UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Western hemlock foliar nutrients and terminal growth in relation to three contrasting forest floors within… Inselberg, Alexander Eduard 1984

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1984_A6_7 I57.pdf [ 4.67MB ]
Metadata
JSON: 831-1.0096124.json
JSON-LD: 831-1.0096124-ld.json
RDF/XML (Pretty): 831-1.0096124-rdf.xml
RDF/JSON: 831-1.0096124-rdf.json
Turtle: 831-1.0096124-turtle.txt
N-Triples: 831-1.0096124-rdf-ntriples.txt
Original Record: 831-1.0096124-source.json
Full Text
831-1.0096124-fulltext.txt
Citation
831-1.0096124.ris

Full Text

WESTERN HEMLOCK FOLIAR NUTRIENTS AND TERMINAL GROWTH IN RELATION TO THREE CONTRASTING FOREST FLOORS WITHIN A STAND by ALEXANDER EDUARD INSELBERG B . S c , The U n i v e r s i t y of V i c t o r i a , 1976 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES Department of S o i l Science We accept t h i s t h e s i s as conforming to the r e q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA May 1984 (c) Alexander Eduard I n s e l b e r g , 1984 In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f the requirements f o r an advanced degree at the U n i v e r s i t y o f B r i t i s h Columbia, I agree t h a t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and study. I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e copying o f t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the head o f my department o r by h i s or her r e p r e s e n t a t i v e s . I t i s understood t h a t copying or p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be allowed without my w r i t t e n p e r m i s s i o n . Department o f The U n i v e r s i t y o f B r i t i s h Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 Date DE-6 (3/81) ABSTRACT The o b j e c t i v e of t h i s study i s t o determine whether or not f o l i a r macro- and microelements and t e r m i n a l growth are the same, w i t h i n a stand for western hemlock (Tsuga h e t e r o p h y l l a (Raf.) Sarg.) a s s o c i a t e d with three d i f f e r e n t f o r e s t f l o o r sampling s t r a t a : 1) Orthihumimor, 2) t h i n f o r e s t f l o o r , and 3) Lignohumimor. The study s i t e i s i n the Wetter Maritime C o a s t a l Western Hemlock (CWHb) b i o g e o c l i m a t i c subzone i n the Seymour River watershed near Vancouver, B r i t i s h Columbia. The sample t r e e s are n a t u r a l r e g e n e r a t i o n e s t a b l i s h e d on s i t e s not exposed to sl a s h - b u r n i n g , f o l l o w i n g a h i g h - l e a d c l e a r c u t i n 1972. N u t r i e n t d e f i c i e n c y d i a g n o s i s , based on f o l i a r a n a l y s i s data, suggests a d e f i c i e n c y of P%, K%, and N% ( i n de c r e a s i n g order of s e v e r i t y ) i n a l l three s t r a t a . M i c r o n u t r i e n t s of concern appear to be Fe and Cu i n a l l the s t r a t a , and Zn f o r tr e e s i n the Lignohumimor stratum. N i t r o g e n f e r t i l i z a t i o n might induce B d e f i c i e n c y on a l l s t r a t a . Manganese i s the only m i c r o n u t r i e n t present i n great excess. Terminal ( l e a d e r ) growth i s g r e a t e s t on Orthihumimors, i n t e r m e d i a t e on Lignohumimors and l e a s t on t h i n f o r e s t f l o o r s . A s i n g l e f a c t o r ANOVA i n d i c a t e d d i f f e r e n c e s at the 5% l e v e l f o r 7, and the 1% l e v e l for 6 of the 22 v a r i a b l e s t e s t e d . Range t e s t s were a p p l i e d to determine between which of the 3 f o r e s t f l o o r types the s i g n i f i c a n t d i f f e r e n c e s o c c u r r e d . Backward stepwise m u l t i p l e r e g r e s s i o n e x p l a i n e d 88% of the i i v a r i a t i o n i n In t e r m i n a l growth on stratum 3, and 86% of the v a r i a t i o n i n t e r m i n a l growth on stratum 2. Only 51% of the v a r i a t i o n i n In t e r m i n a l growth i s e x p l a i n e d by the m u l t i p l e l i n e a r r e g r e s s i o n equation f o r stratum 1. The poor r e s u l t s for stratum 1 are a t t r i b u t e d to a bimodal d i s t r i b u t i o n of t e r m i n a l growth. Six v a r i a b l e s are i n c l u d e d i n the d i s c r i m i n a n t a n a l y s i s of hemlock on the three f o r e s t f l o o r s t r a t a . In the j a c k k n i f e d c l a s s i f i c a t i o n procedure, 79% (or 45) of the 57 sample t r e e s are c o r r e c t l y matched to t h e i r f o r e s t f l o o r stratum. A c o r r e l a t i o n matrix of a l l v a r i a b l e s versus each of the f i r s t three p r i n c i p a l components a n a l y s i s axes d e f i n e s the v a r i a b l e s , i n the order of t h e i r importance, that c o n t r i b u t e to the s e p a r a t i o n of the s t r a t a along the axes. When both n u t r i t i o n and growth are c o n s i d e r e d , the s t a t i s t i c s suggest that the Orthihumimor i s the best of the 3 m i c r o s i t e s f o r hemlock. TABLE OF CONTENTS Page ABSTRACT i i TABLE OF CONTENTS i v LIST OF TABLES v i LIST OF FIGURES v i i LIST OF APPENDICES v i i i ACKNOWLEDGEMENTS i x INTRODUCTION 1 MATERIALS AND METHODS 5 S i t e l o c a t i o n 5 Tree s e l e c t i o n 5 F o l i a g e sampling 6 Terminal growth 7 F o l i a r a n a l y s i s 7 F o r e s t f l o o r a n a l y s i s 8 S i t e d e s c r i p t i o n and s o i l a n a l y s e s 9 Data summary and s t a t i s t i c a l methods 11 1. Means with 95 per c e n t c o n f i d e n c e l i m i t s 11 2. Computerized n u t r i e n t d e f i c i e n c y d i a g n o s i s 11 3. A n a l y s i s of v a r i a n c e , Duncan's t e s t and Newman-Keuls t e s t 12 4. Par a m e t r i c and nonparametric c o r r e l a t i o n 12 5. M u l t i p l e l i n e a r regression- 13 6. Stepwise d i s c r i m i n a n t a n a l y s i s 13 7. P r i n c i p a l components a n a l y s i s 14 RESULTS 16 1. F o r e s t f l o o r d e s c r i p t i v e measures 16 2. G r a p h i c a l summary of t e r m i n a l growth and f o l i a g e v a r i a b l e means and 95 percent c o n f i d e n c e l i m i t s , transformed t o a common s c a l e 17 3. Computerized n u t r i e n t d e f i c i e n c y d i a g n o s i s 20 4. A n a l y s i s of v a r i a n c e , Duncan's t e s t and Newman-Keuls t e s t 24 5. Simple l i n e a r c o r r e l a t i o n 26 a) C o r r e l a t i o n c o e f f i c i e n t 26 b) Spearman rank c o r r e l a t i o n c o e f f i c i e n t 29 6. M u l t i p l e l i n e a r r e g r e s s i o n 31 7. Stepwise d i s c r i m i n a n t a n a l y s i s 34 8. P r i n c i p a l components a n a l y s i s 35 i v DISCUSSION 37 1. F o r e s t f l o o r d e s c r i p t i v e measures 37 2. G r a p h i c a l p r e s e n t a t i o n of transformed means and 95 percent c o n f i d e n c e l i m i t s 37 3. Computerized n u t r i e n t d e f i c i e n c y d i a g n o s i s 39 4. A n a l y s i s of v a r i a n c e and m u l t i p l e range t e s t s 41 5. Simple l i n e a r c o r r e l a t i o n 41 6. M u l t i p l e l i n e a r r e g r e s s i o n 42 7. Stepwise d i s c r i m i n a n t a n a l y s i s 43 8. P r i n c i p a l components a n a l y s i s 44 CONCLUSION 45 LITERATURE CITED 50 APPENDICES 54 v LIST OF TABLES Ta b l e 1. D e s c r i p t i v e Measures f o r the Three C o n t r a s t i n g F o r e s t F l o o r S t r a t a : 1) Orthihumimor, 2) T h i n , and 3) Lignohumimor 2. F o l i a r N u t r i e n t A n a l y s i s f o r Stratum 1 (Orthihumimor) 3. F o l i a r N u t r i e n t A n a l y s i s f o r Stratum 2 (Thin F o r e s t F l o o r ) 4. F o l i a r N u t r i e n t A n a l y s i s f o r Stratum 3 (Lignohumimor) 5. Summary of S i n g l e F a c t o r A n a l y s i s of V a r i a n c e and M u l t i p l e Range T e s t s 6. Summary by F o r e s t F l o o r S t r a t a of F o l i a r A n a l y s i s and Growth V a r i a b l e C o r r e l a t i o n C o e f f i c i e n t s S i g n i f i c a n t at ^=0.05 and J»=0.01 7. Summary by F o r e s t F l o o r S t r a t a of F o l i a r A n a l y s i s and Growth V a r i a b l e Spearman Rank C o r r e l a t i o n C o e f f i c i e n t s S i g n i f i c a n t at P=0.05 and P=0.01 8. P r e d i c t i o n E quations f o r T e r m i n a l Growth and t h e ' N a t u r a l Log of T e r m i n a l Growth f o r Trees on the D i f f e r e n t F o r e s t F l o o r s 9. R e s u l t s of the D i s c r i m i n a n t A n a l y s i s of Western Hemlock i n the Three F o r e s t F l o o r S t r a t a 10. A n a l y s i s of V a r i a n c e of P r i n c i p a l Components A n a l y s i s Scores and R e s u l t s of Duncan's M u l t i p l e Range Tes t 11. C o r r e l a t i o n C o e f f i c i e n t s f o r F i r s t Three P r i n c i p a l Components A n a l y s i s Axes Scores Versus V a r i a b l e s S i g n i f i c a n t a t 1% (n=57 df=55 R@ 0.0100=0.3385) v i LIST OF FIGURES F i g u r e Page 1. L o c a t i o n of the sample s i t e i n the Seymour R i v e r watershed 6 2. Means with 95 percent c o n f i d e n c e l i m i t s expressed as percentage of t o t a l f o r those f o l i a g e v a r i a b l e s f o l l o w i n g the general p a t t e r n of f o l i a r N ( i . e . t h i n f o r e s t f l o o r i n t e r mediate i n magnitude) 18 3. Means wit h 95 percent c o n f i d e n c e l i m i t s expressed as percentage of t o t a l f o r t e r m i n a l growth and those f o l i a g e v a r i a b l e s with p a t t e r n s s i m i l a r to f o l i a r P ( i . e . t h i n f o r e s t f l o o r low i n magnitude) 18 4. Means with 95 percent c o n f i d e n c e l i m i t s expressed as percentage of t o t a l f o r those f o l i a g e v a r i a b l e s with p a t t e r n s s i m i l a r to f o l i a r K ( i . e . t h i n f o r e s t f l o o r high i n magnitude) 19 5. S c a t t e r diagram and simple l i n e a r r e g r e s s i o n equation for shoot dry weight versus f o l i a g e dry weight i n c u r r e n t - y e a r ' s shoots 27 6. Histograms, by f o r e s t f l o o r s t r a t a , of frequency versus 3-year t e r m i n a l growth ( l e a d e r length) 33 v i i LIST OF APPENDICES Appendix Page 1.0 Complete Growth, F o l i a r A n a l y s i s and F o r e s t F l o o r 2.1 R e p r e s e n t a t i v e S i t e , F o r e s t F l o o r , and M i n e r a l S o i l P r o p e r t i e s of the S t r a t a 60 3.0 Data and C a l c u l a t i o n s used t o Produce Common Sca l e G r a p h i c a l Summary of Ter m i n a l Growth and F o l i a g e V a r i a b l e Means and 95 Percent Confidence L i m i t s 61 3.1 Computer Program used to Prepare Graphs of Means and 95 Percent Confidence L i m i t s u s i n g the Data from the L a s t Three Columns of Appendix 3.0 62 4.0 Simple L i n e a r C o r r e l a t i o n C o e f f i c i e n t M a t r i c e s by F o r e s t F l o o r Stratum 63 Data 54 2.0 D e s c r i p t i o n of S o i l s W i t h i n the Stand 55 V I 11 ACKNOWLEDGEMENTS For h i s t e a c h i n g , a d v i c e , encouragement and f i n a n c i a l a s s i s t a n c e throughout t h i s p r o j e c t I am extremely g r a t e f u l to my t h e s i s s u p e r v i s o r Dr. T.M. B a l l a r d . S i n c e r e thanks are extended to my committee members Drs. L.E. Lowe and J.P. Kimmins f o r t h e i r p e r c e p t i v e a d v i c e , and to Reid C a r t e r and Dr. H. S c h r e i e r f o r t h e i r h e l p at v a r i o u s s t a g e s . For h i s . o v e r a l l support and under s t a n d i n g I thank Dr. L.M. L a v k u l i c h . T h i s study c o u l d not have been done i n such an i d e a l l o c a t i o n without the consent of the Gr e a t e r Vancouver Water D i s t r i c t , and the c o - o p e r a t i o n of Gordon Joyce. For t h e i r h e l p i n the f i e l d I am g r a t e f u l to Margaret Van Soest, Andrew Thomas, Reid C a r t e r , Gerry D a v i s , C h e r y l Ray and my f a t h e r A . J . I n s e l b e r g . For t h e i r f r e q u e n t a s s i s t a n c e and a d v i c e i n the l a b o r a t o r y I would l i k e to p a r t i c u l a r l y thank J u l i e L a n s i q u o t and B e r n i e von S p i n d l e r , as w e l l as E v e l i n e Wolterson, E s t h e r Y i p , P a t t i C a r b i s and T.D. Nguyen. John Emanuel and Barry Wong a r e g r a t e f u l l y acknowledged f o r t h e i r e x c e p t i o n a l s e r v i c e s i n data a n a l y s i s . D r s. G.E. B r a d f i e l d , Y.A. El-^Kassaby and M. G r e i g p r o v i d e d important s t a t i s t i c a l a d v i c e . I would a l s o l i k e t o thank Rob S c a g e l f o r h i s a s s i s t a n c e . F i n a l l y , f o r her companionship, p a t i e n c e and encouragement I am deeply g r a t e f u l t o Diana E. Hunt, who furthermore took the time t o e d i t and type t h i s t h e s i s . INTRODUCTION Western hemlock (Tsuga net erophylI a (Raf.) Sarg.) i s commonly rooted i n decayed lo g s or f o r e s t f l o o r m a t e r i a l , but in some cases i t may be rooted i n m i n e r a l s o i l . These r o o t i n g media presumably d i f f e r i n n u t r i t i o n a l and oth e r p r o p e r t i e s which a f f e c t the growth of t r e e s . Tree n u t r i e n t s t a t u s can be i n f e r r e d by f o l i a r a n a l y s i s , and hei g h t increment i s a u s e f u l index of s i t e p r o d u c t i v i t y . The o b j e c t i v e of t h i s study i s to compare height increment and f o l i a r a n a l y s i s data of hemlock growing on three kinds of r o o t i n g media w i t h i n a s i n g l e s t and. By f o c u s s i n g on one s i t e , v a r i a t i o n a s s o c i a t e d w i t h s o i l parent m a t e r i a l and c l i m a t e may be minimized, a l l o w i n g e f f e c t s of the d i f f e r e n t r o o t i n g media to be d i s t i n g u i s h e d . In t h i s study, young hemlocks a s s o c i a t e d with t h r e e c o n t r a s t i n g f o r e s t f l o o r c o n d i t i o n s i n a c l e a r c u t are a n a l y z e d f o r d i f f e r e n c e s i n t h e i r f o l i a r macro- and microelements, 100— needle weight, and 3-year t e r m i n a l growth. The 3 f o r e s t f l o o r sampling s t r a t a belong to the f o l l o w i n g humus form subgroups ( K l i n k a , Green, Trowbridge and Lowe, 1981): 1) Orthihumimor: u n d i s t u r b e d , o l d growth f o r e s t f l o o r with w e l l - d e v e l o p e d humus l a y e r ; 2) no c l a s s i f i c a t i o n , some endorganic (Ah) h o r i z o n development: t h i n f o r e s t f l o o r ; 3) Lignohumimor: decaying wood predominant i n f o r e s t f l o o r . These 3 humus forms are common w i t h i n the r e p r e s e n t a t i v e c o a s t a l mountain c l e a r c u t t h a t was s e l e c t e d f o r the study. Since the t r e e s were of v a r i a b l e age (10 ± 3 y e a r s ) , the t e r m i n a l growth measurement ( c u r r e n t h e i g h t 1 increment) i s more a p p r o p r i a t e than t o t a l h e i g h t as a measure of growth f o r comparison purposes. I n f o r m a t i o n gained may p r o v i d e evidence f o r the degree of growth and n u t r i t i o n a l success of western hemlock on each of the f o r e s t f l o o r s t r a t a . Furthermore, the f o l i a r n u t r i t i o n a n a l y s e s can be used to suggest which f e r t i l i z e r s are l i k e l y to g i v e the best r e t u r n s on these s t r a t a on the study s i t e . The f o r e s t f l o o r i s c r i t i c a l l y important to ecosystem n u t r i e n t c y c l i n g , i n p a r t i c u l a r n i t r o g e n , phosphorus and s u l p h u r . F o r e s t f l o o r s a l s o o f f e r p r o t e c t i o n from r a i n d r o p impact and e r o s i o n a l f o r c e s , and improve water i n f i l t r a t i o n r a t e ( P r i t c h e t t , 1979). In c o a r s e - t e x t u r e d P o d z o l s , any humus that i s p r e s e n t w i l l dominate the s o i l ' s c a t i o n exchange c a p a c i t y . Baule and F r i c k e r (1970) d i s c u s s some methods of s t i m u l a t i n g b i o l o g i c a l a c t i v i t y to improve n u t r i e n t c y c l i n g i n mor humus. They emphasize the d e c i s i v e importance of the C/N r a t i o i n a s s e s s i n g the q u a l i t y of humus. LF and H h o r i z o n s have s i g n i f i c a n t l y g r e a t e r N, P, Ca