Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Ordination and classification of immature forest ecosystems in the Cowichan Lake area, Vancouver Island Roy, Roger Joseph James 1984

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1984_A6_7 R69.pdf [ 18.38MB ]
Metadata
JSON: 831-1.0096180.json
JSON-LD: 831-1.0096180-ld.json
RDF/XML (Pretty): 831-1.0096180-rdf.xml
RDF/JSON: 831-1.0096180-rdf.json
Turtle: 831-1.0096180-turtle.txt
N-Triples: 831-1.0096180-rdf-ntriples.txt
Original Record: 831-1.0096180-source.json
Full Text
831-1.0096180-fulltext.txt
Citation
831-1.0096180.ris

Full Text

e . i ORDINATION AND CLASSIFICATION OF IMMATURE FOREST ECOSYSTEMS IN THE COWICHAN LAKE AREA, VANCOUVER -ISLAND by ROGER JOSEPH JAMES ROY B.Sc.F., University Of New Brunswick, 1978 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n THE FACULTY OF GRADUATE STUDIES (FACULTY OF FORESTRY) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA June 1984 © Roger Joseph James Roy, 1984 In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of the requirements for an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, I agree that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and study. I f u r t h e r agree that p e r m i s s i o n f o r e x t e n s i v e copying of t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the Head of my Department or by h i s or her r e p r e s e n t a t i v e s . I t i s understood that copying or p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l gain s h a l l not be allowed without my w r i t t e n p e r m i s s i o n . Department of F o r e s t r y The U n i v e r s i t y of B r i t i s h Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 Date: June 15, 1984 i i Abstract The objectives of this study included: 1) c l a s s i f i c a t i o n of immature forest ecosystems surrounding Cowichan Lake on Vancouver Island, 2) investigation of relationships between f l o r i s t i c composition, selected s i t e and s o i l properties, and ecosystem productivity as estimated by s i t e index (m/100 years) of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), and 3) evaluation of the usefulness of several multivariate analysis techniques for deriving the c l a s s i f i c a t i o n and investigating relationships. Methods employed included: 1) standard methods used in the biogeoclimatic ecosystem c l a s s i f i c a t i o n system as applied by the B.C. Ministry of Forests, and 2) multivariate analysis techniques, including ordinations (polar,reciprocal averaging, and detrended correspondence analysis) and cluster analysis of the vegetation data, and stepwise discriminant analysis of edatopic indicator species groups (EISG's), and s i t e and s o i l properties. The c l a s s i f i c a t i o n was f i n a l i z e d after consideration of the environment data and results of multivariate analyses ( p a r t i c u l a r l y r eciprocal averaging and detrended correspondence analysis) applied to the vegetation data. Three orders, five a l l i a n c e s , and six biogeocoenotic associations (BA's) were established. An objective, repeatable procedure for extracting c h a r a c t e r i s t i c combinations of species from summary vegetation tables was developed and applied. A comparison of the summary vegetation tables of three of the immature Cowichan Lake associations to the summary vegetation tables of three ( c l i m a t i c a l l y and e d a p h i c a l l y ) s i m i l a r mature a s s o c i a t i o n s r e v e a l e d strong s i m i l a r i t i e s i n understory s p e c i e s abundance and composition. T h i s suggested that understory p l a n t communities of the immature f o r e s t ecosystems had s u f f i c i e n t l y s t a b i l i z e d to permit s u c c e s s f u l i d e n t i f i c a t i o n of probable climax a s s o c i a t i o n s . Estimated hygrotope and trophotope v a l u e s of each p l o t suggested that a x i s 1 of the f l o r i s t i c data o r d i n a t i o n s corresponded to a complex environmental g r a d i e n t r e l a t e d to i n c r e a s i n g a v a i l a b i l i t y of s o i l moisture and n u t r i e n t s . T h i s suggestion was supported by the r e s u l t s of i n d i c a t o r p l a n t a n a l y s i s , and by trends i n a l i m i t e d number of q u a n t i t a t i v e l y assessed s i t e m orphological and s o i l p h y s i c a l and chemical pr o p e r t i e s . D i s c r i m i n a n t a n a l y s i s of EISG's and s e v e r a l s i t e and s o i l p r o p e r t i e s s e l e c t e d l i n e a r combinations of v a r i a b l e s which best c h a r a c t e r i z e d d i f f e r e n c e s between the BA's. S o i l p r o p e r t i e s proved more s u c c e s s f u l than s i t e p r o p e r t i e s f o r t h i s purpose. In a d d i t i o n , c l a s s i f i c a t i o n f u n c t i o n s were produced which co u l d be used to c l a s s i f y p l o t s not used i n the o r i g i n a l a n a l y s i s . V a r i a t i o n i n s i t e index values suggested an i n c r e a s e i n p r o d u c t i v i t y from BA's 2 to 4 but no d i f f e r e n c e s between BA's 4 and 5. An i n v e s t i g a t i o n of r e l a t i o n s h i p s between a x i s 1 scores of detrended correspondence a n a l y s i s of the f l o r i s t i c data, c a n o n i c a l v a r i a b l e 1 from the d i s c r i m i n a n t a n a l y s i s of s o i l p r o p e r t i e s , and s i t e index of D o u g l a s - f i r suggested that ( f o r the forty-one intermediate p l o t s i n BA's 2 to 5): 1) 83% of the i v v a r i a t i o n i n understory v e g e t a t i o n was r e l a t e d to d i f f e r e n c e s in the s e l e c t e d s o i l p r o p e r t i e s , 2) 78% of the v a r i a t i o n i n s i t e index was r e l a t e d to changes in understory species abundance and composition, and 3) 71% of the v a r i a t i o n i n s i t e index was r e l a t e d to changes in the s e l e c t e d s o i l p r o p e r t i e s . M i n e r a l s o i l m i n e r a l i z a b l e N and exchangeable Ca values were h i g h e s t , and C:N r a t i o s lowest on the most p r o d u c t i v e s i t e s . In a d d i t i o n , most of these s i t e s had a mull humus form. T h i s suggested that i n c r e a s e s i n s i t e p r o d u c t i v i t y were at l e a s t p a r t i a l l y due to higher N a v a i l a b i l i t y . The higher l e v e l s of s o i l Ca on the most p r o d u c t i v e s i t e s suggested more r a p i d n i t r i f i c a t i o n r a t e s and more n i t r a t e , a form of N o f t e n found to be a s s o c i a t e d with the best growth of D o u g l a s - f i r . It was concluded that m u l t i v a r i a t e a n a l y s i s techniques ( p a r t i c u l a r l y r e c i p r o c a l averaging, detrended correspondence a n a l y s i s , and d i s c r i m i n a n t a n a l y s i s ) were u s e f u l not only f o r c l a s s i f i c a t i o n purposes, but a l s o for the i n v e s t i g a t i o n of trends i n environmental p r o p e r t i e s and s i t e p r o d u c t i v i t y . These techniques p r o v i d e a r a p i d , computer-assisted approach to data s y n t h e s i s , and a more o b j e c t i v e b a s i s f o r i n t e r p r e t a t i o n s . I t was recommended that proponents of the b i o g e o c l i m a t i c system make grea t e r use of these techniques i n f u t u r e s t u d i e s . V Table of Contents A b s t r a c t i i L i s t of Tables v i i i L i s t of F i g u r e s x i Acknowledgement x i v Chapter I INTRODUCTION 1 1 .1 RESEARCH NEEDS 1 1.2 COWICHAN LAKE STUDY 5 Chapter II FOREST LAND CLASSIFICATION 8 2.1 THE NEED FOR FOREST LAND CLASSIFICATION 8 2.2 THE NEED FOR AN ECOSYSTEM APPROACH 9 2.3 CONCEPTUAL BASIS 11 2.4 THE CONTINUOUS NATURE OF ECOSYSTEMS 12 2.5 THE APPLICATION OF ECOSYSTEM CLASSIFICATION 16 2.6 THE SYSTEM OF BIOGEOCLIMATIC ECOSYSTEM CLASSIFICATION 19 2.6.1 H i s t o r i c a l Development 19 2.6.2 S y n e c o l o g i c a l I n t e g r a t i o n L e v e l s 20 2.6.3 B i o g e o c l i m a t i c L e v e l 21 2.6.4 Biogeocoenotic L e v e l 24 2.6.5 F u n c t i o n a l L e v e l 28 2.6.6 I n t e r p r e t i v e L e v e l 29 Chapter III STUDY AREA 3 0 3.1 LOCATION 30 3.2 BEDROCK GEOLOGY 32 3.3 GLACIATION 34 3.4 SURFICIAL MATERIALS 35 3.5 HISTORY 38 3.6 DRIER MARITIME CWH SUBZONE '. 40 3.6.1 Climate 40 3.6.2 S o i l 45 3.6.3 Ve g e t a t i o n 53 Chapter IV METHODS 59 4.1 APPROACH 59 4.2 ECOSYSTEM ANALYSIS 65 4.2.1 P r o v i s i o n a l Ecosystem C l a s s e s 65 4.2.2 Veg e t a t i o n A n a l y s i s 67 4.2.3 S o i l A n a l y s i s 71 4.3 ECOSYSTEM SYNTHESIS 76 4.3.1 M u l t i v a r i a t e A n a l y s i s Of Ve g e t a t i o n Data 76 4.3.2 Tabular Methods 79 4.3.3 I n d i c a t o r Plant A n a l y s i s 82 4.3.4 Environmental P a t t e r n s 84 4.3.5 P r o d u c t i v i t y R e l a t i o n s h i p s 87 Chapter V RESULTS AND DISCUSSION 89 5.1 CLASSIFICATION 89 5.1.1 Synopsis Of The C l a s s i f i c a t i o n 89 5.1.2 M u l t i v a r i a t e A n a l y s i s Of V e g e t a t i o n P a t t e r n s ....91 5.1.3 Tabular Methods 107 5.2 COMPARISON WITH MATURE FOREST ECOSYSTEMS 115 5.3 INDICATOR PLANT ANALYSIS 125 5.3.1 EISG Spectra 1 25 5.3.2 D i s c r i m i n a n t A n a l y s i s By EISG's 127 5.4 ENVI RONMENTAL PATTERNS 131 5.4.1 V a r i a t i o n Between A s s o c i a t i o n s 131 5.4;2 D i s c r i m i n a n t A n a l y s i s Of S i t e And S o i l P r o p e r t i e s 1 38 5.4.3 R e l a t i o n s h i p s Between S o i l And V e g e t a t i o n P a t t e r n s 1 44 5.5 PRODUCTIVITY RELATIONSHIPS 148 5.5.1 V a r i a t i o n Between A s s o c i a t i o n s 148 5.5.2 R e l a t i o n s h i p With V e g e t a t i o n P a t t e r n s 152 5.5.3 R e l a t i o n s h i p With S o i l P r o p e r t i e s 152 5.5.4 Sy n t h e s i s Of V e g e t a t i o n / S o i l / P r o d u c t i v i t y R e l a t i o n s h i p s 172 Chapter VI SUMMARY AND CONCLUSIONS 177 LITERATURE CITED 182 APPENDIX A - LIST OF PLANT SPECIES 202 APPENDIX B - FORMULAE FOR DETERMINING VCL, SBD, CFFBD AND POR 207 APPENDIX C - PROCEDURE FOR DETERMINING EN, MEN, AND MN ..208 APPENDIX D - CONVERSION FROM CONCENTRATION TO KG/HA 210 APPENDIX E - ORDINATION SCORES 212 APPENDIX F - CLUSTERING LEVELS 219 APPENDIX G - ENVIRONMENT TABLES 222 APPENDIX H - LONG VEGETATION TABLES 230 APPENDIX I - RELATIVE SPECIES IMPORTANCE OF EISG'S 237 APPENDIX J - CANONICAL VARIABLES FOR EISG'S 240 APPENDIX K - DESCRIPTIVE STATISTICS FOR SITE AND SOIL PROPERTIES : 242 APPENDIX L - CANONICAL VARIABLES FOR SITE AND SOIL PROPERTIES 259 v i i APPENDIX M - DESCRIPTIVE STATISTICS FOR MENSURATION VARIABLES 262 APPENDIX N - DESCRIPTIVE STATISTICS FOR INDICES OF SOIL N STATUS 265 APPENDIX 0 - DESCRIPTIVE STATISTICS FOR INDICES OF SOIL CA STATUS 269 v i i i L i s t of Tables 1. Climate, s o i l and v e g e t a t i o n c h a r a c t e r i s t i c s along a low e l e v a t i o n (< 600 m) t r a n s e c t across southern Vancouver I s l a n d ( K r a j i n a , 1976; V a l e n t i n e et a l . , 1978; K l i n k a , et a l . , 1979; and C o u r t i n et a l . , 1984) 42 2. Comparison of c l i m a t i c data f o r 3 low e l e v a t i o n b i o g e o c l i m a t i c v a r i a n t s on southern Vancouver I s l a n d (data from K l i n k a e_t a l . , 1979) and 2 weather s t a t i o n s near Cowichan Lake (data from Korelus and Lewis, 1978) 44 3. Approximate abundance of s o i l a s s o c i a t i o n s o c c u r r i n g on d i f f e r e n t parent m a t e r i a l s at low e l e v a t i o n s (< 700 m) i n the Cowichan Lake area. Abundance estimated from s o i l s map produced by E.L.U.C. (1978) 49 4. V e g e t a t i o n s t r a t a (Walmsley et a l . , 1980) 68 5. Species s i g n i f i c a n c e s c a l e ( K l i n k a and Phelps, 1979) 69 6. V i g o r r a t i n g s c a l e (Peterson, 1964) 69 7. Growth c l a s s (GC) and corresponding range of s i t e index (SI) values (m/100 years) for c o a s t a l D o u g l a s - f i r (Pseudotsuga menziesi i ) (Lowe and K l i n k a , 1981) 70 8. S o i l l a y e r s sampled in the Cowichan Lake study 72 9. Combinations of s o i l l a y e r s f o r which n u t r i e n t content ( k g « h a _ 1 ) was c a l c u l a t e d 75 10. A n a l y s i s codes f o r the 16 combinations of m u l t i v a r i a t e a n a l y s i s , p l o t s , and v e g e t a t i o n l a y e r s 79 11. R e l a t i o n s h i p between presence and presence c l a s s (Emanuel and Wong, 1 983) 81 12. Synopsis of edatopic i n d i c a t o r s p e c i e s groups (EISG) ( K l i n k a et a l . , 1984) 83 13. Codes used to i n d i c a t e the s i t e m o r p h o l o g i c a l , and the s e l e c t e d s o i l p h y s i c a l and chemical p r o p e r t i e s 85 14. A n a l y s i s codes for the 4 combinations of p l o t s and v a r i a b l e s used in the d i s c r i m i n a n t a n a l y s i s 87 15. Synopsis of the v e g e t a t i o n c l a s s i f i c a t i o n 90 16. Arranged s p e c i e s - s t r a t u m - u n i t (SSU) by p l o t s matrix f o r the Cowichan Lake v e g e t a t i o n data. SSU codes and p l o t numbers are arranged a c c o r d i n g to a x i s 1 order i n the ix RA12 o r d i n a t i o n . 109 17. C r i t e r i a f o r a s s i g n i n g d i f f e r e n t i a t i n g v a l u e s to p l a n t s p e c i e s (modified from I n s e l b e r g et a l . , 1982) 112 18. C h a r a c t e r i s t i c Combinations of Species f o r orders, a l l i a n c e s and a s s o c i a t i o n s 116 19. L i s t of a c c i d e n t a l s p e c i e s 118 20. C o n s t a n t - s p e c i e s (c,cd) and d i f f e r e n t i a l - s p e c i e s (d) f o r the Cowichan Lake immature $PM-GS a s s o c i a t i o n compared to the Strathcona Park mature G a u l t h e r i a s h a l l o n a s s o c i a t i o n (Kojima and K r a j i n a , 1975) 121 21. C o n s t a n t - s p e c i e s (c,cd) and d i f f e r e n t i a l - s p e c i e s (d) f o r the Cowichan Lake immature $PM-KO a s s o c i a t i o n compared to the Strathcona Park mature moss a s s o c i a t i o n (Kojima and K r a j i n a , 1975) 122 22. C o n s t a n t - s p e c i e s (c,cd) and d i f f e r e n t i a l - s p e c i e s (d) f o r the Cowichan Lake immature $PM-PI a s s o c i a t i o n compared to the Strathcona Park A c h l y s - P o l y s t i c h u m a s s o c i a t i o n v a r . polystichosum (Kojima and K r a j i n a , 1975) 123 23. C o e f f i c i e n t s and constants f o r the c l a s s i f i c a t i o n f u n c t i o n s d e r i v e d by d i s c r i m i n a n t a n a l y s i s of the edatopic i n d i c a t o r s p e c i e s groups (EISG) 128 24. J a c k k n i f e d c l a s s i f i c a t i o n matrix produced by d i s c r i m i n a n t a n a l y s i s of the edatopic i n d i c a t o r s p e c i e s groups. Table e n t r i e s i n d i c a t e the number of p l o t s c l a s s i f i e d i n t o each biogeocoenotic a s s o c i a t i o n 129 25. Summary of environmental f e a t u r e s of the 6 biogeocoenotic a s s o c i a t i o n s 1 32 26. Means (MN) and 95% confidence i n t e r v a l s (CI) f o r the 7 s i t e m o r p h o l o g i c a l , and 14 s o i l p h y s i c a l and chemical p r o p e r t i e s used i n the d i s c r i m i n a n t a n a l y s i s 133 27. Percentage of p l o t s c o r r e c t l y c l a s s i f i e d u s ing the i n c l u s i v e and e x c l u s i v e ( j a c k k n i f e d ) c l a s s i f i c a t i o n methods 138 28. C o e f f i c i e n t s and constants f o r the c l a s s i f i c a t i o n f u n c t i o n s d e r i v e d by the DA02 and DA04 d i s c r i m i n a n t a n a l y ses 140 29. J a c k k n i f e d c l a s s i f i c a t i o n matrix f o r the DA02 and DA04 d i s c r i m i n a n t a n a l y s e s . Table e n t r i e s i n d i c a t e the number of p l o t s c l a s s i f i e d i n t o each biog e o c o e n o t i c assoc i a t ion 141 X 30. Means (MN) and 95% confidence i n t e r v a l s (Cl) f o r the 8 mensuration v a r i a b l e s f o r the 6 biogeocoenotic as soc i a t ions 149 31. Comparison of s i t e index (m/100 y r s ) valu e s f o r D o u g l a s - f i r (Pseudotsuga menziesi i ) i n 3 f o r e s t e d a s s o c i a t i o n s . The Cowichan Lake data i s compared to valu e s obtained by E i s (1962) and Kojima and K r a j i n a (1975) 151 32. Humus form Group ( K l i n k a et a l . , 1981b) f o r a l l p l o t s i n biogeocoenotic a s s o c i a t i o n s TBA) 2, 3, 4, and 5. Data i s organized a c c o r d i n g to growth c l a s s (GC) of D o u g l a s - f i r (Pseudotsuga menziesi i ) 170 x i L i s t of F i g u r e s 1. L o c a t i o n of the study area 30 2. O r d i n a t i o n graph for a x i s 1 (RA12.1) and a x i s 2 (RA12.2) of the RA12 o r d i n a t i o n . Symbols p l o t t e d i n d i c a t e the a s s o c i a t i o n to which a sample p l o t belongs 94 3. O r d i n a t i o n graph f o r a x i s 1 (RA14.1) and a x i s 2 (RAM.2) of the RA14 o r d i n a t i o n . Symbols p l o t t e d i n d i c a t e the a s s o c i a t i o n to which a sample p l o t belongs 95 4. O r d i n a t i o n graph f o r a x i s 1 (DCA12.1) and a x i s 2 (DCA12.2) of the DCA12 o r d i n a t i o n . Symbols p l o t t e d i n d i c a t e the a s s o c i a t i o n to which a sample p l o t belongs 96 5. O r d i n a t i o n graph f o r a x i s 1 (DCA14.1) and a x i s 2 (DCA14.2) of the DCA14 o r d i n a t i o n . Symbols p l o t t e d i n d i c a t e the a s s o c i a t i o n to which a sample p l o t belongs 97 6. O r d i n a t i o n graph f o r a x i s 1 (P012.1) and a x i s 2 (P012.2) of the P012 o r d i n a t i o n . Symbols p l o t t e d i n d i c a t e the a s s o c i a t i o n to which a sample p l o t belongs 98 7. O r d i n a t i o n graph f o r a x i s 1 (P014.1) and a x i s 2 (P014.2) of the P014 o r d i n a t i o n . Symbols p l o t t e d i n d i c a t e the a s s o c i a t i o n to which a sample p l o t belongs 99 8. Dendrogram f o r the CA12 c l u s t e r a n a l y s i s 100 9. Dendrogram f o r the CA14 c l u s t e r a n a l y s i s 101 10. Edatopic i n d i c a t o r s p e c i e s s p e c t r a f o r the 6 biogeocoenotic a s s o c i a t i o n s (N.B. value s of RSI < 2.0 are not p l o t t e d ) 126 11. P l o t of c a n o n i c a l v a r i a b l e s 1 (EISG.1) and 2 (EISG.2) f o r the d i s c r i m i n a n t a n a l y s i s by edatopic i n d i c a t o r s p e c i e s groups. Symbols p l o t t e d i n d i c a t e the biogeo c o e n o t i c a s s o c i a t i o n to which a sample p l o t belongs 130 12. Growing season s o i l water d e f i c i t s (mm) f o r 8 p l o t s ( G i l e s , 1983) used i n the Cowichan Lake study. Sample p l o t numbers are arranged a c c o r d i n g to a x i s 1 order in the RA12 o r d i n a t i o n 136 13. Humus form of the 51 sample p l o t s (MR=mor, MD=moder, and ML=mull). Sample p l o t numbers are arranged a c c o r d i n g to a x i s 1 order in the RA12 o r d i n a t i o n 137 14. P l o t of c a n o n i c a l v a r i a b l e s 1 (DA02.1) and 2 (DA02.2) f o r the DA02 d i s c r i m i n a n t a n a l y s i s . Symbols p l o t t e d i n d i c a t e x i i the biogeocoenotic a s s o c i a t i o n to which a sample p l o t belongs. 142 15. P l o t of c a n o n i c a l v a r i a b l e s 1 (DA04.1) and 2 (DA04.2) f o r the DA04 d i s c r i m i n a n t a n a l y s i s . Symbols p l o t t e d i n d i c a t e the b iogeocoenotic a s s o c i a t i o n to which a sample p l o t belongs < .. 1 43 16. R e l a t i o n s h i p between c a n o n i c a l v a r i a b l e 1 of the DA02 d i s c r i m i n a n t a n a l y s i s (DA02.1) and a x i s 1 score of the DCA12 o r d i n a t i o n (DCA12.1). Symbols p l o t t e d i n d i c a t e the a s s o c i a t i o n to which a sample p l o t belongs 145 17. R e l a t i o n s h i p between c a n o n i c a l v a r i a b l e 1 of the DA04 d i s c r i m i n a n t a n a l y s i s (DA04.1) and a x i s 1 score of the DCA14 o r d i n a t i o n (DCA14.1). Symbols p l o t t e d i n d i c a t e the a s s o c i a t i o n to which a sample p l o t belongs 146 18. R e l a t i o n s h i p between s i t e index (m/100 y r s ) of D o u g l a s - f i r (Pseudotsuga menziesi i ) and a x i s 1 score of the DCA14 o r d i n a t i o n (DCA14.1). Symbols p l o t t e d i n d i c a t e the a s s o c i a t i o n to which a sample p l o t belongs 153 19. R e l a t i o n s h i p between s i t e index (m/100 y r s ) of D o u g l a s - f i r - (Pseudotsuga menziesi i ) and c a n o n i c a l v a r i a b l e 1 from the DA04 d i s c r i m i n a n t a n a l y s i s (DA04.1). Symbols p l o t t e d i n d i c a t e the a s s o c i a t i o n to which a sample p l o t belongs 155 20. R e l a t i o n s h i p between t o t a l N (kg/ha) i n s o i l l a y e r 1 (TN.1) and growth c l a s s (GC) of D o u g l a s - f i r (Pseudotsuga  menziesi i ) . Means ( h o r i z o n t a l b a r s ) , 95% confidence i n t e r v a l s ( v e r t i c a l b a r s ) , and sample s i z e s (n) are shown 158 21. R e l a t i o n s h i p between t o t a l N (kg/ha) i n the mineral s o i l (TN.123) and growth c l a s s (GC) of D o u g l a s - f i r (Pseudotsuga  menziesi i ) . Means ( h o r i z o n t a l b a r s ) , 95% confidence i n t e r v a l s ( v e r t i c a l b a r s ) , and sample s i z e s (n) are shown 159 22. R e l a t i o n s h i p between m i n e r a l i z a b l e N (kg/ha) i n s o i l l a y e r 1 (MN.1) and growth c l a s s (GC) of D o u g l a s - f i r (Pseudotsuga  m e n z i e s i i ) . Means ( h o r i z o n t a l b a r s ) , 95% confidence i n t e r v a l s ( v e r t i c a l b a r s ) , and sample s i z e s (n) are shown 160 23. R e l a t i o n s h i p between m i n e r a l i z a b l e N (kg/ha) i n mineral s o i l (MN.123) and growth c l a s s (GC) of D o u g l a s - f i r (Pseudotsuga menziesi i ) . Means ( h o r i z o n t a l b a r s ) , 95% confidence i n t e r v a l s ("vertical b a r s ) , and sample s i z e s (n) are shown 161 24. R e l a t i o n s h i p between C:N r a t i o i n s o i l l a y e r 1 (CN.1) and x i i i growth c l a s s (GC) of D o u g l a s - f i r (Pseudotsuga m e n z i e s i i ) . Means ( h o r i z o n t a l b a r s ) , 95% confidence i n t e r v a l s ( v e r t i c a l b a r s ) , and sample s i z e s (n) are shown 162 25. R e l a t i o n s h i p between C:N r a t i o i n the mi n e r a l s o i l (CN.123) and growth c l a s s (GC) of D o u g l a s - f i r (Pseudotsuga  m e n z i e s i i ) . Means ( h o r i z o n t a l b a r s ) , 95% con f i d e n c e i n t e r v a l s ( v e r t i c a l b a r s ) , and sample s i z e s (n) are shown 163 26. R e l a t i o n s h i p between m i n e r a l i z a b l e N (kg/ha) and C:N i n s o i l l a y e r 1 (MN.1, CN.1), and growth c l a s s of D o u g l a s - f i r (Pseudotsuga m e n z i e s i i ) . Growth c l a s s v a l u e s are p l o t t e d at mean MN and C:N value f o r that growth c l a s s 167 27. R e l a t i o n s h i p between m i n e r a l i z a b l e N (kg/ha) and C:N i n the mineral s o i l (MN.123, CN.123), and growth c l a s s of D o u g l a s - f i r (Pseudotsuga menziesi i ) . Growth c l a s s values are p l o t t e d at mean MN and C:N value f o r that growth c l a s s . 168 28. R e l a t i o n s h i p between Ca (kg/ha) i n s o i l l a y e r 1 (CA.1) and growth c l a s s (GC) of D o u g l a s - f i r (Pseudotsuga  menziesi i ) . Means ( h o r i z o n t a l b a r s ) , 95% confidence i n t e r v a l s ( v e r t i c a l b a r s ) , and sample s i z e s (n) are shown 173 29. R e l a t i o n s h i p between Ca (kg/ha) i n the mi n e r a l s o i l (CA.123) and growth c l a s s (GC) of D o u g l a s - f i r (Pseudotsuga  menziesi i ) . Means ( h o r i z o n t a l b a r s ) , 95% confidence i n t e r v a l s ( v e r t i c a l b a r s ) , and sample s i z e s (n) are shown 174 30. R e l a t i o n s h i p between c a n o n i c a l v a r . 1 of the DA04 d i s c r i m i n a n t a n a l y s i s (DA04.1) and a x i s 1 score of the DCA14 o r d i n a t i o n (DCA14.1). Symbols p l o t t e d i n d i c a t e the growth c l a s s of D o u g l a s - f i r (Pseudotsuga m e n z i e s i i ) on each p l o t 175 x i v Acknowledgement I would e s p e c i a l l y l i k e to thank my a d v i s o r , Dr. K. K l i n k a , f o r h i s guidance, encouragement and support throughout the study, and my committee members, Dr. J.P. Kimmins and Dr. G.F. Weetman, f o r t h e i r a d v i c e . I would a l s o l i k e to thank Mr. I. C a r l s s o n , D i r e c t o r of the B.C. M i n i s t r y of F o r e s t s Cowichan Lake Research S t a t i o n , f o r p r o v i d i n g l o d g i n g and l a b o r a t o r y f a c i l i t i e s d uring the sampling stage, and P. C o u r t i n , R. Green, R. L a i r d , and G. Shishkov of the B.C. M i n i s t r y of F o r e s t s Research Branch f o r t h e i r h e l p d u r i n g the sampling and data a n a l y s i s stages. S p e c i a l thanks are a l s o extended to Dr. V . J . K r a j i n a and F. Boas who helped with p l a n t i d e n t i f i c a t i o n ; to J . Emanuel and B. Wong f o r advice regarding computer a n a l y s i s ; to W. Hamby who performed the m i n e r a l i z a b l e N de t e r m i n a t i o n ; and to Dr. L.M. L a v k u l i c h , Chairman of the S o i l Science Department, who gave the author access to the l a b o r a t o r y f a c i l i t i e s r e q u i r e d t o perform the s o i l chemical a n a l y s e s . F i n a l l y , I am g r a t e f u l f o r the f i n a n c i a l support p r o v i d e d by the N a t u r a l Sciences and E n g i n e e r i n g Research C o u n c i l of Canada, and the F a c u l t i e s of F o r e s t r y and Graduate s t u d i e s at the U n i v e r s i t y of B r i t i s h Columbia. 1 I. INTRODUCTION 1.1 RESEARCH NEEDS Sev e r a l approaches f o r c l a s s i f y i n g f o r e s t land have been a p p l i e d i n B r i t i s h Columbia. These approaches have been d i s c u s s e d i n Drew and Kimmins (1977), Jones (1978), Kimmins (1979), and Beese (1981). Of these, the system of b i o g e o c l i m a t i c ecosystem c l a s s i f i c a t i o n developed by Dr. V.J. K r a j i n a and h i s students at the U n i v e r s i t y of B r i t i s h Columbia has r e c e i v e d the widest use i n B.C.. In a d d i t i o n to B.C., t h i s system has a l s o been a p p l i e d i n other p a r t s of the world, i n c l u d i n g the Hawaiian I s l a n d s ( K r a j i n a , 1963), Hokkaido I s l a n d , Japan (Kojima, 1979), and the p r o v i n c e of A l b e r t a (Kojima and Krumlik, 1979; Kojima, 1980). Since 1975, the B r i t i s h Columbia M i n i s t r y of F o r e s t s (MOF) has a p p l i e d t h i s system to gain a comprehensive understanding of f o r e s t ecosystems i n a systematic f a s h i o n (Annas, 1977; Schmidt, 1977; K l i n k a et a l . , 1980a,1980b). To date, the b i o g e o c l i m a t i c system has p r o v i d e d the e c o l o g i c a l framework f o r a wide v a r i e t y of a p p l i c a t i o n s , i n c l u d i n g the development of p r a c t i c a l guides f o r tree- s p e c i e s s e l e c t i o n and p r e s c r i b e d burning ( K l i n k a 1977a, 1977b,1977c; U t z i g and MacDonald, 1977; Nuszdorfer and K l i n k a , 1982), park management ( I n s e l b e r g et. a_l. , 1982), and i n t e g r a t e d resource management ( K l i n k a e_t a_l. , 1 980a , 1 980b) . The most c u r r e n t update of work being done by the MOF to r e f i n e and apply the b i o g e o c l i m a t i c system i s found i n the p u b l i c a t i o n "Forest Research Review" compiled a n n u a l l y by the MOF's Research Branch. 2 In the Vancouver F o r e s t Region, recent work by the MOF has c o n c e n t r a t e d on refinement of the taxonomic c l a s s i f i c a t i o n of ecosystems at the r e g i o n a l ( b i o g e o c l i m a t i c ) l e v e l . D e t a i l e d b i o g e o c l i m a t i c maps which cover the southwestern corner of the B.C. mainland and most of Vancouver I s l a n d are now a v a i l a b l e ( K l i n k a et a l . , 1979; C o u r t i n et a l . , 1984). Now that the r e g i o n a l framework i s f a i r l y w e l l e s t a b l i s h e d , there i s a need to more f u l l y determine the range and p r o p e r t i e s of ecosystems (biogeocoenoses) o c c u r r i n g w i t h i n c l i m a t i c a l l y uniform areas ( i . e . b i o g e o c l i m a t i c subzones and v a r i a n t s ) . Thus, there i s a  need to concentrate r e s e a r c h e f f o r t s on the more d e t a i l e d  (biogeocoenotic) l e v e l . Many s t u d i e s at the biogeocoenotic l e v e l have a l r e a d y been conducted in the Vancouver F o r e s t Region, but most of these have i n v e s t i g a t e d the p r o p e r t i e s of mature, old-growth f o r e s t s . Since f o r e s t managers w i l l be i n c r e a s i n g l y d e a l i n g with second-growth f o r e s t ecosystems, there i s a need to study these second- growth f o r e s t ecosystems and, more s p e c i f i c a l l y , determine t h e i r  p r o p e r t i e s and c l a s s i f i c a t i o n s t a t u s . K l i n k a e_t a_l. (1979) noted that i n the southeastern p a r t of Vancouver I s l a n d , there i s a c l o s e r e l a t i o n s h i p between the c l i m a t e of the East Vancouver I s l a n d v a r i a n t of the D r i e r Maritime C o a s t a l Western Hemlock subzone (CWHa2) and the Nanaimo and Georgia v a r i a n t of the Wetter Maritime C o a s t a l D o u g l a s - f i r subzone (CDFbl). They a l s o noted that, in a d d i t i o n to t h i s lack of d i s t i n c t l y d i f f e r e n t c l i m a t e s , the presence of r i c h parent m a t e r i a l s , and e x t e n s i v e d i s t u r b a n c e of the f o r e s t cover makes 3 the c l a s s i f i c a t i o n and mapping of low e l e v a t i o n ecosystems d i f f i c u l t . Consequently, there i s a p a r t i c u l a r need to i n c r e a s e  the present sampling base on southeast Vancouver I s l a n d and  determine the c l a s s i f i c a t i o n s t a t u s of.immature f o r e s t  ecosystems i n t h i s area. Jones (1978) c r i t i c i z e d the techniques used f o r data a n a l y s i s and s y n t h e s i s i n the b i o g e o c l i m a t i c system. He s t a t e d that they are not always c o n s i s t e n t or r e p e a t a b l e . There i s indeed an almost complete r e l i a n c e on a r e l a t i v e l y s u b j e c t i v e (environment and v e g e t a t i o n ) t a b l e rearrangement process for r e c o g n i t i o n of syntaxa at the b i o g e o c o e n o t i c l e v e l . The a p p l i c a t i o n of more o b j e c t i v e , computer-assisted methods i n data s y n t h e s i s and taxa formation i s needed to i n c r e a s e the r e p r o d u c i b i l i t y of r e s u l t s and a l s o to handle i n c r e a s i n g l y l a r g e r data s e t s . Thus, in a d d i t i o n to the need to c l a s s i f y second-growth f o r e s t ecosystems and determine t h e i r p r o p e r t i e s , there i s a l s o a need to f u r t h e r develop c l a s s i f i c a t i o n methods  and, i n p a r t i c u l a r , to make these methods more o b j e c t i v e . One p r o p e r t y of p a r t i c u l a r concern to f o r e s t managers i s the p r o d u c t i v i t y of d i f f e r e n t t r e e s p e c i e s i n second-growth f o r e s t ecosystems. Nuszdorfer and K l i n k a (1982) noted that t h i s i n f o r m a t i o n i s r e q u i r e d f o r the refinement of t r e e s p e c i e s s e l e c t i o n g u i d e s . Thus, there i s a need to determine the  p r o d u c t i v i t y of d i f f e r e n t t r e e s p e c i e s i n these second-growth  f o r e s t ecosystems. Within uniform c l i m a t i c r e g i o n s , the supply of a v a i l a b l e s o i l water and n u t r i e n t s s t r o n g l y i n f l u e n c e s the nature and 4 d i s t r i b u t i o n of ecosystems ( K r a j i n a et a_l. , 1982), and ecosystem p r o d u c t i v i t y (Ralston, 1964; Carmean, 1975; P r i t c h e t t , 1979; and Spurr and Barnes, 1980). Proponents of the b i o g e o c l i m a t i c system have recognized t h i s f a c t and have developed the concepts of s o i l moisture regime (SMR) or hygrotope, and s o i l n u t r i e n t  regime (SNR) or trophotope from ideas o r i g i n a l l y proposed by Pogrebnyak (1930). K r a j i n a et a l . (1982) d e f i n e d SMR as " a v a i l a b l e s o i l water over a long p e r i o d of time", and SNR as " a v a i l a b l e s o i l n u t r i e n t s over a long p e r i o d of time". In the b i o g e o c l i m a t i c system, e i g h t q u a l i t a t i v e hygrotope c l a s s e s (0-7) are used to c h a r a c t e r i z e the SMR, and f i v e q u a l i t a t i v e trophotope c l a s s e s (A-E) are used to c h a r a c t e r i z e the SNR of f o r e s t ecosystems. The hygrotope and trophotope c l a s s of a p a r t i c u l a r ecosystem i s c u r r e n t l y estimated on the b a s i s of a number of f i e l d - a s s e s s e d s i t e and s o i l p r o p e r t i e s (Nuszdorfer and K l i n k a , 1982). Despite the proven u s e f u l n e s s of these concepts f o r an approximate, management-oriented c h a r a c t e r i z a t i o n of SMR and SNR, Kimmins (1984) noted that the l a c k of a b s o l u t e q u a n t i t a t i v e values has been c r i t i c i z e d by s e v e r a l authors. Nuszdorfer and K l i n k a (1982) recognized that these hygrotope and trophotope c l a s s e s must be more p r e c i s e l y d e f i n e d . But, before t h i s can occur, those s o i l p r o p e r t i e s which c o n t r o l and/or a f f e c t SMR and SNR must be more p r e c i s e l y q u a n t i f i e d . Thus, there i s a need to more p r e c i s e l y q u a n t i f y  those s o i l p r o p e r t i e s which c o n t r o l and/or a f f e c t SMR and SNR. 5 1.2 COWICHAN LAKE STUDY During the summer of 1981, a study was i n i t i a t e d i n immature f o r e s t ecosystems surrounding Cowichan Lake on Vancouver I s l a n d , w i t h i n the l i m i t s of the CWHa2. The purpose of t h i s study was to c l a s s i f y these ecosystems and i n v e s t i g a t e r e l a t i o n s h i p s among s e v e r a l important ecosystem a t t r i b u t e s , i . e . f l o r i s t i c composition, s i t e p r o p e r t i e s , s o i l p h y s i c a l and chemical p r o p e r t i e s , and ecosystem p r o d u c t i v i t y . The main o b j e c t i v e of t h i s study was to develop a c l a s s i f i c a t i o n of these f o r e s t ecosystems which could provide a basis for ecosystem mapping and more s i t e - s p e c i f i c f o r e s t management. This c l a s s i f i c a t i o n was to f o l l o w the approach used i n the b i o g e o c l i m a t i c ecosystem c l a s s i f i c a t i o n system as a p p l i e d by the MOF. Another o b j e c t i v e was to evaluate the usefulness of sev e r a l m u l t i v a r i a t e a n a l y s i s techniques as aids for developing the c l a s s i f i c a t i o n , and for i n v e s t i g a t i n g the complex r e l a t i o n s h i p s which c h a r a c t e r i z e these f o r e s t ecosystems. S p e c i f i c o b j e c t i v e s of t h i s study included: 1. Apply r e c i p r o c a l averaging, detrended correspondence a n a l y s i s , polar o r d i n a t i o n , and c l u s t e r a n a l y s i s as means for p r o v i d i n g a more o b j e c t i v e basis f o r data synthesis and syntaxa formation. 2. C l a s s i f y the immature f o r e s t ecosystems to the l e v e l of biogeocoenotic a s s o c i a t i o n (BA). 3. Develop an o b j e c t i v e , repeatable procedure for e x t r a c t i n g from summary vegetation t a b l e s the C h a r a c t e r i s t i c Combinations of Species (CCS) for orders, a l l i a n c e s , and 6 a s s o c i a t i o n s . 4 . Determine the degree of f l o r i s t i c s i m i l a r i t y between the immature Cowichan Lake a s s o c i a t i o n s and, c l i m a t i c a l l y and e d a p h i c a l l y s i m i l a r , mature a s s o c i a t i o n s . 5. Using i n d i c a t o r p l a n t a n a l y s i s , determine whether the e s t a b l i s h e d syntaxa d i f f e r i n terms of edatopic i n d i c a t o r s p e c i e s groups (EISG). 6. Q u a n t i f y ( i n terms of kg»ha" 1) a number of s o i l p r o p e r t i e s which a f f e c t the SMR and SNR, and determine whether the e s t a b l i s h e d syntaxa d i f f e r i n terms of these measured s o i l p r o p e r t i e s . 7. Apply d i s c r i m i n a n t a n a l y s i s to environmental a t t r i b u t e s of the ecosystems to determine which are of g r e a t e s t importance f o r d i f f e r e n t i a t i n g between the BA's. 8. Using the r e s u l t s of m u l t i v a r i a t e a n a l y s e s , i n v e s t i g a t e the p o s s i b i l i t y of corresponding trends in f l o r i s t i c composition and s o i l p r o p e r t i e s . 9. Determine s i t e index (SI) of D o u g l a s - f i r (Pseudotsuga  menziesi i (Mirb.) Franco) i n these immature f o r e s t ecosystems and use t h i s estimate of s i t e p r o d u c t i v i t y to i n v e s t i g a t e d i f f e r e n c e s i n p r o d u c t i v i t y between the e s t a b l i s h e d syntaxa. 1 0 . Using the r e s u l t s of f l o r i s t i c data o r d i n a t i o n s , i n v e s t i g a t e p o s s i b l e r e l a t i o n s h i p s between changes i n SI and understory s p e c i e s composition. 1 1. Using the r e s u l t s of d i s c r i m i n a n t a n a l y s i s of s o i l p r o p e r t i e s , i n v e s t i g a t e p o s s i b l e r e l a t i o n s h i p s between 7 changes i n SI and the s o i l p r o p e r t i e s which are most u s e f u l f o r c h a r a c t e r i z i n g d i f f e r e n c e s between the BA's. 12. I n v e s t i g a t e r e l a t i o n s h i p s between SI of D o u g l a s - f i r , s e v e r a l i n d i c e s of s o i l N ( t o t a l N, m i n a r a l i z a b l e N, and C:N r a t i o s ) and Ca (exchangeable Ca) s t a t u s , and s i t e humus form. T h i s r e p o r t w i l l begin with a general overview of f o r e s t land c l a s s i f i c a t i o n . T h i s w i l l be followed by a d e s c r i p t i o n of the study area, and a d e s c r i p t i o n of the methods used f o r data a n a l y s i s and s y n t h e s i s . The r e s u l t s w i l l then be presented and d i s c u s s e d . F i n a l l y , the r e p o r t w i l l end with a b r i e f summary and c o n c l u s i o n s . 8 I I . FOREST LAND CLASSIFICATION 2.1 THE NEED FOR FOREST LAND CLASSIFICATION Long-term p r o j e c t i o n s i n d i c a t e an i n c r e a s e d demand f o r f o r e s t products (Kimmins, 1977a). T h i s i n c r e a s e d demand w i l l be accompanied by c o n t i n u i n g l o s s e s of the f o r e s t land base to other uses (eg. a g r i c u l t u r e , parks, urban and i n d u s t r i a l expansion, e t c . ) . Thus, the c h a l l e n g e f a c i n g f o r e s t managers i s to i n t e n s i f y f o r e s t management i n order to maximize p r o d u c t i o n on an e v e r - s h r i n k i n g f o r e s t l a n d base. An important c o n s i d e r a t i o n must be addressed before i n t e n s i v e management p r a c t i c e s can be implemented. D i f f e r e n t p o r t i o n s of the f o r e s t landscape possess d i f f e r e n t p r o p e r t i e s . Because of t h i s , they o f t e n show d i f f e r e n t responses to a given management p r a c t i c e . C e r t a i n management p r a c t i c e s which have been a p p l i e d u b i q u i t o u s l y , without regard to d i f f e r e n c e s i n s i t e p r o p e r t i e s , have o f t e n produced u n d e s i r a b l e r e s u l t s (Jones, 1978). These r e s u l t s have i n c l u d e d degradation of f o r e s t land and subsequent impairment of i t s p r o d u c t i o n p o t e n t i a l , a s i t u a t i o n which i s no longer t o l e r a b l e i n view of the need to maximize p r o d u c t i v i t y . F o r e s t managers must t h e r e f o r e have the a b i l i t y to p r e d i c t the outcome of v a r i o u s management p r a c t i c e s on a s i t e - s p e c i f i c b a s i s . The only way to do t h i s i s to study the p r o p e r t i e s of the f u l l range of s i t e s o c c u r r i n g i n a given area. T h i s i n f o r m a t i o n must then be organized a c c o r d i n g to some framework which allows i t to be u t i l i z e d and communicated e f f i c i e n t l y . Such a framework i s provided by f o r e s t land 9 c l a s s i f i c a t i o n (Kimmins, 1977b; K l i n k a et a l . , 1979). 2.2 THE NEED FOR AN ECOSYSTEM APPROACH Rowe (1971) and Kimmins (1977b) s t r e s s e d that there i s no s i n g l e f o r e s t land c l a s s i f i c a t i o n system that i s "best" or " c o r r e c t " under a l l circumstances. The c o r r e c t system f o r any given purpose i s that which achieves the r e q u i r e d o b j e c t i v e s in the most d i r e c t and inexpensive manner. If the purpose of the system i s simply to s t r a t i f y the f o r e s t landscape i n t o u n i t s which are s i m i l a r in t h e i r a b i l i t y to produce timber crops, then a simple method which s t r a t i f i e s on the b a s i s of one or a few s e l e c t e d p r o p e r t i e s may be e n t i r e l y adequate. S e v e r a l methods have been developed for t h i s purpose. These i n c l u d e d i r e c t d e t e r m i n a t i o n of t r e e volume increment, and i n d i r e c t approaches based on t r e e height growth ( s i t e index), presence and abundance of d i a g n o s t i c understory p l a n t s , a c o n s i d e r a t i o n of f a c t o r s of the p h y s i c a l environment such as c l i m a t e , s o i l s and topography, and f i n a l l y v a r i o u s combinations of these methods. The a p p l i c a t i o n of these methods has been d i s c u s s e d by s e v e r a l authors ( R a l s t o n , 1964; Jones, 1969; Husch, et a l . , 1972; Carmean, 1975,1977; Daubenmire, 1976; Damman, 1977,1979; D a n i e l et a l . , 1979; K r e u t z e r , 1979; P r i t c h e t t , 1979; Havel, 1980a,1980b; Spurr and Barnes, 1980; Hagglund, 1981; K i l i a n , 1981; McRae and Burnham, 1981; Tesch, 1981; Zonneveld, 1981; Jahn, 1982; Kimmins, 1984). Papers d e a l i n g s p e c i f i c a l l y with Canada i n c l u d e those by Burger (1972) and Grandtner and 10 Vaucamps (1982). ' I f , as i s most of t e n the case today, the purpose of the f o r e s t land c l a s s i f i c a t i o n system i s to r a t e s i t e s i n terms of t h e i r " p o t e n t i a l f o r withstanding r e c r e a t i o n a l impacts, importance as w i l d l i f e h a b i t a t s , y i e l d of high q u a l i t y water, hazards in road or e n g i n e e r i n g s t r u c t u r e s , and other uses as w e l l as t h e i r s u i t a b i l i t y f o r timber p r o d u c t i o n " ( P r i t c h e t t , 1979), then a more complex, h o l i s t i c approach i s needed (Rowe, 1971). Admittedly, most f o r e s t managers are p r i m a r i l y concerned with understanding and r e l i a b l y p r e d i c t i n g p l a n t growth ( K l i n k a et a l . , 1979). But, they must a l s o be concerned with these other aspects of f o r e s t management. Because of the complexity inherent i n t h i s o b j e c t i v e , the f o r e s t manager must co n s i d e r a l a r g e number of f a c t o r s and t h e i r i n t e r a c t i o n s (Kimmins, 1977b). As Kimmins (1977b) noted, the more f a c t o r s we study and understand, the g r e a t e r w i l l be our a b i l i t y to make accurate p r e d i c t i o n s about the outcome of v a r i o u s management s t r a t e g i e s . The f o r e s t manager must t h e r e f o r e d i r e c t h i s (her) a t t e n t i o n to the only true " l e v e l - o f - i n t e g r a t i o n " above that of the i n d i v i d u a l organism, the f o r e s t ecosystem (Rowe, 1961). I t i s necessary to adopt an approach to f o r e s t land c l a s s i f i c a t i o n which c o n s i d e r s the f u l l range of e c o l o g i c a l f a c t o r s a f f e c t i n g f o r e s t ecosystems, in' other words, i t i s necessary to adopt an ecosystem approach (Kimmins, 1977b; B a i l e y , 1981). S e v e r a l recent symposia have s t r e s s e d the need f o r an ecosystem approach to f o r e s t land c l a s s i f i c a t i o n (Thie and I r o n s i d e , 1976; Drew and Kimmins, 1977; Lund et a l . , 1978; 11 Rubec, 1979; and Laban, 1981), and s e v e r a l ecosystem c l a s s i f i c a t i o n systems have been developed. These are reviewed in Gimbarzevsky (1978) and B a i l e y (1981). Wiken (1980) presents a summary of e c o l o g i c a l c l a s s i f i c a t i o n s t u d i e s done i n Canada. 2.3 CONCEPTUAL BASIS The p h i l o s o p h y , o b j e c t i v e s , and p r i n c i p l e s of c l a s s i f i c a t i o n have been d i s c u s s e d by s e v e r a l authors ( C l i n e , 1949; Gilmour, 1951; Sokal, 1974; B a i l e y et a l . , 1978; Whittaker, 1978; Zonneveld, 1981; and Gauch, 1982). C l a s s i f i c a t i o n i s a p r e r e q u i s i t e f o r a l l conceptual thought. I t s primary f u n c t i o n i s to c o n s t r u c t c l a s s e s (taxa) about which we can make g e n e r a l i z a t i o n s (Gilmour, 1951). C l a s s i f i c a t i o n i n v o l v e s the o r d e r i n g or arrangement of a r e l a t i v e l y l a r g e number of " o b j e c t s " i n t o a s m a l l e r number of c l a s s e s on the b a s i s of t h e i r s i m i l a r i t y i n s e l e c t e d p r o p e r t i e s ( C l i n e , 1949). T h i s process c r e a t e s order out of f a c t u a l chaos and reduces to a workably sma l l number the t o t a l number of t h i n g s we must deal with and remember ( B a i l e y e_t a_l. , 1978). P r o p e r t i e s used to d i f f e r e n t i a t e between c l a s s e s are c a l l e d d i f f e r e n t i a t i n g c h a r a c t e r i s t i c s ( C l i n e , 1949), the product of the c l a s s i f i c a t i o n process i s a c l a s s i f i c a t i o n system, and the subsequent assignment of u n c l a s s i f i e d " o b j e c t s " to the e s t a b l i s h e d c l a s s e s i s c a l l e d i d e n t i f i c a t i o n (Sokal, 1 974). Since c l a s s i f i c a t i o n i s an a b s t r a c t process, any c l a s s i f i c a t i o n system i s more or l e s s imposed and not e n t i r e l y n a t u r a l . M i l e s 12 (1979) s t a t e d that a c l a s s i f i c a t i o n system i s only a working h y p o t h e s i s , an "ad hoc f i c t i o n " , but that such systems are necessary f o r the advancement of s c i e n t i f i c understanding. 2.4 THE CONTINUOUS NATURE OF ECOSYSTEMS Rowe (1960) suggested that the ease with which a c l a s s i f i c a t i o n system can be developed depends on the nature of the " o b j e c t s " to be c l a s s i f i e d . He s t a t e d that these " o b j e c t s " may be " s e l f - e v i d e n t e n t i t i e s " (eg. i n d i v i d u a l p l a n t s or animals) which may be c l a s s i f i e d r e l a t i v e l y e a s i l y , or they may be "blending, c o a l e s c e n t , p a t t e r n e d phenomena" (eg. c l i m a t e s or s o i l s ) which are more d i f f i c u l t to c l a s s i f y . In ecosystem c l a s s i f i c a t i o n , the o b j e c t s which are s t u d i e d and c l a s s i f i e d ( f o r e s t ecosystems) belong to the l a t t e r group. The term "ecosystem" was in t r o d u c e d by Tansley (1935). He d e f i n e d an ecosystem as the b a s i c u n i t of nature, composed of l i v i n g organisms and i n o r g a n i c " f a c t o r s " , and c h a r a c t e r i z e d by constant i n t e r a c t i o n s between these components. Tansley's d e f i n i t i o n does not c o n s i d e r the q u e s t i o n of s c a l e . A ccording to h i s view, an ecosystem can i n c l u d e any s i z e d system from a small pond (or even sm a l l e r e n t i t i e s ) to the e n t i r e e a r t h system (Kojima, 1981). Because of the open nature of the ecosystem concept, Malcolm (1981) noted t h a t , i n theory, i t i s d i f f i c u l t to d e l i n e a t e an i n d i v i d u a l ecosystem e i t h e r p h y s i c a l l y or i n a c l a s s i f i c a t i o n . But, he a l s o noted t h a t , " i n p r a c t i c e , i t i s 13 u s u a l l y p o s s i b l e to demarcate e c o l o g i c a l u n i t s which are s u f f i c i e n t l y d i s c r e t e f o r separate d e s c r i p t i o n and mapping". To do t h i s r e q u i r e s a narrower d e f i n i t i o n of a f o r e s t ecosystem which w i l l permit f o r e s t managers to put l i m i t s on i t s a r e a l e x t e n t . Such a d e f i n i t i o n , which c o n s i d e r s f o r e s t ecosystems as c o n c r e t e , three-dimensional bodies at a s c a l e u s e f u l f o r f o r e s t management, has been pr o v i d e d by Sukachev (Sukachev, 1944,1960; Sukachev and D y l i s , 1964a,1964b). Sukachev proposed the term f o r e s t biogeocoenose f o r such an e n t i t y , and d e f i n e d i t as "that part of the f o r e s t uniform over a c e r t a i n area in the composition, s t r u c t u r e , and p r o p e r t i e s of i t s components, and i n the i n t e r r e l a t i o n s h i p s among them; that i s , uniform in the p l a n t s , animals, and microorganisms i n h a b i t i n g i t , i n the parent m a t e r i a l , in i t s h y d r o l o g i c a l , m i c r o c l i m a t i c (atmospheric), and s o i l environments and the i n t e r a c t i o n s among them; and in the kind of matter and energy exchange between these components and other n a t u r a l phenomena in nature" ( t r a n s l a t i o n i n K l i n k a et a l . (1979) of d e f i n i t i o n i n Sukachev and D y l i s (1964a)). In summary then, a f o r e s t biogeocoenose i s a c o n c r e t e e n t i t y , a p l o t on the earth's s u r f a c e having a uniform biocoenose ( v e g e t a t i o n , animals, and microorganisms), and ecotope (climate and s o i l ) . The terms " f o r e s t ecosystem" and " f o r e s t biogeocoenose" w i l l both be used i n t h i s r e p o r t . Unless s t a t e d otherwise, t h e i r use w i l l always imply the narrower d e f i n i t i o n of the l a t t e r . L a t e r a l boundaries between adjacent f o r e s t biogeocoenoses can be e i t h e r d i s t i n c t or g r a d u a l . T h i s depends on the 14 abruptness of the d i f f e r e n c e s i n the s t r u c t u r e and p r o p e r t i e s of ecosystems ( K l i n k a et a l . , 1979; I n s e l b e r g et a l . , 1982). T h i s problem of i n t e r g r a d i n g types has been addressed by s e v e r a l authors, i n c l u d i n g C l i n e (1949), Whittaker (1956), Rowe (1960), Maarel (1975), and M i l e s (1979). Rowe (i960) s t a t e d t h a t , no matter how they are d e f i n e d , on systematic examination f o r e s t ecosystems are found to be i n t e r g r a d i n g r a t h e r than d i s c r e t e e n t i t i e s . He s t a t e d that i n f o r m a t i o n about f o r e s t ecosystems i s not " s e l f - o r d e r i n g " . He suggested that f o r e s t ecosystems can be con s i d e r e d i n terms of g r a d i e n t p a t t e r n s , that these g r a d i e n t s can be d i v i d e d , and the segments grouped i n t o c l a s s e s i n the same way that d i s c r e t e o b j e c t s are organ i z e d . He a l s o s t a t e d t h a t , f o r f o r e s t management purposes, the c l a s s i f i c a t i o n of f o r e s t ecosystems i n t o "types" has u s e f u l aspects and that t h i s i s s u f f i c i e n t j u s t i f i c a t i o n f o r doing i t . Whittaker (1956), Maarel (1975), and M i l e s (1979) d i s c u s s e d the problems of typology as i t r e l a t e s to v e g e t a t i o n c l a s s i f i c a t i o n . However, t h e i r o b s e r v a t i o n s apply e q u a l l y w e l l to f o r e s t ecosystem c l a s s i f i c a t i o n . M i l e s (1979) s t a t e d t h a t , in order to study any b i o l o g i c a l phenomena, i t i s necessary to i d e n t i f y small u n i t s which i t i s p o s s i b l e to study but, s i n c e v e g e t a t i o n shows endless v a r i a t i o n in composition in both time and space, d i f f e r e n t u n i t s w i l l i n e v i t a b l y i n t e r g r a d e . Whittaker (1956) noted that "because of environmental i n t e r r u p t i o n s and some r e l a t i v e d i s c o n t i n u i t i e s inherent i n ve g e t a t i o n i t s e l f " , v e g e t a t i o n p a t t e r n s may be c o n s i d e r e d "a complex mixture of c o n t i n u i t y and r e l a t i v e d i s c o n t i n u i t y " . 15 However, Maarel (1975) noted that a t y p o l o g i c a l concept does not n e c e s s a r i l y imply a r e c o g n i t i o n of d i s c o n t i n u i t y . He r e f e r r e d to the ideas of Tuxen (1955) when he s t a t e d that types are " i d e a l concepts" which are r e c o g n i z e d in an e m p i r i c a l way from " c o r r e l a t i o n c o n c e n t r a t e s " (groups of c o r r e l a t e d c h a r a c t e r s ) . Maarel (1975) a l s o s t a t e d that "that which i s e v i d e n t of a type i s always i t s nucleus, not i t s p e r i p h e r y ; types are not pigeonholes but f o c i i n a f i e l d of v a r i a t i o n " . T h i s concept of a "nucleus" i s s i m i l a r to the "modal i n d i v i d u a l " concept used i n s o i l c l a s s i f i c a t i o n ( C l i n e , 1949). As C l i n e (1949) noted, every c l a s s i s t y p i f i e d by i t s modal i n d i v i d u a l , and c l a s s membership i s determined on the b a s i s of r e l a t i v e s i m i l a r i t y to the modal i n d i v i d u a l . ' P i e r p o i n t (1981) has r e c e n t l y d i s c u s s e d the a p p l i c a t i o n of the modal i n d i v i d u a l concept i n ecosystem c l a s s i f i c a t i o n . In summary then, i t i s recognized that f o r e s t ecosystems i n t e r g r a d e i n a more or l e s s continuous f a s h i o n . However, f o r p r a c t i c a l management purposes, i t i s necessary to d i v i d e the f o r e s t landscape i n t o small u n i t s so that we may study t h e i r p r o p e r t i e s and c l a s s i f y them. The u n i t s so formed may be n a t u r a l , i . e . where obvious d i s c o n t i n u i t i e s e x i s t between f o r e s t ecosystems (a r e l a t i v e l y uncommon o c c u r r e n c e ) . If no obvious d i s c o n t i n u i t i e s are apparent, i t may be necessary to impose d i v i s i o n s between i n t e r g r a d i n g types. T h i s process i s e n t i r e l y j u s t i f i a b l e f o r p r a c t i c a l purposes. However, i f i t i s to be repeatable by other workers, so that they a r r i v e at s i m i l a r u n i t s , i t i s necessary to p r e c i s e l y d e f i n e what c r i t e r i a were 1 6 used to subdivide the g r a d i e n t s . 2.5 THE APPLICATION OF ECOSYSTEM CLASSIFICATION The a p p l i c a t i o n of ecosystem c l a s s i f i c a t i o n i n f o r e s t management r e q u i r e s two d i s t i n c t s t e p s . The f i r s t s tep i n v o l v e s a taxonomic ( n a t u r a l , o b j e c t i v e ) c l a s s i f i c a t i o n of ecosystems, and the second step i n v o l v e s an i n t e r p r e t i v e ( s u b j e c t i v e , t e c h n i c a l , use) c l a s s i f i c a t i o n ( K l i n k a et a l . , 1979; Wiken, 1980). T h i s d i s t i n c t i o n i s s i m i l a r to that used i n s o i l c l a s s i f i c a t i o n ( C l i n e , 1949; L a v k u l i c h , 1972). The taxonomic c l a s s i f i c a t i o n i s preceded by "an independent s c i e n t i f i c d e s c r i p t i o n of the ecosystem complex" ( K i l i a n , 1981). The p r o p e r t i e s of the f u l l range of ecosystems o c c u r r i n g in the area of i n t e r e s t are determined by o b s e r v a t i o n and measurement. C l a s s e s are then formed by grouping ecosystems which are s i m i l a r in s e l e c t e d p r o p e r t i e s . The ecosystem c l a s s e s (types) are then named, d e f i n e d , and or g a n i z e d to produce the b a s i c taxonomic c l a s s i f i c a t i o n system. Since f a c t o r s which c o n t r o l the p r o p e r t i e s and d i s t r i b u t i o n of ecosystems vary with the s c a l e of o b s e r v a t i o n (Damman, 1977,1979; B a i l e y , 1981; K i l i a n , 1981; Malcolm, 1981), the b a s i c taxonomic c l a s s i f i c a t i o n should have a h i e r a r c h i c a l s t r u c t u r e which emphasizes d i f f e r e n t ecosystem p r o p e r t i e s at d i f f e r e n t l e v e l s . Malcolm (1981) s t a t e d that the e s s e n t i a l f e a t u r e s of any c l a s s i f i c a t i o n of f o r e s t ecosystems have to be based on the r e c o g n i t i o n of two main environmental g r a d i e n t s , i . e . c l i m a t e , expressed i n terms of s i t e heat and 1 7 water balances, and the r o o t a b l e volume of s o i l which a f f e c t s s o i l moisture and n u t r i e n t s t a t u s . Damman (1977,1979) s t a t e d that both these g r a d i e n t s are r e f l e c t e d i n p r o p e r t i e s of the v e g e t a t i o n such as physiognomy and f l o r i s t i c c omposition. K i l i a n (1981) s t a t e d that a two l e v e l system i s needed, and that such a system should s t r a t i f y c l i m a t e (as i n d i c a t e d by r e g i o n a l p l a n t communities) at the higher ( r e g i o n a l ) l e v e l , and s o i l , landform, and v e g e t a t i o n types at the lower ( l o c a l ) l e v e l . The b i o g e o c l i m a t i c system used i n B r i t i s h Columbia re c o g n i z e s t h i s need f o r a h i e r a r c h i c a l s t r u c t u r e which emphasizes d i f f e r e n t p r o p e r t i e s at d i f f e r e n t l e v e l s . The a c t u a l p r o p e r t i e s used w i l l be d i s c u s s e d i n the f o l l o w i n g s e c t i o n . The taxonomic c l a s s i f i c a t i o n groups ecosystems without regard to p r a c t i c a l a p p l i c a t i o n , and of t e n r e s u l t s i n a r e l a t i v e l y complex system with numerous taxa. Many of these taxa may show a s i m i l a r response to a given management regime and thus, f o r management purposes, may be grouped i n t o a smal l e r number of management u n i t s ( K l i n k a et a l . , 1979; K l i n k a et. a l . , 1980a,1980b). T h i s second step, the pr o d u c t i o n of the i n t e r p r e t i v e c l a s s i f i c a t i o n , i n v o l v e s a dete r m i n a t i o n of the s u i t a b i l i t y of the e c o l o g i c a l u n i t s f o r d i f f e r e n t kinds of land use (land e v a l u a t i o n ) , and i n c l u d e s not only environmental, but a l s o t e c h n i c a l , economic, and s o c i a l c o n s i d e r a t i o n s ( K i l i a n , 1981). S e v e r a l d i f f e r e n t i n t e r p r e t i v e c l a s s i f i c a t i o n systems can be developed once the b a s i c taxonomic system has been e s t a b l i s h e d . I f the basic system i s t r u l y e c o l o g i c a l i n nature, i t should be u s e f u l f o r any p o s s i b l e combination of f o r e s t 18 management o b j e c t i v e s . For p r a c t i c a l management purposes, i t i s o f t e n u s e f u l to d e l i n e a t e on maps, the u n i t s e s t a b l i s h e d i n the c l a s s i f i c a t i o n . T h i s mapping procedure may i n v o l v e the d e l i n e a t i o n of the b a s i c ecosystems or the d e l i n e a t i o n of management u n i t s . Since any mapping p r o j e c t i s time-consuming and expensive, i t may seem d e s i r a b l e t o only produce a management u n i t map to meet immediate needs. However, i t must be noted that maps which show the b a s i c ecosystem u n i t s can subsequently be used to produce d i f f e r e n t management u n i t maps to meet a v a r i e t y of management . o b j e c t i v e s , and are thus of l a s t i n g value (Daubenmire, 1980). In summary then, the a p p l i c a t i o n of ecosystem c l a s s i f i c a t i o n i n f o r e s t management u s u a l l y i n v o l v e s - t h e f o l l o w i n g steps (modified from K i l i a n , 1981): 1. a study of the p r o p e r t i e s of ecosystems as they occur i n the f i e l d , 2. development of the b a s i c taxonomic ecosystem c l a s s i f i c a t i o n system (grouping ecosystems i n t o s e v e r a l c l a s s e s based on s i m i l a r i t y i n observed and measured p r o p e r t i e s ) , 3. development of an i n t e r p r e t i v e c l a s s i f i c a t i o n (grouping i n t o management u n i t s those c l a s s e s of ecosystems which are known (or expected) to show a s i m i l a r response to a given management regime), and 4. mapping of the ecosystems and/or mapping of the management u n i t s . 