Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Fertilization of western hemlock with nitrogen, phosphorus, and lime : a greenhouse study Newsome, Teresa Hardie 1985

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1985_A6_7 N49.pdf [ 9.08MB ]
Metadata
JSON: 831-1.0096203.json
JSON-LD: 831-1.0096203-ld.json
RDF/XML (Pretty): 831-1.0096203-rdf.xml
RDF/JSON: 831-1.0096203-rdf.json
Turtle: 831-1.0096203-turtle.txt
N-Triples: 831-1.0096203-rdf-ntriples.txt
Original Record: 831-1.0096203-source.json
Full Text
831-1.0096203-fulltext.txt
Citation
831-1.0096203.ris

Full Text

FERTILIZATION OF WESTERN HEMLOCK WITH NITROGEN, PHOSPHORUS, AND LIME: A GREENHOUSE STUDY by TERESA HARDIE NEWSOME B.S.F., The U n i v e r s i t y of B r i t i s h C o lumbia, 1980 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n FACULTY OF GRADUATE STUDIES (Department of S o i l S c i e n c e ) We a c c e p t t h i s t h e s i s as c o n f o r m i n g t o the r e q u i r e d s t a n d a r d THE TJNIVEflGJlTY OF BRITISH COLUMBIA J u l y 23, 1985 © Ter e s a H a r d i e Newsome, 1985 In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of the r e q u i r e m e n t s f o r an advanced degree a t the The U n i v e r s i t y of B r i t i s h Columbia, I agree t h a t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g of t h i s t h e s i s f o r s c h o l a r l y purposes may be g r a n t e d by the Head of my Department or by h i s or her r e p r e s e n t a t i v e s . I t i s un d e r s t o o d t h a t c o p y i n g or p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . (Department of S o i l S c i e n c e ) The U n i v e r s i t y of B r i t i s h Columbia 2075 Wesbrook P l a c e Vancouver, Canada V6T 1W5 Date: J u l y 23, 1985 A b s t r a c t Western hemlock s e e d l i n g s were grown f o r 8 months i n a greenhouse w i t h f e r t i l i z e r amendments of N, P, N+P, and l i m e . Humus m a t e r i a l was used as a growth medium. I t was c o l l e c t e d from l o w - p r o d u c t i v e s i t e s i d e n t i f i e d by Lewis (1985) as the cedar-hemlock phase of the Thuja pii cat a -Tsuga helerophylla - Gautheria shallon - Rhyt i di adel phus CH loreus ecosystem a s s o c i a t i o n u n i t d e s i g n a t e d as S1 , on h i s ecosystem maps of Tree Farm L i c e n c e s 6 and 25, which a r e l o c a t e d on n o r t h e r n Vancouver I s l a n d . A c o m b i n a t i o n of 100 kg/ha N and 150 kg/ha P produced the most f a v o u r a b l e s e e d l i n g growth and f o l i a r n u t r i e n t s t a t u s . N or P added s e p a r a t e l y a t these r a t e s a l s o gave s u p e r i o r s e e d l i n g growth compared t o the c o n t r o l . N e i t h e r l i m e , nor h i g h r a t e s of N (at 300 kg/ha w i t h or w i t h o u t P) i n c r e a s e d s e e d l i n g growth. High N a d d i t i o n s a l s o r e s t r i c t e d r o o t development. N f e r t i l i z a t i o n reduced f o l i a r P c o n c e n t r a t i o n s , and P a d d i t i o n d e c r e a s e d f o l i a r N c o n c e n t r a t i o n s . F o l i a r Mg c o n c e n t r a t i o n s i n c r e a s e d when P f e r t i l i z e r s were added. N and/or P a d d i t i o n s caused a de c r e a s e i n f o l i a r B c o n c e n t r a t i o n s . A c o m b i n a t i o n of N and P i n c r e a s e d f o l i a r Zn c o n c e n t r a t i o n s and S, but reduced Mn a b s o r p t i o n . F o l i a r R was i n v e r s e l y r e l a t e d t o s e e d l i n g p r o d u c t i v i t y . CH Management recommendations f o r t he S1 s i t e s i n c l u d e f e r t i l i z i n g w i t h P, and i n c r e a s i n g a v a i l a b l e N e i t h e r by c u l t i v a t i o n t o i n c r e a s e m i n e r a l i z a t i o n or by low r a t e s of N f e r t i l i z a t i o n . T a b l e of Contents A b s t r a c t i i L i s t of T a b l e s v L i s t of F i g u r e s v i i L i s t of Appendices v i i i Acknowledgements i x I . I n t r o d u c t i o n 1 I I . L i t e r a t u r e Review 5 I I I . Methods 27 A. F i e l d 27 B. Greenhouse P r o c e d u r e s 32 C. L a b o r a t o r y A n a l y s i s 36 1 . F o l i a g e . . . . 36 2. S o i l 38 D. Assessment of f o l i a r n u t r i e n t s t a t u s 40 E. S t a t i s t i c s 41 IV. R e s u l t s and D i s c u s s i o n 46 A. E f f e c t s of F e r t i l i z e r A d d i t i o n s on Growth Response 46 B. E f f e c t s of F e r t i l i z e r A d d i t i o n s on F o l i a r N u t r i e n t C o n c e n t r a t i o n s 52 1. E f f e c t s of N i t r o g e n F e r t i l i z e r s 54 2. E f f e c t s of P A d d i t i o n s 58 3. E f f e c t s of N+P F e r t i l i z e r s 61 4. E f f e c t s of L i m i n g 63 C. R e l a t i o n s h i p s of S o i l N u t r i e n t C o n c e n t r a t i o n s t o the Response of Greenhouse S e e d l i n g s 66 D. N u t r i e n t B a l a n c e s i n the Greenhouse S e e d l i n g s ..74 E. A n a l y s i s of western hemlock f o l i a g e samples from the f i e l d 80 F. C o n t r a s t i n g Greenhouse and F i e l d F o l i a r Data ...96 V. C o n c l u s i o n s 99 V I . Management Recommendations 103 LITERATURE CITED 107 APPENDICES 114 i v L i s t of T a b l e s T a b l e Page 1. F o l i a r n u t r i e n t c o n c e n t r a t i o n s of western hemlock i n d i c a t i n g i n f e r r e d adequate and d e f i c i e n t v a l u e s f o r s e e d l i n g s under one year o l d from v a r i o u s l i t e r a t u r e s o u r c e s 16 2. F o l i a r n u t r i e n t c o n c e n t r a t i o n s of western hemlock t r e e s , over 1 year o l d , from v a r i o u s l i t e r a t u r e sources 19 3. S i g n i f i c a n t d i f f e r e n c e s between t r e a t m e n t s f o r f o l i a r n u t r i e n t c o n c e n t r a t i o n s and growth parameters of the greenhouse s e e d l i n g s . 4 7 4. Spearman rank c o r r e l a t i o n c o e f f i c e n t s f o r greenhouse s e e d l i n g growth parameters and f o l i a r n u t r i e n t c o n c e n t r a t i o n s ....51 5. S i g n i f i c a n t d i f f e r e n c e s between t r e a t m e n t s f o r measured s o i l parameters 67 6. Carbon t o n i t r o g e n r a t i o s f o r t r e a t e d greenhouse s o i l s and u n t r e a t e d s o i l s 70 7. Spearman rank c o r r e l a t i o n c o e f f i c e n t s f o r s o i l element c o n c e n t r a t i o n s v e r s u s greenhouse f o l i a r n u t r i e n t c o n c e n t r a t i o n s and growth parameters 71 8. Greenhouse f o l i a r n i t r o g e n c o n c e n t r a t i o n s and I n g e s t a d ' s R a t i o s f o r v a r i o u s t r e a t m e n t s , compared w i t h optima g i v e n by I n g e s t a d (1979) 76 9. Groups d e f i n e d by a c l u s t e r a n a l y s i s u s i n g s e l e c t e d v a r i a b l e s from greenhouse s e e d l i n g f o l i a r d a t a 79 10. S i g n i f i c a n t d i f f e r e n c e s between groups d e f i n e d by the c l u s t e r a n a l y s i s f o r n e edle weight and s e l e c t e d greenhouse f o l i a r n u t r i e n t c o n c e n t r a t i o n s 81 11. S i g n i f i c a n t d i f f e r e n c e s between f o l i a r n u t r i e n t c o n c e n t r a t i o n s f o r the f i e l d samples.82 12. Spearman rank c o r r e l a t i o n c o e f f i c e n t s f o r f i e l d f o l i a g e d ata 86 13. Groups d e f i n e d by a c l u s t e r a n a l y s i s u s i n g s e l e c t e d v a r i a b l e s from f i e l d f o l i a r d a t a 91 v 14. S i g n i f i c a n t d i f f e r e n c e s between groups d e f i n e d by the c l u s t e r a n a l y s i s from f i e l d f o l i a r data 92 15. F i e l d f o l i a r n i t r o g e n c o n c e n t r a t i o n s and _ I n g e s t a d ' s R a t i o s f o r the HA, CH, and S 1 2 L s i t e s , compared w i t h optima g i v e n by I n g e s t a d (1979) 94 v i L i s t of Figures' F i g u r e s Pages CH 1. An example of a SI phase 3 HA 2. An example of a SI phase 3 3. The l o c a t i o n of s i t e s sampled on TFL#6 28 4. The l o c a t i o n of s i t e s sampled on TFL#25 29 5. C l u s t e r i n g diagram f o r greenhouse d a t a 78 6. C l u s t e r i n g diagram f o r f i e l d d a t a 90 v i i L i s t of Appendices Appendix Page P H C H 1- 1 S i t e d e s c r i p t i o n s of the SI and the S12^ s i t e s 114 2- 1 Photographs showing s e e d l i n g development over the p e r i o d of the study 118 2- 2 S e e d l i n g d e s c r i p t i o n , by t r e a t m e n t , at the end of the study 125 3- 1 F o l i a r n u t r i e n t c o n c e n t r a t i o n s and growth data f o r the greenhouse s e e d l i n g s 127 3-2 F o l i a r n u t r i e n t c o n c e n t r a t i o n s and growth data f o r the f i e l d samples 128 3-3 S o i l c h e m i c a l d a t a 129 v i i i Acknowledgements For f i n a n c i a l a s s i s t a n c e and support d u r i n g my f i e l d work, I would l i k e t o thank Western F o r e s t P r o d u c t s w i t h s p e c i a l r e f e r e n c e t o Dr. J . B a r k e r , Mr. B. Dumont, Mr. B. V o t h , and Mr. M. Watkinson. I a l s o a p p r e c i a t e d the f i n a n c i a l a s s i s t a n c e and p r o f e s s i o n a l guidance r e c e i v e d from Dr. T. L e w i s , C o n s u l t i n g i n S o i l s and Land Use. For h i s a d v i c e , t e a c h i n g , and p a t i e n c e throughout my master's program, I g r a t e f u l l y acknowledge Dr. T.M. B a l l a r d . I would l i k e t o thank my o t h e r committee members, Dr. L.E. Lowe and Dr. K. K l i n k a , f o r t h e i r c o u n s e l d u r i n g my program and f o r r e v i e w i n g my m a n u s c r i p t . For h i s c o n t i n u a l s u p p o r t , I a l s o thank Dr. L.M. L a v k u l i c h . For i n v a l u a b l e a s s i s t a n c e i n the l a b o r a t o r y , I would l i k e t o thank Rosemary Lowe, J u l i e L a n s i q u o t , B e r n i e von S p i n d l e r , E v e l i n e W o l t e r s o n , E s t e r Y i p , and P a t t y C a r b i s . A l s o f o r h e l p i n the greenhouse, I thank G e r r y D a v i s . The a d v i c e of Dr. H. S c h r e i e r and Dr. A. Kozak r e g a r d i n g s t a t i s t i c a l a n a l y s i s i s g r a t e f u l l y acknowledged. For a s s i s t a n c e w i t h any computer r e l a t e d work, I thank B a r r y Wong and John Emmanuel. I g r e a t l y a p p r e c i a t e d the su p p o r t r e c e i v e d from my f a m i l y , e s p e c i a l l y my s i s t e r J a n . F i n a l l y , f o r the hours spent i n the f i e l d and h i s p a t i e n t a s s i s t a n c e throughout my program, I would l i k e t o thank my husband, Guy. i x Chapter I INTRODUCTION The poor growth of n a t u r a l western hemlock (Tsuga heterophylla ( R a f . ) S a r g . ) r e g e n e r a t i o n on the cedar-hemlock phase of the Thuja pi i cat a - Tsuga heterophylla - Gaultheria shall on - Rhyt I di adel phus loreus ecosystem a s s o c i a t i o n , CH d e s i g n a t e d as S1 , has s i m u l a t e d i n t e r e s t i n r e s e a r c h t o improve t r e e p r o d u c t i v i t y on the s e a r e a s . A number of d i f f e r e n t ecosystems w i t h i n the CWH b i o g e o c l i m a t i c zone were mapped by Lewis (1985) on Tree Farm L i c e n c e s 6 and 25, which are l o c a t e d on N o r t h e r n Vancouver I s l a n d . S1 i s a the ecosystem a s s o c i a t i o n t h a t i n c l u d e s most of the ecosystems under c o n s i d e r a t i o n i n t h i s s t u d y . Lewis mapped two phases of the S1 ecosystem: the cedar-hemlock phase (CH) and the CH h e m l o c k - a m a b i l i s phase (HA). The f i r s t phase, S1 , has v e r y HA poor t r e e growth, but the second phase, S1 , i s v e r y p r o d u c t i v e . The purpose of t h i s study i s t o d e v e l o p management o p t i o n s which may improve p r o d u c t i v i t y on the CH S1 s i t e s . Lewis d i d f i n d some t r a n s i t i o n a l a r e a s between the two phases w i t h moderate t r e e growth, and suggested t h a t the poor s i t e s may have been more p r o d u c t i v e i n the p a s t . The S1 ecosystem has deep, w e l l t o moderately w e l l d r a i n e d s o i l s d e r i v e d p r e d o m i n a n t l y from g l a c i a l t i l l s and some g l a c i o f l u v i a l d e p o s i t s . D i f f e r e n c e s i n both c l i m a x and s e r a i v e g e t a t i o n c l e a r l y d i s t i n g u i s h the two phases. The HA phase s u p p o r t s d e n s e l y growing Tsuga heterophylla and Abies amabi I i s (Dougl. ex 1 2 Loud.) Forbes. Other v e g e t a t i o n i s s p a r s e , c o n s i s t i n g p r e d o m i n a n t l y of mosses a n d . o c c a s i o n a l f e r n s , Rubus spectabilis P u r s h , or Vaccinium spp. On the CH s i t e s , r e g e n e r a t i o n i s composed of s c a t t e r e d Thuja plicata Donn. ex D. Don i n Lamb, and Tsuga het erophylI a. Gaul t heri a shallon P u r s h dominates t h e heavy shrub c o v e r , w i t h some Blechnum spicant (L.) Roth mixed i n . A f t e r l o g g i n g f i r e w e e d i s n o t i c e a b l y sparse on the CH phase, but dense and v i g o r o u s on the HA phase. F i g u r e s 1 and 2 show the two s i t e s . A more complete d e s c r i p t i o n of both phases can be found i n Lewis (1985) . Repeated windthrow on the HA phase i s the apparent cause f o r the d i f f e r e n c e between the two phases. Windthrow p u l l s the t r e e r o o t s out of the s o i l , which mixes the m i n e r a l h o r i z o n s w i t h the f o r e s t f l o o r . As a r e s u l t , the f o r e s t f l o o r tends t o be t h i n n e r and the m i n e r a l h o r i z o n s more f r i a b l e than on the u n d i s t u r b e d CH phase. Due t o v e r y heavy year round p r e c i p i t a t i o n , both i n the form of r a i n f a l l and f r e q u e n t summer f o g s , f o r e s t f i r e s have been almost n o n e x i s t e n t . T h e r e f o r e , the f o r e s t f l o o r accumulates on the CH s i t e s , r e s u l t i n g i n very deep humus h o r i z o n s . A marked CH d i f f e r e n c e i n t r e e n u t r i t i o n e x i s t s between the S1 and the HA S1 . F o l i a r n i t r o g e n c o n c e n t r a t i o n s of 0.90% i n hemlock CH t r e e s on the S1 phase ( L e w i s , 1985) a r e f a r below adequate l e v e l s d e f i n e d by van den D r i e s s c h e (1976) or E v e r a r d (1973). Phosphorus c o n c e n t r a t i o n s are a l s o low, w i t h v a l u e s HA of 0.15% t o 0.18%. C o n v e r s e l y , t r e e s on the S1 s i t e s had 3 4 much h i g h e r f o l i a r N and P c o n c e n t r a t i o n s , 1.36% and 0.253% HA r e s p e c t i v e l y ( L e w i s , 1985). R a p i d growth on. the S1 s i t e s s u g g e sts t h a t the n u t r i e n t s u p p l y i s adequate f o r t h i s phase. F o l i a r c o n c e n t r a t i o n s of n u t r i e n t s o t h e r than N and P, were s i m i l a r on both phases. T h e r e f o r e , n i t r o g e n and CH perhaps P l i m i t t r e e growth on S1 s i t e s . Another ecosystem named the Thuja pi i cat a - Tsuga heterophylla - Abies amabi I i s - Pol ysti chum lonchitis -Hypopterygm f a u r i e i , ( S 1 2 ) , has s h a l l o w F o l i s o l s o v e r l y i n g l i m e s t o n e bedrock. L i k e the S1, t h i s ecosystem a l s o has CH CH and HA phases. F o l i a r n u t r i e n t s t a t u s on the S12 resembles CH t h a t of the S1 . Some, but not a l l management p r a c t i c e s CH CH s u i t a b l e f o r the S1 might be extended t o the S12 s i t e s . HA I f c o n d i t i o n s on the S1 s i t e s can be imposed on the CH S1 a r e a s , t r e e growth s h o u l d improve on the l a t t e r . Three methods have been proposed t o i n c r e a s e t r e e p r o d u c t i v i t y on CH the S1 s i t e s : f e r t i l i z a t i o n , s l a s h b u r n i n g , and c u l t i v a t i o n ( L e w i s , 1985). The f i r s t o p t i o n i s c o n s i d e r e d i n t h i s s t u d y . There a re two purposes of t h i s s t u d y . One i s to determine the response of western hemlock s e e d l i n g s , grown CH i n a greenhouse on humus m a t e r i a l c o l l e c t e d from the S1 a r e a s , t o f e r t i l i z e r amendments of N, P, N+P, and l i m e . The second purpose i s t o d e v e l o p management recommendations t o improve hemlock p r o d u c t i v i t y on the cedar-hemlock phase of the S1 ecosystem a s s o c i a t i o n u n i t . Chapter I I LITERATURE REVIEW Western hemlock c o m p r i s e s 23% of the t o t a l B r i t i s h Columbian t i m b e r r e s o u r c e (Beswick, 1976). However, t h i s s p e c i e s was c o n s i d e r e d u n i m p ortant u n t i l the 1950's. E a s t e r n hemlock (Tsuga canadensis (L.) C a r r . ) d e v e l o p e d a poor r e p u t a t i o n which caused buyers t o shun western hemlock as w e l l . To improve s a l e s , the t r a d e name was changed t o A l a s k a p i n e . S i n c e World War I I , i n t e r e s t i n western hemlock has i n c r e a s e d as s u p p l i e s of o t h e r f a v o u r e d s p e c i e s d i m i n i s h e d ( R i c h e n , 1976). A l a r g e p o r t i o n of the hemlock volume i s found on c o a s t a l s i t e s . O f t e n t h e s e s i t e s a r e l e s s s u i t e d t o ot h e r commercial s p e c i e s . Knowledge of n u t r i t i o n a l r e q u i r e m e n t s and response t o f e r t i l i z e r a p p l i c a t i o n s i s imp o r t a n t f o r i n t e n s i v e f o r e s t management. The u s u a l g o a l of f e r t i l i z a t i o n i s t o i n c r e a s e t r e e growth f o r g r e a t e r wood p r o d u c t i o n . However, o t h e r p r i m a r y o b j e c t i v e s u s i n g a p p l i c a t i o n of f e r t i l i z e r s have been attem p t e d w i t h w e s t e r n hemlock. B e n z i a n e t a l . (1974) t r i e d t o improve s u r v i v a l r a t e s and i n i t i a l t r e e growth through a l a t e - s e a s o n ( f a l l ) a p p l i c a t i o n of N f e r t i l i z e r . T h e i r g o a l was t o encourage l u x u r y uptake of N. In the s p r i n g , s e e d l i n g s w i t h a 15% i n c r e a s e i n N c o n t e n t were p l a n t e d i n the f i e l d . Bud break o c c u r r e d e a r l i e r and s u r v i v a l r a t e s d i d i n c r e a s e . However, no s i g n i f i c a n t d i f f e r e n c e i n s e e d l i n g s i z e was ob s e r v e d . These r e s u l t s may not p r o v i d e s u f f i c i e n t b e n e f i t s f o r the p r a c t i c e t o be e c o n o m i c a l l y f e a s i b l e . 5 6 F e r t i l i z e r a p p l i c a t i o n has a l s o been used t o enhance n a t u r a l t h i n n i n g . Uniform r e s u l t s were not o b t a i n e d by the v a r i o u s s t u d i e s , but some g e n e r a l t r e n d s were a p p a r e n t . Lee (1972) f e r t i l i z e d w i t h 56, 112, 224, and 448 kg/ha of urea i n f o u r d i f f e r e n t a r e a s . The two lower amounts of f e r t i l i z e r p r o v i d e d i n c o n s i s t e n t r e s u l t s . At the h i g h e s t l e v e l , s tands at P o r t Renfrew e x h i b i t e d s u b s t a n t i a l m o r t a l i t y and s i g n i f i c a n t i n c r e a s e s i n the b a s a l a r e a of the s u r v i v i n g t r e e s . However, v a r i a b l e r e s u l t s were found a t the o t h e r s i t e s . Lee suggested t h a t not enough n i t r o g e n was a p p l i e d t o i n c r e a s e growth of the upper crown c l a s s e s . E x p ansion of the dominant and codominant t r e e s would r e s t r i c t the amount of space, n u t r i e n t s , and water remaining f o r the s m a l l e r t r e e s , i n c r e a s i n g t h e i r s u p p r e s s i o n and m o r t a l i t y . The a u t h o r recommended a p p l y i n g h i g h e r amounts of N. M i l l e r (1976) r e p o r t e d t r i a l s i n Oregon. On thes e s i t e s 224 kg/ha N d i d not produce s i g n i f i c a n t d i f f e r e n c e s i n m o r t a l i t y , a l t h o u g h t r e n d s i n d i c a t e d the f e r t i l i z e r a p p l i c a t i o n d i d a c c e l e r a t e m o r t a l i t y s l i g h t l y . Tree growth must be i n c r e a s e d s u b s t a n t i a l l y b e f o r e much m o r t a l i t y o c c u r s . Treatment e f f e c t s on b a s a l a r e a growth were m i n i m a l . Two o t h e r s t u d i e s by M i l l e r (1976) i n the Olympic N a t i o n a l F o r e s t , at Dead Creek and G o l d Creek, i n c l u d e d a p p l i c a t i o n s of 0, 336, and 672 kg/ha N and a d d i t i o n s of P, P+S, and P+K+S w i t h 336 kg/ha N. Two t r e a t m e n t s a t Dead Creek p r o v i d e d s i g n i f i c a n t r e s u l t s . M o r t a l i t y was s u b s t a n t i a l l y i n c r e a s e d b o t h by the 672 kg/ha N and the 336 7 kg/ha N combined w i t h P+K+S. Tree growth was g r e a t e s t on the 672 kg t r e a t m e n t , g i v i n g s u pport t o Lee's t h e o r y . However, m o r t a l i t y was h i g h e r on the N+P+R+S c o m b i n a t i o n . The i n c r e a s e d s a l t c o n c e n t r a t i o n c o u l d have c r e a t e d a t o x i c e f f e c t c a u s i n g more m o r t a l i t y . Too much v a r i a t i o n o c c u r r e d between the t r e a t e d p l o t s a t G o l d Creek t o o b t a i n any c o n c l u s i v e r e s u l t s . A l t h o u g h f e r t i l i z e r a d d i t i o n s can a c c e l e r a t e t h i n n i n g of hemlock s t a n d s , the i n c o n s i s t e n t r e s p o n s e s o b t a i n e d p r e v e n t s the use of t h i s p r a c t i c e f o r o p e r a t i o n a l f o r e s t management. V a r i a b i l i t y of hemlock's response t o f e r t i l i z e r s , e s p e c i a l l y n i t r o g e n , i s not unique t o these t h i n n i n g s t u d i e s . F e r t i l i z i n g s t r i c t l y t o i n c r e a s e hemlock's p r o d u c t i v i t y has not been very s u c c e s s f u l . The R e g i o n a l F o r e s t N u t r i t i o n Research P r o j e c t (RFNRP) has r e c o r d e d f a v o u r a b l e r e s u l t s t o urea a p p l i c a t i o n s on D o u g l a s - f i r (Anonymous, 1980). Hemlock grows i n mixed stands w i t h D o u g l a s - f i r and i n pure stands w i t h i n the same g e o g r a p h i c a l a r e a . T h e r e f o r e , i f D o u g l a s - f i r r e q u i r e d n i t r o g e n , hemlock was a l s o assumed N d e f i c i e n t . I n c o n s i s t e n t responses of hemlock t o N i n d i c a t e d t h i s assumption was not e n t i r e l y c o r r e c t . A network of f e r t i l i z e d p l o t s was e s t a b l i s h e d by the RFNRP. T w e n t y - f i v e i n s t a l l a t i o n s were chose n , r a n g i n g i n l o c a t i o n on the c o a s t from n o r t h e r n Oregon t o n o r t h e r n Washington w i t h i n l a n d s i t e s throughout the Washington Cascades (Anonymous, 1980). S i m i l a r s t u d i e s were conducted 8 by Weyerhaeuser and Crown Z e l l e r b a c h i n Oregon and Washington. A l s o , one s i t e on n o r t h e r n Vancouver I s l a n d was e s t a b l i s h e d by M a c M i l l a n B l o e d e l (Webster et a l . , 1976). R e s u l t s from these s t u d i e s were h i g h l y v a r i a b l e . There was no s i g n i f i c a n t d i f f e r e n c e between c o n t r o l b a s a l a r e a growth and p l o t s f e r t i l i z e d w i t h N a t 224 kg/ha or 448 kg/ha on the RFNRP p l o t s (Anonymous, 1980 and 1982). S e p a r a t i n g p l o t s , by g e o g r a p h i c a l a r e a and q u a n t i t i e s of f e r t i l i z e r a p p l i e d , i n d i c a t e d a p o s i t i v e response on i n l a n d a r e a s . However, e x t r e m e l y v a r i a b l e r e s u l t s were o b t a i n e d from the c o a s t a l s i t e s . F u r t h e r s t r a t i f i c a t i o n i n t o two g e o g r a p h i c a l a r e a s , c o a s t and i n l a n d , and two age c l a s s e s , 12 t o 23 y e a r s and 24 t o 35 y e a r s , p r o v i d e d more i n f o r m a t i o n . The o n l y s i g n i f i c a n t p o s i t i v e response was o b t a i n e d from the younger Cascade s t a n d s . A s i g n i f i c a n t n e g a t i v e response was found on c o a s t a l p l o t s w i t h a p p l i c a t i o n s of 448 kg/ha. A l l o l d e r s t a n d s produced n o n - s i g n i f i c a n t r e s u l t s . The s t a n d a r d e r r o r s were so h i g h , the l a c k of s i g n i f i c a n c e was p r o b a b l y due t o the h i g h degree of v a r i a b i l i t y (Anonymous, 1980). Crown Z e l l e r b a c h and Weyerhaeuser found s i m i l a r t r e n d s on c o a s t a l and i n l a n d i n s t a l l a t i o n s . C o a s t a l s i t e s p r o v i d e d h i g h l y v a r i a b l e r e s u l t s w i t h an o v e r a l l n e g a t i v e r esponse, i n l a n d p l o t s g e n e r a l l y responded p o s i t i v e l y , a l t h o u g h a h i g h degree of v a r i a t i o n was a l s o p r e s e n t . Vancouver I s l a n d s i t e s produced a p o s i t i v e growth response t o 112, 224, and 336 kg/ha N. These r e s u l t s f u r t h e r 9 c o m p l i c a t e d the a n a l y s i s by d e m o n s t r a t i n g a w h o l l y p o s i t i v e response on c o a s t a l p l o t s . Osborn (1968) found r a d i a l growth i n c r e a s e d w i t h 448 kg/ha N. At 112 kg/ha, a s l i g h t d e c r e a s e i n r a d i a l growth was r e p o r t e d . High v a r i a b i l i t y w i t h i n t r e a t m e n t s r e s t r i c t s drawing f i r m c o n c l u s i o n s . O b v i o u s l y more i n f o r m a t i o n i s r e q u i r e d b e f o r e any o p e r a t i o n a l f e r t i l i z a t i o n of hemlock can be i n i t i a t e d . F e r t i l i z i n g i n c r e a s e s n u t r i e n t l e v e l s , but w i t h o u t adequate growing space, t r e e s cannot use the g r e a t e r n u t r i e n t a v a i l a b i l i t y to a c c e l e r a t e growth. T h e r e f o r e , t h i n n i n g and f e r t i l i z i n g a r e an e f f e c t i v e c o m b i n a t i o n . The RFNRP t r i e d these two t r e a t m e n t s t o g e t h e r on a number of p l o t s . The r e s u l t s a g a i n were h i g h l y v a r i a b l e . A p o s i t i v e response was s t i l l observed i n the Cascades f o r both 224 kg/ha N and 448 kg/ha N. However, w i t h the lower a p p l i c a t i o n r a t e of 224 kg/ha, the o l d e r s t a n d s produced a s i g n i f i c a n t growth response r a t h e r than the younger s t a n d s which had shown a growth response w i t h o u t t h i n n i n g . At the h i g h e r l e v e l of 448 kg/ha, the younger Cascade s t a n d remained the o n l y p o s i t i v e s i g n i f i c a n t r e s p o n s e . Perhaps n i t r o g e n l e v e l s a r e adequate on these s i t e s and a response t o a d d i t i o n a l N s h o u l d not be e x p e c t e d . In the study of G i l l (1981), lower N c o n c e n t r a t i o n s i n hemlock n e e d l e s were o b t a i n e d from non-responding s i t e s than from r e s p o n d i n g Cascade a r e a s . T h e r e f o r e , response t o N c o u l d be e x p e c t e d on the c o a s t a l i n s t a l l a t i o n s . A l s o , i n some mixed - s t a n d s t u d i e s , hemlock has responded n o n - s i g n i f i c a n t l y 10 or n e g a t i v e l y w h i l e o t h e r s p e c i e s produced a p o s i t i v e growth response. Graham and Tonn (1979) f e r t i l i z e d mixed stands of western hemlock and grand f i r w i t h urea at 224 and 448 kg/ha N. Western hemlock d i d not show any s i g n i f i c a n t growth i n c r e a s e i n diameter or h e i g h t . C o n v e r s e l y , grand f i r d i s p l a y e d l a r g e p o s i t i v e d i f f e r e n c e s between f e r t i l i z e d and c o n t r o l p l o t s . The Crown Z e l l e r b a c h t r i a l s a l s o i n c l u d e d m i x e d - s p e c i e s s t a n d s . N i t r o g e n a p p l i c a t i o n on c o a s t a l s i t e s produced s u b s t a n t i a l i n c r e a s e s i n S i t k a spruce and D o u g l a s - f i r growth. Hemlock's response w i t h i n the same stands was e i t h e r s l i g h t l y p o s i t i v e or n e g a t i v e . Hemlock's n u t r i t i o n a l demands are a p p a r e n t l y d i f f e r e n t from those of o t h e r s p e c i e s . M e n s u r a t i o n a l t e c h n i q u e s have a l s o been q u e s t i o n e d . Do d i a m e t e r and h e i g h t measurements account f o r a l l p o s s i b l e i n c r e a s e s i n t i m b e r volume? D e t a i l e d s t u d i e s on hemlock form f a c t o r s were i n i t i a t e d by the RFNRP. However, no s i g n i f i c a n t d i f f e r e n c e s between e s t i m a t e d t r e e volumes and a c t u a l wood volumes d e r i v e d from stem a n a l y s i s were o b t a i n e d (Anonymous, 1982). Another method, i n v o l v i n g t r e e p a i r i n g , was employed by the RFNRP t o improve the response c a l c u l a t i o n . C o n t