UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Relationship of vegetation to salinity and sodicity in wetland meadows of the Chilcotin region of British… Mayall, Alison Christina 1985

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1985_A6_7 M39.pdf [ 4.41MB ]
Metadata
JSON: 831-1.0096188.json
JSON-LD: 831-1.0096188-ld.json
RDF/XML (Pretty): 831-1.0096188-rdf.xml
RDF/JSON: 831-1.0096188-rdf.json
Turtle: 831-1.0096188-turtle.txt
N-Triples: 831-1.0096188-rdf-ntriples.txt
Original Record: 831-1.0096188-source.json
Full Text
831-1.0096188-fulltext.txt
Citation
831-1.0096188.ris

Full Text

RELATIONSHIP OF VEGETATION TO SALINITY AND SODICITY IN WETLAND MEADOWS OF THE CHILCOTIN REGION OF BRITISH COLUMBIA By ALISON CHRISTINA MAYALL B.Sc. T r e n t U n i v e r s i t y , 1979 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF MASTER OF SCIENCE i n THE FACULTY OF GRADUATE STUDIES (Department o f P l a n t S c i e n c e ) We a c c e p t t h i s t h e s i s as c o n f o r m i n g t o t h e r e q u i r e d s t a n d a r d THE UNIVERSITY OF BRITISH COLUMBIA September 1985 © A l i s o n C h r i s t i n a M a y a l l , 1985 i, In presenting t h i s thesis i n p a r t i a l f u l f i l m e n t of the requirements for an advanced degree at the University of B r i t i s h Columbia, I agree that the Library s h a l l make i t f r e e l y available f o r reference and study. I further agree that permission for extensive copying of t h i s thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. I t i s understood that copying or publication of t h i s thesis for f i n a n c i a l gain s h a l l not be allowed without my written permission. Department of •"Pla.riH" S c i e n c e . The University of B r i t i s h Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 Abstract This study i n v e s t i g a t e s the r e l a t i o n s h i p s between veg e t a t i o n and s a l i n i t y and s o d i c i t y i n wetland meadows i n the C h i l c o t i n r e gion of B r i t i s h Columbia. Eleven vegetation communities and one group of rel e v e s with no vege-t a t i o n were i d e n t i f i e d using c l u s t e r a n a l y s i s . An exchangeable sodium per cent of 15 and an e l e c t r i c a l c o n d u c t i v i t y of 4- mmhos/cm were found to be appropriate boundaries f o r d i s t i n g u i s h i n g between s a l i n e and sodic t o l e r a n t and i n t o l e r a n t vegetation communities. Some s a l t t o l e r a n t species and communities occurred i n f r e s h c o n d i t i o n s ; however, i n t o l e r a n t species and communities were r a r e l y found i n s a l i n e or sodic c o n d i t i o n s . Most meadows have s o i l s that are low i n s a l t s , but 20 per cent had a high e l e c t r i c a l c o n d u c t i v i t y and 18 per cent had a high exchangeable sodium per cent. i l l T a b l e o f C o n t e n t s Page A b s t r a c t i i L i s t - o f T a b l e s v L i s t o f F i g u r e s v i i Acknowledgements i x 1 I n t r o d u c t i o n 1 1.1 F a c t o r s a f f e c t i n g v e g e t a t i o n d i s t r i b u t i o n i n w e t l a n d s '—• 1 1.1.1 Water regime •— 1 1.1.2 N u t r i e n t regime • . 2 1.1.3 D i s t u r b a n c e . 3 1.1.4 pH 3 1.1.5 S a l i n i t y and s o d i c i t y ; 3 1 .2 W e t l a n d c l a s s i f i c a t i o n i n t h e C h i l c o t i n 5 1.3 R e s e a r c h h y p o t h e s e s 6 2 D e s c r i p t i o n o f t h e s t u d y a r e a 8 2.1 L o c a t i o n • 8 2 .2 P h y s i o g r a p h y 8 2.3 C l i m a t e 10 2.4- V e g e t a t i o n 10 2.5 Wetlands 11 3 Methods . 13 3.1 S i t e s e l e c t i o n 13 3 . 2 V e g e t a t i o n 15 3.3 S o i l s - — 15 3.4- P r e c i p i t a t i o n 18 3.5 D a t a a n a l y s i s 18 i v Page 4 R e s u l t s and d i s c u s s i o n • • — • 21 4.1". V e g e t a t i o n communities • 21 4 . 2 S o i l s - - — - - - 26 4 . 3 S e a s o n a l v a r i a t i o n s i n s o i l s a l i n i t y and m o i s t u r e c o n t e n t 2 9 ' 4 i 4 R e l a t i o n s h i p s between i n d i v i d u a l s p e c i e s and s a l i n i t y and s o d i c i t y ' • 36 4 . 5 R e l a t i o n s h i p s between v e g e t a t i o n communities and s a l i n i t y . and s o d i c i t y — • 42 '5 . C o n c l u s i o n s • ' 52 5.1 V e g e t a t i o n communities : 52 5 . 2 S o i l s . — 52 5 . 3 R e l a t i o n s h i p s between v e g e t a t i o n and s o i l s ' •- 53 5 . 4 I m p l i c a t i o n s f o r c l a s s i f i c a t i o n - 56 L i t e r a t u r e c i t e d '— 58 P e r s o n a l communications • 61 A p p e n d i x I . S p e c i e s l i s t • -- 62 A p p e n d i x I I . S o i l s d a t a .- 64 A p p e n d i x I I I . C o n s t i t u e n t s a l t s , pH, 'exchangeable sodium p e r c e n t , e l e c t r i c a l c o n d u c t i v i t y and s o l u b l e c a t i o n s o f n i n e s a l i n e a p p e a r i n g s o i l s • • 67 A p p e n d i x I V . L i n e a r r e g r e s s i o n o f 13 v e g e t a t i o n s p e c i e s on e l e c t -r i c a l c o n d u c t i v i t y (EC) and exchangeable sodium - ' p e r c e n t . ( E S P ) — ' 68 A p p e n d i x V. Summary o f a n a l y s e s o f v a r i a n c e o f s i x s o i l p a r a - • meters among v e g e t a t i o n groups • 69 V L i s t o f T a b l e s Page T a b l e 1. F o l i a r c o v e r s c a l e a d a p t e d from D o m i n - K r a j i n a Cover-Abundance s c a l e . 16 T a b l e 2. P e r c e n t f r e q u e n c y o f s p e c i e s i n v e g e t a t i o n groups '. . y i d e n t i f i e d by c l u s t e r a n a l y s i s '23; T a b l e 3. Range, median, mean and s t a n d a r d d e v i a t i o n . o f s o l u b l e c a t i o n s , s o l u b l e a n i o n s , e l e c t r i c a l c o n d u c t i v i t y ( E C ) and exchangeable sodium p e r c e n t (ESP) o f s o i l s ?27/ T a b l e 4-. A n a l y s i s o f v a r i a n c e and Student-Newman-Keuls t e s t s f o r d i f f e r e n c e s i n s o l u b l e magnesium c o n t e n t o f t h e s o i l among v e g e t a t i o n groups isk3) T a b l e 5. A n a l y s i s o f v a r i a n c e and Student-Newman-Keuls t e s t s f o r d i f f e r e n c e s i n s o l u b l e c a l c i u m c o n t e n t o f t h e s o i l among v e g e t a t i o n groups .44 • T a b l e 6. A n a l y s i s o f v a r i a n c e and Student-Newman-Keuls t e s t s f o r d i f f e r e n c e s i n s o l u b l e sodium c o n t e n t o f t h e s o i l among v e g e t a t i o n groups \ 4-5-. T a b l e 7. A n a l y s i s o f v a r i a n c e and Student-Newman-Keuls t e s t s f o r d i f f e r e n c e s i n s o l u b l e p o t a s s i u m c o n t e n t o f t h e s o i l among v e g e t a t i o n groups ; ; • T a b l e 8. A n a l y s i s o f v a r i a n c e and Student-Newman-Keuls t e s t s f o r d i f f e r e n c e s i n e l e c t r i c a l c o n d u c t i v i t y o f t h e s o i l among v e g e t a t i o n groups &i:> T a b l e 9. A n a l y s i s o f v a r i a n c e and Student-Newman-Keuls t e s t s f o r d i f f e r e n c e s i n exc h a n g e a b l e sodium p e r c e n t o f t h e s o i l among v e g e t a t i o n groups (^8? T a b l e 10. Summarized r e s u l t s o f a n a l y s i s o f v a r i a n c e and S t u d e n t -Newman-Keuls t e s t s . $3' Page T a b l e 11. U n t r a n s f o r m e d mean v a l u e s f o r s o i l p a r a m e t e r s i n each • v e g e t a t i o n group . P®--v i i L i s t o f F i g u r e s Page F i g u r e 1. - L o c a t i o n o f t h e s t u d y a r e a i n B r i t i s h Columbia--------;----- "TO' F i g u r e 2. L o c a t i o n o f sample s i t e s - - - - - - - - 15 F i g u r e 3. C l u s t e r a n a l y s i s dendrogram-- (22 F i g u r e J+. E l e c t r i c a l c o n d u c t i v i t y and p e r ce n t m o i s t u r e a t Suds Lake 30 F i g u r e 5. E l e c t r i c a l c o n d u c t i v i t y and p e r c e n t m o i s t u r e a t ; P a t t e r s o n Lake • ',3T . F i g u r e 6. E l e c t r i c a l c o n d u c t i v i t y and p e r . c e n t m o i s t u r e a t Moores Lake :-- 32j. F i g u r e - 7 . E l e c t r i c a l c o n d u c t i v i t y and.per c e n t m o i s t u r e a t Horseshoe meadow ;33 F i g u r e 8. P r e c i p i t a t i o n from June 22 t o August 31 a t C o c h i n Lake base s t a t i o n 34 F i g u r e 9. F o l i a r c o v e r o f Poi.ejvt-ii.ia an.AeM.ina, 3-uncuA HafcLicuA and De.Acham.p<5ia ca&Api£oAa v e r s u s exchangeable sodium p e r cen t and e l e c t r i c a l c o n d u c t i v i t y 3 7' F i g u r e 10. F o l i a r c o v e r o f Poa p/iate/iAlA, Caiamag/ioAtiA inejcpanAa and A^teJi panAuA v e r s u s exchangeable sodium p e r ce n t and e l e c t r i c a l c o n d u c t i v i t y 3_8~ F i g u r e 11. F o l i a r c o v e r o f Canex. p/iae.g/iaciiiA, lajiaxacwn oJLJLlcinaie. and RanuncuiuA cymAaiasiia v e r s u s exchangeable sodium p e r c e n t and e l e c t r i c a l c o n d u c t i v i t y 39 . F i g u r e 12. ' F o l i a r c o v e r o f Suaeda de.p/iej>Aa, Puccineiiia dlAtanA and Ko/ideum. juJLatum. v e r s u s exchangeable sodium p e r c e n t and' e l e c t r i c a l c o n d u c t i v i t y . 4 0 v i i i Page F i g u r e 13. F o l i a r c o v e r o f D/ie.panocladu6 aduncLU, and Potentllla g/iaciliA v e r s u s exchangeable sodium p e r c e n t and e l e c t r i c a l c o n d u c t i v i t y J/£1 Acknowledgements I would l i k e to acknowledge with g r a t i t u d e the a s s i s t a n c e provided by my s u p e r v i s o r , Dr. Michael P i t t , w i t h a l l aspects of t h i s p r o j e c t , and i n p a r t i c u l a r f o r s t a t i s t i c a l advice and suggestions concerning d r a f t s of the d i s s e r t a t i o n . The advice of Dr. V i c t o r Runeckles during committee meetings proved most v a l u a b l e . S p e c i a l thanks are due to Dr. Les Lav-k u l i c h f o r h i s i n t e r e s t , optimism and advice throughout the p r o j e c t , and f o r k i n d l i n g my i n t e r e s t i n s o i l s . I am g r a t e f u l to Marty Beets of the F i s h and W i l d l i f e Branch of the M i n i s t r y of Environment f o r h i s f i n a n c i a l support; of the p r o j e c t and f o r the many discussions- we have had concerning wetland use. Ducks Un l i m i t e d i s appreciated f o r p r o v i d i n g t r a n s p o r t a t i o n during the f i e l d research. The UBC s o i l s l a b t e c h n i c i a n s , i n p a r t i c u l a r V a l M i l e s , provided v a l u a b l e a s s i s t a n c e during the chemical analyses of the s o i l s . I would l i k e to thank Sandy Hart f o r h i s a s s i s t a n c e i n the f i e l d , f o r d i s c u s s i o n s concerning the p r o j e c t , f o r e d i t i n g and proofreading and f o r h i s support and encouragement throughout the p r o j e c t . Thanks a l s o to Robin Hart f o r s l e e p i n g so soundly while I typed. 1 1 I n t r o d u c t i o n • W i t h i n the dry grasslands and lodgepole pine {Pinuu> aonto/vta) f o r e s t s of the C h i l c o t i n r e gion of B r i t i s h Columbia, wetlands are oases of f l o r a l and f a u n a l p r o d u c t i v i t y . As such they are i n demand by a v a r i e t y of. resource users. The C h i l c o t i n ranching i n d u s t r y , since i t s i n c e p t i o n i n 1863 (McLean pers. comm.), has depended h e a v i l y upon wetlands f o r hay plus summer and f a l l grazing (Morton.1979)• Improvement of wetlands f o r ranching purposes can i n v o l v e drainage and removal of shrubs to plant b e t t e r forage such as reed canary grass {Phalasi-u, cuiundina.ce.ae.). The wetlands a l s o provide summer breeding 'grounds f o r waterfowl and, i n shrub areas, winter browse f o r moose and deer. As w e l l , wetlands f u n c t i o n as n a t u r a l water storage areas. . In the Canadian and American p r a i r i e s , wetlands have long been the subject of considerable research, but C h i l c o t i n wetlands have only r e c e n t l y been st u d i e d . Water regime, n u t r i e n t regime, disturbance, s a l i n i t y , . s o d i c i t y . a n d pH have a l l been i d e n t i f i e d as f a c t o r s t h a t are important i n c o n t r o l l i n g the d i s t r i b u t i o n of both p r a i r i e and C h i l c o t i n wetland vege-t a t i o n . 1.1 Factors a f f e c t i n g v e g e t a t i o n d i s t r i b u t i o n i n wetlands 11M1' Water regime The o v e r r i d i n g i n f l u e n c e of the water regime on species d i s t r i b u t i o n s has been w e l l documented (Dix and Smeins 1967, Walker, and Coupland 1968, Boyd and Hess 1970, van der Valk and B l i s s 1971, Walker and Wehrhahn 1971, M i l l a r 1973). Wetland v e g e t a t i o n i s h i g h l y i n f l u e n c e d by the i n i t i a l depth of. water, the r a t e of water l o s s and the degree to which the water l e v e l f l u c t u a t e s both w i t h i n and between seasons. The moisture gradient i s l a r g e l y r e s p o n s i b l e f o r the d i s t i n c t i v e 2 banded pattern of vegetation i n C h i l c o t i n wetlands (Jones 1981). In a study that looked at s o i l parameters r e l a t e d to vegetation d i s t r i b u t i o n i n C h i l c o t i n wetlands, Selby and Moon (1981) found that depth to mineral s o i l , humus form, depth of the surface organic horizon, depth to carbonates and microtopography were the only parameters required to predict more than 90 per cent of the v a r i a t i o n i n vegetation. Depth to mineral s o i l , humus form and depth of the surface organic horizon are l a r g e l y ^  c o n trolled by the moisture regime. The presence of carbonates depends on the geology and groundwater flow patterns of the surrounding area, but t h e i r depth depends on moisture regime. Though moisture regime i s not necessarily responsible f o r the development of microtopographic features such as hummocks and hollows, i t i s c e r t a i n l y responsible f o r the r e s u l t i n g vegetation patterns. 1.1.2 Nutrient'regime Studies i n d i c a t i n g the importance of the nutrient regime to plant species d i s t r i b u t i o n s i n wetlands have been c a r r i e d out by Heinselman (1970), Walker'and Wehrhahn (1971) and Schwintzer (1978). Based on water chemistry, two main types of wetlands have been recognized: ombrotrophic and minerotrophic (Moore and Bellamy 1974-). Ombrotrophic wetlands depend on p r e c i p i t a t i o n f o r water and minerals and consequently are d e f i c i e n t i n nutrients and generally have a pH less than 7. In contrast, a large part of the waters of minerotrophic wetlands have percolated through mineral s o i l s and bedrock. Thus pH and nutrient regime are dependent on the geology of the surrounding area. Most C h i l c o t i n wetlands appear to be of the minerotrophic type and, because much of the C h i l c o t i n i s underlain by T e r t i a r y lava beds, are well f e r t i l i z e d by nutrient r i c h groundwaters (van Ryswyk 1971). 3 1.1.3 Disturbance Disturbance by man has been found to be a major i n f l u e n c e on wetland v e g e t a t i o n i n the Canadian p r a i r i e s (Walker and Coupland 1970). Walker and Wehrhahn (1971) sta t e d that i n r e l a t i v e l y undisturbed, shallow, non- to s l i g h t l y s a l i n e p r a i r i e sloughs, disturbance i n the form of grazing or mowing was the most important f a c t o r a f f e c t i n g v a r i a t i o n i n the vege-t a t i o n . C h i l c o t i n wetlands are v i r t u a l l y a l l d i s t u r b e d to some degree -by mowing, g r a z i n g , drainage, c u l t i v a t i o n or a combination of these a c t i -v i t i e s . 1.1.4 pH Sj o r s (1950) sta t e d that pH i s an i n d i c a t o r of the complicated s o i l c o n d i t i o n s c o n t r o l l i n g v e g e t a t i o n , but other environmental f a c t o r s are g e n e r a l l y more s i g n i f i c a n t . According to Walker and Coupland (1968), veg e t a t i o n changes along a pH grad i e n t , but the same community response, was a l s o observed along a s a l i n i t y g r adient. In C h i l c o t i n wetlands, pH r a r e l y f a l l s below 7 (Mayall 1983). 