and K c o n c e n t r a t i o n s than d e c a y i n g wood. Furthermore, decaying wood immo b i l i z e s N d u r i n g decomposition, as w e l l as b e i n g s l o w l y decomposable and extremely a c i d . Accumulations of d e c a y i n g wood may c o n t r i b u t e l a r g e amounts of n u t r i e n t - d e f i c i e n t biomass to f o r e s t f l o o r s (McFee and Stone, 1966; Quesnel and L a v k u l i c h , 1981) . The 3 f o r e s t f l o o r s t r a t a s e l e c t e d f o r t h i s study are meant to r e p r e s e n t b r o a d l y d i f f e r e n t s u b s t r a t e s . The chemical v a r i a b i l i t y ( C a r t e r , 1983; G r i e r a n d M c C o l l , 1971; Lowe, 1972; 2 McFee and Stone, 1965) w i t h i n any one of these f o r e s t f l o o r s i s p o t e n t i a l l y enormous. Consequently, c e r t a i n r o u t i n e a n a l y s e s ( K l i n k a , Green, Trowbridge and Lowe, 1981 p. 51) of f o r e s t f l o o r s were undertaken i n ' t h e c u r r e n t study to demonstrate d i f f e r e n c e s between and w i t h i n s t r a t a . I t was beyond the scope of t h i s t h e s i s to examine r e l a t i o n s between v a r i a b i l i t y i n f o l i a r c h e m i s t r y and v a r i a b i l i t y i n f o r e s t f l o o r c h e m i s t r y . Western hemlock "primary" ( i . e . n u t r i e n t a bsorbing) r o o t s are l a r g e l y d i s t r i b u t e d w i t h i n the s u r f a c e o r g a n i c matter, and/or near the m i n e r a l s o i l s u r f a c e ( G i l l and Lavender, 1983; van den D r i e s s c h e , 1976; M e u r i s s e , 1976). In western hemlock growing i n f i e l d c o n d i t i o n s , more than 95 p e r c e n t by number of the a c t i v e primary r o o t s are m y c o r r h i z a l ( G i l l and Lavender, 1983). C o n c e i v a b l y , mycorrhizae may b u f f e r western hemlock n u t r i t i o n a l and growth response to extremes i n f o r e s t f l o o r c o n d i t i o n s . M y c o r r h i z a l development as a f f e c t e d by environmental f a c t o r s i s d i s c u s s e d by P r i t c h e t t (1979 p.178-182) and by J a r r e l l and B e v e r l y (1981 pp. 210-211). In comparison with s o i l a n a l y s i s , f o l i a r a n a l y s i s p r o v i d e s more v a l u a b l e n u t r i t i o n a l i n f o r m a t i o n , e s p e c i a l l y on s o i l s d e f i c i e n t i n n u t r i e n t s . F o l i a r a n a l y s i s r e f l e c t s n u t r i e n t a b s o r p t i o n from the whole volume of s o i l which i s permeated by the r o o t s (Baule and F r i c k e r , 1970 p. 68). The use of f o l i a r a n a l y s i s a l o n e f o r n u t r i t i o n a l i n f o r m a t i o n i s , however, s u b j e c t to some important problems. J a r r e l l and B e v e r l y (1973 p.286) emphasize t h a t a n a l y s i s of p l a n t t i s s u e u s u a l l y r e v e a l s o n l y one d e f i c i e n c y a t a time. A second n u t r i e n t , or even a t h i r d 3 n u t r i e n t , may be i n s h o r t supply but, due to reduced growth caused by the primary n u t r i e n t d e f i c i e n c y , a l l other n u t r i e n t s may be prese n t at moderate to high c o n c e n t r a t i o n s . The b a s i c p r i n c i p l e of the use of p l a n t a n a l y s i s i s that the chemical composition of the p l a n t r e f l e c t s the n u t r i e n t supply i n r e l a t i o n to growth. However, c o n c e n t r a t i o n of a n u t r i e n t i n a p l a n t i s a r e s u l t of the i n t e r a c t i o n of n u t r i e n t supply and p l a n t growth. Any f a c t o r that l i m i t s growth, be i t l i g h t , m o isture, temperature, or some other n u t r i e n t , may cause the n u t r i e n t to be c o n c e n t r a t e d i n the p l a n t ( J a r r e l l and B e v e r l y , 1 9 8 1 ) . 4 MATERIALS AND METHODS S i t e l o c a t i o n . The sample s i t e is w i t h i n the Wetter Maritime C o a s t a l Western Hemlock (CWHb) b i o g e o c l i m a t i c subzone (Krajina,1969) i n the G r e a t e r Vancouver R e g i o n a l D i s t r i c t ' s Seymour R i v e r v a l l e y ( F i g u r e 1). The stand belongs to the p l a n t a s s o c i a t i o n A b i e t e t o -Tsugetum h e t e r o p h y l l a e ( O r l o c i , 1965) i n i t s e a r l y stages of secondary s u c c e s s i o n , on Humo-Ferric P o d z o l s . The sampled stand i s on a lower to mid s l o p e p o s i t i o n . The sampled hemlock t r e e s regenerated n a t u r a l l y i n an area t h a t was h i g h - l e a d logged i n 1972 and not burned subsequently. Tree s e l e c t i o n . Based upon a p r e l i m i n a r y survey of the f o r e s t f l o o r c h a r a c t e r i s t i c s w i t h i n the stand and i n the adja c e n t old-growth f o r e s t , f o r e s t f l o o r c r i t e r i a were e s t a b l i s h e d f o r p o t e n t i a l sample t r e e s . Three f o r e s t f l o o r s t r a t a were s e l e c t e d , Othick f l o o r of at l e a s t 5 cm depth w i t h an LF l e s s than. 1.5 cm (Orthihumimor), 2 ) t h i n f l o o r of l e s s than 2 cm, and 3)thick decaying wood g r e a t e r than 5 cm (Lignohumimor). The f o r e s t f l o o r s s u r r o u n d i n g a p p r o x i m a t e l y 400 t r e e s were examined v i s u a l l y b e f o r e 60 sample t r e e s were l o c a t e d . The sampled t r e e s ranged i n age from 7 t o 13 y e a r s . Only h e a l t h y , unsuppressed t r e e s , without f o r k e d tops or m u l t i p l e stems, growing i n p a r t i a l l y t o f u l l y s t o c k e d c o n d i t i o n s , were s e l e c t e d . Trees growing on stumps, l o g s , mounds or d e p r e s s i o n s were exclu d e d . 5 F i g u r e 1. L o c a t i o n of the sample s i t e i n the Seymour R i v e r watershed. F o l i a g e sampling Since most of the t r e e s were too s m a l l to have t h e i r lower branches shaded, c u r r e n t y e a r ' s shoots (60-150g) were c o l l e c t e d from branch t e r m i n a l s and f i r s t - and second-year l a t e r a l s , e x c l u d i n g o n l y the upper and the lower extremes of the crown. Sampling was conducted throughout the day b e f o r e 3 p.m. between November 20 and December 15, 1982. Shoots were s t o r e d on s i t e i n the shade i n l a b e l l e d and s e a l e d p l a s t i c bags f o r up to 2 days 6 a f t e r sampling, b e f o r e being t r a n s f e r r e d to the l a b f o r p r o c e s s i n g . The f o l l o w i n g data were o b t a i n e d : a i r - d r y weight of shoots ( s e v e r a l days a f t e r oven-drying at 70°C), a i r - d r y weight of twigs, and oven-dry 100-needle weight. T e r m i n a l growth T o t a l t e r m i n a l growth f o r the 3 years p r i o r to sampling was measured f o r each of the sample t r e e s . F o l i a r a n a l y s i s I n i t i a l bulk g r i n d i n g of o v e n - d r i e d f o l i a g e was done i n a Wiley m i l l ; subsequent f i n e g r i n d i n g was done i n a Braun c o f f e e g r i n d e r . Ground samples were s t o r e d i n l a b e l l e d , c l o s e d p l a s t i c v i a l s at room temperature f o r ap p r o x i m a t e l y 6 months be f o r e e l e m e n t a l a n a l y s e s were conducted. Three of the 60 samples were a c c i d e n t a l l y d e s t r o y e d i n the l a b o r a t o r y p r i o r to d i g e s t i n g . D u p l i c a t e d i g e s t s and a n a l y s e s were done f o r a l l of the elements t e s t e d . The average of the 2 readings f o r each was re c o r d e d to improve c o n f i d e n c e and to s i m p l i f y s t a t i s t i c a l a n a l y s i s . F o l i a r d i g e s t i o n was done u s i n g the s l i g h t l y m o d i f i e d P a r k i n s o n and A l l e n (1975) method, as d e s c r i b e d by B a l l a r d (1981 pp. 23 -24) . D i l u t e d d i g e s t s o l u t i o n s were then a n a l y z e d u s i n g the f o l l o w i n g p r o c e d u r e s : N - u s i n g the B e r t h e l o t ( p h e n o l h y p o c h l o r i t e ) c o l o u r i m e t r i c method (Weatherburn, 1967) w i t h a Technicon A u t o a n a l y z e r I I . P - u s i n g the unreduced vanadate-molybdate (yellow) complex method ( d e s c r i b e d by Jackson (1958)) w i t h the Technicon A u t o a n a l y z e r I I . 7 K, Ca, Mg, Fe, A l , Mn, Zn & Cu - u s i n g atomic a b s o r p t i o n spectrophotometry ( P r i c e , 1978) on a Perkin-Elmer 306 with an a i r - a c e t y l e n e flame, or the higher temperature n i t r o u s - o x i d e flame f o r Ca and A l . B - as d e s c r i b e d by B a l l a r d (1981 p. 27 f f . ) , u s i n g the a s h i n g and e x t r a c t i o n method of Gaines and M i t c h e l l (1979). A c t i v e Fe - u s i n g the method o u t l i n e d by B a l l a r d (1981), except t h a t steps i n v o l v i n g c e n t r i f u g a t i o n were o m i t t e d . S - u s i n g a F i s h e r Model 475 s u l f u r a n a l y z e r f o l l o w i n g procedures d e s c r i b e d i n the instrument manual as m o d i f i e d f o r f o l i a g e by G u t h r i e and Lowe (1984). F o r e s t f l o o r a n a l y s i s . A composite f o r e s t f l o o r sample f o r each sample t r e e was o b t a i n e d from 3 subsample c o r e s c o l l e c t e d from a c i r c l e of 30-cm r a d i u s a t azimuth 0°, 120° and 240° with the sample t r e e trunk i n the c e n t r e . ( F o r e s t f l o o r samples were not c o l l e c t e d where s u r f a c e o r g a n i c l a y e r s were l e s s than 1 cm t h i c k . ) Each core had 2 a 100-cm s u r f a c e a r e a . The c o r e was c o l l e c t e d down to the top of the m i n e r a l s o i l , except where decaying wood was g r e a t e r than 35 cm deep. Mean depth to m i n e r a l s o i l was measured at each core t o a maximum of 35 cm. The 3 c o r e s were then mixed i n a p l a s t i c tub, from which the composite LFH or decaying wood sample was taken. A l l but the s m a l l e s t of the l i v e r o o t s were d i s c a r d e d from the sample. A i r - d r y i n g of f o r e s t f l o o r samples at 25°C was i n i t i a t e d w i t h i n 2 days of c o l l e c t i o n . D r y i n g was a c c e l e r a t e d by r e g u l a r 8 hand m i x i n g . D r i e d samples were s t o r e d at room'temperature i n paper bags w i t h i n an a i r t i g h t p l a s t i c bag f o r 6 months, at which time the samples were f i n e l y ground i n a Waring b l e n d e r . M o i s t u r e content was determined f o r c o r r e c t i o n of C and N c o n c e n t r a t i o n to an oven-dry b a s i s . Oven dry weight was o b t a i n e d from 5.00 g subsamples d r i e d at 105°C f o r 16 hours and c o o l e d i n a d e s i c c a t o r . Nine randomly s e l e c t e d f o r e s t f l o o r samples were used (3 from each of the 3 f o r e s t f l o o r s t r a t a ) . Means of d u p l i c a t e t o t a l C a n a l y s e s were o b t a i n e d from 0.060- g subsamples combusted i n a Leco I n d u c t i o n Furnace (Bremner and T a b a t a b a i , 1971). T o t a l N i n 2.00 g subsamples was determined u s i n g a semi-micro K j e l d a h l procedure t h a t c o n v e r t s N i n t o ammonia (Bremner, 1965). Ammonia i n s o l u t i o n was measured c o l o u r i m e t r i c a l l y u s i n g a Technicon A u t o a n a l y z e r I I . Subsamples of 1.00 g were used t o measure pH i n water and i n 0.01 M C a C ^ (1:8 r a t i o ) with a g l a s s e l e c t r o d e pH meter. S i t e d e s c r i p t i o n and s o i l a n a l y s e s Nine s y s t e m a t i c a l l y l o c a t e d s o i l p i t s were e s t a b l i s h e d throughout the 150 x 180m (2.7 ha) sample stand; 3 w i t h i n each of the humus form s t r a t a . The f o l l o w i n g i n f o r m a t i o n was c o l l e c t e d at each s o i l p i t : s l o p e , a s p e c t , s u r f a c e shape, m o i s t u r e regime e s t i m a t e (Walmsley et a l . , 1980), r o o t i n g depth, humus form ( K l i n k a et a l . , 1981) and the average of 3 measurements of surface^ o r g a n i c matter t h i c k n e s s from around each p i t . At 6 of the 9 s o i l p i t s , 2 w i t h i n each of the humus form s t r a t a , the f o l l o w i n g were r e c o r d e d : average depths of m i n e r a l s o i l h o r i z o n s , s o i l c l a s s i f i c a t i o n (CSSC, 1978), s o i l t e x t u r e e s t i m a t e 9 by hand, and v i s u a l e s t i m a t e s of coarse fragment ( g r a v e l , c obble and stone) content i n p e r c e n t . Three f o r e s t f l o o r sample c o r e s were taken from the perimeter of each s o i l p i t ( u s i n g procedures s i m i l a r to those o u t l i n e d on p. 8) and composited. L a b o r a t o r y methods and a n a l y s e s were the same as those f o r sample t r e e f o r e s t f l o o r s . C o r r e s p o n d i n g c o r e s (0-20 cm depth) of m i n e r a l s o i l were a l s o c o l l e c t e d and composited. M i n e r a l s o i l samples were a i r - d r i e d at 25°C, and the aggregates c r u s h e d with a hand r o l l e r . The s o i l was then passed through a 2 mm s i e v e f o r storage i n a i r - t i g h t p l a s t i c c o n t a i n e r s . T o t a l C was determined on d u p l i c a t e 0.500 g subsamples of the m i n e r a l s o i l u s i n g the Leco I n d u c t i o n Furnace (Bremner and T a b a t a b a i , 1971). The average of d u p l i c a t e s was r e c o r d e d . T o t a l N was e s t i m a t e d on a s i n g l e 4.00 g subsample u s i n g the semi-micro K j e l d a h l procedure r e f e r e n c e d e a r l i e r i n the f o r e s t f l o o r a n a l y s e s s e c t i o n . Subsamples of 4.00 g were used to measure pH i n water and i n 0.01 M C a C ^ (1:2 r a t i o ) w i t h a g l a s s e l e c t r o d e pH meter. Hygroscopic moisture content of the m i n e r a l s o i l f o r c o r r e c t i o n t o an oven-dry b a s i s was not done, as the c l a y and o r g a n i c matter content were low. Exchangeable Ca, Mg, K and A l were measured on 10.0 g subsamples u s i n g the sodium c h l o r i d e method, an u n b u f f e r e d s o l u t i o n method which o p e r a t e s at sample pH. T o t a l c a t i o n exchange c a p a c i t y was q u a n t i f i e d by l e a c h i n g the N a - s a t u r a t e d s o i l exchange s i t e s with 1 N KC1 and measuring the Na i n the l e a c h a t e . The elements Na, K, Mg and A l were a n a l y s e d u s i n g atomic a b s o r p t i o n spectrophotometry on a P e r k i n -Elmer 306, wit h an a i r - a c e t y l e n e flame. Calcium was determined 10 u s i n g the higher-temperature n i t r o u s - o x i d e flame. Data summary and s t a t i s t i c a l methods 1. Means w i t h 95 percent c o n f i d e n c e l i m i t s . The c a l c u l a t i o n s and the computer program f o r the g r a p h i c a l summary of the r e s u l t s are p r e s e n t e d i n Appendix 3.1. John Emanuel (U.B.C. F a c u l t y of F o r e s t r y ) wrote the program that a l l o w e d the means and the 95 percent c o n f i d e n c e l i m i t s to be p l o t t e d w i t h the DISSPLA r o u t i n e on a Houston p l o t t e r . The number and the sequence of v a r i a b l e s p r e s e n t e d i n each graph were r e g u l a t e d by s e l e c t i n g the e n t r i e s i n the 5=%T data f i l e (see Appendix 3.1 l i n e 2 ) . 2. Computerized n u t r i e n t d e f i c i e n c y d i a g n o s i s . The means of f o l i a r e l e m e n t a l c o n c e n t r a t i o n s f o r t r e e s on the d i f f e r e n t humus form s t r a t a were a n a l y z e d u s i n g a computerized n u t r i e n t d e f i c i e n c y d i a g n o s i s program f o r western hemlock. The program i s based on the r e s e a r c h and computer programs of Dr. T.M. B a l l a r d ( B a l l a r d , 1982), r e w r i t t e n i n J u l y 1983 f o r g e n e r a l use on the main UBC computer by John Emanuel. The p r o c e d u r a l document i s a v a i l a b l e i n the UBC MTS f i l e F203:FNA.W. 3. A n a l y s i s of v a r i a n c e , Duncan's t e s t and Newman-Keuls t e s t . One-way a n a l y s i s of v a r i a n c e and Duncan's m u l t i p l e range t e s t were run u s i n g the computer program UBC ANOVAR ( G r e i g and O s t e r l i n , 1978). Newman-Keuls t e s t f o r data with unequal sample 1 1 s i z e (Zar, 1974 p.154-155) was used to rank sample means of the f o r e s t f l o o r C/N r a t i o , pH i n H 20 and pH i n C a C l 2 d a t a . 