Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Land use trends and the influence of orchard management on the soils in Creston, B.C. Murphy, Kevin James Douglas 1983

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1984_A6_7 M87.pdf [ 7.16MB ]
Metadata
JSON: 831-1.0096147.json
JSON-LD: 831-1.0096147-ld.json
RDF/XML (Pretty): 831-1.0096147-rdf.xml
RDF/JSON: 831-1.0096147-rdf.json
Turtle: 831-1.0096147-turtle.txt
N-Triples: 831-1.0096147-rdf-ntriples.txt
Original Record: 831-1.0096147-source.json
Full Text
831-1.0096147-fulltext.txt
Citation
831-1.0096147.ris

Full Text

USE TRENDS AND THE INFLUENCE OF ORCHARD MANAGEMENT ON THE SOILS IN CRESTON, B.C. By KEVIN JAMES DOUGLAS MURPHY B.Sc, The University of B r i t i s h Columbia, 1983 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES Department of S o i l Science We accept t h i s thesis as conforming to the required sta/idard THE UNIVERSITY OF BRITISH COLUMBIA December, 1983 © Kevin James Douglas Murphy, 1983 In presenting t h i s thesis i n p a r t i a l f u l f i l m e n t of the requirements for an advanced degree at the University of B r i t i s h Columbia, I agree that the Library s h a l l make i t f r e e l y a v a i l a b l e for reference and study. I further agree that permission for extensive copying of t h i s thesis f o r s c h o l a r l y purposes may be granted by the head of my department or by his or her representatives. I t i s understood that copying or publication of t h i s t h e s i s f o r f i n a n c i a l gain s h a l l not be allowed without my written permission. Department of SOIL SCIENCE  The University of B r i t i s h Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 i i ABSTRACT The e f f e c t s of apple orchard management on s o i l morphology and f e r t i l i t y were examined by comparing the s o i l under native coniferous vegetation with the s o i l in the orchard. In 50 years, i r r i g a t i o n and f e r t i l i z a t i o n of the grassed orchard s o i l s in Creston, B r i t i s h Columbia has provided a much greater supply of readily decomposable organic l i t t e r than the forest had provided in hundreds of years. A Sombric Brunisol has evolved from a Dystric Brunisol in the sandy g l a c i o f l u v i a l material of the Elmo s o i l series and a Dark Gray Luvisol has developed in the s i t e o r i g i n a l l y occupied by the L i s t e r s o i l series Orthic Gray Luvi s o l . Through orchard management, t o t a l carbon, t o t a l nitrogen and extractable phosphorus were enhanced in the surface s o i l of both orchard s i t e s . The greater amount of organic matter and extractable phosphorus in the Elmo s o i l orchard s i t e was the major feature distinguishing the orchard from the forest s i t e . Within the orchard s i t e a concentration of cations at the surface and a depletion between 30 and 60 cm characterized the s o i l inside the orchard d r i p l i n e . In general, samples co l l e c t e d within the d r i p l i n e of the sandy orchard s o i l represented a d i f f e r e n t population than samples co l l e c t e d outside the d r i p l i n e . In addition to more carbon, nitrogen and extractable phosphorus, a greater l e v e l of exchangeable bases was found at most sample depths in the L i s t e r s o i l orchard s i t e . This was foreshadowed by f i e l d observations indicating that up to 10 centimeters of surface s o i l had been eroded or removed from the i i i o r c h a r d s o i l , t h e r e b y r e d u c i n g the depth t o the c a l c a r e o u s p a r e n t m a t e r i a l . In c o n t r a s t t o the d i f f e r e n c e s o b s e r v e d a c r o s s the d r i p l i n e i n the sandy s o i l , l i t t l e or no d i f f e r e n c e i n s o i l c h e m i c a l p r o p e r t i e s was noted a c r o s s the d r i p l i n e i n the h e a v i e r t e x t u r e d L i s t e r s o i l s e r i e s . S i n c e C r e s t o n r e p r e s e n t s one of the v e r y few a r e a s i n Canada c a p a b l e of p r o d u c i n g t r e e f r u i t s the changes t h a t have taken p l a c e s i n c e 1950 i n l a n d use and o r c h a r d p r o d u c t i v i t y were i n v e s t i g a t e d . By d i m i n i s h i n g the tonnage of f r u i t p r o d uced, the l o s s of o r c h a r d l a n d t o s u b d i v i s i o n s p r i o r t o 1972 poses a t h r e a t t o the c o n t i n u a t i o n of a v i a b l e f r u i t i n d u s t r y . However, an u n c e r t a i n market and low r e t u r n s t o the growers appear t o p l a y a g r e a t e r r o l e i n l a n d use a l l o c a t i o n i n C r e s t o n than does urban encroachment. A drop i n t o t a l a p p l e p r o d u c t i o n i n C r e s t o n s i n c e 1950 was c r e d i t e d t o the l o s s of 190 h e c t a r e s of o r c h a r d l a n d . Through b e t t e r space u t i l i z a t i o n and e a r l i e r b e a r i n g , new semi-dwarf t r e e p l a n t i n g s t h a t a r e b e g i n n i n g t o produce f r u i t w i l l a i d i n s u r p a s s i n g the 1950 p r o d u c t i o n v a l u e . i v Table of Contents Abstract i i Table of Contents iv L i s t of Tables v i L i s t of Figures v i i Acknowledgements x 1. Introduction 1 2. Literature Review 4 2.1. Management and S o i l Genesis 4 2.2. Management and S o i l F e r t i l i t y 5 2.3. Land Use and Production 7 3. Materials and Methods 9 3.1.1. Site Description and Selection 9 3.1.2. S o i l Sampling 10 3.1.3. Laboratory Analysis 11 3.1.4. S t a t i s t i c a l Analysis 13 3.2.1. Land Use 13 3.2.2. Crop Yields and Productivity 14 4. Results and Discussion 15 4.1. The Influence of Orchard Management on S o i l Genesis .15 4.1.1. Elmo S o i l Series 15 4.1.2. L i s t e r S o i l Series 19 4.2. The Influence of Orchard Management on S o i l Chemical Properties 24 4.2.1. Elmo S o i l Series 24 Summary 37 V 4.2.2. L i s t e r S o i l Series 39 Summary 50 4.2.3. V a r i a b i l i t y of S o i l Chemical Properties 52 Summary 56 4.3. Land Use and Production 57 4.3.1. Land Use ' 57 4.3.2. Crop Yields and Productivity 61 5. Summary and Conclusion 63 5.1. S o i l Genesis 63 5.2. S o i l Chemical Properties 64 5.3. Land Use 66 5.4. Production 67 Literature Cited 68 Appendix .74 v i L i s t of Tables 4.2.1. Elmo S o i l . Orchard vs. Forest. T-test 37 4.2.2. Orchard D r i p l i n e . Mann-Whitney U-test 38 4.2.3. L i s t e r S o i l . Orchard vs Forest. T-test 50 4.2.4. . Orchard D r i p l i n e . Mann-Whitney U-test 51 4.3.1. Changes in Land Use. Creston, B.C 58 4.3.2. Fr u i t Production. Creston, B.C 62 vi i L i s t of Figures 4.1.1. Elmo S o i l Series. P r o f i l e Diagram 17 4.1.2. L i s t e r S o i l Series. P r o f i l e Diagram 22 4.2.1. Elmo S o i l pH 24 4.2.2. Orchard Dripline pH 24 4.2.3. Elmo S o i l CEC 26 4.2.4. Orchard Dripline CEC 26 4.2.5. Elmo S o i l Ca 27 4.2.6. Orchard Dripline Ca 27 4.2.7. Elmo S o i l Mg 28 4.2.8. Orchard Dripline Mg 28 4.2.9. Elmo S o i l K .29 4.2.10. Orchard Dripline K 29 4.2.11. Elmo S o i l Na 30 4.2.12. Orchard Dripline Na 30 4.2. 13. Elmo S o i l Mn 31 4.2.14. Orchard Dripline Mn 31 4.2.15. Elmo S o i l BS 31 4.2.16. Orchard Dripline BS 31 4.2.17. Elmo S o i l C 33 4.2.18. Orchard Dripline C 33 4.2.19. Elmo S o i l N 34 4.2.20. Orchard Dripline N 34 4.2.21 . Elmo S o i l CN 35 4.2.22. Orchard Dripline CN 35 4.2.23. Elmo S o i l P 36 4.2.24. Orchard Dr i p l i n e P 36 vi i i 4.2.25. L i s t e r S o i l pH 39 4.2.26. Orchard Dr i p l i n e pH 39 4.2.27. L i s t e r S o i l CEC 40 4.2.28. Orchard Dripline CEC 40 4.2.29. L i s t e r S o i l Ca 41 4.2.30. Orchard Dripline Ca '.41 4.2.31. L i s t e r S o i l Mg 42 4.2.32. Orchard Dripline Mg 42 4.2.33. L i s t e r S o i l K 43 4.2.34. Orchard Dripline K 43 4.2.35. L i s t e r S o i l Na 44 4.2.36. Orchard Dripline Na 44 4.2.37. L i s t e r S o i l Mn 45 4.2.38. Orchard Dripline Mn 45 4.2.39. L i s t e r S o i l BS " 46 4.2.40. Orchard Dripline BS 46 4.2.41. L i s t e r S o i l C -.46 4.2.42. Orchard Dripline C 46 4.2.43. L i s t e r S o i l N. 47 4.2.44. Orchard Dripline N 47 4.2.45. L i s t e r S o i l CN 48 4.2.46. Orchard Dripline CN 48 4.2.47. L i s t e r S o i l P 49 4.2.48. Orchard Dripline P 48 4.2.49. Co e f f i c i e n t of Variation. pH 52 4.2.50. Co e f f i c i e n t of Variation. C 53 4.2.51. C o e f f i c i e n t of Varia t i o n . Ca 54 4.2.52. C o e f f i c i e n t of Variation. P 55 i x 4.3.1. Land Use Map. Creston. 1950 4.3.2. Land Use Map. Creston. 1980 X Acknowledgements I would l i k e to thank Dr. Les Lavkulich, Dr. Hans Schreier and Dr. Art Bomke for a s s i s t i n g with my master's thesis research and Mr. Maurice Murphy and Mr. Loathar Schuman for allowing me to dig cubic meter p i t s in their orchards. I would also l i k e to thank a l l those in Creston and everyone in the s o i l science department who have given advice or assistance during this study. F i n a l l y , special thanks are extended to my parents Maurice and Irene Murphy for helping with many aspects of the thesis research. 1 1. INTRODUCTION The primary aim of this study was to est a b l i s h what influence orchard management has had on s o i l development and s o i l f e r t i l i t y in the orchard lands of Creston, B r i t i s h Columbia. F r u i t tree farming, through i t s influence on the factors of s o i l formation, was expected to invoke changes in the morphological and chemical properties of Creston's native s o i l . V a r i a b i l i t y in s o i l chemical properties induced b y management was also investigated. King ( 1 9 7 2 ) noted that the pH and exchangeable bases measured inside the orchard tree d r i p l i n e were lower than outside the d r i p l i n e in some Okanagan orchards. V a r i a b i l i t y becomes es p e c i a l l y important when older, widely spaced trees are replaced by smaller, c l o s e l y spaced trees. Since pH influences nutrient a v a i l a b i l i t y the pattern l e f t by the previous orchard's d r i p l i n e might be refl e c t e d in variable, and possibly stunted growth of newly planted trees. The secondary objective of thi s study was to document the changes in land use and tree f r u i t production in Creston since 1950. C o n f l i c t s between r e s i d e n t i a l or i n d u s t r i a l and a g r i c u l t u r a l land use are common in the few southern Interior valleys of B r i t i s h Columbia suited to commercial apple production. Since the orchard area was obviously declining (Manning and Eddy, 1978), the? packing house tonnage records for Creston were also investigated in order to estab l i s h whether a possible change in productivity has offset or augmented the reduction in land area farmed. Increased productivity was expected due to technological advances in orchard management. 2 The t o t a l area under investigation in Creston was approximately 760 ha. The Elmo s o i l series, a del t a i c deposit, accounts for about 50% of the area while the L i s t e r and Creston s o i l s o i l series, both of gla c i o l a c u s t r i n e o r i g i n , make up the remainder (Wittneben and Sprout, 1971). The L i s t e r and the Elmo s o i l series were chosen for investigation because of their widely d i f f e r e n t s o i l texture and because of the a v a i l a b i l i t y of a control s i t e for each. A comparison of s o i l chemical and morphological properties was made for each s o i l series between the s o i l under native coniferous vegetation (the control site) and the s o i l in the orchard. For comparison, i t was assumed that during the sixty years in which the orchard land had been farmed, few changes would have taken place in the forested s i t e , r e l a t i v e to s o i l development since deglaciation (Wisconsin epoch. Rice, 1941). Based on previous work i t was hypothesized that i r r i g a t i o n and nitrogen f e r t i l i z a t i o n would cause a marked degradation of the orchard s o i l (Davidson, 1979). The intermontane valleys of southern B r i t i s h Columbia represent one of the few areas in Canada capable of growing tree f r u i t s and produce about 35% of the nation's t o t a l . The B r i t i s h Columbia Land Commission estimates that only 1/100th of 1% of B r i t i s h Columbia's land area i s suitable for tree f r u i t s (Manning and Eddy, 1978). There are about 12,546 ha planted to tree f r u i t s in the Interior of B.C. In the Kootenay area from Grand Forks through to Creston there are about 655 ha. According to Swales (1978), unfavourable climatic conditions can be c i t e d as the most important factor in l i m i t i n g 3 commercial apple production in the province of B r i t i s h Columbia. Low winter temperatures and late spring frosts are the c r i t i c a l factors. For Creston, Kootenay Lake i s essential to successful f r u i t growing since i t moderates the low winter temperatures otherwise found at this northern l a t i t u d e . 4 LITERATURE REVIEW 2.1. Management and s o i l qenesis In the course of managing a g r i c u l t u r a l land, man's a c t i v i t i e s can either degrade or aggrade the native s o i l . Bidwell and Hole (1965), investigated man's role as a factor of s o i l formation and revealed some of the b e n e f i c i a l and detrimental effects man has exerted. An example of man's influence on the climatic factor of s o i l formation is i r r i g a t i o n in a r i d regions. Although the added water would increase the s o i l ' s a g r i c u l t u r a l p o t e n t i a l , accelerated nutrient leaching w i l l simultaneously degrade the s o i l (Bidwell and Hole, 1965). In the la s t sixty years, methods used for orchard i r r i g a t i o n have evolved from flooding l e v e l l e d land to sprinkler i r r i g a t i o n , and more recently to t r i c k l e or micro-jet emitters positioned at individual trees. In many cases surface flooding has led to serious erosional losses and in the Okanagan valley leaching induced by i r r i g a t i o n was c i t e d as being partly responsible for the advanced weathering of the native Chernozemic s o i l s (Davidson, 1979). Through the introduction and control of plants and animals, and by adding organic matter man has profoundly influenced the the b i o t i c factor of s o i l formation. S o i l organic matter has been reported as reduced by c u l t i v a t i o n (Haas and Evans, 1957) or as increased (Aderkhin et a l . , 1960), depending on the nature of the s o i l studied or the method of expressing the re s u l t s . Clean c u l t i v a t i o n , mulching, t o t a l sod cover and sod with 5 herbicide s t r i p s along the tree rows have a l l been used in the management of orchard s o i l s and each is expected to uniquely ef f e c t the s o i l formed. 2.2. Management and s o i l f e r t i l i t y In the early 1900's h o r t i c u l t u r i s t s measured the uptake of mineral elements by destructively sampling the trees. They subsequently replenished the s o i l with an equivalent amount of chemical f e r t i l i z e r . According to Faust (1979), yie l d s were r e l a t i v e l y low and this approach did not increase productivity. Whereas early investigators were concerned with the n u t r i t i o n of the tree, the present concern is with the proper n u t r i t i o n of s p e c i f i c parts of the tree (Faust, 1979). For example, f r u i t containing high levels of calcium stores well and has less metabolic breakdown than f r u i t with lower l e v e l s . Consequently, numerous researchers have investigated methods of enhancing f r u i t calcium le v e l s (Lidster et a l . 