UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Heavy metal levels in grasses and legumes grown on Highland Valley Copper Mine tailings and the effect… Hackinen, Coleen Marie 1986

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1986_A6_7 H29.pdf [ 10.22MB ]
Metadata
JSON: 831-1.0096709.json
JSON-LD: 831-1.0096709-ld.json
RDF/XML (Pretty): 831-1.0096709-rdf.xml
RDF/JSON: 831-1.0096709-rdf.json
Turtle: 831-1.0096709-turtle.txt
N-Triples: 831-1.0096709-rdf-ntriples.txt
Original Record: 831-1.0096709-source.json
Full Text
831-1.0096709-fulltext.txt
Citation
831-1.0096709.ris

Full Text

HEAVY METAL LEVELS IN GRASSES AND LEGUMES GROWN ON HIGHLAND VALLEY COPPER MINE TAILINGS AND THE EFFECT OF ARTIFICIAL WEATHERING ON TAILINGS GROWTH PRODUCTION CAPABILITY By COLEEN MARIE HACKINEN B . S c , The U n i v e r s i t y of V i c t o r i a , 1982 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n THE FACULTY OF GRADUATE STUDIES (Department of S o i l S c i e n c e , U n i v e r s i t y of B r i t i s h Columbia) We a c c e p t t h i s t h e s i s as c o n f o r m i n g t o the r e q u i r e d s t a n d a r d THE UNIVERSITY OF BRITISH COLUMBIA October 1986 © Cole e n M a r i e H a c k i n e n , 1986 I n p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f t h e r e q u i r e m e n t s f o r an advanced degree a t t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a , I agree t h a t t h e L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y purposes may be g r a n t e d by t h e head o f my department o r by h i s o r h e r r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l n o t be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . Department O f S o i l S c i e n c e The U n i v e r s i t y o f B r i t i s h Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 Date 07 O c t o b e r 1986 i i ABSTRACT Samples of agronomic g r a s s e s and legumes grown on copper mine t a i l i n g s under two s u r f i c i a l amendment regimes and two f e r t i l i z e r t r e a t m e n t s were a n a l y z e d f o r Ca, Cu, Fe, K, Mg, Mn, Mo, N, N i , P, and Zn. These v a l u e s were compared t o N a t i o n a l R e s e a r c h C o u n c i l and A g r i c u l t u r e Canada d i e t recommendations f o r beef c a t t l e . F o l i a r Ca, Fe, Mn, N i and P c o n c e n t r a t i o n s were s a t i s f a c t o r y . Zn l e v e l s i n most s p e c i e s were i n the d e f i c i e n t range. Some samples c o n t a i n e d e x c e s s i v e K or Mg, a l t h o u g h o v e r a l l f o l i a r concen-t r a t i o n s f o r t h e s e m i n e r a l s were s a t i s f a c t o r y . Copper and molybdenum c o n c e n t r a t i o n s were w e l l above normal l e v e l s . Copper c o n c e n t r a t i o n s i n the legumes and g r a s s e s averaged 63 and 44 mg/kg, r e s p e c t i v e l y . Mean molybdenum c o n c e n t r a t i o n s were found t o be 52 mg/kg i n the g r a s s e s and 237 mg/kg i n the legumes. Cu:Mo r a t i o s i n a l l s p e c i e s v i o l a t e d recommended d i e t a r y g u i d e l i n e s f o r beef c a t t l e . F l u c t u a t i o n s i n Cu:Mo r a t i o s were a t t r i b u t a b l e m a i n l y t o v a r i a t i o n s i n f o l i a r Cu. Most s p e c i e s were s u b j e c t e d t o s e v e r e g r a z i n g by r o d e n t s , p r o d u c i n g abnormal growth h a b i t s . As a r e s u l t , assessment of r e l a t i v e s p e c i e s s u c c e s s was d i f f i c u l t . G r a z i n g s t r e s s may a l s o have a f f e c t e d f o l i a r e l e m e n t a l l e v e l s . T a i l i n g s m a t e r i a l was a r t i f i c i a l l y weathered by l e a c h i n g w i t h 0.3 N a c e t i c a c i d f o r seven weeks i n a S o x h l e t e x t r a c t i o n chamber. Leached and u n l e a c h e d samples were a n a l y z e d f o r pH, 0.1 N HC1 a v a i l a b l e Cu, Fe, Mn, N i , and Zn, a c i d ammonium o x a l a t e e x t r a c t a b l e Mo, t o t a l e l e m e n t a l l e v e l s and m i n e r a l o g i c a l c o m p o s i t i o n . As a r e s u l t of l e a c h i n g , the pH of the t a i l i n g s was reduced from 6.6 t o 3.5. D e c l i n e s i n a v a i l a b l e Cu, Fe, Mn, Zn, and Mo were noted a f t e r l e a c h i n g . No q u a l i t a t i v e changes i n t a i l i n g s m i n e r a l o g y were d e t e c t e d a f t e r a r t i f i c i a l w e a t h e r i n g . D u r i n g l e a c h i n g , t h r e e g e n e r a l e l e m e n t a l r e l e a s e p a t t e r n s were o b s e r v e d . These were a t t r i b u t e d t o the s e q u e n t i a l d i s s o l u t i o n of r e a d i l y s o l u b l e s a l t s and c a r b o n a t e s , f o l l o w e d by the d e g r a d a t i o n of m i c a s , p y r o x e n e s , amphiboles and host ore m i n e r a l s . The r e l a t i v e l y i n e r t m i n e r a l s , such a s , q u a r t z , some a l u m i n o -s i l i c a t e s and o x y h y d r o x i d e s of Fe and A l r e p r e s e n t e d the t h i r d group. At p r e s e n t , the t a i l i n g s a r e u n s u i t a b l e as a f o r a g e p r o d u c t i o n a r e a f o r beef c a t t l e as a r e s u l t of t o x i c Cu:Mo r a t i o s i n the f o l i a g e . Based on c h e m i c a l changes i n d u c e d by a r t i f i c i a l w e a t h e r i n g , i t i s p r o b a b l e t h a t f o r a g e grown on the t a i l i n g s w i l l become l e s s t o x i c over t i m e . V a r i o u s management p r a c t i c e s may be employed t o a c c e l e r a t e improvement i n growth medium p a r a m e t e r s . i v TABLE OF CONTENTS SECTION PAGE A b s t r a c t i i L i s t of T a b l e s v i L i s t of F i g u r e s v i i i L i s t of P l a t e s x L i s t of Appendices x i Acknowledgement x i i 1 .0 I n t r o d u c t i o n 1.1 Background I n f o r m a t i o n and R a t i o n a l e 1 1.2 Overview of Re s e a r c h 4 2.0 L i t e r a t u r e Review 2.1 V e g e t a t i o n E s t a b l i s h m e n t 5 2.1.1 P h y s i c a l and Che m i c a l R e s t r i c t i o n s t o P l a n t Growth 6 2.1.2 P l a n t Copper 7 2.1.3 P l a n t Molybdenum 9 2.1.4 Assessment of Heavy M e t a l A v a i l -a b i l i t y 11 2.2 Weathering of T a i l i n g s 13 2.3 Ruminant N u t r i t i o n 14 3.0 E n v i r o n m e n t a l S e t t i n g 3.1 C l i m a t e 18 3.2 P h y s i o g r a p h y 19 3.3 Geology 19 3.4 S o i l s and V e g e t a t i o n 20 4.0 Methods and M a t e r i a l s 4.1 Test P l o t Design 22 4.2 T a i l i n g s Samples 25 4.3 T a i l i n g s A n a l y s e s - Technique 29 4.4 V e g e t a t i o n Samples 32 4.5 V e g e t a t i v e A n a l y s e s - Technique 33 4.6 T a i l i n g Pond R e c l a i m Water Samples 36 4.7 T a i l i n g Pond R e c l a i m Water A n a l y s e s 36 4.8 S t a t i s t i c a l A n a l y s e s 36 5.0 R e s u l t s and D i s c u s s i o n - Mine T a i l i n g s 5.1 Test P l o t T a i l i n g s 5.1.1 pH 38 5.1.2 D T P A - A v a i l a b l e Heavy M e t a l s 44 5.1.3 A v a i l a b l e Molybdenum 47 5.1.4 0.1 N H C l - A v a i l a b l e Heavy M e t a l s 49 5.1.5 T o t a l E l e m e n t a l A n a l y s e s 50 5.1.6 L e a c h a t e A n a l y s e s 58 5.1.7 Phosphate A d s o r p t i o n 59 5.2 T a i l i n g Pond R e c l a i m Water 77 V TABLE OF CONTENTS SECTION PAGE 6.0 R e s u l t s and D i s c u s s i o n - V e g e t a t i o n 6.1 R e v e g e t a t i o n Success 79 6.2 The Data Set 82 6.3 F o l i a r E l e m e n t a l Content 6.3.1 Copper 83 6.3.2 Molybdenum 86 6.3.3 Cu:Mo R a t i o s 89 6.3.4 Other M i c r o n u t r i e n t s 6.3.4.1 Z i n c 94 6.3.4.2 I r o n 97 6.3.4.3 Manganese 100 6.3.4.4 N i c k e l 101 6.3.5 M a c r o n u t r i e n t s 6.3.5.1 N i t r o g e n 102 6.3.5.2 Phosphorus 104 6.3.5.3 C a l c i u m 107 6.3.5.4 P o t a s s i u m 107 6.3.5.5 Magnesium 109 7.0 Summary and C o n c l u s i o n s 110 8.0 L i t e r a t u r e C i t e d 114 v i LIST OF TABLES TABLE PAGE 1 pH of Main Pond t a i l i n g s , b e f o r e and a f t e r seven weeks of S o x h l e t l e a c h i n g , and t e s t p l o t t a i l i n g s 39 2 T o t a l and a v a i l a b l e l e v e l s of co p p e r , molyb-denum, z i n c , i r o n , and manganese i n normal a g r i c u l t u r a l s o i l s and t e s t p l o t t a i l i n g s as compared t o minimum p l a n t r e q u i r e m e n t s 45 3 Mean D T P A - e x t r a c t a b l e i r o n , c o pper, manganese, z i n c , n i c k e l , and cadmium and a c i d ammonium o x a l a t e e x t r a c t a b l e molybdenum l e v e l s i n t h e t e s t p l o t t a i l i n g s 46 4 A v a i l a b l e c o pper, i r o n , manganese, z i n c , n i c k e l , cadmium, and molybdenum l e v e l s i n the Main Pond t a i l i n g s , b e f o r e and a f t e r seven weeks of l e a c h i n g i n a S o x h l e t e x t r a c t o r 48 5 T o t a l major e l e m e n t a l c o n c e n t r a t i o n s i n t h e t e s t p l o t t a i l i n g s 51 6 T o t a l minor e l e m e n t a l c o n c e n t r a t i o n s i n the t e s t p l o t t a i l i n g s 52 7 T o t a l major e l e m e n t a l c o n c e n t r a t i o n s i n t h e Main Pond t a i l i n g s , b e f o r e and a f t e r seven weeks of l e a c h i n g w i t h a c e t i c a c i d i n a S o x h l e t e x t r a c t o r 53 8 T o t a l minor e l e m e n t a l c o n c e n t r a t i o n s i n t h e Main Pond t a i l i n g s , b e f o r e and a f t e r seven weeks of l e a c h i n g w i t h a c e t i c a c i d i n a S o x h l e t e x t r a c t o r 54 9 Phosphate a d s o r p t i o n c h a r a c t e r i s t i c s of un-l e a c h e d t a i l i n g s from the Main Pond and t e s t p l o t and Main Pond t a i l i n g s a f t e r seven weeks of l e a c h i n g i n a S o x h l e t e x t r a c t o r 72 10 T a i l i n g pond r e c l a i m water c h a r a c t e r i s t i c s 78 11 Mean copper c o n c e n t r a t i o n s i n g r a s s e s grown on the t e s t p l o t t a i l i n g s 84 12 Mean molybdenum c o n c e n t r a t i o n s i n g r a s s e s grown on the t e s t p l o t t a i l i n g s 87 v i i LIST OF TABLES TABLE PAGE 13 Mean copper:molybdenum r a t i o s i n g r a s s e s grown on the t e s t p l o t t a i l i n g s 90 14 Mean c o n c e n t r a t i o n s of z i n c , n i c k e l , manganese, and i r o n , by p l o t and f u r r o w , i n g r a s s e s grown on the t e s t p l o t t a i l i n g s 95 15 E l e m e n t a l c o m p o s i t i o n and copper:molybdenum r a t i o of O. viciaefolia, M. media, and T .repens grown on the t e s t p l o t t a i l i n g s 96 16 Beef c a t t l e n u t r i e n t r e q u i r e m e n t s and e l e m e n t a l c o m p o s i t i o n of g r a s s e s grown on the t e s t p l o t t a i l i n g s 98 17 Mean m a c r o n u t r i e n t c o n c e n t r a t i o n s , by f u r r o w , i n g r a s s e s grown on the t e s t p l o t t a i l i n g s 103 18 Mean m a c r o n u t r i e n t c o n c e n t r a t i o n s , by p l o t , i n g r a s s e s grown on the t e s t p l o t t a i l i n g s 105 v i i i LIST OF FIGURES •FTT3URE PAGE 1 L o c a t i o n of study s i t e 2 2 T e s t p l o t d e s i g n showing p l o t amendment regime and f urrow placement 24 3 D e c l i n e i n leachage pH of Main Pond t a i l i n g s from f o u r d e p t h s , as a f u n c t i o n of d u r a t i o n of l e a c h i n g w i t h 0.3 N a c e t i c a c i d , i n a S o x h l e t e x t r a c t o r 40 4 Change i n l e a c h a t e c a l c i u m c o n c e n t r a t i o n of Main Pond t a i l i n g s samples from f o u r d e p t h s , as a f u n c t i o n of d u r a t i o n of l e a c h -i n g w i t h 0.3 N a c e t i c a c i d i n a S o x h l e t e x t r a c t o r 41 5 Change i n l e a c h a t e sodium c o n c e n t r a t i o n of Main Pond t a i l i n g s samples from f o u r d e p t h s , as a f u n c t i o n of d u r a t i o n of l e a c h -i n g w i t h 0.3 N a c e t i c a c i d i n a S o x h l e t e x t r a c t o r 42 6 Change i n l e a c h a t e p o t a s s i u m c o n c e n t r a t i o n of Main Pond t a i l i n g s samples from f o u r d e p t h s , as a f u n c t i o n of d u r a t i o n of l e a c h -i n g w i t h 0.3 N a c e t i c a c i d i n a S o x h l e t e x t r a c t o r 43 7 Change i n l e a c h a t e copper c o n c e n t r a t i o n of Main Pond t a i l i n g s samples from f o u r d e p t h s , as a f u n c t i o n of d u r a t i o n of l e a c h -i n g w i t h 0.3 N a c e t i c a c i d i n a S o x h l e t e x t r a c t o r 60 8 Change i n l e a c h a t e z i n c c o n c e n t r a t i o n of Main Pond t a i l i n g s samples from f o u r d e p t h s , as a f u n c t i o n of d u r a t i o n of l e a c h -i n g w i t h 0.3 N a c e t i c a c i d i n a S o x h l e t e x t r a c t o r 61 9 Change i n l e a c h a t e manganese c o n c e n t r a t i o n of Main Pond t a i l i n g s samples from f o u r d e p t h s , as a f u n c t i o n of d u r a t i o n of l e a c h -i n g w i t h 0.3 N a c e t i c a c i d i n a S o x h l e t e x t r a c t o r 62 10 Change i n l e a c h a t e magnesium c o n c e n t r a t i o n of Main Pond t a i l i n g s samples from f o u r d e p t h s , as a f u n c t i o n of d u r a t i o n of l e a c h -i n g w i t h 0.3 N a c e t i c a c i d i n a S o x h l e t e x t r a c t o r 63 i x LIST OF FIGURES FIGURE PAGE 11 Change i n l e a c h a t e aluminum c o n c e n t r a t i o n of Main Pond t a i l i n g s samples from f o u r d e p t h s , as a f u n c t i o n of d u r a t i o n of l e a c h -i n g w i t h 0.3 N a c e t i c a c i d i n a S o x h l e t e x t r a c t o r 64 12 Change i n l e a c h a t e s i l i c a c o n c e n t r a t i o n of Main Pond t a i l i n g s samples from f o u r d e p t h s , as a f u n c t i o n of d u r a t i o n of l e a c h -i n g w i t h 0.3 N a c e t i c a c i d i n a S o x h l e t e x t r a c t o r 65 13 Change i n l e a c h a t e i r o n c o n c e n t r a t i o n of Main Pond t a i l i n g s samples from f o u r d e p t h s , as a f u n c t i o n of d u r a t i o n of l e a c h -w i t h 0.3 N a c e t i c a c i d i n a S o x h l e t e x t r a c t o r 66 14 Phosphorus removed from, s o l u t i o n as a f u n c t i o n of phosphorus c o n c e n t r a t i o n a t e q u i l i b r i u m , f o r t h r e e mine t a i l i n g samples 69 15 Mine t a i l i n g phosphorus a d s o r p t i o n d a t a p l o t t e d a c c o r d i n g t o the Langmuir e q u a t i o n 71 16 S o l u b i l i t y d iagram f o r phosphate compounds i n s o i l s a t 25 C and 5 x 10 M Ca ( A f t e r L i n d s a y and Moreno, 1960) 75 X LIST OF PLATES PLATE PAGE 1 Main T a i l i n g Pond 3 2 T y p i c a l u n d e r s t o r y i n an u n d i s t u r b e d a r e a near the mine s i t e 21 3 T a i l i n g s t e s t p l o t as i t appeared i n August, 1984 ( P l o t 1 l o c a t e d i n f a r r i g h t c o r n e r ) 23 4 Rodent f o o t p r i n t s and empty seed pods s c a t t e r e d a l o n g O. viciaefolia furrow (May, 1984) 26 5 S o x h l e t a r t i f i c i a l w e a t h e r i n g a p p a r a t u s a f t e r one week of l e a c h i n g showing s u r f a c e ( l e f t ) , 10, 50 and 70 cm depth samples and c o n t r o l ( r i g h t ) 28 6 P l o t 7 (no f e r t i l i z e r nor s u r f i c i a l amend-ment) as i t appeared i n J u l y , 1984 34 7 S c a n n i n g e l e c t r o n m i c r o g r a p h of Main Pond u n l e a c h e d 50 cm depth sample showing an amphibole fragment 56 8 S c a n n i n g e l e c t r o n m i c r o g r a p h of Main Pond l e a c h e d 50 cm depth sample showing an amphibole fragment 56 9 S c a n n i n g e l e c t r o n m i c r o g r a p h of Main Pond u n l e a c h e d 50 cm depth sample showing a f e l d s p a r fragment 57 10 S c a n n i n g e l e c t r o n m i c r o g r a p h of Main Pond l e a c h e d 50 cm depth sample showing a f e l d s p a r fragment 57 11 Main Pond t a i l i n g s samples from s u r f a c e , 10 cm, 70 cm, and 50 cm depths ( c l o c k w i s e ) p r i o r t o a r t i f i c i a l w e a t h e r i n g 67 12 S u r f a c e and 10 cm depth Main Pond t a i l i n g s , e x t r a c t i o n t h i m b l e s and r e c o v e r e d p r e -c i p i t a t e s a f t e r seven weeks of l e a c h i n g 68 13 50 cm and 70 cm depth Main Pond t a i l i n g s , e x t r a c t i o n t h i m b l e s and r e c o v e r e d p r e -c i p i t a t e s a f t e r seven weeks of l e a c h i n g 68 14 P l o t s 1 ( f o r e g r o u n d ) , 2 and 3 as they appeared i n J u l y , 1985 ( f u r r o w 1 on f a r r i g h t ) . . . 81 x i LIST OF APPENDICES APPENDIX PAGE I T e x t u r a l a n a l y s e s of T r o j a n T a i l i n g Dam samples 1 28 I I C l i m a t i c d a t a - 1984, 1985 133 I I I X-Ray f l u o r e s c e n c e s p e c t r o p h o t o m e t r y d e t e c t i o n l i m i t s and e r r o r ranges 135 IV X-Ray d i f f r a c t o g r a m s of 2 m f r a c t i o n s of P l o t 1 and Main Pond u n l e a c h e d 50 cm depth t a i l i n g s 136 V Water q u a l i t y parameters 145 VI Mine water a n a l y s e s conducted i n 1970 149 V I I F o l i a r e l e m e n t a l c o n c e n t r a t i o n s as d e t e r m i n e d by wet d i g e s t i o n and flame atomic a b s o r p t i o n s p e c t r o p h o t o m e t r y 151 V I I I F o l i a r molybdenum c o n c e n t r a t i o n s as d e t e r m i n e d by d r y a s h i n g and f l a m e l e s s atomic a b s o r p t i o n s p e c t r o p h o t o m e t r y , e m i s s i o n s p e c t r o p h o t o m e t r y , and wet d i g e s t i o n and e m i s s i o n s p e c t r o p h o t o m e t r y 157 ACKNOWLEDGEMENT The a u t h o r g r a t e f u l l y acknowledges the f i n a n c i a l a s s i s t a n c e of Cominco Copper D i v i s i o n and the N a t u r a l S c i e n c e and E n g i n e e r i n g R e s e a r c h C o u n c i l of Canada ( p o s t g r a d u a t e s c h o l a r s h i p ) . W i t h o u t the sup p o r t and c o - o p e r a t i o n of many Cominco p e r s o n n e l , p a r t i c u l a r l y Mr. A. B l o m q u i s t , t h i s p r o j e c t would not have been p o s s i b l e . S i n c e r e t h a n k s a r e a l s o extended t o the Department of S o i l S c i e n c e l a b o r a t o r y t e c h n i c i a n s , f e l l o w g r a d u a t e s t u d e n t s , and f a c u l t y members. The a u t h o r wishes t o e x p r e s s s i n c e r e g r a t i t u d e t o Dr. L.M. L a v k u l i c h and Mr. Glen C o u t t s , f o r t h e i r a s s i s t a n c e and under-s t a n d i n g t h r o u g h o u t the d u r a t i o n of the p r o j e c t . 1.0 INTRODUCTION 1.1 Background I n f o r m a t i o n and R a t i o n a l e R e v e g e t a t i o n of m i l l t a i l i n g s produced from t h e Cominco open p i t V a l l e y Copper Mine, i n B r i t i s h Columbia's s o u t h e r n i n t e r i o r ( F i g u r e 1 ) , i s t o be i n i t i a t e d i n the near f u t u r e . S u c c e s s f u l r e c l a m a t i o n would a l l o w some c o n t r o l over e n v i r o n -mental c o n t a m i n a t i o n by r e d u c i n g wind e r o s i o n (Andrews, 1975) and water e r o s i o n (Gemmell, 1975) and p r o t e c t i n g water q u a l i t y (Johnson et al . , 1975). R e h a b i l i t a t i o n of the r e c e n t l y i n a c t i v e Main T a i l i n g pond ( P l a t e 1) exte n d s beyond e r o s i o n c o n t r o l and i s aimed a t p r o v i d i n g an environment s u i t a b l e f o r p r o d u c t i v e end-use. The mine i s l o c a t e d i n an a r e a used p r i m a r i l y as beef c a t t l e range. T h i s , c o u p l e d w i t h t h e l a r g e expanse of t a i l i n g s waste and r e l a t i v e ease of m a t e r i a l m a n i p u l a t i o n , has l e a d Cominco t o e x p l o r e t h e p o t e n t i a l of r e c l a i m i n g the t a i l i n g pond f o r the purpose of p r o d u c i n g f o r a g e f o r beef c a t t l e (Cominco Copper D i v i s i o n , 1982; u n p u b l i s h e d ) . P r o j e c t s u c c e s s would r e q u i r e p r i o r knowledge of p l a n t growth r e s t r i c t i o n s and f o r a g e q u a l i t y , b o th a t p r e s e n t and i n the f u t u r e . T h i s r e s e a r c h was, t h e r e f o r e , d e s i g n e d t o a d d r e s s t h e s e i s s u e s . S p e c i f i c a l l y , the o b j e c t i v e s were t o ; (1) i d e n t i f y f o r a g e s p e c i e s s u i t a b l e f o r r e c l a m a t i o n of the Main T a i l i n g pond, w i t h r e s p e c t t o growth a d a p t a t i o n s and t h e n u t r i t i o n a l r e q u i r e m e n t s of beef c a t t l e . 2 F i g u r e 1 : L o c a t i o n o f s t u d y s i t e H i g h l a n d V a l l e y • 4 ( 2 ) c h a r a c t e r i z e c h e m i c a l changes i n the t a i l i n g s which might be produced on w e a t h e r i n g and p r e d i c t t h e i r impact on v e g e t a t i v e s u c c e s s and q u a l i t y . 1.2 Overview of Research R e c l a m a t i o n r e s e a r c h r e q u i r e d e x a m i n a t i o n of both the t a i l i n g s and v e g e t a t i o n . I n i t i a l l y , t a i l i n g s p h y s i c a l and c h e m i c a l c h a r a c t e r i s t i c s were e v a l u a t e d , w i t h r e f e r e n c e t o use as a p l a n t growth medium. The t a i l i n g s were then m o d i f i e d i n an attempt t o improve b o t h the q u a l i t y and q u a n t i t y of f o r a g e . P r e d i c t i o n s of f u t u r e c h a r a c t e r i s t i c s were based on changes produced a f t e r the t a i l i n g s were s u b j e c t e d t o a r t i f i c i a l w e a t h e r i n g . V e g e t a t i v e e x a m i n a t i o n r e q u i r e d e s t a b l i s h m e n t of v a r i o u s agronomic f o r a g e s p e c i e s . Q u a l i t a t i v e assessment of the f o r a g e was implemented v i a c h e m i c a l a n a l y s i s of f o l i a g e produced under v a r i o u s amendment regimes. In t h i s way, the p o t e n t i a l f o r the a c c u m u l a t i o n of t o x i c l e v e l s of elements c o u l d be a s s e s s e d . Q u a n t i t a t i v e response t o growth medium m o d i f i c a t i o n was d i f f i c u l t t o det e r m i n e as a r e s u l t of s e v e r e r o d e n t g r a z i n g . R e s u l t s of t h e s e s t u d i e s p r o v i d e d the b a s i s f o r recommendations on t a i l i n g pond r e h a b i l i t a t i o n . 5 2.0 LITERATURE REVIEW 2.1 V e g e t a t i o n E s t a b l i s h m e n t S u c c e s s f u l r e v e g e t a t i o n of m i l l t a i l i n g s o f t e n r e q u i r e s a m e l i o r a t i o n of a number of growth r e s t r i c t i n g parameters ( N i e l s o n and P e t e r s o n , 1978). M i l l t a i l i n g s d i f f e r from n a t u r a l s o i l s i n a number of r e s p e c t s . In g e n e r a l , t hey a r e d e f i c i e n t i n many p l a n t n u t r i e n t s ( N i e l s o n and P e t e r s o n , 1973), composed of e a s i l y e r o d i b l e sands (Gee et al ., 1978), and may have excess s a l t s ( Sandoval and G o u l d , 1978) and heavy m e t a l s ( P e t e r s o n and N i e l s o n , 1973). M i n e r a l o g y i s o f t e n such t h a t , upon w e a t h e r i n g , l e v e l s and a v a i l a b i l i t y of p l a n t n u t r i e n t s and p o t e n t i a l l y t o x i c elements w i l l change ( S h e t r o n , 1983). F u r t h e r c o m p l i c a t i o n s may a r i s e when f o l i a g e produced on m i l l t a i l i n g s i s i n t e n t i o n a l l y i n t r o d u c e d 4 n t o the f o o d c h a i n (Haq et al., 1980). Imbalances of n u t r i e n t elements i n m i l l t a i l i n g s may produce n u t r i e n t a b n o r m a l i t i e s i n p l a n t s (Bradshaw, 1975) and u l t i m a t e l y a n i m a l s v i a the p r i m a r y p r o d u c e r s (Andrews, 1975). The b e h a v i o u r of heavy m e t a l s i n t h i s r e g a r d i s of c o n s i d e r a b l e c o n c e r n i n view of t h e i r tendency t o b i o a c c u m u l a t e ( F r i e b e r g , 1975). Copper and molybdenum l e v e l s a re c r i t i c a l as a d i e t a r y imbalance i n t h e s e elements may be hazardous t o g r a z i n g ruminants (Underwood, 1977). The t a i l i n g s , b e i n g d e r i v e d from copper ore w i t h a s s o c i a t e d molybdenum, c o n t a i n anomalous l e v e l s of both elements ( L a v k u l i c h et al ., 1977) and under a p p r o p r i a t e c o n d i t i o n s , may produce t o x i c f o r a g e . A l t h o u g h many elements were examined, copper and molybdenum r e l a t i o n s were of p r i m a r y c o n c e r n s i n c e the t a i l i n g pond a r e a i s i n t e n d e d f o r p r o d u c t i o n of c a t t l e f o r a g e . Thus, l i t e r a t u r e p e r t a i n i n g t o o t h e r elements i s not d i s c u s s e d i n the r e v i e w . 2.1.1 P h y s i c a l and Ch e m i c a l R e s t r i c t i o n s t o P l a n t Growth P r e v i o u s r e s e a r c h by L a v k u l i c h et al . (1976) and Morton (1976) on the p h y s i c a l a t t r i b u t e s of mine t a i l i n g s i n the H i g h l a n d V a l l e y , i d e n t i f i e d low a v a i l a b l e water s t o r a g e c a p a c i t y and c a t i o n exchange c a p a c i t y as p o t e n t i a l l y growth l i m i t i n g . T h i s s i t u a t i o n i s a r e s u l t of the c o a r s e t e x t u r e of the t a i l i n g s , a t a p p r o x i m a t e l y 90 % medium t o f i n e sand ( L a v k u l i c h et al., 1976; Morton, 1976), and l a c k of o r g a n i c m a t t e r c o n t e n t ( L a v k u l i c h et al., 1976). R e s u l t s of t e x t u r a l a n a l y s e s , conducted by the V a l l e y O p e r a t i o n s l a b o r a t o r y , on t a i l i n g s produced from the Lake Zone orebody, a r e i n c l u d e d i n Appendix I . Low a v a i l a b l e water s t o r a g e c a p a c i t i e s i n c o n j u n c t i o n w i t h the l i m i t e d m o i s t u r e i n p u t c h a r a c t e r i s t i c of s e m i - a r i d c l i m a t e s , may r e p r e s e n t the g r e a t e s t s i n g l e f a c t o r r e s p o n s i b l e f o r r e v e g e t a t i o n f a i l u r e (May, 1975). Low minimum a e r a t i o n p o r o s i t i e s were found i n t a i l i n g s from an a d j a c e n t orebody (Morton, 1976). Under t h e s e c o n d i t i o n s , s e e d l i n g e s t a b l i s h m e n t may be r e s t r i c t e d (Hanks and Thorpe, 1956). 3 3 Bulk and p a r t i c l e d e n s i t i e s of 1.2 t o 1.4 g/cm and 2.7 g/cm were found, and were not c o n s i d e r e d d e t r i m e n t a l t o p l a n t growth (Morton, 1976). Measures of s o l u b l e s a l t s and e l e c t r i c a l c o n d u c t i v i t y c a r r i e d out by L a v k u l i c h et al.(1976), d i d not i n d i c a t e the p o t e n t i a l f o r o s m o t i c a l l y i n d u c e d water s t r e s s . These r e s e a r c h e r s s p e c u l a t e d , however, t h a t w e a t h e r i n g of the t a i l i n g s may result in increased levels of soluble s a l t s . 7 Analyses of pH, exchangeable Ca, Mg, Na and K, available P, Ca, Mg, K, Cu, Zn, Fe and Mn and t o t a l elemental contents of the t a i l i n g s have been reported by Lavkulich et al . ( 1 976 ) . These researchers concluded that t a i l i n g s nitrogen and phosphorus le v e l s were growth l i m i t i n g and that exceptionally high l e v e l s of copper and molybdenum represented a potential hazard. 2 . 1 . 2 Plant Copper Copper i s required by plants, in very small quantities, to perform e s s e n t i a l metabolic functions (Price et al . 1972 ) . Excessive available copper has been shown to induce Fe deficiency symptoms in some plants (Hewitt, 1953) . The influence of Cu on f o l i a r Fe status may be modified by v a r i a t i o n in P supply (Spencer, 1966 ) . Across species, d i f f e r e n t i a l response to elevated micronutrient l e v e l s may occur as a result of phenotypic p l a s t i c i t y , allowing varying degrees of heavy metal tolerance (Jones, 1972; Foy et al . , 1978; Rauser and Winterhalder, 1985 ) . Copper tolerance may be achieved through two mechanisms; the metal i s prevented from a f f e c t i n g metabolism, or translocation to key metabolic s i t e s i s r e s t r i c t e d (Turner, 1969 ) . Copper concentrations in most normal plants usually range between 5 and 20 mg/kg, on a dry weight basis (Jones, 1972) , but w i l l vary with plant parts and species, stage of maturity and s o i l s (Sillanpaa, 1976 ) . A survey of copper concentrations in forage plants grown on a wide range of United States s o i l s has been c o n d u c t e d by Kubota (1983). He found the median copper c o n t e n t of legumes t o be 8.4 mg/kg (range 1 t o 28 mg/kg), and 4 mg/kg i n g r a s s e s (range 1 t o 16 mg/kg). Forage samples were p r e d o m i n a n t l y from s o i l s w i t h 25 mg/kg t o t a l copper (range 1 t o 200 mg/kg). Copper l e v e l s i n f o r a g e samples from the V a n d e r h o o f - F o r t F r a s e r a r e a of B.C. averaged between 3.3 and 5.6 mg/kg (Lowe and Bomke, 1982). D e c l i n e s i n f o l i a r copper w i t h a d v a n c i n g m a t u r i t y have been r e p o r t e d by many workers ( P i p e r and B e c k w i t h , l949;Beeson and MacDonald, 1951; Thomas et al., 1952; W e l l s , 1956; F l e m i n g , 1965; Munshower and Neuman, 1978). T h i s r e l a t i o n s h i p was not e v i d e n t , however, i n - s t u d i e s by Lane and F l e m i n g (1966) w i t h p e r e n n i a l r y e g r a s s (Lolium perenne L . ) . A l t h o u g h t o t a l l e v e l s i n f l u e n c e s o l u b l e l e v e l s , t h ey a r e seldom a r e l i a b l e i n d i c a t o r of n u t r i e n t a v a i l a b i l i t y ( S i l l a n p a a , 1976). S e v e r a l f a c t o r s , such as pH, o r g a n i c m a t t e r c o n t e n t , redox p o t e n t i a l , and i n t e r - r e l a t i o n s of t r a c e elements may have con-s i d e r a b l e e f f e c t on n u t r i e n t a v a i l a b i l i t y s t a t u s . Copper a v a i l a b i l i t y tends t o be l e s s a f f e c t e d by p r e v a i l i n g c o n d i t i o n s than o t h e r m i c r o n u t r i e n t s ( C o t t e n i e et al., 1970). There does, however, appear t o be a tendency f o r a v a i l a b l e copper l e v e l s t o i n c r e a s e w i t h i n c r e a s i n g a c i d i t y ( Peech, 1941; S i l l a n p a a , 1962; Aubert and P i n t a , 1977; Bohn et al., 1979; Gough et al .,1980), and de c r e a s e a t h i g h o r g a n i c m a t t e r l e v e l s (van L u i t and Henkens, 1967; Agboola and L o r e y , 1973; T i l s d a l e and N e l s o n , 1975; R a n d a l l et al., 1976; L a t e r e l l et al., 1978; Severson and Gough, 1984). There i s some i n d i c a t i o n of an a n t a g o n i s t i c i n t e r a c t i o n between A l and Cu; w i t h low s o l u t i o n A l l e v e l s p r o d u c i n g i n c r e a s e s i n Cu uptake by p l a n t s ( B l e v i n s and Massey, 1959). A s i m i l a r r e l a t i o n s h i p may e x i s t between Fe and Cu (Cox and Kamprath, 1972). 