4. P a r a m e t r i c and nonparametric c o r r e l a t i o n . C o r r e l a t i o n m a t r i c e s were o b t a i n e d by running the v a r i a b l e s through the MIDAS (Fox and G u i r e , 1976) CORRELATE computer program. A second s e r i e s of c o r r e l a t i o n c o e f f i c i e n t s c a l c u l a t e d by a nonparametric (Zar, 1974 pp. 41,243-245) rank c o r r e l a t i o n c o e f f i c i e n t program RCORR (Fox and G u i r e , 1976) was a l s o o b t a i n e d . The rank c o r r e l a t i o n method s e l e c t e d i s c a l l e d "Spearman's rho". Rank c o r r e l a t i o n i s used when data are from a b i v a r i a t e p o p u l a t i o n t h a t i s f a r from normal. Rank c o r r e l a t i o n i s not as powerful as the r e g u l a r c o r r e l a t i o n c o e f f i c i e n t procedure when the data meet the requirements of a b i v a r i a t e normal d i s t r i b u t i o n (Zar, 1974, pp.240-243). G r e i g ( p e r s o n a l communications) has suggested t h a t c o r r e l a t i o n i s the o n l y s t a t i s t i c a l procedure used i n t h i s t h e s i s t h a t might be s e r i o u s l y a f f e c t e d i f the data are not normal. Spearman's rho rank c o r r e l a t i o n RCORR (Fox and G u i r e , 1976) was run to p r o v i d e more c o n f i d e n c e i n the simple c o r r e l a t i o n c o e f f i c i e n t matrix r e s u l t s . 5. M u l t i p l e l i n e a r r e g r e s s i o n . S c a t t e r diagrams of t e r m i n a l growth and In t e r m i n a l growth ve r s u s the n i n e t e e n f o l i a r a n a l y s i s v a r i a b l e s and r a t i o s were o b t a i n e d u s i n g the MIDAS SCATTER with i t s BYSTRATA m o d i f i e r (Fox and G u i r e , 1976) computer program. In o r d e r to f a c i l i t a t e running the backward stepwise m u l t i p l e r e g r e s s i o n program SELECT 12 (Fox and G u i r e , 1976), some v a r i a b l e s had to be o m i tted before i n i t i a t i o n of the s e l e c t i o n by s t r a t a procedure; the program only runs when there are fewer independent v a r i a b l e s than c a s e s . Based on t h e i r p a r t i c u l a r l y poor r e l a t i o n s h i p to the dependent v a r i a b l e , the f o l l o w i n g v a r i a b l e s were omitted from t h e i r r e s p e c t i v e s t r a t a b e f o r e running the program: f o r e s t f l o o r 1: Cu; f o r e s t f l o o r 2: Cu, N/P and P/Al; f o r e s t f l o o r 3: Cu and P / A l . The s i g n i f i c a n c e l e v e l s f o r the backward a l g o r i t h m s , c o r r e s p o n d i n g , i n o r d e r , to the maximum l e v e l f o r i n c l u s i o n , the minimum l e v e l f o r e x c l u s i o n of a f r e e v a r i a b l e , and the minimum l e v e l f o r the e x c l u s i o n of a f i x e d v a r i a b l e , were set at .05, .05 and .05. 6. Stepwise d i s c r i m i n a n t a n a l y s i s . Stepwise d i s c r i m i n a n t a n a l y s i s ( f o r w a r d - s e l e c t i o n ) was run f o r a l l the f o l i a r a n a l y s i s and the t e r m i n a l growth data u s i n g the computer program BMD:P7M ( J e n n r i c h and Sampson, 1981). The stepwise procedure used i n t r o d u c e s one v a r i a b l e at a time; the one which maximizes the o v e r a l l m u l t i v a r i a t e F r a t i o f o r the t e s t of d i f f e r e n c e s among s t r a t a means. The minimum F to e n t e r and d e l e t e v a r i a b l e s was set at 2.50 to prevent i n c l u s i o n of n o n s i g n i f i c a n t v a r i a b l e s . The r e s u l t s of the j a c k n i f e d c l a s s i f i c a t i o n and F-matrix are p r e s e n t e d . A c c o r d i n g to E l -Kassaby et a l . (1982) j a c k n i f i n g i s a p r o c e s s i n which the a n a l y s i s i s repeated o m i t t i n g one sample at a time, c l a s s i f y i n g t h a t sample to the group f o r which i t has the h i g h e s t p o s t e r i o r p r o b a b i l i t y of membership. 13 7 . P r i n c i p a l c o m p o n e n t s a n a l y s i s . P r i n c i p a l c o m p o n e n t s a n a l y s i s i s u s e d a s a t e c h n i q u e t o e v a l u a t e v a r i a t i o n w i t h i n t h e f o l i a r e l e m e n t a l c o m p o s i t i o n a n d g r o w t h d a t a w i t h o u t t h e p r e c o n c e i v e d b i a s o f t h e 3 f o r e s t f l o o r s t r a t a , i . e . t h i s o r d i n a t i o n m e t h o d e x a m i n e s t h e d a t a w i t h o u t b e i n g t o l d t h e d a t a r e p r e s e n t 3 d i f f e r e n t s t r a t a ( f o r e s t f l o o r s 1 , 2 a n d 3 ) . T h e b r o a d o b j e c t i v e o f o r d i n a t i o n , o f w h i c h p r i n c i p a l c o m p o n e n t s a n a l y s i s i s o n e t e c h n i q u e , i s t o i d e n t i f y a n d i n t e r p r e t m a i n t r e n d s a n d p a t t e r n s o f v a r i a t i o n w i t h i n a d a t a s e t ( N o y - M e i r a n d W h i t t a k e r , 1 9 7 7 ) . P r i n c i p a l c o m p o n e n t s a n a l y s i s i s p o o r l y s u i t e d t o e n v i r o n m e n t a l o r e c o l o g i c a l o r d i n a t i o n s b e c a u s e i t a s s u m e s l i n e a r r e l a t i o n s h i p s b e t w e e n v a r i a b l e s a n d o r d i n a t i o n a x e s . N e v e r t h e l e s s , N i c h o l s ( 1 9 7 7 ) m a i n t a i n s t h a t p r i n c i p a l c o m p o n e n t s a n a l y s i s i s a p p r o p r i a t e f o r s u m m a r i z i n g i n f o r m a t i o n a n d d i s p l a y i n g o v e r a l l r e l a t i o n s h i p s i n a s e t o f d a t a . T h e p r i n c i p a l c o m p o n e n t s a n a l y s i s w a s r u n u s i n g t h e M I D A S ( F o x a n d G u i r e , 1 9 7 6 ) P R I N C O M p r o g r a m . T h e u n s e a l e d o p t i o n , w h i c h p e r f o r m s p r i n c i p a l c o m p o n e n t s a n a l y s i s o n a c o r r e l a t i o n m a t r i x , w a s u s e d . T h e m a x i m u m n u m b e r o f c o m p o n e n t s t o e s t i m a t e w a s s e t a t s e v e n . A n a n a l y s i s o f v a r i a n c e a n d D u n c a n ' s t e s t w e r e p e r f o r m e d o n t h e p r i n c i p a l c o m p o n e n t s a n a l y s i s a x i s s c o r e s o f t h e f i r s t t h r e e c o m p o n e n t s u s i n g U B C A N O V A R ( G r e i g a n d O s t e r l i n , 1 9 7 8 ) . I n o r d e r t o d o t h e A N O V A R p r o c e d u r e , t h e p r o g r a m w a s t o l d w h i c h s a m p l e s b e l o n g t o t h e r e s p e c t i v e f o r e s t f l o o r s t r a t a . F i n a l l y , a c o r r e l a t i o n m a t r i x o f a x e s 1 , 2 a n d 3 v e r s u s t h e v a r i a b l e e i g e n v e c t o r s w a s o b t a i n e d . B a s i c a l l y , t h e s e c o r r e l a t i o n 14 c o e f f i c i e n t s r e p r e s e n t the c o s i n e of the angle between the e i g e n v e c t o r and the a x i s ( B r a d f i e l d , p e r s o n a l communications). 15 RESULTS* 1. F o r e s t f l o o r d e s c r i p t i v e measures. The data p r e s e n t e d i n T a b l e 1 r e p r e s e n t the samples- c o l l e c t e d from the s u r f a c e o r g a n i c matter s u r r o u n d i n g each of the 57 t r e e s s t u d i e d . A g e n e r a l summary of s i t e , f o r e s t f l o o r and m i n e r a l s o i l p r o p e r t i e s w i t h i n the s t a n d i s g i v e n i n Appendix 2.1. The t h r e e f o r e s t f l o o r s t r a t a are d i s t i n g u i s h e d u s i n g depth to m i n e r a l s o i l , C/N r a t i o , and pH. Although t h e r e appears to be good c o r r e l a t i o n between the dry c o l o u r of the ground f o r e s t f l o o r sample and i t s C/N r a t i o , t h i s o b s e r v a t i o n i s not pursued here. T a b l e 1. D e s c r i p t i v e Measures f o r the Three C o n t r a s t i n g F o r e s t F l o o r S t r a t a : 1) Orthihumimor, 2) T h i n , and 3) Lignohumimor. V a r i a b l e F o r e s t f l o o r n Minimum Maximum Mean Std Dev Av depth(cm ) 1 20 7. ,33 23. .00 12. ,67 4. ,00 2 18 0. 4. .67 1 . ,31 1 . ,58 Volume 1per 3 19 8. ,00 35. .00 25. ,79 8. ,39 1 20 1 , .27x10 3 h e c t a r e (m ) 2 18 1 , .31x10 2 3 19 2, .60x10 3 C/N 1 20 26. .00 43. .92 32. .34 4. ,32 2 9 24. .40 54. .44 33. ,15 9. ,10 3 19 34. .23 1 78. .82 73. .85 35. .87 pH H 20 1 20 3. .7 4. .6 3. .9 0. .2 2 9 3. .7 4. .3 4. .0 0. .2 3 19 3. .6 4, .2 3. .8 0. .16 pH C a C l 2 1 20 2. .8 3, .65 3. .0 0. .2 2 9 2. .8 3, .60 3. .2 0. .26 3 19 2. .65 3. .3 2. .9 0. .16 Volume = average depth x 10 m /ha. * Data i n t h i s , as w e l l as i n other s e c t i o n s are o f t e n p r e s e n t e d w i t h more than 3 s i g n i f i c a n t f i g u r e s ; t h i s l e v e l of p r e c i s i o n i s i n most cases u n r e a l i s t i c . 16 The r e s u l t s of s i n g l e f a c t o r a n a l y s i s of v a r i a n c e , used to t e s t e q u a l i t y of p o p u l a t i o n means f o r C/N r a t i o and the two pH measures, are presented i n Table 5. Average depth of f o r e s t f l o o r i s not i n c l u d e d i n the a n a l y s i s due to the obvious d i f f e r e n c e s between s t r a t a . 2. G r a p h i c a l summary of t e r m i n a l growth and f o l i a g e v a r i a b l e means and 95 per c e n t c o n f i d e n c e l i m i t s , transformed to a common s c a l e . T h i s g r a p h i c a l summary i s p r e s e n t e d i n three separate f i g u r e s i n order to b r i n g those v a r i a b l e s with s i m i l a r p a t t e r n s of magnitude to g e t h e r on the same graph. The means, i n d i c a t e d by the f o r e s t f l o o r symbol i n the middle of the c o n f i d e n c e l i m i t s bars, add up to 100 percent f o r each v a r i a b l e . If the means were the same, each would c o n t r i b u t e 33 1/3 percent to the t o t a l . In F i g u r e 2, the t h i n f o r e s t f l o o r v a r i a b l e s always are i n t e r m e d i a t e i n magnitude, and f o r most v a r i a b l e s the Orthihumimor i s h i g h e s t i n magnitude. The l a s t v a r i a b l e i n F i g u r e 2 i s an e x c e p t i o n : 100— needle weight i s lowest f o r the Orthihumimor. In F i g u r e s 3 and 4, the t h i n f o r e s t f l o o r has the lowest and h i g h e s t magnitudes, r e s p e c t i v e l y . 17 a LEGEND ORTHIHUMIMOR N-20 THIN FLOOR N-18 LIGNOHUMIMOR N-1.9 t-* a ± FE ZN N:S IOON WT F i g u r e 2. Means with 95 percent c o n f i d e n c e l i m i t s expressed as percentage of t o t a l f o r those f o l i a g e v a r i a b l e s f o l l o w i n g the g e n e r a l p a t t e r n of f o l i a r N ( i . e . t h i n f o r e s t f l o o r i n t e r m e d i a t e i n magnitude). LEGEND a - ORTHIHUMIMOR N-20 a - THIN FLOOR N-18 a - LIGNOHUMIMOR N-19 Cfl MG MN CU P:AL Cfl:MG TGROWTH F i g u r e 3. Means wit h 95 percent c o n f i d e n c e l i m i t s expressed as percentage of t o t a l f o r t e r m i n a l growth and those f o l i a g e v a r i a b l e s with p a t t e r n s s i m i l a r to f o l i a r P ( i . e . t h i n f o r e s t f l o o r low i n magnitude). 18 LEGEND a - ORTHIHUfllMOR N-20 o - THIN FLOOR N-18 * - LIGNOHUfllMOR N-19 °tri-u u RL FIFE K-.CH F i g u r e 4. Means with 95 percent c o n f i d e n c e l i m i t s expressed as percentage of t o t a l f o r those f o l i a r v a r i a b l e s with p a t t e r n s s i m i l a r to f o l i a r K ( i . e . t h i n f o r e s t f l o o r h i g h i n magnitude). Where the f o r e s t f l o o r i s t h i n , t e r m i n a l growth and f o l i a r K, Ca, and Mg v a l u e s are ve r y d i f f e r e n t from v a l u e s a s s o c i a t e d with the other f o r e s t f l o o r s . Potassium i s h i g h e r , while Ca and Mg are lower. The K/Ca and the P/Al r a t i o s are r e s p e c t i v e l y h i g h e r and lower on the t h i n f o r e s t f l o o r s t r a t a . The decrease i n the N/P and the N/S r a t i o s from stratum 1 to 3 ( F i g u r e 2) i s g r e a t e s t f o r t r e e s on the Lignohumimors. C o n v e r s e l y , 100 needle weight i s g r e a t e s t on Lignohumimors. T h i s , however, does not n e c e s s a r i l y imply g r e a t e r f o l i a r biomass s i n c e the number of needles per u n i t shoot l e n g t h a re unknown. The lowest c o n c e n t r a t i o n s of Cu are on the t h i n f o r e s t f l o o r . V a r i a b l e s showing l e s s d i f f e r e n c e a c r o s s the s t r a t a i n c l u d e N, P, S, AFe and the Ca/Mg r a t i o . 19 3. Computerized n u t r i e n t d e f i c i e n c y d i a g n o s i s . The n u t r i e n t d e f i c i e n c y d i a g n o s i s r e s u l t s f o r the i n d i v i d u a l stands are p r e s e n t e d i n Tables 2-4, i n the order of stratum 1 to 3. Reference can be made to Table 5 p.25 f o r the s t a t i s t i c a l s i g n i f i c a n c e of d i f f e r e n c e s between the stand f o l i a r a n a l y s i s average v a l u e s . C h l o r o t i c f o l i a g e i s not uncommon f o r t r e e s on f o r e s t f l o o r s 2 and 3. D e f i c i e n c y symptoms of Fe, Ca, and S are s i m i l a r to N d e f i c i e n c y , being c h a r a c t e r i z e d by y e l l o w i s h and p a l e l e a v e s (Mengel and K i r k b y , 1982 p.358). Of these elements, N and Fe appear to be more d e f i c i e n t . The d e f i c i e n c y of K i s a l s o noteworthy. 20 T a b l e 2. F o l i a r N u t r i e n t A n a l y s i s f o r Stratum 1 (Orthihumimor). SPECIES : Tsuga h e t e r o p h y l l a SAMPLE : 82CDAI10 LOCATION : l a t i t u d e : 49°26' SEYMOUR RIVER Western Hemlock STAND AGE : 10 years lo n g i t u d e : 122°59' e l e v a t i o n : 220 metres BGCL SYNTAXON : CWHb EDATOPE : 5C HYGROTOPE CLASS : sub hy g r i c TROPHOTOPE CLASS : mesotrophic PLANT ASSOCIATION : Abieteto-Tsugetum heterophyllae ( O r l o c i , 1965) Diagnosis i s based on a n a l y s i s of 20 t r e e s . This community i s in e a r l y stages of secondary succession. The tre e s are growing on Orthihumimors with an LFH deeper than 5 cm. ELEMENT or RATIO CURRENT YEAR % or PPM % DEV / ADEQUATE COMMENTS Macronutrient status (%) N 1 .374 -5 P 0. 105 -70 K 0.660 -18 Ca 0.322 222 Mg 0.112 12 Element c o n c e n t r a t i o n r a t i o s N/P 13.086 P/Al 2.917 K/Ca 2.050 Ca/Mg 2.875 S u l f u r a n a l y s i s (%) S 0. 168 5 N/S 8. 179 M i c r o n u t r i e n t status (ppm) Fe 33.800 -25 AFe 32.300 8 Mn 1813.00 7152 Zn 13.300 1 1 Cu 3.125 20 B 16.700 39 S l i g h t to moderate d e f i c i e n c y Severe d e f i c i e n c y S l i g h t to moderate d e f i c i e n c y Adequate Adequate P d e f i c i e n c y ; NID / NAD a l s o p o s s i b l e P d e f i c i e n c y i s l i k e l y (No i n t e r p r e t a t i o n ) (No i n t e r p r e t a t i o n ) No S d e f i c i e n c y ; NID u n l i k e l y No S d e f i c i e n c y ; NID u n l i k e l y P o s s i b l e or n e a r - d e f i c i e n c y No d e f i c i e n c y No d e f i c i e n c y No d e f i c i e n c y S l i g h t p o s s i b i l i t y of d e f i c i e n c y No B d e f i c i e n c y ; but NID i s p o s s i b l e Supply of n u t r i e n t s in ranked order : P S F e £ K £ N £ S S AFe s zn £ Mg <, Cu £ B £ Ca < Mn NID = n i t r o g e n induced d e f i c i e n c y "NAD = n i t r o g e n aggravated d e f i c i e n c y 21 T a b l e 3. F o l i a r N u t r i e n t A n a l y s i s f o r Stratum 2 (Thin F o r e s t F l o o r ) . SPECIES : Tsuga h e t e r o p h y l l a Western Hemlock SAMPLE : 82CDAI20 STAND AGE : 10 years LOCATION : l a t i t u d e : 49°26' l o n g i t u d e : 122 059' e l e v a t i o n : 220 metres SEYMOUR RIVER BGCL SYNTAXON : CWHb EDATOPE : 4C HYGROTOPE CLASS : mesic TROPHOTOPE CLASS : mesotrophic PLANT ASSOCIATION : Abieteto-Tsugetum h e t e r o p h y l l a e ( O r l o c i , 1965) Diagnosis i s based on a n a l y s i s of 18 t r e e s . T h i s community i s i n e a r l y stages of secondary su c c e s s i o n . The LFH i s l e s s than 2 cm deep. Endorganic (Ah) horizons are often forming. ELEMENT CURRENT YEAR or % % DEV / COMMENTS RATIO or PPM ADEQUATE Macronut .r i e n t stc itus (%) N 1.318 -9 S l i g h t to moderate d e f i c i e n c y P 0. 