1978a,b.; Vang-Peterson, 1980 ;Terblanche, 1981). Although d e f i c i e n c i e s and t o x i c i t i e s can be. i d e n t i f i e d , s o i l - p l a n t nutrient information s t i l l has not been u t i l i z e d to e s t a b l i s h the amount of f e r t i l i z e r required to raise the leaf nutrient concentrations to an optimum le v e l (and/or r a t i o with other nutri e n t s ) . This i s largely due to the unsatisfactory techniques available for measuring the quantity of nutrient available to the perennial f r u i t crop and is i l l u s t r a t e d by an i n a b i l i t y to obtain s i g n i f i c a n t , r e l i a b l e relationships between s o i l and plant nutrient levels (Robinson, 1979). S o i l analysis may be used in conjunction with leaf analysis to assess whether de f i c i e n t leaf nutrient concentrations are in response to low 6 s o i l nutrient levels or due to poor nutrient uptake from the s o i l because of other l i m i t i n g factors. Apple trees usually do best at a s o i l pH above 5.5 and below 8.0 (Westwood, 1978). A study in Delicious apple orchards in the Okanagan Valley concluded that severe symptoms of internal bark•necrosis were generally associated with a s o i l pH below 5.6 and leaf manganese above 120 ppm (Fisher et a l . , 1977). According to Jonkers and Hoestra (1978), one can expect a r e l a t i o n between s o i l pH and b i t t e r p i t of apple since t h i s i s affected by the le v e l of available calcium ions. As early as 1927 the investigation of the influence of nitrogen f e r t i l i z e r s on orchard s o i l s had revealed that ammonium sulphate caused the greatest increase in H+ ion a c t i v i t y and was followed in order by ammonium phosphate, 'Leunasalpeter', ammonium-nitrate and urea (Pierre, 1928). Felizardo et a l . (1972), in their investigation of nitrogen f e r t i l i z e r s applied in narrow or broad bands observed a drop in s o i l pH from 5.5 to 4.5 down to 90 cm when ammonium sulphate was applied in a narrow band. The broad band f e r t i l i z e r application produced a much less severe e f f e c t on s o i l pH. Neilson and Hoyt (1982) concluded that in the apple orchards of the Okanagan Valley, B r i t i s h Columbia there has been a general decline in s o i l pH associated with the use of nitrogen f e r t i l i z e r s , i r r i g a t i o n and herbicides. Haynes and Goh (1980) reported that the pH of the surface s o i l was s i g n i f i c a n t l y reduced in herbicide and clean c u l t i v a t i o n treatments in comparison with plots under continuous grass cover. Leaching of the basic cations from the surface s o i l of light-textured s o i l s i s l i k e l y to be greater than from heavier-7 textured s o i l s . This is p a r t i a l l y a t t r i b u t a b l e to the frequent applications of i r r i g a t i o n water required in the coarser s o i l s to maintain adequate s o i l moisture l e v e l s . 2.3. Land use and production In B r i t i s h Columbia, where the majority of human a c t i v i t y is confined to the f e r t i l e v a l l e y f l o o r s , the c o n f l i c t between a g r i c u l t u r a l land users and other users can be intense. A g r i c u l t u r a l land is frequently lost because road building, house construction, mining or industry are often more immediately l u c r a t i v e . In December 1972, the Government of B r i t i s h Columbia passed Orders-in-Council to freeze the use of a g r i c u l t u r a l land within the province. The government eventually drafted l e g i s l a t i o n to reserve the majority of the province's arable land for future a g r i c u l t u r a l use (Manning and Eddy, 1978). The B r i t i s h Columbia Land Commission estimated that prior to the establishment of the a g r i c u l t u r a l land reserves, which l i m i t s the types of a c t i v i t i e s allowed on good farmland, over 6000 ha of prime a g r i c u l t u r a l land in the province were lost to urban sprawl each year (Munn, 1980). In Canada, there are only 4.4 m i l l i o n ha of land that have pa r t i c u l a r q u a l i t i e s which make them uniquely suited to the production of tree f r u i t s . This special land i s found mainly in southern Ontario, the Annapolis valley and the intermontane valleys of B r i t i s h Columbia (Munn, 1980). The p a r t i c u l a r q u a l i t i e s that make these areas so precious involve the clim a t i c requirements of f r u i t trees. This includes at least 1500 8 g r o w i n g d e g r e e d a y s above 5 °C and n o t l e s s t h a n 120 f r o s t f r e e d a y s (RAB, 1978). 9 3. MATERIALS AND METHODS 3.1.1. Site Description and Selection The Creston Valley area is located in south-eastern B r i t i s h Columbia, Canada. The area f a l l s exclusively within the Purcell Trench south of Kootenay Lake at elevations below 675 m. The average annual temperature at Creston is 7 °C with extremes of 40 °C to -33 °C over a ten year period. Average annual pr e c i p i t a i o n i s 460 mm. The frost free period i s 148 days and 1881 growing degree days are accumulated in the summer months (RAB, 1978). The Creston area i s c l a s s i f i e d as Climatic Capability Class 1a (RAB, 1978). According to the Runka (1973), the s i l t y lacustrine s o i l s of Creston's benchland are rated as Capability Class 1 s o i l s for a g r i c u l t u r e . This i s an improved rating, dependent upon supplemental water. The Elmo s o i l series parent material is a moderately coarse textured g l a c i o - f l u v i a l d e l t a . The s o i l i s stone free, rooting depth and moisture permeability are good but water holding capacity i s low. Elmo s o i l s had been c l a s s i f i e d as Orthic Eutric Brunisols (Wittneben and Sprout, 1971). The L i s t e r s o i l series has developed on a fine textured g l a c i o - l a c u s t r i n e deposit. The parent material i s moderately calcareous,and well to moderately well drained. L i s t e r s o i l s were c l a s s i f i e d as Orthic Gray Luvisols (Wittneben and Sprout, 1971). The Creston area f a l l s within the d r i e r parts of the Interior western hemlock-western red cedar complex (Jungen, 10 1980). The forested s i t e s in this study were occupied by a mixture of Interior grand f i r , Rocky Mountain Douglas f i r and ponderosa pine. Both the Elmo and the L i s t e r s o i l s i t e s had been used as woodlots but the s o i l surface did not appear to have been disturbed. Macintosh and Red Delicious c u l t i v a r s on seedling rootstock were planted in 1935 at a 10 by 15 m spacing in the Elmo s o i l . In Creston, most of the orchards have been i r r i g a t e d for f i f t y years or more. The s i t e has been grassed down for at least t h i r t y five years and 0.5 kg of nitrogen/tree has been applied annually in the f a l l . The nitrogen f e r t i l i z e r was broadcast by hand within the tree's dripzone. No lime has been added in the l i f e of this p a r t i c u l a r orchard. The orchard s i t e selected on the L i s t e r s o i l series was planted to mature Macintosh and Red Delicious c u l t i v a r s on seedling rootstock at a 10 by 10 m spacing. Herbicides have been used in the l a s t few years to control grass and weeds along the tree row. F e r t i l i z e r nitrogen has been applied annually at a rate of 0.5 kg/tree. Lime was applied in 1979 at approximately 6 t/ha. The 1983 Water Quality Report for Creston's i r r i g a t i o n supply indicated that the water has a neutral pH (Environ. Lab., 1983). 3.1.2. S o i l Sampling S o i l samples were co l l e c t e d from four, one ha s i t e s between June 22, and August 3, 1982. One forested s i t e and one orchard s i t e were chosen to represent each s o i l s e r i e s . The apple trees in the orchard rows were the focal point of the sampling scheme. 11 Three trees within the orchard were chosen and at each of these trees a transect running from the tree trunk to the midrow was selected. Along each transect four p i t s were excavated, two p i t s inside the d r i p l i n e and two p i t s outside the d r i p l i n e . A l l trees, transects and p i t s were randomly selected. A grid matching the planting design used in the apple orchard was used to choose the transects in the forested s i t e . Each s o i l p r o f i l e was morphologically described and later c l a s s i f i e d according to the Canadian System of S o i l C l a s s i f i c a t i o n (197 8). From each p i t , 500 g samples were co l l e c t e d from six depths. The sampling depths were 0-7.5 cm, 7.5-15 cm, 15-30 cm, 30-45 cm, 45-60 cm, 60-100 cm. Twelve p i t s were excavated at each of the four s i t e s y i e l d i n g a t o t a l of 288 samples, or 72 per s i t e (6 samples/pit * 12 p i t s ) . The samples were returned to the laboratory, a i r dried and crushed to pass a 2mm sieve (Black et a l . , 1965). 3.1.3. Laboratory Analysis Following sample preparation, s o i l pH was measured in a 2 to 1 solution of 0.01 molar calcium chloride (Peech, 1965). A standard pH meter with a combination electrode was used for the pH measurement. Total nitrogen content of the s o i l was determined using the standard Kjeldahl digestion of mineral s o i l (Bremmer, 1965). The ammonium produced during t h i s digestion was measured co l o u r i m e t r i c a l l y using the "Technicon Auto Analyzer". Extractable phosphorus was obtained using a 0.03 N ammonium fluor i d e in 0.025 N hydrochloric acid extracting solution as set out by Olsen and Dean (1965). Watanabe and Olsen's method 1 2 (1965) of combining ascorbic acid with the phosphorus extract was used to measure the phosphorus l e v e l in the extact. The measurement was made using the " G i l f o r d Spectrophotometer". The Walkley-Black t i t r i m e t r i c method was chosen for the measurement of organic carbon. This method involves the oxidation of organic carbon and the subsequent t i t r a t i o n of the remaining oxidant with a reducing agent ( A l l i s o n , 1965). Prior to oxidation the s o i l samples were ground to pass a 0.5 mm sieve. The basic cations: calcium, magnesium, potassium, sodium and manganese were leached from 10 g samples using 1 N ammonium acetate (buffered at pH 7). The samples were then washed with isopropyl alcohol to remove any excess ammonium. Ammonium ions retained on exchange si t e s were removed with the f i n a l leaching of the s o i l sample with potassium chloride (Chapman, 1965). The concentrations of the various cations were measured on the "Perkin Elmer 306 Atomic Absorption Spectrophotometer". The exchange capacity of the s o i l was measured on the "Technicon Auto Analyzer". The coarse textured Elmo s o i l samples were d i f f i c u l t to leach quantitatively since there were so few exchange s i t e s . For thi s reason a much larger, 55 g sample was used. From each s i t e , four samples were selected from a parti c u l a r s o i l p i t for mineralogical analysis using X-ray d i f f r a c t i o n . The 2-0.2 micron size fraction of each sample was separated ( K i t t r i c k and Hope, 1963) and mounted on glass s l i d e s . The coarse clay fract i o n was Mg-saturated, Mg-saturated and glyco l solvated, K-saturated. K-saturated and heated to 300 °C 1 3 and f i n a l l y K-saturated and heated to 550 °C to make p a r a l l e l oriented s l i d e s (Jackson, 1956). The " P h i l l i p s " X-ray DiffTactometer" was used to scan the sample sl i d e s using Cu K-alpha radiation. The diffractograms were interpreted using standard methods found in the l i t e r a t u r e (Jackson, 1956). 3.1.4. S t a t i s t i c a l Analysis The T-test was used to investigate the hypothesis that the s o i l chemical properties of samples co l l e c t e d in the orchard d i f f e r from those c o l l e c t e d in the forest on either the Elmo or the L i s t e r s o i l series. The T-test i s a s t a t i s t i c a l model which can be used for testing the difference between the means of two populations, based on the means and d i s t r i b u t i o n s of the two samples. The F-test was'computed at the same time to examine the equality of the two population variances. The c o e f f i c i e n t of variation was also calculated to provide some suggestion as to each parameter's v a r i a b i l i t y in the d i f f e r e n t s i t e s . Within each s i t e a comparison was made between subsets of the o r i g i n a l data set. Samples c o l l e c t e d inside the d r i p l i n e of the apple tree were tested against samples c o l l e c t e d outside the d r i p l i n e using the Mann-Whitney U-test. This i s a non-parametric test used to decide i f the two random samples are from the same underlying population (Siegel, 1956). 3.2.1. Land Use A 1944 property map of the Creston area drawn at a scale of 1 to 6000 was used as the base map for a 1950 and a 1980 land use map. The 1950 land use map was compiled using a i r 1 4 photographs taken on June 8, 1955 at a scale of 1 to 20,000. The 1980 land use map was drawn using photographs taken on July 2, 1981 at a scale of 1 to 20,000 in conjunction with ground checking. Land use was divided into three categories: 1. Orchard; 2. Housing; and 3. Miscellaneous. The miscellaneous category included brushland, pasture and id l e farmland. The amount of land dedicated to each category was determined by tracing their boundaries on the finished map using the "Lasico D i g i t a l Planimeter". 3 . 2 . 2 . Crop Yields and Product i v i t y Estimates of f r u i t y i e l d in 1950 and 1980 were based on five year averages (1948-1952) and (1978-1982). The 1950 y i e l d estimate was based on the extrapolation of production data from part of the area. This was necessary since three packing sheds were handling f r u i t during the 1950's, and only the records from Creston Packers Limited were accessible. Creston Co-operative Packers currently handles a l l f r u i t packing and their records were used to procure a 1980 y i e l d value. Productivity estimates (kg/ha) were made using the 1950 and the 1980 land use maps in conjunction with the 1950 and the 1980 y i e l d estimates. 