19 2.6 THE SYSTEM OF BIOGEOCLIMATIC ECOSYSTEM CLASSIFICATION 2.6.1 H i s t o r i c a l Development The h i s t o r i c a l development of the b i o g e o c l i m a t i c ecosystem c l a s s i f i c a t i o n system has been d i s c u s s e d by K r a j i n a (1972,1977). The b a s i c framework of the system evolved from a l a r g e number of s t u d i e s done throughout B r i t i s h Columbia duri n g the 1950's and 1960's by Dr. V . J . K r a j i n a and h i s graduate s t u d e n t s . The r e s u l t s of t h i s e a r l y work were s y n t h e s i z e d and presented i n the p u b l i c a t i o n "Ecology of f o r e s t t r e e s in B r i t i s h Columbia" ( K r a j i n a , 1969). The b i o g e o c l i m a t i c system has undergone numerous changes durin g i t s development. E x p l a n a t i o n s of the system at v a r i o u s stages of development are found i n s e v e r a l p u b l i c a t i o n s , i n c l u d i n g K r a j i n a (1965,1969,1972,1977), Mueller-Dombois and E l l e n b e r g (1974), Kojima and K r a j i n a (1975), B e i l et a l . (1976), K l i n k a (1976), D a n i e l et a l . (1979), K l i n k a et a l . (1979), and Pojar (1983). Even today, the system i s c o n t i n u a l l y being r e f i n e d as new and b e t t e r i n f o r m a t i o n i s a q u i r e d . Most of the recent work in B r i t i s h Columbia has been c a r r i e d out by s t a f f of the Research Branch of the B.C. MOF ( K l i n k a et a l . , 1979,1980a, 1980b; I n s e l b e r g et a l . , 1982; and C o u r t i n et a l . , 1984). 20 2.6.2 S y n e c o l o g i c a l I n t e g r a t i o n L e v e l s In the b i o g e o c l i m a t i c system, i n f o r m a t i o n about f o r e s t ecosystems i s organized in s e v e r a l d i f f e r e n t ways r e f e r r e d to as " s y n e c o l o g i c a l i n t e g r a t i o n l e v e l s " ( K r a j i n a , 1969,1972,1977). The f i v e b a s i c i n t e g r a t i o n l e v e l s i n c l u d e : three taxonomic ( b i o g e o c l i m a t i c , b i o g e o c o e n o t i c , and p h y t o c o e n o t i c ) , one f u n c t i o n a l , and one i n t e r p r e t i v e l e v e l . The p r o p e r t i e s used to assess d i f f e r e n c e s and s i m i l a r i t i e s between ecosystems d i f f e r with the i n t e g r a t i o n l e v e l under c o n s i d e r a t i o n . The three taxonomic l e v e l s organize knowledge of the n a t u r a l p r o p e r t i e s of f o r e s t ecosystems as they occur i n the f i e l d . I t was s t a t e d e a r l i e r that a f o r e s t biogeocoenose i s a p o r t i o n of the ea r t h ' s s u r f a c e which i s uniform i n c l i m a t e , s o i l s , v e g e t a t i o n (phytocoenose), animals, and microorganisms. In r e a l i t y , the b i o g e o c l i m a t i c system only c o n s i d e r s c l i m a t e , v e g e t a t i o n , and s o i l s d i r e c t l y . The b i o g e o c l i m a t i c l e v e l s t r a t i f i e s the landscape a c c o r d i n g to d i f f e r e n c e s i n macroclimate, the biogeocoenotic l e v e l s t r a t i f i e s a c c o r d i n g to d i f f e r e n c e s i n v e g e t a t i o n and s o i l ( K l i n k a et a l . , 1979; Kojima, 1981), and the phytocoenot i c l e v e l o r g a n i z e s knowledge of p l a n t communities a c c o r d i n g to the h i e r a r c h i c a l system of Braun-Blanquet (1928,1932). The phytocoenotic l e v e l i s u s e f u l f o r communication and comparison of i n f o r m a t i o n about p l a n t communities a c c o r d i n g to a v e g e t a t i o n c l a s s i f i c a t i o n system that i s used worldwide, p a r t i c u l a r l y i n Europe (Maarel, 1975; Westhoff and Maarel, 1978). The other two s y n e c o l o g i c a l l e v e l s are d e r i v e d once the 21 taxonomic c l a s s i f i c a t i o n has been e s t a b l i s h e d . The f u n c t i o n a l l e v e l c o n s i d e r s the r e l a t i o n s h i p s between biogeocoenotic taxa and ecosystem processes such as p r o d u c t i v i t y and s u c c e s s i o n . The i n t e r p r e t i v e l e v e l c o n s i d e r s the p o t e n t i a l response of ecosystems to d i f f e r e n t management regimes. 2.6.3 B i o g e o c l i m a t i c L e v e l Regional c l i m a t e p l a y s a major r o l e i n i n f l u e n c i n g the nature and d i s t r i b u t i o n of ecosystems ( K r a j i n a et a_l. , 1982), and i s a l s o important in determining ecosystem p r o d u c t i v i t y (Gholz, 1982). Thus,, in order to study and compare l o c a l ecosystems ( f o r e s t biogeocoenoses), i t i s necessary to have a. framework which s t r a t i f i e s the landscape i n t o areas which have a r e l a t i v e l y uniform c l i m a t e . By doing so, we can e l i m i n a t e the c o n t r i b u t i o n that c l i m a t e has in e x p l a i n i n g d i f f e r e n c e s between the l o c a l ecosystems. In the b i o g e o c l i m a t i c system, c l i m a t i c s t r a t i f i c a t i o n i s done at the b i o g e o c l i m a t i c l e v e l . K l i n k a e_t a l . (1979), Kojima (1981), and Kimmins (1984) have r e c e n t l y d i s c u s s e d the concepts and methods used at t h i s l e v e l . The f o l l o w i n g d i s c u s s i o n i s a s y n t h e s i s of t h e i r o b s e r v a t i o n s . To d e a l with c l i m a t i c v a r i a b i l i t y , K r a j i n a (1965,1969) proposed a h i e r a r c h i c a l system of four b i o g e o c l i m a t i c c a t e g o r i e s . These c a t e g o r i e s are, i n order of i n c r e a s i n g l y s p e c i f i c d e f i n i t i o n of macroclimate, the format ion, the r e g i o n , the zone, and the subzone. K l i n k a et a l . (1979) f u r t h e r r e f i n e d the system by adding an even more s p e c i f i c category, the 22 b i o g e o c l i m a t i c v a r i a n t , which i s a s u b d i v i s i o n of a subzone. The number of taxa at each l e v e l has v a r i e d at d i f f e r e n t stages duri n g the system's development. In i t s present form, the system i n c l u d e s f i v e formations, seven r e g i o n s , and twelve zones ( K r a j i n a et a l . , 1982). S t r a t i f y i n g the landscape i n t o c l i m a t i c a l l y uniform areas s o l e l y on the b a s i s of c l i m a t i c data would be a d i f f i c u l t and expensive task. The only way to do t h i s a c c u r a t e l y would be to c o l l e c t c l i m a t i c data over a long p e r i o d of time, from a l a r g e number of c l i m a t i c s t a t i o n s s c a t t e r e d u n i f o r m l y throughout the landscape. Since such data are not a v a i l a b l e , and s i n c e i t i s not even c l e a r which combination of c l i m a t i c parameters should be used to d e l i n e a t e e c o l o g i c a l l y meaningful u n i t s , the d e l i n e a t i o n of these c l i m a t i c a l l y uniform areas i s u s u a l l y based on an- i n d i r e c t approach (Damman, 1979; K i l i a n , 1981). K i l i a n (1981) suggested using r e g i o n a l climax f o r e s t p l a n t communities. Damman (1979) a l s o suggested using p r o p e r t i e s of the v e g e t a t i o n . A s i m i l a r i n d i r e c t approach i s used in the b i o g e o c l i m a t i c system. The ge o g r a p h i c a l extent of b i o g e o c l i m a t i c taxa i s determined on the b a s i s of the p r o p e r t i e s and d i s t r i b u t i o n of a p a r t i c u l a r type of ecosystem, the zonal ecosystem. Even w i t h i n a c l i m a t i c a l l y uniform area, there i s a mosaic of d i f f e r e n t f o r e s t ecosystems r e f l e c t i n g d i f f e r e n t combinations of s o i l moisture regime (SMR) and s o i l n u t r i e n t regime (SNR). If the assessment of d i f f e r e n c e s and s i m i l a r i t i e s i n r e g i o n a l c l i m a t e i s to be made on the b a s i s of the p r o p e r t i e s of a p a r t i c u l a r ecosystem, then the one i n which the e f f e c t s of 23 c l i m a t e are most s t r o n g l y expressed should be s e l e c t e d . I t i s c o n s i d e r e d that zonal ecosystems s a t i s f y such c r i t e r i a . A zonal ecosystem i s that f o r e s t biogeocoenose which occurs on s i t e s which have an intermediate SMR and SNR ( i . e . mesic/mesotrophic (4/C) s i t e s ) . On other s i t e s , which are wetter, d r i e r , r i c h e r or poorer, the i n f l u e n c e of c l i m a t e i s not so c l e a r l y expressed. Each combination of SMR and SNR w i l l r e s u l t i n a d i f f e r e n t s u c c e s s i o n a l p a t t e r n . Ecosystems which are not zonal w i l l reach "edaphic" cli m a x e s , but the zonal ecosystem w i l l reach a " c l i m a t i c " climax which r e f l e c t s the "development p o t e n t i a l of the r e g i o n a l c l i m a t e " ( K l i n k a e_t a l . , 1979). The r e l a t i v e l y s t a b l e , s e l f - p e r p e t u a t i n g v e g e t a t i o n of a zonal ecosystem which has reached c l i m a t i c climax i s r e f e r r e d to as the "zonal v e g e t a t i o n " , and the s o i l which u n d e r l i e s such an ecosystem i s r e f e r r e d to as the "zonal s o i l " . The zonal ecosystem i s s i m i l a r to the "normal s i t e " of H i l l s (1954), the " r e f e r e n c e s i t e " of Damman (1979), and the " e c o l o g i c a l l y medium s i t e " of Genssler (1982). In the b i o g e o c l i m a t i c system, d i f f e r e n t i a t i n g c h a r a c t e r i s t i c s of b i o g e o c l i m a t i c taxa i n c l u d e not only c l i m a t i c v a r i a b l e s , but a l s o s o i l and v e g e t a t i o n p r o p e r t i e s . D i f f e r e n t i a t i n g c h a r a c t e r i s t i c s of b i o g e o c l i m a t i c taxa r e c o g n i z e d i n B r i t i s h Columbia have been presented i n s e v e r a l p u b l i c a t i o n s . C h a r a c t e r i s t i c s of taxa at the l e v e l of formation, r e g i o n , zone, and subzone are found in K r a j i n a (1965,1969,1972,1976,1980), B e i l et a l . (1976), Jones and Annas (1978), Kojima (1981), Kimmins (1983), K r a j i n a et a l . (1982), 24 and Pojar (1983). Maps showing the d i s t r i b u t i o n of b i o g e o c l i m a t i c zones are found i n K r a j i n a (1965,1969,1973), MacMillan B l o e d e l (1974), T a y l o r and MacBryde (1977), Jones and Annas (1978), F a r l e y (1979), Kimmins (1983), K r a j i n a et a l . (1982) and Pojar (1983). To date, only the southwestern p o r t i o n of the B.C. mainland and most of Vancouver I s l a n d have been c l a s s i f i e d to the l e v e l of b i o g e o c l i m a t i c v a r i a n t . D e s c r i p t i o n s of the taxa ' e s t a b l i s h e d and maps showing t h e i r d i s t r i b u t i o n are found i n K l i n k a et a l . (1979) and C o u r t i n et a l . (1984). 2.6.4 Biogeocoenotic L e v e l The methodology a p p l i e d at the biogeocoenotic l e v e l has r e c e n t l y been d i s c u s s e d by K l i n k a et a_l. (1979) and I n s e l b e r g e_t a l . (1982). At t h i s l e v e l , the s i m i l a r i t y between ecosystems i s assessed on the b a s i s of p l a n t s and s o i l because these two ecosystem p r o p e r t i e s are r e a d i l y observed and c h a r a c t e r i z e d , and because i t i s assumed that they i n t e g r a t e and r e f l e c t the combined i n f l u e n c e s of c l i m a t e , parent m a t e r i a l , r e l i e f , organisms, and time (Jenny, 1941,1961; Major, 1951). Biogeocoenotic syntaxa are a b s t r a c t e d through s y n t h e s i s of r e l e v e s done on sample p l o t s of a range of f o r e s t biogeocoenoses o c c u r r i n g i n a c l i m a t i c a l l y uniform area ( i . e . a b i o g e o c l i m a t i c subzone or v a r i a n t ) . The two main biogeocoenotic c a t e g o r i e s are: 1) biogeocoenotic a s s o c i a t i o n s (BA's), which are d i f f e r e n t i a t e d mainly on the b a s i s of f l o r i s t i c s t r u c t u r e and 25 composition, and 2) biogeocoenotic types (BT's), which are s u b d i v i s i o n s of the BA's which have c e r t a i n environmental (mainly s o i l ) p r o p e r t i e s i n common. It must be s t r e s s e d that f o r e s t biogeocoenoses are the only " r e a l " e n t i t i e s e x i s t i n g i n the f i e l d , whereas a given BA or BT i s but an a b s t r a c t c l a s s formed by grouping biogeocoenoses s i m i l a r i n s e l e c t e d p r o p e r t i e s . No two patches of v e g e t a t i o n are ever e x a c t l y the same in the combinations and p r o p o r t i o n s of the d i f f e r e n t p l a n t s p e c i e s present ( M i l e s , 1979). Despite t h i s f a c t , M i l e s (1979) noted that patches of v e g e t a t i o n growing under s i m i l a r environmental c o n d i t i o n s and with s i m i l a r h i s t o r i e s are o f t e n so a l i k e i n composition that c l e a r l y d e f i n a b l e "types" may be recognized. T h i s concept has been used i n the b i o g e o c l i m a t i c system to d e f i n e the c e n t r a l u n i t at the biogeocoenotic l e v e l . T h i s c e n t r a l u n i t i s the biogeocoenotic a s s o c i a t i o n which i s e s s e n t i a l l y i d e n t i c a l to the p l a n t a s s o c i a t i o n as d e f i n e d by K r a j i n a (1960a,1960b): "A p l a n t ( f o r e s t ) a s s o c i a t i o n i s a d e f i n i t e uniform (homogeneous) phytocoenosis that i s in dynamic e q u i l i b r i u m with a c e r t a i n complex of environmental f a c t o r s (ecotope); i t s f l o r i s t i c s t r u c t u r e . . . . l i e s w i t h i n l i m i t s governed not only by the ecotope.... but a l s o by h i s t o r i c a l f a c t o r s . . . . " . T h i s d e f i n i t i o n i s more ecosystematic than the d e f i n i t i o n proposed by Braun-Blanquet (1928,1932) because i t e x p l i c i t l y r e cognizes the importance of the ecotope. The main c r i t e r i o n f o r the a b s t r a c t i o n of a BA ( i . e . s i m i l a r i t y of samples in f l o r i s t i c s t r u c t u r e and composition) i s 26 determined on the b a s i s of a c h a r a c t e r i s t i c combination of  sp e c i e s (CCS). I n s e l b e r g et a l . (1982) d e f i n e d a CCS as "a group of p l a n t s p e c i e s common to a p a r t i c u l a r group of samples but absent i n other groups to which i t i s compared". It i s assumed that the p l a n t s p e c i e s i n c l u d e d i n the CCS ( d i a g n o s t i c s p e c i e s ) are p r e c i s e i n d i c a t o r s of the i n t e g r a t e d e f f e c t of b i o t i c and environmental f a c t o r s a f f e c t i n g the development of the biogeocoenoses. Daubenmire (1980) supported t h i s view when he s t a t e d that the e c o l o g i c a l amplitude of a s p e c i f i c p l a n t a s s o c i a t i o n i s narrower than the amplitude of any of i t s component s p e c i e s . He a l s o s t a t e d that "wherever we f i n d the same combination of s p e c i e s growing together, the same narrow range of plant-growth c o n d i t i o n s o c c u r s " . Rowe (1960) argued that i t would be unwise to base the i d e n t i f i c a t i o n of e q u i v a l e n t ecosystems s o l e l y on the b a s i s of t h e i r phytocoenose. He s t r e s s e d that the concurrent e v a l u a t i o n of ecotope p r o p e r t i e s i s a l s o r e q u i r e d . Proponents of the b i o g e o c l i m a t i c system have recognized t h i s need. S o i l p r o p e r t i e s of the biogeocoenoses w i t h i n a BA may vary, but i t i s assumed that the o v e r a l l e f f e c t of these d i f f e r e n c e s r e s u l t s i n s i m i l a r q u a n t i t i e s of a v a i l a b l e moisture and n u t r i e n t s (which i s r e f l e c t e d by the s i m i l a r phytocoenose). Thus, the d i f f e r e n t i a t i n g c h a r a c t e r i s t i c s f o r a BA i n c l u d e not only the CCS but a l s o the estimated values of SMR and SNR ( K l i n k a et a l . , 1979). I t i s a l s o assumed th a t , because ecosystems w i t h i n a BA are i n f l u e n c e d by s i m i l a r environmental c o n d i t i o n s , they w i l l undergo a s i m i l a r secondary s u c c e s s i o n f o l l o w i n g d i s t u r b a n c e , 27 and should culminate i n s i m i l a r (but not i d e n t i c a l ) climax ecosystems ( K l i n k a et a l . , 1979; I n s e l b e r g ejt a l . , 1982). As M i l e s (1979) noted, the p a t t e r n and f i n a l stage of s u c c e s s i o n w i l l not be i d e n t i c a l , even on s i m i l a r s i t e s , because any given s u c c e s s i o n i s the r e s u l t of a l a r g e number of p r o b a b i l i t i e s i n c l u d i n g d i f f e r e n c e s between i n d i v i d u a l s p e c i e s i n t h e i r d i s p e r s a l e f f i c i e n c y , t h e i r a b i l i t y to p e r s i s t as seeds, and t h e i r a b i l i t y to e s t a b l i s h , grow, compete, and reproduce. I n s e l b e r g et a l . (1982) d i s c u s s e d how BA's may be grouped to form higher l e v e l s of g e n e r a l i z a t i o n ( c a t e g o r i e s ) or s u b d i v i d e d to form lower l e v e l s . They s t a t e d that BA's r e l a t e d on the b a s i s of f l o r i s t i c composition, s u c c e s s i o n a l t r e n d s , and broad environment-vegetation r e l a t i o n s h i p s may be grouped at the phytocoenotic l e v e l i n t o the higher synsystematic u n i t s of c l a s s e s , o r d e r s , and a l l i a n c e s (Braun-Blanquet, 1928,1932). BA's may a l s o be s u b d i v i d e d i n t o BT's on the b a s i s of s i m i l a r i t y i n those s o i l p r o p e r t i e s which i n f l u e n c e SMR and SNR. P r o p e r t i e s most f r e q u e n t l y used i n c l u d e : t e x t u r e , coarse fragment content, slope g r a d i e n t , r o o t i n g depth, h o r i z o n sequence, humus form, and parent m a t e r i a l s . There may a l s o be minor f l o r i s t i c d i f f e r e n c e s i n the v e g e t a t i o n of BT's w i t h i n a BA. As K l i n k a e_t a l . (1979) noted, these BT's are i d e n t i c a l to the "type of biogeocoenosis" as d e f i n e d by Sukachev (1944), and Sukachev and D y l i s (1964a,1964b). They are a l s o s i m i l a r to the " s i t e types" of H i l l s (1954), and the "land types" of Lacate (1969) which are, a c c o r d i n g to Damman (1979), areas uniform with respect to s o i l c o n d i t i o n s and c h a r a c t e r i z e d by a p a r t i c u l a r 28 chronosequence of p l a n t communities. 2.6.5 F u n c t i o n a l L e v e l In the b i o g e o c l i m a t i c system, the f u n c t i o n a l or edatopic l e v e l of i n t e g r a t i o n i n v o l v e s the use of edatopic g r i d s ( K r a j i n a , 1977). "Edatope" or "edaphotope" r e f e r s to a p a r t i c u l a r combination of hygrotope and trophotope, and an "edatopic" or "edaphic" g r i d i s a two-dimensional r e p r e s e n t a t i o n of these parameters. A t o t a l of f o r t y edatopes (eight hygrotope c l a s s e s (0-7) x f i v e trophotope c l a s s e s (A-E)) are u s u a l l y c o n s i d e r e d when c l a s s i f y i n g ecosystems. As K l i n k a (1977b) noted, the edatopic g r i d was f i r s t proposed by Pogrebnyak (1930) and l a t e r m o d i f i e d by K r a j i n a (1969). In a d d i t i o n to B r i t i s h Columbia, s i m i l a r g r i d s have been used elsewhere i n North America (Bakuzis and Hansen, 1962,1965; and P i e r p o i n t , 1981). Edatopic g r i d s are a type of two-dimensional o r d i n a t i o n . They provide a v i s u a l summary of the d i s t r i b u t i o n of biogeo c o e n o t i c taxa (e.g. BA's) o c c u r r i n g w i t h i n a p a r t i c u l a r b i o g e o c l i m a t i c subzone or v a r i a n t . They are u s e f u l f o r demonstrating r e l a t i o n s h i p s between taxa. As with any o r d i n a t i o n , p o i n t s ( i n t h i s case biogeocoenotic taxa) which are c l o s e r together on the g r i d s are more s i m i l a r than p o i n t s which are f u r t h e r a p a r t . Edatopic g r i d s have been prepared by K r a j i n a (1969) f o r each major t r e e s p e c i e s i n each subzone. On these g r i d s , growth c l a s s (a range of s i t e index values) and shade t o l e r a n c e of t r e e 29 s p e c i e s are i n d i c a t e d f o r each g r i d c e l l (edatope). By comparing the edatopic g r i d s f o r a l l t r e e s p e c i e s growing in a p a r t i c u l a r subzone, i t i s p o s s i b l e to p r e d i c t which s p e c i e s might be the most p r o d u c t i v e on a given s i t e ( i . e . the ones with the h i g h e s t growth c l a s s ) , and which s p e c i e s c o u l d form a p a r t of the climax stand ( i . e . the s h a d e - t o l e r a n t s p e c i e s ) . A more complete d i s c u s s i o n of the f u n c t i o n a l l e v e l of i n t e g r a t i o n i s found in K r a j i n a (1969,1972,1977), K l i n k a (1977b), Nuszdorfer and K l i n k a (1982), and Kimmins (1984). 2.6.6 I n t e r p r e t i v e L e v e l As mentioned p r e v i o u s l y , the a p p l i c a t i o n of ecosystem c l a s s i f i c a t i o n i n v o l v e s two s t e p s : 1) establishment of the b a s i c taxonomic c l a s s i f i c a t i o n of ecosystems, and 2) development of an i n t e r p r e t i v e c l a s s i f i c a t i o n , whereby c l a s s e s of ecosystems which are expected to show a s i m i l a r response to a given management regime are grouped i n t o a smaller number of management u n i t s . In the b i o g e o c l i m a t i c system, bioge o c o e n o t i c taxa are grouped i n t o i n t e r p r e t i v e c l a s s e s c a l l e d treatment u n i t s . In B r i t i s h Columbia, very l i t t l e work has been done to date at t h i s most advanced and a p p l i e d l e v e l of i n t e g r a t i o n . Examples i n c l u d e the work by K l i n k a (1977b, 1977c) who developed an ecosystem-s p e c i f i c guide for t r e e s p e c i e s s e l e c t i o n and p r e s c r i b e d burning f o r the Vancouver F o r e s t Region, and the work by K l i n k a et a l . (1980a,1980b) who developed an i n t e g r a t e d resource management plan f o r the Koprino River watershed. 30 I I I . STUDY AREA 3.1 LOCATION Sample p l o t s were l o c a t e d on the B.C. M i n i s t r y of F o r e s t s Cowichan Lake Research S t a t i o n and at low e l e v a t i o n s (below 400 m) surrounding Cowichan Lake. The study area was thus c o n f i n e d to the East Vancouver I s l a n d D r i e r Maritime v a r i a n t of the C o a s t a l Western Hemlock zone (CWHa2). Surrounding Cowichan Lake, the CWHa2 may extend to an e l e v a t i o n of 700 m ( K l i n k a e_t a l . , 1979). Cowichan Lake i s s i t u a t e d i n the c e n t r e of southern Vancouver I s l a n d (Figure 1). I t extends from about l o n g i t u d e 124° 02' W to 124° 28' W and l a t i t u d e 48° 49' N to 48° 55' N. F i g u r e 1 - L o c a t i o n of the study a r e a . 31 I t i s covered by N a t i o n a l Topographic S e r i e s map sheets 92-C/16 East and 92-C/16 West ( s c a l e 1:50,000). According to these maps, lake l e v e l i s at an e l e v a t i o n of about 161 m (527 f e e t ) . The Lake i s l o c a t e d between two mountain ranges, the Kennedy Range on the north s i d e and the Seymour Range on the south s i d e . The Kennedy Range i n c l u d e s Heather Mountain (1345 m), Mount Landalt (1537 m), and Mount Holmes (1158 m). The Seymour Range i n c l u d e s Mount Vernon (988 m), Towincut Mountain (1249 m) and Mount Sutton (1170 m). Numerous small and l a r g e creeks and r i v e r s d r a i n these mountains and empty i n t o the Lake. These i n c l u d e : on the north s i d e , Shaw Creek, Cottonwood Creek, and Meade Creek, and on the south s i d e , Nixon Creek, Sutton Creek, and the Robertson R i v e r . The Lake i s dr a i n e d at i t s e a s t e r n end by the Cowichan R i v e r . Cowichan Lake i s about 32 km long and 3 km wide at i t s longest and widest p o i n t s , and i s the l a r g e s t body of f r e s h water on southern Vancouver I s l a n d . The Lake i s surrounded by a number of communities i n c l u d i n g Lake Cowichan, Mesachie Lake, Honeymoon Bay, Caycuse, N i t i n a t and Youbou. The f o r e s t i n d u s t r y forms the economic base of a l l of these communities. The B r i t i s h Columbia M i n i s t r y of F o r e s t s maintains a r e s e a r c h s t a t i o n at the e a s t e r n end of the Lake. T h i s s t a t i o n i n c l u d e s two separate p r o p e r t i e s . The main p r o p e r t y , which has the s t a t i o n headquarters, i s l o c a t e d on a p e n i n s u l a i n the southeast corner of the Lake near the v i l l a g e of Mesachie Lake. The other p r o p e r t y , c a l l e d the North Arm F o r e s t , i s l o c a t e d about 5 km from the v i l l a g e of Lake Cowichan between Meade Creek and the 32 head of the North Arm of Lake Cowichan. The Cowichan Lake area i s a l s o part of the Cowichan V a l l e y Demonstration F o r e s t . Access to and around the Lake i s e x c e l l e n t . The v i l l a g e of Lake Cowichan, at the e a s t e r n end of the Lake, can be reached by t r a v e l l i n g west along Highway 18 about 27 km from the town of Duncan. Paved roads extend to the v i l l a g e of Youbou on the no r t h s i d e of the Lake and a few k i l o m e t e r s past the v i l l a g e of Honeymoon Bay on the south s i d e . Beyond these p o i n t s , good g r a v e l roads surround the Lake. In a d d i t i o n , a number of secondary roads (some with c o n t r o l l e d access) extend i n t o the mountains on both s i d e s of the Lake. 3.2 BEDROCK GEOLOGY In southwestern B r i t i s h Columbia, the main p h y s i o g r a p h i c s u b d i v i s i o n s i n c l u d e the P a c i f i c Ranges on the B.C. mainland, the Georgia and Namaimo Lowlands, and the Vancouver I s l a n d Mountains (Holland, 1976). The bedrock geology of the P a c i f i c Ranges d i f f e r s c o n s i d e r a b l y from that of the Vancouver I s l a n d Mountains. Whereas the former are p r i m a r i l y composed of i n t r u s i v e igneous rocks ( g r a n i t i c b a t h o l i t h s ) , the l a t t e r are p r i m a r i l y formed of f o l d e d and f a u l t e d v o l c a n i c and sedimentary rocks with some igneous i n t r u s i o n s (Holland, 1976; M u l l e r , 1977; F a r l e y , 1979; and Northcote, 1981). The g e o l o g i c a l s t r u c t u r e of Vancouver I s l a n d i s almost e n t i r e l y dominated by steep f a u l t s ( M u l l e r , 1977). The Cowichan V a l l e y i s a c u r v i n g f a u l t - c o n t r o l l e d lineament (alignment of 33 topographic f e a t u r e s ) with a no r t h w e s t e r l y t r e n d and a length of 64 km (Hol l a n d , 1976). T h i s v a l l e y , which i s occupied by Cowichan R i v e r and Lake, and by N i t i n a t R i v er t r i b u t a r i e s , i s par t of a de p r e s s i o n which extends from Clo-oose on the west coast of Vancouver I s l a n d to Duncan on the east c o a s t . G e o l o g i c a l maps of Vancouver I s l a n d have been presented by M u l l e r (1977) and Northcote (1981). A d i s c u s s i o n of the bedrock geology of the Cowichan Lake area i s found i n Korelus and Lewis (1976,1978). In summary, the bedrock i n the Cowichan Lake area i s mainly of v o l c a n i c o r i g i n . The nor t h s i d e of the Lake i s u n d e r l a i n by rocks of the P a l e o z o i c S i c k e r Group which i n c l u d e s both metamorphosed v o l c a n i c (mainly b a s a l t i c to r h y o l i t i c lava flows, t u f f and agglomerate), and ( v o l c a n i c d e r i v e d ) metamorphosed sedimentary (mainly metagreywacke and a r g i l l i t e ) d e p o s i t s . The eastern end of the Lake i s u n d e r l a i n by v o l c a n i c (mainly massive flow b a s a l t s and marine p i l l o w b a s a l t s ) d e p o s i t s of the T r i a s s i c Vancouver Group (Karmutsen Formation). The southern s i d e and western end of the Lake are u n d e r l a i n by v o l c a n i c (mainly a n d e s i t e s , b a s a l t s and r h y o l i t e s ) d e p o s i t s of the J u r a s s i c Bonanza Group. There are a l s o a few small ( r e l a t i v e to the v o l c a n i c bedrock types) igneous i n t r u s i o n s ( I s l a n d I n t r u s i o n s ) and limestone d e p o s i t s (Vancouver Group, Quatsino Formation) i n the Cowichan Lake area. On the b a s i s of t h e i r s u s c e p t i b l i t y to g l a c i a l e r o s i o n and other weathering processes, Korelus and Lewis (1976,1978) grouped the v o l c a n i c bedrock types i n t o two groups: the "hard" v o l c a n i c s , and the more e a s i l y weathered " s o f t " v o l c a n i c s . They 34 i n c l u d e d the S i c k e r v o l c a n i c s and the Vancouver v o l c a n i c s (Karmutsen Formation) in the "hard" group, and the Bonanza v o l c a n i c s i n the " s o f t " group. They a l s o suggested that the metamorphosed sedimentary d e p o s i t s of the S i c k e r Group would be s i m i l a r i n w e a t h e r a b i l i t y to the " s o f t " v o l c a n i c s . 3.3 GLACIATION Ho l l a n d (1976), Ryder (1978), and F a r l e y (1979) summarized the P l e i s t o c e n e events which d r a s t i c a l l y a l t e r e d the B r i t i s h Columbia landscape. The P l e i s t o c e n e Epoch, which began about two m i l l i o n years ago, was c h a r a c t e r i z e d by a number of g l a c i a t i o n and i n t e r g l a c i a t i o n p e r i o d s of v a r y i n g d u r a t i o n . The most recent g l a c i a t i o n , r e f e r r e d to as the F r a s e r g l a c i a t i o n , began about 25,000 years B.P. (before p r e s e n t ) , and was c h a r a c t e r i z e d by formation of the massive C o r d i l l e r a n Ice Sheet. At i t s maximum extent, about 15,000 years B.P., the C o r d i l l e r a n Ice Sheet covered the whole p r o v i n c e , i n c l u d i n g the Queen C h a r l o t t e I s l a n d s and Vancouver I s l a n d , and even extended i n t o northern Washington S t a t e (Ryder, 1978). The g l a c i a t i o n h i s t o r y of Vancouver I s l a n d and the Cowichan V a l l e y has been d i s c u s s e d by H a l s t e a d (1968) and A l l e y (1981). From t h e i r o b s e r v a t i o n s and the o b s e r v a t i o n s of o t h e r s , they suggested the f o l l o w i n g s c e n a r i o . The Cowichan V a l l e y was not fr e e of i c e at any time d u r i n g the F r a s e r g l a c i a t i o n . The three main episodes which c h a r a c t e r i z e d the Fr a s e r g l a c i a t i o n i n c l u d e d the e a r l i e s t Evans Creek Stade, the main Vashon Stade, and the 35 f i n a l Sumas Stade. During the Evans Creek Stade, a v a l l e y g l a c i e r developed i n the Cowichan V a l l e y . T h i s g l a c i e r , r e f e r r e d to as the "Cowichan Ice Tongue" (Halstead, 1968), was c o n f i n e d to the v a l l e y by the surrounding topography, and moved in an e a s t e r l y d i r e c t i o n eroding the v a l l e y w a l l s . The Cowichan Ice Tongue reached i t s maximum extent, the Saanich P e n i n s u l a , about 18,000 years B.P.. I t had s t a r t e d to recede when i t was o v e r r i d e n by the main C o r d i l l e r a n Ice Sheet (Vashon Stade). On southern Vancouver I s l a n d , t h i s c o n t i n e n t a l g l a c i e r moved in a south-southwest d i r e c t i o n and probably exceeded 1460 m i n t h i c k n e s s at i t s maximum development. About 14,000 years B.P., a r a p i d and pronounced c l i m a t i c warming l e d to j j i s i t u m e l t i n g and r e t r e a t of the c o n t i n e n t a l i c e masses. Remnant i c e s t i l l o ccupied the Cowichan V a l l e y about 11,500 B.P. when f u r t h e r c l i m a t i c changes l e d to a temporary r e j u v e n a t i o n of the Cowichan V a l l e y g l a c i e r (Sumas Stade). T h i s " b r i e f " episode was f o l l o w e d by gradual m e l t i n g of the g l a c i e r and evidence suggests that the Cowichan Lake area has been f r e e of i c e s i n c e about 10,200 years B.P. . 3.4 SURFICIAL MATERIALS The s u r f i c i a l m a t e r i a l s that form the parent m a t e r i a l of most B.C. s o i l s were d e p o s i t e d d u r i n g and s i n c e the F r a s e r g l a c i a t i o n . T i l l , "a compact, non-sorted and n o n - s t r a t i f i e d sediment which c o n t a i n s a heterogeneous mixture of p a r t i c l e s i z e s " , i s probably the most e x t e n s i v e of a l l . s u r f i c i a l 36 m a t e r i a l s i n B.C. (Ryder, 1978). The Cowichan V a l l e y i s no e x c e p t i o n . H a l s t e a d (1968) noted that when the g l a c i a l i c e f i n a l l y d i d melt i n t h i s v a l l e y , i t l e f t a t h i c k blanket of t i l l . T i l l ( s p e c i f i c a l l y b a s a l or lodgement t i l l d e p o s i t e d d i r e c t l y by moving i c e ) i s indeed the most widespread s u r f i c i a l m a t e r i a l i n the Cowichan Lake area (Korelus and Lewis, 1976,1978). To a l e s s e r extent, c o l l u v i a l and f l u v i a l ( a l l u v i a l ) m a t e r i a l s are a l s o important. Maps showing the d i s t r i b u t i o n and type of s u r f i c i a l m a t e r i a l s i n the Cowichan Lake area have been produced by the E.L.U.C. S e c r e t a r i a t (1975) and Korelus and Lewis (1976,1978). Kor e l u s and Lewis (1976,1978) d i s c u s s e d the d i s t r i b u t i o n and nature of s u r f i c i a l m a t e r i a l s i n t h i s a r e a . They s t a t e d that deep t i l l o f t e n occurs on g e n t l e and moderate slopes but can a l s o occur on steep s l o p e s . Where deep t i l l occurs on steep s l o p e s , i t has o f t e n been e x t e n s i v e l y m o d i f i e d by g u l l y i n g s i n c e d e g l a c i a t i o n . Where the t i l l i s shallow ( l e s s than 1 or 2 m t h i c k ) , i t i s g e n e r a l l y i n t e r r u p t e d by rock outcrops, and a complex mosaic of bare rock, shallow t i l l , and deep t i l l r e s u l t s . Under old-growth f o r e s t s , only the s t e e p e s t rock faces are bare and long-term accumulation and decomposition of f o r e s t l i t t e r o f t e n r e s u l t s i n small pockets of shallow organic s o i l s which are e a s i l y destroyed by f i r e (Korelus and Lewis, 1976, 1978). Kor e l u s and Lewis (1976,1978) a l s o noted that s o i l t e x t u r e and coarse fragment content depend somewhat on the type of bedrock from which the t i l l was d e r i v e d : the c o a r s e s t t i l l s 37 (very stony, g r a v e l l y , loamy sands) were d e r i v e d from the igneous i n t r u s i o n s ( I s l a n d I n t r u s i o n s ) , intermediate t e x t u r e d t i l l s (stony, sandy loams) were d e r i v e d from the "hard" v o l c a n i c s ( S i c k e r Group and Karmutsen Formation), and the f i n e s t t e x t u r e d t i l l s (sandy loam to loam, low stone and g r a v e l content) were d e r i v e d from the " s o f t " v o l c a n i c s (Bonanza Group). On steep s l o p e s , both deep and shallow t i l l s are o f t e n m o d i f i e d by c o l l u v i a l p r o c e s s e s . The t i l l i s o f t e n covered with v a r y i n g depths of c o l l u v i a l m a t e r i a l s which are l o o s e , o f t e n g r a v e l l y , sandy-textured and c o n t a i n a high p r o p o r t i o n of coarse fragments (cobble to boulder s i z e ) . The coarse fragments are u s u a l l y c o n c e n t r a t e d on the s u r f a c e and the p r o p o r t i o n of f i n e s i n c r e a s e s with depth (Korelus and Lewis, 1978) Numerous small and l a r g e streams empty i n t o Lake Cowichan and, as a r e s u l t , much of the t i l l on lower slopes immediately adjacent to the Lake has been covered with v a r y i n g t h i c k n e s s of p o s t - g l a c i a l f l u v i a l ( a l l u v i a l ) d e p o s i t s . The f l u v i a l fans have a h i g h l y v a r i a b l e t e x t u r e but u s u a l l y grade from bouldery to g r a v e l l y at the apex to sandy, s t o n e - f r e e m a t e r i a l at the base. F l o o d p l a i n s and t e r r a c e s are a l s o found along some of the major streams (eg. Meade Creek, Robertson R i v e r ) . On the t e r r a c e s , f i n e to medium loamy sands u s u a l l y o v e r l i e g r a v e l s and cobbles (Korelus and Lewis, 1976,1978). T i l l , c o l l u v i a l and f l u v i a l m a t e r i a l s are the most widespread m a t e r i a l s on lower sl o p e s (below 700 m) adjacent to Cowichan Lake but there are a l s o minor g l a c i o f l u v i a l , l a c u s t r i n e and organic d e p o s i t s . The g l a c i o f l u v i a l (outwash) m a t e r i a l s are 38 w e l l - s o r t e d and w e l l - s t r a t i f i e d sands and g r a v e l s which were de p o s i t e d by g l a c i a l meltwater streams. They are most abundant near the Shaw Creek, Meade Creek and Robertson River areas and the v i l l a g e s of N i t i n a t and Lake Cowichan. A small s i l t y l a c u s t r i n e d e p o s i t i s a l s o l o c a t e d near the v i l l a g e of Lake Cowichan. Organic d e p o s i t s occur where r a t e s of accumulation of organic m a t e r i a l s exceed decomposition r a t e s . These d e p o s i t s o f t e n occur on g e n t l e t e r r a i n where compacted t i l l or bedrock de p r e s s i o n s l e a d to a perched water t a b l e (Korelus and Lewis, 1976,1978). 3.5 HISTORY Saywell (1967) d i s c u s s e d the h i s t o r y of human impact i n the Cowichan Lake area. He noted that the f i r s t o f f i c i a l records of Europeans reaching the Lake are the e x p e d i t i o n s of Pemberton in 1857 and Brown in" 1864. The purpose of these e x p e d i t i o n s was to make a rough survey of the area's n a t u r a l r e s o u r c e s . Upon t h e i r r e t u r n from the Lake, they r e p o r t e d that the Cowichan V a l l e y was covered with m a g n i f i c i e n t f o r e s t s of D o u g l a s - f i r , western hemlock (Tsuga h e t e r o p h y l l a (Raf.) Sarg.), and western redcedar (Thuja p l i c a t a Donn ex D. Don j_n Lamb.). The subsequent development of the Cowichan Lake area has been almost e n t i r e l y focused on e f f o r t s to e x t r a c t t h i s h i g h - q u a l i t y timber. The f i r s t timber l e a s e of which there i s an a u t h e n t i c r e c o r d was granted i n 1879. A number of other small land grants had been given out by 1886. In that year, the Esquimalt and 39 Nanaimo (E&N) Railway r e c e i v e d a huge land grant on southern Vancouver I s l a n d i n p a r t i a l payment f o r the c o n s t r u c t i o n of a rai l w a y system. T h i s grant i n c l u d e d a l l of the lands around Cowichan Lake which had not a l r e a d y been committed. The f i r s t l o g g i n g o p e r a t i o n s d i d n ' t r e a l l y begin u n t i l the l a t e 1880's. At f i r s t , these o p e r a t i o n s c o n c e n t r a t e d on s i t e s c l o s e to the Lake's edge. Logs were h e l d i n booms i n the Lake and, at high water, were f l o a t e d down the Cowichan R i v e r to m i l l s near Duncan. These r i v e r d r i v e s o c c u r r e d from 1891 to 1909 but proved to be very r i s k y undertakings as many v a l u a b l e logs were u s u a l l y broken or l o s t i n the woods on t h e i r way down the Cowichan R i v e r . Because of the great f i n a n c i a l r i s k s i n v o l v e d i n g e t t i n g the log s to market, very l i t t l e of the f o r e s t s in the Cowichan Lake area had been logged by 1910. I n t e n s i v e l o g g i n g of the Cowichan Lake f o r e s t s d i d n ' t r e a l l y begin u n t i l the a r r i v a l of the r a i l w a y . The main l i n e of the E&N Railway which went from V i c t o r i a to Nanaimo had been completed i n 1887 but i t wasn't u n t i l 1912 that a branch of t h i s l i n e reached the present v i l l a g e of Lake Cowichan at the eas t e r n end of the Lake. From that time on, the e x p l o i t a t i o n of Cowichan Lake f o r e s t s proceeded r a p i d l y . In a d d i t i o n to the e x t e n s i v e l o g g i n g a c t i v i t i e s , many of the f o r e s t s i n the Cowichan Lake area have been d e s t r o y e d by f i r e s s i n c e the a r r i v a l of white s e t t l e r s . Of p a r t i c u l a r note are the major f i r e s which burnt out the Gordon Bay area, the Bear Lake a r e a , and p a r t s of the Robertson River V a l l e y i n 1908, and the f i r e which s t a r t e d i n the mountains above Youbou i n 1945 40 and spread east and west (Saywell, 1967). The h i s t o r y of the B.C. M i n i s t r y of F o r e s t s Research S t a t i o n has been d i s c u s s e d i n B.C. F o r e s t S e r v i c e (1974). Before the Research S t a t i o n became a P r o v i n c i a l F o r e s t Reserve i n 1929, most of the o r i g i n a l f o r e s t s had been c l e a r e d by l o g g i n g a c t i v i t i e s . Logging of the North Arm F o r e s t was completed i n 1893. The Mesachie Lake p r o p e r t y was logged between 1904 and 1909. The major f i r e which o c c u r r e d i n 1908 (mentioned above) a l s o burnt through the Mesachie Lake p r o p e r t y . In summary then, the o r i g i n a l old-growth stands of Douglas-f i r , western hemlock, and western redcedar have been removed by f i r e and l o g g i n g s i n c e the mid-1880's. I n t e n s i v e e x p l o i t a t i o n d i d n ' t r e a l l y begin u n t i l 1912 with the a r r i v a l of the r a i l w a y . As a consequence of these a c t i v i t i e s , most of the f o r e s t s at lower e l e v a t i o n s near the Lake are now composed of second-growth stands of D o u g l a s - f i r . The o l d e s t second-growth stands are u s u a l l y l o c a t e d near the Lake's edge on the more a c c e s s i b l e s i t e s which were logged f i r s t and the youngest stands are u s u a l l y found at g r e a t e r d i s t a n c e s from the Lake. 3.6 DRIER MARITIME CWH SUBZONE 3.6.1 Climate On southern Vancouver I s l a n d ( i . e . west of the A l b e r n i I n l e t ) , there i s a strong east-west c l i m a t i c g r a d i e n t . There i s a l s o a s t r o n g c l i m a t i c g r a d i e n t from low to high e l e v a t i o n s . These g r a d i e n t s are r e f l e c t e d by o f t e n pronounced d i f f e r e n c e s i n 41 s o i l and v e g e t a t i o n development, and by the d i s t r i b u t i o n of r e g i o n a l ecosystems (Table 1). Southern Vancouver I s l a n d has a c o o l , maritime c l i m a t e with a wet winter, and a r e l a t i v e l y dry summer. T h i s type of c l i m a t e i s c h a r a c t e r i s t i c of the P a c i f i c Coast of North America, from northern C a l i f o r n i a to southern Alaska (Shumway, 1981). The r a t h e r d i s t i n c t c l i m a t e of t h i s area i s produced by the i n t e r a c t i o n of s e v e r a l major f a c t o r s , i n c l u d i n g the e f f e c t s of s e v e r a l major mountain b a r r i e r s , the p r e v a i l i n g westerly winds, and p r o x i m i t y to the immense heat and moisture r e s e r v o i r of the P a c i f i c Ocean ( F r a n k l i n and Dyrness, 1973; Schaefer, 1978,1980; F a r l e y , 1979; Hare and Thomas, 1979; and Shumway, 1981). On southern Vancouver I s l a n d , the strong east-west and a l t i t u d i n a l c l i m a t i c g r a d i e n t s are r e f l e c t e d i n the d i s t r i b u t i o n of b i o g e o c l i m a t i c zones. The C o a s t a l Western Hemlock zone (CWH) occurs at low and middle e l e v a t i o n s i n the wetter, western and c e n t r a l p a r t s of the southern I s l a n d . T h i s zone i s r e p l a c e d at c o l d e r , h i g h e l e v a t i o n s by the Mountain Hemlock zone (MH), and on the d r i e r , east s i d e of the I s l a n d by the C o a s t a l D o u g l a s - f i r zone (CDF). K l i n k a et a l . (1979) s t a t e d that the c l i m a t e s of the CWH, CDF, and MH zones are c l a s s i f i e d a c c o r d i n g to the system of Koppen/Trewartha (Trewartha, 1968) as Cfb, Csb, and Dfc, r e s p e c t i v e l y . Maps showing the g e o g r a p h i c a l extent of these zones on southern Vancouver I s l a n d are found i n Jones and Annas (1978), F a r l e y (1979), K l i n k a et a l . (1979), K r a j i n a et a l . (1982), Pojar (1983), and C o u r t i n et a l . (1984), and c l i m a t i c c h a r a c t e r i s t i c s used to d i s t i n g u i s h between these zones 42 Table 1 - Climate, s o i l and v e g e t a t i o n c h a r a c t e r i s t i c s along a low e l e v a t i o n (<600 m) t r a n s e c t a c r o s s southern Vancouver I s l a n d ( K r a j i n a , 1976; V a l e n t i n e et a l . , 1978; K l i n k a et a l . , 1979; and C o u r t i n et a l . , 1984). West C e n t r a l East East LOCATION ( N i t i n a t (Cowichan (Cowichan C o a s t a l V a l l e y ) Lake) R. V a l l e y ) (Duncan) BIOGEOCLIMATIC SUBZONE BIOGEOCLIMATIC VARIANT CLIMATE Wetter Maritime CWH (CWHb) West Vancouver I s l a n d Submontane wetter Cfb D r i e r Maritime CWH (CWHa) East Vancouver I s l a n d dr i e r Cfb Wetter Maritime CDF (CDFb) Nana imo and Georgia wetter Csb D r i e r Maritime CDF (CDFa) Nanaimo and Georgia dr i e r Csb PRECIPITATION (mm/yr) SOIL SUBGROUP 1BIOGEOCOENOTIC ASSOCIATION 1 6500-2800 2800-1524 1524-1016 1016-657 Ferro-Humic Podzol Humo-Ferric Podzol D y s t r i c B r u n i s o l RL-VA-AA-TH HS-RL-PM-TH MN-GS-PM Dystr i c B r u n i s o l GS-MN-PM on zonal ecosystem where AA GS HS MN = Abies a m a b i l i s = G a u l t h e r i a s h a l l o n = Hylocomium = Mahonia nervosa PM RL splendens TH VA = Pseudotsuga menziesi i = R h y t i d i a d e l p h u s l o r e u s = Tsuga h e t e r o p h y l l a = Vaccinium alaskaense 43 are found i n K r a j i n a (1969,1976), K l i n k a et a l . (1979), K r a j i n a et a l . (1982), and Pojar (1983). Both the CWH and CDF zones are su b d i v i d e d i n t o wetter and d r i e r subzones. The c l i m a t e a c c o r d i n g to the Koppen/Trewartha system (Trewartha, 1968), and mean annual p r e c i p i t a t i o n of these four subzones i s shown i n Table 1. The study area, which i s l o c a t e d at low e l e v a t i o n s (below 700 m) surrounding Cowichan Lake, has a c l i m a t e which i s c l a s s i f i e d as the East Vancouver I s l a n d v a r i a n t of the D r i e r Maritime CWH (CWHa2). At higher e l e v a t i o n s surrounding Cowichan Lake (above 700 m), the c l i m a t e i s wetter and the CWHa2 i s rep l a c e d by the East Vancouver I s l a n d Montane Wetter Maritime CWH (CWHb5). The c l i m a t e a l s o becomes wetter at low e l e v a t i o n s to the west of the Lake, and the CWHa2 i s r e p l a c e d by the West Vancouver I s l a n d Submontane Wetter Maritime CWH (CWHb2). At low e l e v a t i o n s to the east of the Lake, the c l i m a t e becomes d r i e r and the CWHa2 i s re p l a c e d by the Nanaimo and Georgia Wetter Maritime CDF (CDFbl) ( K l i n k a et a l . , 1979; C o u r t i n et al^. , 1984). Table 1 prese n t s a synopsis of b i o g e o c l i m a t i c subzones and t h e i r a s s o c i a t e d , l o w - e l e v a t i o n v a r i a n t s a c r o s s southern Vancouver I s l a n d . S e l e c t e d c l i m a t i c data ( K l i n k a et a l . , 1979) for the three low e l e v a t i o n b i o g e o c l i m a t i c v a r i a n t s mentioned above are presented i n Table 2. A l s o i n c l u d e d i n t h i s t a b l e are p r e c i p i t a t i o n data (Korelus and Lewis, 1978) from the N i t i n a t weather s t a t i o n , which i s i n the CWHb2, and the Cowichan Lake F o r e s t Research S t a t i o n at Mesachie Lake, which i s i n the CWHa2. Th i s data r e f l e c t s the east-west p r e c i p i t a t i o n and temperature 44 Table 2 - Comparison of c l i m a t i c data f o r 3 low e l e v a t i o n b i o g e o c l i m a t i c v a r i a n t s on southern Vancouver I s l a n d (data from K l i n k a e_t a l . , 1979) and 2 weather s t a t i o n s near Cowichan Lake (data from Korelus and Lewis, 1978). CLIMATIC VARIABLE CWHb2 A CWHa2 B CDFb 1 Mean annual p r e c i p . (mm) 381 9 3224 2060 21 22 1217 Mean p r e c i p . A p r i l - S e p t . (mm) 876 734 404 390 260 Mean p r e c i p . d r i e s t month (mm) 91 1 6 36 32 27 Mean p r e c i p . wettest month (mm) 541 548 347 372 207 Mean annual temp. (°C) 7.1 8.7 8.8 Mean temp, warmest month (°C) 12.4 1 6.8 16.7 Mean temp, c o l d e s t month (°C) 2.1 0.9 1 .5 Months with mean temp. > 1 0°C 3.8 5.0 4.8 Months with mean temp. < 1 0°C 0.1 0.0 0.0 Index of c o n t i n e n t a l i t y 2 1 5 1 4 where CWHb2 = West Van. I s l a n d Submontane Wetter Maritime CWH A = weather s t a t i o n at N i t i n a t i n the CWHb2 CWHa2 = East Van. I s l a n d D r i e r Maritime CWH B = weather s t a t i o n at Mesachie Lake i n the CWHa2 CDFb1 = Nanaimo and Georgia Wetter Maritime CDF g r a d i e n t s d i s c u s s e d above. K l i n k a et a l . (1979) s t a t e d that the CWHa2 i s a d r i e r v a r i a t i o n of the CWHa, and i s s i m i l a r i n c l i m a t e to the CDFb. T h i s statement i s supported by data presented i n Table 2. In t h i s t a b l e , both the p r e c i p i t a t i o n and temperature regimes of the CWHa2 are more s i m i l a r to those of the CDFb1 than those of the CWHb2. These regimes a f f e c t the d u r a t i o n and s e v e r i t y of annual water d e f i c i t s , and p o t e n t i a l p l a n t growth. Whereas the 45 CWHb2 never experiences a summer water d e f i c i t , the CWHa2 experiences an average 2.2 month water d e f i c i t of 133 mm. The CDFbl e x p e r i e n c e s an even g r e a t e r water d e f i c i t of 3.8 months and 192 mm. As a r e s u l t , the r a t i o of a c t u a l to p o t e n t i a l e v a p o t r a n s p i r a t i o n (an index of p o t e n t i a l heat a v a i l a b l e f o r p l a n t growth) decreases i n an e a s t e r l y d i r e c t i o n being 100%, 76%, and 67% f o r the CWHb2, the CWHa2, and the CDFbl v a r i a n t s r e s p e c t i v e l y ( K l i n k a et a_l. , 1979). Data p r o v i d e d by K l i n k a et a l . (1979) suggests that a c t u a l e v a p o t r a n s p i r a t i o n i n the CWHa2 and the CDFbl i s c o n s i d e r a b l y reduced d u r i n g the "growing season", e s p e c i a l l y d u r i n g the two warmest months ( J u l y and August). T h i s suggests a s o i l moisture d e f i c i t d u r i n g t h i s p e r i o d , a d e f i c i t which reduces p o t e n t i a l p l a n t growth ( K l i n k a et a l . , 1979) . 3.6.2 S o i l P r o p e r t i e s of B.C. s o i l s have been d i s c u s s e d i n V a l e n t i n e et a l . (1978). Maps showing the d i s t r i b u t i o n of s o i l Great Groups i n B.C. are found i n C o t i c et a l . (1978), V a l e n t i n e et a l . (1978), and F a r l e y (1979). A d e s c r i p t i o n of the p r o p e r t i e s of these Great Groups i s found i n the Canada S o i l Survey Committee's (C.S.S.C.) most recent approximation of the Canadian System of S o i l C l a s s i f i c a t i o n (C.S.S.C, 1978). In t h i s s e c t i o n , the Cowichan V a l l e y s o i l s w i l l be d i s c u s s e d i n terms of Jenny's (1941,1961) f i v e s o i l - f o r m i n g f a c t o r s ( c l i m a t e , parent m a t e r i a l s , topography, organisms, and ti m e ) . A c o n s i d e r a t i o n of 46 these f a c t o r s i s important because they c o n t r o l the r a t e of s o i l processes (Simonson, 1959; L a v k u l i c h and V a l e n t i n e , 1978a), and determine the type of s o i l that w i l l develop in a p a r t i c u l a r a r e a . On southern Vancouver I s l a n d , the strong east-west a e r i a l c l i m a t i c g r a d i e n t d i s c u s s e d i n the p r e v i o u s s e c t i o n , i s r e f l e c t e d by a g r a d i e n t i n s o i l c l i m a t e s , which in turn i s r e f l e c t e d by the d i s t r i b u t i o n of s o i l Great Groups (Table 1). From the c o o l b o r e a l , humid (very s l i g h t water d e f i c i t ) s o i l c l i m a t e s of the west coast to the m i l d mesic, s e m i a r i d (moderately severe water d e f i c i t ) s o i l c l i m a t e s of the east coast (Clayton et a l . , 1977; L a v k u l i c h and V a l e n t i n e , 1978b), the s o i l s grade from Ferro-Humic Podzols (FHP) to Humo-Ferric Podzols (HFP), to D y s t r i c B r u n i s o l s (DYB). Lewis (1976), and Korelus and Lewis (1976,1978) suggested an e x p l a n a t i o n f o r t h i s observed g r a d i e n t . They suggested that the decrease in annual p r e c i p i t a t i o n i s accompanied by a decrease in the r a t e of m i n e r a l s o i l weathering and a p a r a l l e l i n c r e a s e i n the r a t e of organic matter decomposition. As a r e s u l t , the FHP s o i l s of the west coast have the highest c o n c e n t r a t i o n s of Fe, A l , and organic matter i n the B h o r i z o n while the DYB s o i l s of the east c o a s t have the lowest c o n c e n t r a t i o n s ; the HFP s o i l s of the Cowichan V a l l e y being intermediate between these two extremes. The importance of parent m a t e r i a l s in determining s o i l p r o p e r t i e s i n the Cowichan Lake area has been d i s c u s s e d by Korelus and Lewis (1976,1978). They noted that the t e x t u r e and coarse fragment content of s o i l s d e r i v e d from morainal d e p o s i t s 47 depended on the bedrock type from which the o r i g i n a l d e p o s i t s were d e r i v e d . Very stony, g r a v e l l y , loamy sand i s a s s o c i a t e d with i n t r u s i v e t i l l s ; stony, g r a v e l l y , sandy loam i s a s s o c i a t e d with "hard" v o l c a n i c t i l l s ; sandy loam to loam i s a s s o c i a t e d with " s o f t " v o l c a n i c t i l l s ; and s i l t loam to loam i s a s s o c i a t e d with metamorphic t i l l s . S o i l water h o l d i n g c a p a c i t y should t h e r e f o r e i n c r e a s e in the order of i n t r u s i v e t i l l s , "hard" v o l c a n i c t i l l s , " s o f t " v o l c a n i c t i l l s , and metamorphic t i l l s . K orelus and Lewis (1976,1978) a l s o noted that bedrock type a f f e c t s the chemical and n u t r i t i o n a l c h a r a c t e r of t i l l and t i l l -d e r i v e d s o i l s . I n t r u s i v e t i l l s , c h a r a c t e r i z e d by the intimate mixing of a wide range of rock types, do not allow the development of e s p e c i a l l y r i c h ( b a s i c ) or poor ( a c i d i c ) s o i l s . A l s o , t h e i r c o a r s e - t e x t u r e d nature promotes slow r a t e s of weathering and n u t r i e n t r e l e a s e . V o l c a n i c t i l l s tend to be more r i c h i n the b a s i c n u t r i e n t s ( e s p e c i a l l y Ca and Mg) than the i n t r u s i v e t i l l s . T i l l s d e r i v e d from the "hard" v o l c a n i c s weather more slowly than t i l l s d e r i v e d from the " s o f t " v o l c a n i c s . The s i l t y , metamorphic t i l l s weather r a p i d l y but are u s u a l l y low i n Ca. F i n a l l y , they noted that s o i l s a s s o c i a t e d with the " s o f t " v o l c a n i c s probably represent the "most i d e a l combination of n u t r i e n t content and weathering r a t e " . Topography i s a p a s s i v e s o i l forming f a c t o r which i n c l u d e s a c o n s i d e r a t i o n of slope g r a d i e n t , s u r f a c e shape, slope p o s i t i o n , and slope a s p e c t . Topography a f f e c t s the r e d i s t r i b u t i o n of water and i n s o l a t i o n (Korelus and Lewis, 1976,1978) and thus has an important i n f l u e n c e on many ecosystem 48 processes. For example, steep upper slopes are c h a r a c t e r i z e d by r a p i d drainage, and x e r i c moisture c o n d i t i o n s , while g e n t l y s l o p i n g , lower slopes u s u a l l y have slower drainage, r e c e i v e water (seepage) from upslope s i t e s and thus have more h y g r i c moisture c o n d i t i o n s . A l s o , seepage water c a r r i e s p l a n t n u t r i e n t s and i s thus l i n k e d to t r e e n u t r i t i o n . The s o i l s map of the Cowichan Lake area (E.L.U.C., 1978) was examined to determine which s o i l a s s o c i a t i o n s occur i n the study area. The approximate abundance of each s o i l a s s o c i a t i o n on a given parent m a t e r i a l i s shown i n Table 3. A d d i t i o n a l i n f o r m a t i o n i n c l u d e s the most common text u r e (C.S.S.C., 1978), the most common drainage c l a s s (Canada Department of A g r i c u l t u r e , 1974), and the most common s o i l Subgroup (C.S.S.C., 1978) of each s o i l a s s o c i a t i o n . In summary, Dur i c Humo-Ferric Podzols (DU.HFP) are found on morainal and coarse f l u v i a l (mainly g l a c i o f l u v i a l ) d e p o s i t s while O r t h i c D y s t r i c B r u n i s o l s (0.DYB) are found on medium-textured f l u v i a l d e p o s i t s , and O r t h i c Humo-Ferric Podzols (O.HFP), shallow l i t h i c phase ( s h l i ) , are found on c o l l u v i a l m a t e r i a l s . In a d d i t i o n to these s o i l Subgroups, other s o i l Subgroups of the G l e y s o l i c Order, the Organic Order, and the Re g o s o l i c Order occur i n the study a r e a . However, s o i l s belonging to these other Subgroups only occur i n small patches a s s o c i a t e d with s p e c i f i c edaphic c o n d i t i o n s (Jungen and Lewis, 1978). In f a c t , in the study by Day e_t a l . (1959), organic s o i l s of the Arrowsmith s e r i e s (Peat type) were recognized i n the Cowichan Lake area. In the study by K l i n k a et a l . (1981 a ) , which i n c l u d e d three p l o t s on f l u v i a l 49 Table 3 - Approximate abundance of s o i l a s s o c i a t i o n s o c c u r r i n g on d i f f e r e n t parent m a t e r i a l s at low e l e v a t i o n s (< 700 m) i n the Cowichan Lake area. Abundance estimated from s o i l s map produced by E.L.U.C. (1978). ASSOCIATION ABUNDANCE TEX 1 DR2 SUBGROUP3 Comments MORAINE Quimper 70% g s l w (QP) Reegan 30% g l m (RN) FLUVIAL DU.HFP DU.HFP s t r o n g l y cemented pan moderately cemented pan Honeymoon 90% v g l s r DU.HFP (HM) Effingham 9% 1 w O.DYB (EH) E r r i n g t o n 1% g l s r O.DYB (EA) COLLUVIUM R o s s i t e r 85% g s l r O.HFP (RT) ( s h l i ) S t r a t a 10% g l s r O.HFP (ST) ( s h l i ) C u l l i t e 4% g s l w O.HFP (CT) Robertson 1% g s l w O.HFP (RB) ( s h l i ) BEDROCK Rock Outcrop 100% -(RO) g e n e r a l l y l e v e l landscape p o s i t i o n s t o n e f r e e f l o o d p l a i n s o i l s g r a v e l l y f l o o d p l a i n s o i l s stony s o i l s on steep slopes s o i l s of the I s l a n d I n t r u s i o n s stony s o i l s on steep slopes stony s o i l s on steep slopes bedrock w i t h i n 10 cm of s u r f a c e 1 most common te x t u r e (C.S.S.C, 1978), where g = g r a v e l l y (20-50% g r a v e l by volume) vg = very g r a v e l l y (50-90% g r a v e l by volume) 1 = loam, Is = loamy sand, s i = sandy loam 2 most common drainage c l a s s (CD.A., 1974), where r = r a p i d l y d r a i n e d mw = moderately w e l l d r a i n e d w .