1 04 -70 Severe d e f i c i e n c y K 0.717 -10 S l i g h t to moderate d e f i c i e n c y Ca 0.262 162 Adequate Mg 0.096 -4 L i t t l e i f any d e f i c i e n c y Element co n c e n t r a t i o n r a t i o s : N/P 12.673 P d e f i c i e n c y ; NID / NAD a l s o p o s s i b l e P/Al 2.419 P d e f i c i e n c y i s l i k e l y K/Ca 2.737 (No i n t e r p r e t a t i o n ) Ca/Mg 2.729 (No i n t e r p r e t a t i o n ) S u l f u r a n a l y s i s [%) : S 0. 162 1 No S d e f i c i e n c y ; NID u n l i k e l y N/S 8. 136 No S d e f i c i e n c y ; NID u n l i k e l y M i c r o n u t r i e n t s t a t u s (ppm) : Fe 31.800 -29 P o s s i b l e or n e a r - d e f i c i e n c y AFe 35.000 17 No d e f i c i e n c y Mn 1604.00 6316 No d e f i c i e n c y Zn 12.800 7 No d e f i c i e n c y Cu 2.417 -7 P o s s i b l e or n e a r - d e f i c i e n c y B 18.000 50 No B d e f i c i e n c y ; but NID i s p o s s i b l e Supply of n u t r i e n t s i n ranked order : P S F e S K £ N £ . C u £ M g £ S £ Zn £ AFe £ B £ Ca £ Mn 22 T a b l e 4. F o l i a r N u t r i e n t A n a l y s i s f o r Stratum 3 (Lignohumimor). SPECIES : Tsuga h e t e r o p h y l l a Western Hemlock SAMPLE : 82CDAI30 STAND AGE : 10 years LOCATION : l a t i t u d e : 49°26' l o n g i t u d e : 122°59' e l e v a t i o n : 220 metres SEYMOUR RIVER BGCL SYNTAXON : CWHb EDATOPE : 5C HYGROTOPE CLASS : sub h y g r i c TROPHOTOPE CLASS : mesotrophic PLANT ASSOCIATION : Abieteto-Tsugetum h e t e r o p h y l l a e ( O r l o c i , 1965) Diagnosis i s based on a n a l y s i s of 19 t r e e s . T h i s community i s in e a r l y stages of secondary succession. The tre e s are growing on Lignohumimors with Dw deeper than 5 cm. ELEMENT or RATIO or CURRENT YEAR % DEV / PPM ADEQUATE COMMENTS Macronutrient status (%) N 1 .289 -1 1 P 0.112 -68 K 0.624 -22 Ca 0.292 192 Mg 0.102 2 Element c o n c e n t r a t i o n r a t i o s N/P P/AI K/Ca Ca/Mg 11.509 2.947 2. 137 2.863 S u l f u r a n a l y s i s (%) S I 0.173| N/S I 7.451 M i c r o n u t r i e n t s t a t u s (ppm) Fe 28.900 -36 AFe 33.100 10 Mn 1847.00 7288 Zn 11.800 -2 Cu 2.684 3 B 14.600 22 S l i g h t to moderate d e f i c i e n c y Moderate d e f i c i e n c y S l i g h t to moderate d e f i c i e n c y Adequate Adequate No P d e f i c i e n c y ; but NID i s p o s s i b l e P d e f i c i e n c y i s l i k e l y (No i n t e r p r e t a t i o n ) (No i n t e r p r e t a t i o n ) No S d e f i c i e n c y ; NID u n l i k e l y No S d e f i c i e n c y ; NID u n l i k e l y P o s s i b l e or n e a r - d e f i c i e n c y No d e f i c i e n c y No d e f i c i e n c y J P o s s i b l e or n e a r - d e f i c i e n c y S l i g h t p o s s i b i l i t y of d e f i c i e n c y No B d e f i c i e n c y ; but NID i s p o s s i b l e Supply of n u t r i e n t s in ranked order : P 5 Fe £ K £ N £ Zn <. Mg £ Cu £ S £ AFe £ B £ Ca < Mn 23 4. A n a l y s i s of v a r i a n c e , Duncan's t e s t and Newman-Keuls t e s t . T able 2 summarizes the r e s u l t s of the s i n g l e f a c t o r ANOVA of the f o l i a r a n a l y s i s , , growth, and f o r e s t f l o o r d a t a . The Newman-Keuls t e s t (Zar, 1974 pp.151-155) m o d i f i e d f o r unequal sample s i z e s i s used on the f o r e s t f l o o r d a t a . Once the ANOVA has r e j e c t e d the n u l l h y p o t h e s i s of equal p o p u l a t i o n means, the m u l t i p l e range t e s t i s a p p l i e d to determine between which p o p u l a t i o n means the d i f f e r e n c e s e x i s t . When one sample i s grouped i n t o two d i f f e r e n t p o p u l a t i o n means (e.g. (2,3) ( 3 , 1 ) ) , the m u l t i p l e range t e s t i s unable t o determine a c c u r a t e l y from which p o p u l a t i o n the sample (e.g. sample 3) has come. Repeating the a n a l y s i s with a l a r g e r number of data would tend to y i e l d more a c c e p t a b l e c o n c l u s i o n s (Zar, 1974 p. 154). 24 T a b l e 5 . Summary of S i n g l e F a c t o r A n a l y s i s of V a r i a n c e and M u l t i p l e Range T e s t s . Means, by f o r e s t f l o o r s t r a t a (n=20) (n=l8) (n=l9) Duncan's 1 2 3 P m. r . t . t r e e 3-yr.tgr(cm) 1 94 1 48 172 .0128* (2,3)(3,1) f o l i a g e nwt 100 (mg) N % P . % . 181 1.374 .105 .186 1.318 . 1 04 .211 1 .289 .112 .0106* . 1 626 .2404 (1 ,2)(3) K % .660 .717 .624 ** .0064 (3,1)(2) Ca % .322 .262 .292 ** .0069 (2,3)(3, 1 ) Mg % .112' .096 .102 .0341* (2,3) (3, 1 ) N/P P/AI 13.086 2.917 12.673 2.419 1 1 .509 2.947 .0131* .0609 (3)(2,1 ) . K/Ca Ca/Mg A l % S % 2.050 2.875 .036 .168 2.737 2.729 .043 .162 2. 1 37 2.863 .038 .173 .0003 .6541 .0963 .2150 (1,3)(2) N/S 8. 179 8. 136 7.451 .0355* (3,2)(2,1) Fe ppm AFe ppm Mn ppm Zn ppm 33.8 32.3 1813. 13.3 31.8 35.0 1 604. 12.8 28.9 33. 1 1847. 11.8 .0281* .5070 .2824 .4052 (3,2)(2,1 ) Cu ppm B ppm 3. 125 16.7 2.417 18.0 2.684 14.6 .0000 .0610 (2)(3) ( 1 ) f o r e s t f l o o r (n=20) (n=9) (n=l9) Newman-Keuls m.r.t C/N 32.34 33. 15 73.85 if if .0000 (1 ,2)(3) pH H 20 3.9 4.0 3.8 .0125* (1,2)(3,1) pH C a C l 2 3.0 3.2 2.9 ** .0062 (3,1)(2)' s t r a t a 1=Orthihumimor, 2=thm f o r e s t f l o o r , 3=Lignohumimor * s i g n i f i c a n c e at 5% l e v e l ** s i g n i f i c a n c e at 1% l e v e l 25 T h i r t e e n of the twenty-two v a r i a b l e s t e s t e d are s i g n i f i c a n t l y d i f f e r e n t between the s t r a t a e i t h e r at the 5% or the 1% l e v e l . The m u l t i p l e range t e s t s i n d i c a t e t h a t s t r a t a groupings d i f f e r f o r some v a r i a b l e s . Some s t a t i s t i c a l c o n f i d e n c e may be added to the g r a p h i c a l p r e s e n t a t i o n of the transformed means and 95 percent c o n f i d e n c e l i m i t s ( F i g u r e s 2,3 and 4) by comparing these with T a b l e 5. F o r e s t f l o o r depth s u r r o u n d i n g sample t r e e s , as mentioned e a r l i e r , was not t e s t e d by ANOVA due to the a l r e a d y obvious d i f f e r e n c e s between s t r a t a 1 and 3 ver s u s stratum 2 (see "Tree s e l e c t i o n " p. 5). Although d i f f e r e n c e s between s t r a t a are e v i d e n t , N%, P%, Ca/Mg, S%, AFe ppm, Mn ppm and Zn ppm are not w e l l s e p a r a t e d by the humus form s t r a t a . 5. Simple l i n e a r c o r r e l a t i o n , a) C o r r e l a t i o n c o e f f i c i e n t . The c o r r e l a t i o n c o e f f i c i e n t m a t r i c e s f o r the th r e e f o r e s t f l o o r s t r a t a are i n Appendix 4.0. Tab l e 6 summarizes the c o r r e l a t i o n s w i t h s i g n i f i c a n c e a t the 0.05 and the 0.01 l e v e l s . F i g u r e 5 i s a s c a t t e r diagram of shoot dry weight v s . f o l i a g e dry weight f o r a l l 57 c a s e s . I t appears the l i n e a r r e l a t i o n s h i p of c u r r e n t y e a r ' s shoot dry weight to f o l i a g e dry weight i s con s t a n t r e g a r d l e s s of the f o r e s t f l o o r stratum. A simple l i n e a r r e g r e s s i o n e q u a t i o n SHDRYWT = 2.088 + 1.1848 (FOLDRYWT) and a c o r r e l a t i o n c o e f f i c i e n t of 0.99 d e s c r i b e s the r e l a t i o n s h i p between these biomass v a r i a b l e s . 26 <SCAT V A R = 3 , 4 > SCATTER PLOT M r 57 OUT OF 57 3.SHDRYWT V S . 4 .FOLDRYWT SHDRYWT 6 2 . 7 0 0 + 5 7 . 2 5 6 5 1 . 8 1 1 4 6 . 3 6 7 4 0 . 9 2 2 3 5 . 4 7 8 3 0 . 0 3 3 2 4 . 5 8 9 1 9 . 1 4 4 1 3 . 7 0 0 + - + + + + + + + + + + + + + + + + + + 1 1 . 3 0 0 1 9 . 1 9 8 2 7 . 0 9 6 3 4 . 9 9 3 4 2 . 8 9 1 FOLDRYWT 1 5 . 2 4 9 2 3 . 1 4 7 3 1 . 0 4 4 38 942 4 6 . 8 4 0 F i g u r e 5. S c a t t e r Diagram and simple l i n e a r r e g r e s s i o n equation f o r shoot dry weight versus f o l i a g e dry weight i n c u r r e n t - y e a r ' s shoots. 27 Summary by F o r e s t F l o o r S t r a t a of F o l i a r A n a l y s i s and Growth V a r i a b l e C o r r e l a t i o n C o e f f i c i e n t s S i g n i f i c a n t at P = 0.05 and /» = 0.01. V a r i a b l e s Orthihumimor 1 Thin f . f . 2 Lignohum SHDRYWT:FOLDRYWT .9900 .9830 .9884 TGR:NWT100 .4533 • TGR:AFE -.4583 TGR:ZN -.5544 TGR:B -.4532 NWT100:P .5264 NWT100:CA -.6020 NWT100:S -.4911 .4919 NWT100:B -.4736 NWT100:N/P -.6424 N:P .6905 .5839 N:MG -.5664 N:AFE .4763 N: ZN .5780 .6653 N:B -.5565 N:N/P .7112 N:P/AL .6216 N:N/S .7600 .7263 P:MG -.5085 P:AL .4524 P:MN -.4688 -.4875 P: AFE .7522 P:ZN .5489 P:CU .4807 P:B -.7856 P:N/P -.8171 -.7707 -.6432 P:P/AL .7083 .5757 P:CA/MG .6109 P:N/S .5099 K:S .5982 .5803 K:CU .4524 K:K/CA .5575 .5946 .7145 K:K/NS -.5117 CA:K/CA -.6083 -.8803 -.8747 CA:CA/MG .8593 .8293 MG:S .5588 MG:CA/MG -.6568 -.5498 -.7495 MG:N/S -.6063 -.5158 MG:N/P .4775 S:AL .6178 .4658 S:P/AL -.6339 S:N/S -.8352 -.4863 AL:CU -.5218 AL:B .7200 AL:P/AL -.9123 -.7767 -.7245 MN:CA/MG .4879 AFE:P/AL" .5257 ZN:P/AL .4865 ZN:CA/MG .5198 ZN:N/S .6147 CU:N/P -.4737 B:N/P .5519 B:P/AL -.6632 N/P:CA/MG -.5752 .4696 P/AL:N/S .6045 .6361 K/CA:CA/MG -.7602 -.7020 n=20, df=18 r@ .0500=.4438 r@ .0100=.5614 n=l8, df=16 r<§ .0500=.4683 r@ .0100=.5897 n=!9, df=17 r<3 .0500=.4555 r@ .0100=.5751 28 b) Spearman rank c o r r e l a t i o n c o e f f i c i e n t . The c o r r e l a t i o n c o e f f i c i e n t s generated by t h i s nonparametric method are not expected to be the same as the values of r (Table 6) (Zar, 1974 p.244). The h y p o t h e s i s , which t e s t s f o r s i g n i f i c a n t p o p u l a t i o n c o r r e l a t i o n , i s unchanged; i t i s l e s s powerful than i f r were c a l c u l a t e d . Table 7 summarizes the c o r r e l a t i o n s with s i g n i f i c a n c e at the 0.05 and the 0.01 l e v e l s . For the v a r i a b l e s t e s t e d by both simple l i n e a r c o r r e l a t i o n procedures, 68 percent of the s i g n i f i c a n t c o r r e l a t i o n s l i s t e d i n Table 6 are a l s o r e c o g n i z e d i n Table 7. T h i s r e l a t i v e l y high l e v e l of agreement does improve c o n f i d e n c e i n the r e s u l t s of the c o r r e l a t i o n c o e f f i c i e n t (Table 6) a n a l y s i s . 29 Summmary by F o r e s t f l o o r S t r a t a of F o l i a r A n a l y s i s and Growth V a r i a b l e Spearman's Rank C o r r e l a t i o n C o e f f i c i e n t s S i g n i f i c a n t at ? = 0.05 and P = 0.01. V a r i a b l e s Orthihumimor 1 Thin f . f . 2 Lignohumii TGR:NWT100 .4754 TGR:MN .4750 TGR:AFE -.4857 TGR:ZN -.6886 NWT100:K -.5032 NWT100:CA -.5580 NWT100:S -.4606 NWT100:N/P -.5933 NWT100:LOGTGR .4754 N:P .8460 .6307 N:MG -.5776 N:FE .4934 N:ZN .5967 .6734 N:B -.5251 N:N/P .5925 N:P/AL .5947 .5000 N:N/S .6471 .7088 P:MN -.5241 P:FE .4878 P: AFE .5594 P:ZN .4631 .5064 P:N/P -.7934 -.5412 -.6069 P:K/CA .4673 P:CA/MG .5194 P:N/S .5412 P:B -.5296 K:S .4692 K:FE .5091 K:K/CA .5880 .5583 .7550 CA:N/P -.4985 CA:K/CA -.5724 -.8741 -.8530 CA:CA/MG .9278 .8161 MG:S .4953 MG:P/AL -.4839 MG:CA/MG -.6315 -.7367 MG:N/S -.4802 -.5336 S:AL .7156 S:P/AL -.6386 S:N/S -.7098 -.5679 AL:P/AL -.9016 -.8447 -.7747 AL:N/S -.4966 MN:N/P .5414 MN:N/S .5970 MN:LOGTGR .4750 FE:AFE .4792 .6250 FE:CU .4829 FE:K/CA .4887 AFE:ZN .5769 AFE:B -.4663 AFE:LOGTGR -.4857 ZN:P/AL .4664 ZN:N/S .7673 ZN:LOGTGR -.6886 B:P/AL -.5388 -.5114 B:CA/MG -.5137 N/P:CA/MG -.5789 .5474 N/P:N/S .4496 P/AL:N/S .5865 .6140 K/CA:CA/MG -.7750 -.6632 CA/MG:N/S .4857 3 n=20 rho @ .0500=.447 rho <§ .0100=.570 n=l8 rho @ .0500=.472 rho @ .0100=.600 n=l9 rho @ .0500=.460 rho @ .0100=.584 30 6. M u l t i p l e l i n e a r r e g r e s s i o n . Separate m u l t i p l e r e g r e s s i o n e quations were produced f o r p r e d i c t i o n of t e r m i n a l growth of t r e e s from each of the f o r e s t f l o o r s t r a t a . Furthermore, two r e g r e s s i o n e q u a t i o n s were c a l c u l a t e d f o r each of the s t r a t a . The f i r s t used untransformed t e r m i n a l growth, and the second used the n a t u r a l l o g of t e r m i n a l growth. R e s u l t s of the m u l t i p l e r e g r e s s i o n a n a l y s e s are given i n Tabl e 8. On the Orthihumimor stratum 45 percent of the v a r i a t i o n i n t e r m i n a l growth and 51 percent of the v a r i a t i o n i n In t e r m i n a l growth was e x p l a i n e d u s i n g t h r e e and four v a r i a b l e s , r e s p e c t i v e l y . In c o n t r a s t , 85 to 88 percent of the v a r i a t i o n i n t e r m i n a l growth or i n In t e r m i n a l growth was e x p l a i n e d f o r t r e e s on the other two s t r a t a . 31 T a b l e 8. P r e d i c t i o n E q u a t i o n s f o r T e r m i n a l Growth and the N a t u r a l Log of T e r m i n a l Growth f o r Trees on the D i f f e r e n t F o r e s t F l o o r s (numerical c o e f f i c i e n t s and r-squared v a l u e s are s i g n i f i c a n t at ^=0.05 u n l e s s otherwise i n d i c a t e d ) . F o r e s t f l o o r stratum, n Equation r 1, 20 TGR = 245.83 - 792.64(SPCT) + 5.1245 * * (AFEPPM) - 5.3541 (BPPM) 0 .45 LNTGR = 5.5396 - 12.672(ALPCT) + 0.0345(AFEPPM) 4r 4r 4r -0.0354(BPPM) - 0.1938(KCA) 0 .51 2, 18 TGR -813.04 +'174.78(NPCT) + 220.57(KPCT)* -2334.1(CAPCT)* + 7350.7(MGPCT)* -0.0340(MNPPM) - 13.369(ZNPPM)* + 4.0035(BPPM) + 226.97(CAMG)* 0 .86' LNTGR -0.9802 + 0.9775(NPCT) +• 1.3717(KPCT) -14.592(CAPCT)* + 46.738(MGPCT)* -0.00024(MNPPM) - 0.08505(ZNPPM)* + 0.02619(BPPM) + 1.4444(CAMG)* 0 .85' 3, 1 9 TGR 7952.6 + 3080.3(100NWT)* + 5425.7 (NPCT)* + 5620.8(PPCT)* + 4613.5 (CAPCT)* - 9052.3(MGPCT)* - 43425. (SPCT)* - 6225.9(ALPCT) + 9.9194(BPPM) - 300.91(CAMG)* - 1067.1(NS)* 0 .85 LNTGR 55.296 + 18.239(100NWT)* + 35.181 (NPCT)* + 33.948(PPCT)* + 28.812 (CAPCT)* - 56.838(MGPCT)* - 279.62 (SPCT)* - 38.020(ALPCT)* + 0.06242 (BPPM)* - 1.9285(CAMG)* - 6.8425(NS)* 0 .88 S i g n i f i c a n c e at P - 0.01 S i g n i f i c a n c e at P = 0.10 S i g n i f i c a n c e a t P = 0.20 32 The histogram ( F i g u r e 6) of frequency versus t e r m i n a l growth 2 ( l e a d e r l e n g t h ) c l a s s e s h e l p s account f o r the c o m p a r a t i v e l y low r o b t a i n e d on the Orthihumimor stratum. The bimodal d i s t r i b u t i o n , w ith o n l y 3 samples i n the 193.5 cm midpoint, i s a l s o r e f l e c t e d i n s c a t t e r diagrams of t e r m i n a l growth versus the ot h e r v a r i a b l e s . S c a t t e r p o i n t s form two obvious c l u s t e r s , making i t d i f f i c u l t to f i t a r e g r e s s i o n e q u a t i o n . STRATUM 1: OHTHTHUMIMOH 4 102.00 147.75 195.50 239.25 265.00 IEAUER IEHOTH (DHEHVAL WIDTH » 45.750 CH) STRATUM 2: THIN FOREST FLOOR JZL 6 « 6 4 106.00 140.75 175.50 210.25 IEAUER IEHOTH (IOTEEVAL VIMH a 34.750 CM) STRATUM 3 • LIGSOHDMIMOR 245.00 100.00 140.00 180.00 220.00 260.00 IEAUER IENCTH (INTERVAL WIDTH m 40.000 CM) F i g u r e 6. Histograms, by f o r e s t f l o o r s t r a t a , of frequency v e r s u s 3-year t e r m i n a l growth ( l e a d e r l e n g t h ) . 