r o l and t r e a t e d s t a n d s can never be i d e n t i c a l ; t h e r e f o r e some between-stand v a r i a t i o n must be accounted f o r i n response e s t i m a t i o n . To do t h i s O l s o n et a l . (1980) p a i r e d f e r t i l i z e d and u n f e r t i l i z e d t r e e s based on r a d i a l growth determined from increment c o r e s . T r e e s , one c o n t r o l and one f e r t i l i z e d , 11 w i t h s i m i l a r growth h i s t o r i e s b e f o r e f e r t i l i z a t i o n , were a n a l y z e d f o r r a d i a l growth f o l l o w i n g t r e a t m e n t . The r e s u l t s were s t i l l h i g h l y v a r i a b l e , but s l i g h t l y more p o s i t i v e g rowth i n c r e a s e s were obser v e d f o r the Oregon c o a s t a l p l o t s t h a n f o r the Washington c o a s t a l a r e a s . S t r a t i f i c a t i o n by age c l a s s e s i n d i c a t e d t h a t 1 5 - y e a r - o l d t o 2 4 - y e a r - o l d t r e e s produced a v e r y p o s i t i v e r e sponse, u n l i k e any o t h e r age c l a s s of the t h i n n e d s t a n d s . No o u t s t a n d i n g d i f f e r e n c e s from t h e o r i g i n a l a n a l y s i s were o b t a i n e d . T h e r e f o r e , m e n s u r a t i o n a l t e c h n i q u e s c o u l d not account f o r the l a r g e v a r i a t i o n i n growth response. Growth response of some c o n i f e r s can a l s o be de t e r m i n e d by measuring the mass of 100 n e e d l e s ( H e i n s d o r f , 1968). Most c o n i f e r s i n B r i t i s h Columbia a r e d e t e r m i n a t e s p e c i e s . The number .of l e a v e s produced i n one year i s d e t e r m i n e d i n the p r e v i o u s season when the t e r m i n a l bud i s formed. I f a t r e e s u b s e q u e n t l y r e c e i v e s more n u t r i e n t s , c a u s i n g a growth r e s p o n s e , the nee d l e s w i l l i n c r e a s e i n s i z e , but the number produced w i l l not change; T h e r e f o r e , an i n c r e a s e i n ne e d l e mass s u g g e s t s a growth response has o c c u r r e d . Western hemlock i s an i n d e t e r m i n a t e s p e c i e s , t h a t i s the number of n e e d l e s i n one year i s not p r e - d e t e r m i n e d . I f growth of a t r e e i s improved, more r a t h e r than l a r g e r n e e d l e s may be pr o d u c e d . T h e r e f o r e , 100-needle mass i s not always a s a t i s f a c t o r y method of measuring growth r e s p o n s e . For w e s t e r n hemlock, Radwan and D e B e l l (1980a) found no c o r r e l a t i o n between needle mass and s i t e i n d e x or t e r m i n a l 12 growth. E a r l i e r s t u d i e s by Osborn (1968) r e v e a l e d n e edle l e n g t h i n c r e a s e d on s i t e s r e s p o n d i n g t o N f e r t i l i z e r . However, no s i g n i f i c a n t d i f f e r e n c e i n n e e d l e mass was found between f e r t i l i z e d and c o n t r o l t r e e s . G i l l and Lavender (1983) r e p o r t e d no s i g n i f i c a n t d i f f e r e n c e i n needle s i z e or mass when comparing t r e e s r e s p o n d i n g t o N f e r t i l i z e r and c o n t r o l t r e e s . T h e r e f o r e , n e e d l e mass i s not a good measurement of growth response i n hemlock t r e e s . • Urea i s the most commonly used n i t r o g e n f e r t i l i z e r and i t was the source of n i t r o g e n a p p l i e d t o the RFNRP i n s t a l l a t i o n s . Ammonium n i t r o g e n i s the predominant form of N d e r i v e d almost immediately from u r e a . D i f f e r e n t forms of s o i l n i t r o g e n can a f f e c t t r e e growth. Van den D r i e s s c h e (1971) grew s e e d l i n g s w i t h NH„ + or N0 3" as t h e o n l y s o u r c e of N. He a l s o i n c l u d e d N s u p p l i e d at 50 ppm as t h r e e c o m b i n a t i o n s of the two forms i n d i f f e r e n t p r o p o r t i o n s : 37.5 ppm as NH„ + and 12.5 ppm as N0 3", 25 ppm as NH a + and 25 ppm as N0 3", and 12.5 ppm as NH„+_ and 37.5 ppm as N0 3~. E q u a l amounts of NH„ + and N0 3~ r e s u l t e d i n h i g h e r growth l e v e l s f o r D o u g l a s - f i r , white s p r u c e , and S i t k a s p r u c e , but hemlock a c h i e v e d maximum p r o d u c t i v i t y growth w i t h 37.5 ppm as NH„" and 12.5 ppm as N 0 3 _ . The pure NH« + n i t r o g e n t r e a t m e n t and t h a t w i t h 25 ppm as N 0 3 _ and 25 ppm as NH 4* were a c l o s e second and t h i r d , r e s p e c t i v e l y . K r a j i n a e t a l . (1973) grew hemlock s e e d l i n g s w i t h an N source of NH„ +, N0 3", and a m i x t u r e of 7:1 NH„ + to N 0 3 _ . R e s u l t s showed t h a t biomass p r o d u c t i o n , r o o t and shoot w e i g h t s , and l e a f a rea were 1 3 h i g h e s t w i t h the 7:1 c o m b i n a t i o n . Ammonium v a l u e s were o n l y s l i g h t l y l e s s f o r biomass p r o d u c t i o n , but t o t a l l e a f area was much l o w e r . S e e d l i n g s grown i n n i t r a t e were y e l l o w i s h i n c o l o u r and s m a l l . Swan (1960) a l s o agreed t h a t ammonium was p r e f e r a b l e t o n i t r a t e as a n i t r o g e n source, but a co m b i n a t i o n of the two was s u p e r i o r . C o n v e r s e l y , M e l l o r and Tregunna (1971) found no d i f f e r e n c e i n l e a f area u s i n g t h r e e t r e a t m e n t s s i m i l a r t o Swan's s t u d y . The s e e d l i n g s were o n l y 18 weeks, which may be too young f o r y i e l d i n g c o n c l u s i o n s . The s t u d i e s appear t o fav o u r e i t h e r ammonium or a m i x t u r e of ammonium and n i t r a t e as a N s o u r c e . F i e l d t r i a l s w i t h d i f f e r e n t N f e r t i l i z e r s a g a i n produced e r r a t i c r e s p o n s e s . Webster e t a l . (1976) summarized the work of D e B e l l et a l . (1975). Ammonium s u l p h a t e gave ve r y good r e s u l t s , but i t was o n l y t e s t e d w i t h a n i t r o g e n r a t e of 168 kg/ha. I n c o n s i s t e n t responses were o b t a i n e d w i t h ammonium n i t r a t e and u r e a . Both urea and ammonium n i t r a t e were t e s t e d on one c o a s t a l s i t e w i t h n i t r o g e n r a t e s of 168 kg/ha and 336 kg/ha. No response t o ammonium n i t r a t e was re c o r d e d f o r the lower r a t e , but urea produced a 15% b a s a l a r e a i n c r e a s e when n i t r o g e n was a p p l i e d at 336 kg/ha, urea y i e l d e d a p o s i t i v e growth response of 6%; however, NH„N0 3 was s u p e r i o r , p r o d u c i n g a 12% growth i n c r e a s e . A n i t r o g e n a p p l i c a t i o n r a t e of 224 kg/ha, u s i n g urea or ammonium n i t r a t e over a wide range of g e o g r a p h i c a l a r e a s , r e s u l t e d i n n e g a t i v e and p o s i t i v e responses f o r both types of f e r t i l i z e r s . Sometimes urea d i d not i n i t i a l l y produce a 1 4 growth i n c r e a s e , but over a p e r i o d of f o u r t o f i v e y e a r s , a response was o b s e r v e d on some s i t e s . Radwan and D e B e l l (1980b) used numerous forms of N f e r t i l i z e r s on hemlock s e e d l i n g s . A l l s e e d l i n g s t r e a t e d w i t h n i t r o g e n had s i g n i f i c a n t l y h i g h e r N c o n c e n t r a t i o n s i n the f o l i a g e than the c o n t r o l s . A l s o , s e e d l i n g s absorbed a p p r o x i m a t e l y the same amount of N from each s o u r c e . Growth i n c r e a s e d as a r e s u l t of N a p p l i c a t i o n , but d i f f e r e n c e s between t r e a t m e n t s c o u l d not be d e f i n e d , due t o w i t h i n - t r e a t m e n t v a r i a t i o n . A f i e l d study t o f o l l o w up the above experiment c o n f i r m e d the greenhouse r e s u l t s . I n c r e a s e s i n f o l i a r N c o n c e n t r a t i o n s were observed f o r a l l forms of N f e r t i l i z e r used (Radwan et a l . , 1984). Baker (1969) found t h a t urea r a i s e d the f o l i a r n i t r o g e n c o n c e n t r a t i o n on a l l s i t e s but one. The s i t e w i t h o u t an i n c r e a s e a l s o showed no change i n the f o r e s t f l o o r N c o n c e n t r a t i o n . These s t u d i e s i n d i c a t e t h a t u r e a , compared w i t h o t h e r s o u r c e s of N, s h o u l d s u p p l y t r e e s w i t h s i m i l a r amounts of N. Even though N i s d e f i c i e n t , o t h e r n u t r i e n t s may be l i m i t i n g growth. T h e r e f o r e , i n c r e a s i n g N l e v e l s a l o n e w i t h o u t a d d i t i o n s of o t h e r l i m i t i n g e lements, w i l l not n e c e s s a r i l y a c h i e v e a growth response ( E v e r a r d , 1973). Hemlock's r e a c t i o n t o f e r t i l i z e r s has not always been c o n s i s t e n t w i t h the r e s u l t s from o t h e r s p e c i e s , i n d i c a t i n g t h a t the n u t r i t i o n a l r e q u i r e m e n t s of hemlock c o u l d be d i f f e r e n t . E v e r a r d (1973) e s t a b l i s h e d n u t r i e n t c o n c e n t r a t i o n s a s s o c i a t e d w i t h poor and good growth f o r 1 5 young t r e e s under s i x meters t a l l . When compared w i t h D o u g l a s - f i r , hemlock r e q u i r e s much h i g h e r P l e v e l s . The d a t a below a r e from E v e r a r d ' s study d e s c r i b i n g n u t r i e n t c o n c e n t r a t i o n s f o r good growth. %N %P %K D o u g l a s - f i r 1.4 0.20 0.7 Western Hemlock 1.4 0.35 0.7 Van den D r i e s s c h e (1976) s t a t e d the n u t r i t i o n a l needs of hemlock do not appear t o be d i f f e r e n t from th o s e of o t h e r c o n i f e r o u s s p e c i e s . He found D o u g l a s - f i r absorbed more P than hemlock. However, I n g e s t a d (1979) found D o u g l a s - f i r would absorb h i g h amounts of P, which c o u l d be l u x u r y consumpt i o n . N u t r i e n t c o n c e n t r a t i o n s can i n d i c a t e a n u t r i t i o n a l problem which may be l i m i t i n g growth. However, s p e c i f i c v a l u e s f o r adequate or d e f i c i e n t n u t r i e n t c o n c e n t r a t i o n s a r e d i f f i c u l t t o d e f i n e . V a r i a t i o n s of c o n c e n t r a t i o n s r e p o r t e d i n the l i t e r a t u r e r e f l e c t t h i s problem. Numerous a u t h o r s have r e p o r t e d d i f f e r e n c e s i n f o l i a r n u t r i e n t s due t o f o l i a g e age, t r e e age, season of s a m p l i n g , e t c . ( B a k e r , 1969; E v e r a r d , 1973; van den D r i e s s c h e , 1976; G i l l and Lavender, 1983). A summary of some v a l u e s from the l i t e r a t u r e f o r f o l i a r c o n c e n t r a t i o n s of n u t r i e n t s i n s e e d l i n g s i s g i v e n i n T a b l e 1. Only f o l i a g e and not w h o l e - t r e e a n a l y s e s are Table 1. F o l i a r nutrient concentrations of western hemlock Indicating Inferred adequate and deficient values for seedlings under 1 year old from various l i t e r a t u r e sources. (Numbers In parentheses are Ingestad's ratios; a l l other numbers are nutrient concentrations) Source N P K Ca Mg S Fe Mn B Zn Cu < X > < ppm aldhous (1972) 1.6-2.3 0.23-0.30 0.7-1.3 0.08-0.16 Van den Driessche (1976) adequate 2.2 0.33 1.4 0.20 0.14 low 1.8 0.25 1.1 0.18 defi c i e n t 1.1 0.15 0.6 0.14 Ballard and Carter (1983)* 1.45 0.35 0.8 0.10 0.10 0.16 45 25 15 15 4 Adequate concentrations Ingestad (1979) Ratio values (100) (16) (70) (8) (5) (9) (7) (0.4) (0.2) (0.03) (0.03) Ratio converted to nutrient concentrations based on N data of Aldhous (1972) 1.6-2.3 0.26-0.37 1.12-1.61 0.13-0.18 0.08-0.12 0.14-0.21 112-161 64-92 32-46 5-7 5-7 Range of nutrient values considered s l i g h t l y deficient to adequate for western hemlock seedlings 1.6-2.3 0.23-0.37 0.7-1.61 0.13-0.20 0.08-0.16 0.14-0.21 45-161 25-92 15-46 5-15 2.6-7 Values do not apply only to seedlings under 1 year old. 1 7 l i s t e d . Aldhous (1972) r e p o r t e d a range of n u t r i e n t c o n c e n t r a t i o n s f o r m a c r o n u t r i e n t s u s u a l l y found i n h e a l t h y n u r s e r y s e e d l i n g s . C o n c e n t r a t i o n s g i v e n by van den D r i e s s c h e (1976) were g e n e r a l l y i n agreement w i t h A l d h o u s . Van den D r i e s s c h e d e f i n e d t h r e e c o n c e n t r a t i o n s f o r each element. At the upper v a l u e no f e r t i l i z e r response i s e x p e c t e d ; below these c o n c e n t r a t i o n s , growth may be i n c r e a s e d by f e r t i l i z e r a d d i t i o n s . A response w i l l p r o b a b l y be o b t a i n e d when c o n c e n t r a t i o n s a r e lower than the d e f i c i e n t v a l u e . I n g e s t a d (1979) suggested a n u t r i e n t b a l a n c e must be a c h i e v e d b e f o r e t r e e growth c o u l d be improved. To determine the p r o p o r t i o n s of n u t r i e n t s e x i s t i n g i n the f o l i a g e , he developed a mass r a t i o system. N i t r o g e n i s e x p r e s s e d as 100 and a l l o t h e r n u t r i e n t s a re e x p r e s s e d r e l a t i v e t o t h i s t o t a l amount of N. He d e r i v e d a s e t of r a t i o s based on the optimum n u t r i e n t c o n c e n t r a t i o n s i n hemlock s e e d l i n g s . R a t i o v a l u e s are g i v e n f o r m a c r o n u t r i e n t s s p e c i f i c a l l y f o r hemlock, and m i c r o n u t r i e n t s f o r a wide range of c o n i f e r s w i t h i n the Pinaceae famly. N i t r o g e n ranges g i v e n by Aldhous were used t o c o n v e r t the r a t i o s back t o c o n c e n t r a t i o n s . The m a c r o n u t r i e n t s f e l l w i t h i n the ranges p r e v i o u s l y d e f i n e d by van den D r i e s s c h e and Aldh o u s , which e s t a b l i s h e s some agreement between the s o u r c e s . M i c r o n u t r i e n t c o n c e n t r a t i o n s d e r i v e d from I n g e s t a d ' s r a t i o s a r e g i v e n i n T a b l e 1. B a l l a r d and C a r t e r (1983) reviewed many p u b l i s h e d f o l i a r n u t r i e n t c o n c e n t r a t i o n s . Some v a l u e s o b t a i n e d from t h e i r review a r e 18 a l s o i n T a b l e 1. The s u l p h u r and m i c r o n u t r i e n t d a t a r e p o r t e d by B a l l a r d and C a r t e r a p p l y t o a v a r i e t y of s p e c i e s and not s p e c i f i c a l l y w estern hemlock. T h e i r s u l p h u r c o n c e n t r a t i o n i s i n agreement w i t h the v a l u e o b t a i n e d a f t e r I n g e s t a d ' s r a t i o was c o n v e r t e d t o a c o n c e n t r a t i o n . However, a l l m i c r o n u t r i e n t c o n c e n t r a t i o n s a r e lower than the c o n v e r t e d I n g e s t a d ' s r a t i o , except Zn which i s h i g h e r . B a l l a r d and C a r t e r ' s v a l u e s r e p r e s e n t suggested adequate c o n c e n t r a t i o n s w h i l e I n g e s t a d d e v e l o p e d h i s r a t i o s from optimum n u t r i e n t c o n c e n t r a t i o n s . C o n c e n t r a t i o n s d e r i v e d from th e s e r a t i o s , a r e h i g h e r than the i n f e r r e d adequate v a l u e s g i v e n by B a l l a r d and C a r t e r . Due t o the u n c e r t a i n t y r e g a r d i n g m i c r o n u t r i e n t c o n c e n t r a t i o n s f o r hemlock s e e d l i n g s , some da t a f o r o l d e r t r e e s (Table 2) were c o n s i d e r e d . Most of the i n f o r m a t i o n i n T able 2 w i l l be r e f e r r e d t o l a t e r i n the paper. Both Beaton et a l . (1956a) and Lewis (1985) r e p o r t e d f o l i a r m i c r o n u t r i e n t c o n c e n t r a t i o n s f o r western hemlock t r e e s . Most of the c o n c e n t r a t i o n s found by L e w i s and Beaton et a l . are at or above v a l u e s g i v e n i n T a b l e 1, which p e r t a i n t o a wide range of s p e c i e s . A few e x c e p t i o n s o c c u r . Trees 140 y e a r s o l d c o n t a i n e d low Fe, B, and Zn c o n c e n t r a t i o n s , and on poor CH s i t e s S1 d e s c r i b e d by L e w i s , Fe c o n c e n t r a t i o n s were below the suggested adequate v a l u e s . A l s o manganese c o n c e n t r a t i o n s f o r hemlock a r e twenty t i m e s g r e a t e r than c o n c e n t r a t i o n s i n o t h e r s p e c i e s . Western hemlock has been noted t o a b s o r b l a r g e q u a n t i t i e s of Mn (Beaton e t a l . 1956a). B e s i d e s Mn, Table 2. Fol i a r nutrient concentrations of western hemlock trees, over 1 year old, from various l i t e r a t u r e sources Source N P K Ca Mg S Fe Mn B Cu Zn < % > < Farr et a l . (1977) Everard (1973) Lewis (1985) good growth (range) poor growth (range) good growth uncertain poor growth good growth S i ™ poor growth S 1 C H 1.28 1.0-1.48 .83 .6-1.02 >1.4 1.0-1.4 <l.O .28 .18-.34 .18 .09-.40 >.35 .2 -.35 <.20 .68 .26-.94 .62 .40-.82 >.7 .5 -.7 <.5 .2 .09-.34 .17 .08-.28 .13 .09-.17 .09 .07-.14 1.18-1.48 .24-.27 .47-.66 .25-.28 .11-.13 .77-.86 .15-.18 .63-.70 .27-.28 .093-.12 46-92 1300-1750 30-61 630-980 5-11 15-23 8-9 9-17 The following values were not related to growth performance: Beaton et a l . (1965a&b) Smith et a l . (1968) Webber* (1973) Strand & Rottlnk* (1976) 60 yrs 8-185 yrs 140-150 yrs Mean range 15-20 yrs 1 yr old foliage 30-40 yrs thinned unthlnned 1.17 .86 .91 1.1 .4-1.7 .89-1.29 1.32 1.36 .16 .19 .11 .09 .03-.26 .09-.18 .14 .17 .43 .57 .28 .43 .21-.96 .32-63 1.04 .12 .20 .27 .18 .65 .24-1.25 .33-81 .41 .23 .08 .12 .13 .15 .10 .12 .10 .17 .05-.12 .08-.28 .07-.13 63.6 1802 5.0 4.0 11.9 39.4 1876 17.0 4.2 3.0 .11 .07 .31 .30 * As reported by van den Driessche (1976). 20 the m i c r o n u t r i e n t c o n c e n t r a t i o n s g i v e n i n T a b l e 1 f o r a wide range of s p e c i e s , appear t o be g e n e r a l l y a p p l i c a b l e t o western hemlock f o l i a r d a ta c o l l e c t e d by Lewis (1985) and Beaton et a l . (1956a) (Table 2 ) . T h e r e f o r e , the c o n c e n t r a t i o n s i n T a b l e 1 can be used as g u i d e l i n e s t o i n f e r adequate n u t r i e n t c o n c e n t r a t i o n s . U s i n g I n g e s t a d ' s t h e o r y t h a t a proper b a l a n c e of n u t r i e n t s i s n e c e s s a r y t o a c h i e v e a growth response, G i l l (1981) compared p r o p o r t i o n s of f o l i a r n u t r i e n t s on some of the RFNRP i n s t a l l a t i o n s t o optimum r a t i o v a l u e s g i v e n by I n g e s t a d . He found t h a t the o n l y Cascade s i t e s i g n i f i c a n t l y r e s p o n d i n g t o N a p p l i c a t i o n had a n u t r i e n t b a l a n c e c l o s e s t t o I n g e s t a d ' s v a l u e s . A n u t r i e n t imbalance may be c a u s i n g the l a c k of response t o N f e r t i l i z e r . G i l l a l s o o b s e r v e d a r e d u c t i o n i n f o l i a r c o n c e n t r a t i o n s of P, Ca, Mg, Fe,.and B f o l l o w i n g f e r t i l i z a t i o n w i t h n i t r o g e n . A l t h o u g h r e d u c t i o n i n c o n c e n t r a t i o n s due t o a d i l u t i o n e f f e c t c o u l d not be t o t a l l y e l i m i n a t e d , he f e l t t h a t e v i d e n c e s uggested no d i l u t i o n of elements. Tree growth c o u l d be r e s t r i c t e d by a de c r e a s e i n n u t r i e n t l e v e l s which were i n i t i a l l y adequate, but became d e f i c i e n t f o l l o w i n g a d d i t i o n s of o t h e r e lements. F e r t i l i z a t i o n w i t h a number of elements was perhaps r e q u i r e d b e f o r e a growth response c o u l d be a c h i e v e d . Work by Radwan and D e B e l l (1980a) showed h i g h e r f o l i a r c o n c e n t r a t i o n s of P, K, Ca, t o t a l S, s u l p h a t e - S , B, and Mn i n the Cascade s t a n d s , which responded t o N f e r t i l i z e r , 21 compared t o non-responding c o a s t a l s t a n d s . A greenhouse experiment u s i n g many forms of n i t r o g e n f e r t i l i z e r r e s u l t e d i n d e c r e a s e d c o n c e n t r a t i o n s of P and Ca (Radwan and D e B e l l , 1980b). In the f i e l d , P, K, and Ca i n the f o l i a g e were a l l lower a f t e r N f e r t i l i z a t i o n . Mg and S a l s o tended t o decrease (Radwan et a l . , 1984). They found t h a t m i c r o n u t r i e n t c o n c e n t r a t i o n s p r o v i d e d no u s e f u l i n f o r m a t i o n f o r u n d e r s t a n d i n g the response of western hemlock t o N f e r t i l i z a t i o n . E a r l i e r work by Osborn showed lower v a l u e s of f o l i a r P, Mg, K, and S w i t h i n c r e a s e s of N and Ca a f t e r urea a p p l i c a t i o n . These r e s u l t s suggest a more complete f e r t i l i z e r may be r e q u i r e d t o produce a growth response, e s p e c i a l l y i f n u t r i e n t s which a r e d e f i c i e n t or l i m i t i n g are d e c r e a s e d f u r t h e r by N a p p l i c a t i o n s . V a r i o u s f e r t i l i z e r s w i t h d i f f e r e n t n u t r i e n t c o m b i n a t i o n s have not p r o v i d e d c o n s i s t e n t r e s u l t s . However, some t r e n d s a r e a p p a r e n t . Phosphorus may be r e q u i r e d i n l a r g e r q u a n t i t i e s by hemlock than by o t h e r s p e c i e s . T h e r e f o r e , some growth i n c r e a s e from P a p p l i c a t i o n c o u l d be' e x p e c t e d . Study r e s u l t s t e n d t o agree w i t h t h i s s t atement, a l t h o u g h e x c e p t i o n s do e x i s t . Anderson et a l . (1982) t e s t e d a d d i t i o n s of N, P, and S a l o n e and i n c o m b i n a t i o n on hemlock s e e d l i n g s . The l e v e l s of f e r t i l i z e r s used were 448 kg/ha N, 448 kg/ha P, and 112 kg/ha S. Only t r e a t m e n t s c o n t a i n i n g phosphorus i n c r e a s e d growth s i g n i f i c a n t l y more than the c o n t r o l s . They a l s o t r i e d a f e r t i l i z e r a d d i t i o n c o n t a i n i n g Mg, K, N, P, and S, but no s i g n i f i c a n t response was 2 2 o b s e r v e d . D e B e l l et a l . (1975) a p p l i e d a more complete treatment i n c l u d i n g Ca, Mg, P, K, S, B, Cu, Fe, Mn, and Zn to RFNRP p l o t s a l r e a d y f e r t i l i z e d w i t h urea or ammonium n i t r a t e . No growth response o c c u r r e d . They c l a i m e d t h a t the l a c k of growth response i n d i c a t e d t h a t no o t h e r n u t r i e n t s were l i m i t i n g . However, o t h e r f a c t o r s may need c o n s i d e r a t i o n . Heilman and Ekuan (1980) o b t a i n e d a p o s i t i v e response i n both h e i g h t and d r y mass, t o P a d d i t i o n s a t 300 kg/ha. In t h e i r s t u d y , P a p p l i c a t i o n s caused the N c o n c e n t r a t i o n i n the n e e d l e s t o d e c r e a s e . The c o n t r o l s averaged 1.59% N w h i l e P t r e a t m e n t s averaged 1.20% N. T h i s decrease may have s i g n i f i c a n c e w i t h r e g a r d t o N n u t r i t i o n f o l l o w i n g P a d d i t i o n s . D e f i c i e n c i e s of N may be c r e a t e d i f N v a l u e s a r e a l r e a d y low. An e a r l y study by Winjum and Cummings (1961) found hemlock r e s p o n d i n g p o s i t i v e l y t o both NH 4N0 3 at 330 kg/ha N and phosphate a t 196 kg/ha P. The h i g h e s t response was o b t a i n e d from n i t r o g e n . In t h i s case N was p r o b a b l y more d e f i c i e n t than P. C a r l s o n (1981) gave support f o r use of NPK f e r t i l i z e r s on w e s t e r n hemlock. He s u p p l i e d s l o w - r e l e a s e Osmocote, c o n t a i n i n g 4 p a r t s 17-5-11 and 1 p a r t 18-6-12, t o 1-0 western hemlock p l u g s a t the time of p l a n t i n g . One t r e a t m e n t i n v o l v e d p l a c i n g the f e r t i l i z e r i n the h o l e w i t h the s e e d l i n g s . F e r t i l i z e r was a l s o p l a c e d a s m a l l d i s t a n c e from the young t r e e s . Both methods produced s i g n i f i c a n t l y improved h e i g h t , shoot and l a t e r a l branch d r y w e i g h t , and 23 r o o t development. Osmocote p l a c e d i n the h o l e was the s u p e r i o r t r e a t m e n t . C o a s t a l B r i t i s h Columbian f o r e s t s o i l s , e s p e c i a l l y on hemlock s i t e s , can be v e r y a c i d i c . V a l u e s of pH around 4 are not uncommon. L i m i n g may i n c r e a s e the pH, making the s o i l environment more f a v o u r a b l e f o r m i c r o b i a l a c t i v i t y which w i l l i n c r e a s e n u t r i e n t a v a i l a b i l i t y (Armson, 1977). Heilman (1975) i n d i c a t e d t h a t a d d i t i o n s of s a l t s s h o u l d cause a r e l e a s e of a v a i l a b l e N i n t o the system and t h u s p r o v i d e a p r i m i n g e f f e c t . Heilman and Ekuan (1973) t r i e d t o improve hemlock n u t r i t i o n and r e c e i v e d no p o s i t i v e r e s u l t s . W ith l i m e a p p l i e d at 22,500 kg/ha, the n i t r o g e n c o n c e n t r a t i o n i n c r e a s e d i n the n e e d l e s , but s e e d l i n g m o r t a l i t y was a l s o h i g h e r . Hemlock does tend t o p r e f e r ammonium n i t r o g e n , and t h e r e f o r e a l e s s a c i d i c environment which promotes the c o n v e r s i o n of ammonium t o n i t r a t e c o u l d a f f e c t growth. Van den D r i e s s c h e (1976) observed a r e d u c t i o n i n growth a f t e r l i m e a d d i t i o n s . However, Anderson et a l . (1982) found t h a t l i m i n g improved growth. The v a r i a t i o n i n r e s u l t s c o u l d be due t o d i f f e r e n c e s i n s o i l s and growing c o n d i t i o n s . Growth i n c r e a s e s u s u a l l y o c c u r when o r g a n i c m a t e r i a l i s i n c l u d e d i n the growing medium f o r hemlock s e e d l i n g s . Heilman and Ekuan (1980) found t h a t t r e e growth was enhanced by f o r e s t f l o o r m a t e r i a l . A c o m b i n a t i o n of f o r e s t f l o o r and phosphorus produced the most f a v o u r a b l e r e s u l t s . W a l t e r s (1964) a l s o r e c o r d e d g r e a t e r p r o d u c t i v i t y of hemlock on s o i l s c o n t a i n i n g a h i g h amount of o r g a n i c m a t t e r . I n s e l b e r g 24 (1984) found the lowest t e r m i n a l growth on hemlock growing on m i n e r a l s o i l w i t h l i t t l e or no f o r e s t f l o o r . In the same s t a n d , t r e e s on Orthihumimors or Lignohumimors ( K l i n k a e t a l . , 1981) produced s u p e r i o r growth. Hemlock i s a c l i m a x s p e c i e s . T h e r e f o r e , s e e d l i n g s must be adapted t o growth on f o r e s t f l o o r m a t e r i a l . A l s o the f o r e s t f l o o r s u p p l i e s a l a r g e s t o r e of n u t r i e n t s . . Due t o these c o n s i d e r a t i o n s , improved growth would be expected on t h i s m a t e r i a l . S o i l n u t r i e n t s t a t u s i s o f t e n d i f f i c u l t t o r e l a t e t o t r e e n u t r i t i o n ( E v e r a r d , 1973). Radwan and Shumway (1983) t r i e d t o d e v e l o p a r e l a t i o n s h i p between growth response of w e s t e r n hemlock f o l l o w i n g N f e r t i l i z a t i o n and c o n c e n t r a t i o n s of s o i l N, S, and P. Only e x t r a c t a b l e phosphorus i n the f o r e s t f l o o r p r o v i d e d a p o s i t i v e c o r r e l a t i o n t o growth response. No o t h e r s i g n i f i c a n t r e l a t i o n s h i p s were found. They c o n c l u d e d t h a t P f e r t i l i z a t i o n on the c o a s t a l s i t e s of the RFNRP would produce a p o s i t i v e growth response. M e u r i s s e (1976) found s o i l p a rameters, i n c l u d i n g N, P, and the sum of bases, c o r r e l a t e d w i t h the s i t e index of western hemlock. In the f i e l d , G i l l (1981) found t h a t more than 95% of the a c t i v e a b s o r b i n g r o o t s of hemlock were m y c o r r h i z a l . N u t r i e n t a b s o r p t i o n , e s p e c i a l l y of P, i s enhanced by m y c o r r h i z a l f u n g i (Lavender and Walker, 1979). Urea a p p l i c a t i o n causes s h o r t - t e r m i n c r e a s e s i n pH. G i l l o b s e r v e d a r i s e of a p p r o x i m a t e l y 2 pH u n i t s . Hung and Trappe (1983) i n d i c a t e d t h a t most s p e c i e s of m y c o r r h i z a - f o r m i n g f u n g i cannot w i t h s t a n d a pH change of more than one u n i t . 