= w e l l d r a i n e d 3 most common s o i l Subgroup (C.S.S.C, 1978), where 0 = O r t h i c , DU = Duric HFP = Humo-Ferric Podzol DYB = D y s t r i c B r u n i s o l s h l i = shallow l i t h i c phase 50 m a t e r i a l s i n the Cowichan Lake area, s o i l s of the Sombric HFP, O r t h i c HFP (Sombric Phase) and Cumulic Regosol Subgroups were re c o g n i z e d . The c h a r a c t e r i s t i c s of Vancouver I s l a n d Podzols have been d i s c u s s e d by s e v e r a l authors (Lewis, 1976; Jungen and Lewis, 1978; V a l e n t i n e and L a v k u l i c h , 1978). These podzols are u s u a l l y w e l l to moderately w e l l d r a i n e d , have dark r e d d i s h brown c o l o u r s , t e x t u r e s which are predominantly coarse to medium, low pH v a l u e s (4.0-5.0), moderate to h i g h Fe and A l contents, and a low base s a t u r a t i o n . The s o i l p r o f i l e t y p i c a l l y has the f o l l o w i n g sequence of h o r i z o n s : a r e l a t i v e l y t h i c k e c t o r g a n i c s u r f a c e l a y e r (LFH), p o s s i b l y an i n c i p i e n t e l u v i a l Ae h o r i z o n ( u s u a l l y a b s e n t ) , a t h i c k Bf h o r i z o n , and a compact, cemented Be or BCc h o r i z o n (Jungen and Lewis, 1978). An e x p l a n a t i o n f o r the frequent absence of an Ae h o r i z o n ( c h a r a c t e r i s t i c of the c l a s s i c a l Ae/B Podzol model) in Vancouver I s l a n d Podzols has been suggested by Lewis (1976), and V a l e n t i n e and L a v k u l i c h (1978). The warm, moist c l i m a t e of southern Vancouver I s l a n d f a v o r s r a p i d i_n s i t u weathering which r e s u l t s i n l a r g e l o s s e s of the bases and s i l i c a and the subsequent r e s i d u a l enrichment of s e s q u i o x i d e s . Ae h o r i z o n s do not form because weathering of r e l a t i v e l y F e - r i c h parent m a t e r i a l s leads to the " r a p i d o v e r l o a d i n g and i n s o l u b i l i z a t i o n of m e t a l l o -organic complexes, thereby p r e c l u d i n g any s i g n i f i c a n t downward t r a n s l o c a t i o n " (Lewis, 1976). V a l e n t i n e and L a v k u l i c h (1978) f u r t h e r added t h a t , d e s p i t e the heavy l e a c h i n g , the a d d i t i o n of organic matter to, and the weathering of Fe and A l i n , the upper 51 m i n e r a l h o r i z o n i s so great that there i s no net d e p l e t i o n to form an Ae. They a l s o noted that i n other areas, the organic matter simply masks the Ae h o r i z o n under moist f i e l d c o n d i t i o n s . McKeague and Sprout (1975), C.S.S.C. (1978), and Jungen and Lewis (1978) d i s c u s s e d the p r o p e r t i e s of cemented, d u r i c h o r i z o n s which commonly occur i n southwestern B.C. P o d z o l s . These d u r i c h o r i z o n s are u s u a l l y found at a depth of 40 to 80 cm from the m i n e r a l s u r f a c e . They u s u a l l y have an abrupt upper boundary to an o v e r l y i n g Bf, and a d i f f u s e lower boundary at l e a s t 50 cm below. Cementation i s u s u a l l y s t r o n g e s t near the upper boundary and decreases with depth. The s t r u c t u r e of these h o r i z o n s i s u s u a l l y massive or very coarse p l a t y , and the c o l o r u s u a l l y d i f f e r s l i t t l e from that of the parent m a t e r i a l . A i r -dry c l o d s do not slake i n water (C.S.S.C, 1978). McKeague and Sprout (1975) suggested that the cementing m a t e r i a l may be secondary amorphous to weakly c r y s t a l l i n e products c o n t a i n i n g v a r y i n g p r o p o r t i o n s of Fe, A l , and S i . McKeague and Sprout (1975) a l s o noted that these d u r i c h o r i z o n s are r e l a t i v e l y impermeable to water. K o r e l u s and Lewis (1976,1978) s t a t e d that t h i s prevents r a p i d downward flow and permits slower l a t e r a l flow of water. McKeague and Sprout (1975) a l s o noted that these d u r i c h o r i z o n s are impermeable to r o o t s . As a r e s u l t , root mats commonly occur on top of the upper boundary of these d u r i c h o r i z o n s , a s i t u a t i o n which may l i m i t the volume of s o i l p o t e n t i a l l y e x p l o i t a b l e by t r e e r o o t s , and consequently t r e e n u t r i t i o n . McKeague and Sprout (1975) noted that a cemented d u r i c 52 h o r i z o n o c c u r s most commonly i n s o i l s d e r i v e d from m o d e r a t e l y c o a r s e - t e x t u r e d b a s a l t i l l . They a l s o n o t e d t h a t i t o c c u r s i n some f l u v i a l d e p o s i t s , but i s not known t o o c c u r i n f i n e -t e x t u r e d m a t e r i a l s . J u n g e n and L e w i s (1978) n o t e d t h a t i t i s common i n m o r a i n a l and g r a v e l l y , f l u v i a l m a t e r i a l s , but does not o c c u r i n c o l l u v i a l d e p o s i t s . S i m i l a r t r e n d s were o b s e r v e d on t h e E.L.U.C. s o i l s map o f t h e C o w i c h a n L a k e a r e a (E.L.U.C., 1978). The Quimper and Reegan a s s o c i a t i o n s w h i c h d e v e l o p on g r a v e l l y , m o r a i n a l d e p o s i t s , and t h e Honeymoon a s s o c i a t i o n w h i c h d e v e l o p s on v e r y g r a v e l l y , f l u v i a l d e p o s i t s have a d u r i c h o r i z o n , whereas t h e E f f i n g h a m a s s o c i a t i o n w h i c h d e v e l o p s on s t o n e f r e e , loamy f l u v i a l d e p o s i t s , and t h e f o u r a s s o c i a t i o n s w h i c h d e v e l o p on g r a v e l l y , c o l l u v i a l m a t e r i a l s do n o t ( T a b l e 3 ) . K o r e l u s and L e w i s (1976,1978) s u g g e s t e d t h a t t h e p r e s e n c e o r a b s e n c e of a d u r i c h o r i z o n m i g h t depend on s o i l age. They s u g g e s t e d t h a t s u f f i c i e n t t i m e has p a s s e d s i n c e d e g l a c i a t i o n f o r t h e d e v e l o p m e n t o f a d u r i c h o r i z o n on t h e o l d e r , m o r a i n a l and g r a v e l l y , f l u v i a l ( m a i n l y g l a c i o f l u v i a l ) d e p o s i t s , whereas i n s u f f i c i e n t t i m e has p a s s e d f o r them t o d e v e l o p on t h e more r e c e n t c o l l u v i a l and f l u v i a l d e p o s i t s . They s u g g e s t e d t h a t t h e o c c u r r e n c e of B r u n i s o l s i n s t e a d of P o d z o l s on t h e r e c e n t f l u v i a l d e p o s i t s was a l s o r e l a t e d t o s o i l age, i . e . t h e s e more r e c e n t l y d e p o s i t e d m a t e r i a l s a r e as y e t l i t t l e c h a n g e d by s o i l p r o c e s s e s and t h e Bf h o r i z o n has n o t y e t had t i m e t o d e v e l o p . 53 3.6.3 V e g e t a t i o n The CWH i s the l a r g e s t b i o g e o c l i m a t i c zone i n the Vancouver F o r e s t Region and covers much of Vancouver I s l a n d and the Coast Mountains ( K l i n k a et a l . , 1979). T h i s zone i s analogous to the Tsuga h e t e r o p h y l l a zone (TH) which covers a l a r g e part of western Washington and Oregon ( F r a n k l i n and Dyrness, 1973). The CWH i n c l u d e s most of Rowe's (1972) Coast F o r e s t Region which has the l a r g e s t t r e e s , the hig h e s t mean annual increments per hect a r e , and the highest y i e l d s i n Canada ( B i c k e r s t a f f et a l . , 1981). A l a r g e number of s t u d i e s done p a r t l y or e n t i r e l y i n the CWH have c o n t r i b u t e d to c u r r e n t knowledge of v e g e t a t i o n i n t h i s zone. The r e s u l t s of these s t u d i e s have been presented in S p i l s b u r y and Smith (1947), Becking (1954), K r a j i n a (1965,1969), Mueller-Dombois (1959,1965), O r l o c i (1961,1964,1965), E i s (1962), Kojima (1971), F r a n k l i n and Dyrness (1973), Kojima and K r a j i n a (1975), K l i n k a (1976), K l i n k a et a l . (1979,1980a,1981 a ) , I n s e l b e r g et a l . (1982), Kimmins (1983) and Pojar (1983). Most mature f o r e s t ecosystems i n the CWHa are dominated by v a r i o u s combinations of western hemlock, D o u g l a s - f i r , and western redcedar. Western hemlock i s u s u a l l y abundant in almost a l l l a y e r s of f o r e s t stands. In t h i s subzone, western hemlock i s s h a d e - t o l e r a n t , produces abundant r e g e n e r a t i o n , and u s u a l l y forms a major component of climax stands on zonal ( i . e . mesic and mesotrophic) ecosystems. On d r i e r or r i c h e r s i t e s , i t regenerates where there i s an abundance of decaying wood, or a t h i c k mor humus l a y e r . D o u g l a s - f i r i s a s h a d e - i n t o l e r a n t "pioneer" on the m a j o r i t y of s i t e s i n the CWHa. However, on 54 very dry s i t e s , i t is shade-tolerant and can form part of climax stands. Western redcedar is also abundant, especially on richer, moister s i t e s where i t often forms a part of climax stands. Other less common conifer species in the CWHa include •western white pine (Pinus monticola Dougl. ex D. Don i_n Lamb.), lodgepole pine (Pinus contorta Dougl. ex Loud.), grand f i r (Abies qrandis (Dougl. ex D. Don) L i n d l . ) , and the occasional Sitka spruce (Picea sitchensis (Bong.) Carr.). P a c i f i c s i l v e r f i r (Abies amabi1is (Dougl. ex Loud.) Forbes) and Alaska yellow-cedar (Chamaecyparis nootkatensis (D. Don) Spach) which are common in the CWHb, only rarely occur in the CWHa. Compared to other subzones, Douglas-fir, grand f i r , western white pine, and western redcedar have their highest potential productivity in the CWHa. Red alder (Alnus rubra Bong.) i s common on disturbed or very wet s i t e s . Other hardwood species include black cottonwood (Populus trichocarpa Torr. & Gray ex Hook.), bigleaf maple (Acer macrophyllum Pursh), P a c i f i c madrone (Arbutus  menziesi i Pursh), western flowering dogwood (Cornus n u t t a l l i i Audub. ex Torr. & Gray), cascara sagrada (Rhamnus purshianus D C ) , vine maple (Acer circinatum Pursh), and willows (Salix spp.) (Krajina, 1969; Klinka et a l . , 1979; Eyre, 1980; Krajina et a l . , 1982; and Pojar, 1983). As mentioned previously, the climate of the CWHa2 is very similar to that of the CDFb (Table 2). As in the rest of the 7 CWHa, western hemlock in the CWHa2 produces abundant regeneration on zonal s i t e s and has the potential to become the climatic climax species. However, due to the r e l a t i v e l y dry 55 c l i m a t e and r i c h parent m a t e r i a l s i n t h i s v a r i a n t , the v i g o r of western hemlock on zonal s i t e s i s only f a i r to poor. In c o n t r a s t , under the same c o n d i t i o n s , good growth i s shown by D o u g l a s - f i r ( K l i n k a et a l . f 1979). C h a r a c t e r i s t i c f l o r i s t i c f e a t u r e s of zonal ecosystems i n the CWH i n c l u d e : the abundance of western hemlock, the r e l a t i v e p a u c i t y of herbs, and the predominance of s e v e r a l moss s p e c i e s . Biogeocoenotic a s s o c i a t i o n s which c h a r a c t e r i z e z o n a l ecosystems i n the CWHb and CWHa are presented i n Table 1. C h a r a c t e r i s t i c p l a n t s p e c i e s on zonal ecosystems i n the CWHa2 d i f f e r s l i g h t l y from those l i s t e d in Table 1 f o r the modal CWHa. In t h i s v a r i a n t , K i n d b e r g i a oreqana ( ( S u l l . ) Ochyra) r e p l a c e s R h y t i d i a d e l p h u s l o r e u s ((Hedw.) Warnst.) as a dominant moss sp e c i e s on zonal s i t e s . C h a r a c t e r i s t i c s p e c i e s on zonal s i t e s thus i n c l u d e Kindbergia oregana, Hylocomium splendens ((Hedw.) B.S.G.), D o u g l a s - f i r and western hemlock. Another d i s t i n g u i s h i n g f e a t u r e of t h i s v a r i a n t i s the r e l a t i v e abundance of s e v e r a l s p e c i e s more c h a r a c t e r i s t i c of the CDFb, i n c l u d i n g common Saskatoon (Amelanchier a l n i f o l i a (Nutt.) N u t t . ) , s a l a l ( G a u l t h e r i a s h a l l o n Pursh), b a l d h i p rose (Rosa gymnocarpa Nutt. i_n T o r r . & Gray), Vancouver groundcone (Boschniakia  hookeri Walp.), common western pipsissewa (Chimaphila umbellata (L.) B a r t o n ) , and the moss Homalothec ium meqaptilum ( ( S u l l . ) Robins.) ( K l i n k a et a l . , 1979). Mature f o r e s t s i n the CWHa are c h a r a c t e r i z e d by the f o l l o w i n g sequence of p l a n t communities ( K r a j i n a , 1969; Kojima and K r a j i n a , 1975; K l i n k a , 1977b; Kimmins, 1983). The d r i e s t 56 s i t e s , l o c a t e d on rock outcrops and very shallow s o i l s , are occupied by non-forested ecosystems which are c h a r a c t e r i z e d by the abundance of Rhacomitrium mosses and sever a l l i c h e n species. With i n c r e a s i n g s o i l depth and s o i l moisture-holding c a p a c i t y , f o r e s t e d ecosystems supporting lodgepole pine, P a c i f i c madrone, and stunted D o u g l a s - f i r become more prevalent. These stands are c h a r a c t e r i z e d by an abundance of l i c h e n s on tree trunks and on the ground. P a r t i c u l a r l y common are l i c h e n s of the P e l t i g e r a and Cladonia genera. As s o i l depth increases and SMR approaches subxeric c o n d i t i o n s , the overstory becomes dominated by Douglas-f i r and the understory by s a l a l . The absolute dominance of s a l a l i n these ecosystems does not u s u a l l y allow the development of a herb or moss layer of any consequence. On these subxeric s i t e s , western hemlock only grows on decaying wood. F l o r i s t i c c h a r a c t e r i s t i c s of zonal ecosystems (intermediate SMR and SNR) have already been discussed. These include the abundance of hemlock i n both the main canopy and understory, a carpet of mosses, and the absence of well-developed herb or shrub l a y e r s . D o u g l a s - f i r i s a l s o common on zonal ecosystems, p a r t i c u l a r l y i n younger stands, and p a r t i c u l a r l y i n the CWHa2. On r i c h e r s i t e s with an intermediate moisture regime, western redcedar replaces western hemlock as an as s o c i a t e of D o u g l a s - f i r i n the overstory. Mosses are s t i l l common but the abundance of herbs increases, p a r t i c u l a r l y that of american v a n i l l a l e a f (Achlys t r i p h y l l a (Sm.) DC.) and western sword fern ( P o l y s t ichum muni turn (Kaulf.) P r e s l ) . On r i c h s i t e s with a subhygric to hygric SMR, the fo r e s t canopy i s occupied by D o u g l a s - f i r , western redcedar, and 57 grand f i r , and herbs dominate the understory. On these s i t e s , sword f e r n and t r i f o l i a t e - l e a v e d foamflower ( T i a r e l l a t r i f o l i a t a L.) achieve t h e i r maximum development. D o u g l a s - f i r does not grow on s i t e s with a very shallow water t a b l e and a subhydric SMR. On n u t r i e n t - r i c h , subhydric s i t e s , the o v e r s t o r y i s c h a r a c t e r i z e d by the presence of red a l d e r , western redcedar, and S i t k a spruce. The understory i s c h a r a c t e r i z e d by the presence of a dense herb l a y e r and the usual dominance of skunk cabbage ( L y s i c h i t u m americanum H u l t . & St. John). In c o n t r a s t , n u t r i e n t - p o o r , subhydric s i t e s are c h a r a c t e r i z e d by non-forested ecosystems dominated by Sphagnum mosses, S p i r e a s p e c i e s , and the o c c a s i o n a l stunted lodgepole pine or western white pi n e . A s i m i l a r sequence of p l a n t communities a l s o occurs i n mature f o r e s t s of the TH zone i n Washington and Oregon ( F r a n k l i n and Dyrness, 1973; F r a n k l i n , 1981). The o r i g i n a l f o r e s t v e g e t a t i o n of the CWHa in B r i t i s h Columbia and the analogous TH i n the U.S. has been e x t e n s i v e l y m o d i f i e d by f i r e and l o g g i n g . D o u g l a s - f i r , a "pioneer" s p e c i e s on the m a j o r i t y of s i t e s , now dominates the canopy of vast expanses of f o r e s t i n the P a c i f i c Northwest (Eyre, 1980; F r a n k l i n , 1981). F r a n k l i n and Dyrness (1973) presented a review of s t u d i e s which examined secondary s u c c e s s i o n i n these Douglas-f i r / western hemlock f o r e s t s . They noted that much of the resear c h has been l i m i t e d to the f i r s t f i v e to e i g h t years a f t e r complete t r e e removal, and that d e t a i l e d s u c c e s s i o n a l p a t t e r n s f o r the e n t i r e p e r i o d of f o r e s t reestablishment have not been e n t i r e l y worked out. A summary of the r e s u l t s of some of these s t u d i e s w i l l be presented l a t e r . 59 IV. METHODS 4.1 APPROACH In the Cowichan Lake study, the general approach used to produce the c l a s s i f i c a t i o n of f o r e s t ecosystems was s i m i l a r to that employed by Brooke et a_l. (1970), Kojima and K r a j i n a (1975), K l i n k a (1976), and I n s e l b e r g et a l . (1982). T h i s approach i n v o l v e s two main elements: ecosystem a n a l y s i s f o l l o w e d by ecosystem s y n t h e s i s . Ecosystem a n a l y s i s proceeds in three stages: reconnaissance, e n t i t a t i o n and sampling. During the reconnaissance stage, the study area i s i n v e s t i g a t e d to determine the v a r i e t y and q u a l i t a t i v e nature of ecosystems present, and p o s s i b l e environmental f a c t o r s r e l a t e d to t h e i r d i s t r i b u t i o n . The second stage, e n t i t a t i o n , i n v o l v e s the p r e p a r a t i o n of a t e n t a t i v e l i s t of ecosystem c l a s s e s ( e n t i t i e s ) . The p r e p a r a t i o n of t h i s l i s t i s based on i n f o r m a t i o n a c q u i r e d d u r i n g the reconnaissance stage and a review of the r e l e v a n t l i t e r a t u r e . The f i n a l , sampling stage i n v o l v e s c o l l e c t i o n of the r e q u i r e d v e g e t a t i o n and environment data from s e v e r a l examples of each of the e n t i t i e s . Mueller-Dombois and E l l e n b e r g (1974), Gauch (1982), and Kimmins (1983,1984) present more d e t a i l e d d e s c r i p t i o n s of ecosystem a n a l y s i s methods. During the subsequent ecosystem s y n t h e s i s , the o b j e c t i v e i s to group the r e l a t i v e l y l a r g e number of samples i n t o a smaller number of c l a s s e s on the b a s i s of s i m i l a r i t y i n s e l e c t e d p r o p e r t i e s . Once the f i n a l c l a s s e s have been e s t a b l i s h e d , t h e i r p r o p e r t i e s are d e s c r i b e d , and they are named and o r g a n i z e d i n t o 60 a h i e r a r c h y i n order to show r e l a t i o n s h i p s between the c l a s s e s . During ecosystem s y n t h e s i s , the p r e l i m i n a r y , t e n t a t i v e l i s t of ecosystem c l a s s e s may be d r a s t i c a l l y r e v i s e d or, on the other hand, may not be changed at a l l . The extent of r e v i s i o n s depends on how w e l l the p r e l i m i n a r y l i s t of c l a s s e s agrees with new i n s i g h t s provided by data a c q u i r e d d u r i n g the sampling stage. In the b i o g e o c l i m a t i c system, ecosystem s y n t h e s i s i n v o l v e s a t a b l e rearrangement procedure which i s based on t r a d i t i o n a l methods used i n the Braun-Blanquet school of p h y t o s o c i o l o g y (Maarel, 1975; Westhoff and Maarel, 1978). The Braun-Blanquet method i n v o l v e s the p r e p a r a t i o n of a "raw" v e g e t a t i o n t a b l e which i s a matrix with s p e c i e s as rows and sample p l o t s as columns. Matrix e n t r i e s are the abundance of a p a r t i c u l a r s p e c i e s in a p a r t i c u l a r p l o t . The order of samples and p l o t s i n the matrix i s changed so that s p e c i e s which t y p i f y a given group of samples are grouped together and samples t y p i f i e d by a given group of s p e c i e s are grouped together (Gauch, 1982). The o b j e c t i v e i s to produce a " s y n t h e s i s " t a b l e which shows the v e g e t a t i o n data matrix i n a w e l l - o r g a n i z e d form so t h a t : 1) important trends of s p e c i e s d i s t r i b u t i o n among the sample p l o t s are immediately recognized, 2) s i m i l a r i t i e s and d i f f e r e n c e s between p l o t s are emphasized, and 3) the i d e n t i f i c a t i o n of r e c u r r i n g p a t t e r n s i s f a c i l i t a t e d (Mueller-Dombois and E l l e n b e r g , 1974). Gauch (1982) noted that Braun-Blanquet tablework i s the most f r e q u e n t l y used method for a n a l y z i n g p l a n t community data. Complete d e t a i l s of the t a b l e rearrangement 61 process have been o u t l i n e d i n Shimwell (1972) and M u e l l e r -Dombois and E l l e n b e r g (1974). In the b i o g e o c l i m a t i c system, the establishment of ecosystem c l a s s e s i n c l u d e s the Braun-Blanquet v e g e t a t i o n t a b l e rearrangement process d e s c r i b e d above. However, in a d d i t i o n to v e g e t a t i o n t a b l e s , there i s a simultaneous c o n s i d e r a t i o n of environment data i n p a r a l l e l environment t a b l e s . Thus, there i s an attempt to optimize the arrangement of samples i n terms of both v e g e t a t i o n and environment p r o p e r t i e s thereby making the approach more ecosystematic. As I n s e l b e r g e_t a_l. (1982) noted, the v e g e t a t i o n and environment data f o r each p l o t are compared using t a b u l a r methods in order to determine " s i m i l a r i t i e s and d i f f e r e n c e s , c o n s i s t e n c y of groups, and conformity to p a t t e r n s of r e l a t i o n s h i p " , and subsequently, "various u n i t s at d i f f e r e n t l e v e l s of g e n e r a l i z a t i o n are rec o g n i z e d or i d e n t i f i e d using both f l o r i s t i c and environmental v a r i a b l e s as the d i f f e r e n t i a t i n g c h a r a c t e r i s t i c s " . In the Cowichan Lake study, ecosystem s y n t h e s i s d i f f e r e d from the t r a d i t i o n a l approach d e s c r i b e d above. M u l t i v a r i a t e a n a l y s i s techniques were employed i n order to p r o v i d e a more o b j e c t i v e b a s i s f o r grouping the p l o t s i n t o ecosystem c l a s s e s . Gauch (1982) d i s c u s s e d the a p p l i c a t i o n of m u l t i v a r i a t e a n a l y s i s techniques i n h i e r a r c h i c a l c l a s s i f i c a t i o n . He noted that there are three main groups of t e c h n i q u e s : 1) monothetic d i v i s i v e (eg. a s s o c i a t i o n - a n a l y s i s ) , 2) p o l y t h e t i c d i v i s i v e (eg. o r d i n a t i o n space p a r t i t i o n i n g ) , and 62 3) p o l y t h e t i c agglomerative (eg. c l u s t e r a n a l y s i s ) . Monothetic techniques subdivide the set of sample p l o t s on the b a s i s of presence or absence of a s i n g l e p l a n t s p e c i e s , while p o l y t h e t i c techniques c o n s i d e r the e n t i r e s p e c i e s composition of sample p l o t s . D i v i s i v e techniques begin with a l l p l o t s i n a s i n g l e c l u s t e r (group), and s u c c e s s i v e l y p a r t i t i o n t h i s c l u s t e r i n t o a h i e r a r c h y of sma l l e r and s m a l l e r c l u s t e r s u n t i l each c l u s t e r c o n t a i n s only one, or some s p e c i f i e d small number of sample p l o t s . Agglomerative techniques begin with each c l u s t e r comprised of a s i n g l e sample p l o t , and agglomerates these i n t o a h i e r a r c h y of l a r g e r and l a r g e r c l u s t e r s u n t i l a s i n g l e c l u s t e r c o n t a i n s a l l p l o t s . These and other p r o p e r t i e s of c l a s s i f i c a t i o n techniques have been d i s c u s s e d by W i l l i a m s (1971), Sneath and Sokal (1973), O r l o c i (1978), and Gauch (1982). Gauch (1982) reviewed the a p p l i c a t i o n and r e l a t i v e m e r i ts of the three groups of techniques mentioned above. The f o l l o w i n g i s a summary of h i s major p o i n t s . Monothetic techniques have g e n e r a l l y been c h a r a c t e r i z e d by a high m i s c l a s s i f i c a t i o n r a t e because of t h e i r r e l i a n c e on a s i n g l e a t t r i b u t e ( i . e . the presence or absence of a s i n g l e s p e c i e s ) . As Gauch (1982) noted, community data are o f t e n q u i t e "n o i s y " . For v a r i o u s reasons, a sample p l o t may lack the d i f f e r e n t i a t i n g s p e c i e s which would group i t with otherwise very s i m i l a r p l o t s or, c o n v e r s e l y , may possess a d i f f e r e n t i a t i n g s p e c i e s o r d i n a r i l y absent (given the others p r e s e n t ) . For t h i s reason, monothetic techniques are now g e n e r a l l y c o n s i d e r e d to be only of h i s t o r i c a l i n t e r e s t , and p o l y t h e t i c techniques are 6 3 p r e f e r r e d . The s i m p l e s t p o l y t h e t i c d i v i s i v e c l a s s i f i c a t i o n technique i s o r d i n a t i o n space p a r t i t i o n i n g . Gauch (1982) s t a t e d that the purpose of o r d i n a t i o n i s to summarize p l a n t community data by producing a low-dimensional o r d i n a t i o n space i n which s i m i l a r e n t i t i e s (eg. sample p l o t s ) are c l o s e together and d i s s i m i l a r e n t i t i e s f a r a p a r t . He noted that "some degree of f i d e l i t y to the data s t r u c t u r e must be f r e q u e n t l y s a c r i f i c e d i n the p r o j e c t i o n i n t o only one to a few dimensions" but that the advantage of t h i s l o w - d i m e n s i o n a l i t y i s " w o r k a b i l i t y for contemplation and communication". He a l s o noted that o r d i n a t i o n produces "an economical understanding of the data in terms of a few g r a d i e n t s i n community composition (which may be i n t e r p r e t a b l e e n v i r o n m e n t a l l y ) " . O r d i n a t i o n space p a r t i t i o n i n g u s u a l l y i n v o l v e s the s u b j e c t i v e drawing of boundary l i n e s between c l u s t e r s of p o i n t s (which represent sample p l o t s ) on an o r d i n a t i o n graph. If d e s i r e d , t h i s p a r t i t i o n i n g procedure can be made automatic and o b j e c t i v e . Gauch (1982) noted that s u b j e c t i v e p a r t i t i o n i n g can be very u s e f u l when: 1) D i v i s i o n s through sparse regions of the c l o u d of p o i n t s are d e s i r e d . These sparse regions may i n d i c a t e r e l a t i v e d i s c o n t i n u i t i e s which may have e n v i r o n m e n t a l l y i n t e r p r e t a b l e reasons or, on the other hand, may simply r e f l e c t the f a c t that intermediate communities were ( e i t h e r c o n s c i o u s l y or un c o n s c i o u s l y ) not sampled. 2) The i n v e s t i g a t o r wishes to i n c o r p o r a t e i n t o the a n a l y s i s h i s / h e r p r i o r understanding of the data s t r u c t u r e but cannot 64 s p e c i f y t h i s i n f o r m a t i o n p r e c i s e l y or supply i t to the computer. T h i s understanding of the data may be based on f i e l d experience and/or p r e v i o u s a n a l y s e s . 3) S u b j e c t i v e c l u s t e r i n g i s adequate f o r the purposes of the study. C l u s t e r a n a l y s i s i s a p o l y t h e t i c agglomerative technique. In t h i s method, p l a n t community data and the r e l a t i o n s h i p between sample p l o t s i s summarized in a dendrogram. S i m i l a r sample p l o t s are j o i n e d i n t o c l u s t e r s by connecting branches. Sample p l o t s which are more s i m i l a r are j o i n e d by branches of the dendrogram at a lower l e v e l than sample p l o t s which are l e s s s i m i l a r . Examination of the dendrogram suggests which sample p l o t s should (could) be grouped together to form a c l a s s ( i . e . a l l p l o t s l i n k e d to a p a r t i c u l a r branch). Since the number of c l u s t e r s v a r i e s at d i f f e r e n t l e v e l s i n the dendrogram, the number of c l a s s e s c o n s i d e r e d can a l s o be v a r i e d . In the Cowichan Lake study, o r d i n a t i o n space p a r t i t i o n i n g (a p o l y t h e t i c d i v i s i v e t e c h n i q u e ) , and c l u s t e r a n a l y s i s (a p o l y t h e t i c agglomerative technique) were a p p l i e d to the v e g e t a t i o n d a t a . The r e s u l t s of these analyses and the environment t a b l e s were then used to determine which p l o t s should be grouped together to form an ecosystem c l a s s . I t was f e l t that the use of these techniques would p r o v i d e a more o b j e c t i v e , r epeatable b a s i s f o r development of the c l a s s i f i c a t i o n . F i n a l l y , i t should be noted that a s i m i l a r approach has been a p p l i e d i n other s t u d i e s f o r the a b s t r a c t i o n of f o r e s t "types" and the i n v e s t i g a t i o n of environmental 65 p a t t e r n s (Coffman and W i l l i s , 1977; B e l l , 1978; B e t t e r s and Rubingh, 1978; Watanabe and M i y a i , 1978; Becker, 1979; Golden, 1979; P i c a r d , 1979; P f i s t e r and Arno, 1980; Amiro and C o u r t i n , 1981; Beese, 1981; Jones and P i e r p o i n t , 1982; and Jones e_t a l . , 1983). 4.2 ECOSYSTEM ANALYSIS 4.2.1 P r o v i s i o n a l Ecosystem C l a s s e s Since the o b j e c t i v e of the Cowichan Lake study was to study and c l a s s i f y immature f o r e s t ecosystems, the study area was i n v e s t i g a t e d to determine the l o c a t i o n and nature of f o r e s t stands ranging in age from about 41 to 80 y e a r s . According to I n s e l b e r g et a_l. (1982), t h i s range i n c l u d e s immature (41-60 years) and late-immature (61-80 years) c o n i f e r o u s stand age c l a s s e s . F o l l o w i n g a reconnaissance of these stands and a l i t e r a t u r e review (previous s e c t i o n ) , i t was decided that the f o l l o w i n g e n t i t i e s , h e r e i n a f t e r r e f e r r e d to as p r o v i s i o n a l ecosystem c l a s s e s (PEC) would be sampled: 1) the l i c h e n u n i t , 2) the s a l a l u n i t , 3) the moss u n i t , 4) the moss-sword f e r n u n i t , 5) the foamflower-sword f e r n u n i t , and 6) the skunk cabbage u n i t . T h i s sequence of p r o v i s i o n a l ecosystem c l a s s e s occurs along a topographic sequence from very dry r i d g e c r e s t s to very wet 66 d e p r e s s i o n s , and corresponds to SMR c o n d i t i o n s ranging from very x e r i c (hygrotope 0) to subhydric (hygrotope 7) r e s p e c t i v e l y . With the exception of the l i c h e n and skunk cabbage u n i t s , most of the f o r e s t canopies of these second-growth stands were dominated by D o u g l a s - f i r . Because of t h i s , the u n i t s were named fo r c h a r a c t e r i s t i c understory s p e c i e s . Sample p l o t s were e s t a b l i s h e d so that each represented a sample of an i n d i v i d u a l ecosystem (biogeocoenose). P l o t s were pl a c e d i n those p a r t s of f o r e s t stands which were r e l a t i v e l y homogeneous i n e x t e r n a l environment and v e g e t a t i o n s t r u c t u r e and composition. P a r t i c u l a r a t t e n t i o n was taken to a v o i d heterogeneous and/or d i s t u r b e d s i t e s (Kojima and K r a j i n a , 1975). T h i s method of sample p l o t s e l e c t i o n , r e f e r r e d to as " p r e f e r e n t i a l sampling", i s the method most f r e q u e n t l y used by p l a n t e c o l o g i s t s (Gauch, 1982). During May and June 1981, a complete r e l e v e was obtained fo r f o r t y - t h r e e sample p l o t s . The r e l e v e i n c l u d e d s i t e d e s c r i p t i o n , v e g e t a t i o n d e s c r i p t i o n , mensuration, s o i l d e s c r i p t i o n and humus form d e s c r i p t i o n . To ensure data c o n s i s t e n c y with other e c o l o g i c a l i n v e s t i g a t i o n s i n B r i t i s h Columbia, standard f i e l d data forms and standard approaches and d e f i n i t i o n s f o r e c o l o g i c a l data c o l l e c t i o n (Walmsley e_t a l . , 1980) were u t i l i z e d . In a d d i t i o n to these f o r t y - t h r e e sample p l o t s , s i m i l a r i n f o r m a t i o n was obtained f o r e i g h t p l o t s on the Cowichan Lake F o r e s t Research S t a t i o n b r i n g i n g the t o t a l number of p l o t s used in the a n a l y s i s to f i f t y - o n e . These e i g h t a d d i t i o n a l p l o t s had been surveyed by M i n i s t r y of F o r e s t s (MOF) 67 s t a f f d u r i n g the summers of 1979 and 1980. These p l o t s were the same e i g h t p l o t s s t u d i e d by G i l e s (1983) i n h i s i n v e s t i g a t i o n of growing season s o i l moisture d e f i c i t s . 4.2.2 V e g e t a t i o n A n a l y s i s On each sample p l o t , the v e g e t a t i o n was analyzed by both p h y t o s o c i o l o g i c a l and mensurational techniques. For the p h y t o s o c i o l o g i c a l a n a l y s i s , 400 m2 p l o t s were e s t a b l i s h e d . In most cases, a 20 m by 20 m square p l o t was used. T h i s i s c o n s i s t e n t with the minimal p l o t area of 200 to 500 m2 recommended by Mueller-Dombois and E l l e n b e r g (1974) f o r temperate-zone f o r e s t s . For each sample p l o t , a l l v a s c u l a r p l a n t s , bryophytes, and l i c h e n s growing on the f o r e s t f l o o r were l i s t e d . Species growing e x c l u s i v e l y as epip h y t e s , on decaying wood and/or on rocks were not in c l u d e d i n t h i s l i s t . Plant specimens of u n c e r t a i n i d e n t i t y were c o l l e c t e d . These were l a t e r i d e n t i f i e d by Dr. V . J . K r a j i n a , Dr. K. K l i n k a , and Mr. F. Boas. Nomenclature of v a s c u l a r p l a n t s (with some exceptions) f o l l o w e d that of T a y l o r and MacBryde ( 1 977), while I r e l a n d e_t a l . (1980) was fo l l o w e d f o r mosses (two e x c e p t i o n s ) , S t o t l e r and C r a n d a l l -S t o t l e r (1977) f o r h e p a t i c s , and Hale and Culberson (1970) f o r l i c h e n s . E xceptions f o l l o w e d K r a j i n a et a_l. (1984) and Ochyra (1982) . For sampling purposes, the v e g e t a t i o n was s t r a t i f i e d i n t o seven l a y e r s (Table 4). The system used f o r t h i s s t r a t i f i c a t i o n was that of Walmsley et a l . (1980). As Walmsley et a l . (1980) 68 Table 4 - V e g e t a t i o n s t r a t a (Walmsley et a l . , 1980). CODE1 LAYER DESCRIPTION 1 A1 - Dominant t r e e s 2 A2 - Main t r e e canopy (codominant and intermediate t r e e s ) 3 A3 - Suppressed t r e e s over 10 m t a l l 4 B1 T a l l shrubs (woody p l a n t s between 2 m and 10 m t a l l ) & B2 - Low shrubs (woody p l a n t s l e s s than 2 m t a l l ) 6 c - Herbaceous s p e c i e s , s p e c i e s of d o u b t f u l l i f e f o r m , and some low shrubs 7 D - Bryophytes, l i c h e n s , and s e e d l i n g s K l i n k a and Phelps (1979) suggested, s e v e r a l low woody s p e c i e s and s e v e r a l s p e c i e s of do u b t f u l l i f e f o r m were assigned to the herb (C) l a y e r (Appendix A). An estimate of s p e c i e s s i g n i f i c a n c e (Table 5) and v i g o r (Table 6) was obtained f o r each s p e c i e s f o r each l a y e r in which i t o c c u r r e d . Species s i g n i f i c a n c e r a t i n g s were based on the Domin-Krajina s c a l e which combines est i m a t e s of s p e c i e s abundance and dominance ( K r a j i n a , 1933). Cover values used f o r s i g n i f i c a n c e r a t i n g s were those suggested by K l i n k a and Phelps (1979). V i g o r was determined a c c o r d i n g to the 5-point s c a l e developed by Peterson (1964). On each sample p l o t , the age of f i v e t r e e s was determined by counting the growth r i n g s on cores e x t r a c t e d with an increment borer, and the height of two to four t r e e s was determined with a c l i n o m e t e r . Only dominant and co-dominant t r e e s were used f o r these d e t e r m i n a t i o n s . Stand age and stand height were c a l c u l a t e d by averaging these v a l u e s . S i t e index 69 Table 5 - Species s i g n i f i c a n c e s c a l e ( K l i n k a and Phelps, 1979). MEAN RANGE OF CODE COVER VALUE (%) COVER VALUES (%) + 0.2 0.1 - 0.3 1 0.7 0.3 - 1 .0 2 1 .5 1.0- 2.2 3 3.5 2.2 - 5.0 4 7.5 5.0 - 10.0 5 17.5 10.0 - 25.0 6 29.0 25.0 - 33.0 7 41 .5 33.0 - 50.0 8 62.5 50.0 - 75.0 9 87.5 75.0 - 1 00.0 Table 6 - Vi g o r r a t i n g s c a l e (Peterson, 1964). CODE DESCRIPTION 0 dead + v i g o r poor 1 v i g o r f a i r 2 v i g o r good 3 v i g o r e x c e l l e n t (m/100 years) and growth c l a s s (a range of s i t e index values) of D o u g l a s - f i r were determined f o r a l l p l o t s except those in the l i c h e n and skunk cabbage PEC's. On p l o t s b elonging to these p r o v i s i o n a l ecosystem c l a s s e s , growth of D o u g l a s - f i r i s s e v e r e l y l i m i t e d by edaphic c o n d i t i o n s . S i t e index (SI) of D o u g l a s - f i r was c a l c u l a t e d u sing the equation p r o v i d e d by Hegyi et a l . (1979) and growth c l a s s (GC) of D o u g l a s - f i r was determined 70 using the ranges of s i t e index v a l u e s suggested by Lowe and K l i n k a (1981). These ranges are shown i n Table 7. Table 7 - Growth c l a s s (GC) and corresponding range of s i t e index (SI) values (m/100 years) f o r c o a s t a l D o u g l a s - f i r (Pseudotsuga menziesi i ) (Lowe and K l i n k a , 1981). GC SI (m/100 years) Good 1 > 57 .0 2 51.1 — 57.0 Medi urn 3 45.1 - 51 .0 4 39. 1 - 45.0 5 33. 1 - 39.0 Poor 6 27. 1 - 33.0 7 21.1 - 27.0 Low 8 15.1 - 21.0 9 < 1 5 . 1 In a d d i t i o n to the above, two prism p l o t s were e s t a b l i s h e d i n each sample p l o t . In these prism p l o t s , diameter breast height (d.b.h.) was measured, crown c l a s s and s p e c i e s was determined, and t o t a l height estimated (by comparing to measured t r e e s ) f o r a l l t r e e s g r e a t e r than 7.5 cm d.b.h.. T h i s data was used to c a l c u l a t e gross volume (m 3/ha), the number of stems per hectare, mean annual increment (m 3/ha/year), average d.b.h. (cm), and stand basal area (m 2/ha). 71 4.2.3 S o i l A n a l y s i s On each sample p l o t , g eneral s i t e f e a t u r e s were d e s c r i b e d and a s i n g l e s o i l p i t was excavated. During ex c a v a t i o n , m a t e r i a l removed from the p i t was passed through a s i e v e to remove a l l l a r g e (> 2 cm diameter) coarse fragments. The weight of these l a r g e coarse fragments (Mcl) was determined in the f i e l d . S o i l p i t s were excavated i n the shape of a r e c t a n g u l a r or square box so that t h e i r dimensions c o u l d be r e a d i l y determined. These dimensions were used to c a l c u l a t e s o i l p i t volume (Vp). Subsequently, the percent volume of these l a r g e coarse fragments i n the s o i l p i t (VCL) was determined (Appendix B) . The humus form and mineral s o i l p r o f i l e were d e s c r i b e d . The humus form d e s c r i p t i o n i n c l u d e d , f o r each h o r i z o n , measurement of ho r i z o n depth and t h i c k n e s s , and a d e s c r i p t i o n of c o l o u r , f a b r i c , r o o t s and s o i l b i o t a . The mi n e r a l s o i l p r o f i l e d e s c r i p t i o n i n c l u d e d , f o r each h o r i z o n , measurement of h o r i z o n depth and t h i c k n e s s , and a d e s c r i p t i o n of coarse fragments, t e x t u r e , s t r u c t u r e , c o n s i s t e n c y , c o l o u r , m o t t l e s , r o o t s , and pores (Walmsley et a_l. , 1980). F o l l o w i n g these d e s c r i p t i o n s , separate s o i l samples were c o l l e c t e d f o r chemical a n a l y s i s and bulk d e n s i t y d e t e r m i n a t i o n . S o i l sampling methods d i f f e r e d from usual techniques ( i . e . a c q u i s i t i o n of samples by g e n e t i c h o r i z o n ) i n that samples were c o n s i s t e n t l y c o l l e c t e d from four standard s o i l l a y e r s d e f i n e d by depth from boundary between e c t o r g a n i c l a y e r and mineral s o i l . Table 8 d e s c r i b e s the s o i l l a y e r s sampled i n the 72 Cowichan Lake study. Layer 0 samples f o r chemical a n a l y s i s Table 8 - S o i l l a y e r s sampled i n the Cowichan Lake study. LAYER DEPTH DESCRIPTION 0 TE 1 - 0 cm e c t o r g a n i c l a y e r 1 0 - 30 cm upper m i n e r a l l a y e r 2 3 0 - 6 0 cm middle m i n e r a l l a y e r 3 6 0 - 9 0 cm lower m i n e r a l l a y e r 1 TE = t h i c k n e s s of e c t o r g a n i c l a y e r c o n s i s t e d of a composite of samples taken at three random l o c a t i o n s w i t h i n the sample p l o t . No l a y e r 0 sample was c o l l e c t e d from p l o t s that had a mull humus form, and no l a y e r 2 sample and/or l a y e r 3 sample was(were) c o l l e c t e d from p l o t s where bedrock or compacted m a t e r i a l ( u s u a l l y a d u r i c horizon) o c c u r r e d at shallow depth. In t o t a l , one hundred and s i x t y samples were c o l l e c t e d f o r chemical a n a l y s i s . One hundred and s i x t y separate samples were a l s o c o l l e c t e d f o r bulk d e n s i t y and p o r o s i t y d e t e r m i n a t i o n . Samples which were to undergo chemical a n a l y s i s were prepared i n the f o l l o w i n g manner. Organic samples were a i r -d r i e d and ground i n a Waring blender. M i n e r a l samples were a i r -d r i e d , crushed with a wooden r o l l e r , and si e v e d to remove coarse (> 2 mm diameter) fragments. The f o l l o w i n g a n a l y ses were then performed on the f i n e (<2 mm diameter) f r a c t i o n : 1. pH i n c a l c i u m c h l o r i d e (PH) 73 2. exchangeable c a t i o n s - ca l c i u m (CA) - magnesium (MG) - potassium (R) - sodium (NA) 3. c a t i o n exchange c a p a c i t y (CEC) 4. t o t a l carbon,(TC) 5. t o t a l n i t r o g e n (TN) 6. exchangeable n i t r o g e n (EN) 7. m i n e r a l i z a b l e (plus exchangeable) n i t r o g e n (MEN) Analyses 1 through 5 were performed a c c o r d i n g to procedures o u t l i n e d i n L a v k u l i c h (1981). For pH of mineral samples, a 1:2 (m/v), s o i l : 0 . 0 l M c a l c i u m c h l o r i d e s o l u t i o n was used. For organic samples, a 1:5 s o l u t i o n was used. Exchangeable c a t i o n s and c a t i o n exchange c a p a c i t y were determined by the ammonium acet a t e method. T o t a l carbon was determined by dry combustion with a Leco a n a l y z e r . T o t a l n i t r o g e n was determined by a c i d d i g e s t i o n f o l l o w e d by c o l o u r i m e t r i c d e t e r m i n a t i o n of r e l e a s e d ammonium us i n g a Technicon Autoanalyzer. Analyses 6 and 7 foll o w e d the procedure used by Waring and Bremner (1964) with some m o d i f i c a t i o n s (Appendix C ). R e s u l t s of the chemical analyses were used to c a l c u l a t e the f o l l o w i n g d e r i v e d v a r i a b l e s : 8. organic matter content (OM = TC x 1.724) 9. base s a t u r a t i o n (BS = (CA+MG+K+NA) / CEC) 10. carbon:nitrogen r a t i o (CN = TC / TN) 11. m i n e r a l i z a b l e n i t r o g e n (MN = MEN - EN) Bulk d e n s i t y samples f o r each s o i l l a y e r were c o l l e c t e d 74 using the f i e l d method f o r rocky s o i l s d e s c r i b e d by L a v k u l i c h (1981). Instead of water, g l a s s beads were used f o r sample volume (Vt) d e t e r m i n a t i o n . These samples were oven-dried at 105°C f o r 36 hours. Oven-dried organic and m i n e r a l samples were immediately weighed upon removal from the oven. M i n e r a l samples were crushed and s i e v e d to separate f i n e (<2 mm) and coarse (^  2 mm) f r a c t i o n s . The weight of both the f i n e (Mf) and coarse (Mc) f r a c t i o n s was then determined. Standard (whole s o i l ) bulk d e n s i t y (SBD) was c a l c u l a t e d using the formula p r o v i d e d by Brady (1974) and L a v k u l i c h (1981), coarse fragment-free bulk d e n s i t y (CFFBD) was c a l c u l a t e d u s i n g the formula i n Nuszdorfer (1981), and p o r o s i t y was c a l c u l a t e d using the formula p r o v i d e d by Brady (1974) which was m o d i f i e d to account f o r d i f f e r e n c e s i n organic matter c o n t e n t . D e t a i l s of these c a l c u l a t i o n s ' are shown in Appendix B. The r e s u l t s of chemical analyses are u s u a l l y reported as c o n c e n t r a t i o n i n the f i n e (<2 mm) f r a c t i o n . U n i t s commonly employed i n c l u d e ppm, percent (by weight) or m.e. per 100 g. However, i t i s o f t e n d e s i r a b l e to convert these v a l u e s to kg»ha" 1. T h i s c o n v e r s i o n permits us to i n t e g r a t e s o i l chemical data with s o i l p h y s i c a l data (Lewis, 1976) and o b t a i n a b e t t e r estimate of the amount of a given n u t r i e n t a c t u a l l y present i n the s o i l . Heilman (1979) noted that weight of n u t r i e n t on an area b a s i s has the advantage over c o n c e n t r a t i o n of n u t r i e n t on a s o i l weight b a s i s because v a r i a t i o n i n g r a v e l content and bulk d e n s i t y i s accounted f o r . The c a l c u l a t i o n s which perform t h i s c o n v e r s i o n f o r a given n u t r i e n t "n" are shown in Appendix D. 75 T h i s procedure was m o d i f i e d from Lewis (1976). Lewis (1976) d e f i n e d " e f f e c t i v e s o i l depth" as the depth from mineral s u r f a c e to the ba s a l t i l l c o n tact or BCd h o r i z o n . In the Cowichan Lake study, s o i l depth of a given sample p l o t was d e f i n e d as depth from the top of the f i r s t m i n e r a l horizon to K (compacted or cemented m a t e r i a l ) , L ( l i t h i c c o n t a c t ) , or to r o o t i n g depth (depth at which the m a j o r i t y of r o o t s s t o p ) , whichever was l e s s . Using t h i s d e f i n i t i o n of s o i l depth and the equations f o r kg of"n"«ha" 1 shown i n Appendix D, the q u a n t i t y of n u t r i e n t s was c a l c u l a t e d f o r each s o i l l a y e r ( i . e . l a y e r s 0, 1, 2, and 3). A l s o , the q u a n t i t y i n kg»ha~ 1 of v a r i o u s combinations of l a y e r s was c a l c u l a t e d . These combinations are shown i n Table 9. Table 9 - Combinations of s o i l l a y e r s f o r which n u t r i e n t content (kg»ha" 1) was c a l c u l a t e d . COMBINATION DESCRIPTION 01 Layer 0 + Layer 1 12 Layer 1 + Layer 2 012 Layer 0 + Layer 1 + Layer 2 123 Layer 1 + Layer 2 + Layer 3 0123 Layer 0 + Layer 1 + Layer 2 + Layer 3 K l i n k a et a_l. (1981a) noted that samples from more than one s o i l p i t are u s u a l l y r e q u i r e d to a c c u r a t e l y determine mean s o i l p r o p e r t i e s of a sample p l o t . The a c t u a l number of samples needed t o adequately assess mean s o i l p r o p e r t i e s of B.C. f o r e s t 76 s o i l s has r e c e n t l y been s t u d i e d by Lewis (1976), Quesnel and L a v k u l i c h (1980), and C o u r t i n et a l . (1983). They found that f i f t e e n or more samples were r e q u i r e d f o r most s o i l p r o p e r t i e s . However, in the Cowichan Lake study, time and f i n a n c i a l c o n s t r a i n t s l i m i t e d the number of s o i l samples which c o u l d be c o l l e c t e d and analyzed. 4.3 ECOSYSTEM SYNTHESIS 4.3.1 M u l t i v a r i a t e A n a l y s i s Of V e g e t a t i o n Data One hundred and n i n e t y p l a n t s p e c i e s o c c u r r e d on the f i f t y -one sample p l o t s (Appendix A). A v e g e t a t i o n data matrix was prepared which c o n s i d e r e d each s p e c i e s i n each stratum (Table 4) as a separate s p e c i e s - s t r a t u m - u n i t (SSU). Two hundred and f o r t y SSU's were d e r i v e d from the o r i g i n a l one hundred and n i n e t y s p e c i e s . I t should be noted that t h i s process only a f f e c t s t r e e and shrub s p e c i e s which o f t e n occur in more than one v e g e t a t i o n stratum. Gauch (1982) noted that " r a r e " s p e c i e s are u s u a l l y d e l e t e d from a v e g e t a t i o n data matrix because: 1) t h e i r occurrence i s u s u a l l y more a matter of chance than an i n d i c a t i o n of e c o l o g i c a l c o n d i t i o n s , 2) most m u l t i v a r i a t e analyses are a f f e c t e d very l i t t l e by the d e l e t i o n of r a r e s p e c i e s , and 3) the d e l e t i o n of these s p e c i e s reduces the amount of data storage r e q u i r e d . He a l s o noted t h a t " r a r e " i s a r e l a t i v e term but a t y p i c a l d e f i n i t i o n i n c l u d e s s p e c i e s o c c u r r i n g i n l e s s than about 5% of the p l o t s . T h i s suggestion was followed by d e l e t i n g from the 77 o r i g i n a l (240 SSU's x 51 p l o t s ) matrix a t o t a l of one hundred and twelve SSU's which occu r r e d on l e s s than three (5.9%) of the p l o t s . T h i s d e l e t i o n r e s u l t e d i n the p r o d u c t i o n of the f i n a l one hundred and twenty-eight SSU's x f i f t y - o n e p l o t s data matrix which was subsequently used in the m u l t i v a r i a t e a n a l y s e s . The estimated Domin-Krajina s p e c i e s s i g n i f i c a n c e values were used throughout the a n a l y s i s as the q u a n t i t a t i v e measure of s p e c i e s abundance in each l a y e r . Species s i g n i f i c a n c e values of "+" were coded as 0.5, and s p e c i e s s i g n i f i c a n c e v a l u e s of 1 to 9 were coded as 1.0 to 9.0 r e s p e c t i v e l y . Techniques used f o r m u l t i v a r i a t e a n a l y s i s of the v e g e t a t i o n data i n c l u d e d three types of o r d i n a t i o n , and c l u s t e r a n a l y s i s . R e c i p r o c a l averaging (RA) o r d i n a t i o n ( H i l l , - 1973), a l s o known as "analyse f a c t o r i e l l e des correspondences" ( B e n z e c r i , 1969), correspondence a n a l y s i s ( H i l l , 1974), or r e c i p r o c a l o r d e r i n g ( O r l o c i , 1978), and p o l a r o r d i n a t i o n (PO), a l s o known as Bray-C u r t i s o r d i n a t i o n (Bray and C u r t i s , 1957), were performed using the ORDIFLEX (Release B) program developed by Gauch (1977) as p a r t of the C o r n e l l Ecology Programs (CEP) s e r i e s . Detrended correspondence a n a l y s i s (DCA) o r d i n a t i o n ( H i l l , 1979a; H i l l and Gauch, 1980) was performed using the DECORANA program developed by H i l l (1979a) as p a r t of the same CEP s e r i e s . S e v e r a l d i f f e r e n t o p t i o n s are a v a i l a b l e f o r modifying the DCA performed by DECORANA. For a n a l y s i s of the Cowichan Lake v e g e t a t i o n data, a l l d e f a u l t o p t i o n s were used. For p o l a r o r d i n a t i o n , percentage d i s s i m i l a r i t y (PD) was used as the d i s t a n c e measure between p l o t s and sample t o t a l s were s t a n d a r d i z e d to 100. F i r s t a x i s 78 endpoint s e l e c t i o n f o r PO was based on r e s u l t s of the RA and DCA o r d i n a t i o n s while automatic endpoint s e l e c t i o n was used f o r the second a x i s . F o l l o w i n g the o r d i n a t i o n s , c l u s t e r a n a l y s i s was performed using the MIDAS (Fox and Gu i r e , 1976) s t a t i s t i c a l package supported by the U.B.C. Computing Centre. E u c l i d e a n D i s t a n c e (ED) ( O r l o c i , 1978; Pimentel, 1979; Gauch, 1982) was used as the measure of d i s s i m i l a r i t y between p l o t s . Seven c l u s t e r i n g a l g o r i t h m s are a v a i l a b l e f o r c l u s t e r a n a l y s i s i n the MIDAS package. These are d e s c r i b e d by Sneath and Sokal (1973) and Pimentel (1979). For a n a l y s i s of the Cowichan Lake v e g e t a t i o n data, the AVERAGE c l u s t e r i n g a l g o r i t h m was used. The o r d i n a t i o n s and c l u s t e r a n a l y s i s were performed on four d i f f e r e n t combinations of p l o t s and v e g e t a t i o n l a y e r s . The f i r s t combination i n c l u d e d a l l f i f t y - o n e p l o t s and a l l seven v e g e t a t i o n l a y e r s . The second combination i n c l u d e d a l l f i f t y -one p l o t s and the four understory v e g e t a t i o n l a y e r s ( i . e . l a y e r s B1, B2, C and D). The t h i r d combination i n c l u d e d the forty-one intermediate p l o t s f o r which SI of D o u g l a s - f i r c o u l d be determined, and a l l seven v e g e t a t i o n l a y e r s , while the f o u r t h and l a s t combination i n c l u d e d the same forty-one intermediate p l o t s and the four understory v e g e t a t i o n l a y e r s o n l y . A l l of these a n a l y s e s were assigned a code to f a c i l i t a t e f u t u r e d i s c u s s i o n of the r e s u l t s (Table 10). 79 Table 10 - A n a l y s i s codes f o r the 16 combinations of m u l t i v a r i a t e a n a l y s i s , p l o t s , and v e g e t a t i o n l a y e r s . a l l p l o t s i n t e r mediate p l o t s (51) (41) M u l t i v a r i a t e A n a l y s i s 7 l a y e r s (128 SSU) 4 l a y e r s (115 SSU) 7 l a y e r s (111 SSU) 4 l a y e r s (98 SSU) Rec i p r o c a l Averaging (RA) RA 1 1 RA 1 2 RA 1 3 RA 1 4 Detrended Correspondence A n a l y s i s (DCA) DCA1 1 DCA 1 2 DCA 1 3 DCA 1 4 Polar O r d i n a t i o n (PO) P01 1 P01 2 P01 3 P01 4 C l u s t e r A n a l y s i s (CA) CA 1 1 CA1 2 CA 1 3 CA 1 4 4.3.2 Tabular Methods Tables of s e l e c t e d environment v a r i a b l e s were prepared using the F405:ENV program developed by K l i n k a and Phelps (1979) at the U n i v e r s i t y of B r i t i s h Columbia. The o r i g i n a l s o r t i n g i n s t r u c t i o n s were based on the p r e l i m i n a r y , t e n t a t i v e assignment of p l o t s to the s i x PEC's. By comparing o r d i n a t i o n graphs and dendrograms of the v e g e t a t i o n data, and t a b l e s of environment v a r i a b l e s , the o r i g i n a l assignment of the f i f t y - o n e p l o t s to the s i x PEC's was r e v i s e d . In t o t a l , four p l o t s were r e a s s i g n e d to a d i f f e r e n t ecosystem c l a s s to which they showed a b e t t e r " f i t " . Once c l a s s membership of a l l p l o t s was f i n a l i z e d , new s o r t i n g i n s t r u c t i o n s were prepared. These new i n s t r u c t i o n s were used to prepare the f i n a l environment t a b l e s f o r each syntaxon. 