1 5 4. RESULTS AND DISCUSSION 4.1. The Influence of Orchard Management on S o i l Genesis 4.1.1. Elmo S o i l Series The s o i l that has developed on the forested g l a c i o f l u v i a l delta at the north end of Creston's f r u i t growing d i s t r i c t was c l a s s i f i e d as an Orthic Dystric Brunisol (Canadian System of S o i l C l a s s i f i c a t i o n , 1978). According to the CSSC (1978), Dystric Brunisols are acid s o i l s that lack a well developed mineral-organic surface horizon. These s o i l s generally occur on parent materials of low base status and t y p i c a l l y occur under forest vegetation (CSSC, 1978). A standard description of the s o i l horizons observed at the forested s i t e of the Elmo s o i l series i s presented below. Elmo S o i l Series. Forested S i t e . Horizon Depth(cm) Descript ion L 2-1 Coniferous needles; dry; weak; non-compact matted; loose; no v i s i b l e biota. F 1-0 Moist; brown (7.5YR3/2 m) ; non-compact matted;piiable;pientiful, fine roots; common, pale-yellow mycellia abrupt, smooth boundary. Ah 0-3.5 Very dark grayish-brown (10YR3/2); loamy sand;weak,fine subangular blocky; 16 very f r i a b l e ; abundant, fine roots; stone free; clear, wavy boundary; 1-4 cm thick; acid. Bm 3.5-35 Yellowish brown (10YR5/4);loamy sand; weak, fine subangular blocky; very f r i a b l e ; p l e n t i f u l , fine roots; stone free; gradual, wavy boundary; 18-40 cm thick; acid. C 35+ Light yellowish brown (10YR6/4); loamy sand; single-grained; loose; very few, fine roots; stone free; acid. Under f r u i t orchard management, an Orthic Sombric Brunisol has developed on the g l a c i o f l u v i a l parent material. Sombric Brunisols are acid s o i l s having a dark coloured Ah horizon and a r e l a t i v e l y low base status (CSSC, 1978). A standard description of the s o i l horizons observed at the orchard s i t e of the Elmo s o i l series is presented below. Elmo S o i l Series. Orchard S i t e . Horizon Depth(cm) Description. Ap 0-18 Very dark grayish brown (10YR3/2); loamy sand; weak, fine subangular blocky; very f r i a b l e ; p l e n t i f u l , fine to very fine roots; stone free; abrupt, wavy boundary; 14-26 cm thick; acid. Bm 18-45 Yellowish brown (10YR5/4); loamy sand; weak, fine subangular blocky; very 1 7 45 + f r i a b l e ; abundant, medium roots; stone free; gradual, wavy boundary; 18-34 cm thick; acid. Light yellowish brown (10YR6/4); loamy sand; single grained; loose; few, medium roots; stone free; acid. T h e i n f l u e n c e o f o r c h a r d m a n a g e m e n t o n t h e d e v e l o p m e n t o f t h e s a n d y s o i l i s d e p i c t e d i n t h e s c h e m a t i c d i a g r a m s o f t h e t w o s o i l p r o f i l e s ( F i g . 4.1.1.). F i g . 4.1.1. E l m o S o i l S e r i e s 20 . 40 . 60 -80 . 100 -:;: 40 . 60 . 80 -100 -Bm Forest Orchard Organic matter decomposition and incorporation in the orchard has produced an Ap horizon 14 cm thicker than the Ah horizon at the forested s i t e . The depth to the C horizon, greater in the orchard s i t e , suggested a difference in weathering rates and 18 leaching , the result of i r r i g a t i o n . Mineralogy of the Elmo S o i l Series (2-0.2 micron fraction) Argillaceous sedimentary and metamorphic rocks make up most of the l o c a l bedrock (Rice, 1941). The g l a c i a l l y deposited f l u v i a l and lacustrine material appears to have been derived from this material. The clay minerals i d e n t i f i e d using X-ray d i f f r a c t i o n were mica, k a o l i n i t e and vermiculite. Although the method used for mineral i d e n t i f i c a t i o n only permits semiquantitative interpretation, i t appears that the r e l a t i v e amount of each of these minerals increased with depth. From th i s information i t was concluded that the clay minerals found were inherited rather than formed as a result of time, or orchard management. A comparison of the r e l a t i v e amounts of clay between the the forest and orchard s i t e suggested that leaching i r r i g a t i o n water has eluviated some of the clay minerals into the C horizon. 1 9 4.1.2. L i s t e r S o i l Series An Orthic Gray Luvisol has developed on the forested g l a c i o l a c u s t r i n e parent material of Creston's benchland. According to the Canadian System of S o i l C l a s s i f i c a t i o n (1978), s o i l s of the Gray Luvisol great group have e l u v i a l and Bt horizons. The s o i l s of the Orthic Gray Luvisol subgroup may have dark coloured mineral-organic horizons less than 5 cm thick (CSSC, 1978). The Orthic Gray Luvisol of the L i s t e r s o i l series is described below. L i s t e r S o i l Series. forested S i t e . Horizon Depth(cm) Description L 5-3 Coniferous leaf l i t t e r F 3-0 Moist, brown (7.5YR3/2 m); non-compact matted; p l e n t i f u l , fine roots; common, pale yellow mycellia. Ah 0-2 Very dark grayish brown (10YR3/2); loam; weak, fine granular; very f r i a b l e ; abundant, fine roots; stone free; abrupt, smooth boundary; 0-3 cm thick. Ae 2-11 Very pale brown (10YR7/3);silty loam; moderate, medium platy; f r i a b l e ; p l e n t i f u l , fine roots; stone free; c l e a r , wavy boundary; 7-12 cm thick. AB 11-22 Pale brown (10YR6/3); s i l t y clay loam; moderate, medium subangular blocky; firm; few, medium roots; stone free; 20 g r a d u a l , wavy b o u n d a r y ; 6-16 cm t h i c k . Bt1 22-49 Dark y e l l o w i s h brown (10YR4/4); s i l t y c l a y loam; m o d e r a t e t o s t r o n g , c o a r s e s u b a n g u l a r b l o c k y ; v e r y f i r m ; few, f i n e r o o t s ; many, m o d e r a t e l y t h i c k c l a y f i l m s ; s t o n e f r e e ; g r a d u a l , wavy b o u n d a r y ; 21-32 cm t h i c k . Bt2 49-66 G r a y i s h brown (10YR5/2); s i l t y c l a y loam; s t r o n g , c o a r s e s u b a n g u l a r b l o c k y ; v e r y f i r m ; f e w , f i n e r o o t s ; m a n y , m o d e r a t e l y t h i c k c l a y f i l m s ; s t o n e f r e e ; g r a d u a l , wavy b o u n d a r y ; 15-30 cm t h i c k . BC 66-88 Y e l l o w i s h brown (10YR5/4); s i l t y ; c l a y loam; m a s s i v e ; v e r y f i r m ; s t o n e f r e e ; d i f f u s e , wavy b o u n d a r y ; 17-30 cm t h i c k . Cca 88+ ' L i g h t y e l l o w i s h brown (10YR6/4); s i l t y c l a y loam; m a s s i v e ; f i r m ; s t o n e f r e e . P r o f i l e d e s c r i p t i o n s of t h e o r c h a r d s o i l r e v e a l e d t h a t management has l e d t o t h e g e n e s i s of a Dark G r a y L u v i s o l . T h i s s o i l d i f f e r s from t h e O r t h i c G r a y L u v i s o l by h a v i n g an Ah o r Ahe h o r i z o n g r e a t e r t h a n 5 cm i n d e p t h (CSSC, 1978). T h e s e h o r i z o n s g e n e r a l l y have e l u v i a l f e a t u r e s s u c h as g r a y s p l o t c h e s o r s t r e a k s when d r y , o r p l a t y s t r u c t u r e . The p r o f i l e d e s c r i p t i o n o f t h e L i s t e r s o i l o r c h a r d s i t e i s p r e s e n t e d below. 21 L i s t e r S o i l Series. Orchard S i t e . Horizon Depth(cm) Description Ap 0-2.5 Very dark brown (10YR2/2); loam; weak, fine granular; f r i a b l e ; p l e n t i f u l , fine roots; stone free; abrupt, smooth boundary; 1-4 cm thick. Ahe 2.5-11 Brown (10YR5/3); s i l t loam; weak, fine platy; f r i a b l e ; p l e n t i f u l , fine roots; stone free; clear, wavy boundary; 5-15 cm thick. AB 11-17 Yellowish brown (10YR5/4); s i l t loam; weak, fine to medium subangular blocky; f r i a b l e ; few, fine roots; stone free; gradual, wavy boundary; 6-17 cm thick. Btl 17-37 Light o l i v e brown (2.5Y5/4); s i l t y clay loam; moderate, medium subangular blocky; firm; very few, fine roots; many moderately thick clay films; stone free; gradual wavy boundary; 10-40 cm thick. Bt2 37-55 Brown (10YR5/3); s i l t y clay loam; moderate, coarse subangular blocky; firm; many, moderately thick clay films; stone free; gradual, wavy boundary; 13-28 cm thick. BCca 55-80 Grayish brown (10YR5/2); s i l t y clay loam; massive; firm; stone free; diffuse irregular boundary; 18-35 cm thick. 22 Cca 80+ Light brownish gray (2.5Y6/2); s i l t y clay loam; massive; firm; stone free An i l l u s t r a t i o n of the changes in the L i s t e r s o i l a t t ributable to man are presented in Figure 4.1.2. The Ap and the Ahe horizons in the orchard s o i l , 11 cm deep, as compared with the Ah horizon of 2 cm in the forest s o i l indicate that greater amounts of organic matter have been incorporated at the managed s i t e . F i g . 4.1.2. L i s t e r S o i l Series 20 . 40 . 100 -Bt, 1O0-! w w w Forest Orchard The closeness of the unweathered parent material to the s o i l surface at the orchard s i t e was credited to surface s o i l erosion. Land c l e a r i n g , clean c u l t i v a t i o n and surface flooding at one time were common management practices which would have eroded the s o i l from the s l i g h t l y sloping orchard s i t e . 23 M i n e r a l o g y of t h e L i s t e r s o i l s e r i e s (2-0.2 m i c r o n f r a c t i o n ) X - r a y d i f f r a c t i o n of t h e c o a r s e c l a y f r a c t i o n from t h e L i s t e r s o i l r e v e a l e d t h e same m i n e r a l s as f o u n d i n t h e c o a r s e r t e x t u r e d Elmo s o i l s e r i e s ( m i c a , k a o l i n i t e , and v e r m i c u l i t e ) . Once a g a i n i t was c o n c l u d e d t h a t t h e c l a y m i n e r a l s i d e n t i f i e d were p r e s e n t i n t h e p a r e n t m a t e r i a l and had n o t d e v e l o p e d i n s i t u . 24 4.2. The Influence of Orchard Management on Soi1 Chemical  Propert i es 4.2.1 . Elmo S o i l Series (texture = loamy sand)  Hydrogen ion a c t i v i t y (pH) There was no s i g n i f i c a n t difference between the s o i l pH in the forest and the pH in the orchard (Fig. 4.2.1.). Orchard s o i l samples were broken into two groups. Samples colle c t e d inside the orchard tree d r i p l i n e were separated from those c o l l e c t e d outside the d r i p l i n e . Within the orchard, the s o i l pH of the upper 7.5 cm was s t a t i s t i c a l l y greater inside the d r i p l i n e . At 15 cm the pH inside the d r i p l i n e was lower than that outside although t h i s difference only became s i g n i f i c a n t at the 60-100 cm sampling depth. This difference was small amounting to 2/10 of a pH unit (Fig. 4.2.2.). F i g . 4.2.1. Elmo s o i l . pH. 4.6 4.76 4.92 5.08 5.24 5.4 -i 1 1 1 1 1 1 1 r i i + <3 i \ i t - n a a n - l n ro =r a. ' ' ' ' L. F i g . 4.2.2. Orchard s o i l pH 4.4 4.5 4.8 5.0 5.2 5.4 Large differences in s o i l pH were expected between the 25 orchard and forest s i t e s . It was suspected that the a c i d i f y i n g influence of nitrogen f e r t i l i z e r s and the accelerated leaching of basic cations under the i r r i g a t e d system would depress the pH of the orchard s o i l . However, the acid parent material and the a c i d i f y i n g influence of decomposing coniferous tree l i t t e r had already produced an i n i t i a l l y low s o i l pH. Furthermore, the l i t t e r from a grassed-down deciduous orchard may have returned basic cations taken up from deeper horizons to the s o i l surface thereby increasing the base saturation. The p r o f i l e description of the orchard s o i l revealed that a considerable amount of organic matter had been incorporated. Organic matter would improve the s o i l s buffering capacity as well as i t s a b i l i t y to retain nutrients. Consequently, th i s would have enhanced the s o i l s a b i l i t y to r e s i s t the a c i d i f y i n g influence of n i t r i f i c a t i o n and leaching. Cation Exchange Capacity (CEC) The cation exchange capacity in the orchard was s t a t i s t i c a l l y greater than that in the forest at the 15 to 30 cm sampling depth (Figure 4.2.3.). Factors p r e v a i l i n g inside the orchard tree d r i p l i n e led to a s i g n i f i c a n t l y lower exchange capacity at the 30 to 45 cm sampling depth in the orchard (Fig. 4.2.4.). 26 Fig.4.2.3. Elmo s o i l . CEC (meq/IOOg). F i g . 4.2.4. Orchard d r i p l i n e . CEC. 2.0 6.0 10.0 14.0 IB.0 22JJ 2.0 6.0 10.0 14.0 18.0 22.0 The greater exchange capacity observed in the orchard was attributed to higher levels of organic matter and consequently more exchange s i t e s than present in the native forest s o i l . The difference seen in cation exchange capacity inside the orchard was very small but did agree with the greater amount of organic carbon measured outside the d r i p l i n e (see Figure 4.2.18.). Exchangeable Calcium (Ca) Differences between exchangeable s o i l calcium in the orchard and those in the forest were i n s i g n i f i c a n t (Fig. 4.2.5.). S o i l calcium ranged from a high of 6 meq/IOOg at the surface to s l i g h t l y more than 1 meq/100g at 100 cm. Within the orchard, levels of s o i l calcium were s i g n i f i c a n t l y greater inside the d r i p l i n e at the surface and s i g n i f i c a n t l y less at the 15-30 and 45-60 cm sampling depths (Fig. 4.2.6.). ' 27 No difference in s o i l Ca between the orchard and the forest s i t e suggested that any degradatory influence management has had has been balanced by an opposing accretionary influence. In the case of the orchard d r i p l i n e comparison, i t is possible that the apple trees have extracted calcium from deep in the p r o f i l e and concentrated i t in the leaf l i t t e r at the s o i l surface. Lower s o i l calcium inside the d r i p l i n e at the lower depths was foreshadowed by pH and CEC measurements and could have been a result of the a c i d i f i c a t i o n and leaching associated with nitrogen f e r t i l i z e r s as well as nutrient uptake by the apple trees. Magnesium (Mg) The surface 15 cm of the orchard s o i l contained s i g n i f i c a n t l y more exchangeable magnesium than did the forest s o i l (Fig. 4.2.7. ) . Within the orchard, levels of magnesium inside the d r i p l i n e were s i g n i f i c a n t l y lower than those outside the d r i p l i n e at the 28 15-30 and 45-100 cm depths (Fig. 4.2.8.). F i g . 4.2.7. Elmo s o i l . fig. (neq/IQOg). 0.0 0.4 D.9 12 1.6 2.0 F i g . 4 . 2 . 8 . Orchard d r i p l i n e . fig. 0.0 0.4 0.8 12 1.6 Z0 o r*. a S -The greater exchangeable magnesium in the upper 15 cm of the orchard s o i l probably ref l e c t e d the annual use of magnesium sprays in the maintenance of adequate f o l i a r magnesium l e v e l s . The lower l e v e l of magnesium inside the d r i p l i n e was interpreted as a response to the leaching associated with sprinkler i r r i g a t i o n and n i t r i f i c a t i o n of nitrogen f e r t i l i z e r as well as depletion of magnesium through uptake. Although not s i g n i f i c a n t , the surface 7.5 cm of s o i l inside the d r i p l i n e held more exchangeable magnesium, similar to the trend noted for calc ium. Potassium (K) S o i l potassium levels in the orchard were s t a t i s t i c a l l y equal to those measured in the forest (Fig. 4.2.9). Within the orchard the s o i l potassium inside the d r i p l i n e was greater than that outside the d r i p l i n e at the 7.5 to 15 cm 29 sampling depth. At 30 cm t h i s trend was reversed and between 45 and 60 cm s o i l potassium was s i g n i f i c a n t l y greater outside the d r i p l i n e (Fig. 4.2.10.) F i g . 4.2.3. Elno soil. K (meq/IOOg). F i g . 4.2.10. Orchard d r i p l i n e . K. S o i l potassium findings between s i t e s mimicked those observed for s o i l calcium It was hypothesized that the return of nutrients provided by decomposing f r u i t tree l i t t e r led to a higher potassium l e v e l near the surface inside the d r i p l i n e . Uptake of potassium and leaching losses may have caused the lower l e v e l inside the d r i p l i n e between 45 and 60 cm. Sodium (Na) The amount of exchangeable sodium was s i g n i f i c a n t l y greater between 0 and 60 cm in the orchard. For sodium, no s i g n i f i c a n t difference was detected in the orchard d r i p l i n e comparison (Fig. 4.2.12.). 30 F i g . 4.2.11. Elmo s o i l . Na. (mcq/IOOg). (X10~') F i g . 