2.1.3 P l a n t Molybdenum Trace l e v e l s of molybdenum are e s s e n t i a l f o r the normal a s s i m i l a t i o n of n i t r o g e n i n p l a n t s ( P r i c e et a l . , 1972). Mo d e f i c i e n c i e s have been r e p o r t e d i n a wide v a r i e t y of c r o p s , throughout the w o r l d ( T i s d a l e and N e l s o n , 1975). P h y t o t o x i c i t y under f i e l d c o n d i t i o n s , however, i s r a r e (Murphy and Walsh, 1972; A l l a w a y , 1975). H i g h molybdenum l e v e l s a r e of g r e a t e s t c o n c e r n i n a n i m a l , v e r s u s p l a n t n u t r i t i o n , s i n c e r u m i n a n t s a r e p a r t i c u l a r l y s e n s i t i v e t o e x c e s s e s of t h i s element (Underwood, 1977) . F o l i a r molybdenum l e v e l s v a r y w i t h s p e c i e s , m a t u r i t y , p l a n t p a r t and s i t e c o n d i t i o n s . G e n e r a l l y , legumes e x h i b i t h i g h e r Mo l e v e l s than do g r a s s e s ( V i n o g r a d o v a , 1943; Barshad, 1948; Robinson and E d g i n g t o n , 1954; M i t c h e l l , 1957; F l e m i n g , 1965; Jensen and L e s p e r a n c e , 1971; Kubota, 1975; A l l a w a y , 1977). A d v a n c i n g m a t u r i t y i s accompanied by i n c r e a s e d t o t a l uptake (Beeson and MacDonald, 1951; Thomas et al . , 1952; Kretschmer and A l l e n , 1956; F l e m i n g , 1966; H o r n i c k et al . , 1977). In legumes, the h i g h e s t Mo l e v e l s o c c u r i n the seed, whereas i n g r a s s e s , Mo i n the g r a i n i s g e n e r a l l y l e s s than t h a t of the l e a v e s ( S i l l a n p a a , 1972). H i g h f o l i a r Mo i s o f t e n a s s o c i a t e d w i t h s o i l s of h i g h pH (Thomson et al., 1972; A l l a w a y , 1977; Doyle and F l e t c h e r , 1977; Th o r n t o n , 1977;), low redox p o t e n t i a l (Kubota, et al., 1967; Kubota, 1975; T h o r n t o n , 1977) and h i g h Mo p a r e n t m a t e r i a l s ( S m i t h , 1955; A l l a w a y , l977;Stone el al., 1983). Mo uptake by p l a n t s may a l s o be m o d i f i e d by the l e v e l s of o t h e r n u t r i e n t s i n the s o i l s o l u t i o n . S o l u b l e P, e s p e c i a l l y i n the form C a ( H 2 P 0 4 ) 2 , enhances uptake ( S t o u t et al ., 1951; P e t r i e and J a c k s o n , 1982). T h i s may be due t o the f o r m a t i o n of a phosphomolybdate a n i o n which i s more e a s i l y a s s i m i l a t e d by p l a n t s ( B a r s h a d , 1951). Adsorbed Mo a n i o n s may a l s o be d i s p l a c e d by phosphate a n i o n s , i n c r e a s i n g Mo i n s o l u t i o n (Gupta and L i p s e t t , 1981 ) . S u l p h a t e appears t o have the o p p o s i t e e f f e c t on Mo uptake by p l a n t s ( S t o u t et al., 1951; R e i s e n a u e r , 1963). The s i m i l a r s i z e and charge of s u l p h a t e and molybdate i o n s may r e s u l t i n c o m p e t i t i o n a t the r o o t i n t e r f a c e such t h a t t h e more abundant a n i o n ( S 0 4 ) e x c l u d e s Mo0 4 from a c c e s s t o a b s o r p t i o n s i t e s ( W i l l i a m s and Th o r n t o n , 1972; A l l a w a y , 1977). Fe and Cu appear t o have a m u t u a l l y a n t a g o n i s t i c r e l a t i o n s h i p w i t h Mo. The i n t e r f e r e n c e h e r e , however, appears t o be m a i n l y m e t a b o l i c i n n a t u r e . MacKay el al. (1966) found e v i d e n c e t h a t Cu a p p l i c a t i o n s a g g r a v a t e d Mo d e f i c i e n c y i n s p i n a c h and c a u l i f l o w e r and t h a t Mo may have enhanced Cu d e f i c i e n c y i n c a r r o t , s p i n a c h and l e t t u c e . Mo may a l s o a c c e n t u a t e Fe d e f i c i e n c y through the f o r m a t i o n of i r o n molybdate p r e c i p i t a t e s w i t h i n the r o o t s ( G e r l o f f et al., 1959). Normal f o l i a r Mo c o n c e n t r a t i o n s u s u a l l y range from 1 t o 5 mg/kg ( S i l l a n p a a , 1977). Forages from the s o u t h e r n ( F l e t c h e r and B r i n k , 1969) and c e n t r a l (Lowe and Bomke, 1 9 8 2 ) i n t e r i o r r e g i o n s of B r i t i s h Columbia g e n e r a l l y f e l l w i t h i n t h i s range. Much h i g h e r c o n c e n t r a t i o n s , however, have been r e p o r t e d i n Mo con-t a m i n a t e d a r e a s . Robbins (1977; u n p u b l i s h e d ) found Mo con-c e n t r a t i o n s of 384 mg/kg i n o r c h a r d g r a s s (Dactyl is glomerata L.) a t h e a d i n g out s t a g e , growing on Mo mine w a s t e r o c k . In an M o - r i c h a r e a of the N o r t h e r n Great P l a i n s , c o n c e n t r a t i o n s of 44 and 203 mg/kg Mo were c h a r a c t e r i s t i c of g r a s s e s and legumes, r e s p e c t i v e l y (Stone et al., 1983). C o n c e n t r a t i o n s of 15 t o 100 mg Mo/kg i n l o c a l i z e d a r e a s of p a s t u r e i n the U n i t e d Kingdom have been w e l l documented ( T h o r n t o n , 1977). 2.1.4 Assessment of Heavy M e t a l A v a i l a b i l i t y C o n s i d e r a b l e r e s e a r c h has been d i r e c t e d a t c o r r e l a t i n g p l a n t uptake w i t h v a r i o u s i n d i c e s of a v a i l a b i l i t y , p a r t i c u l a r l y f o r a g r i c u l t u r a l s o i l s ( M o r t v e d t , 1977). A w i d e l y used p r o c e d u r e f o r a s s e s s i n g p l a n t m i c r o n u t r i e n t a v a i l a b i l i t y i s t h a t of L i n d s a y and N o r v e l l ( 1 9 7 8 ) , which employs d i e t h y l e n e t r i a m i n e p e n t a a c e t i c a c i d (DTPA) as a c h e l a t i n g agent (Boawn, 1971; Brown et al ., 1971; D o l a r and Keeney, 1971; Cox and Kamprath, 1972; Haq and M i l l e r , 1972; V i e t s and L i n d s a y , 1973; Schuman and Anderson, 1974; Sommers and L i n d s a y , 1979; Gough et al . , 1980; Bomke and Lowe, 1985; Korcak and F a n n i n g , 1985). The DTPA e x t r a c t i o n was i n i t i a l l y d e s i g n e d t o d e t e c t s o i l m i c r o n u t r i e n t d e f i c i e n c i e s of Fe, Cu, Mn and Zn i n near n e u t r a l and c a l c a r e o u s s o i l s ( L i n d s a y and N o r v e l l , 1978). DTPA has a l s o been used as an e x t r a c t a n t f o r p l a n t a v a i l a b l e N i and Cd (Sommers and L i n d s a y , 1979; N o r v e l l , 1984; Severson and Gough, 1984). The s t a n d a r d DTPA t e c h n i q u e may not be s u i t a b l e f o r m e t a l - c o n t a m i n a t e d s o i l s (Haq et al ., 1980; N o r v e l l , 1984; Severson and Gough, 1984) as the comp l e x i n g s i t e s on the DTPA m o l e c u l e s may become s a t u r a t e d , l i m i t i n g m e t a l e x t r a c t i o n ( N o r v e l l , 1984). Other methods f o r d e t e r m i n i n g a v a i l a b l e Cu i n c l u d e e x t r a c t i o n w i t h water ( B r a d f o r d et al . , 1971), NH 4N0 3, a c i d N H ^ H g O g , d i l u t e HCl and e t h y l e n e d i a m i n e t e t r a a c e t i c a c i d (EDTA) ( F i s k e l l , 1965). V i e t s and L i n d s a y (1973) suggest t h a t the c h e l a t i n g a g e n t s , DTPA and EDTA, h o l d the most promise as r o u t i n e i n d i c a t o r s of Cu a v a i l a b i l i t y , however, more c a l i b r a t i o n work i s ye t r e q u i r e d . DTPA i s advantageous i n t h a t i t a l l o w s t h e s i m u l t a n e o u s e x t r a c t i o n of Zn, Fe, Mn, and Cu ( L i n d s a y and N o r v e l l , 1978). E x t r a c t i o n p r o c e d u r e s f o r p l a n t - a v a i l a b l e Mo a r e numerous, and t o d a t e , no one method has been found t o be s a t i s f a c t o r y f o r a l l s o i l s (Kubota and Cary, 1982). T h i s p r o b a b l y r e f l e c t s t he d i f f e r e n c e s between s o i l s w i t h r e s p e c t t o c r i t i c a l l a b i l e p o o l s and the f a c t o r s c o n t r o l l i n g Mo s o l u b i l i t y , i n a d d i t i o n t o v a r i a t i o n i n c r o p r e q u i r e m e n t s . A c i d ammonium o x a l a t e (Tamm's s o l u t i o n ) was one of the f i r s t e x t r a c t a n t s d e v e l o p e d t o remove a v a i l a b l e Mo ( G r i g g , 1953), and i s s t i l l w i d e l y used ( R e i s e n a u e r et al ., 1973). Tamm's s o l u t i o n d i s s o l v e s hydrous o x i d e s of A l and Fe, and may i n c l u d e Mo from p o o l s which a r e not r e a d i l y a v a i l a b l e t o p l a n t s ( R e i s e n a u e r et a/., 1973). I n t e r p r e t a t i o n of e x t r a c t a b l e v a l u e s must be c a r r i e d out w i t h r e f e r e n c e t o s o i l pH (Walsh et al ., 1951; G r i g g , 1953; Lowe and Massey, 1965). Good c o r r e l a t i o n between Tamm's e x t r a c t a b l e Mo and p l a n t l e v e l s has been r e p o r t e d by G r i g g (1943), H a l e y and M e l s t e d (1957), and Lombin (1985). Other w o r k e r s , however, have found t h a t t h i s method does not a c c u r a t e l y r e f l e c t p l a n t a v a i l a b l e Mo over wide ranges of s o i l s , or from low Mo s o i l s (Walker et al., 1954; MacKenzie, 1966; Gupta and MacKay, 1968). T h i s method, however, i s the o n l y one which has been e x t e n s i v e l y checked a g a i n s t f i e l d t r i a l s and used i n a d v i s o r y work ( R e i s e n a u e r , 1965). Other t e c h n i q u e s f o r a s s e s s i n g p l a n t a v a i l a b l e Mo i n c l u d e m i c r o b i o l o g i c a l a ssay (Donald et al., 1952), hot w a t e r . l e a c h i n g (Lowe and Massey, 1965), a n i o n exchange r e s i n s ( B h e l l a and Dawson, 1972) and e x t r a c t i o n w i t h ( N H 4 ) 2 C 0 3 ( V l e k and L i n d s a y , 1975), EDTA or ammonium a c e t a t e (Gupta and L i p s e t t , 1981) . 2.2 We a t h e r i n g of T a i l i n g s Assessment of parameters r e s t r i c t i n g p l a n t growth i s compounded by t a i l i n g s m i n e r a l o g y which, upon w e a t h e r i n g , may a f f e c t l e v e l s and a v a i l a b i l i t y of p l a n t n u t r i e n t s and p o s s i b l y t o x i c m i n e r a l s ( S h e t r o n , 1983). F r e s h t a i l i n g s a r e analogous t o unweathered p a r e n t m a t e r i a l which may e v e n t u a l l y d e v e l o p i n t o a t r u e s o i l t h rough the i n f l u e n c e of p h y s i c a l , c h e m i c a l and b i o t i c pedogenic p r o c e s s e s . A r t i f i c i a l a c c e l e r a t i o n of c h e m i c a l w e a t h e r i n g has been used as a method of p r e d i c t i n g f u t u r e p h y s i c o c h e m i c a l c o n d i t i o n s w i t h i n a s o i l ; g e o c h e m i c a l w e a t h e r i n g b e i n g s i m u l a t e d by the use of a S o x h l e t e x t r a c t o r (Pedro, 1961; Pedro, 1964; Henin and Pedro, 1965; W i l l i a m s and Y a a l o n , 1977; S i n g l e t o n , 1978; S i n g l e t o n and L a v k u l i c h , 1978; Sobek et al ., 1982). S i n g l e t o n (1978) found t h a t 100 y e a r s of w e a t h e r i n g i n the f i e l d was s i m u l a t e d by a p p r o x i m a t e l y seven weeks of S o x h l e t l e a c h i n g . The study examined s o i l s from the west c o a s t of Vancouver I s l a n d , B.C. The r e l a t i v e impact of s o i l f o r m i n g s t a t e and a c c e s s o r y f a c t o r s would v a r y a c r o s s s i t e s . For t h i s r e a s o n , S i n g l e t o n (1978) suggested t h a t a p p l i c a t i o n of the S o x h l e t c a l i b r a t i o n w i t h pedogenic time be l i m i t e d t o s i t e s w i t h s o i l s and v e g e t a t i o n s i m i l a r t o the sequence s t u d i e d . The S o x h l e t e x t r a c t i o n method has been c r i t i c i z e d on the b a s i s t h a t h i g h e x t r a c t i n g t e m p e r a t u r e s and i n a c c u r a t e volumes of s o l v e n t p a s s i n g t h r o u g h the sample, r e p r e s e n t an u n r e a l i s t i c s i m u l a t i o n of the t r u e w e a t h e r i n g environment (Sobek et al . , 1982). S i n g l e t o n ( 1978) found t h a t a r t i f i c i a l w e a t h e r i n g c o u l d d u p l i c a t e g e o c h e m i c a l p r o c e s s e s but not pedogenic w e a t h e r i n g , which would r e q u i r e the i n f l u e n c e of an a c t i v e b i o t i c component. 2.3 Ruminant N u t r i t i o n Forages grown on m i l l t a i l i n g s from the H i g h l a n d V a l l e y have p r e v i o u s l y been i d e n t i f i e d as a p o t e n t i a l h a z a r d t o g r a z i n g r u m i n a n t s , r e s u l t i n g from e x c e s s i v e molybdenum c o n t e n t ( L a v k u l i c h et al ., 1976). H i g h d i e t a r y molybdenum i n t a k e by ruminants may produce u l t i m a t e l y f a t a l n u t r i t i o n a l d i s o r d e r s ; v a r i o u s l y termed m o l y b d e n o s i s , c o n d i t i o n e d copper d e f i c i e n c y (Ward, 1978), or t e a r t d i s e a s e (Underwood, 1976). The e t i o l o g y of the d i s e a s e was f i r s t i d e n t i f i e d by Ferguson et al . (1938). These r e s e a r c h e r s demonstrated t h a t d i s e a s e symptoms produced by h i g h Mo i n t a k e , c o u l d be a l l e v i a t e d w i t h l a r g e doses of copper s u l p h a t e and' i n d i c a t e d the presence of an a n t a g o n i s t i c Cu-Mo i n t e r a c t i o n i n ruminant n u t r i t i o n . F u r t h e r i n v e s t i g a t i o n s by D i c k (1953) showed t h a t the e f f e c t of Mo upon Cu met a b o l i s m was dependent on d i e t a r y 2-s u l p h a t e s t a t u s . S i n c e t h a t t i m e , Cu-Mo-SO^ i n t e r a c t i o n s i n ruminant m e t a b o l i s m have become the s u b j e c t of e x t e n s i v e r e s e a r c h . E x c e s s i v e molybdenum i n t a k e by ruminants can d e p r e s s copper a v a i l a b i l i t y p r o d u c i n g a p h y s i o l o g i c a l copper d e f i c i e n c y (Kubota et al ., 1967; Thomson et al., 1972; Underwood, 1977; Ward, 1978). E l e v a t e d d i e t a r y s u l p h u r or s u l p h a t e , can compound the c o n d i t i o n t h r o u g h a s y n e r g i s t i c i n t e r a c t i o n w i t h molybdenum (Cunningham and Hogan, 1959; Vanderveen and Keener, 1964; Huber et al., 1971; Underwood, 1971; Ward, 1978). The N a t i o n a l R e s e a r c h C o u n c i l (1984) has proposed the f o l l o w i n g m e t a b o l i c mechanisms f o r molybdenum-induced copper d e f i c i e n c y i n r u m i n a n t s ; (1) the f o r m a t i o n of an a b s o r b a b l e , but m e t a b o l i c a l l y u n a v a i l a b l e , copper-molybdate complex (2) the i n h i b i t i v e a c t i o n of molybdenum on s u l p h i d e o x i d a s e ; an enzyme which l i b e r a t e s copper from CuS i n the body (3) the f o r m a t i o n of an un a b s o r b a b l e copper t h i o m o l y b d a t e complex A l t h o u g h a l l ruminants appear t o be s u s c e p t i b l e t o m o l y b d e n o s i s , c a t t l e a r e l e s s t o l e r a n t of e x c e s s molybdenum than any o t h e r s p e c i e s (Ward, 1978). Symptoms may d e v e l o p a f t e r one t o t h r e e days of h i g h Mo i n t a k e and u s u a l l y appear as s e v e r e d i a r r h e a , a n o r e x i a , changes i n h a i r c o l o u r and s t i f f n e s s or l a m i n i t i s (Underwood, 1976; Lesperance et al., 1985). I n o r g a n i c molybdate f e d t o d a i r y cows produced symptoms of Mo t o x i c i t y i n cows consuming the e q u i v a l e n t of 173 t o 200 mg/kg Mo (dry weight b a s i s ) (Huber et al., 1971). In the same s t u d y , no symptoms were e v i d e n t when d i e t Mo l e v e l s ranged from 53 t o 100 mg/kg. R a t i o n s c o n t a i n e d 6 mg/kg Cu under both c o n d i t i o n s . A d d i t i o n s of i n o r g a n i c molybdate t o the d i e t of H o l s t e i n c a l v e s produced lameness a f t e r two weeks a t f e e d c o n c e n t r a t i o n s of 302 mg/kg Mo (Thomas and Moss, 1951). D i a r r h e a was e v i d e n t w i t h i n one t o t h r e e weeks, however, symptoms d i d not p e r s i s t . S t e r i l i t y due t o d e g e n e r a t i o n of the s e m i n i f e r o u s t u b u l e s was apparent a f t e r 129 days:. These r e s e a r c h e r s were unable t o determine i f the symptoms noted were s o l e l y the r e s u l t of h i g h Mo or the e f f e c t of deranged Cu m e t a b o l i s m caused by f e e d i n g l a r g e e x c e s s e s of Mo. D i c k (1969) found t h a t c a t t l e g r a z i n g ' t e a r t ' p a s t u r e s d e v e l o p e d severe d i a r r h e a ( s c o u r i n g ) i n a v e r y s h o r t p e r i o d of t i m e . The symptoms c o u l d not be a t t r i b u t e d t o Cu d e f i c i e n c y s i n c e d e p l e t i o n of copper r e s e r v e s would r e q u i r e some t i m e . Underwood (1971) s p e c u l a t e d t h a t the s c o u r i n g was due t o h i g h l e v e l s of Mo r e l a t i v e t o Cu, d i s t u r b i n g r u m i n a l b a c t e r i a l a c t i v i t y . Under n a t u r a l c o n d i t i o n s , f o l i a r l e v e l s of Mo a s s o c i a t e d w i t h symptoms of m o l y b d e n o s i s i n c a t t l e appear t o v a r y w i t h copper l e v e l s ( S i l l a n p a a , 1976). In New Z e a l a n d , Cunningham (1950) and Cunningham et al .( 1956) found t h a t f o r a g e s c o n t a i n i n g 3 t o 10 mg/kg Mo were t o x i c i f f o l i a r Cu was below 10 mg/kg. At Cu l e v e l s above 10 mg/kg, at l e a s t 10 mg/kg Mo was r e q u i r e d t o produce symptoms. S i m i l a r r e s u l t s have been found i n a r e a s of the w e s t e r n U n i t e d S t a t e s ( B a r s h a d , 1948; Dye and O'Harra, 1959; Kubota et al., 1961; Kubota et al., 1967), I r e l a n d (Walsh et a l . , 1951) and Canada (Cunningham et al., 1 9 5 3 ; F l e t c h e r and B r i n k , 1969; M i l t i m o r e and Mason, 1971; 1953,-Boila et al . , 1 984a; 1 984b) . M i l t i m o r e and Mason (1971) have proposed a Cu t o Mo r a t i o of l e s s than 2:1 as an i n d i c a t o r of p o t e n t i a l l y t o x i c f e e d . A g r i c u l t u r e Canada (1981) d i e t a r y g u i d e l i n e s f o r beef c a t t l e recommend t h a t f o r a g e Cu:Mo r a t i o s range between 4:1 and 6:1; w i t h r a t i o s l e s s than 3:1 b e i n g c o n s i d e r e d hazardous. Other workers have suggested a r a t i o of 4:1 or more as i d e a l ( S t e w a r t and Racz, 1977; F i s h e r and Waldern, 1978). These g u i d e l i n e s are g e n e r a l l y based on c a t t l e response t o i n g e s t i o n of f o r a g e s w i t h m a r g i n a l Cu ( l e s s than 6 mg/kg) and above average Mo (5 t o 10 mg/kg) c o n t e n t (Ward, 1978). The use of such r a t i o s i n p r e d i c t i n g the o c c u r r e n c e of m o l y b d e n o s i s may not be s u i t a b l e f o r f o r a g e s c o n t a i n i n g s u b s t a n t i a l l y h i g h e r l e v e l s of both Cu and Mo. 18 3.0 ENVIRONMENTAL SETTING 3.1 C l i m a t e Two weather s t a t i o n s (Bethlehem #1123468 and Lornex #1123469) have been i n o p e r a t i o n i n the H i g h l a n d V a l l e y s i n c e 1967. The maximum temp e r a t u r e r e c o r d e d , 35 °C, o c c u r r e d i n August, 1971 and the minumum, -36 °C, i n November of 1985. Mean monthly maximum tem p e r a t u r e s occur i n J u l y and August whereas November th r o u g h March are c h a r a c t e r i z e d by te m p e r a t u r e s below f r e e z i n g (Cominco Copper D i v i s i o n , 1982; u n p u b l i s h e d ) . Temperatures over the d u r a t i o n of the stu d y (1984,1985) were h i g h e s t i n J u l y of 1984 a t 29.5 °C, w i t h a mean monthly maximum of 23.9 °C i n J u l y , 1985. The lo w e s t v a l u e s were r e c o r d e d i n November of 1985 a t -36 °C. The mean monthly minimum (-16.8 °C) was reached i n November, 1985. The number of f r o s t f r e e days f o r 1984 and 1985, were 153 and 155, r e s p e c t i v e l y (Appendix I I ) . O v e r a l l p r e c i p i t a t i o n f o r the a r e a i s low, a v e r a g i n g about 300 mm a n n u a l l y , however, v a r i a t i o n i n y e a r l y p r e c i p i t a t i o n p a t t e r n s can be s u b s t a n t i a l . The lo w e s t monthly t o t a l was r e c o r d e d i n J u l y of 1973 where o n l y 0.5 mm of r a i n f a l l f e l l . The maximum monthly t o t a l , 98.8 mm, was r e c o r d e d i n August of 1976 (Cominco Copper D i v i s i o n , 1982, u n p u b l i s h e d ) . The maximum monthly v a l u e (67 cm as s n o w f a l l ) , d u r i n g 1984 and 1985, o c c u r r e d i n F e b r u a r y 1985 and J u l y 1985, r e c e i v e d the l e a s t a t 2 mm. S n o w f a l l was r e c o r d e d from October t h r o u g h May and October through A p r i l i n 1984 and 1985, r e s p e c t i v e l y . M o n thly s n o w f a l l t o t a l s were g r e a t e s t i n November, December and F e b r u a r y of b o t h y e a r s . 19 3.2 P h y s i o g r a p h y The mine s i t e i s l o c a t e d w i t h i n the H i g h l a n d V a l l e y , a sub-d i v i s i o n of the Thompson P l a t e a u . The v a l l e y i s open-ended and l i e s between g l a c i a l l y eroded, low l y i n g mountains ( L a v k u l i c h et al., 1976). The Main and T r o j a n t a i l i n g ponds a r e l o c a t e d on the s l o p e s of t h i s v a l l e y a t e l e v a t i o n s r a n g i n g from 1300 m t o 1600 m. Compacted g l a c i a l t i l l o verburden i s the dominant s u r f i c i a l m a t e r i a l , w i t h t h i c k n e s s e s v a r y i n g from 3 t o 85 m (Cominco Copper D i v i s i o n , 1982; u n p u b l i s h e d ) . G l a c i o f l u v i a l sediments and c o l -l u v i a l m a t e r i a l a r e common and r e s t r i c t e d a r e a s of l a c u s t r i n e and o r g a n i c d e p o s i t s a r e p r e s e n t ( T i p p e r , 1974). 3.3 Geology The m i l l t a i l i n g s r e c e i v e d by the Main T a i l i n g pond have been d e r i v e d from a v a r i e t y of o r e b o d i e s . The most r e c e n t d i s c h a r g e i n t o t h i s pond and the T r o j a n pond a r e t a i l i n g s from the Lake Zone orebody. T h i s orebody has been c h a r a c t e r i z e d as the B e t h s a i d a phase of the Guichon b a t h o l i t h . Host r o c k s v a r y from p o r p h y r i t i c g r a n o d i o r i t e t o q u a r t z monzonite. P r i m a r y s u l p h i d e m i n e r a l s i n c l u d e b o r n i t e , c h a l c o p y r i . t e , m o l y b d e n i t e and p y r i t e . Copper m i n e r a l i z a t i o n i s a s s o c i a t e d w i t h a. network of q u a r t z v e i n s which f i l l f r a c t u r e s and j o i n t s w i t h i n the host r o c k s . M o l y b d e n i t e i s u s u a l l y p r e s e n t as c o a t i n g s on f a u l t p l a n e s b o r d e r i n g q u a r t z v e i n s . P y r i t e tends t o form a h a l o around the p e r i p h e r y of the orebody and i s s c a r c e w i t h i n the a c t u a l d e p o s i t (Cominco Copper D i v i s i o n , 1982; u n p u b l i s h e d ) . Bedrock geology has been examined by White et al . (1957), C a r r (1960) and C o c k f i e l d (1961). 3.4 S o i l s and V e g e t a t i o n N a t u r a l s o i l s i n the a r e a a r e d o m i n a n t l y B r u n i s o l s and L u v i s o l s , w i t h some R e g o s o l s (B.C. Dept. A g r i c , 1974). The a r e a i s l o c a t e d a t a t r a n s i t i o n between the I n t e r i o r Douglas-f i r and Montane Spruce b i o g e o c l i m a t i c zones ( M i t c h e l l and Green, 1981). The dominant t r e e s p e c i e s i n the v a l l e y i s Pinus ponderosa Dougl. which g i v e s way t o Pinus contort a Dougl. and Picea engelmannii P a r r y a t h i g h e r e l e v a t i o n s . Dominant shrub s p e c i e s i n c l u d e Rosa s p e c i e s L., Salix s p e c i e s L., Shepherdi a canadensis (L.) N u t t . , Alnus s p e c i e s H i l l and Arctostaphylos uva-ursi (L.) Spreng. Calamagrostis rubescens B u c k l . , v a r i o u s Poa s p e c i e s L. and Achillea millefolium L. a r e major f o r b s and g r a s s e s . A t y p i c a l u n d e r s t o r y i n an u n d i s t u r b e d a r e a near the mine s i t e i s d e p i c t e d i n P l a t e 2. 4.0 METHODS AND MATERIALS 4.1 Test P l o t D e s i gn F r e s h t a i l i n g s , d e r i v e d from the Lake Zone Mine o r e , were moved from the T r o j a n pond onto a compacted wasterock s u r f a c e l o c a t e d on a bench of the T r o j a n t a i l i n g s pond dam. A snowfence was then e r e c t e d around the p e r i m e t e r of the t e s t p l o t . T h i s was c ompleted i n August of 1983. The p l o t , as i t appeared i n August of 1984, i s shown i n P l a t e 3. R e l o c a t i o n of the t a i l i n g s was c a r r i e d out i n o r d e r t o ensure t h a t the t e s t p l o t remained u n d i s t u r b e d over the two year d u r a t i o n of the s t u d y . In May of 1984, n i n e 2 m by 4 m s u b p l o t s , w i t h i n the t e s t p l o t a r e a , were d e l i m i t e d as shown i n F i g u r e 2. A p p r o x i m a t e l y 3 cm of o verburden was a p p l i e d t o the s u r f a c e of p l o t s 1, 2 and 3, and 5 cm of F i b r e m u l c h t o p l o t s 4, 5 and 6. P l o t s 7, 8 and 9 s e r v e d as t a i l i n g s c o n t r o l s and r e c e i v e d no s u r f a c e amendment. At the time of s e e d i n g i n 1984, p l o t s 2, 5 and 8 r e c e i v e d a s i n g l e a p p l i c a t i o n of f e r t i l i z e r a p p l i e d a t a r a t e of 40 kg N, 38 kg P and 17 kg K, on a per h e c t a r e b a s i s , i n the form of 11-55-0, 21-0-0 and 0-0-60. P l o t s 3, 6 and 9 r e c e i v e d the same t o t a l amount of f e r t i l i z e r , however, a p p l i c a t i o n was c a r r i e d out i n two a l l o t m e n t s ; one each i n May and J u l y of 1984. P l o t s 1, 4 and 7 r e c e i v e d no f e r t i l i z e r . Forage s p e c i e s were seeded i n s e p a r a t e f u r r o w s i n each p l o t a t a depth p r o p o r t i o n a l t o the seed s i z e , a t a r a t e of 100 seeds/m. Poa amp I a Merr., Agropyron cristatum (L.) G a e r t n . , A. tri chophorurn ( L i n k ) R i c h t . , A. riparium Scribn.& Smith and Onobrychis viciaefolia Scop, were seeded i n f u r r o w s one P l a t e 3: T a i l i n g s t e s t p l o t as i t appeared i n A u g u s t , 1984 ( P l o t 1 l o c a t e d i n f a r r i g h t c o r n e r ) . F i g u r e 2: Test p l o t d e s i g n showing p l o t amendment regime and f u r r o w placement No F e r t i l i z e r S i n g l e F e r t i l i z e r A p p l i c a t i o n S p l i t F e r t i l i z e r A p p l i c a t i o n Overburden Mulch No S u r f i c i a l Amendment P l o t 1 (see i n s e t ) P l o t 4 P l o t 7 P l o t 2 P l o t 5 P l o t 8 P l o t 3 P l o t 6 P l o t 9 KEY: 1 Poa ampla 84 l a Poa ampla 85 l b D a c t y l i s g l o m e r a t a 8 5 2 Agropyron c r i s t a t u r n 84 2a A. c r i s t a t u r n 8 5 2b F e s t u c a o v i n a 8 5 3 A. t r i c h o p h o r u m 84 3a A. t r i c h o p h o r u m 85 3b D. g l o m e r a t a (Kay) 85 4 A. r i p a r i u m 84 4a A. r i p a r i u m 8 5 4b F. r u b r a 85 5 0. v i c i a e f o l i a 8 4 5a Medicago media 8 5 5b T r i f o l i u m repens 85 SCALE: INSET: Furrow placement i n a l l p l o t s 3 m = 1 l a l b 2 2a 2b 3 3a 3b 4 4a 4b 5 5a 5b t o f i v e , r e s p e c t i v e l y . In May 1985, f e r t i l i z e r r a t e s were i n c r e a s e d t o 150 kg N, 44 kg P and 52 kg K per h e c t a r e , as 13-16-10, 21-0-0 and 11-55-0. As i n 1984, p l o t s 1, 4 and 7 r e c e i v e d no f e r t i l i z e r , p l o t s 2, 5 and 8, a s i n g l e a p p l i c a t i o n and p l o t s 3, 6 and 9, a s p l i t a p p l i c a t i o n . Furrows seeded i n 1984 were l e f t u n d i s t u r b e d and two a d d i t i o n a l f u r r o w s were c r e a t e d a d j a c e n t t o each of the o r i g i n a l f i v e . Furrows 1a th r o u g h 4a, were seeded w i t h the 1984 g r a s s s p e c i e s . Dactylis glomerata L. cv ' N a p i e r ' , Festuca ovina L. , D. glomerata L. cv 'Kay', Festuca rubra L., Medicago media P e r s . , a n d Trifolium repens L. were seeded i n f u r r o w s 1b thr o u g h 4b, 5a and 5b, r e s p e c t i v e l y . Legumes were i n o c u l a t e d w i t h t he a p p r o p r i a t e b a c t e r i a l c u l t u r e and a l l 1985 s e e d i n g s were c a r r i e d out a t a r a t e of 50 seeds per meter. O. viciaefolia was not reseeded i n 1985 as a consequence of se v e r e rodent i n t e r f e r e n c e e n c o u n t e r e d i n t he 1984 season. S h o r t l y a f t e r p l a n t i n g , t he pods were s p l i t and t he legume seed removed i n v i r t u a l l y a l l of t h e seeds p l a n t e d . On immediate r e s e e d i n g , t h i s p r o c e s s was r e p e a t e d . E v i d e n c e of rodent i n t e r f e r e n c e i s shown i n P l a t e 4. D i s r u p t i o n of any o t h e r p l a n t s p e c i e s was not a p p a r e n t . The c u l p r i t s were presumed t o be Y e l l o w - b e l l i e d marmots which had e s t a b l i s h e d a den i n c l o s e p r o x i m i t y t o the t e s t p l o t . 4.2 T a i l i n g s Samples M i l l t a i l i n g s samples were c o l l e c t e d from two a r e a s on the Cominco V a l l e y Copper Mines p r o p e r t y . The f i r s t s e t of samples Rodent f o o t p r i n t s and empty seed pods s c a t t e r e d a l o n g 0. v i c i a e f o l i a f u r r o w (May, 1984). were taken from the c e n t e r of each of the n i n e 2 m by 4 m s u b p l o t s w i t h i n the main t a i l i n g s t e s t p l o t , p r i o r t o f e r t i l i z a t i o n or amendment a p p l i c a t i o n ( F i g u r e 2 ) . C h e m i c a l a n a l y s e s of t h e s e samples i n c l u d e d pH, a v a i l a b l e Fe, Cu, Zn, Mn, N i , Cd and Mo, and t o t a l e l e m e n t a l l e v e l s , i n a d d i t i o n t o m i n e r a l o g i c a l a n a l y s i s . The second s e t of samples were o b t a i n e d from a p i t dug i n an a r e a of r e c e n t d i s c h a r g e on the Main T a i l i n g pond. Four samples were r e c o v e r e d from v a r i o u s d e p t h s ; s u r f a c e , 10 cm, 50 cm and 70 cm. Over the y e a r s , t h i s pond r e c e i v e d m i l l t a i l i n g s from a number of p i t o p e r a t i o n s . As a r e s u l t t h e samples from t h e f o u r depths may r e p r e s e n t waste from d i f f e r e n t o r e b o d i e s . These samples were s u b j e c t e d t o a S o x h l e t a r t i f i c i a l w e a t h e r i n g p r o c e s s where columns of t a i l i n g s were l e a c h e d w i t h 0.3 N a c e t i c a c i d a t h i g h t e m p e r a t u r e (about 100 °C) f o r a t o t a l of seven weeks. The S o x h l e t l e a c h i n g a p p a r a t u s i s shown i n P l a t e 5. On a weekly b a s i s , the l e a c h a t e s were removed and r e p l a c e d by f r e s h a c i d . A f t e r seven weeks, the l e a c h e d t a i l i n g s were r e c o v e r e d . T h i s p r o c e d u r e , w i t h some m o d i f i c a t i o n s , has a l s o been used by L a v k u l i c h et al . (1976) and S i n g l e t o n (1978), t o mimic m i n e r a l d e g r a d a t i o n a l p r o c e s s e s which might occur i n time i n a n a t u r a l s e t t i n g . The l e a c h e d t a i l i n g s subsamples and t h e i r u n l e a c h e d c o u n t e r p a r t s were a n a l y z e d f o r pH, a v a i l a b l e Fe, Cu, Zn, Mn, N i , Cd and Mo, t o t a l e l e m e n t a l l e v e l s , and m i n e r a l o g i c a l c o m p o s i t i o n . The s u r f a c e samples, b e f o r e and a f t e r l e a c h i n g , were a l s o examined f o r phosphate a d s o r p t i o n c h a r a c t e r i s t i c s and e v i d e n c e of 28 P l a t e 5: S o x h l e t a r t i f i c i a l w e a t h e r i n g a p p a r a t u s a f t e r one week o f l e a c h i n g showing s u r f a c e ( l e f t ) , 10, 50 and 70 cm d e p t h samples and c o n t r o l ( r i g h t ) . w e a t h e r i n g v i a s c a n n i n g e l e c t r o n m i c r o s c o p y . L e a c h a t e s r e c o v e r e d from the S o x h l e t e x t r a c t i o n were a n a l y z e d f o r pH and t o t a l e l e m e n t a l c o m p o s i t i o n . A l l t a i l i n g s samples were a i r - d r i e d (15 °C t o 20 °C) and s t o r e d i n p l a s t i c c o n t a i n e r s . Subsamples used i n t o t a l e l e m e n t a l a n a l y s i s were pre-ground t o pass a 200 mesh s i e v e . 