Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Relationships between foliar nutrient status of second growth Douglas-fir and forest floor chemical properties Davis, Geralyn Daphane 1987

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1987_A6_7 D38_4.pdf [ 5.94MB ]
Metadata
JSON: 831-1.0096898.json
JSON-LD: 831-1.0096898-ld.json
RDF/XML (Pretty): 831-1.0096898-rdf.xml
RDF/JSON: 831-1.0096898-rdf.json
Turtle: 831-1.0096898-turtle.txt
N-Triples: 831-1.0096898-rdf-ntriples.txt
Original Record: 831-1.0096898-source.json
Full Text
831-1.0096898-fulltext.txt
Citation
831-1.0096898.ris

Full Text

RELATIONSHIPS BETWEEN FOLIAR NUTRIENT STATUS OF SECOND GROWTH DOUGLAS-FIR A FOREST FLOOR CHEMICAL PROPERTIES by GERALYN DAPHANE DAVIS B . S c , The U n i v e r s i t y of V i c t o r i a , 1981 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n THE FACULTY OF GRADUATE STUDIES (Department of S o i l Science) We accept t h i s t h e s i s as conforming to the r e q u i r e d standard THE UNIVERS (c) Geralyn ITY OF BRIT October 198 Daphane Da ISH COLUMBIA 7 v i s , 1987 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of g Q O \ g . i n C C The University of British Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 Date D E - 6 G / 8 1 ) - i i -ABSTRACT The o b j e c t i v e of t h i s study was to examine the r e l a t i o n s h i p s between D o u g l a s - f i r (Pseudotsuga m e n z i e s i i (Mirb.) Franco) f o l i a r n u t r i e n t s t a t u s and f o r e s t f l o o r chemical p r o p e r t i e s . F o l i a r n u t r i e n t a n a l y s i s data were c o l l e c t e d on 27, 50- to 140-year-old D o u g l a s - f i r stands, f o r which the f o r e s t f l o o r chemical p r o p e r t i e s had p r e v i o u s l y been analysed. The 27 s i t e s encompassed a broad g e o g r a p h i c a l area w i t h i n the C o a s t a l Western Hemlock B i o g e o c l i m a t i c Zone. F o l i a r samples were i n d i v i d u a l l y analysed f o r t o t a l S, N, P, K, Ca, Mg, B, Cu, Zn, Fe, A l , Mn and f o r AFe ( a c t i v e i r o n ) . Four f o l i a r n u t r i e n t r a t i o s (N/S, N/P, K/Ca, Ca/Mg) were a d d i t i o n a l l y c a l c u l a t e d . As the f o l i a r sampling i n t e n s i t y was o f t e n below that recommended i n the p r o v i n c i a l sampling g u i d e l i n e s , the p r e c i s i o n of the w i t h i n - s i t e f o l i a r n u t r i e n t v a r i a b l e mean values was examined f o r the lowest sampling i n t e n s i t y used i n t h i s study (n=8). F o l i a r n u t r i e n t and r a t i o v a r i a n c e s from 6 of the 27 s i t e s , f o r which 15 t r e e s per s i t e had been sampled, were used as po p u l a t i o n v a r i a n c e e s t i m a t e s . A sampling i n t e n s i t y of n=8 was found to be s u f f i c i e n t l y l a r g e to provide f o l i a r n u t r i e n t v a r i a b l e mean estimates with an all o w a b l e e r r o r of 20% (c* =0.5) fo r a l l but the f o l l o w i n g f o l i a r n u t r i e n t s and r a t i o s : B, Cu, Ca/Mg and K/Ca. Two combinations of f o r e s t f l o o r h orizons were examined f o r p o s s i b l e r e l a t i o n s h i p s with f o l i a r n u t r i e n t v a r i a b l e s : L plus F - i i i -and L plus F plus H. These two combinations of f o r e s t f l o o r h orizons were r e f e r r e d to as the LF and the LFH l a y e r s . The two c r i t e r i a used to s e l e c t f o r e s t f l o o r chemical p r o p e r t i e s are as f o l l o w s : (1) the p r e c i s i o n of the f o r e s t f l o o r chemical property s i t e estimate was l e s s than or equal to 20% (Oc=0.5) f o r the f i e l d sampling i n t e n s i t y used, or (2) the f o r e s t f l o o r chemical property was an e s t a b l i s h e d measure of n u t r i e n t a v a i l a b i l t y . The 12 LF and 16 LFH chemical p r o p e r t i e s s e l e c t e d i n c l u d e d : LF and LFH: pH ( C a C l 2 ) , t o t a l - S , -N, -P, -Cu, -Zn, -Mg, -K, -C, Min-N (anaerobic m i n e r a l i z a b l e N), KC1-N (KC1 e x t r a c t a b l e N, A ( l i p i d s ) , and LFH ( o n l y ) : exK, exCa, exMg (1M N H 4 O A C exchangeable bases) and extP (Bray Pj e x t r a c t a b l e P ) . Simple l i n e a r r e l a t i o n s h i p s between f o l i a r n u t r i e n t v a r i a b l e s and LF and LFH chemical p r o p e r t i e s were i n i t i a l l y examined. Strong negative a s s o c i a t i o n s were found between f o l i a r S and c e r t a i n f o r e s t f l o o r chemical p r o p e r t i e s , namely LF: pH, LMg and LFH: pH, LMg, LexMg, LexCa, LexK (here and f o l l o w i n g , L s i g n i f i e s the n a t u r a l l o g a r i t h m ) . I t was hypothesized that these r e l a t i o n s h i p s r e f l e c t e d the e f f e c t of the d i f f e r e n t sources of plant a v a i l a b l e sulphur predominant on the higher (17 s i t e s ) and lower (10 s i t e s ) f o r e s t f l o o r pH s i t e s . Organic sulphur m i n e r a l i z a t i o n and mineral weathering were suggested as the major sources of p l a n t a v a i l a b l e sulphur f o r the higher f o r e s t f l o o r pH s i t e s ; anthropogenic atmospheric sulphur was suggested as the major source of p l a n t a v a i l a b l e sulphur f o r the lower f o r e s t f l o o r pH s i t e s . - i v -The e f f i c a c y of f o r e s t f l o o r (LF and LFH) chemical p r o p e r t i e s f o r p r e d i c t i n g and c l a s s i f y i n g f o l i a r n u t r i e n t s t a t u s was examined through the use of m u l t i p l e r e g r e s s i o n and d i s c r i m i n a n t a n a l y s i s , r e s p e c t i v e l y . These analyses were performed f o r the four f o l i a r n u t r i e n t v a r i a b l e s f o r which a range i n s u f f i c i e n c y and p o s s i b l e d e f i c i e n c y ( a c t u a l or i n d u c i b l e ) was i n d i c a t e d f o r the stands sampled: f o l i a r N, S, AFe and N/S. One r e g r e s s i o n model of p o t e n t i a l p r e d i c t i v e value was found f o r f o l i a r LS. Together, LFH pH and LFH LCu s t a t i s t i c a l l y accounted f o r 79% of the observed v a r i a t i o n i n f o l i a r LS. S e v e r a l LF and LFH chemical p r o p e r t i e s were able to r e l i a b l y c l a s s i f y stands i n t o the f o l l o w i n g t o t a l f o l i a r S groupings: s u f f i c i e n t and d e f i c i e n t ( a c t u a l or i n d u c i b l e ) . LF LMg and LF A provided the best c l a s s i f i c a t i o n of stands i n t o the groupings: S s u f f i c i e n c y and N - i n d u c i b l e S d e f i c i e n c y , as d e f i n e d by f o l i a r N/S. Three LFH chemical p r o p e r t i e s : P, S, and LexK provided the best c l a s s i f i c a t i o n of stands i n terms of adequate and s l i g h t to s e v e r e l y d e f i c i e n t f o l i a r N s t a t u s . LF and LFH chemical p r o p e r t i e s were only poorly able to c l a s s i f y f o l i a r AFe s t a t u s . I t was concluded that the r e l a t i o n s h i p s found i n t h i s study could not be e x t r a p o l a t e d beyond the present study, due to the unforeseen, yet probable, i n f l u e n c e of s l i g h t l y a c i d i c p r e c i p i t a t i o n on both n u t r i e n t c y c l i n g and f o l i a r n u t r i e n t s t a t u s f o r 10 of the 27 stands examined. - V -TABLE OF CONTENTS Page ABSTRACT i i TABLE OF CONTENTS v LIST OF TABLES v i i LIST OF FIGURES i x ABBREVIATIONS USED IN THIS STUDY x ACKNOWLEDGEMENTS x i i i 1.0 INTRODUCTION 1 2.0 STUDY RATIONALE 4 3.0 METHODS 3.1 S i t e S e l e c t i o n and D e s c r i p t i o n 6 3.2 Sampling and Laboratory A n a l y s i s 3.2.1 F o l i a g e 8 3.2.2 Fo r e s t F l o o r 11 3.3 Data Summary and S t a t i s t i c a l A n a l y s i s 3.3.1 F o l i a r N u t r i e n t V a r i a b l e s 12 3.3.2 Fo r e s t F l o o r Chemical P r o p e r t i e s 18 3.3.3 E v a l u a t i o n of R e l a t i o n s Between F o l i a r N u t r i e n t Status and Fo r e s t F l o o r Chemical P r o p e r t i e s 24 4.0 RESULTS AND DISCUSSION 4.1 F o l i a r A n a l y s i s 31 4.1.1 Stand N u t r i e n t Status 32 4.1.2 V a r i a t i o n i n F o l i a r N u t r i e n t V a r i a b l e s Within and Between S i t e s 38 4.1.3 P r e c i s i o n of F o l i a r N u t r i e n t V a r i a b l e s . . . 41 4.2 Fores t F l o o r Chemical P r o p e r t i e s 4.2.1 R e s u l t s of U n i v a r i a t e and M u l t i v a r i a t e Analyses 43 - v i -TABLE OF CONTENTS (cont'd) Page 4.3 R e l a t i o n s h i p s Between F o l i a r N u t r i e n t V a r i a b l e s and F o r e s t F l o o r Chemical P r o p e r t i e s 4.3.1 U n i v a r i a t e R e l a t i o n s h i p s 51 4.3.1.1 Hypotheses 54 4.3.1.2 I n t e r p r e t a t i o n s 61 4.3.2 M u l t i v a r i a t e R e l a t i o n s h i p s 4.3.2.1 M u l t i p l e Regression 71 4.3.2.2 D i s c r i m i n a n t A n a l y s i s 77 5.0 SUMMARY 90 6.0 CONCLUSIONS 95 LITERATURE CITED 99 APPENDICES Appendix A S i t e D e s c r i p t i o n Data 110 Appendix B S i t e Mean F o l i a r N u t r i e n t s and R a t i o s . . . . I l l Appendix C - l LF Chemical P r o p e r t i e s 112 Appendix C-2 LFH Chemical P r o p e r t i e s 113 Appendix D-l Eigenvalues and e i g e n v e c t o r s from PCA of LF chemical p r o p e r t i e s and c o r r e l a t i o n matrix. 114 Appendix D-2 Eigenvalues and ei g e n v e c t o r s from PCA of LFH chemical p r o p e r t i e s and c o r r e l a t i o n matrix 115 - v i i -LIST OF TABLES Table Page 1. S i t e Mean F o l i a r N u t r i e n t and Ratio L e v e l s 33 2. C o r r e l a t i o n s Between F o l i a r N u t r i e n t V a r i a b l e s 37 3. Within S i t e F o l i a r N u t r i e n t and Ratio V a r i a b i l i t y Expressed as % C o e f f i c i e n t of V a r i a t i o n . . 40 4. Allowable E r r o r A s s o c i a t e d with F o l i a r N u t r i e n t s and R a t i o s f o r a Sample S i z e of E i g h t 42 5. S i g n i f i c a n t C o r r e l a t i o n s Between LF Chemical P r o p e r t i e s 46 6. S i g n i f i c a n t C o r r e l a t i o n s Between LFH Chemical P r o p e r t i e s 47 7. M u l t i v a r i a t e Sample S i z e A n a l y s i s of LF Chemical P r o p e r t i e s 48 8. M u l t i v a r i a t e Sample Si z e A n a l y s i s of LFH Chemical P r o p e r t i e s 49 9. Subgroups S e l e c t e d on the B a s i s of Low M u l t i - C o l l i n e a r i t y 50 10. Subgroups S e l e c t e d on the Bas i s of D i f f e r e n t Means Between Two F o l i a r V a r i a b l e S t r a t a 50 11. Subgroups S e l e c t e d on the Bas i s of High C o r r e l a t i o n with F o l i a r N u t r i e n t V a r i a b l e 50 12. S i g n i f i c a n t C o r r e l a t i o n s Between F o l i a r N u t r i e n t V a r i a b l e s and LF Chemical P r o p e r t i e s 52 13. S i g n i f i c a n t C o r r e l a t i o n s Between F o l i a r N u t r i e n t V a r i a b l e s and LFH Chemical P r o p e r t i e s 53 14. S e l e c t e d F o l i a r N u t r i e n t V a r i a b l e s and F o r e s t F l o o r Chemical P r o p e r t i e s f o r the Higher and Lower pH S i t e s 56 15. LF Chemical Property Regressions 74 16. LFH Chemical Property Regressions 75 17. F o l i a r N u t r i e n t V a r i a b l e : P r e d i c t e d versus A c t u a l . . . . 76 - v i i i -LIST OF TABLES (cont'd) Page 18. LF D i s c r i m i n a n t Functions 82 19. LFH D i s c r i m i n a n t Functions 86 - i x -LIST OF FIGURES Figure Page 1. S i t e l o c a t i o n s 7 - X -LIST OF ABBREVIATIONS USED IN THE TEXT A. FOREST FLOOR CHEMICAL PROPERTIES (taken from C a r t e r 1983) A or LA 1 C C/N Cu or LCu CV extP exCa or LexCa exK or LexK exMg or LexMg K or LK KCL-N or LKCL-N LF LFH T o t a l l i p i d s i n f r a c t i o n A of s e q u e n t i a l e x t r a c t i o n (Lowe 1974) ( % ) 2 . T o t a l carbon (%). T o t a l carbon to t o t a l n i t r o g e n mass r a t i o . T o t a l copper (ppm). Percent c o e f f i c i e n t of v a r i a t i o n . Bray PI e x t r a c t a b l e phosphorus (ppm). 1M N H 4 O A C (adjusted to pH 7) exchangeable calcium ( L a v k u l i c h 1978) (me/lOOg) . 1M N H 4 O A C (adjusted to pH 7) exchangeable potassium ( L a v k u l i c h 1978) (me/lOOg). 1M N H 4 O A C (adjusted to pH 7) exchangeable magnesium ( L a v k u l i c h 1978) (me/lOOg). T o t a l potassium (ppm). Potassium c h l o r i d e e x t r a c t a b l e n i t r o g e n (ppm) . Combined organic horizons c h a r a c t e r i z e d by an accumulation of organic matter d e r i v e d mainly from l e a v e s , twigs and woody m a t e r i a l s i n which the o r i g i n a l s t r u c t u r e s are e a s i l y d i s c e r n i b l e (Canada S o i l Survey Committee 1978). The combination of the L and F h o r i z o n s , as d e s c r i b e d above, and the H h o r i z o n which i s d e f i n e d by the Canada S o i l Survey Committee (1978) as: an organic h o r i z o n c h a r a c t e r i z e d by an accumulation of decomposed organic matter i n which the o r i g i n a l s t r u c t u r e s are i n d i s c e r n i b l e . - x i -LIST OF ABBREVIATIONS USED IN THE TEXT (cont.) Mg or LMg T o t a l magnesium (ppm). Min-N Anaerobic m i n e r a l i z a b l e n i t r o g e n (ppm). N T o t a l N (%). N/P T o t a l n i t r o g e n to t o t a l phosphorus mass r a t i o . N/S T o t a l n i t r o g e n to t o t a l sulphur mass r a t i o . N/K T o t a l n i t r o g e n to t o t a l potassium mass r a t i o . P T o t a l phosphorus (%). pH (CaCl2) pH measured i n a 0.01 M CaCl2 s o l u t i o n . S or LS T o t a l sulphur (ppm). Zn or LZn T o t a l z i n c (ppm). B. FOLIAR NUTRIENTS AND RATIOS F o l i a r AFe or LAFe A c t i v e i r o n (ppm). F o l i a r A l or LAI T o t a l aluminum (ppm). F o l i a r B T o t a l f o l i a r boron (ppm). F o l i a r Ca or LCa T o t a l f o l i a r c alcium (ppm). F o l i a r Ca/Mg or LCa/Mg T o t a l calcium to t o t a l magnesium mass r a t i o . F o l i a r Cu or LCu T o t a l f o l i a r copper (ppm). F o l i a r Fe or LFe T o t a l f o l i a r i r o n (ppm). F o l i a r K or LK T o t a l f o l i a r potassium (ppm). F o l i a r Mg or LMg T o t a l f o l i a r magnesium (ppm). F o l i a r Mn or LMn T o t a l f o l i a r manganese (ppm). - x i i -LIST OF ABBREVIATIONS USED IN THE TEXT (cont.) F o l i a r N T o t a l f o l i a r n i t r o g e n (%) F o l i a r N/P or LN/P T o t a l n i t r o g e n to t o t a l phosphorus mass r a t i o . T o t a l n i t r o g e n to t o t a l sulphur mass r a t i o . F o l i a r N/S or LN/S F o l i a r P or LP T o t a l f o l i a r phosphorus (ppm). F o l i a r S or LS T o t a l f o l i a r sulphur (ppm) 1 L i n these two l i s t s denotes the n a t u r a l l o g a r i t h m of the v a r i a b l e i d e n t i f i e d ; f o r example, LAfe i s the n a t u r a l l o g a r i t h m of AFe, where the l a t t e r i s expressed as ppm. LF and LFH are the exc e p t i o n s . 2 ppm s i g n i f i e s mg per kg of dry matter; % s i g n i f i e s eg per g of dry matter. - x i i i -ACKNOWLEDGEMENTS I would l i k e to thank my t h e s i s a d v i s o r , Dr. T.M. B a l l a r d , f o r h i s continued support and guidance. The advice and encouragement of Dr. L.M. L a v k u l i c h and the members of my t h e s i s committee: Dr. L.E. Lowe, Dr. K. K l i n k a and Dr. A.A. Bomke, i s g r a t e f u l l y acknowledged. F i e l d work was made very enjoyable by the company and a s s i s t a n c e of Glenn Moffat, S h e r r i C a d i t z , and Kevin Murphy. The l a b o r a t o r y analyses could not have been completed without the advice and c o - o p e r a t i o n of J u l i e L a nsiquot, E v e l i n e Wolterson, Esther Yip and P a t t i C a r b i s . During the data a n a l y s i s the advice and a s s i s t a n c e of Dr. H. S c h r e i e r , Dr. J.P. Demaerschalk, P. Schumacher, B. Wong, J . Emanuel, and R. Scagel was i n v a l u a b l e . I would a l s o l i k e to thank Mike Curran and Reid C a r t e r f o r t h e i r encouragement and comments. The f i n a n c i a l support given by B.C. F o r e s t Products and the B.C. M i n i s t r y of F o r e s t s i s g r a t e f u l l y acknowledged. - 1 -1.0 INTRODUCTION The i n c r e a s i n g competitiveness of the wood product market, coupled with the s h r i n k i n g f o r e s t land base, re-emphasizes the need f o r i n t e n s e f o r e s t management p r a c t i c e s which are cost e f f e c t i v e (Keeney 1980; Powers 1980). Over the past two decades, n i t r o g e n f e r t i l i z a t i o n has expanded to l a r g e - s c a l e o p e r a t i o n a l use i n the P a c i f i c Northwest. The co s t e f f e c t i v e n e s s of t h i s p r a c t i c e r e l i e s on the a b i l i t y to p r e d i c t the growth response to f e r t i l i z a t i o n . Success i n t h i s area has been v a r i e d (Hahn and Imse 1984; McNabb 1984). As a r e s u l t , c o n s i d e r a b l e e f f o r t i s being placed on the development and c a l i b r a t i o n of a s o i l n i t r o g e n a v a i l a b i l i t y index f o r the purpose of p r e d i c t i n g y i e l d response to nitogen f e r t i l i z a t i o n . The importance of f a c t o r s such as s i t e , c l i m a t e and s t o c k i n g l e v e l s i n the i n t e r p r e t a t i o n of r e s u l t s from s o i l n i t r o g e n a v a i l a b i l i t y i n d i c e s i s widely acknowledged ( G e i s t and Meurisse 1984; Powers 1984). However, i n c r e a s i n g evidence suggests that n u t r i e n t s other than n i t r o g e n may be l i m i t i n g f o r e s t growth, or reducing the response of stands f e r t i l i z e d with n i t r o g e n alone (Turner e_t a_l. 1979; Heihman and Exuan 1980; Radwan and Shumway 1983; McNabb 1984; Peterson et a l . 1984). C u r r e n t l y , f o l i a r a n a l y s i s i s the major t o o l used to assess stand n u t r i e n t imbalances and d e f i c i e n c i e s ; n u t r i t i o n a l i n t e r p r e t a t i o n s of s o i l chemical analyses are f a i r l y l i m i t e d due to the l a c k of adequate f i e l d c o r r e l a t i o n and c a l i b r a t i o n s t u d i e s - 2 -( B a l l a r d 1982). F o l i a r a n a l y s i s provides a f a i r l y s e n s i t i v e and d i r e c t i n d i c a t i o n of stand n u t r i e n t s t a t u s ( B a l l a r d 1982), and an i n d i r e c t measure of the s i t e n u t r i e n t a v a i l a b i l i t y . However, the cost and time r e q u i r e d to sample f o l i a g e s u b s t a n t i a l l y i n c r e a s e s with the age of the stand, p a r t i c u l a r l y with dense s t o c k i n g . Thus, the prospect of using f o r e s t f l o o r a n a l y s i s i n s t e a d of f o l i a r a n a l y s i s would be an a t t r a c t i v e a l t e r n a t i v e . Sampling f o r e s t f l o o r m a t e r i a l should be r e l a t i v e l y easy, s i n c e i t l i e s on the s o i l s u r f a c e . I t i s suggested that i n mature stands ( i . e . , >50yrs) where much of the f o r e s t f l o o r m a t e r i a l i s d e r i v e d from the stand i t s e l f , the n u t r i e n t q u a l i t y of the f o r e s t f l o o r l i t t e r may r e f l e c t the stand n u t r i e n t s t a t u s , p a r t i c u l a r l y f o r those n u t r i e n t s which are not r e a d i l y l e a c h a b l e . P o t e n t i a l feedbacks between l i t t e r q u a l i t y (e.g., n i t r o g e n and l i g n i n contents) and stand n u t r i e n t s t a t u s have been suggested t h e o r e t i c a l l y (Gosz 1981; M i l l e r 1981; Vitousek 1982, 1984) and from experimental evidence (Flanagan and Van Cleve 1984; N a d e l h o f f e r e_t a_l. 1984). T h e o r e t i c a l l y , i t i s proposed that many, i f not most, t r e e s vary i n the e f f i c i e n c y with which they use n u t r i e n t s , depending on n u t r i e n t a v a i l a b i l i t y . Here, e f f i c i e n c y r e f e r s to the q u a n t i t y of photosynthate produced per u n i t of n u t r i e n t uptake (Vitousek 1984). The a b i l i t y to adapt to r a d i c a l changes i n n u t r i e n t a v a i l a b i l i t y has been demonstrated f o r s e v e r a l c o n i f e r s p e c i e s i n f e r t i l i z a t i o n s t u d i e s (Turner 1977; Flanagan and Van Cleve 1984). R e s u l t s from n u t r i e n t c y c l i n g s t u d i e s a l s o show that t r e e s undergo p h y s i o l o g i c a l - 3 -a d a p t a t i o n s i n response to gradual changes i n n u t r i e n t a v a i l a b i l i t y ( M i l l e r e_t a_l. 1978). In both cases reduced n u t r i e n t a v a i l a b i l i t y has been shown to s t i m u l a t e p h y s i o l o g i c a l changes which " t i g h t e n " the i n t e r n a l n u t r i e n t c y c l e , thereby reducing the impact of the n u t r i e n t s t r e s s . P h y s i o l o g i c a l mechanisms, such as i n c r e a s e d l e a f p e r s i s t e n c e and n u t r i e n t withdrawal p r i o r to l e a f a b s c i s s i o n , improve w i t h i n t r e e n u t r i e n t use e f f i c i e n c y by (1) d ecreasing the r a t e of n u t r i e n t l o s s through canopy biomass turnover and (2) i n c r e a s i n g the y i e l d of photosynthate per u n i t of n u t r i e n t (Cole 1981; Gosz 1981). N u t r i e n t d e f i c i e n c y has been shown to s e c o n d a r i l y s t i m u l a t e the p r o d u c t i o n of t i s s u e of higher f i b e r and l i g n i n content (Gosz 1981). The r e s u l t i s the p r oduction of low q u a l i t y l i t t e r which r e f l e c t s and p o s s i b l y perpetuates low a v a i l a b i l i t y of n u t r i e n t s f o r stand uptake, through low decomposition r a t e s (Gosz 1981; Staaf and Berg 1981). In c o n t r a s t , high stand n u t r i e n t a v a i l a b i l i t y t y p i c a l l y supports higher r a t e s of n u t r i e n t c y c l i n g i n l i t t e r f a l l . Higher n u t r i e n t a v a i l a b i l i t y permits low w i t h i n - s t a n d n u t r i e n t c o n s e r v a t i o n to e x i s t . S t u d i e s which have examined the r e l a t i o n s h i p between f o r e s t f l o o r n u t r i e n t q u a l i t y and f o l i a r n u t r i e n t s t a t u s are few ( Z o t t l 1960; Adams 1973; Lamb 1975; Flanagan and Van Cleve 1983; Fernandez and Struchtemeyer 1984). F u r t h e r , much of t h i s r e s e a r c h has focused on n i t r o g e n , which i s the most commonly c i t e d g r o w t h - l i m i t i n g n u t r i e n t i n the temperate and b o r e a l r e g i o n s . Information a v a i l a b l e on r e l a t i o n s h i p s between f o r e s t - 4 -f l o o r l i t t e r q u a l i t y and w i t h i n - s t a n d c y c l i n g p a t t e r n s f o r other n u t r i e n t s i s s p a r s e . The main o b j e c t i v e of t h i s study was to evaluate the n u t r i e n t s t a t u s of second growth D o u g l a s - f i r (Pseudotsuga  m e n z i e s i i var. m e n z i e s i i [Mirb.] Franco) stands i n the C o a s t a l Western Hemlock B i o g e o c l i m a t i c Zone ( K r a j i n a 1969) , by means of f o l i a r a n a l y s i s , and to determine i t s r e l a t i o n s h i p to the f o r e s t f l o o r chemical p r o p e r t i e s . The s p e c i f i c o b j e c t i v e s were t o : (1) c h a r a c t e r i z e both the w i t h i n - s i t e f o l i a r n u t r i e n t c o n c e n t r a t i o n and r a t i o v a r i a t i o n and the p r e c i s i o n of the s i t e mean f o l i a r n u t r i e n t c o n c e n t r a t i o n and r a t i o estimates f o r the lowest sampling i n t e n s i t y used, (2) examine r e l a t i o n s h i p s between f o l i a r n u t r i e n t v a r i a b l e s and f o r e s t f l o o r chemical p r o p e r t i e s through the use of both u n i v a r i a t e and m u l t i v a r i a t e a n a l y s e s , and (3) e v a l u a t e , based on ( 2 ) , the e f f i c a c y of using f o r e s t f l o o r chemical p r o p e r t i e s to p r e d i c t and c l a s s i f y f o l i a r n u t r i e n t s t a t u s . 2.0 STUDY RATIONALE The present study was designed to b u i l d on f o r e s t f l o o r chemical data a v a i l a b l e from previous s t u d i e s (Lowe and K l i n k a 1981; C a r t e r 1983). The r e s e a r c h s i t e s support second growth D o u g l a s - f i r stands and t h i s study provides an index of stand n u t r i e n t s t a t u s , by adding f o l i a r a n a l y s i s i n f o r m a t i o n . F o r e s t f l o o r chemical p r o p e r t i e s were a v a i l a b l e f o r the L plus F, and H h o r i z o n s , along with s i t e d e s c r i p t i o n s ( i . e . , i n C a r t e r 1983). - 5 -Two combinations of f o r e s t f l o o r h o r i z o n s were examined f o r p o s s i b l e r e l a t i o n s h i p s to f o l i a r n u t r i e n t s t a t u s : L plus F and L plus F plus H. ( H e r e a f t e r these two combinations of f o r e s t f l o o r h o r i z o n s are r e f e r e d to as LF and LFH l a y e r s . ) The LF l a y e r s were i n t e r p r e t e d as r e p r e s e n t i n g a more recent l i t t e r f a l l , of which the primary source were the t r e e s themselves. The i n f l u e n c e and c o n t r i b u t i o n of understory l i t t e r to the f o r e s t f l o o r had been reduced on most s i t e s because of crown c l o s u r e . Various papers have proposed the use of recent l i t t e r f a l l ( i . e . , 1-2 years o l d ) to monitor (Adams 1973) or i d e n t i f y N d e f i c i e n t stands ( M i l l e r and W i l l i a m s 1976; van den Driessche 1979). The LFH l a y e r s , i n c o n t r a s t , were i n t e r p r e t e d as r e p r e s e n t i n g a time i n t e g r a t i o n of the above as w e l l as a l a r g e p o r t i o n of the below ground l i t t e r . Below ground l i t t e r turnover i s p o t e n t i a l l y a very important source of r e a d i l y a v a i l a b l e n u t r i e n t s (Harvey e_t a l . 1978; Fogel 1983; Vogt et a l . 1983). The ease of i d e n t i f y i n g and sampling the e n t i r e f o r e s t f l o o r as a u n i t , f u r t h e r warranted the examination of the LFH l a y e r s i n a d d i t i o n to the LF l a y e r s . - 6 -3.0 METHODS 3.1 S i t e S e l e c t i o n and D e s c r i p t i o n The s i t e s were s e l e c t e d from those p r e v i o u s l y sampled by Car t e r (1983). S i t e s e l e c t i o n c r i t e r i a i n i t i a l l y d e f i n e d by Carte r (1983) are l i s t e d below: 1) The stands must be w i t h i n the ge o g r a p h i c a l boundaries of the CWH Zone and s i t e s e l e c t i o n should attempt to provide a broad g e o g r a p h i c a l d i s t r i b u t i o n w i t h i n t h i s zone; 2) S e l e c t i o n of sample p l o t s w i t h i n stands should attempt to provide a wide range of s i t e i n d i c e s , hygrotopes, trophotopes and aspects; 3) The D o u g l a s - f i r component of the o v e r s t o r y dominant and codorainant t r e e s p e c i e s must be grea t e r than or equal to 80 percent; A) The stand must be i n an age c l a s s between 50 and 140 years; 5) The stand must be w e l l stocked and r e l a t i v e l y homogeneous i n understory and o v e r s t o r y v e g e t a t i o n . S i t e l o c a t i o n s ranged approximately from Campbell River to Mesachie Lake on eas t e r n Vancouver I s l a n d , and from H a r r i s o n Lake and the C h i l l i w a c k V a l l e y to Howe Sound on the Mainland ( F i g u r e 1). From the 53 stands i n i t i a l l y sampled by C a r t e r (1983), 27 stands were s e l e c t e d based on a c c e s s i b i l i t y . These 27 stands OO c l-t 3 0> in cr o *: H-00 CD CO (D (B 1 O tr C/> H" r t (D tr1 o o 0) r t H-O a CO I - 8 -ranged i n s i t e index from 14 to 48 m/lOOyears. E c o l o g i c a l moisture and n u t r i e n t regimes (Walmsley e_t_ al_. 