the r e l a t i o n s h i p between ANPP and f o l i a g e biomass becomes c u r v i l i n e a r . As a r e s u l t , a s u b s t a n t i a l d e c l i n e i n p r o d u c t i v i t y may occur a f t e r some c r i t i c a l l e v e l of f o l i a g e biomass i s achieved (Satoo and Madgwick 1982; Waring 1980,1983; Waring et a l . 1981). 56 The r e l a t i o n s h i p between ANPP and l e a f area or f o l i a g e biomass i n D o u g l a s - f i r stands has been found to d i f f e r between d i f f e r e n t s i t e c l a s s e s . Waring et a l . (1980) found that the amount of stemwood produced per u n i t of l e a f area on a "poor" s i t e was almost one-half of that on a good s i t e , f o r comparable l e a f a r e a s . These between-site d i f f e r e n c e s i n ANPP-foliage biomass r e l a t i o n s h i p s may be r e l a t e d to s i t e f a c t o r s . F a c t o r s such as s o i l moisture and n u t r i e n t a v a i l a b i l i t y may i n f l u e n c e the a l l o c a t i o n of p r o d u c t i o n between aboveground and belowground components (Waring 1983). Stand d e n s i t y w i l l a l s o i n f l u e n c e stand p r o d u c t i o n through i t s i n f l u e n c e on stand f o l i a g e biomass. In a Pi nus densiflora p l a n t a t i o n , the p r o p o r t i o n of ANPP a l l o c a t e d to the t r e e bole i n c r e a s e d with i n c r e a s i n g stand d e n s i t y , while the p r o p o r t i o n s a l l o c a t e d to f o l i a g e and branch p r o d u c t i o n decreased (Satoo and Madgwick 1982). In 20-year-old lodgepole pine stands, the p r o p o r t i o n of the aboveground biomass i n the boles i n c r e a s e d from approximately 60% to 80% as stand d e n s i t y i n c r e a s e d from 3,500 to 110,000 t r e e s per hectare (Keane 1985). A s s o c i a t e d w i t h t h i s was a decrease i n the percent of biomass i n branches (from 18% to 6%) and f o l i a g e (from 22% to 15%). T o t a l aboveground biomass i n these stands was reasonably constant at d e n s i t i e s between 6,000 and 50,000 t r e e s per hectare (50 to 55 t h a - 1 ) but d e c l i n e d to approximately 30% of t h i s value (15 t ha" 1) at d e n s i t i e s of 110,000 t r e e s per h e c t a r e (Keane 1985). 57 Pearson (1982) r e p o r t e d n e g l i g i b l e changes i n the p r o p o r t i o n of biomass i n v e s t e d i n i n d i v i d u a l aboveground components i n 110-year-old lodgepole pine stands over a d e n s i t y range of 1,850 to 14,600 t r e e s per h e c t a r e . Stem biomass ranged from 82% to 84%, branches from 10% to 8% and f o l i a g e "remained around 8% of t o t a l aboveground biomass. Johnstone (1971) found some v a r i a b i l i t y in the percentage d i s t r i b u t i o n of aboveground biomass i n 100-year-old lodgepole pine stands, with stems r e p r e s e n t i n g 76% to 89% of aboveground biomass, branches between 6% and 16%, and f o l i a g e 5% to 8%. These r e s u l t s suggest that both age and stand d e n s i t y w i l l i n f l u e n c e biomass d i s t r i b u t i o n and imply that there may a l s o be some s h i f t s i n p r o d u c t i o n d i s t r i b u t i o n . 4.3 OBJECTIVES AND HYPOTHESES The l i t e r a t u r e reviewed i n the preceding pages suggested that major f a c t o r s determining the r a t e of aboveground net primary p r o d u c t i o n i n f o r e s t stands were the amount of f o l i a g e c a r r i e d by the stands and the r a t e at which aboveground biomass was produced by the f o l i a g e . Both of these f a c t o r s are s t r o n g l y i n f l u e n c e d by moisture a v a i l a b i l i t y and by other stand f a c t o r s . The o b j e c t i v e s of t h i s p a r t of the study were to examine v a r i a t i o n s i n the aboveground net primary p r o d u c t i o n and f o l i a g e e f f i c i e n c y of lodgepole pine stands i n r e l a t i o n to the four d i f f e r e n t edatopes. 58 The three hypotheses being t e s t e d were: 1. S o i l moisture a v a i l a b i l i t y , c h a r a c t e r i z e d by hygrotopes, determines the maximum amount of f o l i a g e which can be supported by any p a r t i c u l a r lodgepole pine stand w i t h i n the study area. S i t e s with mesic moisture regimes w i l l support g r e a t e r f o l i a g e biomass than those with x e r i c moisture regimes. 2. In the lodgepole pine stands being s t u d i e d , the r e l a t i o n s h i p between ANPP and f o l i a g e biomass w i l l be of a p a r a b o l i c form with maximum ANPP being achieved at l e v e l s of f o l i a g e biomass below the maximum observed l e v e l s of f o l i a g e biomass. 3. R e l a t i o n s h i p s between ANPP and stand f o l i a g e biomass w i l l d i f f e r between stands growing under d i f f e r i n g edaphic c o n d i t i o n s (edatopes). 4.4 METHODS 4.4.1 STAND MEASUREMENTS Wit h i n each of t h i r t y s e l e c t e d stands (Chapter 2), angle count sampling ( B i t t e r l i c h 1984; Walmsley et a l . 1980) was conducted from two sample p o i n t s using a rel a s k o p e . For each t a l l i e d t r e e , diameter at b r e a s t height (1.3 m), height to the base of l i v e crown, and t o t a l h e i g h t were measured. With angle count sampling, each t r e e t a l l i e d r e p r e s e n t s a c e r t a i n number of t r e e s per h e c t a r e . T h i s i s c a l c u l a t e d u s i n g the "Basal Area F a c t o r " s c a l e from the relaskope and 59 t r e e diameter. The equation f o r e s t i m a t i n g the number of t r e e s r e p r e s e n t e d by each t a l l i e d t r e e i s : N = BAF/IT (DBH/200) 2 ( a f t e r B i t t e r l i c h 1984; B.C. M i n i s t r y of F o r e s t s 1981) where BAF = metric b a s a l area f a c t o r (m 2ha~ 1 represented by the t r e e ) and DBH = diameter (cm) at b r e a s t height (1.3 m). T h i s value f o r "N"( c a l c u l a t e d f o r each t a l l i e d t r e e ) was m u l t i p l i e d by estimates of component and t o t a l biomass and p r o d u c t i o n f o r each t r e e and these were then summed f o r a l l t r e e s t a l l i e d to o b t a i n estimates of stand t o t a l s . Two stemwood cores were ob t a i n e d from o p p o s i t e s i d e s of each t r e e , at breast h e i g h t (1.3 m), using an increment borer. Sapwood width, age, and r a d i a l increment f o r the past f i v e years were measured i n the l a b using a d i s s e c t i n g microscope and c a l i p e r s . These measurements were used i n c o n j u n c t i o n with the biomass equations presented i n Chapter 3 to estimate component biomass and p r o d u c t i o n f o r each t r e e . Stem biomass increment f o r each t r e e was estimated as p e r i o d i c annual increment using the measurement of f i v e year r a d i a l increment and an estimate of height increment based upon " S i t e Index" equations f o r lodgepole pine i n B r i t i s h Columbia (Hegyi et a l . 1979). T e s t i n g of t h i s method of c a l c u l a t i n g h eight increment, using the t r e e s that were sampled f o r r e g r e s s i o n equation development (Chapter 3), showed c l o s e agreement between measured and estimated v a l u e s 60 f o r t r e e s l e s s than 100 years of age. T h i s c a l c u l a t i o n d i d , however, underestimate height increment f o r o l d e r t r e e s which show slow height growth (10 cm y r " 1 or l e s s ) . In the c a l c u l a t i o n s , crown l e n g t h was assumed to have remained constant with the change i n height to the base of l i v e crown being assumed to be e q u i v a l e n t to the change i n t o t a l h e i g h t . Net stem p r o d u c t i o n was estimated as the sum of N times stem biomass increment f o r a l l of the t a l l i e d t r e e s . ANPP was estimated i n these stands as the sum of f o l i a g e p r o d u c t i o n , branch p r o d u c t i o n and net stem p r o d u c t i o n . For each t r e e , f o l i a g e p r o d u c t i o n was estimated u s i n g the equation f o r e s t i m a t i n g two-year-old f o l i a g e biomass (Chapter 3), and branch p r o d u c t i o n was estimated u s i n g the equation f o r branch p r o d u c t i o n . Tree m o r t a l i t y r a t e s were not measured i n these stands. Although the r a t e s appear to be small i n most of these o l d e r stands, the l a c k of data on m o r t a l i t y may r e s u l t i n some of the v a l u e s of stem p r o d u c t i o n being underestimates. D i r e c t e s t i m a t i o n of bark p r o d u c t i o n was a l s o not undertaken. Examination of young t r e e s suggests that lodgepole pine bark i s not shed f o r f i f t e e n to twenty or more years f o l l o w i n g i t s i n i t i a t i o n , with f a c t o r s such as the r a t e of t r e e growth i n f l u e n c i n g t h i s v a l u e . Current bark p r o d u c t i o n cannot be e s t i m a t e d a c c u r a t e l y from bark biomass simply by d i v i d i n g biomass by an a r b i t r a r y r e t e n t i o n time because of temporal v a r i a t i o n s i n p r o d u c t i o n r a t e s . The p r o d u c t i o n of r e p r o d u c t i v e s t r u c t u r e s was a l s o not measured. 61 4.5 RESULTS AND DISCUSSION 4.5.1 STAND CHARACTERISTICS Tables 4.1 and 4.2 summarize the ranges of stand c h a r a c t e r i s t i c s and aboveground biomass and p r o d u c t i o n f o r the lodgepole pine stands s t u d i e d . The sampled stands ranged i n age from 53 to 121 years of age. Sampling was r e s t r i c t e d to t h i s "mature" to "over mature" age range i n order to r e s t r i c t sampling to stands which had s u f f i c i e n t time to achieve maximum l e v e l s of f o l i a g e biomass. Stand d e n s i t i e s ranged from 356 to 6,352 t r e e s per hectare with the m a j o r i t y of stands f a l l i n g i n the 700 to 3,500 t r e e s per he c t a r e range. T h i s range of d e n s i t i e s r e p r e s e n t s f a i r l y t y p i c a l c o n d i t i o n s f o r n a t u r a l l y regenerated "non-repressed" lodgepole pine stands of t h i s age i n t h i s a r e a. E x c e s s i v e l y h i g h d e n s i t i e s , where growth r e p r e s s i o n ( i e . reduced growth) was o c c u r r i n g , were not sampled s i n c e r e s e a r c h on aboveground biomass and pr o d u c t i o n i n young "repressed" stands was being conducted c o n c u r r e n t l y elsewhere i n B r i t i s h Columbia (Keane 1985). 4.5.2 BIOMASS AND BIOMASS DISTRIBUTION T o t a l aboveground t r e e biomass i n the t h i r t y stands sampled ranged from 88.6 to 313.1 t h a " 1 . Stem biomass ranged from 68.1 to 289.4 t h a " 1 , branch biomass from 1.0 to 17.3 t h a " 1 , and f o l i a g e biomass from 3.1 to 10.8 t ha" 1 (Table 4.1). Maximum valu e s f o r stem biomass were higher T a b l e 4 . 1 . Ranges in s tand c h a r a c t e r i s t i c s , aboveground b i o m a s s , and b iomass d i s t r i b u t i o n •for lodgepo le pine s tands sampled in each edatope ( P e r c e n t a g e s of t o t a l aboveground biomass are i n d i c a t e d in b r a c k e t s ) . Edatope No. of Age Stand Aboveground Biomass (t h a - 1 ) Stands ( y r s ) D e n s i t y ( t r e e s ha - *> Stem Branches F o l i a g e T o t a l X e r i c 7 70-92 356-6352 100.3-156.3 1 .0 -14 .6 4 .6 -7 .1 106 .0 -174 .8 x "Poor" (83.1-94.7%) (0.9-11.4%) ( 3 . 4 - 5 . 5 * ) X e r i c 8 53-121 383-3584 68 .1 -141 .5 4 . 1 - 1 6 . 6 3 . 1 - 7 . 3 8 8 . 6 - 1 6 5 . 4 x " R i c h " (76.9-93.8%) (3.4-16.4%) (2 .8-6.7%) T o t a l X e r i c 15 53-121 356-6352 68 .1 -156 .3 1 .0 -16 .6 3 . 1 - 7 . 3 8 8 . 6 - 1 7 4 . 8 (76.9-94.7%) (0.9-16.4%) (2 .8-6.7%) Mes ic 7 67-106 372-2474 189.1-289.4 9 . 8 - 1 4 . 5 5 . 8 - 8 . 9 2 1 0 . 8 - 3 0 9 . 6 x "Poor" (89.8-93.5%) (4.0-6.5%) (2 .5-3.6%) Mes ic 8 64-116 1107-3292 157.1-285.1 7 . 0 - 1 7 . 3 4 . 4 - 1 0 . 8 171.5-313.1 x " R i c h " (90.9-95.0%) (2.8-6.5%) (2 .2-3.5%) T o t a l Mesic 15 64-116 372-3292 157.1-289.4 7 . 0 - 1 7 . 3 4 . 4 - 1 0 . 8 171.5-313.1 (89.8-95.0%) (2 .8-6.5%) (2 .2-3.6%) For the X e r i c x " R i c h " edatope the low percentage (%) va lue and biomass f o r stem and the h igh v a l u e s f o r f o l i a g e and branches came from one 5 3 - y e a r - o l d s t a n d w i t h 526 t r e e s per hec t a r e . T a b l e 4 . 2 . Ranges in aboveground net pr imary p r o d u c t i o n (ANPP) -for the l o d g e p o l e p ine s t a n d s sampled in each edatope (percent o-f aboveground net p r i m a r y p r o d u c t i o n i s i n d i c a t e d in b r a c k e t s ) . ANPP (t h a _ 1 y r _ 1 ) Edatope Si te Mean Annual Index Increment Stem Branches F o l i a g e T o t a l (maiOOyrs) (t h a - 1 y r - 1 ) X e r i c 9 . 2 - 2 0 . 8 1 .16-1 .95 1 .57-2 .68 0 . 1 7 - 0 . 2 4 1 .26 -1 .58 3 . 1 6 - 4 . 4 3 x "Poor" (49.7-60.6%) (4.7-6.1%) (34.3-44.6%) X e r i c 14 .3 -17 .6 0 . 7 5 - 1 . 6 5 1 .23-2 .23 0 . 1 2 - 0 . 2 2 0 . 8 2 - 1 . 5 7 2 . 1 6 - 3 . 6 8 x " R i c h " (51.5-61.6%) (4.5-5.9%) (33.3-42.6%) X e r i c 9 . 2 - 2 0 . 8 0 . 7 5 - 1 . 9 5 1 .23-2 .68 0 .12 -0 .24 0 . 8 2 - 1 . 5 8 2 . 1 6 - 4 . 4 3 (49.7-61.6%) (4.5-6.1%) (33.3-44.6%) Mesic 19 .6 -26 .4 1.99-3.91 1 .64-4 .12 0 . 1 2 - 0 . 3 4 1 .61-2 .30 3 . 7 3 - 6 . 7 6 x "Poor" (44.1-60.9%) (3.2-5.5%) (34.1-52.8%) Mesic 16 .2 -21 .3 1 .35-3 .53 1.34-4.20 0 . 1 7 - 0 . 4 2 1 .24-2 .80 2 . 8 6 - 7 . 3 6 x " R i c h " (46.9-65.4% (4.5-6.3%) (30.1-46.8%) Mesic 16 .2 -26 .4 1.35-3.91 1.34-4.20 0 .12 -0 .42 1 .24-2 .80 2 . 8 6 - 7 . 3 6 (44.1-65.4%) (3.2-6.3%) (30.1-52.8%) For the X e r i c x "Poor" edatope the SI va lue of 9.2 va lue comes from one p l o t w i th a d e n s i t y of 6,352 stems per h e c t a r e , the remain ing v a l u e s f o r t h i s edatope range from 15.8 - 2 0 . 8 . 64 than those r e p o r t e d p r e v i o u s l y (Johnstone 1971; Pearson 1982) f o r stands of s i m i l a r age. Stem biomass values estimated f o r x e r i c s i t e s (68.1 to 156.3 t ha" 1) do, however, c o i n c i d e with the v a l u e s r e p o r t e d i n the l i t e r a t u r e . F o l i a g e biomass was found to range between 3.12 and 10.8 t ha" 1 which f i t s w i t h i n the p r e v i o u s l y r e p o r t e d ranges of 3.0 to 6.0 t ha" 1 (Johnstone 1971), 6.9 to 11.4 t ha" 1 (Pearson 1982) and 2.2 to 12.9 t ha" 1 (Keane 1985). The data i n d i c a t e wide ranges i n a l l biomass v a l u e s . T h i s v a r i a t i o n r e s u l t s from both the v a r i a t i o n i n stand d e n s i t y and age and the i n f l u e n c e of s i t e upon r a t e s of ANPP. Within each hygrotope c l a s s , biomass values f o r the two trophotopes o v e r l a p s u b s t a n t i a l l y (Table 4.1). Small d i f f e r e n c e s between the trophotopes w i t h i n each of the two hygrotopes are most l i k e l y the r e s u l t of s l i g h t d i f f e r e n c e s i n the ranges of age and stand d e n s i t y that were sampled. T o t a l aboveground biomass on s i t e s with x e r i c hygrotopes ranged from 88.6 to 174.8 t h a - 1 while v a l u e s f o r mesic s i t e s ranged from 171.5 to 313.1 t h a " 1 . Stands growing on mesic s i t e s have g r e a t e r t o t a l and bole biomass than those on x e r i c s i t e s . The ranges i n branch biomass val u e s f o r the two hygrotopes o v e r l a p s u b s t a n t i a l l y (1.0 to 16.6 t ha" 1 f o r x e r i c s i t e s and 7.0 to 17.3 t ha" 1 f o r mesic s i t e s ) . The one very low value f o r branch biomass on the x e r i c s i t e s was r e l a t e d to the h i g h e s t d e n s i t y stand measured (6,352 t r e e s per h e c t a r e ) , a d e n s i t y not encountered on the mesic s i t e s t h a t were sampled. 65 F o l i a g e biomass ranged from 3.1 to 7.3 t ha" 1 on x e r i c s i t e s and from 4.4 to 10.8 t ha" 1 on mesic s i t e s . Although there was a s u b s t a n t i a l o v e r l a p i n f o l i a g e biomass v a l u e s , the mean f o r the 15 mesic s i t e s i s s i g n i f i c a n t l y (a=0.05) l a r g e r (mean=7.3 t h a " 1 , SE=0.47) than the mean f o r the 15 x e r i c s i t e s that were sampled (mean=5.2 t h a " 1 , SE=0.35). The maximum l e v e l s of f o l i a g e biomass supported by x e r i c s i t e s was 7.3 t h a - 1 , a value exceeded by ten of the f i f t e e n mesic s i t e s . F o l i a g e biomass on most of the x e r i c s i t e s was l e s s than 6.0. These r e s u l t s are c o n s i s t e n t with the f i n d i n g s of G r i e r and Running (1977) and Gholz (1979, 1982) and with the concept of a s i t e " f o l i a g e c a r r y i n g c a p a c i t y " which can be r e l a t e d to edaphic v a r i a t i o n i n s o i l moisture a v a i l a b i l i t y as w e l l as to c l i m a t i c a l l y caused v a r i a t i o n . Some of the v a r i a t i o n i n stand f o l i a g e biomass val u e s may r e f l e c t v a r i a t i o n i n a c t u a l s o i l moisture c h a r a c t e r i s t i c s and water p o t e n t i a l . The s i t e s were c l a s s i f i e d by i n f e r r e d s o i l moisture and i t i s expected that there was v a r i a t i o n w i t h i n both of the i n f e r r e d s o i l moisture regime c l a s s e s . F i g u r e 4.1 shows the s c a t t e r of stand f o l i a g e biomass a g a i n s t stand d e n s i t y . S u b s t a n t i a l s c a t t e r i s e v ident due to v a r i a t i o n i n stand age and probably a l s o to v a r i a t i o n i n a c t u a l s o i l water a v a i l a b i l i t y w i t h i n each hygrotope c l a s s , and to v a r i a t i o n i n n u t r i e n t a v a i l a b i l i t y . The d i s t r i b u t i o n of t o t a l aboveground biomass was s i m i l a r to v a l u e s r e p o r t e d by other authors f o r stands of t h i s age. With the e x c e p t i o n of one younger stand, stems 66 12 -i O 10-o (fl V) o E g CD a> cn g 8-6 -4 -• • B OO . o • • • 0 T" T 1000 2000 3000 4000 5000 , 6000 Stand Density (trees ha ) — i — 7000 Edatope: • Xerlc-Poor • Xeric-Rich • Mesic-Poor O Mesic-Rich F i g u r e 4 . 1 . The s c a t t e r of stand f o l i a g e biomass (F) a g a i n s t stand d e n s i t y (SPH) f o r lodgepole pine stands on x e r i c and mesic s i t e s . 67 represented 83.1% to 95.0% of aboveground t r e e biomass. Values f o r the p r o p o r t i o n of aboveground biomass i n branches and f o l i a g e were higher f o r x e r i c s i t e s (0.9% to 16.4% f o r branches and 2.8% to 6.7% f o r f o l i a g e ) than f o r mesic s i t e s (2.8% to 6.5% f o r branches and 2.2% to 3.6% f o r f o l i a g e ) . T h i s p a r a l l e l s the lower range of stem biomass v a l u e s achieved on x e r i c s i t e s . I t appears that i n stands growing on x e r i c s i t e s , biomass d i s t r i b u t i o n i s much more s e n s i t i v e to the e f f e c t s of stand d e n s i t y than i n stands growing on mesic s i t e s . R e l a t i o n s h i p s between biomass d i s t r i b u t i o n and stand d e n s i t y c o u l d not be c l a r i f i e d due to the r e l a t i v e l y small range of d e n s i t i e s that were s t u d i e d and some confounding of d e n s i t y and age e f f e c t s . 4.5.3 PRODUCTION AND PRODUCTION ALLOCATION Stemwood mean annual increment (stem biomass d i v i d e d by stand age) ranged from 0.75 to 1.95 t h a ~ 1 y r ~ 1 on x e r i c s i t e s and from 1.35 to 3.91 t h a ~ 1 y r ~ 1 on mesic s i t e s in the stands sampled (Table 4.2). T h i s corresponds to approximately 1.8 to 4.8 m 3ha" 1yr~ 1 and 3.3 to 9.5 m 3ha" 1yr" 1 on x e r i c and mesic s i t e s , r e s p e c t i v e l y . Within each hygrotope, mean annual increment reached s l i g h t l y higher v a l u e s on the "poor" trophotopes. T h i s i s due to only one sample p l o t from the "poor" trophotopes i n each hygrotope and does not i n d i c a t e any p a r t i c u l a r t r e n d . Table 4.2 summarizes the ranges of estimated values of ANPP and aboveground component p r o d u c t i o n f o r each edatope. 68 ANPP ranged from 2.16 to 4.43 t h a ^ y r " 1 on x e r i c s i t e s and from 2.86 to 7.36 t h a ~ 1 y r ~ 1 on mesic s i t e s . On x e r i c s i t e s , aboveground net primary i n c r e a s e s g r a d u a l l y with i n c r e a s i n g stand d e n s i t y ( F i g u r e 4.2). On the mesic s i t e s ANPP appears to i n c r e a s e r a p i d l y with i n c r e a s i n g d e n s i t y up to the maximum d e n s i t y sampled on mesic s i t e s (3,000 t r e e s per h e c t a r e ) . Regression equations f i t t e d to data f o r the two hygrotopes d i f f e r s i g n i f i c a n t l y (a=0.05), even though the equation f i t t e d to the x e r i c s i t e data was not s i g n i f i c a n t (a=0.05). Stem p r o d u c t i o n accounted f o r between 44.1% and 65.4% of aboveground p r o d u c t i o n . No g e n e r a l trends a s s o c i a t e d with stand age or d e n s i t y were e v i d e n t . Older, low d e n s i t y stands tended to have lower v a l u e s of net stem p r o d u c t i o n and higher v a l u e s of f o l i a g e p r o d u c t i o n . In stands l e s s than 80 years of age, stem components accounted f o r 54.6% to 65.4% of ANPP, branches f o r 4.5% to 6.0%, and f o l i a g e f o r 30.1% to 39.4% of ANPP. These val u e s are c o n s i s t e n t with r e p o r t e d v a l u e s f o r other s p e c i e s (Satoo and Madgwick 1982) where stem p r o d u c t i o n r e p r e s e n t s about one-half of aboveground p r o d u c t i o n . Keyes and G r i e r (1981) presented data f o r D o u g l a s - f i r stands which showed that stem p r o d u c t i o n comprised 69.8% and 72.3% of aboveground p r o d u c t i o n on low and h i g h s i t e s , r e s p e c t i v e l y . Branch p r o d u c t i o n was 2.7% and 4.4% and f o l i a g e p r o d u c t i o n was 27.4% and 23.4% f o r low and high s i t e s , r e s p e c t i v e l y , i n d i c a t i n g very l i t t l e d i f f e r e n c e i n 69 81 o T ^_>» T o SZ Q_ o_ 2 < 7-6-5-4-° / B o o X° • D / Edatope: • Xeric-Poor • Xeric-Rich • Mesic-Poor 3- o • • o • O Mesic-Rlch z ( 1 1 1 1 1 1000 2000 3000 4000 5000 Stand Density (trees ha ) i i 6000 7000 F i g u r e 4.2. The r e l a t i o n s h i p between aboveground net primary p r o d u c t i o n (ANPP) and stand d e n s i t y (SPH) f o r 30 lodgepole pine stands. Equations f o r curves f i t t e d to data from each hygrotope were s i g n i f i c a n t l y d i f f e r e n t . Equations a r e : A. X e r i c ANPP = 3.2078 + 1.8476xlO- 4xSPH - 1.1878x10" 8xSPH 2 n = 15 R 2 = 0.084 Sy.x = 0.630 B. Mesic ANPP = 2.9132 + 1,3395xlO" 3xSPH - 7.1565xl0" 8 x SPH 2 n = 15 R 2 = 0.433 Sy.x = 1.109 70 the a l l o c a t i o n of p r o d u c t i o n between aboveground components i n response t o s i t e . The data presented here f o r lodgepole pine suggest a s i m i l a r c o n c l u s i o n . 4.5.4 RELATIONSHIPS BETWEEN ANPP AND FOLIAGE BIOMASS F i g u r e 4.3 shows the r e l a t i o n s h i p between ANPP and stand f o l i a g e biomass. Simple l i n e a r r e g r e s s i o n equations of ANPP on f o l i a g e biomass c o u l d not be shown to d i f f e r s i g n i f i c a n t l y between hygrotopes or between trophotopes w i t h i n each hygrotope and no c u r v i l i n e a r p a t t e r n s were e v i d e n t . General equations were f i t t e d to data from each of the four edatopes independently (Table 4.3). V a r i a b l e s determined to be s i g n i f i c a n t f o r p r e d i c t i n g ANPP (a= 0.05) (using backwards s e l e c t i o n ) i n any of the i n d i v i d u a l equations were r e t a i n e d ; these were f o l i a g e biomass ( F ) , stand d e n s i t y (SPH), stand d e n s i t y squared (SPH 2), and age. Within each hygrotope, s i g n i f i c a n t d i f f e r e n c e s c o u l d not be shown between the two trophotopes. Equations f o r p r e d i c t i n g ANPP f i t t e d to each of the two hygrotopes were, however, s i g n i f i c a n t l y d i f f e r e n t . I n t e r c e p t values f o r both equations are n e a r l y c o i n c i d e n t , while c o e f f i c i e n t s b1 ( F o l i a g e ) , b2 (SPH), b3 (SPH 2), and b4 (Age) are sm a l l e r f o r the equation f i t t e d to the x e r i c s i t e data than f o r the mesic s i t e data (Table 4.3). These sm a l l e r c o e f f i c i e n t s suggest e i t h e r that l e s s photosynthate was produced per kg of f o l i a g e on the x e r i c s i t e s than on the mesic s i t e s , or 71 8-1 O 7 -• 6 -0 D y' T ° O U9-"" ° O -C 5 -2 < 4 -3 -• • • o Edatope: • Xer ic -Poor • Xer ic -Rich • Mesic-Poor O Mesic-Rich 1 4 i i i 6 8 10 Foliage Biomass (t ha ) I 12 F i g u r e 4.3. The r e l a t i o n s h i p between aboveground net primary p r o d u c t i o n (ANPP) and stand f o l i a g e biomass (F) f o r 30 - lodgepole p i n e stands. Equations f i t t e d to data from each hygrotope d i d not d i f f e r s i g n i f i c a n t l y . The g e n e r a l equation (shown) i s : ANPP = 0.6980 + 0.5651 x F N = 30 r 2 = 0.660 Sy.x = 0.783 T a b l e 4 . 3 . C o m p a r i s o n o-f e q u a t i o n s -for ANPP f i t t e d t o d a t a f r o m e a c h o f the f o u r e d a t o p e s a n d two h y g r o t o p e s . The g e n e r a l f o r m o f the e q u a t i o n i s : ANPP = a + b l x F + b2xSPH + b 3 x S P H 2 + b 4 x A G E Edatope n R2 Sy.x SSreg dfreg SSt SSe dfe a bl b2 (xl0~ 3) b3 (xl0~ 6) b4 ( x l O - 2 ) al l 30 0.872 0.508 44.0910 4 50.5330 6.4420 25 0.7791 0.5183 0.985 -0.1200 -1.1037 Xeric- 'Poor' 7 0.441 0.597 0.5621 4 1.2751 0.7130 2 3.6859 0.2946 0.674 -0.0845 -2.7380 Xeric-"Rich" 8 0.914 0.247 1.9399 4 2.1236 0.1837 3 1.3529 0.3371 0.734 -0.1213 -0.5501 pooled-Xeric 0.8967 5 Xeric 15 0.756 0.357 3.9264 4 5.2000 1.2736 10 1.3086 0.3867 0.537 -0.0536 -0.5870 Mesic-'Poor" 7 0.929 0.503 6.6100 4 7.1156 0.5056 2 -8.0747 1.0038 6.565 -1.8535 0.7924 Nesic-'Rich" 8 0.958 0.510 17.6070 4 18.3880 0.7810 3 5.0896 0.5798 -0.493 0.0561 -3.7964 pooled-Mesic 1.2866 5 Mesic 15 0.906 0.495 23.6100 4 26.0580 2.4480 10 1.3084 0.4934 2.134 -0.4528 -2.2369 POOLED-T 2.1833 10 POOLED-HYG 3.7216 20 F-T <F 0.05(1), 1 5 , 1 0 = 2 ' 8 5 > 1.3004 F-HYG (F 0.05(1), 5 , 2 0 = 2 - ™ 2.9239 F-Xeric <F 0.05(1). 5 5=5.05) 0.4203 F-Mesic <F 0.05<l>,5,5 = 5 , 0 5 > 0.9027 There are no significant differences between trophotopes within each hygrotope (F-XERIC, F-MESIC). The two hygrotopes are signif icantly different (F-HYG). ANPP= aboveground net primary production (t h a ^ y r " 1 ) ; F = stand foliage biomass (t ha~ l ) ; SPH = trees per hectare (n h a - I ) j Age = stand age (years). Coefficients are to be multiplied by the values shown at the top of the table. 73 that l e s s was s t o r e d as ANPP, or both. T h i s between - s i t e d i f f e r e n c e f o r equations d e s c r i b i n g ANPP i s s i m i l a r to the p a t t e r n found f o r D o u g l a s - f i r i n r e l a t i o n to " s i t e c l a s s e s " ( d e f i n e d by height growth) (Schroeder et a l . 1982; Waring et a l . 1980; Waring et a l . 1981). The r e l a t i o n s h i p between ANPP and f o l i a g e i n D o u g l a s - f i r stands was found to l e v e l o f f at a peak value of 6 m2 n r 2 p r o j e c t e d l e a f area (Waring et a l . 1980) c o i n c i d i n g with f o l i a g e biomass of approximately 10 t h a " 1 . The r e l a t i o n s h i p between ANPP and f o l i a g e biomass d i d not show any evidence of becoming c u r v i l i n e a r i n these lodgepole pine stands. The lack of a c u r v i l i n e a r p a t t e r n i n the lodgepole stands may be due to the f a c t t h at the stands that were sampled d i d not support l e v e l s of f o l i a g e biomass s u f f i c i e n t l y high t o cause enough s e l f - s h a d i n g to r e s u l t i n a d e t e c t a b l e c u r v i l i n e a r r e l a t i o n s h i p . S i m i l a r r e s u l t s were obtained f o r the r e l a t i o n s h i p between net stem p r o d u c t i o n (NSP) and stand f o l i a g e biomass (Table 4.4, F i g u r e 4.4) and between f o l i a g e p r o d u c t i o n and stand f o l i a g e biomass (Table 4.5, F i g u r e 4.5). General r e g r e s s i o n equations were obtained which d i f f e r e d between hygrotopes but not between trophotopes. Simple l i n e a r r e l a t i o n s h i p s between stem p r o d u c t i o n and f o l i a g e biomass d i d not d i f f e r s i g n i f i c a n t l y between e i t h e r hygrotopes or trophotopes. However, the simple r e l a t i o n s h i p s d e s c r i b i n g f o l i a g e p r o d u c t i o n , based on f o l i a g e biomass, d i d d i f f e r s i g n i f i c a n t l y between hygrotopes. T a b l e 4 . 4 . Comparison of e q u a t i o n s -for p r e d i c t i n g net stem p r o d u c t i o n <NSP) f o r the f o u r e d a t o p e s . The general form of the equat ion i s : NSP » a + b2xF + b2xSPH + b3xSPH 2 + b4xAGE Edatope n R2 Sy.x SSreg dfreg sst SSe dfe a bl b2 (xl0~ 3) b3 (x lO - 7 ) b4 (xlO* 2 ) a l l 3D 0.769 0.441 16.2440 4 21.1140 4.8700 25 1.2018 0.2682 0.656 -0.8959 -1.3653 Xeric-'Poor" 7 0.315 0.548 0.2768 4 0.8783 0.6015 2 3.3273 0.1135 0.417 -0.6144 -2.6239 Xeric- 'Rich" 8 0.812 0.219 0.6219 4 0.7657 0.1438 3 1.4782 0.1365 0.427 -0.8637 -0.7347 pooled-Xeric 0.7453 5 Xeric IS 0.542 0.312 1.1546 4 2.1304 0.9758 10 1.4401 0.1706 0.280 -0.3344 -0.7551 Mesic-Toor ' 7 0.923 0.411 4.0628 4 4.4000 0.3372 2 -6.9504 0.7285 5.496 -15.8430 0.4029 Mesic- 'Rich' 8 0.910 0.491 7.2926 4 8.0170 0.7244 3 5.0301 0.3133 -0.521 0.4418 -3.8744 pooled-Mesic 1.0616 5 Mesic 15 0.848 0.438 10.7020 4 12.6210 1.9190 10 1.7802 0.2410 1.578 -3.5064 -2.4278 POOLED-T 1.8069 ID POOLED-HYG 2.8948 20 F-T (F 0.05(1) .15.101 =2.85) 1.1302 F-HYG <F 0.05(1) 5.20= 2' 7 I> 2.7293 F-Xeric (F 0 . 0 5 ( 1 ) . 5 . 5 = 5 , 0 5 ) 0.3093 F-Mesic <F 0.05(1) ,5,5*-™ 0.8076 There are no significant differences between trophotopes within each hygrotope (F-Xeric, F-Mesic). The two hygrotopes are signif icantly different (F-HYG). NSP= net stem production (t h a ^ y r - 1 ) ; F = stand foliage biomass (t ha" 1 ); SPH = trees per hectare (n h a - 1 ) ; Age = stand age (years). Coefficients are to be multiplied by the values shown at the top of the table. 75 D SZ c .o ~o 3 T J O i _ 0. E 4.5-4 -3 . 5 -3 -2 . 5 -Z 1.5-• Edatope: • Xerk—Poor • Xeric—Rich • Mesic-Poor O Mesic-Rich Foliage Biomass (t ha )^ i 10 12 F i g u r e 4.4. The r e l a t i o n s h i p between net stem p r o d u c t i o n (NSP) and stand f o l i a g e biomass (F) f o r lodgepole pine i n the 30 sampled stands. Equations f i t t e d to data from each of the four edatopes or two hygrotopes do not d i f f e r s i g n i f i c a n t l y . The gen e r a l equation (shown) i s : NSP = 0.4801 + 0.3118 x F n = 30 r 2 = 0.481 Sy.x = 0.625 T a b l e 4 . 5 . C o m p a r i s o n o-f e q u a t i o n s p r e d i c t i n g f o l i a g e p r o d u c t i o n <FP) f i t t e d t o d a t a f r o m e a c h o f the f o u r e d a t o p e s . The g e n e r a l f o r m o f the e q u a t i o n i s : FP = a + b l x F + b2xSPH + b S x S P H 2 + b4xAge Edatope n R2 Sy.x SSreg dfreg SSt SSe dfe a bl b2 <xl0~4> b3 (xlO" 7 ) b4 ( x l O - 3 all 30 0.971 0.084 6.0376 4 6.2157 0.1781 25 -0.3877 0.2246 2.57 -0.2260 2.521 Xer ic-Toor" 7 0.961 0.040 0.0789 4 0.0821 0.0032 2 0.3385 0.1530 1.99 -0.1699 -0.607 Xeric-"Rich" 8 0.994 0.029 0.3880 4 0.3906 0.0026 3 -0.1231 0.1767 2.55 -0.2773 1.780 pooled-Xeric 0.0058 5 Xeric 15 0.971 0.049 0.7760 4 0.7996 0.0236 10 -0.1191 0.1899 2.13 -0.1620 1.576 Mesic-"Poor' 7 0.909 0.120 0.2932 4 0.3223 0.0290 2 -0.9359 0.2522 7.73 -1.9811 3.789 Mesic-"Rich' 8 0.998 0.036 2.1960 4 2.1998 0.0038 3 0.0668 0.2345 0.06 0.1190 0.715 pooled-Mesic 0.0328 5 Mesic 15 0.980 0.073 2.5710 4 2.6248 0.0538 10 -0.2770 0.2266 3.47 -0.6266 1.453 P00LE0-T P00LED-HY8 F-T F-HYG F-Xeric F-Mesic < F 0 .05 (1 ) ,15 ,10 = 2 ' 8 5 ) < F 0 . 0 5 ( l ) , 5 f 2 0 = 2 , 7 1 ) < F 0.05<l),5,5 a 5 , 0 5 > 0.0386 10 0.0774 20 2.4075 5.2029 3.0686 0.6392 There are no significant differences between trophotopes within each hygrotope (F-Xeric, F-Mesic). The two hygrotopes are signif icantly different (F-HYG). FP= foliage production (t ha^yr" 1 ) ; F = stand foliage biomass (t h a - 1 ) ; SPH = trees per hectare (n ha" 1 ) ; Age = stand age (years). Coefficients are to be multiplied by the values shown at the top of the table. 77 2.5->-o x: c o X I o CL CO D> D 1.5-1-0.5-O s B O/ • 9t Foliage Biomass (t ha )^ 10 12 Edatope: • Xeric-Poor • Xeric-Rich • Mesic-Poor O Mesic-Rich F i g u r e 4.5. The r e l a t i o n s h i p between lodgepole pine f o l i a g e p r o d u c t i o n (FP) and stand f o l i a g e biomass (F) f o r the sampled stands. Equations f i t t e d t o data from each of the two hygrotopes were s i g n i f i c a n t l y d i f f e r e n t . Equations d e p i c t e d by each l i n e a r e : A. X e r i c FP = 0.5886 + 0.1326 x F n = 15 r 2 = 0.552 Sy.x = 0.166 B. Mesic FP = 0.2027 + 0.2304 x F n = 15 r 2 = 0.938 Sy.x = 0.177 78 F o l i a g e e f f i c i e n c y p r o v i d e s an e x p r e s s i o n of the e f f i c i e n c y with which biomass i s produced per u n i t of f o l i a g e biomass. F o l i a g e e f f i c i e n c y (FE(ANPP)), c a l c u l a t e d as ANPP d i v i d e d by f o l i a g e biomass (Satoo and Madgwick 1982; Satoo 1971; Waring 1983), of the s t u d i e d lodgepole pine stands ranged between 0.4 and 0.9 t t ~ 1 y r ~ 1 . The r e l a t i o n s h i p between FE(ANPP) and stand f o l i a g e biomass ( F i g u r e 4.6 ) i n the stands s t u d i e d was not as simple as has been suggested by other authors (Satoo 1971; Waring et a l . 