1.1.5 S a l i n i t y and s o d i c i t y The s a l i n i t y of a s o i l depends both on the amount of s o l u b l e s a l t s and the amount of moisture the s o i l c o n tains. S a l i n e s o i l s are defined as those f o r which the c o n d u c t i v i t y of a s a t u r a t i o n e x t r a c t i s more than 4. mmhos/cm at 25°C (United States S a l i n i t y Laboratory S t a f f 1954). The pH of these s o i l s i s u s u a l l y l e s s than 8.5. In sodic or a l k a l i s o i l s the percentage of exchangeable sodium (ESP) i s greater than 15 and the pH i s g e n e r a l l y greater than 8.5. S a l t s a f f e c t v e g e t a t i o n by decreasing the a v a i l a b i l i t y of water, by t o x i c i t y and n u t r i t i o n a l imbalances and, i n the case of sodium, by the d e t e r i o r a t i o n of s o i l s t r u c t u r e . The decrease i n water a v a i l a b i l i t y i s caused by the increased osmotic pressure of the s o i l s o l u t i o n which r e s u l t s u i n a d e c r e a s e o f t h e d i f f u s i o n p r e s s u r e g r a d i e n t between t h e medium and t h e p l a n t ( B e r n s t e i n and Hayward 1958, Hayward and B e r n s t e i n 1958). Because o f t h i s f a c t i t i s i m p o r t a n t t o d e t e r m i n e t h e s o l u b l e s a l t c o n t e n t o f t h e s o i l . I n s a l i n e and s o d i c s o i l s , c a l c i u m , magnesium and sodium a r e g e n e r a l l y t h e dominant c a t i o n s , a l t h o u g h p o t a s s i u m i s u s u a l l y p r e s e n t i n s m a l l e r amounts. C h l o r i d e , s u l p h a t e , c a r b o n a t e and b i c a r b o n a t e a r e t h e dominant a n i o n s . P r o p o r t i o n s may v a r y c o n s i d e r a b l y among d i f f e r e n t s o i l s . An e x c e s s o f a p a r t i c u l a r i o n may r e s u l t i n t o x i c a c c u m u l a t i o n s o f t h a t i o n o r i n d e c r e a s e d a b s o r p t i o n o f some o t h e r e s s e n t i a l i o n r e s u l t i n g i n n u t r i e n t d e f i -c i e n c y (Hayward and B e r n s t e i n 1958). Sodium i n e x c e s s o f a p p r o x i m a t e l y 15 p e r c e n t on t h e exchange complex has a d e l e t e r i o u s e f f e c t on s o i l s t r u c t u r e . S o d i c s o i l s t e n d t o a b s o r b w a t e r s l o w l y , t o c r u s t when d r y and t o become s t i c k y when wet ( P e a r s o n 1960). B o t h s a l i n i t y and s o d i c i t y can v a r y c o n s i d e r a b l y b o t h s e a s o n a l l y and s p a t i a l l y t h r o u g h t h e s o i l p r o f i l e . D u r i n g d r y p e r i o d s s a l t s have been o b s e r v e d t o move upward by c a p i l l a r y a c t i o n , c o n c e n t r a t i n g i n t h e upper few c e n t i m e t r e s , as w a t e r i s e v a p o r a t e d from t h e s u r f a c e and t r a n s p i r e d ( J a c k s o n e t a l . 1956, B o l e n 1964.). D u r i n g r a i n y p e r i o d s or s p r i n g snow-m e l t s a l t s may be l e a c h e d downward a g a i n R e s e a r c h has been c a r r i e d out on r e l a t i o n s h i p s between n a t i v e vege-t a t i o n and s a l i n i t y i n U t a h , N o r t h Dakota and t h e C a n a d i a n p r a i r i e s . I n 1934> F l o w e r s d e s c r i b e d t h e v e g e t a t i o n o f t h e G r e a t S a l t Lake r e g i o n . He n o t e d t h a t s a l t c o n c e n t r a t i o n i s more i m p o r t a n t t h a n t o t a l s a l t c o n t e n t and t h a t m o i s t p e r i o d s t h u s a l l o w t h e e s t a b l i s h m e n t o f s e e d l i n g s . Gates e t a l . ( 1 9 5 6 ) , s t u d y i n g s h r u b v e g e t a t i o n on s a l t d e s e r t s i n U t a h , f o u n d t h a t ' s o i l a n a l y s i s showed some s i g n i f i c a n t e d a p h i c d i f f e r e n c e s between s o i l s o c c u p i e d by v a r i o u s s p e c i e s . However, no s p e c i e s was r e s t r i c t e d i n 5 d i s t r i b u t i o n t o a narrow t o l e r a n c e f o r any s p e c i f i c s o i l f a c t o r I; T h i s was c o r r o b o r a t e d by K e i t h (1958) f o r n a t i v e herbaceous v e g e t a t i o n i n s o u t h e a s t e r n A l b e r t a . I n N o r t h D a k o t a , s p e c i e s have been used as i n d i -c a t o r s o f h i g h o r low s a l i n i t y by W o r c e s t e r and S e e l i g (1976). Such , i n d i c a t o r s p e c i e s a r e u s e f u l t o g i v e a g e n e r a l i d e a o f c o n d i t i o n s i n w h i c h t h e y a r e g r o w i n g , t o o b t a i n i n t h e f i e l d a p r e l i m i n a r y assessment o f p o t e n t i a l p r o d u c t i v i t y . The r e l a t i o n s h i p o f v e g e t a t i o n communities and s p e c i e s t o s a l i n i t y on t h e C a n a d i a n p r a i r i e s has been i n v e s t i g a t e d by s e v e r a l r e s e a r c h e r s . Dodd and Coupland (1966) f o u n d t h a t s a l i n i t y d e c r e a s e d from t h e wet c e n t r e s t o t h e d r y margins o f d e p r e s s i o n s . A sequence o f v e g e t a t i o n t y p e s c o r r e s -ponded t o t h e sequence o f s o i l t y p e s . W a l k e r and Coupland (1968, 1970) s t a t e d t h a t a f t e r w a t e r r e g i m e , s a l i n i t y i s t h e most i m p o r t a n t f a c t o r c o n t r o l l i n g v e g e t a t i o n d i s t r i b u t i o n . A few s p e c i e s were r e s t r i c t e d t o a narrow range o f s a l i n i t y w h i l e o t h e r s f l o u r i s h e d i n a b r o a d range o f c o n d i t i o n s . M i l l a r (1976) i d e n t i f i e d dominant w e t l a n d s p e c i e s and t h e s a l i n i t i e s i n w h i c h t h e y o c c u r f o r a c l a s s i f i c a t i o n system f o r p r a i r i e w e t l a n d s . S a l t t o l e r a n c e r a n g e s o f a wide v a r i e t y o f f o r a g e c r o p s have been i d e n t i f i e d ( F o r s b e r g 1953, B e r n s t e i n 1958, P e a r s o n 1960, Dewey 1960, Moxley e t a l . 1978, Rauser and Crowle 1963) and i t has been f o u n d t h a t s a l i n e a r e a s may become r e l a t i v e l y p r o d u c t i v e i f p l a n t e d w i t h a p p r o p r i a t e s p e c i e s , s u c h as t a l l w h e a t g r a s s , c r e s t e d w h e a t g r a s s and R u s s i a n w i l d r y e . 1.2 W e t l a n d c l a s s i f i c a t i o n i n t h e C h i l c o t i n The p o t e n t i a l f o r r e s o u r c e use c o n f l i c t s a r i s i n g among r a n c h e r s , Ducks U n l i m i t e d , t h e C a n a d i a n W i l d l i f e S e r v i c e and t h e F i s h and W i l d l i f e B r a n c h o f t h e M i n i s t r y o f Environment was i d e n t i f i e d by t h e C a r i b o o W e t l a n d W o r k i n g Group i n 1978 ( B e e t s , p e r s . comm.). To a s s i s t i n t h e i r o b j e c t i v e s o f f a c i l i t a t i n g w e t l a n d d e s c r i p t i o n and c o m p i l i n g a w e t l a n d r e g i s t r y , a w e t l a n d c l a s s i f i c a t i o n system'was d e v e l o p e d by Runka and Lewis (1981) f o r t h e Resource A n a l y s i s B r a n c h o f . t h e M i n i s t r y o f E n v i r o n m e n t . T h i s c l a s s i -f i c a t i o n scheme d e f i n e s w e t l a n d s as 'lan d s t h a t a r e wet enough o r i n u n d a t e d f r e q u e n t l y enough t o d e v e l o p and s u p p o r t a d i s t i n c t i v e n a t u r a l v e g e t a t i v e c o v e r t h a t i s i n s t r o n g c o n t r a s t t o t h e a d j a c e n t m a t r i x o f b e t t e r d r a i n e d l a n d s ' (Runka and L e w i s . 1981). Because e x i s t i n g r e s e a r c h . c o n c e r n i n g • C a r i b o o - C h i l c o t i n w e t l a n d s was l i m i t e d , t h e manual 'was i n t e n d e d as an open-ended g u i d e t o be f i e l d v e r i f i e d , a l t e r e d , and added t o ' as knowledge o f w e t l a n d systems i n c r e a s e d . . . . A second, c l a s s i f i c a t i o n " system f o r C a r i b o o - C h i l c o t i n w e t l a n d s was i n d e p e n d e n t l y d e v e l o p e d i n 1982 by Moon and S e l b y . The a u t h o r s o f b o t h c l a s s i f i c a t i o n systems' s u g g e s t e d t h a t f u r t h e r r e s e a r c h was r e q u i r e d t o e l u c i d a t e r e l a t i o n s h i p s between v e g e t a t i o n and s a l i n i t y i n t h o s e a r e a s where m i n e r a l s o i l s s u p p o r t w a t e r - t o l e r a n t g r a s s e s , f o r b s , l ow sedges and r u s h e s . These ecosystems a r e c a l l e d meadows by Runka and L e w i s ( 1 9 8 1 ) . j n Runka and L e w i s ' s (1981) c l a s s i f i c a t i o n . s y s t e m , s a l i n i t y and s o d i c i t y o f t h e s o i l a r e used as o n e ' b a s i s f o r the'• s u b d i v i s i o n o f t h e meadow c l a s s . L e w i s (pers..comm.) s t a t e d t h a t t h i s s u b d i v i s i o n was approp-r i a t e d from D i a g n o s i s and Improvement o f S a l i n e and A l k a l i S o i l s ( U n i t e d S t a t e s S a l i n i t y L a b o r a t o r y S t a f f 1954) and, b e i n g based on r e s e a r c h i n t h e U n i t e d S t a t e s , might n o t be v a l i d f o r C h i l c o t i n meadows. S e l b y and Moon (1981) s t a t e d t h a t t h e i r w a t e r - t o l e r a n t g r a s s / f o r b v e g e t a t i o n group might r e q u i r e s u b d i v i s i o n on t h e b a s i s o f s a l i n i t y and s o d i c i t y . A subsequent paper by Moon and S e l b y (1982). s u b d i v i d e d t h i s v e g e t a t i o n group i n t o a l k a l i n e and n o n a l k a l i n e subgroups. . 1.3' R e s e a r c h h y p o t h e s e s ' ,: Meadows p r o v i d e e x c e l l e n t g r a z i n g and n a t i v e hay f o r r a n c h e r s , as 7 w e l l as n e s t i n g s i t e s f o r s e v e r a l s p e c i e s o f w a t e r f o w l . A l t h o u g h some w a t e r f o w l t h r i v e i n s a l i n e o r s o d i c ponds ( S a v a r d p e r s . comm.), t h e vege-t a t i v e p r o d u c t i v i t y w h i c h i s o f c o n c e r n t o r a n c h e r s may be l i m i t e d by s a l i n i t y ( S e l b y p e r s . comm., Lewis p e r s . comm.). A b e t t e r u n d e r s t a n d i n g o f r e l a t i o n s h i p s between v e g e t a t i o n and s a l i n i t y and s o d i c i t y i n wet meadows w i l l f a c i l i t a t e management d e c i s i o n - m a k i n g i n t h e s e a r e a s . The i d e n t i f i -c a t i o n o f i n d i c a t o r s p e c i e s c o u l d p r o v i d e managers w i t h a u s e f u l t o o l f o r assessment o f s a l i n i t y and s o d i c i t y i n t h e f i e l d . I n o r d e r t o f u l f i l l t h e s e o b j e c t i v e s t h e f o l l o w i n g f o u r n u l l h y p o t h e s e s w i l l be t e s t e d : 1. D i s t r i b u t i o n o f wet meadow v e g e t a t i o n communities i s n o t s i g -n i f i c a n t l y a f f e c t e d by e l e c t r i c a l c o n d u c t i v i t y o f t h e s o i l , 2. D i s t r i b u t i o n o f wet meadow v e g e t a t i o n communities i s n o t s i g -n i f i c a n t l y a f f e c t e d by exch a n g e a b l e sodium p e r c e n t o f t h e s o i l , 3. D i s t r i b u t i o n o f i n d i v i d u a l wet meadow s p e c i e s i s n o t s i g n i f i -c a n t l y a f f e c t e d by e l e c t r i c a l c o n d u c t i v i t y o f t h e s o i l , 4 . D i s t r i b u t i o n o f i n d i v i d u a l wet meadow s p e c i e s i s n o t s i g n i f i -c a n t l y a f f e c t e d by exchangeable sodium p e r c e n t o f t h e s o i l . I f t h e n u l l h y p o t h e s e s a r e r e j e c t e d , t h e t o l e r a n c e ranges o f i m p o r t a n t s p e c i e s and communities w i l l be d e s c r i b e d , a p p r o p r i a t e s a l i n i t y and s o d i c i t y b o u n d a r i e s f o r t h e meadow component o f Runka and L e w i s ' s (1981) c l a s s i - . -f i c a t i o n system w i l l be s u g g e s t e d and t h e s e f i n d i n g s w i l l be compared w i t h t h o s e o f Moon and S e l b y ( 1 9 8 2 ) . 8 2.\; D e s c r i p t i o n o f t h e s t u d y a r e a 2.1 L o c a t i o n F i e l d work was c a r r i e d out i n 72 w e t l a n d meadows o f t h e C h i l c o t i n , a 35,000 square k i l o m e t r e r e g i o n west o f W i l l i a m s Lake i n s o u t h - c e n t r a l B r i t i s h C o l u m b i a ( F i g u r e 1 ) . 2.2 P h y s i o g r a p h y H o l l a n d (1976) i n c l u d e d t h e C h i l c o t i n i n t h e F r a s e r P l a t e a u , a g e n t l y r o l l i n g u p l a n d u n d e r l a i n by l a t e Miocene o r P l i o c e n e o l i v i n e b a s a l t f l o w s . Much o f t h e P l a t e a u i s b l a n k e t e d w i t h g l a c i a l d r i f t c o m p r i s e d o f t i l l and g l a c i o - f l u v i a l d e p o s i t s . D u r i n g t h e l a s t g l a c i a t i o n , w h i c h ended about 10,000 y e a r s ago, i c e f l o w e d i n a n o r t h e a s t e r l y t o e a s t e r l y d i r e c t i o n from t h e C o a s t M o u n t a i n s . Thus g l a c i a l t i l l c l o s e t o t h e C o a s t M o u n t a i n s i s g e n e r a l l y c o m p r i s e d o f c o a r s e - g r a i n e d i g n e o u s m a t e r i a l s , w h i l e t i l l f a r t h e r from t h i s s o u r c e i s d e r i v e d from t h e b a s a l t i c r o c k o f t h e P l a t e a u and i s f i n e r - g r a i n e d (Annas and Coupe 1979). L a t e i n t h e g l a c i a l p e r i o d , a tem-p o r a r y r e a d v a n c e westward from t h e C a r i b o o Mountains e n t e r e d t h e e a s t e r n f r i n g e o f t h e s t u d y a r e a . D r u m l i n s and e s k e r s p r o v i d e much o f t h e low r e l i e f on t h e P l a t e a u s u r f a c e ( T i p p e r 1 9 7 1 ) . The g e n e r a l e l e v a t i o n range o f t h e P l a t e a u i s 1,200 t o 1,500 m e t r e s , r i s i n g g r a d u a l l y t o 1,800 metres a l o n g t h e m a r g i n o f t h e C h i l c o t i n Ranges t o t h e w e s t . S e v e r a l m ountain r a n g e s p r o j e c t above t h i s l e v e l t o e l e v a t i o n s o f a p p r o x i m a t e l y 2,4-00 m e t r e s . The P l a t e a u i s d r a i n e d l a r g e l y by C h i l c o t i n R i v e r w h i c h f l o w s e a s t i n t o F r a s e r R i v e r . Upper p o r t i o n s o f Dean, K l i n a k l i n i and Homathko R i v e r s d r a i n t h e s o u t h w e s t and west p o r t i o n s o f t h e r e g i o n t h r o u g h t h e C o a s t M o u n t a i n s t o t h e P a c i f i c Ocean. F i g u r e 1. L o c a t i o n o f t h e s t u d y a r e a i n B r i t i s h C o l umbia 10 2.3 C l i m a t e W i t h i n t h e C h i l c o t i n t h e g e n e r a l c l i m a t e t r e n d s a r e governed by-l a t i t u d e , e l e v a t i o n and p o s i t i o n i n r e l a t i o n t o t h e r e g i o n a l m o u n t a i n s . The C h i l c o t i n i s l o c a t e d i n t h e r a i n shadow o f t h e C o a s t Mountains and t h u s e n j o y s a r e l a t i v e l y d r y c l i m a t e . A n n u a l p r e c i p i t a t i o n v a r i e s from a p p r o x i m a t e l y 290 mm ( P u n t z i Mountain) t o 4-20 mm ( A l e x i s C r e e k / T a u t r i C reek) (Annas and Coupe 1979). I n t h e e a s t e r n p o r t i o n o f t h e r e g i o n 50 t o 60 per c e n t o f t h e p r e c i p i t a t i o n o c c u r s from May t o September. C l o s e r t o t h e Coast Range, t h e i n f l u e n c e o f c o a s t a l weather systems d e c r e a s e s t h e p r o p o r -t i o n o f summer p r e c i p i t a t i o n t o a p p r o x i m a t e l y 4-0 p e r c e n t . The h i g h e l e v a t i o n o f t h e P l a t e a u r e s u l t s i n r e l a t i v e l y c o o l tempera-t u r e s . Thus t h e aver a g e f r o s t f r e e p e r i o d r a n g e s from 12 days a t T a u t r i C reek t o 44- a t B i g Creek (Annas and Coupe 1979). 2.4 V e g e t a t i o n Samples were c o l l e c t e d from w i t h i n t h e sub b o r e a l s p r u c e (a) and Po n d e r o s a p i n e b u n c h g r a s s (e) b i o g e o c l i m a t i c subzones as w e l l as an u n d i f -f e r e n t i a t e d subzone o f t h e i n t e r i o r D o u g l a s - f i r zone as d e f i n e d by t h e M i n i s t r y o f F o r e s t s (Annas and Coupe 1979). The sub b o r e a l s p r u c e (a) subzone i s d o m i n a n t l y Pauu> conto/ita w i t h an u n d e r s t o r y o f s h r u b s - Ajicto<&iaphyIQA uva~mu>L, Shephesidia canaderu>lA, 2-unipesuu> commun-Li and Ro^a acicuiasi-Ld. The h e r b l a y e r i s g e n e r a l l y p o o r l y d e v e l o p e d i n a l l b u t t h e w e t t e r s i t e s r e s u l t i n g i n r a t h e r u n p r o d u c t i v e f o r a g e f o r l i v e s t o c k . CatLamag/ioAti* /uilLzAc&nA i s s p a r s e , and l e s s p r o d u c -t i v e s p e c i e s s u c h as Te^tuca ovina and O/tyzop-ii-d a^pest-i/o £ia a r e o f t e n t h e dominant f o r a g e s p e c i e s . The pondsro.sa- p i n e bunchgrass (PPBG). .