1980) f o r these s i t e s v a r i e d from x e r i c to h y g r i c and submesotrophic to e u t r o p h i c , r e s p e c t i v e l y . E l e v a t i o n s were between 90 and 650 m above sea l e v e l . F o r e s t f l o o r humus forms belonged p r i m a r i l y to the mor order ( K l i n k a e_t a_l. 1981). The moder and mull orders were dominant on 4 of the 27 s i t e s . S i t e d e s c r i p t i o n s are given i n Appendix A. 3.2 Sampling and Laboratory Analyses 3.2.1 F o l i a g e F o l i a g e sampling took place during September and October of 1982. Sampling was r e s t r i c t e d to a 400 m2 s i t e , p r e defined by C a r t e r (1983). Within the c o n f i n e s of the s i t e , l o c a l topography, s t o c k i n g and v e g e t a t i o n were r e l a t i v e l y homogeneous. F o l i a g e sampling followed g u i d e l i n e s recommended by B a l l a r d (1981) . Sampling was c a r r i e d out by s h o o t i n g , using an extension pole-pruner from the ground or c l i m b i n g . A 2 2 - c a l i b e r r i f l e with a t e l e s c o p i c s i g h t was i n i t i a l l y used f o r sampling. T h i s was e v e n t u a l l y r e p l a c e d with a f u l l choke 16 gauge shotgun (no. 2 shot) with i r o n s i g h t s . An extension pole-pruner was used on only a few stands where the t r e e s were l e s s than 10 m. Where stand d e n s i t y and/or crown shape r e s u l t e d i n low recovery of severed shoots t r e e s were climbed by a p r o f e s s i o n a l . Finances - 9 -were not a v a i l a b l e f o r r o u t i n e c l i m b i n g . F i f t e e n t r e e s per s i t e were sampled on 6 of the 27 s i t e s to permit an assessment of f o l i a r n u t r i e n t data p r e c i s i o n . E i g h t to 10 t r e e s per p l o t were sampled on the remaining s i t e s . These s i t e groupings w i l l be r e s p e c t i v e l y r e f e r r e d to as i n t e n s e l y and r o u t i n e l y sampled. An attempt was made to sample a minimum of 10 tre e s per s i t e . S i t e s i z e combined with stand d e n s i t y , however, l i m i t e d the number of t r e e s sampled on 3 s i t e s to l e s s than 10. Branches were sampled from the top t h i r d of dominant and codominant t r e e s . Current year b r a n c h l e t s were subsequently c o l l e c t e d from two or more branch t i p s . Sampling was r e s t r i c t e d to healthy t r e e s ; t r e e s showing signs of disease or i n s e c t damage or t r e e s heavy i n cone production were avoided. The c u r r e n t year b r a n c h l e t s were store d i n p l a s t i c bags f o r a maximum of 4 days p r i o r to oven d r y i n g . In the f i e l d , attempts were made to keep the samples as c o o l as p o s s i b l e . Once i n the l a b o r a t o r y , samples were t e m p o r a r i l y st o r e d i n the r e f r i d g e r a t o r . Current-year f o l i a g e was s t r i p p e d from the twigs and oven d r i e d at 70° C f o r approximately 10 hours or u n t i l a bent needle snapped c l e a n l y i n two. A 100 needle weight was determined f o r each sample p r i o r to g r i n d i n g . The dry needles from each t r e e sampled were then f i n e l y ground i n a Braun type KSM-2 c o f f e e g r i n d e r . The ground samples were s t o r e d at room temperature i n an a i r - t i g h t p l a s t i c v i a l . Four months elapsed before the ground samples were analy s e d . P r i o r to chemical a n a l y s e s , 1 1/2 times the re q u i r e d sample - 10 -mass was weighed out i n t o a tared aluminum f o i l weighing d i s h . F o l l o w i n g d r y i n g at 70° f o r 4 to 6 hours, the sample was cooled and s t o r e d i n a d e s i c c a t o r before weighing out the amount of oven-dry sample r e q u i r e d f o r the a n a l y s i s . T h i s e l i m i n a t e d l o s s e s during f i n a l weighing due to moisture. A subsample of a f o l i a g e r e f e r e n c e sample and a blank were r o u t i n e l y analysed with the f i e l d f o l i a r samples. T o t a l f o l i a r elemental a n a l y s i s was performed using a modified Parkinson and A l l e n (1975) s u l f u r i c acid-hydrogen peroxide d i g e s t . The procedure i s d e s c r i b e d by B a l l a r d (1981). The o r i g i n a l d i g e s t s o l u t i o n s were analysed f o r t o t a l Fe, A l , Mn, Cu and Zn using a Perkin-Elmer 306 atomic a b s o r p t i o n spectrophotometer ( P r i c e 1978). Measured Cu values approached the r e s o l u t i o n of the atomic a b s o r p t i o n spectrum f o r Cu (Baker and Suhr 1982). A n i t r i c a c i d d i g e s t i s now r o u t i n e l y used to determine low c o n c e n t r a t i o n s of f o l i a r Cu. The f o l i a r Cu values i n t h i s study t h e r e f o r e need to viewed with c a u t i o n . T o t a l Ca, Mg, and K were s i m i l a r l y analysed using atomic a b s o r p t i o n spectrometry, but at a 25x d i l u t i o n of the o r i g i n a l d i g e s t s . An a i r - a c e t y l e n e flame was used i n the a n a l y s i s of K, Ca, Mg, Fe and Mn; a higher temperature n i t r o u s o x i d e - a c e t y l e n e flame was used i n the a n a l y s i s of A l . T o t a l P was determined c o l o r i m e t r i c a l l y i n the o r i g i n a l d i g e s t s using the r e d u c t i o n of an ammonium molybdophosphate complex by a s c o r b i c a c i d (Watanabe and Olsen 1965). A 25x d i l u t i o n of the o r i g i n a l d i g e s t s was used f o r N a n a l y s i s by the B e r t h e l o t ( p h e n o l h y p o c h l o r i t e ) c o l o r i m e t r i c - 11 -method (Weatherburn 1967). Both P and N were determined using a Technicon Autoanalyzer II (Anonymous 1974). T o t a l S was determined using a F i s h e r S u l f u r Analyzer Model 475 o p e r a t i n g i n c o n j u n c t i o n with a high temperature r e s i s t a n c e type furnace. The modified procedures of Lowe and Guthrie (1981) were f o l l o w e d . A m o d i f i c a t i o n of the method of Oserkowsky (1933) was used f o r the a n a l y s i s of a c t i v e i r o n ( B a l l a r d 1981). Iron e x t r a c t e d with 1M HCL was determined using atomic a b s o r p t i o n spectrophotometry ( B a l l a r d 1981). D i l u t e HCI e x t r a c t a b l e i r o n has been shown f o r a g r i c u l t u r a l crops (DeKock 1981) and f o r Scots pine (Pinus s y l v e s t r i s L.) (Zech 1970) to be a b e t t e r d i s c r i m i n a t o r of Fe d e f i c i e n c y than t o t a l Fe; only a p o r t i o n of the t o t a l Fe i s known to be p h y s i o l o g i c a l l y a c t i v e (Mengel and Kirkby 1982). Boron a n a l y s i s i n v o l v e d the use of the ashing and e x t r a c t i o n method of Gaines and M i t c h e l l (1979) together with Wolf's (1974) azomethine H c o l o r i m e t r i c method. A G i l f o r d spectrophotometer (flow-through type) was used f o r c o l o r d e t e r m i n a t i o n . 4.2.2 Forest F l o o r Fo r e s t f l o o r sampling procedures and analyses are d e s c r i b e d i n d e t a i l by C a r t e r (1983) and Lowe and K l i n k a (1981). B r i e f l y , 15 random samples (560 cm 2 s u r f a c e area) from the L plus F horizons and from the H h o r i z o n were composited on a depth-weighted b a s i s f o r each s i t e . Samples were a i r - d r i e d at 25°C and f i n e l y ground i n a Waring blender. Hygroscopic - 12 -moisture content of the a i r - d r y samples was determined to permit the e x p r e s s i o n of the c o n c e n t r a t i o n s on an oven-dry b a s i s . T o t a l elemental and t o t a l sulphur analyses were performed using the a n a l y t i c a l procedures p r e v i o u s l y d e s c r i b e d f o r f o l i a r a n a l y s i s . pH was determined using a 0.01 M CaCl2 suspension. T o t a l C was estimated by use of a Leco Induction Furnace and C Analyser Model No. 521 (Laboratory Equipment C o r p o r a t i o n St. Josephs, M i c h i g a n ) . A method d e s c r i b e d by Lowe (1974) was used to determine t o t a l l i p i d s . T o t a l m i n e r a l i z a b l e N was estimated using an anaerobic i n c u b a t i o n procedure modified from Waring and Bremner (1964). Nitrogen m i n e r a l i z e d during the 2 week i n c u b a t i o n was determined by s u b t r a c t i n g KC1 e x t r a c t a b l e N present p r i o r to i n c u b a t i o n from the t o t a l ammonium-N present at the end of the i n c u b a t i o n . Exchangeable Ca, Mg and K were determined using 1 M N H 4 O A C adjusted to pH 7 ( L a v k u l i c h 1978). The Bray Pi was used to determine e x t r a c t a b l e phosphorus ( L a v k u l i c h 1978). 3.3. Data Summary and S t a t i s t i c a l Analyses 3.3.1 F o l i a r N u t r i e n t V a r i a b l e s F o l i a r n u t r i e n t l e v e l s are expressed as ppm (mg/kg) or % (cg/g) on an oven-dry mass b a s i s . Concentration i s c u r r e n t l y the most common method of f o l i a r n u t r i e n t e x p r e s s i o n . Since many bioche m i c a l and p h y s i o l o g i c a l processes w i t h i n the tr e e are optimized by ma i n t a i n i n g c e r t a i n n u t r i e n t element r a t i o s - 13 -w i t h i n c r i t i c a l ranges, i n f e r e n c e as to the n u t r i e n t s t a t u s of a t r e e needs to be based not only on l e v e l s of s i n g l e n u t r i e n t s but a l s o on the r a t i o of n u t r i e n t s which are b i o c h e m i c a l l y r e l a t e d ( B a l l a r d and C a r t e r 1986). For t h i s reason four f o l i a r n u t r i e n t r a t i o s were c a l c u l a t e d : N/S, N/P, Ca/Mg, and Ca/K. These f o l i a r n u t r i e n t r a t i o s are r o u t i n e l y used to assess n u t r i e n t adequacy and are known to r e f l e c t some n u t r i t i o n a l antagonism. P o s s i b l e problems a s s o c i a t e d with the use of d e r i v e d v a r i a b l e s , such as r a t i o s , are d i s c u s s e d by Sokal and R o l f (1973) and i n c l u d e : (1) i n c r e a s e d v a r i a b i l i t y i n comparison with that of the v a r i a b l e s that were compounded i n t o the r a t i o , (2) biased e s t i m a t i o n of the true mean value of the r a t i o , (3) unusual, non-normal and p o s s i b l y i n t r a c t a b l e d i s t r i b u t i o n s , and (4) tendency to obscure ra t h e r than e l u c i d a t e the i n t e r - v a r i a b l e r e l a t i o n s h i p s . D i s c u s s i o n of r e l a t i o n s h i p s with f o l i a r n u t r i e n t r a t i o s i s l i m i t e d , i n t h i s study, to those r e l a t i o n s h i p s f o r which strong r a t i o n a l e i s apparent. N/S i s one of the most f r e q u e n t l y encountered r a t i o s i n the l i t e r a t u r e . Nitrogen and sulphur are b i o c h e m i c a l l y i n v o l v e d i n the formation of p r o t e i n . A constant organic sulphur to organic n i t r o g e n atom r a t i o of 0.03 i s documented i n the f o l i a g e of Pinus spp. and D o u g l a s - f i r (Turner and Lambert 1980; Lambert and Turner 1977); t h i s i s e q u i v a l e n t to an organic n i t r o g e n to organic sulphur mass r a t i o of 14.6. Turner e_t §_1. (1980) r e p o r t that under n a t u r a l c o n d i t i o n s t o t a l f o l i a r n i t r o g e n i n c o n i f e r o u s t r e e s p e c i e s i s equal to organic f o l i a r n i t r o g e n . Studies on both - 14 -D o u g l a s - f i r (Turner et a_l. 1977) and Radiata pine (Pinus r a d i a t a D. Don) (Lambert and Turner 1978) i n d i c a t e that under n a t u r a l c o n d i t i o n s n i t r o g e n i s taken up i n the amount r e q u i r e d f o r p r o t e i n formation, and that i n s u f f i c i e n t f o l i a r s u l p h a t e - s u l p h u r w i l l l i m i t n i t r o g e n uptake. In c o n t r a s t , s u l p h a t e - s u l p h u r , when a v a i l a b l e , appears to be taken up i n excess of that r e q u i r e d to balance the n i t r o g e n i n p r o t e i n formation, and accumulates as sulphate (Turner e_t a_l. 1980). A n a l y s i s f o r sulphate should be used when p o s s i b l e to diagnose sulphur d e f i c i e n c y . The K/Ca and Ca/Mg r a t i o s are r o u t i n e l y used to assess p o s s i b l e imbalances of these e s s e n t i a l c a t i o n s . Each of these c a t i o n s i s known to compete with the other f o r uptake at the root s u r f a c e (Barber 1985; T i s d a l e et a l . 1985). A high Ca/Mg r a t i o may i n d i c a t e that the i o n c a r r i e r at the root s u r f a c e i s being overwhelmed by cal c i u m , r e s u l t i n g i n an inadequate supply of magnesium. Stand n u t r i e n t s t a t u s was evaluated through the use of the FNA program w r i t t e n by J . Emanuel (1984). T h i s program i s based on the re s e a r c h and programs of Dr. T.M.Ballard (Dept. S o i l S cience, and F a c u l t y of F o r e s t r y , UBC). The program i s a v a i l a b l e on the U n i v e r s i t y of B r i t i s h Columbia computing system as F203:FNA. Mean s i t e n u t r i e n t c o n c e n t r a t i o n s and r a t i o s were used f o r i n f e r r i n g stand n u t r i e n t s t a t u s . F o l i a r n u t r i e n t s and r a t i o s f o r which a sample s i z e of 8 was found to be s u f f i c i e n t to estimate s i t e mean with 20% p r e c i s i o n (alpha (cx )=0.05) (see Se c t i o n 4.1.2) were used to examine simple l i n e a r r e l a t i o n s h i p s - 15 -with f o r e s t f l o o r chemical p r o p e r t i e s . Of these, only those f o l i a r n u t r i e n t s and r a t i o s f o r which the sampling r e s u l t e d i n a between-site range i n n u t r i e n t s u f f i c i e n c y and p o s s i b l e d e f i c i e n c y ( a c t u a l or i n d u c i b l e ) were used i n m u l t i p l e r e g r e s s i o n and d i s c r i m i n a n t a n a l y s e s . The four f o l i a r n u t r i e n t v a r i a b l e s meeting the above requirements were subdivided i n t o "high" and "low" f o l i a r n u t r i e n t groups f o r use i n d i s c r i m i n a n t a n a l y s i s . The proposed use of parametric a n a l y s e s , e.g. a n a l y s i s of v a r i a n c e , r e q u i r e d that the f o l i a r n u t r i e n t v a r i a b l e s be examined f o r compliance with the assumptions u n d e r l y i n g such t e s t s : (1) random sampling from a normal p o p u l a t i o n and (2) e q u a l i t y of varian c e (Zar 1984). Sampling was as unbiased as p o s s i b l e , thereby complying with the f i r s t part of assumption one (Payandeh and B e l i l h a r t z 1978). L i l l i e f o r s ' t e s t , a v a r i a n t of the Kolmogrov "goodness of f i t " t e s t , (Conover 1980) was used i n a d d i t i o n to d e s c r i p t i v e techniques ( i . e . , a normal p r o b a b i l i t y p l o t ) to t e s t the no r m a l i t y assumption. To b e t t e r comply with t h i s assumption, a l l v a r i a b l e s , with the exception of f o l i a r B and N, were transformed using the n a t u r a l l o g f u n c t i o n . T h i s t r a n s f o r m a t i o n provided the "best" approximation to the normal d i s t r i b u t i o n of the f u n c t i o n s t r i e d . The normal d i s t r i b u t i o n d i d not seem to be an unreasonable approximation of the d i s t r i b u t i o n s of e i t h e r f o l i a r B or N. To e l i m i n a t e the inconvenience of negative values, v a r i a b l e t r a n s f o r m a t i o n s were c a r r i e d out on the data expressed as ppm ( i . e . mg of n u t r i e n t per kg of dry matt e r ) . Two hundred n i n e t y - f i v e samples were used to t e s t f o r - 16 -n o r m a l i t y . The transformed data, i n a d d i t i o n to f o l i a r B and N, were examined f o r homogeneity of varia n c e (assumption 2) using Box's t e s t (Fox and Guire 1976). The f o l l o w i n g v a r i a b l e s d i d not meet the assumption of va r i a n c e e q u a l i t y at the 0.05 s i g n i f i c a n c e l e v e l : LAfe, LK, LCa, LCu, LFe, LN/S, LCa/Mg. Zar (1984) p o i n t s out, however, that no t e s t i n g procedure i s e s p e c i a l l y good f o r hypotheses of v a r i a n c e homogeneity, due to the s e n s i t i v i t y of these t e s t s to d e v i a t i o n s from n o r m a l i t y . The small and v a r y i n g number of t r e e s sampled per s i t e f u r t h e r confounds the t e s t f o r homogeneity of v a r i a n c e , s i n c e the smal l e r the w i t h i n - s i t e sample s i z e , the poorer the s i t e v a r i a n c e w i l l be as an estimate of the po p u l a t i o n v a r i a n c e . Parametric analyses of v a r i a n c e and r e l a t e d procedures are r e p o r t e d , by Kleinbaum and Kupper (1978) and Zar (1984), to be robust enough to perform w e l l , provided the data does not dev i a t e s e v e r e l y from the requirements of nor m a l i t y and ho m o s c e d a s t i c i t y . Computations d e s c r i b e d above were performed using MIDAS subprograms (Fox and Guire 1976). The between-tree v a r i a t i o n i n f o l i a r n u t r i e n t c o n c e n t r a t i o n s and r a t i o s , w i t h i n and between s i t e s , was q u a n t i f i e d through the use of v a r i o u s s t a t i s t i c a l methods. The mean (X), standard d e v i a t i o n (SD) and the percent c o e f f i c i e n t of v a r i a t i o n (CV) were c a l c u l a t e d f o r each f o l i a r n u t r i e n t v a r i a b l e per s i t e . These c a l c u l a t i o n s are o u t l i n e d by Zar (1984). A one-way ANOVA (UBC ANOVAR - Gr i e g and O s t e r l i n 1978) was used to compare f o l i a r n u t r i e n t v a r i a b i l i t y w i t h i n and between - 17 -s i t e s . I f v a r i a b i l i t y i s not to be a s e r i o u s d e t e r r e n t to c o r r e l a t i o n and r e g r e s s i o n a n a l y s i s , the w i t h i n - s i t e v a r i a b i l i t y should be l e s s than that between s i t e s (Mader 1963; C a r t e r 1983). The 6 i n t e n s e l y sampled s i t e s were used to examine the p r e c i s i o n of p l o t mean f o l i a r n u t r i e n t c o n c e n t r a t i o n s and r a t i o s f o r a sample s i z e of 8 ( t h i s was the s m a l l e s t sample s i z e used i n t h i s s t u d y ) . The f o l i a r n u t r i e n t c o n c e n t r a t i o n and r a t i o v a r i a n c e s determined f o r these s i x s i t e s were used as estimates of the p o p u l a t i o n v a r i a n c e i n the f o l l o w i n g e q u a t i o n : A E = ( [ t 2 ( n _ 1 ) * ( C V ) 2 ] / n ) 0 . 5 [ i ] where n i s the lowest sampling i n t e n s i t y used to estimate the mean; t ( n _ i ) i s the value of the student t - d i s t r i b u t i o n with n-1 degrees of freedom ( t w o - t a i l e d ) ; CV i s the c o e f f i c i e n t of v a r i a t i o n i n % ; and AE i s the r e s u l t i n g sampling e r r o r i n % (Payandeh and B e i l h a r t z 1978; Snedecor and Cochran 1980). Percent a l l o w a b l e e r r o r s were determined f o r two l e v e l s of accuracy (cx.=0.05 , o. =0.01) . Random sampling from a normally d i s t r i b u t e d p o p u l a t i o n i s assumed (Snedecor and Cochran 1980). An i t e r a t i v e a l g o r i t h m of t h i s equation has been used i n the l i t e r a t u r e to determine the sampling i n t e n s i t y r e q u i r e d to adequately estimate f o r e s t f l o o r (Quesnel 1980; C a r t e r and Lowe 198 ; Kabzems 1985), mineral s o i l ( G r i e r and McColl 1971; Kabzems 1985) and f o l i a r chemical p r o p e r t i e s ( R i c h t e r 1981) f o r s p e c i f i e d l e v e l s of p r e c i s i o n and accuracy. The maximum and minimum of the - 18 -c a l c u l a t e d a l l o w a b l e e r r o r s are reported f o r each f o l i a r n u t r i e n t v a r i a b l e i n order to demonstrate the range i n the p r e c i s i o n of the f o l i a r n u t r i e n t v a r i a b l e means f o r the 6 s i t e s . S i t e mean f o l i a r n u t r i e n t c o n c e n t r a t i o n s and r a t i o s (Appendix B) were used i n the remaining a n a l y s e s . A c o r r e l a t i o n matrix (Fox and Guire 1976) was used to examine simple l i n e a r i n t e r - r e l a t i o n s h i p s between f o l i a r n u t r i e n t v a r i a b l e s over a l l s i t e s . 3.3.2 F o r e s t F l o o r LFH chemical p r o p e r t i e s are p l o t depth-weighted mean v a l u e s . LFH and LF chemical p r o p e r t i e s are expressed as c o n c e n t r a t i o n s on a dry weight b a s i s (Appendix C ). Two c r i t e r i a were used i n the i n i t i a l s e l e c t i o n of LF and LFH chemical p r o p e r t i e s . Property s e l e c t i o n r e q u i r e d that e i t h e r : 1) the AE of the s i t e property mean estimate was l e s s than or equal to 20% (O<=0.05) f o r the f i e l d sampling i n t e n s i t y used (n=15), or that 2) the property was an e s t a b l i s h e d measure of n u t r i e n t a v a i l a b i l i t y . U n i v a r i a t e sample s i z e estimates f o r many of the p r o p e r t i e s examined were determined by C a r t e r and Lowe (1986), at var i o u s l e v e l s of p r e c i s i o n and accuracy, f o r 6 v a r i a b i l i t y p l o t s . The v a r i a b i l i t y p l o t s represented the range i n s i t e c o n d i t i o n s f o r the study area. Since most f o r e s t f l o o r chemical p r o p e r t i e s are c h a r a c t e r i z e d by high s p a t i a l v a r i a t i o n i t was decided to use the - 19 -h i g h e s t measured v a r i a t i o n , or worst-case s c e n a r i o , i n the s e l e c t i o n process r a t h e r than the mean property v a r i a t i o n ; t h e r e f o r e , property s e l e c t i o n r e q u i r e d a sample s i z e estimate of 15 or l e s s f o r each of the 6 v a r i a b i l i t y p l o t s . Sample s i z e estimates i n d i c a t e d 15 samples per p l o t to be of s u f f i c i e n t i n t e n s i t y to adequately estimate p l o t means, with 20% confidence l i m i t s (cx=0.05), f o r the f o l l o w i n g LF and LFH p r o p e r t i e s : pH, C, S, N, P, A, Cu, Zn, Mg, K, C/N, N/P, N/S and N/K (LF o n l y ) . These symbols are d e f i n e d at the beginning of the study (pp. x ) . F o r e s t f l o o r chemical r a t i o s were not used i n t h i s study f o r the reasons o u t l i n e d i n S e c t i o n 3.2.1. Other p r o p e r t i e s s e l e c t e d , but f o r which estimates of sampling requirement were not determined by C a r t e r and Lowe (1986) i n c l u d e d : Min-N and KC1-N f o r the LF h o r i z o n s and Min-N, KC1-N, exK, exCa, exMg and extP f o r the LFH h o r i z o n s (Lowe and K l i n k a 1981; C a r t e r 1983). For the f o r e s t f l o o r of young D o u g l a s - f i r stands, Kabzems (1985) determined that 7 to 23 samples would be r e q u i r e d per s i t e to estimate Min-N p l o t means with 20% confidence at the 0.05 s i g n i f i c a n c e l e v e l . For old-growth D o u g l a s - f i r stands, Quesnel (1980) determined that 2 to 10 samples of the LF m a t e r i a l would be r e q u i r e d to estimate 1M N H 4 O A C exK, exCa and exMg s i t e means with a 25% a l l o w a b l e e r r o r , given a 0.10 s i g n i f i c a n c e l e v e l . Quesnel (1980) a l s o determined the sample s i z e r e q u i r e d to estimate these three chemical p r o p e r t i e s i n the H h o r i z o n m a t e r i a l , given s i m i l a r l e v e l s of p r e c i s i o n and accuracy. Maximum sample s i z e - 20 -requirements determined f o r exK, exMg and exCa were r e s p e c t i v e l y : 6, 16, and 40. Estimates of sample s i z e requirements f o r KC1-N were not a v a i l a b l e . The proposed use of the m u l t i v a r i a t e a n a l y s e s , m u l t i p l e r e g r e s s i o n and d i s c r i m i n a n t a n a l y s i s ( S e c t i o n 3.3.3), r e q u i r e d an examination of the independent v a r i a b l e s with regard to the assumptions u n d e r l y i n g these a n a l y s e s . D i s c r i m i n a n t a n a l y s i s and m u l t i p l e r e g r e s s i o n , r e s p e c t i v e l y , assume m u l t i n o r m a l i t y and n o n c o l l i n e a r i t y of the "independent" v a r i a b l e s . M u l t i n o r m a l i t y i s one of two assumptions u n d e r l y i n g d i s c r i m i n a n t a n a l y s i s . ( F u r t h e r r e f e r e n c e to these assumptions w i l l be made i n S e c t i o n 3.3.3.) Twenty-seven was deemed too small a sample s i z e to examine f o r e s t f l o o r chemical property d i s t r i b u t i o n ; t h e r e f o r e i t was decided to examine property d i s t r i b u t i o n f o r a l l of the 53 p l o t s o r i g i n a l l y sampled by C a r t e r (1983). V a r i a b l e s j o i n t l y d i s t r i b u t e d as a m u l t i v a r i a t e normal are i n d i v i d u a l l y d i s t r i b u t e d normally. Thus, v a r i a b l e s having markedly nonnormal d i s t r i b u t i o n s give reason to suspect a v i o l a t i o n of the m u l t i v a r i a t e normality assumption (Norusis 1985). As a f i r s t step then, each of the f o r e s t f l o o r chemical p r o p e r t i e s was examined f o r normality of d i s t r i b u t i o n using L i l l i e f o r s ' t e s t (Conover 1980) and a cumulative p r o b a b i l i t y p l o t . MIDAS (Fox and Guire 1976) subprograms were used. The d i s t r i b u t i o n s of the f o l l o w i n g LF and LFH h o r i z o n chemical p r o p e r t i e s were s t r o n g l y d i f f e r e n t from normal: (LF) A, Cu, KC1-N, Zn, Mg, K and (LFH) C, Cu, KC1-N, Zn, Mg, K, exCa, - 21 -exMg, exK. The n a t u r a l l o g t r a n s f o r m a t i o n provided the best approximations of the normal d i s t r i b u t i o n . Transformations were performed on the above p r o p e r t i e s expressed as ppm. A t r a n s f o r m a t i o n was not found to improve the non-normality of LFH C; departure from normality was moderate. The cumulative p r o b a b i l i t y p l o t of the s t a n d a r d i z e d cubed root of Mahalanobis d i s t a n c e (Campbell 1980), used to t e s t f o r m u l t i n o r m a l i t y , d i d not i n d i c a t e major departure from the normal d i s t r i b u t i o n . I t i s however acknowledged that t h i s r e s u l t does not a f f i r m that the subpopulation from which the 27 s i t e s were s e l e c t e d i s normal, but only that the normal d i s t r i b u t i o n does not seem to be an unreasonable approximation to the true unknown d i s t r i b u t i o n (Conover 1980). F i f t y - t h r e e samples i s a r e l a t i v e l y small sample f o r t e s t i n g n o r m a l i t y . Although s e v e r a l of the analyses to be performed, such as m u l t i p l e r e g r e s s i o n and p r i n c i p a l component a n a l y s i s , do not r e q u i r e m u l t i n o r m a l i t y of the independent v a r i a b l e , i t was decided that the transformed f o r e s t f l o o r chemical p r o p e r t i e s would be used f o r a l l m u l t i v a r i a t e a n a l y s e s . T h i s f u r t h e r permitted the use of techniques such as M u l t i v a r i a t e Sample Si z e A n a l y s i s (MSSA), which i s d i s c u s s e d below. M u l t i n o r m a l i t y together with random sampling are the two assumptions u n d e r l y i n g MSSA (Scagel et aJL. 1985). M u l t i p l e r e g r e s s i o n a n a l y s i s r e q u i r e s the absence of l i n e a r dependencies ( m u l t i c o l l i n e a r i t y ) among independent v a r i a b l e s (Snedecor and Cochran 1980; Zar 1984; Norusis 1985). In - 22 -p r a c t i c e , i n t e r - c o r r e l a t i o n among independent v a r i a b l e s i s ignored i f i t i s of low magnitude, but i f the i n t e r - c o r r e l a t i o n i s high, c o n c l u s i o n s regarding the i n t e r p r e t a t i o n of the c o r r e l a t e d independent v a r i a b l e s are l i k e l y to be spurious (Zar 1984). I n t e r - c o r r e l a t i o n w i t h i n the LF and LFH chemical p r o p e r t i e s was examined through the use of simple l i n e a r c o r r e l a t i o n c o e f f i c i e n t s and MSSA. M u l t i v a r i a t e Sample Si z e A n a l y s i s i s a m u l t i v a r i a t e a n a l y s i s which ranks p r o p e r t i e s a c c o r d i n g to s p e c i f i c v a r i a n c e and c o n t r i b u t i o n to t o t a l sample d i s p e r s i o n (suras of sq u a r e s ) . A p a r t i a l c o r r e l a t i o n technique i s used to rank the v a r i a b l e s a c c o r d i n g to the i n f o r m a t i o n each co n t a i n s about the e n t i r e v a r i a b l e s e t , and then uses m u l t i v a r i a t e a n a l y s i s of covar i a n c e to remove each v a r i a b l e i n turn and determine the remaining i n f o r m a t i o n (Green 1979) . The r a t i o of s p e c i f i c to common var i a n c e ( v a r i a n c e shared with other v a r i a b l e s ) d e f i n e s what i s termed v a r i a b l e redundancy. The l a r g e r the redundancy, the l e s s unique i n f o r m a t i o n i s provided w i t h i n that v a r i a b l e and the more i n t e r - c o r r e l a t e d the v a r i a b l e i s with the other v a r i a b l e s d e s c r i b i n g t o t a l sample d i s p e r s i o n . The high i n t e r - c o r r e l a t i o n found w i t h i n the LF and LFH chemical p r o p e r t i e s ( S e c t i o n 4.2.1) made i t necessary to s e l e c t subsets of LF and LFH chemical p r o p e r t i e s with low i n t e r - c o r r e l a t i o n . The f o l l o w i n g s e l e c t i o n procedure, although t e d i o u s , was thought to be more o b j e c t i v e than attempting to s e l e c t one subset of chemical p r o p e r t i e s f o r the LF and LFH h o r i z o n s . The simple l i n e a r c o r r e l a t i o n matrix was i n i t i a l l y - 23 -used to i d e n t i f y the magnitude of l i n e a r a s s o c i a t i o n s among p r o p e r t i e s . A c o r r e l a t i o n c o e f f i c i e n t of 0.30 was used as the c r i t i c a l value d e l i n e a t i n g major and minor a s s o c i a t i o n . Subgroups of p r o p e r t i e s were then s e l e c t e d on the b a s i s of minor a s s o c i a t i o n . M u l t i v a r i a t e Sample S i z e A n a l y s i s was subsequently used to examine the m u l t i v a r i a t e i n t e r - r e l a t i o n s h i p s w i t h i n the subgroups. F i n a l v a r i a b l e subgroup s e l e c t i o n f u r t h e r attempted to i n c l u d e the f o l l o w i n g c o n s i d e r a t i o n s : (1) c o n t r i b u t i o n of a v a r i a b l e to the t o t a l sample v a r i a t i o n , and (2) ease of l a b o r a t o r y a n a l y s i s . P r i n c i p a l component a n a l y s i s (PCA) was used to determine whether the m u l t i v a r i a t e i n t e r - r e l a t i o n s h i p s w i t h i n LF and LFH chemical p r o p e r t i e s could be exp l a i n e d i n terms of a few, co n c e p t u a l l y meaningful, r e l a t i v e l y independent f a c t o r s . PCA i s a m u l t i v a r i a t e technique which transforms an o r i g i n a l set of v a r i a b l e s i n t o a smal l e r s et of l i n e a r combinations ( f a c t o r s ) that account f o r most of the va r i a n c e of the o r i g i n a l s e t . A c o r r e l a t i o n matrix was used f o r f a c t o r e x t r a c t i o n , to e l i m i n a t e weighting d i f f e r e n c e s between p r o p e r t i e s due to d i f f e r e n t measurement s c a l e s . The p r o p o r t i o n of the t o t a l v a r i a t i o n accounted f o r by each f a c t o r was used to s e l e c t f a c t o r s f o r examination. I d e a l l y , the f i r s t few f a c t o r s should account f o r much of the t o t a l v a r i a t i o n . C o r r e l a t i o n s of the o r i g i n a l v a r i a b l e s with the i n d i v i d u a l f a c t o r s were examined f o r conceptual meaning. PCA was conducted using the PCA subroutine i n MIDAS (Fox and Guire 1976). - 24 -3.3.3 E v a l u a t i o n of R e l a t i o n s h i p s Between F o l i a r N u t r i e n t Status and F o r e s t F l o o r Chemical P r o p e r t i e s Various s t a t i s t i c a l techniques were used to explore r e l a t i o n s h i p s between f o l i a r n u t r i e n t v a r i a b l e s and f o r e s t f l o o r chemical p r o p e r t i e s . Simple l i n e a r r e l a t i o n s h i p s were examined through simple c o r r e l a t i o n c o e f f i c i e n t s and s c a t t e r diagrams. In the event of a good PCA f a c t o r s o l u t i o n - one which i s simple and i n t e r p r e t a b l e (Norusis 1986) - simple l i n e a r r e l a t i o n s h i p s between the f a c t o r scores and f o l i a r n u t r i e n t v a r i a b l e s were examined. Emphasis i n d i s c u s s i o n i s placed on c o r r e l a t i o n c o e f f i c i e n t s with absolute values gr e a t e r than 0.7. The more marked and dependable r e l a t i o n s h i p s are g e n e r a l l y more r e a d i l y p e r c e i v e d when the c o r r e l a t i o n c o e f f i c i e n t i s above t h i s value ( C h a t f i e l d and C o l l i n s 1980). Even at t h i s l e v e l , only 49% of the t o t a l sum of squares of the dependent v a r i a b l e i s " e x p l a i n e d " by the a s s o c i a t i o n . Spurious c o r r e l a t i o n s can s t i l l be o b t a i n e d , even with h i g h l y s i g n i f i c a n t c o r r e l a t i o n c o e f f i c e n t s (Keeney 1982). M u l t i v a r i a t e analyses performed i n c l u d e d m u l t i p l e r e g r e s s i o n (MR) to examine the u s e f u l n e s s of f o r e s t f l o o r chemical p r o p e r t i e s f o r p r e d i c t i n g f o l i a r n u t r i e n t s t a t u s , and d i s c r i m i n a n t a n a l y s i s (DA) to examine the u s e f u l n e s s of f o r e s t f l o o r chemical p r o p e r t i e s f o r d i s t i n g u i s h i n g between stands of "high" and "low" f o l i a r n u t r i e n t s t a t u s . To be of f u t u r e p r e d i c t i v e value, r e g r e s s i o n models must be formulated on the range of the independent v a r i a b l e ( s ) - 25 -corresponding to the range of the dependent v a r i a b l e one i s i n t e r e s t e d i n . In f o r e s t management, the u s e f u l n e s s of a model f o r p r e d i c t i n g f o l i a r n u t r i e n t s t a t u s would depend on i t s a b i l i t y to p r e d i c t f o l i a r n u t r i e n t s t a t u s over a range from s u f f i c i e n c y to extreme d e f i c i e n c y . For t h i s reason, m u l t i p l e r e g r e s s i o n models were only attempted f o r the four f o l i a r n u t r i e n t v a r i a b l e s f o r which a range i n n u t r i e n t s u f f i c i e n c y - d e f i c i e n c y ( a c t u a l or i n d u c i b l e ) was i n d i c a t e d f o r the stands sampled: f o l i a r N, f o l i a r LS, f o l i a r LAfe and f o l i a r LN/S. LF and LFH chemical property subgroups s e l e c t e d f o r n o n - c o l l i n e a r i t y ( S e c t i o n 3.3.2) were regressed a g a i n s t these four f o l i a r n u t r i e n t v a r i a b l e s using the backwards and stepwise s e q u e n t i a l s e l e c t i o n procedures o f f e r e d i n MIDAS programs (Fox and Guire 1976). Regressions with the h i g h e s t c o e f f i c i e n t s of d etermination were s e l e c t e d f o r f u r t h e r examination of model a p p r o p r i a t e n e s s . The c o e f f i c i e n t of determination was used as an i n i t i a l index of r e g r e s s i o n goodness of f i t as i t r e p r e s e n t s the p r o p o r t i o n of v a r i a n c e , i n the dependent v a r i a b l e , accounted f o r by the r e g r e s s i o n model ( S S r e g / S S t o t ) . The Student t s t a t i s t i c was used to determine the s i g n i f i c a n c e (0.05 l e v e l ) of beta c o e f f i c i e n t s f o r a l l r e g r e s s i o n models (Fox and Guire 1976). Model app r o p r i a t e n e s s was f u r t h e r examined using an adjusted c o e f f i c i e n t of d etermination (where a p p r o p r i a t e ) , r e s i d u a l a n a l y s i s , and examination of confidence i n t e r v a l width surrounding dependent v a r i a b l e point e s t i m a t e s . I d e a l l y , examination of the a p p r o p r i a t e n e s s of a model's f i t r e q u i r e s i t s - 26 -t e s t i n g on a second subsample from the o r i g i n a l p o p u l a t i o n . Models u s u a l l y f i t the sample from which they are d e r i v e d b e t t e r than they f i t the p o p u l a t i o n they were sampled from (Norusis 1986). An adjusted c o e f f i c i e n t of determination was c a l c u l a t e d f o r those models with greater than one independent v a r i a b l e using the f o l l o w i n g equation: R2= [1-(1 - R 2 ) ] * [ ( n - p ) / ( n - l ) ] [2] where R2 i s the c o e f f i c i e n t of de t e r m i n a t i o n : n i s the t o t a l number of data p o i n t s ; and p i s the number of independent v a r i a b l e s i n the r e g r e s s i o n model. The need f o r an adjusted c o e f f i c i e n t of determination a r i s e s from the f a c t that the numerator i n the r a t i o d e f i n i n g the determinant ( S S e r r o r ) i s bound to decrease (or at l e a s t not i n c r e a s e ) as the number of v a r i a b l e s i n c l u d e d i n the r e g r e s s i o n model i s i n c r e a s e d . The denominator ( S S t o t a l ) , on the other hand, i s f i x e d i n the sense that i t i s independent of the number of v a r i a b l e s i n c l u d e d i n the r e g r e s s i o n model. Thus, R 2 can be a r t i f i c i a l l y i n c r e a s e d by simply adding explanatory v a r i a b l e s to the r e g r e s s i o n model. In view of t h i s r e l a t i o n s h i p between R2 and the number of explanatory v a r i a b l e s i n c l u d e d i n the r e g r e s s i o n model, s e v e r a l authors recommend that the adjusted R 2 be r e l i e d on when comparing the R 2 from two r e g r e s s i o n models having v a r y i n g subsets of independent v a r i a b l e s (Snedecor and Cochran 1980; - 27 -Morrison 1983; D i l l o n and G o l d s t e i n 1984; Zar 1984). The r e s i d u a l s from the f i t t e d r e g r e s s i o n plane (or l i n e ) were examined f o r v i o l a t i o n s of the assumptions of m u l t i p l e r e g r e s s i o n . In m u l t i p l e r e g r e s s i o n , the r e s i d u a l s are assumed to be independent, have zero mean, have a common va r i a n c e and f o l l o w a normal d i s t r i b u t i o n (Kleinbaum and Kupper 1978; Morrison 1983). A histogram of the r e s i d u a l s was used to examine the assumption of r e s i d u a l n o r m a l i t y . Various s c a t t e r diagrams were a l s o used to t e s t the ap p r o p r i a t e n e s s of the r e g r e s s i o n s i . e . , r e s i d u a l s a g a i n s t p r e d i c t e d dependent v a r i a b l e , r e s i d u a l s a g a i n s t each independent v a r i a b l e i n c l u d e d i n the model. For the most a p p r o p r i a t e l i n e a r models, confidence i n t e r v a l s were e s t a b l i s h e d f o r point estimates of the f o l i a r n u t r i e n t v a r i a b l e f o r the measured extremes (minimum and maximum values) of the f o r e s t f l o o r chemical p r o p e r t i e s i n c l u d e d i n the model. Th i s approach was necessary s i n c e the standard e r r o r i s at a minimum c l o s e s t to the independent v a r i a b l e ( s ) mean and i n c r e a s e s f a r t h e r from the mean (Snedecor and Cochran 1980; Zar 1984; Norusis 1986). D i s c r i m i n a n t a n a l y s i s was used as an e x p l o r a t o r y t o o l to determine whether l i n e a r combinations of f o r e s t f l o o r chemical p r o p e r t i e s could r e l i a b l y d i s t i n g u i s h between f o l i a r n u t r i e n t s u f f i c i e n c y and p o s s i b l e d e f i c i e n c y ( a c t u a l or i n d u c i b l e ) . For use i n d i s c r i m i n a n t a n a l y s i s , the four f o l i a r n u t r i e n t v a r i a b l e s meeting the necessary range i n f o l i a r n u t r i e n t s t a t u s were d i v i d e d i n t o " h i g h " and "low" n u t r i e n t groupings: f o l i a r S, f o l i a r N, f o l i a r AFe, f o l i a r N/S. - 28 -In d i s c r i m i n a n t a n a l y s i s , the l i n e a r combinations of d i s c r i m i n a t i n g v a r i a b l e s , termed c a n o n i c a l d i s c r i m i n a n t f u n c t i o n s , are d e r i v e d i n such a way that m i s c l a s s i f i c a t i o n e r r o r r a t e s are minimized. T h i s i s accomplished by maximizing the between-group va r i a n c e r e l a t i v e to the within-group var i a n c e ( D i l l o n and G o l d s t e i n 1984). For the two-group case, Wilk's lambda i s the r a t i o of the within-groups sums of squares to the t o t a l sura of squares. I t i s the p r o p o r t i o n of the t o t a l v a r i a n c e i n the d i s c r i m i n a n t scores not e x p l a i n e d by d i f f e r e n c e s among groups. Small values of lambda are a s s o c i a t e d with f u n c t i o n s that have much v a r i a b i l i t y between groups and l i t t l e v a r i a b i l i t y w i t h i n groups (Norusis 1985). A stepwise v a r i a b l e s e l e c t i o n procedure, a subroutine of BMDP P7M (Dixon 1983), was used to o b t a i n a d i s c r i m i n a n t f u n c t i o n with the minimum of v a r i a b l e s . The c l a s s i f i c a t i o n e r r o r r a t e e s t i m a t i o n was determined using the j a c k k n i f e method. T h i s method i n v o l v e s l e a v i n g out each of the cases i n t u r n , and then c l a s s i f i e s the l e f t - o u t case. Again, s i n c e the case which i s being c l a s s i f i e d i s not i n c l u d e d i n the c a l c u l a t i o n of the f u n c t i o n , the observed (or apparent) m i s c l a s s i f i c a t i o n r a t e i s a l e s s - b i a s e d estimate of the true one ( D i l l o n and G o l d s t e i n 1984; Norusis 1986). A histogram of the d i s c r i m i n a n t scores permitted a v i s u a l i n s p e c t i o n of the r e l i a b i l i t y of group c l a s s i f i c a t i o n . The l a r g e number of f o r e s t f l o o r chemical p r o p e r t i e s i n both the LF (n=12) and LFH (n=16) data s e t s r e l a t i v e to the t o t a l sample s i z e (n=27) made i t necessary to s e l e c t subsets of the - 29 -f o r e s t f l o o r chemical p r o p e r t i e s to be run as the d i s c r i m i n a t i n g v a r i a b l e s (Schumacher 1985, pers. comm.). Wil l i a m s (1980) s t a t e s that "when the number of parameters to be estimated approaches the number of samples, there i s a good l i k e l i h o o d that any pat t e r n s e x h i b i t e d by i n d i v i d u a l c o e f f i c i e n t s are f o r t u i t o u s and t h e r e f o r e of no e c o l o g i c a l consequence". Three approaches to subset s e l e c t i o n were taken. The f i r s t subsets i n c l u d e d the f i v e f o r e s t f l o o r chemical p r o p e r t i e s with the highest c o r r e l a t i o n c o e f f i c i e n t s with the "dependent" f o l i a r n u t r i e n t v a r i a b l e . The second subsets contained the f i v e f o r e s t f l o o r chemical p r o p e r t i e s with the l a r g e s t d i f f e r e n c e between the property means of the two d i s c r i m i n a n t groups, as determined by the Student t s t a t i s t i c . The t s t a t i s t i c was used here only as a rough index of s t r a t a mean s e p a r a t i o n ; a student t d i s t r i b u t i o n was not assumed. T h i s approach was taken s i n c e d i s c r i m i n a n t a n a l y s i s i s concerned with maximizing the d i s t a n c e between s t r a t a mean v e c t o r s . In the above s e l e c t i o n procedures LF and LFH chemical p r o p e r t i e s were t r e a t e d as separate data s e t s . The t h i r d group of subsets used i n d i s c r i m i n a n t a n a l y s i s i n c l u d e d the m u l t i p l e r e g r e s s i o n subsets which contained l e s s than s i x p r o p e r t i e s . High c o r r e l a t i o n between "independent" v a r i a b l e s i s a confounding f a c t o r f o r stepwise s e l e c t i o n procedures whether used i n m u l t i p l e r e g r e s s i o n or d i s c r i m i n a n t a n a l y s i s (Klecka 1980; Johnson and Wichern 1982; D i l l o n and G o l d s t e i n 1984; Norusis 1986). S e v e r a l assumptions are b a s i c to the mathematical model u n d e r l y i n g d i s c r i m i n a n t a n a l y s i s : (1) p r i o r p r o b a b i l i t i e s must be - 30 -a c c u r a t e l y and p r e c i s e l y estimated, (2) d i s c r i m i n a t i n g v a r i a b l e s ( f o r each group) must be drawn from a p o p u l a t i o n with a m u l t i v a r i a t e normal d i s t r i b u t i o n , and (3) groups must have equal c o v a r i a n c e - v a r i a n c e matrices (Klecka 1980; W i l l i a m s 1980). P r i o r p r o b a b i l i t i e s are based on the a c t u a l f o l i a r n u t r i e n t c o n c e n t r a t i o n or r a t i o and are t h e r e f o r e considered to be r e l i a b l e . M u l t i v a r i a t e n o r m a l i t y of the d i s c r i m i n a t i n g v a r i a b l e s was examined i n S e c t i o n 3.3.2. E q u a l i t y of v a r i a n c e - c o v a r i a n c e matrices between groups was t e s t e d using Box's s t a t i s t i c (Fox and Guire 1976) f o r those d i s c r i m i n a t o r y subsets with the lowest m i s c l a s s i f i c a t i o n e r r o r s . I f d i s p e r s i o n s t r u c t u r e s are not equal, i n t e r p r e t a t i o n s r e g a r d i n g the s i g n i f i c a n c e of the d i f f e r e n c e between groups means must be made with c a u t i o n . When samples are d i s p r o p o r t i o n a t e i n s i z e , as i s the case with the f o l i a r N/S groups, the a c t u a l s i g n i f i c a n c e l e v e l may be g r e a t e r than the hypothesized l e v e l , thus causing the n u l l hypothesis (no s i g n i f i c a n t d i f f e r e n c e ) to be r e j e c t e d more o f t e n when the mean ve c t o r s are, i n f a c t , equal ( D i l l o n and G o l d s t e i n 1984). The small sample s i z e p r o h i b i t e d the use of the q u a d r a t i c l i n e a r d i s c r i m i n a n t f u n c t i o n as an a m e l i o r a t i v e measure i n the event of unequal v a r i a n c e - c o v a r i a n c e matrices ( D i l l o n and G o l d s t e i n 1984). - 31 -4.0 RESULTS AND DISCUSSION 4.1 F o l i a r A n a l y s i s F o l i a r a n a l y s i s i s commonly used to assess the adequacy of n u t r i e n t s u p p l i e s to f o r e s t t r e e s ( B a l l a r d 1982; Snowdon and Waring 1982). To ensure the e f f e c t i v e n e s s of t h i s i n t e r p r e t i v e t o o l , however, the many sources of v a r i a t i o n , i n a d d i t i o n to that of nutrient- a v a i l a b i l i t y , must be minimized, e i t h e r through avoidance or i n c o r p o r a t i o n i n t o the i n t e r p r e t i v e s t e p s . Many of the p o t e n t i a l sources of f o l i a r n u t r i e n t v a r i a t i o n are d i s c u s s e d i n reviews by Turner e_t ajL. (1978) and Morrison (1974). Since much of the v a r i a t i o n occurs w i t h i n the t r e e , the s t a n d a r d i z a t i o n of s p e c i e s - s p e c i f i c sampling procedures has served to minimize many of the p o t e n t i a l v a r i a t i o n sources, e.g., sampling h e i g h t , f o l i a g e age, disease e t c . Sources of v a r i a t i o n that are not r o u t i n e l y accounted f o r i n c l u d e : (1) sampling and a n a l y t i c a l procedures (White 1954; Robinson and Freeman 1967; Leaf 1973), (2) w i t h i n s p e c i e s g e n e t i c d i f f e r e n c e s (van den Driessche 1974; Knight 1978; Turner 1979) and (3) environmental f a c t o r s , e.g. s i t e and c l i m a t e (Humphreys e_t a_l. 1972; Berglund e_t al_. 1976). The p o t e n t i a l c o n t r i b u t i o n of these three sources to the already l a r g e between-tree f o l i a r n u t r i e n t v a r i a t i o n was not examined i n t h i s study. The f o l l o w i n g d i s c u s s i o n which examines between-tree f o l i a r n u t r i e n t v a r i a t i o n assumes that the c o n t r i b u t i o n of these three sources to the t o t a l observed v a r i a t i o n i s minimal. - 32 -The range i n f o l i a r n u t r i e n t s t a t u s f o r the study s i t e s i s dis c u s s e d i n S e c t i o n 4.1.1. W i t h i n - s i t e f o l i a r n u t r i e n t and r a t i o v a r i a b i l i t y and p r e c i s i o n of p l o t mean estimates are examined i n Secti o n s 4.1.2 and 4.1.3. 4.1.1 Stand N u t r i e n t Status Table 1 summarizes p l o t mean f o l i a r n u t r i e n t c o n c e n t r a t i o n s and r a t i o s . S i g n i f i c a n t c o r r e l a t i o n s between f o l i a r n u t r i e n t v a r i a b l e s are summarized i n Table 2. The range i n f o l i a r macronutrient l e v e l s compares w e l l with l i t e r a t u r e values c i t e d f o r mature c o a s t a l D o u g l a s - f i r (Beaton e_t_ a_l. 1965; R i t c h e r 1983; Kabzems 1986; Car t e r 1985), with the exception of sulp h u r . The maximum f o l i a r S c o n c e n t r a t i o n found i n t h i s study i s higher than maximum reported by e i t h e r R i c h t e r (1983), C a r t e r (1985) or Kabzems (1986). The p o s s i b l e i n f l u e n c e of atmospheric sulphur inputs to the 10 s i t e s with the highest f o l i a r S c o n c e n t r a t i o n s i s d i s c u s s e d i n S e c t i o n 4.3.1.1. Maximum l e v e l s of s e v e r a l m i c r o n u t r i e n t s are s i m i l a r l y higher than the corresponding maximum reported i n these same s t u d i e s : Fe, Afe, and Zn. The range of the f o l i a r n u t r i e n t r a t i o s are w i t h i n those c i t e d i n the l i t e r a t u r e ( R i c h t e r 1983; Car t e r 1985). Over two-thirds of the stands have low f o l i a r N (below c r i t i c a l value that suggests p o t e n t i a l d e f i c i e n c y ) . Severe n i t r o g e n d e f i c i e n c y however was suggested as a p o s s i b i l i t y f o r only a few stands. In the P a c i f i c Northwest n i t r o g e n i s commonly c i t e d as d e f i c i e n t ( B a l l a r d and Car t e r 1986). F o l i a r S - 33 -Table 1 P l o t Mean F o l i a r N u t r i e n t and Ratio L e v e l s (n=27) minimum maximum mean s (%) 0.091 0.203 0.136 N (%) 0.930 1 .551 1.238 P (%) 0.143 0.255 0.189 K (%) 0.638 0.904 0.778 Ca (%) 0.231 0.459 0.332 Mg (%) 0.101 0.159 0.130 B (ppm) 13.937 25.226 18.565 AFe (ppm) 14.260 63.810 31.532 Cu (ppm) 1.300 7.733 3.691 Zn (ppm) 17.500 36.600 23.540 Fe (ppm) 18.500 102.500 36.312 A l (ppm) 99.000 289.000 188.000 Mn (ppm) 194.200 1410.500 684.810 N/S 6.572 11.991 9.398 N/P 4.810 10.173 6.826 K/Ca 1 .878 3.803 2.489 Ca/Mg 2.076 3.354 2.591 - 34 -c o n c e n t r a t i o n s suggest the p o s s i b i l i t y of an a c t u a l or n i t r o g e n i n d u c i b l e sulphur d e f i c i e n c y i n s e v e r a l stands; however, the corresponding N/S r a t i o s i n d i c a t e f o l i a r S c o n c e n t r a t i o n s f o r these stands were s u f f i c i e n t l y high r e l a t i v e to the a v a i l a b l e f o l i a r N. A p o s s i b l e n i t r o g e n i n d u c i b l e sulphur d e f i c i e n c y was i n d i c a t e d i n s e v e r a l cases. Marginal P and K d e f i c i e n c i e s appeared l i k e l y i n a few stands. Calcium and Mg f o l i a r c o n c e n t r a t i o n s were w i t h i n the adequate range f o r a l l stands. A range of s u f f i c i e n c y / d e f i c i e n c y was a l s o found f o r s e v e r a l m i c r o n u t r i e n t s . In s e v e r a l stands, f o l i a r Afe c o n c e n t r a t i o n s i n d i c a t e d a p o s s i b l e d e f i c i e n c y . F o l i a r Cu c o n c e n t r a t i o n s suggested a s l i g h t d e f i c i e n c y f o r s e v e r a l stands. The f o l i a r Cu c o n c e n t r a t i o n s however need to be viewed with c a u t i o n f o r reasons di s c u s s e d i n S e c t i o n 3.2.1. Other m i c r o n u t r i e n t s appeared to be i n good supply. F o l i a r Mn c o n c e n t r a t i o n s were o f t e n more than an order of magnitude gre a t e r than the recommended c r i t i c a l l e v e l . The a b i l i t y of D o u g l a s - f i r to accumulate manganese has been r e p o r t e d i n s e v e r a l s t u d i e s (Turner e_t al_. 