UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The taxonomy and autecology of Colpomenia peregrina (Sauv.) Hamel (Phaeophyceae) Vandermeulen, Herbert 1984

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1984_A1 V35_3.pdf [ 13.52MB ]
Metadata
JSON: 831-1.0096647.json
JSON-LD: 831-1.0096647-ld.json
RDF/XML (Pretty): 831-1.0096647-rdf.xml
RDF/JSON: 831-1.0096647-rdf.json
Turtle: 831-1.0096647-turtle.txt
N-Triples: 831-1.0096647-rdf-ntriples.txt
Original Record: 831-1.0096647-source.json
Full Text
831-1.0096647-fulltext.txt
Citation
831-1.0096647.ris

Full Text

THE TAXONOMY AND AUTECOLOGY OF COLPQMENIA PEREGRINA (SAUV.) HAMEL (PHAEOPHYCEAE) By HERBERT VANDERMEULEN B . S c , The U n i v e r s i t y of B r i t i s h Columbia, 1977 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY i n THE FACULTY OF GRADUATE STUDIES (Department of Botany) We accept t h i s thes i s as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA Ju ly 1984 © Herbert Vandermeulen, 1984 In presenting t h i s thesis i n p a r t i a l f u l f i l m e n t of the requirements for an advanced degree at the University of B r i t i s h Columbia, I agree that the Library s h a l l make i t f r e e l y available for reference and study. I further agree that permission for extensive copying of t h i s thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. I t i s understood that copying or publication of t h i s thesis for f i n a n c i a l gain s h a l l not be allowed without my written permission. Herbert Vandermeulen Department of Botany  The University of B r i t i s h Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 Date October 4, 1984 )E-6 (3/81) i i A b s t r a c t C o l l e c t i o n and q u a n t i t a t i v e o b s e r v a t i o n o f Colpomenia  p e r e g r i n a (Sauvageau) Hamel (Phaeophyta) and i t s a s s o c i a t e d a l g a l community was made over a t h r e e y e a r p e r i o d at two marine s i t e s , Bath I s l a n d and B a m f i e l d ( B r i t i s h C o l u m b i a ) . P e r c e n t cover v a l u e s were compared t o measurements o f s a l i n i t y , water t e m p e r a t u r e , i r r a d i a n c e , d a y l e n g t h and t i d a l c y c l e s v i a s e v e r a l o r d i n a t i o n methods. Colpomenia o c c u r r e d i n low d e n s i t y when e n v i r o n m e n t a l parameters were at the h i g h o r low end o f t h e i r normal range. Experiments i n d i c a t e d t h a t wood i s a b e t t e r s u b s t r a t u m than P l e x i g l a s f o r C. p e r e g r i n a growth i n the f i e l d , P l a n t s produce zoospore d i s p e r s a l shadows o f a p p r o x i m a t e l y 4 m i n d i a m e t e r . M a n i p u l a t i o n s o f o v e r s t o r y p l a n t d e n s i t y i n the f i e l d d i d not a f f e c t the p e r c e n t c o v e r o f C. p e r e g r i n a a t the same s p o t . No c o n s i s t e n t r e l a t i o n s h i p s c o u l d be found between C, p e r e g r i n a p e r c e n t c o v e r and the cov e r o f o t h e r members o f the a l g a l community. The e f f e c t s of d a y l e n g t h , t e m p e r a t u r e , n u t r i e n t s and s a l i n i t y on the m i c r o s c o p i c s t a g e s o f the p l a n t were s t u d i e d i n c u l t u r e . The l a b o r a t o r y work c o n f i r m e d f i e l d o b s e r v a t i o n s . Low s a l i n i t y and low temperature i n h i b i t e d the f o r m a t i o n o f u p r i g h t s . D a y l e n g t h and i r r a d i a n c e were o f secondary i m p o r t a n c e . i i i The morphology o f f r e s h a d u l t p l a n t s was compared to t h a t o f h e r b a r i u m specimens u s i n g methacrylate-embedded t h i n s e c t i o n s . Colpomenia p e r e g r i n a and C_. b u l l o s a ( S a u n d e r s ! Yamada are the o n l y s p e c i e s o f Colpomenia found a t the s t u d y s i t e s . Type specimens were d e s i g n a t e d f o r C. s i n u o s a (F.C. Mertens ex Roth) Derbes et S o l i e r , C_. b u l l o s a (Saunders). Yamada and C. p e r e g r i n a (Sauvageau) Hamel. i v TABLE OF CONTENTS ABSTRACT i i L I S T OF TABLES x ± L I S T OF F IGURES x i v ACKNOWLEDGEMENTS x v i i GENERAL INTRODUCTION 1 CHAPTER 1 The t axonomy o f t h r e e s p e c i e s o f C o l p o m e n i a ( E n d l i c h e r ) D e r b e s e t S o l i e r 5 I n t r o d u c t i o n 6 1. P r o b l e m s i n t axonomy 6 2 . C o l p o m e n i a s i n u o s a ( F . C . M e r t e n s ex R o t h ) D e r b e s e t S o l i e r 7 3 . C o l p o m e n i a p e r e g r i n e ( S a u v a g e a u ) Hamel 7 4 . C o l p o m e n i a b u l l o s a ( S a u n d e r s ) Yamada 8 M a t e r i a l s and M e t h o d s 8 R e s u l t s and D i s c u s s i o n 10 1. N e o t y p i f i c a t i o n o f C o l p o m e n i a s i n u o s a ( F . C . M e r t e n s ex R o t h ) D e r b e s e t S o l i e r . . . 10 2 . H o l o t y p i f i c a t i o n o f C o l p o m e n i a p e r e g r i n a ( S a u v a g e a u ) Hamel 13 3 . H o l o t y p i f i c a t i o n o f C o l p o m e n i a b u l l o s a ( S a u n d e r s ) Yamada 16 4 . The s p e c i e s o f C o l p o m e n i a f o u n d i n B r i t i s h C o l u m b i a 19 CHAPTER 2 The p h e n o l o g y a n d a u t e c o l o g y o f C o l p o m e n i a p e r e g r i n a a t B a t h I s l a n d and B a m f i e l d , B r i t i s h C o l u m b i a , V C a n a d a 25 I n t r o d u c t i o n 26 M a t e r i a l s and M e t h o d s 28 1. Q u a d r a t s and d e s t r u c t i v e s a m p l e s 33 A . B a t h I s l a n d 33 B. D i a n a I s l a n d 34 C . D i x o n I s l a n d 35 2. M o r t a l i t y r a t e s t u d y a t B a t h I s l a n d 35 3 . E n v i r o n m e n t a l v a r i a b l e s 36 A . B a t h I s l a n d 36 B. D i a n a I s l a n d 37 R e s u l t s 39 1. F i e l d s i t e p h y s i c a l f a c t o r s 39 A . B a t h I s l a n d 39 B. D i a n a I s l a n d 40 2 . Q u a d r a t s and d e s t r u c t i v e s a m p l e s . P a r t I. B i o m a s s , p e r c e n t c o v e r , and d e n s i t y o f i n d i v i d u a l s on a s e a s o n a l b a s i s 40 A . B a t h I s l a n d 40 B. D i a n a I s l a n d 46 2. Q u a d r a t s and d e s t r u c t i v e s a m p l e s . P a r t I I . T i m e -s p e c i f i c s i z e a n d w e i g h t c l a s s c h a n g e s i n c l u d i n g r e p r o d u c t i v e s t a t u s o f i n d i v i d u a l s . . 51 A . B a t h I s l a n d 51 B. D i a n a I s l a n d 71 C . D i x o n I s l a n d 71 3 . M o r t a l i t y r a t e s t u d y a t B a t h I s l a n d 76 v i 4 . C o m p u t e r o r d i n a t i o n s 92 D i s c u s s i o n I l l CHAPTER 3 R e l a t i o n s h i p s b e t w e e n C o l p o m e n i a p e r e g r i n a a n d i t s a s s o c i a t e d a l g a l c o m m u n i t i e s a t B a t h I s l a n d and B a m f i e l d , B r i t i s h C o l u m b i a , C a n a d a . . . . . . . . 119 I n t r o d u c t i o n 120 M a t e r i a l s a n d M e t h o d s 120 1. E s t i m a t i o n s o f d i v e r s i t y and c o r r e l a t i o n s 121 2 . C o m p u t e r o r d i n a t i o n s 123 3 . S u b s t r a t e p r e f e r e n c e o f C . p e r e g r i n a 123 4 . I n f l u e n c e o f c a n o p y s p e c i e s 124 R e s u l t s 125 1. P e r c e n t c o v e r o f o t h e r s p e c i e s w i t h i n t h e q u a d r a t s and c o r r e l a t i o n s 125 A . B a t h I s l a n d 125 B. D i a n a I s l a n d 132 2. C o m p u t e r o r d i n a t i o n s 136 3 . S u b s t r a t e p r e f e r e n c e 155 4 . I n f l u e n c e o f c a n o p y s p e c i e s 155 A . B a t h I s l a n d 155 B. D i a n a I s l a n d . . . . 161 D i s c u s s i o n 164 CHAPTER 4 A r t i f i c i a l s u b s t r a t e s e l e c t i o n and d i s p e r s a l d i s t a n c e o f C o l p o m e n i a p e r e g r i n a i n t h e s e a 167 I n t r o d u c t i o n 16S M a t e r i a l s and M e t h o d s 168 v i i 1. T e a t s o f d i f f e r e n t a r t i f i c i a l s u b s t r a t e s 169 A . B a t h I s l a n d 169 B. D i a n a I s l a n d 169 C . D i x o n I s l a n d 170 2 . D i s p e r s a l d i s t a n c e e x p e r i m e n t s 170 A . B a t h I s l a n d . 171 B. D i a n a I s l a n d 172 R e s u l t s and D i s c u s s i o n 172 1. T e s t s o f d i f f e r e n t a r t i f i c i a l s u b s t r a t e s 172 A . B a t h I s l a n d 172 B. D i a n a I s l a n d 174 C . D i x o n I s l a n d 178 2. D i s p e r s a l d i s t a n c e e x p e r i m e n t s 180 A . B a t h I s l a n d ISO B. D i a n a I s l a n d 181 CHAPTER 5 L a b o r a t o r y e x p e r i m e n t s w i t h m i c r o t h a l l i o f C o l p o m e n i a p e r e g r i n a 183 I n t r o d u c t i o n 184 M a t e r i a l s and M e t h o d s 185 1. P r e l i m i n a r y e x p e r i m e n t s 187 2 . E f f e c t s o f d i f f e r e n t m e d i a on s u r v i v o r s h i p and p r o d u c t i o n o f u p r i g h t s 188 3 . G r o w t h r a t e and p r o d u c t i o n o f u p r i g h t s u n d e r v a r i o u s c u l t u r e c o n d i t i o n s 189 4 . F o r m a t i o n o f u p r i g h t s a t low t e m p e r a t u r e 192 R e s u l t s 192 v i i i 1. P r e l i m i n a r y e x p e r i m e n t s 138 2 . T e s t s o f d i f f e r e n t m e d i a 200 3 . G r o w t h r a t e and u p r i g h t p r o d u c t i o n 203 A . T e m p e r a t u r e and d a y l e n g t h e f f e c t s 203 B. The e f f e c t o f n i t r a t e 207 C . The e f f e c t o f s a l i n i t y 224 4 . F o r m a t i o n o f u p r i g h t s a t low t e m p e r a t u r e 234 D i s c u s s i o n 235 CHAPTER 6 S t u d i e s on t h e l i f e h i s t o r y o f C o l p o m e n i a p e r e g r i n a 239 I n t r o d u c t i o n 240 M a t e r i a l s a n d M e t h o d s 242 R e s u l t s and D i s c u s s i o n 242 GENERAL DISCUSSION 245 REFERENCES 252 APPENDICES 267 A p p e n d i x 1 268 A p p e n d i x I I 272 A p p e n d i x I I I 274 A p p e n d i x IV 276 A p p e n d i x V 278 A p p e n d i x V I 280 A p p e n d i x V I I 281 A p p e n d i x V I I I 282 A p p e n d i x IX 283 A p p e n d i x X 285 i x A p p e n d i x XI 287 A p p e n d i x X I I 289 A p p e n d i x X I I I 290 A p p e n d i x XIV 291 A p p e n d i x XV 292 A p p e n d i x XVI 293 A p p e n d i x X V I I 294 A p p e n d i x X V I I I 295 A p p e n d i x XIX 296 A p p e n d i x XX 297 A p p e n d i x XXI 298 A p p e n d i x X X I I 299 A p p e n d i x X X I I I 300 A p p e n d i x XXIV 301 A p p e n d i x XXV 302 A p p e n d i x XXVI 303 A p p e n d i x XXVII 304 A p p e n d i x X X V I I I 305 A p p e n d i x XXIX 306 A p p e n d i x XXX 307 A p p e n d i x XXXI 308 A p p e n d i x XXXII 309 A p p e n d i x X X X I I I 310 A p p e n d i x XXXIV 311 A p p e n d i x XXXV 312 A p p e n d i x XXXVI 313 A p p e n d i x XXXVII 314 X A p p e n d i x XXXVIII 315 A p p e n d i x XXXIX 316 A p p e n d i x XL 317 A p p e n d i x XLI 318 A p p e n d i x X L I I 319 A p p e n d i x X L I I I 320 A p p e n d i x XLIV 321 A p p e n d i x XLV 322 A p p e n d i x XLVI 323 A p p e n d i x X L V I I 324 A p p e n d i x X L V I I I 325 A p p e n d i x XLIX 326 A p p e n d i x L 327 A p p e n d i x L I 328 A p p e n d i x L I I 329 A p p e n d i x L I I I 330 x i L I S T OF TABLES T a b l e I A l i f e t a b l e f o r Q2 s m a l l p l a n t s S3 I I A l i f e t a b l e f o r 02 l a r g e p l a n t s 84 I I I A l i f e t a b l e f o r SARG CLEAR Q p l a n t s 91 IV C o r r e l a t i o n s o f e n v i r o n m e n t a l v a r i a b l e s w i t h p e r c e n t c o v e r o f C . p e r e g r i n a 93 V B a t h I s l a n d Q l - A v e r a g e p e r c e n t c o v e r p e r month o f s p e c i e s o c c u r r i n g more t h a n o n c e d u r i n g t h e s t u d y . . . 127 VI C o r r e l a t i o n s b e t w e e n s p e c i e s and d i v e r s i t y m e a s u r e s i n Q l 129 V I I B a t h I s l a n d Q2 - A v e r a g e p e r c e n t c o v e r p e r month o f s p e c i e s o c c u r r i n g more t h a n o n c e d u r i n g t h e s t u d y . . . 130 V I I I C o r r e l a t i o n s b e t w e e n s p e c i e s and d i v e r s i t y m e a s u r e s i n Q2 131 IX B a t h I s l a n d Q3 - A v e r a g e p e r c e n t c o v e r p e r month o f s p e c i e s o c c u r r i n g more t h a n o n c e d u r i n g t h e s t u d y . . . 133 X C o r r e l a t i o n s b e t w e e n s p e c i e s and d i v e r s i t y m e a s u r e s i n Q3 134 XI D i a n a I s l a n d NQ - A v e r a g e p e r c e n t c o v e r p e r month o f s p e c i e s o c c u r r i n g more t h a n o n c e d u r i n g t h e s t u d y . . . 135 X I I C o r r e l a t i o n s b e t w e e n s p e c i e s and d i v e r s i t y m e a s u r e s i n NQ 137 X I I I S u b s t r a t e s e l e c t i v i t y o f C o l p o m e n i a , . 158 XIV B a t h I s l a n d p l a t e s - y e l l o w c e d a r 173 XV B a t h I s l a n d p l a t e s - r e d c e d a r 175 x i i XVI D i a n a I s l a n d p l a t e s - P l e x i g l a s , y e l l o w c e d a r and D o u g l a s f i r 176 XV I I D i x o n I s l a n d p l a t e s - P l e x i g l a s , y e l l o w c e d a r and D o u g l a s f i r 179 XV I I I P r e l i m i n a r y l a b o r a t o r y e x p e r i m e n t s 199 XIX E f f e c t s o f d i f f e r e n t m e d i a on g r o w t h 201 XX E f f e c t s o f d i f f e r e n t m e d i a on u p r i g h t f o r m a t i o n 202 XXI T e s t o f s l o p e d i f f e r e n c e i n r e g r e s s i o n l i n e s f o r B a t h I s l a n d p l a n t s g rown u n d e r d i f f e r e n t t e m p e r a t u r e and d a y l e n g t h c o n d i t i o n s 206 XX I I Tes t , o f s l o p e d i f f e r e n c e i n r e g r e s s i o n l i n e s f o r D i a n a I s l a n d p l a n t s g rown u n d e r d i f f e r e n t t e m p e r a t u r e and d a y l e n g t h c o n d i t i o n s 210 XX I I I P r o d u c t i o n o f u p r i g h t s w i t h c h a n g i n g t e m p e r a t u r e and d a y l e n g t h 211 XXIV T e s t o f s l o p e d i f f e r e n c e i n r e g r e s s i o n l i n e s f o r B a t h I s l a n d p l a n t s g rown u n d e r d i f f e r e n t n i t r a t e c o n c e n t r a t i o n s 215 XXV Test , o f s l o p e d i f f e r e n c e i n r e g r e s s i o n l i n e s f o r D i x o n i s l a n d p l a n t s g rown u n d e r d i f f e r e n t , n i t r a t e c o n c e n t r a t i o n s a t d i f f e r e n t t e m p e r a t u r e s . 218 XXVI T e s t o f s l o p e d i f f e r e n c e i n r e g r e s s i o n l i n e s f o r B a t h I s l a n d p l a n t s g rown u n d e r d i f f e r e n t n i t r a t e c o n c e n t r a t i o n s a t d i f f e r e n t t e m p e r a t u r e s 221 XXV I I P r o d u c t i o n o f u p r i g h t s w i t h c h a n g i n g n u t r i e n t and t e m p e r a t u r e c o n d i t i o n s 222 XXV I I I T e s t o f s l o p e d i f f e r e n c e i n r e g r e s s i o n l i n e s f o r x i i i B a t h I s l a n d p l a n t s g rown u n d e r d i f f e r e n t t e m p e r a t u r e and s a l i n i t y c o n d i t i o n s 227 XXIX T e s t o f s l o p e d i f f e r e n c e i n r e g r e s s i o n l i n e s f o r D i x o n I s l a n d p l a n t s g rown u n d e r d i f f e r e n t t e m p e r a t u r e and s a l i n i t y c o n d i t i o n s 231 XXX P r o d u c t i o n o f u p r i g h t s w i t h c h a n g i n g t e m p e r a t u r e and s a l i n i t y c o n d i t i o n s 232 XXXI T i m e r e q u i r e d a f t e r s o r u s r e m o v a l t o f o r m u p r i g h t s o f 1.0 mm d i a m e t e r o r g r e a t e r 233 XXX I I A t t e m p t s t o o b s e r v e s e x u a l r e p r o d u c t i o n 244 { x i v L I S T OF F IGURES F i g u r e 1 -4 . N e o t y p e o f C o l p o m e n i a a i n u o a a 11 5 - 8 . H o l o t y p e o f C o l p o m e n i a p e r e g r i n a 14 9 - 1 2 . H o l o t y p e o f C o l p o m e n i a b u l l o s a 17 1 3 . The d i s t r i b u t i o n o f C . p e r e g r i n a i n B.C 21 1 4 . The d i s t r i b u t i o n o f C . b u l l o s a i n B.C 23 1 5 - 1 8 . Haps o f B a t h I s l a n d 29 1 9 - 2 2 . Maps o f D i a n a I s l a n d and D i x o n I s l a n d 31 2 3 - 2 5 . T h e p e r c e n t c o v e r , d e n s i t y and wet w e i g h t o f C . p e r e g r i n a i n Q l 42 2 6 . T h e p e r c e n t c o v e r o f C . p e r e g r i n a i n Q 2 . . . . . 44 2 7 - 2 9 . The p e r c e n t c o v e r , d e n s i t y a n d wet w e i g h t o f C . p e r e g r i n a i n Q3 47 3 0 . The p e r c e n t c o v e r o f C . p e r e g r i n a i n NQ 49 3 1 - 3 9 . S i z e and w e i g h t c l a s s h i s t o g r a m s f o r Q l 52 4 0 - 4 2 . Summary o f Q l h i s t o g r a m s 56 4 3 - 4 4 . S i z e and w e i g h t c l a s s h i s t o g r a m s f o r Q2 59 4 5 . Summary o f Q2 h i s t o g r a m s 61 4 6 - 5 8 . j S i z e and w e i g h t c l a s s h i s t o g r a m s f o r Q 3 . . . 63 5 9 - 6 1 . Summary o f Q3 h i s t o g r a m s 69 6 2 - 6 4 . S i z e and w e i g h t c l a s s h i s t o g r a m s f o r D i a n a I s l . . . . 72 6 5 - 6 7 . S i z e and w e i g h t c l a s s h i s t o g r a m s f o r D i x o n I s l . . . . 74 6 8 . B a t h I s l a n d m o r t a l i t y d a t a (Q2> 77 6 9 - 7 8 . S i z e c l a s s c h a n g e s a t 02 d u r i n g m o r t a l i t y s t u d y . . . 80 XV 7 9 . B a t h I s l a n d m o r t a l i t y d a t a (Q3> 85 8 0 . B a t h I s l a n d m o r t a l i t y d a t a CSARG CLEAR Q) 87 8 1 - 8 6 . S i z e c l a s s c h a n g e s a t SARG CLEAR Q d u r i n g m o r t a l i t y s t u d y 89 8 7 . PCA o f Q l e n v i r o n m e n t a l d a t a 95 8 8 . PCA o f Q2 e n v i r o n m e n t a l d a t a 97 8 9 . PCA o f Q3 e n v i r o n m e n t a l d a t a 100 9 0 . PCA o f p o o l e d B a t h I s l a n d e n v i r o n m e n t a l d a t a 102 9 1 . CV o f p o o l e d B a t h I s l a n d e n v i r o n m e n t a l d a t a 105 9 2 . F i r s t p l o t o f an RA o f p o o l e d B a t h I s l a n d e n v i r o n m e n t a l d a t a 107 9 3 . S e c o n d p l o t o f an RA o f p o o l e d B a t h I s l a n d e n v i r o n m e n t a l d a t a 109 9 4 . PCA o f NQ e n v i r o n m e n t a l d a t a 112 9 5 . PCA o f Q l p e r c e n t c o v e r d a t a 139 9 6 . PCA o f Q2 p e r c e n t c o v e r d a t a 141 9 7 . PCA o f Q3 p e r c e n t c o v e r d a t a 143 9 8 . PCA o f p o o l e d B a t h I s l a n d p e r c e n t c o v e r d a t a 146 9 9 . CV o f p o o l e d B a t h I s l a n d p e r c e n t c o v e r d a t a 149 1 0 0 . F i r s t p l o t o f an RA o f p o o l e d B a t h I s l a n d p e r c e n t c o v e r d a t a 151 1 0 1 . S e c o n d p l o t o f an RA o f p o o l e d B a t h I s l a n d p e r c e n t c o v e r d a t a . 153 102 . PCA o f NQ p e r c e n t c o v e r d a t a 156 1 0 3 . P e r c e n t c o v e r o f C . p e r e g r i n a i n e x p e r i m e n t a l q u a d r a t s 159 x v i 1 0 4 . C o m b i n e d p e r c e n t c o v e r o f P t e r y g o p h o r a and M a c r o c y a t i s i n NQ 162 1 0 5 - 1 1 0 . M i c r o t h a l l i o f C . p e r e g r i n a 193 1 1 1 - 1 1 6 . U p r i g h t p r o d u c t i o n and s a l i n i t y e f f e c t s 196 1 1 7 . G r o w t h d a t a f o r B a t h I s l a n d m i c r o t h a l l i u n d e r v a r i o u s t e m p e r a t u r e and d a y l e n g t h r e g i m e s 204 1 1 8 . G r o w t h d a t a f o r D i a n a I s l a n d m i c r o t h a l l i u n d e r v a r i o u s t e m p e r a t u r e and day l e n g t h r e g i m e s 208 1 1 9 . G r o w t h d a t a f o r B a t h I s l a n d m i c r o t h a l l i u n d e r s i x d i f f e r e n t n i t r a t e c o n c e n t r a t i o n s 213 1 2 0 . G r o w t h d a t a f o r D i x o n I s l a n d m i c r o t h a l l i u n d e r d i f f e r e n t n i t r a t e c o n c e n t r a t i o n s and t e m p e r a t u r e s . 216 1 2 1 . G r o w t h d a t a f o r B a t h I s l a n d m i c r o t h a l l i u n d e r d i f f e r e n t n i t r a t e c o n c e n t r a t i o n s and t e m p e r a t u r e s . 219 1 2 2 . G r o w t h d a t a f o r B a t h I s l a n d m i c r o t h a l l i u n d e r d i f f e r e n t s a l i n i t i e s and t e m p e r a t u r e s 225 1 2 3 . G r o w t h d a t a f o r D i x o n I s l a n d m i c r o t h a l l i u n d e r d i f f e r e n t s a l i n i t i e s and t e m p e r a t u r e s 229 x v i i ACKNOWLEDGEMENTS T h i s t h e s i s c o u l d n o t h a v e b e e n p r o d u c e d w i t h o u t t h e h e l p o f t h r e e v e r y s p e c i a l i n d i v i d u a l s . D r . P . G . H a r r i s o n d i r e c t e d my u n d e r g r a d u a t e r e s e a r c h p r o j e c t and was w h o l l y r e s p o n s i b l e f o r my o b t a i n i n g an N . S . E . R . C . s c h o l a r s h i p w h i c h i n t r o d u c e d me t o t h e w o r l d o f g r a d u a t e s c h o o l . D r . R . E . DeWreede t o o k me on a s a g r a d u a t e s t u d e n t u n d e r s h o r t n o t i c e and p r o v e d t o be an a b s o l u t e l y s u p e r l a t i v e i n s t r u c t o r . H i s v i e w p o i n t and p h i l o s o p h y w i l l r e m a i n w i t h me a s l o n g a s I am a s t u d e n t o f b i o l o g y . D r . K.M. C o l e o p e n e d h e r l a b o r a t o r y t o me and p r o v i d e d a s s i s t a n c e i n a l l a s p e c t s o f my l i f e a s a s t u d e n t . I owe t h e s e t h r e e p r o f e s s o r s n o t h i n g l e s s t h a n t h e h i g h e s t l e v e l o f u n i v e r s i t y e d u c a t i o n . D r . D. G a r b a r y p r o v i d e d l a b o r a t o r y e q u i p m e n t , h e l p w i t h p u b l i c a t i o n s and c o n s t a n t e n c o u r a g e m e n t . T h a n k s t o D r . P . J . H a r r i s o n f o r r e a d i n g t h e t h e s i s and g i v i n g h e l p f u l s u g g e s t i o n s on e x p e r i m e n t a l d e s i g n . F i e l d work c o u l d n o t h a v e b e e n p o s s i b l e w i thou t , t h e h e l p o f G . A r m s t r o n g , D r . R . E . DeWreede , L . D y c k , K. H e l e n r u m , B. Hymes, T . K l i n g e r , R. L e w i s , S. L i n d s t r o m , A . M a c K i n n o n , D. Nagy , D r . W. N e l s o n , B. S m i t h , J . S p e n c e , R. T a y l o r , D r . D. T u r p i n , J . v a n V e l z e n , L . Y i p and t h e s t a f f o f t h e B a m f i e l d M a r i n e S t a t i o n . x v i i i B e v e r l y Hymes a s s i s t e d w i t h many a s p e c t s o f t h i s t h e s i s and h e l p e d p r o d u c e t h e v a r i o u s d r a f t s and t h e f i n a l p l a t e s . He r a d v i c e and i n s i g h t p r o v i d e d s u p p o r t t h a t no o t h e r i n d i v i d u a l c o u l d g i v e . I am a l s o v e r y g r a t e f u l t o my p a r e n t s , who know f u l l w e l l how l o n g t h e y h a v e h e l p e d i n t h i s p r o c e s s ! T h e r e s e a r c h was s u p p o r t e d by N . S . E . R . C . o p e r a t i n g g r a n t s (670645 and 6 7 9 8 7 2 ) , N . S . E . R . C . g r a d u a t e f e l l o w s h i p s and U . B . C . f e l l o w s h i p s . 1 GENERAL INTRODUCTION 2 C o l p o m e n i a p e r e g r i n a (Sauvageau) Hamel i s a s a c c a t e brown a l g a f r e q u e n t l y f o u n d g r o w i n g i n t h e i n t e r t i d a l o r s u b t i d a l i n t h e t e m p e r a t e s e a s o f b o t h h e m i s p h e r e s . C o l p o m e n i a b e l o n g s t o t h e o r d e r S c y t o s i p h o n a l e s w h i c h i n c l u d e s p l a n t s w i t h an a l t e r n a t i o n o f h e t e r o m o r p h i c g e n e r a t i o n s where t h e e r e c t p h a s e i s a g a m e t o p h y t e (Nakamura, 1 9 7 2 ) . P r i o r t o t h i s r e s e a r c h , a number o f i m p o r t a n t f e a t u r e s o f t h e b i o l o g y o f C. p e r e g r i n a had n o t been e x a m i n e d : - t h e r e were no s t u d i e s o f t h e e c o l o g y o r p h e n o l o g y o f C. p e r e g r i n a i n t h e E a s t e r n P a c i f i c . - no t y p e s p e c i m e n s had been p r o p e r l y d e s i g n a t e d f o r t h e t a x o n . - t h i s p l a n t had n o t been grown i n c u l t u r e u n d e r c o n d i t i o n s w h i c h c o u l d be r e l a t e d t o t h o s e i n t h e f i e l d . - m o r t a l i t y r a t e and d i s p e r s a l d i s t a n c e were n o t known. - i n t e r a c t i o n s between C. p e r e g r i n a and o t h e r members o f i t s a l g a l community were n o t s t u d i e d . T hus, t h e o b j e c t i v e o f t h i s s t u d y was t o answer some o f t h e s e f u n d a m e n t a l q u e s t i o n s a b o u t t h e b i o l o g y o f C. p e r e g r i n a . P r i c e (1980) g i v e s a c o m p r e h e n s i v e l i s t o f f a c t o r s w h i c h may be i m p o r t a n t i n d e f i n i n g n i c h e d i m e n s i o n s o f b e n t h i c a l g a e . The w i d t h o f t h e s e d i m e n s i o n s a r e i n t u r n r e s p o n s i b l e f o r c o n t r o l l i n g t h e abundance o f t h e a l g a l p o p u l a t i o n u n d e r s t u d y . He i n c l u d e s s u c h f a c t o r s a s l i g h t , w a t e r m o t i o n , w a t e r c h e m i s t r y , d e s i c c a t i o n , p r e d a t i o n , c o m p e t i t i o n , o b l i g a t e s y m b i o t i c r e l a t i o n s h i p s , r e p r o d u c t i v e s t r a t e g y and l i f e h i s t o r y s t r a t e g y . 3 M a r i n e b i o l o g i c a l work done i n t h e f i r s t h a l f o f t h i s c e n t u r y e x a m i n e d p h y s i c a l f a c t o r s a s t h e p r i m a r y c a u s e o f a l g a l a b u n d a n c e . E x a m p l e s o f t h i s c a n be f o u n d i n S t e p h e n s o n (1943) and D o t y ( 1 9 4 6 ) . Much o f t h e r e c e n t l i t e r a t u r e d i s c u s s e s t h e e f f e c t o f b i o l o g i c a l f a c t o r s on t h e p o p u l a t i o n d y n a m i c s o f s e a w e e d s (Chapman, 1 9 7 3 ; P a i n e , 1974 ; L u b c h e n c o , 1 9 8 0 ) . P r i o r t o t h e work d e s c r i b e d i n t h i s t h e s i s i t was n o t known w h e t h e r t h e s e a s o n a l i t y o f p o p u l a t i o n s o f C . p e r e g r i n a was r e g u l a t e d by b i o l o g i c a l o r p h y s i c a l f a c t o r s , o r some c o m b i n a t i o n o f t h e m . The g e n e r a l h y p o t h e s i s f o r much o f t h i s t h e s i s i s t h a t t h e p r e s e n c e and g r o w t h o f C . p e r e g r i n a p o p u l a t i o n s i s p r e d i c t i b l e , and d e t e r m i n e d by some e n v i r o n m e n t a l and / o r b i o l o g i c a l f a c t o r s . T h r e e d i f f e r e n t a p p r o a c h e s were t a k e n i n t h i s r e s e a r c h . A f i e l d s t u d y i n B r i t i s h C o l u m b i a a t s i t e s i n t h e S t r a i t o f G e o r g i a and on t h e wes t c o a s t o f V a n c o u v e r I s l a n d p r o v i d e d i n f o r m a t i o n a b o u t t h e s e a s o n a l i t y , p o p u l a t i o n d y n a m i c s and a u t e c o l o g y o f t h i s p l a n t . C u l t u r e s t u d i e s were c a r r i e d o u t t o e x a m i n e t h e r e s p o n s e o f t h e p l a n t t o v a r i o u s e n v i r o n m e n t a l c o n d i t i o n s . A c o m p a r a t i v e s t u d y o f t h e m o r p h o l o g y and ana tomy o f v a r i o u s h e r b a r i u m s p e c i m e n s was done i n o r d e r t o d e s i g n a t e a t y p e s p e c i m e n and t o f i n d o u t t h e t r u e name f o r t h e t a x o n u n d e r s t u d y . T h i s r e s e a r c h i s p r e s e n t e d i n s i x i n t e r r e l a t e d c h a p t e r s i n t h e f o l l o w i n g s e q u e n c e - (1) t axonomy o f t h r e e C o l p o m e n i a s p e c i e s , (2) t h e p h e n o l o g y and p o p u l a t i o n b i o l o g y o f C . p e r e g r i n a , (3) r e l a t i o n s h i p s b e t w e e n C. p e r e g r i n a and o t h e r 4 members of i t s a l g a l community, ( 4 ) the d i s p e r s a l d i s t a n c e of the p l a n t s i n the f i e l d , < 5 ) l a b o r a t o r y experiments measuring responses of m i c r o t h a l l i t o v a r i o u s c u l t u r e c o n d i t i o n s and, ( 6 ) summary o f l i f e h i s t o r y i n f o r m a t i o n f o r C. p e r e g r i n a . 5 CHAPTER 1. The taxonomy o f t h r e e s p e c i e s o f C o l p o m e n i a ( E n d l i c h e r ) D e r b e s e t S o l i e r 6 I n t r o d u c t i o n 1. P r o b l e m s i n taxonomy The r e l a t i o n s h i p b e t w e e n t h r e e s p e c i e s w i t h i n t h e g e n u s C o l p o m e n i a ( E n d l i c h e r ) D e r b e s e t S o l i e r (1851) h a s b e e n a s o u r c e o f c o n t r o v e r s y i n t h e l i t e r a t u r e . T h e s e s p e c i e s a r e C. s i n u o s a ( F . C . M e r t e n s ex R o t h ) D e r b e s e t S o l i e r , C . b u l l o s a ( S a u n d e r s ) Yamada and C . p e r e g r i n a ( S a u v a g e a u ) H a m e l . S e t c h e l l and G a r d n e r ( 1 9 0 3 , 1925) p r o p o s e d a f o r m s t a t u s f o r C . b u l l o s a a s C o l p o m e n i a s i n u o s a f . d e f o r m a n s S e t c h e l l and G a r d n e r , t h e name a l s o r e c o g n i z e d by H e l e n B l a c k l e r ( P a r s o n s , 1 9 8 2 ) . I n t e r m e d i a t e t h a l l u s s h a p e s were n o t e d b e t w e e n C . p e r e g r i n a and C . b u l l o s a by Wynne (1972) who s u g g e s t e d t h a t t h e two t a x a c a n n o t be s e p a r a t e d . H o w e v e r , P a r s o n s (1982) s t a t e d t h a t C . b u l l o s a and C. p e r e g r i n a a r e d i s t i n c t s p e c i e s . I n t e r m e d i a t e t h a l l u s s h a p e and anatomy h a s a l s o b e e n r e c o g n i z e d b e t w e e n C . p e r e g r i n a and C . s i n u o s a ( V i l l e , 1 9 6 9 ; C l a y t o n , 1 9 7 5 ) . Much o f t h e e a r l y l i t e r a t u r e c o n f u s e s t h e two t a x a ( S a u n d e r s , 1 8 9 8 ; S e t c h e l l and G a r d n e r , 1 9 2 5 ) . B l a c k l e r ( 1 9 6 4 , 1967) h a s a c r i t i c a l d i s c u s s i o n on t h e s u b j e c t . Mos t modern a u t h o r s r e c o g n i z e t h e two t a x a a s b e i n g s e p a r a t e s p e c i e s ( V i l l e , 1 9 6 9 ; Wynne, 1 9 7 2 ; C l a y t o n , 1 9 7 5 ; P a r s o n s , 1 9 8 2 ) . P a r s o n s (1982) l i s t s a s e r i e s o f a n a t o m i c a l f e a t u r e s w h i c h c a n be u s e d t o d i s t i n g u i s h b e t w e e n t h e t h r e e s p e c i e s i n q u e s t i o n . H o w e v e r , o t h e r t h a n a comment by C l a y t o n (1975) t h a t s h e had e x a m i n e d t y p e m a t e r i a l o f C . p e r e g r i n a , t h e r e h a v e b e e n 7 no p u b l i s h e d a t t e m p t s t o r e e x a m i n e o r i g i n a l t y p e m a t e r i a l f o r a n a t o m i c a l d e t a i l s . T h i s c h a p t e r w i l l c l a r i f y t h e r e l a t i o n s h i p b e t w e e n t h e s e t h r e e s p e c i e s and s p e c i f y t h o s e w h i c h o c c u r i n B r i t i s h C o l u m b i a . 2. C o l p o m e n i a s i n u o s a <F.C. M e r t e n s ex R o t h ) D e r b e s e t S o l i e r In 1806 A . G . R o t h p u b l i s h e d a d e s c r i p t i o n and f i g u r e f o r a s eaweed c o l l e c t e d by P r o f e s s o r F r a n z C a r l M e r t e n s i n t h e A t l a n t i c o f f C a d i z i n t h a t same y e a r ( B l a c k l e r , 1 9 6 7 ) . R o t h c a l l e d t h e p l a n t U l v a s i n u o s a . In 1851 D e r b e s and S o l i e r t r a n s f e r r e d t h e name o f t h e p l a n t t o C o l p o m e n i a s i n u o s a and i t became t h e t y p e s p e c i e s f o r t h e g e n u s C o l p o m e n i a ( E n d l i c h e r ) D e r b e s e t S o l i e r . U n f o r t u n a t e l y t h e o r i g i n a l c o l l e c t i o n by M e r t e n s h a s e i t h e r b e e n l o s t ( W o m e r s l e y , 1967) o r d e s t r o y e d (Dawson e t a l . , 1 9 6 4 ) . 3 . C o l p o m e n i a p e r e g r i n a ( S a u v a g e a u ) Hamel In 1906 t h e F r e n c h I n s p e c t o r G e n e r a l o f M a r i t i m e F i s h e r i e s , M. F a b r e - D o m e r g u e , was i n v o l v e d i n a p r o b l e m c o n f r o n t i n g o y s t e r c u l t u r e r s w o r k i n g a t t h e mouth o f t h e V a n n e s R i v e r i n M o r b i h a n ( N o r t h F r a n c e ) . A new a l g a had " i n v a d e d " t h e a r e a and was c a u s i n g damage t o t h e l o c a l o y s t e r b e d s . He c o n t a c t e d E . B o r n e t who t o l d h im t h a t t h e a l g a was C o l p o m e n i a s i n u o s a D e r b . e t S o l i e r . B o r n e t a s s u r e d F a b r e - D o m e r g u e t h a t C o l p o m e n i a had n o t b e e n o b s e r v e d i n t h e G u l f o f M o r b i h a n 8 p r e v i o u s l y ( F a b r e - D o m e r g u e , 1 9 0 6 ) . O t h e r a u t h o r s s o o n r e s p o n d e d t h a t C . s i n u o s a may h a v e b e e n on t h e A t l a n t i c s i d e o f F r a n c e f o r some t i m e ( C o r b i e r e , 1 9 0 7 ) . S a u v a g e a u (1927) e x a m i n e d t h e p r o b l e m i n d e t a i l and c o n c l u d e d t h a t t h e A t l a n t i c C o l p o m e n i a was a new s p e c i e s . He s p e c i f i c a l l y named t h e p l a n t s f r o m t h e V a n n e s R i v e r a s C o l p o m e n i a s i n u o s a v a r . p e r e g r i n a . G o n t r a n Hamel (1937) e l e v a t e d t h e t a x o n t o s p e c i e s s t a t u s a s C o l p o m e n i a p e r e g r i n a . 4 . C o l p o m e n i a b u l l o s a ( S a u n d e r s ) Yamada De A l t o n S a u n d e r s c o l l e c t e d a new s p e c i e s o f brown a l g a i n A u g u s t 1896 a t P a c i f i c G r o v e , C a l i f o r n i a , nam ing i t S c y t o s i p h o n b u l l o s u s ( S a u n d e r s , 1 8 9 8 ) . Y . Yamada (1948) t r a n s f e r r e d t h e t a x o n t o C o l p o m e n i a b u l l o s a . M a t e r i a l s and M e t h o d s L i q u i d - p r e s e r v e d s p e c i m e n s u s e d i n t h i s s t u d y were c o l l e c t e d f r o m May 1979 t i l l S e p t e m b e r 1981 a l o n g t h e P a c i f i c c o a s t o f B r i t i s h C o l u m b i a . M o n t h l y o b s e r v a t i o n s and c o l l e c t i o n s were made a t B a t h I s l a n d ( S t r a i t o f G e o r g i a , B r i t i s h C o l u m b i a -4 9 ° 09 ' N , 1 2 3 ° 40 'W) and a t D i a n a I s l a n d ( B a r k l e y S o u n d , V a n c o u v e r I s l a n d , B r i t i s h C o l u m b i a - 4 8 ° 50 ' N , 1 2 5 ° 11 ' W ) . P l a n t s were a l s o c o l l e c t e d a t D i x o n I s l a n d ( B a r k l e y S o u n d , V a n c o u v e r I s l a n d , B r i t i s h C o l u m b i a - 4 8 ° 51 ' N , 1 2 5 ° 07 ' W ) . C o l l e c t i o n s o f p l a n t s were made e i t h e r a t low t i d e o r by u s e o f 9 SCUBA, ( s e e C h a p t e r Two f o r d e t a i l s on f i e l d s a m p l i n g methods and r e f e r t o A p p e n d i x I f o r c o l l e c t i o n d a t e s ) . The l i v e m a t e r i a l was t r a n s p o r t e d f r o m t h e f i e l d wrapped i n n e w s p a p e r i n an i c e - c o o l e d c h e s t . P l a n t s were f i x e d w i t h i n 48 h o u r s o f r e t u r n i n g t o t h e l a b o r a t o r y w i t h 4 - 5 % f o r m a l i n i n s e a w a t e r . E a c h p l a n t s p e c i m e n was w e i g h e d , s e c t i o n e d and e x a m i n e d f o r m o r p h o l o g i c a l and a n a t o m i c a l f e a t u r e s . M a t e r i a l was s e c t i o n e d a t a p p r o x i m a t e l y 5 i^m u s i n g a f r e e z i n g m i c r o t o m e . S e c t i o n s mounted on g l a s s s l i d e s w i t h K a r o (30% c o r n s y r u p and 4% f o r m a l i n i n w a t e r ) were e x a m i n e d w i t h an O lympus m i c r o s c o p e u s i n g H o f f m a n o p t i c s . I n f o r m a t i o n on h e r b a r i u m s p e c i m e n s came f r o m a v a r i e t y o f h e r b a r i a i n E u r o p e and N o r t h A m e r i c a i n c l u d i n g B e r l i n ( B ) , t h e B r i t i s h Museum (BM), Bremen (BREM), t h e F a r l o w ( F H ) , Hamburg (HBG) , L u n d ( L D ) , L e n i n g r a d ( L E ) , P a r i s (PC) and t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a ( U B C ) . P o r t i o n s o f s e l e c t e d s p e c i m e n s were r e h y d r a t e d i n 1% d i o c t y l s u l f o s u c c i n a t e f o r 22 h o u r s p r i o r t o MeOH d e h y d r a t i o n and e m b e d d i n g i n g l y c o l m e t h a c r y l a t e , a method s i m i l a r t o t h a t u s e d by P a r s o n s ( 1 9 8 2 ) . S e c t i o n s were made a t 2 um on a S o r v a l J B 4 m i c r o t o m e and t h e n s t a i n e d w i t h 0 . 2 5 % t o l u i d i n e b l u e 0 (TBO) ( M c C u l l y e t a l . , 1 9 8 0 ) . 10 R e s u l t s and D i s c u s s i o n 1. N e o t y p i f i c a t i o n o f C o l p o m e n i a s i n u o s a <F.C. M e r t e n s ex R o t h ) D e r b e s e t S o l i e r A l t h o u g h s e v e r a l o f t h e h e r b a r i a (BREM, BM, HBG and PC) c o n t a i n s p e c i m e n s f r o m R o t h ' s h e r b a r i u m o r f r o m F . C . M e r t e n s ' s o n <C.H. M e r t e n s ; i n LE ) , none h a s t h e t y p e m a t e r i a l . The BM h a s a h e r b a r i u m p a c k e t w h i c h may be t h e same one t h a t B l a c k l e r (1964) m e n t i o n s a s h a v i n g " U l v a s i n u o s a n . s p . f r o m T e n e r i f f e , 1 8 0 6 " i n F . C . M e r t e n s ' h a n d w r i t i n g . The w r i t i n g on t h e p a c k e t i s " T u r n e r o / U l v a s i n u o s a M e r t / n . s p . / f r o m T e n e r i f f e / D Mohr 1 8 0 6 " ( F i g u r e 1 ) . The d a t e and n . s p . n o t a t i o n show t h a t t h e e n c l o s e d p l a n t s do c o r r e s p o n d t o M e r t e n s ' ( and h e n c e R o t h ' s ) c o n c e p t o f U l v a s i n u o s a a s p u b l i s h e d i n 1806 . The o n l y d i f f e r e n c e s a r e t h a t t h e h e r b a r i u m s p e c i m e n s were n o t c o l l e c t e d i n t h e t y p e l o c a l i t y o f C a d i z and t h e y do n o t c o r r e s p o n d i n s h a p e t o t h e s p e c i m e n s f i g u r e d by R o t h ( 1 8 0 6 , p l a t e 1 2 ) . The p l a n t s i n s i d e t h e p a c k e t ( F i g u r e 1) a r e w r i n k l e d and h a v e a brown c o l o r t y p i c a l o f C . s i n u o s a ( B l a c k l e r , 1 9 6 4 ; C l a y t o n , 1 9 7 5 ; P a r s o n s , 1 9 8 2 ) . The s o r i a r e p u n c t a t e and a r e c o v e r e d by a c u t i c l e ( F i g u r e s 2 , 3 , 4 ) . T h e s e l a s t two c h a r a c t e r s a r e d i s t i n c t i v e o f C . s i n u o s a ( C l a y t o n , 1 9 7 5 ; P a r s o n s , 1 9 8 2 ) . The c r o s s s e c t i o n o f t h e l a r g e s t s p e c i m e n ( F i g u r e s 3 , 4 ) i n d i c a t e s a p r i m a r y c u t i c l e a s d e f i n e d by P a r s o n s ( 1 9 8 2 ) . 11 F i g u r e s 1 -4 . N e o t y p e o £ C o l p o m e n i a s i n u o s a <F.C. M e r t e n s ex R o t h ) D e r b e s e t S o l i e r . F i g u r e 1. BM h e r b a r i u m p a c k e t and e n c l o s e d s p e c i m e n s . F i g u r e 2 . P u n c t a t e s o r i ( a r r o w s ) . B a r i s 1 mm l o n g . F i g u r e 3 . C r o s s s e c t i o n w i t h c u t i c l e ( a r r o w ) o v e r p l u r i l o c u l a r r e p r o d u c t i v e t i s s u e . B a r i s 100 ^iM l o n g . F i g u r e 4 . D e t a i l o f c u t i c l e ( a r r o w ) . B a r i s 25 ^iM l o n g . 13 Due t o t h e l a c k o f t y p e m a t e r i a l f o r C . s i n u o s a and t h e d a t e and n o t a t i o n s on t h e BM p a c k e t , t h e s p e c i m e n s i n t h e p a c k e t were s e l e c t e d a s t h e n e o t y p e o f C o l p o m e n i a s i n u o s a ( F . C . M e r t e n s ex R o t h ) D e r b e s e t S o l i e r ( V a n d e r m e u l e n e t a l . , 1 9 8 4 ) . 2. H o l o t y p i f i c a t i o n o f C o l p o m e n i a p e r e g r i n a ( S a u v a g e a u ) Hamel A h e r b a r i u m s h e e t o b t a i n e d f r o m PC h a s t h e n o t a t i o n " C o l l . C . S a u v a g e a u / H e r b . G. T h u r e t / C o l p o m e n i a s i n u o s a D e r b e s e t S o l i e r / H u i t r i e r e s de V a n n e s ( M o r b i h a n ) / A v r i l 1906 / Donne p a r M. F a b r e Domergue " ( F i g u r e 5 ) . T h u r e t p r o b a b l y o b t a i n e d t h e s p e c i m e n f r o m B o r n e t . F a b r e - D o m e r g u e ' s p a p e r was p u b l i s h e d i n May 1 9 0 6 , one month a f t e r t h e p l a n t s were c o l l e c t e d . The s p e c i m e n s ' s o r i a r e c o n f l u e n t and a r e n o t c o v e r e d w i t h a c u t i c l e ( F i g u r e s 6 , 7 ) . T h e s e c h a r a c t e r s c a n be u s e d t o d i f f e r e n t i a t e C . p e r e g r i n a f r o m C . s i n u o s a ( C l a y t o n , 1 9 7 5 ; P a r s o n s , 1 9 8 2 ) . H e l e n B l a c k l e r a n n o t a t e d t h e h e r b a r i u m s h e e t i n 1961 ( F i g u r e 8) a s " p r o b a b l y t y p e s p e c i m e n s " . T h e s e s p e c i m e n s were e s t a b l i s h e d a s t h e h o l o t y p e f o r C o l p o m e n i a p e r e g r i n a ( S a u v . ) Hamel b e c a u s e t h e c o l l e c t o r , c o l l e c t i o n d a t e and c o l l e c t i o n l o c a l i t y a l l i n d i c a t e h o l o t y p e s t a t u s ( V a n d e r m e u l e n e t a l . , 1 9 8 4 ) . 