1981). A s i g n i f i c a n t equation (a=0.05) c o u l d be f i t t e d only to data from x e r i c s i t e s . Satoo and Madgwick (1982) present s e v e r a l examples which show that f o l i a g e e f f i c i e n c y i s i n f l u e n c e d by f o l i a g e biomass, stand age, and s o i l f e r t i l i t y . In t h i s study, stand age was not s i g n i f i c a n t perhaps due to the f a i r l y advanced age of the stands that were s t u d i e d . F o l i a g e e f f i c i e n c y d i d g e n e r a l l y decrease with i n c r e a s i n g f o l i a g e biomass, but was a l s o s t r o n g l y i n f l u e n c e d by stand d e n s i t y . FE(ANPP) showed a c u r v i l i n e a r i n c r e a s e with i n c r e a s i n g stand d e n s i t y ( F i g u r e 4.7). General equations f o r FE(ANPP) f i t t e d to the data s e t s f o r the two hygrotopes were not s i g n i f i c a n t l y d i f f e r e n t (Table 4.6). The hand f i t t e d l i n e (A) shown on F i g u r e 4.6 suggests an upper l i m i t to FE(ANPP) i n r e l a t i o n to stand f o l i a g e biomass. T h i s l i n e i s d e f i n e d by four mesic s i t e s . The slope of t h i s l i n e should d e s c r i b e the d e c l i n e i n p h o t o s y n t h e t i c e f f i c i e n c y of the f o l i a g e i n the canopy 79 0 . 9 -I 0 . 8 -Z < 0 . 7 -0 . 6 -0 . 5 -0 . 4 -B • \ \ \ \ o \ \ • V \ • X o • -1 Foliage Biomass (t ha ) i 10 ~ i 12 Edatope: • Xeric-Poor • Xeric-Rich • Mesic—Poor o Meslc-Rich F i g u r e 4.6. The r e l a t i o n s h i p between f o l i a g e e f f i c i e n c y (FE(ANPP)) and stand f o l i a g e biomass (F) f o r the 30 sampled lodgepole pine stands. L i n e A i n d i c a t e s an upper l i m i t t o the d a t a . L i n e B i s f i t t e d to x e r i c s i t e data and i s d e s c r i b e d by the equation: FE(ANPP) = 1.0475 - 6.9913 x 10' 2 x F n = 15 r 2 = 0.513 Sy.x = 0.095 80 0 . 9 -I 0 . 8 -I Q. 0_ U J 0.7-0 .6 -0 . 5 -JD' O • O • o 0.4- 1 1 1 1 1 1 1000 2000 3000 4000 50O0 6000 Stand Density (trees ha ) Edatope: • Xeric—Poor • Xeric-Rich D Mesic-Poor O Mesic-Rich 7000 Figure 4.7. The r e l a t i o n s h i p between f o l i a g e e f f i c i e n c y (FE(ANPP)) and stand d e n s i t y (SPH) f o r the 30 lodgepole pine stands sampled. Equations d i d not d i f f e r s i g n i f i c a n t l y between edatopes or between hygrotopes. The equation d e s c r i b i n g the curve i s : FE(ANPP) = 5.0009X10' 1 + 1.4445x10"*xSPH - 1.4102x10" 8xSPH 2 n = 30 R 2 = 0.540 Sy.x = 0.085 Table 4.6. Comparison o-f equations d e s c r i b i n g f o l i a g e e f f i c i e n c y (FE(ANPP)) f i t t e d to data from each of the four edatopes. The general form of the equation i s : FE<ANPP) = a + blxF + b2xSPH + b3xSPH 2 + b4xAge Edatope n R2 Sy.x SSreg dfreg SSt SSe dfe a bl b2 b3 b4 (xlO~ 2) ( x l O - 4 ) ( x lO - 7 ) ( x l O - 3 ) all 30 0.720 0.069 0.3035 4 0.4216 0.1181 25 0.7838 -2.6602 1.49 -0.1650 -1.306 Xeric-'Poor" 7 0.824 0.093 0.0814 4 0.0988 0.0174 2 1.1513 -4.8611 0.94 -0.0972 -3.753 Xeric- 'Rich" 8 0.902 0.066 0.1185 4 0.1315 0.0129 3 0.8207 -4.9000 1.53 -0.2126 -0.557 pooled-Xeric 0.0303 5 Xeric 15 0.857 0.058 0.2049 4 0.2391 0.0342 10 0.8384 -4.4860 1.16 -0.1139 -0.667 Mesic-'Poor" 7 0.927 0.057 0.0813 4 0.0877 0.0064 2 -0.2839 3.9773 7.72 -2.1942 1.021 Mesic-" Rich" 8 0.687 0.095 0.0596 4 0.0868 0.0272 3 1.2260 -1.9816 0.28 -0.0707 -4.406 pooled-tfesic 0.0336 5 Mesic 15 0.726 0.070 0.1315 4 0.1811 0.0496 10 0.9261 -2.6643 2.18 -0.4325 -2.980 POOLED-T 0.0639 10 POOLED-HYG 0.0838 20 F-T <F 0.05(1), 1 5 , 1 0 = 2 ' 8 5 ) 0.5650 F-HYG <F 0.05<1). 5.2> 2 - 7 1 > 1.6369 F-Xeric <F o.osahs.s25-05* 0.1292 F-Mesic <F 0.05(1), 5 > 5=5.05) 0.4751 There are no significant differences between edatopes, trophotopes or hygrotopes. FE(ANPP)= foliage efficiency (ANPP) (t t - 1 y r " 1 )j F = stand foliage biomass (t h a - 1 ) ; SPH = trees per hectare (n h a - 1 ) ; Age = stand age (years). Coefficients are to be multiplied by the values shown at the top of the table. 82 r e s u l t i n g from shading w i t h i n the canopy. L i n e A n e a r l y p a r a l l e l s the l i n e f o r the x e r i c s i t e s ( l i n e B). D e v i a t i o n from l i n e A i s b e l i e v e d to be r e l a t e d to other stand and environmental c o n d i t i o n s i n f l u e n c i n g net carbon uptake i n p h o t o s y n t h e s i s , p l a n t r e s p i r a t i o n , and/or i n the a l l o c a t i o n of p r o d u c t i o n between aboveground and belowground components (Schroeder et a l . 1982; Waring 1983). The s c a t t e r observed f o r the mesic s i t e s may a l s o be r e l a t e d to a broader range of v a r i a t i o n i n s o i l c o n d i t i o n s w i t h i n t h i s hygrotope than i n the x e r i c hygrotope, to v a r i a t i o n s i n stand d e n s i t y , and to the e f f e c t s of other f a c t o r s such as n u t r i e n t a v a i l a b i l i t y on f o l i a g e e f f i c i e n c y . 4.5.5 GENERAL DISCUSSION The use of l o c a l l y developed biomass r e g r e s s i o n equations i s probably a major reason f o r the i d e n t i f i c a t i o n of between - s i t e d i f f e r e n c e s i n equations f o r p r e d i c t i n g ANPP. The use of double sampling, with the development of r e g r e s s i o n e s t i m a t o r s f o r biomass and p r o d u c t i o n from sampled t r e e s i n each sampled stand might p r o v i d e f o r even c l e a r e r d i f f e r e n t i a t i o n of s i t e s . However, t e s t i n g of r e g r e s s i o n equations (Chapter 3) d i d not i n d i c a t e a need f o r the d e s t r u c t i v e sampling of t r e e s i n each stand. A p p l i c a t i o n of a double sampling approach would a l s o have l i m i t e d the number of stands which c o u l d have been sampled. Tree m o r t a l i t y , bark p r o d u c t i o n and the p r o d u c t i o n of r e p r o d u c t i v e m a t e r i a l were hot measured i n the sample 83 stands. F a i l u r e to account f o r temporal v a r i a t i o n i n each of these unmeasured components may have i n t r o d u c e d some of the v a r i a t i o n i n ANPP found i n the data. The use of f i x e d area p l o t s with p e r i o d i c remeasurement of sample t r e e s and l i t t e r f a l l c o l l e c t i o n would be a more d e s i r a b l e approach i n f u r t h e r s t u d i e s . T h i s approach would allow the e s t i m a t i o n of p r o d u c t i o n and m o r t a l i t y and would be more a p p r o p r i a t e to stands younger than 50 years of age where the d i r e c t measurement of height increment may be necessary. 4.6 SUMMARY Data c o l l e c t e d i n 30 lodgepole pine stands growing on s i t e s from four d i f f e r e n t edatopes show a wide v a r i a t i o n i n aboveground biomass and p r o d u c t i o n . The v a r i a t i o n i n aboveground net primary p r o d u c t i o n was shown to be r e l a t e d to v a r i a t i o n i n stand f o l i a g e biomass and stand d e n s i t y . Equations f o r p r e d i c t i n g ANPP us i n g f o l i a g e biomass, stand d e n s i t y , and age d i f f e r e d between x e r i c and mesic hygrotopes. X e r i c s i t e s c a r r i e d a maximum of 7.3 t ha" 1 f o l i a g e biomass with most stands c a r r y i n g l e s s than 6 t h a " 1 . S i t e s with mesic hygrotopes achieved as much as 10.8 t ha" 1 f o l i a g e biomass. Thus d i f f e r e n c e s between the two hygrotopes i n ANPP can be a t t r i b u t e d to d i f f e r e n c e s i n the amount of f o l i a g e which can be c a r r i e d by stands growing on the two hygrotopes and by d i f f e r e n t r e l a t i o n s h i p s of ANPP to f o l i a g e biomass and stand d e n s i t y . 84 4.7 CONCLUSION R e s u l t s presented i n t h i s chapter l e a d to three c o n c l u s i o n s that r e l a t e to the three hypotheses presented e a r l i e r i n t h i s chapter: 1. Lodgepole pine stands growing on s i t e s with mesic moisture regimes support s i g n i f i c a n t l y g r e a t e r f o l i a g e biomass than do s i t e s with x e r i c moisture regimes. Hypothesis 1, that s o i l moisture a v a i l a b i l i t y determines the maximum amount of f o l i a g e which can be supported by a stand, cannot be r e j e c t e d . However, f u r t h e r experimental r e s e a r c h i s r e q u i r e d to p r o v i d e a r i g o r o u s t e s t of t h i s h y p o t h e s i s . 2. The r e l a t i o n s i p between ANPP and stand f o l i a g e biomass appears to be l i n e a r , f o r the lodgepole pine stands s t u d i e d . T h i s i n d i c a t e s r e j e c t i o n of hypothesis 2 f o r these stands. 3. Simple l i n e a r r e l a t i o n s h i p s between ANPP and stand f o l i a g e biomass d i d not d i f f e r s i g n i f i c a n t l y between lodgepole pine stands from the four edatopes. However, ge n e r a l equations f o r p r e d i c t i n g ANPP us i n g stand f o l i a g e biomass, stand d e n s i t y , and stand age d i d d i f f e r s i g n i f i c a n t l y between the two hygrotopes. V a r i a t i o n i n r e l a t i o n s h i p s between FE(ANPP) and stand f o l i a g e biomass a l s o suggest that r e l a t i o n s h i p s between ANPP and f o l i a g e biomass w i l l vary with hygrotope. T h i s p r o v i d e s p a r t i a l support f o r hypothesis 3. Chapter 5 RELATIONSHIPS BETWEEN ABOVEGROUND NET PRIMARY PRODUCTION AND FOLIAGE NITROGEN CONTENT 5.1 INTRODUCTION R e l a t i o n s h i p s between ANPP and f o l i a g e biomass (Chapter 4) may pro v i d e adequate p r e d i c t o r s of p r o d u c t i o n i n n a t u r a l unmanaged stands or where stand tending p r a c t i c e s have l i t t l e i n f l u e n c e on n u t r i e n t a v a i l a b i l i t y . However, where f o r e s t management p r a c t i c e s or n a t u r a l events cause s i g n i f i c a n t short-term changes i n p l a n t n u t r i t i o n , f o l i a g e biomass, on i t s own, may not be an i d e a l p r e d i c t o r of aboveground p r o d u c t i o n . Sudden changes i n n u t r i e n t a v a i l a b i l i t y may cause r e l a t i o n s h i p s between p r o d u c t i o n and f o l i a g e biomass to change by i n f l u e n c i n g stand f o l i a g e biomass, p h o t o s y n t h e t i c e f f i c i e n c y , and f o l i a g e e f f i c i e n c y (FE(ANPP)) ( B r i x 1981, 1983). FE(ANPP) may a l s o change as a r e s u l t of changes i n the a l l o c a t i o n of t o t a l net primary p r o d u c t i o n between aboveground and belowground components (Persson 1979). Under such changing c o n d i t i o n s , the content of n u t r i e n t s i n the f o l i a g e (the amount of n u t r i e n t s c o n t a i n e d i n the f o l i a g e i n kg ha' 1 or g m"2) may provide a b e t t e r p r e d i c t i o n of t r e e p r o d u c t i o n than does f o l i a g e biomass. In temperate c o n i f e r o u s f o r e s t s , low n i t r o g e n a v a i l a b i l i t y i s the most commonly i d e n t i f i e d n u t r i t i o n a l f a c t o r l i m i t i n g p r o d u c t i o n . T h i s has l e d to the 85 86 i n c o r p o r a t i o n of n i t r o g e n dynamics i n a number of s i m u l a t i o n models. I t i s a l s o the macronutrient r e q u i r e d i n the h i g h e s t c o n c e n t r a t i o n s by p l a n t s . T h i s chapter w i l l examine the r e l a t i o n s h i p between f o l i a g e n i t r o g e n and t r e e p r o d u c t i o n and compare f o l i a g e n i t r o g e n with f o l i a g e biomass as a p r e d i c t o r of ANPP. 5.2 LITERATURE REVIEW A n a l y s i s of the c o n c e n t r a t i o n s of n u t r i e n t elements i n f o l i a g e samples has become a popular and, under some c o n d i t i o n s , an e f f i c e n t method of d i a g n o s i n g n u t r i e n t d e f i c i e n c i e s i n f o r e s t stands. Tree n i t r o g e n s t a t u s , as r e f l e c t e d by f o l i a r c o n c e n t r a t i o n s , has been r e l a t e d to the p h o t o s y n t h e t i c e f f i c i e n c y of c o n i f e r f o l i a g e ( B r i x 1981). T h i s r e l a t i o n s h i p i s g e n e r a l l y p a r a b o l i c i n nature with optimum r a t e s of p h o t o s y n t h e s i s o c c u r r i n g over an i n t e r m e d i a t e range of n u t r i e n t c o n c e n t r a t i o n s . F o l i a r a n a l y s i s p r o v i d e s a u s e f u l bioassay of n u t r i e n t a v a i l a b i l i t y on the s i t e , but n u t r i e n t c o n c e n t r a t i o n s cannot always be r e l a t e d d i r e c t l y to r a t e s of biomass p r o d u c t i o n (Agren 1983; Hoyle and Mader 1964). One l i k e l y reason f o r t h i s i s the v a r i a t i o n i n the amount of f o l i a g e c a r r i e d by a f o r e s t stand. S i m i l a r l e v e l s of p r o d u c t i o n may be obtained from canopies that have s i m i l a r amounts of n i t r o g e n c o n t a i n e d i n d i f f e r e n t amounts of f o l i a g e and d i f f e r e n t n i t r o g e n c o n c e n t r a t i o n s (Agren 1983; Ingestad et a l . 1981). 87 In t h e i r study of red pine, Hoyle and Mader (1964) found that f o l i a g e n u t r i e n t content provided a much b e t t e r p r e d i c t o r of t r e e growth than d i d f o l i a g e n u t r i e n t c o n c e n t r a t i o n . Due to a lack of s u i t a b l e biomass equations, they r e s t r i c t e d t h e i r study to the content of n u t r i e n t s i n the f o l i a g e of the topmost whorl. Further i n t e r e s t i n these r e l a t i o n s h i p s d i d not develop u n t i l the l a t e 1970's when Ingestad (1979,1980) and Ingestad et a l . (1981) r e p o r t e d on r e l a t i o n s h i p s between p r o d u c t i o n and f o l i a g e n u t r i e n t content i n s e e d l i n g s . Agren (1983) c a l c u l a t e d n i t r o g e n p r o d u c t i v i t y ( f o l i a g e p r o d u c t i o n per kg of n i t r o g e n i n the f o l i a g e ) f o r stands of f i v e t r e e s p e c i e s using p u b l i s h e d end-of-growing-season biomass and n i t r o g e n v a l u e s . For each s p e c i e s , he showed a general d e c l i n e i n n i t r o g e n p r o d u c t i v i t y with i n c r e a s i n g stand f o l i a g e biomass. T h i s d e c l i n e i n n i t r o g e n p r o d u c t i v i t y was shown to be r e l a t e d to l i g h t e x t i n c t i o n w i t h i n the t r e e canopies. He a l s o suggested that d i f f e r e n c e s between s p e c i e s i n the i n t e r c e p t and slope v a l u e s of r e g r e s s i o n s of n i t r o g e n p r o d u c t i v i t y on f o l i a g e biomass can be r e l a t e d to d i f f e r e n c e s i n shade t o l e r a n c e and l i g h t a d a p t a t i o n s . The e f f e c t s of s i t e d i f f e r e n c e s or treatments on n i t r o g e n p r o d u c t i v i t y values a l s o suggested that water a v a i l a b i l i t y may a f f e c t n i t r o g e n p r o d u c t i v i t y . Since aboveground p r o d u c t i o n i s g e n e r a l l y c o r r e l a t e d with f o l i a g e p r o d u c t i o n (Agren 1983), we should be able to extend Agren's concept to aboveground net primary p r o d u c t i o n 88 per kg of f o l i a g e n i t r o g e n ( f o l i a g e n i t r o g e n e f f i c i e n c y (FNE(ANPP)) (Comeau and Kimmins 1986). Data from Turner (1977) on short term responses of D o u g l a s - f i r to d i f f e r e n t l e v e l s of n i t r o g e n a v a i l a b i l i t y suggest an e r r a t i c behaviour of f o l i a g e n i t r o g e n e f f i c i e n c y ( f o r ANPP) i n response to h i s experimental treatments. S i m i l a r l y , B i n k l e y and Reid (1985) found that the FNE(ANPP) of f e r t i l i z e d stands, 13 to 18 y e ars a f t e r f e r t i l i z a t i o n , was g r e a t e r than that of u n f e r t i l i z e d stands even though the former supported 50% g r e a t e r l e a f a r e a . These r e s u l t s suggest that the r e l a t i o n s h i p between FNE(ANPP) and f o l i a g e biomass may vary i n response to d i f f e r e n c e s i n s i t e and stand c o n d i t i o n s and d i f f e r e n c e s i n n u t r i e n t a v a i l a b i l i t y . The concept of n i t r o g e n p r o d u c t i v i t y , expressed as f o l i a g e p r o d u c t i o n per u n i t of n i t r o g e n i n the f o l i a g e , has found a p p l i c a t i o n i n s i m u l a t i o n models of the e f f e c t s of n i t r o g e n a v a i l a b i l i t y on f o l i a g e biomass, n i t r o g e n content, and l i t t e r f a l l (Ingestad et a l . 1981; Agren 1983). No q u a n t i f i c a t i o n of v a r i a t i o n i n FNE(ANPP), i n r e l a t i o n to v a r i a t i o n i n s i t e and stand c o n d i t i o n s , has been p u b l i s h e d to date. I t i s important that the v a r i a t i o n i n f o l i a g e n i t r o g e n e f f i c i e n c y be examined before attempting to u t i l i z e such r e l a t i o n s h i p s i n p r e d i c t i n g f o r e s t growth. 89 5.3 OBJECTIVES AND HYPOTHESES The l i t e r a t u r e review i n d i c a t e s a need f o r e v a l u a t i o n of the concept of f o l i a g e n i t r o g e n e f f i c i e n c y , p a r t i c u l a r l y as i t i s i n f l u e n c e d by v a r i a t i o n s i n s i t e and stand c o n d i t i o n s . In t h i s part of the study, the o b j e c t i v e s were t o examine v a r i a t i o n i n f o l i a g e n i t r o g e n e f f i c i e n c y and i n the r e l a t i o n s h i p s between ANPP and f o l i a g e n i t r o g e n content f o r lodgepole pine stands i n r e l a t i o n to the four d i f f e r e n t edatopes, f o r lodgepole pine stands. The f o l l o w i n g n u l l h y p o t h e s i s i s presented f o r t e s t i n g : There w i l l be a d i r e c t r e l a t i o n s h i p between ANPP and f o l i a g e n i t r o g e n content f o r lodgepole pine stands such that there are no s i g n i f i c a n t d i f f e r e n c e s between r e g r e s s i o n equations f i t t e d to data from stands growing on d i f f e r e n t edatopes. 5.4 METHODS F o l i a g e samples were c o l l e c t e d i n l a t e October 1983 from each of the t h i r t y stands d e s c r i b e d i n Chapters 2 and 4. One branch was obtained from the midcrown of each of 15 t r e e s using a 410 gauge shotgun (2 1/2 i n c h magnum s h e l l s and #4 or #5 s h o t ) . B a l l a r d ( p ersonal communication) suggested that sampling of 10 or more t r e e s i n lodgepole pine stands should p r o v i d e estimates of the mean value of n i t r o g e n c o n c e n t r a t i o n s w i t h i n 90% c o n f i d e n c e l i m i t s . The midcrown was s e l e c t e d f o r sampling s i n c e t h i s crown s e c t i o n i s where most of the f o l i a g e i s l o c a t e d (Gary 1976), where 90 average f o l i a g e n i t r o g e n c o n c e n t r a t i o n s are found (Keane 1985) and where a l l f o l i a g e age c l a s s e s are best r e p r e s e n t e d . Within 12 hours of sampling, branches were bulked -by p l o t and f o l i a g e was separated from branches by annual age c l a s s . F o l i a g e 7 years of age and o l d e r was bulked f o r a n a l y s i s due to the small q u a n t i t i e s of o l d e r f o l i a g e o b t ained i n most samples. Younger age c l a s s e s (0-6 years) of f o l i a g e were analysed i n d i v i d u a l l y . F o l l o w i n g s e p a r a t i o n , f o l i a g e was allowed to a i r - d r y u n t i l i t was retu r n e d to the l a b o r a t o r y where i t was oven-dried at 70°C f o r 48 hours. F o l l o w i n g d r y i n g , the dry weight per hundred needles was determined on subsamples of c u r r e n t and one-year-old f o l i a g e age c l a s s e s . N i t r o g e n c o n c e n t r a t i o n s i n ground f o l i a g e samples were determined u s i n g a m o d i f i e d semi-micro K j e l d a h l d i g e s t i o n with s u l f u r i c a c i d f o l l o w e d by c o l o r i m e t r i c d e t e r m i n a t i o n of n i t r o g e n u s i n g a t e c h n i c o n a u t o a n a l y s e r (Warner and Jones 1970; Technicon Instrument C o r p o r a t i o n 1977). Laboratory work was completed i n the f o r e s t ecology l a b o r a t o r y at the U n i v e r s i t y of B r i t i s h Columbia, Vancouver. A n a l y s i s of standard samples of lodgepole pine f o l i a g e ( c o n s i s t i n g of a l a r g e sample of one age c l a s s ) was repeated at l e a s t three times w i t h i n each block of 77 samples to monitor l a b p r e c i s i o n . L a b o r a t o r y accuracy was monitored by l a b s t a f f a n a l y z i n g standard f o l i a g e samples from IUFRO i n t e r l a b o r a t o r y f o l i a g e a n a l y s i s comparisons. 91 F o l i a g e n i t r o g e n content was c a l c u l a t e d by summation of the product of the biomass of each age c l a s s (Chapter 3 and Chapter 4) and the a p p r o p r i a t e n i t r o g e n c o n c e n t r a t i o n . Biomass of c u r r e n t - y e a r f o l i a g e was estimated by m u l t i p l y i n g the biomass of 1-year-old f o l i a g e by the r a t i o o f : weight per 100 c u r r e n t needles to weight per 100 1-year-old needles s i n c e the biomass of c u r r e n t years f o l i a g e c o u l d not be estimated using r e g r e s s i o n e q u a t i o n s . 5.5 RESULTS AND DISCUSSION 5.5.1 FOLIAGE NITROGEN CONCENTRATIONS AND CONTENT The n i t r o g e n c o n c e n t r a t i o n s of c u r r e n t years f o l i a g e ranged from 0.93% to 1.27% of oven-dry weight (Table 5.1). One sample which had a low c o n c e n t r a t i o n (0.53%) ( t h i s was a t t r i b u t e d to i n s e c t damage) was r e t a i n e d s i n c e i t was c h a r a c t e r i s t i c of the stand. There was a narrow range of c o n c e n t r a t i o n s i n these unmanaged stands and no s i g n i f i c a n t d i f f e r e n c e s (a=0.05) i n f o l i a g e n i t r o g e n c o n c e n t r a t i o n between edatopes were e v i d e n t . N i t r o g e n c o n c e n t r a t i o n s i n the f o l i a g e v a r i e d with needle age ( F i g u r e 5.1). Maximum value s occurred i n f o l i a g e between 1 and 4 years-of-age f o l l o w e d by a d e c l i n e i n c o n c e n t r a t i o n from age 5 onward. S i m i l a r trends were observed i n f o l i a g e samples c o l l e c t e d from lodgepole pine 92 T a b l e 5 . 1 . R a n g e s o f n i t r o g e n c o n c e n t r a t i o n s a n d f o l i a g e n i t r o g e n c o n t e n t f o r the 30 l o d g e p o l e p i n e s t a n d s s a m p l e d . E d a t o p e N n <kg h a - 1 ) X e r i c - " P o o r " mean 1 .12 - 1 . 28 1 .21 5 9 . 2 - 89 .1 71 . 9 X e r i c - " R i c h ' mean 1.11 - 1 . 3 3 1 . 22 4 1 . 4 - 8 7 . 2 5 5 . 8 8 M e s i c - " P o o r " mean 1.11 - 1 . 3 3 1 . 1 9 68 .1 - 1 0 4 . 5 9 3 . 6 M e s i c - " R i c h 1 mean 1 . 0 3 - 1 . 2 5 1 . 1 3 5 3 . 3 - 1 1 1 . 5 77 .1 8 W. = n i t r o g e n c o n c e n t r a t i o n in c u r r e n t y e a r s f o l i a g e (.'/. o f o v e n - d r y w e i g h t ) ; N = f o l i a g e n i t r o g e n c o n t e n t <kg h a - 1 ) ; n = number o f s a m p l e d l o d g e p o l e p i n e s t a n d s . <0ne a t y p i c a l l y low v a l u e o f W. (0 .53%) was e n c o u n t e r e d in one X e r i c - R i c h s t a n d . > 93 stands i n 1982 and 1984. Data shown i n F i g u r e 5.1 are from one p l o t from each of the four edatopes. The p l o t s were s e l e c t e d to represent the range of p a t t e r n s found i n a l l four edatopes. Some of the v a r i a t i o n i n n i t r o g e n c o n c e n t r a t i o n may be a s s o c i a t e d with a n a l y t i c a l and sampling e r r o r s which should give v a r i a t i o n i n the order of 5% to 10% or c o n f i d e n c e l i m i t s of ±0.05% to ±0.10% n i t r o g e n . A n a l y t i c a l e r r o r s were monitored by repeated a n a l y s i s of one standard sample of lodgepole pine f o l i a g e ( v a r i a t i o n of up to 5% of the average value was accepted; where v a l u e s were o u t s i d e of these l i m i t s the e n t i r e block of samples was r e a n a l y s e d ) . The p a t t e r n of f o l i a g e biomass by age c l a s s i s shown i n F i g u r e 5.2, f o r the same four stands . F o l i a g e biomass i n c r e a s e d with needle age up to 2 years due to i n c r e a s e d needle weight and low r a t e s of l i t t e r f a l l f o r c u r r e n t , 1-year-old, and 2-year-old f o l i a g e . The biomass of 3-year-old and o l d e r f o l i a g e d e c l i n e s due to l i t t e r f a l l , even though the weight per f a s c i c l e of l i v e needles c o n t i n u e s to i n c r e a s e . The maximum f o l i a g e n i t r o g e n content (kg ha" 1) was found i n 2-year-old f o l i a g e ( F i g u r e 5.3). The t r e n d of f o l i a g e n i t r o g e n content over age p a r a l l e l s the p a t t e r n of f o l i a g e biomass. The same p a t t e r n i s ev i d e n t f o r stands growing on each of the four edatopes. F o l i a g e n i t r o g e n content ranged from 41.4 to 111.5 kg ha" 1 i n the sampled stands. The maximum value f o r x e r i c 94 F i g u r e 5 . 1 . The v a r i a t i o n of f o l i a g e n i t r o g e n c o n c e n t r a t i o n s (N%) with needle age f o r lodgepole pine stands from each edatope. 95 F i g u r e 5.2. The p a t t e r n of f o l i a g e biomass estimated f o r each needle age c l a s s f o r lodgepole pine stands from each edatope. 96 30-i Legend • XTlc-Poor (8332) • XTlc-Rich (8204) O M««lc-Pow (8223) O Mwlc-Rlch (8209) Needle Age (years) F i g u r e 5 .3. The v a r i a t i o n of f o l i a g e n i t r o g e n content (kg ha" 1) with needle age f o r lodgepole pine stands from each edatope. 97 s i t e s was 89.1 kg h a " 1 . The higher maximum on mesic s i t e s (up to 111.5 kg ha" 1) was the r e s u l t of the l a r g e r f o l i a g e biomass c a r r i e d by mesic s i t e s . 5.5.2 RELATIONSHIPS BETWEEN ABOVEGROUND NET PRIMARY  PRODUCTION AND FOLIAGE NITROGEN CONTENT F i g u r e 5.4 shows the s c a t t e r of data p o i n t s f o r the r e l a t i o n s h i p between aboveground net primary p r o d u c t i o n (ANPP) and f o l i a g e n i t r o g e n content i n the 30 lodgepole pine stands sampled. Since simple l i n e a r r e g r e s s i o n s of ANPP on f o l i a g e n i t r o g e n content d i d not d i f f e r s i g n i f i c a n t l y between hygrotopes a s i n g l e l i n e i s shown. General p r e d i c t i v e equations i n c l u d e f o l i a g e n i t r o g e n and stand d e n s i t y as s i g n i f i c a n t v a r i a b l e s . Although not s i g n i f i c a n t , age was r e t a i n e d i n the equations to f a c i l i t a t e comparison with equations f o r other r e l a t i o n s h i p s . S i g n i f i c a n t d i f f e r e n c e s c o u l d not be shown between trophotopes w i t h i n each hygrotope (Table 5.2). General equations f i t t e d to data from each of the two hygrotopes were s i g n i f i c a n t l y d i f f e r e n t . Using f o l i a g e n i t r o g e n , together with stand d e n s i t y and age, i n the p r e d i c t i o n of ANPP y i e l d e d a s l i g h t improvement i n the c o e f f i c i e n t of d e t e r m i n a t i o n f o r mesic s i t e s over that o b t a i n e d u s i n g f o l i a g e biomass (R 2 = 0.906 f o r f o l i a g e biomass (Table 4.3) and 0.924 f o r f o l i a g e n i t r o g e n (Table 5.2)). The standard e r r o r of estimate f o r the mesic s i t e s was a l s o s l i g h t l y lower when f o l i a g e n i t r o g e n was used 98 7 -T 6 -o x: o_ 5 -40 50 60 70 80 90 100^ 110 Foliage Nitrogen Content (kg ha ) 120 Edatope: • Xeric-Poor • Xeric-Rich D Mesic-Poor O Mesic-Rich F i g u r e 5.4. The r e l a t i o n s h i p between aboveground net primary p r o d u c t i o n (ANPP) and f o l i a g e n i t r o g e n content (N) f o r the t h i r t y sampled lodgepole pine stands. The l i n e shows the l i n e a r r e l a t i o n s h i p of the form: ANPP = 5.5125 x 10" 1 + 5.0019 x 10" 2 x N n = 30 r 2 = 0.631 Sy.x = 0.816 Table 5.2. Comparison o-f equations - f i t t e d to aboveground net primary p r o d u c t i o n (ANPP) data -for each edatope in r e l a t i o n to -foliage n i t r o g e n content. The general -form o-f the equat i on i s : ANPP = a + blxN + b2xSPH + b3xSPH 2 + b4xAge Edatope n R2 Sy.x SSt SSe dfe a bl ( x lO - 2 ) b2 (xlO" 3) b3 (xl0~*) b4 (xl0" z ) all 30 0.875 0.503 50.5330 6.3140 25 -0.0738 4.7165 1.197 -0.1490 -0.6581 Xeric-"Poor" 7 0.37? 0.629 1.2751 0.7916 2 4.6289 1.4312 0.590 -0.0797 -2.8534 Xeric-'Rich" 8 0.904 0.261 2.1236 0.2041 3 1.2858 2.9342 0.885 -0.1682 -0.6436 Pooled-Xeric 0.9957 5 Xeric(total) 15 0.683 0.406 5.2000 1.6479 10 1.6236 2.9787 0.498 -0.0530 -0.7149 Mesic-'Poor" 7 0.948 0.428 7.1156 0.3672 2 -6.0873 6.7101 4.682 -1.1078 1.3105 Mesic-'Rich' 8 0.953 0.539 18.3880 0.8730 3 3.2238 5.3322 -0.492 0.1371 -2.3281 Pooled-Mesic 1.2402 5 Mesi c( total) 15 0.924 0.444 26.0580 1.9730 10 -0.5389 4.6093 2.287 -0.4131 -0.9467 Pooled-Total (4 edatopes) Pool ed-Hygrotopes < F».05<l> f15,10° 2" 8 5 > < F 0 . 0 5 ( 1 ) , 5 , 2 0 = 2 ' 7 I )  < F 0 . 0 5 ( l ) , 5 , 5 a 5 , 0 5 > F-Total F-Hygrotopes F-Xeric F-Mesic < F0.05(1) , 5 , 5 s 5 , l , 5 > 2.235? 10 3.6209 20 1.215? (edatopes not signif icant ly different) 2.9751 (hygrotopes are signif icant ly different) 0.6550 (trophotopes not s igni f icant ly different) 0.5909 (trophotopes not s igni f icant ly different) ANPP= aboveground net primary production (t h a - 1 y r - 1 ) ; N = stand foliage nitrogen content (kg ha" 1 ) ; SPH = trees per hectare (n h a - 1 ) ; Age = stand age (years). Coefficients are to be multiplied by the values shown at the top of the table. 100 (0.444 versus 0.495, r e s p e c t i v e l y ) . In c o n t r a s t , using f o l i a g e n i t r o g e n content i n p l a c e of f o l i a g e biomass to p r e d i c t ANPP f o r x e r i c s i t e s r e s u l t e d i n a lower R 2 (0.683 versus 0.756) and a l a r g e r standard e r r o r of estimate (0.406 versus 0.357). T h i s may be r e l a t e d to moisture being the major l i m i t i n g f a c t o r to p r o d u c t i o n on x e r i c s i t e s whereas n u t r i e n t a v a i l a b i l i t y may be e q u a l l y important i n some of the mesic stands (Parkinson 1983). F o l i a g e n i t r o g e n , by i t s e l f , was not as good a v a r i a b l e f o r p r e d i c t i n g ANPP as was f o l i a g e biomass. For data from a l l t h i r t y stands, the r 2 value was lower (0.631 compared to 0.660) and the value of Sy.x was higher (0.816 compared to 0.783) f o r f o l i a g e n i t r o g e n than f o r f o l i a g e biomass. There was no s i g n i f i c a n t d i f f e r e n c e between hygrotopes f o r the r e l a t i o n s h i p between stem p r o d u c t i o n and f o l i a g e n i t r o g e n content (Figure 5.5, Table 5.3). The l a c k of s i g n i f i c a n t d i f f e r e n c e s between hygrotopes may be due to e r r o r s i n the e s t i m a t i o n of stem p r o d u c t i o n r e s u l t i n g from the l a c k of both t r e e m o r t a l i t y data and estimates of bark p r o d u c t i o n . T h i s lack of d i f f e r e n c e s between hygrotopes may a l s o be due to v a r i a t i o n i n p r o d u c t i o n a l l o c a t i o n amongst aboveground and belowground components w i t h i n each hygrotope. The non-uniform v a r i a n c e e v i d e n t i n F i g u r e 5.5 i s probably due to e r r o r s i n the measurement of stem p r o d u c t i o n and of f o l i a g e n i t r o g e n content and to the i n f l u e n c e of stand d e n s i t y and age on the r e l a t i o n s h i p . 101 4.5-1 O SZ c o "o 3 TJ O i_ Q. <D tn % z 3.5-2.5-2-1.5-• O 1 1 1 1 1 1 r~ 40 50 60 70 80 90 100^ 110 Foliage Nitrogen Content (kg ha ) 120 Edatope: • Xeric—Poor • Xeric-Rich • Mesic-Poor O Mesic-Rich F i g u r e 5 . 5 . The r e l a t i o n s h i p between net stem p r o d u c t i o n (NSP) and f o l i a g e n i t r o g e n c o n t e n t (N) f o r the t h i r t y l o d g e p o l e p i n e s t a n d s s a m p l e d . R e g r e s s i o n e q u a t i o n s f i t t e d t o d a t a f o r each h y g r o t o p e d i d not d i f f e r s i g n i f i c a n t l y ( a = 0 . 0 5 ) . The e q u a t i o n f o r the l i n e shown i s : NSP = 3.6704 x 10" 1 + 2.8036 x 1 0 " 2 x N n = 30 r 2 = 0.474 S y . x = 0.630 T a b l e 5 . 3 . C o m p a r i s o n o-f e q u a t i o n s - f i t t e d t o s t e m p r o d u c t i o n <NSP) d a t a -for e a c h h y g r o t o p e in r e l a t i o n t o f o l i a g e n i t r o g e n c o n t e n t . T h e g e n e r a l f o r m o f the e q u a t i o n i s : NSP = a + b l x N + b2xSPH + b 3 x S P H 2 + b4xAge Hygrotope n R2 Sy.x SSt SSe dfe a bl (xlO - 2) b2 <xl0~ 3) b3 (xlO - 7) b4 <xl0~2> 4.6510 25 0.7296 2.4722 0.765 -1.0434 -1 .1263 1.097? 10 1.6442 1 .2446 0.253 -0.3205 -0.8239 1.6970 10 0.7882 2.3075 1.672 -3.3600 1.7677 2.7949 20 2.6564 (The two hygrotopes are not significantly different). a l l 30 0.780 0.431 21.1140 Xeric 15 0.485 0.331 2.1304 Mesic 15 0.866 0.412 12.6210 Pooled-Hygrotopes F-Hygrotopes <F0.05<1),5,20s2"71> NSP= net stem production <t h a ^ y r - 1 ) ; N = stand foliage nitrogen content (kg ha - 1 ) ; SPH = trees per hectare <n ha - 1); Age = stand age (years). Coefficients are to be multiplied by the values shown at the top of the table. 