UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Associative induction of short-term potentiation in rat hippocampus Auyeung, Anthony 1986

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1986_A6_7 A98.pdf [ 4.83MB ]
Metadata
JSON: 831-1.0096672.json
JSON-LD: 831-1.0096672-ld.json
RDF/XML (Pretty): 831-1.0096672-rdf.xml
RDF/JSON: 831-1.0096672-rdf.json
Turtle: 831-1.0096672-turtle.txt
N-Triples: 831-1.0096672-rdf-ntriples.txt
Original Record: 831-1.0096672-source.json
Full Text
831-1.0096672-fulltext.txt
Citation
831-1.0096672.ris

Full Text

ASSOCIATIVE INDUCTION OF SHORT-TERM POTENTIATION IN RAT HIPPOCAMPUS By ANTHONY AUYEUNG B. Sc. (Pharm.), The U n i v e r s i t y of B r i t i s h Columbia, 1983 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Department of Pharmacology & Therapeutics, F a c u l t y of Medicine) We accept t h i s t h e s i s as conforming to the r e q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA August, 1985 ® A n t h o n y Auyeung 1986 In presenting t h i s thesis i n p a r t i a l f u l f i l m e n t of the requirements for an advanced degree at the University of B r i t i s h Columbia, I agree that the Library s h a l l make i t f r e e l y available for reference and study. I further agree that permission for extensive copying of t h i s thesis for scholarly purposes may be granted by the head of my1 department or by his or her representatives. I t i s understood that copying or publication of t h i s thesis for f i n a n c i a l gain s h a l l not be allowed without my written permission'. Department of Pharmacology and Therapeutics The University of B r i t i s h Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 Date AUGUST 12 , 1986 - i i -ABSTRACT Tetanic s t i m u l a t i o n of e x c i t a t o r y a f f e r e n t pathways i n the hippocampus can lead to long-term p o t e n t i a t i o n (LTP) of the postsynaptic response. Simultaneous t e t a n i z a t i o n of two separate but convergent a f f e r e n t pathways can r e s u l t in a s s o c i a t i v e LTP, which e x h i b i t s a magnitude that i s greater than the sum of the i n d i v i d u a l p o t e n t i a t i o n s . Short-term p o t e n t i a t i o n (STP) of synaptic transmission also occurs i n the t e t a n i z e d pathway, and i s a well known presynaptic phenomenon at other neuronal j u n c t i o n s . Studies were con-ducted to examine i f STP i n the hippocampus could be induced a s s o c i a t i v e l y and to determine the nature of pre- and postsynaptic i n t e r a c t i o n s leading to t h i s a s s o c i a t i v e p o t e n t i a t i o n . Experiments were conducted on t r a n s v e r s e l y sectioned r a t hippocampal s l i c e s maintained i n - v i t r o . Population responses were recorded from the C A ^ pyramidal c e l l s and were evoked using s t i m u l a t i n g electrodes placed in stratum radiatum, stratum oriens and the alveus. Population e x c i t a t o r y postsynaptic p o t e n t i a l s (EPSP) were recorded with e x t r a c e l l u l a r recording e l e c t r o d e s placed at the a p i c a l dendrites of the CA-^  c e l l s . I n d i v i d u a l c e l l u l a r EPSPs were recorded from the CA-^  c e l l somata. To assess the in f l u e n c e of t e t a n i c c o n d i t i o n i n g on an untetanized a f f e r e n t pathway, s t i m u l a t i n g e l e c t r o d e s were placed i n d i f f e r e n t pathways to d e l i v e r t e t a n i c c o n d i t i o n i n g s t i m u l a t i o n to the CA^ c e l l s . Another s t i m u l a t i n g electrode was placed i n a separate t e s t pathway, which al s o converged on the same population of CA-^  c e l l s . The t e s t pathway e i t h e r remained unstimulated or was stimulated once i n conjunction with each t e t a n i c c o n d i t i o n i n g t r a i n of s t i m u l a t i o n . C o n d i t i o n i n g t e t a n i d e l i v e r e d through s t r a t a oriens or radiatum i n -duced a s s o c i a t i v e STP of the t e s t response when paired with a s i n g l e t e s t s t i m u l a t i o n , but caused depression of the response when unpaired. A n t i -dromic t e t a n i z a t i o n of CA-^  c e l l s at the alveus or a d e p o l a r i z a t i o n of these c e l l s by i n t r a c e l l u l a r current i n j e c t i o n s produced the same pattern of p o t e n t i a t i o n with the paired/unpaired paradigm. By d e l i v e r i n g a number of these paired t e s t - p l u s - c o n d i t i o n i n g t r a i n s i n r a p i d succession, the mag-nitude of the STP increased i n a graded manner, and the s i z e and time course resembled those of STP found at other j u n c t i o n s . At the maximum of ten p a i r i n g s used i n these s t u d i e s , the evoked a s s o c i a t i v e STP was succeeded by LTP. Presynaptic e x c i t a b i l i t y changes were assessed by monitoring the amount of current needed to f i r e an antidromic a c t i o n p o t e n t i a l from the Schaffer c o l l a t e r a l t e r m i n a l s . These are the a f f e r e n t terminals that form en passant synapses with the a p i c a l dendrites of the CA-^  c e l l s . P a i r i n g a s i n g l e s t i m u l a t i o n of these terminals with a c o n d i t i o n i n g tetanus of other a f f e r e n t s r e s u l t e d i n STP of the t e s t EPSP, as w e l l as a p a r a l l e l decrease in the t e s t a f f e r e n t terminal e x c i t a b i l i t y . These changes are i n accord with a presynaptic mechanism of STP found i n the s p i n a l cord and neuro-muscular j u n c t i o n . The temporal overlap between the s i n g l e t e s t a f f e r e n t v o l l e y and the c o n d i t i o n i n g tetanus was found to be a determinant both of the magnitude and the p r o b a b i l i t y of STP i n d u c t i o n . The s i n g l e t e s t v o l l e y could precede the c o n d i t i o n i n g tetanus by up to 50 msec or f o l l o w the tetanus by up to 80 msec and s t i l l induce a degree of STP. However, the greatest amount of STP was produced by simultaneous t e s t and c o n d i t i o n i n g s t i m u l a t i o n s . These - i v -l e n i e n t temporal l i m i t s suggest an a l t e r e d e x c i t a b i l i t y s t a t e due to pre-and postsynaptic i n t e r a c t i o n s . Taken- together, the evidence i n d i c a t e s a postsynaptic i n i t i a t i n g s i t e f o r a s s o c i a t i v e STP and LTP i n the hippocampus. The i n i t i a l postsynaptic d e p o l a r i z a t i o n appeared to i n t e r a c t with an a f f e r e n t v o l l e y to a l t e r presyn-a p t i c terminal e x c i t a b i l i t y . I t i s proposed that a s u b l i m i n a l presynaptic r e l e a s e process f o l l o w s an a c t i o n p o t e n t i a l i n the t e r m i n a l . This sublim-i n a l process may be f a c i l i t a t e d by a s s o c i a t i v e i n t e r a c t i o n s between the postsynaptic d e p o l a r i z a t i o n and an a c t i o n p o t e n t i a l i n the presynaptic t e r -minal through an a l t e r e d presynaptic terminal e x c i t a b i l i t y . The a s s o c i a t i v e i n t e r a c t i o n s could lead to enhanced t r a n s m i t t e r r e l e a s e by subsequent a f f e r -ent v o l l e y s . The nature of t h i s s u b l i m i n a l process i s unknown, but several hypotheses were discussed. I t was concluded that a s s o c i a t i v e p o t e n t i a t i o n has a presynaptic locus of maintenance, and that STP and LTP i n the hippo-campus may be simply d i f f e r e n t m u l t i p l e s of the same u n i t p o t e n t i a t i o n event. However, the r e s u l t s do not r u l e out a p o s s i b l e a d d i t i o n a l post-synaptic locus f o r the maintenance of STP and LTP. Bhagavatula R. Sastry (Supervisor) - V -TABLE OF CONTENTS CHAPTER Page ABSTRACT i i TABLE OF CONTENTS iv LIST OF TABLES v i i LIST OF FIGURES v i i i ACKNOWLEDGEMENTS ix 1 INTRODUCTION 1 2 REVIEW OF THE LITERATURE 4 2.1 Short-term p o t e n t i a t i o n 4 2.1.1 F a c i l i t a t i o n 6 2.1.2 Augmentation 7 2.1.3 P o s t - t e t a n i c p o t e n t i a t i o n 8 2.2 Locus of short-term p o t e n t i a t i o n 8 2.3 Mechanism of short-term p o t e n t i a t i o n 12 2.4 Ionic mechanism of short-term p o t e n t i a t i o n 14 2.5 Anatomy of the hippocampus 17 2.5.1 The dentate gyrus 20 2.5.2 The hippocampus proper 20 2.5.3 The f i e l d s of Amnion's horn 21 2.5.3.1 F i e l d CA 4 22 2.5.3.2 F i e l d CA3 22 2.5.3.3 F i e l d CA 2 22 2.5.3.4 F i e l d CA, 23 - v i -CHAPTER Page 2.5.4 Neuronal pathways of the hippocampus 24 2.5.5 A f f e r e n t s to the hippocampus 24 2.5.5.1 Perforant Path 24 2.5.5.2 A f f e r e n t s to the CA 3 region 26 2.5.5.3 A f f e r e n t s to the CA2 region 26 2.5.5.4 A f f e r e n t s to the CA-L region 1 27 2.5.6 E f f e r e n t s from the hippocampus 27 2.5.7 Interneurons 28 2.5.8 Lo n g i t u d i n a l a s s o c i a t i o n pathway 29 2.6 Short-term p o t e n t i a t i o n i n the hippocampus 29 2.7 A s s o c i a t i v e i n d u c t i o n of p o t e n t i a t i o n : a f f e r e n t c o o p e r a t i v i t y 30 3 METHODS 33 3.1 Preparation of s l i c e s 33 3.2 S l i c e bath 34 3.3 Per f u s i o n media 37 3.4 S t i m u l a t i o n systems 38 3.5 Recording systems 39 3.6 A s s o c i a t i v e induction of STP 40 3.6.1 C o n d i t i o n i n g by t e t a n i c s t i m u l a t i o n of f i b e r s 40 3.6.2 C o n d i t i o n i n g by i n t r a c e l l u l a r d e p o l a r i z i n g pulses 43 3.6.3 Temporal requirements governing the in d u c t i o n of STP 45 3.7 A s s o c i a t i v e i n d u c t i o n of Schaffer c o l l a t e r a l terminal e x c i t a b i l i t y changes 45 - v i i -CHAPTER Page 4 RESULTS 48 4.1 Stratum radiatum c o n d i t i o n i n g 48 4.2 Stratum o r i e n s c o n d i t i o n i n g 51 4.3 Alvear c o n d i t i o n i n g 51 4.4 I n t r a c e l l u l a r c urrent i n j e c t i o n s 53 4.5 Schaffer c o l l a t e r a l terminal e x c i t a b i l i t y changes 53 4.6 Temporal requirements f o r induction of STP 57 5 DISCUSSION 60 6 CONCLUSION 75 7 REFERENCES 76 - v i i i -LIST OF TABLES TABLE Page 1. P o s t - c o n d i t i o n i n g p o t e n t i a t i o n induced by p a i r i n g t e t a n i c t r a i n s of the alveus with a s i n g l e s t i m u l a t i o n of the t e s t input. 52 2. E f f e c t s of i n t r a c e l l u l a r l y i n j e c t e d d e p o l a r i z i n g current pulses on EPSPs evoked by s t i m u l a t i o n of stratum radiatum and stratum o r i e n s . 54 3. E f f e c t s of paired and unpaired c o n d i t i o n i n g t r a i n s on Schaffer c o l l a t e r a l terminal e x c i t a b i l i t y . 58 - ix -LIST OF FIGURES FIGURE Page 1. Anatomical l o c a t i o n of the hippocampus in the r a t b r a i n . 19 2. Anatomical diagram of a t r a n s v e r s e l y sectioned r a t hippocampal s l i c e showing the various a f f e r e n t , e f f e r e n t and i n t r i n s i c pathways. 25 3. Diagrammatic i l l u s t r a t i o n of the s l i c e bath used f o r e l e c t r o p h y s i o l o g i c a l recordings from in v i t r o hippocampal s l i c e s . 35 4. Experimental arrangement f o r a s s o c i a t i v e i n d u c t i o n of STP by c o n d i t i o n i n g of stratum radiatum and stratum o r i e n s . 41 5. Experimental arrangement f o r a s s o c i a t i v e induction of STP by alvear c o n d i t i o n i n g . 42 6. Experimental arrangement f o r a s s o c i a t i v e induction of STP by i n t r a c e l l u l a r i n j e c t i o n of d e p o l a r i z i n g c u r r e n t . 44 7. Experimental arrangement f o r e x c i t a b i l i t y t e s t i n g of S c h a f f e r c o l l a t e r a l terminal regions. 46 8. A s s o c i a t i v e induction of STP, LTR and the reduction i n the Schaffer c o l l a t e r a l terminal e x c i t a b i l i t y . 49 9. Induction of STP and LTP by paired c o n d i t i o n i n g d e p o l a r i -z a t i o n of a CAi neuron.. 55 10. The l i m i t s of the temporal r e l a t i o n s h i p between condi-t i o n i n g and t e s t s t i m u l i f o r the induction of asso-c i a t i v e p o t e n t i a t i o n . EPSP. 59 - X -ACKNOWLEDGEMENTS I would l i k e to thank Dr. B. R. Sastry f o r his ideas, i n s i g h t s and guidance during the preparation of t h i s t h e s i s . Thanks al s o go to Ms Joanne Goh and Mr. P a t r i c k May f o r t h e i r c o n t r i b u t i o n to some of the experiments included in t h i s t h e s i s , and f o r t h e i r support i n my moments of s t r u g g l e . I am g r a t e f u l f o r f i n a n c i a l a s s i s t a n c e from the Medical Research Council of Canada and the U n i v e r s i t y of B r i t i s h Columbia Graduate Summer Sch o l a r s h i p . - 1 -1 INTRODUCTION The mammalian hippocampus i s under i n t e n s i v e study as the p o s s i b l e c o r t i c a l s t r u c t u r e subserving l e a r n i n g and memory (Goddard, 1980; McNaughton, 1983). The most promising phenomenon observed i s long-term p o t e n t i a t i o n (LTP) ( B l i s s and Gardner-Medwin, 1973; B l i s s and Ltfmo, 1973). Long-term p o t e n t i a t i o n i s induced by the t e t a n i c s t i m u l a t i o n of an a f f e r e n t pathway, leading to an enhanced p o s t - t e t a n i c response of the postsynaptic c e l l to a f f e r e n t s t i m u l a t i o n ( B l i s s and Gardner-Medwin, 1971). Since the i n i t i a t i n g event i s a short tetanus of several hundred m i l l i s e c o n d s , and the ensuing p o t e n t i a t i o n can l a s t f o r hours to days, ( B l i s s and Gardner-Medwin, 1973), LTP appears to share c e r t a i n key p r o p e r t i e s with l e a r n i n g and memory and could be the p h y s i o l o g i c a l substrate f o r both. A number of hypotheses have been advanced to e x p l a i n the mechanism behind LTP (Baudry and Lynch, 1980; C o l l i n g r i d g e , 1985; Malenka et- - a l : , 1986; Skrede and Malthe-Stfrenssen, 1981; Van Harreveld and F i f k o v a , 1975; Wigstrom and Gustafsson, 1985b), but i t s primary locus has yet to be deter-mined. The a s s o c i a t i v e nature of LTP was described by McNaughton et - -a-T; (1978), who showed that LTP can be produced in- - v i t r o by the simultaneous a c t i v a t i o n of separate converging a f f e r e n t pathways; the p o t e n t i a t i o n thus produced was greater than the sum of that produced s e p a r a t e l y by each a f -f e r e n t pathway. Tetanic s t i m u l a t i o n of an a f f e r e n t pathway to f i e l d CA^ produces LTP in t h i s area and increases the e x c i t a b i l i t y of other non-tetan-ized a f f e r e n t s here (Goh and Sastry, 1985). The mechanism of these i n t e r -actions i s unclear. I t appears that a t r a n s m i t t e r substance, potassium - 2 -r e l e a s e d during the tetanus, or d i r e c t p a r t i c i p a t i o n of the CA-^  neuron, i s needed. This presynaptic i n t e r a c t i o n with the postsynaptic elements may play a r o l e in the a s s o c i a t i v e i n d u c t i o n of LTP. Short-term p o t e n t i a t i o n (STP) i s a p o s t - t e t a n i c p o t e n t i a t i o n of the p o s t s y n a p t i c response l a s t i n g up to a few minutes (Magleby and Zengel, 1975a, 1975b). I t has been observed at a l l e x c i t a b l e j u n c t i o n s examined, i n c l u d i n g those in the hippocampus (Feng, 1941b; Lloy d , 1949; Gloor et - a l ; , 1964). At p e r i p h e r a l nerve j u n c t i o n s , STP has been shown to be a presynap-t i c event mediated by a p o s t - t e t a n i c increase in evoked t r a n s m i t t e r r e l e a s e (del C a s t i l l o and Katz, 1954d). The same mechanism i s thought to mediate STP in the hippocampus (McNaughton, 1982). Because STP commonly precedes or accompanies LTP (McNaughton, 1982; Barrionuevo and Brown, 1983) and i t was shown that presynaptic terminals i n t e r a c t with each other (Goh and Sastry, 1985), i t i s p o s s i b l e that STP could a l s o be induced by a s s o c i a t i v e i n t e r -a c t i o n s . The p a r t i c i p a t i o n of the postsynaptic c e l l f o r the induction of a r e p o r t e d l y presynaptic phenomenon, namely STP, i s c e r t a i n l y worthy of inves-t i g a t i o n . Experiments were conducted in r a t hippocampal s l i c e s i n - v i t r o . Stu-dies were designed to examine whether STP of CA-^  neuronal responses could be induced through a s s o c i a t i v e i n t e r a c t i o n s between a f f e r e n t inputs. If STP could be thus induced, then the temporal r e l a t i o n s h i p between the t e t a n i c c o n d i t i o n i n g and a f f e r e n t t e s t s t i m u l a t i o n s would be determined. Evidence in the l i t e r a t u r e i n d i c a t e s that t e t a n i c s t i m u l a t i o n of the c o n d i t i o n i n g input causes an e x t r a c e l l u l a r negative wave near the s y n a p t i c terminations of a separate a f f e r e n t t e s t pathway (Wigstrom and Gustafsson, 1985b). This - 3 -wave may be i n t e r p r e t e d as a d e n d r i t i c d e p o l a r i z a t i o n , which could be i n -volved i n the a s s o c i a t i v e i n d u c t i o n of LTP. Therefore, d i r e c t d e p o l a r i -z a t i o n of the postsynaptic c e l l could r e s u l t i n a c o n d i t i o n that favours i n d u c t i o n of a s s o c i a t i v e LTP. This p o s s i b i l i t y was examined with d e p o l a r i z -ing c urrents i n j e c t e d i n t o the postsynaptic c e l l to mimic the e f f e c t s of the c o n d i t i o n i n g tetanus. Short-term p o t e n t i a t i o n at the neuromuscular j u n c t i o n and s p i n a l cord i s known to be accompanied by h y p e r p o l a r i z a t i o n and decreased e x c i t a b i l i t y of the presynaptic terminal (Eccles and K r n j e v i c , 1959a, 1959b; Hubbard and W i l l i s , 1962). I n t r a c e l l u l a r recordings of hippocampal presynaptic termin-a l s would demonstrate d i r e c t l y that presynaptic changes occur during the a s s o c i a t i v e i n d u ction of STP. However, si n c e the impalement of the f i n e boutons i s not yet p o s s i b l e , the e x c i t a b i l i t y of presynaptic terminals was i n d i r e c t l y assessed using a method that Wall employed i n 1958 to measure primary a f f e r e n t terminal changes i n the s p i n a l cord. In Wall's (1958) terminology, an increase i n presynaptic e x c i t a b i l i t y i n d i c a t e s a d e p o l a r i -z a t i o n of the terminal membrane, and a decrease i n d i c a t e s a h y p e r p o l a r i -z a t i o n . - 4 -2 REVIEW OF THE LITERATURE The nervous system's c a p a c i t y f o r f a c i l i t a t i o n of t r a n s m i t t e r r e l e a s e i s of great i n t e r e s t to n e u r o b i o l o g i s t s . In general, a c t i v a t i o n of a neu-ronal input w i l l a f f e c t i n some way the postsynaptic response to a subse-quent s t i m u l a t i o n of that input. Depending on the nature of the s t i m u l i and the e x c i t a b l e t i s s u e i n v o l v e d , the enhanced synaptic response may range from a f l e e t i n g to a profound p o t e n t i a t i o n . The synaptic enhancements due to high frequency r e p e t i t i v e s t i m u l a t i o n (tetanus or t e t a n i c s t i m u l a t i o n ) are e s p e c i a l l y i n t e r e s t i n g . The term " p o s t - t e t a n i c p o t e n t i a t i o n " (PTP) was f i r s t coined to describe a l l synaptic enhancements due to a tetanus (Feng, 1941b; Grumbach and Wilber, 1940). Eccles (1953) defined PTP as an i n -creased post-synaptic discharge e l i c i t e d homosynaptically and due to i n -creased presynaptic a c t i o n . With the discovery of long-term p o t e n t i a t i o n (LTP) ( B l i s s and Gardner-Medwin, 1971), which has a time course of tens of minutes to days ( B l i s s and Gardner-Medwin, 1973; B l i s s and L0mo, 1973), PTP has come to mean a sub-component of a p o s t - t e t a n i c short-term p o t e n t i a t i o n (STP) that l a s t s f o r no more than several minutes (Magleby and Zengel, 1982). 2.1 Short-term p o t e n t i a t i o n Short-term p o t e n t i a t i o n has been found i n a l l e x c i t a b l e systems s t u -died to date and i s considered a general phenomenon of synaptic p l a s t i c i t y (Eccles and K r n j e v i c , 1959a, 1959b; Feng, 1941a, 1941b; Hubbard and Schmidt, 1963; L l o y d , 1949; Martin and P i l a r , 1964; Walters and Byrne, 1984; Zengel et a l ; , 1980). There i s evidence i n the current l i t e r a t u r e to support three sub-components to p o s t - t e t a n i c STP: i ) f a c i l i t a t i o n i i ) augmentation i i i ) - 5 -p o s t - t e t a n i c p o t e n t i a t i o n . Their most s a l i e n t d i f f e r e n c e s l i e in t h e i r r e s -p e c t i v e time courses and time constants of decay (Magleby and Zengel, 1982). E a r l y work on f a c i l i t a t i o n and d e c u r a r i z a t i o n used nerve-muscle prepa-r a t i o n s from amphibians and mammals (Eccles et a l : , 1941; Feng, 1937, 1941a, 1941b). Spinal cord preparations were also favoured and many c r u c i a l f i n d -ings about STP were made here (Gasser and Grundfest, 1936; L l o y d , 1949; Wall and Johnson, 1958). In the i s o l a t e d h e a r t , a phenomenon that c l o s e l y resem-bles PTP was studied (Hadju and Szent-Gyorgyi, 1952). Evidence from the v i s u a l (Geldard, 1931; G r a n i t , 1955; Hughes et a l : , 1956), auditory (Hughes, 1954; Hughes and Ro s e n b l i t h , 1957) and o l f a c t o r y (MacLean e-t a l . , 1957) pathways showed that a form of PTP i s ope r a t i o n a l in these systems. P a i r e d -pulse f a c i l i t a t i o n was f i r s t described at the neuromuscular j u n c t i o n (NMJ) of the frog (Eccles e t a l . , 1941; Feng, 1941a, 1941b; Schaefer and Haass, 1939); a v a r i a n t of paired-pulse f a c i l i t a t i o n i s frequency f a c i l i t a t i o n , which some workers a s s e r t i s wholly d i f f e r e n t (Creager et a l - . , 1980). A r e l a t i v e l y newly recognized form of STP i s augmentation (Magleby and Zengel, 1976a), which has been nei t h e r f u l l y e l u c i d a t e d nor accepted by workers in t h i s f i e l d . Another new form of p o s t - t e t a n i c p o t e n t i a t i o n i s LTP, which was f i r s t observed i n the r a t hippocampus i n 1971 ( B l i s s and Gardner-Medwin, 1971). I t has als o been found at the crustacean NMJ (Sherman and Atwood, 1971), marine mollusc sensory neuron ( C a s t e l l u c c i and Kandel, 1976; C a s t e l l u c c i et  a l : , 1970) and mammalian sympathetic gangl i a (Briggs et- - a l : , 1983, 1985), but has not yet been demonstrated at the mammalian NMJ. Regarding the d i s -t i n g u i s h i n g c h a r a c t e r i s t i c s , there i s no confusion of PTP and LTP because - 6 -the l a t t e r has a decidedly long time course of 30 minutes to many weeks ( B l i s s and Gardner-Medwin, 1973; B l i s s and Umo, 1973). 2.1.1 F a c i l i t a t i o n F a c i l i t a t i o n i s a two component enhancement of t r a n s m i t t e r r e l e a s e ( M a l l a r t and M a r t i n , 1967). I t i s present immediately upon the onset of a tetanus and i s evident f o r up to 600 msec i n t o a tetanus (Magleby, 1973a, 1973b; M a l l a r t and M a r t i n , 1967). Indeed, t e t a n i c s t i m u l a t i o n i s not essen-t i a l f o r f a c i l i t a t i o n ; a s i n g l e antecedent impulse can f a c i l i t a t e the r e s -ponse to a s t i m u l u s , provided the i n t e r v e n i n g i n t e r v a l i s not more than 50-100 msec. (Charlton and B i t t n e r , 1978b; Creager et- - a l ; , 1980; Larrabee and Bronk, 1947). This i s c a l l e d twin-pulse or paired-pulse f a c i l i t a t i o n and appears to be the elementary event behind frequency f a c i l i t a t i o n (Magleby and Zengel, 1975b; M a l l a r t and M a r t i n , 1967). I t was determined t h a t each impulse of a t e t a n i c t r a i n of s t i m u l a t i o n adds a l i n e a r component to the base r a t e of t r a n s m i t t e r r e l e a s e and to the f a c i l i t a t e d response; the magnitude of the aggregate p o t e n t i a t i o n ranged from 50% f o r frequency f a c i -l i t a t i o n to about 100% f o r paired-pulse f a c i l i t a t i o n (Magleby, 1973a, 1973b; Magleby and Zengel, 1975a; M a l l a r t and M a r t i n , 1967). Assuming that the magnitude and time course of each impulse were the same, M a l l a r t and Martin (1967) were able to describe f a c i l i t a t i o n i n the f r o g NMJ with two decay constants of 35 msec and 250 msec. This two component c h a r a c t e r i s t i c of f a c i l i t a t i o n has been found i n r a b b i t sympathetic gangl i a (Zengel et- - a l . - , 1980) and r a t hippocampus (Creager et a l ; , 1980). Katz and M i l e d i (1968) showed the calcium ( C a + + ) dependence of both paired-pulse f a c i l i t a t i o n and frequency f a c i l i t a t i o n and used these pheno-- 7 -mena to support t h e i r r e s i d u a l C a + + theory of f a c i l i t a t e d t r a n s m i t t e r r e l e a s e . Although both f a c i l i t a t i o n and PTP have been a t t r i b u t e d to r e s i -dual Ca , i t i s not f i r m l y e s t a b l i s h e d that both share a common a c t i v e pool of C a + + (Landau et - a l ; , 1973). For example, i n the squid gi a n t axon, f a c i l i t a t i o n may depend on the presence of a C a + + current r a t h e r than r e s i d u a l C a + + (Charlton and B i t t n e r , 1978a). Furthermore, f a c i l i t a t i o n — e s p e c i a l l y paired-pulse — can be evoked independently of PTP. The degree of f a c i l i t a t i o n and i t s time course remained the same even i f f a c i l i t a t i o n was induced during the maximal phase of PTP (Creager et - a l - ; , 1980; Magleby, 1973a). 