UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

A chromatographic approach to the diagnosis of humus quality and some implications for forest management Laird, Robert Morris 1984

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1984_A6_7 L34.pdf [ 10.7MB ]
Metadata
JSON: 831-1.0096161.json
JSON-LD: 831-1.0096161-ld.json
RDF/XML (Pretty): 831-1.0096161-rdf.xml
RDF/JSON: 831-1.0096161-rdf.json
Turtle: 831-1.0096161-turtle.txt
N-Triples: 831-1.0096161-rdf-ntriples.txt
Original Record: 831-1.0096161-source.json
Full Text
831-1.0096161-fulltext.txt
Citation
831-1.0096161.ris

Full Text

A CHROMATOGRAPHIC  APPROACH TO THE  OF HUMUS Q U A L I T Y  AND  SOME  DIAGNOSIS  IMPLICATIONS  FOR F O R E S T MANAGEMENT by ROBERT MORRIS B.Sc., The U n i v e r s i t y  A THESIS  LAIRD  of B r i t i s h  Columbia,  SUBMITTED IN P A R T I A L FULFILMENT  1969  OF  THE R E Q U I R E M E N T S FOR THE DEGREE OF MASTER OF  SCIENCE  in THE F A C U L T Y (INTERDISCIPLINARY  OF GRADUATE  STUDIES,  STUDIES  RESOURCE  SCIENCE)  We  accept to  this  thesis  the required  THE U N I V E R S I T Y  Robert  conforming  standard  OF B R I T I S H  April (c)  as  COLUMBIA  1984  M o r r i s L a i r d , 1984.  MANAGEMENT  In p r e s e n t i n g  t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of  requirements f o r an advanced degree a t the  the  University  o f B r i t i s h Columbia, I agree t h a t the L i b r a r y s h a l l make it  f r e e l y a v a i l a b l e f o r reference  and  study.  I  further  agree t h a t p e r m i s s i o n f o r e x t e n s i v e copying o f t h i s t h e s i s f o r s c h o l a r l y purposes may  be  department o r by h i s o r her  granted by  the head o f  representatives.  my  It i s  understood t h a t copying o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l gain  s h a l l not be  allowed w i t h o u t my  permission.  Department o f  ^T€fiO\SU?L.xv4A^  The U n i v e r s i t y of B r i t i s h 1956 Main Mall Vancouver, Canada V6T 1Y3 Date  S T ^ E S  Columbia  written  ABSTRACT  Und e r s t a n d i n g f o r e s t sound  forest  developed nature from  a  management.  by P f e i f f e r  and dynamics a sodium  paper  characteristic  variables  discussed.  to  be  a method  range  interesting.  The  work  made  Is  between and  site  correlations,  are presented  and  allows a  network  forest  humus.  of  the chromatogram d e r i v e d from  o f humus  reflects chemical  forms and  may  or other  disturbed  sites.  management a r e d i s c u s s e d and a number  may  tool,  producing  when m o r p h o l o g i c a l p r o p e r t i e s  i n clearcuts  practises  method  interpretive  the nature  The p o t e n t i a l  management  filter  conditions  chemical  analyses  predictive,  of d i s c r i m i n a t i o n  presented.  are  Significant  the c l a s s i f i c a t i o n  for forest  of  samples.  of  p r o p e r t i e s o f humus  Applications  practical  and  made a b o u t  as found  result  o f humus a n d s i t e  a  prepared  Preliminary  that the chromatogram  inconclusive  examples  nitrate  spectrum".  comparisons  not q u a n t i t a t i v e l y  I t supports  silver  of  to the  On a c i r c u l a r  Further  form  a c o n s i s t e n t manner,  provide  of  features  I t i s concluded  analyses.  reacts with  to types  approach  Chromatograms are  o f humus.  o r "humus  aspect  chromatography,  as a d i a g n o s t i c  and d i s c r i m i n a n t f u n c t i o n  inferences  Although  are  picture  o f 1 0 3 humus  scattergrams  in  extract  as an i m p o r t a n t  u s i n g paper  humus.  extract  and d i s c u s s e d .  chromatographic  of  A method  of f o r e s t  chromatograms  presented  i s seen  i s examined  hydroxide  the radiating  relating  humus  f o r m o n i t o r i n g changes as a  i s  provide  seen  as  the f i e l d  and t h e s t u d e n t  of  particularly  manager humus  with  a  dynamics  with  an  chemistry  The studies  interesting and  field  limitations  bridge  between  observation  of  the  of  the  approach  suggested.  i i i  the  results  in-situ  are  of  analytical  humus.  discussed  and  further  T A B L E OF  CONTENTS PAGE  LIST  OF T A B L E S  v  LIST  OF F I G U R E S  v i  ACKNOWLEDGEMENTS  x  INTRODUCTION  1  NATURE  6  AND  MATERIALS  ROLE OF HUMUS AND  METHODS  PRELIMINARY  STUDY  11  UBC R E S E A R C H F O R E S T STUDY  16  SAYWARD P R O V I N C I A L F O R E S T STUDY  18  MANAGEMENT A P P L I C A T I O N S  22  R E S U L T S AND  DISCUSSION  PRELIMINARY  STUDY  24  UBC R E S E A R C H F O R E S T STUDY  29  SAYWARD P R O V I N C I A L F O R E S T STUDY  35  •MANAGEMENT A P P L I C A T I O N S LIMITATIONS SUMMARY AND LITERATURE  69  OF THE APPROACH AND FURTHER  STUDIES  CONCLUSIONS  78 84  CITED  88  APPENDICES APPENDIX  1 CHROMATOGRAMS OF R E P L I C A T E D  APPENDIX  I I DATA S E T - SAYWARD P R O V I N C I A L F O R E S T STUDY  iv  HUMUS S A M P L E S  91 94  LIST  OF  TABLES  TABLE  •  1  List  2  Chromatographic  3  of v a r i a b l e s  variables  Research  Forest.  4-2  4-3  5  6  7  of three sites  i n t h e UBC 33  of chromatographic  o f 18 r e p l i c a t e c h r o m a t o g r a m s .  variables  and s i t e  variables  of a l l samples  between  a n d humus  variables  and s i t e  a n d humus  variables  of o r g a n i c samples  Significant correlations variables  and s i t e  variables  o f Ah s a m p l e s  and s i t e  variables  from  Chromatographic samples  from  western  hemlock  from  Sayward  Forest.  Douglas-fir,  38  chromatograpic  sample  Forest  37  chemical  chemical  Study.  and c h e m i c a l v a r i a b l e s  pure  Chromatographic  a n d humus  Forest.  chromatographic  Sayward  between  36  chemical  Sayward  a n d humus s a m p l e  of r e l a t i o n s h i p s  variables  from  Forest.  chromatographic  sample  between  from  chemical  Sayward  between  34  chromatographic  sample  from  Significant correlations  samples  21  associated  Significant correlations  Summary  used.  and  Means and s t a n d a r d d e v i a t i o n s variables  4-1  and a b b r e v i a t i o n s variables  chemical  PAGE  mixed,  68 o f humus and pure  stands.  73  and c h e m i c a l v a r i a b l e s  two " s a l a l "  humus  v  sites.  o f humus 74  LIST  OF  FIGURES  FIGURE  "  1  Chromatography  2  Chromatograms p r e p a r e d w i t h o u t use of s i l v e r  3  Schematic  i n process.  diagram  chromatographic 4  Chromatograms soil  13  of chromatogram  variables.  of a range  of samples  types prepared i n preliminary  from  C h r o m a t o g r a m s of two a g r i c u l t u r a l s o i l s .  7  Chromatograms  9  10  Chromatograms  13  using  using  three  sites  from  three  sites i n 32  relationship  between  Wl a n d 40  relationship  between  Wl a n d  a l l samples.  40  relationship  between  Wl a n d  a l l samples.  S c a t t e r g r a m showing CN u s i n g  14  from  a l l samples.  S c a t t e r g r a m showing EXK  sites  UBC R e s e a r c h F o r e s t .  LIPIDA 12  three  31  o f LFH samples  S c a t t e r g r a m showing  41  relationship  between  Wl a n d  a l l samples.  S c a t t e r g r a m showing HFORM u s i n g  27  30  of Bhf h o r i z o n s  S c a t t e r g r a m showing  26  28  t h e UBC R e s e a r c h F o r e s t .  PHH20 u s i n g 11  from  profile.  t h e UBC R e s e a r c h F o r e s t .  Chromatograms  the  o f same s o i l  o f humus s a m p l e s  different  studies.  6  in  of horizons  15  17  Chromatograms  8  nitrate.  showing  5  in  PAGE  41  relationship  a l l samples.  between  Wl a n d 42  vx  15  Scattergram HYGR  16  using  showing  relationship  between  Wl a n d  a l l samples.  Scattergram  showing  42  relationship  between  Wl and  TROPH u s i n g a l l s a m p l e s . 17  Scattergram SUBZ u s i n g  18  19  20  using  23  25  PHH20 u s i n g  a l l samples.  Scattergram  showing  Scattergram  Scattergram  between  Wl a n d 44  relationship  between  W4 a n d 44  relationship  between  W4 a n d  a l l samples. showing  45  relationship  between  SP a n d  a l l samples. showing  47  relationship  PHH20 u s i n g o r g a n i c  samples.  Scattergram  relationship  showing  between  Wl a n d 47  between  Wl and  using organic samples.  48  Scattergram  showing  relationship  HFORM u s i n g  organic  samples.  Scattergram  showing  relationship  LIPIDA 26  Wl a n d 43  relationship  showing  HYGR 24  showing  Scattergram  HUMC u s i n g 22  between  a l l samples.  HUMC u s i n g 21  relationship  a l l samples.  Scattergram CF1  showing  43  between  Wl a n d 48  between  Wl a n d  using organic samples.  Scattergram  showing  relationship  49 between  Wl and  CN u s i n g o r g a n i c s a m p l e s . 27  49  Scattergram  showing  relationship  PHH20 u s i n g  organic  samples.  V 1 1  between  W4 a n d 51  28  Scattergram HUMC u s i n g  29  30  31  32  Scattergram  Scattergram  36  using  Scattergram HUMC u s i n g  37  between  LO a n d  showing  52  relationship  between  LO a n d  samples.  showing  52  relationship  between  LO a n d  showing  53  relationship  between  LO a n d  showing  53  relationship  between  Wl a n d  showing  54 relationship  between  Wl and  Ah s a m p l e s .  Scattergram MINN  relationship  Ah s a m p l e s .  CEC u s i n g 35  51  organic samples.  Scattergram TC u s i n g  34  W4 a n d  using organic samples.  HWSI u s i n g 33  showing  using organic  Scattergram FDSI  between  organic samples.  Scattergram TCA  relationship  organic samples.  Scattergram CN u s i n g  showing  Scattergram  showing  55  relationship  between  W4 a n d  Ah s a m p l e s . showing  55  relationship  between  D3 a n d  Ah s a m p l e s . showing  55  relationship  between  D3 a n d  CEC u s i n g A h s a m p l e s . 38  Scattergram FDSI  39  using  Scattergram FDSI  using  showing  56  relationship  between  D3 a n d  Ah s a m p l e s . showing  56  relationship  between  Ah s a m p l e s .  D2 a n d 57  40  Chromatograms  of M u l l  humus  form  41  Chromatograms  o f Mor h u m u s f o r m  viii  samples. samples.  62 62  42  Example  chromatograms showing c o l o u r  and form  characteristics. 43  Chromatograms  63  of two h o r i z o n s  sampled  from  a Douglas-fir stand. 44  Chromatograms a western  45  control 46  47  differ  from  stand.  o f humus  salal  o f humus  i n species  Chromatograms where  sampled  '  (LFH) sampled  o f humus  66  from  and t r e a t e d s i t e s .  Chromatograms that  of horizons  hemlock  Chromatograms  65  72  (LFH) sampled from  three  stands  composition.  76  (LFH) sampled from  i s dominant i n the shrub  48  Chromatograms  of s e p a r a t e d  49  Chromatograms  of s e l e c t e d m i n e r a l  two  sites  layer.  fractions.  ix  soil  77 79  horizons.  83  ACKNOWLEDGEMENTS  Thanks of  to colleagues  Forests,  and with  particularly  analysis. word  Thanks  and  P.  t o L.  processing,  encouragement  i n the Research Courtin Laird  and  to  patience.  x  f o rhelp  a n d R. L.  Section  of the M i n i s t r y  i n data  Carter  Lavkulich  management  for  assistance  for  his  early  INTRODUCTION  Humus h a s p r o v e d good  deal of s c i e n t i f i c  Russia  has  approaches  developed  analysis  attempt  to  evidence given  of  to  has  only  i n spite  systems.  organic  the e f f o r t s  culminated  in  composition,  how  matter  i n the realm  hydroponics,  to  structure  done  little in  and  successful  on  t o d a t e , and attention  i s  agricultural  or  exception i s i n the  i t i s surprising  unscientific,  very  the  fractionation  partially  o f humus  A notable  following  form,  of t h e work  o f humus,  and management  However  Considering  has been  because  quality  movement".  in  in  sophisticated  Chemical  substance  the importance  silvicultural  sense  this  Very  the molecular  A  classically  continuing  schools.  to elucidate  This approach basis,  i s  substance.  place,  America.  and  i n Russian  define  practical  i n North  used,  a r e used  composition. a  been  and c o m p l e x  r e s e a r c h has t a k e n  a n d more r e c e n t l y  analysis  and  t o b e an e l u s i v e  "organic  u n s o p h i s t i c a t e d and i n a management  has  been  of i n o r g a n i c treatment humus  management  has  which been  neglected.  The Most  implications  environmental  subsidence, of  subjects  have  individuals  produce, been  Workshop such  n e g l e c t may  scientists  pollution  quality  Degradation  of t h i s  know  the  of groundwater increase explored  ( Anon.  in  prove  ,  a severe  problems decline  pest  i n workshops  damage, such  1  Failure  erosion,  i n q u a n t i t y and etc. as  1983) ,the A g r o l o g i s t  as S c h u m a c h e r ( 1 9 7 4 ) .  of  problem.  to  the  These Soil  ( 1 9 7 5 ) a n d by take  humus  seriously their  i s a key c o n t r i b u t o r  "cure"  lies  Forest reasons. to  explore  provide  the  as a P e d o l o g i s t  British  humus  will  provide  Forestry and  their  skidding  heavily been  forest  have  a legacy  of  Poor  harvested.  These  situations  quality  quality.  and p r o d u c t i v i t y  Recently  the M i n i s t r y  classification description ecological  o f humus  and  study  approach  i s primarily  of  (Klinka forest  to forest  '2  More four  the  British  management to  any  attention  to  management.  viewed  soils  being  of  minor  slashburning  and  ground  (not  satisfactorily  of m a t e r i a l decadent ,  in  has  left  stands  have  many  should  cases, enhance  basis.  has p r o v i d e d e_t a _ l . ,  1980).  ecosystems,  management i s  descriptive,  as  management  term  of F o r e s t s  forms  forest  represent  Ideally,  on a l o n g  of  historically  where  i n which  developed  term  utilization  particularly  of  major  the last  greater  ("duff")  two  humus.  f o r humus  "N.S.R."  areas  of s i t e  Program  indiscrimimant  lignous  degradation  work  i n B.C.  lands.  them o v e r  that  f o r long  matter  and  been  basis  organic  left  has n o t  for  available  dynamics  i s suggested  Clear cutting,  have  restocked)  I t  a good  surface  system  with  part  management o f humus.  The p o t e n t i a l  forests  practices  importance.  of s i t e  of F o r e s t s .  degree.  natural  has worked  A large  exclusively  i n the E c o l o g i c a l  Columbia  significant  problems.  considered  almost  t h e most  author  Columbia M i n i s t r y in  a r e used  the i n t e r a c t i o n s  practically years  i n the active,  systems  They  to these  a  an  improved Along  longer  developing.  characterising  with term  Present  the chemical  and  ecological  relationships  of  humus  forms  and  environmental  method  of  factors.  Preliminary  work w i t h  a chromatographic  humus h a s l e d t o a h y p o t h e s i s in  evaluating  its  of  t o humus  The c h r o m a t o g r a m  humus. I t a l s o  forms the  the chemical  relationship  regime.  i n B.C.  assessment  of this  what  information  management  It  from  suggested  something  sample.  Chromatography weight  to  more  migrate  their  Silver with  in  o f humus and  expression  part  c a n be d e r i v e d  and  moisture  of the  nature  o f humus  of t h e f o l l o w i n g t h e s i s i s  - i s t h e method  that  various  from  quickly likely  practically  the  useful,  chromatogram  for  constituents  One w o u l d  humic m o l e c u l e s ,  should  be  a  i n t h e sample.  differences  of  be  However, the  smaller  furthest  migration  precipitating similar  "fingerprint" this  humus f o r m a t i o n  should  according molecules from  depending  process. the  two  on  should The  chemical  "fingerprint"  between  the  forming  components  of  be  individual  by  them  chromatographic  Secondly,  3  i n solution  expect  the  can  the chromatogram  substances  and t h e r e f o r e  in  of information  c o n s t i t u e n t s of the  confounds  ways  kinds  Firstly,  separates  and s i z e .  similar  chromatogram  reflect  aspects  f o r the c l a s s i f i c a t i o n  A major  s t r u c t u r e and a c t i v i t y .  react  a visual  a test  method  c a n be u s e f u l  nutrient status  of the chemical  to m o l e c u l a r  complexes  form,  the chromatogram.  reflect  origin.  an approach  decisions?  i s  inferred  such  and b i o l o g i c a l  gives  provides  now u s e d  and  that  studying  or  should more  samples,  and  Thirdly,  because  ecosystem, site  should  the  humus  a relationship  form  chromatogram  i s  t o t h e humus  related  should  form.  intimately  be a n i n d i c a t o r  to  of  the  general  ecology.  This approach  thesis to  management  improving  formation  in  study,  management  connection  in  practiced  facilities.  The t y p e  are  factors  the major  product  whether  humus.  Forest  temperature,  possibilities  soil  diagnostic systems  and  It i s  not  but a c o n t r i b u t i o n  decisions,  of input, that  to  and  hopefully  the natural  processes  the q u a l i t y  are dealt  alter  and n u t r i e n t careful  with  humus  cycling.  practical  ways  of  decisions.  Quantitative  There  examining  i s relatively plant  Their  to  There  stable  species,  Some o f  on  these  Applications".  to  a  considerable  support  a n a l y t i c a l a p p r o a c h e s have  d e f i n i t i v e answers.  The  effects  i s c l e a r l y a need  humus  a n d pH  of p r o d u c t .  consideration.  has been n e g l e c t e d  composting  moisture  light,  i n "Management  management.  "artificial"  industrial  or i n the f o r e s t  need  the  the temperature,  management a c t i v i t i e s  quality  and  and  determine  forest  many  between  systems  farms  on t h e f a r m  mentioned, in  forest  on  moisture  and s i t e  provided  key  definitive scientific  i s an o b v i o u s  composting  degree  a  and a  The management i s e m p h a s i z e d .  f o r approaching  humus  As  as  o f humus  them.  There  humus  the nature  humus  of them.  rationale  of  explores  studying  meant t o be a a  express  to  find  management not  i s an u r g e n c y  as to  yet  better  understand has in  and manage t h e f o r e s t  provided spite  the impetus  i t s specific  The  objectives  chromatographic inferred the  from  diagnostic  this  approach  ;  Each  First,  apparent  and  stage  characterized relationships  area were  interpretation  are  to determine  o f many  method, unknowns  chemistry.  :  what  and p r o v i d e  to  explore  the  i n f o r m a t i o n c a n be  some  the usefulness  of t h i s  survey  were  thesis  justification for o f t h e method  examined  - the  UBC  using  Forest.  5  types  between of  as a  provided  made.  chromatograms using  Forest.  103 humus f o r m  This  stages  of  of the previous  was  humus  Research  of the chromatogram  four.  required four  the r e s u l t s  of s o i l  characteristics  examined  Provincial  t o humus  f o l l o w e d from  general  site  urgency  tool.  relationships  chemical  Sayward  a  This  the chromatographic  study  ; and t o examine  e x p l o r a t o r y nature  study.  stage  of  resources.  and i n s p i t e  relationship  management  development.  nature,  the chromatogram  inferences  The  to explore  of i t s q u a l i t a t i v e  regarding  and s o i l  and well-  Thirdly,  samples the  a  Then,  from t h e  basis  for  f o r management a p p l i c a t i o n i n  NATURE  The state  forested  of  system, an  ecosystem  dynamic however  isolation  AND  ROLE OF HUMUS  i n i t s natural  equilibrium. with  a well  and p r o t e c t i o n  from  o f humus i s t h e r h y t h m i c  animal  products  the  living  place  t o t h e dead  between  Humus  these  may  environment, forest  dead  organisms whole.  and  components o f an  used and  with  loosely  animal  remains include  humus  inorganic refers  wonder  and d i f f i c u l t  i s a clearly  dying  Humus  that  (1968)  component"  The roots,  pass  from  occupies a  i ti s elusive.  t o study  importance  and D y l i s  in its  natural  i n understanding consider  the  i t t o be t h e  because  " i t i s formed  and i s a r e s u l t o f t h e l i f e - a c t i v i t y  link  and  somewhat  i s intimately  closed  of the s o i l - f o r m i n g  between  process  the b i o l o g i c a l and  of  as  a  geological  ecosystem.  "duff"  specifically it  Little  not a product  I t i s a crucial  a  of the system  to the l i v i n g .  biogeocoenose remains  there  of l i t t e r f a l l ,  The e l e m e n t s  extremes.  Sukachev  organic  Humus,  cycle  but i t i s of major  forest  canopy  not  a  climatic variation outside.  and a g a i n  be e l u s i v e  ecosytem.  "principal from  and c o r p s e s .  represents  I t i s certainly  developed  source  state  soil  organic  to refer and  matter  to decomposing  their  products.  undecomposed  materials.  associated  mineral  with  matter.  to the organic  are  unaltered  that  or decomposed Humus  does  Practically organic  For the purposes products  terms  plant not  however,  materials  of this  of decomposition  are  and  thesis, of  plant  and  animal  debris,  on  or  i n the  soil,  and  involved  in  soil  processes.  Humic  substances  fractions  or  or  components of  The  term  near  the  residues,  humus f o r m surface  either  materials"(Klinka  Much directed  of  substances  have  predominantly  humic  to  following Plant  has 3.  of  to  many  these  - where  polymerization  molecules,  which  little  condense  soil  formed  intermixed  in  humus  the  isolated  as  dark  horizons  at  from  organic  with  mineral  studies  been  fractions.  Humic  coloured,  ( i n most  acidic,  cases),  chemically  with  molecluar  substances, thousands  has  (Schnitzer  s u b s t a n c e s has  and  Khan,  been a t t r i b u t e d  to  the  n a t u r e of  the  plant  determines  humus.  small  Cell  of  processes:  alteration  Chemical  acids  work  poly-electrolytic-like  f o r m a t i o n of  isolated  humus.  or  hydrophilic  100  have  to  1981).  described  aromatic,  The  2.  which  from  refer  concept,  to " a group  substances -  been  1978).  nature  broader  a pedon,  analytical  r a n g i n g from  1.  the  refers  et a l . ,  weights  the  of  specifically  separate  the  towards  complex,  more  oxidize  effect  on  autolysis  - materials  then microbes to form the  humic  are  degraded  synthesize substances  phenols - so  by  microbes  and  plant  amino nature  result.  - autolysis  and p o l y m e r i z e .  7  of  plant  and  microbes  which  4.  Microbial  synthesis  - microbes  synthesize  humic  substances  intracellularly.  The  consensus  appears  taking  place:  chemical  animal  residues  and  and  extra  dating  to  and  The  techniques  that  a l l four  biological  synthetic  cellularly.  be  degradation  activities  process  giving  of  i s seen  ages  processes  generally  50  to  be  plant  and  microorganisms, as  from  of  may  intra  slow  3,000  with years  (Gjessing,1976).  This humic  variation  substances  analytical  work  acids  and  classic  fractions fulvic  humins)  and  are  highly  one  another  method  and  The  firm  are  view  report  There soluble  the  method.  well  be  humus f r o m (Anon.,  the  production  apparent  a  acids  such  For  most using  to  to  contradictions.  convert  of  the  lack  humus. is  Lowe a n d  The  a  really  on  view  to  humic  not  views  acids.  of  component  assumption  fulvic  base  insoluble  explain  point  the  relationships  and  of  and  products  example,  classic  and  the  these  help  chemical  of  that  acid  appear  artifacts  I t may  1972).  of  but  variability a  fats;  continuumAs  partial  extreme  reverse  a  of  methodology  acids;  1966),  of  studies  r e l a t i o n s h i p s between  humic  fulvic  systems.  of  emphasized  waxes and  soluble  by  of  are  (Kononova,  the  typical  extraction  part  the  such  an  likely  knows",  favour  many  on  H u m i c and  r e s u l t s and  conditions contains  types  is  i t m u s t be  base  in natural  really  (1976)  acids;  may  summary  nobody  (alcohol  defined  participating  again based  variable. and  results  alcohols.  soil  substances.  of  and is  bases,  soluble  in  that  "that Klinka humid  literature  There  i s a good  humus  in  soil  source  i s very  humus  formation  d e a l more a g r e e m e n t  systems. evident.  i n regard  to the role  The i m p o r t a n c e  o f humus a s  The b i o l o g i c a l  cycling  provides  a continuous  supply  a  of  nutrient  occuring  through  of energy  to  the  to  the  system.  Humus  has a remarkable  inorganic.  Organic  making  available  them  complexation, is  highly  bonding wide by  Other insulation holding  exchange  major  roles  Kononova,1966)  many  The  i n soil  more  not  conceptions associated  i s obscure. and laws with  macromolecules".  bonding  phenonema  dynamic  living  How  as b e i n g  processes  humus  of  a  summarized  soil  structure,  o f humus and  Gjessing  takes  growth  Dylis  ,1968,  likely  part  in  that  be these  "general  be a p p l i e d t o phenomena (1976)  sees  Humus a g a i n  t h a t by t h e i r  in  will  suggests  cannot  t h e same.  9  clays,  exhibits.  though  (1966)  of c h e m i s t r y  iron  indicate  It i s  (Sukachev  explored,  Kononova  as  importantly, the capacity f o r  effects  well  occur  with  and u r e a  humus  subtle roles  f o r f u t u r e management.  roles  a s DDT  c a p a c i t y which  antibiotic are  Adsorption  processes.  and very  many  carbonates  The r e d u c t i o n o f  i n c l u d e development  and p r o t e c t i o n ,  and  R e l a t i o n s h i p s to metals  compounds such  cation  itself  phosphates  i n podzolization.  of involvement  and  important  to plants.  organic  water.  promotion  dissolve  i o n exchange and c h e l a t i o n .  with  the high  acids  significant  breadth  capacity for linking  very  nature  the various i s  part  cannot  of be  understood and  by i n o r g a n i c  t h e laws  what  system  influenced. approach and  humus  to discover  the  It  Inorganic systems a r e  i s observed,  Organic  from  trends  itself i s  to studying  a management or behavior  the  the  direction  suggested  that  a  soil  type  with  microclimate...  which  a distinct  chromatographic picture  produce  perspective,  i t i s  of  method  o f t h e humus  humus used  spectrum.  10  so that  processes  broader,  humus i s r e q u i r e d .  characteristic yields  systems  of systems  there  a special  more  crop  are ...  spectrum." study  (Pauli, provides  out be  holistic  no  influences biological  i n this  can  "As i n a l l o t h e r  i n v e s t i g a t i o n s of e c o l o g i c a l u n i t s ,  values...  predictable  out of the whole.  studying  important of  summarize what  i s observed  In  laws.  studies absolute  creates  a  activity... 1967). a  The  visual  M A T E R I A L S AND  METHODS  P R E L I M I N A R Y STUDY During  field  Alberta,  soil  respective broken-up  trips samples  and via  method.  evaluate  seven  were  wick  while  the extract  treated radiate  by  soils  ,  then  the resulting  diffuse  light  f o r 48 h o u r s .  described  by K o e p f ( 1 9 6 4 )  composting  applications.  early  first  70's. During  indicated  some  filter  1979,  silver  reaches  and B r i n t o n ( 1 9 8 3 )  of t h i s  the  with  of  qualilty.  method  Five  50ml of  .25  to  to NaOH  radiate  (Whatman no.  to maintain  nitrate  solution  t h e humus  120mm  , the  and  1)  humidity  has p r e v i o u s l y  been to  extract wick  i s  developed  in  t h e method  has  been  f o ra g r i c u l t u r a l  and  method  i n England  t h e method  a d a p t a t i o n was r e q u i r e d .  11  their  the following  dried  More r e c e n t l y ,  tests  and  adaptation  1 shows  chromatogram  learned  and  and  paper  i s used  Figure  When t h e e x t r a c t  and  types  i s allowed  The f i l t e r - d i s c  dried.  Columbia  were a i r - d r i e d  with  The e x t r a c t  a .5 p e r c e n t  removed  author  an  and compost  a circular  radiates.  i t radiates.  The  using  A c l o s e d chamber  allowing  t o 75mm  Samples  o r compost a r e mixed  through  i n diameter.  of s o i l  (1959) developed  e x t r a c t e d f o r s i xhours. a paper  British  screen.  prepared  agricultural  15cm  as  a 2-mm  Pfeiffer  grams o f s o i l  range  collected.  t o pass  Chromatograms  to  of a wide  h o r i z o n s were by h a n d  following  i n 1979 t h r o u g h  i n the  on f o r e s t  The e x t r a c t a b i l i t y  soils of  forest order  humus that  required  less  than  the e x t r a c t would  r a d i a t e to  chromatograms  were  prepared  sample  grams  of organic  o r 1.25  12  t h e 5 t o 7 grams  by u s i n g sample.  2.5  the grams  suggested  outer  area.  of mineral  in The soil  Chromatography minutes. Moist  Figure  in process. Humus e x t r a c t r a d i a t i n g after 15 paper t o w e l s m a i n t a i n h u m i d i t y i n g l a s s t o p box.  1 Chromatography  13  i n process  after  40  minutes  A  generally  chromatogram. contain  a  The  well  as  expect end of  up  soluble  the  silver.  Figure  LFH is  with  that  sample  17%  organic  The  intensity  As  mentioned  fraction expected  to  carbon of  colour  one  migrate  to  the of  wider  the  substances  might  be  the  amount  pH  the  the  of  14  action  of  zones.  using  silver  will  form  radicals with  of  the  humus  changes  1966).  It  i n pH.  The  gram i f g r e a t e r  than  organic  matter.  more  mobile  However,  the  density  fulvic  because  silver,  particular  substance.  generally  amount o f  nearer  The  would  carbon.  concentrate  expected.  One  organic  with  a  the  17%  more r a p i d l y  more o f  in  the  (Konanova  reflect one  will  chromatogram.  i f l e s s than  periphery.  also  OH  i n the  will  varies with  the  by  Silver  i n combination  to  zone,  reflect  zones.  colours  grams  and  development  including  expect  the  also  of  humus v a r i e s w i t h  two  etc.).  quickly  the  the  represented,  extract without  would  complex  c o m m . , 1 9 8 3 ) i t may  the  are  i s confounded  f o r e x t r a c t i o n was  and  to  extracted)  salts,  for  Ah  oxides  chromatogram  used  regard  (NaOH  more  critical  components  of  in  humic a c i d s  however  definition  produce  the  and  migrate  Silver  Extractability  used  (sugars,  This  no  many  themselves  amount of  to  i s taken  humus f r a c t i o n s m e n t i o n e d  e x t r a c t and  solution.  expected  the  components  periphery.  There  extracting  is  of  I t i s obviously  complexes  colours  extract  molecules  2 shows an  nitrate.  approach  Certainly fulvic  smaller at  humus  proportion  introduction. as  "naive"  substance of  the  i t may  (Lowe,  centre.  acid be  pers.  Generally or  complex  zone  should  15  UBC  R E S E A R C H FOREST STUDY  Three  plots  representing analysis hygric  had  dry,  been to  samples  and  (25cm  plot.  samples  repeatability  by  the  and  organic  replicate (LFH)  from  The  Four  were LFH  samples  prepared  combined and  chromatograms of  depth  two were  shows  and  a  site  grams  by  vegetation.  use  were  taken  additional in  and the are Two at two  testing  the  horizon,  Bhf  method.  each using  H  or H i a one  gram  gram  schematic diagram  sub-samples site.  zones  the average  and  zones  and  forms.  dividers.  report.ed  f o r m a t i o n s were of  for  Eighteen  w e r e made u s i n g  and  spike  sample  samples.  one  repeating  zones  l o b e s and  mesic  used  taken at the mesic  each  soil  Simply, they  An  for mineral  exhibited  16  for  prepared using  samples  measurements.  as  1980).  ground.  from  these repeating  Numbers o f  Xeric,  hygrotope  sample  m e a s u r e m e n t s w e r e made o f  3  1976).  Forest  f o r which  o f humus f o r m )  the chromatographic  the a d d i t i o n a l  millimetres. Figure  x the  Research  ecosystems  Lowe or  UBC  characteristic  at the mesic  chromatograms  Measurements  and  were a i r d r i e d  taken  an  hygric  sites with  40cm  Chromatograms horizon,  (Klinka  the  S t a f f ( W a l m s l e y et a1.  wet  of  and  at  m o i s t u r e regime  These  were  selected  mesic  done  of F o r e s t s  moist  each  xeric,  refer  Ministry  were  in  counted. associated  Figure  3  Schematic variables.  diagram  17  of  chromatogram  showing  derived  The  developed  daylight  to  darkening original  chromatograms  preserve  a  was o b s e r v e d chromatograms  photographs  record  are stored i n this  During  research area.  1980  River,  staff  into using  associations plots.  In  according  by  the  were  undertaken  several  each  above  sampled  chromatograms.  show t h e  The The  chromatograms  methods  plots  Each  at  occured.  Each  were  sampled  humus s a m p l e  i n a Wiley  mill  soils  Forests  metre  wildlife  i f  separately  (Ah,  f o r a wide  of five  described the  was  Field  described  soils  by  a  i n f o r m a t i o n and  by h o r i z o n .  ectorganic.  were  least  in  vegetation,  data,  Campbell  range  and  plot  the  Plots  by a t  Ecosystems  of  vegetation  the  sampled  sampled  and a n a l y s e d  18  of  and  that  was a i r d r i e d , g r o u n d  variables.  Sayward  subzones.  were  include  mensuration  were  the  I s l a n d near  so  400 s q u a r e  which  Soils  of  Ministry  was r e p r e s e n t e d  a s LFH c o m p o s i t e s  horizons  Vancouver  i n Describing  procedures  features.  by t h e  biogeoclimatic  120  form,  sampling  of c l i m a t e ,  subzone  e_t a _ l . , 1 9 8 1 ) .  site  slight  and c h a r a c t e r i z e ecosystems  i s on e a s t e r n  procedures  organic  then  was  a l l , some  m o d a l p i t , - humus general  study  synecological  in  to  (Walmsley  A  colours.  i n a light-proof container.  1981 e x t e n s i v e  i n c l u d e s a range  integrated  bright  STUDY  to describe  Forest  and  selected  and  Forest  The  their  in  half-size.  SAYWARD P R O V I N C I A L F O R E S T  Provincial  of  photographed  i n some o f t h e e a r l y  presented  approximately  were  Humus  forms  Endorganic  and  Oh)  where  i n a blender  range  of  they and  chemical  Analysis  was  summarized  d o n e by  Pacific  Soil  Analysis  Inc.  Methods  are  below:  1.  Total  2.  Total Nitrogen - Sulphuric c o l o u r i m e t r i c a n a l y s i s .( B l a c k 01sen,1965).  3.  Total Phosphorus - Sulphuric acid-peroxide d i g e s t i o n followed by c o l o u r i m e t r i c a n a l y s i s .( B l a c k e_t a _ l . , 1 965 ) ( W a t a n a b e and Olsen,1965).  4.  Mineralizable Nitrogen - Waring Method incubation.(Waring and Bremner,1964).  5.  CEC pH=7  and  6.  Total A.A.  Cations - Sulphuric acid-peroxide analysis.(Price,1978).  7.  Lipid  A  8.  Fraction B - extracted with d e t e r m i n e d by m e t h o d 1. S u g a r s method.(Lowe,1974).  9.  H u m i c s a n d f u l v i c s w e r e e x t r a c t e d w i t h 4 , 200 m l . e x t r a c t i o n s o f 0.2 N NaOH. C a r b o n s w e r e d e t e r m i n e d by m e t h o d 1. Nitrogen d e t e r m i n e d by e v a p o r a t i o n f o l l o w e d by m e t h o d 2. E 4 0 0 a n d E 6 0 0 absorbances measured on a 50 ppm carbon humic extract. C a l c u l a t e d on a 1% c a r b o n b a s i s . ( L o w e , 1 9 7 4 ) ( K 1 i n k a a n d L o w e , 1976).  