4.2.12, Orchard d r i p l i n e . Na. 0(10"') 0.02 0.06 0.1 0.14 0.18 0.22 a - D e 0.14 0.18 0.22 0.2S The i r r i g a t i o n water applied to the orchard s o i l contains 1.2 mg/1 of Na and may be the source of the greater amount of sodium noted. Manganese (Mn) A s t a t i s t i c a l l y s i g n i f i c a n t difference was observed at the 0 to 7.5 cm sampling depth (Fig. 4.2.13.). At t h i s depth the manganese l e v e l of the orchard s o i l was 0.7 meq/lOOg compared with 1.4 meq/100g in the forest s o i l . Within the orchard, the samples c o l l e c t e d between 30 and 45 cm showed a s t a t i s t i c a l l y greater l e v e l of exchangeable manganese inside the d r i p l i n e (Fig 4.2.14.). 31 F i g . 4.2.13. Elmo s o i l . Mn (meq/IOOg). 0.0 0.04 0.08 0.12 0.15 0.2 F i g . 4.2.14. Orchard d r i p l i n e . Mn. (X1Q_l) 0.08 0.24 0.4 0.56 0.72 0.38 1 r - -+-«? . i i + a t— .-.•.•. 'OT.-.h*.-. ' a.-.-row ' i i ' i i i i Base Saturation (BS) To 60 cm, there was no s i g n i f i c a n t difference in the percentage base saturation between the orchard and the forest s o i l samples. Below 60 cm, the base saturation in the orchard was s i g n i f i c a n t l y less than in the forest (Fig. 4.2.15.). Between 15 and 30 cm the base saturation within the orchard d r i p l i n e was s i g n i f i c a n t l y less than that outside the d r i p l i n e (Fig. 4.2.16.). 4 8 . 0 F i g . 4.2.15. Elmo s o i l . %BS. 52.0 56.0 60.0 64.0 68.0 O ft F i g . 4.2.16. Orchard d r i p l i n e . BS. 36.0 +4.0 S2.0 60.0 68.0 76.0 —1 1 1 1 1 1 1 1 1— t ? . o. n ro 32 Like s o i l pH, base saturation was expected to show a response to orchard management. However, samples col l e c t e d between 0 and 60 cm showed no difference in base saturation between the forest and the orchard s i t e . The lower base saturation in the orchard at the 60 to 100 cm sample depth may have ref l e c t e d greater nutrient leaching at the i r r i g a t e d s i t e . The s i g n i f i c a n t l y lower base saturation measured inside the d r i p l i n e at the 15 to 30 cm sampling depth corroborated with the pH r e s u l t s . This difference was attributed to the impact of nitrogen f e r t i l i z a t i o n , nutrient uptake and leaching inside the d r i p l i n e . Organ ic Carbon (%C) More organic carbon has accumulated in the orchard than in the forest. From the surface, down to 30 cm t h i s difference was s t a t i s t i c a l l y s i g n i f i c a n t (Fig. 4.2.17.). Orchard levels of s o i l organic carbon outside the d r i p l i n e were s i g n i f i c a n t l y greater than those inside between 7.5 and 30 cm (Fig. 4.2.18.). 33 F i g . 4.2.17. Elmo s o i l . %C. F i g . 4.2.18. Orchard d r i p l i n e . XC. 0.0 0.8 L6 2.4 3.2 4.0 0.0 0.8 1.6 2.4 3.2 4.0 I"—T-—\ 1—F—*—I—I—I—T~H ° I — I — I — I — I — I — I — I 1 — I — G r e a t e r l e v e l s o f o r g a n i c c a r b o n f o u n d i n t h e o r c h a r d were c r e d i t e d t o t h e c l i m a t i c , and b i o t i c d i f f e r e n c e s between t h e s i t e s . In t h e o r c h a r d , more w a t e r and warmer s o i l t e m p e r a t u r e s w o u l d have e n h a n c e d t h e t r a n s f o r m a t i o n and i n c o r p o r a t i o n o f t h e more e a s i l y decomposed g r a s s and a p p l e t r e e l i t t e r . The h i g h e r l e v e l of o r g a n i c c a r b o n o u t s i d e t h e d r i p l i n e w i t h i n t h e o r c h a r d may r e f l e c t t h e a b s e n c e o f c o m p e t i t i o n f o r l i g h t and w a t e r between t h e t r e e s and t h e g r a s s c o v e r . O u t s i d e t h e d r i p l i n e t h e g r a s s may grow b e t t e r b e c a u s e of more water and l i g h t , t h i s e x t r a e n e r g y may a l s o enhance d e c o m p o s i t i o n and t h e r e f o r e t h e l e v e l o f c a r b o n i n t h e s o i l . N i t r o g e n (%N) S i g n i f i c a n t d i f f e r e n c e s i n t o t a l s o i l n i t r o g e n shadowed t h e o r g a n i c c a r b o n r e s u l t s . L e v e l s o f n i t r o g e n i n t h e o r c h a r d were s t a t i s t i c a l l y g r e a t e r t h a n i n t h e f o r e s t from t h e s u r f a c e t o 45 cm ( F i g . 4 . 2.19). W i t h i n t h e o r c h a r d , t o t a l n i t r o g e n was s i g n i f i c a n t l y h i g h e r 34 outside the tree's d r i p l i n e between 7.5 and 30 cm (Fig 4.2.20.). F i g . 4.2.19. Elmo s o i l . XN. F i g . 4.2.20. Orchard d r i p l i n e . XN. 0.0 0X8 0.16 0.24 0.32 0.4 0.0 0.08 0.16 0.24 0.32 0.4 T $ p 1 — i 1 1—"""! = | 1 1 1 1 1 1 1 1 r More rapid decomposition rates, higher levels of organic matter, and nitrogen f e r t i l i z a t i o n a l l contributed to the greater l e v e l of nitrogen measured in the orchard s o i l . The s i g n i f i c a n t l y higher percentage of t o t a l nitrogen outside the d r i p l i n e complied with the organic carbon r e s u l t s . Carbon Nitrogen Ratio (C/N) The C/N r a t i o of the surface s o i l in the forest was s i g n i f i c a n t l y higher than that found in the orchard (Fig. 4.2.21.). The d r i p l i n e of the orchard trees separated the C/N values of the 45 to 60 cm depth samples, those inside the d r i p l i n e being greater (Fig. 4.2.22.). 35 4.0 8.0 12.0 16.0 20.0 2 :::t::::i::::-:i::::?:::-:?::-:-:>:v::>:v:v>::::^::v:-i Fig. 4.2.21. Elmo soil. C/N. 4.0 Fig. 4.2.22. Orchard dripline. C/N. 8.0 12.0 16.0 2D.0 •.-.v.v.-.v.-.^v.^.va-.v ~rt o a n The C/N r a t i o of 20 i n t h e s u r f a c e s o i l of the- f o r e s t s i t e a s compared w i t h t h e o r c h a r d ' s C/N r a t i o of 14 s u g g e s t e d t h a t t h e o r c h a r d e n v i r o n m e n t has t h e p o t e n t i a l f o r more r a p i d o r g a n i c matter, d e c o m p o s i t i o n . The v e r y n o t i c e a b l e d i f f e r e n c e between t h e o r c h a r d s a m p l e s a t t h e 45-60 cm d e p t h was a r e f l e c t i o n of l o w e r c a r b o n l e v e l s o u t s i d e t h e d r i p l i n e , but g r e a t e r n i t r o g e n l e v e l s . I t was n o t c l e a r a s t o why t h i s o c c u r r e d . P h o s p h o r u s (P) L e v e l s of e x t r a c t a b l e p h o s p h o r u s measured i n t h e o r c h a r d , e x c e p t f o r t h e 45 t o 60 cm d e p t h , were s i g n i f i c a n t l y h i g h e r t h a n t h o s e f o u n d i n t h e f o r e s t s o i l ( F i g . 4 .2.23.). O r c h a r d s o i l l e v e l s of p h o s p h o r u s o u t s i d e t h e d r i p l i n e were s i g n i f i c a n t l y g r e a t e r t h a n t h o s e i n s i d e , between t h e s u r f a c e and 60 cm ( F i g . 4 . 2 . 2 4 . ) . 36 F i g . 4.2.23. Elmo s o i l . P (ppm) F i g . 4.2.24. Orchard d r i p l i n e . P (ppm) Like organic matter, extractable phosphorus was more abundant in the orchard. It was concluded that the orchard provided an ideal environment for organic matter mineralization, and therefore phosphate release. The additional organic matter may also be responsible for higher extractable phosphorus since the Fe and Al normally binding the phosphate ion w i l l now be chelated by the organic matter, thereby freeing phosphorus to the extractable pool. 37 Summary. Elmo S o i l Series, S i g n i f i c a n t differences between the orchard and forest s i t e are summarized in Table 4.2.1. Organic matter incorporation in the orchard s o i l has contributed the most to d i f f e r e n t i a t i n g the s i t e s . The upper 40 cm orchard s o i l contained s i g n i f i c a n t l y more carbon, nitrogen and phosphorus than the forest s o i l . This difference was attributed to a greater production of decomposable organic l i t t e r at the f e r t i l i z e d and i r r i g a t e d orchard s i t e . Although not very s i g n i f i c a n t , a concentration of cations at the surface and a depletion between 30 and 60 cm characterized the orchard s i t e . This weak trend was credited to nutrient uptake by the apple tree roots and a subsequent concentration of these cations at the s o i l surface. Table 4.2.1. Elmo s o i l . Orchard vs Forest. T-test (p£ .05) Depth (cm) Chemical Parameters pH CE Ca Mg K 0-7.5 7.5-15 15-30 30-45 45-60 60-100 Orchard>Forest Forest>Orchard 38 Although the results in Table 4.2.2. were based on a small number of samples a few theories can be considered. The presence of a greater amount of carbon, nitrogen and phosphorus measured outside the d r i p l i n e continues to puzzle; however, i t may be that limited competition from the f r u i t trees for either sunlight, water or nutrients has allowed the sod cover to f l o u r i s h between the tree rows. If this is so, a greater supply of organic matter would be available for decomposition and subsequent incorporation. This hypothesis requires that the incorporation of organic matter currently exceed i t s oxidation. In addition, the s i g n i f i c a n t l y lower l e v e l of exchangeable bases below 15 cm and the s i g n i f i c a n t l y greater l e v e l of calcium and potassium near the surface have been attributed, to nutrient uptake from the subsoil followed by the concentration of these nutrients at the surface through l i t t e r decomposition. 39 4 . 2 . 2 . L i s t e r Soi 1 Series ( s i l t y clay loam) Hydrogen ion a c t i v i t y (pH) At the s o i l surface, orchard s o i l pH was 0 . 1 pH units greater than that in the forest. Between 6 0 and 1 0 0 cm the orchard s o i l pH was nearly two f u l l pH units higher than in the forest. From 7 . 5 to 1 0 0 cm the samples between s i t e s were s i g n i f i c a n t l y d i f f e r e n t (Fig. 4 . 2 . 2 5 . ) . Within the orchard no s i g n i f i c a n t differences were recorded (Fig. 4 . 2 . 2 6 ) . F i g . 4.2.25. L i s t e r s o i l . pH. F i g . 4.2.26. Orchard d r i p l i n e . pH. 4.8 5.6 6.4 7.2 8.0 8.8 5.4 6.2 7.0 7.8 8.6 9.4 Although not expected, the higher pH levels in the orchard have been credited to the parent material. In the orchard, the calcareous parent material was at least 10 cm closer to the surface, probably due to land c l e a r i n g and erosion. The absence of any difference in s o i l pH due to a d r i p l i n e effect could have been in response to the application of lime in 1979 or to poor s i t e s e l e c t i o n . It was eventually concluded 40 that since the orchard s i t e was in a position to receive s o i l nutrients from the slope above a c i d i f i c a t i o n due to orchard practices would be minimzed. Both the application of lime and the slope position would contribute to the d i f f e r e n t i a t i o n of s o i l pH between the orchard and forest s i t e . Cat ion Exchange Capacity (CEC) From 7.5 to 45 cm the exchange capacity of the orchard s o i l was s t a t i s t i c a l l y greater than that found in the forest. The samples c o l l e c t e d between 60 and 100 cm within the forest had s i g n i f i c a n t l y greater CEC values than those from the orchard (Fig. 4.2.27). The orchard tree d r i p l i n e did not separate the samples col l e c t e d within the orchard (Fig. 4.2.28). F i g . 4.2.27. L i s t e r s o i l . CEC (meq/IOOg). •8.0 12.0 16.0 2Q.0 24.0 28J0 F i g . 4 .2.28. Orchard d r i p l i n e . CEC. 1.0 10.0 12.0 14.Q 16.0 18.0 "i 1 1 1 1 1 1 1 r~ •+ t ? J, >X:X:-X-X-:-:-:':-:*K-:-: :::;::::::::::::::::::::::::::+:::'^::: mmmmm :'::::':-:-::-:-:-:-:-:-:<X:-5T:-: ,v.*.*.\v,*.v.v.v. vi-. 'or.\ mmmmm i * i i , i i i i i _ The greater exchange capacity measured in the orchard s o i l between 7.5 and 45 cm was related to the incorporation of organic matter in the surface s o i l (see F i g . 4.2.41.). Calcium (Ca) 41 Throughout the s o i l pedon, leve l s of calcium extracted from the orchard s o i l were greater than those c o l l e c t e d from the forest s i t e : from 7.5 to 100 cm thi s difference was s i g n i f i c a n t (Fig. 4.2.29.). Inside the orchard tree d r i p l i n e the samples co l l e c t e d between 7.5 and 15 cm contained s i g n i f i c a n t l y more calcium than samples from outside the d r i p l i n e (Fig. 4.2.30.). F i g . 4.2.29. L i s t e r s o i l . Ca lmeq/100g). 4.0 I2.D 20.0 28.0 36.0 +4.0 • •' y I— I I 1 r 1—T " 1 1 1 + f . 1 1 1 -+ IB-S'-'\ -\ ( \ .(.•.•.•.•.•.•••.•.•.•.•.•.".•IS \ * . • - • . * . - . • . • . • . • . • . ;:£:£:;:;x;:£:;:£:£: :::-v:::i:::::-:-:i:-:-:-:-:i:-F i g . 4.2.30. Orchard d r i p l i n e . Ca. 6.0 10.0 14.0 18.0 22.0 26.0 —I I The proximity of the parent material to the surface, the toe slope position, and the application of lime have a l l contributed to the greater amount of exchangeable Ca present in the orchard s o i l . It was concluded that lime application was one reason for the higher l e v e l of calcium registered inside the d r i p l i n e at the s o i l surface. As hypothesized in the discussion of the Elmo s o i l s e ries, t h i s greater calcium concentration may also have ref l e c t e d the accumulation of nutrients at the surface through the orchard tree's l i t t e r . 42 Magnesium (Mg) Between 7.5 and 30 cm exchangeable s o i l Mg in the orchard s o i l was s t a t i s t i c a l l y greater than that measured in the forest (Fig. 4.2.31.). No s i g n i f i c a n t differences were found in response to the orchard tree d r i p l i n e (Fig. 4.2.32.). F i g . 4.2.31. L i s t e r s o i l , tig (meq/IOOg) F i g . 4.2.32. Orchard d r i p l i n e . rip;. F o l i a r sprays of magnesium, application of dolomitic limestone, and l i t t e r decomposition have resulted in a greater amount of s o i l magnesium at the orchard s i t e . Potassium (K) The upper 15 cm of the forest s o i l held s i g n i f i c a n t l y more exchangeable potassium than the orchard s o i l (Fig. 4.2.33.). There was no s i g n i f i c a n t difference in s o i l potassium within the orchard (Fig. 4.2.34.). 43 F i g . 4.2.33. L i s t e r s o i l . K (meq/lQOg) F i g . 4.2.34. Orchard d r i p l i n e . K. 0.24 0.4 0.56 0.72 0.88 1.04 0.2S 0.3S 0>S O.SS" 0.6S" 0.7S A l t h o u g h not s i g n i f i c a n t , CEC and Mg were b o t h g r e a t e r i n t h e f o r e s t t h a n i n t h e o r c h a r d w i t h i n t h e s u r f a c e 7.5 cm o f t h e s o i l . I t was h y p o t h e s i z e d t h a t t h e r e m o v a l o f t h e upper 10 cm o f o r c h a r d s o i l by s u r f a c e e r o s i o n may have c a u s e d t h e l o w e r o r c h a r d s o i l K. E r o s i o n would remove t h e s o i l l a y e r e x p o s e d t o t h e most i n t e n s e w e t t i n g and d r y i n g , and f r e e z i n g and t h a w i n g a c t i o n , t h e s e p r o c e s s e s r e l e a s e s o i l p o t a s s i u m t o t h e e x c h a n g e a b l e p o o l . Sodium (Na) The sodium c o n c e n t r a t i o n i n t h e o r c h a r d was s i g n i f i c a n t l y g r e a t e r t h a n t h a t i n t h e f o r e s t i n t h e s o i l ' s upper 30 cm. In c o n t r a s t , t h e 60 t o 100 cm sample d e p t h from t h e f o r e s t c o n t a i n e d s i g n i f i c a n t l y more s o i l s odium ( F i g . 4 . 2 . 3 5 . ) . No s i g n i f i c a n t d i f f e r e n c e was o b s e r v e d between samples c o l l e c t e d on e i t h e r s i d e o f t h e d r i p l i n e ( F i g . 4.2.36.) 44 F i g . 4.2.35. L i s t e r s o i l . Na (meq/IOOg) (X1D - 1) F i g . 4.2,36. Orchard d r i p l i n e . Na. (X10"M No explanation for differences in s o i l sodium was found. Manganese (Mn) Between 7.5 and 15 cm exchangeable manganese in the orchard exceeded that in the forest. Between 30 and 60 cm s o i l manganese measured in the forest exceeded that measured in the orchard. These sample depths were s i g n i f i c a n t l y d i f f e r e n t (Fig. 4.2.37. ) . There was a s i g n i f i c a n t l y greater amount of exchangeable manganese inside the d r i p l i n e within the upper 7.5 cm (Fig. 4.2.38. ). 