UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Management options for a land use conflict area in Chitawan, Nepal Burton, Sandra Lee 1987

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1987_A6_7 B87_3.pdf [ 23.18MB ]
Metadata
JSON: 831-1.0096874.json
JSON-LD: 831-1.0096874-ld.json
RDF/XML (Pretty): 831-1.0096874-rdf.xml
RDF/JSON: 831-1.0096874-rdf.json
Turtle: 831-1.0096874-turtle.txt
N-Triples: 831-1.0096874-rdf-ntriples.txt
Original Record: 831-1.0096874-source.json
Full Text
831-1.0096874-fulltext.txt
Citation
831-1.0096874.ris

Full Text

MANAGEMENT OPTIONS FOR A LAND USE CONFLICT AREA IN CHITAWAN, NEPAL by SANDRA LEE BURTON B.S.A. (Honours) U n i v e r s i t y of Saskatchewan, 1978 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n FACULTY OF GRADUATE STUDIES (Department of S o i l S c i e n c e ) We a c c e p t t h i s t h e s i s as conforming t o the r e q u i r e d s t a n d a r d THE UNIVERSITY OF A p r i l (c) Sandra Lee BRITISH COLUMBIA 1987 B u r t o n , 1987 ~S{ c.-<-| In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of <~)& J? %T<LJJLASXLJL The University of British Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 Date X^AJI S O , f ^ DE-6(3/81) ABSTRACT A l a n d use management s t u d y was c o n d u c t e d i n an a r e a o f n o r t h e a s t e r n C h i t a w a n i n c e n t r a l N e p a l . Changes i n s o i l p r o p e r t i e s , f o r e s t and a g r i c u l t u r a l p r o d u c t i v i t y , farm management and p r o f i t a b i l i t y were compared among t e n l a n d use c a t e g o r i e s . The r e s e a r c h r e v e a l e d t h a t t h e most i n t e n s i v e l y managed a g r i c u l t u r a l l a n d , under a n n u a l t r i p l e c r o p r o t a t i o n s had e x c e l l e n t p r o d u c t i v i t y w i t h l i t t l e e v i d e n c e o f s o i l d e t e r i o r a t i o n (pH, o r g a n i c c a r b o n , e x c h a n g e a b l e b a s e s ) . S e v e r a l s o i l p r o p e r t i e s (pH, base s a t u r a t i o n , a v a i l a b l e p h o s p h o r u s , c o m p a c t i o n ) under s u c h f a r m i n g systems were f o u n d t o be b e t t e r t h a n t h o s e under d e g r a d e d f o r e s t . The d e g r a d a t i o n o f t h e f o r e s t s , as measured by wood b i o m a s s , r e g e n e r a t i o n and s o i l q u a l i t y was f o u n d t o be w i d e s p r e a d . A 15 t o 30 p e r c e n t d e c l i n e i n t i m b e r , f u e l w o o d and f o d d e r was o b s e r v e d between t h e n a t u r a l and d e g r a d e d f o r e s t . T h i s r e m o v a l of f o r e s t p r o d u c t s was accompanied by changes i n s o i l p r o p e r t i e s s u c h as e x c h a n g e a b l e b a s e s , pH, c o m p a c t i o n and e x c h a n g e a b l e and f r e e aluminum. A l t e r n a t i v e l a n d uses were e v a l u a t e d u s i n g a d e c i s i o n making method which c o n s i d e r e d c r o p p r e f e r e n c e s , p r o d u c t i v i t y , g r o s s m a r g i n s , r e s o u r c e r e q u i r e m e n t s , s o i l q u a l i t y i n d i c a t o r s and r i s k f a c t o r s . D a t a from farm i n t e r v i e w s and from t h e s o i l s t u d y were i n c o r p o r a t e d i n t o t h i s m i c r o - c o m p u t e r based method. The d a t a e v a l u a t i o n showed t h a t s o i l c o n s e r v i n g and p r o d u c t i v e l a n d use o p t i o n s were not a l w a y s f e a s i b l e f o r the s m a l l f a r m e r because t h e y were more r i s k y and r e q u i r e d more r e s o u r c e s o f i r r i g a t e d l a n d , l a b o u r and o p e r a t i n g c a p i t a l . I n t e r e s t i n g r e l a t i o n s h i p s were f o u n d between s o i l p r o p e r t i e s , p r o d u c t i v i t y , l a n d uses and f e r t i l i t y i n p u t s . The f l e x i b i l i t y o f t h e methodology makes t h i s t e c h n i q u e an a t t r a c t i v e t o o l f o r l a n d use d e c i s i o n making a t the farm and v i l l a g e l e v e l . The mapping u n i t s used f o r t h e n a t i o n a l Land R e s o u r c e Mapping P r o j e c t (LRMP) formed t h e b a s i s f o r t h i s s t u d y and t h e a p p r o a c h d e v e l o p e d can t h e r e f o r e be a p p l i e d t o o t h e r a r e a s i n N e p a l . i i i ACKNOWLEDGEMENTS T h i s s t u d y c o u l d not have been c o m p l e t e d w i t h o u t t h e h e l p o f many p e o p l e ; any o m i s s i o n s a r e due t o s p a c e r e s t r i c t i o n s and n o t a l a c k o f a p p r e c i a t i o n . I would l i k e t o thank B r i a n C a r s o n f o r i n s t i g a t i n g t h e i d e a o f t h e s t u d y and t o t h e I n t e r n a t i o n a l Development R e s e a r c h C e n t r e f o r making i t a r e a l i t y by f u n d i n g t h e p r o j e c t . In N e p a l , P r a v a k a r Shah p r o v i d e d i n v a l u a b l e s u p p o r t and a s s i s t a n c e ; and s e v e r a l members o f t h e I n t e g r a t e d S u r v e y S e c t i o n ( S u n i l N e p a l , Yashu S h r e s t h a , D a d i Ram Sharma, Udaya Sherma, Ramesh S h r e s t h a , Narayan O l i ) f a c i l i t a t e d t h e farm i n t e r v i e w s . O t h e r i n d i v i d u a l s (Um P r a s a d D h a k k e l , K r i s h n a N e u p a n i , Padmira D o n g o l ) h e l p e d w i t h t h e s o i l s a m p l i n g and p r e l i m i n a r y a n a l y s i s . Depuc Chapa o f F o r e s t r y S e r v i c e s L t d . c o n d u c t e d t h e f o r e s t biomass s u r v e y w i t h e n t h u s i a s m . I am f o r e v e r i n d e b t e d t o t h e p e o p l e o f t h e P i t h u w a community f o r welcoming our s t u d y team w i t h open f r i e n d l i n e s s and h o s p i t a l i t y . In V a n c o u v e r , many s t a f f and s t u d e n t s o f t h e Department o f S o i l S c i e n c e were h e l p f u l ; p a r t i c u l a r t h a n k s a r e due t o J o n i Densmore f o r h e r c h e e r f u l l a b o r a t o r y a s s i s t a n c e , and t o B e r n i e Von S p i n d l e r and N e d e n i a K r a j c i f o r t h e i r p e r f e c t i o n i s m w i t h i l l u s t r a t i o n s . I am d e e p l y g r a t e f u l t o Dr. Hans S c h r e i e r f o r h i s p a t i e n t g u i d a n c e and t o Dr. A r t Bomke, Dr. L e s L a v k u l i c h and Dr. George Kennedy f o r t h e i r s u g g e s t i o n s and comments. F i n a l l y , I owe a s p e c i a l t h a n k y o u t o my p a r e n t s , P a t and Peggy B u r t o n and t o my b e s t f r i e n d , R i c h a r d Kabzems f o r t h e i r f a i t h and encouragement t h r o u g h o u t t h e s t u d y . iv DEDICATION To t h e farm f a m i l i e s o f t h e w o r l d who c o n t i n u e t o c h a l l e n g e and i n s p i r e me. v TABLE OF CONTENTS A b s t r a c t i i Acknowledgements . i v D e d i c a t i o n v L i s t of T a b l e s v i i i L i s t of F i g u r e s x L i s t of P l a t e s x i i L i s t of Appendices x i i 1. I n t r o d u c t i o n 1 1.1 The Problem 1 1.2 O b j e c t i v e s 2 1.3 Layout of T h e s i s 3 2. S e t t i n g 5 2.1 L o c a t i o n of the Study Area 5 2.2 C l i m a t e , Geomorphology and S o i l s 5 2.3 N a t u r a l V e g e t a t i o n and S e t t l e m e n t H i s t o r y 10 2.4 C u l t u r a l F e a t u r e s of Pithuwa Panchayat 12 2.5 Farming and Cropping Systems 16 2.6 Emerging Land Use C o n f l i c t s 20 3. Methods 21 3.1 O r g a n i z a t i o n of the Study 21 3.1.1 Study Area S e l e c t i o n 21 3.1.2 Land Use and P l o t S e l e c t i o n 21 3.2 S o i l Q u a l i t y E v a l u a t i o n Methods 27 3.2.1 F i e l d S o i l Sampling & A n a l y s i s i n Nepal .... 27 3.2.2 Chemical & P h y s i c a l L a b o r a t o r y A n a l y s i s .... 30 3.2.3 S t a t i s t i c a l A n a l y s i s of S o i l s Data 30 3.3 A g r i c u l t u r a l P r o d u c t i v i t y E v a l u a t i o n Methods 34 3.3.1 I n t e r v i e w Techniques 34 3.3.2 Data O r g a n i z a t i o n & S t a t i s t i c a l A n a l y s i s ... 35 3.3.3 Budgeting Techniques 36 3.4 F o r e s t P r o d u c t i v i t y E v a l u a t i o n 36 3.4.1 F i e l d Biomass Survey 36 3.4.2 C a l c u l a t i o n s & Data C o m p i l a t i o n 37 3.5 Land Use Management P l a n 37 4. R e s u l t s of the S o i l Q u a l i t y E v a l u a t i o n 39 4.1 V a r i a b i l i t y of S o i l P r o p e r t i e s 39 4.1.1 V a r i a b i l i t y W i t h i n Land Type 39 4.1.2 V a r i a b i l i t y W i t h i n Land Use C a t e g o r i e s 41 4.1.3 Adequacy of Sampling 44 4.2 S o i l P r o p e r t i e s Under F i v e Predominant Land Uses .. 44 4.2.1 G e n e r a l Trends 45 4.2.2 Chemical P r o p e r t i e s 48 4.2.3 P h y s i c a l P r o p e r t i e s 56 4.2.4 M i n e r a l o g i c a l P r o p e r t i e s 59 4.2.5 M u l t i v a r i a t e A n a l y s i s of S o i l P r o p e r t i e s ... 60 4.3 I n n o v a t i o n s to Improve S o i l Q u a l i t y 63 4.3.1 Legume-based Cropping R o t a t i o n s 63 4.3.2 A g r o f o r e s t r y System 68 v i 4.4 D i s c u s s i o n of S o i l Q u a l i t y 73 4.4.1 Comparison With L i t e r a t u r e 73 4.4.2 I m p l i c a t i o n s f o r Land Use Management 75 5. R e s u l t s of Farm P r o d u c t i v i t y E v a l u a t i o n 77 5.1 Overview of Farming Systems 77 5.2 D e t a i l e d S t a t i s t i c a l A n a l y s i s 78 5.2.1 Farm & F a m i l y C h a r a c t e r i s t i c s 81 5.2.2 L i v e s t o c k Component 83 5.2.3 Cropping R o t a t i o n s 84 5.2.4 Crops 87 5.3 Farm P r o f i t a b i l i t y A n a l y s i s 101 5.3.1 Budgeting Techniques, D e f i n i t i o n s & A d a p t a t i o n s 101 5.3.2 B u d g e t i n g A n a l y s i s of Farms i n Pithuwa 104 5.3.3 Resource Requirements & C o n s t r a i n t s 110 5.3.4 S e n s i t i v i t y A n a l y s i s of Crop P r o d u c t i o n F a c t o r s I l l 5.4 D i s c u s s i o n of Farm P r o d u c t i v i t y R e s u l t s 116 5.4.1 Comparison With L i t e r a t u r e 116 5.4.2 I m p l i c a t i o n s f o r Land Use Management 119 6. R e s u l t s of F o r e s t P r o d u c t i v i t y E v a l u a t i o n 121 6.1 V e g e t a t i o n D e s c r i p t i o n of P l o t s 121 6.2 Comparison of N a t u r a l & Degraded F o r e s t Biomass ... 125 6.3 D i s c u s s i o n of F o r e s t P r o d u c t i v i t y R e s u l t s 130 6.3.1 I n t e r a c t i o n s Between F o r e s t & A g r i c u l t u r a l Land 130 6.3.2 I m p l i c a t i o n s f o r Land Use Management 135 7. Development of a Land Use Management P l a n 137 7.1 Approaches t o Land Use Management 137 7.2 The E n v i r o n m e n t a l C o n s e r v a t i o n i s t Approach 138 7.2.1 Key S o i l Q u a l i t y F a c t o r s 139 7.2.2 Key Farm P r o d u c t i v i t y F a c t o r s 139 7.2.3 Key F o r e s t P r o d u c t i v i t y F a c t o r s 140 7.2.4 R e l a t i o n s h i p s Between S o i l and Farm F a c t o r s 140 7.2.5 R e l a t i o n s h i p s Between S o i l and F o r e s t F a c t o r s 152 7.2.6 Recommendations f o r Land Use Management .... 155 7.3 D e c i s i o n Making Approach 157 7.3.1 The D e c i s i o n Makers 157 7.3.2 C r i t e r i a f o r D e c i s i o n Making 157 7.3.3 E v a l u a t i o n of Land Use O p t i o n s 159 7.3.4 M o d i f i e d Recommendations f o r Land Use Management 167 8. Summary & C o n c l u s i o n s 170 L i t e r a t u r e C i t e d 175 Appendices 184 v i i LIST OF TABLES Table 3.1: Land Use C a t e g o r i e s , D e s c r i p t i o n s , LRMP Mapping E q u i v a l e n t s & Importance to the Study 23 Table 3.2: S o i l P r o p e r t i e s Analyzed & Methods Used f o r F i e l d w o r k i n Nepal & L a b o r a t o r y Work i n Canada... 31 Table 3.3: O r g a n i z a t i o n of Data Sets f o r A n a l y s i s 33 Table 4.1: C o e f f e c i e n t s of V a r i a t i o n (CV%) f o r V a r i o u s Land Use C a t e g o r i e s (LU) and f o r D i f f e r e n t Sampling I n t e n s i t i e s 40 Table 4.2: C o e f f e c i e n t s of V a r i a t i o n i n Chitawan Study Compared w i t h L i t e r a t u r e Values 40 Table 4.3: Summary of Mann-Whitney U - t e s t s of S i g n i f i c a n c e of S o i l P r o p e r t i e s Under 5 Predominant Land Uses .... 46 Table 4.4: R e s u l t s of Mann-Whitney T e s t s of S i g n i f i c a n c e of S o i l P r o p e r t i e s Under 5 Predominant Land Uses .... 47 T a b l e 4.5: C l a s s i f i c a t i o n M a t r i x of D i s c r i m i n a n t A n a l y s i s I n v o l v i n g 6 S o i l P r o p e r t i e s from A H o r i z o n 61 Table 4.6: S e l e c t e d S o i l Chemical P r o p e r t i e s of Legume-based to S i m i l a r R o t a t i o n s Without Legumes 66 Table 4.7: S e l e c t e d S o i l P h y s i c a l P r o p e r t i e s f o r Comparison of Legume-based R o t a t i o n s t o S i m i l a r R o t a t i o n s w i t h o u t Legumes 66 Table 5.1: D e s c r i p t i o n of Wards S e l e c t e d f o r Study i n Pithuwa Panchayat 80 Table 5.2: Means, Standard D e v i a t i o n s & Ranges of Farming System C h a r a c t e r i s t i c s i n Pithuwa 82 Table 5.3: Means and Ranges of Amounts of V a r i o u s Cropping R o t a t i o n s 85 Table 5.4: R i c e Crop P r o d u c t i o n C h a r a c t e r i s t i c s 88 Table 5.5: Maize Crop P r o d u c t i o n C h a r a c t e r i s t i c s 91 Table 5.6: Mustard Crop P r o d u c t i o n C h a r a c t e r i s t i c s 93 Table 5.7: Wheat Crop P r o d u c t i o n C h a r a c t e r i s t i c s 96 Table 5.8: Comparison of L e n t i l & P o t a t o Crop P r o d u c t i o n .... 98 Table 5.9: Comparisons of P r o d u c t i v i t y and E f f i c i e n c y of V a r i o u s Crops 106 Table 5.10: Comparisons of P r o d u c t i v i t y and E f f i c i e n c y of V a r i o u s C r o p p i n g R o t a t i o n s 107 Table 5.11: S e n s i t i v i t y of Crop P r o f i t a b i l i t y I n d i c a t o r s to Changes i n Crop P r i c e s 113 Table 5.12: S e n s i t i v i t y of Crop P r o f i t a b i l i t y I n d i c a t o r s to Changes i n Crop Y i e l d s 113 Table 5.13: S e n s i t i v i t y of Crop P r o f i t a b i l t i y I n d i c a t o r s to Changes i n Cropping Input P r i c e s 114 Table 6.1: D e s c r i p t i o n of V e g e t a t i o n , S u c c e s s i o n a l Stage and Canopy Cover, N a t u r a l ( f a ) Compared to Degraded ( f d ) F o r e s t 122 Table 6.2: F o r e s t Biomass Data 127 T a b l e 6.3: Requirements f o r 3 Important F o r e s t P r o d u c t s by Pithuwa Panchayat 131 v i i i Table 6.4: F o r e s t Resources A v a i l a b l e f o r Needs of Pithuwa Panchayat 133 Table 7.1: Summary of K r u s k a l - W a l l i s S i g n i f i c a n c e T e s t s on 3 C a t e g o r i e s of 4 Key Farm V a r i a b l e s 148 Table 7.2: R e l a t i o n s h i p s Between S o i l and F o r e s t F a c t o r s .... 153 Table 7.3: E v a l u a t i o n of A g r i c u l t u r a l Land Use O p t i o n s 160 Table 7.4: R a t i n g of A g r i c u l t u r a l Land Use O p t i o n s U s i n g a Ranking System 166 ix LIST OF FIGURES F i g u r e 1.1: F l o w c h a r t I l l u s t r a t i n g O r g a n i z a t i o n of T h e s i s ... 4 F i g u r e 2.1: L o c a t i o n of Landsat Image & the Study Area 6 F i g u r e 2.2: Weekly R a i n f a l l & E v a p o t r a n s p i r a t i o n and t h e i r R e l a t i o n s h i p to Land Use i n Chitawan 8 F i g u r e 2.3: C r o s s s e c t i o n s of Chitawan V a l l e y I l l u s t r a t i n g Geomorphology and Land Types 9 F i g u r e 2.4: Schematic C r o s s - s e c t i o n of Study Area H i g h l i g h t i n g S o i l , Land and Land Use Types 11 F i g u r e 2.5: Summary of Land Use H i s t o r y i n Study Area 13 F i g u r e 2.6: Resource Flows W i t h i n the Farming System 18 F i g u r e 4.1: Low C o e f f i c i e n t s of V a r i a t i o n by Land Use and S o i l P r o p e r t y 42 F i g u r e 4.2: Medium C o e f f i c i e n t s of V a r i a t i o n by Land Use and S o i l P r o p e r t y 42 F i g u r e 4.3: V a r i a b l e C o e f f i c i e n t s of V a r i a t i o n by Land Use and S o i l P r o p e r t y 42 F i g u r e 4.4: Organic Carbon % Under Predominat Land Uses 49 F i g u r e 4.5: T o t a l N i t r o g e n % Under Predominant Land Uses 49 F i g u r e 4.6: C a t i o n Exchange C a p a c i t y Under Predominant Land Uses 49 F i g u r e 4.7: Exchangeable C a t i o n s Under Predominant Land Uses 51 F i g u r e 4.8: CEC and ECEC Under Predominant Land Uses 51 F i g u r e 4.9: A v a i l a b l e Phosphorus Under Predominant Land Uses 53 F i g u r e 4.10: Exchangeable Potassium Under Predominant Land Uses 53 F i g u r e 4.11: Free I r o n of A H o r i z o n Under Predominant Land Uses 55 F i g u r e 4.12: Free I r o n of B H o r i z o n Under Predominant Land Uses 55 F i g u r e 4.13: Free Aluminum of B H o r i z o n Under Predominant Land Uses 55 F i g u r e 4.14: Bulk D e n s i t y under V a r i o u s Land Uses 57 F i g u r e 4.15: Compaction of S u r f a c e Under V a r i o u s Land Uses... 57 F i g u r e 4.16: Water H o l d i n g C a p a c i t y Under V a r i o u s Land Uses.. 57 F i g u r e 4.17: D i s c r i m i n a n t A n a l y s i s of S o i l P r o p e r t i e s 62 F i g u r e 4.18: C l u s t e r A n a l y s i s of S o i l P r o p e r t i e s 64 F i g u r e 4.19: Organic Carbon % A g r i c u l t u r e and A g r o f o r e s t r y .. 70 F i g u r e 4.20: T o t a l N i t r o g e n % A g r i c u l t u r e and A g r o f o r e s t r y . . . 70 F i g u r e 4.21: A v a i l a b l e Phosphorus A g r i c u l t u r e and A g r o f o r e s t r y 70 F i g u r e 4.22: Exchangeable C a t i o n s A g r i c u l t u r e and A g r o f o r e s t r y 71 F i g u r e 4.23: T o t a l Bases and CEC A g r i c u l t u r e and A g r o f o r e s t r y 71 F i g u r e 5.1: Summary of Wards i n Pithuwa Panchayat (Nov. 1985) 79 F i g u r e 5.2: P r o p o r t i o n s of 8 Major Cropping R o t a t i o n s i n Pithuwa Study 85 F i g u r e 5.3: Predominant Cropping R o t a t i o n s , Crop Y i e l d s , P o t e n t i a l Revenue & A c t u a l Cash S a l e s 100 F i g u r e 5.4: I n t e r a c t i v e Components of C r o p p i n g System B u d g e t i n g Worksheet f o r V a r i o u s Crops & Cropping R o t a t i o n s i n the Pithuwa Study Area 105 x F i g u r e 5.5: Gross Margins of V a r i o u s Crops i n Pithuwa Study 108 F i g u r e 5.6: Gross Margin of Cropping R o t a t i o n s i n Pithuwa Study 108 F i g u r e 5.7: Gross Margins of Cropping R o t a t i o n s w i t h Average P r i c e s and Poor Y i e l d s 115 F i g u r e 5.8: Gross Margins of C r o p p i n g R o t a t i o n s w i t h Average P r i c e s , Average Y i e l d s , and C o s t l y Labour 115 F i g u r e 6.1: F o r e s t P r o d u c t s Biomass from N a t u r a l ( f a ) & Degraded ( f d ) F o r e s t 129 F i g u r e 6.2: F o r e s t R e g e n e r a t i o n S a p l i n g s on N a t u r a l ( f a ) & Degraded ( f d ) F o r e s t 129 F i g u r e 7.1: S i g n i f i c a n t R e l a t i o n s h i p s Between S o i l and Land Use F a c t o r s 142 F i g u r e 7.2: S i g n i f i c a n t R e l a t i o n s h i p s Between S o i l and Crop Y i e l d s 142 F i g u r e 7.3: S i g n i f i c a n t R e l a t i o n s h i p s Between S o i l and 3 Cropping I n p u t s (Compost, Urea & complex F e r t i l i z e r ) 143 x i LIST OF PLATES P l a t e 2.1: Landsat photo i l l u s t r a t i n g g e o m o r p h o l o g i c a l s e t t i n g of Chitawan V a l l e y 6 P l a t e 3.1: A i r photograph mozaic of study area 22 P l a t e 3.2: N a t u r a l untouched p r o d u c t i v e f o r e s t or x f a * l a n d use 25 P l a t e 3.3: Degraded u t i l i z e d grazed f o r e s t or * f d ' l a n d use 25 P l a t e 3.A: I n n o v a t i v e r a i n f e d a g r i c u l t u r e or x p a ' l a n d use .. 26 P l a t e 3.5: I n n o v a t i v e i r r i g a t e d a g r i c u l t u r e or *kh' l a n d use 26 P l a t e 3.6: F i e l d sampling methods i n a g r i c u l t u r a l a r e a s .... 28 P l a t e 3.7: Key i n f o r m a n t i n t e r v i e w s by i n f o r m a l methods .... 28 P l a t e 6.1: Exposed t r e e r o o t s i n degraded f o r e s t areas 123 P l a t e 6.2: Emerging l a n d use c o n f l i c t s 123 P l a t e 7.1: A g r o f o r e s t r y i n n o v a t i o n s 169 LIST OF APPENDICES A. A b b r e v i a t i o n s Used 18A B. N e p a l i Terms Used & T r a n s l a t i o n s 187 C. L i s t of Trees and Shrubs 188 D. C o n v e r s i o n F a c t o r s f o r U n i t s of Measure 189 E. N a t i o n a l S o i l Survey Programme P r o f i l e D e s c r i p t i o n Sheet 190 F. I n t e r v i e w Forms 191 G. S o i l s Data Sets 203 H. D e s c r i p t i v e S t a t i s t i c s f o r S o i l s Data 210 I . C l a y M i n e r a l o g y A n a l y s i s 216 J . Farm Data Sets 217 K. Summary of S e n s i t i v i t y A n a l y s i s 235 L. F o r e s t Biomass Data 2A6 x i i 1 CHAPTER 1: INTRODUCTION 1.1 The Problem The p r e d o m i n a n t l y r u r a l p o p u l a t i o n of Nepal was t r a d i t i o n a l l y i n a f r a g i l e e q u i l i b r i u m w i t h i t s s u r r o u n d i n g Himalayan-Gangetic environment. The s u b s i s t e n c e farming of the N e p a l i s was dependent on a d e l i c a t e r a t i o of p e o p l e - l i v e s t o c k -l a n d - f o r e s t . R e c e n t l y , i n c r e a s i n g p o p u l a t i o n and l a n d p r e s s u r e has upset t h i s d e l i c a t e b a l a n c e , r e s u l t i n g i n c o m p e t i t i o n and c o n f l i c t s over l a n d use (Hrabovszky & Miyan, 1985). Rapid d e f o r e s t a t i o n has been l i n k e d w i t h i n c r e a s e d s o i l e r o s i o n and s o i l l o s s i n many r e g i o n s of Nepal (Eckholm, 1976; J a c k s o n , 1983; Singh et a l , 1983). R e c e n t l y , t h e r e has been more r e c o g n i t i o n of g e o l o g i c a l l y - c a u s e d mass w a s t i n g p r o c e s s e s as major c o n t r i b u t o r s t o e r o s i o n and s e d i m e n t a t i o n r a t e s . S e v e r a l r e s e a r c h e r s have q u e s t i o n e d the widespread b e l i e f t h a t much of the p r e s e n t e r o s i o n i n Nepal i s man-induced and caused by d e f o r e s t a t i o n ( C a r s o n , 1985; H a m i l t o n , 1985; Ramsay, 1985). But the p u b l i c a s s o c i a t i o n of d e f o r e s t a t i o n and e r o s i o n has p e r s i s t e d ; and p o l i c y makers i n Kathmandu have been under tremendous i n t e r n a t i o n a l p r e s s u r e t o i n s t i t u t e c o n s e r v a t i o n programs. In response, the government of Nepal has s u c c e s s f u l l y e s t a b l i s h e d s e v e r a l f o r e s t r e s e r v e s , such as the one i n n o r t h e a s t e r n p a r t of the Chitawan v a l l e y . Land use c o n f l i c t s have r e s u l t e d when implementing n a t i o n a l p o l i c i e s at the l o c a l l e v e l . The crux of the l a n d use c o n t r o v e r s y can be summarized by the f o l l o w i n g two p o i n t s of view. I s i t j u s t i f i a b l e to r e s e r v e l a n d f o r f o r e s t t h a t i s h i g h l y capable of food p r o d u c t i o n i n a 2 c o u n t r y w i t h food d e f i c i t s ? C o n v e r s e l y , w i l l the s h o r t term b e n e f i t s of f o r e s t to a g r i c u l t u r e c o n v e r s i o n s be negated by the l o n g e r term d e g r a d a t i o n of s o i l f e r t i l i t y and e v e n t u a l d e c l i n e of crop y i e l d s ? Thus, the p e r c e i v e d problem c e n t r a l t o t h i s study i s the d e c l i n e of s o i l q u a l i t y when f o r e s t l a n d i s co n v e r t e d to a g r i c u l t u r e or when double c r o p p p i n g i s i n t e n s i f i e d to t r i p l e c r o p p i n g ( S c h r e i e r et a l . , 1986). But i n the c o n t e x t of the u n c e r t a i n t y and dynamics of the Himalayan-Gangetic environment, t h i s p e r c e p t i o n of the problem i s merely the p o i n t of e n t r y i n t o a complex system w i t h many p h y s i c a l , s o c i a l and c u l t u r a l f a c t o r s (Thompson & Warburton, 1985). T h e r e f o r e the s o i l d e g r a d a t i o n i s documented w i t h i n a socio-economic c o n t e x t so t h a t the data can be c o n v e r t e d i n t o u s e f u l i n f o r m a t i o n f o r l a n d use d e c i s i o n making. Land use management i s s t u d i e d w i t h a systems approach, so t h a t recommendations f o r c o n s e r v a t i o n of s o i l and f o r e s t r e s o u r c e s are implementable and r e a l i s t i c . Management d e c i s i o n s made on p r i v a t e l y owned l a n d s are c o n s i d e r e d the foc u s of s t u d y , s i n c e management of both p r i v a t e and p u b l i c l a n d s u l t i m a t e l y i n v o l v e s v i l l a g e p a r t i c i p a t i o n and farmer m o t i v a t i o n . 1.2 O b j e c t i v e s 1. Determine s o i l q u a l i t y under c u r r e n t l a n d uses. 2. Compare y i e l d s and p r o d u c t i v i t i e s of f o o d , fodder and fuelwood under v a r i o u s l a n d use management systems. 3. Suggest key i n f o r m a t i o n needed to monitor s o i l d e g r a d a t i o n or to i d e n t i f y c o n s t r a i n t s to a d o p t i o n of s o i l c o n s e r v i n g p r a c t i c e s . 3 4. Assess the p o t e n t i a l of legume-based or a g r o f o r e s t r y systems f o r r e s o l v i n g the l a n d use c o n f l i c t s . 5. Develop an o p t i m a l l a n d use management p l a n f o r the area t h a t c o u l d be t r a n s l a t e d i n t o an e x t e n s i o n package f o r f a r m e r s . 6. Demonstrate how the methodology c o u l d be a p p l i e d to o t h e r areas i n Nepal by l i n k i n g the study t o the Land Resource Mapping P r o j e c t . 1.3 Layout of the T h e s i s The arrangement of t h i s t h e s i s i s as f o l l o w s : Chapter two d e s c r i b e s the s e t t i n g of the study b i o p h y s i c a l l y ( i . e . l o c a t i o n , c l i m a t e , geomorphology and s o i l s ) , as w e l l as s o c i o l o g i c a l l y ( i . e . s e t t l e m e n t and l a n d use h i s t o r y , c u l t u r a l f e a t u r e s of v i l l a g e , f a r m i n g and c r o p p i n g systems and emerging l a n d use c o n f l i c t s ) . The f o l l o w i n g c h a p t e r summarizes the methods used f o r f i e l d s a m p l i n g , l a b o r a t o r y a n a l y s i s and i n t e r p r e t a t i o n of d a t a . At t h i s p o i n t , the study s p l i t s i n t o t h r e e components or s u b s t u d i e s : s o i l q u a l i t y under e x i s t i n g l a n d uses ( c h a p t e r f o u r ) , farm p r o d u c t i v i t y e v a l u a t i o n ( c h a p t e r f i v e ) and f o r e s t p r o d u c t i v i t y e v a l u a t i o n ( c h a p t e r s i x ) . The r e s u l t s of these t h r e e components are i n t e g r a t e d i n t o a comparison of l a n d use management o p t i o n s ( c h a p t e r seven) by u s i n g two c o n t r a s t i n g approaches. F i n a l l y , c h a p t e r e i g h t summarizes the s t u d y . The f l o w c h a r t ( F i g u r e 1.1) i l l u s t r a t e s the l a y o u t of the stud y . A b b r e v i a t i o n s and N e p a l i terms are used f r e q u e n t l y throughout the t h e s i s to economize on space. T h e i r e q u i v a l e n t s are e x p l a i n e d i n Appendix A and B , r e s p e c t i v e l y . 4 Chap.3 Selection of study area, land types & land use (lu) categories by review of LRMP data & transects through the area 8 lu on 5c land type; 2 lu on 4c land type within field (10 samples x 7 lu) coefficients of variation 1 Chap.4 Soil Quality (95 profiles x 3 depths) Chap.5 Agricultural Productivity (from farmer interviews 75 formal & 25 informal) ± predominant land uses (9-10 plots x 5 lu) innovations (3-4 plots x 8 lu) M-Whit. U & multivariate tests Y determine variability S sampling reliability farm & family component Chap.6 M-Whit. U tests of signif. identify type & amount of degradation under major land uses K-Wallis test of livestock numbers & uses cropping component V budgeting is of efficiency correlations & graphic summaries assess potential of legume innovations identify relationship among soils, management, land uses & productivity V determine optimal land use management economically Chap.7 Evaluate various land use management options in terms of soil conservation, productivity & profitability for several possible scenarios Forest Productivity (9-10 plots x 2 lu) V biomass data fuelwood, fodder, etc Y means, st. dev. V estimate amt of forest products relative to land uses Figure 1.1: Flowchart Illustrating Organization of Ihesis 5 CHAPTER 2: SETTING 2.1 L o c a t i o n of the Study Area The study area was r e l a t i v e l y e a s i l y accessed. I t was s i t u a t e d i n south c e n t r a l Nepal about 6 hours d r i v e (or 9 to 12 hours bus r i d e ) from Kathraandu. P o l i t i c a l l y , i t s l o c a t i o n would be described as i n the Chitawan D i s t r i c t , i n the Narayani Zone of the C e n t r a l Development Region. I t i n v o l v e d p o r t i o n s of the Pithuwa and Saktikhor 'panchayats' ( i . e . l o c a l l y governed areas with a v i l l a g e a d m i n i s t r a t i v e centre) of northeastern Chitawan. The nearest centre f o r permanent markets and access to the East-West highway, a major t r a n s p o r t a t i o n l i n k with markets i n Kathmandu and I n d i a , was Tadi Bazaar. This was a l s o the l o c a t i o n of the nearest h e a l t h and secondary education f a c i l i t i e s f o r the people of the study area. The northern boundary or the f b r e s t e d p o r t i o n of the study area was three hours walk from Tadi Bazaar while the southern boundary i n the a g r i c u l t u r a l area was only one hour away. The di s t a n c e between these two boundaries was approximately 12 k i l o m e t e r s , and could be e a s i l y t r a v e r s e d on f o o t , b i c y c l e or jeep. F i g u r e 2.1 i l l u s t r a t e s the l o c a t i o n of the study area i n Nepal. 2.2 Climate, Geomorphology and S o i l s The c l i m a t e of the study area i s i d e a l f o r both f o r e s t and i n t e n s i v e a g r i c u l t u r e . The f a c t o r s of l o c a t i o n ( l a t i t u d e of 27.5 degrees north; l o n g i t u d e of 85 degrees east) and e l e v a t i o n (200 to 275 m.) c o n t r i b u t e to make the cli m a t e of the area s u b t r o p i c a l and humid. The y e a r l y c y c l e i s c h a r a c t e r i z e d by three d i s t i n c t 6 F i g u r e 2 . 1 : L o c a t i o n of l a n d s a t image and the study area i n N e p a l . P l a t e 2 . 1 : Landsat photo i l l u s t r a t i n g the georaorphologica l s e t t i n g of Chitawan V a l l e y 7 seasons: a hot, r a i n y summer or monsoon from June to September ( i . e . N epali months: Ashradha to Ashwan); a warm, dry winter from October to February ( i . e . Nepali months K a r t i k to Magha); and a hot, very dry, windy s p r i n g from March to May ( i . e . N e p a l i months Falgun to J e s t h a ) . Figure 2.2 summarizes seasonal temperature and p r e c i p i t a t i o n data r e l a t i v e to these three seasons (based on Chaudhary, 1984). The winter months are c h a r a c t e r i s t i c a l l y dry and mild, although there are heavy morning fogs and o c c a s i o n a l night f r o s t s . Since ninety per cent of the annual r a i n f a l l occurs during the summer between June and September, the monsoon corresponds to the major cropping season as we l l as the annual r e v i t a l i z a t i o n of tre e and shrub growth. The Chitawan i s a 'dun' or t e c t o n i c v a l l e y n e s t l e d amidst the rugged ranges of the S i w a l i k s Physiographic Region ( r e f e r to P l a t e 1). I t was o r i g i n a l l y a lake basin but major r i v e r systems, the Narayani and R a p t i , have modified the landscape annually and have reduced the occurrence of the l a c u s t r i n e d e p o s i t s . T e c t o n i c a c t i v i t i e s such as u p l i f t and f a u l t i n g , and the annual e r o s i v e monsoonal r a i n s have caused s i g n i f i c a n t d e p o s i t s of a l l u v i a l fan and apron m a t e r i a l s from surrounding S i w a l i k s h i l l s . The r e s u l t of these t e c t o n i c , e r o s i v e and f l o o d i n g processes i s a mosaic of land types ( F i g u r e 2.3). In many aspects, the landscape, s o i l s and land use types of these xdun' v a l l e y s are very s i m i l a r to those of the T e r a i or greater Gangetic p l a i n s so that they are often r e f e r r e d to as 'inner T e r a i 1 . Within t h i s geomorphological context, most of the study area Land uses: | | forest ED rainfed agriculture irrigated agriculture Climate weekly rainfall evapo -transpiration mm/week Time scale: Week no.: Nepali: Gregorian: Seasons: - 200 mny /week - 155 - 100 - 50 premonsoon F i g u r e 2.2: Weekly r a i n f a l l & e v a p o t r a n s p i r a t i o n (1974-83) and t h e i r r e l a t i o n s h i p to l a n d use i n C h i t a w a n (b a s e d on Chaudhary, unpub) Horizontal scale: - | 1 S 10 km Terai Bhabar r f study area transect l 1 Siwaliks Rapti Dun or Depositional Valley Siwaliks Mahabharat India -Nepal border Chitawan National Park East-West Highway -1500 -1000 - 500 m. Terai land types: 2a river courses 2b recent alluvium 3a alluvial uplands 3b alluvial fans Main Boundary Fault Siwaliks land types: 4a river courses 4b-c recent alluvium Sa-c alluvial uplands 5b alluvial fans 6c gently rolling depositional basins 8 steeply sloping Siwaliks hills 12 steeply sloping mountains Geological deposits: fjp| unconsolidated alluvium H|] alluvial fan and apron II remnant dun or lacustrine Siwaliks sediments: sandstone, mudstone, conglomerate, marl F^ l Precambrian metasediments: slate, phyllite, quartzite, schist F i g u r e 2.3: Schematic c r o s s s e c t i o n of Chitawan v a l l e y i l l u s t r a t i n g geomorphology and land types (based on LRMP, 1984a,b) 10 was s i t u a t e d on gently undulating a l l u v i a l fans and aprons ( i . e . land type 5a and 5c). The s o i l s i n c l u d e d various phases of e u t r o c r e p t s and h a p l u d o l l s depending on land use type (LRMP, 1984b). Fi g u r e 2.4 h i g h l i g h t s the cross s e c t i o n of s o i l types found on a north-south t r a n s e c t of the Pithuwa - Saktikhor Panchayats. The r e c u r r i n g c o r r e l a t i o n between s o i l morphological p r o p e r t i e s and land use types (as defined on page 24) was part of the r a t i o n a l e f o r the study. 2.3 N a t u r a l Vegetation and Settlement H i s t o r y The land use h i s t o r y of the area was of p a r t i c u l a r i n t e r e s t to the study's theme. O r i g i n a l l y the m a j o r i t y of the area was vegetated by semi-dry deciduous f o r e s t of mixed t r o p i c a l hardwood spe c i e s such as Shorea robusta or > s a l ' , Termalina tomentosa or 'asna', A l b i z z i a j u l i s b r i s s i a or *padke f, e t c . (Appendix C). With the e r a d i c a t i o n of malaria i n the e a r l y s i x t i e s , settlement of the T e r a i and inner T e r a i began by both spontaneous and planned processes. The p o p u l a t i o n of the Chitawan v a l l e y i n c r e a s e d a b r u p t l y from 60,000 i n 1961 to 200,000 i n 1971. The Pithuwa panchayat was part of a government resettlement scheme. D i s l o c a t e d farm f a m i l i e s from the Gorkha D i s t r i c t i n the h i l l s were each given about 2 to 4 % b i g h a s ' (1.5 - 3.0 hectares) of land to c l e a r and c u l t i v a t e . Most of the area was *pakho' or r a i n f e d upland and was cropped a c c o r d i n g l y , i . e . maize as the monsoon crop followed by mustard or wheat i n the winter. In the e a r l y years, the f o r e s t was never very f a r from the a g r i c u l t u r a l pockets or c l e a r e d areas. Fuelwood, fodder and timber were Horizontal scale: I 1 1 1 N — • 0 1 2 3 km. East-West highway Pithuwa Jutpan rice, maize. mustard mustard maize (pc) (kh) degraded forest (fd) Saktikhor thicker forest stand (fa) 10 9 ^ 8 hapludoll aquic eutrochrept eutrochrept Notations: • 10 4 soil pit description site and number village agricultural land uses ^ forest land -1000 m. -500 F i g u r e 2.4: S c h e m a t i c c r o s s s e c t i o n o f s t u d y a r e a h i g h l i g h t i n g s o i l , l a n d and l a n d use t y p e s . 1 2 p l e n t i f u l ; but crop l o s s e s due to deer, monkeys and r h i n o c e r o s were a big problem. There was a s i g n i f i c a n t change to the cropping p r a c t i c e s i n the mid 1970's. Several i n f l u e n t i a l panchayat members convinced the government of Nepal to a s s i s t them i n b u i l d i n g an i r r i g a t i o n system of canals to d i v e r t water from the K a i r Khola f o r the eastern wards of Pithuwa. The western wards of Pithuwa organized a smaller i r r i g a t i o n system of t h e i r own from the Burhi r i v e r . Both canal systems were designed, c o n t r o l l e d and maintained by l o c a l farmer o r g a n i z a t i o n s . U n f o r t u n a t e l y , both these two canals and the ones s e r v i c i n g the J u t p a n i panchayat a l l competed f o r the same l i m i t e d amount of r i v e r water and government funds. Therefore, i r r i g a t i o n was and s t i l l i s a very c o n t r o v e r s i a l i s s u e . C o n t r o l of water over the growing seasons made i t p o s s i b l e to grow paddy r i c e as the monsoon crop and to grow as many as three crops per year on some farms. The land use h i s t o r y of the study area i s summarized i n Figure 2.5 (based on Shah, 1985). A e r i a l extent of the land use changes must be i n t e r p r e t e d c a r e f u l l y s i n c e the c l a s s i f i c a t i o n systems used i n the three years are not exact e q u i v a l e n t s . These maps do provide evidence though, that any changes i n s o i l q u a l i t y due to land use conversions revealed by the study must have occurred w i t h i n the l a s t 20 years. 2.A C u l t u r a l Features of Pithuwa Panchayat The Pithuwa panchayat, with an area of about 1200 hectares, i s home to 7100 people or 1200 households ( M a l a r i a E r a d i c a t i o n 1954 1964 1979 84°. 35' 27° 37' Source : Indian Topographic Maps, 1954 from photos at 1:40,000 84°.15' 84°35 ' Forest Resource Survey Office, 1964 from photos at 1 = 12,000 27° 45' 27" 40' 27° 37' Land Resource Mapping Project, 1979 from photos at 1: 50,000 Legend grazing land agriculture \ | forest cover > 10% gravel beds, river courses F i g u r e 2.5: Summary o f l a n d use h i s t o r y o f s t u d y a r e a i n n o r t h e a s t e r n C h i t a w a n ( b a s e d on Shah, unpub) 14 O f f i c e , 1985). As w i t h many r e s e t t l e d a r e a s , i t i s a het e r o g e n e o u s m i x t u r e of p e o p l e s and c a s t e s . The upper c a s t e Brahmins and C h h e t r i e s a r e more dominant i n the s o u t h ; w h i l e the m i d d l e c a s t e Gurungs, Magars and Tamangs a r e more common i n n o r t h e r n P i t h u w a . The N e w a r i s , or the merchant c a s t e c o n g r e g a t e near the *dobatos' or b a z a a r s ; as do the lo w e r c a s t e Kamis and Domis. Tharus and Chipangs d r i f t t h r o u g h the a r e a from time to time to be employed as c a s u a l farm l a b o u r . The m a j o r i t y of people speak N e p a l i as t h e i r second l a n g u a g e . Two r e l i g i o n s , H i n d u i s m and Buddhism, g r e a t l y i n f l u e n c e p e o p l e s ' l i v e s and b e h a v i o u r . R e g a r d l e s s of c a s t e , language or r e l i g i o n , n e a r l y a l l the p e o p l e o f P i t h u w a depend d i r e c t l y or i n d i r e c t l y on a g r i c u l t u r e f o r a l i v i n g . The f a m i l y u n i t i s v e r y i m p o r t a n t i n the r u r a l l i f e i n P i t h u w a , as i n most of N e p a l . F a m i l i e s t y p i c a l l y have 4 to 8 members, but extended f a m i l i e s of s e v e r a l g e n e r a t i o n s w i t h 8 to 18 members a r e a l s o common. C h i l d r e n u s u a l l y a t t e n d s c h o o l , but they a l s o r e p r e s e n t a s i g n i f i c a n t l a b o u r c o n t r i b u t i o n t o the o p e r a t i o n of the farm. Women too p l a y an i m p o r t a n t r o l e i n the farm l a b o u r . There a r e d e f i n i t e d i v i s i o n s of l a b o u r f o r a g r i c u l t u r a l c h o r e s ( S c h r o e d e r , 1985; B e n n e t t , 1983). Farm f a m i l i e s t y p i c a l l y own one or two h e c t a r e s of l a n d , so the d e n s i t y of peop l e per h e c t a r e i s r e l a t i v e l y h i g h , r a n g i n g from 6 to 20. O f t e n one or two f a m i l y members have o f f farm employment to supplement f a m i l y income. S c h o o l and h e a l t h f a c i l i t i e s a r e i m p o r t a n t i n d i c a t o r s of s t a n d a r d of l i v i n g and a t t i t u d e s t o o u t s i d e i d e a s . P i t h u w a 1 5 Panchayat was f o r t u n a t e to have s e v e r a l s c h o o l s . There are three primary s c h o o l s f o r 5 to 10 year o l d c h i l d r e n about a h a l f hour walk from most homes. The 11 to 14 year o l d c h i l d r e n a t t e n d one of two middle s c h o o l s from 30 to 50 minutes walk from most homes. There i s a good q u a l i t y high s c h o o l near the 'panchayat' o f f i c e t h a t a t t r a c t s 15 and 16 year o l d students from n e i g h b o r i n g areas as w e l l as from the study a r e a . Although there are no h e a l t h c e n t e r s or pharmacies i n Pithuwa, the area i s v i s i t e d r e g u l a r l y by nurses from the T a d i Bazaar h e a l t h p o s t . An understanding of the d e c i s i o n making s i t u a t i o n s i n the government and community i s important i n a g r i c u l t u r a l development or land use management p l a n n i n g . The 'panchayat' i s the b a s i c or v i l l a g e l e v e l of a three t i e r e d government system. Each panchayat i s d i v i d e d i n t o 9 wards based on p o p u l a t i o n and n a t u r a l boundaries. Each of these wards e l e c t s to a ward committee 5 farmers or v i l l a g e r s t h a t r e p r e s e n t t h e i r concerns at the v i l l a g e assembly. The assembly i n t u r n e l e c t a 'Pradhan Panch' or chairman and a 'Upa-Pradhan Panch' or vice-chairman to r e p r e s e n t the Pithuwa panchayat at Chitawan d i s t r i c t meetings i n Bharatpur. When a d i s t r i c t such as Chitawan holds a meeting, there can be as many as 40 panchayats or 80 members a t t e n d i n g . Each of the 75 d i s t r i c t s i n Nepal e l e c t two r e p r e s e n t a t i v e s by a d u l t f r a n c h i s e ( i . e . e l e c t e d from the v i l l a g e s ) to the n a t i o n a l 'Rastrya Panchayat' governing l e v e l to set p o l i c y and a d m i n i s t e r funds i n Kathmandu. The powers and r e s p o n s i b i l i t i e s of t h i s group are counter balanced by o f f i c e r s appointed by the King (25 per cent appointed : 75 per cent e l e c t e d ) . T h i s group e l e c t s a prime 1 6 m i n i s t e r . In f i n a l d e c i s i o n s , the King, c o n s i d e r e d to be a r e i n c a r n a t e of Lord Vishnu, has u l t i m a t e veto powers. (Khoju, p e r s . comm.) D e c i s i o n making and flow of i n f o r m a t i o n w i t h i n t h i s system i s cumbersome and i n e f f i c i e n t . The l a c k of a t r a n s p o r t a t i o n and communication network acc e n t u a t e s the problem f u r t h e r . As a g e n e r a l r u l e , the predominantly r u r a l p o p u l a t i o n of Pithuwa f e e l i s o l a t e d and a l i e n a t e d from t h e i r governments; but the King and Queen are s t i l l very r e s p e c t e d perhaps because of the r e l i g i o u s overtones of t h e i r p o s i t i o n s . Thus, d e c i s i o n s at the v i l l a g e l e v e l are more i n f l u e n c e d by f a m i l y or r e l i g i o n . Because of t h e i r s u b s i s t e n c e l e v e l of l i v i n g , d e c i s i o n s are s h o r t term r a t h e r than long term i n n a t u r e . 2.5 Farming and Cropping Systems The farming systems of the study area are best d e s c r i b e d i n the context of t h e i r g o a l s . The f i r s t p r i o r i t y i s to supply enough farm products to feed the f a m i l y . Secondly, i t i s hoped th a t there w i l l be some s u r p l u s p r o d u c t i o n to p r o v i d e c l o t h i n g , housing, s c h o o l i n g f o r the c h i l d r e n and perhaps a f a m i l y b i c y c l e f o r t r a n s p o r t . A t h i r d goal may be to purchase a d d i t i o n a l c r o p p i n g i n p u t s and to improve the farm o p e r a t i o n . Most farms operate at a l e v e l whereby the f i r s t g oal i s met but only p o r t i o n s of the second and t h i r d are a c h i e v e d . They would be c l a s s i f i e d as i n the e a r l y consumer stage of a g r i c u l t u r a l development a c c o r d i n g to an i n t e r n a t i o n a l study (Harwood, 1979). Farms i n the study area are t y p i c a l l y mixed crop and animal 1 7 e n t e r p r i s e s . C e r e a l s such as r i c e , maize and wheat are grown to supply the s t a p l e d i e t f o r the f a m i l y . L i v e s t o c k are an i n t e g r a l part of the farming o p e r a t i o n and pr o v i d e draught power, manure f o r compost, and some d i e t a r y p r o t e i n i n the form of milk, eggs or meat. F i g u r e 2.6 i l l u s t r a t e s the i n t e r a c t i o n s among the components of the average farming system. Crop p r o d u c t i o n c e n t e r s around the monsoon crop of paddy r i c e , the p r e f e r r e d s t a p l e i n the f a m i l y d i e t . Where i t i s not p o s s i b l e to p l a n t r i c e , maize i s grown i n the monsoon and c o n t r i b u t e s to both the f a m i l y and l i v e s t o c k d i e t s . Wheat and mustard are the main crops grown i n the w i n t e r , depending on r e s i d u a l s o i l moisture and t i m i n g of farming o p e r a t i o n s . Of the two, mustard i s f i r s t p r i o r i t y s i n c e i t i s a h i g h l y valued cash crop. P u l s e s or l e n t i l s are grown i n both the monsoon and winter seasons i n minor amounts but they r e p r e s e n t an important, high q u a l i t y p r o t e i n c o n t r i b u t i o n to the f a m i l y d i e t . I t i s u s u a l l y p o s s i b l e to grow two crops per year, and with recent i n n o v a t i o n s three crops a year can be grown. Where water i s a v a i l a b l e and by p l a n t i n g an e a r l i e r maturing r i c e such as the ' l o t o ' (or plump) v a r i e t y i n the monsoon, the winter mustard crop i s p l a n t e d and matured sooner, l e a v i n g a few pre-monsoon months to grow an e a r l i e r maturing maize c r o p . Farmers i n a few areas i n Pithuwa were r e l a y i n g potato with wheat on n o n i r r i g a t e d ^pakho' lan d i n the winter f o l l o w i n g the monsoon maize crop. Some adventurous farmers were i n t e r c r o p p i n g pulses with the maize crop i n the monsoon f o l l o w e d by mustard as the winter c r o p . Another method of squeezing a t h i r d crop i n t o the t i g h t s e a s o n a l Community owned resources Farm controlled production resources Marketplace resources timber & firewood farm household power 1 labour 1 I land 1 1 ( cash gathering draft / /field I power / \work animal care livestock for sale S consumption manure feed compost S leaf litter homestead & garden upland or rainfed raize growing land fodder & fuel lowland or irrigated rice growing land purchase S sale of goods & services/ bazaars & markets igure 2.6: Resource flows w i t h i n the farming system (based on Barlow et a l , 1983; Mathema, 1982) 1 9 schedule was to p l a n t soybeans or pulses along the r i c e bunds. There seems to be no waste i n terms of l a n d or growing season on most farms i n Pithuwa. Farmers have always r e c o g n i z e d the importance of the l i v e s t o c k component i n the o p e r a t i o n of the farming system. The emphasis i s on c a t t l e and b u f f a l o , with average h o l d i n g s being about 5 or 6. Of these there would t y p i c a l l y be two female b u f f a l o kept f o r milk p r o d u c t i o n , a p a i r of male b u f f a l o or b u l l o c k s used f o r draught power and one or two c a l v e s . Small numbers of goats, c h i c k e n s and the o c c a s i o n a l p i g are r a i s e d f o r meat or eggs (which are only consumed once or twice a week as a l u x u r y i t e m ) . The q u a l i t y of l i v e s t o c k i n the study area i s q u i t e poor. I n d i s t i n c t indigenous breeds, such as v a r i o u s s t r a i n s of the Bos  i n d i c u s type of c a t t l e , are the norm. C a t t l e are s m a l l and low producing, e.g. 200 l i t e r s of milk per l a c t a t i o n . S e l e c t i v e breeding or up-grading by s l a u g h t e r are not a c c e p t a b l e f o r r e l i g i o u s reasons. Animals are not t r e a t e d f o r p a r a s i t e s s i n c e v e t e r i n a r y s e r v i c e s are inadequate. The s i t u a t i o n i s somewhat b e t t e r f o r b u f f a l o , i n that some breed improvement and feed management are p r a c t i c e d , and milk p r o d u c t i o n has r i s e n from 700-1000 l i t e r s to 2000-2500 l i t e r s per l a c t a t i o n (LRMP, 1983c). The amount of feed f o r farm animals i s l i m i t e d . Whenever p o s s i b l e , g r a i n and crop r e s i d u e s are fed to the animals. But w i t h i n a few months a f t e r the monsoon crop h a r v e s t , feed i s i n s h o r t s u p p l y . Animals are then grazed on v i l l a g e p a s t u r e s , s t u b b l e f i e l d s or the nearest f o r e s t e d l a n d s . 20 2.6 Emerging Land Use C o n f l i c t s I t i s obvious that Nepalese farming systems are dependent on p u b l i c a l l y owned g r a z i n g and f o r e s t lands f o r t h e i r e x i s t e n c e . Fodder e x t r a c t i o n r a t e s exceed fuelwood or timber requirements. The removal of these three major f o r e s t p r o d u c t s , i . e . timber, fuelwood and fodder, i s o f t e n g r e a t e r than the r e g e n e r a t i v e c a p a c i t y of the f o r e s t . ( B a j r a c h a r y a , 1980; Wyatt-Sraith, 1981). Attempts to e n f o r c e f o r e s t r e s e r v e s and c o n s e r v a t i o n by a hand f u l of f o r e s t o f f i c e r s are met with s t r o n g r e s i s t a n c e from the numerous farmers who depend on these i n p u t s f o r t h e i r s u r v i v a l . W i t h i n t h i s b i o p h y s i c a l , c u l t u r a l and h i s t o r i c a l s e t t i n g the study p r o j e c t was undertaken to e l u c i d a t e some of the problems of land use and s o i l d e g r a d a t i o n . 21 CHAPTER 3: METHODS 3.1 O r g a n i z a t i o n of the Study 3.1.1 Study Area S e l e c t i o n I n f o r m a t i o n c o l l e c t e d by the Land Resource Mapping P r o j e c t was used to choose the study area and to s e l e c t the land use c a t e g o r i e s (LRMP 1983a,b,c; 1985b). The study area was l o c a t e d i n the Chitawan D i s t r i c t f o r the f o l l o w i n g reasons: a) r e l a t i v e ease of access and f i e l d w o r k l o g i s t i c s , b) i t s high p r o d u c t i o n c a p a b i l i t y , c) c o n t a c t people with Cropping Systems p r o j e c t & Rampur campus, d) a v a i l a b l e data other than LRMP i n f o r m a t i o n , and e) r e p r e s e n t a t i v e area i n terms of land use c o n f l i c t s and s o i l d e g r a d a t i o n problems a f t e r c o n v e r s i o n of f o r e s t to a g r i c u l t u r e . The geology, land systems and land u t i l i t y maps were compiled and planiraetered f o r the Chitawan D i s t r i c t at a s c a l e of 1:125,000 (LRMP, 1984a,b,c). From a comparison of the land types and c u r r e n t land uses, i t was e v i d e n t t h a t there was an e x t e n s i v e area near J u t p a n i under f o r e s t t h a t was h i g h l y capable of i n t e n s i f i e d a g r i c u l t u r e . I n t e r p r e t a t i o n of the 1:50,000 a i r photographs of the area r e v e a l e d a neighbouring area near Pithuwa on the same land type that had been c u l t i v a t e d f o r twenty years (Shah, 1985). An a i r photo mosaic was made of the study area ( P l a t e 3.1). 3.1.2 Land Use and P l o t S e l e c t i o n Ten prominent land use c a t e g o r i e s were chosen f o r study i n the Pithuwa and S a k t i k h o r Panchayats of Chitawan ( r e f e r to Table 3.1). Four of the ten land uses were i l l u s t r a t e d here: 23 Table 3.1: Land Use Categories, Descriptions, LRMP Mapping Equivalents & Importance to the Study Land Use LRMP mapping No.of Importance to the Study Codes & Description equivalents* plots fa natural, untouched productive forest HSal3M, HTMH4M 8 serves as a baseline of soil f e r t i l i t y evaluation fd grazed, utilized degraded forest HSald3M, H3WHd3I 11 more widespread condition of forests under present conditions PC traditional, rainfed •pakho' agriculture maize, mustard Fk 14 prominent double-cropping rotation, often with declining crop yields pa innovative, rainfed 'pakho' agriculture maize,potato-wheat not mapable or included in m 10 increasingly popular triple-cropping rotation involving a root crop S deeper ploughing of the soil kh innovative, irrigated 'khet' agriculture rice,mustard,maize Fr or F/r/ 14 increasingly popular triple-cropping rotation involving a rice crop & critical timing of irrigation and farm operations pa innovative, rainfed 'pakho' with legumes maize-legume,mustard not mapable or included in m 4 important innovation involving legume in a triple-cropping rotation that should improve soil f e r t i l i t y status Pi innovative, rainfed 'pakho' agroforestry with i p i l i p i l trees not mapable or included in m 4 important innovation involving a leguminous tree alley-cropped within a triple-cropping rotation to relieve pressure on forests kc traditional, irrigated 'khet' agriculture rice,mustard Fb 3 relatively common double-cropping rotation involving longer maturing, more preferred rice variety kd traditional, irrigated 'khet' with legumes rice, legume Fd 3 traditional way of including legumes (lentils) after longer maturing, more preferred rice variety ki innovative, rainfed 'khet' with legumes rice,mustard,legume not mapable or included in m 3 contraversial cropping rotation involving a green manured legume crop (dainchha) note that at LRMP (Land Resource Mapping Project) land use mapping scale of 1:50,000 most of agricultural area was mapped as Frk; and most of forest was mapped as HSal3I 24 n a t u r a l f o r e s t or * f a ' i n P l a t e 3.2, degraded f o r e s t or * f d ' i n P l a t e 3.3, i n n o v a t i v e i r r i g a t e d t r i p l e c r o p p i n g or *kh' i n P l a t e 3.4 and i n n o v a t i v e r a i n f e d t r i p l e c r o p p i n g or *pa' i n P l a t e 3.5. P r e l i m i n a r y t r a n s e c t s were made ac r o s s the panchayats i n mid October with the a s s i s t a n c e of G.Traboeld, to determine the v a r i a b i l i t y of s o i l - l a n d types and predominant c r o p p i n g p a t t e r n s of the study a r e a . To minimize v a r i a b i l i t y , as many land uses as p o s s i b l e ( i . e . 8 of the 10) were chosen on the same land type or LRMP mapping u n i t . For each of f i v e land uses 10 to 15 p l o t s were l o c a t e d ; while f o r the other f i v e land uses only 3 to 4 p l o t s were a v a i l a b l e . A p l o t s i z e of 10 meters by 10 meters was chosen s i n c e t h i s r e p r e s e n t e d the average s i z e of the *khet' or r i c e f i e l d s . The farmer i n t e r v i e w s ( r e f e r to d e s c r i p t i o n of these l a t e r i n t h i s c h a p t e r , s e c t i o n 3.3) were used to l o c a t e p l o t s i n each of the a g r i c u l t u r a l land uses. The f o l l o w i n g c r i t e r i a were used to s e l e c t farmers' f i e l d s f o r sampling: a) c r o p p i n g r o t a t i o n , b) land use h i s t o r y ( i . e . at l e a s t 5 years with no change), c) farm s i z e (to r e p r e s e n t a l l s i z e s of farms), d) l o c a t i o n (10 to 15 i n each of f i v e areas or wards), e) farmers' names ( t o r e p r e s e n t a v a r i e t y of c a s t e s ) , and f ) r e l i a b i l i t y of i n t e r v i e w . F o r e s t e d p l o t s were s e l e c t e d by c o n s u l t a t i o n with P.B. Shah ( s o i l s c i e n t i s t ) , D. Chapa ( f o r e s t e r ) and R. Kabzeras ( f o r e s t e c o l o g i s t ) . The f o l l o w i n g c r i t e r i a were c o n s i d e r e d important: a) f o r e s t type, b) community s u c c e s s i o n type, c) amount of canopy cover, d) amount of r e g e n e r a t i o n , and e) e x p l o i t a t i o n i n d i c a t o r s , e.g.evidence of wood c u t t i n g . P l a t e 3.2: N a t u r a l untouched p r o d u c t i v e f o r e s t or x f a ' l a n d use t y p e ; used to e s t a b l i s h a b a s e l i n e f o r the e v a l u a t i o n of s o i l f e r t i l i t y and f o r e s t biomass. P l a t e 3.3: Degraded u t i l i z e d grazed f o r e s t or " f d ' l a n d use type p r e v a l e n t c o n d i t i o n of the f o r e s t i n the study a r e a . P l a t e 3 .4 : I n n o v a t i v e r a i n f e d a g r i c u l t u r e or ' p a ' l and use t y p e ; the monsoon maize crop was f o l l o w e d by potatoes i n the w i n t e r . A c a r e f u l h i l l i n g o p e r a t i o n conserved enough s o i l mois ture to germinate a r e l a y e d crop of wheat between the rows . P l a t e 3 . 5 : I n n o v a t i v e i r r i g a t e d a g r i c u l t u r e or " k h ' l and use t y p e ; t h i s t r i p l e c r o p p i n g r o t a t i o n or r i c e , mustard , maize i n v o l v e d c r i t i c a l t i m i n g of h a r v e s t i n g of r i c e and seeding of mustard fo r s u c c e s s . 2 7 3.2 S o i l Q u a l i t y E v a l u a t i o n Methods 3.2.1 F i e l d S o i l Sampling & A n a l y s i s i n Nepal The f i e l d sampling was c a r r i e d out from October to November, 1985. Composite samples of the s u r f a c e h o r i z o n s (0-20 cm.) were taken a c c o r d i n g to a randomized s t r a t i f i e d sampling d e s i g n . At three p o i n t s i n each p l o t , bulk d e n s i t y and s o i l moisture samples were taken using the v o l u m e t r i c method ( K l i n k a et a l , 1981) and the g r a v i m e t r i c method (Gardner, 1965) r e s p e c t i v e l y . At the same three p o i n t s , s o i l c o l o u r , pH, s o i l t e x t u r e and depth of A h o r i z o n were noted a c c o r d i n g to standard s o i l survey methods (USDA, 1951, 1975). Compaction of the s u r f a c e h o r i z o n was a l s o measured u s i n g a pocket penetrometer at 15 p o i n t s w i t h i n the p l o t (Davidson, 1967). P i t s were dug to 50 cm. and then augered to 200 cm. The land types and s o i l p r o f i l e s were d e s c r i b e d using N a t i o n a l S o i l Survey Programme of Nepal p r o f i l e d e s c r i p t i o n sheets (example i n Appendix E ) . Subsurface B and C h o r i z o n s were then sampled. The time r e q u i r e d to sample a p l o t v a r i e d from 1 to 4 hours. F i e l d methods and sampling s i t e s were documented p h o t o g r a p h i c a l l y ( P l a t e 3.6). The sampling methodology f o r the a g r i c u l t u r a l areas was repeated f o r the f o r e s t e d land uses. Land uses other than a g r i c u l t u r a l and f o r e s t e d c a t e g o r i e s were c o n s i d e r e d . An a g r o f o r e s t r y system ( i . e . leucaena sp. a l l e y cropped with maize, v e g e t a b l e s ) at the Japanese E x t e n s i o n Farm i n southwestern Chitawan was v i s i t e d . E i g h t p l o t s were s o i l sampled and the s t a f f were i n t e r v i e w e d . Due to s c h e d u l i n g problems and time c o n s t r a i n t s , i t was not p o s s i b l e to c o o r d i n a t e with J . P l a t e 3 .6 : F i e l d sampling methods i n a g r i c u l t u r a l a r ea s ; s o i l p r o f i l e s were d e s c r i b e d and sampled fo r each p l o t and the farmer was i n t e r v i e w e d about c r o p p i n g i n p u t s and y i e l d s from that f i e l d . P l a t e 3 . 