80 The same s o r t i n g i n s t r u c t i o n s ( i n a d i f f e r e n t format) were used to prepare a long v e g e t a t i o n t a b l e f o r each syntaxon and a summary v e g e t a t i o n t a b l e . These v e g e t a t i o n t a b l e s were prepared using the F405:VTAB program developed by Emanuel and Wong (1983) a l s o at the U n i v e r s i t y of B r i t i s h Columbia. In a d d i t i o n to s p e c i e s s i g n i f i c a n c e and v i g o r f o r each s p e c i e s i n each p l o t , the long v e g e t a t i o n t a b l e s show: presence (P), mean sp e c i e s  s i g n i f i c a n c e (MS), and the range of s p e c i e s s i g n i f i c a n c e (RS) values f o r each s p e c i e s i n each syntaxon. Presence (P) i s simply the percentage of p l o t s i n a given syntaxon which have a p a r t i c u l a r s p e c i e s present i n t h e i r s p e c i e s l i s t . The other two s y n t h e t i c v a l u e s (MS and RS) are s e l f - e x p l a n a t o r y . Summary ve g e t a t i o n t a b l e s show presence c l a s s ( a l s o c a l l e d constancy c l a s s ) and mean s i g n i f i c a n c e (MS) f o r each s p e c i e s i n each syntaxon. Presence c l a s s i s an e x p r e s s i o n of the frequency of occurrence of a given s p e c i e s i n a given syntaxon and i s based on s p e c i e s presence. The r e l a t i o n s h i p between presence and presence c l a s s i s shown in Table 11. I f the number of p l o t s i n a group i s 5 or l e s s , the presence c l a s s i s p r i n t e d i n a r a b i c , rather than roman numerals (Emanuel and Wong, 1983). Once the assignment of p l o t s to syntaxa has been f i n a l i z e d and the summary v e g e t a t i o n t a b l e s have been prepared, the u n i t s are then or g a n i z e d i n t o a h i e r a r c h y of b i o g e o c o e n o t i c a s s o c i a t i o n s (BA's), p l a n t a l l i a n c e s , and p l a n t o r d e r s . The c l a s s e s formed at these d i f f e r e n t c a t e g o r i c a l l e v e l s (ranks) are named a c c o r d i n g to a system which i s l a r g e l y based on r u l e s e s t a b l i s h e d by the Nomenclature Commission of the I n t e r n a t i o n a l 81 Table 11 - R e l a t i o n s h i p between presence and presence c l a s s (Emanuel and Wong, 1983). PRESENCE PRESENCE CLASS 1 - 20% I 21 - 40% II 41 - 60% III 61 - 80% IV over 80% V S o c i e t y of Ve g e t a t i o n S c i e n c e . These r u l e s are o u t l i n e d i n Barkman et. a_l. ( 1976). T h i s process of p r o v i d i n g l a b e l s (names) for the v a r i o u s c l a s s e s i s r e f e r r e d to as the syntaxonomical  stage. Plant s p e c i e s names used i n a syntaxon ( c l a s s ) l a b e l are obtained from a l i s t of s p e c i e s which c h a r a c t e r i z e that p a r t i c u l a r syntaxon. T h i s l i s t , r e f e r r e d to as the " C h a r a c t e r i s t i c Combination of Sp e c i e s " (CCS), c o n t a i n s : 1) s p e c i e s whose d i s t r i b u t i o n shows v a r y i n g degrees of c o n c e n t r a t i o n i n a p a r t i c u l a r syntaxon (c h a r a c t e r - s p e c i e s and d i f f e r e n t i a l - s p e c i e s ) , and 2) s p e c i e s which occur i n over 80% ( i . e . presence c l a s s = V) of the p l o t s i n a given syntaxon ( c o n s t a n t - s p e c i e s ) . These s p e c i e s may or may not show any d i s t r i b u t i o n a l c o n c e n t r a t i o n i n the syntaxon under c o n s i d e r a t i o n . Species which are not i n c l u d e d i n the CCS of any syntaxon are r e f e r r e d to as a c c i d e n t a l - s p e c i e s . C r i t e r i a f o r a s s i g n i n g d i f f e r e n t i a t i n g values to p l a n t s p e c i e s were m o d i f i e d from I n s e l b e r g et a l . (1982) and w i l l be d i s c u s s e d l a t e r . 82 During the p r e p a r a t i o n of the CCS l i s t s , the d e s i r a b i l i t y of an o b j e c t i v e , repeatable procedure became apparent. To t h i s end, such a procedure was developed and a p p l i e d . T h i s procedure w i l l be o u t l i n e d i n a l a t e r s e c t i o n . 4.3.3 I n d i c a t o r P l a n t A n a l y s i s An edatopic i n d i c a t o r s p e c i e s spectrum was prepared f o r each biogeocoenotic a s s o c i a t i o n u s i n g the SPECTRA program developed by Rowat (1984) at the U n i v e r s i t y of B r i t i s h Columbia. These s p e c t r a show, f o r each BA, the r e l a t i v e frequency of occurrence (importance) of p l a n t s p e c i e s belonging to eighteen edatopic i n d i c a t o r s p e c i e s groups (EISG). In t h i s system, three hundred and six t y - t w o s p e c i e s are grouped i n t o three main c l a s s e s . The f i r s t main c l a s s i n c l u d e s s p e c i e s which i n d i c a t e n u t r i e n t - v e r y poor to medium s i t e s , the second main c l a s s i n c l u d e s s p e c i e s which i n d i c a t e nutrient-medium s i t e s , and the t h i r d main c l a s s i n c l u d e s s p e c i e s which i n d i c a t e nutrient-medium to very r i c h s i t e s . These three main c l a s s e s are f u r t h e r sub-d i v i d e d i n t o eighteen EISG's which i n d i c a t e d i f f e r e n t s o i l moisture c o n d i t i o n s . Complete d e t a i l s , i n c l u d i n g the l i s t of sp e c i e s i n each EISG, are found i n K l i n k a e_t a l . (1984). A synopsis of the eighteen groups i s found i n Table 12. D i s c r i m i n a n t A n a l y s i s (DA) was performed on the p l o t s by EISG matrix. T h i s DA was performed using the 7M program which i s p art of the BMDP data a n a l y s i s s e r i e s developed at the U n i v e r s i t y of C a l i f o r n i a (Dixon, 1983). DA was used to f i n d the 83 Table 12 - Synopsis of edatopic i n d i c a t o r s p e c i e s groups (EISG) ( K l i n k a et a l . , 1984). EISG CHARACTERISTIC SPECIES AND DESCRIPTION I n d i c a t o r s of n u t r i e n t - v e r y poor to medium s i t e s 1.1 - Lic h e n spp. Very dry, n u t r i e n t - v e r y poor to poor s i t e s (vdvp) 1.2 - Chimaphila umbellata Very dry to dry, n u t r i e n t - v e r y poor to med. s i t e s (dpm) 1.3 - Goodyera oblongi f o l i a Dry to f r e s h , n u t r i e n t - v e r y poor to medium s i t e s (dfpm) 1.4 - Hylocomium splendens Dry to moist, n u t r i e n t - v e r y poor to medium s i t e s (dmpm) 1.5- R h y t i d i a d e l p h u s l o r e u s F r e s h to moist, n u t r i e n t - v e r y poor to med. s i t e s (fmpm) 1.6- Blechnum s p i c a n t Moist to wet, n u t r i e n t - v e r y poor to medium s i t e s (mwpm) 1.7 - Sphagnum spp. Wet, n u t r i e n t - v e r y poor to medium s i t e s (wpm) I n d i c a t o r s of nutrient-medium s i t e s 2.1 - A r c t o s t a p h y l o s u v a - u r s i Very dry to dry, n u t r i e n t - p o o r to medium s i t e s (vdm) 2.2 - Amelanchier a l n i f o l i a Dry to f r e s h , nutrient-medium s i t e s (dfm) 2.3 - P y r o l a asar i f o l i a Dry to moist, nutrient-medium s i t e s (dmm) 2.4 - Luzula p a r v i f l o r a F r esh to moist, nutrient-medium s i t e s (fmm) I n d i c a t o r s of nutrient-medium to very r i c h s i t e s 3.1 - Juniperus scopulorum Very dry, nutrient-medium (to r i c h ) s i t e s (vdmr) 3.2 - Mahonia aqui f o l i a Very dry to dry, n u t r i e n t med. to very r i c h s i t e s (dmr) 3.3 - P t e r i d i u m a q u i l i n u m Dry to f r e s h , nutrient-medium to very r i c h s i t e s (dfmr) 3.4 - Achl y s t r i p h y l l a Dry to moist, nutrient-medium to very r i c h s i t e s (dmmr) 3.5 - T i a r e l l a t r i f o l i a t a F r e s h to moist, nutrient-med. to very r i c h s i t e s (fmmr) 3.6 - Athyrium f i l i x - f e m i n a Moist to wet, nutrient-medium to very r i c h s i t e s (mwmr) 3.7 - L y s i c h i t u m amer icanum Wet, nutrient-medium to very r i c h s i t e s (wmr) 84 c l a s s i f i c a t i o n f u n c t i o n s ( l i n e a r combinations of the EISG's) which best c h a r a c t e r i z e d i f f e r e n c e s between the BA's. These d e r i v e d f u n c t i o n s can subsequently be used to c l a s s i f y new p l o t s . A d e t a i l e d d e s c r i p t i o n of the procedure and output of DA performed by the 7M program can be found in Dixon (1983). 4.3.4 Environmental P a t t e r n s D e s c r i p t i v e s t a t i s t i c s f o r seven s i t e m o r p h o l o g i c a l , t h i r t e e n s o i l p h y s i c a l , and f i f t y - s e v e n s o i l chemical p r o p e r t i e s were c a l c u l a t e d using the MIDAS s t a t i s t i c a l package (Fox and G u i r e , 1976). These s t a t i s t i c s i n c l u d e d means (MN), sample s i z e s (n), standard d e v i a t i o n s (SD), and 95% c o n f i d e n c e i n t e r v a l s (CI) f o r each p r o p e r t y . These s t a t i s t i c s were c a l c u l a t e d f o r a l l f i f t y - o n e p l o t s , f o r the f o r t y - o n e intermediate p l o t s i n BA's 2 to 5, and for a l l p l o t s i n each BA taken s e p a r a t e l y . In a d d i t i o n , c o r r e l a t i o n c o e f f i c i e n t s (r) were c a l c u l a t e d i n order to i n v e s t i g a t e the p o s s i b i l i t y of l i n e a r trends in these p r o p e r t i e s . The seven s i t e m o r p h o l o g i c a l , and a subset of f o u r t e e n s o i l p h y s i c a l and chemical p r o p e r t i e s were s e l e c t e d f o r f u r t h e r c o n s i d e r a t i o n . These p r o p e r t i e s and t h e i r a s s i g n e d codes are shown i n Table 13. P r e l i m i n a r y analyses i n d i c a t e d c o n s i d e r a b l e v a r i a b i l i t y between BA's i n the v a r i a n c e of most s o i l p r o p e r t i e s . T h i s h e t e r o s c e d a s t i c i t y , or i n e q u a l i t y of v a r i a n c e s (Zar, 1974), precluded the a p p l i c a t i o n of r e g r e s s i o n a n a l y s i s . Pimentel (1979) noted that the i n f l u e n c e of h e t e r o s c e d a s t i c i t y on 85 Table 13 - Codes used to i n d i c a t e the s i t e morphological, and the s e l e c t e d s o i l p h y s i c a l and chemical p r o p e r t i e s . CODE DESCRIPTION A. Morphological (MORPH) 1 . VCL coarse fragments > 2 cm (%) 2. VCT coarse fragments > 2 mm (%) 3. THECT thick n e s s of ectorganic layer (cm) 4. THAE thickness of Ae horizon (cm) 5. THAH thick n e s s of Ah horizon (cm) 6. RTDPTH ro o t i n g depth (cm) 7. SLOPE slope gradient (%) B. P h y s i c a l and chemical (P5.C) 1 . POR.123 p o r o s i t y of mineral s o i l (%) 2. PHHF pH of humus form (LFH or Ah) 3. PH.123 pH of mineral s o i l 4. TCO 123 t o t a l C (kg«ha"1) 5. TN.0123 t o t a l N (kg»ha _ 1) 6. MN.012 3 m i n e r a l i z a b l e N (kg»ha~1) 7. CNHF C:N of humus form (LFH or Ah) 8. CN.123 C:N of mineral s o i l 9. CA.0123 exchangeable Ca (kg«ha~1) 10. MG.0123 exchangeable Mg (kg^ha" 1) 1 1 . K.0123 exchangeable K (kg»ha~1) 12. NA.0123 ' - exchangeable Na (kg»ha~1) 13. CAT.0123 exchangeable c a t i o n s (kg»ha~1) 14. CEC.0123 c a t i o n exchange c a p a c i t y (e.*ha" 1) N.B. P r o p e r t i e s i n part B (P&C) are weighted to r o o t i n g depth, where r o o t i n g depth r e f e r s to the depth from the ground surface down to the bottom of the e f f e c t i v e r o o t i n g zone (the l e v e l at which the ma j o r i t y of roots s t o p ) . P r o p e r t i e s ending with the depth code "0123" include the ectorganic layer ( l a y e r 0), while p r o p e r t i e s ending with the depth code "123" do not ( i . e . mineral s o i l l a y e r s o n l y ) . 86 c a n o n i c a l axes i s p o o r l y understood, but that s t u d i e s have shown that r e l i a n c e can be p l a c e d on these axes for morphometric i n t e r p r e t a t i o n s . With these l i m i t a t i o n s i n mind, d i s c r i m i n a n t a n a l y s i s was performed on the s e l e c t e d s i t e and s o i l p r o p e r t i e s (Table 13) using the same 7M program (Dixon, 1983) as was d i s c u s s e d e a r l i e r . Four separate analyses were performed using d i f f e r e n t combinations of p l o t s and p r o p e r t i e s . The f i r s t combination i n c l u d e d a l l f i f t y - o n e p l o t s and the seven s i t e m o rphological p r o p e r t i e s . The second combination i n c l u d e d a l l f i f t y - o n e p l o t s and the f o u r t e e n s o i l p h y s i c a l and chemical p r o p e r t i e s . The t h i r d combination i n c l u d e d the f o r t y - o n e i n t e r m e d i a t e p l o t s f o r which s i t e index of D o u g l a s - f i r c o u l d be determined ( i . e . p l o t s in b i o g e o c o e n o t i c a s s o c i a t i o n s 2, 3, 4, and 5) and the seven s i t e m orphological p r o p e r t i e s , while the f o u r t h and l a s t combination i n c l u d e d the same fo r t y - o n e intermediate p l o t s and the fourteen s o i l p h y s i c a l and chemical p r o p e r t i e s . Each of these analyses was a s s i g n e d a code to f a c i l i t a t e f u t u r e d i s c u s s i o n of the r e s u l t s (Table 14). The purposes of t h i s d i s c r i m i n a n t a n a l y s i s were t o : 1) s e l e c t combinations of p r o p e r t i e s which best c h a r a c t e r i z e d i f f e r e n c e s between the BA's, 2) d e r i v e f u n c t i o n s which c o u l d subsequently be used to c l a s s i f y other p l o t s not used i n the o r i g i n a l a n a l y s i s , and 3) produce c a n o n i c a l v a r i a b l e p l o t s so that r e l a t i o n s h i p s between p l o t s and BA's c o u l d be examined. D i s c r i m i n a n t a n a l y s i s has r e c e n t l y been used by other authors f o r s i m i l a r purposes. K l i n k a e_t a l . (1979) used i t to s e l e c t 87 Table 14 - A n a l y s i s codes f o r the 4 combinations of p l o t s and v a r i a b l e s used i n the d i s c r i m i n a n t a n a l y s i s . number of p l o t s v a r i a b l e s 51 41 7 s i t e m o r p h o l o g i c a l DA01 DA03 14 s o i l p h y s i c a l and chemical DA02 DA04 the c l i m a t i c v a r i a b l e s which best d i s c r i m i n a t e between b i o g e o c l i m a t i c zones, subzones, and v a r i a n t s , and Jones et a l . (1983) used i t f o r s e l e c t i n g those s o i l p r o p e r t i e s which best c h a r a c t e r i z e d d i f f e r e n c e s between a number of "v e g e t a t i o n types". The p o s s i b i l i t y of corresponding trends i n s o i l and ve g e t a t i o n p a t t e r n s was i n v e s t i g a t e d by p l o t t i n g detrended correspondence a n a l y s i s scores with c a n o n i c a l v a r i a b l e s from d i s c r i m i n a n t a n a l y s i s . C o r r e l a t i o n c o e f f i c i e n t s (r) were c a l c u l a t e d to determine the degree of l i n e a r r e l a t i o n s h i p between these o r d i n a t i o n scores and the c a n o n i c a l v a r i a b l e s . 4.3.5 P r o d u c t i v i t y R e l a t i o n s h i p s D e s c r i p t i v e s t a t i s t i c s f o r e i g h t mensuration v a r i a b l e s were c a l c u l a t e d u s i n g the MIDAS s t a t i s t i c a l package (Fox and Gu i r e , 1976). Trends i n these p r o p e r t i e s were i n v e s t i g a t e d , and mean s i t e index (m/100 yr s ) values f o r D o u g l a s - f i r i n three Cowichan 88 Lake a s s o c i a t i o n s were compared to mean s i t e index values found by other workers studying s i m i l a r a s s o c i a t i o n s i n the CWHa. R e l a t i o n s h i p s between o r d i n a t i o n s c o r e s , c a n o n i c a l v a r i a b l e s , and s i t e index of D o u g l a s - f i r were examined. R e l a t i o n s h i p s between s e v e r a l i n d i c e s of s o i l N s t a t u s , two i n d i c e s of s o i l Ca status,' s i t e humus form and growth c l a s s of D o u g l a s - f i r were a l s o c o n s i d e r e d . 89 V. RESULTS AND DISCUSSION 5.1 CLASSIFICATION 5.1.1 Synopsis Of The C l a s s i f i c a t i o n The c l a s s i f i c a t i o n of immature f o r e s t ecosystems i n the Cowichan Lake area was f i n a l i z e d a f t e r c o n s i d e r a t i o n of the r e s u l t s of m u l t i v a r i a t e a n a l yses of the v e g e t a t i o n data, environmental p r o p e r t i e s of the f i f t y - o n e sample p l o t s , and syntaxa recognized by other workers (McMinn, 1957; K r a j i n a , 1969; Kojima, 1971; Kojima and K r a j i n a , 1975; K l i n k a , 1976; In s e l b e r g et a_l. , 1982; and o t h e r s ) . In summary, three o r d e r s , f i v e a l l i a n c e s , and s i x biogeocoenotic a s s o c i a t i o n s were e s t a b l i s h e d . A synopsis of the c l a s s i f i c a t i o n i s shown i n Table 15. Names proposed f o r each syntaxon g e n e r a l l y followed nomenclatural r u l e s o u t l i n e d i n Barkman et a_l. ( 1976). A s s o c i a t i o n names are composed of the name of the t r e e s p e c i e s dominating the f o r e s t canopy, and the name of a c h a r a c t e r i s t i c understory s p e c i e s . The d o l l a r s i g n ($) preceeding each name s i g n i f i e s that these a s s o c i a t i o n s were a b s t r a c t e d from a n a l y s i s of v e g e t a t i o n data from immature f o r e s t ecosystems. Table 15 shows the probable climax a s s o c i a t i o n f o r each of the immature a s s o c i a t i o n s recognized i n the Cowichan Lake study. In the f o l l o w i n g t e x t , the terms a s s o c i a t i o n and biogeoc o e n o t i c a s s o c i a t i o n (BA) w i l l be c o n s i d e r e d synonymous. Number codes w i l l f r e q u e n t l y be used i n the t e x t , and i n f i g u r e s and t a b l e s t o i n d i c a t e the BA to which a p a r t i c u l a r sample p l o t 90 Table 1 5 Synopsis of the v e g e t a t i o n c l a s s i f i c a t i o n . SYNTAXON NAME ORDER 1 G a u l t h e r i o s h a l l o n i s - P s e u d o t s u g e t a l i a m e n z i e s i i (Krajina,1969) Roy,1984 A l l i a n c e 1 . 1 P e l t i g e r o aphthosae-Pino-Pseudotsugion a l l . nov. prov. Assoc. 1 . 1 1 $Pinus~Polytrichum juniperinum Roy,1984 (Peltigero-Pino-Pseudotsugeturn (McMinn,1957))* = the $PC-PJ a s s o c i a t i o n A l l i a n c e 1 . 2 Gau l t h e r i o - P s e u d o t s u g i o n K r a j i n a et K l i n k a i_n Klinka,1976 Assoc. 1 . 21 $Pseudotsuga-Gaultheria s h a l l o n Roy,1984 (Gaultherio-Pseudotsugeturn (McMinn,1957))* = the $PM-GS a s s o c i a t i o n ORDER 2 Rh y t i d i a d e l p h o l o r e i - T s u g e t a l i a h e t e r o p h y l l a e (Krajina,1969) Roy,1984 A l l i a n c e 2. 1 Hylocomio-Pseudotsugo-Tsugion ( K r a j i n a et K l i n k a i_n Klinka,1976) Roy,1984 Assoc. 2. 1 1 $Pseudotsuga-Kindbergia oregana Roy,1984 (Hylocomio-Pseudotsugo-Tsugetum (Koj ima,1971))* = the $PM-KO a s s o c i a t i o n ORDER 3 P o l y s t i c h o m u n i t i - T h u j e t a l i a p l i c a t a e (Krajina,1969) I n s e l b e r g et a l . , 1982 A l l i a n c e 3. 1 T i a r e l l o t r i f o l i a t a - T h u j i o n ( K r a j i n a et K l i n k a in. Klinka,1976) Assoc. 3. 1 1 $Pseudotsuga-Hylocomium splendens** Roy,1984 (Hylocomio-Thujetum ass. nov. p r o v . ) * = the $PM-HS a s s o c i a t i o n Assoc. 3. 1 2 $Pseudotsuga-Plagiomnium i n s i g n e Roy,1984 ( T i a r e l l o - T h u j e t u m (McMinn,1957))* = the $PM-PI a s s o c i a t i o n A l l i a n c e 3. 2 L y s i c h i t o - T h u j i o n ( K r a j i n a i n Brooke et a l . , 1970) K r a j i n a et K l i n k a i n Klinka,1976 Assoc. 3. 21 $Alnus-Lysichitum americanum Roy,1984 (L y s i c h i t o - T h u j e t u m (McMinn,1957))* = the $AR-LA a s s o c i a t i o n * Probable climax a s s o c i a t i o n ** Probable climax a l l i a n c e f o r t h i s a s s o c i a t i o n i s P o l y s t i c h o - T h u j i o n ( I n s e l b e r g et al.,1982) 91 or group of sample p l o t s b e l o n g ( s ) . These codes are as f o l l o w s : 1 = the $PC-PJ a s s o c i a t i o n ( a s s o c i a t i o n 1.11) 2 = the $PM-GS a s s o c i a t i o n ( a s s o c i a t i o n 1.21) 3 = the $PM-KO a s s o c i a t i o n ( a s s o c i a t i o n 2.11) 4 = the $PM-HS a s s o c i a t i o n ( a s s o c i a t i o n 3.11) 5 = the $PM-PI a s s o c i a t i o n ( a s s o c i a t i o n 3.12) 6 = the $AR-LA a s s o c i a t i o n ( a s s o c i a t i o n 3.21) 5.1.2 M u l t i v a r i a t e A n a l y s i s Of Ve g e t a t i o n P a t t e r n s Gauch (1982) suggested that i t i s o f t e n d e s i r a b l e to apply s e v e r a l m u l t i v a r i a t e a n a l y s i s techniques to the same data set and compare r e s u l t s . T h i s approach was adopted f o r a n a l y s i s of the Cowichan Lake v e g e t a t i o n d ata. O r d i n a t i o n space p a r t i t i o n i n g of graphs produced by RA, DCA, and PO, and the i n s p e c t i o n of dendrograms was performed. The r e s u l t s are presented and d i s c u s s e d below. Sample p l o t scores f o r axes 1, 2, and 3 of a l l RA and DCA o r d i n a t i o n s , and p l o t scores f o r axes 1 and 2 of a l l PO o r d i n a t i o n s (Table 10) are presented' i n Appendix E. A l l scores f o r the RA and PO o r d i n a t i o n s have been a u t o m a t i c a l l y s c a l e d i n t o the 0-100 range by the ORDIFLEX program, whereas the DCA scores produced by DECORANA have not. Grouping order and Eu c l i d e a n D i s t a n c e between c l u s t e r s f o r a l l four CA analyses (Table 10) are presented i n Appendix F. O r d i n a t i o n graphs f o r a l l three combinations of axes ( i . e . axes 1 and 2, 1 and 3, and 2 and 3) of a l l twelve 92 o r d i n a t i o n s , and dendrograms for a l l four c l u s t e r analyses were prepared and examined. These graphs were i n s p e c t e d to determine which would be of g r e a t e s t use f o r a i d i n g in the c l a s s i f i c a t i o n . I t was observed that graphs and dendrograms based on a n a l y s i s of SSU's from a l l seven v e g e t a t i o n l a y e r s d i d not d i f f e r s u b s t a n t i a l l y from graphs and dendrograms based on a n a l y s i s of SSU's i n the four understory v e g e t a t i o n l a y e r s o n l y . T h i s was a t t r i b u t e d to the f a c t t h at the upper v e g e t a t i o n l a y e r s { i . e . the f o r e s t canopy) of most of these immature f o r e s t ecosystems were dominated by D o u g l a s - f i r . The i n c l u s i o n of these l a y e r s t h e r e f o r e c o n t r i b u t e d very l i t t l e to d i f f e r e n t i a t i o n of the sample p l o t s i n the m u l t i v a r i a t e a n a l y s e s . Furthermore, i t was assumed that the s t r u c t u r e and composition of the o v e r s t o r y in these immature f o r e s t ecosystems had not yet had time to s t a b i l i z e , whereas the s t r u c t u r e and composition of the understory v e g e t a t i o n had ( d i s c u s s e d l a t e r ) . For these reasons, i t was decided that only o r d i n a t i o n graphs and c l u s t e r a n a l y s i s dendrograms based on a n a l y s i s of understory SSU's would be c o n s i d e r e d f u r t h e r . I t was a l s o decided that ' only o r d i n a t i o n graphs f o r axes 1 and 2 would be c o n s i d e r e d because these two axes account f o r the g r e a t e s t amount of v a r i a t i o n i n the data s e t . A f t e r c a r e f u l examination of the understory o r d i n a t i o n graphs and c l u s t e r a n a l y s i s dendrograms, and the environment data fo r each p l o t , i t was decided that s i x main c l a s s e s would be maintained, and that the a b s t r a c t i o n of the p r o p e r t i e s of these c l a s s e s would d e f i n e s i x biogeocoenotic a s s o c i a t i o n s (BA). 93 O r d i n a t i o n graphs of a x i s 1 and 2 scores f o r these o r d i n a t i o n s are shown i n F i g u r e s 2 to 7, and dendrograms f o r the two c l u s t e r a nalyses based on understory SSU's are shown in F i g u r e s 8 and 9. The BA to which a given sample p l o t belongs i s p l o t t e d at the i n t e r s e c t i o n of a x i s 1 and 2 scores on the o r d i n a t i o n graphs, while both p l o t numbers and BA's are shown on the dendrograms. The environment data f o r each p l o t i n each BA i s shown i n Appendix G. S e l e c t e d s o i l chemical data and stand growth c h a r a c t e r i s t i c s are a l s o shown i n t h i s appendix. R e s u l t s of a l l three types of o r d i n a t i o n s (RA, DCA, and PO) were very s i m i l a r . In a l l t h r e e , p l o t s belonging to the two e n v i r o n m e n t a l l y extreme BA's ( i . e . 1 and 6) formed r e l a t i v e l y d i s t i n c t groups of p o i n t s . Sample p l o t s belonging to BA's 3 and 4 were a l s o c l e a r l y separated ( d i s j u n c t ) , while p l o t s belonging to BA's 2 and 3 formed separate but very c l o s e groups. In p r e l i m i n a r y o r d i n a t i o n s , there was c o n s i d e r a b l e o v e r l a p between p l o t s belonging to BA's 4 and 5. To c o r r e c t t h i s , and consequently use the i n f o r m a t i o n p r o v i d e d by the o r d i n a t i o n s , four p l o t s were r e a s s i g n e d to d i f f e r e n t BA's so that there would be no o v e r l a p i n o r d i n a t i o n space; p l o t s 2 and 15 were reas s i g n e d from BA 4 to BA 5, and p l o t s 20 and 22 were rea s s i g n e d from BA 5 to BA 4. T h i s reassignment produced separate but very c l o s e groups of p o i n t s f o r BA's 4 and 5. Gauch (1982) noted t h a t , on one hand, the i n c l u s i o n of e n v i r o n m e n t a l l y extreme sample p l o t s i n o r d i n a t i o n s may be very h e l p f u l f o r i n t e r p r e t i n g r e l a t i o n s h i p s between community g r a d i e n t s and environmental g r a d i e n t s but, on the other hand, i f 94 o_ CM CM T -< CL o. o i .1 5 2*22 2 2 1 RA12.1 -10 30 — I — 70 110 F i g u r e 2 - O r d i n a t i o n graph f o r a x i s 1 (RA12.1) and a x i s 2 (RA12.2) of the RA12 o r d i n a t i o n . Symbols p l o t t e d i n d i c a t e the a s s o c i a t i o n t o which a sample p l o t belongs. 1 = the $PC-PJ 2 = the $PM-GS 3 = the $PM-K0 4 = the $PM-HS 5 = the $PM-PI 6 = the $AR-LA a s s o c i a t i o n a s s o c i a t i o n a s s o c i a t i o n a s s o c i a t i o n a s s o c i a t i o n a s s o c i a t i o n (assoc i a t (assoc i a t (assoc i a t ( a s s o c i a t ( a s s o c i a t ( a s s o c i a t ion .ion ion ion ion ion 1.11) 1.21) 2.11) 3.11) 3.12) 3.21 ) 95 o 55 CM < DC 4 4 O. CO -10 r~ 30 70 R A 1 4 . 1 110 F i g u r e 3 - O r d i n a t i o n graph f o r a x i s 1 (RA14.1) and a x i s 2 (RA14.2) of the RA14 o r d i n a t i o n . Symbols p l o t t e d i n d i c a t e the a s s o c i a t i o n to which .a sample p l o t belongs. 1 = the $PC- PJ a s s o c i a t i o n ( a s s o c i a t i o n 1 . 1 1 ) 2 = the $PM- GS a s s o c i a t i o n ( a s s o c i a t i o n 1 . 21 ) 3 = the $PM- KO a s s o c i a t i o n (assoc i a t ion 2. 1 1 ) 4 = the $PM- HS a s s o c i a t i o n (assoc i a t ion 3. 1 1 ) 5 = the $PM- •PI a s s o c i a t i o n ( a s s o c i a t i o n 3. 12) 6 = the $AR- LA a s s o c i a t i o n ( a s s o c i a t i o n 3. 21 ) 96 o co g ^ 2 2 2 2 3 3 CM ,3 J CM , 2 5 3 3 3 < 1 o 3 3 4 \ 4 4 5 5 O 4 4 o_ o 1 —I —I 1 1 1 -10 170 350 530 DCA12.1 F i g u r e 4 - O r d i n a t i o n graph f o r a x i s 1 (DCA12.1) and a x i s 2 (DCA12.2) of the DCA12 o r d i n a t i o n . Symbols p l o t t e d i n d i c a t e the a s s o c i a t i o n to which a sample p l o t belongs. 1 = the $PC-PJ a s s o c i a t i o n ( a s s o c i a t i o n 1.11) 2 = the $PM-GS a s s o c i a t i o n ( a s s o c i a t i o n 1.21) 3 = the $PM-K0 a s s o c i a t i o n ( a s s o c i a t i o n 2.11) 4 = the $PM-HS a s s o c i a t i o n ( a s s o c i a t i o n 3.11) 5 = the $PM-PI a s s o c i a t i o n ( a s s o c i a t i o n 3.12) 6 = the $AR-LA a s s o c i a t i o n ( a s s o c i a t i o n 3.21) 97 o m-CM CM < o O o. m h 3 3 3 3 3 4 4 * 4 5 5 5 5 5 5 2 2 T DCA14.1 I — 195 -15 I 90 300 F i g u r e 5 - O r d i n a t i o n g r a p h f o r a x i s 1 (DCA14.1) and a x i s 2 (DCA14.2) of t h e DCA14 o r d i n a t i o n . Symbols p l o t t e d i n d i c a t e t h e a s s o c i a t i o n t o w h i c h a sample p l o t b e l o n g s . 1 = t h e $PC-PJ 2 = t h e $PM-GS 3 = t h e $PM-K0 4 = t h e $PM-HS 5 = t h e $PM-PI 6 = t h e $AR-LA a s s o c i a t i o n a s s o c i a t i o n a s s o c i a t i o n a s s o c i a t i o n a s s o c i a t i o n a s s o c i a t i o n ( a s s o c i a t i o n 1.11) ( a s s o c i a t i o n 1.21) ( a s s o c i a t i o n 2.11) ( a s s o c i a t i o n 3.11) ( a s s o c i a t i o n 3.12) ( a s s o c i a t i o n 3.21) 2 CM CM T-o 0. o CO o 2 3 2 33 3 3 3 3 2 3 3 4 44 4 5 4 4 5 4 5 5 5 5 5 5 . , 1 , 1 1 1 -10 30 70 110 P012.1 F i g u r e 6 - O r d i n a t i o n graph f o r a x i s 1 (P012.1) and a x i s 2 (P012.2) of the P012 o r d i n a t i o n . Symbols p l o t t e d i n d i c a t e the a s s o c i a t i o n to which a sample p l o t belongs. 1 = the $PC-PJ a s s o c i a t i o n ( a s s o c i a t i o n 1.11) 2 = the $PM-GS a s s o c i a t i o n ( a s s o c i a t i o n 1.21) 3 = the $PM-K0 a s s o c i a t i o n ( a s s o c i a t i o n 2.11) 4 = the $PM-HS a s s o c i a t i o n ( a s s o c i a t i o n 3.11) 5 = the $PM-PI a s s o c i a t i o n ( a s s o c i a t i o n 3.12) 6 = the $AR-LA a s s o c i a t i o n ( a s s o c i a t i o n 3.21) 9 9 4 o CM o a. o. CO 2 2 4 5 c 5 5 5 5 3 3 -10 30 P014.1 I 70 110 F i g u r e 7 - O r d i n a t i o n graph f o r a x i s 1 (P014.1) and a x i s 2 (P014.2) of the P014 o r d i n a t i o n . Symbols p l o t t e d i n d i c a t e the a s s o c i a t i o n to which a sample p l o t belongs. 1 = = the $PC- PJ a s s o c i a t i o n ( a s s o c i a t i o n 1 . 11) 2 = = the $PM- GS a s s o c i a t i o n ( a s s o c i a t i o n 1 . 21 ) 3 = = the $PM- KO assoc i a t ion ( a s s o c i a t i o n 2. 1 1 ) 4 = - the $PM- HS a s s o c i a t i o n ( a s s o c i a t i o n 3. 11) 5 = = the $PM- PI a s s o c i a t i o n ( a s s o c i a t i o n 3. 12) 6 = = the $AR- LA a s s o c i a t i o n ( a s s o c i a t i o n 3. 21 ) I — •I I — I 1 I I-I-I I - -I I I —I I I I I I I-I-I I I-II .j + 0 8 I I-I I II I-I I • I I I I -•I I I I--I I-I I I I I' •II-I -+ + + + + + + + + +_. 240 220 200 180 160 140 120 100 80 60 EUCLIDEAN DISTANCE -+--40 - + --20 PLOT- BA + 46 - 2 + 47 - 1 + 50 - 1 — 1 + 35 - 1 + 51 - 1 + 49 - 1 — + 1 1 - 2—1 + 32 - 2 + 34 - 2 + 33 - 2 + 44 - 2 + 37 - 2 + 38 - 2 + 12 - 2 + 48 - 2 + 01 - 3 + 03 - 3 -+ 19 - 3 + 06 - 3 + 07 - 3 + 28 - 3 + 43 - 3 + 23 - 3 - +  - 3 - + 04 - 3 - + 21 - 4 - + 26 - 4—J - + 42 - 3 - + 45 - 4 • + 10 - 4 - + 20 - 4—1 - + 24 - 4 - + 14 - 4 - + 09 - 5 - + 05 - 4 - + 22 - 4 - + 25 - 5 - + 17 - 4 - + 15 - 5 -- + 02 - 5 - + 36 - 5 - + 16 - 5 - + 29 - 5 - + 30 - 5 - + 27 - 5—' 41 - 5 31 - 6—1 - + 39 - 6 -- + 13 - 6 - + 18 - 6—1 40 - 6 100 •D F i g u r e 8 - Dendrogram f o r the CA12 c l u s t e r a n a l y s i s . PLOT-BA I --I I I I I + 4 6 + ! 1 I + 32 I II--+ 34 I 1 I--+ 33 j j + 4 4 I - I I + 37 I I I-I 1 + 38 I I-I I + 12 ! + 4 8 •+ 01 -I •I — I-I -I I •I I I I -I-I I •-I I I-I-I — I + 03 I I + 19 II I + 06 -II II + 07 I I + 28 I + 4 3 I + 23 I ! + 08 -I I + 04 I I-I + 21 I + 26 + £2 + T o I + 20 I I-I + 24 I I-I + 14 I j + 09 II I + 05 I I-I 1 + 22 j j + 25 ! 1 + 17 j + 1 5 ! + 02 -I I + 36 !_! 1 + 1 6 I 1 + 29 I + 30 + 27 + 4 1 + + + + + + + + + _. 240 220 200 180 160 140 120 100 80 EUCLIDEAN DISTANCE 2 2—! 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4—1 3 4 4 4— i 4 4 5 4 4 5 4 5 5 5 5 5 5 5—1 5 60 40 20 F i g u r e 9 - Dendrogram f o r the CA14 c l u s t e r a n a l y s i s . 102 these p l o t s are v e g e t a t i o n a l l y very d i f f e r e n t from the inte r m e d i a t e p l o t s , they may compress the main body of p o i n t s on the o r d i n a t i o n graph i n t o a very small space. Groups of p o i n t s belonging to the two enviro n m e n t a l l y extreme BA's ( i . e . 1 and 6) d e f i n e d the ends of a x i s 1 i n the o b j e c t i v e RA12 (Figure 2) and DCA12 (Fi g u r e 4) o r d i n a t i o n s . From s i t e f e a t u r e s (Appendix G), i t had been estimated that BA 1 was c h a r a c t e r i z e d by low s o i l moisture (SMR=0) and n u t r i e n t (SNR=B-C) a v a i l a b i l i t y and BA 6 by c o n s i d e r a b l y higher s o i l moisture (SMR=7) and n u t r i e n t (SNR=E) a v a i l a b i l i t y . T h i s suggested that the d i s t r i b u t i o n of sample p l o t s along a x i s 1 d i d indeed r e f l e c t an important environmental g r a d i e n t , i . e . a complex g r a d i e n t r e l a t e d to i n c r e a s i n g a v a i l a b i l i t y of s o i l moisture and n u t r i e n t s . In the f i r s t RA o r d i n a t i o n shown here (Figure 2), i n c l u s i o n of p l o t s belonging to the extreme BA's ( i . e . 1 and 6) compressed the remaining intermediate p l o t s i n t o a small space. Removal of these extreme p l o t s from the o r d i n a t i o n r e s u l t e d i n a much wider d i s t r i b u t i o n of p o i n t s (Figure 3) but the general t r e n d remained the same. The compression of p o i n t s c h a r a c t e r i s t i c of the RA o r d i n a t i o n s was not apparent i n the DCA o r d i n a t i o n s ( F i g u r e s 4 and 5). Both RA o r d i n a t i o n s ( F i g u r e s 2 and 3) showed the "arch" or "horseshoe" e f f e c t . T h i s e f f e c t i s c h a r a c t e r i s t i c of RA o r d i n a t i o n s and i s caused by the frequent q u a d r a t i c dependency of the second a x i s on the f i r s t (Gauch et a_l. , 1977; H i l l , 1979a; H i l l and Gauch, 1980; Gauch, 1982). In a d d i t i o n to the arch e f f e c t , RA has another f a u l t which i s not so obvious, i . e . the ends of the a x i s are c o n t r a c t e d so that p o i n t s 103 separated by a given r e a l d i s t a n c e are c l o s e r together i f they l i e at the ends of the a x i s than i f they l i e in the middle. DCA c o r r e c t s these two problems and i s c o n s i d e r e d to be the best o r d i n a t i o n technique f o r p l a n t community data ( H i l l , 1979a; H i l l and Gauch, 1980; Gauch, 1982). However, Gauch (1982) noted that the u l t i m a t e t e s t of the v a l i d i t y and u s e f u l n e s s of a given o r d i n a t i o n technique i s the i n t e r p r e t a b i l i t y of r e s u l t s . For a n a l y s i s of the Cowichan Lake v e g e t a t i o n data, both RA and DCA o r d i n a t i o n s proved s a t i s f a c t o r y as both produced (very s i m i l a r ) e n v i r o n m e n t a l l y i n t e r p r e t a b l e r e s u l t s . In c o n t r a s t to the two e n t i r e l y o b j e c t i v e o r d i n a t i o n methods d i s c u s s e d above ( i . e . RA and DCA), PO i s co m p u t a t i o n a l l y much simpler and all o w s the i n c o r p o r a t i o n of u s e r - s p e c i f i e d i n f o r m a t i o n . Whereas p l o t s d e f i n i n g endpoints (poles) f o r axes i n RA and DCA are s e l e c t e d e n t i r e l y on the b a s i s of automatic comparisons of sp e c i e s composition of the p l o t s , endpoint s e l e c t i o n f o r axes in PO may be done by the user. For example, p l o t s known to d e f i n e extremes of an environmental gradient may be s e l e c t e d as endpoints. PO i s thus in t e r m e d i a t e between d i r e c t g r a d i e n t a n a l y s i s methods and i n d i r e c t methods l i k e RA and DCA (Gauch, 1982). In PO o r d i n a t i o n space, p l o t s s i m i l a r to the p l o t d e f i n i n g the f i r s t endpoint w i l l be l o c a t e d near the f i r s t endpoint, p l o t s s i m i l a r to the p l o t d e f i n i n g the second endpoint w i l l be l o c a t e d near the second endpoint, and p l o t s d i s s i m i l a r to both endpoints w i l l be l o c a t e d around the ce n t r e of the o r d i n a t i o n a x i s . P l o t s s e l e c t e d f o r a x i s 1 endpoints ( i . e . p l o t s 50 and 18) i n the P012 o r d i n a t i o n ( F i g u r e 6) were 1 04 from the two envir o n m e n t a l l y extreme BA's. In a d d i t i o n , these p l o t s d e f i n e d a x i s 1 endpoints f o r both the RA12 and DCA12 o r d i n a t i o n s . P l o t s s e l e c t e d f o r a x i s 1 endpoints ( i . e . p l o t s 32 and 27) i n the P014 o r d i n a t i o n (Figure 7) were from the two envi r o n m e n t a l l y most d i f f e r e n t of the four intermediate BA's. These p l o t s d e f i n e d a x i s 1 endpoints of the RA14 and DCA14 o r d i n a t i o n s . Although r e s u l t s of PO (Fig u r e s 6 and 7) were s i m i l a r i n gen e r a l trends to the more o b j e c t i v e RA and DCA o r d i n a t i o n s , s e p a r a t i o n of clouds of p o i n t s r e p r e s e n t i n g d i f f e r e n t BA's was g e n e r a l l y not as d i s t i n c t i n the PO o r d i n a t i o n s . PO o r d i n a t i o n s do not c o n t a i n the f u l l i n f o r m a t i o n p r o v i d e d by the SSU by p l o t s matrix. These o r d i n a t i o n s only c o n t a i n i n f o r m a t i o n on the s i m i l a r i t y of p l o t s to the endpoint p l o t s , and not to a l l other p l o t s as i n RA and DCA. For t h i s reason, the r e s u l t s of PO d i d not c a r r y as much weight as RA and DCA f o r the reassignment of sample p l o t s to d i f f e r e n t BA's and establishment of the c l a s s i f i c a t i o n . As mentioned e a r l i e r , the AVERAGE c l u s t e r i n g a l g o r i t h m was used to produce the dendrograms shown i n F i g u r e s 8 and 9. The cophenetic c o r r e l a t i o n c o e f f i c i e n t (CCC) f o r a l l seven c l u s t e r i n g a l g o r i t h m s a v a i l a b l e in MIDAS (Fox and Gu i r e , 1976) was c a l c u l a t e d f o r both the CA12 and CA14 c l u s t e r a n a l y s e s . For the CA12 c l u s t e r a n a l y s i s , the CCC using the AVERAGE c l u s t e r i n g a l g o r i t h m was .83 which was higher than that f o r any of the other s i x a l g o r i t h m s . For the CA14 c l u s t e r a n a l y s i s , the CCC was .73 us i n g the AVERAGE c l u s t e r i n g a l g o r i t h m . The CCC f o r t h i s l a t t e r a n a l y s i s was only exceeded when the CENTROID 1 05 a l g o r i t h m was used (CCC = .76). The CCC i s a measure of the c o r r e l a t i o n between the d i s t a n c e s i m p l i e d i n the dendrograms and those in the o r i g i n a l matrix, and i t s maximization i m p l i e s a good match between the two (Sneath and Sokal, 1973; Gauch, 1982). Pimentel (1979) s t a t e d t h a t , u s u a l l y , CCC's grea t e r than .75 are c o n s i d e r e d "good f i t " and the a l g o r i t h m p r o v i d i n g the l a r g e s t c o e f f i c i e n t i s deemed be s t . However, he mentions a study by F a r r i s (1977) who s t a t e d that t h i s c o e f f i c i e n t i s not a r e l i a b l e i n d i c a t o r of the best a l g o r i t h m . Pimentel (1979) a l s o s t a t e d that no method c o n s i s t e n t l y outperforms a l l o t h e r s , but " f u r t h e r e s t neighbour" (COMPLETE) and "group average" (AVERAGE) are o f t e n accepted as b e t t e r techniques. P l o t order i n the dendrograms shown in F i g u r e s 8 and 9 has been changed from that i n the o r i g i n a l MIDAS output to approximate as c l o s e l y as p o s s i b l e p l o t order on a x i s 1 of the RA and DCA o r d i n a t i o n s . T h i s was accomplished by viewing the dendrogram as a hanging mobile, the pendant branches of which can be r o t a t e d to a new c o n f i g u r a t i o n . By r e a r r a n g i n g the dendrogram i n t h i s manner, s i m i l a r c l u s t e r s are p l a c e d i n c l o s e r p r o x i m i t y and the dendrogram becomes e a s i e r to i n t e r p r e t . A s i m i l a r process i s performed a u t o m a t i c a l l y by a computer program (TWINSPAN) developed by H i l l (1979b). It was observed that c l u s t e r membership and c l u s t e r i n g l e v e l s of the f o r t y - o n e i n t e r m e d i a t e p l o t s in BA's 2, 3, 4, and 5 were v i r t u a l l y i d e n t i c a l in the CA12 (Figure 8) and CA14 (Figure 9) c l u s t e r a n a l y s e s . Fpr t h i s reason, the f o l l o w i n g comments apply to both dendrograms. 1 06 In F i g u r e s 8 and 9, p l o t numbers for the p l o t s s e l e c t e d and surveyed by MOF s t a f f ( i . e . p l o t s 40-47) are u n d e r l i n e d . Six of these ( p l o t s 46, 47, 42, 45, 41, and 40) d i d not " f i t " i n t o the main c l u s t e r s as they were l i n k e d at higher c l u s t e r i n g l e v e l s . I t was s p e c u l a t e d that t h i s may have been due to the r e l a t i v e l y higher s p e c i e s s i g n i f i c a n c e e stimates of the MOF surveyors compared to the more c o n s e r v a t i v e estimates of s p e c i e s s i g n i f i c a n c e on the f o r t y - t h r e e p l o t s sampled i n 1981. One of the p l o t s sampled in 1981 ( p l o t 10) a l s o d i d not " f i t " w e l l i n t o the main c l u s t e r s . D i s r e g a r d i n g the seven p l o t s which d i d not " f i t " w e l l , i t was observed that the f o r t y - f o u r remaining p l o t s formed four main c l u s t e r s at a E u c l i d e a n D i s t a n c e of 180. There were two " d r y - s i t e " c l u s t e r s ( c l u s t e r s A and B) and two " w e t - s i t e " c l u s t e r s ( c l u s t e r s C and D). P l o t s from BA 1 formed a d i s t i n c t " d r y - s i t e " c l u s t e r ( c l u s t e r A), and p l o t s from BA 6 formed a d i s t i n c t " w e t - s i t e " c l u s t e r ( c l u s t e r D). The other " d r y - s i t e " c l u s t e r ( c l u s t e r B) c o n t a i n e d nine p l o t s from BA 2 (eight of which formed a separate s u b - c l u s t e r ) , ten p l o t s from BA 3 (seven of which formed another separate s u b - c l u s t e r ) , and two p l o t s from BA 4 which were in a s u b - c l u s t e r with three p l o t s belonging to BA 3. The other " w e t - s i t e " c l u s t e r ( c l u s t e r C) c o ntained s i x p l o t s from BA 4 and nine p l o t s from BA 5. T h i s " w e t - s i t e " c l u s t e r had two main s u b - c l u s t e r s : one which c o n t a i n e d s i x BA 4 p l o t s and three BA 5 p l o t s , and one which c o n t a i n e d f i v e p l o t s , a l l of which belonged to BA 5. In summary, the r e s u l t s of c l u s t e r a n a l y s i s agreed somewhat with the r e s u l t s of o r d i n a t i o n 1 07 space p a r t i t i o n i n g using RA and DCA but c o n s i d e r a b l e d i f f e r e n c e s in suggestions f o r the number of c l a s s e s and c l a s s membership were noted. It was decided that l e s s weight would be put on c l u s t e r a n a l y s i s than RA and DCA o r d i n a t i o n space p a r t i t i o n i n g f o r establishment of the c l a s s i f i c a t i o n because of the two f o l l o w i n g reasons: the use of E u c l i d e a n D i s t a n c e by c l u s t e r a n a l y s i s i n the MIDAS package, and the f a c t that c l u s t e r a n a l y s i s i s an agglomerative technique. Gauch (1982) noted that E u c l i d e a n Distance tends to emphasize dominant s p e c i e s when sample p l o t s i m i l a r i t i e s are c a l c u l a t e d . He suggested that PD (such as used by PO) i s a b e t t e r measure of d i s s i m i l a r i t y , but PD i s not a v a i l a b l e i n MIDAS. He a l s o noted that agglomerative c l a s s i f i c a t i o n techniques begin by examining small d i s t a n c e s between s i m i l a r samples and t h a t , i n p l a n t community data, these small d i s t a n c e s are more a r e f l e c t i o n of "n o i s e " than anything e l s e . For t h i s reason, he i n d i c a t e d a p r e f e r e n c e for d i v i s i v e c l a s s i f i c a t i o n techniques such as o r d i n a t i o n space p a r t i t i o n i n g . 5.1.3 Tabular Methods In the preceeding s e c t i o n , the number of c l a s s e s and c l a s s membership of each p l o t was f i n a l i z e d a f t e r c o n s i d e r a t i o n of environment data f o r each p l o t (Appendix G), and the r e s u l t s of m u l t i v a r i a t e a n a l y s i s ( p a r t i c u l a r l y RA and DCA) a p p l i e d to the f l o r i s t i c d a ta. F o l l o w i n g t h i s , f l o r i s t i c and environment info r m a t i o n f o r each c l a s s was s y n t h e s i z e d using the t a b u l a r 108 methods d e s c r i b e d e a r l i e r . Complete v e g e t a t i o n data f o r each p l o t i n each BA i s presented i n long v e g e t a t i o n t a b l e s shown i n Appendix H. Information on the understory SSU's (which determined the c l a s s i f i c a t i o n much more than o v e r s t o r y SSU's) i s summarized i n Table 16. T h i s t a b l e i s an arranged understory SSU by p l o t s matrix which was produced by ORDIFLEX f o r the RA12 o r d i n a t i o n . P l o t numbers and the BA to which each p l o t belongs are p r i n t e d across the top of the t a b l e while SSU codes are p r i n t e d along the l e f t s i d e . SSU codes are formed from the f i r s t three l e t t e r s of the genus name, the f i r s t three l e t t e r s of the s p e c i e s name, and the v e g e t a t i o n stratum (Table 4) to which an SSU belongs. Table e n t r i e s are the s p e c i e s s i g n i f i c a n c e of each SSU in each p l o t . The order of SSU's and p l o t s i n the matrix has been arranged by ORDIFLEX a c c o r d i n g to t h e i r order on a x i s 1 in the RA12 o r d i n a t i o n . Gauch (1977,1982) noted that an arranged matrix makes a v a i l a b l e at a glance both the raw data i n i t s e n t i r e t y and the o v e r a l l p a t t e r n of s p e c i e s d i s t r i b u t i o n s so that the reader can at once gain both d e t a i l e d ( a n a l y t i c ) and g e n e r a l ( s y n t h e t i c ) i n f o r m a t i o n . He a l s o noted t h a t , i f there i s one main gra d i e n t inherent i n the data, the arranged matrix should show a c o n c e n t r a t i o n of l a r g e r v a l u e s along the matrix d i a g o n a l (banding). Table 16 does show d e f i n i t e banding along the matrix d i a g o n a l . The g r a d i e n t i m p l i e d by t h i s banding has been mentioned e a r l i e r . I t was suggested that the change in s p e c i e s composition from BA 1 to BA 6 r e f l e c t s a complex environmental 1 Table 16 - Arranged s p e c i e s - s t r a t u m - u n i t (SSU) by p l o t s matrix f o r the Cowichan Lake v e g e t a t i o n data. SSU codes and p l o t numbers are arranged a c c o r d i n g to a x i s 1 order i n the RA1 o r d i n a t i o n . ASSOCIATION l i l t 12222222223233333333334444444444555555555566666 PLOT NUMBER 535443311334340400O424012O4221210212001432123241331 05 1977212466341B36733289845160475042295165690703198 SSU HYPRA06 1 + + PLAUNA6 *** FRAV1R6 ARCUVA6 ACHMIL6 DICSCO? PELAPH7 H0KMEG7 P0LJUN7 HIEALB6 CLAGR&7 CLARAN7 LILC0L6 FE50CC6 H0LDI54 ARBMEN4 ANELYA6 PSEMEN4 H0LDIS5 L0NC1L5 PSEMEN7 R0SGYM5 LISC0R6 G000BL6 ME LSUB6 HEMC0N6 GAU5MA5 RHYTRI7 SYMALB5 CHIUMB6 MAHNER5 VI0SEM6 CHIMEN6 PELCAN7 PELPDL7 PELMEH7 TSUHET7 HYPLAN6 RHYL0R7 VI00RB6 HYLSPL7 C0RMER6 AMEALN5 RUBUR56 PLAUND7 KIN0RE7 THUPLI5 CIRALP6 PTEA0U6 TRRAT6 VACPAR4 P0LGLY6 LINB0R& TSUHET5 FESSUB6 ELYGLA6 VACPAR5 TSUHET4 THUPLI 4 ACHTRJ6 RUBPAR5 ABIGRA5 TRI0VA6 P0LMUN6 RHIGLA7 ACEMAC5 ADEBIC6 ABIGRA4 M0NUNI6 DISH006 MA IDI16 RHAPUR5 BR0VUL6 ACEMAC7 MYCMUR6 TIALAC6 CARHEN6 TIATRI6 STRAMP6 MALFUS5 ACEMAC4 GALTRI6 GYMDRV6 LUZPAR6 BR0SIT6 LEUMEN7 VI0GLA6 BLE5PI6 ADIPED6 DRYEXP6 DICF0R6 PLAINS7 RUBSPE5 0SMCHI6 0PLH0R5 CINLAT6 CIAS1B6 TRACAR6 STAC006 BRAFRI7 CARDEW6 ATHFIL6 RUBSPE4 KINPRA7 VERVIR6 C0NC0N7 RANUNC6 MIT0VA6 E0UTEL6 LVSAME6 0ENSAR6 121* -431-2 12-- 1 4341 + -* 1-4 1 45 1 14 1 131*3 • • + - + - 2 + 3+13 2--* + + -51 16-433-12-1--2 -+24--52-33-43--1 1-21721221 14--* + - 1 + 2 •1 1132231223+--2+1--+-31-1--+ *-- + -++1+2-++1++-- 1+*-+*1-2+1)*--* 1 + 1 121-+1-+2--+-+-++-1--++1-++++ * -1357599897B9989B5546545422-- H-1 1 1 + •-53- - 21--5--2+ 1-31-- + 2- + + --3 --++22131+1-1 + + --* 1 + --2 + 1355623625433325443*524524-11 1 + - + --3 1 --+-3--21--5--1++--1-31+++31-1+-+-++-1 + +--13457+-64++6-1224-248661+657642-2**5-1+513+--+1-+--+ 1++11111+121--1111- + -1111 +++*++i + + + *i*+__ -. + -2-- +++ 1 1 + 2-S-++-2 + - + --2 +-2 -5+5756644573686B58867597B86576736354254241++1-++--1-1 - - 3 - . - - 3 1 - + 3-311--1 + --2 + -1-+ 1121 + -1231 13232232131+1 1 1211- - 1- - 1 ++--++--+ --+13+++1++2 1+1-+-2+++13-+2++1--+111-+++11+ 1--2--21- 1121431 + 32- 131-1 + + +2---++2141-11+3+311113115++-11--+-3+-1++ -*12 - 113254 + 4 12426-S 1424522-33-4++-5+1--+16- 1----3-132-55233225354452256755265-25-532*4244--1--2 2-1--42 355 2+5 4S--5-353-3 - + + +++ + S+- 12+1231422424 144473435437623257321 + --• _ _ 2 + + + + - + 1+++11 + 111+11-121 + 2111111++-+--2-+321+31-322532234246584387979868797999983412-*_ + ._ + + 4 + _3 + *- + 3 i i - i _ + 2 +1--2++-11+111-+-—+•< '--1112--12+211-2-+-211*+ 2-+1 * + 1 - + -*-1++1 11-+--+++11-•-*__*-* 22+-+-121 -2--++3-23+33++-11434 12122221 2++2++1++1+113112++-1+-* + 12+-1++ + 11 + -+4+22 133415221562422342-+-+-22--2-++++-11++--1--1 1* i+4 +2- 12132+1112231311225+--H- 1-2+ + -2+-+2*+--- 2 +51+ 1 + -3-+ - 2 1 1 + -3 5 1 -- ++-*- 1++2-2121-2++12-- 2+ + ----+-++1 + +13-3642233551 +-+-1++-+-2+21-++121351 *--+ 1 ++1-+ -2-21 -+++++3--+1114*-21 2 — 3 1 -++452-6-*--2 12+42+11 -3112++427+3B 221-3-53 + +63+11 -S+-+3 -78988 1 1 0 g r a d i e n t r e l a t e d to i n c r e a s i n g s o i l moisture and n u t r i e n t a v a i l a b i l i t y . The p l a u s i b i l i t y of t h i s hypothesis w i l l be d i s c u s s e d l a t e r when edatopic i n d i c a t o r s p e c i e s groups (EISG) and s o i l p r o p e r t i e s are t r e a t e d i n g r e a t e r d e t a i l . An examination of Table 16 r e v e a l s t h a t , to v a r y i n g degrees, s p e c i e s d i s t r i b u t i o n s tend to be c o n c e n t r a t e d i n p a r t i c u l a r BA's. Thus, i t i s p o s s i b l e to c h a r a c t e r i z e each BA by a l i s t of the s p e c i e s with a d i s t r i b u t i o n c o n c e n t r a t e d i n that p a r t i c u l a r BA, i . e . the C h a r a c t e r i s t i c Combination of Species (CCS). A h i e r a r c h y may be formed by grouping v e g e t a t i o n a l l y s i m i l a r BA's i n t o p l a n t a l l i a n c e s , and v e g e t a t i o n a l l y s i m i l a r p l a n t a l l i a n c e s i n t o p l a n t o r d e r s . Syntaxa at a l l l e v e l s of the h i e r a r c h y are c h a r a c t e r i z e d by t h e i r own unique CCS. D i f f e r e n t p l a n t orders are c h a r a c t e r i z e d by a d i f f e r e n t CCS. P l a n t a l l i a n c e s are c h a r a c t e r i z e d by the CCS of the p l a n t order to which they belong p l u s a l i s t of s p e c i e s which d i f f e r e n t i a t e between that a l l i a n c e and other a l l i a n c e s w i t h i n the o r d e r . S i m i l a r l y , BA's are c h a r a c t e r i z e d by the CCS of the p l a n t a l l i a n c e to which they belong p l u s a l i s t of s p e c i e s which d i f f e r e n t i a t e between that BA and other BA's w i t h i n the a l l i a n c e . The procedure used to determine the CCS of each syntaxon has never been o u t l i n e d i n d e t a i l in any of the p u b l i c a t i o n s r e l a t i n g to the development and a p p l i c a t i o n of the b i o g e o c l i m a t i c system. I t i s u n c l e a r whether or not procedures used, and r e s u l t s obtained by d i f f e r e n t authors using the b i o g e o c l i m a t i c system are s t r i c t l y comparable. To h e l p 111 a l l e v i a t e t h i s problem, an o b j e c t i v e , r e p e a t a b l e procedure was developed and proposed f o r use in f u t u r e s t u d i e s . F i r s t , c r i t e r i a f o r a s s i g n i n g d i f f e r e n t i a t i n g values to pl a n t s p e c i e s were developed (Table 17). These c r i t e r i a were mod i f i e d from I n s e l b e r g et a l . (1982). Subsequently, an o b j e c t i v e , repeatable procedure f o r e x t r a c t i n g from summary v e g e t a t i o n t a b l e s the c h a r a c t e r i s t i c combination of sp e c i e s f o r ord e r s , a l l i a n c e s , and a s s o c i a t i o n s was developed. T h i s procedure i s o u t l i n e d below: A. Prepare separate summary v e g e t a t i o n t a b l e s f o r orde r s , a l l i a n c e s , and a s s o c i a t i o n s . B. Examine the summary v e g e t a t i o n t a b l e f o r o r d e r s . For each spec i e s : 1. Assig n a t e n t a t i v e constant (c) or constant-dominant (cd) value where a p p l i c a b l e . U n d e r l i n e presence c l a s s (PC) and mean sp e c i e s s i g n i f i c a n c e (MS) and enter a p p r o p r i a t e symbol on r i g h t s i d e of MS i n summary t a b l e . 2. By comparing to a l l other syntaxa of the same rank, a s s i g n a t e n t a t i v e e x c l u s i v e ( e ) , s e l e c t i v e ( s ) , p r e f e r e n t i a l ( p), or companion (co) value where a p p l i c a b l e . U n d e r l i n e PC and MS ( i f not a l r e a d y u n d e r l i n e d ) and enter a p p r o p r i a t e c h a r a c t e r - s p e c i e s symbol on r i g h t side of MS i n summary t a b l e . I f a c or cd symbol i s present, put c h a r a c t e r - s p e c i e s symbol above i t . 3. By comparing to a l l other syntaxa of the same rank and  c i r c u m s c r i p t i o n ( i . e . a l l syntaxa which belong to the same syntaxon at the next higher c a t e g o r i c a l rank), a s s i g n a 1 12 Table 17 - C r i t e r i a f o r a s s i g n i n g d i f f e r e n t i a t i n g values to p l a n t s p e c i e s (modified from I n s e l b e r g et a l . , 1982). NAME(symbol) DESCRIPTION CHARACTER-SPECIES EXCLUSIVE (e) d i s p l a y s a d i s t r i b u t i o n e x c l u s i v e l y , or almost e x c l u s i v e l y , r e s t r i c t e d to a p a r t i c u l a r syntaxon; PC 1 > IV, MS2 v a r i a b l e ; may be r a r e l y a s s o c i a t e d with other syntaxa w i t h i n the same rank, but only when these other syntaxa are g e o g r a p h i c a l l y adjacent, and PC i n these other syntaxa i s I SELECTIVE (s) d i s p l a y s a d i s t r i b u t i o n which i s s t r o n g l y a s s o c i a t e d with a p a r t i c u l a r syntaxon; PC > IV, MS v a r i a b l e ; may be i n f r e q u e n t l y a s s o c i a t e d with other syntaxa w i t h i n the same rank, but only when these other syntaxa are g e o g r a p h i c a l l y adjacent and PC i n these other syntaxa i s II PREFERENTIAL (p) d i s p l a y s a d i s t r i b u t i o n which i s d e f i n i t e l y a s s o c i a t e d with a p a r t i c u l a r syntaxon; PC > IV, MS v a r i a b l e ; may be a s s o c i a t e d with other syntaxa w i t h i n the same rank, but only when these other syntaxa are g e o g r a p h i c a l l y adjacent and PC i n these other syntaxa i s III COMPANION (co) d i s p l a y s a d i s t r i b u t i o n which shows an a s s o c i a t i o n to a p a r t i c u l a r syntaxon; PC > I I , and at l e a s t  one presence c l a s s higher than i n a l l other ( g e o g r a p h i c a l l y adjacent) syntaxa of the same rank, MS v a r i a b l e DIFFERENTIAL-SPECIES DIFFERENTIAL (d) d i s p l a y s a d i s t r i b u t i o n which shows an a s s o c i a t i o n to a p a r t i c u l a r syntaxon; PC ^ I I I , and at l e a s t two PC higher than i n a l l other syntaxa w i t h i n the same rank and c i r c u m s c r i p t i o n , MS v a r i a b l e CONSTANT-SPECIES CONSTANT-DOMINANT (cd) a s p e c i e s with PC = V and MS > 5.0 in a p a r t i c u l a r syntaxon CONSTANT (c) a species with PC = V and MS < 5.0 i n a p a r t i c u l a r syntaxon ACCIDENTAL-SPECIES ACCIDENTAL (a) d i s p l a y s a d i s t r i b u t i o n which does not meet with any of the above c r i t e r i a ; such s p e c i e s do not appear to be a l l i e d to any p a r t i c u l a r syntaxon and should not be used in a C h a r a c t e r i s t i c Combination of Species (CCS) Presence C l a s s 2 Mean Species S i g n i f i c a n c e 1 1 3 t e n t a t i v e d i f f e r e n t i a l (d) value(s) where a p p l i c a b l e . Underline PC and MS ( i f not already underlined) and enter the d i f f e r e n t i a l species symbol (d) on l e f t side of PC i n summary t a b l e . C. Examine the summary vegetation t a b l e for a l l i a n c e s . For each species, repeat steps 1-3 in B above. D. Examine the summary vegetation t a b l e for a s s o c i a t i o n s . For each speci e s , repeat steps 1-3 i n B above. E. For each species, examine the t e n t a t i v e assignments made in a l l three summary vegetation t a b l e s (orders, a l l i a n c e s , and a s s o c i a t i o n s ) i n steps B-D above. Follow the r u l e s l i s t e d below to make the f i n a l assignments: 1. For each species and each order, assign the f i n a l constant-species value to the syntaxon at the highest  c a t e g o r i c a l rank that includes only lower syntaxa with a PC of > IV for that p a r t i c u l a r species. C i r c l e the symbol. Within each order, i f a cd value has been assigned to a syntaxon at higher c a t e g o r i c a l rank, d i s r e g a r d a l l other c or cd assignments at lower rank. However, i f a c value has been assigned at higher rank, a cd value may be assigned to one or more subordinate syntaxa. 2. For each species, assign the highest c h a r a c t e r - s p e c i e s value at whatever rank i t occurs. C i r c l e the symbol and di s r e g a r d a l l other character-species assignments (N.B. a p a r t i c u l a r species can only have a character-species value for one syntaxon). I f i t has been assigned the same 1 1 4 c h a r a c t e r - s p e c i e s value for more than one syntaxon, assign i t to the syntaxon at the highest rank that includes the species i n a l l lower syntaxa. 