UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Nitrogen and phosphorus retranslocation from needles of douglas-fir growing on three site-types Parkinson, Joy Anne 1983

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1984_A6_7 P37.pdf [ 11.36MB ]
Metadata
JSON: 831-1.0096114.json
JSON-LD: 831-1.0096114-ld.json
RDF/XML (Pretty): 831-1.0096114-rdf.xml
RDF/JSON: 831-1.0096114-rdf.json
Turtle: 831-1.0096114-turtle.txt
N-Triples: 831-1.0096114-rdf-ntriples.txt
Original Record: 831-1.0096114-source.json
Full Text
831-1.0096114-fulltext.txt
Citation
831-1.0096114.ris

Full Text

NITROGEN AND PHOSPHORUS RETRANSLOCATION FROM NEEDLES OF DOUGLAS-FIR GROWING ON THREE SITE-TYPES by JOY ANNE PARKINSON B.Sc. , The University of B r i t i s h Columbia, 1975 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n THE FACULTY OF GRADUATE STUDIES (Department of Forestry) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 1983 ©Joy Anne Parkinson, 1983 I n p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f t h e r e q u i r e m e n t s f o r an a d v a n c e d d e g r e e a t t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a , I a g r e e t h a t t h e L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r a g r e e t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y p u r p o s e s may be g r a n t e d by t h e h e a d o f my d e p a r t m e n t o r by h i s o r h e r r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l n o t be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . D e p a r t m e n t o f , A The U n i v e r s i t y o f B r i t i s h C o l u m b i a 2075 Wesbrook P l a c e V a n c o u v e r , Canada V6T 1W5 ABSTRACT Nitrogen and phosphorus retranslocation from needles of Douglas-f i r growing on x e r i c , mesic and hygric s i t e s of the d r i e r subzone of the Coastal Western Hemlock Zone (Krajina, 1969) was estimated by comparing the content i n current needles and i n needle l i t t e r . Linear r e l a t i o n s h i p s between nutrient content i n current needles and the amount retranslocated (absolute loss) were found to be s i t e - s p e c i f i c and analysis of covariance was used to correct absolute loss for between-site differences i n the content of current needles. The absolute loss of nitrogen was s i g n i f i c a n t l y higher (p=.05 for a l l tes t s ) on the mesic s i t e s than on the hygric or x e r i c s i t e s . Phosphorus retranslocation was s i g n i f i c a n t l y d i f f e r e n t between the three site-types with the hygric having the highest and the x e r i c the lowest absolute l o s s . The differences may be explained by the balance between a v a i l a b i l i t y and demand for nitrogen and phosphorus on the respective s i t e s . Several other possible reasons for the low retranslocation rates on x e r i c s i t e s are discussed. No s i g n i f i c a n t difference i n needle nitrogen concentration was found between s i t e s . Phosphorus content was lower i n needles on the hygric s i t e s than on the x e r i c or mesic, but for P concentration, an i n t e r a c t i o n between crown l e v e l , hygrotope and needle age prevented s t a t i s t i c a l a n a l y sis. For both elements, the i n t e r a c t i o n between crown l e v e l and needle age indicated that changes i n nutrient content and concentration with needle age d i f f e r e d between crown l e v e l s . i i i The l i t e r a t u r e contains a number of variations on the techniques used to evaluate i n t e r n a l c y c l i n g and, therefore, c a r e f u l d e f i n i t i o n of terms i s suggested when comparing between studies. i v TABLE OF CONTENTS Page ABSTRACT i i TABLE OF CONTENTS i v LIST OF TABLES v i LIST OF FIGURES v i i LIST OF APPENDICES v i i i I. INTRODUCTION 1 I I . LITERATURE REVIEW 6 a) Measurement of Internal Cycling 6 i ) Factors in f l u e n c i n g i n t e r n a l c y c l i n g 9 i i ) Components of i n t e r n a l c y c l i n g 9 i i i ) Nutrient budget analysis 12 i v ) Changes i n i n d i v i d u a l l e a f content 19 v) A p p l i c a t i o n and comparison of methods 23 c) Role of Internal Cycling i n Nutrient Conservation .... 25 i ) Annual cycles 26 i i ) Post disturbance 28 i i i ) R e d i s t r i b u t i o n and s i t e differences 30 I I I . SITE DESCRIPTIONS 34 a) Xeric Plots 36 b) Mesic Plots 36 c) Hygric Plots 37 V Page IV. METHODS 3 9 a) F i e l d 3 9 b) Laboratory 4 0 c) S t a t i s t i c a l 4 0 V. RESULTS AND.DISCUSSION 4 4 a) F o l i a r Nutrients 4 4 i ) Needle Retention 4 4 i i ) Nitrogen 4 5 i i i ) Phosphorus 5 2 b) Internal Cycling 5 9 i ) Nitrogen 5 9 i i ) Phosphorus 68 VI. SUMMARY AND CONCLUSIONS 76 a) Comparisons Between Three Biogeocenoses 76 b) Measurement of Internal Cycling 78 c) Relationship of Internal Cycling to Site 78 REFERENCES 81 APPENDICES 87 v i LIST OF TABLES Page TABLE I Methods of assessing f o l i a r nutrient r e d i s t r i b u t i o n 7 TABLE II Sources of v a r i a b i l i t y i n i n t e r n a l c y c l i n g 10 TABLE III Sampling times and methods of expressing i n t e r n a l c y c l i n g from nutrient budgets 16 TABLE IV Times of sampling and methods of expressing i n t e r n a l c y c l i n g on a per le a f basis 22 TABLE V Needle retention by hygrotope and crown l e v e l 44 TABLE VI V a r i a t i o n i n three f o l i a r nitrogen parameters with hygrotope, crown l e v e l and needle age 46 TABLE VII N d i s t r i b u t i o n within tree crowns 49 TABLE VIII V a r i a t i o n i n three f o l i a r phosphorus parameters with hygrotope, crown l e v e l and needle age 53 TABLE IX P d i s t r i b u t i o n within tree crowns 58 TABLE X E f f i c i e n c y of i n t e r n a l c y c l i n g : comparison with other studies 62 TABLE XI Mean absolute loss of nitrogen adjusted f o r differences i n content of current needles 63 TABLE XII Mean absolute loss of phosphorus adjusted f o r differences i n content of current needles 71 v i i LIST OF FIGURES Page F i g . 1 Topographic sequence of ecosystems i n the Coastal Western Hemlock Biogeoclimatic Zone ( d r i e r subzone) of B.C 4 F i g . 2 Fluxes a f f e c t i n g f o l i a r nutrient content 13 F i g . 3 Location of the study plots i n the U.B.C. Research Forest, Maple Ridge, B.C 35 F i g . 4 Interaction between needle age and crown l e v e l f o r f o l i a r N concentration 47 F i g . 5 Interaction between needle age and crown l e v e l for f o l i a r N content 48 F i g . 6 Interaction between crown l e v e l , needle age and hygrotope for P concentration 55 F i g . 7 Interaction between needle age and crown l e v e l for f o l i a r P content 57 F i g . 8 Relationship between absolute l o s s of N and N content i n current needles f or trees growing on x e r i c , mesic and hygric s i t e s 60 F i g . 9 Relationship between absolute l o s s of P and P content i n current needles f or trees growing on x e r i c , mesic and hygric s i t e s 69 v i i i LIST OF APPENDICES Page APPENDIX 1 Species l i s t 87 APPENDIX 2 S i t e descriptions 89 APPENDIX 3 Description of sample trees 99 APPENDIX 4 F o l i a r data (May, 1981) 100 APPENDIX 5 F o l i a r data (November, 1981) 104 APPENDIX 6 ANOVA r e s u l t s f o r f o l i a r nutrients I l l 1 I. INTRODUCTION In order to supply i t s annual requirements, a plant may draw on two major nutrient sources: external and i n t e r n a l . External sources include uptake from the s o i l and/or the atmosphere while i n t e r n a l ones involve r e t r a n s l o c a t i o n of nutrients from older tissues (Turner, 1977). For some nutrients, the l a t t e r source has an important r o l e i n mini-mizing the e f f e c t s of f l u c t u a t i o n s i n s o i l nutrient a v a i l a b i l i t y , e s p e c i a l l y i n evergreen species (Ryan & Bormann, 1982; Moore, 1980). When elements are r e a d i l y a v a i l a b l e , they are accumulated i n older leaves and therefore are not susceptible to loss from the ecosystem by leaching and streamflow. This reserve can be remobilized to a c t i v e l y growing tissue when uptake from the s o i l i s reduced. The e f f e c t of differences i n s i t e nutrient status on the long term balance between uptake and r e t r a n s l o c a t i o n i s less well defined than the short term f l u c t u a t i o n s . However, the importance of i n t e r n a l transfers i n supplying a portion of annual stand requirements has been noted i n several forest ecosystems. For Douglas-fir (Pseudotsuga  menziesii (Mirb.) Franco), Turner (1975) estimated that i n a 49-year-old stand, 40% of the N, 50% of the P and 14% of the K required for new growth came from older t i s s u e s . The importance of t h i s process on nutrient-poor s i t e s , and i t s reduction i n trees to which f e r t i l i z e r has been applied, has led to the hypothesis that r e t r a n s l o c a t i o n of nutrients w i l l be greater on s i t e s low i n a v a i l a b l e nutrients than on more f e r t i l e s i t e s (Gosz, 1981). This r e l a t i o n s h i p has not yet been c l e a r l y demonstrated experimentally, perhaps because the factors in f l u e n c i n g nutrient r e t r a n s l o c a t i o n are inadequately understood. 2 The movement of nutrients through ecosystems has been described as a p o l y c y c l i c process. The three cycles described by Switzer and Nelson (1972) are the geochemical, the biogeochemical and the biochemical. Geochemical cy c l i n g involves the import of nutrients from outside the ecosystem by such vectors as r a i n f a l l , weathering or animals, and export from the system, usually through streamflow, deep leaching and forest harvesting. The biogeochemical cycle encompasses the s o i l - p l a n t r e l a t i o n s h i p s whereby minerals are extracted from the s o i l by plants and then returned through crown wash, l i t t e r f a l l and decomposition. As t h i s cycle involves no transfers outside of the ecosystem, i t has some-times been referred to as i n t e r n a l c y c l i n g . However, th i s paper w i l l use the term i n t e r n a l c y c l i n g only as a synonym f o r biochemical c y c l i n g : the r e t r a n s l o c a t i o n of nutrients within trees (Switzer & Nelson, 1972). Most discussions of t h i s cycle r e f e r to the mobiliza-t i o n of nutrients from leaves at senescence. Differences i n biogeochemical nutrient c y c l i n g are the basis of a world ecosystem c l a s s i f i c a t i o n proposed by Rodin and B a z i l e v i c h (1967). C r i t e r i a for this system are functional c h a r a c t e r i s t i c s such as plant biomass, net primary production, annual l i t t e r f a l l , forest f l o o r bio-mass and the proportion of the store of mineral nutrients i n these compartments. Although biochemical cycling i s not s p e c i f i e d i n the d e f i n i t i o n of taxa, the balance between uptake and retranslocation from older tissues influences the annual increase i n nutrient content of the biomass as well as the proportion of the nutrient store l o s t i n l i t t e r -f a l l . Thus, i n t e r n a l c y c l i n g has a role i n the pattern of nutrient d i s t r i b u t i o n and transfer through ecosystems, and therefore may be use-f u l i n t h e i r c l a s s i f i c a t i o n . 3 The system of s i t e c l a s s i f i c a t i o n presently used i n B.C. i s based on f l o r i s t i c , s o i l and c l i m a t i c parameters (Krajina, 1969). The basic unit i s the biogeocenose, an e c o l o g i c a l e n t i t y characterized by a s p e c i f i c s o i l and vegetation type. These units are subdivisions of biogeoclimatic subzones which i n turn are d i v i s i o n s of biogeoclimatic zones. The zones have s i m i l a r macroclimate and c h a r a c t e r i s t i c patterns of vegetation and s o i l development. Although t h i s has not yet been demonstrated, the assumption i s made that biogeocenoses represent functional e n t i t i e s . This implies that a l l functional aspects defined by Rodin and B a z i l e v i c h (1967) are s i m i l a r within d i f f e r e n t examples of a p a r t i c u l a r biogeocenose and that at l e ast one functional aspect d i f f e r s between d i f f e r e n t biogeocenoses. An example of the topographical r e l a t i o n s h i p between d i f f e r e n t biogeocenoses within a biogeoclimatic subzone i s shown i n Figure 1. Because the major difference between biogeocenoses i s moisture regime, these ecosystem units form a topographic series of hygrotopes (sensu Krajina, 1969), with x e r i c s i t e s located at the top, mesic i n the middle and hygric near the bottom of slopes. However, the v a r i a t i o n i n s o i l (depth, texture and coarse fragment content), moisture and vegeta-t i o n between hygrotopes may a f f e c t the nutrient status of the s i t e s , so that the topographic sequence of biogeocoenoses also forms a sequence of trophotopes (sensu Krajin a , 1969). A number of studies have been i n i t i a t e d i n order to test whether the functional c r i t e r i a of Rodin and B a z i l e v i c h (1967) can be used to i d e n t i f y the biogeocenoses that have been defined using plant associa-tions and s o i l c h a r a c t e r i s t i c s . Hygrotopes of the Mountain Hemlock 4 SALAL DOUGLAS-rm \Moss-wrs7zm ^HEMLOCK j I JAIOSS OREGOfJ\ GRAPE- 1 I DOUGLAS M0SS-(SWORD-fERtj \NESTTHN\ HEMLOCK Fom FLOWER j SWORD-FEW I WESTERN 1 RED-CEDAR MOISTURE GRADIENT -Figure 1. Topographic sequence of ecosystems i n the Coastal Western Hemlock Biogeoclimatic Zone (d r i e r subzone) of B.C. (from Klinka, 1977). 5 Zone can be i d e n t i f i e d using functional c h a r a c t e r i s t i c s (Krumlik, 1979), although s i g n i f i c a n t v a r i a t i o n occurred between r e p l i c a t e s of any p a r t i c u l a r taxon. DeCatanzaro (1978) examined l i t t e r c h a r a c t e r i s t i c s and decomposition on a topographic sequence of biogeocenoses i n the Coastal Western Hemlock Zone: decomposition was f a s t e r and forest f l o o r accumulation less on the hygric than on the mesic or x e r i c s i t e s . U t i l i z i n g the same p l o t s , Kaffanke (1982) found that the return of nitrogen i n l i t t e r f a l l was higher on the hygric plot than on the mesic or x e r i c p l o t s . T o t a l phosphorus content of l i t t e r f a l l was highest on the x e r i c and lowest on the hygric s i t e s . The primary objective of my study was to compare ret r a n s l o c a t i o n of nitrogen and phosphorus from f o l i a g e of Douglas-fir growing on s i t e s c h a r a c t e r i s t i c of the x e r i c , mesic and hygric hygrotopes of the Coastal Western Hemlock Zone ( d r i e r subzone) of B r i t i s h Columbia (Krajina, 1969). Internal c y c l i n g was estimated from the difference i n autumnal nutrient content between current needles and l i t t e r f a l l . Character-i z a t i o n of t h i s aspect of the nutrient cycle on these site-types should provide information on the functional i d e n t i t y of hygrotopes and on the variables which a f f e c t the biochemical c y c l e . A secondary objective was to describe any differences i n f o l i a r nitrogen and phosphorus concentration which may exist between the s i t e -types (hygrotopes). D i s t r i b u t i o n was compared by crown l e v e l i n three age classes of needle (current, 1-year-old and o l d e s t ) . 