2.1.2 Augmentation Augmentation i s d i f f e r e n t i a t e d from f a c i l i t a t i o n and PTP on the basis of i t s time course and decay constant (Magleby and Zengel, 1976b). Most of the work on augmentation has been done by Magleby and Zengel on the f r o g NMJ ++ blocked with high e x t r a c e l l u l a r magnesium (Mg ). In 1975(a), they pro-posed t h i s intermediate phase of synaptic enhancement on the strength of a decay constant of 7 seconds: longer than f a c i l i t a t i o n and shorter than PTP. Increasing the number of impulses i n the tetanus added l i n e a r l y to the s i z e of the augmentation without changing the time constant to any s i g n i f i -cant extent (Magleby and Zengel, 1976a). A m u l t i p l i c a t i v e e f f e c t of augmen-t a t i o n on f a c i l i t a t i o n and p o t e n t i a t i o n was proposed, as was a common i n -crease i n quantal content, m, to account f o r the enhancement (Magleby and Zengel, 1982; Zengel and Magleby, 1982). Magleby and Zengel have suggested in t h e i r various studies that augmentation was present i n the r e s u l t s of Larrabee and Bronk (1947), L i l e y (1956) and Landau et- al.-(1973). Notwith-- 8 -standing the common dependence on C a + + , d i f f e r e n t d i v a l e n t c a t i o n s have d i f f e r e n t i a l e f f e c t s on the stimulus-induced increases in t r a n s m i t t e r r e -lease (Zengel and Magleby, 1977, 1980). Corroborating evidence f o r the existence of augmentation i s s t i l l l i m i t e d and, t h e r e f o r e , the concept i s not yet g e n e r a l l y accepted. 2.1.3 P o s t - t e t a n i c p o t e n t i a t i o n P o s t - t e t a n i c p o t e n t i a t i o n can range from 3 minutes and up to 500% of control i n the frog NMJ (Magleby and Zengel, 1975a) to 10 minutes and over 700% of c o n t r o l i n the avian c i l i a r y ganglion ( M a l l a r t and Ma r t i n , 1967). There had been e a r l y hopes that PTP would prove to be the e l u s i v e l i n k bet-ween physiology and psychology as the substrate f o r such dynamic processes as l e a r n i n g and memory (Hughes, 1958). Since then, the focus f o r such a substrate has s h i f t e d to LTP (McNaughton et a l 1 9 7 8 ; Levy and Steward, 1979). Much of the work on STP has a c t u a l l y been d i r e c t e d at PTP; th e r e -f o r e , the f o l l o w i n g s e c t i o n s on the various aspects of STP by n e c e s s i t y deal l a r g e l y with PTP. 2.2 Locus of short-term p o t e n t i a t i o n In 1858, S c h i f f reported on the p o s t - t e t a n i c p o t e n t i a t i o n of tw i t c h tension i n the f r o g g a s t r o c n e m i u s - s c i a t i c p r e p a r a t i o n . Boehm (1894) ob-served a temporary d e c u r a r i z i n g e f f e c t of t e t a n i c s t i m u l a t i o n i n the h e a v i l y c u r a r i z e d s c i a t i c - g a s t r o c n e m i u s preparation. In 1912, Forbes reported the f a c i l i t a t i n g e f f e c t of a tetanus to one nerve on the p o s t - t e t a n i c response of another adjacent nerve. Feng e t • -a/h (1938) described the p o s t - t e t a n i c r e p e t i t i v e discharge of the f r o g neuromuscular j u n c t i o n ; however, the f a c i -l i t a t i n g e f f e c t co-occurs with a p r e v a i l i n g i n h i b i t i o n (depression). Other - 9 -workers found that a few t e t a n i of short duration induced a neuromuscular block, while a d d i t i o n a l t e t a n i could remove t h i s blockade (Brown and von E u l e r , 1938). There was much debate on the locus of t h i s PTP; some workers maintained that i t was a phenomenon of the muscle c o n t r a c t i l e elements (Walker, 1947), since d i r e c t s t i m u l a t i o n of c u r a r i z e d muscle appeared to produce PTP. However, other workers found that d i r e c t s t i m u l a t i o n did not produce PTP (Guttman et a l : , 1937), and concluded that PTP was an end-plate event at the NMJ. Meanwhile, i n the i s o l a t e d f e l i n e dorsal r o o t , Gasser and Grundfest (1936) made d e t a i l e d observations of p o s t - t e t a n i c changes which correspond to the same changes seen in f r o g nerve (Gasser and Graham, 1932). They des-c r i b e d two phases of p o s t - t e t a n i c h y p e r p o l a r i z a t i o n , a short f i r s t phase of several msec duration followed by a depression, and a prolonged second phase of h y p e r p o l a r i z a t i o n whose amplitude and duration were dependent upon the preceding tetanus: " A f t e r a maximal tetanus of 30 sec, the p o t e n t i a l i s + 0.6 to 0.7 mV, and the duration more than four minutes." (Gasser and Grundfest, 1936). Moreover, the a s s o c i a t e d p o s t - t e t a n i c spike p o t e n t i a l (presynaptic spike) was also g r e a t l y enhanced. Larrabee and Bronk (1938) reported what they c a l l e d "prolonged f a c i l i t a t i o n " i n the cat s t e l l a t e gang-l i o n . P o t e n t i a t i o n was observed with p r e g a n g l i o n i c tetanus, but not with antidromic p o s t g a n g l i o n i c tetanus, leading the authors to conclude that "prolonged f a c i l i t a t i o n " must occur p r e g a n g l i o n i c a l l y . Woolsey and Larrabee (1940) t e t a n i z e d the f e l i n e dorsal root and were able to show the same two phases of h y p e r p o l a r i z a t i o n , confirming that i n -creases in the frequency and duration of the tetanus lead to increases in - 10 -both amplitude and duration of the second h y p e r p o l a r i z a t i o n . A concomitant f a c i l i t a t i o n of the evoked i p s i l a t e r a l v e n t r a l root discharge l a s t e d f o r the duration of the second prolonged h y p e r p o l a r i z a t i o n . This f a c i l i t a t e d d i s -charge could not be induced f o l l o w i n g antidromic t e t a n i to the v e n t r a l r o o t . In 1947, Larrabee and Bronk again examined t h i s prolonged f a c i l i t a -t i o n and were convinced that a p r e g a n g l i o n i c s i t e was the locus of change. By recording from s i n g l e ganglion c e l l s as well as nerve trunks, i t was found that the l a r g e s t p o s t - t e t a n i c g a n g l i o n i c response was the r e s u l t of more ganglion c e l l s responding (Larrabee and Bronk, 1947). Experiments with converging nerve trunks showed that t e t a n i z a t i o n of one p r e g a n g l i o n i c input a c t u a l l y r e s u l t s in decreased e x c i t a b i l i t y of the p o s t g a n g l i o n i c c e l l . This same decrease in e x c i t a b i l i t y extended to responses to exogenous a c e t y l -c h o l i n e and l a s t e d f o r about 1 minute. Other workers have s i n c e disputed the decreased e x c i t a b i l i t y as a necessary r e s u l t of a tetanus (Charlton and B i t t n e r , 1978b; Martin and P i l a r , 1964). In a d d i t i o n , Larrabee and Bronk (1947) described paired-pulse f a c i l i t a t i o n without naming i t : a s i n g l e pre-g a n g l i o n i c v o l l e y was s u f f i c i e n t to p o t e n t i a t e the response to a succeeding v o l l e y , much as Feng (1940) had shown in the NMJ of the toad. Lloyd (1949) f u r t h e r advanced the causal r e l a t i o n s h i p between the p o s t - t e t a n i c p o s i t i v e a f t e r p o t e n t i a l ( h y p e r p o l a r i z a t i o n ) and PTP. He noted the p a r a l l e l s in the amplitude and time course between the p o s t - t e t a n i c a f f e r e n t impulse, the period of h y p e r p o l a r i z a t i o n and the p o t e n t i a t e d mono-synaptic r e f l e x . He proposed a presynaptic basis f o r PTP whereby a post-t e t a n i c h y p e r p o l a r i z a t i o n r e s u l t s in a l a r g e r presynaptic spike that in turn leads to greater t r a n s m i t t e r r e l e a s e . Eccles and R a i l (1951) argued that a - 11 -tetanus of 30-300 v o l l e y s i s followed by a b r i e f p o s t - t e t a n i c p o t e n t i a t i o n of the s y n a p t i c p o t e n t i a l , which occurs w i t h i n 200 msec post-tetanus at a time when the presynaptic spike i s a c t u a l l y smaller than the pre-tetanus c o n t r o l . Wall and Johnson (1958) examined Lloyd's r e s u l t s and hypothesis more d i r e c t l y by t e s t i n g the e x c i t a b i l i t y changes i n a f f e r e n t f i b e r s of a mono-synaptic r e f l e x loop ( W a l l , 1958). They found a marked decrease i n the e x c i t a b i l i t y of the a f f e r e n t f i b e r terminal a r b o r i z a t i o n s c o i n c i d e n t with the magnitude and duration of PTP. L i k e Eccles and R a i l (1951) and Lloyd (1949), Wall and Johnson found a discrepancy i n the immediate p o s t - t e t a n i c period: there was a delay before the p o t e n t i a t e d r e f l e x maximized, whereas the decrease i n a f f e r e n t terminal e x c i t a b i l i t y maximized almost immediate-l y . Given that the presynaptic terminals were indeed h y p e r p o l a r i z e d , they suggested that the i n t e n s i t y of t h i s h y p e r p o l a r i z a t i o n immediately post-tetanus i s ' s u f f i c i e n t to produce anodal block i n some branches of the a f f e -rent f i b e r s . A l t e r n a t e l y , the h y p e r p o l a r i z a t i o n can desynchronize the a f -f e r e n t impulses (del C a s t i l l o and Katz, 1954d) such that the height of the presynaptic spike thus generated w i l l be l e s s than that of the c o n t r o l . Subsequent studies in s p i n a l cord (Eccles and K r n j e v i c , 1959a, 1959b), squid giant axon (Takeuchi and Takeuchi, 1962) and mammalian NMJ (Hubbard and Schmidt, 1963) supported these f i n d i n g s . Furthermore, Hubbard and Schmidt (1963) showed that small increases i n presynaptic spike s i z e are capable of inducing PTP by v i r t u e of a l o g a r i t h m i c r e l a t i o n s h i p between the spike height and end-plate p o t e n t i a l (epp) amplitude. On the other hand, i n t r a -c e l l u l a r recordings at the nerve terminal of avian c i l i a r y g a n g l i a showed - 12 -n e i t h e r changes i n presynaptic membrane p o t e n t i a l nor increased amplitude of the presynaptic spike during paired-pulse f a c i l i t a t i o n and PTP (Martin and P i l a r , 1964). In s p i t e of these c o n f l i c t i n g r e s u l t s , the general consensus i s that f a c i l i t a t i o n and PTP are presynaptic events. 2.3 Mechanism o f - s h o r t - t e r m - p o t e n t i a t i o n The r e l a t i o n s h i p between p o s t - t e t a n i c h y p e r p o l a r i z a t i o n and increased postsynaptic response rested upon the e l u c i d a t i o n of synaptic t r a n s m i s s i o n . In 1934, Dale and Feldberg f i r s t gave evidence that a c e t y l c h o l i n e (ACh) was indeed the chemical r e s p o n s i b l e f o r synatpic transmission at mammalian NMJ. Continued e f f o r t s by various workers l e n t growing support to the idea of chemical transmission ( E c c l e s , 1948; Eccles et - - a l : , 1942; K u f f l e r , 1948), but the debate between e l e c t r i c a l and chemical transmission was not l a i d to r e s t u n t i l Eccles and MacFarlane's study (1949) of a n t i c h o l i n e s t e r a s e s and endplate p o t e n t i a l . The overwhelming evidence supported chemical transmission mediated by ACh. Del C a s t i l l o and Katz advanced t h e i r quantal theory of neuromuscular transmission i n 1954. Drawing from F a t t and Katz' (1952a, 1952b; 1953) observations of spontaneous miniature end-plate p o t e n t i a l s (mepp) at the f r o g NMJ, del C a s t i l l o and Katz observed i n the i s o l a t e d nerve-muscle prepa-r a t i o n bathed i n high magnesium (Mg + +) and/ or low calcium ( C a + + ) , that s t i m u l a t i n g the nerve r e s u l t e d i n epps whose minimal s i z e equals the mean amplitude of spontaneous mepps (del C a s t i l l o and Katz, 1954b). Most impor-t a n t l y , del C a s t i l l o and Katz noted that where the epps were not of the minimal s i z e , t h e i r amplitudes could be c l o s e l y p r e d i c t e d by whole number m u l t i p l e s of the mean mepp. Thus: m x mepp = epp - 13 -where mepp i s the elementary u n i t of t r a n s m i t t e r and quantal content (m) i s the number of such u n i t s per epp. Quantal content i s f u r t h e r defined as the product of the number of quanta a v a i l a b l e f o r r e l e a s e , n, and the probabi-l i t y of r e l e a s e , p; t h e r e f o r e , the mean quantal content i s : m = n x p When the presynaptic terminal i s hyperpolarized to or beyond a c r i t i c -al l e v e l , there i s an increased frequency of spontaneous mepps i n the form of b u r s t s , but the quantal u n i t of these mepps i s not increased (del C a s t i l l o and Katz, 1954d). During such a period of h y p e r p o l a r i z a t i o n , the amplitude of the epps increased, sometimes f o r a few seconds a f t e r the end of the h y p e r p o l a r i z a t i o n . In a d d i t i o n , evoked epps showed an increased amplitude that i s a t t r i b u t a b l e to increased quantal content. E a r l i e r , L i l e y and North (1953) had concluded that PTP i s a nerve terminal phenomenon that i s mediat-ed by an increased evoked r e l e a s e of ACh; increased end-plate s e n s i t i v i t y to the neurotransmitter appeared to have played very l i t t l e p a r t . Another observation explained by the quantal mechanism i s the post-t e t a n i c depression that occurs a f t e r an intense tetanus (Eccles and R a i l , 1951; L i l e y and North, 1953). Under c o n d i t i o n s of normal r e l e a s e , when t r a n s m i t t e r r e l e a s e i s not impaired by agents such as high e x t r a c e l l u l a r c oncentrations of Mg + +, a tetanus of 500 v o l l e y s i s followed by a depres-sion l a s t i n g several hundred msec (Eccles and R a i l , 1951). This i s succeed-ed by a period of PTP. However, i n high Mg , which diminishes t r a n s m i t -t e r r e l e a s e , no depression i s observed (del C a s t i l l o and Katz, 1954c; Feng, 1941b). L i l e y and North (1953) suggested a d e p l e t i o n of quanta during the tetanus to account f o r t h i s depression. I t appears that no s i g n i f i c a n t - 14 -changes i n p occurs during depression while there i s an associated decrease in n (del C a s t i l l o and Katz, 1954c). Del C a s t i l l o and Katz (1954c) a l s o showed that f a c i l i t a t i o n can be accounted f o r by an increased quantal content. To f u r t h e r e x p l a i n the quantal events during and post-tetanus, i t i s necessary to invoke the idea of t r a n s m i t t e r m o b i l i z a t i o n . Elmqvist and Quastel's (1965) f u n c t i o n a l model of t r a n s m i t t e r m o b i l i z a t i o n concurs with the evidence presented by others (Hubbard, 1963; Hubbard and W i l l i s , 1962). In t h i s model, the number of r e a d i l y a v a i l a b l e quanta i n the nerve terminal i s r e l a t i v e l y s m a l l . During a high i n t e n s i t y tetanus, t h i s pool of t r a n s -m i t t e r i s q u i c k l y depleted (Otsuka et a l ; , 1962). A second pool of t r a n s -m i t t e r , presumably not i n the form of packaged quanta, must then be mobil-i z e d i n t o the r e a d i l y a v a i l a b l e pool. Takeuchi (1958) estimates the time constant to r e s t o r e n at the p o s t - t e t a n i c NMJ to be 4-5 seconds. This d e p l e t i o n and subsequent r e s t o r a t i o n of quanta at the terminal thus e x p l a i n s the observation t h a t , although the amplitude and duration of PTP i s propor-t i o n a l to the i n t e n s i t y and number of impulses i n the tetanus, the l a t e n c y to peak p o t e n t i a t i o n a c t u a l l y increases with the i n t e n s i t y of the tetanus (del C a s t i l l o and Katz, 1954c; Eccles and R a i l , 1951; Feng, 1937; Feng et a l ; , 1939; Gasser and Graham, 1932; L l o y d , 1952, 1959). 2.4 I o n i c -mechanism-of-short-term-potentiation E a r l y work on neuromuscular preparations suggested that increased e x t e r n a l potassium (K +) had the same f a c i l i t a t o r y and d e c u r a r i z i n g e f f e c t s as t e t a n i c s t i m u l a t i o n (Feldberg and V a r t i a i n e n , 1934; Wilson and Wright, 1936; Feng and L i , 1941). Other i n v e s t i g a t o r s proposed that an increased - 15 -e x t r a c e l l u l a r K + was res p o n s i b l e f o r PTP (Rosenblueth and Morison, 1937; Grumbach and Wilber, 1940; Walker, 1948). Feng et - al-; (1939) sta t e d that r a i s e d e x t e r n a l K + cannot be involved since PTP i n the presence of potas-sium c h l o r i d e i s l e s s than that induced by t e t a n i c s t i m u l a t i o n alone. Fur-thermore, high K + leads to depression of the NMJ rather than p o t e n t i a t i o n (Feng and L i , 1941). L i l e y and North (1953) proposed another perspective: as i t was known that tetanus causes increased r e l e a s e of both ACh and K +, perhaps the c r i t e r i o n f o r p o t e n t i a t i o n i s an apparent decrease of i n t r a c e l -l u l a r K +, which can be mimicked by r a i s i n g external K +. The work on potassium proved i n c o n c l u s i v e , and with the e l u c i d a t i o n of the quantal mechanism of t r a n s m i t t e r r e l e a s e , the focus of a t t e n t i o n s h i f t e d to calcium. I t was known that C a + + and Mg + + have mutually 'antagon-i s t i c ' e f f e c t s at the NMJ: epps can be reduced and nerve transmission blocked by high e x t r a c e l l u l a r Mg + +; t h i s nerve block could be r e l i e v e d by r a i s i n g e x t r a c e l l u l a r C a + + (del C a s t i l l o and Engbaek, 1954). In the ab-sence of e x t r a c e l l u l a r C a + + , d e p o l a r i z a t i o n of the nerve terminal was i n i t s e l f i n s u f f i c i e n t to cause t r a n s m i t t e r r e l e a s e (Katz and M i l e d i , 1967). But i f the d e p o l a r i z a t i o n was coupled with an i o n t o p h o r e t i c pulse of C a + + l o c a l i z e d to the nerve t e r m i n a l s , then t r a n s m i t t e r r e l e a s e was evoked (Katz and M i l e d i , 1967). Hence, t r a n s m i t t e r r e l e a s e or m u l t i p l i c a t i o n of rel e a s e r e q u i r e s C a + + . Studies of C a + + uptake i n the squid giant axon using 45 ++ Ca showed stimulus-dependent uptake (Hodgkin and Keynes, 1957). Aequorin loaded squid axons emit l i g h t upon d e p o l a r i z a t i o n , showing a C a + + conductance whose time course i s unaffected by t e t r o d o t o x i n and t e t r a e t h y l -ammonium (Baker et a l ; , 1971; L I i n a s e t - a l ; , 1972). - 16 -E x a c t l y how calcium e f f e c t s t r a n s m i t t e r r e l e a s e i s unknown. I t has been proposed that a C a + + a c t i v a t e d complex, CaX, somehow increases the p r o b a b i l i t y of t r a n s m i t t e r r e l e a s e at the terminal membrane (del C a s t i l l o and Katz, 1954a). Assuming that r e l e a s e i s pr o p o r t i o n a l to the fo u r t h power of CaX (Dodge and Rahamimoff, 1967), Katz and M i l e d i (1968) advanced the r e s i d u a l calcium theory of f a c i l i t a t i o n at the f r o g NMJ. They proposed that the t r a n s i e n t increase i n C a + + conductance during the d e p o l a r i z a t i o n ,leads to an i n f l u x of C a + + that combines with X to form the a c t i v e complex CaX. It i s i n t e r e s t i n g to note that elevated l e v e l s of i n t r a c e l l u l a r C a + + per-s i s t beyond the duration of stimulus-evoked r e l e a s e ( M i l e d i and Parker, 1981). I f a subsequent stimulus invades the terminal w i t h i n a c e r t a i n i n -t e r v a l a f t e r the f i r s t stimulus, then the r e s i d u a l C a + + in the terminal w i l l be augmented by another i n f l u x of C a + + . The t r a n s m i t t e r thus r e -leased w i l l be pro p o r t i o n a l to the sum of the i n t r a c e l l u l a r C a + + (or CaX) r a i s e d to the f o u r t h power. A l t e r n a t e mechanisms f o r PTP i n v o l v i n g sodium (Na +) currents or i t s accumulation i n the presynaptic terminal are l a r g e l y unsupported. Post-t e t a n i c p o t e n t i a t i o n of the epp was i n d u c i b l e when a l l external Na + was replaced by i s o t o n i c calcium c h l o r i d e , and when voltage s e n s i t i v e Na + chan-nels were blocked by t e t r o d o t o x i n (Weinreich, 1971). I t i s p o s s i b l e that Na + plays a supportive r o l e , i n d i r e c t l y i n c r e a s i n g i n t r a c e l l u l a r calcium ions by competing at a common ion b u f f e r i n g system or f o r a l i m i t e d energy source f o r extr u s i o n (Birks and Cohen, 1968; Rahamimoff e t - - a l ; , 1980). I n t e r e s t i n g l y , M i s l e r and Hurlbut (1983) were able to induce PTP at the f r o g NMJ i n the absence of e x t r a c e l l u l a r C a + + . I n t r a c e l l u l a r recordings showed - 17 -that PTP o f mepp frequency and epp s i z e can be induced with r e p e t i t i v e stim-u l a t i o n i n 0 mM C a + + and 1-2 mM EGTA, provided that C a + + i s res t o r e d to the bathing medium immediately a f t e r the tetanus ( M i s l e r and Hurlbut, 1983). These authors also suggest a Na + dependent mechanism f o r PTP, but t h e i r s p e c u l a t i o n remains unsubstantiated. 