7 : Key informant i n t e r v i e w s by i n f o r m a l methods; i n f o r m a t i o n about the c u l t u r a l p r a c t i s e s of the area was obta ined by c o n v e r s a t i o n wi th t h i s farm f a m i l y . 29 Lekhraehl, a g r a s s l a n d e c o l o g i s t or to adequately sample the g r a z i n g land use c a t e g o r y . T r a v e l l i n g time f o r the l a s t f i e l d t r i p to sample the f o r e s t and a g r o f o r e s t r y land uses was g r e a t l y reduced by the jeep t r a n s p o r t o r g a n i z e d by P.B. Shah. With a team of three people ( i . e . w i t h P.B. Shah, R. Kabzems, U. Dhakkel and/or K. Neupani) i t was p o s s i b l e to sample a t o t a l of 95 p l o t s throughout the study area i n 5 weeks. Of the 95 p l o t s , 7 v a r i a b i l i t y p l o t s were c o n s i d e r e d r e p r e s e n t a t i v e of the major land use c a t e g o r i e s . To o b t a i n an i d e a of the v a r i a t i o n w i t h i n p l o t s and sampling adequacy, a l l 10 s u r f a c e samples were i n d i v i d u a l l y bagged f o r a n a l y s i s r a t h e r than b u l k i n g them i n t o 1 composite sample. A l l other a s p e c t s of the methodology were as d e s c r i b e d above. The planned l o c a t i o n of a f i e l d o f f i c e had to be m o d i f i e d . The s o i l l a b o r a t o r y f a c i l i t i e s at the I n s t i t u t e of A g r i c u l t u r a l and Animal Science (IAAS) campus were u n a v a i l a b l e f o r use due to p o l i t i c a l problems. So the accommodation arranged with a farmer served both as s l e e p i n g q u a r t e r s and f i e l d o f f i c e . A Grade B brass p h a r m a c e u t i c a l balance was purchased to determine 'wet' s o i l moisture weights, at the end of each sampling day. S o i l samples were d r i e d on the farmhouse r o o f . When time p e r m i t t e d , p r e l i m i n a r y s o i l t e s t s f o r N, P and K u s i n g a LaMotte f i e l d o f f i c e k i t were c a r r i e d out. A f i e l d e stimate of aggregate s t a b i l i t y of some p l o t s was determined u s i n g the a l c o h o l method ( S p r o u l e , pers.comm.; T a y l o r & A s h c r o f t , 1972). At the F o r e s t r y Department s o i l l a b o r a t o r y i n Kathmandu, 30 s o i l moisture and bulk d e n s i t y samples were d r i e d and weighed. Bulk d e n s i t y samples were passed through a 2mm s i e v e and the weight of coarse fragments was determined. Bulk d e n s i t y s o i l moisture and f i e l d s o i l moisture were c a l c u l a t e d . The other 250 A, B and C h o r i z o n samples were weighed and packaged f o r shipment to Canada. D u p l i c a t e samples were l e f t with P.B. Shah at the I n t e g r a t e d Surveys S e c t i o n , to be shipped l a t e r i f r e q u i r e d . O f f i c i a l p e r m i s s i o n was obtained from the M i n i s t r i e s of A g r i c u l t u r e and F o r e i g n A f f a i r s and the s o i l samples were shipped i n l a t e December, 1985. The time r e q u i r e d f o r a i r f r e i g h t t r a n s p o r t was approximately two weeks. 3.2.2 Chemical and P h y s i c a l L a b o r a t o r y A n a l y s i s The s o i l a n a l y s i s was conducted at the Department of S o i l S c i e n c e , U n i v e r s i t y of B r i t i s h Columbia from January to May, 1986, with the a s s i s t a n c e of J . Densmore. A f t e r samples were c l e a r e d through Canadian Customs, they were crushed with a wooden r o l l e r , passed through a 2 mm s i e v e to remove the coarse fragments and s t o r e d i n a i r - t i g h t p l a s t i c c o n t a i n e r s u n t i l a n a l y s i s was complete. A l i s t of s o i l p r o p e r t i e s and methods used f o r a n a l y s i s i s summarized i n Tab l e 3.2. 3.2.3 S t a t i s t i c a l A n a l y s i s of S o i l s Data The s o i l s data were compiled i n t o the f o l l o w i n g three s u b s t u d i e s : s o i l v a r i a b i l i t y , predominant land uses and p o t e n t i a l i n n o v a t i o n s . For each of these three s u b s t u d i e s there 3 1 Table 3.2: Soil Properties Analysed & Methods Used For Fieldwork in Nepal & Laboratory Work in Canada Soil property Fieldwork Method used Reference, year Equipment required Laboratory Method used Reference, year PH Hellige-Truog reagent kit in H20 (1:1) in CaC12 (1:2) Lavkulich, 1978 organic carbon Munsell color USDA, 1951 Munsell charts Walkley-Black Allison, 1965 total nitrogen semi-micro Kjeldahl Bremner et al, 1982 nitrate-nitrogen Morgan's field estimate Lunt et al, 1950 LaMotte kit extractable phosphorus Morgan's field estimate Lunt et al, 1950 LaMotte kit Bray 1, acid ammonium fluoride Watanabe & Olsen, 1965 exchangeable cations & CBC displacement by NH4QAC Chapman, 1965 exchangeable aluminum displacement by KC1 Juo, 1976 McLean, 1965 extractable aluminum & iron Munsell color USDA, 1951 extra red charts citrate-bicarbonate-dithionite Weaver et al, 1968 clay mineralogy X-ray diffraction Lavkulich, 1978 particle size hand texturing USDA, 1951 plastic bottle pipette Shelrick et al, 1984 bulk density volumetric Klinka, 1981 graduated cylinder compaction penetrometer Davidson, 1965 pocket penetrometer field moisture gravimetric content Gardner, 1965 tin cans, balance,oven water storage capacity porous plate Richards, 1965 extraction Hillel, 1980 at 1/3 S 15 bar 32 were two data s e t s based on the number of p l o t s ( i . e . 10 or 4) per land use ( r e f e r to Table 3.3). N u t r i e n t data were expressed on a c o n c e n t r a t i o n r a t h e r than on an a r e a l b a s i s . Bulk d e n s i t y v a l u e s were more v a r i a b l e w i t h i n p l o t s than between land use c a t e g o r i e s . C onversion to a kg/ha b a s i s would have exaggerated d i f f e r e n c e s . A l l s t a t i s t i c a l a n a l y s i s was c a r r i e d out on a PC-micro computer. Symphony, SPSSPC and SYSTAT were used to process and analyze the data. For each land use c a t e g o r y , d e s c r i p t i v e s t a t i s t i c s , i . e . means, maximum and minimum v a l u e s , standard d e v i a t i o n , v a r i a n c e and skewness, were c a l c u l a t e d f o r every s o i l p r o p e r t y u s i n g SPSSPC ( N o r u s i s , 1986). Each combination of two land use c a t e g o r i e s was t e s t e d f o r s i g n i f i c a n c e u s i n g the Mann-Whitney U-Test ( S i e g e l , 1956). S e l e c t e d r e s u l t s were t r a n s f e r r e d back to the Symphony program to produce graphs and f i g u r e s (Cobb, 1984) . M u l t i v a r i a t e a n a l y s i s techniques ( W i l k i n s o n , 1986) were a p p l i e d to S o i l s Data Set I I I ( i . e . major s o i l p r o p e r t i e s under 5 predominant lan d uses) to determine the r e l a t i v e c o n t r i b u t i o n of v a r i a b i l i t y of s e l e c t e d s o i l p r o p e r t i e s to d i f f e r e n c e s amongst land uses ( d i s c r i m i n a n t & p r i n c i p l e components a n a l y s i s , SYSTAT); and to determine the p r o p e r t i e s necessary to group a l l values i n t o 5 groups r e p r e s e n t i n g the predominant land use c a t e g o r i e s ( c l u s t e r a n a l y s i s , SYSTAT). Table 3.3: Organization of data sets for analysis Name of Total Obs. # of Description of data sets data set obs. /LU var. Soils 1 69 9-10 11 Variability substudy; major soil nutrients Soils 2 21 3 19 Variability substudy; minor soil nutrients & physical properties Soils 3 50 9-10 24 Predominant land uses; major soil nutrients, bulk dens.& compaction Soils 4 20 4 18 Predominant land uses; minor soil nutrients & physical properties Soils 5 35 3-4 11 Legume innovations; major soil nutrients, bulk density & compaction Soils 6 16 1-2 9 Legume innovations; minor soil nutrients S physical properties Farm 1 75 NA 21 General farm & family characteristics Farm 2 75 NA 21 Livestock substudy; numbers, types & uses Farm 3 75 NA 15 Cropping rotation types & proportions Farm 4 161 3-16 66 Cropping inputs & outputs Farm 5 75 NA 40 Selected parameters from Farm 1-4 for correlation tests Farm 6 75 NA 25 Parameters important for budgetting analysis of cropping systems Forest 19 8-11 10 Forest products & biomass on sampled plots Abbreviations used in table: obs. observations or data points LU land use var. variables or properties NA not applicable 34 3.3 A g r i c u l t u r a l P r o d u c t i v i t y E v a l u a t i o n Methods 3.3.1 I n t e r v i e w Techniques The study program began i n September, 1985 by i n t r o d u c i n g o u r s e l v e s to the "Pradhan Panch' or head of the l o c a l government and members of the s c h o o l board. I t was decided to s e l e c t 5 of the 9 wards or areas to get a r e p r e s e n t a t i v e c r o s s s e c t i o n of the panchayat. In each ward 2 to 5 key informant i n t e r v i e w s and 10 to 15 g e n e r a l farm i n t e r v i e w s were conducted. Key informants were i n t e r v i e w e d by i n f o r m a l methods i . e . while one i n t e r v i e w e r c h a t t e d c o n v e r s a t i o n a l l y with an i n d i v i d u a l or group of people, another team member recorded notes d i s c r e e t l y (Banta, 1976; Chambers, 1985; L i , 1980; Rhoades, 1985). T h i s method was p r e f e r r e d f o r g a t h e r i n g i n f o r m a t i o n f o r g e n e r a l background about the area and c u l t u r a l p r a c t i c e s or about s e n s i t i v e i s s u e s such as animal feed or i r r i g a t i o n a v a i l a b i l i t y . I t a l s o provided c r o s s checks of the formal i n t e r v i e w i n f o r m a t i o n . A key informant i n t e r v i e w with a farm f a m i l y i s i l l u s t r a t e d i n P l a t e 3.7. A more formal approach was used to conduct the g e n e r a l farm i n t e r v i e w s i n the Pithuwa Panchayat. A p r e s e t q u e s t i o n n a i r e was compiled u s i n g p r e v i o u s l y t e s t e d i n t e r v i e w s (LRMP, 1983c; Mathema, 1980) and t r a n s l a t e d i n t o N e p a l i . The data c o l l e c t e d i n t h i s way i n c l u d e d f a m i l y s i z e and composition, land h o l d i n g , amount of 'khet' or i r r i g a t e d r i c e l a n d , numbers and uses of l i v e s t o c k , c r o p p i n g r o t a t i o n s p r a c t i c e d and amounts of each, i n p u t s of seed, compost and f e r t i l i z e r s , crop y i e l d s , crop r e s i d u e y i e l d s , uses of crop and r e s i d u e s . E n g l i s h t r a n s l a t i o n s 3 5 of the q u e s t i o n n a i r e s a r e i n c l u d e d i n Appendix F. S i n c e c o - o p e r a t i o n w i t h l e c t u r e r - r e s e a r c h e r s from IAAS ( i . e . I n s t i t u t e of A g r i c u l t u r e and A n i m a l S c i e n c e ) , as o r i g i n a l l y i n t e n d e d was not p o s s i b l e , more a s s i s t a n t s w i t h l e s s e x p e r i e n c e had to be h i r e d . Four N e p a l i i n t e r p r e t e r s ( S . N e p a l i , Y. S h r e s t h a , N. O l i and R. S h r e s t h a ) a s s i s t e d w i t h t h i s program f o r v a r y i n g l e n g t h s of time (4 to 31 d a y s ) . By e a r l y November of 1985, 75 f o r m a l i n t e r v i e w s and 25 i n f o r m a l i n t e r v i e w s were conducted i n the P i t h u w a P a n c h a y a t . 3.3.2 Data O r g a n i z a t i o n & S t a t i s t i c a l A n a l y s i s The i n t e r v i e w d a t a went t h r o u g h s e v e r a l t r a n s f o r m a t i o n s b e f o r e a n a l y s i s . F i r s t the i n t e r v i e w s were t r a n s l a t e d and a l l u n i t s of measure were c o n v e r t e d t o m e t r i c u n i t s ( r e f e r t o Ap p e n d i c e s D & J ) . Then D.R. Sharraa and U. Sherma of I n t e g r a t e d S u r veys S e c t i o n i n Kathraandu t a b u l a t e d the d a t a and e n t e r e d i t onto d i s k e t t e s u s i n g an Osborne computer and D B a s e l l program. The d a t a were brought t o Canada and t r a n s l a t e d i n t o an IBMPC Symphony program. F i n a l l y , numbers of v a r i o u s l i v e s t o c k were c o n v e r t e d t o l i v e s t o c k u n i t s (L.S.U.) u s i n g s t a n d a r d v a l u e s ( W i l l i a m s o n , 1978). The d a t a were s u b d i v i d e d i n t o the f o l l o w i n g farm d a t a s e t s : a) g e n e r a l farm and f a m i l y c h a r a c t e r i s t i c s , b) l i v e s t o c k s e c t i o n , c) c r o p p i n g r o t a t i o n s , d) c r o p i n p u t s and y i e l d s , e) s e l e c t e d parameters from 4 p r e v i o u s farm d a t a s e t s , and f ) p arameters a f f e c t i n g c r o p p i n g system b u d g e t i n g a n a l y s i s . ( r e f e r t o T a b l e 3.3). 3 6 D e s c r i p t i v e s t a t i s t i c s were c a l c u l a t e d f o r each data s e t i n s e v e r a l ways: on the whole data s e t , s o i l sampled farms on l y , by ward and by farm s i z e w i t h i n the data s e t s . M u l t i v a r i a t e a n a l y s i s was done on Farm Data Set V to determine the p r o p e r t i e s most a f f e c t e d by farm s i z e ( W i l k i n s o n , 1986). 3.3.4 Budgeting Techniques Budgeting techniques (Harsh, 1981; Kay, 1986; Malmberg & P e t e r s o n , 1985) were used to o r g a n i z e i n f o r m a t i o n from key informant and g e n e r a l farm data s e t s i n t o an i n t e r a c t i v e worksheet. S e v e r a l s c e n a r i o s were then a p p l i e d to t h i s c r opping system 'model 1 to t e s t the s e n s i t i v i t y of farm income to some of the f a c t o r s of p r o d u c t i o n (Cobb, 1984). S e v e r a l s c e n a r i o s are i n c l u d e d i n Appendix L. 3.4 F o r e s t P r o d u c t i v i t y E v a l u a t i o n 3.4.1 F i e l d Biomass Survey A f t e r d i s c u s s i o n s with s e v e r a l people and o r g a n i z a t i o n s i n Kathmandu (Gilmore, Amatya), i t was decided that data from other biomass and p r o d u c t i v i t y s t u d i e s would be d i f f i c u l t to e x t r a p o l a t e to t h i s study a r e a . T h e r e f o r e Depuc Chapa of F o r e s t r y S e r v i c e s L t d . was c o n t r a c t e d to conduct a biomass survey of the f o r e s t p l o t s s i m u l t a n e o u s l y with our s o i l sampling of these a r e a s . The f o r e s t e d p l o t s were d e s c r i b e d and c l a s s i f i e d a c c o r d i n g to s u c c e s s i o n a l community, i . e . primary ( 1 s t ) , secondary (2nd), pre-climax (3rd) and climax ( 4 t h ) . Tree s p e c i e s were i d e n t i f i e d 3 7 and d i s t i n g u i s h e d a c c o r d i n g to use f o r timber, fuelwood or f o d d e r . Although biomass s t u d i e s are u s u a l l y done using b i g g e r p l o t s , i t was decided to keep the p l o t s i z e 10 by 10 meters to correspond to the a g r i c u l t u r a l sampling. W i t h i n each p l o t , t r e e s and s a p l i n g s l e s s than 7.5 cm diameter were counted. T o t a l s were d i v i d e d i n t o fodder s p e c i e s and other s a p l i n g s . Trees over 7.5 cm diameter were measured at b r e a s t h e i g h t u s i n g a tape measure, and the h e i g h t of t r e e s was determined using a c l i n o m e t e r . 3.4.2 C a l c u l a t i o n s & Data C o m p i l a t i o n The measurements d e s c r i b e d above were used to c a l c u l a t e volumes of s m a l l and l a r g e timberwood, using standard c o n v e r s i o n t a b l e s ( F o r e s t Resources Survey /USAID, 1964). S i m i l a r l y , a c a l c u l a t i o n was done f o r weight of fuelwood i n k ilograms per h e c t a r e u s i n g c o n v e r s i o n f a c t o r s from papers i n the Nepal J o u r n a l of F o r e s t r y (Chapa, 1985). 3.5 Land Use Management P l a n Two approaches, the environmental c o n s e r v a t i o n i s t and the d e c i s i o n making approaches, were used as frameworks f o r e v a l u a t i n g land use a l t e r n a t i v e s . In the f i r s t approach, key f a c t o r s were i d e n t i f i e d from the three s u b s t u d i e s of s o i l q u a l i t y , farm p r o d u c t i v i t y and f o r e s t p r o d u c t i v i t y . These f a c t o r s were then compared and c o r r e l a t e d (Spearman c o r r e l a t i o n , SYSTAT), or t e s t e d f o r s i g n i f i c a n c e 38 between c a t e g o r i c groupings ( K r u s k a l - W a l l i s , SYSTAT). The r e s u l t s were used to suggest s o i l conserving recommendations f o r land use management. The second approach used i n the study a l s o f o l l owed three s t e p s . F i r s t , c o n s i d e r a t i o n was given as to which l e v e l of decision-maker (eg. governmental planner, i n d i v i d u a l farmer) was the f o c u s . In the second step s i x c r i t e r i a important i n farm management d e c i s i o n making were i d e n t i f i e d . These were then used i n the f i n a l step to evaluate s e v e r a l land use management a l t e r n a t i v e s . 3 9 CHAPTER 4: RESULTS OF THE SOIL QUALITY EVALUATION The purposes of t h i s chapter are to determine the s o i l q u a l i t y under c u r r e n t land uses, to determine the v a r i a b i l i t y of s o i l p r o p e r t i e s , and to assess the p o t e n t i a l of legume-based or a g r o f o r e s t r y systems f o r c o n s e r v i n g s o i l . A b b r e v i a t i o n s f o r s o i l p r o p e r t i e s are used throughout the d i s c u s s i o n to economize on space and are e x p l a i n e d i n Appendix A. 4.1 V a r i a b i l i t y of S o i l P r o p e r t i e s The seven v a r i a b i l i t y p l o t s were c o n s i d e r e d r e p r e s e n t a t i v e of the land use c a t e g o r i e s f o r purposes of comparing c o e f f i c i e n t s of v a r i a t i o n and sampling requirement. I t should be noted though t h a t the c r i t e r i a f o r the lan d use c a t e g o r i z a t i o n took precedence over c r i t e r i a f o r s t r i c t l y s t a t i s t i c a l random s e l e c t i o n . The data from the seven v a r i a b i l i t y p l o t s , as summarized i n S o i l s Data Set 1 and 2 i n Appendix G, are used f o r the f o l l o w i n g a n a l y s i s and d i s c u s s i o n . 4.1.1 V a r i a b i l i t y W i t h i n Land Type The c o e f f i c i e n t s of v a r i a t i o n (CV's) covered a c o n s i d e r a b l e range, i . e . 1 to 160 per cent, t h a t seemed r e l a t e d to s o i l p r o p e r t y and land use c a t e g o r y . The order of i n c r e a s i n g o v e r a l l CV's f o r a l l s o i l p r o p e r t i e s (Table 4.1) was as f o l l o w s : pH(H20) <pH(CaC12) <BDens <orgC <totN <CEC <FC <WHC <WP <extFe <extAl <BSat <excCa <excMg <avaP <excK <excAl <Comp. Some of the values were lower than those expected from a review of the l i t e r a t u r e , i n p a r t i c u l a r t o t a l n i t r o g e n , a v a i l a b l e phosphorus and exchangeable c a l c i u m (Table 4.2). T h i s was 40 Table 4.1: Coefficients of Variation (CV%) for Various Land Use Categories (LU) & for Different Soil 10 samples within 10 by 10 m. field 3 samples within 10 by 10 m. field Overall Properties Forest LU Agriculture LU Legume LU Forest LU Agriculture LU Legume LU Land-fa fd pc pa kh pd pi fa fd pc pa kh pd pi type 5c pH (H20) 4.1 3.3 1.7 2.8 1.7 1.7 1.4 1.0 4.3 2.0 2.0 1.7 1.0 0.0 7.6 pH (CaC12) 6.9 5.2 2.4 3.3 1.4 3.5 2.8 2.4 4.2 1.2 3.1 1.8 2.3 2.5 12.9 orgC 13.7 13.6 3.4 4.2 5.1 2.5 24.1 5.9 8.6 2.0 5.1 3.4 4.5 53.3 20.2 totN 9.3 10.1 43.2 6.9 22.3 1.7 11.1 6.3 15.4 58.8 6.7 54.5 0.0 20.0 25.2 avaP 43.3 51.8 23.7 38.4 19.9 18.8 24.6 22.2 24.9 14.3 44.4 0.8 24.7 11.2 69.0 excCa 45.2 44.7 9.5 12.6 9.6 8.2 16.6 12.1 29.4 8.0 15.4 18.9 3.9 23.8 38.2 excMg 24.9 22.9 6.0 13.4 14.4 9.9 17.9 6.1 14.5 0.0 13.5 22.2 4.0 21.3 44.2 excK 37.6 48.3 93.5 159.3 83.3 69.2 23.1 15.9 37.1 54.3 102.8 75.0 88.9 15.4 91.3 CBC 11.6 11.6 7.4 6.3 7.5 13.6 25.0 7.3 2.3 5.2 6.4 3.4 3.4 19.4 30.0 Base Sat* 26.0 29.3 10.1 12.9 11.0 13.5 18.4 3.9 14.5 7.5 22.5 20.7 5.8 6.5 37.8 extFe (cbd) 1.7 1.7 31.9 35.8 44.4 12.6 31.6 31.7 extAl (cbd) 3.3 2.9 31.3 36.8 31.3 11.1 30.0 35.7 excAl (KC1) 117.9 48.6 0.0 0.0 0.0 0.0 0.0 182.4 PC (l/3bar) 5.2 4.6 4.1 15.9 0.8 1.8 15.7 22.9 WP (15bar) 1.4 2.3 1.0 1.2 5.9 2.5 39.8 34.4 WHC 9.1 6.8 4.7 21.3 1.2 3.3 33.7 32.5 Bulk Dens. 5.0 42.0 3.6 14.3 10.3 6.2 5.1 16.2 Compaction *58.2 19.7 159.2 146.1 105.8 102.2 15 observations within 10 by 10 m. field Table 4.2: Coefficients of Variation in Chitawan Study Compared with Literature Values Selected Literature Values Soil Overall *A *B *C Property Forest LU Agric LU Land- (1971) (1971-81) (1980-83) Analysed fa,fd pa-pd,kh type 5c O.Olha Forest Agric. Overall <2.0ha pH in H20 3-4 1-3 8 7 <15 pH in CaC12 5-7 1-4 13 2-11 <15 orgC 13-14 2-5 20 10-20 34 35 + totN 9-11 1-43 25 10-20 11-65 29-56 11-65 avaP 43-53 18-38 69 13-121 06-153 5-74 5-153 excCa 44-46 8-13 38 10-40 20-127 16-186 5-186 35 + excMg 22-25 6-15 44 10-20 12-96 12-96 36-41 35 + excK 37-50 69-160 91 11-112 13-63 13-111 2-111 35 + CEC 11-12 6-14 30 15-35 Base Sat% 26-30 10-14 38 15-35 Selected Literature: Beckett & Webster, 1971 Wilding & Drees, 1983 Smeck & Wilding, 1980 Wilding, 1982 Bracewell, Robertson & Logan, 1979 Blyth & Macleod, 1978 Campbell, 1978 Patterson s Wall, 1981 41 p r o b a b l y due t o t h e f a c t t h a t t h e p r e d o m i n a n t l a n d t y p e i n t h i s s t u d y (LRMP mapping u n i t 5c) i s r e l a t i v e l y s t a b l e w i t h l e s s a c t i v e a l l u v i a l and e r o s i o n a l p r o c e s s e s i n f l u e n c i n g i t . 4.1.2 V a r i a b i l i t y W i t h i n L a n d Use C a t e g o r i e s Two g e n e r a l i z a t i o n s can be made f r o m F i g u r e s 4.1 and 4.2 t h a t summarize t h e c o e f f i c i e n t s o f v a r i a t i o n by l a n d use c a t e g o r y and s e l e c t e d s o i l p r o p e r t i e s . F i r s t , t h e CV's o f i n d i v i d u a l l a n d u s e s were l e s s t h a n t h e CV's o f o v e r a l l l a n d t y p e . S e c o n d l y , s o i l p r o p e r t i e s w i t h i n a g r i c u l t u r a l l a n d u s e s were u s u a l l y l e s s v a r i a b l e t h a n f o r e s t e d l a n d u s e s . T h i s was n o t s u r p r i s i n g g i v e n t h e o b v i o u s d i f f e r e n c e s i n t y p e s , s i z e s and d i s t r i b u t i o n s o f v e g e t a t i o n i n r e l a t i o n t o t h e s i z e o f t h e v a r i a b i l i t y p l o t s . D e e p e r r o o t d e v e l o p m e n t and n u t r i e n t e x t r a c t i o n would a l s o i n c r e a s e t h e v a r i a b i l i t y o f s o i l p r o p e r t i e s u n d e r f o r e s t e d l a n d u s e s . The e x c e p t i o n s t o b o t h t h e s e g e n e r a l i z a t i o n s were t o t a l n i t r o g e n and e x c h a n g e a b l e p o t a s s i u m , w h i c h were most v a r i a b l e u n d e r some o f t h e a g r i c u l t u r a l l a n d u s e s ( F i g u r e 4 . 3 ) . C l o s e r s c r u t i n y o f t h e a g r i c u l t u r a l s y s t e m s r e v e a l s p o s s i b l e e x p l a n a t i o n s f o r t h e s e f i n d i n g s . I r r i g a t i o n w a t e r i n t h e s t u d y a r e a had a h i g h b a s e c o n t e n t . E f f i c i e n t use and u n i f o r m d i s t r i b u t i o n o f i r r i g a t i o n w a t e r i s i m p o r t a n t t o m a x i m i z e y i e l d s . T h i s p r o b a b l y c o n t r i b u t e s t o a h i g h e r , r e l a t i v e l y u n i f o r m base s a t u r a t i o n i n i r r i g a t e d f i e l d s . Thus any s o i l p r o p e r t i e s r e l a t e d t o b a s e s a t u r a t i o n would be l e s s v a r i a b l e u n d e r c u l t i v a t i o n , s u c h as pH o r c a t i o n e x c h a n g e c a p a c i t y . I n 42 pH fd pe po kh Land U»« Ca1«goH«t oroC « C t C Low C o e f f i c i e n t s of V a r i a t i o n (CV%) by Land Use and S o i l Property fd pc po kh Land Ui« Calagorlas Medium C o e f f i c i e n t s of V a r i a t i o n (CV%) by Land Use and S o i l Property Land U«« Cot*goii»i ovaP O *KCK V a r i a b l e C o e f f i c i e n t s of V a r i a t i o n (CV%) by Land Use and S o i l Property 43 c o n t r a s t , management of major crop n u t r i e n t s such as n i t r o g e n , phosphorus and p o t a s s i u m , c o u l d c o n t r i b u t e s i g n i f i c a n t l y to v a r i a b i l i t y . I n o r g a n i c f e r t i l i z e r a p p l i c a t i o n s are b r o a d c a s t and the amount v a r i e s a c c o r d i n g to crop and the f a r m e r ' s s o c i o -economic s t a t u s . Manure and compost a r e a p p l i e d i n p i l e s to a l l f i e l d s , but the t i m i n g and the season of a p p l i c a t i o n d i f f e r s under v a r i o u s c r o p p i n g r o t a t i o n s . S i m u l t a n e o u s l y , d i f f e r e n t c o m b i n a t i o n s of c r o p s would remove t h e s e major n u t r i e n t s a t d i f f e r e n t r a t e s . For example, the r a t e of p o t a s s i u m removal by p o t a t o e s has been found t o be 4 to 5 t i m e s t h a t by o t h e r c r o p s such as r i c e or wheat (Sanchez, 1976). Thus, i f one s o i l sample c o r r e s p o n d e d to where the p o t a t o row had been l o c a t e d f o r the l a s t two y e a r s and a n o t h e r sample c o r r e s p o n d e d to the wheat row and where the compost had been u n l o a d e d , the r e s u l t i n g p o t a s s i u m l e v e l s would v a r y g r e a t l y . Comparison of t h e s e CV v a l u e s w i t h those i n the l i t e r a t u r e i s u s e f u l but must be q u a l i f i e d ( T a b l e 4.2). S i z e of s t u d y a r e a and the type of f o r e s t or a g r i c u l t u r e s y s t e m s , when s p e c i f i e d a r e o f t e n q u i t e d i f f e r e n t from t h o s e i n the Chitawan s t u d y . The v a l u e s of t h i s s t u d y were g e n e r a l l y comparable to the f o r e s t v a r i a b i l i t y l i t e r a t u r e i n t h a t pH, o r g a n i c carbon and t o t a l n i t r o g e n CV's were low and exchangeable bases and phosphorus CV's were h i g h ( B l y t h & M a c l e o d , 1978; B r a c e w e l l e t a l , 1979). But the Chitawan CV's under a g r i c u l t u r e were u s u a l l y l ower than the l i t e r a t u r e v a l u e s ( C a m p b e l l , 1978; W i l d i n g & Drees, 1978; P a t t e r s o n & W a l l , 1982; Smeck & W i l d i n g , 1980). 4 4 4.1.3 Adequacy of Sampling The s o i l p r o p e r t i e s and t h e i r CV value s from T a b l e 4.2 were s u b d i v i d e d i n t o three broad groups u s i n g g e n e r a l l y accepted l i m i t s ( W i l d i n g & Drees, 1982): a) CV < 15% or l e a s t v a r i a b l e p r o p e r t i e s : pH i n both H20 and CaC12 o r g a n i c carbon c a t i o n exchange c a p a c i t y water h o l d i n g c a p a c i t y b) CV 15 to 35% or moderately v a r i a b l e p r o p e r t i e s : t o t a l n i t r o g e n exchangeable magnesium base s a t u r a t i o n exchangeable c a l c i u m ( a g r i c u l t u r e o n l y ) bulk d e n s i t y compaction c) CV > 35% or most v a r i a b l e p r o p e r t i e s : a v a i l a b l e phosphorus exchangeable potassium exchangeable c a l c i u m ( f o r e s t land uses) e x t r a c t a b l e i r o n & aluminum. Ten samples were adequate to es t i m a t e mean value s f o r the l e a s t v a r i a b l e p r o p e r t i e s w i t h i n 10 percent using a 95% co n f i d e n c e l e v e l . I t was not adequate f o r the other two groups of p r o p e r t i e s u n l e s s l e s s a c c u r a t e mean es t i m a t e s can be accepted with d i f f e r e n t c o n f i d e n c e l i m i t s , such as 90% l e v e l and w i t h i n 20 percent of mean. 4.2 S o i l P r o p e r t i e s Under F i v e Predominant Land Uses F i v e land use c a t e g o r i e s were c o n s i d e r e d e i t h e r p r e v a l e n t and widespread i n the area or important f o r a b a s e l i n e comparison. The f o l l o w i n g a n a l y s i s and d i s c u s s i o n are based on the data from ten p l o t s i n each of these land uses i . e . S o i l s Data Set 3 and 4 ( r e f e r to Appendix G). 4 5 4.2.1 General Trends Many s o i l p r o p e r t i e s were s i g n i f i c a n t l y d i f f e r e n t when p a i r s of land uses were compared (Table 4.3). The number of d i f f e r e n c e s decreased with i n c r e a s i n g s o i l depth; i . e . 45 per cent of a l l p o s s i b l e combinations of land use and s o i l p r o p e r t y i n the s u r f a c e or A h o r i z o n were s i g n i f i c a n t l y d i f f e r e n t , while on l y 16 per cent of a l l p o s s i b l e combinations f o r the C h o r i z o n were s i g n i f i c a n t l y d i f f e r e n t (by Mann-Whitney U - t e s t s at 95% co n f i d e n c e l e v e l ) . These r e s u l t s suggest r e l a t i v e l y uniform parent m a t e r i a l and mapping u n i t throughout the study a r e a . In g e n e r a l , t h e r e were more s i g n i f i c a n t d i f f e r e n c e s due to land use i n chemical p r o p e r t i e s (49% i n A h o r i z o n ) than i n p h y s i c a l p r o p e r t i e s (39% i n A h o r i z o n ) due to land use changes. Since most of the d i f f e r e n c e s o c c u r r e d i n the s o i l s u r f a c e h o r i z o n , the f o l l o w i n g d i s c u s s i o n of s o i l p r o p e r t i e s r e f e r s to valu e s i n the A h o r i z o n , u n l e s s otherwise s p e c i f i e d . C o n t r a r y to popular assumptions, the f o r e s t e d land uses were not always the h i g h e s t i n s o i l q u a l i t y . Where the o r i g i n a l n a t u r a l f o r e s t had been converted to a g r i c u l t u r a l land uses, the s t a t u s of s e v e r a l p r o p e r t i e s , such as o r g a n i c carbon and t o t a l n i t r o g e n , d e c l i n e d . However, some p r o p e r t i e s , such as a v a i l a b l e phosphorus and water h o l d i n g c a p a c i t y , were improved under c u l t i v a t i o n . There were d i f f e r e n c e s among the a g r i c u l t u r a l land uses (pc,pa,kh), and d i f f e r e n c e s between the f o r e s t e d land uses ( f a , f d ) t h a t merit c l o s e r examination. Table 4.4 summarizes the r e s u l t s of ex h a u s t i v e Mann-Whitney U - t e s t s : the s i g n i f i c a n t l y d i f f e r e n t s o i l p r o p e r t i e s under each p a i r e d land use comparison. Table 4.3: Summary of Mann-Whitney U-tests of Significance of Soil Properties Under 5 Predominant Land Use Categories Horizon Basis Profile Basis A B C ASB A,BSC Soil properties analysed: chemical 14 14 14 14 14 physical 8 6 6 6 6 # Land Use Comparisons 10 10 10 10 10 Combinations: soil x LU 220 200 200 200 200 •Significant differences: chemical 68(49%) 47(34%) 23(16%) physical 32(39%) 9(15%) 4( 7%) all properties 100(45%) 56(28%) 27(14%) 38(19%) 19(10%) •significant differences at 95% probability level 47 Table 4.4: Results of the Mann-Whitney Tests of Significance of S o i l Properties (prop) by Horizon (horz) under Predominant Land Uses (horizons a,b or c l i s t e d i f differences are s i g n i f i c a n t at p<0.05) f a : natural forest f d : degraded forest pc : t r a d i t i o n a l upland pa: upland with potato prop horz prop horz prop horz prop horz prop horz prop horz prop horz prop horz fd phh* a extFe degraded phc a extAl a forest orgC excAl a totN PC avaP WP excCa abc WHC excMg a c S i l t excK Clay excNa ab Sand cec a BDens bsat ab Comp a pc phh extFe phh ab extFe b t r a d i t i o n a l phc extAl phc abc extAl a c upland orgC a excAl orgC a excAl abc totN a PC totN a PC avaP a WP avaP a WP ab excCa WHC a excCa abc WHC abc excMg a S i l t excMg S i l t be excK Clay excK Clay b excNa a Sand excNa c Sand cec abc BDens a cec ab BDens a bsat Comp a bsat abc Comp a pa phh extFe a phh be extFe b phh b extFe innovative phc extAl phc abc extAl a c phc extAl a upland orgC ab excAl orgC ab excAl abc orgC b excAl with potato totN ab FC totN ab FC ab totN b FC avaP ab WP avaP ab WP ab avaP ab WP excCa WHC a excCa abc WHC abc excCa WHC excMg a S i l t excMg S i l t abc excMg S i l t excK Clay excK Clay ab excK Clay excNa ab Sand excNa Sand excNa Sand cec a BDens a cec ab BDens a cec b BDens bsat Camp a bsat abc Camp a bsat Comp a kh phh extFe phh abc extFe phh extFe phh ab extFe b i r r i ga ted phc b extAl phc abc extAl a phc b extAl phc ab extAl c lowland orgC excAl orgC excAl a c orgC a excAl b orgC excAl 3 crops totN FC a totN a FC a totN FC totN FC a avaP a WP avaP a WP a avaP WP avaP ab WP excCa WHC a excCa abc WHC a excCa WHC excCa WHC a excMg S i l t excMg abc S i l t excMg ab S i l t excMg abc S i l t excK a Clay excK a Clay excK c Clay excK Clay excNa ab Sand excNa a Sand excNa a Sand excNa a Sand cec a BDens a cec ab BDens a cec a BDens cec c BDens bsat Camp a bsat abc Camp a bsat Camp a bsat Comp a abbreviations for s o i l properties explained i n Appendix A . 48 4.2.2 Chemical P r o p e r t i e s S i m i l a r trends or changes were e v i d e n t f o r c e r t a i n groups of s o i l c hemical p r o p e r t i e s . T h e r e f o r e the f o l l o w i n g d i s c u s s i o n was o r g a n i z e d i n t o f o u r groups of chemical p r o p e r t i e s . The f i r s t group of p r o p e r t i e s i n c l u d e d o r g a n i c carbon, t o t a l n i t r o g e n and c a t i o n exchange c a p a c i t y . The mean value s and standard d e v i a t i o n s f o r these p r o p e r t i e s are summarized i n F i g u r e s 4.4 to 4.6. A l l three were not s i g n i f i c a n t l y d i f f e r e n t under the two f o r e s t e d l a n d uses, ' f a ' and ' f d ' . T h i s was somewhat s u r p r i s i n g s i n c e the x f d ' or degraded f o r e s t had l e s s a d d i t i o n s from l e a f l i t t e r than the x f a T or n a t u r a l , untouched s i t u a t i o n s . Perhaps t h e r e had not been enough time elapsed f o r s i g n i f i c a n t d i f f e r e n c e s to develop. L e v e l s of the three p r o p e r t i e s dropped s i g n i f i c a n t l y where land had been c u l t i v a t e d . W i t h i n the a g r i c u l t u r a l o p t i o n s o r g a n i c carbon and c a t i o n exchange c a p a c i t y were s i g n i f i c a n t l y h i g h e r under the i n n o v a t i v e , i r r i g a t e d t r i p l e - c r o p p i n g r o t a t i o n ( i . e . x k h ' or r i c e , mustard, maize) than under the t r a d i t i o n a l d o u ble-cropping r o t a t i o n ('pc' or maize, mustard). T o t a l n i t r o g e n showed a s i m i l a r trend but the high v a r i a b i l i t y of t h i s p r o p e r t y precluded the i n c r e a s e from being s i g n i f i c a n t . D i f f e r e n t r a t e s of decomposition of the o r g a n i c matter probably caused these changes. Highest r a t e s o c c u r r e d i n the ploughed, ae r a t e d x p c ' and x p a ' cropping r o t a t i o n s ; and lowest r a t e s o c c u r r e d i n the puddled, anaerobic c o n d i t i o n s of r i c e c u l t i v a t i o n . The expected crop removal of n i t r o g e n was estimated a c c o r d i n g to the cropping h i s t o r y of the 49 Land Use Category F i g u r e 4.4: Organic Carbon % Under 5 Predominant Land Uses (means and standard d e v i a t i o n s ) F i g u r e 4.5: Land Use Category T o t a l Nitrogen % Under 5 Predominant Land Uses (means and standard d e v i a t i o n s ) 22.00 21.00 20.0 19.00 18.00 17.00 16.00 15.00 14.00 13.00 -12.00 1.00 10.00 9.00 8.00 7.00 Land Ua Category F i g u r e 4.b: C a t i o n Exchange Capacity % Under 5 Predominant Land Uses (means and standard d e v i a t i o n s ) 50 a r e a ( s e c t i o n 2.3) and based on e x p e c t e d n u t r i e n t removal r a t e s ( S a n c hez, 1976; Mengel & K i r k b y , 1982) f o r the y i e l d s r e p o r t e d by f a r m e r s ( s e c t i o n 5.3.4). I t was i n t e r e s t i n g t h a t when n a t u r a l f o r e s t was c o n v e r t e d t o a g r i c u l t u r e , the a c t u a l average d e c l i n e i n n i t r o g e n (1000 kg/ha) was h a l f of what one would e x p e c t i n crop removal of t h i s n u t r i e n t g i v e n the 22 y e a r s o f t r i p l e and double c r o p p i n g h i s t o r y . The second group of p r o p e r t i e s i n c l u d e d pH, exchan g e a b l e c a l c i u m , e x c h a n g e a b l e magnesium and base s a t u r a t i o n ( F i g u r e s 4.7, 4.8). The h i g h e s t mean v a l u e s i n t h i s group were u s u a l l y found under a g r i c u l t u r a l l a n d u s e s ; and l o w e s t v a l u e s were o f t e n found under the degraded f o r e s t . D i f f e r e n c e s among a g r i c u l t u r a l l a n d uses (pc,pa,kh) and n a t u r a l f o r e s t ( f a ) were not s i g n i f i c a n t f o r exchang e a b l e c a l c i u m and base s a t u r a t i o n . E xchangeable magnesium v a l u e s under n a t u r a l f o r e s t ( f a ) and i r r i g a t e d r i c e c u l t i v a t i o n (kh) were a l s o not s i g n i f i c a n t l y d i f f e r e n t ( i . e . 1.88 and 1.87 meq/lOOg. s o i l , r e s p e c t i v e l y ) . A l t h o u g h magnesium v a l u e s under the two r a i n f e d c r o p p i n g s i t u a t i o n s , or 'pc' and % p a ' ( i . e . 1.23 and 1.17 meq/lOOg. s o i l ) were l o w e r than the n a t u r a l f o r e s t , they were not s i g n i f i c a n t l y l o w e r than the degraded f o r e s t (1.27 meq/lOOg. s o i l ) . These t r e n d s can be p a r t i a l l y e x p l a i n e d by a stu d y of the ge o l o g y maps of the r e g i o n (LRMP, 1984a; 1985a). The K a i r K h o l a , the r i v e r t h a t i s used f o r i r r i g a t i o n water of the a g r i c u l t u r a l l a n d u s e s , passes t h r o u g h a band of d o l o m i t e and l i m e s t o n e bedrock upstream and thus becomes r i c h i n c a l c i u m and magnesium. Reasons f o r the d i f f e r e n c e s between n a t u r a l and degraded f o r e s t a r e e v i d e n t from some of t h e f o r e s t r y l i t e r a t u r e . 10 5 1 o o \ • E \ ^ c o a o F i g u r e 4.7: 0» o o \ tr s E F i g u r e 4.8: (VI Co W~X Mg Land Use Category K L X Z Na Exchangeable Cations Under 5 Predominant Land Uses (means i n meq/lOOg s o i l ) o.oo bases Land Use Category Al O CEC A ECEC T o t a l Bases, Exchangeable Aluminum, Ca t i o n Exchange Capacity (CEC) & E f f e c t i v e C a t i o n Exchange Capac i t y (ECEC) Under 5 Predominant Land Uses (means i n meq/lOOg s o i l ) 52 The degraded f o r e s t would have l e s s a d d i t i o n s of l e a f l i t t e r , e s p e c i a l l y fodder l e a v e s , with t h e i r r e l a t i v e l y high c o n t e n t s of these n u t r i e n t s (Panday, 1982). High a d d i t i o n s of bases from rainwash and canopy t h r o u g h f a l l are common i n t r o p i c a l deciduous f o r e s t s (Nye,1961); but s i n c e much of the u n d e r s t o r y v e g e t a t i o n and shrubs have been taken away i n the ' f d ' f o r e s t , there would be l e s s a d d i t i o n s of t h i s type. The t h i r d group of s o i l p r o p e r t i e s i n c l u d e s a v a i l a b l e phosphorus and exchangeable potassium ( F i g u r e s 4.9, 4.10). These two p r o p e r t i e s d i d not always show s i m i l a r trends or s i g n i f i c a n t d i f f e r e n c e s . The e r r a t i c changes of these two p r o p e r t i e s may have s i m i l a r causes and are d i s c u s s e d t o g e t h e r here. A v a i l a b l e phosphorus l e v e l s were lowest under n a t u r a l and degraded f o r e s t and not s i g n i f i c a n t l y d i f f e r e n t from each other ( i . e . 42 and 33 ppm, r e s p e c t i v e l y ) . The h i g h e s t v a l u e s ( i . e . 77-132 ppm) were under a g r i c u l t u r a l land uses, e s p e c i a l l y under 'pa', a t r i p l e -c r o p p i n g r o t a t i o n that i n c l u d e d p o t a t o e s . Potassium l e v e l s g e n e r a l l y d e c l i n e d when n a t u r a l f o r e s t was converted to a g r i c u l t u r e but r e s u l t s were h i g h l y v a r i a b l e . Only the 'kh' land use ( i r r i g a t e d r i c e c u l t i v a t i o n ) showed a s i g n i f i c a n t d e c l i n e ( i . e . from 0.36 to 0.10 meq/lOOg s o i l ) . These e r r a t i c r e s u l t s are best e x p l a i n e d by the d i f f e r i n g r a t e s of n u t r i e n t e x t r a c t i o n and replenishment w i t h i n the v a r i o u s land use systems. Crops, such as r i c e , maize, wheat and potatoes vary c o n s i d e r a b l y i n t h e i r removal of phosphorus and potassium (Sanchez, 1976; Van Der Veen, 1982). Most of the farmers were adding manure/ compost and i n o r g a n i c f e r t i l i z e r s to 53 190 E a. a \ ^ » 3 k. 0 a. m 0 c a a o o > F i g u r e 4.9 r fd pc pa Land Us* Category kh A v a i l a b l e Phosphorus Under 5 Predominant Land Uses (means & standard d e v i a t i o n s i n ppm) o o o \ • E a o • a c o £ o 0.80 0.70 0.60 0.50 -0.40 0.30 0.20 -0.10 0.00 Land Use Category F i g u r e 4.10: Exchangeable Potassium Under 5 Predominant Land Uses (means & standard d e v i a t i o n s i n meq/lOOg) 5 4 t h e i r f i e l d s , b ut t y p e , amount and t i m i n g o f t h e a p p l i c a t i o n s v a r i e d a c c o r d i n g t o c r o p . Manure a p p l i c a t i o n s have been f o u n d t o r e d u c e t h e s o i l ' s a b i l i t y t o f i x p h o s p h o r u s and i m p r o v e p h o s p h o r u s a v a i l a b i l i t y ( T i s d a l e e t a l , 1 9 8 5 ) . In c o n t r a s t t h e f o r e s t s o f t e n have more p h o s p h o r u s f i x a t i o n p r o b l e m s . R e p l e n i s h m e n t by r a i n w a s h and c a n o p y t h r o u g h f a l l would c o n t r i b u t e o n l y s m a l l amounts o f p h o s p h o r u s ( N y e , 1 9 6 1 ) . A l s o t h e r a t e o f d e c o m p o s i t i o n o f o r g a n i c p h o s p h o r u s would be s l o w e r and more v a r i a b l e u n d e r f o r e s t . On t h e o t h e r hand, p o t a s s i u m i n n a t u r a l f o r e s t s i s q u i c k l y c y c l e d and l o o s e l y h e l d . I t i s a l s o one o f t h e f i r s t o f t h e n u t r i e n t s t o be r e p l a c e d by i n c r e a s e d s o l u b l e i r o n i n f l o o d e d r i c e f i e l d s and l e a c h e d i n t o t h e l o w e r p r o f i l e . L e v e l s o f i r o n and aluminum o x i d e s i n t h e s o i l s i n f l u e n c e t h e a v a i l a b i l i t y o f b o t h p h o s p h o r u s and p o t a s s i u m . The f o u r t h g r o u p o f s o i l c h e m i c a l p r o p e r t i e s i n c l u d e e x c h a n g e a b l e aluminum, f r e e i r o n and f r e e aluminum ( F i g u r e s 4.7-4.8, 4 . 1 1 - 4 . 1 3 ) . E x c h a n g e a b l e aluminum was c o n s i d e r e d n e c e s s a r y t o c a l c u l a t e ' e f f e c t i v e ' c a t i o n e x c h a n g e c a p a c i t y o r ECEC ( J u o , 1 9 7 6 ) . F r e e i r o n and aluminum o f t e n o c c u r as ' c o a t i n g s ' o f amorphous and c r y s t a l l i n e o x i d e s and h y d r o u s o x i d e s . T h e s e f r e e o x i d e s were c o n s i d e r e d i m p o r t a n t b e c a u s e o f t h e i r i n d i r e c t e f f e c t s on n u t r i e n t a v a i l a b i l i t y , i n p a r t i c u l a r p h o s p h o r u s and p o t a s s i u m . B o t h t y p e s o f aluminum were s i g n i f i c a n t l y h i g h e r i n t h e A and B h o r i z o n s u n d e r d e g r a d e d f o r e s t t h a n u n d e r n a t u r a l f o r e s t o r a l l a g r i c u l t u r a l l a n d u s e s . F i g u r e 4.8 i l l u s t r a t e s how c a t i o n e x c h a n g e c a p a c i t y (CEC) would be a d j u s t e d t o e f f e c t i v e c a t i o n e x c h a n g e c a p a c i t y (ECEC) i f e x c h a n g e a b l e aluminum l e v e l s 55 fd pc Land Use Category F i g u r e 4.11: F r e e I r o n ( c b d ) % o f t h e A H o r i z o n Under 5 Land U s e s (means & s t a n d a r d d e v i a t i o n s ) Land Use Category F i g u r e 4.12: F r e e I r o n ( c b d ) % o f t h e B H o r i z o n Under 5 Land UsPS (means & s t a n d a r d d e v i a t i o n s ) 0.70 F i g u r e 4.13 Land Use Category F r e e Aluminum ( c b d ) % o f t h e A H o r i z o n U n d e r 5 Land U s e s (means & s t a n d a r d d e v i a t i o n s ) 56 are c o n s i d e r e d . Only the degraded f o r e s t s o i l s would warrant t h i s adjustment. Even i n these areas the percentage aluminum s a t u r a t i o n (3-6%) was below the l e v e l of concern (Juo & L a i , 1979). Free i r o n i n the A h o r i z o n f o l l o w e d somewhat the same tr e n d , i n t h a t ' f d ' had a h i g h e r mean and standard d e v i a t i o n than most of the other land uses (Appendix H). On the other hand, f r e e i r o n i n B h o r i z o n showed a r e v e r s a l of t h i s t r e n d , i n that h i g h e r v a l u e s were found under the a g r i c u l t u r a l s i t u a t i o n s (2.07-2.41%). The percentages of f r e e aluminum i n the B h o r i z o n s were not s i g n i f i c a n t l y d i f f e r e n t under v a r i o u s land uses (0.20-0.35%). The reasons f o r these tr e n d s are not c l e a r l y understood but changes i n pH, base s t a t u s or c l a y mineralogy accompanying these changes i n l a n d use may be p a r t i a l l y r e s p o n s i b l e . 4.2.3 P h y s i c a l P r o p e r t i e s Bulk d e n s i t y , compaction and water h o l d i n g c a p a c i t y changed s i g n i f i c a n t l y under v a r i o u s land uses, while p a r t i c l e s i z e d i s t r i b u t i o n , i . e . % s i l t , %sand and % c l a y , remained r e l a t i v e l y unchanged. F i g u r e s 4.14 to 4.16 summarize the means and standard d e v i a t i o n s of the three p h y s i c a l p r o p e r t i e s that v a r i e d with land use. S o i l s under a g r i c u l t u r a l land uses had s i g n i f i c a n t l y lower mean bulk d e n s i t i e s than those under f o r e s t e d land uses, 1.03-1.09 and 1.27-1.33 Mg/ m3 r e s p e c t i v e l y . D i f f e r e n c e s among v a r i o u s a g r i c u l t u r a l o p t i o n s were s u b t l e and not s i g n i f i c a n t . Bulk d e n s i t y i n c r e a s e d from 1.27 to 1.33 Mg/ m3 when n a t u r a l f o r e s t became degraded, but r e s u l t s were so v a r i a b l e that these E N. 57 F i g u r e 4.14: Land Use Categories Bulk Density (Mg/m3) Under 5 Predominant Land Uses (means & standard d e v i a t i o n s ) F i g u r e 4.15: Lend U i * Categories ^ Compaction of Surface (kg/cm2) Under 5 Predominant Land Uses (means & standard d e v i a t i o n s ) 31.0 30.0 -29.0 -2B.0 -27.0 -26.0 25.0 24.0 23.0 22.0 21.0 20.0 19.0 18.0 17.0 16.0 -15.0 14.0 F i g u r e 4.16: Land Use Categories Water Holding C a p a c i t y (%) Under 5 Predominant Land Uses (means & standard d e v i a t i o n s ) 58 d i f f e r e n c e s were a l s o not s i g n i f i c a n t . The mean values f o r compaction of the s o i l s u r f a c e under the f i v e predominant land uses showed the same trend as means f o r bulk d e n s i t i e s . However, the magnitude of the changes was much g r e a t e r making a l l d i f f e r e n c e s s i g n i f i c a n t at 95% c o n f i d e n c e l e v e l and some d i f f e r e n c e s s i g n i f i c a n t at the 99% l e v e l . Compaction was lowest under the 'pakho' or u n i r r i g a t e d , unpuddled a g r i c u l t u r a l s i t u a t i o n s , and i n t e r m e d i a t e under i r r i g a t e d r i c e c u l t i v a t i o n and n a t u r a l f o r e s t . Values were extremely h i g h , i . e . 3.7 to 4.7 kg/square cm under degraded f o r e s t , and were probably a r e f l e c t i o n of the l a r g e amounts of v i l l a g e r and l i v e s t o c k t r a f f i c i n these a r e a s . The water h o l d i n g c a p a c i t i e s of the s o i l s (WHCs) under both n a t u r a l and degraded f o r e s t were low, i . e . 17 to 18, and were s i g n i f i c a n t l y d i f f e r e n t from WHCs under 'pakho* a g r i c u l t u r e , i . e . 24 to 25. S i g n i f i c a n t l y h i g h e r values than under a l l other land uses were e v i d e n t under 'khet' or puddled r i c e c r o p p i n g systems ( i . e . 28). Changes i n these three p r o p e r t i e s are of concern because of t h e i r e f f e c t s on p l a n t growth and s o i l e r o s i o n . Lower water h o l d i n g c a p a c i t i e s and high e r bulk d e n s i t i e s have n e g a t i v e e f f e c t s on the c o n d i t i o n of both t r e e and crop s p e c i e s , e s p e c i a l l y i n the l a t e dry season i n March and A p r i l . At t h i s time e s t a b l i s h m e n t of a l u s h canopy i s c r i t i c a l to i n t e r c e p t the subsequent e r o s i v e monsoon r a i n s . High compaction of s o i l s u r f a c e such as was found i n degraded f o r e s t e d areas accentuates the e r o s i o n hazard f u r t h e r by i n c r e a s i n g s u r f a c e r u n o f f 59 p o t e n t i a l . Shallower A h o r i z o n depths and repeated examples of exposed t r e e r o o t s were evidence t h a t these e r o s i v e processes were widespread i n the degraded f o r e s t e d a r e a s . 4.2.4 M i n e r a l o g i c a l P r o p e r t i e s F i v e s u b s o i l samples c o r r e s p o n d i n g with the f i v e predominant land use types were ana l y s e d f o r c l a y mineralogy. To r e p r e s e n t maximum c l a y weathering, the B h o r i z o n s were used f o r the X-Ray d i f f r a c t i o n a n a l y s i s . The r e s u l t s f o r a l l f i v e samples were e s s e n t i a l l y the same and the sequence of c l a y m i n e r a l s from most to l e a s t abundant was as f o l l o w s : mica or i l l i t e , c h l o r i t e , v e r m i c u l i t e and q u a r t z . More d e t a i l of the a n a l y s i s can be found i n Appendix I . These r e s u l t s are comparable to other s t u d i e s ( J o s h i , 1981; LRMP, 1983a; Van Der Broek, 1985); and they have three important i m p l i c a t i o n s . F i r s t , l a r g e amounts of mica or i l l i t e c l a y m i n e r a l s i n d i c a t e t h a t the r e d d i s h s o i l s are not weathered enough to be c l a s s i f i e d as L a t e r i t e s or O x i s o l s . The c l a y mineralogy i s thus a r e f l e c t i o n of the o r i g i n a l parent m a t e r i a l s of these young s o i l s . S i n c e the parent m a t e r i a l of the study area was a l l u v i a l d e p o s i t s d e r i v e d from upstream bedrock types l i k e p h y l l i t e s and mica s c h i s t s , i t was not s u r p r i s i n g t h a t i l l i t e , c h l o r i t e and v e r m i c u l i t e m i n e r a l s were abundant i n the samples. T h i r d l y , the r e s u l t s i m p l i e d a r e l a t i v e homogeneity of the parent m a t e r i a l and o v e r a l l land type mapping u n i t . 60 4.2.5 M u l t i v a r i a t e A n a l y s i s of S o i l P r o p e r t i e s Three m u l t i v a r i a t e t echniques, p r i n c i p l e components a n a l y s i s , d i s c r i m i n a n t a n a l y s i s and c l u s t e r a n a l y s i s , were used to estimate the i n t e g r a t i v e e f f e c t s of land use on s o i l p r o p e r t i e s , and to i d e n t i f y key p r o p e r t i e s to monitor the e f f e c t s . I t was assumed that i f the f i v e land use c a t e g o r i e s were s u c c e s s f u l l y separated from each o t h e r , these f i v e land uses represented d i s t i n c t l y d i f f e r e n t s o i l f e r t i l i t y management systems. P r i n c i p l e components a n a l y s i s was used to answer two q u e s t i o n s : 1) which p r o p e r t i e s behaved s i m i l a r l y ? 2) which p r o p e r t i e s accounted f o r most of the v a r i a t i o n ? By combining the answers to both these q u e s t i o n s i t was p o s s i b l e to i d e n t i f y s i x s o i l p r o p e r t i e s that accounted f o r most of the v a r i a t i o n over the study area, yet behaved d i f f e r e n t l y from one another. The s i x p r o p e r t i e s were pH (CaC12), o r g a n i c carbon, exchangeable magnesium, exchangeable potassium, a v a i l a b l e phosphorus and compaction. The same s i x s o i l p r o p e r t i e s were used i n the d i s c r i m i n a n t a n a l y s i s . F o r t y two p l o t s out of f i f t y were c l a s s i f i e d c o r r e c t l y (Table 4.6 & F i g u r e 4.17). Most of those t h a t were i n c o r r e c t l y c l a s s i f i e d were the c l o s e l y r e l a t e d 'pc' and x p a ' land uses, i . e . both 'pakho 1, or r a i n f e d a g r i c u l t u r a l l a n d . C l u s t e r a n a l y s i s by the average l i n k a g e method was used to group the p l o t s using the data from the s i x p r o p e r t i e s (pH, orgC, excMg, excK, avaP, Comp). F i v e groups were ev i d e n t that Table 4.5: Classification matrix of dLscriminant analysis involving 6 soil properties from A horizon illustrating high % similar classification between predicted soil management groups & actual land use categories Land Use % similar Predicted soil management groups Types classifn. 1 2 3 4 5 Total 1 or fa 100 8 0 0 0 0 8 2 or fd 100 0 11 0 0 0 11 3 or pc 70 0 0 7 2 1 10 4orpa 80 0 0 2 8 0 10 5 or kh 73 2 0 1 0 8 11 Total B4 10 11 10 10 9 50 62 Legend : r d degraded forest 4 f natural forest m maize, mustard P maize, potato-wheat r rice, mustard,maize 3 -f r 2 m r f r f r f dd 1 - r f ' P f r f f CM in _ m dd K 0 - rr CO r d P d m m d mpmm d -1 - p m d P p P m m m d P -2 P d -3 i i i i i i -10 -5 0 5 10 15 a x i s 1 F i g u r e 4.17: G r a p h i c summary o f d i s c r i m i n a n t a n a l y s i s f o r 5 l a n d use management g r o u p s u s i n g 6 s o i l p r o p e r t i e s 63 g e n e r a l l y corresponded with the f i v e land uses ( F i g u r e A.18). There was some o v e r l a p over the two f o r e s t e d c a t e g o r i e s ; and the t r a d i t i o n a l r a i n f e d a g r i c u l t u r e p l o t s (pc) were q u i t e s c a t t e r e d . But the i r r i g a t e d r i c e land use p l o t s (kh) and the i n n o v a t i v e r a i n f e d t r i p l e cropped p l o t s (pa) separated i n t o a r e l a t i v e l y d i s t i n c t i v e groups. 4.3 In n o v a t i o n s to Improve S o i l Q u a l i t y The f o l l o w i n g d i s c u s s i o n i s based on the data i n S o i l Data Sets 5 and 6 (Appendix G). Both chemical and p h y s i c a l p r o p e r t i e s were i n c l u d e d . I t should be noted t h a t the i n n o v a t i v e c r o p p i n g r o t a t i o n s were not widespread i n o c c u r r e n c e . Thus the small number of p l o t s a v a i l a b l e f o r study ( i . e . 3 to 5) made s t a t i s t i c a l comparisons d i f f i c u l t . 4.3.1 Legume-based Cropping Systems Legumes were added to the cr o p p i n g r o t a t i o n i n three ways. Each of these methods was compared to a s i m i l a r r o t a t i o n without the leguminous crop f o r i t s e f f e c t on s o i l p r o p e r t i e s . P l o t s were thus p a i r e d i n as c l o s e a p r o x i m i t y as p o s s i b l e . The f i r s t p a i r of cr o p p i n g r o t a t i o n s compared was "pc' or maize f o l l o w e d by mustard and *pd' or maize i n t e r c r o p p e d with black gram, f o l l o w e d by mustard. The i n c l u s i o n of the black gram was a s s o c i a t e d with s l i g h t i n c r e a s e s i n many of the chemical p r o p e r t i e s ( i . e . pH, o r g a n i c carbon, a v a i l a b l e phosphorus, exchangeable c a l c i u m , exchangeable magnesium and base s a t u r a t i o n ) but these i n c r e a s e s were not s i g n i f i c a n t at the 95 percent 64 Land Use Code Plot no. Distances kh PC fa fd * 17 * 12 _ * 18 * 13 • * 32 * 31 * 30 _ 44 _ pa 50 * 35 * 34 J 24 * 39 * 33 _ Legend: fa natural forest fd degraded forest pc maize, mustard pa maize, potato-wheat kh rice, mustard, maize * denotes plots that agree with land use groupings done by cluster analysis separation is kh or rice land 2nd separation is forest land uses 1st separation is pa land use i.e. potatoes Figure 4.18: Cluster analysis of plots into 6 soil management groups using 6 key properties 65 c o n f i d e n c e l e v e l ( T a b l e 4.6). B u l k d e n s i t y v a l u e s were s l i g h t l y l o w e r , 1.19 and 1.01 g/cc f o r "pc' and "pd' r e s p e c t i v e l y . Compaction of s u r f a c e h o r i z o n and water h o l d i n g c a p a c i t y showed no change ( T a b l e 4.7). The magnitude of t h e s e changes, though not s t a t i s t i c a l l y s i g n i f i c a n t , was enough t o improve the maize c r o p y i e l d s and the s o i l t i l t h i n the f a r m e r s ' o p i n i o n s . The second p a i r of c r o p p i n g r o t a t i o n s was "kh' or r i c e , m u s t a r d, s p r i n g maize and * k i ' or r i c e , m u s t a rd, green manured legume c r o p . The i n c l u s i o n of the green manure c r o p of "damchha' seemed t o l o w e r t h e v a l u e s of many of the s o i l p r o p e r t i e s and d i f f e r e n c e s i n o r g a n i c c a r b o n , a v a i l a b l e phosphorus and e x c h a n g e a b l e c a l c i u m were s i g n i f i c a n t . B u l k d e n s i t y was s l i g h t l y l o w e r , i . e . from 1.13 t o 0.97 Mg/m3. The legume c r o p may have r a i s e d t h e n i t r o g e n t o such an e x t e n t t h a t o r g a n i c m a t t e r decomposers were s t i m u l a t e d by a narrower C:N r a t i o . An i n c r e a s e i n d e c o m p o s i t i o n would l o w e r the o r g a n i c carbon l e v e l s , and s i m u l t a n e o u s l y c o n v e r t more of the o r g a n i c phosphorus i n t o i n o r g a n i c forms e x t r a c t a b l e by the Bray 1 method. S u r p r i s i n g l y , c o m p a c t i o n of the s u r f a c e l a y e r under the legume r o t a t i o n or " k i ' was c o n s i d e r a b l y h i g h e r than under the more predominant r o t a t i o n or "kh', i . e . 1.8 and 0.3 kg/cm2 r e s p e c t i v e l y . A l l p l o t s were l o c a t e d on the same farm f o r the " k i ' l a n d use and t h e r e may have been some a t y p i c a l f a c t o r s e f f e c t i n g t h e r e s u l t s h e r e . A p p a r e n t l y the f a r m e r had t r o u b l e i n c o r p o r a t i n g the c o a r s e , overgrown, d e e p - r o o t i n g " d a i n c h h a ' and had made s e v e r a l passes over the f i e l d w i t h a r e n t e d t r a c t o r i n o r d e r t o plough i t i n t o the s o i l . 66 Table 4.6: Selected Soil Chemical Properties for Comparison of Legume-based Rotations to Similar Rotations Without Legumes Land Use Code & Description pH (in H20) mean std orgC mean (%) std avaP (ppm) mean std excCa(meq/lOOg) mean std pc rainfed maize, mustard 5.8 0.3 1.52 0.10 86 7 4.47 1.49 pd rainfed maize-legume, mustard 6.2 0.2 1.59 0.10 105 63 6.29 1.26 kh irrig.rice,mustard,maize 6.4 0.3 1.74 0.12 74 12 7.16 1.19 ki irrig.rice,mustard,"dainchha' 6.4 0.0 1.49 0.05 56 9 5.28 0.44 kc irrig. rice, mustard 6.8 0.4 1.42 0.19 26 5 6.23 0.99 kd irrig. rice, legume 7.2 0.1 1.37 0.13 24 3 6.03 1.10 Table 4.7: Selected Soil Physical Properties for Ccntparison of Legume-based Rotations to Similar Rotations Without Legumes Land Use Bulk Density(g/cc) Code & Description mean std Compaction(kg/cm2) mean std pc rainfed maize, mustard 1.19 0.3 pd rainfed maize-legume, mustard 1.01 0.07 0.3 0.1 kh irrig.rioe,mustard,maize 1.13 0.3 ki irrig.rice,mustard,"dflinchha' 0.97 1.8 kc irrig. rice, mustard 1.11 0.05 0.7 0.2 kd irrig. rice, legume 1.28 0.09 0.9 0.8 6 7 The t h i r d method of i n c l u d i n g legumes i n the cropping r o t a t i o n was to p l a n t them as a winter crop f o l l o w i n g a slow maturing r i c e such as 'masuli' i n c o n t r a s t to f o l l o w i n g the 'masuli' r i c e by mustard, i . e . 