(e) subzone "is t o o c o l d f o r - p o n -d e r o s a p i n e ; o t h e r w i s e . v e g e t a t i o n , r e s e m b l e s o t h e r PEJBft subzo'nes :. • • Common shr u b s a r e C/uiyAothamruLi nauAeoALU, and AaiemLiia tA.uieni.ata. A 11 v a r i e t y o f g r a s s e s , i n c l u d i n g Ag/iopy/ion Apicatum and Stipa spp., o c c u r on mesic s i t e s . Opuntia piagitlA and Catoch.oni.iLA macn.ocan.puA a r e f o u n d on d r i e r s i t e s . Because o f t h e low e l e v a t i o n and low w i n t e r p r e c i p i t a t i o n , t h i s a r e a i s used l a r g e l y f o r s p r i n g r a n g e . V e g e t a t i o n i n t h e u n d i f f e r e n t i a t e d subzone o f t h e i n t e r i o r D o u g l a s -f i r b i o g e o c l i m a t i c zone has n o t y e t been d e s c r i b e d by t h e M i n i s t r y o f F o r e s t s . -2.5 Wetlands Wetlands a r e f o u n d i n d e p r e s s i o n s t h r o u g h o u t t h e C h i l c o t i n . W e t l a n d s o i l s i n c l u d e R e g o s o l s , G l e y e d B r u n i s o l s , G l e y s o l s and O r g a n i c s o i l s (Moon and S e l b y 1982). D e p o s i t s o f m a r l o c c u r i n l o c a l i z e d a r e a s t h r o u g h -out t h e r e g i o n . The f o l l o w i n g v e g e t a t i o n c o v e r t y p e s have been i d e n t i f i e d i n C h i l c o t i n w e t l a n d s (Runka and Le w i s 1981, Moon and S e l b y 1982): 1. F l o a t i n g a q u a t i c - e.g. Span.gan.lum. spp., Lemna spp., Nu.ph.an. poty-Aepatum, Poiamogeion spp. 2. Submerged a q u a t i c - e.g. lltn.Lcatan.ia uutganlA, Plyniophyttum spp. 3. No n v e g e t a t e d - b a r r e n m u d f l a t s o r s a l t f l a t s 4.. Moss - mosses o t h e r t h a n Sphagnum spp., e.g. 7omenthypnum nltesiA, Dne.panoctaduA spp. 5. Sphagnum spp. 6. C a t t a i l - Jypha tai.Lf.otla 7. B u l r u s h - ScinpuA spp. 8. H o r s e t a i l - &quiAei.um spp. 9. Emergent g r a s s e s - e.g. Atope.can.uA aejqualiA, Beckmannia Ayzigachne, Scotochtouf&Aiucacea, Qtycesiia spp. 10. S p i k e r u s h - LteochaniA patuAiniA 11. Sedge - e.g. Can-ex. aauaiitlA, C. noAinata, C. aihenode^) 12 12. Water t o l e r a n t g r a s s / f o r b - a m i x t u r e o f g r a s s e s , herbaceous p l a n t s and d r y l a n d r u s h e s and sedges 13. Low s h r u b i n c o m b i n a t i o n w i t h e i t h e r sedge o r wa t e r t o l e r a n t g r a s s / f o r b - e.g. 3&tuia glandulo^a, Salbc spp. 14« T a l l s h r u b i n c o m b i n a t i o n w i t h e i t h e r sedge o r w a t e r t o l e r a n t g r a s s / f o r b - e.g. Salix. spp. 15. T r e e d - o v e r 10 p e r c e n t t r e e c o v e r , u s u a l l y Pic&a spp. Runka and L e w i s (1981) i d e n t i f i e d seven w e t l a n d c l a s s e s : f e n , marsh, bog, swamp, s h a l l o w open w a t e r , meadow and s h r u b c a r r . Each o f t h e s e c l a s s e s r e p r e s e n t s a t y p e o f system and n u t r i e n t c y c l i n g t h a t i s g e n e r a l l y c h a r a c t e r i z e d by s p e c i f i c c o m b i n a t i o n s o f s o i l s and v e g e t a t i o n . Meadows, t h e c l a s s s e l e c t e d f o r s t u d y , a r e d e f i n e d by Runka and L e w i s as 'herbaceous w e t l a n d s d e v e l o p e d on m i n e r a l m a t e r i a l s t h a t a r e p e r i o d i c a l l y s a t u r a t e d b u t r a r e l y i n u n d a t e d ' . Meadow v e g e t a t i o n may be composed--- o f v a r i o u s m i x t u r e s o f w a t e r t o l e r a n t g r a s s e s , l o w sedges, r u s h e s (JuncuA spp.) and f o r b s . S o i l s a r e m i n e r a l , b u t o c c a s i o n a l l y have an o r g a n i c c a p p i n g . At t h e second l e v e l o f t h e c l a s s i f i c a t i o n s y stem, t h e s u b c l a s s , meadows a r e s u b d i v i d e d i n t o t h o s e w i t h and t h o s e w i t h o u t an o r g a n i c c a p p i n g . A t t h e t h i r d l e v e l , t h e v a r i a n t , m i n e r a l meadows a r e f u r t h e r s u b d i v i d e d on t h e b a s i s o f s a l i n i t y and s o d i c i t y . I n Moon and S e l b y ' s (1982) w e t l a n d c l a s s i f i c a t i o n s y s t e m , t h e a p p r o x i m a t e e q u i v a l e n t t o meadow i s w a t e r t o l e -r a n t g r a s s / f o r b on S h a l l o w - p e a t y , Humic, Rego-humic o r O r t h i c G l e y s o l s , c a r b o n a t e d e p o s i t s o r G l e y e d B r u n i s o l s . . 1 3 3 Methods . . The major e n v i r o n m e n t a l f a c t o r c o n t r o l l i n g w e t l a n d v e g e t a t i o n i s m o i s t u r e regime.. Meadows o c c u r i n a r e s t r i c t e d range o f m o i s t u r e r e g i m e s : where t h e s o i l may be s a t u r a t e d d u r i n g some p o r t i o n o f t h e y e a r , b u t i s r a r e l y i n u n d a t e d . By l o o k i n g a t meadows a l o n e , and t h e r e b y l i m i t i n g t h e v a r i a t i o n i n . v e g e t a t i o n r e s u l t i n g from v a r i a t i o n s i n m o i s t u r e r e g i m e , t h e e f f e c t s o f s a l i n i t y and s o d i c i t y may be more a p p a r e n t . 3.1 S i t e s e l e c t i o n One hundred*, and. t h i r t y - f o u r s i t e s . , i n 72 d i f f e r e n t meadows ( F i g u r e 2) i n t h e sub b o r e a l s p r u c e ( a ) , .Ponderosa p i n e bunchgrass (e) and u n d i f -f e r e n t i a t e d i n t e r i o r D o u g l a s - f i r b i o g e o c l i m a t i c subzones 'of t h e C a r i b o o F o r e s t D i s t r i c t were sampled d u r i n g t h e summer o f 1980. • Meadows were s e l e c t e d by d r i v i n g as many r o a d s i n t h e C h i l c o t i n as p o s s i b l e d u r i n g t h e f i e l d s e a s o n and s a m p l i n g a l l meadows e n c o u n t e r e d . Roads'were c h o s e n ' t o . c o v e r t h e g r e a t e s t g e o g r a p h i c a l d i s t a n c e n o r t h t o s o u t h and e a s t t o west. Each meadow was s t r a t i f i e d s u b j e c t i v e l y t o produce v i s u a l l y s i m i l a r b o t a n i c a l c o m p o s i t i o n and f o l i a r c o v e r and w i t h i n each s t r a t u m one s i t e was s e l e c t e d u s i n g two random numbers from a random num-bers' t a b l e . The f i r s t number i n d i c a t e d t h e number o f paces t o w a l k around t h e p e r i m e t e r o f t h e meadow from t h e p o i n t o f access.. The second number denoted 'the number o f paces t o w a l k towards t h e c e n t r e o f t h e meadow. To a s c e r t a i n t h e v a r i a b i l i t y i n s a l i n i t y t h r o u g h t h e seas o n t h e s o i l s o f 3 s i t e s i n each o f f o u r meadows were sampled e v e r y two weeks from June 22 u n t i l September 1 ( F i g u r e 2 ) . These f o u r meadows - a t Horseshoe meadow and Suds, P a t t e r s o n and Moores Lakes - were s e l e c t e d t o p r o v i d e a. range o f c o n d i t i o n s o f s a l i n i t y w i t h i n a s h o r t d i s t a n c e from t h e base s t a t i o n . They were chosen a f t e r a r e c o n n a i s s a n c e s u r v e y o f nearby meadows. F i g u r e 2 . L o c a t i o n o f sample s i t e s 15 3.2 V e g e t a t i o n A t each s i t e v e g e t a t i o n was sampled by l i s t i n g t h e s p e c i e s p r e s e n t i n a one square metre q u a d r a t and v i s u a l l y e s t i m a t i n g p e r c e n t c o v e r of' each s p e c i e s t o t h e n e a r e s t p e r c e n t a g e p o i n t . Cover o f each s p e c i e s was a l s o r e c o r d e d a c c o r d i n g t o t h e D o m i n - K r a j i n a cover-abundance s c a l e ( T a b l e 1 ) . Mosses were i d e n t i f i e d by T ..Mcintosh o f t h e Department o f Botany, U n i v e r s i t y o f B r i t i s h C o l u m b i a . G r a s s s p e c i e s were i d e n t i f i e d a c c o r d i n g t o H i t c h c o c k (1971) and, where r e q u i r e d , R o b e r t s ( u n p u b l . ) . H i t c h c o c k and C r o n q u i s t (1973) s e r v e d as t h e a u t h o r i t y f o r a l l o t h e r b o t a n i c a l g r o u p s . F o u r t e e n specimens were i n s u f f i c i e n t l y d e v e l o p e d t o be p o s i t i v e l y i d e n t i f i e d , b u t were i n c l u d e d i n t h e a n a l y s e s as ' u n i d e n t i f i e d 1' t o ' u n i d e n t i f i e d 14-'• Specimens a r e d e p o s i t e d i n t h e U n i v e r s i t y o f B r i t i s h C o l u mbia h e r b a r i u m . 3.3 S o i l s A t each o f t h e 134- sample s i t e s a com p o s i t e s o i l sample o f 5 c o r e s was t a k e n f o r t h e 0 t o 25 cm d e p t h . The samples were s t o r e d i n p l a s t i c s o i l sample bags. W i t h i n a week, a p o r t i o n o f each sample was o v e n - d r i e d a t 105°C u n t i l two s u c c e s s i v e w e i g h i n g s 12 h o u r s a p a r t were t h e same t o d e t e r m i n e m o i s t u r e c o n t e n t . The r e m a i n i n g p o r t i o n o f each sample was a i r -d r i e d f o r two weeks. Samples were c r u s h e d t o pass t h r o u g h a 2 mm s i e v e u s i n g a m o t o r i z e d g r i n d e r ( L a v k u l i c h 1981). A l l s o i l samples were a n a l y z e d f o r e l e c t r i c a l c o n d u c t i v i t y and, f o r t h o s e f o r w h i c h t h e r e was s u f f i c i e n t e x t r a c t , f o r s o l u b l e c a t i o n s t o p r o -v i d e an e s t i m a t e o f exch a n g e a b l e sodium p e r c e n t . A f t e r t h e s e a n a l y s e s , r e m a i n i n g e x t r a c t was used t o d e t e r m i n e s o l u b l e a n i o n s t o f u r t h e r c h a r a c -t e r i z e t h e s o i l . A l l o f t h e s e a n a l y s e s were c a r r i e d o ut by t h e a u t h o r a c c o r d i n g t o :. p r o c e d u r e s s e t out by L a v k u l i c h ( 1 9 8 1 ) . The e x t r a c t f o r t h e f i r s t r u n o f 23 samples was made u s i n g a. 1:2 s o i l r w a t e r r a t i o , b u t i t 16 T a b l e 1. F o l i a r c o v e r s c a l e a d a p t e d from D o m i n - K r a j i n a Cover-Abundance s c a l e S c a l e D e s c r i p t i o n Cover {%) 9 any number, w i t h complete c o v e r 100 8 any number, w i t h more t h a n 3/4- 75 but l e s s t h a n complete c o v e r 7 any number, w i t h 1/2 t o 3/4- c o v e r 50-75 6 any number, w i t h 1/3 t o 1/2 c o v e r 33-50 5 any number, w i t h 1/4- t o 1/3 c o v e r 25-33 4- any number, w i t h 1/10 t o 1/4- cover- 10-25 3 any number, w i t h 1/20 t o 1/10 c o v e r 5-10 2 s c a t t e r e d , w i t h c o v e r under 1/20 1-5 1 v e r y s c a t t e r e d , w i t h s m a l l c o v e r 1 was r e a l i z e d t h a t an e x t r a c t more r e p r e s e n t a t i v e o f t h e s o i l s o l u t i o n t o w h i c h t h e p l a n t s a r e exposed would be o b t a i n e d by u s i n g t h e e x t r a c t from a s a t u r a t e d s o i l p a s t e (U.S. S a l i n i t y Lab. S t a f f 1954-). The d a t a from t h e f i r s t 23 samples were no t i n c l u d e d i n t h e s t a t i s t i c a l a n a l y s e s . The s a t u -r a t e d s o i l p a s t e was a l l o w e d t o e q u i l i b r a t e f o r 16 h o u r s b e f o r e e x t r a c t i o n o f t h e s o i l s o l u t i o n under s u c t i o n u s i n g a Buchner f u n n e l f i t t e d w i t h Whatman No. 42 f i l t e r p a p e r . • The r a t e ..of e x t r a c t i o n v a r i e d c o n s i d e r a b l y am6ng.,,the samples; from 15 m i n utes t o 8- h o u r s were r e q u i r e d t o produce s u f f i c i e n t e x t r a c t , f o r t h e a n a l y s e s . A t t e m p t s t o h a s t e n t h e p r o c e s s f o r t h e s l o w samples were made by a d d i n g f i l t e r p u l p and by p r o c e s s i n g o n l y s m a l l amounts o f t h e p a s t e a t a t i m e , b u t t o no a v a i l . E i g h t samples r e f u s e d t o y i e l d any e x t r a c t under s u c t i o n . F i v e o f t h e s e samples d i d y i e l d an e x t r a c t u s i n g t h e c e n t r i -f u g e f o l l o w e d by vacuum f i l t r a t i o n . Two o f t h e s e f i v e samples y i e l d e d s u f f i c i e n t e x t r a c t o n l y f o r t h e a n a l y s i s o f e l e c t r i c a l c o n d u c t i v i t y ; t h e r e m a i n i n g t h r e e y i e l d e d an amount adequate f o r t h e a n a l y s i s o f a l l para:*.', meters i n v e s t i g a t e d . The t h r e e samples t h a t d i d n o t y i e l d any e x t r a c t , even i n t h e c e n t r i f u g e , were d i s c a r d e d . The r a t e o f e x t r a c t i o n may be s i g n i f i -c a n t because d u r i n g t h e e x t r a c t i o n t h e l i q u i d w h i c h has a l r e a d y been e x t r a c t e d i s s u b j e c t t o a vacuum and t h e r e f o r e may e v a p o r a t e r e l a t i v e l y r a p i d l y (Lowe p e r s . comm.). Equipment has been d e s i g n e d t o m i n i m i z e t h e e v a p o r a t i o n under s u c t i o n and i t has been f o u n d t h a t t h e average o v e r e s t i -mate o f e l e c t r i c a l c o n d u c t i v i t y u s i n g n o r m a l s u c t i o n i s a p p r o x i m a t e l y 0.68 mmhos/cm. Carbonate and b i c a r b o n a t e were d e t e r m i n e d w i t h i n 24- hours o f t h e e x t r a c t i o n by t i t r a t i o n w i t h a c i d . Three drops o f t o l u e n e were p l a c e d i n t h e r e m a i n i n g p o r t i o n o f each sample and t h e s e were k e p t under r e f r i g e r a t i o n u n t i l a l l e x t r a c t s had been p r e p a r e d . E l e c t r i c a l c o n d u c t i v i t y was measured 18 u s i n g t h e Ra d i o m e t e r Type CDM2e c o n d u c t i v i t y meter and t h e CDG104. conduc-t i v i t y c e l l . C a l c i u m , magnesium, sodium and p o t a s s i u m were d e t e r m i n e d u s i n g a t o m i c a b s o r p t i o n s p e c t r o p h o t o m e t r y . C h l o r i d e was measured by t i t r a t i o n w i t h s i l v e r n i t r a t e u s i n g t h e Ra d i o m e t e r T i t r a t i o n A p p a r a t u s T1T1. S u l p h a t e was d e t e r m i n e d by t u r b i d i m e t r y . The e x c h a n g e a b l e sodium p e r c e n t (ESP) i s t h e s t a n d a r d parameter used t o d e s c r i b e t h e amount o f sodium i n r e l a t i o n t o o t h e r c a t i o n s i n t h e s o i l . ESP can be e s t i m a t e d from t h e sodium a b s o r p t i o n r a t i o (SAR) by use o f t h e + • T-in-n • 100 (-.01 26 + .0U75SAR) /„ ., , Q + , <,-,..+ T T , a + e q u a t i o n ESP.- ^  + ^ — 0 1 2 6 + 01475SAR) ^ n i ^ e " - S t a t e s S a l i n i t y Lab. S t a f f Na 1954-). SAR i s d e f i n e d as where Ca, Mg and Na r e f e r t o t h e con-(Ca + Mg)/2 c e n c e n t r a t i o n s o f t h e d e s i g n a t e d s o l u b l e c a t i o n s i n m i l l i e q u i v a l e n t s p e r l i t r e . N i n e o f t h e white, s a l i n e a p p e a r i n g : .samples were f u r t h e r a n a l y z e d by t h e S o i l s L a b o r a t o r y a t t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a . pH i n H^O and C a C l ^ were measured and a rou g h e s t i m a t e o f c o n s t i t u e n t s a l t s was made by X - r a y d i f f r a c t i o n . 3.4- P r e c i p i t a t i o n P r e c i p i t a t i o n was r e c o r d e d a t t h e base s t a t i o n a t C o c h i n Lake from May 7 u n t i l September 28. An A t m o s p h e r i c E n v i r o n m e n t S e r v i c e s t a n d a r d r a i n gauge was used . The base s t a t i o n was l o c a t e d w i t h i n 1 k i l o m e t r e o f t h e Horseshoe meadow and w i t h i n 15 k i l o m e t r e s o f Suds, Moores and P a t t e r s o n L a k e s . 