2.5 Anatomy-of-the-hi ppocampus The hippocampus i s part of the o l d e s t c o r t i c a l s t r u c t u r e i n the mam-malian b r a i n . During embryonic development, c e l l s from the mantle l a y e r at the r o s t r a l end of the neural tube p r o l i f e r a t e . This c e l l mass migrates beyond the marginal l a y e r , e v e n t u a l l y surrounding the neural tube to become the c o r t i c a l grey matter ( C r e l i n , 1974). During p r o l i f e r a t i o n and migra-t i o n , the i s o c o r t e x separates from the mantle l a y e r to form the neocortex; the remaining a l l o c o r t e x , which i s the more p r i m i t i v e , maintains i t s a t t a c h -ment to the mantle layer ( F i l i m i n o f f , 1947). There i s also a t r a n s i t i o n a l cortex, c a l l e d the p e r i a l l o c o r t e x , that d i f f e r s i n c y t o a r c h i t e c t u r e from both neocortex and a l l o c o r t e x (Brodmann, 1909). In mammals, the a l l o c o r t e x i s found mostly around the brainstem in a c o r t i c a l convolution that Broca (1878) c a l l e d the l i m b i c lobe. This true a l l o c o r t e x i s subdivided i n t o paleocortex and a r e h i c o r t e x . The former com-p r i s e s the o l f a c t o r y bulb and associated s t r u c t u r e s ; the l a t t e r comprises the subiculum, the hippocampus proper (Amnion's horn), the dentate gyrus ( f a s c i a dentata), precommissural hippocampus and supracommissural hippo-campus (Schwerdtfeger, 1984). The obvious presence of o l f a c t o r y pathways led to the name "rhinencephalon", f o r i t was b e l i e v e d that o l f a c t i o n was the li m b i c lobe's only f u n c t i o n ( K o l l i k e r , 1896; Schaefer, 1898). Later work on - 18 -the l i m b i c system (MacLean, 1952; Papez, 1937) d i s p e l l e d the s i n g l e f u n c t i o n r o l e f o r t h i s o l d cortex. The hippocampal formation c o n s i s t s of the p e r i a l l o c o r t i c a l presubicu-lum, area r e t r o s p h e n i a l i s e, the parasubiculum and the ent o r h i n a l region (Chr o n i s t e r and White, 1975). Of the remaining a r c h i c o r t e x , only Amnion's horn and the f a s c i a dentata w i l l be considered as the hippocampus. This w i l l be f u r t h e r defined so that "hippocampus proper" w i l l denote only Amnion's horn, excluding the subiculum. The hippocampus i s b i l a t e r a l l y symmetrical, shaped l i k e commas or cashew nuts (Green, 1964; T e y l e r and DiScenna, 1984). They l i e d i r e c t l y under the neocortex with t h e i r dorsal ends connected by the commissural f i b e r t r a c t . The body of the hippocampus i s pressed against the medial wall of the i n f e r i o r horn of the l a t e r a l v e n t r i c l e . The ve n t r a l t a i l of the hippocampus f o l l o w s the l a t e r a l v e n t r i c l e toward the corpus callosum (Figure 1). Each hippocampus c o n s i s t s of two i n t e r d i g i t a t i n g a r c h i c o r t i c a l p a r t s , the cornu ammonis (CA) and the f a s c i a dentata (FD). The v e n t r i c u l a r s u r f a c e of the hippocampus i s covered by a white f i b e r l a y e r , the alveus. These f i b e r s are composed mainly of axons from c e l l s of the CA f i e l d s and converge to form the f i m b r i a on the medial surface of the hippocampus (Teyler and DiScenna, 1984). The c e l l s of the hippocampus are in three basic l a y e r s : molecular, p r i n c i p l e , and polimorph (Lorente de No, 1934). ' This i s in con-t r a s t to the s i x (Brodmann, 1909) or seven (Rose, 1926) lay e r s of the neo-cortex. I t i s i n t e r e s t i n g to note that Ramon y Cajal (1893) had a c t u a l l y described Amnion's horn as a seven layered c o r t i c a l s t r u c t u r e . - 19 -Figure 1 Anatomical l o c a t i o n o f the hippocampus i n the r a t b r a i n . The top diagram shows the p o s i t i o n o f the hippocampus with respect to the r e s t of the b r a i n and the bottom diagram i l l u s t r a t e s the various s u b f i e l d s of a t r a n s -verse s e c t i o n o f the hippocampus. Hip. f i s . - hippocampal f i s s u r e I n f r a - infrapyramidal blade o f the dentate granule c e l l l a y e r Supra - suprapyramidal blade o f the dentate granule c e l l l a y e r - 20 -2.5.1 The-dentate-gyrus The dentate gyrus, as i t s name suggests, i s a V or U-shaped f o l d of cortex that caps the t h i n terminal edge of the hippocampus proper. The p r i n c i p l e c e l l s are the granule c e l l s (Ramon y C a j a l , 1893) found i n a l a y e r 5-10 c e l l s deep, the stratum granulosum. These granule c e l l s send dendrites that p o i n t towards the dentate h i l u s as well as dendrites that point to the v e n t r i c u l a r s u r f a c e . The granule c e l l axons course through the polymorph lay e r and converge about the h i l u s . In a d d i t i o n to polymorphic c e l l s i n t h i s l a y e r , there are i n h i b i t o r y basket c e l l s , which synapse with many granule c e l l s through a supragranular axon plexus (Ramon y C a j a l , 1893). Between the suprapyramidal and infrapyramidal blades of the FD i s the h i l u s , a t r a n s i t i o n region of polymorphic c e l l s and modified pyramidal c e l l s (Lorente de No, 1934). These pyramidal c e l l s are considered part of the t a i l of hippocampus proper and c o n s t i t u t e s the f i e l d CA^ (Lorente de No, 1934). Because the polymorphic l a y e r s of both CA and FD are c o n f l u e n t , the whole region demarcated by an imaginary l i n e drawn between the ends of the stratum granulosm has been c o l l e c t i v e l y l a b e l l e d area dentata (Blackstad, 1956; T e y l e r and DiScenna, 1984). However, c a r e f u l examination of the c y t o -morphology does not support t h i s c l a s s i f i c a t i o n (Ramon y C a j a l , 1893; Lorente de No, 1934). 2.5.2 The-hippocampus-proper The t h i n edge of the cornu ammonis terminates in the h i l u s of the f a s c i a dentata. The t r a n s i t i o n a l pyramidal c e l l s from the h i l u s g r a d u a l l y change to the pyramidal c e l l s of area CA^ (Lorente de No, 1934). Although the CA/, f i e l d i s d i f f i c u l t to detect (Blackstad, 1956; Chronister and - 21 -White, 1975), the cascade of pyramidal c e l l s from CA^ to form the stratum pyramidale of the hippocampus proper i s e a s i l y d i s c e r n i b l e . These pyramidal c e l l s are o r i e n t e d with t h e i r a p i c a l dendrites pointed towards the center of the hippocampus at the b l i n d end of the hippocampal f i s s u r e . The s t r a t i f i c a t i o n at the cornu ammonis i s more involved than that i n the dentate gyrus. A la y e r of axon f i b e r s , the alveus, l i e s next to the surface at the l a t e r a l v e n t r i c l e . Adjacent to the alveus i s a f i b e r plexus of polymorphic c e l l s , the stratum o r i e n s . The next two l a y e r s are the stratum pyramidale and the stratum lucidum, the l a t t e r l a y e r i s rather poor-l y defined i n the rodent hippocampus and i s considered as one with the stratum pyramidale (Lorente de No, 1934). The same a p p l i e s to the dense f i b e r plexus of the stratum radiatum and the stratum lacunosum, considered c o l l e c t i v e l y as stratum radiatum (Lorente de No, 1934). Next to the stratum radiatum i s the stratum moleculare (Lorente de No, 1934). The boundaries of s t r a t a radiatum and oriens mark the terminus of the hippocampus proper at the h i l u s . The boundary at the s u b i c u l a r end i s very sharply defined by the abrupt termination of the stratum pyramidale i n f i e l d CA, (Angevine, 1975; Blackstad, 1956; Ramon y C a j a l , 1893; Lorente de No, 1934). Because of anatomical and p h y s i o l o g i c a l d i f f e r e n c e , the hippocampus proper i s d i v i -ded i n t o several f i e l d s and s u b f i e l d s , each denoted by the l e t t e r s CA and a numerical or alpha-numerical term (Lorente de No, 1934). 2.5.3 The - f i elds of Ammon's- horn Figure 1 i l l u s t r a t e s the d i f f e r e n t s u b f i e l d s of Amnion's horn and the dentate gyrus in a transverse s e c t i o n of the r a t hippocampus. - 22 -2.5.3.1 F i e l d - - G A / | A s mentioned above, t h i s poorly demarcated zone c o n s i s t s of t r a n s i t i o n a l pyramidal c e l l s in a l a y e r and a confluence of polymorphic c e l l s . The actual presence and appearance of t h i s f i e l d i s extremely v a r i a b l e across species (Geneser-Jensen, 1972). 2.5.3.2 F i e l d - GA^; This f i e l d i s subdivided i n t o CA 3 g, CA 3 b, and C A 3 c (Lorente de No, 1934). The pyramidal c e l l s of CA^ (along with those of CA 2) are the giant pyramids of the hippocampus (Lorente de No, 1934). The a p i c a l dendrites of the CA^ pyramid penetrate the stratum radiatum without l a t e r a l a r b o r i z a t i o n and terminate with 2-3 v e r t i c a l branches in stratum moleculare (Lorente de No, 1934). Thick spines at the proximal portion of these dendrites r e c e i v e e x c i t a t o r y inputs from the mossy f i b e r s of FD (Lorente de No, 1934). S u b f i e l d C A 3 c pyramids have such synapses at both the a p i c a l and basal d e n d r i t e s , whereas C A 3 a and CA-^ pyramids have only a p i c a l synapses with mossy f i b e r s (Lorente de No, 1934). The axon of the CA^ pyramid i s a t h i c k f i b e r that goes to the f i m -b r i a , where i t gives o f f a number of c o l l a t e r a l s (Ramon y C a j a l , 1893; Lorente de No, 1934). Most of these c o l l a t e r a l s are short, terminating in stratum o r i e n s or i n t e r p y r a m i d a l l y . The most notable i s a t h i c k c o l l a t e r a l discovered by Schaffer in 1892. This c h a r a c t e r i s t i c Schaffer c o l l a t e r a l penetrates the stratum pyramidale to run in the stratum radiatum and t e r m i -nates near the j u n c t i o n of CA^ a and CA^ b (Ramon y C a j a l , 1893; Schaffer, 1892). The Schaffer c o l l a t e r a l i s present in n e a r l y a l l C A 3 c axons, about 50% of CA.,, and n e a r l y absent i n CA Q axons (Lorente de No, 1934). 3D oa 2.5.3.3 F-i-el-d -CAg.- This i s a t r a n s i t i o n f i e l d of giant pyramidal c e l l s between CA^ and CA, (Lorente de No, 1934). These c e l l s are smal-- 23 -l e r than those of CA^ and lack both the d e n d r i t i c spines and the Schaffer c o l l a t e r a l s . These pyramids are arranged in i r r e g u l a r rows which form a very t h i n stratum pyramidale. Toward s u b f i e l d CA^ c, t h i s t h i n layer thickens with the i n t r o d u c t i o n of more pyramidal c e l l s . 2.5.3.4 Field--GA^. The CA^ f i e l d i s a l s o d i v i d e d into sub-f i e l d s a, b, and c (Lorente de N6\ 1934). The border between the s u b f i e l d s are not well defined, but the r e s p e c t i v e pyramidal c e l l s are morphologically d i f f e r e n t : amongst the CA^ a pyramids are s u b i c u l a r c e l l s ; C A ^ have the s m a l l e s t pyramidal c e l l s of a l l CA f i e l d s , and CA-^ pyramids are r e l a t i v e -l y large (Lorente de No, 1934). The a p i c a l dendrites of CA-^  pyramids lack synaptic spines at the proximal p o r t i o n of the primary s h a f t (Ramon y C a j a l , 1893). In the stratum radiatum, these dendrites a r b o r i z e e x t e n s i v e l y i n t o very f i n e branches, where numerous f i n e spines form synapses with the Schaffer c o l l a t e r a l s (Lorente de No, 1934; Ramon y C a j a l , 1893). Basal den-d r i t e s form short t u f t s of i r r e g u l a r branches in the stratum oriens (Ramon y C a j a l , 1893). The CA-^  primary axon i s a t h i n f i b e r that e s s e n t i a l l y courses through the stratum oriens to the f i m b r i a (Lorente de No, 1934). Axon c o l -l a t e r a l s may cross the stratum pyramidale to ramify i n the stratum r a d i a -tum. Long r e c u r r e n t c o l l a t e r a l s a r i s e from some CA^ axons, t r a v e r s i n g the stratum oriens to run in the alveus towards the f i m b r i a and the subiculum (Lorente de No, 1934). At the border of CA^ and the subiculum, the dense-l y packed stratum pyramidale abruptly stops; the pyramidal c e l l s d i s perse and the stratum oriens g r a d u a l l y t h i n s to a s i n g l e l a y e r in the subiculum (Angevine, 1975; C h r o n i s t e r and White, 1975). - 24 -2.5.4 Neuronal-pathways-of the-hippocampus The o r d e r l y lamination of c e l l u l a r s t r u c t u r e i n the hippocampus make i t an i d e a l model f o r studying c o r t i c a l o r g a n i z a t i o n . The various s t r a t a of the hippocampus maintain t h e i r r e l a t i v e o r i e n t a t i o n a l l along the l o n g i t u d i -nal a x i s . In a d d i t i o n , the major intrahippocampal t r i - s y n a p t i c system i s organized i n p a r a l l e l planes that are roughly transverse to the l o n g i t u d i n a l a x i s (Andersen et - a-1 -., 1971). This l a m e l l a r o r g a n i z a t i o n has been c l e a r l y demonstrated with the i n v i t r o hippocampal s l i c e (Skrede and Westgaard, 1971) (Figure 2 ) . Although the t r i - s y n a p t i c system w i t h i n the hippocampus r a i s e s the p o s s i b i l i t y of f i b e r recruitment and a cascade e f f e c t of s i g n a l a m p l i f i c a t i o n (Teyler and DiScenna, 1984), there appears to be very l i t t l e divergence from the l a m e l l a r o r g a n i z a t i o n throughout the e n t i r e hippocampus (Andersen et a l : , 1971). 2.5.5 Afferents-to-the-hippocampus 2.5.5.1 P e r f or ant -Path.- The perforant path (PP) c a r r i e s the major e x c i t a t o r y input to the hippocampus (Lorente de No, 1934; Ramon y C a j a l , 1893). These f i b e r s o r i g i n a t e from the i p s i l a t e r a l medial and l a t e r a l ento-r h i n a l c o r t i c e s (EC), c r o s s i n g the hippocampal f i s s u r e to form synapses at the dendrites of the dentate granule c e l l s , as wel l as with the dendrites of some CA3 pyramids (Hjorth-Simonsen, 1973; Hjorth-Simonsen and Jeune, 1972). There i s a topographical s p e c i f i c i t y to the synapses i n that inputs from a given part of the EC p r o j e c t only to a l i m i t e d part of the stratum granulo-sum, but with equal d e n s i t y along the e n t i r e length of the f a s c i a dentata (L#mo, 1971). Another main e x c i t a t o r y input i s the commissural f i b e r s from the f i m b r i a ( B l a c k s t a d , 1956), which o r i g i n a t e from the c o n t r a l a t e r a l CA, Figure 2 Anatomical diagram of a t r a n s v e r s e l y sectioned r a t hippocampal s l i c e showing the various a f f e r e n t , e f f e r e n t and i n t r i n s i c pathways. Alv - alveus Comm - commissural input Ento - entorhinal cortex Fim - f i m b r i a HF - hippocampal f i s s u r e mf - mossy f i b e r s pp - perforant path Sch - S c h a f f e r c o l l a t e r a l s - 26 -and CA4 pyramidal c e l l s (Hjorth-Simonsen and Laurberg, 1977; Swanson et  a l : , 1978). 2 .5 .5 .2 A f f e r e n t s - to -the- - G A 3-region; The axons of the dentate granule c e l l s form the mossy f i b e r a f f e r e n t s to f i e l d CA^. Th e i r t h i n (0.2 pm) f i b e r s make en - passant synapses at the proximal primary shaft of CA 3 dendrites (Blackstad e t - - a l : , 1970). Mossy f i b e r s from the supra-pyramidal granule c e l l s synapse with a p i c a l dendrites of the e n t i r e f i e l d CA 3, while the mossy f i b e r s from the infrapyramidal granules synapse only with the basal dendrites of s u b f i e l d C A 3 c (Lorente de No, 1934; Swanson et  a l . , 1978). The synaptic elements at the a p i c a l dendrites are noteworthy: mossy f i b e r boutons, 3-6 urn in diameter and length, completely engulf the branched spines of the a p i c a l dendrite (Hamlyn, 1961). There i s als o evidence of mossy f i b e r synapses at the i n h i b i t o r y basket c e l l s of CA 3 ( F r o t s c h e r , 1985), which i s concrete evidence f o r feedforward i n h i b i t i o n (Douglas, 1978). The commissural input to CA^ o r i g i n a t e s in the homotopic region of the c o n t r a l a t e r a l hippocampus (Andersen and L0mo, 1966). These f i b e r s run through the f i m b r i a and terminate on the basal dendrites of the CA^ pyramids (Blackstad, 1956; Andersen and L$mo, 1966). There i s some evidence of p r o j e c t i o n s from the i p s i l a t e r a l and c o n t r a l a t e r a l f i e l d CA 4 (Schwerdtfeger and Sarvey, 1983). 2 .5 .5 .3 A f f e r e n t s - -to - the- -GA^ -region; The d i s t i n c t i o n of f i e l d CA 2 i s not embraced by a l l workers (Blackstad, 1956; Lorente de No, 1934; T e y l e r and DiScenna, 1984). However, from Lorente de No (1934), i t i s c l e a r that mossy f i b e r s do not make giant synapses with the a p i c a l d e n d r i t i c spines, since the l a t t e r are absent from CA ? pyramids. Local a f f e r e n t s - 27 -from CA-^  axon c o l l a t e r a l s make synapses at the CA2 basal dendrites (Lorente de No, 1934); commissural p r o j e c t i o n s which have been shown to terminate at CA^ i n both s t r a t a radiatum and o r i e n s , can be i n t e r p r e t e d to have synapses at CA 2 by v i r t u e of the ambiguous d i s t i n c t i o n between these two CA f i e l d s ( B l a c k s t a d , 1956). 2.5.5.4 A f f e r e n t s - to the GA-^  - region; The major input to CA^ i s from the i p s i l a t e r a l CA^ pyramids v i a the Schaffer c o l l a t e r a l s i n the stratum radiatum (Andersen, 1960; Andersen e-t- - a l ; , 1971; Lorente de No, 1934). These Schaffer c o l l a t e r a l s make numerous en•• passant synapses with the f i n e l y a r borized a p i c a l dendrites (Ramon y C a j a l , 1893). S t i m u l a t i o n of the i p s i l a t e r a l CAg pyramids or the Schaffer c o l l a t e r a l s e l i c i t s the gre a t e s t response from the CA-^  pyramids (Andersen, 1960; Andersen et- - a l ; , 1971). Commissural p r o j e c t i o n s come from the c o n t r a l a t e r a l CA^ and CA^ pyramids, forming en• passant synapses at both basal and a p i c a l dendrites (Andersen et - a l ; , 1980; Bl a c k s t a d , 1956). The ma j o r i t y of these synapses are found at the a p i c a l dendrites i n the stratum radiatum. Lorente de No (1934) described c o l l a t e r a l s of CA^ that ascend from the alveus to terminate on the basal aspects of the CA-^-CA2 pyramids. Consequently, a c t i v a t i o n of CA-^  pyramids generates an apparent synaptic p o t e n t i a l i n adjacent CA-^  pyramids (Andersen, 1975). Autoradiographic evidence n e i t h e r supports nor r u l e s out the existence of t h i s short c o l l a t e r a l (Swanson e t - a l ; , 1978). 2.5.6 E f f e r e n t s from the-hippocampus Aside from commissural output to the c o n t r a l a t e r a l hippocampus, the only major e f f e r e n t from the hippocampus i s from CA-^  pyramids to the s u b i -- 28 -culum (Lorente de No, 1934; Swanson e t - a l : , 1978). There i s anatomical e v i -dence of a r e c u r r e n t c o l l a t e r a l system from some parts of CA^ and a l l of CAj and CA 2 that terminates back in the entorhinal cortex (Hjorth-Simonsen, 1973; Lorente de No, 1934; Swanson et a l ; , 1978). However, s o l i d e l e c t r o p h y s i o l o g i c a l evidence f o r t h i s r e c u r r e n t network i s l a c k i n g . 2.5.7 Interneurons There are a number of interneuron types in the various s t r a t a of the hippocampus, the most prevalent being the basket c e l l s (Lorente de No, 1934; Ramon y C a j a l , 1893). These basket c e l l s are d i s t r i b u t e d w i t h i n the p r i n c i -ple c e l l l a y e r s of both CA and FD, in c l o s e proximity to the p r i n c i p l e c e l l s (Andersen et- a l : , 1964; Lorente de No, 1934). An axon of a basket c e l l a r b o r i z e s e x t e n s i v e l y , making 200-500 synapses with primary c e l l s w i t h i n a dense plexus of f i b e r s (Andersen et- - a l : , 1964; Strub-le -et a l : , 1978). In the FD, the axon terminals synapse at the soma and dendrites of granule c e l l s ( S t r u b l e et- - a l : , 1978), while those at the CA pyramids terminate at the soma, proximal dendrite and i n i t i a l segment of the axon (Blackstad and Flood, 1963; Kosaka, 1980; Seress and Ribak, 1983). E l e c t r o p h y s i o l o g i c a l evidence suggested that a r e c u r r e n t i n h i b i t o r y system was present in the CA f i e l d (Spencer and Kandel, 1961). Andersen et  a l . (1963, 1964) located the s i t e of the i n h i b i t i o n at t h e c o m a of the pyramidal c e l l s and proposed a c i r c u i t of feedback i n h i b i t i o n through which adjacent p r i n c i p l e c e l l s i n h i b i t t h e i r neighbours v i a axon c o l l a t e r a l s to the basket c e l l s (Andersen et - a l ; , 1963, 1964; Kandel and Spencer, 1961). Immunoreactive s t a i n i n g of interneuron terminals f o r glutamic a c i d decar-boxylase (GAD) showed that these interneurons elaborate y-aminobutyric a c i d - 29 -(GABA) (Ribak et - -a-1.-, 1978; Seress and Ribak, 1983). The p o s s i b i l i t y of feedforward i n h i b i t i o n was suggested by the observation of very low t h r e s -hold interneurons in the FD (Buzsaki and E i d e l b e r g , 1981, 1982; Douglas et  a l ; , 1983). L a b e l l i n g (Loy, 1978) and degeneration s t u d i e s (Frotscher and Zimmer, 1983) support d i r e c t commissural i n n e r v a t i o n of basket c e l l s from the c o n t r a l a t e r a l homotropic primary c e l l s . Electromicroscopy a l s o show i p s i l a t e r a l i n n e r v a t i o n of CAg basket c e l l s by mossy f i b e r s of the FD (Fr o t s c h e r , 1985). 2.5.8 Longitudinal-association-pathway Lorente de No (1934) f i r s t observed axon c o l l a t e r a l s from CA pyramidal c e l l s t h a t run p a r a l l e l to the long axis of the hippocampus. These c o l l a -t e r a l s a r i s e from CAg pyramids which lack a Schaffer c o l l a t e r a l (Lorente de No, 1934), forming a dense plexus on the a p i c a l side of the pyramidal c e l l s . The f i n e l y branched dendrites p r o j e c t along the axis to CAg g, CA 2 and CA^ C d e n d r i t e s , thereby l i n k i n g the r e l a t i v e l y i s o l a t e d lamin-ates of the t r i - s y n a p t i c system into a powerful i n t e r - l a m e l l a r pathway (Hjorth-Simonsen, 1973; Swanson et a-T:, 1978). The p h y s i o l o g i c a l s i g n i f i -cance of t h i s pathway has not been explored. 2.6 Short-term-potentiation in the hippocampus Gloor (1955) observed marked PTP in the f e l i n e hippocampus a f t e r s t i m u l a t i n g the amygdala. Increased spike amplitude of the hippocampal r e s -ponse p a r a l l e l e d the decrease in latency to spike generation. In a d d i t i o n , a decrease in e x c i t a t o r y t h r e s o l d and several phases of p o s t - t e t a n i c depres-sion were d e s c r i b e d . D i r e c t t e t a n i c s t i m u l a t i o n of a f f e r e n t s to the hippo-campal pyramidal c e l l , presumably through commissural f i b e r s v i a the f i m -- 30 -b r i a , led to PTP of the population EPSP and population spike, and decreased latency (Campbell and S u t i n , 1959). T e t a n i c s t i m u l a t i o n of the perforant path r e s u l t e d in PTP of pyramidal c e l l population EPSP and population spike (Gloor et- a l : , 1964); these authors a t t r i b u t e d the PTP to an increase in t r a n s m i t t e r r e l e a s e , a pre-synaptic event. More recent studies of STP in the hippocampus and f a s c i a dentata have revealed several components that are analogous to those found at the neuromuscular j u n c t i o n : f a c i l i t a t i o n (Creager et- - a l : , 1980), augmentation (McNaughton, 1982), and p o s t - t e t a n i c p o t e n t i a t i o n (Racine and Milgram, 1983). These authors agree that STP has a presynaptic locus and i s due to elevated t r a n s m i t t e r r e l e a s e (Abraham et  al••, 1985; McNaughton, 1982). However, there i s no general agreement on the p h y s i o l o g i c a l s i g n i f i c a n c e of STP. Creager e t - - a l . (1980) suggested no s i g n i f i c a n c e in normal f u n c t i o n , perhaps some r o l e in e p i l e p t o g e n e s i s ; others suggest a p o s s i b l e r o l e f o r STP in short-term memory (Goddard, 1980; Racine and Milgram, 1983). The other point of concurrence i s that STP and long-term p o t e n t i a t i o n are decidedly d i f f e r e n t processes; that i s , STP does not l e a d , by graded increments or c r i t i c a l t h r e s o l d , to LTP (McNaughton, 1982; T e y l e r e t - a l . , 1982). 