1978; Kabzems 1985). Radwan e_t a l . (1979) r e p o r t manganese accumulations i n D o u g l a s - f i r s e e d l i n g s to l e v e l s considered extremely t o x i c i n many s p e c i e s , with no t o x i c i t y symptoms or growth r e d u c t i o n . Reference was made however to unpublished data where growth was n e g a t i v e l y c o r r e l a t e d with f o l i a r manganese l e v e l s f o r young D o u g l a s - f i r stands where a growth r e d u c t i o n had been induced. Radwan and de B e l l (1978) r e p o r t a s i m i l a r negative r e l a t i o n s h i p between f o l i a r - 35 -manganese l e v e l s and growth of western hemlock (Tsuga  h e t e r o p h y l l a (Raf.) Sarg.) i n the P a c i f i c Northwest. In the present study, s i t e index was moderately c o r r e l a t e d with f o l i a r LMn l e v e l s (r=-.572). V i s u a l t o x i c i t y e f f e c t s were not observed i n the f i e l d . C a r t e r (1983) reported a strong negative r e l a t i o n s h i p between f o r e s t f l o o r Mn c o n c e n t r a t i o n s and s i t e index f o r these same stands. Of the r a t i o s examined, f o l i a r N/S was the only r a t i o which suggested a n u t r i e n t imbalance ( d i s c u s s e d above). No strong c o r r e l a t i o n s were found between the f o l i a r n u t r i e n t s (Table 2). F o l i a r N and f o l i a r LS were moderately c o r r e l a t e d with a c o e f f i c i e n t of c o r r e l a t i o n of 0.702. I t i s l i k e l y that t h i s a s s o c i a t i o n r e f l e c t s the biochemical r o l e of both n u t r i e n t s i n p r o t e i n s y n t h e s i s (Mengel and Kirkby 1982). F o l i a r LFe and LAFe were a l s o moderately c o r r e l a t e d (r=.699). T h i s a s s o c i a t i o n i s perhaps not unexpected s i n c e a c t i v e i r o n i s an index of the p h y s i o l o g i c a l l y a c t i v e i r o n f r a c t i o n (Zech 1970). Three f o l i a r n u t r i e n t s and one r a t i o were d i v i d e d i n t o "high" and "low" n u t r i e n t s t a t u s groups f o r f u t u r e use i n d i s c r i m i n a n t a n a l y s i s ( S e c t i o n 3.3.3): f o l i a r N, S, AFe and N/S. These f o l i a r v a r i a b l e s i n c l u d e d the necessary range i n n u t r i e n t s u f f i c i e n c y and p o s s i b l e d e f i c i e n c y ( a c t u a l or i n d u c i b l e ) . F u r t h e r , they were shown to have been sampled i n s u f f i c i e n t i n t e n s i t y to estimate s i t e means with an a l l o w a b l e e r r o r of l e s s than 20% (0=0.05) ( S e c t i o n 4.1.2). C r i t i c a l values used to d i v i d e the groups were 1.25%-, 0.139%, and 30.0 ppm and 10.2, - 36 -r e s p e c t i v e l y , f o r N, S, Afe and N/S. These values correspond to the f o l l o w i n g d i v i s i o n s i n n u t r i e n t s u f f i c i e n c y : N adequate; s l i g h t l y to s e v e r e l y d e f i c i e n t ; S S d e f i c i e n c y and NID u n l i k e l y ; p o s s i b l e S d e f i c i e n c y ; AFe adequate; d e f i c i e n t ; N/S no S d e f i c i e n c y , NID u n l i k e l y ; no S d e f i c i e n c y , NID p o s s i b l e , where NID r e f e r s to n i t r o g e n induced d e f i c i e n c y . These values were chosen i n an attempt to i n c l u d e s i m i l a r numbers of stands i n each group while r e p r e s e n t i n g two l e v e l s of n u t r i e n t s t a t u s . - 37 -Table 2 C o r r e l a t i o n s Between F o l i a r N u t r i e n t s LS N .702** LZn .581** N LZn .585** LK -.482** LP LMn .484* LAI .437* LCa LMg .447* LAFe LFe .699** B LZn .606** N .542** *0.05 s i g n i f i c a n c e **0.01 s i g n i f i c a n c e - 38 -4.1.2 V a r i a t i o n i n F o l i a r N u t r i e n t V a r i a b l e s - Within and Between S i t e s Table 3 presents the range of w i t h i n s i t e f o l i a r n u t r i e n t v a r i a t i o n , expressed as percent c o e f f i c i e n t of v a r i a t i o n (CV), fo r the 27 p l o t s . F o l i a r N and S were the l e a s t v a r i a b l e n u t r i e n t s , with maximum CVs of 13% and 23%, r e s p e c t i v e l y . These compared w e l l with s i t e v a r i a t i o n reported i n the l i t e r a t u r e f o r D o u g l a s - f i r f o l i a r N and S (Heilman and Gessel 1963; van den Driessche 1974; R i c h t e r 1983). The maxima CV f o r the f o l i a r bases ranged between 26 and 59%. Calcium was the most v a r i a b l e of the f o l i a r bases. T h i s trend i n f o l i a r base v a r i a b i l i t y was a l s o found by R i c h t e r (1983). The maximum CV determined f o r P i n t h i s study was 34%. Heilman and Gessel (1963), and van den Driessche (1974) r e p o r t upper CVs f o r P at 16, and 14%, r e s p e c t i v e l y . The 95th p e r c e n t i l e CV found f o r R i c h t e r ' s 10 D o u g l a s - f i r stands (1983) was 38.5% ( B a l l a r d 1985). The 95th p e r c e n t i l e CV i s the c o e f f i c i e n t of v a r i a t i o n which i s expected to exceed that found i n 95 percent of the sampled stands. R i c h t e r ' s (1983) t h e s i s i s one of the few s t u d i e s which examines f o l i a r m i c r o n u t r i e n t and macronutrient r a t i o v a r i a b i l i t y f o r mature D o u g l a s - f i r . In the present study, f o l i a r Zn, A l , and B were the l e a s t v a r i a b l e of the m i c r o n u t r i e n t s . Although m i c r o n u t r i e n t s Mn and Cu were the most v a r i a b l e of the f o l i a r n u t r i e n t s and r a t i o s o v e r - a l l , the magnitude of t h e i r w i t h i n - s i t e v a r i a b i l i t y f l u c t u a t e d g r e a t l y between stands. The r a t h e r high w i t h i n p l o t v a r i a t i o n found f o r Cu may be a t t r i b u t e d i n part to - 39 -t h e i r low c o n c e n t r a t i o n s ( S e c t i o n 3.2.1). The maximum CV values found i n t h i s study f o r B, Cu, Fe, A l and Zn were a l l w i t h i n the 95th p e r c e n t i l e CV found f o r R i c h t e r ' s (1983) data by B a l l a r d (1985). Maximum CV f o r Mn and AFe were gre a t e r than the 95th p e r c e n t i l e s i t e CV found f o r R i c h t e r ' s data by B a l l a r d (1985). The w i t h i n - s i t e f o l i a r n u t r i e n t r a t i o v a r i a b i l i t y was s t r o n g l y i n f l u e n c e d by the v a r i a b i l i t y p a t t e r n of the most v a r i a b l e of the two n u t r i e n t s . A c c o r d i n g l y , of the 4 r a t i o s examined the N/S r a t i o was the l e a s t and the Ca/Mg r a t i o the most v a r i a b l e . The maximum f o l i a r n u t r i e n t r a t i o CVs found i n the present study were s l i g h t l y g r e a t e r than the 95th p e r c e n t i l e found f o r R i c h t e r ' s (1983) data. The broad g e o g r a p h i c a l area examined i n t h i s study and by R i c h t e r (1983) may account f o r the o f t e n higher f o l i a r n u t r i e n t v a r i a t i o n observed i n both of our s t u d i e s , r e l a t i v e to that r e p o r t e d by Heilman and Gessel (1963) and van den Driessche (1974). No strong trends were noted, f o r t h i s study, between the w i t h i n - s i t e n u t r i e n t v a r i a b i l i t y and s i t e f a c t o r s such as f o r e s t f l o o r humus order or s o i l moisture c l a s s . The F s t a t i s t i c s of the ANOVA were s i g n i f i c a n t at the 0.05 l e v e l . The estimate of the va r i a n c e between s i t e s was t h e r e f o r e s u b s t a n t i a l l y g r e a t e r than the va r i a n c e estimate w i t h i n s i t e s , suggesting that the use of s t a t i s t i c a l a n a l y s i s , such as r e g r e s s i o n , should not be a problem. - 40 -Table 3 Within S i t e F o l i a r N u t r i e n t and Ratio V a r i a b i l i t y Expressed as % C o e f f i c i e n t of V a r i a t i o n minimum maximum mean s 5, .97 23. .19 11. .44 N 4. .43 13, .20 9. .36 P 9. .60 33, .54 17. .64 K 9, .16 41, .19 15, .07 Ca 9. .46 59. .45 21. .33 Mg 10. .24 25, .61 15, ,66 B 11. .39 36, .53 20, .53 AFe 12. .76 53, .97 28, .19 Cu 14. .64 102, .44 35, .20 Zn 12. .07 41, .68 22, .37 Fe 12, .82 50, .11 27, .99 A l 14, .04 33, .72 22, .14 Mn 9. .97 73. .60 29. .39 N/S 4, .48 19, .08 11, .52 N/P 7, .34 23, .91 16, .52 K/Ca 12, .33 48, .67 24, .18 Ca/Mg 5, .41 51, .71 20, .68 Ranked i n order of i n c r e a s i n g maximum v a r i a b i l i t y N < S < M g < P < A l < B < K < Z n < F e < AFe < Ca < Mn < Cu N/S < N/P < K/Ca < Ca/Mg - 41 -4.1.3 P r e c i s i o n of F o l i a r N u t r i e n t V a r i a b l e s Table 4 summarizes the minimum and maximum percent a l l o w a b l e e r r o r (AE) a s s o c i a t e d with mean f o l i a r n u t r i e n t and r a t i o e s t i m ates, f o r a sample s i z e of 8, at a 0.05 s i g n i f i c a n c e l e v e l . F o l i a r n u t r i e n t and r a t i o v a r i a n c e s determined f o r each of the 6 i n t e n s e l y sampled s i t e s were used as estimates of the p o p u l a t i o n v a r i a n c e i n c a l c u l a t i n g AE. The maximum of the c a l c u l a t e d AEs f o r each f o l i a r n u t r i e n t and r a t i o are the focus of the f o l l o w i n g d i s c u s s i o n ; the maximum AE r e p r e s e n t s the expected minimum l e v e l of p r e c i s i o n f o r a given l e v e l of accuracy. An alpha l e v e l of 0.05 was considered s u f f i c i e n t accuracy f o r an environmental e x p l o r a t o r y study. At t h i s l e v e l a 5% chance e x i s t s that a hypothesis w i l l be r e j e c t e d when i t i s r e a l l y t r u e . The assumption of data normality i s b a s i c to the t s t a t i s t i c (Zar 1984); c a l c u l a t i o n s were t h e r e f o r e based on the transformed f o l i a r data (excepting f o l i a r N and B). F o l i a r B and LCu were the only f o l i a r n u t r i e n t s with a maximum AE g r e a t e r than 20%. Two of the r a t i o s , however, were shown to have maximum AEs g r e a t e r than 20%: LK/Ca, and LCa/Mg. F o l i a r n u t r i e n t v a r i a b l e s f o r which the minimum f i e l d sample s i z e (n=8) was s u f f i c i e n t l y l a r g e to permit s i t e estimates with a maximum AE l e s s than 20% (cx=0.05) were s e l e c t e d f o r use i n the analyses to examine r e l a t i o n s h i p s between f o l i a r and f o r e s t f l o o r chemical p r o p e r t i e s . A 20% allowance i n p r e c i s i o n was considered very generous. Most of the n u t r i e n t s were shown to have maximum AEs l e s s than 15%. - 42 -Table 4 Allowable E r r o r A s s o c i a t e d with F o l i a r N u t r i e n t s and Ratios f o r a Sample S i z e of E i g h t N u t r i e n t .01* .05* B 16.1- 33.2 10.9- 22.4 N 8.4- 14.2 5.7- 10.1 LS 1.3- 2.6 1.0- 1.7 LP 2.4- 4.2 1.6- 2.8 LAFe 4.2- 17.8 2.8- 12.1 LK 1.7- 2.7 1.0- 1.8 LCa 2.3- 4.5 1.7- 2.6 LMg. 2.3- 3.7 1.6- 2.5 LCu 10.6-114.3 7.2- 77.2 LZn 7.6- 10.1 5.2- 6.8 LFe 5.6- 15.4 3.8- 10.4 LAI 4.1- 5.4 3.6- 2.7 LMn 3.5- 8.8 5.9- 2.4 LN/S 5.3- 9.7 3.6- 6.5 LN/P 8.3- 15.2 5.7- 10.3 LK/Ca 27.0- 42.6 18.1- 28.8 LCa/Mg 17.1- 37.9 11.5- 25.4 * s i g n i f i c a n c e l e v e l s - 43 -4.2 F o r e s t F l o o r Chemical P r o p e r t i e s 4.2.1 R e s u l t s of LF and LFH U n i v a r i a t e and M u l t i v a r i a t e Analyses The simple l i n e a r c o r r e l a t i o n c o e f f i c i e n t s i n d i c a t e a high u n i v a r i a t e i n t e r - c o r r e l a t i o n w i t h i n the LF and LFH chemical p r o p e r t i e s (Tables 5 and 6, r e s p e c t i v e l y ) . The r e s u l t s from the M u l t i v a r i a t e Sample S i z e A n a l y s i s s i m i l a r l y i n d i c a t e high m u l t i v a r i a t e c o r r e l a t i o n , p a r t i c u l a r l y f o r the LFH chemical p r o p e r t i e s (Tables 7 and 8, r e s p e c t i v e l y ) . The r e s u l t s of the MSSA are summarized i n two complementary t a b l e s . Tables 7A and 8A rank the LF and LFH chemical p r o p e r t i e s , r e s p e c t i v e l y , a c c o r d i n g to t h e i r c o n t r i b u t i o n to the t o t a l sample d i s p e r s i o n . In the second summary t a b l e s (7B and 8B) the LF and LFH chemical p r o p e r t i e s are r e s p e c t i v e l y ranked ac c o r d i n g to t h e i r redundancy. Redundancy r e f e r s , here, to the amount of v a r i a n c e , or i n f o r m a t i o n , unique to that p a r t i c u l a r v a r i a b l e . V a r i a b l e s which account f o r a l a r g e p o r t i o n of the t o t a l sample d i s p e r s i o n , yet have low redundancy are the most s t a t i s t i c a l l y u s e f u l . F i v e LF chemical p r o p e r t i e s , S, P, Min-N, LA and LZn, accounted f o r approximately 70% of the t o t a l sample v a r i a t i o n . The l a t t e r two LF chemical p r o p e r t i e s , which c o n t r i b u t e d l e s s than 18% to the t o t a l 70%, were the l e a s t redundant of these f i v e LF chemical p r o p e r t i e s . LFH pH, LexK, Min-N, and N accounted f o r approximately 73% of the t o t a l sample v a r i a t i o n . The s p e c i f i c v a r i a n c e f o r each - 44 -of these p r o p e r t i e s was s u b s t a n t i a l l y l e s s than the common v a r i a n c e , i n d i c a t i n g a high degree of i n t e r - c o r r e l a t i o n with other LFH chemical p r o p e r t i e s . High i n t e r - c o r r e l a t i o n between f o r e s t f l o o r chemical p r o p e r t i e s i s a l s o r e p o r t e d by Kabzems (1985). T h i s i s not unexpected c o n s i d e r i n g the many n u t r i e n t sources which c o n t r i b u t e to the f o r e s t f l o o r n u t r i e n t p o o l . Subsets of LF and LFH chemical p r o p e r t i e s with low c o l l i n e a r i t y s e l e c t e d to be used i n m u l t i p l e r e g r e s s i o n are l i s t e d i n Table 9. A d d i t i o n a l LF and LFH chemical property subsets to be used i n d i s c r i m i n a n t a n a l y s i s are l i s t e d i n Tables 10 and 11. P r i n c i p a l component a n a l y s i s provided l i m i t e d i n s i g h t i n t o the i n t e r p r e t a t i o n of the i n t e r - r e l a t i o n s h i p s w i t h i n the LF and LFH chemical p r o p e r t i e s . The c o r r e l a t i o n matrices of the p r i n c i p a l component analyses conducted on the LF and the LFH chemical p r o p e r t i e s are presented i n Appendix D. For both a n a l y s e s , only the f i r s t p r i n c i p a l component ( f a c t o r ) was considered i n t e r p r e t a b l e . These f i r s t components e x p l a i n e d 35.3 and 36.4% of the t o t a l v a r i a n c e i n the LF and LFH chemical p r o p e r t i e s , r e s p e c t i v e l y . The f i r s t component of the LF a n a l y s i s was most h i g h l y c o r r e l a t e d with, i n decreasing order, LF S ( p o s i t i v e ) , LMg (negative) and pH ( n e g a t i v e ) . These three LF chemical p r o p e r t i e s are s t r o n g l y c o r r e l a t e d (Table 5 ) . LFH pH ( p o s i t i v e ) , LMg ( p o s i t i v e ) , LexMg ( p o s i t i v e ) , S (negative) and LexCa ( p o s i t i v e ) had, i n dec r e a s i n g order, the hi g h e s t c o r r e l a t i o n s with the f i r s t component of the LFH a n a l y s i s . - 45 -These LFH chemical p r o p e r t i e s are a l s o s t r o n g l y c o r r e l a t e d with each other (Table 6 ). The f i r s t of the LF and LFH PCA components are suggested to r e f l e c t the decrease i n base s a t u r a t i o n which accompanied i n c r e a s e d sulphur a v a i l a b i l i t y . T h i s r e l a t i o n s h i p i s d i s c u s s e d i n S e c t i o n 4.3.1. Further d i s c u s s i o n of f o r e s t f l o o r chemical i n t e r -r e l a t i o n s h i p s w i l l be made i n the f o l l o w i n g s e c t i o n s only as they apply to the i n t e r p r e t a t i o n of r e l a t i o n s h i p s between f o r e s t f l o o r chemical p r o p e r t i e s and f o l i a r n u t r i e n t v a r i a b l e s . Table 5 S i g n i f i c a n t Correlations Between LF Chemical Properties LF C LF LMg -0.630 ** LF PH -0.50A .#* LF LKCL-N 0.496 *» LF S 0.447 * LF N 0.386 * LF LA LF LK 0.436 • LF N LF S 0.787 *# LF LKCL-N 0.653 ** LF MIN-N 0.546 #» LF LMg -0.533 *• LF pH -0.380 « LF MIN-N LF LKCL-N 0.603 ## LF S LF LMg -0.736 ** LF pH -0.704 ** LF LKCL-N 0.519 ## LF LCU 0.491 »* LF P LF LK 0.465 • LF LMg LF pH 0.870 #* LF LK 0.475 * LF LK LF pH 0.534 ** LF LCu LF pH -0.592 #* •0.05 si g n i f i c a n c e **0.01 significance Table 6 S i g n i f i c a n t C o r r e l a t i o n s Between LFH Chemical P r o p e r t i e s LFH C LFH LA 0,740 LFH pH -0.529 * LFH LexK 0.470 ** LFH LA LFH PH -0.404 ** LFH LexK 0.415 * LFH N LFH S 0.866 ** LFH C 0.769 ** LFH LMg -0.562 ** LFH MIN-N 0.497 #* LFH pH -0.420 * LFH LKCL-N 0.477 * LFH MIN-N LFH ExtP -0.534 ** LFH LKCL-N 0.493 •* LFH LKCL-N LFH ExtP -0.686 ** LFH S LFH LMg -0.789 ** LFH pH -0.727 ** LFH C 0.766 ** LFH LexMg -0.566 ** LFH LexCa -0.492 ** LFH LKCL-N 0.418 LFH P LFH LexCa 0.575 ** LFH LexMg 0.541 »* LFH PH 0.507 ** LFH LK 0.472 * j LFH LexK 0.481 » LFH LZn 0.447 #1 LFH LMg LFH pH 0.917 ** LFH LexMg 0.832 ** LFH LexCa 0.764 ** LFH C -0.708 «ft LFH LA -0.555 ** LFH LK 0.476 * LFH LexCa LFH pH 0.932 ** LFH LexMg 0.874 ** LFH LexMg LFH PH 0.896 ** LFH LK LFH LexK 0.608 »# LFH LexMg 0.610 ** LFH LexCa 0.554 ** LFH pH 0.534 ** LFH LCu LFH LexMg -0.519 ** LFH LexCa -0.536 ** LFH pH -0*453 * *0.05 s i g n i f i c a n c e **0.01 s i g n i f i c a n c e - 48 -Table 7 M u l i t i v a r i a t e Sample Si z e A n a l y s i s of LF Chemical P r o p e r t i e s A. V a r i a b l e s Ranked by D i s p e r s i o n C r i t e r i o n Rank Property Sum squares % of t o t a l v a r i a n c e 1 S 3.3558 27.965 2 P 1.7953 14.961 3 Min-N 1.0871 9.059 4 LA 1.0796 8.996 5 LZn 1.0419 8.682 6 C 1.0163 8.469 7 pH 0.8058 6.715 8 LCu 0.5541 4.618 9 LK 0.4576 3.813 10 LKC1-N 0.3673 3.060 11 LMg 0.2473 2.061 12 N 0.1920 1.600 B. Redundancy of V a r i a b l e s and S p e c i f i c Variance Rank Property Variance S p e c i f i c Common R-squared Redundancy 1 LA 1.0000 0 .7713 0 .2287 0 .2286976 22.870 2 LZn 1.0000 0 .6723 0 .3277 0 .3277433 32.774 3 pH 1.0000 0 .4850 0 .5150 0 .5150012 51.500 4 LCu 1.0000 0 .4848 0 .5152 0 .5152207 51.522 5 P 1.0000 0 .4345 0 .5655 0 .5654599 56.546 6 Min-N 1.0000 0 .4312 0 .5688 0 .5687552 58.876 7 LK 1.0000 0 .3388 0 .6612 0 .6612030 66.120 8 C 1.0000 0 .3385 0 .6615 0 .6614790 66.148 9 LKC1-N 1.0000 0 .2828 0 .7172 0 .7172042 71.720 10 LMg 1.0000 0 .2409 0 .7591 0 .7591262 75.913 11 N 1.0000 0 .1920 0 .8080 0 .8079894 80.799 12 S 1.0000 0 .1455 0 .8545 0 .8545085 85.451 12.0000 718.239 - 49 -Table 8 M u l i t i v a r i a t e Sample Si z e A n a l y s i s of LFH Chemical P r o p e r t i e s A. V a r i a b l e s Ranked by D i s p e r s i o n C r i t e r i o n Rank Property Sum squares % of t o t a l v a r i a n c e 1 pH 5.5250 34.531 2 LexK 2.6935 16.834 3 Min-N 2.0853 13.033 4 N 1.3521 8.450 5 LZn 1.2913 8.070 6 extP 0.9134 5.709 7 LCu 0.4324 2.703 8 LKC1-N 0.4286 2.679 9 P 0.3959 2.475 10 LK 0.3612 2.258 11 C 0.2091 1.307 12 LexMg 0.1564 0.977 13 LA 0.0572 0.357 14 S 0.0539 0.337 15 LexCa 0.0225 0.141 16 LMg 0.0222 0.139 B. Redundancy of V a r i a b l e s and S p e c i f i c Variance Rank Property Variance S p e c i f i c Common R-squared Redundancy. 1 LZn 1.0000 0 .4057 0 .5943 0 .5943462 59 .435 2 LCu 1.0000 0 .2420 0 .7580 0 .7579519 75 .795 3 LKC1-N 1.0000 0 .2187 0 .7813 0 .7812546 78 .125 4 P 1.0000 0 .2013 0 .7987 0 .7986859 79 .869 5 extP 1.0000 0 .1873 0 .8127 0 .8126839 81 .268 6 Min-N 1.0000 0 .1697 0 .8303 0 .8302800 83 .028 7 LK 1.0000 0 .1638 0 .8362 0 .8361569 83 .616 8 LexK 1.0000 0 .1478 0 .8522 0 .8521959 85 .220 9 N 1.0000 0 .0544 0 .9456 0 .9456075 94 .561 10 LA 1.0000 0 .0531 0 .9469 0 .9468714 94 .687 11 C 1.0000 0 .0524 0 .9476 0 .9475913 94 .759 12 LexMg 1.0000 0 .0438 0 .9562 0.9562059 95 .621 13 S 1.0000 0 .0398 0 .9602 0 .9601678 96 .017 14 LexCa 1.0000 0 .0222 0 .9778 0 .9778185 97 .782 15 LMg 1.0000 0 .0222 0 .9778 0 .9778260 97 .783 16 pH 1.0000 0 .0119 0 .9881 0 .9880589 98 .806 16.0000 1324.372 - 50 -Table 9 Subgroups S e l e c t e d on the Bas i s of Low M u l t i c o l l i n e a r i t y i LF Subgroups C, P, LA, Min-N, LZn, pH C, LA, Min-N, LZn, LK C, LA, Min-N, LZn, pH C, P, LA, Min-N, LCu, LZn, LK N, P, LA, LCu, LZn, LK C, N, LA, LZn, pH C, N, P, LA, LZn, LK P, LS, LA, Min-N, LCu, LZn P, LA, Min-N, LCu, LZn, pH P, LA, Min-N, LZn, pH P, LS, LA, Min-N, LZn P, LA, Min-N, LCu, LZn, LMg i i LFH Subgroups N, LCu, LZn, LexCa, LexK N, LCu, LZn,LexMg, LK N, LA, LCu, LZn, LK N, LZn, A, exCa N, LZn, LexMg, LexK, extP N, LA, LCu, LZn, LexMg P, LS, LCu, extP P, LS, LCu, Min-N P, N, LCu, LA P, Min-N, C, LCu P, LMg, LexK, LCu, LK LZn, LexCa, C, extP LCu, LZn, LexK, extP LS, P, LCu, LZn, LexK LS Min-N, LCu, LZn, LMg, LexK C, Min-N, LZn, LCu, LK Table 10 Subgroups S e l e c t e d on the B a s i s of S t r a t a Mean D i f f e r e n e s F o l i a r LS N LAFe LN/S LS N LAFe LN/S High F o l i a r LS N LAFe LN/S LS N LAFe LN/S i LF Subgroups Fo r e s t F l o o r N, LS, LCu, LMg, pH N, LS, LK, LCu, pH LS, LCu, pH, P, LK LS, LMg, LK, pH, LCu i i LFH Subgroups LK, LMg, LexCa, LexMg, pH N, P, LMg, LexMg, pH LS, P, LCu, pH, extP LS, LMg, LexCa, LexMg, pH Table 11 Subgroups S e l e c t e d on the B a s i s of  C o r r e l a t i o n with F o l i a r N u t r i e n t V a r i a b l e s i LF Subgroups Fo r e s t F l o o r N, LS, LCu, LMg, pH N, LS, LMg, LK, pH LS, LA, LCu, LMg, LK N, P, LS, LMg, pH i i LFH Subgroups LMg, LCu, LexCa, LexMg, pH LS, LK, LexCa, LexMg, pH LMg, LK, LKC1-N, LexMg, extP LMg, LCu, LexCa, LexMg, pH - 51 -4.3 R e l a t i o n s h i p s Between F o l i a r N u t r i e n t V a r i a b l e s and F o r e s t F l o o r Chemical P r o p e r t i e s 4.3.1 U n i v a r i a t e R e l a t i o n s h i p s Tables 12 and 13 r e s p e c t i v e l y summarize the s i g n i f i c a n t simple l i n e a r c o r r e l a t i o n c o e f f i c i e n t s between the f o l i a r n u t r i e n t v a r i a b l e s and the LF and LFH chemical p r o p e r t i e s . R e l a t i o n s h i p s between f o l i a r n u t r i e n t v a r i a b l e s and f o r e s t f l o o r chemical p r o p e r t i e s are g e n e r a l l y s i m i l a r i n magnitude and d i r e c t i o n f o r the LF and LFH l a y e r s and are t h e r e f o r e d i s c u s s e d t o g e t h e r . Major d e v i a t i o n s from t h i s trend are noted. The strong negative r e l a t i o n s h i p s between f o l i a r LS and LF: pH, LMg and LFH: pH, LexCa, LexMg, LMg are of p a r t i c u l a r i n t e r e s t . I n i t i a l l y these r e l a t i o n s h i p s appear counter-i n t u i t i v e ; an i n c r e a s e i n f o r e s t f l o o r pH should favor b i o l o g i c a l mediated processes, such as sulphur m i n e r a l i z a t i o n , and thereby i n c r e a s e the a v a i l a b i l i t y of sulphur f o r p l a n t uptake. The importance of m i c r o b i a l processes i n sulphur t r a n s f o r m a t i o n s and f l u x e s w i t h i n an ecosystem, p a r t i c u l a r l y i n humid re g i o n s where much of the t o t a l sulphur i s i n organic forms, i s w e l l e s t a b l i s h e d (David e_t a_l. 1981). P r i o r to d i s c u s s i n g these and other f o l i a r n u t r i e n t v a r i a b l e - f o r e s t f l o o r chemical property r e l a t i o n s h i p s ( S e c t i o n 4.3.1.2), two hypotheses are presented i n r e f e r e n c e to the higher f o l i a r S c o n c e n t r a t i o n s found f o r the s i t e s with the lower f o r e s t f l o o r pH ( S e c t i o n 4.3.1.1). Table 12 S i g n i f i c a n t C o r r e l a t i o n s Between F o l i a r N u t r i e n t V a r i a b l e s and LF Chemical P r o p e r t i e s F o l i a r N LF S 0.6079 *« F o l i a r LNS LF pH 0. 7361 #« LF PH -0.5585 *# LF LMg 0. 6177 *# LF LMg -0.5484 ** LF LCu -0. 5583 ** LF LK -0.5219 ** LF S -0. 5567 ** LF N 0.5101 *# F o l i a r LNP LF LK -0. 5060 ## F o l i a r LS LF pH -0.8599 ** LF LMg -0.7614 «« LF S 0.7399 *# LF LKCL-N 0.6126 *# LF LCu 0.6126 ** LF N 0.4801 * LF LK -0.4763 * F o l i a r LFe LA 0.4250 » F o l i a r LFZn S 0.6924 ** PH -0.5651 ** LMg -0.4575 * LCu 0.4480 * N 0.4174 * *0.05 s i g n i f i c a n c e **0.01 s i g n i f i c a n c e Table 13 S i g n i f i c a n t C o r r e l a t i o n s Between F o l i a r N u t r i e n t V a r i a b l e s and LFH Chemical P r o p e r t i e s F o l i a r N F o l i a r LS F o l i a r LMg F o l i a r LZn LFH LexMg -0.6286 «* F o l i a r LAI LFH extP 0.4079 * LFH pH -0.5705 *# LFH LexCa -0.5059 ## F o l i a r LMn LFH LA 0.4502 * LFH S 0.5039 ** LFH LK -0.4985 *« F o l i a r LNS LFH pH 0.7367 •# LFH LexK -0.4373 » LFH LexCa 0.7691 *# LFH LMg -0.4713 * LFH LexMg 0.6482 »* LFH P -0.4172 » LFH LMg 0.6210 ** LFH LCu 0.3957 * LFH LCu -0.4994 ** LFH S -0.4514 » LFH pH -0.8638 •# LFH P 0.4301 * LFH LexCa -0.8585 ** LFH LexMg -0.8404 ** F o l i a r LNP LFH LexK -0.3984 * LFH LMg -0.7122 ** LFH LK -0.3916 * LFH LCu 0.6004 ** LFH S 0.5925 ** LFH P -0.5853 *# LFH LK -0.5540 *# LFH LexK -0.4335 * LFH LMg 0.3840 # LFH S 0.6267 ** LFH pH -0.5601 ** LFH LexCa -0.5434 #* LFH LexMg -0.5040 *# LFH LCu 0.4639 » LFH LK -0.4381 * LFH LMg -0.4335 * *0.05 s i g n i f i c a n c e **0.01 s i g n i f i c a n c e - 54 -4.3.1.1 Hypotheses The f i r s t hypothesis considered was that the f o l i a r S c o n c e n t r a t i o n s of the higher f o r e s t f l o o r pH s i t e s were " d i l u t e d " . T h i s hypothesis r e q u i r e s that the s i t e s with the higher f o r e s t f l o o r pH support a l a r g e r canopy biomass ( i . e . , i n c r e a s e d needle s i z e or needle r e t e n t i o n ) r e l a t i v e to the s i t e s with the lower f o r e s t f l o o r pH. T h i s general trend was considered u n l i k e l y i n view of the f o l l o w i n g : (1) needle weight per 100 needles was not s i g n i f i c a n t l y c o r r e l a t e d with any of the f o l i a r n u t r i e n t data, (2) the negative a s s o c i a t i o n s found between f o l i a r LS and both f o r e s t f l o o r pH and c o n c e n t r a t i o n s of Ca and Mg were not found f o r other f o l i a r n u t r i e n t s which should have been s i m i l a r i l y a f f e c t e d , and (3) a range i n s i t e p r o d u c t i v i t y and edaphic c o n d i t i o n s c h a r a c t e r i z e d both the lower and higher f o r e s t f l o o r pH s i t e s . The second hypothesis considered was that anthropogenic atmospheric sulphur might be i n f l u e n c i n g S a v a i l a b i l i t y at the lower f o r e s t f l o o r pH s i t e s . T h i s hypothesis was prompted by the r e l a t i v e geographic l o c a t i o n of the lower and higher f o r e s t f l o o r pH s i t e s . The 10 s i t e s with the lower f o r e s t f l o o r pH are l o c a t e d w i t h i n approximately 45 km of downtown Vancouver; whereas the s i t e s with higher f o r e s t f l o o r pH are l o c a t e d i n four major areas at d i s t a n c e from major urban and i n d u s t r i a l development: eastern Vancouver I s l a n d (9 s i t e s ) , H a r r i s o n Lake (4 s i t e s ) , C h i l l i w a c k River (2 s i t e s ) and Howe Sound (2 s i t e s ) . To explore t h i s h y p o t h e s i s , the p o t e n t i a l c o n t r i b u t i o n of three major - 55 - • sources of p l a n t - a v a i l a b l e s u l f u r — o r g a n i c sulphur m i n e r a l i z a t i o n , mineral weathering and atmospheric s u l p h u r — were considered s e p a r a t e l y f o r the two "groups" of s i t e s . For ease of d i s c u s s i o n , s i t e s with the higher f o r e s t f l o o r pH and those with lower f o r e s t f l o o r pH w i l l h e r e a f t e r be r e f e r r e d to as the higher and lower pH s i t e s . Although separated i n t o two groups f o r ease of comparison, these s i t e s i n f a c t r e present a n a t u r a l continuum of f o r e s t f l o o r and f o l i a r chemical p r o p e r t i e s . Table 14 summarizes s e l e c t e d f o l i a r and f o r e s t f l o o r chemical p r o p e r t i e s f o r the higher and lower pH s i t e s . i . Organic Sulphur M i n e r a l i z a t i o n The mor humus form i s predominant on the m a j o r i t y of the s i t e s sampled. Since the formation of the mor humus form tends to r e f l e c t low b i o l o g i c a l a c t i v i t y i n the organic h o r i z o n s ( K l i n k a et a_l. 1981b), i t i s l i k e l y t h a t m i n e r a l i z a t i o n r a t e s are f a i r l y low o v e r - a l l . I t i s suggested, however, that organic sulphur m i n e r a l i z a t i o n r a t e s at the higher pH s i t e s may be higher than those at the lower pH s i t e s . The higher pH s i t e LFH pH values are o f t e n an order of magnitude higher than lower pH s i t e values (Table 14). Organic sulphur m i n e r a l i z a t i o n , a b i o l o g i c a l l y mediated process, i s pH dependent. No trends were found between f o r e s t f l o o r depth and LF pH or LFH pH. i i . M i n e r a l Weathering Information on the s u r f i c i a l m a t e r i a l s f o r the 27 s i t e s i s incomplete ( A l l e y 1981). S p e c u l a t i o n on the p o t e n t i a l c o n t r i b u t i o n of mineral weathering to the p l a n t - a v a i l a b l e sulphur - 56 -Table 14 S e l e c t e d F o l i a r N u t r i e n t V a r i a b l e s and F o r e s t F l o o r Chemical P r o p e r t i e s f o r the Higher and Lower pH S i t e s Higher pH S i t e s Lower pH S i t e s F o l i a r V a r i a b l e s F o l i a r S (%) 0.091 - 0.139 0.149 - 0.203 F o l i a r N (%) 0.930 - 1.400 1.178 - 1.551 F o l i a r N/S 8.0 - 12.0 6.6 - 9.5 LF Chemical P r o p e r t i e s LF pH 4.27 - 5.12 3.17 - 4.15 LF S (%) 0.105 - 0.188 0.164 - 0.211 LF N (%) 0.777 - 0.578 1.112 - 1.798 LF Mg (ppm) 1228.8 - 4669.7 632.1 - 1420.7 LF K (ppm) 1122.2 - 3621.4 817.8 - 2003.4 LFH Chemical P r o p e r t i e s LFH pH 3.73 - 5.04 2.9 - 4.1 LFH S (%) 0.048 - 0.171 0.135 - 0.204 LFH N (%) 0.959 - 1.428 1.037 - 1.588 LFH Mg (ppm) 1586.1 - 6714.5 590.7 - 1756.2 LFH exCa me/lOOg 15.3 - 38.1 10.6 - 20.7 