33 7. Stepwise d i s c r i m i n a n t a n a l y s i s . Given the complex r e l a t i o n s between the 20 v a r i a b l e s used to d i s t i n g u i s h the sample t r e e s on the 3 d i f f e r e n t f o r e s t f l o o r s u b s t r a t e s , m u l t i v a r i a t e d i s c r i m i n a n t f u n c t i o n a n a l y s i s ( J e n n r i c h and Sampson, 1981) was s e l e c t e d to h e l p d e t e c t d i f f e r e n c e s between the 3 s t r a t a . T h i s a n a l y s i s maximizes v a r i a t i o n among*the s t r a t a r e l a t i v e t o the v a r i a t i o n w i t h i n the s t r a t a . The v a r i a b l e s used i n computing the l i n e a r c l a s s i f i c a t i o n f u n c t i o n s were chosen i n a forward stepwise manner. At each s t e p the v a r i a b l e that added the most to the s e p a r a t i o n of the s t r a t a was e n t e r e d i n t o the d i s c r i m i n a n t f u n c t i o n . S i x v a r i a b l e s are i n c l u d e d i n the d i s c r i m i n a n t a n a l y s i s of western hemlock on the 3 s t r a t a (Table 9 ) . A l l stratum means are s i g n i f i c a n t l y d i f f e r e n t (/*<0.01) from each o t h e r . In the j a c k k n i f e d c l a s s i f i c a t i o n procedure, 78.9% of the 57 sample t r e e s are c o r r e c t l y matched to t h e i r f o r e s t f l o o r stratum. Table 9. R e s u l t s of the D i s c r i m i n a n t A n a l y s i s of Western Hemlock i n the Three F o r e s t F l o o r S t r a t a . (A) V a r i a b l e s s e l e c t e d f o r the d i s c r i m i n a n t a n a l y s i s . Step v a r i a b l e e n t e r e d V a r i a b l e e n t e r e d 1 Cu 2 KCa 3 nwt 100 4 N/S 5 P/Al 6 Mg (B) M a t r i x of F - v a l u e s f o r t e s t i n g group means. (df= 6,49)* Orthihumimor T h i n f . f l o o r T h i n f . f l o o r 10.82 Lignohumimor 7.36 6.92 34 (C) J a c k k n i f e d c l a s s i f i c a t i o n m atrix Group Percent c o r r e c t Number of samples c l a s s i f i e d i n t o group Orthihumimor Th i n f . f . Lignohumimor Orthihumimor T h i n f . f . Lignohumimor T o t a l 75.0 77.8 84.2 78.9 15 2 0 1 4 5 3 16 * C r i t i c a l F - v a l u e s at 6,49 df are P = 0.05, F = 2.29; P = 0.01, F = 3.19 8. P r i n c i p a l components a n a l y s i s . T able 10 p r e s e n t s the r e s u l t s of the 1-way ANOVAR and Duncan's m u l t i p l e range t e s t examining the o r d i n a t i o n of sample t r e e s on the f i r s t 3 axes d e r i v e d by p r i n c i p a l components a n a l y s i s of the f o l i a r a n a l y s i s and growth d a t a . The t r e e s on the 3 f o r e s t f l o o r s t r a t a (.1 =Orthihumimor, 2=thin f o r e s t f l o o r and 3=Lignohumimor) are s eparated as shown by Duncan's m u l t i p l e range t e s t . In o r d e r to determine which of the t r e e v a r i a b l e s c o n t r i b u t e d most to the s i g n i f i c a n t (at 5% l e v e l ) d i f f e r e n c e of the s t r a t a a l o n g the f i r s t 3 p r i n c i p a l components a n a l y s i s axes, a c o r r e l a t i o n m a t r i x was run ( Table 11). Only those c o r r e l a t i o n c o e f f i c i e n t s s i g n i f i c a n t at the 1% l e v e l are shown. Tabl e 10. A n a l y s i s of V a r i a n c e of P r i n c i p a l Components A n a l y s i s Scores and R e s u l t s of Duncan's M u l t i p l e Range T e s t . A x i s F p r o b a b i l i t y Duncan's m u l t i p l e range t e s t 2 3 0.0337 0.0224 0.0271 (2,3) (3,1) (3.1) (2) (3.2) (2,1) 35 Table 11. C o r r e l a t i o n C o e f f i c i e n t s f o r F i r s t Three P r i n c i p a l Components A n a l y s i s A x i s Scores Versus V a r i a b l e s S i g n i f i c a n t at 1% (n=57 df=55 R@ 0.0100=0.3385). A x i s 1 Ax i s 2 A x i s 3 nwt 100 -.5028 N % .5648 .5191 .4180 P % .4800 .5025 K % -.3612 .6051 Ca % .4393 -.4189 .6109 Mg % -.3941 S % .3696 A l % -.5432 .3555 Mn ppm -.4041 Fe ppm .5844 AFe ppm .5833 Zn ppm .5004 .3784 .3850 Cu ppm .3988 B ppm -.6251 N/P .6233 P/AI .6861 -.5138 K/Ca -.5566 .6138 Ca/Mg .6448 .4309 N/S .6087 The f i v e most important v a r i a b l e s c o n t r i b u t i n g to the s e p a r a t i o n of the s t r a t a groups d e f i n e d by Duncan's t e s t (Table 10) are those with the l a r g e s t p o s i t i v e or n e g a t i v e c o r r e l a t i o n c o e f f i c i e n t s f o r the r e s p e c t i v e axes (Table 11). These v a r i a b l e s are P/Al, Ca/Mg, B, N/S and N f o r a x i s 1 (2 , 3 ) ( 3 , 1 ) ; K/Ca, K, Fe, AFe and N f o r a x i s 2 ( 3 , 1 ) ( 2 ) ; and N/P, Ca, P/AI, nwt 100 and Ca/Mg f o r a x i s 3 ( 3 , 2 ) ( 2 , 1 ) . 36 DISCUSSION 1. F o r e s t f l o o r d e s c r i p t i v e measures. Tabl e 1 d i s t i n g u i s h e s s e v e r a l major d i f f e r e n c e s between the three f o r e s t f l o o r s t r a t a . The s i n g l e f a c t o r ANOVA and m u l t i p l e range t e s t r e s u l t s p r o v i d e s t a t i s t i c a l c o n f i d e n c e f o r d i f f e r e n c e s between s t r a t a . The o v e r l a p of C/N r a t i o s between stratum 1 and stratum 3 may be a t t r i b u t e d to the o c c a s i o n a l presence of a r e s i d u a l humus l a y e r of lower C/N r a t i o beneath the t h i c k , s u r f i c i a l , d ecaying wood d e p o s i t of stratum 3. The t h i n f o r e s t f l o o r (stratum 2) pro b a b l y l i m i t s moisture supply to western hemlock, given the c o a r s e , sandy t e x t u r e of the m i n e r a l s o i l and drainage p r o p e r t i e s of the stand (Appendix 2.1). T h i s may be an important f a c t o r c o n t r i b u t i n g to the lower t e r m i n a l growth of stratum 2 t r e e s . In c o n t r a s t , the s i m i l a r i t y of s i t e and m i n e r a l s o i l p r o p e r t i e s (Appendix 2.1) i s e v i d e n t . T h i s supports the i n f e r e n c e that the d e s i r e d sampling c o n d i t i o n i s a t t a i n e d r stratum d i f f e r e n c e i s due l a r g e l y to d i f f e r e n c e s between the f o r e s t f l o o r c h a r a c t e r i s t i c s . 2. G r a p h i c a l p r e s e n t a t i o n of transformed means and 95 percent c o n f i d e n c e l i m i t s . S i m i l a r p a t t e r n s of response ( F i g u r e s 2-4) • f o r c e r t a i n v a r i a b l e s suggest r e a c t i o n of western hemlock f o l i a r n u t r i t i o n and growth t o stratum s o i l c o n d i t i o n s . Lower N% i n hemlock on the Lignohumimors may be a t t r i b u t e d to the l a t t e r ' s h i g h e r C/N r a t i o . One hundred needle weight i n c r e a s e s a c r o s s the s t r a t a , p a r t i c u l a r l y on stratum 3. T h i s i s not to say f o l i a r biomass 37 f o r c u r r e n t - y e a r shoots i s g r e a t e r too. (Data were not c o l l e c t e d to determine number of needles per u n i t shoot length.) The amount of P i n a s o i l s o l u t i o n at any given time i s low, u s u a l l y l e s s than 1 ppm ( P r i t c h e t t , 1979), and the amount a v a i l a b l e to p l a n t s i s i n f l u e n c e d by a number of s o i l f a c t o r s . These i n c l u d e s o i l a c i d i t y and the presence of s o l u b l e i r o n and aluminum, the humus type and i t s r a t e of decompostion, as w e l l as the t o t a l amounts and forms of m i n e r a l phosphorus i n the s o i l ( P r i t c h e t t , 1979 pp. 101 -1.02) . None of these f a c t o r s would suggest a n a t u r a l l y h i g h e r l e v e l of orthophosphate i n the s o i l s o l u t i o n of Lignohumimors. Perhaps i n c r e a s e d m y c o r r h i z a l a c t i v i t y (McFee and Stone, 1966) i s c a u s i n g the improvement i n P% i n f o l i a g e on the Lignohumimors. The primary mode of growth s t i m u l a t i o n a t t r i b u t a b l e to m y c o r r h i z a l f u n g i i s improved accumulation of P i n above-ground t i s s u e ( J a r r e l l and B e v e r l y , 1981 ). F o l i a r K% i s g r e a t e s t i n stratum 2 t r e e s , w h i l e Ca% and Mg% are lowest. Yet a l l t h r e e are higher on stratum 1 than on stratum 3. Owing to the c o a r s e , sandy t e x t u r e of the m i n e r a l s o i l , as w e l l as the g e n e r a l l a c k of f o r e s t f l o o r , i t i s l i k e l y t h a t the e x t r a K may be absorbed from the m i n e r a l s o i l v i a the p r o c e s s e s of mass flow and d i f f u s i o n ( B a l l a r d and C o l e , 1974). Again, mycorrhizae may be important. Examination of the bedrock, parent m a t e r i a l , and l i t e r a t u r e (Roddick, 1965) does suggest predominance of g r a n o d i o r i t e , which may be r i c h i n potassium f e l d s p a r . Due to the r a p i d e l u v i a t i o n of t h i s element (Quesnel and L a v k u l i c h , 1981) one might not expect f o l i a r K% to 38 be h i g h on the Orthihumimor and the Lignohumimor s t r a t a . Higher K% on stratum 1 than on stratum 3 may be the r e s u l t of a g r e a t e r c a t i o n exchange c a p a c i t y , and s l i g h t l y h i g h e r pH. Lower K%, Ca% and Mg% i n the f o l i a g e of stratum 3 t r e e s than i n stratum 1 t r e e s i s supported by the o b s e r v a t i o n s of McFee and Stone (1966) and Quesnel and L a v k u l i c h (1981) r e g a r d i n g lower l e v e l s of these elements in decaying wood compared wi t h humus (H d - h o r i z o n s ) . It' i s unknown to what extent s o i l m o isture s t r e s s d u r i n g p e r i o d s i n the s p r i n g , summer and autumn f o r t r e e s on stratum 2 might be a f f e c t i n g the r e l a t i o n s h i p between element c o n c e n t r a t i o n and p l a n t response. Furthermore, the i n d e t e r m i n a t e growth of western hemlock and stratum d i f f e r e n c e s l i m i t the i n t e r p r e t i v e u s e f u l n e s s of e x p r e s s i n g f o l i a r n u t r i e n t q u a n t i t i e s per 100 n e e d l e s . Thus, d i l u t i o n and c o n c e n t r a t i o n e f f e c t s and o t h e r i n f l u e n c e s can obscure the r e l a t i o n s h i p s , s i n c e f o l i a r n u t r i e n t s are expressed i n u n i t s of c o n c e n t r a t i o n . The average c o n c e n t r a t i o n s of a l l m i c r o n u t r i e n t s t e s t e d , e x c l u d i n g Mn and AFe, are lower on Lignohumimors than on Orthihumimors. Zinc and Cu are f i r m l y complexed or c h e l a t e d by humic m a t e r i a l , which can account f o r t h e i r accumulation i n humus (Stone, 1968) . Presumably, lower c o n c e n t r a t i o n s of complexed Cu and Zn i n Lignohumimors might be r e f l e c t e d i n lower f o l i a g e c o n c e n t r a t i o n s . 3 . Computerized n u t r i e n t d e f i c i e n c y d i a g n o s i s . Of the m a c r o n u t r i e n t s , P f o l l o w e d by K f o l l o w e d by N appear to be d e f i c i e n t i n the stand on a l l t h r e e s t r a t a ( T a b l e s 2-4). 39 The N/P r a t i o on Lignohumimors suggests no P d e f i c i e n c y , though P d e f i c i e n c y might be i n d u c i b l e by N f e r t i l i z a t i o n . P d e f i c i e n c y on a l l s t r a t a i s suggested by the P/Al r a t i o . M i c r o n u t r i e n t s of concern appear to be Fe and Cu i n a l l the s t r a t a , and Zn i n stratum 3 . N i t r o g e n - i n d u c e d d e f i c i e n c y of B i s p o s s i b l e i n a l l the s t r a t a . Manganese i s the o n l y m i c r o n u t r i e n t present i n g r e a t excess. S e v e r a l d e f i c i e n c i e s may be c o n t r i b u t i n g to c h l o r o s i s of the f o l i a g e noted f o r some t r e e s on f o r e s t f l o o r s 2 and 3 . The g r e a t e r the amount of P p r e s e n t , the more phosphoprote.in i s produced - a substance capable of b i n d i n g Fe as p h y t o f e r r i t i n (deKock, 1963) . The P/Fe r a t i o on f o r e s t f l o o r s 1,2 and 3 i s 3 1 . 0 6 , 3 2 . 7 0 and 3 8 . 7 5 , r e s p e c t i v e l y . Mengel and K i r k b y (1982 p.481) note that the P/Fe r a t i o i s f r e q u e n t l y h i g h e r i n p l a n t s s u f f e r i n g from Fe c h l o r o s i s . However, i t i s unknown whether the h i g h P/Fe r a t i o found i n c h l o r o t i c t i s s u e s i s the cause or the consequence of the c h l o r o s i s . C h l o r o s i s due to N d e f i c i e n c y i s a l s o a p o s s i b i l i t y . Baule and F r i c k e r (1970 pp.39-40) m a i n t a i n that c h l o r o s i s caused by N-d e f i c i e n c y can be confused w i t h t h a t caused by d e f i c i e n c y of K. They suggest t h a t the d i s t i n c t i o n between d i f f e r e n t c h l o r o s e s can be made most simply by f o l i a r a n a l y s i s and i n d o u b t f u l cases by a p p r o p r i a t e f e r t i l i z e r experiments, f o r the n eedles of the t r e e s respond q u i c k l y to a supply of N. Some of the v i s u a l symptoms o u t l i n e d f o r K - d e f i c i e n c y by Baule and F r i c k e r (1970) and Mengel and K i r k b y (1982) do not agree w i t h the o v e r a l l c h l o r o s i s seen i n the hemlock on f o r e s t f l o o r s 2 and 3 . 40 4. A n a l y s i s of v a r i a n c e and m u l t i p l e range t e s t s . I t i s e v i d e n t from the r e s u l t s l i s t e d i n Table 5 that n u t r i t i o n a l and growth d i f f e r e n c e s may e x i s t i n the stand between t r e e s on the s e l e c t e d f o r e s t f l o o r s t r a t a . The combinations of f o l i a r a n a l y s i s and growth v a r i a b l e s c o n t r i b u t i n g most to the stand s e p a r a t i o n by s t r a t a are b e t t e r summarized by the stepwise d i s c r i m i n a n t and p r i n c i p a l components a n a l y s e s . 5. Simple l i n e a r c o r r e l a t i o n . The s t r o n g e s t c o r r e l a t i o n i s between shoot dry weight and f o l i a g e dry weight ( F i g u r e 5 , T a b l e 6 ) . The l i n e a r r e l a t i o n s h i p holds a c r o s s a l l three s t r a t a , r e g a r d l e s s of the s i g n i f i c a n t l y g r e a t e r 100 needle weight f o r t r e e s on Lignohumimors. F u r t h e r f i e l d s t u d i e s might c l a r i f y p o t e n t i a l r e l a t i o n s between numbers, of needles or f o l i a r biomass per u n i t shoot l e n g t h . C o n c e i v a b l y such i n f o r m a t i o n may bear some r e l a t i o n to n u t r i t i o n a l and t e r m i n a l growth responses. Although few of the s i g n i f i c a n t c o r r e l a t i o n s are of apparent i n t e r e s t , more of the s i g n i f i c a n t c o r r e l a t i o n s occur on stratum 2 than on e i t h e r of the other s t r a t a . Perhaps t h i s i s due i n p a r t to g r e a t e r homogeneity i n s o i l c o n d i t i o n s , s i n c e the f o r e s t f l o o r i s v ery t h i n and the m i n e r a l s o i l s e x h i b i t l i m i t e d v a r i a b i l i t y (Appendix 2 . 1 ) . The s i g n i f i c a n t p o s i t i v e c o r r e l a t i o n between N and P on s t r a t a 2 and 3 may be i n f o r m a t i v e . Although the N/P r a t i o i s s i g n i f i c a n t l y s m a l l e r on stratum 3, the l i n e a r r e l a t i o n between 41 N and P seems to h o l d . For the purposes of t h i s study, the r e l a t i o n s between v a r i a b l e s from d i f f e r e n t s t r a t a are of g r e a t e r i n t e r e s t than the c o r r e l a t i o n s between v a r i a b l e s w i t h i n s t r a t a . 6. M u l t i p l e l i n e a r r e g r e s s i o n . Leyton (1956, 1957), Leyton and Armson (1955), Madgwick (1964) and many ot h e r s have used m u l t i p l e r e g r e s s i o n a n a l y s i s as an approach to the study of g r o w t h - n u t r i e n t r e l a t i o n s h i p s when one or more n u t r i e n t s are d e f i c i e n t . For young even-aged stands the r e s u l t s g e n e r a l l y c o n f i r m s i g n i f i c a n t m u l t i p l e c o r r e l a t i o n s between v a r i o u s t r e e growth parameters and c o n c e n t r a t i o n s of d e f i c i e n t n u t r i e n t s . The r e l a t i o n s are s t r o n g e s t i n young st a n d s . Growth i n t r e e s i s a f f e c t e d not o n l y by n u t r i e n t s u p p l i e s , but a l s o by many oth e r f a c t o r s whose . r e l a t i v e importance i n c r e a s e s w i t h stand age. ( P r u s i n k i e w i c z , 1982) When u s i n g t h i s method i t i s assumed t h a t h e i g h t growth w i t h i n t r e e stands i s l i m i t e d o n l y by those n u t r i e n t elements whose c o n c e n t r a t i o n s i n n e a r - t e r m i n a l f o l i a g e are s i g n i f i c a n t l y and p o s i t i v e l y r e l a t e d to h e i g h t growth i n m u l t i p l e r e g r e s s i o n e q u a t i o n s . The other n u t r i e n t elements i n v o l v e d i n such m u l t i p l e r e g r e s s i o n s which may, or may not, be r e l a t e d to h e i g h t growth i n simple r e g r e s s i o n s , are p o s t u l a t e d to be not l i m i t i n g . (Madgwick, 1964) Mader and Howarth (1968) d e f i n e a number of problems a s s o c i a t e d w i t h t h i s a p p l i c a t i o n of m u l t i p l e r e g r e s s i o n 42 a n a l y s i s . One of these i s t h a t the independent v a r i a b l e s i n f o l i a r a n a l y s i s s t u d i e s are not s t r i c t l y independent. The more h i g h l y the independent v a r i a b l e s are i n t e r r e l a t e d among themselves, the l e s s r e l i a b l y can the net r e g r e s s i o n of X 1 upon any one of them be determined. I f one element v a r i e s l i t t l e w i t h i n a stand, and t h i s element i s g r o w t h - l i m i t i n g , i t i s u n l i k e l y t h a t m u l t i p l e r e g r e s s i o n w i l l be of value i n d e t e r m i n i n g elements l i m i t i n g to growth. I t i s e v i d e n t that the r e s u l t s of m u l t i p l e r e g r e s s i o n must be i n t e r p r e t e d w i t h c a u t i o n when used i n c o n j u n c t i o n with f o l i a r a n a l y s i s d a t a . Although K i s s l i g h t l y l e s s than s i g n i f i c a n t l y c o r r e l a t e d p o s i t i v e l y with t e r m i n a l growth (p.64), the r e s u l t s suggest t h a t i t i s the element most l i m i t i n g t o t e r m i n a l growth i n stratum 2. The computerized n u t r i e n t d e f i c i e n c y d i a g n o s i s suggests t h a t K i s s l i g h t l y to moderately d e f i c i e n t . None of the other elements or r a t i o s s e l e c t e d by the equation f o r stratum 2 have any a p p r e c i a b l e p o s i t i v e c o r r e l a t i o n with t e r m i n a l growth. Regar d l e s s of the n u t r i t i o n a l r e l a t i o n s , m u l t i p l e r e g r e s s i o n a n a l y s i s of f o l i a r a n a l y s i s data (Table 8) has accounted f o r a l a r g e p o r t i o n of the v a r i a t i o n i n i n d i v i d u a l t r e e growth on f o r e s t f l o o r s 2 and 3. 