10.  Carbon  - Walkley-Black.(Black  et  acid digestion followed e_t a _ l . , 1965 ) ( W a t a n a b e a n d  e x c h a n g e a b l e c a t i o n s - one method.(Black et al.,1965).  fraction  - ethanol-benzene  soils  responsibility  of  component the  variables  and  114  Forms  of  the  Sayward  Forest  Study.  For  the  author.  plots.  purposes  of  A report  Forest  of  The  which  this 19  -  normal  2  week  by  30'C  ammonium  acetate  digestion followed  by  extraction.(Lowe,1974).  0.1 N sulphuric a c i d . Carbon d e t e r m i n e d by phenol-sulphuric  P y r o p h o s p h a t e Fe a n d A l d e t e r m i n e d by sodium pyrophosphate.(Bascomb,1978).  The  al.,1965).  the  extraction with  Sayward  developed  data  Study set  i s i n progress i s but  thesis,  one  each  part  0.1M  is  includes  entitled of  complete  the  the  146  Humus Sayward  humus  form  sample  was u s e d  sample  was  forms  with  used,  two grams  one sample  difficulty  catagorical  variables  I  and  has  One soil  i . e . , L F H , Ah o r 0 w e r e  f o r o n e humus  chromatographic  Appendix  f o r mineral  i n a v e r a g i n g chromatograms.  chromatogram the  to prepare chromatograms.  form.  variables of each 50  This with  plot.  variables  for  d a t a was s e l e c t e d  set  i n t h e u s e o f t h e 50 v a r i a b l e s  humus of the  therefore,  direct  103  organic  because  physical  plots.  and  i s shown i n Chemical  f rom t h e l a r g e shown  one  comparison of  The d a t a s e t u s e d  d a t a and s i t e  20  i s  the chemical,  concentration resulting  of  ( A h ) . Only used  There allows  gram  i n table  data 1.  Table  1  List  of variables  and a b b r e v i a t i o n s  used.  P H H 2 0 - pH i n w a t e r TC - total C(%) TN - t o t a l N(%) CN - TC/TN TP - total P(%) MINN raineralizable N(%) CEC - c a t i o n exchange capacity(meq/1OOg) EXCA - e x c h a n g e a b l e Ca(meq/100g.) EXMG _ e x c h a n g e a b l e Mg(meq/lOOg.) EXNA - e x c h a n g e a b l e Na(meq/1OOg.) EXK - e x c h a n g e a b l e K(meq/100g.) LIPIDA- l i p i d fraction(%) CB - C a r b o n i n f r a c t i o n B (%) SB - s u g a r s i n fraction B(%) HUMC - Carbon i n humic a c i d f r a c t i o n ( % ) HUMN - N i t r o g e n i n humic a c i d f r a c t i o n ( % ) CF1 - Carbon i n f u l v i c a c i d f r a c t i o n ( % ) CHCF - HUMC/CF1 = h u m i c C a r b o n / f u l v i c C a r b o n E400 - E 4 0 0 nm f o r h u m i c a c i d f r a c t i o n E600 - E 6 0 0 nm f o r h u m i c a c i d f r a c t i o n E40E6 - E400/E600 TCA - total Calcium(%) TMG - total Magnesium(%) TK - total Potassium(%) TNA - total Sodium(%) TFE - total Iron(%) TAL - total Aluminum(%) TMN - total Manganese(%) PYFE - pyrophosphate extractable Iron(%) PYAL - pyrophosphate extractable Aluminum(%) DTREE - d o m i n a n t t r e e s p e c i e s SUBZ - b i o g e o c l i m a t i c subzone ELEV - e l e v a t i o n (m) HYGR - hygrotope TROPH - t r o p h o t o p e HFORM - humus f o r m t a x a FDSI - Douglas-fir(Pseudotsuga menziesii(Mirb.)Franco) site i n d e x (m./lOO y r . ) PLSI - Lodgepole pine(Pinus contortaDougl.) s i t e index HWSI - W e s t e r n hemlock(T_s_ug_a h e t e r o p h y l l a ( R a f . ) S a r g . ) s i t e index CWSI - W e s t e r n r e d c e d a r ( T h u j a p i i c a t a Donn) s i t e i n d e x D2 - d i a m e t e r o f 2 n d z o n e (mm) D3 - d i a m e t e r o f 3d z o n e (mm) Wl - w i d t h o f i n n e r z o n e (mm) W2 - w i d t h o f 2 n d z o n e (mm) W3 - w i d t h o f 3d z o n e (mm) W4 - w i d t h o f o u t e r z o n e (mm) LO - number o f l o b e s SP - number o f s p i k e s  21  The  chromatographic  numbers a s s o c i a t e d selected clearly  because  would  subjective  then  Both  the each  were  very  used  variables  examine  t o t h e humus tree  MANAGEMENT  APPLICATIONS  was  sampled  stands.  Each  humus  Samples  from  a pure  western  hemlock,  composites)  were  sample  used  prepared  i n  each  two  was a c o m p o s i t e stand,  western  as w e l l  significant  analysis  of  (BMDP)  chromatographic  and t o groups  plot.  clearcuts  between  variables f o r  the  function  f o rproductivity  22  examined  for  relationships  Douglas-fir  and a pure  were  classification,  in  their  a n d BMDP ( D i x o n e t a l . , 1 9 8 1 )  discriminant  specie  charts.  sections.  were  form  ( M I D A S ) was u s e d  Humus  i s quite a  however,  and c h e m i c a l and s i t e  the  regression  analysis  Correlations  Scattergrams  dominant  colour  at the  the data  analysis.  were  as d i s c r e t e  from  was  the  them  excluded  Jack-knifed  variables  themselves,  ( F o x and G u i r e , 1 9 7 6 )  to  t o express  t h e use of M u n s e l l c o l o u r  relationships.  on  soils  or  them. The c o l o u r s a r e  with  chromatographic  used  These  even  i n data  sample.  previously.  elaborate instrumentation,  i s discussed i n later  MIDAS  were a l l measurements  i n obtaining however  As w i t h  phenonemon  importance  were  require  used  as mentioned  of s i m p l i c i t y  densitometers.  Colours  zones  important attributes,  variables least  with  variables  Stepwise  based linear  relationships.  and  their  of f i v e  LFH  a mixed  adjacent samples.  Douglas-fir  and  hemlock  stand  (each  25 s a m p l e  as samples  from  two  "problem"  salal(Gaultheria for  which  shallon  chemical analysis  Chromatograms were using  one  Pursh)  gram f o r  was  prepared  extraction.  23  sites  (each  10  sample  composites)  available.  from  each  sample  i n the  collection  R E S U L T S AND PRELIMINARY  The  samples.  tended  to  spike  have a l i g h t  lobed  D).  outer  Organic  formations  ( figure  larger  areas  t o have  this  4 A and B ) . and s m a l l e r  darker  of  soil  o f M u l l humus  forms  area  and  well  LFH h o r i z o n s  inner  zones  t o be t r e n d s  moisture  inner  outer  a range  zones. (Oh) or  with  less  defined  tended  to  ( figure  4 C  saturated defined  H  spike  4 E and F ) .  appeared  to soil  characteristic  semi-terrestia1 horizons  tended  There  follow illustrate  coloured,  ( figure  horizons  relation  which  Ah h o r i z o n s ,  formations  darker, and  STUDY  chromatograms  horizon  DISCUSSION  zone.  i n size  conditions.  Figure  of the inner  The m o i s t e r  zone  the s o i l ,  4 C and D or f i g u r e  4 C and  in the  figure  5 A a r e examples.  Pfeiffer of  mineralization,  Figure  6 B, f r o m  soil  does  spike  formation  Ah  (1959) suggested  sample  inner  the presence  a cultivated  exhibit than  figure  Amounts  of  i t were a l s o  to  C shows  a  faint  horizons  zone,  zone,  zone  clear  matter  and b e t t e r  indicative  24  compounds. organic  definition  6 A, a w e l l  spikes  or  Podzol.  of low o r g a n i c  of  drained  and moderate  by P f e i f f e r .  a Ferrohumic  indication  drained  and t h e nature  demonstrable from  gave an  heavily fertilized,  4 E a n d F. F i g u r e  of o r g a n i c  considered  three  outer  outer  zone  of s o l u b l e i n o r g a n i c  a larger inner  shows l i g h t  zone.  the inner  sized  stability Figure  T h e Ae  matter  of a  5 A  shows less  crude,  more  ectorganic  F-H.  indicates  nature.  Pfeiffer  biological  chemical be  stable  analysis.  very  different  also  factors Two  The B f l i s more  soils  i n terms  suggests which  that  cannot  of s i m i l a r  of t h e i r  stable the be  chemical  productivity  than  the  chromatogram determined  by  properties  can  and q u a l i t y  of  experience  of  product.  These  and o t h e r  describing  soils,  preparing  the  chromatographic ("humus testing  o b s e r v a t i o n s as w e l l  v e g e t a t i o n and s i t e  chromatogram approach.  spectrum")  and  indicated  The c o n n e c t i o n the s i t e  of the i n t e r p r e t a t i o n s  25  as t h e  c h a r a c t e r i s t i c s and a  potential  between  suggested  that  be c a r r i e d o u t .  for  then the  the chromatogram more  specific  Figure Figure  4 E. H h o r i z o n G l e y s o l . F i g u r e 4 F. Oh h o r i z o n H u m i s o l . 4. C h r o m a t o g r a m s o f d i f f e r e n t s o i l h o r i z o n s a m p l e s .  26  Figure  Figure  5 A.  F horizon  FH  Podzol  F i g u r e 5 C. B f h o r i z o n . 5 C h r o m a t o g r a m s o f h o r i z o n s o f t h e same s o i l  27  profile.  Figure  6 A.  Ah h o r i z o n .  F i g u r e 6 B. O r g a n i c . F i g u r e 6 Chromatograms  28  Pasture.  D r a i n e d and c u l t i v a t e d . o f two a g r i c u l t u r a l soils.  UBC  R E S E A R C H F O R E S T STUDY  Visual trends. hygric also  examination  The  inner  moisture  the  outer  hygric  zones  small  nitrogen pH.  examined was  simplest  be  were  They  number  diameter  of  and  appears  indications  indications  W3  a  such  f o r a number support  to as  Wl  and  of  earlier  interpretations.  29  noted the  present the  The  xeric  to  zone  (D2)  chromatogram more  ( 1 9 7 6 ) and are  shown  i f  related  to % humic  of  second  diffuse  carbon.  to  LFH  soil  or H  would best  of  site  o b s e r v a t i o n s and  moisture were  horizons. the  picture.  approach  characteristics. some o f  the  matter,  provide  overall  2.  - trends  B horizons  chromatographic  humus a n d  Table  because  i n LFH  the  in  to % o r g a n i c  related  as  measurements  consistent  indications  appears  sample  the  following  from  browns and  see  appears  that  the  mesic.  Klinka  t r e n d s were  sampling  were  or  only  carbon.  that  of  moisture.  three plots  related  similar  concluded  diagnostic  the  treated  fulvic  of  xeric  Lowe and  samples.  method  site  considered  are  and D2  of  9 shows  shows l i g h t e r  the  from  7 to  increases i n size  The  sample  either  chromatograms  existed.  The  site  data  Relationships  It  (Wl)  regimes.  than  Chemical  and  zone  figures  increases with increasing  from  of  of  might The  Pfeiffer's  Figure  7 A. C h r o m a t o g r a m  of x e r i c  site  sample.  Figure  7 B.  of mesic  site  sample.  1  Figure  Chromatogram  F i g u r e 7 C. C h r o m a t o g r a m o f h y g r i c s i t e s a m p l e . 7 C h r o m a t o g r a m s o f humus s a m p l e s f r o m three sites i n t h e UBC R e s e a r c h F o r e s t .  30  Figure  Figure  8.  8 A.  Bhf h o r i z o n ,  xeric  F i g u r e 8 C. B f h h o r i z o n , h y g r i c Chromatograms of Bhf h o r i z o n s f r o m i n t h e UBC R e s e a r c h F o r e s t .  31  site.  site. three  sites  Figure  9. (  C h r o m a t o g r a m s o f LFH s a m p l e s f r o m t h r e e s i t e s t h e UBC R e s e a r c h F o r e s t . LFH x e r i c upper l e f t , h y g r i c upper r i g h t , m e s i c  32  in centre.)  Table  2.  C h r o m a t o g r a p h i c v a r i a b l e s and a s s o c i a t e d c h e m i c a l f r o m t h r e e s i t e s i n t h e UBC R e s e a r c h Forest. ( chemical data from K l i n k a and Lowe,1978.)  Chromatographic variabl s ( u n i t s i n mm e x c e p t L 0 a n d S P ) Site xeric A  D2  D3  W2  W3  W4  L0  SP  46  73  16 .5 1 3 . 5 10  69  32  B  49  77  16 . 5 14.0 10  72  LFH  35  80  11 .0 2 2 . 5  7  65  me s i c A  47  78  13 . 5 1 5 . 5 10  68  37  B  48  77  15 . 0 14.5  9  68  41  LFH  43  80  13 .0 22 . 5 10  59  35  hygric A  75  85  21 .5  5.0  9.5  64  46  B  72  81  22 . 5  4.5  10  75  LFH  64  83  22 .0  9.5  9  77  33  Chemical  data  variables  PH  %C  %N  CN  %HA  %FA  3.8  38.4  1.07  36  23  23  3.6  52.6  1.33  40  25  25  4.6  15.1  .74  20  37  20  36 42  51 47  Table  3  eighteen  Table  shows  the r e s u l t s of the r e p e a t a b i l i t y study  sub-samples  3  from  the mesic  site  LFH  based  on  samples.  Means and standard deviations of chromatographic v a r i a b l e s of e i g h t e e n r e p l i c a t e chromatograms. ( u n i t s i n mm e x c e p t f o r LO a n d S P )  A l l Replicates(N=18) mean standard deviation  D2 44.9 2.2  D3 78.8 1.3  LO 54.1 1.8  SP 39.6 1.9  Wl 6.2 0.2  W2 W3 15.7 17.0 3.0 1.3  Sample A (N=9) mean standard deviation  45.8 2.0  78.-8 0.8  53.8 2.0  39.8 2.5  6.1 0.2  16.6 1.1  1 6 . 5 8.2 0.9 0.6  S a m p l e B (N=9) mean standard deviation  44.0 2.2  78.9 1.6  54.3 1.6  39.4 1.3  6.2 0.3  15.8 1.2  17.4 8.2 1.6 0.6  It site  i s clear  express  that  a very  the variables low degree  34  of  from  within  variability.  sample  and  W4 8.2 0.6  within  SAYWARD P R O V I N C I A L F O R E S T  STUDY  CORRELATIONS Tables  4-1,  4-2,  chromatographic are  significant  and  mineral)  and  Ah  mineral done to  weaken 1).  (Ah's)  was u s e d  there  i n exploratory  Those  separately.  are  - this  which  presented  points  that  35  forms  This  fall  i s why  for was  samples  sampled. In  difference  (i.e.,  the  are  visually  discussion.  by n u m b e r s w h i c h o n t h e same  table  place.  will 4-  endorganic  t a b l e s 4-2  i n results  showed  in  are frequently replaced  of sample  studies.  Differences  scattergrams  soil  a d i f f e r e n c e between  forms  This  4-2,  c o n s i s t e n t l y when o n e g r a m o f  f o r a l l samples  i s clearly  and e c t o r g a n i c  relationships  number  d i d not develop  found  i n mineral  f o r a l l humus  used  soil.  that  organic  i n table  were  f o r organic  substances  (both  only  grams o f sample  measured  variables  samples  organics  one gram  the extracted  lobes  presented  asterisks  Two  and o n l y  the r e l a t i o n s h i p s  forms  below.  i n t a b l e 4-1,  between  and s i t e  A l l humus  common c h a r a c t e r i s t i c s  However,  humus are  a t .05 a n d . 0 1 .  to increase  samples  and c h e m i c a l  i n t a b l e 4-3.  soil  particular, Ah  4-3 s h o w c o r r e l a t i o n s  variables  a r e shown  only  achieve  and  a n d 4-3  discussed significant Note  indicate  that the  Table  4-1 Significant correlations between chromatographic variables and s i t e a n d humus s a m p l e c h e m i c a l v a r i a b l e s of a l l samples from the Sayward F o r e s t .  D2  EXMG ( + ) * * , E X K ( - ) * ,  D3  HUMC(-)**, HUMN(-)*, P L S I ( - ) * ,  LO  PHH20(+)*, EXCA(+0*»  HUMC(-)**  SP  PHH20(+)**, T C ( - ) * * ,  CEC(-)**,  HUMN(-)**, C F 1 ( - ) * ,  Wl  PHH20(+)*», T C ( - ) * * , CB(-)**,  SUBZ(-)**,  CEC(-)**,  t  SUBZ(-)**,  HF0RM(+)*  ELEV(-)*  LIPIDA(-)**,  HUMC(-)**,  ELEV(-)*  EXK(-)**,  LIPIDA(-)**,  HYGR(+)**, TROPH(+)**,  E600(+)**  HFORM(+)**,  ELEV(-)*  W2  PHH20(-)*,  W3  TN(-)*,  TC(+)», C E C ( + ) * ,  EXMG(-)*, EXK(+)**,  E4/E6(+)* LIPIDA(+)*.  E600(-)», T R O P H ( - ) * , HFORM(-)*,  W4  SB(-)*,  S B ( - ) * * , HUMC(-)*, C F 1 ( - ) * * , E 4 0 0 ( + ) * * ,  E4/E6(-)** CN(-)**,  LIPIDA(-)*, CB(-)*,  PHH20(-)**, HUMN(+)**, SUBZ(+)**,  TC(+)**,  CEC(+)**.  CF1(+)**,  SB(+)*,  E400(-)*,  CWSI(-)**  LIPIDA(+)**,  E400(-)*,  HUMC(+)**,  E600(-)*,  E4/E6(+)«,  ELEV(+)*  * Significant ** Significant  36  at at  .05 .01  Table  D2  4-2  Significant correlations between chromatographic v a r i a b l e s a n d s i t e a n d humus s a m p l e c h e m i c a l variables of o r g a n i c s a m p l e s from t h e Sayward F o r e s t .  TC(-)*,  TN(+)*,  E400(+)**> D3  TC(-)**,  HFORM(+)**  EXCA( + ) * ,  CEC(-)*,  SUBZ(-)**,  LIPIDA(-)**,  TNA(+)*,  HWSI(+)*. C N ( - ) * * ,  P H H 2 0 ( + )-"- , T C ( - ) * ,  PHH20(+)**, T C ( - ) * * ,  HUMC(-)**, HUMN(-)*,  T P ( - ) * * , T M G ( - ) * * , TFE (-)""" ,  W3  TN(-)**,  ELEV(-)**  CF1(-)**,  EXK(-)**, E400(+)**,  TCA(-)**,  TMN(-)*"*, S U B Z ( + ) * ,  SB(+)*>  CEC(+)*.  TMG(-)**,TK(-)»,  HUMN(-)*,  E400(-)**,  HFORM(-)**  LIPIDA(+)**, TNA(-)**,  HUMC(+)**» TFE(-)**,  ELEV(+)* Significant ** Significant  37  CN(-)**  TAL(-)*  HYGR( - ) * > T R O P H ( - ) * ,  TC(+)**,  TAL(+)**,  TROPH( + ) * , H F O R M ( + ) * * ,  EXK(+)**, LIPIDA(+)*.  T M G ( + ) * * , T F E ( + )»,  CF1( + ' ) * ,  TMG(+)**,  TCA(+)**, TMG(+)**, TNA(+)**, T F E ( + ) * * ,  W2  PHH20(-)**,  SUBZ(-)*,  TP(+)*», E X C A ( + ) * * . EXMG(+)*,  T M N ( + ) * , S U B Z ( - ) * * . HYGR( + ) * * ,  W4  HUMC(-)**,  ELEV(-)*  L I P I D A ( - ) * * , C B ( - ) * , S B ( - ) * * , HUMN( + ) * * , E600(+)**.  CF1(-)*, ELEV(-)**  TFE(+)*,  T K ( + ) * , T N A ( + ) * * , TFE ( +) ** , S U B Z ( - ) * , Wl  CF1(-)*,  HUMC(-)**, HUMN(-)*,  ,TCA(+)**. TMG(+)*,  FDSI(+)*, SP  CEC(-)**,  SB(-)**,  TMG(+)», T N A ( + ) * * , T F E ( + ) * * ,  PHH20(+)*. E600(+)*  LIPIDA(-)**,  HYGR(+)*, TROPH(+)*,  PHH20(+)*, T C ( - ) * * , TCA(+)**.  LO  EXK(-)**,  at at  .05 .01  Table  4-3 Significant correlations between chromatographic variables and s i t e a n d humus s a m p l e c h e m i c a l variables of Ah s a m p l e s f r o m t h e S a y w a r d F o r e s t .  D2  EXMG( + ) * * , F D S I ( - ) * ,  D3  .CEC(-)*,  S B ( - ) * , HUMC(-)*, HUMN(-)**, C F 1 ( - ) * ,  PYAL(-)*,  LO  CWSI( + ) *  FDSI(-)*  CEC(-)**.  EXMG( + - ) * ,  PYFE(-)**,  CB(-)*,  S B ( - ) * , HUMC(-)*, HUMN(-)*,  PYAL(-)*  Wl  TC( + ) * * , CEC( + ) * * ,  W2  CEC(-)*,  HUMC( + ) * * ,  W3  CWSI(-)*,  W4  M I N N ( + )^»-, C W S I ( - ) * ,  EXMG(+)*»,  ;  PYFE(-)**  HUMN(+ ) * * , C F 1 ( + ) *  CWSI(+)»*  ELEV(+)» CN(-)**  **  38  * Significant Significant  a t .05 a t .01  ALL  SAMPLES  The  inn.er  largest  number  relationships 13).  These  connection a  in  with  variables. PHH20,  EXK,  Mors  1 5 ) TROPH  interesting  and  As  Wl  expected humus. and  as Wl  decreases  wetter  E400,  PHH20  trends  correlations  PHH20 with  significant  decreases LIPIDA,  14 i s  i n W l a s humus  between  as s i t e s  become  increases. to  Wl  17) a r e  a n d CN  and also  cooler  increases.  