LFH exMg me/lOOg 3.4 - 6.4 1.6 - 3.2 - 57 -pool i s t h e r e f o r e l a r g e l y based on the geology i n the study areas. Information on the s u r f i c i a l m a t e r i a l was used, where a v a i l a b l e , to s u b s t a n t i a t e the assumptions made ( F a r s t a d and L a i r d 1959; Armstrong 1980, 1984). The mineralogy of the g l a c i a l t i l l , which c h a r a c t e r i z e s much of these areas, i s expected to r e f l e c t the l o c a l geology. The g e o l o g i c m a t e r i a l s at three of the higher pH s i t e l o c a t i o n s , e a s t e r n Vancouver I s l a n d , H a r r i s o n Lake and C h i l l i w a c k River i n c l u d e a broad mixture of sedimentary and v o l c a n i c bedrock ( s c a l e s - 1:250,000 and 1:50,000) (M u l l e r 1977; Armstrong 1980). Sedimentary rock p o t e n t i a l l y high i n sulphur content (limestone -Quatsino and B u t t l e Lk. Formations) i s mapped only i n the v i c i n i t y of the Mesachie Lake s i t e s on Vancouver I s l a n d ( M u l l e r 1977). At the Howe Sound s i t e l o c a t i o n s the bedrock i s mapped as g r a n i t e or g r a n o d i r o i t e (Armstrong 1980). The g e o l o g i c m a t e r i a l s at 8 of the 10 lower pH s i t e l o c a t i o n s - UBC Research F o r e s t , Cypress Mt. and North Vancouver - are mapped as g r a n i t e or quartze d i o r i t e (1:63,360) (Roddick 1965). The 2 lower pH s i t e s on the UBC Endowment Lands i n c o n t r a s t are l o c a t e d on glaciomarine and marine d e p o s i t s (Armstrong 1984). P y r i t e and e v a p o r i t i c rocks were not mapped i n the v i c i n i t y of any of the s i t e l o c a t i o n s (e.g., Armstrong 1980). As a source of suphur, the weathering of sedimentary rock i s s u b s t a n t i a l l y more important than the weathering of e i t h e r igneous or metamorphic rock. The weathering r a t i o f o r sulphur i n sedimentary and igneous-metamorphic rocks i s reported at about - 58 -46:1 (Nriagu and Hera 1978). I t i s t h e r e f o r e suggested that f o r the higher pH s i t e s mineral weathering i s probably a major source of p l a n t a v a i l a b l e S, v a r y i n g i n importance on a s i t e s p e c i f i c b a s i s . For the 8 lower pH s i t e s l o c a t e d on igneous bedrock, mineral weathering i s probably not a major source of sul p h u r . I t i s however l i k e l y that mineral weathering i s a more important source of p l a n t a v a i l a b l e sulphur f o r the 2 stands l o c a t e d on the UBC Endowment Lands, i n view of the marine o r i g i n of the s o i l s , i i i . Atmospheric Inputs Ocean de r i v e d atmospheric sulphur w i l l l i k e l y be deposited at a l l of the s i t e s sampled. The d e p o s i t i o n of sulphur d e r i v e d from the ocean however w i l l decrease with d i s t a n c e from the ocean (Zeman 1973; MacLaren 1987). At the Vancouver A i r p o r t ocean derived sulphur averaged 7% (2.2 kg sulphate-lha-lyear -- 1-) of the t o t a l wet sulphur d e p o s i t i o n f o r the 1980-1983 p e r i o d (Faulkner 1987, pers. comm.). The c o n t r i b u t i o n of sea s a l t sprays to the t o t a l r a i n f a l l sulphate i s c a l c u l a t e d using the S04 2 -:Na- ,- + r a t i o which approximates that of sea water (approximately 1:4.07) (MacLaren 1985). The Vancouver A i r p o r t i s i n c l o s e proximity to the ocean; the magnitude of wet sulphur d e p o s i t i o n of oceanic o r i g i n r e c i e v e d at the Vancouver A i r p o r t i s t h e r e f o r e suggested to r e f l e c t that which i s r e c i e v e d at the s i t e s c l o s e s t to the ocean ( i . e . , UBC Endowment Lands). The m a j o r i t y of the 27 s i t e s sampled are l o c a t e d at d i s t a n c e from the ocean. ( D e p o s i t i o n r a t e s at the Vancouver A i r p o r t are presented i n the f o l l o w i n g d i s c u s s i o n s as rough guides f o r comparison - 59 -purposes; averaged sulphate c o n c e n t r a t i o n s ( a r i t h m e t i c averages, not volume weighted averages) of e p i s o d i c r a i n f a l l events are the only i n f o r m a t i o n a v a i l a b l e f o r other l o c a t i o n s i n the Vancouver area.) Anthropogenic atmospheric sulphur i n p u t s to the higher pH s i t e s i s expected to be moderately low s i n c e the s i t e s are l o c a t e d at d i s t a n c e from major urban and i n d u s t r i a l development. Information on the wet d e p o s i t i o n of sulphur i s not a v a i l a b l e f o r the higher pH s i t e l o c a t i o n s . Based on unpublished wet d e p o s i t i o n data from sampling l o c a t i o n s along the S t r a i g h t of Georgia (e.g., Pender I s . , Texada Is.) (Faulkner 1985), however, i t i s suggested that the t o t a l wet depostion of sulphur (ocean d e r i v e d and other) at the higher pH s i t e s w i l l range between 1 and 3.5 kg' yr 1 . T h i s i s w i t h i n the range of t o t a l atmospheric sulphur input c i t e d f o r non-urban areas by B i n k l e y (1986). Atmospheric sulphur of anthropogenic o r i g i n has p r e v i o u s l y been reported i n both Vancouver ( P o i n t Grey) (Zeman 1973) and Maple Ridge (UBC Research F o r e s t ) ( F e l l e r 1977). More recent i n f o r m a t i o n on p r e c i p i t a t i o n pH and sulphate c o n c e n t r a t i o n s i n the Vancouver - Port Moody areas f u r t h e r r e f l e c t the i n f l u e n c e of l o c a l i n d u s t r i e s (e.g., o i l r e f i n e r i e s , chemical p l a n t s , t r a n s p o r t a t i o n ) . The s l i g h t l y a c i d i c pH of the p r e c i p i t a t i o n , which ranges from 4.6 to 4.9, i n d i c a t e s the presence of atmospheric contaminants. The pH of n a t u r a l r a i n f a l l i s 5.7 (pH of d i s t i l l e d water i n e q u i l i b r i u m with atmospheric carbon - 60 -d i o x i d e ) (Kramer 1978). Sulphur d i o x i d e , n i t r o u s oxides and t h e i r r e a c t i o n products are the most prominent of the atmospheric a c i d i f y i n g agents ( C l a r k and Bonham 1982; McFee and Cronan 1982). "Excess" sulphate c o n c e n t r a t i o n s (sulphate not of oceanic o r i g i n ) i n e p i s o d i c r a i n f a l l events averaged 2.0 mg/L during 1982 i n Vancouver. At the Port Moody sampling l o c a t i o n , c o n c e n t r a t i o n s of "excess" sulphate i n e p i s o d i c r a i n f a l l events averaged 1.3 mg/L over the same time p e r i o d . In comparison, 0.5mg/L was the average "excess" sulphate c o n c e n t r a t i o n reported i n the 1982 e p i s o d i c r a i n f a l l events at Grouse Mountain. I t i s important to note that these c o n c e n t r a t i o n s i n c l u d e wet d e p o s i t i o n only (McLaren 1985). Although comparisons between r a i n f a l l c o n c e n t r a t i o n s which are not volume-weighted need to be made with c a u t i o n , i t i s b e l i e v e d that the general trend of decreasing atmospheric sulphur ("excess") with i n c r e a s i n g d i s t a n c e from Vancouver and Burrard I n l e t , as i s suggested by the data presented, i s r e p r e s e n t a t i v e of the study area (Faulkner 1987, p e r s . comm.). At the Vancouver A i r p o r t "excess" sulphur i n wet d e p o s i t i o n ranged from 4.4 (13.3) to 5.5 (16.6) k g ~ l h a ~ l y r - * ( e q u i v a l e n t sulphate c o n c e n t r a t i o n s i n parentheses) f o r the 1980 to 1983 p e r i o d . T h i s alone would meet a s i g n i f i c a n t p o r t i o n of a stand's annual uptake of sulphur; Turner and Lambert (1980) r e p o r t c a l c u l a t i o n s i n the l i t e r a t u r e f o r c o n i f e r stand uptake of sulphur to vary from 1.5 (4.5) to 7 (21) kg^ha -!yr --'-( e q u i v a l e n t sulphate uptake i n p a r e n t h e s e s ) . Even though the - 61 -"excess" sulphur i n wet d e p o s i t i o n r e c e i v e d at the low pH s i t e s w i l l l i k e l y be l e s s than that r e c e i v e d at Vancouver A i r p o r t , other sources of atmospheric sulphur w i l l c o n t r i b u t e to the t o t a l sulphur impact: dry d e p o s i t i o n , a e r o s o l s and gases (Kramer 1978). The l a r g e s u r f a c e area provided by the f o r e s t canopy, together with the a b i l i t y of t r e e s to absorb sulphur d i o x i d e d i r e c t l y through l e a f stomata, makes the f o r e s t a very e f f i c i e n t f i l t e r of atmospheric sulphur (Lindberg e_t al^. 1980; Johnston e_t a l . 1982). The higher f o l i a r S c o n c e n t r a t i o n s of the 10 lower pH s i t e s are presented as f u r t h e r evidence of atmospheric sulphur i n p u t s to those s i t e s i n c l o s e proximity to Vancouver. F o l i a r S c o n c e n t r a t i o n s measured at these s i t e s (0.15 to 0.20%) are w i t h i n the range rep o r t e d by other r e s e a r c h e r s where atmospheric s u l f u r has been measured i n wet dep o s t i o n : 0.12 to 0.22% (Turner et_ a l . 1980; Stednick 1982). Based on the i n f o r m a t i o n presented, i t i s hypothesized that f o r the higher pH s i t e s organic sulphur m i n e r a l i z a t i o n and mineral weathering are the major sources of p l a n t - a v a i l a b l e sulphur; whereas f o r the lower pH s i t e s anthropogenic atmospheric sulphur i s suggested as the major source of p l a n t a v a i l a b l e s u l p h u r . 5.3.1.2 I n t e r p r e t a t i o n On the premise of the second h y p o t h e s i s , the lower f o r e s t f l o o r pH values of the 10 s i t e s l o c a t e d i n the Vancouver area are - 62 -suggested to r e f l e c t an a c i d i f y i n g e f f e c t of the s l i g h t l y a c i d i c p r e c i p i t a t i o n , which i n a d d i t i o n serves as a s i g n i f i c a n t source of r e a d i l y a v a i l a b l e s u l p h u r . T h i s a c i d i f i c a t i o n i s i n a d d i t i o n to that which n a t u r a l l y occurs w i t h i n the f o r e s t f l o o r (e.g., c a r b o n i c a c i d p r o d u c t i o n , H+ r e l e a s e from p l a n t s ) . The LFH-pH values f o r these 10 s i t e s are at the lower range i n pH values g e n e r a l l y c i t e d i n the l i t e r a t u r e f o r mor humus forms (Quesnel 1980; Lowe and K l i n k a 1981); decreases i n f o r e s t f l o o r pH have been rep o r t e d i n c o n i f e r o u s f o r e s t s under the i n f l u e n c e of both a r t i f i c i a l (Abrahamsen 1979) and l o c a l a c i d p r e c i p i t a t i o n (Norton et a l . 1980, c i t e d by Aber e_t a_l. 1982). In comparison, the f o r e s t f l o o r pH values of the higher pH s i t e s are suggested to r e f l e c t the n a t u r a l a c i d i f y i n g processes only, with the lower , f o l i a r S c o n c e n t r a t i o n s r e f l e c t i n g the l e s s r e a d i l y a v a i l a b l e sources of sulphur: organic sulphur m i n e r a l i z a t i o n and mineral weathering. The strong negative r e l a t i o n s h i p s between f o l i a r LS and f o r e s t f l o o r calcium and magnesium (LF-Mg, LFH-exMg, LFH-exCa, LFH-Mg) are suggested to r e f l e c t the process a s s o c i a t e d with a c i d i f i c a t i o n : base l e a c h i n g . I t i s p o s s i b l e that the c a t i o n l e a c h i n g process, l i k e l y dominated by c a r b o n i c a c i d s i n the higher pH f o r e s t f l o o r s , s h i f t s to a process dominated more by s u l p h u r i c a c i d i n the lower pH f o r e s t f l o o r s . T h i s would be i n keeping with the r e q u i r e d charge n e u t r a l i t y i n s o i l s o l u t i o n (McColl 1972). Sulphate i s suggested as the dominant l e a c h i n g anion f o r the f o l l o w i n g reasons: (1) sulphate i s the dominant - 63 -anion i n the p r e c i p i t a t i o n (McLaren 1985) (2) even though n i t r a t e c o n t r i b u t e s to the a c i d i f i c a t i o n process, i t i s expected that any n i t r o g e n e n t e r i n g the system w i l l be r a p i d l y immobilized by microbes/fungi or the v e g e t a t i o n ( F e l l e r 1977; Abrahamson 1980; Johnson e_t a_l. 1986), and (3) bicarbonate i on c o n c e n t r a t i o n s are expected to be low i n the lower pH f o r e s t f l o o r s because of the d i s s o c i a t i o n constant of carbonic a c i d (e.g., pK H2C03=6.4) (Bohn e_t a l . 1979). S e v e r a l s t u d i e s have rep o r t e d on the dominance of sulphate as the major l e a c h i n g anion i n both t h r o u g h f a l l and f o r e s t f l o o r l e a c h a t e i n c o n i f e r o u s stands i n f l u e n c e d by l o c a l sulphur emissions ( F e l l e r 1977; Turner 1977; Stednick 1982; Bockheim e_t a l . 1983). For a mixed D o u g l a s - f i r and western hemlock stand, c l o s e to the UBC Research F o r e s t stands of t h i s study, F e l l e r (1977) found potassium, calcium and magnesium c o n c e n t r a t i o n s i n c r e a s e d i n the t h r o u g h f a l l , reaching a maximum f o r the ecosystem compartments i n the f o r e s t f l o o r l e a c h a t e . Annual l o s s e s of calcium and magnesium i n the f o r e s t f l o o r l e a c h a t e s were three to four times the l o s s e s of potassium. Sulphate was the dominant anion i n both t h r o u g h f a l l and f o r e s t f l o o r l e a c h a t e . C o n c e n t r a t i o n s of bicarbonate i n f o r e s t f l o o r l e a c h a t e were l e s s than one-half the corresponding sulphate c o n c e n t r a t i o n s . The higher l e a c h i n g of calcium and magnesium through the f o r e s t f l o o r , r e l a t i v e to that of potassium, observed by F e l l e r (1977) has a l s o been reported i n a r t i f i c i a l a c i d p r e c i p i t a t i o n s t u d i e s (Abrahamsen 1980). I t i s spe c u l a t e d that - 64 -to some extent t h i s may r e f l e c t the r e l a t i v e amounts of these c a t i o n s i n the l i t t e r or on the exchange s i t e s or a l t e r n a t i v e l y , the greater p l a n t requirement f o r K as opposed to Ca or Mg ( F e l l e r 1977; Johnston e_t aJL_. 1982). The stronger a s s o c i a t i o n s found i n t h i s study between f o l i a r LS and LF S with measures of f o r e s t f l o o r Ca and Mg, r e l a t i v e to s i m i l a r measures of f o r e s t f l o o r K, suggest a s i m i l a r p a t t e r n i n c a t i o n l e a c h i n g to that r e p o r t e d by F e l l e r (1977). I n t e r e s t i n g l y , F e l l e r (1977) and others (Abraharasen 1980; Stendnick 1982) have reported s i g n i f i c a n t a d s o r p t i o n of leac h a t e sulphate by s o l u b l e i r o n and aluminum i n the mineral s o i l . The mineral s o i l of the s i t e s with the lower f o r e s t f l o o r pH may thus serve as a secondary source of atmospheric d e r i v e d sulphur f o r stand uptake. Other strong f o l i a r LS r e l a t i o n s h i p s are di s c u s s e d b r i e f l y i n t h i s paragraph. The strong r e l a t i o n s h i p between f o l i a r LS and LF S (r=.740) i m p l i e s that f o l i a r s u l f u r c o n c e n t r a t i o n s are r e f l e c t e d i n those of the LF h o r i z o n s , or v i c e v e r s a . The weaker r e l a t i o n s h i p found between f o l i a r LS and LFH S (r=.593) i s suggested to r e f l e c t the much longer time span a v a i l a b l e f o r sulphur t r a n s f o r m a t i o n s and f l u x e s i n t o and out of the f o r e s t f l o o r (LFH h o r i z o n s ) . Stronger r e l a t i o n s h i p s may w e l l have been found had t o t a l sulphur been p a r t i t i o n e d i n t o the i n o r g a n i c and organic f r a c t i o n s . The other moderately strong r e l a t i o n s h i p s are between f o l i a r LZn and both LF S (r=.692) and LFH S (r=.626). These a s s o c i a t i o n s may r e f l e c t an i n c r e a s e i n f o r e s t f l o o r z i n c - 65 -a v a i l a b i l i t y i n response to the decreasing f o r e s t f l o o r pH which accompanied i n c r e a s i n g f o r e s t f l o o r sulphur c o n c e n t r a t i o n s . T h i s apparent i n c r e a s e i n Zn a v a i l a b i l i t y with decreasing pH may be i n response to a decrease i n CEC ( i . e . , d e i o n i z a t i o n of f u n c t i o n a l groups such as COOH) ( T i s d a l e 1985). I t may a l s o r e f l e c t the formation of the z i n c complex ZnSO 0 (pK=2.3) (Lindsay 1979). ZnS04° has been shown i n a g r i c u l t u r a l s o i l s to s i g n i f i c a n t l y i n c r e a s e the t o t a l Zn c o n c e n t r a t i o n s i n s o l u t i o n ( T i s d a l e e_t a l . 1985; Lindsay 1979; Bohn e_t a_l. 1979). F o l i a r LS and f o l i a r LZn are moderately c o r r e l a t e d (r=.581). The r e l a t i o n s h i p s found between f o l i a r N and the f o r e s t f l o o r chemical p r o p e r t i e s were much weaker than t h e i r f o l i a r LS c o u n t e r p a r t s . F o l i a r N was most s t r o n g l y c o r r e l a t e d with LF chemical p r o p e r t i e s : LF S (r=.608), LF pH (r=-.559) and LF LMg (r=-.548) and with LFH chemical p r o p e r t i e s : LFH LexMg (-.629), LFH pH (r=-.571) and LFH LexCa (r=-.506). The f i r s t of these r e l a t i o n s h i p s i s suggested to r e f l e c t the biochemical a s s o c i a t i o n between S and N i n p l a n t p r o t e i n s (Turner and Lambert 1983). The l a t t e r r e l a t i o n s h i p s imply an i n c r e a s e d a v a i l a b i l i t y of n i t r o g e n f o r stand uptake with decreasing pH and base s a t u r a t i o n . These r e l a t i o n s h i p s are unexpected from a b i o l o g i c a l p o i n t of view. Nitrogen m i n e r a l i z a t i o n i s the major source of n i t r o g e n i n temperate f o r e s t s (Keeney 1980); decreases i n s o i l pH and base s a t u r a t i o n are g e n e r a l l y reported to depress r a t e s of organic C and N m i n e r a l i z a t i o n (Popovic 1981; Aber e_t a_l. 1982). The few cases of i n c r e a s e d n i t r o g e n a v a i l a b i l i t y r e p o r t e d i n f i e l d a c i d - 66 -i r r i g a t i o n s t u d i e s (Tamm e_t a_l. 1977; Abrahamsen 1980) were of short d u r a t i o n (2 y e a r s ) . These temporary i n c r e a s e s i n n i t r o g e n a v a i l a b i l i t y were a t t r i b u t e d to the death and l y s i n g of m i c r o b i a l c e l l s and to the displacement of ammonium ions from exchange s i t e s (Aber e_t aj^. 1982). In view of previous d i s c u s s i o n s regarding atmospheric i n p u t s to the lower pH s i t e s , i t i s suggested that n i t r o g e n a v a i l a b i l i t y on these s i t e s may be i n f l u e n c e d by atmospheric n i t r o g e n d e p o s i t i o n . Average n i t r a t e c o n c e n t r a t i o n s (wet d e p o s i t i o n ) i n e p i s o d i c r a i n f a l l events reported f o r the 1982 p e r i o d v a r i e d from an almost equal value to one-half the corresponding s u l f a t e c o n c e n t r a t i o n s ; wet d e p o s i t i o n n i t r a t e c o n c e n t r a t i o n s f o l l o w e d the same trend as sulphate with d i s t a n c e from Vancouver and Burrard I n l e t (MacLaren 1985). T h i s trend i s not unexpected as t r a n s p o r t a t i o n i s the major source of atmospheric n i t r o u s oxides i n Vancouver (Faulkner 1987, pers. comm.). The ammonium c o n c e n t r a t i o n s i n corresponding e p i s o d i c r a i n f a l l events were s u b s t a n t i a l l y l e s s than n i t r a t e c o n c e n t r a t i o n s . Wet d e p o s i t i o n s of n i t r a t e and ammonium at the Vancouver A i r p o r t were re p o r t e d as 13.2 and 2.7 kg-lha-lyear""!, r e s p e c t i v e l y , f o r 1982. This i s e q u i v a l e n t to a t o t a l of 3,5 kg" l h a 1 y e a r 1 of N. Information on dry d e p o s i t i o n of n i t r o g e n i s not a v a i l a b l e ; however, the c o n t r i b u t i o n of n i t r o g e n through dry d e p o s i t i o n can be e q u a l l y as important as wet d e p o s i t i o n (Lewis and Grant 1978). " T y p i c a l " n i t r o g e n uptake r a t e s by c o n i f e r s are reported to range from 30 to 50 k g - 1 h a _ 1 y e a r - 1 (Gosz 1981); the - 67 -atmospheric n i t r o g e n input r e c i e v e d at the lower pH s i t e s i s t h e r e f o r e r e l a t i v e l y small compared to the t o t a l annual n i t r o g e n requirement. I t i s however a r e a d i l y a v a i l a b l e source of n i t r o g e n f o r plant uptake. Stronger r e l a t i o n s h i p s were a n t i c i p a t e d between f o l i a r N and the v a r i o u s measures of f o r e s t f l o o r n i t r o g e n , i n p a r t i c u l a r m i n e r a l i z a b l e n i t r o g e n . S e v e r a l p o s s i b l e reasons f o r the i n c o n c l u s i v e r e s u l t s i n c l u d e : (1) n i t r o g e n m i n e r a l i z a t i o n under anaerobic l a b o r a t o r y c o n d i t i o n s may not r e f l e c t f i e l d n i t r o g e n m i n e r a l i z a t i o n . The production of mineral n i t r o g e n i n decomposing l i t t e r and humus i s s t r o n g l y i n f l u e n c e d by moisture content and temperature (Popovic 1981; Moore 1986). Studi e s which have examined the r e l a t i o n s h i p between f o l i a r N and f o r e s t f l o o r m i n e r a l i z a b l e n i t r o g e n have met with v a r y i n g success ( Z o t t l 1960; Powers 1980; Flanagan and van Cleve 1982; Lee and B a l l a r d 1982; McNabb 1984). Of the s t u d i e s reviewed the s t r o n g e s t r e l a t i o n s h i p s were found i n s t u d i e s which used e i t h e r a e r o b i c l a b o r a t o r y ( Z o t t l 1960) or i j i s i t u i n c u b a t i o n techniques (Flanagan and van Cleve 1982). Fungi are the dominant decomposers i n a c i d i c f o r e s t f l o o r m a t e r i a l . Since these f u n g i are predominantly a e r o b i c m e t a b o l i z e r s , t h e i r c o n t r i b u t i o n to the decomposition process under anaerobic c o n d i t i o n s i s expected to be g r e a t l y reduced. For mineral s o i l s , Smith e_t a_l. (1980) repor t e d n i t r o g e n m i n e r a l i z e d under anaerobic c o n d i t i o n s to be s u b s t a n t i a l l y l e s s than that m i n e r a l i z e d under a e r o b i c c o n d i t i o n s . The s i g n i f i c a n t i n f l u e n c e of f i e l d temperatures on - 68 -m i n e r a l i z a t i o n r a t e s i n the f i e l d has been d i s c u s s e d i n s e v e r a l recent s t u d i e s (Popovic 1980; Powers 1980, 1984; W i l l i a m s 1983). The s u r f a c e l o c a t i o n of the f o r e s t f l o o r makes i t even more s u s c e p t i b l e to short and long term temperature swings than the u n d e r l y i n g mineral s o i l . I t i s expected that other f a c t o r s which have been s i n g l e d out as p o s s i b l y i n f l u e n c i n g the r e s u l t s from the anaerobic i n c u b a t i o n technique f o r mineral s o i l , such as sample p r e p a r a t i o n , w i l l a l s o apply to organic m a t e r i a l (McNabb 1982; Powers 1984). (2) high temporal and/or s p a t i a l v a r i a b i l i t y may have obscured r e l a t i o n s h i p s . High s p a t i a l and seasonal v a r i a t i o n have been repo r t e d as major f a c t o r s l i m i t i n g the u s e f u l n e s s of KCL-N as an index of n i t r o g e n a v a i l a b i l i t y i n mineral s o i l s (Powers 1980; Arp and Krause 1984). Powers (1980) and others (van Praag and Weissen 1973) have l i k e w i s e reported seasonal v a r i a t i o n i n m i n e r a l i z a t i o n r a t e s ; i n Power's (1980) study t h i s v a r i a t i o n appeared to be c l o s e l y l i n k e d with seasonal temperature changes. High s p a t i a l v a r i a t i o n has been reported f o r m i n e r a l i z a b l e n i t r o g e n both i n f o r e s t f l o o r m a t e r i a l (Kabzems 1985) and mineral s o i l (McNabb e_t a_l. 1978). The sampling i n t e n s i t y used i n t h i s study (n=15) may not have been s u f f i c i e n t l y l a r g e to account f o r the i n h e r e n t v a r i a t i o n of these two chemical p r o p e r t i e s . T o t a l n i t r o g e n i s g e n e r a l l y shown to be the l e a s t v a r i a b l e of the three measures of n i t r o g e n (Quesnel 1980; Arp and Krause 1984); i t i s however a poor index of the a v a i l a b l e n i t r o g e n p o o l . (3) the LF horizons may be too o l d f o r t h e i r n i t r o g e n - 69 -c o n c e n t r a t i o n s to r e f l e c t the n i t r o g e n c o n c e n t r a t i o n s of r e c e n t l y deposited l i t t e r ( i . e . , 1 to 2 years o l d ) . (4) c u r r e n t - y e a r f o l i a r n i t r o g e n c o n c e n t r a t i o n , alone, may not have provided s u f f i c i e n t d i f f e r e n t i a t i o n between the v a r i o u s stages i n n i t r o g e n d e f i c i e n c y . Since the n i t r o g e n r e q u i r e d f o r c u r r e n t year f o l i a g e development can be s u p p l i e d through e i t h e r e x t e r n a l ( i . e . s o i l , atmosphere) or i n t e r n a l sources ( i . e . n i t r o g e n r e d i s t r i b u t i o n ) , a measure of the n i t r o g e n c o n t r i b u t i o n from both sources i s necessary to adequately d i f f e r e n t i a t e between those stands which have adequate n i t r o g e n supply from e x t e r n a l sources and those which are s l i g h t l y d e f i c i e n t but whose major source of n i t r o g e n i s i n t e r n a l . Lamb (1975), f o r example, found no s i g n i f i c a n t r e l a t i o n s h i p between f o r e s t f l o o r n i t r o g e n m i n e r a l i z a t i o n ( a e r o b i c i n c u b a t i o n ) and c u r r e n t year f o l i a r n i t r o g e n c o n c e n t r a t i o n i n Pinus r a d i a t a (D. Don) stands; a strong r e l a t i o n s h i p was however found with the n i t r o g e n c o n c e n t r a t i o n s of f o u r t h year needles. Other s t u d i e s have a l s o r e p o r t e d a strong r e l a t i o n s h i p between s i t e n i t r o g e n a v a i l a b i l i t y and n i t r o g e n withdrawal through an age sequence of needles ( N a d e l h o f f e r e_t a_l. 1982; Flanagan and van Cleve 1983). F o l i a r AFe, the t h i r d n u t r i e n t c h a r a c t e r i z e d with a range i n adequacy, was a l s o poorly c o r r e l a t e d with the f o r e s t f l o o r chemical p r o p e r t i e s . The absence of strong r e l a t i o n s h i p s i n d i c a t e s that f a c t o r s not measured determine the p r o p o r t i o n of the t o t a l i r o n which i s p h y s i o l o g i c a l l y a c t i v e . Stand n u t r i e n t s t a t u s r e f l e c t s the complex i n t e r - r e l a t i o n - 70 -- s h i p s between moisture and n u t r i e n t a v a i l a b i l i t y and p h y s i o -l o g i c a l aspects of t r e e n u t r i t i o n (Kabzems 1985). The poor r e l a t i o n s h i p s found between the m a j o r i t y of the f o l i a r n u t r i e n t s and the f o r e s t f l o o r chemical p r o p e r t i e s may w e l l i n d i c a t e that the f a c t o r s governing n u t r i e n t a v a i l a b i l i t y and/or l i t t e r q u a l i t y were not measured. I t i s a l t e r n a t i v e l y p o s s i b l e that p o t e n t i a l r e l a t i o n s h i p s were i n f a c t not observed s i n c e most of the n u t r i e n t s (except N, Fe-AFe, Cu) appeared to be i n adequate supply; r e l a t i o n s h i p s tend to be more apparent when there i s a broad range i n the two p r o p e r t i e s being examined. C o r r e l a t i o n s between f o l i a r v a r i a b l e s and the PCA components were