4 5 The percentage base saturation in the orchard was greater than in the forest throughout the pedon. This difference was s i g n i f i c a n t between 7 . 5 and 3 0 and between 6 0 and 1 0 0 cm (Fig. 4 . 2 . 3 9 ) . Percentage base saturation inside the d r i p l i n e to 7 . 5 cm was s i g n i f i c a n t l y greater than that outside (Fig. 4 . 2 . 4 0 ) . F i g . 4.2.39. L i s t e r s o i l . BS (X). F i g . 4.2.40. Orchard d r i p l i n e . B S . 68.D 76.0 84.Q 92.0 100.0 108.0 76.0 9 4.0 92.0 1QO.0 I0B.Q M6.0 46 The higher l e v e l of base saturation noted in the orchard s o i l was credited to the closeness of the calcareous horizon to surface, the addition of lime and the use of f o l i a r Mg sprays. Ximing was considered to be one of the factors responsible for higher base saturation inside the orchard d r i p l i n e . Carbon (%) Percent organic carbon in the orchard s o i l was s t a t i s t i c a l l y greater than in the forest from 7.5 to 45 cm (Fig. 4.2.41.). There was no s i g n i f i c a n t difference between organic carbon levels of the s o i l c o l l e c t e d on either side of the d r i p l i n e (Fig. 4.2.42.). Fig. 4.2.4!. Lister soi l . %C. Q.D 1.6 3.2 4.8 6.4 8.0 F i g . 4.2.42. Orchard d r i p l i n e . %Z. 0.0 1.6 3.2 4.8 6.4 B.D J L _1 I I L Orchard management provided an environment suited to more rapid decomposition and incorporation of organic matter. Therefore, the difference in s o i l organic carbon between the orchard and the forest was attributed to a greater turnover and incorporation of vegetative l i t t e r . 47 Nitrogen (%N) Total nitrogen present in the orchard s o i l samples was s i g n i f i c a n t l y greater than in the forest samples from the surface to 30 cm. Below 60 cm s i g n i f i c a n t l y more nitrogen was measured in the forest s o i l samples (Fig. 4.2.43.). Within the orchard there was a s t a t i s t i c a l l y s i g n i f i c a n t difference between the 30 to 45 cm samples c o l l e c t e d on either side of the orchard d r i p l i n e . The percent t o t a l nitrogen was greater inside the d r i p l i n e (Fig. 4.2.44.). F i g . 4.2.43. L i s t e r s a i l . %N. F i g . 4.2.44. Orchard d r i p l i n e . XN. The greater amount of nitrogen present in the surface s o i l of the orchard was credited to management. Additions of f e r t i l i z e r nitrogen to the s o i l and foliage would have contributed to higher nitrogen lev e l s near the surface. However, the s i g n i f i c a n t difference in t o t a l nitrogen below 60 cm separating 0.03% N in the orchard from 0.04% N in the forest probably means nothing. The greater l e v e l of t o t a l nitrogen found inside the 48 d r i p l i n e at the 30 to 45 cm depth may have been caused by the addition of nitrogen f e r t i l i z e r s . Carbon Nitrogen Ratio (C/N) Samples c o l l e c t e d in the orchard between 15 and 45 cm had a s i g n i f i c a n t l y greater C/N r a t i o than in the forest (Fig. 4.2.45.). There was no s i g n i f i c a n t difference in C/N ratios within the orchard s i t e (Fig. 4.4.46.). F i g . 4.2.45. L i s t e r s o i l . C/N. F i g . 4.2.46. Orchard d r i p l i n e . C/N. 6.0 10.0 14.0 18.0 22.0 26.0 7.0 8.0 11.0 13.0 16.0 17.0 The i r r i g a t i o n water applied to the orchard s i t e may be responsible for the movement of less humified organic material to greater depths. Phosphorus (P) Between 7.5 and 60 cm the amount of extractable phosphorus present in the orchard s o i l was s i g n i f i c a n t l y greater than that in the forest s o i l (Fig. 4.2.47.). No s i g n i f i c a n t difference was observed among samples coll e c t e d within the orchard s i t e (Fig. 4.2.48.). 49 Fig. 4.2.47. Lister soil. P (ppra). F i g . 4.2.48. Orchard d r i p l i n e . P. Q.0 |6.0 32.Q 48.0 64.0 BO.O 0.0 16.0 32.0 48.0 64.0 80.0 Greater le v e l s of extractable phosphorus recorded in the orchard s o i l were credited to the a v a i l a b i l i t y of more organic matter for mineralization and release of phosphorus. The additional water supplied by i r r i g a t i o n would also hasten the weathering of mineral sources of phosphorus. 50 Summary, Li s t e r S o i l Series. Greater organic matter incorporation, land clearing and s o i l erosion in the orchard explained most of the s i g n i f i c a n t differences noted in Table 4.2.3. The i r r i g a t i o n and f e r t i l i z a t i o n of the orchard sod cover has provided an ideal environment for organic matter production. This ready source of decomposable grass and tree clippings have b u i l t up the s o i l ' s organic matter content. As mentioned e a r l i e r , the orchard s i t e selected for investigation appears to have been eroded. Since the orchard rests on a 5-10% slope and had been clean c u l t i v a t e d and i r r i g a t e d , erosion would explain the r e l a t i v e closeness of the Cca horizon to the surface. The proximity of the Cca horizon to the surface in turn explains the greater l e v e l of bases and higher pH measured in the orchard versus the forest s o i l . Table 4.2.3. L i s t e r s o i l . Orchard vs Forest T-test (p^ .05) Depth (cm) Chemical Parameters 51 Sample v a r i a b i l i t y and slope position were i d e n t i f i e d as being responsible for the lack of s i g n i f i c a n t differences across the orchard d r i p l i n e (Table 4.2.4.). The greater base saturation noted inside the d r i p l i n e at the s o i l surface could be related to the lime application in 1979 or to the concentration of cations at the surface through tree l i t t e r decomposition. Due to sample v a r i a b i l i t y , a sample population of six was probably too small to reveal s i g n i f i c a n t differences across the d r i p l i n e at the L i s t e r s o i l series s i t e . In addition, since much of the s i t e receives nutrients from the slope above, any depletion of nutrients caused by management would be masked. T a b l e 4.2.4. O r c h a r d d r i p l i n e . Mann-Whitney U - t e s t (p<; .05^  Depth (cm) Chen nica! . Pai •amel :ers pH CE Ca Mg K Na Mn BS c IN ICN P 0-7.5 H nt 7.5-15 15-30 30-45 45-60 60-100 H i I n s i d e > O u t s i d e O u t s i d o l n s i d e 52 4.2.3. V a r i a b i l i t y of S o i l Chemical Properties S o i l pH variation for the Elmo s o i l series, (Orchard (e) and Forest (e)), was very small r e l a t i v e to that for other parameters (Fig. 4.2.49.). The marginally greater c o e f f i c i e n t of variation at depths 3 and 4 within the orchard can be related to the d i s t i n c t l y lower s o i l pH inside the orchard tree d r i p l i n e (Depths 1 through 6 on the x axis correspond to the six sampling depths described in Section 2.2.). The c o e f f i c i e n t of variation of pH measured in the L i s t e r s o i l , Orchard (1) and Forest (1), was similar for most depths. At depth 6 the larger c o e f f i c i e n t of v a r i a t i o n measured in the forest was related to the presence or absence of the calcareous horizon in the sample. For some p i t s , the calcareous parent material was not reached u n t i l 95 cm. Fig. 4.2.49. Coefficient of Variation 20 T — Legend E] Orchard M) hW roresKe) (S3 OrchartKD a ToresKO Depth 53 The c o e f f i c i e n t s of variation for organic carbon were much greater than for s o i l pH (Fig. 4.2.50.). Depths 3 to 6 col l e c t e d in the Elmo orchard s i t e showed greater variation than in the forest s i t e . This variation was credited to the s i g n i f i c a n t difference between the samples c o l l e c t e d on either side of the orchard tree d r i p l i n e . For the L i s t e r s o i l samples, Orchard (1) and Forest (1), the most s t r i k i n g difference between s i t e s was the larger c o e f f i c i e n t of variation measured at the forest s o i l surface. This substantiates the f i e l d observation of the sporadic occurrence of the Ah horizon in the forested s i t e . Fig. 4.2.50. Coefficient of Variation 1 2 3 4 5 6 Depth 54 The larger c o e f f i c i e n t s of variation observed for calcium from depths 3, 4, and 5 of the Elmo orchard s o i l were credited to the influence of the d r i p l i n e (Fig. 4.2.51.). The calcium measured outside the d r i p l i n e was s i g n i f i c a n t l y greater at these depths. The large difference between the L i s t e r s i t e s at depths 5 and 6 was related to the depth of the calcareous horizon. In the orchard s i t e the calcareous horizon fluctuated within and below 60 cm, thereby producing the large c o e f f i c i e n t of va riation seen at depth 5. In the forest, the same situation occurred at depth 6. Fig. 4.2.51. Coefficient of Variation > a E 3 "o Legend CZ3 Orchard W • Tores IW fSJ Orchardd) O fores 1(1) 55 V a r i a b i l i t y associated with s o i l phosphorus was generally greater than for a l l other parameters measured (Fig. 4.2.52.). Although not quite as noticeable, the c o e f f i c i e n t of v a r i a t i o n for most parameters measured from the Elmo s o i l series were greater at the surface of the forest s i t e . For phosphorus the c o e f f i c i e n t of variation from the forest surface s o i l was twice that of the orchard s o i l . This v a r i a t i o n may have been associated with the variable amount of organic l i t t e r incorporated in the sample. Between 7.5 and 60 cm the orchard s o i l c o e f f i c i e n t of variation was greater. This was attributed to the s i g n i f i c a n t l y d i f f e r e n t sample populations noted on either side of the d r i p l i n e at the orchard s i t e . No clear trend was uncovered for the L i s t e r s o i l samples. > a Fig. 4.2.52. Coefficient of Variation Depth Legend ZZl Orchards •1 fores 1(e) EJ OrchardO) C3 foresKI) 56 Summary F o r most p a r a m e t e r s measured t h e c o e f f i c i e n t o f v a r i a t i o n of t h e Elmo o r c h a r d s o i l s a m p l e s was g r e a t e r t h a n f o r t h e f o r e s t s o i l s a m p l e s . The o r c h a r d s o i l s a m p l e s d e m o n s t r a t e d t h e g r e a t e s t v a r i a b i l i t y between 15 and 60 cm. T h i s r e s u l t c o i n c i d e s w i t h t h e p r e s e n c e o f a d r i p l i n e e f f e c t on s o i l c h e m i c a l p r o p e r t i e s . The c o e f f i c i e n t s of v a r i a t i o n c a l c u l a t e d f o r t h e L i s t e r s o i l s amples f a i l e d t o d i s t i n g u i s h much d i f f e r e n c e between s i t e s . The most n o t a b l e o b s e r v a t i o n was t h e g r e a t e r v a r i a b i l i t y of most p a r a m e t e r s when v a r y i n g amounts o f t h e C h o r i z o n were i n c l u d e d i n t h e samples from d e p t h s 5 and 6. A l t h o u g h t h e c o e f f i c i e n t o f v a r i a t i o n i s a b i a s e d measure of sample v a r i a b i l i t y i t doe s s u g g e s t whether a sample s i z e of t w e l v e i s l a r g e enough f o r t h e c o m p a r i s o n of t h e o r c h a r d and f o r e s t s i t e s . In most c a s e s c o m p a r i s o n s were v a l i d ; however, the l a r g e c o e f f i c i e n t s o f v a r i a t i o n a s s o c i a t e d w i t h some p h o s p h o r u s and c a r b o n s a m p l e s j e o p a r d i z e s t h e v a l i d i t y o f t h e o r c h a r d and f o r e s t s i t e c o m p a r i s o n . 57 4.3. L a n d Use and P r o d u c t i o n 4.3.1. L a n d Use The b o u n d a r i e s o f t h e s t u d y a r e a were b a s e d on t h o s e o f t h e l o c a l i r r i g a t i o n d i s t r i c t . The t o t a l a r e a under s c r u t i n y was 755 h a . In 1950, 572 ha were d e v o t e d t o t r e e f r u i t s , 29 ha t o r e s i d e n t i a l u sage and 154 ha t o t h e m i s c e l l a n e o u s c a t e g o r y ( T a b l e 4 . 3 . 1 . ) . S i n c e 1950 a s i g n i f i c a n t amount of p r o d u c t i v e o r c h a r d l a n d has been t r a n s f e r r e d t o o t h e r u s e s . The r e s u l t s from t h e 1980 l a n d use map a r e summarized i n T a b l e 4.3.1. A t o t a l of 190 ha o r 33% of t h e 1950 l a n d base has gone out of o r c h a r d p r o d u c t i o n . R e s i d e n t i a l d w e l l i n g s have consumed 124 ha and t h e r e m a i n i n g 66 ha a r e b e i n g p u t t o o t h e r u s e s ( s e e pages 59 and 60 f o r l a n d use maps). Changes i n l a n d use a r e e s s e n t i a l l y g o v e r n e d by c o m p e t i t i o n between d i f f e r e n t t y p e s o f demand. The s c e n i c C r e s t o n f r u i t g r o w i n g d i s t r i c t has l o n g been a f a v o u r i t e r e t i r e m e n t a r e a and u n t i l t h e i n c l u s i o n o f t h e A g r i c u l t u r a l Land R e s e r v e (1972) many of t h e r e t i r i n g f a r m e r s were e i t h e r s u b d i v i d i n g o r c o n v e r t i n g t h e i r o r c h a r d s i n t o t r a i l e r p a r k s . P r e s e n t l y , o r c h a r d s owned by t h o s e no l o n g e r f a r m i n g a r e commonly l e a s e d t o o t h e r o r c h a r d i s t s . Demand from t h e n o n - a g r i c u l t u r a l s e c t o r s d o e s n o t a l o n e s e t l a n d use t r e n d s . C h a n g i n g s o c i o - e c o n o m i c c o n d i t i o n s i n a g r i c u l t u r e , n o t a b l y t o a h i g h e r t h r e s h o l d o f p r o f i t a b i l i t y , o f t e n c a u s e s l a n d t o go o u t o f p r o d u c t i o n . F o r i n s t a n c e , B r i t i s h C o l u m b i a g r o w e r s r e c e i v e d 18.7 c e n t s p e r k i l o g r a m f o r 58 the 1981 crop, but production costs were 28.4 cents per kilogram. In 1982 orchardists received 11.9 cents per kilogram while production costs increased to 30.1 cents per kilogram. Highly c a p i t a l i z e d land, high operating costs and a current overproduction of apples in the world market are the major economic barriers facing B r i t i s h Columbia orchardists. The cost of land may run as high as $22,000/ha. This price i s considered to be far too high to make an adequate return on investment. Table 4.3.1. Changes in Land Use. Creston, B.C. Land Use 1980 1950 1980-1950=Change Orchard 382 ha. 572 ha. 382-572=-l90 ha. Housing 153 ha. 29 ha. 153- 29=+124 ha. Mi scellaneous 220 ha. 154 ha. 220-154= + 66 ha. Total area 755 ha. 755 ha. O O O n o o o o fD rn r r cn o z O o M * fl> o CD o c M o to fD fD 0) o I- 1 r 1 D —• h-' a o fD a 0) iQ D fD a CO fD »-! D 0) - • O a Q i fD o C o cn 36 o •a • CO o 0861 3Sfi p u e i ' J ' S * * 09 61 4.3.2. Crop Yields and Productivity The production estimates provided below should be considered only as gross estimates. In 1950, 572 ha of land produced 5,055,400 kg of f r u i t . Of the 5 m i l l i o n kg of f r u i t grown 4.6 m i l l i o n kg or 91% of Creston's f r u i t was apples. Since i t was not possible to separate the various kinds of f r u i t trees and the amount of land occupied by each on the a i r photographs, the productivity of each i s unknown. However, since apples do represent 91% of the tonnage produced the t o t a l f r u i t produced was divided by the land under production to give some idea of apple productivity. Apple tree productivity in Creston from 1948 to 1952 was approximately 8800 kg/ha. In 1980 approximately 336 ha of bearing f r u i t trees produced 3,995,500 kg of f r u i t . This is equivalent to 1.1,900 kg of f r u i t per hectare. By 1980, 97% of the f r u i t packed by the co-operative was apples indicating e i t h e r ' l e s s land is planted to cherries, peaches and pears or that t h i s f r u i t i s being sold outside the packing house. Tonnage produced at the Elmo and L i s t e r orchard s i t e s was considerably greater than the average value calculated for the Creston Valley (11,900 kg/ha). The Elmo orchard s i t e produces approximately 20,000 kg/ha while the L i s t e r s i t e produces almost 25,000 kg/ha of apples annually. The discrepancy between the valley's and the Elmo and L i s t e r s i t e ' s productivity may be based on an unknown, but s i g n i f i c a n t amount of f r u i t sold through f r u i t stands rather than to the packing shed. Another factor contributing to the valley's low productivity is the presence of many non-productive trees in the older orchards. 