2.7 A s s o c i a t i v e - i n d u c t i o n - o f - p o t e n t i a t i o n : - - a f f e r e n t - c o o p e r a t i v i t y Long-term p o t e n t i a t i o n i s now the most promising candidate as a s u b s t r a t e f o r l e a r n i n g and memory. Several c h a r a c t e r i s t i c s of LTP are q u a l i t a t i v e l y s i m i l a r to some s a l i e n t features of l e a r n i n g and memory. For instance, LTP i s input s p e c i f i c , showing p o t e n t i a t i o n only at the pathways that have been t e t a n i z e d (homosynaptic p o t e n t i a t i o n ) (Andersen e t - a l : , 1977; Lynch et a l ; , 1977), and only a b r i e f event (tetanus) i s necessary f o r a - 31 -prolonged e f f e c t . Recently, LTP in the dentate gyrus and the hippocampus have been i n -duced v i a c o - a c t i v a t e d a f f e r e n t s (Barrionuevo and Brown, 1983; Lee, 1983; Levy and Steward, 1979; McNaughton et- a l ; , 1978). Long-term p o t e n t i a t i o n can be induced only i f a large number of a f f e r e n t f i b e r s to the t a r g e t c e l l s are t e t a n i z e d in synchrony, whereas STP can be produced by t e t a n i c s t i m u l a -t i o n of only one (McNaughton, 1983). Rather than t e t a n i c s t i m u l a t i o n of one a f f e r e n t pathway, a s s o c i a t i v e induction allows two or more separate but con-vergent pathways to cooperate. McNaughton et- a l ; , (1978) f i r s t showed c o o p e r a t i v i t y of c o - a c t i v e a f f e r e n t s i n the f a s c i a dentata. They t e t a n i z e d the l a t e r a l and medial e n t o r h i n a l pathways e i t h e r s e p a r a t e l y or simultaneously to produce LTP. I t should be noted that these separate but convergent pathways are independent-l y capable of p o t e n t i a t i o n . When the two pathways were t e t a n i z e d simul-taneously, the r e s u l t a n t LTP was equal to and often greater than the sum of the independently produced LTP. Furthermore, these authors showed that spike discharge of the postsynaptic granule c e l l was in i t s e l f i n s u f f i c i e n t f o r the induction of LTP. Their conclusion that LTP i s a cooperative pheno-menon a l s o r e s t s on the f i n d i n g that stimulus i n t e n s i t y , and not tetanus f r e -quency or duration, i s the determinant f o r LTP; high i n t e n s i t y tetanus can a c t i v a t e synchronously more f i b e r s of d i f f e r i n g thresholds to produce a l a r g e r LTP than a tetanus of lower i n t e n s i t y . This dependence of LTP magni-tude on stimulus i n t e n s i t y has since been found by other workers (Lee, 1983; Wigstrom and Gustafsson, 1983a) - 32 -Another v a r i a t i o n of a s s o c i a t i v e induction of LTP involves the p a i r i n g of a weak and a strong tetanus (Barrionuevo and Brown, 1983). In t h i s s t u -dy, both a weak input and a strong input were each located in the a f f e r e n t f i b e r s of the stratum radiatum that converge on a population of CA^ pyramidal c e l l s . Stimulation of these non-overlapping pathways a f f e c t e d d i f f e r e n t i a l l y the c o n t r o l response to a c o n t r o l stimulus at the weak i n -put: t e t a n i c s t i m u l a t i o n of the strong input r e s u l t e d in heterosynaptic depression (Lynch e t a l : , 1977); t e t a n i c s t i m u l a t i o n of the weak input r e -s u l t e d in PTP. However, when both pathways were stimulated simultaneously, the weak co n t r o l stimulus e x h i b i t e d PTP and LTP. Kelso and Brown (1986) have shown that the two t e t a n i w i l l not induce a s s o c i a t i v e LTP i f separated by 200 msec. Levy and Steward (1983) have described the temporal r e q u i r e -ments f o r a s s o c i a t i v e LTP and long-term depression. These authors showed that LTP can be induced without temporal overlap, but the separation between weak and strong inputs cannot exceed 5-20 msec, otherwise, long-term depres-sion masks any manifestations of LTP. Douglas (1978) had reported a 2-3 msec i n t e r v a l f o r a s i m i l a r induction of LTP. Thus, i t appears that a s s o c i a t i v e i n d u c t i o n of p o t e n t i a t i o n has seve-r a l c r i t e r i a : 1. A c r i t i c a l t e t a n i c stimulus i n t e n s i t y must be exceeded, the stimulus i n t e n s i t y being greater than the minimal needed to produce an EPSP (McNaughton et - a 1 ~., 1978); 2. The a s s o c i a t i v e l y potentiated pathway does not have to produce LTP by i t s e l f (Barrionuevo and Brown, 1983); 3. The p a i r i n g or a s s o c i a t i o n of the separate a f f e r e n t s must take place within a narrow temporal window (Douglas, 1978; Kelso and Brown, 1986; Levy and Steward, 1983); 4. Spike discharge of the postsynaptic c e l l i s not neces-- 33 -sary f o r a s s o c i a t i v e induction of LTP (Douglas, 1978; Lee, 1983; McNaughton e t - a l ; , 1978; Wigstrom e t - a l ; , 1983) 3 METHODS 3.1 Preparation of s i i c e s Male Wistar r a t s (75-125 g) were placed on top of an i c e pack i n s i d e a des s i c a t o r j a r . The d e s s i c a t o r j a r was closed and a mixture of anesthetic gas c o n t a i n i n g 2% halothane in 95% 0 2 and 5% C0 2 (carbogen) was fed i n t o the c o n t a i n e r . The i c e pack lowered the body temperature to 31-32°C (mea-sured r e c t a l l y ) , presumably decreasing the body's metabolic demands. A f t e r 20-30 minutes, the r a t was taken from the d e s s i c a t o r j a r and the top of the s k u l l exposed v i a an a n t e r o p o s t e r i o r i n c i s i o n of the s k i n . The s k u l l p l a t e s were c a r e f u l l y removed and the dura mater s l i t open to expose the b r a i n . A copious amount (about 10 mL) of c o l d (4°C) normal perfusate was poured onto the brain to cool i t as well as to c l e a r the f i e l d of blood. The brain was separated from the s p i n a l cord with a th i n blade at the pontine l e v e l . The ol f a c t o r y t r a c t s were then severed, followed by severance of the o p t i c nerves, and the whole brain was then removed from the c r a n i a l v a u l t . Again about 5 mL of c o l d medium was poured over the brain before one or both hippocampi were d i s s e c t e d f r e e . The f r e e d hippocampus was placed on the c u t t i n g platform with i t s long axis perpendicular to the blade of the Mcllwain t i s s u e chopper. The hippo-campus was chopped i n t o transverse s l i c e s of 500 urn t h i c k and t r a n s f e r r e d as - 34 -a whole to a nylon net submerged in a p e t r i dish of c o l d medium saturated with carbogen. The s l i c e s were then c a r e f u l l y separated with a s p a t u l a and about s i x s l i c e s were arranged on the nylon net; the remaining s l i c e s were disc a r d e d . A second nylon mesh was placed over the s l i c e s , e f f e c t i v e l y anchoring them in a sandwich arrangement. This prevented movement of the s l i c e s during the experiment. These sandwiched s l i c e s were taken from the p e t r i d i s h and placed in the s l i c e chamber, where they were perfused with normal medium at a r a t e of 3 ml/min. Elapsed time between the s t a r t of sur-gery and placement in the s l i c e chamber did not exceed 3 minutes. While in the s l i c e chamber, the s l i c e s were submerged in carbogen saturated normal medium; about 0.5 mm of perfusate covered the top surface of the s l i c e s . In a d d i t i o n , a constant stream of humidified carbogen flowed over the top of the medium. A piece of p a r a f i l m was placed over the chamber opening f o r the duration of the one hour e q u i l i b r a t i o n period to maintain an oxygen-saturated atmosphere. During e q u i l i b r a t i o n , the bath was kept at room temperature (24°C). A l l experiments were done at a bath temperature of 32 ± 0.2°C. Flow r a t e of the medium remained unchanged. To minimize v a r i a -b i l i t y due to d i f f e r e n t durations of ex - vivo p e r f u s i o n , only one s l i c e from each animal was used per experiment. Only those s l i c e s which e x h i b i t e d a s t a b l e response to a t e s t stimulus (60-100 uA, 0.2 msec duration, negative pulses) over a 30 minute period were used. 3.2 S l i c e - b a t h The s l i c e bath has been described in d e t a i l in a p u b l i c a t i o n from t h i s l a b o r a t o r y (Murali Mohan and Sastry, 1984). Figure 3 gives a diagrammatic i l l u s t r a t i o n of the in - v i t r o s l i c e bath. B a s i c a l l y , the bath has an alumi-- 35 -Fi gure 3 Diagrammatic i l l u s t r a t i o n o f the s l i c e bath used f o r e l e c t r o p h y s i o l o g i c a l recordings from i n v i t r o hippocampal s l i c e s . GP - grounding pin GW - ground wire HA - humidified a i r HB - heater block IN - inner net LM - medium l i n e s LS - s u c t i o n l i n e MF - manifold ON - outer net SC - s l i c e chamber SS - s e c u r i n g screw TP - temperature probe TR - temperature r e g u l a t o r - 37 -num heating block placed beneath the c i r c u l a r chamber where the hippocampal s l i c e s were perfused. A temperature sensing device attached to the block fed back to a r e g u l a t o r where the bath temperature was set and d i s p l a y e d . A length of polyethylene tubing was threaded through holes bored in the alumi-num block. One end of t h i s tubing was i n s e r t e d through a hole d r i l l e d into the side of the chamber; t h i s i s the i n l e t . P erfusing medium fed i n t o the other end of the tubing from a r e s e r v o i r was heated v i a the aluminum block to approximately bath temperature before entering the chamber. Waste medium flowed beyond the c i r c u l a r chamber into a long trench where i t was a s p i r a t e d by gentle s u c t i o n . The p o s i t i o n of the suction tube determined the depth of the perfusate at the chamber. Humidified carbogen was blown over the s l i c e s through a tube f i x e d to the top of the bath and the whole bath was f i x e d to a s t a i n l e s s s t e e l p l a t e v i a two screws. The switching of perfusates was f a c i l i t a t e d by a manifold between the r e s e r v o i r ( s ) and the bath i n l e t tubing. Changing the p e r f u s i n g medium was accomplished simply by clamping shut a l l but the d e s i r e d tubing to the mani-f o l d . The normal and p i c r o t o x i n media were contained in d i f f e r e n t r e s e r -v o i r s ; each medium was independently saturated with carbogen at the r e s e r -v o i r s . 453 Perfusion-media The normal medium was of the f o l l o w i n g composition: NaCl, 120 mM; KC1, 3.1 mM; NaH 2P0 4, 1.3 mM; NaHC0 3 > 26 mM; C a C l 2 , 2 mM; MgCl 2, 2 mM; dextrose 10 mM. The pH of t h i s medium was s t a b l e at 7.4 while aerated with carbogen. The p i c r o t o x i n medium contained the same components with the f o l l o w i n g changes: NaH?P0,, 0 mM; C a C l ? , 4 mM; MgCl ? 4 mM; p i c r o - 38 -toxin 0.01 mM. It has been reported that the GABA^ antagonist, p i c r o t o x i n , can f r e e the i n - v i t r o hippocampal s l i c e of GABAergic i n h i b i t i o n , thereby f a c i l i t a t i n g the i n d u c t i o n of LTP (Wigstrom and Gustafsson, 1983b, 1985a). However, p i c r o t o x i n also induces e p i l e p t i f o r m a c t i v i t y i n the hippocampus ( H a b l i t z , 1984) which n e c e s s i t a t e d the increase of both d i v a l e n t c a t i o n s in the per-f u s i n g medium: calcium and magnesium were elevated to s t a b i l i z e the c e l l u -l a r membrane. The higher CaCl,, concentration l e d to s o l u b i l i t y d i f f i c u l -t i e s that were remedied by the omission of NaH2P0^. Notwithstanding the omission, the p i c r o t o x i n medium maintained i t s b u f f e r i n g c a p a c i t y , showing a steady pH of 7.4 while aerated with carbogen. 3.4 Stimulation-systems In most experiments, the e x t r a c e l l u l a r s t i m u l a t i o n e l e c t r o d e s used were m e t a l l i c (SNEX 100, Rhodes E l e c t r o n i c s , r e s i s t a n c e 1-2 Mfi). The con-c e n t r i c c o n f i g u r a t i o n of these b i p o l a r e l e c t r o d e s minimized current spread beyond the stimulus s i t e . Current pulses were generated by a 2 channel Grass Instruments S88 s t i m u l a t o r . Pulses from each channel were passed through a Grass Instruments PSIU6 constant current stimulus i s o l a t i o n u n i t before reaching t h e i r r e s p e c t i v e s t i m u l a t i n g e l e c t r o d e s . A l l s t i m u l a t i o n pulses were negative square waves. For i n t r a c e l l u l a r d e p o l a r i z a t i o n , a monopolar glass e l e c t r o d e f i l l e d with 1 M KC1 and 1.6 M K c i t r a t e served the dual purpose of s t i m u l a t i n g and recording (see f o l l o w i n g s e c t i o n ) . A 4 M N a C l - f i l l e d glass microelectrode or a f i n e - t i p monopolar tungsten e l e c t r o d e was used to stimulate the Schaffer c o l l a t e r a l terminal regions i n e x c i t a b i l i t y t e s t i n g . - 39 -3.5 Recording-systems Recording microelectrodes were p u l l e d from f i b r e - f i l l e d c a p i l l a r y tubing ( b o r o s i l i c a t e g l a s s , O.D. 1.5 mm, I.D. 1.0 mm, Frederick Haer and Co.) using a Narishige PE-2 microelectrode p u l l e r . E x t r a c e l l u l a r micro-el e c t r o d e s were f i l l e d with 4 M NaCl and had t i p s of approximately 1 urn. T y p i c a l r e s i s t a n c e was 1-2 Mfi. E x t r a c e l l u l a r s i g n a l s were a m p l i f i e d by e i t h e r a World P r e c i s i o n Instruments DAM-5A d i f f e r e n t i a l p r e a m p l i f i e r or a Medical Systems Neurolog AC-preamplifier and AC-DC a m p l i f i e r . The a m p l i f i e d s i g n a l s were then d i s p l a y e d on a Data P r e c i s i o n DATA 6000 waveform ana-l y z e r . Evoked responses were stored and averaged by the analyzer and hard copies of the averaged records (4-8 sweeps) were p l o t t e d on paper by a Hewlett-Packard 7470A graphics p l o t t e r . I n t r a c e l l u l a r r e c o r d i n g / c u r r e n t i n j e c t i o n e l e c t r o d e s were als o p u l l e d from the same c a p i l l a r y tubing with the Narishige p u l l e r . E l e c t r o d e t i p s were sub-micron in s i z e and were f i l l e d with 1 M KC1 and 1.6 M K c i t r a t e . T y p i c a l r e s i s t a n c e s were 40-50 Mfi. Signals were a m p l i f i e d with a World P r e c i s i o n Instruments (WPI) M-707 i n t r a c e l l u l a r a m p l i f i e r . Current pulses generated by the Grass Instruments S88 sti m u l a t o r were d i r e c t e d to the cur-rent i n j e c t i o n c i r c u i t b u i l t i n t o the WPI M-707 a m p l i f i e r . Current pulses and i n t r a c e l l u l a r responses were monitored on a Tektronix type 5113 dual beam storage o s c i l l o s c o p e . Records were e i t h e r captured on p o l a r o i d f i l m or p l o t t e d using the Hewlett-Packard 7470A graphics p l o t t e r ( i n some e x p e r i -ments, the a m p l i f i e d responses were fed to the DATA 6000 u n i t where 4-8 sweeps were averaged and p l o t t e d ) . - 40 -3.6 A s s o c i a t i v e - induction of STP 3.6.1 C o n d i t i o n i n g - b y - t e t a n i c s t i m u l a t i o n - o f f i b e r s These experiments were done in p i c r o t o x i n - c o n t a i n i n g medium. The e f -f e c t s of t e t a n i c c o n d i t i o n i n g t r a i n s on the induction of STP were examined. A b i p o l a r t e s t s t i m u l a t i n g e l e c t r o d e (S2) was placed in the stratum r a d i a -tum of the CA3 region to stimulate the Schaffer c o l l a t e r a l s (Figures 4, 5) . The s t i m u l a t i n g current of the t e s t input ( S 2 ) was adjusted to pro-duce a "weak" (200-600 yV) population EPSP as recorded i n the a p i c a l d e n d r i -t i c area of CA^. The c o n d i t i o n i n g e l e c t r o d e was placed i n one of three p o s s i b l e p o s i t i o n s : in the stratum radiatum on the s u b i c u l a r side of the reco r d i n g e l e c t r o d e (Figure 4); in the stratum oriens (Figure 4); and in the alveus (Figure 5) to stimulate the CA-^  pyramidal c e l l s a n t i d r o m i c a l l y . This c o n d i t i o n i n g input was the "strong" input (S^) which produced r e l a -t i v e l y l arge responses at the rec o r d i n g s i t e : stratum radiatum EPSP was 1-3 mV; stratum oriens EPSP was 2-5 mV, with a superimposed population spike of 0.5-1 mV; and the alv e a r antidromic compound a c t i o n p o t e n t i a l was 3-7 mV. The recording e l e c t r o d e was placed i n the a p i c a l d e n d r i t i c region of CA^ where a t e s t impulse from S 2 produced the maximal EPSP (Figures 4, 5). The s t i m u l a t i n g e l e c t r o d e s f o r a c t i v a t i n g the S-^  and S 2 inputs were placed so that non-overlapping a f f e r e n t s would be stimulated. This c r i t e r i o n was t e s t e d by paired pulse experiments. The second t e s t response to paired pulse s t i m u l a t i o n ( i n t e r s t i m u l u s i n t e r v a l of 50 msec) of S 2 was poten-t i a t e d over c o n t r o l . I f the "strong" input (S^) was a c t i v a t e d 50 msec before a s i n g l e pulse of S 2, then the t e s t response showed e i t h e r no change or a s l i g h t decrease i n amplitude (heterosynaptic depression [Lynch e t - a l ; , Figure 4 Experimental arrangement f o r a s s o c i a t i v e induction of STP by c o n d i t i o n i n g of stratum radiatum and stratum o r i e n s . Conditioning t r a i n s c o n s i s t e d o f 10 pulses at 100 Hz (1-10 t r a i n s at 5 second i n t e r v a l s ) and were e i t h e r d e l i -vered alone or in conjunction with a s i n g l e stimulus of the t e s t (S2) input at 1 msec f o l l o w i n g the i n i t i a t i o n of each t r a i n . In some e x p e r i -ments, the temporal r e l a t i o n s h i p between the c o n d i t i o n i n g t r a i n and the t e s t EPSP f o r STP i n d u c t i o n was determined. The t e s t s t i m u l a t i o n (S2) was given at various i n t e r v a l s between -100 and +100 msec with r e s p e c t to the onset of the c o n d i t i o n i n g t r a i n ( S i 0 , stratum o r i e n s ) . R - e x t r a c e l l u l a r r e c o r d i n g e l e c t r o d e Sio - s t i m u l a t i n g e l e c t r o d e f o r stratum oriens c o n d i t i o n i n g S\r - s t i m u l a t i n g e l e c t r o d e f o r stratum radiatum c o n d i t i o n i n g S2 - s t i m u l a t i n g e l e c t r o d e f o r evoking stratum radiatum t e s t population EPSP Figure 5 Experimental arrangement f o r a s s o c i a t i v e induction of STP by alvear c o n d i -t i o n i n g . As in the case of stratum radiatum and stratum o r i e n s c o n d i t i o n -ing, alvear c o n d i t i o n i n g a l s o c o n s i s t e d o f t r a i n s o f 10 pulses at 100 Hz (1-10 t r a i n s given every 5 seconds). These c o n d i t i o n i n g t r a i n s were e i t h e r d e l i v e r e d alone or p a i r e d with a s i n g l e stimulus o f the stratum radiatum t e s t input (S2) at 1 msec f o l l o w i n g the onset o f the t r a i n . R - e x t r a c e l l u l a r r e c o r d i n g e l e c t r o d e 51 - s t i m u l a t i n g e l e c t r o d e f o r alv e a r c o n d i t i o n i n g 52 - s t i m u l a t i n g e l e c t r o d e f o r evoking t e s t stratum radiatum population EPSP - 43 -1977]). This i n d i c a t e s no overlap between S 2 and S-^; overlapping a f -f e r e n t s r e s u l t e d i n a potentiated S 2 response with the S 2 paired pulse experiments (see Figure 8A_). Only non-overlapping inputs were used in the experiments. Since a l l experiments were done in 10 pM p i c r o t o x i n , the pos-s i b i l i t y of an i n h i b i t i o n masking a potentiated S 2 response was mini-mized. The frequency of S^ and S 2 s t i m u l a t i o n s was 0.1 Hz so that each stimulus a l t e r n a t e d at 5 second i n t e r v a l s . The c o n d i t i o n i n g tetanus was d e l i v e r e d through S^ as t r a i n s of impulses. Each t r a i n c o n s i s t e d of 10 impulses at 100 Hz. One, f i v e or ten t r a i n s were given; the frequency of m u l t i t r a i n c o n d i t i o n i n g was 0.2 Hz (one t r a i n every 5 seconds). Each t r a i n was e i t h e r d e l i v e r e d alone (without the concomitant a c t i v a t i o n of the t e s t input, S 2) or paired with a s i n g l e s t i m u l a t i o n of S 2 at 1 msec a f t e r the onset of the c o n d i t i o n i n g t r a i n . A f t e r t e t a n i c c o n d i t i o n i n g , S^ and S 2 were returned to the pre-tetanus frequency of 0.1 Hz. 3.6.2 Gonditioning b y - i n t r a c e l l u l a r d e p o l a r i z i n g - pulses The r o l e of postsynaptic c e l l d e p o l a r i z a t i o n i n the a s s o c i a t i v e induc-t i o n of STP and LTP was examined using i n t r a c e l l u l a r recording (see Figure 6 f o r experimental arrangement). Two separate t e s t inputs were used here: one in stratum oriens and one in stratum radiatum. An i n t r a c e l l u l a r r e c o r d -ing e l e c t r o d e at the stratum pyramidale of the CA-^  area recorded s i n g l e c e l l EPSPs. Stimulus i n t e n s i t y f o r each t e s t input was adjusted to produce a "weak" EPSP of about 30% of maximum. Control s t i m u l a t i o n frequency f o r each input was once every 15 seconds; they were a l t e r n a t e d so that there was an i n t e r v a l of 7.5 seconds between each successive s t i m u l a t i o n . - 44 -R / D Experimental arrangement f o r a s s o c i a t i v e i n d u c t i o n of STP by i n t r a c e l l u l a r i n j e c t i o n of d e p o l a r i z i n g c u r r e n t . I n t r a c e l l u l a r d e p o l a r i z i n g pulses (3-10 nA, 75-200 msec duration) were e i t h e r given alone or paired with a s i n g l e s t i m u l a t i o n of the stratum radiatum t e s t EPSP (S2) at 1 msec f o l l o w i n g onset of the pulse. The stratum oriens t e s t EPSP ( S i ) served as a c o n t r o l and was not paired with any d e p o l a r i z i n g i n j e c t i o n s . R/D - i n t r a c e l l u l a r e l e c t r o d e f o r r e c o r d i n g and i n j e c t i o n of d e p o l a r i z i n g current pulses 51 - s t i m u l a t i n g e l e c t r o d e f o r evoking t e s t stratum o r i e n s EPSP 52 - s t i m u l a t i n g e l e c t r o d e f o r evoking t e s t s t r a t u m r a d i a t u m EPSP - 45 -Instead of a separate input f o r the c o n d i t i o n i n g tetanus t r a i n s , suprathreshold d e p o l a r i z i n g pulses were i n j e c t e d i n t o the impaled CA-^  c e l l through the i n t r a c e l l u l a r e l e c t r o d e . These d e p o l a r i z a t i o n s (75-200 msec duration; 3-10 nA; one, f i v e or ten d e p o l a r i z i n g commands at 0.2 Hz) were used to mimic the e f f e c t s of s y n a p t i c a l l y driven d e p o l a r i z a t i o n s induced by t e t a n i of inputs. The d e p o l a r i z a t i o n s were given e i t h e r alone or p a i r e d with one s t i m u l a t i o n of the stratum radiatum t e s t input at 1 msec a f t e r the onset of the d e p o l a r i z a t i o n . The stratum oriens input was never paired with any d e p o l a r i z i n g current i n j e c t i o n s , thus serving as a secondary c o n t r o l in the experiment. 