14 F i g u r e s 5-8. H o l o t y p e o f C o l p o m e n i a p e r e g r i n a (Sauvageau) Hamel. F i g u r e 5. PC h e r b a r i u m s h e e t . F i g u r e 6. Dark brown c o n f l u e n t s o r u s . B a r i s 1 mm l o n g , F i g u r e 7. C r o s s s e c t i o n w i t h p l u r i l o c u l a r r e p r o d u c t i v e t i s s u e . B a r i s 100 p¥l l o n g . F i g u r e 8. H e l e n B l a c k l e r ' s a n n o t a t i o n . I s a V ' » Tl Herb G. THl'HET r cava 7 Determinant I\UW&UJJ < " 1 8 16 3. H o l o t y p i f i c a t i o n o£ C o l p o m e n i a b u l l o s a ( S a u n d e r s ) Yamada The same h e r b a r i u m s h e e t m e n t i o n e d by P a r s o n s i n 1982 i s shown i n F i g u r e 9. The l a b e l s ( F i g u r e 10) show S a u n d e r s ' o r i g i n a l d e s i g n a t i o n f o r t h e m a t e r i a l a s a new s p e c i e s w i t h a l a t e r a n n o t a t i o n by H e l e n B l a c k l e r r e c o g n i z i n g S e t c h e l l and G a r d n e r ' s r e d u c t i o n o f t h e m a t e r i a l t o f o r m s t a t u s . T h i s m a t e r i a l h a s c o n f l u e n t s o r i ( F i g u r e 11) and p l u r i l o c u l a r r e p r o d u c t i v e s t r u c t u r e s w h i c h a r e v e r y d i s t i n c t i v e ( F i g u r e 1 2 ) . The l o n g , t h i n and f r e q u e n t l y u n i s e r i a t e n a t u r e o f t h e s e r e p r o d u c t i v e s t r u c t u r e s w i t h t h e i r t i n y l o c u l e s a r e d i f f e r e n t t h a n t h e s h o r t e r , w i d e r and f r e q u e n t l y b i s e r i a t e r e p r o d u c t i v e s t r u c t u r e s w i t h r e l a t i v e l y l a r g e r l o c u l e s s e e n i n C. s i n u o s a and C. p e r e g r i n a . P a r s o n s (1982) s t r e s s e s t h e p r e s e n c e o f p i t s i n t h e m e d u l l a a s b e i n g i n d i c a t i v e o f C. b u l l o s a . T h e s e c o u l d n o t be s e e n i n my p r e p a r a t i o n s , p r e s u m a b l y due t o t h e p o o r q u a l i t y o f t h e r e h y d r a t i o n . I d i s a g r e e w i t h P a r s o n s ' d e s i g n a t i o n f o r t h i s m a t e r i a l a s l e c t o t y p e . Some o f t h e m a t e r i a l i s i d e n t i c a l t o S a u n d e r s ' o r i g i n a l d r a w i n g s o f t h e s p e c i e s a s P a r s o n s h i m s e l f s t a t e d . The n o t a t i o n s i n c l u d i n g t h e " n s p " a l l i n d i c a t e t h a t t h e m a t e r i a l i s i d e n t i c a l t o t h a t d e s c r i b e d by S a u n d e r s i n 1898. T h i s m a t e r i a l c a n t h e r e f o r e be c a l l e d t h e t r u e h o l o t y p e f o r C o l p o m e n i a b u l l o s a ( S a u n d e r s ) Yamada ( V a n d e r m e u l e n e t a l . , 1 9 8 4 ) . 17 F i g u r e s 9 - 1 2 . H o l o t y p e o f C o l p o m e n i a b u l l o s a ( S a u n d e r s ) Yamada. F i g u r e 9 . FH h e r b a r i u m s h e e t . F i g u r e 1 0 . L a b e l s , i n c l u d i n g o r i g i n a l by S a u n d e r s i n 1896 and a n n o t a t i o n by H e l e n B l a c k l e r i n 1 9 5 9 . F i g u r e 1 1 . Da rk brown c o n f l u e n t s o r i ( a r r o w s ) . B a r i s 10 mm l o n g . F i g u r e 12 . C r o s s s e c t i o n w i t h p l u r i l o c u l a r r e p r o d u c t i v e t i s s u e . B a r i s 100 jiM l o n g . IS Herbarium of DcALTON SAUNDERS. 10 RKVUBOBT 19 4 . The s p e c i e s o f C o l p o m e n i a f o u n d i n B r i t i s h C o l u m b i a Widdowson (1973) l i s t s C . p e r e g r i n a ( S a u v a g e a u ) H a m e l , C . b u l l o s a ( S a u n d e r s ) Yamada and C . s i n u o s a f . t u b e r c u l a t a ( S a u n d e r s ) S e t c h e l l and G a r d n e r f o r s p e c i e s o f C o l p o m e n i a t o be f o u n d i n N o r t h e r n W a s h i n g t o n a n d / o r B r i t i s h C o l u m b i a . Of t h e 895 p l a n t s w h i c h I c o l l e c t e d i n t h e f i e l d d u r i n g t h i s s t u d y ( B a t h I s l a n d 4 2 7 , D i x o n I s l a n d 296 and D i a n a I s l a n d 172 . See C h a p t e r Two) t h e s p e c i e s c o m p o s i t i o n was a s f o l l o w s : a) C . p e r e g r i n a was by f a r t h e most common s p e c i e s . I t was f o u n d a t a l l o f t h e f i e l d s i t e s . T h i s t h e s i s i s a b o u t t h e a u t e c o l o g y o f t h i s s p e c i e s . b) C . b u l l o s a was r a r e . Some p l a n t s were c o l l e c t e d a t B a t h I s l a n d i n A p r i l 1979 and M a r c h 1 9 8 0 . C . b u l l o s a was a l s o o b s e r v e d a t B a t h I s l a n d i n May and S e p t e m b e r 1980 and i n A p r i l and J u n e 1 9 8 1 . A c o l l e c t i o n made a t D i a n a I s l a n d i n J u n e 1979 had some C . b u l l o s a . The p l a n t s were a l s o s e e n a t D i a n a I s l a n d i n J u n e 1 9 8 0 . c ) C . s i n u o s a f . t u b e r c u l a t a was n o t s e e n d u r i n g t h i s s t u d y a l t h o u g h one p l a n t (#206) c o l l e c t e d on J u l y 12 , 1979 a t D i a n a I s l a n d r e s e m b l e s t h i s t a x o n . C . s i n u o s a was n o t s e e n d u r i n g t h i s s t u d y , n o r a r e t h e r e any s p e c i m e n s o f i t f r o m B r i t i s h C o l u m b i a i n t h e UBC h e r b a r i u m . However some U . B . C . h e r b a r i u m s p e c i m e n s were i n c o r r e c t l y l a b e l l e d C . s i n u o s a i n s t e a d o f C . p e r e g r i n a . H e r b a r i u m r e c o r d s f r o m UBC were u s e d t o p r o d u c e a d i s t r i b u t i o n a l map f o r C . 20 peregrina (Figure 13) and C. bullosa (Figure 14) on the coast of B r i t i s h Columbia. Both species are widely d i s t r i b u t e d along the coastline. 21 F i g u r e 1 3 . The d i s t r i b u t i o n o f C . p e r e g r i n a i n B r i t i s h C o l u m b i a . The t r i a n g l e s r e p r e s e n t t h e two f i e l d s i t e s u s e d i n t h i s s t u d y . 23 F i g u r e 14. The d i s t r i b u t i o n o f C. b u l l o s a i n B r i t i s h C o l u m b i a . The t r i a n g l e s r e p r e s e n t t h e two f i e l d s i t e s u s e d i n t h i s s t u d y . 25 CHAPTER 2. The p h e n o l o g y and a u t e c o l o g y o f C o l p o m e n i a p e r e g r i n a a t B a t h I s l a n d and B a m f i e l d , B r i t i s h C o l u m b i a , Canada. 26 I n t r o d u c t i o n C . p e r e g r i n a i s w i d e l y d i s t r i b u t e d i n t h e n o r t h t e m p e r a t e A t l a n t i c and P a c i f i c ( B l a c k l e r , 1 9 6 4 ; A b b o t t and H o l l e n b e r g , 1 9 7 6 ; B i r d and E d e l s t e i n , 1 9 7 8 ) . I t c a n be f o u n d i n s o u t h t e m p e r a t e s e a s a s w e l l ( W o m e r s l e y , 1 9 6 7 ; P a r s o n s , 1 9 8 2 ) . D e s p i t e i t s v e r y w i d e r a n g e o f o c c u r r e n c e t h e r e i s l i t t l e i n f o r m a t i o n p u b l i s h e d on t h e p h e n o l o g y o r a u t e c o l o g y o f t h i s s p e c i e s . T h i s i s i n s t a r k c o n t r a s t t o t h e l a r g e v o l u m e o f i n f o r m a t i o n a v a i l a b l e on C . s i n u o s a . The i n f o r m a t i o n a v a i l a b l e on C . p e r e g r i n a i s a s f o l l o w s : A u s t r a l i a - C l a y t o n (1975) n o t e d t h a t i n any one p o p u l a t i o n i n d i v i d u a l s o f C . p e r e g r i n a were q u i t e u n i f o r m i n s h a p e b u t d i f f e r e n t p o p u l a t i o n s u s u a l l y had d i f f e r e n t s h a p e s . She f o u n d t h a t s m a l l , r e g u l a r l y g l o b o s e p l a n t s were f r e q u e n t l y e p i p h y t i c and o c c u r r e d i n t i d e p o o l s w h i l e l a r g e r more i r r e g u l a r l y f o l d e d p l a n t s o c c u r r e d on open r o c k s u r f a c e s i n t h e m i d - i n t e r t i d a l t o u p p e r s u b t i d a l z o n e s . In 1981 C l a y t o n p u b l i s h e d p h e n o l o g i c a l d a t a f o r C . p e r e g r i n a i n S o u t h e r n A u s t r a l i a . The p l a n t s were common i n t h e i n t e r t i d a l f r o m May t o November ( A u s t r a l i a n w i n t e r ) and f e r t i l e p l a n t s c o u l d be f o u n d a t any t i m e d u r i n g t h a t p e r i o d ( s e e C h a p t e r 6 ) . C a l i f o r n i a - F o s t e r (1975) s p e n t t h r e e y e a r s e x a m i n i n g a s u b t i d a l M a c r o c y s t i s p y r i f e r a f o r e s t on S a n t a C r u z I s l a n d . He f o u n d t h a t t h e r e was l i t t l e c h a n g e i n t h e s t r u c t u r e o f t h e commun i t y o t h e r t h a n a summer g r o w t h o f C . p e r e g r i n a w h i c h was 27 gone by S e p t e m b e r . C . p e r e g r i n a was one o f t h e f i r s t a l g a e t o c o l o n i z e c o n c r e t e b l o c k s p l a c e d o u t i n t h e s p r i n g and summer, b u t r a r e l y c o l o n i z e d b l o c k s p l a c e d o u t i n t h e f a l l and n e v e r was f o u n d on w i n t e r b l o c k s . W a s h i n g t o n - Thorn e t a l . (1976) g i v e i n f o r m a t i o n t h a t s u g g e s t s t h a t C. p e r e g r i n a i s a s p r i n g e p h e m e r a l i n t h e h i g h t o m i d - i n t e r t i d a l z o n e n e a r S e a t t l e . B r i t i s h C o l u m b i a - L e e (1966) d e n u d e d and b u r n e d an e x p e r i m e n t a l p l o t i n a seaweed c o m m u n i t y a t V i c t o r i a i n A u g u s t 1 9 6 2 . He f o u n d t h a t C . s i n u o s a ( r e a d C . p e r e g r i n a , most c e r t a i n l y a m i s i d e n t i f i c a t i o n ) was p r e s e n t i n t h e p l o t j u s t p r i o r t o t h e b u r n i n g and came b a c k t o t h e p l o t i n A p r i l 1 9 6 3 , a f t e r an e n t i r e w i n t e r ' s a b s e n c e . In summary, C . p e r e g r i n a a p p e a r s t o be an e p h e m e r a l p l a n t w h i c h i s a b s e n t a t d i f f e r e n t t i m e s o f t h e y e a r d e p e n d i n g upon t h e l o c a l i t y . I t c a n o c c u r f r o m t h e h i g h i n t e r t i d a l r i g h t down t o t h e s u b t i d a l z o n e s and i t s m o r p h o l o g y may v a r y w i t h i t s p o s i t i o n on t h e s h o r e . To t h i s d a t e t h e r e h a v e b e e n no s t u d i e s w h i c h s i m u l t a n e o u s l y e x a m i n e d t h e s e a s o n a l a b u n d a n c e and r e p r o d u c t i v e s t a t u s o f C . p e r e g r i n a a t any l o c a l i t y i n t h e N o r t h e r n H e m i s p h e r e . T h e r e a r e no s t u d i e s a t a l l on t h e d e t a i l e d q u a n t i t a t i v e a b u n d a n c e o f C . p e r e g r i n a i n c o r p o r a t i n g b i o m a s s , d e n s i t y and p e r c e n t c o v e r . T h i s c h a p t e r d e s c r i b e s how two d i f f e r e n t f i e l d s i t e s v a r i e d i n t h e s e a s o n a l p e r c e n t c o v e r , d e n s i t y , b i o m a s s , f e r t i l i t y and m o r p h o l o g y o f t h e i r r e s p e c t i v e 2d C. peregrina populations from May 1979 t i l l September 1981. The environmental factors controling seasonal and s i t e v a r i a t i o n are also discussed. Materials and Methods Bath Island i s composed mainly of sandstone located o f f the southern t i p of Gabriola Island, B r i t i s h Columbia (Figure 15). The f i e l d s i t e used for t h i s study was on the southeast side of the island (Figure 16) on a sandstone rock slab. It i s moderately exposed to wave action and has strong t i d a l longshore currents. Diana Island i s composed mainly of granite located just northwest of Bamfield, B r i t i s h Columbia (Figure 19). The f i e l d s i t e used f o r t h i s study was on the northwest side of the island on a granite rock slab. It i s moderately exposed to wave action and frequently has strong wave surge currents p a r a l l e l to the reef face (Figure 20). Dixon Island i s also composed mainly of granite located just northeast of Bamfield (Figure 19). The f i e l d s i t e used for t h i s study was on the northeast side of the island on large to medium sized cobble. It i s more sheltered than the previous two s i t e s (Figure 21). 29 F i g u r e s 1 5 - 1 8 . Maps o f B a t h I s l a n d i n t h e S t r a i t o f G e o r g i a , B r i t i s h C o l u m b i a . F i g u r e 1 5 . L o c a t i o n o f B a t h I s l a n d i n t h e S t r a i t . VC= V a n c o u v e r C i t y , VI= V a n c o u v e r I s l a n d , V= V a l d e s I s l a n d , G= G a b r i o l a I s l a n d . A r r o w p o i n t s t o B a t h I s l a n d . S c a l e e q u a l s 6200 m. F i g u r e 1 6 . L o c a t i o n o f s t u d y a r e a on B a t h I s l a n d . T= T u g b o a t I s l a n d , S= S e a r I s l a n d , G= G a b r i o l a I s l a n d , Sa= S a t u r n i n a I s l a n d , B= B a t h I s l a n d . A r r o w p o i n t s t o s t u d y s i t e . S c a l e e q u a l s 300 m. F i g u r e 1 7 . Map o f t h e t h r e e p e r m a n e n t q u a d r a t s ( Q l , Q2 , Q3>. D o t t e d s q u a r e s r e p r e s e n t d e s t r u c t i v e s a m p l i n g s i t e s . S m a l l b l a c k r e c t a n g l e s r e p r e s e n t y e l l o w c e d a r p l a t e s p l a c e d i n on A u g u s t 24 1 9 7 9 . L a r g e h a t c h e d r e c t a n g l e s r e p r e s e n t r e d c e d a r p l a t e s p l a c e d i n on May 12 1 9 8 0 . L a r g e w h i t e r e c t a n g l e s r e p r e s e n t r e d c e d a r p l a t e s p l a c e d i n on May 29 1 9 8 0 . S c a l e e q u a l s 1.0 m. F i g u r e 1 8 . P r o f i l e o f t h e s t u d y s i t e . H o r i z o n t a l a x i s n o t d rawn t o s c a l e . A= P o r p h y r a and b a r n a c l e z o n e , B= F u c u s z o n e , C= S a r g a s s u m z o n e , D= L i t h o t h r i x z o n e . H e i g h t = m a b o v e o r b e l o w C a n a d i a n C h a r t Datum. 30 31 F i g u r e s 1 9 - 2 2 . Maps o f D i a n a I s l a n d and D i x o n I s l a n d i n B a r k l e y S o u n d , B r i t i s h C o l u m b i a . F i g u r e 1 9 . L o c a t i o n o f D i a n a I s l a n d and D i x o n I s l a n d i n t h e S o u n d . D i = D i a n a I s l a n d , B= B a m f i e l d M a r i n e S t a t i o n , H= H e l b y I s l a n d , D= D i x o n I s l a n d . R e c t a n g l e s r e p r e s e n t s t u d y a r e a s . S c a l e e q u a l s 1 Km. F i g u r e 2 0 . L o c a t i o n o f s t u d y a r e a on D i a n a I s l a n d . S q u a r e s r e p r e s e n t q u a d r a t s . A r t i f i c i a l s u b s t r a t e s r e p r e s e n t e d by a t r i a n g l e . D= D i a n a I s l a n d , R= i n t e r t i d a l r e e f . S c a l e e q u a l s 25 m. F i g u r e 2 1 . L o c a t i o n o f a r t i f i c i a l s u b s t r a t e s p l a c e d on D i x o n I s l a n d ( t r i a n g l e s ) . D= D i x o n I s l a n d , L= l o g . S c a l e e q u a l s 15 m. F i g u r e 2 2 . P r o f i l e o f D i x o n I s l a n d s h o r e . H o r i z o n t a l a x i s n o t d rawn t o s c a l e . T r i a n g l e s r e p r e s e n t l o c a t i o n o f a r t i f i c i a l s u b s t r a t e s . L= l o g . H e i g h t = m a b o v e o r b e l o w C a n a d i a n C h a r t Datum. 32 33 1. Q u a d r a t s and d e s t r u c t i v e s a m p l e s . A) B a t h I s l a n d T h r e e p e r m a n e n t q u a d r a t s ( Q 1 - Q 3 , F i g u r e s 17 and 18) were e s t a b l i s h e d a t t h e f i e l d s i t e b e t w e e n A p r i l and May 1 9 7 9 . N y l o n g a r d e n t w i n e was s t r u n g t i g h t l y a c r o s s an a l u m i n u m q u a d r a t f r a m e ( 1 . 0 m by 1.0 m) h o r i z o n t a l l y and v e r t i c a l l y t h r o u g h h o l e s d r i l l e d i n t h e f r a m e f o r p r e c i s e a l i g n m e n t . The f r a m e u s e d f r o m A p r i l 1979 t i l l M a r c h 1 1981 had h o l e s d r i l l e d a t 10 cm i n t e r v a l s , r e s u l t i n g i n a t o t a l o f 81 i n t e r s e c t p o i n t s where h o r i z o n t a l and v e r t i c a l l i n e s c r o s s e d . T h i s o r i g i n a l f r a m e was l o s t and r e p l a c e d by a new one o f t h e same s i z e on M a r c h 1 1 9 8 1 . The new f r a m e had h o l e s d r i l l e d a t 9.1 cm i n t e r v a l s r e s u l t i n g i n a t o t a l o f 100 i n t e r s e c t p o i n t s . Two 0 . 6 3 cm h o l e s were d r i l l e d on one o f t h e s i d e s o f b o t h o f t h e f r a m e s u s e d . The t h r e e q u a d r a t s were p e r m a n e n t l y marked on t h e s h o r e w i t h e x p a n s i o n b o l t s ( s e c u r e d i n t h e s a n d s t o n e s u b s t r a t e a f t e r d r i l l i n g h o l e s w i t h a p n e u m a t i c d r i l l p o w e r e d w i t h c o m p r e s s e d a i r f r o m a SCUBA t a n k ) w h i c h were f l a g g e d w i t h b r i g h t p l a s t i c t a p e . The two 0 . 6 3 cm. h o l e s i n t h e f r a m e s l o t t e d o v e r t h e b o l t s and s a m p l i n g c o n s i s t e d o f r e c o r d i n g what o c c u r r e d a t e a c h p o i n t i n t e r s e c t . T h e s e d a t a were u s e d t o e s t i m a t e t h e t r u e p e r c e n t c o v e r o f C . p e r e g r i n a . The l o g i s t i c s o f u n d e r w a t e r s a m p l i n g and t h e l e n g t h o f t i m e t h a t c o u l d be s p e n t a t t h e f i e l d s i t e p r o h i b i t e d t h e e x a m i n a t i o n o f more t h a n t h r e e q u a d r a t s on any 34 one f i e l d t r i p . Refer to Appendix I for a l i s t of sampling dates for Quadrats 1-3." Destructive samples were taken at Bath Island by placing the frame at a predetermined location near each of the three permanent quadrats and removing a l l of the C. peregrina within a known subarea of the t o t a l area covered by the frame. These plants were taken back to the laboratory and preserved as outlined i n Chapter 1. Later on -each plant was blotted dry and weighed to obtain a wet weight. The widest point across the plant was measured as an indicat i o n of r e l a t i v e s i z e . A small piece of the plant, near the bottom where reproductive tissue develops f i r s t , was removed and sectioned as in Chapter 1 to determine i f the plant was f e r t i l e . Refer to Figure 17 for the location of each of the destructive samples and to Appendix I for the time at which each was taken. B) Diana Island Three permanent quadrats (NQ-MQ-SQ, Figure 20) were established at the f i e l d s i t e i n July and August 1979. The same aluminum quadrat frames used at Bath Island were used at t h i s s i t e . NQ was located in the f i e l d using an expansion bolt but HQ and SQ could only be located by placing cement patio slabs on the bottom; the bedrock was too hard to d r i l l and glueing markers was unsuccessful. The patio slabs themselves were frequently moved about by storms and SQ was permanently l o s t by August £ 1980. A l l three quadrats were between -2.0 and -2.5 m 35 i n d e p t h . E s t i m a t i o n s o f C. p e r e g r i n a p e r c e n t c o v e r were done i n t h e same manner a s a t B a t h I s l a n d . R e f e r t o A p p e n d i x I f o r a l i s t o f s a m p l i n g d a t e s f o r Q u a d r a t s N, M and S. Due t o t h e low d e n s i t y o f C. p e r e g r i n a d e s t r u c t i v e s a m p l e s were t a k e n a t D i a n a I s l a n d by swimming a b o u t a t t h e same d e p t h a s t h e q u a d r a t s and c o l l e c t i n g i n d i v i d u a l p l a n t s . T h e s e p l a n t s were t r e a t e d i n t h e same manner a s t h e B a t h I s l a n d s p e c i m e n s . R e f e r t o A p p e n d i x I f o r s a m p l i n g d a t e s . C) D i x o n I s l a n d T h i s s i t e was u s e d o n l y f o r some a r t i f i c i a l s u b s t r a t e s t u d i e s ( C h a p t e r 4) and f o r c o l l e c t i o n s o f C o l p o m e n i a . P l a n t s were c o l l e c t e d f r o m 0 t o -4 m by swimming a r o u n d a l a r g e c o b b l e f i e l d a t t h e s i t e . T h e s e p l a n t s were t r e a t e d i n t h e same manner a s t h e B a t h I s l a n d s p e c i m e n s . See A p p e n d i x I f o r s a m p l i n g d a t e s . 2. M o r t a l i t y r a t e s t u d y a t B a t h I s l a n d . As t h e f i e l d work p r o g r e s s e d i t became c l e a r t h a t knowing t h e l i f e s p a n o f i n d i v i d u a l p l a n t s was e s s e n t i a l f o r u n d e r s t a n d i n g t h e p o p u l a t i o n d y n a m i c s o f C o l p o m e n i a . A m o r t a l i t y r a t e s t u d y was u n d e r t a k e n a t B a t h I s l a n d s t a r t i n g on May 30, 1980 and i n t e n s i f i e d i n a two week l o n g s t u d y f r o m May 31 t o J u n e 14, 1981. I n d i v i d u a l C o l p o m e n i a p l a n t s were i d e n t i f i e d i n t h e 36 permanent q u a d r a t s by t h e i r p o s i t i o n r e l a t i v e t o t h e g r i d o£ n y l o n t w i n e i n t h e q u a d r a t f r a m e . Once i d e n t i f i e d t h e p l a n t s were examined a t b i - w e e k l y o r d a i l y i n t e r v a l s t o d e t e r m i n e t h e t i m e o f t h e i r d i s a p p e a r a n c e . The s i z e o f t h e p l a n t s was measured a t e a c h o b s e r v a t i o n d a t e . T h i s method i s s i m i l a r t o t h e t y p e u s e d t o g e n e r a t e a " h o r i z o n t a l s u r v i v o r s h i p c u r v e " as d e f i n e d by McNaughton and Wolf ( 1 9 7 9 ) . I w i l l r e f e r t o t h e d a t a a s t i m e - s p e c i f i c m o r t a l i t y d a t a . 3. E n v i r o n m e n t a l v a r i a b l e s . A t b o t h t h e B a t h I s l a n d and D i a n a I s l a n d s i t e s an a t t e m p t was made t o measure t e m p e r a t u r e ( C C ) , s a l i n i t y ( p p t ) and p h o t o s y n t h e t i c a l l y a c t i v e r a d i a t i o n (PAR, quantum i r r a d i a n c e , u E.m-2.s-l) i n t h e w a t e r column on e a c h o f t h e q u a d r a t s a m p l i n g d a y s . The e q u i p m e n t u s e d t o do t h i s was a YSI s a l i n i t y , c o n d u c t i v i t y and t e m p e r a t u r e m eter (model 33, Y e l l o w S p r i n g s I n s t r u m e n t Co., O h i o ) and a L i - C o r l i g h t meter (model 185A) w i t h an u n d e r w a t e r quantum s e n s o r (model L I - 1 9 2 5 , L i - C o r I n c . , N e b r a s k a ) . U n d e r w a t e r l i g h t r e a d i n g s were c o r r e c t e d f o r t h e i m m e r s i o n e f f e c t . D a t a were g a t h e r e d f r o m o t h e r s o u r c e s n e a r t h e two f i e l d s i t e s i n o r d e r t o f i l l g a ps i n my f i e l d d a t a . A) B a t h I s l a n d D a i l y s a l i n i t i e s and t e m p e r a t u r e s f o r s u r f a c e w a t e r s (0.9 m) o f f E n t r a n c e I s l a n d (49° 12 'N , 1 2 3 ° 48 'W) were o b t a i n e d / 37 f r o m D r . L . F . G i o v a n d o , I n s t i t u t e o f Ocean S c i e n c e s , S i d n e y , B . C . T h i s i s t h e c l o s e s t s i t e t o B a t h I s l a n d where d a i l y s a m p l i n g o f s u r f a c e w a t e r s o c c u r s ( a p p r o x . 9 km d i s t a n t ) . T h e r e i s some e v i d e n c e t h a t t h e p h y s i c a l c h a r a c t e r i s t i c s o f t h e w a t e r a t E n t r a n c e I s l a n d i s v e r y s i m i l a r t o t h a t a t B a t h I s l a n d due t o p r e v a i l i n g l o n g s h o r e c u r r e n t s ( G i o v a n d o , 1 9 7 3 ) . D a i l y s o l a r r a d i a t i o n and d a y l e n g t h m e a s u r e m e n t s f o r D e p a r t u r e B a y , Nana imo ( 4 9 ° 12 'N , 1 2 3 ° 57 'W) were o b t a i n e d f r o m E n v i r o n m e n t C a n a d a ' s m o n t h l y r a d i a t i o n summary r e p o r t s ( A n o n . 1 9 7 9 , 1 9 8 0 , 1 9 8 1 ) . T h i s i s t h e c l o s e s t s i t e t o B a t h I s l a n d where d a i l y p y r a n o m e t e r i n f o r m a t i o n i s r e c o r d e d ( a p p r o x . 22 km d i s t a n t ) . D a i l y t i d a l i n f o r m a t i o n f o r S i l v a B a y , G a b r i o l a I s l a n d ( 4 9 ° 09 ' N , 123° 42 'W) was o b t a i n e d f r o m C a n a d i a n t i d e and c u r r e n t t a b l e s v o l u m e 5 ( A n o n . 1 9 7 9 , 1 9 8 0 , 1 9 8 1 ) . T h i s i s t h e c l o s e s t " t i d a l s e c o n d a r y p o r t " t o B a t h I s l a n d (2 km d i s t a n t ) . B) D i a n a I s l a n d S a l i n i t i e s and t e m p e r a t u r e s f o r s u r f a c e w a t e r s o f f H e l b y I s l a n d ( 4 8 ° 51 'N , 1 2 5 ° 10 'W) were o b t a i n e d f r o m D r . L . D r u e h l ( B i o l o g y D e p a r t m e n t , S F U ) . S u r f a c e and 4m r e a d i n g s were a v e r a g e d t o c a l c u l a t e a mean v a l u e f o r a d e p t h s i m i l a r t o t h a t u s e d a t B a t h I s l a n d . T h i s i s t h e c l o s e s t s i t e t o D i a n a I s l a n d where s a m p l i n g o f s u r f a c e w a t e r s o c c u r s (2 km d i s t a n t ) . The two i s l a n d s a r e p r e s u m e d t o be s u r r o u n d e d by t h e same w a t e r mas s . D a i l y s o l a r r a d i a t i o n and d a y l e n g t h m e a s u r e m e n t s f o r 38 Carnation Creek, Vancouver Island (48 55 ' N, 125 00 "W> were obtained from Dr. C. Scriptner, P a c i f i c B i o l o g i c a l Station, Nanaimo, B.C. Carnation Creek i s the closest s i t e to Diana Island where d a i l y pyranometer information i s recorded (approx 8 km d i s t a n t ) . The information on environmental variables gathered for both Bath Island and Diana Island was divided into 14 day time periods. Each time period represented the two weeks pr i o r to a pa r t i c u l a r sampling day i n the f i e l d (this length of time i s representative of the l i f e span of C. peregrina, see Results section). The method of u t i l i z i n g physical parameter values of conditions p r i o r to a sampling day i s explained by Thorn (1983) The average value for a p a r t i c u l a r variable was calculated for each time period at each s i t e . The average values for the variables were compared to the percent cover of C. peregrina using a matrix of product moment co r r e l a t i o n c o e f f i c i e n t s and using the ordination methods of p r i n c i p a l components analysis (PCA), canonical variates analysis (CV) and reciprocal averaging (RA). A l l four versions were done using the f a c i l i t i e s of the UBC computing center. The co r r e l a t i o n c o e f f i c i e n t s , PCA and CV were part of the MIDAS s t a t i s t i c a l package (Fox and Guire, 1976). The RA program was used courtes of Dr. G. Bradfield, Department of Botany, U.B.C. The ordination methods were used to suggest relationships between environmental variables and the percent cover of C. peregrina, not to function as s t a t i s t i c a l analyses of such relationships (J e f f e r s , 1978; John et al.,1980; Gauch, 1982). 39 Results 1. F i e l d s i t e physical factors. Due to frequent equipment f a i l u r e or bad weather i t was impossible to produce anything more than a very irr e g u l a r record of temperature, s a l i n i t y and quantum irradiance measured at the f i e l d s i t e s (Appendix II, I I I ) . A) Bath Island Monthly mean, maximum and minimum s a l i n i t i e s and temperatures f o r the surface waters o f f Entrance Island are given i n Appendix IV. The s a l i n i t y and temperature data co l l e c t e d at Bath Island i s s i m i l a r to the data from Entrance Island c o l l e c t e d on the same day. The o v e r a l l pattern at Entrance Island i s one of high temperature and low s a l i n i t y in the summertime. This low s a l i n i t y i s due to the freshet of the Fraser River. On A p r i l 30 and from June 1 to 14, 1981 the Fraser River plume was seen on the shores of Bath Island. This water i s characterized by low s a l i n i t y and high t u r b i d i t y (Appendix I I ) . 40 B) Diana Island S a l i n i t i e s and temperatures for the surface waters o f f Helby Island are given in Appendix V. The limited s a l i n i t y and temperature data c o l l e c t e d at Diana Island c l o s e l y follows the data from Helby Island, with lowered s a l i n i t y and temperature in winter due to heavy r a i n f a l l in the winter and spring. 2. Quadrats and destructive samples. Part I. Biomass, percent cover, and density of individuals on a seasonal basis. Some of the preserved destructive samples were not examined u n t i l two years a f t e r the c o l l e c t i o n date. Appendix VI shows weight changes for fresh plants measured again a f t e r spending over two years i n 4% formalin. A) Bath Island It was discovered that small (3 mm dia.) plants of Leathesia difformis (L.) Areschoug could e a s i l y be confused with C. peregrina in the f i e l d . If the destructive sample contained a large amount of mistakenly c o l l e c t e d Leathesia the percent cover value for that quadrat was reduced in proportion. The percent cover of Colpomenia in Ql i s shown in Figure 23. The plant behaves as a spring ephemeral which i s abundant 41 f r o m M a r c h t o J u n e and may be a b s e n t In t h e m i d d l e o f summer ( A u g u s t 1981) and t h e m i d d l e o f w i n t e r (December 1 9 7 9 ) . The number o f i n d i v i d u a l s p e r s q u a r e m e t e r a s c a l c u l a t e d f r o m d e s t r u c t i v e s a m p l e s i s g i v e n i n F i g u r e 2 4 . N o t e t h a t t h e number o f i n d i v i d u a l s i s n o t p r o p o r t i o n a l t o t h e p e r c e n t c o v e r . T h e r e i s a l s o a s m a l l b l o o m o f C . p e r e g r i n a i n t h e f a l l ( O c t o b e r 1980 , S e p t e m b e r 1981) w h i c h i s n o t shown i n t h e p e r c e n t c o v e r d a t a . T h i s may be due t o t h e f a c t t h a t t h e d e s t r u c t i v e s a m p l e s were n o t t a k e n d i r e c t l y f r o m t h e p e r m a n e n t q u a d r a t i t s e l f . F i g u r e 25 shows t h e wet w e i g h t p e r s q u a r e m e t e r o f C . p e r e g r i n a i n Q l . T h i s i n f o r m a t i o n shows t h a t t h e f a l l b l o o m a s o u t l i n e d i n F i g u r e 24 i s composed o f v e r y s m a l l p l a n t s . The p e r c e n t c o v e r o f C . p e r e g r i n a i n Q2 i s shown i n F i g u r e 2 6 . The p l a n t s b e h a v e a s s p r i n g and f a l l e p h e m e r a l s a t t h i s h e i g h t on t h e s h o r e . As i n Q l t h e p l a n t s may be t o t a l l y a b s e n t i n t h e m i d d l e o f summer ( J u l y 1979) and i n t h e m i d d l e o f w i n t e r (December 1 9 7 9 ) . The r e a s o n f o r t h e l a t e n e s s o f t h e s p r i n g b loom i n 1980 (no p l a n t s a t a l l i n A p r i l 1980) i s n o t known. I n f o r m a t i o n on number s o f i n d i v i d u a l s p e r s q u a r e m e t e r and wet w e i g h t p e r s q u a r e m e t e r were n o t p l o t t e d on a s e a s o n a l b a s i s . T h i s i s due t o an i n a d e q u a t e number o f d e s t r u c t i v e s a m p l e s . 42 P e r c e n t c o v e r o f C . p e r e g r i n a p l a n t s o v e r t h e s t u d y p e r i o d i n Q l , B a t h I s l a n d ( s e e F i g u r e 17 f o r l o c a t i o n ) . C o l p o m e n i a s e e n i n z o n e on e i t h e r s i d e o f q u a d r a t o r i n q u a d r a t a t b e l o w IX c o v e r . Q No d a t a on z o n e O No C o l p o m e n i a i n z o n e . The number o f i n d i v i d u a l s o f C . p e r e g r i n a p e r s q u a r e m e t e r o v e r t h e s t u d y p e r i o d i n Q l . The wet w e i g h t o f C . p e r e g r i n a p e r s q u a r e m e t e r o v e r t h e s t u d y p e r i o d i n Q l . Coyer - % 44 The percent cover of C. p e r e g r i n a p l a n t s over the study p e r i o d i n Q2, Bath I s l a n d (see F i g u r 17 f o r l o c a t i o n ) . ^ Colpomenia seen i n zone on e i t h e r s i d e of quadrat or i n quadrat a t below IX cover. ^) No data on zone ^) No Colpomenia i n zone. 14 r Month 4 6 The p e r c e n t c o v e r o f C . p e r e g r i n a i n Q3 i a shown i n F i g u r e 2 7 . A s i m i l a r p a t t e r n t o t h a t i n Q2 i s s e e n : a s p r i n g and f a l l b l o o m o f C o l p o m e n i a w i t h no p l a n t s p r e s e n t d u r i n g some o f t h e summer months ( J u n e and J u l y 1979) and no p l a n t s d u r i n g some o f t h e w i n t e r months (December 1 9 7 9 , F e b r u a r y 1 9 8 0 ) . The number o f i n d i v i d u a l s p e r s q u a r e m e t e r a s c a l c u l a t e d f r o m d e s t r u c t i v e s a m p l e s i s g i v e n i n F i g u r e 2 8 . A g a i n , t h e number o f i n d i v i d u a l s i s n o t p r o p o r t i o n a l w i t h t h e p e r c e n t c o v e r . A l s o , t h e r e was a b l oom o f C . p e r e g r i n a p l a n t s i n t h e f a l l o f 1980 w h i c h was m i s s e d by t h e p e r m a n e n t q u a d r a t . As i n Q l , t h i s may be due t o t h e l o c a t i o n o f t h e d e s t r u c t i v e s a m p l e s . F i g u r e 29 shows t h e wet w e i g h t p e r s q u a r e m e t e r o f C . p e r e g r i n a i n Q3 . T h i s i n f o r m a t i o n shows t h a t t h e f a l l b l oom r e c o r d e d i n F i g u r e 27 i s composed o f s m a l l i n d i v i d u a l s , a s was t h e c a s e w i t h Q l . B) D i a n a I s l a n d The p e r c e n t c o v e r o f C . p e r e g r i n a i n NQ i s shown i n F i g u r e 3 0 . The p l a n t s a r e a b s e n t i n t h e w i n t e r months ( J a n u a r y 1 9 8 0 , F e b r u a r y 1981) and c a n be f o u n d i n a b u n d a n c e r i g h t t h r o u g h t h e summer; a marked f a l l b l oom was a b s e n t . Q u a d r a t MQ n e v e r had any C o l p o m e n i a i n i t e x c e p t on A u g u s t 22 1979 ( 3 . 7 % c o v e r ) and J u n e 17 1981 (2% c o v e r ) . SQ had C . p e r e g r i n a on J u l y 12 1979 ( 1 4 . 8 % ) , A p r i l 26 1980 (3 .7%) and J u n e 6 1980 ( 3 . 7 % ) . By A u g u s t 6 1980 SQ was l o s t . 47 F i g u r e 2 7 . F i g u r e 2 8 . F i g u r e 2 9 . The p e r c e n t c o v e r o f C . p e r e g r i n a p l a n t s o v e r t h e s t u d y p e r i o d i n Q3 , B a t h I s l a n d ( s e e F i g u r e 17 f o r l o c a t i o n ) . ^ C o l p o m e n i a s e e n i n z o n e on e i t h e r s i d e o f q u a d r a t o r i n q u a d r a t a t b e l o w 1% c o v e r . \_) No C o l p o m e n i a i n z o n e . The number o f i n d i v i d u a l s o f C . p e r e g r i n a p e r s q u a r e m e t e r o v e r t h e s t u d y p e r i o d i n Q3 . T h e wet w e i g h t o f C . p e r e g r i n a p e r s q u a r e m e t e r o v e r t h e s t u d y p e r i o d i n Q3 . Cover - 96 r o CO ro 8fr 49 F i g u r e 3 0 . The p e r c e n t c o v e r o f C . p e r e g r i n a p l a n t s o v e r t h e s t u d y p e r i o d i n NQ ( s e e F i g u r e 20 f o r l o c a t i o n ) . C o l p o m e n i a s e e n i n z o n e on e i t h e r s i d e o f q u a d r a t o r i n q u a d r a t a t b e l o w 1% c o v e r . ^ ) No d a t a on z o n e ^ ) No C o l p o m e n i a i n z o n e . 50 2 1 • M o n t h 51 2. Q u a d r a t s and d e s t r u c t i v e s a m p l e s . P a r t I I . T i m e - s p e c i f i c s i z e and w e i g h t c l a s s c h a n g e s i n c l u d i n g r e p r o d u c t i v e s t a t u s o f i n d i v i d u a l s . A) B a t h I s l a n d The d a t a on i n d i v i d u a l C . p e r e g r i n a p l a n t s c o l l e c t e d a t B a t h I s l a n d were s o r t e d and h i s t o g r a m s o f s i z e o r w e i g h t c l a s s and f e r t i l i t y were drawn u s i n g a c o m p u t e r p r o g r a m w r i t t e n f o r an A p p l e II-*- m i c r o c o m p u t e r ( V a n d e r m e u l e n and DeWreede , 1983) . The t i m e - s p e c i f i c s i z e and w e i g h t c l a s s h i s t o g r a m s f o r Q l a r e shown i n F i g u r e s 3 1 - 3 9 . O f t h e n i n e d e s t r u c t i v e s a m p l e s t h a t were a n a l y s e d i n t h i s manner a l l b u t two ( F i g u r e s 3 3 , 35) had some p l a n t s t h a t were f e r t i l e . The r e p r o d u c t i v e s t a t u s o f a g i v e n p l a n t d o e s n o t seem t o d e p e n d upon i t s s i z e o r w e i g h t ( F i g u r e s 3 1 , 3 8 ) . The p o p u l a t i o n s h a v e skewed w e i g h t d i s t r i b u t i o n s i n d i c a t i n g many low w e i g h t i n d i v i d u a l s ; h o w e v e r , p l a n t s i z e seems t o f o l l o w a more r e g u l a r o r n o r m a l d i s t r i b u t i o n . When t h e d a t a a r e p o o l e d i n t o s e a s o n s ( d e f i n i t i o n s : S p r i n g = M a r c h 1 t o May 3 0 , Summer 3 J u n e 1 t o A u g u s t 3 0 , F a l l = S e p t e m b e r 1 t o November 3 0 , W i n t e r = December 1 t o F e b r u a r y 28) t h e d o m i n a n c e o f t h e s p r i n g b l oom o f C . p e r e g r i n a a t t h e Q l e l e v a t i o n i s e m p h a s i z e d ( F i g u r e s 4 0 - 4 2 ) . The p l a n t s a r e l a r g e r i n t h e s p r i n g t i m e . H o w e v e r , f e r t i l i t y d o e s n o t seem t o d e p e n d 52 F i g u r e s 31-39. Time s p e c i f i c s i z e and w e i g h t c l a s s h i s t o g r a m s f o r Q l d e s t r u c t i v e s a m p l e s ( B a t h I s l a n d ) . Number a f t e r d a t e i s sample s i z e . S h a d i n g r e p r e s e n t s p r o p o r t i o n o f f e r t i l e p l a n t s i n t h a t s i z e o r w e i g h t c l a s s . 53 .16-.14-.12-F .10-ft E .08-0 .06-.04-.02-0' .16 .14 .12 F . ,0 Q 0 8 .06 .04 .02 0 1 .04 .06 .12 .16 .20 .24 .28 .32 .36 .40 J 0 2.0 4.0 6.0 8.0 10. 12. 14. 16. 18. 20. WEIGHT (G) M A R . 8 '80 - 26 SIZE (MM) 32 .40-t—I .30-20' .10' 1 1 I 1 I ' I ' I 1 I ' I .04 .06 .12 .16 .20 .24 .28 .32 HEIGHT (G) 1 20-1 r-i .15 F .05 T .36 .40 0 2.0 4.0 6.0 8.0 10. 12. M A R . 2 9 '80 - 10 S IZE (MM) I 1 I 1 I 14. 16. 16. 20. 33 54 .50 .40-.30 .20 .10-0-.50-.40-R • » E Q . 2 0 . .10 I 1 I 1 I 1 I ' I 24 WEIGHT (G) I - 1 -1 56 .40 M A Y 3 0 " 8 0 - 2 0 .04 .08 .12 .16 .20 .  .2$ .32 . 36 .40 6 2.0 4.0 6.0 8.0 10. 12. 14. 16. 18 . 20. S I Z E ( M M ) 34 1.0-.60-.60-.40 .20-o-I.O-.80 R E Q .40 I ' I I ' I 1 1 1 I 1 I ' I 1 I 1 I .20 0 I 1 I I 1 I ' I ' I 0 .04 .08 .12 .16 .20 .24 .28 .32 .36 .40 0 2.0 4.0 6.0 8.0 10. 12. 14. 16. 18. 20. H E I G H T ( G ) J U N . 1 2 ' 8 0 - 1 S I Z E (MM) 35 T T T I ' I I 1 I ~l .04 .06 .12 .16 .20 .24 .28 .32 .36 .40 WEIGHT (G) T I ' I 1 0 2.0 4.0 6.0 8.0 10. 12. 14. 16. 18. 20. O C T . 3 ' 8 0 - 4 S I Z E (MM) 36 55 I OT—l l _ r -.04 .06 ~i 1 .12 ~1 16 T-' .20 l .24 'I • I 1 I .2B .32 .36. .30-.25 • 20-1 .15 .10 .05 0-WEIGHT (G) 40 M A R . 1 2 0 2.0 4.0 6.0 8.0 10. 12. ' 8 1 - 7 S I Z E (MM) ' I ' I 1 ' I 14. 16. 18. 20. 37 .50-.40 E Q . 2 0 .10 • i I i I i I • I i I ' I 1 I 1 I 1 I 0| ' | ' P | ' | ' I • I ' I 1 I ' I ' I .04 .08 .12 .16 .20 .24 .28 .32 .36 .40 0 2.0 4.0 6.0 8.0 10. 12. 14. 16. 16. 20. W E I G H T ( G ) S E P . 2 2 ' 8 1 - 2 S I Z E (MM) 39 56 F i g u r e s 40-42. S e a s o n a l summary o f Q l s i z e and w e i g h t c l a s s h i s t o g r a m s ( B a t h I s l a n d ) . S h a d i n g r e p r e s e n t s p r o p o r t i o n o f f e r t i l e p l a n t s i n t h a t s i z e o r w e i g h t c l a s s . F i g u r e 40. D e s t r u c t i v e s a m p l e s c o l l e c t e d i n s p r i n g . N=102. F i g u r e 41. D e s t r u c t i v e s a m p l e s c o l l e c t e d i n summer. N=l. F i g u r e 42. D e s t r u c t i v e s a m p l e s c o l l e c t e d i n f a l l . N=6. 57 i-On i 1 i 1 .04 .os ~ i 1 .12 I ' I ' I 1 I ' I 1 I ' I .16 .20 .24 .28 .32 .36 .40 1.0-.80' .60 .40 .20 0 WEIGHT (Gl T T T T 2.0 4.0 6.0 6.0 10. 12. SIZE (MM) 14. ' I ' I 16. 18. 41 58 upon t h e t i m e o f y e a r ( F i g u r e 41 r e p r e s e n t s j u s t one p l a n t ) . The t i m e - s p e c i f i c s i z e and w e i g h t c l a s s h i s t o g r a m s f o r Q2 a r e shown i n F i g u r e s 43-44. O n l y two d e s t r u c t i v e s a m p l e s were a n a l y s e d b u t t h e y show t h e same t r e n d t h a t t h e Q l h i s t o g r a m s show, i n d e p e n d e n c e o f f e r t i l i t y on s i z e o r w e i g h t and a s k e w i n g o f t h e p o p u l a t i o n t o w a r d s low w e i g h t i n d i v i d u a l s . B o t h s a m p l e s were c o l l e c t e d d u r i n g t h e f a l l o f 1979. The p o o l e d r e s u l t s a r e shown i n F i g u r e 45. The most e x t e n s i v e d a t a s e t f o r s i z e o r w e i g h t h i s t o g r a m s comes f r o m Q3 ( F i g u r e s 4 6 - 5 8 ) . T h i r t e e n d e s t r u c t i v e s a m p l e s were a n a l y s e d . The same t r e n d s e e n i n Q l and Q2 a l s o o c c u r r e d i n Q3. The f e r t i l i t y o f C. p e r e g r i n a i s i n d e p e n d e n t o f s i z e o r w e i g h t and low mass i n d i v i d u a l s p r e d o m i n a t e i n t h e p o p u l a t i o n s . The s e a s o n a l summary o f Q3 d a t a i s shown i n F i g u r e s 59-61. As i n Q l t h e s p r i n g p l a n t s a r e l a r g e r i n s i z e and weigh more t h a n p l a n t s c o l l e c t e d a t any o t h e r t i m e o f t h e y e a r . The f a l l bloom o f s m a l l low w e i g h t i n d i v i d u a l s i s q u i t e p r o n o u n c e d a t t h i s h e i g h t on t h e s h o r e . Note t h a t , a g a i n , t h e f e r t i l i t y o f t h e C. p e r e g r i n a d o e s not. depend upon s e a s o n . None o f t h e h i s t o g r a m s f r o m Q l , Q2 o r Q3 showed movement o f a p a r t i c u l a r w e i g h t o r s i z e c l a s s t o t h e n e x t l a r g e s t c l a s s o v e r t i m e . I t i s i n f e r r e d f r o m t h i s t h a t e i t h e r : 1. C. p e r e g r i n a p l a n t s a r e v e r y s h o r t l i v e d and d i e o u t between s u c c e s s i v e d e s t r u c t i v e s a m p l e s ( s h o r t e s t t i m e between any two s a m p l i n g d a y s a t any one q u a d r a t was 12 d a y s - May 30 t o June 12, 1980, Q l and Q3); 2. C. p e r e g r i n a p l a n t s have m o r t a l i t y 59 F i g u r e s 4 3 - 4 4 . Time s p e c i f i c s i z e and w e i g h t c l a s s h i s t o g r a m s f o r Q2 d e s t r u c t i v e s a m p l e s ( B a t h I s l a n d ) . Number a f t e r d a t e i s s a m ple s i z e . S h a d i n g r e p r e s e n t s p r o p o r t i o n o f f e r t i l e p l a n t s i n t h a t s i z e o r w e i g h t c l a s s . 60 .80 .70' .60-.50' .40-.30' .20' .10 0 1 1 0 .04 .08 .12 .16 .20 .24 I ' I ' I ' I 26 .32 .36 .40 I 1 I 2.0 4.0 6.0 8.0 10 T WEIGHT (G) NOV. 3 '79 - 7 S I Z E 12. (MM) T 14. 16. I ' I 1 18. 20. 44 61 F i g u r e 4 5 . Summary o f Q2 s i z e and w e i g h t c l a s s h i s t o g r a m s f r o m f a l l s a m p l e s ( B a t h I s l a n d ) . No c o l l e c t i o n s were made a t o t h e r t i m e s o f t h e y e a r . N=79. S h a d i n g r e p r e s e n t s p r o p o r t i o n o f f e r t i l e p l a n t s i n t h a t s i z e o r w e i g h t c l a s s . 62 .02 .04 .06 .03 .10 .12 .14 .16 .16 .20 WEIGHT (G) I I 1 • i ' * i 1 ' j TJ 0 3.0 6.0 9.0 12. 15. 13. 21. 24. 27. SIZE (MM) 45 63 Figures 46-58. Time s p e c i f i c s i z e and weight class histograms for Q3 destructive samples (Bath Island). Number aft e r date i s sample s i z e . Shading represents proportion of f e r t i l e plants in that s i z e or weight c l a s s . 