This  indicate  positively  with  a  i s  also  immature cooler  correlated  moisture  (HYGR),  with  CN,  and  ,1976).  a n d HUMC a r e p r e s e n t e d  increases,  results  Wl i s a l s o  to  have  . Figure  (figure  ) PHH20 d e c r e a s e s  ( K l i n k a a n d Lowe  exhibited  Trends  carbon)  to  are  i n PHH20 a n d d e c r e a s e s  are considered  shows e x p e c t e d  W4 a l s o  Increases  the.  10  t o w a r d s M o r humus f o r m s a n d t o w a r d s  conditions.  and  humus f o r m  acids  shown  an i n c r e a s e  1 6 ) a n d SUBZ  CFI ( f u l v i c  fulvic  been  Generally,  CDFa>CWHa>CWHb>MHb  decreases,  have  expected.  (figure  expected.  EXK a n d CN ( f i g u r e s  showing  are  with  interest  ( K l i n k a , e t a l . , 1981)  to Mulls.  LIPIDA  HYGR,(figure  (subzones  taxa  correlations  particular  LIPIDA,  o f W l a n d HFORM from  Of  variables  t o humus f o r m  change  CN,  of  chemical  scattergram  forms  z o n e Wl shows s i g n i f i c a n t  correlations.  i n figures and  HUMC  19 a n d 2 0 . A s t h i s increases.  C F I and E400 a r e a l s o  o f Wl r e l a t i o n s h i p s . C o o l e r  z o n e s i n d i c a t i n g l o w pH a n d E 4 0 0 ,  39  wetter high  Scattergrams of  Additional  consistent  subzones  LIPIDA,  zone  show w i d e r  TC a n d C F I .  with W4  Wl (mm) 20.0  16.5  13.0  9.5 * *  6.0  *  *  3 * * * 2  3 3 3 * 2 * * 2  * * +« .  3 * 2 2 *  2  *  * * * * 2 *  2 * 2 *  2  2.5 3-2  4.0  4.9  3.6  Figure  PHH20 5.4  4.5  1 0 . S c a t t e r g r a m s h o w i n g r e l a t i o n s h i p b e t w e e n Wl a n d PHH20 u s i n g a l l s a m p l e s . N u m b e r s i n d i c a t e t h e n u m b e r o f s a m p l e p o i n t s t h a t f a l l i n t h e same p l a c e . W1  (mm)  ?n,n  +•  *  16.5  13.0  *  9.5  +  *  *  *  *  *  *  * * ..***  *  * *  *  *  2 +  * **** * * * 3 * * * ** **  * *  *  * 6.0  *  i  *  *  * *  2  * *  *  *  * * * ** * * 2 *  *  * *  * * * * *  *2** * * * *  *  *  2.5 . 18  2.7 1.4  Figure  5.2 3.9  11. S c a t t e r g r a m showing r e l a t i o n s h i p LIPIDA using a l l samples.  40  LIPIDA(%) 6.4  between  Wl a n d  W1 (mm! 20.0  +  16.5  13.0  +*  *  *  * * +  9.5  * *  *  i  ***  +  *  *  ** ** *  *  * * +  6.0  *  *  *  2 * * *  2 * 2  * ** * *  +  *  * 2 *  »  *  ...  *  2  +  *  **  *  * 3  *  * * * ** * *  * 2 *  *  *  * *  * *  *  *  ****  2*  *  *  *  *  *2  2 *  2.5 .18  1.8  .3.4  1.0  Figure  EXK (%) 4.3  2.6  12. S c a t t e r g r a m s h o w i n g r e l a t i o n s h i p EXK u s i n g a l l s a m p l e s . Wl (mm' 20.0  +  16.5  •  13.0  +  9.5  +  and  *  *  *  *  *  *  *  *  * *  *  * *  *  *  *  4 *  * *4* * 2 3  +  * *  2 2*  * *  +  ***  * * * * *  6.0  Wl  *  •  +  between  *2 *2 * *3 2*  * *  *  * *  *  * * ** 2*  * ** * *  * * *  *  *  2.5 6.4  38.3 22.3  Figure  70.2 54.2  13. S c a t t e r g r a m showing r e - l a t i o n s h i p CN u s i n g a l l s a m p l e s .  Al  CN 86.1  between  Wl  and  Wl  (mm)  20.0  16.5  13.0  * * * *  9.5  *  *  7 *  2  6.0  2.5  Figure  Mors 14. S c a t t e r g r a m HFORM u s i n g  Moders Mulls showing r e l a t i o n s h i p between Wl and a l l samples.  W 1 (mm) 20.0  16.5  13.0  9.5  6.C  2.5 1  3 2  Figure  6 5  HYGR 8  Xeric Mesic Hygric 15. S c a t t e r g r a m showing r e l a t i o n s h i p between Wl and HYGR u s i n g a l l s a m p l e s .  42  W1 (mn>) 20.0  16.5  13.0  • *  9.5  +  3  * 4 4 3 2  + 3  +*  +  2 2 2  *  *  6.0  •  * 4 *  6 7 6  * *  2 7 3 2 4 *  2 2 *  2  *  2 *  2.5  Figure  Oligotrophia Mesotrophic Eutrophic 16. S c a t t e r g r a m showing r e l a t i o n s h i p between Wl and TROPH u s i n g a l l s a m p l e s .  20.0  16.5  13.0  9.5  2 +2 * +3  6.0  + 2 +  3 *  2  *  *  6 9 8 2 3 2 7 4  * * * 2 4 2 * 6  2.5  Figure  CDFb CWHa CWHb 17. S c a t t e r g r a m showing r e l a t i o n s h i p SUBZ u s i n g a l l s a m p l e s .  43  MHb between Wl and  20.0  16.5  13.0 +  * *  *2 9.5  * * * +  6.0  **  2  2 **  * * 2 * * * * * 3 * * ** * *22 * * # ** * * *2* * * * * 2* * * * * 2* * * 2 * * * * * ***  3  *  +  2  +  2  2.5 1.0  Figure  5.0  3.0  9.0  7.0  18. S c a t t e r g r a m s h o w i n g r e l a t i o n s h i p CFI u s i n g a l l s a m p l e s .  W4 (mm) 14.0  *  12.2  Wl and  *  *  *  3 2  2 3 +  *  *  + 8.6  between  + +  10.4  CF1(%) 11.0  2  *  * *  2  +*  2  *  * 2 *  *  * * * *  *  * 2  *  2  3  *  * * * 2 *  2  2 *  *  *  2  2  2  2 3  *  *  +  6.8  +  *  *  4.  *  *  *  *  *  2  5.0 3.2  Figure  3.6  19. S c a t t e r g r a m PHH20 u s i n g  4.0'  4.5  4.9  showing r e l a t i o n s h i p a l l samples.  44  PHH20 5.4  between  W4 and  W4 (mir.l 14.0  12.2  •  2  * 10.4  +  *  +  * *  +  **  ** * * 3  6.8  2 **2*  * * *  * 2 * *  *  +  *  *  +* 1.5  10.8 6.2  ure  * **  * *  7* *  **  5.0  *  **  * * *  •* * *  *  * * * **  *2  **  *2  *  * *22  ** 8.6  *  20. Scattergram HUMC u s i n g  20.0 15.4  showing r e l a t i o n s h i p a l l samples.  45  HUMC <*) 24.7  between  WA and  SP TC,  (spikes)  also  CEC, L I P I D A ,  the  and C F I . These  r e l a t i o n s h i p between  LO  i s  increases  with  The  EXCA.  increases  second  forms,  EXK.  K l i n k a e_t_ a_l_.  W3 from  also  Mors  (site  positively  M o r humus  correlation ORGANIC  forms  varies  of with  a l l samples,  (moisture  PHH20,  be e x p e c t e d  i t also  i s reasonable  (i.e.  given  moving  from  with  having  a PH  humus  1981).  these  from  trends  with  Mor t o M u l l  with  LIPIDA and  i n t h e UBC R e s e a r c h  l o w EXMG a n d h i g h  which  as  Mor t o M u l l  EXMG a n d n e g a t i v e l y  Of i n t e r e s t  indicates  because  (D2) v a r i e s p o s i t i v e l y  significantly  humus  LIPIDA  form,  and EXK.  increasing  i s the r e l a t i o n s h i p with  CWSI  shows  significant  negative  samples  show s i m i l a r  patterns  W3.  of the organic  though  ( table  regime)  there  4-2).  a n d humus  ( f i g u r e s 22 t o 2 6 ) . i sa  with  SAMPLES  correlations  and  This  Red C e d a r )  Relationships  CN  would  SP h o w e v e r  (1981) noted  to Mulls.  index  results  ( K l i n k a e_t a _ l . ,  diameter  humus  Forest,  with  a n d HUMC d e c r e a s e s  f o r m s ) EXCA  correlations  SP a n d HUMC s h o w n i n f i g u r e 2 1 .  consistent  relationship  as  show c o n s i s t e n t  reflection  area greater  number o f s i g n i f i c a n t  Wl v a r i e s p o s i t i v e l y form,  Again,  of expected  46  with  and n e g a t i v e l y  t h e way Wl c h a n g e s chemical  and s i t e  P H H 2 0 , HYGR  with  L I P I D A and  i s  consistent  properties.  SP 54  48 * 42  +  * *****  + 36  *  +  *  ** * *  + * 3  0  +  *  *  * **  *  * *  * * * * * * * * * * *** * * * * * * * * 3* * * * * * * * * ** * * ** * * * * " * * * * * ** ** * 2  2  *  **  * *  *  *  24 1.5  F i g u r e  21.  6.2  10.8  20.0  15.4  Scattergram showing r e l a t i o n s h i p HUMC u s i n g a l l samples.  HUMC (%) 24.7  between  SP  and  W l (ram)20.0  16.5  13.0  9.5 3  6.0  +  * *  *  +* *  * 2 2 * *  3  3 * 2 * * 2 2  3  3 * * 2 * 2  2 * * * *  * * 2 *  2.5 3.2  F i g u r e  22.  3.6  4.C  4.5  4.9  Scattergram showing r e l a t i o n s h i p PHH20 u s i n g organic samples.  47  PHH20 5.4  between  Wl  and  W1 (mm) 20.0  16.5  13.0  9.5  6.0  2.5 H?GR  8  Xeric 23 . S c a t t e r g r a m HYGR u s i n g  Figure  Mesic showing organic  Hygric relationship samples.  between Wl and  ] (mm) 20.0  16.5  13.0  9.5 3  4 5 3  6.0  *  5 7  9 * 9  2.5  Figure  Mors 24. S c a t t e r g r a m HFORM u s i n g  Moders showing r e l a t i o n s h i p o r g a n i c samples.  48  Mulls between Wl and  Wl ( M l ) 20.0  16.5  13.0  * 9.5  +  * +  *  *  * *  *  *  *  2 +  *  * **** *  *  *  * 6.0  *  *  *  * * 3  *  *  *  ** ** * *  * *  *  2  * *  * *  * * ** *  *  * * * *  +  <  ** j *  * *  2 *  *  ** * *  * *  2.5 . 18  2.7  5.2  1.4  F i g u r e  25.  LIPIDA(%) 6.4  3.9  Scattergram showing r e l a t i o n s h i p LIPIDA u s i n g o r g a n i c samples.  Wl (mm) 20.0  +  between  Wl  and  Wl  and  *  16.5  13.0  *  9.5 *  * * 22* **32*  * 6.0  **  +  * *  4.  ***  *  *  2*  *  2* 2 *** 3 * 2 3*2  *  *  ***  *  * * * *  *  2  * * *  * *  *  *  *  *  2.5 7  39 23  F i g u r e  26.  Scattergram CN  u s i n g  70 54  showing  o r g a n i c  A9  r e l a t i o n s h i p samples.  CN 86  between  W4  and  figures higher  LO  27  i t srelationship  and  28.  pH v a l u e s  and lower  decreases  increases  Lower  t o PHH20 a n d HUMC  values  both  outer  shown  i n  width  indicate  i n CN . ( f i g u r e  29) and  HUMC a n d T C .  i n number w i t h  with  of t h i s  are  increases  TCA ( f i g u r e  30),  FDSI  (figure  31) and  HWSI  (figure 32).  AH S A M P L E S When t h e Ah s a m p l e s a r e l o o k e d significant  correlations  relatively  small  chromatographic  at separately,  i s much  sample  size  variables  reduced.  Because  (N=15),  and c h e m i c a l  t h e number o f of the  relationships  and s i t e  of  variables  are  limited. There mineral  a r e some d i f f e r e n t  soil  shows d i f f e r e n t  Wl.  I t shows o p p o s i t e  33  a n d 3 4 . To i m p r o v e  amphimorphic  humus  could  n o t be u s e d  part  o f a humus  the  varies  negatively be  with  expected  with  FDSI  with  trends  with  These  positively  (figure  (figure 39).  50  i n the inner  additional  s e tas they  their  36),  Ah s a m p l e s  to t h e graph.  additional  with  HUMC ( f i g u r e FDSI  size,  data  and s t r e n g t h e n  Humus  i n zone  T C , a n d CEC a s s h o w n i n f i g u r e s  were added  f o r t h e main  expressed.  characteristics  t h e sample  forms  form.  relationships  W4  relationships  MINN  five  These  samples  represented  points  from  conform  only with  significance.  (figure  CEC ( f i g u r e  3 5 ) . D3 37),  3 8 ) . D2 a n d W2 a l s o  varies  and as would  vary  negatively  W4 (mm) 14.0  +  +  *  *  12.2 *  *  3 2  2 3 10.4  * *  + *  *  * *  2  * * 2  2  * * * *  *  8.6 2  * * * 2 *  2  *  *  *  2  *  *  2 2 * 2  6.8  *  * *  *  5.0 3.2  4.0  4.9  3.6  Figure  27. S c a t t e r g r a m PHH20 u s i n g  W4 (mm) 14.0  PHH20 5.4  4.5  showing organic  relationship samples.  between  W4 a n d  +  *  12.2  *  2  * 10.4  k  *  *  *22  *  * *  * * * * * ** * *  *  * *«  * * *  * 3  *  *  *  *  8.6 *  *  *  * ****  2  2 *  *  *  * 2 * * *  6.8  * **  *  *  *  *  *  5.0 3. 5  12.0 7.8  Figure  28. S c a t t e r g r a m HUMC u s i n g  20.4 16.2  showing organic  51  relationship samples.  HUMC 24.7  (*>  between  W4 a n d  LO 78  69  +*  **  2  *  *  *  2  *  * * * * * * *  *  +  *  3*2 *  *2 «  * *  * 2* * * *  *  + 52  *  *  + 61  **  *  *  * *  +  * *  *  ***  ***  *  *  * *  * *  *  *  *  *  *  44  36 7  39  70  23  Figure  54  29. S c a t t e r g r a m s h o w i n g r e l a t i o n s h i p CN u s i n g o r g a n i c s a m p l e s .  CN 86  between  LO  and  LO 78  69  +  *  +  * *  61  *  +  2 *  **  * * * 2 ** 22 *  52  *  *  **  +  *  ** **  *  ** * *  * 2  *  *  *  * *  *  * * ****  **  * *  + * +*  ***  *  * *  2  *  44  36 .14  1.0 .57  Figure  1.8 1.4  30. S c a t t e r g r a m s h o w i n g r e l a t i o n s h i p TCA u s i n g o r g a n i c s a m p l e s .  52  TCA 2.3  (»)  between  LO  and  LO 78  72  *  *  *  66  * *  * *  **  *  **  60  54  *  * *  49 12.C  32.8  53.6  22.4  Figure  31. S c a t t e r g r a m FDSI u s i n g  43.2  showing r e l a t i o n s h i p o r g a n i c samples.  FDSI (m/lOOyr) 64.0  between LO and  LO 78  69  * *  * * * *  61  * * *  *  2  *  *  2  52  44  36 17.0  29.8 23.4  Figure  32. S c a t t e r g r a m HWSI u s i n g  42. C 36.2  showing r e l a t i o n s h i p o r g a n i c samples.  53  HWSI 49.0  (m/100 yr)  between LO and  W1 (mm) 14.5  13.1  11.7  10.3  +  o 8.9  +  o +  7.5  *  O 11.2  5.8  o o Figure  8  -  5  16.5 ,3  -  T C (%)  £  3 3 . S c a t t e r g r a m showing r e l a t i o n s h i p TC u s i n g Ah s a m p l e s .  between  Wl and  Wl (mm) 14.5  13.1  11.7  10.3  o. 8.9  +  *  -  7.5  C Figure  0  * O*  26.3  45.4 3  5  -  64.5 55.0  9  3 4 . S c a t t e r g r a m showing r e l a t i o n s h i p CEC u s i n g Ah s a m p l e s .  54  CEC 74.1  between Wl and  W4 (mm) 11.0  +  9.8  +  +  * 8.6  +  o +  • C  7.4  +  6.2  +  o o  5.C  +* 70  17  43  F i g u r e  3 5 . O  Scattergram MINN u s i n g  D3 (mm) S2.0  88.2  84.4  80.6  +  124 97  showing r e l a t i o n s h i p Ah samples.  MINN (opm) 151  between  W4 a n d  *  +  o Q  *  +  o O  76.8  73.0  * 1 .5  3. 5 2.5  Figure  3 6 .  S c a t t e r g r a m HUMC u s i n g  5.52 4.5  showing r e l a t i o n s h i p Ah samples.  55  HUMC 6.5  (%)  between  D3 a n d  o D3  (ml  92.0  8 8 . :  +*  +  o 84.4  +  *  O  O  +  +  80.6  O  *  *  76.8  73.0 26.3  45.4 35.9  Figure  6 4 . ? 55.0  37. S c a t t e r g r a m s h o w i n g r e l a t i o n s h i p CEC u s i n g Ah s a m p l e s . Q D3  CEC 7 4 . '  between D3 and  (ram)  92.0  + *  88.S  +  65.6  +  82.4  •  o 79.2  * 0  +  76.0  2  Figure  4  - °  , „ 30.2  38. S c a t t e r g r a m FDSI u s i n g  36.4  48.8 42.6  showing r e l a t i o n s h i p Ah s a m p l e s .  56  F D S I < /100 55.0 ' m  yr)  between D3 and  D 2 (mm) 68.0  63.2  58.4  53.6  +  48.8  44.0 .  2  4  - °  „„ , 30.2  3  6 . 4  48.8  ^ Figure  39. S c a t t e r g r a m FDSI u s i n g  F D S I (m/100 55.0  42.6  showing r e l a t i o n s h i p Ah s a m p l e s .  57  yr)  o between D2 and  DISCRIMINANT FUNCTION  Jack-knifed et  a_l.,1981)  stepwise was  chromatographic specified  ANALYSIS  used  discriminant to  variables  test to  function  the  analysis  ability  separate  of  humus  (Dixon measured  samples  into  correctly classified  using  groups.  HUMUS FORM Humus  form  %  correct  Mor  Mo d e r  Mor  75.4  Mo d e r  43.3  9  Mull  56.3  1  Approximately only  not  43  separation  i s i n t e r e s t i n g that  p a r t i c u l a r l y good,  discriminant  function  humus  taxa  form  classified approach  13  correctly.  could  be u s e d  were  9  was w i t h  the t r a n s i t i o n a l Moders.  the chromotographic  analysis  slightly  using  only  7 0% ( M o r 7 9 , This  8  6  was o n l y  where  5  9  2/3 o f t h e s a m p l e s  W l . The p o o r e s t  It  .  Mull  indicates  approach  poorer chemical  Moder  44,  that  the  than  stepwise  variables Mull  70)  and were  chromatographic  diagnostically i n classifying  58  a  though  humus  forms.  DOMINANT T R E E When fir  or  samples western  were  stratified  hemlock  according  were  dominant  Fd  Hw  to whether  i n the  plot  Douglas-  the  results  wer e : DTREE  %CORRRECT  Fd  75.6  ' 34  11  Hw  81.8  4  18  Approximately using a  only  4/5  Wl.  large  This  effect  of the samples indicates that  on  the nature  were  correctly  the major  tree  o f t h e humus  as  classified  species  exerts  reflected  by  chromatography.  Again, chemical between using  this  result  variables. Douglas  chemical  dominant  tree  data  source  litter.  ability most  species quite  This  largely  besides  were  with  a 90%  correct  were  Douglas-fir  relationship  and f o l i a g e  n o t enough and w e s t e r n  Considering  encouraging.  59  when  this  using  classification tested  t o humus was because.  plots  with  hemlock  hemlock mixture,  the  main  other  to  humus  the  forested  provides  to d i s c r i m i n a t e other  D o u g l a s - f i r or western  present.  than  Of a l l r e l a t i o n s h i p s  c a n be e x p e c t e d  detrital  There  of chromatography  plots  poorer  showed  the strongest  species.  are  species  These  slightly  - f i r and hemlock.  ecosystems of  was o n l y  tree  test  the  types.  dominant,  In  other  the results are  NON-MEASURED O B S E R V A T I O N S ON CHROMATOGRAMS  The related  above features  means  to  Colour,  The  within  practical,  humus f o r m s  Bong.) middle  the  various  a  significant same  sample.  n o t be q u a n t i f i e d  of  zones  i n d i c a t o r s of the nature  chips and  was d i f f i c u l t  the  rejected  use  of  as being  because  of t h e  of  incompatible  on  with  appears  site  browner  i s  with  manner.  instruments with  the  approach.  browns a s s o c i a t e d  browns a s s o c i a t e d  humus.  of variability  elaborate  p o t e n t i a l of the chromatographic  dominant  dominance  could  of  provided  n o t be q u a n t i f i e d i n a s a t i s f a c t o r y  Douglas-fir  zone  density  important  and redder  as  the  that  number  below.  was  with  Mull  Mor f o r m s .  associated  colours.  with  redder  Alder(Alnus  related to greenish  colours  rubra i n the  ( D 2 ) e g . f i g u r e 42 A.  Saturated darker  from  40 a n d 41 show d a r k e r  Hemlock colours,  data  zone  simple  Figures  chemical  obtained  a  This  expressed  colour  (densitometers)  chromatogram.  chromatogram  could  each  by m e a s u r i n g  i f the  and  are  of M u n s e l l  obtained  the developed  briefly  features  were  and i r r e g u l a r i t i e s  colours  chromatogram  Use  to  pattern,  discussed  These  of  test  relationships  are  results  colours  organic  samples  throughout  (Oh)  and deep  60  characteristically  irregular  lobes  (figure  showed 42  B  to  D) .  There indicates are  are are  associated  a  important. with  colours,  dark  associated  with  Balance, however  number  strength  of  Clean,  "healthy" grey  inner  "problem" and  features  well  expressed  productive zones,  conditions  clarity  s u b j e c t i v e , are  other  often  61  are  such  as  that  appropriate.  experience  zonation  sites. and  terms  which  and  forms  Undifferentiated  irregularities high are  are  watertables.  