25 T h e r e f o r e , the changes i n s o i l c h e m i s t r y c o u l d a d v e r s e l y a f f e c t the m y c o r r h i z a l p o p u l a t i o n . G i l l d i d f i n d a temporary d e c r e a s e i n the number of m y c o r r h i z a e d i r e c t l y f o l l o w i n g urea f e r t i l i z a t i o n . A p p r o x i m a t e l y n i n e months a f t e r a p p l i c a t i o n , the m y c o r r h i z a l p o p u l a t i o n r e t u r n e d t o i t s o r i g i n a l l e v e l . However, the s p e c i e s of m y c o r r h i z a l f u n g i had changed. Tree growth c o u l d be a f f e c t e d i n two ways. The new p o p u l a t i o n of m y c o r r h i z a e may not be as e f f e c t i v e i n n u t r i e n t a b s o r p t i o n , t h e r e b y d e c r e a s i n g n u t r i e n t u p t a k e . S e c o n d l y , the low number of m y c o r r h i z a e occur when n i t r o g e n i s most a v a i l a b l e . A b s o r p t i o n of N and o t h e r n u t r i e n t s r e q u i r e d f o r t r e e growth, e s p e c i a l l y P, would be r e s t r i c t e d . Temporary r e d u c t i o n i n m y c o r r h i z a l numbers may a i d i n e x p l a i n i n g the o b s e r v a t i o n of D e B e l l e t a l . (1975). They noted t h a t poor growth o c c u r r e d f o r the f i r s t two y e a r s a f t e r urea a p p l i c a t i o n . Four t o f i v e y e a r s f o l l o w i n g t r e a t m e n t , the response had improved. The o t h e r f a c t o r t o c o n s i d e r i s the a b i l i t y of the new p o p u l a t i o n of m y c o r r h i z a e t o a bsorb n u t r i e n t s . D i f f e r e n t s p e c i e s may not be as ef f e e t i v e . P r e s c r i b i n g c o r r e c t f e r t i l i z e r s f o r hemlock i s a c h a l l e n g i n g t a s k . N i t r o g e n a p p l i c a t i o n s have c r e a t e d a f a v o u r a b l e growth response w i t h o t h e r c o n i f e r s , but not n e c e s s a r i l y w i t h hemlock. The e r r a t i c r e s u l t s from f e r t i l i z a t i o n suggest not a l l a r e a s r e q u i r e the same n u t r i e n t s i n e q u i v a l e n t amounts. Phosphorus n u t r i t i o n i n hemlock appears t o r e q u i r e some c o n s i d e r a t i o n . A l s o , due t o 26 hemlock's heavy dependence on m y c o r r h i z a e , the r e a c t i o n of thes e f u n g i t o v a r i o u s t r e a t m e n t s s h o u l d be c o n s i d e r e d . A f e r t i l i z e r which does not d r a s t i c a l l y change pH would be p r e f e r a b l e . F i n a l l y , the e f f e c t s of f e r t i l i z e r s on the n u t r i e n t b a l a n c e w i t h i n the t r e e demand a t t e n t i o n . I f a p p l i c a t i o n of one n u t r i e n t causes another t o become d e f i c i e n t , the t r e a t m e n t w i l l not be s u c c e s s f u l . A l t h o u g h t h e r e a r e many unanswered q u e s t i o n s w i t h r e s p e c t t o f e r t i l i z a t i o n of hemlock, some t r e n d s are apparent and can be f u r t h e r s t u d i e d . N i t r o g e n and phosphorus n u t r i t i o n i s one a r e a which r e q u i r e s f u r t h e r i n v e s t i g a t i o n . Examples of response t o both N and P were g i v e n i n t h i s r e v i e w . However, the response of hemlock t o f e r t i l i z a t i o n w i t h these elements s t i l l cannot be a d e q u a t e l y p r e d i c t e d . Many v a r i a b l e s can a f f e c t the r e s u l t s of f i e l d f e r t i l i z a t i o n t r i a l s . T h e r e f o r e , a greenhouse study where a more c o n s t a n t environment can be m a i n t a i n e d c o u l d h e l p t o i s o l a t e f a c t s r e g a r d i n g N and P n u t r i t i o n . Chapter I I I METHODS A. FIELD CH CH Three S1 s i t e s and one S12 s i t e were s e l e c t e d f o r c o l l e c t i o n of humus m a t e r i a l t o use i n the greenhouse s t u d y . These a r e a s a re l o c a t e d i n the Windward Submontane M a r i t i m e V a r i a n t of the Wetter C o a s t a l Western Hemlock Subzone (CWHbl) ( N u s z d o r f e r e t a l . , 1985) on the n o r t h e r n t i p of Vancouver I s l a n d , around the H o l b e r g and P o r t Hardy a r e a s . P r e c i p i t a t i o n i s v e r y h i g h i n t h i s r e g i o n , a p p r o x i m a t e l y 4 meters per year ( L e w i s , 1985). T h e r e f o r e , p o o r l y d r a i n e d s o i l s a r e common on subdued t e r r a i n . The S1 ecosystem i s g e n e r a l l y l o c a t e d on s l o p i n g or shedding s i t e s w i t h w e l l t o mo d e r a t e l y w e l l d r a i n e d s o i l s . An e f f o r t was made t o use s i t e s which d i d not d i s p l a y any s i g n s of i m p e r f e c t t o poor d r a i n a g e or h i g h water t a b l e s , thus e n s u r i n g poor t r e e p r o d u c t i v i t y was not a r e s u l t of excess m o i s t u r e . L o c a t i o n s CH CH of the t h r e e S1 s i t e s , and the S12 s i t e a r e shown on Western F o r e s t P r o d u c t s ' maps of the H o l b e r g and the P o r t HA M c N e i l l a r e a s ( F i g u r e s 3 and 4 ) . The S1 phase s i t e s sampled f o r f o l i a g e a n a l y s i s a re a l s o shown on these maps. G e n e r a l s i t e i n f o r m a t i o n and some l o g g i n g h i s t o r y were CH CH c o l l e c t e d f o r each S1 and S12 s i t e (see Appendix 1 f o r CH f u l l d e s c r i p t i o n s ) . S o i l s on a l l t h r e e S1 a r e a s were c l a s s i f i e d as Humo-Ferric P o d z o l s , d e r i v e d p r e d o m i n a n t l y from t i l l s and some g l a c i o f l u v i a l d e p o s i t s ( L e w i s , 1985). 27 F i g u r e 3 The l o c a t i o n of s i t e s sampled on TFL#6. 30 The f o r e s t f l o o r c o n t a i n s a deep humus l a y e r , 10 cm t o 40 + cm deep. I t i s dark r e d d i s h brown i n c o l o u r and i s not as w e l l decomposed as o t h e r forms of H h o r i z o n s . K l i n k a e t a l . (1981) r e f e r s t o t h i s type of H h o r i z o n as Hr. The L and F are t h i n , u s u a l l y not more than 5 cm combined. T h i s type of f o r e s t f l o o r i s c l a s s i f i e d as a Residuohumimor ( K l i n k a e t a l . , 1981). R o o t i n g was found p r e d o m i n a n t l y i n the Hr l a y e r . T h e r e f o r e , t h i s p o r t i o n of the s o i l presumably s u p p l i e s most CH of the n u t r i e n t s t o the t r e e s on the s i t e . The S12 s i t e s CH were v e r y s i m i l a r t o the S1 a r e a s , except t h a t l i m e s t o n e bedrock u n d e r l y i n g t h i n m i n e r a l h o r i z o n s was found below the Hr h o r i z o n . F o r e s t f l o o r was c o l l e c t e d from t w e l v e randomly s e l e c t e d l o c a t i o n s on each s i t e . The s m a l l L and F l a y e r s were s c r a p e d away and a volume of H m a t e r i a l as c l o s e as p o s s i b l e t o 0.5 m l o n g x 0.5 m wide x 0.3 m deep was removed. Medium and c o a r s e r o o t s , were not c o l l e c t e d . S m a l l e r r o o t s c o u l d not be a v o i d e d and were i n c l u d e d i n the sample. A f t e r c o l l e c t i n g the s o i l , i t was kept c o o l by s t o r i n g i t o u t s i d e a t t e m p e r a t u r e s of a p p r o x i m a t e l y 5°C. One week a f t e r c o l l e c t i o n , the samples were l a i d out t o a i r d r y a t a p p r o x i m a t e l y 20°C. To ensure t h a t no major d i f f e r e n c e s i n N and P CH c o n c e n t r a t i o n s o c c u r r e d between the t h r e e S1 s i t e s an a n a l y s i s of t o t a l N and P was completed. A l l of the 12 samples from each s i t e were subsampled. D e s c r i p t i o n s of sample p r e p a r a t i o n and a n a l y s e s are g i v e n i n the s e c t i o n on 31 l a b o r a t o r y methods. An a n a l y s i s of v a r i a n c e a t 95% c o n f i d e n c e showed no s i g n i f i c a n t d i f f e r e n c e between the s i t e s f o r t o t a l N or P c o n c e n t r a t i o n s . T h e r e f o r e , the t h r e e s i t e s were assumed t o be s i m i l a r w i t h r e g a r d t o the amount of t o t a l N and P i n the f o r e s t f l o o r . At t h i s p o i n t , a l l the CH samples from the S1 s i t e s c o u l d be t r e a t e d as one l a r g e sample. Next the s o i l ^ from each sample was s i e v e d t o 2 cm. A s m a l l bucket was used t o measure the same amount of humus m a t e r i a l from each sample. These s i m i l a r volumes were combined and t h o r o u g h l y mixed t o form one l a r g e sample. T h i s combined m a t e r i a l was used as a growth medium f o r the greenhouse experiment. CH The humus m a t e r i a l from the S12 s i t e s was t r e a t e d i n CH the same manner, but remained s e p a r a t e from the S1 s o i l s . A f t e r the greenhouse experiment was begun, f i e l d CH ' CH f o l i a g e samples from the t h r e e S1 s i t e s and the S12 s i t e were c o l l e c t e d . F o l i a g e from t h r e e of the more p r o d u c t i v e HA S1 s i t e s was a l s o sampled. The f o l i a r n u t r i e n t c o n c e n t r a t i o n s from the poor s i t e s w i l l be c o n t r a s t e d w i t h the b e t t e r a r e a s . These comparisons w i l l h e l p i n a n a l y z i n g the greenhouse r e s u l t s . A l l s i t e s were l o g g e d between 1966 HA and 1974. Each S1 a r e a was w i t h i n c l o s e p r o x i m i t y t o one CH of the S1 s i t e s and both were logged r o u g h l y a t the same time . These p r e c a u t i o n s c o u l d a i d i n e l i m i n a t i n g some v a r i a t i o n due t o age and l o c a t i o n . F o l i a g e was sampled from t h t h September 13 t o 15 1983. Trees f o r f o l i a g e s a m p l i n g were 32 s e l e c t e d by c h o o s i n g a random b e a r i n g and sampling the c l o s e s t t r e e a t twenty-meter i n t e r v a l s . The t r e e had to be at l e a s t f i v e y e a r s o l d t o y i e l d an adequate amount of f o l i a g e . No f u r t h e r c r i t e r i a were used f o r t r e e s e l e c t i o n . C u r r e n t f o l i a g e was removed from l a t e r a l branches i n the second t o f o u r t h w h o r l . F i f t e e n samples were c o l l e c t e d on each s i t e . I n d i v i d u a l l a b o r a t o r y a n a l y s e s were performed on samples from s i t e s HA #3 and CH #4 t o o b t a i n an e s t i m a t e of the w i t h i n - s i t e v a r i a b i l i t y . The f o l i a g e was ground and com p o s i t e s were made from the f o l i a g e on the 5 s i t e s . E q u i v a l e n t q u a n t i t i e s of f o l i a g e were weighed f o r 3 samples and t h o r o u g h l y mixed, r e s u l t i n g i n f i v e composite samples per s i t e . B. GREENHOUSE PROCEDURES Eq u a l amounts (200g), of a i r - d r i e d s o i l were weighed i n t o 3 - l i t r e p o t s . F i e l d c a p a c i t y of the s o i l had been p r e v i o u s l y d e t e r m i n e d u s i n g the Porous P l a t e E x t r a c t o r as o u t l i n e d by R i c h a r d s (1965). The s o i l was brought up t o f i e l d c a p a c i t y over a two-day p e r i o d because the humus m a t e r i a l was i n i t i a l l y t oo hy d r o p h o b i c t o a l l o w f o r complete w e t t i n g i n one day. On the t h i r d day, a p p r o p r i a t e amounts and forms of f e r t i l i z e r were added t o each p o t . C o r r e c t q u a n t i t i e s of f e r t i l i z e r were d e t e r m i n e d from the s u r f a c e a r e a exposed a t the top of the p o t . The average diameter was 20.4 cm. T h e r e f o r e , a t a f e r t i l i z e r a p p l i c a t i o n r a t e of 100 kg/ha, 0.33 grams N per pot i s r e q u i r e d . Reagent grade 33 ammonium n i t r a t e was used f o r a N source and phosphorus was s u p p l i e d i n the form of t r i p l e superphosphate (0-45-0). Two l e v e l s of N, 100 kg/ha (N,) and 300 kg/ha ( N 2 ) , p l u s one l e v e l of P, 150 kg/ha ( P ^ , were used a l o n e and i n c o m b i n a t i o n to produce f i v e t r e a t m e n t s : N,P 0, N,P,, N 2 P 0 , N 2P,, and N 0P,. A s e t of c o n t r o l p o t s , N 0 P 0 , was a l s o p r e p a r e d . A l l t r e a t m e n t s and the c o n t r o l were r e p l i c a t e d s i x t i m e s . Lime a d d i t i o n s t o a se v e n t h s e t of p o t s p r o v i d e d a n other t r eatment a l s o r e p l i c a t e d s i x t i m e s . Enough l i m e , 3.48 g/pot as reagent grade CaC0 3, was added t o r a i s e the pH one u n i t . The amount of l i m e needed was d e t e r m i n e d u s i n g a m o d i f i c a t i o n of a procedure (Dunn, 1943) f o r l i m e r e q u i r e m e n t . I n i t i a l l y , 40 mL of 0.2M C a C l 2 was combined w i t h seven 5-gram s o i l samples. Next 0.015 M Ca(OH) 2 was added t o each sample i n v a r y i n g amounts: 0, 15, 45, 30, 60, 75, and 90 mL. A f t e r one hour w i t h i n t e r m i t t e n t s t i r r i n g , the pH of the s o l u t i o n was r e c o r d e d . The l i m e requirement was c a l c u l a t e d u s i n g a t i t r a t i o n c u r v e w i t h mL of Ca(OH) 2 v e r s u s pH. S i x r e p l i c a t e p o t s were a l s o p r e p a r e d u s i n g the s o i l CH from the S12 s i t e s . No f e r t i l i z e r s were added t o t h i s s o i 1. The f e r t i l i z e r s were t h o r o u g h l y mixed w i t h the s o i l i n each p o t . Then the s o i l s were l e f t f o r two days i n the st greenhouse b e f o r e the seeds were sown. On March 31 1983, r o u g h l y 50 western hemlock seeds were p l a c e d i n each pot a p p r o x i m a t e l y 4 mm below the s o i l s u r f a c e . Two weeks l a t e r , 34 CH the seeds were sown i n the S12 s o i l . The seeds were c o l l e c t e d from the H o l b e r g a r e a i n 1982. The seed zone was 1080, s e e d l o t #09955. I n i t i a l l y , a p l a s t i c wrap was p l a c e d over the p o t s to encourage g e r m i n a t i o n . When the f i r s t g erminants appeared, the p l a s t i c wrap was removed. The s o i l m o i s t u r e c o n t e n t was m a i n t a i n e d s l i g h t l y above f i e l d c a p a c i t y f o r the f i r s t few months. A l t h o u g h most of the water added t o the p o t s was r e t a i n e d , the s u r f a c e l a y e r s became v e r y dry w h i l e the bottom remained m o i s t . The s m a l l r o o t s of t h e s e e d l i n g s c o u l d not i n i t i a l l y r e a c h the s o i l deeper i n the p o t . T h e r e f o r e , t o keep the s u r f a c e m o i s t more water was added. S o i l m o i s t u r e was checked t h r e e t i m e s a week. Once the s e e d l i n g s were l a r g e enough, the m o i s t u r e c o n t e n t was g r a d u a l l y reduced t o f i e l d c a p a c i t y . Damping-off became a problem, e s p e c i a l l y on p o t s w i t h h i g h N t r e a t m e n t s . Four weeks a f t e r sowing, c a p t a n was mixed w i t h water t o form an e m u l s i o n , a c c o r d i n g t o d i r e c t i o n s , and sprayed onto the s o i l s u r f a c e . A f t e r two a p p l i c a t i o n s , the damping-off was c o n t r o l l e d . At n i n e weeks, the p o t s were t h i n n e d t o 20 s e e d l i n g s / p o t . For the f i r s t t h r e e months, n a t u r a l d a y l i g h t was the o n l y source of l i g h t . On J u l y 12 1982, the s e e d l i n g s were p l a c e d under l i g h t s s e t t o s u p p l y 16-hour days. t h No m y c o r r h i z a e had d e v e l o p e d by the 24 week. To promote f u n g a l development a t a b l e s p o o n of inoculum from a r o t t e n l o g was added t o each p o t . T h i s method i s recommended by Kropp (1982). The r o t t e n l o g was on the U n i v e r s i t y 35 Endowment Lands and had western hemlock i n f e c t e d w i t h m y c o r r h i z a e growing on i t . B e f o r e h a r v e s t , the p h y s i c a l appearance of the s e e d l i n g s from each t r e a t m e n t was d e s c r i b e d . A M u n s e l l c o l o u r book f o r p l a n t m a t e r i a l was used t o det e r m i n e the c o l o u r of the needles a t t h r e e p o s i t i o n s on the p l a n t : new n e e d l e s , 1 cm from a l a t e r a l t i p ; o l d n e e d l e s , 2 cm from the root c o l l a r ; and ne e d l e s from the m i d d l e of the s e e d l i n g . Any d i s c o l o u r a t i o n , such as y e l l o w i n g of the n e e d l e s or brown s p o t s was r e c o r d e d . P h y s i c a l d e f o r m i t i e s which c o u l d have r e s u l t e d from n u t r i t i o n a l problems were a l s o noted. The f u l l d e s c r i p t i o n s are found i n Appendix 2. rd On December 3 1983, the s e e d l i n g s were h a r v e s t e d . Each s e e d l i n g was c l i p p e d a t the r o o t c o l l a r , and the tw e l v e t a l l e s t s e e d l i n g s were chosen f o r h e i g h t and mass measurements. Due t o c o c k r o a c h damage, e n t i r e f o l i a r biomass c o u l d not be determined. F r e s h mass of the t w e l v e s e e d l i n g s was r e c o r d e d immediately a f t e r h a r v e s t . A l l the s e e d l i n g s were d r i e d i n paper bags a t 70°C f o r 16 hours and s t o r e d f o r one month. Befo r e dry mass was d e t e r m i n e d , they were r e d r i e d at 70°C f o r 8 hours. The mass measurements i n c l u d e d both f o l i a g e and stems. The s o i l i n each pot was a i r - d r i e d a t 25°C. As many r o o t s were removed as p o s s i b l e ; however, some f i n e r o o t s may have remained. 36 C. LABORATORY ANALYSIS 1. FOLIAGE To prepare the f o l i a g e f o r l a b o r a t o r y a n a l y s i s , the f o l i a g e and stems were s e p a r a t e d . Two hundred n e e d l e s were randomly s e l e c t e d from each r e p l i c a t e . These n e e d l e s were d r i e d a t 70°C and weighed. The d a t a were then c o n v e r t e d t o 100-needle mass. The r e m a i n i n g f o l i a g e was ground i n a Braun c o f f e e g r i n d e r f o r l a b o r a t o r y a n a l y s i s . The ground f o l i a g e was o v e n - d r i e d f o r 3 h o u r s a t 70°C. These samples were s t o r e d i n a d e s i c c a t o r and used f o r a l l a n a l y s e s . F o l i a g e was a n a l y z e d f o r t o t a l N, P, Ca, Mg, K, Mn, Zn, and A l u s i n g a m o d i f i e d v e r s i o n of the P a r k i n s o n and A l l e n (1975) d i g e s t i o n method. One gram of f o l i a g e was weighed i n t o a 100-mL d i g e s t i o n tube. Then 5 mL of c o n c e n t r a t e d s u l p h u r i c a c i d were added t o each sample and mixed w i t h the f o l i a g e on a v o r t e x mixer. One mL of a m i x t u r e c o n t a i n i n g Li 2S0„ (7.0 g ) , s e l e n i u m powder (0.21 g) and 30% H 2 0 2 (175 mL) was added t o each tube. A second mL was d i s p e n s e d i n t o each tube a f t e r the v i s i b l e r e a c t i o n from the f i r s t a d d i t i o n had ceased. When the second r e a c t i o n stopped, t h e tubes were p l a c e d on a b l o c k h e a t e r and h e a t e d d i s c o n t i n u o u s l y u n t i l the v i g o r o u s r e a c t i o n ceased. A f t e r the samples had c o o l e d s l i g h t l y , a n o t her 2 mL of the l i t h i u m - s u l f a t e - s e l e n i u m - p e r o x i d e m i x t u r e were added one a t a t i m e . The tubes were p l a c e d on the b l o c k h e a t e r a g a i n a t 37 360°C f o r 1.5 hours. At t h i s time the samples were removed, c o o l e d f o r 5 minutes, 0.5 mL of 30% H 2 0 2 was added, and the tubes were r e p l a c e d on the b l o c k h e a t e r f o r o n e - h a l f hour. Then the same procedure was r e p e a t e d . Next the samples were c o o l e d and d i l u t e d t o 100 mL w i t h d e i o n i z e d water. T o t a l P and N were b o t h measured c o l o r i m e t r i c a l l y on the T e c h n i c o n A u t o a n a l y z e r I I . The vanadomolybdophosphoric y e l l o w c o l o u r method was used t o de t e r m i n e P c o n c e n t r a t i o n s ( J a c k s o n , 1958). The w o r k i n g reagent c o n s i s t e d of ammonium molybdate d i s s o l v e d i n d i s t i l l e d water, combined w i t h a s o l u t i o n of ammonium vana d a t e , c o n c e n t r a t e d H 2 S 0 4 , and d i s t i l l e d w a t e r . T o t a l N was measured i n ammonium form by the p h e n o l - h y p o c h l o r i t e method (Weatherburn, 1967). C o n c e n t r a t i o n s of Ca, Mg, K, Mn, A l , and Zn were det e r m i n e d u s i n g the P e r k i n - E l m e r 306 Atomic A b s o r p t i o n s p e c t r o p h o t o m e t e r . A l was measured w i t h t h e n i t r o u s o x i d e - a c e t y l e n e flame, and the a i r - a c e t y l e n e flame was used f o r a l l o t h e r elements. A n i t r i c a c i d d i g e s t was employed t o determine Cu and Fe. Lower d i l u t i o n s used i n t h i s method i n c r e a s e the c o n c e n t r a t i o n of the elements i n s o l u t i o n , p r o v i d i n g more r e l i a b l e r e s u l t s than the P a r k i n s o n and A l l e n d i g e s t s o l u t i o n . T h i s method uses 0.7 grams of o v e n - d r i e d f o l i a g e per d i g e s t i o n tube. Ten mL of c o n c e n t r a t e d HN0 3 are added t o each tube and s w i r l e d on t h e v o r t e x m i x e r . The tubes a r e heated on a b l o c k h e a t e r f o r one hour a t 40°C, and then a t 140°C f o r two hours. The samples are c o o l e d and d i l u t e d t o 38 50 mL. Both Cu and Fe are measured on the atomic a b s o r p t i o n u n i t w i t h the a i r - a c e t y l e n e flame. T o t a l s u l p h u r was determined u s i n g the F i s h e r S u lphur A n a l y s e r model 47S as o u t l i n e d by G u t h r i e and Lowe (1984). A c t i v e Fe was measured u s i n g a method developed by Oserkowsky (1933) and a p p l i e d t o c o n i f e r s by Zech (1970). The ground f o l i a g e i s e x t r a c t e d w i t h 50 mL of 1M HC1 f o r 24 ho u r s , and then f i l t e r e d , u s i n g Whatman #41 f i l t e r paper. I r o n c o n c e n t r a t i o n s a re measured on the atomic a b s o r p t i o n u n i t . The azomethine H method (Gaines and M i t c h e l l , 1979) was used t o determine t o t a l B. C o n c e n t r a t i o n s of B i n s o l u t i o n were measured c o l o r i m e t r i c a l l y on the G i l f o r d s p e c t r o p h o t o m e t e r w i t h a wavelength of 420 nm. 2. SOIL A f t e r h a r v e s t i n g of the s e e d l i n g s , the s o i l s from each r e p l i c a t e were a i r - d r i e d . S e v e r a l s o i l samples Irom the f i e l d , which were not used i n the greenhouse, were a l s o a n a l y z e d . They i n c l u d e d one sample from each s i t e p l u s one composit e sample. The greenhouse and f i e l d s o i l samples were d i v i d e d i n t o two p o r t i o n s . One h a l f was s i e v e d (2 mm) and the o t h e r h a l f was ground i n a Waring B l e n d e r . S i e v e d s o i l was used f o r a n a l y s i s of exchangeable c a t i o n s , a v a i l a b l e P, pH, and m i n e r a l i z a b l e N. For t o t a l a n a l y s i s of N, C, P, Ca, Mg, K, Cu, A l , Fe, and Mn, the ground s o i l was used. The l a t t e r was o v e n - d r i e d at 70°C f o r 3 hours and s t o r e d i n a 39 d e s i c c a t o r . The m o i s t u r e c o n t e n t s of o v e n - d r i e d and a i r - d r i e d s o i l s were determined by d r y i n g s o i l samples at 105°C f o r 16 hours as o u t l i n e d by B l a c k e t a l . (1965). A l l n u t r i e n t v a l u e s were r e p o r t e d based on the 105°C o v e n - d r i e d mass. T o t a l N, P, K, Mg, Ca, A l , Mn, and Zn were determined by the same method as the f o l i a g e samples. Cu and Fe v a l u e s were l a r g e enough t o use the r e s u l t s from the P a r k i n s o n and A l l e n d i g e s t . The pH was measured by u s i n g both water and a 0.01 M s o l u t i o n of C a C l 2 . The pr o c e d u r e i s d e s c r i b e d by B l a c k et a l . (1965). A r a t i o of 1:8 was used, due t o the v e r y h i g h o r g a n i c c o n t e n t of the s o i l . A Radiometer model PHM29 pH meter w i t h a combined g l a s s - c a l o m e l e l e c t r o d e was used t o measure the pH. The sodium c h l o r i d e method was used t o e x t r a c t the exchangeable c a t i o n s ( B l a c k e t a l . , 1965). The c o n c e n t r a t i o n of i o n s i n s o l u t i o n was d e t e r m i n e d by the atomic a b s o r p t i o n u n i t . T o t a l carbon was measured u s i n g the W a l k l e y - B l a c k method d e s c r i b e d by B l a c k e t a l . (1965). Only 0.1 gram of s o i l was used, due t o the h i g h c o n t e n t of o r g a n i c m a t e r i a l . V a l u e s were checked on the Leco I n d u c t i o n Furnace and C A n a l y s e r , model No. 521, w i t h twenty of the s o i l samples. There were no s i g n i f i c a n t d i f f e r e n c e s between mean v a l u e s o b t a i n e d f o r each t r e a t m e n t by the two methods. A l s o , no d i f f e r e n c e was noted between the Leco v a l u e s f o r d i f f e r e n t 40 greenhouse s o i l t r e a t m e n t s . T h e r e f o r e , a l l C v a l u e s from the W a l k l e y - B l a c k procedure were averaged t o determine one v a l u e f o r a l l t r e a t m e n t s . A v a i l a b l e P was de t e r m i n e d u s i n g the e x t r a c t i o n p r o c e d u r e d e s c r i b e d by M e h l i c h (1978). T h i s method has been found p r e f e r a b l e t o the Bray p r o c e d u r e s f o r c o r r e l a t i n g f o l i a g e c o n c e n t r a t i o n s t o c o n c e n t r a t i o n s of n u t r i e n t s i n the s o i l ( C u r r a n , 1984). C o l o r i m e t r i c p r o c e d u r e s were a v e r s i o n of Murphy and R i l e y ' s method (1962) m o d i f i e d by John (1970). C o n c e n t r a t i o n s of P were r e a d on the G i l f o r d s p e c t r o p h o t o m e t e r at a wa v e l e n g t h of 700 nm. A m o d i f i e d v e r s i o n of the Waring and Bremner method (1964) was used t o dete r m i n e m i n e r a l i z a b l e N. T h i s procedure uses an a n a e r o b i c i n c u b a t i o n f o r 2 weeks a t 30°C. The s o i l , 4.56 grams, was mixed w i t h 57. mL of water. These amounts f i l l e d t h e v i a l s so t h a t l i t t l e a i r remained, pr o m o t i n g a n a e r o b i c c o n d i t i o n s . A f t e r the i n c u b a t i o n p e r i o d , 57 mL of 2M KC1 was mixed w i t h the i n c u b a t e d s o i l and water. T h i s m i x t u r e was shaken f o r two hours and f i l t e r e d t h r o u g h Whatman #1 f i l t e r paper. The c o n c e n t r a t i o n of ammonium n i t r o g e n was measured on the Technicon Auto A n a l y z e r I I . D. ASSESSMENT OF FOLIAR NUTRIENT STATUS T a b l e 1 p r e s e n t e d a summary of n u t r i e n t c o n c e n t r a t i o n s c o n s i d e r e d s l i g h t l y d e f i c i e n t t o adequate f o r western hemlock s e e d l i n g s . Due t o the c o m p l e x i t y i n d e t e r m i n i n g exact n u t r i e n t c o n c e n t r a t i o n s i n c o n i f e r s , t h e s e v a l u e s can 41 o n l y be used as g u i d e l i n e s f o r i n f e r r i n g n u t r i e n t d e f i c i e n c i e s . At the lower end of the n u t r i e n t range, a s m a l l f e r t i l i z e r response may be a c h i e v e d ; a t the upper v a l u e , a growth i n c r e a s e i s u n l i k e l y . Greenhouse s e e d l i n g f o l i a r n u t r i e n t c o n c e n t r a t i o n s were compared w i t h the summary of n u t r i e n t c o n c e n t r a t i o n s i n Ta b l e 1. A d e f i c i e n c y was i n f e r r e d when a n u t r i e n t was l e s s than the lower v a l u e . However, i f the s e e d l i n g c o n c e n t r a t i o n was w i t h i n the g i v e n range, the n u t r i e n t c o n c e n t r a t i o n was c o n s i d e r e d adequate f o r p r a c t i c a l p u r poses. W i t h i n t h i s range, severe r e s t r i c t i o n of s e e d l i n g growth i s u n l i k e l y . C o n c e n t r a t i o n s above the range were d e s c r i b e d as o p t i m a l . The re a d e r may note the use of thes e terms may not t o t a l l y agree w i t h the use by o t h e r a u t h o r s . Where p o s s i b l e , Table 2 was used f o r i n t e r p r e t i n g the f i e l d f o l i a r n u t r i e n t c o n c e n t r a t i o n s . Due to l a c k of d a t a , e s p e c i a l l y f o r m i c r o n u t r i e n t s , r e f e r e n c e was a l s o made t o Ta b l e 1 when a s s e s s i n g the f i e l d d a t a . E. STATISTICS The d a t a s et d i d not meet the c r i t e r i a r e q u i r e d f o r p a r a m e t r i c s t a t i s t i c s ; the v a r i a n c e s were u n e q u a l , and t e s t s f o r skewness and k u r t o s i s suggested a l a c k of n o r m a l i t y . G r a p h i n g the v a r i a b l e s a l s o v i s u a l l y suggested t h a t the d i s t r i b u t i o n was not normal; however, n o r m a l i t y i s d i f f i c u l t t o e s t a b l i s h w i t h o n l y s i x r e p l i c a t e s . Some t r a n s f o r m a t i o n s were t r i e d , but thes e a l s o proved u n s a t i s f a c t o r y . T h e r e f o r e , n o n - p a r a m e t r i c s t a t i s t i c s were used. 42 Non-parametric s t a t i s t i c s c o n s i d e r the whole d i s t r i b u t i o n of the o b s e r v a t i o n s , compared w i t h p a r a m e t r i c s t a