4.3 T a i l i n g s A n a l y s e s - Technique T a i l i n g s pH was measured i n a 1:2 t a i l i n g s / l i q u i d s u s p e n s i o n u s i n g b o t h 0.01 M C a C l 2 and w a t e r , by the method of McLean (1982). S o x h l e t l e a c h a t e pH was d e t e r m i n e d by p l a c i n g the probe d i r e c t l y i n t o the s o l u t i o n . P l a n t a v a i l a b l e l e v e l s of Fe, Cu, Mn, Zn, N i and Cd i n the t e s t p l o t t a i l i n g s samples were e s t i m a t e d by e x t r a c t i n g w i t h 0.005 M d i e t h y l e n e t r i a m i n e p e n t a a c e t i c a c i d (DTPA) by t h e method of L i n d s a y and N o r v e l l (1978). A n a l y s e s were c a r r i e d out i n q u a d r u p l i c a t e and e x t r a c t e l e m e n t a l l e v e l s were d e t e r m i n e d u s i n g a P e r k i n Elmer 306 Atomic A b s o r p t i o n S p e c t r o p h o t o m e t e r . Samples were a t o m i z e d i n an a i r - a c e t y l e n e f l a m e . A v a i l a b l e Fe, Cu, Mn, N i and Cd i n the Main T a i l i n g Pond samples were o b t a i n e d by an e x t r a c t i o n u s i n g 0.1 N HCl by the method of Page et al. (1982). The use of DTPA as an e x t r a c t a n t f o r these samples c o u l d not be j u s t i f i e d i n view of the s u b s t a n t i a l drop i n pH produced a f t e r l e a c h i n g . E l e m e n t a l c o n c e n t r a t i o n s i n s o l u t i o n were measured by flame atomic a b s o r p t i o n s p e c t r o p h o t o m e t r y . P l a n t a v a i l a b l e Mo, i n the t e s t p l o t and l e a c h i n g study samples ( b e f o r e and a f t e r l e a c h i n g ) , was e s t i m a t e d by e x t r a c t i n g the t a i l i n g s w i t h a c i d ammonium o x a l a t e by the method of G r i g g (1953) , m o d i f i e d a c c o r d i n g t o Ha l e y and M e l s t e d (1957). A c i d ammonium o x a l a t e e x t r a c t i o n of Fe and A l from s o i l s r e q u i r e s t h a t the p r o c e d u r e be c a r r i e d out i n the d a r k , as r e s u l t s can be a f f e c t e d by a p h o t o c h e m i c a l r e a c t i o n (McKeague and Day, 1966). I t was not known i f the same r e a c t i o n would a f f e c t Mo l e v e l s i n s o l u t i o n , t h e r e f o r e , e x t r a c t i o n s were c a r r i e d out i n both l i g h t and dark e n v i r o n m e n t s . S o l u t i o n Mo l e v e l s were d e t e r m i n e d u s i n g a V a r i a n 875 Atomic A b s o r p t i o n S p e c t r o p h o t o m e t e r w i t h a GTA 95 g r a p h i t e tube a n a l y z e r . T h i s method of measurement was p r e f e r r e d t o the c o n v e n t i o n a l c o l o r i m e t r i c t e c h n i q u e of Johnson and A r k l e y (1954) which i s t e d i o u s , s u b j e c t t o a h i g h degree of e x p e r i m e n t a l e r r o r and r e q u i r e s the use of hazardous c h e m i c a l s . Tot-a<l; e l e m e n t a l l e v e l s i n b o t h t a i l i n g s sample s e t s were de t e r m i n e d u s i n g x - r a y f l u o r e s c e n c e s p e c t r o s c o p y (Jones, 1982), i n v o l v i n g s e p a r a t e scans f o r major and minor e l e m e n t s . Major elements i n c l u d e d A l , Ca, Fe, K, Mg, Mn, P, S, S i and T i . D u p l i c a t e a n a l y s e s were c a r r i e d out on s e l e c t e d 4.000 g samples which had been heated w i t h l i t h i u m t e t r a b o r a t e , l i t h i u m c a r b o n a t e , lanthanum o x i d e and l i t h i u m n i t r a t e , and p r e s s e d t o form a g l a s s d i s c . D e t e r m i n a t i o n of the minor elements (Ba, Cu, Zn, Mn, Mo, Na, N i , Pb, Rb and S r ) r e q u i r e d t h a t 4.000 g samples be p r e s s e d i n t o a b o r i c a c i d - b a c k e d p e l l e t w i t h o u t h e a t i n g . D e t e c t i o n l i m i t s f o r some elements a r e q u i t e h i g h (Appendix I I I ) , however, t h i s t e c h n i q u e was deemed adequate f o r the purposes of t h i s s t u d y . T o t a l l e v e l s of A l , Ca, Cu, Fe, K, Mg, Mn, Mo, Na, S i and Zn i n the S o x h l e t l e a c h a t e s were de t e r m i n e d by flame atomic a b s o r p t i o n s p e c t r o s c o p y . A i r - a c e t y l e n e gas was used f o r a l l elements w i t h the e x c e p t i o n of A l , Ca, Mo and S i , which r e q u i r e d the h i g h e r flame t e m p e r a t u r e a c h i e v e d w i t h n i t r o u s o x i d e . Some d i f f i c u l t i e s were e n c o u n t e r e d i n t h i s a n a l y s i s as a r e s u l t of h i g h s a l t l e v e l s and/or the f o r m a t i o n of p r e c i p i t a t e s ( p r o b a b l y i r o n o x i d e s ) . D i s s o l u t i o n of the p r e c i p i t a t e s was attem p t e d by the use of 6 N H C l . T h i s p r o c e d u r e was not e n t i r e l y s u c c e s s f u l , c o n s e q u e n t l y , l e a c h a t e Fe v a l u e s a r e p r o b a b l y d e p r e s s e d . I n t e r f e r e n c e r e s u l t i n g from h i g h s a l t l e v e l s were a l l e v i a t e d i n some s i t u a t i o n s by d i l u t i n g t h e l e a c h a t e w i t h d i s t i l l e d w a t e r . T h i s p r o c e d u r e was not p o s s i b l e i n the case of Zn and A l , s i n c e v a l u e s d e c l i n e d below the d e t e c t i o n l i m i t of the s p e c t r o p h o t o m e t e r . M i n e r a l o g i c a l a n a l y s i s was c a r r i e d out by s t a n d a r d x-ray d i f f r a c t i o n p r o c e d u r e s ( W h i t t i g , 1965), u s i n g a P h i l l i p s x - r a y d i f f Tactometer w i t h a Cu Kc* t a r g e t and N i f i l t e r . C a r b onates and s e s q u i o x i d e s were removed by the method of Kunze (1965) and p a r t i c l e s i z e s were s e p a r a t e d i n t o t h r e e f r a c t i o n s ; l e s s than 2, 2 t o 5 and g r e a t e r than 5 m i c r o m e t e r s , u s i n g the t e c h n i q u e of K i t t r i c k and Hope (1963). The phosphate a d s o r p t i o n s t u d y i n v o l v e d e q u i l i b r a t i n g 3.000 g samples of t a i l i n g s f o r 24, 48 and 72 hours i n 30 mL of 100 ppm P s o l u t i o n (as K^PO^) i n two m a t r i c e s ; 0.01 M C a C l 2 and d i s t i l l e d w ater. E q u i l i b r a t i o n was c a r r i e d out i n 50 mL p l a s t i c c e n t r i f u g e tubes t o which two drops of t o l u e n e had been added t o reduce m i c r o b i a l i n t e r f e r e n c e . The tubes were s t o p p e r e d and shaken l a t e r a l l y f o r o n e - h a l f hour each 24 hour p e r i o d . P c o n c e n t r a t i o n i n the s u p e r n a t a n t s o l u t i o n was de t e r m i n e d c o l o r i m e t r i c a l l y a f t e r c e n t r i f u g i n g f o r 15 minutes a t 1200 g. E q u i l i b r a t i o n was assumed t o be e s t a b l i s h e d when the s o l u t i o n P l e v e l s t a b i l i z e d . T h i s o c c u r r e d a t some time between 48 and 72 h o u r s . A d s o r p t i o n i s o t h e r m d a t a were o b t a i n e d by e q u i l i b r a t i n g 3.000 g samples of t a i l i n g s w i t h 30 mL a l i q u o t s of 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 ppm P s o l u t i o n s i n d i s t i l l e d water a t 23 °C f o r 72 h o u r s . The 0.01 M C a C l 2 m a t r i x was not used i n t h i s p o r t i o n of the study s i n c e p r e l i m i n a r y e q u i l i b r a t i o n r e s u l t s showed no d i f f e r e n c e between m a t r i c e s . The tubes were c e n t r i f u g e d and a 1 mL a l i q u o t of s u p e r n a t a n t s o l u t i o n was removed f o r c o l o r i m e t r i c t r e a t m e n t u s i n g the method of Watanabe and O l s e n (1965). Measurement of P i n s o l u t i o n was c a r r i e d out im m e d i a t e l y on a G i l f o r d s p e c t r o p h o t o m e t e r . Absorbance r e a d i n g s were made a t a wavelength of 700 nm. A homologous p a i r of a r t i f i c i a l l y weathered and u n l e a c h e d t a i l i n g s (50 cm) were examined u s i n g a s c a n n i n g e l e c t r o n m i c r o s c o p e . Photographs of an amphibole and p l a g i o c l a s e i n each sample were t a k e n and examined f o r e v i d e n c e of w e a t h e r i n g . 4.4 V e g e t a t i o n Samples F o l i a r samples were o b t a i n e d i n September, 1985 by c l i p p i n g whole p l a n t s a p p r o x i m a t e l y 2 cm above ground l e v e l . S e p a r a t e samples from each s p e c i e s on the f e r t i l i z e d p l o t s ( p l o t s 2, 3, 5, 6, 8 and 9) were c o l l e c t e d and s t o r e d t e m p o r a r i l y i n paper bags. Very l i t t l e growth was e v i d e n t on the u n f e r t i l i z e d p l o t s ( p l o t s 1, 4 and 7 ) . A p o r t i o n of p l o t 7 i s shown i n P l a t e 6. The f o l i a g e was d r i e d a t 70 °C f o r 24 h o u r s . Removal of t a i l i n g s m a t e r i a l was c a r r i e d out u s i n g p r e s s u r i z e d a i r . Samples were not washed i n o r d e r t o a v o i d the l o s s of s o l u b l e f o l i a r c o n s t i t u e n t s . T h i s may have r e s u l t e d i n e l e v a t e d l e v e l s of o t h e r elements due t o c o n t a m i n a t i o n from a d h e r i n g t a i l i n g s p a r t i c l e s . I n s u f f i c i e n t sample mass was a v a i l a b l e t o c a r r y out p a r a l l e l a n a l y s e s on washed an unwashed f o l i a g e . Samples were p u l v e r i z e d i n a Braun c o f f e e g r i n d e r and s t o r e d i n p l a s t i c v i a l s . P r i o r t o v e g e t a t i v e a n a l y s i s , samples were r e d r i e d a t 70 °C f o r 3 hours and s t o r e d b r i e f l y i n a d e s s i c a t o r . 4.5 V e g e t a t i v e A n a l y s e s - Technique F o l i a r e l e m e n t a l l e v e l s were d e t e r m i n e d on as many r e p l i c a t e s as p o s s i b l e (one t o e i g h t , depending on growth s u c c e s s ) , u s i n g the wet o x i d a t i o n method of P a r k i n s o n and A l l e n (1975). E x t r a c t A l , Ca, Cu, Fe, K, Mg, Mn and Zn were measured by flame atomic a b s o r p t i o n s p e c t r o s c o p y . N and P were a n a l y z e d c o l o r i m e t r i c a l l y w i t h a T e c h n i c o n A u t o - A n a l y z e r I I . The same e x t r a c t s were sampled w i t h a J a r r e l l - A s h AtomComp S e r i e s 1100 i n d u c t i v e l y c o u p l e d argon plasma e m i s s i o n s p e c t r o p h o t o m e t e r (ICP) f o r A l , Ca, Cu, Fe, K, Mg, Mn, Mo, N i , P, Sr and Zn. T h i s p r o c e d u r e was c a r r i e d out t o o b t a i n e x t r a c t Mo l e v e l s and as a v e r i f i c a t i o n f o r A l , Ca, Cu, Fe, K, Mg, Mn and Zn d e t e r m i n e d by flame atomic a b s o r p t i o n . Mo e x t r a c t l e v e l s were below the P l a t e 6: P l o t 7 (no f e r t i l i z e r nor s u r f i c i a l amendment) as i t appeared i n J u l y , 1984. d e t e c t i o n l i m i t of the flame atomic a b s o r p t i o n s p e c t r o p h o t o m e t e r and the c o r r o s i v e n a t u r e of the e x t r a c t m a t r i x negated the use of f l a m e l e s s atomic a b s o r p t i o n s p e c t r o p h o t o m e t r y . In a d d i t i o n , samples were d r y - a s h e d u s i n g a m o d i f i e d method of Henning and J a c k s o n (1973). Samples were ashed i n c o v e r e d Vycor c r u c i b l e s a t 500 °C f o r 5 t o 6 h o u r s . The ash was taken up i n 10 mL of 2 N HC1 f o l l o w e d by 20 mL of 0.01 N HC1. S o l u t i o n s were not f i l t e r e d as suggested by Henning and J a c k s o n (1973) s i n c e a t r i a l run comparing Mo l e v e l s i n f i l t e r e d and u n f i l t e r e d samples showed no d i f f e r e n c e i f the i n s o l u b l e r e s i d u e was p e r m i t t e d t o s e t t l e o u t . I t was presumed t h a t o m i s s i o n of t h i s s t e p would reduce e x p e r i m e n t a l e r r o r . S o l u t i o n Mo was d e t e r m i n e d by f l a m e l e s s atomic a b s o r p t i o n s p e c t r o s c o p y . The f u r n a c e t e m p e r a t u r e was g r a d u a l l y i n c r e a s e d from ambient t o 1200 °C, then r a p i d l y t o 2900 °C when a t o m i z a t i o n o c c u r r e d . The s o l u t i o n s produced from d r y - a s h i n g and d i s s o l u t i o n i n a c i d were a l s o a n a l y z e d by ICP. The two f o l i a r d i g e s t i o n p r o c e d u r e s ( d r y ash and wet o x i d a t i o n ) and subsequent d e t e r m i n a t i o n of s o l u t i o n Mo by f l a m e l e s s AAS and e m i s s i o n s p e c t r o s c o p y (ICP) were c a r r i e d out t o v e r i f y t h a t f o l i a r Mo v a l u e s produced by the P a r k i n s o n and A l l e n d i g e s t and ICP d e t e r m i n a t i o n were r e a s o n a b l y a c c u r a t e . T h i s c o m b i n a t i o n of d i g e s t i o n and d e t e r m i n a t i o n p r o c e d u r e i s a d e s i r a b l e methodology w i t h r e s p e c t t o e f f i c i e n c y of sample p r o c e s s i n g . 4.6 T a i l i n g Pond R e c l a i m Water Samples Large volumes of water a r e used d u r i n g ore p r o c e s s i n g and t o form a s l u r r y t o f a c i l i t a t e the t r a n s p o r t of m i l l waste t o the t a i l i n g pond. T h i s water i s c o n t i n u o u s l y r e c y c l e d t h r o u g h the m i l l and hence i s termed, r e c l a i m w a t e r . Water samples were c o l l e c t e d from t h r e e t a i l i n g ponds. Samples c o n s i s t e d of one sample from the Main Pond, two samples from d i f f e r e n t s i t e s on the T r o j a n Pond and two samples from t h e same s i t e on the H u e s t i s Pond. Samples were taken a t 9:00 a.m. on June 2 7 t h , 1986, s t o r e d as a 2% HNO^ s o l u t i o n and r e f r i g e r a t e d u n t i l c h e m i c a l a n a l y s e s c o u l d be c o n d u c t e d . 4.7 T a i l i n g Pond R e c l a i m Water A n a l y s e s At time of s a m p l i n g , pH was d e t e r m i n e d c o l o r i m e t r i c a l l y u s i n g a F i s h e r A l k a c i d F u l l Range pH k i t . S o l u t i o n c o n c e n t r a t i o n s of Ca, Mg, K, Na, A l , Co, C r , Cu, N i , As, B, Ba, Cd, Mn, Mo, P, Pb, Se, S i , S r , T i , Zn and Zr were d e t e r m i n e d on the 2nd of J u l y , 1985 u s i n g ICP e m i s s i o n s p e c t r o s c o p y . 4.8 S t a t i s t i c a l A n a l y s e s S t a t i s t i c a l a n a l y s e s were c a r r i e d out on d a t a o b t a i n e d from the g r a s s e s o n l y . The legume samples r e q u i r e d c o m p o s i t i n g a c r o s s p l o t s . Over a l l t h r e e legume s p e c i e s , i t was o n l y p o s s i b l e t o c o l l e c t s u f f i c i e n t m a t e r i a l t o produce seven samples. I d e a l l y , p a r a m e t r i c s t a t i s t i c s a r e used i n data, a n a l y s e s s i n c e they a r e g e n e r a l l y more p o w e r f u l and a l l o w g r e a t e r f l e x i b i l i t y of comparisons than o t h e r t e c h n i q u e s . The d a t a s e t , however, must meet c e r t a i n c r i t e r i a . Most i m p o r t a n t l y , the d a t a must be n o r m a l l y d i s t r i b u t e d and v a r i a n c e s must be homogenous. I f t h i s i s not the c a s e , d a t a t r a n s f o r m a t i o n s may be c a r r i e d out t o produce homogeneity of v a r i a n c e . T h i s d a t a s e t d i d not meet the v a r i a n c e r e q u i r e m e n t . S i n c e the r e p l i c a t e numbers were not l a r g e and were unequal a c r o s s s p e c i e s and p l o t s , the use of d a t a t r a n s f o r m a t i o n s was not j u s t i f i e d . A l t e r n a t i v e l y , the n o n p a r a m e t r i c K r u s k a l - W a l l i s t e s t f o r m u l t i p l e comparisons was used i n c o n j u n c t i o n w i t h a n o n p a r a m e t r i c m u l t i p l e range t e s t ( Z a r , 1974). In t h e s e t e s t s the p o p u l a t i o n parameters a r e not used i n s t a t e m e n t s of hypotheses nor t e s t c a l c u l a t i o n s . I n s t e a d , a system of r a n k i n g d a t a i s employed where c a l c u l a t i o n s a r e c a r r i e d out on the ranked sums f o r each group. The K r u s k a l -W a l l i s t e s t i s a l s o known as ' a n a l y s i s of v a r i a n c e by r a n k s ' . A d i s a d v a n t a g e t o t h e s e t e c h n i q u e s i s e n c o u n t e r e d when sample s i z e s a r e unequal and the n u l l hypotheses i n the K r u s k a l - W a l l i s t e s t i s r e j e c t e d , i n d i c a t i n g a s i g n i f i c a n t d i f f e r e n c e between groups. The m u l t i p l e range t e s t r e q u i r e s e q u a l sample s i z e s , c o n s e q u e n t l y i t i s not p o s s i b l e t o d e t e c t where the d i f f e r e n c e s may l i e . In a l l c a s e s , c o n f i d e n c e l e v e l s were s e t a t 0.95. 5.0 RESULTS AND DISCUSSION - Mine T a i l i n g s C h a r a c t e r i s t i c s 5.1 Test P l o t T a i l i n g s 5.1.1 pH T a i l i n g s pH was r e l a t i v e l y c o n s i s t e n t a c r o s s a l l samples, e x c e p t i n g the S o x h l e t l e a c h e d m a t e r i a l , a v e r a g i n g 8.1 i n water and 6.8 i n C a C l 2 (Table 1 ) . These v a l u e s g e n e r a l l y concur w i t h L a v k u l i c h et al . (1976) who found ranges of 8.0 t o 8.9 i n water and 7.3 t o 8.3 i n C a C l 2 . A d e c l i n e of a p p r o x i m a t e l y 3.2 pH u n i t s was noted i n the t a i l i n g s samples a f t e r l e a c h i n g , w i t h the pH of the l e a c h e d t a i l i n g s and the S o x h l e t l e a c h a t e a t seven weeks, b e i n g v e r y s i m i l a r ( F i g u r e 3 ) . The r a p i d d e c l i n e i n pH on a r t i f i c i a l w e a t h e r i n g c o r r e s p o n d s t o the massive r e l e a s e of a l k a l i and a l k a l i n e e a r t h elements (Ca, Na and K) e a r l y i n the l e a c h i n g p r o c e s s ( F i g u r e s 4-6). I t would appear t h a t t h e s e e l e m e n t s , p a r t i c u l a r l y Ca, a r e r e s p o n s i b l e f o r m a i n t a i n i n g t a i l i n g s pH i n the n e u t r a l t o a l k a l i n e range. S i n c e the s t u d y a r e a i s l o c a t e d i n a s e m i - a r i d c l i m a t e , the i n t e n s i t y of l e a c h i n g i n a n a t u r a l s e t t i n g would p r o b a b l y not be as g r e a t as t h a t of the a r t i f i c i a l w e a t h e r i n g p r o c e s s . As a r e s u l t , d e c l i n e s i n pH may be e x p e c t e d , but not as r a p i d l y or s e v e r e l y , as i n the l e a c h i n g s t u d y . I r r i g a t i o n of the pond, may a c c e l e r a t e the l o s s of a l k a l i n e e a r t h s , however, the r a t e would depend on the volume of water a p p l i e d and i t s c h e m i c a l c o m p o s i t i o n . A c i d i f i c a t i o n may be moderated by the a d d i t i o n of o r g a n i c m atter t h r o u g h r e v e g e t a t i o n p r a c t i c e s and p r o b a b l e i n c r e a s e i n c l a y Table 1: pH of Main Pond T a i l i n g s , before and a f t e r seven weeks of Soxhlet l e a c h i n g , and T e s t P l o t T a i l i n g s . Method SAMPLE H 20 C a C l 2 Main Pond T a i l i n g s : Unleached: 0 cm (surface) 7.9 6.7 10 cm 7.6 6.6 50 cm 7.6 6.7 70 cm 8.0 6.6 Leached: 0 cm - 3.5 10 cm - 3.4 50 cm - 3.4 7 0 cm - 3.5 Test P l o t T a i l i n g s : P l o t 1 7.6 6.8 P l o t 2 8.0 6.9 P l o t 3 8.2 6.9 P l o t 4 8.1 7.0 P l o t 5 8.3 7.0 P l o t 6 8.4 6.5 P l o t 7 8.3 6.6 P l o t 8 8.2 6.6 P l o t 9 8.0 6.5 Mean of T e s t P l o t T a i l i n g s 8.1 6.8 F i g u r e 3: D e c l i n e i n l e a c h a t e pH o f Main Pond t a i l i n g s samples from f o u r d e p t h s , as a f u n c t i o n o f d u r a t i o n of l e a c h i n g w i t h 0.3 N a c e t i c a c i d , i n a S o x h l e t e x t r a c t o r . Figure 4 : Change i n leachate calcium concentration of Main Pond t a i l i n g s samples from four depths, as a function of duration of leaching with 0.3 N acetic acid i n a Soxhlet extractor. 53 O H EH EH 53 w O 53 O U s D H U U 0 cm depth 10 cm depth 5 0 cm depth 70 cm depth o A TIME (Weeks) F i g u r e 5: Change i n l e a c h a t e sodium c o n c e n t r a t i o n o f Main Pond t a i l i n g s samples from f o u r depths, as a f u n c t i o n o f d u r a t i o n o f l e a c h i n g w i t h 0.3 N a c e t i c a c i d i n a S o x h l e t e x t r a c t o r . mg/L 600 500 400 300 200 100 0 cm d e p t h 10 cm d e p t h 50 cm d e p t h 70 cm d e p t h o A TIME (Weeks) 43 F i g u r e 6: Change i n l e a c h a t e p o t a s s i u m c o n c e n t r a t i o n o f Main Pond t a i l i n g s samples from f o u r d e p t h s , as a f u n c t i o n o f d u r a t i o n o f l e a c h i n g w i t h 0.3 N a c e t i c a c i d i n a S o x h l e t e x t r a c t o r . K E Y : 0 cm d e p t h 10 cm d e p t h 50 cm d e p t h 70 cm d e p t h o A 200 -100 -T I M E (Weeks) c o n t e n t on w e a t h e r i n g , as t h e s e components c o n t r i b u t e t o s o i l b u f f e r i n g c a p a c i t y . 5.1.2 DTPA - A v a i l a b l e Heavy M e t a l s D T P A - e x t r a c t a b l e Mn, Zn and Fe v a l u e s were found t o be a t or below the low range of normal f o r a g r i c u l t u r a l s o i l s ( T a ble 2 ) . A v a i l a b l e Zn may be inadequate f o r p l a n t growth based on the c r i t i c a l n u t r i e n t range of 0.5 t o 1.0 mg/kg suggested by V i e t s and L i n d s a y (1973) and L i n d s a y and N o r v e l l (1978). DTPA a v a i l a b l e Cu was w e l l above normal l e v e l s and o r d e r s of magnitude above the c r i t i c a l n u t r i e n t range (Table 2 ) . Some r e s e a r c h e r s (Haq et a l . , 1980; N o r v e l l , 1984) have suggested t h a t the s t a n d a r d DTPA e x t r a c t i o n t e c h n i q u e may not be s u i t a b l e f o r m e t a l - r i c h s o i l s . A p p a r e n t l y , the c o m p l e x i n g s i t e s on the DTPA m o l e c u l e s may become s a t u r a t e d , r e s u l t i n g i n an u n d e r e s t i m a t i o n of ' a v a i l a b l e ' l e v e l s . T h i s may have o c c u r r e d d u r i n g the e x t r a c t i o n of copper from the t a i l i n g s . D i f f e r e n c e s between D T P A - a v a i l a b l e m e t a l l e v e l s a c r o s s p l o t s were examined by p a r a m e t r i c and n o n - p a r a m e t r i c a n a l y s e s of v a r i a n c e . Both methods r e s u l t e d i n the same c o n c l u s i o n . L e v e l s of DTPA-e x t r a c t a b l e Fe, Cu, Mn, and Zn v a r i e d s i g n i f i c a n t l y a c r o s s p l o t s ( T a ble 3 ) . Samples from p l o t s 8 and 9, c o n s i s t e n t l y showed the low e s t D T P A - e x t r a c t a b l e Fe, Cu, Mn and Zn l e v e l s . A v a i l a b l e heavy m e t a l t r e n d s were not apparent i n the r e m a i n i n g p l o t s . DTPA a v a i l a b l e N i and Cd were below the d e t e c t i o n l i m i t of the Table 2: T o t a l and a v a i l a b l e l e v e l s o f copper, molybdenum, z i n c , i r o n , and manganese i n normal a g r i c u l t u r a l s o i l s and t e s t p l o t t a i l i n g s as compared to min-imum p l a n t requirements. T o t a l (mg/kg) DTPA-Extractable (mg/kg) C r i t i c a l N u t r i e n t Range (mg/kg) Element Normal T a i l i n g s Normal T a i l i n g s ' Cu a 5-150 754 1.3 b 17.3 d 0.2 Mo 0.2-5 a 23 0.2C» 0.7* c# 0.1 Zn a 10-250 26 d 0.3-11 0.4 0.5-1.0' Fe 0.5-5% a 0 . 92% 20-250 S 15.3 3.0-4.5 Mn 2 0 0 - l 0 4 a 417 2 0 - l l 0 S 3.8 e 3-5 ' A c i d ammonium o x a l a t e e x t r a c t a b l e a Brady (1974) b Dolar and Keeney (1971) c Cheng and O u e l l e t t e (19 73) d V i e t s and Lindsay (1973) and Lindsay and N o r v e l l (1978) e L i n d s a y and N o r v e l l (1978) 4 6 Table 3 : Mean DTPA-extractable i r o n , copper, manganese, z i n c , n i c k e l , and cadmium and a c i d ammonium o x a l a t e e x t r a c t -able molybdenum l e v e l s i n the t e s t p l o t t a i l i n g s . DTPA-Extrac t a b l e L e v e l s n= 4 A AO mg/kg mg/kg P l o t Fe Cu Mn Zn Ni Cd Mo ± 0 . 2 ± 0 . 1 ± 0 . 1 ± 0 . 0 2 ± 0 . 0 3 1 1 5 . 1 * be 1 7 . 2 b 3 . 8 8 de 0 . 4 3 d < 0 . 2 0 < 0 . 0 6 0 . 7 6 a 2 1 5 . 6 cd 1 9 . 0 c 3 . 7 7 be 0 . 3 8 c it II 0 . 7 9 a 3 1 5 . 8 cd 1 7 . 8 b 3 . 9 2 e 0 . 3 7 c II n 0 . 8 1 a 4 1 5 . 6 cd 1 8 . 0 b 3 . 7 5 abc 0 . 3 9 c II II 0 . 7 4 a 5 1 7 . 0 e 2 0 . 8 e 3 . 9 4 e 0 . 3 6 be n II 0 . 7 9 a 6 1 6 . 6 de 2 0 . 0 d 3 . 8 2 cd 0 . 3 7 c II 0 . 7 4 a 7 1 4 . 3 ab 1 7 . 3 b 3 . 6 8 ab 0 . 4 3 d II n 0 . 7 0 a 8 1 3 . 9 a 1 2 . 6 a 3 . 6 7 a 0 . 3 2 a II II 0 . 6 4 a 9 1 3 . 8 a 1 2 . 6 a 3 . 6 8 a 0 . 3 4 ab II II 0 . 6 8 a Grand Mean 1 5 . 3 1 7 . 3 3 . 7 9 0 . 3 8 - - 0 . 7 4 ff A c i d ammonium o x a l a t e e x t r a c t a b l e (n= 2 ) Means f o l l o w e d by the same l e t t e r are not s i g n i f i c a n t l y d i f f e r e n t a t the 5% l e v e l w i t h i n each parameter f o r each p l o t flame s p e c t r o p h o t o m e t e r a t l e s s than 0.2 and 0.06 mg/kg, r e s p e c t i v e l y . These r e s u l t s e x e m p l i f y the e x t r e m e l y v a r i a b l e c h a r a c t e r of mine t a i l i n g s . A l l samples were taken from the same s l u r r y d e p o s i t and presumably were d e r i v e d from p r o x i m a t e l o c a t i o n s w i t h i n the orebody. 5.1.3 A v a i l a b l e Molybdenum L e v e l s of a c i d ammonium o x a l a t e e x t r a c t a b l e ( p l a n t a v a i l a b l e ) Mo under l i g h t and dark e x t r a c t i o n c o n d i t i o n s ( T a b l e 4) were s i g n i f i c a n t l y d i f f e r e n t as d e t e r m i n e d by the p a i r e d sample t t e s t . The reason f o r t h i s i s u n c l e a r . I f Mo p a r a l l e l e d Fe b e h a v i o u r and was i n v o l v e d i n a p h o t o c h e m i c a l r e a c t i o n w i t h the ammonium o x a l a t e s o l u t i o n , one would expect the e x t r a c t i o n s c a r r i e d out i n the dark t o show h i g h e r s o l u t i o n l e v e l s . The r e v e r s e was t r u e i n t h i s s t u d y . No s i g n i f i c a n t d i f f e r e n c e s i n a v a i l a b l e Mo were d e t e c t e d i n comparisons of t e s t p l o t t a i l i n g s samples. A l l samples produced a v a i l a b l e Mo v a l u e s g r e a t e r than the c r i t i c a l n u t r i e n t l e v e l of 0.1 mg/kg, suggested by Cheng and O u e l l e t t e (1973). The t e s t p l o t t a i l i n g s and u n l e a c h e d 50 cm and 70 cm depth Main Pond samples were w e l l above the normal a v a i l a b l e Mo l e v e l of 0.2 mg/kg, a v e r a g i n g 0.74 and 0.75 mg/kg, r e s p e c t i v e l y ( T a b l e s 3 & 4 ) . Other workers have found t o x i c herbage t o be a s s o c i a t e d w i t h an ammonium o x a l a t e - e x t r a c t a b l e Ta^ble 4: A v a i l a b l e c opper, i r o n , manganese, z i n c , n i c k e l , cadmium, and molybdenum l e v e l s i n the main pond t a i l i n g s , b e f o r e and a f t e r seven weeks o f l e a c h -i n g i n a S o x h l e t e x t r a c t o r . 0. 1 N HC1 - E x t r a c t a b l e L e v e l s ft AAO mg/kg mg/kg S a m p l e Cu Fe Mn Zn N i Cd M o 1 Mo 2 ±0 .1 ±0 . 2 ±0.1 ±0.02 ±0.5 ±0 . 05 ±0.03 U n l e a c h e d 0 cm 22.8 337 115.2 0.8 0.5 0.1 0.22 0.21 10 cm 15.3 277 109.9 0.7 0.5 <0.05 0.19 0.19 5 0 cm 124.8 207 27 .4 0.9 1.0 <0.05 0.79 0.70 7 0 cm 119.8 174 2 3.4 0.7 1.0 0.1 0.71 0.58 L e a c h e d -• 0 cm 30.7 34 2.6 < 0.2 < 0 .5 <0.05 0.13 0.12 10 cm 9.6 62 1.0 < 0.2 < 0.5 <0 .05 0.16 0.13 50 cm 39.8 27 2.0 0 . 2 <0. 5 <0.05 0.59 0.43 70 cm 19.0 47 0.8 <0.2 <0.5 <0.05 0.37 0.21 A c i d ammonium o x a l a t e e x t r a c t a b l e molybdenum Mo1" E x t r a c t i o n c o n d u c t e d w i t h o u t l i g h t e x c l u s i o n 2 Mo E x t r a c t i o n c o n d u c t e d w i t h l i g h t e x c l u s i o n Mo l e v e l of 0.5 mg/kg i n s o i l s of pH 6 (Walsh et a l . , 1951). The t a i l i n g s samples, h a v i n g h i g h e r e x t r a c t a b l e Mo and pH v a l u e s , a r e t h e r e f o r e l i k e l y t o produce M o - t o x i c f o r a g e . The s u r f a c e and 10 cm depth Main Pond samples produced a v a i l a b l e Mo v a l u e s i n the normal range ( T a b l e 4 ) . In o t h e r r e s p e c t s , ( t o t a l e l e m e n t a l l e v e l s and x - r a y d i f f r a c t i o n p a t t e r n s ) , t h e s e samples were more s i m i l a r to the t e s t p l o t t a i l i n g s than the 50 cm and 70 cm depth Main Pond samples. The v a r i a t i o n s noted between samples from d i f f e r e n t l o c a t i o n s and d e p t h s , p r o b a b l y r e p r e s e n t s i n c o n s i s t e n t m i n e r a l o g i e s . A v a i l a b l e Mo l e v e l s d e c l i n e d s i g n i f i c a n t l y a f t e r l e a c h i n g as i n d i c a t e d by the n o n - p a r a m e t r i c W i l c o x o n p a i r e d sample s t a t i s t i c a l t e s t . Even a f t e r l e a c h i n g , some samples remained a t above normal l e v e l s , and a l l were i n e x c e s s of the minimum c r i t i c a l n u t r i e n t v a l u e f o r p l a n t s . 5.1.4 0.1 N H C l - A v a i l a b l e Heavy M e t a l s 0.1 N HCl e x t r a c t a b l e Cu and Fe i n the Main Pond samples, b e f o r e l e a c h i n g , compared r e a s o n a b l y w e l l w i t h v a l u e s o b t a i n e d by L a v k u l i c h et a l . (1976). Zn and Mn were somewhat lower than the p r e v i o u s study i n d i c a t e d , however, the h i g h degree of v a r i a b i l i t y i n the t a i l i n g s m a t e r i a l c o u l d account f o r t h i s d i s c r e p a n c y . Even w i t h i n the f o u r depths sampled, two d i f f e r e n t groups (10 cm vs 50 cm and 70 cm) were e v i d e n t (Table 4 ) . I t i s i n t e r e s t i n g t o note t h a t the 0.1 N HCl e x t r a c t i o n removed much g r e a t e r q u a n t i t i e s of Fe and Mn i n the u n l e a c h e d Main Pond samples as compared t o the DTPA e x t r a c t i o n of the t e s t p l o t t a i l i n g s samples. HCl a v a i l a b l e l e v e l s i n the l e a c h e d samples compared r e a s o n a b l y w e l l , a t l e a s t i n the same o r d e r of magnitude, t o the u n l e a c h e d DTPA v a l u e s of the t e s t p l o t samples. Some d i s c r e p a n c y i s t o be e x p e c t e d as a r e s u l t of sample v a r i a t i o n , however, the degree of d i v e r g e n c e would i n d i c a t e t h a t the n a t u r e of the e x t r a c t i n g s o l u t i o n i s the c a u s a l f a c t o r . Robbins (1977; u n p u b l i s h e d ) found s i m i l a r d i f f e r e n c e s when comparing DTPA and 0.1 N HCl e x t r a c t a b l e l e v e l s i n Endako mine t a i l i n g s . 