6 4 i . On .80-.60 1 .06 T " . 12 T" T .18 .2* .30 .36 WEIGHT (G) 1 I ' ' I ' .42 .48 T "T T T 54 .60 0 4.0 8.0 12. 16 AUG. 24 79 - 8 SIZE 1 I 1 I 20. 24. (MM) T T 28. 32. T 1 36. 40. 4 7 .70-.60~ .50-R .40-Q .30-.20 .10 l .08 T n i • i o .04 . 06 .12 .16 . 20 . 24 . 28 .32 . 36 . 40 0 3.0 6.0 > 0 12. 15. 18 . 21. 24 . 27 . 30. WEIGHT (G) SEP. 29 '79 -136 S IZE (HM) 4 8 6 5 .80 .70 .60 .50 .40 .30 .20 .10 0 1 i ' 1 1 1 1 1 • 1 1 1 0 .06 .12 .16 .24 .30 .36 HEIGHT (G) ' I ' ' I ' ' I ' ' I .42 .48 .54 .60 ' I ' I ' I ' 1 0 8.0 12. 16. 20. 24. 26. 32. 36. 40. NOV.3 '79 -17 SIZE (MM) 4 9 i . O n .80 R •«> E Q . 4 0 .20 •5<h n r-i .40 R 30 E Q . 2 0 .10 I 1 ' I 1 1 I 1 1 I 1 ' I 1 ' I 1 ' I 1 1 I 1 ' I 1 1 I 0 .06 .12 .18 .24 .30 .36 .42 .48 .54 .60 ~r 0 4.0 8.0 12. 1 I 1 I ' I 1 I 1 I 1 I ' I 16. 20. 24. 28. 32. 36. 40. HEIGHT (G) MAR. 29 '80 - 2 SIZE (MM) 50 so-n n .40 t -30' E Q . 2 0 .10 •50n n .40' R -30 E Q . 2 0 .10' I 1 1 I 1 1 I ' 1 I ' ' I ' ' i ' ' i ' ' i ' ' i 06 .12 .18 .24 .30 .36 .42 .46 .54 .60 T" T 0 4.0 8.0 12. 16. 20. 24. 28. 32. 36. 40 HEIGHT (G) MAY 30 "80 - 2 SIZE (MM) 51 66 1 1 1 1 1 1 1 i ' 1 1 1 1 P 1 1 1 1 1 1 11 .06 .12 .18 .24 .30 .36 .42 .48 HEIGHT (G) 1.0' .80' E Q . 4 0 .20 54 .60 0 4.0 8.0 12. 16. 20. 24 JUN. 12 '80 - 3 S IZE (MM) ' I ' I ' I ' I 26. 32. 36. 40. 5 2 • O n .80-.60-• 40H 20i "T "T T T T T .06 .12 .18 .24 .30 .36 .42 .48 .54 .60 0 4.0 8.0 12 WEIGHT (G) JUN. 30 ' 8 0 - 2 S IZE (MM) T" T "1 18. 20. 24. 28. 32. 36. 40. 53 .60>, .50' F -* 0 ' C.30 .20 .10-" P ' i 1 1 1 1 1 1 1 ' i n i • 1 1 • • 1 1 ' i • • i 0 .06 .12 .18 .24 .30 .36 .42 .48 .54 .60 •25i i — l .20 .15 .10' .05' 0+ 1 X L i 1 i 1 i ' l • i • i 1 i 0 4.0 8.0 12. 16. 20. 24. 28. 32. 36. 40. WEIGHT (G) SEP. 14 '80 -32 SIZE (MM) 36. 54 67 .O-n .80' .60' .40-.20-1 .40 .30 R 1.20 .10 I ' ' I ' 1 I ' 1 I 1 ' I 1  I 1  I ' 1 I 1 ' I ' ' I 0 .06 .12 .18 .24 .30 .36 .42 .48 .54 .60 I ' I ' I ' I ' I ' I ' I ' I 0 4.0 8.0 12. 16. 20. 24. 26. 32. 36. 40. HEIGHT (G) APR. 30 '81 SIZE (MM) 5 5 I O-n .80 .60 .40 .20 Ol r-l .80 I  60 E Q . 4 0 .20-I 1 1 I 1 1 I ' 1 I 1 1 I 1 1 I 1 1 I ' 1 I 1  I ' 1 I 0 .06 .12 .18 .24 .30 .36 .42 .48 .54 .60 • i • i • I 1 I 1 I ' I ' I ' I 0 4.0 8.0 12. 16. 20. 24. 28. 32. 36. 40. WEIGHT (G) J U L . 9 '81 -1 SIZE (MM) 5 6 .6<h .50 .40 .30 .20 .101 .30 .25-.20' .15 .10 .05 T" "T T T T I 1  I 1 .06 .12 .18 .24 .30 .36 .42 .48 .54 .60 WEIGHT (G) II T T A U G . 10 '81 - 7 4.0 8.0 12. 16. 20. 24. SIZE (MM) I ' I 28. T 32. 36. 40. 5 7 \ 68 F R .20 h 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 .06 .12 .18 .24 .30 .36 .42 .48 .54 .60 .40-.30 F R t .20. .10-I 1 I 1 I • I ' I ' I 1 I 0 4.0 8.0 12. 16. 20. 24. 28. 32. 36. 40. HEIGHT (G) SEP. 22 '81 -15 S I Z E (MM) 58 69 F i g u r e s 5 9 - 6 1 . S e a s o n a l summary o f Q3 s i z e and w e i g h t c l a s s h i s t o g r a m s ( B a t h I s l a n d ) . S h a d i n g r e p r e s e n t s p r o p o r t i o n o f f e r t i l e p l a n t s i n t h a t s i z e o r w e i g h t c l a s s . F i g u r e 5 9 . D e s t r u c t i v e s a m p l e s c o l l e c t e d i n s p r i n g . N=28. F i g u r e 6 0 . D e s t r u c t i v e s a m p l e s c o l l e c t e d i n summer. N=21, F i g u r e 6 1 . D e s t r u c t i v e s a m p l e s c o l l e c t e d i n f a l l . N=200. 70 71 rates that are independent of s i z e or weight; 3. Natality rates are variable at d i f f e r e n t spots on the shore. - The mortality rate study (see below) helped to discriminate among these p o s s i b i l i t i e s . B) Diana Island The data on individual C. peregrina plants c o l l e c t e d at Diana Island were divided up into s i z e and weight class histograms but should be interpreted with caution due a bias i n sampling. Very tiny plants could have been missed while swimming by, an error which would not occur at Bath Island by examining one designated sampling spot. The seasonal summary data (Figures 62-64) show inter e s t i n g differences from the pattern seen at Bath Island. Smaller, low weight indivi d u a l s seem to be less f e r t i l e compared to larger plants. None of the plants c o l l e c t e d i n the f a l l were f e r t i l e . The plants are also much larger on average than those c o l l e c t e d at Bath Island. C) Dixon Island The Dixon Island samples were treated in the same manner as the Diana Island samples. Figures 65-67 outline the seasonal trends. The r e s u l t s are almost the same as those for Diana 7 2 F i g u r e s 6 2 - 6 4 . T i m e s p e c i f i c s i z e and w e i g h t c l a s s h i s t o g r a m s f o r D i a n a I s l a n d d e s t r u c t i v e s a m p l e s . S h a d i n g r e p r e s e n t s p r o p o r t i o n o f f e r t i l e p l a n t s i n t h a t s i z e o r w e i g h t c l a s s . F i g u r e 6 2 . D e s t r u c t i v e s a m p l e s c o l l e c t e d i n s p r i n g . N=44. F i g u r e 6 3 . D e s t r u c t i v e s a m p l e s c o l l e c t e d i n summer. N=104. F i g u r e 6 4 . D e s t r u c t i v e s a m p l e s c o l l e c t e d i n f a l l . N=23. 73 •M>, .50 R • 20-1 .40 •30 F R * . 2 0 n i 1 ' i 1 1 1 ' 1 1 1 n 1 11 0 1.5 3.0 4.5 6.0 7.5 3.0 10. 12. 13. 15. WEIGHT (G) .10' 0 20. 40. 60. 80. 100 120 140 160 SIZE (MM) 62 .50-.40 R 30 E Q.20 .10 .24' .20-F l 6 ' 1 l2|—I .08 .04 0 0 1.5 3.0 4.5 6.0 7.5 5.0 10. 12. 13. 15. WEIGHT (G) 20. 40. 60. 80. 100 120 140 160 S IZE (MM) 63 F -62 R E Q .31 .44 .33 F R Q 2 2 .11 a i ' 1 1 1 1 1 1 ' i i 1 1 1 i 1 1 1 0 1.5 3.0 4.5 6.0 7.5 9.0 10. 12. 13. 15. WEIGHT (G) ' I ' I ' I • I ' I ' I 20. 40. 60. 80. 100 120 140 160 SIZE (MM) 64 74 F i g u r e s 6 5 - 6 7 . T i m e s p e c i f i c s i z e and w e i g h t c l a s s h i s t o g r a m s f o r D i x o n I s l a n d d e s t r u c t i v e s a m p l e s . S h a d i n g r e p r e s e n t s p r o p o r t i o n o f f e r t i l e p l a n t s i n t h a t s i z e o r w e i g h t c l a s s . F i g u r e 6 5 . D e s t r u c t i v e s a m p l e s c o l l e c t e d i n s p r i n g . N=43. F i g u r e 6 6 . D e s t r u c t i v e s a m p l e s c o l l e c t e d i n summer ( a r r o w s i n d i c a t e a w e i g h t c l a s s w i t h a s i n g l e p l a n t ) . N=184. F i g u r e 6 7 . D e s t r u c t i v e s a m p l e s c o l l e c t e d i n f a l l . N=69. 75 • 60-H .60 F R ..40. .26 F R Q 1 3 .20-o f 1 1 I 1 1 I 1 1 I I 1 1 I 0 1.5 3.0 4.5 6.0 7.5 3.0 10. HEIGHT (G) 12. ' I ' M 13. 15. T . 15 . 30 . 45 . 60 . 75. 30. SIZE (MM) ' I 1 1 I ' 1 I ' ' I 105 120 135 150 65 .70-.60' .50-F R .40' E Q .30-i TT TTT T T 1.5 3.0 4.5 6.0 7.5 S.O 10. 12. 13. HEIGHT (G) •H 15. 45 . 60 . 75. S>0. SIZE (MM) 105 120 135 150 66 • 72T-, F R o r 1 1 1 1 1 1 1 1 1 • 1 1 1 1 1 1 ' i 1 1 1 1 1 1 1 1 1 0 1.5 3.0 4.5 6.0 7.5 3.0 10. 12. 13. UEIGHT (G) • 23l n 15. 0 15. 30. "T T 45 . 60 . 75. SO. SIZE (MM) 1 I ' ' I ' 1 I ' 1 I 105 120 135 150 67 76 Island except some of the plants c o l l e c t e d in f a l l were f e r t i l e . 3. Mortality rate study at Bath Island. The preliminary r e s u l t s from 1980 are shown i n Appendix VII. It was found that most of the plants were gone by the time of the f i r s t observation a f t e r the marking day (only 13 to 14 days i n some cases). Even the longest l i v e d i n d i v i d u a l s seem to l a s t only between 33 and 56 days (Q2 plant marked on September 14, 1980). In the summer of 1981 individual C. peregrina plants were i d e n t i f i e d i n three quadrats at Bath Island and were followed on a dai l y basis for two weeks (June 1 to 14). The majority of marked plants did not grow during t h i s time period and the C. peregrina along the entire shore was i n i t s summer die-back stage. The Fraser River plume was on the shore f o r the duration of the study. The marked plants were divided up into two i n i t i a l s i z e classes (0-9 mm and 10-20 mm diameter) to see i f i n i t i a l s i z e affected mortality rate. The re s u l t s for Q2 are shown i n Figure 68. A Model I li n e a r regression analysis was performed on t h i s and a l l the mortality data (Sokal and Rohlf, 1981). The data points f o r day 12 and 13 were not included in the l i n e a r regression as both of the plants represented by black c i r c l e s had grown into the larger s i z e class by that time. Note that the two l i n e s are s i g n i f i c a n t l y d i f f e r e n t in 77 F i g u r e 6 8 . B a t h I s l a n d m o r t a l i t y r a t e d a t a f o r Q2 . P l a n t s w i t h i n i t i a l d i a m e t e r o f 0 - 9 mm shown i n s o l i d c i r c l e s . P l a n t s w i t h i n i t i a l d i a m e t e r o f 1 0 - 2 0 mm shown w i t h o p e n c i r c l e s . R e g r e s s i o n l i n e e q u a t i o n s a r e Y = 1 6 . 1 + < - l . 4 0 ) X and Y=5 .13+< -0 .404 )X r e s p e c t i v e l y . The s l o p e s o f t h e two l i n e s a r e s i g n i f i c a n t l y d i f f e r e n t (F c a l c u l a t e d = 1 4 5 , F t a b u l a t e d a t 0 .01 l e v e l <1,14) = 8 . 8 6 ) . 8Z 79 slope, proving that smaller C. peregrina plants have a higher mortality rate than larger specimens. The same data set was divided up into smaller s i z e classes (Figures 69-7S) which also show the dramatic loss of small plants over time. Table I i s a l i f e table calculated from the r e s u l t s of small plants (0-9 mm in diameter) i n Q2. Some sampling days were missed due to inconvenient t i d a l heights, so a l l lx values except day 0 were calculated from the regression l i n e i t s e l f . This method i s si m i l a r to that used by Chapman and Goudey (1983). The method used to calculate the various l i f e table s t a t i s t i c s was taken from Brower and Zar (1977). Table II i s a l i f e table for the large plants (10-20 mm i n diameter) in 02. A l l lx values except day 0 and 12 were calculated from the regression i t s e l f . Figure 79 indicates the mortality rates for Q3 during the study. The sample s i z e was small and no s i g n i f i c a n t difference was seen in the slopes. Size class histograms were not calculated f o r Q3. Figure 80 shows the mortality rate f o r SARG CLEAR Q (see Chapter 3 f o r i t s location) during the study. A l l of the plants belonged in the small s i z e c l a s s . Figures 81-86 show the s i z e class changes over time in t h i s quadrat. Table III i s a l i f e table for the r e s u l t s from t h i s quadrat. A l l the lx values were calculated from the regression l i n e except day 0. 80 F i g u r e s 6 9 - 7 8 . S i z e c l a s s c h a n g e s a t Q2 d u r i n g m o r t a l i t y s t u d y ( B a t h I s l a n d ) . F i g u r e 6 9 . Day 0 . ( J u n e 1 1981) N=22. F i g u r e 7 0 . Day 2. N = 1 8 . F i g u r e 7 1 . Day 3 . N = 1 5 . F i g u r e 7 2 . Day 5. N=12. F i g u r e 7 3 . Day 6. N = 1 0 . F i g u r e 7 4 . Day 7 . N=8. F i g u r e 7 5 . Day 8 . N = 7. F i g u r e 7 6 . Day 9 . N = 5 . F i g u r e 7 7 . Day 10 . N = 4 . F i g u r e 7 8 . Day 12 a n d 1 3 . N=2. 8 1 T 2.0 4.0 6.0 8.0 10. 12. SIZE (MM) 14. 16. IS. 6 9 .25 .20 E V , 0 .05-0' 20. 2.0 4.0 6.0 8.0 10. 12. SIZE (MM) 1 r 16. 18. 20. 7 2 T 2.0 4.0 6.0 8.0 10. 12. SIZE (MM) 14. 16. -1 18. 20. 7 0 .50i .40' .30-.20-.10-0- I ' I 2.0 4.0 6.0 8.0 10 12. SIZE (MM) T" 14. 16. 18. 20. 7 3 .20-.18-.16-. 14-F R .12-E .10 Q .08 .06 .04 .02 0' T 2.0 4.0 6.0 8.0 10. 12. SIZE (MM) .50 .40 R 30' E Q .20 -.10-14. I ' I ' I 16. 18. 20. 7 1 i • i 1 i 0 2.0 4.0 6.0 8.0 10 T 12. SIZE (MM) 14. 16. 16. 7 4 82 .30 .25 F .20i R .10 .05 I I ' I 1 I I I 0 2.0 4.0 6.0 8.0 10. 12. SIZE (HH) 14. T 16. 18. 20. 7 5 .50 .40-.30-.20' .10-' I 1 I ' I 1 I 2.0 4.0 6.0 6.0 10. 12. SIZE (MM) I I I 14. 16. 18. 20. 7 8 .20 .15 F R 1,0 .05 I ' I ' I 0 2.0 4.0 6.0 8.0 10 12. SIZE (MM) T 14. 16. 18. 20. 7 6 .25 .20 . 15' .10' I ' I ' I 0 2.0 4.0 6.0 8.0 10 12. SIZE (MM) • I ' I 14. 16. IS. 20. 7 7 S3 T a b l e I - A l i f e t a b l e f o r Q2 s m a l l p l a n t s , ( f r o m B a t h I s l a n d m o r t a l i t y s t u d y ) Day x l x dx qx Lx Tx ex 0 1 2 3 4 5 6 7 8 9 10 11 12 16 1 4 . 7 1 3 . 3 1 1 . 9 1 0 . 5 9.1 7 . 7 6 . 3 4 . 9 3 . 5 2.1 0 . 7 0 1.3 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 0 . 7 0 .081 0 . 0 9 5 0 .11 0 . 1 2 0 . 1 3 0 . 1 5 0 . 1 8 0 . 2 2 0 . 2 9 0 . 4 0 . 6 7 1.0 1 5 . 3 5 1 3 . 6 7 1 2 . 6 1 1 . 2 9 .8 8 .4 7 . 0 5 .6 4 . 2 2 .8 1.4 0 . 3 5 9 2 . 3 7 7 7 . 0 2 6 3 . 3 5 5 0 . 7 5 3 9 . 5 5 2 9 . 7 5 2 1 . 3 5 1 4 . 3 5 8 . 7 5 4 . 5 5 1.75 0 . 3 5 5 .8 5 .2 4 . 8 4 . 3 3 .8 3.3 2 .8 2 .3 1.8 1.3 0 . 8 0 . 5 l x = number l i v i n g a t s t a r t dx = number d y i n g d u r i n g x qx = p r o b a b i l i t y o f d y i n g d u r i n g x ex = l i f e e x p e c t a n c y ( d a y s ) Lx = number o f p l a n t s a l i v e b e t w e e n day x and day x + 1 Tx = sum o f d a y s o f l i f e \ r e m a i n i n g 84 T a b l e I I - A l i f e t a b l e f o r Q2 l a r g e p l a n t s , ( f r o m B a t h I s l a n d m o r t a l i t y s t u d y ) Day x l x dx qx Lx Tx ex 0 1 2 3 4 5 6 7 8 9 10 11 12 6 4 . 7 4 . 3 3 . 9 3 . 5 3.1 2 . 7 2 . 3 1.9 1.5 1.1 0 . 7 0 1.3 0 . 4 0 . 4 0 . 4 0 . 4 0 . 4 0 . 4 0 . 4 0 . 4 0 . 4 0 . 4 0 . 7 0 . 2 2 0 . 0 8 5 0 . 0 9 3 0 . 1 0 0 .11 0 . 1 3 0 . 1 5 0 . 1 7 0 .21 0 . 2 7 0 . 3 6 1.0 5 . 3 5 4 . 5 4.1 3 . 7 3 . 3 2 . 9 2 . 5 2.1 1.7 1.3 0 . 9 0 . 3 5 3 2 . 7 2 7 . 3 5 2 2 . 8 5 1 8 . 7 5 1 5 . 0 5 1 1 . 7 5 8 . 8 5 6 . 3 5 4 . 2 5 2 . 5 5 1.25 0 . 3 5 5 .5 5.8 5 .3 4 . 8 4 . 3 3 .8 3 . 3 2 .8 2 . 2 1.7 1.1 0 . 5 l x = number l i v i n g a t s t a r t dx = number d y i n g d u r i n g x qx = p r o b a b i l i t y o f d y i n g d u r i n g x ex = l i f e e x p e c t a n c y ( d a y s ) Lx = number o f p l a n t s a l i v e b e t w e e n day x and d a y x + 1 Tx = sum o f d a y s o f l i f e r e m a i n i n g 85 Figure 79. Bath Island mortality rate data for Q3. Plants with i n i t i a l s i z e of 0-9 mm diameter shown i n f i l l e d c i r c l e s and s o l i d regression l i n e . Plants with i n i t i a l s i z e of 10-20 mm diameter shown with open c i r c l e s and dashed regression l i n e . Regression l i n e equations are Y=2.69+<-0.577)X and Y=2.29+(-0.571)X respectively. The slopes of the two l i n e s are not s i g n i f i c a n t l y d i f f e r e n t <F calculated = 0.0002, F tabulated at 0.01 l e v e l <1,3) = 34.1). 86 S4UD| d o N 87 F i g u r e 8 0 . B a t h I s l a n d m o r t a l i t y r a t e d a t a f o r SARG CLEAR Q. R e g r e s s i o n l i n e e q u a t i o n i s Y = 7 . 7 3 + < - 0 . 6 4 1 ) X . 88 89 F i g u r e s 8 1 - 8 6 . S i z e c l a s s c h a n g e s a t SARG CLEAR Q d u r i n g m o r t a l i t y s t u d y ( B a t h I s l a n d ) . F i g u r e 8 1 . Day 0 . ( J u n e 3 1981) N=8. F i g u r e 8 2 . Day 1. N=8. F i g u r e 8 3 . Day 3 . N=6. F i g u r e 8 4 . Day 4 and 5. N=5. F i g u r e 8 5 . Day 6, 7 and 8 . N=2. F i g u r e 8 6 . Day 10 and 1 1 . N=2. 90 .25' .20' E fl.«H .05 T T .40 .30 F R E.20 .10 T T 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 3.0 10. S IZE (MM) 81 T I ' I • I 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 3.0 10. S IZE (MM) 84 .25-.20' .15 .10 .05 0 I T • 50i .40-i • r 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 3.0 10. SIZE (MM) 82 R • » E Q . 20 . T I 1 I I 1 I T - ' - l 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 3.0 10. S IZE (MM) 85 ,40i .30 F R C.20 .10 I ' I .50 .40 .30 .20-.10-T 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 3.0 10. S IZE (MM) 83 I 1 I I ' I T 1 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10. S IZE (MM) 86 91 T a b l e I I I - A l i f e t a b l e f o r SARG CLEAR Q p l a n t s , ( f r o m B a t h I s l a n d m o r t a l i t y s t u d y ) Day x l x dx qx Lx Tx ex 0 1 2 3 4 5 6 7 8 9 10 11 12 8 7.1 6 . 5 5 .8 5 .2 4 . 5 3 .9 3 . 2 2 . 6 2 . 0 1.3 0 . 7 0 0 . 9 0 . 6 0 . 7 0 . 6 0 . 7 0 . 6 0 . 7 0 . 6 0 . 6 0 . 7 0 . 6 0 . 7 0 .11 0 . 0 8 5 0 .11 0 . 1 0 0 . 1 4 0 . 1 3 0 . 1 8 0 . 1 9 0 . 2 3 0 . 3 5 0 . 4 6 1.0 7 . 6 6 . 8 6 . 2 5 .5 4 . 9 4 . 2 3 . 6 2 . 9 2 . 3 1.7 1.0 0 . 3 5 4 7 . 0 5 3 9 . 4 5 3 2 . 6 5 2 4 . 6 5 2 0 . 9 5 1 6 . 0 5 1 1 . 8 5 8 . 2 5 5 . 3 5 3 . 0 5 1.35 0 . 3 5 5 . 9 5 .6 5 . 0 4 . 6 4 . 0 3 .6 3 . 0 2 .6 2.1 1.5 1.0 0 . 5 l x = number l i v i n g a t s t a r t dx = number d y i n g d u r i n g x qx = p r o b a b i l i t y o f d y i n g d u r i n g x ex = l i f e e x p e c t a n c y ( d a y s ) Lx = number o f p l a n t s a l i v e b e t w e e n day x and day x+1 Tx = sum o f d a y s o f l i f e r e m a i n i n g 92 I t s h o u l d be n o t e d a s a q u a l i t a t i v e o b s e r v a t i o n t h a t C. p e r e g r i n a p l a n t s a t B a m f i e l d were o n l y r a r e l y s e e n t o s u r v i v e f r o m one o b s e r v a t i o n day t o t h e n e x t . T h i s means t h a t t h e p l a n t s a t B a m f i e l d a r e a l s o s h o r t l i v e d ( c a . 30 d a y s ) . 4 . Computer o r d i n a t i o n s A l i s t o f e n v i r o n m e n t a l v a r i a b l e s u s e d i n t h e o r d i n a t i o n s i s g i v e n i n A p p e n d i x V I I I . A l l d a t a were f i r s t s t a n d a r d i z e d i n o r d e r t o remove t h e e f f e c t s o f d i f f e r e n t v a r i a b l e s c a l e s o f measure. The number o f d a t a p o i n t s f o r any one v a r i a b l e w i l l a p p r o x i m a t e t h e number o f s a m p l i n g d a y s f o r t h a t p a r t i c u l a r q u a d r a t . I n many c a s e s t h e v a r i a b l e s were t e s t e d f o r n o r m a l i t y u s i n g a G t e s t ( S o k a l and R o h l f , 1981) p r i o r t o t h e s t a n d a r d i z a t i o n . A l m o s t a l l o f t h e t e s t s showed t h a t t h e v a r i a b l e s were n o t s i g n i f i c a n l y d i f f e r e n t f r o m n o r m a l . The o r d i n a t i o n methods u s e d were assumed t o be r o b u s t enough t o p r e v e n t t h e few i n s t a n c e s o f n o n - n o r m a l d a t a u s e f r o m c h a n g i n g t h e r e s u l t s ( J o h n e t a l . , 1 9 8 0 ) . I n f o r m a t i o n f r o m Q l , Q2 and Q3 was u s e d f o r B a t h I s l a n d . T a b l e IV g i v e s t h e r e s u l t s o f c o r r e l a t i o n s between e n v i r o n m e n t a l v a r i a b l e s and t h e p e r c e n t c o v e r o f C. p e r e g r i n a f o r e a c h o f t h e s e q u a d r a t s . None o f t h e e n v i r o n m e n t a l d a t a u s e d was s i g n i f i c a n t l y c o r r e l a t e d t o t h e p e r c e n t c o v e r o f C o l p o m e n i a o t h e r t h a n a n e g a t i v e r e l a t i o n s h i p w i t h t e m p e r a t u r e and a p o s i t i v e one f o r s a l i n i t y , b o t h a t Q l . 93 T a b l e IV C o r r e l a t i o n s o f e n v i r o n m e n t a l v a r i a b l e s w i t h p e r c e n t c o v e r o f C . p e r e g r i n a . S i g n i f i c a n c e l e v e l i n a l l c a s e s i s 0 . 0 5 . ( Q l , Q2 and Q3 f r o m B a t h I s l a n d , NQ f r o m D i a n a I s l a n d ) ( R e f e r t o A p p e n d i x V I I I f o r u n i t s o f e n v i r o n m e n t a l v a r i a b l e s ) Q u a d r a t V a r i a b l e s u s e d Number o f S i g n i f i c a n t o b s e r v a t i o n s c o r r e l a t i o n s Q l VI - V9 28 - v i . + V2 Q2 VI - V9 29 none Q3 VI - V 6 , V9 29 none Q l - Q3 V I - V9 » 86 none NQ VI - V5 ! 15 - V 2 , + V4 « VI= t e m p e r a t u r e V2= s a l i n i t y V3= s o l a r r a d i a t i o n V4= d a y l e n g t h V5= d a y s o f e x p o s u r e V6= h o u r s o f day e x p o s u r e V7= n i g h t s o f e x p o s u r e V8= h o u r s o f n i g h t e x p o s u r e V9= p e r c e n t c o v e r o f C o l p o m e n i ! VI= t e m p e r a t u r e V2= s a l i n i t y V3= s o l a r r a d i a t i o n V4= d a y l e n g t h V5= p e r c e n t c o v e r C o l p o m e n i a 94 The r e s u l t s of a PCA analysis of Ql data are shown in Figure 87. Axis 1 of that scatter plot i s composed almost equally of each of the eight environmental variables. The two winter observations are on the f a r l e f t of that axis in an environment of low temperature, high s a l i n i t y , low solar r a d i a t i o n , short daylength, l i t t l e daytime a i r exposure and frequent nighttime a i r exposure. The summer observations are a l l on the r i g h t on Axis 1, indicating an opposite type of environment for C. peregrina. The spring and f a l l observations occur between those two extremes on Axis 1. It i s inter e s t i n g to note that observations where Colpomenia percent cover was greater than 1.0* also occur between those two environmental extremes. The percent cover of Colpomenia i t s e l f c a r r i e s the highest weight (-0.75) on Axis 2. This i s why observations with greater than 1.0* cover of Colpomenia are found in the lower half of the scatter p l o t . The r e s u l t s of a PCA analysis of Q2 data are shown i n Figure 88. Axis 1 i s again composed of eight environmental variables of very s i m i l a r weight. The winter observations are on the f a r l e f t and the summer observations are to the r i g h t as before. Note how the observations with the high percent cover of Colpomenia are i n an intermediate position along the axis again. Axis 2 mainly represents nightime a i r exposure of the plants, which explains why one winter observation i s high up on 95 F i g u r e 8 7 . S c a t t e r p l o t o f a PCA o f Q l e n v i r o n m e n t a l d a t a ( B a t h I s l a n d ) . O b s e r v a t i o n s w i t h g r e a t e r t h a n 1.0% c o v e r o f C . p e r e g r i n a a r e s h a d e d . N=28. R e f e r t o A p p e n d i x V I I I f o r names o f e n v i r o n m e n t a l v a r i a b l e s . S p r i n g o b s e r v a t i o n s A Summer o b s e r v a t i o n s | | F a l l o b s e r v a t i o n s ^ W i n t e r o b s e r v a t i o n s C o m p o s i t i o n o f A x e s : A x i s 1 A x i s 2 T o t a l v a r i a n c e a c c o u n t e d f o r 6 8 . 7 % 8 4 . 8 % W e i g h t o f v a r i a b l e VI 0 .331 0 . 2 2 4 V2 - 0 . 3 4 5 - 0 . 2 5 2 V3 0 . 3 7 7 - 0 . 1 0 6 V4 0 . 3 8 3 - 0 . 1 0 1 V5 0 . 3 6 0 0 . 1 1 7 V6 0 . 3 5 7 0 . 1 4 6 V7 - 0 . 3 3 3 0 . 3 6 1 V8 - 0 . 3 2 8 . 0 . 3 7 0 V9 - 0 . 0 8 6 - 0 . 7 5 0 9 6 2.0r 0 • ° • -40 -30 A A n A U A A A -2 0 -1 0 0 0 1 0 2 0 3.0 AXIS 1 97 S c a t t e r p l o t o f a PCA o f Q2 e n v i r o n m e n t a l d a t a ( B a t h I s l a n d ) . O b s e r v a t i o n s w i t h g r e a t e r t h a n 1 .0 * c o v e r o f C . p e r e g r i n a a r e s h a d e d . N=29. R e f e r t o A p p e n d i x V I I I f o r names o f e n v i r o n m e n t a l v a r i a b l e s . O S p r i n g o b s e r v a t i o n s A Summer o b s e r v a t i o n s | | F a l l o b s e r v a t i o n s W i n t e r o b s e r v a t i o n s C o m p o s i t i o n o f A x e s : T o t a l v a r i a n c e a c c o u n t e d f o r A x i s 1 5 1 . 6 % A x i s 2 73.ex W e i g h t o f v a r i a b l e VI V2 V3 V4 V5 V6 V7 V8 V9 0 . 3 7 4 - 0 . 3 9 5 0 . 4 0 3 0 . 4 3 0 0 . 3 7 3 0 . 3 6 9 -0 .201 -0 .201 - 0 . 0 2 8 - 0 . 1 1 0 - 0 . 1 5 6 - 0 . 0 1 2 0 .0001 0 . 2 8 7 0 . 2 8 9 0 .591 0 .591 - 0 . 3 1 3 98 7.6r 66F 5.6 4.6 3.6 M < 1.6 0.6r 0.4 Q A -1.4 -24L -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 AXIS 1 99 the plot while the other points are a l l i n the lower half of the diagram. Nightime low tides primarily occur i n winter. A PCA f o r Q3 environmental data i s shown i n Figure 89. Axis 1 represents the same variables i t did f o r Ql and Q2 (V7 and V8 were not used because nightime low tides did not come down to t h i s elevation). The summer observations, again representing a high temperature, low s a l i n i t y , high solar radiation, long daylength and high l e v e l of daytime a i r exposure environment are a l l on the r i g h t . It i s also very apparent that C. peregrina i s more common i n the more intermediate physical environment as i s true for the other two quadrats. Axis 2 i s primarily composed of daytime a i r exposure and i t i s int e r e s t i n g to see that observations with a higher percent cover of Colpomenia are found i n the upper half of the scatter plot - an area representing low daytime a i r exposure p r i o r to the sampling day. An attempt was made to determine how d i f f e r e n t the three quadrats on Bath Island (Ql, Q2, Q3) were i n respect to environment. This was done by pooling the data from the three quadrats and performing a PCA, CV and RA analysis. Figure 90 shows the r e s u l t s of the PCA analysis. Axis 1 represents the same thing that i t did for each of the quadrats separately. Note that Ql has the widest range along t h i s axis. This means that the environmental conditions in t h i s quadrat fluctuated more over time than in Q2 or Q3, which are si m i l a r along t h i s 100 S c a t t e r p l o t o f a PCA o f 03 e n v i r o n m e n t a l d a t a ( B a t h I s l a n d ) . O b s e r v a t i o n s w i t h g r e a t e r t h a n 1.0% c o v e r o f C . p e r e g r i n a a r e s h a d e d . N=29. R e f e r t o A p p e n d i x V I I I f o r names o f e n v i r o n m e n t a l v a r i a b l e s O S p r i n g o b s e r v a t i o n s A Summer o b s e r v a t i o n s | | F a l l o b s e r v a t i o n s W i n t e r o b s e r v a t i o n s C o m p o s i t i o n o f A x e s : A x i s 1 A x i s 2 T o t a l v a r i a n c e a c c o u n t e d f o r 5 7 . 7 % 7 7 . 2 % W e i g h t o f v a r i a b l e VI 0 . 3 8 5 0 . 3 6 4 V2 - 0 . 4 3 6 - 0 . 1 1 7 V3 0 . 4 3 2 0 . 3 2 9 V4 0 . 4 5 4 0 . 1 8 4 V5 0 . 3 6 6 - 0 . 5 5 0 V6 0 . 3 6 6 - 0 . 5 5 0 V9 - 0 . 0 4 2 0 . 3 2 8 1 0 1 48r 40 32 24 A 1.61- A w I ^ A A ^ < • • ° 0.0 B ° -0.8[ • °Q o ° ° A A -1.6 -2.4 A -3.2L A A -2.4 -1.6 -0.8 0.0 0.8 1.6 2.4 3.2 4.0 4.8 A X I S 1 102 F i g u r e 9 0 . S c a t t e r p l o t o f a PCA o f p o o l e d B a t h I s l a n d e n v i r o n m e n t a l d a t a . O b s e r v a t i o n s w i t h g r e a t e r t h a n 1.0% c o v e r o f C . p e r e g r i n a a r e s h a d e d . N=86. R e f e r t o A p p e n d i x V I I I f o r names o f e n v i r o n m e n t a l v a r i a b l e s . Q 01 o b s e r v a t i o n s Z\ 02 o b s e r v a t i o n s I I Q3 o b s e r v a t i o n s C o m p o s i t i o n o f A x e s : T o t a l v a r i a n c e a c c o u n t e d f o r A x i s 1 5 0 . 4 % A x i s 2 7 0 . 3 % W e i g h t o f v a r i a b l e VI V2 V3 V4 V5 V6 V7 V8 V9 0 . 3 7 3 - 0 . 3 9 0 0 . 4 1 9 0 . 4 2 4 0 . 3 3 3 0 . 3 1 9 - 0 . 2 6 5 - 0 . 2 6 4 -0 .021 - 0 . 0 0 7 - 0 . 1 0 9 - 0 . 0 2 5 0 . 0 0 0 9 0 . 3 8 7 0 . 3 8 8 0 . 5 4 6 0 . 5 4 6 - 0 . 3 0 1 1 0 3 68 5.8 O 48 O 3.8 • zi m A -3.2' • < < • •— —< • • • ' -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 AXIS 1 104 a x i s . A x i s 2 i s most s t r o n g l y r e p r e s e n t e d by n i g h t i m e a i r e x p o s u r e o f t h e p l a n t s CV7 and V8>. Q l a g a i n shows t h e w i d e s t r a n g e a l o n g t h i s a x i s . F i g u r e 91 i s a s c a t t e r p l o t o f t h e r e s u l t s o f a CV a n a l y s i s o f t h e p o o l e d d a t a . A x i s 1 shows how Q l had many more n i g h t s o f a i r e x p o s u r e ( w i n t e r t i m e ) t h a n Q2 o r Q3 . A x i s 2 i s m a i n l y a m e a s u r e o f d e c r e a s i n g d a y s o f e x p o s u r e a s t h e a x i s number s i n c r e a s e . I t i s i n t e r e s t i n g t o n o t e t h a t e v e n w i t h many d a y s o f e x p o s u r e ( summer t ime) t h e q u a d r a t s c o u l d s t i l l h a v e g r e a t e r t h a n 1.0% c o v e r o f C o l p o m e n i a ( f o u r p o i n t s i n l o w e r h a l f o f f i g u r e ) . F i g u r e 92 i n d i c a t e s t h e r e l a t i v e " p o s i t i o n s o f i n f l u e n c e " f o r t h e n i n e e n v i r o n m e n t a l v a r i a b l e s u s e d i n an RA a n a l y s i s o f t h e p o o l e d B a t h I s l a n d d a t a . The c l o s e r a p a r t i c u l a r o b s e r v a t i o n i s t o a p a r t i c u l a r " p o s i t i o n o f i n f l u e n c e " t h e more t h a t o b s e r v a t i o n i s i n f l u e n c e d by t h a t e n v i r o n m e n t a l v a r i a b l e ( F i g u r e 9 3 ) . In t h i s a n a l y s i s t h e e i g e n v e c t o r s o f t h e S - m a t r i x were n o t u s e d t o a d j u s t t h e e n v i r o n m e n t a l v a r i a b l e s c o r e s , w h i c h c o n t r a s t s w i t h t h e method u s e d by Gauch ( 1 9 8 2 ) . When I d i d R A ' a w i t h and w i t h o u t t h e e i g e n v e c t o r a d j u s t m e n t s t h e r e s u l t s w i t h o u t a d j u s t m e n t s g a v e a b e t t e r s e p a r a t i o n o f o b s e r v a t i o n s ( F i g u r e 9 3 ) . T h i s c a n a l s o be t h e c a s e w i t h o t h e r d a t a s e t s ( D r . G. B r a d f i e l d , p e r s o n a l c o m m u n i c a t i o n ) . F i g u r e 93 g i v e s more e v i d e n c e t h a t Q l i s i n an e x t r e m e e n v i r o n m e n t a t B a t h I s l a n d . Q l o b s e r v a t i o n s r a n g e f r o m t h e f a r l e f t o f t h e 105 F i g u r e 91 S c a t t e r p l o t o f a CV o f p o o l e d B a t h I s l a n d e n v i r o n m e n t a l d a t a . O b s e r v a t i o n s w i t h g r e a t e r t h a n 1.0% c o v e r o f C . p e r e g r i n a a r e s h a d e d . N=86. R e f e r t o A p p e n d i x V I I I f o r names o f e n v i r o n m e n t a l v a r i a b l e s . O Q l o b s e r v a t i o n s A Q2 o b s e r v a t i o n s | |Q3 o b s e r v a t i o n s C o m p o s i t i o n o f A x e s : T o t a l v a r i a n c e a c c o u n t e d f o r A x i s 1 9 4 . 3 % A x i s 2 100% W e i g h t o f v a r i a b l e VI V2 V3 V4 V5 V6 V7 V8 V9 0 . 0 8 0 0 . 2 7 7 0 . 0 2 4 - 0 . 1 4 8 0 .091 0 . 1 3 2 1.45 - 0 . 3 2 2 - 0 . 0 0 3 0 . 0 2 7 0 . 2 7 6 0 . 0 3 5 0 . 2 2 3 - 1 . 1 6 0 . 3 0 4 0 .171 - 0 . 0 3 1 - 0 . 1 9 6 106 12.8r 12.0 7.2 6.4 5.6 4.8L B , r 2 i D  Di&B 1M> D ^ £ A A A A A 9.6 (• A A A A A • CM </> X <8.8r 8.0 8 o o o o 56 6.4 7.2 8.0 8.8 9.6 10.4 11.2 12.0 12.8 AXIS 1 107 Figure 92. First, scatter plot of an RA analysis of pooled Bath Island environmental data. This shows the r e l a t i v e "positions of influence" for each of the variables used (refer to Chapter 2 for explanation). Refer to Appendix VIII for names of environmental variables. 108 V8 V7 V6 V5 CM 05f w> >< < .05r .15 -25 -.35 .45 -.674 -.450 V2 V4 227 A X I S 1 V9 -.003 V3 .221 a 109 F i g u r e 9 3 . S e c o n d s c a t t e r p l o t o f an RA a n a l y s i s o f p o o l e d B a t h I s l a n d e n v i r o n m e n t a l d a t a . O b s e r v a t i o n s w i t h g r e a t e r t h a n 1.0% c o v e r o f C . p e r e g r i n a a r e s h a d e d . N=86. Q Q l o b s e r v a t i o n s /S. Q2 o b s e r v a t i o n s I | Q3 o b s e r v a t i o n s 110 I l l diagram (strong influence of nightime a i r exposure, V7 and V8> to the upper r i g h t (strong influence of daytime a i r exposure, V5 and V6). Q2 and Q3 are s i m i l a r as shown by PCA and CV e a r l i e r . The r e s u l t s of a PCA done on Diana Island environmental data using NQ percent cover information i s shown i n Figure 94. As with the i n d i v i d u a l quadrat data from Bath Island, Axis 1 represents the environment as a whole with increasing temperature, solar radiation and daylength as one moves to the r i g h t . Colpomenia peregrina has high percent cover values a l l on the r i g h t of t h i s axis. This was not seen at Bath Island. Axis 2 i s d i f f i c u l t to interpret because of the almost equal weight of s a l i n i t y (0.694) and C. peregrina percent cover (-0.551) in separating the observations. Discussion The r e s u l t s obtained in t h i s chapter outline some new and interesting observations on C. peregrina population dynamics. F i r s t , the seasonal percent cover of C. peregrina can be related to the average l e v e l s of environmental variables p r i o r to a sampling day. It should be stressed here that even though re p l i c a t e quadrats were not done at any one s i t e due to l o g i s t i c a l problems (see Materials and Methods) the r e s u l t s 112 F i g u r e 9 4 . S c a t t e r p l o t o £ a PCA o £ NQ e n v i r o n m e n t a l d a t a ( D i a n a I s l a n d ) . O b s e r v a t i o n s w i t h g r e a t e r t h a n 1.0% c o v e r o f C . p e r e g r i n a a r e s h a d e d . N=15. R e f e r t o A p p e n d i x V I I I f o r names o f e n v i r o n m e n t a l v a r i a b l e s . S p r i n g o b s e r v a t i o n s /A Summer o b s e r v a t i o n s | | F a l l o b s e r v a t i o n s ^ W i n t e r o b s e r v a t i o n s C o m p o s i t i o n o f A x e s : A x i s 1 A x i s 2 T o t a l v a r i a n c e a c c o u n t e d f o r 5 7 . 9 % 8 4 . 8 % W e i g h t o f v a r i a b l e VI 0 . 4 8 2 0 . 3 7 4 V2 - 0 . 2 2 0 0 . 6 9 4 V3 0 . 5 2 8 0 . 2 7 1 V4 0 . 5 6 5 0 . 0 3 7 V5 0 . 3 4 8 - 0 . 5 5 1 113 3 0 25 20 1.5 • 10f CM x 0.5 0.0 1.0 -1.5 • -20 L •22 -1.4 - 0 6 02 1.0 1 8 2.6 3.4 4.2 5.0 AXIS 1 114 from any one quadrat, were consistent from year to year. Seasonal blooms were recorded at the same times of year during each year of the study using percent cover data from the permanent quadrats, destructive samples (each obtained i n a d i f f e r e n t l o c a l i t y within a zone) or q u a l i t a t i v e observations. At Bath Island in Ql, the summertime absence of C. peregrina when temperature i s high and s a l i n i t y i s low can be related to the plants' percent cover being p o s i t i v e l y correlated to s a l i n i t y and negatively correlated to temperature (Table IV). In quadrat NQ the percent cover of Colpomenia i s negatively correlated to s a l i n i t y and p o s i t i v e l y with daylength, and t h i s can be related to the spring (lower s a l i n i t y ) and summer (long daylength) bloom of C. peregrina at the s i t e . A more general picture i s given by examination of in d i v i d u a l ordinations of quadrat data. In each of the quadrats at Bath Island (Figures 87, 88, 89) observations with greater than 1.0% cover of C. peregrina were found in the middle portion of Axis 1, an area of intermediate l e v e l s of environmental variables representative of the spring and f a l l . Extremes of the environment are found i n the winter and the summer and C. peregrina i s only rarely found in abundance during either of those two seasons. At Diana Island (Figure 94) Colpomenia i s seen to be more abundant on the r i g h t of Axis 1. Even though t h i s side of the graph represents a summertime extreme, as i t does on the Bath Island graphs, i t must be remembered that the summertime l e v e l s of temperature and s a l i n i t y at Diana Island do not reach the extremes found at Bath Island. This i s 115 probably why C. peregrina i s s t i l l present in the summer at Bamfield. Chapter 5 discusses how the le v e l s of ind i v i d u a l environmental variables a f f e c t C. peregrina growth. Second, the seasonal percent cover of the plant can vary in pattern at d i f f e r e n t heights on a shore. This i s shown by the predominant spring bloom high up i n the Fucus zone (Ql) and a spring then f a l l bloom at the lower Sargassum zone (Q2) and Lithothr i x zone (Q3) at Bath Island. The r e s u l t s from the ordination analysis suggest that Ql has the most extreme environmental fluc t u a t i o n s , predominantly due to more low tide s , while Q2 and Q3 are quite s i m i l a r (Figures 90-93). The extreme environment at Ql may explain why i t has a d i f f e r e n t seasonal percent cover pattern of C. peregrina than the other two quadrats. Qualitative observations at Dixon Island indicate that C. peregrina only e x i s t s in the i n t e r t i d a l from spring to early summer while subtidal plants e x i s t from spring t i l l l a t e summer. Third, the s i z e composition of C. peregrina populations can vary with season. The f a l l bloom at Bath Island i s made up of smaller indiv i d u a l s than the spring bloom (Figures 59-61) even though the t o t a l wet weight and number of plants per square meter may be higher in the f a l l bloom (Figures 28, 29)., Fourth, the c a l c u l a t i o n of a mortality rate for C. peregrina has shown that the plants are very short l i v e d . They have the shortest l i f e span of any brown alga so f a r reported (Rosenthal et a l . , 1974; Hay, 1979; Gunnill, 1980, 1981; Coyer and Zaugg-Haglund, 1982; Chapman and Goudey, 1983; Sideman and 116 Mathieson, 19S3; Smith, 1983; DeWreede, 1984) and are also unique i n having an almost constant death rate (dx) over time which varies with si z e class (Tables I-III, Figure 68). The constant death rate suggests that the source of mortality f o r C. peregrina i s constant over time. There are several reasons for suggesting that the source of mortality i s not b i o l o g i c a l but physical: 1) no herbivores were ever seen to eat C. peregrina i n the f i e l d . 2) crowding between ind i v i d u a l C. peregrina plants did not appear to be harmful (Chapman and Goudey, 1983), nor does crowding seem to adversely a f f e c t some other brown algae (Schiel and Choat, 1980). I n t r a s p e c i f i c competition does not seem to be a fa c t o r . 3) Colpomenia does not seem to compete with other members of the a l g a l community (Chapter 3), so that i n t e r s p e c i f i c competition may not be important ei t h e r . Larger Colpomenia plants may f i n d some refuge from the harsh summertime environment due to t h e i r s i z e , hence a lowered rate of mortality for those plants. This may be related to t h e i r larger holdfast area or smaller surface area / volume r a t i o . Pelvetia f a s t i g i a t a i s an alga which has mortality rates controlled mainly by physical factors and i s also seen to have r e l a t i v e l y constant mortality rates (Gunnill, 1980). The r e s u l t s of t h i s portion of the thesis also confirm observations made by other authors who have worked on C. peregrina. F e r t i l e plants were found at a l l times of the year 117 when plants were coll e c t e d (except Diana Island i n the f a l l ) , an observation s i m i l a r to that made by Clayton (1975). The seasonal r e s u l t s showing that Colpomenia can be a spring ephemeral (Ql), or a spring-summer ephemeral (Bamfield), and i s always absent i n the middle of winter ( a l l s i t e s ) , are i n agreement with r e s u l t s of Lee (1966), Foster (1975) and Thorn et a l . (1976). The idea that d i f f e r e n t populations have d i f f e r e n t l y shaped individuals (Clayton, 1975) also i s true in B r i t i s h Columbia. The Bath Island plants were predominantly i n t e r t i d a l , epiphytic, small and regularly globose while Bamfield plants were predominantly subt i d a l , e p i l i t h i c , large and i r r e g u l a r l y folded. C. peregrina has several c h a r a c t e r i s t i c s which may be i n t e r r e l a t e d . The macroscopic plant i s present during only part of the year and passes the rest of the year as a microscopic vegetative form (Chapter 5). This l i f e form corresponds to the Hypnophyceae in a phytogeographical sense (Garbary, 1976). However, in an ecological sense i t s ephemeral nature, short l i f e span, simple t h a l l u s form, s u s c e p t i b i l i t y to the physical environment, low mass to plant volume, high proportion of photosynthetic tissue and high proportion of reproductive tissue independent of season suggests that C. peregrina i s an "opportunistic form" as discussed by L i t t l e r and L i t t l e r (1980) or possibly a " f u g i t i v e species" i n the terminology of Dayton (1975). Chapter 3 w i l l discuss interactions between Colpomenia and other members of i t s a l g a l community while the General Discussion at the end of t h i s thesis w i l l cover the 118 r o l e of C. peregrina in i t s community and help c l a r i f y which plant category best s u i t s C. peregrina. 119 CHAPTER 3 . Relationships between Colpomenia peregrina and i t s associated a l g a l communities at Bath Island and Bamfield, B r i t i s h Columbia, Canada. 120 Introduction In chapter two i t was mentioned that there i s very l i t t l e published information on C. peregrina phenology or autecology. There i s even less information r e l a t i n g C. peregrina to other members in an a l g a l community. Only Thorn et a l . (1976) have any quantitative information on the subject. They used a three point abundance scale to examine the f l o r a of f i v e beaches in the Seattle, Washington, area. No comparisons between C. peregrina and other algae were made, however. To t h i s date there have been no studies which compared the seasonal percent cover of C. peregrina to the percent cover of other members in an alga l community. This chapter describes the importance of other members of the alga l community to C. peregrina in terms of patterns of percent cover, canopy e f f e c t s and substratum s e l e c t i o n at two d i f f e r e n t f i e l d s i t e s . Materials and Methods The f i e l d s i t e s , permanent quadrats and sampling dates are the same as f o r chapter two. At the same time as percent cover of C. peregrina was estimated by the l i n e intercept method the percent cover of a l l a l g a l species, s e s s i l e invertebrates and bare substrate i n the quadrat was also estimated. When a Colpomenia plant was seen at a l i n e intercept the substrate i t was growing on was recorded as well. In t h i s manner the primary 121 cover of organisms within a quadrat was calculated to a t o t a l of 100% and C. peregrina was considered secondary cover upon the primary substrate. To te s t for any difference in the number of species observed by using the same siz e of quadrat but with a d i f f e r e n t number of point intercepts (see chapter two), two graphs were generated. The f i r s t curve used data c o l l e c t e d from Q2 during March 7 to June 30, 1980 ( f i v e separate sampling days, 81 point intercept quadrat used). The second curve used data c o l l e c t e d from Q2 during March 1 to June 13, 1981 ( f i v e separate sampling days, 100 point intercept quadrat used). Individual point intercepts were i d e n t i f i e d using a random number generator (Radio Shack model I microcomputer) and the organism at each of the intercepts was recorded. This was done f o r 5, 10, 25, 50 and 75 randomly selected point intercepts f o r each sampling day. The t o t a l number of species recorded f o r each one of those randomly selected subsamples was plotted on the curve. 