3. For each species, assign the f i n a l d i f f e r e n t i a l - s p e c i e s (d) value(s) to a l l syntaxa which have not been assigned a c h a r a c t e r - s p e c i e s value for that p a r t i c u l a r species. C i r c l e the symbol(s). Reexamine the summary vegetation t a b l e f o r orders. For each order, prepare a l i s t of species which have at l e a s t one c i r c l e d symbol i n the summary, t a b l e . On t h i s l i s t , add a l l c i r c l e d symbols i n brackets a f t e r the species' name. These l i s t s c o n s t i t u t e the C h a r a c t e r i s t i c Combinations of Species (CCS) for the orders. Reexamine the summary vegetation table for a l l i a n c e s • For each a l l i a n c e , prepare a l i s t of species which have at l e a s t one c i r c l e d symbol i n the summary t a b l e . On t h i s l i s t , add a l l c i r c l e d symbols in brackets a f t e r the species' name. These l i s t s c o n s t i t u t e the CCS for the a l l i a n c e s . Reexamine the summary vegetation t a b l e f o r a s s o c i a t i o n s . For each a s s o c i a t i o n , prepare a l i s t of species which have at l e a s t one c i r c l e d symbol i n the summary t a b l e . On t h i s l i s t , add a l l c i r c l e d symbols i n brackets a f t e r the species' name. These l i s t s c o n s t i t u t e the CCS for the a s s o c i a t i o n s . From a f u l l species l i s t , d e l e t e a l l those species which occur i n the CCS of one or more syntaxa(on). The remaining species c o n s t i t u t e a l i s t of the a c c i d e n t a l (a) species. The procedure o u t l i n e d above was a p p l i e d i n the Cowichan 1 15 Lake study to d e r i v e the CCS f o r a l l syntaxa. Table 18 shows the CCS f o r a l l three p l a n t o r d e r s , a l l f i v e p l a n t a l l i a n c e s , and a l l s i x BA's, while Table 19 shows the l i s t of a c c i d e n t a l s p e c i e s . In Table 18, s p e c i e s names are f o l l o w e d by ( i n b r a c k e t s ) the d i f f e r e n t i a t i n g value (Table 17) f o r that s p e c i e s in t h a t syntaxon. Tables 18 and 19 are based on the summary v e g e t a t i o n t a b l e f o r BA's produced by F405:VTAB, and t a b l e e n t r i e s are presence c l a s s (PC) and mean s p e c i e s s i g n i f i c a n c e (MS) f o r each s p e c i e s i n each BA. 5.2 COMPARISON WITH MATURE FOREST ECOSYSTEMS Se v e r a l s t u d i e s done in immature, second-growth D o u g l a s - f i r stands ( S p i l s b u r y and Smith, 1947; Becking, 1954; M u e l l e r -Dombois, 1959,1965; B r i t i s h Columbia F o r e s t S e r v i c e , 1974) have recognized a sequence of understory p l a n t communities s i m i l a r to that d e s c r i b e d e a r l i e r f o r mature f o r e s t s ( i . e . dominance of G a u l t h e r i a s h a l l o n on dry s i t e s , minor G a u l t h e r i a s h a l l o n and P o l y s t ichum muni turn, and abundant mosses on mesic s i t e s , and dominance of Polystichum muni turn on moist s i t e s ) . Kellman (1969), working i n the CWHa i n B.C., found that understory s p e c i e s present before l o g g i n g maintained themselves i n logged areas, although with reduced abundance, and g r a d u a l l y i n c r e a s e d in importance as secondary s u c c e s s i o n progressed. Daubenmire (1976) noted that understory communities present beneath s e r a i D o u g l a s - f i r stands c l o s e l y approximate those which w i l l be present when western hemlock r e p l a c e s the D o u g l a s - f i r . He 116 Table 18 - C h a r a c t e r i s t i c Combinations of Species f o r or d e r s , a l l i a n c e s and a s s o c i a t i o n s . PLANT ORDER PLANT ALLIANCE BI0GEOCDEN0TIC ASSOCIATION (number of s a m p l e p l o t s ) :i i: :i i: I I t a I I 2.1 I |. :i i: 1.11 1.21 2.11 3.11 3 . 12 3.21 <5>. ( 10) ( " > ( 1 0 ) ( 1 0 ) (5 ) Anemone l y a l l i i ( c o ) 1 1 0 II 4 0 A r b u t u s m e n z i e s i * ( e ) 5 5 0 I I I 2 8 G a u l t h e r i a s h a i l o n ( c d ) 4 5 1 V 8 8 V 5 8 II 1 0 I 4 0 1 4 1 H o l o d i s c u s d i s c o l o r ( s . c ) 5 5 5 V 3 4 II • 0 I 4 3 H y l o c o m i u m s p l e n d e n s ( c ) 5 5 2 IV 4 3 V 5 3 V 5 1 IV 3 0 2 4 3 K i n d b e r g i a o r e g a n a ( c d ) 4 5 3 V 5 7 V 7 9 V 6 3 V 3 8 2 • 0 L o n i c e r a c i l i o s a ( c o ) 1 4 0 II 1 1 M a h o n i a n e r v o s a ( c ) 5 4 5 V 4 9 V 4 5 I I I 1 9 1 1 1 M e l i c a s u b u l a t a ( c o ) 2 2 5 1 1 1 II 4 0 P i n u s c o n t o r t a ( d ) 5 8 3 II 3 8 P s e u d o t s u g a m e n z i e s i i ( c d ) 4 5 8 V 9 S V 9 1 V 8 7 V 8 5 Rosa g y m n o c a r p a ( P . C l 5 2 1 V 2 5 I I I 1 3 I • 0 I • 0 Rubus u r s i n u s ( c o . c ) 5 1 1 V 1 4 IV 1 1 IV 4 5 II 4 0 3 4 5 S a l i x s i t c h e n s i s ( c o ) 2 1 6 I 4 1 S y m p h o r i c a r p o s e l b u s ( s ) 3 1 1 IV 1 7 II 4 0 I * 0 I 4 3 V i o l a o r b i c u l a t a ( c o ) 2 • 3 I 4 0 I 4 0 I 1 1 I 4 0 A l i i a n c e 1.1, A s s o c i a t 1 on 1.11 A c h i l l e a m i l l e f o l i u m ( c o ) 3 1 4 A r b u t u s m e n z i e s i i ( d . c d ) 5 5 0 I I I 2 a A r c t o s t a p h y l o s u v a - u r s i ( e ) 4 3 1 C l a d i n a r a n g i f e r i n a (CO) 3 1 1 C l a d o n i a f u r c a t a ( c o ) 2 1 1 C l a d o n i a g r a c i l i s ( c o ) 3 1 1 C o l l o m i a h e t e r o p h y l l a ( c o ) 2 * 0 D i c r a n u m s c o p a r i u m ( e ) 4 3 6 I 4 0 Elymus g l a u c u s ( c o ) 2 4 0 E e s t u c a o c c i d e n t a l i s ( p . c ) 5 2 5 I 4 3 I 4 0 I 4 0 F r a g a r i a v i r g i n i a n a ( e ) 4 1 4 G o o d y e r a o b i o n g i f o l i a ( c o . c ) 5 1 6 I I I 1 0 IV 4 3 I I I 4 2 H i e r a c i u m a l b i f l o r u m ( s . c ) 5 2 e I 4 0 I 4 0 H o l o d i s c u s d i s c o l o r ( c d ) 5 5 5 V 3 4 II 4 0 I 4 3 Homa1othecium m e g a p t i l u m ( c o ) 3 2 e H y l o c o m i u m s p l e n d e n s ( c d ) 5 5 2 IV 4 3 V 5 3 V 5 1 H y p o c h o e r i s r a d i c a t a ( c o ) 3 4 5 L i l i u m c o l u m b i a n u m ( c o ) 2 1 1 I 4 0 L i s t e r a c o r d a t a ( c ) . 5 1 4 IV 4 6 V 1 1 I 4 0 M o n t i a p a r v i f o l i a ( c o ) 2 4 3 P e l t i g e r a a p h t h o s a ( e ) 4 * 3 P i n u s c o n t o r t a ( s . c d ) 5 8 3 11 3 B P l a t a n t h e r a u n a l a s c e n s i s ( c o ) 3 4 1 P o l y t r i c h u m commune ( c o ) 2 4 8 P o l y t r i c h u m j u n i p e r i n u m ( e . c ) 5 4 3 I 4 0 P r u n e l l a v u l g a r i s ( c o ) 2 4 0 R h y t i d i a d e l p h u s t r i q u e t r u s ( c o ) 4 3 7 II 2 s I I I 1 4 I 4 4 S e l a g i n e l l a w a l l a c e l ( c o ) 2 4 3 V i o l a a d u n c a ( c o ) 2 + 3 A l l i a n c e 1.2. A s s o c i a t i o n 1.21 A c h l y s t r i p h y l l a ( d . c ) 1 4 0 V 1 5 V 3 1 V 5 0 V 5 3 3 1 2 Hemitomes c o n g e s t u m ( c o ) I I 4 0 I 4 0 P o l y s t i c h u m munitum ( d ) 2 1 1 IV 2 1 V 4 4 V 7 8 V 8 7 4 3 1 P t e r i d i u m a q u i 1 i n u m ( d ) IV 1 5 V 3 0 IV 1 3 I I I 4 5 1 4 0 T h u j a p l i c a t a ( c o ) IV 3 2 I I I 4 1 I I I 3 3 I I I 4 2 3 4 4 T s u g a h e t e r o p h y l l a ( d ) IV 4 8 V 6 0 V 7 5 V 5 1 2 3 3 V a c c i n i u m p a r v i f o l i u m ( d . c ) 1 4 0 V 3 1 V 4 5 IV 3 8 IV 2 8 2 4 1 der 2, A l l i a n c e 2 . 1 , A s s o c i a t i o n 2.11 A c h l y s t r i p h y l l a ( c ) 1 4 0 V 1 5 V 3 1 V 5 0 V 5 3 3 1 2 A m e l a n c h i e r a l n i f o l i a ( c o ) 1 4 0 II 4 0 111 4 4 I I 4 0 I 4 0 C h i m a p h i l a m e n z i e s i i ( c o ) II 4 0 II 4 0 G a u l t h e r i a s h a i l o n ( c d ) 4 5 1 V 8 8 V 5 8 II 1 0 I 4 0 1 4 1 H y l o c o m i u m s p l e n d e n s ( c d ) 5 5 2 IV 4 3 V 5 3 V 5 1 IV 3 0 2 4 3 H y p o p i t h y s l a n u g i n o s a ( c o ) II 4 0 8 K i n d b e r g i a o r e g a n a ( c d ) 4 5 3 V 5 7 V 7 9 V 6 3 V 3 2 4 0 L i n n a e a b o r e a l i s ( s . c ) 2 4 3 II 4 9 V 2 7 I I I 1 e I 4 0 1 1 0 L i s t e r a c o r d a t a ( c o . c ) 5 1 4 IV 4 6 V 1 1 I 4 0 M a h o n i a n e r v o s a ( c ) 5 4 5 V 4 9 V 4 S I I I 1 9 I 1 1 P 1 a g 1 o t h e c i u m u n d u l a t u m ( c o ) 2 1 1 II 4 1 I I I 1 4 II 1 1 I 4 4 P o l y s t i c h u m muni turn ( c ) 2 1 1 IV 2 1 V 4 4 V 7 8 V 8 7 4 3 1 P s e u d o t s u g a m e n z i e s i 1 ( c d ) 4 5 8 V 9 5 V 9 1 V 8 7 V 8 5 P t e r i d i u m a q u i l i n u m ( p . c ) IV 1 5 V 3 0 IV 1 3 I I I 5 1 4 0 R h y t i d i a d e l p h u s l o r e u s ( s ) 2 1 6 I I 2 e IV 1 4 IV 1 3 I 4 0 1 * 0 T r i l l i u m o v atum ( c ) II 4 5 V 4 7 V 1 2 V 1 7 3 * 1 T s u g a h e t e r o p h y l l a ( c d ) IV 4 8 V 6 0 V 7 5 V 5 1 2 3 3 V a c c i n i u m p a r v i f o l i u m ( c ) 1 4 0 V 3 1 V 4 5 IV 3 8 IV 2 8 2 4 1 Table 18 - (cont.) PLANT ORDER PLANT ALLIANCE BIOGEOCOENOTIC ASSOCIATION (number of sample p l o t s ) O r d e r 3 Athyr 1 u m f 1 1 1 x - f e m i na ( e ) Blechnum s p l e a n t ( d ) Bromus s l t c h e n s l s ( c o ) Bromus v u l g a r i s ( c o ) C 1 e y t o r n a s 1 b i r i c a ( e ) D l s p o r u m hooker 1 ( s ) O r y o p t e r 1 s expansa ( e ) G a l i u m t r i f l o r u m ( e ) L e u c o l e p i s m e n z i e s i 1 ( c o ) L u z u l a p a r v i f l o r a ( c o ) Myce 1 1 s m u r a M s ( p . c ) O s m o r h l z a ch11 ens 1s ( c o ) P1ag1omnium i n s * g n e ( e ) P o l y s t l c h u m munltum ( c d ) Rhizomnlum g l a b r e s c e n s ( d ) Rubus s p e c t a b i 1 i s ( e ) S t r e p t o p u s amp 1 e x i f o l 1 us ( c o ) T l a r e l l a l a d n i a t a ( e ) T l a r e l l a t M f o l i a t a ( p . c ) T r a u t v e t t e r l a c a r o l i n l e n s i s ( c o ) Al 1 l a n c e 3.1 A b i e s g r a n d i s ( c o ) A c e r macrophy11um ( s ) A c h l y s t r l p h y l l a ( d . c d ) A d e n o c a u l o n b i c o l o r ( s ) Blechnum s p i c a n t ( s ) C a r e x h e n d e r s o m 1 ( c o ) D l s p o r u m h o o k e r 1 ( d ) D r y o p t e r 1 s e x p a n s a ( d ) G a l i u m t r i f l o r u m ( d . c ) Gymnocarplum d r y o p t e r i s ( c o ) Hylocomlum s p l e n d e n s ( d ) K i n d b e r g i a o r e g a n a ( d , c d ) P s e u d o t s u g a m e n z i e s i 1 ( d . c d ) P t e r i d i u m a q u i l i n u m (d) R h y t 1 d 1 a d e l p h u s 1oreus ( d ) T l a r e l l a l a c i n l a t a ( d . c ) T n e n t a l i s l a t i f o l i a ( d ) T r i l l i u m ovatum ( d . c ) Tsuga h e t e r o p h y 1 1 a ( d , c d ) V a c d n l u m p a r v i f o l t u m (d) A s s o c i a t i o n 3.11 % F e s t u c a s u b u l i f l o r a ( c o ) Goodyera o b l o n g i f o l i a ( d ) Hy1ocom i um sp1endens ( c d ) L i n n a e a b o r e a l i s i d ) Mahonia n e r v o s a (d) Rhizomnlum g l a b r e s c e n s ( p ) R h y t I d i a d e l p h u s l o r e u s ( d ) Rubus u r s i n u s (d) A s s o c i a t i o n 3.12 A d e n o c a u l o n b i c o l o r ( c ) A t h y r i u m f 1 1 i x - f e m i n a ( d ) Ca r e x h e n d e r s o m 1 ( d ) C1 a y t o n 1 a 5 1 b 1 r i c a ( d ) D1 c e n t r a f o r m o s a ( c o ) Gymnocarp1um d r y o p t e r 1 s ( d ) L e u c o l e p i s m e n z i e s i i ( d ) Oplopanax h o r r i d u s ( c o ) P1ag i omn i um 1ns i gne ( c ) Rubus s p e c t a b i l l s ( d . c ) S t a c h y s c o o l e y a e <d) T r a u t v e t t e r i a c a r o l i n i e n s i s (d) T r i e n t a l i s l a t i f o l i a ( c o . c ) V i o l a g l a b e 1 1 a ( c o ) A l l i a n c e 3.2. A s s o c i a t i o n 3.21 A l n u s r u b r a ( s . c d ) A t h y r l u m f i l i x - f e m i n a ( d . c d ) B r a c h y t h e c i u m f r l g l d u m ( c o ) Ca r e x deweyana ( c o ) Ca r e x obnupta ( c o ) C l n n a l a t i f o l i a ( c o ) C 1 r c a e a a l p 1 n a ( c o ) Conocepha1um co n i c u m ( c o ) E q u i s e t u m t e l m a t e i a ( e ) G l y c e r i a e l a t a ( c o ) K1ndberg1 a p r a e l o n g a ( e , c ) L y s i c h i t u m amencanum ( e , c d ) Mai us f u s c a ( c o ) M i t e l l a o v a l i s ( c o ) Oenanthe s a r m e n t o s a ( c o ) P i c e a s l t c h e n s l s ( c o ) R a n u n c u l u s u n c i n a t u s ( c o ) Rubus s p e c t a b i l i s ( c ) Sambucus racemosa ( c o ) S t a c h y s c o o l e y a e ( s . c ) V e r a t r u m v i n d e ( c o ) I 1 ~ l I ~ ! I 3 I i z n r i i z m z i I Z H E I I 3.1 i I Z E Z I 1.11 1.21 2.11 3.11 3. 12 3.21 <5) (10) (11) (10) (10) I I 4 3 IV 2 3 5 5 7 IV 1 2 I I I 1 5 2 3 5 1 * .0 I • 0 I 4 0 11 1 8 2 4 3 I I • 0 I I 4 3 I I I 4 5 2 4 8 I I 4 0 IV 1 4 4 2 8 I I 4 0 IV 1 6 IV 1 4 2 4 0 IV 1 0 IV 1 6 2 1 5 I 4 0 V 2 1 V 2 5 2 3 4 I 4 6 I 4 0 IV 2 9 3 1 7 I 4 0 I I + 1 1 4 1 1 • . 0 I I 4 0 I I + 5 IV 2 5 V 3 1 4 1 7 I + 0 I I + 3 2 4 3 IV • 6 V 4 4 4 3 6 2 1 . 1 IV 2 1 V 4 4 V 7 8 V 8 7 4 3 1 I I + 0 I + 0 IV 2 5 11 1 0 2 4 3 I 4 0 I I I 1 0 V 2 2 5 4 7 I 4 0 I I I 1 3 IV 4 e 3 4 5 1 + .0 I 4 0 V 1 4 V 1 7 3 4 5 I I I 4 3 V 3 8 V 4 3 4 2 8 I 4 3 I I I 2 1 3 4 9 I 2 0 I I 3 0 I I I 4 1 I I 4 2 I I I 2 1 IV 5 3 1 4 0 1 4 0 V 1 5 V 3 1 V 5 0 V s 3 3 1 2 I I 4 0 IV 4 8 V 1 3 IV 1 2 I I I 1 5 2 3 5 I 4 0 I 4 0 I I I 1 0 I I 4 0 IV 1 6 IV 1 4 2 4 0 IV 1 0 IV 1 6 2 1 5 I 4 0 V 2 1 V 2 5 2 3 4 I 4 0 I I I 1 0 5 S 2 IV 4 3 V 5 3 V 5 1 IV 3 0 2 4 3 4 5 3 V 5 7 V 7 9 V 6 3 V 3 8 2 4 0 4 5 8 V 9 S V 9 1 V e 7 V 8 5 IV 1 5 V 3 0 IV 1 3 I I I 4 5 1 4 0 2 1 6 11 2 8 IV 1 4 IV 1 3 I 4 0 1 4 0 1 4 0 I 4 0 V 1 4 V 1 7 3 4 5 3 1 8 IV 1 1 IV 1 0 IV 1 5 V 1 1 I I 4 5 V 4 7 V 1 2 V 1 7 3 4 1 IV 4 8 V e 0 V 7 5 V 5 1 2 3 3 1 4 0 V 3 1 V 4 5 IV 3 8 IV 2 8 2 4 1 I 4 0 I 1 0 I I 4 5 I 4 0 5 1 e I I I 1 0 IV 4 3 I I I 4 2 I 4 0 S S 2 IV 4 3 V 5 3 V 5 1 IV 3 0 2 4 3 2 4 3 I I 4 9 V 2 7 I I I 1 6 I 4 0 1 1 0 5 4 5 V 4 9 V 4 5 I I I 1 9 I 1 1 I I 4 0 I 4 0 IV 2 5 I I 1 0 2 4 3 2 1 6 I I 2 8 IV 1 4 IV 1 3 1 4 0 1 4 0 5 1 1 V 1 4 IV 1 1 IV 4 5 I I 4 0 3 4 5 IV 4 8 V 1 3 I I 4 3 IV 2 3 5 5 7 I 4 0 I I I 1 0 I I 4 0 IV 1 4 4 2 8 11 4 5 I 4 0 I I I 1 0 1 4 0 IV 2 9 3 1 7 I 4 0 I I 1 0 1 1 6 IV 4 6 V 4 4 4 3 e I I I 1 0 V 2 2 5 4 7 I I I 1 1 5 2 9 I 4 3 I I I 2 1 3 4 9 IV 1 5 V 1 1 11 4 0 I 3 1 I I 4 0 5 9 0 I I 4 3 IV 2 3 5 5 7 I 4 0 2 4 0 I 4 0 1 4 0 .2 4 8 2 4 6 I 4 3 2 4 0 I 4 0 2 4 0 3 4 1 4 3 7 2 2 4 I I 4 0 5 4 3 5 8 5 1 4 0 2 1 8 I 4 0 2 4 2 3 4 4 2 4 4 I 4 0 I 4 0 2 1 5 I I I 1 0 V 2 2 5 4 7 I 4 0 2 1 4 I I I 1 1 5 2 9 I • 0 2 2 0 Table 19 - L i s t of a c c i d e n t a l s p e c i e s . 1 18 PLANT ORDER PLANT ALLIANCE BI0GE0COEN0TIC ASSOCIATION (number o f s a m p l e p l o t s ) :i I Z C I L x n i IZZXI i 2 1 i i : : i i 3 2 1 1 . 1 1 1 .21 2.11 3.11 3.12 3.21 (5) ( 10) (11) (10) (10) (5) A d t a n t u m pedatum Apocynum e n d r o s a e m i f o l l u m Asarum c a u d a t u m A u l a c o m n l u m androgynum B o s c h n i a k i a h o o k e r i B o t r y c h l u m v i r g i n i a n u m B o y k i n i a e l a t a C a l y p s o b u l b o s a C a m a s s i a quamash C a r d a m i n e b r e w e r ! C a r d a m i n e o l i g o s p e r m a C h i l o s c y p h u s p a l l e s c e n s C h i m a p h i l a umbel l a t a C l a d o n i a c o n i o c r a e a C l a d o n i a m u l t i f o r m i s C l a d o n i a squamosa C 1 a d o n i a unc i a 1 1 s C l a o p o d i u m b o l a n d e r i C o r a l l o r h i z a m e r t e n s i a n a C o r n u s n u t t a 1 1 i i C y s t o p t e r i s f r a g i l i s C y t i s u s s c o p a r i u s D a n t h o n i a s p i c a t a D i c r a n u m f u s c e s c e n s D i c r a n u m h o w e l 1 i i O i s p o r u m s m i t h i i E q u i s e t u m a r v e n s e E r y t h r o n i u m r e v o l u t u m F r a g a r i a v e s c a G e r a n i u m r o b e r t i a n u m H e u c h e r a m i c r a n t h a H o o k e r l a l u c e n s H y l o c o m i u m umbratum 11 ex aqu i f o 1 i u m I s o p t e r y g i u m e l e g a n s I s o t h e c i u m s t o l o n i f e r u m J u n i p e r u s communis u u n i p e r u s s c o p u l o r u m L e p t o g i u m palmatum L i s t e r a b a n k s i a n a L o t u s m i c r a n t h u s L u p i n u s p o l y p h y l l u s L y c o p o d i u m c l a v a t u m M a h o n i a a q u i f o l i u m * Maianthemum d i l a t a t u m Mnium s p i n u l o s u m M o n o t r o o a u n i f l o r a N e m o p h i l a p a r v i f l o r a P e l t i g e r a c a n i n a P e l t i g e r a membranacea P e l t i g e r a p o l y d a c t y l a P h y s o c a r p u s c a p i t a t u s P i n u s m o n t i c o l a P l a g i o c h i l a a s p l e n i o i d e s P l a g i o c h i l a p o r e l l o i d e s P 1 a g i o t h e c l u m c a v i f o l i u m P l a t a n t h e r a c h o r i s i a n a P l e u r o z i u m s c h r e b e r i Poa m a r c i d a Pogonatum a l p i n u m P o l y p o d i u m g l y c y r r h i z a P o l y t r i c h u m p i l i f e r u m P o p u l u s t r i c h o c a r p a P t e r o s p o r a andromedea P y r o l a d e n t a t a P y r o l a p i c t a R h a c o m i t r i u m c a n e s c e n s Rhamnus p u r s h i a n u s R hizomnium nudum R h y t i d i o p s i s r o b u s t a R i b e s d i v a r i c a t u m Rubus p a r v i f l o r u s S m i l a c i n a s t e l l a t a S o r b u s a u c u p a r i a S o r b u s s i t c h e n s i s S p i r a e a m e n z i e s i i S t e l l a r i a c n s p a S t r e p t o p u s r o s e u s S t r e p t o p u s s t r e p t o p o 1 d e s S y m p h o r i c a r p o s h e s p e r i u s T a x u s b r e v i f o l i a T e l 1ima g r a n d i f l o r a T r i s e t u m cernuum U r t i c a d i o i c a V a c c i n i u m a l a s k a e n s e V a c c i n i u m o v a l i f o l i u m V i o l a sentperv i r e n s 1 *.0 1 • .0 1 +. 1 1 +.0 1 * .0 1 * .0 1 *.0 1 +.0 1 1 .0 1 * . 1 • . 1 • .o 1 + .0 1 +. 1 1 1 . 0 1 • .0 1 +. 1 1 *. 1 1 * .0 1 * .0 1 2.4 1 * .0 I *.0 I * 0 I +.0 I • .0 I * .0 I *.3 I +.0 I *.0 I *.0 I *.0 I 1 .0 I * .0 I * .0 II *.o I *.o I 1 .0 I * .2 I • .0 I *.0 I *.o I +.0 I + .0 I • .0 I * .0 I +.3 I • .0 I * 0 I *.0 1 1 * 7 I I 1 . 1 I * 0 I +.0 I * .0 I +.0 I * .0 I +.3 1 * 1 I *.0 I • .0 I * . 1 I *.0 I *.o I • .0 I • .0 I * .0 I 2.6 I * .0 I * .0 I *.0 1 • .0 1 * .0 1 + .0 I +.0 I * .0 II +.6 II *.3 2 +.0 I +.0 I *.0 I *.0 I * .0 I *.o 1 * . 1 1 + . 1 1 * .0 1 * .0 1 1.6 II +.0 s t a t e d that " f o r e s t undergrowth approximates climax s t a t u s soon a f t e r the f i r s t s e r a i t r e e s form an e s s e n t i a l l y c l o s e d canopy". Henderson (1982) s t u d i e d D o u g l a s - f i r stands in the TH zone in Washington. He found that most of the changes i n understory communities occurred i n the f i r s t f i f t y years f o l l o w i n g d i s t u r b a n c e and that the u l t i m a t e understory dominants achieved t h e i r dominance e a r l y i n the s e r e . In a study of understory p l a n t communities in the CWHa and CDFb on Vancouver I s l a n d , Mueller-Dombois (1959,1965) found that c h a r a c t e r i s t i c understory p l a n t s p e c i e s were s t i l l present a f t e r l o g g i n g and burning and appeared to maintain t h e i r o r i g i n a l d i s t r i b u t i o n during i n i t i a l stages of secondary s u c c e s s i o n . He a l s o found that c h a r a c t e r i s t i c understory s p e c i e s were present i n s u f f i c i e n t q u a n t i t i e s a f t e r d i s t u r b a n c e to permit s u c c e s s f u l i d e n t i f i c a t i o n of the p r e - e x i s t i n g communities. He noted that G a u l t h e r i a s h a l l o n ( c h a r a c t e r i s t i c of dry s i t e s ) and Polystichum  muni turn ( c h a r a c t e r i s t i c of moist s i t e s ) began to spread i n t o the mesic moss s i t e s s h o r t l y a f t e r f o r e s t canopy removal, but t h i s movement was "held i n check" by the r a p i d i n v a s i o n of l i g h t -demanding weed s p e c i e s . A f t e r canopy c l o s u r e , these i n t o l e r a n t and s e m i - t o l e r a n t weed s p e c i e s d e c l i n e d and the moss s p e c i e s were r e e s t a b l i s h e d . A study done i n Washington (Long and Turner, 1975; Turner and Long, 1975) showed a s i m i l a r t r e n d . T h i s study, a l s o done in second-growth D o u g l a s - f i r stands, showed that the percentage of understory biomass accounted for by mosses i n c r e a s e d from l e s s than 1% i n a 22-year-old stand to over 57% i n a 73-year-old stand. T h i s i n c r e a s e i n the 1 20 importance of mosses was accompanied by a decrease i n the importance of herbs and shrubs, p a r t i c u l a r l y G a u l t h e r i a s h a l l o n and P t e r i d i u m aqui 1 inum ((L.) Kuhn j j i Decken). From the pre v i o u s d i s c u s s i o n , i t would be expected that understory p l a n t communities found i n the immature Cowichan Lake f o r e s t ecosystems should c l o s e l y resemble understory p l a n t communities found i n mature f o r e s t ecosystems i n f l u e n c e d by s i m i l a r c l i m a t i c and edaphic c o n d i t i o n s . To t e s t t h i s h y p o t h e s i s , summary v e g e t a t i o n t a b l e s f o r three Cowichan Lake immature a s s o c i a t i o n s were compared to summary v e g e t a t i o n t a b l e s for three ( c l i m a t i c a l l y and e d a p h i c a l l y s i m i l a r ) mature a s s o c i a t i o n s from a study done i n Strathcona Park (Kojima, 1971; Kojima and K r a j i n a , 1975). The Cowichan Lake immature $PM-GS a s s o c i a t i o n was compared to the Strathcona Park mature Gaulther i a s h a l l o n a s s o c i a t i o n (Table 20), the Cowichan Lake immature $PM-KO a s s o c i a t i o n was compared to the Strathcona Park mature moss a s s o c i a t i o n (Table 21), and the Cowichan Lake immature $PM-PI a s s o c i a t i o n was compared to the Strathcona Park mature A c h l y s - P o l y s t i c h u m a s s o c i a t i o n var. polystichosum (Table 22). In these t a b l e s , presence c l a s s (PC) and mean s p e c i e s s i g n i f i c a n c e (MS) are shown f o r each s p e c i e s i n each a s s o c i a t i o n . G e n e r a l l y , the summary v e g e t a t i o n t a b l e s f o r the three immature a s o c i a t i o n s were q u i t e s i m i l a r to those f o r the mature a s s o c i a t i o n s . However, there were some notable d i f f e r e n c e s . In a l l three comparisons, MS of Pseudotsuga m e n z i e s i i was higher i n the immature a s s o c i a t i o n s , and MS of Tsuga h e t e r o p h y l l a was 121 Table 20 - Co n s t a n t - s p e c i e s (c,cd) and d i f f e r e n t i a l - s p e c i e s (d) f o r the Cowichan Lake immature $PM-GS a s s o c i a t i o n compared to the Strathcona Park mature G a u l t h e r i a s h a l l o n a s s o c i a t i o n (Kojima and K r a j i n a , 1975). LOCATION (number of sample p l o t s ) COWICHAN LAKE (10) STRATHCONA PARK (11) & c) Constant-spec i e s Achlys t r i p h y l l a (c) G a u l t h e r i a s h a l l o n (cd) Kindberqia oreqana (cd Mahonia nervosa Cc) Pseudotsuga menziesi i (cd) Vaccinium p a r v i f o l i u m (c & Cowichan Lake Arbutus menziesi i (d) Holo d i s c u s d i s c o l o r (d,c) L i s t e r a c o r d a t a (d) Pte r i d i u m aqui1inum (d) Rosa gymnocarpa (cT Rubus u r s i n u s (d,c) Symphoricarpos albus (d) cd) V 1 .5 V 4.1 V 8.8 V 8.4 V 5.7 V 4.3 V 4.9 V 4.2 V 9.5 V 8.0 V 3. 1 V 5.0 III 2.8 V 3.4 IV + .6 I + .0 IV 1 .5 II + .0 V 2.5 IV 1 . 4 V 1 .4 II + .0 IV 1 .7 II + .0 Strathcona Park Chimaphila umbellata (d,c) Goodyera o b l o n q i f o l i a (d,c) Hylocomium splendens (cd) Linnaea b o r e a l i s (d,c) Pinus monticola (d,c) Py r o l a p i c t a (d) Rh y t i d i a d e l p h u s l o r e u s (d,c) R h y t i d i o p s i s robusta (d,c) Tsuga h e t e r o p h y l l a (cd) I + .0 V 2.8 III 1 .0 V + .3 IV 4.3 V 7.6 II + .9 V 3.8 V 1 .6 III + .0 II 2.8 V 3.9 V 3.0 IV 4.8 V 7.4 122 Table 21 - Cons t a n t - s p e c i e s (c,cd) and d i f f e r e n t i a l - s p e c i e s (d) f o r the Cowichan Lake immature $PM-KO a s s o c i a t i o n compared to the Strathcona Park mature moss a s s o c i a t i o n (Kojima and K r a j i n a , 1975). LOCATION (number of sample p l o t s ) COWICHAN LAKE (11) STRATHCONA PARK (23) Constant-spec i e s Achlys t r i p h y l l a (c) Hylocomium splendens (cd) Kindberqia oregana Ted) Linnaea b o r e a l i s (c) Mahonia nervosa (c & cd) Pseudotsuga menziesi i (cd) Tsuqa h e t e r o p h y l l a Ted) Vaccinium p a r v i f o l i u m (c) Cowichan Lake G a u l t h e r i a s h a l l o n (cd) L i s t e r a c o r d a t a (d,c) Polystichum muniturn (c) Pter i d i u m aquilinum (d,c) Rubus u r s i n u s (d) T r i e n t a l i s l a t i f o l i a (d) T r i l l i u m ovatum (d,c) Strathcona Park Chimaphila m e n z i e s i i (d) Chimaphila umbellata (d,c) Cornus canadensis (d) Goodyera oblo n q i f o l i a (c ) Homalothecium megaptilum (d) O r t h i l i a secunda (d) Py r o l a p i c t a (d) Rh y t i d i a d e l p h u s l o r e u s (c) R h y t i d i o p s i s robusta (d) Smilac ina s t e l l a t a (d) Vaccinium alaskaense (d) V i o l a sempervirens Td,c) V 3. 1 V 4.8 V 5.3 V 6.4 V 7.9 V 5. 1 V 2.7 V 4. 1 V 4.5 V 5.6 V 9.1 V 7.6 V 6.0 V 8.1 V 4.5 V 4.9 V 5.8 IV 3.0 V 1 . 1 I + .0 V 4.4 IV 2. 1 V 3.0 I + .0 IV 1 . 1 II + .0 IV 1 .0 I + .0 V + .7 II + .0 IV + .4 I + .0 V 3.4 IV 2.7 IV + .3 V + .4 III + .7 III + .0 I + .0 III + .0 IV 1 .4 V 4.7 I + .0 IV 4.4 I + .0 III + .9 I + .0 III 2.7 II 1 . 1 V 1 .0 123 Table 22 - Con s t a n t - s p e c i e s (c,cd) and d i f f e r e n t i a l - s p e c i e s (d) f o r the Cowichan Lake immature $PM-PI a s s o c i a t i o n compared to the Strathcona Park mature A c h l y s - P o l y s t ichum a s s o c i a t i o n var. polystichosum (Kojima and K r a j i n a , 1975). LOCATION (number of sample p l o t s ) Constant-spec i e s A c h l y s t r i p h y l l a (cd) Galium t r i florum (c) Ki n d b e r q i a oreqana (c & cd) Polystichum muniturn (cd) Pseudotsuga m e n z i e s i i (cd) T i a r e l l a l a c i n i a t a (c) T i a r e l l a t r i f o l i a t a Tr i e n t a l i s (c) l a t i f o l i a (c) Ted) Tsuga h e t e r o p h y l l a Cowichan Lake Acer macrophyllum (d) Adenocaulon b i c o l o r (d,c) Blechnum s p i c a n t (d) Bromus v u l g a r i s (d) Carex hendersoni i (d) C l a y t o n i a s i b i r i c a (d) L e u c o l e p i s menziesi i (d) M y c e l i s m u r a l i s (d,c) Plaqiomnium i n s i q n e (c) Pter idium aquilinum (d) Rubus s p e c t a b i l i s (d,c) Stachys cooleyae (d) T r a u t v e t t e r i a c a r o l i n i e n s i s (d) T r i l l i u m ovatum (d,c) Strathcona Park Adiantum pedatum (d) Chimaphila menziesi i (d) Cornus canadensis (d) D r y o p t e r i s expansa (c) Goodyera o b l o n q i f o l i a (d) Hylocomium splendens (c) Linnaea b o r e a l i s (d) Mahonia nervosa (d,c) u n i f l o r a (d) Monotropa  Rhyt i d i a d e l p h u s Rhyt i d i a d e l p h u s Rosa qymnocarpa l o r e u s (d) t r i q u e t r u s TdTcl Vaccinium p a r v i f o l i u m (c) V i o l a sempervirens (d) (d) COWICHAN LAKE (10) STRATHCONA PARK (11) V 5.3 V 5.9 V 2.5 V 1 .0 V 3.8 V 5.6 V 8.7 V 7.2 V 8.5 V 7.4 V 1 .7 V + .7 V 4.3 V 3.0 V 1 . 1 V 1 .0 V 5.1 V 7.9 IV 5.3 II 3.3 V 1 .3 III + .2 III 1 .5 I + .0 III + .5 III 1 .0 IV 1 .4 II + .0 IV 2.9 II 1 . 1 V 3.1 III + .2 V 4.4 IV 2.6 III + .5 I + .0 V 2.2 I + .0 III 1 . 1 III 2.1 V 1 .7 I + . 1 IV 1 .5 III + .0 III + .4 IV 1 .6 V + .8 I + .0 III + .0 IV 3.0 V 4.7 I + .0 IV 1 .2 I 1 . 1 V 3.6 I + .0 III + .0 I + .0 IV 3.0 I 1 . 1 III 2.1 I + .0 V 1 . 1 IV 2.8 V 2.3 III + .0 1 24 higher i n the mature a s s o c i a t i o n s . P t e r i d i u m aquilinum, an i n d i c a t o r of e a r l y s e r a i c o n d i t i o n s i n humid c l i m a t e s had a higher PC and MS value i n a l l three immature a s s o c i a t i o n s . Trends d i s c u s s e d e a r l i e r f o r the mesic moss s i t e s ( i . e . decrease i n herbs and shrubs, and in c r e a s e i n mosses with s u c c e s s i o n a l stage) were ev i d e n t in Table 21. The immature $PM-KO a s s o c i a t i o n had a higher PC and MS value, not only f o r P t e r i d i u m  aquilinum, but a l s o f o r G a u l t h e r i a s h a l l o n and Polystichum  muni turn, and the mature moss a s s o c i a t i o n had higher PC and MS values f o r both R h y t i d i a d e l p h u s l o r e u s and R h y t i d i o p s i s robusta ((Hedw.) B r o t h . ) . These two moss s p e c i e s a l s o had higher PC and MS values i n the mature Gaulther i a s h a l l o n a s s o c i a t i o n (Table 20). Another major d i f f e r e n c e which was f e l t to be a t t r i b u t a b l e to stand age or s u c c e s s i o n a l stage was the c o n s i d e r a b l y higher PC and MS of Acer macrophyllum and Rubus s p e c t a b i 1 i s (Pursh) i n the immature $PM-PI a s s o c i a t i o n (Table 22). C e r t a i n f l o r i s t i c d i f f e r e n c e s between the immature and mature a s s o c i a t i o n s were probably due to t h i c k e r , more w e l l developed e c t o r g a n i c l a y e r s i n p l o t s belonging to the mature a s s o c i a t i o n s . Whereas the $PM-GS, $PM-KO, and $PM-PI a s s o c i a t i o n s had an average e c t o r g a n i c t h i c k n e s s of 4, 5, and 1 cm r e s p e c t i v e l y (Appendix G), the G a u l t h e r i a s h a l l o n a s s o c i a t i o n , moss a s s o c i a t i o n , and Ac h l y s - P o l y s t i c h u m a s s o c i a t i o n v a r . polystichosum had an average e c t o r g a n i c t h i c k n e s s of 6, 7, and 8 cm r e s p e c t i v e l y . For example, i n the A c h l y s - P o l y s t ichum a s s o c i a t i o n v a r . polystichosum (Table 22), Chimaphila menziesi i ((R. Br. ex D. Don) Spreng.), Goodyera 1 25 o b l o n g i f o l i a ( R a f . ) , and Linnaea b o r e a l i s (L.) which g e n e r a l l y i n d i c a t e dry to moist, n u t r i e n t - v e r y poor to medium s i t e s ( K l i n k a et a l . , 1984) occur q u i t e f r e q u e n t l y , whereas they are r e l a t i v e l y uncommon i n the immature $PM-PI a s s o c i a t i o n . The PC and MS of a number of other s p e c i e s was probably not a r e f l e c t i o n of stand age or s u c c e s s i o n a l s t a t u s but rather a r e f l e c t i o n of d i f f e r e n c e s i n c l i m a t e . For example, the presence of Arbutus m e n z i e s i i and H o l o d i s c u s d i s c o l o r ((Pursh) Maxim.), more c h a r a c t e r i s t i c of the CDFb subzone ( K l i n k a e_t a l . , 1979) in the $PM-GS a s s o c i a t i o n would suggest that the Cowichan Lake study area was i n a warmer, d r i e r v a r i a n t of the CWHa than the Strathcona Park study area. I t should a l s o be noted that Abies  a m a b i l i s , more c h a r a c t e r i s t i c of the CWHb subzone ( K l i n k a e_t a l . , 1979), had a low PC and MS value i n the summary v e g e t a t i o n t a b l e for a l l three Strathcona Park a s s o c i a t i o n s . Since Abies  amabi1is was not a c o n s t a n t - s p e c i e s or a d i f f e r e n t i a l - s p e c i e s f o r any of the a s s o c i a t i o n s , i t i s not shown in Tables 20 to 22. 5.3 INDICATOR PLANT ANALYSIS 5.3.1 EISG Spectra The r e l a t i v e s p e c i e s importance (RSI) of each edatopic i n d i c a t o r s p e c i e s group (EISG) i n each p l o t i s shown i n Appendix I. T h i s i n f o r m a t i o n i s summarized in F i g u r e 10 which shows an EISG spectrum f o r each of the s i x BA's. From BA 1 to BA 6, there i s a decrease i n the importance of s p e c i e s i n d i c a t i n g very dry to dry s o i l moisture c o n d i t i o n s , and a p a r a l l e l i n c r e a s e i n nr d P m T 1 1 1 r d d f m w f m m w p p p p p m m m m m n u t r i e n t - v e r y poor t o med . T r r v d d f d f m m m m m m m e d i u m v d d d f m w d m f m m w m m r m m m m r r r r r r m e d i u m t o v e r y r i c h F i g u r e 10 - Edatopic i n d i c a t o r s p e c i e s s p e c t r a f o r the 6 biogeocoenotic a s s o c i a t i o n s (N.B. values of RSI < 2.0 are not p l o t t e d ) . 1 27 the importance of s p e c i e s i n d i c a t i n g f r e s h to wet c o n d i t i o n s . There i s a l s o a decrease in the importance of s p e c i e s i n d i c a t i n g n u t r i e n t - v e r y poor to medium s i t e s , and a p a r a l l e l i n c r e a s e i n the importance of s p e c i e s i n d i c a t i n g nutrient-medium to very r i c h s i t e s . Thus, t h i s f i g u r e supports the suggestion made e a r l i e r that the order on a x i s 1 of the RA12 and DCA12 o r d i n a t i o n s ( i . e . from BA 1 to BA 6) corresponds to an i n c r e a s e in s o i l moisture and n u t r i e n t s . 5.3.2 D i s c r i m i n a n t A n a l y s i s By EISG's D i s c r i m i n a n t a n a l y s i s of the p l o t s by EISG matrix r e s u l t e d in c o r r e c t c l a s s i f i c a t i o n of 92% of the sample p l o t s using the " i n c l u s i v e " c l a s s i f i c a t i o n method, and 80% using the " e x c l u s i v e " ( j a c k k n i f e d ) method. Dixon (1983) suggested that the j a c k k n i f e d c l a s s i f i c a t i o n method is. p r e f e r a b l e because i t r e s u l t s i n a c l a s s i f i c a t i o n with l e s s b i a s . With the j a c k k n i f e d method, a c l a s s i f i c a t i o n f u n c t i o n i s computed f o r each case with t h a t p a r t i c u l a r case omitted from the c a l c u l a t i o n s , and the d e r i v e d f u n c t i o n . i s then used to c l a s s i f y the omitted case, whereas with the " i n c l u s i v e " method the case i s i n c l u d e d i n computation of the c l a s s i f i c a t i o n f u n c t i o n thereby producing b i a s e d r e s u l t s . The ten EISG's s e l e c t e d as being the most important f o r d i s c r i m i n a t i n g between the s i x BA's are shown i n Table 23. These EISG's are ranked in d e c r e a s i n g order of importance. Table 23 a l s o shows c o e f f i c i e n t s and constants f o r the c l a s s i f i c a t i o n f u n c t i o n s . A j a c k k n i f e d c l a s s i f i c a t i o n matrix i s 1 28 Table 23 - C o e f f i c i e n t s and cons t a n t s f o r the c l a s s i f i c a t i o n f u n c t i o n s d e r i v e d by d i s c r i m i n a n t a n a l y s i s of the edatopic i n d i c a t o r s p e c i e s groups (EISG). BIOGEOCOENOTIC ASSOCIATION (number of sample p l o t s ) STEP EISG F 1 1 2 3 4 5 6 (5) (10) (11) (10) (10) (5) 1 3 .7:wmr 46.0 0.27 0.27 0.18 0.59 1.16 4.77 2 3 .4:dmmr 28.3 0.20 0.24 0.20 0.63 0.82 0.50 3 3 .6:mwmr 17.1 0.22 0.24 0.16 0.55 1.12 3.28 4 3 .5:fmmr 14.5 0.27 0.31 0.24 0.84 1 .45 1 .52 5 2 .1:vdm 13.8 8.45 2.77 0.87 0.74 0.63 0.86 6 2 .3:dmm 8.1 -181.85 -54.07 -13.21 -8.09 -3.94 -10.60 7 1 .6:mwpm 5.7 1 .25 0.80 0.32 1 .26 3.63 21 .45 8 1 .4:dmpm 5. 1 0.64 0.54 0.28 0.31 0.34 0.35 9 3 . 1 :vdmr 5.9 38. 1 0 14.04 5.77 6.35 6.56 6.83 1 0 2 .4:fmm 3.5 2.96 1 .85 1.11 4.58 3.81 0.76 constant -74.21 -21.34 -7.19 -25.61 -49.54 -189.50 F to enter or remove shown i n Table 24. In t h i s t a b l e , the $PC-PJ and $PM-HS a s s o c i a t i o n s showed the highest percentage of m i s c l a s s i f i e d p l o t s with 40% and 30% r e s p e c t i v e l y . The f i r s t three c a n o n i c a l v a r i a b l e s produced by d i s c r i m i n a n t a n a l y s i s of the EISG by p l o t s matrix are shown in Appendix J , and a c a n o n i c a l v a r i a b l e p l o t of the f i r s t two c a n o n i c a l v a r i a b l e s i s shown i n F i g u r e 11. T h i s p l o t g i v e s a 129 Table 24 - J a c k k n i f e d c l a s s i f i c a t i o n matrix produced by d i s c r i m i n a n t a n a l y s i s of the edatopic i n d i c a t o r s p e c i e s groups. Table e n t r i e s i n d i c a t e the number of p l o t s c l a s s i f i e d i n t o each biogeocoenotic a s s o c i a t i o n . BIOGEOCOENOTIC ASSOCIATION Biogeo. Assoc. (number of sample p l o t s ) percent 1 2 3 4 5 6 code name c o r r e c t (5) (10) (11) (10) (10) (5) 1 $PC-PJ 60.0 3 1 1 0 0 0 2 $PM-GS 90.0 1 9 0 0 0 0 3 $PM-KO 81.8 0 2 9 0 0 0 4 $PM-HS 70.0 0 0 1 7 2 0 5 $PM-PI 80.0 0 0 0 2 8 0 6 $AR-LA 1 00.0 0 0 0 0 0 5 t o t a l 80.4 4 1 2 1 1 9 1 0 5 good v i s u a l r e p r e s e n t a t i o n of how d i s t i n c t the BA's are in terms of EISG's. I t i s thus c o n c e p t u a l l y s i m i l a r to the o r d i n a t i o n graphs ( F i g u r e s 2 and 7) d i s c u s s e d e a r l i e r which gave a v i s u a l r e p r e s e n t a t i o n of how s i m i l a r the BA's are i n terms of understory v e g e t a t i o n . In F i g u r e 11, sample p l o t s belonging to the s i x BA's formed r e l a t i v e l y d i s t i n c t groups of p o i n t s with s l i g h t l y g r e a t e r o v e r l a p than was found i n the RA12 and DCA12 o r d i n a t i o n s . Again, sample p l o t s in BA's 1 and 6 d e f i n e d the ends of a x i s 1 ( c a n o n i c a l v a r i a b l e 1). Axis 1 scores for the c a n o n i c a l v a r i a b l e p l o t shown i n Figur e 11 showed a good r e l a t i o n s h i p to a x i s 1 scores f o r the RA12 o r d i n a t i o n ( r 2 = .85**) and the DCA12 o r d i n a t i o n ( r 2 = 1 3 0 in o 6 in CN I 6 6. 66 2 2 222 22 223 33 3  4 3 3 33 4 J 5 44^ 55 4 5 4 5 5 5 I 7.0 -185 I -10.0 EISG.1 •1.5 F i g u r e 11 - P l o t o f c a n o n i c a l v a r i a b l e s 1 (EISG.1) and 2 (EISG.2) f o r t h e d i s c r i m i n a n t a n a l y s i s by e d a t o p i c i n d i c a t o r s p e c i e s g r o u p s ( E I S G ) . Symbols p l o t t e d i n d i c a t e t h e a s s o c i a t i o n t o w h i c h a sample p l o t b e l o n g s . 1 = t h e $PC-PJ 2 = t h e $PM-GS 3 = t h e $PM-K0 4 = t h e $PM-HS 5 = t h e $PM-PI 6 = t h e $AR-LA a s s o c i a t i o n a s s o c i a t i o n a s s o c i a t i o n a s s o c i a t i o n a s s o c i a t i o n a s s o c i a t i o n ( a s s o c i a t i o n 1.11) ( a s s o c i a t i o n 1.21) ( a s s o c i a t i o n 2.11) ( a s s o c i a t i o n 3.11) ( a s s o c i a t i o n 3.12) ( a s s o c i a t i o n 3.21) 131 .78**). Since i n d i c a t o r p l a n t a n a l y s i s i s based on known r e l a t i o n s h i p s between p l a n t s p e c i e s and s o i l moisture and n u t r i e n t c o n d i t i o n s , these r e l a t i v e l y high r 2 values l e n d f u r t h e r support to the suggestion made e a r l i e r that the order on a x i s 1 of the RA12 and DCA12 o r d i n a t i o n s ' c o r r e s p o n d s to an i n c r e a s e i n s o i l moisture and n u t r i e n t a v a i l a b i l i t y . 5.4 ENVIRONMENTAL PATTERNS 5.4.1 V a r i a t i o n Between A s s o c i a t i o n s As mentioned p r e v i o u s l y , complete environment t a b l e s are shown i n Appendix G. T h i s i n f o r m a t i o n i s summarized i n Table 25. D e s c r i p t i v e s t a t i s t i c s f o r the seven s i t e m orphological p r o p e r t i e s , t h i r t e e n s o i l p h y s i c a l , and f i f t y - s e v e n s o i l chemical p r o p e r t i e s are shown i n Appendix K. Means (MN) and 95% confidence i n t e r v a l s (CI) f o r the seven s i t e m o r p h o l o g i c a l , and the f o u r t e e n s e l e c t e d s o i l p h y s i c a l and chemical p r o p e r t i e s (Table 13) are shown i n Table 26 f o r a l l s i x a s s o c i a t i o n s . R e s u l t s of o r d i n a t i o n and i n d i c a t o r p l a n t a n a l y s i s suggested that there was an i n c r e a s e i n s o i l moisture and n u t r i e n t a v a i l a b i l i t y from BA 1 to BA 6. An i n v e s t i g a t i o n of Tables 25 and 26 and Appendices G and K tends to support t h i s s u g gestion. However, d e f i n i t i v e statements are not p o s s i b l e because of small sample s i z e s , and because of l a r g e and o f t e n unequal v a r i a n c e s of the s i t e and s o i l p r o p e r t i e s . Despite these l i m i t a t i o n s , the f o l l o w i n g general trends were observed. P l o t s i n BA 1 were l o c a t e d on l e v e l to g e n t l y s l o p i n g r i d g e 1 32 Table 25 - Summary of environmental f e a t u r e s of the 6 biogeocoenotic a s s o c i a t i o n s . BIOGEOCOENOTIC ASSOCIATION (no. of sample p l o t s ) ENVIRONMENTAL FEATURE 1(5) 2(10) 3(11) 4(10) 5(10) 6(5) Hygrotope (SMR) 0 ( l - ) 2 3-4 5 6 7 Trophotope (SNR) B-C C C-D D D-E E Slope p o s i t i o n r i d g e top upper slope mid-slope lower slope lower slope depres-s i o n Slope g r a d i e n t (%) f l a t 21 10 7 3 0 Thickness of f o r e s t f l o o r (cm) 3 4 5 1 1 1 Humus form 1 mor mor mor-moder mull mull mull Thickness of Ae h o r i z o n (cm) 0 2 2 0 0 0 Thickness of Ah h o r i z o n (cm) 0 0 0 5 9 -P a r t i c l e s i z e 2 CL CL v a r i a b l e CL-LS CL-LS organic Rooting depth (cm) 19 55 64 78 86 43 Seepage none none none (-temp.) temp. temp. con-stant Coarse fragments > 2 mm (%) 1 7 24 33 23 16 0 Coarse fragments > 2 cm (%) 4 1 1 1 0 1 4 9 0 K l i n k a et a l . , 1981b C.S.S.C., 1978 (CL = coarse-loamy , LS = l o a m y - s k e l e t a l ) 133 Table 26 - Means (MN) and 95 % confidence i n t e r v a l s (CI) fo r the 7 s i t e m o r p h o l o g i c a l , and 14 s o i l p h y s i c a l and chemical p r o p e r t i e s used i n the d i s c r i m i n a n t a n a l y s i s . BIOGEOCOENOTIC ASSOCIATION (number of sample p l o t s ) PROPERTY 1(5) 2(10) 3(11) 4(10) 5(10) 6(5) MORPHOLOGICAL VCL (%) MN c r 4 -3-10 1 1 8-15 10 7-13 14 5-22 9 1-17 0 VCT (%) MN CI 17 1-32 24 1 6-32 33 23-42 23 1 2-34 1 6 1-30 0 THECT (cm) MN CI 3 2-4 4 3-5 5 4-6 2 1-3 1 8 -5-21 THAE (cm) MN CI 0 0-1 2 0-4 2 1-4 0 0-1 0 0 THAH (cm) MN CI 0 0 0 0-1 5 3-7 9 6-12 5 -4-14 RTDPTH (cm) MN CI 1 9 4-33 55 38-72 64 55-73 • 78 62-94 86 68-103 43 37-49 SLOPE (%) MN CI 6 -5-16 21 1 1 -30 1 0 0-20 7 2-12 3 0-7 2 -4-9 PHYSICAL AND CHEMICAL POR.123 (%) MN CI 69 58-80 59 54-64 50 45-56 56 51-61 59 52-66 91 89-94 PHHF MN CI 3.5 3.1-3.9 4.2 4.0-4.4 3.8 3.6-3.9 4.2 3.8-4.7 4.5 4.3-4.7 4.8 3.8-5.8 PH.123 MN CI 3.9 3.5-4.4 4.4 4.3-4.5 4.2 4.1-4.4 4.5 4.2-4.9 4.5 4.3-4.6 4.8 3.8-5.8 TC.0123 (kg/ha) MN CI 43,580 28,842-58,318 63,882 43,580-84,184 61,348 45,605-77,090 93,150 64,848-121,450 96,203 70,510-121,900 177,310 123,440-231,190 TN.0123 (kg/ha) MN CI 1 ,678 1,061-2,295 2, 178 1,234-3, 122 2,250 1,514-2,986 4, 576 2,777-6,376 5,302 3,708-6,896 8,255 7, 188-9,323 MN.0123 (kg/ha) MN CI 1 4 0-29 1 -10-11 9 -3-20 67 26-108 63 26-99 12 -15-38 (continued) 134 Table 26 - (cont.) BIOGEOCOENOTIC ASSOCIATION (number of sample p l o t s ) PROPERTY 1 (5) 2(10) 3(11) 4(10)' 5 0 0 ) 6(5) CNHF MN 40 41 44 26 20 21 CI 32-49 38-44 40-48 21-31 17-23 14-28 CN.123 MN 23 28 24 21 18 22 CI 17-28 25-32 21-26 18-24 16-20 1 6-28 CA.0123 MN 258 607 405 1 ,822 2,787 8,235 (kg/ha) CI 128- 439- 305- -340- 1,872- 2,090-388 774 505 3,984 3,702 14,380 MG.012 3 MN 33 70 65 135 287 455 (kg/ha) CI 23-43 49-91 49-81 57-212 1 73-401 224-687 K.0123 MN 53 1 28 1 37 164 1 96 1 35 (kg/ha) CI 41-65 96-159 1 09-166 99-229 125-267 -46-315 NA.012 3 MN 8 1 5 22 39 44 39 (kg/ha) CI 4-12 1 0-20 1 5-30 18-60 28-61 19-59 CAT.0123 MN 352 819 630 2, 160 3,314 8,864 (kg/ha) CI 224- 632- 508- -62- 2,260- 2,687-481 1 ,007 752 4,382 4,368 15,041 CEC.0123 MN 203 385 527 899 944 843 (I0 3e/ha )CI 1 1 9- 237- 354- 546- 632- 562-286 533 701 1 ,252 1 ,257 1,124 tops. Slope g r a d i e n t decreased from an average high of 21% f o r BA 2 to an average low of 0% ( f l a t ) f o r BA 6. A l s o , slope p o s i t i o n v a r i e d from upper slope f o r BA 2, mid-slope f o r BA 3, lower sl o p e s f o r BA's 4 and 5, and d e p r e s s i o n s f o r BA 6. Rooting depth, which was of t e n l i m i t e d by a root r e s t r i c t i n g l a y e r ( e i t h e r bedrock or a d u r i c h o r i z o n ) i n BA's 1, 2, and 3, in c r e a s e d from an average low of 19 cm f o r p l o t s i n BA 1 to an average high of 86 cm f o r p l o t s i n BA 5. Average r o o t i n g depth 1 35 for p l o t s i n BA 6 was 43 cm. T h i s shallow r o o t i n g depth f o r BA 6 was due mainly to a very high water t a b l e . T o t a l s o i l carbon content i n c r e a s e d from an average low of 43,580 kg » h a _ 1 f o r BA 1 to an average high of 177,310 kg»ha~ 1 f o r BA 6. T h i s suggested an i n c r e a s e i n s o i l organic matter content from BA 1 to BA 6. In summary, lower slope p o s i t i o n s , lower slope g r a d i e n t s , deeper s o i l s , and higher organic matter contents a l l suggested an i n c r e a s e d a v a i l a b i l i t y of s o i l water from BA 1 to BA 6. The suggestions made above r e g a r d i n g trends i n s o i l water c o n d i t i o n s are supported by the r e s u l t s of s t u d i e s done by McMinn (1965), Kojima and K r a j i n a (1975), and G i l e s (1983). McMinn (1965) found that the a v a i l a b i l i t y of s o i l moisture duri n g the growing season was lowest on " l i c h e n " s i t e s and i n c r e a s e d from " s a l a l " s i t e s , to "moss" s i t e s , to "sword f e r n " s i t e s , to a high on "skunk cabbage" s i t e s . A s i m i l a r t r e n d was observed by Kojima and K r a j i n a (1975) who s t u d i e d a s s o c i a t i o n s s i m i l a r to those s t u d i e d i n the Cowichan Lake study. G i l e s (1983) determined the d u r a t i o n of growing season s o i l water d e f i c i t s ( d i f f e r e n c e between a c t u a l and p o t e n t i a l maximum t r a n s p i r a t i o n ) f o r e i g h t p l o t s on the Cowichan Lake Research S t a t i o n . These p l o t s were the same e i g h t p l o t s sampled by MOF s t a f f that were used i n the Cowichan Lake study ( i . e . p l o t s 40-47). Data p r o v i d e d by G i l e s suggests a decrease i n growing season s o i l water d e f i c i t s from BA 1 to BA 6. The average d e f i c i t f o r two years of measurement (1980 and 1981) was 67 mm fo r one p l o t i n BA 1, 35 mm f o r two p l o t s i n BA 2, 19 mm f o r two p l o t s i n BA 3, 2 mm f o r one p l o t i n BA 4, 2 mm f o r one p l o t i n 1 36 BA 5, and 0 mm f o r one p l o t i n BA 6. T h i s trend i s i l l u s t r a t e d i n F i g u r e 12 where sample p l o t numbers are arranged a c c o r d i n g to a x i s 1 order i n the RA12 o r d i n a t i o n . Kojima and K r a j i n a (1975) PLOT . 535443311334 340400042401204221210212001432123241331 NUMBER 05197721248634183673328984 5160475042295165690703198 ASSOC. 1111 12222222223233333333334444444444555555555566666 DEFICIT 6 4 2 2 1 (mm) 7 3 7 1 7 2 2 0 Fi g u r e 12 - Growing season s o i l water d e f i c i t (mm) f o r 8 p l o t s ( G i l e s , 1983) used in the Cowichan Lake Study. Sample p l o t numbers are arranged a c c o r d i n g to a x i s 1 order i n the RA12 o r d i n a t i o n . concluded t h a t , given the same macroclimate and parent m a t e r i a l , moisture regime appears to be the most i n f l u e n t i a l f a c t o r c o n t r o l l i n g the d i f f e r e n t i a t i o n of v e g e t a t i o n . They a l s o noted t h a t , because seepage i s an important source of mineral n u t r i e n t s , moisture regime i s h i g h l y c o r r e l a t e d with the n u t r i t i o n a l s t a t u s of a p a r t i c u l a r s i t e . In a d d i t i o n to probable seepage e f f e c t s , v a r i a t i o n i n humus form between a s s o c i a t i o n s , and the r e s u l t s of s o i l chemical analyses suggested improved s o i l n u t r i e n t c o n d i t i o n s from BA 1 to BA 6. The e c t o r g a n i c l a y e r was t h i c k e s t on p l o t s in BA's 1, 2, and 3, and t h i n n e s t on p l o t s i n BA's 4 and 5. A l s o Ah ho r i z o n s were absent from p l o t s i n BA's 1, 2, and 3, but were we l l developed on p l o t s i n BA's 4 and 5. Because of these d i f f e r e n c e s i n e c t o r g a n i c l a y e r s and Ah h o r i z o n s , the humus form fo r p l o t s i n BA's 1, 2, and 3, were mors and moders, whereas 1 37 most (80%) of the p l o t s i n BA 4, and a l l of the p l o t s i n BA's 5 and 6 had a mull humus form. Changes i n humus form along a x i s 1 in the RA12 o r d i n a t i o n are shown i n F i g u r e 13. K l i n k a et PLOT 535443311334340400042401204221210212001432123241331 NUMBER 051977212486341836733289845160475042295165690703198 ASSOC. 111112222222223233333333334444444444555555555566666 HUMUS MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM FORM DRRRRDRRRRRDRRRRRDRRDRDRDDDDLLLLLLLLLLLLLLLLLLLLLLL F i g u r e 13 - Humus form of the 51 sample p l o t s (MR=mor, MD=moder, and ML=mull). Sample p l o t numbers are arranged a c c o r d i n g to a x i s 1 order i n the RA12 o r d i n a t i o n . a l . (1981b) noted t h a t , compared to mors and moders, mull humus forms are c h a r a c t e r i z e d by f a s t e r n u t r i e n t c y c l i n g and more f a v o r a b l e s o i l n u t r i e n t c o n d i t i o n s ( d i s c u s s e d l a t e r in gre a t e r d e t a i l ) . Thus, the change i n humus form from mors and moders to mulls along a x i s 1 of the RA12 o r d i n a t i o n (Figure 13) agrees with the statement made e a r l i e r that t h i s a x i s corresponds to improved s o i l n u t r i e n t s t a t u s . More f a v o r a b l e s o i l n u t r i e n t c o n d i t i o n s f o r BA's 4, 5, and 6 are a l s o suggested by the r e s u l t s of s o i l chemical a n a l y s e s . These analyses showed a gene r a l i n c r e a s e i n s o i l N content (both t o t a l and m i n e r a l i z a b l e N) and exchangeable c a t i o n s , and a decrease i n C:N r a t i o s ( i n both the humus form and the mineral s o i l ) from BA 1 to BA 6. The in c r e a s e i n s o i l depth and organic matter content from BA 1 to BA 6 i s r e f l e c t e d i n an in c r e a s e in c a t i o n exchange c a p a c i t y , a s i t u a t i o n which f a v o r s n u t r i e n t 138 r e t e n t i o n and a l s o improves s o i l n u t r i e n t s t a t u s . 5.4.2 D i s c r i m i n a n t A n a l y s i s Of S i t e And S o i l P r o p e r t i e s Table 27 shows the percentage of p l o t s c o r r e c t l y c l a s s i f i e d by d i s c r i m i n a n t a n a l y s i s using the i n c l u s i v e and e x c l u s i v e Table 27 - Percentage of p l o t s c o r r e c t l y c l a s s i f i e d u s ing the i n c l u s i v e and e x c l u s i v e ( j a c k k n i f e d ) c l a s s i f i c a t i o n methods. percent c o r r e c t code number of p l o t s ( a s s o c i a t i o n s ) v a r i a b l e s i n c l u s i v e e x c l u s i v e DA01 51 (1-6) 7 morphological 63 55 DA02 51 (1-6) 14 p h y s i c a l and chemical 86 75 DA03 41 (2-5) 7 morphological 61 54 DA04 41 (2-5) 14 p h y s i c a l and chemical 93 78 ( j a c k k n i f e d ) c l a s s i f i c a t i o n methods. From t h i s t a b l e , i t can be seen that the two d i s c r i m i n a n t analyses which used the fourteen p h y s i c a l and chemical p r o p e r t i e s (DA02 and DA04) had a c o n s i d e r a b l y higher percentage of c o r r e c t l y c l a s s i f i e d p l o t s than the two which used the seven morphological p r o p e r t i e s (DA01 and DA03). For t h i s reason, only DA02 and DA04 w i l l be d i s c u s s e d f u r t h e r . 1 39 S o i l p r o p e r t i e s s e l e c t e d as being the most important f o r c h a r a c t e r i z i n g d i f f e r e n c e s between the biogeo c o e n o t i c a s s o c i a t i o n s are shown i n Table 28. These v a r i a b l e s are ranked in d e c r e a s i n g order of importance. Table 28 a l s o shows c o e f f i c i e n t s and constants f o r the c l a s s i f i c a t i o n f u n c t i o n s . J a c k k n i f e d c l a s s i f i c a t i o n m a t r i c e s f o r the DA02 and DA04 ana l y s e s are shown i n Table 29. In both cases, b i o g e o c o e n o t i c a s s o c i a t i o n 4 ($PM-HS) had the lowest percentage of c o r r e c t l y c l a s s i f i e d p l o t s . The f i r s t three c a n o n i c a l v a r i a b l e s f o r the DA01, DA02, DA03, and DA04 d i s c r i m i n a n t a n a l y s e s are shown i n Appendix L. Cano n i c a l v a r i a b l e p l o t s of the f i r s t two c a n o n i c a l v a r i a b l e s fo r the DA02 and DA04 analyses are shown i n F i g u r e s 14 and 15 r e s p e c t i v e l y . These two f i g u r e s give a good v i s u a l r e p r e s e n t a t i o n of how d i s t i n c t the biogeo c o e n o t i c a s s o c i a t i o n s (BA's) are i n terms of s o i l p r o p e r t i e s . They are thus c o n c e p t u a l l y s i m i l a r to the o r d i n a t i o n graphs ( F i g u r e s 2 to 7) presented e a r l i e r which demonstrated how s i m i l a r the biogeoc o e n o t i c a s s o c i a t i o n s are i n terms of understory v e g e t a t i o n . In summary, F i g u r e s 14 and 15 d i d not produce groups of p o i n t s as d i s t i n c t as those observed i n the o r d i n a t i o n graphs. With the exce p t i o n of p l o t s i n BA 6, there i s c o n s i d e r a b l e o v e r l a p between groups along a x i s 1 ( c a n o n i c a l v a r i a b l e 1) in Fi g u r e 14. However, a x i s 2 ( c a n o n i c a l v a r i a b l e 2) helps separate p l o t s i n BA 4 and 5 from those in BA's 1, 2, and 3. Co n s i d e r i n g both axes s i m u l t a n e o u s l y , p l o t s belonging to BA 6 Table 28 - C o e f f i c i e n t s and constants f o r the c l a s s i f i c a t i o n f u n c t i o n s d e r i v e d by the DA02 and DA04 d i s c r i m i n a n t a n a l y s e s . BIOGEOCOENOTIC ASSOCIATION (number of sample p l o t s ) STEP VARIABLE F 1 1 2 3 4 5 6 (5) (10) (11) (10) (10) . (5) DA02 1 CNHF 29.2 1 .19 1 . 1 7 1 . 49 0. 80 0. 55 -0.08 2 POR.123 17.2 1 .41 1 . 22 0. 98 1 . 09 1 . 15 1 .83 3 MG.0123 5.4 -0 .03 -0. 04 -0. 04 -0. 04 -0. 01 0.05 4 CEC.0123 4.4 0 .01 0. 01 0. 01 0. 01 0. 01 -0.01 5 TC.012 3 10.0 -0 .01 -0. 01 -0. 01 -0. 01 - o . 01 0.01 6 CN.123 2.9 1 .95 2. 37 2. 00 2. 1 4 1. 79 1 .46 7 MN.012 3 2.5 0 .08 0. 06 0. 06 0. 09 0. 06 -0.02 constant -94 .03 -92. 47 -83. 41 -69. 52 -60. 68 -124.82 DA04 1 PH.123 2495.3 - 235. 39 229. 08 222. 59 215. 10 2 CNHF 38.6 - 6. 68 6. 68 5. 87 5. 64 3 CA.0123 12.7 - -0. 06 -0. 05 -0. 05 -0. 05 4 PHHF 6.9 - 123. 35 115. 71 111. 58 112. 78 5 CN.123 4.0 - 3. 42 2. 87 3. 06 2. 93 6 MG.0123 3.0 - 0. 27 0. 26 0. 25 0. 27 constant — — — -954. 98 •883. 26 •816. 27 •784. 70 F to enter or remove 141 Table 29 - J a c k k n i f e d c l a s s i f i c a t i o n matrix f o t the DA02 and DA04 d i s c r i m i n a n t a n a l y s e s . Table e n t r i e s i n d i c a t e the number of p l o t s c l a s s i f i e d i n t o each biogeocoenotic a s s o c i a t i o n . BIOGEOCOENOTIC ASSOCIATION Biogeo. Assoc. (number of sample p l o t s ) percent 1 2 3 4 5 6 code name c o r r e c t (5) (10) (11) (10) (10) (5) DA02 1 $PC-PJ 60.0 3 2 0 0 0 0 2 $PM-GS 80.0 0 8 2 0 0 0 3 $PM-KO 81.8 0 1 9 1 0 0 4 $PM-HS 40.0 1 3 0 4 2 0 5 $PM-PI 90.0 0 0 0 1 9 0 6 $AR-LA 100.0 0 0 0 0 0 5 t o t a l 75.0 4 1 4 1 1 6 1 1 5 )4 2 $PM-GS 80.0 - 8 1 1 0 -3 $PM-KO 81 .8 - 1 9 1 0 -4 $PM-HS 60.0 - 0 1 6 3 -5 $PM-PI 90.0 - 0 0 1 9 -t o t a l 78.0 - 9 1 1 9 1 2 -142 u> o CM" CM CM O < Q 10 o cn 1 2 4 12 4 4 44 33 3 3 5 4 55 5 5 5 -11.5 1 •6.0 DA02.1 -0.5 5.0 F i g u r e 14 - P l o t of c a n o n i c a l v a r i a b l e s 1 (DA02.1) and 2 (DA02.2) f o r the DA02 d i s c r i m i n a n t a n a l y s i s . Symbols p l o t t e d i n d i c a t e the a s s o c i a t i o n to which a sample p l o t belongs. 1 = the $PC- PJ a s s o c i a t i o n ( a s s o c i a t i o n 1 . 1 1 ) 2 = the $PM-GS a s s o c i a t i o n (assoc i a t ion 1 . 21 ) 3 = the $PM-K0 a s s o c i a t i o n ( a s s o c i a t i o n 2. 1 1 ) 4 = the $PM-HS a s s o c i a t i o n (assoc i a t ion 3. 1 1 ) 5 = the $PM- PI a s s o c i a t i o n ( a s s o c i a t i o n 3. 12) 6 = the $AR-LA a s s o c i a t i o n ( a s s o c i a t ion 3. 21 ) 143 ID CO' O ri' CM O < Q m 6 • • 3 2 22 4 5 4 4 * 54 5 5 5 - 1 — 1.5 •5.5 1 •2.0 DA04.1 5.0 F i g u r e 15 - P l o t of c a n o n i c a l v a r i a b l e s 1 (DA04.1) and 2 (DA04.2) f o r the DA04 d i s c r i m i n a n t a n a l y s i s . Symbols p l o t t e d i n d i c a t e t h e a s s o c i a t i o n t o which a sample p l o t b e l o n g s . 1 2 3 4 5 6 the the the the the the $PC-PJ $PM-GS $PM-K0 $PM-HS $PM-PI $AR-LA assoc i a t i o n a s s o c i a t i o n a s s o c i a t i o n a s s o c i a t i o n a s s o c i a t i o n a s s o c i a t i o n ( a s s o c i a t i o n 1.11) ( a s s o c i a t i o n 1.21) ( a s s o c i a t i o n 2.11) ( a s s o c i a t i o n 3.11) ( a s s o c i a t i o n 3.12) ( a s s o c i a t i o n 3.21) 144 were very c l e a r l y separated i n d i c a t i n g the great d i s s i m i l a r i t y of t h e i r waterlogged, high organic matter content s o i l s to the s o i l s of p l o t s i n other BA's. P l o t s i n BA's 4 and 5 were separated from the remaining p l o t s but e x h i b i t e d c o n s i d e r a b l e o v e r l a p between each other. P l o t s in BA 3 formed a r e l a t i v e l y d i s t i n c t group of p o i n t s but p l o t s i n BA's 1 and 2 e x h i b i t e d c o n s i d e r a b l e o v e r l a p . In F i g u r e 15, there i s a general t r e n d from p l o t s i n BA 2 to p l o t s i n BA 5 along a x i s 1 but there i s c o n s i d e r a b l e o v e r l a p along t h i s a x i s . When axes 1 and 2 are co n s i d e r e d simultaneously, p l o t s i n BA 2 and BA 3 form d i s t i n c t groups of p o i n t s but there i s c o n s i d e r a b l e o v e r l a p between p l o t s in BA's 4 and 5. 5.4.3 R e l a t i o n s h i p s Between S o i l And V e g e t a t i o n P a t t e r n s Axis 1 of detrended correspondence a n a l y s i s (DCA) fo l l o w s the d i r e c t i o n of maximum v a r i a t i o n i n the v e g e t a t i o n data. S i m i l a r l y , the f i r s t a x i s ( c a n o n i c a l v a r i a b l e 1) of d i s c r i m i n a n t a n a l y s i s (DA) f o l l o w s the d i r e c t i o n of maximum v a r i a t i o n i n the s o i l p r o p e r t i e s under c o n s i d e r a t i o n . R e l a t i o n s h i p s between s o i l and v e g e t a t i o n p a t t e r n s were i n v e s t i g a t e d by p l o t t i n g c a n o n i c a l v a r i a b l e 1 from the DA02 d i s c r i m i n a n t a n a l y s i s over a x i s 1 scores from the DCA12 o r d i n a t i o n ( F i g u r e 16), and c a n o n i c a l v a r i a b l e 1 from the DA04 d i s c r i m i n a n t a n a l y s i s over a x i s 1 scores from the DCA14 o r d i n a t i o n (Figure 17). The f i r s t f i g u r e suggested that there was no strong l i n e a r c o r r e l a t i o n between understory v e g e t a t i o n and the s e l e c t e d s o i l p r o p e r t i e s . Only o in in 6 • CM O < O in 2 3 «i 3 3 3 3 3 3 1 1 2 2 2 222 2 4 4 4 44 4 4 5 .5 4 5 5 5 5 -10 170 T DCA1 2.1 350 530 F i g u r e 16 - R e l a t i o n s h i p between c a n o n i c a l v a r i a b l e 1 of the DA02 d i s c r i m i n a n t a n a l y s i s (DA02.1) and a x i s 1 score of the DCA12 o r d i n a t i o n (DCA12.1). Symbols p l o t t e d i n d i c a t e the a s s o c i a t i o n to which a sample p l o t belongs. 