6 I I . LITERATURE REVIEW a) Measurement of Internal Cycling Comparisons of studies of i n t e r n a l cycling are hampered by the confusion generated by differences i n technique. It appears that no two studies have used i d e n t i c a l methods of ca l c u l a t i n g and expressing the amount of re t r a n s l o c a t i o n . Switzer and Nelson (1972) proposed the d e f i n i t i o n of biochemical cycles as "....cycles which encompass the i n t e r n a l transfer r e l a t i o n -ships or tra n s l o c a t i o n of nutrients within the trees". This general-ized d e f i n i t i o n has led to various interpretations of what should be included i n ca l c u l a t i o n s of i n t e r n a l c y c l i n g . Very few studies have documented the t o t a l of transfers within a tree. A few have dealt with cyc l i n g i n several tissues (e.g. leaves, stemwood), but most common are studies r e s t r i c t e d to the withdrawal of nutrients from senescing leaves. Even comparisons between the l a t t e r type of study are compli-cated by the fact that the time when senescence begins i s not consis-t e n t l y defined. Assessment of i n t e r n a l cycling may be based on the t o t a l amount of a nutrient involved per hectare, usually as part of a nutrient budget, or the change i n nutrient content per l e a f . The equations commonly used i n c a l c u l a t i n g f o l i a r i n t e r n a l cycling are given i n Table I, but various authors either have u t i l i z e d d i f f e r e n t assumptions i n applying these equations or have altered them for s p e c i f i c a p p l i c a t i o n s . Interpretation of i n t e r n a l cycling studies i s complicated by the d i f f e r e n t methods used to express t h e i r r e s u l t s . To a s s i s t i n c l a r i f i -c ation, a d e f i n i t i o n of terminology i s suggested i n Table I. For 7 TABLE I. Methods of Assessing F o l i a r Nutrient Redi s t r i b u t i o n . Calculation Units From Nutrient Budgets Magnitude ( F l - F2) - L E f f i c i e n c y Importance Magnitude X 100 F l Magnitude X 100 Annual Requirement kg/ha % retranslocation % of annual requirement Individual Leaf Basis Absolute Loss CI - C2 E f f i c i e n c y Magnitude X 100 CI mg per g dry weight mg per m needle length mg per needle mg per m2 surface area % retranslocation Where: F l i s the nutrient content of green f o l i a g e F2 i s the nutrient content of leaf l i t t e r L i s the amount of nutrients l o s t through leaching CI i s the nutrient content of green leaves C2 i s the nutrient content of leaves i n l i t t e r f a l l Examples of the use of these methods i n the l i t e r a t u r e are given i n Tables I I I and IV. 8 nutrient budgets, the amount of a nutrient retranslocated may be reported on a per hectare basis (magnitude), as a percentage of the o r i g i n a l f o l i a r content ( e f f i c i e n c y ) or as a percentage of requirements (importance). Importance and e f f i c i e n c y are often confused, ignoring the fact that they compare i n t e r n a l cycling to d i f f e r e n t aspects of the stand. On an i n d i v i d u a l leaf basis, the change i n nutrient content (absolute loss ) or the percentage change ( e f f i c i e n c y ) may be reported. Absolute loss should be corrected for weight changes during senescence either by adjusting the concentrations or by measuring leaf content rather than concentration. Most studies have been ca r r i e d out on deciduous trees, but the same methods are applied to c o n i f e r s . There are a number of compli-cating factors involved when estimating leaf nutrient changes i n trees which r e t a i n more than one year of needles. Which age class to sample i n c a l c u l a t i n g i n t e r n a l c y c l i n g , the correct a l l o c a t i o n of leaching losses to each age and the age class of o r i g i n of the l i t t e r are d i f f i -c u l t to determine. In some cases, differences r e s u l t i n g from these v a r i a t i o n s i n technique are minor, but i n other cases they may weaken or even i n v a l i -date the conclusions reached when comparing studies. I t i s therefore h e l p f u l to review the methods used by d i f f e r e n t authors, the assump-tions involved i n these methods and the uses for which they may be most applicable. 9 i ) Factors i n f l u e n c i n g i n t e r n a l c y c l i n g A number of environmental and p h y s i o l o g i c a l factors which have been shown to influence the extent of r e t r a n s l o c a t i o n from ageing tissues are summarized i n Table I I . The age and composition of a stand and i t s condition with r e l a t i o n to nutrients, moisture and in j u r i o u s agents (diseases, i n s e c t s , chemicals) a l l e f f e c t the capacity of trees to retranslocate n u t r i e n t s . E f f i c i e n c y of i n t e r n a l cycling d i f f e r s between elements and also may be affected by other factors to a greater or lesser extent depending on the element. Because so many variables a f f e c t biochemical c y c l i n g , i t i s d i f f i c u l t to keep a l l but one of these constant, and discrepancies between studies may possibly r e s u l t from the confounding of f a c t o r s . i i ) Components of i n t e r n a l c y c l i n g There are two major decisions to be made when assessing biochemi-c a l c y c l i n g : the f i r s t i s i n the determination of the tissues to be included i n the study and the second i s i n the time period over which retr a n s l o c a t i o n should be measured. Henderson and Harris (1975) assessed the t o t a l amount of nutrients involved i n i n t e r n a l c y c l i n g by c a l c u l a t i n g the difference between annual requirements and uptake. However, the majority of studies have concentrated on r e t r a n s l o c a t i o n from leaves by measuring f o l i a r con-tents before and a f t e r senescence. Transfers within wood were measured by Turner (1977), Whittaker e_t a l . (1979) and A t t i w i l l (1980) by com-paring nutrient content of sapwood and heartwood. Other tissues i n which i n t e r n a l cycling has been estimated include branches (Turner, i 10 TABLE I I . Sources of V a r i a b i l i t y i n Internal Cycling. Source of Comments References Variation Nutrient immobile elements (Ca, Zn) usually accumulate in ageing tissues Turner, 1975, Switzer & Nelson, 1972, Whittaker et a l . , 1979 mobile elements (K, N, P) may be retranslocated from ageing tissues Turner, 1975, Switzer & Nelson, 1972 K and Mg retranslocated from senesclng leaves may not a l l be stored in biomass Baker & Blackmon, 1977 severe deficiency of certain elements (K, P) may interfe r e with phloem transport leading to a decrease i n retranslocation of a l l elements Ostman & Weaver, 1982, Mengel, 1980 retranslocation of two elements may be linked (e.g. S retranslocation occurs only with N as both are mobilized from proteins) Loneragan et a l . , 1976 Nutrient N f e r t i l i z a t i o n decreases and reduced N Supply a v a i l a b i l i t y increases N internal cycling deficiency of some elements (K, P) may decrease phloem translocation so decreased a v a i l a b i l i t y may lead to decreased internal cycling Turner, 1977, M i l l e r et a l . , 1976 Ostman & Weaver, 1982 phloem mobility of Cu, S, Zn i s decreased when the respective element d e f i c i e n t , therefore re-duced a v a i l a b i l i t y may decrease internal cycling Loneragan et a l . , 1976 Tree e f f i c i e n c y of f o l i a r internal cycling d i f f e r s Species between species Whittaker et_ a^., 1979, Small, 1972, Stachurski & Zimka, 1975 differences i n e f f i c i e n c y of retranslocation also occur i n heartwood formation Whittaker et^ a l . , 1979, Bamber, 197 6 species adapted to low N or P may be more e f f i c i e n t at internal cycling of these elements Small, 1972, Specht & Groves, 1966, A t t i w i l l et a l . , 1978 evergreens appear to be more e f f i c i e n t than deciduous trees Small, 1972, Stachurski & Zimka, 197 5 pioneer species have higher e f f i c i e n c y than Ryan, 1979 climax species Crown Level e f f i c i e n c y of internal cycling highest at top of crown Wells & Metz, 1963 Tissue e f f i c i e n c y of internal cycling d i f f e r e n t i n fo l i a g e , branches and stemwood Whittaker et a l . , 1979, A t t i w i l l , 1980, Turner, 1977 Tree Age importance of internal cycling may change with stand age, but this varies between tissues and elements Turner, 1975, A t t i w i l l , 1980 Plant tissue consumed by insects, herbivores, parasites Damage does not retranslocate nutrients leaves k i l l e d by herbicide do not retranslocate nutrients Ryan, 1979 S o l l i n s et a l . , 1981 leaves abscissed during moisture stress may retranslocate less nutrients Kozlowski, 1976 11 1977; Whittaker et a l . , 1979) and bark (Whittaker et^ a l . , 1979). Internal c y c l i n g i n roots has not yet been estimated. As most research has focused on nutrient changes i n senescing leaves, i t i s important to e s t a b l i s h the time when senescence begins. In deciduous trees, measurements are usually started at some time during the summer. The best c r i t e r i o n for choosing the time may be that of maximum nutrient s t a b i l i t y used by Ostman (1979) which i s e a s i l y established and i s applicable to c o n i f e r s . A d i f f e r e n t c r i t e r i o n r e s u l t i n g i n approximately the same sampling time i s that of Stachurski and Zimka (1975) who chose to sample when maximum f o l i a r biomass was reached. This occurs at about the same time as the s t a b i l i z a t i o n of nutrient concentrations and i s often the time chosen for the establishment of f o l i a r biomass i n nutrient budget studies. Samples may be obtained j u s t before senescence begins, as done by Ryan (1979) , but often t h i s i s a time when nutrient concentrations have already begun to change. This technique would therefore y i e l d year-to year v a r i a t i o n i f sampling time varies s l i g h t l y . Also, as Thimann (1980) notes, currently there i s no standard d e f i n i t i o n of what c o n s t i -tutes the beginning of senescence. Even more d i f f i c u l t to repeat i s the work of Staaf (1982), who c o l l e c t e d European beech (Fagus s y l v a t i c a L.) leaves two weeks before yellowing. The time of yellowing varies from year to year and from s i t e to s i t e so i t i s d i f f i c u l t to e s t a b l i s h c beforehand when i t w i l l occur. For evergreens, nutrient sampling i s usually done i n the f a l l when nutrient concentrations are most stable (Turner, 1977* Switzer & Nelson, 1972; Malkonen, 1975). When more than one age class i s present 12 on the tree over winter, either the current (Turner, 1977) or oldest (Malkonen, 1975) needles are sampled. Malkonen (1975) estimated the content of four-year-old needles of Scots pine (Pinus s y l v e s t r i s L.) and assumed that the whole cohort f e l l at the end of the year. How-ever, t h i s does not account for needles which senesce before reaching the oldest age c l a s s . In a study of survivorship curves of Douglas-fir needles, S i l v e r (1962) reported that approximately f i f t y percent of the f o l i a r biomass was i n the f i r s t two years, and that needles older than f i v e years made up only 10% of the biomass. Turner (1977) avoided t h i s problem by sampling current f o l i a g e , thereby assessing i n t e r n a l cycling over the t o t a l needle l i f e rather than just at senescence. i i i ) Nutrient budget analysis The nutrient fluxes which may a f f e c t f o l i a r i n t e r n a l c y c l i n g are shown i n Figure 2 (adapted from Ryan, 1979). Inputs to f o l i a g e nutrient content (F) from the environment (as opposed to inputs by translocation) consist of gaseous f i x a t i o n (G^ n) and absorption of aerosols (D). Outputs occur through gaseous ( G Q u t ) and aerosol (M) l o s s , predator and parasite removals (P) and leaching (L). Internal cy c l i n g or the net transfer between fo l i a g e and the nutrient pool i n other tissues (T) i s represented by the difference between the fluxes into the f o l i a g e (S^ n) and those from the f o l i a g e to other tissues ( S Q u t ) . For conifers, F includes only one age class of needles: other age classes are included i n T. A general equation (2.1) derived from t h i s model (Ryan, 1979) describes i n t e r n a l c y c l i n g by evaluating F at two times (before and Gaseous Fi x a t i o n e.g. NH3, S02 (G i n ) Absorption of P a r t i c l e s (D) Gaseous Loss (Gout) Predator Removal (M) Small P a r t i c l e Loss (P) Leaching Losses (L) Uptake from S o i l NUTRIENT CONTENT OF OTHER TREE TISSUES (T) Figure 2. Fluxes a f f e c t i n g f o l i a r nutrient content (adapted from Ryan, 1979). 14' a f t e r senescence). The difference i n f o l i a r content over this time period was f i r s t a t t ributed to transfers between the environment and the f o l i a g e and then to biochemical c y c l i n g . F2 - F l = ( S i n + G ± n + D) - ( S Q u t + G o u t + M + P + L) (2.1) where: F l , F2 are the f o l i a r nutrient contents of standing crop at time t^ (before senescence), t2 (a f t e r senescence) ^in> ^out a r e t r a n s l - o c a t i o n * n a n < l o u t o r f o l i a g e G^ n i s gaseous f i x a t i o n G . i s gaseous loss out D i s the absorption of aerosol p a r t i c l e s M i s loss of small p a r t i c l e s P i s predator and parasite removal L i s the loss through crown leaching Note that F2 - F l estimates the net change i n the f o l i a r content of a nutrient over the time period t i to t2, and therefore i t i s usually a negative number. A l l of the fluxes are measured only during that time period. Nutrient content of the standing crop i s calculated from measurements of f o l i a r biomass and leaf nutrient concentration at t^ and t£• In most cases, G. , G ^, D, M and P can be assumed to be n e g l i -' i n out g i b l e (Ryan & Bormann, 1982), therefore a s i m p l i f i e d equation can be used to estimate i n t e r n a l c y c l i n g : 15-Resorption = ( S Q u t - S ± n ) = ( F l - F2) - L (2.2) Equation 2.2 assesses the nutrient gain by perennial tissues during senescence, therefore resorption i s a p o s i t i v e number i n most instan-ces. Examples of studies which u t i l i z e t h i s equation are shown i n Table I I I . The measurement of green needle and l i t t e r f a l l nutrient content of conifers i s usually done i n the f a l l of the same year and therefore involves two cohorts of needles. For t h i s type of measurement to be an accurate evaluation of i n t e r n a l c y c l i n g , i t must be assumed that the needles i n l i t t e r f a l l o r i g i n a l l y had the same nutrient concentration and biomass as the present green needles (Turner, 1977). Year-to-year v a r i a t i o n s i n nutrient concentrations of needles are well documented (van den Driessche, 1974), but, these are often small i n comparison to the changes during senescence. However, i n cases where l i t t l e or no drop i n concentration occurs during yellowing, between-year va r i a t i o n s may introduce s i g n i f i c a n t error. The assumption of constant o r i g i n a l biomass i n the two cohorts i s a good approximation once the canopy has achieved steady state. I t i s probable that i n young, rapidly-growing stands, t h i s approximation may introduce bias, e s p e c i a l l y where there i s a number of years' d i f f e r e n c e between the cohorts of needles sampled. The a p p l i c a t i o n of equation 2.2 to conifers raises the p o s s i b l i t y of measuring i n t e r n a l c y c l i n g between two age classes of needles (e.g. current and o l d e s t ) . Rapp et a l . (1979) estimated that 12.1 kg/ha TABLE III. Sampling Times and Methods of Expressing Internal Cycling from Nutrient Budgets. Parameter: Foliage Leaching Units Source Forest Type: Plnus taeda 20 years Quercus prinus PseudotBUga  menzlesii 45 years Mixed Hardwoods (Hubbard Brook) 55 years Prunus  pensylvanlca 5 years Mixed Hardwoods (Hubbard Brook) Plnus s y l v e s t r i s 27-32 years old Eucalyptus  obllqua 45-50 years old Taxodium  ascendens Plnus pinea f a l l foliage, annual. kg/ha % annual requirement green foliage. winter, current foliage. study kg/ha period. % green foliage annual kg/ha just before Sept. to kg/ha senescence. Oct. just before' Sept. to kg/ha senescence. Oct. summer leaves, not kg/ha assessed f a l l , fourth not kg/ha year needles, assessed. % content of fourth-year needles mature leaves, annual. g/m2 % annual requirement green leaves, annual. kg/ha Switzer & Nelson, 1972 Ostman & Weaver, 1982 Turner, 1977 Ryan & Bormann, 1982 Whittaker et a l . , 1979 Malkonen, 1975 current foliage not kg/ha included A t t i w i l l , 1980 Schlesinger, 1978 Rapp et a l . , 1979 17 of the 20.1 kg/ha of nitrogen biochemically cycled i n an I t a l i a n stone pine (Pinus pinea L.) stand, was retranslocated during the second year of needle l i f e . The remaining 8 kgN/ha was retranslocated during the month preceding l i t t e r f a l l . The measurement of leaching losses (L) may r e s u l t i n an under-estimate of i n t e r n a l c y c l i n g because some of the dissolved nutrients o r i g i n a t e from dust trapped on leaves (Switzer & Nelson, 1972). Ryan and Bormann (1982) include stemflow as well as crown wash i n leaching, further lowering estimates of r e t r a n s l o c a t i o n . Most studies only i n -clude f o l i a r leaching and assume that the nutrient content of stemflow may be a t t r i b u t e d to bark washing (Turner, 1977). Leaching losses are determined on an annual basis for nutrient budgets (Table I I I ) but t h i s may lead to an overestimation of the proportion of F l - F2 a t t r i b u t e d to leaching. In herbaceous plants, nutrients leached from healthy leaves are replaced by uptake (Tukey, 1970) and therefore an increased i n f l u x (S^ n) may compensate for leaching losses p a r t i a l l y or t o t a l l y u n t i l senescence begins. Ryan (1979) suggested that L should be measured only between the times of determination of F l and F2. He determined leaching losses for a hard-wood forest between midsummer and November as did Ostman and Weaver (1982). A method which allows for leaching over j u s t the study period, while adequate for deciduous trees, i s not suitable for evergreen species which r e t a i n more than one age class of leaves. Crown leaching measured on an annual basis includes nutrient loss from a l l age classes, and probably r e s u l t s i n an underestimate of i n t e r n a l c y c l i n g . 