103 Equations f o r f o l i a g e p r o d u c t i o n f i t t e d to data from each hygrotope were s i g n i f i c a n t l y d i f f e r e n t (Table 5.4,Figure 5.6). The r e g r e s s i o n f o r the x e r i c s i t e s had a l a r g e r i n t e r c e p t and a smaller slope than d i d the r e g r e s s i o n f o r the mesic s i t e s . T h i s suggests lower r a t e s of f o l i a g e p r o d u c t i o n per kg of f o l i a g e n i t r o g e n f o r x e r i c s i t e s than f o r mesic s i t e s . F o l i a g e n i t r o g e n e f f i c i e n c y based on ANPP (FNE(ANPP)), ranged from 0.035 to 0.077 t k g - ' y r " 1 . V a r i a b l e s which e x p l a i n , s t a t i s t i c a l l y , the v a r i a t i o n i n these v a l u e s i n c l u d e f o l i a g e biomass ( F i g u r e 5.7) and stand d e n s i t y (Figure 5.8). Age was not a s i g n i f i c a n t v a r i a b l e (a = 0.05). There were no s i g n i f i c a n t d i f f e r e n c e s between edatopes i n the r e l a t i o n s h i p between f o l i a g e n i t r o g e n e f f i c i e n c y and these independent v a r i a b l e s (Table 5.5). Simple and d i r e c t r e l a t i o n s h i p s between f o l i a g e n i t r o g e n e f f i c i e n c y and stand f o l i a g e biomass which were independent of s i t e and stand f a c t o r s , as proposed by Agren (1983), were not evident f o r the data from these lodgeple pine stands . The upper v a l u e s i n F i g u r e 5.7 ( r e p r e s e n t e d by l i n e A) may c h a r a c t e r i z e maximum FNE(ANPP). These stands ranged i n d e n s i t y from 2,200 to 3,300 t r e e s per hectare and i n age from 64 to 82 years of age. Four of the f i v e upper values are f o r mesic stands. The one x e r i c stand on t h i s l i n e had the h i g h e s t r a t e of stemwood p r o d u c t i o n and the lowest N c o n c e n t r a t i o n s (1.10%) of a l l x e r i c stands, and moderate f o l i a g e biomass. Trees i n t h i s stand may be e x p e r i e n c i n g T a b l e 5 . 4 . C o m p a r i s o n o-f e q u a t i o n s - f i t t e d t o - f o l i a g e p r o d u c t i o n ( F P ) d a t a -for e a c h h y g r o t o p e in r e l a t i o n to - f o l i a g e n i t r o g e n c o n t e n t . The g e n e r a l -form o-f t h e e q u a t i o n i s : FP = a + b l x N + b2xSPH + b S x S P H 2 + b4xAge Hygrotope n R2 Sy.x SSt SSe dfe a bl <xl0"2) b2 <xl0" 4) b3 <xl0~ 8) b4 <xl0" 3 al 1 30 0.954 0.104 6.2157 0.2725 25 -0.7335 2.0195 3.493 -3.5332 4.387 Xer ic 15 0.919 0.080 0.7996 0.0645 10 -0.0204 1.5227 2.024 -1.6919 1 .054 Mesi c 15 0.985 0.063 2.6248 0.0403 10 -1.0476 2.0677 4.002 -4.0352 7.118 Pooled-Hygrotopes 0.1048 20 F-Hygrotopes ^O.OSO) 5 20 = 2 , 7*) 6.4057 (equations -fitted to data -from each o-f the two hygrotopes are significantly different). FP= foliage production <t ha - 1yr - 1)5 N = stand foliage nitrogen content <kg ha" 1); SPH = trees per hectare <n h a - 1 ) ; Age = stand age <years). Coefficients are to be multiplied by the values shown at the top of the table. 105 3-1 2.5-u >s. D SZ ~, 2-\ c o o CJ> O 1.5-• D • 0.5-• • D 40 50 60 70 80 90 100 .j 110 —I 120 Foliage Nitrogen Content (kg ha ) Edatope: • Xer ic -Poor • Xer ic -Rich • Mesic-Poor O Mesic-Rich F i g u r e 5.6. The r e l a t i o n s h i p between f o l i a g e production (FP) and stand f o l i a g e n i t r o g e n content (N) for the sampled stands. Equations f i t t e d to data from each of the two hygrotopes were s i g n i f i c a n t l y d i f f e r e n t (a = 0.05). Equations represented by each l i n e are: A. X e r i c FP = 5.6054 x 10" 1 + 1.1434 x IO' 2 x N n = 15 r 2 = 0.572 Sy.x = 0.162 B. Mesic FP = 2.4191 x 10" 1 + 1.9489 x 10' 2 x N n = 15 r 2 = 0.837 Sy.x = 0.182 106 O.OB-0 .07 -I 0.06-O) CL D_ Z UJ z 0.05-0.04-0.03-" O A —1 Foliage Biomass (t ha ) 10 I 12 Edatope: • Xer ic -Poor • Xer ic -Rich • Mesic-Poor O Mesic-Rich F i g u r e 5 . 7 . The r e l a t i o n s h i p between f o l i a g e n i t r o g e n e f f i c i e n c y (FNE(ANPP)) and s t a n d f o l i a g e biomass (F) f o r the 30 sampled l o d g e p o l e p i n e s t a n d s . L i n e A i n d i c a t e s an upper l i m i t t o t h e d a t a . L i n e B i s f i t t e d t o x e r i c s i t e d a t a and i s d e s c r i b e d by t h e e q u a t i o n : FNE(ANPP) = 8.3126 x 1 0 " 2 - 5.1253 x 1 0 " 3 x F n = 15 r 2 = 0.425 S y . x = 8.280 x I O " 3 107 C L U J 0.08-0.07-L. T 0.06-O) 0.05-0.04-0.03 / o -/ • / . 1 1 1 1 1 — 0 1000 2000 3000 4000 5QpO Stand Density (trees ha ) 6000 7000 Edatope: • Xeric—Poor • Xeric—Rich • Mesic—Poor O Mesic-Rich F i g u r e 5.8. The r e l a t i o n s h i p between f o l i a g e n i t r o g e n e f f i c i e n c y (FNE(ANPP)) and stand d e n s i t y (SPH) f o r the t h i r t y lodgepole pine stands sampled. The equation d e s c r i b i n g the curve i s : FNE(ANPP) = 3.9967X10- 2 + 1.4873x10" 5xSPH - 1.6977x10" 9xSPH 2 n = 30 R 2 = 0.627 Sy.x = 6.370 x 10' 3 T a b l e 5 . 5 . C o m p a r i s o n o f e q u a t i o n s - f i t t e d t o f o l i a g e n i t r o g e n e f f i c i e n c y ( F N E ( A N P P ) ) d a t a f o r e a c h h y g r o t o p e a n d t r o p h o t o p e . The g e n e r a l e q u a t i o n i s : FNE(ANPP) - a + b l x F + b2xSPH + b 3 x S P H 2 + b4xAge Edatope n R2 Sy.x (x lO - 3 ) sst (xlO" 3) SSe (xlO~ 4) dfe a (x lO - 2 ) bl ( x lO - 3 ) b2 ( x l O - 5 ) b3 (xl0~ 9) b4 (x lO - 4 ) al l 30 0.708 5.852 2.9345 8.5630 25 5.4436 -1.5325 1.5352 -1.8547 -0.5708 Xeric-"Poor" 7 0.736 9.282 0.6520 1.7230 2 12.3690 -6.2711 0.5787 -0.8025 -4.4800 Xeric-"Rich" 8 0.852 6.497 0.8529 1.2662 3 6.3859 -3.4236 2.0091 -3.9685 -0.8283 Pooled-Xeric 2.9892 5 Xeric 15 0.727 6.505 1.5506 4.2310 10 6.9747 -3.3219 0.9776 -1.1072 1.5361 Mesic-"Poor" 7 0.951 3.927 0.6239 0.3085 2 -1.1939 1.7799 5.0612 -12.4640 37.8950 Mesic-'Rich" 8 0.645 7.624 0.4916 1.7438 3 7.3454 -1.7016 1.0464 -1.1500 -1.6303 Pooled-Mesic 2.0523 5 Mesic 15 0.804 5.003 1.2743 2.5030 10 5.7346 -1.9693 2.0462 -3.0879 -0.8836 Pooled-Total (4 edatopes) Pool ed-Hygrotopes F-Total < F 0.05(1) ,15,10 = 2 ' 8 5 ) F-Hygrotopes (F„ > r j 5 ( l > | 5 j 2 0 = 2 - 7 1 > < F 0 . 0 5 ( 1 ) , 5 , 5 = 5 , 0 5 )  < F 0 . 0 5 ( 1 ) , 5 , 5 = 5 " 0 5 ) F-Xeric F-Mesic 5.0415 10 6.7340 20 0.4656683 1.0864271 0.4154289 0.2196073 There are no significant differences between edatopes, hygrotopes or trophotopes. FNE(ANPP)= foliage nitrogen efficiency (ANPP) (t k g ^ y r " 1 ) ; F = stand foliage biomass (t ha _ 1 ) j SPH = trees per hectare (n h a - 1 ) ; Age - stand age (years). Coefficients are to be multiplied by the values shown at the top of the table. 109 l e s s moisture s t r e s s than those i n the other x e r i c p l o t s . The four mesic stands represent the most p r o d u c t i v e stands sampled f o r t h i s hygrotope. A s i g n i f i c a n t r e g r e s s i o n between FNE(ANPP) and F can be f i t t e d f o r data from x e r i c s i t e s (shown i n F i g u r e 5.7). V a r i a b i l i t y of data from mesic s i t e s r e s u l t e d i n a n o n - s i g n i f i c a n t r e g r e s s i o n equation (not shown). The r e l a t i o n s h i p between FNE(ANPP) and stand d e n s i t y i s shown i n F i g u r e 5.8. Polynomial r e g r e s s i o n s f i t t e d t o data from each of the two hygrotopes d i d not d i f f e r s i g n i f i c a n t l y . The c u r v i l i n e a r r e l a t i o n s h i p suggests that FNE i n c r e a s e s with i n c r e a s i n g d e n s i t y as was the case f o r f o l i a g e e f f i c i e n c y (FE(ANPP)) ( F i g u r e 4.7). The t r e n d suggests t h a t ANPP per kg of f o l i a g e i s low at stand d e n s i t i e s below 1000 t r e e s h a " 1 . The reason f o r t h i s p a t t e r n i s t h a t the lower d e n s i t y stands tend to support the l a r g e s t q u a n t i t i e s of f o l i a g e , i n the age c l a s s e s sampled. T h i s i s demonstrated more c l e a r l y by the r e s u l t s of some simple models presented i n Chapter 7. F o l i a g e n i t r o g e n e f f i c i e n c y f o r f o l i a g e p r o d u c t i o n (tons of f o l i a g e produced per year per kilogram of f o l i a r n i t r o g e n ) ( e q u i v a l e n t to Agren's (1983) n i t r o g e n p r o d u c t i v i t y ) ranged from 0.016 to 0.027 t k g _ 1 y r " 1 . T h i s c o i n c i d e s with the range of v a l u e s r e p o r t e d f o r D o u g l a s - f i r (Agren 1983). The range of f o l i a g e biomass valu e s i n the lodgepole pine stands s t u d i e d was, however, much narrower. P l o t t i n g F N E ( f o l i a g e ) a g a i n s t stand f o l i a g e biomass shows a 1 10 l a r g e amount of v a r i a t i o n ( F i g u r e 5.9). F i t t i n g r e g r e s s i o n equations to the data showed stand d e n s i t y ( F i g u r e 5.10), age, and f o l i a g e biomass to be s i g n i f i c a n t i n e x p l a i n i n g t h i s v a r i a t i o n . No s i g n i f i c a n t d i f f e r e n c e s were evident between equations f i t t e d to trophotopes w i t h i n each hygrotope. However, equations f i t t e d to each hygrotope were s i g n i f i c a n t l y d i f f e r e n t (Table 5.6). C o e f f i c i e n t s of det e r m i n a t i o n were r e l a t i v e l y l a r g e f o r the r e l a t i o n s h i p s f o r both x e r i c (R 2 = 0.864) and mesic (R 2 = 0.890) s i t e d a t a. The major d i f f e r e n c e s evident i n the two equations are the i n t e r c e p t value and slope values a s s o c i a t e d with f o l i a g e biomass. Simple l i n e a r r e g r e s s i o n equations d e s c r i b i n g the r e l a t i o n s h i p between FNE(F) and f o l i a g e biomass ( F i g u r e 5.9) d i d not d i f f e r s i g n i f i c a n t l y between hygrotopes, although the mesic s i t e data l i e above the l i n e d e s c r i b e d by the x e r i c s i t e d a ta. A n o n - s i g n i f i c a n t r e l a t i o n s h i p was obt a i n e d f o r the data from mesic s i t e s , due to the v a r i a b i l i t y of mesic s i t e data, which may have been r e l a t e d to v a r i a t i o n i n environmental f a c t o r s . The steep s l o p e s of the l i n e s are s i m i l a r to those r e p o r t e d f o r other shade i n t o l e r a n t s p e c i e s (Pinus resinosa, Pi nus s y l v e s t r i s , and Pi nus nigra) by Agren (1983). A second order polynomial equation was f i t t e d to d e s c r i b e the r e l a t i o n s h i p between F N E ( f o l i a g e ) and stand d e n s i t y ( F i g u r e 5.10). Equations d i d not d i f f e r s i g n i f i c a n t l y between hygrotopes. T h i s c u r v i l i n e a r i n c r e a s e 111 0.028-1 0.026-| 0.024 ->» T cn -* 0.022 -Z 0 .020 -0.018-0.016-I o ° • \ V <s> -I 1 1 I— 4 6 8 _^ 10 Foliage Biomass (t ha ) 12 Edatope: • Xeric—Poor • Xeric-Rich • Mesic-Poor O Mesic-Rich F i g u r e 5.9. The r e l a t i o n s h i p between f o l i a g e n i t r o g e n e f f i c i e n c y f o r f o l i a g e (FNE(F)) and stand f o l i a g e biomass ( F ) . A l i n e i s i n d i c a t e d f o r x e r i c s i t e d a t a . The equation d e s c r i b i n g the l i n e i s : FNE(F) = 2.8679 x 10" 2 - 1.5092 x 10" 3 x F n = 15 r 2 = 0.366 Sy.x = 2.760 x 10" 3 112 0.028 0.026 | 0.024 -T CD 0.022 0.020 0.018 0.016 ° / D / O O • • / 1 1 1 1 1 — 0 1000 2000 3000 4000 5QD0 C Stand Density (trees ha ) 6000 — i 7000 Edatope: • Xeric-Poor • Xeric-Rich • Mesic-Poor O Mesic-Rich F i g u r e 5.10. The r e l a t i o n s h i p between f o l i a g e n i t r o g e n e f f i c i e n c y f o r f o l i a g e (FNE(F)) and stand d e n s i t y (SPH) f o r the t h i r t y lodgepole pine stands sampled. The curve shown i s d e s c r i b e d by the equ a t i o n : FNE(F) = 1.6916X10" 2 + 3.6162x10" 6xSPH - 3.4169x10' 1°xSPH 2 n = 30 R 2 = 0.633 Sy.x = 1.798 x 10' 3 Table 5.<6. Comparison o-f equations - f i t t e d to -foliage n i t r o g e n e-f i i c i ency (-foliage production) <FNE<F)) data -for each hygrotope and trophotope. The general equation i s : FNE(F) = a + blxF + b2xSPH + b3*SPH 2 + b4xAge Edatope n R' Sy.x SSt SSe dfe a bl b2 b3 b4 (x lO - 3 ) (x lO - 4 ) (xlO~5> <xl0"2> (x lO - 3 ) ( x l O - 6 ) ( x l O - 9 ) ( x l O - 5 ) al l 30 0.801 1.378 2.3786 4.7450 25 1.1579 -0.2138 4.5682 -0.4385 6.3097 Xeric-"POOP" 7 0.970 1.003 0.6700 0.2013 2 3.2335 -1.7525 1.8519 -0.1514 -4.5430 Xeric-'Rich" 8 0.915 1.577 0.8783 0.7465 3 1.5116 -0.6164 7.1522 -1.2186 2.2337 Pooled-Xeric 0.9478 5 Xeric 15 0.864 1.455 1.5615 2.1170 10 1.7303 -0.5963 3.8757 -0.3566 2.2810 Mesic-'Poor* 7 1.000 0.076 0.2407 0.0012 2 1.7307 -0.7538 2.1689 0.3138 7.0451 Mesic-'Rich" 8 0.636 1.302 0.1395 0.5083 3 1.2055 -0.3349 2.4472 0.0680 9.2432 Pooled-Mesic 0.5095 5 Mesic 15 0.890 0.796 0.5767 0.6332 10 1.1514 -0.3177 4.0397 -0.3438 8.4663 Pooled-Total (4 edatopes) 1.4573 10 Pooled-Hygrotopes 2.7502 20 F-Total < F 0.05<l) ,15,10 = 2 - 8 5 ) F-Hygrotopes <F 0 .05<1),5,20 = 2 ' 7 1 ) F-Xeric F-Mesic < F 0 . 0 5 ( l ) , 5 , 5 a 5 ' 0 5 ) ^ O . O S C D . S . S * 5 " 0 5 ) 1.5039696 (edatopes not signif icant ly different) 2.9013163 (hygrotopes are signif icant ly different) 1.2335936 (trophotopes not s igni f icant ly different) 0.2427139 (trophotopes not s igni f icant ly different) FNE(F)= foliage nitrogen efficiency (foliage production) (t K g - 1 y r - 1 >| F = stand foliage biomass (t ha" 1 ) ; SPH = trees per hectare (n ha"1)} Age = stand age (years). Coefficients are to be multiplied by the values shown at the top of the table. 1 1 4 i n F N E ( f o l i a g e ) i s s i m i l a r to that f o r FNE(ANPP)and FE(ANPP). D i f f e r e n c e s between hygrotopes i n the r e l a t i o n s h i p s of f o l i a g e p r o d u c t i o n to f o l i a g e n i t r o g e n content suggest d i f f e r e n c e s i n the e f f i c i e n c y with which f o l i a g e i s produced per kg of f o l i a r n i t r o g e n . T h i s may r e l a t e to d i f f e r e n c e s i n p h o t o s y n t h e t i c e f f i c i e n c y and/or d i f f e r e n c e s i n the a l l o c a t i o n of p r o d u c t i o n between both aboveground and belowground components. A small s h i f t towards g r e a t e r a l l o c a t i o n of ANPP to f o l i a g e on x e r i c s i t e s was shown i n Chapter 4. 5.6 SUMMARY The use of f o l i a g e n i t r o g e n content i n p l a c e of f o l i a g e biomass i n m u l t i p l e r e g r e s s i o n equations s l i g h t l y improved the p r e d i c t i o n of aboveground p r o d u c t i o n f o r mesic s i t e s but not f o r x e r i c s i t e s . T h i s d i f f e r e n c e between the two hygrotopes may have r e s u l t e d from n i t r o g e n a v a i l a b i l i t y being the major l i m i t i n g f a c t o r on some of the mesic s i t e s while moisture i s the primary l i m i t i n g f a c t o r on the x e r i c s i t e s . I t may a l s o r e f l e c t other d i f f e r e n c e s , such as the a v a i l a b i l i t y of other n u t r i e n t elements. The sampled x e r i c s i t e s o c c u r r e d predominantly on g r a v e l l y g l a c i o - f l u v i a l d e p o s i t s and the mesic s i t e s occur l a r g e l y on g l a c i a l t i l l m a t e r i a l s . T h i s may have r e s u l t e d i n s u b s t a n t i a l d i f f e r e n c e s i n s o i l c a t i o n exchange c a p a c i t y and i n the a v a i l a b i l i t y of c a t i o n s . 1 15 F o l i a g e n i t r o g e n content and stand d e n s i t y were found to be s i g n i f i c a n t v a r i a b l e s i n the p r e d i c t i o n of aboveground net primary p r o d u c t i o n (ANPP). General equations f i t t e d to ANPP data from each of the two hygrotopes were s i g n i f i c a n t l y d i f f e r e n t . Equations f i t t e d to f o l i a g e p r o d u c t i o n data d i d show s i g n i f i c a n t d i f f e r e n c e s between hygrotopes. However, equations f o r stem (wood and bark) p r o d u c t i o n showed no s i g n i f i c a n t d i f f e r e n c e s between hygrotopes. The h y p othesis that a g e n e r a l r e l a t i o n s h i p e x i s t s between ANPP and f o l i a g e n i t r o g e n content which i s independent of s i t e and stand c o n d i t i o n s was r e j e c t e d . F o l i a g e n i t r o g e n e f f i c i e n c y f o r aboveground net primary p r o d u c t i o n (FNE(ANPP)) was used to express the r a t e of aboveground t r e e p r o d u c t i o n per kg of n i t r o g e n i n the f o l i a g e . FNE(ANPP) v a r i e d between 0.035 and 0.077 t k g " 1 y r " 1 . Stand f o l i a g e biomass and d e n s i t y were s i g n i f i c a n t v a r i a b l e s i n e x p l a i n i n g t h i s v a r i a t i o n . S i g n i f i c a n t d i f f e r e n c e s i n FNE(ANPP) r e l a t i o n s h i p s c o u l d not be shown between the two hygrotopes. T h i s may be r e l a t e d to the lack of t r e e m o r t a l i t y data or to other f a c t o r s i n f l u e n c i n g v a r i a t i o n i n t h i s r e l a t i o n s h i p . Data from f i v e stands d e s c r i b e a c e i l i n g l i n e f o r the r e l a t i o n s h i p between FNE(ANPP) and f o l i a g e biomass.' D e v i a t i o n from t h i s l i n e c o u l d be r e l a t e d to f a c t o r s such as lower p h o t o s y n t h e t i c e f f i c i e n c y and/or g r e a t e r a l l o c a t i o n of p r o d u c t i o n to belowground p r o d u c t i o n . 1 16 FNE estimated f o r f o l i a g e p r o d u c t i o n i s more s e n s i t i v e to s i t e d i f f e r e n c e s than i s FNE(ANPP). Equations d e s c r i b i n g the r e l a t i o n s h i p between FNE(F) and stand f o l i a g e biomass, d e n s i t y , and age were s i g n i f i c a n t l y d i f f e r e n t between hygrotopes. A comparison of the e f f e c t s of summer as opposed to autumn f o l i a g e sampling showed a s i g n i f i c a n t (a=0.05) c o r r e l l a t i o n between summer (August) and autumn f o l i a g e n i t r o g e n c o n t e n t . R e l a t i o n s h i p s based upon summer f o l i a g e n i t r o g e n content were e s e n t i a l l y the same as those d i s c u s s e d f o r autumn f o l i a g e n i t r o g e n c o n t e n t . 5.7 CONCLUSIONS These r e s u l t s i n d i c a t e that a p p l i c a t i o n of the f o l i a g e n i t r o g e n e f f i c i e n c y or n i t r o g e n p r o d u c t i v i t y (Agren 1983) concepts to i n d i v i d u a l component or aboveground p r o d u c t i o n must reco g n i z e that such v a l u e s may vary s u b s t a n t i a l l y i n r e l a t i o n to s i t e moisture regime, f o l i a g e biomass, stand d e n s i t y , age, and perhaps other f a c t o r s (such as the a v a i l a b i l i t y of other n u t r i e n t s ) . The hypothesis that a g e n e r a l l y a p p l i c a b l e r e l a t i o n s h i p e x i s t s between ANPP and f o l i a g e n i t r o g e n content must be r e j e c t e d . V a r i a t i o n i n FNE would be expected where s i t e or stand f a c t o r s i n f l u e n c e e i t h e r the p h o t o s y n t h e t i c e f f i c i e n c y of the f o l i a g e and/or the a l l o c a t i o n of p r o d u c t i o n between aboveground and belowground components. Such a c o n c l u s i o n underscores the need f o r c o n s i d e r a t i o n of belowground pr o d u c t i o n and t o t a l net primary p r o d u c t i o n i n any examination of f o r e s t p r o d u c t i o n . Chapter 6 DISTRIBUTION OF BIOMASS AND PRODUCTION BETWEEN ABOVEGROUND AND BELOWGROUND COMPONENTS 6.1 INTRODUCTION A n a l y s i s of the v a r i a t i o n of aboveground p r o d u c t i o n i n lodgepole pine stands, d e s c r i b e d i n Chapters 4 and 5, r e v e a l e d that there were d i f f e r e n c e s between the two hygrotopes i n f o l i a g e e f f i c i e n c y and f o l i a g e n i t r o g e n e f f i c i e n c y r e l a t i o n s h i p s f o r aboveground p r o d u c t i o n . V a r i a t i o n i n the a l l o c a t i o n of p r o d u c t i o n between aboveground and belowground components may be a major cause of d i f f e r e n c e s i n aboveground p r o d u c t i o n between lodgepole pine stands growing on d i f f e r e n t s i t e s . S e v e r a l recent s t u d i e s have shown v a r i a t i o n i n the p r o p o r t i o n of p r o d u c t i o n a l l o c a t e d to r o o t s i n response to v a r i a t i o n s i n s i t e and stand age (Keyes and G r i e r 1981; G r i e r et a l . 1981; Vogt et a l . 1983a,1983b; Santantonio and Hermann 1985). On some s i t e s , 50% or more of annual t r e e p r o d u c t i o n may be a l l o c a t e d to belowground components (Persson 1979). Because of d i f f i c u l t i e s i n v o l v e d i n o b t a i n i n g the necessary data, only a few s t u d i e s of f o r e s t biomass and p r o d u c t i o n have q u a n t i f i e d the p r o d u c t i o n of root systems. T h i s l a c k of i n f o r m a t i o n makes i t d i f f i c u l t to develop u s e f u l g e n e r a l i z a t i o n s . 118 119 6.2 LITERATURE REVIEW 6.2.1 BIOMASS DISTRIBUTION AND PRODUCTION ALLOCATION Tree root biomass i n c o n i f e r o u s f o r e s t s has been r e p o r t e d to range up to about 80 t h a " 1 . Root systems g e n e r a l l y represent between 15% and 30% of t r e e biomass except i n very young stands where they may comprise as much as 45% (Santantonio et a l . 1977). Much of t h i s biomass i s a s s o c i a t e d with medium and coarse r o o t s l a r g e r than 5 mm. In lodgepole pine stands, the biomass of these l a r g e r r o o t s may represent as much as 46 t ha" 1 (Pearson 1982) and approximately 20% of t o t a l t r e e biomass (Johnstone 1971). Root f r a c t i o n s s m a l l e r than 5 mm u s u a l l y comprise a maximum of 5% of t o t a l t r e e biomass (Persson 1979). The annual p r o d u c t i o n of l a r g e and medium r o o t s g e n e r a l l y accounts f o r only about 5% of t o t a l t r e e p r o d u c t i o n while f i n e (<2 mm) and small (2-5 mm) r o o t s may account f o r more than 50% of t o t a l net primary p r o d u c t i o n (TNPP) i n some f o r e s t s (Persson 1979). S i t e c o n d i t i o n s , stand age, and treatments have been found to have v a r y i n g e f f e c t s on root p r o d u c t i o n and root biomass. S i t e Vogt et a l . (1983b) found that with i n c r e a s i n g s i t e p r o d u c t i v i t y , f i n e and small root p r o d u c t i o n of D o u g l a s - f i r i n c r e a s e d , but the p r o p o r t i o n of TNPP a l l o c a t e d to belowground components decreased. Santantonio and Hermann (1985) found that small and f i n e root p r o d u c t i o n of 1 20 D o u g l a s - f i r was lowest on wet s i t e s (8.5 t h a ~ 1 y r ~ 1 ) and approximately the same on moist (10.2 t h a " 1 y r _ 1 ) and dry (10.1 t h a ~ 1 y r ~ 1 ) s i t e s . In t h e i r study, aboveground p r o d u c t i o n and stand f o l i a g e biomass decreased from wet to dry s i t e s , suggesting an i n c r e a s e i n the a l l o c a t i o n of p r o d u c t i o n to roo t s with i n c r e a s i n g drought. Keyes and G r i e r (1981) examined p r o d u c t i o n a l l o c a t i o n i n D o u g l a s - f i r stands growing on two d i f f e r e n t s i t e s . TNPP was estimated to d i f f e r by only 13% between a low p r o d u c t i v i t y , i n f e r t i l e , dry s i t e and a hig h p r o d u c t i v i t y , f e r t i l e , moist s i t e . Stemwood p r o d u c t i o n was n e a r l y 100% g r e a t e r on the high s i t e (8.2 t h a ~ 1 y r ~ 1 ) than on the low s i t e (4.2 t h a ~ 1 y r _ 1 ) . T o t a l root p r o d u c t i o n represented 53% (8.1 t h a " 1 y r " 1 ) of TNPP on the low s i t e and 23% (4.1 t h a - 1 y r " 1 ) on the high s i t e . On both s i t e s most of the root p r o d u c t i o n was a l l o c a t e d to f i n e r o o t s . N u t r i e n t A v a i l a b i l i t y N u t r i e n t a v a i l a b i l i t y may a l s o i n f l u e n c e the r a t e of root p r o d u c t i o n ( N a d e l h o f f e r et a l . 1985). However, r e s u l t s of s e v e r a l s t u d i e s have l e d to d i f f e r e n t c o n c l u s i o n s . F a r r e l l and Leaf (1974) found that root biomass i n red pine (Pinus resinosa) stands decreased with potassium f e r t i l i z a t i o n but i n c r e a s e d under i r r i g a t i o n . S i m i l a r r e s u l t s have been r e p o r t e d by other authors ( S a f f o r d 1974; Persson 1980). With apple t r e e s , the a l l o c a t i o n of p r o d u c t i o n between a l l components was found to be i n f l u e n c e d by v a r i e t y , water supply, m i n e r a l n u t r i t i o n and i l l u m i n a t i o n 121 (Maggs 1963). Aber et a l . (1985) and N a d e l h o f f e r et a l . (1985) c a l c u l a t e d f i n e and s m a l l root p r o d u c t i o n using a " n i t r o g e n budget" technique and suggest that belowground net primary p r o d u c t i o n i n c r e a s e s with i n c r e a s i n g n i t r o g e n a v a i l a b i l i t y . T h e i r r e s u l t s are d i f f i c u l t to g e n e r a l i z e , however, due to the f a c t that the study s i t e s i n c l u d e a v a r i e t y of s p e c i e s and s i n c e n i t r o g e n m i n e r a l i z a t i o n measurements were used i n c a l c u l a t i n g root p r o d u c t i o n . Stand Age Fine and small root p r o d u c t i o n and the p r o p o r t i o n of TNPP i n v e s t e d i n root systems has been found to i n c r e a s e with stand age i n Abies amabi Ii s ecosystems ( G r i e r et a l . 1981). T h i s i s f e l t t o be a r e f l e c t i o n of d e c r e a s i n g n i t r o g e n a v a i l a b i l i t y with stand age due to the i m m o b i l i z a t i o n of n i t r o g e n i n p l a n t biomass, and i s a s s o c i a t e d with a s h i f t of r o o t i n g from m i n e r a l s o i l to organic h o r i z o n s . In D o u g l a s - f i r stands, Vogt et a l . (1983b) found that the biomass of l i v e r o o t s i n the f o r e s t f l o o r o r g a n i c h o r i z o n s i n c r e a s e d up to canopy c l o s u r e and then e i t h e r remained at t h i s l e v e l (on low s i t e s ) or decreased (on h i g h s i t e s ) . Stand D e n s i t y Pearson (1982) found that with i n c r e a s i n g stand d e n s i t y the p r o p o r t i o n of t r e e biomass i n v e s t e d i n lodgepole pine root systems i n c r e a s e d from approximately 17% (at 1,800 t r e e s per hectare) to 30% (at 15,000 t r e e s per hectare) i n stands 110 years of age. I t i s not known, however, how such 122 s h i f t s i n biomass d i s t r i b u t i o n are r e l a t e d to d i f f e r e n c e s i n p r o d u c t i o n a l l o c a t i o n . 6.3 OBJECTIVES AND HYPOTHESES The o b j e c t i v e of t h i s chapter was to examine whether the d i f f e r e n c e s observed between x e r i c and mesic hygrotopes, with r e s p e c t to aboveground net primary p r o d u c t i o n (ANPP) and p r o d u c t i o n r e l a t i o n s h i p s (FE(ANPP) and FNE(ANPP)) c o u l d be a t t r i b u t e d to d i f f e r e n c e s i n the a l l o c a t i o n of p r o d u c t i o n between aboveground and belowground components. The f o l l o w i n g hypothesis was proposed f o r t e s t i n g based upon the review of the l i t e r a t u r e : A l a r g e r p r o p o r t i o n of t o t a l net primary p r o d u c t i o n (TNPP) w i l l be a l l o c a t e d to belowground t r e e components on s i t e s with a x e r i c moisture regime than on s i t e s with a mesic moisture regime. 6.4 METHODS The biomass of coarse r o o t s (>5 mm) and root crowns was estimated i n each of the 30 study stands using measurements of stem dimensions (Chapter 4) i n c o n j u n c t i o n with the r e g r e s s i o n equation given i n Chapter 3. The p r o d u c t i o n of coarse r o o t s was estimated by c a l c u l a t i n g the change i n root biomass u s i n g measured changes i n t r e e height and diameter i n c o n j u n c t i o n with the r e g r e s s i o n e q u a t i o n . 123 E s t i m a t i o n of the p r o d u c t i o n of f i n e (<2 mm) and small (2-5 mm) r o o t s i s g e n e r a l l y accomplished by o b t a i n i n g frequent measurements of the standing crop of r o o t s throughout the year and assuming that p r o d u c t i o n i s equal to the sum of s i g n i f i c a n t l y d i f f e r e n t adjacent highs and lows in the seasonal p a t t e r n (Bohm 1979; Keyes and G r i e r 1981; Vogt et a l . 1981). Because of the very l a r g e time and manpower requirements of t h i s method, f i n e and small root p r o d u c t i o n was estimated i n only four stands: two on mesic hygrotopes and two on x e r i c hygrotopes. The four stands were s e l e c t e d to be s i m i l a r i n age (70 to 80 y e a r s ) , f o r g e o g r a p h i c a l p r o x i m i t y (to reduce t r a v e l t ime), and to be f u l l y s tocked. S i t e c h a r a c t e r i s t i c s of the s e l e c t e d stands are summarized in Table 6.1. S o i l - r o o t samples were c o l l e c t e d on four o c c a s i o n s i n each of the four stands: June 11 ( p r i o r to bud b u r s t ) , J u l y 11, August 26, and November 20, 1984. These times were s e l e c t e d on the b a s i s of evidence from other r e s e a r c h e r s which suggested that these would be the times when maximum and minimum root p r o d u c t i o n and biomass would be encountered (Keyes and G r i e r 1981; G r i e r et a l . 1981). June, J u l y and August sampling i n v o l v e d the c o l l e c t i o n from each stand of 20 m i n e r a l s o i l samples u s i n g a 10 cm diameter s t e e l tube c o r e r d r i v e n to 40 cm depth. Twenty samples of f o r e s t f l o o r o r g a n i c h o r i z o n s (F and H) were c o l l e c t e d at the same time u s i n g a 5 cm diameter s t e e l tube c o r e r . Sampling i n November was l i m i t e d to 10 samples of m i n e r a l s o i l and 9 T a b l e 6 . 1 . C h a r a c t e r i s t i c s o-f the f o u r l o d g e p o l e p i n e s t a n d s s e l e c t e d f o r m e a s u r e m e n t o f f i n e and s m a l l r o o t p r o d u c t i o n . P l o t H y g r o t o p e E l e v . <m> S o i 1 Deve1 o p . S o i 1 Tex t u r e (B h o r i z . ) S t a n d D e n s i t y < t r e e s ha" S t a n d Age < y r s ) S i te I ndex Cm) MAI <t h a _ 1 y r - 1 ) X e r i c - 1 X e r i c X e r i c - 2 X e r i c M e s i c - 1 M e s i c 1300 O r t h i c Eu t r i c B r u n i s o l 1300 O r t h i c Eu t r i c B r u n i s o l 1370 B r u n i s o l i c G r e y L u v i s o l LS LS 1 ,900 3 , 5 8 0 1 ,770 70 70 70 1 6 . 4 1 4 . 3 2 0 . 5 1 . 5 4 1 . 6 4 3 . 0 5 M e s i c - 2 M e s i c 1380 B r u n i s o l i c G r e y Luv i s o l S i C L 1 ,900 78 1 8 . 5 3 . 5 3 E l e v = e l e v a t i o n <m a . s . l . ) ; S o i l D e v e l o p . = s o i l s u b g r o u p ( C S S C 1 9 7 8 ) ; S o i l t e x t u r e = f i n e f r a c t i o n <<2mm) t e x t u r e o f the " B " h o r i z o n ; S i t e i n d e x = s i t e i n d e x f o r r e f e r e n c e age o f 100 y e a r s <m); MAI = mean a n n u a l i n c r e m e n t s ( s t e m s ) ( t h a - 1 y r ~ * ) . 125 f o r e s t f l o o r from each p l o t . F o l l o w i n g c o l l e c t i o n , f o r e s t f l o o r - r o o t samples were frozen f o r t r a n s p o r t a t i o n to the l a b and f u r t h e r p r o c e s s i n g . I n i t i a l s e p a r a t i o n of root m a t e r i a l from m i n e r a l s o i l was undertaken i n the f i e l d . M i n e r a l s o i l - r o o t samples were washed and decanted over an 0.5 mm s i e v e to separate root m a t e r i a l from mineral s o i l (Bohm 1979). F o l l o w i n g i n i t i a l s e p a r a t i o n , roughly s o r t e d root m a t e r i a l was packaged i n p l a s t i c bags and f r o z e n f o r t r a n s p o r t to the l a b . In the l a b , lodgepole pine r o o t s were separated from those of other s p e c i e s on the b a s i s of e x t e r n a l c h a r a c t e r i s t i c s e s t a b l i s h e d using known root samples of the v a r i o u s s p e c i e s present on the s i t e s . Roots of lodgepole pine were then s u b d i v i d e d i n t o l i v e and dead components, and each of these i n t o small p l u s f i n e (<5 mm) and coarse (>5 mm) s i z e c l a s s e s . S e p a r a t i o n of r o o t s i n t o these c a t e g o r i e s was done with samples suspended i n water over a 2 mm s i e v e . L i v e and dead lodgepole pine r o o t s were d i s t i n g u i s h e d using s i m i l a r c r i t e r i a to those used elsewhere (Keyes and G r i e r 1981; G r i e r et a l . 