0.1 N H C l - e x t r a c t a b l e Fe, Mn and Zn d e c l i n e d s i g n i f i c a n t l y a f t e r seven weeks of l e a c h i n g . S u b s t a n t i a l drops i n a v a i l a b l e copper were noted i n the 50 and 70 cm but not i n the s u r f a c e or 10 cm depth samples (Table 4 ) . N i and Cd were a t , or near, the d e t e c t i o n l i m i t of the atomic a b s o r p t i o n s p e c t r o p h o t o m e t e r and were not examined s t a t i s t i c a l l y . 5.1.5 T o t a l E l e m e n t a l A n a l y s i s Of the n i n e t e e n elements a n a l y z e d i n the t a i l i n g s , o n l y copper and molybdenum were w e l l above the c o n c e n t r a t i o n range u s u a l l y e n c o u n t e r e d i n s o i l s ( T a b l e s 5-8). Seven weeks of l e a c h i n g d i d not s u b s t a n t i a l l y a l t e r t h i s r e l a t i o n s h i p . T i t a n i u m , z i n c and n i c k e l were a t , or s l i g h t l y l e s s t h a n , the lower range v a l u e s . The r e m a i n i n g elements were w i t h i n normal ranges. There d i d appear t o be some d i f f e r e n c e s between the Main Pond and t e s t p l o t samples; the Main Pond samples h a v i n g g r e a t e r con-T a b l e 5: T o t a l m a j o r e l e m e n t a l c o n c e n t r a t i o n s i n t h e t e s t p l o t t a i l i n g s S ample A l * Ca Fe K Mg Na P S S i T i P l o t 1 6.1 1.40 0.96 2.31 0.15 1.34 0.03 <0.01 37.0 0.10 2 5.7 1.33 0.90 2.24 0.20 1.43 » 0.11 35.7 0.10 3 5.9 1.36 0.93 2.23 0.13 1.52 0.10 35.5 0.10 4 5.7 1.34 0.92 2.23 0.20 1.44 » 0.09 35.9 0.09 5 5.7 1.38 0.94 2.23 0.19 1.42 0.11 35.6 0.10 6 5.8 1.36 0 .92 2.22 0.16 1.42 0. 09 36.2 0.10 7 5.8 1.31 0.90 2.24 0.19 1.36 » 0.11 36.2 0.09 8 5.9 1.25 0.90 2.32 0 .14 1.56 0.09 36.0 0.09 9 5.8 1.29 0.92 2.25 0.19 1.48 0.09 36.0 0.10 Mean 5.8 1.34 0.92 2.25 0.17 1.44 0.03 0.09 36.0 0.10 S t d . Dev. 0.13 0.05 0.02 0.04 0 .03 0 .07 - 0.03 0.4 0.005 Mean** - 1.0 2.5 2.0 0.6 - - 0.08 - -Range 2-7 0.07-3.6 0.5-5 0.17-3.3 0.12-1.5 0-1. 5 0.01-0.2 0.01-0.2 28-43 0.3-0.6 See A p p e n d i x 3 f o r d e t e c t i o n l i m i t s a n d e r r o r r a n g e s ## Means and r a n g e s n o r m a l l y e n c o u n t e r e d i n s o i l s , f r o m B r a d y (19 74) T a b l e 6: T o t a l m i n o r e l e m e n t a l c o n c e n t r a t i o n s i n t h e t e s t p l o t t a i l i n g s S ample Ba* Cu Mn Mo N i # # Pb** Rb S r Zn mg/kg P l o t 1 1,001 785 468 23 7 9 40 236 28 2 840 790 387 30 7 5 40 230 24 3 838 735 418 28 9 11 40 238 25 4 875 810 403 25 6 8 39 233 28 5 873 830 417 24 7 8 40 234 27 6 853 730 403 25 8 11 38 234 26 7 992 780 477 21 5 4 40 239 26 8 813 640 383 16 6 4 40 241 23 9 859 690 394 18 7 6 40 240 25 Mean 883 754 417 23 (7) (7) 40 236 26 S t d . Dev. 67 61 34 4.5 - - 0.7 4 1.7 Mean*** - 50 2500 2 100 - - 150 100 Range 100-3000 5-150 2 0 0 - 1 0 4 0.2-5 5-500 2-200 - 5 0 - 1 0 3 10-250 See A p p e n d i x 3 f o r d e t e c t i o n l i m i t s a n d e r r o r r a n g e s * j j C o n c e n t r a t i o n s a t o r n e a r d e t e c t i o n l i m i t o f XRF ( v a l u e s q u e s t i o n a b l e ) Means and r a n g e s n o r m a l l y e n c o u n t e r e d i n s o i l s , f r o m B r a d y (1974) a n d S w a i n e (1955) T a b l e 7: T o t a l m a j o r e l e m e n t a l c o n c e n t r a t i o n s i n t h e m a i n p o n d t a i l i n g s , b e f o r e a n d a f t e r s e v e n weeks o f l e a c h i n g w i t h a c e t i c a c i d i n . a S o x h l e t e x t r a c t o r . CONCENTRATION ( % ) Sample A l Ca Fe K Mg Na P S S i T i U n l e a c h e d : 0 cm 6.0 0.99 0.91 2.61 0.10 1.67 0.03 < 0 . 0 1 36.3 0.10 10 cm 5.7 0.93 0.96 2.54 0.16 1.69 0.03 0.17 36.1 0.10 50 cm 8.5 2.56 1.57 1.01 0.58 3.35 0.05 0.10 31.4 0.19 70 cm 8.4 2.46 1.47 1.03 0.55 3.43 0.04 0.10 31.7 0.17 L e a c h e d : 0 cm 6.0 0.23 0.83 2.63 0.07 1.77 0 .02 <0 .01 37.5 0 .10 10 cm 5.7 0.21 0.82 2.56 0.10 1.83 0.01 0.13 37.3 0.10 50 cm 8.5 1.96 1.53 1.02 0.54 3.67 0.03 0.10 32.1 0.20 70 cm 8.5 1.86 1.32 1.00 0.48 3.79 0.03 0.07 32.4 0.18 See A p p e n d i x 3 f o r d e t e c t i o n l i m i t s and e r r o r r a n g e s T a b l e 8: T o t a l m i n o r e l e m e n t a l c o n c e n t r a t i o n s i n t h e m a i n p ond t a i l i n g s , b e f o r e a n d a f t e s e v e n weeks o f l e a c h i n g w i t h a c e t i c a c i d i n a S o x h l e t e x t r a c t o r . CONCENTRATION ( mg/kg ) Sample B a # Cu Mn Mo N i * # Pb Rb S r Zn U n l e a c h e d : 0 cm 911 1395 346 18 9 6 41 250 22 10 cm 902 2020 331 38 7 6 41 246 41 50 cm 569 990 262 20 11 7 39 714 19 70 cm 485 1050 208 22 11 8 42 682 15 L e a c h e d : 0 cm 818 1050 105 19 7 6 39 219 21 10 cm 818 971 101 31 7 5 39 209 27 50 cm 469 615 17 5 21 12 5 42 669 18 70 cm 489 605 164 23 8 1 38 677 15 See A p p e n d i x 3 f o r d e t e c t i o n l i m i t s a n d e r r o r r a n g e s C o n c e n t r a t i o n s a t o r n e a r d e t e c t i o n l i m i t o f XRF ( v a l u e s q u e s t i o n a b l e ) c e n t r a t i o n s of copper and sodium, p a r t i c u l a r l y the 50 cm and 70 cm depth samples. The 50 cm and 70 cm depth samples were a l s o t y p i c a l l y h i g h e r i n Ca, Fe, Mg and A l , and lower i n S i and K c o n t e n t than the o t h e r Main Pond samples and the t e s t p l o t samples. The sample v a r i a t i o n noted on t o t a l e l e m e n t a l a n a l y s i s i s e x p l a i n e d t o some e x t e n t by m i n e r a l o g i c a l c o n s i d e r a t i o n s . U s i n g x - r a y d i f f r a c t i o n , i t was apparent t h a t the 50 and 70 cm depth samples c o n t a i n e d more amphibole and v e r m i c u l i t e . These components would account f o r the h i g h e r t o t a l l e v e l s of Ca, Na, Mg and Fe. A m i c a - m o n t m o r i l l o n i t e i n t e r s t r a t i f i e d m i n e r a l was a l s o i d e n t i f i e d i n the 50 and 70 cm depth samples. These samples a l s o appeared t o c o n t a i n l e s s e r q u a n t i t i e s of p o t a s s i u m f e l d s p a r s and m i c a , which would account f o r t h e i r d e p r e s s e d t o t a l K v a l u e s . R e p r e s e n t a t i v e x -ray d i f f r a c t o g r a m s a r e i n c l u d e d i n Appendix IV. Other m i n e r a l s i d e n t i f i e d i n c l u d e d q u a r t z , p l a g i o c l a s e , k a o l i n i t e , c h l o r i t e and m o n t m o r i l l o n i t e . Heavy m i n e r a l s , such as m a g n e t i t e , p y r i t e , c h a l c o p y r i t e and b o r n i t e c o u l d not be d e t e c t e d u s i n g the Cu Koi. t a r g e t i n the x - r a y d i f f Tactometer, even though they may have been p r e s e n t . Scanning e l e c t r o n m i c r o g r a p h s of amphibole and p l a g i o c l a s e i n the 50 cm depth sample, b e f o r e and a f t e r l e a c h i n g a r e shown i n P l a t e s 7 - 1 0 . C o n t r a r y t o e x p e c t a t i o n s , v i s u a l e v i d e n c e of w e a t h e r i n g was most o b v i o u s i n the u n l e a c h e d samples. P l a t e 7: S c a n n i n g e l e c t r o n m i c r o g r a p h o f Main Pond u n l e a c h e d 50 cm depth sample showing an amphibole fragment. P l a t e 8: S c a n n i n g e l e c t r o n m i c r o g r a p h o f Main Pond l e a c h e d 50 cm d e p t h sample showing an amphibole fragment. 57 P l a t e 9: Scanning e l e c t r o n micrograph of Main Pond unleached 50 cm depth sample showing a f e l d s p a r fragment. P l a t e 10: Scanning e l e c t r o n micrograph of Main Pond leached 50 cm depth sample showing a f e l d s p a r fragment. 5.1.6 L e a c h a t e A n a l y s e s Weekly l e a c h a t e a n a l y s e s , f o r the seven weeks of the e x p e r i m e n t , produced t h r e e broad e l e m e n t a l r e l e a s e p a t t e r n s . As a r u l e , the 0 and 10 cm depth samples behaved s i m i l a r l y as d i d the 50 and 70 cm d e p t h samples, a l t h o u g h some d e v i a t i o n s were apparent i n b o t h g r o u p s . The v a r i a t i o n s i n p a t t e r n may be a r e s u l t of d i f f e r e n t m i n e r a l o g i e s , or i n c o n s i s t e n c y i n l e a c h i n g t e m p e r a t u r e and r a t e , or a c o m b i n a t i o n of b o t h . At t i m e s , the l e a c h a t e became t r a p p e d i n the o v e r f l o w shunt i n the e x t r a c t i o n chamber. When t h i s o c c u r r e d i t was d i f f i c u l t t o remove a l l the l e a c h a t e . C o n s e q u e n t l y , t h e r e may have been some c a r r y - o v e r from one week t o t h e next w i t h i n a sample. Based on the m i n e r a l o g y of the t a i l i n g s m a t e r i a l and the p o s i t i o n of each component i n the G o l d i c h (1938) w e a t h e r i n g sequence, i t i s p o s s i b l e t o r a t i o n a l i z e the e l e m e n t a l r e l e a s e p a t t e r n s o b s e r v e d . I n i t i a l l y , a dsorbed c a t i o n s , s o l u b l e s a l t s and c a r b o n a t e s would be removed p r o d u c i n g maximum a l k a l i and a l k a l i n e e a r t h l e a c h a t e c o n c e n t r a t i o n s e a r l y i n the a r t i f i c i a l w e a t h e r i n g p r o c e s s ( F i g u r e s 4,5 & 6 ) . F u r t h e r l e a c h i n g would f a c i l i t a t e the d e g r a d a t i o n of the b a s i c s i l i c a t e m i n e r a l s , such as the pyroxene and amphibole groups, r e l e a s i n g Ca, Mg, Fe, A l , S i , Zn and Mn. More e x t e n s i v e w e a t h e r i n g would r e l e a s e t h e s e e l e m e n t s , i n a d d i t i o n t o K and Na, t h r o u g h the breakdown of b i o t i t e , p l a g i o c l a s e , p o t a s s i u m f e l d s p a r s and m u s c o v i t e , i n i n c r e a s i n g o r d e r of r e s i s t i v i t y . I t would appear t h a t the m e t a l l i f e r o u s m i n e r a l s , s u c h a s b o r n i t e a n d c h a l c o p y r i t e , a l s o b e l o n g i n t h i s g r o u p ( F i g u r e s 7 - 1 0 ) . The r e s i s t a n t m i n e r a l s s u c h a s q u a r t z and o x y h y d r o x i d e s o f Fe and A l w o u l d be d e g r a d e d o n l y a f t e r p r o l o n g e d c h e m i c a l a t t a c k ( F i g u r e s 1 1 - 1 3 ) . I t was n o t p o s s i b l e t o e s t i m a t e how much t i m e w o u l d be r e q u i r e d , u n d e r n a t u r a l w e a t h e r i n g c o n d i t i o n s , t o p r o d u c e t h e c h a n g e s n o t e d i n t h e a r t i f i c i a l s y s t e m . T h i s w o u l d r e q u i r e c a l i b r a t i o n w i t h n a t u r a l l y w e a t h e r e d t a i l i n g s o f known a g e . A p p r o p r i a t e m a t e r i a l was n o t a v a i l a b l e . E a r l y i n t h e l e a c h i n g p r o c e s s , r e d , y e l l o w a n d brown s t a i n s were o b s e r v e d on t h e p a p e r t h i m b l e s . W i t h i n a few w e eks, p r e c i p i t a t e s h a d f o r m e d i n t h e o v e r f l o w s h u n t t u b i n g a n d b a s a l f l a s k s . I t was p r e s u m e d t h a t t h i s m a t e r i a l was some f o r m o f h i g h l y i n s o l u b l e i r o n o x i d e . The p r e s e n c e o f t h e p r e c i p i t a t e f l a k e s i n t h e l e a c h a t e p r e s e n t e d some d i f f i c u l t i e s d u r i n g e l e m e n t a l a n a l y s i s , a s e l e m e n t s must be i n s o l u t i o n i n o r d e r t o be d e t e c t e d by f l a m e AAS. The e l e m e n t a l r e l e a s e p a t t e r n f o r i r o n may t h e r e f o r e be i n a c c u r a t e . The t a i l i n g s , p r i o r t o l e a c h i n g , a r e shown i n P l a t e 11. P l a t e s 12 a n d 13 show t h e same s a m p l e s a f t e r s e v e n weeks o f S o x h l e t a r t i f i c i a l w e a t h e r i n g . 5.1.7 P h o s p h a t e A d s o r p t i o n The a d s o r p t i o n b e h a v i o u r o f p h o s p h o r u s i n m i n e t a i l i n g s a p p e a r s t o be c o n t r o l l e d by two f i x a t i o n m e c h a n i s m s . As shown i n F i g u r e 14, t h e r e l a t i o n b e t w e e n f i x e d P a n d e q u i l i b r i u m P c o n c e n t r a t i o n s , c h a n g e s o n c e t h e e q u i l i b r i u m l e v e l r e a c h e s a c r i t i c a l c o n c e n t r a t i o n . I n i t i a l l y , a d d e d p h o s p h o r u s (P) i s p r o b a b l y a d s o r b e d , e i t h e r t h r o u g h s p e c i f i c p r o c e s s e s ( a n i o n 60 F i g u r e 7: Change i n l e a c h a t e c o p p e r c o n c e n t r a t i o n o f M a i n Pond t a i l i n g s s a m p l e s f r o m f o u r d e p t h s , a s a f u n c t i o n o f d u r a t i o n o f l e a c h i n g w i t h 0.3 N a c e t i c a c i d i n a S o x h l e t e x t r a c t o r . mg/L 0 cm d e p t h o o a , , , , 1 r-1 2 3 4 5 6 7 TIME (Weeks) 61 F i g u r e 8: Change i n l e a c h a t e z i n c c o n c e n t r a t i o n o f M a i n P o n d t a i l i n g s s a m p l e s f r o m f o u r d e p t h s , a s a f u n c t i o n o f d u r a t i o n o f l e a c h i n g w i t h 0.3 N a c e t i c a c i d i n a S o x h l e t e x t r a c t o r . mg/L 1 2 3 4 5 6 7 TIME (Weeks) F i g u r e 9: Change i n l e a c h a t e manganese c o n c e n t r a t i o n o f M a i n P o n d t a i l i n g s s a m p l e s f r o m f o u r d e p t h s , a s a f u n c t i o n o f d u r a t i o n o f l e a c h i n g w i t h 0.3 N a c e t i c a c i d i n a S o x h l e t e x t r a c t o r . mg/L 175-1 TIME (Weeks) F i g u r e 1 0 : Change i n l e a c h a t e magnesium c o n c e n t r a t i o n o f M a i n Pond t a i l i n g s s a m p l e s f r o m f o u r d e p t h s , a s a f u n c t i o n o f d u r a t i o n o f l e a c h i n g w i t h 0.3 N a c e t i c a c i d i n a S o x h l e t e x t r a c t o r . F i g u r e 1 1 : Change i n l e a c h a t e a l u m i n u m c o n c e n t r a t i o n o f M a i n Pond t a i l i n g s s a m p l e s f r o m f o u r d e p t h s , as a f u n c t i o n o f d u r a t i o n o f l e a c h i n g w i t h 0.3 N a c e t i c a c i d i n a S o x h l e t e x t r a c t o r . 65 F i g u r e 12: Change i n l e a c h a t e s i l i c a c o n c e n t r a t i o n o f M a i n Pond t a i l i n g s s a m p l e s f r o m f o u r d e p t h s , as a f u n c t i o n o f d u r a t i o n o f l e a c h i n g w i t h 0.3 N a c e t i c a c i d i n a S o x h l e t e x t r a c t o r . 1 i 1 1 1 1 — 2 3 4 5 6 7 TIME (Weeks) F i g u r e 1 3 : Change i n l e a c h a t e i r o n c o n c e n t r a t i o n o f M a i n P o n d t a i l i n g s s a m p l e s f r o m f o u r d e p t h s , a s a f u n c t i o n o f d u r a t i o n o f l e a c h i n g w i t h 0.3 N a c e t i c a c i d i n a S o x h l e t e x t r a c t o r . 0 cm d e p t h 10 cm d e p t h 5 0 cm d e p t h 70 cm d e p t h o XT A TIME (Weeks) P l a t e 11: Main Pond t a i l i n g s samples from s u r f a c e , 10 cm, 70 cm and 50 cm depths (clockwise) p r i o r to a r t i f i c i a l weathering. P l a t e 12: S u r f a c e and 10 cm depth Main Pond t a i l i n g s , e x t r a c t i o n t h i m b l e s and r e c o v e r e d p r e c i p i t a t e s a f t e r seven weeks o f l e a c h i n g . P l a t e 13: 50 cm and 70 cm depth Main Pond t a i l i n g s , e x t r a c t i o n t h i m b l e s and r e c o v e r e d p r e -c i p i t a t e s a f t e r seven weeks o f l e a c h i n g . 69 F i g u r e 14: Phosphorus removed from s o l u t i o n as a f u n c t i o n of phosphorus c o n c e n t r a t i o n a t e q u i l i b r i u m , f o r t h r e e mine t a i l i n g samples. KEY: + P l o t 1 - unleached o Main Pond 0 cm - unleached ^ Main Pond 0 cm - leached f o r 7 weeks P CONCENTRATION IN EQUILIBRIUM SOLUTION ( mg/L ) exchange) or e l e c t r o s t a t i c a t t r a c t i o n t o p o s i t i v e l y c harged s i t e s , or b o t h . Once the a d s o r p t i v e s u r f a c e i s s a t u r a t e d , phosphate a n i o n s w i l l remain i n s o l u t i o n u n t i l a c r i t i c a l c o n c e n t r a t i o n i s r e a ched, a t which p o i n t p r e c i p i t a t i o n r e a c t i o n s o c c u r . T h i s phenomenon i s r e p r e s e n t e d by a r a p i d i n c r e a s e i n a p p a r e n t a d s o r p t i o n w i t h o n l y a s m a l l change i n e q u i l i b r i u m s o l u t i o n c o n c e n t r a t i o n (Bonn et al , 1979). As shown i n F i g u r e 14, the c r i t i c a l e q u i l i b r i u m phosphorus c o n c e n t r a t i o n o c c u r s near 60 mg/L. A d s o r p t i o n i s o t h e r m s , which d e s c r i b e the r e l a t i o n s h i p between the amount of s o l u t e adsorbed by an a d s o r b e n t and the e q u i l i b r i u m c o n c e n t r a t i o n of the a d s o r b a t e , were then c o n s t r u c t e d f o r each of the t h r e e samples. Data from the a d s o r p t i o n a r e a of F i g u r e 14 (from C = 0 t o 60 mg/L), were b e s t d e s c r i b e d by t h e Langmuir e q u a t i o n . The a d s o r p t i o n i s o t h e r m s were c o n s t r u c t e d by p l o t t i n g C(X/m) 1 v e r s u s C, where C = c o n c e n t r a t i o n of P i n e q u i l i b r i u m s o l u t i o n and X/m = yL(g P adsorbed/g t a i l i n g s ( F i g u r e 15). Maximum a d s o r p t i o n was a c h i e v e d a t a lower l e v e l i n the u n l e a c h e d t a i l i n g s as compared t o the a r t i f i c a l l y weathered m a t e r i a l ( T a b l e 9 ) . I t i s presumed t h a t t h i s d i f f e r e n c e i s a r e s u l t of the c o r r e s p o n d i n g pH drop apparent a f t e r l e a c h i n g . The weathered t a i l i n g s , a t pH 3.8, would e x h i b i t a g r e a t e r degree of p r o t o n a t i o n of h y d r o x y l a t e d s u r f a c e s r e s u l t i n g i n more p o s i t i v e l y c h a r g e d s i t e s a v a i l a b l e f o r a n i o n a d s o r p t i o n (Dixon and Weed, 1977). S p e c i f i c a d s o r p t i o n would a l s o be f a v o u r e d a g r e a t e r F i g u r e 15: M i n e t a i l i n g p h o s p h o r u s a d s o r p t i o n d a t a p l o t t e d a c c o r d i n g t o t h e L a n g m u i r e q u a t i o n . KEY: + P l o t 1 - u n l e a c h e d ° M a i n P o n d 0 cm - u n l e a c h e d v M a i n Pond 0 cm - l e a c h e d f o r 7 weeks mg/L(jng/g) 0 1 1 1 1 1 1 0 10 20 30 40 50 60 C ( mg/L ) T a b l e 9: P h o s p h a t e a d s o r p t i o n c h a r a c t e r i s t i c s o f u n l e a c h e d t a i l i n g s f r o m t h e m a i n p o n d and t e s t p l o t and m a i n p o n d t a i l i n g s a f t e r s e v e n weeks o f l e a c h i n g i n a S o x h l e t e x t r a c t o r . S ample Maximum A d s o r p t i o n pH F e r t i l i z e r C a p a c i t y (b) R e q u i r e m e n t s mg P/kg t a i l i n g s 0.01 M C a C l k g P/ha f . s . U n l e a c h e d : P l o t 1 42 6.1 18 0 cm 48 6.0 17 L e a c h e d : 0 cm 105 3.8 16 ac i d i t y . U s i n g the a d s o r p t i o n i s o t h e r m e q u a t i o n s i t i s p o s s i b l e t o c a l c u l a t e the amount of f e r t i l i z e r P r e q u i r e d t o produce a g i v e n e q u i l i b r i u m P c o n c e n t r a t i o n . F e r t i l i z e r a p p l i c a t i o n r a t e s were based on a t a r g e t e q u i l i b r i u m c o n c e n t r a t i o n of 0.5 mg P/L. Suggested p l a n t r e q u i r e m e n t s f o r maximum y i e l d v a r y from 0.03 t o 0.3 mg P/L (Asher and Loneragan, 1967; Ozanne and Shaw, 1968). The t a r g e t c o n c e n t r a t i o n of 0.5 mg P/L was s e l e c t e d t o ensure t h a t phosphorus s u p p l y would not be growth l i m i t i n g . F e r t i l i z e r a p p l i c a t i o n r a t e s c a l c u l a t e d u s i n g the Langmuir e q u a t i o n a r e s i m i l a r f o r a l l t h r e e samples ( T a b l e 9 ) . I n t u i t i v e l y , one would have e x p e c t e d the l e a c h e d t a i l i n g s t o have a h i g h e r P requirement as a r e s u l t of the h i g h e r a d s o r p t i o n c a p a c i t y . T h i s was not the c a s e , however, s i n c e the a d s o r p t i o n i s o t h e r m s , a t v e r y low e q u i l i b r i u m P l e v e l s , a r e v e r y c l o s e . D i f f e r e n c e s would be more o b v i o u s a t h i g h e r e q u i l i b r i u m l e v e l s as the i s o t h e r m s d i v e r g e ( F i g u r e 15). Phosphorus f e r t i l i z e r r a t e s r e q u i r e d t o s u p p l y adequate a v a i l a b l e P, based on e x p e r i m e n t a l a d s o r p t i o n d a t a , a r e much lower than i s g e n e r a l l y a c c e p t e d f o r r e c l a m a t i o n or even a g r i c u l t u r a l s i t u a t i o n s . The magnitude of t h i s d i s c r e p a n c y would suggest t h a t phosphate a d s o r p t i o n under e x p e r i m e n t a l c o n d i t i o n s d i d not r e p r e s e n t b e h a v i o u r i n the f i e l d . A d s o r p t i o n i s o t h e r m s do not t a k e i n t o account p r e c i p i t a t i o n r e a c t i o n s , which may d r a s t i c a l l y a l t e r the n a t u r e of the e q u i l i b r i u m s o l u t i o n . T h e o r e t i c a l l y , a v a r i e t y o f s p a r i n g l y s o l u b l e p h o s p h a t e compounds w i l l f o r m , e v e n a t v e r y l o w c o n c e n t r a t i o n s o f P i n s o l u t i o n . The n a t u r e o f t h e p r e c i p i t a t i o n c o m p l e x w i l l v a r y w i t h pH, pCC^, t e m p e r a t u r e , a n d t h e t y p e a n d a c t i v i t y o f i o n i c s p e c i e s p r e s e n t i n s o l u t i o n ( L i n d s a y a n d M o r e n o , 1 9 6 0 ) . A r t i f i c i a l w e a t h e r i n g a l t e r s t h e c h e m i c a l p r o p e r t i e s o f t h e t a i l i n g s , t h e r e f o r e , t h e f o r m s o f p r e c i p i t a t e d P w o u l d p r e s u m a b l y d i f f e r b e t w e e n l e a c h e d a n d u n l e a c h e d m a t e r i a l s . U t i l i z i n g a s o l u b i l i t y d i a g r a m f o r p h o s p h a t e compounds d e v e l o p e d by L i n d s a y a n d Moreno ( 1 9 6 0 ) , i t i s p o s s i b l e t o p r e d i c t t h e n a t u r e o f t h e p r e c i p i t a t e s w h i c h w i l l l i k e l y o c c u r on a d d i t i o n o f P t o t h e t a i l i n g s m a t e r i a l s s t u d i e d ( F i g u r e 1 6 ) . I t i s a s s u m e d t h a t t h e l e v e l s o f a s s o c i a t e d e l e m e n t s ( F e , A l a n d Ca) a r e a d e q u a t e f o r t h e f o r m a t i o n o f t h e s e h i g h l y i n s o l u b l e compounds. P a d d e d t o t h e u n w e a t h e r e d t a i l i n g s a t pH 6 t h e o r e t i c a l l y w i l l f o r m f l u o r o a p a t i t e [Ca 1 Q (PC>4) fiF2 ] a t pH 2PC> 4 6.8 ( n e g a t i v e l o g o f H 2 P 0 4 a c t i v i t y ) o r a b o u t 9 ppb t o t a l P i n s o l u t i o n . A t g r e a t e r c o n c e n t r a t i o n s o f P, s t r e n g i t e [ F e P 0 4 . 2 H 2 0 ] , v a r i s c i t e [ A 1 P 0 4 . 2 H 2 0 ] a n d h y d r o x y a p a t i t e [ C a 1 Q ( P 0 4 ) 6 ( O H ) 2 ] may e x i s t . The f o r m a t i o n o f d i c a l c i u m p h o s p h a t e d i h y d r a t e i s u n l i k e l y s i n c e t h e e q u i l i b r i u m P c o n c e n t r a t i o n w o u l d h a v e t o e x c e e d a b o u t 60 mg/L. T h i s w o u l d r e q u i r e t h e a p p l i c a t i o n o f a p p r o x i m a t e l y 1500 kg P/ha f u r r o w s l i c e . The a d d i t i o n o f P t o t h e l e a c h e d t a i l i n g s , a t pH 3.8, w o u l d l i k e l y c a u s e t h e p r e c i p i t a t i o n o f s t r e n g i t e a n d v a r i s c i t e . The F i g u r e 16: S o l u b i l i t y d i a g r a m f o r phosphate compounds s o i l s a t 25° C and 5 x 1 0 ~ 3 M Ca. ( A f t e r L i n d s a y and Moreno, 196 0) 76 minimum s o l u t i o n P c o n c e n t r a t i o n r e q u i r e d f o r t h e i r f o r m a t i o n i s about 2 ppb and 8 ppb, r e s p e c t i v e l y . Based on the t h e o r e t i c a l b e h a v i o u r of phosphate compounds, i t i s u n a v o i d a b l e t o a p p l y f e r t i l i z e r P a t r a t e s i n s u f f i c i e n t f o r the f o r m a t i o n of s t r e n g i t e , v a r i s c i t e , or f l u o r a p a t i t e and s t i l l p r o v i d e adequate P f o r p l a n t growth. The magnitude of the d i s c r e p a n c y between o b s e r v e d P c o n c e n t r a t i o n s a t e q u i l i b r i u m (about 60 mg/L) and t h e o r e t i c a l v a l u e s (ppb r a n g e ) , s u g g e s t s t h a t the p r e c i p i t a t e s a c t u a l l y formed d i d not i n c l u d e s t r e n g i t e , v a r i s c i t e , f l u o r o a p a t i t e or h y d r o x y a p a t i t e . I t i s l i k e l y t h a t the e q u i l i b r a t i o n p e r i o d of t h r e e days was not adequate t o a l l o w the e f f e c t of the s y n t h e s i s of t h e s e m i n e r a l s t o be o b s e r v e d . The p r e c i p i t a t i o n p r o d u c t s a c t u a l l y formed may have been d i s o r d e r e d compounds w h i c h , i n t i m e , would r e v e r t t o more i n s o l u b l e forms, s i n c e s o l u t i o n P l e v e l s were f a r i n e x c e s s of the s a t u r a t i o n r e q u i r e m e n t s . The s y n t h e s i s of s p a r i n g l y s o l u b l e phosphorus compounds i s s i g n i f i c a n t i n t h a t P combined i n t h e s e forms i s e s s e n t i a l l y u n a v a i l a b l e t o p l a n t s . These m i n e r a l s a r e h i g h l y i n s o l u b l e and can o n l y be c o n s i d e r e d a l o n g t e r m phosphorus p o o l , which may become c r i t i c a l a t some f u t u r e date when maintenance f e r t i l i z a t i o n p r a c t i s e s a r e d i s c o n t i n u e d . Over a s i n g l e growing season, p l a n t a v a i l a b l e P, r e l e a s e d t h r o u g h d i s s o l u t i o n of these compounds, i s n e g l i g i b l e . Maximum P a v a i l a b i l i t y can be a c h i e v e d i n s l i g h t l y a c i d t o n e u t r a l s o i l where the s o l u b i l i t i e s of A l , Fe and Ca phosphates a r e h i g h e s t , s i m u l t a n e o u s l y . 77 5.2 T a i l i n g Pond R e c l a i m Water R e s u l t s of e l e m e n t a l a n a l y s e s of the t a i l i n g pond r e c l a i m water ar e shown i n T a b l e 10. A l t h o u g h s a m p l i n g was not r i g o r o u s , the r e s u l t s i n d i c a t e t h a t t a i l i n g s water may not be s u i t a b l e f o r i r r i g a t i o n purposes as a r e s u l t of e x c e s s i v e Mo l e v e l s . Appendix V l i s t s a c c e p t a b l e q u a l i t y l e v e l s f o r v a r i o u s water uses. Mo l e v e l s a r e a l s o w e l l above d e s i r a b l e l i m i t s f o r w i l d l i f e and l i v e s t o c k d r i n k i n g water. Sodium a d s o r p t i o n r a t i o s f o r a l l samples were w e l l below the c r i t i c a l v a l u e (6.0) a t l e s s than 2.0. At p r e s e n t , sodium l e v e l s a r e not e x c e s s i v e , however, t h i s parameter s h o u l d be m o n i t o r e d p e r i o d i c a l l y . pH v a l u e s were found t o be i n the n e u t r a l range, a l t h o u g h t h e r e i s some q u e s t i o n over the a c c u r a c y of these measurements. The pH paper was o l d and d i d not respond i m m e d i a t e l y upon c o n t a c t i n g the sample. A n a l y s e s of t a i l i n g pond r e c l a i m water conducted i n 1970, produced a pH v a l u e of 9.1 (Appendix V I ) . The r e a c t i o n of the t a i l i n g s water i s c r i t i c a l f o r heavy m e t a l s o l u t i o n l e v e l s . The p r e s e n t n e u t r a l t o b a s i c s i t u a t i o n , r e s t r i c t s Cu from coming i n t o s o l u t i o n and promotes the d i s s o l u t i o n of Mo compounds. T h i s i s apparent i n the r e l a t i v e s o l u t i o n l e v e l s of each element, c o n s i d e r i n g t h a t t o t a l t a i l i n g s l e v e l s f o r both a r e v e r y h i g h . In f a c t , r e c o n n a i s s a n c e of Mo l e v e l s i n stream water has been used as a means of l o c a t i n g Cu ore b o d i e s , s i n c e the two elements a r e o f t e n a s s o c i a t e d i n g e o l o g i c a l d e p o s i t s and Mo i s much more m o b i l e than Cu under b a s i c c o n d i t i o n s ( H u f f , 1970). T a b l e 10: T a i l i n g p o n d r e c l a i m w a t e r c h a r a c t e r i s t i c s T r o j a n P o n d H u e s t i s Pond M a i n Pond S i t e 1 S i t e 2 PARAMETER CONCENTRATION ( mg/L ) A l 0.79 1.06 0.03 0.04 As < 0.05 < 0.05 < 0.05 < 0.05 B 0.04 0.04 0.03 0.04 Ba 0.05 0.05 0. 03 0.04 Ca 99.3 98.3 129.0 71.4 Cd < 0.005 < 0.005 < 0.005 < 0.005 Co < 0.005 < 0.005 < 0.005 < 0.005 C r 0.005 0. 006 < 0.005 < 0.005 Cu 0.02 0.03 0.01 0.01 K 52.1 50.4 44.7 42.7 Mg 11.9 11.9 15.4 11.7 Mn 0.12 0.12 0.14 0.01 Mo 0.28 0.28 0.48 0.22 Na 61.4 60.3 76.8 63.3 N i < 0.005 < 0.005 < 0.005 < 0.005 P < 0.1 < 0.1 < 0.1 < 0.1 Pb < 0.05 < 0.05 < 0.05 < 0.05 Se < 0.05 < 0.05 < 0.05 < 0.05 S i 8.4 9.9 4.5 0.35 S r 18.0 18.0 12.6 10.2 T i 0.005 0.008 < 0.005 < 0.005 Zn 0. 