1. Estimations of d i v e r s i t y and c o r r e l a t i o n s . The use of quadrats to estimate percent cover of d i f f e r e n t taxa i n a vegetation community precludes the c a l c u l a t i o n of exact d i v e r s i t y values for that community (Pielou, 1974). In order to avoid t h i s t h e o r e t i c a l problem the percent cover data coll e c t e d at Bath Island and Diana Island were used to calculate several d i v e r s i t y indices per quadrat d i r e c t l y . Differences i n the d i v e r s i t y of quadrats could then be compared 122 d i r e c t l y and differences in the d i v e r s i t y of the a l g a l communities could be inferred. Three measures of d i v e r s i t y were calculated from the percent cover data from each quadrat on each sampling day as follows CPielou, 1974): A. Species richness (S) - the number of species recorded i n the quadrat B. The Shannon - Wiener index <H'> - where p^ i s the proportion CH cover / 100) of species i i n the quadrat - t h i s i s a measure of the number and proportional abundance of species in a quadrat. If species are present i n equal proportions in the quadrat then H' w i l l have a higher value than i f the reverse i s true. C. E q u i b i l i t y <J') 2) J' = H' / In S - t h i s i s a measure of how equal the proportional abundance of species i s in the quadrat. It does not include information on the number of species i n a quadrat. The percent cover of C. peregrina was not included in the above S i 123 calculations as i t was considered secondary cover. For comparative purposes bare substrate was also considered a "species" which could add to " d i v e r s i t y " . A l l c o r r elations between various species' percent cover over the duration of the study and the percent cover of C. peregrina or values of the various d i v e r s i t y measures were done using the method outlined in chapter 2. 2. Computer ordinations The same three ordination methods used i n chapter 2 (PCA, CV and RA) were applied to the percent cover data for each quadrat over the sampling period. The values f o r H', J', S and the percent cover of Colpomenia f o r each quadrat / sampling day were applied as well. The ordination methods were only used to suggest re l a t i o n s h i p s as i n chapter 2. 3. Substrate preference of C. peregrina The information gathered on the substrates upon which individual C. peregrina plants were growing was used to measure substrate preference of the Colpomenia plants. Brower and Zar (1977) outline a Chi-square method to test the "goodness of f i t " of an organism's observed d i s t r i b u t i o n upon available substrates ( t o t a l i n g 100% cover) against the hypothesized d i s t r i b u t i o n of that organism i f no sel e c t i o n were taking place. If those two d i s t r i b u t i o n s are calculated to be 124 s i g n i f i c a n t l y d i f f e r e n t t h e o r g a n i s m c a n be c o n s i d e r e d ' s e l e c t i v e o f i t s s u b s t r a t e . The c a l c u l a t i o n r e q u i r e s t h a t a t l e a s t two C . p e r e g r i n a p l a n t s be r e c o r d e d i n t h e q u a d r a t and a t l e a s t two d i f f e r e n t s u b s t r a t e s be a v a i l a b l e i n t h e q u a d r a t . The e q u a t i o n u s e d i s a s f o l l o w s : 1*1 - where S i s t h e t o t a l number o f s p e c i e s r e c o r d e d i n t h e q u a d r a t , f• i s t h e o b s e r v e d f r e q u e n c y o f C o l p o m e n i a on s p e c i e s i and Fj_ i s t h e h y p o t h e s i z e d f r e q u e n c y o f C o l p o m e n i a on s p e c i e s i b a s e d upon no s u b s t r a t e s e l e c t i o n . 4 . I n f l u e n c e o f c a n o p y s p e c i e s A t B a t h I s l a n d t h e l a r g e s t c a n o p y s p e c i e s ( D a y t o n , 1975) was S a r g a s s u m m u t i c u m . In o r d e r t o m e a s u r e t h e e f f e c t o f t h i s s p e c i e s on C . p e r e g r i n a p e r c e n t c o v e r a new p e r m a n e n t q u a d r a t was p u t i n a p p r o x i m a t e l y 60 cm s o u t h o f Q2 on J u n e 12 , 1 9 8 0 . In t h i s q u a d r a t a l l o f t h e S. mut i cum p l a n t s were removed on t h a t and e a c h s u b s e q u e n t v i s i t t o t h e i s l a n d . T h i s q u a d r a t i s c a l l e d SARG CLEAR Q. A n o t h e r q u a d r a t was p u t i n n e x t t o SARG CLEAR Q on O c t o b e r 1 7 , 1 9 8 0 . The S a r g a s s u m i n t h i s q u a d r a t was l e f t a l o n e (SARG CONTROL Q ) . The p e r c e n t c o v e r o f C . p e r e g r i n a and t h e o t h e r members o f t h e a l g a l commun i t y was m e a s u r e d i n e a c h o f t h e s e q u a d r a t s f o r t h e r e m a i n d e r o f t h e s t u d y ( s e e A p p e n d i x I f o r s a m p l i n g d a y s ) . 125 Results 1. Percent cover of other species within the quadrats and co r r e l a t i o n s . The r e s u l t s of the comparison between the two types of quadrat used are given in Appendix IX. The number of species obtained l e v e l s o f f by the 75 point-intercept value. The average number of species i n the entire quadrat was 10 i n both cases (spring bloom). From the shapes of the curves and the absolute number of species obtained i t can be concluded that the difference between an 81 point-intercept quadrat and a 100 point-intercept quadrat i s minimal. Jones et a l . (1980) compared d i f f e r e n t numbers of point-intercepts i n a s i m i l a r manner and found very l i t t l e diffence between sampling 40 to 60 points or sampling 100 points (50 cm square quadrat) i n three d i f f e r e n t i n t e r t i d a l l o c a l i t i e s varying from species r i c h to species poor s i t e s . A) Bath Island A l i s t of species found in the Bath Island quadrats i s given i n Appendix X. The percent cover of the taxa seen in Ql over the study period i s given in Table V. Note how both Iridaea and Rhodomela percent cover are p o s i t i v e l y correlated with the cover of C. peregrina. This indicates that they have a 126 s i m i l a r seasonal pattern of abundance and are most l i k e l y responding to the same environmental variables as Colpomenia does. The negative rel a t i o n s h i p between Colpomenia and bare substrate i s best explained by summertime low tides k i l l i n g plants (desiccation) and opening up more space. In the higher Ql Fucus zone over 15 % of the cover i s bare substrate throughout the summer and f a l l months. Colpomenia occurs only in the spring at t h i s height on the shore. Correlations between plants found i n Ql and the various measures of d i v e r s i t y f o r each sampling day are given in Table VI. Colpomenia, Iridaea and Rhodomela percent cover are a l l p o s i t i v e l y related to species richness. The percent cover of the taxa seen i n 02 over the study period i s given i n Table VII. Both Sargassum and Ceramium percent cover are p o s i t i v e l y correlated with the cover of C. peregrina. Again, t h i s means that C. peregrina i s not unique in the community but seems to be responding to the same environmental cues as other species. The reason for the negative rel a t i o n s h i p between Colpomenia and the amount of c o r a l l i n e crust i n a quadrat i s not known. Correlations between algae found in Q2 and the various measures of d i v e r s i t y f o r each sampling day are given in Table VIII. Colpomenia i s not related to d i v e r s i t y measures at t h i s p a r t i c u l a r location on the shore. There i s also no one type or Table V . Bath Island Ql - Average percent cover per month of species occurring more than once during V the study (May 1979 - Sep. 1981). Code refers to i d e n t i t y of the taxon as given in Appendix X or XX. Number after the percent i s sample s i z e . Name * Code Feb. Mar. Apr. May Jun. J u l . Aug. Sep. Oct. Nov. Dec. Fucus 101 22.20, 1 12.73, 4 4.00, 1 15.63, 3 13.74, 5 3.63, 3 1.75, 2 8.47, 3 10.45, 2 29.00, 2 9.90, 1 Ralf s i a 105 44.40, 1 32.33, 4 12.00. 1 11.10, 3 14.40, 6 24.60, 2 44.70, 2 33.93, 3 34.55, 2 21.60, 2 45.70, 1 substrate (-) 107 1.20, 1 11.30, 3 6.00, 1 7.00, 3 15.77, 6 23.37, 3 25.85, 2 22.43, 3 24.10, 2 19.10, 2 7.40, 1 Hildenbrandia 108 17.30, 1 10.20, 4 11.00, 1 10.45, 2 22.44, 5 5.73, 3 20.00, 1 9.33, 3 16.05, 2 14.20, 2 17.30, 1 Analipus 112 11.10, 1 6.68, 4 2.00, 1 9.47, 3 5.83, 6 10.37, 3 10.50, 2 4.77, 3 1.20, 1 7.40, 1 17.30, 1 Ulva 113 1.20, 1 2.93, 4 6.00, 1 5.33, 3 3.70, 4 17.30, 1 8.60, 1 11.30, 3 2.50, 2 1.20, 1 Iridaea (+) 116 1.20, 1 3.60, 4 4.00, 1 1.85, 2 2.26, 5 2.50, 1 1.00, 1 1.20, 1 1.20, 1 Petrocelis 118 1.00, 1 40.33, 3 51.85, 2 47.50, 2 2.50, 1 2.50, 1 1.20, 1 1.20, 1 P r i o n i t i s 109 1.20, 1 1.20, 2 2.50, 1 1.85, 2 1.20, 1 1.20, 1 Ceramium 120 8.38, 4 6.20, 1 9.85, 2 11.10, 1 Microcladia 115 15.50, 2 21.00, 1 3.70, 1 6.18, 4 "green crust" 126 1.00, 1 3.20, 3 4.95, 2 diatoms 124 1.20, 1 28.00, 1 5.50, 2 1.00, 1 Table V (continued) N a m e * C o d e F e b - Mar. Apr. May Jun. J u l . Aug. Sep. Oct. Nov. Dec. rRhodomela (+) 104 2.00, 2 2.00, 1 1.20, 1 Cryptoslphonla 119 3.00, 1 15.50, 2 2.00, 1 BotryoRlossum 114 1.00, 2 i . 2 o 1 Petalonla 135 4.20 2 Scytoslphon 130 5.55, 2 Gelldlum 131 1.00, 1 1.20, 1 barnacle 123 1. 0 0 , 1 1 . 2 0 , 1 Lomentarla 117 4.00, 1 1.00, 1 Odonthalla 133 1.00, 2 * s i g n i f i c a n t correlation (0.05)level) with Colpomenia percent cover in brackets t-O oo 129 Table VI C o r r e l a t i o n s between s p e c i e s percent cover and d i v e r s i t y measures i n Ql (Bath Island) (Code r e f e r s t o i d e n t i t y of taxon as gi v e n i n Appendix X or XI) Name Code D i v e r s i t y measure » H' J ' S Ceramium 120 + + 0 Colpomenia - 0 0 + diatoms 124 + 0 + I r i d a e a 116 0 0 + H i c r o c l a d i a 115 • 0 + P e t r o c e l i s 118 - - 0 P r i o n i t i s 109 - - 0 Rhodomela 104 0 0 + s u b s t r a t e 107 0 0 -« a l l t e s t s a t 0.05 l e v e l . + = p o s i t i v e c o r r e l a t i o n p negative c o r r e l a t i o n , 0 = not s i g n i f i c a n t Table VII Bath Island Q2 - Average percent cover per month of species occurring more than once during the study (Apr. 1979 - Sep. 1981). Refer to Table V for explanation. Name * Code Feb. Mar. Apr. May Jun. J u l . Aug. Sep. Oct. Nov. Dec. B o s s l e l l a 102 28.40, 1 38.33, 4 28.70, 2 49.37, 3 30.48, 6 28.00, 3 20.90, 2 24.23, 3 27.80, 2 32.10, 2 17.30, 1 Lit h o t h r i x 103 23.50, 1 11.63, 4 16.95, 2 5.73, 3 25.13, 6 28.63, 3 28.75, 2 35.10, 3 43.20, 2 34.60, 2 33.30, 1 Rhodomela 104 2.50, 1 10.63, 4 8.60, 2 7.40, 3 6.80, 6 4.80, 3 4.85, 2 7.60, 3 8.65, 2 8.65, 2 3.70, 1 substrate 107 30.90, 1 16.18, 4 20.10, 2 9.87, 3 13.95, 6 22.80, 3 19.85, 2 10.70, 3 6.80, 2 9.25, 2 21.00, 1 R a l f s i a 105 7.40, 1 14.90, 4 7.35, 2 3.27, 3 11.28, 5 10.03, 3 15.70, 2 11.93, 3 5.55, 2 5.55, 2 17.30, 1 cor. crust (-) 111 3.70, 1 2.83, 3 2.75, 2 2.50, 1 2.43, 6 1.60, 2 1.60, 2 3.00, 1 1.85, 2 1.20, 1 2.50, 1 Botryoglossum 114 1.20, 1 2.07, 3 5.85, 2 1.20, 1 1.90, 4 2.35, 2 1.20, 2 1.85, 2 F r i o , base 106 1.20, 1 2.60, 2 4.00, 1 3.10, 2 1.20, 2 2.75, 2 2.00, 1 3.00, 1 1.20, 2 2.50, 1 Sargassum (+) 110 1.20, 1 2.90, 3 1.53, 4 1.20, 1 1.20, 1 2.50, 2 2.45, 2 Mlcrocladia 115 1.00, 2 6.05, 2 18.50, 2 7.28, 4 3.70, 1 P r i o n i t l s 109 1.20, 1 1.10, 2 1.00, 1 1.20, 1 2.03, 4 1.20, 1 Ulva 113 1.00, 1 2.87, 3 2.50, 1 1.20, 1 1.20, 1 1.20, 1 Ca l l i a r t h r o n 121 2.50, 2 1.20, 1 2.50, 1 2.50, 1 2.50, 1 3.70, 1 2.50, 1 Lomentaria 117 1.00, 1 1.20, 1 2.35, 2 3.10, 2 3.70, 1 Iridaea 116 1.20, 1 2.50, 1 2.03, 3 Hildenbrandia 108 5.00, 1 1.00, 1 1.00, 1 Ceramium (+) 120 1.00, 1 3.05, 2 o * s i g n i f i c a n t correlation (0.05 level) with Colpomenia percent cover in brackets 131 Table VIII Correlations between species percent cover and d i v e r s i t y measures in Q2 (Bath Island) (Code refe r s to i d e n t i t y of taxon as given i n Appendix X or XI) Name Code Diversity measure * H' J' S B o s s i e l l a 102 Botryoglossum 114 cor. crust 111 Hildenbrandia 108 Iridaea 116 Prio. base 106 R a l f s i a 105 Rhodomela 104 Sargassum 110 substrate 107 Ulva 113 0 0 0 0 0 0 0 0 » a l l tests at 0.05 l e v e l . + = posi t i v e c o r r e l a t i o n , negative c o r r e l a t i o n , 0 = not s i g n i f i c a n t 132 l i f e form of seaweed which i s more related to the d i v e r s i t y of the community than any other. Ulva i s an ephemeral bladed green alga while R a l f s i a i s a perennial crustose brown alga, yet both have the same rel a t i o n s h i p to d i v e r s i t y . The percent cover of the taxa seen i n Q3 over the study period i s given i n Table IX. Bare substrate percent cover i s p o s i t i v e l y related to Colpomenia cover i n t h i s area on the shore (the opposite of Q l ) . F i e l d observations do not help to explain why t h i s r e l a t i o n s h i p e x i s t s . Correlations between plants found in Q3 and the various measures of d i v e r s i t y for each sampling day are given in Table X. Colpomenia i s not related to d i v e r s i t y measures at t h i s p a r t i c u l a r location on the shore (as in 02). The t h a l l u s type of a given seaweed does not seem to determine i t s r e l a t i o n s h i p to the d i v e r s i t y of the quadrat here either. L i t h o t h r i x and B o s s i e l l a are both c o r a l l i n e algae with crustose bases yet the former i s negatively related to a l l three measures of d i v e r s i t y while the l a t t e r i s p o s i t i v e l y related to a l l three. B) Diana Island A l i s t of species found in the Diana Island quadrats i s given in Appendix XI. The percent cover of the taxa seen in NQ over the study period i s given in Table XI. Desmarestia, P r i o n i t i s and the filamentous green alga (code #217) a l l have seasonal abundance patterns s i m i l a r to Colpomenia in t h i s Table IX Bath Island Q3 - Average percent cover per month of species occurring more than once during the study (Apr. 1979 - Sep, 1981). Refer to Table V f o r explanation. Name * Code Feb. Mar. Apr. May Jun. J u l . Aug. Sep. Oct. Nov. Dec. Li t h o t h r i x 103 27.20, 1 19.58, 4 41.30, 2 48.97, 3 48.62, 6 57.30, 3 52.20, 2 61.77, 3 79.65, 2 75.95, 2 29.60, 1 •Ptfio. base 106 49.40, 1 48.33, 4 37.80, 2 23.03, 3 21.03, 6 18.87, 3 24.25, 2 25.95, 2 8.00, 2 9.85, 2 37.00, 1 Rhodomela 104 1.20, 1 4.10, 4 3.95, 2 4.93, 3 4.88, 5 5.27; 3 2.60, 2 6.47, 3 4.95, 2 7.40, 2 1.20, 1 R a l f s i a 105 16.00, 1 14.68, 4 7.70, 2 2.87, 3 5.67, 6 6.13, 3 12.10, 2 7.35, 2 2.50, 2 3.70, 1 13.60, 1 P r i o n i t i s 109 1.20, 1 1.13, 3 1.00, 1 7.40, 3 10.72, 6 8.57, 3 6.20, 1 3.97, 3 4.30, 2 3.70, 2 9.90, 1 B o s s i e l l a 102 1.20, 1 6.60, 4 3.85, 2 4.10, 3 5.82, 6 2.00, 1 3.00, 1 1.75, 2 substrate (+) 107 3.70, 1 2.98, 4 13.60, 1 2.40, 4 2.40, 3 2.00, 1 5.45, 2 1.20, 1 6.20, 1 cor.'crust 111 2.33, 3 2.50, 1 1.85, 2 1.85, 2 1.20, 1 1.20, 1 1.20, 1 Sargassum 110 1.20, 1 1.20, 2 1.20, 1 1.20, 1 1.20, 1 1.20, 1 BotryoRlo6Sum 114 1.00, 2 1.60, 2 1.20, 1 1.50, 2 Ca l l i a r t h r o n 121 1.20, 1 2.50, 1 1.20, 2 1.20, 1 Ulva 113 4.00, 1 1.20, 1 1.00, 1 Hildenbrandia 108 1.20, 1 1.20, 1 Pododesmus 125 1.00, 1 1.00, 1 * Si g n i f i c a n t c o r r e l a t i o n (0.05 level) with Colpomenia ; percent cover in brackets 134 Table X Correlations between species percent cover and d i v e r s i t y measures i n Q3 (Bath Island) (Code refe r s to id e n t i t y of taxon as given i n Appendix X or XI) Name Code Diversity measure * H' J' S B o s s i e l l a 102 + + + Botryoglossum 114 + + 0 C a l l i a r t h r o n 121 0 0 + Lit h o t h r i x 103 - -Prio. base 106 + + + Ralfa i a 105 + + 0 Sargassum 110 O - 0 substrate 107 0 0 + » a l l tests at 0.05 l e v e l . + = p o s i t i v e c o r r e l a t i o n , - = negative c o r r e l a t i o n , 0 = not s i g n i f i c a n t Table XI Diana Island NQ - Average percent cover per month of species occurring more than once during the study (Aug. 1979 - Sep.. 1981). Refer to Table V for explanation. Name Code Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep, Oct. Nov. Prio. base 201 61.70, 1 so:6o, '•V 52:40, 2 44.85, 2 38.00, 1 32.80, 2 30.00, 1 36.87, 3 40.00, 1 55.60, 1 45.70, 3 Calliarthron 202 17.30, 1 12.40, 1 10.20, 2 7.80, 2 8.00, 1 15.25, 2 16.00, 1 23.70, 3 9.00, 1 16.10, 1 16.07, 3 Cor. crust ill 204 9.90, 1 18.50, 1 12.45, 2 15.15, 2 20.00, 1 12.70, 2 18.00, 1 9.97, 3 32.00; 1 11.10, 1 14.43, 3 Ralfsia 206 3.25, 2 4.35, 2 1.00, 1 4.10, 2 2.00, 1 6.10, 3 3.00, 1 6.20, 1 3.70, 3 Chiharaea 207 6.20, 1 2.95, 2 4.00, 1 2.00, 1 3.10, 2 5.00, 1 3.60, 2 5.00, 1 3.70, 1 2.50, 1 Hildenbrandia 209 6.20, 1 4.20, 2 9.55, 2 2.00, 1 9.00, 1 2.00, 1 6.45, 2 4.00, 1 3.70, 1 4.30, 2 Cor. crust #2 210 1.20, 1 2.85, 2 2.95, 2 1.00, 1 4.70, 2 3.70, 1 1.00, 1 1.20, 1 1.20, 2 rPterygophora 211 3.70, 1 9.00, 1 2.60, 1 2.00, 1 6.20, 2 6.00, 1 4.20, 2 3.00, 1 11.75, 2 Laurencia 203 2.50, 1 2.60, 2 4.25, 2 4.00, 1 2.60, 2 4.35, 2 3.70, 1 substrate 205 3.70, 1 1.10, 2 5.00, 1 7.00, 1 6.00, 1 5.60, 2 2.50, 1 1.20, 2 Macrocystis 212 6.20, 1 2.00, 1 1.75, 2 1.00, 1 2.50, 1 1.00, 1 7.40, 1 8.65, 2 Desmarestia (+) 214 1.00, 1 4.00, 1 2.10, 2 1.00, 1 Ceramium 216 4.00, 1 1.20, 1 1.00, 1 1.00, 1 Bosslella 218 1.00, 1 6.00, 1 3.00, 1 1.00, 1 Gelidium 208 7.00, 1 7.00. 1 3.00, 1 2.00, 1 tunicate 221 1.00, 1 2.00, 1 4.00, 1 Prionitis (+) 220 1.10, 2 f l i . green (+) 217 1.00, 1 1.20, 1 Ulva 223 4.90, 1 3.70, 1 U4 * significant correlation (0.05 level) with Colpomenia percent cover in brackets 136 quadrat. This agrees with the pattern at Bath Island, where other plants i n the community probably respond to the same environmental cues as Colpomenia. Table XII shows relationships between the seasonal abundance of various species and the seasonal changes i n d i v e r s i t y within the quadrat. As i n Ql Colpomenia i s p o s i t i v e l y related to d i v e r s i t y . There i s no trend between a l g a l type and quadrat d i v e r s i t y as was the general case at Bath Island. 2. Computer ordinations A l l data were f i r s t standardized i n order to remove the e f f e c t s of d i f f e r e n t variable scales of measure. The number of data points f o r any one variable w i l l approximate the number of sampling days f o r that p a r t i c u l a r quadrat. In many cases the variables were tested for normality using a G-test (Sokal and Rohlf, 1981) p r i o r to the standardization. About one half of the tests showed that the variables were not normally d i s t r i b u t e d , probably due to the nature of percent cover data. Proportions are frequently not normally d i s t r i b u t e d and the many zero entries in percent cover data compound that problem. As i n chapter two the ordination methods used were assumed to be robust enough to prevent non-normal data from changing the r e s u l t s (John et a l . , 1980). 137 Table XII Correlations between species percent cover and d i v e r s i t y measures i n NQ (Diana Island) (Code refe r s to i d e n t i t y of taxon as given in Appendix X or X Name Code Diversity measure » H ' J ' S B o s s i e l l a 218 + + 0 Colpomenia - + 0 + Deamareatia 214 + 0 + £11. green 217 0 0 + Gelidium 208 + + 0 Laurencia 203 + 0 0 Prio. base 201 - -Pterygophora 211 0 + 0 Ulva 223 0 + 0 » a l l tests at 0.05 l e v e l . + = pos i t i v e c o r r e l a t i o n , - = negative c o r r e l a t i o n , 0 = not s i g n i f i c a n t 138 The r e s u l t s of a PCA analysis of Ql data are shown in Figure 95. Percent cover values f o r the d i f f e r e n t taxa and the d i v e r s i t y values are the variables. Code numbers from Appendix X are in brackets aft e r the name. The percent cover of Microcladia and the values of H' and S carry the most weight on Axis 1 of that scatter p l o t . As one moves to the r i g h t on Axis 1 the quadrat contains a more diverse assemblage of species in each case. The most diverse samples were seen in spring, when Colpomenia i s most abundant at t h i s l e v e l on the shore. Note that the least diverse assemblages occur i n the summer and winter, when Colpomenia i s usually not very common (open symbols). The percent cover of Colpomenia i t s e l f c a r r i e s a high weight (0.356) on Axis 2. This i s why observations with greater than 1.0% cover of C. peregrina are found in the upper half of the scatter p l o t . The r e s u l t s of a PCA analysis of Q2 data are shown in Figure 96. B o s s i e l l a and Sargassum percent cover as well as J' carry the most weight on Axis 1 while Rhodomela percent cover, H' and S have the most weight on Axis 2. There i s an almost t o t a l lack of pattern between seasonality and abundance of Colpomenia and these two axes. A PCA for Q3 percent cover data i s shown in Figure 97. Diversity (H'> c a r r i e s one of the highest weights on Axis 1 and i t i s notable that a l l of the sampling points with a high percent cover of Colpomenia (greater than 1%) occur at about 139 F i g u r e 9 5 . S c a t t e r p l o t o f a PCA o f Q l p e r c e n t c o v e r d a t a ( B a t h I s l a n d ) . O b s e r v a t i o n s w i t h g r e a t e r t h a n 1.0% c o v e r o f C . p e r e g r i n a a r e s h a d e d . N = 2 8 . (Code number f o r A p p e n d i x X i n b r a c k e t s a f t e r v a r i a b l e n a m e ) . Q S p r i n g o b s e r v a t i o n s ^ Summer o b s e r v a t i o n s | | F a l l o b s e r v a t i o n s i t e r o b s e r v a t i o n s ^ Win1 C o m p o s i t i o n o f Axe s A x i s 1 A x i s 2 T o t a l v a r i a n c e x a c c o u n t e d f o r 2 3 . 9 % 4 2 . 9 % W e i g h t o f v a r i a b l e F u c u s (101) - 0 . 0 1 2 - 0 . 0 9 7 R h o d o m e l a (104) 0 . 2 9 2 0 . 2 0 7 R a l f s i a (105) 0 . 0 4 6 - 0 . 3 2 5 s u b s t r a t e (107) - 0 . 1 2 6 - 0 . 2 7 4 H i l d e n b r a n d i a (108) 0 . 1 4 5 - 0 . 3 0 3 P r i o n i t i s (109) - 0 . 2 6 8 0 . 2 7 5 A n a l i p u s (112) - 0 . 2 6 2 0 . 2 6 8 U l v a (113) - 0 . 0 6 6 0 . 1 2 6 B o t r y o g l o s s u m (114) 0 . 2 1 3 - 0 . 0 2 6 M i c r o c l a d i a (115) 0 . 3 8 1 0 . 0 8 7 I r i d a e a (116) 0 . 2 5 8 0 . 2 7 3 P e t r o c e l l s (118) - 0 . 2 1 3 0 . 3 9 7 C r y p t o s i p h o n i a (119) 0 . 1 0 5 - 0 . 0 5 9 Ceramium (120) 0 . 1 7 5 - 0 . 1 3 4 d i a t o m s (124) 0 . 2 6 5 0 . 1 1 9 g r e e n c r u s t (126) O.0O6 - O . 1 6 0 C o l p o m e n i a 0 . 2 0 4 0 . 3 5 6 H ' 0 . 3 4 3 - 0 . 0 3 4 J ' 0 . 1 5 9 - 0 . 2 0 7 S 0 . 3 6 4 0 . 2 0 0 140 6.8 r 5.8 4.8 08 2B\ A A 0.8 -Q2[ " o n o •1.2f ° 0 A * A D A -22 \ • I • , . , , . . " a z ^20 Ho OO 10" 20 30 4 0 5 0 6.0 70 A X I S 1 Scatter plot of a PCA of 02 percent cover data (Bath Island). Observations with greater than 1.0% cover of C. peregrina are shaded. N=29. (Code numbers for Appendix X i n brackets a f t e r variable name). O Spring observations A Summer observations F a l l observations Winter observations Composition of Axes Axis 1 Axis 2 Total variance accounted for 2 4 . 0 % 4 0 . 1 % Weight of variable B o s s i e l l a (102) L i t h o t h r i x (103) Rhodomela (104) R a l f s i a (105) Prio. base (106) substrate (107) Hildenbrandia (108) P r i o n i t i s (109) Sa rgaaaum (110) cor. crust (111) Ulva (113) Botryoglossum (114) Wicrocladia (115) Iridaea (116) Lomentaria (117) Ceramium (120) C a l l i a r t h r o n (121) Colpomenia 0 . 3 5 7 - 0 . 1 5 8 - 0 . 1 1 0 - 0 . 3 2 1 - 0 . 1 8 1 - 0 . 2 2 1 - 0 . 1 9 9 0 . 0 2 8 0 . 3 5 8 - 0 . 3 1 7 0 . 2 4 7 - 0 . 1 6 0 .0 .181 0 . 1 2 5 0 . 0 1 3 0 . 1 1 2 0 . 1 6 0 0 . 2 2 6 - 0 . 2 2 2 - 0 . 3 2 7 0 . 0 4 3 0 . 0 5 3 - 0 . 2 1 5 0 . 3 0 7 ^ 0 . 0 8 5 0 . 1 7 6 - 0 . 1 6 5 0 . 1 1 9 0 . 0 6 4 0 . 1 5 4 0 . 1 6 4 0 . 2 9 0 0 .301 0 . 2 7 4 0 . 0 7 9 - 0 . 0 2 8 - 0 . 0 0 3 - 0 . 2 2 9 0 . 0 9 7 0 . 4 2 1 0 . 0 8 2 0 . 4 6 9 H' J ' S 1 4 2 O • -38 -2.8 -18 0.8 0.2 1.2 2.2 A X I S 1 3.2 42 5.2 143 F i g u r e 9 7 . S c a t t e r p l o t o f a PCA o f Q3 p e r c e n t c o v e r d a t a ( B a t h I s l a n d ) . O b s e r v a t i o n s w i t h g r e a t e r t h a n 1.0% c o v e r o f C . p e r e g r i n a a r e s h a d e d . N=29. (Code number f o r A p p e n d i x X i n b r a c k e t s a f t e r v a r i a b l e n a m e ) . Q S p r i n g o b s e r v a t i o n s A Summer o b s e r v a t i o n s [ ^ F a l l o b s e r v a t i o n s ^ W i n t e r o b s e r v a t i o n s C o m p o s i t i o n o f A x e s : A x i s 1 A x i s 2 T o t a l v a r i a n c e a c c o u n t e d f o r 3 4 . 2 % 4 6 . 7 % W e i g h t o f v a r i a b l e B o s s i e l l a (102) 0 . 2 6 9 0 . 3 1 8 L i t h o t h r i x (103) - 0 . 4 0 6 - 0 . 0 0 0 6 R h o d o m e l a (104) - 0 . 0 3 3 0 . 3 0 7 R a l f s i a (105) 0 . 3 0 7 - 0 . 0 9 0 P r i o . b a s e (106) 0 . 3 7 2 - 0 . 0 3 0 s u b s t r a t e (107) 0 . 1 0 7 - 0 . 5 7 0 P r i o n i t i s (109) - 0 . 0 8 9 0 . 1 4 7 S a r g a s s u m (110) - 0 . 2 1 3 0 . 2 0 8 c o r . c r u s t (111) 0 . 0 9 0 - 0 . 1 6 0 U l v a (113) 0 . 1 1 5 0 . 0 5 9 B o t r y o g l o s s u m (114) 0 . 2 0 5 0 .391 C a l l i a r t h r o n (121) 0 . 0 3 3 0 . 2 1 5 C o l p o m e n i a 0 . 0 5 5 - 0 . 4 0 7 H ' 0 . 4 0 1 0 . 0 3 7 J' 0 . 3 8 5 0 . 0 7 8 S 0 . 2 9 6 - 0 . 0 7 0 1 4 4 3.2r 24 0.8r D D -2.4 -32 -4.0 • "48 • -4.0 -3.2 -2.4 -1.6 A A O O D A -0.8 CM • A x -16, « /v O O A O 0 -0.8 0.0 0.8 1.6 2 4 32 A X I S 1 4 145 the same spot on Axis 1. Colpomenia seems to be occuring within a s p e c i f i c range of community d i v e r s i t y . Axis 2 i s quite variable and shows no trends as f a r as Colpomenia percent cover and seasonality are concerned. As in Chapter 2 the three quadrats on Bath Island (Ql, Q2, Q3> were compared with each other, t h i s time in respect to the communities they represent. This was done by pooling the data from the three quadrats and performing a PCA, CV and RA analysis. Figure 98 shows the r e s u l t s of the PCA analysis. Axis 1 i s composed mainly of Fucus (0.283), Hildenbrandia (0.305) and L i t h o t h r i x (-0.357) percent cover. This axis separated out those quadrats containing L i t h o t h r i x (Q2 and Q3> on the l e f t , while Ql data points are on the r i g h t as i t was the only quadrat to contain Fucus. Axis 2 represents increasing B o s s i e l l a percent cover and increasing H' and S as one moves up the axis. Q2 separates out on the upper half of the scatter plot because of i t s high B o s s i e l l a cover and r e l a t i v e l y high d i v e r s i t y values compared to Q3. It i s i n t e r e s t i n g to note that low d i v e r s i t y values coupled with high percent cover of Lithot h r i x (the lower l e f t hand corner of the scatter plot) seem to represent a community i n which Colpomenia i s r a r e l y abundant (Figure 97 also indicates low d i v e r s i t y coupled with low cover of C. peregrina). No other trend could be noted between Colpomenia abundance (shaded symbols) and the cover values or d i v e r s i t y measures used. 146 S c a t t e r p l o t o f a PCA o f p o o l e d B a t h I s l a n d p e r c e n t c o v e r d a t a . O b s e r v a t i o n s w i t h g r e a t e t h a n 1.0% c o v e r o f C . p e r e g r i n a a r e s h a d e d . N=86 . (Code number f o r A p p e n d i x X i n b r a c k e t s a f t e r v a r i a b l e n a m e ) . Q Q l o b s e r v a t i o n s A 0 2 o b s e r v a t i o n s Q Q 3 o b s e r v a t i o n s C o m p o s i t i o n o f A x e s A x i s 1 A x i s 2 T o t a l v a r i a n c e a c c o u n t e d f o r 2 0 . 5 % 3 5 . 8 % W e i g h t o f v a r i a b l e F u c u s (101) 0 . 2 8 3 - 0 . 1 2 2 B o s s i e l l a (102) - 0 . 1 1 5 0 . 3 6 4 L i t h o t h r i x (103) - 0 . 3 5 7 - 0 . 1 2 5 R h o d o m e l a (104) - 0 . 2 5 3 0 . 2 6 9 R a l f s i a (105) 0 . 2 6 0 - 0 . 0 4 3 P r i o . b a s e (106) - 0 . 1 6 5 - 0 . 1 1 9 s u b s t r a t e (107) 0 . 1 9 1 0 . 1 2 3 H i l d e n b r a n d i a (108) 0 . 3 0 5 - 0 . 0 7 9 P r i o n i t i s (109) - 0 . 1 9 9 - 0 . 1 8 3 S a r g a s s u m (110) - 0 . 1 0 1 0 .231 c o r . c r u s t (111) - 0 . 1 3 3 0 . 2 3 4 A n a l l p u s (112) 0 . 2 6 0 - 0 . 1 7 6 U l v a (113) 0 . 1 9 7 - 0 . 0 5 1 B o t r y o g l o s s u m (114) - 0 . 0 6 7 0 .291 M i c r o c l a d i a (115) 0 . 1 0 8 0 . 2 3 3 I r i d a e a (116) 0 . 2 2 6 0 . 0 3 6 L o m e n t a r i a (117) - 0 . 0 1 0 0 . 1 7 7 P e t r o c e l i a (118) 0 . 1 0 4 - 0 . 1 4 3 C r y p t o s i p h o n i a (119) 0 . 1 0 1 - 0 . 0 1 0 Ceramium (120) 0 . 1 8 6 0 . 0 2 5 C a l l i a r t h r o n (121) - 0 . 0 8 9 0 . 1 3 0 d i a t o m s (124) 0 . 1 0 2 0 . 0 6 8 g r e e n c r u s t (126) 0 . 1 7 1 - 0 . 0 5 7 C o l p o m e n i a - 0 . 0 4 1 0 . 2 0 2 H ' 0 . 2 4 8 0 . 3 3 3 J ' 0 . 2 6 3 0 . 2 2 4 S 0 . 1 2 6 0 . 3 6 4 1 4 7 148 Figure 99 i s a scatter plot of the r e s u l t s of a CV analysis of the pooled data. J' c a r r i e s a high posi t i v e weight and H' a high negative weight on Axis 1, while both H' and J' influence Axis 2 with t h e i r large negative weight. A l l three of the quadrats separate from each other in t h i s scatter p l o t . Axis 1 shows that as one moves down the shore (Ql to Q3) the e q u i b i l i t y of the species cover i n the quadrat decreases while the d i v e r s i t y increases. The position of Q2 on Axis 1 and Axis 2 indicates that i t has the most even combination of d i v e r s i t y and e q u i b i l i t y of a l l three of the Bath Island quadrats. The high l e v e l of J' i n Ql indicates that no one species i n t h i s quadrat i s dominant. I i n f e r from t h i s that the growth of a l l species i n t h i s quadrat i s being controlled, presumably by harsh environmental conditions. Figure 100 indicates the r e l a t i v e "positions of influence" f o r the 27 cover and d i v e r s i t y variables used i n an RA analysis of the pooled Bath Island data. The "positions of influence" and the method of RA analysis were explained in chapter two. The observations themselves are shown in Figure 101. The resu l t s are s i m i l a r to the PCA analysis of the same data set. Ql i s quite d i s t i n c t i v e due to the influence of Pe t r o c e l i s (#118), Analipus, Fucus, Hildenbrandia, R a l f s i a and a few other species. Q2 and Q3 are more si m i l a r but Q3 can be separated on the basis of the common occurrence of Li t h o t h r i x and P r i o n i t i s base. Q2 i s most strongly influenced by H', J' and S. 149 F i g u r e 9 9 . S c a t t e r p l o t o f a CV o f p o o l e d B a t h I s l a n d p e r c e n t c o v e r d a t a . O b s e r v a t i o n s w i t h g r e a t e r t h a n 1.0% c o v e r o f C . p e r e g r i n a a r e s h a d e d . N=86. (Code number f o r A p p e n d i x X i n b r a c k e t s a f t e r v a r i a b l e n a m e ) . 0 Q l o b s e r v a t i o n s A Q2 o b s e r v a t i o n s 1 IQ3 o b s e r v a t i o n s C o m p o s i t i o n o f A x e s : A x i s 1 A x i s 2 T o t a l v a r i a n c e a c c o u n t e d f o r 8 6 . 9 % 100% W e i g h t o f v a r i a b l e F u c u s (101) B o s s i e l l a (102) L i t h o t h r i x (103) R h o d o m e l a (104) R a l f s i a (105) P r i o . b a s e (106) s u b s t r a t e (107) H i d e n b r a n d i a (108) P r i o n i t i s (109) S a r g a s s u m (110) C o r . c r u s t (111) A n a l i p u s (112) U l v a (113) B o t r y o g l o s s u m (114) M i c r o c l a d i a (115) I r i d a e a (116) L o m e n t a r i a (117) P e t r o c e l i s (118) C r y p t o s i p h o n i a (119) Ceramium (120) C a l l i a r t h r o n (121) d i a t o m s (124) g r e e n c r u s t (126) C o l p o m e n i a H ' J ' S 0 . 0 4 2 - 0 . 1 1 6 - 0 . 1 8 0 - 0 . 1 8 6 0 . 0 4 9 - 0 . 2 4 7 0 . 0 1 3 0 . 1 9 3 - 0 . 1 4 3 0 . 0 9 8 - 0 . 2 8 1 0 . 0 9 6 0 . 1 6 6 0 . 2 2 4 - 0 . 0 4 9 0 . 3 1 2 0 . 9 1 9 0 .061 - 0 . 0 9 2 0 . 0 7 6 - 0 . 0 0 7 0 . 0 8 8 0 . 1 8 6 - 0 . 0 1 2 - 1 8 . 4 3 3 . 8 1.29 0 . 0 0 1 - 0 . 0 6 4 0 . 0 2 5 0 . 0 0 3 0 . 0 1 2 0 . 1 3 9 0 . 0 0 2 0 . 1 9 5 0 . 2 1 7 - 0 . 2 7 8 - 0 . 4 4 7 0 . 1 4 8 0 . 1 2 3 0 . 0 8 0 0 . 0 7 9 0 . 2 7 2 - 0 . 4 6 9 0 . 0 1 4 - 0 . 2 1 2 0 . 1 5 9 0 . 1 5 4 0 . 0 0 7 0 . 2 7 4 - 0 . 0 0 4 - 3 . 3 9 - 5 . 0 2 0 . 2 5 9 1 5 0 151 Figure 100. F i r s t scatter plot of an RA analysis of pooled Bath Island percent cover data. This shows the r e l a t i v e "positions of influence" for each of the variables used (see chapter 2 f o r an explanation of t h i s ordination method). Variable Name and on plot code # VI Fucus (101) 2 B o s s i e l l a (102) 3 L i t h o t h r i x (103) 4 Rhodomela (104) 5 R a l f s i a (105) 6 Prio. base (106) 7 substrate (107) 8 Hildenbrandia (108) 9 P r i o n i t i s (109) 10 Sargassum (110) 11 cor. crust (111) 12 Analipus (112) 13 Ulva (113) 14 Botryoglossum (114) 15 Microcladia (115) 16 Iridaea (116) 17 Lomentaria (117) 18 P e t r o c e l i s (118) 19 Cryptosiphonia (119) 20 Ceramium (120) 21 C a l l i a r t h r o n (121) 22 diatoms (124) 23 green crust (126) 24 Colpomenia 25 H' 26 J' 27 S 152 -72rvl8 .62 .52 42 32 22 12 <02 .08 -.18 .28 vl2 v9 vl3 v4 v25v21vll vl6 v26vl0vl4 V27vl7v24 v23 v8 v2 i v 7 *22 vi v20 v!9vl5 v5 v3 v6 -.52 -.42 ,32 -.22 -.12 .02 08 .18 .28 38 48 AXIS 1 153 Figure 101. Second scatter plot of an RA analysis of pooled Bath Island percent cover data. Observations with greater than 1.0% cover of C. peregrina are shaded. N=86. O Ql observations A Q2 observations Q3 observations 155 The r e s u l t s of a PCA done on Diana Island percent cover data from NQ are shown in Figure 102. Code numbers refer to Appendix XI. H' and S increase as one moves along Axis 1 while c o r a l l i n e crust #2 (code #210) and Ulva percent cover increase with increasing values on Axis 2. There are no clear separations between seasons or abundance of Colpomenia on t h i s scatter p l o t . 3. Substrate preference After examining a l l of the percent cover data f o r both s i t e s a small number were chosen which f u l f i l l e d the requirements given in the Materials and Methods section f o r a Chi-square t e s t . The r e s u l t s of the tests are given in Table XIII. No trends w i l l be discussed here because of the small number of samples tested. It w i l l s u f f i c e to note that Colpomenia does act in a s e l e c t i v e manner in some cases. 4. Influence of canopy species A) Bath Island The percent cover of C. peregrina in SARG CLEAR Q and SARG CONTROL Q s t a r t i n g from October 17, 1980 i s shown in Figure 103. The percent cover of Colpomenia at t h i s l e v e l on the shore 156 F i g u r e 102 . S c a t t e r p l o t o f a PCA o f NQ p e r c e n t c o v e r d a t a ( D i a n a I s l a n d ) . O b s e r v a t i o n s w i t h g r e a t e r t h a n 1 .0 * c o v e r o f C . p e r e g r i n a a r e s h a d e d . N=18. (Code number f o r A p p e n d i x XI i n b r a c k e t s a f t e r v a r i a b l e n a m e ) . o S p r i n g o b s e r v a t i o n s A Summer o b s e r v a t i o n s I I F a l l o b s e r v a t i o n s W i n t e r o b s e r v a t i o n s T o t a l v a r i a n c e a c c o u n t e d f o r W e i g h t o f v a r i a b l e P r i o . b a s e (201) C a l l i a r t h r o n (202) L a u r e n c i a (203) c o r . c r u s t #1 (204) s u b s t r a t e (205) R a l f s i a (206) C h i h a r a e a (207) G e l i d i u m (208) H i l d e n b r a n d i a (209) c o r . c r u s t #2 (210) P t e r y g o p h o r a (211) M a c r o c y s t i s (212) D e s m a r e s t i a (214) Ceramium (216) f i l . g r e e n (217) B o s s i e l l a (218) P r i o n i t i s (220) t u n i c a t e (221) U l v a (223) C o l p o m e n i a H ' J ' S C o m p o s i t i o n o f A x e s : A x i s 1 A x i s 2 2 6 . 9 % 4 2 . 6 * 0. 0. 0. - 0 . 3 2 6 - 0 . 1 1 1 , 173 ,085 ,004 - 0 . 0 6 7 0 .061 0 . 2 1 7 - 0 . 0 0 8 0 . 1 4 2 0 . 1 6 8 - 0 . 0 0 4 0 . 2 9 9 0 . 0 8 6 0 . 2 1 5 0 . 2 5 5 0 . 2 5 9 0 . 0 4 0 0 . 1 7 2 0 . 3 0 5 0 . 3 8 6 0 . 2 6 7 0 . 3 4 8 0 . 0 3 6 - 0 . 0 0 4 0 . 1 4 6 - 0 . 1 6 4 - 0 . 2 9 8 0 . 0 8 7 - 0 . 3 6 3 - 0 . 3 4 0 0 . 0 6 4 0 . 3 6 7 0 . 1 9 5 0 .261 - 0 . 0 9 0 0 . 0 0 9 0 . 1 7 8 - 0 . 2 3 8 0 . 1 4 5 - 0 . 3 2 4 0 . 3 5 9 0 . 0 1 5 - 0 . 0 3 0 0 .061 - 0 . 0 7 9 1 5 7 6 Or 5.0 4.0 3.0h 2D | • • " io|- • 1 A W 0 -1.0 -2X) -3.0 -4.01 • • -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 A X I S 1 4.0 5.0 6.0 158 T a b l e X I I I S u b s t r a t e s e l e c t i v i t y o f C o l p o m e n i a . Q u a d r a t D a t e C h i v a l u e d ) d f<2 ) Q l May 12 1979 5 0 . 8 « 8 Q l J u n . 11 1979 2 . 7 6 Q l Ma r . 7 1980 3 8 . 8 * 9 Q l Ma r . 29 1980 23 .1 * 8 Q l Ma r . 1 1981 5 1 . 9 « 11 Q l Mar . 12 1981 4.1 11 NQ J u n . 6 1980 1 4 . 9 12 NQ Mar . 21 1981 3 0 . 3 * 12 NQ A p r . 12 1981 3 1 . 1 « 12 NQ May 15 1981 3 6 . 8 » 16 NQ J u n . 17 1981 1 6 . 3 12 NQ J u l . 24 1981 1 6 . 7 13 MQ A u g . 22 1979 4 . 5 7 MQ J u n . 17 1981 5 .4 7 * s i g n i f i c a n t a t 0 . 0 5 l e v e l , s e l e c t i v e 1 = C h i - s q u a r e v a l u e 2 = d e g r e e s o f f r e e d o m 159 Figure 103. The percent cover of C. peregrina in experimental quadrats to test the e f f e c t of removal of a canopy species (Sargassum muticum) at Bath Island. O SARG CLEAR Q 0 SARG CONTROL Q 16 12 8 O N 1 9 8 0 F 1981 161 d o e s n o t seem t o v a r y i f t h e canopy s p e c i e s Sargassum muticum i s removed. The a v e r a g e p e r c e n t c o v e r o f Sargassum i n SARG CONTROL Q d u r i n g t h e e x p e r i m e n t was 7.8%. One peak o f 17.3% c o v e r o c c u r r e d i n O c t o b e r 17, 1980, t h e o t h e r a t A p r i l 30, 1981 (14%) when C o l p o m e n i a i t s e l f had peak abundance i n b o t h q u a d r a t s . B) D i a n a I s l a n d D u r i n g t h e summer and f a l l o f 1980 b o t h M a c r o c y s t i s  i n t e g r i f o l i a and P t e r y g o p h o r a c a l i f o r n i c a became ab u n d a n t ( a p p r o x . 20% c o v e r combined) i n NQ where t h e y had n o t been i n 1979. Sea u r c h i n s ( S t r o n g y l o c e n t r o t u s f r a n c i s c a n u s A g a s s i z ) moved i n t o t h e a r e a i n t h e w i n t e r o f 1980/81 and began t o e a t t h e s e two o v e r s t o r y p l a n t s s o t h a t by l a t e summer o f 1981 t h e i r c ombined c o v e r had been r e d u c e d t o two o r t h r e e p e r c e n t ( F i g u r e 1 0 4 ) . The p a t t e r n o f p e r c e n t c o v e r o f C o l p o m e n i a d i d n o t seem t o be a l t e r e d by t h i s d r a m a t i c change i n o v e r s t o r y c o v e r . C o l p o m e n i a was a b s e n t d u r i n g t h e w i n t e r months whether t h e o v e r s t o r y p l a n t s were p r e s e n t o r n o t . C o l p o m e n i a was n e v e r s e e n t o be e a t e n by t h e u r c h i n s . 162 F i g u r e 104. The combined p e r c e n t c o v e r o f P t e r y g o p h o r a c a l i f o r n i c a and M a c r o c y s t i s i n t e g r i f o l i a ( s o l i d c i r c l e s ) and t h e p e r c e n t c o v e r o f C o l p o m e n i a (open c i r c l e s ) i n NQ f o r t h e d u r a t i o n o f t h e s t u d y ( D i a n a I s l a n d ) . 1979 1980 1981 164 D i s c u s s i o n C h a p t e r 2 showed how t h e abundance o f C. p e r e g r i n a on t h e s h o r e and u n d e r w a t e r i s c l o s e l y c o n t r o l l e d by t h e p h y s i c a l e n v i r o n m e n t (more e v i d e n c e i s g i v e n i n C h a p t e r 5 ) . I n t h i s c h a p t e r t h e i n f l u e n c e o f t h e b i o l o g i c a l e n v i r o n m e n t upon t h e p l a n t was e x p l o r e d . I f b i o l o g i c a l i n t e r a c t i o n was i m p o r t a n t t o C. p e r e g r i n a one would e x p e c t t o s e e s t r o n g p o s i t i v e o r n e g a t i v e c o r r e l a t i o n s between i t s p e r c e n t c o v e r and t h e p e r c e n t c o v e r o f c e r t a i n members o f t h e community. F o r i n s t a n c e a s t r o n g n e g a t i v e c o r r e l a t i o n c o u l d s u g g e s t c o m p e t i t i o n ( i . e . C o l p o m e n i a i s p r e s e n t i n t h e community a s l o n g a s t h e o t h e r t a x o n i s a b s e n t ) . M o r e o v e r t h e l i f e f o r m s ( s e n s u G a r b a r y , 1976) o f t h e t a x a w h i c h have a s i g n i f i c a n t c o r r e l a t i o n w i t h C. p e r e g r i n a s h o u l d be a b o u t t h e same f r o m q u a d r a t t o q u a d r a t . I t would be odd i f t h e b i o l o g i c a l e f f e c t o f a s m a l l e p h e m e r a l f i l a m e n t o u s r e d a l g a and a l a r g e p e r e n n i a l r e d a l g a was t h e same t o C o l p o m e n i a . However, b i o l o g i c a l i n t e r a c t i o n s would be s u s p e c t e d i f a t r e n d were o b s e r v e d o f s i m i l a r a l g a l l i f e f o r m s a l w a y s h a v i n g t h e same c o r r e l a t i o n t o C. p e r e g r i n a p e r c e n t c o v e r . C o r r e l a t i o n s between C o l p o m e n i a p e r c e n t c o v e r and t h e c o v e r o f o t h e r members o f t h e a l g a l community ( T a b l e s V, V I I , IX and XI) show no t r e n d s r e l a t e d t o l i f e f o r m . F o r i n s t a n c e e p h e m e r a l ( f i l a m e n t o u s g r e e n a l g a , c o d e #217), a n n u a l ( D e s m a r e s t i a ) and p e r e n n i a l (Rhodomela) a l g a e c a n a l l have 165 seasonal patterns of cover s i m i l a r to Colpomenia. Each quadrat had d i f f e r e n t taxa which approximated Colpomenia'a pattern and no trends were seen from quadrat to quadrat. The same lack of pattern i s seen i f one examines a summary measure of quadrat species information such as d i v e r s i t y (Tables VI, VIII, X and XIII). Colpomenia percent cover i s both p o s i t i v e l y and negatively related to increasing quadrat d i v e r s i t y . The same holds true for other members of the community and no one a l g a l l i f e form i s seen to be more related to d i v e r s i t y than any other. The ordination r e s u l t s of individual quadrats show the same lack of pattern between d i v e r s i t y measures, percent cover of algae and the percent cover of Colpomenia (Figures 95, 96, 97 and 102). As was noted i n the r e s u l t s section t h i s lack of pattern suggests that Colpomenia i s not being d i r e c t l y influenced by p a r t i c u l a r species or l i f e forms of algae, but that s i m i l a r patterns of abundance between Colpomenia and other species i n the community simply mean that the algae are responding to the same seasonal environmental changes. The r e s u l t s of the work on overstory species supports the model of Colpomenia /s i n d i f f e r e n t response to the a l g a l community. At both Bath Island and Diana Island the removal of dominant overstory species had no e f f e c t upon the seasonal abundance of Colpomenia (Figures 103 and 104). It should be noted here that although herbivores were not quantitatively examined during t h i s study t h e i r numbers were low at Bath Island. The increase in urchins at that s i t e in August of 1981 (DeWreede, 1983) did not change the seasonal appearance of C. peregrina (Figure 26). 