3.6.3 Temporal-requirements-governing-the-induction of STP The temporal r e l a t i o n s h i p between the c o n d i t i o n i n g tetanus and the t e s t stimulus was examined by varying the i n t e r v a l between the onset of t e t a n i c s t i m u l a t i o n and the s t i m u l a t i o n of the t e s t input. The t e s t input (S 2) was evoked by s t i m u l a t i o n of stratum radiatum while the c o n d i t i o n i n g input (S^) was evoked by s t i m u l a t i o n of stratum oriens (Figure 4 ) . Each input was stimulated at 0.1 Hz ( a l t e r n a t i n g every 5 seconds) except during the c o n d i t i o n i n g tetanus, which was f i x e d at f i v e t r a i n s at 0.2 Hz, each t r a i n c o n s i s t i n g of 10 pulses at 100 Hz. The t e s t stimulus ( S 2 ) e i t h e r preceded or succeeded the onset of each t e t a n i c c o n d i t i o n i n g t r a i n by an i n t e r v a l of 0-100 msec. 3.7 A s s o c i a t i v e - •induction of- - -Schaffer- - c o l l a t e r a l - terminal - - e x c i t a b i l i t y  changes Changes in presynaptic terminal e x c i t a b i l i t y were assessed using the method of Wall (1958). Figure 7 shows the experimental arrangement. A - 46 -Figure 7 Experimental arrangement f o r e x c i t a b i l i t y t e s t i n g of Schaffer c o l l a t e r a l terminal r e g i o n s . The e x t r a c e l l u l a r r e c o r d i n g e l e c t r o d e (R) was placed i n the CA3 c e l l body lay e r to monitor a l l - o r - n o n e a c t i o n p o t e n t i a l s i n s i n g l e CA3 neurons. The CA3 neuron recorded from was a c t i v a t e d by s t i m u l a t i o n at the Schaffer c o l l a t e r a l terminal regions (S2) l o c a t e d at the a p i c a l d e n d r i t i c region of CAi. The e x c i t a b i l i t y o f the terminal regions ( d e t e r -mined by the amount of current r e q u i r e d to discharge the c e l l in 1-2 of 3 consecutive attempts) was monitored before and a f t e r c o n d i t i o n i n g . Condi-t i o n i n g t r a i n s . were d e l i v e r e d e i t h e r to stratum o r i e n s ( S i 0 ) or stratum radiatum ( S i r ) arid c o n s i s t e d of 1, 5 or 10 t r a i n s o f 10 pulses a t 100 Hz given every f i v e seconds. The c o n d i t i o n i n g was e i t h e r given alone or p a i r e d with a s i n g l e suprathreshold stimulus of the t e s t f i b r e at 1 msec f o l l o w i n g the onset o f each t r a i n . It was confirmed that the c o n d i t i o n i n g t r a i n s d i d not a c t i v a t e the experimental c e l l . - 47 -monopolar glass microelectrode ( S 2 ) or a f i n e - t i p monopolar tungsten e l e c -trode was p o s i t i o n e d i n the stratum radiatum of f i e l d CA-^ , presumably i n the area of Schaffer c o l l a t e r a l synapses at the a p i c a l d e n d r i t e s . Stimula-t i o n of the Schaffer c o l l a t e r a l terminals through the S 2 e l e c t r o d e r e s u l t s in antidromic all-or-none a c t i o n p o t e n t i a l s (AP) in the CA3 pyramidal soma. An e x t r a c e l l u l a r recording e l e c t r o d e placed i n the CA3 stratum pyramidale recorded these a c t i o n p o t e n t i a l s . An e l e c t r o d e to a c t i v a t e a "strong" input (S^) was p o s i t i o n e d i n stratum oriens or stratum radiatum i n order to provide the c o n d i t i o n i n g tetanus. S t i m u l a t i o n of the "strong" input alone d id not induce an antidromic a c t i o n p o t e n t i a l in the c e l l recorded from in f i e l d CA 3. Te t a n i c s t i m u l a t i o n s of S-^  (10 pulses at 100 Hz; one, f i v e or ten t r a i n s ; one t r a i n every f i v e seconds) were d e l i -vered alone or paired with a s i n g l e s t i m u l a t i o n of S 2 (a suprathreshold stimulus i n t e n s i t y was used) at 1 msec a f t e r the onset of the tetanus. Schaffer c o l l a t e r a l terminal e x c i t a b i l i t y was measured as the amount of current r e q u i r e d to generate an a c t i o n p o t e n t i a l i n the CA^ neuron in 1 or 2 of 3 consecutive attempts by s t i m u l a t i o n through the t e s t ( S 2 ) e l e c -trode. An increase in e x c i t a b i l i t y would be r e f l e c t e d as a decrease i n the amount of current required to discharge the c e l l and v i c e versa. A bas e l i n e l e v e l of current to produce the antidromic a c t i o n p o t e n t i a l by s t i m u l a t i o n through the t e s t ( S 2 ) el e c t r o d e was determined once every 2 to 3 minutes over 15 minutes before any c o n d i t i o n i n g s t i m u l a t i o n s were given. Three a t -tempts were made f o r every stimulus i n t e n s i t y t e s t e d . - 48 -4 RESULTS 4.1 Stratum-radiatum-conditioning The e f f e c t s of strong c o n d i t i o n i n g t e t a n i on a weak population r e s -ponse were examined i n these experiments. T e t a n i c s t i m u l a t i o n of the "strong" c o n d i t i o n i n g input (S^) without any concomitant a c t i v a t i o n of the "weak" t e s t input ( S 2 ) was i n s u f f i c i e n t i n i t s e l f to induce any p o t e n t i a -t i o n of the t e s t input ( S 2 ) . A l l unpaired t e t a n i c c o n d i t i o n i n g t r a i n s produced a degree of depression i n the t e s t response (85 ± 4% SEM of co n t r o l at 60 seconds post-10 unpaired t e t a n i c t r a i n s of stratum radiatum, 7 of 8 expts., no change i n 1 of 8) (Figure 8A). P o t e n t i a t i o n of t h i s population EPSP was induced i f the c o n d i t i o n i n g tetanus was paired with one s t i m u l a t i o n of the "weak" t e s t input at 1 msec a f t e r the onset of each t r a i n . A f t e r one paired t r a i n , there was a b r i e f , small p o t e n t i a t i o n of the t e s t response l a s t i n g about two minutes. Increasing the number of paired t r a i n s to f i v e markedly increased the s i z e of the STP induced (Figure 8A_). Repeated p a i r -ings of 1-5 t r a i n s led to repeated STP with no apparent changes in the dura-t i o n of the p o t e n t i a t i o n ; depression d id not set in a f t e r repeated p a i r -ings. The STP, measured at 60 seconds post-10 paired t r a i n s , was 184 ± 8% SEM of c o n t r o l and l a s t e d 2-3 minutes (6 of 8 expts., no change in 2 of 8). This STP was followed by LTP (162 ± 5% SEM of c o n t r o l at 15 minutes post-10 paired t r a i n s , 6 of 8 expts., no change in 2 of 8 ) . Note that depression due to unpaired t r a i n s did not increase p r o p o r t i o n a t e l y with the STP. - 49 -Figure 8 A s s o c i a t i v e induction of STP, LTP and the reduction in the Schaffer c o l l a -t e r a l terminal e x c i t a b i l i t y . (A) The schematic diagram on the l e f t i l l u s -t r a t e s the experimental arrangement. A b i p o l a r t e s t s t i m u l a t i n g e l e c t r o d e (S2) was p o s i t i o n e d i n the stratum radiatum and a b i p o l a r c o n d i t i o n i n g s t i m u l a t i n g e l e c t r o d e ( S i ) was p o s i t i o n e d i n another area of the stratum radiatum. A r e c o r d i n g microelectrode ( c o n t a i n i n g 4 M NaCl) was p o s i t i o n e d in the a p i c a l d e n d r i t i c area of CAi neurones to monitor the t e s t EPSP evoked at 0.2 Hz ( s t i m u l a t i o n strength was adjusted to obtain a response between 300-600 yV). The c o n d i t i o n i n g s t i m u l a t i o n strength was adjusted to evoke a population EPSP of 1-3 mV i n s i z e . I f a twin s t i m u l a t i o n of S? (50 ms i n t e r v a l ) r e s u l t e d in a f a c i l i t a t i o n of the second population EPSP (see i n s e t , l e f t ) and i f a s t i m u l a t i o n of S i preceding S2 s t i m u l a t i o n by 50 ms r e s u l t e d in no f a c i l i t a t i o n o f the second population EPSP (see i n s e t , r i g h t ) , then the S i and S2 s t i m u l a t i o n s were presumed to a c t i v a t e sepa-ra t e input f i b r e s . In a l l experiments, the e f f e c t of unpaired c o n d i t i o n i n g t r a i n s (UC; i . e . , the t e s t s t i m u l a t i o n was o f f during the c o n d i t i o n i n g ; each c o n d i t i o n i n g t r a i n contained 10 pulses at 100 Hz) and of pa i r e d c o n d i t i o n i n g t r a i n s (PC; i . e . , the t e s t s t i m u l a t i o n was on 1 ms a f t e r the onset o f each t r a i n ) were examined on the t e s t population EPSP. During the f i r s t 3 min-utes a f t e r UC or PC, the response was monitored every 15 seconds and at a l l other times at 30 second i n t e r v a l s . The graph on the r i g h t shows r e s u l t s from one experiment. Note STP a f t e r 1 and 5 PCs, and LTP a f t e r 10 PCs. (B) E f f e c t s of the c o n d i t i o n i n g on the e x c i t a b i l i t y of the terminal region o f a Sc h a f f e r c o l l a t e r a l . A monopolar t e s t s t i m u l a t i n g e l e c t r o d e (S2) was p o s i t i o n e d i n the a p i c a l d e n d r i t i c area of the CAi neurones to a c t i v a t e (0.2 ms negative pulses, 3-10 yA, 0.2 Hz) the terminal regions of Schaffer c o l l a t e r a l s so that antidromic a l l - o r - n o n e a c t i o n p o t e n t i a l s (see in s e t ) could be recorded from the CA3 c e l l bodies. A c o n d i t i o n i n g stimu-l a t i o n e l e c t r o d e ( S j ) was p o s i t i o n e d i n the stratum radiatum and the unpaired (UC) and p a i r e d (PC) c o n d i t i o n i n g t r a i n s were a p p l i e d as des c r i b e d i n Au I t was confirmed that the c o n d i t i o n i n g s t i m u l a t i o n d i d not a c t i v a t e the t e s t Schaffer c o l l a t e r a l . During the PC, the s t i m u l a t i o n s t r e n g t h to a n t i d r o m i c a l l y a c t i v a t e the t e s t S c h a f f e r c o l l a t e r a l was increased to 2 times co n t r o l to make sure that the f i b r e was a c t i v a t e d during PC. A s i m i -l a r a c t i v a t i o n of the t e s t f i b r e without the presence of the c o n d i t i o n i n g produced no changes i n the e x c i t a b i l i t y of the t e s t f i b r e ( r e s u l t s not shown). The amount o f c u r r e n t r e q u i r e d to produce an a l l - o r - n o n e a c t i o n p o t e n t i a l was taken as that which induced a spike i n 1-2 of 3 con s e c u t i v e attempts. In the graph to the r i g h t o f the schematic diagram, recordings taken at 30 second i n t e r v a l s were p l o t t e d . Note that 1 and 5 PCs induced a 3 minute decrease while 10 PCs induced a prolonged decrease i n the e x c i t a b i -l i t y of the t e s t f i b r e t e r m i n a l . Results i n (A) and (B_) were from d i f f e r e n t experiments. - 51 -4.2 S t r a t u m o r i e n s - c o n d i t i o n i n g The e f f e c t s of stratum oriens c o n d i t i o n i n g on the t e s t stratum r a d i a -tum EPSP were q u i t e s i m i l a r to those seen above. Unpaired c o n d i t i o n i n g t r a i n s to the stratum oriens input (5 t r a i n s of 10 pulses at 100 Hz, one t r a i n every 5 seconds) led to depression of the t e s t EPSP (94 ± 2% SEM of c o n t r o l at 60 seconds post-5 unpaired t r a i n s , n = 23; see Figure 10). P a i r -ing the c o n d i t i o n i n g tetanus with one stratum radiatum s t i m u l a t i o n at 1 ms f o l l o w i n g the onset of each t r a i n led to STP (population EPSP as a % of con-t r o l at 60 seconds post-5 paired t r a i n s : 121 ± 4 SEM, 5 of 5 e x p t s . ) . Since the p h y s i c a l separation between the c o n d i t i o n i n g and t e s t inputs did not appear to a f f e c t the a s s o c i a t i v e induction of p o t e n t i a t i o n , i t i s p o s s i -ble to exclude presynaptic terminal i n t e r a c t i o n s as necessary c r i t e r i a f o r a s s o c i a t i v e i n d u c t i o n . 4.3 A1vear - c o n d i t i o n i n g The r o l e of the postsynaptic c e l l in a s s o c i a t i v e induction of STP and LTP i s unclear. Using alvear s t i m u l a t i o n to a n t i d r o m i c a l l y a c t i v a t e CA^ c e l l s , i t was p o s s i b l e to d e p o l a r i z e the CA-^  c e l l through a c t i o n p o t e n t i a l discharge that did not involve t r a n s s y n a p t i c responses. The CA-^  c e l l was stimulated with antidromic t e t a n i c t r a i n s in the same paired and unpaired manner as the previous experiments. As with the above experiments, only the paired c o n d i t i o n i n g t e t a n i induced p o t e n t i a t i o n ; 10 paired c o n d i t i o n i n g t r a i n s produced both STP and LTP (Table 1). Unlike the s y n a p t i c a l l y driven t e t a n i , however, unpaired antidromic t e t a n i did not produce any s i g n i f i c a n t depression of the t e s t response (98 ± 3 % SEM of c o n t r o l at 60 seconds post-10 paired t r a i n s , 6 of 6 e x p t s . ) . - 52 -Table l . Post-Conditioning P o t e n t i a t i o n Induced by P a i r i n g T e t a n i c Trains of the Alveus with a S i n g l e S t i m u l a t i o n of the Test Input. . A lveus Time post-10 paired c o n d i t i o n i n g t r a i n s 60 s 15 min Test population EPSP 146 ± 7 SEM 133 ± 5 SEM as a % of c o n t r o l n = 6 n = 4 - 53 -4.4 I i n t r a c e l l u l a r current - i n j e c t i o n s Postsynaptic c e l l d e p o l a r i z a t i o n was f u r t h e r examined with i n t r a c e l l u -l a r c u r rent i n j e c t i o n s . A l l stratum oriens e x t r a c e l l u l a r responses from the unpaired s t i m u l a t i o n s e x h i b i t e d only depression a f t e r current i n j e c t i o n (Table 2). In the case of the stratum radiatum responses, the EPSPs f o l l o w -ing p a i r i n g showed p o t e n t i a t i o n whereas the unpaired EPSPs were depressed (Table 2 ) . This pattern of p o t e n t i a t i o n was s i m i l a r to that of other e x p e r i -ments i n v o l v i n g t e t a n i c c o n d i t i o n i n g t r a i n s : i n c r e a s i n g the number of paired d e p o l a r i z i n g commands r e s u l t e d in p r o g r e s s i v e l y l a r g e r STP. With ten paired c o n d i t i o n i n g commands, STP was superimposed on LTP (Figure 9, Table 2). This evidence c l e a r l y suggests the involvement of the postsynaptic c e l l in a s s o c i a t i v e i n d u c t i o n . 4.5 S c h a f f e r c o l l a t e r a l - t e r m i n a l - e x c i t a b i l i t y - c h a n g e s Because STP has been shown to be a presynaptic phenomenon in other e x c i t a b l e j u n c t i o n s (Eccles and K r n j e v i c 1959a, 1959b; Magleby and Zengel, 1975a, 1975b), i t i s p e r t i n e n t to the argument to examine concomitant pre-s y n a p t i c changes during a s s o c i a t i v e l y - i n d u c e d p o t e n t i a t i o n . Unpaired t e t a n -i c c o n d i t i o n i n g t r a i n s to stratum radiatum did not change the e x c i t a b i l i t y of the Schaffer c o l l a t e r a l terminals (amount of current to f i r e c e l l as a % of c o n t r o l : 98 ± 3 SEM at 60 seconds post-5 unpaired t r a i n s , 7 of 7 expts.; 99 ± 2 SEM at 60 seconds post-10 unpaired t r a i n s , 7 of 7 e x p t s . ) . S i m i l a r -l y , unpaired t e t a n i to stratum oriens a l s o r e s u l t e d in no a l t e r a t i o n s in terminal e x c i t a b i l i t y (amount of current to discharge c e l l as a % of con-t r o l : 99 ± 3 SEM at 60 seconds post-5 unpaired t r a i n s , 6 of 6 e x p t s . ) . However, as can be seen in Figure 8, paired t e t a n i c c o n d i t i o n i n g led to a - 54 -Table 2. E f f e c t s of i n t r a c e l l u l a r l y i n j e c t e d d e p o l a r i z i n g current pulses on EPSPs evoked by s t i m u l a t i o n o f stratum radiatum and stratum o r i e n s . A. Stratum radiatum t e s t EPSP Number of c o n d i t i o n i n g pulses 1 5 10 UP P UP P UP P 1 min post-conditioning (EPSP as % of c o n t r o l ) Range 89 Mean±SEM -n 1 129-140 135 * 6 2 72-89 82 ± 3 5 96-186 71-78 134 ± 10 74 ± 1 9 4 95-218 145 ± 14 9 15 min post-conditioning (EPSP as % of control) Range 102 Mean±SEM -n 1 90-112 98 ± 5 2 91-113 100 * 6 5 89-109 87-112 103 ± 4 97 ± 5 9 4 99-162 122 ± 8 9 B . Stratum o r i e n s t e s t EPSP Number of c o n d i t i o n i n g p u l s e s 1 5 10 UP UP UP 1 min post-conditioning (EPSP as % of control) Range Mean±SEM n 86 - 87 87 ± 1 2 71 - 88 82 ± 2 9 71 - 86 76 ± 2 9 15 min post-conditioning (EPSP as % of control) Range Mean±SEM n -91 - 110 101 * 4 9 88 - 111 98 ± 5 9 P = each c o n d i t i o n i n g d e p o l a r i z i n g command was p a i r e d with one s t i m u l a t i o n o f the t e s t stratum radiatum EPSP at 1 msec f o l l o w i n g the onset o f the cond i t i o n i n g p u l s e . UP a c o n d i t i o n i n g d e p o l a r i z i n g commands were given alone and not p a i r e d with t e s t input s t i m u l a t i o n . - 55 -Figure 9 Induction of STP and LTP by paired c o n d i t i o n i n g d e p o l a r i z a t i o n of a CA^ neuron. To evoke EPSPs in the CAi neuron, b i p o l a r t e s t s t i m u l a t i n g e l e c -trodes were po s i t i o n e d i n stratum radiatum and stratum o r i e n s . A re c o r d i n g i n t r a c e l l u l a r microelectrode in the CAi neuron was used to record the t e s t EPSPs (a.: the c a l i b r a t i o n s represent 10 msec and 5 mV) and to apply the c o n d i t i o n i n g d e p o l a r i z i n g commands (3-10 nA, 75-200 msec, 1-10 commands at 0.2 Hz) (fj: the square wave i s 0 r.lnA and 75 msec). The s t i m u l a t i o n strengths were adjusted to evoke EPSPs at 30% of maximum s i z e . The s t i m u l a -t i o n of stratum radiatum (every 15 seconds) and stratum oriens (every 15 seconds) was arranged i n such a way that there was a 7.5 second delay bet-ween the two s t i m u l a t i o n s . During the unpaired c o n d i t i o n i n g d e p o l a r i z a t i o n (UC), the t e s t EPSPs by stratum o r i e n s and stratum radiatum were not evoked and during the paired c o n d i t i o n i n g d e p o l a r i z a t i o n (PC) the stratum radiatum-induced EPSP was evoked 1 msec a f t e r the onset of the d e p o l a r i z i n g command while the stratum o r i e n s was not sti m u l a t e d . When more than one UC or PC was a p p l i e d , they were given at 0.2 Hz. Stratum radiatum s t i m u l a t i o n at 0.2 Hz without the presence of the c o n d i t i o n i n g d e p o l a r i z a t i o n of the CAi neuron did not r e s u l t i n a change in the s i z e o f the EPSP ( r e s u l t s not shown). Note STP, and LTP of the stratum radiatum-induced, but not of the stratum oriens-induced, EPSP f o l l o w i n g the PC. In the graphs, EPSPs were recorded at 30 second i n t e r v a l s . A f t e r UC and PC, however, recordings were taken at 15 second i n t e r v a l s f o r 3 minutes. The ' r e s t i n g ' membrane poten-t i a l of the neuron at the beginning of the experiment was -65 mV and at the end of the experiment was -61 mV. This i s a t y p i c a l experiment; s i m i l a r r e s u l t s were found i n s i x c e l l s . - 57 -graded decrease in e x c i t a b i l i t y that p a r a l l e l e d the p o s t - t e t a n i c p o t e n t i a -t i o n s in both time course and magnitude (amount of current to discharge c e l l as a % of c o n t r o l : 185 ± 6 SEM at 60 seconds, post-5 t r a i n paired condi-t i o n i n g by radiatum, 6 of 7 expts., no change in 1 of 7; 138 ± 6 SEM at 60 seconds post-5 t r a i n paired c o n d i t i o n i n g by o r i e n s , 5 of 6 expts., no change in 1 of 6). Tetanic t r a i n s to c o n d i t i o n i n g inputs in e i t h e r stratum oriens or stratum radiatum were able to induce the decrease in terminal e x c i t a b i -l i t y . Increasing the number of paired c o n d i t i o n i n g t r a i n s to ten led to a prolonged decreased in e x c i t a b i l i t y that was a s s o c i a t e d with LTP of the t e s t EPSP (amount of current to discharge c e l l as a % of c o n t r o l : 154 ± 5 SEM at 15 minutes post-10 t r a i n paired c o n d i t i o n i n g by radiatum, 5 of 6 expts., no change in 1 of 6) (Figure 8 ) . A summary of a l l the r e s u l t s i s shown in Table 3. 4.6 Temporal -requirements-for - induction-of-STP For these experiments, the number of pair e d c o n d i t i o n i n g t r a i n s was f i x e d at f i v e because t h i s paradigm was one that most r e l i a b l y induced STP with no LTP. Two parameters were v a r i e d here: the order in which each t e s t and c o n d i t i o n i n g inputs were paired and the i n t e r v a l between the two. In Figure 10, the x-axis i s the i n t e r s t i m u l u s i n t e r v a l between the onset of the c o n d i t i o n i n g t r a i n and the t e s t stimulus. Negative i n t e r s t i m u l u s i n t e r v a l s i n d i c a t e that the t e s t stimulus preceded the onset of the c o n d i t i o n i n g t r a i n s while p o s i t i v e i n t e r v a l s i n d i c a t e the duration between the onset of the c o n d i t i o n i n g t r a i n and the succeeding t e s t stimulus. In the experiments where the t e s t stimulus succeeded the onset of the c o n d i t i o n i n g tetanus, there was s i g n i f i c a n t STP up to an i n t e r s t i m u l u s - 58 -Table 3 . E f f e c t s of p a i r e d and unpaired c o n d i t i o n i n g t r a i n s on S c h a f f e r c o l l a t e r a l terminal e x c i t a b i l i t y . 60 s post-5 t r a i n s 15 min post-10 t r a i n s unpaired paired unpaired p a i r e d stratum radiatum c o n d i t i o n i n g ( t h r e s h o l d 98 ± 3 185 ± 6 99 ± 2 154 ± 5 as a % of c o n t r o l ) n = 7 n = 6 n = 7 n = 5 stratum o r i e n s c o n d i t i o n i n g ( t h r e s h o l d 99 ± 3 138 ± 6* as a % of c o n t r o l ) n = 6 n = 5 * Results are expressed as mean ± SEM. - 5 9 -90 L-i t t i i i i i i i i -100 -80 -60 -40 -20 0 20 40 60 80 100 INTERSTIMULUS INTERVAL (ms) Figure 10 The l i m i t s of the temporal r e l a t i o n s h i p between c o n d i t i o n i n g and t e s t stimu-li f o r the i n d u c t i o n of a s s o c i a t i v e p o t e n t i a t i o n . The t e s t EPSP was evoked by s t i m u l a t i o n of stratum radiatum and the c o n d i t i o n i n g was achieved through s t i m u l a t i o n of stratum o r i e n s (5 t r a i n s , 10 pulses i n each t r a i n at 100 Hz, one t r a i n every 5 seconds). One t e s t stimulus was p a i r e d with each o f the f i v e c o n d i t i o n i n g t r a i n s at every i n t e r s t i m u l u s i n t e r v a l examined. The c o n d i t i o n i n g - t e s t i n t e r v a l was v a r i e d berween -100 to +100 ms. A negative delay i n d i c a t e s that the t e s t stimulus preceded the onset of the c o n d i t i o n -ing t r a i n and a p o s i t i v e delay i n d i c a t e s the time at which the t e s t popula-t i o n EPSP was evoked f o l l o w i n g the onset of the c o n d i t i o n i n g tetanus. Each point on the graph ( f i l l e d c i r c l e s ) represents mean ± SEM of the t e s t popu-l a t i o n EPSP magnitude measured at 1 minute post-5 paired t r a i n s . The one point represented by the f i l l e d diamond shows a s i g n i f i c a n t depression of the t e s t EPSP at 1 minute post-5 unpaired t r a i n s of stratum o r i e n s ( i . e . , t e s t EPSP was not evoked during c o n d i t i o n i n g ) , n i s shown i n parentheses above each poin t on the graph. - 60 -i n t e r v a l of 80 msec. The curve i s bimodal with a dip in the p o t e n t i a t i o n at the 40-50 msec i n t e r v a l . Maximal p o t e n t i a t i o n was induced when both t e s t and c o n d i t i o n i n g s t i m u l i are a c t i v a t e d simultaneously. Unpaired t r a i n s were given to the c o n d i t i o n i n g stratum oriens input to confirm non-overlap with the t e s t input at stratum radiatum, as well as to show that t e t a n i c condi-t i o n i n g t r a i n s alone did not induce STP. The amount of STP induced by r e v e r s i n g the order of the s t i m u l i ap-pears to drop o f f markedly with respect to i n c r e a s i n g the i n t e r s t i m u l u s i n t e r v a l . S i g n i f i c a n t p o t e n t i a t i o n was l i m i t e d to an i n t e r s t i m u l u s i n t e r v a l of -50 msec. The s i g n i f i c a n c e of these r e s u l t s are examined in the f o l l o w -ing s e c t i o n . 5 DISCUSSION The r e s u l t s show that STP and LTP in the hippocampal s l i c e can be i n -duced a s s o c i a t i v e l y without t e t a n i c s t i m u l a t i o n of the p o t e n t i a t e d pathway. Studies in the current l i t e r a t u r e found a s s o c i a t i v e i n d u c t i o n of p o t e n t i a -t i o n only in t e t a n i z e d pathways (Barrionuevo and Brown, 1983; Lee, 1983; Levy and Steward, 1979; McNaughton et- a l ; , 1978). In the present e x p e r i -ments, the synaptic response to a s i n g l e a f f e r e n t v o l l e y i s p o t e n t i a t e d f o r a v a r i a b l e duration when i t c o i n c i d e s with a c o n d i t i o n i n g t e t a n i z a t i o n given at a separate converging a f f e r e n t pathway. This c o i n c i d e n t a l s t i m u l a t i o n of the s i n g l e a f f e r e n t v o l l e y must occur w i t h i n an asymmetrical temporal window around the c o n d i t i o n i n g tetanus. - 61 -No attempt was made to subdivide the STP induced by the present method in t o subcomponents such as augmentation and PTP, as was done with STP in other systems (Magleby and Zengel, 1975b, 1976a). Like the homosynaptic nature of tetanus-induced PTP ( E c c l e s , 1953), only that a f f e r e n t pathway paired with the c o n d i t i o n i n g stimulus i s p o t e n t i a t e d . This a s s o c i a t i v e l y induced STP increases in amplitude with the number of paired c o n d i t i o n i n g t r a i n s in a manner s i m i l a r to PTP. However, the duration of p o t e n t i a t i o n does not seem to increase with the number of c o n d i t i o n i n g t r a i n s , a property that suggests augmentation. Since only 1, 5 and 10 paired c o n d i t i o n i n g t r a i n s were examined, i t i s p o s s i b l e that the graded nature of the STP was not f u l l y evident, e s p e c i a l l y i f the induction of LTP masked a prolonged duration of STP. Previous studies of STP in s p i n a l cord, neuromuscular j u n c t i o n and squid giant axon a l l concluded that STP was mediated p o s t - t e t a n i c a l l y v i a an increase in t r a n s m i t t e r r e l e a s e (del C a s t i l l o and Katz, 1954c; Eccles and K r n j e v i c , 1959a, 1959b; Lloy d , 1949; Magleby and Zengel, 1975b; Takeuchi and Takeuchi, 1962). In the hippocampus, where quantal a n a l y s i s of t r a n s m i t t e r r e l e a s e i s s t i l l an equivocal procedure (Johnston and Brown, 1984), the locus of STP i s a l s o b e l i e v e d to be presynaptic (McNaughton, 1982; Racine and Mil gram, 1983). In the present experiments where the c o n d i t i o n i n g e l e c t r o d e was placed in the same stratum as the t e s t e l e c t r o d e , there was the p o s s i b i l i t y of some undetected i n t e r a c t i o n of presynaptic terminals which might account f o r the p o s t - c o n d i t i o n i n g p o t e n t i a t i o n . This communication may be through ephaptic i n t e r a c t i o n s , as was suggested f o r i n t e r a c t i o n s between somata and dendrites - 62 -(Richardson et.- - a l : , 1984; Turner et- a l ; , 1984), e l e c t r o t o n i c coupling (MacVicar and Dudek, 1981, 1982), the r e l e a s e of ions (Goh and Sastry, 1985; Weight and E r u l k a r , 1976) or neurotransmitter (Alger and T e y l e r , 1978; Goh and Sastry, 1985). However, the placement of the c o n d i t i o n i n g e l e c t r o d e i n an anatomically separate stratum precludes the p o s s i b i l i t y t h at the post-c o n d i t i o n i n g e f f e c t s are due e n t i r e l y to presynaptic terminal or f i b e r i n t e r a c t i o n s , e s p e c i a l l y since no axoaxonic synapses have been found in t h i s area. Thus, i t i s i n t e r e s t i n g that the r e s u l t a n t a s s o c i a t i v e STP and LTP from experiments using stratum oriens and stratum radiatum c o n d i t i o n i n g e l e c t r o d e s are remarkably s i m i l a r . Without invoking h y p o t h e t i c a l e x c i t a t o r y interneurons or i n t e r - s t r a t a a s s o c i a t i o n a l pathways, the most l o g i c a l me-d i a t o r of the c o n d i t i o n i n g e f f e c t s i s the postsynaptic CA-^  c e l l (McNaughton, 1982; McNaughton et a-1:, 1978; Robinson and Racine, 1982). I t i s evident that the postsynaptic c e l l i s capable of mediating heterosynaptic e f f e c t s , s i n c e unpaired stratum oriens c o n d i t i o n i n g t r a i n s cause a hetero-synaptic depression of the EPSP to stratum radiatum t e s t s t i m u l a t i o n (see Figure 10). Notwithstanding the postsynaptic nature of heterosynaptic de-p r e s s i o n (Dunwiddie and Lynch, 1978; Lynch et-.