18 This l o s s , however, cannot be e a s i l y divided amongst the age classes of needles. As older leaves appear to be more susceptible to leaching (Tukey, 1970), d i v i d i n g L equally between age classes probably r e s u l t s i n an underestimate of leaching losses incurred i n the f i n a l year and therefore an overestimate of nutrient changes due to i n t e r n a l c y c l i n g . Nutrient budgets for conifers have either included annual leaching losses (Turner, 1977; Switzer & Nelson, 1972) or ignored leaching losses (Malk'dnen, 1975; Rapp et^ ad., 1979) when ca l c u l a t i n g i n t e r n a l c y c l i n g . In a few studies, equations s l i g h t l y d i f f e r e n t from equation 2.2 have been applied to i n t e r n a l c y c l i n g . A t t i w i l l (1980) defined the amount of nutrient moving i n the i n t e r n a l cycle for a eucalyptus (Eucalyptus obliqua L'Herit.) stand as: Resorption = W^C^^ - C - ^ ) ) (2.3) where: W]^  i s the t o t a l biomass of l i t t e r f a l l ^1(1) ^ s t n e nutrient concentration i n mature f o l i a g e ^1(2) * s t n e nutrient concentration i n l i t t e r f a l l This equation assumes that the biomass of green f o l i a g e i s the same as that of l i t t e r f a l l . Because of the short l i f e span of the eucalyptus leaves, the t o t a l annual production of foliage was d i f f i c u l t to e s t i -mate, and i n these trees, equation 2.3 may provide the best approxima-t i o n of i n t e r n a l c y c l i n g . However, adjustment of the biomass for 19 weight changes over senescence would make the estimate more accurate, A t t i w i l l (1980) proposed an equation s i m i l a r to equation 2.3 for estimating changes i n nutrient content during the t r a n s i t i o n from heartwood to sapwood. Resorption = w h ( c s ~ c h ) (2.4) where: i s the weight of annual heartwood increment C g i s the concentration of nutrients i n sapwood i s the concentration of nutrients i n heartwood Henderson and Harris (1975) assessed i n t e r n a l c y c l i n g on an ecosystem basis, u t i l i z i n g an i n d i r e c t method. They f i r s t defined uptake as the sum of retention (amount of a nutrient f i x e d i n woody tissue annually) and r e s t i t u t i o n ( l i t t e r f a l l , whole tree mortality, root mortality and f o l i a r leaching). The difference between uptake and the annual requirement (growth x nutrient concentration) was assumed to be supplied by i n t e r n a l c y c l i n g , thus providing an estimate of the portion of the annual requirement supplied by biochemical c y c l i n g from a l l t i s s u e s . i v ) Changes i n i n d i v i d u a l l e a f content Assessment of i n t e r n a l c y c l i n g by c a l c u l a t i n g the change i n the nutrient content of i n d i v i d u a l leaves requires less information than nutrient budget methods, but also presents some problems. 20 AL = CI - C2 (2.5) where: AL i s the absolute loss of nutrients over senescence CI and C2 are the nutrient content of a leaf at times t-^  and t2 Accurate measures of leaching losses from leaves are not a v a i l a b l e , and therefore the L term does not appear i n equation 2.5. For cations such as Mg and K, which are very susceptible to leaching, omission of leaching estimates leads to an overestimate of i n t e r n a l c y c l i n g . For nitrogen and phosphorus, t h i s omission may not introduce a large error, as t h e i r leaching during senescence i s usually low (Ryan & Bormann, 1982; Staaf, 1982; Ostman & Weaver, 1982). However, i t i s possible that leaching may vary with s i t e q u a l i t y . Tukey (1970) noted that plants under nutrient or moisture stress had increased leaching losses and M i l l e r et a l . (1976a) found a r e l a t i o n s h i p between f o l i a r nitrogen concentration and leaching losses i n Corscian pine (Pinus nigra var. maritima ( A i t . ) Melv.). The possible e f f e c t s of these factors on between-site differences should be considered when comparisons are made. The majority of studies which report leaf nutrient l e v e l s give content i n mg per g dry weight. This method of expression i s not use-f u l for assessing changes i n content because of concurrent changes i n l e a f mass (Ostman, 1979; Smith et_ al^., 1981; Woodwell, 1974). The amount of weight los s at l i t t e r f a l l has been found to d i f f e r between species and with s i t e q u a l i t y . Stachurski & Zimka (1975) found that on 21 s i t e s poor i n organic matter the weight losses from leaves of Scots pine, European hornbeam (Carpinus betulus L.) and English oak (Quercus  robur L.) were 29%, 36% and 17%, respectively. On good s i t e s , there was l i t t l e change (2-4%) i n weight during senescence. Results calcu-lated as a function of dry weight are therefore d i f f i c u l t to interpret unless a cor r e c t i o n for the weight change at l i t t e r f a l l has been made, as was done by Ostman (1979) and Staaf (1982). This problem does not occur i n nutrient budget analysis because the t o t a l nutrient content of foli a g e i s established before and a f t e r senescence. Woodwell (1974) suggested that the nutrient content of broadleaved trees should be expressed i n mg/m2 of surface area and this method i s now commonly used (Table IV). Woodwell (1974) used the length of needles as an index of surface area when reporting changes i n nutrient content of pine needles. Stachurski and Zimka (1975) also adopted t h i s method of expressing nutrient content. Weight per 100 needles (Malkdnen, 1975) or per f a s c i c l e i n pines (Wells & Metz, 1963; Luxmoore et a l . , 1981) have also been used as a basis for measurement. Smith et  a l . (1981) have recently suggested that expression of the nutrient con-tent of conifer needles on the basis of surface area i s most acceptable. However, this i s not yet widely used i n studies involving biochemical c y c l i n g . Equation 2.5 may also be applied to two age classes of needles In order to estimate r e t r a n s l o c a t i o n from needles while they are on the tree. However, since the oldest needles on a branch were o r i g i n a l l y located higher i n the crown and may therefore have developed under greater l i g h t i n t e n s i t y than the current needles, a comparison between TABLE IV. Times of Sampling and Methods of Expressing Internal Cycling on a Per Leaf Basis Parameter: CI C2 Units Source Forest Type: Mixed Hardwoods July. Oct. l i t t e r . g/m2 % green content Stachurski & Zimka, 1975 Pinus s y l v e s t r i s Eucalyptus obliqua 45 - 60 years Populus deltoides 1 year Fagus s i l v a t i c a 90-150 years Oct. 2-3 yr. old needles. mature leaves. Sept. la t e Sept. Oct. l i t t e r . l i t t e r . Nov. l i t t e r . l a t e Oct. l i t t e r . g/unit length % green content mg/g dry weight % green content kg/ha % f o l i a r content g/unit l e a f area mg/g dry weight Stachurski & Zimka, 1975 A t t i w i l l et a l . , 1978 Baker & Blackmon, 1977 Staaf, 1982 Pinus s y l v e s t r i s 27-32 years Pinus taeda f a l l , fourth year needles. f a l l 5 years yellowed needles. brown needles mg/100 needles % content of fourth year needles mg/fascicle Malkonen, 1975 Wells & Metz, 1963 23 two cohorts on a branch may be inaccurate. Older needles should be compared to younger needles several whorls above. v) A p p l i c a t i o n and comparison of methods Nutrient budget an a l y s i s , i n d i v i d u a l leaf analysis or a combina-t i o n of the two may be used to assess i n t e r n a l c y c l i n g , depending on the purpose of the study. Budget analysis requires more data including estimates of f o l i a r biomass, leaching and l i t t e r biomass as well as the nutrient concentrations of f o l i a g e and l i t t e r . This information, how-ever, should be available from the other phases of budget analysis. The c a l c u l a t i o n of t o t a l amounts of nutrients cycled per hectare includes the r e l a t i v e contribution of d i f f e r e n t species and tissues to ecosystem i n t e r n a l c y c l i n g . Also the nutrient budget provides a means of comparing the contribution made to annual requirements by biochemi-c a l c y c l i n g with that made by other cycles. For these reasons, budget analysis i s more useful than i n d i v i d u a l leaf analysis i n comparing functional c h a r a c t e r i s t i c s of s i t e s . The magnitude of i n t e r n a l cycling i s u t i l i z e d i n the c a l c u l a t i o n of current net uptake when the estimate of requirement i s obtained from current tissue content (Turner, 1977). N u = N c + N l _ N r (2.6) where: N u i s the current net uptake N c i s the nutrient content i n current tissue N r i s the magnitude of retranslocated nutrients N l i s the annual nutrient leaching losses 24 N^ may be d i f f e r e n t from L i n the c a l c u l a t i o n of the magnitude of biochemical c y c l i n g (Equation 2.2) i f L i s not measured on an annual basis. The necessity of including the value of N r i n uptake c a l c u l a -tions i s demonstrated by Schlesinger (1978) who calculated uptake i n a cypress swamp, f i r s t l y assuming no nutrient resorption and secondly including an estimation of the magnitude of i n t e r n a l c y c l i n g . For Ca and Mg, there was l i t t l e difference i n uptake calculated by either method, but the uptake of K and P was reduced by 58% and 43% respec-t i v e l y when i n t e r n a l c y c l i n g was included. Nutrient budget analysis appears to provide the best assessment for i n t e r n a l c y c l i n g between age classes of needles i n conifers though data must be c o l l e c t e d on the d i s t r i b u t i o n of the mass of nutrients within the crown. Comparing the t o t a l content over a l l crown l e v e l s i n f i r s t - y e a r needles with that i n older needles eliminates the problem, encountered i n i n d i v i d u a l leaf analysis, of determining which needles are comparable. When changes i n weight are taken into account, the e f f i c i e n c y of in t e r n a l c y c l i n g calculated on an i n d i v i d u a l leaf basis should be com-parable to that calculated on a stand basis. Working with Scots pine, Malkonen (1975) used an estimate of e f f i c i e n c y calculated on an i n d i v i -dual leaf basis and a measurement of the t o t a l amount of nutrients i n fourth-year needles to estimate the magnitude of i n t e r n a l c y c l i n g . Such an approach i s useful when the biomass of either l i t t e r or foliage i s not easy to determine. The l a t t e r problem occurs i n conifer stands whose f o l i a r biomass has not reached steady state and i n t r o p i c a l species having more than one flushing time per year. 25 When comparing e f f i c i e n c y between species or s i t e s , an i n d i v i d u a l leaf assessment can give an adequate estimate except for elements very susceptible to leaching. The only information required i s the nutrient content i n leaves before and a f t e r senescence. When comparing e f f i -ciency between species i n a stand or between stands of conifers which r e t a i n more than one year of needles, leaching losses may be d i f f i c u l t to a l l o c a t e , and therefore l i t t l e or no gain i n accuracy may be obtained by using budget a n a l y s i s . However, d i r e c t comparisons of the techniques used for i n t e r n a l cycling estimates are lacking i n the l i t e r a t u r e . b) Roles of Internal Cycling i n Nutrient Conservation As defined by Switzer and Nelson (1972), i n t e r n a l cycling encom-passes a l l nutrient transfers within trees. However, measurement of th i s process i s usually l i m i t e d to that of remobilization from senescing t i s s u e s . Movement of nutrients within plants i s constantly occurring i n response to environmental and i n t e r n a l a l t e r a t i o n s , but the i n t e r n a l nutrient pool supplies a buffer which can be added to when nutrients are available i n amounts greater than requirements and then be mobilized under stress (Ryan, 1979). This strategy i s p a r t i c u l a r l y e f f i c i e n t i n ecosystems which experience large annual v a r i a t i o n s i n nutrient a v a i l a b i l i t y as a r e s u l t of fluctuations i n moisture or temperature. Conservation of the fl u s h of elements occurring a f t e r major disturbances such as f i r e , windthrow, cl e a r c u t t i n g and f e r t i l i z a -t i o n may also benefit from t h i s process. There i s disagreement i n the l i t e r a t u r e as to whether responses s i m i l a r to those r e s u l t i n g from 26 sudden changes i n nutrient a v a i l a b i l i t y might be expected to occur i n trees growing on s i t e s d i f f e r i n g i n nutrient a v a i l a b i l i t y . i ) Annual cycles In many areas, the a v a i l a b i l i t y of nutrients to plants varies during the year due to a l t e r a t i o n s i n moisture, temperature or l i t t e r -f a l l . The period of maximum a v a i l a b i l i t y does not nec e s s a r i l y coincide with that of peak demand and therefore storage of nutrients i n various organs during periods of high nutrient a v a i l a b i l i t y can provide a re s e r v o i r which can be drawn upon for growth and reproduction. In deciduous trees, the annual processes of resorption from sen-escing leaves, storage i n roots or other tissues and remobilization i n the spring may serve two purposes (Ryan & Bormann, 1982). F i r s t l y , the nutrients involved i n the biochemical cycle are not subject to mineral-i z a t i o n and s o i l leaching, and therefore they are conserved i n the ecosystem. Secondly, t h i s process allows the trees to be r e l a t i v e l y independent of s o i l supplies at a time when demand i s high, r e s u l t i n g i n a higher rate of i n i t i a l growth i n the spring than would be other-wise possible. The evergreen habit appears to be p a r t i c u l a r l y e f f e c t i v e for o p t i -mizing the u t i l i z a t i o n of a f l u c t u a t i n g nutrient supply, as elements can be stored i n older leaves and moved to growing ti p s i n the spring (Moore, 1980). From sequential sampling