1981; Santantonio and Hermann 1985). L i v e lodgepole pine r o o t s were i n t a c t , f l e x i b l e , r e d d i s h - c o l o u r e d , and showed no s i g n s of decomposition. Dead lodgepole pine r o o t s were d i s c o l o u r e d , o f t e n c o n s i s t e d of a hollow e c t o m y c o r r h i z a l sheath, and were b r i t t l e , g e n e r a l l y f r a c t u r i n g e a s i l y . M a t e r i a l p a s s i n g through the 2 mm s i e v e was processed to r e t r i e v e i n t a c t root fragments. A l a r g e q u a n t i t y of u n i d e n t i f i a b l e fragmented organic m a t e r i a l 126 was a l s o present and may have i n c l u d e d fragments of root systems, root caps, and/or dead root fragments. These were not i n c l u d e d i n the e s t i m a t i o n of seasonal biomass s i n c e i n s p e c t i o n of samples of t h i s m a t e r i a l under the microscope r e v e a l e d that i t was l a r g e l y composed of dead o r g a n i c m a t e r i a l . F o r e s t f l o o r root samples were suspended i n water and roo t s were separated from other o r g a n i c m a t e r i a l under a d i s s e c t i n g microscope. Lodgepole pine r o o t s were s u b d i v i d e d i n t o l i v e and dead s i z e c l a s s e s as f o r mineral s o i l samples. The l a b o r a t o r y p r o c e s s i n g of s o i l - r o o t samples took approximately three hours f o r each sample, averaging 1.5 hours f o r each of the mineral and f o r e s t f l o o r samples. At the time of f i e l d root sampling, thermometers were used to measure s o i l temperatures a t a 30 cm depth i n core h o l e s , immediately a f t e r core removal, at f i v e l o c a t i o n s i n each stand. S o i l moisture content was a l s o determined e i t h e r by g r a v i m e t r i c sampling or by u s i n g a T r o x l e r Depth Moisture Gauge ( T r o x l e r E l e c t r o n i c L a b o r a t o r i e s ) . Samples or measurements, r e s p e c t i v e l y , were taken at a depth of 30 cm to 40 cm at 5 sample p o i n t s i n each stand. F i v e aluminum access tubes were i n s t a l l e d i n each p l o t i n June 1984 f o r use i n o b t a i n i n g neutron probe readings ( T r o x l e r E l e c t r o n i c L a b o r a t o r i e s 1974). To o b t a i n r e a d i n g s , the neutron probe was lowered to a 30 cm to 40 cm depth i n each tube and f i v e one minute t e s t counts were made to o b t a i n an average t e s t count r a t e (K). Standard counts were taken, with the 1 27 s h i e l d e d probe mounted at the top of the access tube, before and a f t e r measurements in each tube to o b t a i n the mean standard count r a t e (SC). S o i l moisture contents were estimated using the c a l c u l a t e d count r a t i o (K/SC) and f a c t o r y c a l i b r a t i o n e q u a t i o n s . The probe c o u l d not be used i n June (immediately f o l l o w i n g access tube i n s t a l l a t i o n ) or i n November (due to i c e b u i l d u p i n s i d e the access t u b e s ) . At these times, 10 cm i n s i d e diameter s o i l c o r e r s were used to o b t a i n s o i l samples f o r 30 cm to 40 cm depths. F r e s h weights of these samples were determined on the day of sampling with samples then oven-dried f o r 72 hours at 105°C and reweighed f o r d e t e r m i n a t i o n of moisture content. 6.5 RESULTS AND DISCUSSION 6.5.1 BIOMASS DISTRIBUTION Table 6.2 p r o v i d e s a summary of t r e e component biomass v a l u e s and the d i s t r i b u t i o n of biomass in the four sampled p l o t s . Aboveground biomass represented 79.9% of t o t a l t r e e biomass i n the two mesic stands while i t ranged between 72.5% and 76.5% i n the two x e r i c stands. L i v e root system biomass represented 21.1% of t r e e biomass i n the two mesic p l o t s and 23.5% to 27.5% i n the two x e r i c p l o t s . F i g u r e 6.1 i l l u s t r a t e s the g e n e r a l p a t t e r n of biomass d i s t r i b u t i o n f o r the four p l o t s . On the x e r i c s i t e s , f i n e and small r o o t s r e p r e s e n t e d about 4% of t r e e biomass while they represented o n l y 1.5% to 1.6% of t r e e biomass on the mesic s i t e s . These Table 6.2. The d i s t r i b u t i o n o-f tree biomass in 4 lodgepole pine ecosystems. Biomass <t h a - 1 ) Aboveground Be 1owground Stand T o t a l Pl ot Stem Fol i age Branches Total Roots >5 mm Roots <5 mm T o t a l Xeric-1 107.4 4.9 7.1 119.4 30.3 6.4 36.6 156.1 Xer i c - 2 108.4 3.9 4.1 116.5 37.8 6.4 44.2 160 .7 Mesi c-1 195.3 7.5 11 .7 214.6 49.6 4.3 53.9 268.5 Mesi c-2 285.1 10.8 17.3 313.1 72.7 5.9 78.6 391 .7 * of Total Biomass Aboveground Be 1owground Pl ot Stem F o l i a g e Branches Total Roots >5 mm Roots <5 mm T o t a l Xer i c-1 X e r i c - 2 Mesi c-1 Mesi c-2 68.82'/. 67.4?'/. 72.76'/. 72.78V. 3.13* 2.43% 2.79* 2.75* 4. 57* 2.58* 4.36* 4.41* 76.53* 72.49* 79.91* 79.947. 19.39* 23.52* 18.48* 18.55* 4.09* 3.99* 1 .61* 1 .51* 23.47* 27.51* 20.09* 20 .067. 129 100-i S 50H o E o is o o 2.8 72.8 18.6 1.5 4.4 2.8 18.5 V6 I 4.4 3.1 B B 4.6 2.4 1 -I -1 -I 19.4 4.1 23.5 4 2.6 50-Component S3 S+F Root* O C. Roots EZS Fctfoge n Branches fZ3 Stem Mesic-2 Mesic-1 Xeric-1 Xeric-2. Site F i g u r e 6.1. The d i s t r i b u t i o n of t r e e biomass between aboveground and belowground components i n 4 lodgepole pine ecosystems. (Values shown are % of t o t a l t r e e biomass.) 1 30 r e s u l t s are a r e f l e c t i o n of both lower aboveground biomass and g r e a t e r f i n e and small root biomass on the two x e r i c s i t e s than on the two mesic s i t e s . D i f f e r e n c e s between the two x e r i c s i t e s may be r e l a t e d to the higher d e n s i t y of the second x e r i c p l o t and an a s s o c i a t e d i n c r e a s e i n the p r o p o r t i o n of biomass i n c o r p o r a t e d i n root systems. S i m i l a r i n c r e a s e s i n the p r o p o r t i o n of t r e e biomass a l l o c a t e d to r o o t s as d e n s i t i e s i n c r e a s e have been r e p o r t e d by Pearson (1982). He found v a l u e s ranging from 27% to 50% i n 70-year-old stands over a range of d e n s i t i e s of 1,800 to 15,000 t r e e s per h e c t a r e . F i g u r e 6.2 shows the r e l a t i o n s h i p between the coarse root:aboveground biomass r a t i o and stand d e n s i t y . T h i s r a t i o ranges from 0.18 to 0.45. S i g n i f i c a n t l i n e a r equations d e s c r i b e the r e l a t i o n s h i p between t h i s r a t i o and stand d e n s i t y and these equations d i f f e r s i g n i f i c a n t l y between the two hygrotopes (a = 0.05). The slope of the l i n e i s g r e a t e r f o r x e r i c s i t e s than f o r mesic s i t e s . T h i s suggests a more r a p i d i n c r e a s e i n the p r o p o r t i o n of t r e e biomass i n v e s t e d i n root systems with i n c r e a s i n g stand d e n s i t y on the x e r i c s i t e s . T h i s i s a l s o r e f l e c t e d i n a more r a p i d decrease i n t r e e s i z e with i n c r e a s i n g d e n s i t y on x e r i c s i t e s than on mesic s i t e s . 6.5.2 SEASONAL PATTERNS OF SMALL AND FINE ROOT BIOMASS F i g u r e s 6.3 and 6.4 i l l u s t r a t e the v a r i a t i o n i n seasonal p a t t e r n s of l i v e f i n e and small root biomass i n the 131 0.50-0.45-0 .40 -0 .35 -0.30-O Ct OT V) D E o CD XI c n e o « 0.25-O X) < o ct: 0.15-,» 0 •S o — i 1 i \ i 1000 2000 3000 4000 5000 Stand Density (trees ha ) 6000 7000 Edatope: • Xer ic -Poor • Xeric-Rich D Mesic-Poor O Me s ic -R ich Figure 6.2. The r e l a t i o n s h i p between the r a t i o of coarse root:aboveground biomass (CRT/AG) and stand d e n s i t y (SPH) fo r 30 sampled lodgepole pine stands. Regression equations f i t t e d to data from each hygrotope were s i g n i f i c a n t l y d i f f e r e n t . Equations d e s c r i b i n g each l i n e are: A. X e r i c : CRT/AG = 0.1668 + 4.4135 x 10" 5 x SPH n = 15 r 2 = 0.984 Sy.x = 9.29 x 10" 3 B. Mesic: CRT/AG = 0.1901 + 1.8097 x 10" 5 x SPH n = 15 r 2 = 0.676 Sy.x = 1.09 x 10" 2 1 32 f o r e s t f l o o r and mineral h o r i z o n s i n each of the four stands sampled. Three kinds of p a t t e r n s are evident i n f o r e s t f l o o r h o r i z o n s : 1. A c o n t i n u a l d e c l i n e from s p r i n g to winter which was ev i d e n t i n one mesic stand. 2. A smal l decrease from s p r i n g to e a r l y summer f o l l o w e d by i n c r e a s e s in biomass d u r i n g l a t e summer and e a r l y w i n t e r . and 3. An i n c r e a s e from June to J u l y f o l l o w e d by a decrease i n l a t e summer and a subsequent i n c r e a s e i n e a r l y winter. With the exce p t i o n of the one mesic stand ( p a t t e r n 1), lodgepole pine f i n e and small root biomass i n f o r e s t f l o o r s appears to reach a peak value i n e a r l y w i n t e r . S i m i l a r p a t t e r n s are r e p o r t e d by Vogt et a l . (1980) f o r stands of P a c i f i c s i l v e r f i r . The v a r i a t i o n i n these p a t t e r n s may r e f l e c t d i f f e r e n c e s between the four p l o t s i n n u t r i e n t a v a i l a b i l i t y or s o i l temperature, as w e l l as moisture c o n d i t i o n s throughout the s o i l p r o f i l e . They may a l s o r e f l e c t the e f f e c t s of d i s t u r b a n c e (the moss cover of the two mesic p l o t s was d i s t u r b e d s u b s t a n t i a l l y d u r i n g summer sampling) or the t i m i n g of sampling (root phenology may have d i f f e r e d between the four p l o t s ) . In m i n e r a l s o i l h o r i z o n s , a c o n s i s t e n t g e n e r a l p a t t e r n emerges with moderately h i g h s t a n d i n g crops of r o o t s present i n June p r i o r to bud burs t and a d e c l i n e i n f i n e and small root biomass d u r i n g summer months f o l l o w e d by a r i s e i n 133 F i g u r e 6.3. The seasonal p a t t e r n s of lodgepole p i n e l i v e f i n e and sma l l root (<5 mm) biomass i n f o r e s t f l o o r h o r i z o n s f o r each of the 4 sampled stands. ( E r r o r bars i n d i c a t e ± S E ) . 134 7 - i O SI CO to o £ CO "5 o or E to + CD C 5 -Site • ??er.!?.~!. • x?[l?r-2. O Meslc-1 • Mesic-2 H IT H 1 I I I 11 I I t n JUNE 1984 JULY - i — i — i — i » t f 16 » » 0 7 14 11 I I 4 11 I I 15 AUGUST SEPTEMBER OCTOBER NOVEMBER Date F i g u r e 6 . 4 . The s e a s o n a l p a t t e r n s of l o d g e p o l e p i n e l i v e f i n e and s m a l l r o o t (<5 mm) biomass i n the upper 40 cm of m i n e r a l s o i l f o r each of the 4 sampled s t a n d s . ( E r r o r b a r s i n d i c a t e ±SE). 135 e a r l y winter to v a l u e s s i m i l a r to those measured in June. T h i s p a t t e r n resembles that r e p o r t e d f o r P a c i f i c s i l v e r f i r (Vogt et a l . 1980). However, the e a r l y winter values probably r e p r e s e n t t y p i c a l high f a l l v a l u e s r a t h e r than the low mid-winter values r e p o r t e d i n the l i t e r a t u r e (Keyes and G r i e r 1981; G r i e r et a l . 1981). S o i l temperatures at 30 cm (Figure 6.5) were i n v e r s e l y r e l a t e d to f i n e and s m a l l root biomass ( F i g u r e 6.6). S o i l temperatures at 30 cm averaged 6°C to 8°C d u r i n g J u l y and August and were only s l i g h t l y above 0°C i n l a t e November 1984. A s i g n i f i c a n t l i n e a r r e g r e s s i o n was obtained f o r the r e l a t i o n s h i p between f i n e and small root biomass and s o i l temperature. However, t h i s r e l a t i o n s h i p may be an a r t i f a c t of the t i m i n g of sampling and might not h o l d i f more sampling were conducted i n the w i n t e r . The p a t t e r n of s o i l moisture content ( F i g u r e 6.7) i s not r e f l e c t e d i n the observed p a t t e r n s of root biomass i n mineral s o i l h o r i z o n s . F i g u r e 6.8 suggests that a r e l a t i o n s h i p may e x i s t between l i v e f i n e and small root biomass and s o i l m oisture. However, a s i g n i f i c a n t r e g r e s s i o n c o u l d not be f i t t e d to data from each p l o t , each hygrotope, or the t o t a l data s e t . The magnitude of v a r i a t i o n i n s o i l moisture content does r e f l e c t the d i f f e r e n c e s i n moisture a v a i l a b i l i t y between the two hygrotopes and the magnitude of v a r i a t i o n i n f i n e and small root biomass i n the m i n e r a l s o i l h o r i z o n s . 136 io-i F i g u r e 6.5. Seasonal p a t t e r n s of s o i l temperature at 30 cm depth f o r each of the 4 sampled stands. 137 12 -i I D t 10-OT OT O £ o 2 8 -O o ce D E to + CD C • • O 6-2 4 6 8 Soil Temperature at 30 cm (°C) —i 10 Site • Xeric-1 • Xe r lc -2 O Mesic-1 • Mesic -2 F i g u r e 6 . 6 . The r e l a t i o n s h i p between l i v e f i n e and s m a l l r o o t (<5 mm) biomass of l o d g e p o l e p i n e (R) ( m i n e r a l s o i l and f o r e s t f l o o r ) and s o i l t e m p e r a t u r e (T) (at 30 cm d e p t h ) f o r the 4 l o d g e p o l e p i n e s t a n d s and 4 sample d a t e s . The l i n e shown i s d e s c r i b e d by the e q u a t i o n : R = 8.8917 - 3.9128 x 10" 1 x T n = 16 r 2 = 0.521 S y . x = 1.150 138 F i g u r e 6.7. Seasonal p a t t e r n s of s o i l moisture content (volume%) f o r each of the 4 sampled stands. 139 121 1 m 1 o JL. 10-W (0 n • Home 1 Root e 8 -^ • Small • o • Site + 6 - • • Xerle-1 Fine • o o • Xe r lc -2 O Mesic-1 • Mesic -2 1 1 1 1 1 1 10 15 20 25 30 35 Soil Moisture Content (volume %) F i g u r e 6 . 8 . The s c a t t e r of l i v e f i n e and small root (<5 mm) biomass of lodgepole pine a g a i n s t s o i l moisture f o r the 4 lodgepole pine stands and 4 sample da t e s . 1 40 Throughout the year, mineral s o i l s i n the two x e r i c lodgepole pine s i t e s supported g r e a t e r f i n e and small root biomass than the two mesic s i t e s . S u b s t a n t i a l v a r i a t i o n i n the biomass of roo t s i n f o r e s t f l o o r h o r i z o n s was present with no c l e a r d i f f e r e n c e s which c o u l d be a t t r i b u t e d to the d i f f e r e n t s i t e s . 6.5.3 PRODUCTION OF FINE AND SMALL ROOTS Fin e and small root p r o d u c t i o n was estimated f o r f o r e s t f l o o r h o r i z o n s by summing the i n c r e a s e s i n biomass between each sample date. T h i s was not l i m i t e d to summing only s t a t i s t i c a l l y s i g n i f i c a n t changes i n biomass, as recommended by Singh et a l (1984), due to the small number of sample dates. Because of v a r i a t i o n i n the p a t t e r n s of root biomass, the c a l c u l a t i o n of p r o d u c t i o n was somewhat d i f f e r e n t f o r the d i f f e r e n t s i t e s . For p l o t s Mesic-1 and X e r i c M , p r o d u c t i o n i n the f o r e s t f l o o r was estimated from: ( J u l y - June) + (November - August) v a l u e s . The value f o r p l o t Mesic-2 i n v o l v e d s u b t r a c t i n g the November biomass value from the June value and that f o r p l o t X e r i c - 2 i n v o l v e d s u b t r a c t i n g the J u l y value from the November v a l u e . The p r o d u c t i o n of f i n e and small r o o t s i n mi n e r a l s o i l h o r i z o n s , to 40 cm depth, was estimated by s u b t r a c t i n g the minimum summer value from the maximum winter or s p r i n g v a l u e . These estimates of f i n e and small root p r o d u c t i o n are most l i k e l y underestimates of a c t u a l p r o d u c t i o n s i n c e s h o r t 141 term f l u c t u a t i o n s i n belowground biomass were not measured. More frequent sampling ( i e . every 2 weeks to 1 month) i s o f t e n employed in s t u d i e s of root p r o d u c t i o n . T h i s was not p o s s i b l e i n my study. The c a l c u l a t i o n of belowground p r o d u c t i o n used here a l s o assumes that there i s not a major l a t e - w i n t e r minimum for r o o t s as suggested f o r some other s p e c i e s (Santantonio and Hermann 1985). Sampling was not conducted i n mid- to l a t e - w i n t e r . Comparison of these root p r o d u c t i o n estimates r e q u i r e s the assumption that underestimates are of the same r e l a t i v e magnitude f o r a l l s i t e s sampled and that the seasonal maximum and minimum val u e s of r o o t s occur at the same time on a l l s i t e s . C a l c u l a t e d values a l s o represent very approximate values due to the l a r g e standard e r r o r s a s s o c i a t e d with each sample, even though sample volumes and s i z e s were l a r g e r than those used by most other root r e s e a r c h e r s . A l l of these sources of e r r o r i n d i c a t e that these data must be i n t e r p r e t e d with caut i o n . The biomass of m y c o r r h i z a l fungal m y c e l i a was not measured. Most lodgepole pine root systems were dominated by e c t o m y c o r r h i z a l short r o o t s and e c t o m y c o r r h i z a l sheaths were i n c l u d e d with root m a t e r i a l . Estimates of f i n e and small root p r o d u c t i o n o v e r l a p between the two x e r i c and the two mesic s i t e s (Table 6.3). For the x e r i c stands, p r o d u c t i o n of f i n e and small r o o t s was 3.91 to 5.90 t h a ~ 1 y r ~ 1 and f o r the two mesic s i t e s , i t was 3.66 to 4.65 t h a _ 1 y r ~ 1 . Some authors have suggested t h a t Table 6.3. The d i s t r i b u t i o n o-f t o t a l net primary p r o d u c t i o n in 4 lodgepole pine ecosystems. Production <t ha i y r - 1 ) Aboveground Belowground Stand T o t a l Pl ot Stem Fol i age Branches Total Roots Roots T o t a l >5 mm <5 mm Xeric-1 2.1 1 .2 0.2 3.5 0.4 3.9 4.3 7 .9 X e r i c - 2 1 .9 1 .2 0.2 3.3 0.4 5.9 6.3 9 .6 Mesi c-1 4.2 1 .9 0.3 6.4 0.9 4.7 5.5 1 1 .9 Mesi c-2 4.2 2.8 0.4 7.4 0.9 3.7 4.5 1 1 .9 * o-f t o t a l net primary p r o d u c t i o n Aboveground Be 1owground P l o t Stem Fol i age Branches Total Roots Roots T o t a l >5 mm <5 mm Xeric-1 26.74* 15.71* 2.42* 44.87* 5.53* 49.59* 55.13* Xer i c-2 19.56* 12.84* 1 .97* 34.37* 4.04* 61.59* 65.63* Mesi c-1 35.17* 16.18* 2.40* . 53.76* 7.27* 38.97* 46.24* Mesi c-2 34.95* 23.52* 3.51* 61.98* 7.24* 30.78* 38.02* 1 43 root p r o d u c t i o n should i n c r e a s e with i n c r e a s i n g s i t e q u a l i t y ( N a d e l h o f f e r et a l . 1985) while others (Keyes and G r i e r 1981; Santantonio and Hermann 1985) have found that f i n e and small root p r o d u c t i o n i s g r e a t e s t on the poorest of s i t e s . Data from these four lodgepole pine stands suggest t h a t , as f o r the p r o d u c t i o n of other t r e e components, the p r o d u c t i o n of f i n e and smal l r o o t s i s i n f l u e n c e d by both stand and s i t e c o n d i t i o n s , that there i s an i n v e r s e r e l a t i o n s h i p with hygrotope, and that there may be a d i r e c t r e l a t i o n s h i p with stand d e n s i t y . 6.5.4 PRODUCTION ALLOCATION The a l l o c a t i o n of p r o d u c t i o n between both aboveground and belowground components i s shown f o r each of the four sampled stands i n Table 6.2 and F i g u r e 6.9. On the two mesic s i t e s , the p r o d u c t i o n of small and f i n e r o o t s represented 30.8% and 39.0% of t o t a l t r e e p r o d u c t i o n , with t o t a l belowground p r o d u c t i o n r e p r e s e n t i n g 38.0% and 46.2% of t o t a l net primary t r e e p r o d u c t i o n (TNPP). The p r o p o r t i o n of p r o d u c t i o n a l l o c a t e d to belowground components was g r e a t e r on the two x e r i c s i t e s than on the two mesic s i t e s (55.1% and 65.6% of TNPP), with f i n e and small r o o t s r e p r e s e n t i n g 49.6% and 61.6% of TNPP. The d i f f e r e n c e i n p r o d u c t i o n a l l o c a t i o n between the two stands on x e r i c s i t e s (which were l o c a t e d w i t h i n 100 m of each other) may i n v o l v e the e f f e c t s of stand d e n s i t y . The f i r s t x e r i c p l o t ( X e r i c - 1 ) had a d e n s i t y of 1,900 144 100-5 0 - 23.5 3.5 CL Q_ 35 Z 1— U " 7.2 o 30.8 5 0 -100-Component SB S+F Roots O C. Roots tZS Foliage •B Branches ZZ2 Stem Mesic-2 Mesic-1 Xeric-1 Xeric-2 Site F i g u r e 6.9. The d i s t r i b u t i o n of t o t a l net primary p r o d u c t i o n (TNPP) between aboveground and belowground components i n each of the 4 stands sampled. (Values shown are % of t o t a l net primary p r o d u c t i o n ) . 1 45 t r e e s / h e c t a r e while the second x e r i c p l o t ( X e r i c - 2 ) had a d e n s i t y of 3,600 t r e e s / h e c t a r e . The second stand shows a g r e a t e r a l l o c a t i o n of p r o d u c t i o n to belowground components (65% vs 55%). Some of t h i s d i f f e r e n c e may, however, be a s s o c i a t e d with e r r o r s i n p r o d u c t i o n e s t i m a t e s . D i f f e r e n c e s i n p r o d u c t i o n a l l o c a t i o n between the two mesic stands may r e f l e c t d i f f e r e n c e s in s o i l moisture a v a i l a b i l i t y . The second mesic p l o t (Mesic-2) had a higher s o i l water content i n August than d i d the f i r s t mesic p l o t (Mesic-1). 6.5.5 GENERAL DISCUSSION Although s u b s t a n t i a l e r r o r s are a s s o c i a t e d with the e s t i m a t i o n of f i n e and small root p r o d u c t i o n , the l a r g e d i f f e r e n c e s between the x e r i c and mesic s i t e s are s i m i l a r to those r e p o r t e d f o r c o n t r a s t i n g D o u g l a s - f i r stands (Keyes and G r i e r 1981). In the lodgepole pine stands s t u d i e d , aboveground net primary p r o d u c t i o n (ANPP) on mesic s i t e s was approximately double that on x e r i c s i t e s , while t o t a l net primary p r o d u c t i o n (TNPP) was only 36% l a r g e r on the mesic s i t e s . The p r o d u c t i o n of belowground components represented approximately 42% of t r e e TNPP on mesic s i t e s and approximately 60% of t r e e TNPP on the x e r i c s i t e s . The p r o d u c t i o n of f i n e and s m a l l r o o t s represented the m a j o r i t y of belowground p r o d u c t i o n (89%) on both hygrotopes, with much of t h i s m a t e r i a l t u r n i n g over and not accumulating as p e r e n n i a l t r e e biomass. 146 These r e s u l t s suggest that one major reason f o r the observed d i f f e r e n c e s i n aboveground p r o d u c t i o n between x e r i c and mesic s i t e s i s a s h i f t i n p r o d u c t i o n a l l o c a t i o n . The d i f f e r e n c e s i n p r o d u c t i o n a l l o c a t i o n may a l s o account f o r the observed d i f f e r e n c e s i n the r e l a t i o n s h i p s between p r o d u c t i o n and both f o l i a g e biomass and f o l i a g e n i t r o g e n c o ntent. A comparison of FE(ANPP) and FNE(ANPP) with FE(TNPP) and FNE(TNPP) (Figure 6.10 and F i g u r e 6.11) suggests that there i s a much smal l e r between - s i t e v a r i a t i o n i n the e f f i c i e n c i e s c a l c u l a t e d f o r TNPP than i s e vident f o r ANPP. However, a much l a r g e r body of data and improved p r e c i s i o n i n the e s t i m a t i o n of belowground p r o d u c t i o n i s needed to demonstrate t h i s u n e q u i v o c a l l y . Between s i t e d i f f e r e n c e s i n e i t h e r FE(TNPP) or FNE(TNPP) should express t r u e d i f f e r e n c e s i n net p h o t o s y n t h e s i s or t r e e r e s p i r a t i o n . FE(TNPP) ranged from 1.1 t t " 1 y r ~ 1 f o r mesic s i t e s to 2.46 t t _ 1 y r " 1 f o r x e r i c s i t e s while FNE(TNPP) ranged from 0.107 t k g _ 1 y r " 1 f o r mesic s i t e s to 0.186 t k g ~ 1 y r - 1 f o r x e r i c s i t e s . Values are s u b s t a n t i a l l y l a r g e r than those based on ANPP alone due to the l a r g e p r o p o r t i o n of p r o d u c t i o n i n v e s t e d i n r o o t s (38% to 65%). Values of FE(ANPP) f o r D o u g l a s - f i r , c a l c u l a t e d from data presented by Keyes and G r i e r (1981), were 0.73 and 0.856 t f ' y r " 1 f o r low and h i g h s i t e s , r e s p e c t i v e l y . FE(TNPP) was 1.54 t t ^ y r * 1 and 1.11 t t " 1 y r _ 1 f o r low and h i g h s i t e s r e s p e c t i v e l y . The low s i t e D o u g l a s - f i r stand had the higher 147 2.5-1 O 2 -s—N T 1.5-O ^_>». i LU 1-0 . 5 -f\ Edatope: O X*r1c-Rlch - TNPP • Xwlc-Rlch - ANPP O Unlc-Rlch - TNPP • MMle-Rtch - ANPP o -( 3 I 2 1 1 1 A 6 8 _ 1 Foliage Biomass (t ha ) I 10 1 12 F i g u r e 6.10. The r e l a t i o n s h i p s of FE(ANPP) (shaded symbols) and FE(TNPP) ( o u t l i n e d symbols) to stand f o l i a g e biomass (F) f o r the 4 sampled lodgepole pine stands. The l i n e f o r FE(TNPP) i s d e s c r i b e d by the eq u a t i o n : FE(TNPP) = 2.7586 - 0.1578 x F n = 4 r 2 = 0.747 Sy.x = 0.347 148 0.20-0.15-O) 0.10-Ld z 0.05-0.00-Edatope: O XtricHOeh - TNPP • ferlc-Rlch - ANPP O UMtc-fMch — TNPP • MMlc-IHch - ANPP 4 6 —1 Foliage Biomass (t ha ) 10 —I 12 F i g u r e 6.11. The r e l a t i o n s h i p s of FNE(ANPP) (shaded symbols) and FNE(TNPP) ( o u t l i n e d symbols) t o s t a n d f o l i a g e biomass (F) f o r the 4 sampled l o d g e p o l e p i n e s t a n d s . The l i n e f o r FNE(TNPP) i s d e s c r i b e d by the e q u a t i o n : FNE(TNPP) = 0.2035 - 9.2360 x 10" 3 x F n = 4 r 2 = 0.740 S y . x = 2.065 x 1 0 " 2 1 49 e f f i c i e n c y because i t had a lower f o l i a g e biomass (10.0 t ha" 1) than the high s i t e stand (16.0 t ha" 1) and s e l f - s h a d i n g was lower. However, the high s i t e was s t i l l more p r o d u c t i v e because i t c a r r i e d g r e a t e r f o l i a g e biomass than d i d the low s i t e . A s i m i l a r change i n the r e l a t i v e FE v a l u e s of d i f f e r e n t s i t e s was found i n these lodgepole pine ecosystems. I t i s only by c o n s i d e r i n g p r o d u c t i o n of a l l t r e e components that we can i n t e r p r e t between-site v a r i a t i o n i n FE i n terms of p h o t o s y n t h e s i s or r e s p i r a t i o n . Comparisons made using aboveground component p r o d u c t i o n alone must be i n t e r p r e t e d with c a u t i o n u n l e s s v a r i a t i o n i n p r o d u c t i o n a l l o c a t i o n between t r e e components i s c o n s i d e r e d . 6.6 SUMMARY In the four lodgepole pine stands s t u d i e d , the biomass of root systems represented between 21.1% and 27.5% of t o t a l t r e e biomass. X e r i c s i t e s had s l i g h t l y l a r g e r values than mesic s i t e s . F i n e and small r o o t s represented approximately 4% of t r e e biomass on the x e r i c s i t e s and 1.5% to 1.6% of t r e e biomass on the mesic s i t e s . The r a t i o of coarse root biomass to aboveground biomass f o r the t h i r t y study stands was wider than i n the four i n t e n s i v e l y s t u d i e d s i t e s , ranging from 0.18 to 0.45. The v a r i a t i o n i n t h i s r a t i o was r e l a t e d to stand d e n s i t y with the r e l a t i o n s h i p s d i f f e r i n g between moisture regimes. There was a much more r a p i d i n c r e a s e i n t h i s r o o t r s h o o t r a t i o as d e n s i t y i n c r e a s e s on 150 x e r i c s i t e s than on mesic s i t e s . The maintenance of a l a r g e r biomass of f i n e and small r o o t s on x e r i c s i t e s than on mesic s i t e s suggests that p r o d u c t i o n of t h i s component may a l s o be r e l a t i v e l y l a r g e r . F i n e and small root p r o d u c t i o n ranged from 3.7 to 5.9 t h a ~ 1 y r ~ 1 i n the four stands s t u d i e d , with o v e r l a p between the two moisture regimes. T h i s component represented 30.8% to 39.0% of t o t a l net primary p r o d u c t i o n on the mesic s i t e s and 49.6% to 61.6% of TNPP on the two x e r i c s i t e s . The pr o d u c t i o n of coarse roots represented only a small p r o p o r t i o n of TNPP (4% to 5% on mesic s i t e s and 7.2% on x e r i c s i t e s ) . Aboveground net primary p r o d u c t i o n on the mesic s i t e s was almost twice as l a r g e as on the x e r i c s i t e s , while TNPP was onl y 36% g r e a t e r . These r e s u l t s p a r a l l e l the f i n d i n g s of Keyes and G r i e r (1981) f o r D o u g l a s - f i r and are c o n s i s t e n t with the hypotheses presented e a r l i e r i n t h i s c h a p t e r . A s m a l l i n c r e a s e i n the amount of p r o d u c t i o n a l l o c a t e d to r o o t s was found with i n c r e a s i n g d e n s i t y on the two x e r i c s i t e s . Belowground p r o d u c t i o n represented 65.6% of TNPP i n the stand with 3,600 t r e e s h a - 1 and 55.1% of TNPP i n the stand with 1,900 t r e e s h a " 1 . T h i s d i f f e r e n c e may be due to e r r o r s a s s o c i a t e d with measuring TNPP, p a r t i c u l a r l y belowground p r o d u c t i o n . However, a s h i f t towards g r e a t e r a l l o c a t i o n of p r o d u c t i o n to r o o t s with i n c r e a s i n g d e n s i t y i n lodgepole pine stands i s a l s o suggested by an i n c r e a s i n g root:shoot r a t i o . 151 FE(TNPP) ranged from 1.1 t f 1 y r ~ 1 f o r one mesic s i t e to 2.46 t t " 1 y r _ 1 f o r one x e r i c s i t e and FNE(TNPP) ranged from 0.107 ( f o r mesic) to 0.186 t k g - 1 y r " 1 ( f o r x e r i c ) . These v a l u e s are s u b s t a n t i a l l y l a r g e r than those based upon aboveground p r o d u c t i o n a l o n e . C a l c u l a t i o n of FE and FNE usi n g TNPP removes v a r i a t i o n i n these values which r e s u l t s from d i f f e r e n c e s i n a l l o c a t i o n due to s i t e and stand f a c t o r s . R e s u l t s suggest that a simple l i n e a r r e l a t i o n s h i p may e x i s t between FE(TNPP) and F or FNE(TNPP) and F which i s not i n f l u e n c e d by s i t e c o n d i t i o n s . Further data are needed f o r e v a l u a t i o n of these r e l a t i o n s h i p s . 6.7 CONCLUSIONS Estimates of belowground net primary p r o d u c t i o n f o r four lodgepole pine stands i n d i c a t e that d i f f e r e n c e s i n the a l l o c a t i o n of p r o d u c t i o n are a major reason f o r d i f f e r e n c e s i n aboveground net primary p r o d u c t i o n between x e r i c and mesic s i t e s . The h y p o t h e s i s that a l a r g e r p r o p o r t i o n of t o t a l net primary p r o d u c t i o n i s a l l o c a t e d to belowground components on s i t e s with a x e r i c moisture regime than on s i t e s with a mesic moisture regime was not r e j e c t e d . Chapter 7 A SIMPLE MODEL OF NET PRIMARY PRODUCTION IN LODGEPOLE PINE ECOSYSTEMS 7.1 INTRODUCTION In the preceeding c h a p t e r s , d i f f e r e n c e s i n the r a t e s of aboveground net primary p r o d u c t i o n (ANPP) between lodgepole pine stands growing on x e r i c and mesic s i t e s were a t t r i b u t e d to two major f a c t o r s : 1. the amount of f o l i a g e c a r r i e d by the stands and 2. the p r o p o r t i o n of t o t a l net primary p r o d u c t i o n (TNPP) which was a l l o c a t e d to aboveground p r o d u c t i o n . T h i s chapter p r e s e n t s two models of t r e e p r o d u c t i o n i n lodgepole pine stands based on these two f a c t o r s . Model I i s based upon the assumption of a l i n e a r r e l a t i o n s h i p between FE(TNPP) and f o l i a g e biomass (Chapter 6) and i n c o r p o r a t e s between - s i t e v a r i a t i o n i n f o l i a g e c a r r y i n g c a p a c i t y and pr o d u c t i o n a l l o c a t i o n . The second model (Model II) i s based on r e g r e s s i o n models of ANPP on f o l i a g e biomass, stand d e n s i t y , and stand age f o r each hygrotope (Chapter 4). Model II pr o v i d e s e m p i r i c a l l y d e r i v e d v a l u e s to which the r e s u l t s of Model I can be compared. However, comparisons are only p o s s i b l e over the range of the independent v a r i a b l e s used i n the r e g r e s s i o n equations of Model I I . The approach used i n Model I p a r a l l e l s the con c e p t u a l models presented by Penning de V r i e s (1983) and 152 1 53 J a r v i s and Leverenz (1983). The o b j e c t i v e of t h i s m o d e l l i n g e x e r c i s e was to determine whether or not the observed v a r i a t i o n i n f o l i a g e biomass and i n the p r o p o r t i o n of p r o d u c t i o n a l l o c a t e d to aboveground components can e x p l a i n the observed v a r i a t i o n s i n ANPP of lodgepole pine ecosystems. 7.2 A MODEL OF STAND FOLIAGE BIOMASS Both models use stand f o l i a g e biomass as a v a r i a b l e f o r p r e d i c t i n g TNPP or ANPP. The use of the models r e q u i r e s the e s t i m a t i o n of the amount of f o l i a g e which can be c a r r i e d by a stand. In western North America, moisture a v a i l a b i l i t y i s c o n s i d e r e d to determine the maximum amount of f o l i a g e which can be c a r r i e d by a stand (Gholz 1982; G r i e r and Running 1981) (Chapter 4). P l a c i n g a c e i l i n g on the amount of f o l i a g e which can be c a r r i e d by a p a r t i c u l a r stand serves to p l a c e a l i m i t on TNPP. Stand d e n s i t y has been shown to i n f l u e n c e the amount of f o l i a g e c a r r i e d by lodgepole pine stands. Data from Keane (1985) show f o l i a g e biomass i n c r e a s i n g with stand d e n s i t y up to a maximum value , f o l l o w e d by a l i n e a r decrease at higher stand d e n s i t i e s ( F i g u r e 7.1). A s i m i l a r p a t t e r n , but with a steeper d e c l i n e , i s evident i n other sources (Pearson 1982; Johnstone 1971). The data from Keane (1985) are best s u i t e d to g e n e r a l a p p l i c a t i o n s i n c e they were a l l c o l l e c t e d on a s i n g l e s i t e . V a r i a t i o n i n the r e l a t i o n s h i p between stand f o l i a g e biomass and stand d e n s i t y with s i t e d i f f e r e n c e s has 154 12-10-(0 to o E o ffl CO CT) O ! 