- a l : , 1977; Sastry et a l ; , 1984), the point i s that a c t i v a t i o n of the CA^ c e l l v i a the b a s i l a r den-d r i t e s w i l l have an e f f e c t that can be observed at the a p i c a l d e n d r i t e s . The p i v o t a l r o l e of the postsynaptic c e l l in the present experiments i s in p a r t i a l agreement with the r e s u l t s of others who nonetheless found that postsynaptic c e l l spike discharge was not necessary f o r induction of p o t e n t i a t i o n (Douglas, 1978; Wigstrom e t - a l - . , 1982). In the alveus c o n d i t -i o n i n g experiments (see Table 1), i t was a necessary c o n d i t i o n of antidromic - 63 -dromic s t i m u l a t i o n that the CA-^  c e l l does spike. S i m i l a r l y , with the i n t r a c e l l u l a r d e p o l a r i z a t i o n experiments, i t was necessary to use supra-t h r e s o l d currents in order to induce a s s o c i a t i v e p o t e n t i a t i o n . Lee (1983) examined the a b i l i t y of antidromic alvear tetanus to induce a s s o c i a t i v e p o t e n t i a t i o n in the CA^ c e l l and found that LTP i s not enhanced when an orthodromic tetanus i s paired with an antidromic t r a i n . This led him to conclude that postsynaptic c e l l discharge i s not e s s e n t i a l . A major d i f -ference between that study and the present one i s that the former was done in normal pe r f u s i n g medium whereas the l a t t e r included 10 nm p i c r o t o x i n . In the absence of p i c r o t o x i n , the r e c u r r e n t or feed-forward i n h i b i t o r y neurons to the CA^ c e l l s would s u r e l y be a c t i v a t e d , thereby shunting the d e p o l a r i -z a t i o n of the soma and probably the d e n d r i t e s . The p r o b a b i l i t y of a s u f f i -c i e n t l y large d e p o l a r i z a t i o n reaching the subsynaptic d e n d r i t i c s i t e would be correspondingly low. Hence, Lee (1983) observed no enhancement with alvear c o n d i t i o n i n g . The need f o r c e l l spike discharge in the present experimental schemes i s obvious i f the i n i t i a t i n g event f o r a s s o c i a t i v e induction i s at the subsynaptic zone in the d e n d r i t e s . Orthodromic s t i m u l a -t i o n of a f f e r e n t s r e s u l t s in synaptic transmission that f i r s t l y d e p o l a r i z e s the subsynaptic d e n d r i t e . The e l e c t r o t o n i c spread of t h i s d e p o l a r i z a t i o n to adjacent d e n d r i t i c s i t e s could be independent of c e l l spike discharge. In the present s t u d i e s , where s i n g l e a f f e r e n t v o l l e y s are paired with condi-t i o n i n g t r a i n s , the subsynaptic s i t e must be invaded by a s u f f i c i e n t l y large d e p o l a r i z a t i o n f o r the i n i t i a t i n g event to occur. Unlike orthodromic c o n d i -t i o n i n g t e t a n i , the antidromic t e t a n i do not d e p o l a r i z e the dendrites f i r s t ; t h i s i s a l s o true of the i n t r a c e l l u l a r c u rrent i n j e c t i o n s . In a d d i t i o n , the - 64 -v o l l e y s do not de p o l a r i z e the dendrites s u f f i c i e n t l y f o r a s s o c i a t i v e induc-t i o n . Therefore, i t i s e s s e n t i a l to a c t i v a t e the CA-^  c e l l above the th r e s h o l d f o r an act i o n p o t e n t i a l , and to do so repeatedly with a prolonged tetanus to ensure that the decrementally propagated d e p o l a r i z a t i o n a c t u a l l y invades the de n d r i t e s . In agreement with the above l i n e of reasoning are the r e s u l t s from i n t r a c e l l u l a r c u rrent i n j e c t i o n experiments. Indeed, there seems to be an exaggerated need f o r the postsynaptic c e l l to f i r e a c t i o n p o t e n t i a l s ; the l e f t i n s e t i n Figure 9 shows that the CA^ c e l l a c t u a l l y f i r e s repeatedly with a d e p o l a r i z i n g current i n j e c t i o n ofO'.lnA f o r 75 msec. Yet the current i n j e c t i o n s needed to induce a s s o c i a t i v e STP and LTP were several orders of magnitude greater than the i n t e n s i t y needed to f i r e the c e l l . This apparent discrepancy can be e a s i l y explained i f one examines the premise f o r a s s o c i a -t i v e p o t e n t i a t i o n , which re q u i r e s that a number of a f f e r e n t f i b e r s i n t e r a c t more or le s s simultaneously. This means that a great number of a f f e r e n t terminals — and presumably subsynaptic d e n d r i t i c s i t e s — must be a c t i -vated. Since the number of a c t i v a t e d synapses to any one CA-^  c e l l i s f i n i t e , i t may be necessary to d e p o l a r i z e the c e l l with several times the t h r e s o l d current to ensure the d e p o l a r i z a t i o n of the maximum number of den-d r i t i c i n i t i a t i n g s i t e s . A l t e r n a t e l y , the maximum number of i n i t i a t i n g s i t e s on the dendrites of one c e l l may be too small f o r a s s o c i a t i v e induc-t i o n , r e q u i r i n g the f i r i n g of the CA-^  c e l l so that a d d i t i o n a l c e l l s could be r e c r u i t e d through ephaptic i n t e r a c t i o n s (Richardson e t - a l ; , 1984; Turner et a l ; , 1984) or e l e c t r o t o n i c coupling (MacVicar and Dudek, 1981, 1982). Whatever the mechanism, i t i s c l e a r that the postsynaptic c e l l ( s ) i n i t i a t e s the induction - 65 -of a s s o c i a t i v e p o t e n t i a t i o n but cannot be the only causal event. To induce a s s o c i a t i v e STP and LTP, the a f f e r e n t pathway must be stimu-l a t e d at l e a s t once in conjunction with the c o n d i t i o n i n g stimulus. Presuma-bly , the postsynaptic d e p o l a r i z a t i o n sets up a synaptic environment that i s conducive to p o t e n t i a t i o n . It can be argued that the c r u c i a l event f o r a s s o c i a t i v e p o t e n t i a t i o n occurs at the presynaptic terminals; the input s p e c i f i c i t y of the a s s o c i a t i v e l y - i n d u c e d p o t e n t i a t i o n supports t h i s view. Since the s i t e of the c o n d i t i o n i n g input i s inconsequential to which a f -f e r e n t pathway i s p o t e n t i a t e d , the d e p o l a r i z a t i o n of the subsynaptic s i t e can only be i n t e r p r e t e d as a g e n e r a l i z e d change in the postsynaptic c e l l , namely the d e n d r i t e s . Otherwise, subsequent s t i m u l a t i o n of any a f f e r e n t pathway would have produced a po t e n t i a t e d postsynaptic response. This i s c l e a r l y not the case. The e x c i t a b i l i t y changes of the Schaffer c o l l a t e r a l terminals i n d i c a t e a c r i t i c a l r o l e f o r the presynaptic f i b e r . P o s t - t e t a n i c p o t e n t i a t i o n at the neuromuscular j u n c t i o n and s p i n a l cord i s accompanied by a p a r a l l e l period of h y p e r p o l a r i z a t i o n at the presynaptic terminal (Gasser and Graham, 1932; Gasser and Grundfest, 1936; Larrabee and Bronk, 1938). Upon reaching the hyperpolarized t e r m i n a l , a presynaptic a c t i o n p o t e n t i a l would be r e l a t i v e l y l a r g e r in amplitude, thereby r e l e a s i n g more t r a n s m i t t e r per a c t i o n p o t e n t i a l (Eccles and K r n j e v i c , 1959a, 1959b; Hubbard and Schmidt, 1963; Lloyd, 1949). Another consequence of t h i s h y p e r p o l a r i z a t i o n i s a decrease in the e x c i t a b i l i t y of the presynaptic terminal as defined by Wall (1958) (Wall and Johnson, 1958). This decreased e x c i t a b i l i t y i s a l s o observed i n the present study (see Figure 4B, Table 3). - 66 -Note that only the paired c o n d i t i o n i n g t r a i n s produced any changes in e x c i t a b i l i t y of the Schaffer c o l l a t e r a l t e r m i n a l s . E q u a l l y important i s that unpaired c o n d i t i o n i n g t r a i n s did not a l t e r e x c i t a b i l i t y , thereby r e a f -f i r m i n g the lack of l a s t i n g consequences due to any d i r e c t i n t e r a c t i o n s bet-ween the t e s t and c o n d i t i o n i n g inputs. The graded nature of the e x c i t a b i -l i t y decrease i s r e a d i l y seen. The p a r a l l e l between Schaffer terminal e x c i t a b i l i t y changes and the a s s o c i a t i v e l y - i n d u c e d STP and LTP suggests a causal r e l a t i o n s h i p . Assuming that the decreased e x c i t a b i l i t y r e f l e c t s a proportionate h y p e r p o l a r i z a t i o n of the t e r m i n a l s , one can i n f e r that t h i s h y p e r p o l a r i z a t i o n w i l l lead to increased t r a n s m i t t e r r e l e a s e per a f f e r e n t v o l l e y . The r e s u l t s presented are f a r from c o n c l u s i v e , but they do suggest a p l a u s i b l e presynaptic mechanism f o r a s s o c i a t i v e l y - i n d u c e d STP; s i m i l a r decreases in a f f e r e n t terminal e x c i t a b i l i t y have been found to accompany LTP in the hippocampus (Sastry, 1982). A d e f i n i t i v e quantal a n a l y s i s of potent-iat e d t r a n s m i t t e r r e l e a s e in the hippocampus has yet to be done, but i n -creased quantal content was found i n the c r a y f i s h neuromuscular j u n c t i o n during LTP (Baxter et • al-;, 1985). However, the r e l a t i o n s h i p between pre-synaptic changes and hippocampal LTP i s more tenuous. What f a c t o r or process does the postsynaptic c e l l e l a b orate, and how does t h i s t r a n s l a t e i n t o a presynaptic change This e l u s i v e l i n k between the pre- and postsynaptic elements may be one or more of several p o s s i b l e candidates. In the stratum pyramidale of f i e l d C A ^ e x t r a c e l l u l a r potas-sium [ K + ] Q may reach a maximum of 12 mM during a tetanus (Benninger et a l ; , 1980). Alger and T e y l e r (1978) found a good c o r r e l a t i o n between post-t e t a n i c e x t r a c e l l u l a r potassium [ K + ] and the amplitude of the poten-- 67 -t i a t e d CA-^  population s p i k e ; no such c o r r e l a t i o n was found between [ K + ] q and the population EPSP. However, the p o t e n t i a t i o n that they c a l l STP i s at l e a s t one order of magnitude greater i n duration than the STP s t u -died here and would be more properly c a l l e d LTP. Their conclusion that e l e -vated [ K + ] Q increases the e x c i t a b i l i t y of the postsynaptic c e l l i s i n agreement with other mechanisms suggesting enhanced responsiveness of the postsynaptic c e l l a f t e r t e t a n i c s t i m u l a t i o n (Abraham et a l : , 1985; F r i t z and Gardner-Medwin, 1976). The same study showed th a t [ K + ] Q at the den-d r i t e s i s also elevated a f t e r a tetanus; such an i o n i c environment at the terminal region could increase terminal e x c i t a b i l i t y by d e p o l a r i z a t i o n r a t h e r than decrease i t . Indeed, Goh and Sastry (1985) found t h a t untetan-ized a f f e r e n t terminals adjacent to t e t a n i z e d terminals a c t u a l l y e x h i b i t increased e x c i t a b i l i t y . This t h e o r e t i c a l impasse can be surmounted by examination of the i o n i c mechanism underlying p o s t - t e t a n i c h y p e r p o l a r i z a t i o n at p e r i p h e r a l neuronal j u n c t i o n s . Of the two phases of p o s t - t e t a n i c h y p e r p o l a r i z a t i o n (Gasser and Graham, 1932; Gasser and Grundfest, 1936), the second prolonged phase e x h i -b i t s a duration of several minutes, which c o r r e l a t e s w e l l with that of a s s o c i a t i v e STP. This second phase has been presumed to be the r e s u l t of an a c t i v a t e d e l e c t r o g e n i c sodium pump (Na +,K +-ATPase) (Nakajima and Takahashi, 1966; Rang and R i t c h i e , 1968a, 1968b). The a c t i v i t y of t h i s o u a b a i n - s e n s i t i v e Na +,K +-ATPase i s d i r e c t l y dependent upon the i n t r a c e l -l u l a r sodium concentration [Na ]^ ( R i t c h i e and Straub, 1957; Thomas, 1972), and to a l e s s e r extent, on an elevated [ K + ] Q (Rang and R i t c h i e , 1968a, 1968b). I t was found t h a t both Na +,K +-ATPase and p o s t - t e t a n i c - 68 -h y p e r p o l a r i z a t i o n e x h i b i t the same sigmoidal dependence on [ K + ] Q (McDougal and Osborn, 1976). Tetanic s t i m u l a t i o n of g a r f i s h o l f a c t o r y nerve and r a b b i t vagus nerve increases Na +,K +-ATPase a c t i v i t y as measured by inorganic phosphate e f f l u x , which then returns to r e s t i n g l e v e l s p o s t - t e t a n -i c a l l y with an exponential r a t e constant of about 4 minutes ( R i t c h i e and Straub, 1978). The r a t e of i n o r g a n i c phosphate e f f l u x a l s o increases with i n c r e a s i n g stimulus frequency ( R i t c h i e and Straub, 1978). In l i g h t of the above mechanism, a s s o c i a t i v e i n d u c t i o n of STP may involve the f o l l o w i n g s e r i e s of events: a c o n d i t i o n i n g tetanus or i n t r a c e l -l u l a r current i n j e c t i o n d e p o l a r i z e s the postsynaptic d e n d r i t e s , which r e -lease a large amount of potassium. The t r a n s i e n t increase i n [ K + ] Q does not exert enough d r i v e to a c t i v a t e the Na +,K +-ATPase at the t e s t pre-synaptic t e r m i n a l s ; i n f a c t , the e x c i t a b i l i t y of the terminals may be i n -creased. During t h i s phase of increased e x c i t a b i l i t y , the invasion of these terminals by a s i n g l e a f f e r e n t v o l l e y may induce an exaggerated Na +,K +-ATPase response to the consequent Na + i n f l u x , thereby h y p e r p o l a r i z i n g the terminals and preterminal axons. This h y p e r p o l a r i z a t i o n would be analogous to that induced by t e t a n i c s t i m u l a t i o n of the a f f e r e n t f i b e r s , leading to a f a c i l i t a t i o n of t r a n s m i t t e r r e l e a s e to subsequent t e s t s t i m u l a t i o n s of the a f f e r e n t s . The h y p e r p o l a r i z a t i o n i s merely the priming event f o r some other process, such as an increase i n the pool of a v a i l a b l e t r a n s m i t t e r (Hubbard, 1963) or b e t t e r propagation of a preterminal a c t i o n p o t e n t i a l to the t e r m i -n a l , t hat mediates the p o t e n t i a t i o n ; h y p e r p o l a r i z a t i o n presumably elevates t h i s process to a s t a t e of s u b l i m i n a l a c t i v a t i o n to await s u p r a - a c t i v a t i o n by the a f f e r e n t impulse. Increasing the number of paired c o n d i t i o n i n g - 69 -t r a i n s or current i n j e c t i o n s i n t o CA-^  neurons could increase the [ K + ] Q so as to r e c r u i t more presynaptic terminals to the s u b l i m i n a l l e v e l of a c t i -v a t i o n . The expression of the p o t e n t i a t e d r e l e a s e would then f o l l o w mechanisms along the l i n e s of the r e s i d u a l calcium theory (Katz and M i l e d i , 1968). I t must be borne in mind that the h y p e r p o l a r i z a t i o n i s i n f e r r e d from the decreased terminal e x c i t a b i l i t y and, i t i s p o s s i b l e to have an apparent decrease in e x c i t a b i l i t y without h y p e r p o l a r i z a t i o n . For example, a small d e p o l a r i z a t i o n , such as that induced by a s l i g h t l y elevated [ K + ] Q , can lead to i n a c t i v a t i o n of voltage dependent sodium channels at the t e r m i n a l . To generate an antidromic a c t i o n p o t e n t i a l , a higher d e p o l a r i z i n g current must be passed to a c t i v a t e those a v a i l a b l e sodium channels that are not r i g h t at the t e r m i n a l . Furthermore, the e x c i t a b i l i t y i t s e l f i s i n f e r r e d from higher current i n t e n s i t i e s needed to f i r e an antidromic a c t i o n poten-t i a l . The higher current may be needed to overcome an increase in r e s t i n g conductance of any one of several ions. Other p o s s i b l e mechanisms f o r the observed induction of STP may i n -volve c a l c i u m - a c t i v a t e d potassium channels at the presynaptic terminal ( M a l l a r t , 1984; Sastry, 1979), calcium-dependent c h l o r i d e channels (Owen et  a l ; , 1984) or voltage-dependent calcium channels (MacVicar, 1984). In the periphery, C a + + f l u x e s at the presynaptic terminal during normal and f a c i -l i t a t e d t r a n s m i t t e r r e l e a s e has been well e s t a b l i s h e d (Hodgkin and Keynes, 1957; Katz and M i l e d i , 1967, 1968). Therefore, i t i s hardly s u r p r i s i n g that C a + + or Ca + +-mediated currents can be involved in a s s o c i a t i v e STP. Some workers have suggested the a c t i v a t i o n of a Ca -mediated p r o t e i n kinase C - 70 -in the presynaptic terminal to account f o r LTP (Malenka et - - a l . , 1986b). This kinase can be s e l e c t i v e l y a c t i v a t e d by c e r t a i n phorbol e s t e r s to pro-duce LTP in the hippocampus; the LTP thus produced cannnot be d i s t i n g u i s h e d from tetanus induced LTP, and nei t h e r LTP can be induced when maximal poten-t i a t i o n has been achieved by e i t h e r method (Malenka et-al.- , 1986b). P r o t e i n kinase C i s found i n presynaptic terminals ( G i r a r d et- a l ; , 1985) and may c a t a l y z e the phosphorylation of several p r o t e i n s during LTP (Nelson and Routtenberg, 1985, Browning e t a l ; , 1979). In the hippocampal pyramidal c e l l , c e r t a i n phorbol e s t e r s can block a Ca + +-mediated potassium current (Malenka e t - a l ; , 1986a); s i m i l a r channels have been found in pre-synaptic nerve terminals (Bartschat and B l a u s t e i n , 1985). The blockade of t h i s outward K + conductance could delay membrane r e p o l a r i z a t i o n and lead to a prolonged C a + + c u r r e n t , which would increase t r a n s m i t t e r r e l e a s e . S i m i l a r l y , the delayed r e p o l a r i z a t i o n may prolong sodium channel i n a c t i v a -t i o n , r e s u l t i n g i n an apparent decrease in terminal e x c i t a b i l i t y . In addi-t i o n , there i s evidence that phorbol e s t e r s increase calcium currents by some a c t i o n on p r o t e i n kinase C (DeRiemer et a l ; , 1985). However, phorbol e s t e r s do not induce p o s t - t e t a n i c p o t e n t i a t i o n independently of LTP (Malenka e t - a l ; , 1986b). C o l l i n g r i d g e (1985) has proposed a postsynaptic inward current to ac-count f o r LTP. This hypothesis involves a glutatmate receptor subtype, the s o - c a l l e d N-methyl-D-aspartate (NMDA) receptor located on the postsynaptic dendrites (Baudry and Lynch, 1981). I t i s suggested that a voltage depend-ent magnesium (Mg + +) blockade of a NMDA-receptor coupled conductance i s l i f t e d upon d e p o l a r i z a t i o n of the postsynaptic c e l l (Mayer et - a-1., 1984; - 71 -Nowak et - al.-, 1984). Subsequent r e l e a s e of t r a n s m i t t e r , presumably g l u t a -mate (Storm-Mathisen, 1977), from the presynaptic terminal then causes a greater l a t e current through the NMDA receptor-coupled ion channel to f u r -ther enhance the postsynaptic response ( H a r r i s et- a l ; , 1984; Wigstrom and Gustafsson, 1984, 1985b). This inward current i s blocked by the NMDA anata-g o n i s t 2-amino-5-phosphonovalerate (APV), which al s o blocks the induction of LTP (Col 1 ingridge e t - a l ; , 1983; H a r r i s et a l , 1984; Wigstrom and Gustafsson, 1984). This mechanism thus accounts f o r the need to de p o l a r i z e the post-synaptic c e l l f o r a s s o c i a t i v e induction of LTP. The presynaptic element could be a c t i v a t e d by p o s s i b l e autoreceptors f o r glutamate (Col 1 ingridge et al-.-, 1983; McBean and Roberts, 1981). I f these autoreceptors are als o NMDA rec e p t o r s , then presynaptic d e p o l a r i z a t i o n ++ by the a f f e r e n t v o l l e y may be req u i r e d to remove the Mg i n h i b i t i o n before current flow can occur. Assuming that C a + + flows through these channels (Dingledine, 1983a, 1983b), the ext r a C a + + in the terminal would act as the r e s i d u a l C a + + in Katz and M i l e d i ' s (1968) theory f o r transmit-t e r r e l e a s e . Again, the increased conductance may shunt the e x t r a c e l l u l a r current i n j e c t i o n s , thereby n e c e s s i t a t i n g higher current i n t e n s i t i e s to f i r e an antidromic a c t i o n p o t e n t i a l . A f t e r the conclusion of the present s t u d i e s , Wigstrom e t a l ; (1986) published a paper examining the a s s o c i a t i v e induction of LTP using i n t r a c e l -l u l a r d e p o l a r i z a t i o n in conjunction with s i n g l e a f f e r e n t v o l l e y s . These authors agree that the l e v e l of postsynaptic c e l l d e p o l a r i z a t i o n , rather than spike a c t i v i t y , i s the determinant f a c t o r at the postsynaptic c e l l to induce LTP. However, they propose a postsynaptic locus f o r the induction of - 72 -LTP based on the v o l t a g e - s e n s i t i v e NMDA r e c e p t o r - a c t i v a t e d current (Wigstrom et- - a l ; , 1985). This current i s apparent a f t e r a s i n g l e high i n t e n s i t y s t i m u l a t i o n or a b r i e f tetanus (Wigstrom e t - a l . , 1985; Wigstrom and Gustafsson, 1984), and i s blocked by the NMDA antagonist 2-amino-5-phosphono-v a l e r a t e (APV). In t h e i r scheme of events, d e p o l a r i z a t i o n of the subsynap-t i c membrane containing NMDA receptors, i n conjunction with t r a n s m i t t e r released by a f f e r e n t s t i m u l a t i o n , i s the a s s o c i a t i v e event that r e s u l t s in potenti a t e d postsynaptic responses. This i s a very a t t r a c t i v e hypothesis, f o r these authors also showed that the c o n d i t i o n i n g tetanus and the s i n g l e a f f e r e n t s t i m u l a t i o n can be separated by a period of 40 msec (Wigstrom and Gustafsson, 1985b). This temporal separation can be a t t r i b u t e d to a r e s i d u a l c u r r r e n t passing through the NMDA receptor channel and having a time course of about 50 msec f o r a s i n g l e v o l l e y . (Wigstrom et al.