3.5 Data a n a l y s i s To d e t e r m i n e s e a s o n a l t r e n d s i n s a l t c o n t e n t o f t h e s o i l t h e e l e c t r i c a l c o n d u c t i v i t y and p e r c e n t m o i s t u r e o f 'the t w e l v e s i t e s sampled t h r o u g h t h e seaso n were p l o t t e d a g a i n s t t i m e . R e l a t i o n s h i p s between s a l i n i t y and s o d i c i t y p a r a m e t e r s and b o t h '. i n d i v i d u a l s p e c i e s and v e g e t a t i o n communities were examined. L i n e a r r e g -r e s s i o n was used t o d e t e r m i n e whether s i m p l e l i n e a r r e l a t i o n s h i p s e x i s t e d between f o l i a r c o v e r o f i n d i v i d u a l s p e c i e s o c c u r r i n g i n more t h a n 10 r e l e v e s and e l e c t r i c a l c o n d u c t i v i t y and exchangeable sodium p e r c e n t . The log^Q o f t h e r e c o r d e d d a t a f o r b o t h t h e s e p a r a m e t e r s was used f o r t h i s a n a l y s i s . W h i t t a k e r and F a i r b a n k s (1958) s t a t e d '.The b i o l o g i c a l e f f e c t o f s a l i n i t y i n c r e m e n t s i s p r o p o r t i o n a l n o t t o a b s o l u t e magnitudes b u t t o t h e i n c r e m e n t i n r e l a t i o n t o t h e s a l i n i t y t o w h i c h i t i s added'. W a l k e r and Coupland (1968) f o u n d t h a t t h e r e l a t i o n s h i p o f t h e log^Q o f t h e r e c o r d e d s a l i n i t y v a l u e t o w e t l a n d . . v e g e t a t i o n c l o s e l y approached l i n e a r i t y . As w e l l , p e r c e n t f o l i a r c o v e r o f i n d i v i d u a l s p e c i e s o c c u r r i n g i n more t h a n 10 : r e l e v e s was p l o t t e d a g a i n s t e l e c t r i c a l c o n d u c t i v i t y and e x c h a n g e a b l e sodium p e r c e n t . F o r computer work t h e D o m i n - K r a j i n a f o l i a r c o v e r v a l u e s f o r v e g e t a t i o n were u s e d . V e g e t a t i o n communities were i d e n t i f i e d by c l u s t e r a n a l y s i s (Fox and G u i r e 1976). The c l u s t e r a n a l y s i s i s based on a h i e r a r c h i c a l g r o u p i n g method w h i c h s u c c e s s i v e l y groups r e l e v e s . A t each s t a g e an o b j e c -t i v e f u n c t i o n ( t h e sum o f t h e w i t h i n group sum o f s q u a r e s ) i s c a l c u l a t e d t o d e t e r m i n e t h e s i m i l a r i t y o f s p e c i e s c o m p o s i t i o n s o f r e l e v e s . U n l i k e some t e c h n i q u e s f o r i d e n t i f i c a t i o n o f communities, t h i s method uses s p e c i e s c o v e r v a l u e s , n o t j u s t p r e s e n c e or. absence. The p r o d u c t i s a dendrogram l i n k i n g r e l e v e s w h i c h e x h i b i t t h e g r e a t e s t s i m i l a r i t y . The number o f f i n a l g r o u p i n g s s e l e c t e d i s s u b j e c t i v e . I t i s based on t h e d e s i r e t o produce t h e s m a l l e s t number o f c l a s s e s p o s s i b l e w h i l e m i n i m i z i n g w i t h i n group v a r i a t i o n and m a x i m i z i n g between group v a r i a t i o n (Jones 1981). The dendrogram i s i n t e r c e p t e d a t t h e a p p r o p r i a t e l e v e l and t h e i n t e r c e p t e d stems a r e used t o d e l i n e a t e v e g e t a t i o n t y p e s ( O r l o c i 1975). 20 A f t e r v e g e t a t i o n communities were i d e n t i f i e d , a n a l y s i s o f v a r i a n c e (ANOVA) was used t o f i n d s i g n i f i c a n t d i f f e r e n c e s between t h e groups on t h e b a s i s o f s o i l p a r a m e t e r s . Homogeneity o f v a r i a n c e , a r e q u i r e m e n t o f ANOVA, was d e t e r m i n e d u s i n g S c h e f f e ' s t e s t . I t i s not as r i g o r o u s as t h e more commonly used B a r t l e t t ' s t e s t , b u t t h e r e i s e v i d e n c e t h a t B a r t l e t t ' s t e s t i s ' o v e r l y s e n s i t i v e t o d e p a r t u r e s from n o r m a l i t y o f t h e b a s i c o b s e r v a t i o n s ' (Winer 1971). Moderate d e p a r t u r e s from homogeneity o f v a r i a n c e do n o t s e r i o u s l y a f f e c t t h e ANOVA. T r a n s f o r m a t i o n o f a l l d a t a t o n a t u r a l l o g a r i t h m s was r e q u i r e d t o homogenize t h e v a r i a t i o n s s u f f i c i e n t l y f o r t h e ANOVA. The Student-Newman-Keuls t e s t was used t o d e t e r m i n e d i f -f e r e n c e s i n s a l i n i t y and s o d i c i t y among t h e p o p u l a t i o n means f o l l o w i n g r e j e c t i o n o f t h e n u l l h y p o t h e s e s ( Z a r 1974-, L a r k i n 1979). 4 R e s u l t s and d i s c u s s i o n 4.1 V e g e t a t i o n communities T h i r t e e n v e g e t a t i o n groups were i d e n t i f i e d u s i n g c l u s t e r a n a l y s i s ( F i g u r e 3 and T a b l e 2 ) . -HiLeven o f t h e groups a r e c h a r a c t e r i z e d by an abundance o f one o r more s p e c i e s , i n d i c a t i n g c o m m u n i t i e s . I n group 6 t h e r e i s no s i n g l e dominant s p e c i e s and t h e group appears t o beccpmposed ; o f r e s i d u a l r e l e v e s t h a t d i d n o t f i t i n t o any o t h e r g roup. I n r e l e v e s c o m p r i s i n g group 1 t h e dominant s p e c i e s i s Cortex p/iaegn.ac.iiiA; i n group 2 i t i s 3-uncLU> &.aiticuA; i n group 3 dominant s p e c i e s a r e Can&x p/iaeg/ia-aiii-6, lanaxacum o-jL-fLicinaie and f r e q u e n t l y ^ u / i c i M dalticiw, i n group 4 i t i s Poteni.li.ia anAesiina; i n group 5 i t i s fiondewn. juJLatum.; i n group 7 i t i s Suaeda dep/i&d^a; i n group.8 i t i s deAchampAia caeApvto^a; group 9 has no v e g e t a t i o n ; and i n group 10 t h e dominant s p e c i e s i s Puccineiiia dl^tanA. I n groups 11, 12 and 13 t h e moss D/tepanocidduA aduncuA i s alw a y s p r e s e n t . I n group 13 3-uncuA (LaiticuA and o f t e n DeAchamp^ia caeApitoAa a r e a l s o p r e s e n t . I n b o t h groups 11 and 12 t h e r e i s no o t h e r s i n g l e dominant s p e c i e s . Group 12 i s ^ "coTnp^se'd; o f r e l e v e s w i t h e i t h e r Slum Auave and Ag/ioAtiA Ac.a&Jia o r Caiamag/io^t-Li lnex.pan^,a and Casiex. /toAtnata as dominant s p e c i e s . Group 11 i s formed o f a l l o t h e r r e l e v e s c o n t a i n i n g an abundance o f d/iepanociaduA aduncuA. I n t h i s group dominants i n c l u d e Poa pA.ateru>lA, Uo/vleum (Ln.achyantheA.um., DeAchampAia caeApitoAa-, Catex. pn.aeg/iaciiiA, C, aquatiiiA, and^uncuA (LaiticuA, Group 6 c o n t a i n s a l l o t h e r r e l e v e s t h a t d i d n o t f i t i n t o t h e 12 groups d e s c r i b e d above. I t c o n t a i n s subgroups w i t h dominants o f BiAtichiiA At/iicta, ScijipuA nevadenA-u>, AiopecuAjuA p/iaten^e, A. aequaitA', Bec.l<mannla -sizygachne, ^.uncuA (LaiticuA, Potenti.Ha aru>ejiina, and ho/ideum juAatum. AiopecusiuA aequaiiA, A, p/iaten^e, Sci/ipuA nevadenAiA and Beckmannia Ayzigachne g e f t e r a i l y ' " o c c u r - . i n m o i s . t e r . c o n d i t i o n s t h a n ; a r e ; Euclidean distance H -(TO c i-i CD O I—1 c tn c+ CD 3 P I—1 «< co H -CO a. 3 ex o ere P> 3 Community Canex p/iaegnjaciliA f | 2-uncuA (LalticuA Canex p/iaeg/iaciliA "£ Taraxacum, o-fLJLicinale to} Ilk Potent-ilia anAesima u> ii /3t>—. 13/ Ho/uLeum ju&atum 8 r e s i d u a l releves Suaeda de-p/veAAa'^ DeAchamp-iia caeApitoAa no v e g e t a t i o n ^ 172 II 11 loZ /? 98 P u c c i n e i i i a diAtanA ^ 66 d/ie-panocladuA aduncuA £ Sium Auave1'? Calamag/LOAtiA inexparua u as fofl 62 r e s i d u a l d/vepanocladuA aduncuA releves tor IZo D/iepanocladuA aduncuA ^JuncuA (LaiticuA & T a b l e 2\ Per ce n t f r e q u e n c y o f s p e c i e s ' i S p e c i e s AchLtlea rn.Llle.loHum Agn.opyn.on nepenA Agnopynon AmLthLL Agnopynon AutAecundum Agnopynon tnachycauium v a r . novae-anglLae Agnopynon tnachycauium v a r . tnachycauium Agnopynon tnachycauium v a r . unLlatenale Agnopynon vLolaceiun . . AgnoAtLA AcaJLna AlopecunuA aequalLA . AlopecunuA pnatenAe. AmUlyAtegLum nLpanLum AmfLlyAtegLum AenpenA ArvtennanLa spp. AnnLca chamLAAonLA AAten. campeAtnLA v a r . campeAtnLA AAten panAUA AAten spp. BeckmannLa AyALgachne Bnyum spp. CalamagnoAtLA LnexpanAa . Canex aquatLlLA Canex athuzA.6deA Canjex athnoAiachya Canex. aune.a Canex dLApenma Canex laALocanpa Canex pannyana Canex. pnaegnacLlLA Canex noAtnata Canex AasutioellLL Canex spp. CAenopodLum nuAnum DanthonLa LntenmedLa v e g e t a t i o n groups i d e n t i f i e d by c l u s t e r a n a l y s i s . V e g e t a t i o n group 1' 2 3 4 5 6 7 8 9 10 11 12 13 7 8 6 6 17 17 17 11 6. 60 33 17 8 22 20 U 28 60 11 U 15 17 7 17 U 21 U 33 U ; 8 15 11 33 : 11 14: 17 , 1 5 11 U 17 57 8 U U 14 8 17 7 17 22 29 15 6 15 .60 22 17 23 29 17 8 6 4-0 22 28 17 7 14 17 14 7 93 U 100 46 8 8 56 U 17 t!V>. * ^ 2 4 cv CD H En OA vD T- N O O !> O t -!> O T- O O V N cv oo v - cv o o ON CV oo cv 00 cv -H- -Nt 00 cv t— o o cv cv cv cv -4-cv cv 00 oo o^ co i n o o ft o U CO o tUD O a 'I_ o C~-• H -p ni - P N O CD bo CD > \D C V \ 0 \ 0 N O o <TN ir\ OA cv — O U " \ o cv co oo o cv 00 cv oo OA o cv co OA 00 oo co L P , \ 0 cv ON, cv . CD • H -p o o ON, OA ON, CV ON cv o m OA oo o o V A o T- V - O N cv cv cv OA OA cv o U A -Ni--4-CD • H o CD ft C O 'sj' ~S ->) ->> •>) CCj Q Q C^) k j k j kj U. <Ch 5) 3) . ^ 5 •>  o o 3 a ^ ^ ^,5; 5: • •<? fV>> 01 ^) <8^  ^ ^ ^) 5: a T a b l e 2 . c o n t i n u e d S p e c i e s Puc.aine.tiia nutta'liiana Ranunculus cumJLalania Ranunculus macounii Ranunculus occidentals. Ranunculus AclenatuA Rumex. ma/iitimuA ScinpuA nejjadejvbiA Senecio paupeACulxu, SiAyn.inch.ium. anguAti/olium Sium Auave Smiiacina Atellata S.oiidago canadenAis Stellania longipeA v a r . longipeA Suaeda depn&AAa lanaxacum 0-fLfi.icinale lh.aiictn.um. venuloAum 7/ii-fLolium. hy&Jtidum 7ni-fLo liiun. njzpenA 7/iiglochin maA.it.imum. Viola adunca v a r . adunca Viola spp. VeAOnica Acuteliata V e g e t a t i o n group 1 2 3 4 5 6 7 8 ' 9 10 11 12 13 28 31 3 1 ' 23 8 43 U 22 15 15 12 23 6 15 17 12'.. 20 12 23 100 U 71 100. 31 12 15 60 17 20 29 U 15 25 17 8 17 44 22 11 17 17 29 11 : 14 U . 66 20 "26 f o u n d i n meadows. T h e i r p r e s e n c e may r e s u l t from a h i g h e r water t a b l e i n p r e v i o u s y e a r s . More e x t e n s i v e s a m p l i n g might d i s t i n g u i s h a DLitlchtlA Ainlcia community i n meadows. I n most c a s e s , s p e c i e s a r e r e l a t i v e l y w i d e l y d i s p e r s e d t h r o u g h o u t t h e g r o u p s . A l l s p e c i e s f o u n d i n more t h a n two r e l e v e s o c c u r i n more t h a n one community. The dominant s p e c i e s 3-uncuA in.li.ic.LU,, Potentllla anAesiina, Canex. pn.ae.gn.acllU>, Hondeum juAaium, Tanaxacum o-ffLlcLnatLe., and DeAchampAia caeApiioAa a r e f o u n d i n 10, 9, 9, 7, 9, and 9 groups r e s p e c -t i v e l y . Communities appear t o grade i n t o one a n o t h e r as d i f f e r e n t s p e c i e s become dominant. E x c e p t f o r groups 7 and 9 (Suaeda depneAAa and no vege-t a t i o n ) t h e r e i s a l a r g e number o f s p e c i e s i n a l l g r o u p s . A p a r t from t h e s e l a s t two g r o u p s , t h e minimum i s 13 s p e c i e s i n group. 10. . 4.2 S o i l s The range median and mean o f a l l s o i l p a rameters t e s t e d f o r t h e 116 sample p l o t s t h a t y i e l d e d a t e s t a b l e e x t r a c t a r e p r e s e n t e d i n T a b l e 3. The d i s t r i b u t i o n s o f a l l o f t h e s e parameters a r e skewed t o t h e r i g h t . One hundred and f i v e o f t h e samples had an e l e c t r i c a l c o n d u c t i v i t y l e s s t h a n 4 mmhos/cm. One hundred and e i g h t o f t h e samples had an exchangeable sodium p e r c e n t a g e l e s s t h a n 15. I n 54- p e r c e n t o f samples, sodium dominates t h e s o l u b l e c a t i o n s . Mag-nesium dominates 37 p e r c e n t o f samples, w h i l e c a l c i u m i s t h e dominant s o l u b l e c a t i o n i n 9 p e r c e n t o f samples. P o t a s s i u m o c c u r s i n much s m a l l e r amounts t h a n t h e o t h e r c a t i o n s . F i f t y - f i v e samples y i e l d e d s u f f i c i e n t e x t r a c t t o d e t e r m i n e s o l u b l e a n i o n s . B i c a r b o n a t e i s t h e dominant s o l u b l e a n i o n i n 52 p e r c e n t o f samples, s u l p h a t e dominates i n 33 p e r c e n t o f samples, c a r b o n a t e ^ i s ' J dominant i n 14 p e r c e n t and c h l o r i d e i n o n l y 1 p e r c e n t . S u l p h a t e and b i c a r b o n a t e a r e w i d e s p r e a d , but c h l o r i d e T s ~ , p r e s e n t i n 75 p e r c e n t o f T a b l e 3 . Range, median, mean and s t a n d a r d d e v i a t i o n o f s o l u b l e c a t i o n s , s o l u b l e a n i o n s , e l e c t r i c a l c o n d u c t i v i t y (EC) and exchangeable sodium p e r c e n t (ESP) o f s o i l s . C a + + ( Mg meq/100 N a + g s o i l ) K + C I " 30I co^ HC0~ mmhos/ cm EC ESP H i g h 9.01 13.00 9 . 0 4 .89 . 5 6 17.30 14.10 6.2 16.50.71 .10 Low .00 .00 .01 .00 .00 .00 .00 .00 .17 .00 Median .05 .22 . 4 5 .03 .03 .16 .00 .27 1.60 3.30 Mean S t a n d a r d d e v i a t i o n . 4 9 1.31 . 6 9 1.82 1.06 1.-65 .07 .11 .05 .10 .77 2 e 28 . 3 4 1 . 4 3 . 4 6 ..84 .30 . 4 6 1.38 .84 samples and c a r b o n a t e i n o n l y 43 p e r c e n t . A l l samples w i t h e l e c t r i c a l c o n d u c t i v i t y o v e r 4 mmhos/cm and/or exchangeable sodium p e r c e n t a g e o v e r 15 were g r e y i s h t o w h i t e , b u t not a l l samples i n t h a t c o l o u r range t e s t e d were h i g h i n salts»(Appendix I I I ) . N i n e o f t h e g r e y i s h t o w h i t e samples were t e s t e d f o r c o n s t i t u e n t s a l t s and e i g h t o f t h e s e samples were t e s t e d f o r pH. C a l c i u m c a r b o n a t e was r e l a - . t i v e l y abundant i n a l l o f t h e s e samples, b u t abundance o f o t h e r s a l t s v a r i e d w i d e l y even among samples from s i t e s t h a t were r e l a t i v e l y c l o s e t o g e t h e r . The h i g h l e v e l s o f c a l c i u m were n o t r e v e a l e d " by t h e .. ' ~) t e s t s f o r s o l u b l e c a t i o n s . T h i s may have r e s u l t e d from a t l e a s t two f a c t o r s . C a l c i u m c a r b o n a t e i s r e l a t i v e l y i n s o l u b l e so t h e e x t r a c t p r o b a b l y c o n t a i n e d l i t t l e o f t h i s s a l t . As w e l l , c a l c i u m c a r b o n a t e i n t h e s o l u t i o n may have p r e c i p i t a t e d between t h e t i m e o f e x t r a c t i o n and t h e t i m e o f ana-l y s i s . The l a t t e r p roblem c o u l d have been p r e v e n t e d by t h e a d d i t i o n o f one drop o f 0.1 per c e n t sodium hexametaphosphate s o l u t i o n f o r each 25 ml o f e x t r a c t . The n i n e samples showed a range o f e l e c t r i c a l c o n d u c t i v i t y from 1.3 t o 16.5 mmhos/cm, o f exchangeable sodium p e r c e n t a g e from 3.7 t o 69.0 and of pH from 8.82 t o 10.3. A pH g r e a t e r t h a n 8.5 g e n e r a l l y i n d i c a t e s an excha n g e a b l e sodium p e r c e n t a g e g r e a t e r t h a n 15. However, a l t h o u g h pH o f a l l samples exceeded 8.5» 4 o f t h e 8 samples t e s t e d f o r pH had an exchange-a b l e sodium p e r c e n t a g e o f much l e s s t h a n 15. T h i s may r e f l e c t d i l u t i o n o f t h e s o i l samples t o a 1:1 (and i n one case 1:1.5) s o i l . r w a t e r r a t i o f o r t h i s t e s t . The s t a n d a r d method f o r t h i s a n a l y s i s i s t o d e t e r m i n e pH on t h e e x t r a c t o f a s a t u r a t e d s o i l p a s t e . The s o i l : w a t e r r a t i o o f t h e s e samples f o r s o l u b l e c a t i o n c o n t e n t , from w h i c h exchangeable sodium p e r -centage was d e r i v e d , was d e t e r m i n e d by s a t u r a t e d s o i l p a s t e and v a r i e d f rom 1:.3 t o 1:1 w i t h an average o f 1:.56. S i n c e a r i s e i n m o i s t u r e \23-c o n t e n t t e n d s t o i n c r e a s e pH r e a d i n g s , pH e s t i m a t e s a r e somewhat h i g h . 4.3 S e a s o n a l v a r i a t i o n s i n s o i l s a l i n i t y and m o i s t u r e c o n t e n t E l e c t r i c a l c o n d u c t i v i t y and p e r c e n t m o i s t u r e t h r o u g h t h e summer a t t h r e e s i t e s a t each, o f f o u r w e t l a n d s a r e shown i n F i g u r e s 4- t o 1.