8-6-A 1 1 1 1 20000 40000 60000 80000 Stand Density (trees ha"') n 1 100000 120000 F i g u r e 7.1. The r e l a t i o n s h i p between f o l i a g e biomass (F) and stand d e n s i t y (SPH) i n a 20-year-old lodgepole pine stand. (Based upon data from Keane (1985) f o r stands with more than 6,000 t r e e s h a " 1 ) . The l i n e shown i s described by the equation: F = 12.688 - 1.0053 x 10"* x SPH n = 17 r 2 = 0.914 Sy.x = 1.128 1 55 not been documented. An equation d e s c r i b i n g the l i n e a r d e c l i n e of f o l i a g e biomass with i n c r e a s i n g stand d e n s i t y was o b t a i n e d using Keane's (1985) data s e t : F = a - 1.0053 x 10"" x SPH where F= stand f o l i a g e biomass (t h a " 1 ) , SPH= stand d e n s i t y ( t r e e s h a " 1 ) , and the u n i t s f o r the slope of the l i n e are metric tons of f o l i a g e per t r e e . The value of "a" w i l l depend upon the s i t e ' s f o l i a g e c a r r y i n g c a p a c i t y (Fmax) and t r e e s i z e (which i s i n f l u e n c e d by stand age). The slope of t h i s l i n e was assumed to be constant and independent of s i t e . For the purposes of s i m u l a t i n g the v a r i a t i o n i n f o l i a g e biomass with stand d e n s i t y i n 70-year-old stands, the maximum f o l i a g e biomass which c o u l d be c a r r i e d by a s i n g l e t r e e was assumed to be 35 kg (the maximum observed v a l u e ) . T h i s a l l o w s even stands of r e l a t i v e l y low d e n s i t y to achieve Fmax. The d e c l i n e of f o l i a g e biomass with i n c r e a s i n g d e n s i t y does not occur u n t i l some l e v e l of crowding i s achieved w i t h i n a stand. Biomass data from 70-year-old lodgepole pine stands suggest that the d e c l i n e begins when mean f o l i a g e biomass per t r e e drops to approximately 8 kg/tree. The assumptions used i n t h i s model of f o l i a g e biomass r e s u l t i n f o l i a g e biomass being at s i t e f o l i a g e c a r r y i n g c a p a c i t y at stand d e n s i t i e s between Dmin and Dmax. Where: Dmin = (Fmax/35) x 10 3 156 and Dmax = (Fmax/8) x 10 3. Fmax and Dmax were used to c a l c u l a t e v a l u e s of "a", needed f o r the f o l i a g e biomass equation, f o r each s i t e using the e q uation: a = Fmax + 1.0053 x 10" 4 x Dmax based upon the r e l a t i o n s h i p shown i n f i g u r e 7.1. 7.3 MODEL I 7.3.1 TOTAL NET PRIMARY PRODUCTION Model I c a l c u l a t e s TNPP us i n g the simple l i n e a r r e l a t i o n s h i p between FE(TNPP) and F. Th i s r e l a t i o n s h i p i s based upon a very small data set (four stands) and the r e s u l t s of any p r e d i c t i o n s from such a model must be i n t e r p r e t e d c a u t i o u s l y and t r e a t e d as r e l a t i v e , r ather than as q u a n t i t a t i v e v a l u e s . The r e l a t i o n s h i p used i n Model I was: FE(TNPP) = 2.7586 - 0.1578 x F ( F i g u r e 6.10) For c a l c u l a t i n g TNPP the above equation becomes: TNPP = 2.7586 x F - 0.1578 x F 2 One of the apparent r e s u l t s of assuming that FE i s l i n e a r l y r e l a t e d to F i s that the r e l a t i o n s h i p between TNPP and F w i l l be p a r a b o l i c . 1 57 7.3.2 ABOVEGROUND NET PRIMARY PRODUCTION In t h i s model, TNPP i s a l l o c a t e d to aboveground and belowground p r o d u c t i o n i n p r o p o r t i o n s f i x e d by hygrotope. On x e r i c s i t e s , 40% of TNPP i s a l l o c a t e d to ANPP and on mesic s t i e s , 60% of TNPP i s a l l o c a t e d to ANPP. I t was assumed that the a l l o c a t i o n of p r o d u c t i o n between aboveground and belowground components d i d not vary with stand d e n s i t y s i n c e the data presented i n chapter 6 are not s u f f i c i e n t t o d e s c r i b e the v a r i a t i o n i n p r o d u c t i o n a l l o c a t i o n with v a r i a t i o n i n stand d e n s i t y over a wide range of d e n s i t i e s . 7.4 MODEL II 7.4.1 ABOVEGROUND NET PRIMARY PRODUCTION Model II c a l c u l a t e s ANPP u s i n g the m u l t i p l e r e g r e s s i o n equations presented i n Chapter 4. These equations were developed u s i n g data from 15 x e r i c and 15 mesic s i t e s and should r e f l e c t a c t u a l values w i t h i n the range of the data. The equations used were: 1 . f o r x e r i c s i t e s ANPP = 1.309+0.3867XF+5.3701X10-"XSPH-5.360 x10" 8xSPH 2-5.87x10" 3xAge 2. f o r mesic s i t e s ANPP = 1 .308 + 0.4934xF + 2.134x10" 3xSPH-4.520 X10" 2XSPH 2-2.237x10" 2xAge Data were only c o l l e c t e d from stands ranging i n d e n s i t y from 158 300 to 6,000 t r e e s h a - 1 and 300 to 3,000 t r e e s h a - 1 on x e r i c and mesic s i t e s , r e s p e c t i v e l y . Model II equations were not used to p r e d i c t values beyond these ranges. 7.5 EVALUATION OF MODEL CALCULATIONS The v a l u e s of TNPP, ANPP, and FE(ANPP), which were c a l c u l a t e d f o r a h y p o t h e t i c a l 70-year-old stand using the two models, are presented f o r a range of stand d e n s i t i e s and f o r two hygrotopes i n Table 7.1. For the x e r i c s i t e s , f o l i a g e c a r r y i n g c a p a c i t y (Fmax) was a s s i g n e d a value of 6 t h a - 1 (Dmax = 750 t r e e s ha" 1) while on the mesic s i t e s , i t was a s s i g n e d a value of 10 t ha" 1 (Dmax = 1,250 t r e e s h a " 1 ) . These were based upon l e v e l s of f o l i a g e biomass observed i n 70-year-old lodgepole pine stands growing on s i t e s t h a t were t y p i c a l of x e r i c and mesic hygrotopes. For the x e r i c s i t e s , Model I p r e d i c t e d that maximum TNPP and ANPP would be achieved along with Fmax at d e n s i t i e s of up to 750 t r e e s ha" 1 (Table 7.1). The c a l c u l a t i o n of ANPP us i n g Model II suggests t h a t maximum ANPP i s achieved at 4,000 t r e e s h a " 1 . For the x e r i c s i t e s , the two models d i f f e r most at low d e n s i t i e s . T h i s may be the r e s u l t of both i n s u f f i c i e n t stand data f o r Model II and a f a i l u r e of Model I to c o n s i d e r v a r i a t i o n i n p r o d u c t i o n a l l o c a t i o n with d e n s i t y . The c a l c u l a t i o n s of Model II d i f f e r from Model I by at most 20% of the Model I v a l u e s and the two models agree c l o s e l y at stand d e n s i t i e s exceeding 2,000 t r e e s h a " 1 . 159 T a b l e 7 . 1 . ANPP f o r h y p o t h e t i c a l 7 0 - y e a r - o l d s t a n d s g r o w i n g on two h y g r o t o p e s p r e d i c t e d u s i n g the two m o d e l s . 1. Hygrotope = Xeric (Fmax = 6.0) Model II Model I SPH F TNPP ANPP FE(ANPP) ANPP FE(ANPP) (t h a - 1 ) (t h a - 1 y r _ 1 ) (t ha^yr" 1 ) (t t ^ y r " 1 ) (t ha^yr" 1 ) (t t _ 1 y r - 1 ) 500 6.00 10.87 4.35 0.72 3.47 0.58 750 6.00 10.87 4.35 0.72 3.59 0.60 1000 5.97 10.85 4.34 0.73 3.69 0.62 1250 5.95 10.83 4.33 0.73 3.79 0.64 1500 5.92 10.81 4.32 0.73 3.87 0.65 2000 5.87 10.76 4.30 0.73 4.03 0.69 3000 5.77 10.67 4.27 0.74 4.26 0.74 4000 5.67 10.57 4.23 0.74 4.38 0.77 60 00 5.47 10.37 4.15 0.76 4.31 0.79 10000 5.07 9.93 3.98 0.78 - -20000 4.06 8.61 3.44 0.85 - -30000 3.06 6.96 2.78 0.91 - -40000 2.05 5.00 2.00 0.97 - -50000 1.05 2.72 1.09 1.04 - -60000 0.04 0.12 0.05 1.10 - -75000 - - - - - -100000 2. Hyorotope = Mesic (Fmax = 10.0) Model II Model I SPH F TNPP ANPP FE(ANPP) ANPP FE(ANPP) (t ha" 1) (t ha^yr" 1 ) (t ha^yr" 1 ) (t t ^ y r " 1 ) (t h a ^ y r - 1 ) (t t ^ y r- 1 ) 500 10.00 11.81 7.09 0.71 5.73 0.57 750 10.00 11.81 7.09 0.71 6.25 0.62 1000 10.00 11.81 7.09 0.71 6.76 0.68 1250 10.00 11.81 7.09 0.71 7.27 0.73 1500 9.98 11.82 7.09 0.71 7.76 0.78 2000 9.92 11.84 7.10 0.72 8.73 0.88 3000 9.82 11.88 7.12 0.72 10.58 1.08 4000 9.72 11.91 7.14 0.74 - -6000 9.52 11.96 7.18 0.75 - -10000 9.12 12.04 7.22 0.79 - -20000 8.12 12.00 7.20 0.89 - -30000 7.11 11.64 6.98 0.98 - -40000 6.10 10.96 6.58 1.08 - -50000 5.10 9.96 5.98 1.17 - -60000 4.09 8.65 5.19 1.27 - — 75000 2.59 6.08 3.65 1.41 - -100000 0.07 0.20 0.12 1.65 W H = stano oensuy urees na •/} r = stanu T u u a y e piwna&* M n « / , m r i — i u i a i n t j primary production (t h a ^ y r " 1 ) ; ANPP = aboveground net primary production (t h a ^ y r " 1 ) ; FE(ANPP) = foliage eff iciency (ANPP) (t t ^ y r " 1 ) . 160 For the mesic s i t e s Model I p r e d i c t e d maximum TNPP and maximum ANPP at stand d e n s i t i e s of 10,000 t r e e s ha" 1 (Table 7.1). T h i s i s the r e s u l t of the p a r a b o l i c form of the r e l a t i o n s h i p between TNPP and F, with maximum TNPP o c c u r r i n g with 9 t ha" 1 of f o l i a g e biomass. For the simulated mesic stands, Model II p r e d i c t s lower ANPP at 500 t r e e s ha" 1 and s u b s t a n t i a l l y l a r g e r v a l u e s (by 50%) at 3,000 t r e e s ha" 1 than those c a l c u l a t e d by Model I. The l a t t e r value c a l c u l a t e d by Model II i s e x c e s s i v e l y high, i n d i c a t i n g the l i m i t a t i o n s of t h i s r e g r e s s i o n model at the edges of the range of stand d e n s i t y f o r which data were c o l l e c t e d . At a stand d e n s i t y of 1,250 t r e e s h a " 1 , Model II c a l c u l a t e s a value of ANPP which i s w i t h i n 3% of the Model I v a l u e . E s t i m a t e s of f o l i a g e e f f i c i e n c y (FE(ANPP)) by Model I (Table 7.1) show that the v a r i a t i o n i n FE(ANPP) with stand d e n s i t y i s r e l a t e d t o the v a r i a t i o n i n stand f o l i a g e biomass. The apparent c u r v i l i n e a r i n c r e a s e i n FE(ANPP) and FNE(ANPP) with i n c r e a s i n g stand d e n s i t y , observed i n e a r l i e r c h a p t e r s , appears to be l a r g e l y the r e s u l t of the d e c l i n e i n stand f o l i a g e biomass with i n c r e a s i n g stand d e n s i t y . Since FE(ANPP) or FNE(ANPP) are i n v e r s e l y r e l a t e d to F, then decreases i n F due to i n c r e a s e s i n stand d e n s i t y w i l l r e s u l t i n i n c r e a s e s i n FE or FNE. Model I i s extended to d e n s i t i e s exceeding those i n c o r p o r a t e d i n Model II equations ( F i g u r e 7.2). The r e s u l t s show c a l c u l a t e d ANPP approaching 0 at 60,000 t r e e s ha" 1 on the x e r i c s i t e s and at j u s t over 100,000 t r e e s ha" 1 F i g u r e 7.2. V a r i a t i o n i n ANPP with stand d e n s i t y p r e d i c t e d using Model I f o r 70-year-old stands growing on x e r i c and mesic s i t e s . 162 on the mesic s i t e s ( F i g u r e 7.2). T h i s i s the d i r e c t r e s u l t of very low l e v e l s of f o l i a g e biomass. The model i n d i c a t e s that low q u a n t i t i e s of f o l i a g e biomass are i n v o l v e d i n the low ANPP observed i n h i g h d e n s i t y , r e p r e s s e d lodgepole pine stands. I f the p r o p o r t i o n of TNPP a l l o c a t e d t o r o o t s v a r i e s with stand d e n s i t y , then s h i f t s i n the shape and p o s i t i o n of t h i s d e c l i n e i n ANPP would be expected. The d i f f e r e n c e s between the x e r i c and mesic s i t e s i n f o l i a g e c a r r y i n g c a p a c i t y and i n p r o d u c t i o n a l l o c a t i o n cause x e r i c stands to approach low r a t e s of ANPP at r e l a t i v e l y lower d e n s i t i e s than m e s i c . s i t e s . 7.6 CONCLUSIONS The simple model of t o t a l net primary p r o d u c t i o n (TNPP) (Model I) shows trends which p a r a l l e l p a t t e r n s of aboveground net primary p r o d u c t i o n (ANPP) observed i n lodgepole pine stands. However, f u r t h e r data on TNPP and p r o d u c t i o n a l l o c a t i o n are needed to e v a l u a t e the performance of t h i s simple model and to allow the development of more acc u r a t e models. V a r i a t i o n i n the p r o p o r t i o n of TNPP a l l o c a t e d t o r o o t s and i n other a s p e c t s of the carbon budgets (p h o t o s y n t h e s i s and r e s p i r a t i o n ) of lodgepole pine ecosystems r e q u i r e f u r t h e r i n v e s t i g a t i o n i n r e l a t i o n to s i t e , stand d e n s i t y , and stand age. The f a c t o r s r e s p o n s i b l e f o r the d e c l i n e i n stand f o l i a g e biomass with i n c r e a s i n g stand d e n s i t y i n lodgepole pine stands are a l s o not known at p r e s e n t . An understanding of the mechanisms i n v o l v e d would i 163 a i d i n the p r e d i c t i o n of the v a r i a t i o n of stand p r o d u c t i o n with changes i n stand d e n s i t y . F a c t o r i a l f e r t i l i z a t i o n x i r r i g a t i o n x stand d e n s i t y experiments are needed f o r r i g o r o u s t e s t i n g of the e f f e c t s of these f a c t o r s on the amount of f o l i a g e c a r r i e d by stands, the e f f i c i e n c y of the f o l i a g e , and the a l l o c a t i o n of p r o d u c t i o n . However, such experiments are d i f f i c u l t ' a n d expensive with t r e e s p e c i e s due to the l a r g e p l o t s and long p e r i o d s of time i n v o l v e d and w i l l r e q u i r e c a r e f u l p l a n n i n g and e x e c u t i o n . Examination of carbon budgets and p r o d u c t i o n d i s t r i b u t i o n i n d e n s i t y sequences of lodgepole pine stands over a range of ages on v a r i o u s e c o l o g i c a l s i t e s c l a s s e s and under a v a r i e t y of experimental c o n d i t i o n s should be a r e s e a r c h p r i o r i t y f o r any f o r e s t management program designed to optimize y i e l d from lodgepole pine f o r e s t s . Because of the complexity of the r e l a t i o n s h i p s i n v o l v e d , experiments w i l l have to be c a r e f u l l y designed to enable the i d e n t i f i c a t i o n of the c o n t r i b u t i o n s of each of the v a r i o u s stand and s i t e v a r i a b l e s . The success of such r e s e a r c h p r o j e c t s w i l l hinge on the accuracy of e s t i m a t i o n of biomass and p r o d u c t i o n d i s t r i b u t i o n . In the absence of s u i t a b l e g e n e r a l r e g r e s s i o n equations, t h i s would be most r e a d i l y a c h ieved using double sampling approaches where r e g r e s s i o n e s t i m a t o r s of aboveground and coarse root biomass and p r o d u c t i o n are developed and a p p l i e d i n each sampled stand, i n d i v i d u a l l y . 1 6 4 Such an approach was not employed i n t h i s study. The use of g e n e r a l i z e d r e g r e s s i o n equations developed f o r the l o c a l area may have r e s u l t e d i n some l o s s i n the d i s c r i m i n a t i o n of between-site d i f f e r e n c e s , but the use of t h i s approach allowed the measurement of a l a r g e r number of stands than would have otherwise been p o s s i b l e . In a d d i t i o n to the c a r e f u l development of r e g r e s s i o n equations, l i t t e r f a l l and m o r t a l i t y should be measured. T h i s w i l l r e q u i r e the use of f i x e d - a r e a sample p l o t s and r e v i s i t i n g stands to c o l l e c t samples and to remeasure t r e e s . Less d e s t r u c t i v e and l e s s expensive methods are a l s o needed f o r the q u a n t i f i c a t i o n of f i n e and small root p r o d u c t i o n i n f o r e s t stands. Current s o i l c o r i n g p r a c t i c e s s e v e r e l y l i m i t the number of stands and types of s o i l s which can'be sampled. A r t i f a c t s r e s u l t i n g from s i t e d i s t u r b a n c e may a l s o be a problem i n long term s t u d i e s . Labour c o s t s l i m i t the experimental design of root r e s e a r c h because of the time taken to process samples (3 hours per sample i n t h i s study) and the l a r g e numbers of samples r e q u i r e d to o b t a i n s t a t i s t i c a l l y v a l i d r e s u l t s . Chapter 8 CONCLUSIONS In 30 lodgepole pine stands sampled i n the Dry Southern C o r d i l l e r a n Montane Spruce b i o g e o c l i m a t i c subzone, aboveground net primary p r o d u c t i o n ranged from 2.16 to 7.36 t h a " 1 y r " 1 . On s i t e s with x e r i c hygrotopes, aboveground net primary p r o d u c t i o n (ANPP) ranged from 2.16 to 4.43 t h a " 1 y r " 1 , while on mesic s i t e s i t ranged from 2.86 to 7.36 t h a " 1 y r " 1 . The higher r a t e s of ANPP on the mesic s i t e s can be a t t r i b u t e d t o : 1. the l a r g e r amounts of f o l i a g e being c a r r i e d by mesic s i t e s , and 2. l a r g e r p r o p o r t i o n s of t o t a l net primary p r o d u c t i o n being a l l o c a t e d to ANPP on mesic s i t e s than on x e r i c s i t e s . The f o l l o w i n g c o n c l u s i o n s were d e r i v e d from the re s e a r c h presented i n t h i s t h e s i s . Each c o n c l u s i o n i s r e l a t e d to the hypotheses presented i n Chapter 1. 1. Stands growing on s i t e s with mesic hygrotopes c a r r i e d s i g n i f i c a n t l y more f o l i a g e than d i d stands growing on s i t e s with x e r i c hygrotopes (mesic s i t e s c a r r i e d up to 10.8 t ha" 1 of f o l i a g e , x e r i c s i t e s c a r r i e d up to 7.3 t ha" 1 of f o l i a g e ) . The ranges of f o l i a g e biomass overlapped between the two hygrotopes due to the e f f e c t s of v a r i a t i o n i n stand d e n s i t y , i n stand age, and i n a c t u a l s o i l moisture a v a i l a b i l i t y w i t h i n each hygrotope. F u r t h e r experimental r e s e a r c h i s r e q u i r e d to t e s t the hy p o t h e s i s that the maximum amount of f o l i a g e which can 165 1 66 be c a r r i e d by a stand i s r e l a t e d to s i t e moisture a v a i l a b i l i t y . 2. Simple l i n e a r r e l a t i o n s h i p s between ANPP and stand f o l i a g e biomass were ob t a i n e d which d i d not show s i g n i f i c a n t d i f f e r e n c e s between edatopes or between hygrotopes. M u l t i p l e r e g r e s s i o n models u s i n g f o l i a g e biomass, stand d e n s i t y , and stand age p r o v i d e d b e t t e r p r e d i c t i o n of ANPP than the simple l i n e a r r e l a t i o n s h i p . The m u l t i p l e r e g r e s s i o n equations d i f f e r e d s i g n i f i c a n t l y f o r data from each hygrotope. The data from these lodgepole pine stands d i d not c o r r o b o r a t e the hyp o t h e s i s of s i t e dependent p a r a b o l i c r e l a t i o n s h i p s between ANPP and stand f o l i a g e biomass. R e j e c t i o n of t h i s h y p o t h e s i s probably r e s u l t s from a) f a i l u r e of the s t u d i e d stands to achieve s u f f i c i e n t l y h i g h l e v e l s of f o l i a g e biomass to show a c l e a r p a r a b o l i c t r e n d and b) v a r i a t i o n i n ANPP due to' the e f f e c t s of stand d e n s i t y and other f a c t o r s . The t h e o r e t i c a l e x i s t e n c e of a simple l i n e a r r e l a t i o n s h i p between FE(TNPP) and f o l i a g e biomass does suggest a p a r a b o l i c r e l a t i o n s h i p between TNPP and f o l i a g e biomass. 3. A simple l i n e a r r e g r e s s i o n of ANPP on stand f o l i a g e n i t r o g e n content, although s i g n i f i c a n t , was l e s s s u i t a b l e as a p r e d i c t o r of ANPP than was the simple l i n e a r r e l a t i o n s i p to f o l i a g e biomass. However, the r e l a t i o n s h i p d i d not d i f f e r s i g n i f i c a n t l y between edatopes. M u l t i p l e r e g r e s s i o n s employing f o l i a g e 167 n i t r o g e n content, stand d e n s i t y , and stand age to p r e d i c t ANPP d i f f e r e d s i g n i f i c a n t l y between hygrotopes and p r o v i d e d a b e t t e r p r e d i c t i o n of ANPP than d i d the simple l i n e a r r e g r e s s i o n u s i n g f o l i a g e n i t r o g e n c o n t e n t . M u l t i p l e r e g r e s s i o n equations using f o l i a g e n i t r o g e n p r o v i d e d a s l i g h t l y b e t t e r d e s c r i p t i o n of ANPP than equations using f o l i a g e biomass f o r the data from mesic s i t e s but not f o r data from x e r i c s i t e s . V a r i a t i o n i n f o l i a g e n i t r o g e n e f f i c i e n c y (FNE(ANPP)) was shown to be r e l a t e d to v a r i a t i o n i n stand f o l i a g e biomass, stand d e n s i t y , and s o i l moisture regime. T h i s v a r i a t i o n i n FNE(ANPP) i n d i c a t e s r e j e c t i o n of hypothesis 3. 4. The p r o p o r t i o n of t o t a l net primary p r o d u c t i o n a l l o c a t e d to root systems was l a r g e r on x e r i c s i t e s than on mesic s i t e s . Belowground p r o d u c t i o n represented 55.1% and 65.6% of TNPP i n two lodgepole pine stands with x e r i c hygrotopes and 38.0% and 46.2% of TNPP i n two stands with mesic hygrotopes. T h i s i s c o n s i s t e n t with hypothesis 4. Because of the l a r g e number of v a r i a b l e s i n f l u e n c i n g s i t e and stand c o n d i t i o n s some of the r e l a t i o n s h i p s which t h i s r e s e a r c h had hoped to c l a r i f y c o u l d not be adequately t e s t e d . Consequently, experimental t e s t i n g of these p r o d u c t i o n r e l a t i o n s h i p s i s needed. Such experimental r e s e a r c h should i n v o l v e the mani p u l a t i o n of key v a r i a b l e s such as water a v a i l a b i l i t y , n u t r i e n t a v a i l a b i l i t y , and stand d e n s i t y together with measurements of biomass and 1 68 p r o d u c t i o n . The methods fo l l o w e d i n conducting t h i s r e s e a r c h allowed the c o l l e c t i o n of data f o r e s t i m a t i n g aboveground net primary p r o d u c t i o n i n s e v e r a l stands. The l a c k of data on t r e e m o r t a l i t y and on the p r o d u c t i o n of bark and of r e p r o d u c t i v e s t r u c t u r e s r e s u l t e d i n the underestimation of ANPP and pr o v i d e d a source of v a r i a t i o n i n estimates of ANPP. The l a c k of q u a n t i t a t i v e data on s o i l moisture a v a i l a b i l i t y and n u t r i e n t a v a i l a b i l i t y a l s o l i m i t s the i n t e r p r e t a t i o n of the r e s u l t s . The approach f o l l o w e d was u s e f u l because i t pe r m i t t e d the i d e n t i f i c a t i o n of o v e r a l l trends which might not have been p o s s i b l e with more d e t a i l e d measurement i n a much smal l e r number of stands. Future r e s e a r c h should c o n c e n t r a t e on c o l l e c t i n g d e t a i l e d data w i t h i n i n d i v i d u a l stands, i n c l u d i n g data on t r e e m o r t a l i t y and belowground p r o d u c t i o n , i n order to provide a b e t t e r understanding of carbon budgets and production a l l o c a t i o n i n lodgepole pine ecosystems. REFERENCES Aber, J.D., J.M. M e l i l l o , K.J. N a d e l h o f f e r , C A . McClaugherty, and J . P a s t o r . 1985. F i n e root turnover i n f o r e s t ecosystems i n r e l a t i o n to q u a n t i t y and form of n i t r o g e n a v a i l a b i l i t y : a comparison of two methods. Oeco l o g i a 66: 317-321. Agren, G.I. 1983. Nitrogen p r o d u c t i v i t y of some c o n i f e r s . Can. J . For. Res. 13: 494-500. A l b r e k t s o n , A. 1984. Sapwood b a s a l area and needle mass of Scots pine (Pi nus sylvestris L.) t r e e s i n c e n t r a l Sweden. F o r e s t r y 57: 35-43. A l b r e k t s o n , A., A. Aronsson, and C O . Tamm. 1977. The e f f e c t of f o r e s t f e r t i l i z a t i o n on primary p r o d u c t i o n and n u t r i e n t c y c l i n g i n the f o r e s t ecosystem. S i l v a Fennica 11: 233-239. Bassman, J.H. 1984. S e l e c t e d p h y s i o l o g i c a l c h a r a c t e r i s t i c s of lodgepole p i n e . pp. 27-43. In: Baumgartner, D.M., R.G. K r e b i l l , J.T. A r n o t t , and G.F. Weetman (eds . ) , Lodgepole Pine: The s p e c i e s and i t s management, Symposium Proceedings. Washington State U n i v e r s i t y , Pullman, Washington. B i n k l e y , D. and P. R e i d . 1985. Long-term i n c r e a s e of n i t r o g e n a v a i l a b i l i t y from f e r t i l i z a t i o n of D o u g l a s - f i r . Can. J . For. Res. 15: 723-724. B i t t e r l i c h , W. 1984. The Relascope Idea: R e l a t i v e Measurements in F o r e s t r y . Commonwealth A g r i c u l t u r a l Bureaux, England. Bohm, W. 1979. Methods of Studying Root Systems. S p r i n g e r - V e r l a g , B e r l i n . 188 pp. B.C. M i n i s t r y of F o r e s t s . 1980. P r e l i m i n a r y Tables of C l i m a t i c Information f o r the B i o g e o c l i m a t i c Zones of B r i t i s h Columbia. Provin c e of B r i t i s h Columbia, M i n i s t r y of F o r e s t s , Research Branch, V i c t o r i a , B.C. 14 pp. B.C. M i n i s t r y of F o r e s t s . 1981. F i e l d Pocket Handbook ( C l a s s i f i c a t i o n and Sampling). Province of B r i t i s h Columbia, M i n i s t r y of F o r e s t s , Inventory Branch, V i c t o r i a , B.C. B r i x , H. 1972. N i t r o g e n f e r t i l i z a t i o n and water e f f e c t s on p h o t o s y n t h e s i s and earlywood - latewood p r o d u c t i o n i n D o u g l a s - f i r . Can. J . For. Res. 2: 467-478. B r i x , H. 1979. M o i s t u r e - n u t r i e n t i n t e r r e l a t i o n s h i p , pp. 169 170 48-52. In; G e s s e l , S.P., R.M. Kennedy, and W.A. Atkinson ( e d s . ) , Proc. F o r e s t F e r t i l i z a t i o n Conference. Univ. of Washington, C o l l . F or. Res., I n s t . F o r . Res. C o n t r i b . No. 40. B r i x , H. 1981. E f f e c t s of t h i n n i n g and n i t r o g e n f e r t i l i z a t i o n on branch and f o l i a g e p r o d u c t i o n i n D o u g l a s - f i r . Can. J . For. Res. 11: 502-511. B r i x , H. 1983. E f f e c t s of t h i n n i n g and n i t r o g e n f e r t i l i z a t i o n on growth of D o u g l a s - f i r : r e l a t i v e c o n t r i b u t i o n of f o l i a g e q u a n t i t y and e f f i c i e n c y . Can. J . For. Res. 13: 167-175. B r i x , H. and A.K. M i t c h e l l . 1983. Thi n n i n g and n i t r o g e n f e r t i l i z a t i o n e f f e c t s on sapwood development and r e l a t i o n s h i p s of f o l i a g e q u a n t i t y to sapwood area and bas a l area i n D o u g l a s - f i r . Can. J . For . Res. 13: 384-389. Brown, J.K. 1976. P r e d i c t i n g crown weights f o r 11 Rocky Mountain c o n i f e r s , pp. 103-115. In: H.E. Young (ed.), Oslo Biomass S t u d i e s . Working Party on F o r e s t Biomass, S4.01 Mensuration, Growth and Y i e l d . IUFRO. XVIth I n t e r n a t i o n a l Congress of IUFRO, Oslo, Norway, June 22, 1976. C o l l e g e of L i f e S ciences and A g r i c u l t u r e , U n i v e r s i t y of Maine, Orono, M.E. Canada S o i l Survey Committee, Subcommittee on S o i l C l a s s i f i c a t i o n . 1978. The Canadian System of S o i l C l a s s i f i c a t i o n . Can. Dep. A g r i c . Publ. 1646. Supply and S e r v i c e s Canada, Ottawa, Ont. 164 pp. Cole, D.M. 1975. C u l t u r e of immature lodgepole pine stands f o r timber o b j e c t i v e s , pp. 536-555. In: D.M. Baumgartner (ed.), Management of Lodgepole Pine Ecosystems. V o l . 2. Washington S t a t e U n i v e r s i t y , Pullman, Washington. Cole, D.M. and C.E. Jensen. 1982. Models f o r d e s c r i b i n g v e r t i c a l crown development of lodgepole pine stands. U.S.D.A., F o r e s t S e r v i c e , Intermountain F o r e s t and Range Experiment S t a t i o n , Ogden, Utah. Res. Pap. INT-292. 10 pp. Comeau, P.G. and J.P. Kimmins. 1986. The r e l a t i o n s h i p between net primary p r o d u c t i o n and f o l i a g e n i t r o g e n content, and i t s a p p l i c a t i o n i n the mo d e l l i n g of f o r e s t ecosystems: A study of lodgepole pine (Pinus contort a var. latifolia Engelm.). In: T. F u j i m o r i (ed.), Crown and Canopy S t r u c t u r e i n R e l a t i o n to P r o d u c t i v i t y . Proceedings of IUFRO Symposium. Working Group S1.06-02. Tsukuba, Japan. Oct. 14-16, 1985. In p r e s s . C o u n c i l of F o r e s t I n d u s t r i e s of B r i t i s h Columbia. 1985. 171 B r i t i s h Columbia F o r e s t Industry S t a t i s t i c a l T a b l e s , 1984. C o u n c i l of Fo r e s t I n d u s t r i e s , Vancouver, B.C. 2 pp. Dahms, W.G. 1983. A growth s i m u l a t i o n model f o r lodgepole pine i n c e n t r a l Oregon. U.S.D.A., F o r e s t S e r v i c e , P a c i f i c Northwest F o r e s t and Range Experiment S t a t i o n . P o r t l a n d , Oregon. Res. Pap. PNW-302. 22 pp. F a r r e l l , E.P. and A.L. Leaf. 1974. E f f e c t s of f e r t i l i z a t i o n and i r r i g a t i o n on root numbers i n a red pine p l a n t a t i o n . Can. J . For. Res. 4: 366-371. Fo r e s t Products Laboratory. 1956. Method of determining the s p e c i f i c g r a v i t y of wood. U.S.D.A., F o r e s t S e r v i c e , F o r e s t Products L a b o r a t o r y . T e c h n i c a l Note B-14. Fore s t Research C o u n c i l of B r i t i s h Columbia. 1983. The management and s i l v i c u l t u r e of lodgepole pine i n B.C.: An i n t e r p r e t i v e review. O c c a s i o n a l Paper No. 1. Prepared f o r F o r e s t Research C o u n c i l of B.C. by Reid, C o l l i n s N u r s e r i e s L t d . , Vancouver, B.C. Fox, D.J. and K.E. G u i r e . 1976. Documentation f o r MIDAS. 3rd e d i t i o n . S t a t i s t i c a l Research Lab., Ann Arbor, Michigan. 203 pp. Gary, H.L. 1976. Crown s t r u c t u r e and d i s t r i b u t i o n of biomass in a lodgepole pine stand. U.S.D.A., F o r e s t S e r v i c e , Rocky Mountain F o r e s t and Range Experiment S t a t i o n , F o r t C o l l i n s , Colorado. Res. Pap. RM-165. 20 pp. Gholz, H.L. 1979. L i m i t s on aboveground net primary p r o d u c t i o n , l e a f area, and biomass i n v e g e t a t i o n a l zones of the P a c i f i c Northwest. Ph.D. t h e s i s , Oregon S t a t e U n i v e r s i t y , C o r v a l l i s , Oregon. 61 pp. Gholz, H.L. 1982. Environmental l i m i t s on aboveground net primary p r o d u c t i o n , l e a f area, and biomass i n v e g e t a t i o n zones of the P a c i f i c Northwest. Ecology 63: 469-481. G i l l , P.M. 1983. The r e l a t i o n s h i p between above-ground parameters and below-ground biomass of Pi nus contort a var. latifolia Engelm. B.S.F. t h e s i s . F a c u l t y of F o r e s t r y . U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. Unpublished. G r a n i e r , A. 1981. Etude des r e l a t i o n s entre l a s e c t i o n du bo i s d'aubier et l a masse f o l i a r e chez le-Douglas (Pseudotsuga menziesii Mirb. F r a n c o ) . Ann. S c i . F o r e s t . 38: 503-512. G r i e r , C C . and S.W. Running. 1977. Leaf area of mature northwestern c o n i f e r o u s f o r e s t s : R e l a t i o n to s i t e water 172 balance. Ecology 58: 893-899. G r i e r , C C . , K.A. Vogt, M.R. Keyes, and R.L. Edmonds. 1981. Biomass d i s t r i b u t i o n and above- and below-ground pr o d u c t i o n i n young and mature Abies amabilis zone ecosystems of the Washington Cascades. Can. J . For. Res. 11: 155-167. G r i e r , C C . and R.H. Waring. 1974. C o n i f e r f o l i a g e mass r e l a t e d to sapwood area. F o r . S c i . 20: 205-206. Hegyi, F., J . J e l i n e k , and D.B. Carpenter. 1979. S i t e Index Equations and Curves f o r the Major Tree Species i n B r i t i s h Columbia. Province of B r i t i s h Columbia, M i n i s t r y of F o r e s t s , Inventory Branch: F o r e s t Inventory Report No. 1. V i c t o r i a , B.C. Helms, J.A. 1976. F a c t o r s i n f l u e n c i n g net p h o t o s y n t h e s i s i n t r e e s : An e c o l o g i c a l viewpoint, pp. 55-78. In: C a n n e l l , M.G.R. and F.T. L a s t ( e d s . ) , Tree P h y s i o l o g y and Y i e l d Improvement. Academic Press, New York. Helms, J.A. and M.R. R u t t e r . 1979. Tree p h y s i o l o g y as a b a s i s f o r b e t t e r s i l v i c u l t u r e . C a l i f o r n i a A g r i c u l t u r e 33: 12-13. Helms, J.A., R.B. Walker, and K.L. Reed. 1974. P h o t o s y n t h e s i s i n r e l a t i o n to ecosystem s t u d i e s , pp. 77-94. In: Reid, C P . and G.H. Fechner ( e d s . ) , Proc. T h i r d North American F o r e s t B i o l o g y Workshop. Colorado St a t e U n i v e r s i t y , F o r t C o l l i n s , Colorado Hoyle, M.C. and D.L. Mader. 1964. R e l a t i o n s h i p s of f o l i a r n u t r i e n t s to growth of red pine in western Massachusetts. For. S c i . 10: 337-347. Ingestad, T. 1979. M i n e r a l n u t r i e n t requirements of Pi nus silvestris and Picea abies s e e d l i n g s . P h y s i o l . P l a n t . 45: 373-380. Ingestad, T. 1980. Growth, n u t r i t i o n and n i t r o g e n f i x a t i o n i n grey a l d e r at v a r i e d r a t e of n i t r o g e n a d d i t i o n . P h y s i o l . P l a n t . 50: 353-364. Ingestad, T., A. Aronsson, and G.I. Agren. 1981. N u t r i e n t f l u x d e n s i t y model of m i n e r a l n u t r i t i o n i n c o n i f e r ecosystems. In: S. L i n d e r ( ed . ) , Understanding and P r e d i c t i n g Tree Growth. Stud. For. Suec. 160: 61-72. J a r v i s , P.G. and J.W. Leverenz. 1983. P r o d u c t i v i t y of temperate, deciduous and evergreen f o r e s t s , pp. 233-280. In: Lange, O.L., P.S. Nobel, C B . Osmond, and H. Z i e g l e r T e d s . ) , P h y s i o l o g i c a l P l a n t Ecology IV, Ecosystem Processes: M i n e r a l C y c l i n g , P r o d u c t i v i t y and Man's 1 73 I n f l u e n c e . S p r i n g e r - V e r l a g , B e r l i n . Johnstone, W.D. 1971. T o t a l standing crop and t r e e component d i s t r i b u t i o n s i n three stands of 100-year-old lodgepole p i n e . pp. 81-89. In: H.E. Young (ed.), F o r e s t Biomass S t u d i e s . 15th IUFRO Congress, Univ. of Maine Press, Orono, M.E. Kaufmann, M.R. and C A . T r o e n d l e . 1981. The r e l a t i o n s h i p of l e a f area and f o l i a g e biomass to sapwood conducting area i n four s u b a l p i n e f o r e s t t r e e s p e c i e s . For. S c i . 