166 The same e f f e c t was o b s e r v e d a t D i a n a I s l a n d . T h i s c h a p t e r c o n c l u d e s t h e m a j o r p o r t i o n o f t h e f i e l d work e x a m i n i n g t h e e f f e c t s o f b o t h t h e p h y s i c a l and b i o l o g i c a l e n v i r o n m e n t upon C . p e r e g r i n a g r o w t h . C h a p t e r 4 i s a b o u t a s e r i e s o f f i e l d e x p e r i m e n t s d e s i g n e d s p e c i f i c a l l y t o d e t e r m i n e t h e d i s p e r s a l d i s t a n c e o f C . p e r e g r i n a p l a n t s . 167 CHAPTER 4 . A r t i f i c i a l substrate s e l e c t i o n and dispersal distance of Colpomenia peregrina in the sea. 168 Introduction A r t i f i c i a l substrates can be useful f o r marine studies as a source of clean surface area for observing successional events in the f i e l d (Foster, 1975), for outplanting germlings raised in culture (Hanic and Pringle, 1978), or for determining when propagules of various algae are being released into the water column (Neushul et al.,1976). Algae can be quite s e l e c t i v e as to the type of a r t i f i c i a l substrate they prefer. This s e l e c t i v i t y may in turn be due to the texture of the various materials used (Harlin and Lindbergh, 1977). There i s no information on the preferences of C. peregrina other than Foster (1975) who showed that i t would grow on cement blocks. This chapter describes a study to determine which substrates Colpomenia would grow on in B r i t i s h Columbia. This information was then used to select two d i f f e r e n t substrata for an experiment to calculate dispersal distance of Colpomenia in the f i e l d . Materials and Methods Four d i f f e r e n t a r t i f i c i a l substrates were chosen for study. Yellow cedar, red cedar and Douglas f i r boards were chosen because Colpomenia had been seen growing on a submerged log at Dixon Island on July 11, 1979 (Figure 22). Plexiglas was used for comparative purposes as i t i s commonly used as a 169 substrate in experiments of t h i s type. The wooden boards were rough and unsanded. The Plexiglas was scored with a grinding wheel to produce a rough surface. Different combinations of the substrates were placed i n the water at the three f i e l d s i t e s as follows. 1. Tests of d i f f e r e n t a r t i f i c i a l substrates. A) Bath Island. Yellow cedar boards (20 X 11 cm) were bolted onto the sandstone bedrock on August 24, 1979 using the d r i l l i n g apparatus described in Chapter 2. One board was placed next to each quadrat as shown in Figure 17. Red cedar boards (60 X 20 cm) were bolted onto the rock on May 12 and May 29, 1980. Six boards were placed next to each quadrat as shown in Figure 17. The boards were examined on subsequent v i s i t s to the island and q u a l i t a t i v e observations were made as to the types of organisms present. Occasional photographs were taken using a 35 mm underwater camera attached to an aluminum frame with a strobe f l a s h l i g h t source (DeWreede, 1983). B) Diana Island Underwater d r i l l i n g was not successful at Diana Island (see chapter 2) and therefore cement patio slabs were used to hold a r t i f i c i a l substrates on the bottom. Nine a r t i f i c i a l 170 substrate c l u s t e r s consisting of a cement patio slab with one board each of yellow cedar (90 X 11 cm), Plexiglas (90 X 9.5 cm) and Douglas f i r (90 X 9.5 cm) bolted to i t were made i n the summer of 1979. On August 22, 1979 three of these clu s t e r s were placed on the bottom at Diana Island as shown in Figure 20. Qualitative observations and photographs were taken s i m i l a r to those at Bath Island. Another type of a r t i f i c i a l substrate material was made by bolting three red cedar boards (60 X 20 cm) onto a cement patio slab. Two such patio slabs were placed on the bottom near HQ on August 13, 1980 (see Figure 20 for loc a t i o n ) . These plates were examined over time as well. C) Dixon Island Six of the a r t i f i c i a l substrate c l u s t e r s (yellow cedar, Plexiglas and Douglas f i r ) were placed on the bottom at Dixon Island on August 31, 1979 as shown in Figures 21 and 22. Photographs and vi s u a l inspections were made as per the Diana Island c l u s t e r s . Two patio slabs with red cedar plates i d e n t i c a l to those used at Diana Island were placed in the upper zone (1 m above datum) on August 21, 1980. These plates were v i s u a l l y inspected from time to time as at Diana Island. 2. Dispersal distance experiments 171 Red cedar and yellow cedar were selected for the dispersal experiments on the basis of the r e s u l t s of the tests of d i f f e r e n t a r t i f i c i a l substrata. A) Bath Island The area on Bath Island chosen for the dispersal distance experiments was located on the same part of the island as the quadrats (Figure 16). From previous dives in the area i t was known that individual Colpomenia plants could survive i n the deeper subtidal (ca. 6 m below datum) but were very rare. A s i t e was chosen i n the Botryoglossum / Cryptopleura zone which occurs below the Lithot h r i x zone at Bath Island (approximately 3 m below chart datum). The red algae in t h i s zone grow as a very dense mass covering the bottom and Colpomenia i s sometimes found as an epiphyte on them. On October 17, 1980 two s t a i n l e s s s t e e l mesh cages (3 mm mesh, 13 X 13 X 10 cm) were bolted to the bottom on the s i t e . On November 8, 1980 three red cedar boards (214 X 20 cm) were bolted to the bottom so that one end of each of the boards almost touched one of the cages. The boards resembled spokes of a wheel with the cage at the center or hub. Three yellow cedar boards (214 X 14 cm) were anchored to the bottom around the other cage i n a s i m i l a r pattern. By March 1, 1981 the cages were gone. Plexiglas cages with nylon mesh (2 mm mesh, 10 X 10 X 8.5 cm) were anchored on the bottom in place of the old s t a i n l e s s s t e e l cages on March 12, 1981. Colpomenia plants were placed into both cages on A p r i l 30, 172 1981. B) Diana Island A location was picked for the dispersal study approximately 10m seaward from MQ at about the same depth. Colpomenia could grow in t h i s area but i s normally very sparse. On August 15, 1980 three red cedar boards (214 X 20 cm) were attached to PVC p l a s t i c straps which were attached i n turn to cement blocks. This arrangement held the boards on the bottom in the same manner as at Bath Island. On August 18 a wire framework with p l a s t i c mesh t i e d to i t <2 mm mesh, 17 X 9 X 4 cm) was glued to the bottom at the center of the group of boards using an under water epoxy resin mixed with sand for b a l l a s t . Colpomenia plants were placed into the cage on August 21, 1980. Results and discussion 1. Tests of d i f f e r e n t a r t i f i c i a l substrates. A) Bath Island The r e s u l t s for the yellow cedar boards are shown i n Table XIV. It can be seen that Colpomenia w i l l use yellow cedar as a substrate, even to the extent of being present on i t when Colpomenia cannot be found anywhere else i n the zone <Q3, 173 Table XIV Bath Island a r t i f i c i a l eubstratea - yellow cedar (placed i n Aug. 24 1979) Qualitative observations of organisms growing on the plates on various days Date Sep. 29 Nov. 3 Ql Q2 '79 - Enteroaorpha, P e t r o c e l l s - Sargassua '79 - Sargassua, ulvoids and soae Colpoaenia, took photograph Dec. 18 '79 - plate gone Feb. 1 '80 Mar. 7 '80 -Kar. 29 '80 May 30 '80 Jun. 12 '80 Jun. 30 '80 Sep. 14 '80 - Sargassua, Colpoaenia photograph taken Sargassua, Colpoaenia photograph taken Sargassum, c o r a l l i n e algae - Sargassum, R a l f s i a , c o r a l l i n e s and soae Colpoaenia - plate gone Q3 - Sargassum - Sargassua, Ulva and Colpoaenia. photograph taken - Sargassua, Ulva and Colpoaenia. photograph taken - Sargaaaua, Botryogloasua, Ulva, barnacles, c o r a l l i n e algae and Colpoaenia (no Colpoaenia i n zone) - Sargassua, Ulva and soae Colpoaenia (no Colpoaenia i n zone) - Sargassua, Ulva, R a l f s i a and Colpoaenia. photograph taken - Sargassua (20 ca long), Ulva, B o e s i e l l a , diatoms and Rhodoaela (6 ca long) photograph taken - Sargassua, Ulva, Rhodomela  Lit h o t h r i x and Colpoaenia. photograph taken - Sargassua (50 ca long), Ulva, B o s s i e l l a , Rhodoaela and several Colpoaenia - plate reaoved. Colpomenia 174 February and March 1980). It i a also important to note that Colpomenia was not the f i r s t alga to grow on the yellow cedar. The r e s u l t s for the red cedar boards are shown in Table XV. A few plates were l o s t during the experiment. Colpomenia was not found on the red cedar plates. Ulvoids and Sargassum soon dominated these plates and remained the dominants u n t i l the boards disappeared. It i s inter e s t i n g that diatoms were the f i r s t colonizers of these plates. The difference i n the f i r s t colonizers of these plates versus the f i r s t organisms on the yellow cedar plates i s most l i k e l y due to the f a c t that the red cedar plates were put out in late spring while the yellow cedar plates were f i r s t exposed i n late summer. Even placing new plates out on d i f f e r e n t days of the same month seems to a l t e r the outcome. For example, red cedar plates put in on May 12, 1980 at Q3 had Ulva at the end of the experiment while plates put out at the same location on May 29 had Sargassum. B) Diana Island The r e s u l t s f o r the a r t i f i c i a l substrate c l u s t e r s are shown i n Table XVI. The f i r s t colonizers on the wood were ulvoids, while the Plexiglas almost immediately had c o r a l l i n e Table XV Bath Island a r t i f i c i a l substrates - red cedar (placed i n May 12 and Hay 29 19S0) Q u a l i t a t i v e observations of organisms growing on the plates on various days Date Ql Q2 Q3 Hay 12 May 29 May 12 May 29 May 12 May 29 May 29 '80 diatoms Jun. 13 '80 diatoms diatoms Jun. 30 '80 Ulva diatoms Sep. 14 '80 ulvoids Oct. 3 '80 ulvoids and Fucus Oct. 17 '80 ulvoids Nov. 8 '80 boards gone Mar. 1 '81 • photographs taken diatoms diatoms diatoms Ulva diatoms ulvoids ulvoids ulvoids ulvoids boards gone diatoms diatoms * diatoms *" Ulva diatoms ulvoids ulvoids Sargassum  Ulva Sargassum  Ulva Sargassum boards gone 176 Table XVI Diana Island a r t i f i c i a l substrates - Ple x i g l a s , yellow cedar and Douglas f i r (pieced i n Aug. 22 1979) Q u a l i t a t i v e observations of organiaas growing on the plates on various days. Results for the two d i f f e r e n t types of wood were very s i m i l a r so they were pooled under one heading. Date NQ Oct. 13 '79 wood - ulvoida P l e x i g l a s - c o r a l l i n e crust coaaents - plates aoved, photograph taken HQ ulvoids c o r a l l i n e crust plates aoved SQ ulvoids c o r a l l i n e crust plates aoved Nov. 24 '79 wood - ulvoids Plexiglas - c o r a l l i n e crust coaaents - photograph taken Jan. 11 '80 wood -Plexiglas -coaaents - saae as Nov. 24 '79 Mar. 22 '80 wood - ? Plexiglas - c o r a l l i n e crust with uprights Apr. 26 '80 wood - Desaarestia and Bacro-c v s t i s P l e x i g l a s - c o r a l l i n e crust with uprights comments - plates aoved, photograph taken Jun. 6 '80 wood - Colpoaenia Plexiglas - c o r a l l i n e crust with uprights coaaents - Pterygophora, Desaarestia, and Ulva a l l over the plates ulvoids c o r a l l i n e crust with uprights photograph taken saae as Nov. 24 '79, plates aoved c o r a l l i n e crust c o r a l l i n e crust with uprights c o r a l l i n e crust with uprights, R a l f s i a on yellow cedar c o r a l l i n e crust with uprights, Hildenbrandia plates aoved, photograph taken c o r a l l i n e crust with uprights, Colpoaenia. Ulva and R a l f s i a on yellow cedar c o r a l l i n e crust with uprights, Hildenbrandia ulvoids c o r a l l i n e cruet with uprights photograph taken eame as Nov. 24 '79, plates aoved c o r a l l i n e crust c o r a l l i n e crust with uprights c o r a l l i n e crust with uprights c o r a l l i n e crust with uprights plate6 aoved, photograph taken c o r a l l i n e crust with uprights, R a l f s i a on yellow cedar, Douglas f i r has one Colpoaenia c o r a l l i n e crust with Colpoaenia on uprights 177 Date NQ Table XVI (continued) HQ SQ Aug. 6 '60 wood - c o r a l l i n e crust with uprights. Pterygophora on Douglas f i r Plex i g l a s - c o r a l l i n e crust with uprights, Pterygophora comments -Aug 13 '80 wood -Plexi g l a s -comments -Aug. 18 '80 wood -Plexiglas consents -sane as Aug. 6 '80, took photograph 10 Deamareatia, 11 Ptery-gophora and c o r a l l i n e s on yellow cedar. 2 Desaar-e s t i a , 4 Pterygophora and a few c o r a l l i n e s on Douglas F i r . 4 Pterygophora and c o r a l l i n e s plates removed •any c o r a l l i n e crust with uprights. Ra l f e i a and Ulva on yellow cedar c o r a l l i n e cruet with uprights, Hildenbrandia some as Aug. 6 '80, took photograph R a l f e i a , c o r a l l i n e s and some hydroid on yellow cedar. Corralines on Douglas f i r •any c o r a l l i n e s plates removed plates gone from area - sane as Aug. 6 '80 Ralfaia and c o r a l l i n e s on yellow cedar. Douglas f i r has c o r a l l i n e s many c o r a l l i n e s plates found and removed 178 crusts growing on i t which remained f o r the duration of the study. Colpomenia was eventually seen on both of the wooden substrates but was never found to grow d i r e c t l y on the Ple x i g l a s . It would grow as an epiphyte on c o r a l l i n e s growing on the Plexiglas, however (June 6, 1980 at SQ). The red cedar boards seem to suffer from a flaw in hydrodynamic design. Everytime they were observed, they were found upside down with nothing growing on them. Each time they were righted and by the next f i e l d t r i p had turned upside down again. After March 21, 1981 they were l e f t alone. On June 17, 1981 they were s t i l l upside down. ODixon Island The r e s u l t s f o r the a r t i f i c i a l substrate c l u s t e r s are shown i n Table XVII. Ulvoids and diatoms were the f i r s t colonizers on a l l of the plates in the upper zone while in the two lower zones c o r a l l i n e crusts dominated the Plexiglas while diatoms remained on the wood. Colpomenia f i r s t appeared on the plates (January 11, 1980) in the upper zone. There was no Colpomenia on rocks in the area at the time. In the lower zones i t grew only as an epiphyte on the Plexiglas ( A p r i l 26, 1980). By June 21, 1980 the plates were too damaged for further study. The red cedar boards were unsuccessful here as well. By November 1, 1980 only one patio slab was l e f t and i t had been 179 Table XVII Dixon Island a r t i f i c i a l substrates - Ple x i g l a s , yellow cedar and Douglas f i r (placed in Aug. 31, 1979) Qualitative observations of organisms growing on the plates on various days Yellow cedar Pl e x i g l a s Douglas f i r Oct. 13 '79 • upper plates middle plates lower plates Nov. 24 '79 upper plates middle plates lower plates Jan. 11 '80 • upper plates middle plates lower plates Mar. 21 '80 upper plates middle plates lower plates ulvoids • diatoms diatoms ulvoids • diatoms diatoms Colpomenia, ulvoids • diatoms diatoms Colpomenia, Ulva  Desmarestia diatoms * Desaarestia diatoas * Desaarestia ulvoids • diatoas c o r a l l i n e crust ulvoids * diatoas c o r a l l i n e crust Colpoaenia, ulvoids * diatoms c o r a l l i n e crust ulvoids • diatoas diatoas ulvoids • diatoas diatoas Colpoaenia, ulvoide + diatoms diatoas Colpoaenia, Ulva  Desaarestia Colpomenia, Ulva • Desaarestia  c o r a l l i n e s , diatoas, diatoms * • Desaarestia Desmarestia c o r a l l i n e s , diatoas, diatoas * • Desmarestia Desmarestia Apr. 26 '80 • upper plates middle plates lower plates Ulva Desmarestia diatoas plate gone c o r a l l i n e s with epiphytic Colpomenia c o r a l l i n e s • Desmarestia plate gone Desmarestia diatoms • photographs taken 180 t u r n e d u p s i d e down. T h i s l a s t s l a b had d i s s a p p e a r e d by F e b r u a r y 14, 1981. 2. D i s p e r s a l d i s t a n c e e x p e r i m e n t s . A ) B a t h I s l a n d Soon a f t e r t h e C. p e r e g r i n a p l a n t s were p l a c e d i n t o t h e c a g e s t h e r e d c e d a r b o a r d s d i s a p p e a r e d . On J u l y 9, 1981 t h e s u r f a c e o f t h e P l e x i g l a s c a g e t h a t had been a t t h e c e n t e r o f t h e r e d c e d a r b o a r d s was c o v e r e d i n new C. p e r e g r i n a p l a n t s . T h e s e p l a n t s c o u l d a c t a s a f u r t h e r s o u r c e o f p l u r i s p o r e s w h i c h c o u l d d i s p e r s e u n h i n d e r e d by any e f f e c t s o f e n c l o s u r e i n a c a g e . The b a r e s a n d s t o n e / c o r a l l i n e c r u s t pavement t h a t had been u n d e r t h e b o a r d s p r o v i d e d a s u b s t r a t e f o r new C o l p o m e n i a p l a n t s . F o u r p l a n t s were f o u n d w i t h i n 1 m o f t h e c a g e , f i v e p l a n t s between 1 and 2 m and t h r e e p l a n t s were f o u n d j u s t o u t s i d e t h e c l e a r e d a r e a a s e p i p h y t e s on B o t r y o g l o s s u m . The f a r t h e s t p l a n t was 237 cm f r o m t h e c a g e . T h e r e were no o t h e r v i s i b l e C o l p o m e n i a p l a n t s w i t h i n a 4 m r a d i u s o f t h e c a g e . I t was o b v i o u s t h a t a l l o f t h e new p l a n t s had come f r o m p l u r i s p o r e s r e l e a s e d by p l a n t s i n t h e c a g e . The y e l l o w c e d a r b o a r d s were s t i l l i n p l a c e on J u l y 9, 1981 and t h e P l e x i g l a s c a g e was a l s o c o v e r e d i n new C o l p o m e n i a p l a n t s . However, t h e r e was a v e r y d e n s e c o v e r o f U l v a on t h e y e l l o w c e d a r and no C o l p o m e n i a c o u l d be s e e n on t h e b o a r d s . 181 Some C o l p o m e n i a was f o u n d on B o t r y o g l o s s u m , 172 and 126 cm f r o m t h e c a g e . The f i n a l o b s e r v a t i o n o f t h e B a t h I s l a n d d i s p e r s a l s t u d y was on A u g u s t 10, 1981. The p l a n t s p r o d u c e d f r o m t h e r e d c e d a r e x p e r i m e n t were l a r g e r b u t no v i s i b l e i n c r e a s e i n t h e number o f i n d i v i d u a l s had o c c u r r e d . T h i s i s f u r t h e r e v i d e n c e t h a t a l l o f t h e s e new p l a n t s had o r i g i n a t e d due t o t h e e x p e r i m e n t a l m a n i p u l a t i o n s a l o n e . The y e l l o w c e d a r b o a r d s were s t i l l c o v e r e d i n U l v a . A s m a l l clump o f C o l p o m e n i a was s e e n n e x t t o t h e y e l l o w c e d a r b o a r d s on b a r e r o c k 105 cm f r o m t h e c a g e . B) D i a n a I s l a n d On A u g u s t 31, 1980 t h e r e was s t i l l C o l p o m e n i a i n t h e c a g e b u t t h e b o a r d s were c o v e r e d i n d i a t o m s . By November 1, 1980 t h e c a g e was empty and n o t h i n g was on t h e b o a r d s . Due t o t h e f a l l d e c l i n e i n t h e p o p u l a t i o n o f C. p e r e g r i n a a t t h e s i t e t h e r e were no p l a n t s t o f i l l t h e c a g e . The same c o n d i t i o n s were s e e n on November 22, 1980 and May 15, 1981. On June 16, 1981 t h e d i s p e r s a l b o a r d s had a s p a r s e b u t e v e n c o v e r o f C o l p o m e n i a p l a n t s on them; however r o c k s o v e r t h e e n t i r e a r e a had t h e same p a t t e r n o f C o l p o m e n i a c o v e r . T h e s e r e s u l t s a r e s i m i l a r t o t h o s e r e p o r t e d by o t h e r a u t h o r s e x a m i n i n g d i s p e r s a l d i s t a n c e u n d e r f i e l d c o n d i t i o n s . D a y t o n (1973) n o t e d t h a t u n i s p o r e s o f P o s t e l s i a p a l m a e f o r m i s a r e n o t e f f e c t i v e f o r c o l o n i z a t i o n much beyond 3 m. A n d e r s o n and N o r t h (1965) u s e d t r a n s p l a n t s o f i n d i v i d u a l s and g r o u p s o f 182 Macrocystis p y r i f e r a plants to determine dispersal distances. An i n d i v i d u a l plant produced successful r e c r u i t s up to 4 m away. Groups of plants could disperse as far as 21 m and established beds of Macrocystis could have r e c r u i t s over 70 m distant. Amsler and Searles (1980) reported that spores from brown algae are frequently found only at the bottom of the water column and t h i s may produce small dispersal shadows. The r e l a t i v e l y short (4 m diameter) dispersal distance for Colpomenia seems to be reasonable i n the l i g h t of t h i s information. 183 CHAPTER 5 . L a b o r a t o r y e x p e r i m e n t s w i t h m i c r o t h a l l i o f C o l p o m e n i a p e r e g r i n a 184 Introduction A l l of the information discussed i n t h i s thesis so f a r has been on the phase of C. peregrina which represents the v i s i b l e (delophycean) or macrothallus portion of i t s l i f e history. I w i l l r e f e r to these individuals as "uprights" i n t h i s chapter. Uprights were absent at a l l f i e l d s i t e s in winter, as outlined in Chapter 2. However, in that chapter I was not able to determine which environmental variable (short daylength, low quantum irradiance, low temperature, etc.) was most responsible for the winter absence of Colpomenia. The same was true f o r the summertime absence of Colpomenia uprights at Bath Island. In t h i s chapter the influence of individual environmental y factors on another portion of the l i f e history of Colpomenia, the adelophycean or microthallus stage, was examined in culture. This approach was used in order to elucidate which one of the environmental factors mentioned in Chapter 2 may be most important in explaining the seasonality of Colpomenia uprights in the f i e l d . Other authors have grown C. peregrina in culture (Sauvageau, 1927; Dangeard, 1963; V i l l e , 1969; Clayton, 1979, 1981; Blackler, 1981) but i n a l l cases t h i s was to obtain information on l i f e history (Chapter 6). 185 Materials and Methods Live plants were col l e c t e d as outlined i n Chapter 1. At Bath Island the plants were gathered mainly i n the Sargassum zone of a location about 3 m east of the quadrats. Diana Island plants were gathered on the east side of the i n t e r t i d a l reef away from the quadrats and Dixon Island plants were taken at about -2.0 to -3.0 m depth (below Canadian chart datum) o f f of the cobbles. Some care was taken to sel e c t plants which were obviously f e r t i l e as indicated by a darker brown color at the base of the upright, representing a d i f f u s e sorus. The plants were wrapped i n newspaper and stored in a r e f r i g e r a t o r (Chapter 1) u n t i l the experiment began. Plants were never in storage more than one week. A l l glassware used i n the culture work was s t e r i l i z e d by o heating to 200 C for 3 h. Enriched a r t i f i c i a l seawater was one of the media used (Harrison et a l . , 1980), except s i l i c a t e was omitted. The a r t i f i c i a l seawater (ASW) was f i l t e r e d using a Reeve Angel 934AH glass f i b r e f i l t e r p r i o r to storage i n 1 o l i t e r f l a s k s at 5 C. The nutrient and trace metal as well as vitamin stock solutions were f i l t e r e d separately with a M i l l i p o r e membrane f i l t e r (0.8 ;jm pore size) p r i o r to freezing in 50 ml p l a s t i c v i a l s for storage. A l l pouring and mixing of ASW was done i n a clean a i r s t a t i o n . The natural seawater enrichment used was ES (Provasoli, 186 1968). The ES stock solutions were f i l t e r e d and stored as the ASW stock solutions were. Seawater from the Bamfield Marine Station flow-through system was f i l t e r e d and stored l i k e the ASW, and was used as a base for the culture medium. The s a l i n i t y was tested using a refractometer (American Optical Model 10419). The addition of 2 ml of a stock solution of 250 mg.1-1 germanium dioxide to a l i t e r of culture medium was used to reduce diatom contaminants in the newly established cultures (Lewin, 1966). The use of germanium dioxide was discontinued when the diatoms had been reduced to low numbers. If Ge0 2 was required in one experiment then the next r e p l i c a t i o n of that experiment also had GeOx added in the same amounts. On the day of the experiment in d i v i d u a l plants were taken out and placed in a clean a i r s t a t i o n which had been previously wiped with 70* EtOH. A small (16 mm ) piece of sorus was removed using h e a t - s t e r i l i z e d forceps. The sorus was then placed in a drop of medium on a #2 c o v e r s l i p as described by Wynne (1969). Falcon optilux 35X10 mm disposable p l a s t i c p e t r i o dishes were used at t h i s stage. The dishes were placed i n 15 C o or 13 C under long day conditions (at least 15 h daylength) and low irradiance (K 20 ^JE . m-2. s-1) . After plurispore release (usually within 24 h) the coverslip was dipped i n the medium at the bottom of the dish to remove the sorus and other contaminants. The coverslip was then placed with the spores facing upwards i n a 100 X 25 mm disposable p e t r i dish with 70 ml of fresh medium and the dish was immediately placed into the appropriate culture chamber. 187 The temperature fluctuations within the chambers were monitored continuously using Tempscribe temperature recorders (Bacharach Industrial Instrument Company, Pittsburgh U.S.A. model SCO. The temperature sensor was placed r i g h t next to the p e t r i dishes i n the chamber. Chamber thermostats were adjusted O to give - 1 C of the experimental temperature. Chambers without o a night thermostat occasionally had day temperatures 3 C higher than night temperatures. Cool white fluorescent l i g h t s were used i n a l l chambers. PAR quantum irradiance was measured using a LiCor l i g h t meter (Chapter 2). Differences i n quantum irradiance within the experimental area of the chamber were routinely - 20% with occasional variations as great as - 30%. To minimize the ef f e c t s of l i g h t v a r i a t i o n , dishes were moved to a d i f f e r e n t l o c a l i t y within the chambers at each medium change. Tubes were checked f o r lowered quantum irradiance due to aging and the p e t r i dishes were moved closer to the l i g h t source to correct for t h i s . Light loss due to aging of tubes was minimal (about 20% from December 4, 1980 to March 24, 1981). Temperature and l i g h t regimes within the chambers were checked and s t a b i l i z e d p r i o r to each experiment. Cultures were observed through the bottom of the p e t r i dish using an inverted microscope. Photographs were taken using a Nikon EFM microscope camera. 1.Preliminary experiments. 188 In December 197S the ASW was found to be an adequate medium for the culture of C. peregrina. In 1980 and 1981 the medium was used in a serie s of experiments to determine the range of physical conditions the plants could tolerate i n o culture. Five to 20 C was chosen as a natural range of temperature. The highest quantum irradiance the chambers could produce was 350 uE.m-2.s-l although f i e l d data indicated that plants submerged i n the f i e l d could be exposed to higher irradiance. However, 200 jiE.m-2.s-l may be a saturating irradiance f o r many s u b l i t t o r a l plants (Luning, 1981). Colpomenia peregrina from C a l i f o r n i a saturates at 90 uE.m-2.s-l o at 15 C (Brian Oates, University of C a l i f o r n i a , personal communication). The cultures were examined, and the medium was changed, about once a month in each experiment. When a microthallus had enlarged to the point that i t s central region was hollow, i t was considered to be a true upright. 2. E f f e c t s of d i f f e r e n t media on survivorship and production of uprights. ASW was compared to ES and a modification of ASW which had 1.0 g.1-1 of KI added to the nutrient and trace metal stock solution. The iodine was expected to have a b e n e f i c i a l e f f e c t on the C. peregrina growth (Hsiao, 1969). This modified ASW was cal l e d ASWII. A l l media were adjusted to 30 ppt with d i s t i l l e d water. C. peregrina plants were col l e c t e d from Diana Island on 189 July 11, 1982 and the soral portions were removed two days l a t e r . Forty-eight soral portions were allowed to release into each of the three d i f f e r e n t media. The p e t r i dishes were placed under a variety of temperature and l i g h t regimes (a maximum of four dishes per condition) and the survivorship and production of uprights i n each dish were monitored. The medium was changed ten days l a t e r , and the experiment ran for 15 days. 3. Growth rate and production of uprights under various culture conditions. These experiments were performed aft e r July, 1982. Each experiment was done once with Bath Island plants and once with Bamfield plants. ASW medium was u t i l i z e d and the irradiance was 100 ;aE.m-2.s-l. Temperatures were chosen to represent S t r a i t of Georgia values, 5°C as "winter", 13°C f o r " s p r i n g / f a l l " and 20 C f o r "summer". "Long day" conditions were set at 15L:9D and 9L:15D became the "short day" condition. Elapsed time was measured from the day the s o r i were removed from the plants. The length and width (jam) of the two largest m i c r o t h a l l i i n each p e t r i dish were recorded on various days during the experiment. The number of branches and hairs in each of these m i c r o t h a l l i was noted as well. The area covered by each of the mic r o t h a l l i was then calculated and an average value was recorded f o r the p e t r i dish. When the m i c r o t h a l l i started to become hollow, t h i s measurement of s i z e was discontinued and the cultures were observed f o r the formation of uprights. 190 A p p r o x i m a t e l y 20 r e p l i c a t e p e t r i d i s h e s were u s e d f o r e a c h c u l t u r e c o n d i t i o n . The a r e a measurements were u s e d t o p r o d u c e Model 1 l i n e a r r e g r e s s i o n s f o r e a c h c u l t u r e e x p e r i m e n t ( S o k a l and R o h l f , 1 9 8 1 ) . The a r e a o f t h e m i c r o t h a l l i i n c r e a s e d i n an e x p o n e n t i a l manner o v e r t i m e . A r e a and t i m e were t r a n s f o r m e d by l o g i n o r d e r t o p r o d u c e t h e l i n e a r r e l a t i o n s h i p s n e e d ed f o r t h e r e g r e s s i o n m o d e l . T r a n s f o r m e d a r e a d a t a were t e s t e d f o r n o r m a l i t y u s i n g a G - t e s t and e a c h r e g r e s s i o n l i n e had B a r t l e t t ' s t e s t f o r h o m o g e n e i t y o f v a r i a n c e a p p l i e d t o i t . U n p l a n n e d c o m p a r i s o n s between l i n e s was done u s i n g G a b r i e l ' s a p p r o x i m a t e method on a T ' - t e s t ( S o k a l and R o h l f , 1 9 8 1 ) . T h r e e d i f f e r e n t t y p e s o f g r o w t h r a t e e x p e r i m e n t s were c o n d u c t e d : A) T e m p e r a t u r e and d a y l e n g t h e f f e c t s C u l t u r e s were grown u n d e r e a c h o f t h e t h r e e t e m p e r a t u r e s i n b o t h s h o r t and l o n g day l i g h t r e g i m e s . The medium was c h a n g e d on day 6 and day 14 o f t h e e x p e r i m e n t w i t h B a t h I s l a n d c u l t u r e s . The D i a n a I s l a n d c u l t u r e s had t h e i r medium c h a n g e d on day 6 o n l y . B o t h e x p e r i m e n t s were t e r m i n a t e d on day 15. B) The e f f e c t o f n i t r a t e S i n c e some o f t h e i r o n was added as Fe(NH H.) 2 (SO^)^ .6H 20, t h i s y i e l d e d a c o n c e n t r a t i o n o f 12 uM ammonium i n a l l o f t h e ASW u s e d . T h i s was v e r i f i e d i n a sample o f f r e s h l y mixed ASW p l u s e n r i c h m e n t s o l u t i o n s w h i c h had 13.5 uM ammonium a s measured by an a u t o a n a l y s e r ( S t r i c k l a n d and P a r s o n s , 1 9 7 2 ) . ASW p l u s a l l e n r i c h m e n t s o l u t i o n s a c c e p t t h e v i t a m i n s had 14.4 yM 1 9 1 ammonium. T e s t s o f ASW b e f o r e t h e a d d i t i o n o f any e n r i c h m e n t s o l u t i o n s r e v e a l e d t h a t i t c o n t a i n e d 0 . 1 J J M ammonium. The f i r s t e x p e r i m e n t was w i t h B a t h I s l a n d c u l t u r e s grown a a t 1 3 C and l o n g day c o n d i t i o n s . N i t r a t e l e v e l s were 0 , 1 . 5 , 5 , 2 5 and 5 4 3 uM. The s o r i were a l l o w e d t o r e l e a s e i n t o media w i t h t h e maximum c o n c e n t r a t i o n o f n i t r a t e ( 5 4 3 J J M ) p r i o r t o t h e s p o r e s b e i n g p l a c e d i n t o t h e i r a p p r o p r i a t e p e t r i d i s h e s . The medium was c h a n g e d o n c e e v e r y t h r e e d a y s f o r t h e d u r a t i o n o f t h e e x p e r i m e n t . The c o n c e n t r a t i o n o f n i t r a t e was measured i n some s e l e c t e d p e t r i d i s h e s a f t e r t h r e e d a y s o f t h e l a s t medium change t o s e e how much n i t r a t e t h e p l a n t s u s e d . The e x p e r i m e n t was t e r m i n a t e d on t h e day 1 5 . The d i s h e s w i t h 0 uM n i t r a t e and 5 4 3 pVl n i t r a t e were r e t a i n e d a t t h e end o f t h e e x p e r i m e n t t o m o n i t o r t h e f o r m a t i o n o f u p r i g h t s u n d e r t h o s e c o n d i t i o n s . The s e c o n d e x p e r i m e n t u s e d l o n g day c o n d i t i o n s a g a i n b u t w i t h 0 , 1 and 5 uM n i t r a t e a t 1 3 ° C and 2 0 ° C . B o t h D i x o n I s l a n d and B a t h I s l a n d c u l t u r e s were grown u n d e r t h e s e c o n d i t i o n s . The medium was c h a n g e d o n c e e v e r y f o u r d a y s d u r i n g t h e e x p e r i m e n t . The e x p e r i m e n t was t e r m i n a t e d on t h e day 2 2 w i t h D i x o n I s l a n d c u l t u r e s and on day 2 1 w i t h B a t h I s l a n d c u l t u r e s . D i s h e s w i t h 0 uM and 5 uM n i t r a t e were r e t a i n e d t o m o n i t o r t h e f o r m a t i o n o f u p r i g h t s . C) The e f f e c t o f s a l i n i t y By d i l u t i n g t h e ASW w i t h d i s t i l l e d w a t e r p r i o r t o t h e a d d i t i o n o f t h e e n r i c h m e n t s o l u t i o n s i t was p o s s i b l e t o c o n t r o l t h e s a l i n i t y o f t h e medium w i t h o u t c h a n g i n g t h e n u t r i e n t s t a t u s . T h r e e s a l i n i t i e s were c h o s e n , 1 5 , 2 3 and 3 0 p p t . The 192 l o w e s t s a l i n i t y o f 15 p p t was c h o s e n a s an e x t r e m e w h i c h c o u l d o c c u r a t B a t h I s l a n d i n t h e summer. The s a l i n i t y o f t h e u n d i l u t e d ASW was 30 p p t . Long day c o n d i t i o n s were u s e d a t 20 C o and 13 C f o r e a c h s a l i n i t y . The medium was c h a n g e d o n c e e v e r y 6 d a y s . The B a t h I s l a n d e x p e r i m e n t t e r m i n a t e d on day 22 and t h e D i x o n I s l a n d e x p e r i m e n t on day 23. A l l c u l t u r e s were r e t a i n e d t o m o n i t o r t h e f o r m a t i o n o f u p r i g h t s . 4. F o r m a t i o n o f u p r i g h t s a t low t e m p e r a t u r e As a c o n t i n u a t i o n o f t h e e x p e r i m e n t s o u t l i n e d i n p a r t 3A, a g r o u p o f p l a n t s was c o l l e c t e d f r o m B a t h I s l a n d on May 25, 1983. The r e l e a s e d p l u r i s p o r e s were p l a c e d u n d e r c o n d i t i o n s o f o 5 C and s h o r t day. Normal ASW was u s e d . The medium was c h a n g e d o n c e e v e r y s i x d a y s . A f t e r 54 d a y s h a l f o f t h e r e m a i n i n g o c u l t u r e s were t r a n s f e r r e d t o 13 C and l o n g day c o n d i t i o n s . A l l c u l t u r e s were examined f o r t h e f o r m a t i o n o f u p r i g h t s . The e x p e r i m e n t was r e p l i c a t e d w i t h D i x o n I s l a n d p l a n t s c o l l e c t e d on J u n e 28, 1983, b u t h a l f o f t h e c u l t u r e s were t r a n s f e r r e d on day 31. R e s u l t s F i g u r e s 105 t o 114 show t h e n o r m a l d e v e l o p m e n t o f C. p e r e g r i n a f r o m newly r e l e a s e d p l u r i s p o r e t o t h e " u p r i g h t " s t a g e . Note t h a t t h i s d e v e l o p m e n t i s t o t a l y a s e x u a l . No f u s i o n o f p l u r i s p o r e s f r o m t h e same p i e c e o f s o r u s was o b s e r v e d ( s e e 193 F i g u r e s 105-110. Normal d e v e l o p m e n t o f m i c r o t h a l l i o f C. p e r e g r i n a . F i g u r e 105. F i g u r e 106. F i g u r e 107. F i g u r e 108. F i g u r e 109. F i g u r e 110. Newly s e t t l e d p l u r i s p o r e . B a r i s 10 um l o n g . G e r m i n a t i n g p l u r i s p o r e . B a r i s 5 um l o n g . Two c e l l s t a g e . B a r i s 10 um l o n g . M o r p h o l o g y w i t h l o n g r h i z o i d a l c e l l s . B a r i s 25 um l o n g . Normal m o r p h o l o g y w h i c h g i v e s r i s e t o u p r i g h t s r a p i d l y . B a r i s 25 um l o n g . M i c r o t h a l l u s w i t h l o n g r h i z o i d a l m o r p h o l o g y compared t o m i c r o t h a l l u s w i t h n o r m a l m o r p h o l o g y ( l o w e r ) o f same age. B a r i s 100 u^m l o n g . 195 Chapter 6 f o r teats of sexual reproduction using plurispores from d i f f e r e n t plants). The a c t i v e l y swimming plurispore i s b i f l a g e l l a t e and s l i g h t l y pear-shaped and occurs within either of two si z e classes, 4 jam or 8 um long. Plurispores from any one sorus belong to just one s i z e class and are a l l very s i m i l a r in s i z e ( c a . i 1 jam). These two s i z e classes probably represent "male" and "female" uprights (Clayton, 1979). The small plurispores were only observed a few times and never seemed to germinate into m i c r o t h a l l i . The larger (female ?) plurispores s e t t l e to the surface of the coverslip and then round up to a diameter of from 7 to 10 jam (Figure 105) . Germination begins by a protrusion from the plurispore wall (Figure 106). The cytoplasm does not evacuate out of the old spore wall. Sometime a f t e r the formation of a two-celled stage (Figure 107) one or more hairs are formed from the o r i g i n a l plurispore c e l l . The hair c e l l s are hyaline and elongate. After the formation of hairs the microthallus seems to be capable of developing i n two d i f f e r e n t manners. It can begin to produce very long r h i z o i d a l - l i k e c e l l s (Figure 108) or i t can continue to produce normal sized c e l l s (Figure 109). These two morphs could be found mixed together i n any p e t r i dish under any growth condition (Figure 110). The elongate morph with r h i z o i d a l c e l l s frequently did not form an upright or else the upright was not normal i n appearance. Only the "normal" looking m i c r o t h a l l i (Figure 109) were measured in the experiments. 196 Figures 111-116. Production of uprights and the e f f e c t s of s a l i n i t y on m i c r o t h a l l i of C. peregrina. Figure 111. Normal microthallus just p r i o r to upright formation. Bar i s 50 um long. Figure 112. Rapid d i v i s i o n producing a hollow central area in the microthallus. Bar i s 50 um long. Figure 113. Hollow upright with s l i g h t l y oblong form. Bar i s 500 um long. Figure 114. Spherical upright. Bar i s 500 um long. Figure 115. The e f f e c t of 15 ppt s a l t and 13°C temperature. Note swollen, empty and pale c e l l s . Bar i s 50 um long. Figure 116. The e f f e c t of 15 ppt s a l t and 20°C temperature. Note how the microthallus disintegrates as c e l l s burst. Bar i s 50 jam long. 198 These micro-thai l i continued to grow and branch in a two dimensional manner (Figure 111) u n t i l a s i z e of about 100 to 200 jjm diameter was attained. At that point the c e l l s in the center of the microthallus s t a r t to divide rapidly producing a hollow area (Figure 112). The plant c e l l s continue to divide, forming a hollow ball-shaped t h a l l u s t y p i c a l of the delophycean phase of C. peregrina (Figures 113, 114). The length of time from plurispore settlement to upright formation can be as l i t t l e as 10 days at 20°C. The m i c r o t h a l l i were never seen to produce p l u r i l o c u l a r reproductive structures although new m i c r o t h a l l i often appeared in the p e t r i dish l a t e r (see Chapter 6 f o r an explanation). Some uprights grown in culture did become f e r t i l e and produced a second generation. 