006 0.007" 0.007 0.005 Z r < 0.005 < 0.005 < 0.005 < 0.005 pH 7.0 7.0 7.0 7.0 SAR 1.6 1.5 1.7 1.8 A c c u r a c y o f pH p a p e r q u e s t i o n a b l e 6.0 RESULTS AND DISCUSSION - V e g e t a t i o n E s t a b l i s h m e n t 6.1 R e v e g e t a t i o n Success I t was o r i g i n a l l y p l a n n e d t o compare e l e m e n t a l l e v e l s i n f o l i a g e a c r o s s two growing seasons. The e x t r e m e l y poor s u c c e s s of the 1984 s e e d l i n g s a f t e r one growing season, however, r e q u i r e d a change i n p l a n s . I t was not p o s s i b l e t o c o l l e c t s u f f i c i e n t m a t e r i a l a t the end of the 1984 season f o r c h e m i c a l a n a l y s e s . T h e r e f o r e , the s u r v i v i n g p l a n t s were l e f t u n d i s t u r b e d over w i n t e r . R e v e g e t a t i o n f a i l u r e was a t t r i b u t e d t o t h r e e f a c t o r s ; 1) inadequate n u t r i e n t s u p p l y , 2) water s t r e s s and 3) se v e r e rodent g r a z i n g . In an attempt t o a l l e v i a t e some of th e s e p r e s s u r e s , f e r t i l i z e r r a t e s and s p e c i e s d i v e r s i t y were i n c r e a s e d and a s p r i n k l e r system i n s t a l l e d f o r the 1985 season. Growth d u r i n g the 1985 season w a s - c o n s i d e r a b l y b e t t e r than t h a t of 1984 on the f e r t i l i z e d p l o t s . G r a z i n g by marmots, however, was s t i l l v e r y heavy. T h i s was p a r t i c u l a r l y o b v i o u s i n the t h r e e legumes, a l t h o u g h a l l s p e c i e s were g r a z e d t o some degree, w i t h the e x c e p t i o n of Poa ampla. A t t e m p t s a t c o n t r o l l i n g marmot f e e d i n g i n c l u d e d f e n c i n g , an a l t e r n a t i v e food s o u r c e of l o c a l lawn c l i p p i n g s and r a t p o i s o n . A l l t e c h n i q u e s f a i l e d . The s e v e r i t y of the problem r e s u l t e d i n r e p l i c a t e numbers which were u n d e s i r a b l e , b o t h i n magnitude and c o n s i s t e n c y , a c r o s s s p e c i e s and p l o t s . The l a c k of legume biomass r e q u i r e d t h a t m a t e r i a l from a l l p l o t s be com p o s i t e d w i t h i n each s p e c i e s . No samples of D. glomerata cv 'Kay' (Furrow 3b) c o u l d be c o l l e c t e d and o n l y p l o t s 2 and 3 produced p l a n t s of D. glomerata cv 'Napier' (Furrow 1b) l a r g e enough t o sample. Of the g r a s s e s , t h i s s p e c i e s was f a v o u r e d by the marmots. No samples were o b t a i n e d from the u n f e r t i l i z e d c o n t r o l p l o t s ( p l o t s 1, 4 and 7 ) . T h i s was a t t r i b u t e d t o severe n u t r i e n t d e f i c i e n c i e s of N and P. The two year o l d p l a n t s (seeded i n 1984 and c o l l e c t e d i n 1985) were c o n s i d e r a b l y l a r g e r and p h y s i o l o g i c a l l y maturer than t h e i r 1985 c o u n t e r p a r t s a t time of s a m p l i n g . A s u b j e c t i v e assessment of v i g o u r , based on p l a n t h e i g h t , c o v e r and c o l o u r was d i f f i c u l t due t o p r e f e r e n t i a l g r a z i n g . O v e r a l l , t he overburden t r e a t e d p l o t s ( p l o t s 2 and 3) produced s l i g h t l y s u p e r i o r growth, f o l l o w e d by t he unamended t a i l i n g s p l o t s ( p l o t s 8 and 9 ) , There was no ob v i o u s d i f f e r e n c e between p l o t s r e c e i v i n g s i n g l e or s p l i t a p p l i c a t i o n s of f e r t i l i z e r . The b e s t growth, on an i n d i v i d u a l s p e c i e s b a s i s , was a c h i e v e d by P. ampl a, f o l l o w e d by D. glomerata cv 'Kay', A. trichophorum, O. viciaefolia and A. cristatum. P l a t e 14, of p l o t s 1, 2 and 3, shows the c o n s i d e r a b l e i n c r e a s e i n biomass a c h i e v e d by P. ampla which i s l o c a t e d i n fu r r o w s on the f a r r i g h t . In a l a r g e s c a l e s e e d i n g o p e r a t i o n , i t i s u n l i k e l y t h a t g r a z i n g p r e s s u r e would be as extreme as t h a t e n c o u n t e r e d on the t e s t p l o t . Marmots do not appear t o v e n t u r e f a r from rock c o v e r and the s u b s t a n t i a l l y l a r g e r a r e a would p r o v i d e s u f f i c i e n t m a t e r i a l , i n comparison t o rodent p o p u l a t i o n numbers, t o c o n s i d e r a b l y reduce t h e i r impact on r e v e g e t a t i o n s u c c e s s . P l a t e 14: P l o t s 1 ( f o r e g r o u n d ) , 2 and 3 as t h e y appeared i n J u l y , 1985 ( f u r r o w 1 on f a r r i g h t ) . 6.2 The D a t a S e t As o u t l i n e d i n t h e methods s e c t i o n , f o l i a r e l e m e n t a l d e t e r m i n a t i o n s on t h e same e x t r a c t s were c a r r i e d o u t by I C P a n d f l a m e AAS. I n t h e c a s e o f Mo, two d i g e s t i o n p r o c e d u r e s (wet d i g e s t i o n a n d d r y - a s h i n g ) were e m p l o y e d f o l l o w e d by e l e m e n t a l d e t e r m i n a t i o n s v i a f l a m e l e s s AAS a n d I C P , on t h e same e x t r a c t s . Some d i s c r e p a n c y b e t w e e n AAS a n d I C P d e r i v e d v a l u e s was e n c o u n t e r e d , p a r t i c u l a r l y f o r C a , Mg, and K. T h i s may h a v e been 2- 2 -due t o i n t e r f e r e n c e f r o m S i , A l , P 0 4 a n d / o r S 0 4 d u r i n g f l a m e AAS d e t e r m i n a t i o n r e s u l t i n g i n d e p r e s s e d v a l u e s . A l t h o u g h i t was n o t c a r r i e d o u t i n t h i s s t u d y , a d d i t i o n o f l a n t h a n u m t o t h e s a m p l e e x t r a c t h a s been u s e d t o r e d u c e m a t r i x i n t e r f e r e n c e ( B a k e r a n d S u h r , 1 9 8 2 ) . C o p p e r l e v e l s were v e r y c l o s e b e t w e e n t e c h n i q u e s a n d o t h e r m e t a l s c o m p a r e d r e a s o n a b l y w e l l . C o m p a r i s o n o f f o l i a r Mo v a l u e s o b t a i n e d by d r y - a s h i n g a n d f l a m e l e s s AAS, a n d wet d i g e s t i o n a n d I C P , were g e n e r a l l y w i t h i n 10%. I n v i e w o f t h e c o n s i d e r a b l e a d v a n t a g e s o f wet d i g e s t i o n a n d I C P d e t e r m i n a t i o n , a n d r e l a t i v e a g r e e m e n t b e t w e e n t h e two t e c h n i q u e s , t h i s m e t hod i s p r e f e r r a b l e . D e t e r m i n a t i o n o f Mo by t h e P a r k i n s o n a n d A l l e n wet d i g e s t i o n f o l l o w e d by I C P a n a l y s e s r e q u i r e s o n l y one d i g e s t i o n m e t h o d f o r a v a r i e t y o f e l e m e n t s , a n d i s e f f i c i e n t i n t h a t s i m u l t a n e o u s a n a l y s i s o f many e l e m e n t s i s p e r m i t t e d a n d l i t t l e p r e p a r a t o r y work i s r e q u i r e d . F l a m e l e s s AAS on t h e o t h e r h a n d , r e q u i r e s t e d i o u s s t a n d a r d i z a t i o n p r o c e d u r e s t o c o n t r o l m a t r i x i n t e r f e r e n c e . I n a d d i t i o n , t h e f o r m a t i o n o f molybdenum c a r b i d e on t h e g r a p h i t e t u b e may a f f e c t r e s u l t s ( S t u d n i c k i , 1979). The v e r y h i g h t e m p e r a t u r e s r e q u i r e d f o r a t o m i z a t i o n c o n s i d e r a b l y reduce the l i f e span of the g r a p h i t e t u b e , i n c r e a s i n g c o s t s and o p e r a t o r t i m e . Data a n a l y s e s were c a r r i e d out on v a l u e s o b t a i n e d by wet d i g e s t i o n and ICP d e t e r m i n a t i o n f o r a l l elements w i t h the e x c e p t i o n of N and P, where A u t o A n a l y z e r v a l u e s were used. S t a t i s t i c a l e x a m i n a t i o n was conducted on d a t a d e r i v e d from the g r a s s e s o n l y . Data o b t a i n e d by o t h e r t e c h n i q u e s i s i n c l u d e d i n the Appendix. A l l r e p o r t e d v a l u e s a r e on an oven d r y - w e i g h t b a s i s . 6.3 F o l i a r E l e m e n t a l Content F o l i a r e l e m e n t a l c o n t e n t may be a l t e r e d d r a m a t i c a l l y by v a r i a t i o n i n growing c o n d i t i o n s , such as c l i m a t i c and t a i l i n g s v a r i a b i l i t y and degree and r a t e of d e f o l i a t i o n by rodent g r a z i n g . The v a l u e s and t r e n d s r e p o r t e d , p a r t i c u l a r l y on an i n d i v i d u a l s p e c i e s b a s i s , may not be r e p r e s e n t a t i v e of f o l i a r l e v e l s i n a w e l l e s t a b l i s h e d , s t a b l e s t a n d . 6.3.1 Copper O v e r a l l , copper c o n c e n t r a t i o n s i n the g r a s s e s ranged from 24 t o 79 mg/kg w i t h a mean v a l u e of 44 mg/kg. C o n s i d e r i n g a l l p l o t s , t h e r e was a s i g n i f i c a n t d i f f e r e n c e i n mean copper l e v e l s a c r o s s s p e c i e s . As shown i n Tab l e 11, of the g r a s s e s , the f e s c u e s d i s p l a y e d t he h i g h e s t l e v e l s , f o l l o w e d by A. trichophorum 84 and A. riparium 85. A l l o t h e r s p e c i e s had lower copper l e v e l s than T a b l e 1 1 : Mean c o p p e r c o n c e n t r a t i o n s i n g r a s s e s g r o w n o n t h e t e s t p l o t t a i l i n g s . CONCENTRATION ( mg/kg) F u r r o w l a l b 2 2a 2b 3 3a 4 4a 4b P l o t 2 26 40 51 34 28 61 54 39 48 51 74 3 32 35 62 44 40 77 54 41 48 45 68 5 40 42 - 39 30 56 39 35 42 42 62 6 35 44 - 31 39 52 50 32 33 46 50 8 30 42 - 53 40 61 66 44 52 45 64 9 31 41 - 27 46 71 45 61 42 56 68 G r a n d Mean 3 2 a 4 1 b — 3 8 b 3 7 b 6 3 d 5 1 C 4 2 b 4 4 b 4 7 c 6 4 d S t d . Dev . 5 3 - 9 7 9 9 10 7 5 8 Means f o l l o w e d by t h e same l e t t e r a r e n o t s i g n i f i c a n t l y d i f f e r e n t a t t h e 5% l e v e l C o n c e n t r a t i o n s ± 2 mg/kg; t o t a l s a m p l e number = 15 2 ## 1 P o a a m p l a 84 l a P. a m p l a 85 l b D a c t y l i s g l o m e r a t a ( N a p i e r ) 85 2 A g r o p y r o n c r i s t a t u m 84 2a A. c r i s t a t u m 85 3 A. t r i c h o p h o r u m 84 3a A. t r i c h o p h o r u m 8 5 4 A. r i p a r i u m 84 4a A. r i p a r i u m 85 4b F. r u b r a 85 2b F e s t u c a o v i n a 8 5 the f i r s t two groups, w i t h P. ampl a 84 h a v i n g the l o w e s t copper c o n t e n t . Comparison of copper l e v e l s a c r o s s s p e c i e s w i t h i n a p l o t a l s o showed s i g n i f i c a n t d i f f e r e n c e s , w i t h the e x c e p t i o n of P l o t 5 (mulch, s i n g l e f e r t i l i z e r a p p l i c a t i o n ) . U n f o r t u n a t e l y , i t was not p o s s i b l e t o d e t e r m i n e where the d i f f e r e n c e s o c c u r r e d s i n c e sample s i z e s were u n e q u a l . In g e n e r a l , however, i t appeared t h a t the t r e n d noted p r e v i o u s l y was c o n s i s t e n t w i t h i n p l o t s as w e l l as a c r o s s a l l p l o t s . I t i s i n t e r e s t i n g t h a t s i g n i f i c a n t d i f f e r e n c e s were a p p a r e n t , i n some c a s e s , between the same s p e c i e s seeded i n 1984 v e r s u s 1985. I t i s p o s s i b l e t h a t the advanced m a t u r i t y of the 1984 i n d i v i d u a l s was r e s p o n s i b l e f o r t h i s d i f f e r e n c e . Based on o t h e r d a t a , one would expect the p h y s i o l o g i c a l l y o l d e r i n d i v i d u a l s t o have lower copper l e v e l s (Munshower and Neuman, 1978). T h i s r e l a t i o n s h i p was t r u e f o r some s p e c i e s but not f o r o t h e r s . C o n s i d e r i n g a l l s p e c i e s , t h e r e was no d i f f e r e n c e i n mean copper c o n c e n t r a t i o n s a c r o s s p l o t s . T h i s would suggest t h a t copper a v a i l a b i l i t y d i d not d i f f e r s i g n i f i c a n t l y between p l o t s . T h i s f i n d i n g i s somewhat s u r p r i s i n g s i n c e D T P A - e x t r a c t a b l e copper d i d v a r y s i g n i f i c a n t l y , w i t h p l o t 5 > p l o t 6 > p l o t 2 > p l o t 3 > p l o t s 8 and 9 ( T a b l e 1 ) . U s i n g the Spearman Rank C o r r e l a t i o n t e s t , i t was found t h a t t h e r e was no c o r r e l a t i o n between DTPA-e x t r a c t a b l e Cu and f o l i a r Cu f o r each s p e c i e s i n c o r r e s p o n d i n g p l o t s . I t i s p o s s i b l e t h a t Cu a v a i l a b i l i t y was a f f e c t e d by tr e a t m e n t ( i . e . f e r t i l i z e r or s u r f i c i a l amendment program) such t h a t DTPA e x t r a c t i o n s c a r r i e d out on the unamended m a t e r i a l d i d not r e p r e s e n t e x t r a c t a b l e l e v e l s i n the c o r r e s p o n d i n g t r e a t e d p l o t s . U n f o r t u n a t e l y , no v e g e t a t i o n c o u l d be c o l l e c t e d from the c o n t r o l p l o t s ( p l o t s 1,4 and 7) t o a l l o w t e s t i n g of t h i s h y p o t h e s i s . I t i s a l s o p o s s i b l e t h a t DTPA- e x t r a c t a b l e copper i s not a r e l i a b l e index of p l a n t a v a i l a b l e Cu on t h i s s i t e . F o l i a r copper c o n c e n t r a t i o n s i n the legumes averaged 70, 63 and 57 mg/kg i n 0. viciaefolia, M. media and T. repens, r e s p e c t i v e l y . P h y t o t o x i c i t y symptoms t o ex c e s s copper a r e commonly produced when f o l i a r l e v e l s exceed a p p r o x i m a t e l y 20 mg/kg (Jo n e s , 1972). Symptoms appear as Fe c h l o r o s i s , t h rough the d e p r e s s i o n of Fe a c t i v i t y by exces s Cu ( T i s d a l e and N e l s o n , 1975). A l l samples c o l l e c t e d from the t e s t p l o t showed copper c o n c e n t r a t i o n s i n exc e s s of 20 mg/kg, and c h l o r o s i s was e v i d e n t i n a t l e a s t some i n d i v i d u a l s of a l l s p e c i e s w i t h , perhaps, the e x c e p t i o n of P. ampla. T h i s may have been the r e s u l t of Cu t o x i c i t y or a c o m b i n a t i o n of f a c t o r s , such as m o i s t u r e s t r e s s , and e x c e s s i v e or d e f i c i e n t l e v e l s of o t h e r n u t r i e n t s . 6.3.2 Molybdenum Mo c o n c e n t r a t i o n s i n the g r a s s e s ranged from 19 t o 113 mg/kg, w i t h an o v e r a l l mean v a l u e of 52 mg/kg. There was no s i g n i f i c a n t d i f f e r e n c e i n mean Mo c o n c e n t r a t i o n a c r o s s s p e c i e s , c o n s i d e r i n g a l l p l o t s combined. As shown i n T a b l e 12, a d i f f e r e n c e was noted between mean Mo c o n c e n t r a t i o n s over a l l s p e c i e s , a c r o s s p l o t s . P l o t 3 produced p l a n t s w i t h the h i g h e s t Mo l e v e l s f o l l o w e d by T a b l e 1 2 : Mean molybdenum c o n c e n t r a t i o n s i n g r a s s e s g rown on t h e t e s t p l o t t a i l i n g s CONCENTRATION ( mg/kg ) F u r r o w !## l a l b 2 2a 2b 3 3a 4 4a 4b G r a n d Mean S t d . Dev P l o t 2 34 37 41 43 28 37 73 65 54 112 73 5 6 b G * 26 3 54 50 48 65 69 52 82 78 81 105 55 6 9 d 17 5 39 19 - 50 2 4 74 48 57 66 40 66 4 8 b C 18 6 38 28 - 24 39 54 42 56 40 68 54 4 4 a b 13 8 27 26 - 37 35 41 51 47 45 41 46 3 9 b 8 9 59 44 - 61 66 49 57 55 42 66 58 56° 8 G r a n d Mean 4 2 a 3 4 a - 4 7 a 4 3 a 5 l a 5 9 a 6 0 a 5 5 a 7 2 a 5 9 a S t d . Dev. 12 12 15 19 13 16 11 16 31 10 * # ## Means f o l l o w e d b y t h e same l e t t e r a r e n o t s i g n i f i c a n t l y d i f f e r e n t a t t h e 5% l e v e l C o n c e n t r a t i o n s ± 5 mg/kg; t o t a l s a m p l e number = 152 1 . P o a a m p l a 8 4 l a P. ampla 85 l b D a c t y l i s g l o m e r a t a 8 5 2 A g r o p y r o n c r i s t a t u m 84 2a A. c r i s t a t u m 85 2b F e s t u c a o v i n a 85 3 A. t r i c h o p h o r u m 84 3a A. t r i c h o p h o r u m 85 4 A. r i p a r i u m 84 4a A. r i p a r i u m 85 4b F. r u b r a 85 p l o t 9 and p l o t s 2, 5, 8 and 6. There was no d i f f e r e n c e i n a c i d ammonium o x a l a t e e x t r a c t a b l e Mo a c r o s s p l o t s . I n a d d i t i o n , no c o r r e l a t i o n s between e x t r a c t a b l e and f o l i a r Mo were i n d i c a t e d , w i t h the e x c e p t i o n of A. trichophorum 85. A c t u a l a v a i l a b l e Mo i s h i g h l y dependent on s o i l pH and i s not c o n t r o l l e d i n the o x a l a t e e x t r a c t i o n . The v a r i a t i o n i n pH a c r o s s p l o t s , however, was p r o b a b l y not s u f f i c i e n t t o s u b s t a n t i a l l y a l t e r Mo a v a i l a b i l i t y . One must, t h e r e f o r e , c o n c l u d e t h a t Tamm's e x t r a c t a b l e Mo i s not r e p r e s e n t a t i v e of p l a n t a v a i l a b l e Mo under the c o n d i t i o n s of the st u d y . Comparison of Mo c o n c e n t r a t i o n s a c r o s s s p e c i e s w i t h i n a p l o t showed s i g n i f i c a n t d i f f e r e n c e s i n a l l c a s e s . As w i t h Cu, i t was not p o s s i b l e t o dete r m i n e where the d i f f e r e n c e s o c c u r r e d due t o v a r i a t i o n i n sample s i z e . G e n e r a l i z a t i o n s a r e a l s o d i f f i c u l t s i n c e i t appears t h a t each s p e c i e s behaved d i f f e r e n t l y under v a r y i n g amendment regimes. P l o t 3, which produced the h i g h e s t o v e r a l l Mo c o n c e n t r a t i o n s , d i s p l a y e d some t r e n d toward h i g h e r Mo c o n c e n t r a t i o n s i n the Agropyron s p e c i e s as compared t o the f e s c u e s , P. amp I a or D. glomerata. T h i s r e l a t i o n s h i p d i d not appear t o h o l d i n p l o t s 6 or 8 which produced the lo w e s t o v e r a l l Mo l e v e l s . The legumes, as e x p e c t e d , c o n t a i n e d h i g h e r c o n c e n t r a t i o n s of Mo than the g r a s s e s , p a r t i c u l a r l y O. v i c i a e f o l i a (304 mg/kg) and T. repens (264 mg/kg). The average Mo c o n c e n t r a t i o n i n M. media was 141 mg/kg. Samples from a l l p l o t s were c o m p o s i t e d , c o n s e q u e n t l y , the e f f e c t s of t r e a t m e n t on Mo l e v e l s c o u l d not be examined. A l t h o u g h Mo l e v e l s i n b o t h g r a s s e s and legumes were much h i g h e r than normal, i t i s u n l i k e l y t h a t p l a n t h e a l t h was a f f e c t e d . P l a n t s appear t o be a b l e t o ta k e up l a r g e q u a n t i t i e s of t h i s element w i t h o u t r e f l e c t i n g any c h a r a c t e r i s t i c symptoms ( A l l a w a y , 1977) . 6.3.3 CoppertMolybdenum R a t i o s The n u l l h y p o t h e s i s t h a t mean Cu:Mo r a t i o s were the same a c r o s s s p e c i e s , over a l l p l o t s , was r e j e c t e d a t a c o n f i d e n c e l e v e l of 0.95, i n a K r u s k a l l - W a l l i s n o n p a r a m e t r i c a n a l y s i s of v a r i a n c e t e s t . The subsequent m u l t i p l e range t e s t , however, f a i l e d t o i s o l a t e one or more groups as b e i n g s i g n i f i c a n t l y d i f f e r e n t from any o t h e r . One must then c o n c l u d e t h a t any d i f f e r e n c e s p r e s e n t were not g r e a t . Mean Cu:Mo r a t i o s over a l l s p e c i e s were s i g n i f i c a n t l y d i f f e r e n t a c r o s s p l o t s (Table 13). P l o t 8 ( t a i l i n g s , s i n g l e f e r t i l i z e r a p p l i c a t i o n ) produced f o r a g e w i t h the h i g h e s t Cu:Mo r a t i o s . No d i f f e r e n c e s were d e t e c t e d between any o t h e r p l o t s . I t i s i n t e r e s t i n g t h a t p l o t 8 showed one of the lo w e s t DTPA e x t r a c t a b l e Cu l e v e l s , w i t h no d i f f e r e n c e i n f o l i a r Cu, y e t Cu:Mo r a t i o s were h i g h e s t . The r e l a t i v e d e p r e s s i o n of Mo uptake by p l a n t s i n t h i s p l o t must, t h e r e f o r e , be the c a u s a l f a c t o r i n p r o d u c i n g the wider r a t i o . Comparisons of mean Cu:Mo r a t i o s w i t h i n p l o t s showed s i g n i f i c a n t T a b l e 1 3 : Mean c o p p e r : m o l y b d e n u m r a t i o s i n g r a s s e s g rown o n t h e t e s t p l o t t a i l i n g s COPPER:MOLYBDENUM RATIO F u r r o w 1# l a l b 2 2a 2b 3 3a 4 4a 4b G r a n d Mean S t d . Dev P l o t 2 0.8 1.1 1.3 0 . 8 1.0 1.6 0.7 0.6 0.9 0.5 1.0 a* 0 . 9 a 0.3 3 0.6 0.7 1.3 0.7 0.6 1.5 0.7 0.5 0.6 0.4 1.2 0 . 8 a 0.3 5 1.0 2.2 - 0.8 1.2 0.8 0.8 0.6 0.6 1.0 0.9 i . o a 0.3 6 0.9 1.6 - 1.3 1.0 1.0 1.2 0.6 0. 8 0.7 0.9 i . o a 0.3 8 1.1 1.6 - 1.4 1.1 1.5 1.3 0.9 1.2 1.1 1.4 1 . 2 b 0.3 9 0.5 0.9 - 0.4 0.7 1.5 0.8 1.1 1.0 0.8 1.2 0 . 9 a 0.3 G r a n d Mean S t d . Dev. 0 . 8 a 0.2 1.4 a 0.6 - 0 . 9 a 0.4 0 . 9 a 0.2 1.3* 0.3 0 . 9 a 0.3 0 . 7 a 0.2 0 . 8 a 0.2 0 . 8 a 0.3 l . l a 0.2 Means f o l l o w e d by t h e same l e t t e r a r e n o t s i g n i f i c a n t l y d i f f e r e n t a t t h e 5% l e v e l ## 1 Poa a m p l a 84 l a P. a m p l a 85 l b D a c t y l i s g l o m e r a t a 8 5 2 A g r o p y r o n c r i s t a t u r n 84 2a A. c r i s t a t u r n - 8 5 2b F e s t u c a o v i n a 85 3 A. t r i c h o p h o r u m 84 3a A. t r i c h o p h o r u m 85 4 A. r i p a r i u m 84 4a A. r i p a r i u m 85 4b F. r u b r a 85 d i f f e r e n c e s b e t w e e n s p e c i e s i n p l o t s 2, 3, 6 a n d 9. T h e r e a p p e a r e d t o be some t r e n d i n t h a t t h e f e s c u e s g e n e r a l l y showed t h e h i g h e s t r a t i o s . A l l r a t i o s , w i t h t h e e x c e p t i o n o f F. ovina i n p l o t 5, were b e l o w t h e minimum l e v e l o f 2:1 recommended by M i l t i m o r e a n d Mason (1971) w i t h r e s p e c t t o r u m i n a n t n u t r i t i o n . V e g e t a t i o n p r o d u c e d u n d e r t h e c o n d i t i o n s o f t h i s s t u d y w o u l d n o t be s u i t a b l e f o r b e e f c a t t l e f o r a g e i f f e d e x c l u s i v e l y , b a s e d on u n f a v o u r a b l y n a r r o w Cu:Mo r a t i o s . E v a l u a t i o n o f t h i s d a t a , h o w e v e r , must i n c l u d e c o n s i d e r a t i o n o f t h e f o l l o w i n g f a c t o r s ; ( 1 ) t h e s e v a l u e s may r e p r e s e n t t h e w o r s t c a s e s i t u a t i o n , s i n c e Cu:Mo r a t i o s h a v e been shown t o d e c l i n e a s t h e g r o w i n g s e a s o n p r o g r e s s e s ( K r e t s c h m e r a n d A l l e n , 1 9 5 6 ) . (2) t h e d a t a s e t i t s e l f h a s many i n a d e q u a c i e s i n t h a t many o f t h e s p e c i e s - p l o t g r o u p s a r e r e p r e s e n t e d by o n l y a s i n g l e s a m p l e . (3) t h e d a t a may n o t be r e p r e s e n t a t i v e s i n c e y e a r l y f l u c t -u a t i o n s i n " e l e m e n t a l c o m p o s i t i o n o f t h e f o r a g e may be e x p e c t e d . T h i s f a c t o r may be c r i t i c a l i n t h e e v e n t t h a t o t h e r n u t r i e n t i m b a l a n c e s a r e p r e s e n t a n d a r e a f -f e c t i n g Cu a n d Mo l e v e l s i n t h e t e s t s p e c i e s . (4) c o n t a m i n a t i o n o f t h e f o l i a r s a m p l e s w i t h t a i l i n g s m a t e r i a l was assumed t o be n e g l i g i b l e . I f s i g n i f i c a n t c o n t a m i n a t i o n a c t u a l l y d i d o c c u r , r e a l Cu:Mo r a t i o s w o u l d be e v e n n a r r o w e r t h a n c u r r e n t l y r e p o r t e d . (5) Mo a v a i l a b i l i t y w i l l p r o b a b l y c h a n g e o v e r t i m e , p r e -s u m a b l y i n a f a v o u r a b l e d i r e c t i o n , a s t h e c a r b o n a t e s a r e l e a c h e d a n d pH d e c l i n e s . I t may be p o s s i b l e t o modify the copper:molybdenum r a t i o s i n p l a n t s growing on the t a i l i n g s . R a t h e r than i n c r e a s e copper l e v e l s , i t would seem prudent t o attempt t o reduce molybdenum c o n c e n t r a t i o n i n the f o r a g e . The r e s u l t s of t h i s s t u d y show t h a t s p e c i e s s e l e c t i o n would not be e f f e c t i v e , s i n c e w i t h i n the g r a s s e s , molybdenum c o n c e n t r a t i o n s d i d not v a r y s i g n i f i c a n t l y . A l t e r n a t i v e l y , m o d i f i c a t i o n of molybdenum a v a i l a b i l i t y i n the medium may be at t e m p t e d by r e d u c i n g the pH of the t a i l i n g s . Under e x p e r i m e n t a l c o n d i t i o n s , maximum a d s o r p t i o n of the molybdate a n i o n on s o i l c o l l o i d s w i l l o c cur i n the pH range 3 t o 6 ( K r a u s k o p f , 1972). The t a r g e t pH f o r o p t i m a l p l a n t growth and mi n i m a l Mo uptake then s h o u l d be v e r y near 6. As shown i n the a r t i f i c i a l w e a t h e r i n g s t u d y , d e c l i n e s i n pH w i l l p r o b a b l y occur n a t u r a l l y , but may t a k e c o n s i d e r a b l e t i m e . T h i s p r o c e s s may be a c c e l e r a t e d t h r o u g h the a p p l i c a t i o n of a c i d f o r m i n g f e r t i l i z e r s [ e . g . NH4NC>2, ( N H 4 ) 2 S 0 4 ] or e l e m e n t a l s u l p h u r ( W i l l i a m s and Th o r n t o n , 1972; A l l a w a y , 1977). A p p l i c a t i o n of ammonium and s u l p h a t e have a d d i t i o n a l b e n e f i t s i n t h a t b o t h reduce Mo c o n c e n t r a t i o n i n herbage ( W i l l i a m s and T h o r n t o n , 1972). I r r i g a t i o n of the a r e a would be b e n e f i c i a l f o r s t a n d e s t a b l i s h m e n t . I t would a l s o promote a c i d i f i c a t i o n t h r o u g h l e a c h i n g of the b a s i c c a t i o n s , which a r e a t p r e s e n t , m a i n t a i n i n g t a i l i n g s r e a c t i o n i n the n e u t r a l t o a l k a l i n e range. The use of r e c l a i m water f o r t h i s purpose would not be recommended f o r two r e a s o n s . F i r s t l y , t h i s water c o n t a i n s r e l a t i v e l y h i g h l e v e l s of s o l u b l e molybdenum, which would be r e a d i l y a v a i l a b l e t o p l a n t s , compounding the molybdenum problem. S e c o n d l y , the a d d i t i o n of bases from the r e c l a i m w a t e r , would r e t a r d pH d e c l i n e . Phosphate may i n c r e a s e Mo ( W i l l i a m s and Th o r n t o n , 1972; A l l a w a y , 1977) and reduce copper uptake by p l a n t s ( A g r i c u l t u r e Canada, 1981), r e s u l t i n g i n a l e s s d e s i r a b l e Cu:Mo r a t i o . Care must be tak e n t o ensure t h a t f e r t i l i z e r phosphorus a p p l i c a t i o n s a r e adequate f o r p l a n t growth but a r e not e x c e s s i v e . Cu:Mo r a t i o s may be m a n i p u l a t e d t h r o u g h v a r i o u s p r o c e d u r e s . C u r i n g or d r y i n g of f o r a g e has been shown t o p r e v e n t Mo t o x i c i t y i n many ca s e s ( A l l a w a y , 1977; Underwood, 1977). These p r o c e s s e s may a l t e r t he c h e m i c a l form of cop p e r , such t h a t a v a i l a b i l i t y i s g r e a t e r i n d r i e d v e r s u s green p l a n t s (Underwood, 1977). S p e c i e s s e l e c t i o n i n the f o r a g e mix may be d e s i g n e d t o a v o i d p l a n t s which a r e e x c e s s i v e a c c u m u l a t o r s . Legumes, i n p a r t i c u l a r , t a k e up g r e a t e r q u a n t i t i e s of Mo than g r a s s e s . I n t e n t i o n a l i n c l u s i o n of legumes i n the seed mix may have t o be a v o i d e d , d e s p i t e advantages i n c u r r e d t h r o u g h t h e i r a s s o c i a t i o n w i t h n i t r o g e n -f i x i n g m i c r o o r g a n i s m s . The f e s c u e s i n t h i s s t u d y c o n s i s t e n t l y produced the w i d e s t Cu:Mo r a t i o s . The amendment regime a l s o appeared t o a f f e c t Cu:Mo r a t i o s i n the p l a n t s . P l o t 8, which r e c e i v e d a s i n g l e a p p l i c a t i o n of f e r t i l i z e r and no s u r f i c i a l amendment, produced p l a n t s w i t h the most f a v o u r a b l e Cu:Mo r a t i o s . Copper s t a t u s i n the a n i m a l may be m a n i p u l a t e d d i r e c t l y by p r o v i d i n g m i n e r a l i z e d s a l t c o n t a i n i n g 0.1 t o 0.2 % Cu. I n j e c t i o n or o r a l l y a d m i n i s t e r e d CuSO^ s o l u t i o n may be used t o t r e a t c o p p e r - d e f i c i e n t c a l v e s ( A g r i c u l t u r e Canada, 1981). D a i l y sup-p l e m e n t a t i o n of 0.5 t o 2.5 g CuSO^ has been shown t o p r o t e c t a n i m a l s from Mo t o x i c i t y , where f o r a g e c o n t a i n e d up t o 150 mg/kg Mo ( A g r i c u l t u r e Canada, 1981). 6.3.4 Other M i c r o n u t r i e n t s 6.3.4.1 Z i n c The p o s s i b l e Zn d e f i c i e n c y i n d i c a t e d by DTPA e x t r a c t a b l e v a l u e s were c o n f i r m e d by f o l i a r l e v e l s which were g e n e r a l l y l e s s than 25 mg/kg; the c r i t i c a l c o n c e n t r a t i o n f o r many p l a n t s (Chapman, 1966). The f e s c u e s showed somewhat h i g h e r Zn c o n c e n t r a t i o n s than o t h e r s p e c i e s , however, even the s e v a l u e s were v e r y near the low end of the s u f f i c i e n t range (Table 14). Zn c o n c e n t r a t i o n s ranged from 7 t o 34 mg/kg w i t h a mean of 15 mg/kg. D T P A - e x t r a c t a b l e and f o l i a r Zn were s i g n i f i c a n t l y c o r r e l a t e d i n P. amp I a 85 ( f u r r o w 1a), but not i n any o t h e r s p e c i e s . Z i n c d e f i c i e n c y symptoms i n p l a n t s a r e g e n e r a l l y c h a r a c t e r i z e d by i n t e r v e i n a l c h l o r o s i s f o l l o w e d by a g r e a t r e d u c t i o n i n the r a t e of shoot growth ( T i s d a l e and N e l s o n , 1975). These s p e c i f i c symptoms were not o b v i o u s i n the t e s t p l o t i n d i v i d u a l s , however, they may have been masked by o t h e r n u t r i e n t s t r e s s symptoms and marmot g r a z i n g a c t i v i t i e s . Z i n c c o n c e n t r a t i o n s i n the legumes averaged 30 mg/kg (T a b l e 15). Zi n c a v a i l a b i l i t y tends t o i n c r e a s e w i t h a d e c r e a s e i n pH and i s g e n e r a l l y l e a s t a v a i l a b l e i n the pH range 6 t o 7 ( S i l l a n p a a , 1976). T h i s has been a t t r i b u t e d t o the f o r m a t i o n of r e l a t i v e l y i n s o l u b l e c a l c i u m z i n c a t e s . V i e t s et al . (1957) found Zn uptake t o be d e c r e a s e d by a f a c t o r of two when the pH was r a i s e d from 5 t o 7. In s o i l s of Na a l k a l i n i t y , the f o r m a t i o n of r e l a t i v e l y T a b l e 14: Mean c o n c e n t r a t i o n s o f z i n c , n i c k e l , m anganese, and i r o n , by p l o t a n d f u r r o w , i n g r a s s e s g r o w n o n t h e t e s t p l o t t a i l i n g s . CONCENTRATION ( mg/kg ) Z i n c N i c k e l * M a nganese I r o n * X SD** X SD X SD X SD n F u r r o w 1 10 2 37 14 201 24 327 66 36 l a 18 6 37 9 211 37 352 98 16 l b 13 4 30 2 465 42 659 32 4 2 10 2 27 12 150 43 350 161 11 2a 19 7 22 11 190 36 457 240 9 2b 25 4 53 18 495 104 718 222 12 3 13 2 54 22 269 44 601 253 16 3a 14 4 20 14 279 49 469 206 6 4 10 1 48 19 187 32 481 172 12 4a 14 3 43 10 169 12 516 17 4 20 4b 26 5 39 19 503 88 699 303 10 P l o t 2 11 4 35 19 280 142 561 272 30 3 17 .6 51 13 282 133 601 226 30 5 14 6 48 17 238 110 361 128 21 6 18 8 35 15 223 98 358 103 26 8 11 5 34 19 253 124 427 189 23 9 14 6 32 11 225 117 480 207 22 O v e r a l l 15 6 39 17 253 123 475 220 152 C o n c e n t r a t i o n s may be e l e v a t e d due t o t a i l i n g s c o n t a m i n a t i o n SD = S t a n d a r d D e v i a t i o n T a b l e 1 5: E l e m e n t a l c o m p o s i t i o n a n d c o p p e r : m o l y b d e n u m r a t i o o f 0. v i c i a e f o l i a , M. m e d i a , a n d T. r e p e n s g r o w n on t h e t e s t p l o t t a i l i n g s . CONCENTRATION S p e c i e s F u r r o w 0. v i c i a e f o l i a 5 M. m e d i a 5a T. r e p e n s 5b G r a n d Mean C U * 70 63 57 63 Fe 681 817 630 709 Mo 304 141 264 237 Mn 279 217 202 232 N i 14 7 6 9 Zn 39 26 24 30 Cu:Mo 0.4 0.2 0.2 0. 3 Ca 2.07 2.72 2.54 2.46 K 2.16 2.50 2.47 2.39 Mg 0.40 0.53 0.56 0.51 N 2.89 3.32 3.41 3 . 24 P 0.29 0.17 0.15 0.20 n 2 2 3 7 C o n c e n t r a t i o n as mg/kg; o v e n - d r y w e i g h t C o n c e n t r a t i o n a s %; o v e n - d r y w e i g h t s o l u b l e Na z i n c a t e s may r e s u l t i n an i n c r e a s e i n Zn a v a i l a b i l i t y w i t h i n c r e a s i n g pH (Bear, 1955). C o n s i d e r i n g t h e r e l a t i v e l e v e l s of Ca and Na i n the t a i l i n g s , i t would seem u n l i k e l y t h a t t h i s p r o c e s s would be a dominant one c o n t r o l l i n g Zn a v a i l a b i l i t y . E x c e s s i v e phosphate may induce Zn d e f i c i e n c y , a l t h o u g h the mechanisms by which t h i s may oc c u r a r e s t i l l u n c l e a r ( O l s e n , 1972). The tendency t o a p p l y heavy phosphate a p p l i c a t i o n s i n r e c l a m a t i o n programs may be d e t r i m e n t a l , p a r t i c u l a r l y when a v a i l a b l e Zn r e s e r v e s a r e low as i s the case a t t h i s s i t e . D e f i c i e n c y of a v a i l a b l e Zn has been shown t o lower Zn concen-t r a t i o n s i n a l f a l f a and s u b t e r r a n e a n c l o v e r and produce marked i n c r e a s e s i n f o l i a r Cu c o n c e n t r a t i o n s ( M i l l i k a n , 1953). I t i s not known whether t h i s e f f e c t a l s o o c c u r s i n g r a s s e s . Z i n c r e q u i r e m e n t s f o r beef c a t t l e , as s u g g e s t e d by the N a t i o n a l R e search C o u n c i l (1984), a r e met by f o l i a g e w i t h c o n c e n t r a t i o n s of 20 t o 40 mg/kg. A g r i c u l t u r e Canada (1981) recommendations a r e h i g h e r , w i t h adequate l e v e l s r a n g i n g from 50 t o 100 mg Zn/kg d r y m a t t e r . Zn c o n t e n t i n most s p e c i e s - p l o t groups were below both d i e t a r y g u i d e l i n e s (Table 16). T a i l i n g s Zn, t h e r e f o r e , may be d e f i c i e n t f o r b o t h p l a n t s and c a t t l e . 