t i s t i c s which o n l y use a mean v a l u e combined w i t h a sample v a r i a n c e . Two t e s t s were used t o determine i f t r e a t m e n t s were s t a t i s t i c a l l y d i f f e r e n t f o r the v a r i a b l e s measured: the median t e s t , and the K r u s k a l - W a l l i s one way a n a l y s i s of v a r i a n c e . The r e s u l t i s s i m i l a r t o the p a r a m e t r i c one-way a n a l y s i s of v a r i a n c e . In both the median and the K r u s k a l - W a l l i s t e s t s , the o b s e r v a t i o n s a re o r d e r e d from h i g h e s t t o l o w e s t . In the median t e s t , a common median f o r a l l o b s e r v a t i o n s i s e s t a b l i s h e d . Those o b s e r v a t i o n s above the median a r e a s s i g n e d p o s i t i v e numbers a c c o r d i n g t o t h e i r rank and those below the median are g i v e n n e g a t i v e numbers. The numbers i n d i c a t i n g the p o s i t i o n a re used i n a X 2 c a l c u l a t i o n t o determine i f the groups a re s t a t i s t i c a l l y s i m i l a r . For the K r u s k a l - W a l l i s method, the o b s e r v a t i o n s a r e ranked from 1 t o n and a s t a t i s t i c i s c a l c u l a t e d from the numbers i n d i c a t i n g the r a n k s . T h i s s t a t i s t i c f o l l o w s the x 2 d i s t r i b u t i o n . When o b s e r v a t i o n s a re l e s s than 5, the x 2 becomes inadequate and s e p a r a t e t a b l e s a r e a v a i l a b l e . Both t h e s e methods a r e d e s c r i b e d by S i e g e l (1956). For most v a r i a b l e s , a t l e a s t one group was s i g n i f i c a n t l y d i f f e r e n t from the o t h e r s . The program p r o v i d e d by MIDAS (Anonymous, 1976) ranks each treatment a c c o r d i n g t o the d i s t r i b u t i o n of the o b s e r v a t i o n s . T h i s r a n k i n g i s used t o p l a c e each tr e a t m e n t i n o r d e r from l o w e s t t o h i g h e s t f o r each v a r i a b l e . Treatment means do not f o l l o w the r a n k i n g e x a c t l y . For 43 example one tr e a t m e n t may have a s l i g h t l y lower mean, but i s ranked above another t r e a t m e n t w i t h a h i g h e r mean. G e n e r a l l y , the n o n - p a r a m e t r i c o r d e r i n g i s i n agreement w i t h mean v a l u e s . A Mann-Whitney U Test was used t o determine s i g n i f i c a n t d i f f e r e n c e s between t r e a t m e n t s . In t a b l e s 3, 5, and 11, the t r e a t m e n t s a r e l i s t e d i n the o r d e r produced by the r a n k i n g system of the K r u s k a l - W a l l i s T e s t . L e t t e r s i n d i c a t e whether the t r e a t m e n t s a re s t a t i s t i c a l l y d i f f e r e n t . I f two t r e a t m e n t s a r e f o l l o w e d by the same l e t t e r , they a r e c o n s i d e r e d s t a t i s t i c a l l y t he same. For a l l t e s t s , a=0.05 i n a t w o - t a i l e d t e s t . The a l t e r n a t i v e h y p o t h e s i s i s used t o determine i f a one or t w o - t a i l e d t e s t i s r e q u i r e d . The n u l l h y p o t h e s i s , H 0, s t a t e s the two samples are e q u a l . H 1 f the a l t e r n a t i v e h y p o t h e s i s , s t a t e s the two samples are not e q u a l . No d i r e c t i o n i s i n d i c a t e d i n H 1 r t h e r e f o r e the t e s t i s t w o - t a i l e d . The Spearman Rank C o r r e l a t i o n , a l s o a no n - p a r a m e t r i c t e s t , was used t o determine c o r r e l a t i o n s between v a r i a b l e s . One t e s t was performed u s i n g a l l the greenhouse d a t a w i t h o u t s t r a t i f y i n g i t i n t o t r e a t m e n t s . Another was completed f o r the f i e l d d a t a w i t h no s e p a r a t i o n by s i t e . S o i l v a l u e s and greenhouse f o l i a r d a t a were a l s o c o r r e l a t e d . C o r r e l a t i o n s are based on the d i f f e r e n c e between the ranks of the two v a r i a b l e s . For example, i f an o b s e r v a t i o n i s ranked f i r s t f o r N, but f i f t h f o r P, the d i f f e r e n c e i s -4. The sum of the squares of the d i f f e r e n c e s i s used t o c a l c u l a t e the 44 c o r r e l a t i o n c o e f f i c i e n t . S i e g e l (1956) e x p l a i n s t h i s method. A l l t he n o n - p a r a m e t r i c s t a t i s t i c s were run on the U.B.C. computer u s i n g MIDAS (Anonymous, 1976). C l u s t e r a n a l y s i s was s e p a r a t e l y performed on greenhouse and f i e l d - f o l i a g e d a t a . T h i s s t a t i s t i c a l p r ocedure compares many v a r i a b l e s from each o b s e r v a t i o n i n one a n a l y s i s . The groups formed i n d i c a t e how s i m i l a r samples a r e over a range of v a r i a b l e s , not j u s t one. The samples w i t h s i m i l a r v a r i a b l e s a re grouped t o g e t h e r . An e r r o r v a l u e i n d i c a t e s when samples which a r e d i s s i m i l a r a re i n c l u d e d i n the same c l u s t e r . When the e r r o r v a l u e jumps s u b s t a n t i a l l y , c l u s t e r s of samples w i t h u n l i k e p r o p e r t i e s have been j o i n e d t o g e t h e r . At t h i s p o i n t , groups of samples which a r e s i g n i f i c a n t l y d i f f e r e n t can be i d e n t i f i e d . P r i n c i p a l components a n a l y s i s (PCA) was used t o determine which v a r i a b l e s s h o u l d be i n c l u d e d i n the c l u s t e r . The PCA, or F a c t o r A n a l y s i s , d e v e l o p s f a c t o r s which account f o r v a r i a b i l i t y between o b s e r v a t i o n s . A f a c t o r may be dominated by one v a r i a b l e or t h r e e or f o u r v a r i a b l e s . When t h r e e or f o u r v a r i a b l e s are a s s o c i a t e d t o g e t h e r , they a re u s u a l l y c o r r e l a t e d . For example, n i t r o g e n a d d i t i o n s cause i n c r e a s e s i n f o l i a r N, Cu, and growth. These t h r e e v a r i a b l e s can account f o r most of the v a r i a b i l i t y i n f a c t o r 1. Only one of the t h r e e s h o u l d be used i n the c l u s t e r a n a l y s i s . O t h e r w i s e the c l u s t e r s would be h e a v i l y i n f l u e n c e d by n i t r o g e n i n c r e a s e s and o t h e r i m p o r t a n t v a r i a b l e s may be masked. Seven f a c t o r s were c a l c u l a t e d , d e c r e a s i n g i n the amount of v a r i a b i l i t y they 45 c o n t r i b u t e from f a c t o r 1 t o f a c t o r 7. Once 85 t o 90 p e r c e n t of the v a r i a b i l i t y was ac c o u n t e d f o r , no f u r t h e r f a c t o r s were c o n s i d e r e d . The v a r i a b l e s c o n t r i b u t i n g the most v a r i a b i l i t y t o each f a c t o r were i s o l a t e d , and one or two were used i n the c l u s t e r a n a l y s i s . Two v a r i a b l e s , from one f a c t o r , were used o n l y i f the f a c t o r c o n t r i b u t e d more than 10 p e r c e n t t o the v a r i a b i l i t y . In t h i s c a s e , two v a r i a b l e s from a l l f a c t o r s c o n t r i b u t i n g more than 10 p e r c e n t were used t o m a i n t a i n a b a l a n c e . A d e s c r i p t i o n of F a c t o r A n a l y s i s can be found i n W i l l i a m s (1968). Both PCA and the c l u s t e r s were run on the UBC computer. The SPSS s t a t i s t i c a l package was used f o r the PCA and a program dev e l o p e d by L a i (1982), H i e r a r c h i c a l G r o u p i n g A n a l y s i s , w i t h O p t i o n a l C o n t i g u i t y C o n s t r a i n t was used f o r the c l u s t e r a n a l y s i s . A l l d e s c r i p t i v e s t a t i s t i c s were run u s i n g the MIDAS s t a t i s t i c a l package. Chapter IV RESULTS AND DISCUSSION A. EFFECTS OF FERTILIZER ADDITIONS ON GROWTH RESPONSE Three t r e a t m e n t s , N,P 0, N ^ , and N 0P,, were s i g n i f i c a n t l y s u p e r i o r compared t o a l l o t h e r t r e a t m e n t s and the c o n t r o l i n h e i g h t , d r y mass, and f r e s h mass (Table 3 ) . No s i g n i f i c a n t d i f f e r e n c e was found between o t h e r t r e a t m e n t s f o r s e e d l i n g CH h e i g h t and mass except on the S 1 2 s o i l s where s e e d l i n g mass was s l i g h t l y l o w e r . S e e d l i n g mass and h e i g h t i n the NTPQ treatment were l e s s than i n the N 0P, and the N,P, p o t s . A l t h o u g h the N,?, treatment d i d i n c r e a s e s e e d l i n g biomass, v i s u a l l y the s e e d l i n g s appeared s l i g h t l y deformed. Needles were cupped and s m a l l . Browning of o l d e r n e e d l e s on t i p s , m a r g i n s , and o v e r a l l was noted. Some o l d e r n e e d l e s appeared c h l o r o t i c and y e l l o w i s h t i p s were o b s e r v e d . A l s o , a moderate amount of needle l o s s o c c u r r e d . S e e d l i n g c o l o u r and v i s u a l appearance are noted i n Appendix 2 . Due t o the c o m p l e x i t y of n u t r i e n t i n t e r a c t i o n s , v i s u a l symptoms were d i f f i c u l t t o i n t e r p r e t . Swan ( 1 9 6 0 ) d e s c r i b e d d e f i c i e n c y symptoms r e l a t e d s p e c i f i c a l l y t o hemlock. He found t h a t low f o l i a r c o n c e n t r a t i o n s of both K and P produced brown needle t i p s and t h a t K d e f i c i e n c i e s caused o v e r a l l brown s p o t t i n g . I n s u f f i c i e n t amounts of these elements c o u l d be the reason f o r those symptoms found i n t h i s greenhouse s t u d y . 4 6 47 Table 3. Si g n i f i c a n t differences between treatments for f o l i a r nutrient concentrations and growth parameters of the greenhouse seedlings Seedling dry mass a* S12 a L l m e a b » 2 P 0 8 b V l ' Vo' N 1 P 0 N 1 P 1 V l mean (g) 4.54 5.41 5.18 5.26 6.70 10.67 13.77 14.57 S.D. (0.39) (1.43) (0.94) (0.52) (1.80) (1.18) (0.63) (0.66) Seedling fresh mass S12 a L i m e a b N 2 P Q b V l ' Vo* Vo N 0 P 1 N 1 P 1 mean (g) 14.64 18.05 18.07 17.98 22.08 33.73 43.85 48.50 S.D. (1.31) (5.19) (3.48) (1.66) (5.66) (3.83) (2.21) (2.32) Seedling height Vo Lime8 V l * Vo" N 1 P 0 V l ' N o p i b mean (cm) 14.2 14.2 14.3 15.9 20.1 22.7 23.8 S.D. (0.65) (1.94) (0.98) (2.60) (0.95) (0.90) (1.21) 100-needle mass V l " Vo* S12C cd Vo Vo* Lime'' N 0 P 1 mean (g) .085 .089 .096 .099 .103 .103 .103 .128 S.D. (.0047) (.0031) - (.0046) (.0084) (.0099) (.0045) (.0041) (.0067; Nitrogen N 2 P 0 N 0 P 1 V l " N P a b " V o V l " S12a b , abc Lime Vo' mean (%) .742 .880 1.65 1.74 1.95 1.97 1.91 2.27 S.D. (.080) (.041) (.048) (.43) (.094) (.22) (.38) (.14) Phosphorus N P a 1 0 Lime b N P a b 0 0 S12 a b N 2 P 0 b V l N 1 P 1 N 0 P 1 mean (%) .067 .096 .102 .124 .122 .228 .275 .506 S.D. (.0046) (.019) (.022) (.053) (.031) (.0062) (.016) (.075) Calcium vS V l " ' V i ' b e N P a b c d N 2 P 0 T 4 be Lime Vo S12 c d N P d mean (%) .17 .18 .18 .18 .19 .19 .20 .21 S.D. (.012) (.0089) (.0098) (.016) (.0082) (.016) (.018) (.015) Magnesium VS S12a b Lime N P b c " V o N i p o C N 1 P 1 N o p i d N P d 'Vl mean (%) .10 .11 .11 .12 .15 .20 .22 .23 S.D. (.014) (.0096) (.0078) (.0065) (.024) (.0085) (.011) (.013) Potassium V l Vo" V l " W S12 b c "opobC Lime 0 N 2 P 1 mean (X) .63 .66 .66 .85 .93 .94 .98 1.15 S.D. (.023) (.073) (.046) (.096) (.052) (.069) (.028) (.074) * Treatments followed by a common l e t t e r are not s i g n i f i c a n t l y d i f f e r e n t , according to the Mann-Whitney U test (P - 0.05). 48 Table 3. (cont'd) Sulphur Vo" N 2 P 0 a ab N0 P0 Lime8 S12 8 b N 2 P 1 C V i c mean (Z) .112 .113 .114 .116 .119 .123 .137 .141 S.D. (.0047) (.0018) (.010) (.0051) (.013) (.0026) (.0039) (.0023) Manganese V ia b V i b N o p i C N P A C D E  N2 P0 »i po - N P d f g 0 0 ef Lime" S128 mean (ppm) 792 795 1190 1260 1490 1880 1930 2160 S.D. (61) (65) (78) (518) (182) (338) (144) (152) Iron S12 a b Lime a b c6 "2 1 N o p o N P b f g "ro N 1 P 1 8 mean (ppm) 30 33 35 36 38 38 40 42 S.D. (.98) (4.50) (6.44) (1.8) (1.1) (1.6) (4.6) (2.1) Copper S12a Lime8 N o p o 8 N P 8 b " V o N P 8 b N 2 * l N P 8 b c N P b c 11 N o p i C mean (ppm) 6.3 6.8 6.8 7.0 7.3 8.5 9.0 10.7 S.D. (.52) (1.17) (.75) (.71) (1.63) (1.87) (2.20) (2.40) Zinc N2 P0 N o p o 8 S12a H i p o " .. ab Lime N o p 3 i N P b c 11 N 2 P 1 C mean (ppm) 2.0 7.2 7.8 8.7 9.8 9.5 13.7 18.2 S.D. (.71) (1.7) (.75) (1.6) (3.5) (1.9) (2.4) (5.4) Aluminium S12 8 C » l P l 8 b ,. be Lime N o p i b N P M 10 N o p o d N 2 P 0 C mean (ppm) 20 22 23 30 37 53 85 226 S.D. (0) (4.0) (5.2) (8.9) (H) (30) (84) (53) Boron N l p 8 N 2 P i a b N i p o C V i c Lime N o p o d S12d mean (ppm) 11.4 11.5 13.4 17.3 17.8 25.0 26.8 25.4 S.D. (.68) (.73) (1.84) (1.63) (1.68) (3.38) (7.49) (3.87) N P a b I D N o p o b N P a b n i N P a b S12 8 b N P a b 9 1 _ . ac Lime N P C Active Iron 1 u U X i. 1 1 1 mean (Z) 26.7 27.3 29.2 29.3 29.4 29.8 31.3 33.8 S.D. (3.22) (2.78) (2.20) (2.86) (2.72) (1.84) (2.75) (1.77) 49 The N 0P, and I^P, t r e a t m e n t s produced the g r e a t e s t amount of s e e d l i n g biomass and the t a l l e s t s e e d l i n g s . No s i g n i f i c a n t d i f f e r e n c e o c c u r r e d i n s e e d l i n g h e i g h t . F r e s h mass was g r e a t e r f o r N,P,, but the dry mass was s i g n i f i c a n t l y h i g h e r f o r the N 0P,. In the l a s t 8 t o 12 weeks of the greenhouse s t u d y , the N 0P, treatment became c h l o r o t i c and showed s i g n s of a d e c l i n i n g growth r a t e . R e d u c t i o n i n v i g o u r may e x p l a i n the lower m o i s t u r e c o n t e n t , shown by a comparison of f r e s h and dry mass, i n the N 0P, s e e d l i n g s . Brown s p o t s on the n e e d l e s were found w i t h both N,P, and N 0 P i t r e a t m e n t s . O t h e r w i s e , s e e d l i n g s grown i n the N,P, trea t m e n t appeared t o be h e a l t h y and v i g o r o u s , d i s p l a y i n g b l u e - g r e e n n e e d l e s . I n i t i a l l y , the N 0P, tre a t m e n t was s u p e r i o r t o the N,P, t r e a t m e n t . P i c t u r e s i n Appendix 2 show the d i f f e r e n c e . However, the s e e d l i n g v i g o u r of the N 0P, de c r e a s e d w h i l e t h a t of the N,P, i n c r e a s e d . I n i t i a l growth of the l a t t e r c o u l d have been i n h i b i t e d by N a d d i t i o n s . Some v i s u a l symptoms were apparent i n o t h e r t r e a t m e n t s . A l l p o t s w i t h N a d d i t i o n s produced s e e d l i n g s w i t h a more m a t - l i k e growth compared t o the e r e c t form of the N 0 P i s e e d l i n g s . The h i g h N t r e a t m e n t s produced s e e d l i n g s which grew almost h o r i z o n t a l l y . However, a t the end of the s t u d y , s e e d l i n g s i n the N 2 P i t r e a t m e n t d i d show improved form. Needle l o s s o c c u r r e d w i t h both t r e a t m e n t s where o n l y N was added (N,P 0 and N 2 P 0 ) as w e l l as on the N 2P, s e e d l i n g s . C h l o r o s i s on needle t i p s and o l d e r n e e d l e s was a l s o found w i t h the above t h r e e t r e a t m e n t s , and a s m a l l amount o c c u r r e d 50 on the N,P, s e e d l i n g s . N i t r o g e n a d d i t i o n s seem t o have ' caused the above symptoms. F e r t i l i z a t i o n w i t h n i t r o g e n and phosphorus a t r a t e s of 100 kg/ha and 150 kg/ha r e s p e c t i v e l y , and f e r t i l i z a t i o n w i t h P a l o n e at the l a t t e r r a t e were the two most p r o d u c t i v e t r e a t m e n t s . F o l i a r n u t r i e n t c o n c e n t r a t i o n s r e s u l t i n g from those t r e a t m e n t s can be c o n s i d e r e d b e n e f i c i a l f o r r a p i d growth of western hemlock. However, the h e a l t h i e r appearance of the N,P, s e e d l i n g s suggested t h a t optimum f o l i a r n u t r i e n t c o n c e n t r a t i o n s were more l i k e l y t o occur i n t h i s t r e a t m e n t . S e e d l i n g c h l o r o s i s and growth r e d u c t i o n , which o c c u r r e d s e v e r a l months a f t e r the study began, i n d i c a t e d t h a t i n the N 0 P i t r e a t m e n t , one or more n u t r i e n t s had begun t o l i m i t growth. T h e r e f o r e , a l t h o u g h biomass p r o d u c t i o n was h i g h , n u t r i e n t c o n c e n t r a t i o n s from t h i s t r e a t m e n t cannot be c o n s i d e r e d o p t i m a l . To determine the 100-needle mass, 200 n e e d l e s i n s t e a d of 100, were cou n t e d t o reduce e f f e c t s of the v a r i a b i l i t y caused by unequal needle s i z e commonly found i n hemlock. As p r e v i o u s l y mentioned, t h i s measurement has been used and found e f f e c t i v e as an index of growth response f o r v a r i o u s c o n i f e r o u s s p e c i e s o t h e r than hemlock. In t h i s study a l t h o u g h s i g n i f i c a n t c o r r e l a t i o n s were found between 100-needle weight and a few f o l i a r n u t r i e n t c o n c e n t r a t i o n s , the c o r r e l a t i o n s between f o l i a r n u t r i e n t s and o t h e r growth parameters are g e n e r a l l y s u p e r i o r (Table 4 ) . A l s o , T a b l e 3 showed no s i g n i f i c a n t d i f f e r e n c e i n 100-needle mass between Table 4. Spearman rank cor r e l a t i o n c o e f f i c i e n t s for greenhouse seedling growth parameters and f o l i a r nutrient concentrations (only variables correlated at or above 95t confidence are reported) Seedling height Seedling fresh mass .96 Seedling dry mass .96 100-needle mass .57 N -.33 P .49 Ca Mg .44 K Mn -.39 Fe Cu .64 B Active Fe S Zn Al .96 .47 .35 .46 .31 .49 .63 .55 .33 .62 .46 .32 .54 .35 .48 .29 .50 .60 .49 .66 .37 .30 .36 -.36 .32 .31 Seedling Seedling Seedling 100-helght fresh dry needle mass mass mass .53 •43 .61 .35 .29 .36 .33 .57 -.33 -.56 .47 -.46 .34 .65 .41 .30 -.36 Ca -.59 .40 -.50 .52 .64 -.36 Mg .39 .30 -.30 .41 .88 .54 .48 Mn Fe -.35 . 3 5 Cu .45 .46 .40 .34 . 4 9 .45 Active Fe -.61 Zn Al 52 the c o n t r o l and the N,P 0 and N,P, t r e a t m e n t s , a l t h o u g h s e e d l i n g biomass and h e i g h t from these t r e a t m e n t s were s u b s t a n t i a l l y d i f f e r e n t from the c o n t r o l v a l u e s . As w i t h e a r l i e r work, t h i s greenhouse study c o n f i r m e d t h a t 100-needle mass measurements from western hemlock s e e d l i n g s are an u n s a t i s f a c t o r y index of s e e d l i n g growth. B. EFFECTS OF FERTILIZER ADDITIONS ON FOLIAR NUTRIENT  CONCENTRATIONS C e r t a i n t r e n d s are apparent thoughout a l l of the greenhouse t r e a t m e n t s and can be d i s c u s s e d i n g e n e r a l terms. T o t a l i r o n was below suggested adequate c o n c e n t r a t i o n s f o r a l l the greenhouse t r e a t m e n t s w i t h v a l u e s r a n g i n g from 30 t o 42 ppm. However, a c t i v e Fe i s p r e f e r a b l e t o t o t a l Fe as an i n d i c a t o r of n u t r i t i o n a l problems because t o t a l Fe i n c l u d e s forms of Fe which a r e u n a v a i l a b l e f o r p l a n t m e t a b o l i c p r o c e s s e s . M a j i d (1984) found, from s t u d i e s of Pi nus contort a Dougl. response t o f o l i a r a p p l i c a t i o n s of Fe, t h a t the " c r i t i c a l " a c t i v e Fe c o n c e n t r a t i o n was about 29 ppm. The " c r i t i c a l " c o n c e n t r a t i o n was d e f i n e d as t h a t a s s o c i a t e d w i t h 90 p e r c e n t of the maximum growth a t t a i n a b l e a t the optimum Fe c o n c e n t r a t i o n . Zech (1970) found t h a t a c t i v e Fe c o n c e n t r a t i o n s above 29 ppm were a s s o c i a t e d w i t h green f o l i a g e , whereas lower c o n c e n t r a t i o n s were a s s o c i a t e d w i t h c h l o r o t i c f o l i a g e i n Pi nus s y l v e s t r i s L. Thus, the l o w e s t a c t i v e Fe v a l u e s found i n t h i s s tudy a r e not f a r below the c r i t i c a l c o n c e n t r a t i o n s i n d i c a t e d by a u t h o r s who have 53 e v a l u a t e d a c t i v e Fe i n o t h e r c o n i f e r s . A l s o , Fe v a l u e s do not s e p a r a t e t r e a t m e n t s w i t h h i g h p r o d u c t i v i t y from those w i t h lower p r o d u c t i v i t y . T h e r e f o r e , Fe was p r o b a b l y not an element which l i m i t e d s e e d l i n g growth. S u l p h u r was a l s o g e n e r a l l y l e s s than recommended c o n c e n t r a t i o n s , except f o r the N T P , t r e a t m e n t where i t was j u s t w i t h i n the adequate range. The ^ P , s e e d l i n g s c o n t a i n e d s i g n i f i c a n t l y more S than most t r e a t m e n t s . Growth response f o r the N,P, was a l s o one of the h i g h e s t o b t a i n e d . T h e r e f o r e , the g r e a t e r amounts of S may have c o n t r i b u t e d towards the s u p e r i o r s e e d l i n g growth. However, the two o t h e r t r e a t m e n t s which were s i g n i f i c a n t l y g r e a t e r i n s e e d l i n g growth compared w i t h the c o n t r o l , c o n t a i n e d v a l u e s of S e q u a l t o or l e s s than the c o n t r o l ' s v a l u e s . So c o n c e n t r a t i o n s of t h i s element d i d not s e p a r a t e t r e a t m e n t s w i t h h i g h p r o d u c t i v i t y from t r e a t m e n t s w i t h lower p o d u c t i v i t y . N/S r a t i o s a l s o d i d not s e p a r a t e t r e a t m e n t s a c c o r d i n g t o p r o d u c t i v i t y , a l t h o u g h v a l u e s o c c u r r e d above and below the c r i t i c a l r a t i o e s t a b l i s h e d by Turner (1979) f o r o t h e r s p e c i e s . T h e r e f o r e , even i f S may have been growth l i m i t i n g i n some c a s e s , i t was not c o n s i s t e n t l y so. I n f e r r e d d e f i c i e n c i e s of Fe and S w i l l not be d i s c u s s e d under each t r e a t m e n t s e c t i o n . In the c o n t r o l s e e d l i n g s , b e s i d e s Fe and S, the o n l y n u t r i e n t below the i n f e r r e d adequate c o n c e n t r a t i o n s was P. A l l o t h e r n u t r i e n t s were w i t h i n the suggested adequate ranges, but N and K c o n c e n t r a t i o n s were lower than optimum 54 v a l u e s . For c o n d i t i o n s produced by the c o n t r o l , a response t o P i s l i k e l y and a d d i t i o n s of N and/or K might a l s o a c h i e v e a growth response. 1. EFFECTS OF NITROGEN FERTILIZERS The low a p p l i c a t i o n r a t e (100 kg/ha) of N ( N ^ o ) , d i d improve growth, i n d i c a t i n g t h a t N was p r o b a b l y a l i m i t i n g e l e m ent. However, t h i s t r e atment was s u r p a s s e d i n growth by the N 0P, s e e d l i n g s , s u g g e s t i n g P was more l i m i t i n g than N ( T a b l e 3 ) . S u p p o r t i n g t h i s r e s u l t , a n e g a t i v e c o r r e l a t i o n between growth parameters and n i t r o g e n was found (Table 4 ) . For t h e t h r e e most p r o d u c t i v e t r e a t m e n t s , the N c o n c e n t r a t i o n was i n v e r s e l y r e l a t e d t o h e i g h t and mass measurements. Adequate N c o n c e n t r a t i o n s but d e f i c i e n t P l e v e l s found i n the c o n t r o l a l s o suggest t h a t , under greenhouse c o n d i t i o n s , P but not N was the p r i m a r y l i m i t i n g e lement. F o l i a r N a t 2.27% i n the N,P 0 t r e a t m e n t i s the h i g h e s t N c o n c e n t r a t i o n r e c o r d e d , and s i g n i f i c a n t l y g r e a t e r than a l l t r e a t m e n t s except l i m e . A s s o c i a t e d w i t h a p p l i c a t i o n s of N t o hemlock were changes i n the f o l i a r c o n c e n t r a t i o n s of o t h e r n u t r i e n t s ( T a b l e s 3 and 4 ) . A n e g a t i v e c o r r e l a t i o n between N and P i n d i c a t e d t h a t P c o n c e n t r a t i o n s d e c r e a s e d as N l e v e l s i n c r e a s e d (Table 4 ) . P c o n c e n t r a t i o n s have been noted t o d e c r e a s e a f t e r N f e r t i l i z a t i o n ( G i l l and Lavender, 1983; G i l l , 1981; Baker, 1969; Osborn, 1968). Phosphorus l e v e l s i n the N.TPQ treatment were much lower than the c o n t r o l , but not 55 s i g n i f i c a n t l y l o w e r , due t o the l a r g e v a r i a b i l i t y i n the c o n t r o l ( T a b l e 3 ) . Two o t h e r n u t r i e n t s a f f e c t e d by the lower N f e r t i l i z e r r a t e were B and Ca (Table 3 ) . Boron a b s o r p t i o n appears t o be i n h i b i t e d by N a d d i t i o n s . A l l p o t s t r e a t e d w i t h N have s i g n i f i c a n t l y lower B c o n c e n t r a t i o n s than the c o n t r o l . G i l l (1981) a l s o found B l e v e l s d e c r e a s e d w i t h N a d d i t i o n s . C a l c i u m c o n c e n t r a t i o n s were g r e a t e r i n the N , P 0 t r e a t m e n t . Ca was w i t h i n i n f e r r e d adequate ranges i n a l l t r e a t m e n t s , and would p r o b a b l y not be r e s p o n s i b l e f o r r e s t r i c t i n g growth. I r o n was n o t a b l y low f o r a l l s e e d l i n g s as p r e v i o u s l y mentioned. However, the h i g h e s t f o l i a r i r o n c o n c e n t r a t i o n s were found i n the low N t r e a t m e n t s . Both t ^ P , and NTPQ y i e l d e d g r e a t e r Fe v a l u e s than the c o n t r o l . The s m a l l a d d i t i o n of n i t r o g e n may have i n c r e a s e d f o l i a r Fe c o n c e n t r a t i o n s . Phosphorus was the o n l y element i n f e r r e d t o be s e v e r e l y d e f i c i e n t i n the NTPQ s e e d l i n g s . A l s o , phosphorus was the o n l y f o l i a r n u t r i e n t c o n c e n t r a t i o n s i g n f i c a n t l y lower than the c o n c e n t r a t i o n s found i n the N,P, s e e d l i n g s . A response t o P would be e x p e c t e d under c o n d i t i o n s o c c u r r i n g i n the N,P 0 t r e a t m e n t . The h i g h e r r a t e of N f e r t i l i z e r a t 300 kg/ha produced v e r y d i f f e r e n t r e s u l t s . S e e d l i n g growth w i t h the N 2 P 0 treatment i s not s i g n i f i c a n t l y d i f f e r e n t from the c o n t r o l (Table 3 ) . However, s e e d l i n g form was v e r y poor. F o l i a r n u t r i e n t c o n c e n t r a t i o n s were a l s o g e n e r a l l y low. At 0.742%, the f o l i a r N c o n c e n t r a t i o n was s i g n i f i c a n t l y lower than i n any o t h e r t r e a t m e n t . Four o t h e r elements were s i g n i f i c a n t l y 56 l e s s than the c o n t r o l : Mg, K, Zn, and B. Mg was presumed not t o be l i m i t i n g ; however, the l a t t e r t h r e e were below suggested adequate l e v e l s . V i s u a l e v a l u a t i o n a t the time of h a r v e s t i n d i c a t e d t h a t r o o t development was a l s o v e r y poor compared t o o t h e r t r e a t m e n t s , except f o r the N 2P,. The o n l y element s i g n i f i c a n t l y g r e a t e r than the c o n t r o l was A l (Table 3 ) . A d d i t i o n s of NH„ + perhaps caused a r e l e a s e of aluminium or d i v a l e n t aluminium h y d r o x i d e c a t i o n s i n t o the s o i l s o l u t i o n t h r o u g h mass a c t i o n . A l a r g e p o r t i o n of the s o i l A l i s complexed w i t h humus m a t e r i a l . However, D r i s c o l l et a l . (1985) found a p p r o x i m a t e l y 20% of the A l i n a s o i l s o l u t i o n c o l l e c t e d from an a c i d f o r e s t f l o o r was i n an i n o r g a n i c form; 70% of the i n o r g a n i c A l was i n the A l + 3 form. T h e r e f o r e , A l + 3 can remain r e l a t i v e l y s o l u b l e i n a f o r e s t f l o o r and i n c r e a s e d A l c o n c e n t r a t i o n s c o u l d have produced a t o x i c e f f e c t r e s t r i c t i n g r o o t development (Mengel and K i r k b y , 1982). I n g e s t a d (1979) found t h a t h i g h l e v e l s of n i t r o g e n i n s o l u t i o n caused t o x i c e f f e c t s . Some s p e c i e s c o u l d w i t h s t a n d c o n c e n t r a t i o n s of 1200 ppm N i n s o l u t i o n and o t h e r s o n l y 800 ppm. Western hemlock was not t e s t e d ; t h e r e f o r e these f i g u r e s can o n l y be used as a g u i d e . The h i g h r a t e of N perhaps caused a t o x i c i t y which r e s t r i c t e d r o o t development and/or' n u t r i e n t a b s o r p t i o n . Poor r o o t development was found i n both the N 2 P 0 and the N 2P, t r e a t m e n t s . However, f o l i a r n u t r i e n t c o n c e n t r a t i o n s were s i g n i f i c a n t l y d i f f e r e n t . For example, a h i g h r a t e of N 57 was a p p l i e d t o both s o i l s , but o n l y the N 2 P i produced adequate f o l i a r N c o n c e n t r a t i o n s . In the N 2 P i t r e a t m e n t s , a d d i t i o n s of NH„ + may r e l e a s e aluminium i o n s , but P a d d i t i o n s t o the s o i l s c o u l d complex the ex c e s s