7. Stepwise d i s c r i m i n a n t a n a l y s i s . I t i s e v i d e n t from the r e s u l t s of the stepwise d i s c r i m i n a n t a n a l y s i s (Table 9) t h a t the combination of Cu, K/Ca, nwt 100, N/S, P/Al and Mg are v a r i a b l e s t h a t e f f e c t i v e l y d i s t i n g u i s h the 43 sample t r e e s i n the d i f f e r e n t f o r e s t f l o o r c o n d i t i o n s . Furthermore, t h i s a n a l y s i s can be expanded (El- k a s s a b y , et a l . , 1983) to c l a s s i f y t r e e s from unknown f o r e s t f l o o r s t r a t a w i t h i n the study area i n t o one of the thr e e s t r a t a examined (assuming they belong to one of these s t r a t a ) . 8. P r i n c i p a l components a n a l y s i s . Again d i f f e r e n c e s between f o l i a r a n a l y s i s data f o r t r e e s on the c o n t r a s t i n g f o r e s t f l o o r s t r a t a are apparent. The s i g n i f i c a n c e of the s e p a r a t i o n i s at the 5% l e v e l (Table 10). Since the a n a l y s i s .considers a l l v a r i a b l e s t o g e t h e r , i t i s not s u r p r i s i n g t h a t t h i s s e p a r a t i o n i s weaker than t h a t o b t a i n e d f o r some of the v a r i a b l e s u s i n g u n i v a r i a t e a n a l y s i s (Table 5 ) . Subsequent a n a l y s e s of p r i n c i p a l components a x i s s c o r e s (Tables 10 and 11) can p r o v i d e more d e t a i l s than stepwise d i s c r i m i n a n t a n a l y s i s on the v a r i a b l e s c o n t r i b u t i n g to the s e p a r a t i o n of f o r e s t f l o o r s t r a t a stand groups e x t r a c t e d by Duncan's t e s t (Table 10). 44 CONCLUSION The r e s u l t s (Tables 1 and 5 ; see a l s o Appendix 2.1) suggest t h a t the d e s i r e d sampling c o n d i t i o n was a t t a i n e d : d i f f e r e n c e s i n s o i l s or the thr e e sampling s t r a t a were due l a r g e l y to the f o r e s t f l o o r c h a r a c t e r i s t i c s . Computerized n u t r i e n t d e f i c i e n c y d i a g n o s i s , ANOVA and m u l t i p l e range t e s t s , simple l i n e a r c o r r e l a t i o n , stepwise d i s c r i m i n a n t a n a l y s i s , and p r i n c i p a l components a n a l y s i s imply d i f f e r e n c e s between hemlock f o l i a r macro- and microelements, and t e r m i n a l growth f o r t r e e s growing on each of thr e e f o r e s t f l o o r s : 1) Orthihumimor, 2) t h i n , and 3) Lignohumimor. A g r a p h i c a l summary of the magnitude of the f o l i a r a n a l y s i s and t e r m i n a l growth v a r i a b l e s ( F i g u r e s 2-4) shows p a t t e r n s of s i m i l a r i t y among c e r t a i n v a r i a b l e s . These p a t t e r n s of s i m i l a r i t y and d i s s i m i l a r i t y among v a r i a b l e s and between f o r e s t f l o o r s t r a t a a re the s u b j e c t of the s t a t i s t i c a l a n a l y s e s . Computerized n u t r i e n t d e f i c i e n c y d i a g n o s i s suggests the f o l l o w i n g d e f i c i e n c i e s i n the order of d e c r e a s i n g s e v e r i t y ( i . e . P i s most d e f i c i e n t , with d e f i c i e n c y most severe f o r t r e e s i n stratum 2 ) : P (2<1<3) < Fe (3<2<1) < K (3<1<2) < N (3<2<1). A s l i g h t p o s s i b i l i t y of Cu (2<3<1) d e f i c i e n c y e x i s t s i n a l l s t r a t a . A p o s s i b l e or n e a r - d e f i c i e n c y of Zn i s apparent i n stratum 3. Although B (3<1<2) d e f i c i e n c y may not be a problem, i t may be induced i n any of the s t r a t a by N f e r t i l i z a t i o n . S i n g l e f a c t o r ANOVA and m u l t i p l e range t e s t s (Table 5) imply t h a t 3-year t e r m i n a l growth, Ca%, Mg% and Cu ppm are g r e a t e s t on Orthihumimors, i n t e r m e d i a t e on Lignohumimors, and lowest on t h i n 45 f o r e s t f l o o r s . Other v a r i a b l e s w i t h s i g n i f i c a n t d i f f e r e n c e e i t h e r at the 5% or at the 1% l e v e l i n c l u d e 100-needle weight ( 1 , 2 ) ( 3 ) , K% ( 3 , 1 ) ( 2 ) , N/P ( 3 ) ( 2 , 1 ) , K/Ca ( 1 , 3 ) ( 2 ) , N/S and Fe ppm (3,2)(2 ,1) . F i g u r e 5 demonstrates a l i n e a r r e l a t i o n s h i p between shoot dry weight and f o l i a g e dry weight. Shoot dry weight can be p r e d i c t e d by i t s r e l a t i o n s h i p t o f o l i a g e dry weight, or v i c e v e r s a , r e g a r d l e s s of f o r e s t f l o o r stratum. Stepwise d i s c r i m i n a n t a n a l y s i s uses s i x v a r i a b l e s (Cu, K/Ca, nwt 100, N/S,- P/Al and Mg) to s u c c e s s f u l l y c l a s s i f y most of the sample t r e e s i n t o t h e i r r e s p e c t i v e f o r e s t f l o o r s t r a t a . D i s c i m i n a n t a n a l y s i s can p o t e n t i a l l y be expanded to c l a s s i f y new sample t r e e s i n t o the a p p r o p r i a t e f o r e s t f l o o r stratum u s i n g f o l i a r a n a l y s i s d a t a . P r i n c i p a l components - a n a l y s i s i s used to f i n d d i f f e r e n c e s between the f o l i a r a n a l y s i s and t e r m i n a l growth data by c o n s i d e r i n g a l l v a r i a b l e s at the same time. The d i f f e r e n c e s between s t r a t a t r e e s a re somewhat obscured when a l l v a r i a b l e s are c o n s i d e r e d together (Table 10). N e v e r t h e l e s s , d i f f e r e n c e s between s t r a t a groupings d e f i n e d by Duncan's m u l t i p l e range t e s t e x i s t at the 5% l e v e l among the f i r s t t h r e e p r i n c i p a l components a n a l y s i s axes. The v a r i a b l e s c o n t r i b u t i n g most to stand d i f f e r e n t i a t i o n by f o r e s t f l o o r c o n d i t i o n s are l i s t e d i n the order of t h e i r importance i n Tab l e 11. A s i g n i f i c a n t p o s i t i v e c o r r e l a t i o n e x i s t s between N and P i n s t r a t a 2 and 3 . The m a j o r i t y of s i g n i f i c a n t c o r r e l a t i o n s occur i n s tratum 2 , perhaps as the r e s u l t of g r e a t e r n u t r i t i o n a l 46 s i m i l a r i t y among t r e e s due to g r e a t e r homogeneity of s o i l s . F o l i a r a n a l y s i s data can be a p p l i e d to m u l t i p l e l i n e a r r e g r e s s i o n to s u c c e s s f u l l y account f o r a h i g h degree of v a r i a t i o n i n t e r m i n a l growth i n s t r a t a 2 and 3. A s l i g h t v a r i a t i o n i n s o i l m oisture c o n d i t i o n s between groups of sample t r e e s may have caused the bimodal d i s t r i b u t i o n of t e r m i n a l growth ( F i g u r e 6) i n stratum 1, thereby d i s r u p t i n g the p r e d i c t i o n of t e r m i n a l growth f o r t r e e s i n t h i s stratum. Owing to the p r e f e r e n c e of hemlock's primary r o o t s f o r s u r f a c e o r g a n i c matter, i t s r o o t system may be b e t t e r developed in Orthihumimors' and Lignohumimors than i n s o i l s with l i t t l e f o r e s t f l o o r a c c u m u l a t i o n . Furthermore, i t i s u n l i k e l y that the t h i c k f o r e s t f l o o r s w i l l become dry, beyond perhaps the top few c e n t i m e t r e s , even d u r i n g p r o l onged summer or autumn droughts, whereas r o o t s r e s t r i c t e d t o sandy m i n e r a l s o i l and/or t h i n f o r e s t f l o o r s w i l l l i k e l y e x p e r i e n c e moisture d e f i c i t . I t i s w e l l known that hemlock i s p o o r l y adapted to s o i l s where i t e x p e r i e n c e s moisture s t r e s s ( O r l o c i , 1965; K r a j i n a , 1969). Although the percent d e v i a t i o n below e s t a b l i s h e d l e v e l s of adequate c o n c e n t r a t i o n i s i n g e n e r a l more severe i n stratum 3 f o l i a g e than i n stratum 2 f o l i a g e , t e r m i n a l growth i s worst on stratum 2. Consequently t h e r e may be some c o n c e n t r a t i o n of f o l i a r n u t r i e n t s due to reduced growth i n stratum 2 t r e e s . When t e r m i n a l growth, number of elements d e f i c i e n t or p o t e n t i a l l y d e f i c i e n t , and n e g a t i v e p e r c e n t d e v i a t i o n from adequacy are c o n s i d e r e d t o g e t h e r , the evidence suggests t h a t hemlock performance i n the stand s t u d i e d i s best i n Orthihumimors. 47 Hemlock i s a s h a l l o w - r o o t i n g s p e c i e s h i g h l y s e n s i t i v e to f o r e s t f l o o r c o n d i t i o n s . P r e s e r v a t i o n of f o r e s t f l o o r s i s f a v o u r a b l e to the n u t r i t i o n and t e r m i n a l growth of hemlock i n the stand s t u d i e d . Given the m o i s t u r e - h o l d i n g , e r o s i o n -c o n t r o l l i n g , and other important p r o p e r t i e s of f o r e s t f l o o r s , i n a d d i t i o n to the hig h c o s t o f , and p o t e n t i a l l y l i m i t e d response to f e r t i l i z a t i o n , the p r e s e r v a t i o n of f o r e s t f l o o r s i s an un q u e s t i o n a b l y important economic f a c t o r . Furthermore, the problems a s s o c i a t e d with a l d e r and salmonberry r e g e n e r a t i o n on exposed m i n e r a l s o i l may be i n v i t e d when f o r e s t f l o o r s are l o s t . A l t e r n a t i v e l y , Vacci ni um spp. r e g e n e r a t i o n may p r o v i d e s e r i o u s c o m p e t i t i o n f o r r e g e n e r a t i n g c o n i f e r s on Orthihumimors and Lignohumimors, i f these deciduous shrubs are abundant i n the stand p r i o r to l o g g i n g . The r e s u l t s of t h i s study suggest a number of p o t e n t i a l l y u s e f u l i n v e s t i g a t i o n s r e g a r d i n g hemlock, of which the f o l l o w i n g are some examples: ( 1 ) The e f f e c t s of d i f f e r e n t f o r e s t f l o o r c o n d i t i o n s on the root development and mycorrhizae of n a t u r a l r e g e n e r a t i o n . (2) The e f f e c t s of f o r e s t f l o o r c o n d i t i o n s and v a r i a b i l i t y as determined by t r e e age, f o l i a r n u t r i t i o n and t e r m i n a l growth. (3) Western hemlock, l i k e P a c i f i c s i l v e r f i r and western redcedar, i s not a pion e e r s p e c i e s with h i g h l i g h t requirements. In f a c t , exposure t o d i r e c t s u n l i g h t i n l a r g e c l e a r c u t s may, f o r v a r i o u s reasons, be d e t r i m e n t a l to hemlock r e g e n e r a t i o n . Consequently, hemlock growth and n u t r i t i o n might be s t u d i e d under v a r y i n g c o n d i t i o n s of exposure on s i m i l a r s o i l s w i t h i n a 48 c l e a r c u t . Such i n f o r m a t i o n might p r o v i d e evidence f o r the optimum s i z e of c l e a r c u t s , or the best method of h i g h - f o r e s t r e p r o d u c t i o n ( D a n i e l e t a l . , 1979 pp. 436-452) f o r maximum growth of hemlock. (4) The e f f e c t s of m i n e r a l s o i l t e x t u r e and mineralogy on t e r m i n a l growth and f o l i a r n u t r i t i o n . (5) F e r t i l i z e r f i e l d t r i a l s , based on the r e s u l t s of f o l i a r and s o i l a n a l y s e s , to t e s t the response of hemlock growing i n d i f f e r e n t f o r e s t f l o o r c o n d i t i o n s . (6) A more d e t a i l e d examination of growth and biomass r e l a t i o n s i n hemlock as i n f l u e n c e d by f o r e s t f l o o r s , f o l i a r n u t r i t i o n and f e r t i l i z e r s . Tamm (1979 p. 12) d i s c u s s e s some important r e l a t i o n s between stem volume, above-ground p r o d u c t i o n , and the amount of f o l i a g e of v a r i o u s c o n i f e r s . F o l i a r a n a l y s i s , t o g e t h e r w i t h s o i l a n a l y s i s , can p r o v i d e answers t o many q u e s t i o n s r e g a r d i n g hemlock n u t r i t i o n a l problems. 49 LITERATURE CITED B a l l a r d , T.M. 1981. F o l i a r a n a l y s i s r e s e a r c h . . Unpub. C o n t r a c t Res. Rep. to B.C. F o r . Serv., 132 pp. 1982. F o l i a r a n a l y s i s r e s e a r c h . Unpub. C o n t r a c t Res. Res. Rep. to B.C. For. Serv., 227 pp. and D.W. C o l e . 1974. T r a n s p o r t of n u t r i e n t s to t r e e root systems. Can. J . F o r . Res. 4: 563-565. Baule, H. and C. F r i c k e r . 1970. The f e r t i l i z e r treatment of f o r e s t t r e e s . BLV V e r l a g s g e s e l l s c h a f t mbH, Mlinchen. 259 pp. B r a d f i e l d , G.E. ( p e r s o n a l communications) Department of Botany, U n i v e r s i t y of B r i t i s h Columbia. Bremner, J.M. 1965. N i t r o g e n a v a i l a b i l i t y indexes. In C A . Black et a l . (eds.) Methods of s o i l a n a l y s i s . Agronomy 9, Amer. Soc. Agron., Madison, Wis. pp. 1324-1345. and M.A. T a b a t a b a i . 1971. Use of automated combustion techniques f o r t o t a l carbon, t o t a l n i t r o g e n , and t o t a l s u l f u r a n a l y s i s of s o i l s . In L.M. Walsh (ed.) I n strumental methods f o r a n a l y s i s of s o i l s and p l a n t t i s s u e . S o i l S c i . Soc. Amer., Wisconsin, pp. 1-16. C a r t e r , R.E. 1983. F o r e s t f l o o r s under second growth D o u g l a s - f i r s t a n d s : t h e i r c h e m i c a l v a r i a b i l i t y and some r e l a t i o n s h i p s to p r o d u c i v i t y . M.Sc. t h e s i s . Department of S o i l S c i e n c e , Univ. of B.C., Vancouver, B.C. 89 pp. Canadian S o i l Survey Committee. 1978. The Canadian system of s o i l c l a s s i f i c a t i o n . Can. Dep. A g r i c . P u b l . 1646. Supply and S e r v i c e s , Ottawa. 164 pp. D a n i e l , T.W., J.A. Helms, and F.S. Baker. 1979. P r i n c i p l e s of s i v i c u l t u r e . 2nd ed. McGraw-Hill, Inc. pp.235-236. deKock, P.C. 1963. The p h y s i o l o g i c a l s i g n i f i c a n c e of the p o t a s s i u m - c a l c i u m r e l a t i o n s h i p i n p l a n t growth. Outlook on A g r i c . 4: 93-98. E l - k a s s a b y , Y.A., A.M. C o l a n g e l i , and 0. S z i k l a i . 1983. A n u m e r i c a l a n a l y s i s of karyotypes i n the genus Pseudotsuga Can. J . Bot. 61: 536-544. Fox, D.J. and K.E. G u i r e . 1976. Documentation f o r Midas. S t a t i s t i c a l Research L a b o r a t o r y , U n i v e r s i t y of M i c h i g a n . 203 pp. 50 Gaines, T.P. and G.A. M i t c h e l l . 1979. Boron d e t e r m i n a t i o n i n p l a n t t i s s u e by the azomethine H method. Comm. S o i l S c i . P l a n t A n a l . 10: 1099-1108. G i l l , R.S. and D.P. Lavender. 1983. Urea f e r t i l i z a t i o n : e f f e c t s on primary root m o r t a l i t y and m y c o r r h i z a l development of young-growth western hemlock. F o r e s t S c i . 29: 751-760. G r e i g , M. ( p e r s o n a l communications) S e n i o r A n a l y s t , Computer S c i e n c e Department, U n i v e r s i t y of B r i t i s h Columbia. and D. O s t e r l i n . 1978. UBC ANOVAR. Computing C e n t r e , Univ. of B r i t i s h Columbia, Vancouver, B.C. 69 pp. G r i e r , C C . and J.G. M c C o l l . 1971. F o r e s t f l o o r c h a r a c t e r i s t i c s w i t h i n a sma l l p l o t i n D o u g l a s - f i r i n Western Washington. S o i l S c i . Amer. Proc. 35: 988-991. G u t h r i e , T.F. and L.E. Lowe. 1984. A comparison of methods f o r t o t a l sulphur a n a l y s i s of t r e e f o l i a g e . Can. J . F o r . Research ( i n p r e s s ) . Jackson, M.L. 1958. S o i l c h e m i c a l a n a l y s i s . P r e n t i c e - H a l l , Inc., Englewood C l i f f s , N.J. 498 pp. J a r r e l l , W.M. and R.B. B e v e r l y . 