62 According to l o c a l orchardists, 20 to 25 t/ha is a reasonable estimate of the y i e l d from a healthy stand of older, standard sized apple trees. If the 46 ha of newly planted semi-dwarf trees are well managed a y i e l d of 40 to 50 t/ha i s possible. This would be equivalent to an additional 1.8 m i l l i o n kg of apples or a t o t a l 6 m i l l i o n kg produced from the 382 ha of land currently planted in Creston. Table 4.3. 2. F r u i t Production. Creston, B.C. Fr u i t Grown 1980 Production (5 year average) 1950 Production (5 year average) Apples 3,886,500 kg 4,579,000 kg Other f r u i t 109,000 kg 476,000 kg Total (kg/yr) 3,995,500 kg 5,055,000 kg Productivity A l l F r u i t 11,900 kg/ha (a) 8,800 kg/ha (b (a) productivity based on 336 ha of bearing trees (b) productivity based on 572 ha of bearing trees 63 5. Summary and C o n c l u s i o n 5•1• S o i 1 G e n e s i s O r c h a r d management has p r o d u c e d a s o i l r i c h e r i n o r g a n i c m a t t e r t h a n t h e s o i l u n der t h e c o n i f e r o u s f o r e s t n a t i v e t o t h e C r e s t o n a r e a . In 50 y e a r s , i r r i g a t i o n of t h e grass e d - d o w n o r c h a r d s has p r o v i d e d a much g r e a t e r s u p p l y of r e a d i l y d e c o m p o s a b l e o r g a n i c l i t t e r t h a n t h e f o r e s t had p r o v i d e d i n h u n d r e d s of y e a r s . F o r b o t h t h e Elmo s o i l s e r i e s and L i s t e r s o i l s e r i e s n a t i v e t o t h e a r e a t h e i n c r e a s e d i n c o r p o r a t i o n o f o r g a n i c m a t t e r has l e d t o a change i n t h e i r c l a s s i f i c a t i o n . A S o m b r i c B r u n i s o l has e v o l v e d from a D y s t r i c B r u n i s o l on t h e sandy g l a c i o f l u v i a l m a t e r i a l o f t h e Elmo s o i l and a Dark G r a y L u v i s o l has d e v e l o p e d on t h e s i t e o r i g i n a l l y o c c u p i e d by t h e L i s t e r s o i l O r t h i c Gray L u v i s o l . In a d d i t i o n t o i m p r o v i n g t h e o r g a n i c m a t t e r s t a t u s o f t h e s o i l , i r r i g a t i o n has a l s o h a s t e n e d t h e w e a t h e r i n g and e r o s i o n r a t e s . On t h e sandy g l a c i o f l u v i a l m a t e r i a l t h e d e p t h t o t h e C h o r i z o n has i n c r e a s e d a f u l l 10 cm i n t h e o r c h a r d s i t e b e c a u s e of g r e a t e r l e a c h i n g . The g l a c i o l a c u s t r i n e o r c h a r d s i t e has a l s o been a f f e c t e d by i r r i g a t i o n b u t i n t h i s c a s e up t o 10 cm of s u r f a c e s o i l has been e r o d e d . X - r a y d i f f r a c t i o n o f t h e c o a r s e c l a y f r a c t i o n s o f t h e Elmo and L i s t e r s o i l s e r i e s r e v e a l e d t h a t t h e s e s o i l s s h a r e t h e same m i n e r a l o g y . In o r d e r of do m i n a n c e , m i c a , k a o l i n i t e and 64 vermiculite were i d e n t i f i e d at a l l sample depths in a l l s i t e s and appear to have been derived from the parent material rather than developing in s i t u . 5.2. S o i l Chemical Properties As foreshadowed by the changes in s o i l c l a s s i f i c a t i o n due to orchard practices, s o i l carbon, t o t a l nitrogen and available phosphorus were enhanced in both orchard s i t e s . However, for the exchangeable cations and hydrogen ion a c t i v i t y the scenario for each s o i l series was unique. The sandy orchard s o i l did not d i f f e r greatly from the forest s o i l but within the orchard s i t e a number of differences were evident. For instance, an obvious concentration of cations at the surface and a depressed l e v e l of these cations at depth was found inside the orchard tree d r i p l i n e . The other noticeable trend was the higher amount of carbon, nitrogen and phosphorus outside the tree's d r i p l i n e . At least for the sandy s o i l the e f f e c t of orchard management has been the production of a more f e r t i l e s o i l . Nitrogen f e r t i l i z a t i o n and i r r i g a t i o n of the orchard sod produced a surface horizon richer in organic matter and consequently a s o i l with a greater water holding capacity, welcome changes for t h i s coarse textured s o i l . Within the d r i p l i n e of the Elmo s o i l orchard s i t e there was evidence of the environment and practices s p e c i f i c to the d r i p zone. Although not nearly as s i g n i f i c a n t as expected a depletion of most cations was experienced between 15 and 45 cm inside the d r i p l i n e . Associated with t h i s depletion was a concentration of 65 most c a t i o n s a t t h e s o i l s u r f a c e b e n e a t h t h e t r e e ' s c a n o p y . I t was c o n c l u d e d t h a t t h e o r c h a r d t r e e s p l a y e d a s i g n i f i c a n t p a r t i n t h i s t r e n d t h r o u g h t h e e x t r a c t i o n o f c a t i o n s from t h e s u b s o i l and s u b s e q u e n t c o n c e n t r a t i o n of t h e s e n u t r i e n t s a t t h e s u r f a c e t h r o u g h l i t t e r d e c o m p o s i t i o n . In a d d i t i o n , t h e d e p l e t i o n o f c a t i o n s w i t h i n t h e d r i p l i n e was l i k e l y • t o be a f f e c t e d by l e a c h i n g and t h e a c i d i f y i n g i n f l u e n c e of n i t r o g e n f e r t i l i z e r s . A l t h o u g h no d i f f e r e n c e was d e t e c t e d i n t h e s o i l pH measured between t h e o r c h a r d and t h e f o r e s t s i t e i n t h e sandy s o i l t h e a d d i t i o n of l i m e i s s t r o n g l y recommended. P r e v i o u s s u r v e y s of s o i l pK i n t h e C r e s t o n o r c h a r d s have u n c o v e r e d s o i l pH's below 4.0. The low s o i l pH o b s e r v e d i n t h e Elmo s o i l s e r i e s (<4.5) can l e a d t o b o t h m i c r o n u t r i e n t t o x i c i t i e s as w e l l as m a c r o n u t r i e n t i m b a l a n c e s . D i s o r d e r s s u c h as i n t e r n a l b a r k n e c r o s i s , c o r r e l a t e d w i t h manganese t o x i c i t y ( F i s h e r e t a l . , 1977) and s t o r a g e breakdown a s s o c i a t e d w i t h i n a d e q u a t e f r u i t l e v e l s o f c a l c i u m a r e l i k e l y t o o c c u r ( N e i l s o n e t a l . 1981). A c c o r d i n g t o t h e B.C. T r e e F r u i t P r o d u c t i o n G u i d e ( 1 9 8 2 ) , i f s o i l pH d r o p s below 6 t h e r e i s a need f o r l i m e a p p l i c a t i o n . The b e s t t i m e t o c o r r e c t s o i l pH i s d u r i n g s i t e p r e p a r a t i o n , when t h e l i m e c a n be added d i r e c t l y i n t o t h e p o t e n t i a l r o o t z o n e . However, r e g u l a r m a i n t e n a n c e l i m i n g i s s t i l l r e q u i r e d t o c o u n t e r a c t a c i d i f i c a t i o n a s s o c i a t e d w i t h n i t r o g e n f e r t i l i z e r s , i r r i g a t i o n and h e r b i c i d e s . In t h e C r e s t o n a r e a a l o c a l s o u r c e of d o l o m i t e would be a good c h o i c e o f l i m i n g m a t e r i a l s i n c e i t b o t h c a l c i u m and magnesium w h i c h a r e commonly d e f i c i e n t i n a c i d s o i l s . The g r e a t e s t d i f f e r e n c e seen i n t h e c o m p a r i s o n o f t h e 66 L i s t e r s o i l s e r i e s b e s i d e s more o r g a n i c m a t t e r i n t h e o r c h a r d s i t e was a g r e a t e r l e v e l o f e x c h a n g e a b l e b a s e s i n t h e o r c h a r d s i t e a t most d e p t h s . A l t h o u g h not o r i g i n a l l y a n t i c i p a t e d t h i s r e s u l t seems t o i n d i c a t e t h a t a c o n s i d e r a b l e amount of s u r f a c e e r o s i o n has o c c u r r e d t h e r e b y e x p o s i n g r e l a t i v e l y u n w e a t h e r e d s o i l . T h e r e was v i r t u a l l y no d i f f e r e n c e between t h e s a m p l e s c o l l e c t e d w i t h i n t h e o r c h a r d on e i t h e r s i d e of t h e d r i p l i n e . The a b s e n c e o f a d r i p l i n e e f f e c t was c r e d i t e d t o s l o p e p o s i t i o n . The n u t r i e n t r e c e i v i n g p o s i t i o n of t h e L i s t e r o r c h a r d s i t e w ould s e r v e t o mask any d e c r e a s e i n pH or base s a t u r a t i o n c a u s e d by i r r i g a t i o n or n i t r o g e n f e r t i l i z a t i o n . The c h a n g e s i n s o i l c h e m i c a l p r o p e r t i e s a t t r i b u t e d t o o r c h a r d management a t t h e L i s t e r s o i l s e r i e s s i t e would have l i t t l e i m pact on t h e f r u i t t r e e s . The h i g h e r l e v e l o f o r g a n i c m a t t e r r e c o r d e d i n t h e o r c h a r d s i t e may w e l l improve t h e w ater p e n e t r a b i l i t y and a e r a t i o n q u a l i t i e s of t h e heavy t e x t u r e d s o i l . E ven t h o u g h d e g r a d a t i o n o f t h e s o i l ' s b ase s t a t u s was n o t e v i d e n t a t t h i s p a r t i c u l a r s i t e p r e v i o u s o r c h a r d s o i l pH s u r v e y s i n C r e s t o n have u n c o v e r e d v e r y a c i d s o i l s . 5.3. Land Use The l o s s o f o r c h a r d l a n d t o s u b d i v i s i o n s and hobby farms i n t h e C r e s t o n a r e a p o s e s a s e r i o u s t h r e a t t o t h e c o n t i n u a t i o n o f a v i a b l e f r u i t i n d u s t r y . O u t s i d e t h e Okanagan V a l l e y , C r e s t o n i s one o f t h e l a s t c o m m e r c i a l a p p l e p r o d u c i n g a r e a s i n t h e p r o v i n c e . D i f f i c u l t m a r k e t i n g c o n d i t i o n s and c o n s e q u e n t l y p o o r r e t u r n s t o g r o w e r s have l e d t o t h e abandonment of many of t h e o r c h a r d s p r e v i o u s l y l o c a t e d i n s m a l l s o u t h e r n v a l l e y s t h r o u g h o u t 67 the province. Today 382 ha are planted to tree f r u i t s in Creston, 190 fewer ha than in 1950 An additional 150 ha of land that are suited to tree f r u i t production are presently i d l e . If the A g r i c u l t u r a l Land Reserves are abandoned th i s presently i d l e land would probably be subdivided, thereby further eroding Creston's status as a f r u i t producing area. An uncertain market and low returns appear to play a greater role in land use in Creston than does urban encroachment. The number of neglected and eventually removed orchards is l i k e l y to increase i f the economic v i a b i l i t y of tree f r u i t production does not improve. 5.4 Product ion The observed increase in productivity was credited to technological advances in h o r t i c u l t u r e . One reason for higher per hectare y i e l d s since 1950 was the replacement of lime sulphur with organic fungicides. The sulphur spray tended to burn the leaves thereby i n t e r f e r i n g with photosynthesis and reducing the tonnage of f r u i t produced. Another very important contribution to greater productivity has been the introduction of dwarfing rootstock. The semi-dwarf trees now prevalent in Creston come into bearing e a r l i e r and produce much greater yie l d s per hectare than did the larger trees previously grown. It i s predicted that within f i v e years Creston's apple production w i l l exceed the 1950 production value even with 190 fewer hectares. 68 Literature Cited Aderikhin, P.C. et a l . 1960. Changes in the podzolic s o i l s of the Murmansk Region under c u l t i v a t i o n ( t r a n s l a t i o n ) . Pochvovedenie. 4:379-383. A l l i s o n , L.E. Organic carbon. I_n Black et a l . (ed.) 1965. Methods of s o i l analysis. Part 2. American Society of Agronomy. Madison, Wise. p 771-1572. Bidwell, O.W. and F.D. Hole. 1965. Man as a factor in s o i l formation. S o i l Sc. 99:65-72 Black et a l . (ed.) 1965. Methods of s o i l analysis. Part 2. American Society of Agronomy. Madison, Wise- p 771-1572. Bremmer, J.M. 1965. Total nitrogen. I_n Black et a l . (ed.) 1965. Methods of s o i l analysis. Part 2. American Society of Agronomy. Madison, Wise. p 771-1572. Canadian S o i l Survey Committee. 1978. The Canadian system of s o i l c l a s s i f i c a t i o n . Can. Dept. Agric. Publ. 1646. 164 pp. Davidson, D. 1979. Changes in selected s o i l properties as a result of c u l t i v a t i o n in the orchards of Penticton, B.C. BSc (Agr.). Univ. of B.C. 80 pp. 69 Environment Laboratory. 1983. Water quality report for sample 300361W. Creston-Arrow Creek intake. B.C. Min. of Environ. 4 pp. Faust, M. 1979. Modern concepts in f r u i t n u t r i t i o n . I_n : Atkinson et a l . Mineral n u t r i t i o n of f r u i t trees. 1980. 435 pp. Felizardo, B.C., N.R. Benson and H.H. Cheng. 1972. Nitrogen, s a l i n i t y , and a c i d i t y d i s t r i b u t i o n in an i r r i g a t e d orchard s o i l as affected by placement of nitrogen f e r t i l i z e r s . S o i l Sc. Soc. Amer. Proc. 36:803-808. Fisher, A.G., G.W. Eaton and S.W. P o r r i t t . 1977. Internal bark necrosis of d e l i c i o u s apple in r e l a t i o n to s o i l pH and leaf Mn. Can. J. Plant S c i . 57(1):297-299. Haas, H.J. and C E . Evans. 1957. Nitrogen and carbon changes in Great Plains s o i l s as influenced by cropping and s o i l treatment. U.S. Dept. Agric. Tech. B u l l . No. 1167. 111 pp. Haynes, R.J. and K.M. Goh. 1980. Some observations in surface s o i l pH, base saturation, and leaching of cations under three contrasting orchard management practices. Plant and S o i l . 56(3):429-438. H o r t i c u l t u r a l Branch. 1982. Tree f r u i t production guide for 70 i n t e r i o r d i s t r i c t s . B.C. Ministry of Agric. and Food. 74pp. Jackson, M.L. 1956. S o i l chemical analysis. advanced course. Publ. by author. Univ. of W ise, Madison. 991 pp. Jonkers, H., and H. Hoestra. 1978. S o i l pH in f r u i t trees in r e l a t i o n to s p e c i f i c replant disorder of apple. 1. Introduction and review of l i t e r a t u r e . Scientia Hort. 8:113-118. Jungen, J.R. 1980. S o i l resources cf the Nelson map area (82F). RAB B u l l . 20. Min. of Environ. 217 pp. King, R.R. 1972. Okanagan pH survey report. B r i t i s h Columbia Dept. of Agric. Kelowna, B.C. 32pp. K i t t r i c k , J.A. and E.W. Hope. 1963. A procedure for the p a r t i c l e size separation of s o i l s for x-ray d i f f r a c t i o n analysis. S o i l S c i . 96:319-325. Lidst e r , P.D., S.W. P o r r i t t and G.W. Eaton. 1978a. Effects of spray application of B, Sr, and Ca on breakdown development in spartan apples. Can. J. of Plant S c i . 