- P r e -c i p i t a t i o n f o r t h e p e r i o d i s shown in/F/'igure 8 . Showers i n t h e r e g i o n a r e o f t e n v e r y l o c a l i z e d , hence s m a l l amounts o f p r e c i p i t a t i o n r e c o r d e d may not r e f l e c t t h e amount r e c e i v e d a t t h e more d i s t a n t s i t e s . The l a r g e r storms p r o d u c i n g more t h a n s e v e r a l m i l l i m e t r e s o f p r e c i p i t a t i o n a f f e c t l a r g e r a r e a s . The f a c t t h a t s o i l m o i s t u r e d i d not n e c e s s a r i l y i n c r e a s e s h o r t l y a f t e r t h e heavy r a i n s i n l a t e August i n d i c a t e s t h a t e a r l i e r h i g h m o i s t u r e l e v e l s a r e more s t r o n g l y a f f e c t e d by groundwater l e v e l s . S i n c e 60 p e r c e n t o f p r e c i p i t a t i o n o c c u r s from O c t o b e r t o A p r i l , s p r i n g smowmelt g e n e r a l l y produces t h e h i g h e s t w a t e r l e v e l s o f t h e y e a r . C o n s e q u e n t l y , d e c r e a s i n g m o i s t u r e and i n c r e a s i n g c o n d u c t i v i t y were e x p e c t e d w i t h t i m e . However, n e i t h e r e l e c t r i c a l c o n d u c t i v i t y nor s o i l m o i s t u r e showed any d i s t i n c t i v e s i m i l a r t r e n d between June 22 and August 31 a t t h e t w e l v e s i t e s . Even a t d i f f e r e n t s i t e s w i t h i n w e t l a n d s , s e a s o n a l v a r i a t i o n s i n t h e two p a r a m e t e r s d i d n o t ' f o l l o w t h e same t r e n d s . An e x a m i n a t i o n o f t h e d a t e o f t h e maximum v a l u e f o r each parameter a t each s i t e shows t h a t maxima o c c u r r e d on a l l sample d a t e s w i t h t h e e x c e p t i o n o f J u l y 2 0 . The a v e r a g e range from maximum t o minimum e l e c t r i c a l c o n d u c t i v i t y r e c o r d e d a t each s i t e was 1.67 mmhos/cm. A t 4 s i t e s t h e range was o v e r 2.5 mmhos/cm and a t one s i t e t h e range was 7 mmhos/cm. Other r e s e a r c h on s e a s o n a l w e t l a n d s a l i n i t y t r e n d s shows a n e g a t i v e c o r r e l a t i o n between s o i l s a l i n i t y and m o i s t u r e c o n t e n t ( J a c k s o n e t a l . 1956, B o l e n . 1 9 6 4 ) . I n t h i s s t u d y 42 o f t h e 51 i n c r e a s e s o r d e c r e a s e s i n m o i s t u r e c o n t e n t o f t h e s o i l f rom one v i s i t t o t h e n e x t were accompanied 30 ;-IOCJ-Suds Lake s i t e 1 p e r c e n t m o i s t u r e 0 100 80 60 40 20 0 100 80 60 40 20 Suds Lake s i t e 2 J u Suds Lake s i t e 3 • — p e r c e n t m o i s t u r e — e l e c t r i c a l c o n d u c t i v i t y l i i • 10 0 10 e l e c t r i c a l c o n d u c t i v i t y (mmhos/cm) 0 10 • 4 June J u l y J u l y Aug. Aug. Aug. 22 6 20 3 17 31 F i g u r e 4 . E l e c t r i c a l c o n d u c t i v i t y and per c e n t m o i s t u r e a t Suds L a k e . 100 80 -60 40 20 0 100 80 60 p e r c e n t m o i s t u r e 40 20 0 100 80 60 40 20 0 P a t t e r s o n Lake s i t e 1 p e r c e n t m o i s t u r e e l e c t r i c a l c o n d u c t i v i t y - 6 P a t t e r s o n Lake s i t e 2 • #_ • • •-P a t t e r s o n Lake s i t e 3 10 0 10 6 e l e c t r i c a l 4 c o n d u c t i v i t y (mmhos/cm) 0 10 June J u l y J u l y Aug. Aug. Aug. 22 6 20 3 17 31 F i g u r e 5. E l e c t r i c a l c o n d u c t i v i t y and p e r c e n t m o i s t u r e a t P a t t e r s o n Lake. .32-100 80 60 4-0 20 0 100 80 60 40 p e r c e n t m o i s t u r e 20 0 100 80 60 40 20 Moores Lake s i t e 1 p e r c e n t m o i s t u r e e l e c t r i c a l c o n d u c t i v i t y Moores Lake s i t e 2 Moores Lake s i t e 3 • -0 I *-10 6 4 0 10 4 e l e c t r i c a l 2 c o n d u c t i v i t y (mmhos/cm) 0 10 J 1 0 June J u l y J u l y Aug. Aug. Aug. 22 6 20 3 17 31 F i g u r e 6. E l e c t r i c a l c o n d u c t i v i t y and per c e n t m o i s t u r e a t Moores Lake. 3-3 p e r c e n t m o i s t u r e 100 80 60 40 20 0 100 80 60 40 20 0 100 80 60 40 f-20 Horseshoe meadow! s i t e 1 pe r c e n t m o i s t u r e e l e c t r i c a l c o n d u c t i v i t y A 6 4 4 • Horseshoe meadow s i t e 2 Horseshoe meadow s i t e 3 • 10 0 10 6 e l e c t r i c a l 4 c o n d u c t i v i t y (mmhos/cm) 0 10 June J u l y J u l y A u g . A u g . A u g . 22 6' 20' 3 22 31 F i g u r e 7. E l e c t r i c a l c o n d u c t i v i t y a.nd p e r c e n t m o i s t u r e a t Horseshoe meadow. 16 U 12 10 p r e c i p i t a t i o n (mm) 4-+ + June J u l y J u l y Aug. 22 6 20 3 Aug. 17 -\ Aug, 31 F i g u r e 8. P r e c i p i t a t i o n from June 22 t August 31 a t C o c h i n Lake bas s t a t i o n . by a change i n e l e c t r i c a l c o n d u c t i v i t y i n t h e same d i r e c t i o n . I n t h e r e m a i n i n g 9, t h e p e r ce n t m o i s t u r e changed by o n l y one p e r c e n t a g e .point w h i l e t h e e l e c t r i c a l c o n d u c t i v i t y remained t h e same. A p o s s i b l e mechanism f o r t h e r e s u l t s o b t a i n e d here i s as f o l l o w s . S o i l m o i s t u r e i s c o n t r o l l e d l a r g e l y by groundwater t a b l e . When s o i l m o i s t u r e i s h i g h t h e c o n c e n t r a t i o n o f s a l t s i n s o l u t i o n may be r e l a t i v e l y l o w . As s o i l m o i s t u r e d e c r e a s e s t h e s a l t s become more c o n c e n t r a t e d and may d i f f u s e t o a r e a s o f l o w e r con-c e n t r a t i o n deeper i n t h e s o i l . Thus when s o i l m o i s t u r e i s h i g h t h e t o t a l s a l t c o n t e n t may be h i g h e r t h a n when s o i l m o i s t u r e i s low. The i m p l i c a t i o n s o f t h e s e r e s u l t s and e x p l a n a t i o n a r e s i g n i f i c a n t . F i r s t , t h e p o s s i b i l i t y o f v a r i a t i o n s o f as much as 7.0 mmhos/cm i n 'i. e l e c t r i c a l c o n d u c t i v i t y t h r o u g h t h e season means t h a t samples must be t a k e n i n v a r y i n g m o i s t u r e c o n d i t i o n s t o a d e q u a t e l y c h a r a c t e r i z e a s i t e . Second, i t must be u n d e r s t o o d t h a t t h e measurement o f s a l i n i t y on t h e e x t r a c t o f a s a t u r a t e d s o i l p a s t e g i v e s an i n d i c a t i o n o f t o t a l s a l t s t h a t may be u s e f u l f o r c o m p a r a t i v e p u r p o s e s , but i t i s not n e c e s s a r i l y i n d i c a t i v e o f t h e range o f c o n d i t i o n s t o w h i c h t h e p l a n t s a r e exposed. To d e t e r m i n e t h e o s m o t i c p r e s s u r e s t o w h i c h t h e p l a n t s a r e b e i n g sub-j e c t e d i t would be n e c e s s a r y t o t e s t t h e s a l i n i t y o f an e x t r a c t o f s o i l m o i s t u r e t a k e n a t f i e l d c o n d i t i o n s . F u r t h e r m o r e , i f s a l i n i t y i n c r e a s e s and d e c r e a s e s w i t h m o i s t u r e t h e e f f e c t s o f h i g h s a l i n i t y a r e a m e l i o r a t e d . One o f t h e main problems o f h i g h s a l i n i t y i s m o i s t u r e s t r e s s . However, i f s a l i n i t y i s h i g h e s t when s o i l m o i s t u r e i s a l s o h i g h e s t t h i s problem would be r e d u c e d . Thus s a l i n i t y s h o u l d be examined i n r e l a t i o n t o f i e l d m o i s t u r e . The l a r g e d i f f e r e n c e s i n e l e c t r i c a l c o n d u c t i v i t y r e c o r d e d .through t h e season a t some s i t e s must be borne i n mind i n i n t e r p r e t a t i o n o f t h e r e s u l t s o f t h e s o i l s a n a l y s i s and v e g e t a t i o n s o i l r e l a t i o n s h i p s i n t h i s s t u d y . The l i m i t i n g f a c t o r t o some s p e c i e s may be maximum e l e c t r i c a l c o n d u c t i v i t y t h r o u g h t h e gro w i n g season w h i c h may o r may not be t h e same as t h e e l e c -t r i c a l c o n d u c t i v i t y a t t h e t i m e o f s a m p l i n g . 4-.4- R e l a t i o n s h i p s between i n d i v i d u a l s p e c i e s and s a l i n i t y and s o d i c i t y R e g r e s s i o n a n a l y s i s i n d i c a t e s , a t t h e 5 p e r c e n t l e v e l o f s i g n i f i c a n c e , t h a t Ranunculus cymialanla d e c r e a s e s w i t h i n c r e a s i n g exchangeable sodium p e r c e n t and t h a t f o l i a r c o v e r o f Canex. pnaegnacillA i n c r e a s e s w i t h b o t h e l e c t - : r i c a l c o n d u c t i v i t y and exchangeable sodium p e r c e n t . These f i n d i n g s f o r Canex pnaegnacillA a r e somewhat m i s l e a d i n g f o r t h e s p e c i e s i s r a r e l y f o u n d a t e l e c t r i c a l c o n d u c t i v i t i e s o v e r 4 mmhos/cm o r exchangeable sodium p e r c e n t s o v e r 15. However t h e s e absences were not i n c l u d e d i n t h e r e g r e s s i o n . The n u l l h y p o t h e s e s were'Accepted: f o r a l l o t h e r r e g r e s s i o n s . The s c a t t e r g r a m s ( F i g u r e s 9 t o 13) showing s p e c i e s abundance as r e l a t e d t o e x c h a n g e a b l e sodium p e r c e n t and e l e c t r i c a l c o n d u c t i v i t y , d e m o n s t r a t e t h a t , a t t h e s a l i n i t y where each s p e c i e s t h r i v e s b e s t , i t may o c c u r i n a l m o s t any amount up t o i t s maximum. DeAchampAia caeApitoAa, Poa pnaienAiA, Poi.eni.llla gnaciliA, DnepanocladuA aduncuA, and CalamagnoAtiA-inexpanAa, a r e a l l r e s t r i c t e d t o e l e c t r i c a l c o n d u c t i v i t i e s l e s s t h a n 3.6 mmhos/cm. Suaeda de.pneAAa i s t h e o n l y s p e c i e s t h a t does not o c c u r on t h e f r e s h e s t s i t e s , b u t i t does o c c u r from 2 mmhos/cm t o 10 mmhos/cm. The r e s t o f t h e s p e c i e s , Puccinellia dlAtanA, J.uncuA i a l t i c u A , fiondeum juiatum, Poten-t l l l a anAenina, RanunculuA cymi.alan.la, Tanaxacum officinale, Canex pnae.-gnaclllA, and AAten. panAuA o c c u r i n a r e l a t i v e l y b r o a d range o f c o n d i t i o n s . A l l a r e f o u n d on t h e f r e s h e s t s i t e s and t h e i r maximum t o l e r a b l e e l e c t r i c a l c o n d u c t i v i t y r a n g e s from 5.5 f o r AAten. panAUA t o 9 mmhos/cm f o r Puccincllia dlAtanA, JuncuA i a l t l c u A , Potentllla anAenina, and 37 100 o a o o a o .-p & CD p CD PH CD > O O u •H rH O 80. 60 40 20 ' 0 100 80 4 60 40 20 100 80 60 40 20 — I r 4 • • 0 10 20 30 40 50 e x c h a n g e a b l e sodium p e r c ent 1— 40 • # • • •• • 0 0 T 7 F 10 e l e c t r i c a l c o n d u c t i v i t y (mmhos/cm) Figure..9. P o l i a r cover, o f PottuvtlMui 'aixAa/iina-,- ^uncits' &Mticiu> and •''DeAchamfiAia--ha&ApitbAa^versus.' exc h a n g e a b l e sodium pe-rj c e n t and e l e c t r i c a l c o n d u c t i v i t y . 38 o C3, 100 80 60. 40 20 0 100 1 1580 'CD cv •• •5 ©60 "9 CD o i>4.0 . . H20 a H co ,o 0 iL •N1 100 -80 60 . 40 20 iL o - i — 10 -I— 20 50 • > S N < 30 40 excha n g e a b l e sodium per c e n t 60 0 T 4 10 e l e c t r i c a l c o n d u c t i v i t y (mmhos/cm) F i g u r e : 1.0.• - F o l i a r c o v e r : oT. Pqa^p/tatenA-L-d, "Ca£amag/ioAiiA;..inexpanAa- and Attest, panAUA v e r s u s e x c h a n g e a b l e sodium p e r c e n t and e l e c t r i c a l c o n d u c t i v i t y . 3 9 1 0 0-irr o 80' 60-40. 20. 0. ' 100-80 J -p. CD •5 u •s & 6o 0 M CD 1 o 40 y ° § 3 20 o 5> o O 100 J 80 4 60 40 20 J • • • • -i r 10 20 30 40 50 e x c h a n g e a b l e sodium p e r c e n t > • • • • •• • ••• • • • • • 60 0 T 2 T " 6 4 T 10 e l e c t r i c a l c o n d u c t i v i t y (mmhos/cm) F i g u r e 1'1.'Fo^iair 3?ver .'of Casiexrft/iazgndcilia., Jasiaxacujfc-officinalcj&nd Ranunculus cumJi.ataA.ia v e r s u s exchangeable sodium p e r c e n t and e l e c t r i c a l c o n d u c t i v i t y . 100 CL 80-60-40-2 0 -0-100-80' §13 IN ® * ^ 2! v •5 > 3 s 3 u a. 3 20. •H H O «H • 60-40 J ">5 1004 80-60 J o 2.0. -r 1 r • • • |M • 0 T " 1 1 I— 10 20 30 40 50 excha n g e a b l e sodium p e r c e n t T r » • • 60 0 2 4 6 8 10 e l e c t r i c a l c o n d u c t i v i t y (mmhos/cm) F i g u r e 12. F o l i a r . . c o v e r - o f Suaeda d&p/z&A4ai<.Puccin&llia: d KoJideAm. ju&atum v e r s u s exchangeable sodium p e r c e n t and e l e c t r i c a l c o n d u c t i v i t y . 4V 100 -fft 80 "8 o o 60 40 •>) o ^0 -si o -p a 8 20 CD • P-i :|l00 o • o u 2 80 •H H O ' 60 40 20 T T 1 1 r tl I 1 1 1 i 10 20 30 40 50 e x c h a n g e a b l e sodium p e r c e n t - i ^ - i 1 r *0 T i i i 60 0 2 4 6 8 e l e c t r i c a l c o n d u c t i v i t y (mmhos/cm) 10 F i g u r e - 1 3 . - F o l i a r cover' o f djte.pdnoctad.LU> adma-ciu .and P:oten£lllq g/iacilis v e r s u s e x c h a n g e a b l e sodium p e r c e n t and e l e c t r i c a l c o n d u c t i v i t y . .42 i JaA.ax.acuM oJL-jH.lcln.ale., Poo pnatenAlA, Potentilla g/iaciiiA and DAepanociaduA adiwcilA .occurred where exchangeable sodium p e r c e n t was l e s s t h a n 10. E x c e p t f o r o c c a s i o n a l o c c u r r e n c e s a t h i g h e r v a l u e s , JoAaxacum o/./.icinaie, Caiamag/toAtiA inex-panAa, AAteA panAUA, DeAchampAia caeApiioAa, 3-uncuA HalticuA, Poi.eni.iiia anAeyiina, RanuncuiuA cyrrd.aiaA.ia, and COACX pAaegAaciiiA were f o u n d where exch a n g e a b l e sodium p e r c e n t d i d n o t exceed 16. fLoAdeum juJLatum and Puccinellia diAianA were w i d e s p r e a d t o exchangeable sodium p e r c e n t a g e s o f 30 and 55, r e s p e c t i v e l y . Suaeda dep/ieAAa g e n e r a l l y o c c u r r e d where exch a n g e a b l e sodium p e r c e n t a g e was g r e a t e r t h a n 15» though i t o c c u r r e d i n a s m a l l amount (5 p e r c e n t f o l i a r c o v e r ) a t one s i t e where t h e exchangeable sodium p e r c e n t was 0. 4.5 R e l a t i o n s h i p s between v e g e t a t i o n communities and s a l i n i t y and s o d i c i t y The r e s u l t s o f t h e A n a l y s i s o f V a r i a n c e and Student-Newman-Keuls t e s t s show t h a t t h e r e a r e i n f a c t s i g n i f i c a n t d i f f e r e n c e s i n s o i l s a l i n i t y and s o d i c i t y p a r a m e t e r s among v e g e t a t i o n communities ( T a b l e s 4-10, A p p e n d i x V ) . An e x a m i n a t i o n o f t h e s e t a b l e s r e v e a l s t h a t e xchangeable sodium p e r c e n t i s t h e most i m p o r t a n t parameter f o r d i f f e r e n t i a t i n g among communities ( s i g n i f i c a n t i n 39 o f a p o s s i b l e 78 p a i r s o f g r o u p s ) , however e l e c t r i c a l c o n d u c t i v i t y and s o l u b l e p o t a s s i u m and sodium a r e s i g n i f i c a n t i n 20, 21 and 15 comparisons r e s p e c t i v e l y . A l t h o u g h s o l u b l e p o t a s s i u m o c c u r s i n much s m a l l e r amounts t h a n o t h e r c a t i o n s i t i s s i g n i f i c a n t l y d i f f e r e n t i n 21 p a i r s o f g r o u p s , i n d i c a t i n g t h a t i t i s i m p o r t a n t i n s m a l l q u a n t i t i e s . S o l u b l e magnesium and c a i c i u m , though g e n e r a l l y p r e s e n t i n l a r g e amounts, r a r e l y a f f e c t t h e v e g e t a t i o n s i g n i f i c a n t l y . Magnesium does n o t appear s i g n i f i c a n t i n any c o m p a r i s o n s , w h i l e c a l c i u m i s o n l y s i g n i f i c a n t by i t s p a u c i t y where t h e r e i s no v e g e t a t i o n . T a b l e 4 . A n a l y s i s of v a r i a n c e and Student-Newraan rKeuls t e s t s f o r d i f f e r e n c e s i n s o l u b l e magnesium c o n t e n t o f t h e s o i l among v e g e t a t i o n g r o u p s . 5 . 3 o 3 a © es > > 3 3 le on i. •a "8 2 re ti O rH H ta o cd cd CD a ta a CD Q L - H •H > <S) CQ CO a CD CD o Q U U d a t a ) •<? a Dominant a 6 a g 1 3 5 I ^ ^ 3 ^ ^ s p e c i e s 5 § 3 ^ g § 3 - 3 "« -SJ ^ 3 3-3 ^ a a -9 -si 3 o a ^ ^ • ^ o a ">i a ^ a a e <^  o ^ ^ ^ o ^ } < ^ a " v ° a l ^ 1 o C L O • + J CU -o o d <? <^  5 J c ' N o <5a <y ^ a o a a a ,a a. croj rcj ci. ^ =e <U Q«s OS Community 7 12 6 9 4 13 8 10 ,.2 5 1 13 3 number n 5 7 12 4 12 9 5 12 7 17 .14 6 6 x ( l o g ) - 3 . 25 - 2 . 4 3 -2.41 - 1 . 8 5 - 1 . 5 5 - 1 . 4 5 - 1 . 3 7 - 1 . 2 3 - 1 . 2 3 - 1 . 0 5 - 1 . 0 4 - 1 . 0 0 - . 9 0 ( u n t r a n s f o r m e d .09 .15 .43 .'.18 .50 .38 .42 1.50 1.25 1.42 .88 .39 ..'48 ^ c o n t i n u o u s l i n e s i n d i c a t e v e g e t a t i o n groups t h a t a r e n o t s i g n i f i c a n t l y d i f f e r e n t a t the 95 p e r cent c o n f i d e n c e l e v e l i n s o l u b l e magnesium c o n t e n t o f t h e s o i l . T a b l e 5. A n a l y s i s of v a r i a n c e and Student-Newman-Keuls t e s t s f o r d i f f e r e n c e s i n s o l u b l e calcLum c o n t e n t o f the s o i l among v e g e t a t i o n g r o u p s . a) •9 Dominant s p e c i e s o •H -P as -P CD ttO CD > O CI 3 o a CL w CD > CD H CD U H al Ti •r) W CD a o o a •5-§ ; ."8 .o-O H O aJ CL-H ^ ca •5 CD d f-i o o CL o O QL 0 «e 1 a QL a <0 u •s 1 >^> --3 •>> o o •>> a M. ^ Si-cs o QL O a a o a •>> s. Community number 9 4 1 U 12 10 •12 4 12 12 17 13 ' 6 11 x ( l o g ) -5.18 -4.11 -3.10 -3.09 -2.82 -2.59 -2.59 -2.58 -2.22 -2.17 -1.90 -1.75 -.54 ( u n t r a n s f o r m e d • • .008 .02 .38 1.44 1.24 .36 .12 .59 .20 d a t a ) „ — —-.69 .25 .20 1.72 ^ c o n t i n u o u s l i n e s i n d i c a t e v e g e t a t i o n groups t h a t a r e not s i g n i f i c a n t l y d i f f e r e n t a t t h e 95 per c e n t c o n f i d e n c e l e v e l T a b l e 6. A n a l y s i s o f v a r i a n c e and Student-Ne.wman-Keuls t e s t s f o r d i f f e r e n c e s i n s o l u b l e ' sodium c o n t e n t o f t h e s o i l a m ong'vegetation g r o u p s . Dominant s p e c i e s "8 o o ctf , 3 QL'-H CO <?