of new and older shoots of Douglas-fir seedlings, Krueger (1967) suggested that nitrogen and phosphorus moved from old to new shoots at budbreak. The decrease i n 27 t o t a l nitrogen of older shoots was 80% of the amount gained by new shoots. S p l i t t s t o e s s e r and Meyer (1971) observed a s i m i l a r movement of nitrogen i n yew (Taxus media cv. H i c k s i i ) seedlings and estimated that the older needles supplied 24% of nitrogen used for spring growth. When f e r t i l i z e r was applied to the seedlings i n summer, t h e i r growth rate did not increase that year but instead nitrogen accumulated i n the needles. However, i n the spring, three times as much nitrogen was remobilized for new growth from older needles on these trees than i n the control trees. Waring and F r a n k l i n (1979) suggested that the dominance of coni-fers i n the P a c i f i c Northwest may be p a r t i a l l y due to t h i s process. In t h i s area summers are dry and hot, while winters are moist and mild so that conditions for decomposition and uptake are more favourable at the time when plant growth has slowed or stopped. Conifers, however, are able to take up nitrogen i n the winter and store i t i n leaves or other tissues for u t i l i z a t i o n i n the growing season, thus giving them an advantage over deciduous trees, p a r t i c u l a r l y on nitrogen-poor s i t e s . Mooney and Rundel (1979) documented the same process i n the ever-green shrub chamise (Adenostoma fasciculatum H. & A.) of the C a l i f o r n i a chaparral. They found that the concentration of nitrogen and phosphorus i n f o l i a g e increased s t e a d i l y over the wetter winter months. When new growth occurred i n the spring, nutrient content of older leaves decreased. S i m i l a r l y , i n plants adapted to the low phosphorus of A u s t r a l i a n heath, shoot elongation occurs during summer drought. During that period, organically-bound phosphorus i n leaves i s hydrolyzed to 28 orthophosphate and mobilized to shoot and root apices (Specht & Groves, 1966). i i ) Post disturbance Many ecosystems are maintained by c y c l i c a l catastrophic destruc-t i o n by f i r e , wind or inse c t s , which r e s t a r t s the process of succes-sion. Likens and Bormann (1979) suggest that i n some ecosystems where major disturbances are unusual, t h i s replacement occurs on a smaller scale, where dying trees create a small area of disturbance and are replaced. Like these natural disturbances, those created by man (logging, slashburning and f e r t i l i z a t i o n ) often produce a f l u s h of nutrients, which i s taken up by the i n i t i a l vegetation or established plants. Internal stores thus accumulated are gradually mobilized when s o i l supplies are depleted, thus prolonging the period of increased growth. Rundel and Parsons (1980) studied an age series of f i r e - i n i t i a t e d chaparral ecosystems. They found that the nitrogen, phosphorous and potassium concentration of f o l i a g e revegetating the s i t e s increased s t e a d i l y for the f i r s t 18 months. The concentration i n the leaves then f e l l i n response to decreasing s o i l a v a i l a b i l i t y , but rapid biomass accumulation continued to occur during the next four years as stored nutrients were mobilized. Clearcutting may also produce an increase i n the nutrients i n s o i l s o l u t i o n . Ryan and Bormann (1982) found that f i v e years a f t e r logging of a hardwood fo r e s t , the magnitude of biochemical cycling i n pioneer species was approximately equal to that i n a 55-year-old f o r e s t . This 29 coincided with the rapid reestablishraent of f o l i a r biomass by these species. In areas such as the P a c i f i c Northwest, where leaf biomass i s slower to peak, the magnitude of i n t e r n a l cycling probably remains low for a longer period. The prolonged period of increased growth which i s commonly observed a f t e r a single f e r t i l i z e r a p p l i c a t i o n may also be due to storage and remobilization of nutrients. Turner (1977) examined short-term nitrogen c y c l i n g i n a 50-year-old Douglas-fir stand a f t e r nutrient manipulation which attempted to produce a gradient of nitrogen v a i l a -b i l i t y . The treatments ranged from hypothesized overabundance (800 kg/ha N as urea) to stress conditions (sawdust applied to widen the forest f l o o r C/N r a t i o ) . The highest nitrogen a p p l i c a t i o n resulted i n a tendency to accumulate this element i n the f o l i a g e . The magnitude of biochemical c y c l i n g ( t o t a l from f o l i a g e , stemwood and branches) was measured as -13.0 kg/ha (accumulation) and 12.4 kg/ha on two f e r t i l i z e d p l o t s , 14.0 kg/ha on the control and 22.4 and 20.1 kg/ha on two plots to which sawdust was applied. I t would appear that the magnitude of i n t e r n a l c y c l i n g of nitrogen was increased when there was a shortage of t h i s element, while accumulation i n tissue to be abscised occurred when a high l e v e l was applied. A more long-term study was c a r r i e d out by M i l l e r et al_. (1976b) who f e r t i l i z e d Corsican pine with ammonium sulphate at f i v e rates for three years. During the treatments, f e r t i l i z e d plots a l l showed increased growth, but the rate of growth did not d i f f e r between the three highest a p p l i c a t i o n s . Net accumulation i n proportion to the amount of f e r t i l i z e r applied was r e f l e c t e d i n an increase i n tissue 30 nitrogen concentration .along with the r i s e i n biomass production. In the years a f t e r f e r t i l i z a t i o n , growth i n the f e r t i l i z e d trees was greater than i n the control p l o t s , with the duration of the response varying from 6 to 11 years depending on the amount of nitrogen o r i g i n a l l y applied and thus accumulated. During t h i s extended period of increased growth, uptake from the s o i l on a l l plots d i f f e r e d l i t t l e from the control but the amount of accumulated nitrogen mobilized to meet requirements was higher on the plots which had the higher urea a p p l i c a t i o n . Thus, i n t e r n a l c y c l i n g may enable trees to u t i l i z e applied f e r t i l i z e r s more e f f i c i e n t l y . F i r e or f e r t i l i z a t i o n induce large changes i n the a v a i l a b i l i t y of nutrients, but small fluctuations from year to year are common due to d i f f e r i n g weather patterns. Ryan (1979) hypothesized that the pro-cesses of resorption and remobilization may dampen the e f f e c t of between-year v a r i a t i o n because current growth i s dependent on nutrients absorbed during the previous season as well as on uptake. ~\ i i i ) R e d i s t r i b u t i o n and s i t e differences The evidence from changes i n r e d i s t r i b u t i o n which occur when nut-r i e n t a v a i l a b i l i t y i s altered, together with the high e f f i c i e n c y of i n t e r n a l cycling i n species which survive on poor s o i l s , suggests that i n t e r n a l c y c l i n g should be decreased on richer s i t e s . It seems reason-able to assume that the trees would withdraw a smaller proportion of leaf nutrients when nutrients can be r e a d i l y obtained from the s o i l : on a poor s i t e , nutrient r e t r a n s l o c a t i o n should increase (Gosz, 1981). However, Chapin (1980), i n reviewing evidence on nutrient-use e f f i c i e n c y 31 i n shrubs, concluded that between-site differences were not consistent enough to make any generalizations. M e l l i l o (1981) also has noted that some studies conducted on hardwoods indicate that high nitrogen a v a i l a -b i l i t y i s not correlated with low i n t e r n a l c y c l i n g . On any given s i t e , the supply of nutrients available to l i v i n g plants i s a dynamic factor dependent on the balance of inputs and out-puts. On s i t e s where excessive outputs interrupt the biogeochemical cyc l e , i n t e r n a l cycling may provide a mechanism of conservation of s i t e nutrient c a p i t a l (Ostman & Weaver, 1982). High e f f i c i e n c y of i n t e r n a l cy c l i n g has been found i n areas where repeated removal of l i t t e r on windy ridgetops (Ostman & Weaver, 1982), high n i t r i f i c a t i o n rates leading to excessive leaching a f t e r c l e a r c u t t i n g (Ryan & Bormann, 1982), poor cation exchange capacity allowing leaching of bases (Herrera et a l . , 1978) and f i x a t i o n of phosphorus i n highly weathered s o i l s ( A t t i w i l l et a l . , 1978) impede transfers between s o i l and plants. In. these cases, conservation of nutrients by biochemical c y c l i n g appears to be b e n e f i c i a l . However, on poor s i t e s i n boreal regions, increased e f f i c i e n c y of biochemical c y c l i n g of nitrogen increases the l i t t e r C/N r a t i o , thus slowing decomposition and mineralization. This reduces the nitrogen a v a i l a b i l i t y further so the o v e r a l l e f f e c t i s one of a p o s i t i v e feedback loop (Gosz, 1981). These studies a l l pertain to trees growing on one s i t e type: only a few instances of between-site char a c t e r i z a t i o n of i n t e r n a l c y c l i n g i n trees have been ca r r i e d out. Stachurski and Zimka (1975) compared the absolute loss of nitrogen from leaves of trees growing within d i f f e r e n t forest associations. In ecosystems with a lower organic content i n the s o i l , trees exhibited a 32 higher e f f i c i e n c y of i n t e r n a l c y c l i n g than i n ecosystems r i c h e r i n organic matter. This was p a r t l y due to the increase i n r e t r a n s l o c a t i o n from leaves of the same species and p a r t l y due to a change i n species, as Scots pine with the highest e f f i c i e n c y of i n t e r n a l cycling (77%) was replaced by black alder (Alnus glutinosa L.) with the lowest e f f i c i e n c y (5%) on the better s i t e s . European hornbeam had an e f f i c i e n c y of 64% on the poor s i t e s and 37% on the r i c h s i t e s . Site q u a l i t y of the two s i t e s was not given, but decomposition rates were twice as high on the r i c h e r s i t e s , suggesting a higher nitrogen a v a i l a b i l i t y . Absolute loss of nitrogen and phosphorus also appears to be i n -creased from needles of Monterey pine (Pinus radiata D. Don) growing on poor s i t e s as compared with r i c h e r s i t e s i n A u s t r a l i a (Florence and Chuong, 1974). However, the r e s u l t s i n t h i s study were not corrected for weight changes during ageing of needles. In contrast, Ostman and Weaver (1982) have reported that the magnitude of biochemical cycling of N, K, P and Ca i n chestnut oak (Quercus prinus L.) was greater i n trees growing on the r i c h e r of two s i t e s . As both study s i t e s were low i n nutrients, the authors suggest-ed that genetic c h a r a c t e r i s t i c s , d e f i c i e n c i e s of potassium or phosphor-us or increased immobile pools i n leaves may explain the lower retrans-l o c a t i o n on the poorer s i t e . They noted, however, that i n t e r n a l c y c l i n g on these two s i t e s appeared to be higher than on another study done on oak growing on more f e r t i l e s i t e s . Staaf (1982) measured the r e d i s t r i b u t i o n of a number of elements from senescing leaves of European beech growing on a v a r i e t y of s i t e s . For a l l elements studied (N, P, K, S, Ca and Mg) the absolute loss 33 during senescence was p o s i t i v e l y related to the concentration i n green leaves. Other s i t e variables (pH, C/N and s i t e index) did not c o n t r i -bute s i g n i f i c a n t l y to multiple regression equations, except i n the case of Ca (pH) and Mg ( s i t e index). Higher proportions of Ca, S and N were retranslocated with increasing concentrations i n leaves, and therefore the author concluded that there was no i n d i c a t i o n of an e s p e c i a l l y e f f i c i e n t r e d i s t r i b u t i o n of nitrogen on low f e r t i l i t y s i t e s or on s i t e s with low nitrogen a v a i l a b i l i t y . The data for P were more variable than those for N, but the percentage retranslocation tended to decrease with increasing concentration i n leaves. A negative c o r r e l a t i o n between s i t e index and the concentration of phosphorus i n leaves was found. Mg and K exhibited no s i g n i f i c a n t i n t e r - s i t e trend with respect to e f f i c i e n c y . 34 I I I . SITE DESCRIPTIONS The study area was located i n the southwestern corner of the University of B r i t i s h Columbia Research Forest, approximately 60 km east of Vancouver, B.C. ( F i g . 3). The climate i s c l a s s i f i e d as Cfb (Koppen, 1936), which i s marine warm temperate humid to rainy (mesothermal). It has no d i s t i n c t dry season. R a i n f a l l averages 2340 mm per year, most of which f a l l s from September to A p r i l . Mean monthly temperatures vary from 15°C i n the summer to 0°C i n the winter months. The forest stands i n the study area were established after a f i r e i n 1864 and the trees range i n age from 85 - 100 years. Some veterans survived the f i r e , but they were not included i n the study. A deta i l e d synecological c l a s s i f i c a t i o n of the Research Forest was c a r r i e d out by Klinka (1976) from which the general area d e s c r i p t i o n was taken. The study p l o t s , which were a l l located i n the dry subzone of the Coastal Western Hemlock Biogeoclimatic Zone (Krajina, 1969), were chosen to represent the x e r i c , mesic and hygric hygrotopes of t h i s subzone. The topographical r e l a t i o n s h i p of these hygrotopes i n the U.B.C. Research Forest i s shown i n Figure 1. Sites were c l a s s i f i e d by vegetation c h a r a c t e r i s t i c s as outlined by K r a j i n a (1969) as well as by slope p o s i t i o n . Locations of the study plots are shown i n Figure 3 and detailed descriptions are given i n Appendix 2. Most of the bedrock i n t h i s area i s a quartzdiorite which contains more b i o t i t e than hornblende. On the x e r i c s i t e s , the bedrock out-cropped or came close to the surface. Over most of the study area the Figure 3. Location of the study pl o t s i n the U.B.C. Research Forest, Maple Ridge, B.C. 36 bedrock was ove r l a i n with a compacted basal t i l l which was grey i n colour and impermeable to water. The s o i l parent material was usually ablation t i l l derived from q u a r t z d i o r i t e , but i n some areas, the present s o i l formed from g l a c i o f l u v i a l deposits of si m i l a r mineralogy. S o i l texture varied from sandy loams to loamy sands. A l l s i t e s had a south to southwest aspect. S c i e n t i f i c names for vascular plants found on the experimental plots are l i s t e d i n Appendix 1. a) Xeric Plots Plots XI, X2 and X3 represent Gaultheria-Douglas-fir s i t e s which were x e r i c to very x e r i c submesotrophic s i t e types (Klinka 1976). The major tree species was Douglas-fir with a basal area of 24 m^  on XI, 32 m^  on X2 and 40 m^  on X3. Canopy closure was 30-50%. The under-story was dominated by s a l a l which formed a 50-70% cover. The s i t e s were located on three rocky outcrops, XI and X2 at 110 m and X3 at 130 m elevation. The forest f l o o r , which was 5-8 cm thick and was c l a s s i f i e d as Humimor (Klinka et_ aJL., 1981), was either d i r e c t -l y over bedrock or over a mini Humo-Ferric Podzol, mini phase, formed from a veneer of morraine deposits. b) Mesic Plots The three mesic plots (Ml, M2 and M3) supported a moss-western hemlock-western redcedar community and were c l a s s i f i e d as mesotrophic (Klinka, 1976). They were located at about midslope on two d i f f e r e n t topographic sequences with Ml at 265 m and M2 at 230 m elevation on one slope and M3 at 165 m elevation on the second slope. 