'kd' and 'kc' land use codes. Many s o i l chemical p r o p e r t i e s were i n c r e a s e d under the legume r o t a t i o n but the d i f f e r e n c e s , with the e x c e p t i o n of pH and base s a t u r a t i o n percentage, were not s i g n i f i c a n t . In terms of p h y s i c a l p r o p e r t i e s , both bulk d e n s i t i e s and compaction measurements were higher under the x k d ' r o t a t i o n . T h i s was probably caused by a d i f f e r e n c e i n land p r e p a r a t i o n f o r the two winter c r o p s , i n that the s o i l was ploughed and smoothed s e v e r a l times f o r mustard seed while the legume or l e n t i l seed was merely broadcast onto the harvested "khet' or compacted r i c e paddy f i e l d . In summary, the advantages of adding legumes to the cropping r o t a t i o n by these three methods were not as apparent as was expected. Some of these i n n o v a t i v e land uses had only been c a r r i e d out f o r two c o n s e c u t i v e years and given s o i l v a r i a b i l i t y , t h i s might not be long enough to show d i f f e r e n c e s i n s o i l f e r t i l i t y . Farmers, however, had n o t i c e d d e f i n i t e improvements i n t i l t h and crop y i e l d s by i n t e r c r o p p i n g black gram with monsoon maize ( i . e . *pd' land u s e ) . Perhaps the c o n c u r r e n t maize crop b e n e f i t t e d from s u b t l e improvements i n s o i l f e r t i l i t y , and masked the changes. The l a t t e r two methods of i n c l u d i n g legumes i n the r o t a t i o n s i n v o l v e d growing the green manure crop or the l e n t i l s i n the dry season. Drought s t r e s s may have p r o h i b i t e d n o d u l a t i o n and the b e n e f i c i a l n i t r o g e n f i x i n g p r o p e r t i e s a s s o c i a t e d with 68 legumes (Ayanaba & D a r t , 1977; Temple, 1985). A f o u r t h legume i n n o v a t i o n was n o t e d , t h a t compensated f o r the t i m i n g c o n t r a d i c t i o n d e s c r i b e d above. Soybeans were a l l e y - c r o p p e d a l o n g the r i c e paddy bunds d u r i n g the monsoon s e a s o n . I d e a l l y f u t u r e r e s e a r c h on legumes would s c h e d u l e f i e l d work l a t e r so t h a t the legumes and n o d u l a t i o n i n the dry season c o u l d be examined f o r s i g n s of drought s t r e s s , and would improve the s a m p l i n g d e s i g n to i n c l u d e a l l e y cropped r o t a t i o n s l i k e the f o u r t h legume i n n o v a t i o n . 4.3.2 A g r o f o r e s t r y Systems The a g r o f o r e s t r y system c o n s i s t e d of a l l e y - c r o p p e d t r e e s w i t h i n t h e e x i s t i n g 'pakho' or r a i n f e d c r o p p i n g r o t a t i o n . The t r e e used was the m u l t i - p u r p o s e ' i p i l i p i l ' or l e u c a e n a s p . , renowned f o r i t s r a p i d growth r a t e and n i t r o g e n f i x a t i o n . The b e s t example was l o c a t e d on the Japanese E x t e n s i o n Farm s o u t h of Rarapur, over 30 k i l o m e t e r s from P i t h u w a . I t was s i t u a t e d on a d i f f e r e n t l a n d t y p e , i . e . LRMP mapping u n i t x 4 c ' , than the r e s t of t h e s t u d y p l o t s , t h a t was o c c a s i o n a l l y s e v e r e l y f l o o d e d and t h e r e f o r e not as s t a b l e . Thus, d i r e c t c o mparison w i t h the o t h e r l a n d uses was d i f f i c u l t . The b a s e l i n e a g r i c u l t u r a l l a n d use 'pc' sampled on a '4c' l a n d t ype i n P i t h u w a was used as an i n t e r m e d i a t e i n the c o mparison h e r e . F i r s t , o n l y the two r o t a t i o n s on the Japanese E x t e n s i o n Farm i . e . ^ p i ' or the i p i l i p i l - a g r o f o r e s t r y system and 'pk' a s i m i l a r r o t a t i o n w i t h o u t the t r e e s , were compared. S o i l p r o p e r t i e s such as pH, excCa, excMg and base s a t u r a t i o n were a l l s i g n i f i c a n t l y 69 higher i n the * p i ' p l o t s ( F i g u r e s 4.22, 4.23). A v a i l a b l e phosphorus was higher i n some cases but r e s u l t s were v a r i a b l e ( F i g u r e 4.21). Bulk d e n s i t y and compaction were not s i g n i f i c a n t l y d i f f e r e n t under the two r o t a t i o n s . These r e s u l t s may be due to the f a c t t h a t the Japanese had the p h i l o s o p h y of b u i l d i n g - u p s o i l o r g a n i c matter and were a p p l y i n g l a r g e amounts of compost and biogas c o n v e r t e r byproducts to a l l t h e i r f i e l d s . These o r g a n i c farming methods may have masked any e f f e c t s of the leuceana t r e e s on the s o i l . A l s o , the s t r a t i f i e d random block sampling design may not have been the best c h o i c e f o r a l l e y -cropped r o t a t i o n s . The next comparison was between the i n t e r m e d i a t e *pc' c r o p p i n g r o t a t i o n on '4c' land type i n Pithuwa and i t s e q u i v a l e n t o r g a n i c r o t a t i o n *pk* on the e x t e n s i o n farm. There were s i g n i f i c a n t l y h i g h e r l e v e l s of o r g a n i c carbon, a v a i l a b l e phosphorus and c a t i o n exchange c a p a c i t y under the 'pk' land use ( F i g u r e 4.19,4.21,4.23). On the other hand, pH, exchangeable c a l c i u m , exchangeable magnesium and base s a t u r a t i o n were s i g n i f i c a n t l y lower. These r e s u l t s may be p a r t i a l l y e x p l a i n e d by the f a c t t h a t the comparable land type i n Pithuwa had r e c e n t l y had a severe f l o o d i n g event. I t was not p o s s i b l e to separate the e f f e c t s of more rec e n t f l o o d i n g from the improved composting p r a c t i c e s i n t h i s comparison. The l a s t step was to compare these r e s u l t s with one of the predominant land use c a t e g o r i e s of the Pithuwa study, i . e . 'pc on 5c' land type. There were many s i m i l a r i t i e s between the '4c' and '5c' l a n d t y p e s . Both were g e n t l y u n d u l a t i n g with s l o p e s l e s s F i g u r e 4.19: 70 pc/5c pc/4c pk/4c pi/4c Land Use / Land Type Organic Carbon (%) Under A g r i c u l t u r a l and A g r o f o r e s t r y Land Uses (means & s t . dev.) pe /Sc pc /4c pk/4c pl /4c F i g u r e 4.20: Land Use / Land Type T o t a l Nitrogen (%) Under A g r i c u l t u r a l and A g r o f o r e s t r y Land Uses (means & s t . dev.) F i g u r e 4.21: Land Use / Land Type A v a i l a b l e Phosphorus (ppm) Under A g r i c u l t u r a l and A g r o f o r e s t r y Land Uses (means & s t . dev.) 7 1 8.00 7.00 -6.00 -5.00 -4.00 -3.00 -2.00 1.00 -0.00 pc /5c pc/4-c pk /4c pl /4c Land Use / Land Type E S I K W2 Mg Exchangeable Cations (meq/lOOg) Under A g r i c u l t u r a l and A g r o f o r e s t r y Land Uses (means & s t . dev.) 14.00 13.00 12.00 -11 .oo -1 o.oo -9.00 -B.00 7.00 6.00 -5.00 -4.00 3.00 -2.00 -1.00 -0.00 - * pc /5c pc /4c pk/4c pl /4c Bases Land Use / Land Type + CEC T o t a l Exchangeable Bases & Ca t i o n Exchange Capacity (CEC) Under A g r i c u l t u r a l and A g r o f o r e s t r y Land Uses (means & standard d e v i a t i o n s i n meq/lOOg) 72 than 2 d e g r e e s . S o i l p r o p e r t i e s l i k e e x changeable c a l c i u m , e x c h a n g e a b l e magnesium, b u l k d e n s i t y and c ompaction were not s i g n i f i c a n t l y d i f f e r e n t . However, o t h e r s o i l p r o p e r t i e s such as o r g a n i c c a r b o n , t o t a l n i t r o g e n , a v a i l a b l e phosphorus and c a t i o n exchange c a p a c i t y were h i g h e r when a s s o c i a t e d w i t h the u p l a n d or x 5 c f l a n d t y p e . P a r t i c l e s i z e d i s t r i b u t i o n s were d i f f e r e n t i n t h a t *4c' were loamy sands to sandy loams w h i l e '5c' were loam t o s i l t y loam. Thus the s t a r t i n g p o i n t of s o i l f e r t i l i t y improvement was c o n s i d e r e d l ower f o r the *4c' l a n d t y p e . Both the *pc/4c' and x p c / 5 c ' were c o n s i d e r e d r e l a t i v e s o i l - l a n d use management b a s e l i n e s ( s i n c e % p c ' was h i s t o r i c a l l y the t r a d i t i o n a l c r o p p i n g r o t a t i o n i n b o t h a r e a s ) , and the f o l l o w i n g i n f e r e n c e s were drawn. For the p urposes of t h i s e s t i m a t i o n , i t was assumed t h a t a l l d i f f e r e n c e s were due t o l a n d use management; and t h a t r a t e s of x b u i l d i n g - u p ' o r g a n i c m a t t e r would be comparable f o r b o th l a n d t y p e s i n both a r e a s . By improved composting methods, o r g a n i c c a r b o n c o u l d be i n c r e a s e d by 35 p e r c e n t ; t o t a l n i t r o g e n c o u l d be i n c r e a s e d by 8 p e r c e n t ; and a v a i l a b l e phosphorus c o u l d be improved by 155 p e r c e n t . By a l s o i n c l u d i n g d e e p - r o o t i n g l eguminous t r e e s i n t o the c r o p p i n g r o t a t i o n , the n i t r o g e n and phosphorus s t a t u s c o u l d be f u r t h e r improved a n o t h e r 6 and 52 p e r c e n t , r e s p e c t i v e l y . The t o t a l i n c r e a s e s of 0.010% t o t N and 115ppm avaP would r e p r e s e n t 240 kg/ha more n i t r o g e n and 270 kg/ha more phosphorus i n the s o i l . 73 4.4 D i s c u s s i o n of S o i l Q u a l i t y 4.4.1 Comparison with L i t e r a t u r e I t was d i f f i c u l t to compare t h i s s o i l q u a l i t y study to other s t u d i e s i n the l i t e r a t u r e . Sampling and a n a l y t i c a l methods were u s u a l l y comparable but s o i l - l a n d types seldom were. Ambiguous terms such as " t r o p i c a l s o i l s ' and " r i c e s o i l s ' on c l o s e r examination i n c l u d e d a wide range of s o i l forming environments and thus a wide range of s o i l c l a s s i f i c a t i o n s . Even when the i n i t i a l s o i l type was r e l a t i v e l y e q u i v a l e n t , land use treatments and a g r i c u l t u r e systems were d i f f e r e n t . T h e r e f o r e , while r e c o g n i z i n g that there i s an abundance of l i t e r a t u r e on " t r o p i c a l s o i l s ' , only a few s e l e c t e d s t u d i e s were c o n s i d e r e d comparable to the Chitawan study. General t r e n d s were noted when t r o p i c a l f o r e s t s i n South America were c l e a r e d t h a t were s i m i l a r to the f i n d i n g s of t h i s study. There were s u b s t a n t i a l decreases i n s o i l o r g a n i c matter, biomass n i t r o g e n and aluminum s a t u r a t i o n , and i n c r e a s e s i n exchangeable bases, pH and a v a i l a b l e phosphorus (Sanchez, 1979). Most of the r e s e a r c h i n t r o p i c a l America i s concerned with the a c i d , i n f e r t i l e s o i l s of the o x i s o l and u l t i s o l o r d e r s , s i n c e these account f o r over 50% of the r e g i o n . In c o n t r a s t , a l a r g e r p r o p o r t i o n of the s o i l s i n t r o p i c a l A s i a and A f r i c a are e n t i s o l s , i n c e p t i s o l s and a l f i s o l s (Sanchez & S a l i n a s , 1981). Thus, the l i t e r a t u r e from A f r i c a may be more r e l e v a n t to the Chitawan study. In g e n e r a l , the ranges of the s o i l parameters were q u i t e comparable to those of the a l f i s o l s of Ghana, N i g e r i a and Tanzania (Greenland, 1981; L a i & Greenland, 1977). 74 A study on the e f f e c t s of d e f o r e s t a t i o n on s o i l p r o p e r t i e s i n Tanzania ( A l l e n , 1985) was compared with the s o i l q u a l i t y study i n the Chitawan. When f o r e s t e d areas were c l e a r e d , both s t u d i e s noted s i g n i f i c a n t decreases i n o r g a n i c carbon, t o t a l n i t r o g e n and exchangeable magnesium; and s i g n i f i c a n t i n c r e a s e s i n exchangeable c a l c i u m and pH. A v a i l a b l e phosphorus, c a t i o n exchange c a p a c i t y and bulk d e n s i t y behaved d i f f e r e n t l y however. Perhaps t h i s was because these p r o p e r t i e s were found to change over time i n the Tanzania s i t u a t i o n . The study by A l l e n (1985) went on to compare the e f f e c t s of d e f o r e s t a t i o n on s o i l s developed i n the t r o p i c s or on o l d e r parent m a t e r i a l s with those developed i n temperate c l i m a t e s or on younger parent m a t e r i a l s . I t was found t h a t the r a t i o of pre and post c l e a r i n g l e v e l s of o r g a n i c carbon and t o t a l n i t r o g e n behaved s i m i l a r to the ' t r o p i c a l young parent m a t e r i a l s ' group while those of c a t i o n exchange c a p a c i t y and bulk d e n s i t y behaved more l i k e the ' t r o p i c a l o l d parent m a t e r i a l s ' group. T h i s may be due to the f a c t t h a t the l a t t e r group i n c l u d e d i n c e p t i s o l s developed on o l d e r , more weathered, t r a n s l o c a t e d m a t e r i a l s ; and the s o i l s i n the Chitawan study were perhaps i n t e r g r a d e s between these i n c e p t i s o l s on o l d e r parent m a t e r i a l s and a l f i s o l s on younger parent m a t e r i a l s . The assumption t h a t legume-based c r o p p i n g systems would improve s o i l f e r t i l i t y was questioned i n other r e s e a r c h p r o j e c t s ( Z i e k e & C h r i s t i e n s o n , 1986). I t was found that r o t a t i o n s i n c l u d i n g legumes, such as beans and a l f a l f a , were l e s s o r g a n i c matter and n i t r o g e n c o n s e r v i n g than corn r o t a t i o n s . In the l a t t e r r o t a t i o n s h i g h e r y i e l d s j u s t i f i e d h i g h e r a p p l i c a t i o n s of f e r t i l i z e r s and re t u r n e d more r e s i d u e s to the s o i l . Both these and the Chitawan f i n d i n g s suggest c l o s e r examination of the farming system parameters i s necessary to understand the r e s u l t s . 4.4.2 I m p l i c a t i o n s f o r Land Use Management In summary, f o r e s t e d land uses were not always of the h i g h e s t s o i l q u a l i t y . Some p r o p e r t i e s , such as o r g a n i c carbon and t o t a l n i t r o g e n had d e c l i n e d when n a t u r a l f o r e s t was converted to a g r i c u l t u r e . However other p r o p e r t i e s , such as a v a i l a b l e phosphorus, compaction and a v a i l a b l e water st o r a g e c a p a c i t y were improved under a g r i c u l t u r a l s i t u a t i o n s . When n a t u r a l f o r e s t became degraded, exchangeable bases and base s a t u r a t i o n d e c l i n e d . There were i n c r e a s e s i n " f r e e i r o n 1 and exchangeable aluminum. The changes i n these f o u r p r o p e r t i e s would have n e g a t i v e e f f e c t s on a v a i l a b i l i t y of major p l a n t n u t r i e n t s . In a d d i t i o n , compaction val u e s were doubled or t r i p l e d when the f o r e s t became u t i l i z e d and degraded. M u l t i v a r i a t e a n a l y s i s techniques r e v e a l e d t h a t with 6 key s o i l p r o p e r t i e s , d i s t i n c t i v e s o i l - land use management groups were separated t h a t corresponded to d i f f e r e n t land uses w i t h i n the broad c a t e g o r i e s of f o r e s t and a g r i c u l t u r e . These r e s u l t s i n d i c a t e d t h a t i t was important to q u a l i f y the type of f o r e s t or a g r i c u l t u r a l land use when s o i l d e g r a d a t i o n was to be d i s c u s s e d . C o n t r a r y to what was expected, t r i p l e r a t h e r than double c r o p p i n g r o t a t i o n s seemed more s o i l c o n s e r v i n g . They g e n e r a l l y had b e t t e r n u t r i e n t s t a t u s ; and t h e i r h i g h e r o r g a n i c matter 76 l e v e l s were c o r r e l a t e d with improvements of other p r o p e r t i e s important f o r s u s t a i n a b l e crop p r o d u c t i o n . S e v e r a l t r i p l e c r o p p i n g o p t i o n s had the advantage of growing a crop d u r i n g the pre-monsoon season. T h i s i s the c r i t i c a l season i n land use management f o r c o n t r o l l i n g wind and water e r o s i o n . In the pre-monsoon season, e s t a b l i s h m e n t of a l u s h crop canopy was c r u c i a l to i n t e r c e p t the h i g h l y e r o s i v e monsoon r a i n s . Simply adding a legume to the c r o p p i n g r o t a t i o n a p p a r e n t l y d i d not always improve the s o i l q u a l i t y . Drought s t r e s s seemed to have i n h i b i t e d the n i t r o g e n f i x i n g b e n e f i t s i f the legume was grown i n the winter or the pre-monsoon season. Even where moisture was adequate, the b e n e f i t s of h i g h e r n i t r o g e n may have been reaped by the farming household r a t h e r than the s o i l ; i . e . i n c r e a s e d y i e l d s of the companion crop (maize) or i n c r e a s e d high q u a l i t y p r o t e i n i n the f a m i l y d i e t from g r a i n legumes. Legume r o t a t i o n s should be c o n s i d e r e d i n land use management because of t h e i r improvement to the o v e r a l l farming system r a t h e r than merely f o c u s s i n g on t h e i r s o i l improvement q u a l i t i e s . Both a g r o f o r e s t r y systems and i n t e n s i v e o r g a n i c farming methods seemed to have p o t e n t i a l i n land use management f o r improving s o i l p r o p e r t i e s . Although i n t h i s study i t was d i f f i c u l t to separate the two e f f e c t s , these two i n n o v a t i o n s had improved the n i t r o g e n and phosphorus s t a t u s of the s o i l by 240 and 270 k ilograms per h e c t a r e r e s p e c t i v e l y . Compost and manure a d d i t i o n s were an i n h e r e n t p a r t of t r a d i t i o n a l farming systems; but i n a p p l y i n g the p h i l o s o p h y of ' b u i l d i n g up s o i l o r g a n i c m a t t e r 1 t h e r e was room f o r improvement. 77 CHAPTER 5: RESULTS OF FARM PRODUCTIVITY EVALUATION T h i s purpose of t h i s chapter i s to determine the o p t i m a l a g r i c u l t u r a l land use o p t i o n s i n economic or e f f i c i e n c y terras. In order to accomplish t h i s aim, a thorough understanding of the c r o p p i n g and farming systems i s r e q u i r e d . 5.1 Overview of Farming Systems A r e c o n n a i s s a n c e overview of the study area and i t s farming systems was gained from 25 i n t e r v i e w s with key i n f o r m a n t s . Key informants were c o n s i d e r e d knowledgeable about the area as a whole and i n c l u d e d the "pradhan panch 1, the chairmen of the nine wards, the s c h o o l committee members and the s t o r e keepers of Pithuwa. The s t a f f of the Cropping Systems Research o f f i c e i n T a d i Bazaar, i n p a r t i c u l a r Mr. C h h e t r i and Mr. Shrestha, saved c o n s i d e r a b l e data c o l l e c t i o n time by p r o v i d i n g some c r i t i c a l i n f o r m a t i o n and i n t r o d u c i n g the study team to s e v e r a l r e s p e c t e d and i n f o r m a t i v e people of the community. Much of t h i s i n f o r m a t i o n was used to o r i e n t a t e the i n t e r v i e w e r s and p r o v i d e the context f o r the study. Thus, r a t h e r than present the r e s u l t s i n a separate s e c t i o n , these data have been i n t e g r a t e d i n t o other r e l e v a n t s e c t i o n s . For example, the d i s t a n c e to markets and crops grown were i n c l u d e d i n the d e s c r i p t i o n of the area ( c h a p t e r 2 ) ; and crop v a r i e t i e s , crop p r i c e s and f e r t i l i z e r p r i c e s were l i s t e d under the assumptions of the farm p r o f i t a b i l i t y a n a l y s i s ( s e c t i o n 5.3). I n f o r m a t i o n concerning land a r e a s , tenure p a t t e r n s and p o p u l a t i o n f i g u r e s was r e l e v a n t to t h i s s e c t i o n . An overview of 78 the Pithuwa Panchayat and i t s nine wards with t h e i r r e s p e c t i v e land areas and p o p u l a t i o n s i s i l l u s t r a t e d i n F i g u r e 5.1. F i v e wards were chosen as a r e p r e s e n t a t i v e sampling of the area due to time and l o g i s t i c a l c o n s t r a i n t s . The land tenure p a t t e r n s , p o p u l a t i o n d i s t r i b u t i o n s and the p r o p o r t i o n s sampled of each ward are presented i n Table 5.1. A few of the d i f f e r e n c e s among the sampled wards are h i g h l i g h t e d here. The western wards ( i . e . ward no. 7 and 9) had c o n s i d e r a b l y l e s s access to i r r i g a t i o n and t h e r e f o r e l e s s "khet 1 land than the e a s t e r n wards (1, 3 and 4 ) . The d e n s i t y of people per h e c t a r e was lower i n these western wards and t h e r e were more people of the middle c a s t e s , i . e . Newaris, Gurungs, Magars and Tamangs. The sampled area r e p r e s e n t e d 10 percent of the land area and 7 percent of the t o t a l households. Thus, the r e s u l t s of both the farmer i n t e r v i e w program and the s o i l sampling program can be c o n s i d e r e d r e p r e s e n t a t i v e of the area as a whole. 5.2 D e t a i l e d S t a t i s t i c a l A n a l y s i s A more d e t a i l e d data a n a l y s i s was done based on the 75 i n t e r v i e w s with g e n e r a l farmers. The mean values and the v a r i a t i o n (as measured by standard d e v i a t i o n and range) of a l l the c h a r a c t e r i s t i c s of the farming system were compiled. The l i s t of c h a r a c t e r i s t i c s was s u b d i v i d e d i n t o three components, the farm f a m i l y , l i v e s t o c k and c r o p p i n g components. Because of i t s complexity and i t s importance to the land use management study, the c r o p p i n g component was d i v i d e d i n t o a c r o p p i n g r o t a t i o n s s e c t i o n and a s e c t i o n d i s c u s s i n g i n d i v i d u a l c r o p s . F i g u r e 5.1: Summary of wards i n Pithuwa Panchayat (Nov. 1985) Table 5.1: Description of Wards Selected for Study in Pithuwa Panchayat Wards selected for study: * Other Characteristic 1 3 4 7 9 wards Total Land: (ha) total amount 135 205 30 170 80 570 1190 amount of 'khet' land 100 135 20 80 35 35 405 amount of 'pakho' land 35 70 5 90 45 540 785 Land tenure: families with < 0.3 ha. 80 50 44 28 30 families with 0.3-2.6 ha. 120 120 42 66 48 families with > 2.6 ha. 6 30 1 16 2 Distribution of people: total # of families 206 200 87 110 80 433+ 1110+ total population by ward 1284 1153 485 649 424 2615+ 6610+ # people per family 6.2 5.8 5.6 5.9 5.3 6.0+ 6.0+ density (people/ha) 9.5 5.6 16.2 3.8 5.3 4.5+ 5.5+ Proportion sampled: # of families interviewed 15 14 14 19 11 2 75 # of soil sampled plots 12 6 16 13 8 5 60 * with the exception of two farmers, wards 2,5,6 & 8 were excluded from study + summary statistics from ward no. 6 were unavailable from Malaria Eradication Office, Nov.1985 81 5.2.1 Farm and Family C h a r a c t e r i s t i c s F i r s t , the data from the f a m i l y component were c o n s i d e r e d i n Table 5.2. The mean number of f a m i l y members per sampled farm was s l i g h t l y h i g h e r than the average f i g u r e s f o r the whole area obtained from the m a l a r i a o f f i c e (7.8 and 6.0 r e s p e c t i v e l y ) . There were r e l a t i v e l y equal p r o p o r t i o n s of c h i l d r e n ( i . e . l e s s than 14 years o l d ) , women and men. Most f a m i l i e s were t o t a l l y dependent on farm income f o r t h e i r l i v e l i h o o d although i n r a r e cases one or two members had o f f farm employment. F a m i l i e s were s t i l l r e l a t i v e l y l a r g e i n the study area d e s p i t e the e f f o r t s of f a m i l y p l a n n i n g programs. T h i s was p a r t i a l l y due to the i n v a l u a b l e farm labour c o n t r i b u t i o n s by f a m i l y members. Other i n f l u e n c e s o u t s i d e the farming system such as s o c i e t a l and r e l i g i o u s b e l i e f s were d i s c u s s e d i n Chapter 2. I t was immediately apparent t h a t the v a r i a t i o n ( standard d e v i a t i o n s ) among farms was moderately high f o r a l l c h a r a c t e r i s t i c s , i n p a r t i c u l a r poverty i n d i c a t o r s and firewood consumption. The v a r i a t i o n i n poverty i n d i c a t o r s was due to t h e i r b a s i s of c a l c u l a t i o n , i . e . amount of t o t a l land h o l d i n g or x k h e t ' l a n d which were extremely v a r i a b l e . A d e l i b e r a t e attempt was made to r e p r e s e n t a l l types of farms i n the i n t e r v i e w s , although the s o i l study was s l i g h t l y b i a s e d towards the medium and l a r g e r farmers. Smaller farmers were i n a very p r e c a r i o u s s i t u a t i o n and were sometimes a f r a i d to answer some q u e s t i o n s a c c u r a t e l y ; thus t h e i r land c o u l d not be i n c l u d e d i n the s o i l sampling program. Table 5.2: Means, standard deviations and ranges of farming characteristics in Pithuwa Farming Characteristics (units) means st.dev. Explanation or comments FARM HOUSEHOLD: (#) Family members 7.8 3.1 Children < 14 years 2.7 1.8 Women > 14 years 2.5 1.4 Men > 14 years 2.5 1.5 Members with off-farm work 0.2 0.5 FARMLAND: (ha) Total land holding 1.7 1.6 hectares calculated from Amount of 'khet* land 1.0 0.9 'khatas' or 'bighas' by Amount of 'pakho' land 0.7 0.9 conversion factors (Appendix D) Land for farmstead 0.1 0.1 No. of plots per farm (#/farm) 1.5 0.8 gives an indication how spread the fields are from one another POVERTY INDICATORS: Density of people (#/ha) 6.6 4.1 Amount of 'khet' on farms (%) 61 22 amount of better quality land Density of people per 'khet' (#/ha) 11.0 7.8 number of people per ha better land Food sufficient from farm (*) 1 * l=yes, sufficient; 0=no, insuffic. Months when food must be bought (#) 0.4 1.2 FUELWOOD USE: (kg/season) Fuelwood use in monsoon 1310 860 kilograms estimated from 'bharis' Fuelwood use in winter 1820 1420 conversion factors (Appendix D) Fuelwood use in pre monsoon 1230 950 Total annual fuelwood use (kg/yr) 4230 2780 LIVESTOCK COMPONENT: (#/farm) Conversion factors to calculate LSU Cattle bullocks 1.9 1.0 1.00 LSU Cattle cows 1.3 1.3 0.80 LSU Cattle calves 0.9 1.2 0.40 LSU Buffalo bulls 0.2 0.6 1.20 LSU Buffalo cows 1.7 1.0 1.00 LSU Buffalo calves 1.3 1.3 0.50 LSU Goats and sheep 2.7 2.2 0.10 LSU Chickens and ducks 5.6 7.9 0.004 LSU Other animals: pigs 0.1 0.7 0.02 LSU i f pigs Subtotal of cattle & buffalo (LSU) 5.8 2.8 Total for farm (LSU) 6.1 2.9 USE OF LIVESTOCK: Bullocks used for draft power (#) 1.8 1.0 Cattle preferred over buffalo bulls Buffaloes used for draft power (#) 0.1 0.6 for ploughing and puddling fields Total used for draft power (LSU) 2.0 1.2 Milk production (L/yr) 1010 770 Milk production (L/LSU cows/yr) 430 330 liters per female cattle & buffalo Egg production (#/yr) 210 760 Egg production (#/LSU fowl/yr) 13 44 eggs per LSU of chickens & ducks Meat production (kg/yr) 0.8 3.8 Meat prodn (kg/LSU goats,fowl/yr) 2.4 11.5 kilograms per LSU of goats & fowl Used for home consumption only (*) 1 * l=yes, 0=no, used only at home 8 3 The v a r i a t i o n i n firewood consumption f i g u r e s was probably due to fo u r reasons: 1) There are d i f f e r e n t p r a c t i c e s among c a s t e s that c o n t r i b u t e to the v a r i a b i l i t y i n firewood use. For example, people of the Gurung, Tamang and Newari c a s t e s brew more xchang' or wine and d i s t i l l more x r a k s i ' or s p i r i t s than Brahmin and C h h e t r i c a s t e s and r e q u i r e more wood (Fox, 1983). Some farmers a l s o make a hot g r a i n b roth supplement f o r c a t t l e and b u f f a l o ; thus fuelwood consumption would be high e r on these farms. 2) There were d i f f e r e n t requirements among f a m i l i e s f o r fi r e w o o d . The type and s i z e of homes i n f l u e n c e d h e a t i n g requirements. Some homes had more e f f i c i e n t , smokeless ' c h u l o s ' or stoves and t h e r e f o r e had reduced need of firewood f o r c o o k i n g . 3) T h i s r e c a l l q u e s t i o n was d i f f i c u l t f o r the farmers to answer. A fuelwood consumption study i n Nepal found that s e a s o n a l r e c a l l methods were l e s s a c c u r a t e than weekly r e c a l l or weekly weighing methods (Fox,1983). 4) T h i s was a very s e n s i t i v e i s s u e with the farmers, s i n c e wood c u t t i n g i n the nearby r e s e r v e f o r e s t was i l l e g a l . Many farmers were a f r a i d to answer t h i s q u e s t i o n h o n e s t l y i n case the i n f o r m a t i o n was used a g a i n s t them. 5.2.2 L i v e s t o c k Component The numbers and uses of the farm animals were summarized i n lower p o r t i o n of Table 5.2. To f a c i l i t a t e comparison, numbers of each type of animal were converted to l i v e s t o c k u n i t s , i . e . LSU using standard c o n v e r s i o n f a c t o r s ( W i l l i a m s o n & Payne, 1978). These c o n v e r s i o n f a c t o r s are l i s t e d i n the t a b l e i n the rows co r r e s p o n d i n g to animal type. Mean v a l u e s f o r numbers of animals and t o t a l LSU per farm were comparable to f i g u r e s from other s t u d i e s (LRMP, 1983c; Mathema, 1982). I t i s not s u r p r i s i n g t h a t c a t t l e and b u f f a l o account f o r the m a j o r i t y of these v a l u e s c o n s i d e r i n g t h e i r many important r o l e s i n the farming system. 84 I t i s obvious from the T a b l e , that p r o d u c t i o n l e v e l s of m i l k , eggs and meat were extremely low. At the time of the study, animal h e a l t h was not as i n t e n s i v e l y managed as i n North America and v e t e r i n a r y s e r v i c e s are s t i l l r e l a t i v e l y s p a r s e . As a r e s u l t p a r a s i t i c i n f e c t i o n s were common and animal h e a l t h was poor. Adequate amounts of good q u a l i t y feed was a l s o a problem, e s p e c i a l l y i n the l a t e dry season when th e r e were few crop r e s i d u e s , grass or fodder l e a v e s a v a i l a b l e . I t was t h e r e f o r e not s u r p r i s i n g t h a t p r o d u c t i o n l e v e l s were low, and t h a t these three animal products were c o n s i d e r e d l u x u r y items i n the average f a m i l y d i e t . 5.3.3 Cropping R o t a t i o n s There were over 13 d i f f e r e n t c r o p p i n g r o t a t i o n s mentioned i n the i n t e r v i e w s . These are summarized i n Table 5.3 u s i n g a number of c o n v e n t i o n s . Land use codes were s u b d i v i d e d i n t o two main c a t e g o r i e s , 'khet' or i r r i g a t e d r i c e - b a s e d r o t a t i o n s (e.g. kg, kh) and 'pakho' or r a i n f e d maize-based r o t a t i o n s (e.g. pc, pd) . The crops were l i s t e d a c c o r d i n g to season, f i r s t the monsoon crop f o l l o w e d by the winter and premonsoon c r o p s . Two n o t a t i o n s d i f f e r e n t i a t e d whether crops f o l l o w e d one another (maize, l e n t i l s ) or were i n t e r c r o p p e d t o g e t h e r ( m a i z e - l e n t i l s ) . The t a b l e presented the amounts of these v a r i o u s c r o p p i n g r o t a t i o n s from 3 d i f f e r e n t p e r s p e c t i v e s : h e c t a r e s on farm, percentage of farm, and percentage of study a r e a . For example, the r o t a t i o n 'kc' o c c u r r e d on 8 farms; of these 8 farms the mean amount of 'kc' was 1.2 ha. or 46 percent of the farm. Since only 11% of 85 Table 5.3: Means and Ranges of Amounts of Various Cropping Rotations  CROPPING ROTATIONS Farmers * hectare basis * % of farm % of area # % means ranges means ranges ** mean kc: rice, mustard or wheat 8 11 1.2 0.0-4.7 46 0-100 5 kd: rice, legumes (lentils) 4 5 0.3 0.0-0.7 25 0-71 1 kf: rice, fallow, spring maize 1 1 0.2 0.0-0.4 4 0-7 0 kg: rice, wheat, spring maize 26 35 0.8 0.0-5.4 53 0-100 19 kh: rice, mustard, spring maize 45 60 0.8 0.0-2.0 54 0-93 32 ki: rice, mustard, •dainchha' 2 2 0.2 0.0-0.4 10 0-22 0 Total 'khet* land pa: maize, potato-wheat 27 36 0.4 0.0-0.7 31 0-58 11 pc: maize, mustard 46 61 0.7 0.0-3.4 46 0-100 28 pd: maize-legume, mustard 3 4 1.2 0.0-3.5 34 0-61 1 pf: upland rice, mustard 4 5 0.3 0.0-0.7 4 0-75 0 ph: homestead & home garden 28 37 0.2 0.0-0.4 10 0-25 3 pi: rainfed rotations with trees 1 1 0.2 0.0-0.3 3 0-6 0 pk: rainfed rotations Jap.Ext. 1 1 0.9 0.0-1.7 16 0-31 0 Total 'pakho* land Total land holding 75 1.7 0.3-8.1 100 100.0 Irrigated land 74 1.0 0.0-6.1 59 0-75 57.0 Months of irrigation 4 0-5 •calculations on basis of farms with the rotation e.g. for the 8 farmers with kc the amount of land in this rotation is 1.2 ha. ••calculation on basis of study area e.g. 11% of farms times 46% of their farms in kc rotation = 5% of kc rotation in study area ph (3.0X) kc (5.0X) F i g u r e 5.2: P r o p o r t i o n s of 8 Predominant Cropping R o t a t i o n s i n Pithuwa Study Area 8 6 the i n t e r v i e w e d farms had t h i s r o t a t i o n , the percentage of the study area with 'kc' was 5 percent (or 46% of 11%). Of these 13 c r o p p i n g r o t a t i o n s , 8 were widespread enough to be r e p r e s e n t e d i n a summary pie c h a r t ( F i g u r e 5.2). There were 4 main 'khet' or i r r i g a t e d r i c e - b a s e d c r o p p i n g systems ( i . e . kc, kd, kg, kh) and 4 main 'pakho' or r a i n f e d maize-based cropping systems ( i . e . pa, pc, pd, ph). T r i p l e c r o p p i n g r o t a t i o n s were p o s s i b l e on the m a j o r i t y of farms, e s p e c i a l l y with 4 or 5 months of i r r i g a t i o n . Cropping systems i n c l u d i n g legumes ( i . e . kd, pd) covered l e s s than 5 percent of the a r e a . These r e s u l t s were c o n s i d e r e d r e p r e s e n t a t i v e of the study area f o r two reasons. F i r s t , care was taken to i n t e r v i e w a wide c r o s s s e c t i o n of farmers ( r e f e r to the methods s e c t i o n 3.3 f o r more d e t a i l ) . Secondly, the area of i n t e r v i e w e d farms accounted f o r 10 percent of the t o t a l Pithuwa panchayat's a r e a . Thus the r e s u l t s of the i n t e r v i e w i n f o r m a t i o n support the s e l e c t i o n of 'pa', x p c ' and 'kh' as the most predominant a g r i c u l t u r a l land uses to i n c l u d e i n the study of s o i l q u a l i t y . The r o t a t i o n 'kg' was a l s o widespread but i t s r i c e h a r v e s t and wheat p l a n t i n g were too delayed i n 1985 to be i n c l u d e d w i t h i n the time c o n s t r a i n t s of the sampling program. Although r o t a t i o n s such as 'kd', %pd', ' k i ' and ' p i ' were not as widespread they were c o n s i d e r e d important s o i l c o n s e r v i n g c r o p p i n g systems and were i n c l u d e d i n a p o t e n t i a l i n n o v a t i o n s substudy. To understand the complexity of these c r o p p i n g r o t a t i o n s , some d e t a i l of the p r o d u c t i o n of the v a r i o u s i n d i v i d u a l crops warrants d i s c u s s i o n . 87 5.3.4 Crops The p r o d u c t i o n f a c t o r s f o r 6 crops were summarized i n a s e r i e s of 5 t a b l e s . These t a b l e s r e p r e s e n t e d p a i r e d comparisons. For r i c e and maize, a p a i r of popular v a r i e t i e s were c o n t r a s t e d i n a t a b l e f o r each crop. For mustard and wheat, 'khet' and 'pakho' growing c o n d i t i o n s were compared; and potatoes and l e n t i l s were c o n t r a s t e d i n the l a s t t a b l e . The c r o p p i n g r o t a t i o n s t h a t each crop or v a r i e t y o c c u r r e d i n and the season t h a t each was grown i n was l i s t e d at the top. The number of farmers t h a t were i n t e r v i e w e d about t h a t p a r t i c u l a r crop was i n c l u d e d i n the t h i r d l i n e of the t a b l e s . The remainder of i n f o r m a t i o n i n c l u d e d i n these t a b l e s i s best e x p l a i n e d with examples from the f i r s t t a b l e . Rice was one of the f i r s t c h o i c e s of crops (Table 5.4). Two v a r i e t i e s are commonly grown, a l a t e r maturing, 'masuli' v a r i e t y and an e a r l i e r maturing, 'moto' v a r i e t y . The slower maturing v a r i e t y was grown i n the monsoon i n double c r o p p i n g r o t a t i o n s such as 'kc', 'kd' and ' k f ' ; while the e a r l i e r maturing v a r i e t y made t r i p l e c r o p p i n g o p t i o n s p o s s i b l e such as *kg', 'kh' and ' k i ' . The i n p u t s a p p l i e d to grow both v a r i e t i e s were comparable. I t was i n t e r e s t i n g to note t h a t r i c e was one of the few crops that d i d not respond to compost a p p l i c a t i o n s , so most farmers d i d not apply i t to t h e i r f i e l d s . The f l o o d e d , a naerobic c o n d i t i o n s that were i d e a l f o r r i c e growing were not f a v o r a b l e f o r decomposition of o r g a n i c amendments i n t o a v a i l a b l e n u t r i e n t s . Chemical f e r t i l i z e r s commonly used i n the area i n c l u d e d urea (46-88 Table 5.4: Rice Crop Production Characteristics S Comparison of Late to Early Maturing Varieties Crop (variety): rice (masulijlate) rice (moto,early) In rotations (season): *kc(M),kd(M),kg(M) kg(M),kh(M),ki(M) # of farmers interviewed: 11 71 Production Characteristics mean st.dev. mean st.dev. Explanation or comments INPUTS: (kg/ha) Seed 44 16 52 22 most farmers didn't apply Compost amount 670 1140 490 1370 compost to rice fields, Urea 39 37 52 46 causing a lower mean N-P Complex 29 50 52 70 Muriate of potash 0 0 0 0 OUTPUTS: (kg/ha) Yield average year 2180 420 2340 1080 early maturing rice variety Yield poor year 1410 450 1410 790 gives higher yields but also Yield good year 2860 540 2980 1230 more variable mean % mean % USE OF SEED: (kg/farm) Total seed yield 1625 100 1870 100 Home consumption 1425 88 1410 75 more late rice consumed Next years's seed 30 2 60 3 at home & therefore Exchanged for goods or labor 0 0 10 1 less sold in market Sold in market 170 10 390 21 USE OF RESIDUE: (kg/farm) Total residue 1290 100 1600 100 Animal feed 1190 92 1520 95 Fuelwood 0 0 20 1 Composted 0 0 60 4 Roof thatch 0 0 0 0 more straw sold from late Sold to neighbors 100 8 0 0 rice sold to neighbors mean range mean range CROP INCOME: Market price (Rs/kg) 2.50 2.35-3.25 2.00 1.80-2.60 Average crop yield (kg/ha) 2180 2340 Potential crop income (Rs/ha) 5450 4680 average yield * market price Actual cash sales (Rs/ha) 1145 1080 potential crop income * % sold * refers to cropping rotations described in Table 5.2 & seasonal codes: M=^ nonsoon; W=winter; P=premonsoon 89 0-0), nitrogen-phosphorus complex (20-20-0) and muriate of potash (0-0-60). The amount of chemical f e r t i l i z e r s added to r i c e f i e l d s ( e.g. 39-52 kg/ha urea) was more than the a d d i t i o n s f o r maize (e.g. 2-5 kg/ha urea) but l e s s than the u s u a l a d d i t i o n s f o r growing wheat ( i . e . 75-90 kg/ha u r e a ) . The new e a r l i e r maturing r i c e v a r i e t y gave hi g h e r y i e l d s than the t r a d i t i o n a l f a v o r i t e ' masuli' ( i . e . 2340 and 2180 kg/ha, r e s p e c t i v e l y ) but the y i e l d s were more v a r i a b l e among farms ( s t a n d a r d d e v i a t i o n s of 1080 and 420, r e s p e c t i v e l y ) . The v a r i a t i o n i n y i e l d s among years ( i . e . poor, average and good years) i n the farmers' o p i n i o n s was a l s o high f o r both v a r i e t i e s of r i c e . The uses of the crop seed and r e s i d u e s were c o n s i d e r e d e q u a l l y as important as comparisons of i n p u t s and o u t p u t s . The average y i e l d s i n kg/ha were converted i n t o the amount or kilograms per farm by m u l t i p l y i n g by the number of h e c t a r e s of th a t crop on each farm. For example, only 16 farmers were growing the slower maturing r i c e v a r i e t y . Of the 11 t h a t were i n t e r v i e w e d about the p r o d u c t i o n of i t , the mean amount of land p l a n t e d was 1.2 h e c t a r e s . Thus, the average amount per farm was 3790 kg/farm. In c o n t r a s t , 73 farmers were growing the e a r l i e r maturing 'raoto' r i c e . Of the 71 i n t e r v i e w e d , the mean amount of land p l a n t e d to i t was 0.8 h e c t a r e s . Thus, the average amount of t o t a l y i e l d of seed per farm was 1870 kg per farm. In the case of the two r i c e v a r i e t i e s the r e l a t i v e uses of the seed were q u i t e comparable i n t h a t the m a j o r i t y was consumed i n the home (71 to 75%). Small amounts were exchanged f o r goods or labour and saved f o r next year's crop ( i . e . 1-4%). A s l i g h t l y higher 90 p r o p o r t i o n of the *moto' or e a r l y r i c e was s o l d i n the market than the p r e f e r r e d 'masuli' or l a t e r r i c e ( i . e . 23 and 21 % r e s p e c t i v e l y ) . Most of the r e s i d u e s from both types of r i c e were fed to the l i v e s t o c k (80 to 95%). I t was i n t e r e s t i n g t h a t 20 percent more straw from the l a t e r r i c e was s o l d to neighbours. T h i s may have been because t o t a l amounts of straw were higher ( i . e . 2180 compared to 1600 kg/farm) or because of the ti m i n g of i t s h a r v e s t c o i n c i d e d with high demand f o r the straw. The l a s t few l i n e s i n each t a b l e estimate t o t a l p o t e n t i a l crop income or revenue and a c t u a l cash s a l e s income based on the seed y i e l d s r e p o r t e d by farmers and the market p r i c e s . The p o p u l a r i t y of the slower maturing 'masuli' r i c e v a r i e t y was r e f l e c t e d i n i t s h i g h e r p r i c e throughout the year, i . e . 2.35 to 3.25 Rs/kg, compared to 1.80 to 2.60 Rs/kg f o r the e a r l i e r maturing 'moto' r i c e . T h e r e f o r e , although i t was s l i g h t l y lower y i e l d i n g the p o t e n t i a l income i n rupees per hec t a r e was higher ( i . e . 5450 compared to 4680 Rs/ha). When only the amount that i s u s u a l l y s o l d i n the market was c o n s i d e r e d ( i . e . a f t e r s u b t r a c t i n g the amount used f o r home consumption, seed and exchanges), i t s t i l l had a hi g h e r a c t u a l cash s a l e s income of 1145 Rs/ha (compared to 1080 Rs/ha f o r the 'nioto' r i c e ) . A s i m i l a r comparison was compiled f o r e a r l y and l a t e maturing maize (Table 5.5). Both v a r i e t i e s of t h i s crop were grown with heavy compost a p p l i c a t i o n s ( i . e . 3400 to 3710 kg/ha) and scant a p p l i c a t i o n s of chemical f e r t i l i z e r (e.g. 2-5 kg/ha u r e a ) . Even though the s p r i n g maize was an improved v a r i e t y , i t o f t e n had to be harvested e a r l i e r than i d e a l so t h a t r i c e could 91 Table 5.5: Maize Crop Production Characteristics & Comparison of Late to Early Maturing Varieties Crop (variety): maize (late) maize (early) In rotations (season): *pa(M),pc(M),pd(M) kf(P),kg(P),kh(P) # of farmers interviewed: 74 70 Production Characteristics mean st.dev. mean st.dev. Explanation or comments INPUTS: (kg/ha) Seed 32 68 24 10 Compost amount 3710 2890 3400 2340 heavy compost applied to most Urea 2 10 5 22 maize fields but less chemical N-P Complex 8 40 9 36 fertilizer applied than with Muriate of potash 0 0 0 0 other crops OUTPUTS: (kg/ha) monsoon maize higher yielding Yield average year 1380 890 1200 870 because spring maize must Yield poor year 740 440 600 440 often be harvested earlier Yield good year 1770 1190 1470 900 than ideal to plant rice mean % mean % USE OF SEED: (kg/farm) Total seed yield 910 100 790 100 Home consumption 550 60 585 74 more spring maize consumed Next years's seed 15 2 20 2 in home because less Exchanged for goods or labor 15 2 5 1 choice at this time Sold in market 330 36 180 23 USE OF RESIDUE: (kg/farm) Total residue 1010 100 1110 100 Animal feed 380 38 475 43 more spring maize used for Fuelwood 80 8 15 1 animal feed or sold to Composted 550 54 620 56 feed neighbors animals. Roof thatch 0 0 0 0 due to green harvest Sold to neighbors 0 0 90 680 mean range mean range CROP INCOME: Market price (Rs/kg) 2.10 1.80-3.00 2.10 1.80-3.00 Average crop yield (kg/ha) 1380 1200 Potential crop income (Rs/ha) 2900 2520 Average yield * market price Actual cash sales (Rs/ha) 1040 580 Potential crop income * % sold * refers to cropping rotations described in Table 5.2 fi seasonal codes: M=monsoon; W=winter; P=premonsoon 9 2 be t r a n s p l a n t e d i n time f o r the onset of the monsoon r a i n s . Thus the y i e l d s f o r the e a r l i e r maturing or s p r i n g maize were lower than the l a t e r maturing or monsoon maize crop. The r e l a t i v e uses of these two types of maize showed some i n t e r e s t i n g d i f f e r e n c e s . More s p r i n g maize was consumed i n the home than the monsoon maize (74 and 60 % r e s p e c t i v e l y ) . T h i s was expected s i n c e at the time of the s p r i n g maize h a r v e s t , the household s t o r e s of r i c e and other s t a p l e s would be low. In c o n t r a s t , the monsoon maize was h a r v e s t e d very c l o s e to the r i c e h a r v e s t , and r i c e was almost always the p r e f e r r e d s t a p l e . More of the s p r i n g maize r e s i d u e s were fed to the l i v e s t o c k or s o l d to the neighbors to feed t h e i r l i v e s t o c k . T h i s was a l s o due to the t i m i n g of t h i s h a r v e s t i n r e l a t i o n to the a v a i l a b i l i t y of other feed s o u r c e s . The p r i c e s i n 1985 were s i m i l a r f o r the two maize v a r i e t i e s i . e . 1.80 to 3.00 Rs/kg. P r i c e v a r i e d more s e a s o n a l l y than between v a r i e t i e s . Monsoon maize had hi g h e r p o t e n t i a l income (2900 Rs/ha) and a c t u a l cash s a l e s (1040 Rs/ha) than s p r i n g maize. S p r i n g maize had hi g h e r value i n r e p l e n i s h i n g household and l i v e s t o c k food s t o r e s at a c r i t i c a l time of the year than i n i t s s e l l i n g or income v a l u e . Mustard grown on *khet' or r i c e land was compared with mustard grown on xpakho' or maize upland ( T a b l e 5.6). In both cases i t was grown as a winter crop i n double c r o p p i n g r o t a t i o n s (kc and pc) or t r i p l e c r o p p i n g r o t a t i o n s (kh, k i and pd, pe). The r a t e s of seed (15-20 kg/ha) and chemical f e r t i l i z e r ( 40 kg/ha urea and 75-100 kg/ha N-P complex) were comparable f o r both 93 Table 5.6: Mustard Crop Production Characteristics & Comparison of 'Khet' to 'Pakho' Mustard Crop (variety): mustard ( [on khet) mustard (on pakho) In rotations (season): *kc(W),kh(W),ki(W) pc(W) ,pd(W) ,pe(W) # of farmers interviewed: 52 50 Production Characteristics mean st.dev. mean st.dev. Explanation or comments INPUTS: (kg/ha) Seed 20 25 15 6 rate of seed and fertilizer Compost amount 480 1170 1400 2650 same but compost use often Urea 40 30 40 55 higher on pakho than on khet N-P Complex 100 110 75 80 Muriate of potash 1 9 2 16 OUTPUTS: (kg/ha) Yield average year 560 630 490 195 khet yields > pakho yields Yield poor year 253 160 270 140 but also more variable Yield good year 790 830 660 290 mean % mean % USE OF SEED: (kg/farm) Total seed yield 455 100 365 100 Home consumption 130 29 85 80 Next years's seed 20 4 10 12 Exchanged for goods or labor 1 0 10 60 higher % of this cash crop Sold in market 305 67 250 555 sold in market USE OF RESIDUE: (kg/farm) Total residue 420 100 340 100 Animal feed 60 14 95 28 byproducts of o i l making; pakho Fuelwood 0 0 0 0 mustard is harvested earlier Composted 360 86 245 72 & available sooner for feed; Roof thatch 0 0 0 0 straw slow to break down Sold to neighbors 0 0 0 0 in compost mean range mean range CROP INCOME: Market price (Rs/kg) 7.50 6.50-11.00 7.50 6.50-11.00 Average crop yield (kg/ha) 560 490 Potential crop income (Rs/ha) 4200 3675 Average yield * market price Actual cash sales (Rs/ha) 2815 2500 Potential crop income * % sold * refers to cropping rotations described in Table 5.2 & seasonal codes: M=monsoan; W=winter; P=premonsoon 94 types of mustard. Mustard was one of the few c r o p p i n g s i t u a t i o n s where some of the l a r g e r farmers had a p p l i e d muriate of potash f e r t i l i z e r . Compost a p p l i c a t i o n s were o f t e n higher on 'pakho' mustard ( i . e . 1400 kg/ha) than on 'khet' mustard ( i . e . 480 kg/ha). However, 'khet' mustard y i e l d s were u s u a l l y higher than 'pakho' mustard y i e l d s ( i . e . 560 and 490 kg/ha r e s p e c t i v e l y ) . They were a l s o more v a r i a b l e probably because they were planted l a t e r i n t o the winter season when s o i l moisture was more depleted and i r r i g a t i o n water was l e s s a s s u r e d . The uses of the mustard seed were comparable f o r the two s i t u a t i o n s but the r e l a t i v e uses of the r e s i d u e s showed some d i f f e r e n c e s . For both types of mustard, a l a r g e percentage of the seed was s o l d i n the market ( i . e . 67 to 68 % ) . About a q u a r t e r of the t o t a l crop was consumed i n the home i n the form of cooking o i l and a s m a l l p o r t i o n (3-4 %) was saved f o r next year's seeding requirements. When i t came to the mustard crop r e s i d u e s , twice as much of the r e s i d u e s from t h r e s h i n g and o i l making from 'pakho' mustard was fed to the animals as that from 'khet' mustard ( i . e . 28 compared to 14 p e r c e n t ) . T h i s meant t h a t a h i g h e r p o r t i o n of the 'khet' mustard was composted than i n the 'pakho' s i t u a t i o n ( i . e . 86 and 72% r e s p e c t i v e l y ) . T h i s d i f f e r e n c e may have been due to the e a r l i e r h a r v e s t of the 'pakho' mustard. Crop incomes r e f l e c t e d the average y i e l d s and thus were high e r from 'khet' than from 'pakho' mustard. A c t u a l cash s a l e s of both mustards were hig h e r than those of r i c e , maize or wheat because of the h i g h e r p r o p o r t i o n s s o l d i n the market. 95 A comparison of two wheat growing s i t u a t i o n s was made i n a s i m i l a r way to that d i s c u s s e d f o r mustard, i . e . wheat on 'khet' and on 'pakho' (Table 5.7). Wheat was grown as a winter crop i n double c r o p p i n g r o t a t i o n s ( k b ) , i n t r i p l e c r o p p i n g r o t a t i o n s (kg) and as a r e l a y crop a f t e r potato ( p a ) . Rates of seed (100-120 kg/ha) and chemical f e r t i l i z e r s (75-90 kg/ha urea and 130-140 kg/ha N-P complex) were comparable f o r the two wheat growing s i t u a t i o n s . Compost a d d i t i o n s were o f t e n higher on 'khet' than on 'pakho' ( i . e 1630 and 550 kg/ha r e s p e c t i v e l y ) ; and i n the r a r e i n s t a n c e s t h a t muriate of potash f e r t i l i z e r was a p p l i e d i t was to 'khet' wheat. 'Khet' y i e l d s were again h i g h e r than 'pakho' y i e l d s but were a l s o more v a r i a b l e . The mean t o t a l y i e l d s of wheat per farm were hig h e r i n the 'khet' than i n the 'pakho' s i t u a t i o n r e f l e c t i n g both the higher y i e l d per h e c t a r e and the higher amount of the farm i n the 'khet' r o t a t i o n s . However, a g r e a t e r p r o p o r t i o n of the l a t e r 'pakho' wheat was consumed i n the home ( i . e . 44 compared to 21 % ) . Wheat was t h i r d c h o i c e as a s t a p l e i n the f a m i l y d i e t but l a t e r i n the dry season i t may have been the only c h o i c e f o r some f a m i l i e s . Wheat straw p l a y s a c r i t i c a l r o l e i n the farming system as w e l l . I t s h a r v e s t time corresponds to a time of the year when r i c e straw r e s e r v e s f o r l i v e s t o c k are low. I t i s a l s o used to t h a t c h r o o f s of the animal s t a l l s . Wheat i s one of the few crops t h a t seems to have a r e l a t i v e l y s t a b l e p r i c e over the year i . e . 1.80 to 2.00 Rs/ha. Because of i t s other p r e c i o u s uses as a human and animal s t a p l e , most wheat was not s o l d i n the market. Thus i t s a c t u a l cash 9 6 Table 5.7: Wheat Crop Production Characteristics & Comparison of 'Khet' to 'Pakho' Wheat Crop (variety): wheat (on 'khet') wheat (on 'pakho') In rotations (season): *kb(W), kg(W) pa (W relayed) # of farmers interviewed: 27 21 Production Characteristics mean st.dev. mean st.dev. Explanation or comments INPUTS: (kg/ha) Seed 100 30 120 50 rate of seed & fertilizer Compost amount 1630 2350 550 1700 similar but more compost Urea 75 55 90 150 added to khet than pakho N-P Complex 130 95 140 130 Muriate of potash 5 15 0 0 OUTPUTS: (kg/ha) Yield average year 1590 675 1255 410 khet yield > pakho yield Yield poor year 895 400 660 390 but also more variable Yield good year 2030 770 1815 565 mean % mean % USE OF SEED: (kg/farm) Total seed yield 1040 100 530 100 usually more land in khet wheat Heme consumption 320 31 240 45 so total yields/farm greater; Next years's seed 105 10 50 10 wheat grown as second choice Exchanged for goods or labor 0 0 0 0 staple in family diet Sold in market 615 59 240 45 USE OF RESIDUE: (kg/farm) Total residue 1115 100 800 100 Animal feed 295 27 230 29 straw important for animal feed Fuelwood 0 0 0 0 at a critical time of year Composted 105 9 120 15 & popular thatching material Roof thatch 700 63 445 56 for animal shelters Sold to neighbors 15 1 0 0 mean range mean range CROP INCOME: Market price (RsAg) 2.00 1.80-2.00 2.00 1.80-2.00 Average crop yield (kg/ha) 1590 1255 Potential crop income (Rs/ha) 3180 2510 Average yield * market price Actual cash sales (Rs/ha) 1340 1130 Potential crop income * % sold refers to cropping rotations described in Table 5.2 & seasonal codes: M=monsoon; W=winter; P=premonsoon 97 s a l e s income was lower than that of winter cash crops l i k e mustard or p o t a t o . L e n t i l s were grown i n s m a l l e r amounts than the other crops but r e p r e s e n t e d important p r o t e i n supplements to both the f a m i l y and farm l i v e s t o c k d i e t s . They were most o f t e n grown on r i c e bunds or i n farmstead gardens. Sometimes they were grown as a winter crop a f t e r l a t e maturing r i c e (kd) or i n t e r c r o p p e d with maize as a monsoon crop ( p d ) . There was hi g h v a r i a t i o n i n t h e i r y i e l d s so i n p u t s were kept to a minimum to reduce r i s k . Of the farmers i n t e r v i e w e d the average y i e l d was 300 kg/ha (Table 5.8). Of the t o t a l y i e l d per farm about 25 percent was consumed by the household ( i n the form of x d h a l ' or l e n t i l soup) and 50 percent was s o l d i n the market. There were more r e s i d u e s when l e n t i l s were grown i n the monsoon and high p r o p o r t i o n s of these were used f o r animal feed (31%) or s o l d to neighbors f o r animal feed ( 6 9 % ) . P o t e n t i a l income was 720 rupees per h e c t a r e but a c t u a l cash income based on the percentage of the crop u s u a l l y s o l d i n the market was 395 Rs/ha. Potatoes as a cash crop, were becoming more and more popular i n the study a r e a . They were u s u a l l y grown i n a t r i p l e c r o pping r o t a t i o n a f t e r monsoon maize and i n t e r c r o p p e d with wheat ( p a ) . Inputs r e q u i r e d f o r t h i s crop were r e l a t i v e l y high compared with other crops (Table, 5.8). Since potatoes were d i f f i c u l t to s t o r e from year to year, most of the seed had to be bought a n n u a l l y , and a l a r g e r o u t l a y of cash was r e q u i r e d to grow t h i s c r o p . Of the 25 farmers with t h i s x p a ' r o t a t i o n , the average y i e l d was about 7000 kg/ha. T h i s was h i g h l y v a r i a b l e from farm to farm 98 Table 5.8: Comparison of Crop Production Characteristics for Lentil & Potato Crops Crop (variety): lentils potato In rotations (season): *kd(W), pd(Mrelay) pa (W) # of farmers interviewed: 6 25 Production Characteristics mean st.dev. mean st.dev. Explanation or comments INPUTS: (kg/ha) Seed 10 4 540 185 potato seed usually bought so Compost amount 445 1095 1920 3290 large outlay of cash required Urea 7 16 35 45 for seed & fertilizers N-P Complex 0 0 120 135 Muriate of potash 0 0 0 0 OUTPUTS: (kg/ha) Yield average year 300 215 7005 2220 high variation in lentil yields Yield poor year 160 100 3740 2495 so low input levels to reduce Yield good year 445 355 8800 2240 risk mean % mean % USE OF SEED: (kg/farm) Total seed yield 120 100 3290 100 high variation in total potato Home consumption 40 33 380 12 yield due to range of amount Next years's seed 5 3 195 6 planted on each farm Exchanged for goods or labor 0 0 0 0 potatoes represent a cash crop Sold in market 75 67 2715 82 and 82 % sold in market USE OF RESIDUE: (kg/farm) Total residue 90 100 425 100 more residues available for Animal feed 75 83 220 52 feed from monsoon lentils; Fuelwood 0 0 0 0 but very few farmers grow them Composted 15 17 205 48 as an intercrop with maize so Roof thatch 0 o- 0 0 70 % can be sold to neighbors Sold to neighbors 0 0 0 0 to feed to their animals mean range . mean range CROP INCOME: Market price (Rs/kg) 2.40 2.00-2.70 3.00 1.25-4.50 Average crop yield (kg/ha) 300 7000 Potential crop income (Rs/ha) 720 21020 Average yield * market price Actual cash sales (Rs/ha) 395 17230 Potential crop income * % sold * refers to cropping rotations described in Table 5.2 & seasonal codes: M=monsoon; W=winter; P=premonsoon 9 9 (standard d e v i a t i o n of 2200) and from year to year (3700 to 8800 kg/ha). The amount of t h i s r o t a t i o n t h a t a farmer could a f f o r d to grow was a l s o h i g h l y v a r i a b l e ; thus t o t a l y i e l d s per farm ranged from 140 to 10400 kg/ha! A f t e r s m a l l amounts had been set a s i d e f o r home consumption and next year's seed (10 and 5 % ) , most of the potato y i e l d was marketed (82 % ) . About h a l f the r e s i d u e s were fed to l i v e s t o c k and h a l f added to the compost heap. The p r i c e of potatoes was extremely v a r i a b l e , from 1.25 to 4.25 Rs/kg. Income from t h i s crop as i l l u s t r a t e d by p o t e n t i a l income (21,020 Rs/ha) and a c t u a l cash s a l e s income (17,230 Rs/ha) were hig h e r than any other crop. I t should be remembered though, that most farmers c o u l d not a f f o r d the cash investment f o r the i n p u t s r e q u i r e d f o r one h e c t a r e of t h i s cash crop. Thus, i t would probably be grown on p a r c e l s of land s m a l l e r than one h e c t a r e ; and the a c t u a l cash incomes would l i k e l y be much lower. The h i g h l i g h t s of the preceding d i s c u s s i o n of crop p r o d u c t i o n are i l l u s t r a t e d i n F i g u r e 5.3. The boxes f o r each crop i n d i c a t e t h e i r a e r i a l e xtent and t h e i r p o s i t i o n i n the s e a s o n a l c r o p p i n g r o t a t i o n s . In summary, i t was obvious that r i c e and maize were s t a p l e crops f o r the f a m i l y d i e t , and r i c e , maize and wheat r e s i d u e s were the s t a p l e f o r the farm l i v e s t o c k . L e n t i l s r e p r e s e n t e d an important p r o t e i n supplement to both the f a m i l y ' s and the farm animals' d i e t s . Because these crops had h i g h l y valued uses on the farm, the probable income from a c t u a l cash s a l e s was l e s s . In c o n t r a s t , mustard and potatoes were cash crops t h a t were r e a d i l y s o l d i n the market r e s u l t i n g i n higher a c t u a l cash s a l e s . The uses of these 6 main crops was important 100 Land use % of oode: area: Crops (S yields In kg/ha) by season: kc kd kg kh 5 1 19 32 11 28 ph 3 Time scale: Nepali Gregorian Seasons \leritil3M34bl, \ ? 6170 10,380 Annual Income per Rotation Potential Actual income: cash Bales: 96S0 Rs/ha 3960 1540 3000 11,480 4520 26,240 19,340 6580 7360 3540 3700 prefsonsoon winter F i g u r e 5 .3 : P r e d o m i n a n t p o t e n t i a l c r o p p i n g r o t a t i o n s , c r o p y i e l d s , r e v e n u e and a c t u a l c a s h s a l e s . 101 i n i n t e r p r e t a t i o n of r e l a t i v e crop incomes or farm p r o f i t a b i l i t y . 