6.3.4.2 I r o n F o l i a r Fe c o n c e n t r a t i o n s ranged from 156 t o 1149 mg/kg w i t h a mean v a l u e of 475 mg/kg (T a b l e 14). Legume Fe c o n c e n t r a t i o n s averaged 709 mg/kg (T a b l e 15). These v a l u e s , however, may be T a b l e 16: B e e f c a t t l e n u t r i e n t r e q u i r e m e n t s a n d e l e m e n t a l c o m p o s i t i o n o f g r a s s e s grown on t h e t e s t p l o t t a i l i n g s B e e f C a t t l e N u t r i e n t * R e q u i r e m e n t s C o n c e n t r a t i o n G r a s s e s i n S u g g e s t e d V a l u e Range Maximum T o l e r a b l e L e v e l Mean Range S t a n d a r d D e v i a t i o n Cu ( mg/kg) 8 4-10 115 44 24 - 79 13 Fe 50 . 50-100 1000 4 7 5 * * 156 - 1149 220 Mo - - 6 52 19 - 113 19 Mn 40 20-50 1000 253 102 - 7.11 123 N i - 1-10 1500 39** 3 - 102 17 Zn 30 20-40 500 15 7 - . 34 6 K ( % ) 0.65 0.5-0.7 3 1.5 0 . 63 - 3.47 0.5 Mg 0.10 0.05-0.25 0.40 0.2 0.08 - 0.48 0.1 From N a t i o n a l R e s e a r c h C o u n c i l (1984) C o n c e n t r a t i o n s may be e l e v a t e d due t o t a i l i n g s c o n t a m i n a t i o n F r om A g r i c u l t u r e Canada (1981) enhanced due t o c o n t a m i n a t i o n w i t h t a i l i n g s m a t e r i a l . F l e m i n g (1965) has sug g e s t e d the use of f o l i a r T i l e v e l s as an i n d i c a t o r of c o n t a m i n a t i o n . A p p a r e n t l y , i n normal herbage T i concen-t r a t i o n s a r e v e r y c o n s i s t e n t and low, from 1 t o 3 mg/kg, r e g a r d l e s s of s i t e c o n d i t i o n s . Samples w i t h T i c o n c e n t r a t i o n s i n ex c e s s of 10 mg/kg, t h e r e f o r e , must be c o n s i d e r e d s u s p e c t and may have enhanced l e v e l s of A l , S i , Co, V and p o s s i b l y N i , i n a d d i t i o n t o Fe. T i c o n c e n t r a t i o n s i n the v e r y h i g h Fe samples were w e l l above 10 mg/kg, s t r o n g l y i n d i c a t i n g t h e p o s s i b i l i t y of t a i l i n g s c o n t a m i n a t i o n on some f o l i a g e samples. N o r m a l l y , samples a r e washed p r i o r t o a n a l y s e s t o a v o i d t h i s c o m p l i c a t i o n . In so d o i n g , however, one runs the r i s k of a l t e r i n g l e v e l s of s o l u b l e p l a n t c o n s t i t u e n t s . F o l i a r Fe d e t e r m i n e d by ICP was somewhat lower than e x p e c t e d based on o r c h a r d l e a f r e f e r e n c e m a t e r i a l s p e c i f i c a t i o n s . T h i s apparent d e p r e s s i o n of v a l u e s may c o u n t e r a c t , t o some degree, the p o t e n t i a l c o n c e n t r a t i o n enhance-ment r e s u l t i n g from sample c o n t a m i n a t i o n . Fe t o t a l and D T P A - e x t r a c t a b l e l e v e l s were r e l a t i v e l y low (T a b l e 1) and c o n s i d e r i n g the pH of the t a i l i n g s , e x c e s s e s a r e u n l i k e l y . Fe a v a i l a b i l i t y i s h i g h l y pH dependent, w i t h enhanced l e v e l s a t low pH. Fe d e f i c i e n c i e s a r e o f t e n a s s o c i a t e d w i t h c a l c a r e o u s s o i l s . H i g h c a l c i u m c o n c e n t r a t i o n s i n the s o i l s o l u t i o n may de c r e a s e Fe upta k e . In a d d i t i o n , Ca may i n a c t i v a t e Fe w i t h i n the p l a n t p r o d u c i n g d e f i c i e n c y symptoms. Phosphate may a l s o p l a y a r o l e , e n h ancing Fe d e f i c i e n c y a t h i g h Ca l e v e l s (Brown et a l . , 1959). In view of t a i l i n g s t o t a l and D T P A - e x t r a c t a b l e Fe, Ca l e v e l s and P f e r t i l i z a t i o n , f o l i a r Fe c o n c e n t r a t i o n s i n the upper ranges found, a r e most l i k e l y enhanced by t a i l i n g s c o n t a m i n a t i o n . No s i g n i f i c a n t c o r r e l a t i o n s between D T P A - e x t r a c t a b l e and f o l i a r Fe were d e t e c t e d f o r any s p e c i e s . Anomalous Fe uptake may occur as a r e s u l t of e x c e s s i v e Mn and Cu ( O l s e n , 1972). Somer and S h i v e (1942) w o r k i n g w i t h soybean, found t h a t Fe and Mn a r e i n t e r - r e l a t e d i n t h e i r m e t a b o l i c f u n c t i o n s , such t h a t the e f f e c t i v e n e s s of one i s d e t e r m i n e d by the p r o p o r t i o n a t e presence of the o t h e r . Fe:Mn r a t i o s between 1.5 and 2.6 were o p t i m a l f o r soybean. R a t i o s above or below t h i s range produced symptoms of Fe d e f i c i e n c y and Mn e x c e s s , or Mn d e f i c i e n c y and Fe e x c e s s , r e s p e c t i v e l y . Beef c a t t l e r e q u i r e m e n t s f o r Fe a r e i d e a l l y met by f o r a g e w i t h 50 t o 100 mg/kg Fe c o n t e n t , a c c o r d i n g t o N a t i o n a l Research C o u n c i l (1984) recommendations. A d i e t a r y range of 100 t o 500 mg/kg Fe i s c o n s i d e r e d adequate by A g r i c u l t u r e Canada (1981) c r i t e r i a . The i n f l a t e d Fe v a l u e s a r e w e l l above t h i s range; some i n ex c e s s of the maximum t o l e r a b l e l e v e l f o r beef c a t t l e (Table 16). True f o l i a r Fe c o n c e n t r a t i o n s a r e u n l i k e l y t o be s u f f i c i e n t t o induce i r o n - t o x i c i t y i n c a t t l e . F u t u r e i n v e s t i g a t i o n s , however, s h o u l d examine t h i s p o s s i b i l i t y , by a n a l y z i n g f o l i a r m a t e r i a l which has been s u b j e c t e d t o r i g o r o u s c l e a n s i n g p r o c e d u r e s . 6.3.4.3 Manganese F o l i a r manganese ranged from 101 t o 711 mg/kg w i t h a mean v a l u e of 253 mg/kg. Legume Mn c o n c e n t r a t i o n s averaged 232 mg/kg (T a b l e 15). Most groups were w e l l w i t h i n the s u f f i c i e n t range (20 t o 500 mg/kg) f o r p l a n t n u t r i t i o n . The f e s c u e s c o n s i s t e n t l y showed h i g h e r Mn l e v e l s , f r e q u e n t l y i n ex c e s s of 500 mg/kg (Table 14). D T P A - e x t r a c t a b l e and f o l i a r Mn were not s i g n i f i c a n t l y c o r r e l a t e d i n any s p e c i e s . D e l i n e a t i o n of Mn t o x i c i t y l e v e l s i n p l a n t s i s d i f f i c u l t t o de t e r m i n e due t o l i m i t e d d a t a . Jones (1972) p u r p o r t s t h a t f o l i a r c o n c e n t r a t i o n s i n exce s s of 500 mg/kg Mn a r e p r o b a b l y i n d i c a t i v e of Mn t o x i c i t y t o many p l a n t s . Mn t o x i c i t y i s o f t e n m a n i f e s t e d as some form of c h l o r o s i s , o f t e n w i t h brown s p o t t i n g of the l e a v e s (Labanauskas, 1966). Some fe s c u e i n d i v i d u a l s were c h l o r o t i c , however, t h i s was t r u e of most o t h e r s p e c i e s . In view of the low t o t a l and D T P A - e x t r a c t a b l e Mn and h i g h pH, Mn p h y t o t o x i c i t y i s u n l i k e l y . Manganese a v a i l a b i l i t y w i l l i n c r e a s e as pH d e c l i n e s , t h e r e f o r e , Mn t o x i c i t y may oc c u r a t some l a t e r date i n some s p e c i e s . A. t ri chophorum and the f e s c u e s were c o n s i s t e n t l y above t h e adequate Mn range f o r beef c a t t l e , but d i d not approach e x c e s s i v e l e v e l s ( T a b l e 16). A l l o t h e r groups met beef c a t t l e Mn r e q u i r e m e n t s . 6.3.4.4 N i c k e l The mean f o l i a r n i c k e l c o n c e n t r a t i o n was 39 mg/kg w i t h v a l u e s r a n g i n g from 3 t o 102 mg/kg ( T a b l e 14). The average N i concen-t r a t i o n i n the legumes was 9 mg/kg (Table 15). I t i s p o s s i b l e , as w i t h Fe, t h a t t h e s e v a l u e s a r e i n f l a t e d due t o t a i l i n g s c o n t a m i n a t i o n of the f o l i a r samples. T h i s p o s s i b i l i t y i s s u p p o r t e d by the e x t r e m e l y low t o t a l and D T P A - a v a i l a b l e N i l e v e l s i n c o n j u n c t i o n w i t h the h i g h pH, s i n c e N i a v a i l a b i l i t y i s known t o d e c r e a s e w i t h i n c r e a s i n g pH (Vanselow, 1966). Ni has not been demonstrated t o be e s s e n t i a l f o r the p r o p e r growth and development of p l a n t s (Vanselow, 1966). T o x i c i t i e s , however, have been n o t e d , p a r t i c u l a r l y on s e r p e n t i n e s o i l s . N i t o x i c i t y symptoms are v e r y s i m i l a r t o Fe d e f i c i e n c y i n a wide v a r i e t y of p l a n t s . C r i t e r i a f o r N i t o x i c i t y have not been d e t e r m i n e d . Soane and Saunder (1959) found no t o x i c i t y symptoms i n v a r i o u s g r a s s s p e c i e s , growing on s e r p e n t i n e s o i l s , w i t h N i c o n c e n t r a t i o n s r a n g i n g from 9 t o 56 mg/kg. The N a t i o n a l R e s e a r c h C o u n c i l (1984) does not l i s t n i c k e l as a r e q u i r e d n u t r i e n t f o r beef c a t t l e . Based on A g r i c u l t u r e Canada (1981) g u i d e l i n e s , f o l i a r N i l e v e l s may be c o n s i d e r e d adequate t o h i g h . A c t u a l c o n c e n t r a t i o n s may be somewhat l o w e r , s i n c e samples may have been c o n t a m i n a t e d w i t h t a i l i n g s m a t e r i a l . £•3.5 M a c r o n u t r i e n t s (N,P,Ca,K,Mg) 6.3.5.1 N i t r o g e n O v e r a l l n i t r o g e n c o n c e n t r a t i o n s ranged from 1.23 t o 4.39 % w i t h a mean v a l u e of 2.43 % ( T a b l e 17). Mean N c o n c e n t r a t i o n i n the legumes was c o n s i d e r a b l y h i g h e r a t 3.24 % ( T a b l e 15). Over a l l p l o t s t h e r e was a s i g n i f i c a n t d i f f e r e n c e i n N c o n c e n t r a t i o n a c r o s s f u r r o w s . The f e s c u e s showed the h i g h e s t N l e v e l s , f o l l o w e d by the Agropyron s p e c i e s . The l o w e s t N c o n c e n t r a t i o n s were found i n P. ampla. I t i s i n t e r e s t i n g t h a t the i n d i v i d u a l s seeded i n 1984 had lower N c o n c e n t r a t i o n s than c o r r e s p o n d i n g T a b l e 17: Mean m a c r o n u t r i e n t c o n c e n t r a t i o n s , b y f u r r o w , i n g r a s s e s grown on t h e t e s t p l o t t a i l i n g s CONCENTRATION ( % ) C a l c i u m P o t a s s i u m M agnesium N i t r o g e n P h o s p h o r u s X SD # X SD X SD X SD X SD F u r r o w 1 0.65 0.18 a* 1.07 0.12 0.17 0 .03 1 . 5 9a 0.26 o . i o a b 0.03 l a 0.76 0.12 1.4 4 d 0.18 0.22 0.06 b 2.38 0.41 0 . 1 6 b 0.05 l b 0.95 0.05 2 . 9 9 # # 0.32 0.43 0.04 2 . 8 2 # # 0.49 0 . 1 5 # # 0.07 2 0.73 0.13 1.24° 0.17 0.16 0.05 2 . 0 0 b 0 .40 ab 0.10 0.03 2a 0.94 0.12 e 1.88 . 0.47 0 .21 0.08 3 . 1 6 d 0.74 0.20 0.11 2b 0.76 0.13 2 . 0 6 g 0.23 0.23 0.04 3 . 8 6 f 0.41 c 0.28 0.08 3 0.84 0.15 e 1.45 0.10 0.19 0.05 c 2,38 0.20 , ab 0.12 0.01 3a 0.78 0.10 1 . 8 7 f 0.31 0.24 0.06 3 . 1 9 e 0.54 , b 0.17 0.06 4 0.89 0.17 b 1.16 0.08 0.15 0.03 1 . 7 6 a 0.10 0 . 0 8 3 0.01 4a 0 . 99 0 .13 e 1.59 0 .15 0.20 0.05 2 . 6 4 C 0.29 0 . 1 9 b 0 .07 4b 1.01 0.17 h 2.45 0.25 0.29 0.08 3 . 5 2 f 0.53 0 . 2 5 C 0.11 O v e r a l l 0.81 0.19 1.54 0.50 0.20 0.07 2.43 0.81 0.15 0.08 Means f o l l o w e d by t h e same l e t t e r a r e n o t s i g n i f i c a n t l y d i f f e r e n t a t t h e 5% l e v e l SD = S t a n d a r d D e v i a t i o n N o t r e p r e s e n t e d i n a l l p l o t s , t h e r e f o r e , n o t i n c l u d e d i n s t a t i s t i c a l a n a l y s i s 1 04 s p e c i e s seeded i n 1985. T h i s may be due t o a d i f f e r e n c e i n m a t u r i t y . F l e m i n g and Murphy (1968) found a r e d u c t i o n of 20 g/kg i n N c o n c e n t r a t i o n as the growth of p e r e n n i a l r y e g r a s s p r o g r e s s e d from l e a f y stage t o h e a d i n g . D i f f e r e n c e s between p l o t s , over a l l s p e c i e s , were not s i g n i f i c a n t ( T a b l e 18). F o l i a r c r i t e r i a used f o r a s s e s s i n g N s t a t u s a r e not c o n s i s t e n t . Jones (1966) r e p o r t e d t h a t d e f i c i e n c y symptoms i n mature l e a v e s of v a r i o u s g r a s s e s were a s s o c i a t e d w i t h f o l i a r N c o n c e n t r a t i o n s r a n g i n g from 1.55 t o 1.75 %. N i t r o g e n c o n c e n t r a t i o n s r a n g i n g from 2.4 t o 2.75% were c o n s i d e r e d t o be i n d i c a t i v e of adequate N s u p p l y . A p p r o x i m a t e l y the same ranges were r e p o r t e d as c r i t i c a l and d e f i c i e n t , r e s p e c t i v e l y , by M a r t i n and Matocha (1973). U s i n g the c r i t e r i a of Jones ( 1 9 6 6 ) , most groups were above the d e f i c i e n c y range, but were m a r g i n a l l y adequate. P. ampla 84 and A. riparium 84 N c o n c e n t r a t i o n s i n d i c a t e d N d e f i c i e n c y . Unamended t a i l i n g s s u p p l y v i r t u a l l y no N, t h e r e f o r e , growth s u c c e s s i s dependent on f e r t i l i z e r supplements. The r a t e of 150 kg N/ha a p p l i e d i n 1985 may be c o n s i d e r e d m a r g i n a l l y adequate. N a p p l i c a t i o n i n e x c e s s of t h i s l e v e l would p r o b a b l y i n c r e a s e biomass p r o d u c t i o n and may be b e n e f i c i a l e a r l y i n the r e c l a m a t i o n program. 6.3.5.2 Phosphorus The mean P c o n c e n t r a t i o n was found t o be 0.15% (Table 17). V a l u e s ranged from 0.05 t o 0.43 %. Legume P c o n c e n t r a t i o n s a v eraged 0.20 % ( T a b l e 15). S i g n i f i c a n t d i f f e r e n c e s were found T a b l e 18: Mean m a c r o n u t r i e n t c o n c e n t r a t i o n s , by p l o t , i n g r a s s e s g r own on t h e t e s t p l o t t a i l i n g s CONCENTRATION ( % ) C a l c i u m X SD # P o t a s s i u m X SD Magnesium X SD N i t r o g e n X SD P h o s p h o r u s X SD P l o t 2 0 .88 0 .13 1 .48 0 54 0 .24 0 07 2 .04 0 61 0 I0 a * 0 .04 3 0 .99 0 .13 1 .71 0 57 0 .28 0 .06 2 .83 0 .80 0 .18 b 0 .07 5 0 .77 0 .18 1 .38 0 42 0 .15 0 04 2 .43 0 .70 0 .12 a 0 .04 6 0 .77 0 .17 1 73 0 50 0 17 0 04 2. 82 0 .89 0 b 23 0 .11 8 0 .74 0 .22 1 31 0 38 0 .16 0 .03 1 .94 0 .63 0 i o a 0 .03 9 0 .65 0 .12 1 .52 0 44 0 17 0 04 2 .50 0 78 0 17 b 0 .07 O v e r a l l 0 .81 0 19 1 54 0 50 0 20 0 07 2 43 0 81 0. 15 0 .08 Means f o l l o w e d by t h e same l e t t e r a r e n o t s i g n i f i c a n t l y d i f f e r e n t a t t h e 5% l e v e l SD = S t a n d a r d D e v i a t i o n a c r o s s f u r r o w s and p l o t s . P c o n c e n t r a t i o n was h i g h e s t i n the f e s c u e s and l o w e s t i n A. riparium 84. The p l o t s s u p p l i e d w i t h a s p l i t a p p l i c a t i o n of f e r t i l i z e r , produced g r a s s e s w i t h h i g h e r P c o n c e n t r a t i o n s than t h o s e r e c e i v i n g a s i n g l e a p p l i c a t i o n (Table 18). The reason f o r t h i s i s u n c l e a r . Perhaps the pH of the t a i l i n g s , c o u p l e d w i t h the h i g h Ca l e v e l , f a c i l i t a t e d i n c o r p o r a t i o n of f e r t i l i z e r P i n t o n o n - r e a d i l y s o l u b l e compounds. Presumably t h i s p r o c e s s o c c u r r e d w i t h i n the e i g h t week p e r i o d between P a p p l i c a t i o n s such t h a t the a v a i l a b l e P s u p p l y was d e p l e t e d , and p l a n t s r e c e i v i n g a second dose, b e n e f i t e d . F o l i a r c r i t e r i a i n d i c a t i v e of P d e f i c i e n c y i n v a r i o u s g r a s s e s a r e g e n e r a l l y l e s s than 0.18% P (Bingham, 1966). P d e f i c i e n c y symptoms a r e u s u a l l y c h a r a c t e r i z e d by slow emergence and growth, o f f - c o l o u r green f o l i a g e w i t h p u r p l e v e i n a t i o n , poor r o o t development and s t u n t e d growth h a b i t s (Bingham, 1966). Adequate P l e v e l s a r e u s u a l l y a s s o c i a t e d w i t h f o l i a r P c o n c e n t r a t i o n s r a n g i n g from 0.23 t o 0.40 % (Bingham, 1966; M a r t i n and Matocha, 1973). Many s p e c i e s were d e f i c i e n t or m a r g i n a l l y d e f i c i e n t i n P, based on f o l i a r P c o n c e n t r a t i o n s . S p l i t a p p l i c a t i o n s of P, however, produced p l a n t s i n which P s u p p l y appeared adequate. I t i s not known i f s i n g l e a p p l i c a t i o n s of P i n e x c e s s of the 44 kg/ha r a t e a p p l i e d i n 1985, would improve P s t a t u s . Perhaps a d d i t i o n a l P would a l s o become u n a v a i l a b l e t o p l a n t s t h r o u g h p r e c i p i t a t i o n / a d s o r p t i o n r e a c t i o n s . I t would appear t h a t s p l i t f e r t i l i z e r a p p l i c a t i o n s of P would b e n e f i t p l a n t P s t a t u s , m a x i m i z i n g growth. Beef c a t t l e r e q u i r e m e n t s f o r P v a r y w i t h body w e i g h t , age, sex, type and l e v e l of p r o d u c t i o n (NRC, 1984). In g e n e r a l , r e q u i r e -ments are met by 0.14% P on an a s - f e d b a s i s ( C a l l et al., l 9 7 8 ; B u t c h e r et al., 1979). A l t h o u g h some sample groups d i d not meet t h i s r e q u i r e m e n t , o v e r a l l t he f o r a g e c o u l d be c o n s i d e r e d adequate f o r beef c a t t l e . 6.3.5.3 C a l c i u m C a l c i u m does not appear t o be r e s t r i c t i v e t o p l a n t or a n i m a l h e a l t h . F o l i a r Ca c o n c e n t r a t i o n s ranged from 0.44 t o 1.32 % w i t h a mean v a l u e of 0.81% (T a b l e 17). Legume c a l c i u m c o n c e n t r a t i o n s were much h i g h e r , a v e r a g i n g 2.46 % (Table 15). F o l i a r Ca l e v e l s w hich have been shown t o produce d e f i c i e n c y symptoms i n a v a r i e t y of g r a s s e s were below 0.35% (Chapman, 1966). The i n t e r m e d i a t e l e v e l was d e t e r m i n e d t o be between 0.57 and 1.75 % Ca (Chapman, 1966). Beef c a t t l e r e q u i r e m e n t s f o r Ca depend on a v a r i e t y of f a c t o r s , as do P r e q u i r e m e n t s (NRC, 1984). In g e n e r a l , Ca:P r a t i o s between 1:1 and 7:1 a r e c o n s i d e r e d s a t i s f a c t o r y f o r c a t t l e p r o v i d e d the P c o n c e n t r a t i o n i s a t l e a s t 0.14% (NRC, 1984). Ca:P r a t i o s i n the f o r a g e were w i t h i n t h i s range. 6.3.5.4 P o t a s s i u m Based on f o l i a r a n a l y s e s , K does not appear r e s t r i c t i v e t o the growth of p l a n t s or beef c a t t l e . F o l i a r K v a l u e s ranged from 0.63 t o 3.47 % w i t h a mean v a l u e of 1.54% ( T a b l e 17). D i f f e r e n c e s between f u r r o w s , a c r o s s a l l p l o t s , were a p p a r e n t . The f e s c u e s showed the h i g h e s t K l e v e l s , f o l l o w e d by the Agropyrons seeded i n 1985. The Agropyrons and P. amp I a seeded i n 1984 had the lowe s t K c o n c e n t r a t i o n s . As w i t h o t h e r e l e m e n t s , the d i f f e r e n c e between the 1984 and 1985 i n d i v i d u a l s of c o r r e s p o n d i n g s p e c i e s was presumed t o be due t o a d i f f e r e n c e i n p h y s i o l o g i c a l m a t u r i t y . No s i g n i f i c a n t d i f f e r e n c e s a c r o s s p l o t s were apparent (Table 18). Legume K c o n c e n t r a t i o n s averaged 2.39% (Table 15). On a d r y weight b a s i s , c r i t i c a l K l e v e l s i n l e a v e s a r e i n d i c a t e d by a f o l i a r c o n c e n t r a t i o n r a n g i n g from 0.70 t o 1.5 % f o r most p l a n t s ( U l r i c h and O h k i , 1966). Mean v a l u e s f o r most s p e c i e s were above t h i s range. The maximum K l e v e l which can be t o l e r a t e d by beef c a t t l e i s l i s t e d as 3% (NRC, 1984). D e s i r a b l e K c o n c e n t r a t i o n s range from 0.5 t o 0.7 %. Most groups were w e l l above the d e s i r a b l e range, and some approached the maximum t o l e r a b l e l e v e l . Some K i s i n h e r e n t i n the t a i l i n g s m a t e r i a l . A d d i t i o n a l K was s u p p l i e d a t a r a t e of 52 kg/ha i n 1985. In the i n t e r e s t s of beef c a t t l e h e a l t h , i t would appear t h a t the l e v e l of supplemented K s h o u l d be reduced. Even w i t h a r e d u c t i o n i n s u p p l i e d K, i t i s not l i k e l y t h a t p l a n t R d e f i c i e n c y would become a problem. A d d i t i o n a l p o t a s s i u m w i l l become a v a i l a b l e t h r o u g h the degrad-a t i o n of mica and p o t a s s i u m f e l d s p a r s as the t a i l i n g s weather. 6.3.5.5 Magnesium Mean Mg c o n c e n t r a t i o n i n the f o r a g e was found t o be 0.20% w i t h a sample range of 0.08 t o 0.48 % (T a b l e 17). These v a l u e s a r e w e l l w i t h i n the i n t e r m e d i a t e range (0.09 t o 0.21 %) r e p o r t e d f o r o t h e r g r a s s e s (Embleton, 1966). D. glomerata and F. rubra showed much h i g h e r l e v e l s , p a r t i c u l a r l y i n p l o t s 2 and 3. Mg c o n c e n t r a t i o n s i n t h e s e s p e c i e s , were c o n s i s t e n t l y a t , or g r e a t e r t h a n , the maximum t o l e r a b l e l e v e l of 0.40% r e p o r t e d f o r beef c a t t l e . D. glomerata growing under normal p a s t u r e c o n d i t i o n s , t y p i c a l l y have v e r y h i g h Mg c o n c e n t r a t i o n s (Jones and W a l t e r s , 1969; T i n g l e and E l l i o t t , 1975). Mg l e v e l s i n the legumes averaged 0.51 % (T a b l e 15). A l l o t h e r s p e c i e s were w i t h i n the d e s i r a b l e range of 0.05 t o 0.25 % Mg based on N a t i o n a l Research C o u n c i l (1984) c r i t e r i a ( T a b l e 16). Gr a s s t e t a n y , a d i s o r d e r i n d u c e d by Mg d e f i c i e n c y , may o c c u r i n c a t t l e g r a z i n g p a s t u r e w i t h Mg c o n c e n t r a t i o n s below 0.04 t o 0.10 % ( T i n g l e and E l l i o t t , 1975). Two groups, A. cristatum 84 i n p l o t 6 and P. ampl a 84 i n p l o t 9, were below the c r i t i c a l c o n c e n t r a t i o n of 0.1 % Mg. Grunes et al. (1970) r e p o r t t h a t the r a t i o of K t o Ca and Mg, on a m i l l i e q u i v a l e n t per k i l o g r a m b a s i s , may a l s o be used as an i n d i c a t o r of Mg d e f i c i e n c y . G r a s s t e t a n y i s a s s o c i a t e d w i t h r a t i o s g r e a t e r than or e q u a l t o 2.0. R a t i o s f o r a l l s p e c i e s - p l o t c o m b i n a t i o n s were w e l l below t h i s v a l u e . G r a s s t e t a n y i n c a t t l e f e e d i n g on t h i s f o r a g e i s , t h e r e f o r e , u n l i k e l y . 7.0 SUMMARY AND CONCLUSIONS Copper mine t a i l i n g s growth p r o d u c t i o n c a p a b i l i t i e s were assessed, before and a f t e r seven weeks of a r t i f i c i a l weathering. V e g e t a t i v e success and elemental composition of agronomic grasses and legumes, grown on the t a i l i n g s under v a r i o u s amendment regimes, were determined. The r e s u l t s of these s t u d i e s provided the b a s i s f o r t a i l i n g pond r e h a b i l i t a t i o n recommendations. The s p e c i e s which appeared to respond most f a v o u r a b l y to s i t e c o n d i t i o n s were Poa ampl a, D. glomerata, and A. trichophorum. F o l i a r copper was w e l l above normal c o n c e n t r a t i o n s i n a l l s p e c i e s . Of the grasses, the fescues and P. ampla, d i s p l a y e d the hi g h e s t and lowest l e v e l s , r e s p e c t i v e l y . F o l i a r molybdenum c o n c e n t r a t i o n s determined by the Parkinson and A l l e n (1975) wet d i g e s t i o n technique and i n d u c t i v e l y coupled argon plasma emmission spectroscopy were r e l a t i v e l y a c c u r a t e and r e l i a b l e . Coupled with the advantage of ease and e f f i c i e n c y of sample p r o c e s s i n g , t h i s method was d e c i d e d l y s u p e r i o r to other techniques f o r determining f o l i a r molybdenum. F o l i a r molybdenum c o n c e n t r a t i o n s , were one to two orders of magnitude higher than normal. The hi g h e s t molybdenum concen-t r a t i o n s were found i n p l o t 3 , which r e c e i v e d an overburden cover and s p l i t a p p l i c a t i o n of f e r t i l i z e r . Molybdenum c o n c e n t r a t i o n s d i d not vary s i g n i f i c a n t l y a c r o s s grass s p e c i e s . 111 Copper:molybdenum ratios were below the c r i t i c a l l e v e l of 2:1 in v i r t u a l l y a l l of the samples. The material would, therefore, not be suitable for beef c a t t l e forage. The most favourable copper:molybdenum ratios were produced from plot 8, which received no s u r f i c i a l amendment and a single application of f e r t i l i z e r . Across species, there was some tendency for F. ovina and F. rubra to produce the widest copper:molybdenum r a t i o s . The legumes contained very high concentrations of copper and molybdenum and extremely narrow copper:molybdenum r a t i o s . Aside from the copper:molybdenum issue, zinc levels appear to be inadequate for both plants and c a t t l e . Stand quality would probably benefit from zinc f e r t i l i z a t i o n , preferably in an acid generating form. Like most heavy metals, zinc may be phytotoxic, therefore care should be taken to ensure that zinc application rates are not excessive. Periodic monitoring of zinc a v a i l a b i l i t y i s recommended since declines in pH w i l l cause increases in t h i s parameter. Phosphorus was d e f i c i e n t to marginally d e f i c i e n t for plants. S p l i t applications of f e r t i l i z e r phosphorus, however, appeared to improve plant phosphorus status. Recommended management techniques in t h i s regard, would depend on land use objectives. The widest copper:molybdenum ratios were achieved when f e r t i l i z e r was applied in a single application at time of seeding. If the t a i l i n g s are used for forage production, t h i s program would be desirable. Caution must be advised when determining phosphorus application rates as excesses may induce zinc deficiency and enhance molybdenum uptake in plants. S p l i t phosphorus 1 12 a p p l i c a t i o n s would be recommended i n the event t h a t the t a i l i n g s a r e r e v e g e t a t e d s t r i c t l y f o r e r o s i o n c o n t r o l . Phosphorus a d s o r p -t i o n phenomena, which s e v e r e l y r e s t r i c t a v a i l a b i l i t y t o p l a n t s , would be reduced by s p l i t a p p l i c a t i o n s and maintenance of t a i l i n g s pH i n the near n e u t r a l t o s l i g h t l y a c i d range. These p r o c e d u r e s are c o n t r a r y t o recommendations which promote the most f a v o u r a b l e f o l i a r copper:molybdenum r a t i o s . N u t r i e n t s t a t u s i n p l a n t s growing on the t a i l i n g s w i l l p r o b a b l y change once z i n c i s no l o n g e r l i m i t i n g . F o l l o w i n g the c o r r e c t i o n of a s i n g l e d e f i c i e n c y , the c o n c e n t r a t i o n of o t h e r n u t r i e n t s n e a r l y always d e c r e a s e s . I t i s t h e r e f o r e recommended t h a t r e -e x a m i n a t i o n of f o l i a r n u t r i e n t l e v e l s be c a r r i e d out p e r i o d i c a l l y and a d j u s t m e n t s i n f e r t i l i z e r programs be made a c c o r d i n g l y . Based on r e s u l t s of the a r t i f i c i a l w e a t h e r i n g s t u d y , the c h e m i c a l c h a r a c t e r i s t i c s of the t a i l i n g s w i l l change over t i m e . The t a i l i n g s w i l l p r o b a b l y become more a c i d i c . T h i s would be accompanied by a l o s s of a l k a l i and a l k a l i n e e a r t h s , p a r t i c u l a r l y c a l c i u m , t h r o u g h the d i s s o l u t i o n of s o l u b l e s a l t s and c a r b o n a t e s . A v a i l a b l e molybdenum, i r o n , manganese and z i n c would p r o b a b l y d e c l i n e , a l t h o u g h t o t a l l e v e l s may not be a l t e r e d d r a m a t i c a l l y . Through a r t i f i c i a l w e a t h e r i n g , a v a i l a b l e copper l e v e l s were a f f e c t e d o n l y i n some samples. The form of co p p e r , whether o x i d i z e d ( e . g . m a l a c h i t e ) or reduced (e.g. c h a l c o p y r i t e ) , may be c r i t i c a l i n i n f l u e n c i n g a v a i l a b i l i t y . In a l l samples, t o t a l copper l e v e l s d e c l i n e d s u b s t a n t i a l l y a f t e r l e a c h i n g . Some n u t r i e n t i n f l u x may be e x p e c t e d t h r o u g h the d e g r a d a t i o n of pyroxenes and a m p h i b o l e s , f o l l o w e d by m i c a s , p l a g i o c l a s e s , p o t a s s i u m f e l d s p a r s , a n d c o p p e r m i n e r a l s . T o t a l c o p p e r a nd molybdenum l e v e l s r e m a i n e d w e l l a b o v e n o r m a l r a n g e s e v e n a f t e r s e v e n weeks o f h o t a c i d l e a c h i n g . M o d i f i c a t i o n o f f a c t o r s i n f l u e n c i n g a v a i l a b i l i t y must t h e r e f o r e be a t t e m p t e d t o i m p r o v e f o l i a r m e t a l l e v e l s . I n o t h e r r e s p e c t s , w e a t h e r i n g o f t h e t a i l i n g s may be e x p e c t e d t o p r o v i d e a more s u i t a b l e medium f o r v e g e t a t i v e s u c c e s s a nd i m p r o v e d q u a l i t y . T h i s s i t u a t i o n w o u l d be a f f e c t e d m a i n l y by a d e c l i n e i n pH, w h i c h w o u l d d e c r e a s e molybdenum a v a i l a b i l i t y a n d i n c r e a s e t h e a v a i l a b i l i t y o f o t h e r m i c r o n u t r i e n t s . The s y n t h e s i s o f c l a y s , t h r o u g h m i n e r a l d e g r a d a t i o n a n d r e c o m b i n a t i o n p r o c e s s e s , w o u l d i m p r o v e t h e n u t r i e n t a n d w a t e r h o l d i n g c a p a c i t i e s o f t h e t a i l i n g s . I n c o r p o r a t i o n o f o r g a n i c m a t t e r w o u l d a l s o be b e n e f i c i a l i n t h i s r e s p e c t . O r g a n i c c o n t e n t w o u l d a l s o p r o v i d e a t e m p l a t e f o r m i c r o b i o l o g i c a l o r g a n i s m s a n d a l l o w t h e c y c l i n g o f n u t r i e n t s ; p a r t i c u l a r l y n i t r o g e n . N i t r o g e n a n d p h o s p h o r u s i n h e r e n t i n t h e t a i l i n g s a r e n o t a d e q u a t e t o m a i n t a i n p l a n t g r o w t h a n d must be p r o v i d e d u n t i l s u c h t i m e t h a t t h e t a i l i n g s e n v i r o n m e n t a p p r o a c h e s a n a t u r a l s o i l s y s t e m . 8.0 LITERATURE CITED A g b o o l a , A.A. , and R.B. Corey, 1-9T3\. The r e l a t i o n s h i p between s o i l pH, o r g a n i c m a t t e r , a v a i l a b l e phosphorus, exchangeable p o t a s s i u m , c a l c i u m , magnesium, and n i n e elements i n the maize t i s s u e . S o i l S c i . 115:367-375. A g r i c u l t u r e Canada and P r o v i n c e of B r i t i s h C o lumbia, M i n i s t r y of A g r i c u l t u r e . 