• CD O o a o a -y a ^ . 3 - 3 a o <=4 o 3 J c^ a •5 a •->  o a •o § " 8 3 - S "8 "3 o ^ O S3) c-. 6 3 a Q CJ .<3 •5 § •->) o o ••%> <s? s i . CJ) o CO CD > 0 H 0 U tl •H CO CD U o a O) C J -y a o o a ca. o •H -P erf -P 0 W) © > o a a Community number- 12 7 2 7 8 13 4 11 12 10 12 U 12 17 * ( l o g e ) ( u n t r a n s f o r m e d d ata) -2.95 -1.8T .08 .62 -1.65 -1.64 -1.56 -1.45 -1 .00 - , . 4 9 - . 4 8 -.01 .02 .74 .84 .46 - .24 .49 .31 .56 .76 .92 2.19 1.57 2.76 3.01 t c o n t i n u o u s l i n e s i n d i c a t e v e g e t a t i o n groups t h a t a r e n o t s i g n i f i c a n t l y d i f f e r e n t a t t h e 95 per c ent c o n f i d e n c e l e v e l s T a b l e 7. A n a l y s i s o f v a r i a n c e and Student-Newman-Keuls t e s t s f o r d i f f e r e n c e s i n s o l u b l e p o t a s s i u m o f t h e s o i l among v e g e t a t i o n among v e g e t a t i o n g r o u p s . n o • 3 °° a o et. o a •3 § § -5 -3 • 3 3 •>> Ci 3 W ">> *o a CD a •>> w •>> o a _ •>) •<? e a o o •<? <D •<?•<? CD a si. o e a ~a -w ^ s S 3 ">> H ^ M . 3 " ^ Q ^ 6 ^ O •3 $ ~g g -2 | ° • a | -3 ^ I 3 Dominant | 0 3 g §> 3 3 £ ^ e "« t s p e c i e s § 5 § £ § I ^ ^ § 5 1 H 4 I I ? Q L - H CL a - H d a QL O d .. q 3 > •o d • a) ra -(s)^ ca <3 C! ~W S <J s o 3 ^ o •? a <D a a ^ 3 o a a o a o Q n Q ^ Q < U u C J K R I ^ c cj c, 5c <o a Community 8 2 12 11 6 3 13 4 1 10 5 7 9 number 7 7 9 12 6 . 6 12 14 12 .17 :5 4 X ( l o g ) -5.85 -4.75 -4.73 -4-48 -3.97 -3.53 -3.58 -3.25 -3.03 - 2 . 9 5 - 2 . 8 6 -2.26 -1.80 ( u n t r a n s f o r m e d .006 .02 .02 .02 .03 _^ 0_4 .04 .06 .06 .08 .09 .24 .20 d a t a ) * ., — -"^continuous l i n e s i n d i c a t e v e g e t a t i o n groups t h a t a r e not s i g n i f i c a n t l y d i f f e r e n t a t t h e 95 per c e n t c o n f i d e n c e l e v e l , -Fs -ON , T a b l e 8. A n a l y s i s o f v a r i a n c e and Student-Newman-Keuls t e s t s f o r . d i f f e r e n c e s i n e l e c t r i c a l c o n d u c t i v i t y o f t h e s o i l , a m o n g v e g e t a t i o n g r o u p s . Dominant s p e c i e s Community number x ( l o g e ) •N ra > •<) CD O H O ed C L - H cs) co ^ CD ( u n t r a n s f o r m e d d a t a ) 12 7 - .74 .64 o o a M. Cft O ^ 3 CN, CJ O "3 ^ a o o § 3 13 11 -.03 -.01 ,.03 1.2 1.0 1.1 4 13 .32 1.9 a o a 5 .33 2.0 CJ a o 2 7 .55 2.6 1 14 .71 2.2 o 5 1-6 .99 3.2 CO CD > CD H CD PH H cd t J • H ra CD 6 13 .99 3.6 3 a ••si O o a 10 13 1.07 3.5 a o •H -P ed -P CD bD CD > O Pi 9 4 1.50 6.5 a -3 a 7 5 2.08 ^continuous l i n e s i n d i c a t e v e g e t a t i o n groups t h a t a r e n o t s i g n i f i c a n t l y d i f f e r e n t a t t h e 95 per c e n t c o n f i d e n c e l e v e l i n e l e c t r i c a l c o n d u c t i v i t y o f t h e s o i l T a b l e 9. A n a l y s i s o f v a r i a n c e and Student-Newman-Keuls t e s t s f o r d i f f e r e n c e s exchangeable sodium p e r c e n t o f t h e s o i l among v e g e t a t i o n g r o u p s . i n 3 Dominant s p e c i e s ca CD > CD O rH o cd CL-d CO CD C> U a •<? o C j O <as) o § 3 3 § o •->)• a <=4 o O CL "8,5 •3 -3 a ^ a -Q ^ o o O CJ5 a o •3 3 ^1 --3 ^ a cs. O a u 1-•9 a a i t ct a o o a ca. w CD > co H CD U H TS •H co CD U o •H -P cd -P CD bD CD > O a a Community number 12 13 11 10 n 13 U 12 16 12 x ( l o g e ) ( u n t r a n s f o r m e d d a t a ) -2.00.,1.23 -.68 -.54 -.49 -.25 .51 1.65 1.96 2.01 2.03 3.17 3.76 .08 .6 .87 1.2 2.3 3.6 3.5 7.0 12.5 13.2 15.7 -30.0 45.6 ;"continuous l i n e s i n d i c a t e v e g e t a t i o n groups t h a t a r e n o t s i g n i f i c a n t l y d i f f e r e n t a t t h e 95 per cent c o n f i d e n c e l e v e l i n exchangeable sodium p e r c e n t o f t h e s o i l GO . T a b l e 10. Summarized r e s u l t s o f a n a l y s i s o f v a r i a n c e and Student-Newman-Keuls t e s t s , Community number 2 *K ESP k ESP 5 Na ESP ESP K 6 ESP ESP 7 EC ESP EC EC ESP ESP EC EC EC Na K Na 8 ESP K K K ESP K ESP K ESP EC Na K 9 ESP K EC ESP EC ESP K Na Ca 10 ESP K ESP EC ESP K Na 11 ESP ESP K ESP ESP EC ESP EC ESP Na K K 12 ESP EC Na ESP EC ESP EC ESP EC ESP EC ESP EC Na K Na K Na Na K Na K Na K' 13 ESP ESP ESP ESP EC K ESP EC ESP ' Community •Na number^ 1 2 3 4- 5 6 7^ 8 9 10 11 12 "'"Parameters t h a t a r e s i g n i f i c a n t l y . d i f f e r e n t between p a i r s o f communities a r e shown. K i s s o l u b l e p o t a s s i u m , Na i s s o l u b l e sodium, Ca i s s o l u b l e c a l c i u m , ESP i s e x c h a n g e a b l e sodium per c e n t , and EC i s e l e c t r i c a l conduc-t i v i t y . 50 T a b l e 11. U n t r a n s f o r m e d mean v a l u e s f o r s o i l p a r a m e t e r s i n each v e g e t a t i o n group. -p -P •H a co a U aj CD 3 0) a -ri B rQ - H O E E B CD O 3 O f t O S Q CO 1 COA&X pAae.gAac.iliA rH H H ' rH •H •H •H •H o O o O CD CO CO ca ca H -P ^3 H •rl ^ bo bo bo bO cci aj > B E E CD -p O •H O O O O 3 O h0 a •H -P \ CD E O CD •H O CD o CD •H O a E CD fH O CO H x— H to t — H E i - H CO a O -P 3 O ,Q •H '—^  0 ^3 3 \ ,£> ca \ & • r l O Ti A O CJ1 £ cr •H cr1 aj a 1 o T} CD £ B rH rH CD rH bo CD rH TJ CD H -P CD X O CD H O E O aj E O aj B o O B O o E CD CO ft CD o ca o — CQ B — ca ca —- CO 7. 0 2.2 38 88 .92 .06 2 2-uncuA laiticuA 1.2 2.6 .69 1.25 .62 .02 o CaAex pA.aegnac.iliA _ c .. „ O A . Q c/- n. 3 T o t> • • n 3.5 1.2 .20 .48 .56 .04 7aA.axac.um opf-i.cLn.ale 4 PotcuitAMa cip.AeM.iria . 3.6- 1.9, .36 .50 .49 .06 5 Kondeum julalum 13.2 3.2 .59 1.42 1.57 .09 6 r e s i d u a l r e l e v e s 15.7 3.6 1.44 .43 .76 .03 7 Suaeda depneAAa 45.6 8.8 .02 .09 3.01 .24 8 DeAchampAia caeApitoAa .6 2.0 1.72 .42 .46 .006 9 no v e g e t a t i o n 30.0 6.5 .008 .18 2.76 .20 10 P u c c i n e l l i a diAtanA 12.5 3.5 1 .24 1.50 2.19 .08 DnepanocladuA aduncuA 11 SiumAuaue 2.3 1.1 .25 .38 .31 .02 CaiamagnoAtiA inexpanAa DsizpanocladuA aduncuA > Q 8 M A 2 ^ < 0 8 > Q 2 r e s i d u a l r e l e v e s 13 D^panocladuA aduncuA ^ 1 > Q > 2 Q ^ ^ 2-uncuA (LalttcuA Average exchangeable sodium p e r c e n t , e l e c t r i c a l c o n d u c t i v i t y and s o l u b l e c a l c i u m , magnesium, sodium and p o t a s s i u m f o r each v e g e t a t i o n group a r e shown i n T a b l e .11-'. The Suaeda d&p/i&AAa community and t h e r e l e v e s w i t h no v e g e t a t i o n had t h e h i g h e s t exchangeable sodium p e r c e n t , e l e c t r i c a l c o n d u c t i v i t y , sodium and p o t a s s i u m and t h e l o w e s t c a l c i u m and magnesium. The t h r e e v e g e t a t i o n groups w i t h D/te.panoc£aduA aduncLtd were i n t h e l o w e s t h a l f f o r a l l p a r a m e t e r s . 5 C o n c l u s i o n s 5.1 V e g e t a t i o n communities E l e v e n v e g e t a t i o n communities were i d e n t i f i e d i n C h i l c o t i n w e t l a n d meadows u s i n g c l u s t e r a n a l y s i s . The communities grade i n t o one a n o t h e r as d i f f e r e n t s p e c i e s become dominant. No dominant s p e c i e s i s r e s t r i c t e d t o one community o n l y . A f u r t h e r group c o n s i s t e d o f r e s i d u a l r e l e v e s t h a t were n o t s u f f i c i e n t l y s i m i l a r t o any community t o f i t i n t o one o f t h o s e g r o u p s . W i t h more d a t a some o f t h e s e r e l e v e s might form new com-•m u n i t i e s . A t h i r t e e n t h group o f r e l e v e s was c h a r a c t e r i z e d by an absence o f v e g e t a t i o n . 5.2 S o i l s The m a j o r i t y o f meadows have s o i l s t h a t a r e low i n s a l t s a c c o r d i n g t o t h e U n i t e d S t a t e s S a l i n i t y L a b o r a t o r y S t a f f ( 1954), b u t o f t h e 116 s o i l s t e s t e d , 26 had an e l e c t r i c a l . c o n d u c t i v i t y o ver 4- mmhos/cm and 23 had an e x c h a n g e a b l e sodium p e r c e n t o v e r 15. The median e l e c t r i c a l conduc-. t i v i t y and exchangeable sodium p e r c e n t a r e 1.6 mmhos/cm and 3.3, r e s p e c -t i v e l y , b u t t h e i r maximum v a l u e s a r e 16.5 mmhos/cm and 71.1. The dominant s o l u b l e c a t i o n i s g e n e r a l l y sodium, but magnesium and c a l c i u m a r e o f t e n a l m o s t as abundant. P o t a s s i u m o c c u r s i n much s m a l l e r amounts t h a n t h e o t h e r c a t i o n s . S o i l s t h a t appear s a l i n e o r s o d i c , t h a t a r e g r e y i s h t o w h i t e , v a r y c o n s i d e r a b l y i n t h e i r c h e m i c a l c o n s t i t u t i o n . B o t h e l e c t r i c a l c o n d u c t i v i t y and e xchangeable sodium p e r c e n t range from low, 1.3 mmhos/cm and 3.7, t o h i g h , 16.5 mmhos/cm and 69.0. C a l c i u m c a r b o n a t e i s alw a y s abundant, b u t o t h e r s a l t s a r e q u i t e v a r i a b l e even i n s i t e s t h a t a r e r e l a t i v e l y c l o s e t o g e t h e r . A knowledge o f s o l u b l e s a l t c o n t e n t i s i m p o r t a n t i n p o s s i b l y s a l i n e w e t l a n d s because i t i s t h e s o l u b l e s a l t s t h a t a f f e c t t h e osmotic, p o t e n t i a l o f t h e p l a n t . But i n t h e C h i l c o t i n , where a l k a l i n e - e a r t h c a r b o n a t e s appear t o be t h e dominant s a l t s , i t must be r e c o g n i z e d t h a t a t e s t o f s o l u b l e s a l t s w i l l n o t t r u l y r e f l e c t t h e s a l t c o m p o s i t i o n . S e a s o n a l v a r i a b i l i t y i n e l e c t r i c a l c o n d u c t i v i t y may be h i g h , r a n g i n g t o as much as 7.0 mmhos/cm .between June and September a t i n d i v i d u a l s i t e s . T h i s l a r g e range must be borne i n mind when w e t l a n d s a r e b e i n g c l a s s i f i e d on t h e b a s i s o f a s i n g l e f i e l d check. 5.3 R e l a t i o n s h i p s between v e g e t a t i o n and s o i l s The r e s u l t s showed t h a t a l l f o u r n u l l h y p o t h e s e s were r e j e c t e d ; t h u s v e g e t a t i o n d i s t r i b u t i o n does appear t o be a f f e c t e d by s a l i n i t y , and, s o d i c i t y . L i n e a r r e g r e s s i o n a n a l y s i s p r o v e d t o be an i n a p p r o p r i a t e t e c h n i q u e f o r d e t e r m i n i n g r e l a t i o n s h i p s between i n d i v i d u a l s p e c i e s and s a l i n i t y and s o d i -c i t y . A t l e a s t t h r e e f a c t o r s may be r e s p o n s i b l e f o r t h i s f i n d i n g . The e f f e c t s o f o t h e r f a c t o r s a f f e c t i n g v e g e t a t i o n d i s t r i b u t i o n cannot be e n t i -r e l y removed, hence a t a g i v e n e l e c t r i c a l c o n d u c t i v i t y s p e c i e s may o c c u r i n any amount up t o t h e i r maximum p o s s i b l e . S e a s o n a l v a r i a b i l i t y i n s a l i n i t y and s o d i c i t y would a l s o a d v e r s e l y a f f e c t t h e development o f a l i n e a r r e l a -t i o n s h i p . T h i r d l y , a c c o r d i n g t o W h i t t a k e r (1967) s p e c i e s p o p u l a t i o n s a r e g e n e r a l l y d i s t r i b u t e d a l o n g s i n g l e e n v i r o n m e n t a l g r a d i e n t s i n t h e form o f b e l l - s h a p e d b i n o m i a l c u r v e s . F o r s p e c i e s w i t h t h e i r maximum abundance a t an e l e c t r i c a l c o n d u c t i v i t y o f 0 mmhos/cm (Ranunculiu, cymAaiayiia) o r f o r s a l t t o l e r a n t s p e c i e s from a c o n d u c t i v i t y o f 0 t o c o n d u c t i v i t i e s a t w h i c h t h e y a t t a i n maximum p r o d u c t i v i t y {Ccm&x p/iae.g/iacltu>) t h e l i n e a r - r e l a t i o n s h i p des c r i b e d by Walke r ' a n d Coupland ,,.(-:1968) may be v a l i d . - B u t , f o r s p e c i e s t h a t a t t a i n t h e i r maximum p r o d u c t i v i t i e s a t c o n d u c t i v i t i e s g r e a t e r t h a n 0 t h e l o g i n o f t h e c o n d u c t i v i t y cannot be r e l a t e d l i n e a r l y t o f o l i a r c o v e r o v e r t h e f u l l - r a n g e a f . - c o n d u c t i v i t i e s ; a t w h i c h ' t h e s p e c i e s a r e f o u n d . I n ; terms q f . t h e t h e o r e t i c a l d i s t r i b u t i o n s d e s c r i b e d by"Whittaker,- t h i s s im-''-p"l^tmeans t h a t t h e log^Q-sof a b e l l - s h a p e d c u r v e i s n o t a s t r a i g h t l i n e . A g r a p h i c r e p r e s e n t a t i o n o f s p e c i e s abundance v e r s u s s a l i n i t y and s o d i c i t y showed t h a t desctiampsia caespitosa, Poa pnatensis, Potentilla gnacilis, Dne.panoclad.us aduncus and Catam.agn.ostis inexpansa were r e s t r i c t e d t o e l e c t r i c a l c o n d u c t i v i t i e s l e s s t h a n 3.6 mmhos/cm and Poa pnatensis, Potentilla gnacilis and Dnepanocladus aduncus were r e s t r i c t e d t o an excha n g e a b l e sodium p e r c e n t l e s s t h a n 10. E x c e p t f o r o c c a s i o n a l occu-r e n c e s a t h i g h e r v a l u e s , lanaxacum officinale, Calamagnostis inexpansa, Astcn pansus, Deschampsia caespitosa, £uncus Halticus, Potentilla ansesiina, Ranunculus cumfLalania, and Canex pnaegnacilis were f o u n d where exchangeable sodium p e r c e n t was l e s s t h a n 16. Suaeda depnessa was t h e o n l y s p e c i e s t h a t d i d n o t o c c u r a t t h e l o w e s t e l e c t r i c a l c o n d u c t i v i t i e s and o n l y r a r e l y o c c u r s a t t h e l o w e s t e xchangeable sodium p e r c e n t s . E i g h t s p e c i e s o c c u r i n a r e l a t i v e l y b r o a d range o f e l e c t r i c a l c o n d u c t i v i t i e s w h i l e o n l y two s p e c i e s were w i d e s p r e a d from t h e l o w e s t t o t h e h i g h e s t exchange-a b l e sodium p e r c e n t s . T h i s may be because h i g h e l e c t r i c a l c o n d u c t i v i t i e s can be c i r c u m v e n t e d by p l a n t s by e s t a b l i s h i n g o p p o r t u n i s t i c a l l y , when c o n d i t i o n s a r e f a v o u r a b l e , and by c o m p l e t i n g t h e i r l i f e c y c l e s e a r l y i n t h e s e a s o n when t h e ground i s s t i l l m o i s t and s o l u b l e s a l t s a r e l e s s con-c e n t r a t e d . S a l t t o l e r a n c e o f mature p l a n t s i s o f t e n g r e a t e r t h a n t h a t o f s e e d l i n g s . The d e t e r i o r a t i o n o f s o i l s t r u c t u r e caused by a h i g h p r o -p o r t i o n o f sodium on t h e c a t i o n exchange complex may be more s t a b l e s e a s o n a l l y and t h u s more d i f f i c u l t t o a v o i d . U n l i k e i n d i v i d u a l s p e c i e s , some of t h e most s a l t t o l e r a n t and i n t o l e -r a n t communities a r e r e l a t i v e l y r e s t r i c t e d i n t h e i r t o l e r a n c e r a n g e s . O t h e r communities o c c u r i n a b r o a d e r range o f c o n d i t i o n s . The Suaeda de.p/vcssa community,.