not examined as the components which were considered i n t e r p r e t a b l e accounted f o r only a small p o r t i o n of the t o t a l v a r i a t i o n i n the LF and LFH chemical p r o p e r t i e s . - 71 -4.3.2 M u l t i v a r i a t e Analyses 4.3.2.1 M u l t i p l e Regression Of the models examined, those which accounted f o r the l a r g e s t p o r t i o n of the v a r i a t i o n i n the dependent f o l i a r v a r i a b l e , while meeting the assumptions of the r e s i d u a l a n a l y s i s , are presented i n Tables 15 and 16, r e s p e c t i v e l y , f o r LF and LFH chemical p r o p e r t i e s . N i n e t y - f i v e percent confidence i n t e r v a l s surrounding p o i n t estimates of the dependent f o l i a r v a r i a b l e , f o r mean, maximum and minimum l e v e l s of the independent f o r e s t f l o o r chemical p r o p e r t i e s , are ranked i n i n c r e a s i n g o r d e r . For models of p o t e n t i a l p r e d i c t i v e value, a comparison of p r e d i c t e d versus a c t u a l values i s presented. T h i s i s done to provide a v i s u a l and perhaps more i n t u i t i v e examination of the model's r e l i a b i l i t y . T h i s type of comparison i s g e n e r a l l y reserved f o r a subpopulation from which the model was not d e r i v e d ; however, such a subpopulation was not a v a i l a b l e . Of the LF chemical p r o p e r t i e s , pH alone provided the l i n e a r model which accounted f o r the l a r g e s t p o r t i o n of the observed v a r i a t i o n i n f o l i a r LS (74.1%). The point estimate confidence i n t e r v a l s however i n d i c a t e t h a t the p r e d i c t i v e r e l i a b i l i t y of the model i s f a i r l y poor at the extreme pH v a l u e s . Regression models determined f o r f o l i a r N and LN/S are at best poor t o o l s f o r p r e d i c t i o n . LF N and LK d e s c r i b e 45.5 % of the v a r i a t i o n i n f o l i a r N, while 55% of the v a r i a t i o n i n f o l i a r LN/S i s accounted f o r by LF-pH. LF p r o p e r t i e s were not r e t a i n e d - 72 -by e i t h e r the backward or the stepwise s e q u e n t i a l s e l e c t i o n procedure when used to p r e d i c t f o l i a r LAFe. Of the LFH chemical p r o p e r t i e s , LCu and pH, together accounted f o r the l a r g e s t p o r t i o n of the v a r i a t i o n i n f o l i a r LS. An R 2 a d j of 0.7932 suggests a moderate to strong p r e d i c t i v e power. Confidence i n t e r v a l s surrounding f o l i a r LS point e s t i m a t e s , f o r the range of the r e g r e s s o r v a r i a b l e s f o r which the model i s d e r i v e d , are reasonably t i g h t . LFH pH alone accounted f o r 74.3% of the observed v a r i a t i o n i n f o l i a r LS. Po i n t estimate confidence i n t e r v a l s once again suggest that pH alone i s a poor p r e d i c t o r of f o l i a r LS with d i s t a n c e from the mean of the independent v a r i a b l e . LFH chemical p r o p e r t i e s were only poor p r e d i c t o r s of e i t h e r f o l i a r N or LNS. A maximum of 43.7 and 54.3% of the observed v a r i a t i o n i n f o l i a r N and f o l i a r LN/S, r e s p e c t i v e l y , was accounted f o r by the "best" of the r e g r e s s i o n models examined. Once again, LFH chemical p r o p e r t i e s were not r e t a i n e d i n a r e g r e s s i o n model f o r p r e d i c t i n g f o l i a r LAFe. In summary i t appears that the only r e g r e s s i o n model of p o t e n t i a l p r e d i c t i v e value i s the f o l i a r LS model i n which LFH-LCu and LFH-pH are the r e g r e s s o r v a r i a b l e s . A comparison of the p r e d i c t e d versus a c t u a l f o l i a r LS measurements r e f l e c t s the st r e n g t h of t h i s model f o r p r e d i c t i n g f o l i a r LS (Table 17). " I d e a l l y i t i s hoped that a r e g r e s s i o n model i m p l i e s a b i o l o g i c a l dependence i n nature and that t h i s dependence i s confirmed by the mathematical r e l a t i o n s h i p d e s c r i b e d by the r e g r e s s i o n model" - 73 -(Zar 1984). The author's hypothesis as to the r e l a t i o n s h i p between f o l i a r LS and LFH pH has been d i s c u s s e d i n the previous s e c t i o n (4.3.1). The b i o l o g i c a l i n t e r p r e t a t i o n of the r e l a t i o n s h i p between f o l i a r LS and LFH LCu remains u n c l e a r , however. In view of the probable i n f l u e n c e of atmospheric i n p u t s to 10 of the 27 s i t e s examined, i t i s d o u b t f u l whether t h i s model w i l l have a p p l i c a t i o n to stands i n a " n a t u r a l " environment. M u l t i p l e r e g r e s s i o n models were not examined f o r the 17 high pH s i t e s as 17 was f e l t to be too small a sample s i z e f o r an e x p l o r a t o r y study. - 74 -Table 15 LF Chemical Property Regressions F o l i a r LS 1. Y=8.3514-.2693 pH mean pH maximum pH minimum pH mean N LK max N min LK min N min LK max N max LK min N max LK F o l i a r LN/S 1. Y=1.513 + 0.1669 pH mean pH maximum pH minimum pH C . I . 1 0.1043 0.5035 0.5932 F o l i a r N (%) 1. Y=2.4548 + 0.3099 N - 0.2240 LK C.I. 0.0469 0.1297 0.1750 0.1733 0.1749 C.I. 0.0965 0.4931 0.5809 R2=.741 SE=.1085 R2=.469 R2 SE=.1181 ad j = .448 R 2=.5439 SE=.1041 1 95% confidence i n t e r v a l f o r the mean, maximum and minimum of each of the r e g r e s s o r v a r i a b l e s . - 75 -Table 16 LFH Chemical Property Regressions F o l i a r LS 1. Y=7.8509 + 0.0727 LCu - 0.2204 pH 2. mean pH LCu max pH min LCu rain pH min LCu min pH max LCu maximum pH LCu Y=8.2374 - .2557 pH C.I.I 0.0385 0.0737 0.1165 0.1258 0.1767 R2=.801 'ad j R 2 « H - i = .793 SE=.0969 R2=.7462 SE=.1073 mean pH maximum pH minimum pH F o l i a r N 1. Y=0.9814 + 2.3999 S mean S LexK max S LexK max S min LexK min S max LexK min S LexK C.I. 0.0997 0.5754 0.6156 0.1888 LexK C.I. 0.0495 0.1268 0.1515 0.1819 0.1928 R 2=.459 SE-.1193 R2 a d j=.4369 F o l i a r N/S 1. Y=1.5865 + 0.1577 pH mean pH maximum pH minimum pH C L . 0.0969 0.5669 0.6066 R2=.543 SE=.1042 1 95% confidence i n t e r v a l f o r the mean, maximum and minimum of each of the r e g r e s s o r v a r i a b l e s . - 76 -Table 17 F o l i a r LS: P r e d i c t e d versus A c t u a l F o l i a r LS=7.8509 + 0.0727 LFH LCu - 0.2204 LFH pH Stand I 1 A c t u a l P r e d i c t e d 2 49 7.540 7.457 +/- 0.070 45 7.047 6.965 +/- 0.083 1 s i t e s with the highest and lowest LFH pH. 2 95% confidence i n t e r v a l - 77 -4.3.2.2 D i s c r i m i n a n t A n a l y s i s D i s c r i m i n a n t a n a l y s i s was used to determine whether f o r e s t f l o o r chemical p r o p e r t i e s could be used to d i s t i n g u i s h between "high" and "low" f o l i a r n u t r i e n t s t a t u s . A two group d i s c r i m i n a n t a n a l y s i s was used as the t o t a l sample s i z e was r a t h e r small (n=27). Three or more d i s c r i m i n a n t groups are favored s i n c e i n c r e a s i n g the number of groups reduces i n c l u s i o n due to chance; the two group c l a s s i f i c a t i o n i s c h a r a c t e r i z e d with an i n i t i a l 50% chance of c o r r e c t c l a s s i f i c a t i o n ( D i l l o n and G o l d s t e i n 1984). For t h i s reason, f u n c t i o n s are only d i s c u s s e d f o r c o r r e c t c l a s s i f i c a t i o n s g r e a t e r than 75% and a Wilk's lamda of l e s s than .66. A Wilk's lambda of .66 i n d i c a t e s 66% of the t o t a l v a r i a t i o n r e s u l t s from among- r a t h e r than w i t h i n - g r o u p s . LF and LFH h o r i z o n d i s c i m i n a n t f u n c t i o n s meeting the above c r i t e r i a are presented i n Tables 17 and 18, r e s p e c t i v e l y , together with the corresponding j a c k k n i f e d c l a s s i f i c a t i o n summary t a b l e s . Histogram p l o t s of the d i s c r i m i n a n t scores are presented to provide a v i s u a l assessment of the c l a s s i f i c a t i o n . Three LF d i s c r i m i n a n t f u n c t i o n s c o r r e c t l y c l a s s i f i e d stands i n t o the "high" and "low" f o l i a r S groups, r e s p e c t i v e l y , 84.6 and 92.9% of the time. Two chemical p r o p e r t i e s were i n c l u d e d i n each of the three d i s c r i m i n a n t f u n c t i o n s : (1) C, LCu, (2) S, LZn and (3) pH, LZn. The l a r g e r Wilk's lambda a s s o c i a t e d with the f i r s t f u n c t i o n i n d i c a t e s a l a r g e r w i t h i n - versus between-group v a r i a t i o n r e l a t i v e to the l a t t e r two f u n c t i o n s . The d i s c r i m i n a n t scores of the two groups are very overlapped f o r - 78 -t h i s f i r s t f u n c t i o n . The d i s c r i m i n a n t f u n c t i o n which provided the best c l a s s i f i c a t i o n of stands i n t o the " h i g h " and "low" f o l i a r N groups i n c l u d e d LF S and LF LCu. Together these two LF chemical p r o p e r t i e s c o r r e c t l y c l a s s i f i e d stands i n t o the two groups 77.8% of the time. The high Wilk's lambda, however, i n d i c a t e s a l a r g e w i t h i n - versus between-group v a r i a t i o n . Three LF p r o p e r t i e s , S, LCu, and LMg, were able to c o r r e c t l y c l a s s i f y stands with "h i g h " and "low" f o l i a r AFe i n t o t h e i r r e s p e c t i v e groups 69.2 and 78.6% of the time. T o t a l c o r r e c t c l a s s i f i c a t i o n was 74.1%. The high Wilk's lambda, however, i n d i c a t e s t h i s i s a poor f u n c t i o n f o r c l a s s i f i c a t i o n . The c l o s e p r o x i m i t y of the two group c e n t r o i d s (mean value of the d i s c r i m i n a n t f u n c t i o n ) p r i n t e d on the histogram ( i n d i c a t e d by the 1 and 2) i n d i c a t e s only minor d i f f e r e n c e s between the two groups. T h i s may account i n part f o r the poor c l a s s i f i c a t i o n . The f a r t h e r apart the groups, the more l i k e l y i t i s that a u s e f u l c l a s s i f i c a t i o n r u l e can be developed (Johnson and Wichern 1982). LF LMg and LA together c o r r e c t l y c l a s s i f i e d 88.9% and 83.3% of the stands, r e s p e c t i v e l y , i n t o the "high" and "low" f o l i a r N/S groups. A t o t a l of 85.2 % of the s i t e s were c o r r e c t l y c l a s s i f i e d . Alone, LF LMg provided a b e t t e r c l a s s i f i c a t i o n of stands with "h i g h " (88.9%) versus "low" (77.8%) f o l i a r N/S r e l a t i v e to the f i r s t c l a s s i f i c a t i o n f u n c t i o n . T h i s second f u n c t i o n has the l a r g e r of the two Wilk's lambda's. LFH LexMg and LexCa s e p a r a t e l y c l a s s i f i e d stands i n t o the - 79 -" h i g h " and "low" f o l i a r S groups c o r r e c t l y 92.6% of the time. Both of these d i s c r i m i n a n t f u n c t i o n s c l a s s i f i e d low f o l i a r S s i t e s p e r f e c t l y . A t h i r d LFH d i s c r i m i n a n t f u n c t i o n , which i n c l u d e d LFH pH and LZn, provided a 92.9% c o r r e c t c l a s s i f i c a t i o n of stands i n t o the "low" f o l i a r S group r a t h e r than the 100% of the f i r s t two f u n c t i o n s . The i n t e r - d i s p e r s i o n of d i s c r i m i n a n t scores between the two f o l i a r S groups however i s l e a s t f o r t h i s t h i r d f u n c t i o n . Two LFH d i s c r i m i n a n t f u n c t i o n s provided f a i r l y good c l a s s i f i c a t i o n of stands i n t o the " h i g h " and "low" f o l i a r N groups. The f i r s t d i s c r i m i n a n t f u n c t i o n , which i n c l u d e d P, S, and LexK, c o r r e c t l y c l a s s i f i e d stands i n t o the " h i g h " and "low" f o l i a r N groups 90.0 and 88.2% of the time. LFH MinN, LMg, and LeK, i n the second f u n c t i o n , provided an 80.0 and 82.4% c o r r e c t c l a s s i f i c a t i o n i n t o the "high" and "low" f o l i a r N groups. The lowest Wilk's lambda was a s s o c i a t e d with the f i r s t of the two d i s c r i m i n a n t f u n c t i o n s . LFH LZn and LMg each c o r r e c t l y c l a s s i f i e d stands i n t o the two f o l i a r N/S groups 81.5% of the time. Stands with the "low" f o l i a r N/S however were poorly c l a s s i f i e d by both f u n c t i o n s : 66.7% c o r r e c t c l a s s i f i c a t i o n . Both f u n c t i o n s c o r r e c t l y c l a s s i f i e d the higher f o l i a r N/S stands 88.9% of the time. The Wilk's lambda was 0.553 f o r both f u n c t i o n s . No LFH chemical property d i s c r i m i n a n t f u n c t i o n was found which adequately d i s t i n g u i s h e d between stands of " h i g h " and "low" f o l i a r AFe. To summarize, stands with and without an apparent sulphur - 80 -d e f i c i e n c y , as i n t e r p r e t e d from t o t a l f o l i a r S, were w e l l c l a s s i f i e d by s e v e r a l LF and LFH chemical p r o p e r t i e s . A c l a s s i f i c a t i o n based on f o l i a r S alone however i s of l i m i t e d i n t e r p r e t a t i v e v a l u e . The i n t e r p r e t a t i o n of stand f o l i a r S s t a t u s needs to be augmented with i n f o r m a t i o n on the balance of sulphur to n i t r o g e n ( i . e . , f o l i a r N/S, or S O 4 - S ) . LF LMg and LA together provided a good c l a s s i f i c a t i o n between stands with and without a p o s s i b l e n i t r o g e n i n d u c i b l e s u l f u r d e f i c i e n c y , as i n t e r p r e t e d from the f o l i a r N/S r a t i o . Together three LFH chemical p r o p e r t i e s , P, LexK and S, adequately c l a s s i f i e d between stands of s l i g h t and moderate to severe n i t r o g e n d e f i c i e n c y . The reoccurrence of the chemical p r o p e r t i e s pH, S, LMg, LZn (LF and LFH) and LexMg, LexCa, and LexK (LFH only) i n these f u n c t i o n s i s suggested to r e f l e c t the strong i n f l u e n c e of the s l i g h t l y a c i d i c p r e c i p i t a t i o n on n u t r i e n t c y c l i n g w i t h i n the 10 low pH s i t e s and thus on the o v e r a l l study t r e n d s . The u s e f u l n e s s of these f u n c t i o n s i n the c l a s s i f i c a t i o n of f o l i a r n u t r i e n t s t a t u s i n a " n a t u r a l " subpopulation of D o u g l a s - f i r i s d o u b t f u l . In a " n a t u r a l " environment, D o u g l a s - f i r growing on high sulphur parent m a t e r i a l might w e l l have both " h i g h " f o l i a r sulphur c o n c e n t r a t i o n s and "high" f o r e s t f l o o r pH. The a p p l i c a t i o n of these models f o r stands growing i n the i n f l u e n c e of " a c i d i c " p r e c i p i t a t i o n would a l s o be l i m i t e d ; the e c o l o g i c a l e f f e c t s of a c i d p r e c i p i t a t i o n depend not only on the chemical nature and amount of the atmospheric i n p u t s but a l s o on the geochemistry and b i o l o g y of the r e c e i v i n g s i t e s . The sample s i z e of t h i s study d i d not permit a - 81 -separate examination of the r e l a t i o n s h i p s between f o l i a r n u t r i e n t s t a t u s and f o r e s t f l o o r chemical p r o p e r t i e s f o r the " n a t u r a l " and urban s i t e s . Table 18 LF D i s c r i m i n a n t Functions F o l i a r LS 1. C, LCu * Jac k k n i f e d C l a s s i f i c a t i o n Group Percent Number of Cases C l a s s i f i e d i n t o Group Co r r e c t HIGH LOW HIGH 84.6 11 2 LOW 92.9 1 13 TOTAL 88.9 12 15 W i l k s 1 Lambda = .5719 Histogram of D i s c r i m i n a n t Scores o L L H H L L LHL L L L L LHLL H H HH HH H H H . . . . . . . . . . . . . . + . 2 . . . . . . . . . + . . . . • . . . . + . . . . • . . . . + . . . . + . . . . • . . . . • - 1 - 5 - . 9 0 - . 3 0 .30 .90 1.S 2.1 2 . 7 3 . 3 3 . 9 4 . 8 • 1 . 2 - 60 0 . 0 .60 1.2 1.8 2 .4 3 . 0 3 . 6 4 . 2 2. S, LZn * Jac k k n i f e d C l a s s i f i c a t i o n Group Percent Number of Cases C l a s s i f i e d i n t o Group Co r r e c t HIGH LOW HIGH 84.6 11 2 LOW 92.9 1 13 TOTAL 88.9 12 15 Wi l k s 1 Lambda = .3935 Histogram of D i s c r i m i n a n t Scores L L L H H L L L L L L L L L H I L H H H H H H H H H H . . . + . . . . • . . . . + . . . . • . . . . 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . + . . . . • ! . . . • . . . . • . . . . + . . . . • . . . . • . . . - 2 . 8 0 - 2 . 1 0 - 1 . 4 0 - . 7 0 0 0 . 0 0 .700 1.40 2 . 1 0 2 . 8 0 3 . 5 0 4 . 2 0 - 2 . 4 5 - 1 . 7 5 - 1 . 0 5 - . 3 5 0 .350 1.05 1.75 2 . 4 5 3 .15 3 . 8 5 00 pH, LZn ns Jack k n i f e d C l a s s i f i c a t i o n Group Percent Number of Cases C l a s s i f i e d i n t o Group C o r r e c t HIGH LOW HIGH 84.6 11 2 LOW 92.9 1 13 TOTAL 88.9 12 15 Wilks' Lambda = .3902 Histogram of Di s c r i m i n a n t Scores L L H L LL L H L L L H L L L L L H HH HHH H H H H . • . . . . • . . . . • . . . . + . . . . * . 2 . . • . . . . + . . . . • . . . . • . . . . • . . . . + . . . . + . . . . • . . . . + . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . - 1 . 7 5 - 1 . 2 5 - . 7 5 0 - . 2 5 0 .250 .750 1.25 1.75 2 . 2 5 2 . 7 5 - 2 . 0 0 - 1 . 5 0 - 1 . 0 0 - . 5 0 0 0 . 0 0 . 500 I.OO 1.50 2 . 0 0 2 . 5 0 F o l i a r N S, LCu * Jac k k n i f e d C l a s s i f i c a t i o n Group Percent Number of Cases C l a s s i f i e d i n t o Group C o r r e c t HIGH LOW HIGH 72.7 8 3 LOW 81.3 3 13 TOTAL 88.9 11 16 W i l k s 1 Lambda = .6568 Histogram of D i s c r i m i n a n t Scores L L L L H M L . L H L L L L L L H L H L H L L H H H M M ••••••...•+ . a . * . . . . . . . . . . . . . . . . . . . . . . . . • + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -2 25 - 1 . 7 6 - 1 . 2 5 - . 7 5 0 - . 8 5 0 . 2 5 0 .750 1 .25 1 . 7 5 2 . 2 5 2 . 7 5 -2 00 - 1 . 5 0 - 1 . 0 0 - . 5 0 0 0 . 0 0 . 500 1.00 1 50 2 . 0 0 2 . 5 0 F o l i a r AFe S, LCu, LMg * Jac k k n i f e d C l a s s i f i c a t i o n Group Percent Number of Cases C l a s s i f i e d i n t o Group C o r r e c t HIGH LOW HIGH 69.2 9 4 LOW 78.6 3 11 TOTAL 74.1 12 15 Wilks' Lambda = .6054 Histogram of D i s c r i m i n a n t Scores L L L L L LL L L L HLL H LHL H HHH HH H H H H . . . . . . . . . . . . . . . . . . . . . . 2 . + . . I . * . . . . + . . . . + . . . . + . . . . + . . . . • . . . . + . . . . . . . . . . . . . . + . . . . • . . . . + - < ° " 60 0 . 0 .CO 1.2 1.8. 2 . 4 3 . 0 3 . 6 4 . 2 - ' 5 - . 9 0 - . 3 0 .30 .90 1.5 2.1 2 . 7 3 . 3 3 . 9 F o l i a r N/S 1. LMg, LA * Ja c k k n i f e d C l a s s i f i c a t i o n Group Percent Number of Cases C l a s s i f i e d i n t o Group Co r r e c t HIGH LOW HIGH 83.9 16 2 LOW 88.9 1 8 TOTAL 85.2 17 10 Wilks' Lambda = .4672 Histogram of D i s c r i m i n a n t Scores L L H L L L L U H H H H HHLH H H H HH HH H HH . • . . . . • . . . . * . . . . • . . . . • . . . . • . . . . + a . . • " 2 - 7 -S.I - 1 - 5 - . 9 0 - . 3 0 .30 .90 1 : 9 2 . 1 2 . 7 " 3 0 - S .4 - 1 . 8 - 1 . 2 - . 6 0 O.O . 6 0 1.2 1.8 2.4 2. LMg * Ja c k k n i f e d C l a s s i f i c a t i o n Group Percent Number of Cases C l a s s i f i e d i n t o Group Co r r e c t HIGH LOW HIGH 88.9 16 2 LOW 77.8 2 7 TOTAL 85.2 18 9 Wilks' Lambda = .5757 Histogram of D i s c r i m i n a n t Scores L L H L L H H LL LL HHHH LHH H H H HHH H H H • . • + • . + . . . . • . . . .+2. . . • . . . . + . . . . • . . . . . . . . . + . . . . + . . . . + . 1 . + . . . . • . -2 25 -1 .75 - 1 . 2 5 - . 7 5 0 - . 2 5 0 .250 .750 1.25 1.75 2 . 2 5 -2 50 - 2 . 0 0 - 1 . 5 0 - 1 . 0 0 - . 5O0 0 . 0 0 . 500 1 .00 1.50 2 . 0 0 00 * group v a r i a n c e - c o v a r i a n c e matices are equal (0.05 s i g n i f i c a n c e ) ns group v a r i a n c e - c o v a r i a n c e matrices are unequal (0.05 s i g n i f i c a n c e ) Table 19 LFH D i s c r i m i n a n t Functions F o l i a r LS 1. LexMg ns Jac k k n i f e d C l a s s i f i c a t i o n Group Percent Number of Cases C l a s s i f i e d i n t o Group Co r r e c t HIGH LOW HIGH 84.6 11 2 LOW 100.0 0 14 TOTAL 96.2 11 16 Wilks' Lambda = .3922 Histogram of D i s c r i m i n a n t Scores L L L I H H H L L L L L L L L L L H M H H H H H H H H + ..*..'..•....•...•.*....•... -2.1 -1.5 -.90 -.30 .30 90 1.5 2.1 2.7 3.3 3.9 -1.8 -1.2 -.60 0.0 .60 1.2 1.8 2.4 3.0 3.6 2. LexCa * Jac k k n i f e d C l a s s i f i c a t i o n Group Percent Number of Cases C l a s s i f i e d i n t o Group Co r r e c t HIGH LOW HIGH 84.6 11 2 LOW 100.0 0 14 TOTAL 92.6 11 16 Wilks' Lambda = .4074 Histogram of D i s c r i m i n a n t Scores L L LL H LL LL LLHL L LL H H H H H H H H H H H .2.+....•....•....•....+....•....•....+....•...1+....•....+....•....+....+....+....+... -1.50 -1.00 -.500 0.00 . 500 1.00 1.50 2.00 2.50 3.00 -1.75 -1.25 -.750 -.250 .250 .750 1.25 1.75 2.25 2.75 00 pH, LZn ns Ja c k k n i f e d C l a s s i f i c a t i o n Group Percent Number of Cases C l a s s i f i e d i n t o Group C o r r e c t HIGH LOW HIGH 84.6 11 2 LOW 92.9 1 13 TOTAL 88.9 12 15 Wilks ' Lambda - .3358 Histogram of D i s c r i m i n a n t Scores L L L H H L L L L L L H H L L L L L H H H HHHH H H . a . * . + . . . . . . . -2.7 -2.1 -1.6 -.90 -.30 .30 .90 1.5 2.1 2.7 3 -2.4 -1.8 -1.2 -.60 0.0 .60 1.2 1.8 2.4 3.0 F o l i a r N P.S.LexK * Ja c k k n i f e d C l a s s i f i c a t i o n Group Percent Number of Cases C l a s s i f i e d i n t o Group C o r r e c t HIGH LOW HIGH 90.0 9 2 LOW 88.2 2 15 TOTAL 88.9 11 17 Wilks ' Lambda = .4901 Histogram of D i s c r i m i n a n t Scores L L L L H H L L L L L LL HLL LL L H L H H H H H H . . . . . . . . . . . . 2 * . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . - 3 . 8 5 - 3 . 1 5 - 2 . 4 5 - 1 . 7 5 - 1 . 0 9 - . 3 9 0 . 3 5 0 1.05 1.75 2 . 4 5 3 . 1 5 - 3 50 - 2 . 8 0 - 2 . 1 0 - 1 . 4 0 - . 7 0 0 O . O O . 70O 1 .40 2 . 1 0 2 . 8 0 Min-N,LMg,LexK * Ja c k k n i f e d C l a s s i f i c a t i o n Group Percent Number of Cases C l a s s i f i e d i n t o Group Co r r e c t HIGH LOW HIGH 80.0 8 2 LOW 82.4 3 14 TOTAL 81.5 11 16 Wilks ' Lambda = .6563 Histogram of D i s c r i m i n a n t Scores L L H L L L L LL LLH LL LL H L H H H HHL HL H . . . . . . . . * . . . . • . . . . • . . . . • . . . . • . . . . • . . . . • . . . . • . . . 2 + . . . . * . . . . . . . . . . . . . . . . . . . . . -2 75 - 2 . 3 5 - 1 . 7 5 - 1 . 2 5 - . 7 5 0 - . 2 5 0 . 2 5 0 . 7 5 0 1 . 25 1 . 75 2 . 2 5 -2 50 - 2 . 0 0 - 1 . 5 0 - 1 . 0 0 - . 5 0 0 0 . 0 0 . 5 0 0 1 .00 1 .50 2 . 0 0 F o l i a r N/S 1. LMg * J a c k k n i f e d C l a s s i f i c a t i o n Group Percent Number of Cases C l a s s i f i e d i n t o Group C o r r e c t HIGH LOW HIGH 89.9 16 2 LOW 66.7 3 6 TOTAL 81.5 19 8 W i l k s ' Lambda = .5530 Histogram of D i s c r i m i n a n t Scores H H  1 L H L LLH LL LLHH H W H H H H H H H H H - 2 . 5 0 - 2 . 0 0 - 1 . 5 0 - 1 . 0 0 ' - . 5 0 0 6 . 6 6 . 5 0 0 1 . 6 6 1 . 5 0 2.66 2 50 - 2 . 2 5 - 1 . 7 5 - 1 . 2 5 - . 7 5 0 - . 2 5 0 .250 .730 1.25 1.75 J . 2 S 2. LZn ns J a c k k n i f e d C l a s s i f i c a t i o n Group Percent Number of Cases C l a s s i f i e d i n t o Group C o r r e c t HIGH LOW HIGH 89.9 16 2 LOW 66.7 3 6 TOTAL 81.5 * 19 8 W i l k s ' Lambda - .5530 Histogram of D i s c r i m i n a n t Scores L L H H LL LL HHHH LHH H H H HHH H H H ^ • • + • + • * 2 . — . . . . . . . . . . . . — — •*• • •• - 2 . 2 5 - 1 . 7 5 - 1 . 2 3 - . 7 5 0 - . 2 5 0 .250 .750 ' •25 1.75 * « -2 50 - 2 .00 - 1 . 5 0 - 1 0 0 - . 3 0 0 OOO .500 1 00 1 50 •« 00 vO * group v a r i a n c e - c o v a r i a n c e matices are equal (0.05 s i g n i f i c a n c e ) ns group v a r i a n c e - c o v a r i a n c e matrices are unequal (0.05 s i g n i f i c a n c e ) - 90 -5.0 SUMMARY F o l i a r n u t r i e n t s t a t u s was determined f o r 27 second-growth D o u g l a s - f i r stands. S i t e l o c a t i o n s covered a broad g e o g r a p h i c a l area w i t h i n the C o a s t a l Western Hemlock B i o g e o c l i m a t i c Zone while encompassing a range of edaphic c o n d i t i o n s . The f o r e s t f l o o r chemical p r o p e r t i e s of these s i t e s had been analyzed i n a previous Master's t h e s i s ( C a r t e r 1983). F o l i a r n u t r i e n t a n a l y s i s i n d i c a t e d n i t r o g e n was commonly d e f i c i e n t . F o l i a r S c o n c e n t r a t i o n s were o f t e n below the c r i t i c a l value used i n the i n t e r p r e t a t i o n of f o l i a r S s t a t u s , where N i s not l i m i t i n g ; the corresponding f o l i a r N/S r a t i o s only i n d i c a t e d the p o s s i b i l i t y of a n i t r o g e n - i n d u c e d S d e f i c i e n c y f o r some of the stands. A few stands were p o s s i b l y d e f i c i e n t i n P and K. Calcium and Mg c o n c e n t r a t i o n s were adequate i n a l l stands. F o l i a r c o n c e n t r a t i o n s of m i c r o n u t r i e n t s Fe, AFe, and Cu commonly i n d i c a t e d a d e f i c i e n c y while f o l i a r Mn c o n c e n t r a t i o n s r e f l e c t e d a luxury consumption. The other m i c r o n u t r i e n t s appeared to be i n adequate supply. As i t was not p o s s i b l e to sample a l l stands at the recommended sampling i n t e n s i t y , i t was necessary to examine the v a r i a b i l i t y and p r e c i s i o n of the f o l i a r n u t r i e n t data. The w i t h i n - s i t e f o l i a r n u t r i e n t and r a t i o v a r i a b i l i t y f o r the 27 stands compared w e l l with those reported i n the l i t e r a t u r e f o r a s i m i l a r g e o g r a p h i c a l range w i t h i n the CWH B i o g e o c l i m a t i c Zone. F u r t h e r , the w i t h i n - s i t e v a r i a b i l i t y was shown to be much l e s s - 91 -than the v a r i a b i l i t y between-sites suggesting that the use of s t a t i s t i c a l a n a l y s e s , such as m u l t i p l e r e g r e s s i o n , should not be a problem. To examine the p r e c i s i o n of w i t h i n - s i t e f o l i a r n u t r i e n t v a r i a b l e means, 6 of the 27 s i t e s were i n t e n s e l y sampled (n=15). F o l i a r n u t r i e n t and r a t i o v a r i a n c e s from these s i t e s were used as po p u l a t i o n v a r i a n c e estimates to determine the range i n AE ( cv =0.05) a s s o c i a t e d with s i t e f o l i a r v a r i a b l e means given a sampling i n t e n s i t y of n=8. F o l i a r B, LCu, K/Ca, and Ca/Mg were the four f o l i a r n u t r i e n t v a r i a b l e s f o r which a maximum AE grea t e r than 20% was found. These four f o l i a r n u t r i e n t v a r i a b l e s were not used i n f u r t h e r s t a t i s t i c a l a n a l y s e s . F o l i a r n u t r i e n t s and r a t i o s f o r which a range of s u f f i c i e n c y and p o s s i b l e d e f i c i e n c y ( a c t u a l or i n d u c i b l e ) were i n d i c a t e d f o r the stands sampled were used i n m u l t i p l e r e g r e s s i o n and d i s c r i m i n a n t a n a l y s i s : f o l i a r N, S, AFe and N/S. Forest f l o o r chemical p r o p e r t i e s were s e l e c t e d based on compliance with e i t h e r of the f o l l o w i n g two c r i t e r i a : (1) the property mean estimated a l l o w a b l e e r r o r was l e s s than or equal to 20% at a 0.05 l e v e l of s i g n i f i c a n c e f o r a sample s i z e of 15 or (2) the property was an e s t a b l i s h e d measure of n u t r i e n t a v a i l a b i l i t y . Sampling i n t e n s i t y r e q u i r e d to estimate the property mean with an al l o w a b l e e r r o r of 20% (<3c=0.05) had been determined f o r most of the p r o p e r t i e s by Car t e r (1983). LF and LFH chemical p r o p e r t i e s s e l e c t e d i n c l u d e d : pH,C, S, N, P, A, Cu, Zn, Mg, K, Min-N, KC1-N (LF and