-, 1985). These authors suggest t h a t a temp-oral overlap of the NMDA cur r e n t with the c o n d i t i o n i n g tetanus i s e s s e n t i a l f o r a s s o c i a t i v e i n d u c t i o n . Such a mechanism would explain, the present ob-ser v a t i o n that a t e s t stimulus can precede the c o n d i t i o n i n g tetanus by 50 msec and s t i l l induce STP. S i m i l a r l y , a c o n d i t i o n i n g tetanus would be expected to generate a current of longer duration; hence, the t e s t stimulus can f o l l o w a c o n d i t i o n i n g tetanus by up to 80 msec and s t i l l produce STP. The great e s t amount of p o t e n t i a t i o n i s induced by simultaneous t e s t and co n d i t i o n i n g s t i m u l a t i o n s . Other workers have al s o found that the a s s o c i a -t i v e i n d u c t i o n of LTP re q u i r e s temporal overlap of t e s t and c o n d i t i o n i n g s t i m u l a t i o n s (Kelso and Brown, 1986; Levy and Steward, 1983). - 73 -Wigstrom and Gustafsson's theory f o r the a s s o c i a t i v e induction of LTP (1985b) does not account f o r the decreased terminal e x c i t a b i l i t y i n the pre-sent study. This decrease i n terminal e x c i t a b i l i t y i s an important l i n k between STP in the hippocampus and that i n other systems. Although hyper-p o l a r i z a t i o n of the Schaffer c o l l a t e r a l terminals and ac c e l e r a t e d Na ,K -ATPase a c t i v i t y was not demonstrated d i r e c t l y in the present study, t h e i r reported r o l e s i n PTP at other e x c i t a b l e j u n c t i o n s suggest equivalent r o l e s in the hippocampus. With respect to the temporal l i m i t s of a s s o c i a t i v e STP — namely the 40 msec separation between a t e s t stimulus and the succeeding c o n d i t i o n i n g tetanus, i t i s conceivable that each a f f e r e n t v o l l e y induces an increment of subliminal a c t i v a t i o n at the presynaptic t e r m i n a l , much as each a f f e r e n t v o l l e y induces an inward current mediated by the NMDA channel. This increment of subliminal a c t i v a t i o n could be t r i g g e r e d by the t r a n s i e n t + + ++ increase i n Na ,K -ATPase a c t i v i t y or i n t r a c e l l u l a r Ca through v o l -tage dependent channels, but only i f a t e t a n i c d e p o l a r i z a t i o n of the post-synaptic c e l l occurs within a short time. Since the exact nature of t h i s subliminal a c t i v a t i o n i s unknown, any number of p o s s i b i l i t i e s could be advanced. Notwithstanding t h i s u n c e r t a i n t y , the r e s u l t s in t h i s t h e s i s s t r o n g l y support a c r u c i a l presynaptic event f o r the a s s o c i a t i v e induction of STP as well as LTP. Up u n t i l now, STP and LTP in the hippocampus have been con-sidered t o t a l l y separate phenomena. The proposed d e n d r i t i c i n i t i a t i o n s i t e f o r the a s s o c i a t i v e induction of STP i s unusual because STP has already been shown to be a presynaptic event at other neuronal j u n c t i o n s . Furthermore, a s i n g l e s t i m u l a t i o n of a f f e r e n t s has not p r e v i o u s l y been shown to induce any - 74 -short-term synaptic e f f i c a c y changes. On the other hand, a s s o c i a t i v e l y induced STP in the hippocampus may be due to a postsynaptic mechanism i n -v o l v i n g NMDA receptor a c t i v a t i o n as suggested f o r LTP (Col 1ingridge, 1985; Wigstrb'm and Gustafsson, 1985b). With respect to LTP, a great number of hypotheses regarding i t s mechanism focus on the postsynaptic c e l l f o r both i n d u c t i o n and maintenance. Although there i s evidence f o r increased t r a n s -m i t t e r r e l e a s e during LTP (Dolphin et a l ; , 1982; Lynch e t - a l . - , 1985; Skrede and Malthe-St&renssen, 1981), a p l a u s i b l e i n t e r a c t i o n between pre- and post-synaptic c e l l s has only j u s t been advanced (Wigstrom and Gustafsson, 1985b). Unfortunately, even t h i s l a s t hypothesis ignores the p o s s i b l e r o l e of presynaptic causal events such as the l a s t i n g decrease in Schaffer c o l -l a t e r a l terminal e x c i t a b i l i t y , which i s a s u b s t a n t i a l l i n k between LTP and presynaptic changes. The present r e s u l t s also suggest a p o s s i b l e postsynaptic i n i t i a t i n g s i t e f o r LTP. This evidence i n d i c a t e s s i m i l a r c o n d i t i o n s underlying the two forms of p o t e n t i a t i o n and suggests a common mechanism of induction and main-tenance. The f a c t that a s s o c i a t i v e LTP can be induced in the same fa s h i o n as STP r a i s e s i n t e r e s t i n g p o s s i b i l i t i e s regarding the locus of each poten-t i a t i o n ; perhaps a s s o c i a t i v e STP in the hippocampus (or c e n t r a l nervous sys-tem) i s uniquely d i f f e r e n t from that in the periphery and tetanus-induced STP; there i s also the p o s s i b i l i t y that some fundamental u n i t of p o t e n t i a -t i o n i s r e s p o n s i b l e f o r both a s s o c i a t i v e STP and LTP, the d i f f e r e n c e between the two being only a matter of d u r a t i o n . - 75 -6 CONCLUSIONS Ever since B l i s s and Gardner-Medwin (1971) f i r s t reported LTP in the hippocampus, the working hypothesis f o r LTP has always been that LTP does not share a basic mechanism with STP ( B l i s s and L0mo, 1973; McNaughton, 1982; Abraham e t - a l ; , 1985); the former i s b e l i e v e d by some i n v e s t i g a t o r s to have a postsynaptic locus, the l a t t e r a presynaptic l o c u s . In s p i t e of the recent f i n d i n g s that a s s o c i a t i v e induction of LTP depends on c o i n c i d e n t pre- and postsynaptic a c t i v i t y , the study of synaptic p o t e n t i a t i o n in the hippocampus remains l a r g e l y focussed on the postsynaptic c e l l . The present study shows that STP can a l s o be induced by a s s o c i a t i v e i n t e r a c t i o n s between the pre- and postsynaptic c e l l s . This STP demonstrates a magnitude and duration that p a r a l l e l a presynaptic decrease in e x c i t a b i l i t y , which has been shown to accompany STP in other s y n a p t i c j u n c t i o n s . A novel f i n d i n g i s that STP and LTP can be induced without t e t a n i c s t i m u l a t i o n of the a f f e r e n t f i b e r s . By i n c r e a s i n g the number of i n t e r a c t i o n s between the pre- and post-synaptic elements, greater STP can be induced. With ten p a i r s of such i n t e r a c t i o n s , STP i s followed by LTP. The s i t e of a c t i o n of the c o n d i t i o n -ing tetanus i s narrowed to the postsynaptic c e l l ; the c o n d i t i o n i n g e f f e c t i t s e l f i s shown to be analogous to a g e n e r a l i z e d d e p o l a r i z a t i o n of the post-s y n a p t i c c e l l and can be mimicked by i n t r a c e l l u l a r i n j e c t i o n s of d e p o l a r i z -ing c u r r e n t . Temporal separation between the a c t i v a t i o n of the pre- and postsynaptic c e l l s was examined, and p o s s i b l e mechanisms f o r the presynaptic changes were suggested. These f i n d i n g s suggest that STP induction i s not confined to the presynaptic terminals and may share a common a s s o c i a t i v e - 76 -induction with LTP. Conversely, LTP may have a very strong presynaptic component f o r induction and maintenance. 7 REFERENCES ABRAHAM, W. C , BLISS, T. V. P. and GODDARD, G. V. (1985). Heterosynaptic changes accompanying long-term but not short-term p o t e n t i a t i o n of the perforant path in the anaesthetized r a t . J . - Physiol.- (Lond;) 363: 335-349. ALGER, B. E. and NICOLL, R. A. (1979). GABA-mediated b i p h a s i c i n h i b i t o r y responses i n hippocampus. Nature-(Lond;) 281: 315-317. ALGER, B. E. and TEYLER, T. J . (1978). Potassium and short-term response p l a s t i c i t y in the hippocampal s l i c e . Brain -Res; 159: 239-242. ANDERSEN, P. (1960). Interhippocampal impulses. I I . Apic a l d e n d r i t i c a c t i -v ation of CAi neurones. A c t a p h y s i o l ; scand. 48: 178-208. ANDERSEN, P. (1975). Organization of hippocampal neurons and t h e i r i n t e r -connections. In: R. L. Isaacson and K. H. Pribram (Eds) The - Hippo- campus; - - Vol.- 1; Plenum Press, New York, pp. 155-175. ANDERSEN, P., BLISS, T. V. P. and SKREDE, K. K. (1971). Lamellar o r g a n i z a -t i o n of hippocampal e x c i t a t o r y pathways. Exp.- - -Brain - - Res; 13: 222-238. ANDERSEN, P., ECCLES, J . C. and L0YNING, Y. (1963). Recurrent i n h i b i t i o n i n hippocampus with i d e n t i f i c a t i o n of the i n h i b i t o r y c e l l and i t s synapses. Nature (Lond.) 198: 540-542. ANDERSEN, P., ECCLES, J . C. and U0YNING, Y. (1964). Location of postsynaptic i n h i b i t o r y synapses on hippocampal pyramids. J-.- -Neurophysiol. 27: 608-619. ~ ANDERSEN, P. and LOMJ0, T. (1966). Mode of a c t i v a t i o n of hippocampal pyra-midal c e l l s by e x c i t a t o r y synapses on d e n d r i t e s . Exp; - Brain- Res-; 2_: 247-260. ANDERSEN, P., SILFVENIUS, H., SUNDBERG, S. H. and SVEEN, 0. (1980). A comparison of d i s t a l and proximal d e n d r i t i c synapses on CAi pyramids in guinea-pig hippocampal s l i c e s i n v i t r o . J ; - P h y s i o l ; • (Lond.) 307: 273-299. ANDERSEN, P., SUNDBERG, S. H., SVEEN, 0. and WIGSTROM, H. (1977). S p e c i f i c l o n g - l a s t i n g p o t e n t i a t i o n of synaptic transmission in hippocampal s l i c e s . Nature (Lond.) 266: 736-737. - 77 -ANGEVINE, J . B. JR. (1975). Development of the hippocampal r e g i o n . In: R. L. Isaacson and K. H. Pribram (Eds) The - Hippocampus.- - Vol -. - -1;  S t r u c t u r e and - Development; Plenum Press, New York, pp. 61-94. BAKER, P. F., HODGKIN, A. L. and RIDGWAY, E. B. (1971). D e p o l a r i z a t i o n and calcium entry in squid giant axons. J ; Physiol;•(bond;) 218: 709-755. BARRIONUEVO, G. and BROWN, T. H. (1983). A s s o c i a t i v e long-term p o t e n t i a t i o n i n hippocampal s l i c e s . Proc;- Natl.- Acad;•Sci;•USA 80: 7347-7351. BARTSCHAT, D. K. and BLAUSTEIN, M. P. (1985). Calcium-activated potassium channels in i s o l a t e d presynaptic nerve terminals from r a t b r a i n . J ;  P h y s i o l , (bond:) 361: 441-457. BAUDRY, M. and bYNCH, G. (1980). Hypothesis regarding the c e l l u l a r mechan-isms r e s p o n s i b l e f o r long-term synaptic p o t e n t i a t i o n i n the hippocampus. Exp;-Neurol. 68: 202-204. BAUDRY, M. and bYNCH, G. (1981). Hippocampal glutamate r e c e p t o r s . Mol;  C e l l Biochem: 38: 5-18. BAXTER, D. A., BITTNER, G. D. and BROWN, T. H. (1985). Quantal mechanism of long-term synaptic p o t e n t i a t i o n . Proc: - - Natl; - Acad; - - Sci.- - - USA 82: 5978-5982. BENNINGER, C , KADIS, J . and PRINCE, D. A. (1980). E x t r a c e l l u l a r calcium and potassium changes in hippocampal s l i c e s . Brain - Res.- 187: 165-182. BIRKS, R. I. and COHEN, M. W. (1968). The i n f l u e n c e of i n t e r n a l sodium on the behaviour of motor nerve endings. Proc.- - -R-.- • Soc:- -bond.- - 8-.- 170: 401-412. BbACKSTAD, T. W. (1956). Commissural connections of the hippocampal region of the r a t , with s p e c i a l reference to t h e i r mode of termination. J ;  Comp.-Neurol: 105: 417-538. BbACKSTAD, T. W., BRINK, K., HEM, J . and JEUNE, B. (1970). D i s t r i b u t i o n of hippocampal mossy f i b e r s i n the r a t : an experimental study with s i l v e r impregnation methods. J.-Comp:-Neurol; 138: 433-449. BbACKSTAD, T. W. and FLOOD, P. R. (1963). U l t r a - s t r u c t u r e of hippocampal axosomatic synapses. Nature - (bond:) 198: 542-543. BbISS, T. V. P. and GARDNER-MEDWIN, A. R. (1971). bong-lasting increases of synaptic i n f l u e n c e in the unanaesthetized hippocampus. J-.- -Physiol;  (bond.) 26: 32P. BbISS, T. V. P. and GARDNER-MEDWIN, A. R. (1973). bong-lasting p o t e n t i a t i o n of synaptic transmission i n the dentate area of the unanaesthetized r a b b i t f o l l o w i n g s t i m u l a t i o n of the perforant path. J.- - P h y s i o l ;  (bond.) 232: 357-374. - 78 -BLISS, T. V. P. and LJ0MO, T. (1973). Long-lasting p o t e n t i a t i o n of synaptic transmission i n the dentate area of the anaesthetized r a b b i t f o l l o w i n g s t i m u l a t i o n of the perforant path, d; - Physiol.- (Lond.-) 232: 331-356. BOEHM, R. (1894). E i n i g e Beobachtungen uber die Nervenwirkung des Curarin Arch; - Exp. Path. -Pharmakol; 35_: 16-22. BRIGGS, C. A., BROWN, T. H. and MCAFEE, D. A. (1983). P l a s t i c i t y of n i c o -t i n i c synaptic transmission. Trans.- - Am; -Soc; -Neurochem: 14: 141. BRIGGS, C. A., BROWN, T. H. and MCAFEE, D. A. (1985). Neurophysiology and pharmacology of long-term p o t e n t i a t i o n in the r a t sympathetic ganglion. J ; - Physiol.- (Lond.) 359: 503-521. BROCA, P. (1878). Anatomie comparee des c i r c o n v o l u t i o n s c e r e b r a l e s Le grand lobe limbique et l a s c i s s u r e limbique dans l a s e r i e des mammiferes. Rev; Anthrop; 1_: 385-498. BRODMANN, K. (1909). Vergleichende - L o k a l i s a t i o n s l e h r e - d e r - G r o e h i r n r i n d e ; Barth, L e i p z i g . BROWN, G. L. and VON EULER, U. S. (1938). The a f t e r e f f e c t s of a tetanus on mammalian muscle. J ; - P h y s i o l ; (Lond;) 93: 39-60. BROWNING, M., DUNWIDDIE, T., BENNETT, W., GISPEN, W. and LYNCH, G. (1979). Synaptic phosphoproteins: s p e c i f i c changes a f t e r r e p e t i t i v e s t i m u l a t i o n of the hippocampal s l i c e . Science 203: 60-62. BUZSAKI, G. and EIDELBERG, E. (1981). Commissural p r o j e c t i o n s to the dentate gyrus of the r a t : evidence f o r feedforward i n h i b i t i o n . Bra-in-- Res; 230: 346-350. BUZSAKI, G. and EIDELBERG, E. (1982). D i r e c t a f f e r e n t e x c i t a t i o n and long-term p o t e n t i a t i o n of hippocampal interneurons. J.- NeurophysioT; 48: 597-607. — CAMPBELL, B. and SUTIN, J . (1955). E x c i t a b i l i t y s t a t e s in the hippocampal pyramidal l a y e r . Trans.- Am.- - Neu r o l - A s s o c ; 80: 92-95. CASTELLUCCI, V. and KANDEL, E. R. (1976). Presynaptic f a c i l i t a t i o n as a mechanism f o r behavioral s e n s i t i z a t i o n in A p l y s i a . Science 194: 1176-1178. CASTELLUCCI, V., PINSKER, H., KUPFERMANN, I. and KANDEL, E. R. (1970). Neu-ronal mechanisms of ha b i t u a t i o n and d i s h a b i t u a t i o n of the g i l l - w i t h d r a w a l r e f l e x i n A p l y s i a . Science 167: 1745-1748. CHARLTON, M. P. and BITTNER, G. D. (1978a). F a c i l i t a t i o n of t r a n s m i t t e r r e l e a s e at squid synapses. J; - gen.- P h y s i o l . 72: 471-486. - 79 -CHARLTON, M . P. and BITTNER, G. D. (1978b). Presynaptic p o t e n t i a l s and f a c i l i t a t i o n of t r a n s m i t t e r r e l e a s e in the squid giant synapse. J.- - gen;  P h y s i o l . 72: 487-511. CHRONISTER, R. B. and WHITE, L. E. JR. (1975). F i b e r a r c h i t e c t u r e of the hippocampal formation: anatomy, p r o j e c t i o n s and s t r u c t u r a l s i g n i f i c a n c e . In: R. L. Isaacson and K. H. Pribram (Eds) The- H-ippocampus-.- - -Vol-.- -1;  St r u c t u r e and - Bevelopment: Plenum Press, New York, pp. 9-39. COLLINGRIDGE, G. L. (1985). Long-term p o t e n t i a t i o n in the hippocampus: mechanisms of i n i t i a t i o n and modulation by neurotransmitters. Trends  Pharmacol; S c i ; 6: 407-411. COLLINGRIDGE, G. L., KEHL, S. J . and MCLENNAN, H. (1983). E x c i t a t o r y amino acids i n synaptic transmission in the Schaffer c o l l a t e r a l - c o m m i s s u r a l pathway of the r a t hippocampus. J ; - P h y s i o l ; - (Lond.-) 334: 33-46. CREAGER, R., DUNWIDDIE, T. and LYNCH, G. (1980). Paired-pulse and frequency f a c i l i t a t i o n i n the CA^ region of the in- - v i t r o r a t hippocampus. J ; Physiol.-(Lond.) 299: 409-424. ~~ CRELIN, E. S. (1974). Development of the c e n t r a l nervous system: a l o g i c a l approach to neuroanatomy. GIBA-G1in: Symp; 26: 2-32. DALE, H. H. and FELDBERG, W. (1934). Chemical transmission at motor nerve endings in voluntary muscle J.-Physiol.-(Lond:) 81: 39P-40P. DEL CASTILLO, J . and ENGBAEK, L. (1954). The nature of the neuromuscular block produced by magnesium. J.- - P h y s i o l ; - (Lond.-) 124: 370-384. DEL CASTILLO, J . and KATZ, B. (1954a). The e f f e c t of magnesium on the a c t i -v i t y of motor nerve endings. J : - Physiol.- (Lond.) 124: 553-559. DEL CASTILLO, and KATZ, B. (1954b). Quantal components of the end-plate p o t e n t i a l . J.--Physiol.- (Lond;) 124: 560-573. DEL CASTILLO and KATZ, B. (1954c). S t a t i s t i c a l f a c t o r s involved i n neuro-muscular f a c i l i t a t i o n and depression. J; - Physiol-. - - (Lond-.-) 124: 574-585. DEL CASTILLO and KATZ, B. (1954d). Changes in end-plate a c t i v i t y produced by pre-synaptic p o l a r i z a t i o n . J;-Physiol;-(Lond;) 124: 586-604. DERIEMER, S. A., STRONG, J . A., ALBERT, K. A., GREENGARD, P. and KACZMAREK, L. K. (1985). Enhancement of calcium current in A p l y s i a neurones by phorbol est e r and pr o t e i n kinase C. Nature (Lond;) 313: 313-316. DINGLEDINE, R. (1983a). E x c i t a t o r y amino a c i d s : modes of a c t i o n on hippo-campal pyramidal c e l l s . Fed. Proc: 42: 2881-2885. - 80 -DINGLEDINE, R. (1983b). N-Methyl aspartate a c t i v a t e s voltage-dependent calcium conductance in r a t hippocampal pyramidal c e l l s . J-.- - P h y s i o l ;  (Lond.) 343: 385-405. DODGE, F. A. JR. and RAHAMIMOFF, R. (1967). On the r e l a t i o n s h i p between calcium concentration and the amplitude of the end-plate p o t e n t i a l . J ; P h y s i o l ; (Lond;) 189: 90P-92P. ~~" DOLPHIN, A. C., ERRINGTON, M. L. and BLISS, T. V. P. (1982). Long-term p o t e n t i a t i o n of the perforant path in v i v o i s a s s o c i a t e d with increased glutamate r e l e a s e . Nature - (Lond.-) 7971 4D6-497. DOUGLAS, R. M. (1978). Heterosynaptic co n t r o l over synaptic m o d i f i c a t i o n in the dentate gyrus. Soc; -Neurosci: -Abstr: 4_: 470. DOUGLAS, R. M., MCNAUGHTON, B. L. and GODDARD, G. V. (1983). Commissural i n h i b i t i o n and f a c i l i t a t i o n of granule c e l l discharge in f a s c i a dentata. J : Comp; Neurol; 219: 285-294. DUNWIDDIE, T. and LYNCH, G. (1978). Long-term p o t e n t i a t i o n and depression of synaptic responses in the r a t hippocampus: l o c a l i z a t i o n and frequency dependency. J . - Physiol.- - (Lond.-) 276: 353-367. ECCLES, J . C. (1948). Conduction and synaptic transmission in the nervous system. Annu. Rev; -Physiol.- 10: 93-116. ECCLES, J . C. (1953). Neurophysiological-Basis -of-Mind: Oxford, London. ECCLES, J . C , KATZ, B. and KUFFLER, S. W. (1941). Nature of the 'end-plate p o t e n t i a l ' i n c u r a r i z e d muscle. J ; Neurophysiol; 4-: 362-387. ECCLES, J . C , KATZ, K. and KUFFLER, S. W. (1942). E f f e c t s of eserine on neuromuscular transmission. J : Neurophysiol. 5_: 211-230. ECCLES, J . C. and KRNJEVIC, K. (1959a). P o t e n t i a l changes recorded i n s i d e primary a f f e r e n t f i b r e s w i t h i n the s p i n a l cord. J : - Physiol.- - (Lond.-) 149: 250-273. ECCLES, J . C. and KRNJEVIC, K. (1959b). Presynaptic changes a s s o c i a t e d with p o s t - t e t a n i c p o t e n t i a t i o n i n the s p i n a l cord. J : -Phys-joT.- • (-L-ond-.-) 149: 274-287. ECCLES, J . C. and MACFARLANE, W. V. (1949). Actions of a n t i c h o l i n e s t e r a s e s on endplate p o t e n t i a l of f r o g muscle. J:-Neurophysiol; 12: 59-80. ECCLES, J . C. and RALL, W. (1951). E f f e c t s induced i n a monosynaptic r e f l e x pathway by i t s a c t i v a t i o n . J : Neurophysiol.- 14: 353-376. ELMQVIST, D. and QUASTEL, D. M. J . (1965). A q u a n t i t a t i v e study of end-plate p o t e n t i a l s i n i s o l a t e d human muscle. J.--Physiol.- (Lond.) 178: 505-529. - 81 -FATT, P. and KATZ, B. (1952a). Spontaneous subthreshold a c t i v i t y at motor nerve endings. 3; Physiol.- (bond;) 117: 109-128. FATT, P. and KATZ, B. (1952b). Some problems of neuromuscular t r a n s m i s s i o n . Gold-Spring Harbor Symp.- quant.- - B i o l ; 17: 275-280. FATT, P. and KATZ, B. (1953). Chemo-receptor a c t i v i t y at the motor end-plate Acta-physiol.- -scand; 29: 117-125. FELDBERG, W. and VARTIAINEN, A. (1934). Further observations on the physio-logy and pharmacology of a sympathetic ganglion. J-.• Ph-ys-ioT.- -(Lond;) 83: 103-128. FENG, T. P. (1937). Studies on the neuromuscular j u n c t i o n . V. The succes-sion of i n h i b i t o r y and f a c i l i t a t o r y e f f e c t s of prolonged high frequency s t i m u l a t i o n on neuromuscular t r a n s m i s s i o n . Ghin; - - J.- - -Physiol.- 11: 451-470. ~ FENG, T. P. (1940). Studies on the neuromuscular j u n c t i o n . XVIII. The l o c a l p o t e n t i a l s around N-M j u n c t i o n s induced by s i n g l e and m u l t i p l e v o l l e y s . Ghin; - J; -Physiol; 15: 367-404. FENG, T. P. (1941a). The l o c a l a c t i v i t y around the s k e l e t a l N-M j u n c t i o n s produced by nerve impulses. B i o l ; Symp; 2 : 121-152. FENG, T. P. (1941b). Studies on the neuromuscular j u n c t i o n . XXVI. The changes of the end-plate p o t e n t i a l during and a f t e r prolonged s t i m u l a -t i o n . Chin;-J; P h y s i o l . 16: 341-372. FENG, T. P., LEE, L. Y., MENG, C. W. and WANG, S. C. (1938). Studies on the neuromuscular j u n c t i o n . IX. The a f t e r e f f e c t s of t e t a n i z a t i o n on N-M transmission in c a t . Chin.- - J.- - P h y s i o l ; 13: 79-108. FENG, T. P. and LI, T. H. (1941). Studies on the neuromuscular j u n c t i o n . XXIII. A new aspect of the phenomena of eserine p o t e n t i a t i o n and post-t e t a n i c f a c i l i t a t i o n i n mammalian muscles. Chin; - J . - -Physiol: 16: 37-56. FENG, T. P., L I , T. H. and TING, Y. C. (1939). Studies on the neuromuscular j u n c t i o n . XII. R e p e t i t i v e discharges and i n h i b i t o r y a f t e r - e f f e c t in p o s t - t e t a n i c a l l y f a c i l i t a t e d responses of cat muscles to s i n g l e nerve v o l l e y s . Chin. - J . P h y s i o l ; 14: 55-80. FILIMONOFF, I. N. (1947). A r a t i o n a l s u b d i v i s i o n of the cereb r a l cortex. Arch.- Neurol; Psychiat; 58: 296-311. FORBES, A. (1912). The place of incidence of r e f l e x f a t i g u e . Am.- - J.- - Ph y s i o l ; 31: 102-124. - 82 -FRITZ, L. C. and GARDNER-MEDWIN, A. R. (1976). The e f f e c t of synaptic a c t i -v a t i o n on the e x t r a c e l l u l a r potassium concentration in the hippocampal dentate area, in - v i t r o . Brain Res.- 112: 183-187. FROTSCHER, M. (1985). Mossy f i b r e s form synapses with i d e n t i f i e d pyramidal basket c e l l s i n the C A 3 region of the guinea-pig hippocampus: a combined G o l g i - e l e c t r o n microscope study. J ; Neurocytol: 14: 245-259. FROTSCHER, M. and ZIMMER, J . (1983). Commissural f i b e r s terminate on non-pyramidal neurons in the guinea pig hippocampus — a combined Golgi/EM degeneration study. Brain - Res.- 265: 289-293. GASSER, H. S. and GRAHAM, H. T. (1932). The end of the spike p o t e n t i a l of nerve and i t s r e l a t i o n to the beginning of the a f t e r p o t e n t i a l . Am.- - J-.- Physiol.- 101: 316-330. GASSER, H. S. and GRUNDFEST, H. (1936). Action and e x c i t a b i l i t y i n mammalian A f i b e r s . Am.- -J.-Physiol.- 117: 113-133. GELDARD, F. A. (1931). Brightness c o n t r a s t and Heyman's law. J . - gen.- •  Psychol. 5: 191-206. GENESER-JENSEN, F. A. (1972). D i s t r i b u t i o n of ac e t y l c h o l i n e s t e r a s e in the hippocampal region of the guinea p i g . I I I . The dentate area. Z.- Zellforsch.- -mikrosk.- -Anat; 131: 481-495. GIRARD, P. R., MAZZEI, G. J . , WOOD, J . G. and KUO, J . F. (1985). P o l y c l o n a l a n t i b o d i e s to phospholipid/Ca^ +-dependent p r o t e i n kinase and immuno-cytochemical l o c a t i o n of the enzyme i n r a t b r a i n . Proe.- -Natl-.- Acad.- Sci:-USA 82: 3030-3034. GLOOR, P. (1955). E l e c t r o p h y s i o l o g i c a l studies on the connections of the amygdaloid nucleus in the c a t . I I . The e l e c t r o p h y s i o l o g i c a l p r o p e r t i e s of the amygdaloid p r o j e c t i o n system. ET-ect-roenceph.- -clin.- - Neurophysiol: _7: 243-264. GLOOR, P., VERA, C. L. and SPERTI, L. (1964). E l e c t r o p h y s i o l o g i c a l s t u d i e s of hippocampal neurons. I I . Responses of hippocampal neurons to repe-t i t i v e p e rforant path v o l l e y s . E-lectroenceph.- -cl-in.- - Neurophysiol: 17: 353-370. : — GODDARD, G. V. (1980). Component p r o p e r t i e s of the memory machine: Hebb r e v i s i t e d . In: P. W. Juscyzk and R. M. K l e i n (Eds) The - Nature- - of  Thought:- - Essays- in Honour of -D. 0. Hebb: Lawrence Erlbaum A s s o c i a t e s , H i l l s d a l e , New. Jersey. GOH, J . W., MARETIC, H., MURAL I MOHAN, P. and SASTRY, B. R. (1984). N-Methyl-DL-aspartate (NMA) and hippocampal l o n g - l a s t i n g p o t e n t i a t i o n (LLP). IUPHAR Ninth Int; Congr.- -Pharmacol.--(Abstract): No. 282P. - 83 -GOH, J . W. and SASTRY, B. R. (1985). I n t e r a c t i o n s among presynaptic f i b e r terminations in the CAj region of the r a t hippocampus. Neurosei.- L e t t ; 60: 157-162. GRANIT, R. (1955). C e n t r i f u g a l and antidromic e f f e c t s on ganglion c e l l s of r e t i n a . J;-Neurophysiol. 18: 388-411. GREEN, J . D. (1964). The hippocampus. P h y s i o l ; Rev: 44: 561-608. GRUMBACH, L. and WILBER, D. T. (1940). P o s t - t e t a n i c p o t e n t i a t i o n and sup-pre s s i o n i n muscle. Am; - J ; - P hysiol; 130: 433-444. GUTTMAN, S. A., HORTON, R. G. and WILBER, D. T. (1937). Enhancement of muscle c o n t r a c t i o n a f t e r tetanus. Am; -J.- -Physiol.- 119: 463-473. HADJU, S. and SZENT-GYORGYI, A. (1952). Action of DOC and serum on the f r o g heart. Am;- J : P h y s i o l : 168: 159-170. HAMLYN, L. H. (1961). E l e c t r o n microscopy of mossy f i b r e endings in Amnion's horn. Nature-(Lond;) 190: 645-646. HARRIS, E. W., GANONG, A. H. and COTMAN, C. W. (1984). Long-term p o t e n t i a -t i o n in the hippocampus involves a c t i v a t i o n of N-methyl-D-aspartate r e c e p t o r s . Brain Res; 323: 132-137. HJORTH-SIMONSEN, A. (1973). Some i n t r i n s i c connections of the hippocampus in the r a t : an experimental a n a l y s i s . 