- w h i c h i s i d e n t i f i e d , by S'. de.psucssa i n e x c e s s o f 50 per c e n t , o c c u r s o n l y where e l e c t r i c a l c o n d u c t i v i t y i s g r e a t e r t h a n 4.7 mmhos/cm and exch a n g e a b l e sodium p e r c e n t i s g r e a t e r t h a n 26.5. The DeA-champsia ca&spitosa community and a l l t h r e e communities w i t h D/ie.panoctadus aduncus a r e r e s t r i c t e d t o an exchangeable' sodium p e r c e n t l e s s t h a n 10 and e l e c t r i c a l c o n d u c t i v i t y l e s s t h a n 4- mmhos/cm. The j-uncus (LatiicuA community i s r e s t r i c t e d t o an exchangeable sodium p e r c e n t l e s s t h a n 3.7 and t h e COJIQJC p/iae.g/iacilis-7 an.ax.acum. officinale, community i s r e s t r i c t e d t o an e l e c t r i c a l c o n d u c t i v i t y l e s s t h a n 2.4. The Canex pnaegnacilis, Hondeum. juA.ai.um and Puccinellia distant communities, though t o l e r a n t o f h i g h s a l i n i t y and s o d i c i t y , a l s o o c c u r i n f r e s h c o n d i t i o n s . A l t h o u g h t h e r e l e v e s w i t h o u t v e g e t a t i o n g e n e r a l l y o c c u r a t e i t h e r o r b o t h h i g h s a l i n i t y and s o d i c i t y , t h e r e were two r e l e v e s i n w h i c h e l e c t r i c a l c o n d u c t i v i t y was below 1.7 mmhos/cm and exchangeable sodium p e r c e n t was l e s s t h a n 10.7. Many w e t l a n d s show h i g h w a t e r marks as much as two o r t h r e e metres h i g h e r t h a n t h e i r p r e s e n t l e v e l s and, over a t l e a s t t h e l a s t f i v e y e a r s , have shown a c o n s i s t e n t d r y i n g t r e n d . V e g e t a t i o n m a y ' o c c a s i o n -a l l y be a b s e n t i n a r e a s where ponds have r e c e n t l y 'evaporated and t h e r e has been i n s u f f i c i e n t t i m e f o r v e g e t a t i o n t o become e s t a b l i s h e d . T h i s i s c e r t a i n l y t h e case a t sample s i t e 101, w h i c h i n 1977 was a s h a l l o w pond, i n 1979 had no w a t e r and a l s o no v e g e t a t i o n , b u t i n 1983 had a 70 p e r c e n t c o v e r o f Puc.clrie.itia distorts, . T h i s was a . . s i t e w h i c h appeared s a l i n e owing t o t h e g r e y i s h - w h i t e s o i l c o l o u r , b u t w h i c h had an exchangeable sodium p e r c e n t o f 8.6 and an e l e c t r i c a l c o n d u c t i v i t y o f 1.7. Appearance o f s o i l and absence o f v e g e t a t i o n can t h e r e f o r e n o t be used as a d e f i n i t i v e -i n d i c a t i o n o f p o t e n t i a l p r o d u c t i v i t y . ,56 5.4- I m p l i c a t i o n s f o r c l a s s i f i c a t i o n I n Runka and L e w i s ' (1981) c l a s s i f i c a t i o n system, meadows a r e c l a s -s i f i e d as s a l i n e i f t h e e l e c t r i c a l c o n d u c t i v i t y o f a s a t u r a t e d s o i l p a s t e e x t r a c t i s g r e a t e r t h a n 4 mmhos/cm and s o d i c i f t h e exchangeable sodium per c e n t i s g r e a t e r t h a n 15. R e l a t i o n s h i p s between e l e c t r i c a l c o n d u c t i v i t y and b o t h v e g e t a t i o n s p e c i e s . a n d communities i n d i c a t e t h a t r e t e n t i o n o f t h e 4- mmhos/cm boundary would be u s e f u l . The average e l e c t r i c a l c o n d u c t i v i t y i n t h e Suaeda depneAAa community and t h e r e l e v e s w i t h o u t v e g e t a t i o n i s 6.5 mmhos/cm, whereas t h e average e l e c t r i c a l c o n d u c t i v i t y i n a l l o t h e r vege-t a t i o n communities i s l e s s t h a n 3.5 mmhos/cm. I n d i v i d u a l s p e c i e s a l s o i n d i c a t e t h a t 4 mmhos/cm i s an a p p r o p r i a t e boundary. S p e c i e s r e s t r i c t e d t o l ow s a l i n i t i e s a r e a l l f o u n d o n l y where e l e c t r i c a l c o n d u c t i v i t y i s l e s s t h a n 3.6 mmhos/cm. Suaeda dep/ieAAa, t h e o n l y s p e c i e s n o t f o u n d on t h e f r e s h e s t s i t e s , i s f o u n d i n o n l y s m a l l , amounts ( l e s s ' t h a n 10 p e r c e n t f o l i a r c o v e r ) a t c o n d u c t i v i t i e s l e s s t h a n 4 mmhos/cm. An a p p r o p r i a t e boundary f o r exchangeable' sodium p e r c e n t i s not as c l e a r . F o r i n d i v i d u a l s p e c i e s 15 p e r c e n t does appear t o be a p p r o p r i a t e . E x c e p t f o r o c c a s i o n a l o c c u r r e n c e s a t h i g h e r v a l u e s , 11 s p e c i e s a r e f o u n d o n l y where exc h a n g e a b l e sodium p e r c e n t i s l e s s t h a n 15 o r 16. Suaeda dep/ieAAa i s t h e o n l y s p e c i e s t h a t i s f o u n d m a i n l y a t h i g h s o d i c i t y . E x c e p t f o r one o c c u r r e n c e a t l e s s t h a n 10 p e r c e n t f o l i a r c o v e r a t an exchangeable sodium p e r c e n t o f 0, i t o n l y o c c u r s where t h i s p arameter i s g r e a t e r t h a n 15. The o c c u r r e n c e o f communities t o l e r a n t o f s o d i c c o n d i t i o n s on r e l a t i v e l y f r e s h s o i l s l o w e r s t h e average exchangeable sodium p e r c e n t o f t h e s e c o m m u n i t i e s . These a v e r a g e s range from 45.6 f o r t h e Suaeda dep-JieAAa community t o 7.0 f o r t h e Cortex. p/iaegn.acltL6 community. Average exchangeable sodium p e r c e n t o f communities i n t o l e r a n t o f h i g h s o d i c i t y r a n g e s from .08 t o 3.6. A b e t t e r method t o e s t a b l i s h t h e boundary might be t o d e t e r m i n e a t what s o d i c i t y t h e i n t o l e r a n t s p e c i e s b e g i n t o d i e o u t . The maximum s o d i c i t y i n t h e 7 m o d e r a t e l y t o l e r a n t and i n t o l e r a n t communities i s 15.8. T h i s i n d i c a t e s t h a t 15 s h o u l d be r e t a i n e d as t h e s i g n i f i c a n t e x c h a n g e a b l e sodium p e r c e n t boundary f o r C h i l c o t i n w e t l a n d meadows. E l e c t r i c a l c o n d u c t i v i t y and e x c h a n g e a b l e sodium p e r c e n t do n o t ade-q u a t e l y c h a r a c t e r i z e t h e a l k a l i n e - e a r t h c a r b o n a t e s t h a t a r e so abundant and w i d e s p r e a d i n C h i l c o t i n w e t l a n d s . Some i n d i c a t i o n o f t h e s e s a l t s s h o u l d be i n c l u d e d i n t h e c l a s s i f i c a t i o n s y s t em. The method ado p t e d by t h e B r i t i s h C o l u m b i a M i n i s t r y o f Environment f o r i n d i c a t i o n o f c a r b o n a t e s u s i n g f o u r d e g rees o f e f f e r v e s c e n c e on a p p l i c a t i o n o f 10 p e r c e n t HC1 (Walmsley e t a l 1980) i s s i m p l e and a p p r o p r i a t e f o r use i n t h e f i e l d , and would p r o v i d e a t l e a s t a r o u g h e s t i m a t e o f t h e s e s a l t s . The r e s u l t s o b t a i n e d h e r e i n g e n e r a l l y a g r e e w i t h t h o s e o b t a i n e d by Moon and S e l b y ( 1 9 8 2 ) . They i d e n t i f i e d DiAiichliA Aiaicta, Puccinellia spp. Spaniina gnaciliA, and Suaeda dep/teAAa as dominants and 7niglochin manitimum and Hondeum. juA.ai.um. as a s s o c i a t e d s p e c i e s i n a l k a l i n e c o n d i t i o n s . Non-a l k a l i n e dominants i n c l u d e 3-uncuA an.ci.lcuA (AaiiicuA), Canex p/iaegaaci£iA, Ko/ideum juAaium, Poa psiatenAiA, fluhlen.1LeA.gia nichandAoniA, Poieniiiia anAe-/lina and 7an.axacum o-fjticinate. The p r e s e n t s t u d y f o u n d Suaeda dep/ieAAa, fioAdeum JuAaium and Puccinellia distant t o be s a l t t o l e r a n t and Poa pnaien-AiA, JuncuA i a t i i c u A and 7an.axa.cum o-fJLieinate i n t o l e r a n t , a l t h o u g h Poa pnatenAiA r a r e l y o c c u r r e d as a dominant. Canex p/iaegnacitiA and Poteniitia anseAina o c c u r r e d i n a b r o a d range o f c o n d i t i o n s . There were i n s u f f i c i e n t d a t a t o c a t e g o r i z e Spaniina gAaciliA, CluhtenAeAgia aichandAoniA, BiAtichtiA AtA-icta and 7/iiglochin maAiiimum. I n t h e few p l a c e s where t h e l a t t e r two were f o u n d s o i l s were g e n e r a l l y s a l i n e o r s o d i c , but o c c a s i o n a l l y were n o t . (Yluh£en(LeA.gia /lichandAoniA was f o u n d on 4 s i t e s , none o f w h i c h were s a l i n e o r s o d i c . 58 L i t e r a t u r e c i t e d Annas, R.M. and R. Coupe (ed.) 1979. B i o g e o c l i m a t i c zones and subzones o f t h e C a r i b o o F o r e s t R e g i o n . R e s e a r c h B r a n c h , M i n i s t r y o f F o r e s t s , V i c t o r i a , B.C. 15BN 0-7719-8134-1. 103 p. B e r n s t e i n , L. 1958. S a l t t o l e r a n c e o f g r a s s e s and f o r a g e legumes. U.S.Gov't. P r i n t i n g O f f . , Wash., D.C. USDA Agr. I n f . B u l l . no. 194- 7 p. and H.E. Hayward. 1958. P h y s i o l o g y o f s a l t t o l e r a n c e . Ann. Rev. o f P l a n t P h y s i o l . 9 :25-46. B o l e n , E.G. 1 9 6 4 . - P l a n t e c o l o g y o f s p r i n g f e d s a l t marshes i n w e s t e r n U t a h . E c o l . Monogr. 34=143-166. Boyd, C E . and L.W. Hess. 1970. F a c t o r s i n f l u e n c i n g s h o o t p r o d u c t i o n and m i n e r a l l e v e l s i n 7ypha tai.Lf.olia. E c o l . 51:296-300. Dewey, D.R. 1960. S a l t t o l e r a n c e o f 25 s t r a i n s o f Ag/iopy/ion. Agron. J . 52:621-625. D i x , R.L. and F.E. Smeins. 1967. The P r a i r i e , meadow and marsh v e g e t a t i o n o f N e l s o n County, N o r t h D a k o t a . Can. J . B o t . 45:21-58. Dodd, T.D. and R.T. C o u pland. 1966. V e g e t a t i o n o f s a l i n e a r e a s i n S a s k a t -chewan. E c o l . 47:958-968. F l o w e r s , S. 1934. V e g e t a t i o n o f t h e G r e a t S a l t Lake r e g i o n . B o t . Gaz. 95:353-418. F o r s b e r g , D.E. 1953. Response o f v a r i o u s c r o p s t o s a l i n e s o i l s . Can. J . A g r i c . S c i . 33:542-549. Fox, D.J. and K.E. G u i r e . 1976. D o cumentation f o r M i d a s . 3 r d ed. S t a t i s -t i c a l R e s e a r c h Lab. U n i v . o f M i c h i g a n , Ann A r b o r , M i c h . 203 p. G a t e s , D.H., L.A. S t o d d a r t and C.W. Cook. 1956. S o i l s as a f a c t o r i n f l u e n -c i n g p l a n t d i s t r i b u t i o n on s a l t d e s e r t s o f U t a h . E c o l . Monogr. 26:155-175. Hayward,H.E. and L B e r n s t e i n . 1958. P l a n t g r o w t h r e l a t i o n s h i p s on s a l t -a f f e c t e d s o i l s . B o t . Rev. 24:584-635. H e i n s e l m a n , M.L. 1970. Landscape e v o l u t i o n , p e a t l a n d t y p e s and t h e e n v i r o n -ment o f t h e Lake A g a s s i z P e a t l a n d s N a t u r a l A r e a , M i n n e s o t a . E c o l . Monogr. 40:235-261. H i t c h c o c k , A.S..1971. Manual of. t h e G r a s s e s o f t h e U n i t e d S t a t e s . 2nd .ed. r e v i s e d . Dover P u b l i c a t i o n ' s : , I n c . New-York.' 1051' p. H i t c h c o c k , C.L. and A. C r o n q u i s t . 1973. F l o r a o f t h e P a c i f i c N o r t h w e s t . U n i v e r s i t y o f W a s hington P r e s s . S e a t t l e , Wash. 730 p. H o l l a n d , S.S. 1976. Landforms o f B r i t i s h C o l u m b i a . A P h y s i o g r a p h i c O u t l i n e . B.C. Dept. o f Mines and P e t r o l e u m R e s o u r c e s B u l l . No. 48. 138 p. 59 J a c k s o n , E.A., G. B l a c k b u r n and A.R.P. C l a r k e . 1956. S e a s o n a l changes i n s o i l s a l i n i t y a t T i n t i n a r a , S o u t h A u s t r a l i a . A u s t . J . A g r . Res. 7:20-44. J o n e s , C E . 1981. A n a l y s i s and i n t e g r a t i o n o f s o i l p a r a m e t e r s and vege-t a t i o n o f a C a r i b o o - C h i l c o t i n w e t l a n d i n B r i t i s h C o l u m b i a . MSc. t h e s i s . F a c u l t y o f A g r i c u l t u r e , U n i v e r s i t y o f B r i t i s h C o l u m b i a . 66 p. K e i t h , L.B. 1958. Some e f f e c t s o f i n c r e a s i n g s o i l s a l i n i t y on p l a n t com-m u n i t i e s . Can. J . B o t . 36:79-89. L a r k i n , P.A. 1979. A handbook o f e l e m e n t a r y s t a t i s t i c a l t e s t s d e s i g n e d f o r use i n B i o l o g y 300 ( B i o m e t r i c s ) . U n i v . o f B r i t i s h C o l u m b i a . 161 p. L a v k u l i c h , L.M. 1981. Methods manual. P e d o l o g y L a b o r a t o r y . Dept. o f S o i l S c i e n c e , U n i v . o f B r i t i s h C o l u m b i a . 197 p. M a y a l l , A.C. 1983. P r e l i m i n a r y assessment o f w e t l a n d c l a s s i f i c a t i o n s y s -terns and w e t l a n d v a r i a b i l i t y f o r t h e C a r i b o o - C h i l c o t i n r e g i o n , B r i t i s h C o l u m b i a . Canadian W i l d l i f e S e r v i c e R e p o r t . F i l e No. 94-62. 49 p. M i l l a r , J.B. 1973. V e g e t a t i o n changes i n s h a l l o w marsh w e t l a n d s under i m p r o v i n g m o i s t u r e r e g i m e . Can. J . B o t . 51:1443-1457. " 1 9 7 6 . W e t l a n d c l a s s i f i c a t i o n i n Western Canada. C a n a d i a n W i l d l i f e S e r v i c e R e p o r t . S e r i e s No. 37. Moon, D.E. and C J . S e l b y . 1982. We t l a n d systems o f t h e C a r i b o o - C h i l c o t i n r e g i o n o f B.C. Unpu b l . B.C. P e d o l o g y U n i t . , Ag. Can., Vancouver, B.C. 28 p... Moore, P.D. and D.J. B e l l a m y . 1974- P e a t l a n d s . S p r i n g e r - V e r l a g . New Y o r k . 221 p. Mor t o n , J.W. 1979. C h i l c o t i n meadowlands: l i v e s t o c k range and c u l t u r e . Rangelands.1^183-185. M o x l e y , M.G., W.A. B e r g and E.M. B a r r a u . 1978. S a l t t o l e r a n c e o f 5 v a r i e -t i e s o f w h e a t g r a s s d u r i n g s e e d l i n g g r o wth. J . Range Manage. 31:54-55. O r l o c i , L. 1975. M u l t i v a r i a t e a n a l y s i s i n v e g e t a t i o n r e s e a r c h . D r . W. Junk P u b l i s h e r s , The Hague, N e t h e r l a n d s . P e a r s o n , G.A. 1960. T o l e r a n c e o f c r o p s t o exch a n g e a b l e sodium. U.S. Govt. P r i n t i n g O f f . , Wash., D.C. USDA A g r . I n f . B u l l . No. 216. 4 p. Ra u s e r , W.E. and W.L. C r o w l e . 1963. S a l t t o l e r a n c e o f R u s s i a n w i l d r y e g r a s s i n r e l a t i o n t o t a l l w h e a t g r a s s and s l e n d e r w h e a t g r a s s . Can. J . P l a n t S c i . 43:397-407. R o b e r t s , A. U n p u b l . Common g r a s s e s o f t h e C a r i b o o F o r e s t R e g i o n . M i n i s t r y o f F o r e s t s , W i l l i a m s L a k e , B .C mimeo, 29 p. Runka, G.G. and T. L e w i s . 1981. P r e l i m i n a r y W e t l a n d Managers Manual. C a r i b o o R e s o u r c e Management R e g i o n . APD T e c h n i c a l Paper No. 5. M i n i s t r y o f E n v i r o n m e n t , V i c t o r i a , B.C. 112 p. S c h w i n t z e r , C A . 1978. V e g e t a t i o n and n u t r i e n t s t a t u s o f n o r t h e r n M i c h i g a n f e n s . Can. J . B o t . 56:3044-3051. S e l b y , C J . and D.E. Moon. 1981. S o i l and v e g e t a t i o n sequences as w e t l a n d mapping u n i t s : Computer a s s i s t e d d e f i n i t i o n . P r o c . o f a workshop on o r g a n i c s o i l mapping and i n t e r p r e t a t i o n i n New B r u n s w i c k . S j o r s , H. 1950. On t h e r e l a t i o n between v e g e t a t i o n and e l e c t r o l y t e s i n N o r t h Sweden w a t e r s . O i k o s 2:24.1-258. ) • • T i p p e r , H.W. 1971. G l a c i a l geomorphology and p l e i s t o c e n e h i s t o r y o f c e n t r a l B r i t i s h C o l u m b i a . G e o l . S u r v . Can. B u l l . No. 196. Ottawa. 89 p., 8 maps. U n i t e d S t a t e s S a l i n i t y L a b o r a t o r y S t a f f . 1954. D i a g n o s i s and Improvement o f S a l i n e and A l k a l i S o i l s . USDA Handbook 60. G ovt. P r i n t i n g O f f . , Wash., D.C. 160 p. van d e r V a l k , A.G.. and L . C B l i s s . 1971. H y d r a r c h s u c c e s s i o n and n e t p r i -mary p r o d u c t i o n o f oxbow l a k e s i n C e n t r a l A l b e r t a . Can. J . B o t . 49: 1177-1199. van Ryswyk, A.L. 1971. N a t i v e meadows o f t h e C a r i b o o , u n p u b l . W a i s e l , Y. 1972. B i o l o g y o f H a l o p h y t e s . Academic P r e s s . New Y o r k . 395 p. W a l k e r , B.H. and R.T. C o upland. 1968. An a n a l y s i s o f v e g e t a t i o n e n v i r o n -ment r e l a t i o n s h i p s i n Saskatchewan s l o u g h s . Can. J . B o t . 46:509-522. 1970. Herbaceous w e t l a n d v e g e t a t i o n i n t h e aspen g r o v e and g r a s s l a n d r e g i o n s o f Saskatchewan. Can. J . B o t . 48: 1861-1878. W a l k e r , B.H. and C F . Wehrhahn. 1971. R e l a t i o n s h i p s between d e r i v e d vege-t a t i o n g r a d i e n t s and measured e n v i r o n m e n t a l v a r i a b l e s i n Saskatchewan w e t l a n d s . E c o l . . 52:85-95. Walmsley, M., G. U t z i g , T. V o i d , D. Moon and J . van B a r n e v e l d . (ed.) 1980 D e s c r i b i n g Ecosystems i n t h e F i e l d . RAB T e c h n i c a l R e p o r t No. 2. M i n i s -t r y o f E n v i r o n m e n t . V i c t o r i a , B.C. 224 W h i t t a k e r , R.H. 1967. G r a d i e n t a n a l y s i s o f v e g e t a t i o n . B i o l . Rev. 42: 207-264. W h i t t a k e r , R.H. and C.W. F a i r b a n k s . 1958. A s t u d y o f p l a n k t o n copepod communities i n t h e C o l u m b i a B a s i n , s o u t h e a s t e r n W ashington. E c o l . 39:46-65. W i n e r , B . J . 1971. S t a t i s t i c a l P r i n c i p l e s i n E x p e r i m e n t a l D e s i g n . 2nd ed. M c g r a w - H i l l . New Y o r k . W o r c e s t e r , B.K. and B.D. S e e l i g . 