LFH), and exMg, exCa, exK, extP - 92 -(LFH o n l y ) . R a t i o s were not used. The r e s u l t s of the simple c o r r e l a t i o n and the MSS analyses i n d i c a t e d a high i n t e r - c o r r e l a t i o n w i t h i n the LF and LFH chemical p r o p e r t i e s . The MSSA r e s u l t s showed that LF and LFH chemical p r o p e r t i e s which accounted f o r the l a r g e s t p o r t i o n of the t o t a l sample v a r i a t i o n a l s o tended to be redundant. Only the f i r s t of the LF and LFH PCA components were i n t e r p r e t a b l e . These components represented 35.3 and 36.4% of the t o t a l v a r i a t i o n i n the LF and the LFH chemical p r o p e r t i e s r e s p e c t i v e l y . Of the f o r e s t f l o o r chemical p r o p e r t i e s pH, S, LMg, (LF and LFH), and LexMg, LexCa (LFH only) were the most s t r o n g l y c o r r e l a t e d with the f i r s t LF and LFH PCA components. These components appeared to r e f l e c t the secondary e f f e c t s of s l i g h t l y a c i d i c p r e c i p i t a t i o n , namely i n c r e a s e d sulphur a v a i l a b i l i t y , f o r e s t f l o o r a c i d i f i c a t i o n and base l e a c h i n g . The proposed use of m u l t i p l e r e g r e s s i o n and d i s c r i m i n a n t a n a l y s i s to examine r e l a t i o n s h i p s between f o r e s t f l o o r chemical p r o p e r t i e s and stand n u t r i e n t s t a t u s r e q u i r e d the s e l e c t i o n of LF and LFH chemical property subsets of low c o l l i n e a r i t y and of a s i z e l e s s than s i x , r e s p e c t i v e l y . Twelve and 16 r e s p e c t i v e subgroups of LF and LFH chemical p r o p e r t i e s were s e l e c t e d on the b a s i s on low i n t e r - c o r r e l a t i o n . Those subgroups c o n t a i n i n g l e s s than s i x p r o p e r t i e s were a l s o used i n DA. A d d i t i o n a l LF and LFH chemical property subsets were s e l e c t e d f o r use i n DA. The 5 LF and 5 LFH chemical p r o p e r t i e s having the highest c o r r e l a t i o n with each of the "dependent" f o l i a r v a r i a b l e s formed subsets. The - 93 -other group of subsets i n c l u d e d the 5 LF and 5 LFH chemical p r o p e r t i e s with the g r e a t e s t d i f f e r e n c e i n means between the "dependent" v a r i a b l e s t r a t a , as determined using the student t s t a t i s t i c . Simple l i n e a r c o r r e l a t i o n c o e f f i c i e n t s between f o l i a r n u t r i e n t v a r i a b l e s and the LF and LFH chemical p r o p e r t i e s r e v e a l e d strong negative r e l a t i o n s h i p s between f o l i a r LS and LF: pH, Mg, and LFH: pH, Mg, exMg, exCa, exK. I t was hypothesized that these r e l a t i o n s h i p s r e f l e c t e d d i f f e r e n t dominant so u r c e ( s ) of p l a n t a v a i l a b l e sulphur at the lower and higher pH s i t e s . Anthropogenic atmospheric sulphur input was presented as the dominant source of p l a n t - a v a i l a b l e sulphur f o r the lower pH s i t e s . For the higher pH s i t e s o r g a n i c sulphur m i n e r a l i z a t i o n and mineral weathering were presented as the dominant sources of p l a n t - a v a i l a b l e s u l p h u r . The 10 lower pH s i t e s are l o c a t e d w i t h i n 45 km of downtown Vancouver; whereas, the 17 higher pH s i t e s are l o c a t e d at d i s t a n c e from urban and i n d u s t r i a l development. Recent atmospheric data f o r the Vancouver - Port Moody area i n d i c a t e d not only e l e v a t e d l e v e l s of sulphate and n i t r a t e i n wet d e p o s i t i o n , but a l s o an average pH of l e s s than 5.0. The lower pH and base s t a t u s of the f o r e s t f l o o r s i n the 10 lower pH s i t e s were thus i n t e r p r e t e d as secondary e f f e c t s to the input of s l i g h l t y a c i d i c p r e c i p i t a t i o n . LF LS and LFH LS were both s t r o n g l y and n e g a t i v e l y c o r r e l a t e d with t h e i r r e s p e c t i v e pH and base c o n c e n t r a t i o n s [LMg (LF and LFH), LexMg, LexCa (LFH o n l y ) ] . Other moderately strong c o r r e l a t i o n s i n c l u d e d : f o l i a r - 94 -LZn - LF S, f o l i a r LS - LF S and f o l i a r LZn - LFH S. One r e g r e s s i o n model of p o t e n t i a l p r e d i c t i v e value was found f o r f o l i a r LS. The independent v a r i a b l e s , LFH pH and LFH LCu, together accounted f o r 79% of the observed v a r i a t i o n i n f o l i a r LS. LF and LFH chemical p r o p e r t i e s both provided good c l a s s i f i c a t i o n of stands i n t o the s u f f i c i e n t and p o s s i b l y d e f i c i e n t S groupings, d e f i n e d using t o t a l f o l i a r S concen - t r a t i o n s . LF LMg and LF LA provided the best c l a s s i f i c a t i o n of stands i n t o the f o l i a r S groups defined using the N/S r a t i o . Together these two LF chemical p r o p e r t i e s c o r r e c t l y c l a s s i f i e d the stands i n t o the two groups - s u f f i c i e n c y and p o s s i b l e i n d u c i b l e d e f i c i e n c y - 83 and 89% of the time, r e s p e c t i v e l y . Three LFH chemical p r o p e r t i e s : P, S, and LexK provided the best c l a s s i f i c a t i o n of stands with adequate and s l i g h t to s e v e r e l y d e f i c i e n t f o l i a r N s t a t u s . T h i s c l a s s i f i c a t i o n f u n c t i o n c o r r e c t l y c l a s s i f i e d stands i n t o these two r e s p e c t i v e groups 90 and 88% of the time. LF and LFH chemical p r o p e r t i e s were only poorly able to c l a s s i f y f o l i a r AFe s t a t u s . The reoccurrence of the chemical p r o p e r t i e s pH, S, LMg, LZn (LF and LFH), and LexMg, LexCa, LexK (LFH o n l y ) , i n both u n i v a r i a t e and m u l t i v a r i a t e analyses i s thought to r e f l e c t the strong i n f l u c e n c e of the s l i g h t l y a c i d i c p r e c i p i t a t i o n on the n u t r i e n t c y c l i n g w i t h i n the 10 lower pH s i t e s and thus on the o v e r a l l trends observed i n t h i s study. The small sample s i z e (n=27) p r o h i b i t e d the separate examination of the r e l a t i o n s h i p s - 95 -between f o l i a r n u t r i e n t s t a t u s and f o r e s t f l o o r chemical p r o p e r t i e s f o r the urban versus " n a t u r a l " stands. 6.0 CONCLUSIONS Q u a n t i t a t i v e l y , f o r e s t f l o o r chemical a n a l y s i s d i d not y i e l d r e l i a b l e p r e d i c t i o n s of the f o l i a r N, S or AFe co n c e n t r a t i o n s of the 27 stands examined. These r e s u l t s however are i n c o n c l u s i v e f o r the f o l l o w i n g reasons: (1) the m a j o r i t y of the LF and LFH chemical p r o p e r t i e s examined were t o t a l n u t r i e n t c o n c e n t r a t i o n s ; t o t a l n u t r i e n t c o n c e n t r a t i o n s do not n e c e s s a r i l y r e f l e c t the " a v a i l a b l e " n u t r i e n t p o o l s , and (2) the unforeseen, yet probable, input of s l i g h t l y a c i d i c p r e c i p i t a t i o n to the 10 lower pH s i t e s i s b e l i e v e d to have i n f l u e n c e d the f o l i a r n u t r i e n t s t a t u s and the n u t r i e n t c y c l i n g at these 10 s i t e s , and thus i n f l u e n c e d the o v e r a l l study t r e n d s . Q u a l i t a t i v e l y , s e v e r a l LF and LFH chemical p r o p e r t i e s were able to r e l i a b l y c l a s s i f y stands i n t o s u f f i c i e n t and a c t u a l l y or i n d u c i b l y d e f i c i e n t f o l i a r S, N and N/S groupings, suggesting that f o r e s t f l o o r chemical p r o p e r t i e s might be u s e f u l as an i n i t i a l s c r e e n i n g t o o l f o r the i d e n t i f i c a t i o n of stand f o l i a r S and N s t a t u s . I t i s however d o u b t f u l whether these d i s c r i m i n a n t f u n c t i o n s have a p p l i c a t i o n beyond the 27 D o u g l a s - f i r stands from which they were d e r i v e d . The s l i g h t l y a c i d i c p r e c i p i t a t i o n r e c e i v e d at the 10 lower pH s i t e s , provided not only a c i d i t y , but a l s o a r e a d i l y a v a i l a b l e source of S and N. The r e s u l t i n g - 96 -r e l a t i o n s h i p s thus may w e l l d i s t o r t p r e d i c t i o n s of f o l i a r S and/or N s t a t u s i n a " n a t u r a l " environment. Future r e s e a r c h might: ( 1 ) q u a n t i f y the e f f e c t s of anthropogenic atmospheric i n p u t s on n u t r i e n t c y c l i n g w i t h i n D o u g l a s - f i r stands growing i n c l o s e proximity to Vancouver, and p o s s i b l y other l a r g e urban areas i n B.C. T h i s i n f o r m a t i o n i s r e q u i r e d to determine whether D o u g l a s - f i r growing under the i n f l u e n c e of urban development should be viewed as a p o p u l a t i o n separate from D o u g l a s - f i r growing i n a " n a t u r a l " environment, and 2) examine the r e l a t i o n s h i p s between D o u g l a s - f i r f o l i a r n u t r i e n t s t a t u s and the chemical p r o p e r t i e s of 1 year o l d l i t t e r f a l l . The chemical p r o p e r t i e s of the most recent l i t t e r f a l l may w e l l provide a b e t t e r index of stand n u t r i e n t s t a t u s , than the chemical p r o p e r t i e s of e i t h e r the LF or LFH l a y e r s . - 97 -LITERATURE CITED Aber, J.D., G. Hendrey, A. F r a n c i s , D. B o t k i n and J . M e l i l l o . 1982. P o t e n t i a l e f f e c t s of a c i d p r e c i p i t a t i o n on s o i l n i t r o g e n and p r o d u c t i v i t y of f o r e s t ecosystems. In: F. D ' l t r i (ed.) Acid p r e c i p i t a t i o n : e f f e c t s on e c o l o g i c a l systems. pp. 411-433. Ann Arbor Science P u b l i s h e r s , Ann Arbor, Michigan. Abrahamsen, G. 1980. Impact of atmospheric sulphur d e p o s i t i o n on f o r e s t ecosystems. In: D. S h r i n e r , C R . Richmond, and S.E. Lindberg (eds.) Atmospheric s u l f u r d e p o s i t i o n : environmental impacts and h e a l t h e f f e c t s . pp. 397-415. Ann Arbor Science P u b l i s h e r s , Ann Arbor, Michigan. Adams, S.N. 1974. Some r e l a t i o n s between f o r e s t l i t t e r and growth of s i t k a spruce on poorly drained s o i l s . J o u r n a l of A p p l i e d Ecology 11: 761-765. A l l e y , N.F. 1981. S u r f i c i a l geology of Vancouver I s l a n d . In: P.E. Heilman, A. Anderson and D.M. Baumagartner (eds.) F o r e s t S o i l s of the D o u g l a s - f i r Region. pp. 67-74. Washington State U n i v e r s i t y , Washington. Anonymous. 1979. Technicon Autoanalyzer I I . Methodology: i n d i v i d u a l / s i m u l t a n e o u s determination of n i t r o g e n and phosphorous BD a c i d d i g e s t s . I n d u s t r i a l Method No. 334-74A. Armstrong, J.E. 1980. S u r f i c i a l geology: New Westminster, M i s s i o n , Vancouver and C h i l l i w a c k (W/2). G e o l o g i c a l Survey of Canada. Maps 1484A, 1485A, 1486A and 1487A. Armstrong, J.E. 1984. Environmental and e n g i n e e r i n g a p p l i c a t i o n s of the s u r f i c i a l g e i ology of the F r a s e r Lowland, B r i t i s h Columbia. Geol. Surv. Can. Paper 83-23. 54 pp. Arp, P.A. and H. Krause. 1984. The f o r e s t f l o o r : l a t e r a l v a r i a b i l i t y as r e v e a l e d by systematic sampling. Can. J . S o i l S c i . 64: 423-437. Baker, D.E. and N. Suhr. 1982. Atomic a b s o r p t i o n and flame emission spectrometry. In: A.L. Page (ed.) Methods of S o i l A n a l y s i s , P a r t 2. pp. 13-26. Am. Soc. of Agron., Inc., Madison, Wisconsin. B a l l a r d , R. and G.M. W i l l . 1981. Accumulation of organic matter and mineral n u t r i e n t s under a Pinus r a d i a t a stand. New Zealand J o u r n a l of For. S c i . 11: 145-151. B a l l a r d , T.M. 1981. F o l i a r A n a l y s i s Research. Contract Res. Report to the B.C. Min. of F o r e s t s . 132 pp. - 98 -B a l l a r d , T.M. 1982. S o i l i n t e r p r e t a t i o n f o r f o r e s t f e r t i l i z a t i o n . In: T. Void (ed.) S o i l i n t e r p r e t a t i o n s f o r f o r e s t r y . pp. 151-168. Province of B r i t i s h Columbia, Min. of F o r e s t s . APD T e c h n i c a l Paper No. 6. Land Management Report No. 10. 333 pp. B a l l a r d , T.M. 1985. F o l i a r a n a l y s i s f o r d e f i c i e n c y d i a g n o s i s and f e r t i l i z e r p r e s c r i p t i o n i n f o r e s t r y : v a r i a b i l i t y c o n s i d e r a t i o n s . In: H.A. Luttmerding, L.E. Lowe and T.M. B a l l a r d (eds.) The r o l e of s o i l a n a l y s i s i n resource management. pp. 142-153. Province of B r i t i s h Columbia, Min. of Environment. T e c h n i c a l Report No. 16. 430 pp. B a l l a r d , T.M. and R.E. C a r t e r . 1986. E v a l u a t i n g f o r e s t stand n u t r i e n t s t a t u s . Province of B r i t i s h Columbia, Min. of F o r e s t s . 76 pp. Barber, S.A. 1984. S o i l n u t r i e n t b i o a v a i l a b i l i t y : A mechanistic approach. John Wiley & Sons, New York. 398 pp. Beaton, J.D., A. Moss, I. MacRae, J.W. Konkin, W. McGhee and R. Kosick. 1965. Observations on f o l i a g e n u t r i e n t content of s e v e r a l c o n i f e r o u s t r e e s p e c i e s i n B r i t i s h Columbia. F o r e s t r y C h r o n i c l e 41: 222-236. Berg, B. and H. S t a a f . 1980. Decomposition r a t e and chemical changes of s c o t s pine needle l i t t e r . 1. I n f l u e n c e of stand age. In: T. Persson (ed.) S t r u c t u r e and f u n c t i o n of northern c o n i f e r o u s f o r e s t s - a n ecosystem study. E c o l . B u l l . (Stockholm) 32: 363-372. Berglund, J.V., A. Leaf and R. Leonard. 1976. Red pine f o l i a g e v a r i a t i o n and f i e l d sampling i n t e n s i t y . Can. J . For. Res. 6: 268-280. B i n k l e y , D. 1986. F o r e s t N u t r i t i o n Management. John Wiley & Sons, Inc., New York. 283 pp. Bockheim, J . , S.W. Lee and J.E. L e i d e . 1983. D i s t r i b u t i o n and c y c l i n g of elements i n a Pinus r a d i a t a p l a n t a t i o n ecosystem, Wisconsin. Can. J . F o r . Res. 13: 609-619. Bohn, H., B. McNeal and G. 0'Conner. 1979. S o i l Chemistry. John Wiley & Sons, New York. 329. Campbell, N.A. 1980. Robust procedures i n m u l t i v a r i a t e a n a l y s i s . I . Robust covariance e s t i m a t i o n . Appl. S t a t . 29: 231-237. Canadian S o i l Science Committee. 1978. The C a n a d i a n system of s o i l c l a s s i f i c a t i o n . Can. Dept. of A g r i c u l t u r e . P u bl. No. 1646. Ottawa. - 99 -C a r t e r , R.E. 1983. F o r e s t f l o o r s under second growth D o u g l a s - f i r stands: t h e i r chemical v a r i a b i l i t y and some r e l a t i o n s h i p s to p r o d u c t i v i t y . M.Sc. T h e s i s , Department of S o i l Science, U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. 89 pp. C a r t e r , R.E. 1985. A s s o c i a t e Researcher. Department of F o r e s t r y , U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. Unpublished data. C a r t e r , R.E. and L.E. Lowe. 1986. L a t e r a l v a r i a b i l i t y of f o r e s t f l o o r p r o p e r t i e s under second growth D o u g l a s - f i r stands and the u s e f u l n e s s of composite sampling techniques. Can. J . For. Res. 16: 1128-1132. C h a t f i e l d , C. and A.J. C o l l i n s . 1980. I n t r o d u c t i o n to M u l t i v a r i a t e A n a l y s i s . Chapman and H a l l , Inc., New York. 246 pp. C l a r k , M.J. and N. Bonham. 1982. P o t e n t i a l s e n s i t i v i t y of the B r i t i s h Columbia environment to a c i d r a i n . B.C. M i n i s t r y of Environment. 11 pp. Cole, D. 1981. Nitrogen uptake and t r a n s l o c a t i o n by f o r e s t ecosystems. In: F.E. Cl a r k and T. Rosswall (eds.) T e r r e s t r i a l N itrogen C y c l e s . E c o l . B u l l . (Stockholm) 33: 219-232. Conover, W.J. 1980. P r a c t i c a l nonparametric s t a t i s t i c s . 2nd ed. Wiley, New York. 493 pp. David, M., M. M i t c h e l and J . Nakas. 1982. Organic and i n o r g a n i c s u l f u r c o n s t i t u e n t s of a f o r e s t s o i l and t h e i r r e l a t i o n s h i p to m i c r o b i a l a c t i v i t y . S o i l S c i . Soc. Am. J . 46: 847-852. Day, J.H., L. F a r s t a d and D.G. L a i r d . 1959. S o i l survey of southeastern Vancouver I s l a n d and Gulf I s l a n d s , B r i t i s h Columbia. B.C. S o i l Survey, Report No. 6. 104 pp. DeKock, P.C. 1981. Iron n u t r i t i o n under c o n d i t i o n s of s t r e s s . J . P l a n t N u t r i t i o n 3: 513-521. D i l l o n , W.R., and M. G o l d s t e i n . 1984. M u l t i v a r i a t e a n a l y s i s , methods and a p p l i c a t i o n s . John Wiley and Sons, Inc., New York. 587 pp. Dixon, W.J. ( e d . ) . 1983. BMDP s t a t i s t i c a l software. U n i v e r s i t y of C a l i f o r n i a Press, Los Angeles. 734 pp. Emanuel, J . 1984. F o l i a r n u t r i e n t a n a l y s i s . F a c u l t y of F o r e s t r y , U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. 8 pp. - 100 -Faulkner, D. 1987. Atmospheric Environment S e r v i c e , 1200 Wst. 73 Ave. Vancouver, B.C. Unpublished data. F e l l e r , M.C. 1977. N u t r i e n t movement through western hemlock-western red cedar ecosystems i n Southwestern B r i t i s h Columbia. Ecology 58: 1269-1283. Fennandez, I . J . and R.A. Struchtemeyer. 1984. C o r r e l a t i o n s between element c o n c e n t r a t i o n s i n spruce f o l i a g e and f o r e s t s o i l s . Commun. S o i l S c i . and P l a n t A n a l . 15: 1243-1255. Flanagan, P.W. and K. Van Cl e v e . 1983. N u t r i e n t c y c l i n g i n r e l a t i o n to decomposition and organic matter q u a l i t y i n t a i g a ecosystems. Can. J . For. Res. 13: 795-817. Fo g e l , R. 1983. Root turnover and p r o d u c t i v i t y of c o n i f e r o u s f o r e s t s . P l a n t and S o i l 71: 75-85. Fowler, D. 1980. Wet and dry d e p o s i t i o n of s u l f u r and n i t r o g e n compounds from the atmosphere. In: T.H. Hutchinson (ed.) Proceedings of the NATO conference on the e f f e c t s of a c i d p r e c i p i t a t i o n on t e r r e s t r i a l ecosystems. pp. 9-27. Plenum Press, New York. Fox, D.J., and K.E. G u i r e . 1976. Documentation f o r MIDAS (3rd ed.). S t a t i s t i c a l Research Laboratory, U n i v e r s i t y of Michigan. 203 pp. Gaines, T.P. and G.A. M i t c h e l l . 1979. Boron determination i n plant t i s s u e by the azomethine H method. Comm. S o i l S c i . Pl a n t Anal. 10: 1099-1108. G e i s t , J . and R. Meurisse. 1984. S o i l n i t r o g e n a v a i l a b i l i t y and f o r e s t f e r t i l i z a t i o n r e s p o n s e — a p e r s p e c t i v e . pp. 10-11. In: Nitrogen assessment workshop. Regional F o r e s t N u t r i t i o n Research P r o j e c t Rep. No. 2. C o l l e g e of Fo r e s t Resources, U n i v e r s i t y of Washington. 84 pp. Gosz, J.R. 1981. Nitrogen c y l c i n g i n c o n i f e r o u s ecosystems. In: F.E. Cl a r k and T. Rosswall (eds.) T e r r e s t r i a l N i t r o g e n C y c l e s . E c o l . B u l l . (Stockholm) 33: 405-426. Green, R.H. 1979. Sampling design and s t a t i s t i c a l methods f o r environmental b i o l o g i s t s . John Wiley and Sons, New York. 257 pp. G r i e g , M., and D. O s t e r l i n . 1978. UBC AN0VAR—analysis of var i a n c e and c o v a r i a n c e . Computing Centre, U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. 69 pp. G r i e r , C C , and J.G. M c C o l l . 1971. Fo r e s t f l o o r c h a r a c t e r i s t i c s w i t h i n a small p l o t i n D o u g l a s - f i r i n western Washington. S o i l S c i . Soc. Amer. Proc. 35: 988-991. - 101 -Hahn, P. and K. Imse. 1984. Guiding f o r e s t f e r t i l i z a t i o n investments on G e o r g i a - P a c i f i c l a n d s . pp. 45. In: Nitrogen assessment workshop. Regional F o r e s t N u t r i t i o n Research P r o j e c t Rep. No. 2. C o l l e g e of F o r e s t Resources, U n i v e r s i t y of Washington. 84 pp. Harvey, A.E., M.F. Jurgensen, and M.J. Larsen. 1978. Seasonal d i s t r i b u t i o n of ectomycorrhizae i n a mature D o u g l a s - f i r / L a r c h f o r e s t s o i l i n western Montana. F o r e s t S c i . 24: 203-208. Heilman, P.E. and G. Exuan. 1980. E f f e c t s of phosphorus on growth and m y c o r r h i z a l development of D o u g l a s - f i r i n greenhouse pots. S o i l S c i . Soc. Am. J . 44: 115-119. Heilman, P.E. and S.P. G e s s e l . 1963. The e f f e c t of n i t r o g e n f e r t i l i z a t i o n on the c o n c e n t r a t i o n and weight of N, P and K i n D o u g l a s - f i r t r e e s . S o i l S c i . Soc. Am. Proc. 27: 102-105. Humphreys, F.R., J . Turner and A.J. Watt. 1972. Annual n u t r i e n t v a r i a t i o n i n Pinus r a d i a t a over a p e r i o d of nine y e a r s . In: R. Boardman (ed.) A u s t r a l i a n F o r e s t Tree N u t r i t i o n Conference. pp. 258-270. F o r e s t and Timber Bureau, Canberra A u s t r a l i a . Johnston, D., J . Turner and J . K e l l y . 1982. The e f f e c t s of a c i d r a i n on f o r e s t n u t r i e n t s t a t u s . Water Resources Res. 18: 449-461. Johnson, R.A., and D.W. Wichern. 1982. A p p l i e d m u l t i v a r i a t e s t a t i s t i c a l a n a l y s i s . P r e n t i c e H a l l Inc., New J e r s e y . 594 PP-Johnson, D., D. Cole, H. van Miegroet, and F. Horng. 1986. F a c t o r s a f f e c t i n g anion movement and r e t e n t i o n i n four f o r e s t s o i l s . S o i l S c i . Soc. Am. J . 50: 776-783. Keeney, B.C. 1982. Beware of spurious s e l f - c o r r e l a t i o n s . Water Resources Res. 18: 1041-1048. Keeney, D.R. 1980. P r e d i c t i o n of s o i l n i t r o g e n a v a i l a b i l i t y i n f o r e s t ecosystems: a l i t e r a t u r e review. F o r e s t S c i . 26: 159-171. Keyes, M.R. and C C . G r i e r . 1981. Above- and below-ground net production i n 40 year o l d D o u g l a s - f i r stands on low and high p r o d u c t i v i t y s i t e s . Can. J . For. Res. 11: 599-605. Klecka , W.R. 1980. D i s c r i m i n a n t a n a l y s i s . Q u a n t i t a t i v e A p p l i c a t i o n s i n the S o c i a l Sciences S e r i e s 19. Number 07-019. Sage P u b l i c a t i o n s Inc., London. 71 pp. - 102 -Kleinbaum, D.G., and L.L. Kupper. 1978. Ap p l i e d r e g r e s s i o n a n a l y s i s and other m u l t i v a r i a b l e methods. Wadsworth P u b l i s h i n g Co. Inc., C a l i f o r n i a . 556 pp. K l i n k a , K., M.C. F e l l e r , and L.E. Lowe. 1981a. C h a r a c t e r i s t i c s of the most p r o d u c t i v e ecosystems f o r growth of Pseudotsuga  m e n z i e s i i v a r . m e n z i e s i i i n southwestern B r i t i s h Columbia. Province of B r i t i s h Columbia, Min. of F o r e s t s . Suppl. to Land Management Rep. No. 6. 49 pp. K l i n k a , K., R.M. Green, R.L. Trowbridge and L.E. Lowe. 1981b. Taxonomic c l a s s i f i c a t i o n of humus forms i n ecosystems of B r i t i s h Columbia. Province of B r i t i s h Columbia, Min. of F o r e s t s . Land Management Rep. No. 8. 54 pp. Knight, P.J. 1978. F o l i a r c o n c e n t r a t i o n s of ten mineral n u t r i e n t s i n nine Pinus r a d i a t a clones during a 15 month p e r i o d . N.Z.J. For. S c i . 8: 351-368. K r a j i n a , V.J. 1969. Ecology of f o r e s t t r e e s i n B r i t i s h Columbia. E c o l . of Western North America 2: 1-146. Kramer, J.R. 1978. A c i d p r e c i p i t a t i o n . In: J.O. Nriagu (ed.) S u l f u r i n the environment Part I I , E c o l o g i c a l impact. pp. 325-370. John Wiley and Sons, New York. Lamb, D. 1975. P a t t e r n s of n i t r o g e n m i n e r a l i z a t i o n i n the f o r e s t f l o o r of stands of Pinus r a d i a t a on d i f f e r e n t s o i l s . J . E c o l . 63: 615-625. Lambert, M. and J . Turner. 1971. Dieback i n high s i t e q u a l i t y Pinus r a d i a t a s t a n d s — t h e r o l e of s u l f u r and boron d e f i c i e n c e s . N. Z. J . For. S c i . 7: 333-348. L a v k u l i c h , L.M. 1978. Methods manual. Pedology l a b o r a t o r y , Dept. S o i l S c i e n c e . Univ. of B.C., Vancouver, B.C. 224 pp. Leaf, A.L. 1973. P l a n t a n a l y s i s as an a i d i n f e r t i l i z i n g f o r e s t s . In: L.M. Walsh and J.D. Beaton (eds.) S o i l T e s t i n g and P l a n t A n a l y s i s . pp. 427-454. S o i l Science S o c i e t y of America Inc., Madison, Wisconsin, USA. Lee, R., W.L. P r i t c h e t t and W.H. Smith. 1983. F o r e s t f l o o r c h a r a c t e r i s t i c s under l o n g l e a f - s l a s h pine on two spodosols. F o r e s t E c o l . Management 5: 193-205. Lee, R. and R. B a l l a r d . 1982. P r e d i c t i n g l o b l o l l y pine growth response from N f e r t i l i z e r using s o i l N a v a i l a b i l i t y i n d i c e s . S o i l S c i . Soc. Am. J . 46: 1096-1099. - 103 -L i n d e r b e r g , S.E., D.S. Sh r i n e r and W.A. Hoffman, J r . 1982. The i n t e r a c t i o n of wet and dry d e p o s i t i o n with the f o r e s t canopy. In: F. D ' l t r i (ed.) Acid p r e c i p i t a t i o n : e f f e c t s on e c o l o g i c a l systems. pp.385-409. Ann Arbor Science P u b l i s h e r s , Ann Arbor, Michigan. L i n d e r , R.C. and C P . H a r l e y . 1942. A r a p i d method f o r the determination of n i t r o g e n i n p l a n t t i s s u e . S c i . 96: 565-566. Lindsay, W.L. 1979. Chemical e q u i l i b r i a i n s o i l s . John Wiley & Sons, Inc., New York. 449 pp. Lewis, W.M., J r . and M.C Grant. 1978. Sampling and chemical i n t e r p r e t a t i o n of p r e c i p i t a t i o n f o r mass balance s t u d i e s . Water Resources Res. 14: 1098-1104. Lowe, L.E. and T. G u t h r i e . 1981. The development of an a n a l y t i c a l method to determine sulphur content of f o l i a g e . Contract Research Report, Research Branch, B.C. Min. of F o r e s t s . 69 pp. Lowe, L.E., and K. K l i n k a . 1981. F o r e s t humus i n the C o a s t a l Western Hemlock B i o g e o c l i m a t i c Zone of B r i t i s h Columbia i n r e l a t i o n to f o r e s t p r o d u c t i v i t y and pedogenesis. Province of B r i t i s h Columbia, Min. of F o r e s t s , Res. Note No. 89. 83 pp. Lowe, L.E. 1974. A s e q u e n t i a l e x t r a c t i o n procedure f o r st u d y i n g the d i s t r i b u t i o n of organic f r a c t i o n s i n f o r e s t humus l a y e r s . Can. J . For. Res. 4: 446-454. Madder, D.L. 1963* S o i l v a r i a b i l i t y — a s e r i o u s problem i n s o i l - s i t e s t u d i e s i n the n o r t h e a s t . S o i l S c i . Soc. Amer. J . 40: 112-116. Mc C o l l , J.G. 1972. Dynamics of i o n t r a n s p o r t during moisture flow from a D o u g l a s - f i r f o r e s t f l o o r . S o i l S c i . Soc. Am. Proc. 36: 668-674. McFee, W.W. and C S . Cronan. 1982. The a c t i o n of wet and dry d e p o s i t i o n components of a c i d p r e c i p i t a t i o n on l i t t e r and s o i l . In: F. D ' l t r i (ed.) Acid p r e c i p i t a t i o n : e f f e c t s on e c o l o g i c a l systems. pp. 435-452. Ann Arbor Science P u b l i s h e r s , Ann Arbor, Michigan. McLaren, R. 1985. Lower mainland and south coast B.C. p r e c i p i t a t i o n chemistry data. S c i . Serv. Div. Atmospheric Environment S e r v i c e , P a c i f i c Region, Environment Canada, Vancouver, B.C. Report P.A.E.S. 85-2. Unpublished manuscript. McNabb, D.H. 1984. Handling and storage of s o i l samples. In: Nitrogen assessment workshop. Regional F o r e s t N u t r i t i o n Research P r o j e c t Rep. No. 2. pp. 32-34. C o l l e g e of Fore s t Resources, U n i v e r s i t y of Washington. 