37 Canopy closure was 80%. Total basal area was 66 on Ml and M2 and 84 m^  on M3. Douglas-fir was the dominant tree species with a basal area of 24 m^  on Ml, 48 m^  on M2 and 72 m^  on M3. A s i g n i f i c a n t component of western hemlock and western redcedar was also present on these p l o t s . The shrub layer on a l l plots was sparse, although plot Ml had about 20% cover of western hemlock regeneration and plot M2 had some vine maples growing i n the understory. A 70% cover of mosses was present consisting mainly of Hylocomium splendens and Kindbergia  oregana. The s o i l s of plots Ml and M2 were Humo-Ferric Podzols formed from a moderately deep ablation t i l l . Plot M3 also had a Humo-Ferric Podzol, but t h i s was formed from a g l a c i o f l u v i a l deposit. The forest f l o o r was 6-7 cm thick and c l a s s i f i e d as a Humimor (Klinka et^ al_., 1981). c) Hygric Plots Sites Hi, H2, and H3 were Tiarella-Polystichum-western redcedar s i t e s which were hygric and subeutrophic to eutrophic. They were located near the bottom of two slopes: HI at 140 m and H2 at 175 m eleva t i o n on one slope and H3 at 100 m elevation on the second slope. Canopy closure was 40-50% with a t o t a l basal area of 48 m^  on HI, 56 m2 on H2 and 72 m^  on H3. Douglas-fir had a basal area of 32 m^  on HI, 16 rsP- on H2 and 32 m^  on H3. Western redcedar, western hemlock and b i g l e a f maple were also present i n the overstory. The understory was well-developed, having over 50% cover, with vine maple dominating the shrub layer and sword fern the herb layer. There 38 were few mosses present except on H3 where Rhyzomnium glabrescens (Kindb.) Koponen was prominent. The s o i l s on plots HI and H2 were Humo-Ferric Podzols developed from ablation t i l l . The organic horizons were about 11-17 cm thick and were c l a s s i f i e d as a Mullmoder (Klinka et a l . , 1981). Plot H3 also had a Humo-Ferric Podzol but the parent material was a well sorted g l a c i o -marine material. The organic horizons were 7-12 cm thick and c l a s s i -f i e d as a Vermimull (Klinka et_ aJU , 1981). S o i l s on a l l s i t e s were about 1 meter deep with seepage water flowing over a compacted t i l l at that depth. 39 IV. METHODS a) F i e l d P l o ts representative of the x e r i c , mesic and hygric hygrotopes of the dry subzone of the Coastal Western Hemlock Zone (Krajina, 1969) were selected using slope p o s i t i o n and plant associations i d e n t i f i e d on the ground and checked against the c l a s s i f i c a t i o n map developed by Klinka (1976). On each of these s i t e s , three Douglas-fir i n the dominant or codominant canopy class were randomly selected. The number of trees u t i l i z e d was l i m i t e d because of the d i f f i c u l t y i n climbing the large trees on the hygric s i t e s . The height, dbh and sapwood width at breast height of each tree were measured (Appendix 3). Age of trees on the x e r i c and mesic s i t e s was determined from increment cores taken at breast height. Basal area and volume were determined using one v a r i a b l e radius plot on each sample p l o t . Foliage was c o l l e c t e d over a three week period i n May and i n November 1981 by climbing the trees. The crowns were divided approxi-mately into thirds and two branches from the top, middle and bottom of the southwestern aspect were obtained. Because of d i f f i c u l t i e s i n climbing the trees, H3 was not sampled i n May. Spring data were not included i n the analysis but are reported i n Appendix 4. The main axis of each branch was separated into age classes and the needles stripped from the branch within 48 hours of c o l l e c t i o n . These needles were then placed i n paper bags for drying. Wire mesh c o l l e c t o r s with an area of one square meter were used to obtain samples of l i t t e r from one week i n August, October, November and 40 A p r i l from beneath each of the trees. This l i t t e r was placed i n paper bags for drying. b) Laboratory A l l f o l i a g e and l i t t e r was oven-dried at 70°C for 48 hours before being weighed. Weight per 100 needles, t o t a l length of 100 needles and length of internode were a l l measured. I f chemical analysis was not performed immediately, samples were redried for 24 hours before weighing f o r ana l y s i s . Approximately 0.1 g of fo l i a g e was weighed for analysis: the number and length of needles included i n this sample were recorded. A modified micro-Kjeldahl method (Bremner, 1965) was carried out by reflu x i n g each sample i n 5 mL of digestion mixture (100 g potassium sulphate and 1 g selenium i n 1 l i t e r of concentrated sulphuric acid) overnight at about 300°C. The r e s u l t i n g clear solution was then d i l u t e d to 50 mL with d i s t i l l e d water and analysed on a Technicon Autoanalyser for t o t a l nitrogen and phosphorus. c) S t a t i s t i c a l Analysis The data set for f o l i a r nutrients was not complete, therefore random subsampling was done to equalize c e l l sizes using the Michigan Interactive Data Analysis System. Analysis of variance on the r e s u l t i n g nested f a c t o r i a l was car r i e d out using the U.B.C. AN0VAR package. The model used was: 41 Y p ( i j l m ) - u + H i + P ( R ) j ( i ) + C l + Am + H * C i l + H * A i m + C * A l m C4-1) + ^mjd) + C P l j ( l ) + A C H m l i + A C P m l j ( i ) + E p ( l j l m ) Where i s the v a r i a t i o n due to hygrotope P j ( i ) i s v a r i a t i o n between p l o t s w i t h i n hygrotopes C i i s v a r i a t i o n between crown l e v e l s ( t o p , m i d d l e , bottom) AJJJ i s v a r i a t i o n between age c l a s s e s ( c u r r e n t , f i r s t year and o l d e s t ) E p ( i j l m ) i s t n e e r r o r term. The s i g n i f i c a n c e of d i f f e r e n c e s between the means was t e s t e d u s i n g Duncans M u l t i p l e Range T e s t . L i t t e r f a l l d a t a were a n a l y z e d u s i n g a n e s t e d d e s i g n of t r e e s w i t h i n p l o t s w i t h i n h y g r o t o p e s . Only w i n t e r c o l l e c t i o n s were u t i l i z e d because most l i t t e r f a l l o c c u r s a t t h a t time (Kimmins^-, u n p u b l i s h e d data) and the l i t t e r from the s p r i n g c o l l e c t i o n c o n t a i n e d a h i g h p r o p o r t i o n o f g r e e n n e e d l e s . I n t e r n a l c y c l i n g was e s t i m a t e d by c a l c u l a t i n g a b s o l u t e l o s s f o r each t r e e u s i n g e q u a t i o n 2.5: AL = C l - C2 (2.5) where: AL i s the a b s o l u t e l o s s of N o r P ( i n mg/m) C l i s the c o n t e n t ( i n mg/m) of N o r P i n c u r r e n t n e e d l e s C2 i s the c o n t e n t ( i n mg/m) of N o r P i n needle l i t t e r J . P. Kimmins, P r o f e s s o r , F a c u l t y of F o r e s t r y , U.B.C., Vancouver, B.C. 42 Results were reported on a needle length basis because the l i t t e r f a l l contained needles of varying s i z e s , which increases the error of measurement i f the data are reported on a per needle basis. CI was assessed for current f o l i a g e so that retranslocation was estimated over the e n t i r e needle l i f e and not just at senescence. This may be more representative of i n t e r n a l cycling than using the oldest age c l a s s , which i n Douglas-fir contain l e s s than 10% of the f o l i a r biomass ( S i l v e r , 1962). For the c a l c u l a t i o n of absolute l o s s , content i n current needles was averaged over a l l crown l e v e l s because the place of o r i g i n of l i t t e r f a l l could not be determined. Graphs of the absolute loss against CI for each tree ( F i g s . 8 and 9) indicated that a l i n e a r r e l a t i o n s h i p existed between these two variables for both nitrogen and phosphorus. An analysis of variance/ covariance was therefore c a r r i e d out using the U.B.C. ANOVAR program. The model used for th i s analysis was: Y k ( i j ) = u + A. + B j ( i ) + C ( X k ( i j ) - X) + E k ( ± j ) (4.2) where: A^ i s the v a r i a t i o n between hygrotopes B j ( i ) i s the v a r i a t i o n between plots within hygrotopes C regression c o e f f i c i e n t r e l a t i n g X and Y •^k(ij) ^ s t n e content i n current leaves X i s the mean content i n current needles ^ k ( i j ) ^ s t n e e r r o r term. 43 Regression l i n e s were calculated using a least squares method and the s i g n i f i c a n c e of the regression c o e f f i c i e n t s was tested using an F - t e s t . Homogeneity of slopes was tested using an analysis of variance. Differences between adjusted means for absolute loss were evaluated using Duncans Mul t i p l e Range Test. For a l l s t a t i s t i c a l tests, the l e v e l of p r o b a b i l i t y accepted as s i g n i f i c a n t was .05. 44 V. RESULTS AND DISCUSSION a) F o l i a r Nutrients i ) Needle Retention TABLE V. Needle Retention by Hygrotope and Crown Level. Needle Retention Mean S.D. (Years) By Hygrotope Hygric 4.8* (1.2) Mesic 5.1 a (1.3) Xeric 5.3 a (1.5) By Crown Level Top 4.5 a (1.2) Center 5.0a (1.2) Bottom 5.7 b (1.3) Numbers having the same superscript are not s i g n i f i c a n t l y d i f f e r e n t f o r p = .05. The average age of the oldest needles on a l l hygrotopes was f i v e years (current needles counted as one-year old) which i s consistent with previous studies f o r needle retention i n Douglas-fir (Smith, 1972; S i l v e r , 1962). Needle retention was s i g n i f i c a n t l y higher at the bottom of the crown than at the top or center on a l l s i t e s . 45 i i ) Nitrogen The d i s t r i b u t i o n of nitrogen within tree crowns by hygrotope i s given i n Table VI. L i t t e r f a l l i s included for comparison even though i t was not a part of the same analysis of variance. The trends i n nitrogen content per 100 needles and per unit length were very s i m i l a r ; only the l a t t e r w i l l be discussed. Nitrogen concentrations i n needles (Table VI) were a l l within the range reported for Douglas-fir (0.6 -2.3%: Gessel et a l . , 1960). By the c l a s s i f i c a t i o n of Zinke & Stangenberger (1979), f o l i a r nitrogen on a l l three site-types i s above the 70th percentile for Douglas-fir. Neither concentration nor content was s i g n i f i c a n t l y d i f f e r e n t between hygrotopes, although the highest values were found on the hygric and the lowest on the mesic s i t e - t y p e . Between-site differences have been reported for Douglas-fir on good (S.I. = 38 m/50 yrs, probably h y g r i c ) , medium (S.I. = 31 m/50 yrs) and poor (S.I. = 16 m/50 y r s , probably x e r i c ) s i t e s on Vancouver Island (Webber, 1974) where the current and f i r s t - y e a r needles had a s i g n i f i c a n t l y higher nitrogen concentration on the good compared to the medium and on the medium compared to the poor. In that study, no s i g n i f i c a n t d i f f e r e n c e was found between N concentration i n older needles between crown l e v e l s . For both nitrogen content and concentration, f i r s t - o r d e r i n t e r -actions between crown l e v e l and needle age class (Figs. 4 & 5) preclude i n t e r p r e t a t i o n of the data for either of these f a c t o r s . Analysis of the i n t e r a c t i o n using Duncans Multiple Range Test (Table VII) gave an i n d i c a t i o n of the pattern of nitrogen d i s t r i b u t i o n within the crowns of these trees. TABLE VI. Variation in 3 F o l i a r Nitrogen Parameters with Hygrotope, Crown Level and Needle Age. N concentration N per 1000 Needles N per Unit Length ( Z ) (mg/100) (mg/m) Hygrlc Mesic Xeric Hygrlc Mesic Xeric Hygrlc Mesic Xeric Average 1. ,43a 1. .31a 1.38a 6. 87 a 5. 80 a 6.50a 3.38a 3.00a 3.09 a (S.D) (0.24) (0. .53) (0.54) (2. 30) (2. .10) (0.46) (1.03) (0.92) (0.97) Live Foliage By Age Class* F i r s t year needles I. .52 1. .35 1.48 7. 06 5. 65 6.47 3.42 2.82 3.04 (S.D.) (0.23) (0. .18) (0.20) (3. ,05) (2. .62) (3.02) (1.27) (1.09) (1.23) Second year needles 1. 53 1. ,38 1.44 6. 95 6. 11 6.52 3.42 3.10 3.09 (S.D.) (0. .19) (0, .20) (0.16) (2. ,31) (2. .26) (2.33) (1.04) (0.97) (0.88) Oldest needles 1. ,25 1, .19 1.21 6. 59 5. .63 6.56 3.29 3.00 3.12 (S.D.) (0. 19) (0. .13) (0.16) (!• ,65) (1. .40) (2.00) (0.76) (0.63) (0.78) L i t t e r f a l l 0. 67 a 0. ,55b 0.64a 2. 20 a 1. 55 b 2.02 a 1.20a 0.91 b 1.18a (S.D.) (0. 12) (0. .10) (0.11) (0. 51) (0.31) (0.41) (0.23) (0.17) (0.32) By Crown Level* Top 1. 48 1. 36 1.42 8. 73 7. 90 7.85 4.22 3.88 3.74 (S.D.) (0. .22) (0.19) (0.23) (1. 44) (1. ,67) (2.37) (0.60) (0.64) (0.89) Center 1. 41 1. ,30 1.36 7. 26 5. 26 6.79 3.58 2.78 3.14 (S.D.) (0. ,24) (0. ,14) (0.20) (2. 10) (1. 41) (2.48) (0.80) (0.65) (0.93) Bottom 1. 41 1. .26 1.36 4. 60 4. 24 4.90 2.32 2.27 2.37 (S.D.) (0. 26) (0.23) (0.19) (1. 41) (1. 40) (1.43) (0.59) (0.60) (0.52) Values having the same superscript are not s i g n i f i c a n t l y d i f f e r e n t (p = .05) * Interactions exist between crown leve l and needle age class ( F i g . 4 & 5) and therefore no s t a t i s t i c s given. 4> ON 4,7 Figure 4 . Interaction between needle age and crown, l e v e l for f o l i a r N concentration. 48 , 9-, o o 60 e CO CO i — i T3 CD QJ S 3 O O u 5 P. CROWN LEVELS — Top Center Bottom Current 1-year Needle Age Olclest 4.5-1 4.0 A 3.5H 60 e u 3 0 60 J , U a c 2.5 2.0 -J r 71—/A 1-year Current 1-year Oldest Needle Age Figure 5. Interaction between needle age and crown l e v e l for f o l i a r N content. TABLE VII. N D i s t r i b u t i o n Within Tree Crowns. Crown Needle N concentration N per 100 needles N per unit length Level " Age (% + S.D.) (mg/100 + S.D.) (mg/m) Top Current 1.58a + 0.16 8.93 a + 2.10 4.21 a + 0.85 1-year 1.46b + 0.16 8.21 a + 1.78 4.00 a + 0.70 Oldest 1.22d + 0.16 7.35 b + 1.46 3.64 b + 0.56 Center Current 1.41 b c + 0.19 6.32c + 2.60 3.04° + 1.0 1-year 1.46b + 0.17 6.67 b c + 2.21 3.24c + 0.87 Oldest 1.21d + 0.15 6.63c + 1.74 3.22 c + 0.69 Bottom Current 1.37° + 0.23 3.95 e + 1.50 2.03 e + 0.59 1-year 1.43 b c + 0.24 4.69 d + 1.34 2.37 d + 0.51 Oldest 1.22d + 0.18 5.10d + 1.18 2.57 d + 0.48 Values with the same superscript are not s i g n i f i c a n t l y d i f f e r e n t for p = .05. Data for a l l three hygrotopes are pooled. 