1976. P l a n t i n d i c a t o r s o f s a l i n e seep. N.D. Farm R e s e a r c h 34:18-20. Z a r , J.H. 1974- B i o s t a t i s t i c a l a n a l y s i s . P r e n t i c e - H a l l , I n c . Englewood C l i f f s , N .J. 620 p. ' P e r s o n a l : C o m m u n i c a t i o n s B e e t s , Mr. M. F i s h and W i l d l i f e B r a n c h , M i n i s t r y o f E n v i r o n m e n t , W i l l i a m s L ake, B.C. . . . . L e w i s , Dr. T. S o i l s and l a n d use c o n s u l t a n t , Burnaby, B.C. Lowe, Dr. L. Dept. o f S o i l S c i e n c e , U n i v e r s i t y of B r i t i s h C o l u m b i a , Vancouver, B.C. McLean, Dr. A. A g r i c u l t u r e Canada R e s e a r c h S t a t i o n , Kamloops, B.C S a v a r d , Mr. J . P . . C a n a d i a n W i l d l i f e S e r v i c e , D e l t a , B.C. S e l b y , Ms. C. P e d o l o g y Dept., A g r i c u l t u r e Canada, Vancouver, B.C. S l a v i n s k i , Mr. H. P e d o l o g y Dept., A g r i c u l t u r e Canada, Vancouver, B.C. A p p e n d i x I S p e c i e s L i s t Achillea mllleJLoHum L. Agnopynon n&penA (L.) Beauv. Aga.opyn.on. Am.Lth.il Rydb. Agnopynon Au&Aecundum ( L i n k ) H i t c h c . Agnopyn.on tnachycaulum v a r . novae.-ange.Hcae. ( S c r i b n . ) F e r n . Agnopyn.on tnachycaulum. v a r . tnachycaulum ( L i r i k ) M a l t e . Agnopynon ia.achycaulum v a r . un.llaten.ale ( C a s s i d y ) M a l t e . Agnopynon vlolaceum (Hornem.)Lange AgAOAtlA AcaJLna W i l l d . AlopecunjuA aequaliA S o b o l . AlopecunuA pnatenAlA L. AmJLlyAteglum nlpa/ilum Arrd-lyAteglum AeApenA (Hedw. )B.S.G. Antennan.la s p . . Annlca chamiAAonlA L e s s . A^ten. campeAtAlA v a r . campeALnlA N u t t . AAteA panAUA ( B l a k e ) Cronq. A^ten. s p . Beckmannla Ayzlgachne. ( S t e u d . ) F e r n . Bnyum sp. CalamagnoAtiA LnexpanAa G r a y Caruzx aquatlHA Wahl. Convex athen.odeA S p r e n g . Canex athnoAtachya Olney Canex aunea N u t t . Canex diApenma Dewey Canex laAlocanpa E h r h . Canex pann.yana Dewey Catex pnaegnaclllA W. B o o t t . Canex noALnata S t o k e s Cortex AantweHLl Dewey Canex sp. Chenopodium nuAnum L. Danthonla InteAmedla Vasey DeAchampAla caeApltoAa ( L . ) B e a u v . DeAmatodon cennuuA DladuncuA sp. dlcnane.Ha s p . DiAtlchllA Atn.Lcta ( T o r r . ) R y d b . dnjzpanocladuA aduncuA LleochaniA paluAtniA (L.)R.&S. cZplloi-lum DatAonll v a r . occldentale ( T r e l . ) H i t c h c . CA.Lgen.on lonchophylluA Hook. TnagaAla veAca v a r . (Lzacteata ( H e l l e r ) D a v i s QalLum tAlfLldum L. QlyceA.la gnandlA Wats. QlyceJila Atyilata :(Lam. ) H i t c h c . Yarrow Couchgrass B l u e s t e m w h e a t g r a s s Bearded w h e a t g r a s s S l e n d e r w h e a t g r a s s S l e n d e r w h e a t g r a s s S l e n d e r w h e a t g r a s s W i n t e r b e n t g r a s s L i t t l e meadow f o x t a i l Meadow f o x t a i l P u s s y t o e s A r n i c a W h i t e meadow a s t e r T u f t e d w h i t e p r a i r i e a s f A s t e r S l o u g h g r a s s N a r r o w - s p i k e d r e e d g r a s s Water sedge Awned sedge S l e n d e r - b e a k e d sedge G o l d e n sedge S o f t - l e a v e d sedge S l e n d e r sedge P a r r y sedge C l u s t e r e d f i e l d sedge Beaked sedge S a r t w e l l ' s sedge Sedge Red g o o s e f o o t Timber o a t g r a s s T u f t e d h a i r g r a s s A l k a l i s a l t g r a s s Common s p i k e r u s h Watson's w i l l o w weed S p e a r - l e a f f l e a b a n e Woods s t r a w b e r r y S m a l l . b e d s t r a w Reed mannagrass Fo w l mannagrass EleA.ochloe.odo/iata (L.) Beauv. HippuAUS uui.gaA.is (L.) Ho/ideum iLnachyantheAum N e v s k i Ko/ideum juAatum L. 2-uncus (LalticusWilld. nachaeAontheyia canescens ( P u r s h . ) Gray Clenthe. anvensis L. fluhlenbeAgia nichandsonis ( T r i n . ) Rydb. Penstemon p/ioceAus v a r . p/ioceAus D o u g l . Plagiomnium spp. Plantago ma jo A. v a r . majon L. Poa jun.ci-f.olia S c r i b n . Poa palus'tn.is L,.' Poa p/iatens is L. Polygonum /lamossimum M i c h x . Potentilla anseAvna L. Potentilla ULennis Greene Potentilla g/iacilis v a r . gracilis D o u g l . Potentilla pensylvanica L. Potentilla spp. Puccinetlia distans (L.) P a r i . Puccinellia nuttalliana ( S c h u l t . ) H i t c h c . Ranunculus cyrrd.alan.ia P u r s h . Ranunculus macounii B r i t t . -Ranunculus occidentalis N u t t . Ranunculus sctcAatus L. Ranunculus spp. Rumex. manitLmus L. ScLnpus nevadensis Wats. Senecio paupeAculus M i c h x . Sisy/iinchium angustifolium M i l l . Sium suave W a l t . Smilacina stellata (L.) P e s f . Solidago canadensis L. •Ste.llan.ia longipes v a r . longipes G o l d i e Suaeda dep/iessa ( P u r s h . ) Wats. 7an.axacum . officinale. Weber 7halictnjum.;venulosum T r e l . 7/iifolium hy&Aidum L. 7nifolium siepens L. 7/iiglocAin man.itirnum L. Viola adunca v a r . adunca Sm. Viola spp. Ven.onica scutellata L. Sweetgrass Common m a r e ' s - t a i l Meadow b a r l e y F o x t a i l b a r l e y B a l t i c r u s h Hoary a s t e r F i e l d m int Mat muhly S m a l l - f l o w e r e d penstemon P l a n t a i n A l k a l i b l u e g r a s s F o w l b l u e g r a s s K e n t u c k y b l u e g r a s s Bushy knotweed Common s i l v e r w e e d B i e n n i a l c i n q u e f o i l S l e n d e r c i n q u e f o i l P r a i r i e c i n q u e f o i l C i n q u e f o i l Weeping a l k a l i g r a s s N u t t a l l ' s a l k a l i g r a s s Shore b u t t e r c u p Mocoun 1s b u t t e r c u p Western b u t t e r c u p B l i s t e r b u t t e r c u p B u t t e r c u p G o l d e n dock Nevada b u l r u s h Balsam g r o u n d s e l B l u e - e y e d g r a s s Hemlock w a t e r p a r s n i p S t a r r y solomon-plume Canadian g o l d e n r o d L o n g s t a l k s t a r w o r t Pahute weed Common d a n d e l i o n ; V e i n y meadow r u e A l s i k e c l o v e r Dutch c l o v e r S e a s i d e a r r o w g r a s s E a r l y b l u e v i o l e t V i o l e t Marsh s p e e d w e l l 64 A p p e n d i x I I S o i l s d a t a P l o t X X no. C a + + M g + + Na K + C I " • S0=, C0^ EG0~ EC ESP meq/100 g s o i l 4 3 3 mmhos/ cm 1 4.10 7.72 4-29 .03 0 17.3 0 .40 4.8 3.3 2 5.30 13.0 6.92 .03 _ _ 8.1 4.5 3 4.56 3.44 1.43 .02 .02 - 0 .48 4.1 1.1 4 4.29 7.40 3.68 .02 0 - 0 .35 9.0 3.7 5 3.36 2.51 1.34 .02 - _ 0 .31 4.1 1.6 6 .13 .67 2.0 .09 0 - 0 .78 1.5 4.0 7- .02 .30 .09 .06 _ _ 0 .52 1.0 .1 8 .04 .38 .12 .03 .01 .06 0 .68 1.5 .2 9 .03 .08 .72 .01 0 .26 0 .52 1.2 13.6 10 .02 .48 .24 .05 — — 0 -.47 1.2 1.6 11 .01 ,13 .45 .02 .01 .1 .15 .43 1.5 8.5 12 .05 .71 1.18 .05 .03 .25 .06 1.46 1.9 7.1 13 .70 4.77 3.14 .11 0 2.24 0 - 3.2 4.6 U .44 1.13 .35 .01 - - 0 .06 1.4 .3 15 3.69 4.25 3.11 .26 - - 0 • 34 5.6 4.1 16 .01 .02 .31 .09 .03 .07 .10 .29 1.8 16.5 17 .01 .02 .83 .14 .06 - .10 .25 4.9 34.4 18 .03 • 09 1.17 .20 .08 1.19 .01 .31 4.6 22.4 19 .01 .02 .77 ' .07 - - .07 .38 9.6 35.9 20 .11 .13 .07 0 .04 - - - .8 0 21 .16 .13 .05 0 .03 .05 0 .13 .6 0 22 .34 .34 .41 .04 0 .11 0 .58 1 .2 2.0 23 1.39 1.62 1.66 0 - _ 0 1.04 1.6 1.9 24- 9.01 11.47 8.34 .04 - 0 5.75 6.0 4.5 25 .03 .17 .41 .03 .04 .29 .03 .35 1.7 5.6 26 .32 .40 .19 .03 _ 0 .16 1.4 .2 27 .04 .10 .52 .03 .09 .26 .01 .23 .9 9.6 28 .08 .27 .23 .01 _ _ 0 .13 .6 1.1 29 .14 .55 .55 .04 _ .03 .58 2.3 3.8 30 .19 .21 .12 .04 0 .21 .7 .3 31 .02 .53 .8 .04 _ .03 .54 2.3 6.3 32 0 .22 6.6 .32 _ .22 .80 16.5 53.2 33 .02 .14 .69 .08 - - - - 2.3 11.6 34 .79 .95 .67 .10 - - 0 -6.2 3.1 2.1 35 .43 .38 .20 .01 .03 .05 0 .87 .28 .3 36 .01 .04 .74 .01 .07 .92 .31 - 8.0 26.9 37 .06 .29 2.17 .22 .04 1.88 .05 1.06 7.4 26.5 38 .02 .11 .76 .07 .05 .53 - - 2.5 15.8 39 .02 .23 .88 .12 - - .10 .30 1.7 10.8 40 .02 .19 1.26 .09 .05 1.10 .08 .25 3.5 16.8 41 .02 .20 .51 .03 - - .02 .15 1.9 7.8 42 .12 .13 .21 .03 - 0 .15 1.1 2.4 '43 .03 .07 .57 .07 .02 .30 0 .18 2.0 14-3 44 .12 .86 1.52 .36 .03 1.61 0 .13 4.2 9.4 S o i l s data- 1 ( c o n t i n u e d ) no. Ca Mg Na K meq/100 g 45 .01 .13 1.68 .19 46 .21 .31 .06 .07 47 .02 . 0 4 .02 .02 48* .10 .15 .34 .05 49* .06 .10 .96 .05 50 .07 .25 .74 .01 51 0 .03 .06 .01 52* .01 .21 1.13 .'10 53 .02 .02 5.32 . 1 4 54 .01 .08 1.23 .07 55 .02 .18 1.03 .07 56 .16 . 4 4 .15 0 57 .12 .32 • 1 4 .02 58 .03 . 2 4 .09 . 0 4 59 . 0 4 .26 .13 .02 60 .01 .16 .10 . 0 4 61 1.03 1.26 .41 .02 62 .03 . 0 4 .01 .01 63 .02 .02 . 0 4 .02 64 .09 .14 .05 .03 65* .08 .35 .28 .06 66 .10 .34 .08 . 0 4 67 .03 .03 1.20 .07 68 .02 .12 1.62 .08 69 . 0 4 .06 1 . 0 4 .03 70 .65 .58 . 4 2 .09 71* .32 .28 .34 .05 72* .02 .5 2 . 0 .15 73* .03 .14 .11 .02 74 .02 .15 .21 .02 75 - - - -76 - - - -77 .02 .54 .36 .02 78 .06 .59 .32 .01 79 .01 . 0 4 .03 .02 80 .02 .50 . 2 4 .10 81 .02 .24 .41 .05 82 .02 .24 .66 .06 83 .05 .20 2.18 .09 84* .06 .28 .10 .05 85* .03 .08 9 . 0 4 .1 86 .006 .16 . 2 4 .07 87 .16 .13 .70 .01 88 .14 .13 .09 0 89 .01 .07 1.86 . 2 4 90 .03 .16 .28 .05 91 .05 . 2 4 .10 . 0 4 92 . 0 4 .21 .07 .03 C I " S O . C0 o H C O : E C E S P s o i l 4 3 3 mmhos/ cm .26 .13 1.67 .54 3.2 23.5 - - 0 .12 .8 0 .01 0 0 .10 .28 0 - - 0 .23 .34 1.9 - - 0 .06 .40 9.0 .04 .77 .26 .26 2.0 8.4 - .01 - - 3.5 2.0 0 .39 .96 .55 1.0 8.8 - - - - 8.3 71.1 0 .16 - - 2.2 24.1 0 0 - - 2.5 13.8 - 0 .37 1.1 .3 - - 0 .27 1.5 .? 0 .03 .07 .29 .9 .1 .01 .05 .29 .33 1.0 .5 - - .17 .42 1.2 .4 - - 0 .24 1.5 0 0 0 0 .08 .39 0 .06 .06 0 .03 .33 .1 .02 0 0 .14 .72 0 .06 0 0 .53 - .7 .03 .04 0 .33 .6 0 - - - - 3.5 29.1 .03 .03 - - 3.0 26.3 - - - 4.0 22.5 - - 0 .21 1.7 1.1 - - 0 .23 1.0 .8 0 .45 .96 1.1 1.6 10.5 0 .21 0 .23 .41 .1 - .1 .06 »21 1.0 2.8 - - - - 5.3 -- - - - 8.7 -- - .24 .33 .9 2.2 0 .11 .16 .38 .87 1.5 _ - .37 .10 1.3 0 0 .02 .23 .37 1.0 1.2 - - .10 .09 1.3 5.1 - - - - 1.9 8.5 - - - - 3.6 25.4 0 .16 0 .29 .4 0 .14 .31 14.1 3.05 4.8 54.6 - - .59 .35 1.6 3.7 .01 .31 0 .45 .8 5.5 .08 .12 0 .13 .8 .1 - 2.44 .73 4.6 36.0 .04 .15 .30 .09 1.9 3.8 - - 0 .07 1.2 - .1 .04 - .15 .22 1.0 0 S o i l s d a t a ( c o n t i n u e d ) P l o t 4-4. X X _l_ no. C a + + M g + + Na K + meq / 1 0 0 g 9 3 . 0 3 . 3 1 . 1 9 . 0 3 9 4 * . 0 4 . 2 1 . 0 7 . 0 3 9 5 . 0 7 . 1 0 . 3 3 . 0 3 9 6 . 0 7 . 0 9 . 2 6 . 0 3 9 7 . 0 4 . 1 0 . 3 3 . 0 3 9 8 . 0 6 1 . 1 7 2 . 3 5 . 1 3 9 9 . 0 8 . 4 3 2 . 8 9 . 0 9 1 0 0 4 . 2 9 2 . 5 5 7 . 8 2 . 6 0 101 . 0 1 . 3 1 . 9 2 . 0 5 1 0 2 . 0 1 . 2 0 . 4 1 . 0 2 1 0 3 * . 1 2 . 2 3 . 2 4 . 0 5 1 0 4 . 0 3 . 0 3 . 0 3 . 0 1 1 0 5 . 0 6 . 0 7 . 0 5 . 0 3 1 0 6 * . 0 9 . 5 5 1 . 3 9 . 2 5 1 0 7 . 0 6 . 1 4 . 1 6 . 0 5 1 0 8 . 0 2 . 3 1 5 . 5 6 . 8 9 1 0 9 . 0 1 . 0 4 1 . 1 9 . 2 6 1 1 0 * . 0 7 . 5 3 1 . 1 6 . 2 111 . 0 1 . 4 4 1 . 3 4 . 1 2 1 1 2 . 1 4 . 1 3 . 0 9 . 0 1 1 1 3 * . 2 4 . 4 7 . 1 6 . 0 4 1 1 4 . 1 8 . 6 6 . 4 2 . 0 3 1 1 5 . 2 9 . 7 4 . 3 1 . 0 8 1 1 6 . 1 1 . 1 6 . 1 9 0 1 1 7 * . 0 9 . 1 7 . 1 2 . 0 1 1 1 8 . 3 1 . 3 5 . 2 1 0 1 1 9 • 1 9 . 2 2 . 1 4 0 1 2 0 . 0 1 . 1 6 . 4 0 . 0 2 1 2 1 * . 0 1 . 2 8 . 5 4 .1 1 2 2 . 0 3 . 0 7 1 . 6 7 . 0 2 1 2 3 . 0 1 . 2 4 . 5 2 . 0 2 124 . 0 5 . 1 2 . 3 2 . 0 1 1 2 5 . 2 9 . 5 4 . 7 1 . 0 1 1 2 6 . 0 1 . 0 0 3 1 . 8 2 . 0 0 3 1 2 7 . 0 1 . 0 1 1 . 7 2 . 0 7 1 2 8 . 0 1 . 0 0 4 1 . 4 2 . 0 7 1 2 9 . 2 2 . 1 0 . 0 5 . 0 1 1 3 0 . 1 9 . 1 4 . 0 7 . 0 2 131 . 4 6 . 2 2 . 1 4 . 0 1 1 3 2 2 . 4 9 . 7 2 . 9 2 . 0 1 1 3 3 2 . 4 7 . 3 2 . 2 7 0 1 3 4 3 . 4 8 . 8 7 1 . 0 5 0 * samples e x t r a c t e d u s i n g 1 C I " S O , C 0 _ H C O : E C E S P i o i l 4 3 3 mmhos/ cm _ _ _ _ 1 . 6 1 . 5 . 0 1 0 0 • 4 4 . 4 .1 - - 0 . 0 6 . 8 3 5 . 1 . 0 3 . 0 5 . 1 0 . 1 7 . 9 4 . 3 - o . . 1 6 1 . 0 6 . 3 . 0 6 - 0 . 2 2 5 . 4 1 3 . 1 - - - - 5 . 3 2 4 . 6 - - 0 . 1 7 7 . 2 1 9 . 5 . 0 2 - 1 . 3 5 . 2 5 1 . 7 8 . 6 . 0 2 - . 4 6 . 1 5 1 . 4 6 . 3 . 0 1 - 0 . 3 6 . 3 9 . 6 . 0 2 . 0 2 0 . 0 3 . 1 7 0 - - - - . 2 0 . 0 8 . 8 7 . 9 5 . 8 9 1 . 5 6 . 3 - - 0 . 2 2 . 8 1 . 8 - - - - 1 6 . 0 4 2 . 8 - - - - 3 . 4 3 0 . 8 . 5 6 - . 5 7 . 8 . 6 5 . 4 - - 0 . 1 7 2 . 1 1 3 . 4 - - 0 . 0 2 . 9 0 - - 0 . 3 2 . 5 0 . 0 5 . 3 0 - . 2 9 1 . 8 2 . 1 . 0 3 . 1 0 0 - 1 . 7 . 9 . 0 2 - 0 . 1 5 . 8 3 1 . 2 0 0 0 . 3 8 . 4 0 . 2 0 . 2 0 0 . 4 3 1 . 6 . 4 0 . 6 8 . 0 6 . 1 9 1 . 0 .1 . 0 4 . 1 3 0 . 3 9 2 . 2 6 . 2 0 0 2 . 2 8 . 7 0 . 8 3 1 0 . 7 - - - - 4 . 7 2 6 . 5 . 0 5 . 7 4 . 1 3 . 1 2 3 . 3 8 . 1 . 0 5 . 4 0 . 0 6 . 1 0 1 . 3 4 . 7 . 0 3 1 . 3 2 . 0 6 . 2 0 1 . 8 3 . 7 . 4 0 . 4 2 1 . 5 2 . 1 2 6 . 8 6 9 . 0 • 41 . 2 4 . 8 5 . 4 3 5 . 4 5 1 . 6 . 4 0 . 2 6 . 8 3 . 4 2 6 . 7 5 3 . 8 . 0 1 - 0 . 0 9 . 6 1 0 . 0 1 . 0 5 0 . 0 5 . 5 6 0 . 0 3 . 3 6 0 . 1 1 . 7 2 0 . 0 5 3 . 1 5 0 . 1 4 3 . 0 1 . 5 . 0 5 3 . 4 8 0 . 1 6 3 . 5 0 . 0 3 5 . 7 6 0 . 1 1 2 . 9 1 . 4 2 s o i l : w a t e r r a t i o Appendix I I I C o n s t i t u e n t s a l t s , pH, exch a n g e a b l e sodium p e r c e n t , e l e c t r i c a l c o n d u c t i v i t y and s o l u b l e c a t i o n s o f name s a l i n e a p p e a r i n g s o i l s . c a l c i u m c a r b o n a t e Suds Lake P a t t e r s o n Lake M o r r i s o n B i g B meadow C o r n e r s i t e s i t e s i t e s i t e s i t e s i t e s i t e s i t e " . 1 4 • 2 3 3 3 1 3 2 3 3 3 2 2 c a l c i u m c h l o r i d e c a l c i u m s u l p h a t e 3 2 2 1 2 2 magnesium s u l p h a t e sodium b i c a r b o n a t e s i l i c a d i o x i d e b a r i u m c h l o r i d e sodium b i s u l p h i t e pH (H20!> exch a n g e a b l e sodium p e r c e n t e l e c t r i c a l conduc-t i v i t y (mmhos/cm) s o l u b l e c a l c i u m •10.3 9.92 9.62 9.36 8.82 9.39 9.63 69.0 51.6 53.8 -8.11. 4.7 .3.7 53.2 6.7 .5.4 5.4 3.3 1 .3 2.0 16.5 .01 .01 .01 .01 .05 .29 0.0 10.0 8.6 1.7 .01 s o l u b l e magnesium s o l u b l e sodium s o l u b l e p o t a s s i u m .003 .01 .004 . .24 .12 .54 .22 1.82 1.72 1.42 .52 .32 .71 6.6 .003 .07 .07 .02 .01 .01 .32 .31 .92 .05 4-very'- highV^^-high-j" 2-moderate, :Jct%ow»~ ••••• •- -— —•— f o r s o l u b l e s a l t s numbers i n d i c a t e meq/100 g s o i l o f each c a t i o n Appendix IV L i n e a r r e g r e s s i o n o f 13 v e g e t a t i o n s p e c i e s on e l e c t r i c a l c o n d u c t i v i t y (EC) and exchangeable sodium p e r ce n t (ESP) S p e c i e s AAteA panAuA ESP l o g EC l o g ^ Ca lam.agA.0At LA LnexpanAa ESP l o g EC l o g ^ Canex pAae.gAac.LlLA ESP l o g EC l o g ^ DeAchampA-co caeApltoAa ESP l o g EC l o g ' U dAJcpanoctadiLA aduncuA ESP l o g EC l o g ^ H-OAdeum. juAatum ESP l o g EC l o g l ' U _ J-uncuA &a£tLcuA ESP l o g EC l o g ^ Poa pnatenAlA ESP l o g EC l o g \ Q Potentllla anAeAlna ESP l o g EC l o g ' Potenillta gAodllA ESP l o g EC l o g ' u Pucclriell-ta dlAtanA ESP l o g EC l o g ^ RanunculuA cynd-alanla ESP l o g EC l o g ^ Suaeda depneAAa ESP l o g EC l o g ^ ' 7an.axac.um o-fl-flLcLnate ESP l o g l •EC l o g , n I n t e r c e p t S l o p e S i g n i f i c a n t r f o r d f = n -2 D e c i s i o n >10 M O 18 5.50 0 . .002 .468 a c c e p t 18 5.94 -3.27 .4 .468 a c c e p t U 5.98 1.39 .28- .532 a c c e p t u 5.13 4.28 .3 .532 a c c e p t 46 32.44 7.96 .3 .288 r e j e c t 4-6 30.34 30.04 .37 .288 r e j e c t 27 21.84 1.87 .07 .381 a c c e p t 27 20.79 -3.70 .11 .381 a c c e p t 29 59.67 - . 4 9 .01 .367 a c c e p t 29 59.78 -10.55 .17 .367 a c c e p t 4-1 33.12 2.52 .07 .304 a c c e p t 41 31.05 13.29 .17 . .304 a c c e p t 49 32.57 6.36 .08 .288 a c c e p t 49 32.05 -5.19 .2 .288 a c c e p t 19 13.49 -1.47 .09 .456 a c c e p t 19 14.06 -3.67 .06 .456 a c c e p t 36 22.74 - .80 .03 .325 a c c e p t 36 22.68 - . 4 8 .01 .325 a c c e p t 12 14.74 5.21 .40 .576 a c c e p t 12 12.37 - 6 . 9 0 .17 .576 a c c e p t 25. 51.49 -29.71 .24 .396 a c c e p t 25 38.22 -2.05 .06 .396 a c c e p t 25 8.10 -3.74 .46 .396 r e j e c t 25 7.11 -4.65 .26 .396 a c c e p t 10 -78 .6 75.1 .46 .632 a c c e p t 11 -12.63 64.53 .56 .602 a c c e p t 36 7.40 " 1.07 .1 .325 a c c e p t 36 7.03 2.80 .1 .325 a c c e p t '69 Appendix V Summary o f A n a l y s e s o f V a r i a n c e  o f S i x S o i l P a r a m e t e r s Among V e g e t a t i o n Groups E x c h a n g e a b l e sodium p e r c e n t (log-) ' ' S o u r c e o f v a r i a t i o n T o t a l ' '" ' Treatment . E r r o r Degrees o f Freedom 115 12 103 Sums of Squares 484.2 264.8 219.4 Mean Square F r a t i o F t a b D e c i s i o n 22.1 2.1 10.4 2.04 r e j e c t E l e c t r i c a l c o n d u c t i v i t y ( l o g e ) S o u r c e o f v a r i a t i o n T o t a l Treatment E r r o r 117 12 105 94.2 43.1 51.1 3.6 .5 7.4 2.04 r e j e c t C a l c i u m ( l o g ) So u r c e o f v a r i a t i o n T o t a l Treatment E r r o r 115 12 103 387.0 76.9 310.0 6.4 3.0 2.1 2.04 r e j e c t Magnesium ( l o g ) S o u r c e ' o f v a r i a t i o n T o t a l Treatment - . ..Error 115 12 103 248.2 43.2 205 3.6 2.0 1 .8 2.04 a c c e p t Sodium ( l o g ) Source o f v a r i a t i o n T o t a l Treatment E r r o r 115 12 103 225.3 102.7 112.6 1.2 7.2 2.04 r e j e c t P o t a s s i u m ( l o g ) So u r c e o f v a r i a t i o n T o t a l T reatment E r r o r 115 12 103 237.0 93.8 143.2 7.8 1.4 5.6 2.04 r e j e c t 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0096188/manifest

Comment

Related Items