aluminium. A l l t r e a t m e n t s t h a t i n c l u d e d P a p p l i c a t i o n s , had lower A l c o n c e n t r a t i o n s compared w i t h s e e d l i n g s from the c o n t r o l , N,P 0, and N 2 P 0 t r e a t m e n t s , a l t h o u g h A l v a l u e s f o r the N,P 0 t r e a t m e n t were not s i g n i f i c a n t l y l e s s than the N,?, and N 0 P i t r e a t m e n t s . T h e r e f o r e , phosphorus appeared t o reduce A l a v a i l a b i l i t y . Comparing the two t r e a t m e n t s , N 2 P 0 and N 2 P 1 f suggested the i n c r e a s e i n A l a v a i l a b i l i t y reduced n u t r i e n t a b s o r p t i o n , and the h i g h N a p p l i c a t i o n r e s t r i c t e d r o o t development. Both t r e a t m e n t s were exposed t o the h i g h N a d d i t i o n s , but o n l y the N 2 P 0 would have been a f f e c t e d by an i n c r e a s e i n A l a v a i l a b i l i t y . M y c o r r h i z a e are u s u a l l y an important f a c t o r i n n u t r i e n t uptake of western hemlock ( G i l l , 1981). However, v i s u a l i n s p e c t i o n of the r o o t s d i d not r e v e a l any m y c o r r h i z a l development except f o r s m a l l amounts i n c o n t r o l p o t s . F e r t i l i z a t i o n w i t h N has been shown t o r e s t r i c t m y c o r r h i z a l i n f e c t i o n (Menge et a l . , 1977; G i l l , 1981; Ekwebelan and R e i d , 1983). A l t h o u g h , the N 2 P 0 s e e d l i n g s d i d not d e v e l o p any m y c o r r h i z a l i n f e c t i o n s , n e i t h e r d i d any o t h e r f e r t i l i z e d p o t s . T h e r e f o r e , l a c k of m y c o r r h i z a e c o u l d not be c o n s i d e r e d as a cause of poor n u t r i e n t a b s o r p t i o n . S e e d l i n g s i n the N 2 P 0 t r e a t m e n t would p r o b a b l y not have responded t o f e r t i l i z e r a p p l i c a t i o n of o t h e r elements u n t i l 58 the problems c a u s i n g the low n u t r i e n t s t a t u s and poor r o o t development were c o r r e c t e d . N u t r i e n t s assumed d e f i c i e n t i n t h i s t r e a t m e n t are N, P, K, Zn, S, and Fe. 2. EFFECTS OF P ADDITIONS Phosphorus a p p l i c a t i o n s i n c l u d e d o n l y one l e v e l of f e r t i l i z e r a t 150 kg/ha. E f f e c t s from t h i s f e r t i l i z e r were more d r a m a t i c than the r e s u l t s from N a d d i t i o n s . I n i t i a l l y , the NoP, s e e d l i n g s grew v e r y q u i c k l y , e x c e e d i n g a l l o t h e r t r e a t m e n t s . Photographs of the s e e d l i n g s a t v a r i o u s s t a g e s a r e i n Appendix 2. Slower growth and a c h l o r o t i c look appeared i n the l a s t 8 t o 12 weeks. However, t h i s t r e a t m e n t d i d remain s u p e r i o r w i t h r e g a r d t o dry mass, and t i e d f o r the g r e a t e s t h e i g h t w i t h t h e N ^ , t r e a t m e n t . These r e s u l t s tend to i n d i c a t e P was t h e major l i m i t i n g element. Higher temperatures i n the greenhouse i n c r e a s e m i n e r a l i z a t i o n r a t e s , r e s u l t i n g i n more a v a i l a b l e N. In the o f i e l d , the same s o i l under c o o l e r c o n d i t i o n s would not produce e q u i v a l e n t q u a n t i t i e s of a v a i l a b l e N. T h e r e f o r e , N d e f i c i e n c i e s i n d i c a t e d by f o l i a r samples from the f i e l d a r e p r o b a b l y r e s t r i c t i n g t r e e growth. However, P l e v e l s may a l s o l i m i t growth. S i g n i f i c a n t d i f f e r e n c e s between the c o n t r o l and the N 0P, t r e a t m e n t were o b s e r v e d . Growth p a r a m e t e r s , i n c l u d i n g needle mass, were a l l g r e a t e r w i t h P a d d i t i o n s . Three f o l i a r n u t r i e n t c o n c e n t r a t i o n s were s i g n i f i c a n t l y h i g h e r : P, Mg, and Cu. Phosphorus l e v e l s were f i v e times g r e a t e r than the 59 c o n t r o l (see Table 1). L e y t o n (1958) r e p o r t e d i n c r e a s e s i n f o l i a r P c o n c e n t r a t i o n s up t o 0.54% f o l l o w i n g P a d d i t i o n t o a peat s o i l . He a l s o found g r e a t e r t r e e growth as P l e v e l s CH r o s e . The Hr m a t e r i a l from the S1 s i t e i s not so w e l l decomposed as o t h e r H h o r i z o n s and remains wet f o r most of the y e a r , making t h i s s o i l somewhat s i m i l a r t o a peat s o i l . F o l i a r copper and magnesium c o n c e n t r a t i o n s were double the values, found i n the c o n t r o l . Both Mg and Cu c o n c e n t r a t i o n s were c o r r e l a t e d w i t h f o l i a r P c o n c e n t r a t i o n s ( T a b l e 4 ) . T h e r e f o r e , P or the r a p i d growth r a t e must i n c r e a s e the f o l i a r c o n c e n t r a t i o n s of these elements. F o l i a r s u l p h u r was a l s o p o s i t i v e l y c o r r e l a t e d w i t h P l e v e l s (Table 4 ) , but f o l i a r S c o n c e n t r a t i o n s of the N 0 P , s e e d l i n g s were not s i g n i f i c a n t l y d i f f e r e n t from the c o n t r o l (Table 3 ) . However, a number of f o l i a r elements were s i g n i f i c a n t l y lower than the c o n t r o l i n the N 0 P , t r e a t m e n t : N, K, Mn, B, Fe, and A l (Table 3 ) . The f i r s t f o u r were n e g a t i v e l y c o r r e l a t e d t o P c o n c e n t r a t i o n s (Table 4 ). A d d i t i o n s of P may reduce these e l e m e n t s t o low or d e f i c i e n t l e v e l s . Decreases i n Fe and A l were not c o r r e l a t e d t o f o l i a r P . T h e r e f o r e , P alone may not cause a d e c r e a s e i n Fe or A l . Due t o the r a p i d growth r e s u l t i n g from the N 0 P i t r e a t m e n t , the r e d u c t i o n i n n u t r i e n t c o n c e n t r a t i o n s c o u l d be e x p l a i n e d by a d i l u t i o n e f f e c t . Heilman and Ekuan (1973) found t h a t a p p l i c a t i o n s of P reduced the N c o n c e n t r a t i o n i n the f o l i a g e . A l s o , they d i d not note any growth i n c r e a s e s , i n d i c a t i n g t h a t a d i l u t i o n e f f e c t was not the cause of the 6 0 lower N l e v e l s . A c o m b i n a t i o n of P r e s t r i c t i n g N a b s o r p t i o n and d i l u t i o n of N by r a p i d growth i s p r o b a b l e i n these s e e d l i n g s . The N 2P, t r e a t m e n t , which w i l l be d i s c u s s e d f u r t h e r on i n t h i s paper, p r o v i d e s an i n t e r e s t i n g comparison. N u t r i e n t c o n c e n t r a t i o n s i n the N 2P, were g e n e r a l l y h i g h and o f t e n s u p e r i o r t o the c o n t r o l except f o r Mn, B, and A l . These t h r e e elements were s i g n i f i c a n t l y lower than the c o n t r o l . S e e d l i n g growth was not s i g n i f i c a n t l y d i f f e r e n t from the c o n t r o l i n the N 2P, s e e d l i n g s ; t h e r e f o r e the B, Mn, and A l c o n c e n t r a t i o n s would not have been d i l u t e d by r a p i d growth. Phosphorus and/or N a d d i t i o n s may be r e s p o n s i b l e f o r the reduced f o l i a r c o n c e n t r a t i o n s . However, B, Mn, and A l c o n c e n t r a t i o n s were a l s o below c o n t r o l v a l u e s i n the N 0P, s e e d l i n g s , i n d i c a t i n g t h a t P a d d i t i o n s c o u l d be r e s p o n s i b l e f o r the reduced c o n c e n t r a t i o n s . A l s o , P and A l can complex t o form i n s o l u b l e compounds ( T i s d a l e and N e l s o n , 1975) which d e c r e a s e the amount of a v a i l a b l e A l . P o t a s s i u m v a l u e s a r e v e r y h i g h i n the N 2P, s e e d l i n g s , and K was n e g a t i v e l y c o r r e l a t e d t o growth. T h e r e f o r e , a d i l u t i o n e f f e c t p r o b a b l y caused the low K c o n c e n t r a t i o n s i n the NQP, t r e a t m e n t . In the NQP-I t r e a t m e n t , N and K c o n c e n t r a t i o n s were below the i n f e r r e d d e f i c i e n c y c o n c e n t r a t i o n s (Table 1). At h a r v e s t , these s e e d l i n g s had d e v e l o p e d symptoms r e l a t e d t o N d e f i c i e n c i e s : c h l o r o t i c n e e d l e s and a reduced growth r a t e . A l t h o u g h P i s a l i m i t i n g element, w i t h o u t N a d d i t i o n s f u l l growth p o t e n t i a l s c o u l d not be a c h i e v e d . P o t a s s i u m v a l u e s 61 were a l s o low i n the J^P, t r e a t m e n t ; however, the r a p i d growth and h e a l t h y appearance of the s e e d l i n g s i n d i c a t e d t h a t the K v a l u e s were not s e v e r e l y a f f e c t i n g growth. T h e r e f o r e , p o t a s s i u m l e v e l s were p r o b a b l y not i n h i b i t i n g s e e d l i n g growth i n the N 0 P , t r e a t m e n t . 3. EFFECTS OF N+P FERTILIZERS Two r a t e s of N (100 kg/ha and 300 kg/ha) were a p p l i e d i n c o m b i n a t i o n w i t h 150 kg/ha P. The N,?, t r e a t m e n t gave the most f a v o u r a b l e r e s u l t s . At the end of the greenhouse s t u d y , the N 0 P , and N,P, t r e a t m e n t s had produced the l a r g e s t amount of biomass. However, i n i t i a l growth of the N T P , s e e d l i n g s was s i m i l a r to t h a t of the c o n t r o l . In the l a s t 8 to 12 weeks the s e e d l i n g s grew a t an a c c e l e r a t e d r a t e , a c h i e v i n g s i m i l a r p r o d u c t i o n t o the N 0P, t r e a t m e n t . Photographs i n Appendix 2 show the s e e d l i n g development. V i s u a l l y , the N,P, s e e d l i n g s d i s p l a y e d good form and c o l o u r , but n u t r i e n t c o n c e n t r a t i o n s s u g g e s t e d t h a t both K and B were below c r i t i c a l l e v e l s . Growth c o u l d be i n h i b i t e d by low q u a n t i t i e s of K and B; however, no s e v e re d e f i c i e n c y symptoms were noted at h a r v e s t . Low K l e v e l s were p r o b a b l y due t o a d i l u t i o n e f f e c t , s i m i l a r t o the NQP, t r e a t m e n t . As p r e v i o u s l y shown i n the N , P 0 and the N 0 P i s e e d l i n g s , f o l i a r B c o n c e n t r a t i o n s appear t o be reduced by N or P f e r t i l i z a t i o n . A c o m b i n a t i o n of both N and P a p p l i c a t i o n s produced the s i g n i f i c a n t l y l o w e s t c o n c e n t r a t i o n s of B. 62 F o l i a r c o n c e n t r a t i o n s of both N and P were adequate i n the N,P, s e e d l i n g s . However, they were not the h i g h e s t r e c o r d e d . N c o n c e n t r a t i o n s were g r e a t e r i n s e e d l i n g s from the N , P 0 t r e a t m e n t and P v a l u e s were h i g h e r i n the N 0 P i s e e d l i n g s . A l s o , N and P f o l i a r c o n c e n t r a t i o n s d e c r e a s e d s u b s t a n t i a l l y below the c o n t r o l c o n c e n t r a t i o n s i n the N 0 P , and the t r e a t m e n t s r e s p e c t i v e l y . These r e s u l t s appear t o i n d i c a t e t h a t N f e r t i l i z a t i o n reduces f o l i a r P c o n c e n t r a t i o n s and v i c e v e r s a . When compared t o o t h e r t r e a t m e n t s , except N , P 0 , the N T P , s e e d l i n g s c o n t a i n e d s i g n i f i c a n t l y more t o t a l f o l i a r Fe. The c o n c e n t r a t i o n of Fe almost reached i n f e r r e d adequate v a l u e s . The N , P , appears t o produce the most f a v o u r a b l e r e s u l t s . S e e d l i n g growth was r a p i d and the f o l i a g e n u t r i e n t c o n c e n t r a t i o n s , except Fe, were a l l above d e f i c i e n t v a l u e s . The N 2 P , t r e a t m e n t d i d not produce an i n c r e a s e i n growth s i g n i f i c a n t l y d i f f e r e n t from t h a t of the c o n t r o l . However, u n l i k e the N 2 P 0 t r e a t m e n t , n u t r i e n t a b s o r p t i o n was not r e s t r i c t e d . F o l i a r c o n c e n t r a t i o n s of Ca, K, S, Mg, and Zn were the h i g h e s t , or not s i g n i f i c a n t l y d i f f e r e n t from the h i g h e s t o b t a i n e d i n t h i s s t u d y . Ca and K c o n c e n t r a t i o n s were p r o b a b l y h i g h e r , due t o e f f i c i e n t a b s o r p t i o n of n u t r i e n t s and slow growth r a t e s . H i g h e r Mg was found i n a l l t r e a t m e n t s w i t h P a d d i t i o n s . A d d i t i o n s of both N and P appear t o a f f e c t f o l i a r n u t r i e n t c o n c e n t r a t i o n s . The c o m b i n a t i o n i n c r e a s e d 63 c o n c e n t r a t i o n s of Zn and S, b o t h N , P , and N 2 P ! have s i g n i f i c a n t l y g r e a t e r c o n c e n t r a t i o n s of t h e s e elements than any o t h e r t r e a t m e n t . C o n c e n t r a t i o n s of Mn were s i g n i f i c a n t l y the l o w e s t l e v e l s o b t a i n e d , but Mn v a l u e s were f a r above suggested d e f i c i e n c y ranges. Both N , P , and N 2 P i s e e d l i n g s had low A l c o n c e n t r a t i o n s . The o n l y n u t r i e n t m i l d l y d e f i c i e n t i n the N 2 P i t r e a t m e n t i s P . At 0.228%, i t i s o n l y s l i g h t l y below suggested adequate f o l i a r c o n c e n t r a t i o n s . S e e d l i n g growth s h o u l d not be s e v e r e l y r e s t r i c t e d by P ; the N , P 0 produced s i g n i f i c a n t l y more biomass w i t h much lower P c o n c e n t r a t i o n s . Reasons f o r the poor growth response are unknown. However the 300 kg/ha a p p l i c a t i o n of N i s p r o b a b l y d i r e c t l y or i n d i r e c t l y r e s p o n s i b l e . 4. EFFECTS OF LIMING CH Humus m a t e r i a l from the S12 s i t e i s n a t u r a l l y l i m e d i n the f i e l d by w e a t h e r i n g of u n d e r l y i n g l i m e s t o n e bedrock. S e e d l i n g s were grown i n t h i s s o i l w i t h no f u r t h e r a d d i t i o n s . T h i s u n t r e a t e d component of the greenhouse t r i a l s was CH r e f e r e d t o as "S12 ". The pH v a l u e s i n the humus m a t e r i a l CH f o r the S12 s i t e were s i g n i f i c a n t l y h i g h e r than f o r the CH S1 . However, the s o i l was s t i l l v e r y a c i d i c , w i t h a pH of 3.85. A d d i t i o n s of l i m e w i l l u s u a l l y cause a h i g h e r pH, r e s u l t i n g i n more f a v o u r a b l e c o n d i t i o n s f o r m i c r o b i a l a c t i v i t y and h i g h e r amounts of a v a i l a b l e n u t r i e n t s (Armson, 1977). To a c h i e v e t h i s e f f e c t , l i m e was added t o the humus 64 CH m a t e r i a l from the S1 s i t e , p r o d u c i n g the second l i m e t r e a t m e n t . T h i s treatment was r e f e r r e d t o as " l i m e " . The pH was e x p e c t e d t o r i s e one pH u n i t . A c t u a l l y , the change i n pH was a p p r o x i m a t e l y 0.3 pH u n i t s , r e s u l t i n g i n a pH of 3.82 a t the end of the growth p e r i o d , a v a l u e s t a t i s t i c a l l y CH i n d i s t i n g u i s h a b l e from the pH on the S12 s i t e . Two p o s s i b i l i t i e s can be g i v e n t o e x p l a i n the lower than e x p e c t e d pH i n the l i m e d s o i l . The m o d i f i e d method used f o r the l i m e requirement a l l o w s one hour f o r a known amount of base t o e q u i l i b r a t e w i t h the humus m a t e r i a l . From the r e s u l t a n t pH, the q u a n t i t y of l i m e r e q u i r e d t o r a i s e the pH a s p e c i f i e d amount i s c a l c u l a t e d . One hour was perhaps not enough time t o a l l o w the Ca(OH) 2 t o come t o e q u i l i b r i u m w i t h the o r g a n i c matter ( B l a c k e t a l . , 1965). T h e r e f o r e , the pH dropped over time as the Ca + i o n s r e p l a c e d the H + on the exchange complex. Another e x p l a n a t i o n c o u l d be t h a t an i n c r e a s e d r a t e of d e c o m p o s i t i o n , from the warmer tem p e r a t u r e s i n the greenhouse, produced more o r g a n i c a c i d s which lowered the pH. R e s u l t s of s e e d l i n g growth and f o l i a r n u t r i e n t CH c o n c e n t r a t i o n s were v e r y s i m i l a r on the S12 s o i l and the CH S1 s o i l w i t h l i m e a d d i t i o n s . A l t h o u g h t h e r e was no s i g n i f i c a n t d i f f e r e n c e i n growth between the l i m e and the CH S12 s e e d l i n g s , the l a t t e r d i d produce s i g n i f i c a n t l y l e s s biomass than the c o n t r o l which c o u l d be a t t r i b u t e d t o the CH two week sowing d e l a y . Height measurements f o r the S12 a r e not i n c l u d e d i n Table 3 because o n l y two were r e c o r d e d . The 65 average h e i g h t was 12.8 cm, s l i g h t l y lower than other CH measurements. V i s u a l l y , the s e e d l i n g s from both SI 2 and lime treatments were s i m i l a r to the c o n t r o l . S e e d l i n g s appeared h e a l t h y , with good form, but biomass p r o d u c t i o n d i d not i n c r e a s e . CH F o l i a r c o n c e n t r a t i o n s of Ca and A l in the S12 and lime treatments were s i g n i f i c a n t l y d i f f e r e n t from the c o n t r o l v a l u e s . Ca c o n c e n t r a t i o n s were higher, but other treatments without Ca a d d i t i o n s y i e l d e d greater Ca v a l u e s . C o n c e n t r a t i o n s of A l were reduced. At the s l i g h t l y higher pH found on these limed s o i l s , A l ions are l e s s s o l u b l e , and are not as r e a d i l y a v a i l a b l e f o r uptake ( T i s d a l e and Nelson, 1975). A c t i v e Fe was g r e a t e r than the c o n t r o l f o r the lime treatment, but the d i f f e r e n c e s between treatments were so small that strong c o n c l u s i o n s c o u l d not be made. Otherwise no major v a r i a t i o n s from the c o n t r o l were found. F o i l a r N and P c o n c e n t r a t i o n s were not i n c r e a s e d . These elements, e s p e c i a l l y P, appear to be the major l i m i t i n g elements in both treatments. Without a r i s e i n f o l i a r P c o n c e n t r a t i o n a growth response cannot be expected. The increase i n pH was a p p a r e n t l y not enough to s t i m u l a t e m i n e r a l i z a t i o n r a t e s and y i e l d adequate q u a n t i t i e s of a v a i l a b l e n u t r i e n t s . S e e d l i n g growth and n u t r i e n t c o n c e n t r a t i o n s both i n d i c a t e d t h a t a d d i t i o n s of lime d i d not b e n e f i t western hemlock s e e d l i n g s . 66 C. RELATIONSHIPS OF SOIL NUTRIENT CONCENTRATIONS TO THE  RESPONSE OF GREENHOUSE SEEDLINGS A n a l y s i s of greenhouse s o i l s was completed t o observe the r e l a t i o n s h i p s between s e e d l i n g growth and r e s u l t a n t s o i l c h e m i c a l s t a t u s a f t e r the a p p l i c a t i o n of v a r i o u s f e r t i l i z e r t r e a t m e n t s . Composite s o i l samples from each s i t e , which had not been used i n the greenhouse s t u d y , had been d r i e d and s t o r e d . These samples were a l s o a n a l y z e d w i t h the greenhouse s o i l s . Few s i g n i f i c a n t d i f f e r e n c e s were found between the c o n t r o l s o i l s and s o i l s not used i n the greenhouse experiment (NT s o i l s ) . T o t a l and exchangeable p o t a s s i u m as w e l l as a v a i l a b l e phosphorus were s i g n i f i c a n t l y g r e a t e r i n the NT s o i l s ( T a b l e 5 ) . T h i s d i f f e r e n c e c o u l d be a t t r i b u t e d t o s e e d l i n g a b s o r p t i o n from the s o i l s used i n the greenhouse s t u d y . Copper c o n c e n t r a t i o n s were h i g h e r i n the greenhouse s o i l s . Water from a metal w a t e r i n g can used i n the greenhouse may have caused some c o n t a m i n a t i o n t o the s o i l . By c a l c u l a t i n g the amount of water a p p l i e d t o the s o i l , and the a pparent change i n Cu c o n t e n t of the s o i l , i t was d e t e r m i n e d t h a t Cu i n the water a t a c o n c e n t r a t i o n j u s t below d e t e c t i o n l i m i t s by c o n v e n t i o n a l a t o m i c a b s o r p t i o n s p e c t r o p h o t o m e t r y , c o u l d account f o r the change. The NT s o i l s were a l s o compared to i n i t i a l s o i l samples which had been a n a l y z e d f o r N and P i m m e d i a t e l y a f t e r f i e l d c o l l e c t i o n . C o n c e n t r a t i o n s i n the NT s o i l s were h i g h e r than the average N v a l u e and lower than the average P v a l u e , but w i t h i n the ranges of N and P c o n c e n t r a t i o n s found i n the 67 TABLE 5. Significant differences between treatments for measured soil parameters pH:H20 N P 8 b "0r0 " i p o a b * r V b ,_bce NT N 2 P 0 C N 2 P 1 C Lime S12d mean 3.5 3.5 3.5 3.6 3.7 3.6 3.6 3.8 3.9 S.D. (.020) (.027) (.026) (.032) (.14) (.027) (.020) (.041) (.032) pH:CaCl2 V ! N0 P0 N i p o a ,_abc NT N xP b N 2 P 0 C N 2 P 1 C Lime S12 mean 3.2 3.2 3.2 3.3 3.2 3.3 3.3 3.5 3.5 S.D. (.027) (.020) (.020) (.16) (.020) (.020) (0) (.026) (.026) Nitrogen N o p i a Lime8 N i p o 8 S128 N o p o a N 1 P 1 3 NT8 ac N2 P0 N2 P1 mean (Z) .860 .886 .890 .891 .892 .900 .920 .97 1.02 S.D. (.038) (.028) (.021) (.033) (.031) (.025) (.071) (.17) (.026) Lime8 N1 P0 N Pa b 7 0 N P a b no NT S12b N o p i C N 1 P 1 C N P Phosphorus W V mean (Z) .047 .047 .048 .048 .050 .051 .102 .100 .119 S.D. (.014) (.0013) (.0028) (.0012) (.0045) (.0045) (.0084) (.025) (.0051) Calcium V o8 b N0 P0 N P c d " r o N P c d "2 1 N P C d e 0 1 OTacef N P e f 11 S12b d f LImef mean (Z) .30 .29 .31 .32 .33 .36 .35 .44 .46 S.D. (.012) (.032) (.010) (.015) (.018) (.090) (.014) (.089) (.072) Magnesium S128 " I V NT a b N P 8 b  N2 r0 N P a b "0*1 Lime N P a b " r o N 2P : b V o b mean (Z) .12 .12 .12 .13 .13 .13 .14 .14 .14 S.D. (0) (.0052) (.042) (.013) (.0098) (.0063) (.022) (.010) (.029) Potassium N o p i a N i p o a T , be Lime » 2 P l d e N P e f "2*0 S12£ NT mean (Z) .026 .027 .029 .033 .035 .039 .040 .044 .056 S.D. (.0027) (.0021) (.0032) ( .0037) (.0027) (.0035) (.0027) (.037) (.0085) a ab ab be ,-bcd cd d Copper NT N2 P0 N2 P1 H P " r o Lime N0 P0 S12 N1 P1 V i mean (ppm) 9.5 24.5 28.2 30.3 31.2 33.0 33.5 35.8 37.3 S.D. (3.0) (1.4) (2.8) (2.2) (1.6) (2.28) (2.7) (1.6) (3.0) a ab a _ ac ac ab ac « be , -,b Iron V i N0 P1 N2 P0 N2 P1 Lime N1 P0 NT N0 P0 S12 mean (ppm) 3500 3900 3760 3950 3750 4400 4350 4540 5470 S.D. (334) (1059) (376) (968) (418) (1027) (1482) (938) (356) * Treatments followed by a common letter are not significantly different, according to the Mann-Whitney U test (P - 0.05). 68 TABLE 5. (cont'd) Zinc V o " NT a b c H P 1 V o mean (ppm) 14.7 15.5 18.5 S.D. (1.6) (4.7) (4.6) Hanagese V i • . ab Lime V o mean (ppm) 181 188 195 S.D. (10.1) (6.5) (6.0) N l P l 8 b V o 3 Lime Aluminium 1 1 mean (ppm) 2180 2250 2230 S.D. (118) (134) (177) S12a V o V o Avail. Phosphorus u u mean (ppm) 46.2 49.2 64.8 S.D. (9.9) (8.2) (23.9) V o * N,P a b V n Exch. Calcium ti u Z i 1 u mean (me/lOOg) 23.8 24.2 24.7 S.D. (-59) (1.1) (1.6) Exch. Potassium N P 8 " V l N p ab V 0 N P b V i mean (me/lOOg) .32 ".35 .36 S.D. (.040) (.053) (.014) S12a NT a b c V o ' Exch. Magnesium mean (me/lOOg) 8.6 9.2 10.1 S.D. (.17) (2.5) (.31) V l " Mineralizable Nitrogen m a b NT V o ' mean (ppm) 136 136 140 S.D. (20) (27) (39) a b c abc b V o " n be Lime N P c d V l V i d S12d V l 20.3 24.8 36.3 26.3 28.2 28.8 (2.7) (8.7) (29.8) (2.0) (4.5) (3.3) v ! c d ,_acde NT V o ' V i c d V o ' S12e 196 320 206 206 208 586 (12.0) (237) (8.5) (8.2) (11.4) (30.0) ab . V o ab V i V i b _acd NT V o b C S12 2280 2400 2460 2670 2550 3320 (190) (203) (226) (687) (327) (150) i , abc Lime V o ' NTC V l V l V l 73.8 90.3 160 535 716 841 (39.4) (15.3) (54.5) (58.9) (60.0) (33.8) V o ' NT a b c d V i b V i c Limed SI 2 24.6 26.6 25.1 26.2 34.0 40.7 (.48) (7.7) (1.1) (.31) (2.2) (.77) N P c d V o S12c Lime c d V o d V l NT .49 .50 .53 .60 .66 .99 (.096) (.033) (.068) (.029) (.031) (.17) , 4 be Lime N P b c V l V i b c H P be V o v ! 10.3 10.5 10.5 10.7 10.8 10.7 (.57) (.47) (.25) (.63) (.39) (.22) Lime S12 V o V l V i c V o 178 221 290 350 1170 1180 (7.7) (21) (27) (31) (58) (12) 69 o r i g i n a l samples. T h e r e f o r e , element c o n c e n t r a t i o n s from these s t o r e d samples can be used as an a p p r o x i m a t i o n of f i e l d v a l u e s . Carbon v a l u e s were found t o be not s i g n i f i c a n t l y d i f f e r e n t between any t r e a t m e n t s or the s t o r e d s o i l s . The average c a r b o n v a l u e was 50.2% w i t h a s t a n d a r d d e v i a t i o n of 3.8. C/N r a t i o s ( T a b l e 6) were f a i r l y h i g h , r a n g i n g from 49.2 i n the N 2P, treatment t o 58.4 i n the N 0P, t r e a t m e n t . C/N r a t i o s r e p o r t e d by Heilman (1981) are much l o w e r . C o r r e l a t i o n c o e f f i c i e n t s were c a l c u l a t e d between s e e d l i n g growth and s o i l n u t r i e n t c o n c e n t r a t i o n s . The r e s u l t s can be found i n Table 7. No c o r r e l a t i o n s a r e d i s c u s s e d u n l e s s they are at or above the 95% c o n f i d e n c e l i m i t . S e e d l i n g growth was n e g a t i v e l y c o r r e l a t e d w i t h s o i l pH and t o t a l s o i l N. Although t h e s e r e l a t i o n s h i p s a re not u s u a l l y found, i n t h i s experiment a d d i t i o n s of l i m e d i d not cause growth i n c r e a s e s , r e s u l t i n g i n s m a l l e r s e e d l i n g s w i t h h i g h e r pH v a l u e s . Both the N 2 P i and the N 2 P 0 s o i l s showed s i g n i f i c a n t l y g r e a t e r s o i l - N c o n c e n t r a t i o n s , but a g a i n poor growth r e s u l t e d from these a d d i t i o n s . The 100 kg/ha N a p p l i c a t i o n r a t e d i d not s i g n i f i c a n t l y a f f e c t the amount of t o t a l s o i l N. However, s e e d l i n g uptake may account f o r the low N c o n c e n t r a t i o n s . A l a r g e r amount of f o l i a r biomass, w i t h h i g h t o m o d e r a t e l y h i g h f o l i a r N, was produced by the N,P 0 and the N,P, t r e a t m e n t s . T h e r e f o r e , a s u b t a n t i a l q u a n t i t y of N c o u l d be found i n t h e s e e d l i n g f o l i a g e . 70 T a b l e 6. Carbon to n i t r o g e n r a t i o s f o r t r e a t e d g reenhouse s o i l s and u n t r e a t e d s o i l s T rea tment C/N R a t i o N Q P 0 56.3 NJ^PQ 56.3 N 2 P 0 54.6 55.8 N 2 P i 49.2 NQPJ^ 58.4 Lime 56.7 S 1 2 C H 56.4 NT 55.1 T a b l e 7 . Spearman rank c o r r e l a t i o n c o e f f i c i e n t s f o r s o l i e lement and f o l i a r c o n c e n t r a t i o n s v e r s u s g r e e n h o u s e f o l i a r n u t r i e n t c o n c e n t r a t i o n s and growth p a r a m e t e r s . ( O n l y v a r i a b l e s c o r r e l a t e d a t o r above 95Z c o n f i d e n c e a r e r e p o r t e d ) : H 2 0 - . 6 7 - . 7 4 - . 7 6 - . 4 8 .37 - . 4 1 .47 .31 - . 5 5 - . 3 4 : C a C l 2 - . 6 3 - . 6 8 - . 7 0 - . 4 7 .36 - . 3 9 .41 - . 4 9 - . 3 9 N - . 3 8 - . 3 4 - . 6 3 - . 3 7 - . 3 0 - . 3 7 .30 P .69 . 65 - . 5 8 .56 - . 5 3 - . 5 4 .68 Ca - . 4 9 .35 Mg K - . 8 1 - . 8 0 - . 8 3 - . 6 4 - . 4 2 .42 - . 5 4 Cu .65 .49 .50 .54 .43 - . 3 6 - . 3 0 Fe - . 3 0 - . 4 2 .42 .36 - . 3 3 Zn .48 .44 - . 4 4 .37 - . 5 8 . 45 Mn - . 4 4 - . 5 1 - . 5 4 - . 5 3 - . 3 3 .31 - . 5 6 A l - . 4 2 - . 3 6 .33 .41 A v . P . 35 .32 .62 .71 - . 8 0 .33 .53 - . 3 6 - . 7 3 .32 .66 E x . Ca .30 .54 - . 4 1 - . 3 6 . 5 8 E x . K - . 7 8 - . 7 2 - . 7 5 - . 6 7 .55 - . 5 1 E x . Mg .30 .44 .46 .37 . 35 M i n . N - . 6 6 .33 - . 5 0 .32 - . 