1981. The d i l u t i o n e f f e c t i n p l a n t n u t r i t i o n s t u d i e s . Adv. Agron. 34: 197-224. J e n n r i c h , R. and P. Sampson. 1977. Stepwise d i s c r i m i n a n t a n a l y s i s . In M.B. Brown (ed.) B i o m e d i c a l computer programs P - s e r i e s . BMDP-77. Univ. of C a l i f . P r e s s , B e r k e l e y , C a l i f , pp. 711-734. K l i n k a , K., R.M. Green, R.L. Trowbridge and L.E. Lowe. 1981. Taxonomic c l a s s i f i c a t i o n of humus forms i n ecosystems of B r i t i s h Columbia. 1st. Approx. 54 pp. K r a j i n a , V . J . 1969. E c o l o g y of f o r e s t t r e e s i n B r i t i s h Columbia. E c o l o g y Western N. Amer. 2: 1-146. L a v k u l i c h , L.M. 1978. Methods manual. Pedology L a b o r a t o r y . Department of S o i l S c i e n c e , U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. 224 pp. Leyton, L. 1956. The r e l a t i o n s h i p between the growth and m i n e r a l c o m p o s i t i o n of the f o l i a g e of Japanese l a r c h . P l a n t and S o i l 7: 167-177. . 1957. The r e l a t i o n s h i p between the growth and m i n e r a l c o m p o s i t i o n of the f o l i a g e of Japanese l a r c h . I I . Evidence from m a n u r i a l t r i a l s . P l a n t S o i l 9: 31-48. 51 and K. Armson. 1955. M i n e r a l c o m p o s i t i o n of the f o l i a g e i n r e l a t i o n to the growth of Scots p i n e . F o r . S c i . 1: 210-218. Lowe, L.E. 1972. Aspects of c h e m i c a l v a r i a b i l i t y i n f o r e s t humus l a y e r s under a mature western hemlock-western redcedar stand. Can. J . For. Res. 2: 487-489. Mader, D.L. and J.A. Howarth. 1968. R e l a t i o n s h i p s between f o l i a r n u t r i e n t l e v e l s and t r e e growth i n red pine stands i n Massachusetts. In Tree growth and f o r e s t s o i l s , pp. 205-219. Madgwick, H.A.I. 1964. The c h e m i c a l composition of f o l i a g e as an index of n u t r i t i o n a l s t a t u s i n red pine {Pinus resinosa A i t ) . P l a n t and S o i l 21: 70-80. McFee, W.W. and E.L. Stone. 1966. The p e r s i s t e n c e of decaying wood i n the humus l a y e r s of n o r t h e r n f o r e s t s . S o i l S c i . Soc. Amer. J . 30: 513-516. Mengel, K. and E.A. K i r k b y . 1979. P r i n c i p l e s of p l a n t n u t r i t i o n . 2nd ed. E d i t e d by I n t e r n a t i o n a l Potash I n s t i t u t e . Der Bund AG, Bern, S w i t z e r l a n d . 593 pp. M e u r i s s e , R.T. 1976. Some ch e m i c a l and other p r o p e r t i e s of western hemlock s o i l s i n O r e g o n . . . t h e i r r e l a t i o n s h i p to p r o d u c t i v i t y . In Western Hemlock Management Conf. Proc. W.A. A t k i n s o n and R.J. Z a s o s k i ( e d s . ) . Univ. Washington, S e a t t l e , pp.49-55. N i c h o l s , S c o t t . 1977. On the i n t e r p r e t a t i o n of p r i n c i p a l components a n a l y s i s i n e c o l o g i c a l c o n t e x t s . V e g e t a t i o 34: 191-197. Noy-Meir, I. and R.H. W h i t t a k e r . 1977. Continuous m u l t i v a r i a t e methods i n community a n a l y s i s : some problems and developments. V e g e t a t i o 33: 79-98. O r l o c i , L a s z l o . 1965. The c o a s t a l western hemlock zone on the south-western B r i t i s h Columbia mainland. E c o l . of Western N.A. 1: 18-37. P a r k i n s o n , J.A. and S.E. A l l e n . 1975. A wet o x i d a t i o n procedure f o r the d e t e r m i n a t i o n of n i t r o g e n and m i n e r a l n u t r i e n t s i n b i o l o g i c a l m a t e r i a l . Comm. S o i l Sci.. P l a n t A n a l . 6: 1-11. P r i c e , W.J. 1978. A n a l y t i c a l atomic a b s o r p t i o n s p e c t r o m e t r y . Heydon & Son L t d . , London. 239 pp. P r i t c h e t t , W.L. 1979a. P r o p e r t i e s and management of f o r e s t s o i l s . John Wiley & Sons, New York. 500 pp. 52 P r u s i n k i e w i c z , Z. 1982. A new m u l t i v a r i a t e approach to f o l i a r a n a l y s e s f o r d i a g n o s t i c purposes i n mature s c o t s pine stands. F o r e s t Ecology and Management 4: 301-315. Quesnel, H.J. and L.M. L a v k u l i c h . 1981. Comparison of the c h e m i c a l p r o p e r t i e s of f o r e s t f l o o r s , d e c a ying wood and f i n e r o o t s i n t h r e e ecosystems on Vancouver I s l a n d . Can. J . F or. Res. 11: 215-217. Roddick, J.A. 1965. Vancouver North, Coquitlam, and P i t t Lake map-areas, with s p e c i a l emphasis on the e v o l u t i o n of the p l u t o n i c r o c k s . G.S.C. Memoir 335. 276 pp. & maps. Stone, E.L. 1968. Microelement n u t r i t i o n of f o r e s t t r e e s : a review. In F o r e s t f e r t i l i z a t i o n , t heory and p r a c t i c e . Muscle Shoals, Alabama: Tenn. V a l l e y Auth. N a t l . F e r t i l i z e r Development Center, pp. 132-175. Tamm, C O . 1979. N u t r i e n t c y c l i n g and p r o d u c t i v i t y of f o r e s t ecosystems. In Proc. Symp. Impact of I n t e n s i v e H a r v e s t i n g on F o r e s t N u t r i e n t C y c l i n g . Syracuse, New York. pp. 2-21. Van den D r i e s s c h e , R. 1976. M i n e r a l n u t r i t i o n of western hemlock In Western Hemlock Management Conf. Proc. W.A. A t k i n s o n and R.J. Z a s o s k i ( e d s . ) . Univ. Washington, S e a t t l e , pp. 49-55. Walmsley, M., G. U t z i g , T. V o i d , D. Moon and J . van B a r n e v e l d . 1980. D e s c r i b i n g ecosystems i n the f i e l d . RAB T e c h n i c a l Paper 2. Land Mgmt. Report No.7. V i c t o r i a , B.C. 224 pp. Weatherburn, M.W. 1967. P h e n o l - h y p o c h l o r i t e of boron i n s o i l e x t r a c t s , p l a n t m a t e r i a l s , composts, manures, water, and n u t r i e n t s o l u t i o n s . Comm. S o i l S c i . P l a n t . A n a l . 2: 363-374. Zar, J.H.. .1974. B i o s t a t i s t i c a l a n a l y s i s . P r e n t i c e - H a l l , Inc., Englewood C l i f f s , N.J. 620 pp. 53 M : . a f o r f l c a s e s t g r 100 s h o o t f o l i a g e d e p t h C N pH O nwt d r y wt d r y wt N P K C a Mg S A l Mn F e A F e Zn C u B i-l 1 1 178 . 184 33 35 25 45 1 .389 . 0 9 8 . 6 6 5 .322 . 109 . 2 0 1 3 . 0 4 6 2 1 7 5 31 - 3 5 6 10 5 3 17 9 -TT 14 2 0 4 0 5 1 . 33 3 8 2 8 1 2 285 . 198 45 97 37 02 1 . 2 0 6 . 0 9 6 . 6 4 0 . 3 5 3 . 1 1 1 . 1539 . 0 3 7 1580 23 35 9 1 1 5 3 16 9 8 1 1 9 4 1 0 1 . 2 9 7 3 7 2 85 1 3 2 3 0 . 2 1 0 34 89 27 94 1 . 3 5 4 . 104 . 4 2 4 . 2 7 0 . 0 9 7 . 1 164 . 0 3 3 1750 32 31 2 1 1 3 14 9 IB 24 27 44 6 1 . 255 3 7 2 9 1 4 2 5 0 . 2 4 2 3 0 85 24 45 1 . 403 . 105 . 6 5 6 . 3 5 0 . 126 . 1448 . 0 2 7 2 2 4 0 4 1 36 8 1 1 4 19 8 15 9 8 39 0 1 . 257 3 9 3 25 1 S 179 . 2 1 1 44 66 37 6 6 1 . 3 6 9 . 0 8 7 . 6 7 2 . 2 9 8 . 0 8 7 . 1399 . 0 2 0 1765 33 35 1 1 3 2 0 1 10 10 8 41 7 1 . 4 8 2 4 0 3 3 1 6 238 . 159 39 61 32 21 1 . 4 7 5 . 0 9 8 . 6 9 6 . 3 5 . 0 8 8 . 1694 . 0 3 0 2 9 4 5 31 33 7 13 5 3 1 1 3 1 1 7 16 42 0 1 . 153 3 a 3 0 5 1 7 139 . 153 34 6 0 29 10 1 . 4 4 9 . 1 19 . 6 8 0 . 2 8 4 . 0 9 1 . 1603 . 0 4 3 2 0 7 5 33 34 3 14 5 3 2 0 2 16 a 8 42 3 1 . 6 2 7 4 2 3 35 1 8 164 . 2 0 1 28 57 24 57 1 . 152 . 102 . 5 7 4 . 3 3 0 . 0 9 1 . 1288 . 0 2 4 2 2 1 0 28 24 3 1 1 5 3 17 7 10 a 15 42 a 1 . 4 3 5 3 9 3 0 1 9 217 . 133 23 19 18 39 1 . 3 6 5 . 104 . 7 1 2 . 3 2 8 . 126 . 1670 . 0 2 7 2 0 8 0 37 26 8 13 3 19 0 10 14 7 4 0 6 1 . 372 3 9 3 0 5 1 10 102 . 150 19 44 16 24 1 . 3 8 1 . 1 12 . 7 3 0 . 2 5 8 . 113 . 1735 . 0 3 6 1260 34 27 5 1 1 5 3 15 9 8 12 14 44 6 1 . 2 7 0 3 7 2 85 1 1 1 163 . 165 25 6 3 19 6 3 1 . 2 9 8 . 120 . 7 1 9 . 4 0 6 . 153 . 2 1 4 9 . 0 4 3 9 1 5 32 34 3 13 5 3 18 4 1 1 12 10 43 3 1 . 3 2 5 3 75 2 95 1 12 145 . 168 17 92 12 42 1 . 5 9 7 . 0 8 7 . 6 3 1 . 3 2 3 . 13 . 1953 . 0 4 3 1585 38 32 5 15 2 5 24 1 8 16 12 33 6 1 . 1 6 1 4 6 3 65 1 13 172 . 174 5 0 8 0 40 5 0 1 . 1 10 . 115 . 5 8 . 3 0 1 . 16 . 1830 . 0 4 1 1625 3 0 29 9 7 2 5 18 0 12 11 8 44 2 1 . 195 3 B5 3 0 1 14 134 . 190 4 0 26 31 66 1 . 5 7 6 . 102 . 6 6 0 . 3 5 9 . 1 17 . 1736 . 0 5 0 2 5 0 5 34 37 4 12 5 3 17 9 a 19 7 4 1 7 1 . 3 5 3 a 2 a 1 15 153 . 149 26 74 2 0 0 4 1 . 4 4 6 . 0 8 4 . 5 7 2 . 3 7 6 . 1 16 . 1654 . 0 2 7 2 2 3 0 26 29 3 17 3 15 0 14 14 18 42 0 1 . 6 3 8 2 95 1 16 170 . 148 3 0 38 24 38 1 . 356 . 107 . 8 6 8 . 3 5 5 . 1 18 . 1993 . 0 4 3 1395 36 35 6 16 5 4 5 16 1 20 13 15 42 3 1 . 28 3 8 3 1 1 17 245 . 184 43 64 33 74 1 . 4 5 8 . 120 . 7 4 8 . 3 7 5 . 1 1 1 . 1739 . 0 5 5 1405 37 38 1 14 3 10 4 14 23 18 44 8 1 . 0 2 3 85 3 0 1 18 240 . 2 5 1 62 70 46 84 1 . 301 . 1 16 . 6 0 0 . 2 3 7 . 0 9 5 . 1 6 1 1 . 0 3 6 1720 31 32 1 17 3 5 12 2 23 2 1 14 43 5 1 . 475 3 7 2 9 1 19 235 . 183 46 67 37 27 1 . 4 7 0 . 122 . 6 9 1 . 2 7 1 . 0 9 0 . 1779 . 0 3 7 1115 43 36 2 2 0 3 12 4 6 10 12 4 0 a 1 . 0 9 3 9 3 1 1 2 0 236 . 172 23 79 20 6 9 1 . 3 2 1 . 102 . 6 8 6 . 2 9 3 . 105 . 1594 . 0 2 9 1690 46 39 3 14 5 3 5 16 3 5 10 7 4 0 7 1 . 22 3 7 2 9 2 1 1 10 . 134 39 15 31 45 1 . 6 2 5 . 102 . 6 0 3 . 2 8 . 101 . 1609 . 0 3 4 1795 35 37 5 16 2 16 8 0 0 0 2 2 118 . 2 0 8 48 53 4 0 13 1 . 4 8 4 . 12 . 7 3 2 . 3 5 - . 0 9 8 . 159 . 0 4 4 1300 25 30 2 17 2 5 16 6 0 0 0 2 3 1 10 . 2 1 6 26 85 19 75 1 . 5 0 2 . 146 . 7 0 4 . 2 8 8 . 0 9 2 . 159 . 0 3 7 1025 34 34 9 14 5 3 7 7 5. 4 5 4 1 1 . 5 4 4 3 2 4 180 . 2 2 6 32 92 25 2 1 . 4 2 . 130 . 7 3 5 . 2 3 6 . 0 9 2 . 1745 . 0 4 2 8 8 5 34 44 3 1 1 3 8 6 6 5 1 44 1 . 8 1 3 85 3 0 5 2 5 139 . 2 2 6 32 89 25 39 1 . 429 . 142 . 5 6 7 . 3 6 2 . 0 6 7 . 175 . 0 4 2 1275 29 41 2 22 5 2 5 12 7 0 0 1 25 5 1 . 0 4 5 4 15 3 3 2 6 166 . 173 22 7 18 9 1 . 1 3 1 . 0 8 9 . 5 9 3 . 2 5 3 . 102 . 1626 . 0 4 5 1 190 22 33 7 8 5 2 2 0 1 0 0 9 28 2 1 . 0 7 5 4 0 5 3 25 2 7 132 . 175 13 7 1 1 3 1 . 199 . 0 9 8 . 5 4 8 . 2 5 . 106 . 1551 . 0 4 1835 42 38 7 10 5 2 5 2 0 a 0 0 0 2 8 130 . 171 22 81 17 41 1 . 2 5 9 . 0 9 8 . 8 1 7 . 3 4 6 . 1 1 . 1669 . 0 5 1 2435 3 0 33 1 1 1 5 2 5 20 1 0 0 9 36 1 1 . 0 2 4 2 3 45 2 9 198 . 169 25 1 18 02 1 . 2 6 . 0 9 8 . 7 8 9 . 194 . 0 9 1 . 1652 . 0 3 1 1685 36 39 3 9 3 2 0 3 0 0 0 2 10 165 . 148 28 4 19 2 1 . 136 . 0 7 5 . 7 9 . 195 . 103 . 1492 . 0 5 1830 34 43 1 9 2 5 2 0 2 0 0 1 35 2 1 . 1 7 3 7 2 9 2 11 182 . 167 3 0 89 23 29 1 . 3 4 6 . 102 . 7 4 8 . 3 6 1 . 1 1 1 . 1826 . 0 4 2 2 1 0 0 31 38 7 10 2 21 8 0 2 7 27 . 7 2 4 3 1 2 . 12 245 . 2 5 5 4 3 4 33 2 1 . 3 5 6 . 102 . 8 7 1 . 187 . 0 9 3 . 1863 . 0 7 1 1590 46 33 9 8 5 2 5 20 7 0 2 1 35 7 1 . 0 7 3 7 2 8 2 13 159 . 171 46 87 38 47 1 . 2 2 4 . 1 . 6 8 . 2 4 2 . 102 . 1372 . 0 5 5 1390 29 28 9 14 5 2 5 25 S 1 1 27 7 . 9 1 5 4 3 3 6 2 14 151 . 157 3 0 87 24 27 1 . 3 5 9 . 106 . 8 0 6 . 2 7 . 0 8 2 . 153 . 0 3 3 1500 27 30 6 14 2 15 9 0 0 0 2 15 106 . 191 33 06 27 26 1 . 3 3 6 . 0 9 5 . 7 0 8 . 186 . 1 1 . 1561 . 0 3 6 1570 29 29 1 19 2 5 17 4 0 0 0 2 16 145 . 173 44 6 3 35 83 1 . 2 7 8 . 0 9 4 . 7 7 . 198 . 0 9 2 . 1435 . 0 2 9 1645 33 33 1 12 2 5 21 8 0 0 0 2 17 112 . 151 22 52 18 82 1 . 2 7 1 . 0 9 1 . 6 8 2 . 178 . 0 9 . 1686 . 0 4 7 9 4 5 29 31 2 12 5 2 21 1 1 2 2 18 1 14 . 2 3 3 56 23 46 73 1 . 104 . 0 8 9 . 7 5 6 . 3 3 2 . 0 9 1 . 1701 . 0 4 5 2 8 8 0 27 28 9 10 2 16 a 0 1 1 3 1 231 . 2 7 6 54 65 44 0 6 1 . 3 6 7 . 103 . 6 4 2 . 2 7 7 . 0 8 8 . 1597 . 0 3 2595 2 0 26 8 1 1 3 16 2 21 35 35 46 7 . 8 5 5 3 75 2 9 3 2 145 . 2 1 8 27 42 19 77 1 . 4 7 3 . 133 . 704 . 22 t . 0 9 1 . 1685 . 0 3 1720 33 26 8 12 3 16 6 22 22 19 43 6 1 . 135 4 2 3 3 3 3 210 . 2 4 5 42 6 3 0 1 1 . 1 1 . 106 . 6 5 3 . 2 1 7 . 136 . 171 . 0 4 1 1530 25 30 6 6 5 2 5 18 1 18 35 35 45 3 . 84 1 3 6 2 7 3 4 1 15 . 2 0 2 23 85 19 15 1 . 177 . 122 . 6 9 3 . 2 6 7 . 148 . 1676 . 0 3 7 1640 22 35 6 13 5 2 5 1 1 4 35 35 35 49 4 . 6 0 5 3 6 2 65 3 5 180 . 2 3 2 26 59 2 0 84 1 . 0 3 . 0 9 6 . 4 5 8 . 2 3 1 . 122 . 140 . 0 3 2 2 3 0 24 28 1 6 2 5 1 1 4 35 9 30 46 8 . 6 8 9 3 6 2 75 3 6 210 .2 39 24 3 0 14 1 . 13 . 1 14 . 6 2 9 . 3 0 2 . 136 . 1714 . 0 4 7 1785 31 27 4 10 5 3 17 7 20 16 18 46 8 . 8 3 1 3 65 2 a 3 7 2 6 0 . 2 1 6 33 47 26 77 1 . 142 . 0 9 4 . 5 8 7 . 2 8 . 0 9 1 . 1775 . 0 3 5 2 0 7 0 25 24 9 8 5 2 5 13 9 35 35 35 48 2 . 4 9 C 3 7 2 85 3 8 2.15 . 2 2 6 51 27 39 27 1 . 2 4 5 . 1 . 5 2 2 . 3 4 6 . 1 16 . 187 1 . 0 5 1 2 0 5 5 31 27 3 10 2 5 15 9 21 35 19 45 . 6 6 8 3 8 3 3 9 100 . 191 27 41 2 0 71 1 . 16 . 0 9 . 5 9 . 3 7 2 . 0 7 8 . 1542 . 0 3 5 1345 2 7 28 1 8 5 3 15 6 20 18 18 46 3 . 884 3 8 2 9 3 10 188 . 185 41 a 35 1 . 364 . 0 9 6 . 6 5 3 . 3 3 1 . 106 . 184 . 0 2 6 1635 4 0 30 13 3 14 7 9 8 42 3 . 9 8 9 3 85 3 3 1 1 110 . 191 17 75 13 75 1 .4 . 155 . 6 1 2 . 2 4 7 . 0 9 . 1576 . 0 2 7 1510 41 54 3 1 1 3 8 4 35 35 35 49 6 . 3 5 5 3 7 2 75 3 12 1 IS . 2 2 7 3 0 1 21 4 1 . 3 0 9 . 108 . 643 . 2 3 4 . 0 8 8 . 1903 . 0 3 6 1510 29 29 9 13 3 10 7 29 35 35 49 . 6 5 8 3 8 2 9 3 13 155 . 2 0 9 22 67 16 0 7 1 . 6 1 3 . 124 . 6 9 3 . 3 2 7 . 0 8 1 . 19 . 0 3 8 3 3 0 0 31 4 0 2 14 5 2 5 9 6 35 35 22 46 9 . 6 9 6 3 7 2 8 3 14 156 . 185 18 17 14 37 1 . 4 4 7 . 139 . 5 4 . 3 4 . 0 8 3 . 1754 . 0 4 2 1820 27 41 2 14 5 2 1 1 4 35 35 35 48 4 . 5 0 8 3 7 2 9 3 15 170 . 2 2 7 22 59 17 59 1 . 297 . 1 1 . 6 4 7 . 237 . 103 . 1901 . 0 2 7 2 0 4 5 27 36 9 5 2 5 12 2 35 35 35 45 3 . 8 2 3 3 7 2 9 3 16 143 . 2 1 9 36 28 27 87 1 . 4 2 . 108 . 7 0 7 . 2 9 2 . 106 . 1832 . 0 4 3 2 0 0 8 28 37 3 16 a 2 5 14 5 12 6 2 1 43 7 . 8 5 3 3 9 3 3 17 111 . 189 26 0 8 21 13 1 . 2 4 3 . 126 . 7 6 5 . 2 7 7 . 0 9 3 . 2008 . 0 6 6 1300 32 36 4 13 5 2 31 6 14 17 2 1 43 3 1 . 2 6 5 3 6 2 8 3 18 250 . 2 4 47 52 37 77 1 . 4 4 3 . 124 . 5 8 6 . 3 2 6 . 0 8 3 . 1695 . 0 4 3 1635 31 35 6 19 5 3 13 8 25 21 35 45 6 . 255 3 7 2 9 3 19 199 . 134 4 0 25 33 55 1 . 1 15 . 0 8 8 . 5 2 4 . 4 3 1 . 0 9 6 . 1547 . 0 3 7 1365 25 31 a 13 3 14 9 18 15 24 48 3 511 4 0 5 3 2 a o OJ o rt 3 OJ TJ t—' fD rt (D O o «: rt tr o OJ > 3 OJ I-1 >< in M-01 OJ 3 a o w rt h-' O o APPENDIX 2.0 D e s c r i p t i o n of S o i l s W i t h i n the Stand S o i l p i t : 1 S o i l : Gleyed Humo-Ferric Podzol F l o o d p l a i n Horizon De ft h cm w i t h Orthihumimor on A l l u v i a l Des cr i pt i on L 6-5.5 C o n i f e r o u s n e e d l e s ; moist; non-compact matted; l o o s e ; a c e r o s e ; no v i s i b l e b i o t a ; abrupt, wavy boundary. Fq 5.5-5 M o i s t ; very dark g r a y i s h brown (1OYR 3/2 m); moderately t e n a c i o u s ; f i b r o u s ; p l e n t i f u l , f i n e r o o t s ; abundant, m y c o r r h i z a l root t i p s ; a b r upt, wavy boundary. Hd 5 - 0 M o i s t ; very dark gray (1OYR 3/1 m); t e n a c i o u s ; greasy; p l e n t i f u l , f i n e to medium r o o t s ; abundant, m y c o r r h i z a l root t i p s ; abrupt, wavy boundary. Ae 0-11 Brown (1OYR 5/3 m); sand; weak to moderate, co a r s e to very f i n e subangular b l o c k y ; f r i a b l e ; p l e n t i f u l , medium to very few, f i n e r o o t s ; 45% co a r s e fragments ( g r a v e l 40%, c o b b l e s 5%); abrupt, smooth boundary. Bhf 11-18 Very dark brown (1OYR 2/2 m); loamy sand; weak to moderate, medium to very f i n e subangular b l o c k y ; f r i a b l e ; p l e n t i f u l , medium to very few, f i n e r o o t s ; 45% coarse fragments ( g r a v e l 40%, c o b b l e s 5%); c l e a r , wavy boundary. B f g j 18-80 Brownish y e l l o w (1OYR 6/6 m); loamy sand; common, c o a r s e , d i s t i n c t s t r o n g brown (7.5YR 5/8 m) m o t t l e s ; weak to moderate, f i n e t o very f i n e subangular b l o c k y ; very f r i a b l e ; few, c o a r s e t o very few, medium r o o t s ; 45% co a r s e fragments ( g r a v e l 40%, c o b b l e s 5%); g r a d u a l , wavy boundary. BCg 80-85+ L i g h t brownish gray (2.5Y 6/2 m); sand; common, medium, prominent r e d d i s h y e l l o w (7.5YR 6/8 m) m o t t l e s ; c l e a r , wavy boundary. 