1981. V e t e r i n a r y t r a c e m i n e r a l d e f i c i e n c y and t o x i c i t y i n f o r m a t i o n . Pub. 5139. A l l a w a y , W.H. 1975. S o i l and p l a n t a s p e c t s of the c y c l i n g of chromium, molybdenum and s e l e n i u m , p.35-47. In I n t e r n a t i o n a l c o n f e r e n c e on heavy m e t a l s i n the environment, T o r o n t o , Canada. 27-31 October 1975. V o l . 1. A l l a w a y , W.H. 1977. P e r s p e c t i v e s on molybdenum i n s o i l s and p l a n t s , p. 317-339. In W.R. C h a p p e l l and K.K. P e t e r s o n (ed.) Molybdenum i n the environment. M a r c e l - D e k k e r , New York. V o l . 2. Andrews, R.D. 1975. T a i l i n g s : E n v i r o n m e n t a l consequences and a r e v i e w of c o n t r o l s t r a t e g i e s , p. 645-675. In I n t e r n a t i o n a l c o n f e r e n c e on heavy m e t a l s i n the environment, T o r o n t o , Canada. 27-31 October 1975. V o l . 2, P a r t 2. A s h e r , L . J . , and J.F. Loneragan. 1967. Response of p l a n t s t o phosphate c o n c e n t r a t i o n i n s o l u t i o n c u l t u r e . I . Growth and phosphorus c o n t e n t . S o i l S c i . 103:225-233. A u b e r t , H. and M. P i n t a . 1977. Trace elements i n s o i l s . Developments i n S o i l S c i e n c e 7. E l s e v i e r - S c i e n t i f i c Pub. Co., New York. B a k e r , D.E., and N.H. Suhr. 1982. Atomic a b s o r p t i o n and flame e m i s s i o n s p e c t r o m e t r y . In A.L. Page et al . (ed.) Methods of s o i l a n a l y s i s , P a r t 2. 2nd ed. Agronomy 9:13-27. Amer. Soc. Agron. I n c . , S o i l S c i . Soc. Amer. I n c . , M a d i s i o n , W i s c o n s i n . B a r s h a d , I . 1948. Molybdenum c o n t e n t of p a s t u r e p l a n t s i n r e l a t i o n t o t o x i c i t y t o c a t t l e . S o i l S c i . 66:187-195. B a r s h a d , I . 1951. F a c t o r s a f f e c t i n g the molybdenum c o n t e n t of p a s t u r e p l a n t s . I I . E f f e c t of s o l u b l e p h o s p h a t e s , a v a i l a b l e n i t r o g e n and s o l u b l e s u l p h a t e s . S o i l S c i . 71:387-398. Bear, F.E. 1955. C h e m i s t r y of the s o i l . R e i n h o l d , New York. Beeson, K.C., and H.A. MacDonald. 1951. A d s o r p t i o n of m i n e r a l elements by f o r a g e p l a n t s . I I I . The r e l a t i o n of stage of growth t o the m i c r o n u t r i e n t element c o n t e n t of t i m o t h y and some legumes. Agron. J . 43:589-593. B h e l l a , H.A. and M.D. Dawson. 1972. The use of a n i o n exchange r e s i n f o r d e t e r m i n i n g s o i l molybdenum. S o i l S c i . Soc. Amer. P r o c . 36:177-179. Bingham, F.T. 1966. Phosphorus, p. 324-361. In H.D. Chapman (ed.) D i a g n o s t i c c r i t e r i a f o r p l a n t s and s o i l s . U n i v . of C a l i f o r i a , D i v . of A g r i c u l t u r a l S c i e n c e s . B l e v i n s , R.L., and H.F. Massey. 1959. E v a l u a t i o n of two methods of measuring a v a i l a b l e s o i l copper and the e f f e c t s of s o i l pH and e x t r a c t a b l e aluminum on copper uptake by p l a n t s . S o i l S c i . Soc. Amer. P r o c . 23:296-298. Boawn, L.C. 1971. E v a l u a t i o n of D T P A - e x t r a c t a b l e z i n c as a z i n c s o i l t e s t f o r Washington s o i l s . Annu. P a c i f i c N.W. F e r t . Conf., P r o c . 22nd (Bozeman, Montana) p. 143-146. P a c i f i c N.W. P l a n t Food A s s o c . , P o r t l a n d , Oregon. Bohn, H.L., B.L. McNeai, and G.A. O'Connor. 1979. S o i l c h e m i s t r y . John W i l e y & Sons, T o r o n t o . B o i l a , R.J., T.J. D e v l i n , R.A. D r y s d a l e , and L.E. L i l l i e . 1984a. G e o g r a p h i c a l v a r i a t i o n i n the copper and molybdenum c o n t e n t s of f o r a g e s grown i n n o r t h w e s t e r n M a n i t o b a . Can. J . Anim. S c i . 64:899-918. B o i l a , R.J., T.J. D e v l i n , R.A. D r y s d a l e , and L.E. L i l l i e . 1984b. The s e v e r i t y of hypocupremia i n s e l e c t e d h e r d s of beef c a t t l e i n n o r t h w e s t e r n M a n i t o b a . Can. J . Anim. S c i . 64:919-936. Bomke, A.A., and L.E. Lowe. 1985. Forage response t o copper f e r t i l i z a t i o n on two B r i t i s h Columbia C e n t r a l I n t e r i o r s o i l s . Can. J . S o i l S c i . 65:457-465. B r a d f o r d , G.R., F.L. B l a i r , and V. Hunsaker. 1971. T r a c e and major element c o n t e n t s of s o i l s a t u r a t i o n e x t r a c t s . S o i l S c i . 112:225-230. Bradshaw, A.D. 1975. The s i g n i f i c a n c e of m e t a l t o l e r a n c e , p. 599-622. In I n t e r n a t i o n a l c o n f e r e n c e on heavy m e t a l s i n the envi r o n m e n t , T o r o n t o , Canada. 27-31 O c t o b e r , 1975. V o l . 2, P a r t 2. Brady, N.C. 1974. The n a t u r e and p r o p e r t i e s of s o i l s . 8 t h ed. M a c M i l l a n Pub. Co., New York. B r i t i s h Columbia Dept. of A g r i c u l t u r e . 1974. S o i l s of the West K o o t e n a y - A s h c r o f t a r e a , B.C. Kelowna ( p r o v i s i o n a l d r a f t ) . Brown, A.L., J . Q u i c k , and J.L. E d d i n g s . 1971. A comparison of a n a l y t i c a l methods f o r s o i l z i n c . S o i l S c i . Soc. Amer. P r o c . 35: 105-107. Brown, J.C., L.O. T i f f i n , R.S. Holmes, A.W. Specht, and J.W. R e s n i c k y . 1959. I n t e r n a l i n a c t i v a t i o n of i r o n i n soybeans as a f f e c t e d by r o o t growth medium. S o i l S c i . 87:89-94. B u t c h e r , J.E., J.W. C a l l , J.T. B l a k e , and J . L . Shupe. 1979. D i e t a r y phosphorus can cause problems i n beef cows. P r o c . West. S e c t . , Amer. Soc. Anim. S c i . 30:312-314. C a l l , J.W., J.E. B u t c h e r , J.T. B l a k e , R.A. Smart, and J.L. Shupe. 1978. Phorphorus i n f l u e n c e on growth and r e p r o d u c t i o n of beef c a t t l e . J . Anim. S c i . 47:216-225. C a r r , J.M. 1960. P o r p h y r i e s , b r e c c i a s and copper m i n e r a l i z a t i o n i n the H i g h l a n d V a l l e y . Can. M i n i n g J . 81:71-73. Chapman, H.D. 1966. D i a g n o s t i c c r i t e r i a f o r p l a n t s and s o i l s . U n i v e r s i t y of C a l i f o r n i a , D i v i s i o n of A g r i c u l t u r a l S c i e n c e s . Cheng, B.T., and G.J. O u e l l e t t e . 1973. Molybdenum as a p l a n t n u t r i e n t . S o i l s and F e r t i l i z e r s 36(6):207-215. C o c k f i e l d , W.E. 1961. Geology and m i n e r a l d e p o s i t s of the N i c o l a map-area. B r i t i s h Columbia G e o l o g i c Survey of Canada. Ottawa. Mem. 249. Cominco Copper D i v i s i o n . 1982. R e c l a m a t i o n P l a n , P a r t 1, Lake Zone Mine. V a l l e y O p e r a t i o n s , A s h c r o f t , B.C. In-house r e p o r t . C o t t e n i e , A., L. K i n o , and K. G a b r i e l s . 1970. ( R e l a t i o n s h i p s between t r a c e - e l e m e n t c o n t e n t s of l e a v e s and the n u t r i e n t medium). 2nd C o l o q u i o e u r . m e d i t . ; Cent. E d a f o l . B i o l , p l i c . C u a r t o , S e v i l l a : 4 3 - 5 2 (Ref. S o i l s and F e r t . 34:3188) Cox, F.R., and E . J . Kamprath. 1972. M i c r o n u t r i e n t s o i l t e s t , p.289-317. In J . J . M o r t v e d t et al . (ed.) M i c r o n u t r i e n t s i n a g r i c u l t u r e . S o i l S c i . Soc. Amer., M a d i s i o n , W i s c o n s i n . Cunningham, H.M., J.M. Brown, and E.H. E d i e . 1953. Molybdenum p o i s o n i n g of the c a t t l e i n the Swan R i v e r V a l l e y of M a n i t o b a . Cunningham, I . J . 1950. Copper and molybdenum i n r e l a t i o n t o d i s e a s e s of c a t t l e and sheep i n New Z e a l a n d , p.246-273. In E.W. M c E l r o y and B. G l a s s (ed.) Symposium on copper m e t a b o l i s m . John Hopkins P r e s s , B a l t i m o r e . Cunningham, I . J . , K.G. Hogan, and J.N. Breen. 1956. The copper and molybdenum c o n t e n t s of p a s t u r e s grown on the d i f f e r e n t s o i l s of New Zea l a n d . N.Z.J. S c i . Tech. S e c t . A. 38:225-238. D i c k , A.T. 1953. The e f f e c t of i n o r g a n i c s u l p h a t e on the e x c r e t i o n of molybdenum i n the sheep. A u s t . V e t . J . 29:18. D i c k , A.T, 1969. The copper-molybdenum complex i n ruminant n u t r i t i o n . O u t l o o k on A g r i c u l t u r e 6:14-28. D i x o n , J.B., and S.B. Weed ( e d . ) . 1977. M i n e r a l s i n s o i l e n v i r o n m e n t s . S o i l S c i . Soc. Amer., Madison, W i s c o n s i n . 1 1 7 D o l a r , S.G. and D.R. Keeney. 1971. A v a i l a b i l i t y of copper, z i n c and manganese i n s o i l s . I . I n f l u e n c e of s o i l pH, o r g a n i c m a t t e r and e x t r a c t a b l e phosphorus. J . S c i . Fd. A g r i c . 22:273-278. Donald, C , B . I . P a s s e y , and R.J. Swaby. 1952. B i o a s s a y of a v a i l a b l e t r a c e m e t a l s from A u s t r a l i a n s o i l s . A u s t . J . A g r i c . Res. 3:305-325. D o y l e , P., and K. F l e t c h e r . 1977. Molybdenum c o n t e n t of bedrock, s o i l s and v e g e t a t i o n and the i n c i d e n c e of copper d e f i c i e n c y i n c a t t l e i n w e s t e r n M a n i t o b a , p.371-386. In W.R. Chappel and K.K. P e t e r s e n (ed.) Molybdenum i n the environment. M a r c e l -Dekker, New York. V o l . 2. Dye, W.B., and J.L. O'Harra. 1959. M o l y b d e n o s i s . B u l l . 208. U n i v . Nevada. Embleton, T.W. 1966. Magnesium, p. 225-263. In H.D. Chapman (ed.) D i a g n o s t i c c r i t e r i a f o r p l a n t s and s o i l s . U n i v . of C a l i f o r n i a , D i v . of A g r i c u l t u r a l S c i e n c e s . Evans, H.J. 1956. R o l e of molybdenum i n p l a n t n u t r i t i o n . S o i l S c i . 81:199-208. Ferg u s o n , W.S., A.H. L e w i s , and S.J. Watson. 1938. A c t i o n of molybdenum i n n u t r i t i o n of m i l k i n g c a t t l e . Nature 141:553. F i s h e r , L . J . , and D.E. Waldern. 1978. M i n e r a l s and v i t a m i n s f o r d a i r y cows. Can. Dept. A g r i c , Ottawa, Ont. Pub. 1450. F i s k e l l , J.G.A. 1965. Copper. In C A . B l a c k et al. (ed.) Methods of s o i l a n a l y s i s . P a r t 2. Agronomy 9:1078-1089. Amer. Soc. of Agronomy, I n c . , S o i l S c i . Soc. Amer., I n c . , Madison, WI. F l e m i n g , G.A. 1965. T r a c e elements i n p l a n t s w i t h p a r t i c u l a r r e f e r e n c e t o p a s t u r e s p e c i e s . O u t l o o k on A g r i c u l t u r e 4:270-285. F l e m i n g , G.A., and W.E. Murphy. 1968. The uptake of some major and t r a c e elements by g r a s s e s as a f f e c t e d by season and s t a g e of m a t u r i t y . J . B r i t . G r a s s l a n d Soc. 23:174-185. F l e t c h e r , K., and V.C. B r i n k . 1969. Content of c e r t a i n t r a c e elements i n range f o r a g e s from s o u t h c e n t r a l B r i t i s h C o l u m b i a . Can. J . P l a n t S c i . 49:517-520. Foy, C D . , R.L. Chancy, and M.C White. 1978. The p h y s i o l o g y of m e t a l t o x i c i t y i n p l a n t s . Ann. Rev. P l a n t P h y s i o l . 29:511-566. F r i e b e r g , L. 1975. T o x i c m e t a l s and t h e i r i m p l i c a t i o n s f o r human h e a l t h , p.21-34. In I n t e r n a t i o n a l c o n f e r e n c e on heavy m e t a l s i n the environment, T o r o n t o , Canada. 27 - 31 October 1975. V o l . 1. Gee, G.W., A. Bauer, and R.S. Decker. 1978. P h y s i c a l a n a l y s e s of overburden m a t e r i a l s and mine l a n d s o i l s , p. 665-686. In F.W. S c h a l l e r and P. S u t t o n (ed.) R e c l a m a t i o n of d r a s t i c a l l y d i s t u r b e d l a n d s . Amer. Soc. Agronomy, Crop S c i . Soc. Amer., and S o i l S c i . Soc. Amer., Madison, WI. Gemmell, R.P. 1975. Novel r e v e g e t a t i o n t e c h n i q u e s f o r t o x i c s i t e s . p. 579-598. In I n t e r n a t i o n a l c o n f e r e n c e on heavy m e t a l s i n the environment, T o r o n t o , Canada. 27-31 October 1975. V o l . 2, P a r t 2. G e r l o f f , G.C., P.R. S t o u t , and L.H.P. Jo n e s . 1959; Molybdenum-manganese-iron antagonisms i n the n u t r i t i o n of tomato p l a n t s . P l a n t P h y s i o l . 34:608-613. G o l d i c h , S.S. 1938. A study i n r o c k - w e a t h e r i n g . J . G e o l . 46:17-58. Gough, L.P., J.M. McNeal, and R.C. S e v e r s o n . 1980. P r e d i c t i n g n a t i v e c o p p e r , i r o n , manganese and z i n c l e v e l s u s i n g DTPA and EDTA s o i l e x t r a c t a n t s , N o r t h e r n Great P l a i n s . S o i l S c i . Soc. Amer. J . 44:1030-1036. G r i g g , J.L. 1953. D e t e r m i n a t i o n of the a v a i l a b l e molybdenum of s o i l s . N.Z.J. S c i . Tech. S e c t . A 34:404-414. Grunes, D.L., P.R. S t o u t , and J.R. B r o w n e l l . 1970. Grass t e t a n y of r u m i n a n t s . Advances i n Agronomy 22:331-374. Gupta, U.C. and J . L i p s e t t . 1981. Molybdenum i n s o i l s , p l a n t s and a n i m a l s . Advances i n Agronomy 34:73-115. Gupta, U.C. and D.C. MacKay. 1968. Crop r e s p o n s e s t o a p p l i e d molybdenum and copper on p o d z o l s o i l s . Can. J . S o i l S c i . 48:235-242. H a l e y , L.E. and S.W. M e l s t e d . 1957. P r e l i m i n a r y s t u d i e s of molybdenum i n I l l i n o i s s o i l s . S o i l S c i . Soc. Amer. P r o c . 21:316-319. Hanks, R.J. and T.C. Thorpe. 1956. S e e d l i n g emergence of wheat as r e l a t e d t o s o i l m o i s t u r e c o n t e n t , b u l k d e n s i t y , oxygen d i f -f u s i o n r a t e and c r u s t s t r e n g t h . S o i l S c i . Soc. Amer. 20:307-310. Haq, A.U. and M.H. M i l l e r . 1972. P r e d i c t i o n of a v a i l a b l e s o i l z i n c , copper and manganese u s i n g c h e m i c a l e x t r a c t a n t s . Agron. J . 64:779-782. Haq, A.U., T.E. B a t e s , and Y.K. Soon. 1980. Comparison of e x t r a c t a n t s f o r p l a n t - a v a i l a b l e z i n c , cadmium, n i c k e l and copper i n c o n t a m i n a t e d s o i l s . S o i l S c i . Soc. Amer. J . 44:772-777. H e n i n , S. and G. Pedro. 1965. The l a b o r a t o r y w e a t h e r i n g of r o c k s , p.29-39. In E.G. H a l l s w o r t h and D.V. C r a w f o r d (ed.) E x p e r i -mental p e d o l o g y . B u t t e r w o r t h s , London. Henning, S. and T.L. J a c k s o n . 1973. D e t e r m i n a t i o n of molybdenum i n p l a n t t i s s u e u s i n g f l a m e l e s s atomic a b s o r p t i o n . Atomic A b s o r p t i o n N e w s l e t t e r 12(4):101 -101 . H e w i t t , E . J . 1953. M e t a l i n t e r r e l a t i o n s h i p s i n p l a n t n u t r i t i o n . I . E f f e c t s of some m e t a l t o x i c i t i e s on sugar b e e t , tomato, o a t , p o t a t o and marrowstem k a l e grown i n sand c u l t u r e . J . Exp. B o t . 4:59-64. H o r n i c k , S.B., D.E. Baker, and S.B. Guss. 1977. Crop p r o d u c t i o n and a n i m a l h e a l t h problems a s s o c i a t e d w i t h h i g h s o i l molyb-denum, p. 665-684. In W.R. C h a p p e l l and K.K. P e t e r s o n (ed.) Molybdenum i n the environment. M a r c e l - D e k k e r , I n c . New York. V o l . 2. Huber, J.T., N.O. P r i c e , and R.W. E n g e l . 1971. Response of l a c t a t i n g d a i r y cows t o h i g h l e v e l s of d i e t a r y molybdenum. J . Anim. S c i . 32:364-367. H u f f , L.C. 1970. A g e o c h e m i c a l s t u d y of a l l u v i u m - c o v e r e d copper d e p o s i t s of Pima County, A r i z o n a . U.S. G e o l . Survey B u l l . 1312-C. J e n s e n , E.H. and A.L. L e s p e r a n c e . 1971. Molybdenum a c c u m u l a t i o n by f o r a g e p l a n t s . Agron. J . 63:201-204. Johnson, C M . and T.H. A r k l e y . 1954. D e t e r m i n a t i o n of molybdenum i n p l a n t t i s s u e . A n a l . Chem. 26:572-573. Johnson, R.D. 1975. The heavy m e t a l problem of S i l v e r V a l l e y , N o r t h e r n Idaho, p. 465-485. In I n t e r n a t i o n a l c o n f e r e n c e on heavy m e t a l s i n the environment, T o r o n t o , Canada. 27-31 October 1975. V o l . 1, P a r t 2. J o n e s , A.A. 1982. X - r a y f l u o r e s c e n c e s p e c t r o m e t r y . In A.L. Page et al. (ed.) Methods of s o i l a n a l y s i s , P a r t 2. 2nd ed. Agronomy 9:85-121. Amer. Soc. Agron. I n c . , S o i l S c i . Soc. Amer. I n c . , Madison, WI. J o n e s , D. and R.J. W a l t e r s . 1969. V a r i e t a l v a r i a t i o n i n n u t r i t i v e c h a r a c t e r i s t i c s , p. 37-43. In L. P h i l l i p s and R. Hughes (ed.) G r a s s and f o r a g e b r e e d i n g . Occas. Symp. No. 5. B r . G r a s s l . Soc . J o n e s , J.B. 1972. P l a n t t i s s u e a n a l y s i s f o r m i c r o n u t r i e n t s . p. 319-346. In J . J . M o r t v e d t et al . (ed.) M i c r o n u t r i e n t s i n a g r i c u l t u r e . S o i l S c i . Soc. Amer., M a d i s i o n , WI. J o n e s , W.W. 1966. N i t r o g e n , p. 324-361. In H. D. Chapman ( e d ) . D i a g n o s t i c c r i t e r i a f o r p l a n t s and s o i l s . U n i v . of C a l i f o r n i a , D i v . of A g r i c u l t u r a l S c i e n c e s . K i t t r i c k , J.A. and E.W. Hope. 1963. A p r o c e d u r e f o r the p a r t i c l e -s i z e s e p a r a t i o n of s o i l s f o r x - r a y d i f f r a c t i o n a n a l y s i s . S o i l S c i . 96:319-325. K o r c a k , R.F. and D.S. F a n n i n g . 1985. A v a i l a b i l i t y of a p p l i e d heavy m e t a l s as a f u n c t i o n of type of s o i l m a t e r i a l and m e t a l s o u r c e . S o i l S c i . 140:23-34. K r a u s k o p f , K.B. 1972. G e o c h e m i s t r y of m i c r o n u t r i e n t s . p. 7-40. In J . J . M o r t v e d t et al , (ed.) M i c r o n u t r i e n t s i n a g r i c u l t u r e . S o i l S c i . Soc. Amer. I n c . , M a d i s i o n , WI. K r e t s c h m e r , A.E. and R.J. A l l e n . 1956. Molybdenum i n E v e r g l a d e s s o i l s and p l a n t s . P r o c . S o i l S c i . Soc. Amer. 20:253-257. Kubota, J . 1975. Areas of molybdenum t o x i c i t y t o g r a z i n g a n i m a l s i n the western U n i t e d S t a t e s . J . Range Management 28(4):252-256. Kubota, J . 1983. Copper s t a t u s of U n i t e d S t a t e s s o i l s and f o r a g e p l a n t s . Agron. J . 75(6):913-918. Kubota, J . and E.E. Cary. 1982. C o b a l t , molybdenum, and s e l e n i u m . In A.L. Page et al . (ed.) Methods of s o i l a n a l y s i s , P a r t 2. 2nd ed. Agronomy 9:485-500. Amer. Soc. Agron., S o i l S c i . Soc. Amer., Madison, WI. Kubota, J . , V.A. L a z a r , L.N. Langan, and K.C. Beeson. 1961. The r e l a t i o n s h i p of s o i l s t o molybdenum t o x i c i t y i n c a t t l e i n Nevada. S o i l S c i . Soc. Amer. P r o c . 25:227-232. Kubota, J . , V.A. L a z a r , and G.H. Simonsen. 1967. The r e l a t i o n s h i p of s o i l s t o molybdenum t o x i c i t y i n g r a z i n g a n i m a l s i n Oregon. P r o c . S o i l S c i . Soc. Amer. 31:667-671. Kunze, G.W. 1965. P r e t r e a t m e n t f o r m i n e r a l o g i c a l a n a l y s i s . In C.A. B l a c k et al.(ed.) Methods of s o i l a n a l y s i s , P a r t 1. Agronomy 9:568-577. Amer. Soc. Agron., M a d i s i o n , WI. Labanauskas, C.K. 1966. Manganese, p. 264-285. In H.D. Chapman (ed.) D i a g n o s t i c c r i t e r i a f o r p l a n t s and s o i l s . U n i v . of C a l i f o r n i a , D i v . of A g r i c u l t u r a l S c i e n c e s . Lane, J.C. and G.A. F l e m i n g . 1966. The e f f e c t of s t a g e of m a t u r i t y and season on the uptake of s e l e n i u m , molybdenum and copper by p e r e n n i a l r y e g r a s s . T r a n s . Comm. I I and IV, I n t . Soc. S o i l S c i . , Aberdeen. L a t t e r e l l , J . J . , R.H. Dowdy, and W.E. L a r s o n . 1978. C o r r e l a t i o n of e x t r a c t a b l e m e t a l s and m e t a l uptake of snapbeans grown on s o i l amended w i t h sewage s l u d g e . J . E n v i r . Q u a l . 7:435-440. L a v k u l i c h , L.M., B. Como, A. Bomke, J . R o b b i n s , and J . S i n g l e t o n . Unpub. 1976. T a i l i n g s r e s e a r c h , s e l e c t e d mines, B r i t i s h Columbia 1976-1977. Dept. S o i l S c i . , U n i v e r s i t y of B.C. and M i n i s t r y of Mines and P e t r o l e u m R e s o u r c e s , V i c t o r i a , B.C. L e s p e r a n c e , A.L., V.R. Bohman, and J.E. O l d f i e l d . 1985. I n t e r -a c t i o n of molybdenum, s u l f a t e and a l f a l f a i n the b o v i n e . J . Anim. S c i . 60(3):791-802. L i n d s a y , W.L. and E.C. Moreno. 1960. Phosphate phase e q u i l i b r i a i n s o i l s . S o i l S c i . Soc. Amer. P r o c . 24:177-182. L i n d s a y , W.L. and W.A. N o r v e l l . 1978. Development of a DTPA s o i l t e s t f o r z i n c , i r o n , manganese and copper. S o i l S c i . Soc. Amer. J . 42:421-428. Lombin, G. 1985. M i c r o n u t r i e n t s o i l t e s t s f o r the s e m i - a r i d savannah of N i g e r i a : boron and molybdenum. S o i l S c i . P l a n t N u t r . 3 1 ( 1 ) : 1 - 1 1 . Lowe, L.E. and A.A. Bomke. 1982. D i a g n o s i s and c o r r e c t i o n of copper d e f i c i e n c y i n the V a n d e r h o o f - F o r t F r a s e r a r e a of B r i t i s h C olumbia. B.C. Min. Agr. Food. Lowe, R.H. and H.F. Massey. 1965. Hot water e x t r a c t i o n f o r a v a i l a b l e s o i l molybdenum. S o i l S c i . 100:238-243. MacKay, D.C, E.W. Chipman, and U.C Gupta. 1966. Copper and molybdenum n u t r i t i o n of c r o p s grown on a c i d sphagnum peat s o i l . S o i l S c i . Soc. Amer. P r o c . 30:755-759. MacKenzie, R.M. 1966. The r e l a t i o n of l a b o r a t o r y a n a l y s i s f o r co p p e r , z i n c , and molybdenum i n some V i c t o r i a n s o i l s t o the r e s u l t s of f i e l d t r i a l s . A u s t . J . Exp. Agr. Anim. Husbandry 6:170-174. M a r t i n , W.E. and J . E. Matocha. 1973. P l a n t a n a l y s i s as an a i d i n the f e r t i l i z a t i o n f o r f o r a g e c r o p s , p. 393-426. In L.M. Walsh and J.D. Beaton (ed.) S o i l t e s t i n g and p l a n t a n a l y s i s . S o i l S c i . Soc. Amer, I n c . , M a d i s i o n , WI. May, Mir--4,975. M o i s t u r e r e l a t i o n s h i p s and t r e a t m e n t s i n r e v e g e t a t -i n g s t r i p mines i n the a r i d west. J . Range Manage. 28:334-335. McKeague, J.A. and J.H. Day. 1966. D i t h i o n i t e and o x a l a t e e x t r a c t a b l e i r o n and aluminum as a i d s i n d i f f e r e n t i a t i n g v a r i o u s c l a s s e s of s o i l s . Can. J . S o i l S c i . 46:13-22. McLean, E.O. 1982. S o i l pH and l i m e r e q u i r e m e n t . In A.L. Page et al. (ed.) Methods of s o i l a n a l y s i s , P a r t 2. 2nd ed. Amer. Soc. Agron. I n c . , S o i l S c i . Soc. Amer. I n c . , Madison, WI. McNeely, R.N., V.P. Ne i m a n i s , and L. Dwyer. 1979. Water q u a l i t y sourcebook, a guide t o water q u a l i t y p a r a m e t e r s . Environment Canada, I n l a n d Waters D i r e c t o r a t e , Water Q u a l i t y Branch, Ottawa, Canada. M i l l i k a n , C R . 1963. R e l a t i v e e f f e c t s of z i n c and copper d e f i c i e n c i e s on l u c e r n e and s u b t e r r a n e a n c l o v e r . A u s t . J . B i o l . S c i . 6:164-177. M i l t i m o r e , J.E. and J.L. Mason. 1971. Copper t o molybdenum r a t i o and molybdenum and copper c o n c e n t r a t i o n s i n ruminant f e e d s . Can. J . Anim. S c i . 51:193-200. M i t c h e l l , R.L. 1957. Trace element c o n t e n t s of p l a n t s . R esearch (London) 10:357-362. M i t c h e l l , W.R. and R.E. Green. 1981. I d e n t i f i c a t i o n and i n t e r -p r e t a t i o n of ecosystems of the western Karnloops f o r e s t r e g i o n . P r o v i n c e of B r i t i s h C o lumbia, M i n i s t r y of F o r e s t s . V o l . 1. Morton, J.W. 1976. The p h y s i c a l l i m i t a t i o n s t o v e g e t a t i o n e s t a b l i s h m e n t of some s o u t h e r n B r i t i s h Columbia mine waste m a t e r i a l s . M.Sc. d i s s . U n i v . of B r i t i s h C o lumbia, Vancouver, B r i t i s h C olumbia. M o r t v e d t , J . J . 1977. M i c r o n u t r i e n t s o i l t e s t c o r r e l a t i o n s and i n t e r p r e t a t i o n s , p. 99-117. Amer. Soc. Agron. Spec. Pub. 29, Amer. Soc. Agronomy, M a d i s i o n , WI. Munshower, F.F. and D.R. Neuman. 1978. E l e m e n t a l c o n c e n t r a t i o n s i n n a t i v e range g r a s s e s from the n o r t h e r n Great P l a i n s of Montana. J . Range Manage. 31(2):145-148. Murphy, L.S. and L.M. Walsh. 1972. F u n c t i o n s of m i c r o n u t r i e n t s i n p l a n t s . p. 231-242. In J . J . M o r t v e d t et al . (ed.) M i c r o n u t r i e n t s i n a g r i c u l t u r e . S o i l S c i . Soc. Amer., Madison, WI. N a t i o n a l R e s e a r c h C o u n c i l . 1984. N u t r i e n t r e q u i r e m e n t s of beef c a t t l e . 6 t h ed. N a t i o n a l Academy P r e s s , Washington, D.C. N i e l s o n , R.F. and H.B. P e t e r s o n . 1973. E s t a b l i s h i n g v e g e t a t i o n on mine t a i l i n g waste, p. 103-115. In R.J. H u t n i k and G. D a v i s (ed.) E c o l o g y and r e c l a m a t i o n of d e v a s t a t e d l a n d . Gordon Breach, New York. V o l . 2. N i e l s o n , R.F. and H.B. P e t e r s o n . 1978. V e g e t a t i n g mine t a i l i n g s ponds. p. 645-652. In F.W. S c h a l l e r and P. S u t t o n (ed.) R e c l a m a t i o n of d r a s t i c a l l y d i s t u r b e d l a n d s . Amer. Soc. Agron, Crop S c i . Soc. Amer., and S o i l S c i . Soc. Amer., Madison, WI. N o r v e l l , W.A. 1984. Comparison of c h e l a t i n g a gents as e x t r a c t a n t s f o r m e t a l s i n d i v e r s e s o i l m a t e r i a l s . S o i l S c i . Soc. Amer. J . 48:1285-1292. O l s e n , S.R. 1972. M i c r o n u t r i e n t i n t e r a c t i o n s , p. 243-264. In J . J . M o r t v e d t et al. (ed.) M i c r o n u t r i e n t s i n a g r i c u l t u r e . S o i l S c i . Soc. Amer., I n c . , M a d i s i o n , WI. Ozanne, P.G. and T.C. Shaw. 1968. Advantages of the r e c e n t l y d e v e l o p e d phosphate s o r p t i o n t e s t over the o l d e r e x t r a c t a n t methods f o r s o i l phosphate. T r a n s . 9th I n t . Cong. S o i l S c i . 2:273-280. Page, A.L., R.H. M i l l e r , and D.R. Keeney ( e d . ) . 1982. Methods of s o i l a n a l y s i s , P a r t 2. 2nd ed. Agronomy 9. Amer. Soc. Agron. I n c . , S o i l S c i . Soc. Amer. I n c . , M a d i s i o n , WI. P a r k i n s o n , J.A. and S.E. A l l e n . 1975. A wet o x i d a t i o n procedure s u i t a b l e f o r the d e t e r m i n a t i o n of n i t r o g e n and m i n e r a l n u t r i e n t s i n b i o l o g i c a l m a t e r i a l . Comm. S o i l S c i . P l a n t A n a l . 6(1):1-11 . P edro, G. 1961. An e x p e r i m e n t a l study on the g e o c h e m i c a l weather-i n g of c r y s t a l l i n e r o c k s by water. C l a y M i n e r B u l l . 4:266-281 . P edro, G. 1964. C o n t r i b u t i o n a l ' e t u d e e x p e r i m e n t a l e de l ' a l t e r a t i o n geochimique des roches c r i s t a l l i n e s . Ann. Agron. 15(2):85-191. Peech, M. 1941. A v a i l a b i l i t y of i o n s i n l i g h t sandy s o i l s as a f f e c t e d by s o i l e r o s i o n . S o i l S c i . 51:473-486. P e t e r s o n , H.B. and R.F. N i e l s o n . 1973. T o x i c i t i e s and d e f i c i e n c i e s i n mine t a i l n g s . p. 15-25. In R.J. H u t n i c k and G. D a v i s (ed.) E c o l o g y and r e c l a m a t i o n of d e v a s t a t e d l a n d . Gordon and B r e a c h , New York. V o l . 1. P e t r i e , S.E. and T.L. J a c k s o n . 1982. E f f e c t s of l i m e , phosphorus and molybdenum a p p l i c a t i o n on molybdenum c o n c e n t r a t i o n i n s u b - c l o v e r . Agron. J . 74:1077-1081. P i p e r , C.S. and R.S. B e c k w i t h . 1949. The uptake of copper and molybdenum by p l a n t s . P r o c . Spec. Conf. A g r i c . Melbourne, S e s s . B p. 13. P r i c e , C.A., H.E. C l a r k , and E.A. Funkhouser. 1972. F u n c t i o n s of m i c r o n u t r i e n t s i n p l a n t s , p. 231-242. In J . J . M o r t v e d t et al. (ed.) M i c r o n u t r i e n t s i n a g r i c u l t u r e . S o i l S c i . Soc. Amer., M a d i s i o n , WI. P u r v i s , E.R. 1955. The r o l e of molybdenum i n p l a n t s . P l a n t and S o i l 3:666-669. R a n d a l l , G.W., E.E. S c h u l t e , and R.B. Corey. 1976. C o r r e l a t i o n of p l a n t manganese w i t h e x t r a c t a b l e s o i l manganese and s o i l f a c t o r s . S o i l S c i . Soc. Amer. J . 40:282-287. Rauser, W.E. and E.K. W i n t e r h a l d e r . 1985. E v a l u a t i o n of c o p p e r , n i c k e l and z i n c t o l e r a n c e s i n f o u r g r a s s s p e c i e s . Can. J . B o t . 63:58-63. R e i s e n a u e r , H.M. 1963. The e f f e c t of s u l p h u r on the a d s o r p t i o n and u t i l i z a t i o n of molybdenum by peas. S o i l S c i . Soc. Amer. P r o c . 27:553-555. R e i s e n a u e r , H.M. 1965. Molybdenum. In C A . B l a c k et al . (ed.) Methods of s o i l a n a l y s i s , P a r t 2. Agronomy 9:1050-1058. Amer. Soc. Agron, I n c . , Madison, WI. R e i s e n a u e r , H.M., A.A. T a b i k h , and P.R. S t o u t . 1962. Molybdenum r e a c t i o n s w i t h s o i l s and the hydrous o x i d e s of i r o n , aluminum, and t i t a n i u m . S o i l S c i . Soc. Amer. P r o c . 26:23-27. 1 24 R e i s e n a u e r , H.M., L.M. Walsh, and R.G. H o e f t . 1973. T e s t i n g s o i l s f o r s u l p h u r , boron, molybdenum and c h l o r i n e , p. 173-200. In L.M. Walsh and J.D. Beaton (ed.) S o i l t e s t i n g and p l a n t a n a l y s e s . S o i l S c i . Soc. Amer., M a d i s i o n , WI. Robbin s , James. M. 1977. An e v a l u a t i o n of r e c l a m a t i o n a l t e r -n a t i v e s which reduce the p o t e n t i a l of molybdenum induced copper d e f i c i e n c y i n rumi n a n t s on the Endako t a i l i n g s . Dept. of S o i l S c i e n c e , U n i v e r s i t y of B r i t i s h C olumbia, Vancouver, B.C. R o b i n s o n , W.O. and G. E d g i n g t o n . 1954. A v a i l a b i l i t y of s o i l molybdenum as shown by the molybdenum c o n t e n t of many d i f f e r e n t p l a n t s . S o i l S c i . 77:237-251. S a n d o v a l , F.M. and W.L. Gould. 1978. Improvement of s a l i n e - and sodium- a f f e c t e d d i s t u r b e d l a n d s . p. 485-504. In F.W. S c h a l l e r and P. S u t t o n (ed.) R e c l a m a t i o n of d r a s t i c a l l y d i s t u r b e d l a n d s . Amer. Soc. Agronomy, Crop S c i . Soc. Amer., and S o i l S c i . Soc. Amer, M a d i s i o n , WI. Schuman, L.M. and O.E. Anderson. 1974. E v a l u a t i o n of s i x e x t r a c t a n t s f o r t h e i r a b i l i t y t o p r e d i c t manganese concen-t r a t i o n s i n wheat and soybeans. S o i l S c i . Soc. Amer. P r o c . 38:788-790. S e v e r s o n , R.C. and L.P. Gough. 