1. Preliminary experiments The r e s u l t s of the preliminary experiments are shown i n o Table XVIII. Uprights were never produced under 20 C conditions, although short day conditions and moderate irradiance (100 jiE.m-2.s-l) were not used at t h i s temperature. Fift e e n degrees sometimes gave r i s e to uprights (Bath Island plants, October 1980) and sometimes did not (Dixon Island plants, November 1980). However, short day conditions and moderate irradiance were not used at t h i s temperature either. o Temperatures of IO C, 10L:14D and 100 jiE.m-2.s-l always -199 Table XVIII Preliminary laboratory experiments using plurispores released from uprights ( f i e l d material), (culture environment plurispores placed into i s l i s t e d under "Conditions") (2nd m i c r o t h a l l i or upright r e f e r s to the formation of a second generation of these stages) C o l l e c t i o n Area Date Conditions Upright 2nd 2nd Elapsed date s o r i C day >iE! • m i c r o t h a l l i upright time (days removed length • from removal) Oct. 3 '80 Bath Oct. 9 15 14:15 250 + (28) • (56) + (98) 261 Oct. 17 '80 Bath Oct.24 20 20 20 18:6" 18:6 16:8" 350» 250 250 - - 42 89 194 Oct. 22 '80 Bath Oct.25 10 io:l4 100 • (40) • (80) - 245 Nov. 1 '80 Diana Nov. 4 5 5 5 6:T5 6:18 8:15 50 • 100 100 _ -_ 30 77 183 Nov. 1 '80 Dixon Nov. 4 10 10:14 100 (73) - - 183 Nov. 8 '80 Bath Nov.10 5 5 5 6:TS 6:18 8:16 50« 100 100 (141) • (176) -24 71 227 Nov. 22 '80 Dixon Nov.27 15 20 14:175 18:6 250 250 ---212 212 Mar. 1 '81 Bath Mar. 2 5 8:16 100 - - - 116 Mar. 12 '81 Bath Mar.17 20 16:8 250 - - - 101 Apr. 11 '81 Dixon Apr.15 10 10:14 100 + (73) - - 73 • days elapsed since sorus removal i n brackets « plants transferred from one condition to the next ! jiE.m-2.s-l 200 resulted in uprights, but 5 C gave r i s e to uprights in only one instance (Bath Island plants, November 1980) and t h i s took several months. 2. Tests of d i f f e r e n t media The e f f e c t s of the three d i f f e r e n t media, ES, ASW and ASWII on spore s u r v i v a l are shown in Table XIX. This information was pooled for a l l of the conditions to which these plurispores were subjected (Table XX). Note that ASW had the best percent s u r v i v a l rate and that the iodine in ASWII did not seem to enhance the survivorship of the spores. The ES medium gave an intermediate percent s u r v i v a l . Table XX indicates that although the media used did not a f f e c t the production of uprights, increasing temperature resulted in more uprights. The o high temperature of 20 C did r e s u l t in uprights i n t h i s experiment but not i n the preliminary experiments. This i s presumably due to the shorter maximum daylength (15 h) and / or lower maximum irradiance (200 jiE.m-2.s-l) used here. The o intermediate temperature, 13 C, produced uprights only at the higher irradiance (200 uE.m-2.s-l) or the longer daylength (15 o h). At 5 C no uprights were produced and a l l plants remained as microthal1i. 201 Table XIX Eff e c t s of d i f f e r e n t media on sur v i v a l of plurispores released from uprights c o l l e c t e d at Diana Island (July 11, 1982). N=48 pe t r i dishes per medium on the f i r s t day. Media ES ASW ASWII dishes with spores surviving 19 29 17 aft e r s i x days. percent s u r v i v a l 40 60 35 202 Table XX Eff e c t s of d i f f e r e n t media on upright formation from plurispores (plurispores from uprights c o l l e c t e d at Diana Island on July 11, 1982). N=48 p e t r i dishes per medium on the f i r s t day. These r e s u l t s are from day 15. Conditions Day length _uE. m-2. s-1 5 5 5 5 9:15 9:15 15:| 15:9 100 200 100 200 13 13 13 13 9:15 9:15 15:9 15:9 100 200 100 200 20 20 20 20 9:15 9:15 15:9 15:9 100 200 100 200 Uprights ES ASW ASWII ND ND ND + ND ND ND ND = none of the p e t r i dishes had l i v i n g plants at the end of the experiment. 203 3. Growth rate and upright production The number of hairs and branches per microthallua became d i f f i c u l t to ascertain i n the older plants. The small number of data c o l l e c t e d indicates that hairs and branches increase i n an exponential manner over time while the microthallus i s small. A •3. t y p i c a l microthallua covering 1000 p would be composed of approximately two branches and one hair. Early two-dimensional growth was always exponential. The growth data in most cases were not d i f f e r e n t from a normal d i s t r i b u t i o n . However, any deviations from normality or heterogeneity of variance probably do not severely e f f e c t the power of ANOVA tests (Glass et a l . , 1972; Underwood, 1981). A) Temperature and daylength e f f e c t s The growth data for the Bath Island cultures are shown in Figure 117. Regression s t a t i s t i c s for each condition are given in Appendices XII to XVII. The r e s u l t s of the l i n e a r regression analysis on a l l of the data are given in Table XXI. Aa can be seen from t h i s table the plants grown under low temperature (5 °C) regimes had a s i g n i f i c a n t l y lower growth rate than plants grown under any other conditions. Long day or short day conditions had no e f f e c t , nor did the difference between 13 C o and 20 C water temperature. 204 Figure 117. Growth data f o r Bath Island C. peregrina m i c r o t h a l l i under various temperature and daylength regimes. Size r e f e r s to the area covered by a microthallus ( S t a t i s t i c a l information for t h i s figure i s given in Appendices XII to XVII). 5 C 9:15D A 5 0 13 O 13 | 20 15:9 15:9 9:15 9:15 15:9 205 lOOOOr 5000F • o o E i 1000 800 600 400 200^ 100' 80-60> 40 • • A • * A AA 20 .35 .55 .75 .95 D a y log 10 206 T a b l e XXI T e a t o f a l o p e d i f f e r e n c e i n r e g r e s s i o n l i n e s f o r B a t h I s l a n d p l a n t s g rown u n d e r d i f f e r e n t t e m p e r a t u r e and d a y l e n g t h c o n d i t i o n s ( A u g u s t , 1982) S o u r c e o f v a r i a t i o n Among s l o p e s W i t h i n s l o p e s ~ 0 .01 l e v e l ANOVA t a b l e d f SS 5 1 5 . 3 18 2 . 6 0 MS 3 . 0 6 0 . 1 4 4 2 1 . 2 •« C o m p a r i s o n o f s l o p e s ( G a b r i e l ' s a p p r o x i m a t e m e t h o d ) . V e r t i c a l b a r s r e p r e s e n t c o m p a r i s o n i n t e r v a l f o r t h e s l o p e . C o m p a r i s o n i n t e r v a l s w h i c h d o n ' t o v e r l a p a r e s i g n i f i c a n t l y d i f f e r e n t i n s l o p e ( 0 . 0 5 l e v e l ) . • a © • Line 207 The growth data for the Diana Island cultures are shown in Figure 118. Regression s t a t i s t i c s for each condition are given in Appendices XVIII to XXIII. The r e s u l t s of the l i n e a r regression analysis on a l l of the data are given i n Table XXII. As with the Bath Island cultures the lowest temperature gave the lowest growth rate although the slope of the growth curves c o at 5 C was only s i g n i f i c a n t l y d i f f e r e n t from the slope at 20 C o and long day conditions. In other words the growth rate at 5 C o was not s i g n i f i c a n t l y d i f f e r e n t from the rate at 13 C, neither o o were intermediate (13 C) and high (20 C) water temperature rates d i f f e r e n t . As before, long day or short day conditions had no e f f e c t within a given temperature. The formation of uprights i n both experiments i s shown in o Table XXIII. At 5 C under both short day and long day o conditions few uprights had formed afte r 15 days. At 13 C a few dishes had uprights under short day conditions while most surviving dishes under long day conditions had uprights. At 20 o C and long day conditions a l l remaining dishes had uprights. Both Bath Island and Diana Island cultures had s i m i l a r responses. B) The e f f e c t of n i t r a t e The data for Bath Island cultures grown under s i x 208 Growth data for Diana Island C. peregrina m i c r o t h a l l i under various temperature and daylength regimes. Size r e f e r s to the area covered by a microthallus ( S t a t i s t i c a l information for t h i s figure i s given i n Appendices XVIII to XXIII). 5 C 9 I15D 1 5 : 9 1 5 : 9 9 : 1 5 9 : 1 5 1 5 : 9 209 30000 E i 10000 5000 iooo 800 600 400 200 100 80 60)-40 20 • A Day - I y - log L_ .7 10 210 T a b l e XX I I T e a t o f s l o p e d i f f e r e n c e i n r e g r e s s i o n l i n e s f o r D i a n a I s l a n d p l a n t s g rown u n d e r d i f f e r e n t t e m p e r a t u r e and d a y l e n g t h c o n d i t i o n s ( S e p t e m b e r , 1982) S o u r c e o f v a r i a t i o n Among s l o p e s W i t h i n s l o p e s « = 0 . 0 5 l e v e l ANOVA t a b l e d f SS 5 7 . 7 4 6 1.51 MS 1.55 0 . 2 5 2 F 6 . 1 5 • C o m p a r i s o n o f s l o p e s ( G a b r i e l ' s a p p r o x i m a t e m e t h o d ) . V e r t i c a l b a r s r e p r e s e n t c o m p a r i s o n i n t e r v a l f o r t h e s l o p e . C o m p a r i s o n i n t e r v a l s w h i c h d o n ' t o v e r l a p a r e s i g n i f i c a n t l y d i f f e r e n t i n s l o p e ( 0 . 0 5 l e v e l ) . 5r • l i -1 Line • Table XXIII Production of uprights f r o * plurispores under d i f f e r e n t temperature and daylength conditions. C o l l e c t i o n date Area Date s o r i removed Conditions Dishes Dishes* 'C day to with Dishes* with length s t a r t uprights m i c r o t h a l l i Elapsed time (days) Aug. 4 '82 Bath Aug. 5 5 5 13 9:15 15:|_ 9:15 13 15:9_ 20 9:15 20 15:9 28 27 23 24 22 19 0 1 4 13 5 7 12 15 4 1 1 0 15 Sep. 3 '82 Diana Sep. 5 5 5 13 9:15 15:9^ 9:15 13 15:9_ 20 9:15 20 15:9 22 19 20 26 22 22 0 0 1 7 6 17 13 5 9 4 3 0 15 • on l a s t day of experiment 212 d i f f e r e n t n i t r a t e concentrations are shown in Figure 119. Regression s t a t i s t i c s f o r each condition are given in Appendices XXIV to XXIX. The r e s u l t s of the lin e a r regression analysis on a l l of the data are given in Table XXIV. The data show that there was no difference in growth rate with d i f f e r e n t n i t r a t e concentrations. The growth data for Dixon Island cultures are shown i n Figure 120. Regression s t a t i s t i c s for each condition are given in Appendices XXX to XXXV. The r e s u l t s of the l i n e a r regression analysis on a l l of the data are given in Table XXV. The data c show that a l l plants grown at 13 C had a s i g n i f i c a n t l y lower o growth rate than a l l plants grown at 20 C. Nitrate concentration did not have an e f f e c t . The growth data f o r Bath Island cultures at d i f f e r e n t n i t r a t e and temperature l e v e l s are shown in Figure 121. Regression s t a t i s t i c s for each condition are given in Appendices XXXVI to XLI. The r e s u l t s of the l i n e a r regression analysis on a l l of the data are given in Table XXVI. No o o difference i n growth rate was observed f o r either 20 C, 13 C or any of the n i t r a t e concentrations. The formation of uprights in a l l three experiments i s shown in Table XXVII. Almost a l l dishes had formed uprights by the end of the experiment. The only two dishes that did not o were grown at 13 C. Both Bath Island and Dixon Island cultures responded in a s i m i l a r manner. 213 Figure 119. Growth data for Bath Island C. peregrina m i c r o t h a l l i under s i x d i f f e r e n t n i t r a t e concentrations (nitrogen source of 12 to 14 uM ammonium present i n a l l dishes). Size ref e r s to the area covered by a microthallus ( S t a t i s t i c a l information f o r t h i s f i g u r e i s given in Appendices XXIV to XXIX). A 0 J J M n i t r a t e A 1.5 • 5 O 15 • 25 • 543 2 1 4 2 0 0 0 0 5 0 0 0 E i 1 0 0 0 8 0 0 6 0 0 4 0 0 2 0 0 1 0 0 8 0 6 0 4 0 2 0 0 . 5 i 0 . 7 Day - log 4 • 8 i 0 . 9 1.1 1 0 2 1 5 Table XXIV Teat of slope difference in regression l i n e s for Bath Island plants grown under d i f f e r e n t n i t r a t e concentrations (nitrogen source of 1 2 to 1 4 J J M ammonium present i n a l l dishes) . ( O c t o b e r , 1 9 8 2 ) Source of v a r i a t i o n Among slopes Within slopes N = not s i g n i f i c a n t ANOVA table df S S M S 5 0 . 6 1 3 0 . 1 2 3 1 2 2 . 8 8 0 . 2 4 0 F 0 . 5 1 N 216 Growth data f o r Dixon Island C. peregrina m i c r o t h a l l i under d i f f e r e n t n i t r a t e concentrations and temperatures (nitrogen source of 12 to 14 uM ammonium present i n a l dishes). Size refers to the area covered by microthallua ( S t a t i s t i c a l information f o r th figure i s given i n Appendices XXX to XXXV). A 0 |iH n i t r a t e 13 °C A o 20 20 20 13 13 217 20000r 1000C4 5000^ 6 • \ E 5 1000. 800 : 600' 400-o • A 200. 100' 80-60-40 • A I* 20 h 0.5 I 0.7 Day - I og 0.9 10 218 T a b l e XXV T e a t o f a l o p e d i f f e r e n c e i n r e g r e s s i o n l i n e s f o r D i x o n I s l a n d p l a n t s g rown u n d e r d i f f e r e n t n i t r a t e c o n c e n t r a t i o n s a t d i f f e r e n t t e m p e r a t u r e s ( n i t r o g e n s o u r c e o f 12 t o 14 jiM ammonium p r e s e n t i n a l l d i s h e s ) . ( A p r i l , 1983) S o u r c e o f v a r i a t i o n Among s l o p e s W i t h i n e l o p e s = o . O l l e v e l ANOVA t a b l e d f SS 5 6 . 6 2 12 1.00 MS 1.32 0 . 0 8 3 6 F 1 5 . 8 « • C o m p a r i s o n o f s l o p e s ( G a b r i e l ' s a p p r o x i m a t e m e t h o d ) . V e r t i c a l b a r s r e p r e s e n t c o m p a r i s o n i n t e r v a l f o r t h e s l o p e . C o m p a r i s o n i n t e r v a l s w h i c h d o n ' t o v e r l a p a r e s i g n i f i c a n t l y d i f f e r e n t i n s l o p e ( 0 . 0 5 l e v e l ) . 5r a. o • Line 219 Growth data for Bath Island C. peregrina m i c r o t h a l l i under d i f f e r e n t n i t r a t e and temperature l e v e l s (nitrogen source of 12 to 14 jiM ammonium present i n a l l dishes) . Size refers to the area covered by a microthallus ( S t a t i s t i c a l information f o r t h i s f i g u r e i s given i n Appendices XXXVI to XLI). A 0 uM n i t r a t e 13°C A 0 20 0 1 13 O 1 20 | 5 13 • 5 20 220 E 5 0) 20000 10000 5000 1000 8 0 0 600 400(-200 100 80 60 40 20 A • O • A o 6 o • A 0.7 0.8 Day - log 0.9 1.0 10 221 Table XXVI Test of slope difference in regression l i n e s for Bath Island plants grown under d i f f e r e n t n i t r a t e concentrations at di f f e r e n t temperatures (nitrogen source of 12 to 14 jiM ammonium present in a l l dishes). (May, 1983) Source of var i a t i o n Among slopes Within slopes N = not s i g n i f i c a n t ANOVA table df SS MS 5 0.886 0.177 6 1.58 0.264 F 0.67 N J Table XXVII Production of uprights f r o * plurispores under d i f f e r e n t nutrient and temperature conditions, (nitrogen source of 12 to 14 jiM aaaoniua present i n a l l d i s h e s ) . C o l l e c t i o n Area S o r i Conditions Nitrate Dishes Dishes* Dishes* Elapsed date removed "C day (jiN) to with with time length s t a r t uprights a i c r o t h a l l i (days) Oct. 5 '82 Bath Oct. 7 13 15:9 0 20 9 0 16 Apr. 24 '83 Dixon Apr. 25 13 15:9 0 20 7 1 20 13 15:9 1.5 20 9 0 13 15:9 5 22 19 0 13 15:9 15 23 14 0 13 15:9 25 22 14 0 13 15:9 543 22 11 0 20 15:9 0 18 14 0 13 15:9 1 20 19 1 20 15:9 1 19 17 0 13 15:9 5 20 16 0 20 15:9 5 19 15 0 13 15:9 0 20 17 0 20 15:9 0 20 16 0 13 15:§ 1 20 15 0 20 15:9 1 19 14 0 13 15:9 5 18 18 0 20 15:9 5 20 15 0 Nay 25 '83 Bath Nay 26 19 * at the end of the experiment 223 After each of these three experiments were over, the dishes that were retained continued to have t h e i r medium changed on the normal experimental schedule. The 1982 experiment with Bath Island cultures was an exception as they had t h e i r l a s t medium change on day 16. The retained dishes were maintained under the same temperature and l i g h t regimes as in the o r i g i n a l experiment. A l l of these dishes, regardless of n i t r a t e status or temperature, had uprights at least 1.0 mm in diameter a f t e r 26 to 36 days from the time of sorus removal from the parent plants. Plants that are 1.0 mm in diameter can be recognized i n the f i e l d when doing percent cover estimates. The n i t r a t e concentration in the p e t r i dishes measured on October 26, 1982 ,three days a f t e r the l a s t medium change, was as follows (nitr a t e concentration of the fresh media i n brackets)- 0.6 (0), 1.6 (1.5), 5.0 (5), 10.4 (15), and 16.6 (25). It seems that the n i t r a t e i s not a c t i v e l y u t i l i z e d by the plants u n t i l i t s concentration becomes 15 uM or higher. This may be because the plants have approximately 12 nitrogen as ammonium in these dishes (see Materials and Methods). The presence of ammonium may i n h i b i t n i t r a t e uptake i n phytoplankton (Healy, 1973; M i f l i n and Lea, 1976; Conway, 1977), but may not always do t h i s in macrophytes (DeBoer, 1981). The 0 uM n i t r a t e medium was also tested in June, 1983. This medium was placed into clean p e t r i dishes without plants and into two dishes with a c t i v e l y growing m i c r o t h a l l i which had 224 been raised on 0 uM n i t r a t e medium. After 5 days at 20 JC, 15L:9D and 100 uE.m-2.s-l the medium was poured out and frozen along with a sample of fresh medium. In July the te s t v i a l s were thawed and ammonium and n i t r a t e concentrations were measured using an autoanalyser. The fresh medium had 13.5 uM ammonium and 1.5 uM n i t r a t e . The medium from the clean dishes had 4 uM ammonium and 0.5 uM n i t r a t e . The medium from the dishes with plants had 1.0 J J M ammonium and 10 J J M n i t r a t e . The concentrations were very s i m i l a r in the r e p l i c a t e dishes. These re s u l t s are inter e s t i n g i n that the presence of the plants seems to increase the l e v e l of n i t r a t e i n solution. The plants were not previously grown with a source of n i t r a t e so the presence of n i t r a t e i n the p e t r i dish i s not accounted f o r v i a vacuolar storage of t h i s material. The reduction of ammonium and n i t r a t e l e v e l s i n the clean p e t r i dishes i s most l i k e l y due to uptake by microbial contaminants. C) The e f f e c t of s a l i n i t y . The growth data f o r Bath Island cultures are shown i n Figure 122. Regression s t a t i s t i c s for each condition are given in Appendices XLII to XLVII. The r e s u l t s of the l i n e a r regression analysis on a l l of the data are given i n Table XXVIII. No difference in growth rates was observed f o r any of the cultures. S a l i n i t y did not seem to a f f e c t these young m i c r o t h a l l i . 225 Figure 122. Growth data for Bath Island C. peregrina m i c r o t h a l l i under d i f f e r e n t s a l i n i t y and temperature l e v e l s . Size r e f e r s to the area covered by a microthallus ( S t a t i s t i c a l information f o r t h i s f i g u r e i s given in Appendices XLII to XLVII). A 15 p.p.t. 13 "c A 15 20 0 23 13 O 23 20 H 30 13 [~1 30 20 226 E i 20000 10000 5000 1000 800 600 400-A 8 B o 8 o 200F o • A 100-80 60 • 40 20 .65 .85 1.05 D a y . | og 10 227 T a b l e XXV I I I T e s t o f s l o p e d i f f e r e n c e i n r e g r e s s i o n l i n e s f o r B a t h I s l a n d p l a n t s g rown u n d e r d i f f e r e n t t e m p e r a t u r e and s a l i n i t y c o n d i t i o n s (May, 1983) S o u r c e o f v a r i a t i o n Among s l o p e s W i t h i n s l o p e s N = n o t s i g n i f i c a n t ANOVA t a b l e d f SS 5 2 .81 12 4 . 1 5 MS 0 . 5 6 3 0 . 3 4 6 F 1.63 N 228 The growth data for Dixon Island cultures i s shown in Figure 123. Regression s t a t i s t i c s f o r each condition are given in Appendices XLVIII to LIII. The r e s u l t s of the linear regression analysis on a l l of the data are given i n Table XXIX. The only s i g n i f i c a n t difference i n growth rate was between plants in 15 ppt grown at 20 C and plants in 23 ppt grown at 13 > C. The lower growth rate under the l a t t e r conditions i s most l i k e l y due to temperature alone. The formation of uprights i n both experiments i s shown in Table XXX. Note that none of the cultures grown at low s a l i n i t y produced uprights, while uprights were produced in almost a l l of the other p e t r i dishes. Figure 115 i s a 17 day old microthallua from Bath Island grown in 15 ppt at 13°C. Note how the c e l l s are swollen and malformed. Figure 116 i s a microthallua of the same age and from the same l o c a l i t y i n 15 o ppt at 20 C. Almost a l l of the c e l l s have burst, leaving the remains of the c e l l wall. The r e s u l t s of upright formation for the cultures retained a f t e r the experiment are shown in Table XXXI. It can be seen that low s a l i n i t y coupled with high temperature i s devastating to the plants. The Dixon Island cultures seem to be e s p e c i a l l y sen s i t i v e to t h i s as they did not grow in the 15 ppt at either 229 Growth data for Dixon Island C. peregrina m i c r o t h a l l i under d i f f e r e n t temperature an s a l i n i t y l e v e l s . Size ref e r s to the area covered by a microthallus ( S t a t i s t i c a l information for t h i s figure i s given i n Appendices XLVIII to L I I I ) . A 15 p.p.t. 13 "C 20 20 20 13 13 230 20000r 10000 5000 1000 8 0 0 6 0 0 CM E 4 0 0 3 <s> 200 O A 6 100 80 60 40 20 1 0.7 0-8 D a y l O 231 T a b l e XXIX T e s t o f s l o p e d i f f e r e n c e i n r e g r e s s i o n l i n e s f o r D i x o n I s l a n d p l a n t s g rown u n d e r d i f f e r e n t t e m p e r a t u r e and s a l i n i t y c o n d i t i o n s ( J u l y , 1983) S o u r c e o f v a r i a t i o n Among s l o p e s W i t h i n s l o p e s • = 0 . 0 5 l e v e l ANOVA t a b l e d f SS 5 6 . 5 8 6 1.35 MS 1.32 0 . 2 2 6 F 5 . 8 3 • C o m p a r i s o n o f s l o p e s ( G a b r i e l ' s a p p r o x i m a t e m e t h o d ) . V e r t i c a l b a r s r e p r e s e n t c o m p a r i s o n i n t e r v a l f o r t h e s l o p e . C o m p a r i s o n i n t e r v a l s w h i c h d o n ' t o v e r l a p a r e s i g n i f i c a n t l y d i f f e r e n t i n e l o p e ( 0 . 0 5 l e v e l ) . 12 8 a o X 4 o • Line Table XXX Production of uprights f r o * plurispores under d i f f e r e n t temperature and s a l i n i t y conditions. C o l l e c t i o n date Area Sori removed May 25 '83 Bath May 26 Jun. 28 '83 Dixon* J u l . 1 Conditions S a l i n i t y Dishes Dishes* C day (ppt) to with Dishes* with Elapsed time length s t a r t uprights m i c r o t h a l l i (days) 13 15:9 15 26 0 20 22 20 15:9 15 25 0 12 13 15:9 23 21 15 0 20 15:9 23 21 8 0 13 15:9 30 20 14 0 20 15:5 30 20 11 0 13 15:9 15 24 0 3 23 20 15:9 15 23 0 0 13 15:9 23 20 5 1 20 15:9 23 19 0 0 13 15:9 30 18 1 0 20 15:9 30 19 5 0 + at the end of the experiment • blue-green a l g a l contamination Table XXXI Ti»e required a f t e r sorua removal to f o r * uprights of 1.0 aa diaaeter or greater (days). Condition Teaperature 13*C 20°C S a l i n i t y 15 ppt 23 ppt 30 ppt 15 ppt 23 ppt 30 ppt Source Bath Island 34 27 28 «t 22 21 Dixon Island • 35 • • • 23 • plants died, no uprights foraed • blue-green a l g a l contaainant daaaged cultures 234 o O 13 C or 20 C nor did they survive at 23 ppt at high temperature. Some s a l i n i t i e s appear to delay the formation of o uprights. Bath Island cultures at 15 ppt and 13 C take 34 days to form 1.0 mm diameter uprights while cultures grown at 30 ppt c and 13 C take only 28 days to form uprights of the same s i z e . 4. Formation of uprights at low temperature. By day 52, twenty-three of the o r i g i n a l 29 Bath Island cultures had survived and a l l had formed uprights. These uprights were less than 1.0 mm in diameter, however, and consequently they would not have been recognized in the f i e l d . On day 52, eleven cultures were transferred to 13 °C and 12 O O cultures remained at 5 C. A l l 11 cultures at 13 C had formed uprights over 1.0 mm in diameter by day 58 while only f i v e o o cultures had done so at 5 C. A l l of the 5 C cultures had uprights over 1.0 mm i n diameter by day 62, two months afte r the s t a r t of the experiment. The Dixon Island cultures showed a s i m i l a r pattern of upright production. By day 31, 25 of the o r i g i n a l 33 cultures had survived but none had formed uprights. On that day 12 o cultures were transferred to 13 C and 13 cultures remained at 5 o o C. A l l cultures a l i v e at 13 C had formed uprights over 1.0 mm o diameter by day 49 while only four cultures had done so at 5 C. o A l l of the remaining 5 C cultures had uprights over 1.0 mm in diameter by day 60, two months afte r the s t a r t of the 235 experiment. This length of time i s almost i d e n t i c a l to the r e s u l t s with the Bath Island cultures. Discussion The r e s u l t s of the culture experiments described i n t h i s chapter agree with the evidence from the f i e l d data in Chapter 2 and 3; both support a model of physical factors being the c o n t r o l l i n g agents i n the observed seasonal presence / absence of C. peregrina. The seasonal occurrence of C. peregrina can be adequately explained on the basis of the culture experiments alone. Low temperature i s the main physical factor which keeps C. peregrina from forming v i s i b l e uprights during the winter months. Both Bath Island and Bamfield cultures took about 60 days to produce 1.0 mm diameter uprights at 5 C. Cultures grown o at 20 C can produce uprights of t h i s s i z e in approximately 20 days. Daylength and irradiance only serve to enhance t h i s temperature e f f e c t . The enhancement i s less at lower temperatures. Overwintering of other algae has also been attributed to low temperatures retarding microscopic germling growth (Richardson, 1979). The seasonal formation of sporophytic uprights in Sphaerotrichia d i v a r i c a t a and Acrothrix p a c i f i c a (Chordariales) can also be explained on the basis of temperature e f f e c t s (Ajisaka and Umezaki, 1978; Ajisaka, 1979). The microscopic overwintering stage of Litosiphon p u s i l l u s i s 236 also produced at low temperatures in culture (Nygren, 1975). Temperature can be the primary factor a f f e c t i n g the seasonal formation of uprights i n other brown algae as well (Luning, 1980). The summertime absence of C. peregrina at Bath Island i s primarily due to the low s a l i n i t y of the waters at that time (Waldichuk, 1952). Low s a l i n i t y i s v i s i b l y harmful to the m i c r o t h a l l i (Figures 115 and 116), and higher temperatures increase t h i s e f f e c t . Low s a l i n i t y also v i s i b l y a f f e c t s germlings of Phaeostrophion irregulare (Mathieson, 1982). With C. peregrina formation of 1.0 mm diameter uprights in culture i s delayed i f the m i c r o t h a l l i do survive the low s a l i n i t y . Lowered s a l i n i t y has also been found to lower the growth rate of Sargassum species (Norton, 1977; DeWreede, 1978). Low s a l i n i t y can i n h i b i t the formation of uprights i n Litosiphon p u s i l l u s (Pedersen, 1981) and in Myriotrichia clavaeformis (Pedersen, 1978). The experiments showed that Bath Island and Bamfield cultures responded in approximately the same manner to various physical f a c t o r s . There i s some evidence that Bamfield cultures are more se n s i t i v e to the environment, however. Fewer Diana Island cultures produced uprights at low temperature than Bath Island cultures (Table XXIII), and the growth rate of young Bamfield plants at low temperature was s i g n i f i c a n t l y lower more often than growth rates of plants from Bath Island (Tables XXII, XXV and XXIX versus Table XXI for Bath Island). The Dixon Island plants may be more sen s i t i v e to s a l i n i t y as well (Table 2 3 7 XXXI), although t h i s r e s u l t i s unreliable because of contaminants i n those cultures. The higher s e n s i t i v i t y of Bamfield cultures may be because environmental variables fluctuate over a much smaller range at that s i t e than at Bath Island. The Bath Island plants may be more hardy because they come from a more variable environment. A l l of the cultures had a nitrogen source of approximately 1 2 jaM ammonium, and t h i s concentration did not adversely a f f e c t the plants' growth. The excess nitrogen given as n i t r a t e did not seem to e f f e c t C. peregrina growth in culture. There i s evidence that the summertime Fraser River plume i s low in nitrogen, but the amount seems to be quite variable with an average of about 5 - 1 0 J J M n i t r a t e (Stephens et a l . , 1 9 6 9 ; C a t t e l l , 1 9 7 3 ) . This l e v e l may be low enough to a f f e c t the plants (DeBoer, 1 9 8 1 ) . The concentration of nitrogen in that region of the S t r a i t of Georgia during the rest of the year i s about 2 0 iiM (Stephens et a l . , 1 9 6 9 ; C a t t e l l , 1 9 7 3 ) so i t would not a f f e c t the plants i n any case. The concentration of nitrogen at Helby Island (next to Diana Island) i s lowest in the summertime with values around 1 . 0 jiM i n the surface waters. This coincides with Colpomenia's highest percent cover values. Nitrogen concentrations during the winter when C. peregrina i s absent are about 1 0 uM (data from Dr. L. Druehl, Simon Fraser University), so nitrogen does not seem to control the presence / absence of C. peregrina at t h i s s i t e . Maximal growth of a simple brown macroalga, Chordaria f l a g e l l i f o r m i s , during minimal annual n i t r a t e and ammonium le v e l s (less than 0 . 5 J J M ) 238 has also been reported by Probyn (1981). His experimental r e s u l t s indicate that t h i s may be due to the low half saturation constants that Chordaria f l a g e l 1 i f o r m i s has for ammonium, n i t r a t e and urea. The same may be true for C. peregrina. In summary, temperature and s a l i n i t y are the primary factors a f f e c t i n g the growth rate and development of C. peregrina. Therefore, there i s no need to invoke b i o l o g i c a l factors such as herbivory or competition to explain the observed presence / absence pattern of C. peregrina i n the f i e l d . The importance of b i o l o g i c a l vs physical factors w i l l discussed i n further d e t a i l in the general discussion at the end of the thesis. 239 CHAPTER 6. S t u d i e s on t h e l i f e h i s t o r y o f C o l p o m e n i a p e r e g r i n a 240 Introduction Colpomenia pergrina i s a member of the Scytosiphonales in part because of i t s l i f e history. The plants are heteromorphic with the uprights bearing p l u r i l o c u l a r sporangia only (Feldman, 1949; Bold and Wynne, 1978). Sauvageau (1927) f i r s t grew the plant i n culture. He co l l e c t e d some plants from northern France and obtained plurispore release in culture. He never observed fusion of plurispores and the m i c r o t h a l l i grew d i r e c t l y into new uprights as outlined in Chapter 5. He also found p l u r i l o c u l a r reproductive structures on some m i c r o t h a l l i . Dangeard (1963) obtained the same re s u l t s from C. pergrina col l e c t e d i n Guethary and Roscoff (France). Dangeard also noted that m i c r o t h a l l i can occur as d i f f e r e n t morphs, as I noted i n my cultures. His m i c r o t h a l l i also produced p l u r i l o c u l a r structures which released plurispores to form new uprights upon germination. V i l l e (1969) did an extensive study examining both C. sinuosa and C. peregrina with respect to chromosome number, anatomy of uprights and l i f e history. His plant material came from Sete i n southern France. He counted approximately 12 chromosomes (using Feulgen stain) i n C. peregrina uprights. He also found d i f f e r e n t types of m i c r o t h a l l i and discovered that plurispores from uprights could give r i s e asexually to new uprights. His m i c r o t h a l l i could produce plurispores as well. Most importantly, he found that plurispores from uprights of a plant resembling C. peregrina could fuse to form a zygote. The 241 zygote germinated into m i c r o t h a l l i that eventually formed unilocular reproductive structures. C e l l s of these m i c r o t h a l l i contained approximately 24 chromosomes. V i l l e assumed that these unilocular structures would eventually undergo meiosis to release unispores which could eventually give r i s e to new uprights. He stressed that the asexual form of reproduction would be most l i k e l y the main form of reproduction in nature. Clayton (1979) demonstrated conclusively that macroscopic C. peregrina plants in the f i e l d can act as true gametophytes which are dioecious and reproduce anisogamously. The microscopic sporophyte produced then forms unilocular reproductive structures which release unispores which can produce new uprights. Interestingly, plurispores released by delophycean plants during May and June or October and November developed d i r e c t l y into new delophycean plants as noted by e a r l i e r authors. Those zooids released in mid-June to September can give r i s e to sporophytes via sexual reproduction. Clayton (1981) maintained that sexual reproduction in the f i e l d i s a rare late winter phenomenon in A u s t r a l i a . She suggests that a plant with several possible methods of reproduction i s adapted to uncertainty i n future environmental fluctuations (Clayton, 1982). Further evidence that sexual reproduction i s a rare phenomenon in C. peregrina i s given by Blackler (1981) who grew plurispores from uprights co l l e c t e d from a wide variety of locations including Europe, Aus t r a l i a and C a l i f o r n i a . No sexual reproduction was observed and zooids gave r i s e d i r e c t l y to new uprights. Asexual d i r e c t l i f e h i s t o r i e s are not uncommon in 242 brown algae (Rueness, 1974; Pedersen, 1975; Kawai and Kurogi, 1983; Skinner, 1983; and others). As was seen in Chapter 5 a l l of the plants that I grew had an asexual l i f e cycle. This chapter documents my attempts to observe sexual reproduction in C. peregrina co l l e c t e d i n B r i t i s h Columbia. Materials and Methods. ASW was used as the media for a l l cultures (Chapter 5). Pieces of s o r i from two d i f f e r e n t plants were placed into the same hanging drop i n an attempt to observe fusion of plurispores. During the culture work done in 1982 and 1983 pieces of sorus and m i c r o t h a l l i were prepared for chromosome staining. The tissue was fixed with 3 parts 95% ethanol : 1 part g l a c i a l a c e t ic acid overnight and then was transferred to 70% ethanol. Attempts to soften the tissue included using a solution of 1 part 10% chromic acid : 1 part 10% n i t r i c acid (O'Brien and McCully, 1981), 80% c h l o r a l hydrate (Bev Hymes UBC, personal communication) and 30% sodium carbonate (Nelson and Cole, 1981). Haematoxylin was used as a DNA s t a i n (Wittmann, 1965). Results and Discussion. Twenty-three d i f f e r e n t crosses were attempted as shown in 243 T a b l e X X X I I . No f u s e d p l u r i s p o r e s were e v e r s e e n and none o f t h e c u l t u r e s were f o u n d t o have u n i l o c u l a r r e p r o d u c t i v e s t r u c t u r e s . The c u l t u r e s b e h a v e d a s n o r m a l a s e x u a l c u l t u r e s , p r o d u c i n g u p r i g h t s o r m i c r o t h a l l i d e p e n d i n g upon t h e c o n d i t i o n s . S i n c e t h e e v i d e n c e f r o m o t h e r a u t h o r s a l l s u p p o r t t h e r a r i t y o f s e x u a l r e p r o d u c t i o n i n C. p e r e g r i n a , many more c r o s s e s o f B r i t i s h C o l u m b i a n p l a n t s c o l l e c t e d a t d i f f e r e n t t i m e s o f t h e y e a r w i l l be needed t o e s t a b l i s h t h e e x i s t e n c e o f s e x u a l i t y a t t h i s l o c a l i t y . The work on chromosome s t a i n i n g o f C. p e r e g r i n a s p e c i m e n s was n o t s u c c e s s f u l . T i s s u e f r o m n e i t h e r s o r u s n o r m i c r o t h a l l u s s o f t e n e d s u f f i c i e n t l y f o r chromosome s q u a s h e s u s i n g any o f t h e t h r e e s o l u t i o n s . The t i s s u e was l e f t i n s o l u t i o n f o r up t o f i v e d a y s w i t h o u t s u c c e s s . Sodium c a r b o n a t e (30%) seemed t o work t h e b e s t , t h o u g h no m i t o t i c f i g u r e s were o b s e r v e d i n t h e few s t a i n e d p r e p a r a t i o n s a t t e m p t e d . I t was c o n c l u d e d t h a t a g r e a t d e a l o f t i m e would be r e q u i r e d t o e s t a b l i s h s e x u a l i t y and t o p r o d u c e u s a b l e chromosome p r e p a r a t i o n s f r o m B r i t i s h C o l u m b i a n C. p e r e g r i n a . Such work was c o n s i d e r e d t o be o u t s i d e o f t h e s c o p e o f t h e p r e s e n t t h e s i s . Table XXXII Attempts to observe sexual reproduction. C o l l e c t i o n date Area Date s o r i removed Conditions °C day >iE length Number of Result crosses uprights m i c r o t h a l l i died Oct. 22 '80 Bath Oct. 25 Nov. 1 '80 Diana Nov. 4 Nov. 1 '80 Dixon Nov. 4 Nov. 8 '80 Bath Nov. 10 Apr. 11 '81 Dixon Apr. 15 » jiE.m-2.s-l 10 10:14 100 4 5 6:18 50 3 10 10:14 100 5 5 6:18 50 6 10 10:14 100 5 1 0 2 0 0 0 0 0 4 0 3 3 3 2 5 245 GENERAL DISCUSSION 246 This study was undertaken in order to describe some aspects o£ the biology of Colpomenia peregrina i n B r i t i s h Columbia. What follows i s a general discussion to integrate the d i f f e r e n t parts of t h i s study. More importantly I would l i k e t h i s opportunity to point out various areas of research which need to be explored i n order to obtain a more complete understanding of Colpomenia on t h i s coast. The taxonomic study (Chapter 1) confirmed the i d e n t i t y of the most common taxon of Colpomenia on t h i s coast, C. peregrina. Examination of the type specimen f o r C. sinuosa f. tuberculata (Saunders) Setchell and Gardner should be done in the future. Co l l e c t i o n s from a broad area along the B r i t i s h Columbia coastline should be compared to that taxon to f i n d out i f , and where, i t e x i s t s here. The bulk of t h i s thesis (Chapters 2-5) deals with the population dynamics of C. peregrina• I was unable to examine a l l of the factors which can e f f e c t a l g a l populations (Price, 1980) but was able to gather information on the e f f e c t s of l i g h t , temperature, s a l i n i t y , daylength, competition and substrate. A description of the basic population parameters i s given in Chapter 2. Future work should concentrate on giving more detailed estimates of these parameters over a year-long cycle. For example, the mortality rates are just from one s i t e at one p a r t i c u l a r time of the year. The destructive sampling and percent cover estimates would benefit from being ca r r i e d out on a more frequent basis, p a r t i c u l a r l y in the summertime at 247 Bath Island where the conditions change so ra p i d l y . It would also be useful to have some estimate of the number of plurispores produced by a given s i z e of upright. This information could be used to give a crude estimate of n a t a l i t y rate, a population parameter which was ignored in t h i s t h e s i s . More detailed information on environmental variables i s also needed. Most of the environmental variables could not be measured at the study s i t e i t s e l f . It would also be helpful to have an accurate and detailed record of nutrient l e v e l s . The ordination methods used to compare the percent cover of C. peregrina to the changes i n environmental conditions did show that Colpomenia i s only abundant during c e r t a i n seasons corresponding to a s p e c i f i c set of daylengths, temperatures and s a l i n i t i e s . It would be worthwhile to expand the number of ordination methods u t i l i z e d . The method described by Carleton (1984) looks very promising as i t was s p e c i f i c a l l y designed to compare changing plant abundance to changing environmental factors. Chapter 3 compares fluctuations in C. peregrina density to changes in density of other members of the a l g a l community. No clear pattern was observed. Manipulations of dominant overstory plants did not a f f e c t the density of C. peregrina populations either. Future work should include more manipulations i n the f i e l d to determine i f other algae do have any e f f e c t on C. peregrina populations. Another area which must be explored i s the e f f e c t of herbivores on Colpomenia. There i s i n d i r e c t and empirical evidence that herbivores do not e f f e c t the uprights 248 of C. peregrina (given in the chapters and below) but experiments should be done to v e r i f y t h i s . It should be stressed here that the seasonal presence / absence of C. peregrina can be explained on the basis of seasonal fluctuations in environment alone (Chapter 5). In other words, there i s more evidence from t h i s thesis for a model of physically controlled Colpomenia populations than for a model of b i o l o g i c a l l y controlled Colpomenia populations. In chapter 2 an attempt was made to define the role of C. peregrina in i t s community. Price (1980) defines the term niche as the role of a species in a