1 = the $PC-•PJ a s s o c i a t i o n ( a s s o c i a t i o n 1 .11) 2 = the $PM-GS assoc i a t ion ( a s s o c i a t i o n 1 .21 ) 3 = the $PM- KO a s s o c i a t i o n ( a s s o c i a t i o n 2 .11) 4 = the $PM-HS a s s o c i a t i o n ( a s s o c i a t i o n 3 .11) 5 = the $PM- PI a s s o c i a t i o n ( a s s o c i a t i o n 3 .12) 6 = the $AR-LA a s s o c i a t i o n ( a s s o c i a t i o n 3 .21 ) in in O < Q CM i in in i 4 4 5 4 4 2 3 2 2 -15 —r~ 90 1 DCA14.1 195 300 F i g u r e 17 - R e l a t i o n s h i p between c a n o n i c a l v a r i a b l e 1 of t h e DA04 d i s c r i m i n a n t a n a l y s i s (DA04.1) and a x i s 1 s c o r e of t h e DCA14 o r d i n a t i o n (DCA14.1). Symbols p l o t t e d i n d i c a t e t h e a s s o c i a t i o n t o w h i c h a sample p l o t b e l o n g s . 1 = th e $PC- P J a s s o c i a t i o n ( a s s o c i a t i o n 1. 11) 2 = th e $PM- GS a s s o c i a t i o n ( a s s o c i a t i o n 1. 21 ) 3 = th e $PM- KO a s s o c i a t i o n ( a s s o c i a t i o n 2. 1 1 ) 4 = th e $PM- HS a s s o c i a t i o n ( a s s o c i a t i o n 3. 1 1 ) 5 = t h e $PM- PI a s s o c i a t i o n ( a s s o c i a t i o n 3. 12) 6 = t h e $AR- LA a s s o c i a t i o n ( a s s o c i a t i o n 3. 21) 147 52% (r = -.72**) of the v a r i a t i o n i n understory v e g e t a t i o n was r e l a t e d to changes in s o i l p r o p e r t i e s . However, a c o n s i d e r a b l y stronger l i n e a r r e l a t i o n s h i p was observed when only the f o r t y -one intermediate p l o t s f o r which s i t e index of D o u g l a s - f i r was determined ( i . e . p l o t s i n BA's 2, 3, 4, and 5) were co n s i d e r e d ( F i g u r e 17). In t h i s case, 83% (r = .91**) of the v a r i a t i o n i n understory v e g e t a t i o n was r e l a t e d to changes i n the s e l e c t e d s o i l p r o p e r t i e s . In F i g u r e s 16 and 17, a l a r g e " r " value does not n e c e s s a r i l y imply a c a u s a l r e l a t i o n s h i p between the development of the understory v e g e t a t i o n and the s e l e c t e d s o i l p r o p e r t i e s . However, i t does seem safe to assume that the p r o p e r t i e s (Table 28) found to be s t r o n g l y r e l a t e d are good i n d i c a t o r s of, and/or exert a strong i n f l u e n c e on, the s i t e f a c t o r s which do s t r o n g l y i n f l u e n c e p l a n t development, i . e . s o i l moisture and n u t r i e n t s . L i m i t a t i o n s on the i n t e r p r e t a t i o n of F i g u r e s 16 and 17 d i s c u s s e d above i n c l u d e : 1) the use of only the f i r s t (most i n f o r m a t i v e ) a x i s of DCA and DA, 2) the p o s s i b i l i t y of non-l i n e a r r e l a t i o n s h i p s , and 3) the s e l e c t i o n of v a r i a b l e s f o r i n c l u s i o n i n the a n a l y s i s . When using only the f i r s t a x i s , i n f o r m a t i o n p r o v i d e d by the second and higher axes w i l l be l o s t . T h i s may c r e a t e a s e r i o u s problem unless the f i r s t a x i s accounts f o r a very l a r g e p o r t i o n of the t o t a l v a r i a t i o n . An examination of F i g u r e 14 suggests that the poor r e l a t i o n s h i p i n F i g u r e 16 i s in part due to the l o s s of i n f o r m a t i o n p r o v i d e d by the second c a n o n i c a l v a r i a b l e . In F i g u r e 14, a x i s 2 was u s e f u l f o r s e p a r a t i n g BA 4 from BA's 2 and 3. The r value c a l c u l a t e d to 1 48 express the degree of r e l a t i o n s h i p only expresses the degree of l i n e a r r e l a t i o n s h i p . If a s t r o n g n o n - l i n e a r r e l a t i o n s h i p e x i s t s , i t may not be d e t e c t e d by the r v a l u e . An examination of F i g u r e 16 suggests that the r e l a t i o n s h i p between the two axes was n o n - l i n e a r . D i s c r i m i n a n t a n a l y s i s s e l e c t s from among the v a r i a b l e s i n c l u d e d i n the a n a l y s i s , those which are most important f o r c h a r a c t e r i z i n g d i f f e r e n c e s between the s p e c i f i e d groups, i n t h i s case, between the b i o g e o c o e n o t i c a s s o c i a t i o n s . The a d d i t i o n or d e l e t i o n of s p e c i f i c v a r i a b l e s from the a n a l y s i s might change r e s u l t s . For t h i s reason, no two groups can be proven i d e n t i c a l . The a d d i t i o n or d e l e t i o n of v a r i a b l e s might segregate the groups b e t t e r or make the s e g r e g a t i o n worse (Pimentel, 1979). Thus the d i s c r i m i n a n t a n a l y ses performed i n t h i s study, as in any study, were l i m i t e d by the s e l e c t i o n of v a r i a b l e s f o r i n c l u s i o n i n the a n a l y s i s (Table 13). 5.5 PRODUCTIVITY RELATIONSHIPS 5.5.1 V a r i a t i o n Between A s s o c i a t i o n s D e s c r i p t i v e s t a t i s t i c s f o r e i g h t mensuration v a r i a b l e s are shown f o r each BA i n Appendix M. Means (MN) and 95% confidence i n t e r v a l s (CI) f o r these v a r i a b l e s are shown in Table 30 f o r a l l s i x BA's. The f o r e s t canopy of p l o t s i n BA 1 was dominated by lodgepole p i n e , the f o r e s t canopy of p l o t s i n BA 6 was dominated by red a l d e r , and the f o r e s t canopy of the f o r t y - o n e i n t e r m e d i a t e p l o t s i n BA's 2 to 5 was dominated by D o u g l a s - f i r . 1 49 Table 30 - Means (MN) and 95% confidence i n t e r v a l s (CI) f o r the 8 mensuration v a r i a b l e s f o r the 6 biogeocoenotic a s s o c i a t i o n s . BIOGEOCOENOTIC ASSOCIATION (number of sample p l o t s ) VARIABLE 1 (5) 2(10) 3(11) 4(10) 5(10) 6(5) SI MN 29 44 54 55 CI — 26-32 41-46 50-58 52-58 — GC MN — 6 4 2 2 — CI — 6-7 3-4 1-3 1-2 — VOLUME MN 266 247 591 878 964 279 CI 113-419 204-290 500-683 776-980 748-1179 109-449 STEMS MN 1 724 1 271 996 556 484 580 CI -648-4095 889-1652 620-1372 393-720 379-588 289-870 AGE MN 69 60 62 65 68 55 CI 62-76 54-66 54-71 58-71 60-76 43-67 MAI MN 4 4 1 0 1 4 1 4 5 CI 1-6 4-5 8- 1 2 12-16 12-16 2-8 DBH MN 22 21 30 42 45 29 CI 1 6-29 18-24 26-34 36-48 39-51 23-35 BA MN 52 40 60 70 73 36 CI 1 3-91 34-45 52-67 61-79 63-84 25-47 N.B. SI = s i t e index of D o u g l a s - f i r (m/100 y r s ) GC = growth c l a s s of D o u g l a s - f i r VOLUME = gross volume (m 3/ha) STEMS = number of stems (stems/ha) AGE = stand age (years) MAI = mean annual increment (m 3/ha/yr) DBH = diameter breast height (cm) BA = ba s a l area (m 2/ha) 1 50 Thus, in terms of mensuration v a r i a b l e s , BA's 1 and 6 are not s t r i c t l y comparable to BA's 2, 3, 4, and 5. For t h i s reason, only BA's 2 to 5 w i l l be c o n s i d e r e d f u r t h e r . In summary, Table 30 i n d i c a t e s the f o l l o w i n g t r e n d s . From BA 2 to BA 5, there i s a decrease i n the number of stems/ha, and p a r a l l e l i n c r e a s e s i n average stand d.b.h., ba s a l area, volume, and age. Although p a r t of the reason f o r the trends i n stems/ha, d.b.h., b a s a l area, and volume was no doubt due to d i f f e r e n c e s i n stand age, i t was f e l t t h a t , because v a r i a t i o n i n average stand age was so s l i g h t , these trends were mainly r e l a t e d to d i f f e r e n c e s i n s i t e p r o p e r t i e s ( d i s c u s s e d l a t e r ) . Mean annual increment (MAI) a l s o i n c r e a s e d from BA 2 to BA 5. Although not s t r i c t l y comparable because of the s l i g h t d i f f e r e n c e s i n stand age mentioned above, i t seems safe to conclude that there was an i n c r e a s e i n stand p r o d u c t i v i t y from BA 2 to BA 5. T h i s c o n c l u s i o n i s supported by trends i n s i t e index ( S I ) , an index of p r o d u c t i v i t y which i s independent of stand age. S i t e index a l s o i n c r e a s e d from BA 2 to BA 5. I t should be noted that average MAI values f o r BA's 4 and 5 were i d e n t i c a l ( i . e . 14 m 3/ha/yr), and average SI values f o r BA's 4 and 5 were n e a r l y i d e n t i c a l ( i . e . 54 and 55 m/l00yrs r e s p e c t i v e l y ) suggesting that there was probably no d i f f e r e n c e i n p r o d u c t i v i t y between these 2 BA's. Mean SI values f o r BA's 2 ($PM-GS), 3 ($PM-KO), and 5 ($PM-PI) were compared to mean SI values f o r s i m i l a r a s s o c i a t i o n s s t u d i e d by E i s (1962), and Kojima and K r a j i n a (1975). These values are shown in Table 31. The trends i n SI suggested by 151 Table 31 - Comparison of s i t e index (m/100 y r s ) v a l u e s for D o u g l a s - f i r (Pseudotsuga m e n z i e s i i ) i n 3 f o r e s t e d a s s o c i a t i o n s . The Cowichan Lake data i s compared to values obtained by E i s (1962) and Kojima and K r a j i n a (1975). ASSOCIATION NAME STUDY AREA sample standard s i z e mean d e v i a t i o n SALAL $PM-GS S a l a l G a u l t h e r i a s h a l l o n MOSS $PM-KO moss moss SWORD FERN Cowichan Lake 10 Southwestern M a i n l a n d 1 16 Strathcona P a r k 2 Cowichan Lake Southwestern Mainland Strathcona Park $PM-PI Cowichan Lake Polystichum Southwestern Mainland A c h l y s - P o l y s t ichum Strathcona Park (var. polystichosum) 1 1 1 1 26 23 10 24 1 1 29 31 33 44 44 42 55 50 50 5 7 7 4 6 6 4 4 4 E i s (1962) 2 Kojima and K r a j i n a (1975) r e s u l t s of the Cowichan Lake study agreed with trends found i n these other two s t u d i e s ( i . e . i n c r e a s e i n SI from s a l a l -dominated s i t e s to sword fern-dominated s i t e s ) . Absolute values of average SI f o r the " s a l a l " a s s o c i a t i o n were very s i m i l a r f o r a l l three l o c a t i o n s (range = 29-33), as were ab s o l u t e values f o r the "moss" a s s o c i a t i o n (range = 42-44). The g r e a t e s t d i f f e r e n c e s were found when the Cowichan Lake $PM-PI a s s o c i a t i o n was compared to the other two "sword f e r n " a s s o c i a t i o n s . In t h i s l a t t e r case, average SI d i f f e r e d by a value of 5 m/100 y r s . 152 5.5.2 R e l a t i o n s h i p With V e g e t a t i o n P a t t e r n s The r e l a t i o n s h i p between SI and understory v e g e t a t i o n p a t t e r n s was i n v e s t i g a t e d by p l o t t i n g SI values f o r each p l o t over t h e i r a x i s 1 score from the DCA14 o r d i n a t i o n ( F i g u r e 18). T h i s f i g u r e suggested a r e l a t i v e l y good l i n e a r r e l a t i o n s h i p between understory v e g e t a t i o n and SI of D o u g l a s - f i r . In F i g u r e 18, 78% (r = .88**) of the v a r i a t i o n i n SI appears to be r e l a t e d to changes i n understory v e g e t a t i o n . No c a u s a l r e l a t i o n s h i p i s imp l i e d here. The only c o n c l u s i o n that can be suggested i s that s o i l c o n d i t i o n s causing ( a f f e c t i n g ) the observed changes in understory v e g e t a t i o n from the sal a l - d o m i n a t e d BA 2 to the sword fern-dominated BA 5 correspond to an improvement i n s o i l c o n d i t i o n s with respect to growth requirements of D o u g l a s - f i r . Thus, F i g u r e 18 tends to support the hypothesis that understory p l a n t communities are u s e f u l i n d i c a t o r s of s i t e q u a l i t y f o r growth of D o u g l a s - f i r . 5.5.3 R e l a t i o n s h i p With S o i l P r o p e r t i e s I n d i c a t o r p l a n t a n a l y s i s suggested that there was an in c r e a s e i n s o i l moisture and n u t r i e n t a v a i l a b i l i t y from BA 1 to BA 6. T h i s suggestion was supported when s o i l p r o p e r t i e s were i n v e s t i g a t e d . Using l i m i t e d data, i t was found that (from BA 1 to BA 6) there was a decrease i n growing season s o i l water d e f i c i t s and s o i l C:N r a t i o s , and i n c r e a s e s i n s o i l N content, exchangeable c a t i o n s , and C.E.C.. There was a l s o a t r a n s i t i o n from mor and moder to mull humus forms. I t was a l s o observed in 2 2 2 2 2 2 3 3 3 3 3 3 3 * 3 3 3 2 2 4 4 4 4 44 4 5 5 4 * 55 5 " * S S 5 1 1 1 1 1 1 •15 90 195 300 DCA14.1 F i g u r e 18 - R e l a t i o n s h i p between s i t e i n d e x (m/100 y r s ) o f D o u g l a s - f i r ( P s e u d o t s u g a m e n z i e s i i ) and a x i s 1 s c o r e of t h e DCA14 o r d i n a t i o n (DCA14 . T J ^ Symbols p l o t t e d i n d i c a t e t h e a s s o c i a t i o n t o w h i c h a sample p l o t b e l o n g s . 1 2 3 4 5 6 th e t h e t h e t h e t h e t h e $PC-PJ $PM-GS $PM-K0 $PM-HS $PM-PI $AR-LA a s s o c i a t i o n a s s o c i a t i o n a s s o c i a t i o n a s s o c i a t i o n a s s o c i a t i o n a s s o c i a t i o n ( a s s o c i a t i o n 1.11) ( a s s o c i a t i o n 1.21) ( a s s o c i a t i o n 2.11) ( a s s o c i a t i o n 3.11) ( a s s o c i a t i o n 3.12) ( a s s o c i a t i o n 3.21) 1 54 that there was an i n c r e a s e i n SI of D o u g l a s - f i r from BA 2 to BA 5. Thus, i t seems reasonable to suggest that the i n c r e a s e s in SI from BA 2 to BA 5 were r e l a t e d to more f a v o r a b l e s o i l moisture and n u t r i e n t c o n d i t i o n s . The r e l a t i o n s h i p between SI and trends i n s o i l p r o p e r t i e s was i n v e s t i g a t e d by p l o t t i n g SI v a l u e s f o r each p l o t over t h e i r c a n o n i c a l v a r i a b l e 1 value from the DA04 d i s c r i m i n a n t a n a l y s i s (Figure 19). Despite the l i m i t a t i o n s a s s o c i a t e d with such graphs, l i m i t a t i o n s which were d i s c u s s e d e a r l i e r ( i . e . the use of only the f i r s t a x i s ( c a n o n i c a l v a r i a b l e ) , the p o s s i b i l i t y of n o n - l i n e a r r e l a t i o n s h i p s , and the s e l e c t i o n of v a r i a b l e s to be used i n the a n a l y s i s ) , t h i s f i g u r e suggests a r e l a t i v e l y good l i n e a r r e l a t i o n s h i p . The trend shown in F i g u r e 19 suggests that 71% (r = 0.84**) of the v a r i a t i o n i n SI of D o u g l a s - f i r can be e x p l a i n e d by changes in the s o i l p r o p e r t i e s s e l e c t e d by the DA04 d i s c r i m i n a n t a n a l y s i s , i . e . PH.123, CNHF, CA.0123, PHHF, CN.123, and MG.0123 (Table 28) . I t must be s t r e s s e d that d i s c r i m i n a n t a n a l y s i s s e l e c t s the l i n e a r combination of v a r i a b l e s that best c h a r a c t e r i z e s d i f f e r e n c e s between groups (Dixon, 1983). In t h i s p a r t i c u l a r a p p l i c a t i o n , d i s c r i m i n a n t a n a l y s i s was used to s e l e c t the l i n e a r combination of s o i l p r o p e r t i e s that best c h a r a c t e r i z e s d i f f e r e n c e s between BA's 2, 3, 4, and 5. Although there was an i n c r e a s e i n SI of D o u g l a s - f i r from BA 2 to BA 5, t h i s does not imply that the s e l e c t e d s o i l p r o p e r t i e s are n e c e s s a r i l y the best for e x p l a i n i n g ( p r e d i c t i n g ) d i f f e r e n c e s i n p r o d u c t i v i t y . F e r t i l i z a t i o n t r i a l s have shown that the p r o d u c t i v i t y of 155 in _ 0> CO CM 4 5 « 5 5 4 » « 4 „ * 5 5 in T 3 3 3 3 3 3 3 J 3 3 4 2 3 5 4 5 2 2 22 * 1 1 1 1 1 1 •5.5 -2.0 1.5 5.0 DA04.1 F i g u r e 19 - R e l a t i o n s h i p between s i t e i n d e x (m/100 y r s ) of D o u g l a s - f i r ( P s e u d o t s u g a m e n z i e s i i ) and c a n o n i c a l v a r i a b l e 1 from t h e DA04 d i s c r i m i n a n t a n a l y s i s (DA04.1). Symbols p l o t t e d i n d i c a t e t h e a s s o c i a t i o n t o w h i c h a sample p l o t b e l o n g s . 1 = t h e $PC-PJ 2 = t h e $PM-GS 3 = t h e $PM-K0 4 = t h e $PM-HS 5 = t h e $PM-PI 6 = t h e $AR-LA a s s o c i a t i o n a s s o c i a t i o n a s s o c i a t i o n a s s o c i a t i o n a s s o c i a t i o n a s s o c i a t i o n ( a s s o c i a t i o n 1.11) ( a s s o c i a t i o n 1.21) ( a s s o c i a t i o n 2.11) ( a s s o c i a t i o n 3.11) ( a s s o c i a t i o n 3.12) ( a s s o c i a t i o n 3.21) 1 56 many D o u g l a s - f i r stands i s l i m i t e d by low N - a v a i l a b i l i t y (Gessel and Atkinson, 1979). Heilman (1979) noted that n i t r o g e n i s the only n u t r i e n t g i v i n g r a t h e r c o n s i s t e n t f e r t i l i z e r responses in D o u g l a s - f i r stands and, because of t h i s , i s the only f e r t i l i z e r element being commercially used i n these stands. Shumway and Atkinson (1978) a l s o noted t h a t , i n many i n s t a n c e s , the a p p l i c a t i o n of n i t r o g e n f e r t i l i z e r has been shown to in c r e a s e D o u g l a s - f i r y i e l d . An examination of Table 26 r e v e a l e d that there were c o n s i d e r a b l e d i f f e r e n c e s i n TN.0123 and MN.0123 between BA's 2 and 3, and BA's 4 and 5. I t was spe c u l a t e d that these v a r i a b l e s were not s e l e c t e d by d i s c r i m i n a n t a n a l y s i s because the t r e n d i n these two i n d i c e s of s o i l N s t a t u s from BA 2 to BA 5 appeared to be c u r v i l i n e a r . Because of the frequent importance of s o i l N s t a t u s i n c o n t r o l l i n g p r o d u c t i v i t y of D o u g l a s - f i r stands (mentioned above), i t was f e l t that the r e l a t i o n s h i p between s o i l N s t a t u s and p r o d u c t i v i t y of D o u g l a s - f i r i n the Cowichan Lake sample p l o t s should be i n v e s t i g a t e d i n gr e a t e r d e t a i l . The r e s u l t s of t h i s i n v e s t i g a t i o n are presented and d i s c u s s e d below. The f o r t y - o n e i n t e r m e d i a t e sample p l o t s f o r which SI of D o u g l a s - f i r c o u l d be determined ( i . e . p l o t s i n BA's 2, 3, 4, and 5) were s u b d i v i d e d i n t o seven groups. These groups were composed of a l l p l o t s belonging to the same growth c l a s s (GC). D e s c r i p t i v e s t a t i s t i c s f o r s i x t e e n i n d i c e s of s o i l N s t a t u s were c a l c u l a t e d f o r each group using the MIDAS s t a t i s t i c a l package (Fox and G u i r e , 1976). These s t a t i s t i c s are shown i n Appendix N. Of these, t o t a l n i t r o g e n (TN), m i n e r a l i z a b l e n i t r o g e n (MN), 1 57 and c a r b o n r n i t r o g e n r a t i o (CN) f o r the 0-30 cm m i n e r a l s o i l l a y e r ( l a y e r .1) and f o r the mineral s o i l weighted to r o o t i n g depth ( l a y e r .123) were s e l e c t e d f o r f u r t h e r c o n s i d e r a t i o n . The r e l a t i o n s h i p between these i n d i c e s of s o i l N s t a t u s and growth c l a s s of D o u g l a s - f i r are shown i n F i g u r e s 20 to 25. These f i g u r e s suggest the f o l l o w i n g t r e n d s . T o t a l N appears to be q u i t e v a r i a b l e , but F i g u r e s 20 and 21 suggest that the h i g h e s t l e v e l s of t o t a l s o i l N are a s s o c i a t e d with the most p r o d u c t i v e p l o t s ( i . e . those in GC's 1 and 2). A much more d i s t i n c t t rend i s observed when m i n e r a l i z a b l e N i s c o n s i d e r e d . In F i g u r e s 22 and 23, mean m i n e r a l i z a b l e N remains r e l a t i v e l y constant i n GC's 7, 6, and 5, but i n c r e a s e s i n a c u r v i l i n e a r manner from GC 4 to GC 1. F i g u r e 23 suggests that MN.123 v a r i e s from a low of about 0 kg«ha~ 1 on the poorest s i t e s to a high of over 100 kg»ha~ 1 on the most p r o d u c t i v e s i t e s . F i g u r e s 24 and 25 suggest that there i s a decrease in C:N r a t i o with i n c r e a s i n g s i t e p r o d u c t i v i t y . T h i s trend appears to be l i n e a r . CN.123 ranges from a high of about 31 f o r GC 7 to a low of about 19 f o r GC 1 . Keeney (1980) noted that only r e c e n t l y has r e s e a r c h been d i r e c t e d towards r e l a t i n g r e s u l t s of N a v a i l a b i l i t y i n d i c e s to a c t u a l t r e e growth or response to f e r t i l i z a t i o n . Heilman (1979) s t a t e d that the d e t e r m i n a t i o n of t o t a l N content has been the method most f r e q u e n t l y used for e v a l u a t i n g the N f e r t i l i t y s t a t u s of f o r e s t s o i l s i n the " D o u g l a s - f i r Region". He a l s o noted that t o t a l N content has been " r e l a t e d i n a g e n e r a l way to N f e r t i l i z a t i o n response f o r l i m i t e d numbers of s o i l s " . 158 o o o 00 o o o CD O O O o o o CM { t GC 7 n 4 —i-6 4 T " 5 —r-4 6 .. \ -3 6 12 1 5 F i g u r e 20 - R e l a t i o n s h i p between t o t a l N (kg/ha) i n s o i l l a y e r 1 (TN.1) and growth c l a s s (GC) of D o u g l a s - f i r (Pseudotsuga  m e n z i e s i i ) . Means ( h o r i z o n t a l b a r s ) , 95% c o n f i d e n c e i n t e r v a l s ("vertical b a r s ) , and sample s i z e s (n) are shown. 159 o o O' co CO CM o o o ' CO z o o o o o o cs } GC 7 n 4 6 4 t 3 6 2 12 1 5 F i g u r e 21 - R e l a t i o n s h i p between t o t a l N (kg/ha) i n the mineral s o i l (TN.123) and growth c l a s s (GC) of D o u g l a s - f i r (Pseudotsuga m e n z i e s i i ) . Means ( h o r i z o n t a l b a r s ) , 95% confidence i n t e r v a l s ( v e r t i c a l b a r s ) , and sample s i z e s (n) are shown. 160 o CD o CM o eo o Hi ' GC 7 n 4 — r -6 — r -3 6 i 2 12 1 5 F i g u r e 22 - R e l a t i o n s h i p between m i n e r a l i z a b l e N (kg/ha) i n s o i l l a y e r 1 (MN.1) and growth c l a s s (GC) of D o u g l a s - f i r (Pseudotsuga m e n z i e s i i ) . Means ( h o r i z o n t a l b a r s ) , 95% c o n f i d e n c e i n t e r v a l s ( v e r t i c a l b a r s ) and sample s i z e s (n) a r e shown. 161 o (O o CM CO £ o T CO z o o - I - t GC n —r~ 7 6 4 5 4 4 6 3 6 2 12 1 5 F i g u r e 23 - R e l a t i o n s h i p between m i n e r a l i z a b l e N (kg/ha) i n mineral s o i l (MN.123) and growth c l a s s (GC) of D o u g l a s - f i r (Pseudotsuga m e n z i e s i i ) . Means ( h o r i z o n t a l b a r s ) , 95% confidence i n t e r v a l s ( v e r t i c a l bars) and sample s i z e s (n) are shown. 162 o co CO CM m O co CM CM o CM t G C n -r-7 —r— 6 ~i— 5 —r-4 6 3 2 12 1 5 F i g u r e 24 - R e l a t i o n s h i p between C:N r a t i o i n s o i l l a y e r 1 (CN.1) and growth c l a s s (GC) of D o u g l a s - f i r (Pseudotsuga  m e n z i e s i i ) . Means ( h o r i z o n t a l b a r s ) , 95% c o n f i d e n c e i n t e r v a l s {"vertical b a r s ) , and sample s i z e s (n) are shown. 163 co CM o O CO n CM co oo CM CM o CM GC n 7 6 4 T— 5 4 —r-4 —r-3 • 2 12 1 5 F i g u r e 25 - R e l a t i o n s h i p between C:N r a t i o i n the mineral s o i l (CN.123) and growth c l a s s (GC) of D o u g l a s - f i r (Pseudotsuga  m e n z i e s i i ) . Means ( h o r i z o n t a l b a r s ) , 95% confidence i n t e r v a l s ( v e r t i c a l bars) and sample s i z e s (n) are shown. 1 64 However, t h i s method does not appear to hold much promise because s i g n i f i c a n t f e r t i l i z a t i o n responses have been observed on s o i l s with a very high t o t a l n i t r o g e n content (Gessel and Atk i n s o n , 1979). Shumway and Atkinson (1978) noted that D o u g l a s - f i r stands have responded to n i t r o g e n f e r t i l i z a t i o n even where the s o i l c o n t a i n s as much as 15,960 kg of t o t a l N per hec t a r e (14,250 l b / a c r e ) . As Shumway and Atkinson (1978) and Ges s e l and Atkinson (1979) noted, an adequate n i t r o g e n supply f o r t r e e growth depends to a great extent on N - m i n e r a l i z a t i o n r a t e s which are only p a r t i a l l y c o n t r o l l e d by t o t a l N content of the s o i l . Bremner (1965) concluded that the dete r m i n a t i o n of t o t a l N content appears to have l i m i t e d value as an index of N a v a i l a b i l i t y . Keeney (1980) s t a t e d that r e s u l t s to date i n d i c a t e that the anaerobic i n c u b a t i o n procedure i s the most s a t i s f a c t o r y l a b o r a t o r y N a v a i l a b i l i t y t e s t . T h i s c o n c l u s i o n i s supported by s t u d i e s done by Shumway and Atkinson (1978) and Powers (1980). Shumway and Atkinson (1978) determined m i n e r a l i z a b l e N content of the mineral s o i l i n second-growth D o u g l a s - f i r stands i n western Washington and Oregon. These stands were f e r t i l i z e d and growth response determined. They found that m i n e r a l i z a b l e N in responding stands was s i g n i f i c a n t l y lower than i n non-responding stands. Powers (1980) found a s i g n i f i c a n t c o r r e l a t i o n between m i n e r a l i z a b l e N and s i t e index of Ponderosa pine (Pinus  ponderosa Dougl. ex P.&C. Lawson) stands i n northern C a l i f o r n i a and southern Oregon. R e s u l t s of the Cowichan Lake study suggested that 1 65 m i n e r a l i z a b l e N as determined by the anaerobic i n c u b a t i o n technique of Waring and Bremner (1964) may be u s e f u l f o r a s s e s s i n g s i t e q u a l i t y f o r D o u g l a s - f i r . F i g u r e s 22 and 23 suggest t h a t , on poorer s i t e s , N a v a i l a b i l i t y i s q u i t e low and does not vary s u b s t a n t i a l l y . Other f a c t o r s such as moisture and the l e v e l s of other n u t r i e n t s may be r e s p o n s i b l e f o r d i f f e r e n c e s i n s i t e p r o d u c t i v i t y . But, on the b e t t e r s i t e s , s i t e index of D o u g l a s - f i r appears to i n c r e a s e with the amount of m i n e r a l i z a b l e N. T h i s would suggest that other f a c t o r s such as moisture l e v e l and the l e v e l s of other n u t r i e n t s are adequate and s i t e p r o d u c t i v i t y i s c o n t r o l l e d by N a v a i l a b i l i t y . The c a r b o n r n i t r o g e n r a t i o of s o i l organic matter a f f e c t s i t s decomposition rate and the r a t e at which n i t r o g e n becomes a v a i l a b l e f o r uptake by p l a n t s (Bartholomew, 1965; Scarsbrook, 1965; Brady, 1974; Richards, 1974; Heilman, 1979; P r i t c h e t t , 1979; and Youngberg, 1979). Lower C:N r a t i o s are a s s o c i a t e d with f a s t e r decomposition r a t e s and more r a p i d r e l e a s e of a v a i l a b l e forms of n i t r o g e n (Heilman, 1979). Lowe and K l i n k a (1981) c o l l e c t e d samples of f o r e s t humus ( e c t o r g a n i c and/or endorganic h o r i z o n s ) from t h i r t y ecosystems i n the CWH zone of B r i t i s h Columbia. They found a s i g n i f i c a n t c o r r e l a t i o n (r = 0.82**) between the C:N r a t i o of the humus form and growth c l a s s of D o u g l a s - f i r . In the Cowichan Lake study, a s t a t i s t i c a l l y s i g n i f i c a n t c o r r e l a t i o n (r = 0.69**) was a l s o found between the C:N r a t i o of the humus form (CNHF) and GC of D o u g l a s - f i r (Appendix N). In t h i s study, a s i g n i f i c a n t c o r r e l a t i o n (r = 0.62**) was a l s o found between CN.123 and GC of D o u g l a s - f i r . 166 K l i n k a e_t a l . (1981a) found an average C:N r a t i o of 19 i n the A h o r i z o n of GC 1 D o u g l a s - f i r "benchmark" ecosystems. On the most p r o d u c t i v e p l o t s in the Cowichan Lake study ( i . e . p l o t s i n GC 1), a s i m i l a r value (CN.1 = 22) was found. Heilman (1979) s t a t e d that high C:N r a t i o s (above 25-30 in m i n e r a l s o i l ) i n d i c a t e low a v a i l a b i l i t y of N f o r p l a n t growth, but t h a t r e l a t i v e l y l i t t l e use has been made of C:N r a t i o s f o r e v a l u a t i n g N-supplying p o t e n t i a l of f o r e s t s o i l s . Recent work suggests that t h i s r a t i o does indeed appear to be u s e f u l f o r t h i s purpose. Powers (1980), i n h i s study of f o r e s t s o i l s i n northern C a l i f o r n i a and southern Oregon, found a s i g n i f i c a n t c o r r e l a t i o n between the C:N r a t i o of mineral s o i l samples ( c o l l e c t e d from the 18-22 cm m i n e r a l s o i l l a y e r ) and the amount of N r e l e a s e d d u r i n g anaerobic i n c u b a t i o n . In h i s study, he found t h a t , as the C:N r a t i o of m i n e r a l s o i l samples i n c r e a s e d , the amount of a v a i l a b l e N (as estimated by the anaerobic i n c u b a t i o n method) decreased. The same trend was observed i n the Cowichan Lake study. F i g u r e s 26 and 27 show the , r e l a t i o n s h i p between m i n e r a l i z a b l e N and C:N r a t i o found i n t h i s study. Growth c l a s s values are p l o t t e d at the i n t e r s e c t i o n of mean m i n e r a l i z a b l e N value and mean C:N r a t i o f o r that growth c l a s s . These two f i g u r e s summarize trends observed i n p r e v i o u s f i g u r e s . They suggest that lower C:N r a t i o s correspond with i n c r e a s e d N a v a i l a b i l i t y (as estimated by m i n e r a l i z a b l e N) and that these corresponding trends are r e l a t e d to i n c r e a s e s i n s i t e p r o d u c t i v i t y as estimated by growth c l a s s of D o u g l a s - f i r . The c r i t i c a l C:N value of 25-30 suggested by Heilman (1979) 167 o CM o o m1 o eo Z <o o S1 o tM o • nr I S ) 4 fit 3" — i — 22 i •— 24 —I r-26 28 — i — 30 CN.1 F i g u r e 26 - R e l a t i o n s h i p between m i n e r a l i z a b l e N (kg/ha) and C:N i n s o i l l a y e r 1 (MN.1, CN.1), and growth c l a s s of D o u g l a s - f i r (Pseudotsuga m e n z i e s i i ) . Growth c l a s s values are p l o t t e d at mean MN and C:N value f o r that growth c l a s s . 1 i n c l u d e s p l o t s with mull humus form only 2 i n c l u d e s p l o t s with m u l l , moder and mor humus form 3 i n c l u d e s p l o t s with moder and mor humus form * i n c l u d e s p l o t s with mor humus form only 168 o CM O O O CO CD1 r- O (0 o. GO1 o CM o-• 2 0 2 2 • i 2 8 m • i i 3 0 2 4 2 6 CN.123 F i g u r e 27 - R e l a t i o n s h i p between m i n e r a l i z a b l e N (kg/ha) and C:N i n the m i n e r a l s o i l (MN.123, CN.123), and growth c l a s s of D o u g l a s - f i r (Pseudotsuga m e n z i e s i i ) . Growth c l a s s v a l u e s a r e p l o t t e d a t mean MN and C:N v a l u e f o r t h a t growth c l a s s . 1 i n c l u d e s p l o t s w i t h m u l l humus form o n l y 2 i n c l u d e s p l o t s w i t h m u l l , moder and mor humus form 3 i n c l u d e s p l o t s w i t h moder and mor humus form 4 i n c l u d e s p l o t s w i t h mor humus form o n l y 169 appears to be supported by r e s u l t s of the Cowichan Lake study. An examination of F i g u r e 26 suggests that when the C:N r a t i o of the 0-30 cm s o i l l a y e r i s l e s s than about 26, net m i n e r a l i z a t i o n as estimated by the Waring and Bremner (1964) method i n c r e a s e s q u i t e r a p i d l y with a decrease i n C:N r a t i o , but, when the C:N r a t i o i s g r e a t e r than 26, net m i n e r a l i z a t i o n i s n e g l i g i b l e and remains r e l a t i v e l y constant with an i n c r e a s e i n C:N r a t i o . F i g u r e s 26 and 27 a l s o demonstrate that the most p r o d u c t i v e s i t e s i n the study area, s i t e s which had the highest m i n e r a l i z a b l e N values and the lowest C:N r a t i o s , a l s o had a very obvious morphological f e a t u r e , i . e . a mull humus form. The a c t u a l humus form Group ( K l i n k a et a l . , 1981b) f o r each p l o t i s shown i n Table 32. T h i s data i s organized by growth c l a s s (GC) of D o u g l a s - f i r . K l i n k a e_t al. (1981b) s t a t e d that the mor order encompasses the l e a s t b i o l o g i a l l y a c t i v e humus forms and that decomposition of organic m a t e r i a l s takes p l a c e most r a p i d l y i n humus forms of the mull o r d e r . T h i s r e l a t i o n s h i p between humus forms and the rate of b i o l o g i c a l a c t i v i t y has been r e c o g n i z e d by many authors ( K r a j i n a , 1969; Van Praage and Brigode, 1973; Youngberg, 1979; Spurr and Barnes, 1980; Lowe and K l i n k a , 1981; Gosz, 1981; K r a j i n a et a l . , 1982: and many o t h e r s ) . Youngberg (1979) noted that mull humus forms are c h a r a c t e r i s t i c of s o i l c o n d i t i o n s where decomposition i s r a p i d and where moisture and temperature favor b i o l o g i c a l a c t i v i t y . On the other hand, he noted that mor humus forms are c h a r a c t e r i s t i c of s o i l c o n d i t i o n s where decomposition processes are not as r a p i d , r e s u l t i n g i n an 1 70 Table 32 - Humus form Group ( K l i n k a et a l . , 1981b) f o r a l l p l o t s in biogeo c o e n o t i c a s s o c i a t i o n s (BA) 2, 3, 4, and 5. Data i s o r ganized a c c o r d i n g to growth c l a s s (GC) of D o u g l a s - f i r (Pseudotsuga m e n z i e s i i ) . HUMUS HUMUS HUMUS GC PLOT-BA FORM GC PLOT-BA FORM GC PLOT-BA FORM GOOD MEDIUM POOR 1 16-5 VL 3 02-5 VL 6 1 1-2 HUR 20-4 VL 04-3 MD 44-2 UR 24-4 VL 07-3 UR 46-2 MD 30-5 VL 21-4 MD 48-2 HUR 36-5 VL 28-3 MD 42-3 HR 7 1 2-2 HUR 2 05-4 VL 34-2 HUR 09-5 VL 4 01-3 HUR 37-2 MD 1 0-4 VL 06-3 MD 38-2 HUR 1 4-4 VL 08-3 MD 15-5 VL 19-3 HUR 1 7-4 VL 23-3 MD HR = Hemimor 22-4 VL 45-4 MD HUR = Hemihumimor 25-5 VL UR = Humimor 26-4 VL 5 03-3 HUR MD = Mormoder 27-5 VL 32-2 HUR VL = Vermimull 29-5 VL 33-2 HUR 41-5 VL 43-3 HUR accumulation of organic m a t e r i a l on the f o r e s t f l o o r . Spurr and Barnes (1980) s t a t e d that an e x c e s s i v e development of mor humus forms u s u a l l y i n d i c a t e s poor N supply in the s o i l . Van Praage and Brigode (1973) a l s o noted a r e l a t i o n s h i p between the N c y c l e and the type of humus form. They observed that N c y c l i n g was more r a p i d i n mull and moder than i n mor humus forms. K l i n k a et a_l. (1981b) s t a t e d that "In comparison to the other o r d e r s , mulls may be c o n s i d e r e d as p r o v i d i n g the g r e a t e s t amount of a v a i l a b l e n u t r i e n t s to p l a n t s , in p a r t i c u l a r , n i t r o g e n . " . A s i m i l a r r e l a t i o n s h i p between N 171 a v a i l a b i l i t y and humus form was suggested by Gosz (1981 ) . Spurr and Barnes (1980) suggested t h a t , on s i t e s with a mor humus form, low N a v a i l a b i l i t y may r e s u l t i n lowered growth of f o r e s t t r e e s . T h i s o b s e r v a t i o n i s supported by r e s u l t s of the Cowichan Lake study. The l e a s t p r o d u c t i v e s i t e s in the study area were c h a r a c t e r i z e d by mor humus forms and the most p r o d u c t i v e s i t e s by mull humus forms (Table 32). A l s o , F i g u r e s 26 and 27 suggest that r e l a t i v e l y high N a v a i l a b i l i t y i s a s s o c i a t e d with mull humus forms and r e l a t i v e l y low N a v a i l a b i l i t y with mor humus forms. The r e l a t i o n s h i p between humus form and p r o d u c t i v i t y of D o u g l a s - f i r found in the Cowichan Lake study a l s o agrees with the c o n c l u s i o n s of Lowe and K l i n k a (1981). They c i t e d s e v e r a l s t u d i e s which i n d i c a t e d that s i t e s s u p p o r t i n g the best growth of D o u g l a s - f i r are c h a r a c t e r i z e d by mull humus forms. K r a j i n a (1969) and K r a j i n a et a_l. (1982) a l s o observed that the best growth of D o u g l a s - f i r occurs where the humus form i s mull or moder. They s t a t e d that D o u g l a s - f i r grows p o o r l y where ammonium i s the only form of a v a i l a b l e N i n the s o i l , and that t h i s s p e c i e s r e q u i r e s n i t r a t e s f o r i t s best growth. They a l s o s t a t e d that n i t r i f i c a t i o n i s c a r r i e d out mainly in s o i l s where ca l c i u m i s r e a d i l y a v a i l a b l e and the humus form i s mull or moder, and th a t the rate of n i t r i f i c a t i o n i s decreased where there i s an a c i d mor humus form. D e s c r i p t i v e s t a t i s t i c s f o r f i v e i n d i c e s of s o i l Ca s t a t u s were c a l c u l a t e d using the MIDAS (Fox and Gu i r e , 1976) s t a t i s t i c a l package. These s t a t i s t i c s are shown i n Appendix 0. 1 72 F i g u r e s 28 and 29 show the r e l a t i o n s h i p between two of these and GC of D o u g l a s - f i r i n the Cowichan Lake sample p l o t s . F i g u r e 28 shows the r e l a t i o n s h i p between GC and s o i l Ca content i n the 0-30 cm s o i l l a y e r (CA.1) and F i g u r e 29 shows the r e l a t i o n s h i p between GC and s o i l Ca content i n the mineral s o i l weighted to r o o t i n g depth (CA.123). These f i g u r e s suggest that the most p r o d u c t i v e s i t e s have the highest l e v e l s of s o i l c a l c i u m . Thus, a c c o r d i n g to the statements made by K r a j i n a (1969) and K r a j i n a et a l . (1982) d i s c u s s e d above, these f i g u r e s suggest that i n c r e a s e d p r o d u c t i v i t y of D o u g l a s - f i r i n the GC 1 and GC 2 p l o t s may have been i n f l u e n c e d by i n c r e a s e d n i t r i f i c a t i o n r a t e s and, consequently, i n c r e a s e d a v a i l a b i l i t y of n i t r a t e . F i n a l l y , i t should be noted that the trends i n s o i l N and Ca s t a t u s d i s c u s s e d above are almost i d e n t i c a l when f i g u r e s c o n s i d e r i n g N and Ca i n s o i l l a y e r 1 are compared to f i g u r e s c o n s i d e r i n g N and Ca i n mineral s o i l to r o o t i n g depth. T h i s would suggest that sampling l a y e r 1 only may be adequate f o r d e r i v i n g an index of s o i l N and Ca s t a t u s i n terms that are u s e f u l f o r a s s e s s i n g ( p r e d i c t i n g ) s i t e p r o d u c t i v i t y . 5.5.4 S y n t h e s i s Of V e g e t a t i o n / S o i l / P r o d u c t i v i t y R e l a t i o n s h i p s The i n f o r m a t i o n i n F i g u r e s 18 and 19 i s summarized i n F i g u r e 30. T h i s f i g u r e i s the same as F i g u r e 17 with the exception that growth c l a s s of D o u g l a s - f i r i s p l o t t e d i n s t e a d of the b i o g e o c o e n o t i c a s s o c i a t i o n symbol. F i g u r e 30 suggests that there i s a good r e l a t i o n s h i p between growth performance of 173 < o o CO o o o o o ex CO o o CM o o (D o o 00 G C n t t t 7 4 6 4 5 4 4 6 3 6 —i— 2 12 1 5 F i g u r e 28 - R e l a t i o n s h i p between Ca (kg/ha) i n s o i l l a y e r 1 (CA.1) and growth c l a s s (GC) of D o u g l a s - f i r (Pseudotsuga  m e n z i e s i i ) . Means ( h o r i z o n t a l b a r s ) , 95%' c o n f i d e n c e i n t e r v a l s T v e r t i c a l b a r s ) , and sample s i z e s (n) a r e shown. 174 CO CM < o o O CO o o o o o CM CO o o, CM o o co o o CO •- + -G C n 7 4 6 4 T " 5 4 6 3 6 2 1 2 F i g u r e 29 - R e l a t i o n s h i p between Ca (kg/ha) i n the mineral s o i l (CA.123) and growth c l a s s (GC) of D o u g l a s - f i r (Pseudotsuga  m e n z i e s i i ) . Means ( h o r i z o n t a l b a r s ) , 95% confidence i n t e r v a l s ( v e r t i c a l b a r s ) , and sample s i z e s (n) are shown. 175 • 3 3 5 4 4 3 6 6 7 6 7 5 4 2 2 1 2 3 2  1 1 2 1 3 4 2 2 2 2 1 1 1 1 1 r -15 90 195 300 DCA14.1 Figure 30 - Relationship between canonical var. 1 of the DA04 discriminant analysis (DA04.1) and axis 1 score of the DCA14 ordination (DCA14.1). Symbols plotted indicate the growth class of Douglas-fir (Pseudotsuga menziesii) on each p l o t . 1 D o u g l a s - f i r and the corresponding changes i n understory v e g e t a t i o n and s o i l p r o p e r t i e s . Low DA04 and DCA14 scores correspond to poor p r o d u c t i v i t y of D o u g l a s - f i r while high DA04 and DCA14 scores correspond to good p r o d u c t i v i t y of D o u g l a s - f i P o s s i b l e reasons f o r these observed trends were suggested e a r l i e r . 177 VI . SUMMARY AND CONCLUSIONS F i f t y - o n e sample p l o t s were l o c a t e d i n second-growth f o r e s t ecosystems surrounding Cowichan Lake on Vancouver I s l a n d . F l o r i s t i c composition, general s i t e p r o p e r t i e s , s e l e c t e d s o i l p h y s i c a l and chemical p r o p e r t i e s , and s i t e p r o d u c t i v i t y as estimated by s i t e index of D o u g l a s - f i r were determined f o r each p l o t . A c l a s s i f i c a t i o n of these immature f o r e s t ecosystems was produced, and r e l a t i o n s h i p s between f l o r i s t i c composition, s i t e p r o p e r t i e s , s o i l p r o p e r t i e s , and p r o d u c t i v i t y were examined. Methods employed i n c l u d e d : 1) standard methods used in the b i o g e o c l i m a t i c ecosystem c l a s s i f i c a t i o n system as a p p l i e d by the B.C. M i n i s t r y of F o r e s t s , and 2) m u l t i v a r i a t e a n a l y s i s techniques i n c l u d i n g o r d i n a t i o n s ( p o l a r , r e c i p r o c a l averaging, and detrended correspondence a n a l y s i s ) and c l u s t e r a n a l y s i s of the v e g e t a t i o n data, and stepwise d i s c r i m i n a n t a n a l y s i s of edatopic i n d i c a t o r species groups (EISG's) and s i t e and s o i l p r o p e r t i e s . The main r e s u l t s of t h i s study are summarized as f o l l o w s : 1. The number of c l a s s e s and c l a s s membership of each p l o t was f i n a l i z e d a f t e r c o n s i d e r a t i o n of environment data and the r e s u l t s of m u l t i v a r i a t e a n a l y s i s ( p a r t i c u l a r l y RA and DCA) a p p l i e d to the f l o r i s t i c d a t a. Three ord e r s , f i v e a l l i a n c e s , and s i x biogeocoenotic a s s o c i a t i o n s (BA's) were e s t a b l i s h e d . 2. An arranged s p e c i e s - s t r a t u m - u n i t by p l o t s matrix p r o v i d e d a u s e f u l summary of species d i s t r i b u t i o n s . T h i s matrix showed th a t , to v a r y i n g degrees, s p e c i e s d i s t r i b u t i o n s tend to be c o n c e n t r a t e d i n p a r t i c u l a r BA's, s u p p o r t i n g the c o n t e n t i o n that d i f f e r e n t combinations of s p e c i e s can be used to c h a r a c t e r i z e d i f f e r e n t BA's. 3. An o b j e c t i v e , repeatable procedure f o r e x t r a c t i n g from summary v e g e t a t i o n t a b l e s the c h a r a c t e r i s t i c combination of spe c i e s (CCS) f o r orde r s , a l l i a n c e s , and a s s o c i a t i o n s was developed and proposed f o r use i n f u t u r e s t u d i e s . T h i s procedure was a p p l i e d and the CCS of a l l syntaxa were d e r i v e d . 4. A comparison of the summary v e g e t a t i o n t a b l e s of three of the immature Cowichan Lake a s s o c i a t i o n s to the summary ve g e t a t i o n t a b l e s of three ( c l i m a t i c a l l y and e d a p h i c a l l y s i m i l a r ) mature a s s o c i a t i o n s r e v e a l e d strong s i m i l a r i t i e s i n understory s p e c i e s abundance and composition. T h i s suggested that understory p l a n t communities of the immature f o r e s t ecosystems had al r e a d y s u f f i c i e n t l y s t a b i l i z e d to permit s u c c e s s f u l i d e n t i f i c a t i o n of the probable climax a s s o c i a t i o n . 5. Based on a c o n s i d e r a t i o n of estimated hygrotope and trophotope val u e s of the sample p l o t s , i t was suggested that a x i s 1 of the f l o r i s t i c data o r d i n a t i o n s corresponded to a complex environmental g r a d i e n t r e l a t e d to i n c r e a s i n g a v a i l a b i l i t y of s o i l moisture and n u t r i e n t s . T h i s suggestion was supported by the r e s u l t s of i n d i c a t o r p l a n t a n a l y s i s . T h i s a n a l y s i s suggested that a x i s 1 corresponded to a change i n spe c i e s composition from d r y - s i t e to w e t - s i t e i n d i c a t o r s , and from n u t r i e n t - p o o r to n u t r i e n t - r i c h s i t e i n d i c a t o r s . D i s c r i m i n a n t a n a l y s i s (DA) of EISG's produced c l a s s i f i c a t i o n f u n c t i o n s which c o u l d subsequently be used to c l a s s i f y a d d i t i o n a l p l o t s not used i n the o r i g i n a l a n a l y s i s . 1 79 6. Trends i n a l i m i t e d number of q u a n t i t a t i v e l y assessed s i t e m o r p hological and s o i l p h y s i c a l and chemical p r o p e r t i e s a l s o supported the suggestion that a x i s 1 of the f l o r i s t i c data o r d i n a t i o n s corresponded to i n c r e a s i n g a v a i l a b i l i t y of s o i l moisture and n u t r i e n t s . I t was observed t h a t , from BA 1 to BA 6. there appeared to be a decrease i n growing season s o i l water d e f i c i t s and s o i l C:N r a t i o s , and p a r a l l e l i n c r e a s e s i n s o i l N content, exchangeable c a t i o n s , and C.E.C.. There was a l s o a t r a n s i t i o n from mor and moder to mull humus forms, suggesting more r a p i d n u t r i e n t c y c l i n g ( p a r t i c u l a r l y N). 7. D i s c r i m i n a n t a n a l y s i s of the s i t e and s o i l p r o p e r t i e s s e l e c t e d l i n e a r combinations of p r o p e r t i e s which best c h a r a c t e r i z e d d i f f e r e n c e s between the BA's. I t was found that the use of s o i l p h y s i c a l and chemical p r o p e r t i e s was more s u c c e s s f u l than the use of s i t e p r o p e r t i e s f o r d i f f e r e n t i a t i n g between the BA's. As with EISG's, d i s c r i m i n a n t a n a l y s i s of the s o i l p r o p e r t i e s produced c l a s s i f i c a t i o n f u n c t i o n s which c o u l d subsequently be used to c l a s s i f y a d d i t i o n a l sample p l o t s not used i n the o r i g i n a l a n a l y s i s . 8. The p o s s i b i l i t y of p a r a l l e l trends i n s o i l and v e g e t a t i o n p a t t e r n s was i n v e s t i g a t e d by c o n s i d e r i n g r e l a t i o n s h i p s between a x i s 1 scores from the DCA f l o r i s t i c data o r d i n a t i o n s and c a n o n i c a l v a r i a b l e 1 from the s o i l p r o p e r t i e s DA. I t was found th a t , when c o n s i d e r i n g a l l f i f t y - o n e p l o t s i n BA's 1 to 6, only 52% of the v a r i a t i o n i n understory v e g e t a t i o n was r e l a t e d to d i f f e r e n c e s i n the s e l e c t e d s o i l p r o p e r t i e s but, when c o n s i d e r i n g the for t y - o n e i n t e r m e d i a t e p l o t s i n BA's 2, 3, 4, 180 and 5, 83% of the v a r i a t i o n was e x p l a i n e d . 9. The data suggested an in c r e a s e i n p r o d u c t i v i t y from BA 2 to BA 4 and no d i f f e r e n c e s i n p r o d u c t i v i t y between BA's 4 and 5. Mean s i t e index (m/100 y r s ) of D o u g l a s - f i r was 29, 44, 54, and 55 f o r BA's 2 to 5 r e s p e c t i v e l y . Growth of D o u g l a s - f i r on ,the other two BA's ( i . e . BA's 1 and 6) was s e v e r e l y l i m i t e d by edaphic c o n d i t i o n s . 10. The r e l a t i o n s h i p between s i t e index of D o u g l a s - f i r and a x i s 1 scores of the DCA14 o r d i n a t i o n suggested that 78% of the v a r i a t i o n i n s i t e index appeared to be r e l a t e d to changes i n understory v e g e t a t i o n . T h i s o b s e r v a t i o n supports the c o n t e n t i o n that understory p l a n t communities are u s e f u l i n d i c a t o r s of s i t e q u a l i t y f o r growth of D o u g l a s - f i r . 11. The r e l a t i o n s h i p between s i t e index of D o u g l a s - f i r and c a n o n i c a l v a r i a b l e 1 of DA04 suggested that 71% of the v a r i a t i o n i n s i t e index appeared to be r e l a t e d to changes i n the s o i l p r o p e r t i e s which best d i s c r i m i n a t e d between BA's 2, 3, 4, and 5. 12. R e l a t i o n s h i p s between growth c l a s s of D o u g l a s - f i r and s e v e r a l i n d i c e s of s o i l N s t a t u s were i n v e s t i g a t e d . I t was found that m i n e r a l i z a b l e N values were hi g h e s t and C:N r a t i o s lowest on the most p r o d u c t i v e s i t e s . T h i s suggested that i n c r e a s e s i n p r o d u c t i v i t y were at l e a s t p a r t i a l l y due to higher N a v a i l a b i l i t y . The most p r o d u c t i v e s i t e s were a l s o c h a r a c t e r i z e d by a mull humus form, suggesting that these s i t e s were c h a r a c t e r i z e d by more r a p i d decomposition r a t e s and more r a p i d n u t r i e n t c y c l i n g . It was a l s o noted that the most pr o d u c t i v e s i t e s had the highest l e v e l s of s o i l Ca suggesting 18.1 more r a p i d n i t r i f i c a t i o n r a t e s and more n i t r a t e , an a v a i l a b l e form of N of t e n found to be a s s o c i a t e d with the best growth of Douglas-f i r . In c o n c l u s i o n , the a p p l i c a t i o n of m u l t i v a r i a t e a n a l y s i s techniques ( p a r t i c u l a r l y r e c i p r o c a l averaging, detrended correspondence a n a l y s i s , and stepwise d i s c r i m i n a n t a n a l y s i s ) proved very u s e f u l i n the Cowichan Lake study. R e s u l t s of these analyses were u s e f u l not only f o r c l a s s i f i c a t i o n purposes but a l s o f o r the i n v e s t i g a t i o n of trends i n environmental p r o p e r t i e s and s i t e p r o d u c t i v i t y . These techniques p r o v i d e a r a p i d , c omputer-assisted approach to data s y n t h e s i s ; a c o n s i d e r a t i o n of great importance when d e a l i n g with l a r g e data s e t s . They a l s o p r o v i d e a more o b j e c t i v e b a s i s f o r i n t e r p r e t a t i o n s . For these reasons, i t i s recommended that proponents of the b i o g e o c l i m a t i c system make g r e a t e r use of these techniques i n f u t u r e s t u d i e s . 182 LITERATURE CITED A l l e y , N.F. 1981. S u r f i c i a l geology of Vancouver I s l a n d , p. 67-73 _in P.E. Heilman, H.W. Anderson, and D.M. Baumgartner (e d s . ) . F o r e s t s o i l s of the D o u g l a s - f i r r e g i o n . Washington State U n i v e r s i t y , Cooperative Extension S e r v i c e , Pullman, Washington. 298 pp. Amiro, B.D., and G.M. C o u r t i n . 1981. P a t t e r n s of v e g e t a t i o n i n the v i c i n i t y of an i n d u s t r i a l l y d i s t u r b e d ecosystem, Sudbury, O n t a r i o . Can. J . Bot. 59(9): 1623-1639. Annas, R.M. 1977. B i o g e o c l i m a t i c c l a s s i f i c a t i o n i n the B.C. F o r e s t S e r v i c e , p. 25-28 _in G.A. Drew, and J.P. Kimmins ( e d s . ) . E c o l o g i c a l c l a s s i f i c a t i o n of f o r e s t land i n Canada and northwestern U.S.A.. A symposium by the F o r e s t Ecology Working Group of the C.I.F. and the Centre f o r Continuing Education, the U n i v e r s i t y of B r i t i s h Columbia, 30 September 1977. Vancouver, B.C. 395 pp.-B a i l e y , R.G. 1981. I n t e g r a t e d approaches to c l a s s i f y i n g land as ecosystems, p. 95-109 _in P. Laban (ed.). Proceedings of the workshop on land e v a l u a t i o n f o r f o r e s t r y . Pub. 28. I n t . I n s t , f o r Land Reclamation and Improvement, Wageningen, The Netherlands. 355 pp. B a i l e y , R.G., R.D. P f i s t e r , and J.A. Henderson. 1978. Nature of land and resource c l a s s i f i c a t i o n - A review. J . For. 76 (10): 650-655. Bakuzis, E.V., and H.L. Hansen. 1962. D i s t r i b u t i o n of balsam f i r r e p r o d u c t i o n and b a s a l area i n the edaphic f i e l d of f o r e s t communities in the c e n t r a l pine s e c t i o n of Minnesota. Minn. For. Note 120. Bakuzis, E.V., and H.L. Hansen. 1965. Balsam f i r (Abies balsamea (Linnaeus) M i l l e r ) - A monographic review. U n i v e r s i t y of Minnesota Press, M i n n e a p o l i s . 445 pp. Barkman, J . J . , J . Moravec, and S. Rauschert. 1976. Code of p h y t o s o c i o l o g i c a l nomenclature. V e g e t a t i o 32(3): 131-185. Bartholomew, W.V. 1965. M i n e r a l i z a t i o n and i m m o b i l i z a t i o n of n i t r o g e n in the decomposition of p l a n t and animal r e s i d u e s , p. 285-306 in W.V. Bartholomew, and F.E. C l a r k ( e d s . ) . S o i l n i t r o g e n . Agron. Mono. No. 10. Amer. Soc. Agron., Madison, Wisconsin. 615 pp. Becker, M. 1979. Une etude phyto-ecologique sur l e s plateaux c a l c a i r e s du Nord-Est (Massif de Haye). Annales des Sciences F o r e s t i e r e s 36(2): 93-124. Becking, R.W. 1954. S i t e i n d i c a t o r s and f o r e s t types of the 183 D o u g l a s - f i r region of western Washington and Oregon. D i s s e r t a t i o n . Univ. Wash., S e a t t l e . 133 pp. Beese, W.J. 1981. Vegetation-environment r e l a t i o n s h i p s of f o r e s t communities on c e n t r a l e a s t e r n Vancouver I s l a n d . M.F. T h e s i s . F a c u l t y of F o r e s t r y , U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. 239 pp. B e i l , C.E., R.L. T a y l o r , and G.A. Guppy. 1976. The b i o g e o c l i m a t i c zones of B r i t i s h Columbia. Davidsonia 7 ( 4 ) : 45-55. B e l l , D.T. 1978. P h y t o s o c i o l o g i c a l p a t t e r n s i n the f o r e s t v e g e t a t i o n of s o u t h - c e n t r a l Ohio. Castanea 43(4): 199-211. B e n z e c r i , J.-P. 1969. S t a t i s t i c a l a n a l y s i s as a t o o l to make p a t t e r n s emerge from data. p. 35-60 ir\ S. Watanabe (ed.). Methodologies of p a t t e r n r e c o g n i t i o n . Academic Press, New York. B e t t e r s , D.R., and J.L. Rubingh. 1978. S u i t a b i l i t y a n a l y s i s and w i l d l a n d c l a s s i f i c a t i o n : An approach. J o u r . Env. Mgt. 7 ( 1 ) : 59-72. B i c k e r s t a f f , A., W.L. Wallace, and F. E v e r t . 1981. Growth of f o r e s t s i n Canada. Part 2: A q u a n t i t a t i v e d e s c r i p t i o n of the l a n d base and the mean annual increment. Inf o . Report No. PI-X-1. Petawawa Nat. For. I n s t . , Can. For. Serv., Chalk R i v e r , Ont. 136 pp. Brady, N.C. 1974. The nature and p r o p e r t i e s of s o i l s (8th ed.). MacMillan P u b l i s h i n g Co., New York. 639 pp. Braun-Blanquet, J . 1928. P f l a n z e n s o z i o l o g i e . S p r i n g e r , B e r l i n . 330 pp. Braun-Blanquet, J . 1932. P l a n t s o c i o l o g y , ( t r a n s l a t e d by G.D. F u l l e r and H.S. Conard). McGraw-Hill Book Co. Inc., New York. 439 pp. Bray, R.J., and J.T. C u r t i s . 1957. An o r d i n a t i o n of the upland f o r e s t communities of southern Wisconsin. E c o l . Monog. 27(4): 325-349. Bremner, J.M. 1965. Nitrogen a v a i l a b i l i t y indexes, p. 1324-1345 in C A . B l a c k ( e d - ) . Methods of s o i l a n a l y s i s . Part 2. Chemical and m i c r o b i o l o g i c a l p r o p e r t i e s . Agron. Monog. 9. Amer. Soc. Agron., Madison, Wisconsin. 1572 pp. B r i t i s h Columbia F o r e s t S e r v i c e . 1974. Cowichan Lake Experiment S t a t i o n (4th ed.). P u b l i c a t i o n B.36. Research D i v i s i o n , B.C. F o r e s t Serv., V i c t o r i a , B.C. 18 pp. Brooke, R.C, E.B. Peterson, and V . J . K r a j i n a . 1970. The 184 subalpine Mountain Hemlock zone. Ecology of Western North America (Dept. Bot., U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C.) 2(2): 148-349. Burger, D. 1972. F o r e s t s i t e c l a s s i f i c a t i o n i n Canada. M i t t . V e r e i n s f o r s t l . Standortsk. F o r s t p f l z . 21: 20-36. Canada Department of A g r i c u l t u r e . 1974. The system of s o i l c l a s s i f i c a t i o n f o r Canada. Pub. 1455. Canada Department of A g r i c u l t u r e , Ottawa, Ont. 255 pp. Canada S o i l Survey Committee, Subcomittee on S o i l C l a s s i f i c a t i o n . 1978. The Canadian System of S o i l C l a s s i f i c a t i o n . Can. Dept. A g r i c . Publ. 1646. Supply and S e r v i c e s Canada, Ottawa, Ont. 164 pp. Carmean, W.H. 1975. F o r e s t s i t e q u a l i t y e v a l u a t i o n i n the U n i t e d S t a t e s . Adv. Agronomy 27: 209-269. Carmean, W.H. 1977. S i t e c l a s s i f i c a t i o n f o r northern f o r e s t s p e c i e s , p. 205-239 in B.M. Blum (chairman). Proceedings of the symposium on i n t e n s i v e c u l t u r e of northern f o r e s t types, 20-22 J u l y 1976, N u t t i n g H a l l , Univ. of Maine, Orono. Gen. Tech. Rep. No. NE-29. Northeastern F o r e s t Exp. S t a t i o n , U.S.D.A. F o r e s t S e r v i c e , Upper Darby, PA. 356 pp. C l a y t o n , J.S., W.A. E h r l i c h , D.B. Cann, J.H. Day, and I.B. M a r s h a l l . 1977.. S o i l s of Canada. Research Branch, A g r i c u l t u r e Canada, Ottawa. S o i l c l i m a t e s of Canada. Map Sheet. C l i n e , M.G. 1949. Basic p r i n c i p l e s of s o i l c l a s s i f i c a t i o n . S o i l S c i . 67: 81-91. Coffman, M.S., and G.L. W i l l i s . 1977. The use of i n d i c a t o r s p e c i e s to c l a s s i f y climax sugar maple and e a s t e r n hemlock f o r e s t s i n upper Michigan. For. E c o l . Mgt. 1(2): 149-168. C o t i c , I., J.A. D a n g e r f i e l d , A.J. Green, and J.R. Jungen. 1978. Guidebook f o r a s o i l s and land use tour i n the c o a s t a l western hemlock and D o u g l a s - f i r r e g i o n s of Vancouver I s l a n d , B r i t i s h Columbia. The E l e v e n t h I n t e r n a t i o n a l Congress of S o i l S cience, Edmonton, A l b e r t a , June 1978. C o n t r i b u t i o n 651. CD.A. S o i l Research I n s t i t u t e . 102 pp. C o u r t i n , P., M.C F e l l e r , and K. K l i n k a . 1983. L a t e r a l v a r i a b i l i t y i n some p r o p e r t i e s of d i s t u r b e d f o r e s t s o i l s i n southwestern B r i t i s h Columbia. Can. J . S o i l S c i . 63: 529-539. C o u r t i n , P.J., K. K l i n k a , R.K. Scagel, R.W. M i t c h e l l , R.M. Green, and D. L l o y d . 