7 0 S e e d l i n g S e e d l i n g S e e d l i n g • 100- N P Ca Mg K Mn Fe Cu Zn A l B A c t i v e S h e i g h t f r e s h d r y n e e d l e Fe mass mass mass 72 N e g a t i v e c o r r e l a t i o n s between growth and s o i l v a l u e s of t o t a l Mn, t o t a l K, and exchangeable K can be a t t r i b u t e d t o a h i g h e r uptake of t h e s e elements by r a p i d l y growing s e e d l i n g s . F o l i a g e c o n c e n t r a t i o n s d i d not r e f l e c t the i n c r e a s e d uptake due t o d i l u t i o n of the n u t r i e n t s i n the l a r g e q u a n t i t e s of f o l i a g e produced. An i n v e r s e r e l a t i o n s h i p i s a l s o shown between s e e d l i n g growth i n T a b l e 1, and s o i l Mn and K c o n c e n t r a t i o n s i n Table 4. P o s i t i v e c o r r e l a t i o n s were found between s e e d l i n g growth parameters and s o i l c o n c e n t r a t i o n s of Cu, exchangeable Mg, and a v a i l a b l e P. A p o s i t i v e c o r r e l a t i o n can suggest an element i s l i m i t i n g growth. As the c o n c e n t r a t i o n r i s e s , the r e l a t i o n s h i p i n d i c a t e s t h a t s e e d l i n g growth a l s o i n c r e a s e s . However, Cu and Mg c o n c e n t r a t i o n s i n the s e e d l i n g f o l i a g e were above n u t r i e n t c o n c e n t r a t i o n s c o n s i d e r e d adequate. T h e r e f o r e , these elements are p r o b a b l y not g r o w t h - l i m i t i n g . S e e d l i n g f o l i a r d a t a has suggested t h a t P c o u l d be a growth l i m i t i n g f a c t o r on these s o i l s . A v a i l a b l e P, r a t h e r than t o t a l P would be more r e l i a b l e f o r i n d i c a t i n g a l i m i t i n g element. T o t a l P would i n c l u d e u n a v a i l a b l e Ca and A l complexes as w e l l as u n a v a i l a b l e o r g a n i c P. C o r r e l a t i o n s between s o i l n u t r i e n t s and growth parameters r e q u i r e c a r e f u l i n t e r p r e t a t i o n . A p o s i t i v e c o r r e l a t i o n sometimes i n d i c a t e s a g r o w t h - l i m i t i n g element, but not a l w a y s . For example, s o i l N was n e g a t i v e l y c o r r e l a t e d w i t h growth as a r e s u l t of s m a l l e r s e e d l i n g s produced from the t r e a t m e n t s w i t h a h i g h e r r a t e of N f e r t i l i z e r . However, the s e e d l i n g growth response o b t a i n e d 73 from the t r e a t m e n t s w i t h the lower r a t e of N f e r t i l i z e r i n d i c a t e d t h a t N l e v e l s were r e s t r i c t i n g s e e d l i n g growth. Some t r e n d s are apparent from Table 5. The pH v a l u e s tended t o be s l i g h t l y h i g h e r f o r the 300 kg/ha a d d i t i o n of N, and even h i g h e r f o r the l i m e t r e a t m e n t s . The d i f f e r e n c e s between pH v a l u e s were s m a l l and f u r t h e r r e s e a r c h may p r o v i d e more i n f o r m a t i o n . S o i l N v a l u e s were i n t e r e s t i n g . No s i g n i f i c a n t d i f f e r e n c e between the c o n t r o l , and H-[P0 or N,P! s o i l s was found f o r t o t a l N. However, m i n e r a l i z a b l e N was two times g r e a t e r than the c o n t r o l f o r the two 100 kg/ha N t r e a t m e n t s . Waring and Bremner (1964) s u g g e s t e d m i n e r a l i z a b l e N was a more s a t i s f a c t o r y i n d e x of a v a i l a b l e N. S e e d l i n g c o n c e n t r a t i o n s of N f o r the N,P 0 were s i g n i f i c a n t l y h i g h e r than f o r the c o n t r o l , s u g g e s t i n g t h a t N was more a v a i l a b l e f o r a b s o r p t i o n . The N,P, s e e d l i n g s d i d not have s i g n i f i c a n t l y h i g h e r N c o n c e n t r a t i o n s , but as p r e v i o u s l y mentioned, P a d d i t i o n s can reduce f o l i a r N c o n c e n t r a t i o n s . In the s o i l s w i t h a d d i t i o n s of 300 kg/ha, m i n e r a l i z a b l e N was almost 10 times more than i n the c o n t r o l , and t h i s amount a p p a r e n t l y was t o x i c t o the hemlock s e e d l i n g s . M i n e r a l i z a b l e N was a l s o s i g n i f i c a n t l y h i g h e r i n CH the S12 and l i m e s o i l s than i n the c o n t r o l . A p p l i c a t i o n of l i m e d i d i n c r e a s e m i n e r a l i z a t i o n r a t e s , but the s e e d l i n g s d i d not respond t o t h i s s m a l l d i f f e r e n c e . S o i l phosphorus c o n c e n t r a t i o n s , both t o t a l and a v a i l a b l e , were g r e a t e r i n s o i l s from p o t s where P was added. Due t o the s m a l l e r s e e d l i n g s and the r e s u l t a n t lower uptake of P, the N 2P, s o i l 74 showed h i g h e r c o n c e n t r a t i o n s of P than the o t h e r two t r e a t m e n t s . Aluminium c o n c e n t r a t i o n s were not h i g h e r i n the N 2 P 0 t r e a t m e n t . T h e r e f o r e , the g r e a t e r f o l i a r A l c o n c e n t r a t i o n s were most l i k e l y due t o an i n c r e a s e i n a v a i l a b l e A l . Through mass a c t i o n , ammonium i o n s c o u l d have caused the r e l e a s e of A l i n t o the s o i l s o l u t i o n . A l s o , aluminium c o n c e n t r a t i o n s were s i g n i f i c a n t l y g r e a t e r i n the CH S12 s o i l a l t h o u g h the f o l i a r c o n c e n t r a t i o n s were v e r y low. Higher A l c o n c e n t r a t i o n s p r o b a b l y o r i g i n a t e d i n the f i e l d . Due t o the h i g h e r s o i l pH, A l would be l e s s m o b i l e . CH T h e r e f o r e , A l would tend t o accumulate on the S12 s i t e s , and h i g h e r c o n c e n t r a t i o n s would have e x i s t e d b e f o r e the s o i l was c o l l e c t e d . F u r t h e r a n a l y s i s of r e s u l t s on Ta b l e 5 s h o u l d be i n t e r p r e t e d w i t h c a u t i o n . Some a p p a r e n t l y s i g n i f i c a n t d i f f e r e n c e s may be due t o s o i l v a r i a b i l i t y . As p r e v i o u s l y mentioned, r e l a t i o n s h i p s between s o i l s d a t a and f o l i a r n u t r i e n t c o n c e n t r a t i o n s a r e d i f f i c u l t t o e s t a b l i s h . D. NUTRIENT BALANCES IN THE GREENHOUSE SEEDLINGS As p r e v i o u s l y n o t e d , I n g e s t a d (1979) found t h a t a c o r r e c t b a l a n c e of n u t r i e n t s was i m p o r t a n t t o a c h i e v e maximum p r o d u c t i v i t y . U n b a l a n c i n g the n u t r i e n t regime by c a u s i n g one or two elements t o have e x t r e m e l y h i g h or low c o n c e n t r a t i o n s , c o u l d a d v e r s e l y a f f e c t s e e d l i n g growth. A b a l a n c e d n u t r i e n t c o n t e n t , r e m a i n i n g above i n f e r r e d d e f i c i e n c y l e v e l s , i s p r e f e r a b l e . I n g e s t a d ' s r a t i o s were 75 c a l c u l a t e d f o r each t r e a t m e n t t o determine i f the n u t r i e n t b a l a n c e was a p p r o x i m a t e l y the same as I n g e s t a d ' s suggested p r o p o r t i o n s . The optimum v a l u e s d e r i v e d by I n g e s t a d a re l i s t e d a t the top i n Table 8. Three t r e a t m e n t s , N 2 P 0 , N 2P,, N,P 1 f f o l l o w the p r o p o r t i o n s he suggested q u i t e c l o s e l y . However, the N 2 P 0 s e e d l i n g s were h i g h l y d e f i c i e n t i n N and t h e r e f o r e , o t h e r n u t r i e n t s appeared t o be a t adequate l e v e l s . C a u t i o n must be used when i n t e r p r e t i n g the r a t i o s . S i n c e when N i s g r o w t h - l i m i t i n g , the p r o p o r t i o n s of o t h e r elements can be m i s l e a d i n g . A l t h o u g h the N 2 P 0 t r e a t m e n t ' s f o l i a r n u t r i e n t c o n c e n t r a t i o n s appeared b a l a n c e d , maximum growth c o u l d not be a t t a i n e d due to a g e n e r a l l y low n u t r i e n t s t a t u s . Both the N 2P, and the N,P, s e e d l i n g s had a presumably c o r r e c t b a l a n c e of n u t r i e n t s w i t h adequate N l e v e l s . K, Fe, and B l e v e l s a r e lower than I n g e s t a d ' s v a l u e s , but d i d not r e s u l t i n apparent d e f i c i e n c y symptoms. S u p e r i o r growth was a c h i e v e d by the N 1P 1 t r e a t m e n t , but not the N 2P, t r e a t m e n t . B e s i d e s the i n h i b i t i n g e f f e c t s produced by the h i g h r a t e of N f e r t i l i z e r , no reason can be g i v e n f o r the poor response of the N 2P, s e e d l i n g s . The N 0P, s e e d l i n g s c o n t a i n e d very low l e v e l s of N and as a r e s u l t , the r a t i o s a r e e x t r e m e l y h i g h . I f f o l i a r N c o n c e n t r a t i o n s were i n c r e a s e d , a more b a l a n c e d n u t r i e n t regime would e x i s t . N appeared t o be the l i m i t i n g element i n t h i s t r e a t m e n t , t h e r e f o r e N a d d i t i o n s c o u l d p r o b a b l y m a i n t a i n the r a p i d growth r e c o r d e d e a r l i e r i n the greenhouse s t u d y . Table 8. Greenhouse foliar nitrogen concentrations and Ingestad's ratios for various treatments, compared with optima given by Ingestad (1979) Ingestad Ratios N cone. % N p Ca Mg K S Fe Cu Zn B Mn Optimum ratios (Ingestad, 1979) 100 16.0 8.0 5.0 70 9.0 0.7 0.03 0.03 0.2 0.4 N o p o 1.74 100 5.9 9.8 6.8 54 6.6 0.22 0.039 0.04 0.15 11.0 N1 P0 2.27 100 3.0 8.4 6.7 37 4.9 0.17 0.037 0.04 0.076 6.5 N 2P 0 0.74 100 16.0 25.0 14.0 89 15.0 0.51 0.09 0.03 0.18 17.0 N1 P1 1.65 100 17.0 11.0 12.0 40 8.5 0.26 0.055 0.08 0.069 4.8 N2 P1 1.95 100 12.0 11.0 12.0 59 7.0 0.18 0.037 0.09 0.059 4.1 N0 P1 0.88 100 58.0 20.0 25.0 72 14.0 0.34 0.12 0.11 0.20 14.0 Lime 1.91 100 5.0 9.9 5.9 51 6.1 0.18 0.036 0.05 0.13 10.0 S12 1.97 100 6.3 10.1 5.5 47 6.0 0.17 0.032 0.04 0.13 11.0 77 CH The r e m a i n i n g t r e a t m e n t s , NTPQ, l i m e , S 1 2 , and the c o n t r o l , a l l have one major f a c t o r i n common which i s t h a t P l e v e l s were a p p r o x i m a t e l y o n e - t h i r d the l e v e l recommended by I n g e s t a d . N c o n c e n t r a t i o n s were a l l w i t h i n an a c c e p t a b l e range. T h e r e f o r e , P a d d i t i o n s were r e q u i r e d t o c o r r e c t the imbalance. A P-induced N d e f i c i e n c y was shown t o r e s u l t from the N 0 P , t r e a t m e n t . To a v o i d t h i s p r oblem, N s h o u l d be added w i t h P u n l e s s the p r e - e x s i s t i n g f o l i a r N c o n c e n t r a t i o n i s much h i g h e r than N v a l u e s which a r e c o n s i d e r e d adequate. To c o n f i r m the above o b s e r v a t i o n s , a c l u s t e r a n a l y s i s was performed on the greenhouse d a t a . H e i g h t and mass were not i n c l u d e d i n the c l u s t e r a n a l y s i s so the groups would not be b i a s e d by these growth p a r a m e t e r s . From the PCA, seven v a r i a b l e s f o r c l u s t e r i n g were chosen. These were n e e d l e w e i g h t , N, P, A l , B, Mn, and Fe. The c l u s t e r s formed a r e shown on F i g u r e 5 and T a b l e 9. The f i r s t l a r g e e r r o r i n c r e a s e produced f i v e g r oups. A Mann-Whitney U t e s t r e v e a l e d t h a t groups 1a and 1b were s e p a r a t e d by n e e d l e weight and by c o n c e n t r a t i o n s of Fe, A l , Mn, and B. Growth was s l i g h t l y h i g h e r i n the 1b group, but none of the n u t r i e n t s which were s i g n i f i c a n t l y d i f f e r e n t appeared t o be s e v e r e l y a f f e c t i n g growth. The next g r o u p i n g combined 1a and 1b, g i v i n g f o u r groups. These c l u s t e r s were used f o r a n a l y s i s . Data from each i n d i v i d u a l r e p l i c a t i o n were used f o r c l u s t e r i n g . Treatment r e p l i c a t i o n s tended t o group t o g e t h e r , i n d i c a t i n g t h a t the s e e d l i n g s w i t h i n a p a r t i c u l a r t r e a t m e n t ITEMS GROUPED S T E P I J E R R O R 47 42 40 37 17 25 28 1 25 2 19 3 46 4 2 4 5 32 6 27 7 19 8 38 9 44 10 31 11 16 12 24 13 18 14 4 0 15 6 "16 8 17 1 ta 7 1 9 3 0 " 20 9 29 21 47 " 2 5 ' 33 28 20 39 45 34 17 26 19 44 36 . . . . . . . . . . 5 IO '"58 " 11 0.0591538 0.0865729 O . 1 6 8 0 6 3 3 6.1737392 0.2037045 0.2037738 0.2081680 0.2265767 0.3060718 6.3416048 0.4236998 O .43B3044 6 . 4981805 ' 0.5071552 0.56256B7 6 . 5 8 0 3 8 0 0 0.5876884 O . 5 8 9 4 7 1 8 6 . 6 0 6 8 1 2 0 " 0.6131487 21 15 16 0.7129970 • 2 2 2 4 2 7 6 . 7 1 7 0 1 0 0 •" 23 31 32 0.7202419 » 24 18 23 0.7520528 • 2 5 6 4 1 6 . 8 4 6 K R 6 4 • " 26 38 4 3 0.8995057 • 27 6 42 1.2178698 • 2 8 1 4 1 5 1 .2742043 29 3 46 1.3815098 • 3 0 22 24 1.4005957 • 3 1 7 • 1 . 5 1 0 8 2 1 3 • " 32 2 4 1 .5278645 • 33 30 31 1.6712608 • " 3 4 8 3 7 1 .705.7967 • " 35 38 4 0 1.9218397 • 36 1 3 2 . 5 6 9 6 9 8 3 • 3 7 i . 3 3 . 9 0 2 1 5 8 7 • 38 1 6 S . 8 5 7 4 1 3 3 • _3B 7 • 6 . 1 8 4 9 9 2 3 » 4 0 1 8 2 2 i O . 522TT1 * ~ 41 2 7 10 .701218 » 42 1 38 4 1 . 3 4 4 8 0 2 * " 4 i 1 2 2 5 . 9 3 9 1 9 4 • " 44 14 18 8 1 . 5 4 8 2 4 8 • 45 14 30 7 8 . 5 2 4 8 1 1 • " 4 6 1 1 4 9 6 . 2 3 5 4 4 3 • " 23 29 30 45 35 12 21 T_ 1 LT —j CD T a b l e 9. Groups d e f i n e d by a c l u s t e r a n a l y s i s u s i n g s e l e c t e d v a r i a b l e s f rom greenhouse s e e d l i n g f o l i a r da ta Group Trea tment R e p l i c a t i o n GR1 NQPQ a l l r e p l i c a t i o n s N L P 0 Lime S 1 2 C H N 2 P Q 13 GR2 N 2 P 0 14, 15, 16, 17 GR3 a 1 1 r e p l i c a t i o n s N 2 P 1 GR4 N 0 P 1 a ^ - 1 r e p l i c a t i o n s 80 were a l l s i m i l a r . Only N 2P 0#13 was not grouped w i t h o t h e r r e p l i c a t i o n s from the same t r e a t m e n t . Group #1 i n c l u d e d CH s e e d l i n g s from f o u r d i f f e r e n t groups: N ^ o , l i m e , S12 , and the c o n t r o l . A l t h o u g h N,P0 s e e d l i n g s d i d produce more biomass and h i g h e r f o l i a r N c o n c e n t r a t i o n s , they d i d not d i f f e r much from the o t h e r t h r e e t r e a t m e n t s . Both N 2 P 0 and N 0P, s e e d l i n g s were d i s t i n c t l y d i f f e r e n t from o t h e r t r e a t m e n t s . Group #3 c o n t a i n e d both N 2 P i and N,P,. N u t r i e n t c o n c e n t r a t i o n s of the two t r e a t m e n t s were s i m i l a r , but growth p a t t e r n s were d i s t i n c t l y d i f f e r e n t . To determine the s i g n i f i c a n t d i f f e r e n c e s between groups w i t h r e g a r d t o v a r i a b l e s used i n the c l u s t e r a n a l y s i s , a Mann-Whitney U t e s t was performed. The r e s u l t s are p r e s e n t e d i n T a b l e 10. P was the o n l y v a r i a b l e s i g n i f i c a n t l y d i f f e r e n t between a l l groups. Group #1 had the h i g h e s t N v a l u e s and the l o w e s t P c o n c e n t r a t i o n s . Maximum growth was o b t a i n e d from t r e a t m e n t s i n groups #3 and #4 where lower N v a l u e s and h i g h P c o n c e n t r a t i o n s were found. These r e s u l t s c o n f i r m p r e v i o u s o b s e r v a t i o n s t h a t suggest P i s the major l i m i t i n g element under greenhouse c o n d i t i o n s . E. ANALYSIS OF WESTERN HEMLOCK FOLIAGE SAMPLES FROM THE  FIELD Western hemlock f o l i a r a n a l y s i s d a t a f o r samples c o l l e c t e d i n the f i e l d a r e summarized i n T a b l e 11. Seven s i t e s were sampled: t h r e e CH phase s i t e s , t h r e e HA phase CH s i t e s , and one S12 ( l i m e s t o n e ) s i t e . The t h r e e CH s i t e s 81 Table 10. S i g n i f i c a n t d i f f e r e n c e s between groups defined by the c l u s t e r a n a l y s i s f o r needle mass and sele c t e d greenhouse f o l i a r n u t r i e n t concentrations 100-needle mass mean (%) S.D. Gr2 .089 (.0034) _ -ab Gr3 .092 (.010) G r l .100 (.0067) Gr4 .128 (.067) Nitrogen mean (X) S.D. Gr2 .75 (.090) Gr4 .875 (.041) Gr3* 1.80 (.17) Grl° 1.94 (.43) Phosphorus mean (%) S.D. G r l .101 (.037) Gr2 .111 (.021) Gr3 .251 (.027) Gr4 .506 (.075) Manganese mean (ppm) S.D. Gr 3 a 793 (60) Gr2 ab 1058 (281) Gr4 be 1193 (78) G r l " 1872 (317) I r o n mean (ppm) S.D. Gr4 30.2 (.98) Grl° 36.6 (5.0) Gr2° 37.5 (1.0) Gr3° 39.2 (3.8) Boron mean (ppm) S.D. Gr3* 11.5 (.68) Gr2° 12.8 (1.3) Gr4 17.8 (1.7) G r l 23.3 (5.8) Aluminium mean (ppm) S.D. Gr3° 21.7 (3.9) Gr4° 36.7 (13.7) Grl° 51.6 (35.3) Gr2 245 (35) * Groups followed by a common l e t t e r are not s i g n i f i c a n t l y d i f f e r e n t , according to the Mann-Whitney U t e s t (P - 0.05). 82 Table 11. Si g n i f i c a n t differences between f o l i a r nutrient concentrations for the f i e l d samples IOC—needle mass a* CH2a S12 a b CB4b c CH3C H A 2 b ° d H A l b c d HA3d mean (g) .248 .304 .304 .324 .333 .352 .377 S.D. (.032) (.045) (.060) (.044) (.046) (.069) (.062) Nitrogen CH2a CH3 a b S12 b CH4 b HA1 HA3 HA2 mean (5) .67 .75 .77 .79 .96 1.04 1.27 S.D. (.064) (.051) (.040) (.124) (.076) (.087) (.131) Phosphorus CH4a S12 8 CH38 HA3 b CH2b HA2C HA1C mean (Z) .093 .092 .095 .132 .141 .190 .229 S.D. (.028) (.0066) (.012) (.023) (.026) (.027) (.042) Calcium CH38 CH2 B b HA2 a C HA3 C CH4C S12 b c HA1C mean (Z) .16 .18 .21 .21 .22 .24 .26 S.D. (.0089) (.016) (.048) (.042) (.032) (.0059) (.092) Magnesium CH4a CH3 8 b CH2 b c S12 b c HA3 C HA1 c d HA2d mean (Z) .086 .097 .10 .10 .11 .12 .14 S.D. (.016) (.013) (.0084) (.011) (.021) (.022) (.021) Potassium HAla HA2 a b c S12 a d HA3 d e CHS1* CH2 c f CH4f mean (Z) .47 .54 .54 .61 .62 .72 .78 S.D. (.043) (.109) (.069) (.066) (.032) (.067) (.17) Sulphur CH28 CH3 a b CH4 8 b S12 b HA1 C HA3 d HA2 c d mean (Z) .095 .098 .102 .107 .124 .139 .140 S.D. (.0051) (.0099) (.015) (.0072) (.0054) (.013) (.010) Manganese HAla CH3 a CH2 a b HA2 a b S l 2 b c HA3 C CH4 mean (Z) 1010 1060 1390 1470 2060 2440 2830 S.D. (370) (104) (500) (521) 457) (598) (591) Iron CH4 HA3 CH2a HA2 8 b S12 b HA1 C CH3C mean (ppm) 38 45 59 73 92 141 151 S.D. (10) (4.8) (5.8) (17) (16) (35) (28) * F i e l d sites followed by a common l e t t e r are not s i g n i f i c a n t l y d i f f e r e n t , according to the Mann-Whitney U test (P - 0.05). 83 Table 11. (cont'd) Copper •can (pp*) S.D. Zinc aean (ppa) S.D. Aluminium oean (ppm) S.D. Boron •can (ppa) S.D. Active Iron aean (ppm) S.D. CH2* CB3' S12 , b c _.b CH4 HA3d . cd HA1 HA2Cd 3.4 3.4 4.0 4.2 4.9 4.8 5.0 (.55) (.55) (.71) (.56) (.74) (.45) (.71) CH4* CH2* S12 a b HAJ b CH3bc HA3C HA2C 3.1 3.2 4.2 5.0 10.0 8.7 9.6 (1.8) (.45) (1.3) (1.2) (6.6) (3.0) (2.2) S12« CH4* CE3'b CH2bc HA3C HA1C BA2 156 185 216 248 279 326 448 (27) («) (35) (72) (79) (53) (72) CH2* HA2*C HA3,C HAl' b d CH3bc S12 d e CB4e 17.1 18.1 19.0 19.7 21.3 24.8 29.5 (2.6) (2.8) (4.0) (6.4) (.92) (1-4) (4.9) CH4 CH2* HA3" S12b HA2b HAl b c CH3C 21.6 26.5 27.0 43.5 43.0 56.3 68.3 (3.6) (4.1) (3.8) (9.5) (9.8) (12.4) (12.5) 84 sampled were the same areas where s o i l was c o l l e c t e d from f o r the greenhouse s t u d y . Each HA s i t e was s e l e c t e d as c l o s e t o a CH s i t e as p o s s i b l e and w i t h i n the same approximate s t a n d age group. A l l t r e e s sampled were between 5 and 15 y e a r s . D e t a i l s on f o l i a g e c o l l e c t i o n a re g i v e n i n the methods s e c t i o n . The f i e l d - f o l i a r d a t a were s t a t i s t i c a l l y t r e a t e d i n the same manner as the greenhouse d a t a . U s i n g Mann-Whitney U t e s t s , and K r u s k a l and W a l l i s one-way a n a l y s i s of v a r i a n c e , s i g n i f i c a n t d i f f e r e n c e s between n u t r i e n t c o n c e n t r a t i o n s on each s i t e were d e t e r m i n e d . The r e s u l t s are l i s t e d i n Table 1 1 . F o l i a r N c o n c e n t r a t i o n s from the CH s i t e s were s i g n i f i c a n t l y lower than those from the HA s i t e s . P r e v i o u s s t u d i e s by Lewis (1985) a l s o found v e r y low N c o n c e n t r a t i o n s on the CH s i t e s ( T a b l e 2) which suggested t h a t N was a l i m i t i n g element. N c o n c e n t r a t i o n s on the HA s i t e s are a l s o v e r y low, but two reasons can a.id i n e x p l a i n i n g the d e f i c i e n t or n e a r l y d e f i c i e n t l e v e l s . The s t a n d s a r e young and canopy c l o s u r e i s not c o m p l e t e . T h e r e f o r e , t h e i r r a p i d growth r a t e may cause a d i l u t i o n of n u t r i e n t c o n c e n t r a t i o n s . S e c o n d l y , sampling was performed s l i g h t l y e a r l i e r than the recommended d a t e s ; t h e r e f o r e , f o l i a g e c o n c e n t r a t i o n s may not have reached the s t e a d y s t a t e n o r m a l l y a c h i e v e d d u r i n g dormancy ( E v e r a r d , 1973). C o n c e n t r a t i o n s of 0.67 t o 0.79% N on the CH s i t e s were so f a r below adequate l e v e l s , t h a t a N d e f i c i e n c y can be i n f e r r e d . For o l d e r hemlocks, most a u t h o r s 85 i n d i c a t e t h a t N c o n c e n t r a t i o n s of l e s s than 1.0% are p r o b a b l y d e f i c i e n t ( E v e r a r d , 1973; F a r r e t a l . , 1977; L e w i s , 1985). A l s o , N i s p o s i t i v e l y c o r r e l a t e d w i t h 100-needle mass, which s u g g e s t s t h a t l a r g e r n e e d l e s a r e produced w i t h h i g h e r N c o n c e n t r a t i o n s (Table 12). Three o t h e r n u t r i e n t s were p o s i t i v e l y c o r r e l a t e d w i t h needle mass: S, Cu, and Zn ( T a b l e 12). Both S and Cu c o n c e n t r a t i o n s were s i g n i f i c a n t l y h i g h e r on the HA s i t e s compared t o CH v a l u e s (Table 11). Sulphur s t a t u s of the HA s t a n d i s j u s t w i t h i n or s l i g h t l y below suggested adequate c o n c e n t r a t i o n s d e r i v e d from I n g e s t a d ' s r a t i o . However, the h i g h p r o d u c t i v i t y a c h i e v e d on the HA s i t e s i n d i c a t e d t h a t S i s p r o b a b l y not growth l i m i t i n g . A l s o , Beaton e t a l . (1956a) d i d r e c o r d s u l p h u r c o n c e n t r a t i o n s i n western hemlock from 0.10 t o 0.15%. However, o t h e r n u t r i e n t c o n c e n t r a t i o n s i n the da t a of Beaton e t a l . were l e s s than adequate ( T a b l e 2 ) ; t h e r e f o r e , the s u l p h u r v a l u e s may a l s o be d e f i c i e n t . On the CH s i t e s , c o n c e n t r a t i o n s below 0.10% suggested t h a t the S s t a t u s i s poor and perhaps i n h i b i t i n g growth. However, the N/S r a t i o i s below the recommended r a t i o v a l u e of a p p r o x i m a t e l y 14 ( T u r n e r , 1979) s u g g e s t i n g t h a t the f o l i a r S b a l a n c e i s adequate. Copper c o n c e n t r a t i o n s were h i g h e r on the HA s i t e s than on the CH a r e a s (Table 11) Lambert and Weidensaul (1982) found t h a t most c o n i f e r s e e d l i n g s o n l y r e q u i r e 3 ppm f o l i a r c o p per. Requirements d i d v a r y s l i g h t l y from s p e c i e s t o s p e c i e s . No v a l u e s below 3.0 ppm were found from e i t h e r HA Table 12. Spearman rank c o r r e l a t i o n c o e f f i c i e n t s f o r f i e l d f o l i a g e data ( o n l y v a r i a b l e s c o r r e l a t e d at or above 95% confidence are reported) 100-needle mass N .34 P .51 Ca Mg .55 .52 K -.29 -.37 -.34 -.54 Mn -.28 .45 -.27 .29 Fe .33 -.36 -.49 -.71 Cu .32 .69 .50 .27 -.29 B -.27 -.27 -.52 -.32 .28 .49 -.28 A c t i v e Fe .40 .36 -.44 -.60 .88 S .44 .87 .54 .53 -.30 .69 -.31 Zn .35 .73 .40 .54 -.33 .29 .51 -.38 .44 .74 A l .55 .60 .55 -.39 -.50 .30 .52 .44 100-needle N P Ca Mg K Mn Fe B A c t i v e S Zn , A l mass Fe 87 or CH s i t e s . Zn v a l u e s may be d e f i c i e n t at the lower c o n c e n t r a t i o n s on CH #2, CH #4, HA #1, and the S 1 2 C H s i t e s . HA s i t e s d i d tend t o have h i g h e r Zn l e v e l s . However, Zn l e v e l s d i d not s i g n i f i c a n t l y s e p a r a t e the CH from the HA s i t e s ; t h e r e f o r e , they c o u l d not be a major cause f o r reduced growth on the CH s i t e s . A c t i v e Fe c o n c e n t r a t i o n s were below the c r i t i c a l v a l u e of 29 ppm ( M a j i d , 1984) f o r CH #4, #2, and HA #3; however, as w i t h Zn v a l u e s , a c t i v e Fe does not s e p a r a t e the CH from the HA s i t e s . The h i g h e s t P c o n c e n t r a t i o n s o c c u r r e d on the more p r o d u c t i v e HA s i t e s , a l t h o u g h HA #3 was not s t a t i s t i c a l l y d i f f e r e n t from CH #2 (Table 11). Trees on CH #2 had s l i g h t l y h i g h e r P c o n c e n t r a t i o n s than on o t h e r CH s i t e s , and HA #3 had lower P v a l u e s than the o t h e r HA a r e a s . V e g e t a t i o n found on HA #3 i n d i c a t e s t h a t t h i s s i t e c o u l d be a t r a n s i t i o n a l HA CH s i t e between the S1 and the S1 . S a l a l , commonly found on the CH s i t e s but not on the HA s i t e s , grows v i g o r o u s l y i n p a t c h e s on the HA #2. The degree of " s o i l c u l t i v a t i o n " on the HA s i t e s depends on the frequency of windthrow. I f the s o i l had not been d i s t u r b e d by t h i s p r o c e s s f o r a l o n g p e r i o d of t i m e , the s i t e would d e v e l o p c o n d i t i o n s s i m i l a r t o CH those of the S1 . P c o n c e n t r a t i o n s on HA #3 d i d not appear t o g r e a t l y r e s t r i c t p r o d u c t i v i t y ; however, they a r e below c o n c e n t r a t i o n s recommended as adequate. A l t h o u g h P l e v e l s may not have caused the poor t r e e growth on the CH #2 s i t e , 88 N c o n c e n t r a t i o n s were so low t h a t they would l i m i t t r e e p r o d u c t i v i t y . P c o n c e n t r a t i o n s g i v e n i n Table 1 suggest c o n c e n t r a t i o n s of P on p r o d u c t i v e s i t e s can range from 0.18 to 0.35%. Only the HA #1 and HA #2 s i t e s had P c o n c e n t r a t i o n s w i t h i n the g i v e n range. F o l i a r P v a l u e s on CH C H #3, CH #4 and S12 were s e v e r e l y d e f i c i e n t . C o n c e n t r a t i o n s of two o t h e r n u t r i e n t s , K and Mg, s e p a r a t e the CH s i t e s from the HA s i t e s ( T a ble 11). However, CH not a l l S1 a r e a s were s i g n i f i c a n t l y d i f f e r e n t from the HA S1 s i t e s w i t h r e g a r d t o K and Mg c o n c e n t r a t i o n s . Mg v a l u e s were h i g h e r on a l l HA s i t e s . Adequate l e v e l s a r e not w e l l d e f i n e d . B a l l a r d and C a r t e r (1983) i n d i c a t e d 0.10% Mg i s r e q u i r e d . F a r r et a l . (1977) found t r e e s growing w e l l w i t h 0.09% Mg, and s e e d l i n g v a l u e s go as low as 0.08% ( A l d h o u s , 1972). The lo w e s t v a l u e on the CH s i t e s was 0.086%. At t h i s c o n c e n t r a t i o n , l e v e l s of Mg were p r o b a b l y not c r i t i c a l . P o t a s s i u m c o n c e n t r a t i o n s r e c o r d e d i n the l i t e r a t u r e appeared t o be q u i t e h i g h compared w i t h v a l u e s o b t a i n e d i n the f i e l d and i n the greenhouse. G e n e t i c a l l y , t h e s e t r e e s may r e q u i r e l e s s K. I n g e s t a d (1979) suggested t h a t h i g h K c o n c e n t r a t i o n s favour b e t t e r w i n t e r s u r v i v a l . The ST s i t e s a r e l o c a t e d i n a m i l d c o a s t a l r e g i o n where the mean d a i l y temperature does not u s u a l l y drop below z e r o . T h e r e f o r e , t h e s e t r e e s would not have t o endure h a r s h w i n t e r s . F a r r et a l . (1977) r e p o r t e d f o l i a r c o n c e n t r a t i o n s as low as 0.26% K on p r o d u c t i v e s i t e s . P o t a s s i u m c o n c e n t r a t i o n s were much lower on the HA s i t e s than the CH a r e a s . As p r o d u c t i v i t y 89 i n c r e a s e d , K l e v e l s appeared t o d e c r e a s e . T h e r e f o r e , K c o u l d not be c o n s i d e r e d t o be immediately l i m i t i n g t r e e growth on CH s i t e s . A p r i n c i p a l components a n a l y s i s was a l s o performed on the f i e l d d a t a . Seven f o l i a r v a r i a b l e s (N, P, Ca, K, Cu, A c t i v e Fe, and A l ) were s e l e c t e d f o r use i n a c l u s t e r a n a l y s i s . The c l u s t e r ( F i g u r e 6) s e p a r a t e d the s i t e s i n t o t h r e e groups which are shown on T a b l e 13. HA #1 and #2 were grouped t o g e t h e r ( G r l ) . The c l u s t e r i n g i s o l a t e d HA #3 i n d i c a t i n g i t was d i f f e r e n t from o t h e r HA s i t e s , and c o u l d CH be a t r a n s i t i o n a l s i t e . The CH s i t e s , i n c l u d i n g S12 , were combined i n t o one group. A Mann-Whitney U t e s t was used t o d e t ermine s i g n i f i c a n t d i f f e r e n c e s between groups w i t h r e g a r d t o the seven v a r i a b l e s used i n the c l u s t e r a n a l y s i s (Table 14). Three e l e m e n t s , A l , P, and K, were s i g n i f i c a n t l y d i f f e r e n t f o r a l l t h r e e groups. The HA s i t e s had h i g h e r P and A l c o n c e n t r a t i o n s , w h i l e t r e e s on the CH s i t e s had h i g h e r K l e v e l s . HA #3 was lower i n P than HA #1 and #2. A l s o , A c t i v e Fe l e v e l s were p a r t i c u l a r l y low i n the HA #3 f o l i a g e ; however, they were above the c r i t i c a l ranges p r e v i o u s l y d i s c u s s e d . One or both of t h e s e elements may d i s t i n g u i s h HA #3 as t r a n s i t i o n a l between CH and HA phases of S i . F o l i a r c o n c e n t r a t i o n s of P and N were below suggested CH adequate l e v e l s on the S1 s i t e s . A l t h o u g h c o n c e n t r a t i o n s of N and P may be j u s t w i t h i n or below suggested adequate v a l u e s on the HA s i t e , they are both s i g n i f i c a n t l y h i g h e r ITEMS GROUPED S T E P I J E R R O R 29 27 35 37 36 IT 44 45 51 14 50 31 26 33 42 • 1 1 ' 2 4 12 11 45 53 2 25 13 14 41 16 16 43 16 30 10 11 12 13 14 IS 16 IT I t IS 20 31 22 23 24 25 ' 26 2T 26 29 30 " S i ' 32 33 34 35 36 "3T" 39 39 4 0 41 42 " 4 3 " 44 46 "46" 4T 46 49 SO 81 63 53 54 44 34 29 46 36 31 26 IS 41 39 30 44 36 61 T BO SB 6 43 1 33 B4 3 40 41 26 16 " 2 f " 49 33 4T 29 22 ' 32 S I 34 21 12 IT 23 39 19 16 T 42 29 62 46 34 26 21 9 " 1 T ""is" 26 11 " " » • " ' 31 41 6" 41 1 "Tr 3S 3T 2T ""id" 4 9 if 33 13 •"IB" 24 42 r 49 6 11 " i i " i i 21 6 26 16 41 11 O. 16963BS 0 . 