qualitative,  and  Figure  4 1 . C h r o m a t o g r a m s o f Mor humus f o r m showing redder browns.  62  samples  Figure  42 C Figure  42. Example chromatograms characteristics.  63  F i g u r e 42 D s h o w i n g c o l o u r and  form  TWO  SELECTED  PLOTS  Although  separate  a number  LFH  of chromatograms  horizons were  plots  a r e s h o w n i n f i g u r e s 43  humus  f o r m s , c l i m a t e s , and  Figure  43  predominance narrow with  of f a u n a l  brown active  Compare  this  predominates) Note  humus  Mull  i n Wl  Compare show  and  dominant  very  thin  activity  zone  44  (W4).  outer  (Wl)  change  f r o m Fq  similar  tree  two  zone  Fa  horizon  present.  to Bhf.  from h o r i z o n  43  Note  (  a  the  i s associated  fungal  sites. activity  dominated  site.  A).  i n f i g u r e 43. The  have  dominated  of hemlock  (figure  Two  different  Fa h o r i z o n s  Douglas-fir  f r o m F a t o Ah  t o Hr  species  analyzed,  samples.  characteristic  an F q  in  H  , representing  This  with  zone  of F and  ( K l i n k a e_t _ a l _ . , 1 9 8 1 ) .  B,  reddish  not c h e m i c a l l y  Fa h o r i z o n .  humus f o r m s a n d  the l a r g e  i s very  prepared  t o f i g u r e 44  transition  increase  They  outer  larger inner  Note slow  A shows a  were  overall  to horizon,  Note  "picture"  except note  the of the  i n Bhf.  Ah  chromatogram  characteristic  i n f i g u r e 43  extremes of inner  64  and  LFH  z o n e , D2  in figure and  W3.  44.  Figure  43 A  Figure  43.  Figure  43  B  C h r o m a t o g r a m s o f two h o r i z o n s s a m p l e d f r o m a Douglas f i r s t a n d . F h o r i z o n a n d Ah h o r i z o n f r o m s i t e on Quadra Island. V e r m i m u l l . F D S I 36 m . / l O O y r .  65  Figure Figure  44  C Hr  44.  horizon  Chromatograms hemlock stand.  Figure  44 D B h f  horizon  of horizons sampled from a H u m i m o r . HWSI 4 0 m . / 1 0 0 y r .  western  66  SYNTHESIS  It  OF  RESULTS  i s apparent  humus  samples  site  properties.  isolation, chemical  from  that  a number o f f e a t u r e s  the Sayward None  of  n o r i s any c o n s i d e r e d analysis.  Just  how  t o humus  chemistry  clearly  necessary  use  made o f t h e m e t h o d .  before  are related to chemical  the r e l a t i o n s h i p s  related  i s  Forest  of chromatograms of  can  t o be a r e p l a c e m e n t  the chromatogram  h a s n o t been  other  be  than  This  used  corroberative  i s discussed  effect"  though or  in  in  f o r precise  i s "cause  explored,  and  i t i s  diagnostic summary  and  conclusions.  It no  i s also  single  apparent  that  humus  processes  factor or single c l a s s i f i c a t i o n  are a continuum  will  provide  a  and neat  separation.  In  spite  of the above,  follows:  67  t h e r e s u l t s c a n be  summarized  as  Table  5  Summary of relationships between chromatographic v a r i a b l e s a n d s i t e a n d humus s a m p l e c h e m i c a l v a r i a b l e s from Sayward F o r e s t study, f o r o r g a n i c samples. "NETWORK OF  INFERENCES"  (As c h r o m a t o g r a p h i c v a r i a b l e s c h a n g e a s shown by a r r o w s i n c e n t e r column, features on t h e l e f t o r r i g h t c a n be inferred. For e x a m p l e , a s m a l l e r Wl i n d i c a t e s M o r humus f o r m s w i t h h i g h e r T C , l o w e r p H , h i g h e r C E C , h i g h e r CN a n d L I P I D A , c o o l e r c o n d i t i o n s , poorer p r o d u c t i v i t y . )  Humus  form  Mor-less  High  ^ wi 4  Mull  active  Low p H , H i g h Chemistry  INFERENCE  CHANGE  INFERENCE  higher  TC,  EXK,high  - more a c t i v e pH, l o w T C . l o w  lowCEC,  CEC  low  C/n,  EXK,  lower  lipid high  HUMC C F 1  high  EXMg, E x C a ,  higher  high  high Climate  ^ LO  C/N-, l o w EXMG  4  TMN,TCA  dryer ,  wetter  warmer  ^ W2 Elevation Tree  lower  higher  species  Douglas-fir  Hemlock ^  Hygrotope  dryer  Trophotope  poorer  Colour  richer W4^ b rown er  redder  Productivity  W3^ wetter  ^  better  poorer  68  TN,  T N a , T F e , T P , HUMN,  lipid  cooler,  higher  It  is  variables, accepted pH,  encouraging the  change  results  support  chromatographic question. gained  Among  CEC  increases  as  Douglas-fir  follow  CEC  as  would  with  FDSI.  Sample  from  10  20),  humus  one  to  forms)  of  of  expect. size  D2  the  and  of  "fits"  humus  form,  productivity.  the  These  of  method  is  information  change  shows a  in  the another  could  be  and  also  that  shows a  results  significantly  D3,  in  relationships.  Wl  is  reversal  Productivity  i s much l o w e r  however  matter,  consistency  is a  also  CEC  variables  predominates,.  decreases.  trends  are  soil  chromatographic  testing.  there  HUMC. W2  W2  cations,  quantitative  more  samples  and  organic  precision  little  portion  TC , CEC  site  diagnostic The  eight  and  climate,  the  Ah  a l l  chemical  considerably  the  for  total  method.  mineral  increased  of and  Certainly,  without  When t h e  of  relationships  some e x c h a n g e a b l e  that  of  trends  i s ,  increase  different  that  Ah  from  of with  relationship  relationships  indicate  with  relationships  reversed  Ah  larger  (varying  (endorganic  organic  humus  forms.  MANAGEMENT A P P L I C A T I O N S  A  question  management certain a  is  which what  should  site  productivity  , or need  a to  less be  asked  changes w i l l  management a c t i v i t y ?  more a c t i v e  be  It  active  be  i s possible state.  considered.  69  more  often  in  forest  brought  about  by  a  to  processes  to  shift  Long term  effects  on  site  The  chromatographic  indicating  directions  interpretations  One  goal  requires balanced of  about  is  holding between  the o l d .  a balanced  which  reduces  available  features  explores need  productivity  of  i n a slightly  the  system  organic  agricultural  i s more c o n s e r v a t i v e  matter  through  and s u p p l i e s  inorganic  yield  /  species  harvesting,  which  humus  practises.  Figure  old  hemlock  growth  Mor  shows  than  readily  Clearly  many  (1982) e x p l o r e s for  on s i t e  some  Douglas-fir Feller  ecology.  planned  or  and  (1982)  There  i sa  inadvertent  q u a n t i t i e s o f woody m a t e r i a l clear-cutting,  one  on a  slash burning  and  selection.  examples  monitoring  stage,  nutrients i n a  strategies  This  utilization  of energy  Silen  the e f f e c t s of such  site.  management  fertilizing.  problems.  as l e a v i n g large  tree  in  "adolescent"  o f new humus a n d o x i d a t i o n  maximum  such  whole  a  q u a l i t a t i ve  the system  understand  The  with  providing  the e f f e c t s of slash burning  practises  tree  and  t h e u s e o f f e r t i l i z e r s a n d weed c o n t r o l .  to  site,  change  p r a c t i s e s pose  of  questions  useful  t o enhance  organic  silvicultural  considered  humus c o n d i t i o n s .  inputs  form"  i s  of  Once a g a i n ,  that  approach  felled  falling.  An  changes  with  the  potential for  different  45 A s h o w s a c h r o m a t o g r a m  management  of LFH sample  and b a l s a m ( A b i e s a m a b i l i s ( D o u g l . ) F o r b . )  humus  adjacent  f o l l o w demonstrate  form.  Figure  and bucked  increase  i n Wl,  70  site  45 B  i s  only  four  decrease  from  an  an  stand,  immediately  t o s i x months  i n W4  from  after  and a r e d u c t i o n  in  colour  intensity  decreases a Moder  in total  humus  Figure Compare  indicate  45  "Douglas-fir"  C  Lobes  and S p i k e s .  Figure  45 C i s a  in  form.  reduction follow  D2,  classic  this  i n W4  total The  pale  and  stand  with  inferred  a shift  towards  note  the  smaller  W4,  characteristic zone i n  Figure  45 D i s a n  was  lightly  burned.  and  a shift  to a lighter  and a s l i g h t  colours  and poor  of compounds.  as i t recovers.  Slight  shift  ( t a b l e 5 ). immediately  increases  in  brown i n d i c a t e a towards  definition  I t would  figure  and i n c r e a s e s i n  c h a n g e s f i t t h e summary  Mormoder.  71  - Douglas-fir  r e d of t h e o u t e r  ,slightly  carbon,  in diversity site  D3  than  A l lthese  c l e a r c u t which  and d e c r e a s e s  humus  i n short  natural  45 A a b o v e  brown r a t h e r  l a r g e r DI,  reduction  cycling  ratio,  shows a n o t h e r  figure  45 A,  Wl  a n d CN  active  form.  with  adjacent  carbon  more  a  Mull  indicate  be i n t e r e s t i n g  a to  f  Figure Figure  45 C D o u g l a s - f i r s t a n d humus s a m p l e 45 C h r o m a t o g r a m s o f humus and t r e a t e d s i t e s .  72  Figure  45 D A d j a c e n t a r e a C u t and l i g h t burn (LFH) sampled from c o n t r o l  Figure  46 A , B , a n d  were  intensively  Min.  of F o r e s t s ) .  stands of  C are chromatograms  sampled  on s i m i l a r  They parent  f o r a volume  accurate  substances. chemical  Table  data  6  stands  (Research  materials.  a r e of i n t e r e s t  (25 composited  data  shows  They  f o r the three  from  second  growth because  s a m p l e s o f humus  and c h e m i c a l  variables  which  section,  unmanaged  productivity  Table  study  three  are a l l adjacent  the i n t e n s i v e n e s s of the study  (LFH)),  from  analysis  o f humic  chromatograms  and  samples.  6. C h r o m a t o g r a p h i c a n d c h e m i c a l v a r i a b l e s o f humus s a m p l e s f r o m >80% D o u g l a s - f i r , m i x e d , a n d >80% western hemlock stands.  var i a b l e s Stand Chromatographic ( u n i t s i n mm e x c e p t f o r LO a n d S P ) D2 L o S p Wl W2 D3 W3 W4  Chemi ca1 v a r i a b l e s L i p i d%  HUMC%  C f 1%  CH/CF  Fd  58  80  67  37  9  20  11  9.5  3. 14  5.98  3. 79  1 . 58  F&H  54  78  61  38  7  20  12  10.5  4.42  8.37  4. 14  2.00  Hw  58  78  52  35  8  21  10  13.0  3. 64  7.39  4. 19  1 . 76  (chemical  from Min . of  data  Research  Figure fir  intermediate.  with  The h i g h e r  the  lowest  Wl.  Two  productivity  The m i x e d  colours of  stand  ( figure  Douglas46 B )  i s  t h e d i f f e r e n c e s i n l o b e s , s p i k e s a n d W4 a r e  correlations lipid  .Vancouver  Section)  respectively. Again,  2).  poorer  unpub . d a t a  46 A a n d C show c h a r a c t e r i s t i c  and hemlock  consistent  Forests ,  content  from  of the mixed  variables,  f o r the mixed  73  Sayward  Wl a n d D2 stand.  Forest stand  Study  corresponds  indicate  Site  (Table  indexes(  a  4-  with  slightly m.  100 y r )  for  the three stands  are: Douglas-fir  HwSI 4 2 ) ; a n d  hemlock  paler,  distinct  also  less  indicates  Figure where  Table  7 below  these  (HwSI 4 1 ) , ( p e r s .  a less  salal  45) ; mixed  comm.  dynamic  (FdSI 41,  Shishkov,  e x p r e s s i o n i n t h e mixed  47 A a n d  sites  (FdSI  stand  1984).  A  chromatogram  site.  B a r e chromatograms  i s dominant  o f humus s a m p l e s  and e x c l u s i v e  shows c h r o m a t o g r a p h i c  i n t h e shrub  and chemical  from  layer.  variables  for  sites.  Table  7 Chromatographic and c h e m i c a l v a r i a b l e s f r o m two " s a l a l " humus s i t e s .  Site SPM  64  82  51  36 9.0  23  9  9.5  Both though  sites  the  variables  chromatographic  a  Dark  humus gray  of Douglas-fir  sitchensis(Bong.)Carr.) similarity  occurs  unpub.  1.4 1.4  3. 78  data,  f o r chemical change  CHCF  Vancouver  variables,  with the  chemical  i n t h e Sayward  Forest  a n d W4 i n c r e a s e s w i t h i n c r e a s e s i n HUMC  "hemlock-type"  "Douglas-fir-type"  growth  variables  B u t t h e two chromatograms  zone.  results  i n t h e same way a s d e m o n s t r a t e d  Wl d e c r e a s e s  indicates  inner  show s i m i l a r  5.32  4.46  ( Chemical data from M i n . o f F o r e s t s , Research S e c t i o n )  CFI.  samples  D2 LO SP W l W2 W3 W4 L I P I D % HUMC% C F 1 % D3 ( u n i t s i n mm e x c e p t f o r LO a n d S P ) 53 35 6.5 27 7 11 4.50 5.87 66 80 3.95  SNW  Study:  o f humus  are quite  humus. though  i n n e r zones  i n humus  from  74  Figure  has a  I t such  or w i t h i s  47  B  F i g u r e 47 A indicates  particularly  are often  on d r y s i t e s , sites.  different.  dark  associated with sitka  a  gray poor  spruce(Picea  interesting  dissimilar  and  sites.  that  this  The f i g u r e  47  A  site  logged,  i s  burned  brushed  in  with salal  of  hemlock  ( figure  old and  unusual  spruce  that  was  15 y e a r s a g o . T h e  site  has  number  productivity  of  less  humus f o r m .  The f i g u r e  components  indicate  humus t h a n  75  low  Douglas-fir  and  poor  h a s a 15  of hemlock, mesic  s m a l l dark  productivity.  The s a l a l would  The s m a l l  47 B s i t e  The r e l a t i v e l y  humus f o r m .  dynamic  The  l o w TCA a n d h i g h CN.  w i t h minor  of lobes  site  stagnated.  p i n e ( P i n u s m o n t i c o l a Dougl.) I t has a  f o r a moder  a poorer,  poor  31 a n d 3 2 ) ,  and Moder  low  infer  stand  and hemlock  and t h e s p r u c e  low a c t i v i t y .  Douglas-fir  regime and  lobes  indicates  white  a wet c e d a r  and p l a n t e d t o s i t k a  number  also  i n fact  be  may  Wl year  r e d cedar moisture gray  Wl  This  i s  be c o n t r i b u t i n g  expected.  to  Figure  46  A >80%  Figure  46  B M i x e d hemlock and D o u g l a s - f i r  Figure  Figure  46  C h r o m a t o g r a m s o f humus that d i f f e r i n species  76  (LFH) sampled composition.  46  Douglas-fir  C >80%  from three  hemlock  stands  Figure  Figure  47 A " S a l a l  humus"  SPM  Site  F i g u r e 47 B " S a l a l h u m u s " SNW Site 47. Chromatograms of humus ( L F H ) s a m p l e d f r o m t w o s i t e s where s a l a l i s d o m i n a n t i n t h e s h r u b layer  77  LIMITATIONS  A  OF THE APPROACH AND FURTHER  major  limitation  i s the lack  chromatogram  and c h e m i c a l  it  that  fulvic  the  periphery,  appears  radiate  to  fractions  also  extracts  separated  acidification  are  example where darker outer  for  and  fractions  move  While  useful  in  more  appears  that  zone.  Simple  and  humic  inconclusive.  highly  tests  Figure  coloured  humic  acid  done  with  fractions  by  48 s h o w s  one  f r a c t i o n y i e l d s a chromataogram  and t h e humic  the chemistry  f r a c t i o n with  would  more  using  standard  .25 N NaOH  techniques a "fate  ;  method;  analyze  and s t a n d a r d map"  showing  prepare  process method  a  large  c u t out t h e zones  each  extract  chemical where  with defined  of the chromatographic  be a s f o l l o w s :  the While  t o be t h e s a m e , a n d t h e m o s t r e a s o n a b l e  with  establish  intent  acid  of chromatograms  fractionation  also  fulvic  generally  the zones  re-extract  would  into  However  be e x p e c t e d  i t  of  i n t h e humus e x t r a c t .  generally  the outer  zones,  examining  number  to  a fulvic  central zones.  cannot  move  of d i r e c t a s s o c i a t i o n  substances acids,  STUDIES  analyses.  the  classic  using This humus  t o on t h e c h r o m a t o g r a m .  this  analysis  this  thesis  i s seen was  as a n e c e s s a r y  to evaluate  " r e f l e c t o r " o f humus c o n d i t i o n s  78  next  step,  the chromatogram  f o r the land  manager.  the as  a  igure  48  Figure  A Humic a c i d f raction.  48. Example  Figure  of chromatograms  79  48  B Fulvic acid fraction  of separated  fractions.  Another of  s i g n i f i c a n t l i m i t a t i o n i s the problem of  the chemistry  examined based  this  o f humus.  shortcoming  indices,  the  relationships  the  were  done  between  site,  given  that  enough  be i n c l u d e d .  examples  in  sample).  management  This  between of the  was  i s  a  chemical  site ( i . e .  a n d humus  however,  chemistry  are  cannot adequately  s a m p l e s and s i t e s a good Compositing  data  The r e l a t i o n s h i p s  attributes,  one s a m p l e  humus  have  e t c ) . I t does n o t a f f e c t  the chromatogram  and s i t e  i t i s clear  form,  (1983)  of a s i t e .  and a t t r i b u t e s  humus  o n t h e same  While  The S a y w a r d  the r e l a t i o n s h i p s  trophotope,  chromatogram  must  weakens  o f t h e sample  site  B.C.  p i t as r e p r e s e n t a t i v e  which  characteristics  (these  Q u e s n e l (1980) and C a r t e r  problem i n c o a s t a l  on a "modal"  variability  deal  5 t o 10 s a m p l e s  applications)  affected.  represent  of  a  variability  ( a s was  would  between  have  done been  for much  preferable.  Productivity expected  because  determining Ah  population  the  attention for  there than  small  clues  should  are  of the dominant  the nature  productivity of  relationships  influence  among  proportion  the organic  n u m b e r o f Ah s a m p l e s , be g i v e n  t o humic  to productivity. o f humus  assessing  Douglas-fir  forms  sample  i s  species  in  that  among t h e  population.  this  (1983)  This  of c o r r e l a t i o n s  suggests  substances  Carter  weak.  of tree  o f t h e humus. I t i s n o t a b l e  i s a greater  properties  generally  In spite that  i n mineral  found  that  80  more  horizons chemical  d i d n o t show p r a c t i c a l s i g n i f i c a n c e  productivity.  with  in  Linear  r e g r e s s i o n a n a l y s i s (MIDAS , s t e p w i s e , f o r w a r d ) ( F o x  Guire,1976) samples, size  FDSI  i s  form. the  (n=8) t h i s  value  i n site  horizons  have  analogy humus  in  of  n o t been  association  I t appears  It  with  Lowe  (1980) demonstrated  related  however  to horizon  consistently horizon  order  of  of expected  obvious  visual  i n the outer  Correlations showed  type.  changes  I t  may  have  of  humus  carefully  horizons.  