27: 477-482. Keane, M.G. 1985. Some aspects of needle morphology, biomass a l l o c a t i o n and f o l i a r n u t r i e n t compositions i n a young f e r t i l i z e d stand of r e p r e s s e d lodgepole p i n e . Ph.D. t h e s i s . F a c u l t y of Graduate S t u d i e s , Department of F o r e s t r y , U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. Unpublished. K e l l e r , Th. 1967. The i n f l u e n c e of f e r t i l i z a t i o n on gaseous exchange of f o r e s t t r e e s p e c i e s , pp. 65-79. In: Proceedings of the Colloquium on F o r e s t F e r t i l i z a t i o n , J y v a s k y l a , F i n l a n d . P u b l i s h e d by I n t e r n a t i o n a l Potash I n s t i t u t e , Berne, S w i t z e r l a n d . Kennedy, R.W. 1984. Lodgepole pine as a commercial resource i n Canada, pp. 21-23. In: Baumgartner, D.M., R.G. K r e b i l l , J.T. A r n o t t , and G.F. Weetman ( e d s . ) , Lodgepole Pi n e : The s p e c i e s and i t s management, Symposium Proceedings. Washington S t a t e U n i v e r s i t y , Pullman, Washington. Keyes, M.R. and C C G r i e r . 1981. Above- and below-ground net p r o d u c t i o n i n 40-year-old Douglas f i r stands on low and high p r o d u c t i v i t y s i t e s . Can. J . For. Res. 11: 599-605. Kimmins, J.P. 1985. Future shock i n f o r e s t y i e l d f o r e c a s t i n g : the need f o r a new approach. For. Chron. 61:503~513. Kimmins, J.P. and K.A. S c o u l l a r . 1984. The r o l e of m o d e l l i n g i n t r e e n u t r i t i o n r e s e a r c h and s i t e n u t r i e n t management, pp. 463-487. In: Bowen, G.D. and E.K.S. Nambiar ( e d s . ) , N u t r i t i o n of P l a n t a t i o n F o r e s t s . Academic Press, London. K i t t r e d g e , J . 1944. E s t i m a t i o n of the amount of f o l i a g e of t r e e s and stands. J . F o r . 42: 905-912. Kozak, A. 1970. Methods f o r e n s u r i n g a d d i t i v i t y of biomass components by r e g r e s s i o n a n a l y s i s . For. Chron. 46: 402-404. 174 Kozlowski, T.T. and T. K e l l e r . 1966. Food r e l a t i o n s of woody p l a n t s . Bot. Rev. 32: 293-382. K r a j i n a , V.J., K. K l i n k a , and J . W o r r a l l . 1982. D i s t r i b u t i o n and E c o l o g i c a l C h a r a c t e r i s t i c s of Trees and Shrubs of B r i t i s h Columbia. The U n i v e r s i t y of B r i t i s h Columbia, F a c u l t y of F o r e s t r y , Vancouver, B.C. 131 pp. Larson, P.R. and J.C. Gordon. 1969. Photosynthesis and wood y i e l d . A g r i c . S c i . Rev. 7: 7-14. L e d i g , F.T. 1974. Concepts of growth a n a l y s i s , pp. 166-182. In: Reid, C P . and G.H. Fechner ( e d s . ) , Proc. T h i r d North American F o r e s t B i o l o g y Workshop. Colorado State U n i v e r s i t y , F o r t C o l l i n s , Colorado. L i n d e r , S. and E. Troeng. 1980. P h o t o s y n t h e s i s and t r a n s p i r a t i o n of 20-year-old Scots p i n e . In: T. Persson (ed.), S t r u c t u r e and F u n c t i o n of Northern C o n i f e r o u s F o r e s t s - An Ecosystem Study. E c o l . B u l l . (Stockholm) 32: 165-181. Long, J.N. and J . Turner. 1975. Aboveground biomass of understorey and o v e r s t o r e y i n an age sequence of four D o u g l a s - f i r stands. J . Appl. E c o l . 12: 179-188. Maggs, D.H. 1961. Changes i n the amount and d i s t r i b u t i o n of increment induced by c o n t r a s t i n g watering, n i t r o g e n , and environmental regimes. Ann. Bot., N.S. 25: 353-361. N a d e l h o f f e r , K.J., J.D. Aber, and J.M. M e l i l l o . 1985. Fine r o o t s , net primary p r o d u c t i o n , and s o i l n i t r o g e n a v a i l a b i l i t y : A new h y p o t h e s i s . Ecology 66: 1377-1390. Parkinson, J.A. 1983. Nitrogen and phosphorus r e t r a n s l o c a t i o n from needles of D o u g l a s - f i r growing on three s i t e types. M.Sc. t h e s i s . F a c u l t y of Graduate S t u d i e s , Department of F o r e s t r y , U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. Unpublished. Pearson, J.A. 1982. Biomass d i s t r i b u t i o n and ecosystem development in lodgepole pine f o r e s t s of the Medicine Bow Mountains, Wyoming. Ph.D. t h e s i s . Department of Botany, U n i v e r s i t y of Wyoming, Laramie, Wyoming. Unpublished. Penning de V r i e s , F.W.T. 1983. Modeling of growth and p r o d u c t i o n , pp. 117-150. In: Lange, O.L., P.S. Nobel, C B . Osmond, and H. Z i e g l e r ( e d s . ) , P h y s i o l o g i c a l Plant Ecology IV, Ecosystem Processes: M i n e r a l C y c l i n g , P r o d u c t i v i t y and Man's I n f l u e n c e . S p r i n g e r - V e r l a g , B e r l i n . Persson, H. 1979. F i n e - r o o t p r o d u c t i o n , m o r t a l i t y and 175 decomposition i n f o r e s t ecosystems. V e g e t a t i o 41: 101-109. Persson, H. 1980. F i n e - r o o t dynamics i n a Scots pine stand with and without near-optimum n u t r i e n t and water regimes. Acta Phytogeogr. Suec. 68: 101-110. S a f f o r d , L.O. 1974. E f f e c t of f e r t i l i z a t i o n on biomass and n u t r i e n t content of f i n e r o o t s i n a beech-birch-maple stand. P l a n t and S o i l 40: 349-363. Santantonio, D. and R.K. Hermann. 1985. Standing crop, p r o d u c t i o n , and turnover of f i n e r o o t s on dry, moderate, and wet s i t e s of mature D o u g l a s - f i r i n western Oregon. Ann. S c i . f o r . 42: 113-142. Santantonio, D., R.K. Hermann, and W.S. Overton. 1977. Root biomass s t u d i e s i n f o r e s t ecosystems. P e d o b i o l o g i a 17: 1-31 . Satoo, T. 1968. Primary p r o d u c t i o n r e l a t i o n s i n woodlands of Pi nus densiflora, pp. 52-80. In: H.E. Young (ed.), Symposium on Primary P r o d u c t i v i t y and M i n e r a l C y c l i n g i n N a t u r a l Ecosystems. E c o l o g i c a l S o c i e t y of America. U n i v e r s i t y of Maine Press, Orono, M.E. Satoo, T. 1971. Primary p r o d u c t i o n r e l a t i o n s of c o n i f e r o u s f o r e s t s i n Japan, pp. 191-205. In: P. Duvigneaud (ed.), P r o d u c t i v i t y of F o r e s t Ecosystems. Proc. B r u s s e l s Symp., 1969. UNESCO, P a r i s . Satoo, T. and H.A.I Madgwick. 1982. F o r e s t Biomass. N i j h o f f / J u n k P u b l i s h e r s . The Hague. 152 pp. Schroeder, P.E., B. McCandlish, R.H. Waring, and D.A. P e r r y . 1982. The r e l a t i o n s h i p of maximum canopy l e a f area to f o r e s t growth i n e a s t e r n Washington. Northwest S c i e n c e . 56: 121-130. Singh, J.S., W.K. Lauenroth, H.W. Hunt, and D.M. S w i f t . 1984. B i a s and random e r r o r s i n e s t i m a t o r s of net root p r o d u c t i o n : A s i m u l a t i o n approach. Ecology 65: 1760-1764. Technicon Instrument C o r p o r a t i o n . 1977. I n d i v i d u a l / s i m u l t a n e o u s d e t e r m i n a t i o n s of n i t r o g e n and/or phosphorus in BD a c i d d i g e s t s . I n d u s t r i a l Method Number 329-70 W. Technicon Instrument C o r p o r a t i o n , Tarrytown, New York. T r o x l e r E l e c t r o n i c L a b o r a t o r i e s . 1974. Depth Moisture Gauges I n s t r u c t i o n Manual. T r o x l e r E l e c t r o n i c L a b o r a t o r i e s , Inc., Research T r i a n g l e Park, North C a r o l i n a . 60 pp. 176 Turner, J . 1977. E f f e c t of n i t r o g e n a v a i l a b i l i t y on n i t r o g e n c y c l i n g i n a D o u g l a s - f i r stand. F o r. S c i . 23: 307-316. U t z i g , G., D. Macdonald, G. S t i l l , M. Ketcheson, T. Braumandl, and A. Warner. 1983. E c o l o g i c a l C l a s s i f i c a t i o n f o r the Nelson F o r e s t Region ( T h i r d Approximation). Province of B r i t i s h Columbia, M i n i s t r y of F o r e s t s . 78 pp. Vogt, K.A., R.L. Edmonds, and C C . G r i e r . 1981. Seasonal changes i n biomass and v e r t i c a l d i s t r i b u t i o n of m y c o r r h i z a l and f i b r o u s - t e x t u r e d c o n i f e r f i n e r o o t s i n 23- and 180-year-old s u b a l p i n e Abies amabilis stands. Can. J . For. Res. 11: 223-229. Vogt, K.A., R.L. Edmonds, C C G r i e r , and S.R. P i p e r . 1980. Seasonal changes i n m y c o r r h i z a l and f i b r o u s - t e x t u r e d root biomass i n 23- and 180-year-old P a c i f i c s i l v e r f i r stands i n western Washington. Can. J . F o r . Res. 10: 523-529. Vogt, K.A., C C G r i e r , C E . Meier, and M.R. Keyes. 1983a. Organic matter and n u t r i e n t dynamics i n f o r e s t f l o o r s of young and mature Abies amabilis stands i n western Washington, as a f f e c t e d by f i n e - r o o t i n p u t . E c o l . Monogr. 53: 139-157. Vogt, K.A., E.E. Moore, D.J. Vogt, M.J. R e d l i n , and R.L. Edmonds. 1983b. C o n i f e r f i n e root and m y c o r r h i z a l root biomass w i t h i n the f o r e s t f l o o r s of D o u g l a s - f i r stands of d i f f e r e n t ages and s i t e p r o d u c t i v i t i e s . Can. J . F o r . Res. 13: 429-437. Walmsley, M., G. U t z i g , T. V o i d , D. Moon, and J . van Barneveld. 1980. D e s c r i b i n g Ecosystems i n the F i e l d . P r o v i n c e of B r i t i s h Columbia, M i n s t r y of Environment, M i n i s t r y of F o r e s t s , RAB T e c h n i c a l Paper 2, Land Management Report No. 7, V i c t o r i a , B.C. 224 pp. Waring, R.H. 1980. S i t e , l e a f area, and phytomass p r o d u c t i o n i n t r e e s , pp. 125-135. In: Benecke, U. and M.R. Davies ( e d s . ) , Mountain Environments and Subalpine Tree Growth. Tech. Paper No. 70. For. Res. I n s t . , N.Z. For. Serv., C h r i s t c h u r c h , New Zealand. Waring, R.H. 1983. E s t i m a t i n g f o r e s t growth and e f f i c i e n c y i n r e l a t i o n to canopy l e a f a r e a . Adv. E c o l . Res. 13: 327-354. Waring, R.H., W.H. Emmingham, H.L. Gholz, and C C G r i e r . 1978. V a r i a t i o n s i n maximum l e a f area of c o n i f e r o u s f o r e s t s i n Oregon and i t s e c o l o g i c a l s i g n i f i c a n c e . F o r. S c i . 24: 131-140. 1 77 Waring, R.H., K. Newman, and J . B e l l . 1981. E f f i c i e n c y of t r e e crowns and stemwood p r o d u c t i o n at d i f f e r e n t canopy l e a f d e n s i t i e s . F o r e s t r y 54: 129-137. Waring, R.H., W.G. T h i e s , and D. Muscato. 1980. Stem growth per u n i t of l e a f a r e a : A measure of tr e e v i g o r . For. S c i . 26: 112-117. Warner, M.H. and J.B. Jones. 1970. A r a p i d method f o r n i t r o g e n d e t e r m i n a t i o n i n p l a n t t i s s u e . S o i l Science and Pl a n t A n a l y s i s 1: 109-114. Wheeler, N.C. and W.B. C r i t c h f i e l d . 1984. The d i s t r i b u t i o n and b o t a n i c a l c h a r a c t e r i s t i c s of lodgepole p i n e : B i o g e o g r a p h i c a l and management i m p l i c a t i o n s , pp. 1-13. In: Baumgartner, D.M., R.G. K r e b i l l , J.T. A r n o t t , and G.F. Weetman (e d s . ) , Lodgepole Pine: The s p e c i e s and i t s management, Symposium Proceedings. Washington State U n i v e r s i t y , Pullman, Washington. Whitehead, D., W.R.N. Edwards, and P.G. J a r v i s . 1984. Conducting sapwood area, f o l i a g e area, and p e r m e a b i l i t y i n mature t r e e s of Picea sitchensis and Pi nus contorta. Can. J . For. Res. 14: 940-947. Wittneben, U. 1980. S o i l Resources of the Lardeau Map Area (82 K). Province of B r i t i s h Columbia, M i n i s t r y of Environment, Resource A n a l y s i s Branch, Kelowna, B.C. RAB B u l l e t i n 15. Report No. 27, B r i t i s h Columbia S o i l Survey. 221 pp. Zar, J.H. 1974. B i o s t a t i s t i c a l A n a l y s i s . P r e n t i c e - H a l l , Inc., Englewood C l i f f s , N.J. 620 pp. Z a v i t k o v s k i , J . , J.G. Isebrands, and T.R. Crow. 1974. A p p l i c a t i o n of growth a n a l y s i s i n f o r e s t biomass s t u d i e s , pp. 196-226. In: R e i d , C.P. and G.H. Fechner ( e d s . ) , Proc. T h i r d North American F o r e s t B i o l o g y Workshop. Colorado S t a t e U n i v e r s i t y , F o r t C o l l i n s , C o lorado. APPENDICES 178 179 Appendix I G l o s s a r y T h i s short g l o s s a r y p r o v i d e s d e f i n i t i o n s f o r s e l e c t e d terms as they are a p p l i e d i n t h i s t h e s i s . I t i s i n c l u d e d here to c l a r i f y the use of terminology and to i n d i c a t e synonymous terms from the l i t e r a t u r e . 1. Biomass: the t o t a l weight of l i v i n g organisms present at any one time on a u n i t area of land ( f o r t e r r e s t r i a l communities). Tree biomass, as a p p l i e d here, r e p r e s e n t s the t o t a l weight of l i v e t r e e s per h e c t a r e . 2. F o l i a g e e f f i c i e n c y ( F E ) : net primary p r o d u c t i o n per u n i t f o l i a g e biomass (t t ~ 1 y r ~ 1 ) . I t i s expressed as: a. FE(TNPP): t o t a l (aboveground p l u s belowground) net primary p r o d u c t i o n per ton of f o l i a g e biomass (t t - 1 y r - M . b. FE(ANPP): aboveground net primary p r o d u c t i o n (ANPP) per ton of f o l i a g e biomass (t t " 1 y r ~ 1 ) . c. F E ( F o l i a g e ) : f o l i a g e p r o d u c t i o n per ton of f o l i a g e biomass (t t" 1 y r ~ 1 ) . The e q u i v a l e n t term 'Net A s s i m i l a t i o n Rate' has been used i n a s i m i l a r c ontext f o r s e e d l i n g ANPP per u n i t l e a f area or f o l i a g e biomass (Ledig 1974). Satoo and Madgwick (1982) use "Leaf E f f i c i e n c y " t o r e f e r to ANPP per u n i t f o l i a g e biomass i n f o r e s t stands. " E f f i c i e n c y " has a l s o been used to r e f e r to stem 180 p r o d u c t i o n per u n i t l e a f area (Waring 1983). F o l i a g e Nitrogen E f f i c i e n c y (FNE): r e f e r s to net primary p r o d u c t i o n per kg of n i t r o g e n c o n t a i n e d i n the f o l i a g e . I t i s expressed as: a. FNE(TNPP): t o t a l (aboveground p l u s belowground) net primary p r o d u c t i o n per kg of f o l i a g e n i t r o g e n (t k g " 1 y r - 1 ) . b. FNE(ANPP): aboveground net primary p r o d u c t i o n per kg of f o l i a g e n i t r o g e n (t kg-'yr"" 1). c. F N E ( F o l i a g e ) : f o l i a g e p r o d u c t i o n per kg of f o l i a g e n i t r o g e n (t k g _ 1 y r _ 1 ) . The term "Nitrogen P r o d u c t i v i t y " has been d e f i n e d by Agren (1983) as f o l i a g e p r o d u c t i o n per kg of n i t r o g e n c o n t a i n e d i n the f o l i a g e . T h i s i s e q u i v a l e n t to F N E ( F o l i a g e ) . Gross Primary P r o d u c t i o n : the i n c r e a s e i n p l a n t organic matter (production) p l u s l o s s e s to r e s p i r a t i o n per u n i t time and a r e a . Increment ( I ) : the i n c r e a s e i n biomass of organisms per u n i t area and u n i t time. In f o r e s t stands, the term "Mean Annual Increment" (MAI) i s used to express the increment of t r e e stem biomass over the l i f e of the stand. MAI i s c a l c u l a t e d as: MAI(t h a - 1 y r - 1 ) = Stem biomass (t h a ~ 1 ) / S t a n d Age ( y e a r s ) . Net Primary P r o d u c t i o n (NPP): the i n c r e a s e i n l i v e p l a n t biomass p l u s biomass l o s t to l i t e r f a l l , m o r t a l i t y , r e p r o d u c t i o n , g r a z i n g , t h i n n i n g , and pruning per u n i t 181 time and a r e a . NPP i s e q u i v a l e n t to gross primary p r o d u c t i o n minus r e s p i r a t i o n . NPP = Increment + L i t t e r f a l l + M o r t a l i t y + Reproduction + G r a z i n g + (Pruning + Spacing) a. T o t a l Net Primary P r o d u c t i o n (TNPP) = aboveground NPP + belowground NPP b. Aboveground Net Primary P r o d u c t i o n (ANPP) i s estimated f o r aboveground p l a n t or t r e e components: ANPP = aboveground increment + aboveground l i t t e r f a l l + m o r t a l i t y (aboveground) In t h i s study, m o r t a l i t y was not measured and data 182 r e l a t e to t r e e p r o d u c t i o n o n l y . Thus: ANPP = Net Stem Production + F o l i a g e Production + Branch Production c. Belowground Net Primary P r o d u c t i o n (BNPP) BNPP = belowground increment + belowground l i t t e r p r o d u c t i o n + m o r t a l i t y As used here, i t i s estimated as: BNPP = Increment + L i t t e r 7 . Net Stem Production (NSP): c u r r e n t r a t e s of increment of t r e e stem biomass. Estimated here as stem p e r i o d i c annual increment (average y e a r l y stem biomass increment • over the recent 5 year p e r i o d ) . 8. P r o d u c t i o n (P): The i n c r e a s e i n the q u a n t i t y of organic m a t e r i a l ( l i v i n g and dead) per u n i t time and a r e a . 183 Appendix II C r i t e r i a f o r the i d e n t i f i c a t i o n of hygrotope and trophotope c l a s s e s (from Walmsley et a l 1980, pages 37-43). 183a ECOLOGICAL MOISTURE REGIME ( a d a p t e d f r om K l i n k a , 1977 and U t z i g e t a l , 1978) L e a v e s 18^ 1—86 no t f i l m e d ; p e r m i s s i o n no t o b t a i n e d . NUTRIENT REGIME ( a d a p t e d f r om K l i n k , 1977 and U t z i g e t a l , 1978) L e a v e s 187-90 no t f i l m e d ; p e r m i s s i o n no t o b t a i n e d . 184 27. ECOLOGICAL MOISTURE REGIME (adapted from Klinka, 1977 and Utzig et al, 1978) Ecological moisture regime (hygrotope), relative to certain macroclimatic conditions represented by a biogeoclimatic subzone or any other bioclimatic unit, signifies on a relative scale the available moisture supply to plant growth. At present, there has been l i t t l e quantitative investigation of the classes described here. Assuming that within a given subzone climatic variables such as temperature and precipitation are essentially constant (or vary within narrow ranges), the within subzone variation of available moisture results from the redistribution of precipitation by edaphic factors. Sites which have an amount of available moisture that reflect the given climate, and have average conditions of slope, moisture translocation, and texture have mesic moisture regime, while those with less than normal available moisture grade to xeric, and those with more than normal available moisture grade to hydric (see Table 2.6). The ecological moisture regime is a relative ranking of sites based on their available moisture supplies (available moisture is that which is held between 1/3 bar and 15 bars matric potential). The moisture regime is assessed regardless of osmotic potential ( i .e . salt content is not considered). Because available moisture is a dynamic property which varies throughout the year, the intent of the assessment is to evaluate available moisture on the basis of the growing season as a whole, not at any particular time. The ecological moisture regime integrates many interrelated environmental and biotic parameters which, in combination, determine the actual amount of available moisture. The f ield assessment is ideally completed by evaluating a combination of environmental factors, soil properties, and indicator plants. However the assessment can be made on the basis of plant indicators or environmental factors and soil properties alone. A schematic illustration of the influence of these factors is given in Figure 2.9. Ecological moisture regime is correlated with the following factors: micro-variations in topoclimate, slope positions (macro and meso re l ie f ) , slope gradient, soil drainage, depth of surface humus layers, soil texture (including the content of coarse fragments), soil depth, and' the presence of an impermeable layer. Factors related to internal soil properties can be evaluated in a soil pit, on road cuts, or in disturbed spots. In general, the most influential factor is the position on the slope. On ridges and upper slopes, precipitation is the main source of water since moisture passes quickly downslope and l i t t l e , if any, moisture is retained. Middle slopes receive, in addition to precipitation, some seepage from up-slope, but this seepage flow moves further down-slope and is usually discontinued during the summer. The lower slopes, f lats , and depressions are usually enriched by a temporary or permanent seepage waterflow. The other factors can be considered as compensating this general pattern, i .e . affecting in a variable degree the ultimate ecological moisture regime. The amount of available moisture often increases with decreasing slope gradient, decreasing soil particle 185 coarse fluvial with seepage water Figure 2.9 Ecological Moisture Regime in relation to landscape position and geologic material size ( i .e . from coarse to fine textured so i ls ) , decreasing content of coarse fragments, increasing soil depth, and increasing thickness of humus layers (in particular with the thickness of colloidal and humified H-layer). The presence of an impermeable layer (e.g. bedrock, compacted t i l l , cemented layer) may inhibit soil water storage, or create conditions for temporary or permanent seepage if subsurface water flow seepage is present. This can also result in an increase of available moisture. The ecological moisture regime classes and potentially identifying characteristics are given in Table 2.6. The use of plant indicators for assessing ecological moisture regime requires an existing vegetation classification scheme for the subzone under consideration or a reconnaissance of the area sufficient to establish relationships between vegetation indicators and the range of edaphic conditions. When assessing sites near subzone boundaries, care must be taken to differentiate between seepage inputs, and increases in precipitation or decreases in evapotranspiration demands. For example, plants which are normally found on mesic sites in one subzone can occur on subhygric sites in an adjacent subzone with lower precipitation or higher temperatures. Care must also be taken to assess the plant community as a whole. Some species may have a limited rooting depth and do not reflect the presence of deeper seepage waters, while other species may reflect changes in nutrient availability rather than available moisture. Even when extensive vegetation information is available, it is always best to consider the environmental factors as well. 186 TABLE 2.6: ECOLOGICAL MOISTURE REGIME CLASSES DEFINING rHARArrrRrsTirs FIELD RECOGNITION CHARACTERISTICS MOISTURE RESIDE SOIL PROPERTIES SLOPE GRADIENT DESCRIPTION PRIMARY WATER SOURCE SLOPE POSITION TEXTURE DRAINAGE DEPTH TO IMPERMEABLE LAYER SURFACE HUMUS DEPTH AVAILABLE WATER STOR. CAP VERY XERIC Water removed e x t r e m e l y r a p i d l y i n r e l a t i o n to s u o p l y , s o i l i s n o i s t f o r a n e g l i g i b l e t i n e a f t e r ppt p r e c i p i t a t i o n 1 1 i r i d g e c r e s t s shedding | ! 1 1 1 very c o a r s e ( g r a v e l l y - s ) abundant 1 very r a p i d j 1 1 very s h a l l o w v e r y s h a l l o w I 1 1 1 1 e x t r e m e l y low 1 1 i i 1 very steep ( e s p e c i -al l y on s o u t h XERIC Water i-emovea v e r y r a o i d l y i n r e l a t i o n ro s u p p l y ; s o i l i s n o i s e f o r b r i e f p e r i o d s f o l l o w i n g opt p r e c i p i t a t i o n c o a r s e f r a g ments 1 i 1 1 1 r a p i d t (<0.5ra) 1 | 1 a s p e c t s ) ! 1 SLJSXERIC Water r e m o v e d r a o i a l y i n r e l a t i o n to s u p p l y ; s o i l i s mo is t f o r sno r t p e r i o d s f o l l o w i n g ppt p r e c i pi t a t i o n 1 i upper s l o p e s shedding i 1 1 1 1 c o a r s e to mod. c o a r s e ( L S - S L ) mod. c o a r s e f r a g -ments 1 1 1 1 r a p i d to w e l l 1 I I 1 1 shal1ow I 1 s h a l l o w i 1. ' 1 1 very low I  :' 1 1 steeo 1 1 i moderate 1 1 1 1 SUBME5IC Water r-emoved r e a d i l y i n r e l a t i o n to s u D p l y ; wate r a v a i l a b l e f o r modera te l y shor t p e r i o d s f o l l o w i n g ppt p r e c i p i t a t i o n (<lm) 1 1 | 1 low I 1 MESIC water removed somewhat s l o w l y i n r e l a t i o n to s u p p l y ; s o i l may remain mo is t f o r a s i g n i f i c a n t , but sometimes shor t p e r i o d of t h e y e a r . A v a i l a o l e s o i l m o i s t u r e r e f l e c t c l i m a t i c i n p u t s . p r e c i p i t a t i o n i n modera te l y to f i n e - t e x -t u r e d s o i l s & 1 i m i t e d seep-age i n coarse t e x t u r e d s o i l s m i d - s l o p e normal r o l l i n g to f l a t l 1 1 moderate to f i n e ( L - S i L ) few c o a r s e f ragments ! 1 wel1 1 to n o d e r a t e l y w e l l 1 1 1 modera te l y deep (1-2 n) 1 1 1 moderate ly deep ' l • 1 1 1 1 moderate 1 1 1 SUBHYGRIC Water removed s l o w l y enough to keep the s o i l wet f o r a s i g n i f i c a n t pa r t of the growing s e a s o n ; s o m e temoorary seepage and p o s s i b l y m o t t l i n g below 20 c m p r e c i p i t a t i o n and seepage 1 1 1 lower^ s l o p e s r e c e i v i n g I 1 1 i I I 1 v a r i a b l e depending on seeoage 1 I 1 i 1 modera te l y wel 1 to i m p e r f e c t i 1 deep (>2 m ) 1 • 1 1 deep i I h i g h 1 1 1 1 1 I 1 s l i g h t i HYGRIC Water removed s l o w l y enough to keep the s o i l wet f o r most o f the grow-i n g s e a s o n ; permanent seepage and . - r a t t l i n g p r e s e n t ; p o s s i b l y weak g l e y i n g seepage 1 impec fec t to poor i 1 1 v a r i a b l e depending on seepage 1 i 1 1 1 1 1 v a r i a b l e dependi ng on seep -age ^ 1 SU8HYDRIC Water removed s l o w l y enough to keeo the water t a b l e at o r near the s u r f a c e f o r most of the y e a r ; g leyed minera l o r o r g a n i c s o i l s ; permanent seepage l e s s than 30 c m below the s u r f a c e seepage o r permanent wate r t a b l e i 1 1 1 i d e p r e s s i o n s r e c e i v i n g 1 1 I 1 1 1 V a r i a b l e depending on seepage 1 1 1 poor1 to very^ poor 1 1 1 1 1 i v a r i a b l e depending on seepage 1 1 1 1 very deeo 1 i 1 1 1 1 v a r i a b l e depending on seep -! HYORIC Water removed so s l o w l y t h a t the water t a b l e i s at o r above the s o i l s u r f a c e a l l y e a r ; g leyed m i n e r a l o r o r g a n i c s o i l s permanent w a t e r t a b l e 1 very poor 1 l 1 1 f l a t ! 1 187 28. NUTRIENT REGIME (adapted from Klinka, 1977 and Utzig et a l , 1978) Soil nutrient regime (trophotope), relative to climatic conditions represented by a biogeoclimatic subzone or any other bioclimatic unit, signifies on a relative scale the available nutrient supply to plant growth (with emphasis on soil pH and exchangeable cations: Ca, Mg, Na, and K). The soi l 's nutrient regime integrates many environmental and biotic parameters, which in combination determine the actual amounts of available nutrients. It is a dynamic property, characterized by inputs and losses, with seasonal variations. The aim of the assessment is to derive an estimate of the available nutrient supply for a site which will characterize it relative to all other sites occurring within the respective biogeoclimatic subzone or other bioclimatic unit. At present, the assessment of soil nutrient regimes is strictly qualitative for a number of reasons, including a lack of understanding of the role played by soil weathering and forest humus layers in the supply of nutrients, and a lack of information on the required nutrient levels for optimum growth of various species (particularly trees). At present, the application of soil nutrient regimes does not directly take into account the availability of nutrients other than cations, which may be limiting on any particular site. In general however, biomass production is expected to increase from oligotrophic to eutrophic nutrient regimes for a given hygrotope under particular climatic conditions (e.g. biogeoclimatic subzone). Exceptions may occur with limiting nutrients such as phosphorus, which is often unavailable (and limiting) at a high pH where i t is fixed by calcium compounds; nitrogen, which occurs in various forms and can be limiting to the production of some species; or sulfur, which may be absent in some parent materials. Eutrophic and hypereutrophic nutrient regimes may contain excess salts which limit the availabil ity of water to most plant species. Although, generally speaking, biomass production increases from oligotrophic to eutrophic, there are exceptions for particular subzones and particular species. Major factors influencing nutrient regimes are described in the following paragraphs and Table 2.7 provides information on the use of soil parent materials, humus layers, seepage water, and analytical data to aid in assessing soil nutrient regime. Soil Parent Materials (Bedrock and Landforms) The kind of bedrock from which the soil parent materials were derived can be a useful guide to assessing nutrient regime. Identification of coarse fragments from the soil is preferable, although local outcrops or information from a geologic map may be used. During the last major glaciation, glacial materials were derived mainly from local bedrock sources, producing soil parent materials which often reflect local bedrock characteristics. This is particularly true in small valley systems where the bedrock is uniform and materials have moved only short distances. The larger valleys are more likely to have mixed parent materials of intermediate nutrient regimes. Wherever bedrock is used as the primary, differentiating cr i ter ia , the rock types which occur as coarse • fragments should be compared with those indicated on geologic maps or in adjacent outcrops. TABLE 2.7: NUTRIENT REGIME CHARACTERISTICS* DEFINITION OLIGOTROPHIC A very poor nutri-tional status, very small supply of available nutrients SUBMESOTROPHIC B poor nutritional status, low supply of available nutrients MESOTROPHIC C medium nutri-tional status, medium supply of available nutrients PERMESOTROPIIIC D rich nutri-tional status, plentiful supply of avai1 able nutrients EUTROPHIC E very rich nu-tritional status, abun-dant supply of nutrients HYPEREUTROPIIIC F saline nutri-tional status, excess salt accumulations BEDROCK SOURCE --granite— granodiori te-----rhyolite dacite -quartzite quartz gneiss-•quartz sandstone conglomerate— —dior i te gabbro peridot i te dun i te--serpent i ne andesite basal t --garnet schist--biotite schist--slate--phyllite-marble -graywacke argil lite-shale-doloinite-1 imestone-gypsym-hal itt TEXTURE — very coarse- -coarse- -medium - - - f i ne- -very fine variable— ORGANIC MATTER CONTENT -low- -moderate- -high- -variable-HUMUS FORM -acid-mors -mor and moders- -moders and-mul Is SOIL REACTION -extremely acid to-medium acid -medium acid to-neutral -siightly acid to-mildly alkaline —moderately to strongly alkaline CATION EXCHANGE CAPACITY -low moderate- -li i git— -variable--BASE SATURATION -low moderate- -high variable---C/N RATIO -high- -moderate- -low variable— * The presence of nutrient-rich seepage waters may compensate for other factors to create eutrophic conditions. 189 Soils derived from basic igneous rocks (e.g. basalt, gabbro), basic metamorphic rocks (e.g. a rg i l l i te , biotite schist, gabbro gneiss), and rich sedimentary rocks (e.g. limestone, dolomite) may be expected to be mesotrophic to eutrophic due to the abundance of basic elements found in the minerals of these rocks. These rock types also generally result in finer textured materials than the more resistant, acidic bedrock types. Soils derived from acid igneous rocks (e.g. rhyolite, granite, quartz monzonite), acid metamorphic rocks, (e.g. granite gneiss, quartzite), and some sedimentary rocks (e.g. conglomerate) may be expected to be oligotrophic to mesotrophic. Soil texture, as it affects cation exchange capacity, may also be used to assist in the assessment of soil nutrient regime. Landform and terrain characteristics may be used in a general way, since they often determine soil texture. Coarse textured materials (usually glaciofluvial , f luv ia l , colluvial and some morainal materials) generally have a low cation exchange' capacity, and therefore tend to fal l into the oligotrophic to mesotrophic nutrient regimes. Finer textured materials (lacustrine and some morainal, fluvial and colluvial materials) have higher cation exchange capacities, and generally fall into the mesotrophic to eutrophic nutrient regimes. The texture relationships, however, must always be considered in relation to the mineralogy (or bedrock source) of the parent materials, and the presence or absence of seepage water and incorporated organic matter. Soil Organic Layers Soil organic layers may be classified into three major humus forms: mor, moder, and mull. The humus form, reflecting the mode of decomposition, is related to many environmental factors (e.g. microclimate) and biotic factors (e.g. activity of flora and fauna). It is identified by the relative proportions of the three layers (L-fresh l i t te r ; F-felty, partially decomposed l i t ter with observable structure; and H-humified amorphous and collodial material), the total thickness of all layers, an estimate of s o i l , animal or fungi activity, and by analytical parameters such as pH and C/N ratio. In general, the humus form reflects the kind and degree of decomposition of organic matter, and hence is a good indicator of the intensity of biogeochemical cycling. For further discussion of. humus form refer to parameter 42. Free Water Temporary or permanent subsurface water flow within the rooting zone usually enriches a site with nutrients. Seepage water emanating from acid bogs is an obvious exception. Alluvial fans with moving underground water and floodplains are usually enriched. 