3 7 9 1 9 0 5 0 . 3 8 2 5 4 7 1 6 . 3938392 0 . 4 1 3 8 6 1 0 0 . 4 4 3 3 2 4 1 6 . 4679077 0 . 4 7 0 2 6 9 1 O . S 3 4 4 2 S 3 0 . 6 5 7 0 5 7 4 0 . 6 2 5 O 0 9 S O.655O860 616796889 0 . 9048429 1 .1144409 1. 1412411 ' 1 .2932262 1 .4249020 '17444 1624 1.4487944 1.4678 1 16 176512003 1.6535908 1.6392017 ' 1 .8672464 1 .9008150 1.9042711 2 . 0 8 5 5 4 9 4 ' " 2 . 0 9 4 5 9 4 0 2 .1357794 2746507 i f ' 2 . 5 1 8 8 3 5 1 2 . 6 8 9 8 0 8 8 3 .0352564 3 . 1 0 4 8 5 3 6 3 . 6 2 8 9 6 6 3 3 . 7 4 1 0 5 5 5 " 3 . 6 9 3 8 7 8 0 4 .4683671 4 . 6 3 6 7 6 6 4 " 7873366 1T80643 1833706 2514334 5360613 6040926" 13 .T86973 14 .442642 i f . 6 5 2 0 3 3 32 .116821 25 .038986 36758055 i 37 653733 113 .67449 49 54 S3 13 15 21 24 4 0 20 82 4T 88 13 30 23 25 38 34 22 [ 0 l i VD O Table 13. Groups defined by a c l u s t e r a n a l y s i s using selected v a r i a b l e s from f i e l d f o l i a r data Group S i t e s GR1 HA #2, HA #1 GR2 CH #2, CH #3, CH//4, S12 GR3 HA #3 92 Table 14. S i g n i f i c a n t d i f f e r e n c e s between groups d e f i n e d by the c l u s t e r a n a l y s i s f o r f i e l d f o l i a r data a* _ , a Gr2 Gr3° G r l .766 1.04 1.12 S.D. (.11) (.080) (.18) Nitr o g e n mean (%) 6 Gr2 Gr3 G r l .103 .130 .20! S.D. (.029) (.024) (.040) Phosphorus mean (%) 3 5„ . . G r 2 a G r 3 a G r l a Calcium mean (%) .205 .212 .236 S.D. (.041) (.044) (.072) G r l Gr3 Gr2 .520 .601 .701 S.D. (.10) (.065) (.15) Potassium mean (%) 0 Gr2 G r 3 a G r l a Copper mean (ppm) 3.9 4.8 5.0 S.D. (.65) (.69) (.63) . . T G r 3 a G r 2 a G r l A c t i v e I r o n mean (ppm) 26.9 33.6 47.9 S.D. (4.0) (18) (13.3) Gr2 Gr3 Grl 198 268 393 S.D. (55) (68.3) (85) Aluminium mean (ppm)  * Groups followed by a common l e t t e r are not s i g n i f i c a n t l y d i f f e r e n t , according to the Mann-Whitney U t e s t (P - 0.05). 93 than c o n c e n t r a t i o n s from the CH phase. These two elements seem t o have s e p a r a t e d the CH and HA' s i t e s . Other elements were not a t i n f e r r e d g r o w t h - l i m i t i n g c o n c e n t r a t i o n s ; t h e r e f o r e , they c o u l d not be r e s p o n s i b l e f o r the d i f f e r e n c e i n p r o d u c t i v i t y between the two phases. N u t r i e n t b a l a n c e i s a l s o an i m p o r t a n t c o n s i d e r a t i o n when d e t e r m i n i n g the n u t r i e n t s t a t u s of t h e s t a n d . G i l l (1981) found t h a t the o n l y s t a n d r e s p o n d i n g t o N a p p l i c a t i o n c o n t a i n e d a n u t r i e n t b a l a n c e c l o s e t o I n g e s t a d ' s s uggested p r o p o r t i o n s . For c o m p a r a t i v e purposes, I n g e s t a d ' s r a t i o s were c a l c u l a t e d t o d e t e r m i n e the b a l a n c e of n u t r i e n t s i n the f i e l d samples (Table 15). S l i g h t l y lower p r o p o r t i o n s of P were found on HA #3, CH #3, CH #4, and S 1 2 C H . Due t o low N c o n c e n t r a t i o n s and h i g h P v a l u e s , s i t e CH #2 c o n t a i n e d a r e l a t i v e l y l a r g e p r o p o r t i o n of P t o N. However, e x c e s s P does not appear t o a f f e c t t r e e growth d e t r i m e n t a l l y ; s i t e HA #1 i s v e r y p r o d u c t i v e and c o n t a i n s a r e l a t i v e l y h i g h amount of P. The CH s i t e s a r e o b v i o u s l y d e f i c i e n t i n N. However, as p r e v i o u s l y mentioned, f e r t i l i z a t i o n w i t h N can cause a r e d u c t i o n i n f o l i a r P. Due t o the a l r e a d y low l e v e l s of P, a c o m b i n a t i o n of N and P f e r t i l i z e r s would be r e q u i r e d t o m a i n t a i n an adequate b a l a n c e . On the CH #2 s i t e , the P t o N r a t i o was much h i g h e r than the p r o p o r t i o n s suggested by I n g e s t a d , i n d i c a t i n g t h a t perhaps N f e r t i l i z a t i o n a l o n e would be r e q u i r e d t o c o r r e c t the n u t r i t i o n a l s t a t u s . However, the HA #3 and CH #2 t r e e s had a s i m i l a r P c o n c e n t r a t i o n , and a d d i t i o n s of N a l o n e t o the HA #3 would T a b l e 1 5 . F i e l d f o l i a r n i t r o g e n c o n c e n t r a t i o n s and I n g e s t a d ' s r a t i o s f o r the HA, C H , and S 1 2 C H s i t e s , compared w i t h o p t i m a g i v e n by I n g e s t a d ( 1 9 7 9 ) I n g e s t a d R a t i o s N c o n e . N P Ca Mg K S Fe Cu Zn B Mn Optimum r a t i o s 100 16 8 5 70 9 0 . 7 0 . 0 3 0 . 0 3 0 . 2 0 0 . 4 ( I n g e s t a d , 1979) H A #1 0 . 9 6 100 24 27 13 49 13 1 .5 0 . 0 5 0 . 0 5 0 . 2 1 11 H A n 1.27 100 15 17 11 43 11 0 . 5 7 0 . 0 3 9 0 . 0 8 0 .14 12 H A #3 1 .04 100 13 20 11 57 13 0 . 4 3 0 . 0 4 7 0 . 0 8 0 . 1 8 23 C H 1?2 0 . 6 7 100 21 27 15 107 14 0 . 8 8 0 . 0 5 1 0 . 0 5 0 . 2 6 21 C H #3 0 . 7 5 100 13 21 13 83 13 2 . 0 0 . 0 4 5 0 . 1 3 0 . 2 8 14 C H #4 0 . 7 9 100 12 28 11 99 13 0 . 4 8 0 . 0 5 3 0 . 0 3 0 . 3 7 36 S 1 2 C H 0 . 7 7 100 12 31 13 70 14 1.2 0 . 0 5 2 0 . 0 5 0 . 3 2 27 95 d i s r u p t the P t o N r a t i o . S u l phur c o n c e n t r a t i o n s were a l s o below i n f e r r e d adequate c o n c e n t r a t i o n s on the CH a r e a s . However, a c c o r d i n g to I n g e s t a d ' s r a t i o s , the p r o p o r t i o n of S to N was h i g h e r than r e q u i r e d f o r o p t i m a l growth. As the N and P c o n c e n t r a t i o n s become adequate, the r a t i o of S t o N w i l l tend t o d e c r e a s e . At t h i s p o i n t , s u l p h u r may become a l i m i t i n g element. P o t a s s i u m t o n i t r o g e n r a t i o s were much lower on the HA s i t e s and d i d not appear t o be immediately c r i t i c a l . An i m p o r t a n t f a c t o r not p r e v i o u s l y mentioned i s m y c o r r h i z a l development. White m y c o r r h i z a l - f u n g i were p r o l i f i c on the HA s i t e s , but d i d not occur i n l a r g e q u a n t i t i e s on the CH s i t e s . B l a c k and some y e l l o w m y c o r r h i z a l - f u n g i were p r e s e n t on both a r e a s . The t r e e r o o t s on CH s i t e s d e f i n i t e l y had a lower amount of m y c o r r h i z a l i n f e c t i o n compared t o t r e e s on HA s i t e s . M y c o r r h i z a e a re i m p o r t a n t , e s p e c i a l l y w i t h r e s p e c t t o P a b s o r p t i o n (Lavender and Walker, 1979). On the CH s i t e s , low f o l i a r P c o n c e n t r a t i o n s c o u l d be a r e s u l t of poor m y c o r r h i z a l development. Due t o the many f a c t o r s t h a t can a f f e c t m y c o r r h i z a l a c t i v i t y (Marx and B a r n e t t , 1974), c o n d i t i o n s on CH the S1 a r e a s may r e s t r i c t growth of m y c o r r h i z a l - f u n g i . 96 F. CONTRASTING GREENHOUSE AND FIELD FOLIAR DATA F i e l d f o l i a r samples i n d i c a t e d t h a t a response t o a c o m b i n a t i o n of N and P f e r t i l i z e r s c o u l d be e x p e c ted on the CH S1 s i t e s . A response t o N a l o n e may o c c u r i f P l e v e l s d i d not become s e v e r e l y l i m i t i n g . The greenhouse s e e d l i n g s i n i t i a l l y produced more biomass w i t h N and P or P a l o n e . The N,P 0 t r e a t m e n t y i e l d e d a r e s ponse; however, the r e s u l t s were not as s a t i s f a c t o r y as the above two t r e a t m e n t s . Warmer te m p e r a t u r e s i n the greenhouse a l l o w f a s t e r m i n e r a l i z a t i o n r a t e s , p r o d u c i n g more a v a i l a b l e N. A c e r t a i n amount of o r g a n i c phosphorus s h o u l d a l s o be r e l e a s e d . In the a c i d environment of the humus m a t e r i a l used, A l s o l u b i l i t y i s f a i r l y h i g h . A v a i l a b l e P c o u l d be q u i c k l y complexed, becoming u n a v a i l a b l e f o r uptake by the s e e d l i n g s . The amount of n i t r o g e n may be i n c r e a s e d by the greenhouse c o n d i t i o n s , but t h e s e c o n d i t i o n s do not seem t o i n c r e a s e a v a i l a b l e P. F o l i a r s u l p h u r c o n c e n t r a t i o n s were h i g h e r i n the greenhouse than the f i e l d . Perhaps m i n e r a l i z a t i o n of the humus m a t e r i a l produced more a v a i l a b l e S. The s e e d l i n g s ' growth d i d not appear t o be l i m i t e d by the low c o n c e n t r a t i o n s of S. S u l p h u r c o n c e n t r a t i o n s c o n s i d e r e d adequate a r e based on v a l u e s from a v a r i e t y of c o n i f e r o u s s p e c i e s ( I n g e s t a d , 1979; B a l l a r d and C a r t e r , 1983). These amounts c o u l d be too h i g h f o r hemlock. C o n c e n t r a t i o n s of S may not a f f e c t s e e d l i n g growth u n t i l lower l e v e l s a r e o b s e r v e d . 97 F o l i a r p o t a s s i u m c o n c e n t r a t i o n s d i s p l a y e d the same t r e n d s i n the greenhouse and the f i e l d . A n e g a t i v e c o r r e l a t i o n between f o l i a r p o t a s s i u m v a l u e s and growth parameters was found f o r both f i e l d and greenhouse samples. As p r e v i o u s l y mentioned, p o t a s s i u m a b s o r p t i o n c o u l d be g e n e t i c a l l y c o n t r o l l e d or a l t e r n a t i v e l y r a p i d growth of the hemlock t r e e s may have caused a d i l u t i o n of the K c o n c e n t r a t i o n . . T r e e growth i s not s e v e r e l y a f f e c t e d by these low c o n c e n t r a t i o n s . A response might be o b t a i n e d by a p p l y i n g K f e r t i l i z e r . However, the c r i t i c a l c o n c e n t r a t i o n where K a c t u a l l y l i m i t s hemlock growth appears t o be g e n e r a l l y lower than r e c o r d e d i n the l i t e r a t u r e . F o l i a r c o n c e n t r a t i o n s cannot be d i r e c t l y compared between f i e l d and greenhouse samples due t o t r e e age, growing c o n d i t i o n s , e t c . However, p r o p o r t i o n s of v a r i o u s n u t r i e n t s s h o u l d be a p p r o x i m a t e l y the same. T h e r e f o r e , u s i n g I n g e s t a d ' s r a t i o s , the two s e t s of data can be compared. V a l u e s f o r r a t i o s c a l c u l a t e d from the f i e l d f o l i a r samples a r e i n T a b l e 15. Except f o r lower r a t i o v a l u e s of Fe and B on the N , P , t r e a t m e n t , I n g e s t a d ' s r a t i o s c a l c u l a t e d f o r t h i s t r e a t m e n t were v e r y s i m i l a r t o r a t i o s d e r i v e d from n u t r i e n t c o n c e n t r a t i o n s on the HA #2 s i t e . T h i s b a l a n c e i s p r o b a b l y the o p t i m a l c o m b i n a t i o n of elements o b t a i n e d w i t h i n t h i s s t u d y . The N 0 P i t r e a t m e n t had v e r y low N c o n c e n t r a t i o n s making the P t o N r a t i o v e r y h i g h . R a t i o s from the HA #1 s i t e were s i m i l a r t o the N 0 P , t r e a t m e n t s u g g e s t i n g t h a t good growth can o c c u r w i t h low N l e v e l s and h i g h P 98 c o n c e n t r a t i o n s . However, the N 0P, treatment c o n t a i n e d N c o n c e n t r a t i o n s so low t h a t they were b e g i n n i n g t o r e s t r i c t growth. Some data from the l i t e r a t u r e and from t h i s study suggested t h a t N v a l u e s as low as 1 . 0% are not l i m i t i n g . A l t h o u g h t h i s v a l u e i s lower than the adequate range on Table 1, these t r e e s both i n the f i e l d and from the greenhouse, were growing r a p i d l y c a u s i n g d i l u t i o n of n u t r i e n t c o n c e n t r a t i o n s . Trees growing under o t h e r c o n d i t i o n s may have d i f f e r e n t demands. The low v a l u e s of N on the CH s i t e s i n c r e a s e d the r a t i o s of other n u t r i e n t s . Greenhouse s e e d l i n g s except f o r N 2 P 0 and N 0P, t r e a t m e n t s c o n t a i n e d N c o n c e n t r a t i o n s presumed adequate. I f the CH s i t e s had s i m i l a r q u a n t i t i e s of N, the p r o p o r t i o n of P would have been v e r y s m a l l . T h e r e f o r e , adding N to these s i t e s would p r o b a b l y produce r e s u l t s s i m i l a r t o the N ^ o , l i m e , and c o n t r o l t r e a t m e n t s . A d d i t i o n s of N and P t o the CH s i t e s may a c h i e v e a growth response. C o r r e c t f e r t i l i z e r a p p l i c a t i o n r a t e s a r e i m p o r t a n t as h i g h r a t e s of N d i d not produce f a v o u r a b l e r e s u l t s i n the greenhouse. However, f i e l d c o n d i t i o n s are v e r y d i f f e r e n t and o n - s i t e t r i a l s would be n e c e s s a r y t o determine c o r r e c t q u a n t i t i e s . P f e r t i l i z e r w i t h o u t N a d d i t i o n s may p r o v i d e a response i f m i n e r a l i z a t i o n r a t e s of N c o u l d be i n c r e a s e d . Chapter V CONCLUSIONS I n c r e a s e d growth of western hemlock s e e d l i n g s i n the greenhouse was produced by f e r t i l i z a t i o n w i t h 100 kg/ha N or 150 kg/ha P. The most f a v o u r a b l e r e s u l t s were o b t a i n e d from a c o m b i n a t i o n of N and P a t the above r a t e s . However, a d d i t i o n s of N were found t o reduce f o l i a r P c o n c e n t r a t i o n s and v i c e v e r s a . T h e r e f o r e , f e r t i l i z i n g w i t h one of the two elements may l e a d t o an i n d u c e d d e f i c i e n c y of the o t h e r . T h i s experiment has shown t h a t m a i n t a i n i n g a f a v o u r a b l e b a l a n c e between N and P w i l l encourage s u p e r i o r s e e d l i n g growth. I n g e s t a d ' s r a t i o ( 1 6 f o r P ) can be used as a g u i d e t o d etermine i f the p r o p o r t i o n of P t o N i s adequate. A l t h o u g h f o l i a r N c o n c e n t r a t i o n s used f o r c a l c u l a t i n g the r a t i o must be above suggested adequate l e v e l s , the extremes of adequate and d e f i c i e n t f o l i a r n u t r i e n t l e v e l s were not w e l l d e f i n e d i n the l i t e r a t u r e . The f o l l o w i n g N and P c o n c e t r a t i o n s a re p o s t - t r e a t m e n t v a l u e s and s h o u l d not be i n t e r p r e t e d as c r i t i c a l l i m i t s . For t h i s s t u d y , N c o n c e n t r a t i o n s appear t o be s u f f i c i e n t a t 1 . 6 5 % and d e f i c i e n t a t 0 . 8 8 % as i n d i c a t e d by the N ^ , and N 0P, s e e d l i n g s r e s p e c t i v e l y . F o l i a r P c o n c e n t r a t i o n s of 0 . 2 7 5 % were a s s o c i a t e d w i t h i n c r e a s e s i n s e e d l i n g growth i n the N,P, t r e a t m e n t s . A l t h o u g h a growth response t o N was a c h i e v e d w i t h v e r y low P c o n c e n t r a t i o n s ( 0 . 0 6 7 % ) i n the NTPQ t r e a t m e n t , the h i g h e s t s e e d l i n g growth o c c u r r e d when P was i n c l u d e d i n the t r e a t m e n t . T h e r e f o r e , under greenhouse 99 1 00 CH c o n d i t i o n s w i t h s e e d l i n g s growing on the S1 s o i l , the element most l i m i t i n g growth appeared t o be P. B e s i d e s the i n t e r a c t i o n s between N and P, o t h e r elements were a f f e c t e d by the f e r t i l i z e r a d d i t i o n s . Magnesium v a l u e s i n the f o l i a g e were s i g n i f i c a n t l y g r e a t e r when P was added t o the s o i l . C o n c e n t r a t i o n s of t o t a l and exchangeable Mg i n the s o i l were s i m i l a r a c r o s s a l l t r e a t m e n t s . A l s o , a r e d u c t i o n i n f o l i a r B c o n c e n t r a t i o n s was noted when N and/or P was added t o the H m a t e r i a l . The c o m b i n a t i o n of N and P s i g n i f i c a n t l y reduced B c o n c e n t r a t i o n s below v a l u e s o b t a i n e d f o r t r e a t m e n t s w i t h N or P a l o n e . Boron c o n c e n t r a t i o n s i n the s o i l were not measured, so they cannot be compared t o the f o l i a r v a l u e s . Treatments i n c l u d i n g N and P a l s o caused an i n c r e a s e i n Zn and S a b s o r p t i o n , and a decrease i n f o l i a r Mn c o n c e n t r a t i o n s . These i n t e r a c t i o n s between n u t r i e n t s are an i m p o r t a n t c o n s i d e r a t i o n i n f e r t i l i z a t i o n t r i a l s . Induced n u t r i e n t d e f i c i e n c i e s c o u l d be a v o i d e d , or i n c r e a s e s i n a b s o r p t i o n of one element caused by a d d i t i o n s of another c o u l d be used to improve t r e e n u t r i t i o n . F o l i a r p o t a s s i u m c o n c e n t r a t i o n s were i n v e r s e l y r e l a t e d t o t r e e growth. The low v a l u e s of a p p r o x i m a t e l y 0.5%, found HA • • • on the S1 s i t e s , d i d not appear t o l i m i t growth. A l s o , low c o n c e n t r a t i o n s of 0.66% were r e c o r d e d from s e e d l i n g s i n the N T P , t r e a t m e n t . T h e r e f o r e , young and q u i c k l y growing hemlock t r e e s seem a b l e t o w i t h s t a n d r e l a t i v e l y low K c o n c e n t r a t i o n s . 101 Poor growth r e s u l t i n g from the h i g h N f e r t i l i z e r a d d i t i o n s (300 kg/ha) suggested excess ammonium n i t r a t e can i n h i b i t s e e d l i n g development, e s p e c i a l l y of r o o t s . Without P a d d i t i o n s , n u t r i e n t a b s o r p t i o n was a l s o r e s t r i c t e d on the h i g h N t r e a t m e n t s . I n c r e a s e s i n a v a i l a b l e A l t h a t were caused by the a p p l i c a t i o n of h i g h a p p l i c a t i o n r a t e s of N f e r t i l i z e r c o u l d be r e s p o n s i b l e . However, more r e s e a r c h would be n e c e s s a r y t o determine the exact problems. Measurement of above-ground biomass i s f a r s u p e r i o r t o 100-needle mass f o r e v a l u a t i n g i n c r e a s e s i n hemlock s e e d l i n g growth. S e e d l i n g h e i g h t s were a l s o u s e f u l , but due t o western hemlock's i n d e t e r m i n a t e growth and tendency t o br a n c h , biomass i s more r e l i a b l e . 0 The u s e f u l n e s s of m i n e r a l i z a b l e N as an index of a v a i l a b l e N c o u l d not be e v a l u a t e d f o r h i g h N a p p l i c a t i o n s , because of apparent growth i n h i b i t i o n e f f e c t s . For o t h e r t r e a t m e n t s however, m i n e r a l i z a b l e N p r o v i d e d a much b e t t e r index of a v a i l a b l e N than d i d t o t a l N. T h i s a g r e e s w i t h Waring and Bremner (1964). T o t a l N was not s i g n i f i c a n t l y d i f f e r e n t i n s o i l s r e c e i v i n g 100 kg/ha N than the c o n t r o l , but m i n e r a l i z a b l e N was much g r e a t e r i n the low N t r e a t m e n t s . Higher f o l i a r N i n the s e e d l i n g s of the N,P 0 t r e a t m e n t r e f l e c t e d the i n c r e a s e d a v a i l a b i l i t y of N. L i m i n g the s o i l d i d not improve s e e d l i n g growth. The pH o n l y r o s e 0.2-0.3 u n i t s . A h i g h e r pH may i n c r e a s e d e c o m p o s i t i o n r a t e s , r e l e a s i n g more n u t r i e n t s and imp r o v i n g growth; however, o t h e r s t u d i e s where hemlock s e e d l i n g s have 1 02 been f e r t i l i z e d w i t h l i m e have not been s u c c e s s f u l (Heilman and Ekuan, 1973). Chapter VI MANAGEMENT RECOMMENDATIONS HA On the more p r o d u c t i v e S1 s i t e s , n u t r i t i o n a l s t a t u s appears t o be enhanced by p e r i o d i c windthrow which mixes the o r g a n i c m a t e r i a l and m i n e r a l s o i l . T h i s m i x i n g reduces the b u l k d e n s i t y of the m i n e r a l s o i l and i n c r e a s e s p o r o s i t y , e s p e c i a l l y the q u a n t i t y of macropores. Drainage of the s o i l c l o s e t o the s u r f a c e improves, which a i d s i n warming the s o i l by r e d u c i n g i t ' s s p e c i f i c heat ( L e w i s , p e r s o n n a l communication). Exposure of s o i l t o the sun f o l l o w i n g windthrow, a l s o causes a warming e f f e c t . S a l o n i u s (1983) found t h a t d e c o m p o s i t i o n of o r g a n i c m a t e r i a l i n c r e a s e d when the temperature was h i g h e r and when i t was mixed w i t h m i n e r a l s o i l . However, a c o m b i n a t i o n of both m i x i n g and h i g h e r t e m p e r a t u r e s produced the g r e a t e s t d e c o m p o s i t i o n r a t e . In the warmer greenhouse, the humus m a t e r i a l from the CH S1 s i t e s produced more a v a i l a b l e N than under f i e l d c o n d i t i o n s , which was r e f l e c t e d by h i g h e r s e e d l i n g f o l i a r N c o n c e n t r a t i o n s from greenhouse s e e d l i n g s than from t r e e s i n the f i e l d . The warmer environment of the greenhouse a p p a r e n t l y enhanced m i n e r a l i z a t i o n of N, compared t o f o r e s t e d a r e a s ( B a v e r , 1940). T h e r e f o r e , f o l l o w i n g c l e a r c u t t i n g , h i g h e r s o i l t e m p e r a t u r e s combined w i t h m i x i n g the f o r e s t f l o o r m a t e r i a l and the m i n e r a l s o i l s h o u l d produce h i g h e r d e c o m p o s i t i o n r a t e s . L ewis (1985) suggested t h a t a s c a r i f i c a t i o n - c u l t i v a t i o n t r e a t m e n t would h e l p t o i n c r e a s e the s i t e ' s p r o d u c t i v i t y . S i n c e o r g a n i c m a t e r i a l 103 104 does not conduct heat w e l l , a c h u r n i n g of s o i l m a t e r i a l s i s n e c e s s a r y t o expose and warm u n d e r l y i n g humus m a t e r i a l . A s m a l l amount of " p r i m e r " N may be r e q u i r e d t o s t i m u l a t e m i c r o b i a l a c t i o n which enhances the d e c o m p o s i t i o n r a t e . However, o n l y s m a l l q u a n t i t i e s s h o u l d be used. High r a t e s of N f e r t i l i z e r d i d not produce s a t i s f a c t o r y r e s u l t s i n the greenhouse. F i e l d t r i a l s would a i d i n d e t e r m i n i n g i f the amount of a v a i l a b l e N produced by i n c r e a s e s i n m i n e r a l i z a t i o n r a t e s i s adequate f o r t r e e g r o w t h . I f N a d d i t i o n s are r e q u i r e d , f e r t i l i z e r t r i a l s would be n e c e s s a r y t o d e c i d e on the o p t i m a l amount of N t o use. N d e f i c i e n c i e s may be c o r r e c t e d by the above methods; however, f o l i a r P c o n c e n t r a t i o n s d i d not i n c r e a s e under greenhouse c o n d i t i o n s . A l t h o u g h P may be r e l e a s e d t h rough g r e a t e r d e c o m p o s i t i o n r a t e s , i t was not a v a i l a b l e f o r uptake. Due t o the a c i d i c n a t u r e of the s o i l , A l i o n s would be r e l a t i v e l y s o l u b l e and c o u l d complex w i t h P, r e d u c i n g P a v a i l a b i l i t y . T h e r e f o r e , P a d d i t i o n s appear t o be the most p r a c t i c a l means f o r a t t a i n i n g adequate P n u t r i t i o n . R e s u l t s from the greenhouse suggested t h a t P f e r t i l i z a t i o n i s needed to a c h i e v e o p t i m a l p r o d u c t i v i t y . CH Low v a l u e s of Fe, K, and S on the S1 s i t e s a l s o r e q u i r e c o n s i d e r a t i o n . M i n e r a l s o i l u s u a l l y c o n t a i n s enough Fe f o r t r e e n u t r i t i o n . T h e r e f o r e , i f o r g a n i c and m i n e r a l m a t e r i a l are combined, t h i s problem may be c o r r e c t e d . S u lphur a d d i t i o n s may a l s o be needed. However, greenhouse r e s u l t s suggest S w i l l not be i m m e d i a t e l y l i m i t i n g . F o l i a r 1 05 p o t a s s i u m c o n c e n t r a t i o n s may i n c r e a s e a f t e r the t r e e canopy c l o s e s and the r a p i d growth r a t e d e c r e a s e s . S l a s h b u r n i n g has a l s o been mentioned as a management CH t o o l f o r the S1 s i t e s ( L e w i s , 1985). Because the o r g a n i c l a y e r s a r e so deep, b u r n i n g w i l l o n l y remove a p o r t i o n of the humus m a t e r i a l . M i x i n g of the o r g a n i c and m i n e r a l s o i l would be e a s i e r i f the amount of humus was reduced. A l s o , the r e l e a s e of n u t r i e n t s i n t o the s o i l a f t e r b u r n i n g would a i d i n i n c r e a s i n g the n u t r i t i o n a l s t a t u s of the s i t e . CH The S12 areas are n u t r i t i o n a l l y v e r y s i m i l a r t o the CH S1 s i t e s . However, due t o the l a c k of m i n e r a l s o i l , the c u l t i v a t i o n method f o r enhancing s i t e p r o d u c t i v i t y cannot be used. A l s o , s l a s h b u r n i n g c o u l d d e t r i m e n t a l l y a f f e c t p r o d u c t i v i t y of these F o l i s o l s on l i m e s t o n e bedrock i f too much of the H h o r i z o n i s consumed. For these s i t e s , f e r t i l i z a t i o n w i t h both N and P i s recommended. CH Management of the S1 s i t e s w i l l be e x p e n s i v e f o r a t l e a s t one r o t a t i o n . C u l t i v a t i o n i s recommended t o improve the amount of a v a i l a b l e N on these s i t e s . Where c u l t i v a t i o n a l o n e does not i n c r e a s e the N s t a t u s of the s o i l t o s a t i s f a c t o r y l e v e l s , a p p l i c a t i o n s of N f e r t i l i z e r at low r a t e s i n c o m b i n a t i o n w i t h c u l t i v a t i o n i s s u g g e s t e d . A d d i t i o n s of P f e r t i l i z e r a t r e l a t i v e l y h i g h r a t e s i s CH recommended f o r a l l the S1 s i t e s . O p t i m a l amounts of f e r t i l i z e r can o n l y be d e t e r m i n e d through f i e l d t r i a l s . Repeated f e r t i l i z e r s may be r e q u i r e d t o m a i n t a i n an adequate n u t r i e n t s t a t u s . Once the f e r t i l i z e r n u t r i e n t s begin t o 106 c y c l e t h r o u g h the system, the n u t r i e n t s t a t u s s h o u l d remain s a t i s f a c t o r y . A l s o , f o l l o w i n g every r o t a t i o n , i t may be d e s i r a b l e t o mix the o r g a n i c and m i n e r a l s o i l t o m a i n t a i n the more r a p i d d e c o m p o s i t i o n r a t e . LITERATURE CITED Ald h o u s , J.R. 1972. Nu r s e r y p r a c t i c e . F o r e s t r y Comm. B u l l . 43 London: HMSO. 184 pp. Anderson, S., R.J. Z a s o s k i , and S.P. G e s s e l . 1982. Phosphorus and l i m e response of S i t k a s p r u c e , western hemlock s e e d l i n g s and romaine l e t t u c e on two c o a s t a l Washington s o i l s . Can. J . F o r . Res. 12:985-991. Anonymous. 1976. Elementary s t a t i s t i c s u s i n g M i d a s . S t a t i s t i c a l R e search L a b o r a t o r y , U n i v . of M i c h i g a n . Anonymous. 1980. B i e n n i a l r e p o r t , 1978-1980, r e g i o n a l f o r e s t n u t r i t i o n r e s e a r c h p r o j e c t . I n s t i t u t e of F o r e s t P r o d u c t s . C o l l e g e of F o r e s t R e s o u r c e s . U n i v . Washington, S e a t t l e . 44 pp. Anonymous. 1982. B i e n n i a l r e p o r t , 1980-1982, r e g i o n a l f o r e s t n u t r i t i o n r e s e a r c h p r o j e c t . I n s t i t u t e of F o r e s t P r o d u c t s . C o l l e g e of F o r e s t R e s o u r c e s . U n i v . Washington, S e a t t l e . 76 pp. Armson, K.A. 1977. F o r e s t s o i l s : p r o p e r t i e s and p r o c e s s e s . U n i v e r s i t y of To r o n t o P r e s s , Toronto and B u f f a l o . 390 pp. B a l l a r d , T.M., and R.E. C a r t e r . 1983. E v a l u a t i n g f o r e s t s t a n d n u t r i e n t s t a t u s . Unpub. C o n t r a c t Res. Rep. t o B.C. F o r . Serv. 76 pp. Baker, J . 1969. Some e f f e c t s of urea f e r t i l i z a t i o n on s o i l c h a r a c t e r i s t i c s and t i s s u e m i n e r a l c o n t e n t i n o v e r s t o c k e d western hemlock s t a n d s . Can. F o r . Serv. I n f o r . Rep. BC-X-39. 10 pp. Baver, L.D. 1940. S o i l p h y s i c s . John W i l e l y and Sons, New York. 370pp. Beaton, J.D., G. Brown, R.C. Speer, I . MacRae, W.P.T. McGhee, A. Moss, and R. K o s i c k . 1956a. C o n c e n t r a t i o n s of m i c r o n u t r i e n t s i n f o l i a g e of t h r e e c o n i f e r o u s t r e e s p e c i e s i n B r i t i s h Columbia. P r o c . S o i l S c i . Soc. Am. 29:299-302. Beaton, J.D., A. Moss, I . MacRae, J.W. Ko n k i n , W.P.T. McGhee, and R. K o s i c k . 1956b. O b s e r v a t i o n s on n u t r i e n t c o n t e n t of s e v e r a l c o n i f e r o u s t r e e s p e c i e s i n B r i t i s h C o l u m b i a . F o r . Chron. 