1984. B i o g e o c l i m a t i c u n i t s of southern Vancouver I s l a n d and the southwestern mainland of B r i t i s h Columbia. Province of B r i t i s h Columbia, M i n i s t r y of 185 F o r e s t s , Research Branch, Vancouver, B.C. ( i n p r e s s ) . Damman, A.W.H. 1977. The r o l e of v e g e t a t i o n a n a l y s i s i n land c l a s s i f i c a t i o n , p. 169-1 93 i_n G.A. Drew, and J.P. Kimmins ( e d s . ) . E c o l o g i c a l c l a s s i f i c a t i o n of f o r e s t land i n Canada and northwestern U.S.A. A symposium by the F o r e s t Ecology Working Group of the C.I.F. and the Centre f o r C o n t i n u i n g E d u c a t i o n , the U n i v e r s i t y of B r i t i s h Columbia, 30 September 1977, Vancouver B.C. 395 pp. Damman, A.W.H. 1979. The r o l e of v e g e t a t i o n a n a l y s i s i n land c l a s s i f i c a t i o n . F or. Chron. 55(5): 175-182. D a n i e l , T.W., J.A. Helms, and F.S. Baker. 1979. P r i n c i p l e s of s i l v i c u l t u r e (2nd ed.). McGraw-Hill, New York. 500 pp. Daubenmire, R. 1976. The use of v e g e t a t i o n i n a s s e s s i n g the p r o d u c t i v i t y of f o r e s t lands. Bot. Rev. 42(2): 115-143. Daubenmire, R. 1980. The s c i e n t i f i c b a s i s f o r a c l a s s i f i c a t i o n system i n land-use a l l o c a t i o n , p. 159-162 rn S o c i e t y of American F o r e s t e r s . Land-use a l l o c a t i o n : Processes, people, p o l i t i c s , p r o f e s s i o n a l s . Proceedings of the 1980 Convention of the S o c i e t y of American F o r e s t e r s . S.A.F., Bethesda, Maryland. 298 pp. Day, J.H., L. F a r s t a d , and D.G. L a i r d . 1959. S o i l survey of southeast Vancouver I s l a n d and Gulf I s l a n d s , B r i t i s h Columbia. Report No. 6, B.C. S o i l Survey. Can. Dept. A g r i c . 104 pp. + maps. Dixon, W.J. (ed.). 1983. BMDP s t a t i s t i c a l software. U n i v e r s i t y of C a l i f o r n i a Press, Los Angeles. 734 pp. Drew, G.A., and J.P. Kimmins ( e d s . ) . 1977. E c o l o g i c a l c l a s s i f i c a t i o n of f o r e s t land i n Canada and northwestern U.S.A. Proceedings of a symposium h e l d at Vancouver, B.C., Sept. 30 - Oct. 2, 1977. Sponsored by the F o r e s t Ecology Working Group of the Canadian I n s t i t u t e of F o r e s t r y and the Centre f o r C o n t i n u i n g Education, U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. 395 pp. E i s , S. 1962. S t a t i s t i c a l a n a l y s i s of s e v e r a l methods f o r e s t i m a t i o n of f o r e s t h a b i t a t s and tree growth near Vancouver, B.C.. F o r e s t r y B u l l . No. 4. F a c u l t y of F o r e s t r y , U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. 76 pp. E.L.U.C. S e c r e t a r i a t . 1975. P r o v i s i o n a l map of landforms -N.T.S. sheets 92/C-16 East and West (Cowichan Lake). Map at sc a l e 1:50,000. V i c t o r i a , B.C. E.L.U.C. S e c r e t a r i a t . 1978. S o i l s map - N.T.S. sheets 92/C-16 East and West (Cowichan Lake). Map at s c a l e 1:50,000. V i c t o r i a , B.C. 186 Emanuel, J . , and B. Wong. 1983. A v e g e t a t i o n t a b l e p r o c e s s o r . F a c u l t y of F o r e s t r y , U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. 13 pp. Eyre, F.H. (ed. ) . 1980. Fores t cover types of the United S t a t e s and Canada. S o c i e t y of American F o r e s t e r s , Washington, D.C. 148 pp. F a r l e y , A.L. 1979. A t l a s of B r i t i s h Columbia: People, environment, and resource use. U n i v e r s i t y of B r i t i s h Columbia Press, Vancouver, B.C. 136 pp. F a r r i s , J.S. 1977. On the phenetic approach to v e r t e b r a t e c l a s s i f i c a t i o n . i_n M.K. Hecht, P.C. Goody, and B.M. Hecht (ed s . ) . Major p a t t e r n s i n v e r t e b r a t e e v o l u t i o n . NATO Adv. Stud. I n s t . Ser., Ser A L i f e S c i . Plenum Press, New York. Fox, D.J., and R.E. G u i r e . 1976. Documentation f o r MIDAS (3rd ed.). S t a t i s t i c a l Research Laboratory, U n i v e r s i t y of Michigan. 203 pp. F r a n k l i n , J.F. 1981. Ve g e t a t i o n of the D o u g l a s - f i r r e g i o n , p. 93-112 in_ P.E. Heilman, H.W. Anderson, and D.M. Baumgartner (ed s . ) . F o r e s t s o i l s of the D o u g l a s - f i r r e g i o n . Washington State U n i v e r s i t y , Cooperative E x t e n s i o n S e r v i c e , Pullman, Washington. 298 pp. F r a n k l i n , J.F., and C T . Dyrness. 1973. N a t u r a l v e g e t a t i o n of Oregon and Washington. Gen. Tech. Rep. PNW-8. Pac. Northwest For. and Range Exp. Stn., U.S.D.A. For. Serv., P o r t l a n d , Oregon. 417 pp. Gauch, H.G. 1977. ORDIFLEX - A f l e x i b l e computer program f o r four o r d i n a t i o n techniques: weighted averages, p o l a r o r d i n a t i o n , p r i n c i p a l components a n a l y s i s , and r e c i p r o c a l averaging, Release B. Ecology and Systematics, C o r n e l l U n i v e r s i t y , I t h a c a , New York. 185 pp. Gauch, H.G. 1982. M u l t i v a r i a t e a n a l y s i s i n community ecology. Cambridge S t u d i e s i n Ecology. Cambridge U n i v e r s i t y Press, New York. 298 pp. Gauch, H.G., R.H. Whittaker, and T.R. Wentworth. 1977. A comparative study of r e c i p r o c a l averaging and other o r d i n a t i o n techniques. J . E c o l . 65: 157-174. Genssler, H. 1982. The a p p l i c a t i o n of p h y t o s o c i o l o g y i n the f o r e s t management of the F e d e r a l Republic of Germany, p. 179-198 _in G. Jahn (e d . ) . A p p l i c a t i o n of v e g e t a t i o n s c i e n c e to f o r e s t r y . Handbook of V e g e t a t i o n Science, Part 12. Dr. W. Junk P u b l i s h e r s , The Hague. 405 pp. Ges s e l , S.P., and W.A. A t k i n s o n . 1979. F o r e s t f e r t i l i z a t i o n 187 p r a c t i c e s , p. 293-298 i n P.E. Heilman, H.W. Anderson, and D.M. Baumgartner (eds.77 F o r e s t s o i l s of the D o u g l a s - f i r r e g i o n . Washington State U n i v e r s i t y , Cooperative Extension S e r v i c e , Pullman, Washington. 298 pp. Gholz, H.L. 1982. Environmental l i m i t s on aboveground net primary p r o d u c t i o n , l e a f area, and biomass i n v e g e t a t i o n zones of the P a c i f i c Northwest. Ecology 63(2): 469-481. G i l e s , D.G. 1983. S o i l water regimes on a f o r e s t e d watershed. M.Sc. T h e s i s . Dept. of S o i l Science, U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. 282 pp. Gilmour, J.S.L. 1951. The develbpment of taxonomic theory s i n c e 1851. Nature 168: 400-402. Gimbarzevsky, P. 1978. Land c l a s s i f i c a t i o n as a base f o r i n t e g r a t e d i n v e n t o r i e s of renewable resources, p. 169-177 in H.G. Lund, V.J. Laban, P.F. F f o l l i o t t , and D.W. Robinson. I n t e g r a t e d i n v e n t o r i e s of renewable n a t u r a l r e s o u r c e s . Proceedings of the workshop, January 8-12, 1978, Tucson, A r i z o n a . Gen. Tech. Rep. RM-55. Rocky Mountain For. and Range Exp. S t a t i o n , U.S.D.A. For. Serv., F o r t C o l l i n s , Colorado. 482 pp. Golden, M.S. 1979. Fo r e s t v e g e t a t i o n of the lower Alabama Piedmont. Ecology 60(4): 770-782. Gosz, J.R. 1981. Nitrogen c y c l i n g i n c o n i f e r o u s ecosystems, p. 405-426 jjn F.E. Cl a r k and T. Rosswall ( e d s . ) . T e r r e s t r i a l n i t r o g e n c y c l e s . E c o l . B u l l . No. 33. Swedish N a t u r a l Science Research C o u n c i l , Stockholm, Sweden. 714 pp. Grandtner, M.M., and F. Vaucamps. 1982. Ve g e t a t i o n s c i e n c e and f o r e s t r y i n Canada, p. 15-45 _in G. Jahn (ed.). 1982. A p p l i c a t i o n of v e g e t a t i o n s c i e n c e to f o r e s t r y . Handbook of Vege t a t i o n Science, Part 12. Dr. W. Junk P u b l i s h e r s , The Hague. 405 pp. Hagglund, B. 1981. E v a l u a t i o n of f o r e s t s i t e p r o d u c t i v i t y . F o r e s t r y A b s t r a c t s 42(11): 515-527. Hale, M.E., and W.L. Culberson. 1970. A f o u r t h c h e c k l i s t of the l i c h e n s of the C o n t i n e n t a l United S t a t e s and Canada. The B r y o l o g i s t 73(3): 499-543. Hal s t e a d , E.C. 1968. The Cowichan Ice Tongue, Vancouver I s l a n d . Can. Jour. E a r t h Sc. 5: 1409-1415. Hare, F.K., and M.K. Thomas. 1979. Climate Canada (2nd ed.). Wiley, Toronto. 256 pp. Havel, J . J . 1980a. A p p l i c a t i o n of fundamental s y n e c o l o g i c a l knowledge to p r a c t i c a l problems i n f o r e s t management. I. 188 Theory and methods. F o r e s t E c o l . and Mgt. 3(1): 1-29. Havel, J . J . 1980b. A p p l i c a t i o n of fundamental s y n e c o l o g i c a l knowledge to p r a c t i c a l problems in f o r e s t management. I I . A p p l i c a t i o n . F o r e s t E c o l . and Mgt. 3(1): 81-111. Hegyi, F., J . J e l i n e k , and D.B. Carpenter. 1979. S i t e index equations and curves f o r the major t r e e s p e c i e s i n B r i t i s h Columbia. For. Inv. Report No. 1. Inventory Branch, M i n i s t r y of F o r e s t s , P r o v i n c e of B r i t i s h Columbia, V i c t o r i a , B.C. 23 pp. Heilman, P.E. 1979. M i n e r a l s , chemical p r o p e r t i e s , and f e r t i l i t y of f o r e s t s o i l s , p. 121-136 i_n P.E. Heilman, H.W. Anderson, and D.M. Baumgartner ( e d s . ) . F o r e s t s o i l s of the Douglas-f i r r e g i o n . Washington State U n i v e r s i t y , Cooperative Extension S e r v i c e , Pullman, Washington. 298 pp. Henderson, J.A. 1982. Succession on two h a b i t a t types in western Washington, p. 80-86 rn J.F. Means (ed.). F o r e s t s u c c e s s i o n and stand development r e s e a r c h i n the Northwest. F o r e s t Research Laboratory, Oregon State U n i v e r s i t y , C o r v a l l i s , Oregon. 170 pp. H i l l , M.O. 1973. R e c i p r o c a l a v e r a g i n g : an e i g e n v e c t o r method of o r d i n a t i o n . J . E c o l . 61: 237-249. H i l l , M.O. 1974. Correspondence a n a l y s i s : a n e g l e c t e d m u l t i v a r i a t e method. J . Royal S t a t i s t i c a l S o c i e t y ( S e r i e s C) 23: 340-354. H i l l , M.O. 1979a. DECORANA - A FORTRAN program f o r detrended correspondence a n a l y s i s and r e c i p r o c a l averaging. Ecology and Systematics, C o r n e l l U n i v e r s i t y , Ithaca, New York. 52 pp. H i l l , M.O. 1979b. TWINSPAN - A FORTRAN program f o r a r r a n g i n g m u l t i v a r i a t e data i n an ordered two-way t a b l e by c l a s s i f i c a t i o n of the i n d i v i d u a l s and a t t r i b u t e s . Ecology and Systematics, C o r n e l l U n i v e r s i t y , Ithaca, New York. 90 pp. H i l l , M.O., and H.G. Gauch. 1980. Detrended correspondence a n a l y s i s : an improved o r d i n a t i o n technique. V e g e t a t i o 42: 47-58. H i l l s , G.A. 1954. F i e l d methods f o r i n v e s t i g a t i n g s i t e . A. The d e t a i l e d s i t e d e s c r i p t i o n form. S i t e Res. Manual 4. Ont. Dept. Lands and F o r e s t s , O n t a r i o . H o l l a n d , S.S. 1976. Landforms of B r i t i s h Columbia - A p h y s i o g r a p h i c o u t l i n e . B u l l e t i n No. 48. B r i t i s h Columbia Department of Mines and Petroleum Resources, Province of B r i t i s h Columbia, V i c t o r i a , B.C. 138 pp. 189 Husch, B., C.I. M i l l e r , and T.W. Beers. 1972. F o r e s t mensuration (2nd ed.). The Ronald Press Co., New York. 410 pp. In s e l b e r g , A.E., K. K l i n k a , and C. Ray. 1982. Ecosystems of MacMillan Park on Vancouver I s l a n d . Land Management Report No. 12. Province of B r i t i s h Columbia, M i n i s t r y of F o r e s t s , Vancouver, B.C. 113 pp. + map. I r e l a n d , R.R., C D . B i r d , G.R. Brassard, W.B. S c h o f i e l d , and D.H. V i t t . 1980. C h e c k l i s t of the mosses of Canada. Pub. i n Botany No. 8. N a t i o n a l Museums of Canada, Ottawa. 75 pp. Jahn, G. (ed.). 1982. A p p l i c a t i o n of v e g e t a t i o n s c i e n c e to f o r e s t r y . Handbook of Ve g e t a t i o n Science, Part 12. Dr. W. Junk P u b l i s h e r s , The Hague. 405 pp. Jenny, H. 1941. F a c t o r s of s o i l formation. McGraw-Hill Book Co., New York. 281 pp. Jenny, H. 1961. D e r i v a t i o n of s t a t e f a c t o r equations of s o i l and ecosystems. S o i l S c i . Soc. Proc. 25: 385-388. Jones, J.R. 1969. Review and comparison of s i t e e v a l u a t i o n methods. Res. Paper RM-51. Rocky Mtn. For. and Range Exp. Sta., U.S.D.A. F o r e s t S e r v i c e , F o r t C o l l i n s , Colorado. 27 pp. Jones, R.K. 1978. The numerical c l a s s i f i c a t i o n and mapping of ve g e t a t i o n in two mountainous watersheds of southeastern B r i t i s h Columbia. M.Sc. T h e s i s . F a c u l t y of F o r e s t r y , U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C 223 pp. Jones, R.K., and R.M. Annas. 1978. V e g e t a t i o n , p. 35-45 ijn K.W.G. V a l e n t i n e , P.N. Sprout, T.E. Baker, and L.M. L a v k u l i c h ( e d s . ) . The s o i l landscapes of B r i t i s h Columbia. Resource A n a l y s i s Branch, M i n i s t r y of Environment, Province of B r i t i s h Columbia, V i c t o r i a , B.C. 197 pp. Jones, R.K., and G. P i e r p o i n t ( e d s . ) . 1982. Proceedings of the 1982 f o r e s t s o i l s c onference. O n t a r i o I n s t i t u t e of Pedology, A g r i c u l t u r e Canada, U n i v e r s i t y of Guelph, Guelph, O n t a r i o . 51 pp. Jones, R.K., G. P i e r p o i n t , G.M. Wickware, and J.K. Jeglum. 1983. A c l a s s i f i c a t i o n and o r d i n a t i o n of f o r e s t ecosystems in the Great C l a y - B e l t of no r t h e a s t e r n O n t a r i o , p. 83-96 _in R.W. Wein, R.R. Riewe, and I.R. Methven (ed s . ) . Resources and dynamics of the b o r e a l zone. Proceedings of a conference h e l d at Thunder Bay, O n t a r i o , August, 1982. Assoc. of Can. Univ. f o r Northern S t u d i e s , Ottawa. 544 pp. Jungen, J.R., and T. Lewis. 1978. The Coast Mountains and i s l a n d s , p. 101-120 in K.W.G. V a l e n t i n e , P.N. Sprout, T.E. 190 Baker, and L.M. L a v k u l i c h ( e d s . ) . The s o i l landscapes of B r i t i s h Columbia. Resource A n a l y s i s Branch, M i n i s t r y of Environment, Province of B r i t i s h Columbia, V i c t o r i a , B.C. 197 pp. Keeney, D.R. 1980. P r e d i c t i o n of s o i l n i t r o g e n a v a i l a b i l i t y i n f o r e s t ecosystems: A l i t e r a t u r e review. For. S c i . 26: 159— 171 . K i l i a n , W. 1981. S i t e c l a s s i f i c a t i o n systems used i n f o r e s t r y , p. 134-151 iin P. Laban (ed.). Proceedings of the workshop on land e v a l u a t i o n f o r f o r e s t r y . Pub. 28. I n t . I n s t i t u t e f o r Land Reclamation and Improvement, Wageningen, The Netherlands. 355 pp. Kimmins, J.P. 1977a. E v a l u a t i o n of the consequences f o r f u t u r e t r e e p r o d u c t i v i t y of the l o s s of n u t r i e n t s i n whole-tree h a r v e s t i n g . For. E c o l . Mgt. 1: 169-183. Kimmins, J.P. 1977b. On the need f o r e c o l o g i c a l c l a s s i f i c a t i o n of f o r e s t s , p. i - v i iri G.A. Drew, and J.P. Kimmins (ed s . ) . E c o l o g i c a l c l a s s i f i c a t i o n of f o r e s t land i n Canada and northwestern U.S.A. A symposium by the F o r e s t Ecology Working Group of the C.I.F. and the Centre f o r Continuing Ed u c a t i o n , the U n i v e r s i t y of B r i t i s h Columbia, 30 September 1977, Vancouver, B.C. 395 pp. Kimmins, J.P. 1979. E c o l o g i c a l c l a s s i f i c a t i o n of f o r e s t land in Canada and northwestern U.S.A.: Report on the 1977 Vancouver Symposium, p. 51-56 ir\ CD.A. Rubec (ed.). A p p l i c a t i o n s of e c o l o g i c a l ( b i o p h y s i c a l ) land c l a s s i f i c a t i o n i n Canada: Proc. Second Meeting Can. Comm. on E c o l . (Biophys.) Land C l a s s i f i c a t i o n , 4-7 A p r i l 1978, V i c t o r i a , B.C.. E c o l . Land C l a s s i f i c a t i o n S e r i e s , No. 7. Lands D i r e c t o r a t e , Environment Canada, Ottawa, O n t a r i o . 396 pp. Kimmins, J.P. 1983. Laboratory manual - F o r e s t r y 202 - Fore s t Ecology. F a c u l t y of F o r e s t r y , U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. 193 pp. Kimmins, J.P. 1984. Ecology of f o r e s t ecosystems. (Manuscript) K l i n k a , K. 1976. Ecosystem u n i t s , t h e i r c l a s s i f i c a t i o n , i n t e r p r e t a t i o n , and mapping in the U n i v e r s i t y of B r i t i s h Columbia Research F o r e s t . D i s s e r t a t i o n . F a c u l t y of F o r e s t r y , U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. 722 pp. K l i n k a , K. 1977a. A p p l i c a t i o n of s y n e c o l o g i c a l c l a s s i f i c a t i o n i n second growth management, p. 19-23,i_n G.A. Drew, and J.P. Kimmins ( e d s . ) . E c o l o g i c a l c l a s s i f i c a t i o n of f o r e s t land in Canada and northwestern U.S.A. A symposium by the Forest Ecology Working Group of the C.I.F. and the Centre for 191 C o n t i n u i n g Education, the U n i v e r s i t y of B r i t i s h Columbia, 30 September 1977, Vancouver, B.C. 395 pp. K l i n k a , K. 1977b. Guide f o r the t r e e s p e c i e s s e l e c t i o n and p r e s c r i b e d burning in the Vancouver F o r e s t D i s t r i c t (2nd approx.). Province of B r i t i s h Columbia, M i n i s t r y of F o r e s t s , Research Branch, Vancouver, B.C. 42 pp. Klinka,-K. 1977c. Guide f o r the t r e e s p e c i e s s e l e c t i o n and p r e s c r i b e d burning in the Vancouver F o r e s t D i s t r i c t (An a b b r e v i a t e d v e r s i o n ) . F i e l d Manual. Province of B r i t i s h Columbia, M i n i s t r y of F o r e s t s , Research Branch, Vancouver, B.C. 31 pp. K l i n k a , K., and S. Phelps. 1979. Environment-vegetation t a b l e s by a computer program. F a c u l t y of F o r e s t r y , U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. 24 pp. K l i n k a , K., F.C. Nuszdorfer, and L. Skoda. 1979. B i o g e o c l i m a t i c u n i t s of c e n t r a l and southern Vancouver I s l a n d . Province of B r i t i s h Columbia, M i n i s t r y of F o r e s t s , V i c t o r i a , B.C. 120 pp. + map. K l i n k a , K., W.D. van der Horst, F.C. Nuszdorfer, and R.G. Harding. 1980a. An ecosystematic approach to a subunit plan - Koprino River Watershed study. Land Management Report No. 5. Provi n c e of B r i t i s h Columbia, M i n i s t r y of F o r e s t s , Vancouver, B.C. 118 pp. + maps. K l i n k a , K., W.D. van der Horst, F.C. Nuszdorfer, and R.G. Harding. 1980b. An ecosystematic approach to f o r e s t p l a n n i n g . For. Chron. 56(3): 97-103. K l i n k a , K., M.C. F e l l e r , and L.E. Lowe. 1981a. C h a r a c t e r i z a t i o n of the most p r o d u c t i v e ecosystems f o r growth of Pseudotsuga  menziesi i var. menziesi i i n southwestern B r i t i s h Columbia. Supplement to Land Management Report No. 6. Province of B r i t i s h Columbia, M i n i s t r y of F o r e s t s , Vancouver, B.C. 49 PP-K l i n k a , K., R.N. Green, R.L. Trowbridge, and L.E. Lowe. 1981b. Taxonomic c l a s s i f i c a t i o n of humus forms i n ecosystems of B r i t i s h Columbia ( f i r s t approx.). Land Management Report No. 8. Province of B r i t i s h Columbia, M i n i s t r y of F o r e s t s , Vancouver, B.C. 54 pp. K l i n k a , K., R.N. Green, P.J. C o u r t i n , and F.C. Nuszdorfer. 1984. S i t e d i a g n o s i s , t r e e s p e c i e s s e l e c t i o n , and s l a s h b u r n i n g g u i d e l i n e s f o r the Vancouver F o r e s t Region - B r i t i s h Columbia. B.C. M i n i s t r y of F o r e s t s , Research Branch, Burnaby, B.C. (Manuscript) Kojima, S. 1971. Phytogeocoenoses of the C o a s t a l Western Hemlock zone i n Strathcona P r o v i n c i a l Park, B r i t i s h Columbia, 1 92 Canada. D i s s e r t a t i o n . Dept. Botany, U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. 322 pp. Kojima, S. 1979. B i o g e o c l i m a t i c zones of Hokkaido I s l a n d , Japan. J . C o l l . L i b e r a l A r t s (Toyama U n i v e r s i t y ) 12: 97-141. Kojima, S. 1980. B i o g e o c l i m a t i c zones of southwestern A l b e r t a . Dept. of Energy and N a t u r a l Resources, A l b e r t a Forest S e r v i c e , Edmonton, A l b e r t a . 36 pp. + Appendices + Map. Kojima, S. 1981. B i o g e o c l i m a t i c ecosystem c l a s s i f i c a t i o n and i t s p r a c t i c a l use i n f o r e s t r y . J . C o l l . L i b e r a l A r t s (Toyama U n i v e r s i t y ) 14: 41-75. Kojima, S., and G.J. Krumlik. 1979. B i o g e o c l i m a t i c c l a s s i f i c a t i o n of f o r e s t s i n A l b e r t a . For. Chron. 55(4): 130-132. Kojima, S., and V . J . K r a j i n a . 1975. V e g e t a t i o n and environment of the C o a s t a l Western Hemlock zone i n Strathcona P r o v i n c i a l Park, B r i t i s h Columbia, Canada. S y e s i s 8(Suppl. 1 ): 1-123. Kor e l u s , V.J., and T. Lewis. 1976. B i o p h y s i c a l mapping ( f o r e s t s i t e mapping) of Cowichan D i v i s i o n - South. P a c i f i c Logging Company, V i c t o r i a , B.C. 84 pp. + Appendices. K o r e l u s , V .J., and T. Lewis. 1978. B i o p h y s i c a l mapping ( f o r e s t s i t e mapping) of Cowichan D i v i s i o n - North. P a c i f i c Logging Company, V i c t o r i a , B.C. 65 pp. + Appendices. K r a j i n a , V . J . 1933. Die P f l a n z e n g e s e l l s c h a f t e n des M l y n i c a - T a l e s in den Vysoke T a t r y (Hohe-Tatra) mit besonderer B e r u c k s i c h t i g u n g der oko l o g i s c h e n V e r h a l t h i s s e . Bot. C e n t r a l b . 50: 774-957; 51: 1-224. K r a j i n a , V . J . 1960a. Can we f i n d a common p l a t f o r m f o r the d i f f e r e n t schools of f o r e s t type c l a s s i f i c a t i o n ? S i l v a Fennica 105: 50-55. K r a j i n a , V . J . 1960b. Ecosystem c l a s s i f i c a t i o n of f o r e s t s . S i l v a Fennica 105: 107-110. K r a j i n a , V.J. 1963. B i o g e o c l i m a t i c zones of the Hawaiian I s l a n d s . Newsletter of the Hawaiian B o t a n i c a l S o c i e t y . 2: 93-98. K r a j i n a , V . J . 1965. B i o g e o c l i m a t i c zones and c l a s s i f i c a t i o n of B r i t i s h Columbia. Ecology of Western North America (Dept. of Botany, U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C.) 1:1-17. K r a j i n a , V . J . 1969. Ecology of f o r e s t t r e e s i n B r i t i s h Columbia. Ecology of Western North America (Dept. of Botany, 1 93 U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C.) 2: 1-146. K r a j i n a , V .J. 1972. Ecosystem p e r s p e c t i v e s i n f o r e s t r y . H.R. Macmillan L e c t u r e , F a c u l t y of F o r e s t r y , U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. 31 pp. K r a j i n a , V .J. 1973. B i o g e o c l i m a t i c zones of B r i t i s h Columbia. A co l o u r e d map of s c a l e 1:1,900,800 (30 mi. to 1 i n . ) . Drawn by J . I . Svoboda. P u b l i s h e d by the B r i t i s h Columbia E c o l o g i c a l Reserves Committee. Department of Lands, F o r e s t s , and Water Resources, V i c t o r i a , B.C. K r a j i n a , V .J. 1976. B i o g e o c l i m a t i c zones of B r i t i s h Columbia. MacMillan B l o e d e l P l a c e , Van Dusen B o t a n i c a l Gardens, Vancouver, B.C. 12 pp. K r a j i n a , V . J . 1977. On the need f o r an ecosystem approach to f o r e s t land management, p. 1-11 ir\ G.A. Drew, and J.P. Kimmins ( e d s . ) . E c o l o g i c a l c l a s s i f i c a t i o n of f o r e s t land i n Canada and northwestern U.S.A. A symposium by the Fo r e s t Ecology Working Group of the C.I.F. and the Centre f o r Con t i n u i n g Education, the U n i v e r s i t y of B r i t i s h Columbia, 30 September 1977, Vancouver, B.C. 395 pp. K r a j i n a , V . J . 1980. Ve g e t a t i o n of western North America, p. 25-48 _in I.U.F.R.O. 1980. Proceedings of the I.U.F.R.O. j o i n t meeting of working p a r t i e s , 1978, Vancouver, Canada. V o l . 1. Information S e r v i c e s Branch, MOF, V i c t o r i a , B.C. 426 pp. K r a j i n a , V.J., K. K l i n k a , and J . W o r r a l l . 1982. D i s t r i b u t i o n and e c o l o g i c a l c h a r a c t e r i s t i c s of t r e e s and some shrubs of B r i t i s h Columbia. F a c u l t y of F o r e s t r y , U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. 131 pp. K r a j i n a , V . J., S. Kojima, K. K l i n k a , and E.B. Peter s o n . 1984. Ecology of v a s c u l a r p l a n t s of B r i t i s h Columbia. Dept. of Botany,, U n i v e r s i t y of B.C., Vancouver, B.C.. (unpublished manuscript) K r e u t z e r , K. 1979. How do p h y s i c a l c l a s s i f i c a t i o n s c o n t r a s t with s i t e type c l a s s i f i c a t i o n ? p. 39-56 _in E.D. Ford, D.C. Malcolm, and J . A t t e r s o n ( e d s . ) . The ecology of even-aged f o r e s t p l a n t a t i o n s . Proceedings of the meeting of D i v i s i o n I, I.U.F.R.O., Edinburgh, September, 1978. I n s t i t u t e of T e r r e s t r i a l Ecology, Cambridge, U.K.. 582 pp. Laban, P. (ed.). 1981. Proceedings of the workshop on land e v a l u a t i o n f o r f o r e s t r y (sponsored by I.U.F.R.O. D i v i s i o n s 1, 3, and 4 and the I n t e r n a t i o n a l S o c i e t y of S o i l S c i e n c e ) . Pub. No. 28. I n t e r n a t i o n a l I n s t i t u t e f o r Land Reclamation . and Improvement, Wageningen, The Netherlands. 355 pp. Lacate, D.S. 1969. G u i d e l i n e s f o r b i o - p h y s i c a l land c l a s s i f i c a t i o n . Pub. 1264. Canadian F o r e s t r y S e r v i c e , 194 Department of F i s h e r i e s and F o r e s t r y , Ottawa, O n t a r i o . 61 pp. L a v k u l i c h , L.M. 1972. S o i l c l a s s i f i c a t i o n and mapping. Paper P-1/72. Dept. of S o i l S cience, U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. 4 pp.(mimeo) L a v k u l i c h , L.M. 1981. Methods manual (4th ed.). Pedology Laboratory, Dept. of S o i l S cience, U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. 211 pp. L a v k u l i c h , L.M., and K.W.G. V a l e n t i n e . 1978a. S o i l and s o i l p rocesses, p. 49-57 i_n K.W.G. V a l e n t i n e , P.N. Sprout, T.E. Baker, and L.M. L a v k u l i c h ( e d s . ) . The s o i l landscapes of B r i t i s h Columbia. Resource A n a l y s i s Branch, M i n i s t r y of Environment, Province of B r i t i s h Columbia, V i c t o r i a , B.C. 197 pp. L a v k u l i c h , L.M., and K.W.G. V a l e n t i n e . 1978b. The Canadian system of s o i l and s o i l c l i m a t e c l a s s i f i c a t i o n , p. 59-65 i_n K.W.G. V a l e n t i n e , P.N. Sprout, T.E. Baker, and L.M. L a v k u l i c h ( e d s . ) . The s o i l landscapes of B r i t i s h Columbia. Resource A n a l y s i s Branch, M i n i s t r y of Environment, Province of B r i t i s h Columbia, V i c t o r i a , B.C. 197 pp. Lewis, T. 1976. The t i l l - d e r i v e d podzols of Vancouver I s l a n d . D i s s e r t a t i o n . Dept. of S o i l Science, U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. 128 pp. + Appendices. Long, J.N., and J . Turner. 1975. Aboveground biomass of understory and o v e r s t o r y i n an age sequence of four D o u g l a s - f i r stands. J . Appl. E c o l . 12: 179-188. Lowe, L.E. 1971. An i n t r o d u c t i o n to n i t r o g e n m i n e r a l i z a t i o n i n s o i l s , p. 24-26 J j i Roundup of rangeland f e r t i l i z a t i o n r e s e a r c h i n B.C., A l b e r t a , and Oregon. Symposium he l d at Kamloops, B.C., June 23-24, 1971. Lowe, L.E., and K. K l i n k a . 1981. F o r e s t humus i n the C o a s t a l Western Hemlock b i o g e o c l i m a t i c zone of B r i t i s h Columbia i n r e l a t i o n to f o r e s t p r o d u c t i v i t y and pedogenesis. Res. Note No. 89. Province of B r i t i s h Columbia, M i n i s t r y of F o r e s t s , Vancouver, B.C. 83 pp. Lund, H.G., V . J . Laban, P.F. F f o l l i o t t , and D.W. Robinson. 1978. Int e g r a t e d i n v e n t o r i e s of renewable n a t u r a l r e s o u r c e s . Proceedings of the workshop, January 8-12, 1978, Tucson, A r i z o n a . Gen. Tech. Rep. RM-55. Rocky Mountain For. and Range Exp. S t a t i o n , U.S.D.A. For. Serv., F o r t C o l l i n s , Colorado. 482 pp. Maarel, E. van der. 1975. The Braun-Blanquet approach i n p e r s p e c t i v e . V e g e t a t i o 30(3): 213-219. 195 MacMillan B l o e d e l . 1974. The b i o g e o c l i m a t i c subzones of Vancouver I s l a n d and the adjacent mainland (3rd. approx.). Department of Lands, F o r e s t s , and Water Resources, V i c t o r i a , B.C. ( c o l o r e d map) Major, J . 1951. A f u n c t i o n a l , f a c t o r i a l approach to p l a n t ecology. Ecology 32: 392-412. Malcolm, D.C. 1981. Dynamics of f o r e s t ecosystems i n r e l a t i o n to t h e i r u t i l i z a t i o n : North Temperate Zone. p. 48-62 in P. Laban (ed.). Proceedings of the workshop on lan d e v a l u a t i o n for f o r e s t r y . Pub. 28. I n t . I n s t , f o r Land Reclamation and Improvement, Wageningen, The Netherlands. 355 pp. McKeague, J.A., and P.N. Sprout. 1975. Cemented s u b s o i l s ( d u r i c h o r i z o n s ) i n some s o i l s of B r i t i s h Columbia. Can. J . S o i l Sc. 55: 189-203. McMinn, R.G. 1957. Water r e l a t i o n s in the D o u g l a s - f i r region on Vancouver I s l a n d . D i s s e r t a t i o n . Dept. B i o l , and Bot., U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. 114 pp. McMinn, R.G. 1965. Water r e l a t i o n s of phytocoenoses in the C o a s t a l D o u g l a s - f i r zone of B r i t i s h Columbia. Ecology of Western North America (Department of Botany, U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C.) 1: 35-37. McRae, S.G., and C P . Burnham. 1981. Land e v a l u a t i o n . Clarendon Press, Oxford. 239 pp. M i l e s , J . 1979. V e g e t a t i o n dynamics. O u t l i n e s t u d i e s i n Ecology S e r i e s . Chapman and H a l l , London, U.K.. 80 pp. Mueller-Dombois, D. 1959. The D o u g l a s - f i r f o r e s t a s s o c i a t i o n s on Vancouver I s l a n d i n t h e i r i n i t i a l stages of secondary s u c c e s s i o n . D i s s e r t a t i o n . Dept. B i o l , and Bot., U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. 570 pp. Mueller-Dombois, D. 1965. I n i t i a l stages of secondary succession i n the C o a s t a l D o u g l a s - f i r and Western Hemlock zones. Ecology of Western North America (Dept. of Botany, U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C.) 1: 38-41. Mueller-Dombois, D., and H. E l l e n b e r g . 1974. Aims and methods of v e g e t a t i o n ecology. John Wiley and Sons, New York. 547 pp. M u l l e r , J.E. 1977. Geology of Vancouver I s l a n d . G e o l o g i c a l Survey of Canada, Dept. of Energy, Mines, and Resources, Vancouver, B . C . 2 maps + marginal notes. Northcote, K.E. 1981. Bedrock geology of Vancouver I s l a n d , p. 59-65 i_n P.E. Heilman, H.W. Anderson, and D.M. Baumgartner ( e d s . ) . F o r e s t s o i l s of the D o u g l a s - f i r r e g i o n . Washington State U n i v e r s i t y , Cooperative Extension S e r v i c e , Pullman, 196 Washington. 298 pp. Nuszdorfer, F.C. 1981. Bulk d e n s i t y , p. 49-51 i n K. K l i n k a , R.N. Green, R.L.. Trowbridge, and L.E. Lowe. Taxonomic c l a s s i f i c a t i o n of humus forms i n ecosystems of B r i t i s h Columbia ( f i r s t approx.). Land Management Report No. 8. Province of B r i t i s h Columbia, M i n i s t r y of F o r e s t s , Vancouver, B.C. 54 pp. Nuszdorfer, F . C , and K. K l i n k a . 1982. E c o s y s t e m - s p e c i f i c t r e e s p e c i e s s e l e c t i o n , p. 137-150 in T. V o i d (ed.). Proceedings of the B.C. s o i l survey workshop on s o i l i n t e r p r e t a t i o n s for f o r e s t r y . A.P.D. Tech. Paper 6. Province of B r i t i s h Columbia, M i n i s t r y of the Environment, V i c t o r i a , B.C. 333 pp. Ochyra, R. 1982. Ki n d b e r g i a (Brachytheciaceae, Musci), a new name f o r S t o k e s i e l l a (Kindb.) Robins., horn, i l l e g . L i n d b e r g i a 8 ( 1 ) : 53-54. O r l o c i , L. 1961. F o r e s t types of the C o a s t a l Western Hemlock zone. M.Sc. T h e s i s . Dept. of B i o l , and Bot., U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. 206 pp. O r l o c i , L. 1964. V e g e t a t i o n and environment v a r i a t i o n s i n the ecosystems of the C o a s t a l Western Hemlock zone. D i s s e r t a t i o n . Dept. of B i o l , and Bot., U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C.. 199 pp. O r l o c i , L. 1965. The C o a s t a l Western Hemlock zone on the southwestern B r i t i s h Columbia mainland. Ecology of Western North America (Dept. of Botany, U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C.) 1: 18-34. O r l o c i , L. 1978. M u l t i v a r i a t e a n a l y s i s i n v e g e t a t i o n r e s e a r c h (2nd e d . ) . Dr. W. Junk P u b l i s h e r s , The Hague. 451 pp. Peterson, E.B. 1964. Plant a s s o c i a t i o n s i n the subalpine Mountain Hemlock zone i n southern B r i t i s h Columbia. D i s s e r t a t i o n . Dept. of Botany, U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. 199 pp. P i c a r d , J.F. 1979. Une methode de d e f i n i t i o n des s t a t i o n s en f o r e t : A p p l i c a t i o n a l a f o r e t domaniale de Belleme. Annales des Sciences F o r e s t i e r e s 36(3): 211-230. P f i s t e r , R.D., and S.F. Arno. 1980. C l a s s i f y i n g f o r e s t h a b i t a t types based on p o t e n t i a l climax v e g e t a t i o n . F o r e s t S c i . 26(1): 52-70. P i e r p o i n t , G. 1981. S i t e types i n the b o r e a l mixedwood f o r e s t , p. 10-16 j_n R.D. Whitney, and K.M. McClain (cochairmen) . Boreal mixedwood symposium. Symposium Proceedings, No. 0-P-9. Great Lakes F o r e s t Research Centre, Can. For. Serv., 1 97 Sault Ste. Marie, Ont. 278 pp. Pimentel, R.A. 1979. Morphometries: The m u l t i v a r i a t e a n a l y s i s of b i o l o g i c a l data. Kendall/Hunt Pub. Co., Dubuque, Iowa. 276 pp. Pogrebnyak, P.S. 1930. Uber d i e Methodik von Standortuntersuchungen i n Verbindung mit Waldtypen. P. 455-471 j_n Ver. II I n t . Congr. F o r s t l . V e r s o u c h s a n s t a l t e n , 1929, Stockholm. Poj a r , J . 1983. F o r e s t ecology, p. 221-318 i n S.B. Watts (ed . ) . F o r e s t r y Handbook f o r B r i t i s h Columbia~T4th ed.). The F o r e s t r y Undergraduate S o c i e t y , F a c u l t y of F o r e s t r y , U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. 611 pp. Powers, R.F. 1980. M i n e r a l i z a b l e s o i l n i t r o g e n as an index of ni t r o g e n a v a i l a b i l i t y to f o r e s t t r e e s . S o i l S c i . Soc. Am. J . 44: 1314-1320. P r i t c h e t t , W.L. 1979. P r o p e r t i e s and management of f o r e s t s o i l s . John Wiley and Sons, New York. 500 pp. Quesnel, H.J., and L.M. L a v k u l i c h . 1980. N u t r i e n t v a r i a b i l i t y of f o r e s t f l o o r s near Port Hardy, B r i t i s h Columbia, Canada. Can. J . S o i l . S c i . 60: 565-573. Ra l s t o n , C.W. 1964. E v a l u a t i o n of f o r e s t s i t e p r o d u c t i v i t y . I n t . Rev. F o r . Research 1: 171-201. Richards, B.N. 1974. I n t r o d u c t i o n to the s o i l ecosystem. Longman, New York. 266 pp. Rowat, P. 1984. SPECTRA user's manual. (Manuscript) Rowe, J.S. 1960. Can we f i n d a common p l a t f o r m f o r the d i f f e r e n t schools of f o r e s t type c l a s s i f i c a t i o n ? S i l v a Fennica 105: 82-88. Rowe, J.S. 1961. The l e v e l - o f - i n t e g r a t i o n concept and ecology. Ecology 42: 420-427. Rowe, J.S. 1971. Why c l a s s i f y f o r e s t land? For. Chron. 30: 144-1 48. Rowe, J.S. 1972. Fo r e s t Regions of Canada. Pub. No. 1300. Department of F i s h e r i e s and the Environment, Canadian F o r e s t r y S e r v i c e , Ottawa. 172 pp. + map. Rubec, CD.A. (ed. ) . 1979. A p p l i c a t i o n s of e c o l o g i c a l ( b i o p h y s i c a l ) land c l a s s i f i c a t i o n in Canada. Proc. second meeting Can. Comm. on Ec o l . ( B i o p h y s . ) Land C l a s s i f i c a t i o n , 4-7 A p r i l , 1978, V i c t o r i a , B.C.. E c o l . Land C l a s s . S e r i e s No. 7. Lands D i r e c t o r a t e , Environment Canada, Ottawa, 198 O n t a r i o . 396 pp. Ryder, J.M. 1978. Geology, landforms, and s u r f i c i a l m a t e r i a l s , p. 11-33 in_ K.W.G. V a l e n t i n e , P.N. Sprout, T.E. Baker, and L.M. L a v k u l i c h ( e d s . ) . The s o i l landscapes of B r i t i s h Columbia. Resource A n a l y s i s Branch, M i n i s t r y of Environment, Province of B r i t i s h Columbia, V i c t o r i a , B.C. 197 pp. Saywell, J.F.T. 1967. Kaatza - The c h r o n i c l e s of Cowichan Lake. Pe n i n s u l a P r i n t i n g Co. L t d . , Sidney, B r i t i s h Columbia. 211 PP-Scarsbrook, C E . 1965. Ni t r o g e n a v a i l a b i l i t y , p. 481-502 _in W.V. Bartholomew, and F.E. C l a r k ( e d s . ) . S o i l n i t r o g e n . Agron. Mono. No. 10. Amer. Soc. Agron., Madison, Wisconsin. 615 pp. Schaefer, D.G. 1978. Clima t e , p. 3-10 _in K.W.G. V a l e n t i n e , P.N. Sprout, T.E. Baker, and L.M. L a v k u l i c h ( e d s . ) . The s o i l landscapes of B r i t i s h Columbia. Resource A n a l y s i s Branch, M i n i s t r y of Environment, Province of B r i t i s h Columbia, V i c t o r i a , B.C. 197 pp. Schaefer, D.G. 1980. An overview of the c l i m a t e s of western North America, p. 1-23 _iri I.U.F.R.O. 1980. Proceedings of the I.U.F.R.O. j o i n t meeting of working p a r t i e s , Vancouver, Canada, 1978. V o l . 1. Information S e r v i c e s Branch, M i n i s t r y of F o r e s t s , V i c t o r i a , B.C. 426 pp. Schmidt, R.L. 1977. A c t i v i t i e s of the B.C. F o r e s t S e r v i c e in e c o l o g i c a l c l a s s i f i c a t i o n , p. 13-17 in G.A. Drew, and J.P. Kimmins (ed s . ) . E c o l o g i c a l c l a s s i f i c a t i o n of f o r e s t land i n Canada and northwestern U.S.A.. A symposium by the Fo r e s t Ecology Working Group of the C.I.F. and the Centre f o r Continuing Education, the U n i v e r s i t y of B r i t i s h Columbia, 30 September 1977, Vancouver, B.C. 395 pp. Shimwell, D.W. 1972. The d e s c r i p t i o n and c l a s s i f i c a t i o n of ve g e t a t i o n . B i o l o g y S e r i e s . U n i v e r s i t y of Washington Press, S e a t t l e . 322 pp. Shumway, J . , and W.A. At k i n s o n . 1978. P r e d i c t i n g n i t r o g e n f e r t i l i z e r response i n unthinned stands of D o u g l a s - f i r . Commun. i n S o i l Science and Pla n t A n a l y s i s 9 ( 6 ) : 529-539. Shumway, S.E. 1981. Climate, p. 87-92 in P.E. Heilman, H.W. Anderson, and D.M. Baumgartner (e d s . ) . F o r e s t s o i l s of the D o u g l a s - f i r r e g i o n . Washington State U n i v e r s i t y , Cooperative Extension S e r v i c e , Pullman, Washington. 298 pp. Simonson, R.W. 1959. O u t l i n e of a g e n e r a l i z e d theory of s o i l g e n e s i s . S o i l S c i . Soc. Amer. Proc. 23: 152-156. 199 Sneath, P.H.A., and R.R. S o k a l . 1973. Numerical taxonomy: The p r i n c i p l e s and p r a c t i c e of numerical c l a s s i f i c a t i o n . W.H. Freeman and Co., San F r a n c i s c o . 573 pp. Sokal, R.R. 1974. C l a s s i f i c a t i o n : Purposes, p r i n c i p l e s , p rogress, p r o s p e c t s . Science 185: 1115-1123. S p i l s b u r y , R.H., and D.S. Smith. 1947. For e s t s i t e types of the P a c i f i c Northwest. Tech. Pub. T30. Dept. of Lands and F o r e s t s , B.C. F o r e s t S e r v i c e , V i c t o r i a , B.C. 46 pp. Spurr, S.H., and B.V. Barnes. 1980. F o r e s t ecology (3rd ed.). John Wiley and Sons, New York. 687 pp. S t o t l e r , R., and B. C r a n d a l l - S t o t l e r . 1977. A c h e c k l i s t of the l i v e r w o r t s and hornworts of North America. The B r y o l o g i s t 80(3): 405-428. Sukachev, V.N. 1944. P r i n c i p l e s of g e n e t i c c l a s s i f i c a t i o n i n biogeocoenology. Zhur. Obshch. B i o l . , Moskva. 5(4): 213-227 . Sukachev, V.N. 1960. The c o r r e l a t i o n between the concept " f o r e s t ecosystem" and " f o r e s t biogeocoenose" and t h e i r importance f o r the c l a s s i f i c a t i o n of f o r e s t s . S i l v a Fennica 105: 94-97. Sukachev, V.N., and H. D y l i s . 1964a. Osnovy l e s n o i b i o g e o c o e n o l o g i i . Nauka, Moscow. 514 pp. ( i n Russian) Sukachev, V.N., and H. D y l i s . 1964b. Fundamentals of f o r e s t biogeocoenology. O l i v e r and Boyd L t d . , Edinburgh and London. 672 pp. ( t r a n s l a t e d from the Russian by MacLennan) Tansley, A.G. 1935. The use and abuse of v e g e t a t i o n a l concepts and terms. Ecology 16(3): 284-307. T a y l o r , R.L., and B. MacBryde. 1977. V a s c u l a r p l a n t s of B r i t i s h Columbia: A d e s c r i p t i v e resource i n v e n t o r y . Tech. B u l l . 4. B o t a n i c a l Garden, U n i v e r s i t y of B r i t i s h Columbia. U.B.C. Press, Vancouver, B.C. 754 pp. Tesch, S.D. 1981. The e v o l u t i o n of f o r e s t y i e l d d e t e r m i n a t i o n and s i t e c l a s s i f i c a t i o n . F o r e s t E c o l . Mgt. 3(3): 169-182. Thie, J . , and G. I r o n s i d e ( e d s . ) . 1976. E c o l o g i c a l ( B i o p h y s i c a l ) land c l a s s i f i c a t i o n i n Canada. Proceedings of the f i r s t meeting, Canada Committee on E c o l o g i c a l ( B i o p h y s i c a l ) Land C l a s s i f i c a t i o n , 25-28 May, 1976, Petawawa, O n t a r i o . E c o l . Land C l a s s . S e r i e s No. 1. Lands D i r e c t o r a t e , Environment Canada, Ottawa. 269 pp. Trewartha, G.T. 1968. An i n t r o d u c t i o n to c l i m a t e (4th ed.). McGraw-Hill, New York. 408 pp. 2 0 0 Turner, J . , and J.N. Long. 1975. Accumulation of organic matter in a s e r i e s of D o u g l a s - f i r stands. Can. J . For. Res. 5: 681-690. Tuxen, R. 1955. Das System der nordwestdeutschen P f l a n z e n g e s e l l s c h a f t e n . M i t t . F l o r . - S o z . Arbeitsgem., Stolzenan, N.F. 5: 155-176. U t z i g , G., and D. MacDonald. 1977. Guide f o r t r e e s p e cies s e l e c t i o n i n the Nelson F o r e s t D i s t r i c t ( f i r s t approx.). Province of B r i t i s h Columbia, M i n i s t r y of F o r e s t s , V i c t o r i a , B.C. 23 pp. V a l e n t i n e , K.W.G., and L.M. L a v k u l i c h . 1978. The s o i l orders of B r i t i s h Columbia, p. 67-95 in. K.W.G. V a l e n t i n e , P.N. Sprout, T.E. Baker, and L.M. L a v k u l i c h ( e d s . ) . The s o i l landscapes of B r i t i s h Columbia. Resource A n a l y s i s Branch, M i n i s t r y of Environment, Province of B r i t i s h Columbia, V i c t o r i a , B.C. 197 pp. V a l e n t i n e , K.W.G., P.N. Sprout, T.E. Baker, and L.M. L a v k u l i c h (eds.). 1978. The s o i l landscapes of B r i t i s h Columbia. Resource A n a l y s i s Branch, M i n i s t r y of Environment, Province of B r i t i s h Columbia, V i c t o r i a , B.C. 197 pp. Van Praage, H.J., and N. Brigode. 1973. Cycl e i n t e r n e de 1'azote et du soufre dans l e s h o r i z o n s humiferes f o r e s t i e r s des s o l s bruns a c i d e s . I . Cycl e i n t e r n e de l ' a z o t e et e f f e t de l a temperature. Plant S o i l 39: 35-48. Walmsley, M., G. U t z i g , T. Void, D. Moon, and J . van Barneveld. 1980. D e s c r i b i n g ecosystems i n the f i e l d . R.A.B. Tech. Paper 2. Province of B r i t i s h Columbia, M i n i s t r y of Environment and M i n i s t r y of F o r e s t s , V i c t o r i a , B.C. 226 pp. Waring, S.A., and J.M. Bremner. 1964. Ammonium pro d u c t i o n i n s o i l under waterlogged c o n d i t i o n s as an index of n i t r o g e n a v a i l a b i l i t y . Nature 201: 951-952. Watanabe, R., and S. M i y a i . 1978. St u d i e s on ve g e t a t i o n in Kiyosumi r e g i o n . I . Numerical c l a s s i f i c a t i o n of f o r e s t v e g e t a t i o n . Japanese J o u r n a l of Ecology 28(4): 281-290. Westhoff, V., and E. van der Maarel. 1978. The Braun-Blanquet approach, p. 287-399 i_n R.H. Whittaker (ed.). C l a s s i f i c a t i o n of p l a n t communities (2nd ed.). Dr. W. Junk P u b l i s h e r s , The Hague. 408 pp. Whittaker, R.H. 1956. Ve g e t a t i o n of the Great Smoky Mountains. E c o l . Monogr. 26: 1-80. Whittaker, R.H. 1978. Approaches to c l a s s i f y i n g v e g e t a t i o n , p. 1-31 _in R.H. Whittaker (e d . ) . C l a s s i f i c a t i o n of p l a n t 201 communities (2nd ed.). Dr. W. Junk P u b l i s h e r s , The Hague. 408 pp. Wiken, E.B. 1980. R a t i o n a l e and methods of e c o l o g i c a l land surveys: An overview of Canadian approaches, p. 11-19 i_n D.G. T a y l o r (ed.). L a n d / w i l d l i f e i n t e g r a t i o n . Proceedings of a t e c h n i c a l workshop to d i s c u s s the i n c o r p o r a t i o n of w i l d l i f e i n f o r m a t i o n i n t o e c o l o g i c a l land surveys, 1-2 May 1979, Saskatoon, Saskatchewan. E c o l . Land C l a s s . S e r i e s No. 11. Lands D i r e c t o r a t e , Environment Canada, Ottawa, O n t a r i o . 160 pp. W i l l i a m s , W.T. 1971. P r i n c i p l e s of c l u s t e r i n g . Ann. Rev. E c o l . S y s t . 2: 303-326. Youngberg, C.T. 1979. Organic matter of f o r e s t s o i l s , p. 137-144 in P.E. Heilman, H.W. Anderson, and D.M. Baumgartner T e d s . ) . F o r e s t s o i l s of the D o u g l a s - f i r r e g i o n . Washington State U n i v e r s i t y , Cooperative E x t e n s i o n S e r v i c e , Pullman, Washington. 298 pp. Zar, J.H. 1974. B i o s t a t i s t i c a l a n a l y s i s . P r e n t i c e - H a l l Inc., Englewood C l i f f s , N.J.. 620 pp. Zinke, P.J. 1960. F o r e s t s i t e q u a l i t y as r e l a t e d to s o i l n i t r o g e n content. Trans. 7th I n t e r n . Congress of S o i l S c i e n c e . Madison, W i s e . I l l : 411-418. Zonneveld, I.S. 1981. The r o l e of s i n g l e land a t t r i b u t e s in f o r e s t e v a l u a t i o n , p. 76-94 in P. Laban (ed.). Proceedings of the workshop on land e v a l u a t i o n f o r f o r e s t r y . Pub. 28. I n t . I n s t , f o r Land Reclamation and Improvement, Wageningen, The Netherlands. 355 pp. 202 APPENDIX A - LIST OF PLANT SPECIES Nomenclature of v a s c u l a r p l a n t s (with some exceptions) f o l l o w s that of T a y l o r and MacBryde (1977), while I r e l a n d et a l . (1980) was fo l l o w e d f o r mosses (two e x c e p t i o n s ) , S t o t l e r and C r a n d a l l - S t o t l e r (1977) f o r h e p a t i c s , and Hale and Culberson (1970) f o r l i c h e n s . E x c e p t i o n s f o l l o w e d K r a j i n a et a l . (1984) and Ochyra (1982). VASCULAR PLANTS Abies g r a n d i s  Acer macrophyllum  A c h i I l e a m i l l e f o l i u m  A chlys t r i p h y l l a  Adenocaulon b i c o l o r  Adiantum pedatum  Alnus rubra  Amelanchier a l n i f o l i a  Anemone l y a l l i i  Apocynum androsaemifolium * Arbutus m e n z i e s i i  A r c t o s t a p h y l o s u v a - u r s i * Asarum caudatum  Athyrium f i 1 i x - f e m i n a  Blechnum s p i c a n t  Boschniakia hookeri  Botrychium v i r g i n i a n u m  B o y k i n i a e l a t a  Bromus s i t c h e n s i s  Bromus v u l g a r i s  Calypso bulbosa  Camassia quamash  Cardamine breweri  Cardamine oligosperma  Carex deweyana  Carex hendersoni i  Carex obnupta  Chimaphila menz i e s i i * Chimaphila umbellata * Cinna l a t i f o l i a  C i r c a e a a l p i n a  C l a y t o n i a s i b i r i c a  C o l l o mia h e t e r o p h y l l a  C o r a l l o r h i z a mertensiana  Cornus n u t t a l l i i  C y s t o p t e r i s f r a g i 1 i s  C y t i s u s s c o p a r i u s  Danthonia s p i c a t a  D i c e n t r a formosa  Disporum hookeri  Disporum smi t h i i  D r y o p t e r i s expansa  Elymus glaucus  Equisetum arvense  Equisetum t e l m a t e i a  Erythronium revolutum  Festuca o c c i d e n t a l i s  Festuca s u b u l i f l o r a  F r a g a r i a vesca * F r a g a r i a v i r g i n i a n a * Galium t r i f l o r u m G a u l t h e r i a s h a i l o n (Dougl. ex D. Don) L i n d l . Pursh L. (Sm.) DC. Hook. L. Bong. (Nutt.) Nutt. B r i t t . L -Pursh (L.) Spreng. L i n d l . (L.) Roth (L.) Roth Walp. (L.) Swartz _in_ Schrad. (Nutt.) Greene T r i n . (Hook.) Shear (L.) Oakes _in Thomps. (Pursh) Greene Wats. Nutt. i_n T o r r . & Gray Schwein. Ba i l e y B a i l e y (R. Br. ex D. Don) Spreng. (L.) Barton (Trev. ex Gopp. ) G r i s e b . _in Ledeb. L. L. Hook. Bong. Audub. ex T o r r . & Gray (L.) Bernh. in Schrad. (L.) Link (L.) Beauv. ex Roem. & S c h u l t . (Haw.) Walp. (Torr.) N i c h o l s o n (Hook.) Piper ( P r e s l ) F r a s e r - J e n k i n s & Jermy B u c k l . L. Ehrh. Sm. _in Rees Hook. S c r i b n . in Macoun L. Duchesne Michx. Pursh 2 0 4 Geranium robertianum  G l y c e r i a e l a t a  Goodyera o b l o n q i f o l i a  Gymnocarpium d r y o p t e r i s  Hemitomes congestum  Heuchera micrantha  Hieracium a l b i f l o r u m  H o l o d i s c u s d i s c o l o r  Hypochoeris r a d i c a t a  Hypopithys lanuginosa  I lex a q u i f o l i u m  Juniperus communis  Juniperus scopulorum  Li1ium columbianum  Linnaea b o r e a l i s * L i s t e r a banksiana  L i s t e r a c o r d a t a  L o n i c e r a c i 1 i o s a  Lotus micranthus  Lupinus p o l y p h y l l u s  Luzula p a r v i f l o r a  Lycopodium clavatum  L y s i c h i t u m amer icanum  Mahonia a q u i f o l i u m  Mahonia nervosa  Maianthemum d i l a t a t u m  Malus fusca  M e l i c a subulata  Mi t e l l a o v a l i s  Monotropa uni f l o r a  Mont i a parv i f o l i a  M y c e l i s m u r a l i s  Nemophila p a r v i f l o r a  Oenanthe sarmentosa  Oplopanax h o r r i d u s  Osmorhiza c h i l e n s i s  Physocarpus c a p i t a t u s P i c e a s i t c h e n s i s Pinus c o n t o r t a Pinus mont i c o l a P l a t a n t h e r a c h o r i s i a n a  P l a t a n t h e r a u n a l a s c e n s i s  Poa marcida Polypodium q l y c y r r h i z a  P olystichum muniturn  Populus t r i c h o c a r p a  P r u n e l l a v u l g a r i s  Pseudotsuga menziesi i Pter idium aqui1inum  Pterospora andromedea  P y r o l a dentata * P y r o l a p i c t a * Ranunculus uncinatus  Rhamnus purshianus L. (Nash) M.E. Jones Raf . (L.) Newm. Gray Dougl. ex L i n d l . Hook. (Pursh) Maxim. L. (Michx.) Nutt. L. L. Sarg. Hanson e_x Baker L. L i n d l . (L.) R. Br. in h i t . (Pursh) DC. Benth. L i n d l . (Ehrh.) Desv. L. H u l t . & S t . John (Pursh) Nutt. (Pursh) Nutt.-(Wood) Nels. & Macbr. (Raf.) Schneid. (Griseb.) S c r i b n . Greene L. (Moc. ex. DC.) Greene (L.) Dumort. Dougl. ex Benth. P r e s l ex DC. (Sm.) Miq. Hook. & Arn. (Pursh) Ktze. (Bong.) C a r r . Dougl. ex Loud. Dougl. e_x D. Don i_n Lamb. (Cham.) Reich. (Spreng.) Kurtz H i t c h c . D.C. Eaton ( K a u l f . ) P r e s l T o r r . & Gray ex Hook. L. (Mirb.) Franco (L.) Kuhn ir\ Decken Nutt. Sm. in Rees Sm. it\ Rees D. Don in G. Don DC. Ribes d i v a r i c a t u m Rosa qymnocarpa Rubus p a r v i f l o r u s Rubus s p e c t a b i l i s Rubus u r s i n u s * S a l i x s i t c h e n s i s Sambucus racemosa S e l a q i n e l l a w a l l a c e i S m i l a c i n a s t e l l a t a Sorbus aucuparia Sorbus s i t c h e n s i s S p i r a e a m e n z i e s i i Stachys cooleyae S t e l l a r i a c r i s p a Streptopus a m p l e x i f o l i u s Streptopus roseus Streptopus s t r e p t o p o i d e s Symphoricarpos albus Symphoricarpos hesperius Taxus b r e v i f o l i a T e l l i m a q r a n d i f l o r a Thuja p l i c a t a T i a r e l l a l a c i n i a t a T i a r e l l a t r i f o l i a t a T r a u t v e t t e r i a c a r o l i n i e n s i s T r i e n t a l i s l a t i f o l i a T r i l l i u m ovatum Trisetum cernuum Tsuqa h e t e r o p h y l l a U r t i c a d i o i c a Vaccinium alaskaense Vacc inium o v a l i f o l i u m Vacc i n ium p a r v i f o l i u m Veratrum v i r i d e V i o l a adunca V i o l a g l a b e l l a V i o l a o r b i c u l a t a V i o l a sempervirens Dougl. Nutt. i_n T o r r . & Gray Nutt. Pursh Cham. & S c h l e c h t . Sanson in Bong. L. H i e r o n . (L.) Desf. L. M. J . Roem. Hook. H e l l e r Cham. & S c h l e c h t . (L.) DC. i_n Lam. & DC. Michx. (Ledeb.) Frye & Rigg (L.) Blake G. N. Jones Nutt. (Pursh) Dougl. ex L i n d l Donn ex D. Don i_n Lamb. Hook. L. (Walt.) V a i l Hook. Pursh Tr i n . (Raf.) Sarg. L. How . Sm. in_ Rees Sm. in. Rees A i t . Sm. iri Rees Nutt. in T o r r . & Gray Geyer ex Hook. Greene BRYOPHYTES Aulacomnium androgynum  Brachythecium f r i g i d u m  Chiloscyphus p a l l e s c e n s  Claopodium b o l a n d e r i  Conocephalum conicum  Dicranum fuscescens  Dicranum h o w e l l i i  Dicranum scoparium  Homalothecium megaptilum  Hookeria lucens  Hylocomium splendens  Hylocomium umbratum (Hedw.) Schwaegr. (C. M u l l .) Besch. (Ehrh. ex Hoffm.) Dum. Best (L.) Lindb. Turn. Ren. & Card. Hedw. ( S u l l . ) Robins. (Hedw.) Sm. (Hedw.) B.S.G. (Hedw.) B.S.G. Isopterygium elegans  Isothecium s t o l o n i f e r u m  Kindbergia oregana  Kin d b e r g i a praelonga  L e u c o l e p i s menziesi i  Mnium spinulosum  P l a g i o c h i l a a s p l e n i o i d e s  P l a g i o c h i l a p o r e l l o i d e s  Plagiomnium i n s i g n e  P l a g i o t h e c i u m c a v i f o l i u m  P l a g i o t h e c i u m undulatum  Pleurozium s c h r e b e r i  Pogonatum alpinum  P o l y t r i c h u m commune  Poly t r i c h u m juniperinum  P o l y t r i c h u m p i 1iferum  Rhacomitrium canescens  Rhizomnium glabrescens  Rhizomnium nudum  Rh y t i d i a d e l p h u s l o r e u s  R h y t i d i a d e l p h u s t r i q u e t r u s  R h y t i d i o p s i s robusta ( B r i d . ) Lindb. Br i d . ( S u l l . ) Ochyra (Hedw.) Ochyra (Hook.) Steere ex L. Koch B.S.G. (L.) Dum. (T o r r . e_x Nees) Lindb. ( M i t t . ) Kop. (B r i d . ) Iwats. (Hedw.) B.S.G. (B r i d . ) M i t t . (Hedw.) Rohl. Hedw. Hedw. Hedw. (Hedw.) B r i d . (Kindb.) Kop. ( B r i t t . & Wi l l i a m s ) Kop. (Hedw.) Warnst. (Hedw.) Warnst. (Hedw.) Broth. LICHENS C l a d i n a r a n g i f e r i n a  C l a d o n i a c o n i o c r a e a  C l a d o n i a f u r c a t a  C l a d o n i a g r a c i 1 i s  Cladon i a mult i formi s  Cladoni a squamosa  Cladon i a unc i a l i s  Leptogium palmatum  P e l t i g e r a aphthosa  P e l t i g e r a canina  P e l t i g e r a membranacea  P e l t i g e r a p o l y d a c t y l a (L.) Harm. (Fl o r k e ) Spreng, (Huds.) Schrad. (L.) W i l l d . Mer r . (Scop.) Hoffm. (L.) Wigg. (Huds.) Mont-. (L.) W i l l d . (L.) W i l l d . (Ach.) N y l . (Neck.) Hoffm. * Low woody s p e c i e s and sp e c i e s of d o u b t f u l l i f e f o r m a s s i g n e d to the herb (C) l a y e r (Walmsley et a l . , 1980) 207 APPENDIX B - FORMULAE FOR DETERMINING VCL, SBD, CFFBD AND POR A. V a r i a b l e reported on a whole p i t b a s i s : The f o l l o w i n g formula was used to c a l c u l a t e the percent volume of l a r g e (>2 cm) coarse fragments i n the whole s o i l p i t . VCL = ( V c l / Vp ) • 100 where V c l = Mcl / 2.65 g«cm~ 3 and VCL = volume of l a r g e (>2 cm) coarse fragments in whole s o i l p i t (%) Vp = volume of s o i l p i t (cm 3) V c l = volume of l a r g e (>2 cm) coarse fragments in whole s o i l p i t (cm 3) Mcl = weight of l a r g e (>2 cm) coarse fragments in whole s o i l p i t (g) B. V a r i a b l e s r e p o r t e d on a s o i l l a y e r b a s i s : The f o l l o w i n g formulae were used to determine standard (whole s o i l ) bulk d e n s i t y (Brady, 1974; L a v k u l i c h , 1981), coarse fragment-free bulk d e n s i t y (Nuszdorfer, 1981), and p o r o s i t y (modified from Brady (1974) to account f o r d i f f e r e n c e s i n organic matter content) f o r each s o i l l a y e r : SBD = ( Mc + Mf ) / Vt CFFBD = Mf / ( Vt - Vc ) POR = 100 - (( Vs / Vt) • 100 ) where Vs = Vc + Vfm + Vfo Vc = Mc / 2.65 g«cnr 3 Vfm = Mfm / 2.65 g«cnr 3 Vfo = Mfo / 1.5 g»cm" 3 Mfm = Mf • (1 - ( OM% / 100)) Mfo = Mf • ( OM% / 100) and SBD = standard bulk d e n s i t y (g«cm~ 3) CFFBD = coarse fragment-free bulk d e n s i t y (g«cm~ 3) POR = p o r o s i t y (%) OM% = organic matter (%) Mc = weight of coarse (^2 mm) fragments (g) Mf = weight of f i n e (<2 mm) f r a c t i o n (g) Mfm = weight of f i n e m i n e r a l f r a c t i o n (g) Mfo = weight of f i n e o rganic f r a c t i o n (g) Vt = t o t a l sample volume (cm 3) Vs = volume of s o l i d s (cm 3) Vc = volume of coarse (>2 mm) fragments (cm 3) Vfm = volume of f i n e m i n e r a l f r a c t i o n (cm 3) Vfo = volume of f i n e o rganic f r a c t i o n (cm 3) 208 APPENDIX C - PROCEDURE FOR DETERMINING EN, MEN, AND MN The f o l l o w i n g procedure was used to determine EN, MEN, and MN. T h i s procedure i s a m o d i f i c a t i o n of the anaerobic technique used by Waring and Bremner (1964). A. Determination of exchangeable n i t r o g e n (EN): 1. combine 5 g a i r - d r i e d (<2 mm) s o i l and 25 ml 1N KC1 i n a 60 ml p l a s t i c screw cap c o n t a i n e r 2. screw cap on f i r m l y 3. shake f o r 2 hours 4. f i l t e r sample through an Ashley #42 f i l t e r 5. using Technicon Autoanalyzer, determine c o n c e n t r a t i o n of ammonium (NH4) i n f i l t e r e d s o l u t i o n B. Determination of m i n e r a l i z a b l e (plus exchangeable) n i t r o g e n (MEN): 1. combine 5 g a i r - d r i e d (<2 mm) s o i l and 12.5 ml d i s t i l l e d water i n a 60 ml p l a s t i c screw cap c o n t a i n e r 2. screw cap on f i r m l y and s e a l with masking tape 3. incubate sample at 30°C f o r 14 days 4. shake sample f o r 15 seconds 5. add 12.5 ml 2 N KC1 ( f i n a l s o l u t i o n w i l l be 25 ml 1N KC1, the same as f o r EN above) 6. shake f o r 2 hours 7. f i l t e r sample through an Ashley #42 f i l t e r 8. using Technicon Autoanalyzer, determine c o n c e n t r a t i o n of ammonium (NH4) i n f i l t e r e d s o l u t i o n C. Determination of m i n e r a l i z a b l e n i t r o g e n (MN): MN = MEN - EN = (incubated) - ( non-incubated ) = ( Min + Exch - Imm ) - ( Exch ) = net m i n e r a l i z e d NH4 where Min = m i n e r a l i z e d NH4 Exch = exchangeable NH4 Imm = immobilized NH4 Th i s procedure d i f f e r s from the o r i g i n a l procedure used by Waring and Bremner (1964). The main d i f f e r e n c e s i n c l u d e : 1. use of a d i f f e r e n t e x t r a c t i n g s o l u t i o n ( i . e . 