community. He defines fundamental niche in terms of population interaction with the physical environment and r e a l i z e d niche i n terms of population interaction with the rest of the community ( b i o l o g i c a l i n t e r a c t i o n s ) . It i s commonly accepted that fundamental niche i s larger than r e a l i z e d niche. In other words b i o l o g i c a l interactions can force an organism into a smaller niche than i t i s p h y s i o l o g i c a l l y capable of exploiting (Vandermeer, 1972). Conversely, i f i t can be shown that the fundamental niche of a species (as defined by laboratory studies) i s the same as the niche observed in f i e l d studies, then discussion of b i o l o g i c a l factors becomes i r r e l e v a n t . The organism then occupies i t s fundamental niche in the f i e l d . This i s what I attempted to show fo r Colpomenia i n Chapter 5. Laboratory studies defining the tolerance of C. peregrina to temperature, l i g h t and s a l i n i t y are actually partly defining the fundamental niche of the plant. The discovery that the seasonal presence / absence 249 of Colpomenia i n the f i e l d (realized niche) correlates clo s e l ' to l e v e l s of temperature, l i g h t and s a l i n i t y known to define the fundamental niche of the plant means that b i o l o g i c a l interaction does not determine the seasonality of the plant. B i o l o g i c a l factors may partly determine the density of C peregrina when the uprights are present i n the f i e l d . However the experiments with overstory plants indicate that t h i s may not be the case for i n t e r s p e c i f i c interactions. The overstory plants have no e f f e c t on C. peregrina percent cover (Chapter 3). Herbivory may be a factor determining density as well. Lubchenco (1980) stated that herbivory may a f f e c t abundance bi not presence / absence of an alga. From the point of view of niche theory C. peregrine's ro in i t s a l g a l community i s primarily a non-biological one. Colpomenia w i l l be present on the shore whether most other members of the a l g a l community are present or not. There are other ways to c l a s s i f y the role or position of an alga i n i t s community and i t would be pertinent to discuss how Colpomenia f i t s into some of these schemes. Phytogeographical schemes incorporate seasonality and l i f e h istory. C. peregrina c l e a r l y belongs to the Hypnophyceae (sensu Garbary, 1976) because i t overwinters as a microscopic stage. Ecological schemes categorizing roles are more poorly defined and incorporate many b i o l o g i c a l and physical c h a r a c t e r i s t i c s . The scheme outlined by Grime (1977) to categorize forms of plants was adapted by Shepherd (1981) f o r use with a community of marine benthic algae. The method 250 requires information on competitive a b i l i t i e s and response to stresses for the plant in question. Unfortunately I do not have enough information on C. peregrina to u t i l i z e t h e i r system. Future work on defining s t r e s s f u l conditions for Colpomenia populations would have to be done. As noted in Chapter 2, C. peregrina could be considered an "opportunistic form" (sensu L i t t l e r and L i t t l e r , 1980) or a " f u g i t i v e species" (Dayton, 1975). Both of those papers consider Ulva as a good example of that type of plant. Both papers also stress that such plants are early successional forms and quickly colonize new bare substratum when available. Clearing experiments done at Bath Island i n the Sargassum zone show that Ulva invades the cleared patch months before C. peregrina does and that Colpomenia comes into that patch only during i t s normal seasonal blooms (DeWreede, unpublished r e s u l t s ) . This means that C. peregrina i s not a good example of an opportunist or a f u g i t i v e species. Indirect evidence supporting t h i s conclusion comes from L i t t l e r (1980, 1981) who did photosynthetic experiments with C. sinuosa. He found that good examples of opportunists l i k e Enteromorpha, Ulva and Porphyra had much higher photosynthetic rates than C. sinuosa. The same i s true for C_. peregrina (Brian Oates, The University of C a l i f o r n i a , personal communication). Opportunists are also considered to be preferred food for herbivores (Lubchenco and Gaines, 1981). However, I have not observed C. peregrina being eaten by any herbivores i n the f i e l d , even when sea urchins were within a meter of the plants. Also, I have never observed C. peregrina plants with any cuts 251 or holes in them indicating herbivory. There are no published accounts of the p a l a t a b i l i t y of any Colpomenia species. In summary, C. peregrina has some c h a r a c t e r i s t i c s of an opportunistic plant (Chapter 2) but d e f i n i t e l y i s not one i n other ways. Neither i s the plant a late successional form (sensu L i t t l e r and L i t t l e r , 1980). C. peregrina seems to be intermediate between those two extremes, closer to the opportunistic form. Future work should involve designing experiments to elucidate where C. peregrina " f i t s " into e x i s t i n g schemes of ecological types or forms. Included i n t h i s should be more culture work to determine what other environmental variables may a f f e c t the production of uprights in C. peregrina. Low l e v e l nutrient and desiccation experiments would be p a r t i c u l a r l y useful. Chapter 6 i s i n i t s e l f mainly an outline of future work which i s required to es t a b l i s h firmly the autecology of C. peregrina. Chromosome work remains to be done on a l l aspects of the l i f e history and the importance of sexual reproduction on t h i s coast should be documented. As discussed above t h i s thesis has answered some fundamental questions about the biology of C. peregrina. The o r i g i n a l hypothesis has been upheld. The seasonality of C. peregrina populations i s p r e d i c t i b l e and determined by some environmental and / or b i o l o g i c a l factors. Colpomenia populations behave i n t h i s way under the control of physical factors more than b i o l o g i c a l ones. 252 REFERENCES 253 Abbott, I.A. and Hollenberg, G.J. 1976. Marine algae of C a l i f o r n i a . Stanford University Press, Stanford. 827 pp. Ajisaka, T. 1979. The l i f e history of Acrothrix p a c i f i c a Okamura et Yamada (Phaeophyta, Chordariales) i n culture. Jap. J. Phycol. 27: 75-81. Ajisaka, T. and Umezaki, I. 1978. The l i f e history of Sphaerotricha d i v a r i c a t a (Ag.) Kylin (Phaeophyta, Chordariales) i n culture. Jap. J. Phycol. 26: 53-59. Amsler, CD. and Searles, R.B. 1980. V e r t i c a l d i s t r i b u t i o n of seaweed spores i n a water column offshore of North Carolina. J. Phycol. 16: 617-619. Anderson, E.K. and North, W.J. 1965. In s i t u studies of spore production and dispersal i n the giant kelp Macrocystis. I n t l . Seaweed Symp. 5: 73-86. Anon. 1979, 1980, 1981. Canadian tide and current tables -P a c i f i c Coast. Vol. 5. Canadian Hydrographic Service. Environment Canada. Anon. 1979, 1980, 1981. Monthly radiation summary reports. Atmospheric Environment Service. Environment Canada. Bird, C.J. and Edelstein, T. 1978. Investigations of the marine algae of Nova Scotia. XIV. Colpomenia peregrina Sauv. (Phaeophyta : Scytosiphonaceae). Proc. N.S. Inst. S c i . 28: 181-187. Blackler, H. 1964. Some observations on the genus Colpomenia (Endlicher) Derbes et S o l i e r 1851. I n t l . Seaweed Symp. 4: 50-54. 254 . 1967. The o c c u r r e n c e o f C o l p o m e n i a p e r e g r i n a (Sauv.) Hamel i n t h e M e d i t e r r a n e a n ( P h a e o p h y t a : S c y t o s i p h o n a l e s ) Blumea 15: 5-8. . 1981. Some a l g a l p r o b l e m s w i t h s p e c i a l r e f e r e n c e t o C o l p o m e n i a p e r e g r i n a and o t h e r members o f t h e S c y t o s i p h o n a c e a e . B r . P h y c o l . J . 16: 133. B o l d , H.C. and Wynne, M.J. 1978. I n t r o d u c t i o n t o t h e a l g a e . P r e n t i c e - H a l l , I n c . , New J e r s e y . 706 pp. Brower, J . E . and Z a r , J.H. 1977. F i e l d and l a b o r a t o r y methods f o r g e n e r a l e c o l o g y . Wm. C. Brown Company P u b l i s h e r s , Iowa. 194 pp. C a r l e t o n , T . J . 1984. R e s i d u a l o r d i n a t i o n a n a l y s i s : A method f o r e x p l o r i n g v e g e t a t i o n - e n v i r o n m e n t r e l a t i o n s h i p s . E c o l o g y 65: 469-477. C a t t e l l , S.A. 1973. The s e a s o n a l c y c l e o f v i t a m i n B 12 i n t h e S t r a i t o f G e o r g i a , B r i t i s h C o l u m b i a . J . F i s h . Res. B o a r d Can. 30: 215-222. Chapman, A.R.O. 1973. A c r i t i q u e o f p r e v a i l i n g a t t i t u d e s t o w a r d s t h e c o n t r o l o f seaweed z o n a t i o n on t h e s e a s h o r e . B o t . Mar. 16: 80-82. Chapman, A.R.O. and Goudey, C L . 1983. Dem o g r a p h i c s t u d y o f t h m a c r o t h a l l u s o f L e a t h e s i a d i f f o r m i s ( P h a e o p h y t a ) i n Nova S c o t i a . Can. J . B o t . 61: 319-323. C l a y t o n , M.N. 1975. A s t u d y o f v a r i a t i o n i n A u s t r a l i a n s p e c i e s o f C o l p o m e n i a ( P h a e o p h y t a ; S c y t o s i p h o n a l e s ) . P h y c o l o g i a 14: 187-195. . 1979. The l i f e h i s t o r y and s e x u a l r e p r o d u c t i o n o f 255 Colpomenia peregrina (Scytoaiphonaceae, Phaeophyta) in Au s t r a l i a . Br. Phycol. J. 14: 1-10. . 1981. Observations on the factors c o n t r o l l i n g the reproduction of two common species of brown algae, Colpomenia peregrina and Scytosiphon sp. (Scytosiphonaceae), i n V i c t o r i a . Proc. Roy. Soc. V i c t . 92: 113-118. . 1982. L i f e history studies i n the Ectocarpales (Phaeophyta) : contributions toward the understanding of evolutionary processes. Bot. Mar. 25: 111-116. Conway, H.L. 1977. Interactions of inorganic nitrogen in the uptake and assimilation by marine phytoplankton. Mar. B i o l . 39: 221-232. Corbiere, M.L. 1907. Sur 1'apparition a Cherbourg du Colpomenia sinuosa. B u l l . Soc. Bot. France 54: 280-283. Coyer, J.A. and Zaugg-Haglund, A.C. 1982. A demographic study of the elk kelp, Pelagophycus porra (Laminariales, Lessoniaceae), with notes on Pelagophycus X Macrocystis hybrids. Phycologia 21: 399-407. Dangeard, P. 1963. Reserches sur l e cycle e v o l u t i f de quelques Scytosiphonacees. Le Botanists 46: 5-129. Dawson, E.Y., Acleto, C. and Foldvik, N. 1964. The seaweeds of Peru. Nova Hedwigia 13: 1-111. Dayton, P.K. 1973. Dispersion, d i s p e r s a l , and persistence of the annual i n t e r t i d a l alga, Postelsia palmaeformis Ruprecht. Ecology 54: 433-438. 256 . 1 9 7 5 . E x p e r i m e n t a l e v a l u a t i o n o f e c o l o g i c a l d o m i n a n c e i n a r o c k y i n t e r t i d a l a l g a l c o m m u n i t y . E c o l . Monog r . 4 5 : 1 3 7 - 1 5 9 . D e B o e r , J . A . 1 9 8 1 . N u t r i e n t s . In " T h e b i o l o g y o f s e a w e e d s " <ed. C S . L o b b a n and H . J . Wynne ) . U n i v e r s i t y o f C a l i f o r n i a P r e s s , L o s A n g e l e s , p p . 3 5 6 - 3 9 2 . D e r b e s , A . A . and S o l i e r , A . J . J . 1 8 5 1 . In " S u p p l e m e n t au C a t a l o g s d e s p l a n t e s q u i c r o i s s e n t n a t u r e l l e m e n t aux e n v i r o n s de H a r s e i l l e " ( J . L . M . C a s t a g n e ) A i x , N i c o t e t P a r d i g o n . p i s 8 - 1 1 . DeWreede , R . E . 1 9 7 8 . G r o w t h i n v a r y i n g c u l t u r e c o n d i t i o n s o f e m b r y o s o f t h r e e H a w a i i a n s p e c i e s o f S a r g a s s u m ( P h a e o p h y t a , S a r g a s s a c e a e ) . P h y c o l o g i a 1 7 : 2 3 - 3 1 . . 1 9 8 3 . S a r g a s s u m mut i cum ( F u c a l e s , P h a e o p h y t a ) : R e g r o w t h a n d i n t e r a c t i o n w i t h R h o d o m e l a l a r i x ( C e r a m i a l e s , R h o d o p h y t a ) . P h y c o l o g i a 2 2 : 1 5 3 - 1 6 0 . . 1 9 8 4 . G r o w t h and age c l a s s d i s t r i b u t i o n o f P t e r y g o p h o r a c a l i f o r n i c a ( P h a e o p h y t a ) . Ma r . E c o l . - P r o g . S e r . ( i n p r e s s ) D o t y , M.S . 1 9 4 6 . C r i t i c a l t i d e f a c t o r s t h a t a r e c o r r e l a t e d w i t h t h e v e r t i c a l d i s t r i b u t i o n o f m a r i n e a l g a e and o t h e r o r g a n i s m s a l o n g t h e P a c i f i c C o a s t . E c o l o g y 2 7 : 3 1 5 - 3 2 8 . F a b r e - D o m e r g u e . 1 9 0 6 . Une i n v a s i o n d ' a l g u e s m e r i d i o n a l e s ( C o l p o m e n i a s i n u o s a ) s u r l e s h u i t r e s de l a r i v i e r e de V a n n e s . C . R. A c a d . S c i . ( P a r i s ) 1 4 2 : 1 2 2 3 - 1 2 2 5 . F e l d m a n n , J . 1 9 4 9 . L ' o r d r e d e s S c y t o s i p h o n a l e s . S o c . d ' H i s t o i r e N a t . de L ' A f r i q u e du N o r d . M e m o i r e s . A l g i e r s 2 : 1 0 3 - 1 1 5 . 257 F o s t e r , M.S . 1 9 7 5 . A l g a l s u c c e s s i o n i n a M a c r o c y s t i s p y r i f e r a f o r e s t . M a r . B i o l . 3 2 : 3 1 3 - 3 2 9 . F o x , D . J . and G u i r e , K . E . 1 9 7 6 . D o c u m e n t a t i o n f o r MIDAS. The S t a t i s t i c a l R e s e a r c h L a b o r a t o r y , U n i v e r s i t y o f M i c h i g a n . 203 p p . G a r b a r y , D. 1 9 7 6 . L i f e - f o r m s o f a l g a e and t h e i r d i s t r i b u t i o n . B o t . M a r . 1 9 : 9 7 - 1 0 6 . G a u c h , H .G . J r . 1 9 8 2 . M u l t i v a r i a t e a n a l y s i s i n c o m m u n i t y e c o l o g y . C a m b r i d g e U n i v e r s i t y P r e s s , L o n d o n . 298 p p . G i o v a n d o , L . F . 1 9 7 3 . The e f f l u e n t o u t f a l l p r o p o s e d f o r t h e F i v e F i n g e r I s l a n d a r e a , Nana imo B . C . : O c e a n o g r a h i c and r e l a t e d c o n s i d e r a t i o n s . E n v i r o n m e n t C a n a d a P a c . M a r . S c i . R e p t . 7 3 - 1 2 . G l a s s , G . V . , P e c k h a m , P .D . and S a n d e r s , J . R . 1 9 7 2 . C o n s e q u e n c e s o f f a i l u r e t o meet a s s u m p t i o n s u n d e r l y i n g t h e f i x e d e f f e c t s a n a l y s e s o f v a r i a n c e and c o v a r i a n c e . R e v . E d u c a t i o n a l R e s . 4 2 : 2 3 7 - 2 8 8 . G r i m e , J . P . 1 9 7 7 . E v i d e n c e f o r t h e e x i s t e n c e o f t h r e e p r i m a r y s t r a t e g i e s i n p l a n t s and i t s r e l e v a n c e t o e c o l o g i c a l and e v o l u t i o n a r y t h e o r y . Am. N a t . I l l : 1 1 6 9 - 1 1 9 4 . G u n n i l l , F . C . 1 9 8 0 . Demography o f t h e i n t e r t i d a l brown a l g a P e l v e t i a f a s t l g i a t a i n S o u t h e r n C a l i f o r n i a , USA. M a r . B i o l . 5 9 : 1 6 9 - 1 7 9 . . 1 9 8 1 . D e m o g r a p h i c s t u d i e s on C y s t o s e i r a o s m u n d a c e a and H a l i d r y s d i o i o c a ( F u c a l e s ; S a r g a s s a c e a e ) i n S o u t h e r n C a l i f o r n i a . W e s t e r n S o c . o f N a t u r a l i s t s 62nd a n n u a l m e e t i n g . S a n t a B a r b a r a Museum o f N a t u r a l H i s t o r y . A b s . p . 258 2 1 . H a m e l , G . 1 9 3 7 . P h a e o p h y c e e s de F r a n c e . F a a c . I l l : 1 7 7 - 2 4 0 . P a r i s . H a n i c , L . A . and P r i n g l e , J . D . 1 9 7 8 . P o t t e r y , a s u b s t r a t e f o r a l g a l c u l t u r e . B r . P h y c o l . J . 1 3 : 2 5 - 3 3 . H a r l i n , H.M. and L i n d b e r g h , J . M . 1 9 7 7 . S e l e c t i o n o f s u b s t r a t a by s e a w e e d s : o p t i m a l s u r f a c e r e l i e f . M a r . B i o l . 4 0 : 3 3 - 4 0 . H a r r i s o n , P . J . , W a t e r s , R . E . and T a y l o r , F . J . R . 1 9 8 0 . A b r o a d s p e c t r u m a r t i f i c i a l s e a w a t e r medium f o r c o a s t a l and open o c e a n p h y t o p l a n k t o n . J . P h y c o l . 1 6 : 2 8 - 3 5 . Hay , C . 1 9 7 9 . G r o w t h , m o r t a l i t y , l o n g e v i t y and s t a n d i n g c r o p o f D u r v i l l a e a a n t a r c t i c a ( P h a e o p h y c e a e ) i n New Z e a l a n d . I n t l . Seaweed Symp. 9 : 9 7 - 1 0 4 . H e a l e y , F . P . 1 9 7 3 . I n o r g a n i c n u t r i e n t u p t a k e and d e f i c i e n c y i n a l g a e . C r i t . R e v . M i c r o b i o l . 3 : 6 9 - 1 1 3 . H s i a o , S . I . C . 1 9 6 9 . L i f e h i s t o r y and i o d i n e n u t r i t i o n o f t h e m a r i n e brown a l g a , P e t a l o n i a f a s c i a ( O . F . M u l l . ) K u n t z e . C a n . J . B o t . 4 7 : 1 6 1 1 - 1 6 1 6 . J e f f e r a , J . N . R . 1 9 7 8 . An i n t r o d u c t i o n t o s y s t e m s a n a l y s i s : W i t h e c o l o g i c a l a p p l i c a t i o n s . U n i v e r s i t y P a r k P r e s s , M a r y l a n d . 198 p p . J o h n , D .M. , L i e b e r m a n , D. , L i e b e r m a n , M. and S w a i n e , M.D. 1 9 8 0 . S t r a t e g i e s o f d a t a c o l l e c t i o n and a n a l y s i s o f s u b t i d a l v e g e t a t i o n . I n " T h e s h o r e e n v i r o n m e n t V o l . 1: M e t h o d s " ( e d . J . H . P r i c e , D . E . G . I r v i n e and W.F . F a r n h a m ) . A c a d e m i c P r e s s , L o n d o n , p p . 2 6 5 - 2 8 4 . 259 J o n e s , W . E . , B e n n e l l , S . , B e v e r i d g e , C , M c C o n n e l l , B . , H a c k - S m i t h , S . , M i t c h e l l , J . and F l e t c h e r , A . 1 9 8 0 . M e t h o d s o f d a t a c o l l e c t i o n and p r o c e s s i n g i n r o c k y i n t e r t i d a l m o n i t o r i n g . In " T h e s h o r e e n v i r o n m e n t V o l . 1: M e t h o d s " ( e d . J . H . P r i c e , D . E . G . I r v i n e and W . F . F a r n h a m ) . A c a d e m i c P r e s s , L o n d o n , p p . 1 3 7 - 1 7 0 . K a w a i , H. and K u r o g i , M. 1 9 8 3 . M o r p h o l o g y and l i f e h i s t o r y i n c u l t u r e o f a new v a r i e t y o f L i t o s i p h o n g r o e n l a n d i c u a ( D i c t y o s i p h o n a l e s ; P h a e o p h y t a ) f r o m J a p a n . J . F a c . S c i . , H o k k a i d o U n i v . , S e r . V ( B o t a n y ) 1 3 : 2 5 - 3 8 . L e e , R . K . S . 1 9 6 6 . D e v e l o p m e n t o f m a r i n e b e n t h i c a l g a l c o m m u n i t i e s on V a n c o u v e r I s l a n d , B r i t i s h C o l u m b i a . In " T h e e v o l u t i o n o f C a n a d a ' s f l o r a " ( e d . R . L . T a y l o r and R.A. L u d w i g ) U n i v e r s i t y o f T o r o n t o P r e s s , p p . 1 0 0 - 1 2 0 . L e w i n , J . 1 9 6 6 . S i l i c o n m e t a b o l i s m i n d i a t o m s . V . Germanium d i o x i d e , a s p e c i f i c i n h i b i t o r o f d i a t o m g r o w t h . P h y c o l o g i a 6 : 1 - 1 2 . L i t t l e r , M.M. 1 9 8 0 . M o r p h o l o g i c a l f o r m and p h o t o s y n t h e t i c p e r f o r m a n c e s o f m a r i n e raacroalgae: T e s t s o f a f u n c t i o n a l / f o r m h y p o t h e s i s . B o t . M a r . 2 2 : 1 6 1 - 1 6 5 . . 1 9 8 1 . T h e r e l a t i o n s h i p b e t w e e n t h a l l u s f o r m and t h e p r i m a r y p r o d u c t i v i t y o f s e a w e e d s . I n t l . Seaweed Symp. 8 : 3 9 8 - 4 0 3 . L i t t l e r , M.M. a n d L i t t l e r , D.S. 1 9 8 0 . The e v o l u t i o n o f t h a l l u s f o r m a n d s u r v i v a l s t r a t e g i e s i n b e n t h i c m a r i n e m a c r o a l g a e : f i e l d and l a b o r a t o r y t e s t s o f a f u n c t i o n a l f o r m m o d e l . Am. N a t . 1 1 6 : 2 5 - 4 4 . 260 L u b c h e n c o , J . 1 9 8 0 . A l g a l z o n a t i o n i n t h e New E n g l a n d r o c k y i n t e r t i d a l c o m m u n i t y : An e x p e r i m e n t a l a n a l y s i s . E c o l o g y 6 1 : 3 3 3 - 3 4 4 . L u b c h e n c o , J . and G a i n e s , S . D . 1 9 8 1 . A u n i f i e d a p p r o a c h t o m a r i n e p l a n t - h e r b i v o r e i n t e r a c t i o n s . I. P o p u l a t i o n s and c o m m u n i t i e s . A n n . R e v . E c o l . S y s t . 1 2 : 4 0 5 - 4 3 7 . L u n i n g , K. 1 9 8 0 . C o n t r o l o f a l g a l l i f e - h i s t o r y by d a y l e n g t h and t e m p e r a t u r e . In " T h e s h o r e e n v i r o n m e n t V o l . 2 : E c o s y s t e m s " ( e d . J . H . P r i c e , D . E . G . I r v i n e and W.F . F a r n h a m ) . A c a d e m i c P r e s s , L o n d o n , p p . 9 1 5 - 9 4 5 . . 1 9 8 1 . L i g h t . In " T h e b i o l o g y o f s e a w e e d s " ( e d . C . S . L o b b a n and M . J . Wynne ) . U n i v e r s i t y o f C a l i f o r n i a P r e s s , L o s A n g e l e s , p p . 3 2 6 - 3 5 5 . M a t h i e s o n , A . C . 1 9 8 2 . P h y s i o l o g i c a l e c o l o g y o f t h e brown a l g a P h a e o s t r o p h i o n i r r e g u l a r e S e t c h e l l e t G a r d n e r : I. J u v e n i l e p l a n t s . B o t . M a r . 2 5 : 8 7 - 9 1 . M c C u l l y , M . E . , G o f f , L . J . and A d s h e a d , P . C . 1 9 8 0 . P r e p a r a t i o n o f a l g a e f o r l i g h t m i c r o s c o p y . In " H a n d b o o k o f p h y c o l o g i c a l me thods (3) D e v e l o p m e n t a l and c y t o l o g i c a l m e t h o d s . " ( e d . E . G a n t ) C a m b r i d g e U n i v e r s i t y P r e s s , L o n d o n , p p . 2 6 3 - 2 8 3 . M c N a u g h t o n , S . J . and W o l f , L . L . 1 9 7 9 . G e n e r a l e c o l o g y . H o l t , R i n e h a r t and W i n s t o n , New Y o r k . 702 p p . M i f l i n , B . J . and L e a , P . J . 1 9 7 6 . T h e pa thway o f n i t r o g e n a s s i m i l a t i o n i n p l a n t s . P h y t o c h e m i s t r y 1 5 : 8 7 3 - 8 8 5 . Nakamura , Y . 1 9 7 2 . A p r o p o s a l on t h e c l a s s i f i c a t i o n o f t h e P h a e o p h y t a . I n " C o n t r i b u t i o n s t o t h e s y s t e m a t i c s o f 261 b e n t h i c m a r i n e a l g a e o f t h e N o r t h P a c i f i c " ( e d . I .A. A b b o t t and M. K u r o g i ) . J a p . S o c . o f P h y c o l . p p . 1 4 7 - 1 5 5 . N e l s o n , W.A. a n d C o l e , K. 1 9 8 1 . F e u l g e n m i c r o s p e c t r o p h o t o m e t r i c a n a l y s i s o f t h e l i f e h i s t o r y s t a g e s o f A n a l i p u s j a p o n i c u s ( H a r v . ) Wynne ( P h a e o p h y t a ) . P h y c o l o g i a 2 0 : 4 3 5 - 4 3 7 . N e u s h u l , M . , F o s t e r , M . S . , C o o n , D . A . , W o e s s n e r , J . W . and H a r g e r , B.W.W. 1 9 7 6 . An i n s i t u s t u d y o f r e c r u i t m e n t , g r o w t h and s u r v i v a l o f s u b t i d a l m a r i n e a l g a e : t e c h n i q u e s and p r e l i m i n a r y r e s u l t s . J . P h y c o l . 1 2 : 3 9 7 - 4 0 8 . N o r t o n , T . A . 1 9 7 7 . E c o l o g i c a l e x p e r i m e n t s w i t h S a r g a s s u m m u t i c u m . J . M a r . B i o l . A s s . U.K. 5 7 : 3 3 - 4 3 . N y g r e n , S . 1 9 7 5 . L i f e h i s t o r y o f some p h a e o p h y c e a e f r o m Sweden . B o t . M a r . 1 8 : 1 3 1 - 1 4 1 . O ' B r i e n , T . P . and M c C u l l y , M . E . 1 9 8 1 . The s t u d y o f p l a n t s t r u c t u r e p r i n c i p l e s and s e l e c t e d m e t h o d s . T e r m a r c a r p h i P t y . L t d . , A u s t r a l i a . 358 p p . P a i n e , R . T . 1 9 7 4 . I n t e r t i d a l c o m m u n i t y s t r u c t u r e e x p e r i m e n t a l s t u d i e s on t h e r e l a t i o n s h i p b e t w e e n a d o m i n a n t c o m p e t i t o r and i t s p r i n c i p l e p r e d a t o r . O e c o l o g i a 1 5 : 9 3 - 1 2 0 . P a r s o n s , M . J . 1 9 8 2 . C o l p o m e n i a ( E n d l i c h e r ) D e r b e s e t S o l i e r ( P h a e o p h y t a ) i n New Z e a l a n d . New Z e a l a n d J . B o t . 2 0 : 2 8 9 - 3 0 1 . P e d e r s e n , P .M. 1 9 7 5 . C u l t u r e s t u d i e s on m a r i n e a l g a e f r o m West G r e e n l a n d I. Ch romosoma l i n f o r m a t i o n r e l a t i n g t o t h e l i f e h i s t o r y o f I s t h m o p l e a s p h a e r o p h o r a ( P h a e o p h y c e a e a , D i c t y o s i p h o n a l e s ) . B r . P h y c o l . J . 1 0 : 1 6 5 - 1 6 8 . 262 . 1 9 7 8 . C u l t u r e s t u d i e s i n t h e p l e o m o r p h i c brown a l g a M y r i o t r i c h a c l a v a e f o r m i s ( D i c t y o s i p h o n a l e s , M y r i o t r i c h i a c e a e ) . N o r w e g i a n J . B o t . 2 5 : 2 8 1 - 2 9 1 . . 1 9 8 1 . P h a e o p h y t a : l i f e h i s t o r i e s . In " T h e b i o l o g y o f s e a w e e d s " ( e d . C S . L o b b a n and M . J . Wynne ) . U n i v e r s i t y o f C a l i f o r n i a P r e s s , L o s A n g e l e s , p p . 1 9 4 - 2 1 7 . P i e l o u , E . C 1 9 7 4 . P o p u l a t i o n a n d c o m m u n i t y e c o l o g y -p r i n c i p l e s and m e t h o d s . G o r d o n a n d B r e a c h S c i e n c e P u b l i s h e r s , New Y o r k . 424 p p . P r i c e , J . H . 1 9 8 0 . N i c h e and c o m m u n i t y i n t h e i n s h o r e b e n t h o s , w i t h e m p h a s i s on t h e m a c r o a l g a e . In " T h e s h o r e e n v i r o n m e n t V o l . 2 : E c o s y s t e m s " ( e d . J . H . P r i c e , D . E . G . I r v i n e and W . F . F a r n h a m ) . A c a d e m i c P r e s s , L o n d o n , p p . 4 8 7 - 5 6 4 . P r o b y n , T . A . 1 9 8 1 . A s p e c t s o f t h e l i g h t a n d n i t r o g e n o u s n u t r i e n t r e q u i r e m e n t f o r g r o w t h o f C h o r d a r i a  f l a g e l l i f o r m i s ( O . F . M u l l . ) C A g . I n t l . Seaweed Symp. 1 0 : 3 3 7 - 3 4 4 . P r o v a s o l i , L . 1 9 6 8 . M e d i a and p r o s p e c t s f o r t h e c u l t i v a t i o n o f m a r i n e a l g a e . In " C u l t u r e s and c o l l e c t i o n s o f a l g a e , ( e d . A . Watanabe and A . H a t t o r i ) P r o c . U . S . - J a p a n C o n f e r e n c e Hakone S e p t . 1 9 6 6 . " p p . 6 3 - 7 5 . R i c h a r d s o n , J . P . 1 9 7 9 . O v e r w i n t e r i n g o f D i c t y o t a d i c h o t o m a ( P h a e o p h y c e a e ) n e a r i t s n o r t h e r n d i s t r i b u t i o n l i m i t on t h e e a s t c o a s t o f N o r t h A m e r i c a . J . P h y c o l . 1 5 : 2 2 - 2 6 . R o s e n t h a l , R . J . , C l a r k e , W.D. and D a y t o n , P .K . 1 9 7 4 . E c o l o g y a n d n a t u r a l h i s t o r y o f a s t a n d o f g i a n t k e l p , M a c r o c y s t i s p y r i f e r a , o f f D e l M a r , C a l i f o r n i a . F i s h . B u l l . 7 2 : 263 6 7 0 - 6 8 4 . R o t h , A . G . 1 8 0 6 . C a t a l e c t a b o t a n i c a . F a s c . I I I . L e i p z i g . R u e n e s s , J . 1 9 7 4 . L i f e h i s t o r y i n c u l t u r e and chromosome number i n I s t h m o p l e a s p h a e r o p h o r a ( P h a e o p h y c e a e ) f r o m s o u t h e r n S c a n d i n a v i a . P h y c o l o g i a 1 3 : 3 2 3 - 3 2 8 . S a u n d e r s , De A . 1 8 9 8 . P h y c o l o g i c a l m e m o i r s . P r o c . C a l i f . A c a d . S c i . , S e r . 3 , B o t . 1: 1 4 7 - 1 6 8 . S a u v a g e a u , C . 1 9 2 7 . S u r l e C o l p o m e n i a s i n u o s a D e r b . e t S o l . B u l l . S t a . B i o l . A r c a c h o n . 2 4 : 3 0 9 - 3 5 3 . S c h i e l , D.R. a n d C h o a t , J . H . 1 9 8 0 . E f f e c t s o f d e n s i t y on m o n o s p e c i f i c s t a n d s o f m a r i n e a l g a e . N a t u r e 2 8 5 : 3 2 4 - 3 2 6 . S e t c h e l l , W.A. and G a r d e r , N . L . 1 9 0 3 . A l g a e o f n o r t h w e s t e r n A m e r i c a . U n i v . C a l i f . P u b l . B o t . 1: 1 6 4 - 4 1 8 . . 1 9 2 5 . The m a r i n e a l g a e o f t h e P a c i f i c C o a s t o f N o r t h A m e r i c a . P t . I I I . M e l a n o p h y c e a e . U n i v . C a l i f . P u b l . B o t . 8 : 3 8 3 - 8 9 8 . S h e p h e r d , S . A . 1 9 8 1 . E c o l o g i c a l s t r a t e g i e s i n a d e e p w a t e r r e d a l g a l c o m m u n i t y . B o t . Ma r . 2 4 : 4 5 7 - 4 6 3 . S i d e m a n , E . J . and M a t h i e s o n , A . C . 1 9 8 3 . The g r o w t h , r e p r o d u c t i v e p h e n o l o g y and l o n g e v i t y o f n o n - t i d e - p o o l F u c u s d i s t i c h u s ( L . ) P o w e l l i n New E n g l a n d . J . E x p . M a r . B i o l . E c o l . 6 8 : 1 1 1 - 1 2 7 . S k i n n e r , S. 1 9 8 3 . The l i f e - h i s t o r y o f E l a c h i a t a o r b i c u l a r i s (Oh ta ) Comb. n o v . ( E l a c h i s t a c e a e , P h a e o p h y t a ) i n s o u t h e r n A u s t r a l i a . B r . P h y c o l . J . 1 8 : 9 7 - 1 0 4 . S m i t h , B.D. 1 9 8 3 . R e c o v e r y f o l l o w i n g e x p e r i m e n t a l h a r v e s t i n g o f L a m i n a r i a l o n g i c r u r i s and L a m i n a r i a d i g i t a t a i n 264 s o u t h w e s t e r n Nova S c o t i a . Nova S c o t i a D e p t . F i s h . H a n u s c r . T e c h . R e p t . S e r . P r o j . R e p t . : 8 3 - 0 3 . 3 6 p p . S o k a l , R.R. and R o h l f , F . J . 1 9 8 1 . B i o m e t r y . T h e p r i n c i p l e s and p r a c t i c e o f s t a t i s t i c s i n b i o l o g i c a l r e s e a r c h . W.H. F r e e m a n and Company, San F r a n c i s c o . 859 p p . S t e p h e n s , K. , F u l t o n , J . D . and K e n n e d y , O .D . 1 9 6 9 . Summary o f b i o l o g i c a l o c e a n o g r a p h i c o b s e r v a t i o n s i n t h e S t r a i t o f G e o r g i a , 1 9 6 5 - 1 9 6 8 . F i s h . R e s . B d . C a n . T e c h . R e p . No. 1 1 0 . N a n a i m o , B . C . S t e p h e n s o n , T . A . 1 9 4 3 . T h e c a u s e s o f t h e v e r t i c a l and h o r i z o n t a l d i s t r i b u t i o n o f o r g a n i s m s b e t w e e n t i d e m a r k s i n S o u t h A f r i c a . P r o c . L i n n . S o c . ( 1 9 4 1 - 2 ) : 2 1 9 - 2 3 2 . S t r i c k l a n d , J . D . H . and P a r s o n s , T . R . 1 9 7 2 . A p r a c t i c a l handbook o f s e a w a t e r a n a l y s i s . F i s h . R e s . B d . C a n a d a B u l l . 1 6 7 . 310 p p . Thorn, R.M. 1 9 8 3 . S p a t i a l and t e m p o r a l p a t t e r n s o f F u c u s d i s t i c h u s s s p . e d e n t a t u s (de l a P y l . ) Pow. ( P h a e o p h y c e a e : F u c a l e s ) i n c e n t r a l P u g e t S o u n d . B o t . Ma r . 2 6 : 4 7 1 - 4 8 6 . Thorn, R .M. , A r m s t r o n g , J . W . , S t a u d e , C P . , Chew, K.K. and N o r r i s , R . E . 1 9 7 6 . A s u r v e y o f t h e a t t a c h e d m a r i n e f l o r a a t f i v e b e a c h e s i n t h e S e a t t l e , W a s h i n g t o n , a r e a . S y e s i s 9 : 2 6 7 - 2 7 5 . U n d e r w o o d , A . J . 1 9 8 1 . T e c h n i q u e s o f a n a l y s i s o f v a r i a n c e i n e x p e r i m e n t a l m a r i n e b i o l o g y and e c o l o g y . O c e a n o g r . Mar . B i o l . A n n . R e v . 1 9 : 5 1 3 - 6 0 5 . V a n d e r m e e r , J . H . 1 9 7 2 . N i c h e t h e o r y . A n n . R e v . E c o l . S y s t e m a t i c s 3 : 1 0 7 - 1 3 2 . 265 V a n d e r m e u l e n , H. and DeWreede , R . E . 1 9 8 3 . The a m a z i n g h i s t o g r a m . i n C i d e r 1: 5 3 - 5 6 . V a n d e r m e u l e n , H . , DeWreede, R . E . and C o l e , K.M. 1984 . N o m e n c l a t u r a l r e c o m m e n d a t i o n s f o r t h r e e s p e c i e s o f C o l p o m e n i a ( S c y t o s i p h o n a l e s , P h a e o p h y t a ) . T a x o n 3 3 : 3 2 4 - 3 2 9 . V i l l e , J . 1 9 6 9 . L e g e n r e C o l p o m e n i a ( S c y t o s i p h o n a l e , I s o g e n e r a t e e , P h e o p h y c e e ) d a n s l a r e g i o n de S e t e . U n i v e r s i t e d ' A b i d j a n , A n n a l e s . S e r i e E . E c o l o g i e 2 : 2 3 5 - 3 2 5 . W a l d i c h u k , M. 1 9 5 2 . O c e a n o g r a p h y o f t h e S t r a i t o f G e o r g i a I. S a l i n i t y d i s t r i b u t i o n . F i s h . R e s . B d . C a n . P r o g . R e p t . P a c . B i o l . S t ' n . 9 3 : 2 6 - 2 9 . W iddowson , T . B . 1 9 7 3 . The m a r i n e a l g a e o f B r i t i s h C o l u m b i a and N o r t h e r n W a s h i n g t o n : R e v i s e d l i s t and k e y s . P a r t I. P h a e o p h y c e a e (brown a l g a e ) . S y e s i s 6 : 8 1 - 9 6 . W i t t m a n n , W. 1 9 6 5 . A c e t o - i r o n - h a e m a t o x y l i n - c h l o r a l h y d r a t e f o r chromosome s t a i n i n g . S t a i n T e c h n o l . 4 0 : 1 6 1 - 1 6 4 . W o m e r s l e y , H . B . S . 1 9 6 7 . A c r i t i c a l s u r v e y o f t h e m a r i n e a l g a e o f s o u t h e r n A u s t r a l i a . I I . P h a e o p h y t a . A u s t . J . B o t . 1 5 : 1 8 9 - 2 7 0 . Wynne, M . J . 1 9 6 9 . L i f e h i s t o r y and s y s t e m a t i c s t u d i e s o f some P a c i f i c N o r t h A m e r i c a n P h a e o p h y c e a e (Brown a l g a e ) . U n i v . C a l i f . P u b . i n B o t a n y 5 0 : 1 -88 . . 1 9 7 2 . S t u d i e s on t h e l i f e f o r m s i n n a t u r e and i n c u l t u r e o f s e l e c t e d brown a l g a e . In " C o n t r i b u t i o n s t o t h e s y s t e m a t i c a o f b e n t h i c m a r i n e a l g a e o f t h e N o r t h P a c i f i c . 266 ( e d . I .A. A b b o t t and M. K u r o g i ) J a p . S o c . P h y c o l . p p . 1 3 3 - 1 4 6 . Yamada, Y . 1 9 4 8 . M a r i n e a l g a e No. 1 ( C o l p o m e n i a b u l l o s a ) . In " I c o n e s o f t h e m a r i n e a n i m a l s and p l a n t s o f H o k k a i d o : 6 . ( e d . Y . Yamada and S. K i n o s h i t a ) Y o i c h i , H o k k a i d o , p p . 6 - 7 . 2 6 7 APPENDICES 268 A p p e n d i x I L i s t , o f d a t e s o f f i e l d t r i p s t o t h e two ma in s i t e s , B a t h I s l a n d and D i a n a I s l a n d . (NT = s a m p l e n o t t a k e n , ND = no d a t a , + = p r e s e n t , - = a b s e n t , s a m p l e l o c a t i o n s shown i n F i g u r e 17) A) BATH ISLAND C o l p o m e n i a L o c a t i o n f o r P l a n t s f o u n d P l a n t s i n D a t e i n q u a d r a t s a m p l e a n d t a k e n z o n e Q l Q2 Q3 Q l Q2 Q3 Q l Q2 Q3 Q l Q2 Q3 A p r . 1 0 NT + + NT NT NT NT NT NT NT + Hay 11 + + + 1 NT NT + NT NT + + Hay 25 + NT NT 1 NT NT + + J u n . 1 1 + - NT NT NT NT NT NT + + J u n . 2 2 - - - 2 NT 2 - NT - - ND -J u l . 9 - - - 2 NT 2 - NT - - -J u l . 3 0 - - - NT NT NT NT NT NT ND ND ND A u g . 2 4 - + 2 NT 3 - NT S e p . 2 9 - - 3 1 4 - + + + + + N o v . 3 - + - 4 2 5 - + + + + D e c . 1 8 - - - 5 3 6 - - - - - -F e b . 1 - - - NT NT NT NT NT NT + -H a r . 7 + - - 5 3 6 - - + -M a r . 2 9 + _ _ 4 3 6 + _ + _ 269 May 2 9 + - + 6 NT 4 + NT + + + + J u n . 12 - • • 2 NT 2 + NT + + + + J u n . 30 - + «. 7 NT 3 - NT + N D + + S e p . 14 - + - 8 NT 4 NT 4 + + + O c t . 3 - + - 8 NT 5 + N T - + + N D O c t . 17 - + - 9 N T 1 - NT - + + + Nov . 8 - - - 9 N T 1 - NT - + + ND 1981 M a r . 1 + 1 ' NT 1 NT - + N D N D M a r . 12 + + - 1 N T 1 + N T - + + _ A p r . 30 + • + 2 N T 1 + N T + + • • J u n . 2 - - - NT NT NT NT NT NT ND ND + J u n . 13 - 7 NT 2 - NT - ND ND ND J u l . 9 - + - 7 NT 2 - NT + N D + + A u g . 10 - - - 7 NT 3 - NT + - + + S e p . 22 - + + 7 NT 4 + NT + + + + B) BAMFIELD ( D i a n a I s l a n d ) D a t e C o l p o m e n i a i n q u a d r a t NQ MQ SQ P l a n t s i n a r e a S a m p l e t a k e n # p l a n t s i n sample 1979 May 27 ND ND ND J u n . 1 0 ND ND ND J u l . 1 2 ND - • A u g . 2 2 • ND ND 7 8 3 270 O c t . 1 3 -N o v . 2 4 -1980 J a n . 1 1 -M a r . 2 2 + A p r . 2 6 • J u n . 6 + A u g . 6 ND ND ND A u g . 1 3 ND ND ND Nov . 1 -N o v . 2 2 -1981 F e b . 1 4 -Ma r .21 + A p r . 1 2 • May 15 + J u n . 1 7 + J u l . 2 4 • A u g . 2 0 S e p . 2 5 ND ND ND ND ND ND ND ND ND ND 9 16 20 17 5 12 5 16 36 9 C) BAMFIELD ( D i x o n I s l a n d ) D a t e P l a n t s i n a r e a Samp le t a k e n # p l a n t s i n s a m p l e 1980 M a r . 2 2 A p r . 2 7 30 9 271 J u n . 6 + + 2 3 A u g . 2 9 + + 6 9 Nov . 1 + + 2 8 N o v . 2 2 + + 1 2 1981 F e b . 1 4 - -r. May 15 + + 4 J u n . 1 7 + + 2 7 J u l . 2 4 + + 3 0 A u g . 2 0 + + 3 5 S e p . 2 5 + + 2 9 272 A p p e n d i x I I F i e l d m e a s u r e m e n t s o f t e m p e r a t u r e , s a l i n i t y and l i g h t e x t i n c t i o n a t B a t h I s l a n d ( d e p t h i s f r o m s u r f a c e ) . 1. J u n e 21 1979 2 . J u n e 30 1980 3 . S e p t e m b e r 14 1980 4 . November 8 1980 5 . M a r c h 1 1980 6 . M a r c h 12 1981 7 . A p r i l 30 1981 8 . J u l y 9 1981 0 - 4 . 0 - 8 . 0 E i x i — o. L U o 0 - 4 . 0 8.0 • 0 r - 4 . 0 - 8 . 0 2 — • -i T 6 8 3 7 _ l I I u —I I I l _ 16 18 2 0 2 2 S a l i n i t y - p.p.t. 2 4 2 6 5 6 4 7 T 1 3 i i i i • • • / I I 2 8 A H 5 6 7 4 3 8 2 11 13 15 T e m p e r a t u r e - ° C 17 5 3 6 8 4 1 7 \ / li / / • • • • • • 2 8 19 • • • • 6 4 8 5 3 7 j i i i i i i 1 1 .1 .3 .5 .7 . 9 L i g h t E x t i n c t i o n 274 A p p e n d i x I I I F i e l d m e a s u r e m e n t s o f t e m p e r a t u r e , s a l i n i t y and l i g h t e x t i n c t i o n a t D i a n a I s l a n d ( d e p t h i s f r o m s u r f a c e ) . 1. A u g u s t 21 1980 2 . A u g u s t 29 1980 3 . F e b r u a r y 14 1981 4 . May 15 1981 5. J u l y 24 1981 275 0 - 2 - 4 V \ l 0 r E i X CL. LU Q - 2 - 4 2 4 / 3 I / 2 6 2 8 Salinity - p.p.t. 4 2 / I 3 0 / 2 1 32 1 5 • • / / / i J / 8 10 12 14 16 Temperature - C 2 * 1 ' 1 1 1 1 i i i 0.4 0.8 1.2 1.6 1.9 Light Extinction 276 A p p e n d i x IV The mean m o n t h l y s a l i n i t y and t e m p e r a t u r e o f s u r f a c e w a t e r a t E n t r a n c e I s l a n d f o r M a r c h 1979 t o O c t o b e r 1 9 8 1 . B a r s i n d i c a t e m o n t h l y maxima and m i n i m a . Temperature - °C Salinity - p.p.t. LLZ 278 A p p e n d i x V S a l i n i t y and t e m p e r a t u r e o f s u r f a c e w a t e r a t H e l b y I s l a n d f o r November 1979 t o O c t o b e r 1 9 8 1 . > T e m p e r a t u r e - ° C S a l i n i t y - p . p . t . 6LZ 280 A p p e n d i x VI F o r m a l i n w e i g h t c h a n g e t e s t . P l a n t s c o l l e c t e d f r o m D i a n a I s l a n d on J u l y 24 1 9 8 1 . F r e s h w e i g h t t a k e n on J u l y 2 8 , 1 9 8 1 . W e i g h t a f t e r s t o r a g e t a k e n on November 7 , 1 9 8 3 . P l a n t f r e s h w e i g h t w e i g h t a f t e r X w e i g h t # s t o r a g e l o s s 1 0 . 4 0 9 0 . 2 8 6 30 2 0 . 2 2 8 0 . 1 7 6 23 3 4 . 5 6 3 . 2 9 28 4 1.59 0 . 9 5 0 40 5 1.47 0 .951 35 6 0 . 5 8 0 0 . 4 0 4 30 7 0 . 2 6 6 0 . 1 3 3 50 8 0 . 0 5 1 0 . 0 3 8 26 9 0 . 2 2 3 0 .191 14 10 0 . 0 3 8 0 . 0 2 9 23 11 1.19 0 . 8 7 2 27 12 0 . 8 9 1 0 . 6 6 5 25 13 0 . 9 4 5 0 . 7 0 8 25 14 1.46 1.18 19 15 0 . 0 6 0 0 . 0 5 8 3 16 0 . 2 9 1 0 . 2 5 7 12 A v e r a g e 26 2S1 A p p e n d i x V I I P r e l i m i n a r y work on m o r t a l i t y r a t e s a t B a t h I s l a n d i n 1 9 8 0 . Newly marked p l a n t s a r e u n d e r l i n e d . Numbers s i g n i f y number o f p l a n t s p r e s e n t on an o b s e r v a t i o n d a y . L i n e s j o i n p l a n t numbers t h a t came f r o m t h e same s a m p l e . # o f d a y s b e t w e e n o b s . 13 18 75 19 14 23 D a t e May 30 J u n . 1 2 J u n . 3 0 S e p . 1 4 O c t . 3 O c t . 1 7 N o v . 8 Q2 3 0 10 4 0 7 1 1 0 6 1 0 03 282 A p p e n d i x V I I I L i s t , o f e n v i r o n m e n t a l v a r i a b l e s u s e d i n o r d i n a t i o n s o f B a t h I s l a n d and D i a n a I s l a n d d a t a . A) B a t h I s l a n d V I . T e m p e r a t u r e ( *C) V 2 . S a l i n i t y ( p . p . t . ) x V 3 . S o l a r r a d i a t i o n ( M e g a j o u l e s / m / d a y ) V 4 . Day l e n g t h ( h o u r s / d a y ) V 5 . Number o f d a y s p l a n t s e x p o s e d V 6 . Number o f h o u r s o f day e x p o s u r e V 7 . Number o f n i g h t s p l a n t s e x p o s e d ( n o t u s e d i n G3 a n a l y s i s ) V 8 . Number o f h o u r s o f n i g h t e x p o s u r e ( n o t u s e d i n Q3 a n a l y s i s ) V 9 . P e r c e n t c o v e r o f C o l p o m e n i a B) D i a n a I s l a n d o V I . T e m p e r a t u r e ( C) V 2 . S a l i n i t y ( p . p . t . ) V 3 . S o l a r r a d i a t i o n ( g c a l / c m / d a y ) V 4 . Day l e n g t h ( h o u r s / d a y ) V 5 . P e r c e n t c o v e r o f C o l p o m e n i a 283 A p p e n d i x IX A c o m p a r i s o n o f t h e 81 <A> and t h e 100 <B> p o i n t i n t e r c e p t q u a d r a t s u s i n g # o f s p e c i e s v s # o f p o i n t i n t e r c e p t s . The s a m p l e p o i n t s a r e a v e r a g e v a l u e s <N=5). B a r s i n d i c a t e r a n g e . 