5.3 Farm P r o f i t a b i l i t y A n a l y s i s The o b j e c t i v e of t h i s s e c t i o n was to determine the optimal land management from the p o i n t of view of economics. S p e c i f i c a l l y , the i d e a was to compare the p r o d u c t i v i t y , e f f i c i e n c y and p r o f i t a b i l i t y of v a r i o u s c r o p p i n g r o t a t i o n s ( t h a t have been e v a l u a t e d a c c o r d i n g to s o i l q u a l i t y parameters i n the p r e v i o u s c h a p t e r ) . 5.3.1 Budgeting Techniques, D e f i n i t i o n s & Adaptations I n t e r p r e t a t i o n of farm management terms and a d a p t a t i o n s of standard a n a l y s i s methods r e q u i r e c l a r i f i c a t i o n at t h i s p o i n t to understand the farm e v a l u a t i o n . Management r e f e r s to the d e c i s i o n making process whereby sc a r c e r e s o u r c e s are a l l o c a t e d f o r f u l f i l l m e n t of goals i n a context of r i s k and u n c e r t a i n t y . Thus, farm management i n t h i s s i t u a t i o n was the r e l a t i v e a l l o c a t i o n s of l a n d , l a b o u r , power and o p e r a t i n g c a p i t a l to produce enough to meet the f a m i l y needs and d e s i r e s ( i . e . goals of s m a l l farms at e a r l y consumer stage of development as d e s c r i b e d i n chapter 2 ) . In t h i s c o n t e x t , land use management was the r e l a t i v e a l l o c a t i o n s of the same fo u r r e s o u r c e s to produce food, fodder and f u e l f o r the f a m i l y from the c r o p p i n g r o t a t i o n s , and i t was concerned with the q u a l i t i e s (important s o i l p r o p e r t i e s ) as w e l l as the q u a n t i t i e s of the land r e s o u r c e ( r e l a t i v e a l l o c a t i o n s ) . P r o d u c t i v i t y r e f e r s to the a b i l i t y of a p r o d u c t i v e u n i t to 102 produce a c e r t a i n l e v e l of output (Harsh, 1981). In t h i s a n a l y s i s i t was d e f i n e d as the y i e l d s i n k ilograms of v a r i o u s c r o p p i n g e n t e r p r i s e s per hectare of l a n d . These were computed from l o c a l v i l l a g e u n i t s of measure 'muris' or ' p a t h i s * of crops per "bighas' or 'khatas' of land u s i n g accepted c o n v e r s i o n f a c t o r s (IHDP/SATA, 1984). E f f i c i e n c y i s d e f i n e d as p r o d u c t i o n of d e s i r e d r e s u l t s with a minimum expe n d i t u r e of time, money, energy and m a t e r i a l s (Harsh, 1981). In the a n a l y s i s of farms i n Pithuwa, t h i s was i n t e r p r e t e d as the r a t i o of gross margin to t o t a l s e l e c t e d r e s o u r c e requirements of v a r i o u s c r o p p i n g o p t i o n s . Farm p r o f i t a b i l i t y i s u s u a l l y the t o t a l revenues from crop and animal p r o d u c t i o n (TR) minus t o t a l c o s t s of p r o d u c t i o n (TC). In the study area the complexity of the mixed animal-crop o p e r a t i o n s made t h i s c a l c u l a t i o n d i f f i c u l t . Most of the products were consumed w i t h i n the farm household or exchanged f o r goods or s e r v i c e s w i t h i n the community. F i x e d c o s t s such as d e p r e c i a t i o n of farm machinery and c o s t of farm b u i l d i n g s were n e g l i g i b l e . Both machinery and b u i l d i n g s were g e n e r a l l y made from l o c a l l y a v a i l a b l e m a t e r i a l s , such as wood or straw t h a t c h , and the o p p o r t u n i t y c o s t of the l a b o u r f o r c o n s t r u c t i o n and maintenance was low. Pithuwa was a government r e s e t t l e d area making the cost of land d i f f i c u l t to e s t i m a t e ; t h e r e f o r e land p r i c e s were a l s o excluded from the c a l c u l a t i o n . P r o f i t a b i l i t y of crop p r o d u c t i o n was the focus of c o n s i d e r a t i o n ; w i t h i n the context of a very rough e s t i m a t i o n of t o t a l farm p r o f i t a b i l i t y . As a measure of crop p r o f i t a b i l i t y , gross margin was c o n s i d e r e d the most r e l e v a n t 103 term. To estimate t o t a l v a r i a b l e c o s t s , only the f a c t o r s of pr o d u c t i o n or c o s t s that changed f o r v a r i o u s crops and cropping r o t a t i o n s were i n c l u d e d . These t o t a l v a r i a b l e c o s t s were s u b t r a c t e d from t o t a l p o t e n t i a l revenues of crop p r o d u c t i o n , assuming a l l crops (both f i e l d and t r e e crops) was s o l d i n the marketplace, to estimate gross margin per cro p p i n g r o t a t i o n . S e l e c t e d r e s o u r c e requirements were eva l u a t e d to suggest p o t e n t i a l c o n s t r a i n t s f o r each e n t e r p r i s e . The use of the terms land and labour were comparable to t h e i r common usage. There were two s u b d i v i s i o n s f o r each; i . e . i r r i g a t e d and u n i r r i g a t e d l a n d , men and women l a b o u r . D r a f t power was i n c l u d e d s i n c e many farmers had mentioned shortages i n c e r t a i n seasons. Operating c a p i t a l was d e f i n e d as the expenditure f o r crop i n p u t s t h a t could only be bought i n the bazaars or markets. The cost of labour or b u l l o c k power were c o n s i d e r e d non-cash c o s t s because a l l kinds of complex c o o p e r a t i v e arrangements with the neighbors or w i t h i n the f a m i l y r e s o u r c e s were made that were d i f f i c u l t to measure. A budgeting technique was adapted from the methods of p a r t i a l budgeting and e n t e r p r i s e budgeting o u t l i n e d i n s e v e r a l farm management b u l l e t i n s and textbooks (Harsh, 1981; Kay, 1986; Malmberg & Pe t e r s o n , 1985). Thus i t was p o s s i b l e to s t r e a m l i n e the a n a l y s i s to only the f a c t o r s that were r e l a t e d to v a r i o u s cropping r o t a t i o n o p t i o n s , r a t h e r than a l l f a c t o r s of a l l farm e n t e r p r i s e s as would be done i n a complete budgeting a n a l y s i s . 104 5.3.2 Budgeting A n a l y s i s of Farms i n Pithuwa The budgeting technique, as d e f i n e d above, was used to o r g a n i z e data from key informant and g e n e r a l farmer i n t e r v i e w s taken i n the Pithuwa a r e a . The data was organized i n t o i n t e r a c t i v e components of an IBMPC Symphony worksheet. F i g u r e 5.A i l l u s t r a t e s how these components i n t e r a c t . The r e l a t i v e p r o f i t a b i l i t y of v a r i o u s land use o p t i o n s was c a l c u l a t e d i n two s t e p s . F i r s t , gross margins f o r 8 major crops were estimated from t a l l i e s of t o t a l p o t e n t i a l crop income and t o t a l v a r i a b l e i n p u t c o s t s . Next t h i s i n f o r m a t i o n by crop was compiled i n t o e i g h t common cro p p i n g combinations to estimate gross margin on a c r o p p i n g r o t a t i o n b a s i s . To o b t a i n a g e n e r a l overview of the system or c r o p p i n g system model, average c o n d i t i o n s , y i e l d s and p r i c e s were assumed. (These assumptions w i l l be examined i n more d e t a i l i n s e c t i o n 5.3.3) I t was obvious from the rough estimate of farm p r o f i t a b i l i t y t h a t o v e r a l l p r o f i t l e v e l s of the farms i n the study area were extremely low. A l l c r o p p i n g systems seemed very labour i n t e n s i v e . In c o n t r a s t , o p e r a t i n g c a p i t a l requirements were g e n e r a l l y low f o r most of the cropping r o t a t i o n s except the one i n c l u d i n g p o t a t o e s . Table 5.9 and 5.10 p r o v i d e the d e t a i l f o r these g e n e r a l statements. When crops were compared on a per hectare b a s i s ( F i g u r e 5.5), the order of the gross margin i n d e c r e a s i n g magnitude was: potato >> l a t e r i c e > mustard > e a r l y r i c e > monsoon maize > s p r i n g maize > wheat > l e n t i l s . The order of crops was s i m i l a r when e f f i c i e n c i e s of s e l e c t e d r e s o u r c e requirements, i . e . l a b o u r , power and o p e r a t i n g c a p i t a l , 105 Title: Comparison by crop Scenerio description Assumptions: Input costs Crop prices Crop yields * * * * * * Crop Income: crop 1 crop2 etc kg/ha Rs kg/ha Rs * * * * * * * * Input Costs: crop 1 crop2 etc units Rs units RS * * * * * * * * * * Gross Margin: crop 1 crop2 etc units RS units Rs * * * * Selected Resource crop 1 crop2 etc Requirements: units RS units Rs * * * * * * * * Title: comparison by cropping rotation • Scenario description i j Assumptions: Cropping rotation amounts ha % | rotation 1 * rotation 2 * * ; Summaries by Rotation: rotn 1 rotn 2 etc. farm total income * * * input costs * * gross margin * * selected resource reguirets * * * Overall Farm or Fixed Costs: Farm Profit * Figure 5.4: Interactive components of cropping system budgeting worksheet for comparing various crops and cropping rotations in the Pithuwa study area. TABLE 5.9: COMPARISONS CF PRODUCTIVITY S EFFICIENCY OF VARIOUS CROPS SCENARIO values taken from key informant interviews and means from general interviews average prices and average yields assumed ASSUMPTIONS:INPUT COSTS (Rs per unit) tractor rental /hour bullodc team rental /day labor hire/'manday (md) labor hire/womanday (wd) urea fertilizer Ag examples fertilizer Ag muriate of potash Ag pesticide /bottle food far labor /day yearly tax /ha irrigation costAa used in aver high low analysis 150 200 100 150 30 50 25 30 20 30 15 20 15 25 10 15 3.5 3.8 2.8 3.5 3.3 3.7 2.7 3.3 1.6 1 1.6 50 22 50 7 10 5 7 100 100 35 60 0 35 CROP PRICES (Rs per kg) Crop average high rice 1 2.50 3.25 rice e 2.00 2.60 maize 2.10 3.00 mustard 7.50 11.00 wheat 2.00 3.00 potato 3.00 4.50 lentil 2.40 2.70 soybean 5.00 6.00 fuelwood (Rs/25kg) 10.00 15.00 TOTAL CROP INCOME LATE RICE EARLY RICE LATE MAIZE EARLY MAIZE kg/na Rs kg/ha Rs kgAa Rs kgAa Rs Yield seed: kg par ha 2180 2340 1380 1200 Rs per ha of crop per year 5450 4680 2898 2520 TOTAL INPUT COSTS: LATE RICE EARLY RICE LATE MAIZE EARLY MAIZE (Variable Costs) units Rs units Rs units Rs units Rs ploughing: rractcr rental in hours r\ C 0 0 0 0 o Q bullock raam in days 12 360 12 360 9 270 9 270 fertility: compost in kg/na 670 490 3710 3400 OR in •wmandays 3 40 2 29 15 223 14 204 urea 40 140 50 175 0 0 5 18 complex 30 99 50 165 10 33 10 33 mur. of potash 0 0 0 0 0 0 0 0 seeding: . seed in kg/ha A " 113 - 52 104 32 67 25 53 labor (rice:wd; othsr:md) 10 150 10 150 1 20 -L 20 crop care: purchased pesticide 0 0 ± 50 0 0 0 0 weeding labor (wd) 1 15 1 15 1 15 • 1 15 irrigating labor (md) 10 200 10 200 c 0 0 0 harvesting: labor in man S womandays 30 525 30 525 10 175 10 175 threshing: labor in mandays 10 200 10 200 labor food: days that meals are given 54 1181 53 1165 27 590 26 563 TOTAL COSTS :: Rs par ha of crop per year 3023 3139 1393 1350 Rs per kg of crop 1.39 1.34 1.01 1.13 GROSS MARGIN: Rs par ha of crap per year 2427 1541 1505 1170 Rs per kg of crop 1.11 0.66 1.09 0.97 SELECTED RESOURCE RECOTREMENTS: LATE RICE EARLY RICE LATE MAIZE EARLY MAIZE • unit Rs/unit unit Rs/unit unit Rs/unit unit Rs/unit Land: irrigated "khet1 (ha) 1.0 2427 1.0 1541 0.0 0.0 ramirri gated "pakho' (ha) 0.0 0.0 1.0 1505 1.0 1170 Labor: man days (md) 47 52 47 33 14 107 15 78 woman days (wd) 82 29 81 19 48 32 45 26 Power: bullock days (bd) 24 101 24 64 18 84 13 65 Capital: operating (Rs) 239 10 340 5 33 46 51 23 for marketplace inputs 106 used in CROP YIELDS (kgAa) used in low analysis Crop average good poor analysis 2.35 2.50 rice 1 2180 3500 1500 2180 1.80 2.00 rice e 2340 3300 1600 2340 1.80 2.10 maize 1 1550 1950 970 1380 6.50 7.50 maize e 1200 1460 560 1200 1.80 2.00 mustard k 560 790 250 560 1.25 3.00 mustard p 490 660 270 490 2.00 2.40 wheat k 1590 2030 890 1590 4.00 5.00 wheat p 1250 1810 660 1250 potato 7000 9500 3500 7000 5.00 10.00 lentil 300 670 175 300 fuelwood cansumpt 2400 13500 625 4200 MUSTARD WHEAT POTATO LENTIL TPTT.TPTT, kg/ha Rs kg/ha Rs kgAa Rs kg/ha Rs RS 560 1250 7000 300 420Q 2500 21000 720 1680 MUSTARD WHEAT POTATO LENTIL units Rs •^ni~s Rs units Rs units RS units Rs 1.5 225 b 0 1.5 225 0 0 o 270 3 90 12 360 0 0 480 1000 1920 445 2 29 '4 60 8 115 2 27 40 140 90 315 35 123 7 25 100 330 140 462 120 396 0 0 0 0 0 0 0 0 0 0 20 150 120 240 540 1620 10 24 5 100 J. 20 .1 20 4 80 1 20 1 50 0 0 0 0 0 0 1 15 15 8 120 0 0 10 150 -i 20 0 0 0 0 0 0 10 150 5 75 5 88 35 613 5 75 20 300 10 200 15 300 0 19 416 26 572 55 1203 8 171 1940 2162 4854 341 700 3.46 1.73 0.69 1.14 2260 339 16146 379 980 4.'34 0.27 2.31 1.26 MUSTARD WHEAT POTATO LENTIL TPTT.TPTT. unit Rs/unit unit Rs/unit unit Rs/unit unit Rs/unit unit Rs/unit 0.0 0.0 0.0 0.0 1.0 980 1.0 2260 1.0 339 1.0 16146 1.0 379 0.0 23 100 22 16 34 482 4 108 10 98 24 93 34 10 88 184 12 31 20 49 18 126 6 56 24 673 0 0 695 3 777 0 2364 7 25 7 0 TABLE 5.10: COMPARISONS CF PRODUCTIVITY & EFFICIENCY OF VARIOUS CROPPING ROTATIONS 107 SCENARIO information taken from general farm interviews average farm :CROP ROTATIONS (ha S % of farm) Amt (ha) Amt (%) kc: late r i c e , mustard 0.1 5.9 kd: late r i c e , l e n t i l 0.1 5.9 kf: late r i c e , fallow, spr maize 0.0 0.0 kg: early r i c e , wheat, spr maize 0.3 17.6 kh: early rice, mustard, spr maize 0.5 29.4 k i : early r i c e , mustard, dainchha 0.0 0.0 kk: Jap.Ext.farm organic khet- 0.0 0.0 pa: maize, potato-wheat 0.2 11.8 pc: maize, mustard 0.4 23.5 pd: maize-lentil, mustard 0.0 0.0 pf: upland ri c e , mustard or maize 0.0 0.0 ph: farmstead, garden 0.1 5.9 p i : maize, mustard - i p i l i p i l 0.0 0.0 pk: Jap.Ext.farm rainfed rotations 0.0 0.0 Total landholding 1.7 100.0 Irrigated land 1.0 58.8 SUMMARIES FOR CROPPING ROTATIONS Basis of 1 ha of rotation Cropping Profit Margin: Total crop income (Rs) Total Variable Costs (Rs) Gross Margin (Rs) Selected Resource Requirements: Land: irrigated khet (ha) nonirrigated pakho (ha) Labor: man days (md) woman days (wd) Power: bullock days (bd) Capital: operating (Rs) Basis of amt of farm i n rotation Cropping Profit Margin: Total crop income (Rs) Total Variable Costs (Rs) Gross Margin (Rs) Selected Resource Requirements: Land: irrigated khet (ha) nonirrigated pakho (ha) Labor: man days (md) woman days (wd) Power: bullock days (bd) Capital: operating (Rs) kc kd kg kh 1.0 1.0 1.0 1.0 9650 6170 10380 11400 4963 3364 6650 6429 4637 2806 3730 4971 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 70 51 84 85 107 94 160 150 42 24 48 60 934 264 1168 1086 0.1 0.1 0.3 0.5 965 617 3114 5700 496 336 1995 3214 469 2S1 1119 2486 0.1 0.1 0.3 0.5 0.0 0.0 0.0 0.0 7 5 25 42 11 9 48 75 4 2 14 30 93 26 350 543 Farm PC Pd pa pi 1.0 1.0 1.0 1.0 6573 7293 25398 8253 3333 3675 8409 4033 3240 3618 17989 4220 0.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 37 40 69 47 72 84 169 92 36 36 48 36 728 753 3174 728 0.4 0.0 0.0 0.0 2629 0 0 0 13025 1333 0 0 0 7375 1296 0 0 0 5650 0.0 0.0 0.0 0.0 1.0 0.4 0.0 0.0 0.0 0.4 15 0 0 0 94 29 0 0 0 172 14 0 0 0 65 291 0 0 0 1304 108 a ti a 3 22000 20000 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 "16146 2427 1541 potato cash costs \// A other costs k X \ l gross margin F i g u r e 5.5 o o r. i . v a • o a a tr Gross Margins, Cash Costs & Other Costs of Various Crops i n Pithuwa Study (Rupees/ ha ann u a l l y ) 17989 tX ! cash costs \// A other costs k XNJ gross margin F i g u r e 5.6: Gross Margins, Cash Costs & Other Costs of Cropping Ro t a t i o n s i n Pithuwa Study (Rupees/ ha annually) 109 were compared. I t was not s u r p r i s i n g to f i n d t h a t gross margins per h e c t a r e of i r r i g a t e d r i c e land or 'khet' were u s u a l l y higher than those f o r n o n i r r i g a t e d or 'pakho' l a n d . Potatoes were the e x c e p t i o n to t h i s g e n e r a l t r e n d . The e f f i c i e n c i e s of both male and female labour appear low and v a r i e d by seasons and farming o p e r a t i o n s . There was probably s u b s t i t u t i o n of f a m i l y labour whenever p o s s i b l e that p a r t i a l l y compensated f o r t h i s . When the crops were combined i n t o the v a r i o u s cropping r o t a t i o n o p t i o n s on a 1.0 h e c t a r e of each b a s i s the order of gross margins i n d e c r e a s i n g order was as f o l l o w s : pa >> kh > kc > p i > pd > pc > kg > kd. I t was i n t e r e s t i n g t h a t the double-cropping r o t a t i o n with the l a t e - m a t u r i n g 'masuli' r i c e (kc) was more p r o f i t a b l e than one of the t r i p l e - c r o p p i n g r o t a t i o n s with the new h i g h - y i e l d i n g , e a r l y - m a t u r i n g 'moto' r i c e v a r i e t y ( k g ) . In c o n t r a s t , w i t h i n the maize-based r o t a t i o n s , t r i p l e crop r o t a t i o n s (pa, pd) were always more p r o f i t a b l e than double crop r o t a t i o n s ( p c ) . The three most p r o f i t a b l e o p t i o n s (pa, kh, kc) were those centered around the three most p r o f i t a b l e c r o p s , i . e . potatoes, mustard and l a t e r i c e r e s p e c t i v e l y . In the a g r o f o r e s t r y system ( p i ) i t was assumed that there was no r e d u c t i o n i n crop y i e l d s from t r e e - c r o p c o m p e t i t i o n and t h a t the i p i l i p i l c o u l d supply a l l the f a m i l y fuelwood needs, e l i m i n a t i n g e i t h e r the purchase of firewood or the cost of labour to c o l l e c t i t . I f these assumptions ho l d , t h i s o p t i o n seemed to be more p r o f i t a b l e than s i m i l a r 'pakho' r o t a t i o n s without the t r e e s . F i g u r e 5.6 i l l u s t r a t e s the comparisons d i s c u s s e d here. 110 In r e a l i t y farmers would seldom have 1.0 hectare of each cropping r o t a t i o n . To approximate the a c t u a l s i t u a t i o n , gross margins and resource requirements were r e c a l c u l a t e d based on the average amounts of the e i g h t major r o t a t i o n s (bottom of Table 5.10). With s l i g h t improvements to t h i s methodology, i t would be p o s s i b l e to do t h i s e v a l u a t i o n on an i n d i v i d u a l farm b a s i s . 5.3.3 Resource Requirements & C o n s t r a i n t s In order to switch from low p r o f i t to high p r o f i t crops, resource requirements and p o t e n t i a l c o n s t r a i n t s need to be c o n s i d e r e d . Table 5.10 summarizes s e l e c t e d r e s o u r c e requirements of the v a r i o u s cropping r o t a t i o n o p t i o n s . The s e l e c t e d r e s o u r c e s f o r c o n s i d e r a t i o n were l a n d , l a b o u r , power and c a p i t a l . D i f f e r e n t types of land were r e q u i r e d by d i f f e r e n t cropping combinations. Four r o t a t i o n s (kc, kd, kg, kh) r e q u i r e d i r r i g a t e d 'khet' land that had been bunded and puddled f o r the monsoon r i c e crop. Three r o t a t i o n s (pa, pc, pd) r e q u i r e d r a i n f e d 'pakho' or upland with w e l l d r a i n e d , a e r a t e d s o i l f o r the monsoon maize crop. The a g r o f o r e s t r y system ( p i ) r e q u i r e d some i r r i g a t i o n water to get the multipurpose t r e e s e s t a b l i s h e d . Labour and power requirements v a r i e d with cropping r o t a t i o n c a t e g o r y . T r i p l e c r o p p i n g r o t a t i o n s (kg, kh, pa) needed the h i g h e s t amounts of l a b o u r , i . e . 77 to 85 man-days and 165 to 175 woman-days per year. These three r o t a t i o n s a l s o had the h i g h e s t requirements f o r power, i . e . A8 to 60 b u l l o c k - d a y s per year. Comparisons of labour and power requirements gave important c l u e s about p o t e n t i a l c o n s t r a i n t s f o r adoption of i n n o v a t i v e r o t a t i o n s . 111 These two r e s o u r c e s were of p a r t i c u l a r concern because they could not be s t o r e d from month to month. For example, the demand f o r labour was extremely high during the r i c e h a r v e s t i n g months and labour shortages o f t e n o c c u r r e d . Labour and power p r o f i l e s by month or week f o r each r o t a t i o n would be a b e t t e r method of st u d y i n g these two f a c t o r s . U n f o r t u n a t e l y the data was u n a v a i l a b l e i n t h i s form. I r o n i c a l l y , the reason t h i s type of d e t a i l e d data c o u l d not be c o l l e c t e d from the farmers was because they were extremely busy with a l a t e r than usual r i c e h a r v e s t and had l i t t l e time f o r lengthy i n t e r v i e w s . The o p e r a t i n g c a p i t a l r e q u i r e d f o r each cropping o p t i o n was another important c o n s i d e r a t i o n . The summary t a b l e i l l u s t r a t e d t h a t 3174 Rupees cash f o r purchase of seed and f e r t i l i z e r s was necessary before a farmer c o u l d c o n s i d e r the h i g h l y p r o f i t a b l e 'pa' r o t a t i o n with p o t a t o e s . The r i c e - b a s e d , t r i p l e c r o pping r o t a t i o n s *kg' and 'kh' had a c o n s i d e r a b l e o p e r a t i n g c a p i t a l requirement as w e l l (1168 and 1086 Rs/ha, r e s p e c t i v e l y ) . Farmers with low cash flow and no access to c r e d i t or farm loans were f o r c e d to stay with t r a d i t i o n a l double c r o p p i n g r o t a t i o n s such as x p c ' or x k d ' . 5.3.4 S e n s i t i v i t y A n a l y s i s of Crop P r o d u c t i o n F a c t o r s S e v e r a l s c e n a r i o s were a p p l i e d to the 'cropping system budget model' to t e s t the s e n s i t i v i t y of farm p r o f i t or gross margin to v a r i a t i o n s i n f a c t o r s of crop p r o d u c t i o n . T h i s was co n s i d e r e d important f o r two reasons: 1) Some assumptions v a r i e d a c c o r d i n g to annual or seasonal c o n d i t i o n s , e.g. crop p r i c e s , y i e l d s . By t e s t i n g the 1 1 2 s e n s i t i v i t y of p r o f i t a b i l i t y to these p r o d u c t i o n f a c t o r s , i t would be p o s s i b l e to a p p r e c i a t e the r i s k s or 'boom bust' c y c l e s of some of the o p t i o n s . 2) Other assumptions were a 'best approximation' from the l i t e r a t u r e and p e r s o n a l o b s e r v a t i o n s i n the study area, e.g. labour i n p u t s , c o s t of compost a d d i t i o n s . I f crop p r o f i t a b i l i t y was q u i t e s e n s i t i v e to the f a c t o r s of p r o d u c t i o n based on these q u e s t i o n a b l e assumptions, i t would be necessary to s p e c i f y some of the l i m i t a t i o n s of the comparisons. The s e n s i t i v i t y a n a l y s i s could a l s o h i g h l i g h t f u t u r e r e s e a r c h needs to improve the budgeting r e s u l t s . To a p p r e c i a t e the r i s k s and the range of c o n d i t i o n s that i n f l u e n c e d the farmers' d e c i s i o n making, the f o l l o w i n g s c e n a r i o s were a p p l i e d to the c r o p p i n g systems p r o f i t a b i l i t y model: 1) average p r i c e s and y i e l d s f o r a l l crops ( F i g u r e 5.7); 2) low p r i c e s and average y i e l d s , a l l crops (Table 5.11); 3) high p r i c e s and average y i e l d s , a l l crops (Table 5.11); A) l i g h t e r monsoon p r e c i p i t a t i o n and winter drought caused drop i n a l l crop y i e l d s (Table 5.12); 5) i d e a l growing c o n d i t i o n s caused higher than u s u a l y i e l d s ( T able 5.12); 6) l e v e l s of f e r t i l i z e r a p p l i c a t i o n were doubled and y i e l d s were improved 50% (Table 5.13); 7) new f a c t o r y jobs at Bharatpur caused p r i c e of labour to i n c r e a s e by 50% ( F i g u r e 5.8); 8) shortage of b u l l o c k teams caused s u b s t a n t i a l i n c r e a s e i n r e n t a l p r i c e (Table 5.13); 9) expensive p e s t i c i d e s had to be purchased to c o n t r o l a r a r e i n s e c t i n f e s t a t i o n of mustard (Table 5.13); 10) t r a c t o r h i r e was s u b s t i t u t e d f o r b u l l o c k team h i r e , and crop y i e l d s were i n c r e a s e d 50% due to more t i m e l y seeding (Table 5.13). The d e t a i l of these a n a l y s e s were i n c l u d e d i n Appendix H. I t should be noted t h a t the percentages of change i n p r i c e s or y i e l d s were based on the r e a l i t i e s f a c i n g the farmers and thus vary depending on the r o t a t i o n and s c e n a r i o . To compare the e f f e c t s among i n p u t s or to suggest p o l i c y recommendations, these percentages of change would be h e l d c o n s t a n t . Of a l l the important v a r i a b l e s , poor y i e l d s appeared to have the l a r g e s t e f f e c t on crop p r o f i t a b i l i t y or gross margin. In 113 Table 5.11: Sensitivity of crop profitability indicators to changes in crop prices (expressed as % of change from baseline or average figures) Crop profitability 'khet' land uses 'pakho' land uses indicators kc kd kg kh pc pd pa pi Decrease in crop prices: (mean % decrease for 2-3crops) -10 -13 -11 -12 -14 -15 -27 -26 Potential total revenue -9 -7 -11 -12 -14 -14 -49 -21 Total variable costs 0 0 - 1 - 1 -1 -1 -12 -1 Gross margin -18 -16 -30 -27 -27 -27 -66 -41 Increase in crop prices: (mean % increase for 2-3crops) 38 21 41 40 45 34 47 47 Potential total revenue 37 28 39 39 45 42 49 52 Total variable costs 2 1 3 2 3 3 11 2 Gross margin 74 60 105 87 88 81 67 103 Table 5.12: Sensitivity of crop profitability indicators to changes in crop yields (expressed as % of change from baseline or average figures) Crop profitability 'khet' land uses 'pakho' land uses indicators kc kd kg kh pc pd pa pi Decrease in crop yields: (mean % decrease for 2-3crops) -43 -36 -43 -47 -41 -41 -45 -56 Potential total revenue -42 -32 -41 -45 -38 -38 -48 -48 Total variable costs 0 0 0 0 0 0 0 0 Gross margin -86 -71 -113 -104 -78 -78 -70 -93 Increase in crop yields: (mean % increase for 2-3crops) 51 92 30 35 30 61 35 94 Potential total revenue 52 68 32 37 38 46 37 75 Total variable costs 0 0 0 0 0 0 0 0 Gross margin 107 149 90 84 76 93 55 147 114 Table 5.13: Sensitivity of crop profitability indicators to changes in crop input prices (expressed as % of change from baseline or average figures) Crop profitability indicators 'khet' land uses kc kd kg kh 'pakho' land uses pc pd pa pi Increase in fertilizer use 100 100 100 100 100 100 100 100 & yields increased 30 30 30 30 30 30 30 30 Potential total revenue Total variable costs 30 10 30 1 30 18 30 13 37 15 37 14 32 16 37 12 Gross margin 52 65 52 52 60 59 39 58 Increase in price of labour: (Rs per md or wd doubled) 50 50 50 50 50 50 50 50 Potential total revenue Total variable costs 0 27 0 34 0 28 0 27 0 23 0 25 0 22 0 28 Gross margin -29 -40 -50 -35 -24 -25 -10 -27 Increase in price of bullock: power (Rs/bd double) 50 50 50 50 50 50 50 50 Potential total revenue Total variable costs 0 6 0 5 0 5 0 7 0 8 0 7 0 4 0 7 Gross margin -7 -10 -9 -2 Increased use of pesticides to maintain mustard yields: 300 300 300 300 300 Potential total revenue Total variable costs 0 2 0 0 0 0 0 2 0 3 0 3 0 0 0 2 Gross margin -2 -2 -3 -3 Increase in tractor hire: Increase in crop yield: 300 300 300 300 50 50 50 50 300 300 300 300 50 50 50 50 Potential total revenue Total variable costs 50 8 50 7 50 7 50 9 58 11 57 10 52 6 57 9 Gross margin 94 101 126 103 107 106 74 102 1 1 5 cash costs \// A other costs k X \ l gross margin Gross Margins & Costs of Cropping R o t a t i o n s : Averag P r i c e s & Poor Y i e l d s (Rupees per ha per yr) 16177 3^ cash costs \//A other costs k X \ l gross margin 8: Gross Margins & Costs of Cropping R o t a t i o n s : Averag P r i c e s & Y i e l d s , C o s t l y Labour (Rupees/ ha / yr) 1 1 6 some cases the gross margins were zero or a negative value when crop y i e l d s were poor. E s p e c i a l l y s e n s i t i v e were r o t a t i o n s such as *kg' or "kh' and crops such as e a r l y r i c e , e a r l y maize and mustard. I t was i n t e r e s t i n g t h a t these three crops were some of the more r e c e n t l y i n t r o d u c e d v a r i e t i e s . T h i s would support the o p i n i o n s of s e v e r a l i n t e r n a t i o n a l r e s e a r c h e r s that the c o m p l e x i t i e s of the farming systems should be understood before i n t r o d u c i n g i n n o v a t i o n s to farmers that are o p e r a t i n g at such a narrow p r o f i t margin (Schroeder, 1985; Van Der Veen, 1982; Zandstra et a l , 1981). The c o s t of labour was another f a c t o r t h a t had a c o n s i d e r a b l e impact on the amount of gross margin f o r each cropping r o t a t i o n , e s p e c i a l l y those i n v o l v i n g r i c e . The labour i n p u t s f o r each crop were based on more q u e s t i o n a b l e data than the other i n p u t s . Thus, s i n c e crop p r o f i t a b i l i t y was r e l a t i v e l y s e n s i t i v e to t h i s i n p u t , the cropping systems budgeting r e s u l t s c o u l d be improved by more r e s e a r c h i n t h i s area (e.g. more d e t a i l e d data and seasonal p r o f i l e s of a v a i l a b l e versus r e q u i r e d labour) . In summary, i n c r e a s e s i n i n p u t p r i c e s were r e f l e c t e d i n s i m i l a r decreases i n gross margin per cr o p p i n g r o t a t i o n . In c o n t r a s t , f a c t o r s such as crop p r i c e s and crop y i e l d s had a magnified e f f e c t on gross margin by a f a c t o r of two to t h r e e . 5.4 D i s c u s s i o n of Farm P r o d u c t i v i t y R e s u l t s 5.5.1 Comparison with L i t e r a t u r e The r e s u l t s of t h i s study were compared to other r e s e a r c h 1 1 7 r e s u l t s i n the Chitawan a r e a . Comparisons of farm c h a r a c t e r i s t i c s , crop y i e l d s and labour i n p u t s were q u i t e i n t e r e s t i n g and are d i s c u s s e d here. In terms of gen e r a l farm c h a r a c t e r i s t i c s , the means and standard d e v i a t i o n s were s i m i l a r to those r e p o r t e d f o r the upper T e r a i farming systems (LRMP, 1983c). For example, the average farm s i z e was 1.7 and 1.9 h e c t a r e s f o r the Pithuwa and LRMP s t u d i e s r e s p e c t i v e l y . Percentage of 'khet' land was analogous ( i . e . 57 % f o r b o t h ) . Family s i z e and t o t a l l i v e s t o c k u n i t s (LSU) per farm were somewhat l e s s i n Pithuwa ( i . e . 7.8 members; 6.1 LSU) than those noted by LRMP (9.4 members; 6.9 LSU). The comparison of crop y i e l d s was c o n s i d e r e d important. Research done by the cr o p p i n g systems program i n Ratnanagar panchayat was the c l o s e s t i n p r o x i m i t y to t h i s study (Cropping Systems S t a f f , 1984). Y i e l d s were not very s i m i l a r , though. Crop y i e l d s f o r a l l 7 of the major crops were c o n s i d e r a b l y lower i n Pithuwa than i n comparable 'farmer p r a c t i c e s ' c r o p p i n g r o t a t i o n s i n Ratnanagar. For example, 'masuli' r i c e y i e l d e d 2180 and 2820 kg/ha f o r Pithuwa and Ratnanagar r e s p e c t i v e l y . The d i f f e r e n c e i n monsoon maize y i e l d s was even more s t r i k i n g ; i . e . 1380 and 3310 kg/ha f o r Pithuwa and Ratnanagar. These d i s t i n c t d i f f e r e n c e s may have been due to c o n t r a s t i n land types of the two 'panchayats' or ar e a s . Pithuwa was l o c a t e d on a w e l l d r a i n e d , a n c i e n t a l l u v i a l fan upland ( 5 c ) ; while Ratnanagar was s i t u a t e d on a more r e c e n t and a c t i v e a l l u v i a l p l a i n ( 4 c ) . When data from a 'panchayat' l o c a t e d on a more comparable land type i n the Chitawan area was used, crop y i e l d s were w i t h i n 20 to 60 118 kg/ha (LRMP, 1983c). E a r l y maturing r i c e y i e l d e d an average of 2340 and 2360 kg/ha; and monsoon maize y i e l d e d 1380 and 1440 kg/ha, r e s p e c t i v e l y f o r Pithuwa and Bhandara panchayats. The l a s t comparison h i g h l i g h t e d was resource i n p u t s f o r v a r i o u s c r o p s . In p a r t i c u l a r , labour i n p u t s seemed the most q u e s t i o n a b l e of the assumptions i n c a l c u l a t i n g r e l a t i v e crop p r o f i t a b i l i t y . A study of hand pump p r o f i t a b i l i t y i n the ea s t e r n T e r a i of Nepal (Khoju, 1983) found somewhat lower labour i n p u t s f o r e a r l y r i c e , l o c a l r i c e and wheat ( i . e . 65, 55 and 25 mandays per h e c t a r e ) than those noted i n t h i s study. There were probably three reasons f o r t h i s descrepancy. T o t a l s i n the hand pump study excluded h a r v e s t i n g and t h r e s h i n g i n the t o t a l s , while the Pithuwa study i n c l u d e d them. Another reason f o r the d i f f e r e n c e s could have been the lower y i e l d s noted i n the e a s t e r n T e r a i may not have j u s t i f i e d i n c r e a s e d labour i n p u t s i n t o the crop p r o d u c t i o n . T h i r d l y , the assumption that i r r i g a t i o n by pump or by c a n a l d i v e r s i o n r e q u i r e d s i m i l a r amounts of labour may have been f a u l t y . The labour i n p u t s were then compared with another study u s i n g a c o m p i l a t i o n of r e s e a r c h f i n d i n g s from s e v e r a l s u b t r o p i c a l farming environments (ILAC0, 1985). When comparable y i e l d s were c o n s i d e r e d l a b o u r i n p u t s i n man-days per hec t a r e were very s i m i l a r . For each crop the f o l l o w i n g t o t a l man-days of labour were noted by the two s t u d i e s , Pithuwa (p) and ILAC0 ( i ) : r i c e : 130 (p) and 135 ( i ) maize: 60 (p) and 50 ( i ) mustard: 50 (p) and 50 ( i ) wheat: 60 (p) and 65 ( i ) pota t o : 120 (p) and 120 ( i ) l e n t i l : 15 (p) and 35 ( i ) The l e n t i l crop had q u i t e a d i f f e r e n t labour requirement i n the 1 1 9 Pithuwa study because t h i s crop was g e n e r a l l y broadcast onto harvested r i c e f i e l d s or r e l a y e d a f t e r the monsoon maize crop with very l i t t l e ploughing or s p e c i a l land p r e p a r a t i o n . The r e s u l t s of these comparisons i n d i c a t e d t h a t the farm c h a r a c t e r i s t i c s and crop y i e l d s were not u n l i k e those of other farming systems l o c a t e d on s i m i l a r land t y p e s . The labour assumptions used i n the e s t i m a t i o n of r e l a t i v e crop p r o f i t a b l i t y c o u l d be improved but were not out of l i n e with values i n the l i t e r a t u r e . 5.5.2 I m p l i c a t i o n s f o r Land Use Management The overwhelming impression from e v a l u a t i o n of the farms i n the Pithuwa study area was how i n c r e d i b l y complex and d i v e r s e these farming and c r o p p i n g systems were. P r o d u c t i v i t y or crop y i e l d per he c t a r e was only one of a s e r i e s of c o n s i d e r a t i o n s i n f l u e n c i n g land use management. The amount of i n p u t s onto land, such as compost and chemical amendments, was dependent on the crop grown and market p r i c e s . Crop c h o i c e was i n f l u e n c e d by use of seed and r e s i d u e , r e l a t i v e gross margin, r e s o u r c e s r e q u i r e d and the r i s k i n v o l v e d . Some of the r e s u l t s of the a n a l y s i s of the farming systems were noteworthy. F i r s t , t r i p l e c r o p p i n g r o t a t i o n s were o f t e n but not always more p r o f i t a b l e than double c r o p p i n g r o t a t i o n s . For example, the x k c ' r o t a t i o n i n v o l v i n g the l a t e r maturing r i c e f o l l o w e d by mustard, had a higher gross margin than s e v e r a l t r i p l e c r o p p i n g r o t a t i o n s (kg, pd, p i ) . Secondly, i r r i g a t e d r o t a t i o n s were not always more p r o d u c t i v e and p r o f i t a b l e than 120 r a i n f e d land uses, as e x e m p l i f i e d by the 'pa' r o t a t i o n with pota t o e s . T h i r d , the i n t r o d u c t i o n of multipurpose t r e e s i n t o r a i n f e d r o t a t i o n s improved the r e l a t i v e gross margins markedly by s u p p l y i n g the f a m i l i e s f u e l and fodder needs. F o u r t h , i t was not s u r p r i s i n g t h a t t r i p l e c r o p p i n g r o t a t i o n s such as xkg', 'kh' and x p a ' had high e r requirements f o r l a b o u r , b u l l o c k power and o p e r a t i n g c a p i t a l . They were t h e r e f o r e more s e n s i t i v e to i n c r e a s e s i n the p r i c e s of i n p u t s . L a s t l y , some of the t r a d i t i o n a l r o t a t i o n s such as x k c ' and "kd' had many advantages over newer i n n o v a t i o n s . They i n c l u d e d the p r e f e r r e d "masuli' r i c e v a r i e t y and were g e n e r a l l y l e s s s e n s i t i v e to market p r i c e and y i e l d f l u c t u a t i o n s . 121 CHAPTER 6: RESULTS OF FOREST PRODUCTIVITY EVALUATION 6.1 V e g e t a t i o n D e s c r i p t i o n of P l o t s During the course of the f i e l d w o r k , i t was alarming to d i s c o v e r t h a t so much of the f o r e s t was i n a degraded c o n d i t i o n . From re c e n t a e r i a l photographs of the study area and a f i e l d t r a n s e c t only two years p r e v i o u s l y , i t was expected t h a t n a t u r a l , untouched f o r e s t ( f a ) s i t e s would be commonplace. I t was a n t i c i p a t e d that the degraded f o r e s t ( f d ) s i t e s would be p r i m a r i l y l o c a t e d along the f o r e s t edge nearest the s e t t l e d a r e a s . T h i s was not the case. Of the 1800 h e c t a r e s of f o r e s t w i t h i n the study area, l e s s than 5 percent were s t i l l i n the n a t u r a l s t a t e . In s p i t e of bad roads, angry r h i n o c e r o s and time c o n s t r a i n t s , a thorough search was made of the area f o r " f a * or n a t u r a l f o r e s t s i t e s . Most of the x f a ' p l o t s had to be l o c a t e d i n a c l u s t e r near the f o r e s t o f f i c e r ' s checkpost or "chauk' and i t was not p o s s i b l e to sample more than 8 s i t e s . A d e s c r i p t i o n of both n a t u r a l and degraded f o r e s t p l o t s summarizing s p e c i e s , stage of s u c c e s s i o n , t r e e canopy cover and slope i s i n c l u d e d (Table 6.1). I t was i n t e r e s t i n g to note that the degraded f o r e s t s i t e s o f t e n had as much t r e e canopy cover as the n a t u r a l f o r e s t . Since much of the understory v e g e t a t i o n and f o r e s t l i t t e r had been c l e a r e d away, the s o i l was u n p r o t e c t e d . Exposed t r e e r o o t s were common on degraded s i t e s . R e l a t i v e l y good cover of the t r e e canopy had not prevented obvious s u r f a c e e r o s i o n from t a k i n g p l a c e ( P l a t e 6.1). In c o n t r a s t to popular o p i n i o n t h a t e r o s i o n i s minimal on the r e l a t i v e l y f l a t t e r a i and in n e r t e r a i p l a i n s , d e g r a d a t i o n was widespread on land with Table 6.1: Description of Vegetation, Successianal Stage & Canopy Cover Natural (fa) Compared to Degraded (fd) Forest Description for natural forest (fa) Slope of Stage of Canopy site in Plot # succession Description of species using Nepali names * cover % degrees 72 3rd botdhangaro, padke, sigane, beldar 70 0-1 73 3rd sal, beldar, padke, botdhangaro 65-70 0-2 75 2nd beldar, botdhangaro, padke, sigane 70 1 76 2nd botdhangaro, beldar, sigane, bhont 65-70 4 77 2nd botdhangaro, padke, sigane, beldar, mahuro 60-65 1 78 2nd botdhangaro, tooni, padke, kyamun, sigane 75 1 79 2nd harro, kusum, kharam, simal, padke, sigane 50 3 81 2nd botdhangaro, sindure, kalikath, harro 60 2 Description for degraded forest (fd) Slope of Stage of Canopy site in Plot # succession Description of species using Nepali names * cover % degrees 74 3rd sal, padke, sigane 65-70 1 80 2nd padke, beldar, sisnu, bhont 3 82 4th sal, bhetwasi 80 5 83 5th sindure, amaltas, sal, khirro 50 5 84 2nd botdhangaro, beldar, sindure, khirro, bhont 30 1 85 2nd haldu, padke, kyamun,.bhont, banmaro, amaltas 20 0-1 86 5th sindure, khirro, sal, banmaro, bhont, tapre 40 0.5 87 5th sal, amaltas, asna, botdhangaro, tatari 80 3 88 5th harro, sal, banmaro. 40 0.5 89 5th botdhangaro, padke, beldar, bhont, khirro 30 0.5 Nepali names are used in table; scientific equivalents and uuiimi uses are included in Appendix C. P l a t e 6.2: Emerging l a n d use c o n f l i c t s ; f a r m i n g household needs f o r t h r e e f o r e s t p r o d u c t s , i . e . t i m b e r , f i r e w o o d and f o d d e r , have caused widespread d e g r a d a t i o n of u n d e r s t o r y v e g e t a t i o n . 124 s l o p e s as low as 0.5 per c e n t . A b r i e f d e s c r i p t i o n of the stages of b i o l o g i c a l s u c c e s s i o n i n these f o r e s t s was c o n s i d e r e d r e l e v a n t to an e v a l u a t i o n of f o r e s t p r o d u c t i v i t y . The f o l l o w i n g d i s c u s s i o n was adapted from an unpublished r e p o r t by Chapa (1985). There are f i v e important stages i n the p r o g r e s s i o n towards a climax v e g e t a t i o n type. The f i r s t stage i s the i n i t i a t i o n phase where frequent f l o o d i n g and s i l t d e p o s i t s prevent s p e c i e s other than coarse grasses from becoming e s t a b l i s h e d . As the land becomes more s t a b l e , the r i v e r i n e s p e c i e s such as " k h a i r ' ( A c a c i a catechu) and " s i s a u ' ( D a l b e r g i a s i s s o o ) are dominant. At the secondary stage " s i m a l ' (Bombax malabaricum), "haldu' (Adina c o r d i f o l a ) , "padke' ( A l b i z z i a j u l i s b r i s s i a ) and " b e l d a r ' ( u n i d e n t i f i e d ) are p l e n t i f u l . At the t h i r d stage i n the p r o g r e s s i o n or pre-climax, many s p e c i e s are competing with each other so i t i s o f t e n c a l l e d the t e n s i o n b e l t . " S a l ' (Shorea robusta) i s present but i s a l i g h t demanding s p e c i e s and i s t h e r e f o r e stunted by the c o m p e t i t i o n from other s p e c i e s such as "asna' ( T e r m i n a l i a  tomentosa) , "botdhangero ' ( L a g e r s t r o m i a p a r i f l o r a ) , " t a t a r i ' ( D i l l e n i a pertagyna) and "bhatayo' (Semicarpus anacardium). At the climax stage stands of " s a l , k i n g of the timber t r e e s ' are w e l l e s t a b l i s h e d and prevent other s p e c i e s from competing. A pos t - c l i m a x stage or r e v e r s a l of the process occurs when these areas are d i s t u r b e d or s a l r e g e n e r a t i o n i s poor, a l l o w i n g other s p e c i e s of pre-climax stage to invade. Most of the f o r e s t s i t e s of the study were c l a s s i f i e d as the secondary and pre-climax stage of s u c c e s s i o n . T h i s i n d i c a t e d 125 that s p e c i e s d i v e r s i t y was h i g h . There was l e s s v a r i a t i o n among the n a t u r a l s i t e s probably because they were a l l i n r e l a t i v e l y c l o s e p r o x i m i t y . From the v a r i a t i o n of the degraded s i t e s , i t i s apparent t h a t they had o r i g i n a l l y been at v a r i o u s stages of s u c c e s s i o n ; i . e . d e g r a d a t i o n was not l i m i t e d to any p a r t i c u l a r stage. In n a t u r a l stands of s u b t r o p i c a l deciduous f o r e s t s , s p e c i e s of t r e e s , shrubs and herbs were very d i v e r s e . As they were u t i l i z e d , there were changes to the type and d i s t r i b u t i o n of s p e c i e s (Table 6.1). The degraded f o r e s t s i t e s had l e s s of the good fodder s p e c i e s present such as " b e l d a r ' or "sigane' ( u n i d e n t i f i e d by s c i e n t i f i c name). Fuelwood s p e c i e s such as "padke' ( A l b i z z i a j u l i s b r i s s i a ) and "botdhangaro' ( L a g e r s t r o m i a  p a r i f l o r a ) were much l e s s abundant on degraded s i t e s . S pecies such as s t i n g i n g n e t t l e or " s i s n u ' ( U r t i c a d i o i c a ) , and "banmara' (Eupatorium adenaphorum) were i n d i c a t o r s of d i s t u r b a n c e and were present only on degraded f o r e s t s i t e s . Some of the good timber s p e c i e s were common i n both types of f o r e s t , e p e c i a l l y " harro' ( T e r m i n a l i a chebula) and " s a l ' (Shorea r o b u s t a ) . A more complete l i s t of s p e c i e s common to the study area with t h e i r r e s p e c t i v e uses and v a r i o u s names, i s found i n Appendix C. 6.2 Comparison of N a t u r a l and Degraded F o r e s t Biomass Lack of management of f o r e s t e d areas has caused marked deg r a d a t i o n of the v e g e t a t i o n and s t a n d i n g biomass. The biomass data was compiled f o r f i v e types of f o r e s t products, namely l a r g e timber, s m a l l timber, fuelwood, fodder s p e c i e s and r e g e n e r a t i o n 1 2 6 s p e c i e s (Appendix M). Table 6.2 p r e s e n t s the r e s u l t s i n i n t e r n a t i o n a l l y r e c o g n i z e d u n i t s , e.g. l a r g e timber i n c u b i c meters per h e c t a r e . P l o t s were d i v i d e d i n t o two groups f o r easy comparison, i . e . n a t u r a l f o r e s t ( f a ) and degraded f o r e s t ( f d ) . The v a r i a t i o n ( standard d e v i a t i o n s ) among p l o t s i n both land use c a t e g o r i e s was very h i g h . T h i s was p a r t i a l l y due to the small s i z e of p l o t f o r biomass measurements. Larger p l o t s would have been b e t t e r s u i t e d (Chapa, 1985); but 10 by 10 meter p l o t s were used to be c o n s i s t e n t with sampling i n a g r i c u l t u r a l a r e a s . Thus, the aggregate f i g u r e s f o r the two types of f o r e s t , * f a ' and A f d ' , are the more a p p r o p r i a t e focus of d i s c u s s i o n . F i g u r e 6.1 i l l u s t r a t e d the changes i n average amounts of wood products as the n a t u r a l f o r e s t became degraded. A l l products were c o n s i d e r a b l y reduced under degraded f o r e s t c o n d i t i o n s . Large and s m a l l timber volumes were h a l f t h e i r o r i g i n a l l e v e l s , while the amount of fuelwood was about a t h i r d of that of the n a t u r a l f o r e s t . Changes i n fodder and r e g e n e r a t i o n s p e c i e s were even more s t r i k i n g ( F i g u r e 6.2). Numbers of fodder s p e c i e s were a s i x t h t h e i r o r i g i n a l l e v e l s ; and numbers of other r e g e n e r a t i o n s a p l i n g s were a f i f t h of the numbers of the n a t u r a l untouched f o r e s t a r e a s . The r e l a t i v e magnitude of the changes i n the v a r i o u s f o r e s t products gave important c l u e s to the reasons f o r the degradation of the f o r e s t s i t e s . Fuelwood and fodder decreased most r a p i d l y . I t was apparent that the v i l l a g e r s and farmers i n n e i g h b o r i n g areas have c o l l e c t e d these products f o r t h e i r household needs. L i v e s t o c k g r a z i n g and v i l l a g e r t r a f f i c have a l s o reduced Table 6.2: Forest Biomass Data (adapted from Chapa, 1985) Data for natural forest (fa) Forest products /ha Plot# lgTim.m3 smTim.m3 fuelwd.mt fodder.# regener.# /ha 72 320.0 238.8 29.8 10700 105500 73 2337.1 2233.8 514.3 1400 33300 75 81.0 30.0 19.4 0 66900 76 284.6 234.8 62.6 0 60500 77 71.1 47.3 15.0 300 39300 78 69.1 21.2 15.2 0 30400 79 515.9 486.6 113.8 200 18000 81 371.2 243.6 64.3 900 25000 total 4050.0 3536.0 834.4 13500 378900 mean 506.2 442.0 104.3 1688 47363 st.dev. 708.5 692.7 158.2 3439 27035 Data for degraded forest (fd) Forest products /ha Plot# lgTim.m3 snfTim.m3 fuelwd.mt fodder.# regener.# /ha 74 124.9 105.6 35.6 0 18500 80 49.0 41.1 10.4 1800 3000 82 867.7 844.0 211.2 0 14100 83 2.5 0.0 0.6 0 23200 84 39.6 0.0 8.7 400 4000 85 721.8 603.3 158.8 400 4400 86 0.0 0.0 0.0 0 . 11000 87 273.0 211.3 62.4 0 12500 88 0.0 0.0 0.2 0 16900 89 0.0 0.0 0.0 100 3600 total 2078.5 1805.3 487.9 2700 111200 mean 173.2 150.4 44.4 245 10109 st.dev. 321.2 298.4 75.4 554 6687 Abbreviations used in table: lgTim.m3 large timber volume in cubic meters per hectare smTim.m3 small timber volume in cubic meters per hectare fuelwd.mt fuelwood in metric tonnes per hectare fodder.# fodder tree species in numbers per hectare regener.# regeneration speciesin numbers per hectare 128 s p e c i e s (Appendix M). Table 6.2 p r e s e n t s the r e s u l t s i n i n t e r n a t i o n a l l y r e c o g n i z e d u n i t s , e.g. l a r g e timber i n c u b i c meters per h e c t a r e . P l o t s were d i v i d e d i n t o two groups f o r easy comparison, i . e . n a t u r a l f o r e s t ( f a ) and degraded f o r e s t ( f d ) . The v a r i a t i o n ( standard d e v i a t i o n s ) among p l o t s i n both land use c a t e g o r i e s was very h i g h . T h i s was p a r t i a l l y due to the s m a l l s i z e of p l o t f o r biomass measurements. Larger p l o t s would have been b e t t e r s u i t e d (Chapa, 1985); but 10 by 10 meter p l o t s were used to be c o n s i s t e n t with sampling i n a g r i c u l t u r a l a r e a s . Thus, the aggregate f i g u r e s f o r the two types of f o r e s t , " f a ' and x f d ' , are the more a p p r o p r i a t e focus of d i s c u s s i o n . F i g u r e 6.1 i l l u s t r a t e d the changes i n average amounts of wood products as the n a t u r a l f o r e s t became degraded. A l l products were c o n s i d e r a b l y reduced under degraded f o r e s t c o n d i t i o n s . Large and s m a l l timber volumes were h a l f t h e i r o r i g i n a l l e v e l s , while the amount of fuelwood was about a t h i r d of that of the n a t u r a l f o r e s t . Changes i n fodder and r e g e n e r a t i o n s p e c i e s were even more s t r i k i n g ( F i g u r e 6.2). Numbers of fodder s p e c i e s were a s i x t h t h e i r o r i g i n a l l e v e l s ; and numbers of other r e g e n e r a t i o n s a p l i n g s were a f i f t h of the numbers of the n a t u r a l untouched f o r e s t a r e a s . The r e l a t i v e magnitude of the changes i n the v a r i o u s f o r e s t products gave important c l u e s to the reasons f o r the d e g r a d a t i o n of the f o r e s t s i t e s . Fuelwood and fodder decreased most r a p i d l y . I t was apparent that the v i l l a g e r s and farmers i n n e i g h b o r i n g areas have c o l l e c t e d these products f o r t h e i r household needs. L i v e s t o c k g r a z i n g and v i l l a g e r t r a f f i c have a l s o reduced 0 £ \ E 0 E o 2 600 500 -400 -300 -200 -100 -129 [ \ I large timber \// A small timber firewood F i g u r e 6.1: Biomass of 3 Wood Products on Na t u r a l ( f a ) & Degraded ( f d ) F o r e s t P l o t s ( i n m3/ha) o \ 0) a, D 5000 4500 -4000 -3500 3000 -2500 -2000 1500 1000 -500 -0 fa fd l \ I other species x 10 i/y A fodder species F i g u r e 6.2: Regeneration S a p l i n g s of Fodder & Other Species on Nat u r a l ( f a ) & Degraded ( f d ) F o r e s t P l o t s ( i n # sa p l i n g s / h a ) 130 r e g e n e r a t i o n and the number of s a p l i n g s . 6.3 D i s c u s s i o n of F o r e s t P r o d u c t i v i t y R e s u l t s 6.3.1 I n t e r a c t i o n s Between F o r e s t and A g r i c u l t u r a l Land I t was obvious that there i s pressure on the f o r e s t e d area of the study area from n e i g h b o r i n g v i l l a g e s and farms. F o r e s t products such as timber, fuelwood, fodder, food and m e d i c i n a l p l a n t s are an i n t e g r a l part of the farming systems ( F i g u r e 2.6). The d e g r a d a t i o n of f o r e s t areas suggest a comparison of e x i s t i n g f o r e s t r e s o u r c e s with the f o r e s t needs of farming households i s necessary ( P l a t e 6.2). The needs of farming f a m i l i e s f o r three main f o r e s t products were estimated i n Table 6.3. The assumptions and b a s i s of c a l c u l a t i o n were l i s t e d along with t h e i r r e s p e c t i v e s o u r c e s . The f i r s t f o r e s t need was timber. I t was estimated t h a t the average amount r e q u i r e d i n a year f o r a f a m i l y ' s b u i l d i n g s i n a c l i m a t e s i m i l a r to t h a t of t h i s study was 2 m3/yr (Wyatt-Smith,1982). In other words the Pithuwa panchayat would r e q u i r e 2200 m3 a n n u a l l y . The second need from the f o r e s t was fuelwood. T h i s study found that the average f a m i l y used 3400 kilograms a n n u a l l y , or the per c a p i t a consumption was 570 kilograms per year. These f i g u r e s were comparable with other s t u d i e s (Fox, 1982, 1983, 1984; Moench & Bandyopadhyay , 1986; Singh et a l , 1984; Wyatt-Smith, 1982). Thus the Pithuwa panchayat's annual requirement f o r f u e l was approximately 3,775,000 kil o g r a m s ; or i n u n i t s compatible with timber needs, 5400 m3 a n n u a l l y . The t h i r d f o r e s t need was f o d d e r . Since t h i s has h i s t o r i c a l l y been a n e g l e c t e d area of 131 Table 6.3: Requirements for 3 Important Forest Products by Pithuwa Panchayat Basis of calculations Value Units Reference, year & assumptions used used l)timber average amount needed for family buildings amount needed by Pithuwa panchayat 2 m3/fam/yr Wyatt-Smith, 1982 2220 m3/pan/yr this study, 1987 2)firewood wood conversion factor i f 25% dry weight per capita consumption estimate, Phewa Tal per capita consumed by weight survey, Ghorkha •i per capita estimate near Naini Tal, India per family consump. by weight, Dehradun, India per person consump " " per family consumption by recall per person consumption amount required for Pithuwa panchayat •t it •• 700 kg/m3 Fox, 1983 500 kg/per/yr Wyatt-Smith, 1982 0.9 m3/per/yer Fox, 1983 630 kg/per/yr " 730 kg/per/yr Singh et al, 1984 11-14 kg/fam/day Moenchs Bandyopadhyay,1986 550 kg/per/yr " 3400 kg/fam/yr this study, 1987 570 kg/per/yr " 3,775,000 kg/pan/yr 5400 m3/pan/yr " 3)fodder % of total feed for livestock that is fodder recommended feed levels for buffalo cattle •i II •• LSU average livestock unit (LSU) per family farm recommended feed for average family farm amount of fodder for average family farm annual fodder needs of Pithuwa panchayat 11-14 23 17,000 9,000 10-15,000 6 60-90,000 7-10,000 9,500,000 % % kg/buf kg/cow kg/LSU LSU /fam kg/fam kg/fam kg/pan Fox, 1983 Moenchs Bandyopadhyay,1986 research at Lumle Williamson S Payne, this study, 1987 1978 132 r e s e a r c h , i t was the most d i f f i c u l t of the three to estimate and f i g u r e s should be i n t e r p r e t e d c a r e f u l l y . I f l i v e s t o c k were fed the recommended feed l e v e l s of 10 to 15 thousand kilograms per LSU, i . e . l i v e s t o c k u n i t (Wyatt-Smith, 1982), the average farm f a m i l y would need 60,000 to 90,000 kilograms of feed a n n u a l l y . Assuming t h a t 11 to 14 percent of the feed f o r l i v e s t o c k was fodder (Fox, 1983) a panchayat such as Pithuwa would r e q u i r e about 9,500,000 kilograms of fodder a n n u a l l y . I r o n i c a l l y , t h i s was twice as much as the requirement f o r timber and firewood t o g e t h e r . The f o r e s t r e s o u r c e s of the study area were estimated i n Tabl e 6.4. The f i g u r e s from the s t a n d i n g biomass study (Chapa, 1985) were combined with approximate a e r i a l e x t e n t s to determine the e x i s t i n g f o r e s t products or r e s o u r c e s . Timber of l a r g e and small c a t e g o r i e s together t o t a l l e d 655,500 m3 f o r the S a k t i k h o r study a r e a ; while fuelwood r e s o u r c e s t o t a l l e d 120,000 m3 (or 87,000,000 k i l o g r a m s ) . T h i s corresponds to 300 years of Pithuwa's annual timber needs but only 20 of Pithuwa's annual firewood needs. I t i s a reasonable assumption t h a t people would cut timber as second c h o i c e firewood a f t e r the fuelwood re s o u r c e s were d e p l e t e d . I f t h i s was the case, the present f o r e s t biomass would meet the study panchayat's needs f o r timber and f u e l f o r 115 y e a r s . The s i t u a t i o n i s even more alarming when one r e a l i z e s that Pithuwa i s only one of three or fo u r panchayats dependent on t h i s S a k t i k h o r f o r e s t a r e a . There are a couple of flaws i n the d i s c u s s i o n above. F i r s t , s t a n d i n g biomass was not an e q u i v a l e n t f o r f o r e s t p r o d u c t i v i t y . 1 3 3 Table 6.4: Forest Resources Available for Needs of Pithuwa Panchayat Basis of calculations Value Units Reference, year & assumptions used used Biomass data for 2 forest types in Chitawan natural: large timber volume 505 m3/ha Chapa, 1985 (fa) small timber volume 440 m3/ha tl fuelwood weight 105 mt/ha n fodder trees 1690 #/ha ii regeneration 47365 #/ha n degraded:large timber volume 175 m3/ha n (fd) small timber volume 155 m3/ha ti fuelwood weight 45 mt/ha n fodder trees 270 #/ha n regeneration 9270 #/ha ti Approximate aerial extent (fa) natural 100 ha this study, 1987 (fd) degraded 1700 ha II Wood conversion factor i f 25% dry weight 700 kg/m3 Fox, 1983 Estimated biomass for study area in Chitawan large timber volume 348,000 m3/1800 ha tl small timber volume 307,500 m3/1800 ha tl fuelwood weight 121,000 m3/1800 ha n fodder trees 628,000 #/1800 ha ti regeneration 15,806,000 #/1800 ha n Forest productivity estimations primary productivity subtrop. decid. forest 1550 g/m2/yr Pandey et al, 1980 mean annual increment (MAI) private forest 2.48 m3/ha/yr Fox, 1983 communal forest 0.31 " " sal forest 4.27 " " Fodder production estimations fodder yield from unmanaged forest land fodder yield from carefully managed woodlot 1500-2500 50-200 kg/ha/yr Wormald, 1976 kg/tree Panday, 1982 134 T r o p i c a l f o r e s t s are n o t o r i o u s f o r t h e i r high r a t e s of growth and primary p r o d u c t i v i t y (Pandey et a l , 1980). The mean annual increments of a communal f o r e s t and a s a l f o r e s t i n a warm temperate to s u b t r o p i c a l area of Nepal were 215 and 2990 kilograms per hectare per year, r e s p e c t i v e l y (Fox, 1983). T h i s would be e q u i v a l e n t to 387,000 to 5,382,000 kilograms of annual biomass increments over the whole S a k t i k h o r f o r e s t a r e a . Even i f a l l the above ground growth c o u l d be u t i l i z e d , t h i s amount would supply only the Pithuwa panchayat with 12 to 100 percent of i t s annual needs of timber and f u e l . In r e a l i t y the S a k t i k h o r f o r e s t would probably have a growth r a t e somewhere' between these two extremes; that would decrease over time i f present management of the f o r e s t c o n t i n u e s . The second flaw i s the omission of a comparison of fodder needs to present fodder r e s o u r c e s . I t can be added to the d i s c u s s i o n with more tenuous assumptions. I t was found i n a study i n the middle h i l l s of Nepal that the annual fodder y i e l d was 1500 to 2500 kilograms of l e a v e s per hectare of unmanaged f o r e s t (Wormald, 1976). Thus the S a k t i k h o r f o r e s t of the study area would y i e l d 2,700,000 to 4,500,000 ki l o g r a m s ; and would meet 28 to 47 percent of the annual fodder needs of Pithuwa. R e c o g n i z i n g a g a i n , t h a t s e v e r a l other areas a l s o depend on t h i s f o r e s t f o r fodder makes t h i s p i c t u r e more d i s m a l . In s p i t e of the many i n h e r e n t assumptions, t h i s d i s c u s s i o n of f o r e s t needs compared with f o r e s t r e s o u r c e s was c o n s i d e r e d a c r i t i c a l c o n s i d e r a t i o n f o r land use management p l a n n i n g . There i s much room f o r improvement of the c a l c u l a t i o n s as more r e s e a r c h 135 data becomes a v a i l a b l e . 