1984. R e h a b i l i t a t i o n m a t e r i a l s from s u r f a c e - c o a l mines i n western U.S.A. I I I . R e l a t i o n s between elements i n mine s o i l and uptake by p l a n t s . R e c l a m a t i o n and Reveg. Res. 3(3):185-197. S h e t r o n , S.G. 1983. A l f a l f a , Medicago sativa L., e s t a b l i s h m e n t i n mine m i l l t a i l i n g s . I . P l a n t a n a l y s i s of a l f a l f a grown on i r o n and copper t a i l i n g s . P l a n t S o i l 73(2):227-237. S i l l a n p a a , M. 1976. Trace elements i n s o i l s and a g r i c u l t u r e . S o i l s B u l l e t i n 17, Food and A g r i c u l t u r e O r g a n i z a t i o n of the U n i t e d N a t i o n s , Rome. S i n g l e t o n , G.A. 1978. Weat h e r i n g i n a s o i l chronosequence. Ph.D. d i s s . U n i v e r s i t y of B r i t i s h C olumbia, Vancouver, B.C. S i n g l e t o n , G.A. and L.M. L a v k u l i c h . 1978. A d a p t a t i o n of the s o x h l e t e x t r a c t o r f o r p e d o l o g i c s t u d i e s . S o i l S c i . Soc. Amer. J . 42:984-986. Soane, B.D. and D.H. Saunder. 1959. N i c k e l and chromium t o x i c i t y of s e r p e n t i n e s o i l s i n s o u t h e r n R h o d e s i a . S o i l S c i . 88:322-330. Sobek, A.A., M.A. Bambenek, and D. Meyer. 1982. M o d i f i e d s o x h l e t e x t r a c t o r f o r p e d o l o g i c s t u d i e s . S o i l S c i . Soc. Amer. J . 46:1340-1342. Somer, I . I . and J.W. S h i v e . 1942. The iron-manganese r e l a t i o n i n p l a n t m e t a b o l i s m . P l a n t P h y s i o l . 17:582-602. Sommers, L.E. and W.L. L i n d s a y . 1979. E f f e c t s of pH and redox on p r e d i c t e d heavy m e t a l - c h e l a t e e q u i l i b r i a i n s o i l s . S o i l S c i . Soc. Amer. J . 43:39-47. Spencer, W.F. 1966. E f f e c t of copper on y i e l d and uptake of phosphorus and i r o n by c i t r u s s e e d l i n g s grown at v a r i o u s phosphorus l e v e l s . S o i l S c i . 102:296-299. S t e w a r t , J.W.B. and G. Racz. 1977. Copper and molybdenum s t a t u s of p a s t u r e s i n e a s t e r n Saskatchewan. p. 110-121. In P r o c e e d i n g s of the s o i l f e r t i l i t y and c r o p s workshop. Sa s k a t o o n , Saskatchewan. Stone, L.R., J.A. Erdman, G.L. F e d e r , and H.D. H o l l a n d . 1983. M o l y b d e n o s i s i n an a r e a u n d e r l a i n by u r a n i u m - b e a r i n g l i g n i t e s i n the n o r t h e r n Great P l a i n s . J . Range Manage. 36(3):280-285. S t o u t , P.R., W.R. Meagher, G.A. P e a r s o n , and C M . Johnson. 1951. Molybdenum n u t r i t i o n of c r o p p l a n t s . P l a n t S o i l 3(1):51~87. S t u d n i c k i , M. 1979. M a t r i x e f f e c t s i n the d e t e r m i n a t i o n of molyb-denum i n p l a n t s by carbon f u r n a c e atomic a b s o r p t i o n s p e c t r o -metry. A n a l . Chem. 51(8):1336-1338. Swaine, D.J. 1955. The t r a c e element c o n t e n t of s o i l s . Common-w e a l t h Bur. S o i l S c i . Tech. Comm. No. 48. H e r a l d P r i n t i n g Works, York ( E n g . ) . Thomas, B., A. Thompson, V.A. Oyenuga, and R.M. Armstrong. 1952. The ash c o n s t i t u e n t s of some herbage p l a n t s a t d i f f e r e n t s t a g e s of m a t u r i t y . Emp. J . Exp. A g r i c . 20:10-22. Thomas, J.W. and S. Moss. 1951. The e f f e c t of o r a l l y a d m i n i s t e r e d molybdenum on growth, s p e r m a t o g e n e s i s and t e s t e s h i s t o l o g y of young d a i r y b u l l s . J . D a i r y S c i . 34:929-934. Thomson, I . , I . T h o r n t o n , and J.S. Webb. 1972. Molybdenum i n b l a c k s h a l e s and the i n c i d e n c e of b o v i n e h y p o c u p r o s i s . J . S c i . Fd. A g r i c . 23:879-891. T h o r n t o n , I . 1977. B i o g e o c h e m i c a l s t u d i e s on molybdenum i n the U n i t e d Kingdom. p. 341-369. In W.R. C h a p p e l l and K.K. P e t e r s e n (ed.) Molybdenum i n the environment. M a r c e l - D e k k e r , I n c . , New York. V o l . 2. T i n g l e , J.N. and C R . E l l i o t t . 1975. Forage y i e l d s and q u a l i t y of c u l t i v a t e d p e r e n n i a l g r a s s e s h a r v e s t e d a t the e a r l y h e a d i n g s t a g e . Can. J . P l a n t S c i . 55:271-278. T i p p e r , H.W. 1974. G l a c i a l geomorphology and p l e i s t o c e n e h i s t o r y of c e n t r a l B r i t i s h C olumbia. G e o l o g i c a l Survey of Canada, Ottawa. B u l l . 96. T i s d a l e , S.L. and W.L. N e l s o n . 1975. S o i l f e r t i l i t y and f e r t i l i z e r s . 3 r d ed. M a c M i l l a n Pub. Co. I n c . , New York. T u r n e r , R.G. 1969. The s u b c e l l u l a r d i s t r i b u t i o n of z i n c and copper w i t h i n the r o o t s of m e t a l - t o l e r a n t c l o n e s of Agrostis tenuis S i b t h . New P h y t o l . 69:725-731. U l r i c h , A. and K. O h k i . 1966. P o t a s s i u m . p. 362-393. In H.D. Chapman (ed.) D i a g n o s t i c c r i t e r i a f o r p l a n t s and s o i l s . U n i v . of C a l i f o r n i a , D i v . of A g r i c u l t u r a l S c i e n c e s . Underwood, E . J . 1971. Trace elements i n human and a n i m a l n u t r i t i o n . 3rd ed. Academic P r e s s , New York. Underwood, E . J . 1976. Molybdenum i n a n i m a l n u t r i t i o n . p. 9-31. In W.R. C h a p p e l l and K.K. P e t e r s e n (ed.) Molybdenum i n the environment. M a r c e l - D e k k e r , New York. V o l . 1. Underwood, E . J . 1977. Trace elements i n human and a n i m a l n u t r i t i o n . 4 th ed. Academic P r e s s , New York. Vanderveen, J.E. and H.A. Keener. 1964. E f f e c t s of molybdenum and s u l p h a t e s u l p h u r on metabolism of copper i n d a i r y c a t t l e . J . D a i r y S c i . 47:1244-1230. v a n L u i t , B. and C.H. Henkens. 1967. E f f e c t of copper s t a t u s of the s o i l on the copper c o n t e n t of g r a s s and c l o v e r . V e r s l . Landbouwk. Onderz. No. 695. (as c i t e d by Cox, F.R. and E . J . Kamprath. 1972. M i c r o n u t r i e n t s o i l t e s t s , p. 289-317. In J . J . M o r t v e d t et al. (ed.) M i c r o n u t r i e n t s i n a g r i c u l t u r e . S o i l S c i . Soc. Amer., M a d i s i o n , WI.) Vanselow, A.P. 1966. N i c k e l , p. 302-309. In H.D. Chapman (ed.) D i a g n o s t i c c r i t e r i a f o r p l a n t s and s o i l s . U n i v . of C a l i f o r n i a , D i v . of A g r i c u l t u r a l S c i e n c e s . V i e t s , F.G. and W.L. L i n d s a y . 1973. T e s t i n g s o i l s f o r z i n c , c o p p e r , manganese and i r o n . p. 152-172. In L.M. Walsh and J.D. Beaton (ed.) S o i l t e s t i n g and p l a n t a n a l y s i s . S o i l S c i . Soc. Amer., Madison, WI. V i e t s , F.G., L.C. Boawn, and C.L. C r a w f o r d . 1957. The e f f e c t of n i t r o g e n and t y p e s of n i t r o g e n c a r r i e r on p l a n t uptake of i n d i g e n o u s and a p p l i e d z i n c . S o i l S c i . Soc. Amer. P r o c . 21:197-201 . V i n o g r a d o v a , K.G. 1943. Molybdenum l e v e l s i n the leguminosae. Doklady Akademii Nauk SSSR, 40:31-34. (as c i t e d by S h k o l n i k , M.Y. 1984. Trace elements i n p l a n t s . Developments i n Crop S c i e n c e 6, E l s e v i e r , New York.) V l e k , P.L.G. and W.L. L i n d s a y . 1975. S o i l t e s t s f o r d e t e r m i n i n g molybdenum c o n t a m i n a t i o n i n s o i l s . Agron. A b s t r . 75:122. Walker, T.W., A.F.R. Adams, and H.D. O r c h i s t o n . 1954. The e f f e c t s of i n t e r a c t i o n s of s u l p h u r , phosphorus and molybdenum on the growth and c o m p o s i t i o n of c l o v e r s . N.Z.J. S c i . Tech. 36:471-482. Walsh, T., M. Neenan, and L.B. O'Moore. 1951. The importance of molybdenum i n r e l a t i o n t o some c r o p p i n g p r a c t i s e s and l i v e -s t o c k problems under I r i s h c o n d i t i o n s . J . Irela-nd Dep. Agr. 48:32-43. • ' Ward, G.M. 1978. Molybdenum t o x i c i t y and h y p o c u p r o s i s i n r u m i n a n t s : a r e v i e w . J . Anim. S c i . 46:1078-1085. Watanabe, F.S. and S.R. O l s e n . 1965. Test of an a s c o r b i c a c i d method f o r d e t e r m i n i n g phosphorus i n water and NaHCO, e x t r a c t s from s o i l . S o i l S c i . Soc. Amer. P r o c . 29:677-678. Webb, J.S. and W.J. A t k i n s o n . 1965. R e g i o n a l g e o c h e m i c a l r e c o n -n a i s s a n c e a p p l i e d t o some a g r i c u l t u r a l problems i n Co. L i m e r i c k , E i r e . Nature (London) 208:1056-1059. W e l l s , N. 1956. S o i l s t u d i e s u s i n g sweet v e r n a l t o a s s e s s element a v a i l a b i l i t y . N.Z.J. S c i . Tech. B 37:473-502. Whit e , W.H., R.M. Thomson, and K.C. McTaggart. 1957. The geology and m i n e r a l d e p o s i t s of the H i g h l a n d V a l l e y , B.C. T r a n s . Can. I n s t , of M i n i n g Met. 60:273-289. W h i t t i g , L.D. 1965. X-ray d i f f r a c t i o n t e c h n i q u e s f o r m i n e r a l i d e n t i f i c a t i o n and m i n e r a l o g i c a l c o m p o s i t i o n . In C A . B l a c k et al. (ed.) Methods of s o i l a n a l y s i s , P a r t 1. Agronomy 9:671-698. Amer. Soc. Agron., Madison, WI. W i l l i a m s , C. and I . T h o r n t o n . 1972. The e f f e c t of s o i l a d d i t i v e s on the uptake of molybdenum and s e l e n i u m from s o i l s from d i f f e r e n t e n v i r o n m e n t s . P l a n t S o i l 36:395-406. W i l l i a m s , C. and D.H. Y a a l o n . 1977. An e x p e r i m e n t a l i n v e s t i g a t i o n of r e d d e n i n g i n dune sand. Geoderma 17:181-191. Zar, J . H. 1974. B i o s t a t i s t i c a l a n a l y s i s . P r e n t i c e - H a l l , I n c . , Engelwood C l i f f s , N.J. APPENDIX I T e x t u r a l A n a l y s e s o f T r o j a n T a i l i n g Dam Samples APPENDIX I : TEXTURAL ANALYSES OF TROJAN T A I L I N G DAM SAMPLES SAMPLE #1: Sand F r a c t i o n Mesh P a r t i c l e S i z e (/<m) W e i g h t % Wt. C u m u l a t i v e % P a s s e d > Medium + 35 425 49.6 16.5 83.5 Medium 48 300 64.1 21.4 62.1 F i n e 65 212 63.8 21.3 40.8 F i n e 100 150 57.4 19.1 21.7 V e r y F i n e 150 106 29. 5 9.8 11.9 V e r y F i n e 200 75 15.8 5.3 6.6 < V e r y F i n e -200 19.8 6.6 SAMPLE #2: Sa n d F r a c t i o n Mesh P a r t i c l e S i z e (,qm) W e i g h t % Wt. C u m u l a t i v e % P a s s e d > Medium + 35 425 32.9 11.0 89.0 Medium 48 300 54.2 18.0 71.0 F i n e 65 212 62.3 20.8 50.2 F i n e 100 150 63.6 21.2 29.0 V e r y F i n e 150 106 39.1 13.0 16.0 V e r y F i n e 200 75 19.1 6.4 9.6 < V e r y F i n e -200 28.8 9.6 A n a l y s e s c o n d u c t e d by C o m i n c o C o p p e r D i v i s i o n V a l l e y O p e r a t i o n s l a b o r a t o r y o n A u g u s t 9 t h , 1 9 8 3 . APPENDIX I : TEXTURAL ANALYSES OF TROJAN T A I L I N G DAM SAMPLES SAMPLE #3: S a n d F r a c t i o n Mesh P a r t i c l e S i z e (/<m) W e i g h t % Wt. C u m u l a t i v e % P a s s e d > Medium + 35 425 38.6 12.9 87.1 Medium 48 300 61.2 20.4 66.7 F i n e 65 212 64.2 21.4 45.3 F i n e 100 150 61.0 20.3 25.0 V e r y F i n e 150 106 30.8 10.3 14.7 V e r y F i n e 200 75 18.6 6.2 8.5 < V e r y F i n e -200 25.6 8.5 SAMPLE #4: Sand F r a c t i o n Mesh P a r t i c l e S i z e y H m ) W e i g h t % Wt. C u m u l a t i v e % P a s s e d >Medium + 35 425 31.1 10.4 89.6 Medium 48 300 52.6 17.5 62.1 F i n e 65 212 57.1 19.0 53.1 F i n e 100 150 60.5 20. 2 32.9 V e r y F i n e 150 106 35.8 11.9 21.0 V e r y F i n e 200 75 25.3 8.4 12.6 < V e r y F i n e -200 37.6 12.6 A n a l y s e s c o n d u c t e d by C o m i n c o C o p p e r D i v i s i o n V a l l e y O p e r a t i o n s l a b o r a t o r y on A u g u s t 9 t h , 1 9 8 3 . APPENDIX I : TEXTURAL ANALYSES OF TROJAN T A I L I N G DAM SAMPLES SAMPLE #5: Sand F r a c t i o n Mesh P a r t i c l e S i z e (/^ m) W e i g h t % Wt. C u m u l a t i v e % P a s s e d > Medium + 35 425 44.1 14.7 85.3 Med i u m 48 300 60.3 20.1 65.2 F i n e 65 212 66.4 22.1 43.1 F i n e 100 150 61.0 20.3 22.8 V e r y F i n e 150 106 31.1 10.4 12.4 V e r y F i n e 200 75 14.9 5.0 7.4 < V e r y F i n e -200 22.2 7.4 SAMPLE #6: Sand F r a c t i o n Mesh P a r t i c l e S i z e W e i g h t % Wt. C u m u l a t i v e % P a s s e d > Medium + 35 425 48 .5 16.2 83.8 Medium 48 300 61.9 20.6 63.2 F i n e 65 212 63.9 21.3 41.9 F i n e 100 150 56.0 18.7 23.2 V e r y F i n e 150 106 29.0 9.7 13.5 V e r y F i n e 200 75 14.9 4.9 8.6 < V e r y F i n e -200 25.8 8.6 A n a l y s e s c o n d u c t e d b y C o m i n c o C o p p e r D i v i s i o n V a l l e y O p e r a t i o n s l a b o r a t o r y o n A u g u s t 9 t h , 1 9 8 3 . APPENDIX I : TEXTURAL ANALYSES OF TROJAN T A I L I N G DAM SAMPLES SAMPLE # 7: Sand F r a c t i o n Mesh P a r t i c l e S i z e W e i g h t % Wt. C u m u l a t i v e % P a s s e d > Med i u m + 35 425 43.8 14 .6 85.4 Medium 48 300 60.8 20.3 65.1 F i n e 65 212 58.3 19.4 45.7 F i n e 100 150 53.2 17.7 28.0 V e r y F i n e 150 106 27.7 9.2 18.8 V e r y F i n e 200 75 17.6 5.9 12.9 < V e r y F i n e -200 38 .6 12.9 SAMPLE #8: Sand F r a c t i o n Mesh P a r t i c l e S i z e </<m) W e i g h t % Wt. C u m u l a t i v e % P a s s e d > Medium + 35 425 25.9 8.6 91.4 Medium 48 300 48. 8 16.3 7 5 . 1 F i n e 65 212 64.8 21.6 53. 5 F i n e 100 150 68 . 0 22.7 30.8 V e r y F i n e 150 106 40.1 13.4 17.4 V e r y F i n e 200 75 20.5 6.8 10.6 < V e r y F i n e -200 31.9 10.6 A n a l y s e s c o n d u c t e d by C o m i n c o C o p p e r D i v i s i o n V a l l e y O p e r a t i o n s l a b o r a t o r y o n A u g u s t 9 t h , 1983. 133 APPENDIX I I : C LIMATIC DATA - 1984 P R E C I P I T A T I O N FROST FREE DAYS MONTH SNOW RAIN TOTAL DATES # DAYS (cm) (mm) (mm) J a n u a r y 11.4 5.7 17.1 2 7,28 2 F e b r u a r y 14.2 2.0 16.2 0' 0 M a r c h 10.8 - 10.8 6,10 5 A p r i l 4.5 - . 4.5 1,14-16,21 5 May 4.4 38. 6 4 3.0 7,8,18,19,21,26-30 10 J u n e - 56.7 56.7 1-30 30 J u l y - 14 .9 14.9 1-31 31 A u g u s t 10.4 10.4 1-31 31 S e p t e m b e r - 25.6 25.6 1-21,29,30 23 O c t o b e r 1.9 32. 6 34.5 1-14,23,24 16 November 34.7 - 34. 7 0 0 December 3 6.0 36.0 0 0 TOTAL 117.9 186.5 304.4 153 134 APPENDIX I I : CLIMATIC DATA - 19 85 P R E C I P I T A T I O N FROST FREE DAYS MONTH SNOW RAIN TOTAL DATES # DAYS (cm) (mm) (mm) J a n u a r y 4.4 - 4.4 0 0 F e b r u a r y 66.6 - 66.6 0 0 M a r c h 6.7 • • - 6.7 16,17 2 A p r i l 10.5 5.8 16.3 8,10-13,16,28 7 May - 43.9 43.9 1-3,7,14-31 22 J u n e - 33.2 33.2 1-22,25-30 28 J u l y - 2.0 2.0 1-31 31 A u g u s t - 40.1 40.1 1-31 31 S e p t e m b e r - 40.4 40.4 1-5,8,10-26,29 24 O c t o b e r 7.1 16.3 23.4 1,2,4-6,11,14,16-20 12 November 31.3 - 31.3 0 0 December 36.3 - 36 .3 0 0 TOTAL 162.9 181.7 344.6 155 135 APPENDIX I I I : X-RAY FLUORESCENCE SPECTROPHOTOMETRY DETECTION L I M I T S AND ERROR RANGES ELEMENT DETECTION L I M I T ERROR (±) A l (%) 0.095 0.10 Ca 0.011 0.03 F e 0.006 0.03 K 0.012 0.02 Mg 0.030 0.02 Na 0.004 0.02 P 0.004 0.01 S 0.007 0.01 S i 0.094 0.20 T i 0.004 0.01 Ba (mg/kg) 12 30 Cu 8 20 Mn 3 25 Mo 2 2 N i 7 2 Pb 6 3 Rb <3 1 S r 3 4 Zn 5 2 APPENDIX IV Ray D i f f r a c t o g r a m s o f <2 y^ m F r a c t i o n s o f P l o t 1 and M a i n Pond 50 cm D e p t h U n l e a c h e d T a i l i n g s 137 P l o t 1 T a i l i n g s K a o l i n i t e (3.58 A) | M i c a (4.99 A i ! • • • i ! • : : ! : ' •5 : ! i •'• ' ! i ! • i ' ! 1 • i ! ! ! 1 04 1 ! ! "\ < i •! i ; • i i * 03 K - P e l d s p a r ! (3 . 26 A) | — i i ; ! Q u a r t ; s i (3.34 A) 02, %. j \ i : ! ! ! i 01 J24 -22 22 J2] i . i • • 20 i • f^c ' !i 1 ' 1 ' j • ' \ '• : : : ' i . i •• - * L. • • • I i ; ! ; I • 1 i 1 .-1 i ! ; TC^nl i n L t e (7.2 0 A) : M i : ! : '. i • • . ! \ .:. !•' '! . ; : ! : ; - ! ! , ; i - • • .; ' ; , i. : ' 41 i i '.' : 1 IS i • ' • • ; : . . • ! • : . : • 1 •• •• ! . - • ! . j • • ; . , : - ! ; h '. ; ' M i c a : j ( f i ^ j ii!IMJ- : • . • ! i - , L • _ 1 rr^rrrrrrr:•:: = • i ; | | . ; j •: i i ; i i | i : ' ! 17 : . • • ' ! ; ; : : • . I ; : '. ' i ! ' ' • i i : . N : • :' ; ; ; I i!; i ; ' : I i M : PC TASSIUM--SATURAT ED SLIDE 20 = 3° :-: :33° i 16 i • ^ : ; : \ : ; ; : | : . •]/./.] ! ! 1 : i!' i ' ; : i : • ' ; 1 • 1 ; ! ; • I ' M ! • : ' ; j • :' i 138 P l o t 1 T a i l i n g s 4 1 ' : • ; ! ; M : . ; : i I ! : ! ! • ! ; , : • ' ' i : : ' I i ; ; j : j , ; : : : ; i : ' • . o: • • : ! ' : • \ . ! • : . • \ : ; ! i ! ; ; : • ; i 1 : 1 ' : • ! : i ' : • : : : . : j ; ; . ! ; ' ; ' i . , : : , : j •  02 • : • " • ' • • \ - ; ; 1 : : j j i ' ; ' i , • j . . | ! : ; • , , ! • i i • ! : - N ; ' : ' i d '\\>. | • ; ! - : j ; : : . • ' ! : • : ; . . ! 1 : ' . <- i ;• • • • ! ' 1 .• : M i c a ; ( 10.0 A) • ' j 2' * r — 1 • ; J i i ; : : ! • • • ' | ! : • 2J 4 0 1 0 4 0 50 1 6 Q ' ' 7 0 ' 8 0 ' ; i 9 0 SLIDE!, HEATED TO 550* 5 C 20 = 3 ° - l f i ° 2! : 1 21 139 P l o t 1 T a i l i n g s i l • : : ! i ; , •. i p • -T +• o r /J—L D: "TTT; ! i; ; , V e r m i c u l i t e I t c ot/O (14.4 A r > - . : ! . . • . ; . ! - . ; i i ; • j : ' • ritmorii: . o n i t e (jl8 A) : ; j i I ' | ! i : 1 ! i ! i! i i ! : i • ! ; • •::;ii>!. ! - • : : j: ; • : ! ' : ' i P l o t 1 T a i l i n g s ! — - ^ i ^ _ ( 1 4 . i 4 - - A 7 - — - , - ~* H : ' „ < • • • 1 - • i i . • , • ! • • 1 M l 1 • • • • ' - — 1 ' i ' • ' ! • • --I * r | ; Mo i t m o r i l l | o n i t e (JL8 A;) 70 M g 3 Q S , G L Y C E R O L - S A T H B & T E D -SDIDE Zplo=i 3" -a'ol6 90_ 141 Main Pond 50 cm Depth Unleached T a i l i n g s • 1 ; 1 i • ; : , j Mida. C|-C.l A') ! II i ! i! . '• ; 1 ! I . : ' i ' 02 • : ; i 11:; i ;!;; 1: M i jjjjj.i • • " . • i i - - | : - M o n t m o r i l l o h i te! &/or ; : ! i i i 1 1 I V e r m i c u i i t i e : ( 1 4 .3 A) | D1 • • j. • i i •' 1 : : ! i i i 1 • i I : i i i M ! 1 f • ! • . N; P C TASSIUM-- SATURATED S L I D ! :! I 20 '41 3 M 1 H 3 3 ° 24 y3; j];':!" ' ! ' ! " - j ' ; : ; : j i: = j • • . : i i = 1 ; 142 M a i n P o nd 50 cm D e p t h U n l e a c h e d T a i l i n g s 08 I 20 JO 60_ 70 KaQlirij.te_XZ.L2. AX Mica-fmontmor j l l l o n i t e j m i x (9|5 A) M i d a (j.0.1 A) l l a p s e d Mointmog-il^onite o r Vormic (14.3 £) ; | : ' K-SATURATED S L I D E , HJEATED TO 300 C 20; = 3 ° - : 16 30 u l i t e ,.o I 50 o: f M ! - -; = - - ^ I = s ; = 1 f: j - j . « s - jj; |:' f » J ; : : : j : : B: • j % i ! : ' ! ! i i : ; : i 1 ! : i ; ! 02 ; ! M i ! : ! ; M i M M M i ; • ; j : ; '< M ih | 1 i , . : 1 • ! • . . . . • ! ' ! . • ! i1 ; i ! : : j : i . ; h : • • : • i j • ! ; ; ' i ; ! ; : 1 ' U O V 9 U 1 ' : i 24 ^ • : ! i ! i ; 1 ; ' ; • ' ! ; ! ' i ' i ^ 1 ' — 1 i i : ="••',. Jxijxca ; V J-U , i • : 0 A) j 22 • • ! ; : : : . j j ' '; i . ' i i ' ' : i ; : : , • • '. . • | % ! s• • i :J ^ 1 : I : . ; • . • i • ! : !•;•!• ; • . i ; i 1 i :< K*-SATURATED £LIDE, H EATED TC ' 5 5 6 ^ 0 • 2 0 = 3^ - 16 i 9 1 f ; ! • l • ! ! I . •• i • • ! M a i n P o nd 50 cm D e p t h U n l e a c h e d T a i l i n g s ; 3r I .; • j . % i ! : i • : • ! • : . ; . : • ' I •• ! i i : ! ' : • ! J I " V e r m i c u l i t e ~ ~ ( 4 .72 A) I M i c a : (5.0 A) ID •9 I •; i " '•• \ OB . i . . • • j I 1 ! ' • t ' ' • :'' M :' %n • ! ^  ' ' ' 1 ', ! = !"-: : ' :- i ; ! a o l i h i t a (7 i l 0 }^ ^ ; h "1 —^ i ' ' :— l • . : - 1 -0 JO At} i / !• I • \ " 0 60 •M.: 1 • ' i 70 80 *?0 MAGNESIUM-SATURATED S L I D E 20.=. 3 144 Main Pond 50 cm Depth Unleached T a i l i n g s Mg_:_&!__ GLYCEROL SATURATED SLIDE 20 = 3 - 16 APPENDIX V Water Q u a l i t y Parameters ( A f t e r McNeely e t a l . , 1979) G u i d e l i n e s f o r t h e I r r i g a t i o n o f A l k a l i n e a n d A c i d i c S o i l s F i n e - t e x t u r e d A l k a l i n e S o i l s A c i d i c S o i l s / C o n t i n u o u s u s e ( A l l S o i l s ) P a r a m e t e r L e v e l ( mg/L ) L e v e l ( mg/L ) A l 20.0 5.0 As 2.0 0.10 B 1.0 0.5 Cd 0.050 0.010 Co 5.0 0.050 C r 1.0 0.1 Cu 5.0 0. 20 Mn 10.0 0.20 Mo 0.010 0.010 N i 2.0 0.20 Se 0. 020 0.020 Zn 10.0 2.0 pH 4.5 - 9.0 4.5 - 9.0 SAR 6 6 A l k a l i n e - pH 6.0 t o 8.5 f o r l e s s t h a n 20 y e a r s o f u s e 147 G u i d e l i n e s f o r t h e P r o t e c t i o n o f F r e s h w a t e r A q u a t i c L i f e a n d f o r L i v e s t o c k a n d W i l d l i f e W a t e r i n g L i v e s t o c k A q u a t i c L i f e P a r a m e t e r L e v e l ( mg/L ) L e v e l ( mg/L ) A l 5 0.100 As 0.2 -B 5.0 -Ca 1000 -Cd 0.050 0.003 Co 1.0 -C r 1.0 0.100 Cu 0.5 0.005 Mo 0.01 -N i - 0 .025 P - 0.050 - 0.025 Se 0.05 -Pb 0.1 0.03 Zn 25 0.030 PH - 6.5 - 9.0 148 Raw W a t e r Q u a l i t y L e v e l s f o r . D r i n k i n g W a t e r S u p p l i e s P a r a m e t e r A c c e p t a b l e L e v e l O b j e c t i v e L e v e l C mg/L ) ( mg/L ) As 0 . 0 1 " ND # B 5.0 -B a 1.0 ND Ca 200 75 Cd 0.01 ND C r 0.05 ND Cu 1.0 0.01 Mg 150 50 Mn 0.05 0.01 Na 270 -P 0.2 -Pb 0 .05 ND Se 0.01 ND Zn 5.0 1.0 pH 6.5 - 8.3 -# ND - N o t d e t e r m i n e d 14 9 APPENDIX V I M i n e W a t e r A n a l y s e s C o n d u c t e d I n 1970 APPENDIX V I I F o l i a r E l e m e n t a l C o n c e n t r a t i o n s a s D e t e r m i n e d By Wet D i g e s t i o n a n d F l a m e A t o m i c A b s o r p t i o n S p e c t r o p h o t o m e t r y F o l i a r E l e m e n t a l C o n c e n t r a t i o n s a s D e t e r m i n e d by Wet D i g e s t i o n and F l a m e A t o m i c A b s o r p t i o n S p e c t r o p h o t o m e t r y Ca Mg K Fe A l Mn Zn Cu % mg/kg Sample n X SD** X SD X SD X SD X SD X SD X SD X SD P2 F l * 8 0.66 0.07 0.12 0.01 0.80 0.06 153 37 476 72 173 19 4.0 0.8 25 4 l a 4 0.51 0.02 0.13 0.01 1.32 0.07 182 22 457 36 199 2 11.5 1.3 3 9 2 l b 3 0.53 0.02 0.24 0.01 2.67 0.05 386 16 792 43 375 5 5.0 3.5 46 3 2 4 0.67 0.05 0.13 0.01 0.94 0.08 294 50 560 67 138 1 4.5 1.0 33 4 2a 1 0.76 0.12 1.06 469 389 177 9.0 30 2b 1 0.42 0.14 1.51 598 1137 547 7.0 52 3 2 0.57 0.01 0.18 0.01 1. 23 0.06 792 21 1220 21 306 10 6.0 0 51 0 3a 1 0.53 0.18 1.41 419 67 9 274 7.0 40 4 2 0.58 0.01 0.11 0.01 0.92 0.01 486 69 863 82 192 6 4.5 0.7 50 8 4a 3 0.65 0.02 0.13 0.01 1.43 0.05 532 49 952 68 14 4 3 11.7 0.6 50 1 4b 1 0.72 0.23 1.90 669 1339 470 11.0 63 P3 F l 6 0.57 0.01 0.13 0.01 0.91 0.02 216 18 583 54 198 3 6.3 1.0 23 1 l a 5 0.48 0.02 0.17 0.01 1.31 0.01 258 99 709 286 168 10 16.6 1.3 28 5 l b 1 0.48 0.30 3.46 440 939 306 14.0 54 2 2 0.53 0.01 0. 53 0.01 1.33 0.01 305 6 689 41 183 1 7.0 0.1 35 2 2a 3 0.57 0.01 0.18 0.01 1.87 0.04 393 58 753 78 180 3 14 .3 1.1 35 4 2b 2 0.37 0.01 0.17 0.01 1.98 0.04 698 14 1360 93 502 1 15.9 0.01 63 1 3 3 0.57 0.02 0.13 0.01 1.35 0.01 496 107 996 80 230 11 9.0 0.01 46 4 3a 1 0.40 0.18 2.18 430 799 198 8.0 35 4 1 0.53 0.11 1.00 412 890 181 4.5 41 4a 4 , 0.71 0.01 0.17 0.01 1.30 0.02 327 43 758 89 139 3 7.5 1.3 39 2 4b 2 0 .52 0.02 0.24 0.01 2.39 0 .04 694 92 1302 190 411 1 14.5 0.7 61 1 F o l i a r E l e m e n t a l C o n c e n t r a t i o n s a s D e t e r m i n e d by Wet D i g e s t i o n and F l a m e A t o m i c A b s o r p t i o n S p e c t r o p h o t o m e t r y Ca Mg K Fe A l Mn Zn Cu % mg/kg Sample n X SD** X SD X SD X SD X SD X SD X SD X SD P5 F l # 5 0.33 0.01 0.08 0.01 0.97 0.03 266 122 699 313 164 4 6.2 1.1 42 8 l a 1 0.48 0.08 1.01 170 520 178 10.0 44 2 1 0.41 0.07 1.04 110 410 91 9.0 39 2a 1 0.74 0.07 1.09 80 351 13 0 11.0 32 2b 2 0.25 0.01 0.09 0.01 1. 57 0.01 374 106 1043 246 334 5 13.5 0.7 47 5 3 2 0.51 0.01 0.10 0.01 1.15 0.21 185 49 564 106 193 1 7.5 0.7 39 2 3a 1 0.61 0.07 1.34 142 553 226 7.9 33 4 3 0.58 0.03 0.07 0.01 0.90 0.05 216 50 646 160 120 3 5.0 1.0 44 5 4a 3 0.70 0.01 0.08 0.01 1.-13 0.01 216 44 677 119 130 2 4.3 0.6 38 4 4b 2 0.50 0.01 0.14 0.01 2.04 0.01 353 24 1069 30 422 2 14.4 3.6 53 4 P6 F l 5 0.31 0.01 0.09 0.01 1.08 0.02 267 61 680 181 148 3 6.2 0.8 37 5 l a 2 0.40 0.01 0.09 0.01 1.52 0.02 185 35 575 49 130 1 9.5 0.7 41 1 2 1 0.40 0.05 1.19 83 301 87 7.3 33 2a 2 0.55 0.01 0.08 0.01 2.03 0.02 160 14 464 21 138 1 14.5 2.1 37 1 2b 3 0.36 0.01 0.13 0.01 2.03 0.02 369 44 945 125 390 4 18.0 2.0 46 3 3 4 0.45 0.01 0.08 0.01 1.18 0.01 302 17 812 54 181 4 9.0 0.1 50 1 3a 1 0.47 0.11 1.78 210 569 " 182 7.0 31 4 1 0.64 0.07 1.09 80 340 13 0 5.0 36 4a 5 0.56 0.01 0.10 0.01 1.48 0.02 212 67 661 191 13 5 5 10.0 0.7 42 7 4b 3 0.20 0.01 0.12 0.01 1.99 0.03 636 21 1871 41 390 2 13.7 0.6 64 1 F o l i a r E l e m e n t a l C o n c e n t r a t i o n s a s D e t e r m i n e d by Wet D i g e s t i o n and F l a m e A t o m i c A b s o r p t i o n S p e c t r o p h o t o m e t r y Ca Mg K Fe A l Mn Zn Cu % mg/kg Sample n X S D * * X SD X SD X SD X SD X SD X SD X SD P8 F l * 7 0.31 0.03 0. 08 0.01 0.81 0.02 215 44 594 66 166 2 4.3 0.5 31 4 l a 2 0.35 0.03 0.08 0.01 1.00 0.07 210 28 669 70 177 2 3.0 0.1 36 1 2 1 0.53 0.07 0.97 100 479 112 4.0 52 2a 1 0.48 0.07 1.17 130 599 122 6.0 35 2b 1 0.30 0.11 1.85 299 936 419 16.9 53 3 3 0.47 0.02 0.11 0.01 1.32 0.03 506 133 1334 329 238 4 7.3 0.6 63 10 3a 1 0.43 0.11 1. 54 136 529 276 4.5 41 4 4 0.70 0.05 0.10 0.01 0.97 0.05 385 70 1014 58 150 4 6.0 1.2 53 1 4a 1 0.69 0.08 1.04 140 599 135 5.0 42 4b 2 0.37 0.01 0.13 0.01 1.97 0 .05 529 34 1655 63 496 4 14.8 1.4 52 2 P9 F l 5 0.30 0.01 0.10 0.01 0.97 0 .03 240 54 631 114 163 3 5.4 1.9 32 5 l a 2 0.38 0.01 0.11 0.01 1.18 0.03 249 707 137 5.0 37 2 2 0.42 0.02 0.07 0.01 0.94 0.01 130 14 394 107 91 6 4.0 0.1 27 5 2a 1 0.42 0.10 1.54 219 688 120 7.0 40 2b 3 0. 20 0.01 0.12 0.01 1.99 0 .03 636 21 1871 41 390 2 13.7 0.6 64 1 3 2 0.39 0.01 0.09 0.01 1.20 0.01 324 7 782 63 204 2 5.5 0.7 43 1 3a 1 0.27 0.11 1.93 499 1172 196 7.5 52 4 1 0.38 0.07 0.91 250 897 147 4.0 39 4a 4 0.37 0.01 0.09 0.01 1. 53 0.03 453 18 1171 49 125 2 8.2 2.1 49 1 4b 1 0.44 0.15 2.22 439 1038 419 18.0 57 P = P l o t ; F = F u r r o w SD = S t a n d a r d D e v i a t i o n F o l i a r E l e m e n t a l C o n c e n t r a t i o n s as D e t e r m i n e d by Wet D i g e s t i o n a n d F lame A t o m i c A b s o r p t i o n S p e c t r o p h o t o m e t r y Ca Mg % K Fe A l Mn mg/kg Zn Cu Sample n X SD # X SD X SD X SD X SD X SD X SD X SD A l 1 ## P l o t s * * F 5 2 1.34 0.04 0.27 0.01 1.78 0.06 364 78 1182 119 226 11 30 1.4 66 8 5a 2 2.45 0.03 0.35 0.01 1.93 0 3 57 98 908 175 165 2 18 2.8 56 9 5b 3 2.09 0.24 0.39 0.02 2.04 0.01 299 10 1107 87 151 6 19 1.2 56 4 # SD = S t a n d a r d D e v i a t i o n A l l P l o t s = S a mples f r o m a l l p l o t s c o m p o s i t e d 156 F o l i a r E l e m e n t a l C o n c e n t r a t i o n s a s D e t e r m i n e d by Wet D i g e s t i o n a n d F l a m e A t o m i c A b s o r p t i o n S p e c t r o p h o t o m e t r y * E l e m e n t N Minimum Maximum Mean SD** K % 152 0.73 3.46 1.34 0.49 Ca % 152 0.20 0.77 0.49 0.14 Mg % 152 0.05 0.30 0.12 0. 04 Fe mg/kg 152 80 807 313 160 A l mg/kg 152 301 1908 780 323 Mn mg/kg 152 87 547 208 101 Zn mg/kg 152 2.98 23.20 8.47 4.47 Cu mg/kg 152 20 .9 73.9 40.9 10. 9 ## E x c l u d i n g l e g u m e s ( F u r r r o w s 5, 5a a n d 5b) SD = S t a n d a r d D e v i a t i o n APPENDIX V I I I F o l i a r M o l y b d e n u m C o n c e n t r a t i o n s a s D e t e r m i n e d b y D r y A s h i n g a n d F l a m e l e s s A t o m i c A b s o r p t i o n S p e c t r o p h o t o m e t r y , E m i s s i o n S p e c t r o p h o t o m e t r y , a nd Wet D i g e s t i o n a n d E m i s s i o n S p e c t r o p h o t o m e t r y A p p e n d i x V I I I : F o l i a r Mo C o n c e n t r a t i o n s a s D e t e r m i n e d by T h r e e D i f f e r e n t M e t h o d s Mo C o n c e n t r a t i o n (mg/kg) D r y A s h i n g Wet D i g e s t i o n GTA i c p## I C P S a mple n X SD X SD n X SD P2 F l # # # 5 37 1.0 34 0.9 8 34 2.3 l a 3 36 0.5 35 1.0 4 37 0.9 l b 2 43 1.0 40 0.2 3 41 0.6 2 3 50 1.6 41 1.3 4 43 0.8 2a 3 31 0.8 26 0.3 1 28 -2b 2 38 1.1 34 0.6 1 37 -3 2 90 3.1 69 0.8 2 73 2.1 3a 2 76 1.0 68 1.4 1 65 -4 2 59 1.8 52 2.7 2 54 1.3 4a 5 143 3.8 107 2.5 3 112 1.2 4b 2 82 3.6 64 1.1 1 73 -P3 F l 3 75 0.3 49 0.1 6 54 1.5 l a 3 70 4.8 49 2.2 5 50 0.9 l b 4 48 1.9 42 0.6 1 48 -2 3 83 5.2 57 3.2 2 65 1.3 2a 3 63 1.8 52 0.2 3 69 8.9 2b 4 38 0.6 37 1.0 2 52 2.1 3 2 90 3.1 69 0.8 2 73 2.1 3a 2 70 1.6 59 1.0 1 78 -4 2 72 2.1 58 0.5 1 81 -4a 3 108 3.5 90 1.8 4 105 3.8 4b 3 57 0.8 49 0.8 2 55 0.7 GTA - G r a p h i t e t u b e a n a l y z e r , f l a m e l e s s a t o m i c a b s o r p t i o n s p e c t r o p h o t o m e t r y I C P - I n d u c t i v e l y c o u p l e d a r g o n p l a s m a e m i s s i o n s p e c t r o -p h o t o m e t r y P - P l o t , F - F u r r o w A p p e n d i x V I I I : F o l i a r Mo C o n c e n t r a t i o n s as D e t e r m i n e d by T h r e e D i f f e r e n t M e t h o d s Mo C o n c e n t r a t i o n (mg/kg) D r y A s h i n g Wet D i g e s t i o n # ## GTA I C P I C P S a m p l e n X SD X SD n X SD P5 F l # # # l a 2 2a 2b 3 3a 4 4a 4b 8 45 1.4 41 1.3 4 17 1.6 18 1.6 2 54 0.7 47 1.7 1 22 - 22 8 45 1.4 41 1.3 2 48 0.7 44 2.3 2 72 1.1 55 0.2 4 76 3.9 61 4.1 4 43 1.8 38 1.3 2 66 1.0 57 0.7 5 39 2.0 1 19 -1 50 -1 24 -2 74 1.4 2 48 0.1 1 57 -3 66 1.7 3 40 0.5 2 66 0.1 P6 F l l a 2 2 a 2b 3 3a 4 4a 4b 4 45 5.3 39 1.2 2 27 1.8 28 0.2 1 20 - 20 2 37 2.4 35 0.8 3 40 1.2 43 0.9 2 46 0.4 40 0.4 4 57 1.2 51 1.1 3 40 2.5 37 1.7 6 58 1.4 59 0.9 2 31 0.1 37 0.5 5 38 1.5 2 28 0.7 1 24 -2 39 0.1 3 54 1.5 4 42 0.5 1 56 -1 40 5 68 1.8 2 54 2.3 GTA - G r a p h i t e t u b e a n a l y z e r , f l a m e l e s s a t o m i c a b s o r p t i o n s p e c t r o p h o t o m e t r y I C P - I n d u c t i v e l y c o u p l e d a r g o n p l a s m a e m i s s i o n s p e c t r o -p h o t o m e t r y P - P l o t ; F - F u r r o w A p p e n d i x V I I I : F o l i a r Mo C o n c e n t r a t i o n s a s D e t e r m i n e d by T h r e e D i f f e r e n t M e t h o d s Mo C o n c e n t r a t i o n (mg/kg) D r y A s h i n g Wet D i g e s t i o n GTA* I C P # # I C P S ample n X SD X SD n X SD p 8 F l### l a 2 2a 2b 3 3a 4 4 a 4b 3 32 1.8 24 1.6 4 26 2.7 24 2.2 2 36 1.4 31 0.1 2 36 3.1 32 1.0 2 38 2.3 35 0.1 5 58 1.1 51 5.1 1 46 43 5 51 2.5 41 0.9 2 49 1.1 40 1.2 2 38 0.5 34 0.4 7 27 1.4 2 26 0.7 1 3 7 1 3 5 -1 41 -3 51 1.5 1 47 -4 45 0.9 1 41 -2 46 2.8 P9 F l l a 2 2a 2b 3 3a 4 4 a 4b 5 63 3.8 53 4.0 5 54 2.6 41 2.0 5 65 2.0 50 1.2 3 66 3.2 57 0.9 3 36 3.7 30 0.6 5 64 7.9 57 5.7 1 52 - 49 2 44 3.1 40 2.3 3 71 2.3 62 0.5 2 37 4.4 36 0.4 5 59 1.4 2 44 1.5 2 61 2.2 1 66 3 49 7.8 2 57 0.7 1 55 -1 42 -4 66 0.4 1 58 -GTA - G r a p h i t e t u b e a n a l y z e r , f l a m e l e s s a t o m i c a b s o r p t i o n s p e c t r o p h o t o m e t r y I C P - I n d u c t i v e l y c o u p l e d a r g o n p l a s m a e m i s s i o n s p e c t r o -p h o t o m e t r y P - P l o t ; F - F u r r o w A p p e n d i x V I I I : F o l i a r Mo C o n c e n t r a t i o n s T h r e e D i f f e r e n t M e t h o d s as D e t e r m i n e d by Mo C o n c e n t r a t i o n (mg/kg) D r y A s h i n g Wet D i g e s t i o n GTA I C P ## I C P S a m p l e n X SD X SD n X SD P ! \ # # # P l o t s F 5 4 202 46.1 231 46.5 2 304 4.1 5a 3 109 8. 4 101 6.6 2 141 0.9 5b 3 204 7.0 229 8.1 3 264 6.8 # GTA - G r a p h i t e t u b e a n a l y z e r , f l a m e l e s s a t o m i c a b s o r p t i o n M M s p e c t r o p h o t o m e t r y I C P - I n d u c t i v e l y c o u p l e d a r g o n p l a s m a e m i s s i o n s p e c t r o -*4 4 p h o t o m e t r y ffffff A l l P l o t s - S a m p l e s f r o m a l l p l o t s c o m p o s i t e d 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0096709/manifest

Comment

Related Items