284 2 285 Appendix X L i s t of taxa seen in Bath Is land quadrats Name Code I d e n t i f i c a t i o n Fucus B o s s i e l l a L i t h o t h r i x Rhodomela R a l f s i a P r i o . base 101 102 103 104 105 106 substrate 107 Hi ldenbrandia 108 P r l o n i t i s 109 Sargassum 110 cor . c rus t 111 Analipus 112 Ulva 113 Botryoglossum 114 Microc lad ia 115 I r idaea 116 Lomentarla 117 P e t r o c e l i s 118 Cryptos iphonia 119 Ceramium 120 F. d l s t l c h u s L. B. orbigniana (Dec.) S i l v a • C o r a l U n a  vancouveriensis Yendo L. aspergi l lum Gray IR. l a r i x (Turn.) C. Ag. + Odonthal ia f l occosa (Esp.) Fa lk . R. fung i formis (Gunn.) S. et G. + other species crustose base of P r i o n i t i s l anceo lata (Harv.) Harv. bare sandstone Hi ldenbrandia Nardo spp. P. l anceo lata (Harv.) Harv. S. muticum (Yendo) Fensh. Lithothamnium P h i l i p p i (?) + L i t h o t h r i x Gray crust A. japonicus (Harv.) Wynne Ulva L. + Monostroma Thuret spp. B. farlowianum ( J . Ag.) DeToni + C a l l o p h y l l i s Kutzing sp. M. cou1ter i Harv. + M. bo rea l i s Rupr. I. heterocarpa Post, et Rupr., 1^ . cordata (Turn.) Bory + G igar t ina Stackhouse sp. L. hakodatensis Yendo jP. f ranc i scana S. et G. C. woodii ( J . Ag.) J . Ag. Ceramium Roth spp. C a l l i a r t h r o n 121 C. tuberculosum (Post, et Rupr.) Dawson Plocamium 122 barnacle 123 diatoms 124 Pododesmus 125 green crus t 126 red blade 127 Laminaria 128 Porphyra 129 Scytoaiphon 130 Gelidium 131 Myt i lus 132 Odonthalia 133 Polys iphonia 134 Peta lon ia 135 286 P. tenue Ky l i n Balanus sp. diatoms P. cepio Gray not i d e n t i f i e d u n i d e n t i f i e d juven i l e blade juven i l e Laminaria Lamouroux sp Porphyra C. Agardh sp. S. lomentaria (Lyngb.) J . Ag. Gelidium Lamouroux sp. M. e d u l i s L. 0. waahingtonenala K y i . pos s ib le Polys iphonia G r e v i l l e P. f a s c i a (Hul l . ) Kuntze 287 Appendix XI L i s t of taxa seen in Diana Is land quadrats Name Code I d e n t i f i c a t i o n P r i o . base 201 crustose base of P r i o n i t i s lanceolate (Harv.) Harv. C a l l i a r t h r o n 202 Laurencia 203 cor . c rust# l 204 substrate 205 R a l f s i a 206 Chiharaea 207 Gelidium 208 Hi ldenbrandia 209 cor . crust#2 210 Pterygophora 211 C. tuberculosum (Post, et Rupr.) Dawson L. s p e c t a b i l i s Post, et Rupr. un iden t i f i ed smooth c o r a l l i n e crust bare gran i te f u n 9 i f ° r m i s (Gunn.) S. et G. + other species C. bodegensis Johansen Gelidium Lamouroux sp. Hi ldenbrandia Nardo spp. u n i d e n t i f i e d rough c o r a l l i n e crust P. c a l i f o r n i c a Rupr. Macrocyst is 212 M. i n t e g r i f o l i a Bory sponge 213 Desmarestia 214 215 216 diatoms Ceramiura f i l . green 217 B o s s i e l l a 218 bryozoan 219 P r i o n i t i s 220 tun icate 221 Microc lad ia 222 Ulva 223 red blade#l 224 u n i d e n t i f i e d sponge D. l i g u l a t a var. l i g u l a t a (L i gh t f . ) Lamour diatoms Ceramium Roth spp. u n i d e n t i f i e d f i lamentous green alga B_. orbigniana (Dec.) S i l v a + C o r a l l i n a  Vancouveriensis Yendo u n i d e n t i f i e d bryozoan P. lanceolate (Harv.) Harv. u n i d e n t i f i e d tun ica te M ic roc lad ia G r e v i l l e sp. Ulva L. • Monostroma Thuret spp. u n i d e n t i f i e d juven i l e blade P t i l o t a 225 Callithamnion 226 red blade#2 227 288 P t i l o t a C. Agardh sp. Callithamnion Lyngbye sp. u n i d e n t i f i e d dichotomous blade 289 A p p e n d i x X I I « — R e g r e s s i o n f o r B a t h I s l a n d p l a n t s a t 5 C and 9 : 15 Day 3 4 6 7 9 Mean a r e a 1.98 2 . 1 9 2 .34 2 . 4 0 2 . 5 3 < log , 0> V a r i a n c e 2 1 . 6 2 . 9 8 9 . 6 4 5 . 9 6 2 5 . 0 (X 1 0 " 3 ) n 23 23 22 22 22 G - t e s t ND NS *>« NS NS H o m o g e n e i t y o f v a r i a n c e - «» ANOVA T a b l e S o u r c e o f v a r i a t i o n d f SS MS Among g r o u p s 4 4 .01 1.00 7 7 . 0 »» L i n e a r r e g r e s s i o n 1 3 . 9 5 3 . 9 5 200 »« D e v i a t i o n f r o m r e g r e s s i o n 3 0 . 0 5 9 2 0 . 0 1 9 7 1.52 W i t h i n g r o u p s 107 1.39 0 . 0 1 3 0 T o t a l 111 5 . 4 0 The r e g r e s s i o n e q u a t i o n : Y = 1.49 + ( 1 . 1 0 ) X ND = G - t e s t n o t done b e c a u s e o f t o o few c l a s s e s NS - n o t s i g n i f i c a n t ( G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t = 0 . 0 1 o n l y ) »« = s i g n i f i c a n t (<*• = 0 . 0 1 ) « = s i g n i f i c a n t (<* = 0 . 0 5 ) 290 A p p e n d i x X I I I o — R e g r e s s i o n f o r B a t h I s l a n d p l a n t s a t 5 C and 15 : 9 Day Mean a r e a < log ( 0 > V a r i a n c e <X 1 0 ~ 3 ) n G - t e s t 3 2 . 0 5 2 5 . 8 22 ND 4 2 . 2 0 2.71 21 NS 6 2 . 3 9 1 0 . 7 20 NS 7 2 . 4 0 5 . 5 7 20 NS 9 2 . 6 3 2 3 . 3 20 ND H o m o g e n e i t y o f v a r i a n c e S o u r c e o f v a r i a t i o n ANOVA T a b l e d f SS MS Among g r o u p s 4 4 . 0 9 1.02 7 4 . 6 «« L i n e a r r e g r e s s i o n 1 3 . 9 6 3 . 9 6 9 0 . 4 »» D e v i a t i o n f r o m r e g r e s s i o n 3 0 . 1 3 1 0 . 0 4 3 8 3 . 1 9 « W i t h i n g r o u p s 98 1.34 0 . 0 1 3 7 T o t a l 102 5 .43 The r e g r e s s i o n e q u a t i o n : Y = 1 . 5 0 + ( 1 . 1 4 ) X ND NS « • * G - t e s t n o t done b e c a u s e o f t o o few c l a s s e s n o t s i g n i f i c a n t ( G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t °t = 0 .01 o n l y ) s i g n i f i c a n t ( ~ = 0 . 0 1 ) s i g n i f i c a n t ( °c = 0 . 0 5 ) 291 Appendix XIV o Regression f o r Bath I s l a n d p l a n t s a t 13 C and 9 : 15D Day Mean area <logio> Variance <X 10-3) n G-test 3 2.25 20.0 16 NS 4 2.46 21.4 16 ND 6 2.98 27.4 16 NS 7 3.13 15.9 13 NS 9 3.68 19.5 13 ND Homogeneity of v a r i a n c e - NS Source of v a r i a t i o n ANOVA Table df SS MS Among groups 4 18.3 4.59 217 «« L i n e a r r e g r e s s i o n 1 17.7 17.7 88.4 «« D e v i a t i o n from r e g r e s s i o n 3 0.602 0.201 9.51 Within groups 69 1.46 0.0211 T o t a l 73 19.8 The r e g r e s s i o n equation : Y = 0.790 + (2.88) X ND = G-test not done because o f too few c l a s s e s NS = not s i g n i f i c a n t <G-test and homogeneity of v a r i a n c e t e s t e d a t = 0.01 only) «« = s i g n i f i c a n t < <* * 0.01) * = s i g n i f i c a n t (•=<-= 0.05) 292 Appendix XV Regression f o r Bath I s l a n d p l a n t s at 13°C and 15 : 9D Day Nean area <logio> V a r i a n c e (X 10"3> n G-test 3 2.25 16.7 22 NS 4 2.45 25.6 21 NS 6 3.11 41.2 21 NS 7 3.31 22.2 IS NS 9 3.70 50.3 17 ND Homogeneity of v a r i a n c e - NS Source of v a r i a t i o n ANOVA Table d f SS MS Among groups 4 28.3 7.08 232 »« L i n e a r r e g r e s s i o n 1 27.9 27.9 195 »» D e v i a t i o n from r e g r e s s i o n 3 0.429 0.143 4.69 Within groups 94 2.87 0.0305 T o t a l 98 31.2 The r e g r e s s i o n equation : Y - 0.684 + (3.12) X ND NS * « G-test not done because of too few c l a s s e s not s i g n i f i c a n t ( G-test and homogeneity of v a r i a n c e t e s t e d at ot = 0.01 only) s i g n i f i c a n t (<* = 0.01) s i g n i f i c a n t (<* = 0.05) 293 A p p e n d i x XVI R e g r e s s i o n f o r B a t h I s l a n d p l a n t s a t 2 0 & C and 9 : 15D Day 3 4 6 7 9 Mean a r e a 2 . 2 6 2 . 5 2 3 . 3 5 3 . 5 0 3 . 8 3 < log io> V a r i a n c e 1 5 . 3 1 7 . 2 3 6 . 1 1 9 . 8 8 . 5 7 <X 1 0 - 3 ) n 17 17 17 10 9 G - t e s t ND NS NS NS ND H o m o g e n e i t y o f v a r i a n c e - NS ANOVA T a b l e S o u r c e o f v a r i a t i o n d f SS MS F Among g r o u p s 4 L i n e a r r e g r e s s i o n 1 D e v i a t i o n f r o m r e g r e s s i o n 3 W i t h i n g r o u p s 65 T o t a l 69 2 3 . 7 5 . 9 3 287 «» 2 3 . 2 2 3 . 2 146 • » 0 . 4 7 6 0 . 1 5 9 7 . 6 7 «« 1.34 0 . 0 2 0 7 25 .1 The r e g r e s s i o n e q u a t i o n : Y = 0 . 5 3 9 + ( 3 . 5 0 ) X ND = G - t e s t n o t done b e c a u s e o f t o o few c l a s s e s NS = n o t s i g n i f i c a n t ( G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t <* a 0 . 0 1 o n l y ) • « a s i g n i f i c a n t < « =» 0 . 0 1 ) « = s i g n i f i c a n t (<< = 0 . 0 5 ) 294 Appendix XVII Regression f o r Bath Island plants at 20°C and 15 : 9D Day Mean area (logio> Variance <X 10-3) n G-test 3 2.42 16.3 14 NS 4 2.94 17.1 14 ND 6 3.67 20.7 9 ND 7 9 3.67 3.79 33.1 8 ND 49.2 8 ND Homogeneity of variance - NS Source of va r i a t i o n ANOVA Table df SS MS Among groups 4 16.0 4.00 163 «» Linear regression 1 15.1 15.1 50.4 »« Deviation from regression 3 0.900 0.300 12.2 ««• Within groups 48 1.18 0.0245 Total 52 17.2 The regression equation : Y = 1.02 + (3.11) X ND = G-test not done because of too few classes NS = not s i g n i f i c a n t (G-test and homogeneity of variance tested at oi = 0.01 only) • • = s i g n i f i c a n t («* = 0.01) « = s i g n i f i c a n t ( °c= 0.05) 295 A p p e n d i x XV I I I R e g r e s s i o n f o r D i a n a Ic o s l a n d p l a n t s a t 5 C and 9 :15D Day 3 5 8 Mean a r e a 1.SO < log io> 1.96 2 . 3 4 V a r i a n c e 7 5 . 7 (X 1 0 - 3 ) 4 7 . 0 2 3 . 5 n 13 13 13 G - t e s t ND NS NS H o m o g e n e i t y o f v a r i a n c e - NS ANOVA T a b l e S o u r c e o f v a r i a t i o n d f SS MS F Among g r o u p s 2 1.97 0 . 9 8 4 2 0 . 2 L i n e a r r e g r e s s i o n 1 1.83 1.83 1 3 . 5 D e v i a t i o n f r o m r e g r e s s i o n 1 0 . 1 3 6 0 . 1 3 6 2 .78 W i t h i n g r o u p s 36 1.75 0 . 0 4 8 7 T o t a l 38 3 .72 The r e g r e s s i o n e q u a t i o n : Y = 1.17 + ( 1 . 2 5 ) X ND - G - t e s t n o t d o n e b e c a u s e o f t o o few c l a s s e s NS = n o t s i g n i f i c a n t < G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t « = 0 .01 o n l y ) «« = s i g n i f i c a n t (<* = 0 . 0 1 ) * = s i g n i f i c a n t < = 0 . 0 5 ) 296 A p p e n d i x XIX R e g r e s s i o n f o r D i a n a o I s l a n d p l a n t s a t 5 C and 15 : 9D Day 3 5 8 Mean a r e a 2 . 1 3 < log io> 2 . 2 6 2 . 5 3 V a r i a n c e 5 6 . 2 (X 1 0 - 3 ) 5 5 . 6 9 7 . 6 n 6 6 6 G - t e s t ND ND ND H o m o g e n e i t y o f v a r i a n c e - NS ANOVA T a b l e S o u r c e o f v a r i a t i o n d f SS MS F Among g r o u p s 2 0 . 5 0 5 0 . 2 5 2 3 . 6 2 « L i n e a r r e g r e s s i o n 1 0 . 4 8 3 0 . 4 8 3 2 1 . 4 D e v i a t i o n f r o m r e g r e s s i o n 1 0 . 0 2 2 6 0 . 0 2 2 6 0 . 3 2 4 W i t h i n g r o u p s 15 1.05 0 . 0 6 9 8 T o t a l 17 1.55 The r e g r e s s i o n e q u a t i o n : Y = 1.65 + ( 0 . 9 4 1 ) X ND = G - t e s t n o t d o n e b e c a u s e o f t o o few c l a s s e s NS = n o t s i g n i f i c a n t ( G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t <x- = 0 . 0 1 o n l y ) » • = s i g n i f i c a n t ( = 0 . 0 1 ) » = s i g n i f i c a n t (<* = 0 . 0 5 ) 297 A p p e n d i x XX R e g r e s s i o n f o r D i a n a I s l a n d p l a n t s a t 1 3 ° C and 9 :15D Day 3 5 8 Mean a r e a 2 . 0 0 < log io> 2 . 4 2 3 . 0 5 V a r i a n c e 4 0 . 7 (X 1 0 - 3 ) 2 2 . 1 2 7 . 7 n 11 ^ 11 11 G - t e s t NS ND NS H o m o g e n e i t y o f v a r i a n c e - NS ANOVA T a b l e S o u r c e o f v a r i a t i o n d f SS MS F Among g r o u p s 2 6 . 0 4 3 . 0 2 100 « * L i n e a r r e g r e s s i o n 1 5 . 9 3 5 . 9 3 5 0 . 7 D e v i a t i o n f r o m r e g r e s s i o n 1 0 . 1 1 7 0 . 1 1 7 3 .88 W i t h i n g r o u p s 30 0 . 9 0 5 0 . 0 3 0 2 T o t a l 32 6 . 9 5 The r e g r e s s i o n e q u a t i o n : Y = 0 . 8 0 2 + ( 2 . 4 4 ) X ND = G - t e s t n o t done b e c a u s e o f t o o few c l a s s e s NS = n o t s i g n i f i c a n t ( G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t = 0 . 0 1 o n l y ) «« = s i g n i f i c a n t <«* = 0 . 0 1 ) * = s i g n i f i c a n t (°< = 0 . 0 5 ) 298 A p p e n d i x XXI o R e g r e s s i o n f o r D i a n a I s l a n d p l a n t s a t 13 C and 15 : 9D Day Mean a r e a (logio> V a r i a n c e (X 1 0 - 3 ) n G - t e s t 3 2 . 2 3 5 8 . 4 18 ND 5 2 .74 5 1 . 1 18 ND 8 3 . 4 9 109 16 ND H o m o g e n e i t y o f v a r i a n c e - NS S o u r c e o f v a r i a t i o n ANOVA T a b l e d f SS MS Among g r o u p s 2 1 3 . 7 6 . 8 5 9 5 . 7 «» L i n e a r r e g r e s s i o n 1 1 3 . 4 1 3 . 4 5 3 . 8 D e v i a t i o n f r o m r e g r e s s i o n 1 0 . 2 5 0 0 . 2 5 0 3 . 4 9 W i t h i n g r o u p s 49 3 . 5 0 0 . 0 7 1 5 T o t a l 51 1 7 . 2 The r e g r e s s i o n e q u a t i o n : Y = 0 . 7 7 2 + ( 2 . 9 5 ) X ND = G - t e s t n o t done b e c a u s e o f t o o few c l a s s e s NS = n o t s i g n i f i c a n t ( G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t » 0 . 0 1 o n l y ) * « = s i g n i f i c a n t (<* = 0 . 0 1 ) « = s i g n i f i c a n t (°< = 0 . 0 5 ) 299 A p p e n d i x XX I I R e g r e s s i o n f o r D i a n a I s l a n d p l a n t s a t 20°C and 9 :15D Day Mean a r e a <logio> V a r i a n c e (X 1 0 - 3 ) n G - t e s t 3 2 . 2 5 2 0 . 4 21 NS 5 2 . 7 3 5 5 . 0 21 ND 8 3 . 6 7 120 20 NS H o m o g e n e i t y o f v a r i a n c e - «« S o u r c e o f v a r i a t i o n AN0VA T a b l e d f SS HS Among g r o u p s 2 2 1 . 3 1 0 . 7 166 »» L i n e a r r e g r e s s i o n 1 2 0 . 4 2 0 . 4 2 1 . 9 D e v i a t i o n f r o m r e g r e s s i o n 1 0 . 9 2 9 0 . 9 2 9 1 4 . 5 «» W i t h i n g r o u p s 59 3 . 7 9 0 . 0 6 4 2 T o t a l 61 25 .1 The r e g r e s s i o n e q u a t i o n : Y = 0 . 5 9 0 + <3.31) X ND NS * « » G - t e s t n o t done b e c a u s e o f t o o few c l a s s e s n o t s i g n i f i c a n t ( G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t <* = 0 .01 o n l y ) s i g n i f i c a n t (<*£ = 0 . 0 1 ) s i g n i f i c a n t («< = 0 . 0 5 ) 300 A p p e n d i x XX I I I o R e g r e s s i o n f o r D i a n a I s l a n d p l a n t s a t 20 C and 15 : 9D Day Mean a r e a <logio> V a r i a n c e (X 1 0 - 3 ) n G - t e s t 3 2 . 4 5 5 .84 19 NS 5 3 . 2 7 2 1 . 7 17 NS 8 4 . 1 6 1 7 . 2 17 ND H o m o g e n e i t y o f v a r i a n c e - * » S o u r c e o f v a r i a t i o n ANOVA T a b l e d f SS MS Among g r o u p s 2 L i n e a r r e g r e s s i o n 1 D e v i a t i o n f r o m r e g r e s s i o n 1 W i t h i n g r o u p s 50 T o t a l 52 2 6 . 2 13 .1 205 » * 2 6 . 2 2 6 . 2 457 » 0 . 0 5 7 2 0 . 0 5 7 2 0 . 8 9 5 3 . 2 0 0 . 0 6 4 0 2 9 . 4 The r e g r e s s i o n e q u a t i o n : Y = 0 . 5 2 4 + ( 4 . 0 0 ) X ND NS « « * G - t e s t n o t done b e c a u s e o f t o o few c l a s s e s n o t s i g n i f i c a n t ( G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t «*- = 0 .01 o n l y ) s i g n i f i c a n t (<*= 0 . 0 1 ) s i g n i f i c a n t < = 0 . 0 5 ) 301 A p p e n d i x XXIV R e g r e s s i o n f o r B a t h I s l a n d p l a n t s w i t h 0 uM n i t r a t e Day 4 7 9 11 Mean a r e a 2 . 2 2 <logio> 3 . 0 5 3 . 5 9 4 . 0 9 V a r i a n c e 3 5 . 1 (X 1 0 - 3 ) 124 126 1 0 . 3 n 15 14 11 9 G - t e s t NS NS ND ND H o m o g e n e i t y o f v a r i a n c e - * « ANOVA T a b l e S o u r c e o f v a r i a t i o n d f SS MS F Among g r o u p s 3 2 3 . 1 7 . 7 0 100 » * L i n e a r r e g r e s s i o n 1 2 2 . 7 2 2 . 7 117 «« D e v i a t i o n f r o m r e g r e s s i o n 2 0 . 3 8 9 0 . 1 9 4 2 . 5 5 W i t h i n g r o u p s 45 3 . 4 4 0 . 0 7 6 4 T o t a l 48 2 6 . 6 The r e g r e s s i o n e q u a t i o n : Y = <- 0 . 3 0 3 ) • ( 4 . 1 0 ) X ND = G - t e s t n o t done b e c a u s e o f t o o few c l a s s e s NS = n o t s i g n i f i c a n t < G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t = 0 .01 o n l y ) «» = s i g n i f i c a n t < <* = 0 . 0 1 ) « = s i g n i f i c a n t < = 0 . 0 5 ) 302 A p p e n d i x XXV R e g r e s s i o n f o r B a t h I s l a n d p l a n t s w i t h 1.5 11H n i t r a t e Day Mean a r e a <logio> V a r i a n c e <X 1 0 - 3 ) n G - t e s t 4 2 .21 2 6 . 1 17 ND 7 3 . 1 6 9 1 . 3 15 NS 9 3 . 5 5 4 3 . 3 13 NS 11 3 . 9 4 3 3 . 6 10 NS H o m o g e n e i t y o f v a r i a n c e - NS S o u r c e o f v a r i a t i o n ANOVA T a b l e d f SS HS Among g r o u p s 3 L i n e a r r e g r e s s i o n 1 D e v i a t i o n f r o m r e g r e s s i o n 2 W i t h i n g r o u p s 51 T o t a l 54 2 3 . 3 7 . 7 8 158 »» 2 3 . 3 2 3 . 3 3100 »« 0 . 0 1 5 1 0 . 0 0 7 5 0 . 1 5 3 2 . 5 2 0 . 0 4 9 4 2 5 . 9 The r e g r e s s i o n e q u a t i o n : Y = <- 0 . 1 4 6 ) + <3.91) X ND NS • « G - t e s t n o t d o n e b e c a u s e o f t o o few c l a s s e s n o t s i g n i f i c a n t ( G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t c< = 0 .01 o n l y ) s i g n i f i c a n t ( = 0 . 0 1 ) s i g n i f i c a n t (<*.= 0 . 0 5 ) 303 A p p e n d i x XXVI R e g r e s s i o n f o r B a t h I s l a n d p l a n t s w i t h 5 uM n i t r a t e Day 4 7 9 11 Mean a r e a 2 .34 <logio> 3 . 2 6 3 . 6 5 3 . 9 5 V a r i a n c e 1 6 . 6 <X 1 0 - 3 ) 6 1 . 3 4 4 . 4 4 3 . 1 n 21 + 22 20 20 G - t e s t NS NS NS NS H o m o g e n e i t y o f v a r i a n c e - NS ANOVA T a b l e S o u r c e o f v a r i a t i o n d f SS MS F Among g r o u p s 3 3 0 . 3 10 .1 243 »« L i n e a r r e g r e s s i o n 1 3 0 . 2 3 0 . 2 3540 «« D e v i a t i o n f r o m r e g r e s s i o n 2 0 . 0 1 7 1 0 . 0 0 8 5 0 . 2 0 6 W i t h i n g r o u p s 79 3 . 2 8 0 . 0 4 1 5 T o t a l 82 3 3 . 5 The r e g r e s s i o n e q u a t i o n : Y = 0 . 1 2 8 + ( 3 . 6 9 ) X ND = G - t e s t n o t done b e c a u s e o f t o o few c l a s s e s NS = n o t s i g n i f i c a n t ( "G- tes t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t oL = 0 .01 o n l y ) «« = s i g n i f i c a n t (<* = 0 . 0 1 ) * - s i g n i f i c a n t (. ot = 0 . 0 5 ) + = one p l a t e m i s s e d 304 A p p e n d i x XXVI I R e g r e s s i o n f o r B a t h I s l a n d p l a n t s w i t h 1 5 J J M n i t r a t e Day 4 7 9 1 1 Mean a r e a 2 . 4 3 3 . 3 2 3 . 6 5 3 . 9 3 <logio> V a r i a n c e 1 5 . 3 8 0 . 7 2 1 . 9 3 2 . 0 <X 1 0 - 3 ) n 2 3 2 2 1 7 1 5 G - t e s t NS NS ND NS H o m o g e n e i t y o f v a r i a n c e - «« ANOVA T a b l e S o u r c e o f v a r i a t i o n d f SS MS F Among g r o u p s 3 2 5 . 4 8 . 4 7 218 • • L i n e a r r e g r e s s i o n 1 2 4 . 5 2 4 . 5 5 5 . 4 » D e v i a t i o n f r o m r e g r e s s i o n 2 0 . 8 8 5 0 . 4 4 3 1 1 . 4 »» W i t h i n g r o u p s 73 2 . 8 3 0 . 0 3 8 8 T o t a l 76 2 8 . 2 The r e g r e s s i o n e q u a t i o n : y = <-0 .598) + ( 4 . 4 5 ) X ND = G - t e s t n o t done b e c a u s e o f t o o few c l a s s e s NS = n o t s i g n i f i c a n t ( G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t = 0 . 0 1 o n l y ) «» = s i g n i f i c a n t ( <* = 0 . 0 1 ) » = s i g n i f i c a n t ( = 0 . 0 5 ) 305 A p p e n d i x XXV I I I R e g r e s s i o n f o r B a t h I s l a n d p l a n t s w i t h 25 jiM n i t r a t e Day Mean a r e a <logio> V a r i a n c e <X 1 0 " 3 ) n G - t e s t 4 2 . 4 0 2 6 . 5 20 NS 7 3 . 3 0 7 8 . 1 19 NS 9 3 . 5 6 3 5 . 0 17 NS 11 3 . 8 8 3 4 . 3 14 NS H o m o g e n e i t y o f v a r i a n c e - NS S o u r c e o f v a r i a t i o n ANOVA T a b l e d f SS MS Among g r o u p s 3 2 1 . 8 7 . 2 7 164 » * L i n e a r r e g r e s s i o n 1 2 0 . 9 2 0 . 9 4 7 . 2 * D e v i a t i o n f r o m r e g r e s s i o n 2 0 . 8 8 6 0 . 4 4 3 1 0 . 0 * • W i t h i n g r o u p s 66 2 . 9 2 0 . 0 4 4 2 T o t a l 69 2 4 . 7 The r e g r e s s i o n e q u a t i o n : Y = ( - 0 . 5 3 3 ) + ( 4 . 3 2 ) X ND NS « G - t e s t n o t done b e c a u s e o f t o o few c l a s s e s n o t s i g n i f i c a n t ( G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t oc = 0 .01 o n l y ) s i g n i f i c a n t (<* = 0 . 0 1 ) s i g n i f i c a n t ( = 0 . 0 5 ) 306 A p p e n d i x XXIX R e g r e s s i o n f o r B a t h I s l a n d p l a n t s w i t h 543 J J M n i t r a t e Day Mean a r e a <logio> V a r i a n c e (X 1 0 - 3 ) n G - t e s t 4 2 . 3 6 1 5 . 4 16 NS 7 3 .22 7 0 . 0 16 NS 9 3 . 4 6 1 4 . 6 12 NS 11 3 . 7 7 2 6 . 7 11 ND H o m o g e n e i t y o f v a r i a n c e - «» S o u r c e o f v a r i a t i o n ANOVA T a b l e d f SS M S Among g r o u p s 3 1 5 . 4 5 . 1 5 154 • * L i n e a r r e g r e s s i o n 1 1 4 . 7 1 4 . 7 4 2 . 9 « D e v i a t i o n f r o m r e g r e s s i o n 2 0 . 6 8 8 0 . 3 4 4 1 0 . 3 « * W i t h i n g r o u p s 51 1.71 0 . 0 3 3 5 T o t a l 54 17.1 The r e g r e s s i o n e q u a t i o n : Y = ( - 0 . 4 1 4 ) + ( 4 . 1 0 ) X ND = G - t e s t n o t done b e c a u s e o f t o o few c l a s s e s NS = n o t s i g n i f i c a n t ( G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t = 0 .01 o n l y ) «« = s i g n i f i c a n t ( = 0 . 0 1 ) « = s i g n i f i c a n t ( o c = 0 . 0 5 ) 307 A p p e n d i x XXX o R e g r e s s i o n f o r D i x o n I s l a n d p l a n t s w i t h 0 pH n i t r a t e a t 13 C Day 3 4 6 8 Mean a r e a 2 . 0 2 <logio> 2 . 2 7 2 . 7 7 3 . 0 5 V a r i a n c e 7 . 9 2 <X 1 0 - 3 ) 6 . 7 6 4 1 . 8 1 5 . 3 n 10 10 10 10 G - t e s t ND ND ND ND H o m o g e n e i t y o f v a r i a n c e - NS AN0VA T a b l e S o u r c e o f v a r i a t i o n d f SS MS F Among g r o u p s 3 6 .61 2 . 2 0 123 * » L i n e a r r e g r e s s i o n 1 6 . 5 9 6 . 5 9 518 »» D e v i a t i o n f r o m r e g r e s s i o n 2 0 . 0 2 5 4 0 . 0 1 2 7 0 . 7 0 9 W i t h i n g r o u p s 36 0 . 6 4 5 0 . 0 1 7 9 T o t a l 39 7 .26 The r e g r e s s i o n e q u a t i o n : Y = 0 . 8 0 9 + ( 2 . 4 9 ) X ND = G - t e s t n o t done b e c a u s e o f t o o few c l a s s e s NS = n o t s i g n i f i c a n t ( G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t = 0 .01 o n l y ) «« = s i g n i f i c a n t <<*• = 0 . 0 1 ) « = s i g n i f i c a n t (<* = 0 . 0 5 ) 308 A p p e n d i x XXXI R e g r e s s i o n f o r D i x o n I s l a n d p l a n t s w i t h 0 ptl n i t r a t e a t 2 0 ° C Day 3 4 6 8 Mean a r e a 2 . 1 2 ( l o g i o > 2 . 5 2 3 . 5 0 4 . 0 0 V a r i a n c e 7 .82 <X 1 0 - 3 ) 6 . 5 0 1 8 . 7 4 1 . 3 n 16 16 15 14 G - t e s t ND ND NS ND H o m o g e n e i t y o f v a r i a n c e - « * ANOVA T a b l e S o u r c e o f v a r i a t i o n d f SS MS F Among g r o u p s 3 33 .0 1 1 . 0 620 »» L i n e a r r e g r e s s i o n 1 32 .7 3 2 . 7 192 * * D e v i a t i o n f r o m r e g r e s s i o n 2 0 . 340 0 . 1 7 0 9 . 5 6 W i t h i n g r o u p s 57 1 .01 0 . 0 1 7 8 T o t a l 60 34 .0 The r e g r e s s i o n e q u a t i o n : Y = ( - 0 . 0 9 4 7 ) • ( 4 . 5 2 ) X ND = G - t e s t n o t done b e c a u s e o f t o o few c l a s s e s NS = n o t s i g n i f i c a n t ( G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t = 0 .01 o n l y ) «« = s i g n i f i c a n t (•* = 0 . 0 1 ) » = s i g n i f i c a n t (<* = 0 . 0 5 ) 309 A p p e n d i x XXXI I o R e g r e s s i o n f o r D i x o n I s l a n d p l a n t s w i t h 1 pM n i t r a t e a t 13 C Day 3 4 6 8 Mean a r e a 2 . 0 0 <logio> 2 . 2 6 2 . 7 5 3 . 1 4 V a r i a n c e 8 . 1 8 <X 1 0 - 3 ) 3 .84 14 .1 4 1 . 9 n 20 20 20 20 G - t e s t NS NS ND ND H o m o g e n e i t y o f v a r i a n c e -ANOVA T a b l e S o u r c e o f v a r i a t i o n d f SS MS F Among g r o u p s 3 1 5 . 3 5.11 301 « * L i n e a r r e g r e s s i o n 1 1 5 . 2 1 5 . 2 319 * * D e v i a t i o n f r o m r e g r e s s i o n 2 0 . 0 9 5 6 0 . 0 4 7 8 2 . 81 W i t h i n g r o u p s 76 1.29 0 . 0 1 7 0 T o t a l 79 1 6 . 6 The r e g r e s s i o n e q u a t i o n : Y = 0 . 6 9 0 + ( 2 . 6 8 ) X ND = G - t e s t n o t done b e c a u s e o f t o o few c l a s s e s NS = n o t s i g n i f i c a n t ( G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t = 0 .01 o n l y ) * « = s i g n i f i c a n t (<* = 0 . 0 1 ) » = s i g n i f i c a n t (<* = 0 . 0 5 ) 310 A p p e n d i x XXX I I I R e g r e s s i o n f o r D i x o n I s l a n d p l a n t s w i t h 1 ptl n i t r a t e a t 20°C Day 3 4 6 8 Mean a r e a 2 .21 < log io> 2 . 6 5 3 . 4 5 3 . 9 2 V a r i a n c e 8 . 1 7 <X 10~3> 1 0 . 4 1 9 . 4 4 0 . 5 n 19 19 19 17 G - t e s t NS NS NS NS H o m o g e n e i t y o f v a r i a n c e - • • ANOVA T a b l e S o u r c e o f v a r i a t i o n d f SS MS F Among g r o u p s 3 32 .5 1 0 . 8 570 « * L i n e a r r e g r e s s i o n 1 32 .5 3 2 . 5 907 *>« D e v i a t i o n f r o m r e g r e s s i o n 2 0 .0716 0 . 0 3 5 8 1.88 W i t h i n g r o u p s 70 1 .33 0 . 0 1 9 0 T o t a l 73 33 .9 The r e g r e s s i o n e q u a t i o n : Y = 0 . 2 2 4 + ( 4 . 1 1 ) X ND = G - t e s t n o t done b e c a u s e o f t o o few c l a s s e s NS = n o t s i g n i f i c a n t < G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t = o . O l o n l y ) * « = s i g n i f i c a n t <<*= 0 . 0 1 ) » = s i g n i f i c a n t < = 0 . 0 5 ) 3 1 1 A p p e n d i x XXXIV o R e g r e s s i o n f o r D i x o n I s l a n d p l a n t s w i t h 5 J J M n i t r a t e a t 1 3 C Day 3 4 6 8 Mean a r e a 2 . 0 5 <logio> 2 . 2 9 2 . 7 3 3 . 2 0 V a r i a n c e 1 0 . 3 <X 1 0 - 3 ) 0 . 9 6 9 4 . 0 7 6 6 . 3 n 1 7 1 7 1 7 1 6 G - t e s t ND ND NS ND H o m o g e n e i t y o f v a r i a n c e - • * ANOVA T a b l e S o u r c e o f v a r i a t i o n d f SS MS F Among g r o u p s 3 1 2 . 7 4 . 2 2 2 1 4 » « L i n e a r r e g r e s s i o n 1 1 2 . 4 1 2 . 4 1 1 3 » » D e v i a t i o n f r o m r e g r e s s i o n 2 0 . 2 2 1 0 . 1 1 1 5 . 6 1 W i t h i n g r o u p s 6 3 1 . 2 4 0 . 0 1 9 7 T o t a l 6 6 1 3 . 9 The r e g r e s s i o n e q u a t i o n : Y = 0 . 7 3 4 + ( 2 . 6 6 ) X ND - G - t e s t n o t d o n e b e c a u s e o f t o o few c l a s s e s NS = n o t s i g n i f i c a n t ( G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t o i = 0 . 0 1 o n l y ) »« = s i g n i f i c a n t ( ^ = 0 . 0 1 ) « = s i g n i f i c a n t (<*= 0 . 0 5 ) 312 A p p e n d i x XXXV o R e g r e s s i o n f o r D i x o n I s l a n d p l a n t s w i t h 5 pH n i t r a t e a t 20 C Day Mean a r e a < l o g i o ) V a r i a n c e <X 1 0 - 3 ) n G - t e s t 3 2 .21 8 . 4 5 18 NS 4 2 . 5 6 8 . 2 4 18 NS 6 3 . 4 0 6 0 . 3 18 ND 8 3 . 8 7 3 3 . 5 17 NS H o m o g e n e i t y o f v a r i a n c e - «» S o u r c e o f v a r i a t i o n ANOVA T a b l e d f SS MS Among g r o u p s 3 3 0 . 4 10 .1 368 » * L i n e a r r e g r e s s i o n 1 3 0 . 1 3 0 . 1 241 • » D e v i a t i o n f r o m r e g r e s s i o n 2 0 . 2 5 0 0 . 1 2 5 4 . 5 5 * W i t h i n g r o u p s 67 1.84 0 . 0 2 7 5 T o t a l 70 3 2 . 2 The r e g r e s s i o n e q u a t i o n : Y = 0 . 2 4 1 + ( 4 . 0 2 ) X ND = G - t e s t n o t d o n e b e c a u s e o f t o o few c l a s s e s NS = n o t s i g n i f i c a n t ( G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t oi = 0 .01 o n l y ) • « = s i g n i f i c a n t < <* = 0 . 0 1 ) « = s i g n i f i c a n t < = 0 . 0 5 ) 313 A p p e n d i x XXXVI R e g r e s s i o n f o r B a t h I s l a n d p l a n t s w i t h 0 J J M n i t r a t e a t 1 3 ° C Day 5 7 1 0 Mean a r e a 2 . 3 1 2 . 7 6 3 . 5 8 <logio> V a r i a n c e 2 2 . 0 2 8 . 4 4 1 . 8 (X 1 0 - 3 ) n IS 1 8 IS G - t e s t NS NS ND H o m o g e n e i t y o f v a r i a n c e - NS ANOVA T a b l e S o u r c e o f v a r i a t i o n d f SS MS F Among g r o u p s 2 15 .0 7 .52 245 «• L i n e a r r e g r e s s ! on 1 14 .7 14 . 7 45 . .6 D e v i a t i o n f r o m r e g r e s s i o n 1 0 .323 0 .323 10. .5 «« W i t h i n g r o u p s 51 1 .57 0 . 0307 T o t a l 53 16 .6 The r e g r e s s i o n e q u a t i o n : Y = <-0 .720) + ( 4 . 2 5 ) X ND = G - t e s t n o t done b e c a u s e o f t o o few c l a s s e s NS = n o t s i g n i f i c a n t ( G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t « = 0 . 0 1 o n l y ) • « = s i g n i f i c a n t ( = 0 . 0 1 ) » = s i g n i f i c a n t (°C = 0 . 0 5 ) 314 A p p e n d i x XXXVI I o R e g r e s s i o n f o r B a t h I s l a n d p l a n t s w i t h 0 JJM n i t r a t e a t 20 C Day 5 7 10 Mean a r e a 2 . 8 0 C l o g i o > 3 . 4 5 4 . 0 0 V a r i a n c e 8 8 . 0 (X 1 0 - 3 ) 2 4 . 8 7 3 . 2 n 20 20 17 G - t e s t ND NS NS H o m o g e n e i t y o f v a r i a n c e - NS ANOVA T a b l e S o u r c e o f v a r i a t i o n d f SS MS F Among g r o u p s 2 1 3 . 3 6 . 6 3 108 * » L i n e a r r e g r e s s i o n 1 1 3 . 2 1 3 . 2 186 « D e v i a t i o n f r o m r e g r e s s i o n 1 0 . 0 7 0 7 0 . 0 7 0 7 1.15 W i t h i n g r o u p s 54 3.31 0 . 0 6 1 4 T o t a l 56 1 6 . 6 The r e g r e s s i o n e q u a t i o n : Y = 0 . 0 3 8 4 + ( 3 . 9 8 ) X ND = G - t e s t n o t done b e c a u s e o f t o o few c l a s s e s NS = n o t s i g n i f i c a n t < G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t = 0 . 0 1 o n l y ) «« = s i g n i f i c a n t < «• = 0 . 0 1 ) * = s i g n i f i c a n t <<*.= 0 . 0 5 ) 315 A p p e n d i x XXXV I I I o R e g r e s s i o n f o r B a t h I s l a n d p l a n t s w i t h 1 jilt n i t r a t e a t 13 C Day 5 7 10 Mean a r e a 2 . 4 3 3 . 0 2 3 .86 ( l o g i c - ) V a r i a n c e 1 1 . 3 3 7 . 1 4 1 . 9 (X 1 0 - 3 ) n 20 20 16 G - t e s t NS ND NS H o m o g e n e i t y o f v a r i a n c e - NS ANOVA T a b l e S o u r c e o f v a r i a t i o n d f SS MS F Among g r o u p s 2 18 .1 9 . 0 4 310 »« L i n e a r r e g r e s s i o n 1 1 8 . 0 1 8 . 0 142 * D e v i a t i o n f r o m r e g r e s s i o n 1 0 . 1 2 6 0 . 1 2 6 4 . 3 2 « W i t h i n g r o u p s 53 1.55 0 . 0 2 9 2 T o t a l 55 1 9 . 6 The r e g r e s s i o n e q u a t i o n : Y = ( - 0 . 8 9 8 ) + ( 4 . 7 2 ) X ND = G - t e s t n o t done b e c a u s e o f t o o few c l a s s e s NS = n o t s i g n i f i c a n t ( G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t = 0 . 0 1 o n l y ) «« = s i g n i f i c a n t ( = 0 . 0 1 ) « = s i g n i f i c a n t ( « * = 0 . 0 5 ) 316 A p p e n d i x XXXIX o R e g r e s s i o n f o r B a t h I s l a n d p l a n t s w i t h 1 jiM n i t r a t e a t 20 C Day Mean a r e a <logio> V a r i a n c e <X 1 0 - 3 ) 5 2 .71 1 7 . 0 19 n G - t e s t »« H o m o g e n e i t y o f v a r i a n c e 7 3 . 6 7 1 3 . 5 18 NS 10 4 . 2 2 5 9 . 0 15 ND S o u r c e o f v a r i a t i o n AN0VA T a b l e d f SS HS Among g r o u p s 2 2 0 . 1 1 0 . 0 361 »» L i n e a r r e g r e s s i o n 1 1 9 . 5 1 9 . 5 3 2 . 1 D e v i a t i o n f r o m r e g r e s s i o n 1 0 . 6 0 5 0 . 6 0 5 2 1 . 8 W i t h i n g r o u p s 49 1.36 0 . 0 2 7 8 T o t a l 51 2 1 . 4 The r e g r e s s i o n e q u a t i o n : Y = ( - 0 . 7 4 8 ) + ( 5 . 0 5 ) X ND = G - t e s t n o t d o n e b e c a u s e o f t o o few c l a s s e s NS = n o t s i g n i f i c a n t ( G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t = 0 . 0 1 o n l y ) • * = s i g n i f i c a n t ( ° ^ = 0 . 0 1 ) » = s i g n i f i c a n t ( = 0 . 0 5 ) 317 A p p e n d i x XL R e g r e s s i o n f o r B a t h I s l a n d p l a n t s w i t h 5 JJM n i t r a t e a t 13 C Day 5 7 10 Mean a r e a 2.37 2.88 3.70 <logio> V a r i a n c e 26.5 62.9 48.3 <X 10-3) n 18 18 18 G - t e s t »« ND «« H o m o g e n e i t y o f v a r i a n c e - NS ANOVA T a b l e S o u r c e o f v a r i a t i o n d f SS MS F Among g r o u p s 2 1 6 . 3 8 . 1 3 177 » * L i n e a r r e g r e s s i o n 1 1 6 . 0 1 6 . 0 7 5 . 1 D e v i a t i o n f r o m r e g r e s s i o n 1 0 . 2 1 4 0 . 2 1 4 4 . 6 5 • W i t h i n g r o u p s 51 2 . 3 4 0 . 0 4 5 9 T o t a l 53 1 8 . 6 The r e g r e s s i o n e q u a t i o n : Y « ( - 0 . 7 8 1 ) + ( 4 . 4 3 ) X ND = G - t e s t n o t done b e c a u s e o f t o o few c l a s s e s NS = n o t s i g n i f i c a n t ( G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t °< = 0 .01 o n l y ) »« = s i g n i f i c a n t (<* = 0 . 0 1 ) « = s i g n i f i c a n t (<* = 0 . 0 5 ) 318 A p p e n d i x XL I R e g r e s s i o n f o r B a t h I s l a n d p l a n t s w i t h 5 ptt n i t r a t e a t 2 0 ° C Day 5 7 10 Mean a r e a 2 . 8 4 3 . 5 3 3 . 9 6 <logio> V a r i a n c e 2 7 . 7 1 7 . 3 7 1 . 1 <X 1 0 - 3 ) n 20 18 16 G - t e s t NS ND NS H o m o g e n e i t y o f v a r i a n c e - NS ( ANOVA T a b l e S o u r c e o f v a r i a t i o n d f SS MS F Among g r o u p s 2 1 1 . 7 5 . 8 6 158 ** L i n e a r r e g r e s s i o n 1 1 1 . 5 1 1 . 5 4 7 . 3 D e v i a t i o n f r o m r e g r e s s i o n 1 0 . 2 4 3 0 . 2 4 3 6 . 56 W i t h i n g r o u p s 51 1.89 0 . 0 3 7 0 T o t a l 53 1 3 . 6 The r e g r e s s i o n e q u a t i o n : Y = 0 . 244 + <3. 77 ) X ND = G - t e s t n o t done b e c a u s e o f t o o few c l a s s e s NS = n o t s i g n i f i c a n t < G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t = 0 . 0 1 o n l y ) «« = s i g n i f i c a n t < = 0 . 0 1 ) » = s i g n i f i c a n t 0 . 0 5 ) 319 A p p e n d i x XL I I R e g r e s s i o n f o r B a t h I s l a n d p l a n t s i n 15 p . p . t . a t 1 3 ° C Day 4 6 8 11 Mean a r e a 2 . 0 4 ( l o g i o > 2 . 5 9 3 . 0 6 3 . 8 4 V a r i a n c e 5 4 . 8 <X 10~3> 2 1 . 4 3 7 . 1 3 9 . 6 n 24 20 20 20 G - t e s t NS ND NS NS H o m o g e n e i t y o f v a r i a n c e - NS ANOVA T a b l e S o u r c e o f v a r i a t i o n d f SS MS F Among g r o u p s 3 3 7 . 9 1 2 . 6 324 »» L i n e a r r e g r e s s i o n 1 3 7 . 1 3 7 . 1 9 6 . 2 « D e v i a t i o n f r o m r e g r e s s i o n 2 0 . 7 7 2 0 . 3 8 6 9 . 8 9 «« W i t h i n g r o u p s 80 3 . 1 2 0 . 0 3 9 0 T o t a l 83 4 1 . 0 The r e g r e s s i o n e q u a t i o n : Y = (- 0 . 4 6 5 ) + <4.03) X ND = G - t e s t n o t done b e c a u s e o f t o o few c l a s s e s NS = n o t s i g n i f i c a n t ( G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t ^ = 0 .01 o n l y ) «« = s i g n i f i c a n t (<* = 0 . 0 1 ) » = s i g n i f i c a n t ( « = 0 . 0 5 ) 320 A p p e n d i x X L I I I R e g r e s s i o n f o r B a t h I s l a n d p l a n t s i n 15 p . p . t . a t 2 0 ° C Day 4 6 8 11 Mean a r e a 2 . 2 7 <logio> 3 . 2 2 3 . 9 2 4 .21 V a r i a n c e 2 0 . 1 <X 1 0 - 3 ) 6 5 . 9 2 9 . 9 6 5 . 7 n IS 18 15 14 G - t e s t NS NS ND NS H o m o g e n e i t y o f v a r i a n c e - NS ANOVA T a b l e S o u r c e o f v a r i a t i o n d f SS MS F Among g r o u p s 3 36 .4 12 .1 271 *» L i n e a r r e g r e s s i o n 1 35 .4 3 5 . 4 70 . 7 « D e v i a t i o n f r o m r e g r e s s i o n 2 1 .00 0 .501 11 .2 »» W i t h i n g r o u p s 61 2 .74 0 . 0 4 4 8 T o t a l 64 39 .1 The r e g r e s s i o n e q u a t i o n : Y = ( - 0 . 4 2 3 ) + ( 4 . 6 1 ) X ND = G - t e s t n o t done b e c a u s e o f t o o few c l a s s e s NS = n o t s i g n i f i c a n t ( G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t <X = o . O l o n l y ) «« = s i g n i f i c a n t (<=* = 0 . 0 1 ) » = s i g n i f i c a n t (<*= 0 . 0 5 ) 321 A p p e n d i x XL IV R e g r e s s i o n f o r B a t h I s l a n d p l a n t s i n 23 p . p . t . a t 13 C Day 4 6 8 11 Mean a r e a 2 . 2 2 <logio> 2.61 3 . 13 3 . 7 7 V a r i a n c e 1 9 . 8 <X l O - 3 ) 3 7 . 4 3 7 . 7 159 n 21 21 21 16 G - t e s t NS * * NS NS H o m o g e n e i t y o f v a r i a n c e - NS ANOVA T a b l e S o u r c e o f v a r i a t i o n d f SS HS F Among g r o u p s 3 2 4 . 5 8 . 1 7 269 »« L i n e a r r e g r e s s i o n 1 2 3 . 8 2 3 . 8 6 2 . 9 « D e v i a t i o n f r o m r e g r e s s i o n 2 0 . 7 5 5 0 . 3 7 8 1 2 . 4 » • W i t h i n g r o u p s 75 2 . 2 8 0 . 0 3 0 4 T o t a l 78 2 6 . 8 The r e g r e s s i o n e q u a t i o n : Y = 0 . 0 2 9 2 • <3.49> X ND = G - t e s t n o t done b e c a u s e o f t o o few c l a s s e s NS = n o t s i g n i f i c a n t < G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t ex. = 0 . 0 1 o n l y ) «« = s i g n i f i c a n t 0 . 0 1 ) » = s i g n i f i c a n t <<*-= 0 . 0 5 ) 322 A p p e n d i x XLV Cl R e g r e s s i o n f o r B a t h I s l a n d p l a n t s i n 23 p . p . t . a t 20 C Day Mean a r e a <logio> V a r i a n c e <X 1 0 - 3 ) 4 2 .41 2 2 . 7 21 n G - t e s t «» H o m o g e n e i t y o f v a r i a n c e 6 3 .16 4 3 . 5 21 NS 8 3 . 7 6 7 5 . 3 11 NS 11 4 . 1 5 4 1 . 0 10 NS NS S o u r c e o f v a r i a t i o n ANOVA T a b l e d f SS MS Among g r o u p s 3 2 5 . 7 8 . 5 6 207 »» L i n e a r r e g r e s s i o n 1 2 5 . 5 2 5 . 5 316 » • D e v i a t i o n f r o m r e g r e s s i o n 2 0 . 1 6 2 0 . 0 8 0 9 1.95 W i t h i n g r o u p s 59 2 . 4 4 0 . 0 4 1 4 T o t a l 62 28 .1 The r e g r e s s i o n e q u a t i o n : Y = <- 0 . 0 4 9 2 ) + ( 4 . 1 2 ) X ND NS « » » G - t e s t n o t d o n e b e c a u s e o f t o o few c l a s s e s n o t s i g n i f i c a n t ( G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t ex. = 0 .01 o n l y ) s i g n i f i c a n t (<* = 0 . 0 1 ) s i g n i f i c a n t ( <*• = 0 . 0 5 ) 323 A p p e n d i x XLV I R e g r e s s i o n f o r B a t h I s l a n d p l a n t s i n 30 p . p . t . a t 1 3 ° C Day Mean a r e a ( l o g i o > V a r i a n c e <X 1 0 - 3 ) n G - t e s t 4 2 . 1 3 7 . 7 3 18 NS 6 2 . 4 8 2 2 . 9 18 NS 8 2 . 9 2 2 0 . 0 18 ND 11 3 . 5 4 1 4 . 8 17 ND H o m o g e n e i t y o f v a r i a n c e - NS S o u r c e o f v a r i a t i o n ANOVA T a b l e d f SS MS Among g r o u p s 3 1 9 . 3 6 . 4 3 392 »« L i n e a r r e g r e s s i o n 1 1 8 . 6 1 8 . 6 5 2 . 6 » D e v i a t i o n f r o m r e g r e s s i o n 2 0 . 7 0 6 0 . 3 5 3 2 1 . 5 »< W i t h i n g r o u p s 67 1.10 0 . 0 1 6 4 T o t a l 70 2 0 . 4 The r e g r e s s i o n e q u a t i o n : Y = 0 . 1 1 6 + ( 3 . 1 9 ) X ND NS « * G - t e s t n o t done b e c a u s e o f t o o few c l a s s e s n o t s i g n i f i c a n t ( G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t <«• = 0 . 0 1 o n l y ) s i g n i f i c a n t ( <* = 0 . 0 1 ) s i g n i f i c a n t ( « = 0 . 0 5 ) 324 A p p e n d i x XLV I I R e g r e s s i o n f o r B a t h I s l a n d p l a n t s i n 30 p . p . t . a t 2 0 ° C Day 4 6 8 11 Mean a r e a 2 . 3 6 <logio> 3 .14 3 . 9 6 4 . 2 6 V a r i a n c e 1 3 . 2 <X 1 0 - 3 ) 3 4 . 4 2 4 . 5 3 8 . 1 n 16 15 13 12 G - t e s t ND NS * • NS H o m o g e n e i t y o f v a r i a n c e - NS ANOVA T a b l e S o u r c e o f v a r i a t i o n d f SS MS F Among g r o u p s 3 3 1 . 1 1 0 . 4 387 »» L i n e a r r e g r e s s i o n 1 3 0 . 3 3 0 . 3 8 0 . 5 » D e v i a t i o n f r o m r e g r e s s i o n 2 0 . 754 0 . 3 7 7 14 .1 * « W i t h i n g r o u p s 52 1. 39 0 . 0 2 6 8 T o t a l 55 3 2 . 5 The r e g r e s s i o n e q u a t i o n : Y = <- 0 . 3 6 9 ) + ( 4 . 5 7 ) X ND = G - t e s t n o t done b e c a u s e o f t o o few c l a s s e s NS = n o t s i g n i f i c a n t ( G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t = 0 . 0 1 o n l y ) «« = s i g n i f i c a n t (<* = 0 . 0 1 ) « = s i g n i f i c a n t ( = 0 . 0 5 ) 325 A p p e n d i x X L V I I I R e g r e s s i o n f o r D i x o n I s l a n d p l a n t s i n 15 p . p . t . a t 1 3 ° C Day 5 7 9 Mean a r e a 2 . 1 5 ( l o g i o > 2 . 3 9 3 . 2 0 V a r i a n c e 196 <X 1 0 - 3 ) 342 4 2 . 1 n 12 12 9 G - t e s t ND ND NS H o m o g e n e i t y o f v a r i a n c e - NS ANOVA T a b l e S o u r c e o f v a r i a t i o n d f SS MS F Among g r o u p s 2 5 . 9 4 2 . 9 7 1 4 . 2 «« L i n e a r r e g r e s s i o n 1 5 . 0 0 5 . 0 0 5.11 D e v i a t i o n f r o m r e g r e s s i o n 1 0 . 9 7 1 0 .971 4 . 6 6 • W i t h i n g r o u p s 30 6 . 2 6 0 . 2 0 9 T o t a l 32 1 2 . 2 The r e g r e s s i o n e q u a t i o n : Y = ( - 0 . 5 9 4 ) «• ( 3 . 8 0 ) X ND NS G - t e s t n o t done b e c a u s e o f t o o few c l a s s e s n o t s i g n i f i c a n t ( G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t = 0 .01 o n l y ) s i g n i f i c a n t ( °< = 0 . 0 1 ) s i g n i f i c a n t (<* = 0 . 0 5 ) 3 2 6 A p p e n d i x XL IX o R e g r e s s i o n f o r D i x o n I s l a n d p l a n t s i n 1 5 p . p . t . a t 2 0 C Day Mean a r e a <logio> V a r i a n c e (X 1 0 - 3 ) n G - t e s t 5 2 . 0 8 2 8 8 1 6 ND 7 3 . 1 1 4 7 0 8 ND 9 4 . 1 3 1 3 . 2 5 ND H o m o g e n e i t y o f v a r i a n c e - «•« S o u r c e o f v a r i a t i o n ANOVA T a b l e d f SS MS Among g r o u p s 2 1 7 . 7 8 . 8 5 3 0 . 0 * » L i n e a r r e g r e s s i o n 1 1 7 . 6 1 7 . 6 1 6 6 » D e v i a t i o n f r o m r e g r e s s i o n 1 0 . 1 0 6 0 . 1 0 6 0 . 3 6 0 W i t h i n g r o u p s 2 6 7 . 6 7 0 . 2 9 5 T o t a l 2 8 2 5 . 4 The r e g r e s s i o n e q u a t i o n : ( - 3 . 3 8 ) + ( 7 . 7 9 ) X ND = G - t e s t n o t d o n e b e c a u s e o f t o o few c l a s s e s NS = n o t s i g n i f i c a n t ( G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t «• = 0 . 0 1 o n l y ) «« = s i g n i f i c a n t ( ° < « 0 . 0 1 ) » s s i g n i f i c a n t (°< = 0 . 0 5 ) 327 A p p e n d i x L R e g r e s s i o n f o r D i x o n I s l a n d p l a n t s i n 23 p . p . t . a t 13 Day 5 7 9 Mean a r e a 2 . 3 0 2 . 6 7 3 . 0 9 <logio> V a r i a n c e 4 . 8 6 31 .1 5 7 . 5 (X 1 0 - 3 ) n 20 18 18 G - t e s t » • NS NS H o m o g e n e i t y o f v a r i a n c e - * » ANOVA T a b l e S o u r c e o f v a r i a t i o n d f SS MS F Among g r o u p s 2 6 . 0 0 3 . 0 0 9 9 . 5 »» L i n e a r r e g r e s s i o n 1 5.91 5.91 6 6 . 9 D e v i a t i o n f r o m r e g r e s s i o n 1 0 . 0 8 8 4 0 . 0 8 8 4 2. 93 W i t h i n g r o u p s 53 1.60 0 . 0 3 0 2 T o t a l 55 7 .60 The r e g r e s s i o n e q u a t i o n : Y = 0 . 122 * ( 3 . 0 8 ) X ND = G - t e s t n o t done b e c a u s e o f t o o few c l a s s e s NS = n o t s i g n i f i c a n t ( G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t °< = 0 .01 o n l y ) «« * s i g n i f i c a n t (<* = 0 . 0 1 ) « = s i g n i f i c a n t ( « . = 0 . 0 5 ) 328 A p p e n d i x L I R e g r e s s i o n f o r D i x o n I s l a n d p l a n t s i n 23 p . p . t . a t 20 C Day Mean a r e a <logio> V a r i a n c e <X I O " 3 ) n G - t e s t 5 2 .68 4 0 . 2 18 NS 7 3 .32 145 15 NS 9 3 . 9 7 106 9 ND H o m o g e n e i t y o f v a r i a n c e - NS S o u r c e o f v a r i a t i o n ANOVA T a b l e d f SS MS Among g r o u p s 2 L i n e a r r e g r e s s i o n 1 D e v i a t i o n f r o m r e g r e s s i o n 1 W i t h i n g r o u p s 39 T o t a l 41 1 0 . 5 5 . 2 3 1 0 . 4 1 0 . 4 0 . 0 8 2 5 0 . 0 8 2 5 3 . 5 7 0 . 0 9 1 4 1 4 . 0 5 7 . 2 « • 126 0 . 9 0 2 The r e g r e s s i o n e q u a t i o n : Y = ( - 0 . 7 8 8 ) • ( 4 . 9 3 ) X ND = G - t e s t n o t d o n e b e c a u s e o f t o o few c l a s s e s NS = n o t s i g n i f i c a n t ( G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t « = 0 .01 o n l y ) « • = s i g n i f i c a n t ( u = 0 . 0 1 ) » = s i g n i f i c a n t ( <*- = 0 . 0 5 ) 329 A p p e n d i x L I I R e g r e s s i o n f o r D i x o n I s l a n d p l a n t s i n 30 p . p . t . a t 1 3 C C Day 5 7 9 Mean a r e a 2 . 3 0 < log io> 2 .73 3 . 1 8 V a r i a n c e 1 7 . 4 (X 1 0 - 3 ) 3 5 . 8 2 7 . 6 n 16 15 13 G - t e s t ND ND ND H o m o g e n e i t y o f v a r i a n c e - NS ANOVA T a b l e S o u r c e o f v a r i a t i o n d f SS MS F Among g r o u p s 2 5 .58 2 . 7 9 105 «« L i n e a r r e g r e s s i o n 1 5 .53 5 . 5 3 101 D e v i a t i o n f r o m r e g r e s s i o n 1 0 . 0 5 4 7 0 . 0 5 4 7 2 . 0 5 W i t h i n g r o u p s 41 1.09 0 . 0 2 6 7 T o t a l 43 6 . 6 7 The r e g r e s s i o n e q u a t i o n : Y • ( - 0 . 0 9 8 9 ) • ( 3 . 4 1 ) X ND = G - t e s t n o t done b e c a u s e o f t o o few c l a s s e s NS = n o t s i g n i f i c a n t ( G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t ** = 0 .01 o n l y ) «« = s i g n i f i c a n t ( °< = 0 . 0 1 ) » = s i g n i f i c a n t ( = 0 . 0 5 ) 330 A p p e n d i x L I I I R e g r e s s i o n f o r D i x o n I s l a n d p l a n t s i n 30 p . p . t . a t 2 0 ° C Day 5 7 9 Mean a r e a 2 . 6 6 <logio> 3 .62 4 .21 V a r i a n c e 2 5 . 0 <X 1 0 - 3 ) 2 5 . 0 2 2 . 0 n 19 15 13 G - t e s t NS NS NS H o m o g e n e i t y o f v a r i a n c e - NS ANOVA T a b l e S o u r c e o f v a r i a t i o n d f SS MS F Among g r o u p s 2 1 9 . 7 9 . 8 4 407 »» L i n e a r r e g r e s s i o n 1 1 9 . 6 1 9 . 6 380 « D e v i a t i o n f r o m r e g r e s s i o n 1 0 . 0 5 1 6 0 . 0 5 1 6 2 . 1 3 W i t h i n g r o u p s 44 1.06 0 . 0 2 4 2 T o t a l 46 2 0 . 8 The r e g r e s s i o n e q u a t i o n : Y = ( - 1 . 6 2 ) + ( 6 . 1 4 ) X ND = G - t e s t n o t d o n e b e c a u s e o f t o o few c l a s s e s NS = n o t s i g n i f i c a n t ( G - t e s t and h o m o g e n e i t y o f v a r i a n c e t e s t e d a t <*• = 0 . 0 1 o n l y ) «» = s i g n i f i c a n t (°< = 0 . 0 1 ) * = s i g n i f i c a n t (<*= 0 . 0 5 ) 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0096647/manifest

Comment

Related Items