1N KCL was used i n s t e a d of 2N KC1), 2. use of a d i f f e r e n t type of c o n t a i n e r f o r i n c u b a t i o n s ( i . e . p l a s t i c screw cap b o t t l e s were used i n s t e a d of g l a s s 209 t e s t t u b e s), and 3. use of a d i f f e r e n t technique f o r determining the c o n c e n t r a t i o n of ammonium i n the f i l t e r e d s o l u t i o n ( i . e . a Technicon Autoanalyzer was used i n s t e a d of the steam d i s t i l l a t i o n technique) It should be noted that Waring and Bremner (1964) used MN as an index of a v a i l a b l e n i t r o g e n while Powers (1980) used MEN. A l s o , the amount of m i n e r a l i z e d n i t r o g e n (MN) w i l l have a net negative value i f the amount of ammonium immobilized d u r i n g i n c u b a t i o n i s gr e a t e r than the amount m i n e r a l i z e d (Lowe, 1971). 210 APPENDIX D - CONVERSION FROM CONCENTRATION TO KG/HA To convert the q u a n t i t y of n u t r i e n t "n" from c o n c e n t r a t i o n (ppm, %, or m.e. per 100 g) to weight on an a r e a l b a s i s (kg»ha" 1) f o r a given s o i l l a y e r , the f o l l o w i n g procedure was used. T h i s procedure was mod i f i e d from Lewis (1976) (see a l s o Zinke, 1960; and Nuszdorfer, 1981). 1. C a l c u l a t e the p r o p o r t i o n of the s o i l f i n e (<2 mm) f r a c t i o n (f ) which c o n s i s t s of n u t r i e n t "n" (P): a) f o r c o n c e n t r a t i o n given i n ppm -P = ppm n • 10" 6 kg of n mg of n 1 kg kg of s o i l f kg of s o i l f 10 s mg b) f o r c o n c e n t r a t i o n given i n % -P = ( %n ) • 10~ 2 kg of n (kg of n • 10 2) 1 kg of s o i l f kg of s o i l f 10: c) f o r c o n c e n t r a t i o n given in m.e. per 100 g -m.e. of n e q u i v a l e n t • 10 3 • weight • 10" 6 10 2 g of s o i l f kg of n m.e. of n 10 3g mg n 1 kg kg of s o i l f 10 2 g of s o i l f 1 kg m.e. n I0 6mg (= m.e. of n • e q u i v a l e n t weight • 10" 5) 21 1 2. C a l c u l a t e t h e w e i g h t of s o i l f i n e (<2 mm) f r a c t i o n ( f ) on an a r e a l b a s i s f o r t h e same s o i l l a y e r ( C F ) : CF , = A • B • C • TH Mf l a y e r — • 10"3 • 108 • t h i c k n e s s V t kg of s o i l f g of s o i l f 1 kg I08cm2 = • • • cm ha cm 3 o f s o i l 103g 1 ha where A i s t h e w e i g h t of t h e s o i l f i n e f r a c t i o n (Mf) per u n i t volume o f whole s o i l ( V t ) B c o n v e r t s A from g of s o i l f » c m ~ 3 t o kg of s o i l f»cm - 3 C c o n v e r t s t h e r e s u l t s o f ( A • B ) from kg of s o i l f » c m ~ 3 t o kg of s o i l f • c m - 1 » h a ~ 1 TH c o n v e r t s t h e r e s u l t s o f ( A • B • C ) from kg o f s o i l f » c n r 1 » h a ~ 1 t o kg of s o i l f » h a ~ 1 3. C a l c u l a t e t h e w e i g h t o f n u t r i e n t "n" i n t h a t s o i l l a y e r ( N ) : N = P • CF kg o f n kg of n kg of s o i l f ha kg of s o i l f ha where P i s t h e p r o p o r t i o n of s o i l f i n e (<2 mm) f r a c t i o n ( f ) w h i c h c o n s i s t s o f n u t r i e n t "n" ( s e e i t e m 1 above) CF i s t h e c o n v e r s i o n f a c t o r w h i c h c o n v e r t s t h i s p r o p o r t i o n t o kg o f n * h a ~ 1 ( s e e i t e m 2 above) 212 APPENDIX E - ORDINATION SCORES In t h i s appendix, a x i s 1, 2, and 3 scores are given f o r the four r e c i p r o c a l averaging (RA) o r d i n a t i o n s , the four detrended correspondence a n a l y s i s (DCA) o r d i n a t i o n s , and the four p o l a r o r d i n a t i o n s (PO). 213 RA 1 1 RA 1 2 PLOT ASSOC, a x i s 1 a x i s 2 a x i s 3 a x i s 1 a x i s 2 a x i s 3 1. 3. 33.09 94.63 2. 5. 47.05 95.57 3. 3. 33.50 95.27 4. 3. 36.61 95.85 5. 4. 45.35 93.55 6. 3. 34.28 96.71 7. 3. 34.33 97.70 8. 3. 36.29 96.59 9. 5. 46.81 99.99 10. 4. 40.24 99. 19 1 1 . 2. 25.95 77.85 12. 2. 29.65 88. 1 1 13. 6. 86.25 55.01 14. 4. 47.46 93. 12 15. 5. 45.08 97.47 16. 5. 47.37 97.07 17. 4. 41 .73 97.42 18. 6. 100.00 38.68 19. 3. 35.60 97.86 20. 4. 43.71 98.50 21 . 4. 38.37 100.00 22. 4. 43.39 97.75 23. 3. 34.56 97.35 24. 4. 40.62 98.61 25. 5. 46.79 95.47 26. 4. 40.41 97.49 27. 5. 61 .26 82.59 28. 3. 35.67 96.34 29. 5. 48.83 97.94 30. 5. 49.25 95.76 31 . 6. 94.31 42.64 32. 2. 29.42 89.03 33. 2. 31 .55 91 .87 34. 2. 30.89 90.69 35. 1 . 5.36 16.61 36. 5. 45.96 98.55 37. 2. 21.89 67.83 38. 2. 30. 19 89.95 39. 6. 90. 1 4 51 .77 40. 6. 77.51 65.63 41 . 5. 49.47 89.85 42. 3. 35.54 97. 19 43. 3. 34.35 97.48 44. 2. 32.55 95.21 45. 4. 38.95 97.29 46. 2. 30.66 88.02 47. 1 . 21 .86 67.52 48. 2. 32.20 91 .55 49. 1 . 1 5.92 52.06 50. 1 . 0.00 0.00 51 . 1 . 7.57 24.42 22, 77, 27, 35, 53, 28, 28, 37, 86, 55, 24, 19, 33, 55, 68 00 07 93 15 1 3 09 04 82 79 97 50 90 1 4 79.53 80.96 67, 9, 33 64 43 63 30 55 64 54 66 37 92 80 0 17 21 21 84 80 31 18 32 45 67 32 28 18 45 15 21 29 37 100 70 47 10 21 73 84 46 1 5 02 91 08 1 3 89 97 96 00 08 23 47 61 37 45 52 37 07 84 22 1 2 96 48 50 99 79 1 2 00 80 33.27 53.75 34.25 39.28 50.53 34.93 34.95 37.63 54.30 46.47 26.81 28. 16 83.49 51 .93 55. 18 59.23 49. 18 100.00 37.76 51 .57 43.89 52.86 35.90 47.29 56.48 45.77 63.84 37.79 60. 35 60.61 86.94 25.91 30.57 28. 1 7 4.74 56.24 24.99 28.56 87.69 80.86 55.66 36.76 35.48 32.02 42.84 30.02 19.32 33.42 17.64 0.00 9.27 93.77 93. 1 1 94.89 94.48 94.53 94.87 95.99 95.72 98.39 100.00 83. 17 85.86 54.61 98.84 95.25 93.80 96.48 26.26 97.55 96.73 97.45 95.59 96. 1 5 98.32 91 .22 97.07 86.47 95. 1 1 95.40 93. 1 4 39.19 84.92 90.64 86.60 1 4.44 96.33 81 .37 87. 18 50.97 58.42 88.91 97. 1 0 96.89 95.07 95.49 85.36 62.24 92.06 64.43 0.00 32.33 26.66 58. 10 27.90 38.05 54.67 30.00 29.38 37. 1 2 65.94 54.04 23. 1 3 25. 18 31 .69 61.01 67.49 67.68 61.12 0.33 33.47 55.81 48.87 61 .66 32.64 52.79 60.98 51 .82 62.95 39.60 72.34 67.63 0.00 15.71 1 9.72 20.27 91 .07 67.51 20.34 20.91 30.29 29.91 60.85 34.64 31.19 19.45 46.41 27.25 40.39 28.58 26.71 100.00 64.72 214 RA 1 3 RA 1 4 PLOT ASSOC. a x i s 1 a x i s 2 a x i s 3 a x i s 1 a x i s 2 a x i s 3 1 . 3. 31 .86 12.45 53.20 23.52 26.52 28.22 2. 5. 74.81 32.81 65.97 77.70 62. 17 65.71 3. 3. 32.90 19.30 59.35 24.97 52.64 20. 1 0 4. 3. 42.47 10.99 56.76 40.80 34.68 20.30 5. 4. 61 .44 14.08 73.01 70.13 38.47 18.87 6. 3. 35.07 15.55 57.24 27.45 49.38 27.02 7. 3. • 35.03 10. 13 56.93 27.34 42.04 18.24 8. 3. 40.67 1 0.84 60.45 36.97 41.18 26.86 9. 5. 77.24 19.39 76.36 82.93 47. 13 23.66 10. 4. 56.08 9.03 65.96 62.64 27.91 16.04 1 1 . 2. 13.87 50.02 70. 10 7.96 67.22 45.72 12. 2. 23.88 23.88 55.52 12.75 36.60 44.91 14. 4. 64.89 13.35 79.76 75.76 41.61 14.62 15. 5. 72.86 23.94 80.38 86.08 49.46 23.66 16. 5. 76. 16 24.01 80.88 92.71 50.65 27 .79 17. 4. 62. 56 20.94 72.33 71 .02 47.78 30.82 19. 3. 38.42 14.67 58.65 33.80 47.68 19.36 20. 4. 64.47 19.94 64.88 71 .58 50.33 25.73 21 . . 4. 48.68 0.23 58.62 55.37 30.47 7.96 22. 4. 64. 1 4 13.92 67.34 78.91 39.07 20. 18 23. 3. 36.72 7.85 58.38 31 .54 36.98 5.91 24. 4. 54.82 13.51 69.34 62.25 42.54 17.05 25. 5. 69.57 19.12 57 . 30 84.68 48.49 73.09 26. 4 . 55.91 15.71 58. 34 60.00 41.31 20.90 27. 5. 100.00 70.59 0.00 100.00 73.03 64.78 28. 3. 42. 1 3 16.32 56.23 39.08 43.23 25.45 29. 5. 84.45 36.44 74.96 98.52 73.40 54.94 30. 5. 80.09 31 .68 72.74 96.34 64.56 49.28 32. 2. 19.58 32.61 62.08 0.00 100.00 30.75 33. 2. 25.32 29.78 63.98 11.12 91 .09 12.83 34. 2. 24.43 27.30 61 .92 6.88 86.64 22.72 36. 5. 74.02 22.71 78.01 87.45 53.84 25.44 37. 2. 0.00 100.00 100.00 1.15 89.22 60.49 38. 2. 22.80 33.37 61 .44 9.06 80.73 39. 14 41 . 5. 76.61 1 6.73 79.84 85.81 40.20 3.10 42. 3. 40.05 0.00 53.41 35.46 6.38 24.32 43. 3. 36. 17 6.78 54.29 30.09 22.45 20.85 44. 2. 27.96 17.26 57.38 14.78 60.41 0.00 45. 4. 50.22 2.54 60.24 53. 18 14.52 31 .65 46. 2. 26.56 16.13 42.55 1 9.77 0.00 100.00 48. 2. 29.04 28.01 64.23 22.69 57.55 41 .82 215 DCA11 DCA12 PLOT ASSOC. a x i s 1 a x i s 2 a x i s 3 a x i s 1 a x i s 2 a x i s 3 1. 3. 218.00 82.00 88. 00 175.00 109.00 73.00 2. 5. 345.00 97.00 5. 00 319.00 88.00 111.00 3. 3. 222.00 47.00 82. 00 182.00 146.00 87.00 4. 3. 254.00 90.00 88. 00 220.00 98.00 93.00 5. 4. 323.00 95.00 1 05. 00 301.00 83.00 66.00 6. 3. 233.00 58.00 83. 00 187.00 127.00 1 10.00 7. 3. 232.00 60.00 83. 00 187.00 129.00 99.00 8. 3. 255.00 80.00 56. 00 209.00 108.00 83.00 9. 5. 358.00 76.00 1 . 00 334.00 101.00 51 .00 10. 4. 298.00 95.00 58. 00 278.00 92.00 52.00 1 1 . 2. 154.00 45.00 67. 00 126.00 123.00 91 .00 12. 2. 180.00 85.00 59. 00 135.00 90.00 89.00 13. 6. 518.00 131.00 58. 00 459.00 47.00 146.00 14. 4. 339.00 86.00 109. 00 317.00 98.00 93.00 15. 5. 337.00 80.00 62. 00 337.00 91 .00 58.00 16. 5. 353.00 81 .00 61 . 00 362.00 87.00 60.00 17. 4. 311.00 79.00 54. 00 298.00 97.00 78.00 18. 6. 566.00 128.00 111. 00 525.00 70.00 77.00 19. 3. 249.00 50.00 76. 00 211.00 140.00 86.00 20. 4. 327.00 68.00 70. 00 310.00 112.00 107.00 21 . 4. 279.00 93.00 98. 00 258.00 98.00 89.00 22. 4. 320.00 90.00 85. 00 319.00 82.00 76.00 23. 3. 234.00 65.00 1 05. 00 195.00 121.00 101.00 24. 4. 302.00 62.00 75. 00 284.00 114.00 72.00 25. 5. 343.00 108.00 64. 00 339.00 60.00 107.00 26. 4. 299.00 83.00 85. 00 273.00 105.00 84.00 27. 5. 415.00 99.00 47. 00 376. 00 86.00 125.00 28. 3. 250.00 65.00 75. 00 211.00 1 15.00 94.00 29. 5. 366.00 61 .00 0. 00 367.00 95.00 97.00 30. 5. 363.00 83.00 29. 00 365.00 84.00 80.00 31 . 6. 537.00 129.00 91 . 00 466.00 53.00 1 14.00 32. 2. 183.00 11.00 73. 00 121.00 190.00 92.00 33. 2. 204.00 2.00 84. 00 156.00 202.00 91 .00 34. 2. 198.00 20.00 79. 00 138.00 176.00 93.00 35. 1 . 30.00 108.00 90. 00 22.00 18.00 57.00 36. 5. 349.00 73.00 63. 00 346.00 102.00 62.00 37. 2. 126.00 0.00 38. 00 1 13.00 162.00 96.00 38. 2. 189.00 39.00 60. 00 139.00 168.00 95.00 39. 6. 532.00 1 17.00 52. 00 476.00 62.00 185.00 40. 6. 483.00 97.00 82. 00 448.00 116.00 0.00 41 . 5. 352.00 131.00 1 49. 00 330.00 89.00 65.00 42. 3. 246.00 132.00 27. 00 202.00 67.00 23.00 43. 3. 234.00 92.00 75. 00 193.00 98.00 66.00 44. 2. 214.00 37.00 99. 00 166.00 178.00 79.00 45. 4. 278.00 127.00 54. 00 248.00 65.00 49.00 46. 2. 189.00 156.00 46. 00 149.00 24.00 68.00 47. 1 . 122.00 174.00 56. 00 84.00 0.00 76.00 48. 2. 215.00 51 .00 51 . 00 177.00 126.00 80.00 49. 1 . 83.00 15.00 51 . 00 72.00 163.00 64.00 50. 1 . 0.00 70.00 56. 00 0.00 56.00 46.00 51 . 1 . 37.00 33.00 46. 00 38.00 114.00 97.00 216 DCA 1 3 DCA 1 4 PLOT ASSOC. ax i s 1 a x i s 2 a x i s 3 a x i s 1 a x i s 2 a x i s 3 1 . 3. 212.00 85.00 76.00 64.00 82.00 103.00 2. 5. 64.00 45.00 146.00 221.00 129.00 27.00 3. 3. 206.00 47.00 65.00 69.00 50.00 61 .00 4. 3. 174.00 72.00 88.00 113.00 89.00 85.00 5. 4. 105.00 92.00 31 .00 198.00 101.00 78.00 6. 3. 198.00 41 .00 76.00 75.00 67.00 60.00 7. 3. 200.00 48.00 87.00 75.00 61 .00 81 .00 8. 3. 176.00 57.00 100.00 103.00 91 .00 45.00 9. 5. 53.00 17.00 83.00 235.00 86.00 2.00 10. 4. 123.00 80.00 80.00 176.00 103.00 59.00 11. 2. 264.00 58.00 82.00 21 .00 104.00 75.00 12. 2. 239.00 76.00 87.00 33.00 113.00 72.00 14. 4. 89.00 92.00 0.00 213.00 79.00 50.00 15. 5. 68.00 56.00 35.00 244.00 99.00 44.00 16. 5. 57.00 48.00 33.00 264.00 95.00 16.00 17. 4. 101.00 63.00 63.00 200.00 95.00 38.00 19. 3. 186.00 40.00 86.00 93.00 51 .00 51 .00 20. 4. 95.00 37.00 82.00 202.00 78.00 65.00 21 . 4. 149.00 49.00 76.00 155.00 76.00 88.00 22. 4. 98.00 69.00 60.00 224.00 97.00 76.00 23. 3. 194.00 52.00 70.00 87.00 62.00 93.00 24. 4. 125.00 38.00 66.00 175.00 72.00 1 6.00 25. 5. 79.00 50.00 1 32.00 241.00 T45.00 46.00 26. . 4. 123.00 67.00 73.00 169.00 83.00 76. 00 27. 5. 0.00 80.00 86.00 288.00 113.00 96.00 28. 3. 172.00 53.00 72.00 108.00 71 .00 67.00 29. 5. 33.00 29.00 74.00 283.00 97.00 0.00 30. 5. 45.00 65.00 70.00 276.00 111.00 18.00 32. 2. 246.00 0.00 63.00 0.00 23.00 54.00 33. 2. 227.00 6.00 39.00 31 .00 0.00 53.00 34. 2. 230.00 11.00 54.00 19.00 31 .00 60.00 36. 5. 62.00 41 .00 54.00 249.00 89.00 20.00 37. 2. 298.00 40.00 96.00 2.00 99.00 21 .00 38. 2. 237.00 10.00 72.00 24.00 56.00 39.00 41 . 5. 61 .00 159.00 9.00 246.00 86.00 145.00 42. 3. 182.00 115.00 109.00 98.00 127.00 86.00 43. 3. 196.00 82.00 85.00 83.00 87.00 95.00 44. 2. 221.00 45.00 33.00 41 .00 0.00 101.00 45. 4. 146.00 93.00 98.00 149.00 130.00 85.00 46. 2. 231.00 143.00 128.00 53.00 187.00 92.00 48. 2. 214.00 41 .00 97.00 62.00 85.00 20.00 217 PO11 PO12 PLOT ASSOC. a x i s 1 a x i s 2 a x i s 1 a x i s 2 1 . 3. 40.94 84.88 37.29 80.30 2. 5. 52.02 18.09 52.38 25.29 3. 3. 42.64 78.39 39.49 77.75 4. 3. 42. 1 8 54.20 38.92 53.55 5. 4. 53.97 38.34 48.62 25.57 6. 3. 41 .57 71 .95 37.42 64. 1 3 7. 3. 41 .59 69.46 37.50 70.09 8. 3. 42.15 . 46.26 38.71 58.63 9. 5. 49.92 0.00 48.02 20.37 10. 4. 45.49 44.80 43.77 43.71 1 1 . 2. 28. 19 83.29 28.55 '69.68 12. 2. 34.53 84.46 29.32 70.71 13. 6. 90.90 17.93 85. 19 16.34 14. 4. 58.75 48.85 51.13 29.41 15. 5. 50.37 29.79 50.42 0.00 16. 5. 54.05 21.41 55.82 5.44 17. 4. 46.06 39.43 44.40 23.36 18. 6. 100.00 42.68 100.00 38. 1 3 19. 3. 42.66 67.02 39.45 75. 1 1 20. 4. 48.39 40.30 47.58 40.97 21 . 4. 45.91 42. 1 0 44. 1 3 51 .50 22. 4. 50.74 30.54 51 .25 19.71 23. 3. 43.52 70.46 40.26 71 .69 24. 4. 45.99 39.45 44.25 35.34 25. 5. 52.00 21 .06 52.55 18.98 26. 4. 43.77 44.08 41.41 44. 1 2 27. 5. 67.09 19.76 59.44 18.29 28. 3. 42.66 66.53 39.41 61 .00 29. 5. 56.74 14.81 59.37 11.77 30. 5. 57.88 20. 1 4 60.62 5.67 31 . 6. 83.57 39.27 70.51 39.72 32. 2. 38.24 81 .58 32.87 84.51 33. 2. 41 .69 87.41 38 . 1 4 88.75 34. 2. 38.64 80.66 32.78 79.91 35. 1 . 6.97 67.58 8.53 59.00 36. 5. 51.21 20.47 51 .60 1 4.38 37. 2. 23.27 82.78 27.40 69.03 38. 2. 38.30 85.60 32.37 78.88 39. 6. 92.45 28.22 86.38 28.07 40. 6. 78. 1 1 15.24 75.80 29.25 41 . 5. 58.41 37.25 56.58 31.21 42. 3. 42.82 51 .28 39.72 66.69 43. 3. 41 .68 70.47 38.02 77.69 44. 2. 46.20 100.00 44.49 1 00.00 45. 4. 44.69 35.67 42.39 39.80 46. 2. 39.09 68.69 34.93 58.06 47. 1 . 26.37 70.96 22.44 62.65 48. 2. 36.92 62.64 34.43 69.62 49. 1 . 16.19 83.55 21 .46 71.41 50. 1 . 0.00 48.99 0.00 45.69 51 . 1 . 8.73 80.55 13.09 72.84 218 PO13 PO14 PLOT ASSOC. a x i s 1 a x i s 2 a x i s 1 a x i s 2 1 . 3. 37.47 69.66 21 . 37 62.85 2. 5. 74.08 54.42 72. 57 76.91 3. 3. 29.61 67. 18 1 6.25 38. 1 1 4. 3. 52.21 69.96 41 .59 36.05 5. 4. 64. 1 1 34.83 71 . 57 54.00 6. 3. 38.66 53.87 27.24 46.26 7. 3. 35.54 70.21 28.48 51 .60 8. 3. 42.38 72.26 34.53 53.30 9. 5. 76.42 47.59 81 .57 38.85 10. 4. 57.63 55.22 57.54 72.74 1 1 . 2. 17.76 69.76 8.19 60.74 12. 2. 23. 1 1 67.08 1 3.89 76.61 14. 4. 59.60 0.00 68.75 32.52 15. 5. 60.97 14.11 78.27 54.40 16. 5. 65.81 19.67 85.92 52.59 17. 4. 59.60 27.81 63.37 47.39 19. 3. 36.86 71 .77 27.90 43.21 20. 4. 68.73 33.82 64.97 26.24 21 . 4. 63.31 46. 1 5 51.16 0.00 22. 4. 64.20 37.20 80.35 31.29 23. 3. 37.80 60.77 27.32 19.01 24. 4. 54.01 42. 1 0 58.72 39.45 25. 5. 74.83 37.75 81 .80 52.02 26. 4. 65.69 50.97 65. 68 42.63 27. 5. 100.00 32.27 100.00 62.25 28. 3. 44.09 51 .95 36. 49 49.66 29. 5. 74.41 23.01 93.29 36.89 30. 5. 72.95 26.23 93.96 54.75 32. 2. 23. 13 61.76 0.00 53.43 33. 2. 27. 1 1 47.87 5.03 40.37 34. 2. 27.34 54.20 6.39 52.63 36. 5. 70.24 35.37 84.23 53.26 37. 2. 0.00 54.50 2.01 62.77 38. 2. 22.83 52.77 5.84 63. 1 2 41 . 5. 77.01 47.58 81 .47 65.31 42. 3. 47.88 100.00 37.66 81 .06 43. 3. 42.35 76.81 27.23 56.96 44. 2. 30. 16 50.97 3.8.2 24. 10 45. 4. 59.21 74.34 54.99 100.00 46. 2. 32.02 82.30 25.28 91 .01 48. 2. 30.03 73.99 18.41 67.91 219 APPENDIX F - CLUSTERING LEVELS In t h i s appendix, c l u s t e r i n g l e v e l s are given f o r a l l four c l u s t e r a n a l y ses (CA11, CA12, CA13, and CA14). "Grouping order" r e f e r s to the order i n which c l u s t e r s were formed (N.B. number of c l u s t e r s at a given l e v e l = number of p l o t s used in the a n a l y s i s - grouping o r d e r ) . " C l u s t e r s " r e f e r s to the p l o t s (or c l u s t e r s ) j o i n e d at a given l e v e l . In the case of c l u s t e r s c o n t a i n i n g more than one p l o t , the c l u s t e r number r e f e r s to p l o t ( i n the c l u s t e r ) with the s m a l l e s t p l o t number. The c l u s t e r i n g l e v e l ( E u c l i d e a n Distance at which c l u s t e r s were joined) i s shown under the heading E u c l i d e a n D i s t a n c e . CA1 1 CA 1 2 Grouping order c l u s t e r s E u c l i d e a n Distance Grouping order c l u s t e r s E u c l i d e a n Di stance 1 32 - 34 21 , .5 1 33 - 34 15. ,8 2 32 - 33 33. .0 2 32 - 33 21 . .9 3 29 - 30 38. .5 3 37 - 38 22. .3 4 01 - 03 41 , .0 4 29 - 30 25. ,3 5 06 - 28 49, .0 5 06 - 07 26. .5 6 1 6 - 36 54, .3 6 06 - 28 32. ,3 7 1 2 - 38 54, .8 7 01 - 03 35. ,0 8 01 - 44 57, .3 8 1 6 - 36 41 . .3 9 07 - 19 66, .3 9 09 - 1 4 45. ,8 10 07 - 43 72, .6 10 32 - 44 48. ,5 1 1 05 - 14 75, .0 1 1 01 - 19 50. .5 1 2 1 2 - 32 75, .2 12 04 - 21 50. .8 1 3 1 3 - 18 75, .5 1 3 1 2 - 37 54. ,9 . 1 4 04 - 26 78, .5 14 05 - 22 56. ,5 1 5 01 - 1 2 80, .7 1 5 09 - 24 57. .4 1 6 20 - 24 88, .0 1 6 01 - 06 58. .4 1 7 06 - 07 89, .6 1 7 04 - 26 58. .9 1 8 08 - 23 90, .0 18 1 5 - 17 59. .0 1 9 1 6 - 29 90, .3 19 01 - 43 63. .5 20 35 - 50 . 90, .3 20 1 2 - 48 65. . 1 21 1 5 - 1 7 94, .0 21 09 - 20 65, .8 22 01 - 48 98, . 1 22 08 - 23 67. .0 23 1 3 - 39 99, .0 23 35 - 50 67, .3 24 1 3 - 31 1 05, .3 24 05 - 25 73, .0 25 22 - 25 1 07, .0 25 1 6 - 29 73. . 1 26 35 - 51 112, .9 26 1 2 - 32 73. .7 27 01 - 06 114, .6 27 1 3 - 18 74. , 5 28 04 - 08 114, .6 28 02 - 1 6 83. , 1 29 05 - 20 118, . 1 29 05 - 09 83. .7 30 1 5 - 1 6 1 29, .5 30 35 - 51 84. . 4 31 1 1 - 37 1 30, .3 31 01 - 1 2 85. ,0 32 05 - 22 1 32. .8 32 04 - 08 87. ,2 33 04 - 21 1 45. .4 33 05 - 15 90. ,0 34 02 - 09 1 49. .3 34 31 - 39 96. ,0 35 05 - 1 5 149. .5 35 02 - 05 98. ,2 36 1 1 - 49 1 54. .9 36 1 3 - 31 99. .0 37 46 - 47 169. .0 37 01 - 1 1 99. ,2 38 02 - 05 169. .7 38 10 - 45 116. ,0 39 01 - 04 180. .2 39 02 - 27 118. ,6 40 42 - 45 189. ,0 40 46 • - 47 135. ,0 41 10 42 211. ,5 41 01 - 04 136. .7 42 01 - 10 232. ,9 42 1 0 - 42 163. .0 43 1 1 - 35 240. .6 43 35 - 49 174. .4 44 02 - 27 247. ,4 44 01 - 35 188. , 4 45 02 - 41 261 . .8 45 02 - 41 1 94 . ,4 46 01 - 02 274. ,2 46 01 - 10 208. .0 47 01 - 46 364. .2 47 01 - 02 227. , 1 48 01 - 1 1 374. ,4 48 01 - 13 298. ,0 49 1 3 - 40 421 . .6 49 01 - 46 315. ,3 50 01 - 1 3 567. .3 50 01 - 40 537. ,3 221 CA13 CA14 Grouping order c l u s t e r s E u c l i d e a n Di stance Grouping order c l u s t e r s Euc1idean Di stance 1 32 - 34 21 . .5 1 33 -- 34 15. ,8 2 32 - 33 33. .0 2 32 -- 33 21 . ,9 3 29 - 30 38. .5 3 37 -- 38 22. ,3 4 01 - 03 41 . .0 4 29 -- 30 25. ,3 5 06 - 28 49. .0 5 06 -- 07 26. ,5 6 1 6 - 36 54. .3 6 06 -- 28 32. ,3 7 1 2 - 38 54. .8 7 01 -- 03 35. ,0 8 01 - 44 57. .3 8 16 -- 36 41 . ,3 9. 07 - 19 66. .3 9 09 -- 14 45. .8 10 07 - 43 72. .6 10 32 -- 44 48. .5 1 1 05 - 1 4 75, .0 1 1 01 -- 19 50, .5 1 2 1 2 - 32 75. ,2 1 2 04 -- 21 50. .8 1 3 04 - 26 78. .5 1 3 12 -- 37 54, .9 1 4 01 - 1 2 80. .7 1 4 05 -- 22 56, .5 15 20 - 24 88. .0 1 5 09 -- 24 57, .4 16 06 - 07 89. .6 1 6 01 -- 06 58, .4 1 7 08 - 23 90. .0 1 7 04 -- 26 58, .9 18 1 6 - 29 90. .3 18 15 -- 17 59, .0 1 9 1 5 - 1 7 94. .0 19 01 -- 43 63, .5 20 01 - 48 98, . 1 20 12 -- 48 65, . 1 21 22 - 25 107, .0 21 09 -- 20 65, .8 22 01 - 06 114, .6 22 08 -- 23 67, .0 23 04 - 08 114, .6 23 05 -- 25 73, .0 24 05 - 20 118, . 1 24 16 -- 29 73, . 1 25 1 5 - 1 6 1 29. .5 25 12 -- 32 73, .7 26 1 1 - 37 130, .3 26 02 -- 16 83, . 1 27 05 - 22 1 32, .8 27 05 -- 09 83, .7 28 04 - 21 1 45. .4 28 01 -- 12 85, .0 29 02 - 09 1 49. ,3 29 04 -- 08 87, .2 30 05 - 1 5 1 49. .5 30 05 -- 15 90, .0 31 01 - 1 1 161. .6 31 02 -- 05 98, .2 32 02 - 05 1 69. .7 32 01 -- 1 1 99. .2 33 42 - 45 189. .0 33 10 -- 45 116. .0 34 01 - 04 1 92. .0 34 02 -- 27 118. ,6 35 1 0 - 42 21 1 . 5 35 01 -- 04 136. .7 36 01 - 46 236. .7 36 10 -- 42 163. .0 37 01 - 1 0 246. .4 37 01 -- 10 188. .8 38 02 - 27 247. .4 38 02 -- 41 1 94. .4 39 02 - 41 261 . .8 39 01 -- 46 204, .4 40 01 - 02 287. . 1 40 01 -- 02 223, .8 222 APPENDIX G - ENVIRONMENT TABLES In t h i s appendix, s e l e c t e d environment and mensurational v a r i a b l e s are shown in t a b l e s produced by the F405:ENV program ( K l i n k a and Phelps, 1979). To understand these t a b l e s , s e v e r a l terms and a b b r e v i a t i o n s must f i r s t be d e f i n e d . These d e f i n i t i o n s are as f o l l o w s : 1. FOREST COVER TYPE: Con.= c o n i f e r o u s , Dec.= deciduous, PC = lodgepole pine, PM = D o u g l a s - f i r , TH = western hemlock 2. ASPECT: f = f l a t 3. SOIL SUBGROUP (C.S.S.C., 1978): T.H = T e r r i c Humisol, O.HG = O r t h i c Humic G l e y s o l , DU.HFP = Duric Humo-Ferric Podzol, O.HFP = O r t h i c Humo-Ferric Podzol, SM.HFP = Sombric Humo-Ferric Podzol (g = gleyed phase, 1 = l i t h i c phase, s = sombric phase, t = t u r b i c phase) 4. SOIL FAMILY OR PARTICLE SIZE (C.S.S.C., 1978): CL = coarse-loamy, FL = fine-loamy, LS = l o a m y - s k e l e t a l , SS = s a n d y - s k e l e t a l , 0 = organic 5. DEPTH TO RESTR. HOR./LAYER: r e f e r s to the depth from the ground s u r f a c e down to a r e s t r i c t i n g l a y e r were K = compacted m a t e r i a l , L = l i t h i c (bedrock) co n t a c t 6. COARSE FRAGMENTS >2 MM (%): r e f e r s to the % volume of >2 mm coarse fragments (weighted to r o o t i n g depth) 7. PARENT MATERIALS (E.L.U.C, 1975): C = c o l l u v i a l , F = f l u v i a l , M = morainal, 0 = o r g a n i c , R = Bedrock, (b = b l a n k e t , t = t e r r a c e d , v = veneer) 8. THICKNESS OF MIN. SOIL (CM): r e f e r s to the t h i c k n e s s of the mineral s o i l h o r i z o n s measured from the top of the f i r s t m ineral h o r i z o n down to the compacted (K) l a y e r , the l i t h i c c o n t a c t ( L ) , or to the C h o r i z o n 9. ROOTING DEPTH (CM): r e f e r s to the depth from the ground s u r f a c e down to the bottom of the e f f e c t i v e r o o t i n g zone (the l e v e l at which the m a j o r i t y of r o o t s stop) 10. SEEPAGE WATER DEPTH (CM): depth from the ground s u r f a c e down to the l e v e l where f r e e water i s encountered at the time of sampling 11. SOIL DRAINAGE (C.S.S.C, 1978): r = r a p i d l y , w = w e l l , mw = moderately w e l l , i = i m p e r f e c t l y , p = p o o r l y , vp = very p o o r l y 223 12. COARSE FRAGMENTS > 2CM • ( % ) : r e f e r s to the % volume (whole p i t ) of l a r g e (> 2 cm) coarse fragments 13. THICKNESS OF HUM. HOR. ( C M ) : r e f e r s to the t h i c k n e s s of the ec t o r g a n i c m a t e r i a l s 14. HUMUS FORM: r e f e r s to the humus form Group c l a s s i f i e d a c c o r d i n g to the system proposed by K l i n k a e_t a_l. (1981b) where HR = Hemimor, HUR = Hemihumimor, MD = Mormoder, SL = S a p r i m u l l , UR = Humimor, VL = Vermimull, XD = Xeromoder, XR = Xeromor, YL = Hydromull 15. PH OF MINERAL SOIL: pH of mineral s o i l weighted to r o o t i n g depth 16. AGE (YEARS): stand age (years) 17. GC AND SI OF DOUGLAS-FIR: growth c l a s s (Lowe and K l i n k a , 1981) and s i t e index (m/100 y r s ) of D o u g l a s - f i r (Pseudotsuga menziesi i ) 18. NS/HA: number of stems (>7.5 cm d.b.h.) per hectare 19. BA/HA (SQ.M): stand b a s a l area (m 2) per hec t a r e 20. DBH (CM): average diameter breast height (cm) 21. VOL/HA (CU.M): gross stand volume (m 3/ha) 22. MAI (CU.M/HA/YR): mean annual increment (m 3/ha/yr) 23. STRATA COVERAGE (%): r e f e r s to the % of the sample p l o t covered by a v e r t i c a l p r o j e c t i o n of each v e g e t a t i o n stratum where A LAYER = t r e e s , B LAYER = shrubs, C LAYER = herbs, D LAYER = mosses, l i v e r w o r t s , and l i c h e n s 24. GROUND COVERAGE (%): r e f e r s to the % of the sample p l o t covered by H = humus l a y e r , MS = mineral s o i l , DW = decaying wood, R & S = rocks and coarse fragments 2 2 4 Environment t a b l e f o r bio g e o c o e n o t i c a s s o c i a t i o n 1.11 ($PC-PJ) |FOREST COVER TYPE. | PC I PM I |PLOT NUMBER MEAN 35 49 50 I 51 1 47 BIOGEOCLIMATIC UNIT CWHa CWHa CWHa CWHa CWHa ENVIRONMENT : ELEVATION (M) 316 0 210 300 380 400 290 SLOPE GRADIENT (%) 5 .6 0 20 0 0 B ASPECT F 330 F F 300 SOIL n o n - 1/0 1/0 1/0 1/0 SUBGROUP (CSSC, 1978) s o l 1 .HFP .HFP . HFP .HFP SOIL FAMILY (PARTICLE S IZE) CL CL CL CL CL DEPTH TO RESTR. HOR./LAYER 18 6 L 9 L 13 L 14 L 18 L 39 COARSE FRAGMENTS >2MM (%) 16 6 2 33 15 9 24 SOIL MOIST.REGIME(HYGROTOPE) 0 0 0 0 0 SOIL NUTR.REGIME(TROPHOTOPE) B C B B C PARENT MATERIALS MvR MvR MvR MvR MvR THICKNESS OF MIN. SOIL (CM) 6 10 12 15 35 ROOTING DEPTH (CM) 18 6 9 13 14 18 39 SEEPAGE WATER DEPTH (CM) 0 0 SOIL DRAINAGE (CSSC. 1978) r r r r r COARSE FRAGMENTS >2CM (%)• 3 8 1 13 2 1 2 THICKNESS OF HUM. HOR. (CM) 3 0 3 3 2 3 4 HUMUS FORM XR XR XD XR XR PH OF HUMUS 3 5 3 . 7 4 .O 3.2 3.3 3.5 C/N OF HUMUS 40 0 35 33 49 46 37 PH OF MINERAL SOIL 3 9 3.6 4.2 3.8 3.7 4 . 4 VEGETATION : AGE (YEARS) €8 8 70 62 71 65 76 GC AND SI OF DOUGLAS-FIR 0 - 0 0 - - - - -NS/HA 1723 8 692 1 100 1000 5125 702 BA/HA (SO.M) 52 2 48 44 44 105 20 DBH (CM) 22 2 30 22 24 16 19 VOL/HA (CU.M) 2G5 8 264 290 232 443 100 MAI (CU.M/HA/YR) 4 0 4 5 3 7 1 STRATA A LAYER 64 0 55 60 60 85 60 COVERAGE B LAYER 39 0 5 90 25 15 60 (%) C LAYER 12 0 20 5 10 5 20 D LAYER 53 0 50 60 40 20 95 GROUND H 82 2 98 75 65 85 68 COVERAGE MS 0 0 0 0 0 0 0 (%) DW 7 8 2 3 2 2 30 R & S 10 0 0 22 13 13 2 225 Environment t a b l e f o r bio g e o c o e n o t i c a s s o c i a t i o n 1.21 ($PM-GS) |FOREST COVER TYPE | PM-PC | PM-TH |PLOT NUMBER MEAN 37 11 12 32 33 34 38 44 46 48 BIOGEOCLIMATIC UNIT CWHa CWHa CWHa CWHa CWHa CWHa CWHa CWHa CWHa CWHa ENVIRONMENT : ELEVATION (M) 256 0 340 200 200 240 240 230 370 230 240 270 SLOPE GRADIENT (%) 20 6 40 10 10 5 12 10 40 20 34 25 ASPECT •120 20 360 330 330 300 130 320 310 340 SOIL 1/0 1/0 1/0 1/0 1/0 1/0 0 DU 1/0 1/0 SUBGROUP (CSSC, 1978) . HFP HFP .HFP .HFP . HFP .HFP .HFP .HFP . HFP .HFP SOIL FAMILY (PARTICLE SIZE) CL CL CL CL CL CL LS CL CL CL DEPTH TO RESTR. HOR./LAYER 58 2 L 32 L 93 L 33 L 59 L 33 L 37 K 96 L 58 L 83 COARSE FRAGMENTS >2MM (%) 23 9 32 28 16 33 3 22 41 27 17 20 SOIL MOIST.REGIME(HYGROTOPE) 2 2 2 2 2 2 2 2 1 2 SOIL NUTR.REGIME(TROPHOTOPE) C C C C C C C C C C PARENT MATERIALS CvR MvR MvR MvR MvR MvR Cb Mb MvR MvR THICKNESS OF MIN. SOIL (CM) 29 90 30 55 30 33 +95 91 52 77 ROOTING DEPTH (CM) 55 1 32 80 30 59 33 37 90 65 42 83 SEEPAGE WATER DEPTH (CM) 0 O SOIL DRAINAGE (CSSC. 1978) r r r r r r r w r r COARSE FRAGMENTS >2CM (%) 11 2 20 10 15 14 1 1 9 12 1 1 2 8 THICKNESS OF HUM. HOR. (CM*) 4 1 3 3 3 4 3 4 4 5 6 6 HUMUS FORM MD HUR HUR HUR HUR HUR HUR UR MD HUR PH OF HUMUS 4 2 4 . 1 4 . 1 3.9 4.8 4.2 4 . 1 3.9 4.2 4 .3 4 . 3 C/N OF HUMUS 41 0 45 38 44 40 50 45 34 39 36 39 PH OF MINERAL SOIL 4 4 4.5 4.5 4.6 4 . 3 4.0 4.2 4.5 4.4 4.6 4 . 4 VEGETATION : AGE (YEARS) 59 7 50 72 64 53 49 50 62 67 68 62 GC AND SI OF DOUGLAS-FIR 6-29 2 7-22 6-28 7-27 5-38 5-34 7-27 7-25 6-29 6-31 6-31 NS/HA 1270 6 1504 1458 1952 572 528 1 197 2017 14 15 663 1400 BA/HA (SQ.M) 39 5 42 48 48 36 30 30 51 38 30 42 DBH (CM) 21 0 19 20 18 28 27 18 18 18 24 20 VOL/HA (CU.M) 247 1 150 34 1 305 286 223 163 254 235 235 279 MAI (CU.M/HA/YR) 4 2 3 5 5 5 5 3 4 4 3 5 STRATA A LAYER 78 4 99 70 70 65 60 70 90 95 85 80 COVERAGE B LAYER 83 1 50 80 90 99 99 99 60 99 65 90 (%) C LAYER 5 4 2 10 5 2 2 4 2 4 15 8 D LAYER 34 2 20 80 25 15 4 8 20 25 95 50 GROUND H 77 1 90 65 68 80 85 75 75 80 68 85 COVERAGE MS 0 2 0 0 2 0 0 O 0 0 0 O (%) DW 12 5 5 10 15 10 7 10 8 20 30 10 R & S 10 2 5 25 15 10 8 15 17 0 2 5 226 Environment t a b l e f o r b i o g e o c o e n o t i c a s s o c i a t i o n 2.11 ($PM-KO) |FOREST COVER TYPE | PM | PM-TH | |PLOT NUMBER MEAN 01 03 04 06 08 19 28 07 23 42 43 BIOGEOCLIMATIC UNIT CWHa CWHa CWHa CWHa CWHa CWHa CWHa CWHa CWHa CWHa CWHa ENVIRONMENT : ELEVATION (M) 204 5 180 230 170 270 170 180 200 210 200 210 230 SLOPE GRADIENT (%) 10 2 3 3 0 51 0 20 0 4 2 17 12 ASPECT 135 150 F 225 F 135 F 135 360 300 270 SOIL DU DU 0 0 0 0 0 0 0 DU 0 SUBGROUP (CSSC, 1978) .HFP .HFP .HFP .HFP .HFP . HFP . HFP .HFP . HFP . HFP . HFP SOIL FAMILY (PARTICLE SI2E) CL CL SS LS CL CL CLLS SS SS CL CL DEPTH TO RESTR. HOR./LAYER 83 0 K 79 K 81 K 89 COARSE FRAGMENTS >2MM (%) 32 6 32 29 59 43 9 28 1 1 42 43 33 30 SOIL MOIST.REGIME(HYGROTOPE) 3 3 4 3 4 3 4 3 4 4 3 SOIL NUTR.REGIME(TROPHOTOPE) C C D C D C C C C C C PARENT MATERIALS Mb Mb Fb CvMv Fb Mb Ft Mb Fb Mb Mb THICKNESS OF MIN. SOIL (CM) 75 75 90 +90 80 + 85 +70 60 +85 86 63 ROOTING DEPTH (CM) 64 1 52 70 60 70 70 60 80 38 85 65 55 SEEPAGE WATER DEPTH (CM) 0 0 SOIL DRAINAGE (CSSC, 1978) w w r w w w w r r w w COARSE FRAGMENTS >2CM (%) 9 9 8 9 5 9 0 14 15 12 15 10 12 THICKNESS OF HUM. HOR. (CM] 4 8 4 6 6 3 3 4 5 8 8 3 3 HUMUS FORM HUR HUR MD MD MD HUR MD UR MD HR HUR PH OF HUMUS 3 8 4.0 3.9 3 . 7 3.5 4.0 3.4 3.7 3.6 3 . 5 4 . 2 4.0 C/N OF HUMUS 43 9 38 42 41 55 40 55 35 47 47 38 45 PH OF MINERAL SOIL 4 2 4 . 3 4.0 4 . 1 4.3 4.5 4.0 4 . 4 4 . 1 4.2 4 . 5 4.2 VEGETATION : AGE (YEARS) 62 1 70 50 54 46 82 74 48 53 61 76 69 GC AND SI OF DOUGLAS-FIR 4-43 6 4-45 5-39 3-49 4-41 4-43 4-42 3-47 3-47 4-45 3-47 5-35 NS/HA 995 9 687 1292 482 1595 849 543 1025 751 795 585 2351 BA/HA (SO.M) 59 5 57 54 60 64 56 48 64 70 75 38 69 DBH (CM) 29 7 33 23 40 23 29 34 28 34 35 29 19 VOL/HA (CU.M) 591 0 650 402 704 509 591 542 597 736 845 410 515 MAI (CU.M/HA/YR) 9 7 9 8 13 1 1 7 7 12 14 14 5 7 STRATA A LAYER 78 1 85 85 70 65 60 85 85 70 70 85 99 COVERAGE B LAYER 55 1 81 75 30 60 20 90 40 40 80 60 30 (%) C LAYER 15 5 8 4 40 25 15 6 15 10 8 30 10 D LAYER 71 4 80 70 90 20 50 90 50 80 80 80 95 GROUND H 75 7 85 80 80 80 60 65 90 73 65 85 70 COVERAGE MS 0 9 0 0 0 3 0 5 0 2 0 0 0 (%) DW 22 9 15 20 20 12 40 30 10 25 35 15 30 R & S 0 5 0 0 0 5 0 0 0 0 0 0 0 227 Environment t a b l e f o r b i o g e o c o e n o t i c a s s o c i a t i o n 3.11 ($PM -HS ) |FOREST COVER TYPE | PM | PM-TH | PLOT NUMBER MEAN 05 10 14 17 20 24 26 21 22 45 | BIOGEOCLIMATIC UNIT CWHa CWHa CWHa CWHa CWHa CWHa CWHa CWHa CWHa CWHa ENVIRONMENT : ELEVATION (M) 193 0 170 170 200 210 170 210 200 200 170 230 SLOPE GR AO I ENT ( % ) 6 7 5 0 10 18 0 2 2 10 3 17 ASPECT 180 F 180 200 F 70 360 60 30 300 SOIL s /0 s /0 s /0 s /0 s /0 s /0 s /0 0 s /0 0 SUBGROUP (CSSC, 1978) .HFP . HFP . HFP .HFP .HFP .HFP .HFP .HFP .HFP .HFP SOIL FAMILY (PARTICLE S IZE) LS CLLS CLLS LS CL CL CL CL CL CL DEPTH TO RESTR. HOR./LAYER 0 0 COARSE FRAGMENTS >2MM (%) 23 0 48 5 25 41 0 25 25 30 7 24 SOIL MOIST.REGIME(HYGROTOPE) 5 5 5 5 6 5 5 5 6 5 SOIL NUTR.REGIME(TROPHOTOPE) D D D D D D D C D D PARENT MATERIALS Cb Fb Cb Cb Fb Fb Fb Mb Fb Mb THICKNESS OF MIN. SOIL (CM) +80 61 + 80 +90 +95 + 100 +85 +80 + 100 112 ROOTING DEPTH (CM) 78 2 37 60 50 100 90 100 90 90 90 75 SEEPAGE WATER DEPTH (CM) 0 0 SOIL DRAINAGE (CSSC, 1978) w w w w w w w w w w COARSE FRAGMENTS >2CM (%) * 13 6 33 0 27 23 0 4 15 17 6 1 1 THICKNESS OF HUM. HOR. (CM) 1 9 1 1 1 1 1 1 1 6 1 5 HUMUS FORM VL VL VL VL VL VL VL MD VL MD PH OF HUMUS 3 6 3 . 1 4 . 2 C/N OF HUMUS 34_ 5 38 31 PH OF MINERAL SOIL 4 5 4.3 4.4 3.8 5.7 4.6 4.5 4.4 4.5 4.6 4.4 VEGETATION : AGE (YEARS) 64 8 54 79 58 65 78 53 69 62 62 68 GC AND SI OF DOUGLAS-FIR 2-53 9 2-54 2-55 2-57 2-57 1-59 1-58 2-53 3-51 2-54 4-41 NS/HA 556 3 680 595 448 238 501 309 822 753 323 894 BA/HA (SQ.M) 69 9 68 75 65 48 65 70 70 100 70 68 DBH (CM) 42 3 36 40 43 51 41 54 33 41 53 31 VOL/HA (CU.M) 878 0 821 101 1 833 671 875 906 871 1 168 918 706 MAI (CU.M/HA/YR) 13 7 15 13 14 10 1 1 17 13 19 15 10 STRATA A LAYER 75 5 70 80 65 65 75 70 65 90 80 95 COVERAGE B LAYER 33 3 8 70 18 25 40 30 80 25 15 22 (%) C LAYER 65 5 90 30 95 85 70 70 30 60 95 30 D LAYER 43 0 10 65 10 50 30 35 50 80 30 70 GROUND H 82 6 89 80 85 85 70 90 79 85 88 75 COVERAGE MS 0 1 0 0 1 O 0 0 0 0 0 0 (%) DW 16 9 10 20 12 15 30 10 20 15 12 25 R & S 0 4 1 0 2 0 0 0 1 0 0 0 228 Environment t a b l e f o r biogeocoenotic a s s o c i a t i o n 3.12 ($PM-PI) |FOREST COVER TYPE I CON.-DEC. | CON. | PLOT NUMBER MEAN 02 09 27 15 16 25 29 30 36 41 BIOGEOCLIMATIC UNIT CWHa CWHa CWHa CWHa CWHa CWHa CWHa CWHa CWHa CWHa ENVIRONMENT : ELEVATION (M) 181 0 170 170 180 200 180 200 170 170 170 200 SLOPE GRADIENT (%) 3 4 0 0 0 15 5 2 0 0 2 10 ASPECT F F F 225 225 30 F F 230 290 SOIL SM s/0 sgDU s/0 s/0 st/O s/0 SM S/0 s/DU SUBGROUP (CSSC, 1978) .HFP . HFP .HFP .HFP .HFP .HFP .HFP .HFP . HFP .HFP SOIL FAMILY (PARTICLE SIZE) CL CL CLLS LS CL CLLS CL CL LSCL CL DEPTH TO RESTR. HOR./LAYER 63 0 K 51 K 75 COARSE FRAGMENTS >2MM (%) 15 7 0 0 9 50 25 0 2 1 49 21 SOIL MOIST.REGIME(HYGROTOPE) 5 6 6 5 6 6 6 6 6 6 SOIL NUTR.REGIME(TROPHOTOPE) D E D D E D E E E D PARENT MATERIALS Fb Fb Fb Cb Fb Fb Fb Fb Fb Mb THICKNESS OF MIN. SOIL (CM) 100 +90 50 +80 +85 +95 + 100 100 +90 74 ROOTING DEPTH (CM) 85 5 75 80 45 70 80 80 120 120 1 10 75 SEEPAGE WATER DEPTH (CM) 57 5 40 75 SOIL DRAINAGE (CSSC. 1978) w w 1 w w w w w w w COARSE FRAGMENTS >2CM (%) 9 3 O 0 1 1 36 13 12 0 O 15 6 THICKNESS OF HUM. HOR. (CMj 1 0 1 1 1 1 1 1 1 1 1 1 HUMUS FORM VL VL VL VL VL VL VL VL VL VL PH OF HUMUS 0 0 C/N OF HUMUS 0 0 PH OF MINERAL SOIL 4 5 4.7 4.6 4.3 4.2 4.4 4.7 4.6 4.5 4 . 3 4 . 4 VEGETATION : AGE (YEARS) 68 0 49 84 66 65 66 51 77 82 69 7 1 GC AND SI OF DOUGLAS-FIR 2-55 0 3-48 2-53 2-53 2-56 1-60 2-52 2-56 1-58 1-58 2-56 NS/HA ' 483 6 525 491 675 575 679 242 377 293 485 494 BA/HA (SO.M) 73 4 54 75 70 65 90 48 80 90 90 72 DBH (CM) 45 2 36 44 36 38 4 1 50 52 63 49 43 VOL/HA (CU.M) 963 8 472 965 862 821 1 123 547 1 176 1374 1326 972 MAI (CU.M/HA/YR) 14 0 10 11 13 13 17 1 1 15 17 19 14 STRATA A LAYER 77 5 70 75 80 80 75 60 85 80 90 80 COVERAGE B LAYER 20 3 25 25 40 5 8 10 30 15 15 30 (%) C LAYER 84 0 80 60 80 80 90 90 95 95 80 90 D LAYER 16 6 12 5 20 30 4 40 5 5 10 35 GROUND H 83 2 85 BO 88 82 80 92 90 90 75 70 COVERAGE MS 0 9 0 5 2 2 0 0 0 0 0 0 (%) DW 15 8 15 15 10 15 20 8 10 10 25 30 R & S 0 1 0 0 0 1 0 0 0 0 0 0 229 Environment table for biogeocoenotic association 3.21 ($AR-LA) |FOREST COVER T Y P E I CLOSED |OPEN| I PLOT NUMBER MEAN I 13 I 18 I 31 | 39 | 40 BIOGEOCLIMATIC UNIT CWHa CWHa CWHa CWHa CWHa ENVIRONMENT : ELEVATION (M) 180 .0 180 170 180 170 200 SLOPE GRADIENT (%) 2 .4 12 0 0 0 0 ASPECT 210 F F F F SOIL T T 0 0 T SUBGROUP (CSSC, 1978) .H .H .HG .HG .H SOIL FAMILY (PARTICLE S IZE) O/LS 0 O/FL O/FL O/FL DEPTH TO RESTR. HOR./LAYER 46 0 K 50 K 38 K 50 COARSE FRAGMENTS >2MM (%) 0 0 0 0 0 0 0 SOIL MOIST.REGIMEfHYGROTOPE) 7 7 7 7 7 SOIL NUTR.REGIME(TROPHOTOPE) E E E E E PARENT MATERIALS OvMb Ob OvMb OvFb OvMb THICKNESS OF MIN. SOIL (CM) 27 25 ROOTING DEPTH (CM) 42 6 50 40 38 45 40 SEEPAGE WATER DEPTH (CM) 15 4 30 16 6 15 10 SOIL DRAINAGE (CSSC, 1978) vp vp vp vp vp COARSE FRAGMENTS >2CM (%) • 0 0 0 0 0 0 0 THICKNESS OF HUM. HOR. (CM) 7 8 1 1 1 1 25 1 HUMUS FORM SL SL YL SL SL PH OF HUMUS 0 0 C/N OF HUMUS 0 0 PH OF MINERAL SOIL 4 8 5.5 5.3 3.5 4.8 4 .9 VEGETATION : AGE (YEARS) 54 8 41 54 53 58 68 GC AND SI OF DOUGLAS-FIR 0 - 0 0 - - - - -NS/HA 579 6 475 400 950 668 405 BA/HA (SO.M) 36 2 30 33 33 52 33 DBH (CM) 28 8 28 32 21 31 32 VOL/HA (CU.M) 279 4 249 191 174 514 269 MAI (CU.M/HA/YR) 5 2 6 4 3 9 4 STRATA A LAYER 75 4 72 85 80 90 50 COVERAGE B LAYER 18 4 5 4 8 25 50 (%) C LAYER 92 0 90 95 95 90 90 D LAYER 10 8 15 5 4 5 25 GROUND H 75 0 83 70 85 92 45 COVERAGE MS 0 0 0 0 0 0 0 (%) DW 13 0 15 5 5 5 35 R S S O 0 0 0 0 0 0 230 APPENDIX H - LONG VEGETATION TABLES In t h i s appendix, a long v e g e t a t i o n t a b l e i s shown f o r each biogeocoenotic a s s o c i a t i o n . These t a b l e s were produced by the F405:VTAB program (Emanuel and Wong, 1983). In these t a b l e s , s e v e r a l a b b r e v i a t i o n s are used. These a b b r e v i a t i o n s i n d i c a t e the f o l l o w i n g : 1. FOREST COVER TYPE: Con.= c o n i f e r o u s , Dec.= Deciduous, PC = lodgepole pine, PM = D o u g l a s - f i r , TH = western hemlock 2. ST: stratum 3. P: presence 4. MS: mean s p e c i e s s i g n i f i c a n c e 5. RS: range of s p e c i e s s i g n i f i c a n c e 6. A1: dominant t r e e s 7. A2: main t r e e canopy (codominant and intermediate t r e e s ) • 8. A3: suppressed t r e e s over 10 m t a l l 9. B1: t a l l shrubs (woody p l a n t s between 2 and 10 m t a l l ) 10. B2: low shrubs (woody p l a n t s l e s s than 2 m t a l l ) 11. C: herbaceous s p e c i e s , s p e c i e s of d o u b t f u l l i f e f o r m , and some low shrubs 12. DH: bryophytes, l i c h e n s , and s e e d l i n g s growing on the humus l a y e r < fO uO rt O 3 JO 8 ' «< - - a oi - • " < ' • Q Q O O Q T <Q 3 3 - ffl -8 n i » » 3 O (• C C U - 3 f 3 £1 « S O C tJ 3 - 01 -i - a a 3 8- -j - o - a * ui C -* 3 oi 01 » • B -i n a c o 3 a n n TI u u r - - 0 - * 9 a DQ a) <P a a a o c c o o 3 T a a 3 3 0 0 0 0 - - N r* -Dl » C - « C 3 C C 3 3 O 3 D C O B O TJ - 3—01 t  -t-fl n 3 -- O - 3 (P 3 O 3 1 3 O O 1 C 9 N rt T B 3 CT - C 3 (0 (0 3 - 9 1 Ul u a -o T) D O - B O 1 < o 0 a -3 3 1 0 - c -<* 3 n j 1 j a - 3 C n C 0 3 -3 * C rt) n 3 n - o B - 3 c 3 - 3 3 <g - c a u 3 c B < » » 3 Q <-* Q Q. 01 O - * O -3 a 3 3 0 — a — 0 B B 3 a -) a •* a a a n c - 3 -> -lOiQ » C n 3 - n 3 B C - * -rl si it - 3 a T - a --•wo 0 3 B A - 3/ - O < - n < 3 - -1 * • Q - < 0 - « _ cr * a CQ 3 Q a 1 q « c - i - i 1  B o n -» Q - * 3 C ta a a c 3 on— 3 TJ o TJ o vt 3D 3" "1 <-*• T) o c a c -J T mo 3 « O - B - 3 « c r* 3 D a 9 3 1 9 ll 1 -i3 - . O < B — O T < a a o -- o -- a » " I O 0) c » a o T c * c 3 o o : n o 3 r i 3 » c ; a ta u : T) oo 3 " o -•< •< 3 W u r • - C -O t) B f* - <c a 3 o 3 C ' I - -»BO03'*J - —) - r- - — I 3 U •* -i - c n i i n n j • T a m : r B o 3 c < K C II - -3 < -— n ui B < o - : u — c O B " oc<-oo-3: -3 3-aacooao—c - ui 3 -oc oj - - o » 3 t S KOI 1 Q»D 3 - LT C - » t TJ<B3-3-T( accaona<-T - n -* c o -*- n <4Q c a - i t -* » in -i o a o -- I T O -+ ' -a - u a <• 31 O C -3 C 3 -3 tr o C - r-3 a D - B TJ - r* 0 nan B 3 3 -* o « j a can COW t -i c -i o o" o I r* c -a a — . - s I - i 3 » < ; l -* - 3 • o * - c I — O O « > - - 3 t i c - o • 30 C i a •< c o ~i a o n : o T o -i a c i o o 3 -ooo i -i a n B : Q - - - -I 0» O Q CT r* 3 T» a<o 3 •*> < </i X r-o o « o n - y 3 n - o -- K 3 o 3 - a — ca a T c - a 3 * 9 TJ 3 C -• 3 * i 3 a I C ut i 3 -> O TJ t/l 3 < - < a -* 3 3 - - C TJ 1 V 1 7 3 C O O W O 1 3 O -* a 3 o a O r* B T O O T TJ 1 TJ o <* o - T 9 (I - C OOOO - C Ul J o - a o a r+ 3 - 3-D -a • < 9 n i 3 C - 3 3 a o o a o 1 a ui B < - 3 1 T o in n TI w n — a a '21 I O 3 » TJ I 1 0* O J I I -: c o * a. a. • o -*• a u> n c c O ut i/t > v D a -i a -- a « 3 -ccc < * a w c a » « r* n - * 3 C 3 » •O TJ TJ D "!{••—• a -cr « 3 • 3 C C C c c •* a a Q u co o 3 a o a o !i!iKiJ!iMtJ5i5J5JtJKt!5AAiS2SS25S5292 W J J M M M M M M M M M W M W U M M M A £fc ^  jk **to*A*»*»(nencricncoeooQOOQ NuuuMuuuiiflBaoo o o o o o o o o o o o o o o o o o o o o o o o o o o OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o b o o o b o o o o b 0OO0OOO"-'0Ob^ Bi-'''A^ dtiUtiMuuw OOOOOOOOOOOOOOOOOOOOOOOO-" + 4- *- 4 t +• *• ' — UMbUI'KIUUrJU & • tfc Ul -1 Ul 4- -• *-Ut-U1(J1U M KJ klMHMIJ h) > + + — * — ui ui m KJ M M UMIOrJ UU W -» -» MM -» M M M MM -* M -» — — U -• -• M -*M-* I M M U -J -J MM M M M M 0000000000-"--'-OOiI'OOOuuuuu-'-ui-uii>(tii-^ h«iuiiJ) o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o *• • +• • • * * * * *• * * * *• t J J-a-HUUI » » — j j - - »J kj t, t- ^UUUk^ UUUU 44- — r I M U U •• I » U (J M M MUM MMMMMMM MMMMM MM MUM 'MM Ul "MM M • M M U •MUM 3 M -* M M M M rO -. M M U (J — — M — M M OOOOOOOOO — - - cn o o o o o o o o o o o o * . + * * • * • tM+M-J^ICJUl - tp - Ul MMMMM • — *• * i U — — + M U -» U MMMMM M -4 ~J U Ul -* M -* — M o o o o o * U to M t» ~. — (O o o o o o — CT) (T)J> cn t» o» M M M M • M -M M M OOOO OOOO ^ U t> Ul OOOu w oi ut cn Ul Ul M M I u I M M M to to M -* OOO b o b -» to cn cn cn to o o o ( J <J> CO w cn M M o o b b o cn ui rt CD cr to o I-I o 0> o o o ro 3 o rt 0) cn in o o 0) rt o 3 •CO no n 1 TJ Ci ro co T} V *Q ~ HUCJ-f-Or-aj-OlOJOI* OlDfHJS^ tinitj - 3" 3 < --> - - o c - oc»c-oc<-< - 3 < rt^^u - T O c n N co ~» t o a • * " 7 « - « I I Q O O - n tr -i o o (B t o 3 o-3oaao» to <Q n CT C J r + ( 0 3 ^ - - 3 T n T-i - -Ta«»TJ-j»»-io 7 » » c - » rtc-cwacc-c 3 n MrD<aiA3n<tib3n 330 »um u * - -MH'tOOO 3 CO C CT TI M 0 •or*ifionoonoD-nmr><:jri»-i<r-3ticDoi—inflow o •"•»*<OJ«oitT--iij3 i**<itio*i'*ocn — —8WMUI T - — oi w •< io * « - 03030001 * » - U 3 <-T^ X3^ 0t3-<n-*-*n--33 - -3(D-3Q-»flT< c -DCBCOO -BO3C3BBnB0 - B B <9 3 - » » < o3nnnj-u»3()iip B O 3 * io — ooi*T*«a<* » a -BC-»070-BOBO 7 * c • » « 3 i o B - - c -oc S O T - B 3 -)<•- 3 a m < » — c n ~i * C O 3 w i3-CT«-0-»ac-- 3 CT3VIC O - 3 3 * T 3 - c»*-»c*nc--c»< otoc - 0 O 01 c —-CBCT3UIN -BO3TJ0C » <»mfHDPl t» 3 3 TJ a 3 — C — SCO* - -C-a-BTiDBOB-Q-fl C 3 tlWPUHlflllKfO «»<03 JIKOOIBB it-33«cc|-«njc c cn - -"-ooo 9 n o -acn3no»»3a — D -* O 0f»3 0 - C 3 - 3 r* t> t intl 3" T «*< — B • • C - » 3-J - n 3 C T C»n ---(1C333-on»o©n«»»o 4 » B M - J - T B T I n D i TJ- r*ooaB»<« «<(/l»-<"OI-t ?v D i 3n 0 II • n- aco—c 30 - C C OC 5-x-»Bo.a.» 5 3 C 0 -«i-aiuCT'+B7 c - - a o 3 It 3 ] t B T itBiNrt a o TJ -1 TJ - a u 3 c a c <o c a B a o n J-» a s « 3 ^ C « a 0 1 B 1 0 > H T) T) i a - oi CT C 3 9 c a c c B u a c o« 3 O r* a o « 3 -• 3 C 3 a -»a 3 T O B NOT -* T» H » Tl " - 7 T B C 3 C CT a) 03 C *- C C « c* o -+ a C 0 7 O CT K Jo- a 3 - a c • -40*0 T O Or 3 B O -1 -* N -^  3 "  3fl - 3 3 Jul C CT - 0 < B JJ C-fB3 T 3 — Q T < : N C T C I » I H 9 I Q - B » 0 0 - - N T 3 3 B 133 3 OC - -OltQ-*-Q3 T O -* •< oi - n - - i 3 * <D * — - ia it in 3 B 1 B - 3-*CC C C lit C 9 01 3 3 3 ^ T C M -CTCT-f-* 30Tai3-B5-^<B-3T0BBC3w< <---3--l30TW0<DfBBB-*3-C-— - lQ--3^r* — C — 00-«i-*--l»t»f»(»03< .+ BN--3T— glfDulcOB- — 3 — < 3 - - -"ID 1 - r^O » — B)cn id — a - I C O O - — IB B — a 3 "» -H 03-* T 3 T 1 - « B 1 — C 01 ul C O — C C 3CB-3-*---* - 3 - - 3 3 — 3 ui oi a cn c - — « N - 3 B at a 3 a « g 0-BB130-TT03 4 (* 0 ^ :« nt < m i 3 W3 < OB— u -N J»- — B O — 9 -* O O (D 01 0 B LT 0 -~ 3 ui O - C 1 -(» Ul C T B 3 C 7T3-B3-TJ — C V) 9 9 » 3 V - - Ul 3 O < 3 -* » - N o — ui — o a 9 — U "I c -3 -•0 3» 7 n < 3 s * M -TJ 3IB 7 B 19U> •< 3 - — N B 0 Ul u B - a3 » • 5 < ui 3 s « n -* M M M ft ft ft CB O — — — L O J > U I O > - O C & C D I J O O O o o o o o o o o o o o o o 6 o 8 -OOOOOOOOOOOOOOOO o o o o o o o o o o o o o o o o o o o o o o o o o o a o o o OOOOOOOO o 0 0 8 o o o o o o o o o o o o o o o o o o o o o + + ••*•* + *• + f M W k (JI o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o *• + >•*.•.«••+•**-•.*•+-.•• * — ro — -» o o o o o o o o o o o o o 4-+ * » -*M-.tOPOCObOJ> OOOOOOOO '* «• 4 ^  tO CO K) (J o o o M M tft OOOO * W CO -J O O O O O » » _ ro ft 0000"OOft toWO-CBOBtO-J OOOOOOOOOOOOOOOU + K) + t M M M 1 — U) Ul 01 -J OOOOOOOOOOUUUO-*00 C-JlDOOOOffi-UI - Ik at o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o • + • • • + * * + — N MM t • tM-UUUMU OOu-CSO^ uut-ipiP OOOOOOOOOOOMUt OO-O-tk-JtD OOOOOOOO • — — tk ui *» cn 0" -J ro o o u» W ft 01 ft -*. — CD O O O 01 M ft Ul 09 UW A 9t ft OOOOO M M ft Ul Ul + + • — *• -* • ro ro to M M to — *• M M M + fft Ul M M M M M M M — to i» M MM ui <n M M Ul .01 M ro Ul M+ +• t M M n in M M M M M M *J + + + + + *-tcil-» + ro MM ro ro M M M W M M M M ^ CO M u ro U CO UMrJUMN M CO — M A M ft -4 M M M CO U tJ -* • » • » " ii k M M M M MMOkJM * — -. — — >0 KJ — • ro M M M ro ro ro ro ro ro -» * • — —M-* <T)t» M MM ro ro ro M M M A M ¥ »• V M MM ft M <n M MM — W M U W M -* • — — — — rj-»wcD UMMMMMMMMM Ul u u — MUM co <n rO M U -J ro M u 4- co M M *• + * -» -» -» * -» - ro M — M -> » • • - » - » • K> U> CO ro to ro ro ro M M M M + • - (l ^ Ul M O M M M M -* m M M -J M CO M + + *• * • ft — W W M ro ro — M M M M M M -t * *• * -» to ro co M - o w rj w w w • u -» u O M M M ft ol M M o M M M + * Ul M MM * • *•»•*•-». + +-»• M M — ro — tororo-*ro-» t- ^  - M - Ul vl M M M M M M W — M M M M M ro M ro ro Ul M ro Q M M M Ul M M - - <n M M M U -» M - o & Ul U CO ro ro — ro U Ul Ul M CO M ft ft - M M M ro ro Ul Ul dl -o ro K) to ro w ro ro ro ro * » — u fo u - u — ro ro ro M ro uuu MM U M M M M M M -» M W — M -» — rO ro U) UM CO CO b CD MM MM MMMMM al on M Ul -» * *• IO Hi to ro ro ro ro • * + • - * « - +• -* — M — IO M o ro to ro ro to >o -» ro — CO + ro • rj CD M MMMMM MM M ro — ft m ft M (T) M M M ft M < CD lO ro rt IV r f rO CO ro ro ro CM O I X CU CN C O • ft 4-> ro •i-i o o cn in ro o •rH 4-> o c 0) o o o CD cn o o cu r-i ro c o •rH 4-1 CO rt rt rt rt rt rt rt rt « rt cnrt CM rt rt rt rt n rt ID n rt rt CO rt rt rt If) rt r« a u> n ft CO a ro O A o a> o n rt X w -CD n o - O ID a go>  r> O to w V a in « rt rt in unavn '-OOO 0)0)00 OOlN-b o co at 1 m rx n — — + lOOOOOOO r m n o O O O O r « 4 - 4 4 4 • > * rt - - - - -1 U> CO rt rt • rt r« f co in • rt rt > co n * CD in rt rt N n rt »- IT) — - • rt rt rt rt rt rt rt rt rt — rt C* - — -rtrtrtnrirt — rt rt ct rt Cl ^  rt *j ot — rt — — cn rt r« — rt rt — rt rt rt *- rt - 4 4 4 rt »- rt rt - rt rt c p rt rt - + 4 — 4 A rtrtrtrtrt — rtrtrt rt -^ v - 4 - 4 - 4 4 - 4 n*- rtrtrt — rt»- rt t rtrtrt — — 4 — 4 * rt»-Wrtrtrtrtrt « * •cf rt n ti -f • -  + - i rt — «rtrt-oirt rt Ifl'rl-t t»-f « rtrtrtrtrtrtrtrtrtrtrt rtrt iprtfnt*>4 - — — 4 * • * 4 — •- rt - rt r-rt 4 — + » - + + 4 — rt rt rt rt rt — rt rt n rt cn -m *i — rt " c M rt rt 4 rt - - rt rt rt r« rt t~ * * + n P I n « r rt rt rt rt in ie - -rt rt rt rt r n u n n •• •• • — •» • O O O 6 O O 6 6 xMt'OOOn o o o o o o o o o o o o D oi cn cn at a) OOOC4iOifl«nnri' 885 0 ) 0 1 0 1 0 1 0 ) 0 ) 0 ) 0 rt — <"> rt 4 4 4 4 4 4 4 4 K'jnvrc-'-n---ri o« » + 4 4 c*) 4 + 4 4 4 — 4 4 4 4 4 * - 4 4 4 4 4 4 rt* - - o o o o o o o o 0000000000000000060000000 *j-Or--r--On>o-iftOOOOOOOOOOOOOOOOOOOOOOOO * r> P ) rt — 4 — - 4 4 - 4 4 4 4 4 4 — 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 OOODicooir-hiBvi tV7innnoinnMfi(,i'-"-'"---'-'-r r I C D C D C O & O I O I O I O I O I O I Q I O I O I O I O I 0 1 co n c*i (*i m o o o o 0 ) r) ^  ^  o r- in *- -O 0 ) r- in * rt 4 4 n rt 6 6 O O 6 6 « O O O O « 4 4 4 4 — 4 « rt rt rt — — 1* CO 8) CO 0) 01 4 — 4 4 — 6660 J OOOOO • CD 01 01 0 ) 0 ) 0 ) * • L 3 TJ 0 3 a a 3 « n a. 1 -c > a r e a 3 • * ri o o « 3 a • 3 a ft - N 1- a « a ?; o ft O a 3 3 ft 10 ft 1 - a ft TJ U C - a a u— . 0 25O, C L -o *- ft ft i-t, o a *- a 1-D 0 *- o » •* — E 3 I- •*-« - 3 c u £ r a - 0 0 c « E c a •) - 3 a ct—> 0 c i- —-3 3 U L. ft ft « £ ft 0 O E »- »- > L) < < : c -0) -1 e £ « " O O 3 ft « a 4- nt oTJ W 3 3 0 £lft 3 a a a vi £ o 1 « 3 1 in — a L. K L a — 0 : 1 ft 0 1 0 o ( • - c • - c £ *l- ft 3 -tt a £ - a > L £ -4- C I a - i a u -3 0 : n « I »- > • ) at - « L O T ) * ' n « o c *-3 u L a 3 j - o L c n L. a 0 - 0 E W J £ n 3 ) a L ti c - E ft - t. 5 5. O U 0 : ifl < < u 3 ft : 4* m in • a cu c -c — in m ft ( - - N 3 - a 1 - a a c L - JC -- a — ft 0 - « -- u 0 £ — a a 1 o *- s - : « - a - 4* n < 3 o > o a c 3 1- « E 1 u o » « o. 3 : • E 4- a » - • 0 0 c 1 O » 1 D » i i " 10 3 3 3 3 O ( > C ft O n O ( C — ft 3 3 a 1 a. a. a. ot a > ; 4- C — « - w c - - - I 1 • a 3 -. i. > c ) O 0 - 1 o *• a - 01-*• c a i n o •*• ) c > a ) ft TJ L 1 - 0 1 1 L, o -- c ft -- ft Jf TJ 0 £ 0 O E J O £ 3 = - £ - E ft » r 3 £ - a t 4 --soc B E a n o c L a o - - 0 - 4-O Ol- - L U 3 •>- ft ft c •- o e 11 a - E - 3 3 « cfl N 0 in 3 » -- > . « - £ 3 £ - I. ft ft £ 0 U - U Q — 0 D 3 ft — C 0 E ft ft a « - L TJ >. ft £ O < X u- o u *- £ 0 10 C 3 L v ft L D ft TJ 0 C — 0 L. L fl < •* 0 L. I o a o U E n 1 3 3 O ft : +- L - I ft — ft o < ft ft - I u. o a. > 0 E 3 E 3 L 3 f O « 4* in — C « ft 4- n > OJ - — « ft CO m-*-0 - Jf O ft < use • B E C ( Vi E fl 3 ft -ft 3 -Ol E - S TJ 0 U L 0 ft I 4* n cu a- -- L O O c E ft ftO L. 1 * - >. > ; 1 I _i _i a ci +• S U L. C TJ S C L. E 9 O fl U O O 0 3 U ft C ft -TJ^ -Eft CU C - 3 u a a s « 3 M >*- Vt C L D 3 3 £ - ft - fl > £ECa>OCE-a3ao£iosvo — L Q 3 U E D . ft U ft » o »-fttJvi- ona ft£ftftUEI-l.L -4'-£S3ftft» TJ O D E c o a o i -•--ft ft---•-Ot-OL L«'«-«' >«>«3«0---C — £ ft O - ft ft ft aaai-<oaaa in - s s 3 emu*' -a ft in in — o>- « 3 o ft N L fl H-- c o o -• « « L > E - « L E aw 4* • . 3 S - ft fl I - a E W 0 - •* c - a 1 ft O E D C TJ O — ft— Q. 3 N "—1 U 0 ft >• 3 U 1 ft ft £ £ £ ft 1 M a a a *~ > 1 9) cn cu > CN CO X i ro c o • r H U O in cn m u - - - - o mow * J * -c* « c* «} M ot « n n m m at tN CN CN n in <* tp CN < CN CN CN mm -CNCNCNCNCNCNCNCNCN iflfinn-r)--CN CN CN fN CN CN CN CN CN It Kl Kl ' r CN * • CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN <N CN C N C N C N C N C N C N C N C N C N r — — <N t CN CN CN CN CN CN CN CN CN CN CN CN CN + — * r-CN CN CN CN n •- + + CN m *- T-« ^  <N * • . . . CN CN CN CN CN CN CN C N C N C N C N C N C N C N C N C N CN CN CN CN CN + + + • •» C N C N C N C N C N C N C N C N C N CN CN CN CN CN CN CN CN CN CN CN N CN <N CN CN CN CN CN CN CN r~ r- n + n -t n CN + • CN CN CN CN CN I N N CN C N C N C N " - C N C N C N C N C N C N C N CN CN CN » " > * CN CN O CN -CN CN n CN M «- n f B l/l <J (*1 CN -f CN -CN CN CN CN CN in in — + CN CN CN CN CN CP l " - + «- + CN CN CN CN CN IP CN + • + CN CN CN CN CN r O c CD O CJ O CD cn o tp w a) at n CN D o u> o o o O i ID O On in CN i- in »- + O O O O O O 8 6 6 666 CN O « « - « -ipi/j«mv- r- m n — ^  *- mm*ww*'-*'-'-inw + • < + « O O O O O O O O O O O O O O O O O O O O O O O O O O O O O o> 0» - <0 O v r- O O O oo o a> O O O O O O O U> m O O O O o H) V ~ « — + (fl CM «• + 4 + P l P » — ' - - - + + + + * t N + + -»-t + 4 o o o o o o o o o o o o o o o o o o o o o o o o o o o o o G)l-tOCNf*>»-r»(NrNCN*- P)(N'-D(N*-CN»-»- * CN •» (*> « 4 • CN CN 4 • — • • * • + •* + + + « - • + 6660066 6000000600000000000000000000006 a O O ' r ' - n i i ) U ) n r i i i i i n o o K r i r i K n n o i f l O , ' O O O O n f l O O O O O O O O O O O O r-»nn»-cN'-cN"-'- — + — •-•»••••• * + + + + + + 4 + + + 4 + + + + + O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O ID 1^ <j n « CN • 4 * •• + (066666666666006 • f i ' - i f i n t f ' - O ' J ' O O O O O O 1 ipinni*-+«-+* + ** •»•• O O O O O O O O O O O O O O O i o 0) rH rO 4 J c o • L a « 3 5? O O C 3 a • 3 c > i a a to o M> -« 1- a c a 0 u c 3 *• fl » ft — L ** £ a o o D O C K 3 O—. • • 3 3 *-» «.c rt a 1- t- < c >•-2 Q > a in 0 £ ^ -a L a s o D a, • o t- u c 3 *- L u - a « • u 3 - L •* Z a u a a o e « <0 tr Ol « 3 3 -« £ f D a c c t « e 1 1 c c > ft <-i u o - >. n - - t > £ in - o -L a o xi x 1 n o > a to a i . L f t ft • u o < £ £ 11 ' ' 3 t t a u 1 • 1 « m 1 c - £ r, -  a C « e 1 O O O 3 — -U 3 £ I] 3 I « n « 3 a I > •- X a u « > ofl u - C o -J E - -0 * L. Q s a o £ fl - fl. Q 1 B » E 3 j o >£ Ittlflh O II) HI — 3 3 n at o n e 3 « *-U - fl L * «r> ID L. - O I- C ID Iw £ — « tt - TJ o » a £ t l £ L - 3 O C M 3 > o o 3 x a u 3 -1. u a fl « n Dili c 11 a *- e 3 mto 10 D Q C V) 3 3 B O O E D C O - S O L i -D 0 Q. £ 3 O O 4 I O K B Ul V E >»- ' £ - I E a L ( 3 — -£ t-- £ a 1 o u - * 3 - - O - - * a - - U K ) 3 e L -- 3 3 1 o c . -Cat L U 3 ( 0> • A -c o ID U • Q -t 3 CP « *• O Q O O C m 01 - a *• ' - — o>— 1 to L - Q c - * - -fl E 0 TJ L C « * B -0 C - t> « V) C I - L- ( n D --soacaii 1 - M ( t- 3 * > E : £ O i • 3 L 3 i 9 JJ IP u I 3 a - < J « E D -a L 1 : a « 0 W O O • ^ ^ : 3 a > 0) o c • If) to O (0 • 0 to C in C : u •- a L. co i L. >• 01 a N M B ) I B - ' 1 3 » C fl £ t Q O V (-• O V D £ fl O ; v > oj -. Q f X « « -1 « 3 « • O fl : L fl I. L L U 1 L fl a — o I) - D fl O fl . - >. c i> - c i. « -. £ D -3 fl « a C O O L O 3 O • Q *• C *-•) n E n - ft >-O u- O -1 *• a U « A - C D O 3 L a D 3 L t. o u a * a c -•-0 3 -» o c •> " > fl *• j j a m ui in C 3 V) o s C O L fl 0) 10 O C D 0) -« C L Oi tu fl in fl - « 3 t a - £ o n a a < E £ V - 3 3 O O - - O 4. e c •- 0 E t> a 0 o •-O O N v c - - > ' >v£ £ * I * a m — I C 3 L O U OB E •* — a - C 3 - -in 3 — to >. c C - 3 £ C ' E >-£ a a 3 £ a O E E ' Q - (-3 O O O « v - 0) t u *- -c £ u a « c E +• a - £ a o O E "O - « c oeti. f a t o o » > 3 : • O £ B « a a < a 1 — fl c ft 1 C ft •- 1 E fl - N 1 3 L. a c 1 w o « a 1 n O E a E 1 3 3 Cr fl fl 1 : c - a 1 0 *- fl — 3 1 - a f- £ » 1 1 B Q U f I a o 0 1 » E " D 1 n « - o 3 1 - - - O f t 1 a c © - « 1 ( I d n n -M CO cn > 3 3 5 5 3 3 o o S o 5 S 5 3 S S 8 S S § S 5 5 o S S S S S S S S S S 3 3 S S § 8 S S 8 8 8 8 8 8 5 o o 5 5 3 5 o o o o o S o S S o o S OOOOOOOO 3 3 S S 3 S 3 0 0 0 0 0 8 0 0 S 8 o o o o o o o o o o o o o o o • • 4>4>*.*+.*4--t-tMUftU OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO o o o o o o o o o o o o o o o o o o o + * + + >><l> + *< + +-t4>*<<«--a.-»M-* • ••••-•-•ft* + u * m - M M M U -1 !!?!!!!2!T?222!2222 !?!!2222 2222222 12I222 !22" » » -• KJ *J Uft M W 4- — MM - •+ • - + *--.••-»•• + -+--.M + W_-.Mft<TI M MM M MM -> M M M M M MM MM M MMMMMMMMM *• • * * M • • CJ M K) * *• ft M • M Ul MM •* M M ft ut u MM M M M s ! ! i l l l l U i = isi i i i ; !!!• -» • *• t. ~ — — ui ui U M * -» KJ -» L -» W Ul M M M i -Ii» l i CD rf DJ ro CA) 236 V e g e t a t i o n t a b l e f o r biogeocoenotic a s s o c i a t i o n 3.21 ($AR-LA) FOREST COVER TYPE CLOSED |OPEN| PLOT NUMBER 13 | IS | 31 | 39 | 40 | ST SPECIES I " MS RS SIGNIFICANCE AND VIGOR | A1 Atnus rubra Thuja p i * c a t a | 100 I 20 0 4.3 0 2.4 3-4 0-4 4 2|4 2|3 ,|. 2|4 ,| A2 Alnus rubra I100 0 6 2 6-9|8 2|S JI7 2I9 2|6 2 Thuja p l l c a t a I 20.0 3.4 0-5 I J5 2 I Acer macrophyllum | 20.0 +.0 0-+I+ 2\ | | | A3 Alnus rubra 100 0 5 2 4-6 4 2 5 2 6 2 4 2 4 1 Picea s i t c h e n s i s 40 0 4 4 0-5 5 2 5 2 Thuja p t i c a t a 40 0 2 4 0-4 • 0 4 2 Tsuga heterophylla 20 0 2 4 0-4 4 2 Rubus s p e c t a b l l i s SO 0 3 9 0-5 3 2 3 2 5 2 Tsuga heterophylla 40 0 2 5 0-4 1 2 4 2 Hal us fusca 40 0 1 8 0-3 3 2 1 2 Thuja p i I c a t a 20 0 1 6 0-3 3 2 Sambucus racemosa 20 0 1 0 0-2 2 2 Rhamnus pursh1 anus 20 0 * 1 0-1 1 2 Rubus s p e c t a b i l i s 80 0 3 6 0-5 1 2 1 2 1 2 5 2 Vaccinium p a r v i f o l i u m 40 0 4 1 0-6 1 2 6 1 Sambucus racemosa 40 0 * 8 0-1 1 2 1 2 Oplopanax horridus 20 0 1 6 0-3 3 2 Alnus rubra 20 0 • 1 0- 1 1 2 Gaultheria s h a i l o n 20 0 * 1 0- 1 1 2 Malus fusca 20 0 + 0 0-* + 2 Spiraea menziesi i 20 0 + 0 0-* + 2 Tsuga heterophylla 20 0 + 0 0-* * 2 Lyslchltum amerlcanum 100 0 8 5 7-9 8 2 8 2 9 2 8 2 7 2 Athyrium f i l i x - f e m i n a 100 0 5 7 • -8 7 2 8 2 + 2 3 2 2 2 Stachys cooleyae 100 0 2 9 + -4 2 2 1 2 4 2 1 2 4 3 Equisetum telmateia 80 0 3 7 0-5 •t 1 3 2 + 2 5 2 Polystichum munitum 80 0 3 1 0-4 4 2 1 2 2 2 3 2 Claytonia s l b i r i c a 80 0 2 8 0-4 + 1 1 2 2 2 4 3 T l a r e l l a t r i f o l l a t a 80 0 2 8 0-4 2 2 + 2 1 2 4 2 Mycel 1 B mural is 80 0 1 7 0-2 2 2 * 2 1 2 2 2 T r a u t v e t t e r i a carol i m e n s i s 60 0 4 9 0-6 2 2 6 2 5 2 Oenanthe sarmentosa 60 0 4 4 0-6 A 2 1 2 6 3 Achlys t r i p h y l l a 60 0 1 2 0-2 1 2 * 2 2 2 Rubus urslnus 60 0 + 5 0-1 * 1 * 2 1 2 Streptopus empiexifolius 60 0 + 5 0- 1 * 2 • 2 1 2 T i a r e l l a l a c l n i a t a 60 0 * 5 0-1 + 1 2 1 2 Tr1 1 1iurn ova turn 60 0 * 1 0-* + 1 * 2 * 1 Carex obnupta 40 0 4 6 0-7 1 2 7 2 Mitel la ova 1 i s 40 0 4 2 0-6 2 2 6 3 Blechnum spleant 40 0 3 5 0-5 1 2 5 2 Galium t r i f l o r u m 40 0 3 4 0-5 * 1 5 3 G l y c e r i a e l a t a 40 0 2 4 0-4 + 2 4 3 Veratrum v i r i d e 40 0 2 0 0-3 2 2 3 2 Oryopteris expansa 40 0 1 5 0-2 2 2 2 2 Ranunculus uncinatus 40 0 1 5 0-2 2 2 2 2 Bromus v u l g a r i s 40 0 + 8 0- 1 1 2 1 2 Carex dewe?ana 40 0 8 0-1 1 2 1 2 Bromus s i t c h e n s i s 40 0 + 3 0-1 + 2 1 2 Osmorhiza c h i l e n s i s 40 0 * 3 0-1 + 2 1 2 C1nna 1 at 1 f o 1 i a 40 0 + 0 0-» + 2 + 2 Clrcaea a l p i n a 40 0 0 0-» 1 + 2 Disporum hooker 1 40 0 0 0-* + 1 + 1 Maianthemum dilatatum 40 0 + 0 0-* 1 + 2 Streptopus streptopoldes 20 0 1 6 0-3 3 3 U r t i c a d i o l c a 20 0 1 6 0-3 3 2 Linnaea boreal is 20 0 1 0 0-2 2 2 Luzule p a r v i f l o r a 20 0 + 1 0-1 1 2 Adiantum pedatum 20 0 0 0-* 1 Cardamine breweri 20 0 • 0 0-* + 2 Cardamine oligosperma 20 0 0 0-» 2 Equisetum arvense 20 0 0 0~> + 1 Pteridium aquilinum 20 0 0 0-* * 2 Tel 1Ima g r a n d i f l o r a 20 0 0 0-* + 2 Trisetum cernuum 20 0 + 0 0-* * 2 Kindbergia praelonga 100 0 4 3 »-6 3 1 1 2 2 1 2 6 3 Plagiomnium Insigne 80 0 3 6 0-5 1 2 1 2 2 2 5 2 Conocephalum com cum 60 0 4 1 0-6 + 1 + 2 6 3 Leucolepis menziesii 60 0 1 7 0-3 3 2 + 2 + 2 Hylocomium splendens 40 0 + 3 0-1 2 1 2 Rhizomnium glabrescens 40 0 * 3 0- 1 + 2 1 2 Brachy thee ium f ngidum 40 0 * 0 0-* * 2 + 2 Kindbergia oregana 40 0 * 0 o-» + 2 * 2 Aulacomnlum androgynum 20 0 * 1 0-1 1 2 Rhizomnium nudum 20 0 * 1 0- 1 1 2 Ch i 1oscyphus pa 1 1escens 20 0 * 0 0-* + 3 Claopodium bolanderi 20 0 * 0 0-* 2 P 1agiothecium c a v i f o l i u m 20 0 + 0 0-» + 1 Rhytidiadelphus loreus 20 0 + 0 o-+ * 2 237 APPENDIX I - RELATIVE SPECIES IMPORTANCE OF EISG'S The r e l a t i v e s p e c i e s importance (RSI) of each edatopic i n d i c a t o r s p e c i e s group (EISG) i n each p l o t i s shown i n t h i s appendix. A l s o shown i s the biogeocoenotic a s s o c i a t i o n (BA) which each p l o t belongs. to EISG codes are as f o l l o w s : 1. 1 (vdvp) 1. 2 (dpm) 1. 3 (dfpm) 1. 4 (dmpm) 1. 5 (fmpm) 1. 6 (mwpm) 1. 7 (wpm) 2. 1 (vdm) 2. 2 (dfm) 2. 3 (dmm) 2. 4 (f mm) 3. 1 (vdmr) 3. 2 (dmr) 3. 3 (dfmr) 3. 4 (dmmr) 3. 5 (fmmr) 3. 6 (mwmr) 3. 7 (wmr) very dry, n u t r i e n t - v e r y poor to poor s i t e s very dry to dry, n u t r i e n t - v e r y poor to medium s i t e s dry to f r e s h , n u t r i e n t - v e r y poor to medium s i t e s dry to moist, n u t r i e n t - v e r y poor t o medium s i t e s f r e s h to moist, n u t r i e n t - v e r y poor to medium s i t e s moist to wet, n u t r i e n t - v e r y poor to medium s i t e s wet, n u t r i e n t - v e r y poor to medium s i t e s very dry to dry, n u t r i e n t - p o o r to medium s i t e s dry to f r e s h , nutrient-medium s i t e s dry to moist, nutrient-medium s i t e s f r e s h to moist, nutrient-medium s i t e s very dry, nutrient-medium (to r i c h ) s i t e s very dry to dry, nutrient-medium t o very r i c h s i t e s dry to f r e s h , nutrient-medium to very r i c h s i t e s dry to moist, nutrient-medium to very r i c h s i t e s f r e s h to moist, nutrient-medium to very r i c h s i t e s moist to wet, nutrient-medium to very r i c h s i t e s wet, nutrient-medium to very r i c h s i t e s — o u D C o ^ c n < j i t P * c o M — o c o c o - o c f t c n ^ c o M — oujro — — — M — M I J > M C O C O U I C ^ ^ M M < J I — M M M c n < j i u i c o < j i ^ u i i J ^ — — O O — O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O M U J O O M O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O M M — — U 1 ~ J U D O M O O O O O O O O - 0 0 O C J > O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O a O O C O ^ t n O O C O O O O O O O