3.- -Gomp; - Neurol; 147: 145-162. HJORTH-SIMONSEN, A. and JEUNE, B. (1972). O r i g i n and termination of the hippocampal perforant path in the r a t studied by s i l v e r impregnation. J ; -Comp;-Neurol; 144: 215-232. HJORTH-SIMONSEN, A. AND LAURBERG, S. (1977). Commissural connections of the dentate area in the r a t . J;-Comp;-Neurol; 174: 591-606. HODGKIN, A. L. and KEYNES, R. D. (1957). Movement of l a b e l l e d calcium in squid giant axons. J : - P h y s i o l ; (Lond;) 138: 253-281. HUBBARD, J . I. (1963). R e p e t i t i v e s t i m u l a t i o n at the mammalian neuromuscular j u n c t i o n and the m o b i l i s a t i o n of t r a n s m i t t e r . J . - -Physiol.- - (Lond-.) 169: 641-662. HUBBARD, J . I. and SCHMIDT, R. F. (1963). An e l e c t r o p h y s i o l o g i c a l i n v e s t i -gation of mammalian motor nerve t e r m i n a l s . J ; - P h y s i o l . (Lond;) 166: 145-167. HUBBARD, J . I. and WILLIS, W. D. (1962). H y p e r p o l a r i z a t i o n of mammalian motor nerve t e r m i n a l s . J;-Physiol.-(Lond;) 166: 145-165. HUGHES, J . R. (1954). Auditory s e n s i t i z a t i o n . J.- Acoust.- - Soc- Am: 26: 1064-1070. - 84 -HUGHES, J . R. (1958). P o s t - t e t a n i c p o t e n t i a t i o n . Physiol.- -Rev.- 38: 91-113. ~ HUGHES, J . R., EVARTS, E. V. and MARSHALL, W. D. (1956). P o s t - t e t a n i c poten-t i a t i o n in the v i s u a l system of ca t s . Am; - J.- - P h y s i o l . 186: 483-487. HUGHES, J . R. and ROSENBLITH, W. A. (1957). E l e c t r o p h y s i o l o g i c a l evidence f o r a uditory s e n s i t i z a t i o n . J:-Acoust; Soc; Am; 29: 275-280. JOHNSTON, D. and BROWN, T. H. (1984). Biophysics and microphysiology of synaptic transmission i n hippocampus. In: R. Dingledine (Ed) Brain  S l i c e s ; Plenum Press, New York, pp. 51-86 KANDEL, E. R. and SPENCER, W. A. (1961). E l e c t r o p h y s i o l o g y of hippocampal neurons. I I . A f t e r - p o t e n t i a l s and r e p e t i t i v e f i r i n g . J.- - Neurophysiol; 24: 243-259. KATZ, B. and MILEDI, R. (1967). The timing of calcium on a c e t y l c h o l i n e r e l e a s e from motor nerve t e r m i n a l s . J ; Physiol.- • (Lond;) 189: 535-544. KATZ, B. and MILEDI, R. (1968). The r o l e of calcium on neuromuscular f a c i l i -t a t i o n . J ; P h y s i o l ; (Lond.-) 195: 481-492. KELSO, S. R. and BROWN, T. H. (1986). D i f f e r e n t i a l c o n d i t i o n i n g of a s s o c i a -t i v e synaptic enhancement i n hippocampal brain s l i c e s . Science 232: 85-87. KOLLIKER, A. (1896). Handbuch-der-Gewebelchre-des-Menscheu: Engelmann, L e i p z i g . KOSAKA, T. (1980). The axon i n i t i a l segment as a synaptic s i t e : u l t r a s t r u c -ture and synaptology of the i n i t i a l segment of the pyramidal c e l l i n the ra t hippocampus (CA3 r e g i o n ) . J : -Neurocytol: 861-882. KUFFLER, S. W. (1948). Physiology of neuro-muscular j u n c t i o n s : e l e c t r i c a l aspects. Fed. - Proc. 7_: 437-446. LANDAU, E. M., SMOLINSKY, A. and LASS, Y. (1973). P o s t - t e t a n i c p o t e n t i a t i o n and f a c i l i t a t i o n do not share a common calcium-dependent mechanism. Nature (Lond;) 244: 155-157. LARRABEE, M. G. and BRONK, D. W. (1938). L o n g - l a s t i n g e f f e c t s of a c t i v i t y on gan g l i o n i c transmission. Am; - J; P h y s i o l 1 2 3 : 126-127. LARRABEE, M. G. and BRONK, D. W. (1947). Prolonged f a c i l i t a t i o n of synaptic e x c i t a t i o n i n sympathetic g a n g l i a . J:-Neurophysiol; 10: 137-154. LEE, K. S. (1983). C o o p e r a t i v i t y among a f f e r e n t s f o r the induction of long-term p o t e n t i a t i o n i n the Zk\ region of the hippocampus. J.- - Neurosc-i-.-3: 1369-1372. - 85 -LEVY, W. B. and STEWARD, 0. (1979). Synapses as a s s o c i a t i v e memory elements i n the hippocampal formation. Brain-Res; 175: 233-245. LEVY, W. B. and STEWARD, 0. (1983). Temporal c o n t i g u i t y requirements f o r long-term a s s o c i a t i v e p o t e n t i a t i o n / d e p r e s s i o n i n the hippocampus. Neuroscience 8_: 791-797. LILEY, A. W. (1956). The quantal components of the mammalian end-plate p o t e n t i a l . J : P h y s i o l . - (Lond.-) 133: 571-587. LILEY, A. W. and NORTH, K. A. K. (1953). An e l e c t r i c a l i n v e s t i g a t i o n of e f f e c t s of r e p e t i t i v e s t i m u l a t i o n on mammalian neuromuscular j u n c t i o n . J:-Neurophysiol: 16: 509-527. LLINAS, R., BLINKS, J . R. and NICHOLSON, C. (1972). Calcium t r a n s i e n t in presynaptic terminal of squid giant synapse: d e t e c t i o n with aequorin. Science 176: 1127-1129. LLOYD, D. P. C. (1949). P o s t - t e t a n i c p o t e n t i a t i o n of response i n monosynap-t i c r e f l e x pathways of the s p i n a l cord. J ; gen. - Physiol.- 33: 147-170. LLOYD, D. P. C. (1952). Electrotonus i n dorsal nerve r o o t s . Cold:-Spring  Harbor Symp. quant: B i o l ; 17: 203-219. LLOYD, D. P. C. (1959). E a r l y and l a t e p o s t - t e t a n i c p o t e n t i a t i o n and post-t e t a n i c block in a monosynaptic r e f l e x pathway. J : - gen-.- Phys-i-aT; 42: 475-488. ~ L0MO, T. (1971). Patterns of a c t i v a t i o n i n monosynaptic c o r t i c a l pathway: the perforant path input to the dentate area of the hippocampal forma-t i o n . Exp: Brain-Res: 12; 18-45. LORENTE DE NO, R. (1934). Studies on the s t r u c t u r e of the cere b r a l c o r tex. I I . Continuation of the study of the Amnionic system. 3-.- -Psychol:  Neurol; 46: 113-177. LOY, R. (1978). Commissural p r o j e c t i o n s to hippocampal interneurons. Anat; Rec. 190: 465P. LYNCH, G. S., DUNWIDDIE, T. and GRIBKOFF, V. (1977). Heterosynaptic depres-s i o n : a postsynaptic c o r r e l a t e of long-term p o t e n t i a t i o n . Nature  (Lond.) 266: 737-739. LYNCH, M. A., ERRINGTON, M. L. and BLISS, T. V. P. (1985). Long-term poten-t i a t i o n of synaptic transmission i n the dentate gyrus: increased r e l e a s e of [ Cjglutamate without increase i n receptor binding. Neurosci;  L e t t ; 62: 123-129. MACLEAN, P. D. (1952). Some p s y c h i a t r i c i m p l i c a t i o n s of p h y s i o l o g i c a l s t u d i e s on frontotemporal p o r t i o n of li m b i c system ( v i s c e r a l b r a i n ) . Electroenceph.- c l in.-Neurophysiol: 4: 407-418. - 86 -MACLEAN, P. D., ROSNER, B. S. and ROBINSON, F. (1957). Pyriform responses to e l e c t r i c a l s t i m u l a t i o n of o l f a c t o r y f i l a , bulb and t r a c t . Am.- -3:  P h y s i o l ; 189: 395-400. MACVICAR, B. A. (1984). Voltage-dependent calcium channels i n g l i a l c e l l s . Science 226: 1345-1347. MACVICAR, B. A. and DUDEK, F. E. (1981). E l e c t r o t o n i c coupling between pyramidal c e l l s : a d i r e c t demonstration i n r a t hippocampal s l i c e s . Science 213: 782-785. MACVICAR, B. A. and DUDEK, F. E. (1982). E l e c t r o t o n i c coupling between granule c e l l s of r a t dentate gyrus: p h y s i o l o g i c a l and anatomical evidence. 3: -Neurophysiol: 47: 579-592. MAGLEBY, K. L. (1973a). The e f f e c t of r e p e t i t i v e s t i m u l a t i o n on f a c i l i t a t i o n o f t r a n s m i t t e r r e l e a s e at the f r o g neuromuscular j u n c t i o n . J.- -Physiol;  (Lond.-) 234: 327-352. MAGLEBY, K. L. (1973b). The e f f e c t of t e t a n i c and p o s t - t e t a n i c p o t e n t i a t i o n on f a c i l i t a t i o n of t r a n s m i t t e r r e l e a s e at the f r o g neuromuscular j u n c t i o n . 3; -Physiol.- - (Lond;) 234: 353-371. MAGLEBY, K. L. and ZENGEL, J . E. (1975a). A dual e f f e c t of r e p e t i t i v e stimu-l a t i o n on p o s t - t e t a n i c p o t e n t i a t i o n of t r a n s m i t t e r r e l e a s e at the f r o g neuromuscular j u n c t i o n . 3; Physiol.- - (Lond.-) 245: 163-182. MAGLEBY, K. L. and ZENGEL, J . E. (1975b). A q u a n t i t a t i v e d e s c r i p t i o n of t e t a n i c and p o s t - t e t a n i c p o t e n t i a t i o n of t r a n s m i t t e r r e l e a s e at the f r o g neuromuscular j u n c t i o n . 3. -Physiol.- (Lond;) 245: 183-208. MAGLEBY, K. L. and ZENGEL, J . E. (1976a). Augmentation: a process that acts to increase t r a n s m i t t e r r e l e a s e at the f r o g neuromuscular j u n c t i o n . 3; P h y s i o l ; (Lond.) 257: 449-470. MAGLEBY, K. L. and ZENGEL, J . E. (1976b). Long-term changes i n augmentation, p o t e n t i a t i o n and depression of t r a n s m i t t e r r e l e a s e as a f u n c t i o n of repeated synaptic a c t i v i t y at the f r o g neuromuscular j u n c t i o n . 3: Physiol;-(Lond;) 257: 471-494. MAGLEBY, K. L. and ZENGEL, J . E. (1982). A q u a n t i t a t i v e d e s c r i p t i o n of stimulation-induced changes i n t r a n s m i t t e r r e l e a s e at the f r o g neuromus-c u l a r j u n c t i o n . 3; - gen.- - P h y s i o l ; 80: 613-638. MALENKA, R. C , MADISON, D. V., ANDVADE, R. and NICOLL, R. A. (1986a). Phorbol e s t e r s mimic some c h o l i n e r g i c actions i n hippocampal pyramidal neurons. 3.- N e u r o s c i 6 _ : 475-480. MALENKA, R. C , MADISON, D. V. and NICOLL, R. A. (1986b). P o t e n t i a t i o n of synaptic transmission i n the hippocampus by phorbol e s t e r s . Nature  (Lond;) 321: 175-177. - 87 -MALLART, A. (1984). Calcium-activated potassium current i n presynaptic t e r -minals. Biomed: -Res; _5: 287-290. MALLART, A. and MARTIN, A. R. (1967). An a n a l y s i s of f a c i l i t a t i o n of t r a n s -m i t t e r r e l e a s e at the neuromuscular j u n c t i o n of the f r o g . J.- - P h y s i o l : (Lond;) 193: 679-694. MAYER, M. L., WESTBROOK, G. L. and GUTHRIE, P. B. (1984). Voltage-dependent block by Mg2 + of NMDA responses in s p i n a l cord neurones. Nature  (Lond.) 309: 261-263. MARTIN, A. R. and PILAR, G. (1964). Presynaptic and post-synaptic events during p o s t - t e t a n i c p o t e n t i a t i o n and f a c i l i t a t i o n i n the avian c i l i a r y ganglion. J : - Physiol.- (Lond;) 175: 17-30. MCBEAN, G. J . and ROBERTS, P. J . Q981). Glutamate p r e f e r r i n g r e c eptors r e g u l a t e the re l e a s e of D-[ 3H]aspartate from r a t hippocampal s l i c e s . Nature (Lond;) 291: 593-594. MCDOUGAL, D. B. JR. and OSBORN, L. A. (1976). P o s t - t e t a n i c h y p e r p o l a r i z a -t i o n , sodium-potassium a c t i v a t e d adenosine triphosphatase and high energy phosphate l e v e l s in g a r f i s h o l f a c t o r y nerve. J.- Physiol.- • (Lond.-)  256: 41-60. MCNAUGHTON, B. L. (1982). Long-term synaptic enhancement and short-term p o t e n t i a t i o n i n r a t f a s c i a dentata act through d i f f e r e n t mechanisms. J.- Physiol.- (Lond;) 324: 249-262. MCNAUGHTON, B. L. (1983). A c t i v i t y dependent modulation of hippocampal synap t i c e f f i c a c y : some i m p l i c a t i o n s f o r memory processes. In: W. S e i f e r t (Ed) Neurobiology - of - the- -Hi-ppocampus. Academic Press, London, pp. 233-252 MCNAUGHTON, B. L., DOUGLAS, R. M. and GODDARD, G. V. (1978). Synaptic enhancement in f a s c i a dentata: c o o p e r a t i v i t y among c o a c t i v e a f f e r e n t s . Brain-Res; 157: 277-293. MILEDI, R. and PARKER, I. (1981). Calcium t r a n s i e n t s recorded with arsenazo III i n the presynaptic terminal of the squid giant synapse. Proc: - R~ Soc; Lond;-B; 212: 197-211. MISLER, S. and HURLBUT, W. P. (1983). P o s t - t e t a n i c p o t e n t i a t i o n of a c e t y l -c h o l i n e r e l e a s e a t the f r o g neuromuscular j u n c t i o n develops a f t e r stimu-l a t i o n i n C a 2 - f r e e s o l u t i o n s . Proc. - Natl-.- Acad. - Sci.- - USA 80: 315-319. MURAL I MOHAN, P. and SASTRY, B. R. (1984). Rat n e o c o r t i c a l s l i c e preparation f o r e l e c t r o p h y s i o l o g i c a l and pharmacological s t u d i e s . J . - -Pharmacol.-Meth.- 11: 177-186. - 88 -NAKAJIMA, S. and TAKAHASHI, K. (1966). P o s t - t e t a n i c h y p e r p o l a r i z a t i o n and e l e c t r o t o n i c Na pump in s t r e t c h receptor neurone of c r a y f i s h . J : Physiol.- (Lond.) 187: 105-127. ~~ NELSON, R. B. and ROUTTENBERG, A. (1985). C h a r a c t e r i z a t i o n of p r o t e i n Fl(47kD, 4.5): a kinase substrate i s d i r e c t l y r e l a t e d to neural p l a s t i -c i t y . Exp:-Neurol; 89: 213-224. NOWAK, L., BREGESTOVSKI, P, ASCHER, P., HERBET, A. and PROCHIANTZ, A. (1984). Magnesium gates glutamate-activated channels in mouse c e n t r a l neurones. Nature (Lond.) 307: 462-465. OTSUKA, M., ENDO, M. and NONOMURA, Y. (1962). Presynaptic nature of neuro-muscular depression, Jpn. d: - P h y s i o l ; 12: 573-584. OWEN, D. G., SEGAL, M. and BARKER, J . L. (1984). A Ca-dependent C l - con-ductance in c u l t u r e d mouse s p i n a l neurones. Nature - - (Lond.-) 311: 567-570. PAPEZ, J . (1937). A proposed mechanism of emotion. Arch.- -Neurol.- -Psychiat:  (Chicago) 38: 725-743. RAMON Y CAJAL, S. (1893). E s t r u c t u r a del asta de Ammon. Anal.--Soc:-esp-.  H i s t : - Nat.- Madrid 22: 53-114. E n g l i s h t r a n s l a t i o n by K r a f t , L. M. (1968). ~~ RACINE, R. J . and MILGRAM, N. W. (1983a). Short-term p o t e n t i a t i o n phenomena in the r a t l i m b i c f o r e b r a i n . Brain-Res.- 260: 201-216. RACINE, R. J . and MILGRAM, N. W. (1983b). Long-term p o t e n t i a t i o n i n the r a t l i m b i c f o r e b r a i n . Brain-Res: 260: 217-231. RAHAMIMOFF, R., LEV-TOV, A. and MEIRI, H. (1980). Primary and secondary r e g u l a t i o n of quantal t r a n s m i t t e r r e l e a s e : calcium and sodium. J.- - Exp-.  Biol.- 89: 5-18. RANG, H. P. and RITCHIE, J . M. (1968a). On the e l e c t r o g e n i c sodium pump in mammalian non-myelinated nerve f i b r e s and i t s a c t i v a t i o n by various external c a t i o n s . J ; - Physiol.- - (Lond.) 196: 183-221. RANG, H. P. and RITCHIE, J . M. (1968b). The i o n i c content of mammalian non-myelinated nerve f i b r e s and i t s a l t e r a t i o n as a r e s u l t of e l e c t r i c a l a c t i v i t y . J . -Physiol.--(Lond.-) 196: 223-236. RIBAK, C. E., VAUGH, J . E. and SAITO, K. (1978). Immunocytochemical l o c a l i -z a t i o n of glutamic a c i d decarboxylase in neuronal somata f o l l o w i n g c o l c h i c i n e i n h i b i t i o n of axonal t r a n s p o r t . Brain Res: 140: 315-332. RICHARDSON, T. L., TURNER, R. W. and MILLER, J . J . (1984). E x t r a c e l l u l a r f i e l d s i n f l u e n c e transmembrane p o t e n t i a l s and s y n c h r o n i z a t i o n of hippo-campal neuronal a c t i v i t y . Brain -Res.- 294: 255-262. - 89 -RITCHIE, J . M. and STRAUB, R. W. (1957). The h y p e r p o l a r i z a t i o n which f o l l o w s a c t i v i t y i n mammalian non-medullated f i b r e s , 3-.- Physiol-.- • (Lond.-) 136: 80-97. RITCHIE, J . M. and STRAUB, R. W. (1978). Increase in e f f l u x of inorganic phosphate during e l e c t r i c a l a c t i v i t y i n small non-myelinated nerve f i b r e s . 3-. -Physiol.- (Lond.-) 274: 539-548. ROBINSON, G. B. and RACINE, R. J . (1982). Heterosynaptic i n t e r a c t i o n s bet-ween septal and e n t o r h i n a l inputs to the dentate gyrus: long-term p o t e n t i a t i o n e f f e c t s . Brain-Res: 249: 162-166. ROSE, M. (1926). Uber das h i s t o g e n e t i s c h e P r i n z i p der E i n t e i l u n g der Grophirnrinde. J . -Psychol.- Neurol.- - ( L e i p z i g ) 32: 97-160. ROSENBLUETH, A. and M0RIS0N, R. S. (1937). C u r a r i z a t i o n f a t i g u e and Wedensky i n h i b i t i o n . Am; 3.- - P h y s i o l : 119: 236-256. SASTRY, B. R. (1979). A calcium dependent p o s t - t e t a n i c h y p e r p o l a r i z a t i o n of primary a f f e r e n t t e r m i n a l s . L i f e - S c i : 25: 1179-1188. SASTRY, B. R. (1982). Presynaptic change associated with long-term p o t e n t i a -t i o n i n hippocampus. L i f e S c i : 30: 2003-2008. SASTRY, B. R., CHIRWA, S. S., GOH, J . W., MARETIC, H. and PANDANABOINA, M. M. (1984). Verapamil counteracts depression but not l o n g - l a s t i n g p o t e n t i a -t i o n of the hippocampal population spike. L i f e - S c i : 34: 1075-1086. SCHAEFER, E. A. (1898). Tex t-Book - of - Phys i o 1 ogy.- - - Vo 1: - 2.- Young J . Pentland, Edinburgh and London. SCHAEFER, H. and HAASS, P. (1939). Uber einen lokalen Erregungsstrom an der motorischen Endplatte. Pf luegers -Arch.- -Ges: - P h y s i o l ; 242: 364-381. SCHAFFER, K. (1892). B e i t r a g zur H i s t o l o g i c der Ammonshornformation. Arch:  mikrosk-Anat: 39. SCHIFF, J . M. (1858). Muskel-und-Nervenphysiologie: Schauenburg, Lahr. SCHWERDTFEGER, w. K. (1984). S t r u c t u r e and f i b e r connections of the hippo-campus. Adv-ances- - i n - Anatomyy - Embryo 1 ogy - -and - C e l l - -Biology.- - - Vol -.- -83: S p r i n g e r - V e r l a g , B e r l i n Heidelberg. SCHWERDTFEGER, W. K. and SARVEY, J . M. (1983). C o n n e c t i v i t y of the h i l a r region of the hippocampal formation in the r a t . d-.- H i r n f o r s c h . 24: 201-207. : ~ SERESS, L. and RIBAK, C. E. (1983). GABAergic c e l l s in the dentate gyrus appear to be l o c a l c i r c u i t and p r o j e c t i o n neurons. Exp.- - -Brain- -Res? 50: 173-182. - 90 -SHERMAN, R. G. and ATW00D, H. L. (1971). Synaptic f a c i l i t a t i o n : long-term neuromuscular f a c i l i t a t i o n i n crustaceans. Science 171: 1248-1250. SKREDE, K. K. and MALTHE-S0RENSSEN, D. (1981). Increased r e s t i n g and evoked re l e a s e of t r a n s m i t t e r f o l l o w i n g r e p e t i t i v e e l e c t r i c a l t e t a n i z a t i o n in hippocampus: a biochemical c o r r e l a t e to l o n g - l a s t i n g s y n a p t i c p o t e n t i a -t i o n . Brain-Res. 208: 436-441. SKREDE, K. K. and WESTGAARD, R. H. (1971). The transverse hippocampal s l i c e : a w e l l - d e f i n e d c o r t i c a l s t r u c t u r e maintained in v i t r o . Brain - Res-; 35: 589-593. SPENCER, W. A. and KANDEL, E. R. (1961). Hippocampal neuron responses to s e l e c t i v e a c t i v a t i o n of r e c u r r e n t c o l l a t e r a l s of hippocampal axons. Exp; Neurol: 4: 149-161. STORM-MATHISEN, J . (1977). L o c a l i z a t i o n of t r a n s m i t t e r candidates in the b r a i n : the hippocampal formation as a model. Prog. - -NeurobioT.- 8: 119-181. STRUBLE, R. G., DESMOND, N. L. and LEVY, W. B. (1978). Anatomical evidence f o r i n t e r l a m e l l a r i n h i b i t i o n in the f a s c i a dentata. Brain - Res-.- 152: 580-585. SWANSON, L. W., WYSS, J . M. and COWAN, W. M. (1978). An autoradiographic study of the o r g a n i z a t i o n of intrahippocampal a s s o c i a t i o n pathways in the r a t . J . Comp: Neurol; 181: 681-716. TAKEUCHI, A. (1958). The l o n g - l a s t i n g depression i n neuromuscular t r a n s -mission of f r o g . J p n ; - J : - P h y s i o l ; 8: 102-113. TAKEUCHI, A. and TAKEUCHI, N. (1962). E l e c t r i c a l changes in pre- and post-synaptic axons of the giant synapse of L o l i g o . J-.- gen. -Physiol: 45: 1181-1193. "~ TEYLER, T. J . and DISCENNA, P. (1984). The t o p o l o g i c a l anatomy of the hippo-campus: a clue to i t s f u n c t i o n . Brain-Res: - B u l l . 12: 711-719. TEYLER, T. J . , GODDARD, G. V., LYNCH, G. and ANDERSEN, P. (1982). P r o p e r t i e s and mechanisms of LTP. Neurosci. Res. -Prog; - B u l l ; 20: 644-680. THOMAS, R. C. (1972). I n t r a c e l l u l a r sodium a c t i v i t y and the sodium pump in s n a i l neurones. J ; P h y s i o l ; (Lond;) 220: 55-71. TURNER, R. W., RICHARDSON, T. L. and MILLER, J . J . (1984). Ephaptic i n t e r -a c t i o n s c o n t r i b u t e to paired pulse and frequency p o t e n t i a t i o n of hippo-campal f i e l d p o t e n t i a l s . Exp; Brain Res; 54: 567-570. VAN HARREVELD, A. and FIFKOVA, E. (1975). Swelling of d e n d r i t i c spines in the f a s c i a dentata a f t e r s t i m u l a t i o n of the p e r f o r a n t f i b r e s as a mechanism of p o s t - t e t a n i c p o t e n t i a t i o n . Exp.- - Neurol.- 49: 736-749. - 91 -WALKER, S. M. (1947). The response of the t r i c e p s surae of normal, adrenal-ectomized desoxycorticosterone a c e t a t e - t r e a t e d and KCl-t r e a t e d r a t s to d i r e c t and i n d i r e c t , s i n g l e and r e p e t i t i v e s t i m u l a t i o n . Am.- -3; - Physiol-.-149: 7-23. WALKER, S. M. (1948). Action p o t e n t i a l s i n r a t muscle with twitch tension p o t e n t i a t i o n by KC1 treatment, adrenalectomy, tetanus and treppe. Am.-3;-Phy s i o l . 154: 63-72. WALL, P. D. (1958). E x c i t a b i l i t y changes in a f f e r e n t f i b r e terminations and t h e i r r e l a t i o n to slow p o t e n t i a l s . 3.- -Physiol: (Lond.) 142: 1-21. WALL, P. D. and 30HNS0N, A. R. (1958). Changes asso c i a t e d with p o s t - t e t a n i c p o t e n t i a t i o n of a monosynaptic r e f l e x . 3. - N e u r o p h y s i o l 2 1 : 148-158. WALTERS, E. T. and BYRNE, 3. H. (1984). P o s t - t e t a n i c p o t e n t i a t i o n i n A p l y s i a sensory neurons. Brain -Res.- 293: 377-380. WEIGHT, F. F. and ERULKAR, S. D. (1976). Modulation of synapt i c t r a n s m i t t e r r e l e a s e by r e p e t i t i v e postsynaptic a c t i o n p o t e n t i a l s . Science 193: 1023-1025. WEINREICH, D. (1971). Ionic mechanism of p o s t - t e t a n i c p o t e n t i a t i o n at the neuromuscular j u n c t i o n of the f r o g . 3; -P h y s i o l ; -(Lond.-) 212: 431-446. WIGSTROM, H. and GUSTAFSSON, B. (1983a). Heterosynaptic modulation of homo-synaptic l o n g - l a s t i n g p o t e n t i a t i o n i n the hippocampal s l i c e . Acta p h y s i o l . scand; 119: 455-458. WIGSTROM, H. and GUSTAFSSON, B. (1983b). F a c i l i t a t e d i nduction of hippo-campal l o n g - l a s t i n g p o t e n t i a t i o n during blockade of i n h i b i t i o n . Nature  (Lond.) 301: 603-604. WIGSTROM, H. and GUSTAFSSON, B. (1984). A p o s s i b l e c o r r e l a t e of the post-synaptic c o n d i t i o n f o r l o n g - l a s t i n g p o t e n t i a t i o n i n the guinea pig hippocampus in v i t r o . Neurosci.-Lett; 44: 327-332. WIGSTROM, H. and GUSTAFSSON, B. (1985a). F a c i l i t a t i o n of hippocampal long-l a s t i n g p o t e n t i a t i o n by GABA antagonists. Acta - phys-ioT.- -scand; 125: 159-172. ~ WIGSTROM, H. and GUSTAFSSON, B. (1985b). On l o n g - l a s t i n g p o t e n t i a t i o n i n the hippocampus: a proposed mechanism f o r i t s dependence on c o i n c i d e n t pre-and postsynaptic a c t i v i t y . Acta -physiol.- -scand; 123: 519-522. WIGSTROM, H., GUSTAFSSON, B. and HUANG, Y.-Y. (1985). A synapt i c p o t e n t i a l f o l l o w i n g s i n g l e v o l l e y s i n the hippocampal CAj region p o s s i b l y involved i n the induction of l o n g - l a s t i n g p o t e n t i a t i o n . Acta• physio T; scand. 124: 475-478. - 92 -WIGSTROM, H., GUSTAFSSON, B., HUANG, Y.-Y. and ABRAHAM, W. C. (1986). Hippo-campal long-term p o t e n t i a t i o n i s induced by p a i r i n g s i n g l e a f f e r e n t v o l l e y s with i n t r a c e l l u l a r l y i n j e c t e d d e p o l a r i z i n g current pulses. Acta  physiol;-scand: 126: 317-319. WIGSTROM, H., MCNAUGHTON, B. L. and BARNES, C. A. (1982). Long-term synaptic enhancement i n hippocampus i s not regulated by postsynaptic membrane p o t e n t i a l . Brain-Res; 233: 195-199. WILSON, A. T. and WRIGHT, S. (1936). A n t i - c u r a r e a c t i o n of potassium and other substances. Q;-J:-Exp; - P h y s i o l . 26: 127-139. WOOLSEY, C. N. and LARRABEE, M. G. (1940). P o t e n t i a l changes and prolonged r e f l e x f a c i l i t a t i o n f o l l o w i n g s t i m u l a t i o n of dorsal s p i n a l r o o t s . Am;  J . - P h y s i o l ; 129: P501-502. ZENGEL, J . E. and MAGLEBY, K. L. (1977). Transmitter r e l e a s e during r e p e t i -t i v e s t i m u l a t i o n : s e l e c t i v e changes produced by S r + + and B a + + . Science 197: 67-69. ZENGEL. +J. E. and MAGLEBY, K. L. (1980). D i f f e r e n t i a l e f f e c t s of B a 2 + , S r z and Ca^ on stimulation-induced changes i n tr a n s m i t t e r r e l e a s e at the f r o g neuromuscular j u n c t i o n . J.- -gen; - P h y s i o l : 76: 175-211. ZENGEL, J . E. and MAGLEBY, K. L. (1982). Augmentation and f a c i l i t a t i o n of t r a n s m i t t e r r e l e a s e . J ; - gen; - Physiol.- 80: 583-611. ZENGEL, J . E., MAGLEBY, K. L., HORN, J . P., MCAFEE, D. A. and YAROWSKY, P. J . (1980). F a c i l i t a t i o n , augmentation and p o t e n t i a t i o n of synaptic t r a n s -mission at the superior c e r v i c a l ganglion of the r a b b i t . J-.- -gen:  P h y s i o l : 76: 213-231. 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0096672/manifest

Comment

Related Items