190 Soil Analytical Data The most readily available chemical soil characteristic is pH. Within the range of soil pH's (with emphasis on soil B horizons) found in a biogeoclimatic subzone or forest subzone, the sites with lower pH's will tend to be oligotrophic and the higher pH's will tend towards being eutrophic. In addition to pH, measured values of base saturation and cation exchange capacity are also useful cr i ter ia . With increasing base saturation and .cation exchange capacity, the nutrient regime grades from oligotrophic to eutrophic. The calculation of available nutrients in kg/ha is probably the most useful cr i ter ia, although influences from seepage water must also be considered. 191 Appendix III V e g e t a t i o n c h a r a c t e r i s t i c s of the 30 lodgepole pine stands sampled. VEGETATION TABLES Spec ies compos i t i on and abundance In sampled lodgepo le p ine ecosys tems. MS A 3 P XERIC-POOR PLOT 1 AVERAGE 1 1 1 1 1 1 1 NUMBER | VALUES 8324| 8325| 8326| 8328| 8329| 8 3 3 l | 8332| ST SPECIES | P MC PERCENT COVER. SOCIABILITY AND VIGOR A1 P i n u s c o n t o r t a 1100 .0 1 4 I 1 21 | 1 12 1 2 221 1 11| 1 21 I 3 22 1 1 22 P i n u s c o n t o r t a 100 .0 27 1 30 41 45 71 30 71 30 41 20 42 20 42 15 42 L a r l x o c c i d e n t a l 1s 28 6 0 3 1 12 1 12 P i n u s m o n t l c o l a 14 3 0 3 2 12 P i n u s c o n t o r t a 100 0 6 9 .5 22 2 21 30 71 5 41 1 21 5 22 5 42 A b i e s l a s l o c a r p a 14 3 0 7 5 22 P l c e a enge lmannl l 14 3 0 7 5 22 L a r l x occ1denta11s 14 3 0 1 1 12 Popu lus t remu lo ldes 14 3 0 1 1 1 1 Pseudotsuga m e n z l e s l l 14 3 0 1 1 11 P i n u s c o n t o r t a 71 4 1 1 .5 21 1 21 2 21 1 21 3 42 Ab ies l a s l o c a r p a 4? 8 O 4 1 21 1 21 1 22 S a l I x bebblana 28 6 0 2 .5 1 + 1 21 P l c e a enge lmannl l 14 3 0 3 2 42 Pseudotsuga m e n z l e s l l 14 3 0 1 1 12 Shepherd 1a canadens is 71 4 16 0 25 42 40 71 35 71 2 21 10 41 Ab ies l a s l o c a r p a 71 4 1 6 .5 12 5 41 .5 21 5 42 .5 42 Jun ipe rus communis 71 4 1 6 2 21 5 71 3 42 .5 11 1 21 P l c e a engelmannl l 57 1 1 0 3 4 1 .5 21 .5 21 3 42 S a l I x bebblana 57 1 0 6 .5 2 + 1 4 + .5 21 2 42 Vacc ln lum membranaceum 57 1 0 6 .5 2+ .5 21 2 21 1 22 P inus c o n t o r t a 57 1 0 5 .5 21 .5 1 1 2 21 .5 42 Rosa gymnocarpa 57 1 0 5 2 71 .5 21 .5 21 .5 4 + L o n l c e r a u t a h e n s l s 42 8 0 6 1 41 3 42 .5 21 P a x t s t l m a m y r s m i t e s 28 6 1 4 5 42 5 42 Pseudotsuga m e n z l e s l l 28 6 0 3 1 21 1 21 Arnelanchler a l n l f o l l a 28 6 0 2 1 21 . 5 1 1 L a r l x o c c i d e n t a l Is 28 6 0 1 .5 22 .5 11 Ceanothus v e l u t l n u s 14 3 3 6 25 41 M e n z l e s l a f e r r u g l n e a 14 3 0 4 3 41 P inus a l b l c a u l I s 14 3 0 3 2 41 A lnus v l r l d l s 14 3 0 . 1 1 1 1 Acer glabrura 14 3 0 . 1 .5 1 + J u n i p e r u s scopulorutn 14 3 0 . 1 .5 11 L o n l c e r a I n v o l u c r a t a 14 3 0 . 1 .5 1 + Mahonla a q u l f o l l u m 14 3 0. 1 .5 41 P inus m o n t l c o l a 14 3 0 . 1 .5 42 Popu lus t remu lo ldes 14 3 0. 1 .5 21 R ibes cereutn 14 3 0 . 1 .5 1 + Rosa nutkana 14 3 0 . 1 .5 21 Rubus p a r v l f l o r u s 14 3 0. 1 .5 21 Sambucus racemosa 14 3 0. 1 .5 1 + Sorbus s c o p u l l n a 14 3 0. 1 .5 1 + L lnnaea bo rea l Is 85 7 7. 7 1 31 10 62 20 72 5 52 15 62 3 62 P y r o l a c h l o r a n t h a 85 7 0 . 4 .5 21 .5 21 .5 51 .5 31 .5 51 .5 52 Ca lamagros t I s rubescens 71 4 20. 1 50 82 50 72 35 72 5 42 1 42 VEGETATION TABLES Spec ies compos i t i on and abundance In sampled lodgepole p ine ecosystems. MS A 3 P XERIC-POOR PLOT 1 AVERAGE 1 1 1 I 1 I 1 NUMBER 1 VALUES | 8324 | 8325 | 8326 | 8328 | 8329 | 8331 | 8332| ST SPECIES 1 P MC 1 PERCENT COVER, SOCIABILITY AND VIGOR C A r c t o s t a p h y l o s u v a - u r s l 71 .4 13 6 40 72 20 62 25 72 5 52 5 62 S p i r a e a b e t u l l f o l l a 71 .4 4 3 1 21 2 41 2 41 5 7 1 20 71 Carex coneInnoIdes 71 .4 3 8 5 52 .5 22 .5 52 .5 52 20 72 HIsraelurn a l b l f l o r u m 71 .4 0 5 1 42 .5 21 1 41 .5 2 1 .5 42 Vacc ln lum scopar lum 57 . 1 17 9 .5 21 35 82 30 81 60 82 Goodyera ob iong1 fo l1 a 57 . 1 0 3 .5 52 .5 51 .5 21 1 42 Vacc ln lum caesp l tosum 42 .8 5 3 20 71 7 41 10 42 Ch lmaph l l a umbel l a t a 42 .8 0 6 .5 21 .5 21 3 42 Campanula r o t u n d l f o l l a 42 .8 0 2 .5 42 .5 22 .5 22 O r t h l l l a secunda 42 .8 0 2 .5 31 c 21 .5 51 F r a g a r l a v l r g l n l a n a 28 .6 3 0 20 71 1 42 A n t e n n a r l a n e g l e c t a 28 .6 0 3 2 52 .5 52 A r n i c a c o r d l f o l l a 28 .6 0 1 .5 21 .5 21 Cornus canadens is 28 6 0 1 .5 31 .5 21 E p l l o b l u m angust1fo l turn 28 6 0 1 .5 21 .5 22 Apocynum androsaemlfo l turn 14 3 6 4 45 82 Melampyrum 11 neare 14 3 1 4 10 72 Carex sp 14 3 0 4 3 42 A s t e r consp lcuus 14 3 0 3 2 42 H le rac lum canadense 14 3 0 1 1 42 S m i l a c l n a s t e l l a t a 14 3 0 1 1 21 A c h i l l e a m i l l e f o l i u m 14 3 0 1 .5 21 A rab t s sp 14 3 0 1 .5 22 E p l l o b l u m ml nuturn 14 3 0 1 .5 2+ H le rac lum sp 14 3 0 1 .5 21 O r y z o p s i s a s p e r l f o l l a 14 3 0 1 .5 22 Penstemon f r u t l c o s u s 14 3 0 1 .5 51 P y r o l a a s a r l f o l l a 14 3 0 1 .5 21 S t rep topus roseus 14 3 O 1 .5 21 • V i o l a adunca 14 3 0 1 .5 3+ OH C l a d o n l a sp 100 0 35 0 15 62 40 62 60 82 30 82 30 82 35 82 35 82 P o l y t r l c h u m Jun lper lnum 100 0 5 3 5 62 5 62 5 62 .5 52 7 62 10 82 5 62 P e l t l g e r a aphthosa 100 0 2 7 .5 52 5 62 2 62 .5 52 5 62 1 52 5 62 P leu roz lum s c h r e b e r l 85 7 6 1 5 52 5 62 20 62 1 52 2 52 10 62 Dlcranum fuscescens 85 7 0 7 .5 52 .5 52 .5 52 2 52 1 52 .5 52 S t e r e o c a u l o n tomentosum 85 7 0 5 1 52 .5 52 .5 32 .5 32 .5 22 .5 52 P e l t l g e r a sp 57 1 3 8 5 62 1 52 20 62 .5 52 B a r b l l o p h o z l a l y copod lo l des 57 1 1 0 .5 52 5 62 .5 52 1 62 Dlcranum scopar lum 42 8 -2 8 5 62 10 62 5 62 C l a d l n a r a n g l f e r l n a 42 8 0 2 .5 32 .5 52 .5 52 P o h l l a nutans 28 6 0 8 5 62 .5 52 Dlcranum sp 28 6 0 6 3 62 1 52 R h y t l d l o p s l s robus ta 28 6 O. 2 1 52 . 5 52 Brachy thee 1urn sp 28 6 0 . 1 .5 52 . 5 52 P e l t l g e r a c a n l n a 14 3 0 . 3 2 62 Brachy thec lum a l b i c a n s 14 3 0 . 1 .5 52 PInus c o n t o r t a 14 3 0 . 1 .5 22 Pseudotsuga m e n z l e s l i 14 3 0 . 1 .5 21 Rhacomlt r lum heterost Ichum 14 3 0 . 1 .5 52 VEGETATION TABLES Spec ies compos i t i on and abundance 1n sampled lodgepole p tne ecosystems. MS A 3 R XERIC-RICH PLOT 1 AVERAGE I I I I I I I I NUMBER I VALUES 8204| 8205| 8208| 821 l | 82 18| 8219| 8220| 8327| ST SPECIES | P MC PERCENT COVER. SOCIABILITY AND VIGOR A1 A2 B2 C Pinus c o n t o r t a 1 87 .5 2 1 2 43 3 23 3 42 I 5 42 1 22 2 23 1 22 L a r l x o c c i d e n t a l Is 1 12 5 0 3 I 2 13 1 P lnus c o n t o r t a 100 0 22 3 25 73 30 73 8 42 20 72 30 72 35 73 15 82 15 41 Pseudotsuga m e n z l e s l l 12 5 0 6 5 23 L a r l x o c c i d e n t a l Is 12 5 0 1 1 12 P lnus c o n t o r t a 100 0 3 4 3 43 1 5 42 I 4 42 1 5 42 2 22 I 2 43 I 1 22 I 5 42 Pseudotsuga m e n z l e s l l 12 5 0 6 5 23 P lnus c o n t o r t a €2 5 1 2 .5 22 2 22 1 23 1 22 5 42 P l c e a engelmannl l 50 0 0 8 .5 22 . 1 23 3 43 3 43 Pseudotsuga m e n z l e s l l 50 0 0 8 2 53 .5 13 2 23 2 23 Ab ies l a s l o c a r p a 25 0 0 2 1 23 . 5 23 S a l I x bebblana 25 0 0 1 . 1 12 .5 12 Shepherd la canadens is 12 5 0 1 .5 24 Shepherd l a canadens is 100 0 18 3 7 43 5 43 4 44 20 74 45 84 20 73 10 74 35 71 Jun lpe rus communis 100 0 8 1 .5 42 2 42 .5 22 5 43 10 63 15 63 30 63 2 22 Pseudotsuga m e n z l e s l l 62 5 1 3 1 23 1 22 1 22 7 73 .5 22 Jun lpe rus scopulorum 62 5 0 6 1 41 1 43 1 42 .5 22 1 12 P l c e a engelmannl l 62 5 0 3 .5 22 .5 22 .3 23 1 23 .5 23 S a l t x bebblana 62 5 0 2 . 1 11 . 1 22 .5 22 .5 22 .5 1 1 Rosa a c l c u l a r l s 50 0 5 1 1 41 5 82 10 72 25 72 Ame1anch1er a l n l f o l l a 50 0 1 2 1 43 1 42 .5 22 7 72 P lnus c o n t o r t a 50 0 0 8 .5 23 . 1 22 1 23 5 41 Ab ies l a s l o c a r p a 50 0 0 6 .5 22 .5 21 .5 23 3 23 Rosa gymnocarpa 50 0 0 3 .5 42 .5 41 .5 43 .5 41 SymphorIcarpos a lbus 37 5 0 6 2 53 2 42 1 42 Marion l a aqul f o l i u m 25 0 2 0 1 43 15 73 L o n l c e r a 1n«olucrata 25 0 0 1 .5 11 .5 2+ Populus t remu lo ldes 25 0 0 1 . 1 11 .5 1 1 Rosa nutkana 12 5 0 1 1 41 Vacc ln lum membranaceum 12 5 0 1 .5 21 L o n l c e r a d l o l c a 12 5 0 0 . 1 22 Calamagrost1s rubescens 100 0 30 0 10 43 15 73 40 73 10 63 40 83 35 83 30 73 60 82 A r c t o s t a p h y l o s u v a - u r s l 100 0 14 g 15 43 4 43 20 43 5 43 3 63 20 83 50 73 2 52 L lnnaea borea l Is 100 0 10 g 20 43 10 73 4 43 3 43 5 63 15 63 25 83 5 62 F r a g a r l a v l r g l n l a n a 100 0 4 5 3 43 1 43 2 43 3 43 7 42 2 43 15 72 3 72 Hedysarum su lphurescens 87 5 0 9 2 43 1 43 1 43 1 43 .5 22 1 43 . 5 43 A r n i c a c o r d l f o l l a 87 5 0 8 1 43 .5 42 2 43 .5 22 1 22 .5 22 1 42 S p i r a e a b e t u l l f o l l a 62 5 3 9 4 43 2 42 5 43 .5 42 20 72 A s t e r consp lcuus 62 5 3 6 1 43 . 1 43 2 43 .5 22 25 72 A s t r a g a l u s miser 62 5 1 5 1 43 .3 53 5 73 5 72 .5 42 O r t h l l l a secunda 62 5 0 8 .5 22 2 43 .5 22 3 53 .5 22 A c h i l l e a m i l l e f o l i u m 62 5 0 4 .5 42 .5 23 .5 43 1 72 1 42 An tenna r l a m l c r o p h y l l a 62 5 0 4 1 43 .5 43 .5 53 . 5 52 1 62 H le rac lum a l b l f l o r u m 62 5 0 3 . 1 43 . 5 43 . 5 22 .5 22 . 5 42 P y r o l a c h l o r a n t h a 62 5 0 3 .5 23 .5 43 . 1 42 .5 23 .5 22 An tennar la n e g l e c t a 50 0 5 0 8 63 1 53 30 63 1 62 VEGETATION TABLES Spec ies compos i t i on and abundance In sampled lodgepo le p ine ecosys tems. MS A 3 R XERIC-RICH PLOT I AVERAGE I I I I I I I I NUMBER I VALUES | 82041 82051 82081 821 1| 82181 8219| 8220J 8327 ST SPECIES | P MC | PERCENT COVER, SOCIABILITY AND VIGOR C DH Vacc in lum caespt tosum 50 0 4 8 8 43 7 43 3 43 20 83 Ch lmaph l l a umbel l a t a 50 .0 1 1 .5 43 2 43 5 63 1 23 Campanula r o t u n d l f o l l a 50 0 0 4 .5 12 1 43 1 43 . 5 42 A s t e r c l 1 l o l a t u s 37 .5 4 5 .5 23 .5 42 35 73 Melampyrum 1Ineare 37 5 3 9 .5 43 .5 43 30 73 Elymus h l r s u t u s 37 5 3 6 3 44 25 83 . 1 82 Goodyera o b l o n g l f o l l a 37 5 0 2 .3 43 1 53 . 5 32 Vacc in lum m y r t l l l u s 25 0 1 0 7 43 1 43 An tenna r l a racemosa 25 0 0 8 5 63 1 62 GalIum b o r e a l e 25 0 0 3 .5 23 2 42 Gent 1 ana p r o s t r a t a 25 0 0 2 1 43 .5 43 P u l s a t i l l a patens 25 0 0 2 1 43 .5 22 A g o s e r l s a u r a n t l a c a 25 0 0 1 .5 22 .5 22 Al1Ium cernuum 25 0 0 1 .5 23 .5 23 E r l g e r o n sp 25 0 0 1 .5 22 .5 42 Geocaulon 1Ivldum 25 0 O 1 . 5 23 .5 43 Senec lo p a u c l f l o r u s 25 0 0 1 .5 23 .5 42 V i o l a adunca 25 0 0 1 . 5 24 .5 53 Zlgadenus venenosus 25 0 0 1 .5 43 .5 22 Vacc in lum scopar lum 12 5 0 5 4 43 O r y z o p s l s a s p e r l f o l l a 12 5 0 3 2 43 T r i f o l i u m repens 12 5 0 3 2 53 Carex coneInnoIdes 12 5 0 1 1 72 E r l g e r o n a c r l s 12 5 0 1 1 43 Anemone mult If Ida 12 5 0 1 .5 22 A n t e n n a r l a sp 12 5 O 1 . 5 22 A r a l l a n u d l c a u l l s 12 5 0 1 .5 12 A s t r a g a l u s sp 12 5 0 1 .5 22 C a l o c h o r t u s a p l c u l a t u s 12 5 0 1 .5 43 C a l y p s o bu lbosa 12 5 0 1 .5 23 C a s t l l l e j a m l n l a t a 12 5 0 1 .5 22 Cornus canadens is 12 5 0 1 .5 32 Dlsporum hooker 1 12 5 0 1 . 5 22 E p l l o b l u m angust1 fo l Ium 12 5 0 1 . 5 22 Gent lane 11 a amare l l a 12 5 0 1 .5 22 H le rac lum canadense 12 5 0 1 . 5 42 H le rac lum cynog losso ldes 12 5 0 1 .5 42 L l l l u m cotumblanum 12 5 0 1 .5 22 Osmorhlza c h l l e n s l s 12 5 0 1 .5 22 Penstemon p roce rus 12 5 0 1 .5 22 Taraxacum sp 12 5 0 1 .5 12 P leu roz lum s c h r e b e r l 100 0 J8 7 8 63 10 63 1 53 50 83 15 63 30 83 35 83 .5 52 Dlcranum fuscescens 100 0 5 9 3 53 5 63 6 53 20 63 3 63 5 63 5 63 .5 52 P e l t i g e r a aphthosa 100 0 2 4 8 63 5 63 .5 53 2 53 . 5 53 .5 53 1 62 2 62 C l a d o n l a sp 87 5 8 1 15 63 10 63 3 53 . 5 63 . 5 52 .5 52 35 82 Hylocomlum splendens 62 5 8 1 2 53 8 63 15 63 35 83 5 52 P o l y t r l c h u m Jun lper lnum 50 0 0 . 4 1 53 1 53 . 5 52 . 5 52 P e l t i g e r a sp 37 5 0 . 3 . 5 52 .5 52 1 52 S t e r e o c a u l o n tomentosum 25 0 0 . 9 5 63 2 53 P t l l l u m c r 1 s t a - c a s t r e n s 1 s 25 0 0 . 7 5 63 . 5 53 VO VEGETATION TABLES MS A 3 R XERIC S p e c i e s -RICH compos 11 I o n and abundance In sampled lodgepo le p ine ecosys tems. PLOT NUMBER 1 AVERAGE 1 VALUES | 8204| 8205| 8 2 0 s | 8211 I 82181 8 2 1 9 ) 822o| 8327| ST SPECIES | P MC 1 PERCENT COVER, SOCIABILITY AND VIGOR DH BrachytheeIum sp P e l t l g e r a c a n l n a Brachythee1um a l b i c a n s Brachy thec lum l e l b e r g l l C l a d l n a r a n g l f e r l n a Dicranum scopar lum Pseudotsuga m e n z l e s l l 25 0 0 5 12 5 0 3 12 5 O 1 12 5 0 1 12 5 0 1 12 5 O 1 12 5 0 1 1 53 3 63 .5 23 .5 53 2 62 .5 52 .5 52 5 52 VEGETATION TABLES Spec ies compos i t i on and abundance in sampled lodgepo le p ine ecosys tems. MS A I P MESIC-POOR PLOT 1 AVERAGE 1 1 1 1 1 1 1 NUMBER 1 VALUES 8206| 82131 8214| 8215| 8221| 8222| 8223| ST SPECIES | P MC PERCENT COVER, SOCIABILITY AND VIGOR A1 P inus c o n t o r t a | 100 .0 2 8 1 5 431 5 I 2 221 2 42 I 2 231 2 231 2 23 P inus c o n t o r t a 100 .0 35 0 35 73 35 30 72 50 72 20 73 35 73 40 73 Pseudotsuga m e n z l e s l l 14 . 3 0 .3 2 13 Popu lus t remu lo ldes 14 . 3 0 1 1 33 P inus c o n t o r t a 100 .0 2 0 2 42 1 2 22 2 42 2 43 2 42 3 43 Pseudotsuga m e n z l e s l l 14 .3 1 0 7 73 P1cea enge1mann11 14 .3 0 6 4 23 A b i e s l a s l o c a r p a 14 3 0 3 2 23 Ab ies l a s l o c a r p a 100 0 6 7 1 43 1 23 15 42 10 43 10 73 5 43 5 43 A lnus v l r l d i s s l n u a t a 85 7 6 8 3 43 30 62 5 53 5 52 3 62 2 32 P l c e a enge lmannl l 71 4 2 6 2 43 5 43 3 72 3 43 5 43 S a l i x bebblana 42 8 0 3 .5 12 1 43 1 23 P inus c o n t o r t a 28 6 0 2 1 23 .5 22 Pseudotsuga m e n z l e s l l 14 3 1 4 10 73 Acer glabrum 14 3 0 1 .5 23 Arnelanchier a l n l f o l l a 14 3 0 1 .5 23 P inus a l b l c a u l I s 14 3 0 1 .5 22 M e n z i e s i a f e r r u g l n e a 100 0 19 6 5 43 1 34 60 84 1 33 40 84 .5 23 30 63 P l c e a engelmannl l 100 0 2 8 1 43 1 23 1 23 3 43 2 42 7 73 5 43 L o n l c e r a u t a h e n s l s 100 0 2 7 3 43 5 42 3 43 1 43 2 43 3 43 2 42 Ab ies l a s l o c a r p a 100 0 2 6 1 43 1 23 5 42 3 43 5 73 1 23 2 43 A lnus v l r l d i s s l n u a t a 85 7 4 6 4 43 10 42 2 22 .5 22 15 63 1 33 Vacc in lum membranaceum 85 7 1 8 1 42 1 22 .5 22 7 63 .5 23 3 42 Arnelanchier a l n l f o l l a 85 7 1 6 1 42 5 42 .5 42 .5 42 3 43 1 43 Shepherd la canadens is 71 4 9 0 1 43 10 53 5 53 7 62 40 72 L o n l c e r a I n v o l u c r a t a 71 4 0 6 .5 22 .5 24 2 43 1 42 . 5 22 Rubus p a r v l f l o r u s 57 1 0 9 .5 22 3 42 2 42 1 43 Mahonla a q u i f o l l u m 57 1 0 3 .5 11 .5 23 .5 23 .5 23 S a l I x bebblana 42 8 1 4 3 42 5 73 2 43 Pseudotsuga m e n z l e s l l 42 8 0 3 .5 23 1 23 1 42 Rosa a d c u l a r i s 42 8 0 3 .5 22 .5 22 1 42 P inus a l b l c a u l I s 42 8 0 2 .5 22 .5 41 .5 22 Sorbus s c o p u l l n a 42 8 0 2 .5 21 .5 22 .5 32 P a x i s t i m a m y r s l n l t e s 28 6 8 6 55 73 5 53 Rhododendron a l b l f l o r u m 28 6 . 0 8 5 53 .5 53 P inus c o n t o r t a 28 6 0 1 .5 22 .5 22 Sorbus s l t c h e n s l s 28 6 0 1 .5 22 .5 23 Tsuga h e t e r o p h y l l a 28 6 0 1 .5 21 .5 12 Acer glabrum 14 3 1 0 7 63 B e t u l a p a p y r i f e r a 14 3 0 . 1 .5 2 1 Cornus s e r l c e a 14 3 0 . 1 . 5 22 Popu lus t remu lo ldes 14 3 0. 1 .5 23 R ibes l a c u s t r e 14 3 0 . 1 .5 23 Viburnum edu le 14 3 0 . 1 . 5 22 L lnnaea bo rea l Is 100 0 18. 1 3 43 | 50 83 20 83 35 83 10 63 1 2 62 | 7 82 I S p i r a e a b e t u l l f o l i a 100 0 6. 6 5 43 20 73 .5 42 3 42 . 5 43 2 43 15 73 VEGETATION TABLES MS A 1 P S p e c i e s MESIC-POOR compos 1 1 1 on and abundance In sampled lodgepo le p i n e ecosys tems. PLOT NUMBER 1 AVERAGE 1 VALUES | 820e| 8 2 i s | 8214| 8215 j 8221j 8 2 2 2 ) 8 2 2 3 ) ST SPECIES | P MC | PERCENT COVER, SOCIABILITY AND VIGOR c DH C h l m a p h l l a umbel l a t a IOO .0 4 . 1 .5 23 10 73 .5 42 B 43 2 43 3 83 5 73 Cornus canadens i s 85 . 7 21 .0 7 43 25 72 40 83 30 83 25 83 20 73 Vacc ln lum scopar lum 85 . 7 20 .7 10 73 20 72 50 83 40 84 5 53 20 82 Goodyera o b l o n g t f o l l a 85 .7 0 .6 .5 43 1 63 1 42 .5 53 .5 53 .5 52 P y r o l a c h l o r a n t h a 85 .7 0 .6 1 62 .5 22 .5 22 1 43 .5 43 .5 43 E p l l o b l u m a n g u s t 1 f o l l u m 85 . 7 0 4 .5 22 .5 22 .5 22 .5 22 .5 22 . 5 43 Ca lamagrog t Is rubescens 71 .4 5 2 1 52 5 42 .5 23 5 83 25 83 A r n i c a c o r d l f o l l a 57 1 1 1 1 43 .5 22 5 44 1 42 C l l n t o n l a u n l f l o r a 57 1 1 1 1 52 5 63 1 32 . 5 42 L l s t e r a c o r d a t a 57 1 0 9 .5 34 .5 22 5 63 .5 43 V i o l a o r b l c u l a t a 57 1 0 7 1 62 .5 42 3 43 .5 2 2 Lycopodlum complanatum 57 1 0 6 1 53 .5 43 2 53 1 23 H l e r a c l u m a l b If lorum 57 1 O 3 .5 23 .5 43 .5 22 . 5 2 2 O r t h l l l a secunda 42 8 0 9 1 43 .5 22 5 63 Geocau lon 1Ivldum 42 8 0 4 .5 42 .5 22 2 43 A s t e r consp l cuus 42 8 O 3 1 43 . 5 23 1 4 4 Melampyrum 1Ineare 42 8 0 3 .5 22 1 53 1 42 Lycopodlum annot lnum 28 6 1 6 10 53 1 53 Carex coneInnoIdes 28 6 O 2 1 53 . 5 22 D r y o p t e r l s a s s l m l l l s 28 6 0 1 .5 1 1 .5 23 Oryzops1s a s p e r 1 f 0 1 l a 28 6 O 1 .5 23 . 5 53 Osmorh lza ch11 ens Is 28 6 0 1 .5 23 .5 23 S t rep topus roseus 28 6 O 1 .5 22 . 5 22 Rubus pedatus 14 3 4 3 30 83 Vacc ln lum caesp l tosum 14 3 2 8 20 83 S m l l a d n a s t e l l a t a 14 3 O 1 1 23 Ac taea rub ra 14 3 0 1 .5 24 A s t e r sp 14 3 0 1 .5 22 C a l y p s o bu lbosa 14 3 0 1 .5 12 F r a g a r l a v l r g l n l a n a 14 3 0 1 .5 42 G a u l t h e r t a o v a t l f o l i a 14 3 0 1 . 5 53 L l s t e r a conva l l a M o l d e s 14 3 0 1 .5 53 P e d l c u l a r l s racemosa 14 3 0 1 .5 23 P y r o l a a s a r l f o l l a > 14 3 0 1 .5 22 P y r o l a p l c t a 14 3 0 1 .5 13 Sm11ac1na racemosa 14 3 0 1 .5 12 Tha i Ic t ru ra o c d d e n t a t e 14 3 0 1 .5 23 T t a r e l l a u n l f o l l a t a 14 3 0 1 .5 53 P l e u r o z l u m s c h r e b e r l 100 O 46. 6 40 83 1 5 80 83 45 83 25 63 70 84 65 83 P e l t l g e r a aphthosa 100 0 1 8 3 63 .5 3 .5 32 .5 52 1 53 2 53 5 63 R h y t l d l o p s l s r e b u s t a 85 7 4 . 1 .5 32 10 6 .5 52 5 63 10 63 3 53 C lado rn a sp 85. 7 1 . 9 1 53 1 5 5 62 . 5 52 1 52 5 63 P o l y t r l c h u m Juniper Inum 85. 7 0 . 4 .5 3 .5 32 .5 52 .5 52 . 5 53 .5 53 P t l l l u m c r 1 s t a - c a s t r e n s 1 s 71 . 4 4 . 8 5 53 .5 5 20 63 7 63 1 53 Brachy thee lum sp 57. 1 5 . 4 35 6 .5 52 .5 52 2 63 Dlcranum f u s c e s c e n s 57. 1 1 . 3 3 63 5 63 1 63 .5 53 Dlcranum scopar lum 57 . 1 0 . 3 .5 53 1 5 . 5 52 .5 52 Hylocomlum sp lendens 42 . a 2 . 9 15 63 5 63 5 | 52 A b i e s l a s l o c a r p a 28. 6 0. 1 .5 23 .5 73 B a r b l l o p h o z l a l y c o p o d l o l d e s 28. 6 0 . 1 .5 53 .5 53 VO CO VEGETATION TABLES MS A I P Species MESIC-POOR compos 11Ion and abundance 1n sampled lodgepole pine ecosystems. PLOT NUMBER 1 AVERAGE 1 VALUES | 8206| 8213) 8214) 8215| 822 1 | 8222) 8223) ST SPECIES | P MC I PERCENT COVER, SOCIABILITY AND VIGOR DH Brachytheclum l e l b e r g l l Dlcranum sp P e l t i g e r a canlna C l a d l n a rang 1 f a r i n a Mnlum sp P e l t i g e r a sp Pinus c o n t o r t a P o h l l a sp Pseudotsuga menzlesll 14 3 0 14 3 0 14 3 0 14 3 0 14 3 0 14 3 0 14 3 0 14 3 0 14 3 0 1 52 .5 22 .5 52 1 63 1 63 .5 53 .5 23 .5 53 .5 53 VEGETATION TABLES Spec ies compos i t i on and abundance In sampled lodgepo le p ine ecosystems. MS A 1 R MESIC-RICH PLOT NUMBER AVERAGE VALUES I 82011 82021 82031 82071 82091 82101 8216| 8217 ST B2 SPECIES MC | PERCENT COVER. SOCIABILITY AND VIGOR A l A2 A3 B1 P lnus c o n t o r t a 100 0 4 3 1 5 43 1 5 431 5 43 1 5 43 1 5 43 I 5 43 | 2 2 2 | 2 22 P lnus c o n t o r t a 100 0 35 0 |30 73|30 73 | 35 73 45 73 [35 73 | 35 72 |40 73 | 30 71 P lnus c o n t o r t a 100 0 4 0 3 43 2 22 2 43 10 43 3 43 8 42 2 22 2 22 A b i e s l a s l o c a r p a 12 5 0 1 1 43 P l c e a enge lmann l l x g lauca 12 5 0 1 1 43 Popu lus t remu lo ldes 12 5 0 1 1 12 P1cea enge1mann11 75 0 2 1 3 43 .5 23 3 43 .5 23 5 43 5 43 A b i e s l a s l o c a r p a 75 0 0 9 1 43 2 43 .5 23 2 43 .5 23 1 13 P l n u s c o n t o r t a 37 5 0 4 .5 21 1 2 1 2 41 AInus v l r l d l s s l n u a t a 37 5 0 3 .5 32 1 43 .5 23 Pseudotsuga m e n z l e s l l 12 5 1 0 8 43 AInus Incana 12 5 0 6 5 53 P l c e a enge lmann l l x g l auca 12 5 0 6 5 43 S a l l x s c o u l e r l a n a 12 5 0 1 1 43 Amelanchter a l n l f o l l a 12 5 0 1 . 5 23 S a l i x bebblana 12 5 0 1 .5 22 Shepherd la canadens is 100 0 5 9 7 73 2 43 3 43 .5 22 7 43 15 73 3 43 10 63 Ab ies l a s l o c a r p a 87 5 1 1 .5 23 1 43 2 43 1 43 1 43 .5 22 3 22 P l c e a enge lmannl l 87 5 1 1 .5 23 .5 43 1 43 .5 43 .5 23 5 43 .5 23 L o n l c e r a u t a h e n s l s 87 5 0 8 1 43 .5 43 1 43 .5 22 .5 22 2 43 1 23 Amelanch ler a l n l f o l l a 62 5 1 8 .5 22 3 43 .5 12 5 43 5 42 Jun tpe rus communis 62 5 0 3 .5 32 .5 43 .5 22 .5 2 1 .5 22 AInus v l r l d l s s l n u a t a 50 0 1 0 1 52 2 43 4 43 1 43 Rosa a c l c u l a r l s 50 0 0 9 .5 22 .5 2 1 5 43 1 72 M e n z l e s l a f e r r u g l n e a 50 0 0 8 1 43 2 43 3 43 .5 13 Rubus p a r v l f l o r u s 50 0 0 6 .5 22 2 43 1 43 1 22 L o n l c e r a I n v o l u c r a t a 50 0 0 3 .5 22 .5 42 .5 43 .5 22 SymphorIcarpos a lbus 37 5 2 3 .5 12 3 23 15 43 Mahonla a q u l f o l l u m 37 5 1 3 .5 32 8 73 2 73 Rosa gymnocarpa 37 5 0 3 .5 42 .5 42 1 43 Viburnum edu le 37 5 0 2 .5 42 .5 21 . 5 12 Vacc ln lum membranaceum 25 0 0 2 .5 41 1 42 Pseudotsuga m e n z l e s l l 12 5 0 6 5 43 P l c e a enge lmann l l x g lauca 12 5 0 3 2 43 AInus Incana 12 5 0 1 1 22 S a l I x bebblana 12 5 0 1 1 22 Cornus s e r l c e a 12 5 0 1 .5 22 Popu lus t remu lo ldes 12 5 0 1 .5 12 Rhododendron a l b i f l o r u m 12 5 o 1 .5 23 R lbes l a c u s t r e 12 5 0 1 .5 22 Cornus canadens i s 1O0 O 8 0 5 43 4 73 10 43 6 43 5 73 7 73 25 73 2 53 L1nnaea borea11s 100 0 7 0 2 43 3 43 4 43 2 43 2 43 3 43 5 72 35 83 Ca lamagros t1s rubescens 87 5 16 9 5 43 15 43 . 1 21 10 73 10 73 40 73 55 84 C h l m a p h l l a umbel l a t a 87 5 1 2 1 43 1 43 .5 22 .5 43 .5 43 5 43 1 53 O r t h l l l a secunda 87 5 0 8 2 43 1 43 1 43 .5 12 1 53 .5 43 .5 43 A s t e r consp lcuus 75 0 2. 4 2 43 1 43 2 43 1 43 10 84 3 73 M O O VEGETATION TABLES Spec ies compos i t i on and abundance In sampled lodgepole p ine ecosystems. MS A 1 R MESIC-RICH PLOT 1 AVERAGE 1 1 1 1 1 1 1 1 NUMBER | VALUES 8201| 82021 82031 8207| 82091 8210| 8216| 82171 ST SPECIES | P MC PERCENT COVER, SOCIABILITY AND VIGOR C A r n i c a c o r d l f o l l a 75 0 2 2 2 43 3 43 .5 23 2 43 5 43 5 43 S p i r a e a b e t u l l . f o l i a 75 0 2 0 2 43 2 43 4 43 1 42 5 43 2 43 F r a g a r l a v l r g l n l a n a 75 0 0 8 1 42 1 43 .5 22 2 42 . 5 43 1 43 P y r o l a c h l o r a n t h a 75 0 0 5 .5 23 .5 43 1 43 .5 43 .5 43 1 43 Vacc in lum m y r t l l l u s 62 5 2 2 10 43 .5 33 1 53 1 42 5 64 Tha i I c t rum o c c l d e n t a l e 50 0 1 3 1 42 1 43 .5 22 8 53 Hedysarum su lphurescens 50 0 1 0 1 43 1 43 1 43 5 74 Goodyera o b l o n g l f o l l a 50 0 0 6 .5 13 .5 52 3 43 1 43 O r y z o p s i s a s p e r l f o l i a 50 0 0 5 .5 22 2 23 1 43 . 5 23 Mi t e l l a nuda 50 0 0 3 .5 13 .5 44 .5 24 .5 23 Vacc in lum caesp l tosum 37 5 2 2 .5 52 2 43 15 84 E r l g e r o n sp 37 5 0 9 6 73 1 42 .5 42 Osmorhlza c h i l e n s i s 37 5 0 8 .5 23 5 43 . 5 43 A r c t o s t a p h y l o s u v a - u r s i 37 5 0 4 .5 23 .5 53 2 53 Ep11obIum a n g u s t i f o l i u m 37 5 0 2 .5 21 .5 23 .5 22 Gal ium b o r e a l e 37 5 0 2 .5 22 .5 22 . 5 23 S t rep topus roseus 37 5 0 2 .5 23 .5 42 .5 12 GalIum t r I f l o r u m 37 5 0 1 .5 22 . 1 12 .5 22 C l l n t o n l a u n l f l o r a 25 0 1 3 . 1 22 10 83 Elymus sp 25 0 1 1 8 73 .5 23 Vacc in lum scopartum 25 0 0 4 1 53 2 43 V i o l a o r b i c u l a t a 25 0 0 2 1 43 .5 12 Actaea rub ra 25 0 0 1 .5 22 .5 23 Campanula r o t u n d l f o l l a 25 0 0 1 .5 22 .5 53 Disporum hooker 1 25 0 0 1 .5 23 .5 12 P y r o l a a s a r i f o l i a 25 0 0 1 .5 42 .5 23 Senec io pseudaureus 25 0 0 1 .5 23 .5 23 S m i l a c i n a racemosa 25 0 0 1 .5 43 .5 23 S m i l a c l n a s t e l l a t a 25 0 0 1 .5 42 .5 22 A s t e r c l 1 i o l a t u s 12 5 1 3 10 73 V i o l a canadens is 12 5 0 6 5 34 Rubus pubescens 12 5 0 3 2 43 An tenna r l a n e g l e c t a 12 5 0 1 1 53 C a l y p s o bu lbosa 12 5 0 1 1 53 Stenanth lum o c c l d e n t a l e 12 5 0 1 1 43 Vacc in lum v l t l s - l d a e a 12 5 0 1 1 53 A c h i l l e a m i l l e f o l i u m 12 5 0 1 .5 22 Adenocaulon b l c o l o r 12 5 0 1 .5 43 A l l i u m cernuum 12 5 0 1 .5 23 An tenna r l a racemosa 12 5 0 1 .5 53 Disporum trachycarpum 12 5 •0 1 .5 22 Elymus h l r s u t u s 12 5 0 1 .5 53 E r l g e r o n p e r e g r l n u s 12 5 0 1 .5 22 Gal ium t r l f I d u m 12 5 0 1 .5 22 Geocau1 on 11v1dum 12 5 0 1 .5 43 Gymnocarplum d r y o p t e r l s 12 5 0 1 .5 33 Heracleum sphondylturn 12 5 0 . 1 .5 22 H le rac lum a l b i f l o r u m 12 5 0. 1 . 5 43 Lycopodium annotlnum 12 5 0. 1 .5 12 P e t a s l t e s palmatus 12 5 0 1 .5 42 P l a t a n t h e r a sp 12 5 0 . 1 .5 12 VEGETATION TABLES MS A 1 R S p e c i e s MESIC-RICH compos 11 ton and abundance In sampled lodgepo le p ine ecosys tems. PLOT NUMBER 1 AVERAGE 1 VALUES | 8201 | 82021 820a | 82071 8209) 82101 82 161 8217! ST SPECIES | P MC | PERCENT COVER, SOCIABILITY AND VIGOR c Tragopogon dub1us 12 5 O 1 .5 24 Ztgadenus venenosus 12 5 0 1 . 5 24 Penstemon c o n f e r t u s 12 5 0 0 . 1 13 C l e m a t i s o c c i d e n t a l Is 12 5 0 0 . 1 12 C o r a l 1 o r h l z a t r l f i d a 12 5 0 0 . 1 23 P e d l c u l a r l s b r a c t e o s a 12 5 0 0 . 1 24 P l e u r o z i u n i sch rebe r t 10O 0 42 5 30 64 35 64 50 83 30 63 65 83 65 83 35 83 30 62 P e l t i g e r a aphthosa 100 0 1 8 5 43 1 54 5 43 .5 53 .5 22 1 53 1 53 .5 52 P t i l l u m c r i s t a - c a s t r e n s l s 75 0 6 9 10 63 20 64 10 63 5 53 5 53 5 54 Hylocomlum sp lendens 62 5 13 8 50 64 30 64 15 63 10 63 5 54 Dlcranum fuscescens 62 5 0 9 2 43 1 53 .5 53 3 53 .5 52 P o l y t r l c h u m Jun lper lnum 50 0 0 2 . 1 53 .5 53 .5 52 . 5 52 BrachytheeIum sp 25 0 0 6 2 53 3 53 C1adon1 a sp 25 0 0 1 .5 52 .5 52 A b i e s l a s l o c a r p a 12 5 0 1 .5 Dlcranum sp 12 5 0 1 .5 52 P e l t i g e r a sp 12 5 0 1 . 5 52 R h y t l d l o p s i s r o b u s t a 12 5 0 1 .5 52 O l\J 203 Appendix IV S e l e c t e d e c o l o g i c a l s i t e c h a r a c t e r i s t i c s of the 30 lodgepole pine stands sampled (the codes used on the t a b l e s are i n d i c a t e d on the example of the f i e l d form). SERIES 5 5 ] FORM tf? | 05048 SITE DESCRIPTION FORM Parameters which must be filled A r e circled. ProJ. ID. _ l I I I I U Long. I U -1 2. Plot No. {6.) UTM System Zone Easting i i I I l _ @ Date (»/M/D) | ( a ) NTS Sheet M ! I I f I ! , I Northing J c 7. Location 93 3. Co-ord. Flight line Photo 1 X (5) Aspect (io) Slope (TT) Elevation «i3r l i • i i i • I I I 1 I I I I I I 1 1 " 1 .'. 1 ' , , 1 . . h i • , j 1 wires 12. Terrain Yr. wiLjJ at wt U M •o nj 13. Phys. Sub. 14. Zone/Subzone „ System 16. Vegetative Cover 17. So i l C l a s s i f . r I I I I L S U 18 i 1 1 1 1 » 1 1 1 4ft 1 1 1 1 f , , s 1 I f 1 f I V P —I I I 1 I I I I IS. Ecological Classification System _ i I _ J i _ Assoc. S Type P J J LJ_J 23 IT I9i__l I Phase 1 , 1 , 1 , 1 , 1 _ i I i i _ _ i , i , , u I I i I , L - _ J L _ J , , L Family Particle Size .96 -J I I , I I , 1_ _ l I , I I I I L 18. ^ " l o l representing - J , I I , I l _ _ l , , I , ' ' i L _J I I L , 1 , 1 _ l I I , I I I L _ _ l I I I I U _ l I .1 I U _ l I I l _ I I I I I i I I I I I I I _J I I I I 1 I 1 I I J I 1 l_ _ i I I L. -J I I 1 1 I L. 20. Site position diagram (refer to SeriesL ^9) Site position macro ^ 0 ) Site position mesn Site surface shape Microtopoqraphy a. ape* b. face c. upper slope d. middle slope e. lower slope f. valley floor g. plain a. tr*>st h. upper slope c. middle slope d. lowpr slope p. tne f. deptession g . level a. concave b. convex c. straight. a. s m o o t h b. m i c r o m o u n d e d C . si i t j h l l y m o u n d e d 1 d . m o d e r a t e l y mountIrri e . s t r o n q l y m o u n d e d i. sr-vrri'ly m o u n d e d q . iv11 <•'!"• l y mt>iin<lctl I'. iiKi-ii t . ' o u n d t - d fVso slope length I ' 1 1 I M 24. Meso up-slope length f I photo roll no. L photo no. L Direction Province of Bfilimh Coluntbi* M<i"M> y ( •.j.'nrw.i.t M • t.l'l ui< M» >-.lt , .1 A., , . . i ,•)„.•- ,„¥-\ I (nil CNV 1896 (5y exposure Type (si Ion 3) M a. not applicable b. »lnd c. Insolation d. frost e. cold air drainage f. saltspray g. atmospheric toxicity other L r Comments: L_ _ 1 I I L_ _1 I I I U J I I I I I L_ i ' I ' I I I L_ I i I I I 1 I I L_ _ l I I L _ l I I I l _ 27. Ecological Moisture Regime 28. Nutrient Reqlme tn us AD0S08 35. Depth to (cm) a. very xeric b. xeric c. subxeric d. sutxnestc e. mesic f. subhygric g. hygric h. subhydric t. hydric ol igotrophic submesotrophic mesotrophic permesotrophic eutrophic hypereutrophic 29. Soil Temperature Class 30. Soil Moisture 31. Soil drainage 114 115 a. extremely cold b. very cold c. cold 32. Perviousness 3*. Flood hazard d. cool e. mild ADDS09 39. a. water table b. rooting (effective) c. root restricting layer d. frozen layer e. bedrock f. carbonate g. salinity Successional Status 36. Bedrock type t f , | , | — 37. Bedrock structure .51 ' i ' I 1_ Subclass t i e 117 a. rapidly a. rapidly a. *eric b. well b. moderately b. arid c. mod. well c. slowly c. subarid d. imperfectly d. semi arid e. poorly 33. Free Hater e. subhumid f. very poorly 118 f. humid a. present g. perhumid b. absent h. subaqulc 1. aquic j . per aquic i I 1 1 • 1 1 I 1 1 i i i i 1 t a. frequent and Irregular b. frequent c. nay be expected d. rare e. no hazard J I I L. J I I I L_ _ l I I I l I _ l I I I L_ 38. Coarse fragment lithology type (in order of dominance) i f mixed (enter T ) r i . i i . i . i • Expected climax _ l I I L Present Stage: PS. VS. MS, OS, TEC. YCC. MCC, MEC, DC, NV 40. Factors Influencing Stand Establishment | L \ ± | L \ ^ | J I , l_ J I I I 1 I I I l_ , , I I I I I I L Rate of succession a. very slow b. slow c. normal d. rapid e. very rapid , ' I I I I 1 I l _ _ l I I I l _ i i i I -I I I I I I 1 I— 1 J I I 1_ J 1 I L 1 J U 114 _ l I I l _ _ l I I l _ _ l I l _ _1 l _ ADOS 10 41. Veg. Plot: Area Shape u J < I M ) J L J . L i - J(m) 43. Surface Substrate SUBSTRATE Decaying Hood Bedrock Cobbles and Stones Mineral Soil Organic Matter Water Total X COVER l • • 4 44. Profile Status 74 a. modal b. variant c. taxadjunct d. undecided 4?. Humus form Class. Variants r. i . . . i 1,1,1,1,1 45. Profile Deviation (allow 3 ) 7» a. none b. solum thickness c. colour d. texture e. drainage f. chemical g. horizon thickness other: _1 I I I 1 L- J I I I l _ 46. Soil Mapping Unit »a a. series b. family c. associate d. association e. catena f. complex g. land system h. land type z. other ADOS 11 47. Soil name I _, , , , I , L Project Coordinator 1 . i • Type of Soil Sample Chemical lis a. full b. p.trl.la! _1_ I I J 4R. Associated soil I i , L_ I f f i l l Surveyor I • t i i Profile . j , , i _ NO.CLI I !ll Q Agency I , 1 , I I I l _ Physical 116 a. full b. p4rt idl S3. Vey. Sampl ing Tech. _ J , , , i I 1 , L_ , , , , L_ _, , , L . O 206 ENVIRONMENT - VEGETATION TABLE S i t e C h a r a c t e r i s t i c s o f samp led s t a n d s MS A 1 R MESIC-R ICH PLOT 8 I 8 8 8 8 I 8 8 I 8 NUMBER MEAN 201 202 203 207 209 210 216 217 A s p e c t 191 0 330 . 270 . 290 . 142 . 250 . 246 . S l o p e (%) 17 9 3 5 . 15. 3 5 . 18 . 20 . 2 0 . E l e v a t i o n (m) 1328 8 1320 1250 1330 1260 1370 1270 1380 1450 P a r e n t m a t e r i a l T e x t u r e S i f g k f g G e n e t i c m a t e r i a l M FI M M M FG M M S u r f a c e e x p r e s s i o n b b b b b t b b B i o g e o c l i m a t i c Zone MS MS MS MS MS MS MS MS Subzone a a a a a a a a E c o s y s t e m A s s o c i a t i o n 01 01 01 01 01 01 01 01 S o i 1 Subgroup E 0 BR 0 0 0 BR 0 G r e a t Group EB EB GL EB EB EB GL EB S o i l F a m i l y P a r t i c l e S i z e C l a s s SI SZ SI LZ SI SZ SI LZ S i t e p o s i t i o n - macro e f d e e f d c - meso c g c c d g c b S i t e s u r f a c e shape b c c b b c a b M 1 c r o t o p o g r a p h y b c b d b b b b E x p o s u r e t y p e H y g r o t o p e M* ' M M M M SM M M T r o p h o t o p e PM PM PM PM PM PM PM PM So 11 d r a 1 n a g e MW MW W W W W MW W S o i l p e r v l o u s n e s s M R M M M R M M Dep th t o : (cm) w a t e r t a b l e r o o t i n g ( e f f e c t i v e ) 44 1 44 . 4 5 . 4 0 . 57 . 50 . 4 5 . 32 . 4 0 . b e d r o c k c a r b o n a t e 5 9 2 0 . 2 . 3 . 10. 12 . Humus fo rm MR MR MR MR MR MR MR MR | S u r f a c e s u b s t r a t e : (%) d e c a y i n g wood 10 8 5 . 5 . 10. 20 . 2 5 . 8 . 10. 3 . b e d r o c k c o b b l e s & s t o n e s 0 6 5 . m1nera1 so 11 1 8 5 . 5 . 2 . 2 . o r g a n i c m a t e r i a l 86 S 9 5 . 9 5 . 8 5 . 7 0 . 7 5 . 9 0 . 9 0 . 95 . 207 ENVIRONMENT -MS A 1 P VEGETATION TABLE MESIC-POOR S i t e C h a r a c t e r i s t i c s o f samp led s t a n d s PLOT NUMBER MEAN 206 213 214 215 221 222 223 A s p e c t 217 0 316 . 143. 300 . 130. 200 . 8 0 . 350 . S l o p e (%) 22 0 26 . 35 . 4 0 . 2 5 . 5 . 2 0 . 3 . E l e v a t i o n (m) 1308 6 1250 1440 1440 1450 1230 1 170 1 180 P a r e n t m a t e r i a l T e x t u r e g s g g G e n e t i c m a t e r i a l FG M M M F M FG S u r f a c e e x p r e s s i o n t b b b b b t B i ogeoc11mat 1c Zone MS MS MS MS MS MS MS Subzone a a a a a a a E c o s y s t e m A s s o c i a t i o n 01 01 01 01 01 01 01 S o i l Subgroup BR 0 E 0 0 BR 0 G r e a t Group GL DyB DyB DyB DyB GL DyB S o i l F a m i l y P a r t i c l e S i z e C l a s s F SI SI SI L L2 SZ S i t e p o s i t i o n - macro e e e d f d d - tneso d c c c g b a S i t e s u r f a c e shape a b c b c b b Mi c r o t o p o g r a p h y c b b b c c b E x p o s u r e t y p e H y g r o t o p e M M M M M M SM T r o p h o t o p e SM SM SM SM SM SM SM S o i 1 d r a i n a g e MW MW MW MW MW MW W S o i l p e r v i o u s n e s s M M M M M M R Dep th t o : (cm) w a t e r t a b l e r o o t i n g ( e f f e c t i v e ) 62 9 9 0 . 