50 At the top of the crown, there was a steady decrease i n the con-centration of nitrogen with needle age: the three age classes were s i g n i f i c a n t l y d i f f e r e n t from each other. At the center and bottom of the crown, nitrogen concentration i n the f i r s t - y e a r needles was higher than i n current needles ( s i g n i f i c a n t l y only at the bottom) but a s i g n i f i c a n t decrease occurred between f i r s t - y e a r and oldest needles. In Douglas-fir, the highest concentration of nitrogen has been reported to be i n the f i r s t - y e a r needles (Webber, 1974; Lavender & Carmichael, 1966; Beaton et a l . , 1964). Brackett (1964) concluded that the maximum concentration of nitrogen could occur i n any of the l a s t three years' needles. Webber (1974) found that the trend depended on s i t e , as f o l i a r nitrogen remained high u n t i l the t h i r d year on poor s i t e s , while i t dropped a f t e r the f i r s t year on medium and good s i t e s . Although the highest nitrogen concentration occurred at the top of the crown i n "all age c l a s s e s , only i n the current needles was t h i s difference s i g n i f i c a n t . This trend of decreasing concentration with decreasing height i n crown i s consistent with l i t e r a t u r e reports (Lavender & Carmichael*, 1966, Brackett, 1964), although Brackett (1964) found that for an open grown Douglas-fir tree, nitrogen concentration i n current needles was constant throughout the crown. Changes i n nitrogen content are more important for an under-standing of i n t e r n a l c y c l i n g over the l i f e s p a n of a needle than are changes i n nitrogen concentration which confound a l t e r a t i o n i n dry weight with nutrient t r a n s f e r s . The difference i n the pattern of d i s t r i b u t i o n within crowns shown by Figures 4 and 5 may indicate that the two methods of expressing r e s u l t s do exhibit separate trends. For 51 a l l age classes, the nitrogen content at the top, center and bottom were s i g n i f i c a n t l y d i f f e r e n t , with the highest at the top and lowest at the bottom. There was a steady, s i g n i f i c a n t drop i n nitrogen content with age of needles at the top of the tree (Table VII), while content remained constant i n the center and rose s i g n i f i c a n t l y with needle age at the bottom of the crown. If the differences between age classes are taken as an i n d i c a t i o n of changes i n nitrogen content over the l i f e of a needle, these r e s u l t s indicate that each crown l e v e l has a d i s t i n c -t i v e pattern of nitrogen movement. This pattern may be a r e s u l t of the greater requirements for nutrients i n new growth of the upper portion of the crown as compared to the lower portion. The decrease i n nitrogen during the l i f e of the needle does not appear to be as great as that occurring i n the year before l i t t e r f a l l , but the method u t i l i z e d i n t h i s study was not s e n s i t i v e enough to give a good estimate of t h i s t r a n s f e r , as the oldest needles should have been compared to those i n the f i f t h (needle age) whorl above them. Also, a great deal of v a r i a b i l i t y was noted between branches i n the pattern of nitrogen d i s t r i b u t i o n between age classes. Ideally, one cohort of needles should be followed throughout i t s l i f e to eliminate the e f f e c t s of year-to-year v a r i a t i o n i n content of current needles. Estimation of the t o t a l nitrogen content of each age c l a s s within the crown would reduce the problems due to crown l e v e l which are encountered with the i n d i v i d u a l l e a f a n a l y s i s . A s i g n i f i c a n t i n t e r a c t i o n between crown l e v e l and p l o t s - w i t h i n -hygrotopes was noted (Appendix 6). This i n t e r a c t i o n appears to r e f l e c t tree-to-tree v a r i a t i o n i n nitrogen d i s t r i b u t i o n within the crown. 52 Lavender and Carmichael (1966) and Brackett (1964) found s i m i l a r between-tree d i f f e r e n c e s . For l i t t e r the analysis of variance of nitrogen content and con-centration showed that both were s i g n i f i c a n t l y lower (p = .05) on the mesic than the hygric or x e r i c s i t e s (Table VI). Gessel and Turner (1976) reported an average needle l i t t e r concentration of 0.66% (Douglas-fir ranging i n age from 22-160 years o l d ) , which i s close to the values on the hygric (0.67%) and x e r i c (0.64%) s i t e s . The concentration of nitrogen i n l i t t e r on the mesic plots (0.55%) approached that found by Turner and Olson (1976) for Douglas-fir i n Washington (0.52%). Lower values of 0.37-0.43% occurred i n 450-year-old stands i n Oregon (Abee & Lavender, 1972). i i i ) Phosphorus The d i s t r i b u t i o n of phosphorus between hygrotopes i s given by age c l a s s and crown l e v e l i n Table VIII. Values for l i t t e r f a l l were i n -cluded for comparison although they were not part of the same analysis of variance. As with nitrogen, the trends i n phosphorus content were si m i l a r whether measured per 100 needles or per unit length; therefore, only the l a t t e r i s discussed. The concentration of phosphorus i n f i r s t - y e a r needles on the hygric p l o t s (Table VIII) was within the normal range for Douglas-fir (0.11-0.25%: Gessel et a l . , 1960) and above the 90th pe r c e n t i l e (Zinke & Stangenberger, 1979) for Douglas-fir. Concentrations were above t h i s range on the x e r i c and mesic p l o t s . For phosphorus concentration, a second-order i n t e r a c t i o n between hygrotope, needle age and crown l e v e l TABLE VIII. Variation i n Three F o l i a r Phosphorus Parameters with Hygrotope, Crown Level and Needle Age. P Concentration P per 100 Needles P per Unit Length W (mg/100) (mg/m) Hygric Mesic Xeric Hygric Mesic Xeric Hygric Mesic Xeric Average* 0.19 0.28 0. 30 0.91 a 1.20b 1.40b 0.45 a 0.63 b 0.65 b (S.D.) (0.06) (0.03) (0.10) (0.36) (0.53) (0.54) (0.16) (0.24) (0.22) Live Foliage by Age Class* F i r s t year needles 0.23 0.29 0. 31 1.06 1.20 1. .28 0.52 0.60 0.60 (S.D.) (0.05) (0.07) (0. 06) (0.44) (0.66) (0, •51) (0.20) (0.26) (0.20) Second year needles 0.20 0.31 0. 33 0.89 1.31 1, .43 0.44 0.67 0.68 (S.D.) (0.05) (0.08) (0. 10) (0.33) (0.50) (0, •51) (0.15) (0.22) (0.20) Oldest needles 0.15 0.25 0. 27 0.77 1.15 1. .42 0.38 0.62 0.68 (S.D.) (0.04) (0.10) (0. 11) (0.20) (0.41) (0, .59) (0.10) (0.23) (0.26) L i t t e r f a l l 0.10a 0.21 b 0. 30 c 0.28a 0.61 b 0. ,93c 0.16 a 0.35 b 0.55 c (S.D.) (0.03) (0.09) (0. 11) (0.11) (0.23) (0, .28) (0.61) (0.14) (0.18) By Crown Level* Top 0.19 0.25 0. 26 1.13 1.50 1. .37 0.54 0.72 0.66 (S.D.) (0.06) (0.10) (0. 07) (0.37) (0.61) (0.45) (0.17) (0.27) (0.18) Center 0.18 0.30 0. 31 0.92 1.24 1. .54 0.46 0.65 0.71 (S.D.) (0.05) (0.08) (0.08) (0.33) (0.50) (0. .64) (0.15) (0.23) (0.25) Bottom 0.21 0.29 0. 34 0.67 0.97 1. .21 0.34 0.52 0.59 (S.D.) (0.05) (0.06) (0. U ) (0.18) (0.33) (0.46) (0.08) (0.16) (0.21) Values having the same superscript are not s i g n i f i c a n t l y d i f f e r e n t (p = .05) * Interactions exist between crown level and needle age class (F i g . 6 & 7) therefore no s t a t i s t i c s given. 54 precludes s t a t i s t i c a l i n t e r p r e t a t i o n of the r e s u l t s of any of the three f a c t o r s , and therefore only a d e s c r i p t i o n of trends i s given. Phos-phorus concentration appeared to be lower on the hygrlc s i t e s than on the mesic or x e r i c (Table V I I I ) . On the hygric s i t e , there was a drop i n phosphorus concentration from current to oldest f o l i a g e at a l l crown l e v e l s ( F i g . 6). On the mesic and x e r i c s i t e s , phosphorus concentrations rose i n the center and bottom l e v e l s between the current and f i r s t year, and then dropped as needles aged. The changes i n concentration over needle age were q u a l i t a t i v e l y i n agreement with other studies. On s i m i l a r site-types on the Sechelt Peninsula, phosphorus was found to r i s e with needle age on x e r i c s i t e s and decrease with age on hygric s i t e s (Thomae, 1981). Webber (1974), who sampled only one crown l e v e l (middle), found that on a good s i t e phosphorus decreased s t e a d i l y with needle age, on a medium i t rose i n the f i r s t year and held steady throughout the other age classes while on a poor s i t e phosphorus concentration rose with needle age. A peak of phosphorus concentration i n f i r s t - y e a r needles has been noted by Lavender & Carmichael (1966) and Brackett (1964). The d i s t r i b u t i o n within crown l e v e l s changed with hygrotope and needle age c l a s s . Lavender and Carmichael (1966) found that phos-phorus concentration increased with decreasing height i n crown, but i n my study t h i s trend only occurred i n current needles on the hygric and mesic s i t e s . Both a decline i n phosphorus concentration with increasing height i n crown (as found i n the older age classes on x e r i c and mesic) and a maximum concentration i n the center (as found i n the Figure 6. Interaction between crown"level, tieedle age and hygrotope f o r f o l i a r P concentration. 56 current needles on x e r i c ) have been reported i n Douglas-fir (Brackett, 1964). There were no interactions involving hygrotope for phosphorus con-tent of needles. Needles of trees on the hygric plots had a s i g n i f i -cantly lower phosphorus content than did those on the x e r i c and mesic plot s (Table V I I I ) . As with nitrogen, d i s t r i b u t i o n of phosphorus content within the crown was d i f f e r e n t from that shown by concentration. The change i n content with needle age and crown l e v e l i s shown i n Figure 7. In the current and f i r s t - y e a r needles, phosphorus content decreased s i g n i f i -cantly with height-in-crown (Table IX). For the oldest age c l a s s , however, there was no s i g n i f i c a n t difference between crown l e v e l s . The pattern of d i s t r i b u t i o n of phosphorus content within the crown (F i g . 7) was very s i m i l a r to that of nitrogen content ( F i g . 5). The needles at the bottom of the crown showed an increase i n phosphorus content with age, those i n the middle showed no s i g n i f i c a n t differences between age classes and those at the top showed a s i g n i f i c a n t decrease i n phosphorus content with age. If t h i s pattern i s taken to represent that for needle l i f e span, tr a n s l o c a t i o n i n and out of needles appears to be balanced d i f f e r e n t l y at the three crown l e v e l s . As with nitrogen, there was a s i g n i f i c a n t i n t e r a c t i o n between crown l e v e l and sites-within-hygrotope for phosphorus (Appendix 6). Because of the small number of trees per plot (3), t h i s probably r e f l e c t e d a tree-to-tree v a r i a t i o n i n the d i s t r i b u t i o n of phosphorus within the crown. This v a r i a t i o n i n Douglas-fir has also been observed by Lavender and Carmichael (1966) and Brackett (1964). 57 1.7-1 1.5J \ o o bO B cn CD •H X ) CD CD S3 O O 1.3" M 01 P-i 0.9' 0.7-1 \ CROWN LEVELS — . — Top " ' Center Bottom \ \ \ \ Current 1-year" Oldest Needle Age 0.8-, 8 u' 60 c CD 0.6H c CD & 0.5" 0.4-J V Current 1-year Needle Age ^Oldest Figure 7. Interaction between needle age and crown l e v e l f o r f o l i a r P content. TABLE IX. P D i s t r i b u t i o n Within Tree Crowns Crown Needle P per 100 needles P per unit length Level Age (mg/100 + S.D.) (mg/m) Top Current 1.56 a + 0.46 0.73 a + 0.19 1-year 1.35 b + 0.51 0.67 b + 0.24 Oldest 1.06 c d + 0.42 0.53 d e + 0.19 Center Current 1.22 b c + 0.55 0.59 c d + 0.21 1-year 1.28b + 0.56 0.62 c d + 0.24 Oldest 1.20 b c + 0.59 0.61 b c d + 0.27 Bottom Current 1.37e + 0.23 0.40f + 0.11 1-year 1.43 d + 0.24 0.51 e + 0.16 Oldest 1.22 c d + 0.18 0.55 c d e + 0.26 Values with the same superscript are not s i g n i f i c a n t l y d i f f e r e n t (P = .05) 59 Both the concentration and content of phosphorus i n l i t t e r f a l l were s i g n i f i c a n t l y d i f f e r e n t between s i t e s (Table IX). The concentra-t i o n on the hygric plots (0.10%) was comparable to that found i n a 450-year-old stand i n Oregon (0.087-0.12%: Abee & Lavender, 1972) and a number of stands i n Washington (0.09%: Gessel & Turner, 1976). The phosphorus concentration i n l i t t e r on the mesic (0.21%) and xeric (0.30%) plots was higher than that i n either of the other two studies. b) Internal Cycling i ) Nitrogen The r e l a t i o n s h i p between the absolute loss of nitrogen per unit needle length and the content i n current needles within each tree i s shown i n Figure 8. The slopes of these l i n e s indicate that above a c e r t a i n l e v e l , almost a l l a d d i t i o n a l nitrogen i s mobilized from needles on a l l s i t e types. The intercept with the X-axis represents an e s t i -mation of t h i s base l e v e l . The values of 0.89 mg/m for the hygric, .79 mg/m for the mesic and .87 mg/m for the xeric s i t e s are lower than the actual values found for l i t t e r f a l l of 1.2 mg/m, 0.91 mg/m and 1.18 mg/m (Table VI) on the respective site-types. The mobilization of almost a l l the nitrogen above a c e r t a i n l e v e l may indicate an increase i n e f f i c i e n c y of retranslocation as content i n new needles increases. Staaf (1982) found that between s i t e s , absolute loss of nitrogen was l i n e a r l y related to i t s concentration i n green leaves (R^ = .81) of European beech. As the slope of t h i s l i n e was s i g n i f i c a n t l y greater than the average e f f i c i e n c y he concluded that e f f i c i e n c y rose with increasing concentration i n green f o l i a g e . 60 0.0-1 i , 1 , , , . 1.5 2.0 2.5 3.0 3.5 4.0 4.5 N i n Current Needles (mg/m)-Figure 8 . Relationship between absolute lo s s of N and N content in current needles f o r trees growing on x e r i c , mesic and hygric s i t e s . 61 However, absolute loss includes both retranslocation and leaching losses. M i l l e r et a l . (1976a) have noted a p o s i t i v e c o r r e l a t i o n between f o l i a r nitrogen concentrations and the amount of nitrogen leached from needles of Corsican pine. It i s possible, therefore, that part or a l l of the increase i n absolute loss with content i n current needles i s due to leaching. The average e f f i c i e n c y of i n t e r n a l nitrogen c y c l i n g was high on a l l s i t e s (61% on the hygric and xeric and 69% on the mesic s i t e s ) as may be expected for an e s s e n t i a l element i n short supply (Whittaker et_ a l . , 1979). These values for e f f i c i e n c y are within the commonly found range for trees (Table X). The e f f i c i e n c y of i n t e r n a l c y c l i n g i n Douglas-fir i n Washington reported by Turner (1975) was lower than that found i n my study, but since Turner's study included annual leaching losses i n the c a l c u l a t i o n of i n t e r n a l c y c l i n g , the amount attributed to r e t r a n s l o c a t i o n would have been reduced. The s i t e means were adjusted for differences i n the nitrogen con-tent of current needles using analysis of covariance. The adjusted mean for r e t r a n s l o c a t i o n was s i g n i f i c a n t l y higher on the mesic hygro-tope than those on the x e r i c or hygric hygrotope (Table XI) i n d i c a t i n g that for a given content of nitrogen i n current needles a larger amount i s retranslocated on mesic than hygric or xeric site-types. The mesic plots also have the lowest average nitrogen content i n needles (Table XI). Increased i n t e r n a l c y c l i n g on the site-type with lower nitrogen concentrations contrasts with the increased e f f i c i e n c y of r e t r a n s l o -c a t i o n from needles of higher nitrogen content within site-types. If 62 TABLE X. E f f i c i e n c y of Retranslocation: Comparison with Other Studies. Nitrogen Phosphorus Reference (%) (%) Douglas-fir: hygric 61 73 This study mesic 69 35 xeri c 61 1 Douglas-fir: 42 yr 42 46 Turner, 1975 49 yr 36 63 L o b l o l l y pine 45 66 Switzer & Nelson, 1972 Scots pine 69 81 Malkonen, 1975 Evergreens-bog 45-71 45-75 Small, 1972 Evergreens-nonbog 51-73 66-98 Deciduous-bog 23-68 46-80 Dec iduous-nonbog 1-52 4-71 Scots pine: poor s i t e 77 - Stachurski & Zimka Hornbeam: poor s i t e 64 - 1975 good s i t e 37 -Oak: poor s i t e 63 -good s i t e 45 -Alder good s i t e 5 -Beech 72 70 Staaf, 1982 Chestnut Oak: better 80 65 Ostman & Weaver, poorer 76 61 1982 Eucalyptus - 60 A t t i w i l l , 1980 Eastern cottonwood 74 66 Baker & Blackmon, 1977 Mixed hardwoods 51 61 Ryan & Borman, 198! Pin cherry 57 59 L o b l o l l y pine 52 47 Wells & Metz, 1963 upper crown 55 52 mid crown 52 46 lower crown 47 45 Pine 43 - Rapp et^ a l . , 1979 Subalpine conifers 54 59 Turner & Singer, 1' TABLE XI. Mean Absolute Loss of Nitrogen Adjusted for Differences i n Content of Current Needles Hygrotope Absolute N Content Loss of N Current Needles (mg/m) (mg/m) Hygric (S.D.) Mesic (S.D.) Xeric (S.D.) 1.83 (0.49) b 2.07 (0.36) 1.82 a (0.70) 3.38 a 3.00 3.09 a Numbers having the same superscript are not s i g n i f i c a n t l y d i f f e r e n t (p = .05) 64 both these two types of v a r i a t i o n can be both a t t r i b u t e d to retrans-l o c a t i o n (and not to leaching) they may indicate two types of responses to higher f o l i a r nutrient content. Although the l i t e r a t u r e does not us u a l l y r e l a t e i n t e r n a l c y c l i n g d i r e c t l y to concentration i n f o l i a g e , arguments for both of these responses have been advanced. An increased e f f i c i e n c y at higher f o l i a r l e v e l s i s generally found i n the studies on annual cycles of r e t r a n s l o c a t i o n . These indicate that when nitrogen i s i n greater supply, i t accumulates i n leaves and then i s mobilized during the growing season (Waring & Fr a n k l i n , 1979; Mooney & Rundel, 1979). This trend was also found i n a g r i c u l t u r a l plants (Williams, 1955). Conversely, the l i t e r a t u r e on between-site differences i n i n t e r n a l c y c l i n g gives t h i s process a r o l e i n nutrient conservation on poor s i t e s (which often implies lower f o l i a r concentrations) where re-translocation i s increased to meet annual requirements (Gosz, 1981). Staaf^ (pers. comm.) reported that no c o r r e l a t i o n existed between site-type and absolute los s from senescing beech leaves i n Swedish forests but he has suggested possible reasons for the d i f f e r -ences with my study. He suggests that the two tree species may have d i f f e r e n t c a p a c i t i e s to change biochemical c y c l i n g : Douglas-fir may be more e a s i l y modified i n t h i s c h a r a c t e r i s t i c than beech. However, he also notes that the comparison between the studies may have been affected by the differences i n the c l a s s i f i c a t i o n systems and the method of measurement of absolute l o s s . My study was c a r r i e d out over 2 H. Staaf, Department of Plant Ecology, University of Lund, Sweden. 