Using  ecosystems  and t h e upper  thesis  Humic  at the  ectorganic  mineral  importance  soil  as  t o examine  of decomposition  enter  d i d not examine  into  c a n b e made.  of mineral  i n CHCF  from  i n the sequence  fractions  CHCF  example, that  ratios  Podzols.  Figure  horizons  arranged  top to bottom. i s the s h i f t  were  various  49  shows in  The  from  were  the most  brown t o  d e c l i n e i n DI a n d D3.  with  relationships.  81  For  and d e c l i n e d through  i n Humoferric  o f Ah s a m p l e  B horizons to  c a r b o n / f u l v i c carbon  z o n e and a g e n e r a l  no s i g n i f i c a n t  t h e sample  to look  d i f f e r e n c e s i n humus  a number  change  B  i n forest  i n Ah h o r i z o n s  t o the lowest  chromatograms  in  some o b s e r v a t i o n s  highest  Ah  soil.  this  extent  red  substances  t o be o f p r a c t i c a l  mineral  any  Using  i n the concept  i s a need  the products  i s unfortunate  promising.  included  c a n be s e e n a s t h e " c o m p o s t "  how  o f .62. A l t h o u g h  i s  there  the introduction,  "garden".  relationship.  diagnosis.  humic  chromatographically  B  result  In f o r e s t e d ecosystems qualities  the  one s i g n i f i c a n t  a n d D2 h a d an R s q u a r e d  small  predictive  B  y e i l d e d only  and  chromatographic Perhaps  variables  i f t h e sample  was  adjusted  for  organic  matter  content  relationships  would  be  apparent.  It fractions  i s  i s  understanding chromatography formation  suggested worth  that  chromatography  persuing  in  o f what c h e m i c a l may  i n relation  provide t o humic  82  B  in relation  horizons.  substances  the  a s i m p l e means o f and f u l v i c  acid  With zones  to a  humus better  represent,  examining fractions.  humus  Ah  Bh Figure  Chernozem  Podzol 49. Chromatograms  Ah  Subalpine  Brunisol  Bf Podzol of s e l e c t e d m i n e r a l s o i l h o r i z o n s .  83  SUMMARY AND Humus  management  forests.  In  of  contradictory.  humus,  Little  a i d the land  study  of  inferences  percent  organic  properties  carbon,  regarding  level  humus  level,  for  i t  differing  With  indications  of  chromatogram vegetation. particular conditions  form  reflects  chromatogram  the  properties and t o t a l acid  often  acheived  the  o f humus  At  84  and  At the appears  humus  formed  from  the  has  nutrient  provide  sound  ecosystem  level,  the  climate  and  of  "fingerprint" formed  are active  and  may  a  an  cations  between  showing  presents  CEC,  site  t h e method  i s perhaps  pH,  At the  by  process  as  taxa.  factors  that  chromatogram  form  general  that  At the  chromatogram  d i f f e r e n t moisture  testing,  component  method of  fractions.  more so  and p r o c e s s e s  Understanding The  type,  and under  further  humus  such  to discriminate  does  sample,  and humic  classification  productivity.  I t  and  a chromatographic  some e x c h a n g e a b l e  o r humus  species  conditions.  complex  and  t h e q u a l i t y o f humus a n d how  of the  the f u l v i c  appears  tree  i n t o the nature  l e v e l s of i n t e r p r e t a t i o n .  t o b e made a b o u t  something  are  Columbia  s i g n i f i c a n c e has been  i n stages  humus a t v a r i o u s  allows  diagnostic  results  British  affect i t .  has explored  chemical  of  the  in  of research  manager i n a s s e s s i n g  investigating' level  years  of p r a c t i c a l  management a c t i v i t i e s  This  been n e g l e c t e d  s p i t e o f many  composition  to  has  CONCLUSIONS  in  the  i n the particular  t h e most i m p o r t a n t  expression  of  of set  the of  site.  point.  humus/soil  relationships. less  removed  which  are  such  samples,  range  of chemical  content  For  the  with  each  areas,  a better  necessary  natural,  to  analyses  interpret.  between  the  o f many  picture.  on-site  attributes  With  t h e Sayward  are correlated  Relationships  i t i s suggested  that  with  to  similar  further  quantities  chromatogram. soils  with  understanding  and s p e c i f i c  The  analysis  of  work  carbon  of  humus  Sayward  Forest  a low range  of the  a  humus  o f humus a n d t h e t o t a l  podzolic  As  analysis.  properties.  so t h a t  more  chemical  a synthesis  extractability  are predominantly  i s  bridge  of the p i c t u r e  however  sample,  a r e used  other  process  and s i t e  many  difficult  as a d i a g n o s t i c  the elements  account  of  fractions samples  sample,  are evident,  into  and  seen as a  a standard  i s perhaps  than  quantitative chemical  Forest  take  i s  humus i s p o r t r a y e d  fractions  site  contradictory  and  using  s o i n a way t h a t  the actual  approach  observations  of  from  often  the  By  I t does  i n pH.  chromatographic the  zones  i s  essential.  The  primary  potential  usefulness  land  manager  long  term  the  quality.  value  i n this  of this  i n making  site  diagnostic  In  emphasis  approach  about  study  has been  to assess  a s an a i d  treatments  demonstrates  to  and e f f e c t s  the the on  the significant  of the approach.  s p i t e o f not knowing  chromatogram,  inferences  simple  decisions This  thesis  the chemical  the approach  developed  in  this 85  phenomena o c c u r i n g  c a n be u s e d thesis  pragmatically.  regarding  the  in The  measured  variables  D2  scattergrams. reasonably While  this  that  such  sites  There  may  be c o n s i d e r e d  properties,  tree  species,  humus  form,  of  climate, site  diagnostic  tool  by  and  surroundings,  the  of  method, without  use  significant  at  basis  in  i t  level.  soil  as  interesting  indicator  the effects Ah  can  be  biota  86  with  of  more will  provides  of  a change  significant  using  the  of  used  the in  Fq  populations  humus. dominant with  regime.  This  method changes  as  a  brought  simplicity  The m e t h o d  of  also  forms  and  which  are  represent  the  horizons  biological  and  degree  o f humus  These h o r i z o n s  Ah's  in  a-  unsophisticated  investments.  Earthworm  to  chemical  and t h e chromatogram  of earthworm  horizons.  lead  and m o i s t u r e  Because  different  ultimately  humus a n d a s s e s s i n g  s e p a r a t i n g Fa and  the order  why  nature  f o r the c l a s s i f i c a t i o n  of d i f f e r e n t  of  for  large capital  effects  structure  though  "reading".  ecosystems.  qualitative  management.  some s u p p o r t  example,  which  most w i t h  be  i t i s suggested  chromatography  productivity  f o r studying  forest  equipment  the  and  cannot  i n  ) will  on c o r r e l a t i o n s  and t o a l e s s e r ,  provides  an  o f humus  that  v a r i a b l e s change  conclusion  be  by s o m e ,  o f humus p r o c e s s e s ,  based  which  and q u e s t i o n i n g  possible to conclude  Chromatographic  may  observations  a drawback  expressions  reflection,  correlations  require experience  ( comparing  different  i s  provides  other  by  t o b e t t e r management of f o r e s t e d  consistent  about  demonstrated  and w h i c h  examination  It  are  a r e many  activity  contribute  site  W4  measured  have  rigorous  to  c a n be  activities. are evident (vermimulls)  seen For i n the have  distinctive the  chromatograms.  association  of  biota  with  possible  with  done  method  can  note,  i t does p r o v i d e  the  personal on  the  soil  Monitoring  chromatographic only  what i s c e r t a i n l y a  be  key  various approach.  considered a  inoculations,  very  plant  and  species  Until further  would  be  work  is  q u a l i t a t i v e . However satisfying,  holistic  in plant-soil interactions:  87  exploring  humus.  on  a  view  LITERATURE  CITED  Anonymous.1972. Humic S u b s t a n c e s , T h e i r S t r u c t u r e and in the Biosphere. Proc. Int. Meeting Substances,Nieuwersluis, Pudoc, Wageningen.  Function Humic  Anonymous.1983. S o i l D e g r a d a t i o n i n B r i t i s h .Columbia. Proceedings o f t h e e i g h t h m e e t i n g o f t h e B.C. S o i l Science Workshop, H a r r i s o n H o t S p r i n g s , B.C. M i n i s t r y o f A g r i c u l t u r e a n d F o o d , V i c t o r i a , B . C . 273 p.  B a s c o m b , C.L. 1968. Distribution of pyrophosphate a l u m i n u m and o r g a n i c c a r b o n i n s o i l s o f v a r i o u s S o i l S c i . 1 9 : n o . 2 , pp 2 5 1 - 2 6 8 .  iron and groups. J.  Black, CA. e_t a _ l . ( e d s . ) 1 9 6 5 . M e t h o d s o f S o i l A n a l y s i s . Agronomy M o n o g r a p h no.9, Amer. S o c . A g r o n . M a d i s o n , Wisconson. D i x o n , W.J., M.B. B r o w n , L. E n g l e m a n , J.W. F r a n e , M.A. Hill, R.I. Jenrich, and J.D. Toporek. 1981. BMDP Statistical S o f t w a r e . U n i v . o f C a l i f o r n i a P r e s s , B e r k e l e y , p. 5 1 9 - 5 3 7 . Brinton.W.F. 1983. A qualitative method f o r assessing humus condition. In S u s t a i n a b l e Food Systems, E d . D. K n o r r , A V I Publishers, Westport, CT. C a r t e r , R.E. 1983. stands: their productivity.  F o r e s t f l o o r s under second growth D o u g l a s - f i r c h e m i c a l v a r i a b i l i t y and some r e l a t i o n s h i p s t o MSc T h e s i s , U n i v e r s i t y o f B r i t i s h C o l u m b i a .  Feller, M. 1982 The E c o l o g i c a l E f f e c t s of S l a s h b u r n i n g with particular reference to B r i t i s h Columbia: a Literature Review. Prov. o f B.C., Min. of F o r e s t s . Land Management R e p o r t no. 13, V i c t o r i a , B . C . 60p. Fox,  D.J. a n d K.E. G u i r e . edition. Statistical Michigan. 203p.  Gjessing, E.T. 1976. A q u a t i c Humus. Ann  1976. D o c u m e n t a t i o n f o r MIDAS. T h i r d Research Laboratory, Univ. of  P h y s i c a l and C h e m i c a l C h a r a c t e r i s t i c s Arbor Science P u b l . Inc.  88  of  Klinka, K. and L.E.Lowe. 1976. O r g a n i c C o n s t i t u e n t s of F o r e s t Humus L a y e r s i n t h e C o a s t a l Western Hemlock Biogeoclimatic Zone of B r i t i s h Columbia i n R e l a t i o n to Forest Ecosystems. Research Note No. 75 a n d 7 6 . B.C. Forest Service. R e s e a r c h D i v i s i o n . V i c t o r i a , B.C. Klinka, K. R.N. Green, R.L. T r o w b r i d g e and L . E . Lowe. 1 9 8 1 . Taxonomic Classification o f Humus F o r m s i n E c o s y s t e m s of British Columbia. 1 s t Approx. Prov. of B r i t i s h Columbia, Min. of F o r e s t s . 54pp. K o e p f , H.H. 13.'  1964. S o i l  T e s t s and Chromatograms.  Biodynamics 69,1-  K o n a n o v a , M.M. 1 9 6 6 . S o i l O r g a n i c M a t t e r : I t s N a t u r e , I t s R o l e i n S o i l F o r m a t i o n and i n S o i l F e r t i l i t y . 2nd E d i t i o n . Pergamon P r e s s , London. 554p. Lowe, L . E . 1974. A s e q u e n t i a l e x t r a c t i o n p r o c e d u r e f o r s t u d y i n g the d i s t r i b u t i o n o f o r g a n i c f r a c t i o n s i n f o r e s t humus l a y e r s . Can. J . o f F o r e s t Research.4:446-454. Lowe, L.E. 1980. Humus fraction ratios as a means of discriminating between h o r i z o n t y p e s . Can. J . S o i l S c i . 60: 219-229. P a u l i , F.W. 1 9 6 7 . S o i l F e r t i l i t y : H i l g e r L t d . , London. Pfeiffer, E.E. 1 9 5 9 . The B i o d y n a m i c s 4 9 : 1-20.  A Biodynamical Approach.  Art  and  Science  of  Adam  Composting.  Pfeiffer, E.E. 1960. Q u a l i t a t i v e Chromatographic Method f o r t h e D e t e r m i n a t i o n of B i o l o g i c a l F a c t o r s . Biodynamics 50:2-15. P r i c e , W.J. 1 9 7 8 . A n a l y t i c a l a t o m i c a b s o r p t i o n Heydon a n d Son L t d . L o n d o n . 239 pp. Quesnel, H.A. Columbia. B.C.,  1980. F o r e s t MSc. T h e s i s . Vancouver,B.C.  89  spectrometry.  Floors near P o r t Hardy, British Dept. S o i l S c i e n c e , , U n i v e r s i t y of 152pp.  Schnitzer, M. and Kahn ( E d i t o r s ) E l s e v i e r Sc. Publ. L t d .  S c h u m a c h e r , E . F . 1974 . S m a l l London, England. 255p.  Shishkov, G. 1984. F o r e s t s , B.C.  1978.  i s Beautiful.  Research  Soil  Sphere  S e c t i o n , Vancouver  Organic  Matter  Books L t d . ,  Region,  Min.of  Silen,R.R. 1982. N i t r o g e n , C o r n , and F o r e s t G e n e t i c s . Gen. Tech, Rep. PNW-137. P o r t l a n d , O r e g o n . U.S.D.A. F o r e s t S e r v i c e . 20 PP • S u k a c h e v , V . a n d N. D y l i s . 1 9 6 8 . F u n d a m e n t a l s o f F o r e s t Biogeocenology. O l i v e r a n d B o y d L t d . , L o n d o n . 672 p . Walmsley, 1980. Paper  M. , G. U t z i g , T. V o i d , D. Moon a n d J . v a n B a r n e v e l d D e s c r i b i n g E c o s y s t e m s i n t h e F i e l d . R.A.B. T e c h n i c a l 2. L a n d Mgmt. R e p . No. 7, V i c t o r i a , B.C.  W a r i n g , S.A. a n d J . M . B r e m n e r . 1 9 6 4 . Ammonium p r o d u c t i o n i n s o i l under w a t e r l o g g e d c o n d i t i o n s as an i n d e x o f n i t r o g e n a v a i l a b i l i t y . N a t u r e 20' 1: 9 5 1 - 9 5 2 . W a t a n a b e , F . S . a n d S.R. O l s e n . 1 9 6 5 . T e s t o f a n a s c o r b i c a c i d m e t h o d f o r d e t e r m i n i n g p h o s p h o r o u s i n w a t e r a n d NaHC03 e x t r a c t s from s o i l . S o i l S c . S o c . Amer. P r o c . 4 9 : 6 7 7 - 6 7 8 .  90  APPENDIX SAMPLE A  I  CHROMATOGRAMS OF R E P L I C A T E D HUMUS FROM UBC R E S E A R C H FOREST  91  SAMPLES  R E P L I C A T E S OF  S A M P L E A CONTINUED.  92  93  APPENDIX I I DATA S E T -SAYWARD P R O V I N C I A L K E Y TO V A R I A B L E S : 8. TN  9. TP  11. MINN  etc  13. OCt  14 EXMG  15. IXNa  EXK  17. LIPIDA  30.  21 .  HUMC  HUMN  22. CF1  33. CF1»  34. 1400  25. (600  26. E40E6  27. TC«  2B. TMO  29. TIC  34. PYFE  35. POL  61 . CTREE  64. SUBZ  65. (LEV  66. •SPECT  67. HVOB  68. TROPH  MHSI  •6. PLSI  90. 8451  93. CHS I  148 02  149 D3  150. 10  151 . SP  152. HI  156. CN  156. CHCF  0.  «.  H O T  W H O  T. TC  18. CB  19. SB  30. TN*  31 . TFI  T»l  69  73.  74 .  76  FOSI  BGSI  HFOIM  F O R E S T STUDY  33.  163.  iS4.  155.  in •  V]  04  33. THN  16.  VARIABLES: 1 .61000 .7O0OO -1 12.000 31.000  4.4000 1.0000 1.3100 30.000 13.OOO  33.090 5.2800 -8IOOO -0. 10.COO  .87000 .33000 . 15000 38 000 49.388  . 11200 5.2500 -0 -0. 1.0057  147.00 3 04O0 -0. -0.  58.460 62 600 1 OOOO 27.000  13 090 10 200 3.0000 59.000  3.3500 6.1000 300 00 95 000  350O0 .74000 3.0000 60 000  3 0900 :12O00 3 OOOO 35 000  3.4600 .15O0O 3.0000 • 5000  2  .40000 .40000 -1 33.000 21.500  3.60O0 .B70O0 .48000 37.000 14.750  56.880 16.950 .36000 -0. 11.500  .66000 .74000 .31000 5.2300 .20000 -1 -0. 41 .000 -0. 86.182 3.2471  92.000 1.6300 -0. -0.  106 96 60 400 1 .0000 33.000  13.630 7.6O0O 3.0000 53.500  3.6300 7.9000 380 00 83 000  .39000 .46000 3.0000 50.000  1 56O0 .60000 -1 4 OOOO 33.000  3 7500 .70000 3.0000 4.7500  .33000 .70000 -1 23.000 21.000  4.4OO0 .43000 1.7800 46.000 18.500  83.290 12.440 .88000 49. COO 6.5000  1 . 1400 .94OO0 .37OO0 6 3300 .60000 -1 -0 44.000 -0 46.746 , 1.9652  236 .OO 3.6600 -0 -0.  106.99 66.400 2.0000 32.000  39.030 11.600 3 OOOO 60.000  3.9000 5.70OO ISO 00 93.000  .40000 1 3100 3 OOOO 73.000  3.1300 .26000 6 OOOO 44.000  4 1.2B00 .20000 -1 IS.OOO 26.250  3.4000 .50000 . 16000 51.000 12.250  64 '420 16.030 .21000 -0. 10.000  1 .2700 .61000 .49000 6.5300 .10000 -1 -0 47.000 -0. 50.724 3.3017  141 00 3.3900 -0. -0.  161 44 79 300 2.0000 33.OOO  16.830 10.600 3 OOOO 63.500  6.4900 7 3OO0 140 00 61 000  .53000 47000 3. OOOO 62 000  1.7600 80000 -1 6.0000 38 .000  1.9600 .60000 3 OOOO 8 OOOO  54.820 B.60O0 .45000 -0. 9. OOOO  .10700 1.3600 .46000 6.6900 .80000 -1 -0. 26 000 -0. 39.725 1.4350  319.00 3.3300 -0. -0.  33.300 15.000 3.0000 • 46.000  5.7300 5 9000 240 00 87.000  .36000 1 0300 3 OOOO 70 000  3.2900 .12000 3 OOOO 19.000  3 4800 10000 1 OOOO • OOOO  3  5  3.6000 .430OO 6O0O0 .40000 - 1 .60000 15.000 40.000 16.OOO 18.5O0  •.58000  137.27 88.30O 1 OOOO -0  1 6600 • OOOO ' 4.0000 9 OOOO  .200O0 -1 15.000 20.000  3.6000 .70000 • 5O00O 40.000 16 000  CO.480 13.710 .38000 -0. 10.000  1 .3500 . 10500 .52000 6.5900 .50000 -1 -0. 44.000 -0 44.800 3.0804  300 00 2 . 1400 -0. -0.  136 02 74.800 2 OOOO 27 000  33.320 10.000 3 OOOO 64 000  4.3OO0 7 .SOOO 210 OO 86 OOO  .44000 71OO0 3 OOOO 57 .000  2.6700 1 3600 .80000 -1 .90000 6 OOOO 4 OOOO 34 OOO 7 OOOO  .86000 .20000 -1 15.000 24. COO  3.5000 .88000 .19O00 43.000 I2.5O0  64.630 10.750 .23000 -0. 13.000  . 10800 1.1100 .37000 8.3100 .60000 - 1 -0. 37 000 -0. 58.316 1.3936  208 00 3.3300 -0 -0.  123.08 60 600 2 OOOO 30 OOO  13.550 9.6000 3.0000 SB.OOO  4 4300 6.3000 170.00 83 000  75000 37OO0 3 OOOO 56.000  3. lOOO 4 9600 7O0O0 -1 13000 1 OOOO 4.0000 33.OOO 5 OOOO  3.3000 .64OO0 .50000 -1 .66000 15.OOO -0. 23.000 14.000  56.680 11.380 .70000 -0. 12.000  . 11600 .87000 .37000 6.8700 .30000 -1 -0 43.000 -0. SB.433 1.6565  153 00 1 94O0 -0. -0.  109.12 66. OOO 2. OOOO -0.  8.7200 13.600 3. OOOO 56.OOO  3 . 7600 5 3OO0 150.00 64.000  45O0O 3SO00 3 .0000 58 OOO  2.4700 . 11000 4. OOOO 14 OOO  4 0900 . 11000 3.0000 5 OOOO  .14O0O 4.4600 -0. -0. 1 0695  168.00 1 .5600 -0 -0.  69 710 67 000 i oooo -0  25.960 10.400 3.0000 44.000  3.4200 6 4COO 310 00 68 000  .15OO0 1.2500 3.OOOO 57 OOO  1.7600 390OO 4 OOOO 45 OOO  3 3600 14000 3 OOOO 8 5000  387 00 2 4100 -0. -0.  16 690 6 6 OOO 3 OOOO 49 000  3.3800 7. 1000 480 00 83.000  .35000 71000 3 OOOO 60 000  1.6900 . 150O0 6 OOOO 30 OOO  4 16O0 .90000 4 OOOO 7 5000  7  •.56000  9 .440CO . 15000 13.OOO 13.500  5.3000 51O0O 2.6600 39 000 22.000  36.170 4.7700 1.6900 -0. 