6.3.2 I m p l i c a t i o n s f o r Land Use Management The f i n d i n g s of t h i s chapter c o u l d be summarized by the f o l l o w i n g two statements. There were d i s t i n c t decreases i n s p e c i e s and wood biomass volumes as n a t u r a l f o r e s t was degraded. The a v a i l a b l e f o r e s t r e s o u r c e s of the study area were found to be i n c a p a b l e of meeting the present or f u t u r e needs of the Pithuwa panchayat and other n e i g h b o r i n g communities f o r fodder and fire w o o d . These r e s u l t s have s e v e r a l important i m p l i c a t i o n s f o r land use management. F i r s t of a l l , a l t e r n a t i v e c o n s e r v a t i o n s t r a t e g i e s are r e q u i r e d . D e s p i t e f o r e s t r e s e r v e s and enforcement p o l i c i e s based on t r y i n g to keep v i l l a g e r s out of the f o r e s t , s e r i o u s d e g r a d a t i o n of f o r e s t v e g e t a t i o n has o c c u r r e d . Perhaps "management of l o p p i n g l e v e l s ' of fodder c o l l e c t i o n might be a more r e a l i s t i c approach (Moench & Bandyopadhyay, 1986). C e r t a i n l y the h i s t o r y of the Chipko movement suggested t h a t v i l l a g e r s can be motivated to conserve t r e e s ( S h i v a & Bandyopadhyay, 1986). Other s t u d i e s i n d i c a t e d t h a t many N e p a l i communities t r a d i t i o n a l l y had some i n h e r e n t i d e a l s and knowledge of c o n s e r v a t i o n (Johnson et a l . , 1982). The degraded f o r e s t s i t e s i n t h i s study s t i l l had 240 fodder t r e e per h e c t a r e . T h e o r e t i c a l l y i f these were allowed to mature, 12,000 to 48,000 kilograms of le a v e s per h e c t a r e c o u l d be c a r e f u l l y lopped each year (Panday, 1982) to meet the needs of s e v e r a l f a m i l i e s needs f o r f o d d e r . 1 3 6 Secondly, these r e s u l t s i m p l i e d that f o r e s t c o n s e r v a t i o n was i n t i m a t e l y l i n k e d with the p r o d u c t i v i t y of the a g r i c u l t u r a l a r e a s . I t was obvious t h a t i n c r e a s e d fodder and fuelwood p r o d u c t i o n on privately-owned land would a l l e v i a t e much of the pressure on the f o r e s t . Demand f o r fodder from f o r e s t could be reduced by i n c r e a s e d crop r e s i d u e s and growing fodder t r e e s on farms. Based on s t u d i e s t h a t i n d i c a t e d that "well managed fodder t r e e s ' can produce 50 to 200 k i l g r a m s of l e a v e s per year (Panday, 1982), i t would r e q u i r e approximately 40 to 80 mature t r e e s to meet the average f a m i l y ' s needs f o r fo d d e r . S i m i l a r l y , demand f o r firewood from f o r e s t c o u l d be reduced by growing firewood s p e c i e s on the farm. S e v e r a l s p e c i e s have been i d e n t i f i e d that would be capable of s u p p l y i n g the average f a m i l y needs of 5 m.3 a n n u a l l y , such as C a l l i a n d r a c a l o t h y r s u s or Leucaena l e u c o c e p h a l a (IDRC, 1983; NAS, 1980). The p o t e n t i a l of n a t i v e fodder and firewood s p e c i e s c o u l d a l s o be e x p l o r e d f u r t h e r (IDRC, 1983; Panday, 1982). 137 CHAPTER 7: DEVELOPMENT OF A LAND USE MANAGEMENT PLAN 7.1 Approaches to Land Use Management There were s e v e r a l p o s s i b l e approaches f o r de v e l o p i n g land use management plans or recommendations. Even when i t was rec o g n i z e d that b i o p h y s i c a l and socio-economic p e r s p e c t i v e s must be i n t e g r a t e d , i t was d i f f i c u l t to determine the s t a r t i n g p o i n t f o r combining such d i f f e r e n t s t y l e s of a study of land use problems. I t became apparent d u r i n g the course of the study that two p o t e n t i a l approaches c o u l d be d e s c r i b e d as: 1) the environmental c o n s e r v a t i o n i s t approach, and 2) the d e c i s i o n making approach. The f i r s t approach, or the environmental c o n s e r v a t i o n i s t approach, s t a r t e d with a c l e a r understanding of the b i o p h y s i c a l a s p e c t s of the land use problem. I t assumed t h a t d e g r a d a t i o n of the environment, i n t h i s case a decrease i n s o i l q u a l i t y , was u n d e s i r a b l e f o r long term s u s t a i n a b l e l i f e . The problem was thus approached from the p e r s p e c t i v e of which farm f a c t o r s were r e l a t e d to changes i n s o i l p r o p e r t i e s ; and how an understanding of these r e l a t i o n s h i p s c o u l d be used to decrease d e g r a d a t i o n of the s o i l or environment. The emphasis was on land and land use management as a s c i e n t i f i c or e c o l o g i c a l phenomena. T h i s approach tended to be somewhat academic and i m p r a c t i c a l to implement; but i t was more e t h i c a l i n i t s concern f o r the long term w e l l being of the e a r t h and mankind. The second approach, or the d e c i s i o n making approach, attempted to understand how land use management d e c i s i o n s are made by people, i n t h i s case the farmers of the Pithuwa a r e a . I t assumed t h a t the f u l f i l m e n t of f a m i l y goals was of primary 138 importance, e s p e c i a l l y i n a p r e c a r i o u s s u b s i s t e n c e farming s i t u a t i o n . The land use problem was approached from the p e r s p e c t i v e of how land was a l l o c a t e d r e l a t i v e to the other r e s o u r c e s of the farm, such as l a b o u r , power and o p e r a t i n g c a p i t a l , to produce crops and food. The emphasis was on the term "management' and t h i s was o f t e n c o n s i d e r e d u n s c i e n t i f i c , q u a l i t a t i v e and too concerned with s h o r t term farming economics. However, i t s " p e o p l e - f i r s t ' approach may be more r e a l i s t i c f o r s e n s i t i v e e x t e n s i o n or community development (Bunch, 1982). Both approaches were used to i n t e g r a t e the t h r e e components ( i . e . s o i l q u a l i t y , farming systems and f o r e s t p r o d u c t i v i t y ) of t h i s study i n the Chitawan. The two very d i f f e r e n t approaches seemed to f a l l s h o r t i n terms of complete i n t e g r a t i o n of ideas and p e r s p e c t i v e s . V a l u a b l e i n s i g h t s were r e v e a l e d by both, though. The environmental c o n s e r v a t i o n i s t approach provided the b a s i c theme and content of the e x t e n s i o n message; while the d e c i s i o n making approach provided the c o n t e x t . 7.2 The Environmental C o n s e r v a t i o n i s t Approach The environmental c o n s e r v a t i o n i s t approach asked the f o l l o w i n g q u e s t i o n s : 1) What are the key f a c t o r s of s o i l q u a l i t y , farm and f o r e s t p r o d u c t i v i t y ? 2) What r e l a t i o n s h i p s e x i s t among these key f a c t o r s or v a r i a b l e s ? 3) What recommendations f o r land use management can be made, based on the r e l a t i o n s h i p s i d e n t i f i e d ? 1 3 9 7.2.1 Key S o i l Q u a l i t y F a c t o r s Key f a c t o r s i n d i c a t i n g the s o i l q u a l i t y s t a t u s of a s u r f a c e A h o r i z o n under v a r i o u s land uses were i d e n t i f i e d u s ing s e v e r a l s t a t i s t i c a l t e c h n i q u e s . A b r i e f summary of the r e s u l t s of three a n a l y s e s are presented here; more d e t a i l can be found i n Appendix 0. F i r s t l y , the Mann-Whitney U - t e s t r e v e a l e d t h a t the s o i l p r o p e r t i e s most s e n s i t i v e to changes i n land use were: compaction, a v a i l a b l e phosphorus, c a t i o n exchange c a p a c i t y , exchangeable magnesium, bulk d e n s i t y , o r g a n i c carbon, t o t a l n i t r o g e n and pH ( i n CaC12). D i s c r i m i n a n t a n a l y s i s i n d i c a t e d t h a t the land use types corresponded with d i f f e r e n t s o i l management groups 84 percent of the time when the f o l l o w i n g p r o p e r t i e s were used: compaction, exchangeable magnesium, o r g a n i c carbon, a v a i l a b l e phosphorus, exchangeable potassium and pH ( i n CaC12). The t h i r d technique, a p r i n c i p l e components a n a l y s i s i d e n t i f i e d the key p r o p e r t i e s as pH ( i n CaC12), o r g a n i c carbon, compaction, exchangeable magnesium, a v a i l a b l e phosphorus and exchangeable potassium. These s i x s o i l p r o p e r t i e s behaved r e l a t i v e l y independent of one another and accounted f o r a high p r o p o r t i o n (66%) of the t o t a l v a r i a b i l i t y . S i nce they had a l l been p r e v i o u s l y i d e n t i f i e d one or more times by the other techniques d i s c u s s e d above, they were chosen as the key f a c t o r s to monitor s o i l q u a l i t y . 7.2.2 Key Farm P r o d u c t i v i t y F a c t o r s Two techniques were used to i d e n t i f y key f a c t o r s of farm p r o d u c t i v i t y . The f i r s t of these was an a n a l y s i s of the 140 s e n s i t i v i t y of farm p r o f i t (gross margin) to v a r i o u s crop p r o d u c t i o n f a c t o r s . T h i s technique i n d i c a t e d t h a t the most important f a c t o r s were: amount of l a n d , crop y i e l d , labour i n p u t s and cash i n p u t s . Secondly, Spearman c o r r e l a t i o n v a l u e s were c a l c u l a t e d f o r a l l p a i r s of farm v a r i a b l e s . The f o l l o w i n g key farm p r o d u c t i v i t y f a c t o r s were i d e n t i f i e d : amount of l a n d , f a m i l y s i z e , t o t a l LSU ( l i v e s t o c k u n i t s ) , amount of major land use types ( i . e . pc,pa,kh), y i e l d per he c t a r e and t o t a l y i e l d per farm of three crops i n r o t a t i o n , compost i n p u t s f o r three c r o p s , amount of urea and complex f e r t i l i z e r a p p l i e d f o r the three crops ( i . e . a t o t a l of 21 v a r i a b l e s ) . The complexity of the farming systems i n the study make t h i s type of a n a l y s i s extremely d i f f i c u l t . 7.2.3 Key F o r e s t P r o d u c t i v i t y F a c t o r s The amounts of timber, fuelwood and fodder were i d e n t i f i e d as the key f a c t o r s to monitor f o r e s t p r o d u c t i v i t y and stand c o n d i t i o n s . These f a c t o r s a l s o gave i n d i c a t i o n s of the causes of f o r e s t s i t e d e g r a d a t i o n . The magnitude of the de g r a d a t i o n could be estimated by comparing the e x i s t i n g amounts of these three f o r e s t products r e l a t i v e to n e i g h b o r i n g community needs f o r these p r o d u c t s . 7.2.4 R e l a t i o n s h i p s Between S o i l and Farm F a c t o r s Two t e c h n i q u e s , Spearman c o r r e l a t i o n s and K r u s k a l W a l l i s s i g n i f i c a n c e t e s t s on c a t e g o r i c data were used to i d e n t i f y r e l a t i o n s h i p s between s o i l and farm v a r i a b l e s . The r e s u l t s of the c o r r e l a t i o n s were d i s c u s s e d i n t h r e e s e c t i o n s : s o i l 141 p r o p e r t i e s with land use v a r i a b l e s , s o i l s with cropping i n p u t s and s o i l s with crop y i e l d v a r i a b l e s . The s i g n i f i c a n c e t e s t s were done on fou r s e t s of c a t e g o r i c d ata: l a n d h o l d i n g , compost use, urea f e r t i l i z e r i n p u t s and nitrogen-phosphorus complex f e r t i l i z e r i n p u t s . There were s e v e r a l c o r r e l a t i o n s between s o i l p r o p e r t i e s and land use v a r i a b l e s t h a t were s i g n i f i c a n t at the 95% l e v e l of c o n f i d e n c e ( F i g u r e 7.1). Organic carbon l e v e l s were n e g a t i v e l y c o r r e l a t e d with amount of t o t a l l a n d h o l d i n g and f a m i l y s i z e . There were p o s i t i v e c o r r e l a t i o n s between the o r g a n i c carbon l e v e l s and the amount of more i n n o v a t i v e t r i p l e - c r o p p i n g r o t a t i o n s , such as 'pa' i . e . maize, potato-wheat or xkh' i . e . r i c e , mustard, s p r i n g maize r o t a t i o n s . The amount of *pa' r o t a t i o n was c o r r e l a t e d with a v a i l a b l e phosphorus l e v e l s as w e l l . On the other hand, the amount of the more t r a d i t i o n a l *pc' or maize, mustard r o t a t i o n was n e g a t i v e l y c o r r e l a t e d with a v a i l a b l e phosphorus and exchangeable potassium l e v e l s . Compaction was found to be hig h e r on farms with g r e a t e r amounts of t h i s 'pc' r o t a t i o n than on farms with l e s s 'pc' . These f i n d i n g s suggest t h a t s o i l p r o p e r t i e s are i n f l u e n c e d by the r e l a t i v e amounts of cr o p p i n g r o t a t i o n s on a farm as w e l l as the more d i r e c t e f f e c t s of the c r o p p i n g r o t a t i o n i t s e l f . The c h o i c e of v a r i o u s r o t a t i o n s i s probably an i n d i r e c t r e f l e c t i o n of management l e v e l s . I t was a l s o i n t e r e s t i n g t h a t the s m a l l e r farms had hig h e r o r g a n i c matter l e v e l s . The second s e c t i o n of c o r r e l a t i o n s f o r d i s c u s s i o n were the s o i l p r o p e r t i e s compared with c r o p p i n g i n p u t l e v e l s ( F i g u r e 7.3). 142 amount of pa land use soil organic carbon + amount of triple cropping _s amount available of pc phosphorus land use in soil exc. potassium in soil Figure 7.1: Significant relationships between soil & land use factors (+ positive; - negative) pc land use maize S mustard yields soil compaction exc. Mg in soil pa land use wheat yields soil compaction exc. Mg in soil kh land use maize exc. K yields in soil Figure 7.2: Significant relationships between soil S crop yields (+ positive; - negative) 143 amount of compost additions (pre-monsoon) + 1 soil exc. Mg PH in soil crop yield (pre-monsoon) a) compost additions amount of kh land use amount of urea used (monsoon) V soil exc. K in soil ava. P in soil soil organic carbon b) urea fertilizer use amount of N-P complex fertilizer use (annual) crop yields in selected pre-monsoon & winter crops V soil exc. Mg pH in soil soil organic carbon c) N-P complex fertilizer use Figure 7.3: Significant relationships between soil and 3 cropping inputs: compost, urea & complex fertilizers. (+ positve; - negative) 144 Three i n p u t s were examined: compost, urea and complex f e r t i l i z e r a d d i t i o n s . These i n p u t s were examined a c c o r d i n g to amounts added i n monsoon, w i n t e r , pre-monsoon and t o t a l a n n u a l l y . 1) compost T o t a l annual compost a d d i t i o n s were weakly c o r r e l a t e d with s o i l o r g a n i c carbon l e v e l s . The amount of compost a p p l i e d i n the pre-monsoon season seemed the most c r i t i c a l f o r s o i l o r g a n i c matter l e v e l s as w e l l as s e v e r a l other p r o p e r t i e s , such as exchangeable magnesium and pH i n CaC12. In c o n t r a s t , l e v e l s of a v a i l a b l e phosphorus and exchangeable potassium were n e g a t i v e l y c o r r e l a t e d with pre-monsoon compost a d d i t i o n s but the c o r r e l a t i o n s were weak. In g e n e r a l the s o i l s seemed improved with h i g h e r compost a d d i t i o n s i n the pre-monsoon season. T h i s r e l a t i o n s h i p was a t r i a n g u l a r one, i n t h a t y i e l d s of the pre-monsoon crops (both y i e l d s per he c t a r e and t o t a l y i e l d s per farm) were c o r r e l a t e d with both s o i l o r g a n i c carbon and compost a p p l i e d i n the pre-monsoon season. Thus crop y i e l d s were a r e f l e c t i o n of b e t t e r s o i l f e r t i l i t y with i n c r e a s i n g amounts of pre-monsoon compost. 2) urea f e r t i l i z e r Urea f e r t i l i z e r a d d i t i o n s were c o r r e l a t e d with s e v e r a l s o i l p r o p e r t i e s . In p a r t i c u l a r , urea l e v e l s a p p l i e d to the monsoon crop were c o r r e l a t e d p o s i t i v e l y with pH, o r g a n i c carbon, exchangeable magnesium and compaction. The unexpected p o s i t i v e c o r r e l a t i o n between urea a d d i t i o n s and pH may have been due to an i n t e r m e d i a t e f a c t o r ; i . e . the amounts of b a s e - s a t u r a t e d i r r i g a t i o n water and f e r t i l i z e r a s s o c i a t e d with r i c e p r o d u c t i o n 145 on x k h e t f . A v a i l a b l e phosphorus and exchangeable potassium l e v e l s were lower on farms that a p p l i e d higher amounts of urea f e r t i l i z e r i n the monsoon season. There were p o s i t i v e c o r r e l a t i o n s between urea use i n p a r t i c u l a r seasons and amount (ha) of v a r i o u s c r o p p i n g r o t a t i o n s . These r e l a t i o n s h i p s were probably due to the farmers use of urea on p a r t i c u l a r l y r e s p o n s i v e c r o p s . For example, the c o r r e l a t i o n between the amount of urea a p p l i e d i n the monsoon season and the amount of xkh' r o t a t i o n may have been caused by the i n c r e a s e d amount of the improved r i c e v a r i e t y grown as p a r t of t h i s r o t a t i o n . L i k e w i s e , winter urea l e v e l s and amount of 'pc' r o t a t i o n was probably due to mustard grown i n the winter season of t h i s r o t a t i o n . Pre-monsoon urea and amount of *pa' were c o r r e l a t e d because wheat, the r e l a y e d winter crop of t h i s r o t a t i o n seemed very r e s p o n s i v e to chemical f e r t i l i z e r . 3) complex f e r t i l i z e r A d d i t i o n s of nitrogen-phosphorus complex f e r t i l i z e r were c o r r e l a t e d with d i f f e r e n t s o i l p r o p e r t i e s depending on the season of a p p l i c a t i o n . Complex f e r t i l i z e r a p p l i e d i n the monsoon was p o s i t i v e l y c o r r e l a t e d with exchangeable magnesium l e v e l s but a l s o weakly with compaction l e v e l s . Amount of winter a p p l i e d complex f e r t i l i z e r was c o r r e l a t e d with o r g a n i c carbon and exchangeable magnesium l e v e l s i n the s o i l . Both these s e t s of c o r r e l a t i o n s may have been an i n d i r e c t r e s u l t of the management p r a c t i c e s a s s o c i a t e d with *khet' land uses. S u r p r i s i n g l y , only complex f e r t i l i z e r a p p l i e d i n the pre-monsoon season seemed be to p o s i t i v e l y c o r r e l a t e d w i t h a v a i l a b l e phosphorus, the n u t r i e n t 146 that was supposed to be improved by t h i s f e r t i l i z e r . T o t a l annual l e v e l s of complex f e r t i l i z e r i n p u t s were p o s i t i v e l y c o r r e l a t e d with o r g a n i c carbon and exchangeable magnesium i n the s o i l . T h i s improvement of some of the key s o i l parameters was r e f l e c t e d i n a r e l a t i o n s h i p with y i e l d s , e s p e c i a l l y those of the winter and pre-monsoon c r o p s . The t h i r d s e c t i o n of the d i s c u s s i o n was the r e l a t i o n s h i p of s o i l p r o p e r t i e s and crop y i e l d s . To o b t a i n a more r e a l i s t i c i d e a these c o r r e l a t i o n s were done s e p a r a t e l y f o r each land use or c r o p p i n g r o t a t i o n . The f i r s t of these was the "pc' or t r a d i t i o n a l double cropped maize, mustard r o t a t i o n . The s o i l compaction v a l u e s and the y i e l d of monsoon maize were p o s i t i v e l y c o r r e l a t e d . Another unexpected r e l a t i o n s h i p was t h a t exchangeable magnesium and the y i e l d s of maize and mustard were n e g a t i v e l y c o r r e l a t e d . The second r o t a t i o n analyzed was the "pa 1 or t r i p l e cropped r a i n f e d r o t a t i o n , maize f o l l o w e d by p o t a t o -wheat r e l a y c r o p s . Again compaction was p o s i t i v e l y c o r r e l a t e d with y i e l d s , i n t h i s case the wheat y i e l d s ; w h ile magnesium was n e g a t i v e l y c o r r e l a t e d with wheat y i e l d s . The l a s t r o t a t i o n examined was the xkh' or the t r i p l e cropped i r r i g a t e d r o t a t i o n of r i c e , mustard, s p r i n g maize. There was a s t r o n g r e l a t i o n s h i p between exchangeable potassium l e v e l s i n the s o i l and the y i e l d of the s p r i n g maize crop. In summary, there were two s o i l p r o p e r t i e s of p a r t i c u l a r i n t e r e s t , exchangeable potassium and magnesium ( F i g u r e 7.2). The r e l a t i o n s h i p between maize and potassium was understandable s i n c e maize has been found to remove two to f o u r times as much potassium as other c e r e a l s (Mengel & 147 K i r k b y , 1982). The n e g a t i v e c o r r e l a t i o n s between exchangeable magnesium and y i e l d s of crops l i k e maize, mustard and wheat were more d i f f i c u l t to e x p l a i n . Perhaps the l e v e l s of magnesium were a r e f l e c t i o n of g e n e r a l base s t a t u s , other unmeasured s o i l p r o p e r t i e s or a v a i l a b i l i t y of other n u t r i e n t s ; but no apparent reason f o r these r e l a t i o n s h i p s c o u l d be found e i t h e r . I t was more l i k e l y t h a t the c o r r e l a t i o n s were merely c o i n c i d e n t a l . Some of these r e l a t i o n s h i p s suggested by the c o r r e l a t i o n s d i s c u s s e d above were s u b s t a n t i a t e d by the s i g n i f i c a n c e t e s t s on c a t e g o r i e s of f o u r key farm v a r i a b l e s . Others were not; e i t h e r the c o r r e l a t i o n s were too weak with too much s c a t t e r i n the r e l a t i o n s h i p ; or the imposed c a t e g o r i e s were not r e p r e s e n t a t i v e of the t r u e farm and f i e l d s i t u a t i o n . The s i z e of land h o l d i n g data was separated i n t o three c a t e g o r i e s based on t h e i r frequency d i s t r i b u t i o n s : 1) s m a l l farms < 1.0 h e c t a r e s , 2) medium farms from 1.0 to 2.0 h e c t a r e s , and 3) l a r g e farms > 2.0 h e c t a r e s . The p r o p e r t i e s t h a t were s i g n i f i c a n t l y d i f f e r e n t among these groups of farm s i z e were: annual complex f e r t i l i z e r use, t o t a l l i v e s t o c k , average y i e l d of the monsoon crop, t o t a l farm y i e l d s of the monsoon and winter crops ( T a b l e 7.1). There was d e f i n i t e l y a t r e n d of d e c r e a s i n g compost use and o r g a n i c matter of the s o i l with i n c r e a s i n g farm s i z e , but d i f f e r e n c e s were only s i g n i f i c a n t between the s m a l l and l a r g e farm groups. The average compost a d d i t i o n s r e v e a l e d an o p p o s i t e trend to the average complex f e r t i l i z e r i n p u t s . The s m a l l farmers a p p l i e d more compost (6580 kg/ha/yr) and l e s s complex f e r t i l i z e r (65 Table 7.1: Summary of Kruekall-Wallis Significance Tests on 3 Categories of 4 Key Farm Variables KEY VARIABLES: COMPARISON WITH OTHER KEY VARIABLES and their categories Soils Farm Land use Inputs (kg/ha) Yields (kg/ha/yr) Yields (kg/farm/yr) FARM SIZE: orgC% total LSU compost complex monsoon monsoon winter small ( <1.0 ha) 1.526 3.5 6580 65 1420 400 280 medium (1.0-2.0 ha) 1.566 * 6.7 4695 * 145 * 1830 * 1140 * 1150 large ( >2.0 ha) 1.442 7.5 3100 90 2310 5070 2090 COMPOST ADDITIONS: orgC% farm (ha) pc (ha) monsoon winter small ( <1000 kg/ha) 1.344 4.8 0.6 5950 3030 medium (1000-4000 kg/ha) 1.542 2.6 * 0.5 * 1680 * 940 large ( >4000 kg/ha) 1.578 1.7 0.2 1620 910 UREA FERTILIZER USE: totN% farm (ha) compost complex monsoon premonsoon monsoon winter premonsoon small ( <20 kg/ha) 0.110 3.4 4250 35 1690 160 2170 890 90 medium (20-100 kg/ha) 0.121 1.7 3790 * 135 * 1840 * 610 * 1600 * 790 * 480 large ( >100 kg/ha) 0.125 4.1 6120 195 2730 1000 5760 3810 920 COMPLEX FERTILIZER USE: CEC khet% urea winter premonsoon winter premonsoon small ( <40 kg/ha) 8.68 57 42 1330 185 630 135 medium (40-160 kg/ha) * 10.83 * 53 * 72 * 990 * 720 * 900 * 730 large ( >160 kg/ha) 11.41 61 30 2860 700 2790 410 * means are significantly different among 3 categories at p<0.05 note: CEC in meq/lOOg soil 149 kg/ha/yr); while the l a r g e farmers a p p l i e d l e s s compost (3100 kg/ha/yr) but more complex f e r t i l i z e r (90 kg/ h a / y r ) . I t was not s t a r t l i n g t h a t l a r g e farms had twice the l i v e s t o c k h o l d i n g s and ten times the t o t a l farm y i e l d s of the monsoon and winter crops as the s m a l l farms. However i t was s u r p r i s i n g t h a t the l a r g e farmers, .with t h e i r b e t t e r cash flow and access to e d u c a t i o n , had the lowest o r g a n i c matter l e v e l s i n t h e i r s o i l s . The annual compost a d d i t i o n data was s u b d i v i d e d i n t o three c a t e g o r i e s f o r examination: 1) s m a l l compost amounts of 1000 kg/ha/yr or l e s s , 2) medium compost amounts from 1000 to 4000 kg/ha/yr, and 3) l a r g e compost amounts of more than 4000 kg/ha/yr. The f o l l o w i n g v a r i a b l e s were s i g n i f i c a n t l y d i f f e r e n t among the three groupings: land h o l d i n g , amount of the t r a d i t i o n a l "pc' r o t a t i o n and t o t a l y i e l d s per farm of the monsoon and winter c r o p s . A l l fo u r key v a r i a b l e s demonstrated the same t r e n d and decreased with i n c r e a s i n g compost use. The farmers t h a t a p p l i e d l e s s than 1000 kilograms of compost per h e c t a r e had more land on the average (4.8 ha) and more of the "pc' c r o p p i n g r o t a t i o n (0.6 ha); while the farmers t h a t a p p l i e d over 4000 kilograms of compost per h e c t a r e had l e s s land (1.7 ha) and l e s s "pc' (0.2 ha). I t was not s u r p r i s i n g t h a t t o t a l y i e l d s of the monsoon and winter crop per farm r e f l e c t e d the same tren d s as s i z e of farm; s i n c e these three v a r i a b l e s are i n t i m a t e l y l i n k e d with one another. Some of the l e s s s i g n i f i c a n t r e l a t i o n s h i p s ( i . e . at the 75 to 80% c o n f i d e n c e l e v e l ) were c o n s i d e r e d worthy of d i s c u s s i o n because of the i n s i g h t s they p r o v i d e d . There were apparent 150 trends i n d i c a t e d by annual f e r t i l i z e r i n p u t s of urea and complex and o r g a n i c carbon l e v e l s i n the s o i l . The d i f f e r e n c e s between small and moderate users of compost were s t r i k i n g ; urea use i n c r e a s e d c o n c u r r e n t l y from 50 to 65 kg/ha/yr, complex f e r t i l i z e r use i n c r e a s e d from 100 to 115 kg/ha/yr and s o i l o r g a n i c carbon i n c r e a s e d from 1.34 to 1.54 p e r c e n t . However, the d i f f e r e n c e s between moderate and heavy compost users were more s u b t l e and probably caused the trend to be i n s i g n i f i c a n t at the 95 percent l e v e l . Although the g e n e r a l trend supported the r e s u l t s of the c o r r e l a t i o n s , the l i m i t s of the c a t e g o r i e s of compost data e s p e c i a l l y between moderate and heavy may have been too a r t i f i c i a l and u n r e p r e s e n t a t i v e . The average number of l i v e s t o c k u n i t s were r e l a t i v e l y s i m i l a r i n a l l three groupings of compost use; i . e . s m a l l 6.2, medium 6.7 and l a r g e 6.0. T h i s seemed to i n d i c a t e t h a t although a l a r g e p r o p o r t i o n of the compost o r i g i n a t e s from l i v e s t o c k manure, the amount of compost a v a i l a b l e on the farm d i d not a f f e c t the amount a p p l i e d to the f i e l d s . In f u t u r e s t u d i e s of t h i s nature, a LSU per h e c t a r e might be a b e t t e r b a s i s f o r comparison among the three compost use c a t e g o r i e s . The q u a n t i t i e s of annual urea f e r t i l i z e r used on the s o i l sampled farms was s u b d i v i d e d i n t o three groups: 1) s m a l l urea i n p u t s of 20 kg/ha/yr or l e s s , 2) moderate urea i n p u t s of 20 to 100 kg/ha/yr, and 3) l a r g e urea i n p u t s of g r e a t e r than 100 kg/ha/yr. S e v e r a l c r o p p i n g c h a r a c t e r i s t i c s were s i g n i f i c a n t l y d i f f e r e n t among the urea use c a t e g o r i e s : annual complex f e r t i l i z e r and compost i n p u t s , and f i v e of the s i x y i e l d measures ( i . e . y i e l d 151 per h e c t a r e and per farm i n three s e a s o n s ) . Farmers that used small amounts ( l e s s than 20 kg) of urea a n n u a l l y used sma l l amounts of complex (mean of 35 kg) but r e l a t i v e l y l a r g e amounts of compost ( i . e . mean of 4250 k g ) . Farmers with moderate urea i n p u t s used moderate complex f e r t i l i z e r i n p u t s ( i . e . 135 kg) and moderate amounts of compost ( i . e . 3790 k g ) . Farmers t h a t a p p l i e d the urea f e r t i l i z e r i n l a r g e amounts a l s o a p p l i e d the other two key i n p u t s i n l a r g e amounts ( i . e . mean complex 195 and mean compost 6120 kg/ha). These r e s u l t s suggested t h a t the i n c r e a s e d use of a l l three i n p u t s c o i n c i d e d f o r moderate and heavy urea u s e r s . But s m a l l users of urea seemed to be s u b s t i t u t i n g l a r g e r amounts of compost to compensate f o r l e s s chemical f e r t i l i z e r i n p u t s . The annual i n p u t s of nitrogen-phosphorus complex f e r t i l i z e r ( a b b r e v i a t e d below as complex a d d i t i o n s ) was s u b d i v i d e d i n t o three groups. The l i m i t s f o r the groups were s l i g h t l y h i g h e r than those f o r urea use groups: 1) s m a l l complex a d d i t i o n s of 40 kg/ha/yr or l e s s , 2) moderate complex a d d i t i o n s of 40 to 160 kg/ha/yr, and 3) l a r g e complex a d d i t i o n s of more than 160 kg/ha/yr. The c a t i o n exchange c a p a c i t y (CEC) of the s o i l , amount of "khet' or i r r i g a t e d r i c e l a n d , annual urea use and the y i e l d s (both on a per h e c t a r e and a per farm b a s i s ) of the winter and pre-monsoon crops r e v e a l e d i n t e r e s t i n g and s i g n i f i c a n t trends among the three groups. The l i n k between the use of complex and urea f e r t i l i z e r s and the problems with i n t e r p r e t i n g the y i e l d r e l a t i o n s h i p s have been d i s c u s s e d above. T h e r e f o r e the focus here was on the f i r s t two v a r i a b l e s of the l i s t . The CEC e x h i b i t e d an i n c r e a s i n g trend 152 with i n c r e a s e d complex i n p u t s (8.68, 10.83 and 11.41 f o r s m a l l , moderate and l a r g e i n p u t s r e s p e c t i v e l y ) . The percentage of "khet* or i r r i g a t e d r i c e land g e n e r a l l y i n c r e a s e d but not c o n s i s t e n t l y (57, 53 and 62 % f o r s m a l l , moderate and l a r g e g r o u p s ) . These trends may be r e l a t e d . Since both amount of i r r i g a t i o n and amount of nitrogen-phosphorus f e r t i l i z e r used on the farm suggest more i n t e n s i v e and i n n o v a t i v e management, i t i s not s u r p r i s i n g t h a t there would be a c o n c u r r e n t improvement i n the s o i l . The CEC l e v e l s may a l s o have been a r e f l e c t i o n of the o r g a n i c carbon l e v e l s , although the l a t t e r p r o p e r t y d i d not e x h i b i t a c o n s i s t a n t or s i g n i f i c a n t t r e n d . 7.2.5 R e l a t i o n s h i p s Between S o i l and F o r e s t F a c t o r s The d e g r a d a t i o n of s o i l and f o r e s t v e g e t a t i o n was c l e a r l y l i n k e d . As n a t u r a l f o r e s t ( f a ) became degraded f o r e s t ( f d ) there was a d e c l i n e i n wood biomass accompanied by s e v e r a l i n d i c a t i o n s of d e c l i n i n g s o i l q u a l i t y . The r e s u l t s of the comparison between " f a 1 and v f d ' are summarized i n T a b l e 7.2. Evidence t h a t f o r e s t v e g e t a t i o n was degrading was r e v e a l e d when the s t a n d i n g biomass volumes and r e g e n e r a t i o n counts were compared f o r the two f o r e s t land uses ( f a , f d ) . Although the data c o u l d not be s t a t i s t i c a l l y analyzed (reasons d i s c u s s e d i n s e c t i o n 6.2), the t r e n d s were s t r i k i n g . R egardless of which type of wood ( l a r g e timber, s m a l l timber, firewood, t o t a l wood) or which s p e c i e s of t r e e s ( f o d d e r , other s p e c i e s , t o t a l s p e c i e s ) was examined, the measured d e c l i n e was obvious. For example, t o t a l wood volume of " f d ' areas was 35 percent of the n a t u r a l untouched Table 7.2: Relationships Between Soil and Forest Factors natural forest degraded forest Key factors fa fd Forest Productivity: Total wood biomass (m3/ha) 1095 395 Large timber (") 505 175 Small timber (") 440 155 Firewood (m3/ha) 150 65 (kg/ha) 104,300 45,000 Total regeneration (#/ha) 49,050 9,540 Other species (") 47,360 9,270 Fodder species (") 1,690 270 Soil Quality: pH (in CaCl2) 5.6 4.9 organic carbon (%) 1.918 1.999 available phosphorus (ppm) 42 33 exc. magnesium (meq/lOOg) 1.88 1.27 exc. potassium (meq/lOOg) 0.36 0.34 base saturation (%) 67.8 34.2 ext. iron (%) 1.24 1.89 ext. aluminum (%) 0.22 0.48 exc. aluminum (%) 0.90 2.16 Compaction (kg/m3) 1.65 4.24 * the difference in means is significant at the 95% confidence level 154 areas ( f a ) ; while t o t a l number of r e g e n e r a t i o n s a p l i n g s was only 20 p e r c e n t . There were s e v e r a l i n d i c a t i o n s of s o i l d e g r a d a t i o n under the " f d ' land use. A few p r o p e r t i e s other than the s i x key p r o p e r t i e s were i n c l u d e d i n the t a b l e because of t h e i r r e l e v a n c e when only f o r e s t e d land uses are c o n s i d e r e d . Three s o i l f e r t i l i t y parameters (pH, magnesium, base s a t u r a t i o n ) had d e c l i n e d s i g n i f i c a n t l y compared to the o r i g i n a l or n a t u r a l f o r e s t ( f a ) . Although the d e c l i n e of a v a i l a b l e phosphorus l e v e l s was too v a r i a b l e to be a c o n s i s t e n t t r e n d , " f r e e ' aluminum l e v e l s had s i g n i f i c a n t l y i n c r e a s e d ( i . e . from 0.22 to 0.48 % ) , s i g n i f y i n g p o s s i b l e phosphorus f i x a t i o n problems. I t was noted i n a p r e v i o u s d i s c u s s i o n of s o i l f e r t i l i t y ( s e c t i o n 4.2.2; F i g u r e 4.8) t h a t the degraded f o r e s t land use was the only s i t u a t i o n where amounts of exchangeable aluminum were s i g n i f i c a n t enough to a f f e c t c a t i o n exchange c a p a c i t y of the s o i l . The compaction values of the s u r f a c e s o i l had i n c r e a s e d d r a m a t i c a l l y , from 1.65 to 4.24 k ilograms per square meter. In c r e a s e s i n compaction of t h i s magnitude were c o n s i d e r e d u n d e s i r a b l e because of the i n f e r r e d e r o s i o n p o t e n t i a l . In summary, the amounts of three " d e s i r a b l e p r o p e r t i e s ' had decreased, and the l e v e l s of three " u n d e s i r a b l e p r o p e r t i e s ' had i n c r e a s e d . I t was apparent t h a t the degraded f o r e s t ( f d ) was an extremely u n s a t i s f a c t o r y use of the l a n d . To a r r e s t the d e g r a d a t i o n of the r e s o u r c e s ( s o i l and f o r e s t ) , the processes became the f o c u s . The s o i l e r o s i o n l i t e r a t u r e was reviewed. There was a whole continuum of r e s e a r c h types from p h y s i c a l l y 155 based e r o s i o n models to adaptions of the USLE ( U n i v e r s a l S o i l Loss E q u a t i o n ) ; but the u n d e r l y i n g theme was the same. The c o n d i t i o n of the v e g e t a l cover was c o n s i d e r e d one of the most important f a c t o r s of s o i l e r o s i o n and d e g r a d a t i o n ( A i n a , L a i & T a y l o r , 1979; Carson, 1977; Gregory, 1984; Quinn & L a f l e n , 1983; Shaxson, 1981). Thus, key f o r e s t products l i k e fodder and fuelwood were examined to understand the d e g r a d a t i o n of v e g e t a t i o n . A comparison of the e x i s t i n g r e s o u r c e s to present community needs was d i s c u s s e d ( s e c t i o n 6.3.1). I t became c l e a r t h a t i f v i l l a g e r p a r t i c i p a t i o n was r e q u i r e d f o r c o n s e r v a t i o n , the emphasis had to r e t u r n to the a g r i c u l t u r a l land uses. I n c r e a s i n g crop r e s i d u e s by i n c r e a s i n g y i e l d s and growing multipurpose t r e e crops were p o s s i b i l i t i e s f o r r e l i e v i n g p r e s s u r e on the f o r e s t f o r fodder and f u e l . 7.2.6 Recommendations f o r Land Use Management G e n e r a l l y , i t seemed t h a t to improve s o i l f e r t i l i t y and the crop y i e l d s , i n c r e a s e d f e r t i l i z e r use was recommended. In p a r t i c u l a r , use of urea and N-P complex f e r t i l i z e r showed c l e a r r e l a t i o n s h i p s with crop y i e l d s . Y i e l d s of monsoon and p r e -monsoon crops were r e s p o n s i v e to i n c r e a s i n g l e v e l s of urea a p p l i c a t i o n ; w h ile y i e l d s of winter and pre-monsoon crops were r e s p o n s i v e to the complex a p p l i c a t i o n s . Heavy use of chemical f e r t i l i z e r s seemed to be connected to h i g h e r percentages of i r r i g a t e d r i c e or x k h e t ' land on the farm, higher amounts of t r i p l e c r o p p i n g r o t a t i o n s , i n c l u s i o n of r e c e n t l y i n t r o d u c e d crops such as wheat or potato and other i n d i c a t o r s of i n t e n s i v e 1 5 6 management. The land use c a t e g o r i e s a s s o c i a t e d with these r e l a t i o n s h i p s would be c o n s i d e r e d o p t i m a l . Of the e i g h t main land uses c o n s i d e r e d i n t h i s c hapter, the r i c e based t r i p l e -c r o p p i n g r o t a t i o n s (kg and kh) would be promoted. The potato r o t a t i o n (pa) would a l s o be c o n s i d e r e d y i e l d r e s p o n s i v e enough to j u s t i f y l a r g e i n p u t s of chemical f e r t i l i z e r s . I t was d i f f i c u l t to make o v e r a l l recommendations f o r s o i l c o n s e r v a t i o n though, given the overwhelming complexity and v a r i a t i o n of the farms. I t seemed that recommendations f o r crops or land types (khet or pakho) would be more meaningful. For example, on most r a i n f e d "pakho 1 land maize was the monsoon crop. For t h i s crop compost a d d i t i o n s were more h i g h l y c o r r e l a t e d with crop y i e l d s and improvement of s o i l p r o p e r t i e s ; and thus should be promoted. Another improvement would be se a s o n a l q u a l i f i e r s with the recommendations f o r c o n s e r v a t i o n . The c r i t i c a l season i n terms of p r o t e c t i n g the s o i l from e r o s i o n was the pre-monsoon. T h e r e f o r e growing a crop i n t h i s season r a t h e r than l e a v i n g the land f a l l o w was perhaps more c r i t i c a l than whether a double or t r i p l e c r o p p i n g r o t a t i o n was promoted. S p r i n g maize was the usual c h o i c e f o r a pre-monsoon crop i n Pithuwa because of i t s value i n r e p l e n i s h i n g fodder s u p p l i e s . Given t h a t most farmers b e l i e v e d t h a t maize responded more to compost a d d i t i o n s than to use of urea or complex f e r t i l i z e r , the g e n e r a l recommendation of higher f e r t i l i z e r a p p l i c a t i o n s would have to be m o d i f i e d . 157 7.3 D e c i s i o n Making Approach The d e c i s i o n making approach to land use management and s o i l c o n s e r v a t i o n asked the f o l l o w i n g q u e s t i o n s : 1) Who are the d e c i s i o n makers i n t h i s c o n s i d e r a t i o n ? 2) What c r i t e r i a are important i n t h e i r d e c i s i o n making process? 3) How are land use management a l t e r n a t i v e s e v a l u a t e d a c c o r d i n g to these c r i t e r i a , given a s e t of p r i o r i t i e s ? 4) How should c o n s e r v a t i o n recommendations be m o d i f i e d , based on an understanding of the farm d e c i s i o n making process? 7.3.1 The D e c i s i o n Makers U l t i m a t e l y , the a c t u a l c o n s e r v e r s of the land r e s o u r c e s i n Nepal are the farmers. Researchers can e l u c i d a t e the important systems and processes to make recommendations. Governments at n a t i o n a l , d i s t r i c t or l o c a l l e v e l s can have a tremendous impact by l e g i s l a t i o n of c o n s e r v a t i o n g u i d e l i n e s or i n s t i t u t i n g marketing i n c e n t i v e s . But e v e n t u a l l y v i l l a g e p a r t i c i p a t i o n and farmer m o t i v a t i o n i s c r u c i a l f o r recommendations, g u i d e l i n e s or c o n s e r v a t i o n p r o j e c t s to become r e a l i t y . 7.3.2 C r i t e r i a f o r D e c i s i o n Making D e c i s i o n s concerning land use management and c o n s e r v a t i o n were made by farmers w i t h i n the context of t h e i r f a m i l y concerns and p r i o r i t i e s . The primary goal of most farm f a m i l i e s was to maximize food p r o d u c t i o n . Thus the crops i n v o l v e d and t h e i r y i e l d s or p r o d u c t i v i t y under a l t e r n a t i v e land uses were the two most important c r i t e r i a . The cash flow r e p r e s e n t e d by that crop 158 p r o d u c t i o n was another f a c t o r of c o n s i d e r a t i o n ; s i n c e cash was needed f o r many of the cr o p p i n g i n p u t s (e.g. f e r t i l i z e r , labour h i r e ) and f o r meeting secondary goals of the f a m i l y ( e . g. e d u c a t i o n , h e a l t h needs). Attainment of goals was l i m i t e d by a s c a r c i t y of some r e s o u r c e s . T h e r e f o r e land use a l t e r n a t i v e s were c o n s i d e r e d based on t h e i r r e s p e c t i v e r e s o u r c e requirements. Four farm r e s o u r c e s were c r i t i c a l : l a n d , l a b o u r , power, and cash or o p e r a t i n g c a p i t a l . A comparison of a v a i l a b l e and r e q u i r e d r e s o u r c e s i n d i c a t e d which land use management p r a c t i c e s would not be r e a d i l y adopted by farmers. The q u a l i t y of s o i l was i n c l u d e d because of i t s e f f e c t on other important c r i t e r i a , such as p r o d u c t i v i t y and the amount of r e q u i r e d land r e s o u r c e . Farmers i n the study area r e c o g n i z e d the importance of s o i l and land q u a l i t y and had v a r i o u s words i n t h e i r language to denote d i f f e r e n c e s . Based on the r e s u l t s of the s o i l q u a l i t y study i n t h i s t h e s i s , t h r e e key f e r t i l i t y p r o p e r t i e s were chosen as i n d i c a t o r s : pH, o r g a n i c carbon and a v a i l a b l e phosphorus. S o i l p h y s i c a l p r o p e r t i e s were a l s o an important i n d i c a t i o n of s o i l q u a l i t y e s p e c i a l l y under f o r e s t land uses; but t e x t u r e , bulk d e n s i t y and compaction were not as a f f e c t e d by d i f f e r e n c e s i n a g r i c u l t u r a l land uses as the chemical p r o p e r t i e s were. I t was r e c o g n i z e d t h a t e v a l u a t i o n of s o i l q u a l i t y was extremely complex. However t h i s complexity had to be balanced with what c o u l d be r e a l i s t i c a l l y i n c o r p o r a t e d i n t o the farmers' d e c i s i o n making p r o c e s s . The l a s t c r i t e r i o n was an i n d i c a t i o n of r i s k a s s o c i a t e d with 159 the a l t e r n a t i v e s . Some farmers i n the study area, e s p e c i a l l y those i n a p r e c a r i o u s f i n a n c i a l s i t u a t i o n , were r e l u c t a n t to t r y unproven i n n o v a t i v e land uses. The d e c i s i o n making environment of the Pithuwa farmers a l r e a d y c o n t a i n e d a high degree of r i s k and u n c e r t a i n t y from weather, i n s e c t s , d i s e a s e and v a r i a b l e p r i c e s . Even i f t h i s c o u l d only be examined q u a l i t a t i v e l y i t was co n s i d e r e d c r u c i a l f o r management d e c i s i o n s (Tulachan, 1982). In summary, the r e s u l t s of the key informant i n t e r v i e w s suggest t h a t s i x c r i t e r i a were important f a c t o r s f o r d e c i s i o n s about lan d use management. They were crop p r e f e r e n c e , crop p r o d u c t i v i t y , r e l a t i v e p r o f i t a b i l i t y , the resource requirements ( l a n d , l a b o u r , draught power and o p e r a t i n g c a p i t a l ) , s o i l q u a l i t y i n d i c a t o r s (pH, o r g a n i c matter and a v a i l a b l e phosphorus) and a r e l a t i v e r a t i n g of r i s k . 7.3.3 E v a l u a t i o n of Land Use Options The v a r i o u s land use o p t i o n s i d e n t i f i e d i n the study were compared a c c o r d i n g to s i x d e c i s i o n making f a c t o r s . The r e s u l t s are summarized i n Table 7.3. To e l u c i d a t e the d e c i s i o n making process of the farm f a m i l y , each c r i t e r i o n was c o n s i d e r e d i n t u r n , as i f i t was the s i n g l e most important f a c t o r of the land use c h o i c e . Choices based only on crop p r e f e r e n c e were r e l a t i v e l y s t r a i g h t forward. R i c e and maize were o b v i o u s l y the s t a p l e s of the f a m i l y and farm l i v e s t o c k d i e t s so the amount and t i m i n g of these two crops were important. These two crops were i n v a r i a b l y the monsoon c r o p s . P r o v i d e d i r r i g a t i o n water was i n u n l i m i t e d 1 6 0 Table 7.3: Evaluation of Agricultural Land Use Options According to 6 Criteria Decision making Land use codes for •khet' land Land use codes for 'pakho' Agroforest Criteria kc kd kg kh PC Pd pa af** Crops included: monsoon crop (m) rice rice rice rice maize maize maize maize winter crop (w) mustard lentils wheat mustard mustard mustard potato mustard pre-monsoon crop (p) maize maize gr.manure inter-crop (season) lentil(m)wheat(w) trees(mwp) Productivity (kg/ha): monsoon crop 2205 2420 2340 2750 1740 1850 1290 1500 winter crop 560 340 1590 480 450 400 7140 500 pre-monsoon crop 1200 1200 relay or inter-crop 200 1250 3400 Profit margin (Rs/ha): total crop income 8765 6870 10440 11620 7030 7365 26450 8260 total variable costs 4935 3200 6205 6220 3205 3480 8075 3705 gross margin 3825 3670 4235 5400 3825 3885 18375 4555 Resource requirements: land: irrigated (ha) 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 rainfed (ha) 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 labour: men (md) 70 50 85 85 35 40 70 50 women (wd) 110 95 160 150 70 85 170 60 power: bullocks (bd) 40 25 50 60 35 35 50 35 cash: operating (Rs) 930 265 1170 1085 730 755 3175 730 Soil quality: * * * ** pH (in CaCl2) 6.3 6.9 6.2 5.7 6.2 5.6 6.2 organic C (kg/ha) 31240 30140 38280 33440 34980 35420 45100 available P (kg/ha) 60 55 170 185 230 290 350 Risk rating: low low medium high low medium high high mean values for these 3 land uses are based on 10 samples; a l l others are based on 4 samples, agroforestry land use values are extrapolated from results of this study and the literature. Assumptions used in calculation: Crop prices (RsAg) early rice (moto) 2.00 maize (in both season 2.10 mustard 7.50 wheat 2.00 potato 3.00 lentils 2.40 Fuelwood price (Rs/25 10.00 labour (Rs/md) bullock team hire (Rs/bd) land tax (Rs/ha) irrigation tax (Rs/ha) Rupees per CDN$ 20 15 15 100 35 15 161 supply, the 'khet' land uses (kb, kd, kg, kh) would be p r e f e r r e d s i n c e they a l l i n c l u d e a r i c e c r o p . Those r o t a t i o n s i n c l u d i n g the l a t e r maturing and b e t t e r t a s t i n g 'masuli' r i c e (kb, kd) would be p a r t i c u l a r l y p o p u l a r . D i v e r s i t y of the d i e t a l s o a f f e c t e d crop p r e f e r e n c e . Any land use o p t i o n with a t h i r d crop, e i t h e r as a pre-monsoon or a r e l a y crop (kg, kh, pa, pd), would r e p r e s e n t a d d i t i o n a l s i d e b e n e f i t s i n terms of b u i l d i n g up food s t o r e s of l e n t i l s , wheat f l o u r or l i v e s t o c k f e e d . F i n a l l y , c r o p p i n g o p t i o n s t h a t i n c l u d e d cash c r o p s , such as mustard and potato, (kh, pa) were o f t e n p r e f e r r e d . The second c r i t e r i o n c o n s i d e r e d was the r e l a t i v e p r o d u c t i v i t y of the c r o p s . Rice emerged again as a high p r i o r i t y , but potatoes were the h i g h e s t y i e l d e r s . Based on t h i s c r i t e r i o n a l o n e , maize and wheat were the t h i r d and f o u r t h crop c h o i c e s r e s p e c t i v e l y . Thus combinations such as maize, p o t a t o -wheat (pa) or r i c e , wheat, maize (kg) would be chosen above other lower y i e l d i n g r o t a t i o n s (pc or pd). When only the p r o f i t a b i l i t y of the land use o p t i o n s was c o n s i d e r e d , the 'pa' r o t a t i o n was d i s t i n c t i v e l y the f i r s t c h o i c e , with i t s annual gross margin of over 18,000 rupees per h e c t a r e . The next p r o f i t a b l e o p t i o n s were i r r i g a t e d , t r i p l e c r o p p i n g r o t a t i o n s , such as 'kg' or 'kh' ( i . e . 5400 and 4200 Rs/ha a n n u a l l y , r e s p e c t i v e l y ) . The c h o i c e here became very complex though, when the percentage of the crops a c t u a l l y s o l d i n the market was c o n s i d e r e d . Higher percentages of the mustard and potato crops were s o l d i n the market f o r r e l a t i v e l y higher p r i c e s (7.5 and 3.0 Rs/kg, r e s p e c t i v e l y ) . Thus some of the r o t a t i o n s 162 i n c l u d i n g these crops (pc, pd) were perhaps more p r o f i t a b l e than shown by t h i s t h e o r e t i c a l comparison. Another important c o n s i d e r a t i o n to compare land use management a l t e r n a t i v e s was t h e i r r e l a t i v e r e s o u r c e requirements. Four major r e s o u r c e s were i n c l u d e d : l a n d , l a b o u r , power and o p e r a t i n g c a p i t a l . The amount and type of land was the obvious f i r s t f o r d i s c u s s i o n . In order to grow the p r e f e r r e d r i c e crop or some of the more p r o f i t a b l e t r i p l e c r o p p i n g r o t a t i o n s (kg,kh), i r r i g a t e d 'khet' land was r e q u i r e d . C o n v e r s e l y , the maize-based r o t a t i o n s (pc, pd, pa) r e q u i r e d w e l l d r a i n e d , a e r a t e d , r a i n f e d 'pakho' l a n d . Labour requirements v a r i e d among land use a l t e r n a t i v e s . In areas where there were labour s h o r t a g e s , t r i p l e c r o p ping land uses (kg, kh, pa) would be a problem because of t h e i r h i g h l a b o u r i n p u t s (245, 235, 240 man-woman-days/ha/yr r e s p e c t i v e l y ) . In c o n t r a s t , the lower l a b o u r i n p u t of the double cropping r o t a t i o n *pc' ( i . e . 105 man-woman-days/ha/yr) made i t a f i r s t c h o i c e . R a t i o s of man to woman labour were a l s o noteworthy. The a g r o f o r e s t r y o p t i o n appeared to r e q u i r e a d i f f e r e n t r a t i o of man to woman labour than the other land use o p t i o n s ; thus even i f i t was s o i l c o n s e r v i n g i t would not l i k e l y be e a s i l y adopted. At f i r s t g l a n c e , i t appeared t h a t women were doing twice the amount of farm work as the men; but time spent i n the v i l l a g e of Pithuwa r e v e a l e d t h a t the s i t u a t i o n was more complex. Some a c t i v i t i e s done by men such as buying f e r t i l i z e r i n the market, meeting with other farmers to arrange exchanges or marketing of the crop produce, were not i n c l u d e d i n the labour t o t a l s because of the d i f f i c u l t y i n e s t i m a t i n g them. The f o u r t h 163 r e s o u r c e requirement was o p e r a t i n g c a p i t a l or cash. T h i s was based on those cropping i n p u t s that c o u l d not be arranged c o o p e r a t i v e l y or i n exchanges. I t i n c l u d e d the cash r e q u i r e d f o r chemical f e r t i l i z e r , p e s t i c i d e s , t r a c t o r h i r e and taxes but not labour or b u l l o c k h i r e , compost or seed. I f cash was i n l i m i t e d supply as i s o f t e n the case i n t h i s a r e a , l a r g e c a s h - o u t l a y r o t a t i o n s such as "pa'," kg' or "kh' ( i . e . 3175 and 1170 and 1085 Rs/ha/yr r e s p e c t i v e l y ) would not be chosen. B e t t e r c h o i c e s would o b v i o u s l y be the more t r a d i t i o n a l land uses (kd and pc, with 265 and 730 R s / h a / y r ) . On most farms, these f o u r r e s o u r c e s were combined and s u b s t i t u t e d f o r one another, so t h a t t h i s c o n s i d e r a t i o n was much more complex than o u t l i n e d here. S o i l q u a l i t y was the f i f t h c r i t e r i o n c o n s i d e r e d . I t was a c t u a l l y an i n t e g r a l p a r t of the land r e s o u r c e c o n s i d e r a t i o n above. But given i t s importance to t h i s study i t was evaluated s e p a r a t e l y . Three s o i l f e r t i l i t y p r o p e r t i e s were used as i n d i c a t o r s of the c o n d i t i o n of the s o i l , namely pH ( i n CaC12), o r g a n i c carbon and a v a i l a b l e phosphorus. The mean s o i l pHs under a l l land use o p t i o n s were w i t h i n the o p t i m a l range f o r most cr o p s . So c o n s i d e r i n g pH alone, no land use would be chosen as more s o i l c o n s e r v i n g . However, remembering t h a t pH was c a r e f u l l y chosen as a key i n d i c a t o r of other p r o p e r t i e s l i k e base s a t u r a t i o n and exchangeable c a l c i u m and magnesium, the h i g h e r the value the b e t t e r . Thus the o p t i o n s i n v o l v i n g i r r i g a t i o n (the 'khet' r o t a t i o n s ) or a legume crop (kd, pd) were b e t t e r c h o i c e s . Based on o r g a n i c matter content the order of c h o i c e among the l a n d use o p t i o n s would be as f o l l o w s : 164 af> kh> pa> pd> pc> kb> kd. C o n v e r s e l y to e x p e c t a t i o n s , the t r i p l e c r o p p i n g r o t a t i o n s appeared to be s o i l c o n s e r v i n g . The p r o f i t a b i l i t y of these a l t e r n a t i v e s probably j u s t i f i e d e x t r a f e r t i l i t y i n p u t s . Since the o r g a n i c carbon was c l o s e l y r e l a t e d to other s o i l p r o p e r t i e s such as t o t a l n i t r o g e n , c a t i o n exchange c a p a c i t y and a v a i l a b l e water h o l d i n g c a p a c i t y , these r e s u l t s were p a r t i c u l a r l y e x c i t i n g . A v a i l a b l e phosphorus was the t h i r d s o i l q u a l i t y i n d i c a t o r . In g e n e r a l the maize based r o t a t i o n s (pc, pd, pa, a f ) had the higher phosphorus s t a t u s . Of these the maize, potato-wheat (pa) and the a g r o f o r e s t r y ( a f ) seemed to be the b e t t e r c h o i c e s with mean l e v e l s of 290 and 350 k ilograms per h e c t a r e of s u r f a c e s o i l , r e s p e c t i v e l y . I t should be noted here t h a t such hi g h v a l u e s of a v a i l a b l e phosphorus are open to q u e s t i o n , given the high v a r i a b i l i t y of the t e s t r e s u l t s and the tenuous e x t r a p o l a t i o n f o r the a g r o f o r e s t r y s i t u a t i o n . However i n the i n t e r e s t of d e v e l o p i n g a methodology f o r e v a l u a t i n g l a n d use a l t e r n a t i v e s t h a t farmers would f i n d u s e f u l , a v a i l a b l e phosphorus i s s t i l l one of the p r e f e r r e d s o i l p r o p e r t i e s to i n c l u d e and d i s c u s s . When a l l t h r e e s o i l f e r t i l i t y parameters were c o n s i d e r e d the more i n n o v a t i v e land uses (kh, pa, a f ) were the more s o i l c o n s e r v i n g . I t was encouraging to note t h a t these r o t a t i o n s were t r i p l e or r e l a y crop o p t i o n s and h i g h l y p r o f i t a b l e . Even though the i n c l u s i o n of l e n t i l s or legumes seemed to improve crop y i e l d s , there was no apparent improvement i n s o i l p r o p e r t i e s . The reasons f o r t h i s have been d i s c u s s e d i n more d e t a i l i n chapter 4. Risk was the f i n a l c r i t e r i o n f o r e v a l u a t i n g the land use 165 o p t i o n s . The r a t i n g s were based on the the v a r i a b i l i t y of the crop y i e l d s , the s e n s i t i v i t y of p a r t i c u l a r crops to drought, i n f e s t a t i o n s or d i s e a s e , and the market p r i c e f l u c t u a t i o n s . I t was i n t e r e s t i n g t h a t the more t r a d i t i o n a l land uses (kc, kd, pa) i n v o l v e d the l e a s t r i s k f o r the farmer; while the more i n n o v a t i v e t r i p l e c r o p p i n g l a n d uses (kh, pa, a f ) were r i s k i e r . Based on the farm i n t e r v i e w data, i t seems that farm f a m i l i e s c l o s e to the s u b s i s t e n c e l e v e l would choose the o p t i o n s with the l e a s t r i s k i n v o l v e d . In a c t u a l farm d e c i s i o n making s i t u a t i o n s , a l l the s i x f a c t o r s or c r i t e r i a would be s i m u l t a n e o u s l y e v a l u a t e d . T h i s was approximated by ra n k i n g the land uses f o r each c r i t e r i a , and then c a l c u l a t i n g the mean rank f o r each land use (Table 7.4). The r e s u l t s suggested t h a t the land uses were not d i s t i n c t l y d i f f e r e n t i n t h e i r o v e r a l l r a t i n g . There were of course t r a d e -o f f s , but the b e n e f i t s of a g r o f o r e s t r y systems and t r i p l e c r o pping r o t a t i o n s outweighed the disadvantages i f c r i t e r i a were a l l e q u a l l y weighted. Although t h i s r a t i n g system assumed t h a t a l l s i x c r i t e r i a were e q u i t a b l e , d i f f e r e n t f a m i l i e s would have d i f f e r e n t p r i o r i t i e s t h a t would s e l e c t i v e l y weight the c r i t e r i a . For example, s m a l l farms would probably focus on c r i t e r i a 1,4 and 6 (Table 7.4). T h e i r d e c i s i o n s would be d i f f e r e n t from l a r g e r farmers who thought c r i t e r i a 2,3 and 5 were most important. I t i s r e c o g n i z e d t h a t the d i s c u s s i o n here i s an o v e r s i m p l i f i c a t i o n of a very complex p r o c e s s . I t i s meant as f i r s t approximation of a methodology t h a t c o u l d be improved.; Table 7.4: Rating of Agricultural Land Use Options Using a Ranking System * 166 Decision making Land use codes for khet land Land use codes for pakho Agroforest Criteria kb kd kg kh pc pd pa af** Crops preference: 6 5.5 6 5.3 4 4.3 4.3 3.3 mean rank of crops (all seasons) Productivity: 4 3 6 5 1 2 8 7 Gross margin (profit): 4 1 5 7 2 3 8 6 Resource requirements: 3 6.8 2.5 2.8 6.7 5.7 1.8 4.9 mean rank of labour, power & capital Soil quality: 2 1 6.5 6.5 3 4 5 8 organic carbon Risk rating: 7 7 4.5 2 7 4.5 2 2 Overall mean rank: 4.3 4 5.1 4.8 3.9 3.9 4.8 5.2 Ranking of mean ranks: 4 3 7 5.5 1.5 1.5 5.5 8 * rank of 8 = best or most desirable; rank of 1 = worst or least desirable land use option. 167 The number of important c r i t e r i a f o r c o n s i d e r a t i o n might i n c r e a s e or decrease depending on the farming s i t u a t i o n , e v a l u a t i o n viewpoint or data a v a i l a b i l i t y . Another improvement might i n d i c a t e only the unusual r e s o u r c e requirements r a t h e r than c a l c u l a t i n g a mean ra n k i n g of f o u r such d i v e r s e farm r e s o u r c e s . R e g a r d l e s s of i t s f a u l t s , t here are v a l u a b l e i n s i g h t s f o r e x t e n s i o n of s o i l c o n s e r v a t i o n recommendations gleaned from the e v a l u a t i o n . 