6 5 . 4 5 . 4 0 . 7 0 . 6 0 . 70 . b e d r o c k c a r b o n a t e Humus fo rm MR MR MR MR MR MR MR | S u r f a c e s u b s t r a t e : (%) d e c a y i n g wood 15 7 15 . 5 . 15. 35 . 5 . 3 0 . 5 . b e d r o c k c o b b l e s & s t o n e s 1 0 5 . 2 . m i n e r a l s o i 1 o r g a n i c m a t e r i a l 83 3 8 5 . 9 0 . 85 . 6 3 . 9 5 . 70 . 9 5 . 208 ENVIRONMENT - VEGETATION TABLE S i t e C h a r a c t e r i s t i c s o f samp led s t a n d s MS A 3 R X E R I C - R I C H PLOT 8 8 8 8 8 8 8 8| NUMBER MEAN 204 205 208 211 218 219 220 327 | A s p e c t 110. 0 250 . 180. 200 . 250 . S l o p e (%) 10. 5 5 . 20 . 4 . 15. 4 0 . E l e v a t i o n (m) 1213. 8 1300 1300 1260 1260 1210 1010 970 1400 P a r e n t m a t e r i a l T e x t u r e 3 9 g g g g g G e n e t i c m a t e r i a l FG FG M FG FG FG FG M S u r f a c e e x p r e s s i o n t t b t b t t b B1ogeoc11mat 1c Zone MS MS MS MS MS MS MS MS Subzone a a a a a a a a E c o s y s t e m A s s o c i a t i o n 02 02 02 02 02 02 02 02 S o i l Subg roup 0 0 0 0 0 0 0 0 G r e a t Group EB EB EB EB EB EB EB DyB S o i l F a m i l y P a r t i c l e S i z e C l a s s F F SZ SZ SZ SZ SZ SZ S i t e p o s i t i o n - macro f f c f d e e d - meso g g b b c g a b S i t e s u r f a c e shape c c b b b b c b M i c r o t o p o g r a p h y b b b b b b a c E x p o s u r e t y p e c H y g r o t o p e X X X X X X X X T r o p h o t o p e PM PM PM PM PM PM PM PM S o i l d r a i n a g e R R R R R R R R S o i l p e r v i o u s n e s s R R R R R R R R D e p t h t o : (cm) wa te r t a b l e r o o t i n g ( e f f e c t i v e ) 50 1 45 . 5 0 . 6 3 . 36 . 49 . 4 0 . 58 . 6 0 . b e d r o c k c a r b o n a t e 9 5 4 . 3 . 2 . 7 . 10. 50 . Humus f o r m MR MR MR MR MR MR | MR MR | S u r f a c e s u b s t r a t e : (%) d e c a y i n g wood 3 8 2 . 5 . 5 . 5 . 5 . 2 . 1 . 5 . b e d r o c k c o b b l e s & s t o n e s 4 6 2 . 10. 5 . 20 . m.1 n e r a l s o l 1 2 0 1 . 5 . 5 . 5 . o r g a n i c m a t e r i a l 89 6 9 5 . 9 0 . 85 . 8 5 . 95 . 98 . 9 9 . 70 . 209 ENVIRONMENT - VEGETATION TABLE MS A 3 P XERIC-POOR S i t e C h a r a c t e r i s t i c s o f samp led s t a n d s PLOT 8 8 8 8 8 8 8I NUMBER MEAN 324 325 326 328 329 331 332 j A s p e c t 104 3 180. 100. 210 . 130. 1 10. S l o p e (%) 23 1 7 5 . 7 . 5 0 . 15. 15. E l e v a t i o n (m) 1387 1 1510 1400 1400 1400 1 180 1450 1370 P a r e n t m a t e r i a l T e x t u r e gs r g k Qk G e n e t i c m a t e r i a l C M FG FG M FG M S u r f a c e e x p r e s s i o n a b t t b f b B 1 o g e o c 1 i mat 1c Zone MS MS MS MS MS MS MS Subzone a a a a a a a E c o s y s t e m A s s o c i a t i o n 02 02 02 02 03 02 02 S o i l Subgroup 0 0 0 E BR 0 0 G r e a t Group DyB DyB DyB DyB GL R DyB S o i l F a m i l y P a r t i c l e S i z e C l a s s LZ S SZ SZ LZ SZ LZ S i t e p o s i t i o n - macro e d d f d e e - meso b b b d b d c S i t e s u r f a c e shape b b c b b b b M 1 c r o t o p o g r a p h y b b b c b e b E x p o s u r e t y p e c c H y g r o t o p e X X X X SX X X T r o p h o t o p e SM SM SM SM M SM SM S o i l d r a i n a g e R R R R W R R S o i l p e r v i o u s n e s s R R R R M R R Dep th t o : (cm) w a t e r t a b l e r o o t i n g ( e f f e c t i v e ) 46 7 8 0 . 4 8 . 4 0 . 4 5 . 4 5 . 37 . 3 2 . b e d r o c k c a r b o n a t e Humus fo rm MR MR | MR MR| MR| MR| MR| S u r f a c e s u b s t r a t e : (%) d e c a y i n g wood 9 4 2 . 5 . 20 . 25 . 7 . 2 . 5 . b e d r o c k c o b b l e s & s t o n e s 1 1 6 30 . 2 . 1 . 5 . 3 . 35 . 5 . m i n e r a l s o i l 2 0 5 . 3 . 1 . 5 . o r g a n i c m a t e r i a l 77 3 65 . 9 0 . 78 . 7 0 . 85 . 63 . 9 0 . 210 Appendix V S o i l and stand c h a r a c t e r i s i t c s f o r each of the 30 lodgepole pine stands sampled. 21 1 ENVIRONMENT -MS A 1 R VEGETATION TABLE MESIC-R ICH S o i l and S t a n d C h a r a c t e r i s t i c s PLOT 8 8 8 8 8 8 8 8| NUMBER MEAN 201 202 203 207 209 210 216 217 S o i l C h a r a c t e r i s t i c s F o r e s t F l o o r ( LFH) T h i c k n e s s (cm) 5 . 9 0 6 . 5 8 . 9 5 .1 5 . 5 5 . 0 4 . 2 6 . 0 6 . 0 Mass ( t / h a ) 33 .21 3 5 . 5 4 4 . 7 3 0 . 1 31 .7 2 9 . 8 2 6 . 7 3 3 . 6 33 .6 N i t r o g e n (%) 0 .961 0 . 7 8 1 .02 0 . 9 0 1 .09 0 . 8 5 0 . 9 3 0 . 9 5 1.17 N i t r o g e n ( k g / h a ) 3 2 0 . 3 276 457 271 346 254 249 318 391 Root Zone M i n e r a l S o i l (40cm) PH 6 . 5 0 6 . 2 7 .2 6 . 2 6 . 5 6 . 6 6 . 8 6 . 6 5 . 9 C o a r s e F ragmen ts (% v o l ) 17 .5 20 5 5 45 25 25 10 5 B u l k D e n s i t y (g/cm3-<2mm) 0 . 7 2 4 0 . 4 6 0 . 9 6 1 .00 0 . 4 7 0 . 6 5 0 . 5 7 1 .03 0 . 6 5 N i t r o g e n (%) 0 . 0 9 5 0 . 0 7 0 . 0 9 0 . 0 8 0 . 0 9 O.OB 0 . 10 0 . 1 2 0 . 1 3 N i t r o g e n ( k g / h a ) 2 8 3 1 . 5 1363 3630 3142 1725 2095 2231 5047 3419 T e x t u r e S1CL LS S1CL S i L L L S i C L S i C L C H o r i z o n pH 7 .11 6 . 1 7 . 2 7 .7 6 . 9 7 .6 6 . 7 7 .7 7 . 0 C o a r s e F r a g m e n t s (% v o l ) 2 7 . 5 25 " 5 15 50 30 50 15 30 B u l k D e n s i t y (g/cm3-<2mm) 0 . 7 9 7 1 . 14 0 . 9 5 1 .66 0 . 7 3 1 .26 0 .64 N i t r o g e n (%) 0 . 0 7 0 0 . 0 6 0 . 0 9 0 . 0 5 0 .04 0 . 0 4 0 . 0 3 0 . 1 3 0 . 1 2 T e x t u r e S1CL LS S1CL S i C L LS SICL S i C L T o t a l N i t r o g e n (LFH+Root Zone) ( k g / h a ) 3 1 5 1 . 8 1 6 3 9 | 4 0 8 7 | 3 4 1 2 | 2 0 7 1 2 3 4 9 | 2 4 8 0 | 5 3 6 5 | 3 8 1 1 | S t a n d C h a r a c t e r i s t i c s MAI ( t / h a / y r ) 2 .506 1.51 1.69 1.35 2 .93 3 . 0 5 3 .42 3 . 5 3 2 . 57 | S i t e Index (m » 100 y r s ) 19 .49 2 1 . 3 | 2 0 . 5 19.4 18 .3 2 0 . 5 16.2 18 .5 21 . 2 | T r e e s / ha 2096 .1 1107|1189 1373 2803 2217 2952 3292 1836 | Age ( y e a r s ) 9 0 . 8 110 106 116 70 64 69 81 | 1 101 212 ENVIRONMENT - VEGETATION TABLE MS A 1 P MESIC-POOR S o i l and S t a n d C h a r a c t e r i s t i c s PLOT 1 I 8 8 I 8 I 8 I 8 I 8 I 8 NUMBER | MEAN | 206 213 214 215 221 222 223 S o i l C h a r a c t e r i s t i c s F o r e s t F l o o r ( LFH) T h i c k n e s s (cm) 4 .77 5.9 2.4 4.6 4.7 3.6 5.9 6.3 Mass ( t / h a ) 28 .89 33.2 19.8 28.2 28 .6 24 .4 33.2 34.8 N i t r o g e n (%) 0.920 0.86 1.17 1 .07 0.82 0.93 0.90 0.69 N i t r o g e n ( k g / h a ) 259.6 285 231 302 235 227 297 240 Root Zone M i n e r a l S o i l (40cm) ' PH 5.33 5.2 5.4 5.2 5. 1 5.2 5.8 5.4 C o a r s e F r a g m e n t s (% v o l ) 19.3 20 25 10 20 10 15 35 B u l k D e n s i t y (g/cm3-<2mm) 0.649 0.97 0.42 0.56 0.48 1 .00 0.58 0. 53 N i t r o g e n (%) 0.074 0.06 0.09 0.08 0.07 0.06 0.09 0.07 N i t r o g e n ( k g / h a ) 1797.3 2217 1444 1751 1262 2340 2139 1428 T e x t u r e L S1L L SiCL L S1L SL C H o r i z o n PH 5.74 7 . 2 5.5 5. 1 5.4 5.3 6.0 5.7 C o a r s e F ragmen ts (% v o l ) 37 . 1 80 25 25 15 20 30 65 B u l k D e n s i t y (g/cm3-<2mm) 0.361 0. 28 0.52 1 .00 0.73 N i t r o g e n (%) 0.021 0.02 0.02 0.02 0.02 0.03 0.02 0.02 T e x t u r e SL S i C L SICL SICL SL SL LS T o t a l N i t r o g e n (LFH+Root Zone) ( k g / h a ) 2057.3 2502 1676 2053 1497 2568 2437 1668| S t a n d C h a r a c t e r i s t i c s MAI ( t / h a / y r ) 2 .820 3.91 j 3.24 2.74|1.99|2.21|2.63J 3.02 | S i t e Index (m » ICO y r s ) 23. 10 25.3|19.6 25.0|22.4|26.4|23.0|20.0| T r e e s / ha 1485.4 1508 | 2474 | 890|1280| 372 | 1506|2368| Age ( y e a r s ) 83.4 74 | 67 | 78 | 105 | 106 | 72 | 82 | 213 ENVIRONMENT - VEGETATION TABLE MS A 3 R XERIC-RICH So i l and Stand C h a r a c t e r i s t i c s PLOT 8 8 8 8 8 8 B Bl NUMBER MEAN 204 205 208 211 218 219 220 327 S o i l C h a r a c t e r i s t i c s Forest F loor (LFH) Thickness (cm) 4.37 3.6 3.0 4.3 4.4 6.0 6.8 5.0 1 .9 Mass ( t /ha) 27.36 24.4 22. 1 27, 1 27.4 33.6 36.7 29 .8 17.8 Nitrogen (*/.) 0.979 0.88 0.90 1 .09 0.91 1 . 12 0.89 1 . 26 0. 78 Nitrogen (kg/ha) 271 .8 214 198 294 249 378 325 376 140 Root Zone Mineral S o i l (40cm) pH 6.50 6.8 6.5 6.8 6.6 6.2 6.8 6.3 6.0 Coarse Fragments (% vo l ) 33. 1 40 45 45 25 15 35 20 40 Bulk Density (g/cm3-<2mm) 0.586 0.61 0.58 0.48 0.54 0.51 0.54 0.85 0. 58 Nitrogen (50 0.097 0.09 0.08 0. 10 0. 10 0.08 0. 12 0. 15 0.06 Nitrogen (kg/ha) 2335.6 2102 1745 1967 2051 1634 2516 5196 1474 Texture LS LS L L L L S1L SL C Horizon PH 7.11 7 . 1 7 . 1 7.4 7.5 7.5 7.2 6.5 6.6 Coarse Fragments (% vol ) 58 a 85 80 55 60 50 60 35 45 Bulk Density (g/cm3-<2mm) 0.331 0.31 0.26 0.90 0.75 0.43 Nitrogen (%) 0.041 0.04 0.04 0.03 0.04 0.05 0. 10 0.03 Texture LS LS LS LS LS LS S LS Total Nitrogen (LFH+Root Zone) (kg/ha) 2G07.4 2316 1943 2261|2300|2012|2841|5572J1614) Stand C h a r a c t e r i s t i c s MAI ( t / h a / y r ) 1 .266 1 .54 1.64 1.17|0.75|1.23 1.65 0.B7 1.28 | S i t e Index (m t> 100 y rs ) 16.45 16.4 14.3 16.4 17.4 16.5 15.4 17.6 17.6| Trees / ha 1533.0 1899|3584 765 854|1797J2456 383 526 | Age (years) 88.8 70 66 121 119 101 79 101 53 | 214 ENVIRONMENT - VEGETATION TABLE MS A 3 P XERIC-POOR S o i l and S t a n d C h a r a c t e r i s t i c s PLOT 8 8 8 8 8 8 8 | NUMBER MEAN 324 325 326 328 329 331 332 S o i l C h a r a c t e r i s t i c s F o r e s t F l o o r ( LFH) T h i c k n e s s (cm) 2 . 6 4 2 . 7 2 . 3 2 . 2 4 . 5 1 .9 3 .2 1 .7 Mass ( t / h a ) 2 0 . 6 7 2 0 . 9 19 .3 1 9 . 0 2 7 . 8 17 .8 2 2 . 8 17. 1 N i t r o g e n (%) 0 .931 0 . 9 6 1 .05 1 .03 0 . 7 2 0 . 7 4 0 . 8 4 1 . 18 N i t r o g e n ( k g / h a ) 189 .6 201 203 196 200 133 193 201 Root Zone M i n e r a l S o i l (40cm) PH 5 . 4 7 6 . 2 5 .7 5 . 6 5 . 5 5 . 3 4 . 4 5 . 6 C o a r s e F ragmen ts (% v o l ) 44 .0 35 60 40 43 30 70 30 B u l k D e n s i t y (g/cm3-<2mm) 0 . 4 8 9 0 . 5 0 0 . 4 9 0 . 5 7 0 . 4 4 0 . 7 3 0 . 2 2 0 . 4 7 N i t r o g e n (%) 0 . 0 7 9 0 . 0 7 0 . 12 0 . 10 0 . 0 4 0 . 0 9 0 .04 0 . 0 9 N i t r o g e n ( k g / h a ) 1600.6 1359 2283 2319 756 2483 364 1640 T e x t u r e SL S1L L L L LS L C H o r i z o n PH 5 . 2 9 5 .2 5 . 7 5 . 8 5 . 3 4 . 9 4 . 6 5 . 5 C o a r s e F ragmen ts (% v o l ) 5 5 . 0 35 75 60 55 40 70 50 B u l k D e n s i t y (g/cm3-<2mm) 0 .447 0 . 9 3 0 . 4 2 0 . 4 4 0 . 5 0 0 . 4 2 0 . 4 2 N i t r o g e n (%) 0 . 0 2 3 0 . 0 2 0 . 0 3 0 . 0 2 0 .01 0 . 0 4 0 . 0 2 0 . 0 2 T e x t u r e SL LS LS LS L LS L T o t a l N i t r o g e n (LFH+Root Zone) ( k g / h a ) 1790.6 1560J2486 2516 957 2616 557 1842 | S t a n d C h a r a c t e r i s t i c s MAI ( t / h a / y r ) 1 .579 1 . 15 1 .661 1 .43 1 .68 1 .56 1 .62 1 .95 | S i t e Index (m » 100 y r s ) 17.41 1 8 . 9 | 15.8 9 . 2 | 1 9 . 6 1 1 9 . 2 2 0 . 8 18 . 4 | T r e e s / ha 1806.7 356 1766 6352 10231 931 j 594 | 1625| Age ( y e a r s ) 8 2 . 1 92 83 | 701 91 I 81 | 78 j 801 APPENDIX VI Biomass data -from individual sampled trees. A. Sample tree characteristics. Tree # DOB AOB ASW HT HBC Age (cm) (cm2) (cm2) <m> <m> < yrs) 8201-7 13.8 149.5 72.2 19.5 13.4 110. 820110 19.9 308.5 140.9 22.1 16.0 133. 820113 14.3 166.6 86.8 22.4 15.2 129. 820127 27.3 584.2 241 .7 23.8 15.3 132. 820130 21 .2 352.8 196.7 22.0 14.4 128. 820134 22.1 381 .5 157.1 23.8 15.7 125. 820145 10.2 80 .9 34.6 14.3 7.6 102. 820160 13.6 144.9 30.9 18.1 12.2 104. 8202-1 24.5 468.3 217.6 22.0 17.0 117. 8202-2 10.4 84.3 20.7 13.1 9.1 107. 8202C1 16.7 219.1 138.4 20.2 - -8202C2 20 .3 321 .8 154.6 16.1 - -8202C4 11 .8 108.1 73.6 11 .8 - -8202C5 9.2 65.7 35.6 9.2 -8203-1 21 .4 358.1 187.0 22.1 11 .9 127. 8203-2 14.9 174.4 103.6 20.4 12.5 122. 8204-1 18.3 262.7 179.2 18.9 10.8 88. 8204-2 13.0 132.8 73.7 16.3 9.3 79. 8204-3 12.2 116.1 78.2 14.5 5.1 70. 8204-4 15.1 178.2 108.7 15.8 8.8 68. 8204-5 13.6 143.8 93.8 16.9 7.9 78. 8204-6 16.0 201 .4 139.0 16.2 9.6 77. 8204-7 6.4 32.1 22.4 10.4 5.0 76. 8204-8 7.0 38.8 27.7 11 .4 4.8 65. 820510 15.8 194.8 134.4 16.3 7.2 76. 820512 10.0 77.5 51 .3 13.2 5.8 48. 820517 16.8 220.5 136.5 15.9 — — 8206-1 25.8 520.4 266.9 27.0 15.8 85. 8206-4 16.8 221 .9 142.0 23.5 — — 8206-6 16.9 224.7 102.1 24.5 17.0 81 . 8206-7 24.4 464.3 181 .3 28.2 19.4 84. 8206-9 24.5 468.3 285.4 27.5 19.6 84. 820618 23.5 432.5 262.2 26.4 18.3 — 820619 22.2 385.2 205.2 25.1 18.6 -820620 15.1 179.5 78.3 22.9 — — 8208-6 37.0 1075.1 485.1 21 .4 6.2 147. 820814 22.1 383.3 234.4 17.3 6.7 142. 8212-1 14.7 169.6 105.5 14.5 4.1 — 8212-2 12.8 128.5 93.5 13.3 5.8 — 8212-3 10.7 90.4 43.2 12.3 — -8212-4 20.4 326.9 207.4 16.6 — — 8212-5 10.9 93.1 54.6 13.0 — — 216 APPENDIX VI (cont 'd) 6351-1 9.2 66.4 50 .7 10.5 6.7 49. 8351-2 8.2 52.0 43.4 9.8 5.7 48. 8351-3 6.4 31 .6 27.8 9.3 5.6 46. 8351-4 5.9 27.5 23.5 9.0 3.7 55. 8351-5 9.0 63.4 50.5 10.6 4.9 50 . 8351-6 6.8 35.9 26.5 9.2 4.6 48. 8351-7 8.6 58.3 38.2 9.4 3.9 45. 8351-8 10.1 79.2 59.3 11 .6 3.2 49. 8351-9 7.8 48.1 43.2 10.6 5.9 50 . 835110 8.3 54.1 49.0 11 .7 4.2 51 . 835111 9.8 75.9 66.0 11.3 6.2 52. 835112 7.6 44.9 34.9 10.1 5.0 47. 8352-1 33.7 890.5 526.2 28.2 9.4 102. 8352-2 23.2 420 .9 110.2 22.9 17.1 72. 8353-8 17.2 232.3 157.7 24.2 16.1 81 . 8353-9 16.5 215.1 122.4 21 .8 11 .3 84. 835310 22.4 394.1 227.9 26.0 18.7 83. 835311 17.3 235.1 51 .9 23.6 12.7 81 . 8406-1 2.5 4.8 4.2 3.5 1 .4 23. 8406-2 3.4 9.3 8.4 4.3 1 .2 20 . 8406-3 1 .7 2.4 2.1 2.7 1 .2 21 . 8406-4 2.3 4.1 3.5 3.0 1 .3 22. 8450-1 - 1277.3 - 26.9 12.3 124. 8450-2 - 1526.1 - 18.7 - -8450-3 - 1418.2 - 15.8 - -8450-4 - 1922.2 - 33.2 - -DOB = Diameter outside bark at 1.3m. AOB = Basal area outside bark at 1.3m. ASW = Sapwood basal area at 1.3m. HT = Tree he i ght. HBC = Height to crown base (above ground). Age = Tree age. 217 APPENDIX VI (cont'd) B. Biomass of sampled trees Tree Stem Branches Foliage Roots >5mm <kg> <kg> (Kg) (kg) 8201-7 75.2 2.9 1 .5 -820110 160.0 8.8 3.7 820113 110.9 3.6 2.8 -820127 320 .4 17.8 9.2 820130 170.3 11 .0 3.1 -820134 214.7 11 .3 6.5 -820145 29.5 1 .5 1 .1 820160 73.3 1 .6 .5 -8202-1 265.7 16.2 6.2 -8202-2 30.7 .9 .3 8202C1 - - - 53.2 8202C2 - - - 30 .2 8202C4 - - 9.3 8202C5 - - - 5.9 8203-1 217.0 22.0 7.0 61 .4 8203-2 83.9 4.8 4.0 -8204-1 121 .9 12.9 4.9 37.2 8204-2 58.2 4.9 1.6 -8204-3 44.1 4.3 2.7 -8204-4 63.1 9.0 2.8 8204-5 66.4 4.6 3.1 20.1 8204-6 76.0 7.1 4.9 23.4 8204-7 8.4 .7 .4 -8204-8 15.6 .4 .2 3.0 820510 78.2 9.1 6.6 -820512 27.9 2.4 1 .4 8.8 820517 - - - 30.0 8206-1 357.6 24.3 14.4 84.8 8206-4 - - - 36.5 8206-6 135.8 5.6 3.0 -8206-7 315.2 1 1 .9 9.0 -8206-9 276.2 13.4 10.9 -820618 - - - 65.4 82061? - - 74.6 820620 - 26.8 8208-6 473.9 84.6 26.8 -820814 166.1 30.7 14.7 -8212-1 - 9.5 5.2 21 .8 8212-2 - 6.1 4.8 17.6 8212-3 - - 10.3 8212-4 - - 42.8 8212-5 - - 8.9 218 APPENDIX VI (cont'd) 8351-1 20.7 1 .9 2.7 6.3 8351-2 19.8 1 .5 1 .4 4.9 8351-3 13.6 .7 .9 3.0 8351-4 7.9 1 .2 .8 1 .5 8351-5 22.9 2.6 2.3 5.0 8351-6 10.9 1 .0 1 .4 2.6 8351-7 - 1 .9 2.0 5.8 8351-8 - 2.7 2.9 7.6 8351-9 - 1 .7 1 .8 4.3 835110 - 1 .9 2.0 5.0 835111 - 2.7 2.9 6.2 835112 - 1 .1 1 .2 5.3 8352-1 507.3 55.0 36.6 133.4 8352-2 208.8 8.4 5.2 -8353-8 148.3 6.4 3.8 -8353-9 134.1 7.0 3.0 -835310 272.1 13.1 4.5 -835311 148.8 3.3 2.8 -8406-1 5.9 .0 . 1 . 1 8406-2 6.5 .1 .2 .2 8406-3 5.6 .0 .0 . 1 8406-4 5.7 .0 . 1 .1 8450-1 655.8 26.6 10.6 159.4 8450-2 - - - 110.0 8450-3 - - - 140 .0 8450-4 - - - 287.2 219 APPENDIX VI (cont'd) C. Biomass o-f each age class of foliage for each sampled tree. Tree Foliage Age Class 1 2 3 4 5 6 <kg> <kg) (kg) (kg) (kg) (kg) 8201-7 .29 .52 .41 .08 .08 .03 820110 .70 1 .02 .67 .53 .30 .23 820113 .32 .45 .44 .50 .31 .26 820127 2.17 2.35 1 .93 .93 .68 .45 820130 .75 .92 .70 .22 .18 .11 820134 1 .29 2.07 1 .41 .50 .40 .25 820145 .23 .31 .21 .13 .08 .05 820160 . 11 .17 .09 .06 .03 .01 8202-1 1 .98 2.23 1 .52 .29 .13 .03 8202-2 .07 .10 .06 .01 .01 .00 8202C1 - - - - - -8202C2 - - - - -8202C4 - - - - - -8202C5 - -8203-1 1 .41 1 .72 1 .28 .76 .51 .44 8203-2 .79 .98 .77 .56 .37 .19 8204-1 1 .21 1 .50 1 .07 .59 .16 .06 8204-2 .57 .61 .32 .04 .01 .00 8204-3 .64 .84 .62 .22 .14 .06 8204-4 .86 1 .04 .64 .08 .01 .00 8204-5 1 .08 1 .12 .59 .17 .01 .01 8204-6 1 .63 1 .69 1 .02 .20 .0? .01 8204-7 .09 .16 .10 .01 .00 .00 8204-8 .05 .12 .03 .00 .00 .00 820510 1 .39 1 .89 1 .33 .91 .63 .13 820512 .38 .44 .32 .10 .04 .02 820517 - - - - - -8206-1 1 .56 2.15 1 .94 1 .72 1 .36 1 .46 8206-4 - - - - - -8206-6 .52 .58 .53 .48 .24 .17 8206-7 1 .07 1 .82 1 .28 1 .0? .74 .67 8206-9 1 .27 2.09 1 .47 1 .18 .69 1 .27 820618 - - - - - -820619 - - - - -820620 - - - - - -8208-6 3.08 3.61 3.22 3.22 3.39 3.60 620814 1 .34 2.19 1 .16 2.01 1 .94 1 .60 8212-1 .82 .99 .61 .57 .52 .27 8212-2 .75 .87 .62 .79 .46 .37 8212-3 - - - - - -8212-4 - - - — -8212-5 - - - -220 APPENDIX VI <cont'd> 8351-1 .53 .49 .48 .29 .17 .07 8351-2 .35 .25 .19 .11 .06 .01 8351-3 .17 .17 .14 .10 .02 .00 8351-4 .18 .17 .13 .06 .01 .00 8351-5 .56 .54 .29 .20 .05 .01 8351-6 .31 .29 .18 .15 .08 .02 8351-7 - - — — — — 8351-8 - — — — — — 8351-9 - - — — — — 835110 - — — — — — 835111 - - — — — — 835112 - - — — — — 8352-1 6.62 5.50 7.68 5.21 3.01 1 .76 8352-2 .99 .78 .89 .76 .50 .31 8353-8 .85 .52 .87 .51 .27 .16 8353-9 .63 .57 .56 .28 .16 .06 835310 1 .52 .54 .42 .27 .24 .05 835311 .55 .53 .48 .24 .21 .19 8406-1 .01 .01 .01 .01 .01 .01 8406-2 .02 .03 .02 .04 .02 .00 8406-3 .00 .00 .01 .01 .01 .00 8406-4 .01 .01 .01 .01 .00 .00 8450-1 2.69 1 .83 1 .34 1 .40 .77 .46 8450-2 - - — — — — 8450-3 - - — — — — 8450-4 - — — — — — APPENDIX VII Aboveground and c o a r s e r o o t biomass data -for the lodgepo le p ine s t a n d s sampled . X e r i c x Poor Pl ot Stem Fol i age Branches T o t a l Roots Aboveground (>5mm> <t/ha> <t/ha> < t / h a ) <t/ha) ( t / h a ) 24 106.61 7 .05 14.58 128.24 23.50 25 138.32 5 .45 10.27 154.03 36 .06 26 100.34 4 .62 1 .00 105.97 48 .12 28 152.7? 5 . 7 ? 1 2 . ? ? 171.57 35.82 29 125.64 7 .15 13.48 146.27 29 .78 31 125.77 5 .57 11 .03 142.37 28 .32 32 156.32 6 .13 12.35 174.80 39 .17 mean 129.40 5 . ? 6 10.81 146.18 3 4 . 3 ? m i n 100.34 4 .62 1 .00 105.97 23.50 max 156.32 7 .15 14.58 174.80 48 .12 Xer i c x R i c h P l o t Stem F o l i age Branches T o t a l Roots Aboveground (>5mm) ( t / h a ) ( t / h a ) ( t / h a ) ( t / h a ) ( t / h a ) 4 107.42 4 .88 7.14 119.44 30.26 5 108.45 3 .?0 4 .14 116.49 3 7 . 7 ? 8 141.48 7 .33 16.61 165.43 32.46 11 8 ? . 54 3.11 5.21 97.86 22 .06 18 123.?6 3.94 7 .09 134.99 33 .25 1? 130.46 3 . ? 3 4 .76 139.15 37 .38 20 88.25 3.90 9 .06 101.21 1?.84 27 68 .15 5 . ? 6 14.52 88.63 16.36 mean 107.21 4 .62 8 .57 120.40 28 .67 mi n 68.15 3.11 4 .14 88 .63 16.36 max 141.48 7 .33 16.61 165.43 3 7 . 7 ? APPENDIX VII (cont'd) Mesic x Poor PI ot Stem Foli age Branches Total Roots Aboveground ()5mm) (t/ha) (t/ha) (t/ha) (t/ha) (t/ha) 6 289.37 7.85 12.35 309.57 65.91 13 218.28 8.27 13.17 239.71 55.49 14 214.83 7.84 14.54 237.21 47.99 15 209.90 5.85 9.76 225.51 48.60 21 235.59 8.91 14.02 258.52 50.26 22 189.42 7.61 13.80 210.83 45.39 23 247.60 8.85 14.25 270.70 60.99 mean 229.28 7.88 13.13 250.29 53.52 m i n 189.42 5.85 9.76 210.83 45.39 max 289.37 8.91 14.54 309.57 65.91 Mesic x Rich PI ot Stem Fol i age Branches Total Roots Aboveground (>5mm) (t/ha) (t/ha) (t/ha) (t/ha) (t/ha) 1 166.38 4.40 7.74 178.53 38.95 2 179.09 5.11 12.83 197.02 42.07 3 157.06 5.06 9.39 171.52 76.37 7 204.60 7.43 11 .93 223.96 54.09 9 195.35 7.50 1 1 .72 214.56 49.63 10 237.07 5.46 6.97 249.50 40.87 16 285.06 10.79 17.27 313.12 72.68 17 284.02 9.26 17.29 310.58 66.26 mean 213.58 6.88 11.89 232.35 55.11 min 157.06 4.40 6.97 171.52 38.95 max 285.06 10.79 17.27 313.12 76.37 223 APPENDIX VIII Aboveground and coarse root production data -for the 30 lodgepole pine stands sampled. Xeric x Poor Plot Stem Foli age Branches Total Roots Aboveground <>5mm> < t/ha/yr) < t/ha/yr) <t/ha/yr) < t/ha/yr) < t/ha/yr) 24 1 .57 1 .41 .18 3.16 .33 25 1 .80 1 .38 .21 3.3? .37 26 2.1? 1 .58 .24 4.01 .45 28 2.40 1 .3? .20 3.?8 .50 29 2.43 1 .56 .23 4.23 .50 31 2.16 1 .26 .17 3.58 .45 32 2.6? 1 .52 .22 4.43 .56 mean 2.18 1 .44 .21 3.82 .45 m i n 1 .57 1 .26 .17 3.16 .33 max 2.6? 1 .58 .24 4.43 .56 Xeric x Rich Pl ot Stem Foli age Branches Total Roots Aboveground < >5mm> < t/ha/yr> < t/ha/yr) <t/ha/yr) < t/ha/yr) < t/ha/yr) 4 2.11 1 .24 .1? 3.54 .44 5 1 .88 1 .23 .1? 3.2? .3? 8 1 .?0 1 .57 .22 3.68 .3? 11 1 .23 .81 .12 2.16 .26 18 1 .5? 1.11 .17 2.87 .33 1? 2.23 1 .21 .18 3.62 .46 20 1 .57 .86 .12 2.54 .33 27 2.02 1 .14 .17 3.33 .42 mean 1 .81 1.15 .17 3.13 .38 m i n 1 .23 .81 .12 2.16 .26 max 2.23 1 .57 .22 3.68 .46 J 224 APPENDIX VIII (cont'd) Mesic x Poor PI ot Stem Foli age Branches Total Roots Aboveground (> 5mm > < t/ha/yr) (t/ha/yr) (t/ha/yr) (t/ha/yr) (t/ha/yr) 6 3.77 2.15 .28 6.21 .78 13 3.17 2.12 .30 5.59 .66 14 3.09 1 .88 .24 5.21 .64 15 2.20 1 .61 .22 4.04 .46 21 1 .65 1 .97 .12 3.73 .34 22 3.20 1 .85 .26 5.31 .66 23 4.12 2.30 .34 6.76 .85 mean 3.03 1 .98 .25 5.26 .63 m i n 1 .65 1 .61 .12 3.73 .34 max 4.12 2.30 .34 6.76 .85 Me s i c x Rich PI ot Stem Foli age Branches Total Roots Aboveground (>5mm) (t/ha/yr) (t/ha/yr) (t/ha/yr) (t/ha/yr) (t/ha/yr) 1 2.01 1 .24 .17 3.42 .42 2 1 .34 1 .34 .18 2.86 .28 3 1 .73 1 .34 .20 3.27 .36 7 3.37 1 .99 .30 5.67 .70 9 4.20 1 .93 .29 6.42 .87 10 2.82 1 .52 .23 4.57 .58 16 4.15 2.79 .42 7.37 .86 17 2.73 2.38 .34 5.45 .57 mean 2.80 1 .82 .27 4.88 .58 m i n 1 .34 1 .24 .17 2.86 .28 max 4.20 2.79 .42 7.37 .87 225 Appendix IX Autumn n i t r o g e n c o n c e n t r a t i o n s (%), biomass ( t h a " 1 ) , needle weight (g/100 f a s c i c l e s ) , and n i t r o g e n content (kg h a - 1 ) f o r each f o l i a g e age c l a s s i n each sampled stand. N0....N6 - N% i n c u r r e n t years f o l i a g e , . . . N % i n 6-year-old f o l i a g e . N7P - N% i n f o l i a g e ^ 7 years of age NLN - N% i n f o l i a g e l i t t e r f a l l F0,...F6 - biomass of c u r r e n t years f o l i a g e b i o m a s s of 6-year-old f o l i a g e (kg ha" 1) F7P - biomass of f o l i a g e ^ 7 years of age (kg ha" 1) FLN - estimates of l i t t e r f a l l biomass (kg ha" 1) W0,...WLN - needle weight (g/100 f a s c i c l e s ) f o r each age c l a s s and l i t t e r f a l l FNO,...FNLN - n i t r o g e n content (kg ha" 1) of each age c l a s s and l i t t e r f a l l . 226 < W K m V»R«#0.201-209 STHAT"NONE> WRITE OBSERVATIONS VARIABLES BV CASE O. 301. 302 . 303 . 304 . 305 . 206 . 207 . 20B. 209. PT NO Nl N2 N3 N4 NS Me W7P NLN 1 1. 0770 1. 3C50 1.3630 1. 4010 1. 2920 1 .2240 1.1830 1.2060 .66600 2 1, .0730 1. 1 0 1 0 1. 1500 1, .1460 1.0990 1.0840 1.0370 1.0370 .46600 3 1, .0290 1. 1580 1 0860 1, .0380 .97300 .95300 .95300 .95300 .62100 4 1. 1410 1.2050 1. 1850 1. 1880 1, .3460 1 .1320 1.1320 .99300 .61800 B 1, 1540 1. 3070 1. 3830 1, .9970 1. 4720 1 .3140 1.2630 1.3630 .85700 6 1. 1630 1. 3160 1. 3120 1, .4550 1. 4570 1 .4280 1.3350 1.3960 .•8200 7 1. 1TB0 1. 3800 1. 18T0 1 3O40 1, .2000 1 .1640 1.1360 1.1910 .B3400 a 1. 1780 .86500 1. 3790 1 1020 1, 3360 1 .2240 1.3240 1.1030 .69000 e 1. 0770 1. 1290 1. 2120 1 2570 1. 2220 1. 1860 1.1730 1.1500 .93400 10 1. 1480 .96500 1. 0680 1. 2450 1. 3450 .99100 1.0300 1.0300 .81500 11 1. 2260 1. 3580 1. 3890 1 .3660 1, 4000 1 .1870 1.1700 1.3S20 .90200 13 1, 1000 1. 0420 1. 1250 1 1820 1. 1480 1 .0840 1.0840 1.0840 .44600 14 1. 1420 1. 2470 1. 2760 1 .3230 1. 3660 1 .2100 1.2260 1.0280 .98900 IS 1. 0970 1. 1090 1. 1680 1. 2240 1, .3910 1 . 1950 1.1330 1.2100 .81800 16 .93000 1. 0370 1. 1020 1, .1130 .99100 .92600 .91900 1.0090 .49000 17 1, 2660 1. 1070 1. 0770 1, 0990 .99200 .86200 .82700 .82700 .87600 18 1. 1340 1. 1620 1. 0500 1. 1120 1. 1660 1 .1300 1.1300 1.0610 1.1210 19 1. 0990 1. 2790 1. 2380 1. 1780 1. 1560 1 .0210 1.0210 1.0210 .48600 20 1. 2550 1. 2100 1. 2020 1. 2000 1.2620 1, .1850 1.1950 1.1850 .86100 21 1.0B50 1. . 1440 1. 1650 1, .2330 1. 1910 1. 2190 1.1450 1.1500 .82500 32 1. 0720 1. 2440 1. 2260 1. 2420 1. 1620 1 . 1400 1.0890 1.0360 .60100 33 1.0360 1. 1650 1. 1520 1, 1160 1. 1340 1. 0450 1.0110 .96500 .88600 34 1, .2230 1. 2620 1. 3290 1. 2780 1. 1740 1, .2120 1.1490 1.1090 .64800 25 .B2400 1. 3770 1. 3520 1. 3820 1. 2670 1, 2740 1.1630 1.1560 .89700 36 1. 1500 1. 3020 1. 3160 1. 3350 1. 2860 1. 3000 1.3160 1.0780 .65400 27 1 . 1630 1. 2770 1. 3260 1. 2520 1. 1100 1, 1580 .87100 .78400 .84200 38 1. 1670 1. 2400 1. 1980 1. 2220 1. 2660 1, 1140 .91500 1.0960 .46100 29 1 .2460 1 .3450 1.3070 1 . 1980 1 .2570 • 1 .3390 1.0130 .98100 .47400 31 1 . 1410 1 .1010 1 . 1010 1 .1390 1 . 1790 1 .1300 1.0510 1.0510 .85000 32 1 . 1280 1 .1260 1 . 1720 1 . 1690 1 .2100 1 . 1640 1.1780 .94800 .56*100 227 (WRITE VAR-»0.211-219> •RITE OBSERVATIONS VARIABLES BV CASE 0. 311. 312. 313. 314. 315. 216. 217. 218. 219. PT ro Ft F2 F3 F4 F5 F6 FTP FLN 1 .67600 .83700 1 .3390 .69200 .42300 .35500 .26100 .19000 -1 1.1950 a .74900 .78300 1 .3380 .53000 •. 52500 .60100 .47000 .11100 1.1630 3 • B5300 .97500 1 .3420 .73500 .52400 .41100 .32300 0. 1.2860 4 .•OS 00 1.0S80 1 .3380 .99900 .53500 .32500 .61000 -1 0. 1.0600 s .93100 .95800 1.0210 .72700 .36600 0. 0. 0 1.1220 c 1.3310 1.4370 2 .1530 1.0300 .78000 .66100 .45600 0. 1.9930 7 1.3540 1.6170 1 .9910 1.3630 .76500 .44000 0. 0. 3.0090 B 1.0220 1.1090 1 .5700 .93500 .92100 .85000 .57600 .35100 1.3430 B 1.3230 1.5600 1 .9310 1.3430 .80700 .51200 .22000 0. 1.9410 10 1.0710 1.3370 1 .4830 1.0500 .53000 0. 0. 0. 1.3160 11 .56800 .•2700 .81500 .48800 .32800 .33500 .36000 -1 0. .75100 13 1!S930 1.6670 2 . 1330 1.3150 .89000 .61900 .59000 -1 0 2.3990 14 1.1690 1.2680 1 .8760 .99100 .89800 .81100 .57800 .24600 1.8890 15 1.0230 1.1080 1 .6080 .90600 .58100 .46600 .25700 0. 1.6560 16 2.0T30 2.2460 2 .7950 1.7810 1.1550 .74000 0. 0. 2.6790 IT 1.B470 1.6730 2 .3840 1.3690 .99000 .82200 .27700 0. 1.4400 1B .•8100 .85500 1 . 1090 .83600 .37900 .36600 .13000 -1 0. .71900 19 .86600 .94200 1 . 1080 .70300 .31300 0. 0. 0. 1.2060 30 .43000 .56900 .86200 .46100 .47600 .46800 .33300 .30100 .72700 31 .75600 1.0780 1 .9710 .81500 1 .0780 1.2550 .97100 .98900 1.7380 32 1.2060 1.3920 1 .8470 1.1180 .86500 .66900 .42500 .84000 -1 2.0130 33 1.4250 1.8030 2 .3040 1 .4170 .94300 .62400 .33500 0. 1.6460 34 .76100 1.0380 1 .4070 .92500 .93300 .82900 .54500 .61000 .95300 35 .76800 1.0800 1 .3840 .85200 .59100 .43700 .25700 .78000 -1 .99200 36 .95600 1.2710 1 . 1670 .98700 .34300 0. 0. 0. 1.1510 37 .69700 .88200 1 .1420 .80800 ..81000 .71700 .45300 .45200 .59900 38 .83800 .94300 1 .3870 .73300 .66000 .61600 .43300 . 17700 1.1180 39 .99600 1.3650 1. 5630 1.0970 .89300 .65600 .38600 .29100 .99900 31 .87400 .89300 1. 2560 .73400 .67400 .59100 .40100 .14800 1.3140 32 1.0520 1.1350 1. 5190 .89300 .88100 .55100 .29600 0. 1.2140 228 «WRITE V»R«#0.231-239> WRITE OBSERVATIONS VARIABLES BY CASE 0. 231. 332. 233. 234. 335 236. 237. 338. 339. PT NFO WM NF2 Mr 3 NF4 NFS NF6 NF7P NFLN 1 .72805 1.0588 1.5649 .82939 .54229 .43452 .30850 .32914 -1 .79587 2 .80368 .86088 1.B387 • .60738 .67697 .95148 .48369 .11400 .64149 3 .87671 1.1290 1.4574 .75558 .60933 .39168 .31352 0. .79861 4 .92193 1.3749 1.4670 1.0205 .66661 .36790 .69052 -1 8 0. .65508 S 1.0744 1.3521 1.4120 1.0156 .39165 0. 0. 0. .93495 « 1.5480 1.9911 3.6247 1.4986 1.1365 .94391 .60876 0. 1.1599 7 1.5909 3.0698 2.3832 1.6470 .91800 .61316 0. 0. 1.0729 B 1.2039 .95928 2.1650 1.0304 1.3305 1.0404 .70502 .38715 .92667 B 1.3173 1.7612 3.3404 1.9612 .98615 .60723 .25806 0. .98309 10 1.2295 1.3806 1.B83B 1.3072 .65985 0. 0. 0. .62727 11 .72089 .85147 1.1320 .66661 .45920 .26707 .42120 -1 0. .60230 13 1.7523 1.7370 3.3884 1.5543 1.0217 .67100 .63956 -1 0. 1.0748 14 1.3350 1.B812 3.3975 1.3111 1.2267 .98131 .70863 .35289 1.9015 1S 1.1222 1.3388 1.9781 .98654 .76007 .65687 .29118 0. .85781 16 1.9279 2.3291 3.0801 1.8823 1 . 1446 .68524 0. 0. 1.3127 17 2.3383 1.6520 3.B676 1.3946 .98208 .70856 .22908 0. .82944 18 .77225 .99351 1.1644 .70723 .44191 .30058 .14690 -1 0. .6O600 19 .95173 1.3048 1.3717 .82813 .36067 0.. 0. 0. .69612 30 .53965 .66849 1.0361 .55320 .60071 .65496 .39460 .35668 .40795 31 .82026 1.3332 2.2962 1.0049 1.2839 1.5298 1.1118 1.1373 .91245 22 1.2928 1.7316 2.3644 1.3BB6 1.0051 .76266 .46292 .87024 -1 1.2098 23 1.4763 3.1005 3.6542 1.5814 1.0694 .65208 .33868 0. .96456 34 .93070 1.3100 1.9699 1.1821 1.0953 1.0047 .62620 .67649 .61754 25 .40243 1.4872 1.8712 1.I860 .74880 .55674 .29889 .90168 -1 .59222 36 1.0994 1.6548 1.5358 1.3176 .31350 0. 0. 0 .63765 27 .81061 1. 1263 1.5143 1.0116 .89910 .83029 .39456 .35437 . 32466 2B .97795 1.1693 1.6616 .89573 .83556 .68622 .39619 .19399 .51540 29 1.2410 1.7014 2.0428 1.3142 1.1225 .61278 .39102 .23547 .47353 31 .99723 .98319 1.3829 .83603 .79465 .66783 .42145 .15555 .66770 32 1.1867 1.2780 1.7803 1.0439 .82401 .64136 .35104 0. .68105 229 < WRITE V»R-#0.221-229> WRITE OBSERVATIONS VARIABLES BV CASE 0. 221. 322. 333. 334. 225. 326. 327. 226. 229. PT WO W1 W2 W3 W4 W5 W6 WTR WLN 1 2. 7020 1. 9460 3. 5080 3.9460 3. 6830 3. 7860 3.3060 3.6450 3.3640 2 3. 3960 3. •440 3. 3960 0. 4. 0700 0. 4 1000 4 .1000 3.9620 3 3. 2000 3. •630 3. 5600 3.3100 3. 8620 4. oo  0. 4.0000 3.4120 4 3. 3170 2. 9020 3. 3060 3.45*0 3. 8160 3. 8900 4.5050 5 .3110 2.7460 5 3. 3660 a. 3300 3. •040 3.3940 3. 1700 3. 9700 3.8410 2 .8410 2.3740 6 3. 0260 3. 3680 3. 4960 0. 3. 8700 0. 0 . 4 .0620 3.3360 7 2. 3360 2. 7900 2. •480 0. 3. 3000 0. 0. 3 .4180 3.9740 8 3. 3000 3. 5800 3. 9340 0. 2. 8560 0. 0. 3 .1700 3.3640 9 3. 4820 3. 1660 3. 1740 4.0360 3 4660 4. 7030 3.7760 3 .9920 3.0260 10 3. 7060 3. 3540 3. 3860 0. 3. 6660 0. 3.9840 3 .9840 3.6360 11 3. 8980 3. 0980 3. 3640 0. 3. 3300 0. 3.3930 1. .8110 3.0060 13 3. 1180 3. 2620 3. 8200 3.9040 4. 5280 3. 3840 0. 3 3840 3.1870 14 2. 5860 3. •060 3. 1240 3.5080 4. 1120 4. 1480 3.6900 4. 1300 3.1460 15 2. 5600 3. 7740 3. 2360 0. 4. 2500 0. 0. 3 6260 3.3320 16 3. 5600 3. 7740 3. 2360 0. 4. 2500 0. 0. 3 .6260 3.1030 17 4. 8780 4. 4180 5. 4540 4.5660 4. 5660 0. 0. 4. .5660 3.3940 15 3. 2380 4. 0660 3. 7030 3.9300 3. ,7400 3. 7400 3.8690 3. 8690 3.4000 19 2. 7440 3. •860 3. 6580 4.1060 3. 3520 5. 3480 0. 5. 2480 3.6600 20 3. 3080 4. 2460 3. 9620 0. 2. 7260 3. 5670 0. 3. 5670 3.3400 21 2. •460 4. 0600 3. 4460 0. 4. 1100 0. 0. 3. .3190 3.0360 23 2. 4180 3. 7900 3. 2800 0. 3. 2480 0. 0. 2 8030 3.5740 23 3. 0740 3. 9900 3. 6740 0. 4. 0900 d. 0. 4. 9560 3.6240 34 2. •COO 3. 9000 4. OOOO 0. 3. 6500 0. 0. 3. 3540 2.7060 25 3. 4860 3. 4980 4. 1380 0. 2. 0080 0. 0. 3. 4200 2.9660 36 2. •320 3. 9980 4. 3220 0. 2. 7440 0. 0. 3. 1730 3.0740 37 2. .4800 3. 1380 4. .3440 0. 3. 3360 0. 0. 3. 8030 2.3780 28 2. 6860 3. 0240 3. 1300 0. 3. 9740 0. 0. 3. 5560 3.5220 39 3 . 1060 3 .9460 4 .3720 0. 3 .8420 0 0. 3 .2800 3.T3CO 31 2 .8760 3 .9380 3 .3940 0. 3 .3780 0 3.0240 3.0240 3.1840 32 2 .8920 3 .1300 3 .4720 0. 4.3300 0 0. 3 .9330 3.7740 230 APPENDIX X Fine + Small root <<5mm> biomass -for each plot and each sample date. Mineral = roots in the upper 40cm o-f mineral soil. Organic = roots in -forest floor <F & H) horizons. Total *= Mineral + Organic. Values -for the mean and SE o-f the mean are in t/ha. Plot Date <y/m/d) Xeric-1 840612 Xeric-1 840711 Xeric-1 840828 Xeric-1 841123 M i neral mean SE 4.81 .54 3.47 .36 3.74 .36 5.45 1.22 Organ i c mean SE 2.93 .80 3.34 .58 2.64 .44 4.16 .97 Total mean SE 7.73 .80 6.81 .7? 6.38 .58 9.60 1.34 Xeric-2 840611 5.74 .65 1 .53 .20 7.28 .69 Xer i c-2 840712 4.37 .33 1 .23 .22 5.59 .35 Xeri c-2 840829 3.90 .26 2.51 .41 6.41 .47 Xeric-2 841123 5.69 .54 5.29 1 .35 10 .98 1 .59 Mesi c-1 840611 3.14 .35 2.18 .32 5.33 .39 Mes i c-1 840711 3.07 .48 3.71 .57 6.78 .84 Mesi c-1 840828 2.67 .18 1 .65 .17 4.31 .24 Mesi c-1 841123 3.06 .43 4.29 .67 7.35 .77 Mesi c-2 840610 3.45 .39 4.41 .60 7.86 .75 Mesi c-2 840712 3.13 .36 3.58 .60 6.72 .72 Mesi c-2 840829 3.00 .36 2.90 .32 5.91 .49 Mesi c-2 841124 4.86 1 .02 2.61 .33 7.47 1.16 Appendix XI L i s t of p l a n t s p e c i e s c i t e d i n the t e x t . Abies amabilis (Dougl.) Forbes Abies laslocarpa (Hook.) Nutt. Achillea millefolium L. Alnus v i r i d i s subsp. sinuata (Regel) Love & Love Arnel anchier alnlfolla Nutt. Antennarla mi cr ophyl I a Rydb. Arct osI aphyl os uva-ursi (L.) Spreng. Arnica cordifolia Hook. Aster cons pi cuus L i n d l . Astragalus miser Dougl. Calamagrostis rubescens Buckl. Car ex conci nnoi des Mack. Chimaphila umbel I at a (L.) B a r t . Cl adoni a L. s p e c i e s Cornus canadensis L. Dicranum fuscescens Turn. Epilobium angus t i f ol i um L. Fragaria virginiana Duchesne Goodyera obi ongifolia Raf. Hedysarum sulphurescens Rydb. Hieracium albiflorum Hook. Hylocomium splendens (Hedw.) B.S.G. Juniperus communis L. Juniperus scopulorum Sarg. Larix leptolepis Gord. Larix occi dent al i s Nutt. Linnaea boreal is L. Lonicera involucrata (Rich.) Banks Lonicera utahensis Wats. Menziesia ferruginea Smith Orthilia secunda L. Peltigera aphthosa (L.) W i l l d . Pi cea engelmannii Parry Pinus banksiana Lamb. Pinus contorta v a r . I at i folia Engelm. Pinus densiflora S i e b . & Zucc. Pinus nigra v a r . mar i lima ( A i t . ) Melv. Pinus resinosa A i t . Pi nus strobus L. Pinus s y l v e s t r i s L. Pleurozium schreberi ( B r i d . ) M i t t . Pol ytri chum juniperinum Hedw. Pseudotsuga menziesii (Mirb.) Franco Ptilium crista-castrensis (Hedw.) De Not. Pyrola chlorantha Sw. Rhytidiopsis robust a (Hook.) Broth. Salix bebbi ana Sarg. Shepherdi a canadensis (L.) Nutt. Spiraea bet ul i folia P a l l . Stereocaul on tomentosum F r . Vaccinium membranaceum Dougl. Vaccinium myrtillus L. Vaccinium scoparium L e i berg 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0097116/manifest

Comment

Related Items