58(1):283-285. Lids t e r , P.D., S.W. P o r r i t t and G.W. Eaton. 1978b. The eff e c t of f r u i t size and method of calcium chloride application on f r u i t calcium content and breakdown in spartan apples. Can. J. of Plant S c i . 58(2):357-362. M a n n i n g , E.W., and S.S. Eddy, r e s e r v e s of B r i t i s h C o l u m b i a : D i r e c t o r a t e . E n v i r o n m e n t Canada. 71 o 1978. The a g r i c u l t u r a l l a n d an impact a n a l y s i s . L a n d s Munn, L.C. 1980. Land use i n Canada. The r e p o r t o f t h e i n t e r d e p a r t m e n t a l t a s k f o r c e on l a n d use p o l i c y . L a n ds D i r e c t o r a t e . E n v i r o n m e n t Canada. N e i l s o n , G.H. and P.B. H o y t . B r i t i s h C o l u m b i a a p p l e o r c h a r d s . 62(11):695-698. N e i l s o n , G.H., E.H. Hogue and e f f e c t s o f s u r f a c e a p p l i e d c a l c i u m a p p l e t r e e s . Can J . S o i l S c i . 61 1982. S o i l pH v a r i a t i o n i n Can. J . - o f S o i 1 Sc i . B.C. D r o u g h t . 1981. The on s o i l and mature s p a r t a n ( 2 ) : 2 9 5 - 3 0 2 . O l s e n , S.R. and L.A. Dean. 1965. P h o s p h o r u s . I_n B l a c k e t a l . (ed.) 1965. Methods of s o i l a n a l y s i s . P a r t 2. A m e r i c a n S o c i e t y o f Agronomy. M a d i s o n , W i s e . p 771-1572. P e e c h , M. 1965. H y d r o g e n i o n a c t i v i t y . I_n B l a c k e t a l . (ed.) 1965. Methods of s o i l a n a l y s i s . P a r t 2. A m e r i c a n S o c i e t y of Agronomy. M a d i s o n , W i s e . p 771-1572. P i e r r e , W.H. 1928. N i t r o g e n e o u s f e r t i l i z e r s and s o i l a c i d i t y : 1. E f f e c t o f v a r i o u s n i t r o g e n o u s f e r t i l i z e r s on s o i l r e a c t i o n . J . o f t h e Amer. S o c . o f Agronomy. 2 2 ( 3 ) : 2 5 4 - 2 6 9 . 72 R e s o u r c e A n a l y s i s B r a n c h . 1978. C l i m a t i c c a p a b i l i t y c l a s s i f i c a t i o n f o r a g r i c u l t u r e i n B r i t i s h C o l u m b i a . B.C. M i n . of E n v i r o n . T e c h . Paper 1. 23 pp. R i c e , H.M.A. 1941. N e l s o n map a r e a , e a s t h a l f , B r i t i s h C o l u m b i a . G e o l . S u r v e y of Canada. Memoir 228. R o b i n s o n , J.B.D. 1979. S o i l and t i s s u e a n a l y s i s i n p r e d i c t i n g n u t r i e n t n e e d s . I_n : A t k i n s o n e t a l . M i n e r a l n u t r i t i o n of f r u i t t r e e s . 1980. 455 pp. Runka, G.G. 1973. Land c a p a b i l i t y f o r a g r i c u l t u r e . B r i t i s h C o l u m b i a L a n d I n v e n t o r y ( C L I ) . S o i l S u r v e y D i v . B.C. D e p t . o f A g r i c . 25 pp. S i e g e l , S. 1956. N o n p a r a m e t r i c s t a t i s t i c s f o r t h e b e h a v i o u r a l s c i e n c e s . M c G r a w - H i l l Book Company. 312 pp. S w a l e s , J . E . 1978. C o m m e r c i a l a p p l e g r o w i n g i n B r i t i s h C o l u m b i a . B.C. M i n . of A g r i c . 127 pp. T e r b l a n c h e , J.H., L.G. W o o l r i d g e , I . H e s e b e c k and M. J o u b e r t . 1979. The r e d i s t r i b u t i o n and i m m o b i l i z a t i o n o f c a l c i u m i n a p p l e t r e e s w i t h s p e c i a l r e f e r e n c e t o b i t t e r p i t . Commun. S o i l S c i , P I . A n a l y s i s . 10:195-215. V a n g ^ P e t e r s o n , 0. 1980. C a l c i u m , p o t a s s i u m and magnesium n u t r i t i o n and t h e i r i n t e r a c t i o n s i n "Cox's O r a n g e " a p p l e t r e e s . 73 Sc i e n t i a . Hort. 12:153-161. Watanabe, F.S. and S.R. Olsen. 1965. Test of an ascorbic acid method for determining phosphorus in water and sodium bicarbonate extracts from s o i l . S o i l S c i . of Amer. Proc. 29(6) -.667-668. Westwood, M.N. 1978. Temperate-zone pomology. W.H. Freeman. San Fransisco. 428 pp. Wittneben, U. and P.N. Sprout. 1971. S o i l survey of the Creston area. B.C. Dept. of Agric. Kelowna, B.C. 93 pp. A P P E N D I X : C H E M I C A L D A T A U N D E R S T A N D I N G T H E A P P E N D I X K E Y T O S A M P L E NUMBERS D I G I T 1 2 3 4 5 6 D I G I T 1 = •- S O I L ( 1 = E L M O ; 2 = L I S T E R ) D I G I T 2 = = MGMT ( 1 = O R C H A R D ; 2 = F O R E S T ) D I G I T 3 = = T R A N S E C T / S I T E ( 1 , 2 OR 3 ) D I G I T 4 = . P I T / T R A N S E C T ( 1 , 2 , 3 OR 4 ) D I G I T 5 = = S A M P L E D E P T H ( 1 , 2 , 3 , 4 , 5 OR 6 ) D I G I T 6 = = DR IP I , I N E ( = INS I I DE;2=Ol J T S I D E E X A M P L E 1 1 3 2 2 1 E X . = E L M O , O R C H . , T R - 3 , P I T - 2 , D E P T H - 2 , I N S I D E . Sample pH N P C 1 1 1 1 1 1 1 5 750 0 216 100 200 3 560 2 1 1 1 1 2 1 4 870 0 049 117 200 1 010 3 1 1 1 1 3 1 4 020 0 018 35 500 0 480 4 1 1 1 1 4 1 4 090 0 014 10 100 0 440 5 1 1 1 1 5 1 4 170 0 011 6 OOO 0 080 6 1 1 1 1 6 1 4 560 0 008 2 500 0 060 7 1 1 1 2 1 1 5 340 0 284 54 900 4 780 8 1 1 1 2 2 1 5 020 0 073 83 200 0 400 9 1 1 1 2 3 1 4 960 0 026 62 500 O 370 10 1 1 1 2 4 1 4 950 0 017 7 300 0 250 11 1 1 1 2 5 1 4 910 0 010 4 500 0 060 12 1 1 1 2 6 1 4 600 0 01 1 12 300 0 050 13 1 1 1 3 1 2 4 980 0 221 89 300 3 130 14 1 1 1 3 2 2 4 820 0 089 140 400 1 120 15 1 1 1 3 3 2 5 110 0 038 130 800 0 530 16 1 1 1 3 4 2 5 010 0 021 50 100 0 200 17 1 1 1 3 5 2 4 760 0 013 1 1 700 0 070 18 1 1 1 3 6 2 4 730 0 006 4 600 0 040 19 1 1 1 4 1 2 4 740 0 235 100 900 3 630 20 1 1 1 4 2 2 5 030 0 O70 142 400 1 110 21 1 1 1 4 3 2 5 1 10 0 019 25 500 0 200 22 1 1 1 4 4 2 5 190 0 014 19 200 0 100 23 1 1 1 4 5 2 4 860 0 006 6 500 0 040 24 1 1 1 4 6 2 4 880 0 008 3 100 0 030 25 1 1 2 1 1 1 5 410 0 225 112 400 1 120 26 1 1 2 1 2 1 4 160 0 042 135 800 0 600 27 1 1 2 1 3 1 4 020 0 018 86 OOO 0 180 28 1 1 2 1 4 1 3 800 0 013 30 300 O 060 29 1 1 2 1 5 1 3 880 0 009 12 800 0 350 30 1 1 2 1 6 1 4 120 0 008 8 300 0 O 31 1 1 2 2 1 1 5 100 0 263 55 90O 4 250 32 1 1 2 2 2 1 4 300 0 054 91 900 0 740 33 1 1 2 2 3 1 4 170 0 020 22 400 0 170 34 1 1 2 2 4 1 4 280 0 014 7 900 0 090 35 1 1 2 2 5 1 4 440 0 009 3 700 0 050 36 1 1 2 2 6 1 4 570 0 009 5 40O 0 030 37 1 1 2 3 1 2 4 710 0 216 125 400 2 400 38 1 1 2 3 2 2 4 710 0 049 145 900 0 750 39 1 1 2 3 3 2 4 700 0 040 101 200 0 580 40 1 1 2 3 4 2 4 520 0 016 40 20O 0 130 41 1 1 2 3 5 2 4 560 0 012 12 600 0 080 42 1 1 2 3 6 2 4 550 0 009 8 90O 0 090 43 1 1 2 4 1 2 4 510 0 191 133 900 2 470 44 1 1 2 4 2 2 4 470 0 074 123 300 0 870 45 1 1 2 4 3 2 4 780 0 024 66 100 0 330 46 1 1 2 4 4 2 4 690 0 01 1 13 000 0 060 47 1 1 2 4 5 2 4 620 0 007 8 800 0 040 48 1 1 2 4 6 2 4 750 0 007 7 600 0 010 49 1 1 3 1 1 1 5 130 0 161 49 200 2 760 50 1 1 3 1 2 1 4 510 0 056 45 400 0 840 51 1 1 3 1 3 1 4 580 0 021 21 400 0 260 52 1 1 3 1 4 1 4 530 0 010 8 800 0 050 53 1 1 3 1 5 1 4 550 0 007 6 700 0 050 54 1 1 3 1 6 1 4 570 0 010 5 300 0 028 55 1 1 3 2 1 1 5 560 0 217 28 400 2 950 CEC C a Mg K Na Mn BS 16 140 5 830 1 130 0 420 0 030 0 040 46 159 7 230 2 220 0 840 0 350 0 020 0 030 47 856 4 570 0 670 0 190 0 310 0 020 0 030 26 696 2 570 0 880 0 080 0 120 0 020 0 040 44 358 2 320 1 050 0 080 0 060 0 030 0 040 54 310 2 130 1 073 0 1 15 0 037 0 012 0 020 58 100 16 240 9 810 1 960 0 680 O 020 0 080 77 278 a 680 3 870 0 700 0 530 0 020 0 020 59 217 6 070 2 020 0 510 0 650 0 010 0 010 52 718 3 230 1 720 0 360 0 200 0 010 0 010 71 207 2 858 1 281 0 232 0 064 0 010 0 010 55 500 2 788 1 226 0 176 0 103 0 014 0 010 54 500 13 700 5 700 1 220 0 470 0 030 0 060 54 599 8 630 4 020 0 840 0 230 0 030 0 020 59 560 7 920 3 650 0 550 0 300 0 030 0 010 57 323 4 090 2 ioo 0 320 0 390 0 020 0 010 69 438 3 158 1 319 0 213 0 162 0 008 0 010 53 900 2 677 1 137 o 222 0 093 0 OIO 0 010 54 500 13 970 4 940 1 160 0 500 0 020 0 070 47 888 8 390 4 250 0 650 0 250 0 040 0 020 62 098 3 830 2 480 0 340 0 380 O 020 0 010 84 334 2 410 0 200 0 020 0 240 0 020 0 010 20 332 2 549 1 21 1 0 226 0 121 0 010 0 010 61 400 2 338 1 108 0 239 0 070 0 010 0 010 60 80O 14 250 7 720 1 440 0 300 0 020 0 010 66 596 6 350 1 180 0 310 0 240 0 020 0 050 28 346 3 750 0 610 0 080 0 230 0 020 0 040 26 133 2 230 0 400 0 060 0 1 10 o 020 0 020 27 354 1 250 0 400 0 080 0 100 0 020 0 020 49 600 2 051 o 699 o 105 0 048 o 008 0 020 41 900 14 410 6 260 1 380 0 690 0 030 0 070 58 501 6 270 1 540 0 290 0 240 0 030 0 040 34 131 4 540 1 020 0 170 0 280 0 030 0 020 33 480 1 510 1 070 0 190 0 130 0 020 0 020 94 702 1 958 1 109 0 127 0 066 0 01 1 0 020 67 IOO 2 152 1 186 0 103 0 050 0 010 0 010 62 700 11 900 6 840 1 630 0 280 0 030 0 070 74 370 6 690 2 930 0 560 0 1 10 0 030 0 020 54 559 6 840 2 520 0 610 0 140 0 030 0 020 48 538 3 310 1 340 0 290 0 150 o 020 0 010 54 683 2 050 . 1 400 0 190 0 100 0 020 0 020 84 390 2 477 1 166 0 161 0 045 o 009 0 020 55 800 7 760 4 010 1 020 0 310 0 020 0 060 69 845 6 790 2 670 0 540 0 200 0 020 0 030 50 957 3 890 2 260 0 420 0 220 0 020 0 020 75 578 2 702 1 201 0 260 0 084 0 010 0 010 57 500 2 223 1 093 0 232 0 052 0 010 0 010 62 200 1 922 1 067 0 189 0 039 0 010 0 010 67 700 11 880 5 310 1 190 0 340 o 010 0 060 58 165 6 070 2 170 0 560 0 430 0 010 0 050 53 048 5 298 1 84 1 0 242 0 1 19 0 025 0 020 42 OOO 3 095 1 144 0 130 0 040 0 020 0 020 42 900 2 747 1 216 0 144 0 042 0 OIO 0 020 51 500 3 077 1 129 0 149 0 070 0 013 0 020 42 900 13 770 7 790 1 440 0 520 0 010 0 060 71 314 Samp le PH N P C CEC C a Mg K Na Mn BS 56 1 i 3 2 2 1 4 .870 0. 048 45 . ,500 0. 720 5 . 550 2 .790 0. 580 0. 480 0 OIO 0 030 70. 090 57 i i 3 2 3 1 4 . 790 0. 031 17 600 O. 120 4 . 603 1 .294 0. 314 0. 443 0, 008 0 020 44 . 700 58 i i 3 2 4 1 4 . 760 0. 012 7 600 0. 070 2 . 969 1 . 292 - 0. 230 0. 158 0 006 0. 030 56. 800 59 i i 3 2 5 1 4 .710 0. 008 4 . 100 0. 050 2 . 421 1 .209 0. 202 0. 074 0 .0 0 .020 61 . 500 60 i i 3 2 6 1 4 . 570 0. 007 3 ,500 0. 050 2 445 1 . 147 0 176 0. 086 0 0 0 020 57 700 61 i i 3 3 1 2 4 .460 0. 380 69 200 4 . 890 14 . 530 6 .590 1. 610 0. 360 0 020 0, , 130 59. .945 62 i i 3 3 2 2 4 .050 0. 078 140 5O0 0. 840 4 . 280 1 .880 0. ,440 0. 170 0 .010 0 . 100 60 .748 63 i t 3 3 3 2 4 . 240 0. 037 44. 700 0. 530 6. 280 1 .707 0. 358 0. 294 0 .013 0 .040 37 .800 64 i i 3 3 4 2 4 .500 0. 018 21 . 400 0. 180 3. 923 1 .427 0. 296 0. 535 0 OIO 0, .020 57 800 65 i i 3 3 5 2 4 .650 0. 014 12 .600 0. 080 3. ,550 1 .222 0. 251 0. 156 0 .0 0 .030 46 OOO 66 i i 3 3 6 2 4 .890 0. 009 6 , 4O0 0. 040 2 . 604 1 .267 0. 210 0. 095 0 .0 0 .020 60 500 67 i i 3 4 1 2 4 .510 0. 311 106. . 5O0 5. 130 12 . 650 5 . 120 1. 1 10 0. 290 0 .020 0 .090 52. 411 68 i i 3 4 2 2 4 .530 0. ,085 104 .700 0. 870 5. . 190 3 .800 0. 670 0. 1 10 0 .010 0 .030 89 .017 69 t t 3 4 3 2 4 .510 0. 046 67 500 0. 600 5. . 140 3 .020 0. 610 0. 100 0 .010 0, .050 73, .735 70 i i 3 4 4 2 4 .680 0. ,023 42 .800 0. 450 7. 073 2 .285 0. 491 0. 160 0 .016 0, .020 41 . ,700 71 i i 3 4 5 2 4 .510 0. ,015 15 .800 0. 070 3, .771 1 . 383 0. 311 0. 1 16 0 .010 0 .020 48. . 300 72 i 1 3 4 6 2 4 .620 0. 010 7 .800 0. 050 2. .684 1 .070 0. 213 0. 113 0 o 0 .020 52, , 20O 73 1 2 1 1 1 1 5 .420 0. 094 12 .400 2. 190 13 870 8 .840 0. 910 0. 270 0 .010 0 . 120 73. 180 74 i 2 1 1 2 1 4 .670 0 .030 22 .700 0. ,350 4 .640 2 .OIO 0, 570 0. , 160 0 .010 0, .030 59. .914 75 i 2 1 1 3 1 4 . 590 0. 017 13 300 0. 150 4. .271 1 .375 0 315 0. 173 0 .013 0 .020 43. 900 76 i 2 1 1 4 1 4 .630 0. 013 6 .OOO 0. 080 * 3 OIO 1 .726 0 212 0. 088 0 o o OIO 67. 600 77 i 2 1 1 5 1 4 .670 0 .013 5 .900 0. 070 2 .864 1 .200 0 ,259 0. ,073 0 .010 0 .010 53. .800 78 i 2 1 1 6 1 4 . 570 0. 01 1 3 . 300 0. 050 2 . 875 1 . 136 o 420 0. 072 0 .010 0 .OIO 57. OOO 79 i 2 1 2 1 1 5 . 380 0. 100 17 .200 2. 170 1 1 . 710 6 .050 0. .840 0. 330 0 OIO 0 .090 62. 511 80 i 2 1 2 2 1 4 .680 0 .026 28 5O0 0. 330 4 .710 2 . 1 10 0 .530 0. 170 0 .010 0 .030 60. .509 81 i 2 1 2 3 1 4 .610 0 017 7 .500 0. 130 4 .993 1 . 327 o 293 0. 157 0 .017 0 .010 35. , 900 82 i 2 1 2 4 1 4 .680 0. 014 7 . 100 0. 090 3. .629 1 .214 0. 283 0. . 121 0 .013 0 .020 44. ,900 83 1 2 1 2 5 1 4 .800 0 ,011 3 . 2O0 O. 050 2 .493 0 .967 0, .271 0. .054 0 .o 0 .010 52. . 100 84 i 2 1 2 6 1 4 . 540 0. ,010 2 .700 0. ,040 2 .313 1 .038 0 388 0 .056 0 .010 0 .010 64. , 40O 85 i 2 1 3 1 2 5 .020 0. 174 29 . 300 2. 770 23 .340 8 . 1 10 1 .470 0. . 360 0 .010 0 .220 43. 573 86 i 2 1 3 2 2 4 . 190 0. .029 25 .OOO 0. ,420 4 .090 1 .490 0 .420 0, .230 0 .o 0 .060 53. ,790 87 i 2 1 3 3 2 4 . 520 0 .020 16 . 7O0 0, . 180 5 .293 1 .131 0 . 320 0 . 144 0 o 0 .030 30. 300 88 i 2 1 3 4 2 4 .690 0 .015 9 . 700 0. 1O0 4 . 198 1 .399 0 .385 0. 106 0 .012 0 OIO 45. 300 89 i 2 1 3 5 2 4 .460 0 .012 6 .200 0 090 2 .602 0 .847 0 .217 0 .049 0 o 0 .020 43. 100 90 i 2 1 3 6 2 4 . 730 0 009 3 . 5O0 0, .040 2 . 1 17 1 .067 0 . 393 0 043 0 .0 0 .010 71 . 300 91 i 2 1 4 1 2 4 .070 0 . 151 19 . 8O0 4 . 030 1 1 .080 5 .430 0 .950 0 .230 0 .0 0 .320 62. 545 92 i 2 1 4 2 2 4 .640 0 .025 14 .400 0. .290 3 .860 1 . 530 0 . 360 0 .240 0 .0 0 .040 56. .218 93 i 2 1 4 3 2 4 .460 o .017 5 . 7O0 0, . 150 2 .710 1 .620 0 . 440 0 .200 0 o 0 .020 84 133 94 i 2 1 4 4 2 4 .620 0 .013 6 .400 0 060 3 .062 1 .417 0 .274 0 . 103 0 0 0 .020 58. 900 95 i 2 1 4 5 2 4 .5S0 0 .010 4 . SOO O .060 2 . 7O0 1 . 182 0 . 224 0 .086 0 o 0 .020 55. 600 96 i 2 1 4 6 2 4 .640 0 .008 2 . 100 0 .030 2 008 1 .028 0 .224 0 .045 0 .0 0 .010 74 . 100 97 i 2 2 1 1 1 5 . 190 0 . 1 14 36 . BOO 2 ,500 7 .950 8 .410 1, .020 0 , 350 0 0 0. . 130 124. 654 98 1 2 2 1 2 1 4 .850 0 .02 1 21 OOO 0 .320 3 .940 1 .850 0 .440 0, .250 0 .0 0. . 130 67. .766 99 i 2 2 1 3 1 4 . 780 0 .015 22 . 500 0 . 120 3 .630 1 .660 0 . 360 0 .260 0 010 0, .010 63. 333 100 i 2 2 1 4 1 4 .860 0 .009 1 1 . 500 0 .080 3 .470 1 .670 0 . 360 0 . 160 0 ,0 0. .010 63. 401 101 i 2 2 1 5 1 4 .760 0 .010 7 .900 0 .050 2 .766 1 . 244 0 .298 0 . 1 16 0, .0 0 .010 60. .200 102 i 2 2 1 6 1 4 .750 0 .006 6 .OOO 0 .030 2 .960 1 .400 o .290 0 . 130 0 o 0 .010 61 . . 800 103 i 2 2 2 1 1 4 .740 0 .074 31 .OOO 1 . 100 8 .520 . 3 . 220 0 .540 0, 350 0 .010 0 . 190 50. 587 104 i 2 2 2 2 1 4 . 850 0 .027 36 .400 0 .430 5 .060 2 .730 0 . 390 0 . 190 0 .010 0 .070 66 996 105 i 2 2 2 3 1 4 .760 0 .014 25 .000 0 . 160 3 .690 2 .050 0 . 380 0 .250 0 .010 0 .030 73 713 106 i 2 2 2 4 1 4 .790 0 .008 13 .600 0 .070 2 .730 1 .430 0 . 190 0 . 180 0 OIO 0 OIO 66. 667 107 i 2 2 2 5 1 4 .940 0 O08 8 .300 O .040 2 .594 1 .460 0 . 196 0 .074 0 .0 0 .020 67. OOO 108 1 2 2 2 6 1 4 .710 o .005 4 .800 0 .020 2 . 196 1 . 184 0 . 197 0 .069 0 .005 0 .010 66. 300 109 i 2 2 3 1 2 5 . 290 0 . 109 28 . 700 2 .550 13 .640 7 .200 0 .810 0 , 250 o .010 o . 110 61 . 437 110 i 2 2 3 2 2 5 .060 0 .018 17 .000 0 .260 6 . 102 2 . 146 0 .524 0 .256 0 .008 0 .020 48. 10O 111 1 2 2 3 3 2 4 . 840 o .013 13 . 700 0 . 120 5 .628 1 . 788 0 . 297 0 .211 o .01 1 0 OIO 41 . OOO 1 12 i 2 2 3 4 2 4 . 850 0 006 1 1 . 4O0 0 .070 3 .810 1 .615 0 . 2 19 0 127 0 .010 0 010 51 . 600 113 i 2 2 3 5 2 4 . 780 0 .007 6 . 800 0 .040 3 .059 1 . 32 1 o . 171 0 .077 0 o 0 OIO 51 . 400 1 14 i 2 2 3 6 2 4 .700 o . 005 5 . 700 0 .010 2 .271 1 .390 0 . 178 0 .073 o .0 0 .010 72. 500 1 15 i 2 2 4 1 2 5 .300 0 .080 51 .500 1 .240 8 . 240 4 .440 0 . 560 0, .330 0 .0 0 .060 65. 