55 S o i l p i t : 9 S o i l : O r t h i c Humo-Ferric Podzol with Orthihumimor on G l a c i a l t i l l Horizon Depth Description cm L 9.5-9 C o n i f e r o u s needles and deciduous shrub l e a v e s ; moist; non-compact matted; l o o s e ; acerose; no v i s i b l e b i o t a ; abrupt, wavy boundary. Fq 9 - 8 M o i s t ; very dark brown (7.5YR 2/2 m); moderately t e n a c i o u s ; f i b r o u s ; abundant, f i n e to medium r o o t s ; abundant, white m y c e l i a ; abrupt, wavy boundary. Hd 8 - 0 M o i s t ; very dark gray (1OYR 3/1 m); massive, p l i a b l e ; greasy; abundant, f i n e to medium r o o t s ; common, m y c o r r h i z a l root t i p s ; abrupt, wavy boundary. Ae 0 - 5 L i g h t brownish gray (1OYR 6/2 m); sand; weak, f i n e subangular b l o c k y ; f r i a b l e ; p l e n t i f u l , medium r o o t s ; 10% coarse fragments ( g r a v e l ) ; abrupt, smooth boundary. Bhf 5 -13 Dark r e d d i s h brown (5YR 3/2 m); sand; weak, medium to f i n e subangular b l o c k y ; f r i a b l e ; p l e n t i f u l , medium r o o t s ; 65% co a r s e fragments ( g r a v e l 35%, cobb l e s 20%, stones 10%); c l e a r , wavy boundary. Bf 13-85 Y e l l o w i s h red (5YR 5/8 m); sand; weak to moderate, c o a r s e to f i n e subangular b l o c k y ; f r i a b l e ; few, medium r o o t s ; 65% co a r s e fragments ( g r a v e l 35%, cobb l e s 20%, stones 10%); g r a d u a l , i r r e g u l a r boundary. BC 85-90+ L i g h t y e l l o w i s h brown (2.5Y 6/4 m); sand; very f i r m ; 65% c o a r s e fragments; g r a d u a l , wavy boundary. S o i l p i t : 5 S o i l : O r t h i c Humo-Ferric Podzol with t h i n f o r e s t f l o o r on G l a c i a l t i l l Hori zon Dept h cm Des cr i pt i on L-H 2 - 0 Black (10YR 2/1 m); very t h i n LF l a y e r w i t h i n a c a r p e t of moss, c o n i f e r o u s , and deciduous shrub l i t t e r (0.5 cm), u n d e r l a i n by a t h i n (1-1.5 cm) H h o r i z o n w i t h some m i n e r a l p a r t i c l e s mixed i n ; f r i a b l e ; few, f i n e and medium r o o t s ; abrupt, wavy boundary. 56 Ae 0 - 5 G r a y i s h brown (1OYR 5/2 m); sand; weak, f i n e subangular b l o c k y ; f r i a b l e ; common, f i n e r o o t s ; 5% coarse fragments ( g r a v e l ) ; abrupt, wavy boundary. Bh 5 - 6 Dark r e d d i s h brown (5YR 2.5/2 m); sand; . weak, f i n e subangular b l o c k y ; f r i a b l e ; common, f i n e r o o t s ; 5% co a r s e fragments ( g r a v e l ) ; abrupt, wavy boundary. Bf1 6 -70 Strong brown (7.5YR 5/8 m); sand; weak, co a r s e to f i n e subangular b l o c k y ; f r i a b l e ; few, medium to f i n e r o o t s ; 65% coarse fragments ( g r a v e l 40%, co b b l e s 20%, stones 5%); c l e a r , wavy boundary. Bf2 70-90+ Brown (7.5YR 4/4 m); sand; moderate, coarse t o medium subangular b l o c k y ; f i r m ; very few, f i n e r o o t s ; 65% coarse, fragments ( g r a v e l 40%, c o b b l e s 20%, stones 5%); d i f f u s e , i r r e g u l a r boundary. S o i l p i t : 7 S o i l : Gleyed Humo-Ferric Podzol with t h i n f o r e s t f l o o r (Amphivelomoder) on G l a c i a l t i l l Horizon Depth Description cm L-H 2 - 0 Black (10YR 2/1 m); c o n i f e r o u s and deciduous shrub l i t t e r (0.5 cm) w i t h i n a l a y e r of moss growing down i n t o the m i n e r a l s o i l s u r f a c e , u n d e r l a i n by a moderately t e n a c i o u s F h o r i z o n (1 cm) and a moderately t e n a c i o u s H h o r i z o n (0.5 cm) wit h common wh i t e ' m y c e l i a ; few, f i n e and medium r o o t s ; abrupt, wavy boundary. Ah 0 - 4 Dark brown (1OYR 3/3 m); sand; weak to moderate, medium to very f i n e subangular b l o c k y ; f r i a b l e ; abundant, medium to f i n e r o o t s ; 45% co a r s e fragments; abrupt, wavy boundary. Bf 4 -27 Strong brown (7.5YR 5/8 m); sand; weak to moderate, medium to very f i n e subangular b l o c k y ; f r i a b l e ; p l e n t i f u l , medium to few, f i n e r o o t s ; • 45% c o a r s e fragments ( g r a v e l 40%, c o b b l e s 5%); abrupt, wavy boundary. B f g j 27-80+ Brownish y e l l o w (1OYR 6/6 m); sand; common, medium, d i s t i n c t , s t r o n g brown (7.5YR 5/8 m) m o t t l e s ; weak to moderate, c o a r s e to very f i n e subangular b l o c k y ; f r i a b l e ; few, medium to f i n e r o o t s ; 45% co a r s e fragments ( g r a v e l 35%, c o b b l e s 5%, stones 5%); c l e a r , wavy boundary. 57 S o i l p i t : 2 S o i l : Gleyed Humo-Ferric Podzol with Lignohumimor on G l a c i a l t i l l Horizon Depth Description cm L 32-31 Heterogeneous mixture of c o n i f e r o u s n e e d l e s , deciduous and herbaceous l e a v e s ; moist; non-compact matted; l o o s e ; l e a f y ; few, mites and i n s e c t s ; abrupt, wavy boundary. Fq 31-30 M o i s t ; non-compact matted; f r i a b l e ; l e a f y -f i b r o u s ; p l e n t i f u l , f i n e r o o t s ; few, mites and i n s e c t s ; common, white m y c e l i a ; abrupt, wavy boundary. Hr 30- 5 M o i s t , red (2.5YR 4/8 m); s i n g l e p a r t i c l e ; f r i a b l e ; s l i g h t l y greasy; p l e n t i f u l , f i n e to medium r o o t s ; no v i s i b l e b i o t a ; abrupt, wavy boundary. Hd 5 - 0 M o i s t ; very dusky red (10R 2.5/2 m); massive, p l i a b l e ; greasy; p l e n t i f u l , f i n e to medium r o o t s ; abrupt, wavy boundary. Ae 0 - 6 G r a y i s h brown (1OYR 5/2 m); sand; weak, f i n e subangular b l o c k y ; very f r i a b l e ; few, medium to very few, f i n e r o o t s ; 60% co a r s e fragments ( g r a v e l 40%, c o b b l e s 20%); abrupt, wavy boundary. Bhf 6 -12 Dark r e d d i s h brown (5YR 3/2 m); sand; weak to moderate, medium to f i n e subangular b l o c k y ; f r i a b l e ; few, f i n e r o o t s ; 60% co a r s e fragments ( g r a v e l 40%, c o b b l e s 20%); abrupt, wavy boundary. Bf 12-48 Strong brown (7.5YR 5/6 m); sand; weak to moderate, c o a r s e to medium subangular b l o c k y ; f r i a b l e ; v ery few, f i n e r o o t s ; 60% coarse fragments ( g r a v e l 40%, c o b b l e s 20%); c l e a r , wavy boundary. B f g j 48-80+ Y e l l o w i s h brown (10YR 5/4 m); sand; weak, medium to f i n e subangular b l o c k y ; f r i a b l e ; very few, f i n e r o o t s ; 60% co a r s e fragments; c l e a r , wavy boundary. 58 S o i l p i t : 8 S o i l : O r t h i c Humo-Ferric Podzol with Lignohumimor on G l a c i a l t i l l Horizon Depth Description cm L 20.5-20 C o n i f e r o u s needles; moist; non-compact matted; l o o s e ; a c e r o s e ; no v i s i b l e b i o t a ; abrupt, wavy boundary. Fq 20-18 M o i s t ; black (7.5YR 2/2 m); moderately t e n a c i o u s ; f i b r o u s - l i g n e o u s ; p l e n t i f u l , medium to coarse r o o t s ; few, mites and s p r i n g t a i l s ; few, m y c e l i a ; abrupt, wavy boundary. Hr 18- 5 M o i s t , dark red (2.5YR 3/6 m); f r i a b l e ; l i g n e o u s - f e l t y ; p l e n t i f u l , medium to coarse r o o t s ; - common, y e l l o w m y c e l i a a s s o c i a t e d with m y c o r r h i z a l root t i p s ; abrupt, wavy boundary. Hd 5 - 0 M o i s t ; very dark gray (1OYR 3/1 m); massive, p l i a b l e ; greasy; few, f i n e r o o t s ; abrupt, wavy boundary. Ae 0 - 8 G r a y i s h brown (1OYR 5/2 m); sand; weak, medium to f i n e subangular b l o c k y ; f r i a b l e ; very few, medium to f i n e r o o t s ; 5% c o a r s e fragments ( g r a v e l ) ; abrupt, wavy boundary. Bh 8-10 Dark r e d d i s h brown (5YR 2.5/2 m); sand; weak, medium to f i n e subangular b l o c k y ; f r i a b l e ; few, medium to very few, f i n e r o o t s ; 5% co a r s e fragments ( g r a v e l ) ; abrupt, wavy boundary. Bf1 10-85 Strong brown (7.5YR 5/8 m); sand; weak to moderate, coarse t o f i n e subangular blocky;. f r i a b l e ; few, medium to very few, f i n e r o o t s ; 40% c o a r s e fragments ( g r a v e l 25%, c o b b l e s 15%); c l e a r , wavy boundary. Bf2 85-95+ Brownish y e l l o w (1OYR 6/8 m); sand; weak to moderate, coarse t o medium subangular b l o c k y ; f i r m ; very few, f i n e r o o t s ; 40% c o a r s e fragments; g r a d u a l , wavy boundary. 59 APPENDIX 2.1 Re p r e s e n t a t i v e S i t e , F o r e s t F l o o r , and Mi n e r a l S o i l P r o p e r t i e s of the S t r a t a Forest f l o o r Orthihumimor • t h i n Lignohumimor S o i l p i t 1 4 9 5 6 7 2 8 3 S i t e d e s c r i p t i o n e l e v a t i o n a.s.l.(m) 213 224 222 227 227 216 215 225 223 slope (%) 7 10- 10 15 15 15 6 5 8 aspect (°) 110 110 100 96 100 1 12 110 110 100 s o i l moisture 5.0 4.6 4.5 3.8 3.8 4.8 4.8 4.0 4.5 Forest f l o o r depth (cm) 6.2 13.7 10.3 3.0 2.3 1.0 20.7 19.7 14.6 C/N 27.7 39.9 33.3 30.2 32.7 - 61 .3 76.5 57.8 pH H20 3.9 3.9 3.8 3.5 3.6 - 3.9 3.0 3.4 CaC12 • 3.0 3.2 3.0 2.7 2.8 - 3.6 2.6 2.9 Mineral s o i l (0-20cm) texture S S S S S S S S S % gravel 40 25 35 40 15 40 40 25 40 cobbles 5 15 20 20 5 5 23 15 15 stones 0 0 10 5 5 0 7 0 5 rooting depth (cm) 80 85 90 80 80 80 90 80 80 C/N 22.6 23.4 22.3 24.8 22. 1 21.6 18.9 26.8 22.5 pH H20 4.7 4.5 4.4 4.5 4.5 4.7 4.2 4.4 4.4 CaC12 3.9 3.8 3.7 3.8 3.9 4.1 3.5 3.6 3.7 CEC (NaCl) 14.09 14.96 20.26 17.13 15.48 17.48 15.30 16.17 19.8: Ca meq/100 g 0.25 0.43 0.00 0.00 0.09 0.48 .0.66 0.00 0.9! Mg 0.08 0.12 0.12 0.06 0.07 0.09 0.20 0.03 0.11 K 0.05 0.05 0.11 0.04 0.07 0.20 0.11 0.05 o. r A l 2.29 3.09 5.00 2.84 2.95 2.13 3.35 4.09 2.81 60 APPENDIX 3.0 Data and C a l c u l a t i o n s used to Produce Common S c a l e G r a p h i c a l Summary of T e r m i n a l Growth and F o l i a g e V a r i a b l e Means and 95 Percent C o n f i d e n c e L i m i t s . means ( x ) , by f o r e s t E loor s t r a t a (% of sum) c 1 5 sum X s/y c s t r a t a 1 2 3 sum 1 2 3 \ 1 2 3 N % 1 .374 1.318 1 .289 3.983 34. 5 33 . 1 32 .4 3 . 10 3 . 47 3. 92 P % • 105 . 104 .112 .3216 32. 7 32 .3 34 .8 3 . 43 5. 91 5. 60 K % • 660 .717 .624 1 .997 33 . 0 35 .9 31 .2 4. 39 4. 56 3. 81 Ca % • 322 .262 .292 .879 36. 6 29 .8 33 .2 5 . 1 2 7. 51 6. 47 Mg % • 1 12 .096 . 1 02 .3105 36. 1 30 .9 32 .8 6. 46 3 . 55 6. 76 S % • 168 . 162 .173 .504 33. 3 32 . 1 34 .3 4. 76 2. 57 3. 16 A l % • 036 .043 .038 .117 30. 8 36 .7 32 .5 7. 70 8. 55 8. 55 Mn ppm 1813 1 604 1847 5274 34. 4 30 .4 35 .0 9 . 39 9. 67 9. 20 Fe ppm 33.8 31.8 2 8 . 9 9 4 . 5 35. 8 33 .6 30 .6 5 . 87 6. 1 1 5. 72 AFe ppm 33 .3 35 .0 33 . 1 101.3 32. 9 34 . 5 32 .7 3 . 98 4. 90 7. 00 Zn ppm 13.3 12.8 11.8 37 .9 35. 1 33 .8 31 . 1 7 . 72 10 .3 8-. 86 Cu ppm 3 . 125 2.417 2.684 8.263 37 . 8 29 .2 32 .5 5 . 52 4. 26 4. 1 3 B ppm 16.7 18.0 14.6 49 .3 33 . 9 36 .5 29 .6 6 . 85 9. 23 9. 97 N/P 13.3 12.8 11.6 33 .7 35. 3 33 .9 30 .8 5. 75 3 . 93 3. 85 P/AI 3 .042 2.547 3 . 124 8.74 34. 8 29 . 1 35 .7 7. 97 8 . 21 10 .5 K/Ca 2 .079 2.929 2.221 7.18' 29. 0 40 .8 30 .9 4. 90 12 .6 7. 54 Ca/Mg 2 .937 2.769 3 .002 8.72 33. 7 31 .7 34 .4 5 . 53 10 .2 10 .4 N/S 8 .329 8 . 144 7.462 23.94 34. 8 34 .0 31 .2 5 . 39 4. 01 3. 65 Tgrowth 1 93 .7 147.9 171.7 515.8 37. 7 28 .8 33 .4 9. 58 7. 23 9. 65 1OOnwt .181 . 186 .21 1 .578 31 . 3 32 .3 36 .5 5 . 35 5. 89 5. 18 100 x x/sum means and 95 % c o n f i d e n c e l i m i t s Sx = s/(n) . 5 x+/-t . 0 5 ( 2 ) , v S x * n = 20 n = 18 n = 19 v = 1 9 v = 17 v= 1 8 1 2 3 1 2 3 N 0 .69 0 .82 0 .90 34 .5+/-1 .44 33. 1+/-1.73 32. 4 + / - 1 .89 P 0 .77 1 .39 1 .28 32 .7+/-1 .61 32. 3+/ -2 .93 34. 8+/-2 .69 K 0 .98 1 .07 0 .87 33 .0+/-2 .05 35. 9+/ -2 .26 31 . 2+/-1 .83 Ca 1 . 1 4 1 .77 1 .48 36 .6+/-2 .39 29 . 8+/ -3 .73 33 . 2 + / - 3 . 1 1 Mg 1 .44 0 .84 1 .55 36 .1+/-3 .01 30. 9+/ -1 .77 32. 8+/-3 .26 S 1 .06 0 .60 0 .72 33 .3+/-2 .22 32. 1+/-1.27 34. 3+/-1 .51 A l 1 .72 2 .01 1 .96 30 .8+/-3 .60 36 . 7+/ -4 .24 32. 5+/-4 .12 Mn 2 .10 2 .28 2 . 1 1 34 .4+/-4 .39 30. 4+/-4.81 35 . 0+/-4 .43 Fe 1 .31 1 .44 1 .31 35 .8+/-2 .74 33. 6+/ -3 .04 30 . 6+/-2 .75 AFe 0 .89 1 .15 1 .61 32 .9+/-1 .86 34. 5+/ -2 .43 32. 7+/-3 .38 Zn 1 .73 2 .44 2 .03 35 .1+/-3 .62 33. 8+/ -5 .15 31 . 1+/-4 .26 Cu 1 .23 1 .00 0 .95 37 .8+/-2 .57 29 . 2+/-2.11 32. 5+/-2 .00 B 1 .53 2 . 17 2 .29 33 .9+/-3 .20 36 . 5+/ -4 .58 2 9 . 6+/-4 .81 N/P 1 .28 0 .92 0 .88 35 .3+/-2 .68 33 . 9+/ -1 .94 30 . 8+/-1 .85 P/AI 1 .78 1 .93 2 .40 34 .8+/-3 .72 29 . 1+/-4.07 35 . 7+/~5 .04 K/Ca 1 .10 2 .96 1 .73 29 .0+/-2 .30 40 . 8+/ -6 .24 30 . 9 + / - 3 .63 Ca/Mg 1 .24 2 .41 2 .38 33 .7+/-2 .59 31 . 7+/ -5 .08 34. 4+/-5 .00 N/S 1 .20 0 .94 0 .84 34 .8+/-2 .51 34. 0+/ -1 .98 31 . 2 + / - 1 .76 Tgrowth 2 .14 1 .70 2 .21 37 .7+/-4 .48 28 . 8+/ -3 .59 33. 4+/-4 .64 1OOnwt 1 .20 1 .39 1 .19 31 .3+/-2 .51 32. 2+/ -2 .93 36 . 5+/-2 .50 *Zar ( 1974 p p . 9 2 - 9 7 , 4 1 3) 61 APPENDIX 3.1 Computer Program used to Prepare Graphs of Means and 95 Percent Confidence L i m i t s using the Data from the Last Three Columns of Appendix 3.0 1 C SRUN *FTN SCARDS=GRAPH.S - compiles t h i s program 2 C SRUN -LOAD+*DISSPLA 5=%T - runs program with DISSPLA routines 3 C $RUN PLOT:Q PAR=-PLOT# DELIVERY=FOR. - p l o t s on plot paper 4 REAL*8 XLAB(22)/22*' '/ 5 REAL*4 Y(21,3),SD(21,3),X(21,3) 6 INTEGER*4 IPKRAY(54) 7 NY = ,1 8 10 READ(5,20,END=100)XLAB(NY+1),(Y(NY,I),SD(NY,I),1=1,3) 9 20 FORMAT(A7,2F6.2,F7.1,F7.2,F8.2,F6.2) 10 X(NY,1)=FLOAT(NY+1)-0.25 11 X(NY,2)=FL0AT(NY+1 ) 12 X(NY,3)=FL0AT(NY+1)+0.25 13 NY=NY+1 14 GOTO 10 15 100 NY=NY-1 16 CALL DSPDEV('PLOT') 17 CALL PAGE(FLOAT(NY)+6.5,9.) 18 CALL PHYSOR(1.,1.). 19 CALL TITLE(' ',0, ' ' , 1 , 20 * 'PERCENT OF TOTAL',16,FLOAT(NY+2),6.) 21 CALL XLABGR(XLAB,2,NY+2,20.,5.,50.) 22 DO 1 10 1 = 1 ,'3 23 CALL CURVE(X(1,1),Y(1,1),NY,-1) 24 110 CONTINUE 25 DO 120 1=1,NY ' 26 DO 120 J=1,3 27 CALL RLVEC(X(I , J ),Y(I,J)-SD(I , J ),X(I,J),Y(I,J)+SD(I,J),2102) 28 120 CONTINUE 29 CALL HEADIN ( ' MEANS WITH 9'5 PERCENT' ,21 ,2,2) 30 CALL HEADIN('CONFIDENCE LIMITS',17,2,2) 31 CALL DASH 32 CALL GRID(0,1) 33 MAXLIN=LINEST(IPKRAY,54,19) 34 CALL LINES('ORTHIHUMIMOR N=20$',IPKRAY,1) 35 CALL LINESCTHIN FLOOR N=18$',IPKRAY,2) 36 CALL LINES('LIGNOHUMIMOR N=19S',IPKRAY,3) 37 CALL LEGEND(IPKRAY,3,FLOAT(NY+3),0.) 38 CALL DONEPL 39 STOP 40 END 62 APPENDIX 4.0 Simple L i n e a r C o r r e l a t i o n C o e f f i c i e n t M a t r i c e s F o r e s t F l o o r Stratum 1 I I I ! I 1 I m i . M 11 i I 1 I ! ! I It i n n I n 11 i § 1111111111 i 1 1111 1 § 1111 1 I n i § ! 11 I I n M s § M H 11 n ii I 1 I I I I I I I I I ! i I ! 1 ! I ! I I - H I i I I I I ! I s m m s m m n I I I I i I 1 1 E I I I I I I I , 7 ? I a I i ! 1 I 1 i I I I I I I I £ I 5 * 8 ! I 8 2 g 63 1 I ! § I I 1 M S M • I I 1 I 1 I | I 5 I I I 1 I I 1 I I I M I M I i M H 11 i i 111 1 n 111 1 i 1 I I 1 I I § = i i 11 n 111 I I E § I I I I s ! i I 1 hlhnihSiHil 64 CORRELATION MATRIX <3> F0RFL:3 CORRELATION MATRICES BV FOREST FLOOR STRATA N- 19 OF- 17 R* OSOO' .4555 R« .0100- .5751 U1 VARIABLE 3 TOR 1.0000 22 LNTQB .9917 1.0000 3 NVT100 .3473 .3339 1.0000 4 NPCT -.1646 -.1371 . 1209 1 0000 5 PPCT -.3BB« -.3915 -.0341 .9539 1.0000 S KPCT - 3910 -.3929 .0940 .4019 .3403 1 oooo 7 CAPCT . 1532 . 1452 -.6020 .0141 -.3242 -.3445 1.0000 • MGPCT . 10B6 . 1416 .0930 -.5664 -.1596 .0075 -.2892 1.0000 « SPCT -.0987 -.0945 .0322 .3940 . 1475 .5903 -.0742 -.1063 1.0000 10 ALPCT -.0257 -.0453 -.1195 -.1070 .0951 .3194 .2106 1083 .4659 1.0000 11 HNPPM .2954 .3266 .4332 .4061 -.0255 - .OOBI - .0595 -. 1147 . 1049 - . 1907 1.0000 11 FEPPM -.2359 -.2304 - 3170 .4291 .4461 .2041 .0159 -.2193 .2939 - 0213 -.3157 1 0000 13 AFEPPM -.4593 - 4463 -.3796 .4763 .7522 . 1714 -.0351 -.3092 .0999 - .0146 -.0241 4323 1 .OOOO 14 ZNPPM -.0919 -.0900 -.1675 6653 .3987 .3395 3293 -.3369 .3551 .2646 -.0075 .2417 .3859 t OOOO 15 CUPPM . 1299 . 1032 .0367 .0361 -.1953 - .0927 . 1099 -.1293 -.4141 -.5218 - . 1591 .2374 - . 2105 .0164 1 .OOOO 16 BPPM .0046 -.0174 -.0492 -.3492 -.0973 .4016 .0159 .0659 .3140 .7200 -.3431 -.0081 - .2863 - 0273 -.3883 1 OOOO 17 NP .3773 .2992 .0943 .3340 -.6433 - .0504 .4464 -.3769 . 1570 -.2584 .3495 -.0661 -.4037 . 1496 .3964 -.1336 1.0000 IB PAL -.2717 -.2537 .0471 .4393 .5757 .0930 -.4193 - 1905 -.3414 -.7245 0764 .4202 .5257 -.0315 .3081 -.5393 -.2303 1 OOOO 19 KCA -.3149 -.3059 .4209 1442 .3771 .7145 -.6747 .2103 .2962 -.0716 -.0533 .0658 .0811 - . 1109 - .0767 . 1990 -.3562 .3506 t OOOO 20 CAMQ .0044 -.0244 - .4391 .3112 -.1123 -.3342 .6293 -.7495 -.0450 .0745 .0249 .0695 . 1086 .3915 1 . 1274 -.0496 .4696 -.1916 -.7020 31 NS - . 1099 - 0953 . 1092 .7263 .5099 -.0119 .0499 -.5158 -.3422 -.4457 3086 .2435 .4350 .4095 .3379 -.4576 .0973 .6361 -.0535 3. TGR 22 LNTGR 3. NWT 100 4 . NPCT 5. PPCT 6. KPCT 7. CAPCT 9. MGPCT 9. SPCT 10. ALPCT 11. KNPPN 12. FEPPM 13. AFEPPM 14. ZNPPM 15. CUPPM 16. BPPM IT. NP IB. PAL 19. KCA I OOOO .3439 31. NS 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0096124/manifest

Comment

Related Items