65 a limited geographical area, and i t i s possible that a wider survey would show more v a r i a t i o n within hygrotopes. The contribution of leaching to differences i n the absolute loss of nitrogen between s i t e s i s not c l e a r . M i l l e r e_t a l . (1976a) found that nitrogen loss i n throughfall was related to the concentration i n older needles. Therefore, leaching losses possibly do not d i f f e r between hygrotopes because the nitrogen concentration i n older needles was not s i g n i f i c a n t l y d i f f e r e n t . However, Tukey (1970) has noted that a g r i c u l t u r a l plants under stress had increased leaching losses: on the x e r i c s i t e s , where trees may experience moisture s t r e s s , leaching losses are possibly greater than on the moister s i t e s . This process would tend to accentuate the difference i n biochemical c y c l i n g between mesic and xeric s i t e s , so the i n c l u s i o n of leaching losses would not have altered the trend of Table XI. A difference i n nitrogen a v a i l a b i l i t y was the most l i k e l y factor a f f e c t i n g i n t e r n a l c y c l i n g of nitrogen on these s i t e s . There were a number of reasons to suspect that nitrogen a v a i l a b i l i t y was higher on the hygric than the mesic or x e r i c site-types. The mor humus form found on the xeric and mesic plots indicates slower decomposition and mineralization than the moder or mull humus found on the hygric p l o t . L i t t e r turnover rates on these hygrotopes have been estimated by DeCatanzaro (1978), who found xeric and mesic s i t e s did have s i g n i f i -c a n tly lower turnover rates than hygric site-types. The return of nitrogen to the forest f l o o r i n aboveground l i t t e r on those s i t e s was also higher on the hygric (19.4 +5.4 kg/ha/yr) than on the mesic (9.9 +1.1 kg/ha/yr) or the x e r i c (9.6 +1.3 kg/ha/yr) s i t e s 66 (Kaffanke, 1982). Total nitrogen i n the mineral and organic layers increases from x e r i c to hygric s i t e s . The average amount of t o t a l nitrogen for a number of s i t e s at the U.B.C. Research Forest was 9110 kg/ha (S.D. = 3560) on x e r i c s i t e s , 12,190 kg/ha (S.D. = 3400) and 26,410 kg/ha (S.D. = 16,970: F e l l e r 3 , pers. comm.). The increase i n nitrogen i n t e r n a l c y c l i n g on the mesic plots com-pared to that of the hygric plots may be due to a reduction i n a v a i l -able nitrogen. This supports r e s u l t s reported for European hardwood forests (Stachurski and Zimka, 1975) where trees growing on a s i t e r i c h i n organic matter exhibited lower e f f i c i e n c y of i n t e r n a l c y c l i n g than those on a poor s i t e . However, Staaf (1982) concluded that there was no i n d i c a t i o n that i n t e r n a l c y c l i n g was greater i n beech forests as s o i l f e r t i l i t y decreased. Perhaps one s i m i l a r i t y between the hygric s i t e s sampled i n t h i s study and the r i c h e r s i t e s studied by Stachurski and Zimka (1975) i s the increase i n nitrogen c a p i t a l created by a l d e r . In the l a t t e r study, black alder was found growing on the r i c h e r s i t e s and providing l i t t e r high i n nitrogen content. In the P a c i f i c Northwest, secondary succession on hygric s i t e s usually involves a stand of red alder (Alnus rubra Bong.) which i s succeeded by the Douglas-fir, western hemlock Tsuga heterophylla ((Raf.) Sarg.), western redcedar (Thuja p l i c a t a Donn ex D. Don i n Lamb.) and b i g l e a f maple (Acer macrophyllum Pursh.) community as c u r r e n t l y found on the hygric p l o t s . M.C. F e l l e r , Assistant Professor, Faculty of Forestry, University of B r i t i s h Columbia, Vancouver, B.C. 67 Much of the nitrogen added to the s o i l by the red alder i s retained i n the ecosystem ( C o l e 4 , pers. comm.) and t h i s probably explains the higher nitrogen status as compared to s i t e s regenerating to non-n i t r o g e n - f i x i n g species. There i s no i n d i c a t i o n that the beech s i t e s studied by Staaf (1982) had the benefit of t h i s a d d i t i o n a l nitrogen, and therefore the differences i n nitrogen status between the beech stands may have been too small to a f f e c t i n t e r n a l c y c l i n g s i g n i f i c a n t l y . Stachurski and Zimka (1975) found a greater difference i n the e f f i c i e n c y of i n t e r n a l c y c l i n g i n hardwoods growing on s i t e s of d i f f e r -ent f e r t i l i t y than was found i n my study of Douglas-fir (Table X). It i s possible that on the hygric s i t e s the demand r e s u l t i n g from high pro d u c t i v i t y increases the importance of nitrogen i n t e r n a l c y c l i n g over that usually found where nitrogen a v a i l a b i l i t y i s high. Reduced a v a i l a b i l i t y of nitrogen- does not explain the difference i n biochemical c y c l i n g between the mesic and x e r i c s i t e s . The lowered e f f i c i e n c y of i n t e r n a l c y c l i n g on the x e r i c s i t e s i s probably related to the very poor s i t e q u a l i t y . The moisture l i m i t a t i o n on growth and the r e s u l t i n g slow increase i n biomass mean that nitrogen demand i s l e s s , while supply i n terms of rates of l i t t e r f a l l and decomposition may equal or exceed that of the mesic s i t e . The nutrient status of a tree i s not only determined by s i t e nitrogen a v a i l a b i l i t y , but by the capacity of the s i t e to supply annual requirements. The x e r i c s i t e s had a very low moisture-holding capacity as s o i l depths were les s than ^ D.W. Cole, Professor, College of Forest Resources, University of Washington, S e a t t l e . 68 25 cm and i n some places there was no mineral s o i l . It i s probable that moisture deficiency was the major l i m i t a t i o n to growth on these s i t e s . While moisture stress occurs during the growing season, the mild, wet winters experienced i n the P a c i f i c Northwest promote decom-p o s i t i o n and uptake which may therefore provide a higher proportion of nutrient demand than on the f a s t e r growing mesic s i t e s . Interference with the process of retranslocation due to the poor s i t e conditions i s also a possible explanation for the low e f f i c i e n c y of i n t e r n a l c y c l i n g observed. Ostman and Weaver (1982) found lower i n t e r n a l c y c l i n g i n chestnut oak growing on a very poor ridgetop s i t e as opposed to a s l i g h t l y better s i t e , and proposed several explan-ations for the reduction. Phloem transport may have been decreased on poor s i t e s by lower carbohydrate production, K status or P status. The l a t t e r i s u n l i k e l y to occur on my xeric p l o t s , as the P concentration of needles (Table VIII) indicates adequate n u t r i t i o n . An increase i n the amount of s t r u c t u r a l material deposited i n leaves (Ostman & Weaver, 1982) may also explain the reduced i n t e r n a l c y c l i n g on the poor s i t e s , as t h i s would l i m i t the mobile nitrogen available for transport. i i ) Phosphorus The r e l a t i o n s h i p between the absolute loss of phosphorus per unit needle length and the content i n current needles i s shown i n Figure 9. The greater v a r i a b i l i t y when compared with r e s u l t s for nitrogen ( F i g . 8) was also found by Staaf (1982). The slopes of the l i n e s indicate that above a c e r t a i n base l e v e l , a l l a d d i t i o n a l P i s retranslocated from needles. This base l e v e l d i f f e r e d between hygrotopes and can be 69 • Hygric Y = -.15 + .98X R*=.82 • Mesic Y = -.35 +• • 99X R,=.58 • Xeric Y = -.58 + 1.06X R =.96 0.3 0.4 0.5 0.6 0.7 0.8 P i n Current Needles (mg/m) Figure 9. Relationship between absolute l o s s of P and P content in current needles for trees growing on x e r i c , mesic and hygric s i t e s . 70 estimated from the intercepts on the X-axis. They were: 0.15 mg/m for the hygric, 0.35 mg/m for the mesic and 0.58 mg/m for the xeric s i t e s , which are i d e n t i c a l to the actual values for l i t t e r f a l l reported i n Table VIII. As with nitrogen, the mobilization of a l l phosphorus above t h i s base l e v e l may indicate an increase i n e f f i c i e n c y of retranslocation from needles with higher contents of phosphorus. This trend could also r e s u l t i f higher leaching losses occur from needles with higher concen-t r a t i o n s . However, no such c o r r e l a t i o n was found for Corsican pine ( M i l l e r et a l . , 1976a). The e f f i c i e n c y of i n t e r n a l c y c l i n g on the hygric s i t e s (73%) i s i n the high range of the values that have been reported (Table X). The values for the mesic (35%) and xeric (1%) s i t e s are lower than In most studies. The s i t e means adjusted for content i n current f o l i a g e are a l l s i g n i f i c a n t l y d i f f e r e n t from each other (Table XII). This indicates that for a given i n i t i a l needle phosphorus content, a tree on a hygric s i t e retranslocates more P before l i t t e r f a l l than a tree on a xeric or mesic s i t e . Staaf (1982) found s i m i l a r between-site differences i n e f f i c i e n c y , as s i t e s with higher phosphorus concentrations i n leaves had lower P r e t r a n s l o c a t i o n and these tended to be the poorer s i t e s . A decrease i n i n t e r n a l c y c l i n g of phosphorus i n chestnut oak growing on a poorer s i t e was also found by Ostman and Weaver (1982). The only case where phosphorus re t r a n s l o c a t i o n apparently increased on poor s i t e s was reported from A u s t r a l i a (Florence & Chuong, 1974) where s o i l s are low i n a v a ilable phosphorus. 71 TABLE XII. Mean Absolute Loss of Phosphorus Adjusted for Differences i n Content of Current Needles Hygrotope Absolute P Content N/P Loss of P Current Needles Current Needles (mg/cm) (mg/cm) Hygric 0.40 a 0.45 a 7.5 (S.D.) (0.08) Mesic ' 0.20 b 0.63 b 4.8 (S.D.) (0.14) Plot 1 0.19 Plot 2 0.30 Plot 3 0.09 Xeric 0.01 c 0.65 b 4.8 (S.D.) (0.15) Numbers having the same superscript are not s i g n i f i c a n t l y d i f f e r e n t (P = -05) 72 The r e l a t i o n s h i p between absolute loss and i n i t i a l needle content of phosphorus was d i f f e r e n t for trees within a site-type than for those growing on d i f f e r e n t s i t e - t y p e s . Within a site-type, e f f i c i e n c y was higher with increasing phosphorus content of current needles. Between site-t y p e s , e f f i c i e n c y was higher with lower P concentration (hygric vs. mesic and xe r i c ) but also changed s i g n i f i c a n t l y when content did not change (mesic vs. x e r i c ) . Staaf (pers. comm.) did not fi n d any s i g n i f i c a n t c o r r e l a t i o n of site-type to phosphorus i n t e r n a l c y c l i n g i n beech. As discussed for nitrogen (section i ) , i t i s possible that differences between the species or the s i t e s studied account for the descrepancy with my r e s u l t s . The i n c l u s i o n of leaching losses i n the c a l c u l a t i o n of phosphorus i n t e r n a l c y c l i n g would be expected to reduce further the portion of absolute loss attributed to retr a n s l o c a t i o n on the xeric plots because possible moisture stress on xe r i c s i t e s would increase leaching (Tukey, 1970). M i l l e r et a l . (1976a) did not find f or phosphorus the re l a t i o n s h i p between concentration i n needles and leaching that was noted for nitrogen. The r e l a t i o n s h i p between biochemical c y c l i n g of phosphorus and hygrotope may r e f l e c t an increase i n phosphorus status going from hygric to xeric s i t e s . There are several reasons to expect that phosphorus a v a i l a b i l i t y may increase from hygric to mesic to xer i c s i t e s . S o i l data f o r a number of si t e s at the U.B.C. Research Forest showed extractable phosphorus averaged 120 kg/ha (S.D. = 69) on the xeric s i t e s , 175 kg/ha (S.D. = 97) .on the mesic s i t e s and 40 kg/ha (S.D. = 42) on the hygric s i t e s ( F e l l e r , pers. comm.). Roots were 73 observed to be i n contact with bedrock i n places and weathering of the q u a r t z d i o r i t e bedrock, which contains .24% P2O10 ( F e l l e r , pers. comm.), may be a source of phosphorus on the xeric s i t e s . L i t t e r f a l l on the x e r i c s i t e s was also high i n phosphorus, and the t o t a l return of phosphorus was 2.1 kg/ha/yr on xeric s i t e s , 1.8 kg/ha/yr on the mesic s i t e and 1.4 kg/ha/yr on the hygric s i t e s (hygric was s i g n i f i c a n t l y d i f f e r e n t from x e r i c : Kaffanke, 1982). It i s also possible that on the xeric p l o t s , lower demand or interference with phloem transport (as discussed i n section i under nitrogen i n t e r n a l c y c l i n g ) contributed to the reduced P r e t r a n s l o c a t i o n as compared to the mesic p l o t s . The between-site differences do not appear to be as c l o s e l y related to concentration i n current needles as was the case for nitrogen. On the xeric and mesic s i t e s , needles had s i m i l a r phosphorus concentrations but s i g n i f i c a n t l y d i f f e r e n t i n t e r n a l c y c l i n g . Staaf (1982) also found the r e l a t i o n s h i p between absolute loss and concentra-t i o n i n green f o l i a g e l e s s s i g n i f i c a n t for phosphorus (R2 = .28) than for nitrogen (R^ = .81). Internal c y c l i n g may be a mechanism for maintaining the optimum r a t i o of nutrients i n new tissues through control of retranslocation to older tissues (Ingestaad, 1974). The N/P r a t i o s of current needles were 7.5 on the hygric and 4.8 on the mesic and xeric s i t e s (Table XII ) . The difference i n i n t e r n a l c y c l i n g between xeric and mesic s i t e s appeared to maintain a r a t i o of 4.8, which may indicate that t h i s i s the optimum r a t i o for Douglas-fir on these s i t e s . Ingestad (1979) quoted a s l i g h t l y lower optimum N/P r a t i o for Douglas-fir seedlings (3.0) and ranges of 2.6 - 3.6 (Heilman & Gessel, 1963) and 3.3 - 6.9 7 4 (Beaton eit a l . , 1964) have been found i n the P a c i f i c Northwest. The fact that the high e f f i c i e n c y of retranslocation on the hygric plots i s not maintaining t h i s optimum r a t i o may be an i n d i c a t i o n that for these trees, maximum retr a n s l o c a t i o n has been attained. The adjusted means for absolute loss of phosphorus on the three mesic s i t e s were s i g n i f i c a n t l y d i f f e r e n t from each other (Table XII) which accounts for the v a r i a b i l i t y being higher than on the other s i t e -types. These differences appeared to r e l a t e to slope p o s i t i o n of the p l o t s . Mesic 2, with the highest mean retranslocation, was almost sub-hygric, while mesic 3, with the lowest i n t e r n a l c y c l i n g , was located just below a xeric s i t e . These plots were d i f f i c u l t to d i s t i n g u i s h by plant association, and i t Is possible that some s o i l factor may better predict biochemical c y c l i n g i n these trees. The hygric and xeric plots had s i m i l a r edatopic v a r i a t i o n , but the mesic hygrotope seems to be p a r t i c u l a r l y s e n s i t i v e to phosphorus changes. These experiments do not d i s t i n g u i s h between genetic and environ-mental differences among trees growing on d i f f e r e n t hygrotopes. Turner (1977) has shown that Douglas-fir i s capable of adjusting i t s i n t e r n a l c y c l i n g to account for short term changes i n nitrogen a v a i l a b i l i t y , suggesting a f l e x i b i l i t y to environmental v a r i a t i o n . However, the amount of nitrogen retranslocated from leaves of grain species d i f f e r s with va r i e t y (Clarkson & Hanson, 1980; F r i t h & D a l l i n g , 1980), i n d i -cating a genetic c o n t r o l for Internal c y c l i n g i n these plants. D i f f e r -ences i n the r e t r a n s l o c a t i o n of phosphorus between clones of Monterey pine (Forrest & Ovington, 1971) and of a number of nutrients between tree species (Whittaker e_t _al. 1979) within a stand, suggest that genotype also plays a r o l e i n esta b l i s h i n g the l e v e l of biochemical c y c l i n g i n trees. I f these r e s u l t s apply to Douglas-fir, i t i s possible that the differences i n i n t e r n a l c y c l i n g i n trees growing on d i f f e r e n t hygrotopes are at l e a s t p a r t i a l l y a t t r i b u t a b l e to the geno-type rather than to environmental e f f e c t s . The i n t e r a c t i o n between these two factors makes i t impossible to d i s t i n g u i s h them i n the f i e l d . 