5.0000  10 .85000 .50000 -1 23.000 17.000  1.9000 .75000 .80000 43. OOO 16.500  58.870 11.140 .82OO0 -0. 10.OOO  1.3300 .96000 .51000 7. 11O0 .50000 -1 -0. 40 000 -0. 44.038 1.5668  11  4 7O0O 54000 .56000 .90000 - 1 1 930O 33 OOO 42 000 35 500 12 000  52.540 10.860 1 0700 -0 6 SOOO  1 3000 460O0 13000 34 OOO 43 783  . 11300 6.5300 -0. -0. 1.6631  189.00 3 8100 •0. •0.  111.59 63.400 1 . OOOO -0  40 790 14 600 3 OOOO 71.000  4.8900 5.6000 470 00 •5.000  .33000 1 6900 3.OOOO 74.0OO  3.OOOO .34000 4.OOOO 42.000  3.1800 . 1OO00 4.0000 10.OOO  5.3O00 13 .60000 .57000 .70000 - 1 1 69O0 24.OOO 45.000 36.500 8 OOOO  47.440 10.300 1.1100 -0. 7.0000  1 .4600 .56000 . 150O0 39.000 33.493  13600 6.3300 -0. -0. 1.9694  368.00 3.3300 •0. •0.  137 76 10'.20 1 OOOO 31.OOO  74.430 17.600 3.OOOO 74.000  9 0300 6.0000 30O.O0 90.000  .35000 3.3300 3.0000 77.000  3.0300 .2OO00 • OOOO 17.000  1.73O0 . 11000 4.OOOO 10.BOO  3.9000 13 1.0300 i oeoo .5O000 - 1 1.1300 39 OOO 15 000 18.500 30 BOO  63 600 6.3400 .83000 -0. 9.OOOO  .13700 . 1.0200 .28000 6.5700 eoooo - i -0. 31 OOO -0. 61.373 .96499  130.00 3 3100 -0. -0.  118.33 66 400 2.0000 21 .000  13.590 11.300 3 OOOO 50.000  3.9300 S.900O 140 00 •7.000  .39000 .7O00O 1.0000 65 000  1.0000 .14000 1.0000 BO. 000  4.5800 . 11000 1.0000 4.SOOO  4.7000 IB .79000 .71000 .80000 - 1 J.3200 23 OOO 47.OOO 32 000 14.OOO  47.330 7.6400 1.2500 -0. 7 5000  1 2100 .39000 .14O00 -0. 39. 116  .11700 6.8800 -0. -0. 1.0946  3«6 00 3.4700 •0. -0.  104.30 75.400 1 .0000 -0.  36.650 13 600 3.0000 43 000  • 7700 5.5000 •5.000 66.000  .64000 1 .4600 3.0000 S3 OOO  2.5300 .33OO0 4.0000 41.000  3.6900 . 13000 1.0000 7 OOOO  .77000 .32000 .14000 -0. 46.974  94  111 80 61 200 1 OOOO 23 000  18 4.30O0 .53000 .87000 .COOOO -1 IS 000 3*.OOO 10.250 33.900 IT '.•000 61OO0 .92000 SOOOO -1 1 . 1900 15 000 31.000 13.500 22 OOO 16 4.40O0 .35000 .23000 -0 •0. -0. IT.SOO 10.000 It 4.S000 .63000 .74000 . I2OO0 3.9400 35.OOO 91 OOO 19.000 aso 9.3000 . .34000 . 19000 -O. -0. -0. 32 OOO • OOOO It BOO 9.OOOO 9OOO0 -1 600OO -1 -0. -0. 32 OOO 49. OOO 16. 730 13.000  i.asoo  aa ooo  is ai  aa  as350OO  .30000 -1 24 OOO 31.000 34 360O0 30OOO -1 IS.OOO I8.7SO as .29000 . 30OO0 -1 33.000 19 OOO 36 .49000 . 3OOO0 -1 1S OOO 33.500 37 9600O .30000 -1 IS 000 as ooo  3.4000 .34OO0 35O0O -0. • .0000  4.90O0 37OO0 .saooo -0. 13 OOO 4.3000 .43OO0 .59000 -0. 13.000 3.3000 .71000 1 I OOO -0. 14.000 3 9000 .74000 .65000 -0 B 5000 3a 3 6000 32000 56000 .33000 IS.OOO . .aoooo -i - 019 000 39 3.6000 S7O00 .67000 3O0O0 - 1 .31OO0 -0. IS OOO 33.000 IS 500 4.1000 30 .44000 .70000 .70000 -1 3 .0200 32.000 26 O O O 19.OOO soo 31 3.8000 .SIOOO .61000 , .43000 IS 000 19.OOO .aoooo 33 OOO -i ' 11.S00  ic ooo  ai  4.400O TIOOO .67000 90OO0 - 1 2 7700 IS OOO 34 000 13.OOO 19 500  33  33 csooo 40OO0 - 1 IS 000 9 OOOO 34 .960O0 . 'OOOO IS.000 19 750  55.330 10 910 .94000 -0 9.OOOO  218 OO 3 3600 -0. -0  116.17 66.000 1 OOOO -0.  16.330 9.4O00 3 OOOO 34.000  4.7300 7.0000 100.00 78. OOO  .76000 .91000 3.OOOO 57.000  1.9900 .16000 3.0000 39.000  8.78O0  369.00 3.3300 -0. -0.  110.19 72.200 1.0000 -0.  24 S90 13.OOO 3.0000 39.000  6 1300 6. OOOO 103 00 83.000  .76000 1. 1800 3.0000 56.000  3.4700 .16000 2.0000 40.000  3.7700 .ISOOO 1.0000 T.OOOO  18.OOO .36000 .66000 -0  93.300 346.60 -0 -0.  1.2500 39.BOO 3.0000 61.000  .38000 4.1000 103.00 •1.000  .10000 -0. 3. OOOO 53.000  -0. 1.0000  330.00 1 .4000 -0. -0  93.930 77.000 1 OOOO  - 0 .  20.000 11.800 3 .OOOO 47.000  7.9900 6.5000 75 000 •9.000  .61000 1.6500 1.0000 87.000  a.0900 .37000 6.0000  B6 000 .71000 .73000 -0.  45.400 115.40 8.0000 -0.  32.400 3.0000 66.000  a.oooo  8 OOOO saooo 70.000 76 OOO  .11000 -0. 1.0000 56.000  33.000 .43000 .37000 -0.  34 . 290 186 40 I.OOOO -0.  8 73O0 46.200 1 OOOO 54.000  1 5800 4. OOOO 90.000 •4.000  339.00 3.1300 -0. -0.  143.72 72.200 6.OOOO -0.  18.370 6 8000 1 OOOO 73.000  .86000 -1 330 00 7 6100 3 6 tOO -0. -0. -0. 30.000 1.8476 331.OO . 13600 7.1300 3 6BO0 -0. -0. - 0 . 43.000 1.8339  127 72 50.600 3.OOOO -0.  65 590 30.310 .90000 -1 -0. 13.000  1.0200 .79000 -1 193.00 .41000 6 5900 1 .4900 .40OO0 -1 - 0 . -0. -0. 32.000 24.OOO 64.294 3.0819  59.760 10.420 .31000 -O. 11. OOO  1.3700 46000 . 19000 42.000 47.033  66 330 16 960 .33000 -0. 10 500 64 330 10 290 24OO0 -0 12.OOO  1 .4600 .62000 .40000 - 1 34. OOO 46.915 1 . 1900 33OO0 8OOO0 -1 34.000 34.076  55 070 9.9400 .69000 -0. 9.0000 15.340 6.3100  - 0 .  -0 9.OOOO 39.620 6.9100 I.BBOO S3 OOO T.OOOO • • 9100 3.1700  - 0  - 0 .  8.3000 6.69O0 3.6300 -0. -0. a.oooo 60.670 11 240 .29000 -0. 7.0000 93.7O0 14 430 .31000 -0. 14.OOO 59.930 13.050' .39OO0 -0. 13. OOO  1.2400 .41000 . 19OO0  - 0 .  44.411 .87OO0 .57000 -0 -0. 13 914  .13300 6.8700 -0. - 0 .  1.3686 - 0 .  1.3300 .78000 -0. 4.8947  1.0400 .11400 ,34000 4.6100 .60000 -1 -0. - 0 . 49.000 39.096 1.4989 .63000 .29000 -0. -0 IS.371 33OO0 15000 -0. -0. 36.333 3 7900 76000 30000 -1 39.000 a 1.924 ' 1 S400 4BOO0 .10000 -1 38.000 40.714 1.5200 54O00 .9OO00 -1 39.000 39.429  .aoooo  43.000  41.000  .aoooo T.OOOO  3. I7O0 . 10000 3.0000  .36000 -0. 3.0000 13.000  1.7600 .11000 COOOO 7.23O0  33 000  .39000 -0. • OOOO 14.500  . ISOOO -0. 3.0000 •0.000  .33000 -0. 5.0000 40.000  .19000 -0. 4.OOOO 10.250  5.8100 B 3000 60 000 89.000  .46000 .57000 3.OOOO •8.000  1.3800 .13000 6.0000 45.000  3.0300 .80000 6.0000 5.S000  16 790 6.4000 4.0000 S3 OOO  5.3300 7.9000 29O.O0 79.OOO  .36000 S4O00 1 OOOO 83.000  1.3800 . 10000 8. OOOO 42.000  2.O7O0 .60000 6.0000 6.3S0O  113.96 63. SOO 3 OOOO -0.  14.950 9.6OO0 4. OOOO 33.000  3.3600 7.3000 290. OO T7.000  1.3100 .43000 a.oooo •4.000  1 .7300 .80000 -1 3.OOOO 35 0 0 0  3.6600 .80000 6.OOOO T.SOOO  130.67 49 800 3. OOOO -0.  11.6B0 saooo 5. OOOO 52. OOO  3. 1900 9 6000 600.00 80.OOO  .BSOOO .33000 2.OOOO 41.000  3.1900 .30000 -1 3.0000 36.000  4.3000 .90000 3.OOOO 3.5OO0  368 00 3.5700 -0. 26 000  121 4} 63. B O O 3.OOOO 34.000  12 lao 10 200 5 OOOO 69.000  a 6500 6.3OO0 610 OO 86.000  3.0000  .35000 44OO0  a.7300 .90000 -1  •0 .OOO  4.0000 36.000  4.2400 .nooo 3.OOOO 9.SO0O  . 11600 7.3100 -0. -0. 3.6397  290 00 1.4300 -0. 36.000  130 67 59.600 3.0000 -0.  7.1400 7.OOOO 4 OOOO 43.000  3 1700 a 5O00 500.00 79.000  .70000 .33000 3.0000 54 .000  a.60000 3200 -1 5 OOOO 30.000  5.0500 .11000 4.OOOO 5.5000  .11300 6.2900 -0. -0. 1.6359  180.00 3.7300  124.04 77 600 3.0000 -0.  7.3900 12 2O0 4.0000 53 000  2 9100 6.4000 500.00 86.000  .58000 .27000 1.0000 60.OOO  3.4300 .50000 -1 3.OOOO 33.000  4.4200 .11000 3.0000 5.5OO0  .64000 1 6300 3.0000 66.000  1.2600 .27000 2.0000 40.000  5.3600 .60000 2. OOOO T.OOOO  - 0 .  3.1400 .94000 -0. 1.4913 -0 1.0900 .41000 - 0 .  2.43S9 .11900 6.6100 -0. - 0 .  1.7005  . 10000 9.6200  - 0 .  -0 1.aOBB  -e39.000 .  '  - 0 .  45.960 11 460 1 4400 -0. 7.6OO0 62.490 10.090 4SOOO -0. 11 .000  .71000 .85000 - II 34 000 43000 6 0700 2 3300 -0. .60000 -1 - 0 . -0. -0 -0. 64.733 1.4326 .96 OOO -1 194.OO .67000 .32OO0 6 76O0 2.4300 -0. .10O00 -0. -0. -0. 16.000 71.916 1.4911  91 900 62 300 1 .0000 -0. •  17 300 9 OOOO 30.000  4.2000 7.8000 190 00 93.000  108.20 60.000 5 OOOO -0.  13 330 9.0000 3.OOOO 87 OOO  3.7500 6.7000 350 OO 90 000  .43000 .66000 1 OOOO 57.OOO  2.0300 70000 -1 33.OOO  4 2300 .80000 a.oooo S.5OO0  35 350 5 7300 1 3300 -0 T.OOOO  .77000 30000 .70000 -0. 49.779  73.230 34 600 1 OOOO -0.  16.280 9 2000 1 . OOOO 41 OOO  3 7100 S.9O00 190 00 90.000  .33000 1 .0300 1 .0000 49.000  3.5900 .34000 3.0000 39.000  3.3300 .ISOOO 3.0000 9.3000  4 . 1OO0 .43000 .91000 33 000  SS 960 9 9700 .42000 -0.  ooo 4.6000 69000 1.9200 31 OOO 14.000  OOO 39.970 6 5100 1 1500 -0 T.OOOO  ai  1 . 1400 . 13400 .40000 • 1600 -0. .90000 - 1 -0. -0. 48.447 1.7492  ti  7OOO0 .35000 .50000 19.000 79.900 .97000 .32000 .34000 -0. 44.793  . 19400 5.2800 -0. -0. 1.0890 .14000 10.060 -0. -0 6B171 .11700 S 3100 -0 -0. 1.1815  16.000 2 4600 -0. -0  3  OOOO  a.oooo  176.00 4 9200 •0. -0  112 33 64.900 1.0000 19.000  16.990 8.6000 1.0000 40 000  3 6600 7.5000 160.00 82.000  .81000 .•3000 1.0000 8O.0O0  9 5400 .10000 3.0000 38.000  5.1300 .16000  154.00 1 . 930O -0. -0.  87 630 63 .400 1.0000 31 OOO  34 630 14 400 3.0000 60.000  4 1000 5 7000 375.00 88.000  .33000 1.3100 3.OOOO •8.000  1.9100 .30000 2.0000 39.000  3.6700 . 13000 3.0000 10.350  95  11.000 a .oooo  .14400 5 5700 -0. -0 1.6066  226.00 1 5500 -0. -0  114.95 76.OOO 1 OOOO -0  31 .790 12.800 3.0000 57 000  5 3400 5.90O0 270 00 86 .000  .33000 1 39O0 3.0000 65 000  3.5700 .30000 3.0000 34 000  4.0300 . 13OO0 3.0000 8.0000  .10500 1 37O0 7.6200 .50000 .30000 -1 - 0 . 39 000 •0. 1 .6268 47 630  197.00 2.3600 -0. 22 000  136. 10 65 400 1 . OOOO 37 000  13.990 8 4000 4 . OOOO 58 000  4.33O0 7 BOOO 490 OO 80.000  .37000 .40000 3.0000 62 000  3.1700 .70000 -1 4 OOOO 34.000  4.4700 . 10000 3 OOOO 6 . SOOO  1 .6500 1 OOOO .12O0O 34 . OOO 26 389  .35500 5 6100 -0. -0. 3 7968  79.000 1 .9500 -0 -0.  136 01 94.700 9 OOOO -0.  30.170 14 400 5.0000 63 000  3 1300 6 6000 640.00 7 7 000  .40000 .92000 1 OOOO 36.000  .44000 .60000 -1 8 OOOO 39.OOO  3.3100 .40000 4.0000 14.350  13 640 5 6600 -0 -0. 1 1 000  73OO0 .37000 -0 38 000 19 096  -0 2.0100 1.0000 -0 2.6159  56 OOO .68000 3.0500 -0.  74 130 165 00 4 OOOO 38 000  10 630 44.400 3 OOOO 45.OOO  1 0500 4 3000 310.00 76 000  . 17000 -0. 3 OOOO 41 OOO  .33000 -0. 7.0000 35.OOO  .35000 -0 4.0000 13.500  4.4000 . 11000 -0. -0. 30 500  9 4900 2 3700 -0 -0 6 SOOO  630O0 .210O0 -0 28 . OOO 15.063  -0 1.7100 10000 -0. 1.3660  68 OOO SBOOO . 25'X'C -0  3B 570 73 600 6 OOOO -0  7 OOOO 9 2000 3 OOOO 49.000  1 .6800 8 OOOO 140.00 90 000  .13000 -0. 1 OOOO 67 OOO  .3OO0O -0 7.0000 45.000  .39000 -0. 4.0000 7.7500  4 . 100C  3.3100 44 000 14 OOO  37.620 7 8G00 1 0400 -0 9 OOOO  . 10800 95000 5.3600 .36000 .90000 -11 - 0 . 45.000 -0. 39 81 1 1.4686  196 OO 1 6000 -0. -0.  78 6 J 0 76.200 3 OOOO -0.  10.300 15 800 3.0000 61.000  3 9800 4 8000 95.000 69 .000  .38000 1 .0400 3.0000 70.000  1.9200 .18000 5.0000 36.000  3 9800 . 11000 4.0000 7.5000  4.5OC0 13OO0 -0 55 000 17 COO  15 210 4.O9O0 -0 61 000 7 OOOO  930O0 350O0 -0 42 OOO 16 533  -0. 3.3900 1.1800 -0 1 .7860  58 OOO 900O0 1. 04O0 -0  70.040 131 60 1 OOOO -0.  6.25O0 34 OOO 1 .0000 44.000  3.4000 5.SOOO 30 000 78.000  .13000 -0. 3.OOOO 51.000  1.0000 -0. 6.OOOO 38.000  .34000 -0. 6.OOOO 14.000  43 .50000 .eoooo - 1 15 OOO 35.500  4.0000 . 4400O 1 07O0 33 000 14 000  4 3 860 4 . 7 300 55OO0 -0 10 000  810OO .23000 .12O00 32 000 52 914  .10400 7.3100 -0. -0. .65603  71 000 3.6600 0. -0.  86 510 75 4G0 1 OOOO -0  17.440 12.400 1 OOOO 62 OOO  5 OOOO 6.1000 160 00 90 000  .24000 .95000 1 .0000 69.000  3.3700 .13000 3. OOOO 41.000  3.4600 . 11000 3 OOOO 5.5OO0  43 . 590O0 . 700O0 - 1  4.6000 510OO 1 7lOO  '43.300 7 9500 B6CO0 -0 10.000  .65000 . 30000 . 30OO0 28 OOO 50 94 1  .10300 5 6400 -0 •0. 1,4096  218 OO 2 220O -0. -0  85 980 7 1 8(>0 1 OOOO -0.  25 4 10 10.BOO 3 OOOO 50.000  4 0100 6 6000 350 00 83 000  .37000 1.3900 1 OOOO 63 000  3.0600 .16000 4 OOOO 35.000  4.3700 1 100O 3.0000 7.0000  4.7090 .48COO 1 7 800 3B 000 12.000  52.540 7.6 700 »eooo -0 7.5000  1 .3000 .42000 1.5500 -0. 4 0 . 4 15  .1970O 7.7800 -0. ' -0. .9B586  337.00 3.1600 -0. -0  1 14 02 .70 2O0 35.OOO  39 770 1 1 . JOO 3.0000 GO 000  5 6900 6 . 2000 370 00 84 000  .41000 1 6500 3.0000 57.000  3.1800 .17000 3.0000 31 OOO  4 OIOO . 17000 3.0000 7.5000  45 .62000 .30000 - 1 15 OOO 28 500  3. 6000 .66000 .12000 34 OOO 10.000  58.920 21 620 . 12000 -0. 13 000  109 39 68.200 2.0000 31 OOO  1 1 360 9 OOOO 4 . OOOO 66 .000  5.4500 7 6000 370-00 86 OOO  .97000 .34000 3.0000 56. OOO  2.9800 .8OOO0 - 1 3.0000 32 OOO  6.3300 . 13000 3 OOOO 4.5000  46 . 75OO0 .20000 - '1 22 000 15 500  4 100O .75000 1 1100 12 OOO  55.680 14.080 1 .3300 -0. 1 1 000  1.5900 74000 .ICOOO - 1 -0. 35 145  .16300 7 6200 -0. 12.000 1 847B  156 3-07OO -0 -0.  115 33 84 eoo 5 0000 -0.  13 890 18.BOO 4.0000 49 000  1 2000 4 5000 360.00 86 000  .30000 .36O00 3.0000 60.000  1. 1600 . 8O0O0 - 1 1 OOOO 31 .000  3.3IO0 -6OOO0 3 OOOO 9. OOOO  .58000 .26000 -0. 56 000 14 293  -0 1 8600 610O0 -0. 1.7259  129 00 . 62O00 . 39000 -0.  40.040 ea 400 6 OOOO -0.  30 000 12.200 1 .OOOO 53.000  .9B0O0 6 9000 90 OOO 60.000  10000 -0 1 .OOOO 53.OOO  .23000 -0. 7 .0000 35.000  .38000 -0. 6.0000 10.000  .58000 . 3O0O0 90O00 - 1 -0. 65 569  . 116O0 3 9100 -0. -0 3 4501  49 000 1 .3600 -0. -0.  79 100 B5 600 1 OOOO -0.  10.670 14.000 1 .0000 4 7 000  3.0800 6 1000 160.00 84.000  .34000 .62000 1.OOOO 51.000  1.5600 .31000 4 .0000 37.000  3 SOOO .12000 3.OOOO 7 SOOO  290O0 13000 -0 -0 33 B97  -0. 1 2800 33000 -0. 1 6672  36 51000 .360OO •0  35 9G0 171 20 1 OOOO -0.  10 750 38 .000 3 OOOO 47.000  1.1800 4 5OO0 300.00 88 000  .60000 -0 3.0000 63.000  . 33OO0 -0. 5.0000 36 000  .25O00 -0. 4.0000 9 SOOO  305 2 0900 -0. -0  106 4 1 73 800 1.0000 34 000  30.340 10 OOO 3.OOOO S3 .000  3 7600 7.4000 340 00 87 000  .420OO .97000 3 OOOO 66.000  1.9800 .13000 4 .0000 40.000  5.7600 .80000 3 OOOO 5.0000  160 00 1 .6900 -0 •0.  101.06 91 600 1 . OOOO -0.  19 6J0 17.200 3.OOOO 53.OOO  3 ecoo 5 3000 180.00 90 000  .38000 .79000 1.0000 69.000  2.3400 .12000 5.0000 43.000  2.4900 .11C00 4 . OOOO 6 2500  316.OO  11?.55  4 2600 •0 36 OCO  61 600 2 oooo 32 .OOO  14 240 11 400 5. OOOO 36 OOO  3 7300 5 4C0O 760 OO 63 OOO  .33000 .48000 3. OOOO 53 OOO  3.4100 .50000 - 1 4 OOOO 36 OOO  5.5500 .15000 3.OOOO 5.25O0  96 500 74 40O 1 OOOO 0.  16 180 12 200 3 OOOO 45 OOU  3 6800 6 . 1000 30O 00 66 000  .25COO 1 0600 3 OOOO 63 OOO  3. 1000 .34000 5.0000 40.000  2.6900 . 1 I00O 4 OOOO 7.5000  35 .66000 . .eoooo - 1 15 000 20.500  4 .4000 690OO 1 2100 37 000 IS 500  48.540 6 950O .79000 -0.  36 .53000 . 3O0O0 - 1 15 000 32 5O0  3.4000 .66000 .19000 53.000 11.OOO  60 490 13 930 . 17000 -0 12.OOO  4.8000 .24000 .34OO0 -0 7 5000  46 620 21 300 3 6100 -0. 14 000  38 1 0200 •0. 35 OOO 10 OOO  5 OOOO 35000 -0 45 000 15.500  39  37 .30000 . 30000 34 OOO 16.750  - 1  IIOOO •0. 32-000 16 750 40 .56OO0 9C"X» 15.000 33.000  - 1  * 1 .16000 -0 33 .000 6 OOOO  6  .53^00  OOOO  1 1700 .46000 39O0O -0 41 .467  !  :  I  OOO  33 16 OOO 44 4 7GOO .11OO0 23 0 0 0 22 .500  76 16  OOO 500  18.500  47 .15000 -0 33 0 0 0 16 BOO  3 9000 OOOO •0 46 13 500  6 . 2900 3 2 100 •0. -0. 1 1 .000  46 .44000 . 1 10OO 15.000 16 000  4 1000 .36000 2 5600 45 000 18.500  36 030 9 5800 1 5400 -0. 9 OOOO  50 . IO00O -0 32 .000 14 000 51 35000 .40000 - 1 15.OOO 31.000 53 49000 .70O0O • 1 15 .000 20 250 53 .68000  200-?J • 1  OOO  15 13.750  5'  000  9 8300 4 6000 • .600O0 - 1 2 39O0 -0 -0. -0. 44 10 000 JO 500  OOO  5.4000 36000 .63000 49 000 17 ,500 •4 . 3000 .45000 .6*000 64 OOO 16 500  4 .O'X'O .62000 . 3JOO0 36 33 500  OOO  50OOO . 7OOO0 • 1  4 30OO . 45O0O 3 OIOO  33 15. OOO  4 1 30.500  COO  OOO  53 2 10 11 7 10 . 37000 -0. 9.0000  ,  46 730 10 510 .56000 0 6 OOOO  .74000 .64000 7.2600 .53000 . 10000 - 1 - 0 30. OOO -0. 2.9780 79.622  .910O0 4,8900  1 OOOO 40000 .80000 - I 45.000 53.310  -0. -0. 2.3947  1 OOOO .45000 . 11000 47 OOO 46 730  .12900 5.5000 -0 -0. 1.9109  1  60 450 10 360 . 300O0 -0 12 .000  .13°00 1 4500 52000 9 8200 6'jOOO - 11 - 0 -0. 34 41 690 1.0550  46 600 10 160 1 29O0 •0 7 SOOO  -68000 40000 2TO00 41.000 52 955  OOO  .14J00 7 .0500 -0 •0. 1 4140  - 1  00  126 2 9100 -0. -O.  .00  000  - 1  OO  OO  187 3 JOOO •0. -C  96  1 OOOO  - 1  57  .21000  -0.  32 000 te ooo  3.8000  .20000 -0. -0  5 OOOO 58 3.9OO0 360O0 .460O0 . 400O0 -1 .76000 15 OOO 36 000 30 OOO 19 000 59 4.6000 .74OO0 .52000 .SOOOO - 1 94O0O ISOOO 45 OOO 17 OOO 30 500 60 4.OOOO .51000 .60000 . SOOOO - 1 . 70O00 -0 15 OOO 21 500 16 000 61 4.2000 .74OO0 .33000 .20000 -1 . 280O0 23 OOO 54 000 25 OOO 6 OOOO 62 3 5000 .31000 340O0 .40OO0 -1 .70000 -0 13 000 31 OOO 7.5000 63 3.9000 .530OO 510OO . 30O00 - 1 .28000 33 OOO 13 000 16 OOO 16 000  64 .32000 .toooo 34 000 20 300 65 . 190O0 . 30000 -1 34.000 8 730O 66  39'>jO  4 . 40OO .34000 1.9100 43 000 12.500 4 .6000 . 17000 36O0O  -0.  13 230 3 6OO0 4 7 COO  1 0300 49 -OOO 16.500 3.40O0 .61000 SOOOO -t . 3600O 15 OOO -0. 21.000 16 OOO 66 3.5O0O .7 3000 .50000 - 1 55OO0 15 .OOO 36 OOO 21 OOO 15.000 69 3.4O00 .590OO . 65000 0OO .iryyjo -i 3347OOO 15 OOO 19 OOO 15 SOO 70 3.40OO 92O0O .740O0 .30000 - t .34000 13 OOO -0. 32 250 10 .000 71 3. 70O0 . 38^)0 .32000 . 40O0O - 1 .630OO 13 OOO 35 OOO 15 350 19.OOO .6'.'0O0 - 1  24 OOO 12 730 67 .4 MOO  73 3.80O0 57000 S6000 . 40O00 • 1 eoooo 13 000 42 000 t6 500 20 boo  23.160 6.6100  -0  -0. 6 OOOO 47,900 10 170 SOOOO -0,  1.3900 .37000  1.0200 -0  10,000  46 961  33.020 8 6300 69000  1 1400 .45000 . 14O00 33.OOO 46 509 1.3300 520OO .39000 49 OOO 44 260  -0.  10. OOO  S4 440 10 630 . 4 100O -0 8.5000 58 680 13.300 1 6100  -0. 9 OOOO  30 550 10 410 .46000  -0.  11.000 38 030 8 9500 .19000 -0. 9 OOOO  35.930 6.1300 .97000 -0  3.4BOO 1.3100  17 953 4 10O0 .90000 -  1  56. 160 13 400 31000  -0. 1 1 000  59.260 9 7900 .14000 -0 9 50O0 60,440 17.170 37O0O -0 12.000 48,030 1 1 ,4 10 .460OO  -0,  7 5OO0  -0.  -0  1.8994 .1380O 5.18O0 -O.  -0.  154 OO t.4900  -0  -0  1 .9633  .13300 6.5400  313.00 2 7100  -0. -0. 1.3196  -0. -0.  .I3J0O 7 .0000  317 .00 3.7400 -0. •0.  -0. -0. t.5186  1 .6600 . 12000 220 00 83OO0 7.3500 3.3800 .60000 - 1 - 0 . -0. -0. -0. 49 .000 33.349 3.0816 .1040O 199,00 1 1800 .40000 11.030 6 6500 .IPOOO - 1 -0 -0 -0. 43 000 41.000 42.839 94379 1 0700 .88000 - t 143.00 .33000 6 3100 3 7300 -0 .30000 - 1 -0. -0 15.000 -0. 56 340 1 3748  1 OOOO .35000 .37000  44 000  35.930 53.450 1 .5000 34 730 78O00 69000 I0OO0 - 1 -0. 21 000 13. SOO 35 633 49 8 10 1 -60OO 31.300 .820OO -6R0O0 10000 - t 53 . OOO 47 OOO 12 OOO 31.13 1 60 990 1.2100 12.520 .81000 .26000 . 1O0OO - 1 -0 31 000 9.50O0 • 50.403 57 660 1 6OO0 10 770 .49000 . 340O0 . 40O00 - 1 •0. 29.000 1 1 OOO 36.037 6 OOOO  281.00 .76000 , 40000  -0.  -0 -0  1 3500 .560O0 100O0 - 1 32 OOO 4 1 600 9B0OO .51000 100O0 - 1 17.000 60 469  .13600 3.7300  159.00 1 1 100 •0.  -0 -0.  1 .6434 .73O0O 2.4000 -0.  -0  6.2500 24.400 1 OOOO  5.1000  76.000  140 00 86. OOO  1 14 20 76 OOO 1.0000  17 360 41.600 3 .OOOO 49.000  4 1000 6 600O 150.00 87.000  91.920 6O.OO0 1 OOOO  33.080 9 6OO0 3.OOOO  -0  -0  -0.  113 10 80.400 1 OOOO  -0  1 .6300  . 14000  -0.  t OOOO SB.OOO  .58000 -0.  7.OOOO  98000 -0. 4.0000  36.000  30.OOO  .27000 .87000 3.0000 60 000  2.4600 . 10OO0 3.0000  3.66O0 . 1 1000 3.0000  47.000  4 7800 6 3000 150.00 68 OOO  .34000 t 0600 3.OOOO 63 000  2.5200 . 18OO0 5. OOOO 40.000  4.3900 . 1200O 4.0000 6.5000  • 22 660 14 .000 3.0000 57.000  4 05O0 5.7000 40.000 99 000  .47000 .B6000 3 .0000 SB . 000  2.3700 .13000 4.0000 36.000  4.1600 . 12000 4 .0000 7 OOOO  33.000  4.S000  166 95 86 800 1 OOOO 46 OOO  33 630 13 600 3.0000 65 OOO  5.9100 6.6000 40.000 BI.000  .30000 .66000 1 .OOOO 56 OOO  .79000 .90000 -1 6.0000  1 .8900 .40000 4 .0000 7.5OO0  12111 75 600 3 OOOO  5 8000 10 800 3 OOOO 59.000  3.B70O 7.0000 50 000  .51000 .3JOO0 1 OOOO 32.OOO  1.4900 .70000 -1 6.0000 36.000  3.5500 .70000 4,0000 8.5000  12? 52 69.300 5 OOOO  13.130 9 40OO 3.OOOO 44.000  4.8000 7 4000 50 000 80,000  .46000 .43000 2 OOOO  53.000  1.8700 .80000 -1 1.0000  31.000  4.9500 .90000 1.0000  94.870 117.00 1 .0000  24.750 24.600 3.0000  5 2700 4.8000 70 000 91 000  .34000 1 .2400 3.0000  1 .7900 .20000 4.0000  1.3600 . 11000 4.0000 12.500  18 110 5.6000 2O0.O0  .28000 2.3000 1 .0000 44.000  .54O00 29OO0 8. OOOO 28 000  3.4300 .40000 6.OOOO  . 3B0O0 .60000 1.0000  1.2800 .19OO0 7.OOOO  -0.  -0  -0.  154 04 134 90  66.000  74 000  78.000  28.000  47.000  6.0000  -0.  83 OOO ,61000 -0. •0  -0.  72.140 24 600 3 .0000 47.500  -0.  143 00 1 3800 -0. -0.  144 16 78 300 1 OOOO -0.  21 640 11.200 1.0000 44 OOO  7 2700 7 OOOO 170 00 77 000  52.000  34.000  3.3600 .70000 6.0000 9.2300  182 00 3 9700 •0. -0.  159,80 95 40O  34.290 13 700 3.0000 52.000  5.1200 7.2000 200.00 64 . OOO  .39000 .77000 i oooo 63.OOO  2 6400 .toooo 7.OOOO  4.6900 .90O00 2.0000  1  10, 3O0 .11600 5 3300 -0. 3.9B50 .870OO 7 2200 -0.  1  -0. 1.7341  .12400 6.3400  -0.  -0. 1.7260  1 9648 95000 6 930O -0.  1  35.000  5.0000  134 33  14 950 10.800 4.0000 51 OOO  4 0900 6.5000 260.00 81 000  63000 .56000 3 OOOO 59 OOO  1 76O0 .11000 4.0000  4 7B0O .80000 6 OOOO 4.5000  143 39 84 600 3 OOOO  -0  9.6900 15 000 5.OOOO 49 OOO  4 0700 5.6000 7 10 00 60 OOO  .62000 .33000 3 OOOO  62.000  3 1600 .70000 -1 5 OOOO 41.OOO  4.8700 .14000 3.0000  128 78 82 000 9.0000 -0.  7 B90O 17.600 5. OOOO 59 .000  3  79 000  .79000 .23OO0 3.0000 49.000  4.3100 .80000 -1 3.0000 38.000  6 4600 .1BO0O 2.0000 7.2300  126 28 71.400 1 OOOO  19 640 9 2000 3 OOOO 40 OOO  3 3300 7 6000 330.00 76 OOO  3.0000 49 OOO  350O0 .74000  1 2600 .toooo 4 OOOO 33 OOO  3.3000 .60000 2.0000 4.7500  1 14 55 63.400  20 4SO 9.B0OO 4.0000 52 000  3-6500 6.5000 450.00 65.000  .24000 .80000 3. OOOO 66 000  2.2600 . 120O0 4 OOOO  4.2300 . 10000 4 .0000 6 OOOO  153 00 1 9ROO -0  -0. 1  . 11300 6.2900 -0 -0. 1 8140  34.000  15.000  70. OOO 3 OOOO  181 OC 2 0500 -0 28 OOO  •0  4 OOOO  74 000  1.3700  37 ,000  . t 1300 6 6200 -0.  6.OOOO  192,OU •0  16.000 .4127 .73000 - 1 103,00 90O00 2,0200 .32000 3.6300 • 3O000 -1 -0 -0, •0. -0. 30. OOO 67 . 156 3 0497 1 0400 . 380O0 . I90O0 30 COO 46 173  80 360 123 20 6 OOOO  120.00 1 . 7700 -0  -0.  97  •0  -O,  1 OOOO -0  1400 6.5000 810.00  35.000  40.000  9.S000  74  52.740 9.5900 68000 -0. 9 OOOO  1 0900 .42000 .IBOOO -0 48 385  .11700 6 8300 -0 -0. 1 404 1  203 00 2 9700 -0. -0  116 39 7 1 000 1.0000 33.000  34 .430 9 6900 4 . OOOO 46 000  5 3900 7 2000 465 OO 86 OOO  .38000 1 3B0O 3.0000 S3.OOO  3.5300 .33000 3.0000 38.000  5.4900 .12000 3.0000 4.SOOO  4 OOOO .15000 -0. 49 000 12.5O0  1.7. 1T0 3 5700 -0. -0 9 5000  .35OO0 . I30O0 -0. 37 000 37 629  -0 1.9200 -0. -0. 1 .8594  53 OOO .69000 -0 -0.  42 900 122.60 1 OOOO -0.  4 5300 26.600 1 .OOOO 65 000  1.5500 4 4000 105 00 90.000  .31000 -0. 1.0000 65.000  .63OO0 -0. 5.0000 38.000  .98000 -0. 4.0000 8.0000  4.8000 . 16000 -0. 42 000 8 OOOO  7.7OO0 1 5900 -0 -0. 5.SOOO  .34000 . 13000 -0 35.000 32 083  -0. 1.2000 -0. -0 1 3250  22 000 . 47OO0 -0. -0.  35.380 309 80 4.OOOO 42.000  9.9000 56. 100 1.0000 62.000  1.4700 3.9000 100 00 80 000  .14000 -0. 1 .0000 63.000  .39000 -0. 7.0000 47.000  .38000 -0. 4.OOOO 7.5OO0  77 3.3000 .51000 .43000 .97000 .6O0O0 - 1 -0. 15 000 33.500 13 500  56 640 11.590 47OO0 -0. 10 OOO  1.4000 .IOIOO .32000 6 3000 .29000 - 1 - 0 . -0. 38 000 1.6397 40 457  206.00 3.3100 •0. 36.000  139 48 70.400 2 OOOO 43 000  12.010 9.B0OO 4.OOOO 97.000  3.4100 7.2000 400.00 84 000  .27000 .46000 3 OOOO 61.000  3.3600 .18000 5 OOOO 37.000  4.6400 .11000 4.0000 6.OOOO  76 3.8000 .56090 .71000 30000 - 1 .43000 -0 15 OOO 14.000 33 OOO  61.070 13.080 .30000 -0. 10.500  1.6700 . 10000 .53000 7 3000 0 . .20000 -1 -0. 38 COO 36.569 1 6546  311.00 1 9700 -0 -0  115 64 74.600 3.0000 41 COO  32.530 10.600 4.0O00 56.000  4.3100 7.0000 400 00 66 OOO  .22000 .94000 3.0000 68.000  3.3700 .70000 -1 7.0000 37 .000  3.5700 .60000 • 4.0000 6. OOOO  79  3.2000 49099 .58900 20000 -11 .11000 -0. 15.OOO -0. -0.  63 850 14 2B0 .90000 -1I -0. -0.  1.4900 ,85000 -1 161.00 .63000 7.9800 3 3900 -0. 1 -0. . 10000 - 1 -0. 32 000 33 OOO 1 .7695 43 853  169 89 90 200 3 OOOO -0.  13.020 12 600 6 OOOO -0.  6 5100 7.3000 670 00 -0.  .64000 .31000 3.0000 -0.  1 .6800 .eoooo 5.0000 -0.  80 . 390O0 -0. 15 000 13 5O0  4. 1000 .94 OOO -0 -0. 18 OOO  47.470 8 8200 -0. -0. 6.OOOO  1 0800 .43000 -0 -0 43 954  -0. 7 .6100 -0. -0 1.1590  137.00 3 2600 •0. 22.000  129.96 88 . 1O0 3. OOOO -0  1.9600 21 700 6 OOOO 48.000  .90000 4.0000 940.00 64.000  .36000 -0 3.0000 63.000  2.0900 -0. 5.0000 24.000  4.3300 -0. 4.0000 10.500  83 . 13000 -0 32 . OOO 14 . 5O0  4 6000 6 37O0 .90000 -1 1 8600 -0. -0. -0. -0. 31 500 8 OOOO  .31000 . 1 1000 -0 -0. 30 546  -0. 1 . 1900 .36000 -0. ' 1.5630  77.000 .45000 .25000 -0.  26 380 78.600 6 OOOO -0.  7.7500 10.600 3 .0000 45.000  1 . 1000 7.4000 310.00 SB.OOO  .90000 -1 .43000 -0. -0. 8 OOOO 3 OOOO 67.000 40 000  .33000 -0. 6. OOOO 8.0000  4 4000 51009 .43900 1 1.20O0 .SOOOO - 1 33 .000 38 000 19.500 19 OOO  75 . 37000 -0 23 OOO 34.500 76 .4 IOOO -0 23 000 33.500  64 . 4 1000 .60000 - 1 15 OOO 36 350 85 .43OO0 .300O0 16 000 32.250  -{  -i  4.4600 .70000 • 3.OOOO -0.  4 .0090 .43000 1 6700 36.OOO 11 .OOO  32.520 5.3100 1.1300 -0. 5 SOOO  .96000 -1 67.000 56000 4.9200 . 43000 2 67O0 0 . -0 60000 -1 -0. -0. 0. 58.071 1.0793  73.750 66.200 1 OOOO -0  16.170 9.3000 3.OOOO 71 .000  3.3500 7.3000 330.00 S3 000  .16000 .73000 1 .0000 68.000  1.3500 .13000 3.0000 64.000  3.3300 . 11OO0 3.0000 7.3500  3.80O0 . 4T.000 1.1200 36 .000 14 000  56 550 11 640 .56O00 -0. 9.5000  1 3000 .94000 -1 128.00 27OO0 6 3 100 1 9J00 -0. 30000 -1 - 0 -0. -0. 37 ,000 47.125 1.6744  135 55 69 000 7 OOOO 33 OOO  37 8B0 9 2000 5.0000 54.000  3.1900 7 50O0 710.00 63 000  .33000 .62000 3 OOOO S3.000  1.5500 ,90000 -1 6.0000 31 .000  4.9100 .90000 • 3 .0000 4.7500  86  60 620 8.6400 . 250O0 -0. 6 OOOO  .83000 .66000 • 1 104.00 .46000 6.3000 1 9800 -0. 7000C - 1 - 0 19 000 -0. •0 73 277 1 .3935  132 72 73.200 2 OOOO -0.  14 B:O 9.4000 s.oooo 52.000  2.7100 7.8000 750 00 69 000  .37000 .59000 3 .0000 53.000  3.5400 .40000 - '1 3 OOOO 35.000  S.7100 . 10000 3.OOOO 3.5000  87  64 010 9.5300 2J0OO -0 6.5000  1 5000 .B30CO - 1 147 00 4 3000 8.2200 3 0300 -0. .10000 - 1 - 0 12,OOO -0 -0. 1 1594 42 673  157.93 72.800 3 OOOO -0.  5 7600 13.400 6.0000 46 OOO  7 56O0 5 4000 1140 0 63 000  . 46000 .14000 3.0000 54 000  3 5900 .11000 6.0000 42.000  4.7400 . 1 IOOO 3.0000 5.5000  86 3.40O0 .96909 1. 04O0 SOOOO - 1 30O0O -0 15 OOO 10.OOO 33 000  60 7 90 13.040 . 73090 -0. 1 1 OOO  1.3100 .13200 8.2800 .52OO0 . 10OO0 - 1 -0 -0. -0. 46 405 1 .4541  92 000 2 9G00 -0. 15.000  148.80 78,200 3,0000 -0.  4.4800 14.890 6.OOOO 56.000  2.6100 5.3000 1140.0 76 .000  1 . 1400 . 140O0 3.0000 53.000  2.3900 .40000 -•1 5.0000 28.000  5.4300 .12000 3.0000 5. OOOO  89  3 . 2900 62OO0 .66900 .8:JOOO - 1 2 OIOO -0. 15 OOO 20 OOO 15 000  44 640 6 2800 1 0900 -0. 13 SOO  92000 . 11600 .34000 6 2300 SOOOO - 1 - 0 . -0. -0 48 522 1 0080  64.090 2 . 1400 -0 -0  100 41 73 BOO 9 .OOOO -0  4.9600 15.6O0 6 OOOO 50,000  2.69O0 4.7090 12O0 0 80 OOO  .38000 .39000 3 OOOO 69. OOO  1.6900 .70000 - '1 3.0000 30. OOO  3 06OO .13000 3 OOOO 5.0000  90 3 4000 .34O90 .27O00 i eooo 70O-J9 - i -0 12 OOO •0 0  38.970 5 340O 1 7300 -0. -0  .96000 • 1 46,OOO 75000 260O0 6 6900 3 1300 -0 40OOO - 1 - 0 -0 -0 •0 51 960 7982 1  65 400 93.600 9 OOOO -0  4 3700 16 600 7 OOOO -0.  1 . 34O0 5 OOOO 1300 0 -0.  .31000 .49000 3.0000 -0.  91 3.2009 55OO0 . 33000 20000 - 1 1 IOOO -0. 15 OOO 32 000 16 000  65 939 14 4 90 .60000 - 1 -0. 10 000  1.4 300 .83000 - 1 174 'X) .61000 7.5600 1 9200 -0. . 1OOO0 • 1 -0 -0 -0. 37 .000 1.9167 46 105  153 80 80 000 2 OOOO •0.  9 4 OOO 9 eooo 3 OOOO 53 000  4 0500 6 2000 110.00 65 000  .31000 .36000 3.0000 59 000  19 240 4 8400 -0. . •0. 1 1 000  1.0300 .45000 0. 36 000 IB 680  15 1 00 , 98,'j'yi •0 -0  65 430 107 90  5.7B00 21 500  39.000  47 000  1 6900 5.3000 70.COO 73 000  . 13000 -0. 3.0000 57 .000  1 4300 65OO0 • 1 132 OO 2.27O0 49000 6 0700 -0. . 10000 ••1 - 0 . -0. -0. -0 33 322 1 3888  137 44 72 890 3 (.OOO 36 000  15. 1 10 9 JOOO 3 00.10 51.000  5.1600 7 7000 60.000 91.000  .45OO0 43000 3.0000 61 OOO  3 4000 51090 .68000 4O09O - 1 .42O00 -0 lb 000 33 500 18 500 3 .6000 7 3OO0 . 7 2090 .2OO0O - 1 2J00O 15 OOO -0 18 500 17 5O0  92 . 230O0 •0. 25 OOO 11.500 93  46000 39090 - 1 15 OOO 3 1 500  3.7090 23000 -0 -0 13 000 3 . 3O0O .59000 .260O0 46.000 20 000  47 650 8 4 300 .14000 51.000 8 OOOO  -0 3 i 100 -0. -0 1 .5563  98  B  OOOO  3  OOOO  .87OO0 . 10000 1 OOOO -0 2.0400 .60000 - 1 4 . OOOO 31 .000 7BO00 -0. 6.0000 40.000 1.7300 .90000 - 1 5.0000 44.000  3.8500 .17OO0 3.0000 -0. 3.4300 .BOOOO 3.0000 4.5000 .84000 -0. 6 .0000 13.000 3.6500 .90000 4.OOOO 4.0000  •4  3.9OO0 390O0 3IOO0 .30000 -11 .ISOOO 34 .000 -0. 33 OOO 15 OOO  85 . I2OO0 -0 33.000 (2 SOO  4 30O0 .80000 -0 -0 14 500  62 770 1.4 100 .B30OO -11 188.OO 10 580 6 10OO 2 3200 . 53000 SOOOO - 11 . 10000 - 1-0 •0 -0 21 000 -0 -0 44 518 1 .7344 9.5000 -I1  13 890 4 12O0 -0 -0 9 5000  .74000 . 3 3 OOO -0 -0 18.770  .B9CO0 - 1 96 .000 1 . 16O0 1 4 100 6 3900 .53000 -0 . 1OOO0 -1 -0. -0. 15.000 -0. 35 043 3 0986  •0 1 7500 .30000 -0. 3 3543  82.000 54O00 .31000 -0  42.770 9.4000 3 OOOO 58 000  3.S5O0 8. 40O0 210.00 88 .OOO  .38OO0 1.1500 1.0000 63.000  45.540 86 OOO 6.0000 -0  6.7500 12 600 2 OOOO 48 000  2 8800 6 8000 95.000 77 .000  .38000 -0. 1.0000 52.000  122 36 75.600 1 OOOO -0.  14 230 16 . 200 4 OOOO 62 . OOO  4 .0300 4.7000 560 00 83.OOO  .38000 .46000 3.OOOO SO.OOO  2.1300 .90000 2.OOOO 36 000  6.1700 . 10000 3.0000 10.250  5 3800 6.1000 530.00 89 000  .60000 . 4 OOOO 3.0000 65.000  .aoooo -  28.000  14 250 13.800 4.0000 49.000  2 5500  aoo 4. oooo  7 OOOO 41 .000  4.8700 . I00OO 2.0000 10.OOO  159.06 78. BOO 4.0000 36 000  1.6600 .90000 -1 7.0000 35 OOO .33000 -0. 8 OOOO 40.000  3.S9O0 .80000 6 OOOO 6.0000 .39000 -0. 6.OOOO 11. SOO  96 .64000 .SOOOO - 1 12 OOO 30 750  3 SOOO 830O0 .53000 17.000 10 000  63.850 13 . 200 .340O0 -0. 8 SOOO  .88000 .2O0O0 - 1 16 OOO 14 50O  4.3000 .90000 .18000 39 OOO 30 OOO  63 540 12.580 1 S300 -0 7 OOOO  1 .4900 .64000 .39O00 26.OOO 41 .973  .14100 8 0300 -0 -0 1.S666  1B5 .00 3 3300 -0. -0.  88 .99000 .70000 - 1 IS 000 33 SOO  3 6000 1.2900 .98000 30 000 13.000  62 160 IO 300 .77000 -0. 11.300  .14700 1.3200 9.2400 .5SOO0 .40000 -1 -0. -0. 29.OOO 1.1147 47.106  112 00 3 74O0 -0. -0.  131.65 63 200 1 .0000 26.000  16 940 18.000 4 OOOO 55.000  4.2400 4 .6000 540.00 81 .000  47000 46OO0 3.0000 62.000  2.5400 .12000 3.0000 32.000  5.3400 . 170O0 3.0000 5.0000  -0 1.0700 .33000 •0 1 6262  17 OOO .49OO0 .3B0OO -0.  28 930 84.000 4 .0000 44 .000  9.5000 14 000 3.0000 77.000  16 130 6.0000 60 000 81.000  . 13000 -0. 1 OOOO 75.000  .1B000 -0. 6.0000 48.OOO  .19000 -0. 6.OOOO 8.3000  57.710 10.830 I2OO0 -0. II 000  .65000 - 1 111.00 .76000 2 1200 6 2700 .33000 -0. 1OOO0 -1 -0 -0. -0. 31 000 7B 934 1 .7273  1 12.42 69 200 3 OOOO 33.000  7.2300 9. BOOO 4.0000 64 000  3 9800 7.0000 270 00 87 000  S90O0 .38000 3 OOOO 60.000  3.1800 .60000 3.OOOO 31.000  3.9B00 .BOOOO 3.0000 4 SOOO  63 900 8 S300 60O00 - 1 -0. 10 000  .57000 - 1 74.OOO .92000 3 3600 7 4 700 .31000 -0 .10O00 - 1 -0. -0. -0. 32 OOO 69 457 1.1151  167 14 7?.800 3 .OOOO 33 000  39.570 9 2000 4.OOOO 62.000  3 9700 7 .9000 260 00 69 000  .30000 . 77OO0 3.0000 50.000  1 .8100 .60000 5 OOOO 33.000  5.1300 . 70O00 4.0000 4 . OOOO  8.19O0O -0 32 OOO 30 OOO  3 8800 4 7000 BOOOO - 1 1.7400 -0. -0 59 000 -0 7 OOOO 5 OOOO  3 5000 101 .33000 .17000 2O00O - 1 .16000 15.000 -0. 37 600 1 1.300 102 30OO0 . 1O<»0 - 1 15 OOO 27 OOO  3 60C0 . 33OO0 . 60000  32 0"X> IS 509  -1  .24000 11000 -0. 43.000 24 SOO  144 63  «4  34 540 7 04O0 1 8O00 -0 7 OOOO  .75OO0 .30000 .40000 -0. 46 053  65 .000 1 3200 -0. -0  73 640 70. OOO 1 OOOO •0  24 350 10.600 3. OOOO 58 OOO  3.7200 6 6000 210 00 90.000  .11000 1 .4 100 3.0000 70.000  1.7600 .35000 5 OOOO 39.000  1 .9700 .13000 3.0000 8. SOOO  79 470 84 400 1 OOOO -0.  17.170 15.600 1 OOOO 71 000  3 7B00 5 .4000 70.000 87 000  .32O00 .91000 3.0000 63 000  1.6500 .23000 5.0000 30.000  1.7600 . 14000 4.0000 9.7500  48.870 17 1 . SO 1 .0000 -0.  10 750 35 200 1 . OOOO 66 OOO  4.8100 S 1000 10 000 BB 000  .ssooo  .83000 -0 3.0000 37 .000  .67O0O -0. 3.0000 13 250  1.4400 54O00 - 1 70.000 .32000 4.5200 3 . 1600 . 2O0O0 -1 ' -0. -0. -0 S9.000 -0 4 4 569 3 3850  174 . 4 4 101.90 2 OOOO -0  45.000 12 800 1 .0000 -0  17.C30 8.2000 40 000 -0  1 .5400 1 .3400 1 .0000 -0  1 . 3B00 .22O00 8.0000 -0  2.0100 . 30000 4 OOOO -0.  58 GCC 1 . 2200 .SIOOO •0.  125 49 96 000 8 OOOO -0.  36 750 13 800 1 .OOOO 81 .OOO  24 250 7.0000 10.000 90 OOO  2.7500 -0  .38000 -0 7 .OOOO 37 OOO  .18000 -0. 6.OOOO 12 OOO  106 3 4000 65 790 . 15000 29C>vO 12.990 1COO0 - 1 60O0O - 1 1OOO0 13. OOO -0 -0 19 SOO 21.000 a oooo  1 . 1400 .69000 - 1 95 000 2 - OCOO .49000 6 30OO .20O00 -11 -0 -0 40 OOO -0. 39 OOO 57 711 1 9985  169 16 81.200 2 OOOO -0.  18 030 10.BOO 4.0000 48 000  4.5800 B lOOO 310 00 90 000  .36000 .44000 3.0000 55.000  2.4000 .60000 5.0000 43 OOO  3.7400 . IOO0O 3.0000 4.5000  109 4.OOOO I75O0 .21O0O ]''»0 - 1 25O0O -0 16 OOO 6.3000 28. SOO  63 450 32 820 .60000 -0. 9 OOOO  1.1400 560O0 . 10O00 - 11 S3.000 54 78 1  teo.ei  79 . 200 4 OOOO 31 .000  27 680 9.40O0 4 OOOO 70.000  5.2500 B.4CO0 310 00 83.030  .36000 .73000 1 OOOO 52 000  1 .3400 .80000 6 OOOO 30.000  1 31O0 6O0OO 4 .0000 6. SOOO  113 4.6000 . 25'>X> . 310O0 . 330O0 . 2'hyyi -1 34 jOO -0 21 OOO 14 OOO  970 10 990 170O0 -0 9 OOOO  1 740O .ISOOO 6 90OO 550O0 . 80OO0 -1 1 -0 29 000 -0. 3 6 764 1.5928  3.17 00 1 87'JO •0. 31 OOO  142 40 74 400 4 OOOO 43 000  47.990 9 6 OOO 4 . OOOO 59 OOO  7 3200 7 60O0 310 00 6 7 000  .57000 1 2700 1 OOOO 72.000  2 4500 . IO0O0 8 OOOO 45.000  3.300O BOOOO 6.0000 8.3000  112  2' 890 6 6S00 -0 -0 6 .OCOO  158 00 1 5200 .IflOOO .70000 - 1 -0 -0 1 3206  90 800 77 600 1 OOOO -0.  IB OOO 10 800 3 OOOO 69 000  2 60O0 7.3000 180.00 90 000  30000 -0. 2.0000 70.000  . 90OOO -0. 2.0000 35 000  1 6800 -0 4.oooo 8.5000  103 39000  .isooo  34 000 20 SOO  4 4000 .53000 2 7600 -0 16.OOO  . 11500 4.4200 -0. -0 1 5938  104 49OO0 . 1O0O0 23 OOO 23 750  4 . 200O . 460O0 1 . 4500 46.000 6 OOOO  37 OOO 7.1800 97OO0 -0. 8 OOOO  ill.OO .96000 - 1 95O0O 2.5300 5.2800 39OO0 -0. 6OO0O -1 -0. -0. -0 -0. 1 3598 38 .94 7  105 . 19'vyj -0 25 000 20 750  4 6OO0 . 170O0 -0. 36 OCO 10 000  15.320 3.7300 -0 -0 7 OOOO  .S4OO0 2 3000 -0. -0 28.370  106 4 SOOO .1400O 7 OOOO 4O0O0 - 1 .15000 -0 16.000 -0 -0  64.180 15 SOO . 30000 -0 -0  107 I4O00 -0 33 000 28.SOO  29 280 7 64C0 -0 -0. 7 OOOO  3-tryyQ  -0 2 2 OOO 26 OOO  3  4000  ISOOO -0. -0 4 3000  4 SOOO .260OO -0 33 OOO 10 3(30  63  1 49O0 470O0 •0. 28 OOO 19.651  3 57O0 23OO0 -0 -0 7.900B  -0 1 8700 -0 -0 1.9947  -0 3.0700 .S4O0O -0. 2 4886  59 .000 590O0 -0 -0.  .63000 - 1 69.000 1 990O 5 6700 -0. -0 29.000 -0. 4 0247  -0  4. s r . o o  99  -0.  1 oooo  66 000  1 oooo  69. OOO  11] . I IOOO  3. SOOO . ISOOO  - 0  - 0 .  22 OOO a) oco 114 .24000 soooo 14 OOO l» SOO  34 OOO 13 COO  -i  114 1 0300 .SOOOO -1 16 OOO 21.600 11? . TSOOO 40O0O -1 13 OOO 34 000  4.9000 .2*000 TSOOO - 0 .  14 S70 1 2SOO -0. -0. 7 OOOO 55 540 21 410 1. 15O0 - 0 .  2.1300 17000 -0 -o • 4349/  - 0  1 8600 .13000 -0 1.T473  2 2900 .11600 4.3400 1 0800 .4CO00 -1 -0. - 0 .  - 0 .  • SOOO  II 000  24 253  • 0495  • OOOO .€7000 .15000  • 3 ««0 14 ISO 1(300  1.8200 .74000 39OO0  . 16500 • 6300 -0. -0. 1 6663  - 0 .  - 0  11 SOO  • oooo  3 4000 nooc .nooo  • 1 290 • 8 100 270O0 •0. 10 c o o  - 0 .  14 500  - 0  39 583 •5000 3D0O0 .30000 -1 39 000 64 516  . 10700 7,5300 - 0 . - 0 .  1.1036  34 OOO 71OO0 .33000 -0  49 290 122.60 1.0000 -0  6 7500 35.000 1 OOOO 66 OOO  3 OOOO 4.9000 180 00 S3 000  . 1(000 -O 2. OOOO •8.000  11*.OO « 4500 -0.  172.10 109 60 4 OOOO  76.060 14 600 3 OOOO •S . 0 0 0  6.5900 7.SOOO loo.oo •4 OOO  .38000 2.0600 1.0000 63 000  .46000 . 11000 8.0000 •0.000  1 4900 .SOOOO 4 OOOO 11.000  10.960 11.400 4.0000 •1.000  • 8500 7.7000 170.00 •4.000  .88000 •8000 1.0000 6 6 OOO  1 1000 .11000 7 OOOO 19.000  1.6400 . 14 OOO 4 OOOO 7.0000  10 730 • 6CO0 1.0000 59 OOO  (100 6 5000 175 00 88.000  .11000 .40000 1 OOOO se o c o  2 6600 .70000 8.0000 35 000  (.0800 . 12OO0 3 OOOO 9. SOOO  - 0 .  173 00 3 6600 - 0  -0  6(1 000 3 5400 •0 •0  100  - 0 .  145 05 • 7 800 -0 - 0 .  120.37 63 300 3.OOOO 33 OOO  3  .41000  -o.  1.0000 40.000  • 1000 -O. 1 OOOO 10.OOO  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0096161/manifest

Comment

Related Items