7.3.4 M o d i f i e d Recommendations f o r Land Use Management I f s o i l c o n s e r v a t i o n was c o n s i d e r e d to be the f i r s t p r i o r i t y i n management d e c i s i o n making, what were the t r a d e o f f s ? The land use o p t i o n s that seemed more s o i l c o n s e r v i n g u s u a l l y r e q u i r e d more la b o u r i n p u t s , i r r i g a t i o n and i n i t i a l o p e r a t i n g c a p i t a l . There were high e r a s s o c i a t e d r i s k s due to p r i c e and y i e l d f l u c t u a t i o n s and the p r e f e r r e d crops were not i n c l u d e d . Perhaps the q u e s t i o n should be rephrased, " what f a m i l y goals and p r i o r i t i e s were the s o i l c o n s e r v i n g recommendations compatible w i t h ? " The s o i l c o n s e r v i n g land use a l t e r n a t i v e s (af,kh,kg,pa) were u s u a l l y more p r o d u c t i v e and p r o f i t a b l e ( i . e . h i g h e r gross margins per c r o p p i n g r o t a t i o n ) . I t appeared t h a t land use recommendations promoting s o i l c o n s e r v a t i o n would be e a s i l y accepted by the l a r g e r farmers. I f a c l e a r r e l a t i o n s h i p between the recommended p r a c t i c e s , crop y i e l d s and income could be demonstrated, these people would be r e c e p t i v e to the new i d e a s . They would have the r e q u i r e d r e s o u r c e s , e s p e c i a l l y the o p e r a t i n g cash to purchase the requirements f o r t r i p l e c r o pping of improved 168 seed v a r i e t i e s , more urea and coraplex f e r t i l i z e r s . But f o r many s m a l l e r poorer farmers the disadvantages, e s p e c i a l l y the r i s k f a c t o r and the o p e r a t i n g c a p i t a l requirements, would outweigh the b e n e f i t s of i n c r e a s e d f e r t i l i z e r a p p l i c a t i o n s . For farmers i n t h i s s i t u a t i o n the more a p p r o p r i a t e e x t e n s i o n message would be one t h a t promoted s l i g h t changes to t h e i r p r a c t i c e s , such as improved composting tec h n i q u e s (Bunch, 1982). Given the d e c i s i o n making context d i s c u s s e d i n the pre v i o u s s e c t i o n , how would the i n t r o d u c t i o n of a g r o f o r e s t r y systems be pe r c e i v e d by farmers? T h i s land use a l t e r n a t i v e was r a t e d h i g h l y i n terms of p r o d u c t i o n , p r o f i t and s o i l c o n s e r v a t i o n . There was a g e n e r a l decrease i n r e q u i r e d women-days of labour when the time saving i n fodder and f u e l c o l l e c t i o n from the d i s t a n t f o r e s t was c o n s i d e r e d . The paradox was th a t more work from men was r e q u i r e d f o r t h i s land use. T h i s might be met with some r e s i s t a n c e i n s t r o n g l y p a t r i a r c h a l households. I t a l s o r e q u i r e d c o n s i d e r a b l e i n i t i a t i v e to v i s i t the nea r e s t t r e e nursery ( s e v e r a l hours walk from Pithuwa) to o b t a i n s u i t a b l e t r e e s e e d l i n g s . I t i s not s u r p r i s i n g t h a t m ulti-purpose 'wonder t r e e s ' with many s i d e b e n e f i t s throughout the whole farming system ( P l a t e 7.1) must be promoted to outweigh some of the c o n s t r a i n t s to adopt i o n of the a g r o f o r e s t r y p r a c t i c e s . 169 P l a t e 7 . 1 : A g r o f o r e s t r y i n n o v a t i o n s ; m u l t i - p u r p o s e t r e e s s u c h a s " i p i l i p i l ' ( l e u c a e n e a s p . ) w o u l d be c a p a b l e o f s u p p l y i n g t h e f a r m i n g h o u s e h o l d n e e d s f o r f u e l w o o d a n d f o d d e r . 170 CHAPTER 8: SUMMARY AND CONCLUSIONS S o i l f e r t i l i t y and land management were s t u d i e d i n a land use c o n f l i c t area of the north e a s t e r n part of the Chitawan v a l l e y . T h i s i n v o l v e d four main s t e p s . F i r s t , changes i n s o i l p r o p e r t i e s due to land use were documented, with p a r t i c u l a r emphasis on those changes accompanying f o r e s t degradation and f o r e s t to a g r i c u l t u r a l c o n v e r s i o n s . Then the c o m p o s t - f e r t i l i z e r i n p u t s , crop y i e l d s and cropping p r o f i t a b i l i t y were eva l u a t e d i n the study area based on farm i n t e r v i e w s . T h i r d l y , f o r e s t p r o d u c t i v i t y was estimated u s i n g biomass measurements. F i n a l l y , the r e s u l t s of the f i r s t three p a r t s were i n t e g r a t e d to develop a land use management o p t i o n s p l a n . The f o l l o w i n g nine c o n c l u s i o n s were r e v e a l e d by the study: 1) There was a l i n k between land use and s o i l d e g r a d a t i o n . There was a d e c l i n e i n s o i l q u a l i t y when n a t u r a l p r o d u c t i v e f o r e s t was converted to a g r i c u l t u r e . S e v e r a l s o i l f e r t i l i t y p r o p e r t i e s , such as o r g a n i c carbon, t o t a l n i t r o g e n and c a t i o n exchange c a p a c i t y were s i g n i f i c a n t l y a f f e c t e d . However, there was a l s o a d e c l i n e i n s o i l q u a l i t y when n a t u r a l f o r e s t became degraded or o v e r - u t i l i z e d , even on s l o p e s of l e s s than one degree and under " c l o s e d f o r e s t canopy*. Exchangeable bases, pH, compaction and aluminum (both exchangeable and " f r e e ' A l ) were s i g n i f i c a n t l y a f f e c t e d . C l o s e r examination of the v a r i o u s a g r i c u l t u r a l land uses r e v e a l e d t h a t some of the i n n o v a t i v e t r i p l e - c r o p p i n g o p t i o n s improved s o i l f e r t i l i t y ( o r g a n i c carbon, t o t a l n i t r o g e n , a v a i l a b l e phosphorus); and s e v e r a l s o i l q u a l i t y parameters were b e t t e r than under the degraded f o r e s t land use. 1 7 1 2) S i x s o i l p r o p e r t i e s were i d e n t i f i e d as key i n d i c a t o r s of s o i l q u a l i t y . M o n i t o r i n g s o i l d e g r a d a t i o n and s t r e a m l i n i n g a n a l y s i s could be accomplished u s i n g the f o l l o w i n g key s o i l p r o p e r t i e s : pH ( i n CaC12), o r g a n i c carbon, a v a i l a b l e phosphorus, exchangeable magnesium, exchangeable potassium and compaction. Organic carbon was i d e n t i f i e d as the most u s e f u l i n d i c a t o r of s o i l q u a l i t y under a g r i c u l t u r a l land uses and s u r f a c e compaction was found to be the key i n d i c a t o r under f o r e s t e d land uses. 3) There was p o t e n t i a l f o r legume-based or a g r o f o r e s t r y systems f o r c o n s e r v i n g s o i l , but more r e s e a r c h i s needed. The i n t r o d u c t i o n of legumes i n t o the r o t a t i o n had improved p h y s i c a l s o i l p r o p e r t i e s but so f a r no evidences of improved chemical s o i l p r o p e r t i e s were v i s i b l e . These "legume land uses' had only been c a r r i e d out f o r two c o n s e c u t i v e years and given s o i l v a r i a b i l i t y , t h i s may not .have been long enough to show d i f f e r e n c e s i n s o i l f e r t i l i t y . A g r o f o r e s t r y systems seemed to have a high p o t e n t i a l f o r improving s o i l p r o p e r t i e s such as or g a n i c carbon, t o t a l n i t r o g e n and a v a i l a b l e phosphorus, given the assumptions made i n t h i s study. h) The p r o d u c t i v i t i e s of v a r i o u s a g r i c u l t u r a l land uses were d i s t i n c t l y d i f f e r e n t . When a g r i c u l t u r a l land uses were compared, p r o d u c t i v i t i e s and r e l a t i v e p r o f i t a b i l i t i e s (gross margins) were higher f o r t r i p l e annual c r o p p i n g (kh: r i c e , mustard, maize; pa: maize, potato-wheat) than f o r double c r o p p i n g o p t i o n s (kc: r i c e , 172 mustard; pc: maize, mustard). A g r o f o r e s t r y systems were capable of s u p p l y i n g the f a m i l y needs f o r fodder and firewood as w e l l as food, and t h e o r e t i c a l l y would be h i g h l y p r o d u c t i v e and p r o f i t a b l e . 5) F o r e s t p r o d u c t i v i t y was d e c l i n i n g and was not s u s t a i n a b l e . Degraded f o r e s t (the p r e v a l e n t c o n d i t i o n i n the study area) had markedly lower amounts of wood biomass and r e g e n e r a t i o n s a p l i n g s than n a t u r a l f o r e s t . When three important f o r e s t products (timber, f i r e w o o d , fodder) were compared, a l l were reduced by 15 to 35 percent from t h e i r o r i g i n a l l e v e l s under n a t u r a l c o n d i t i o n s . Mean annual increments of f o r e s t growth were i n c a p a b l e of meeting the Pithuwa communities annual needs f o r timber, firewood and f o d d e r . Thus, i n l e s s than 30 years the sta n d i n g biomass would be d e p l e t e d by the demands from the four surrounding "panchayats' l i k e Pithuwa. 6) The h i g h l y p r o d u c t i v e land uses i n a g r i c u l t u r a l areas were a s s o c i a t e d with b e t t e r s o i l q u a l i t y . In g e n e r a l , t r i p l e c r o p p i n g r o t a t i o n s , e s p e c i a l l y those i n c l u d i n g i r r i g a t e d r i c e c u l t i v a t i o n , had higher crop y i e l d s and improved s o i l p r o p e r t i e s (pH, o r g a n i c carbon, exchangeable bases) over r a i n f e d , double c r o p p i n g r o t a t i o n s . An e x c e p t i o n to t h i s g e n e r a l i z a t i o n was the r a i n f e d c r o p p i n g r o t a t i o n which i n c l u d e d p o t a t o e s . T h i s was d e f i n i t e l y the h i g h e s t y i e l d i n g land use but i t was not the best i n terms of s o i l q u a l i t y . The value of a g r o f o r e s t r y systems i n terms of s o i l c o n s e r v a t i o n and p r o d u c t i o n of food, fodder and fuelwood should again be s t r e s s e d . 173 7) There were r e l a t i o n s h i p s between s o i l q u a l i t y and f e r t i l i t y i n p u t s . Higher a d d i t i o n s of compost, e s p e c i a l l y i n the pre-monsoon season was c o r r e l a t e d with higher s o i l pH, exchangeable magnesium and o r g a n i c carbon. Increased use of both urea and n i t r o g e n -phosphorus f e r t i l i z e r s was a s s o c i a t e d with h i g h e r values of o r g a n i c carbon and exchangeable magnesium. However, there was no l i n k with n i t r o g e n or phosphorus s t a t u s due to the v a r i a b i l i t y among s o i l s and farms. 8) A f l e x i b l e e v a l u a t i o n of land use management o p t i o n s was more r e a l i s t i c than d e v e l o p i n g a s i n g l e o p t i m a l land use management p l a n . A d e c i s i o n making approach e v a l u a t e d a l t e r n a t i v e l a n d uses i n a format t h a t c o u l d be e a s i l y i n t e r p r e t e d by the f i n a l d e c i s i o n makers, the farmers. S i x f a c t o r s were used i n the comparison, i n c l u d i n g crop p r e f e r e n c e s , p r o d u c t i v i t y , p r o f i t or gross margins, r e s o u r c e requirements, s o i l q u a l i t y i n d i c a t o r s and r i s k s . T h i s approach p r o v i d e d g u i d e l i n e s f o r i n d i v i d u a l s to make a l t e r n a t i v e land use d e c i s i o n s a c c o r d i n g to a l l s i x f a c t o r s or the most c o m p e l l i n g combination. In t h i s way, the d i v e r s i t y of farming s i t u a t i o n s and d e c i s i o n making environments was s t r e s s e d f o r implementing s p e c i f i c recommendations. 9) The study methods have r e l e v a n c e and a p p l i c a b i l i t y to other areas of Nepal. The methodology can be used to e v a l u a t e land use problems i n other areas of Nepal due to three reasons. F i r s t , the l i n k with 174 the Land Resource Mapping P r o j e c t data and maps ( a v a i l a b l e f o r a l l of Nepal) provided a s t a r t i n g p o i n t f o r the complex set of b i o p h y s i c a l , s o c i a l , economic and c u l t u r a l f a c t o r s that must be c o n s i d e r e d i n land use c o n f l i c t r e s o l u t i o n . Secondly, a l l the data a n a l y s i s was done on micro computer programs which should be f e a s i b l e f o r r e s e a r c h e r s based i n major e l e c t r i f i e d c e n t e r s of Nepal. T h i r d l y , the d e c i s i o n making approach was a f l e x i b l e means of comparing land use management a l t e r n a t i v e s , that could be e a s i l y adapted to other s i t u a t i o n s and p r i o r i t i e s . Thus, while the s p e c i f i c r e s u l t s of t h i s e v a l u a t i o n would only be p a r t i a l l y t r a n s f e r r a b l e to other comparable agro-ecosystems, the methodology would be more widely a p p l i c a b l e . 175 LITERATURE CITED Aina, P.O., R. L a i and G.S. T a y l o r . 1979. E f f e c t s of v e g e t a l cover on s o i l e r o s i o n on an A l f i s o l . In: R. L a i and D.J. Greenland (eds.) S o i l P h y s i c a l P r o p e r t i e s and Crop P r o d u c t i o n i n the T r o p i c s , John Wiley & Sons, Toronto, pp.501-508. A l l e n , J u l i a . 1985. S o i l response to f o r e s t c l e a r i n g i n the U n i t e d S t a t e s and the T r o p i c s : g e o l o g i c a l and b i o l o g i c a l f a c t o r s . B i o t r o p i c a 17(1). pp. 15-27. A l l i s o n , L.E. 1965. Organic carbon. In: C A . Black et a l ( e d s . ) , Methods of S o i l A n a l y s i s , P a r t 2: Chemical and M i c r o b i o l o g i c a l P r o p e r t i e s . Am. Soc. of Agron., Madison, Wisconsin, pp.1367-1378. Ayanaba, A. and P.J. Dart. 1977. B i o l o g i c a l N i t r o g e n F i x a t i o n i n Farming Systems i n the T r o p i c s . John Wiley and Sons, New York. 377 pp. Banta, G.R. 1976. I n f o r m a t i o n r e q u i r e d f o r d e s c r i p t i o n of c r o p p i n g systems. In: Symposium on Cropping Systems Research and Development f o r the A s i a n R i c e Farmer, 21-24 September 1976, IRRI, Los Banos, P h i l i p p i n e s , pp. 151-165. B a j r a c h a r y a , D. 1980. Fuelwood and food needs versus d e f o r e s t a t i o n : an energy study of a h i l l v i l l a g e panchayat i n e a s t e r n Nepal. Resource Systems I n s t i t u t e , East-West Center, H o n o l u l u . C i t e d i n : Fox 1983 ( q . v . ) . Barlow, C , S. J a y a s u r i y a and E.C. P r i c e . 1983. E v a l u a t i n g Technology f o r New Farming Systems: Case S t u d i e s from P h i l i p p i n e Rice Farms. IRRI, Los Banos. pp. 9-29. B e c k e t t , P.H.T. and R. Webster. 1971. S o i l v a r i a b i l i t y , a review. S o i l & F e r t i l i z e r s Vol.34, N o . l . pp.1-15. Bennett, L. 1983. Dangerous Wives and Sacred S i s t e r s , S o c i a l and Symbolic Roles of High-Caste Women i n Nepal. Columbia U n i v e r s i t y P r e s s , New York. pp. 1-33. B l y t h , J.F. and D.A. Macleod. 1978. The s i g n i f i c a n c e of s o i l v a r i a b i l i t y f o r f o r e s t s o i l s t u d i e s i n n o r t h - e a s t S c o t l a n d . J . of S o i l S c i . V o l . 29. pp.419-430. B r a c e w e l l , J.M., G.W. Robertson and J . Logan. 1979. V a r i a b i l i t y of o r g a n i c matter and exchangeable c a t i o n s w i t h i n the A2 h o r i z o n of an i r o n p o d z o l . J . of S o i l S c i . V o l . 30. pp.327-332. 1 7 6 Bremner, J.M. and C.S. Mulvaney. 1982. T o t a l n i t r o g e n . In: A.L. Page et a l ( e d s . ) , Methods of S o i l A n a l y s i s P a r t 2: Chemical & M i c r o b i o l o g i c a l P r o p e r t i e s , 2nd E d i t i o n , Agronomy No.9, Madison, Wisconsin, pp. 595-616. Bunch, Roland. 1982. Two Ears of Corn; A Guide to People-centered A g r i c u l t u r a l Improvement. World Neighbors, Oklahoma C i t y , Oklahoma. 250 pp. Campbell, J . 1978. S p a t i a l v a r i a b i l i t y of sand content and pH w i t h i n s i n g l e contiguous d e l i n e a t i o n s of two s o i l mapping u n i t s . S o i l S c i . Soc. of Amer. J . V o l . 41. pp.578-582. Carson, B r i a n R. 1977. Use of the u n i v e r s a l s o i l l o s s equation to p r e d i c t s o i l l o s s from the Timorese landscape. M.Sc. t h e s i s , Dept. of S o i l S c i e n c e , Univ. of B r i t i s h Columbia, Vancouver. 72 pp. Carson, B r i a n R. 1985. E r o s i o n and s e d i m e n t a t i o n processes i n the Nepalese Himalaya. ICIMOD O c c a s i o n a l Paper No. 1, ICIMOD, Kathmandu, Nepal. 39 pp. Chambers, Robert. 1985. S h o r t c u t methods f o r g a t h e r i n g s o c i a l i n f o r m a t i o n f o r r u r a l development p r o j e c t s . In: M.M. Cernea ( e d . ) , P u t t i n g People F i r s t , S o c i o l o g i c a l V a r i a b l e s i n Rural Development. World Bank/ Oxford U n i v e r s i t y P r e s s , Wash., D.C. pp.399-415. Chaudhary, Satya N. 1984. E v a p o t r a n s p i r a t i o n at Rampur 1974-83. unpub. paper i n Department of S o i l S c i e n c e , I n s t i t u t e of A g r i c u l t u r e & Animal S c i e n c e , Rampur, Nepal. 26 pp. Chapa, Depuc. 1985. Biomass survey c a r r i e d out i n the v i c i n i t y of J u t e p a n i panchayat f o r e s t i n the Chitawan D i s t r i c t of Nepal, unpub. r e p o r t , Kathmandu. 22 pp. Chapman, H.D. 1965. C a t i o n exchange c a p a c i t y & t o t a l exchangeable bases. In: C.A. Black et a l ( e d s . ) , Methods of S o i l A n a l y s i s , P a r t 2: Chemical and M i c r o b i o l o g i c a l P r o p e r t i e s . Am. Soc. of Agron., Madison, Wisconsin, pp.891-904. Cobb, D. 1984. M a s t e r i n g Symphony. SYBEX Inc., B e r k l e y . 763 pp. Cropping Systems S t a f f . 1984. Cropping System Program of the I n t e g r a t e d C e r e a l s P r o j e c t , Semi-annual Report A p r i l through Sept., 1984. HMG M i n i s t r y of A g r i c . Kathmandu, Nepal. pp.IV-30,31 Davidson, D.T. 1965. Penetrometer measurements. In: C.A. Black et a l ( e d s . ) , Methods of S o i l A n a l y s i s , P a r t 1: P h y s i c a l & M i n e r a l o g i c a l P r o p e r t i e s , Am. Soc. of Agron., Madison, W i s c o n s i n , pp. 472-474. 1 7 7 Eckholm, E r i c . 1976. L o s i n g Ground. W.W. Norton and Co. Inc., New York. 223 pp. F o r e s t Resource Survey HMG/ USAID. 1964. Tree Volume Tables of Nepal. Min. of F o r e s t s , Kathmandu. pp. 28. Fox, J.M. 1982. Managing p u b l i c lands i n Nepal: a v i l l a g e l e v e l look at land-use p l a n n i n g . Paper presented at 11th Ann. Conf. on S. A s i a . S. A s i a n Area Center, Univ. of Wisconsin, 5-7 Nov. 1982. Fox, J.M. 1983. Managing p u b l i c lands i n a s u b s i s t e n c e economy: the p e r s p e c t i v e from a N e p a l i v i l l a g e . Unpub. Ph.D. t h e s i s , Dept. of A g r i c . Econ., Univ. of Wisconsin, Madison. 246 pp. Fox, J.M. 1984. Firewood consumption i n a N e p a l i v i l l a g e . E n v i r . Manag. Vol.8, No.3. pp.243-250. Gardner, W.H. 1965. Water co n t e n t . In: C A . Black et a l ( e d s . ) , Methods of S o i l A n a l y s i s , P a r t 1: P h y s i c a l & M i n e r a l o g i c a l P r o p e r t i e s , Am. Soc. of Agron., Madison, Wise. pp.82-96. Greenland, D.J. 1981. C h a r a c t e r i z a t i o n of S o i l s i n R e l a t i o n to t h e i r C l a s s i f i c a t i o n and Management. Oxford Univ. P r e s s , New York. pp.51-75, 135-145. Gregory, J.M. 1984. P r e d i c t i o n of s o i l e r o s i o n by water f o r v a r i o u s f r a c t i o n s of cover. Trans ASAE Vol.27, No.5-6. pp.1345-1354. Hamilton, L.S. 1985. Towards c l a r i f y i n g the a p p r o p r i a t e mandate i n f o r e s t r y f o r watershed r e h a b i l i t a t i o n and management. Proceedings of Expert Meetings on S t r a t e g i e s , Approaches and Systems f o r I n t e g r a t e d Watershed Management, FAO - ICIMOD -East-West Center. Feb. - Mar. 1985. Kathmandu. 40 pp. Harsh, S.B. 1981. Managing the Farm B u s i n e s s . P r e n t i c e - H a l l Inc. Englewood C l i f f s , N.J. pp. 1-12, 115-149. Harwood, R.R. 1979. Small farm development, understanding and improving farming systems i n the humid t r o p i c s . IADS Development-orientated L i t e r a t u r e S e r i e s , Westview P r e s s , Boulder, C o l o r a d o . 160 pp. H i l l e l , D a n i e l . 1980. S o i l water content and p o t e n t i a l . In: Fundamentals of S o i l P h y s i c s . Academic P r e s s , New York. pp. 145-162. Hrabovszky, J.P. and K. Miyan. 1986. P o p u l a t i o n growth and land use i n Nepal, the great turnabout. Paper presented a t : Mohonk I n t e r n a t i o n a l Mountain Conference on the Himalayan -Ganges Problem, 6-11 A p r i l 1986, New York. 25 pp. 178 IDRC. 1983. Leucaena Research i n the Asian - P a c i f i c Region: Proceedings of a Workshop Held i n Singapore, 23-26 Nov. 1982. I n t e r n a t i o n a l Development Research Center, Ottawa, pp. 89-90, 99-102. IHDP /SATA. 1984. Market survey of the p r o j e c t area i n Dolkha D i s t r i c t / Sindupalchowk D i s t r i c t east of Sunkosi. IHDP/SATA, Kathmandu, Nepal. ILAC0. 1985. A g r i c u l t u r a l Compendium f o r R u r a l Development i n the T r o p i c s and S u b t r o p i c s . E l s e v i e r S c i e n c e Pub., Amsterdam, The N e t h e r l a n d s , pp. 560-580. Jackson, P e t e r . 1983. Mountain r e s c u e : can Nepal stop the s l i d e ? I n t . Union f o r Conserv. of Nature, Vol.14, No.7-9, J u l y / S e p t . 8 3 . pp.73-78. Johnson, K i r s t e n , E l i z a b e t h A. Olson and Sumitra Manandhar. 1982. Environmental knowledge and response to n a t u r a l hazards i n mountainous Nepal. Mountain Res. & Dev. Vol.2, No.2. pp.175-188. J o s h i , J.R. 1981. Chemical and m i n e r a l o g i c a l a n a l y s i s of some s o i l s of the Chitawan v a l l e y , Nepal. Unpub. M.Sc. t h e s i s , Dept. of S o i l S c i e n c e , Univ. of Wisconsin, Madison. 80 pp. Juo, A.S.R. 1976. An e v a l u a t i o n of c a t i o n exchange c a p a c i t y measurements f o r s o i l s i n the t r o p i c s . Commun. i n S o i l S c i e n ce and P l a n t A n a l y s i s , 7 ( 8 ) . pp. 751-761. Juo, A.S.R. and R. L a i . 1979. N u t r i e n t p r o f i l e i n a t r o p i c a l A l f i s o l under c o n v e n t i o n a l and n o - t i l l systems. S o i l Sci.127,3. pp.168-173. Kay, Ronald. 1986. Farm Management: P l a n n i n g , C o n t r o l & Implementation, 2nd Ed. McGraw-Hill Book Co., New York, pp.65-82, 264-290. Khoju, Madhab R. 1983. Economics of pump i r r i g a t i o n i n E a s t e r n Nepal. In: Consequences of Small Farm M e c h a n i z a t i o n . IRRI, Los Banos, P h i l i p p i n e s , pp.95-106. K l i n k a , K a r e l , R.N. Green, R.L. Trowbridge and L.E. Lowe. 1981. Taxonomic C l a s s i f i c a t i o n of Humus Forms i n Ecosystems of B r i t i s h Columbia. 1st Approx. B.C. Min. of F o r e s t s , pp.49-51. L a i , R. and D.J. Greenland. 1979. S o i l P h y s i c a l P r o p e r t i e s and Crop P r o d u c t i o n i n the T r o p i c s . John Wiley & Sons, Toronto, pp.501-508. L a v k u l i c h , L.M. 1981. Methods manual; Pedology l a b o r a t o r y . 3rd p r i n t i n g . Department of S o i l S c i e n c e , Univ. of B r i t i s h Columbia, Vancouver, B.C. 211 pp. 179 L i , P. 1981. S o c i a l Research Methods. Butterworths, Toronto, pp.45-68, 115-124. LRMP. 1983a. D r a f t Land Systems Report. Land Resource Mapping P r o j e c t , C.I.D.A./ H.M.G., Topographic Surveys Branch, Kathmandu. 234 pp. LRMP. 1983b. D r a f t Land U t i l i z a t i o n Report. Land Resource Mapping P r o j e c t , C.I.D.A./ H.M.G., Topographic Surveys Branch, Kathmandu. LRMP. 1983c. D r a f t A g r i c u l t u r a l Report. Land Resource Mapping P r o j e c t , C.I.D.A./ H.M.G., Topographic Surveys Branch, Kathmandu. LRMP. 1984a. Geology Maps, Chitawan D i s t r i c t , 1:125,000. Land Resource Mapping P r o j e c t , C.I.D.A./ H.M.G., Topographic Surveys Branch, Kathmandu. 4 maps. LRMP. 1984b. Land System Maps, Chitawan D i s t r i c t , 1:50,000. Land Resource Mapping P r o j e c t , C.I.D.A./ H.M.G., Topographic Surveys Branch, Kathmandu. 10 maps. LRMP. 1984c. Land U t i l i z a t i o n Maps, Chitawan D i s t r i c t , 1:50,000. Land Resource Mapping P r o j e c t , C.I.D.A./ H.M.G., Topographic Surveys Branch, Kathmandu. 10 maps. LRMP. 1985a. D r a f t Geology Report. Land Resource Mapping P r o j e c t , C.I.D.A./ H.M.G., Topographic Surveys Branch, Kathmandu. LRMP. 1985b. D r a f t Land C a p a b i l i t y Report. Land Resource Mapping P r o j e c t , C.I.D.A./ H.M.G., Topographic Surveys Branch, Kathmandu. 62 pp. Lunt, H.A., C.L.W. Swanson, and H.G.M. Jacobson. 1950. The Morgan's s o i l t e s t i n g system. C o n n e c t i c u t A g r i c . Exp. S t a t i o n , New Haven C.T. B u l . No. 541. 60 pp. + appendices. M a l a r i a E r a d i c a t i o n O f f i c e S t a f f . 1985. P o p u l a t i o n f i g u r e s f o r Pithuwa Panchayat, Chitawan D i s t r i c t , unpub. r e p o r t . Malmberg, M. and T. P e t e r s o n . 1985. Farm bus i n e s s p l a n n i n g notes, 1985-01PN. M i n i s t r y of A g r i c u l t u r e and Food, Prov. of B r i t i s h Columbia, V i c t o r i a . 6 pp. Mathema, S.B. 1982. The r o l e of l i v e s t o c k i n the farming systems at two cro p p i n g systems s i t e s i n Nepal. In: Report of a workshop on cr o p p i n g systems r e s e a r c h i n A s i a , IRRI, Los Banos, P h i l i p p i n e s , pp.569-590. Mathema, S.B. and M.G. Van Der Veen. 1980. Data C o l l e c t i o n Methods f o r I n i t i a l S i t e D e s c r i p t i o n s . Cropping Systems Programs, HMG Agronomy D i v i s i o n , Khumaltar. 63 pp. 180 McLean, E.O. 1965. Aluminum. In: C.A. Black et a l ( e d s . ) , Methods of S o i l A n a l y s i s , P a r t 2: Chemical & M i c r o b i o l o g i c a l P r o p e r t i e s , Am. Soc. of Agron. Madison, Wisconsin, pp.978-998. Mengel, K. and E.A. K i r k b y . 1982. P r i n c i p l e s of P l a n t N u t r i t i o n , 3rd Ed. I n t e r n a t i o n a l Potash I n s t i t u t e , Bern, S w i t z e r l a n d , pp. 296. Moench, M. and J . Bandyopadhyay. 1986. P e o p l e - f o r e s t i n t e r a c t i o n : a n e g l e c t e d parameter i n Himalayan f o r e s t management. Mtn. Res. & Dev. V ol.6, N o . l . pp.3-16. NAS. 1980. Firewood Crops, Shrub and Tree Species f o r Energy P r o d u c t i o n . N a t i o n a l Academy of S c i e n c e s , Washington, D.C. pp.32-68. N o r u s i s , M a r i j a J . 1986. SPSS/PC+ f o r the IBMPC/XT/AT. SPSS Inc., Chicago, I l l i n o i s . pp.Bl-24, B80-90, B176-195. Nye, P.H. and D.J. Greenland. 1964. Changes i n the s o i l a f t e r c l e a r i n g a t r o p i c a l f o r e s t . P l a n t & S o i l 21. pp.101-112. Panday, K.K. 1982. Fodder t r e e s and t r e e fodder i n Nepal. Swiss Development C o o p e r a t i o n / Swiss F e d e r a l I n s t i t u t e of F o r e s t r y Research, Kathmandu, Nepal. 107 pp. Pandey, H.N., J.P. Gaur and R.N. Singh. 1980. L i t t e r i n p u t and decomposition i n t r o p i c a l dry deciduous f o r e s t , g r a s s l a n d and abandoned crop f i e l d communities at V a r a n a s i , I n d i a . Acta E c o l o g i c a E c o l . P l a n t . Vol.1 (15), No.3. pp.317-323. P a t t e r s o n , G.T. and G.J. W a l l . 1982. Within-pedon v a r i a b i l i t y i n s o i l p r o p e r t i e s . C a n . J . S o i l S c i . V o l . 62. pp. 631-639. Quinn, N.W. & J.M. L a f l e n . 1983. C h a r a c t e r i s t i c s of r a i n d r o p t h r o u g h f a l l under corn canopy. T r a n s . ASAE 26(5). pp.1445-1450. Ramsay, W.J.H. 1985. E r o s i o n i n the Middle Himalaya, Nepal with a case study of the Phewa V a l l e y . M. Sc. T h e s i s , Department of F o r e s t Resources Management, U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. 160 pp. Rhoades, R.E. 1985. The a r t of the i n f o r m a l a g r i c u l t u r a l survey. Paper presented at I n t e r n a t i o n a l Conference on Rapid R u r a l A p p r a i s a l , 2-5 September 1985, Khon Kaen, T h a i l a n d . R i c h a r d s , L.A. 1965. P h y s i c a l c o n d i t i o n of water i n s o i l . In: C.A. Black et a l ( e d s . ) , Methods of S o i l A n a l y s i s , P a r t 1: P h y s i c a l and M i n e r a l o g i c a l P r o p e r t i e s , Am. Soc. of Agron. Madison, W i s c o n s i n , pp. 128-152. 181 Sanchez, Pedro A. 1976. P r o p e r t i e s and Management of S o i l s i n the T r o p i c s . John Wiley & Sons Inc., New York. pp. 198-216. Sanchez, Pedro A. 1979. S o i l f e r t i l i t y and c o n s e r v a t i o n c o n s i d e r a t i o n s f o r a g r o f o r e s t r y systems i n the humid t r o p i c s of L a t i n America. In: H.O. Mongi & P.A. Huxley ( e d s . ) , S o i l s Research i n A g r o f o r e s t r y , ICRAF, N a i r o b i , Kenya. pp.79-124. Sanchez, P.A. and J.G. S a l i n a s . 1981. Low-input technology f o r managing o x i s o l s and u l t i s o l s i n t r o p i c a l America. Advances i n Agron. Vol.34, pp. 280-379. S c h r e i e r , H., P.B. Shah and S. Burton. 1986. Using the Land Resource Mapping P r o j e c t f o r a g r i c u l t u r a l land e v a l u a t i o n and s o i l management i n Nepal. Paper presented at Mohonk I n t e r n a t i o n a l Mountain Conference on the Himalayan - Ganges Problem, 6-11 A p r i l 1986, New York. 5pp. Schroeder, R.F. 1985. Himalayan s u b s i s t e n c e systems indigenous a g r i c u l t u r e i n r u r a l Nepal. Mountain Research and Development, Vol.5, N o . l . pp. 31-44. Shah, P.B. 1984. A g r i c u l t u r a l land e v a l u a t i o n i n the K a i l a l i D i s t r i c t i n Nepal; using r e s o u r c e i n v e n t o r y data as a b a s i s f o r n a t i o n a l land use p l a n n i n g . M.Sc. t h e s i s , Dept. of S o i l S c i e n c e , Univ. of B r i t i s h Columbia, Vancouver. 145 pp. Shah, P.B. 1985. A study of the land use h i s t o r y i n the R a p t i R i v e r Watershed of C e n t r a l Nepal, unpub. r e p o r t with maps. Shah, P.B. and H. S c h r e i e r . 1985. A g r i c u l t u r a l land e v a l u a t i o n f o r n a t i o n a l land-use p l a n n i n g i n Nepal: a case study i n the K a i l a l i D i s t r i c t . Mountain Research & Development, V o l . 5, No. 2, pp. 137-146. Shaxon, T.F. 1981. I n t e g r a t i n g the s o c i a l and t e c h n i c a l a s p e c t s of v i l l a g e area c o n s e r v a t i o n work i n the e r o d i n g t r o p i c s . In: R.P.C. Morgan (ed.) S o i l C o n s e r v a t i o n : Problems and P r o s p e c t s . John Wiley & Sons Inc., New York. pp. 386-397. S h e l d r i c k , B.H. (ed.) 1984. A n a l y t i c a l Methods Manual. Land Resource Research I n s t i t u t e , A g r i c . Canada, Ottawa, Ont. pp. 26/1-8, 27/1-4. Sh i v a , Vandana and J . Bandyopadhyay. 1986. The e v o l u t i o n , s t r u c t u r e and impact of the Chipko movement. Mtn. Res. & Dev. Vol.6, No.2. 8pp. S i e g e l , S. 1956. Non-parametric S t a t i s t i c s f o r the B e h a v i o r a l S c i e n c e s . McGraw-Hill Book Co., New York. 312 pp. Singh, J.S., A.N. Pandey and P.C. Pathak. 1983. A h y p o t h e s i s to account f o r the major pathway of s o i l l o s s from Himalaya. E n v i r . Conserv. Vol.10, No.4 winter 83. pp. 343-345. 182 Singh, J.S., U. Pandey and A.K. T i w a r i . 1984. Man and f o r e s t s : a c e n t r a l Himalayan case study. Ambio Vol.13, No.2. pp.80-87. Smeck, N.E. and L.P. W i l d i n g . 1980. Q u a n t i t a t i v e e v a l u a t i o n of pedon for m a t i o n i n c a l c a r e o u s g l a c i a l d e p o s i t s i n Ohio. Geoderma V o l . 24. pp. 1-16. T a y l o r , S t e r l i n g A. and Gaylen L. A s h c r o f t . 1972. P h y s i c a l Edaphology; the P h y s i c s of I r r i g a t e d and N o n i r r i g a t e d S o i l s . W.H. Freeman & Co., San F r a n c i s c o , pp.323-334. Temple, W. 1985. A proposed system of cr o p p i n g f o r the maize ( b a r i ) lands of Nepal. Unpub. paper, Dept. of S o i l S c i e n c e , Univ. of B.C., Vancouver. 20 pp. Thompson, M i c h a e l and M i c h a e l Warburton. 1985. U n c e r t a i n t y on a Himalayan s c a l e . Mountain Research and Development Vol.5, No.2. pp. 115-135. T i s d a l e , S.L., W.L. Nelson and J.D. Beaton. 1985. S o i l F e r t i l i t y and F e r t i l i z e r s , 4th Ed. Macmillan Pub. Co., New York, pp.210-211. Tulachan, Pradeep M. 1982. C o n s t r a i n t s to the adoption of improved technology on i n n e r t e r a i and h i l l maize farms, a case study 1981. Paper presented at the N a t i o n a l Science and Technology Congress, N a t i o n a l C o u n c i l f o r Sc i e n c e & Technology, 22-24 Sept. 1982, K i r t i p u r , Nepal. 23 pp. USDA. 1975. S o i l Taxonomy; A B a s i c System of S o i l C l a s s i f i c a t i o n f o r Making and I n t e r p r e t i n g s o i l Surveys. S o i l Survey S t a f f USDA. 754 pp. USDA S o i l Survey S t a f f . 1951. S o i l Survey Manual. USDA Dept. of A g r i c . Handbook No. 18. 503 pp. Van Der Broek, Theo M.W. 1985. C o l l o i d a l S t a b i l i t y and Charge C h a r a c t e r i s t i c s with regard to The E r o s i o n of Red S o i l s i n the Middle Mountains of Nepal. M.Sc. t h e s i s , T r o p i c a l S o i l S c i e n c e , A g r i c u l t u r a l U n i v e r s i t y of Wageningen, The Ne t h e r l a n d s . 54 pp. Van Der Veen, M.G. 1982. Parcel-,farm-,and community-level v a r i a b l e s i n f l u e n c i n g c r o p p i n g i n t e n s i t y i n Pumdi Bumdi, Nepal. In: I n t e r n a t i o n a l R i c e Research I n s t i t u t e , Report on a Workshop on Cropping Systems Research i n A s i a , Los Banos, P h i l i p p i n e s , pp.617-636. Watanabe, F.S. and S.R. O l s e n . 1965. Test of an a s c o r b i c a c i d method f o r determining phosphorus i n water and NaHC03 e x t r a c t s from s o i l . SSSAP V o l . 29. pp. 677-678. 183 Weaver, R.M., J.K. Syers and M.L. Jackson. 1968. Determination of s i l i c a i n c i t r a t e - b i c a r b o n a t e - d i t h i o n i t e e x t r a c t s of s o i l . SSSAP 32. pp. 497-327. W i l d i n g , L.P. 1982. S p a t i a l v a r i a b i l i t y - an overview. In: Proceedings of the 29th Annual Meeting of the Canadian S o c i e t y of S o i l S c i e n c e , 13 J u l y 1982, Univ. of B r i t i s h Columbia, Vancouver, pp.47-62. W i l d i n g , L.P. and L.R. Drees. 1978. S p a t i a l v a r i a b i l i t y : a p e d o l o g i s t ' s v i e w p o i n t . In: M. S t e l l y ( e d . ) , D i v e r s i t y of S o i l s i n the T r o p i c s , ASA Spec. Pub. No. 34, Madison, Wisconsin, pp. 1-12. W i l k i n s o n , L. 1986. SYSTAT: The System f o r S t a t i s t i c s . SYSTAT Inc., Evanston, I l l i n o i s . 320 pp. W i l l i a m s o n , G. and W.J.A. Payne. 1978. An I n t r o d u c t i o n to Animal Husbandry i n the T r o p i c s , 3rd Ed. Longman, New York. pp. 119-121, 595-609. Wormald, T . J . 1976. V i l l a g e F o r e s t r y i n the H i l l s of West C e n t r a l Nepal. Lumle A g r i c u l t u r a l Center, Lumle, Nepal. C i t e d i n : Fox 1983 ( q . v . ) . Wyatt-Smith, John. 1982. The a g r i c u l t u r a l system i n the h i l l s of Nepal: the r a t i o of a g r i c u l t u r a l to f o r e s t land and the problem of animal f o d d e r . APROSC. O c c a s i o n a l Papers No. 1. A g r i c . P r o j e c t s S e r v i c e s Center, Kathmandu. 17 pp. Z a n d s t r a , H.G., E.C. P r i c e , J.A. L i t s i n g e r and R.A. M o r r i s . 1981. A Method f o r On-farm Cropping Systems Research. I n t . Rice Research I n s t i t u t e , Los Banos, P h i l i p p i n e s . 147 pp. Z i e k e , R.C. and D.R. C h r i s t i e n s o n . 1986. Organic carbon and n i t r o g e n changes i n s o i l under s e l e c t e d c r opping systems. S o i l S c i . Soc. Amer. J . Vol.50, pp.363-367. APPENDIX A. ABBREVIATIONS USED (note: alphabetical within the firs t 4 categories) I. LAND USE CODES (cropping rotations l i s t monsoon crop first) fa natural, untouched, productive forest fd degraded, grazed, utilized forest ka rice, fallow kb rice, wheat kc rice, mustard kd rice, lentils ke rice, lentils, maize kf rice, fallow, maize kg rice, wheat, maize kh rice, mustard, maize ki rice, mustard, dainchha kk Japanese 3 yr. rice based rotation pa maize, potato relayed with wheat (i.e. potato-wheat) pb maize, potato pc maize, mustard pd maize-lentils, mustard pe maize-peanuts, mustard pf upland rice, mustard pg upland rice, mustard, maize ph homestead and kitchen gardens pi agroforestry i.e. maize or vegetables with i p i l - i p i l pk Japanese Extension farm 3 year maize based rotation II. SOIL PROPERTIES avaP available phosphorus, Bray 1 extraction BDens bulk density in g/cc or mg/m3 BSat base saturation CEC cation exchange capacity in meq/lOOg. Comp compaction in kg/m3 exc exchangeable excAl exchangeable aluminum, KC1 extraction excCa exchangeable calcium excK exchangeable potassium exoMg exchangeable magnesium excNa exchangeable sodium extAl free aluminum, cdtrate-bicsarbcmte-dithionite extract extFe free iron, citrate-bicarbonate-dithionite extract FC field capacity soil moisture (%) at 1/3 bar pressure horz horizon of soil profile meq/lOOg milli-equivalents per one hundred grams soil orgC organic carbon, Walkley-Black method pH(CaCl2) pH in 1:2 calcium chloride solution pH(H20) pH in 1:1 water ppm parts per million prop soil property tot total totN total nitrogen, micro-Kjeldhal method WHC water holding capacity or water storage capacity, difference between field capacity % and wilting point % WP wilting point soil moisture (%) at 15 bar pressure III. FARM CHARACTERISTICS child number of children in family less than 14 years old fam number of family members home amount of land taken up by farmstead, stalls, garden jung firewood from jungle or forest khet irrigated, puddled land used for rice based rotations % khet percentage of total land holding that is khet land land total land holding in hectares mens monsoon season off-farm number of family members with off-farm employment pakho rainfed, well drained land for maize based rotations pers/ha number of people per hectare premon premonscon season rotn rotation of crops suff sufficient food for family for f u l l year wint winter season IV. LIVESTOCK Buffa number of male buffalo used for draft power Bul IB number of male buffalo BullC number of male cattle CalfB number of young buffalo CalfC number of young cattle CowB number of female buffalo CowC number of female cattle LSU standard livestock units Oxen number of male cattle used for draft power kg/yr kilograms of meat per year kg/LSU kilograms of meat per livestock unit of goats & pigs l/yr liters of milk per year 1/LSU liters of milk per livestock unit of female animals #/yr number of eggs per year #/fowl number of eggs per livestock units of fowl V. CROP INPUTS AND YIELDS (in order of appearance on data tables) Farmr farmer number RotnCod cropping rotation code Sea season M monsoon (June-Sept) W winter (Oct-Jan) P pre-monsoon (Feb-May) Amou amount of seed applied in kilogram/ hectare Typ type of composting method a piles b pits c sticks Arat amount of compost applied in kilograms/ hectare Urea amount of urea applied in kilograms/ hectare Coral nitrogen-phosphorus complex fertilizer applied (kg/ha) Other other cropping inputs, usually muriate of potash AverY yield in an average year (kg/ha) PoorY yield in an poor year (kg/ha) GoodY yield in a good year (kg/ha) TotalY total seed yield par farm (kg) HomeCcns amount consumed in home (kg) NxtyrSeed amount saved for seeding next year's crop (kg) SoldMarket amount of seed sold in market (kg) Exchg amount exchanged for goods or labour (kg) TotalResid total amount of crop residue/ farm (kg) AnimlFeed amount of residue fed to animals (kg) FuelWood amount of residue burnt for fuel (kg) SoldFarm amount of residue sold to neighbors (kg) Compost amount of residue composted (kg) RoofThatc amount of residue used for stall roof thatching (kg) APPENDIX B. NEPALI NAMES USED & THEIR ENGLISH EQUIVALENTS Nepali English Equivalent Ashadha: Ashwan: bighas: chang: chauk: dhal: dun: Falgun: Jestha: Jutpani: Kartik: kathas: khet: khola: kulo: Magna: masuli: moto: moto dhan muris: nahar: pakho: panchayat pathis: Pithuwa: name of month, about mid June to mid July. name of month, about mid September to mid October. local unit of area measurement, about .677 hectares. alcoholic beverage brewed from rice, corn or millet. checkpost in the forest where forest officers live and work. a soup made from lentils that is consumed by most Nepalis twice a day. depositional valley formed in Siwaliks region by tectonic processes. name of month, about mid February to mid March. name of month, about mid May to mid June. name of panchayat , translated literally as polluted water. name of month, about mid October to mid November. local unit of area measurement, about .034 hectares. land that is puddled and irrigated in order to grow paddy rice in the monsoon season. river or large stream. locally made irrigation canal. name of month, about mid January to mid February variety of rice that is longer maturing but preferred by many Nepalis because of its superior flavor. fat or plump. variety of rice that is usually earlier maturing and higher yielding. local unit of volume measurement, about 90.9 liters, main supply canal for irrigation diverted from major rivers. land that is rainfed (i.e. not irrigated), well drained and used to grow upland crops. : village level governing or administrative unit in a three tiered system of government; boundaries of a panchayat are based on population and biophysical features. local unit of volume measurement, about 5.5 liters, name of panchayat , literally translated as mad dog. pradhan panch: head or chairman of village level government. raksi: alcoholic beverage made from rice, corn or next to the distilled millet. rastrya: national governing or administrative level. Siwaliks: fir s t jagged range of h i l l s and mountains southern plains of Nepal. Terai: relatively level alluvial plains along the southern boundary of Nepal, an extension of the Ganges river plains and drainage system, upa-pradhan panch: assistant or vice-chairman of village level government. 188 APPENDIX C. LIST OF TREES AND SHRUBS (adapted from Chapa, 1985; Panday, 1982) Local name Scientific name Kind Family Uses amaltas Cassia fistula tree Leguminaceae tanning & dyeing ankhoteri Walsari trijuga tree Mebacea medicine asna Terminalia tomentosa tree Combrataceae fuelwood, fodder & timber asuro Adhatora vascice shrub Acanthaceae medicine banmara Eupatorium adenaphorum shrub Compositive indicator of disturbance barro Terminalia belerica tree Combrataceae furniture beldar tree bhatayo Semicarpus anacardium tree Anacardeceae soft timber, plywood bhetwasl Fleminizza chhaper / herb Lagarstromia medicine & sal indicator bhont botdhan garo domsal/ khirro dumre galone hade bayer haldu / karma harro kalikath kalo siris khair kharam khursani khusre kodam kusum kyamun mahuro padke sal sigane simal sindure sisnu sisau / sisam tapre tatari unio Fleminizza macrophylle Clerodentron infortunatum shrub Lagerstrcmia parif lora tree Holarrhena antidyssentria tree Ficus glommesalo tree Lea robusto shrub Ziziphus incurba tree Adina cordifola tree Terminalia chebula tree Myrsine semiserrota tree Albizzia labbek tree Acacia catechu tree Holpptelea integrifolio tree Pittos nepalensis shrub Celebrookia oppoitifolia shrub Anthecepalus cadamba tree Schleichera trijuga tree Sygesiuzm cuminii tree fern Albizzia julisbrissia tree Shorea robusta tree shrub Bombax malabaricum tree Mallatos philippinensis tree Urtica dioica nettle Dalbergia sissoo tree Cassia tora shrub Dillenia pertagyna tree Adiantum philippinensis fern Verbernaceae Bcmbaceae Apoloryaceae Moraceae Leaceae Dilienaceae Singiberaceae Combrataceae Mysinaceae Leguminaceae Ulmaceae Solonacea Labiatae Rubiaceae Sapindaceae Myrtaceae Belechanaceae Leguminaceae Dipterorarpacaea Bcmbaceae Bixaceae Urticaceae Leguminaceae Dilienaceae Belechanaceae timber, fuelwood fuelwood, medicine fodder & fuelwood medicine fuel, fodder, fruit furniture furniture furniture, fodder & fuel timber, furniture beetlenut timber, fodder fuelwood, food, medicine & hedges medicine, gunpowder & charcoal furniture, fodder & fuel timber, fuelwood & best fodder timber, fodder, tanning & dyeing medicine furniture £ plywood 'king of timber' firewood timber for market industries firewood, dyeing (seed) medicine timber, furniture medicine medicine APPENDIX D. CONVERSION TABLES 189 Source: THDP/SATA. 1984. Market Survey of the Project Area in Dolakha District/ Sindhupalchowk District East of SunKosi. Kathmandu:THDP/SATA VOLUME: muti mana pathi muri liters muti 1 0.1 0.0125 mana 10 1 0.125 0.568 pathi 80 8 1 0.05 4.544 muri 1600 160 20 1 90.88 WEIGHT: pau dharni kg pau 1 0.0833 0.199 dharni 12 1 2.393 kg 5 1 LENGTH: 1 gaj = 91 cm CURRENCY: (Oct.1985) 1 Rupee = 0.07 $CDN VOLUME/ WEIGHT: kg/muri kg/pathi kg/mana paddy 49.90 2.5 0.311 rice 68.04 3.4 0.425 chura 36.29 1.8 0.226 wheat grain 68.04 3.4 0.425 wheat flour 44.44 2.2 0.277 buckwheat 54.43 2.7 0.340 maize grain 68.04 3.4 0.425 maize flour 48.54 2.4 0.303 millet 65.77 3.2 0.411 mustard seeds 65.70 2.8 0.354 potato 54.00 2.7 0.337 sugar 3.3 0.500 salt 3.0 0.500 daal 63.50 3.2 0.396 c h i l l i 16.00 0.8 0.100 VOLUME/AREA: (as modified by Burton, Oli et al) pathi/kata 1 sack potato = 80 kg muri/bigha kg/ha Q/bigha kg/ha paddy 1 74 mustard/ potato 1 150 maize 1 100 Q/kata wheat 1 100 mustard/ potato 1 3000 mustard 1 82 potato 1 74 bhari/B daal 1 94 compost/ wood 1 38 soybean 1 109 bhari/kata peanut 1 109 compost/ wood 1 750 o Auger" • Pit • Tilte of Survey foil tProfile * Sampled • for. Surveyor ••• Map Unit ISSP i i mill ram ins Dislrici / Village . -Location Case Map_ Local Climate Bedrock Type Parcel Material Vegetation: Stotey  Forest Type A. B._ A. Slope Up Elevation _ Dowb_ Date Land Region. LanJ S>slem Land Unit Land Type Air Pnoto Line/Run % Ouicmp_ Stoniness. Df niiity Aspect^  Relief Drainage: Surface _ Flooding / Ponding Occurence. Present Land Use / Cropping pattern Position on Slope Water Table Depth ( m ) April August Permeability irrigation Water Availability. £rosional Signs Macro-site Diagram , Micro site-Diagram Terrace Riser Hts> Slope _ Run Length Slope , ' Tentative Capability Class F n i x t Sitr. Onnli iv 1 9 1 APPENDIX F: INTERVIEW FORMS INTERVIEW SCHEDULE FOR PRADHAN PANCH Panchayat: Date: Name of Pradhan Panch: A. CLIMATE OF PANCHAYAT 1. Which months of the year is rainfall generally enough for crop production in this panchayat? 2. Is flooding or too much rain a problem in this area? 3. If yes, which months? 4. Which months in the winter did i t freeze at night last year? 5. Which months in the winter is there heavy fog in the morning? 6. Is hail a problem for the farmers in this area? 7. If yes, in which months has i t occurred during the last 5 years? 8. How much are the crop yields reduced by the hail? 8. MARKETS 9. What are the permanent market centers used by the farmers of this panchayat? name of the markets name of the villages distance from the panchayat building types of transport time in walking 10. Where are the temporary markets in this panchayat? name of the markets name of the villages distance from the panchayat building types of transport time in walking 11. What are the main items of transaction in the above markets (i.e. both the temporary and permanent markets)? commodities unit price 12. Where is the nearest inorganic fertilizer? 13. What types of inorganic fertilizer are available and what are the average prices farmers have to pay for it? 14. Is inorganic fertilizer always available to the farmers when they need it? explain.... 15. Do the farmers buy fertilizer from the black market? 16. If yes, when? what prices do farmers have to pay? 17. Where do the farmers generally purchase the following agricultural inputs? improved seed insecticides herbicides improved livestock breeds fruit trees 192 C. CREDIT 18. What are the most important sources for credit for the farmers in this panchayat? 19. Are loans provided from land reform savings? 20. If yes, how many farmers in this panchayat received loans from land reform savings during 1984? 21. Where is the nearest agricultural co-operative which provides loans to farmers? 22. How many farmers in this panchayat received loans from a co-operative in 1984? 23. Where is the nearest Agricultural Development Bank? 24. How many farmers in this village received loans from ADB in 1984? 25. Are credit facilities sufficient for improved farming? explain D.PRICES 26. Farm gate prices of agricultural commodities in 1984-85 (also to be asked of merchants and shopkeepers) Crops Varieties Max Rupees Month Min Rupees Month Average rice maize wheat mustard millet potato pulses sugarcane jute others 193 E. DESCRIPTION OF EACH WARD Panchayat: Ward No.: Ward Chairman's Name: GENERAL 1. Amount of upland in the ward? 2. Amount of lowland in the ward? 3. Amount of grazing land and amount of forest in the ward? 4. Number of households in the ward? 5. Number of households in the ward who do not farm? 6. Number of females over 14 years? 7. Number of males over 14 years? 8. Number of children less than 14 years? 9. What are the uumuuii ethnic groups in this ward? and number of households in each group? 10. What are the common religions in the ward and the number of households of each religion? 11. What are the common languages used in daily conversation by the farmers? and what is the number of households speaking each language? 12. How many men in this ward are soldiers? F. EDUCATION 13. What types of schools are in this ward? Primary Secondary High Adult (5-10yr) (ll-14yr) (15-16yr) (>16yr) nearest school name of village with school average time walking from ward to school number of people from this ward attending proportion of school age children attending 14. How many household heads in this ward are able to read and write? G. HEALTH 15. What types of health facilities are available in this ward? Health center Hospital Ayurvedic nearest medical care name of village with medical care hours walking from ward number of people from ward treated 1984 16. What are the sources of water for the following purposes? Source Walking time from home water for livestock water for washing water for drinking KEY INFORMANT INTERVIEWS Panchayat: Ward No: Farmer's Name: Date: Note: these interviews were conducted by informal methods; therefore not a l l topics were covered in every interview; & not a l l questions were asked exactly as presented here. A) Land Tenure 1. according to the Malaria office, there are households in this ward, do you think this is true? 2. i f no, how many are there? 3. how many households are there in each of the following farm size groupings? # of households farm size total >80% khet >80% pakho < 0.3 ha 0.3 - 1.0 ha > 1.0 ha B) Amount of Upland, Lowland, Irrigated Land 4. in this ward, according to the ward chairman, there are bighas of lowland, do you think this is true? 5. i f no, what is the amount? 6. how much of the lowland is irrigated and when? 7. what are the sources of irrigation water? 8. how much of the land that is irrigated during the whole year is relatively unfertile? 9. how much land that is rainfed or irrigated only in the rainy season is relatively unfertile? 10. according to the ward chairman there are bighas of upland in this ward, do you think this estimate is true? 11. i f no, what is the correct amount? 12. how many hectares of upland are infertile in this ward? C) Historical Land Use 13. do the farmers who possess more than one hectare of land practice cultivation differently than those farmers who possess less than one hectare? 14. i f yes, in what way does cultivation differ? 15. has there been any changes in the method of cultivation in the upland within the last 5 years? 16. i f yes, explain... 17. has there been any changes in the method of cultivation in the lowland within the last 5 years? 18. i f yes, explain... 195 D) Fuel 20. what are the main sources of fuel? 21. do the people of this ward collect their own needs of firewood or do they purchase it? 22. i f they collect, how much time does a family on the average, spend for cutting firewood or other materials for burning? who does the cutting? which months? or how many days per year? how many hours per day? E) Labor Problems 23. do the farmers practise exchange labor? explain... 24. do the farmers of this ward hire laborers on contract basis for working in their fields? 25. do the farmers of this ward hire villagers as laborers on a daily wage basis for working in their fields? what is the daily wage for men? for women? 26. do the farmers of this ward have problems in hiring labor during any timpg of the year? when? why? 27. how many farmers of this ward go to the Terai or India for one month or more for employment or marketing? 28. what other occupations do the farmers have besides farming? types of which no. of which av.days av. hrs work members households months per yr. per yr. 29. labor profiles (mandays/month) for each activity F) Livestock 30. bullock power profiles (bullockdays/month) 31. livestock numbers per household 32. what are the main food materials fed to the animals by the farmers of this ward and where are the animals fed? type of winter where fed summer where fed livestock feed hs fd pr feed hs fd pr cows (not milking) cows (milking) bullocks (not workg) bullocks (working) buffalo (not workg) buffalo (working) buffalo (milking) calves goats, sheep pigs chickens, ducks G) Fodder fi Compost 33. is i t difficult to get enough grass or fodder for cattle in this ward? 34. i f yes, why? 35. in which months do the farmers have the most difficulty in getting grass or fodder for cattle in this ward? why? 36. how many hours distance is the pasture area from this ward? 37. how many farmers of this ward dig pits for keeping compost? 38. how many farmers of this ward practice "scientific methods' of keeping compost? 39. generally, which method do the farmers of this ward practice for making compost? H) Cropping Profiles 40. what cropping rotations are practiced in this ward? premonsoon crop monsoon crop winter crop 1st cropping rotation earliest planting latest planting earliest harvesting latest harvesting 2nd cropping rotation earliest planting latest planting earliest harvesting latest harvesting 3rd cropping rotation earliest planting latest planting earliest harvesting latest harvesting I) Fallow Problems 41. what are the main reasons for keeping the upland fallow? 42. during the period of fallow, do the farmers who have fallowed upland spend most of their time cultivating on the other land? 43. i f they do, which crops are grown? 44. do the farmers face difficulties in farming their upland fields because they have to work in other fields? 45. which special work would the farmer and his family members who own fallow land be engaged in during the fallow period of this upland? 46. do the farmers mostly live far from the uplands which are left fallow? 47. are the upland fields used for grazing cattle? 48. i f those fallow upland fields are brought under cultivation, will i t be difficult to get fodder materials for cattle from other sources? 49. do the farmers of this ward feel they will cultivate the fallow uplands in future? explain... J) Crop Production 50. what are the main varieties of crops grown in this ward and how much was average yields grown from these main crops last year 1984-85? crop variety landtype yield/ha # of farmers rice wheat maize mustard soybean pulses potato 51. Use of crops crop aver.fertilzer use of crop selling price use of residue rice wheat maize mustard soybean pulses potato K) Trees 52. what are the types of fruit trees grown in this ward? types of trees improved local mango orange pear apple papaya banana lemon jack fruit guava pineapple lich i others 53. do any of the farmers in this ward grow fodder or fuelwood trees on their land? 54. i f yes, how many? 55. what types of trees do they grow? 56. where are their farms? L) General Problems 57. what are the major problems of the farmers of this ward for increasing agricultural production? 58. what are the reasons for decreases in yields in the last years? 59. what are the reasons for increases in yields in the last years? 60. what types of changes in varieties of crops would the farmers like to have? 61. what are the mjor handicaps (obstacles) for the development of agriculture in this ward? 62. what do you suggest for the agricultural development in this ward? 63. do the farmers of this ward produce enough food for their household use from their own fields or do they have to get some from other sources? 64. how many small farmers are there who cannot f u l f i l l the required food grains for household consumption? 65. how many farms generally produce grains in excess of what is required for the household? GENERAL FARMER INTERVIEWS A) Farm & Family Description Name of farmer: Interview date: Panchayat: Ward No: 1. how many members are there in your family? 2. how many children are there below 14 years? 3. how many females over 14 years old? 4. how many males over 14 years old? 5. how many members of your family have off-farm employment? 6. how many "katha' of cultivated land do you have? 7. how many separate plots does your farm consist of? 8. how much °khet' or bunded irrigated land do you have? •9. how much "pakho' or °bari' or rainfed land do you have? 10. how much land does your home and farmyard occupy? 11. is the production from your farm sufficient to feed your family? 12. i f not, how many months of the year do you have to buy food from the market? 13. what are the foods that you must buy from the market? 14. what are your sources of cooking fuel and how much of each does your family use in the different seasons? fuel type monsoon winter premonsoon kerosene crop residues cow dung sticks firewood from forest firewood from farm others B) Livestock Section 20. how many of each type of farm animals do you have? bull cow cow calf male buffalo female buffalo buffalo calf goats, sheep chickens, ducks others 21. of these how many are used for draught power? bull male buffalo 22. what products and how much per month do you get from these domesticated animals? milk (liters or "manas*) eggs (numbers) meat (kilograms) 23. are the products a l l for home consumption? 