413 Samp le pH N P C CEC C a Mg K Na Mn BS 1 16 1 2 2 4 2 2 5 020 o 020 2 700 O 370 4 350 2 500 0 400 0 280 0 0 O 030 73 793 117 1 2 2 4 3 2 4 860 0 014 26 lOO 0 100 4 805 1 569 0 377 0 173 0 009 O 020 44 300 1 18 1 2 2 4 4 2 4 840 0 009 15 OOO 0 070 3 360 1 475 0 247 0 1 16 0 0 O 020 54 900 1 19 1 2 2 4 5 2 4 830 0 007 7 600 O 050 2 430 1 127 0 125 0 082 0 0 O 010 55 lOO 120 1 2 2 4 6 2 4 860 0 006 5 500 0 030 2 562 1 107 0 162 0 095 0 0 0 010 53 400 121 1 2 3 1 1 1 5 470 0 134 41 900 2 760 15 760 7 810 0 880 O 560 0 01O 0 130 59 581 122 1 2 3 1 2 1 5 020 0 034 37 800 0 700 7 330 2 770 0 360 0 240 0 010 0 050 46 794 123 1 2 3 1 3 1 4 720 0 015 28 600 O 170 3 590 1 390 0 250 0 200 0 010 0 020 52 089 124 1 2 3 1 4 1 4 640 0 011 20 300 0 150 5 240 1 070 0 330 0 270 0 010 O 020 32 443 125 1 2 3 1 5 1 4 550 0 009 12 80O 0 070 3 230 1 210 0 400 0 160 0 0 0 020 55 418 126 1 2 3 1 6 1 4 630 o 006 5 200 0 060 2 127 0 751 0 300 O 062 0 0 0 020 52 500 127 1 2 3 2 1 1 5 210 o 098 134 20O 2 220 7 770 4 040 0 500 0 350 0 010 0 1 10 64 479 128 1 2 3 2 2 1 4 630 0 027 29 70O 0 540 7 020 2 260 O 540 0 210 O OIO O 090 44 302 129 1 2 3 2 3 1 4 520 0 014 23 800 0 180 3 460 1 400 0 360 0 290 0 010 0 030 60 405 130 1 2 3 2 4 1 4 660 0 013 13 000 0 100 6 580 1 520 0 450 o 310 O 010 0 020 35 106 131 1 2 3 2 5 1 4 770 0 008 6 100 0 050 1 870 1 009 0 372 0 118 0 o o 020 80 400 132 1 2 3 2 6 1 4 670 0 006 3 900 0 070 2 530 1 1 10 0 500 0 180 0 010 0 020 71 937 133 1 2 3 3 1 2 4 890 0 108 57 900 1 830 13 640 3 790 0 540 0 270 0 010 0 100 34 531 134 1 2 3 3 2 2 4 890 0 031 50 600 0 600 7 920 2 520 0 400 0 200 0 010 0 050 40 151 135 1 2 3 3 3 2 4 960 o 020 19 300 O 280 4 620 1 9O0 0 500 0 180 O OIO o 030 56 710 136 1 2 3 3 4 2 4 620 0 01 1 6 900 0 080 5 390 1 010 0 310 0 200 0 010 o 030 28 942 137 1 2 3 3 5 2 4 670 0 007 7 20O 0 070 4 160 1 640 0 380 0 200 0 010 0 010 53 846 138 1 2 3 3 6 2 4 790 0 007 3 800 0 040 3 540 1 490 0 380 0 160 0 010 0 020 58 192 139 1 2 3 4 1 2 4 810 0 1 13 24 500 1 410 7 150 4 960 0 790 0 330 0 010 0 070 86 154 140 1 2 3 4 2 2 4 330 0 034 15 200 0 530 7 420 1 980 0 530 0 180 0 010 0 090 37 601 141 1 2 3 4 3 2 4 600 0 020 10 200 0 190 3 890 1 600 0 410 0 140 0 020 0 030 56 555 142 1 2 3 4 4 2 4 390 0 016 5 700 0 150 5 740 1 230 0 350 0 180 0 020 0 030 31 533 143 1 2 3 4 5 2 4 600 0 010 4 400 0 050 3 170 1 350 0 430 0 190 0 020 0 020 63 407 144 1 2 3 4 6 2 4 730 0 007 3 700 0 030 2 550 1 130 0 490 0 100 0 010 0 020 68 627 145 2 1 1 1 1 1 5 980 0 44 1 74 100 6 630 20 000 15 600 3 280 0 800 0 060 o 090 99 150 146 2 1 1 1 2 1 5 700 0 131 38 100 1 650 14 680 9 310 1 860 0 640 0 050 o 040 81 063 147 2 1 1 1 3 1 5 500 0 052 31 700 0 380 13 370 8 720 1 760 0 600 0 050 0 020 83 396 148 2 1 1 1 4 1 6 210 0 070 9 OOO 0 970 12 250 8 710 2 270 0 480 0 040 0 020 94 041 149 2 1 1 1 5 1 6 520 0 046 2 400 0 240 13 860 1 1 540 3 790 0 350 0 060 0 010 1 13 636 150 2 1 1 1 6 1 7 600 0 039 1 OOO 0 250 8 560 32 080 4 800 0 240 0 060 0 020 434 579 151 2 1 1 2 1 1 6 280 0 432 35 000 5 890 20 590 18 1 10 2 850 0 990 0 050 0 1 10 107 382 152 2 1 1 2 2 1 5 690 o 182 33 500 1 900 15 720 8 350 1 500 o 700 o 050 0 060 67 812 153 2 1 1 2 3 1 5 750 o 082 62 200 1 120 14 270 7 310 1 370 0 510 0 050 0 020 64 891 154 2 1 1 2 4 1 5 660 0 055 66 600 0 410 1 1 730 7 420 1 740 0 450 0 050 o 010 82 438 155 2 1 1 2 5 1 6 060 o 050 12 OOO o 340 12 340 9 540 3 030 o 400 0 050 0 010 105 592 156 2 1 1 2 6 1 7 150 0 050 4 500 0 340 12 330 10 180 3 910 0 320 0 060 o 010 1 17 437 157 2 1 1 3 1 2 6 120 0 427 38 800 6 390 18 290 15 600 2 810 0 890 0 050 o 060 106 123 158 2 1 1 3 2 2 5 600 0 191 39 600 2 020 15 300 9 980 i 720 0 930 0 040 0 040 83 072 159 2 1 1 3 3 2 5 520 0 099 32 4O0 1 280 1 1 730 8 400 1 470 0 760 0 030 0 030 91 134 160 2 1 1 3 4 2 5 120 0 041 10 100 0 410 7 140 5 490 1 170 0 350 0 020 0 020 98 739 161 2 1 1 3 5 2 5 590 0 035 3 000 0 100 8 460 5 800 1 580 0 800 0 030 0 010 97 163 162 2 1 1 3 6 2 5 870 0 042 2 000 O 190 12 640 9 920 3 070 0 470 0 050 0 0 106 883 163 2 1 1 4 1 2 5 780 0 272 48 800 3 3O0 19 150 1 1 520 1 880 0 830 0 040 0 070 74 883 164 2 1 1 4 2 2 5 470 0 14 1 34 300 1 470 15 750 9 620 1 560 0 640 0 050 o 040 75 619 165 2 1 1 4 3 2 5 550 0 082 31 400 1 010 1 1 860 6 870 1 290 0 480 o 050 0 020 73 440 166 2 1 1 4 4 2 5 700 o 062 9 700 0 720 14 660 10 280 2 500 0 480 o 050 o 020 90 928 167 2 1 1 4 5 2 6 750 0 059 4 400 0 570 18 330 13 320 3 670 0 540 0 050 0 020 96 017 168 2 1 1 4 6 2 7 600 o 036 1 500 0 330 10 240 35 030 3 630 0 320 0 050 0 040 381 542 169 2 1 2 1 1 1 5 020 0 204 1 19 600 2 520 15 050 7 430 1 310 0 260 0 070 o 080 60 797 170 2 1 2 1 2 1 5 430 0 07 3 41 400 1 1 10 12 170 8 250 1 470 0 320 0 080 0 030 83 402 171 2 1 2 1 3 1 5 330 0 045 14 600 0 480 13 140 8 280 2 170 0 4 10 0 080 o OIO 83 333 172 2 1 2 1 4 1 6 950 o 051 9 100 0 570 12 860 1 1 890 3 460 0 510 0 070 0 010 123 950 173 2 1 2 1 5 1 7 560 0 035 1 000 0 370 8 070 36 4 10 3 500 0 240 0 060 0 020 498 513 174 2 1 2 1 6 1 7 730 0 020 0 500 0 190 5 620 37 4 10 2 870 0 180 0 050 o 030 721 352 I7C o 1 0 o 1 1 71A n C 1 1 i n n 10 OOCl 10 970 1 930 0 480 o 050 o OSO 1 10 311 Samp le PH N P C CEC C a Mg K Na Mn BS 176 2 1 2 2 2 1 5. 610 0 .065 23 .900 0 .810 11. 910 6 910 i .540 0. 330 0 060 0. .020 74 .391 177 2 1 2 2 3 1 5. 900 0 .053 15 .OOO 0 .630 13 . 230 9 790 2 . 500 0. 360 0. .060 0. ,010 96 . 145 178 2 1 2 2 4 1 6. 910 0 .043 8 .200 0 .400 13 940 10 .000 2 .830 0. 350 0. .060 0 .010 95 .050 179 2 1 2 2 5 1 7 . 420 0 .027 2 . 800 0 . 220 7 . 7 10 36 . 400 2 .890 0. 220 0. .050 0 030 513 .489 180 2 1 2 2 6 1 7 . 630 0 .022 1 . 100 0 .220 6 200 36 .720 2 .880 0. . 190 o .040 0 .030 642 .903 181 2 1 2 3 1 2 6. OOO 0. .342 39 .900 4 .500 14 . 700 12 810 2 .290 O 4 70 0 060 o 070 106 .803 182 2 1 2 3 2 2 5. .420 0 . 127 37 .500 1 .650 14 . 230 9 .060 1 .560 0 .540 0 .060 0 .030 79 .058 183 2 1 2 3 3 2 5. 700 0 .053 32 . 700 0 .690 10. 770 7 180 1 .390 0. .540 0, .050 0 .010 85 . 144 184 2 1 2 3 4 2 5. 510 0 .045 8 . 50O 0 .340 12 . 180 9 . 1 10 2 .380 0. 480 0 .050 o OIO 98 .768 185 2 1 2 3 5 2 6. 380 0 .039 5 .400 0 . 360 13 200 10 .090 2 .660 0. .370 0 .060 0 .010 99 .924 186 2 1 2 3 6 2 7 . 420 0 .033 1 .500 0 . 30O 8. . 500 38 .540 2 .910 0. 320 0 050 0 .040 492 .469 187 2 1 2 4 1 2 5. .650 0 . 286 50 . 900 3 .500 22. .795 1 1 . 192 2 .044 0 .570 0 .060 0 .060 62 .400 188 2 1 2 4 2 2 5. 430 0 .090 55 . 800 1 .250 12 . 590 8 .710 1 .450 0 590 0 060 0 020 86 .021 189 2 1 2 4 3 2 5. .260 0 .051 53 .500 0 .770 11 . 960 7 .430 1 .410 0 .540 0 .060 0 .010 79 .013 190 2 1 2 4 4 2 5. .400 0 .035 15 .900 0 .270 10. 450 7 . 360 1 .880 0 4 10 0 060 0. OIO 93 .014 191 2 1 2 4 5 2 5. .440 0 .035 6 .800 0 .290 12. , 160 10, .040 2 760 0. 390 0 .060 0 .010 109 .046 192 2 1 2 4 6 2 7. .350 0 .034 3 . 8O0 O .280 IO. ,020 18 , 1 10 2 230 0. 250 0 .050 0. OIO 206 . 088 193 2 1 3 1 1 1 5. . 230 0 .468 62 . 100 9 .990 16. 830 15 .290 2 .640 0. 640 0 .040 0. . 140 111 . 408 194 2 1 3 1 2 1 4. 860 0 .081 46 .700 1 .020 9. 680 5 .990 0 .820 0 .450 0 .050 0 .070 76 .240 195 2 1 3 1 3 1 5. . 140 0 .041 18 .500 O .270 7 . 280 5 .280 1 . .020 0. 430 0. .040 0. 020 93. .269 196 2 1 3 1 4 1 5. .310 0 .042 13 . 600 0 .320 1 1 . 320 8 .440 2 130 0. 510 0 .050 0 020 98. .498 197 2 1 3 1 5 1 5. 720 0 .035 9 . 2O0 0 .220 10. 120 4 , .760 1 . 250 0. 220 0. 050 0. 010 62. . 154 198 2 1 3 1 6 1 7 . 030 0 .030 3 .600 0 .220 9. .870 9 .410 2. .420 0. 310 0 .050 0. .0 123. .506 199 2 1 3 2 1 1 6. .330 0 .531 52 . 200 1 1 . 140 20. 310 19. .550 2. 870 0. 600 0. .040 0. 100 1 14. ,032 200 2 1 3 2 2 1 6. . 100 0 . 177 77 .OOO 1 . 740 14 , 230 8 .980 1 . 680 0. 600 0. 040 0. .040 79. .691 201 2 1 3 2 3 1 5 .420 o .050 37 .400 0 .520 10. 450 6 .510 1 410 0. 480 0. 040 0. .010 80. .861 202 2 1 3 2 4 1 5 .810 o .046 22 .OOO 0 .370 12 .570 6 .660 1 . 620 0. 380 0. 040 0. 010 69. .292 203 2 1 3 2 5 1 6 . 290 0 .039 13 .OOO 0 .310 12 210 1 1 .540 2 .010 0. 560 0. 050 0. 0 1 15. 970 204 2 1 3 2 6 1 7 .500 0 .032 4 . 500 0 .220 8 .430 27 . 380 2 210 0. 330 o. .040 0. 020 355. 634 205 2 1 3 3 1 2 5 .820 o .233 72 .000 3 . 340 12 . 740 9 . 280 1 .450 0. 540 0 050 0. 070 89. ,403 206 2 1 3 3 2 2 5, .480 0 . 1 10 53 . 400 1 . 290 13. . 300 8 .600 1 . 410 0. 730 0. .040 0. 020 81 . 203 207 2 1 3 3 3 2. 6 .290 0 .048 27 . 800 0 .360 12 .340 9 .070 2. .070 0. .530 0 .040 0. .010 94. .976 208 2 1 3 3 4 2 6. .080 0 .038 8 . 300 O .300 10. 930 a .550 2. 100 0 460 0. .040 0. OIO 102. , 104 209 2 1 3 3 5 2 7 .390 0 .028 5 .400 0 .290 8 .610 24 .940 2 .230 0, 380 0 .040 0. 010 320. .557 210 2 1 3 3 6 2 7 .240 0 .029 2 . IOO 0 .240 7 ,310 25 .820 1. 780 0. ,240 0 040 0. 020 381 . 668 211 2 1 3 4 1 2 5 .880 0 . 184 38 .900 2 .540 17 ,500 7 .990 1 ,210 0 510 0 .040 0. 080 56. . 171 212 2 1 3 4 2 2 5. 210 0 . 101 39 . 800 1 .410 15 . 130 8 .910 1 430 0. 560 0 .050 o. .030 72 .571 213 2 1 3 4 3 2 5. .780 0 .042 22 .800 0 .400 1 1 . 160 7 .620 1 760 0. ,470 0 .040 0 010 88 .710 214 2 1 3 4 4 2 5 .900 0 .04 1 14 .500 0 .320 12 .880 8 . 490 2. . 230 0 .470 0 .050 o .010 87 .345 215 2 1 3 4 5 2 7 , .360 0 .035 7 . 600 0 .400 1 1 .950 13 .880 2. 1 IO 0. , 320 0 .050 o, OIO 136 .987 216 2 1 3 4 6 2 7 .480 0 .022 0 .700 0 . 2O0 6 .770 25 . 250 1 970 0 .430 0 .040 0 .010 409 . 157 217 2 2 1 1 1 1 6 .040 0 .323 49 . 4O0 5 . 320 20 .550 17 . 800 3. . 400 1 , 230 o .020 o .050 109 .489 218 2 2 1 1 2 1 5 .300 0 .064 47 . 500 1 .090 12 . 340 6 .920 1 . . 230 0, .890 0 .030 0 .010 73 .582 219 2 2 1 1 3 1 5 . 200 0 .037 9 .500 O .410 8 .030 3 . 140 0 . 700 0 . 330 0 .040 0 .020 52 .677 220 2 2 1 1 4 1 5 .010 0 .047 10 .500 0 .310 1 1 . 120 7 .480 2. . 380 0 .430 0 .050 0 .030 93 .255 221 2 2 1 1 5 1 5 .020 0 .051 10 OOO 0 . 460 13 . 450 8 . 420 3 . 460 0 .410 0 .060 0 .020 91 .970 222 2 2 1 1 6 1 4 .830 0 .040 3 . 700 0 .330 1 1 . 108 6 .955 2. . 572 0. .313 0 .060 0 .030 83 . 9O0 223 2 2 1 2 1 1 5 .930 0 . 184 44 .200 2 . 580 16 .430 9 . 220 1 . . 370 1. .050 0 .020 0 .050 71 .272 224 2 2 1 2 2 1 5 .390 0 .054 18 .600 O .610 9 .640 6 . 240 0. .800 0 .560 0 .030 0 .020 79 .357 225 2 2 1 2 3 1 5 . ioo o .042 8 .600 0 . 280 8 . 880 5 .630 1 . . 290 0 .410 0 .040 0 .020 83 .221 226 2 2 1 2 4 1 5 . 330 0 .047 4 . 500 0 . 330 10 .950 5 .940 1 . . 820 0 320 o .040 0 .020 74 .338 227 2 2 1 2 5 1 4 .910 0 .048 2 . 900 0 . 390 12 .460 7 .080 2. .640 0 . 350 0 .050 0 .030 81 .461 228 2 2 1 2 6 1 5 . 2 10 0 .042 4 .OOO 0 . 340 IO .860 4 . 730 1 .680 0 250 0 .050 0 .020 61 .97 1 229 2 2 1 3 1 2 5 .850 0 . 393 55 . 100 10 .760 31 . 130 22 . 120 6. .430 1 . 370 0 .020 0 . 140 96 .627 230 2 2 1 3 2 2 5 .560 0 . 100 64 . 400 1 .610 16 . 470 8 . 150 1 . 970 1 .050 0 .OIO 0 .050 68 185 -o 231 2 2 1 3 3 2 5 . 450 0 .065 28 . 800 O .820 1 1 . 900 6 . 750 0. .980 0 , 860 0 .010 o .020 72 .437 CO 232 2 2 1 3 4 2 5 .750 0 .054 9 . 300 0 .450 12 .090 8 .810 1 . 700 0 .650 0 .020 0 .020 92 .639 233 2 2 1 3 5 2 5 . 270 0 .047 2 . 300 0 .300 10 . 575 6 .815 1 . 967 0 . 4 10 0 .030 o ,020 87 . 60O 234 2 2 1 3 6 2 5 .000 0 .044 3 . 400 0 . 340 10 .813 6 . 944 2 . 442 0 .400 o .030 0 .030 91 . 200 235 2 2 1 4 1 2 5 .730 0 . 262 4 1 .400 8 .930 27 .849 15 .846 2 . 892 0 . 972 0 .060 0. 080 71 .000 Sample pH N P C 236 2 2 1 4 2 2 5 000 0 054 18 900 0 570 237 2 2 1 4 3 2 5 150 0 053 5 900 0 440 238 2 2 1 4 4 2 4 960 0 045 1 500 0 330 239 2 2 1 4 5 2 4 820 0 046 1 500 0 250 240 2 2 1 4 6 2 4 770 0 042 1 500 0 250 241 2 2 2 1 1 1 5 280 0 204 42 400 5 510 242 2 2 2 1 2 1 5 470 0 049 20 200 0 530 243 2 2 2 1 3 1 4 860 0 041 2 600 O 320 244 2 2 2 1 4 1 4 930 0 049 2 100 0 350 245 2 2 2 1 5 1 4 930 0 046 1 900 0 260 246 2 2 2 1 6 1 4 990 0 045 1 800 0 360 247 2 2 2 2 1 1 5 750 0 187 51 700 4 750 248 2 2 2 2 2 1 5 550 0 057 18 000 0 740 249 2 2 2 2 3 1 5 250 0 040 5 200 0 280 250 2 2 2 2 4 1 5 030 0 042 2 400 0 230 251 2 2 2 2 5 1 5 010 o 044 1 600 0 240 252 2 2 2 2 6 1 4 940 o 045 2 OOO O 340 253 2 2 2 3 1 2 5 660 o 14 1 47 OOO 1 750 254 2 2 2 3 2 2 5 100 0 053 32 OOO 0 620 255 2 2 2 3 3 2 5 150 0 046 3 400 0 360 256 2 2 2 3 4 2 5 150 0 044 1 400 0 200 257 2 2 2 3 5 2 5 040 0 038 0 80O 0 180 258 2 2 2 3 6 2 5 270 0 041 1 200 0 190 259 2 2 2 4 1 2 5 350 0 187 28 600 5 440 260 2 2 2 4 2 2 5 1 10 0 047 15 lOO 0 420 261 2 2 2 4 3 2 4 890 0 039 2 200 0 220 262 2 2 2 4 4 2 4 900 0 039 1 OOO 0 390 263 2 2 2 4 5 2 5 290 0 042 0 800 o 350 264 2 2 2 4 6 2 5 080 o 040 1 400 o 390 265 2 2 3 1 1 1 5 500 0 1 17 30 000 1 270 266 2 2 3 1 2 1 4 460 0 041 12 OOO 0 440 267 2 2 3 1 3 1 4 150 0 042 3 800 0 210 268 2 2 3 1 4 1 4 300 0 043 2 400 0 280 269 2 2 3 1 5 1 4 450 0 039 3 500 0 350 270 2 2 3 1 6 1 7 480 0 042 1 800 0 310 271 2 2 3 2 1 1 6 180 0 149 39 100 1 840 272 2 2 3 2 2 1 5 500 0 058 22 700 0 680 273 2 2 3 2 3 1 4 720 0 041 6 400 0 300 274 2 2 3 2 4 1 4 470 0 039 3 800 0 170 275 2 2 3 2 5 1 4 480 0 042 3 200 0 320 276 2 2 3 2 6 1 5 160 0 042 4 400 0 360 277 2 2 3 3 1 2 5 240 0 098 34 200 0 600 278 2 2 3 3 2 2 5 190 0 056 16 000 0 750 279 2 2 3 3 3 2 4 850 0 042 6 700 0 310 280 2 2 3 3 4 2 5 010 0 038 2 90O 0 200 281 2 2 3 3 5 2 4 830 0 039 1 10O 0 300 282 2 2 3 3 6 2 5 450 0 04 1 1 300 0 310 283 2 2 3 4 1 2 5 770 0 138 78 100 2 120 284 2 2 3 4 2 2 5 040 0 049 25 300 0 600 285 2 2 3 4 3 2 5 lOO 0 036 10 200 o 240 286 2 2 3 4 4 2 4 880 0 034 4 400 0 210 287 2 2 3 4 5 2 5 050 0 042 2 20O 0 210 288 2 2 3 4 6 2 7 330 0 035 1 100 o 0 . End o f f i l e CEC C a Mg K Na Mn BS 9 360 4 780 0 860 0 670 0 030 0 020 67 949 8 300 5 480 1 210 0 520 0 030 0 020 87 470 9 070 6 000 2 210 0 350 0 050 0 030 95 259 9 649 5 584 2 456 0 290 0 060 0 030 87 600 10 514 6 157 2 873 0 259 0 070 0 030 89 OOO 25 604 1 1 163 2 415 0 592 0 020 0 100 55 500 9 000 5 500 1 150 0 830 0 040 0 010 83 667 1 1 140 5 270 1 230 0 730 0 060 0 030 65 709 9 800 6 100 1 800 0 410 0 050 0 050 85 816 9 280 6 470 2 230 0 340 0 050 0 040 98 384 14 804 9 752 3 167 0 380 0 080 0 030 90 500 22 203 10 593 1 987 0 948 0 020 0 080 61 OOO 10 710 5 780 1 220 0 960 0 020 0 020 74 697 8 040 4 450 1 020 0 670 0 030 0 020 76 990 8 499 5 288 1 694 0 336 0 040 0 020 87 OOO 8 690 6 1 10 2 150 0 380 0 050 0 020 100 230 12 250 9 490 3 170 0 4 10 0 080 0 030 107 592 16 090 7 730 1 330 0 860 0 020 0 050 62 088 11 090 5 360 1 040 0 960 0 030 0 020 66 817 7 610 4 760 0 900 1 1 10 0 020 0 020 89 487 7 180 5 330 1 410 0 450 0 030 0 020 100 836 6 790 4 830 1 500 0 480 0 030 0 020 101 031 9 120 6 240 2 010 0 350 0 050 0 020 95 066 21 536 1 1 876 2 075 0 954 0 020 0 110 69 300 9 610 4 770 1 020 0 920 0 020 o OIO 70 135 6 430 4 250 0 980 0 540 0 030 0 010 90 358 11 210 7 980 2 540 0 510 0 040 0 040 99 108 13 290 10 200 3 810 0 510 0 060 0 020 109 857 13 130 10 230 3 520 0 320 0 070 0 020 107 845 13 090 6 100 1 500 0 800 0 010 0 030 64 477 9 040 3 400 0 960 0 460 0 040 0 010 53 872 7 230 3 650 1 300 0 270 0 040 0 030 73 167 11 550 6 770 2 560 0 350 0 080 0 030 84 762 12 800 7 670 2 560 0 250 0 090 0 040 82 891 12 230 29 320 1 780 0 220 0 090 0 010 256 909 17 680 9 870 1 900 1 020 0 010 0 040 72 624 11 180 5 450 1 410 1 020 0 020 0 010 70 751 8 220 3 750 1 1 10 0 690 0 040 0 020 68 248 7 490 4 250 1 630 0 4 10 0 050 0 020 84 913 1 1 000 6 800 2 640 0 460 0 060 0 030 90 .818 13 970 9 840 2 700 0 480 0 060 0 020 93 772 9 450 4 610 1 070 0 860 0 020 0 010 69 524 10 910 6 030 0 940 0 800 0 020 0 010 71 494 9 290 4 630 0 880 0 510 0 020 0 020 65 .231 8 930 2 520 0 760 0 250 0 020 0 010 39 .866 9 143 5 728 2 391 0 450 0 030 0 020 94 . 100 11 780 7 091 3 676 0 332 0 060 0 010 94 . 700 15 301 9 721 2 406 0 929 0 OIO 0 070 85 . 40O 10 620 4 990 1 1 10 0 760 0 030 0 010 64 .972 8 070 3 640 1 100 0 690 0 030 0 .010 67 .782 5 930 3 220 1 600 0 320 0 030 0 .020 87 .521 8 840 4 750 3 050 0 480 0 040 0 .020 94 .344 1 1 814 15 678 3 568 0 380 0 060 o .020 166 .OOO 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0096147/manifest

Comment

Related Items