41:222-236. B e n z i a n , B., R.M. Brown, and S.C.R. Freeman. 1974. E f f e c t of l a t e - s e a s o n t o p - d r e s s i n g s of N (and K) a p p l i e d t o c o n i f e r t r a n s p l a n t s i n the n u r s e r y on t h e i r s u r v i v a l and 1 07 108 growth on B r i t i s h f o r e s t s i t e s . F o r e s t r y 47 (2 ) :153-1 84 . B eswick, R. 1976. An overview of the western hemlock r e s o u r c e . In W.A. A t k i n s o n and R.J. Z a s o s k i ( e d s . ) , Western Hemlock Management Conf. P r o c . U n i v . Washington, S e a t t l e , pp. 1-6. B l a c k , C.A., D.D. Evans, J.L. White, L.E. Ensminger, F.E. C l a r k , and R.C. Di n a u e r . 1965. Methods of s o i l a n a l y s i s , p a r t 2, c h e m i c a l and m i c r o b i o l o g i c a l p r o p e r t i e s . Am. Soc. of Agron., Madison, W i s c o n s i n , U.S.A. pp. 771-1572. C a r l s o n , W.C. 1981. E f f e c t s of c o n t r o l l e d - r e l e a s e f e r t i l i z e r s on shoot and r o o t development of o u t p l a n t e d western hemlock (Tsuga heterophylla (Raf.) Sarg.) s e e d l i n g s . Can. J o u r . F o r . Res. 11:752-757. C u r r a n , M.P. 1984. S o i l t e s t i n g f o r phosphorus a v a i l a b i l i t y t o some c o n i f e r s i n B r i t i s h Columbia. M.Sc. t h e s i s , Dept. of S o i l S c i e n c e , U n i v . of B.C., Vancouver. 130 pp. D e B e l l , D.S., E.H. M a l l o n e e , J.Y. L i n , and R.F. S t r a n d . 1975. F e r t i l i z a t i o n of wes t e r n hemlock: A summary of e x i s t i n g knowledge. Crown Z e l l e r b a c h F o r e s t r y Research Note No. 5. 15 pp. D r i s c o l l , C.T., N. van Breeman, and J . Muldur. 1985. Aluminum c h e m i s t r y i n a f o r e s t e d s p o d o s o l . S o i l Sc. Soc. of Am. J o u r . 49:437-443. Dunn, L.E. 1943. L i me-requirement d e t e r m i n a t i o n of s o i l s by means of t i t r a t i o n c u r v e s . S o i l S c i e n c e 56:341-351. Ekwebelan, S.A. and C.C.P. R e i d . 1983. E f f e c t of l i g h t , n i t r o g e n f e r t i l i z a t i o n , and m y c o r r h i z a l f u n g i on growth and p h o t o s y n t h e s i s of l o d g e p o l e p i n e s e e d l i n g s . Can. J . of F o r . Res. 13:1099-1106. E v e r a r d , J . 1973. F o l i a r a n a l y s i s ; sampling methods i n t e r p r e t a t i o n and a p p l i c a t i o n of the r e s u l t s . Q u a r t e r l y J o u r , of F o r . 67:51-56. F a r r , W.A., A.S. H a r r i s , and S.N. I s r a e l o n . 1977. E f f e c t s of a e r i a l a p p l i c a t i o n of urea f e r t i l i z e r on young S i t k a s p ruce and western hemlock a t Thomas Bay, A l a s k a . USDA F o r . Serv. Res. Pap. PNW-219. 15 pp. G a i n e s , T.P. and G.A. M i t c h e l l . 1979. Boron d e t e r m i n a t i o n i n p l a n t t i s s u e by the azomethine H method. Comm. S o i l S c i . P l a n t a n a l . 10:1099-1108. G i l l , R.S. 1981. F a c t o r s a f f e c t i n g n i t r o g e n n u t r i t i o n of western hemlock. Ph.D. t h e s i s , Oregon S t a t e U n i v e r s i t y . 98 pp. 109 G i l l , R.S. and D.P. Lavender. 1983. Urea f e r t i l i z a t i o n and f o l i a r n u t r i e n t c o m p o s i t i o n of western hemlock (Tsuga heterophylla (Raf.) S a r g . ) . F o r e s t E c o l o g y and Management 6:333-341. Graham, R.T. and J.R. Tonn. 1979. Response of Grand f i r , w e s tern hemlock, western white p i n e , western l a r c h , and D o u g l a s - f i r t o n i t r o g e n f e r t i l i z e r i n n o r t h e r n Idaho. USDA F o r . Serv. Res. Note INT-270. 8 pp. G u t h r i e , T.F. and L.E. Lowe. 1984. A comparison of methods f o r t o t a l s u l p h u r a n a l y s i s of t r e e f o l i a g e . Can. J . F o r . Res. 14:470-473. Heilman, P.E. and G. Ekuan. 1973. Response of D o u g l a s - f i r and western hemlock s e e d l i n g s t o l i m e . F o r . S c i . 19:220-224. Heilman, P. 1975. E f f e c t of added s a l t s on n i t r o g e n r e l e a s e and n i t r a t e l e v e l s i n f o r e s t s o i l s of the Washington c o a s t a l a r e a . S c i . Soc. of Am. P r o c . 39:778-782. Heilman, P.E. and G. Ekuan. 1980. Phosphorus response of western hemlock s e e d l i n g s on P a c i f i c c o a s t a l s o i l s from Washington. S o i l S c i . Soc. of Am. J o u r . 44:392-395. Heilman, P.E. 1981. M i n e r a l s , c h e m i c a l p r o p e r t i e s and f e r t i l i t y of f o r e s t s o i l s . In P.E. He i l m a n , H.W. Anderson, and D.M. Baumgartner ( e d s . ) , F o r e s t S o i l s of the D o u g l a s - f i r R e g i o n . Washington S t a t e U n i v e r s i t y , P u l l m a n , Wash. pp. 121-136. H e i n s d o r f , S. 1968. Ernahrung und wachstum junger K i e f e r n auf einem an Magnesium und Ka l i u m Talsandboden nach mehrmaliger m i n e r a l i s c h e r Dungung. A r c h . F o r t w e s . 17:813-838. Hung, L.L. and J.M. Trappe. 1983. Growth v a r i a t i o n between and w i t h i n s p e c i e s of e c t o m y c o r r h i z a l f u n g i i n response t o pH i n v i t r o . M y c o l o g i a 75(2):234-241 . I n g e s t a d , T. 1979. M i n e r a l n u t r i e n t r e q u i r e m e n t s of Pi nus sylvestris and Picea abies s e e d l i n g s . P h y s i o l o g i a P l a n t a r u m 45:373-380. I n s e l b e r g , A.E. 1984. Western hemlock f o l i a r n u t r i e n t s and t e r m i n a l growth i n r e l a t i o n t o t h r e e c o n t r a s t i n g f o r e s t f l o o r w i t h i n a s t a n d . M.Sc. t h e s i s , Dept. of S o i l S c i . , U n i v . of B.C., Vancouver. 65 pp. J a c k s o n , M.L. 1958. S o i l c h e m i c a l a n a l y s i s . P r e n t i c e - H a l l I n c . , Englewood C l i f f s , N.J. pp. 151-154. John, M.K. 1970. C o l o r i m e t r i c d e t e r m i n a t i o n of phosphorus i n 1 10 s o i l "and p l a n t m a t e r i a l s w i t h a s c o r b i c a c i d . S o i l S c i . 109(4):214-220. K l i n k a , K., R.M. Green, R.L. T r o w b r i d g e , and L.E. Lowe. 1981. Taxonomic c l a s s i f i c a t i o n of humus forms i n ecosystems of B r i t i s h C o l u m b i a . F i r s t a p p r o x i m a t i o n . B.C. M i n . of F o r . Land Management Report No. 8. 54 pp. K r a j i n a , V . J . , S. Madoc-Jones, and G. M e l l o r . 1973. Ammonium and n i t r a t e i n the n i t r o g e n economy of some c o n i f e r s growing i n D o u g l a s - f i r communities of the P a c i f i c North-West of A m e r i c a . S o i l B i o l . Biochem. 5:143-147. Kropp, B.R. 1982. F o r m a t i o n of m y c o r r h i z a e on n o n m y c o r r h i z a l w e s t e r n hemlock o u t p l a n t e d on r o t t e n wood and m i n e r a l s o i l . F o r . S c i . 28:706-710. L a i , C. 1982. H i e r a r c h i c a l g r o u p i n g a n a l y s i s w i t h o p t i o n a l c o n t i g u i t y c o n s t r a i n t . U n i v . of B.C. Computing C e n t r e . 2 4 pp. Lambert, D.H. and T.C. W e i d e n s a u l . 1982. Copper r e q u i r e m e n t s of c o n t a i n e r - g r o w n c o n i f e r s e e d l i n g s . Can. J . F o r . Res. 12:848-852. Lavender, D.P. and R.B. W a l k e r . 1979. N i t r o g e n and r e l a t e d elements i n n u t r i t i o n of f o r e s t t r e e s . In S.P. G e s s e l , R.M. Kenady, and W.A. A t k i n s o n ( e d s . ) , P r o c e e d i n g s of the F o r e s t F e r t i l i z a t i o n Conf., U n i v . Washington, S e a t t l e , pp. 15-22. Lee, Y. 1972. Report on f e r t i l i z a t i o n of dense j u v e n i l e w e s t e r n hemlock. P a c i f i c F o r e s t Research C e n t r e . Can. F o r . S e r v . I n t . Rep. BC-31. 15 pp. L e w i s , T. 1985. Ecosystems of the Q u a t s i n o Tree Farm L i c e n c e (T.F.L. 6 ) . In p r e p a r a t i o n f o r Western F o r e s t P r o d u c t s , Vancouver B.C. L e y t o n , L. 1958. The r e l a t i o n s h i p between the growth and m i n e r a l n u t r i t i o n of c o n i f e r s . In K. Thiman, W.B. C r i t c h f i e l d , and M.H. Zimmermann ( e d s . ) , P h y s i o l o g y of F o r e s t T r e e s . Ronald P r e s s , New York. pp. 323-345. M a j i d , N.M. 1984. Some a s p e c t s of boron, copper, and i r o n n u t r i t i o n of l o d g e p o l e p i n e and D o u g l a s - f i r . Ph.D. T h e s i s , Dept. of S o i l Sc., U n i v e r s i t y of B.C., Vancouver. 172 pp. Marx, D.H. and J.P. B a r n e t t . 1974. M y c o r r h i z a e and c o n t a i n e r i z e d f o r e s t s e e d l i n g s . In R.W. T i n u s , W.I. S t e i n , and W.E. Balmer ( e d s . ) , P r o c e e d i n g s of the N o r t h American C o n t a i n e r i z e d F o r e s t Tree S e e d l i n g Symposium. Great P l a i n s A g r i c u l t u r e C o u n c i l , P u b l . 68. pp. 85-92. 111 M e h l i c h , A. 1978. New e x t r a c t a n t f o r s o i l t e s t e v a l u a t i o n of phosphorus, p o t a s s i u m , magnesium, c a l c i u m , sodium, manganese, and z i n c . Commun. S o i l Sc. P l a n t A n a l . 9:477-492. M e l l o r , G.E. and E.B. Tregunna. 1971. The r e l a t i o n s h i p between l e a f area and l e a f d r y weight of t h r e e c o n i f e r s p e c i e s grown on t h r e e s o u r c e s of n i t r o g e n . Can. J . F o r . Res. 2:377-379. Menge, J.A., L.F. Grand, and L.W. Maines. 1977. The e f f e c t of f e r t i l i z a t i o n on growth and m y c o r r h i z a e numbers i n 11 year o l d l o b l o l l y p i n e p l a n t a t i o n s . F o r . S c i . 23:37-44. Mengel, K. and E.A. K i r k b y . 1979. P r i n c i p l e s of p l a n t n u t r i t i o n . 3rd ed. I n t e r n a t i o n a l P o t a s h I n s t i t u t e , Bern, S w i t z e r l a n d . 655 pp. M e u r i s s e , R.T. 1976. Some c h e m i c a l and o t h e r p r o p e r t i e s of western hemlock s o i l s i n O r e g o n — T h e i r r e l a t i o n s h i p t o p r o d u c t i v i t y . In W.A. A t k i n s o n and R.J. Z a s o s k i ( e d s . ) , Western Hemlock Management Conf. P r o c , U n i v . Washington, S e a t t l e , pp. 49-55. M i l l e r , R.E. 1976. E f f e c t s of f e r t i l i z a t i o n on m o r t a l i t y i n western hemlock and D o u g l a s - f i r s t a n d s . In W.A. A t k i n s o n and R.J. Z a s o s k i ( e d s . ) , Western Hemlock Management Conf. P r o c . , U n i v . Washington, S e a t t l e , pp. 253-265. Murphy, J . and J.P. R i l e y . 1962. A m o d i f i e d s i n g l e s o l u t i o n method f o r the d e t e r m i n a t i o n of phosphate i n n a t u r a l w a t e r s . A n a l . Chim. A c t a 27:31-36. N u s z d o r f e r , F.C., K.L. Kassay, and A.M. S c a g e l . 1985. B i o g e o c l i m a t i c u n i t s of the Vancouver F o r e s t Region. B.C. M i n i s t r y of F o r e s t s , V i c t o r i a B.C. 1 map. O l s o n , J . , W. A t k i n s o n , and M. R h i n e h a r t . 1980. R a d i a l increment response of western hemlock t o n i t r o g e n f e r t i l i z a t i o n and t h i n n i n g . R e g i o n a l F o r e s t N u t r i t i o n R esearch P r o j e c t Tech. Rep., U n i v . Washington, S e a t t l e . 9 pp. Osborn, J.E. 1968. I n f l u e n c e of s t o c k i n g and d e n s i t y upon growth and y i e l d of t r e e s and sta n d s of c o a s t a l western hemlock. Ph.D. t h e s i s , F a c u l t y of F o r e s t r y , U n i v . of B.C., Vancouver. 395 pp. Oserkowsky, J . 1933. Q u a n t i t a t i v e r e l a t i o n between c h l o r o p h y l l and i r o n i n green and c h l o r o t i c pear l e a v e s . P l a n t P h y s i o l . 8:449-468. P a r k i n s o n , J.A. and S.E. A l l e n . 1975. A wet o x i d a t i o n p rocedure s u i t a b l e f o r the d e t e r m i n a t i o n of n i t r o g e n and 1 12 m i n e r a l n u t r i e n t s i n b i o l o g i c a l m a t e r i a l . Comm. S o i l . . S c i . and P l a n t A n a l . 6 ( l ) : 1 - 1 1 . Radwan, M.A. and D.S. D e B e l l . 1980a. S i t e i n d e x , growth and f o l i a r c h e m i c a l c o m p o s i t i o n r e l a t i o n s h i p s i n western hemlock. F o r . S c i . 26:283-290. Radwan, M.A. and D.S. D e B e l l . 1980b. E f f e c t s of d i f f e r e n t s o u r c e s of f e r t i l i z e r n i t r o g e n on growth and n u t r i t i o n of w estern hemlock s e e d l i n g s . USDA F o r . Serv. Res. Pap. PNW-267. 15 pp. Radwan, M.A. and J.S. Shumway. 1983. S o i l n i t r o g e n , s u l p h u r , and phosphorus i n r e l a t i o n t o growth response of western hemlock t o n i t r o g e n f e r t i l i z a t i o n . F o r . S c i . 29(3):469-477. Radwan, M.A., D.S. D e B e l l , S.R. Webster, and S.P. G e s s e l . 1984. D i f f e r e n t n i t r o g e n s o u r c e s f o r f e r t i l i z i n g western hemlock i n western Washington. Can. J . F o r . Res. 14:155-162. R i c h a r d s , L.A. 1965. P h y s i c a l c o n d i t i o n s of water i n s o i l . In C A . B l a c k , D.D. Evans, J.L. White, L.E. Ensminger, F.E. C l a r k , and R.C. Dinauer ( e d s . ) , Methods of S o i l A n a l y s i s , P a r t I . Agronomy 9, Amer. Soc. of Agron., Madison, W i s c o n s i n , U.S.A. pp. 130-137. R i c h e n , C.W. 1976. A t t i t u d e s of management toward w e s t e r n hemlock. In W.A. A t k i n s o n and R.J. Z a s o s k i ( e d s . ) , Western Hemlock Management Conf. P r o c . , U n i v . Washington, S e a t t l e , pp. 7-9. S a l o n i u s , P.O. 1983. E f f e c t s of o r g a n i c - m a t e r i a l s o i l m i x t u r e s and i n c r e a s i n g temperature on the r e s p i r a t i o n of c o n i f e r o u s raw humus m a t e r i a l . Can. J . F o r . Res. 13:102-107. S i e g e l , S. 1956. Nonparametric s t a t i s t i c s f o r the b e h a v i o r a l s c i e n c e s . McGraw-Hall Book Co. I n c . 312 pp. Smith, J.G.H., J . W a l t e r s , and A. Kozak. 1968. I n f l u e n c e s of f e r t i l i z e r s on cone p r o d u c t i o n and growth of young D o u g l a s - f i r , western hemlock, and western r e d cedar on the U.B.C. Research F o r e s t . F a c u l t y of F o r e s t r y , U n i v . of B.C., Vancouver. B u l l . No. 5. 57 pp. Swan, H.S. 1960. The m i n e r a l n u t r i t i o n of Canadian pulpwood s p e c i e s . P u l p Pap. Res. I n s t . Can.Tech. Rep. 1968. pp. 1-66. T i s d a l e , S.L. and W.L. N e l s o n . 1975. S o i l s and f e r t i l i z e r s . M a c m i l l a n P u b l i s h i n g Co., New York.' 694 pp. 1 1 3 van den D r i e s s c h e , R. 1971. Response of c o n i f e r s e e d l i n g s t o n i t r a t e and ammonium s o u r c e s of n i t r o g e n . P l a n t and S o i l 34:421-439. Turner J . 1979. I n t e r a c t i o n s of s u l p h u r w i t h n i t r o g e n i n f o r e s t s t a n d s . In S.P. G e s s e l , R.M. Kenady, and W.A. A t k i n s o n ( e d s . ) , P r o c . F o r e s t F e r t i l i z a t i o n C o n f e rence, U n i v . Washington, S e a t t l e , pp. 116-125. van den D r i e s s c h e , R. 1976. M i n e r a l n u t r i t i o n of western hemlock. In W.A. A t k i n s o n and R.J. Z a s o s k i ( e d s . ) , Western Hemlock Management Conf. P r o c . , U n i v . Washington, S e a t t l e , pp. 56-70. Walmsley, M. , G. U t i z , T. V o i d , D. Moon, and J . van B a r n e v e l d . 1980. D e s c r i b i n g ecosystems i n the f i e l d . RAB T e c h n i c a l Paper 2, Land Mgmt. Report No. 7, V i c t o r i a B.C. 224 pp. W a l t e r s , J . 1964. Some o b s e r v a t i o n s on the j u v e n i l e growth of western hemlock i n p l a n t a t i o n s . F a c u l t y of F o r e s t r y , U n i v . of B.C., Res. Pap. No. 61. 12 pp. Waring, S.A. and J.M. Bremner. 1964. Ammonium p r o d u c t i o n i n s o i l under w a t e r l o g g e d c o n d i t i o n s as an index of n i t r o g e n a v a i l a b i l i t y . Nature 201:951-952. Weatherburn, M.W. 1967. P h e n o l - h y p o c h l o r i t e r e a c t i o n f o r d e t e r m i n a t i o n of ammonia. A n a l . Chem. 39:971-974. Webster, S.R., D.S. D e B e l l , K.N. W i l e y , and W.A. A t k i n s o n . 1976. F e r t i l i z a t i o n of western hemlock. In W.A. A t k i n s o n and R.J. Z a s o s k i ( e d s . ) , Western Hemlock Management Conf. P r o c , U n i v . Washington, S e a t t l e , pp. 247-252. W i l l i a m s , F. 1968. Reasoning w i t h s t a t i s t i c s , s i m p l i f i e d examples i n communications r e s e a r c h . H o l t R h i n e h a r t and W i l s o n I n c . pp. 151-166. Winjum, J.K., and W.H. Cummings. 1961. E f f e c t s of N, P, and -K f e r t i l i z e r s on nursery-grown t r e e s and shrubs common to D o u g l a s - f i r f o r e s t s . Weyerhaeuser F o r e s t r y Research Note No. 43. 12 pp. Zech, W. 1970. N a d e l a n a l y t i s c h e Untersuchungen ueber d i e K a l k c h l o r o s e der W a l d k i e f e r (Pi nus sylvestris). Z.f. P f l a n z e n e r n a e h r . Dueng. Bodenk. 125:1-6. APPENDICES CH CH Appendix 1-1. S i t e d e s c r i p t i o n s of the S1 and the S12 s i t e s . ( D e s c r i p t i o n s f o l l o w the pro c e e d u r e s o u t l i n e d by Walmsley et a l . (1980).) Site description of the SI 2 CH. Aspect E l e v a t i o n Slope Landform M i c r o t o p o g r a p h y E c o l o g i c a l m o i s t u r e regime E c o l o g i c a l n u t r i e n t regime S o i l m o i s t u r e c l a s s S o i l d r a i n a g e c l a s s S o i l p e r v i o u s n e s s South-West 210 m 30% Mv over l i m e s t o n e bedrock l i m e s t o n e s i n k h o l e s s u b x e r i c t o submesic submesotrophic t o mes o t r o p h i c perhumid w e l l moderate Site History: Logged 1966 S i t e p r e p a r a t i o n burned 1 1 4 1 1 5 Site description of the SI CH #2: Aspect E l e v a t i o n Slope Landform M i c r o t o p o g r a p h y E c o l o g i c a l m o i s t u r e regime E c o l o g i c a l n u t r i e n t regime S o i l m o i s t u r e c l a s s S o i l d r a i n a g e c l a s s S o i l p e r v i o u s n e s s South-East 325 m 40% t o 45% G l a c i a l f l u v i a l b l a n k e t smooth t o s l i g h t l y mounded mesic submesotrophic perhumid w e l l moderate Site Hi s t or y: Logged S i t e p r e p a r a t i o n 1 974 burned Site description of the SJ #5: Aspect E l e v a t i o n Slope Landform M i c r o t o p o g r a p h y E c o l o g i c a l m o i s t u r e regime E c o l o g i c a l n u t r i e n t regime S o i l m o i s t u r e c l a s s S o i l d r a i n a g e c l a s s S o i l p e r v i o u s n e s s South-West 180 m F l a t M o r a i n a l b l a n k e t w i t h compact t i l l s t r o n g l y mounded mes i c submesotrophic perhumid w e l l t o mod e r a t e l y w e l l moderate Site Hi s t or y: Logged S i t e p r e p a r a t i o n 1 966 burned Site description of the SI #4: Aspect E l e v a t i o n Slope Landform M i c r o t o p o g r a p h y E c o l o g i c a l m o i s t u r e regime E c o l o g i c a l n u t r i e n t regime S o i l m o i s t u r e c l a s s S o i l d r a i n a g e c l a s s S o i l p e r v i o u s n e s s Site Hi s t or y: Logged S i t e p r e p a r a t i o n N o r t h - E a s t 1 00 m 10% t o 30% M o r a i n a l b l a n k e t w i t h compact t i l l g r a d i n g t o M o r a i n a l veneer over bedrock s l i g h t l y mounded mesic submesotrophic perhumid w e l l t o mo d e r a t e l y w e l l moderate 1 969 burned 118 Appendix 2-1. Photographs showing s e e d l i n g development over the p e r i o d of the study. P l a t e 1. S e e d l i n g s 20 weeks o l d . Back Row: N 2P,, N,P,, N,P 0 Front Row: N 2P 0, N 0P 0, Lime P l a t e 2. S e e d l i n g s 24 weeks o l d . Back Row: N,P 0, N,P,, N 0P, Front Row: N 0P 0, N 2P 0, NzP, 1 1 9 P l a t e 3. S e e d l i n g s 28 weeks o l d . Back Row: N,P 0, N,P,, N 0 P i F r o n t Row: N 2 P 0 , N 0 P 0 , N 2P, P l a t e 4. S e e d l i n g s a t h a r v e s t , 34 weeks o l d . L e f t t o R i g h t : N 2P,, N 2 P 0 , N 0 P 0 , N,P 0, N,?,, N 0P, 120 P l a t e 5. The c o n t r o l and the three most pr o d u c t i v e treatments, N,P 0, N,P 1 r and N 0P,, at 24 weeks. P l a t e 6. The three most p r o d u c t i v e treatments, N,P 0, N T P , , and NQP,, at h a r v e s t . 121 P l a t e 7 . S e e d l i n g s from the S1 2 U , the lime, and the c o n t r o l pots at h a r v e s t . P l a t e 8. The two best and the two worst treatments. L e f t to Right : N,P 1 f N 0 P 1 f N 2P 0, and N 2P, 1 2 2 P l a t e 9. N 2P, s e e d l i n g s , note the S-shaped branches and yellow needle t i p s . P l a t e 10. N 2P 0 s e e d l i n g s , note the brown needles, the amount of needle l o s s , and the poor s e e d l i n g form. 1 2 3 P l a t e 11. N,P 0 s e e d l i n g , note the cupped and s m a l l n e e d l e s . P l a t e 12. N T P 0 s e e d l i n g s , note the brown s p o t s on the n e e d l e s . 1 24 125 Appendix 2-2. S e e d l i n g d e s c r i p t i o n , by t r e a t m e n t , a t the end of the s t u d y . I K K s s i B -H a. co I B B I K X K B B H 01 I K K K K 01 CO B 6 B I B B B 01 01 > > I i * 00 B B K B K K rH I I B B K K K B K K K K B B S E I B OO E 0) B 8 B <—l 6 6 f H B i t B O CL. 2 ° 01 B B i B •a f « -H C -H -< o 00 b b Csl B O O U V O eo rH B •O » -H 01 o c o a o a. o a -< x B J J » 01 U c .B <-l U O) 01 2 01 oo-o •O C 01 01 2 o O — I s 00 TJ e o ~< c C t-01 o> 4J AJ n e o t o J= * J ~H » o Seedling f o l i a g e colour (taken from the Munsell c o l o r charts f o r plant t i s s u e s ( 1 9 7 7 ) ) Treatment Older needles approx. 2 cm from base of main stem Needles approx. 1 cm from t i p of l a t e r a l branch Needles approx. mid stem ( o v e r a l l c o l o r ) Yellowing at needle t i p s or margins Brown s p o t t i n g V o 7.5 Gy 4/4 5 Gy 4/6 7 . 5 Gy 4/4 N i p o 7 . 5 Gy 4/4 5 Gy 4/6 7 . 5 Gy 4/6 5 y 7/8 7 .5 yR 7/8 N l p l 7.5 Gy 4/4 7 . 5 Gy 4/6 7 . 5 Gy 4/4 7 . 5 Gy 7/8 7 . 5 yR 6/6 N 2 P 0 5 Gy 4/6 5 Gy 5/8 5 Gy 4/6 5 y 8/10 5 yR 7/8 N 2 P 1 7 . 5 Gy 4/4 5 Gy 5/8 5 Gy 4/6 2 . 5 Gy 7/8 Lime 7 . 5 Gy 4/4 5 Gy 5/8 7 . 5 Gy 4/4 S 1 2 C H 7 . 5 Gy 4/4 5 Gy 5/8 7 . 5 Gy 4/4 OA 127 Appendix 3 - 1 . F o l i a r n u t r i e n t c o n c e n t r a t i o n s and growth data f o r the greenhouse s e e d l i n g s . B1I|51E!=§§§§=!^ ' C i I P • ^ ^ - n O l . D l » f f • - n - ^ ^ P ^ M . B . r ^ - n ^ . n r . B 1 0 a ) ^ B P ^ r | ) t t o t B - I I « ^ » l ! ^ • J " J " " . 3 . « . * . f . . . . » O a < * . ; » . . . r - . n . . . O r - . . « • r. • . O : B • ; • 0. • • r - » f - « » r - . I t : : 8§!12811g2|288||£8| lSS|S^ * i!KS!!i!i!iKSiiiiiiMiHHiHH»!><!!!ss;s£s if-I ! ' 1 28 Appendix 3 - 1 . F o l i a r n u t r i e n t c o n c e n t r a t i o n s and growth data f o r the greenhouse s e e d l i n g s . f I t§ § § m § § § m i . * !SSf22S88m8?§^ i i j ft IiIIiiIfIIIIIIIIIlllllllllllliiiSiiI5i*IiHHHHHE Tr No pH H2o PH C a C I 2 N P Ca K Cu Fa Zn Mn a l avP E x . Ca E x . E x . K Mg M i n . N a »-»• ppn X NOPO 1 . 3 500 3 150 .923 .049 .32 . 140 .039 31 . 3845 . 16. 200 . 2 1 7 9 . 5 6 . 25 107 . 5 3 ) )0 991 137. U l NOPO 2 . 3 500 3 200 855 .049 .26 . 200 .031 3 7 . 6374 . 21 . 226 . 2 9 6 ) . 4 2 . 24 066 . 4 4 0 10 413 194. NOPO 3 . 3 550 3 200 907 .048 .29 . 130 .036 3 3 . 4307 . 19. 2 1 5 . 2447 . 6 0 . 24 181 . 486 )0 644 109. 1 OJ NOPO 4 . 3 550 3 200 855 .046 .25 . 170 .034 3 4 . 4616 . 2 4 . 204 . 2950 . 4 2 . 24 413 .405 )0 529 106 . NOPO 5 . 3 550 3 200 973 .049 . 33 . 140 .036 31 . 3958 . 2 2 . 208 . 2447 . 53 24 760 . 4 4 0 10 529 183. • NOPO 6 . 3 500 3 20O 889 .048 . 3 0 . 130 .036 • 3 2 . 4 1 5 3 . 2 0 . 194 . 2334 . 4 2 . 25 223 .671 11 454 111. N1PO 7 . 3 550 3 150 907 .046 .32 . 120 .026 3 0 . 3305 . 19. 194. 2 1 2 8 . 51 . 24 760 .336 10 876 301 . in NtPO S . 3 550 3 20O 889 .048 .32 . 140 .026 2 9 . 4384 . 2 4 . 190. 3498 . 113. 22 793 . 301 9 950 280 . o NIPO 9 . 3 550 3 200 889 .046 .32 . 120 .029 3 2 . 3768 . 16. 193. 224 1. 5 6 . 24 181 . 370 10 760 2 7 5 . NIPO IO. 3 550 3 20O 915 .049 33 . 130 .029 3 3 . 3845 . 2 4 . 2 0 6 . 2 1 6 9 . 6 0 . 24 644 . 370 10 529 2 7 5 . N1PO 11 . 3 500 3 200 889 .046 . 3 0 . 140 .024 31 . 4924 . 14 . 190. 2 3 0 3 . 51 . 24 181 . 3 0 ) 10 297 268 . NIPO 12. 3 500 3 200 855 .046 . 3 0 . 180 .029 27 . 6 1 5 8 . 14. 197. 2 1 9 0 . 5 8 . 27 768 . 4 4 0 1 1 801 3 4 0 . o N2PO 13. 3 600 3 250 628 .047 .28 . 140 .04 1 2 5 . 3845 . 16. 201 . 2 5 1 9 . 7 9 . 24 297 . 5 9 0 10 297 1157. N2PO 14. 3 650 3 300 1 049 .048 .31 . 120 .041 2 6 . 3 3 0 5 . 13. 204 . 2 0 0 5 . 9 0 . 23 487 . 5 9 0 9 950 1192. N2PO 15. 3 600 3 300 1 030 .048 .30 . 120 .039 2 3 . 3459 . 16. 196. 2 3 2 3 . 7 6 . 23 487 .555 10 413 1 ) 8 7 . a N2PO 16. 3 650 3 300 1 072 .053 .29 . 120 .041 26 4384 . 14. 211 . 2 3 4 4 . 116 22 909 . 6 2 5 9 834 1178. N2PO 17 . 3 600 3 300 1 012 .045 .29 . 150 .036 2 3 . 3845 . 17. 2 0 3 . 2 3 8 5 . 81 . 24 528 . 625 10 529 1171 . N I P I 19. 3 500 3 200 872 . 108 .36 . 130 .026 3 3 . 3305 . 2 8 . 180. 2 0 9 7 . 6 2 0 . 24 528 . 3 7 0 10 297 2 9 6 . ni N I P ) 2 0 . 3 550 3 2SO 896 . 121 .33 . 120 .031 37 3691 . 9 7 . 199. 2354 . 6 6 4 . 25 223 . 370 10 182 3 4 7 . w N I P ) 2 1 . 3 550 3 250 921 . 1 12 .33 . 120 .031 3 7 . 4097 . 2 3 . 2 0 4 . 2 3 0 3 . 731 . 24 760 . 370 10 182 3 8 4 . N1P1 2 2 . 3 550 3 250 929 . 109 .36 . 130 .031 3 6 . 3238 . 2 4 . 191 . 2097 . 7 5 4 . 25 8 0 ) . 3 7 0 10 991 3 7 5 . s\ N I P I 2 3 . 3 550 3 250 669 .099 .34 . 120 .024 3 7 . 3 3 0 5 . 2 4 . 187. 2 0 8 7 . 768 . 26 727 . 3 7 0 11 223 3 4 2 . O i N I P I 2 4 . 3 600 3 250 811 .111 .35 . 120 .031 3 5 . 3 3 8 3 . 2 2 . 2 1 3 . 2 1 3 8 . 757 . 23 487 .336 10 183 3 5 6 . 0* N2P1 2 5 . 3 600 3 300 1 028 . 127 .30 . 130 .036 31 . 3074 . 2 8 . 2 1 2 . 2 6 9 3 . 7 8 4 . 26 148 . 6 7 ) 10 876 1245 . r t N2P1 2 6 . 3 650 3 3O0 1 028 .119 .31 . 120 .039 2 5 . 3228 . 2 4 . 192. 2 4 7 7 . 8 4 0 . 24 297 . 6 7 ) 10 529 1 ) 5 7 . 0) N2P) 2 7 . 3 650 3 300 970 . 120 .31 . 140 .034 3 2 . 5541 . 2 4 . 204 . 2591 . 8 4 5 . 24 066 . 6 7 ) 10 182 1113 . • N2P1 38 3 650 3 300 1 028 . 1 14 .34 . 130 .04 1 2 6 . 3 3 0 5 . 2 6 . 2 0 6 . 2 0 4 6 . 8 7 7 . 23 834 . 625 10 413 1113 N2P1 2 9 . 3 650 3 300 1 020 . 1 13 .33 . 150 .039 2 8 . 4616 . 2 8 . 206 . 2 5 6 0 . 831 . 22 909 . 625 10 413 1134. N2P1 3 0 . 3 650 3 300 1 044 . 121 .33 . 140 .044 2 7 . 3912 . 2 8 . 216 . 2 4 1 6 . 8 6 8 . 23 834 .706 10 760 1229. NOPt 3 1 . 3 550 3 150 879 . 104 .34 . 130 .026 41 . 3526. 2 6 . 196. 2 3 1 3 . 4 7 4 . 26 032 . 3 7 0 11 107 141 . NOP1 3 2 . 3 500 3 150 871 . 114 . 3 0 . 140 .024 3 8 . 5 9 9 3 . 3 5 . 184. 2 7 3 4 . 5 3 0 . 26 )4B .336 10 529 148. NOP 1 3 3 . 3 500 3 200 895 .088 .35 . 120 .024 3 5 . 3 1 4 1 . 2 9 . 171 . 2 1 3 8 . 4 5 6 . 26 032 . 336 IO 529 130. NOP1 3 4 . 3 500 3 150 .787 . 100 .32 . 140 .026 40 3912 . 2 7 . 170. 2431 . 5 9 7 . 26 842 .336 10 644 100. NOP 1 3 5 . 3 500 3 2O0 .862 101 .33 . 120 .024 3 7 . 3 2 9 5 . 2 7 . 178. 3 4 7 7 . 5 6 2 . 26 264 . 255 10 644 141 . NOP 1 3 6 . 3 500 3 20O .871 . 104 .32 . 120 .031 3 3 . 3536 . 2 9 . 188. 2 2 9 2 . 5 8 8 . 26 148 . 301 10 760 157. I I M 3 7 . 9 800 3 450 .904 .048 .46 . 130 .031 3 2 . 4 143. 2 0 . 189 2 3 0 3 . 5 6 . 34 94 1 . 5 2 ) IO 644 169 L I M 3 8 . 3 800 3 450 .866 .046 .46 . 120 .031 2 6 . 3603 . 2 1 . 190. 2 3 7 5 . 3 9 . 36 330 .486 10 876 180 L1 mm 3 9 . 3 800 3 SOO .840 .045 .48 . 130 .039 3 2 . 3757 . 31 . 184. 2 2 2 0 . 5 6 . 34 826 . 625 10 529 176. L 1 M4> 4 0 . 3 900 3 SOO .914 .047 .48 . 140 .034 31 . 3989 . 4 0 . 200 . 2251 . 125 . SO 313 . 5 2 ) 9 256 171 . L I M 41 . 3 800 3 500 .888 .045 .53 . 130 .036 3 2 . 29B6 . 2 1 . 182. 2 3 5 4 . 4 4 . 35 057 . 5 9 0 10 297 187. L 4 M 4 2 . 3 BOO 3 SOO .904 .048 .33 . 130 .029 3 2 . 3989 . 16. 185. 1892. 123 . 33 380 . 4 4 0 10 066 197. S12 4 3 . 3 800 3 500 . 935 .050 .46 . 120 .044 3 3 . 5 7 6 2 . 3 4 . 5 9 2 . 3 2 5 9 . 4 6 . 39 454 . 5 2 ) 8 446 2 3 6 . S12 44. 3 850 3 500 .859 .048 .49 . 120 .046 38 . 5 8 3 9 . 3 3 . SB 1 . 3 5 2 6 . 3 5 . 40 958 . 5 2 ) 8 677 2 3 6 . S12 4 8 . 3 650 3 550 . 850 .048 . 5 0 . 120 .039 3 2 . 5 0 6 8 . 2 4 . 871 . 31 15. 6 2 . 4 ) 189 . 5 2 ) 8 446 192. 5 12 4 6 . 3 850 3 550 .907 .060 .26 . 120 .046 35 4991 . 3 9 . 5 4 6 . 3 2 3 8 . 3 9 . 4 ) 653 . 5 2 ) 8 909 2 3 4 . S12 4 7 . 3 900 3 550 .881 .050 .47 . 120 .041 3 0 . 5 6 0 8 . 2 5 . 5 8 6 . 3362 . 4 2 . 40 364 . 4 4 0 8 562 194. S12 4 8 . 3 850 3 550 .913 . 050 .45 . 120 .049 3 3 . 5531 . 2 4 . 6 3 7 . 3444 . S 3 . 40 736 .486 8 562 231 . NT 1. 3 800 3 450 .943 .053 . 470 . 120 .062 8 . 5 1 6 1 . 2 2 . 6 1 3 . 3 1 3 5 . 1 18. 36 793 . 9 6 0 8 446 169. NT 2 . 3 550 3 ISO .822 .044 . 360 . 1 10 .057 6 . 2231 . 12. 8 8 . 1665. 2 3 6 . 21 983 . 9 6 0 9 256 1 16. NT 3 . 3 550 3 150 .922 .049 . 250 . 180 .044 12. 5 5 4 6 . 16. 173. 2776 . 162. 19 438 . 8 ) 0 12 611 148. NT 4 . 3 800 3 40O .991 .054 . 360 .080 .062 12 4467 . 12. 407 . 3094 . 123. 28 331 1 . 2 ) 5 6 59S 111. NT 6 3 600 3 200 .896 .047 .290 . 130 .049 9 . 4929 . 14 . 221 . 2 6 4 2 . 162. 21 753 1 .076 9 834 132. 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0096203/manifest

Comment

Related Items