24. i f no, a) how much do you sell? b) how much do you exchange for other commodities? c) how much do you give to farm laborers? d) how much do you feed to the cattle? e) other uses? C) Cropping Rotations Section 30. which crops do you grow and in what order? how much of your land is in each cropping rotation? kathas: cropping rotations 01 rice fallow 02 rice wheat 03 rice mustard 04 rice lentils 05 maize rice 06 maize rice 07 maize millet 08 maize wheat 09 maize mustard 10 maize lentils 11 others 12 total wheat mustard 31. which of these crops did you irrigate? how much of each crop was irrigated and for how many months? crops: amt. land: months of i r r i g : 01 late maturing rice 02 late maturing maize 03 mustard 04 wheat 05 millet 06 early maturing rice 07 early maturing maize 08 lentils 09 potato 10 total 20 1 D. Crop Inputs and Yields 1st cropping rotation: Seasonal cycles: monsoon winter premonsoon Units of measure: amount area amount area amount area Inputs: 33. seed sources (pathi or muri): a) last year's crop b) neighbor's crop c) permanent market d) Agric. Inputs Corp. e) other 34. compost (bhari): a) piled b) pits c) other methods 35. chemical fertilizers (kg) a) urea b) complex c) muriate of potash d) lime e) ammonium sulphate 36. other inputs a) Output or Yields: 37. production (muris/bigha): a) average year b) poor year c) good year 38. use of seed (pathi): a) home consumption b) next years seed c) sold in market d) exchanged in market e) exchanged for labor f) damaged in storage g) other h) total 39. use of crop residue (bhari) a) animal feed b) fuel c) sold d) compost e) roof thatch f) other g) total 2 0 2 2nd cropping rotation: Seasonal cycles: monsoon winter premonsoon Units of measure: amount area amount area amount area Inputs: 43. seed sources (pathi or muri): a) last year's crop b) neighbor's crop c) permanent market d) Agric. Inputs Corp. e) other 44. compost (bhari): a) piled b) pits c) other methods 45. chemical fertilizers (kg) a) urea b) complex c) muriate of potash d) lime e) ammonium sulphate 46. other inputs a) Output or Yields: 47. crop production (muris/bigha): a) average year b) poor year c) good year 48. use of seed (pathi): a) home consumption b) next years seed c) sold in market d) exchanged in market e) exchanged for labor f) damaged in storage g) other h) total 49. use of crop residue (bhari) a) animal feed b) fuel c) sold d) compost e) roof thatch f) other g) total 203 APPENDIX G. SOUS DATA SETS 1-6 SOILS DATA SET 1: VARIABILITY SUBSTUDY page 1 11 soil properties 10 samples per plot 1 plot per land use type 7 land use types SPSS LU Plot#/ pH excBases & CEC in meq/lOOg soi Base Case# Code Sample H20 CaCl2 orgC% totN% extP excCa excMg excK excNa CEC Satn 8 2.50 1.21 0.98 0.01 15.97 29.4 21 8.42 2.55 0.96 0.01 20.61 57.9 18 8.86 2.55 1.17 0.01 20.65 61.0 9 4.68 2.04 0.70 0.03 17.13 43.4 8 3.93 1.62 0.61 0.01 17.29 35.7 11 4.99 2.04 0.95 0.00 18.86 42.3 10 4.99 1.83 0.42 0.01 21.31 34.0 11 2.56 1.42 0.98 0.01 17.09 29.0 7 3.56 1.42 1.70 0.01 15.68 42.6 7 3.93 1.83 0.82 0.00 16.36 40.2 1 1.56 0.80 0.49 0.01 14.36 19.9 4 7.99 1.83 0.58 0.01 17.22 60.4 1 5.30 1.21 0.53 0.01 16.47 42.9 3 3.31 1.52 0.87 0.01 15.38 37.1 2 2.93 1.11 1.11 0.01 11.98 43.1 2 3.18 1.62 0.43 0.01 16.00 32.8 2 2.50 1.01 0.82 0.01 15.97 27.1 1 4.49 1.32 0.28 0.01 19.11 31.9 4 5.55 1.42 0.16 0.01 16.25 43.9 2 5.24 1.21 0.55 0.01 16.04 43.7 25 5.55 1.01 1.60 0.01 8.64 94.6 18 4.74 0.90 1.74 0.00 9.18 80.6 28 4.99 1.01 0.22 0.01 8.82 70.7 32 5.43 1.01 0.47 0.01 9.18 75.3 31 6.30 1.01 0.29 0.01 9.36 81.3 24 6.36 1.01 0.13 0.01 9.36 80.2 22 6.18 1.11 0.79 0.02 9.36 86.4 13 5.43 1.01 0.22 0.01 9.00 74.1 25 5.68 0.90 0.31 0.01 7.22 95.7 28 5.93 1.01 0.45 0.01 8.47 87.4 14 5.37 1.42 0.00 0.01 10.61 63.7 18 5.49 1.42 0.00 0.01 10.07 68.6 22 6.55 1.83 1.29 0.01 11.91 81.3 35 4.93 1.32 0.14 0.02 11.89 53.9 22 6.61 1.83 0.12 0.01 11.89 72.1 13 6.55 1.62 0.15 0.01 11.89 70.0 14 6.30 1.62 0.15 0.01 10.82 74.7 18 6.55 1.62 0.02 0.01 10.98 74.7 11 7.68 2.04 0.06 0.01 11.86 82.5 28 6.49 1.73 0.79 0.06 10.63 85.3 1 1 76.00 5.6 4.5 1.762 0.149 2 1 76.01 6.2 5.5 2.658 0.204 3 1 76.02 6.2 5.5 2.498 0.189 4 1 76.03 5.8 5.0 2.090 0.161 5 1 76.04 5.6 4.8 2.213 0.166 6 1 76.05 5.8 5.0 1.908 0.156 7 1 76.06 5.6 4.8 2.757 0.194 8 1 76.07 5.6 4.6 2.765 0.158 9 1 76.08 5.6 4.7 2.086 0.161 10 1 76.09 5.7 4.8 2.122 0.177 11 2 88.00 5.5 4.5 1.516 0.156 12 2 88.01 6.1 5.2 2.281 0.143 13 2 88.02 5.9 5.0 1.880 0.140 14 2 88.03 5.6 4.6 1.845 0.109 15 2 88.04 5.8 4.8 1.543 0.141 16 2 88.05 5.8 4.8 1.718 0.130 17 2 88.06 5.7 4.5 1.793 0.140 18 2 88.07 5.8 4.8 1.749 0.144 19 2 88.08 5.9 5.1 2.289 0.152 20 2 88.09 6.1 5.0 2.031 0.140 21 3 24.00 5.9 5.0 1.529 0.111 22 3 24.01 5.7 4.9 1.557 0.258 23 3 24.02 5.8 5.0 1.549 0.118 24 3 24.03 5.9 5.1 1.545 0.287 25 3 24.04 5.9 5.3 1.653 0.112 26 3 24.05 5.9 5.2 1.533 0.115 27 3 24.06 5.9 5.2 1.621 0.121 28 3 24.07 5.9 5.1 1.556 0.110 29 3 24.08 5.9 5.1 1.456 0.106 30 3 24.09 6.1 5.2 1.495 0.110 31 4 41.00 6.0 5.4 1.532 0.145 32 4 41.01 6.1 5.5 1.674 0.135 33 4 41.02 6.1 5.7 1.675 0.148 34 4 41.03 5.9 5.5 1.529 0.162 35 4 41.04 6.2 5.6 1.532 0.139 36 4 41.05 6.1 5.5 1.502 0.141 37 4 41.06 6.1 5.5 1.630 0.137 38 4 41.07 6.2 5.6 1.638 0.135 39 4 41.08 6.5 5.9 1.684 0.136 40 4 41.09 5.9 5.2 1.653 0.146 SOILS DATA SET 1: VARIABILITY SUBSTUDY page 2 SPSS LU Plot*/ pH excBases & CEC in meq/lOOg soi Base Case# Code Sample H20 CaC12 orgC% totN% extP excCa excMg excK excNa CEC Satn 41 5 49.00 7.1 6.8 1.564 0.135 42 5 49.01 7.2 7.0 1.703 0.145 43 5 49.02 7.1 6.9 1.812 0.142 44 5 49.03 7.1 6.9 1.715 0.145 45 5 49.04 7.2 7.0 1.696 0.136 46 5 49.05 7.1 6.9 1.819 0.036 47 5 49.06 7.0 6.8 1.717 0.141 48 5 49.07 7.3 7.0 1.593 0.130 49 5 49.08 7.0 6.9 1.633 0.136 50 5 49.09 6.9 6.7 1.824 0.144 51 7 50.00 5.8 5.0 1.590 0.119 52 7 50.01 6.1 5.5 1.593 0.122 53 7 50.02 6.0 5.5 1.602 0.122 54 7 50.03 5.9 5.4 1.481 0.115 55 7 50.04 5.8 5.1 1.549 0.120 56 7 50.05 6.0 5.2 1.594 0.119 57 7 50.06 6.0 5.3 1.592 0.124 58 7 50.07 6.0 5.3 1.560 0.120 59 7 50.08 5.9 5.0 1.636 0.125 60 7 50.09 6.0 5.2 1.596 0.120 61 13 90.00 6.3 5.8 1.536 0.108 62 13 90.01 6.5 5.9 1.368 0.100 63 13 90.02 6.6 6.2 1.265 0.087 64 13 90.03 6.5 5.9 0.428 0.091 65 13 90.05 6.5 6.2 1.240 0.094 66 13 90.06 6.5 6.1 1.329 0.107 67 13 90.07 6.6 6.3 1.178 0.092 68 13 90.08 6.5 6.1 1.186 0.085 69 13 90.09 6.5 6.0 1.534 0.125 8 9.42 2.96 0.03 0.02 10.43 119.1 7 10.48 2.86 0.06 0.02 11.14 120.5 11 9.67 3.17 0.15 0.02 11.50 113.1 6 11.67 3.68 0.15 0.02 11.50 134.9 9 10.30 2.55 0.03 0.02 12.54 102.8 9 9.61 2.55 0.03 0.02 12.18 100.2 7 9.48 3.06 0.05 0.02 11.64 108.3 10 9.55 2.24 0.00 0.02 9.54 123.8 11 10.23 2.86 0.01 0.02 11.47 114.4 8 7.99 2.55 0.05 0.02 11.47 92.5 16 5.12 1.21 0.29 0.01 8.64 76.7 21 6.61 1.62 0.34 0.01 12.04 71.3 20 5.49 1.32 0.15 0.01 12.07 57.7 21 5.80 1.52 0.22 0.01 12.43 60.8 13 5.18 1.42 0.38 0.01 8.36 83.7 14 5.37 1.52 1.10 0.01 11.75 68.1 22 5.93 1.32 0.45 0.01 12.41 62.1 17 5.74 1.52 0.47 0.01 12.57 61.6 18 5.12 1.21 0.22 0.01 11.86 55.3 14 5.68 1.42 0.31 0.01 11.68 63.5 40 4.12 0.60 0.26 0.02 12.93 38.6 33 3.31 0.90 0.33 0.00 7.93 57.2 46 4.31 0.80 0.35 0.00 7.22 75.6 33 2.93 0.60 0.44 0.01 6.50 61.2 27 3.81 0.90 0.32 0.00 7.22 69.7 54 4.31 0.90 0.56 0.00 7.93 72.7 40 4.18 0.80 0.45 0.00 7.04 77.2 26 3.00 0.60 0.40 0.01 6.50 61.6 33 4.74 0.90 0.40 0.01 9.36 64.7 DATA SET 2: VARIABILITY SUBSTUDY 19 soil properties 1 plot per land use type 3 samples per plot 7 land use types SPSS Case# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 LU Plotff/ Group Sample 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 7 7 7 13 13 13 76.03 76.05 76.09 88.03 88.05 88.09 24.03 24.05 24.09 41.03 41.05 41.09 49.03 49.05 49.09 50.03 50.05 50.09 90.03 90.05 90.09 DCB Fe %Fe 1.19 1.15 1.19 1.17 1.21 1.21 1.13 1.11 1.89 1.28 1.29 2.29 1.04 0.52 1.40 1.34 1.19 1.04 0.91 0.48 0.89 S Al %A1 0.30 0.30 0.31 0.34 0.35 0.34 0.13 0.13 0.22 0.15 0.16 0.27 0.19 0.10 0.19 0.18 0.16 0.19 0.38 0.21 0.32 KCl %exAl 0.10 0.07 0.66 0.18 0.51 0.37 0.00 0.01 0.00 0.00 0.01 0.01 0.02 0.01 0.00 0.02 0.02 0.02 0.02 0.02 0.02 Water Storage CapaHDens l/3barl5bar 30.4 14.7 30.8 33.4 31.2 28.6 30.8 26.4 25.9 28.0 37.5 38.6 28.5 37.8 37.2 37.4 25.9 26.1 26.8 14.3 16.0 19.4 15.1 15.0 14.5 13.9 14.6 6.0 6.0 6.1 8.3 8.4 8.5 9.7 8.7 9.6 9.7 10.2 9.9 4.2 9.0 5.5 WHC 15.7 15.7 18.3 16.6 14.6 16.3 20.4 19.9 21.8 29.3 30.2 20.0 28.2 28.5 27.8 16.1 15.9 16.9 10.2 7.0 14.0 g/cm3 1.13 1.23 1.23 1.35 1.39 1.55 1.16 1.08 1.09 0.82 0.84 1.06 1.03 0.85 1.03 0.96 1.04 0.92 1.22 1.11 1.21 Compac kg/cm2 2.3 2.0 1.7 4.3 3.7 4.9 0.8 0.4 0.2 0.1 0.1 0.1 0.3 0.2 0.2 0.3 0.2 0.1 0.0 0.0 0.0 H20 CaC12 5.8 5.0 exBases & CEC in meq/lOOg soil Base 5.8 5.7 5.6 5.8 6.1 5.9 5.9 6.1 5.9 6.1 5.9 7.1 7.1 6.9 5.9 6.0 6.0 6.5 6.5 6.5 5.0 4.8 4.6 4.8 5.0 5.1 5.2 5.2 5.5 5.5 5.2 6.9 6.9 6.7 5.4 5.2 5.2 5.9 6.2 6.0 orgC% 2.090 1.908 2.122 1.845 1.718 2.031 1.545 1.533 1.495 1.529 1.502 1.653 1.715 1.819 1.824 1.481 1.594 1.596 0.428 1.240 1.534 %N 0.161 0.156 0.177 0.109 0.130 0.140 0.287 0.115 0.110 0.162 0.141 0.146 0.145 0.036 0.144 0.115 0.119 0.120 0.091 0.094 0.125 ppmP 9 11 7 3 2 2 32 24 28 35 13 28 6 9 8 21 14 14 33 27 33 Ca 4.68 4.99 3.93 3.31 3.18 5.24 5.43 6.36 5.93 4.93 6.55 6.49 11.67 9.61 7.99 5.80 5.37 5.68 2.93 3.81 4.74 Mg 2.04 2.04 1.83 1.52 1.62 1.21 1.01 1.01 1.01 1.32 1.62 1.73 3.68 2.55 2.55 1.52 1.52 1.42 0.60 0.90 0.90 K 0.70 0.95 0.82 0.87 0.43 0.55 0.47 0.13 0.45 0.14 0.15 0.79 0.15 0.03 0.05 0.22 1.10 0.31 0.44 0.32 0.40 Na 0.03 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.06 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.00 0.01 CEC 17.13 18.86 16.36 15.38 16.00 16.04 9.18 9.36 8.47 11.89 11.89 10.63 11.50 12.18 11.47 12.43 11.75 11.68 6.50 7.22 9.36 Satn 43.4 42.3 40.2 37.1 32.8 43.7 75.3 80.2 87.4 53.9 70.0 85.3 134.9 100.2 92.5 60.8 68.1 63.5 61.2 69.7 64.7 O DATA SET 3: SPSS LO Case* Code 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 3 22 3 23 3 24 3 25 3 26 3 27 3 23 3 29 3 30 4 31 4 4 33 4 34 A 25 4 36 4 37 4 33 4 39 4 40 5 41 5 42 5 43 5 44 5 45 5 46 5 47 5 48 5 49 5 50 5 PRESENT LAND USES 11-13 soil properties 10 plots per land use 1 sample per plot 5 land use types A Horizon Sample FH # H20 CaCl2 72.a 6.6 6.4 73.a 6.6 6.3 75.a 5.7 5.0 76.a 5.8 4.9 77.a 6.8 5.0 78.a 6.5 6.1 79.a 6.1 5.6 81.a 6.3 5.8 84.a 5.5 4.6 06.a 6.8 4.9 74.a 5.8 4.7 80.a 6.5 6.1 82.a 5.5 4.6 83.a 5.5 4.5 85.a 6.0 5.3 86.a 5.5 4.6 87.a 5.9 4.9 88.a 5.8 4.8 89.a 5.6 4.7 15.a 5.8 5.0 16.a 6.1 5.3 17.a 6.7 6.1 13.a 6.2 5.5 19.a 6.6 6.3 20.a 5.8 6.4 22.a 5.8 5.2 24.a 5.9 5.1 25.a 5.8 5.3 38.a 6.9 6.7 31 .a 6.2 6.0 32.a 6.0 5.8 32.a 6.0 5.6 34.a 5.9 5.4 35.a 5.8 5.4 36.a 5.6 5.2 37.a 5.8 5.4 41.a 6.1 5.5 42.a 6.1 5.7 43.a 6.7 6.5 44.a 6.3 5.9 46.a 5.9 5.2 49.a 7.1 6.9 61.a 6.5 6.1 62.a 6.3 6.2 64.a 6.6 6.3 65.a 6.9 6.5 66.a 6.3 5.9 67.a 6.4 6.1 70.a 6.5 6.1 71.a 7.1 6.8 Nutrients orgC% %N 1.641 0.156 1.920 0.136 2.225 0.165 2.286 0.172 2.110 0.158 1.439 0.114 1.766 0.125 1.953 0.151 2.350 0.166 2.383 0.164 1.987 0.128 1.643 0.136 1.486 0.121 1.536 0.137 2.232 0.184 1.937 0.138 2.263 0.156 1.864 0.139 2.310 0.175 1.691 0.13 1.466 0.117 1.249 0.104 1.395 0.105 1.656 0.128 1.814 0.146 1.645 0.121 1.549 0.145 1.570 0.122 1.148 0.123 1.657 0.133 1.657 0.123 1.567 C.127 1.783 0.100 1.669 0.114 2.011 0.129 1.498 0.111 1.605 0.142 1.510 0.115 1.178 0.143 1.637 0.115 1.881 0.138 1.708 0.129 1.908 0.139 1.908 0.145 1.318 0.145 1.656 0.128 1.722 0.120 1.533 0.117 1.889 0.126 1.470 0.112 exBases & CEC in meq/lOOg soil Base ppmP Ca meqMg meqK meq Na megCECtneq Sat% 16 6.36 1.62 0.02 0.00 11.73 68.3 58 8.92 2.45 0.13 0.00 12.59 91.4 85 5.87 1.87 0.39 0.00 15.22 53.4 11 4.84 1.85 0.93 0.01 18.09 41.6 40 4.62 1.73 0.45 0.00 19.00 35.8 40 7.74 1.71 0.42 0.00 10.07 98.0 40 7.55 1.60 0.15 0.00 14.09 66.1 48 9.55 2.24 0.40 0.00 13.84 88.1 23 3.18 1.19 0.59 0.01 17.34 28.7 79 4.12 1.03 0.15 0.02 16.13 33.0 59 3.37 1.30 0.26 0.00 15.23 32.4 66 6.80 1.38 0.18 0.01 12.25 68.3 9 1.24 0.86 0.69 0.01 18.74 14.9 3 2.53 1.27 0.00 0.01 21.56 17.7 IS 8.80 1.54 0.27 0.00 14.50 73.2 71 2.81 0.99 0.19 0.01 17.32 23.0 6 3.43 1.85 0.56 0.00 23.11 25.3 2 4.21 1.31 0.58 0.01 15.88 38.3 35 3.24 1.21 C.25 0.01 21.70 21.7 94 4.80 1.27 0.21 0.01 10.97 57.4 37 6.30 1.09 0.05 0.01 9.00 82.8 56 5.62 1.58 0.08 0.01 7.04 103.6 101 4.24 0.97 0.03 0.01 9.18 57.1 163 10.48 1.15 0.14 0.01 10.41 113.2 82 8.42 2.24 0.30 0.02 11.82 92.9 62 4.68 0.86 0.03 0.01 10.41 53.6 25 5.66 1.00 0.62 0.01 8.86 82.6 109 5.49 0.97 0.10 0.01 10.93 60.1 101 6.86 1.19 0.05 0.00 6.75 120.1 141 6.36 1.40 0.10 0.01 10.66 73.8 140 5.80 1.03 0.06 0.01 10.31 57.0 143 4.68 0.82 0.04 0.01 10.48 53.0 172 6.24 1.13 0.18 0.01 11.00 68.7 166 6.93 0.99 0.38 0.01 11.52 72.1 166 5„43 1.13 0.20 0.01 12.06 56.1 108 5.55 0.93 0.12 0.01 9.22 71.3 20 6.25 1.64 0.27 0.02 11.26 72.7 88 5.24 1.09 0.16 0.01 9.20 70.7 173 5.12 1.50 0.15 0.01 7.79 87.0 60 5.05 1.62 0.05 0.02 9.89 68.2 72 5.37 1.15 C.13 0.02 11.98 55.7 8 9.84 2.35 0.06 0.02 11.34 113.0 139 7.11 1.32 0.12 0.01 13.23 64.7 67 6.43 1.83 0.33 0.02 11.47 75.0 65 7.18 2.04 0.06 0.02 11.63 79.9 81 9.11 2.76 0.26 0.02 13.09 92.7 71 5.37 1.73 0.01 0.01 10.39 68.5 62 6.05 1.93 0.01 0.02 10.20 78.5 73 7.36 1.83 0.04 0.01 11.61 79.7 150 9.67 1.54 0.03 0.01 11.04 101.9 BDens g/cm3 1.22 1.31 1.23 1.20 1.17 1.35 1.32 1.37 1.34 1.43 1.37 1.27 1.28 1.29 1.32 1.28 1.29 1.43 1.36 1.12 1.05 1.19 1.17 1.14 1.06 1.08 1.11 1.01 0.95 1.04 1.06 1.07 0.95 1.05 1.06 1.22 0.91 0.89 1.01 1.31 0.98 0.97 1.12 1.07 0.88 1.10 1.13 1.06 1.20 1.16 E OompacSample kg/cm2 # 1.7 72.b 1.8 73.b 1.4 75.b 2.0 76.b 1.1 77.b 1.3 78.b 2.3 79.b 1.6 81.b 4.3 84.b 4.4 06,b 4.4 74.b 3.7 BO.b 4.7 82.b 3.9 83.b 4.1 85.b 4.1 86.b 4.4 87.b 4.3 88.b 4.4 89.b 0.2 15.b 0.4 16.b 0.6 17.b 0.2 18.b 0.3 19.b 0.3 20.b 0.3 22.b 0.5 24.b 0.5 25.b 0.0 38.b 0.1 31.b 0.2 32.b 0.2 33.b 0.1 34.b 0.1 35.b 0.2 36.b C.2 37.b 0.1 41.b 0.2 42.b 0.1 43.b 0.7 44.b 0.3 46.b 0.3 49.b 0.5 61.b 0.3 62.b 0.4 64.b 1.6 65.b 0.5 66.b 1.6 67.b 1.2 70.b 0.6 71.b Horizon H20 CaC12 6.6 6.0 7.4 5.6 5.6 5.7 6.8 6.0 6.7 5.6 5.9 5.9 6.5 5.9 5.8 6.3 5.9 5.5 5.7 5.6 7.1 6.9 7.1 6.6 6.6 6.5 6.1 6.4 6.0 7.1 6.5 6.4 6.1 5.9 6.2 5.9 6.4 6.4 5.6 6.9 6.4 6.6 7.1 6.3 6.7 6.8 7.1 6.8 6.7 6.8 7.1 7.1 4.5 4.2 4.4 6.1 5.2 5.9 4.3 4.6 4.6 5.8 4.3 4.6 5.2 4.4 4.4 4.3 4.3 5.3 5.7 6.6 6.1 6.1 6.0 5.5 5.3 5.7 6.8 6.2 .6.0 5.6 5.5 5.9 5.4 5.6 5.9 4.9 6.7 6.0 6.2 6.6 6.2 6.4 6.4 6.9 6.4 6.4 6.2 6.6 Nutrients orgC% totN% 0.998 0.080 0.826 0.068 0.992 0.091 1.144 0.066 1.432 0.101 0.913 0.080 0.862 0.068 0.764 0.056 1.483 0.111 1.049 0.090 0.973 0.085 0.390 0.038 0.592 0.078 0.642 0.085 0.610 0.076 0.919 0.078 1.211 0.108 0.784 0.084 1.142 0.083 C.731 0.079 0.709 0.071 1.055 0.071 0.887 0.078 0.604 0.076 0.709 0.084 0.607 0.090 0.935 0.124 1.168 0.090 1.267 0.119 1.350 0.106 1.359 0.100 1.291 0.131 1.613 0.115 1.708 C.106 1.450 0.107 0.862 0.142 1.668 0.082 0.671 0.092 1.168 0.100 0.755 0.075 1.651 0.076 1.428 0.122 1.490 0.109 0.810 0.075 1.411 0.110 1.411 0.101 0.666 0.062 1.236 0.108 0.953 0.076 0.674 0.075 2 0 6 C Horizon exBases & CEC in meq/lOOg soil Base Sample pH ppriP 37 69 29 32 34 59 40 4 21 51 50 42 1 11 20 8 8 39 44 30 14 40 28 39 29 16 57 28 37 58 109 80 133 92 40 145 43 163 48 35 64 80 34 33 92 36 51 29 27 20 Ca 5.93 6.05 1.30 0.81 1.50 6.68 4.80 5.37 1.37 1.04 0.91 3.31 0.35 2.33 3.18 0.61 0.67 0.81 0.85 2.25 3.56 6.30 4.18 2.37 2.06 1.62 3.43 4.31 6.74 5.74 4.18 4.37' 3.68 5.55 3.06 3.68 6.49 2.43 5.80 3.18 8.80 7.05 7.55 3.31 6.05 8.42 2.81 5.05 3.06 4.31 Mg 0.97 2.65 6.64 6.29 0.72 i.67 1.40 1.34 6.68 0.47 0.49 0.84 6.28 1.03 1.11 0.31 0.70 0.27 0.80 0,78 0.66 1.67 0.78 0.68 6.62 0.47 0.49 0.68 1.73 1.27 0.64 0.80 0.64 0.53 0.64 0.47 1.64 0.64 1.79 1.03 2.24 2.34 2.42 1.07 1.83 2.55 1.01 1.67 0.68 1.36 K 0.05 0.04 0.30 0.28 0.18 0.15 0.06 0.00 0.03 0.25 0.33 0.00 0.34 0.24 0.07 0.15 0.22 0.23 0.15 0.10 0.21 1.62 0.29 0.30 0.25 0.01 0.00 0.35 0.22 0.08 0.00 0.19 0.06 0.17 0.06 0.00 0.12 0.08 0.69 0.08 0.26 0.15 0.38 0.02 0.04 0.09 0.01 0.05 0.00 0.00 Na CEC Sat% # 0.00 7.80 89.0 -1 0.00 6.43 136.1 73.C 0.00 16.85 13.5 -1 Nutrients H20 CaC12 orgC% totN% ppaP exBases & CEC in maq/lOOg soil Base 0.00 13.82 0.01 14.38 0.00 8.70 0.00 9.77 0.00 8.38 0.01 15.81 0.01 10.95 0.00 17.48 10.0 76.C 16.7 -1 97.7 78.C 64.2 -1 80.0 81.C 13.2 -1 •16.1 -1 10.3 74.C 0.00 2.34 177.4 -1 0.01 17.02 0.01 21.78 0.01 7.36 0.01 17.29 0.02 17.22 0.01 13.79 0.00 29.27 0.01 6.47 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.02 10.13 0.02 9.77 0.01 8.34 0.01 9.75 0.00 11.52 0.01 9.02 0.01 0.01 0.01 0.01 0.01 5.9 82.C 17.2 -1 59.4 -1 6.2 86.C 9.4 -1 9.6 88.C 6.2 89.c 48.5 15.C 77.1 -1 8.59 111.8 17.C 7.32 71.9 18.c 57.1 19.C 51.6 20.C 39.9 22.C 55.7 24.C 64.4 25.C 8.30 104.6 38.C 70.3 -1 49.5 32.c 64.4 -1 44.9 34.C 54.4 35.c 41.7 -1 63.7 -1 85.3 41.c 62.4 42.c 92.4 -1 70.2 44.c 96.3 46.c 5.75 6.77 5.70 5.32 7.07 8.30 6.54 9.70 5.07 8.97 6.13 6 0.01 11.75 0.02 11.63 82.2 49.c 0.02 11.23 83.4 -1 0. 0. 01 5.36 01 10.11 0.01 11.75 0.01 4.48 91.5 62.c 78.4 64.c 94.2 -1 85.6 66.C 0.01 10.25 66.2 -1 0.00 7.54 49.6 70.C 0.01 10.43 54.3 -1 -1 7.1 -1 5.9 -1 6.9 -1 6.5 -1 -1 5.9 -1 6.0 -1 -1 6.1 -1 5.7 5.7 5.6 -1 6.7 6.1 6.1 6.0 6.1 6.5 6.3 7.4 -1 6.6 -1 5.9 7.4 -1 -1 .9 .6 -1 6.6 6.7 6.9 -1 -1 -1 -1 -1 -1 -1 -1 6. 6. -1 -1 -1 6.3 1.052 0.073 -1 -1 -1 4.5 0.448 0.060 -1 -1 -1 6.0 0.393 0.054 -1 -1 -1 5.7 0.421 0.038 -1 -1 -1 -1 -1 -1 4.8 0.354 0.048 -1 -1 -1 4.6 0.195 0.050 -1 -1 -1 -1 -1 -1 4.6 0.194 0.042 -1 -1 -1 4.4 0.316 0.051 4.3 0.577 0.066 4.6 0.690 -1 -1 -1 -1 5.9 0.414 0.052 4.8 0.187 0.044 5.8 0.205 0.039 5.4 0.729 0.070 5.4 0.299 0.047 5.7 0.108 0.027 5.5 0.362 0.047 6.3 0.341 0.045 -1 -1 -1 6.0 0.246 0.044 -1 -1 -1 5.2 0.449 0.063 6.4 0.666 0.072 -1 -1 -1 -1 -1 -1 6.1 0.369 0.057 6.0 0.559 0.066 -1 -1 -1 5.8 0.479 0.063 6.1 0.544 0.065 6.0 0.318 0.056 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 n Ca Mg K -1 -1 - -1 -1 10 6.12 2.24 0.20 -1 -1 -1 -1 18 1.56 0.51 0.26 -1 -1 -1 -1 16 2.68 1.52 0.21 -1 -1 -1 -1 44 1.37 0.88 0.37 -1 -1 -1 -1 -1 -1 -1 -1 33 1.44 0.60 0.22 -1 -1 -1 -1 35 0.10 0.05 0.04 -1 -1 -1 -1 -1 -1 -1 -1 3 0.95 0.37 0.29 -1 -1 -1 -1 6 0.72 0.39 0.34 2 0.22 0.04 0.34 38 1.56 0.84 0.20 -1 -1 -1 -1 18 3.12 0.76 0.20 0 4.12 2.34 0.25 0 1.68 0.64 0.22 40 1.37 0.62 0.10 19 1.31 0.58 0.24 14 1.31 0.41 0.04 21 1.44 0.37 0.07 18 4.68 1.93 0.17 -1 -1 -1 4 1.68 0.62 0.20 -1 -1 -1 -1 23 1.31 0.35 0.13 27 4.99 0.19 0.32 -1 -1 -1 -1 -1 -1 -1 -1 30 2.37 1.09 0.33 21 2.31 0.86 0.12 -1 -1 -1 -1 19 2.93 1.15 1.16 29 2.68 1.30 1.44 0 2.81 2.04 0.22 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 Na CEC Sat% -1 .;. -I. - • -1 0.00 8.97 95.5 -1 -1 -1 0.01 12.50 18.7 -1 -1 -1 0.00 5.00 88.4 -1 -1 -1-0.02 16.91 15.7 -1 -1 -1 -1 -1 -1 0.01 8.43 26.8 -1 -1 -1 0.00 4.01 4.9 -1 -1. - i _ -1 -1 -1 0.01 15.27 10.6 -1 -1 -.1 0.01 8.50 17.2 0.00 1.38 44.1 C.02 7.02 37.3 -1 -1 0.03 3.82 107.4 0.01 3.43 195.9 0.01 2.70 94.6 0.02 3.55 59.1 0.05 7.50 28.9 0.01 2.57 68.9 0.01 3.46 54.4 0.01 6.45 105.2 -1 -X -1 0.02 3.09 81.5 -1 -1 -1 0.01 6.29 28.7 0.01 5.91 93.1 -1 -1 -1 -1 -1 -1 0.01 5.02 75.6 0.01 5.54 59.5 -1 -1 -1 0.01 6.95 75.6 0.01 6.93 78.3 0.02 8.32 61.0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 —1 -1 -1 DATA SET 4: LAND USE SUBSTUDY 9 soil properties 1 sample per plot 3-4 plots per land use 5 land use types 2 0 7 SPSS-Case* 1 2 3 4 5 9 10 11 t n 13 14 15 16 17 18 19 20 LU Plot Code # 1 73.a 1 76.a 1 81.a' 2 84.a 2 74.a 2 32.a 2 86.a 2 88.a 3 15.a 3 1; .a 3 20.a 3 24.a 4 32.a 4 34.a 4 41.a 4 42.a 5 44.a 5 46.a 5 49.a 5 64.a A Horizon Fe 5 A% DCBFe DCBAl 1.21 1.18 1.32 1.21 1.59 3.21 2.26 1.20 1.23 1.96 1.86 1.38 2.16 1.99 1.62 2.03 2.11 2.09 0.99 2.24 0.16 0.30 0.20 0.32 0.41 0.75 0.60 0.34 0.18 0.15 0.21 0.16 0.25 0.23 0.19 0.22 0.23 0.33 0.16 C.24 KC1A1 0.02 0.28 0.01 0.98 0.38 2.48 1.01 0.35 0.03 0.02 0.01 0.00 0.00 0.03 0.01 0.02 0.00 0.05 0.01 0.01 WHC l/3barl5bar 23.0 7.5 31.5 28.8 33.6 30.2 33.8 31.4 30.2 33.5 .33.5 32.0 26.8 31.3 30.9 34.9 31.3 32.4 35.9 37.5 39.5 14.9 8.7 13.7 10.6 17.5 13.0 14.3 9.3 5.9 7.4 6.0 7.1 6.7 8.4 6.3 6.6 9.2 9.3 8.9 WHC 15.5 16.6 20.0 19.9 19.6 16.3 13.4 15.9 24.1 27.6 24.7 20.8 24.2 24.2 25.5 24.4 25.8 26.7 28.2 30.6 Particle Size %Silt %Clay %Sand Text 40.59 11.75 47.67 L 58.16 32.90 8.95 SiCL 57.09 16.00 26.91 SiL 53.78 29.38 16.83 SiCL 56.81 18.05 25.14 SiL 46.37 43.77 9.86 SiC 54.67 24.79 20.55 SiL 53.35 34.12 12.53 SiCL 66.67 21.07 12.26 SiL 53.78 11.56 34.57 SiL -1 -1 -1 -1 50.36 12.23 37.41 SiL 53.49 16.04 25.47 SiL 59.88 14.72 25.40 SiL 66.26 19.66 14.03 SiL 56.32 12.15 31.53 SiL B Horxzon Fe S A% DCBFe DCBAl 1.14 0.14 20.30 14.92 SiL 21.22 13.89 SiL 16.66 19.61 SiL 2.21 -1 1.41 1.94 1.04 0.62 0.68 2.06 2.27 -1 2.07 1.99 1.97 2.15 2.16 2.31 2.21 2.51 2.61 0.57 -1 0.34 0.52 0.22 0.17 0.21 0.27 0.19 -1 0.23 0.23 0.26 0.29 0.22 0.25 0.36 0.38 0.26 WHC Particle Size KC1A1 l/3barl5bar WHC %Silt %Clay %S<ind Text 0.00 23.5 5.4 18.1 42.50 8.30 49.20 L 1.80 31.2 14.8 16.4 56.09 33.45 8.46 SiCL -1 -1 -1 -1 -1 -1 -1 -1 2.18 36.5 -1 -1 51.77 33.63 14.60 SiCL 1.50 29.7 13.0 16.7 47.86 27.60 24.54 CL 2.76 31.2 21.1 10.1 45.55 47.27 7.17 SiC 1.83 28.2 12.3 16.0 46.69 2S.36 24.95 CL 2.49 29.8 17.9 11.9 48.23 43.49 8.29 SiC 0.04 34.4 7.3 27.0 72.18 16.48 11.35 SiL 0.03 33.5 6.3 27.2 63.26 14.32 22.41 SiL -1 -1 -1 -1 -1 -1 -1 -1 0.03 22.7 5.8 16.9 49.90 12.67 37.43 L 0.00 31.2 9.1 22.0 55.97 16.24 26.79 SiL 0.00 31.9 7.1 24.S 58.25 14.73 27.02 SiL COO 37.9 8.7 29.2 65.24 20.47 14.30 SiL 0.4S 31.5 5.1 26.4 56.34 1G.77 32.39 SiL 0.01 29.0 5.8 23.2 -1 -1 -1 -I 0.00 33.7 9.3 24.5 -1 -1 -1 -1 0.01 38.6 10.5 28.1 65.46 26.13 8.40 SiL 0.00 37.8 8.1 29.7 66.33 12.40 21.27 SiL C Horizon Fe S A% SampleDCBFe DCBAl KClAl 73. c 76.c 81.c 84.c 74. c S2.C 86.c 88.c 15. c .17. c -X 24.c 32.c 34.c 41.= -1 44.= 46. c 49.c -1 WHC- Particle Size l/3barl5bar WHC %Silt %Clay %Sand Text 2.62 0.65 1.76 31.3 17.1 14.2 54.76 38.57 6.67 SiCL 1.16 0.19 0.01 18.4 5.6 12.9 40.49 11.94 47.57 L -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1.79 0.45 0.48 21.7 11.1 10.6 45.15 26.55 28.30 L 2.23- 0.58 2.10 30.4 19.2 11.2 44.62 47.37 8.01 SiC 2.33 0.52 0.26 22.9 7.5 15.3 38.19 16.46 45.35 L 2.84 0.78 2.67 30.8 18.3 12.5 4.75 80.29 14.96 c 2.60 0.39 0.25 31.0 10.2 20.8 63.79 26.39 9.83 SiL 0.58 0.07 0.00 24.9 5.8 19.1 43.94 15.58 35.48 L -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0.59 0.07 0.01 30.0 4.6 25.4 47.22 9.46 43.32 L 1.26 0.16 0.00 28.8 5.1 23.6 65.98 11.81 22.21 SiL 1.41 0.16 0.08 28.8 5.9 22.9 53.70 17.45 28.84 SiL 2.51 0.29 0.01 30.3 7.9 22.4 58.33 18.37 23.30 SiL -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2.76 0.35 0.01 31.3 7.7 23.6 -1 -1 -1 -1 2.19 0.44 0.01 27.5 9.2 18.3 -1 -1 -1 -1 2.56 0.50 0.02 25.4 11.9 13.4 54.01 29.03 16.96 SiCL -1 -1 -1 -1 . -1 -1 -1 X -1 -1 2 0 8 DATA SET 5: LAND USE INNOVATIONS SUBSTUDY SPSS Case# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2! 22 23 24 25 26 27 23 29 30 31 32 33 34 35 LU Code 6 6 6 7 7 7 7 7 9 9 9 10 10 10 10 11 11 12 12 13 13 13 13 13 14 14 14 14 15 Land Use P C P= pd Pd Pd Pd pd kh kh kh kh ki ki ki kg kg kb kb kd kd kd pk pk pk pi pi pi Pi pi pe pe pc PC A Sample # 52. a 53. a 60.a 28. a 48.a 50. a 56. a 57. a 47.a 54 .a 58. a 59. a 51. a 55.a 63.a 53.a 69.a 98.3 99. a 100. a 39.a 45.a 95. a 96. a 97.3 90. a 91. a 92. a 93. a 94. a 25.a 27.a 29. a 30. a 21.a Horizon Soil Properties 13 soil properties 1 sample per plot 3-4 plots per land use 10 land use types B Horizon Soil Properties pH H20 CaC12 5.5 4.9 5.7 6.1 6.4 6.1 6.0 6.1 6.3 6.6 6.4 6.5 6.0 6.4 6.4 6.4 6.5 7.0 7.4 6.5 5.8 5.3 5.9 6.5 6.5 6.3 6.4 5.4 7.5 7.7 7.3 7.7 7.8 5.2 5.5 5.9 5.3 5.3 5.5 6.0 6.4 6.1 6.2 5.6 5.8 6.1 6.0 6.1 6.8 6.1 6.1 7.1 7.0 4.9 5.0 6.1 5.3 5.8 5.7 5.7 7.0 7.1 7.2 7.2 7.2 Nutrients crgC% %N 1.436 0.113 1.628 0.116 1.494 0.119 1.723 0.125 1.568 0.118 1.579 0.121 1.457 0.115 1.635 0.123 1.739 0.128 1.916 0.137 1.641 0.120 1.680 0.126 1.446 0.124 1.483 0.116 1.554 0.122 1.687 0.134 1.442 0.128 1.266 0.130 1.239 0.127 1.390 0.138 1.231 0.107 1.476 0.118 1.250 0.090 1.414 0.098 1.234 0.031 1.229 0.099 1.3C4 0.092 1.203 C.0S7 1.242 0.090 1.278 0.093 1.024 0.086 0.779 0.069 0.9S4 0.087 1.010 0.085 0.557 0.050 exBases & CEC in meq/lOOg soil ppm? 78 87 ,93 57 144 18 160 145 88 79 62 66 45 62 60 34 23 24 25 27 22 22 80 109 110 37 184 159 204 157 39 32 34 52 17 Ca 2.81 4.93 5.68 6.68 4.80 5.60 6.18 8.17 e.30 8.05 5.93 6.36 4.37 5.74 5.24 5.43 6.55 7.49 5.43 7.30 5.30 5.49 1.50 1.55 1.50 3.35 3.37 2.87 3.12 3.06 5.87 5.55 6.30 5.30 7.92 Mg 0.86 1.34 1.64 1.75 1.48 1.41 1.87 1.79 2.86 2.45 2.04 1.64 1.56 2.14 1.95 1.46 2.45 3.27 1.91 2.96 1.15 2.34 0.16 0.16 0.14 0.78 0.78 0.66 0.63 0.68 1.52 0.88 1.27 1.19 0.51 K 0.14 0.47 0.41 0.13 0.41 0.39 0.45 0.33 C H 0.20 0.12 0.06 0.06 0.13 0.22 0.02 COS 0.33 0.06 0.06 0.01 0.01 C.32 0.05 0.12 0.39 0.42 0.32 0.34 0.36 COO 0.03 COO 0.07 COO Na 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.01 0.00 0.00 0.01 0.00 0.00 c o o c o o 0.00 0.01 0.02 0.01 0.00 CEC 12.06 13.81 13.06 12.50 12.61 11.38 13.43 12.54 14.07 15.04 13.43 12.54 12.95 13.09 10.97 9.18 6.64 9.25 8.89 8.72 4.29 6.73 3.64 11.77 11.04 8.07 8.86 8.14 3.48 8.66 5.13 3.02 4.95 4.79 2.55 Base Sat% 31.7 48.8 59.3 68.5 53.2 66.1 63.3 82.2 80.2 71.2 60.3 64.5 50.3 61.3 67.8 75.4 137.0 120.0 33.4 118.5 151.1 116.7 23.8 15.0 16.0 64.3 51.6 47.3 48.8 47.4 144.1 214.S 153.5 137.4 330.4 BDens g/cm3 1.19 -1 -1 0.97 1.09 0.97 -1 -1 1.13 -1 -1 -1 0.97 -1 -1 1.07 1.11 1.16 -1 1.34 1.21 1.20 -1 -1-1.13 -T Compac kg/cm2 0.3 -1.0 -1 0.3 0.4 0.2 -1 -1 0.3 -1 -1 1.8 - i 0.6 1.0 0.6 -1 - i 1.5 0.3 0.0 - i cH Nutrients -1 1.17 0.84 0.39 1.07 1.16 -1 0.3 0.1 0.1 0.1 1.5 H20 CaC12 orgC% -1 -1 -1 -1 -1 -1 -1 -1 6.7 5.8 0.312 5.8 5.4 1,405 6.1 5.7 1.480 -1 -1 -1 -1 -1 -1 6.7 6.5 1.649 -1 -1 -1 _ -t -1 -1 -1 -1 i ± 6.7 6.2 1.347 -1 -1 -1 6.8 6.6 1.000 6.9 5.5 1.028 7.2 7.0 0.735 7.2 6.6 0.776 -1 _ 1 -1 -1 _ - i ; • J. 7.0 0.355 7.3 6.9 0.940 -1 -1 1.024 -1 _1 -1 -1 -1 -1 6.5 5.6 0.796 -1 .L — i -1 -1 -1 "* ± -1 -1 -1 -1 7.2 6.9 1.017 7.5 6.8 1.248 7.2 6.8 0.969 -1 -1 -1 7.8 7.3 1.049 totN% ppnP Ca Mg -1 —1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0.091 34 2.18 1.19 0.107 - 38 2.43 0.84 0.113 41 4.93 1.23 -1 -1 -1 -1 -1 -1 -1 -1 0.119 125 7.43 2.65 -1 -1 -1 -1 -1 -1 _** -1 -1 -1 -1 -1 0.115 64 5.05 2.45 -1 -1 _1 -1 0.092 35 4.93 1.32 0.083 68 5.05 1.36 0.073 4 5.18 1.71 0.075 40 5.43 2.14 -1 -1 -1 -1 -f -1 -1 -1 C032 42 5.99 1.87 0.107 64 6.61 2.55 0.066 _ i j. 1.81 0.12 -1 -1 -1 -1 -1 -1 -1 _ i 30 1.50 1.01 -1 -1 -1- _ i -1 '' - i _ i -1 -1 -1 _1 -1 -1 - i -1 0.099 49 6.68. 1.60 0.103 17 6.18 0.97 0.096 87 6.05 1.34 -1 -1 0.065 16 5.99 0.41 exBases & CEC in m K -1 -1 -1 0.06 0.04 0.11 -1 -1 0.17 -1 -1 -1 0.19 -1 C03 0.00 COO 0.00 -1 -1 0.15 0.09 COO -1 -1 0.53 -1 -1 -1 -1 0.06 0.00 0.00 -1 0.01 eq/lOOg soil Na CEC -1 -1 -1 -1 -1 -1 0.01 10.91 0.01 11.47 0.02 14.09 -1 -1 -1 -1 0.02 13.25 -1 -1 -1 -1 -1 -1 0.02 12.81 -1 -1 01 6.55 0. 0.01 0.01 0.01 -1 0.01 0.01 6.84 5.52 7.23 -1 -1 6.52 7.52 0.01 10.79 -1 -1 0.01 -1 -1 -1 -1 0.01 0.01 0.01 -1 0.01 -1 -1 6.98 -1 -1 -1 -1 7.59 9.14 8.59 -1 3.55 Base Sat% -1 -1 -1 31.6 29.1 44.6 -1 -1 77.5 -1 -1 -1 60.2 -1 95.8 94.2 124.9 104.7 -1 -1 123.1 123.2 13.0 -1 -1 43.6 -1 -1 -1 -1 109.9 78.2 86.1 -1 180.4 C Horizon Soil Properties pH Nutrients H20 CaC12 orgC% totN% exBases & CEC in meq/lOOg soil Base -1 -1 -1 6.1 5.6 -1 -1 -1 6.4 -1 -1 -1 5.6 -1 -1 -1 -1 7.7 -1 -1 7.4 -1 -1 -1 -1 6.7 -1 -1 -1 -1 -1 7.0 -1 -1 8.2 -1 -1 -1 -1 -1 -1 -1 -1 -1 5.6 0.244 0.045 4.6 0.421 0.060 -1 -1 -1 5.8 -1 -1 -1 4.8 -1 -1 -1 -1 6.5 -1 -1 6.5 -1 -1 -1 -1 -1 -1 -1 0.466 0.061 -1 -1 -1 -1 -1 -1 0.428 0.051 -1 -1 -1 -1 _ i -1 -1 -1 0.250 0.045 -1 -1 -1 -1 0.442 0.056 -1 -1 -1 -1 -1 -1 -1 -1 5.7 0.106 0.010 -1 -1 -1 -1 -1 6.6 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 .339 0.094 -1 -1 -1 -1 7.1 0.269 0.032 ppmP -1 -1 -1 16 70 -1 -1 -1 19 -1 -1 -1 16 -1 -1 -1 -1 40 -1 -1 46 -1 -1 -1 -1 10 -1 -1 -1 -1 -1 20 -1 -1 15 Ca -1 -1 -1. 1.87 1.37 -1 -1 -1 2.68 -1 -1 -1 1.44 -1 -1 -1 -1 -1.00 -1 -1 3.37 -1 -1 -1 -1 2.25 -1 -1 -1 -1 -1 9.70 -1 ~1 4.49 Mg -I -1 -1 0.60 0.64 -1 -1 -1 1.93 -1 -1 — T X. 0.88 -1 -1 -1 -1 K -1 -1 -1 O.08 1.53 -1 -1 -1 0.67 -1 -1 -1 0.15 -1 -1 -1 -1 Na -1 -1 -1 0.02 CEC -1 -1 -1 5.41 -1 1.25 X " I " I _"1 X 1.01 -1 -1 -1 -1 -1 1.36 —1 -1 0.38 0.01 11.14 -1 -1 -1 -1 -1 -1 0.02 10.97 -1 -1 -1 .01 -1 -1 -1 -1 -1 -1 -1 .63 -1 -1 -1 -1 Sat% -1 -1 -1 47.4 31.9 -1 -1 -1 48.4 -1 -1 -1 28.7 -1 T x - l -1 •1.00 -1.00 -1 -1 -1.00 -1.00 -1.00 -1 Q.15 -1 —1 -1 -1 0.06 -1 -1 -1 -1 -1 0.02 -1 -1 C.03 -1 -1 .01 -1 -1 -1 -1 .00 -1 -1 -1 -1 -1 -1 -1 -1 -1 .13 115.9 -1 -1 -1 -1 -1- -1 -1 -1 .43 136.8 -1 -1 -1 — 1 X -1 0.01 10.04 110.5 -1 -1 -1 -1 -1 -1 COO 1.70 327.1 -1 -1 -1 -1 -1 DATA SET 6: INNOVATIONS SUBSTUDY 9 soil properties 1 sample per plot 3-4 plots per land use 10 land use types A Horizon B Horizon C Horizon LU Land Plot Fe S Al% WHC Particle Size Fe S Al% WHC Particle Size Fe & Al% WHC Particle Size Code Use • # DCBFe DCBAl •KClAl l/3barl5bar WHC %Silt %Clay %Sand Text DCEFe DCBAl KClAl l/3barl5bar WHC %Silt %Clay %Sand Text Samp DCBFe DCBAl KClAl l/3barl5bar WHC % S i l t %Clay %Sand Text 6.2 PC 53.a 1.68 0.34 0.03 25.6 9.3 16.3 45.99 20.08 33.93 L -1 -1 - i -1 -1 -1 -1 -1 -1 - i 53.c -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 6.3 pc 60.a 1.10 0.18 0.02 26.6 9.6 17.0 46.34 20.43 33.23 L -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 60.c -1 -1 -1 -1 X -1 -1 -1 -1 -1 7.2 p d 48.a 1.64 0.35 0.02 27.0 10.8 16.2 46.85 20.49 32.66 SiL -1 -1 -1 -1 -1 -1 -1 -1 -1 - i 48.c 2.34 0.52 1.26 25.8 13.5 12.3 40.55 31.02 28.43 CL 7.3 50.a -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1.96 0.37 0.00 27.0 11.2 15.8 46.72 25.68 27.60 L 50.c -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 7.4 p a 56.a -1 -1 - i 23.4 9.3 14.1 -1. -1 -1 -1 - i -1 -1 -1 - i -1 -1 -1 -1 -1 -1 -1 -1 -1 -I -1 -1 -1 -1 -1 7.5 P d 57.a 1.46 0.35 0.01 27.4 9.7 17.7 44.15 21.77 34.08 L -1 -1 -1 -1 -1 -1 -1 -1 -1 _ i -1 -1 -1 -1 —1 -1 ..-1 -1 -1 -1 8.1 kh •47.a 1.76 0.32 0.02 30.7 • 9.9 20.8 51.30 21.68 27.02 S i l 1.96 0.31 0.00 29.2 10.5 18.7 49.04 23.72 27.23 -r At 47.C 2.42 0.45 0.00 21.9 11.8 10.1 41.29 29.85 28.86 " CL B.3 kh •58.a 1.89 0.33 0.02 27.8 9.8 18.0 46.27 21.91 31.82 T Jj -1 -1 -X -1 -1 -1 -1 -1 -1 -1 58.c -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 8.4 kh 59.a 1.77 0.28 0.02 30.1 8.1 22.0 50.79 17.98 31.23 SiL -1 -1 -1 - i -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 9.1 ki 51.a 1.74 C.39 0.02 31.5 10.7 20.8 56.04 25.13 13.83 SiL 2.24 0.44 0.00 29.3 12.3 17.0 53.72 28.81 17.47 SiCL 51. c 1.40 0.29 0.48 24.2 11.4 12.8 47.37 27.50 25.13 CL 9.3 ki 68.a 2.04 0.43 0.03 33.1 11.4 21.7 57.37 25.74 16.89 SiL 2.02 0.19 0.00 31.5 -1 -1 52.01 12.29 65.70 Sil. 68.C -1 -1 -1 -1 -1 -1 -1 -1 10.3 kb 98.a 2.24 0.18 0.02 41.2 6.9 34.3 71.40 15.54 13.07 SiL 2.29 0.18 33.8 6.6 27.2. 60.78 17.02 22.20 Sil. 98.C 1.94 0.15 0.01 21.6 3.7 17.9 39.38 5.87 54.74 SL 12.1 pk 95.a 0.76 0.37 0.37 18.2 4.3 13.9 20.18 6.94 72.88 SL -1 -1 -1 -1 _ i -1 _ 1 A. -1 -1 -1 95.C -1 -1 -1 -1 -IT -1 -1 -1 -1 -1 13.1 pi 90.a -1 -1 -1 -1 -1 -1 -1 Q.93 0.42 0.01 12.2 4.6 7.6 15.42 5.27 79.31 LS 90.c 0.74 0.15 0.01 4.9 1.6 3.3 6.56 0.44 93.00 S 13.5 pi 94.a 0.38 0.36 0.03 17.4 4.3 13.1 16.08 5.24 73.68 LS -1 -1 -1 -1 -1 - i -1 -1 -1 - i 94.c -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 15.1 cr •21.a 1.49 0.10 0.02 21.2 2.1 19.1 30.57 3.58 65.76 SL -1 -1 -1 -1 -1 _-t - l 21.c 0.81 0.06 0.00 33.5 1.7 31.8 15.09 2.23 82.68 LS note: -1 means missing values i.e. analysis not done 210 APPENDIX H. DESCRIPTIVE STATISTICS FOR SOILS DATA SETS 1-6 SOILS DATA SET 1: DESCRIPTIVE STATISTICS OF VARIABILITY STUDY natural forest degraded forest traditional upland upland with potato irrigated lowland Soil Property Horizon LU fa (n=10) LU fd (n=10) LU pc (n=10) LU pa (n=10) LU kh (n=10) mean st.dev. mean st.dev. mean st.dev. mean st.dev. mean st.dev. pH (H20) A nor 5.7 0.2 5.8 0.2 5.9 0.1 6.1 0.17 7.1 0.1 pH (CaC12) A hor 4.9 0.3 4.8 0.2 5.1 0.1 5.5 0.18 6.9 0.1 org.Carbon A hor 2.286 0.341 1.864 0.254 1.549 0.053 1.605 0.068 1.708 0.087 tot.Nitrogen A hor 0.172 0.018 0.139 0.012 0.145 0.064 0.142 0.008 0.129 0.031 ava.Phosphorus A hor 11 5 2 1 25 6 20 7 9 2 exc.Calcium A hor 4.84 2.19 4.21 1.88 5.66 0.54 6.25 0.79 9.84 0.94 exc.Magnesium A hor 1.85 0.46 1.31 0.30 1.00 0.06 1.64 0.22 2.85 0.41 exc.Potassium A hor 0.93 0.35 0.58 0.28 0.62 0.58 0.27 0.43 0.06 0.05 exciSodium A hor 0.01 0.01 0.01 0.00 0.01 0.00 0.02 0.02 0.02 0.00 CEC (meq/lOOg) A hor 18.1 2.1 15.88 1.84 8.86 0.66 11.26 0.71 11.34 0.85 Base Sat.% A hor 41.6 10.8 38.3 11.2 82.6 8.4 72.7 9.4 113.0 12.5 legume upland agroforestry overall mapunit 5c Soil Property Horizon LU pd (n=10) LU pi (n=9) a l l LU (n=60) mean st.dev. mean st.dev. mean st.dev. pH (H20) A hor 6.0 0.1 6.5 0.1 6.1 0.5 pH (CaC12) A hor 5.2 0.2 6.1 0.2 5.4 0.7 org.Carbon A hor 1.579 0.039 1.229 0.310 1.765 0.141 tot.Nitrogen A hor 0.121 0.003 0.099 0.012 0.313 0.034 ava.Phosphorus A hor 18 3 37 9 14 9 exc.Calcium A hor 5.60 0.46 3.86 0.64 6.07 2.20 exc.Magnesium A hor 1.41 0.14 0.78 0.14 1.68 0.65 exc.Potassium A hor 0.39 0.27 0.39 0.09 0.48 0.44 exc.Sodium A hor 0.01 0.00 0.01 0.01 0.01 0.01 CEC (meq/lOOg) A hor 11.38 1.55 8.07 2.02 12.80 3.42 Base Sat.% A hor 66.1 8.9 64.3 11.8 69.0 27.1 2 1 1 SOILS DATA SET 2: DESCRIPTIVE STATISTICS OF VARIABILITY STUDY natural forest degraded forest traditional upland upland with potato irrigated lowland Soil Property Horizon LU fa (n=3) LU fd (n=3) LU pc (n=3) LU pa (n=3) LU kh (n=3) mean st.dev. mean st.dev. mean st.dev. mean st.dev. mean st.dev. ext.Fe (cbd) A hor 1.18 0.02 1.20 0.02 1.38 0.44 1.62 0.58 0.99 0.44 ext.Al (cbd) A hor 0.30 0.01 0.34 0.01 0.16 0.05 0.19 0.07 0.16 0.05 exc.Al (KC1) A hor 0.28 0.33 0.35 0.17 0.00 0.01 0.01 0.01 0.01 0.01 FC (l/3bar) A hor 31.5 1.6 30.2 1.4 26.8 1.1 34.9 5.5 37.5 0.3 WP (15bar) A hor 14.9 0.2 14.3 0.4 6.0 0.1 8.4 0.1 9.3 0.6 WHC A hor 16.6 1.5 15.8 1.1 20.7 1.0 26.5 5.7 28.2 0.4 Bulk Density A hor 1.20 0.06 1.43 0.11 1.11 0.04 0.91 0.13 0.97 0.10 Compaction A hor 2.00 0.30 4.30 0.60 0.47 0.31 0.10 0.00 0.23 0.06 pH (H20) A hor 5.8 0.1 5.8 0.3 6.0 0.1 6.0 0.1 7.0 0.1 pH (CaC12) A hor 4.9 0.1 4.8 0.2 5.2 0.1 5.4 0.2 6.8 0.1 org.Carbon A hor 2.040 0.120 1.860 0.160 1.520 0.030 1.560 0.080 1.790 0.060 tot.Nitrogen A hor 0.160 0.010 0.130 0.020 0.170 0.100 0.150 0.010 0.110 0.060 ava.Phosphorus A hor 9 2 2 1 28 4 25 11 8 2 exc.Calcium A hor 4.53 0.55 3.91 1.15 5.91 0.47 5.99 0.92 9.76 1.84 exc.Magnesium A hor 1.97 0.12 1.45 0.21 1.01 0.00 1.56 0.21 2.93 0.65 exc.Potassium A hor 0.82 0.13 0.62 0.23 0.35 0.19 0.36 0.37 0.08 0.06 exc.Sodium A hor 0.01 0.02 0.01 0.00 0.01 0.00 0.03 0.03 0.02 0.00 CEC (meq/lOOg) A hor 17.45 1.28 15.81 0.37 9.00 0.47 11.47 0.73 11.72 0.40 Base Sat.% A hor 42.0 1.6 37.9 5.5 81.0 6.1 69.7 15.7 109.2 22.6 legume upland agroforestry overall mapunit 5c Soil Property Horizon LU pd (n=3) LU pi (n=3) a l l LU (n=18) mean st.dev. mean st.dev. mean st.dev. ext.Fe (cbd) A hor 1.19 0.15 0.76 0.24 1.26 0.35 ext.Al (cbd) A hor 0.18 0.02 0.30 0.09 1.22 0.08 exc.Al (KC1) A hor 0.02 0.00 0.02 0.00 0.11 0.19 FC (l/3bar) A hor 26.3 0.5 16.6 2.6 31.2 4.5 WP (15bar) A hor 9.9 0.3 6.2 2.5 10.5 3.2 WHC A hor 16.3 0.5 10.4 3.5 20.7 5.4 Bulk Density A hor 0.97 0.06 1.18 0.06 1.10 0.19 Compaction A hor 0.20 0.10 0.00 0.00 1.20 1.50 pH (H20) A hor 6.0 0.1 6.5 0.0 6.1 0.4 pH (CaC12) A hor 5.3 0.1 6.0 0.2 5.4 0.7 org.Carbon A hor 1.560 0.070 1.070 0.570 1.722 0.205 tot.Nitrogen A hor 0.120 0.000 0.100 0.020 0.140 0.046 ava.Phosphorus A hor 16 4 31 3 15 10 exc.Calcium A hor 5.62 0.22 3.83 0.91 5.95 2.04 exc.Magnesium A hor 1.49 0.06 0.80 0.17 1.73 0.65 exc.Potassium A hor 0.54 0.48 0.39 0.06 0.46 0.33 exc.Sodium A hor 0.01 0.00 0.01 0.01 0.02 0.01 CEC (meq/lOOg) A hor 11.95 0.41 7.69 1.49 12.90 2.90 Base Sat.% A hor 64.1 3.7 65.2 4.3 67.3 25.9 2 1 2 SOILS DATA SET 3: DESCRIPTIVE STATISTICS OF PRESENT LAND OSES Soil Property Horizon natural LU fa mean forest (n=8) st.dev. degraded forest traditional upland upland with potato irrigated lowland LU fd (n=ll) LU pc (n=10) LU pa (n=10) LU kh (n=ll) mean st.dev. mean st.dev. mean st.dev. mean st.dev. pH (H20) A hor 6.3 0.4 5.9 0.4 6.3 0.5 6.0 0.3 6.5 0.4 pH (CaC12) A hor 5.6 0.6 4.9 0.5 5.7 0.6 5.6 0.4 6.2 0.5 org.Carbon A hor 1.918 0.292 1.999 0.334 1.518 0.206 1.614 0.213 1.739 0.155 tot.Nitrogen A hor 0.147 0.020 0.149 0.021 0.124 0.014 0.124 0.014 0.129 0.012 ava .Phosphorus A hor 42 23 33 30 83 40 132 48 77 38 exc.Calcium A hor 6.93 1.81 3.98 2.10 6.26 1.91 5.76 0.68 7.14 1.73 exc.Magnesium A hor 1.88 0.30 1.27 0.27 1.23 0.41 1.17 0.26 1.87 0.52 exc.Potassium A hor 0.36 0.28 0.34 0.23 0.16 0.18 0.17 0.10 0.10 0.10 exc.Sodium A hor 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.02 0.01 CEC (meq/lOOg) A hor 14.33 3.05 17.62 3.36 9.54 1.69 10.35 1.28 11.44 1.07 Base Sat.% A hor 67.8 23.3 34.2 19.3 82.3 24.8 69.3 9.5 79.8 16.9 Bulk Density A hor 1.27 0.08 1.33 0.06 1.09 0.07 1.03 0.10 1.09 0.12 Compaction A hor 1.65 0.39 4.24 0.28 0.33 0.18 0.15 0.05 0.73 0.50 pH (H20) B hor 6.3 0.7 5.9 0.3 6.6 0.4 6.2 0.4 6.8 0.2 pH (CaC12) B hor 5.4 1.0 4.6 0.5 6.0 0.5 5.8 0.5 6.4 0.2 org.Carbon B hor 0.991 0.214 0.890 0.323 0.867 0.235 1.314 0.339 1.135 0.368 tot.Nitrogen B hor 0.076 0.015 0.083 0.019 0.088 0.019 0.108 0.018 0.090 0.020 ava.Phosphorus B hor 38 20 27 19 32 12 91 45 45 23 exc.Calcium B hor 4.06 2.43 1.40 1.05 3.73 1.72 4.50 1.34 5.46 2.22 exc.Magnesium B hor 1.21 0.74 0.64 0.30 0.86 0.46 0.91 0.48 1.56 0.62 exc.Potassium B hor 0.13 0.11 0.18 0.11 0.34 0.47 0.14 0.20 0.10 0.12 exc.Sodium B hor 0.00 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 CEC (meq/lOOg) B hor 10.77 3.74 15.48 7.10 6.96 1.17 8.88 1.86 9.15 2.75 Base Sat.% B hor 63.4 46.2 30.1 51.2 68.3 23.8 62.9 16.5 77.4 15.6 pH (H20) C hor 6.6 0.5 5.9 0.2 6.3 0.5 6.7 0.5 6.7 0.2 pH (CaC12) C hor 5.6 0.8 4.5 0.2 5.5 0.5 5.9 0.4 6.0 0.2 org.Carbon C hor 0.580 0.320 0.330 0.160 0.370 0.210 0.460 0.160 0.450 0.120 tot.Nitrogen C hor 0.060 0.010 0.050 0.010 0.050 0.010 0.060 0.010 0.060 0.000 ava.Phosphorus C hor 22 15 16 17 19 14 21 10 16 15 exc.Calcium C hor 2.93 2.20 0.69 0.55 2.29 1.33 2.53 1.44 2.81 0.13 exc.Magnesium C hor 1.29 0.76 0.29 0.24 0.94 0.70 0.62 0.37 1.50 0.48 exc.Potassium C hor 0,26 0.08 0.25 0.13 0.17 0.08 0.22 0.10 0.94 0.64 exc.Sodium C hor 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.00 0.01 0.01 CEC (meq/lOOg) C hor 10.85 5.07 7.52 5.29 4.50 1.93 5.17 1.25 7.40 0.80 Base Sat.% C hor 54.6 43.3 20.7 15.4 83.5 50.7 67.7 24.9 71.6 9.3 2 1 3 SOILS DATA SET 4: DESCRIPTIVE STATISTICS OP PRESENT LAND USES natural forest degraded forest traditional upland upland with potato irrigated lowland Soil Property Horizon LU fa (n=3) LU fd (n=5) LU pc (n=4) LU pa (n=4) LU kh (n=4) mean st.dev. mean st.dev. mean st.dev. mean st.dev. mean st.dev. ext.Fe (cbd) A hor 1.24 0.07 1.89 0.85 1.61 0.36 1.95 0.23 1.86 0.58 ext.Al (cbd) A hor 0.22 0.07 0.48 0.19 0.18 0.03 0.22 0.03 0.24 0.07 exc.Al (KC1) A hor 0.10 0.15 1.04 0.87 0.02 0.01 0.02 0.01 0.02 0.02 PC (l/3bar) A hor 27.8 4.3 31.8 1.8 31.5 3.2 32.1 1.9 36.3 3.0 WP (15bar) A hor 10.4 4.0 13.8 2.5 7.2 1.6 7.3 0.8 8.5 1.3 WHC A hor 17.4 2.3 18.0 1.8 24.3 2.8 24.8 1.1 27.8 2.1 S i l t » A hor 51.95 9.85 53.00 3.94 56.94 8.60 60.24 4.27 47.47 29.09 Clay % A hor 20.22 11.19 30.02 9.71 14.95 5.31 15.64 3.13 19.39 2.41 Sand % A hor 27.84 19.38 16.98 6.12 28.11 13.80 24.12 7.28 16.14 3.05 ext.Fe (cbd) B hor 1.68 0.76 1.14 0.55 2.13 0.12 2.07 0.10 2.41 0.18 ext.Al (cbd) B hor 0.36 0.30 0.29 0.14 0.23 0.04 0.26 0.03 0.31 0.07 exc.Al (KC1) B hor 0.90 1.27 2.16 0.50 0.03 0.01 0.12 0.24 0.01 0.01 FC (l/3bar) B hor 27.4 5.4 31.1 3.2 30.2 6.5 33.1 3.2 34.8 4.4 WP (lSbar) B hor 10.1 6.6 16.1 4.2 6.5 0.8 7.5 1.8 8.4 2.0 WHC B hor 17.3 1.2 13.7 3.2 23.7 5.9 25.6 3.0 26.4 3.0 S i l t % B hor 50.30 11.02 48.02 2.35 61.78 11.21 59.20 4.10 65.90 0.62 Clay % B hor 20.88 17.78 36.07 8.91 14.49 1.91 15.55 4.01 19.27 9.71 Sand » B hor 28.83 28.81 15.91 8.55 23.73 13.09 25.25 7.83 14.84 9.10 ext.Fe (cbd) c hor 1.89 * 2.30 0.73 1.73 2.50 ext.Al (cbd) c hor 0.04 0.58 0.18 0.20 0.43 exc.Al (KCl) c hor 0.89 1.38 0.09 0.03 0.01 FC (l/3bar) c hor 24.9 26.4 28.6 29.3 28.1 WP (15bar) C hor 11.3 14.0 6.9 6.3 9.6 WHC C hor 13.6 12.4 21.8 23.0 18.5 S i l t % C hor 47.63 33.18 53.32 59.34 17.34 Clay % C hor 25.26 42.67 17.14 15.88 9.01 Sand % C hor 27.12 24.16 29.54 24.78 4.99 n<3 for C horizon so standard deviation (st.dev.) not calculated 2 1 4 SOILS DATA SET 5: DESCRIPTIVE STATISTICS OF INNOVATICNS SUBSTUDY page 1 traditional pakho pakho with legume irrigated lowland khet with dainchha Soil Property Horizon LU pc (n=3) LU pd (n=5) LU kh (n=4) LU ki (n=3) mean st.dev. mean st.dev. mean st.dev. mean st.dev. pH (H20) A hor 5.8 0.3 6.2 0.2 6.4 0.3 6.4 0.0 pH (CaC12) A hor 5.2 0.3 5.6 0.3 6.1 0.3 6.0 0.2 org.Carbon A hor 1.520 0.100 1.590 0.100 1.740 0.120 1.490 0.050 tot.Nitrogen A hor 0.120 0.000 0.120 0.000 0.130 0.010 0.120 0.000 ava.Phosphorus A hor 86 8 105 63 74 12 56 9 exc.Calcium A hor 4.47 1.49 6.29 1.26 7.16 1.19 5.28 0.44 exc.Magnesium A hor 1.28 0.39 1.66 0.20 2.25 0.53 1.88 0.30 exc.Potassium A hor 0.34 0.18 0.34 0.13 0.12 0.06 0.14 0.08 exc.Sodium A hor 0.01 0.00 0.01. 0.00 0.02 0.01 0.02 0.00 CEC (meq/lOOg) A hor 12.98 0.88 12.49 0.73 13.77 1.05 12.34 1.19 Base Sat.% A hor 46.6 13.9 66.7 10.5 69.1 8.7 59.8 8.9 Bulk Density A hor 1.19 * 1.01 0.07 1.13 * 0.97 * Compaction A hor 0.3 0.3 0.1 0.3 1.8 pH (H20) B hor # * 6.2 0.1 6.7 * 6.8 * pH (CaC12) B hor 5.6 0.1 6.5 6.4 org.Carbon B hor 1.230 0.460 1.649 1.170 tot.Nitrogen B hor 0.100 0.210 0.119 0.100 ava.Phosphorus B hor 38 1 125 50 exc.Calcium B hor 3.18 0.01 7.43 4.99 exc.Magnesium B hor 1.09 3.51 2.65 1.89 exc.Potassium B hor 0.07 1.52 0.17 0.11 exc.Sodium B hor 0.01 0.21 0.02 0.02 CEC (meq/lOOg) B hor 12.16 0.04 13.25 9.68 Base Sat.% B hor 35.1 0.0 77.5 78.0 * n<3 for some properties so standard deviation (st.dev.) not calculated 215 SOILS DATA SET 5: DESCRIPTIVE STATISTICS OF INNOVATIONS SUBSTUDY page 2 traditional khet khet with legume Jap.rot. 0 trees agroforestry traditional pakho Soil Property Horizon LU kb (n=4) LU kd <n=3) LU pk (n=3) LU pi (n=5) LU pc/4c (n=4) mean st.dev. mean st.dev. mean st.dev. mean st.dev. mean st.dev. pH (H20) A hor 6.9 0.4 7.2 0.1 5.8 0.1 6.4 0.1 7.7 0.1 pH (CaC12) A hor 6.3 0.4 6.9 0.1 5.0 0.1 5.8 0.2 7.1 0.1 org.Carbon A hor 1.420 0.190 1.370 0.130 1.320 0.090 1.250 0.040 0.950 0.110 tot.Nitrogen A hor 0.130 0.001 0.120 0.020 0.090 0.010 0.090 0.000 0.080 0.010 ava.Phosphorus A nor 27 5 24 3 100 17 152 66 39 9 exc.Calcium A hor 6.23 0.99 6.03 1.10 1.52 0.03 3.25 0.38 5.76 0.43 exc.Magnesium A hor 2.27 0.78 2.15 0.92 0.15 0.01 0.72 0.06 1.22 0.26 exc.Potassium A hor 0.12 0.14 0.03 0.03 0.33 0.43 0.37 0.04 0.03 0.03 exc.Sodium A hor 0.02 0.00 0.02 0.01 0.00 0.01 0.00 0.00 0.01 0.01 CEC (meq/lOOg) A hor 8.49 1.24 6.58 2.22 10.48 1.64 8.44 0.34 4.47 0.98 Base Sat.% A hor 104.0 29.4 128.8 19.3 19.9 7.7 51.9 7.2 162.5 35.5 Bulk Density A hor 1.11 0.05 1.27 0.09 1.20 * 1.18 * 0.97 0.2 Compaction A hor 0.7 0.2 0.9 0.9 0.0 0.0 0.2 0.1 pH (H20) B hor 7.1 0.2 7.2 * * * 6.5 * 7.3 0.2 pH (CaC12) B hor 6.7 0.3 7.0 5.6 6.8 0.1 org.Carbon B hor 0.850 0.160 0.900 0.796 1.080 0.150 tot.Nitrogen B hor 0.080 0.010 0.090 - 0.100 0.001 ava. Phosphorus B hor 37 32 53 30 51 35 exc.Calcium B hor 5.22 0.19 6.30 1.50 6.30 0.33 exc.Magnesium B hor 1.74 0.38 2.21 1.01 1.30 0.32 exc.Potassium B hor 0.00 0.00 0.12 0.53 0.02 0.03 exc.Sodium B hor 0.01 0.00 0.01 0.01 0.01 0.00 CEC (meq/lOOg) B hor 6.53 0.90 7.02 6.98 8.44 0.79 Base Sat.% B hor 107.9 15.6 123.2 43.6 91.4 16.5 * n<3 for some properties so standard deviation (st.dev.) not calculated APPENDIX I. CLAY MINERALOGY ANALYSIS Sample* Clay minerals (in order of abundance) 24b quartz i l l i t e or mica chlorite vermiculite 41b i l l i t e or mica ++ chlorite + vermiculite + quartz + 49b quartz i l l i t e or mica chlorite + vermiculite + 82b i l l i t e or mica -Hf quartz ++ chlorite + vermiculite + 84b i l l i t e or mica ++ quartz ++ chlorite ++ vermiculite + 2 1 7 APPENDIX J. FARM DATA SETS 1-4 FARM DATA SET 1: GENERAL FARM 4 FAMILY INFORMATION I" i n f o F a » i l y in f o - Aat of Land - Indications of poverty Fuelnood Use FarierNard S o i l F a n i l y C h i l d Moien Men IDff Land •of Khet Pakho Hone Person I Person Food Month Hons Mint PreionTotal /SPSS! 1 SaipldMeibt <14yr F a n Hoi do, Plots ha ha ha /ha khet /khet Suff clnsuff Jung Jung Jung Jung 1 1 0 4 2 1 1 0 1.2 2 1.1 0.0 0.1 3.3 92 3.6 1 0 1689 93B 937 3563 2 1 1 8 2 4 2 0 2.2 1 1.9 0.3 0.0 3.6 86 4.2 0 2812 3750 937 7499 3 1 1 4 2 1 1 0 0.7 2 0.5 0.2 0.0 5.7 71 8.0 0 5 3000 6000 4500 13500 4 1 1 8 4 2 2 0 0.4 1 0.3 0.1 0.0 20.0 75 26.7 1 4 1500 844 644 31B8 5 1 0 7 4 1 2 0 0.7 2 0.7 0.0 0.0 10.0 100 10.0 1 0 3750 5625 2B12 12187 6 1 0 8 5 1 2 O 0.6 1 0.5 0.1 0.0 13.3 83 16.0 0 750 1125 375 2250 7 1 0 6 1 3 2 0 3.0 1 2.7 0.3 0.0 2.0 90 2.2 1 0 3750 7500 3750 8250 8 1 0 4 0 2 2 0 1.3 3 0.8 0.4 0.1 3.1 62 5.0 0 2250 3750 1500 7500 9 1 2 9 4 3 2 0 1.3 2 1.0 0.2 0.1 6.9 77 9.0 1 0 2625 3750 1125 7500 10 1 1 7 3 2 2 0 1.2 1 0.9 0.3 0.0 5.8 75 7.B 0 1875 2625 750 5250 11 1 4 17 6 5 6 0 8.1 0 6.1 1.7 0.3 2.1 75 2.8 1 0 -1 -1 -1 -1 12 1 0 13 5 4 4 0 0.7 0 0.5 0.2 0.0 18.6 71 26.0 0 -1 -1 -1 -1 13 1 1 9 3 4 2 0 1.5 0 1.1 0.4 0.0 6.0 73 8.2 0 0 -1 -1 -1 -1 14 1 1 4 0 1 3 0 1.4 1 1.0 0.3 0.1 2.9 71 4.0 1 0 1800 1500 1500 4800 IS 3 4 6 2 2 2 0 6.1 4 2.0 4.0 0.1 1.0 33 3.0 1 0 -1 -1 -1 -1 16 3 1 4 0 2 2 0 1.0 1 0.7 0.3 0.0 4.0 70 5.7 0 2250 3000 2250 7500 17 3 1 14 4 4 6 0 8.6 1 4.7 3.4 0.5 1.6 55 3.0 1 0 2750 3500 2750 9000 16 3 I 4 0 1 3 0 0.4 1 0.3 0.1 0.0 10.0 75 13.3 •> 0 937 1312 937 3186 19 3 1 7 4 2 1 1 0.8 1 0.7 0.1 0.0 8.8 BB 10.0 1 0 625 625 625 1B75 20 3 1 7 4 2 1 0 1.4 1 0.7 0.6 0.1 5.0 50 10.0 0 1125 1500 1125 3750 21 3 0 11 4 3 4 0 1.4 1 1.0 0.3 0.1 7.9 71 11.0 1 0 2812 3750 2S12 9374 22 3 0 5 0 3 2 1 1.6 2 1.0 0.5 0.1 3.1 63 5.0 0 1875 2500 1250 5625 23 3 0 8 5 2 1 0 0.6 2 0.6 0.0 0.0 13.3 100 13.3 0 2 750 1125 750 2625 24 3 1 7 3 2 2 1 1.0 2 0.7 0.3 0.0 7.0 70 10.0 1 0 1B75 3750 2812 5625 25 3 0 11 3 3 5 0 1.6 1 1.5 0.0 0.1 6.9 94 7.3 1 0 2750 3500 2750 9000 26 3 0 7 2 1 4 2 2.7 2 2.0 0.7 0.0 2.6 74 -r c 0 1000 1500 1000 3500 27 3 0 9 3 3 3 0 1.0 1 0.8 0.2 0.0 9.0 80 11.3 1 0 2250 3000 2250 7500 26 7 0 12 6 4 2 0 3.2 2 1.0 1.8 0.4 3.B 31 12.0 ft 750 1000 750 2500 29 7 0 5 2 2 1 0 0.4 1 0.0 0.4 0.0 12.5 0 -1.0 i 4 500 750 500 1750 30 7 1 5 3 1 1 0 0.4 2 0.2 0.2 0.0 12.5 50 25.0 375 500 375 1950 31 7 1 6 0 4 2 0 2.7 2 0.7 1.8 0.2 2.2 26 B.6 1 0 -1 -1 -! -I 32 7 1 9 5 3 1 0 2.7 3 2.0 0.6 0.1 3.3 74 4.5 0 62: 975 625 2125 33 7 0 11 4 3 4 0 4.7 3 2.0 2.6 0.1 43 5.5 1 0 1625 1750 1625 5000 34 7 0 8 3 4 1 0 0.4 1 0.2 0.2 0.0 20.0 50 40.0 1 5 500 ly} 500 1750 35 7 1 13 4 4 5 2 5.6 3 i.4 4.1 0.1 2.3 25 9.3 1 0 2250 3000 2250 7500 36 7 1 12 3 2 7 0 1.5 L 0.7 0.8 0.0 8.0 47 17.1 (i 900 1200 900 37 7 1 3 0 2 1 0 0.2 1 0.2 0.0 0.0 15.0 100 15.0 1 4 562 937 375 1874 38 7 0 10 1 5 4 0 2.0 2 0.5 1.5 0.0 5.0 25 20.0 0 625 B?5 625 2125 39 7 1 4 1 2 1 0 2.9 2 2.0 O.B 0.1 1.4 69 2.0 0 750 lO'.'O 750 250" 40 7 1 10 3 3 4 0 2.4 1 1.7 0.6 0.1 4.2 71 5.9 0 750 1000 750 2500 41 7 0 9 5 2 2 0 1.1 3 0.7 0.4 0.0 8.2 64 12.9 (1 625 750 750 42 7 1 8 4 2 2 0 1.0 2 0.2 0.7 0.1 8.0 20 40.0 o 1500 2000 1500 5000 43 7 1 7 4 2 1 0 1.2 1 0.5 0.7 0.0 5.8 42 14.0 1 0 750 1000 750 2500 44 7 1 1! 1 8 2 0 1.6 1 0.7 0.7 0.2 6.9 44 !5.7 0 1125 1500 1125 3750 45 7 1 5 •» J 1 1 0 0.6 1 0.2 0.4 0.0 8.3 33 25.0 1 0 -1 -1 -1 -1 46 7 1 6 5 0 1 0 1.5 2 0.7 0.7 0.1 4.0 47 8.6 1 0 1500 2500 1250 5250 218 ID i n f o — Fasi1y info- A i t of Land-FamerNard S o i l F a e i l y C h i l d Hoien Ren tOff Land lof Khet Pakho Hone /SPSS! t SaipldKeibl <14yr Fare Holdg Plo t s ha ha ha 47 9 0 13 6 3 4 0 1.9 1 1.3 0.5 0.1 48 9 0 4 1 2 1 0 0.7 2 0.3 0.4 0.0 49 9 1 5 3 1 1 0 0.5 1 0.4 0.1 0.0 50 9 1 4 1 1 2 1 1.3 2 0.7 0.5 0.1 51 9 1 10 4 2 4 0 1.0 2 0.6 0.4 0.0 52 9 1 10 4 3 3 0 1.3 1 0.7 0.6 0.0 53 9 1 7 3 2 2 0 2.0 3 1.4 0.6 0.0 54 9 1 8 1 5 2 0 1.6 2 0.8 0.7 0.1 55 9 0 6 0 3 3 1 1.5 3 1.3 0.2 0.0 54 9 0 11 4 3 4 0 l.B 1 1.3 0.4 0.1 57 9 0 6 2 2 2 0 1.3 2 0.7 0.5 0.1 58 3 0 3 1 1 1 1 0.6 1 0.5 0.1 0.0 59 1 1 9 4 2 3 0 2.2 1 1.4 0.7 0.1 60 4 1 13 4 4 5 0 1.7 2 0.7 0.9 0.1 61 4 2 5 0 2 3 0 1.0 1 0.7 0.2 0.1 62 4 1 7 0 4 3 0 1.4 1 1.3 0.0 0.1 63 4 1 7 2 3 2 0 0.7 1 0.7 0.0 0.0 64 4 2 9 5 2 2 0 0.7 1 0.5 0.2 0.0 65 4 2 10 3 3 4 0 1.7 2 0.9 0.7 0.1 66 4 1 11 2 4 5 0 3.4 3 0.7 2.6 0.1 67 4 0 15 6 4 5 0 2.0 1 1.4 0.5 0.1 68 4 0 8 1 4 3 0 1.4 2 0.7 0.6 0.1 69 4 0 4 0 1 3 0 0.6 0 0.0 0.5 0.1 70 4 0 4 2 1 1 0 0.3 1 0.3 0.0 0.0 71 4 0 6 4 1 1 0 0.4 1 0.2 0.2 0.0 72 4 1 4 2 1 1 0 0.4 1 0.3 0.0 0.1 73 5 4 9 4 3 2 2 1.8 1 1.4 0.4 0.0 74 6 8 8 0 0 0 0 5,4 1 2.0 3.1 0.3 75 4 2 8 2 2 4 0 1.7 t J 0.7 0.8 0.2 76 7 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 Indications of poverty Fuelwood Use Person X Person Food Month Hons Mint PreionTotal /ha khet /khet Suff clnsuff Jung Jung Jung Jung 6.8 68 10.0 1 0 1500 2250 1500 5250 5.7 43 13.3 0 450 625 500 1575 10.0 80 12.5 3 0 450 600 450 1500 3.1 54 5.7 0 1375 1750 1375 4500 10.0 60 16.7 1 0 -1 -1 -1 -1 7.7 54 14.3 0 750 1000 750 2500 3.5 70 5.0 1 0 1875 2500 1550 5925 5.0 50 10.0 0 1750 2125 1750 5625 4.0 87 4.6 1 0 750 1000 750 2500 6.1 72 B.5 0 750 1000 750 2500 4.6 54 8.6 1 0 1875 2500 1250 5625 5.0 83 6.0 0 250 500 250 1000 4.1 64 6.4 1 0 -1 -1 -1 -1 7.6 41 18.6 0 1750 2500 1750 6000 5.0 70 7.1 1 0 750 1000 750 2500 5.0 93 5.4 0 750 1000 750 2500 10.0 100 10.0 1 0 1250 1500 1250 4000 12.9 71 18.0 0 625 750 625 2000 5.9 53 11.1 1 0 750 1000 750 2500 3.2 21 15.7 0 1000 1500 750 3250 7.5 70 10.7 1 0 875 1250 875 3000 5.7 50 11.4 0 625 875 500 2000 6.7 0 -1.0 D 4 500 750 500 1750 13.3 100 13.3 0 375 625 375 1375 15.0 50 30.0 1 0 450 600 450 1500 10.0 75 13.3 0 450 600 450 1500 5.0 78 6.4 1 0 225 200 200 bu 1.5 37 4.0 0 -1 -1 -1 -1 4.7 -1 41 -1 11.4 -1 1 0 -1 1875 -1 2500 -1 4375 -1 8750 -1 2 19 FARM DATA SET 2: LIVESTOCK SECTION page 1 Conversion factors to LSU BullCCowC CaHCBulIBCowB CalfS6oats Foul Pigs 1.00 0.80 0.40 1.20 1.00 0.50 0.10 0.004 0.02 ID i n f o — • FaraerNard /SPSS! f 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Nos. of Livestock Soil Cattle B u f f a l o — SaipdBullCCowC CaHCBulIBCowB -SheepDucks CalfBGoa 1 0 0 1 0 0 5 1 1 2 2 2 0 0 2 0 3 0 1 0 1 0 2 4 0 0 1 2 1 1 4 3 2 1 6 0 0 1 0 2 1 3 3 3 1 0 s Fowl 12 15 1 8 5 0 0 0 0 0 0 0 0 13 16 6 2 0 0 0 5 0 0 4 0 25 0 o 14 5 20 0 0 0 0 4 0 • LSU Other Sub-Pigs Total 0 6.5 4.4 3.0 3.7 4.8 3.6 12.9 4.5 9.7 5.6 7.4 7.4 0.0 3.0 5.4 3.6 8.7 3.4 T C 0. J 4.2 4.5 4.4 2.0 6.6 5.9 7.2 5.3 9.8 7.1 9.8 1.5 9.0 4.8 2.4 10.1 8.4 8.6 4.5 6.5 5.3 7.9 3.5 7.0 Total 6.9 4.B 3.1 4.0 4.8 3.6 13.0 4.6 10.1 5.6 7.8 8.3 0.0 3.4 5.7 3.9 9.2 3.7 3.6 4.2 4.7 4.4 2.0 7.1 3.9 5.5 6.0 8.0 5.5 3.7 10.3 7.6 10.2 1.5 9.6 5.1 2.6 10.4 B.7 9.0 4.8 6.7 5.6 B.3 3.5 7.2 Use of Livestock — LSU Milk Oxen BuffaUsed 1/yr 2 0 2.0 360 2 0 2.0 600 2 0 2.0 540 1 0 1.0 360 2 0 2.0 1440 2 0 2.0 720 0 0 0.0 1080 2 0 2.0 240 2 0 2.0 2160 2 0 2.0 720 2 0 2.0 0 2 0 2.0 1260 0 0 0.0 0 2 0 2.0 1080 0 2 2.4 2890 0 0 0.0 720 4 0 4,0 2160 1 0 1,0 1080 2 0 2.0 720 2 0 2,0 360 2 0 2.0 1440 2 0 2,0 1050 0 0 0.0 900 2 0 2.0 1440 2 0 2.0 720 4 0 4.0 0 2 0 2.0 1800 2 0 2.0 720 2 0 2.0 900 2 0 2.0 1440 4 0 4.0 2160 2 0 2.0 1320 4 0 4.0 1800 0 0 0.0 360 4 0 4.0 360 2 0 2.0 1080 0 0 0.0 720 2 4 6.8 720 2 0 2.0 360 2 0 2.0 3600 2 0 2.0 540 2 0 2.0 1440 2 0 2.0 720 2 0 2.0 1080 2 0 2.0 720 2 0 2.0 0 Eggs 1/LSU t/yr 100 0 250 360 540 0 200 514 900 150 120 300 400 0 350 0 0 0 1080 900 1440 3600 200 0 Meat Hone l/fowlkg/yrkg/LSUDnly 771 675 720 360 720 540 900 554 720 ft 1000 240 321 1440 720 0 0 0 831 2520 471 375 360 180 386 450 257 69 818 270 554 400 300 720 0 0 24 0 0 0 0 0 o 0 0 0 0 o 69 225 0 48 0 o 0 o o ft o f. (I o 0 0 1} 180 0 o o o 0 0 0 0 fl o 0 0 0 0 0 0 25 1 0 0 0 0 o (I 0 0 0 0 T o 0 ft 0 83 10 0 0 0 0 0 0 o 0 0 0 10 220 FARM DATA SET 2: LIVESTOCK SECTION page 2 ID info Nos. of Livestock — LSU Use of Livestock — -Farsertlard Soil Cattle Buffalo SheepDucks Other Sub- LSU Milk Eggs Heat Hone /SPSSt I SaipdBullCCowC CalfCBullBConB CalfBGoats Fowl Pigs Total Total Oxen BuffaUsed 1/yr 1/LSU l/yr l/fonlkg/yrkg/LSUDnly 47 9 0 2 2 4 2 2 2 2 2 0 10.6 10.8 2 2 4.4 3600 1000 0 0 0 0 48 9 0 2 2 1 0 1 0 0 2 0 5.0 5.0 2 0 2.0 1440 554 0 0 0 0 4? 9 1 2 2 2 0 0 0 2 20 0 4.4 4.7 2 0 2.0 0 0 0 0 0 0 50 9 1 2 1 1 0 1 X 2 12 0 5.2 5.4 2 0 2.0 0 0 0 0 0 0 51 9 1 4 3 2 0 3 1 3 0 0 10.7 11.0 2 0 2.0 1440 267 0 0 0 0 52 9 1 2 5 1 1 3 1 1 0 0 11.1 11.2 2 0 2.0 1440 206 0 0 o 0 53 9 1 2 1 0 0 3 1 I 6 0 6.3 6.4 T L 0 2.0 1440 379 0 0 0 0 54 9 1 4 4 4 0 3 4 3 20 0 13.B 14.2 4 0 4.0 1800 290 4320 216 0 0 55 9 0 4 5 5 0 2 2 4 16 0 13.0 13.5 4 0 4.0 360 60 0 0 0 0 56 9 0 2 1 1 0 4 1 1 1 1 7.7 7.B 2 0 2.0 360 75 0 0 0 0 57 9 0 2 1 0 0 1 1 3 1 0 4.3 4.6 2 0 2.0 1440 800 0 0 0 0 58 3 0 0 1 1 0 1 1 0 0 0 2.7 2.7 0 0 0.0 720 400 0 0 0 0 59 1 1 2 3 0 0 2 2 3 0 0 7.4 7.7 0 0 0.0 0 0 0 o 0 o 60 4 1 2 1 0 0 2 2 7 15 0 5.B 6.6 2 0 2.0 1440 5!« 0 0 0 rt 61 4 2 2 0 0 0 2 2 5 15 0 5.0 5.6 2 0 2.0 10GO 540 o 0 o 0 62 4 1 2 1 2 0 1 0 3 30 0 4.6 5.0 2 0 2.0 1440 800 2520 0 0 0 63 4 1 2 0 1 0 0 0 0 0 0 2.4 2.4 2 0 2.0 0 0 0 0 0 0 64 4 2 2 0 0 0 1 0 0 0 0 3.0 3.0 2 0 2.0 0 0 0 0 0 0 65 4 2 2 2 2 0 2 1 3 12 0 6.9 7.2 2 0 2.0 2160 600 0 0 0 0 66 4 1 2 1 2 0 J 2 6 30 0 7.6 8.3 2 0 2.0 1440 379 0 0 0 0 67 4 0 2 0 0 0 2 3 7 0 0 5.5 6.2 2 0 2.0 1440 720 0 0 o o 68 4 0 0 2 0 0 2 1 0 0 0 4.1 4.1 0 0 0.0 1440 400 0 0 0 0 69 4 0 0 2 2 0 1 0 1 0 0 3.4 3.5 0 0 0.0 1080 415 o 0 n 0 70 4 0 2 0 0 0 0 0 7 0 0 2.0 2.7 2 0 2.0 0 0 0 0 0 0 71 4 0 2 1 0 0 1 0 0 2 0 3.8 3.8 2 0 2.0 720 400 180 90 0 0 72 4 1 0 1 0 0 3 0 4 2 0 3.8 4.2 0 0 0.0 1080 2B4 180 90 0 0 73 5 4 2 1 1 0 2 1 10 12 0 5.7 6.7 2 0 2.0 900 321 480 40 6 6 74 6 8 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1.0 -1.0 -1 -1 -1.0 -1 -1 -1 -1 -1 -1 75 4 2 T 4. 