84 pp. - 104 -McNabb, D.H. 1984. Using s o i l t e s t s to p r e d i c t D o u g l a s - f i r response to n i t r o g e n f e r t i l i z e r . pp. 80-84. In: Nitrogen assessment workshop. Regional F o r e s t N u t r i t i o n Research P r o j e c t Rep. No. 2. C o l l e g e of F o r e s t Resources, U n i v e r s i t y of Washington. 84 pp. McNabb, D.H., R.L. F r e d r i k s e n and K. Cromack. 1978. M i n e r a l i z a b l e s o i l n i t r o g e n i n some f o r e s t h a b i t a t types of the Oregon Cascades. Agron. Abs. p. 190. Mengel, K. and E.A. K i r k b y . 1982. P r i n c i p l e s of P l a n t N u t r i t i o n . I n t e r n a t i o n a l Potash I n s t i t u e , Bern, S w i t z e r l a n d . 655 pp. M i l l e r , H.G., J.M. Cooper, J.D. M i l l e r and 0. P a u l i n e . 1979. N u t r i e n t c y c l e s i n pine and t h e i r a d a p t a t i o n to poor s o i l s . Can. J . For. Res. 9: 19-26. M i l l e r , H.G. and J.D. M i l l e r . 1976. A n a l y s i s of needle f a l l as a means of a s s e s s i n g n i t r o g e n s t a t u s i n p i n e . F o r e s t r y 49: 56-61. M i l l e r , H.G., B. W i l l i a m s , L.S. M i l l e r and T. Warin. 1977. Ground v e g e t a t i o n and humus n i t r o g e n l e v e l s as i n d i c a t o r s of n i t r o g e n s t a t u s i n an e s t a b l i s h e d sand-dune f o r e s t . F o r e s t r y 50: 96-101. M i l l e r , H.G. 1981. F o r e s t f e r t i l i z a t i o n ; some gu i d i n g concepts. F o r e s t r y 54: 157-167. Moore, A. 1986. Temperature and moisture dependence of decomposition r a t e s of hardwood and c o n i f e r o u s l e a f l i t t e r . S o i l B i o l . Biochem. 18: 427-435. Morr i s o n , D.F. 1983. Ap p l i e d l i n e a r s t a t i s t i c a l methods. P r e n t i c e - H a l l , Inc., New J e r s e y . 562 pp. Morr i s o n , I.K. 1974. M i n e r a l n u t r i t i o n of c o n i f e r s with s p e c i a l r e f e r e n c e to n u t r i e n t s t a t u s i n t e r p r e t a t i o n : a review of l i t e r a t u r e . Dept. of Env. Can. For. Serv. P u b l . No. 1343. M u l l e r , J.E. 1977. Geology of Vancouver I s l a n d . Geol. Surv. Can. O.F. 463. Na d e l h o f f e r , K.J., J.D. Aber, and J.M. M e l i l l o . 1982. L e a f - l i t t e r p r o duction and s o i l o r g a n i c matter dynamics along a n i t r o g e n - a v a i l a b i l i t y g r a d i e n t i n Southern Wisconsin (U.S.A.). Can. J . For. Res. 13: 12-21. - 105 -Norton, S.A., D.W. Hanson and R.J. Campana. 1980. The impact of a c i d i c p r e c i p i t a t i o n and heavy metals on s o i l s i n r e l a t i o n to f o r e s t ecosystems. In: J . M i l l e r (ed.) I n t e r n a t i o n a l symposium on e f f e c t s of a i r p o l l u t i o n on mediterranean and temperate f o r e s t ecosystems. pp. 152-157. U.S. F o r e s t S e r v i c e , Berkeley, C a l i f o r n i a . N o r u s i s , M.J. 1986. SPSSx advanced s t a t i s t i c s guide. McGraw-Hill Book Co., New York. 506 pp. Nriagu, J . and J . Hem. 1978. Chemistry of p o l l u t a n t s u l f u r i n n a t u r a l waters. In: J.O. Nriagu (ed.) S u l f u r i n the environment Part I I , E c o l o g i c a l impact. pp. 211-259. John Wiley and Sons, New York. Oserkowsky, J . 1933. Q u a n t i t a t i v e r e l a t i o n between c h l o r o p h y l l and i r o n i n green and c h l o r o t i c pear l e a v e s . P l a n t P h y s i o l . 8: 449-468. Parkinson, J.A. and S.E. A l l e n . 1975. A wet o x i d a t i o n procedure s u i t a b l e f o r the determination of n i t r o g e n and mineral n u t r i e n t s i n b i o l o g i c a l m a t e r i a l . Comm. S o i l S c i . and P l a n t Anal. 6: 1-11. Payandeh, B. and D.W. B e i l h a r t z . 1978. Sample s i z e e s t i m a t i o n made easy. Can. For. Serv. Great Lakes For. Res. Centre. Report 0-X-275. 19 pp. Peterson, C.E., P.J. Ryan and S.P. G e s s e l . 1984. Response of northwest D o u g l a s - f i r stands to urea: c o r r e l a t i o n s with f o r e s t s o i l p r o p e r t i e s . S o i l S c i . Soc. Am. J . 48: 162-169 Popovic, C.B. 1980. M i n e r a l i z a t i o n of n i t r o g e n i n incubated s o i l samples from an o l d Scots pine f o r e s t . In: T. Persson, ed., S t r u c t u r e and f u n c t i o n of northern c o n i f e r o u s f o r e s t s . E c o l . B u l l (Stockhohm) 32: 411-418. Powers, R.F. 1982. Sources of v a r i a t i o n i n raineralizable s o i l n i t r o g e n . pp. 25-31. In: Nitrogen assessment workshop. Regional F o r e s t N u t r i t i o n Research P r o j e c t Rep. No. 2. C o l l e g e of F o r e s t Resources, U n i v e r s i t y of Washington. 84 pp. Powers, R.F. 1980. M i n e r a l i z a b l e s o i l n i t r o g e n as an index of n i t r o g e n a v a i l a b i l i t y to f o r e s t t r e e s . S o i l S c i . Soc. Am. J . 44: 1314-1320. Persson, H.A. 1983. The d i s t r i b u t i o n and p r o d u c t i v i t y of f i n e r o o t s i n b o r e a l f o r e s t s . P l a n t and S o i l 71: 87-101. P r i c e , W.J. 1978. A n a l y t i c a l atomic a b s o r p t i o n spectrometry. Heydon & Sons L t d . London. 239 pp. - 106 -Quesnel, H.J. 1980. Fo r e s t f l o o r s near Port Hardy, B r i t i s h Columbia, Canada. M.Sc. T h e s i s , Department of S o i l Science, U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. 152 pp. Radwan, M. and J . Shumway. 1983. S o i l n i t r o g e n , s u l f u r and phosphorus i n r e l a t i o n to growth response of western hemlock to n i t r o g e n f e r t i l i z e r . F o r e s t S c i . 29: 469-477. Radwan, M., J.S. Shumway and D.S. D e B e l l . 1979. E f f e c t s of manganese and manganese-nitrogen a p p l i c a t i o n s on growth and n u t r i t i o n of D o u g l a s - f i r s e e d l i n g s . USDA For. Serv. Res. Pap. PNW-265. Pac. Northwest F o r e s t and Range Exp. S t a t i o n , P o r t l a n d , Oregon. 12 pp. Radwan, M.A. and D.S. D e B e l l . 1978. Unpublished data on f i l e at F o r e s t r y Sciences Laboratory, Olympia, Washington. R i c h t e r , K. 1983. Sampling i n t e n s i t y f o r D o u g l a s - f i r f o l i a r n u t r i e n t a n a l y s i s i n the Vancouver F o r e s t Region. B.Sc. t h e s i s , Department of F o r e s t r y , U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. 38 pp. Robinson, J.B.D. and G.H. Freeman. 1967. Sources of v a r i a t i o n i n l e a f a n a l y s i s i n East A f r i c a . East A f r i c a n A g r i c . F o r. J . 33: 8-13. Roddick, J.A. 1965. Vancouver North, Coquitlam, and P i t t Lake map-areas, B r i t i s h Columbia with s p e c i a l emphasis on the e v o l u t i o n of the p l u t o n i c r o c k s . G e o l o g i c a l Survey of Canada Memoir 335. 276.pp. Sca g e l , R., Y.A. El-Kassaby, and J . Emanuel. 1985. Asse s s i n g sample s i z e and v a r i a b l e number i n m u l t i v a r i a t e data, with s p e c i f i c r e f e r e n c e to cone morphology v a r i a t i o n i n a po p u l a t i o n of Pi c e a s i t c h e n s i s . Can. J . Bot. 63: 232-241. Schumacher, P. Personal communications. S t a t i s t i c a l C o n s u l t i n g S e r v i c e s , U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. Smith, J.L., B.L. McNeal, E . J . Owens and G.O. Klock. 1981. Comparison of N m i n e r a l i z e d under anaerobic and a e r o b i c c o n d i t i o n s f o r some a g r i c u l t u r a l and f o r e s t s o i l s of Washington. Commun. i n S o i l S c i . P l a n t A n a l . 12: 997-1009. Snedecor, G.W. and W.G. Cochran. 1980. S t a t i s t i c a l methods. 7th ed. Iowa State U n i v e r s t i y Press, Iowa. 507 pp. Snowdon, P. and H.D. Waring. 1982. Between t r e e and between p l o t v a r i a t i o n s of n u t r i e n t l e v e l s of Pinus r a d i a t a f o l i a g e and t h e i r i m p l i c a t i o n s f o r f i e l d sampling i n t e n s i t y . Aust. For. Res. 13: 45-56. - 107 -Sokal, R.R. and F . J . Nelson. 1975. I n t r o d u c t i o n to b i o s t a t i s t i c s . W.H. Freeman and Co., San F r a n c i s c o . 368 pp. Staaf, H. and B. Berg. 1977. M o b i l i z a t i o n of p l a n t n u t r i e n t s i n a s c o t s pine f o r e s t mor i n c e n t r a l Sweden. In: N u t r i e n t c y c l e i n t r e e stands-Nordic Symposium. S i l v a Fennica 11: 201-257. S t a f f , H. and B. Berg. 1981. P l a n t l i t t e r input to s o i l . In: F.E. C l a r k and T. Rosswall (eds.) T e r r e s t r i a l n i t r o g e n c y c l e s . E c o l . B u l l . (Stockholm) 33: 147-162. Stednick, J.D. 1982. S u l f u r c y c l i n g i n D o u g l a s - f i r on a g l a c i a l outwash t e r r a c e . J . E n v i r o n . Qual. 11: 43-45. Swank, W., J . F i t z g e r a l d and Jaru Ash. 1983. M i c r o b i a l t r a n s f o r m a t i o n of s u l f a t e i n f o r e s t s o i l s . S c i . 223: 182-184. Tamm, CO., L. Wiklander and B. Popovic. 1977. E f f e c t s of a p p l i c a t i o n of s u l p h u r i c a c i d to poor pine f o r e s t s . Water, A i r , and S o i l P o l l u t . 8: 75-87. T i s d a l e , S., W. Nelson and J . Beaton. 1985. S o i l f e r t i l i t y and f e r t i l i z e r s . 4th ed. Macmillan P u b l i s h i n g Co., New York. 754 pp. Turner, J . and M.J. Lambert. 1982. S u l f u r n u t r i t i o n of f o r e s t s . In: D. S h r i n e r , C R . Richmond, and S.E. Lindberg (eds.) Atmospheric s u l f u r d e p o s i t i o n : Environmental impacts and h e a l t h e f f e c t s . pp. 321-334. Ann Arbor Science P u b l i s h e r s , Ann Arbor, Michigan. Turner, J . , D.W. Johnson and M. Lambert. 1980. Sulphur c y c l i n g i n a D o u g l a s - f i r f o r e s t and i t s m o d i f i c a t i o n by n i t r o g e n a p p l i c a t i o n s . Oecol. P l a n t . 1 (15): 27-35. Turner J . , M. Lambert and S. G e s s e l . 1979. S u l f u r requirements of n i t r o g e n f e r t i l i z e d D o u g l a s - f i r . F o r e s t S c i . 25: 461-467. Turner, J , S.F. Dice, D.W. Cole and S.P. G e s s e l . 1978. V a r i a t i o n of n u t r i e n t s i n f o r e s t t r e e f o l i a g e — a review. Univ. Wash. C o l l . For. Res. I n s t . For. Prod. C o n t r i b . No. 35. 32 pp. Turner, J . 1977. E f f e c t of n i t r o g e n a v a i l a b i l i t y on n i t r o g e n c y c l i n g i n a D o u g l a s - f i r stand. For. S c i . 23: 307-316. - 108 -van den D r i e s s c h e , R. 1979. E s t i m a t i n g p o t e n t i a l response to f e r t i l i z e r based on t r e e t i s s u e and l i t t e r a n a l y s i s . pp. 214-220. In: S.P. G e s s e l , R. Kenady and W. Atkinson (eds.) Proc. F o r e s t F e r t i l i z a t i o n Conference. Univ. of Wash. Col l e g e of F o r e s t Resources. I n s t i t u t e of F o r e s t Resources C o n t r i b u t i o n No. 40. 275 pp. van den D r i e s s c h e , R. 1974. P r e d i c t i o n of mineral n u t r i e n t s t a t u s of t r e e s by f o l i a r a n a l y s i s . Bot. Rev. 40: 347-393. Van Praag, H. and F. Weissen. 1973. Elements of a f u n c t i o n a l d e f i n i t i o n of o l i g o t r o p h i c humus based on the n i t r o g e n n u t r i t i o n of f o r e s t stands. J o u r n a l of A p p l i e d Ecology 10: 569-583. Vitousek, P. 1984. L i t t e r f a l l , n u t r i e n t c y c l i n g and n u t r i e n t l i m i t a t i o n i n t r o p i c a l f o r e s t s . Ecology 65: 285-298. Vitousek, P. 1982. N u t r i e n t c y c l i n g and n u t r i e n t use e f f i c i e n c y . Am. Nat. V o l . 119: 553-572. Vogt, K.A., E. Moore, D.J. Vogt, M.J. R e d l i n and R.L. Edmonds. 1983. C o n i f e r f i n e root and m y c o r r h i z a l root biomass w i t h i n the f o r e s t f l o o r s of D o u g l a s - f i r stands of d i f f e r e n t ages and s i t e p r o d u c t i v i t i e s . Can. J . For. Res. 13: 429-437. Walmsley, M., G. U t z i g , T. Void, D. Moon and J . van Barneveld. 1980. D e s c r i b i n g ecosystems i n the f i e l d . RAB T e c h n i c a l Paper 2. Land Mgmt. Rep. No. 7. V i c t o r i a , B.C. 224 pp. Watanabe, F.S. and S.R. Olsen. 1965. Test of an a s c o r b i c a c i d method f o r determining phosphorus i n water and NaHC03 e x t r a c t s from s o i l . S o i l S c i . Soc. Amer. Proc. 49: 677-678. Weatherburn, M.W. 1967. P h e n o l - h y p o c h l o r i t e r e a c t i o n f o r determination of ammonia. A n a l y t i c a l Chem. 39: 971-974. White, D.P. 1954. V a r i a t i o n i n the n i t r o g e n , phosphorus and potassium contents of pine needles with season, crown p o s i t i o n , and sample treatment. S o i l S c i . Soc. Amer. Proc. 18: 326-330. White, E.H.and E . J . J o k e l a . 1980. V a r i a t i o n i n red pine f o l i a r n u t r i e n t c o n c e n t r a t i o n s as i n f l u e n c e d by sampling procedures. Can. J . For. Res. 10: 233-237. W i l l i a m s , B.L. 1983. Nitrogen t r a n s f o r m a t i o n s and decomposition i n l i t t e r and humus from beneath closed-canopy s i t k a spruce. F o r e s t r y 56: 17-31. W i l l i a m s , B.K. 1983. Some o b s e r v a t i o n s on the use of d i s c r i m i n a n t a n a l y s i s i n ecology. Ecology 64: 1283-1291. - 109 -Wolf, B. 1974. Improvements i n the azoraethine H method f o r the determination of boron. Comm. S o i l S c i . P l a n t A n a l . 5: 39-44. Zar, J.H. 1984. B i o s t a t i s t i c a l a n a l y s i s . 2nd ed. P r e n t i c e - H a l l Inc., New J e r s e y . 718 pp. Zech, W. 1970. N a d e l a n a l y t i s c h e Untersuchungen Uber die K a l k c h l o r o s e der Waldkiefer (Pinus s y l v e s t r i s ) Z.f. P f l a n z e n e r n a h r . U. Bodenk. 125: 1-6. Zeman, L . J . 1973. Chemistry of t r o p o s p h e r i c f a l l o u t and streamflow i n a small mountainous watershed near Vancouver, B.C. Ph.D. T h e s i s , F a c u l t y of F o r e s t r y , U n i v e r s i t y of B r i t i s h Columbia. 154 pp. Z o t t l , H. 1960. Die M i n e r a l s t i c k s t o f f a n l i e f e r u n g i n F i c h t e n und Kiefernbestanden Bayerns [The supply of m i n e r a l n i t r o g e n i n Bavarian spruce and pine s t a n d s ] , F o r s t w i s s . C b l . 79: 221-236. - 110 -APPENDIX A. SITE DESCRIPTION DATA PLOT NO. AGE HEIGHT BASAL AREA SITE INDEX DBH ASPECT SLOPE ELEVATION (n) HYGROTOPE O^RGANIC TROPHOTOPE NATTER 2 71 24.8 44 27 28 230 20 210 2 2 87 3 117 32.3 60 34 46 215 47 500 4 3 79 7 80 24.9 60 26 33 175 24 325 3 3 82 8 86 42.6 75 45 66 180 22 470 4 3 70 10 125 33.2 85 32 49 240 40 570 5 3 70 13 143 26.1 75 25 38 120 61 370 2 3 43 16 75 12.7 27 14 26 250 27 175 2 3 60 19 65 30.7 45 35 35 400 5 310 4 3 65 21 68 36.3 60 42 43 400 3 90 4 3 80 22 '67 37.3 65 44 55 400 3 70 5 3 92 23 125 45.3 110 43 52 180 22 650 5 3 88 24 125 31.6 70 31 36 180 30 630 4 3 80 26 86 41.1 90 43 54 240 32 230 5 3 75 27 96 30.1 95 31 32 400 5 140 3 3 76 28 98 17.1 60 17 25 220 5 150 2 3 68 31 93 33.5 85 34 52 190 67 110 5 3 60 33 73 38.0 105 42 44 180 28 290 5 3 85 38 82 34.7 100 37 36 280 40 315 5 3 82 44 62 17.7 48 21 21 150 35 340 3 2 92 45 63 40.0 100 47 41 135 42 210 6 4 81 46 69 15.9 95 18 17 320 48 200 2 2 87 47 72 35.6 115 38 39 320 70 160 5 3 60 46 82 45.2 48 48 74 255 27 212 6 4 88 49 94 32.0 62 33 41 230 26 360 4 2 83 51 68 40.8 70 46 51 280 4 210 6 4 80 52 70 33.7 55 38 31 400 3 205 4 3 80 53 51 19.5 50 26 19 400 3 240 2 3 77 (from Carter 1983) APPENDIX B. PLOT NEAN FOLIAR NUTRIENTS & RATIOS PLOT100 NEEDLE S N P K Ca Pig B Afe NO. WEIGHT % % % % % % • ppmppm 2 0.333 3 0.329 7 0.352-8 0.372 10 0.393 13 0.309 16 0.321 19 0.358 21 0.446 22 0.426 23 0.303 24 0.323 26 0.402 27 0.352 28 0.337 31 0.354 33 0.399 38 0.332 44 0.401 45 0.390 46 0.363 47 0.438 48 0.341 49 0.317 51 0.439 52 0.415 53 0.338 0.171 1.321 0.149 1.211 0.165 1.359 0.158 1.498 0.158 1.178 0.139 1.111 0.137 1.181 0.203 1.439 0.173 1.454 0.167 1.551 0.107 1.175 0.121 1.207 0.109 1.109 0.102 0.930 0.091 0.953 0.119 1.274 0.129 1.248 0.111 1.135 0.114 0.992 0.115 1.240 0.101 1.150 0.124 1.240 0.153 1.405 0.189 1.231 0.132 1.224 0.117 1.400 0.123 1.212 0.255 0.724 0.164 0.807 0.212 0.742 0.191 0.624 0.157 0.788 0.174 0.834 0.190 0.819 0.183 0.762 0.198 0.676 0.192 0.707 0.166 0.814 0.204 0.896 0.180 0.720 0.198 0.823 0.179 0.870 0.175 0.873 0.184 0.701 0.172 0.756 0.178 0.724 0.177 0.753 0.196 0.770 0.189 0.788 0.156 0.638 0.251 0.904 0.224 0.742 0.143 0.691 0.221 0.873 0.322 0.140 0.316 0.111 0.348 0.133 0.353 0.123 0.374 0.129 0.231 0.103 0.296 0.101 0.305 0.128 0.352 0.126 0.291 0.122 0.317 0.114 0.371 0.114 0.340 0.159 0.279 0.130 0.330 0.113 0.459 0.135 0.317 0.122 0.330 0.145 0.279 0.126 0.413 0.148 0.409 0.148 0.310 0.152 0.317 0.128 0.293 0.135 0.307 0.148 0.386 0.150 0.311 0.122 20.1 35.9 18.8 17.2 19.5 40.1 18.1 33.6 21.8 24.0 15.5 32.5 18.5 25.1 18.5 33.6 23.6 42.3 25.2 38.9 16.6 30.7 18.7 18.4 14.0 28.5 15.1 54.5 14.5 31.3 19.2 39.5 21.9 23.1 17.5 22.0 17.0 23.8 15.0 63.8 19.5 37.9 21.2 36.2 13.9 14.3 20.6 30.0 20.7 21.0 21.0 27.4 15.2 26.0 Cu Zn Fe Al Ph N/S N/P K/Ca Ca/PIg ppm ppm ppm ppm ppm 3.3 31.0 44.9 4.7 24.9 27.5 7.7 36.6 49.3 4.6 28.2 33.3 3.8 28.1 20.4 2.1 17.5 23.9 2.9 18.4 31.3 5.1 24.8 31.4 2.9 33.9 43.9 3.9 29.1 45.8 3.5 17.5 18.5 3.3 21.2 24.5 3.0 19.8 44.2 4.8 19.6 102.5 6.2 20.9 39.3 3.3 25.3 44.8 3.4 21.4 31.9 3.5 20.2 19.3 3.8 22.8 19.3 3.3 23.8 84.3 1.3 20.5 20.3 2.4 21.3 28.5 4.9 19.4 22.7 2.4 22.0 30.9 2.6 24.8 22.5 4.1 24.0 31.8 3.5 18.5 23.2 251.0 810.5 7.6 179.0 521.4 8.2 205.0 1166.7 8.2 199.0 469.6 9.5 222.0 444.0 7.5 218.0 885.1 8.0 730.0 936.7 8.8 151.0 469.7 7.1 179.0 1059.7 8.4 180.0 564.8 9.4 105.0 377.0 11.1 122.0 76.1 10.0 181.0 635.9 10.2 260.0 919.9 9.2 136.0 1 084.8 1 0.5 221.0 218.9 10.7 119.0 268.6 9.8 184.0 768.1 10.3 184.0 768.1 10.3 211.0 208.5 10.9 289.0 1031.7 11.6 185.0 328.3 10.4 149.0 194.2 9.4 221.0 441.1 6.6 214.0 1385.1 9.3 99.0 214.2 12.0 176.0 913.9 10.0 5.3 2.3 2.3 7.7 2.7 2.9 6.6 2.8 2.6 8.2 2.4 2.9 7.6 2.2 2.9 6.5 3.8 2.4 6.3 2.9 2.9 8.0 2.6 2.4 7.6 2.0 2.8 8.3 2.4 2.5 7.2 2.6 2.8 6.0 2.7 3.2 6.3 2.2 2.1 4.8 3.1 2.2 5.4 2.8 2.9 7.4 2.1 3.4 6.8 2.4 2.6 6.6 2.3 2.3 6.6 2.3 2.3 7.0 1.9 2.8 6.0 1.9 2.8 7.1 2.6 2.1 9.5 2.1 2.5 5.0 2.5 2.2 5.4 2.5 2.1 10.2 1.9 2.5 5.5 2.9 2.6 - 112 APPENDIX C-1. LF CHEPHCAL PROPERTIES PLOT C N P S A "Ig K "lin-N KC1-N Cu Zn pH MO. % % % % % ppm ppm ppm ppm ppm ppm 2 46.954 1.524 0.119 0.196 7.082 812.4 1568.8 508.3 96.8 22.4 96.4 3.63 3 42.197 1.112 0.076 0.164 5.561 545.2 817.8 86.4 83.7 75.2 60.0 3.17 7 40.671 1.482 0.123 0.211 8.157 1 420.7 1 671.4 615.1 80.2 226.2 1 34.8 3.85 8 49.727 1.680 0.106 0.206 7.425 652.8 1021.8 179.8 119.9 28.4 76.1 3.42 10 46.416 1.471 0.098 0.186 6.410 655.8 997.9 952.5 106.7 29.7 66.1 3.52 13 44.916 1.330 0.119 0.169 6.891 1506.7 1 677.3 549.9 62.8 22.7 84.1 4.74 16 43.295 1.266 0.102 0.150 5.720 1610.9 1554.3 402.7 85.7 47.5 107.4 4.27 19 49.107 1.596 0.110 0.197 5.956 674.2 1348.5 334.4 129.5 528.2 65.2 3.15 21 48.959 1.540 0.111 0.205 °6.528 632.1 1407.9 353.1 115.8 44.8 83.9 3.26 22 42.165 1.798 0.121 0.193 5.246 960.9 1187.0 461.2 122.1 44.1 96.1 3.82 23 44.333 1.367 0.100 0.154 4.533 1638.9 2083.3 760.0 104.0 13.3 85.6 4.71 24 42.987 1.496 0.135 0.141 9.251 1406.6 2222.5 821.0 1 02.6 11.3 79.9 4.68 26 44.906 1.448 0.133 0.135 8.802 2117.1 3621.4 640.5 1 92.5 14.5 89.1 4.82 27 38.064 1.295 0.138 0.136 10.755 3264.1 1908.7 622.7 159.3 27.7 92.9 4.82 28 45.421 1.488 0.154 0.161 6.379 2423.2 2254.1 641.1 189.3 1 2.4 1 07.1 5.12 31 29.220 1.578 0.146 0.188 4.978 2083.3 1 333.3 896.0 85.3 33.3 56.7 4.89 33 45.191 1.473 0.157 0.157 5.847 1394.8 1534.2 507.3 73.9 13.4 53.6 4.70 38 41.345 1.154 0.143 0.120 5.916 1680.7 1400.6 73.2 27.9 50.4 179.3 4.82 44 33.812 1.127 0.127 0.127 7.191 2395.0 12113.2 108.2 32.5 20.3 85.7 4.69 45 34.414 1.212 0.092 0.127 8.287 4669.7 1 839.6 274.4 54.3 24.9 72.5 5.09 46 45.645 1.014 0.114 0.125 7.776 2620.4 1718.8 59.7 44.4 13.5 83.4 4.36 47 29.738 0.777 0.095 0.105 5.947 4466.2 1525.7 79.3 32.5 27.7 57.7 4.90 48 33.934 1.636 0.113 0.168 5.764 1279.5 904.6 555.4 58.7 22.3 89.0 4.15 49 43.137 1.445 0.120 0.172 8.179 756.3 2003.4 110.3 61.8 29.1 79.6 3.18 51 40.746 1.404 0.094 0.152 6.307 2474.6 1122.2 395.0 60.8 10.4 47.2 4.92 52 42.618 1.311 0.124 0.145 9.948 1 228.8 1 469.6 434.1 54.3 9.0 76.9 4.72 53 39.573 1.152 0.108 0.140 6.888 1554.4 1283.0 10.9 43.8 10.3 62.7 4.70 APPENDIX C-2. LFH CHEMICAL PROPERTIES PLOT C N P S A Pig K Plin-N KC1-N Cu Zn exCa exflg exK BxtP pH NO. % % % % % ppm ppm ppm ppm ppm ppm me/100gme/100gme/100g ppm 2 3 7 8 10 13 16 19 21 22 23 24 26 27 28 31 33 38 44 45 46 47 48 49 51 52 53 45.043 45.776 41.278 35.700 45.344 43.807 34.328 45.204 45.672 41.601 42.747 39.985 42.545 37.796 41.693 36.821 40.814 37.026 35.490 28.139 41.874 10.759 24.789 41.932 31.593 40.476 43.182 1.392 1.037 1.347 1.537 1.373 1.121 0.995 1.383 1.392 1.58B 1.428 1.372 1.329 1.294 1.399 1.308 1.337 1.102 1.045 1.057 0.959 0.286 1.210 1.278 1.224 1.240 1.228 0.112 0.071 0.111 0.097 0.090 0.103 0.089 0.095 0.107 0.106 0.101 0.135 0.135 0.135 0.179 0.136 0.124 0.144 0.135 0.084 0.116 0.106 0.113 0.100 0.085 0.133 0.114 0.184 0.155 0.197 0.201 0.177 0.143 0.132 0.180 0.197 0.204 0.154 0.141 0.139 0.145 0.145 0.171 0.161 0.126 0.120 0.113 0.116 0.048 0.135 0.165 0.132 0.142 0.139 3.920 3.620 4.300 3.800 3.540 4.000 3.760 4.860 4.400 2.880 3.860 4.040 4.460 3.500 4.100 2.540 3.140 3.980 5.400 1.880 4.200 1.980 1.780 4.860 1.600 3.800 4.280 701.0 590.7 1253.6 668.4 781.8 1625.7 1782.8 746.7 819.7 1033.1 1669.4 1907.2 2592.4 2984.9 2370.6 2607.6 1834.4 2335.1 3131.7 5459.6 2642.3 6714.5 1756.2 736.1 5424.4 1586.9 1612.3 1380.0 850.0 1470.0 900.0 900.0 1680.0 1870.0 1660.0 1490.0 1110.0 2280.0 2570.0 2880.0 1900.0 1970.0 1470.0 1530.0 1350.0 2180.0 1930.0 1890.0 1500.0 1040.0 1390.0 1210.0 1570.0 1350.0 233.1 140.1 508.3 142.1 363.2 308.7 507.9 427.8 337.6 340.7 506.7 416.3 408.5 451.7 497.7 680.2 411.5 169.8 78.1 294.7 38.4 16.6 348.3 122.7 386.6 287.3 152.6 73.4 64.4 67.5 92.9 109.3 54.2 59.9 93.3 91.2 92.3 73.3 95.9 147.6 124.8 138.4 67.0 48.5 27.9 28.3 37.2 38.5 56.8 34.7 49.1 87.0 54.2 47.7 21.0 62.5 167.2 24.8 25.7 21.2 42.8 282.2 45.2 41.2 15.2 14.6 16.4 19.0 13.9 33.1 20.3 58.5 20.2 27.3 14.3 45.6 22.6 29.1 21.6 11.6 11.1 78.5 63.2 120.5 72.4 68.4 69.6 86.4 75.7 87.9 101.1 80.7 80.4 83.6 94.8 126.4 61.5 57.3 202.1 94.5 91.1 82.7 70.8 96.5 74.9 65.3 70.7 63.2 12.9 10.6 16.3 15.3 13.4 28.4 15.3 11.3 14.1 19.0 33.1 31.8 29.4 33.6 34.3 31.2 36.1 35.8 27.9 38.1 28.6 23.7 20.7 10.7 24.9 23.6 29.1 2.7 1.6 3.2 2.2 2.3 4.0 3.4 2.1 1.9 2.5 4.2 4.0 5.8 6.0 6.4 5.9 4.9 4.6 5.5 6.3 5.7 4.4 2.5 2.7 5.8 4.4 5.8 2.0 1.1 2.2 1.3 1.6 2.1 1.8 1.5 1.5 1.2 3.5 2.4 2.4 2.2 2.5 1.5 1.8 1.7 2.2 0.9 2.6 1.4 0.7 2.1 0.9 2.5 2.2 45.2 51.5 45.5 52.4 42.4 54.6 15.2 21.2 18.2 15.2 15.2 20.6 24.6 16.4 21.8 43.9 51.5 51.5 54.5 57.6 67.9 36.4 57.9 50.0 43.0 36.4 43.3 3.23 3.04 3.56 3.21 3.24 4.38 3.73 3.00 3.12 3.38 4.40 4.44 4.57 4.73 4.83 4.60 4.51 4.82 4.67 5.11 5.03 5.04 4.10 2.90 4.59 4.28 4.31 - 114 -APPENDIX D-1. Eigenvalues and eigenvectors from PCA of LF chemical properties and correlation matrix TEST STATISTIC DF SIGNIF N " 27 OUT OF 27 INDEPENDENCE 183.88 66 . 0 0 0 0 EOUICORRELATION 2 3 3 . 9 9 65 0 . ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) COMPONENT 4 . 2 3 4 9 2.5954 1.4448 1.1146 .72761 % VARIANCE 3 5 . 2 9 5 6 . 9 2 6 8 . 9 6 7 B . 2 5 8 4 . 3 1 INDEPENDENCE 129. IS 8 8 . 9 8 9 6 7 . 3 2 8 4 8 . 1 2 1 36 .567 DF 65 54 44 35 27 SIGNIF . 0 0 0 0 . 0 0 1 9 .0134 .0689 . 1034 6 . C .30274 .12844 .32193 - . 3 9 0 6 3 - . 3 1 6 0 4 7 . N .36359 .28569 ' . 2 0 5 6 4 .72757 -1 - . 1 2 4 9 0 8 . P - . 6 5 1 4 6 -1 .46034 .45974 -1 .28912 - . 4 0 5 2 9 9 . S .44749 .49660 -1 - .92557 -1 .10483 .38151 10.LA - .11577 .22793 .42651 - . 4 1 8 1 0 .33498 11 .MIN . 12541 .42422 .42383 .72139 - 1 .20945 12 .LKCLN .28193 .37648 . 10680 - . 1 8 8 9 3 .33267 13.LCU .26181 - . 1 6 6 5 8 .23084 .48694 .54183 1 4 . L Z N .13314 -1 .21366 .32858 .51230 - . 1 7 3 1 9 15. LMG - . 4 3 0 1 1 .11480 .11202 .13349 .27746 16. LK - . 2 0 7 2 9 .42224 .26796 - . 8 4 4 9 7 -1 .20599 18. PH - . 4 0 7 8 6 .22133 .23109 .85477 -1 - . 9 5 1 9 9 CORRELATION MATRIX N * 27 DF* 25 R» . 0 5 0 0 - . 3 8 0 9 R* . 0 1 0 0 - .4869 VARIABLE 6 . C . 6 2 3 0 . 2 0 6 9 .3870 - . 4 1 2 4 - . 2 6 9 6 7 . N .7482 .4602 - . 2 4 7 2 .0768 - . 1 0 6 5 8 . P - . 1 3 4 1 .7416 .0553 .3052 - . 3 4 5 7 9 S .9209 . 0 8 0 0 - . 1 1 1 3 . 1107 . 0 3 2 5 10.LA - . 2 3 8 2 .3672 .5127 - . 4 4 14 .2857 11 .MIN .2581 .6834 - . 5 0 9 4 .0762 . 1787 12.LKCLN .5802 .6065 - . 1 2 B 4 - . 1 9 9 5 .2838 13.LCU .5388 - . 2 6 8 4 .2775 .5141 .4622 1 4 . L Z N .0274 .3442 .6354 .5409 - . 1 4 7 7 15.LMG - . 8 8 5 1 . 1849 - . 1 3 4 7 . 1409 .2367 16. LK - . 4 2 6 6 .6802 .3221 - . 0 8 9 2 . 1757 18. PH - . 8 3 9 3 . 3566 - . 2 7 7 8 .0902 - .0812 AX 1 AX2 AX3 AX4 AX5 - 115 -APPENDIX D-2. Eigenvalues and eigenvectors from PCA of LFH chemical properties and correlation matrix TEST STATISTIC DF SIGNIF N« 27 OUT OF 27 INDEPENDENCE 4 5 4 . 9 0 120 0 . EQUICORRELATION 5 3 4 . 5 9 119 0 . ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) COMPONENT 5.B181 3 .7731 1.8826 1.3916 1 . 2094 % VARIANCE 3 6 . 3 6 5 9 . 9 4 71.71 8 0 . 4 1 8 7 . 9 7 INDEPENDENCE 3 6 1 . 9 8 2 7 9 . 0 9 2 3 0 . 8 0 186.77 132.12 DF 119 104 9 0 77 65 SIGNIF 0 . 0 . . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 9 . N - . 2 4 9 2 6 .28869 .13113 .20376 . 3 8 3 0 0 10 .P . 16909 .34219 - .11205 - . 12829 .26989 11 S - . 3 5 5 9 2 .15182 .87397 -1 .90212 - 1 .29117 12 .MINN - . 3 9 8 2 6 - 1 . 26902 .51546 - .25394 -1 .13367 13 .LKCLN - . 1 5 3 2 3 .25694 .39612 .75765 -1 - . 2 5 8 7 9 14 . LCU - . 1 8 2 1 0 - . 1 5 7 0 2 .13447 - .58123 - . 9 9 2 2 9 -2 15 LZN .62166 - 1 .11858 •.10331 • .63280 .43771 v 16 LMG .39315 - . 1 8 9 9 9 -1 .16064 - .42541 -1 - . 2 4 5 4 2 -1 17 . LK .21024 .32918 - .44348 -1 -•. 14274 - . 2 9 6 9 9 18 LA - . 1 8 6 4 7 .29393 - .44071 - .16884 - . 1 5 5 9 3 19. C - . 2 7 6 6 9 .29158 - .20649 .20447 .11013 20 LEXCA .34470 .19307 .32552 -1 .12134 .23245 21 LEXMG .35590 .18619 - .27734 -2 .13856 .67889 -1 22 . LEXK .24392 - 1 .39153 .33250 .41655 - 3 - . 2 9 8 3 5 23 . PH .39862 .88513 -1 .65848 -1 .27599 -1 . 9 8 7 3 0 - 1 24 . EXTP .73719 - 1 - . 2 9 3 5 9 .36147 .24911 .36948 CORRELATION MATRIX N« 27 D F - 25 R# . 0 5 0 0 * .3809 R# . 0 1 0 0 * .4869 VARIABLE 9 N - . 6 0 1 2 .5608 . 1799 .2404 .4212 .0135 10 .P .4078 .6647 - . 1 5 3 7 - .1513 .2968 - . 2 8 8 2 11 S - . 8 5 8 5 .2949 . 1199 . 1064 .3202 .0992 12 MINN - . 0 9 6 1 .5226 .7072 - . 0 3 0 0 . 1470 . 3 3 2 0 13. LKCLN - . 3 6 9 6 .4991 .5435 .0894 - . 2 8 4 6 - . 3 1 8 9 14. LCU - . 4 3 9 2 - . 3 0 5 0 . 1845 - . 6 8 5 7 - . 0 1 0 9 .3484 15. LZN . 1499 . 2303 - . 1417 - . 7 4 6 5 .4814 - . 1 9 8 4 16. LMG .9483 - . 0 3 6 9 .2204 - . 0 5 0 2 - . 0 2 7 0 .0517 17 . LK .5071 .6394 - oeoe - . 1 6 8 4 - . 3 2 6 6 .2596 18. LA - . 4 4 9 8 .5709 - . 6 0 4 7 - . 1 9 9 2 - . 1 7 1 5 .0442 19 ,C - . 6 6 7 4 .5664 - . 2 8 3 3 .2412 . 1211 . 1323 20 .LEXCA .8314 .3750 .0447 . 1431 .2556 . 0 7 0 0 21 . LEXMG .8585 .3617 - . 0 0 3 8 . 1635 .0747 . 1340 22. LEXK .0688 .7605 - . 4 5 6 2 .0005 - . 3 2 8 1 .0938 2 3 . PH .9615 . 1719 . 0 9 0 3 .0326 . 1086 .0193 24 . EXTP . 1778 - . 5703 - . 4 9 6 0 . 2939 .4063 .2126 AX 1 AX2 AX3 AX4 AX5 AX6 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0096898/manifest

Comment

Related Items