0 0 0 3 0 4 23 0 5.0 5.5 2 0 "2.0 720 240 0 0 20 50 76 7 1 -1 -1 -1 -1 -1 -1 -I -1 -1 -1.0 -1.0 -1 -1 -1.0 -1 -1 -1 -1 -1 -1 22 1 FARM DATA SET 3: CROPPING ROTATIONS page 1 ID info khet rotations pakho rotations LAND FarmWard#Sarapl kcA kdA kfA kgA khA kiA kkA paA pcA pdA pfA phA piA pkA TOTAL 1 1 0 1.1 0.1 1.2 2 1 1 1.9 0.3 2.2 3 1 1 0.5 0.2 0.7 4 1 1 0.3 0.1 0.4 5 1 0 0.7 0.7 6 1 0 0.5 0.1 0.6 7 1 0 2.7 0.3 3.0 8 1 0 0.8 0.4 0.1 1.3 9 1 2 1.0 0.2 1.3 10 1 1 0.3 0.2 0.4 0.2 1.3 11 1 4 0.7 5.4 1.7 0.3 8.1 12 1 0 0.5 0.2 0.7 13 1 1 1.1 0.1 0.3 1.5 14 1 1 0.2 0.8 0.3 0.1 1.4 15 3 4 1.0 1.2 0.2 3.5 0.2 6.1 16 3 1 0.7 0.3 1.0 17 3 1 4.7 3.4 0.5 8.6 18 3 1 0.3 0.1 0.4 19 3 1 0.7 0.1 0.8 20 3 1 0.7 0.6 0.1 1.4 21 3 0 1.0 0.4 1.4 22 3 0 1.0 0.5 0.1 1.6 23 3 0 0.5 0.1 0.6 24 3 1 0.7 0.3 1.0 25 3 0 0.7 0.8 0.1 1.6 26 3 0 2.0 0.7 2.7 27 3 0 0.3 0.5 0.2 1.0 28 7 0 1.0 0.2 1.6 0.4 3.2 29 7 0 0.1 0.3 0.4 30 7 1 0.2 0.2 0.4 31 7 1 0.7 0.3 1.5 0.2 2.7 32 7 1 1.0 1.0 0.6 0.1 2.7 33 7 0 0.2 0.8 2.4 0.3 4.7 34 7 0 0.2 0.2 0.4 35 7 1 1.0 0.4 0.3 3.3 0.2 5.6 36 7 1 0.7 0.8 1.5 37 7 1 0.2 0.1 0.1 0.4 38 7 0 0.5 0.7 0.8 1.5 39 7 1 2.0 0.3 0.5 0.1 2.9 40 7 1 1.7 0.6 0.1 2.4 41 7 0 0.7 0.4 1.1 42 7 1 0.2 0.5 0.2 0.1 1.0 43 7 1 0.5 0.7 1.2 44 7 1 0.7 0.7 0.2 1.6 45 7 1 0.2 0.1 0.3 0.6 46 7 1 0.7 0.7 0.1 1.5 222 FARM DATA SET 3: CROPPING ROTATIONS page 2 ID info khet rotations pakho rotations LAND FarmWard#Sampl kcA kdA kfA kgA khA kiA kkA paA pcA pdA pf A phA piA pkA TOTAL 47 9 0 1.3 0.5 0.1 1.9 48 9 0 0.3 0.4 0.7 49 9 1 0.4 0.1 0.5 50 9 1 0.7 0.5 0.1 1.3 51 9 1 0.6 0.4 1.0 52 9 1 0.7 0.6 1.3 53 9 1 0.7 0.6 0.7 2.0 54 9 1 0.2 0.6 0.2 0.6 1.6 55 9 0 1.3 0.2 1.5 56 9 0 0.3 1.3 0.4 0.1 1.8 57 9 0 0.7 0.5 0.1 1.3 58 3 0 0.5 0.1 0.6 59 1 1 0.5 0.9 0.7 0.1 2.2 60 4 1 0.7 0.9 0.1 1.7 61 4 2 0.7 0.2 0.1 1.0 62 4 1 1.3 0.1 1.4 63 4 1 0.7 0.2 0.9 64 4 2 0.5 0.2 0.7 65 4 2 0.9 0.2 0.5 0.1 1.7 66 4 1 0.7 2.6 0.1 3.4 67 4 0 1.4 0.5 0.1 2.0 68 4 0 0.7 0.6 0.1 1.4 69 4 0.5 0.1 0.6 70 4 0 0.3 0.3 71 4 0 0.2 0.2 0.1 0.5 72 4 1 0.3 0.1 0.4 73 5 4 1.0 0.4 0.4 1.8 74 6 8 2.0 1.4 0.3 1.7 5.4 75 4 2 0.5 0.8 0.2 1.7 ID info khet rotations pakho rotations LAND FarmWard#Sainpl kcA kdA kfA kgA khA kiA kkA paA pcA pdA pfA phA piA pkA TOTAL mean 1.2 0.3 0.2 0.8 0.8 0.2 1.0 0.4 0.6 1.2 0.3 0.2 0.2 0.9 1.7 stdev 1.5 0.2 0.2 1.0 0.5 0.2 1.0 0.2 0.8 1.4 0.2 0.2 0.2 0.9 1.6 min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 max 4.7 0.7 0.4 5.4 2.0 0.4 2.0 0.7 3.4 3.5 0.7 1.4 0.3 1.7 8.6 #far 8 4 1 26 45 1 1 27 48 3 4 38 1 1 75 %far 11 5 1 35 60 1 1 36 64 4 5 51 1 1 100 2 2 3 FARM DATA SET 4: CROP YIELDS AND INPUTS page 1 Note: Data arranged by farmer number S season Abbreviations explained in Appendix A. Monsoon crop • ID info Inputs kg/ha Yields kg/ha —Total Use of Seed kg/yr Total Use of Residue kg/yr FarmrWard Soil Rotn SeedCompost Fertilizer Seed Home Nxtyr Sold ExchgResid AnimlFuel Sold Com- Roof /SPSS # SanrpdCodSeaAmouTyp Amt Urea CcmplOtherAverYPoorYGoodYkg/yr Cons Seed Market kg/yr Feed Wood Farmspost Thatct 1 1 0 kg M 45 0 50 75 0 3330 1850 3700 3660 1480 50 2130 0 1100 1100 0 0 0 0 2 1 1 kh M 110 a 75 75 0 0 7400 5920 8880 14000 3400 200 10400 0 3750 3750 0 0 0 0 3 1 1 kd M 42 0 40 0 0 1690 850 2640 800 780 20 0 0 620 620 0 0 0 0 3 1 0 pc M 20 a 7500 0 0 0 400 200 600 80 75 5 0 0 1250 250 1000 0 0 o' 4 1 0 kh M 40 0 65 0 0 3180 1480 3330 1270 1255 15 0 0 -1 -1 -1 -1 -1 -1 4 1 1 pc M 40 a 9000 0 0 0 1000 800 1200 34 32 2 0 0 -1 -1 -1 -1 -1 -1 5 1 0 kg M 45 0 75 75 0 3700 1850 4440 2430 1490 30 960 0 1500 1500 0 0 0 0 6 1 0 kg M 60 0 0 0 0 1850 925 3150 925 895 30 0 0 1250 1250 0 0 0 0 7 1 0 kb M 42 b 2850 75 150 0 2410 2100 2960 6500 5000 115 1385 0 6250 6250 0 0 0 0 7 1 0 pc M 22 b 5000 0 0 0 1330 890 1560 400 393 7 0 0 1500 500 0 0 1000 0 8 1 0 kh M 53 a 1800 0 0 0 2070 890 2370 1760 1715 45 0 0 1250 1250 0 0 0 0 8 1 0 pc M 23 a 1730 0 0 0 920 770 1080 370 0 10 360 0 2250 500 1750 0 0 0 9 1 1 kg M 50 b 5000 50 0 0 1780 990 2470 890 615 25 250 0 1250 1250 0 0 0 0 9 1 1 pc M 20 b 3750 0 0 0 600 400 800 120 115 5 0 0 100 100 0 0 0 0 10 1 0 kd M 40 b 2880 60 0 0 2390 1820 3130 720 550 20 150 0 675 675 0 0 0 0 10 1 0 kg M 40 b 2880 60 0 0 2390 1820 3130 480 370 10 100 0 450 450 0 0 0 0 10 1 1 kh M 40 b 2880 60 0 0 2390 1820 3130 965 750 15 200 0 875 875 0 0 0 0 10 1 0 pc M 20 b 9380 0 0 0 1500 750 2000 450 0 6 444 0 0 300 0 0 300 0 11 1 2 kb M 55 0 0 0 0 2780 1110 2960 15000 -1 -1 -1 -1 7500 5000 0 2500 0 0 11 1 2 kd M 55 0 0 0 0 2780 1110 2960 1950 -1 -1 -1 -1 750 0 0 750 0 0 11 1 0 pc M 20 a 3750 0 0 0 320 240 400 550 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 12 1 0 kh M 48 0 110 215 0 2320 1690 3700 1160 1135 25 0 0 -1 -1 -1 -1 -1 -1 12 1 0 pa M 20 a 6250 0 0 0 1200 800 1600 240 236 4 0 0 500 500 0 0 0 0 13 1 0 kh M 27 0 45 0 0 1120 450 1340 1230 1230 0 0 0 1250 1250 0 0 0 0 13 1 1 pb M 17 a 80 0 0 0 500 300 670 50 48 2 0 0 275 200 0 0 75 0 13 1 0 pc M 80 0 0 0 0 500 300 670 150 133 17 0 0 850 550 0 0 300 0 14 1 1 kh M 75 0 60 60 0 3670 -1 -1 3100 2040 60 1000 0 3000 3000 0 0 0 0 14 1 0 pc M 19 a 4170 0 0 0 2080 -1 -1 625 310 5 310 0 550 275 0 0 275 0 15 3 0 kg M 50 0 150 0 0 3000 -1 -1 3000 0 50 2950 0 3000 3000 0 0 0 0 15 3 1 kh M 34 0 150 0 0 3000 1500 -1 4500 4450 50 0 0 2000 2000 0 0 0 0 15 3 1 pd M 18 a 9999 60 0 0 2250 -1 -1 1800 0 15 1785 0 -1 -1 -1 -1 -1 -1 15 3 2 pe M 18 0 55 55 0 2250 -1 -1 6075 0 50 6025 0 -1 -1 -1 -1 -1 -1 16 3 0 kh M 44 0 75 150 0 2960 1850 3700 2070 2040 30 0 0 -1 -1 -1 -1 -1 -1 16 3 1 pc M 20 b 7030 0 0 0 1750 1250 2500 520 515 5 0 0 -1 -1 -1 -1 -1 -1 17 3 1 kc M 52 b 1090 75 75 0 2220 1480 2960 10430 5000 250 4080 1100 -1 -1 -1 -1 -1 -1 17 3 0 pc M 20 b 380 0 0 0 800 400 2000 2720 1020 70 1630 0 -1 -1 -1 -1 -1 -1 18 3 0 kg M 65 0 0 0 0 1640 1320 1970 490 470 20 0 0 600 600 0 0 0 0 18 3 1 pc M 20 a 1200 0 0 0 600 400 800 120 115 5 0 0 250 125 125 0 0 0 19 3 1 kh M 74 0 25 0 0 1850 740 2590 1300 1245 55 0 0 -1 -1 -1 -1 -1 -1 19 3 0 pc M 20 b 5620 0 0 0 750 400 1000 75 70 5 0 0 -1 -1 -1 -1 -1 -1 20 3 1 kh M 60 0 75 75 0 2220 1850 29G0 1550 1505 45 0 0 1000 ,1000 0 0 0 0 20 3 0 pc M 25 a 4140 0 0 0 1230 1060 1760 630 665 15 0 0 1500; 750 375 0 375 0 21 3 0 kg M 75 0 100 200 0 1970 1110 2470 1970 -1 -1 -1 -1 250C 2500 0 0 0 0 22 3 0 kg M 38 0 0 0 0 1730 1230 1970 1730 1190 40 500 0 1500 1500 0 0 0 0 224 FARM DATA SET 4: CROP YIHXS AND INPUTS page 2 Monsoon crop ID info Inputs kg/ha Yields kg/ha —Total Use of Seed kg/yr Total Use of Residue kg/yr FarmrWard Soil Rotn SeedCompost Fertilizer Seed Home Nxtyr Sold ExchgResid AnimlFuel Sold Com- Roof /SPSS # SampdCodSeaAiTciUTyp Amt Urea CcmplOtherAverYPoorYGoodYkg/yr Cons Seed Market kg/yr Feed Wood Farmspost Thatch 22 3 0 pc M 20 a 1500 0 0 0 800 660 1070 400 390 10 0 0 375 175 0 0 200 0 23 3 0 pc M 26 a 2000 0 0 0 1200 400 1400 600 585 15 0 0 700 300 0 0 400 0 24 3 1 kg M 45 0 40 75 0 1480 740 2220 1040 1005 0 35 0 1625 1625 0 0 0 0 24 3 0 pc M 20 b 211 0 0 0 1100 440 1780 235 225 10 0 0 1250 250 0 0 1000 0 25 3 0 kg M 55 0 150 115 0 5180 2220 3700 3630 900 40 2690 0 -1 -1 -1 -1 -1 -1 25 3 0 kh M 55 0 120 90 0 2370 1185 2960 2010 1800 50 160 0 1750 1750 0 0 0 0 26 3 0 kh M 74 0 75 75 0 1480 740 2220 2960 2710 150 0 100 1875 1875 0 0 0 0 26 3 0 pc M 25 b 3800 0 0 0 600 200 800 420 200 20 200 0 -1 -1 -1 -1 -1 -1 27 3 0 kg M 65 0 0 70 0 3380 2110 4650 780 500 15 265 0 -1 -1 -1 -1 -1 -1 27 3 0 pc M 20 b 7000 0 0 0 2000 800 3200 400 0 5 395 0 600 600 0 0 0 0 28 7 0 kc M 33 0 30 75 0 1900 1230 2220 1900 1875 25 0 0 -1 -1 -1 -1 -1 -1 28 7 0 pb M 40 0 0 0 0 800 400 1200 136 0 6 130 0 250 250 0 0 0 0 28 7 0 pc M 47 0 0 0 0 1750 1250 2500 2450 2400 50 0 0 1250 1250 0 0 0 0 29 7 0 kh M 20 0 0 0 0 2450 1835 3750 810 803 7 0 0 250 250 0 0 0 0 29 7 0 pb M 600 a 1785 0 300 0 6860 22B5 9140 480 0 0 480 0 -1 -1 -1 -1 -1 -1 30 7 0 kh M 74 0 60 0 0 1970 1480 2220 3945 3925 20 0 0 500 500 0 0 0 0 30 7 1 pa M 19 b 4688 0 0 0 1000 500 2000 200 198 2 0 0 -1 -1 -1 -1 -1 -1 31 7 0 kh M 44 0 0 0 0 1480 1110 2220 990 990 0 0 0 500 500 0 0 0 0 31 7 0 pa M 20 b 3750 0 0 0 1800 1500 2000 900 615 15 270 0 300 50 0 0 250 0 31 7 1 pc M 22 b 3330 0 200 0 1800 1500 2000 2700 2395 35 270 0 1200 200 0 0 1000 0 32 7 0 kg M 37 0 0 0 0 1700 1980 2220 1700 240 100 1360 0 4500 0 0 0 0 0 32 7 0 kh M 37 0 0 0 0 1700 1480 2220 1700 240 100 1360 0 -1 -1 -1 -1 -1 -1 32 7 1 pa M 22 a 8330 0 0 0 780 330 1000 470 0 15 455 0 1250 625 625 0 0 0 33 7 0 kg M 25 0 100 70 0 1973 1480 2960 197 194 3 0 0 100 100 0 0 0 0 33 7 0 pc M 18 b 3200 0 0 0 420 240 700 1010 940 70 0 0 -1 -1 -1 -1 -1 -1 34 7 0 kh M 74 0 48 0 0 1480 890 1480 250 235 15 0 0 -1 -1 -1 -1 -1 -1 34 7 0 pa M 34 b 5000 40 0 0 1665 1330 2000 330 325 5 0 0 -1 -1 -1 -1 -1 -1 35 7 0 kc M 25 b 500 20 0 0 1970 1450 2220 2000 2000 0 0 0 -1 -1 -1 -1 -1 -1 35 7 1 pc M 36 b 760 0 0 0 2725 2180 28G5 10090 6865 135 3090 0 -1 -1 -1 -1 -1 -1 36 7 0 kg M 20 b 2280 0 0 0 800 200 800 560 536 24 0 0 1250 250 500 0 500 0 36 7 1 pc M 33 b 1875 0 0 0 1500 665 1665 1200 1175 25 0 0 1500 625 500 0 375 0 37 7 1 kh M 74 0 30 30 0 1775 590 2370 355 354 1 0 0 300 300 0 0 0 0 37 7 0 pa M 37 b 9999 0 0 0 2000 500 2500 200 196 4 0 0 750 250 0 0 500 0 37 7 0 pc M 31 b 3750 0 0 0 1000 500 2000 100 97 3 0 0 375 125 0 0 250 0 38 7 0 kh M 20 a 5000 0 0 0 1330 1600 2665 1000 990 10 0 0 375 0 375 0 0 0 38 7 0 pa M 16 a 3000 0 0 0 1200 1120 1600 0 0 0 0 0 750 750 0 0 0 0 38 7 0 pc M 16 a 3000 0 0 0 1280 1120 1600 1085 1070 15 0 0 750 0 0 0 750 0 39 7 1 kh M 37 0 35 75 0 1725 230 2220 3505 3160 95 0 250 3750 3750 0 0 0 0 39 7 0 pb M 24 b 1500 0 0 0 1280 800 1760 435 2B0 10 145 0 400 0 0 0 400 0 39 7 0 pc M 24 b 1500 0 0 0 1280 800 1760 650 420 10 220 0 650 0 0 0 650 0 40 7 1 kh M 44 0 75 0 0 1775 1185 2960 3020 2945 75 0 0 3750 3750 0 0 0 0 40 7 0 pa M 18 b 4112 0 0 0 705 235 940 410 400 10 0 0 1750 250 0 0 1500 0 41 7 0 kh M 100 0 70 15 0 1850 1110 2220 1300 1250 50 0 0 1250 1250 0 0 0 0 41 7 0 pa M 17 3750 0 0 0 1530 510 2040 610 0 10 600 0 1500 625 0 0 875 0 42 7 0 ke M 80 0 30 60 0 1775 590 2370 285 273 12 0 0 375 375 0 0 0 0 42 7 1 pa M 30 0 0 0 0 1500 625 2000 810 0 15 0 795 2125 250 0 0 1875 0 42 7 0 pg M 50 b 3010 0 0 0 2080 625 2915 500 488 12 0 0 325 325 0 0 0 0 43 7 0 kh M 30 0 30 60 0 1500 800 2200 750 735 15 0 0 1125 1125 0 0 0 0 43 7 1 pa M 20 b 3690 0 0 0 1200 400 2000 815 460 15 340 0 1500 500 0 0 1000 0 44 7 0 kh M 40 0 0 35 0 2960 2220 3700 2000 1975 25 0 0 400 0 0 0 400 0 44 7 1 pa M 25 0 0 0 0 1140 570 1470 800 280 20 500 0 1000 1000 0 0 0 0 2 2 5 FARM DATA SET 4: CROP YIELDS AND INPUTS page 3 Monsoon crop ID info Inputs kg/ha Yields kg/ha —Total Use of Seed kg/yr Total Use of Residue kg/yr FannrWard Soil Rotn SeedCompost Fertilizer Seed Home Nxtyr Sold ExciigResid AnimlFuel Sold Com- Roof /SPSS # SampaCodSeaAmouTyp Amt Urea CtorrtplOtherAverYPoorYGoo3Ykg/yr Cons Seed Market kg/yr Feed Wood Farmspost Thatch 45 7 0 kh M 90 0 60 300 0 1260 590 1185 290 270 20 0 0 -1 -1 -1 -1 -1 -1 45 7 1 pa M 27 a 80 0 0 0 1090 730 1450 150 146 4 0 0 105 105 0 0 0 0 46 7 0 kh M 40 0 65 0 0 2330 1330 3000 1750 1150 600 0 0 750 750 0 0 0 0 46 7 1 pa M 23 b 2140 0 0 0 1200 500 1500 840 415 15 410 0 1750 0 0 0 1750 0 47 9 0 kh M 30 b 70 0 0 0 890 570 1470 1250 0 40 1210 0 2000 2000 0 0 0 0 47 9 0 pa M 23 0 0 0 0 1090 550 1640 545 265 10 270 0 1000 500 0 0 500 0 48 9 0 kg M 60 0 75 150 0 3670 3000 5000 1100 1080 20 0 0 1500 1500 0 0 0 0 48 9 0 pa M 18 b 6250 0 0 0 1700 850 2040 680 0 10 670 0 -1 -1 -1 -1 -1 -1 49 9 0 kh M 35 0 60 0 0 3120 1250 3750 1250 1235 15 0 0 -1 -1 -1 -1 -1 -1 49 9 1 pc M 25 b 9999 0 0 0 2040 1020 2720 100 100 0 0 0 -1 -1 -1 -1 -1 -1 50 9 0 kh M 30 b 5360 30 0 0 3570 1470 4430 2500 2460 40 0 0 -1 -1 -1 -1 -1 -1 50 9 1 pc M 25 b 5360 0 0 0 3570 1430 4430 1780 1765 15 0 0 -1 -1 -1 -1 -1 -1 51 9 0 kh M 30 0 40 40 0 1850 740 2220 1110 1090 20 0 0 1250 1250 0 0 0 0 51 9 1 pa M 30 b 8330 0 0 0 1200 600 1400 360 280 10 0 70 300 50 0 0 250 0 52 9 0 kh M 37 0 110 0 0 3700 2590 4440 2500 2400 100 0 0 1250 1250 0 0 0 0 52 9 1 pa M 20 b 2140 0 0 0 2270 910 2830 1360 340 15 1005 0 2000 500 0 0 1500 0 53 9 0 kg M 37 0 75 75 0 1700 1330 2960 2310 1810 250 250 0 4000 4000 0 0 0 0 53 9 0 kh M 37 0 75 75 0 1700 1330 2960 2310 1810 250 250 0 4000 4000 0 0 0 0 53 9 1 pc M 22 b 1710 0 0 0 1780 890 2220 1068 578 14 476 0 2000 1000 0 0 1000 0 54 9 0 kg M 28 0 70 70 0 2220 1480 2590 440 435 5 0 0 -1 -1 -1 -1 -1 -1 54 9 1 kh M 28 0 70 70 0 2220 1480 2590 1550 1530 20 0 0 -1 -1 -1 -1 -1 -1 54 9 0 pa M 20 b 1780 0 0 0 500 200 700 50 48 2 0 0 125 50 0 0 75 0 54 9 0 pc M 20 b 1780 0 0 0 500 200 700 300 288 12 0 0 500 200 0 0 300 0 55 9 0 kg M 35 a 35 70 0 0 2220 1480 2960 2000 1890 30 80 0 800 325 0 0 475 0 55 9 0 kh M 35 b 35 35 70 0 2220 1400 2960 1110 1070 20 20 0 450 175 0 0 275 0 55 9 0 pc M 25 a 2500 0 0 0 680 340 1020 135 0 5 130 0 250 50 0 0 200 0 56 9 0 kh M 35 b 285 0 0 0 2960 1480 3700 3850 3785 65 0 0 1500 1500 0 0 0 0 57 9 0 kg M 43 0 0 0 0 2220 1110 2590 1555 1525 30 0 0 750 750 0 0 0 0 57 9 0 pa M 29 b 6250 0 0 0 1090 410 1360 545 340 15 190 0 875 375 0 0 500 0 58 3 0 kg M 80 0 0 0 0 1500 1200 2000 750 710 40 0 0 625 625 0 0 0 0 58 3 0 pc M 25 b 500 0 0 0 2040 1360 2720 70 69 1 0 0 -1 -1 -1 -1 -1 -1 59 1 0 kg M 40 0 75 150 0 2220 1400 2590 1100 900 20 180 0 540 540 0 0 0 0 59 1 0 kh M 40 0 75 150 0 2220 1400 2590 2000 1645 35 320 0 960 960 0 0 0 0 59 1 1 pa M 18 a 3380 0 0 0 1550 280 1840 3090 0 15 1075 0 2200 400 0 0 1800 0 60 4 0 kg M 74 0 75 300 0 1480 740 2220 1000 930 70 0 0 1500 1500 0 0 0 0 60 4 1 pc M 14 a 1340 0 0 0 1070 640 1290 1010 995 15 0 0 2250 500 0 0 1750 0 61 4 2 kh M 40 0 20 70 0 2020 1010 2350 1410 1370 40 0 0 1750 0 0 0 1750 0 61 4 0 pc M 20 a 4500 0 0 0 1600 800 200 275 0 5 270 0 3300 300 0 0 3000 0 62 4 1 kh M 78 0 40 120 0 3115 1560 3890 3990 3650 140 0 200 5625 5625 0 0 0 0 63 4 0 kg M 55 b 5625 75 75 0 1330 1040 1480 840 770 70 0 0 -1 -1 -1 -1 -1 -1 63 4 1 pc M 33 b 1875 0 0 0 2000 1330 3000 400 393 7 0 0 -1 -1 -1 -1 -1 -1 64 4 0 kg M 102 0 0 0 0 4760 2040 5440 2380 2330 50 0 0 -1 -1 -1 -1 -1 -1 64 4 1 pc M 33 b 7500 0 0 0 520 310 530 340 330 10 0 0 -1 -1 -1 -1 -1 -1 65 4 0 kh M 78 0 30 90 0 1860 1240 2480 1580 1510 70 0 0 -1 -1 -1 -1 -1 -1 65 4 0 pc M 20 b 3750 0 0 0 340 200 490 240 225 15 0 0 500 500 0 0 0 0 65 4 2 pd M 30 a 2500 0 0 0 2000 1000 3000 1000 985 15 0 0 250 250 0 0 0 0 66 4 0 kh M 56 0 75 150 0 3061 1530 4080 2030 1300 50 680 0 2000 2000 0 0 0 0 66 4 1 pc M 13 a 2220 0 0 0 789 657 1053 2030 600 70 1360 0 750 375 0 0 375 0 67 4 0 kh M 102 0 75 0 0 1020 765 5100 1360 1225 135 0 0 1500 1500 0 0 0 0 67 4 0 pc M 20 a 2500 0 0 0 1220 680 1630 612 600 12 0 0 250 250 0 0 0 0 68 4 0 kc M 40 0 110 0 0 1480 740 2220 1039 1012 27 0 0 625 625 0 0 0 0 68 4 0 DC M 11 a 8330 0 0 0 1230 990 1640 750 405 5 340 0 1750 500 0 0 1250 0 226 FARM DATA SET 4: CROP YIELDS AND INPUTS page 4 Monsoon crop ™ • ID info Inputs kg/ha Yields kg/ha —Total Use of Seed kg/yr Total Use of Residue kg/yr FarmrWard Soil Rotn SeedCompo3t Fertilizer Seed Home Nxtyr Sold ExchgResid AnimlFuel Sold Com- Roof /SPSS # SampdCodSeaAnouTyp Amt Urea ComplOtherAverYPoorYGoodYkg/yr Cons Seed Market kg/yr Feed Wood Farmspost Thatcl 69 4 0 P= M 15 a 5770 0 0 0 1540 1270 2220 5076 5069 7 0 0 1250 250 0 0 1000 0 70 4 0 kc M 20 0 0 0 0 2450 2040 4080 810 800 10 0 0 750 750 0 0 0 0 71 4 0 kc M 78 0 20 20 0 1940 1603 3100 560 540 20 0 0 250 250 0 0 0 0 71 4 0 PC M 30 a 9999 0 0 0 1850 920 2460 410 405 5 0 0 1250 250 0 0 1000 0 72 4 1 kh M 90 0 0 0 0 2040 1630 2450 610 580 30 0 0 300 300 0 0 0 0 73 5 0 kh M 70 0 250 50 0 4370 2910 5100 4370 4300 70 0 0 1000 1000 0 0 0 0 73 5 3 ki M 75 0 15 125 0 2040 1020 3060 815 785 30 0 0 6250 6250 0 0 0 0 73 5 1 PC M 25 b 3100 0 0 0 1530 1020 2040 610 300 10 150 150 1250 1000 0 0 250 0 74 6 0 kk M 60 0 0 0 180 2600 0 3750 5200 2500 85 2615 0 1500 1500 0 0 0 0 74 6 5 Pi M 60 0 0 0 0 2650 0 3750 5300 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 74 6 3 pk M 30 c 1920 0 0 210 1110 0 1480 1500 550 40 910 0 375 375 0 0 0 0 75 4 0 kh M 24 a 3500 0 0 0 1200 400 1500 600 588 12 0 0 1125 1125 0 0 0 0 75 4 2 Pd M 35 a 4500 0 0 0 1500 800 2000 1275 1245 30 0 0 1250 1250 0 0 0 0 76 7 1 PC -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 total 67 +lgr 2 2 7 FARM DATA SET 4: CROP YIELOS AND INPUTS page 5 Second crop (winter crop or monsoon relayed crop) ID info Inputs kg/ha Yields kg/ha —Total Use of Seed kg/yr —TotalUse of Residue kg/yr FarmrRotn Seed Compost Fertilizer Seed Home NxtyrSold F^cihgResidAnimlFuel Sold Com- Roof /SPSSCode SeasoAmounType Amt Urea ComplOtherAverYPoorYGoodYkg/yr Cons Seed Marke kg/yrFeed Wood Farmspost Thatc 1 kg W 100 a 3800 0 75 0 2000 1000 2500 2200 70 110 2020 0 1100 550 0 0 0 550 2 kh W 10 a 2200 100 150 0 600 300 1200 1140 200 20 920 0 -1 -1 -1 -1 -1 -1 3 kd W 7 a 2680 40 0 0 130 65 130 60 57 3 0 0 100 50 0 0 50 0 3 P= W 16 0 0 0 0 1000 500 1500 200 195 5 0 0 -1 -1 -1 -1 -1 -1 4 kh W 70 a 2660 60 0 0 1480 740 1800 590 460 30 100 38 -1 -1 -1 -1 -1 -1 4 P= W 10 a 9000 0 0 0 410 330 570 14 13 1 0 0 -1 -1 -1 -1 -1 -1 5 kg W 110 a 3800 38 150 0 1500 500 2200 1010 200 70 740 0 1500 1000 0 0 0 500 6 kg W 125 0 100 200 0 1880 750 2750 940 875 65 0 0 625 0 0 0 0 625 7 kb W 100 b 1900 75 150 0 1500 1250 2000 4050 270 270 3510 0 3750 1250 0 0 0 2500 7 P= W 27 b 5000 0 330 0 670 370 830 200 192 8 0 0 -1 -1 -1 -1 -1 -1 8 kh W 7 a 1800 0 0 0 130 65 196 110 104 6 0 0 -1 -1 -1 -1 -1 -1 8 P= W 20 a 1730 0 0 0 230 115 460 100 92 8 0 0 -1 -1 -1 -1 -1 -1 9 kg W 100 b 5000 50 0 0 800 670 1070 400 210 50 140 0 1250 0 0 0 0 1250 9 P= W 18 b 3750 0 0 0 150 120 180 30 27 3 0 0 -1 -1 -1 -1 -1 -1 10 kd w 8 0 0 0 0 670 -1 1000 200 100 2 98 0 175 175 0 0 85 0 10 kg w 23 b 3460 15 15 0 1670 1000 2670 330 210 20 100 0 300 0 0 0 0 300 10 kh w 5 b 3460 30 60 0 500 250 750 200 150 5 45 0 300 300 0 0 500 0 10 PC w 8 b 9380 0 0 0 640 430 860 210 0 3 207 0 0 0 0 0 180 0 11 kb w 100 0 150 300 75 2500 1250 3000 13500 -1 -1 -1 -1 5000 0 0 0 3750 1250 11 ke w 18 0 0 0 0 450 300 600 310 -1 -1 -1 -1 7500 0 0 7500 0 0 11 pc w 17 0 300 180 105 400 180 600 820 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 12 kh w 6 0 0 170 0 210 110 430 110 105 5 0 0 200 0 0 0 200 0 12 pa w 400 0 125 500 0 2000 1500 2500 400 400 0 0 0 -1 -1 -1 -1 -1 -1 13 kh w 7 0 0 0 0 180 90 270 200 200 0 0 0 -1 -1 -1 -1 -1 -1 13 Pb w 600 0 0 0 0 5600 2400 6400 560 160 0 400 0 -1 -1 -1 -1 -1 -1 13 PC w 7 0 0 0 0 330 170 660 100 100 0 0 0 500 0 0 0 500 0 14 kh w 10 a 156 60 120 0 625 -1 -1 500 90 10 400 0 200 0 0 0 200 0 14 P= w 10 a 30 30 0 0 670 -1 -1 200 0 5 195 0 75 0 0 0 75 0 15 kg w 80 0 50 150 50 3000 -1 -1 3000 0 80 2920 0 750 750 0 0 0 0 15 kh w 12 0 65 125 65 900 300 -1 1350 0 20 1330 0 -1 -1 -1 -1 -1 -1 15 Pd w 10 0 0 0 0 150 -1 -1 120 0 10 110 0 -1 -1 -1 -1 -1 -1 15 PS w 38 0 0 0 0 750 -1 -1 2025 0 100 1925 0 -1 -1 -1 -1 -1 -1 16 kh w 16 0 75 150 0 600 375 900 420 100 15 305 0 -1 -1 -1 -1 -1 -1 16 PC w 15 0 95 190 0 750 560 1120 225 220 5 0 0 -1 -1 -1 -1 -1 -1 17 kc w 16 b 1090 40 150 0 600 450 1070 2320 500 75 2245 0 -1 -1 -1 -1 -1 -1 17 P= w 16 b 270 75 150 0 750 600 1350 2550 0 55 2495 0 -1 -1 -1 -1 -1 -1 18 kg w 88 a 3750 170 170 0 1560 1330 1780 470 100 30 340 0 400 0 0 0 400 18 PC w 18 0 0 30 0 360 240 600 70 65 5 0 0 -1 -1 -1 -1 -1 -1 19 kh w 16 0 40 110 0 150 75 300 105 90 15 0 0 -1 -1 -1 -1 -1 -1 19 P= w 15 b 5620 60 120 0 80 40 110 8 7 1 0 0 -1 -1 -1 -1 -1 -1 20 kh w 18 0 75 75 0 450 300 600 315 300 15 0 0 200 0 0 0 200 0 20 PC w 16 0 90 90 0 530 350 710 290 280 10 0 0 200 0 0 0 200 0 21 kg w 100 b 2500 150 200 0 1670 1330 2000 1670 -1 -1 -1 -1 1250 625 0 0 0 625 22 kg w 85 0 50 100 0 1670 1330 2010 1670 585 85 1000 0 1250 0 0 0 0 1250 228 FARM DATA SET 4: CROP YIELDS AND INPUTS page 6 Second crop (winter crop or monsoon relayed crop) ID info Inputs kg/ha Yields kg/ha —Total Use of Seed kg/yr —TotalUse of Residue kg/yr FarmrRotn Seed Compost Fertilizer Seed Home NxtyrSold ExchgResidAnimlFuel Sold Com- Roof /SPSSCode SeasoAmounType Amt Urea CcmplCtterAverYPoorYGoodYkg/yr Cons Seed Marke kg/yrFeod Wood Farmspost Thatch 22 PC W 12 0 100 200 0 400 200 600 200 195 5 0 0 -1 -1 -1 -1 -1 -1 23 PC W 18 0 20 20 0 1000 0 0 500 90 10 0 400 750 750 0 0 0 0 24 kg W 100 0 0 0 0 1000 500 1500 700 630 0 70 0 1750 750 0 0 1000 0 24 PC W 10 b 70 140 0 0 330 165 660 100 95 5 0 0 -1 -1 -1 -1 -1 -1 25 kg W 90 0 75 150 0 1200 800 1600 840 250 70 520 0 -1 -1 -1 -1 -1 -1 25 kh W 6 0 60 120 0 480 240 600 410 200 10 200 0 -1 -1 -1 -1 -1 -1 26 kh W 17 0 75 75 0 600 100 750 1200 200 35 965 0 500 500 0 0 0 0 26 P= W 17 0 75 75 0 600 150 750 400 0 12 388 0 -1 -1 -1 -1 -1 -1 27 kg W 100 0 35 65 0 2570 860 3430 590 140 25 425 0 -1 -1 -1 -1 -1 -1 27 PC W 15 0 48 48 0 300 150 600 60 0 5 55 0 -1 -1 -1 -1 -1 -1 28 kc W 15 b 3800 30 150 0 350 300 400 350 100 25 225 0 -1 -1 -1 -1 -1 -1 28 Pb W 600 b 7500 60 360 0 5650 3760 9410 960 240 0 720 0 -1 -1 -1 -1 -1 -1 28 PC W 38 b 1875 38 225 0 450 225 525 630 0 50 580 0 -1 -1 -1 -1 -1 -1 29 kh w 13 0 0 30 0 4500 225 6000 1500 495 5 1000 0 -1 -1 -1 -1 -1 -1 29 Pb w 25 0 0 0 0 2000 1000 3000 140 138 2 0 0 50 50 0 0 0 0 30 kh w 7 0 0 0 0 250 75 500 50 49 1 0 0 -1 -1 -1 -1 -1 -1 30 pa w 600 0 30 30 0 6000 300 9999 1200 1120 80 0 0 -1 -1 -1 -1 -1 -1 31 kh w 16 0 40 0 0 450 150 600 300 200 0 100 0 -1 -1 -1 -1 -1 -1 31 pa w 480 b 6000 0 0 0 9600 7200 9999 6400 1600 0 4800 0 50 0 0 0 50 0 31 PC w 13 b 2500 80 0 0 530 500 665 795 0 0 795 0 -1 -1 -1 -1 -1 -1 32 kg w 100 a 650 75 75 0 600 500 750 600 400 200 0 0 4000 0 0 0 0 4000 32 kh w 17 0 25 100 0 1600 500 750 1600 100 40 1460 0 625 0 0 0 625 0 32 pa w 534 a 8330 80 170 0 7840 3920 9999 4700 400 320 3980 0 -1 -1 -1 -1 -1 -1 33 kg w 100 0 60 90 0 1330 670 2000 133 123 10 0 0 100 100 0 0 0 0 33 PC w 10 0 25 75 0 310 210 470 745 100 35 610 0 -1 -1 -1 -1 -1 -1 34 kh w 12 0 0 0 0 985 490 1310 170 168 2 0 0 -1 -1 -1 -1 -1 -1 34 pa w 400 0 0 0 0 8000 6000 9999 1600 1600 0 0 0 -1 -1 -1 -1 -1 -1 35 kc w 11 0 0 750 0 1000 800 1500 1020 40 0 980 0 -1 -1 -1 -1 -1 -1 35 PC w 11 b 41 0 0 0 810 410 1090 3030 300 40 2690 0 -1 -1 -1 -1 -1 -1 36 kg w 110 b 2280 75 75 0 750 300 1200 525 450 75 0 0 500 250 0 0 250 0 36 PC w 17 b 1250 60 125 0 625 250 750 500 200 15 295 0 -] -1 -1 -1 -1 -1 37 kh w 33 0 30 30 0 600 300 1200 120 115 5 0 0 500 0 0 0 500 0 37 pa w 600 0 40 50 0 9000 6000 9999 900 80 0 820 0 250 250 0 0 0 0 37 PC w 15 0 0 45 0 450 150 600 45 43 2 0 0 375 0 0 0 375 0 38 kh w 11 0 30 100 0 400 200 600 300 294 6 0 0 100 0 0 0 100 0 30 pa w 750 a 300 75 75 0 7500 6000 9999 5085 100 500 4405 0 -1 -1 -1 -1 -1 -1 38 PC w 14 a 60 12 60 0 360 240 490 305 0 25 280 0 200 0 0 0 200 0 39 kh w 16 0 35 75 0 300 150 900 610 100 510 0 -1 -1 -1 -1 -1 -1 39 pb w 600 b 1875 0 300 0 7200 3600 9600 2440 160 0 2280 0 -1 -1 -1 -1 -1 -1 39 PC w 16 b 1250 40 0 0 600 150 600 305 200 0 105 0 -1 -1 -1 -1 -1 -1 40 kh w 11 0 0 0 0 240 120 360 410 100 20 290 0 -1 -1 -1 -1 -1 -1 40 PQ w 706 0 0 175 0 8470 4235 9999 4910 410 410 4090 0 -1 -1 -1 -1 -1 -1 41 kh w 16 0 140 35 0 430 215 570 300 100 10 190 0 625 0 0 0 625 0 41 pa w 600 0 0 125 0 7000 2000 8000 2800 320 0 2480 0 1500 625 0 0 875 0 42 ke w 5 0 0 0 0 340 190 470 55 54 1 0 0 55 55 0 0 0 0 42 Pa w 590 0 0 185 0 7400 0 9999 4000 400 0 3600 0 -1 -1 -1 -1 -1 -1 42 pg w 12 0 0 150 0 625 415 830 150 147 3 0 0 -1 -1 -1 -1 -1 -1 43 kh w 16 0 30 100 0 500 200 600 250 100 10 140 0 -1 -1 -1 -1 -1 -1 43 Pa w 600 0 20 150 0 3000 3600 9600 2035 320 0 1715 0 -1 -1 -1 -1 -1 -1 44 kh w 10 0 0 70 0 430 285 570 300 100 0 200 0 150 0 0 0 150 0 44 pa w 570 b 9990 0 0 0 8110 740 9999 5500 300 0 5200 0 -1 -1 -1 -1 -1 -1 FARM DATA SET 4: CROP YIELDS AND INPUTS page 7 Second crop (winter crop or monsoon relayed crop) ID i n f o Inputs kg/ha Yields kg/ha — T o t a l Use of Seed kg/yr —TotalUse of Residue kg/yr FarmrRotn Seed Compost F e r t i l i z e r Seed Home NxtyrSold ExchgResidAnimlFuel Sold Com- Roof /SPSSCode SeasoAmounType Amt Urea ComplOtherAverYPoorYtkxdYkg/yr Cons Seed Marke kg/yrFced Wood Farmspost Thatch 45 kh W 20 0 20 100 0 350 60 500 80 30 5 45 0 100 100 0 0 0 0 45 pa W 600 0 30 135 0 8000 2280 9999 1120 160 0 960 0 -1 -1 -1 -1 -1 -1 46 kh W 130 0 0 130 6 400 130 530 300 100 10 190 0 1500 0 0 0 1500 0 46 pa W 570 0 0 0 0 9140 4570 9999 6400 320 0 6080 0 -1 -1 -1 -1 -1 -1 47 kh W 12 b 140 70 140 0 150 110 300 200 150 17 33 0 -1 -1 -1 -1 -1 -1 47 pa W 640 b 150 0 0 0 8000 5600 9600 4000 400 0 3600 0 125 0 0 0 125 0 48 kg W 220 0 50 300 0 2720 1810 3400 820 65 75 680 0 1120 560 0 0 560 0 48 pa W 500 0 125 125 0 8181 8750 9999 3000 0 0 3000 0 -1 -1 -1 -1 -1 -1 49 kh W 13 0 60 35 0 250 125 325 100 95 5 0 0 -1 -1 -1 -1 -1 -1 49 P= W 20 b 9999 0 0 0 380 110 550 20 20 0 0 0 -1 -1 -1 -1 -1 -1 50 kh W 20 b 5360 0 30 0 290 150 370 215 50 15 150 0 -1 -1 -1 -1 -1 -1 50 P= W 30 b 5625 24 0 0 375 150 450 180 100 15 65 0 -1 -1 -1 -1 -1 -1 51 kh W 4 0 40 40 0 250 170 500 150 100 20 30 0 750 0 0 0 750 0 51 pa W 530 b 8330 0 0 0 9300 2670 9990 2800 80 2720 0 0 625 625 0 0 0 0 52 kh W 12 0 0 0 0 215 140 280 150 100 10 40 0 -1 -1 -1 -1 -1 -1 52 pa W 80 0 0 0 0 8000 4000 9999 4900 160 0 4640 0 -1 -1 -1 -1 -1 -1 53 kg w 100 a 2470 0 0 0 2000 1200 2500 1360 410 70 880 0 1000 0 0 0 0 1000 53 kh w 16 b 1140 40 75 0 225 150 300 155 145 10 0 0 250 0 0 0 250 0 53 PC w 18 b 2470 0 83 0 450 300 600 270 200 10 60 0 500 200 0 0 300 0 54 kg w 100 b 9990 70 140 0 2500 1500 3000 500 135 20 345 0 800 125 0 275 0 400 54 kh w 80 0 40 70 0 290 140 290 200 100 0 100 0 -1 -1 -1 -1 -1 -1 54 pa w 570 b 1780 140 210 0 9999 9140 9999 10400 160 60 ***** 0 -1 -1 -1 -1 -1 -1 54 PC w 16 b 1780 70 140 0 430 215 645 260 100 10 150 0 -1 -1 -1 -1 -1 -1 55 kg w 65 a 715 110 110 0 900 400 1000 1225 680 90 455 0 800 50 0 0 0 750 55 kh w 17 b 3000 0 100 0 400 200 600 200 0 10 190 0 250 0 0 0 250 0 55 PC w 14 a 1250 125 125 0 375 250 500 75 72 3 0 0 100 0 0 0 100 0 56 kh w 16 0 0 235 0 150 115 300 150 50 0 100 0 -1 -1 -1 -1 -1 -1 57 kg w 116 0 145 215 0 1500 800 2000 1050 680 80 290 0 1000 500 0 0 500 0 57 pa w 960 b 3750 100 300 0 5600 3200 6400 2300 160 480 2160 0 375 0 0 0 375 0 58 kg w 100 0 100 100 0 1090 950 1360 545 155 50 340 0 250 0 0 0 0 250 58 PC w 7 0 20 20 0 300 240 400 15 15 0 0 0 -1 -1 -1 -1 -1 -1 59 kg w 100 0 100 300 0 1200 400 1600 600 140 50 410 0 500 0 0 0 0 500 59 kh w 10 0 55 110 0 440 220 880 400 90 10 300 0 -1 -1 -1 -1 -1 -1 59 pa w 435 0 0 75 0 4570 1000 5450 3270 320 320 2630 0 -1 -1 -1 -1 -1 -1 60 kg w 100 0 200 290 0 1200 800 2000 805 0 70 735 0 500 0 0 0 0 500 60 P= w 9 55 215 0 640 430 750 600 150 10 440 0 -1 -1 -1 -1 -1 -1 61 kh w 11 0 20 140 0 545 270 820 400 100 0 300 0 -1 -1 -1 -1 -1 -1 61 P= w 12 0 30 60 0 600 300 1200 100 0 5 95 0 -1 -1 -1 -1 -1 -1 62 kh w 13 0 40 120 0 800 470 1180 1000 200 20 780 0 -1 -1 -1 -1 -1 -1 63 kg w 100 b 3750 75 75 0 500 300 700 260 260 0 0 0 -1 -1 -1 -1 -1 -1 63 PC w 10 0 0 0 0 440 370 740 90 88 2 0 0 -1 -1 -1 -1 -1 -1 64 kg w 102 0 0 0 0 2180 1090 2710 1090 1090 1040 50 0 -1 -1 -1 -1 -1 -1 64 P= w 10 0 0 0 0 500 375 750 100 98 2 0 0 -1 -1 -1 -1 -1 -1 65 kh w 13 0 30 120 0 300 200 400 255 150 15 90 0 625 0 0 0 625 0 65 PC w 16 0 28 107 0 235 140 420 200 0 10 190 0 525 0 0 0 525 0 65 pa w 8 0 0 0 0 180 120 240 90 20 4 66 0 20 20 0 0 0 0 66 kh w 15 0 75 150 0 300 450 600 200 100 0 100 0 -1 -1 -1 -1 -1 -1 66 PC w 5 0 0 60 0 240 320 395 600 0 12 588 0 -1 -1 -1 -1 -1 -1 67 kh w 17 0 75 0 0 600 300 800 800 200 22 578 0 -1 -1 -1 -1 -1 -1 67 P= w 20 0 30 150 0 600 200 1000 300 100 10 190 0 -1 -1 -1 -1 -1 -1 68 kc w 123 0 50 150 0 450 300 600 300 100 10 190 0 -1 -1 -1 -1 -1 -1 68 PC w 16 0 80 170 0 500 330 670 300 0 10 290 0 -1 -1 -1 -1 -1 -1 230 FARM DATA SET 4: CROP YIELDS AND INPUTS page B Second crop (winter crop or monsoon relayed crop) ID info Inputs kg/ha Yields kg/ha —Total Use of Seed kg/yr —TotalUse of Residue kg/yr FarmrRotn Seed Compost Fertilizer Seed Home NxtyrSold ExchgResidAnimlFuel Sold Com- Roof /SPSSCode SeasoAtnounType Amt Urea CbmplOtherAverYPoorYGoodYkg/yr Cons Seed Marke kg/yrFeed Wood Farmspost Thatch 69 P= W 27 0 0 0 0 460 230 690 200 100 10 90 0 -1 -1 -1 -1 -1 -1 70 kc W 24 0 75 150 0 600 300 900 198 0 8 190 0 -1 -1 -1 -1 -1 -1 71 kc w 17 0 110 90 0 220 110 930 50 15 5 30 0 250 0 0 0 250 0 71 PC w 14 0 20 90 0 460 230 520 100 50 5 45 0 -1 -1 -1 -1 -1 -1 72 kh w 12 0 0 150 0 790 390 1180 240 40 0 200 0 200 0 0 0 200 0 73 kh w 7 0 25 50 0 660 430 1070 860 0 7 853 0 300 300 0 0 0 0 73 k i w e 0 25 125 0 600 450 750 240 0 10 230 0 -1 -1 -1 -1 -1 -1 73 P= w 6 b 12 0 60 0 600 450 600 240 150 3 87 0 -1 -1 -1 -1 -1 -1 74 kk w 80 0 0 0 180 1180 0 1770 400 400 0 0 0 150 150 0 0 0 0 74 Pi w 120 0 0 0 180 1180 0 1760 400 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 74 Pk w 20 c 1920 0 0 0 300 0 420 500 265 35 200 0 625 625 0 0 0 0 75 kh w 12 0 50 100 0 300 150 360 150 138 12 0 0 375 0 0 0 375 0 75 Pd w 8 0 0 0 0 235 150 265 200 25 7 168 0 3125 3125 0 0 0 0 76 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 FARM DATA SET 4: CROP YIELDS AND INPUTS page 9 2 3 1 Third crop (pre-monsoon crop or winter relayed crop) ID info Inputs kg/ha Yields kg/ha —TotalUse of Seed kg/yr —TotalUse of Residue kg/yr FarmrRotn Seed Compost Fertilizer Seed Home NxtyrSold ExchgResidAnimlFuel Sold Com- Roof /SPSSCode SeasoAmounType Amt Urea ConrplCltherAverYPoorYGoodYkg/yrCons Seed Marke kg/yrFeed Wood Farmspost Thatch 1 kg P 40 a 3800 0 0 0 1800 1050 2100 1980 1930 50 0 0 2500 0 0 0 2500 0 2 kh P 20 a 2200 0 0 0 1500 600 1800 2850 2785 40 0 25 2500 0 0 0 2500 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 kh P 40 a 3040 0 0 0 1500 900 1800 600 585 15 0 0 -1 -1 -1 -1 -1 -1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 kg P 20 a 3800 0 0 0 900 200 1000 600 585 15 0 0 2000 500 0 0 1500 0 6 kg P 25 a 4690 100 200 0 1000 375 1250 500 487 13 0 0 1500 500 0 0 1000 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 kh P 28 a 1800 0 0 0 6400 160 960 540 516 24 0 0 1500 500 0 0 1000 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 kg P 67 b 2500 0 0 0 530 270 800 265 230 35 0 0 450 200 0 0 250 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 kd P 20 b 2880 0 0 0 1230 380 1690 370 180 5 120 65 500 325 0 0 175 0 10 kg P 20 b 2880 0 0 0 1230 380 1690 250 120 5 85 40 325 225 0 0 100 0 10 kh P 20 b 2880 0 0 0 1230 380 1690 490 250 10 145 85 600 400 0 0 200 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 ke P 20 a 3750 0 0 0 500 300 700 340 -1 -1 . -1 -1 1500 0 0 0 1500 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 kh P 15 a 5360 0 0 0 570 260 710 280 270 10 0 0 -1 -1 -1 -1 -1 -1 12 pa P 100 0 125 500 0 1200 400 1600 240 220 20 0 0 100 0 0 0 0 100 13 kh P IB a 1820 0 0 0 540 180 730 590 590 0 0 0 500 500 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 kh P 16 a 3120 0 0 0 1880 -1 -1 1500 1485 15 0 0 1500 800 0 0 700 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 kg P 18 a 5000 0 0 0 1500 -1 -1 1500 0 20 1480 0 500 500 0 0 0 0 15 kh P 12 a 9999 0 0 0 1500 750 -1 2250 2220 30 0 0 500 300 0 0 200 0 15 Pd P 18 0 60 120 0 900 -1 -1 720 0 15 705 0 -1 -1 -1 -1 -1 -1 15 pe P 18 0 40 50 20 600 -1 -1 1620 0 50 1570 0 -1 • -1 -1 -1 -1 -1 16 kh P 20 b 3750 0 0 0 1400 1000 2000 980 965 15 0 0 -1 -1 -1 -1 -1 -1 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 kg P 22 a 3750 0 0 0 670 440 880 200 190 10 0 0 500 250 250 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 kh P 25 b 1900 0 0 0 400 200 600 280 260 20 0 0 -1 -1 -1 -1 -1 -1 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 kh P 20 a 5350 0 0 0 1700 700 2100 1200 1185 15 0 0 1500 375 0 0 1125 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 kg P 20 b 5000 0 0 0 800 670 1340 800 -1 -1 -1 -1 625 250 0 0 375 0 22 kg P 20 a 750 0 0 0 730 530 800 730 40 20 670 0 625 250 0 0 375 0 232 rARM DATA SET 4: CROP YIELDS AND INPUTS pngc 10 Third crop (pre-monsoon crop or winter relayed crop) ID info Inputs kg/ha Yields kg/ha —TotalUse of Seed kg/yr —TotalUse of Residue kg/yr FarmrRotn Seed Compost Fertilizer Seed Hone NxtyrSold FjtchgResidAnimlFuel Sold Com- Roof /SPSSCode SeasoAmounType Amt Urea CcniplOtherAverYPoorYC<>odYkg/yrCons Seed Marke kg/yrFeed Wood Farmspost Thatch 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 kg P 20 b 3800 0 0 0 1200 500 1600 840 825 0 15 0 1750 250 0 0 1500 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 kg P 25 b 5625 0 0 0 800 400 1200 560 140 20 400 0 -1 -1 -1 -1 -1 -1 25 kh P 24 b 4500 0 0 0 800 320 1120 680 300 20 360 0 125 125 0 0 0 0 26 kh P 25 b 7500 0 0 0 470 200 700 940 135 50 755 0 -1 -1 -1 -1 -1 -1 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 kg P 21 b 1500 0 0 0 1714 571 2860 400 0 5 395 0 200 200 0 0 0 0 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 kh P 13 a 1500 0 0 0 1225 510 2040 4.10 405 5 0 0 250 250 0 0 0 0 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 kh P 17 a 3750 0 0 0 1330 330 2000 265 263 2 0 0 375 75 0 0 300 0 30 pa P 100 0 30 0 0 1000 500 2000 200 191 9 0 0 400 200 0 0 200 0 31 kh P 20 b 375 0 0 0 2250 1200 2700 1510 1385 25 100 0 1250 625 500 0 125 0 31 pa P 126 0 75 150 0 1800 1200 2000 900 225 0 675 0 500 500 0 0 0 0 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 kg P 20 a 650 0 0 0 1200 1000 1500 1200 140 40 1020 0 3750 1250 0 0 2500 0 32 kh P 20 a 650 0 0 0 1200 1000 500 1200 140 40 1020 0 -1 -1 -1 -1 -1 -1 32 pa P 100 0 80 170 0 1670 560 2000 1000 0 30 970 0 1500 750 0 0 0 750 33 kg P 17 b 6250 0 0 0 1330 670 2000 133 132 1 0 0 225 75 0 0 150 0 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34 kh P 40 b 6000 0 0 0 1200 800 1600 200 195 5 0 0 -1 -1 -1 -1 -1 -1 34 pa P 133 b 5000 0 40 0 1000 665 1665 200 175 25 0 0 -1 -1 -1 -1 -1 -1 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36 kg P 67 b 2280 150 150 0 2220 1480 2960 1555 1510 45 0 0 1000 1000 0 0 0 0 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 37 kh P 30 b 9999 0 0 0 2400 800 3200 430 475 5 0 0 750 250 0 0 500 0 37 Pa P 125 0 38 53 0 1250 0 2500 125 113 12 0 0 250 250 0 0 0 0 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38 kh P 49 0 30 100 0 3450 2960 3945 2590 2340 250 0 0 750 750 0 0 0 0 38 pa P 150 a 300 75 75 0 1500 800 2250 1020 300 100 620 0 -1 -1 -1 -1 -1 -1 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 39 kh P 20 0 0 0 0 830 600 1200 1690 680 70 940 0 -1 -1 -1 -1 -1 -1 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 kh P 20 b 1824 0 0 0 800 400 1200 1400 1365 35 0 0 4250 500 0 0 3750 0 40 pa P 100 0 0 175 0 1410 350 2000 820 205 60 555 0 -1 -1 -1 -1 -1 -1 41 kh P 20 b 5360 0 0 0 1500 300 2000 1050 1035 15 0 0 1500 500 0 0 1000 0 41 pa P 130 0 50 125 0 1530 510 2040 610 340 50 220 0 750 250 0 0 0 500 42 ke P 30 b 3810 0 0 0 1200 800 2000 190 185 5 0 0 500 125 0 0 375 0 42 pa P 100 0 90 90 0 1260 1010 2015 680 270 55 355 0 1000 0 0 0 1000 0 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 43 kh P 20 b 5000 0 0 0 1330 1270 2000 665 645 20 0 0 1625 625 0 0 1000 0 43 pa P 100 0 75 165 0 1200 800 2000 815 680 70 65 0 1125 750 0 0 375 0 44 kh P 22 b 4280 0 0 0 570 430 710 400 200 0 200 0 750 750 0 0 0 0 44 pa P 90 0 0 140 0 430 285 570 300 140 60 100 0 250 250 0 0 0 0 233 FARM DATA SET 4: CROP YIErZIS AND INPUTS pvjc 11 Third crop (pre-monsoon crop or winter relayed crop) ID info Inputs kg/ha Yields kg/ha —TotalUse of Seed kg/yr —TotalUse of Residue kg/yr FarmrRotn Seed Compost Fertilizer — Seed Home NxtyrSold F-xchgRisidAnimlFuel Sold Com- Roof /SPSSCode SeasoAmounType Amt Urea OxiplCtherAvrerYPcorY^cndYkg/yrCtons Seed Marke kg/yrFeed Wood Farmspont Tlintcti 45 kh P 20 a 2030 0 0 0 1500 500 1800 345 330 15 0 0 -1 -1 -1 -1 -1 -1 45 pa P 175 0 30 30 0 2000 1000 2500 280 260 20 0 0 150 0 0 0 0 150 46 kh P 23 b 2000 0 0 0 1090 360 1270 820 410 20 390 0 2000 500 0 0 1500 0 46 pa P 150 0 0 210 0 1200 500 1500 840 410 100 330 0 750 500 0 0 250 0 47 kh P 25 0 0 0 0 225 150 450 300 266 34 0 0 875 250 0 0 625 0 47 pa P 300 0 25 100 0 820 680 1360 410 0 150 260 0 125 0 0 0 125 0 48 kg P 40 b 9990 0 0 0 2270 1810 2720 680 545 15 120 0 750 750 0 0 0 0 48 pa P 45 b 6250 0 0 0 1450 1700 2040 545 0 20 525 0 -1 -1 -1 -1 -1 -1 49 kh P 24 b 7500 0 0 0 1190 390 1700 475 465 10 0 0 -1 -1 -1 -1 -1 -1 49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 kh P 25 b 5360 0 0 0 580 290 680 410 375 35 0 0 -1 -1 -1 -1 -1 -1 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 51 kh P 30 b 4170 0 0 0 600 400 1000 240 225 15 0 0 1500 500 0 0 1000 0 51 pa P 90 0 330 330 0 1000 600 1800 300 200 30 70 0 125 0 0 0 0 125 52 kh P 20 a 3570 0 0 0 400 200 500 280 265 15 0 0 2000 500 0 0 1500 0 52 pa P 100 0 670 0 0 1130 890 1330 680 620 60 0 0 375 200 0 0 0 175 53 kg P 20 a 3800 0 0 0 850 500 1000 1150 866 14 270 0 1250 625 0 0 625 0 53 kh P 20 b 3800 0 0 0 850 500 1000 1150 866 14 270 0 1250 625 0 0 625 0 53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 54 kg P 24 b 2680 35 0 0 700 500 900 70 67 3 0 0 625 250 0 0 375 0 54 kh P 24 b 2680 35 0 0 700 500 900 490 470 20 0 0 -1 -1 -1 -1 -1 -1 54 pa P 40 0 70 140 0 2000 1000 3000 200 135 5 60 0 -1 -1 -1 -1 -1 -1 54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 55 kg P 17 a 715 0 0 0 1000 800 1250 720 500 15 205 0 800 800 0 0 0 0 55 kh P 17 b 715 0 0 0 1000 800 1250 400 390 10 0 0 450 450 0 0 0 0 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 56 kh P 25 0 0 0 0 300 200 400 390 390 0 0 0 1750 750 0 0 1000 0 57 kg P 24 b 3570 0 0 0 1000 800 1200 700 680 20 0 0 1625 750 0 0 875 0 57 pa P 100 0 100 400 0 820 270 1090 410 140 50 220 0 375 50 0 0 0 325 58 kg P 20 b 2500 0 0 0 826 680 1090 410 130 10 270 0 1000 500 0 0 500 0 58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 59 kg P 20 a 2680 0 0 0 750 250 900 375 120 10 245 0 130 180 0 0 0 0 59 kh P 20 a 2680 0 0 0 750 250 900 675 220 20 435 0 320 320 0 0 0 0 59 I» P 127 0 35 35 0 730 180 910 550 455 95 0 0 5000 0 0 0 0 5000 60 kg P 15 a 1900 0 0 0 1000 800 1600 670 0 10 660 0 600 0 0 5000 100 0 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 61 kh P 14 a 3070 0 0 0 730 270 910 510 495 15 0 0 700 0 0 0 750 0 61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 62 kh P 21 b 3950 0 0 0 1050 530 1500 1345 1025 35 270 15 1250 1250 0 0 0 0 63 kg P 15 b 3750 0 0 0 700 400 900 430 420 10 0 0 -1 -1 -1 -1 -1 -1 63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 64 kg P 27 0 0 0 0 1090 820 1360 545 545 15 0 0 -1 -1 -1 -1 -1 -1 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 65 kh P 21 b 3125 0 0 0 330 165 495 280 190 20 70 0 -1 -1 -1 -1 -1 65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 65 Pd P 10 0 50 100 0 300 240 350 150 0 5 145 0 125 0 0 0 125 0 66 kh P 15 a 7500 0 0 0 1020 816 1530 670 660 10 0 0 625 250 0 0 375 0 66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 67 kh P 20 a 3750 0 0 0 510 200 1020 680 653 27 0 0 750 750 0 0 0 0 67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 34 FARM DATA SET 4: CROP YIELDS AND INPUTS page 12 Third crop (pre-monsoon crop or winter relayed crop) ID info Inputs kg/ha Yields kg/ha —TotalUse of Seed kg/yr —TotalUrse of Residue kg/yr FarmrRotn Seed Compost Fertilizer Seed Home NxtyrSold ExchgResidAnimlFuel Sold Com- Roof /SPSSCode SeasoAmounType Amt Urea CCTipl0therAverYPoorYGoodYkg/yrCon3 Seed Marke kg/yrFeed Wood Farmspost Thatch 69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 72 kh P 15 a 4500 0 150 0 1220 820 1430 370 365 5 0 0 625 500 0 0 125 0 73 kh P 24 b 2000 0 0 0 1460 870 1820 1460 0 25 1435 0 2000 1500 0 0 500 0 73 ki P 18 b 2500 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 74 kk P 20 0 0 0 180 930 0 1070 1300 850 30 420 0 200 200 0 0 0 0 74 Pi P 75 0 0 0 0 0 0 0 0 -1 -1 -1 -1 9999 0 0 0 9999 0 74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 75 kh P 40 0 10 50 0 2960 740 5920 1480 1440 40 0 0 750 750 0 0 0 0 75 Fd P 9 0 30 90 0 240 175 295 200 100 8 92 0 625 625 0 0 0 0 76 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 235 APPENDIX & SUMMARIES OF SENSITIVITY ANALYSIS BASELINE OR AVERAGE CONDITIONS SUMMARIES FOR CR0PPIN6 ROTATIONS kc kd Basis of 1 ha of r o t a t i o n 1.0 1.0 Cropping P r o f i t Margin: Total crop incose (Rs) 9650 6170 Total Costs (Rs) 4963 3364 Gross Margin (Rs) 4687 2806 Selected Resource Requiresents: Land: i r r i g a t e d 'khet' iha) 1.0 1.0 n o n i r r i g a t e d 'pakho' (ha) 0.0 0.0 Labor: san days (ad) 70 51 woaan days (Md) 107 94 Poser: b u l l o c k days (bd) 42 24 C a p i t a l : operating (Rs) 934 264 SCENARIO: 100 average p r i c e s and average y i e l d s assuied SUMMARIES FOR CROPPING ROTATIONS kc kd Basis of 1 ha of r o t a t i o n 1.0 1.0 Cropping P r o f i t Margin: Total crop incose (Rs) 9650 6170 Total Costs (Rs) 4963 3364 Gross Margin (Rs) 4687 2806 Selected Resource Requiresents: Land: i r r i g a t e d 'khet' (ha) 1.0 1.0 n o n i r r i g a t e d 'pakho' (ha) 0.0 0.0 Labor: san days (ad) 70 51 Hosan days (wd) 107 94 Power: b u l l o c k days (bd) 42 24 C a p i t a l : o p e r a t i n g (Rs) 934 264 I CHANGES FROM BASELINE kc kd Cropping P r o f i t Margin: Total crop incoae (Rs) 0.0 0.0 Total Costs (Rs) 0.0 0.0 Gross Margin (Rs) 0.0 0.0 Selected Resource Requiresents: Land: i r r i g a t e d 'khet' (ha) 0.0 0.0 n o n i r r i g a t e d 'pakho' (ha) Labor: san days (ad) 0.0 0.0 woean days (wd) 0.0 0.0 Power: b u l l o c k days (bd) 0.0 0.0 C a p i t a l : operating (Rs) 0.0 0.0 kg kh PC pd pa Pi 1.0 1.0 1.0 1.0 1.0 1.0 10380 11400 6573 7293 26398 8253 6650 6429 3333 3675 8409 4033 3730 4971 3240 3618 17989 4220 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 1.0 0.0 84 85 37 40 69 47 160 150 72 84 169 92 48 60 36 36 48 36 1168 1086 728 753 3174 728 kg kh PC pd pa Pi 1.0 1.0 1.0 1.0 1.0 1.0 10380 11400 6573 7293 26398 8253 6650 6429 • J 7 7 7 3675 8409 4033 3730 4971 3240 3618 17989 4220 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 1.0 0.0 84 85 37 40 69 47 160 150 72 84 169 92 48 60 36 36 48 36 1168 1086 728 753 3174 728 kg kh PC pd pa Pi 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ZCHANBES DF ASSUMPTIONS:INPUT COSTS (Rs per unit) used in aver high low analysis low high tractor rental /hour 150 200 100 150 -33.3 33.3 bullock t e a i rental /day 30 50 25 30 -16.7 66.7 labor hire/ianday (id) 20 30 15 20 -25.0 50.0 labor hire/ttonanday ( M d ) 15 25 10 15 . -33.3 66.7 urea f e r t i l i z e r /kg 3.5 3.8 2.8 3.5 -20.0 8.6 couples f e r t i l i z e r /kg 3.3 3.7 2.7 3.3 -18.2 12.1 ituriate of potash /kg 1.6 1.0 1.6 -37.5 ERR pesticide /bottle 50 22 50 -56.0 -100.0 food for labor /day 7 10 5 7 -28.6 42.9 yearly tax /ha 100 100 -100.0 -100.0 i r r i g a t i o n cost/ha 35 60 0 35 -100.0 71.4 CROP PRICES (Rs per kg) used i n Crop average high low analysis r i c e 1 2.50 3.25 2.35 2.50 -6.0 30.0 r i c e e 2.00 2.60 1.80 2.00 -10.0 30.0 itaize 2.10 3.00 1.80 2.10 -14.3 42.9 •ustard 7.50 11.00 6.50 7.50 -13.3 46.7 wheat 2.00 3.00 1.80 2.00 -10.0 50.0 potato 3.00 4.50 1.25 3.00 -58.3 50.0 l e n t i l 2.40 2.70 2.00 2.40 -16.7 12.5 soybean 5.00 6.00 4.00 5.00 -20.0 20.0 fuelwood (Rs/25kg) 10.00 15.00 5.00 10.00 -50.0 50.0 CROP YIELDS (kg/ha) used in Crop average good poor analysis r i c e 1 2180 3500 1500 2180 -31.2 60.6 r i c e e 2340 3300 1600 2340 -31.6 41.0 •aire 1 1550 1950 970 1380 -37.4 25. B •aize e 1200 1460 560 1200 -53.3 21.7 Bustard k 560 790 250 560 -55.4 41.1 •ustard p 490 660 270 490 -44.9 34.7 wheat k 1590 2030 890 1590 -44.0 27.7 wheat p 1250 1810 660 1250 -47.2 44.8 potato 7000 9500 3500 7000 -50.0 35.7 l e n t i l 300 670 175 300 -41.7 123.3 fuelwood consunptn 4200 13500 625 4200 -85.1 221.4 TABLE 5. : SUMMARY OF SENSITIVITY ANALYSIS BASELINE OR AVERAGE CONDITIONS SUMMARIES FOR CROPPING ROTATIONS B a s i s of 1 ha of r o t a t i o n C r o p p i n g P r o f i t M a r g i n : T o t a l c r o p i n c o a e (Rs) T o t a l C o s t s (Rs) B r o s s M a r g i n (Rs) S e l e c t e d Resource R e q u i r e m e n t s : Land: i r r i g a t e d 'khet' (ha) n o n i r r i g a t e d 'pakho' (ha) La b o r : f a n days ( i d ) Noaan days (ltd) Power: b u l l o c k days (bd) C a p i t a l : o p e r a t i n g (Rs) SCENARIO: 101 IOH p r i c e s and a v e r a g e y i e l d s a s s u a e d SUMMARIES FOR CROPPING ROTATIONS kc kd kg B a s i s of 1 ha of r o t a t i o n 1.0 1.0 1.0 C r o p p i n g P r o f i t M a r g i n : T o t a l c r o p i n c o a e (Rs) 8763 5723 9234 T o t a l C o s t s (Rs) 4936 3353 6608 B r o s s M a r g i n (Rs) 3827 2370 2626 S e l e c t e d Resource R e q u i r e a e n t s : Land: i r r i g a t e d 'khet' (ha) 1.0 1.0 1.0 n o n i r r i g a t e d 'pakho' (ha) 0.0 0.0 0.0 Labor: aan days (ad) 70 51 84 Hocan days (wd) 107 94 160 Power: b u l l o c k days (bd) 42 24 48 C a p i t a l : o p e r a t i n g (Rs) 934 264 1168 7. CHANGES FROM BASELINE kc kd kg C r o p p i n g P r o f i t M a r g i n : T o t a l c r o p i n c o a e (Rs) -9.2 -7.2 -11.0 T o t a l C o s t s (Rs) -0.5 -0.3 -0.6 B r o s s M a r g i n (Rs) -18.4 -15.5 -29.6 S e l e c t e d Resource R e q u i r e a e n t s : Land: i r r i g a t e d 'khet' (ha) 0.0 0.0 0.0 n o n i r r i g a t e d 'pakho' (ha) Labor: aan days (ad) 0.0 0.0 0.0 ttoaan days (wd) 0.0 0.0 0.0 PoMer: b u l l o c k days (bd) 0.0 0.0 0.0 C a p i t a l : o p e r a t i n g (Rs) 0.0 0.0 0.0 kc kd kg 1.0 1.0 1.0 9650 6170 10380 4963 3364 6650 4687 2806 3730 1.0 1.0 1.0 0.0 0.0 0.0 70 51 84 107 94 160 42 24 48 934 264 1168 23 7 kh PC pd pa p i 1.0 1.0 1.0 1.0 1.0 11400 6573 7293 26398 8253 6429 3333 3675 8409 4033 4971 3240 3618 17989 4220 1.0 0.0 0.0 0.0 1.0 0.0 1.0 1.0 1.0 0.0 85 37 40 69 47 150 72 84 169 92 60 36 36 48 36 1086 728 753 3174 728 kh PC pd pa P i 1.0 1.0 1.0 1.0 1.0 10012 5669 6269 13484 6509 6391 3304 3641 7430 4004 3621 2365 2628 6054 2505 1.0 0.0 0.0 0.0 1.0 0.0 1.0 1.0 . 1.0 0.0 85 37 40 69 47 150 72 84 169 92 60 36 36 48 36 1086 728 753 2229 728 kh PC pd pa P i -12.2 -13.8 -14.0 -48.9 -21.1 -0.6 -0.9 -0.9 -11.6 -0.7 -27.2 -27.0 -27.4 -66.3 -40.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -29.8 0.0 TABLE 5.._: SUMMARY OF SENSITIVITY ANALYSIS BASELINE OR AVERAGE CONDITIONS 238 SUMMARIES FOR CROPPING ROTATIONS kc kd kg kh • PC pd pa Pi Basis of 1 ha of r o t a t i o n 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Cropping P r o f i t Margin: Total crop incose (Rs) 9650 6170 10380 11400 6573 7293 26398 7933 Total Costs (Rs) 4963 3364 6650 6429 3333 3675 8409 4033 6ross Margin (Rs) 4687 2806 3730 4971 3240 3618 17989 3900 Selected Resource Requirements: Land: i r r i g a t e d 'khet' (ha) 1.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 no n i r r i g a t e d 'pakho' (ha) 0.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 Labor: ian days (id) 70 51 84 85 37 40 '69 47 wosan days (wd) 107 94 160 150 72 84 169 92 Power: bullock days (bd) 42 24 48 60 36 36 48 36 C a p i t a l : operating (Rs) 934 264 1168 1086 728 753 3174 728 SCENARIO: 102 high p r i c e s and average y i e l d s assuied SUMMARIES FOR CROPPING ROTATIONS kc kd kg kh pc pd pa Pi Basis of 1 ha of r o t a t i o n 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Cropping P r o f i t Margin: Total crop incose (Rs) 13245 7895 14454 15844 9530 10340 39390 12050 Total Costs (Rs) 5066 3401 6824 6552 3432 3776 9368 4132 Gross Margin (Rs) 8179 4494 7630 9292 6098 6564 30022 7918 Selected Resource Requiresents: Land: i r r i g a t e d 'khet' (ha) 1.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 n o n i r r i g a t e d 'pakho' (ha) 0.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 Labor: san days (ad) 70 51 84 85 37 40 69 47 wosan days (wd) 107 94 160 150 72 84 169 92 Power: bullock days (bd) 42 24 48 60 36 36 48 36 C a p i t a l : operating (Rs) 934 264 1168 1086 728 753 3984 728 X CHANGES FROM BASELINE kc kd kg kh PC pd pa Pi Cropping P r o f i t Margin: Total crop incose (Rs) 37.3 2B.0 39.2 39.0 45.0 41.8 49.2 51.9 Total Costs (Rs) 2.1 1.1 2.6 1.9 3.0 2.8 11.4 2.4 Gross Margin (Rs) 74.5 60.2 104.6 86.9 88.2 81.4 66.9 103.0 Selected Resource Requirements: Land: i r r i g a t e d 'khet' (ha) 0.0 0.0 0.0 0.0 0.0 n o n i r r i g a t e d 'pakho' (ha) Labor: san days (ad) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 wosan days (wd) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Power: bullock days (bd) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C a p i t a l : operating (Rs) 0.0 0.0 0.0 0.0 0.0 0.0 nc c / J . J 0.0 TABLE 5. : SUMMARY OF SENSITIVITY ANALYSIS 239 BASELINE OR AVERASE CONDITIONS SUMMARIES FOR CROPPING ROTATIONS kc kd kg kh pc pd pa pi Basis of 1 ha of r o t a t i o n 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Cropping P r o f i t Margin: Total crop i n c o i e (Rs) 9650 6170 10380 11400 6573 7293 26398 8253 Total Costs (Rs) 4963 3364 6650 6429 T7T7 O J J J 3675 8409 4033 Gross Margin (Rs) 4687 2806 3730 4971 3240 3618 17989 4220 lected Resource Requireaents: Land: i r r i g a t e d 'khet' (ha) 1.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 n o n i r r i g a t e d 'pakho' (ha) 0.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 Labor: tan days ( i d ) 70 51 84 85 37 40 69 47 woaan days ( M d ) 107 94 160 150 72 B4 169 92 Power: bullock days (bd) 42 24 48 60 36 36 48 36 C a p i t a l : operating (Rs) 934 264 1168 10B6 728 753 3174 728 SCENARIO: 103 average p r i c e s and low y i e l d s assuaed SUMMARIES FOR CROPPING ROTATIONS kc kd kg kh pc pd pa pi Basis of 1 ha of r o t a t i o n 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Cropping P r o f i t Margin: Total crop incoae (Rs) 5625 4170 6156 6251 4062 4482 13857 4312 Total Costs (Rs) 4963 3364 6650 6429 3333 3675 8409 4033 Gross Margin (Rs) 662 806 -494 -178 729 807 5448 279 lected Resource Requireaents: Land: i r r i g a t e d 'khet' (ha) 1.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 n o n i r r i g a t e d 'pakho' (ha) 0.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 Labor: aan days (ad) 70 51 84 85 37 40 69 47 woaan days (wd) 107 94 160 150 72 84 169 92 Power: bullock days (bd) 42 24 48 60 36 36 48 36 C a p i t a l : operating (Rs) 934 264 1168 1086 728 753 3174 728 1 CHANGES FROM BASELINE kc kd kg kh PC pd pa Pi Cropping P r o f i t Margin: Total crop incoae (Rs) -41.7 -32.4 -40.7 -45.2 -38.2 -38.5 -47.5 -47.8 Total Costs (Rs) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Gross Margin (Rs) -85.9 -71.3 -113.3 -103.6 -77.5 -77.7 -69.7 -93.4 Selected Resource Requireaents: Land: i r r i g a t e d 'khet' (ha) 0.0 0.0 0.0 0.0 0.0 n o n i r r i g a t e d 'pakho' (ha) Labor: aan days (ad) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 woaan days (wd) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Power: bullock days (bd) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C a p i t a l : operating (Rs) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 TABLE 5...: SUMMARY OF SENSITIVITY ANALYSIS BASELINE OR AVERAGE CONDITIONS SUMMARIES FOR CROPPING ROTATIONS kc kd kg kh PC Pd pa P i B a s i s Df 1 ha of r o t a t i o n 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Cropping P r o f i t Margin: Total crop i n c o a e (Rs) 9650 6170 10380 11400 6573 7293 26398 8253 To t a l Costs (Rs) 4963 3364 6650 6429 3333 3675 8409 4033 Gross Margin (Rs) 46B7 2806 3730 4971 3240 3618 17989 4220 S e l e c t e d Resource R e q u i r e s e n t s : Land: i r r i g a t e d 'khet' (ha) 1.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 n o n i r r i g a t e d 'pakho' (ha) 0.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 Labor: san days ( i d ) 70 51 84 85 37 40 69 47 wosan days (wd) 107 94 .160 150 72 84 169 92 Power: b u l l o c k days (bd) 42 24 48 60 36 36 48 36 C a p i t a l ; o p e r a t i n g (Rs) 934 264 1168 1086 728 753 3174 728 SCENARIO: 104 average p r i c e s and h i g h y i e l d s assumed SUMMARIES FOR CROPPING ROTATIONS ' kc kd kg kh PC Pd pa P i B a s i s of 1 ha of r o t a t i o n 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Cropping P r o f i t Margin: T o t a l crop i n c o s e (Rs) 14675 10358 13726 15591 9045 10653 36215 14445 T o t a l C o s t s (Rs) 4963 3364 6650 6429 3675 8409 4033 Gross Margin (Rs) 9712 6994 7076 9162 5712 6978 27806 10412 S e l e c t e d Resource R e q u i r e s e n t s : Land: i r r i g a t e d 'khet' (ha) 1.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 n o n i r r i g a t e d 'pakho' (ha) 0.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 Labor: san days (ad) 70 51 84 85 37 40 69 47 wosan days (wd) 107 94 160 150 72 84 169 92 Power: b u l l o c k days (bd) 42 24 48 60 36 36 4B 36 C a p i t a l : o p e r a t i n g (Rs) 934 264 1168 1086 728 753 3174 728 1 CHANGES FROM BASELINE kc kd kg kh PC Pd pa p i Cropping P r o f i t Margin: T o t a l crop i n c o s e (Rs) 52.1 67.9 32.2 36.8 37.6 46.1 37.2 75.0 T o t a l Costs (Rs) 0.0 0,0 0.0 0.0 0.0 0.0 0.0 0.0 Gross Margin (Rs) 107.2 149.3 89.7 84.3 76.3 92.9 54.6 146.7 S e l e c t e d Resource R e q u i r e s e n t s : Land: i r r i g a t e d 'khet' (ha) 0.0 0.0 0.0 0.0 0.0 n o n i r r i g a t e d 'pakho' (ha) Labor: san days (sd) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 wosan days (wd) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Power: b u l l o c k days (bd) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C a p i t a l : o p e r a t i n g (Rs) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 TABLE 5. : SUMMARY OF SENSITIVITY ANALYSIS 241 BASELINE OR AVERAGE CONDITIONS SUMMARIES FOR CROPPING ROTATIONS B a s i s of 1 ha of r o t a t i o n C r o p p i n g P r o f i t M a r g i n : T o t a l c r o p i n c o a e (Rs) T o t a l C o s t s (Rs) Gro s s M a r g i n (Rs) S e l e c t e d Resource R e q u i r e m e n t s : Land: i r r i g a t e d 'khet' (ha) n o n i r r i g a t e d 'pakho' (ha) L a b o r : aan days (ad) Moian days (wd) Power: b u l l o c k days (bd) C a p i t a l : o p e r a t i n g (Rs) SCENARIO: 105 average p r i c e s , f e r t i l i z e r SUMMARIES FOR CROPPING ROTATIONS B a s i E of 1 ha of r o t a t i o n C r o p p i n g P r o f i t M a r g i n : T o t a l c r o p i n c o a e (Rs) T o t a l C o s t s (Rs) G r o s s M a r g i n (Rs) S e l e c t e d Resource R e q u i r e a e n t s : Land: i r r i g a t e d 'khet' (ha) n o n i r r i g a t e d 'pakho' (ha) L a b o r : aan days (ad) woaan days (wd) Power: b u l l o c k days (bd) C a p i t a l : o p e r a t i n g (Rs) I CHANGES FROM BASELINE C r o p p i n g P r o f i t M a r g i n : T o t a l c r o p i n c o a e (Rs) T o t a l C o s t s (Rs) 6 r o s s M a r g i n (Rs) S e l e c t e d Resource R e q u i r e a e n t s : . Land: i r r i g a t e d 'khet' (ha) n o n i r r i g a t e d 'pakho' (ha) La b o r : aan days (ad) woaan days (wd) Power: b u l l o c k days (bd) C a p i t a l : o p e r a t i n g (Rs) kc kd kg kh PC pd pa P i 1.0 1.0 1.0 1.0 1.0 . 1.0 1.0 1.0 9650 6170 10380 11400 6573 7293 26398 8253 4963 3364 6650 6429 3333 3675 8409 4033 4687 2806 3730 4971 3240 3618 17989 4220 1.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 70 51 84 85 37 40 69 47 107 94 160 150 72 84 169 92 42 24 48 60 36 36 48 36 934 264 1168 1086 728 753 3174 728 >e d o u b l e d and 30! i n c r e a s e d y i e l d s a s s u a e d kc kd kg kh PC pd pa P i 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 12545 8021 13494 14820 9009 9945 3 4 7 8 1 ^ 11193 5433 3389 7818 7289 3B36 4202 9737 4536 7112 4632 5676 7531 5173 5743 25044 6657 1.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 70 51 84 85 37 40 69 47 107 94 160 150 72 84 169 92 42 24 48 60 36 36 48 36 1404 288 2335 1946 1231 1280 4502 1231 kc kd kg kh PC pd pa P i 30.0 30.0 30.0 30.0 37.1 36.4 31.8 35.6 9.5 0.7 17.6 13.4 15.1 14.4 15.8 12.5 51.7 65.1 52.2 51.5 59.7 58.7 39.2 57.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 50.3 9.3 100.0 79.3 69.1 70.1 41.9 69.1 TABLE 5. : SUMMARY OF SENSITIVITY ANALYSIS BASELINE OR AVERAGE CONDITIONS SUMMARIES FOR CROPPING ROTATIONS kc kd Basis of 1 ha of r o t a t i o n 1.0 1.0 Cropping P r o f i t Margin: Total crop incose (Rs) 9650 6170 Total Costs (Rs) 4963 3364 Gross-Margin (Rs) 4687 2806 Selected Resource Requiresents: Land: i r r i g a t e d 'khet' (ha) 1.0 1.0 n o n i r r i g a t e d 'pakho' (ha) 0.0 0.0 Labor: san days (sd) 70 51 Hosan days (wd) 107 94 Power: bullock days (bd) 42 24 C a p i t a l : operating (Rs) 934 264 SCENARIO: 106 average p r i c e s , p r i c e of labour i n c r e a s e d 50X SUMMARIES FOR CROPPING ROTATIONS kc kd Basis of 1 ha of r o t a t i o n 1.0 1.0 Cropping P r o f i t Margin: Total crop incose (Rs) 9650 6170 Total Costs !Rs) 6306 4499 Gross Margin (Rs) 3344 1671 Selected Resource Requiresents: Land: i r r i g a t e d 'khet' (ha) 1.0 1.0 n o n i r r i g a t e d 'pakho' (ha) 0.0 0.0 Labor: san days (ad) 70 51 wosan days (wd) 107 94 Power: bullock days (bd) 42 24 C a p i t a l : operating (Rs) 934 264 7. CHANGES FROM BASELINE kc kd Cropping P r o f i t Margin: Total crop i n c o s e (Rs) 0.0 0.0 Total Costs (Rs) 27.1 33.8 Gross Margin (Rs) -28.7 -40.5 Selected Resource Requiresents: Land: i r r i g a t e d 'khet' (ha) 0.0 0.0 n o n i r r i g a t e d 'pakho' (ha) Labor: san days (sd) 0.0 0.0 wosan days (wd) 0.0 0.0 Power: bullock days (bd) 0.0 0.0 C a p i t a l : operating (Rs) 0.0 0.0 2 4 2 kh PC pd pa Pi 1.0 1.0 1.0 1.0 1.0 1.0 10380 11400 6573 7293 26398 8253 6650 6429 3333 3675 8409 4033 3730 4971 3240 3618 17989 4220 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 1.0 0.0 84 85 37 40 69 47 160 150 72 84 169 92 48 60 36 36 48 36 1168 1086 728 753 3174 728 and average y i e l d s assused kg kh PC pd pa Pi 1.0 1.0 1.0 1.0 1.0 1.0 10380 11400 6573 7293 26398 8253 8522 8182 4109 4577 10221 5179 1858 3218 2464 2716 16177 3074 1.0 1.0 0.0 0.0 0.0 1.0 0.0 .0.0 1.0 1.0 1.0 0.0 84 85 37 40 69 47 160 150 72 84 169 92 48 60 36 • 36 48 36 1168 1086 728 753 3174 728 kg kh PC Pd pa Pi 0.0 0.0 0.0 0.0 0.0 0.0 28.1 27.3 23.3 24.6 21.6 28.4 -50.2 -35.3 -24.0 -24.9 -10.1 -27.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 TABLE 5. : SUMMARY OF SENSITIVITY ANALYSIS BASELINE OR AVERASE CONDITIONS 2 4 3 SUMMARIES FOR CROPPING ROTATIONS kc kd kg kh PC pd pa pi Basis of 1 ha of rotation 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Cropping Profit Margin: Total crop income (Rs) 9650 6170 10380 11400 6573 7293 2639B 8253 Total Costs (Rs) 4963 3364 6650 6429 3333 3675 8409 4033 Gross Margin (Rs) 46B7 2806 3730 4971 3240 3618 17989 4220 Selected Resource Requirements: Land: irrigated 'khet' (ha) 1.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 nonirrigated 'pakho' (ha) 0.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 Labor: ian days (id) 70 51 84 85 37 40 69 47 woman days <Nd) 107 94 160 150 72 84 169 92 Power: bullock days (bd) 42 24 48 60 36 36 48 36 Capital: operating (Rs) 934 264 1168 1086 728 753 3174 728 SCENARIO: 107 average prices, price of bullock hire increased 50% and 1 average yields assumed SUMMARIES FOR CROPPING ROTATIONS kc kd kg kh PC pd pa Pi Basis of 1 ha Df rotation 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Cropping Profit Margin: Total crop income (Rs) 9650 6170 10380 11400 6573 7293 26398 8253 Total Costs (Rs) 5278 3544 7010 6879 3603 3945 8769 4303 Gross Margin (Rs) 4372 2626 3370 4521 2970 3348 17629 3950 Selected Resource Requirements: Land: irrigated 'khet' (ha) 1.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 nonirrigated 'pakho' (ha) 0.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 Labor: nan days (md) 70 51 84 85 37 40 6? 47 woman days (wd) 107 94 160 150 72 84 16? 92 Power: bullock days (bd) 42 24 48 60 36 36 48 36 Capital: operating (Rs) 934 264 1168 1086 728 753 3174 728 X CHANGES FROM BASELINE kc kd kg kh PC pd pa Pi Cropping Profit Margin: Total crop income (Rs) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Costs (Rs) 6.3 5.4 5.4 7.0 8.1 7.3 4.3 6.7 Gross Margin (Rs) -6.7 -6.4 -9.7 -9.1 -8.3 -7.5 -2.0 -6.4 Selected Resource Requirements: Land: irrigated 'khet' (ha) 0.0 0.0 0.0 0.0 0.0 nonirrigated 'pakho' (ha) Labor: nan days (md) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 woman days (wd) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Power: bullock days (bd) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Capital: operating (Rs) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 TABLE 5.__: SUMMARY OF SENSITIVITY ANALYSIS BASELINE OR AVERAGE CONDITIONS SUMMARIES FOR CROPPING ROTATIONS kc kd kg kh pc pd pa B a s i s of 1 ha of r o t a t i o n 1.0 1.0 1.0 1.0 1.0 1.0 1.0 C r o p p i n g P r o f i t M a r g i n : T o t a l c r o p i n c o a e (Rs) 9650 6170 10380 11400 6573 7293 26398 T o t a l C o s t s (Rs) 4963 3364 6650 6429 3333 3675 8409 G r o s s M a r g i n (Rs) 4687 2806 3730 4971 3240 361B 17989 l e c t e d R e s o u r c e R e q u i r e s e n t s : Land: i r r i g a t e d 'khet' (ha) 1.0 1.0 1.0 1.0 0.0 0.0 0.0 n o n i r r i g a t e d 'pakho' (ha) 0.0 0.0 0.0 0.0 1.0 1.0 1.0 L a b o r : aan days ( i d ) 70 51 84 85 37 40 69 Moaan d a y s < H d ) 107 94 160 150 72 84 169 Power: b u l l o c k days (bd) 42 24 48 60 36 36 48 C a p i t a l : o p e r a t i n g (Rs) 934 264 1168 1086 728 753 3174 SCENARIO: 108 average p r i c e s , p e s t i c i d e s . f o r l u s t a r d r e q i r e d t o l a i n t a i n a v e r a g e y i e l d s a s s u a e d SUMMARIES FOR CROPPING ROTATIONS kc kd kg kh PC pd pa B a s i s of 1 ha of r o t a t i o n 1.0 1.0 1.0 1.0 1.0 1.0 1.0 C r o p p i n g P r o f i t M a r g i n : T o t a l c r o p i n c o a e (Rs) 9650 6170 10380 11400 6573 7293 26398 T o t a l C o s t s (Rs! 5063 3364 6650 6529 3433 3775 8409 G r o s s M a r g i n (Rs) 4587 2806 3730 4871 3140 3518 17989 S e l e c t e d R e s o u r c e R e q u i r e a e n t s : Land: i r r i g a t e d 'khet' (ha) 1.0 1.0 1.0 1.0 0.0 0.0 0.0 n o n i r r i g a t e d 'pakho' (ha) 0.0 0.0 0.0 0.0 1.0 1.0 1.0 Lab o r : san days (ad) 70 51 84 85 37 40 69 Hoaan days (wd) 107 94 160 150 72 84 169 Power: b u l l o c k days (bd) 42 24 48 60 36 36 48 C a p i t a l : o p e r a t i n g (Rs) 934 264 1168 1086 728 753 3174 X CHANGES FROM BASELINE kc C r o p p i n g P r o f i t M a r g i n : T o t a l c r o p i n c o a e (Rs) 0.0 T o t a l C o s t s (Rs) 2.0 G r o s s M a r g i n (Rs) -2.1 S e l e c t e d R e s o u r c e R e q u i r e a e n t s : Land: i r r i g a t e d 'khet' (ha! 0.0 n o n i r r i g a t e d 'pakho' (ha) L a b o r : can days (ad) 0.0 woaan days (wd) 0.0 Power: b u l l o c k days (bd) 0.0 C a p i t a l : o p e r a t i n g (Rs) 0.0 kd kg kh PC pd pa 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 3.0 2.7 0.0 0.0 0.0 -2.0 -3.1 -2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2 4 4 Pi 1.0 8253 4033 4220 1.0 0.0 47 92 36 728 Pi 1.0 8253 4133 4120 1.0 0.0 47 92 36 728 Pi 0.0 2.5 -2.4 0.0 0.0 0.0 0.0 0.0 TABLE 5. I SUMMARY OF SENSITIVITY ANALYSIS 245 BASELINE OR AVERA6E CONDITIONS SUMMARIES FOR CROPPINB ROTATIONS kc kd kh PC pd pa Pi B a s i s of 1 ha of r o t a t i o n ,;• 1.0 1.0 i.O 1.0 1.0 1.0 1.0 1.0 C r o p p i n g P r o f i t M a r g i n : T o t a l c r o p income (Rs) 9650 6170 10380 11400 6573 7293 2639B 8253 T o t a l C o s t s (Rs) , 4963 3364 6650 6429 3333 3675 8409 4033 Gross Margin IRs) 4687 2806 3730 4971 . 3240 361B 179B9 4220 S e l e c t e d Resource Requirements: Land: i r r i g a t e d 'khet' (ha) 1.0 i.O 1.0 1.0 : 0.6 0.0 0.0 1.0 n o n i r r i g a t e d 'pakho' (ha) . 0.0 0.0 0.0 0.0 ! 1.0 1.0 1.0 0.0 Labor: man days ( i d ) 70 51 81 . . 85 , .! 37 40 69 47 woman days (wd) 107 94 160 150 ! i 72 B4 169 92 Power: b u l l o c k days (bd) : 42 24 4B' 60 ! 36 .. 36 48 36 C a p i t a l : o p e r a t i n g (Rs) 934 264 1168 • 1086 i j 728 753 3174 728 SCENARIO: 109 average p r i c e s , t r a c t o r h i r e d r a t h e r than b u l l o c k s and y i e l d s i n c r e a s e d 502 assumed SUMMARIES FOR CROPPINB ROTATIONS kc kd kg kh PC pd pa P» B a s i s of 1 ha of r o t a t i o n 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Cropping P r o f i t M a r g i n : > T o t a l crop income (Rs) 14475 9255 15570 17100 10395 11475 40132.5 12915 T o t a l C o s t s (Rs) 5383 3604 7130 7029 3693 4035 8889 4393 B r o s s Margin (Rs) 9092 5651 6440 10071 6702 7440 31244 8522 S e l e c t e d Resource Requirements: Land: i r r i g a t e d 'khet' (ha) 1.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 n o n i r r i g a t e d 'pakho' (ha) • 0.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 Labor: man days (sd) ; 49 39 60 55 19 22 45 29 woman days (wd) : 107 94 160 150 72 84 169 92 Power: b u l l o c k days (bd) 0 0 0 0 0 0 0 0 C a p i t a l : o p e r a t i n g (Rs) 1984 864 236B 25B6 162B 1653 4374 1628 I CHANGES FROM BASELINE kc kd kg kh PC pd pa P» Cropping P r o f i t Margin: T o t a l c r o p income IRs) 50.0 50.0 50.0 50.0 58.1 57.3 52.0 56.5 T o t a l L o s t s (Rs) B.5 7.1 7.2 9.3 10.B 9.8 5.7 B.9 B r o s s Margin (Rs) 94.0 101.4 126.3 102.6 106.9 105.6 73.7 102.0 S e l e c t e d Resource Requirements: Land: i r r i g a t e d 'khet' (ha) 0.0 0.0 0.0 0.0 0.0 n o n i r r i g a t e d 'pakho' (ha) Labor: man days lad) -30.2 -23.8 -28.7 -35.5 , -49.3 -45.0 -34.8 -38.7 woman days (wd) 0.0 0.0 0.0 0.0 : 0.0 0.0 0.0 0.0 Power: b u l l o c k days (bd) -100.0 -100.0 -100.0 -100.0 ,-100.0 -100.0 -100.0 -100.0 C a p i t a l : o p e r a t i n g (Rs) 112.4 227.7 102.B 13B.2 123.6 119.6 37.8 123.6 2 4 6 APPENDIX M: FOREST BIOMASS DATA (adapted from Chapa, 1985) Data for natural forest (fa) Forest products /plot Forest products /ha Plot* lgTim.ftJ snffim.ft3 fuelwd.kg fodd.# regen.# lgTim.m3 mfrtrn.m3 fuelwdjnt fodder.# regener.fl /plot /ha 72 113.0 84.3 298 107 1055 320.0 238.8 29.8 10700 105500 73 825.3 788.7 5143 14 333 2337.1 2233.8 514.3 1400 33300 75 28.6 10.6 194 0 669 81.0 30.0 19.4 0 66900 76 100.5 82.9 626 0 605 284.6 234.8 62.6 0 60500 77 25.1 16.7 150 3 393 71.1 47.3 15.0 300 39300 78 24.4 7.5 152 0 304 69.1 21.2 15.2 0 30400 79 182.2 171.8 1138 2 180 515.9 486.6 113.8 -200 18000 81 131.1 86.0 643 9 250 371.2 243.6 64.3 900 25000 total 1430.2 1248.5 8344 135 3789 4050.0 3536.0 834.4 13500 378900 mean 506.2 442.0 104.3 1688 47363 st.dev. 708.5 692.7 158.2 3439 27035 Data for degraded forest (fd) Forest products /plot Forest products /ha Plot* lgTim.ft3 srtfTim.ft3 fuelwd.kg fodd.ft regen.O lgTim.m3 smTim.m3 fuelwd.mt fodder.* regener.* /plot /ha 74 44.1 37.3 356 0 185 124.9 105.6 35.6 0 18500 80 17.3 14.5 104 18 30 49.0 41.1 10.4 1800 3000 82 306.4 298.0 2112 0 141 867.7 844.0 211.2 0 14100 83 0.9 0.0 6 0 232 2.5 0.0 0.6 0 23200 84 14.0 0.0 87 4 40 39.6 0.0 8.7 400 4000 85 254.9 213.0 1588 4 44 721.8 603.3 158.8 400 4400 86 0.0 0.0 0 0 110 0.0 0.0 0.0 0 11000 87 96.4 74.6 624 0 125 273.0 211.3 62.4 0 12500 88 0.0 0.0 2 0 169 0.0 0.0 0.2 0 16900 89 0.0 0.0 0 1 36 0.0 0.0 0.0 100 3600 total 734.0 637.4 4879 27 1139 2078.5 1805.3 487.9 2700 111200 mean 173.2 150.4 44.4 245 10109 st.dev. 321.2 298.4 75.4 554 6687 Abbreviations used in table: lgTim.ft3 large timhpr volume in cubic feet per 10 by 10 meter plot lgTim.m3 " " " in cubic m e t e r B per hectare suffinuftJ small timber volume in cubic feet per 10 by 10 meter plot smTim.m3 " " " in cubic meters per hectare fuelwd.kg fuelwood in kilograms per 10 by 10 meter plot fuelwd.mt " in metric tonnes per hectare fodd.ff fodder tree species in numbers per 10 by 10 meter plot fodder.# " " " i n numbers per hectare regen.t regeneration species in numbers per 10 by 10 meter plot regener.# " " " i n numbers per hectare 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0096874/manifest

Comment

Related Items