76 VI. SUMMARY AND CONCLUSIONS This i n v e s t i g a t i o n of i n t e r n a l c y c l i n g on three site-types has aided i n the cha r a c t e r i z a t i o n of those s i t e s as well as adding to the information a v a i l a b l e on i n t e r n a l c y c l i n g . a) Comparisons Between Three Biogeocenoses Douglas-fir trees growing on x e r i c , mesic and hygric s i t e s of the Coastal Western Hemlock Zone of B.C. were compared on the basis of f o l i a r chemistry (nitrogen and phosphorus) and f o l i a r i n t e r n a l c y c l i n g . The l a t t e r was estimated using the differ e n c e i n nitrogen and phos-phorus content between current needles and l i t t e r f a l l . There were no s i g n i f i c a n t differences (p = .05) between hygrotopes i n f o l i a r nitrogen concentration, possibly due to the small number of trees sampled per plot (3). Concentrations did tend to be higher on hygric and x e r i c plots than on mesic plots and these values were within the range reported for Douglas-fir. Nitrogen d i s t r i b u t i o n within the crown did not d i f f e r between hygrotopes. Phosphorus concentration showed a s i g n i f i c a n t second-order i n t e r -a c t i o n between hygrotope, needle age class and crown l e v e l , i n d i c a t i n g that d i s t r i b u t i o n within the crown d i f f e r s between at le a s t two of the hygrotopes. Phosphorus concentration i n needles was also consistent with the range of values reported f o r Douglas-fir, but for the x e r i c and mesic plots tended toward the upper end of t h i s range. The content of phosphorus (mg/unit needle length) was s i g n i f i c a n t l y d i f f e r e n t on 77 a l l of the hygrotopes: the highest value was on the x e r i c and the lowest on the hygric s i t e s . The d i s t r i b u t i o n of nitrogen and phosphorus i n the crown showed s i g n i f i c a n t v a r i a b i l i t y between plots-within-hygrotopes. This v a r i -a t i o n was probably due to the small number of trees sampled per p l o t . For trees growing within a site-type, there existed a l i n e a r r e l a -t i o n s h i p between absolute loss and content i n current needles f o r both nitrogen and phosphorus, s i m i l a r to that found i n European beech (Staaf, 1982). The only exception was f o r phosphorus on the mesic hygrotope, where the three p l o t s did not appear to be true r e p l i c a t e s . Differences between site-types i n the r e l a t i o n s h i p of absolute l o s s to concentration of nitrogen and phosphorus were found i n my study, but not i n European beech forests studied by Staaf (pers. comm.). Comparisons of i n t e r n a l c y c l i n g between hygrotopes were c a r r i e d out using the absolute l o s s (between current needles and l i t t e r f a l l ) adjusted for the content i n current needles. For phosphorus the adjusted means were 0.40 mg/m on the hygric, 0.20 mg/m on the mesic and 0.01 mg/m on the x e r i c s i t e : a l l of these means are s i g n i f i c a n t l y d i f f e r e n t from each other. For nitrogen, the s i t e means for the hygric (1.83 mg/m) and x e r i c (1.82 mg/m) were s i g n i f i c a n t l y lower than for the mesic (2.07 mg/m). The e f f i c i e n c y of i n t e r n a l c y c l i n g of nitrogen (61-69%) on a l l hygrotopes and of phosphorus on the hygric s i t e s was comparable to l i t e r a t u r e values: f o r phosphorus, the e f f i c i e n c y on the mesic (35%) and e s p e c i a l l y the x e r i c (1%) site-types was lower than usually found i n forest stands. The l a t t e r may r e f l e c t a high phosphorus status on these s i t e - t y p e s . 78 b) Measurement of Internal Cycling A review of the l i t e r a t u r e related to biochemical c y c l i n g i n d i -cates discrepancies between studies i n the measurement of parameters and i n expression of r e s u l t s . This v a r i a b i l i t y has added to the d i f f i c u l t y i n i n t e r p r e t i n g r e s u l t s , p a r t i c u l a r l y when comparing between studies, but can be co n t r o l l e d to some extent by c a r e f u l d e f i n i t i o n of methods and terms. In my study, an improvement on the previously used s t a t i s t i c a l methods of analysis was suggested by the r e l a t i o n s h i p between absolute loss and content i n current needles. The adjustment of absolute loss f o r current needle content by analysis of covariance makes comparisons between trees having d i f f e r e n t f o l i a r nutrient contents f e a s i b l e . This method presents an a l t e r n a t i v e to the analysis of percentage change i n nutrient content ( e f f i c i e n c y ) which i s not only l e s s precise (Sokal & Rolf, 1981) but may be biased when accumulation (as occurred i n some trees on the x e r i c s i t e ) i s included i n the same analysis with nutrient resorption into perennial t i s s u e . c) Relationship of Internal C y c l i n g to S i t e Within hygrotopes, the absolute l o s s of nitrogen and phosphorus was greater from needles with higher content than from those with lower content of the respective element. Between site-types, the opposite appears to be true: s i t e s with higher f o l i a r nitrogen or phosphorus tended to e x i b i t l e s s absolute l o s s . This l a t t e r trend i s not as well-defined as the former because most of the differences i n f o l i a r nutrients were not s i g n i f i c a n t : i t i s possible that some other factor 79 (for example the maintenance of nutrient r a t i o s i n needles, or a moisture-nutrient i n t e r a c t i o n ) may a f f e c t i n t e r n a l c y c l i n g . The e f f i -ciency of i n t e r n a l c y c l i n g was not as had been expected: higher on the poorer (xeric) s i t e than on the better s i t e s . For phosphorus, the e f f i c i e n c y increased from the x e r i c (1%) to the hygric (73%) s i t e - t y p e . However, i t i s thought that the x e r i c and mesic s i t e s had a higher phosphorus a v a i l a b i l i t y than the hygric s i t e , such that r e t r a n s l o c a t i o n was reduced i n response to increased phosphorus status of the trees. The consistency of the r e s u l t s with those from other studies (Ostman & Weaver, 1982; Staaf, 1982), suggests that a more s p e c i f i c d e f i n i t i o n of s i t e f e r t i l i t y i n terms of the status of the nutrient i n question would be a better predictor of i n t e r n a l c y c l i n g than s i t e index or p r o d u c t i v i t y . The percent decrease i n nitrogen content between current needles and l i t t e r f a l l was higher on the mesic s i t e (69%) than on the x e r i c or hygric s i t e s (61%). The lower i n t e r n a l c y c l i n g on the hygric plots compared to the mesic may be explained by an increased nitrogen a v a i l -a b i l i t y . However, the moisture regime on the hygric site-type promoted a high growth rate, which may explain why e f f i c i e n c y was not lower than on the x e r i c s i t e . On the x e r i c p l o t s , lower e f f i c i e n c y compared to the mesic may be due to reduced demand r e s u l t i n g from moisture d e f i c i t or to interferences with the remobilization of nitrogen on these harsher s i t e s . The i n t e r a c t i o n of moisture and nutrients i n deter-mining tree growth i s poorly understood (Brix, 1979) and separation of the hygrotopic and trophotopic influences would be advisable i n future studies. 80 These r e s u l t s i n d i c a t e that r e t r a n s l o c a t i o n does have a r o l e i n nutrient conservation: mobi l i z a t i o n appears to be regulated with respect to the a v a i l a b i l i t y of a s p e c i f i c nutrient i n r e l a t i o n to the demand for that n u t r i e n t . However, t h i s balance between a v a i l a b i l i t y and demand does not n e c e s s a r i l y follow changes i n s i t e q u a l i t y , and, therefore, p r o d u c t i v i t y i s not a good predictor of the e f f i c i e n c y of i n t e r n a l c y c l i n g . 81 REFERENCES Abee, A. and D. Lavender. 1972. Nutrient c y c l i n g i n throughfall and l i t t e r f a l l i n 450-year old Douglas-fir stands. Pages 133-143 i n J.F. Franklin, L.J. Dempster and R.H. Waring, eds. P r o c Research on coniferous forest ecosystems conference, Bellingham, Wash. A t t i w i l l , P.M. 1980. Nutrient c y c l i n g i n a Eucalyptus obliqua (L'Herit) f o r e s t . IV. Nutrient uptake and nutrient return. Aust. J . Bot. 28:199-222. A t t i w i l l , P.M., H.B. Guthrie and R. Leuning. 1978. Nutrient c y c l i n g i n a Eucalyptus obliqua (L'Herit.) f o r e s t . I. L i t t e r production and nutrient return. Aust. J . Bot. 26:79-91. Baker, J.B. and B.G. Blackmon. 1977. Biomass and nutrient accumulation i n a cottonwood plantation - the f i r s t growing season. S o i l . S c i . S o c Amer. Proc. 41:632-636. Bamber, R.K. 1976. Heartwood, i t s function and formation. Wood S c i . and Tech. 10:1-8. Beaton, J.D., R. Kosik and R.C. Speer. 1964. Chemical composition of f o l i a g e from f e r t i l i z e d plus Douglas-fir trees and adjacent u n f e r t i l i z e d check trees. S o i l S c i . S o c Amer. Proc. 28:445-449. Brackett, M.H. 1964. Patterns of elemental d i s t r i b u t i o n and response of Douglas-fir f o l i a g e to nitrogen f e r t i l i z a t i o n . MSc Thesis, University of Washington. Bremner, J.M. 1965. T o t a l nitrogen. Pages 1149-1178 i n C A . Black ed. Methods of s o i l a n a l y s i s , part 2. Amer. S o c Agron., Madison, Wis. Brix, H. 1979. Moisture-nutrient i n t e r r e l a t i o n s h i p s . Pages 48-52 i n Proc. Forest F e r t i l i z a t i o n Conference, Union, Washington. Chapin, F.S. 1980. The mineral n u t r i t i o n of wild plants. Ann. Rev. E c o l . Syst. 11:233-260. Clarkson, D.T. and J.B. Hanson. 1980. The mineral n u t r i t i o n of higher plants. Ann. Rev. Plant Physiol. 31:239-298. DeCatanzaro, J. 1978. L i t t e r decomposition and nutrient turnover i n three ecosystem types of the Coastal Western Hemlock Biogeoclimatic Zone. MSc t h e s i s , U.B.C. Florence, R.G. and P.H. Chuong. 1974. The influence of s o i l type on f o l i a r nutrients i n Pinus radiata plantations. Aust. For. Res. 6(3):l-8. 82 Forrest, W.G. and J.D. Ovington. 1971. V a r i a t i o n i n dry weight and mineral nutrient content of Pinus radiata progeny. S i l v . Gen. 20:174-179. F r i t h , G.J.T. and M.J. D a l l i n g . 1980. The r o l e of peptide hydrolases i n leaf senescence. Pages 118-130 i n K.V. Thimann, ed. Senescence i n plants. CRC Press, Boca Raton, Fa. Gessel, S. and J. Turner. 1976. L i t t e r production i n Western Washington Douglas-fir stands. Forestry 49:63-72. Gessel, S.P., K.J. Turnbull and F.T. Tremblay. 1960. How to f e r t i l i z e trees and measure response. National Plant Food I n s t i t u t e , Washington, D.C. 67 pp. Gosz, J.R. 1981. Nitrogen c y c l i n g i n coniferous f o r e s t s , i n F.E. Clark and T. Rosswall, eds. T e r r e s t r i a l nitrogen cycles. E c o l . B u l l . 33:398-426. Hegyi, F., J . Jelinek and D.B. Carpenter. 1979. Site index equations and curves for the major tree species i n B.C. Forest Inventory Rep. I, Min. of Forests, B.C. Heilman, P.E. and S.P. Gessel. 1963. The e f f e c t of nitrogen f e r t i l i z a t i o n on the concentration and weight of nitrogen, phosphorus and potassium i n Douglas-fir trees. S o i l S c i . Soc. Am. Proc. 27:102-105 Henderson, G.S. and W.F. Harris. 1975. An ecosystem approach to chara c t e r i z a t i o n of the nitrogen cycle i n a deciduous forest watershed, i n B. Bernier and C.H. Winget, eds., Forest s o i l s and forest land management. Les Presses de l'Univ. Laval, Quebec, P.Q. Herrera, R., C.F. Jordan, H. Klinge and E. Medina. 1978. Amazon ecosystems; t h e i r structure and functioning with p a r t i c u l a r emphasis on nutrients. I n t e r c i e n c i a 3:223-231. Ingestad, T. 1979. Mineral nutrient requirements of Pinus s i l v e s t r i s and Picea abies seedlings. Physiol. Planta 45:373-380. Ingestad, T. 1974. Towards optimum f e r t i l i z a t i o n . Ambio 3:49-53. Kaffanke, T. 1982. A comparative study of l i t t e r f a l l i n the Coastal Western Hemlock Zone at Haney, B.C. unpublished BSF Thesis, U.B.C. Klinka, K. 1976. Ecosystem units, t h e i r c l a s s i f i c a t i o n , i n t e r p r e t a t i o n and mapping i n the U.B.C. Research Forest. PhD Thesis, University of B r i t i s h Columbia. 83 Klinka, K. 1977. Bri e f i n t e r p r e t a t i o n s for major ecosystems i n the Coastal Western Hemlock Biogeoclimatic Zone i n the U.B.C. Research Forest. B.C. Forest Service, unpublished manuscript. Klinka, K., R.N. Green, R.L. Trowbridge and L.E. Lowe. 1981. Taxonomic c l a s s i f i c a t i o n of humus forms i n ecosystems of B.C. B.C. M i n i s t r y of Forests, Land Management Report 8. Koppen, V. 1936. Das geographische system der klimate. i n Handbuch der Klimatologie, V o l . 1, Part C. W. Kopen and G. Geiger. Gebruder Borntrager, B e r l i n . Kozlowski, T.T. 1976. Water supply and l e a f shedding. Pages 191-231 i n T.T. Kozlowski, ed. Water d e f i c i e n t s and plant growth IV. s o i l water measurement, plant responses and breeding for drought resistance. Academic Press, New York. Krajina , V.J. 1969. Biogeoclimatic zones and c l a s s i f i c a t i o n of B r i t i s h Columbia. Ecology of Western North America 2:1-147. Krueger, K. 1967. N, P and carbohydrates i n expanding and year-old Douglas-fir shoots. For. S c i . 13:352-356. Krumlik, G.J. 1979. Some aspects of nutrient c y c l i n g i n subalpine coniferous forest ecosystems. PhD Thesis, U.B.C. Lavender, D.P. and R.L. Carmichael. 1966. E f f e c t of three variables on mineral concentrations i n Douglas-fir needles. For. S c i . 12:441-445. Likens, G.E. and F.H. Bormann, 1979. Catastrophic disturbance and the steady state i n northern hardwood f o r e s t s . American S c i e n t i s t 67:660-669. Loneragan, J.F., K. Snowball and A.D. Robson. 1976. Remobilization and i t s s i g n i f i c a n c e i n plant n u t r i t i o n . Pages 463-469 i n I.F. Wardlaw and J.B. Passioura, eds. Transport and transfer processes i n plants. Academic, New York, N.Y. Luxmoore, R.J., T. Grizzard and R.H. Strand. 1981. Nutrient tr a n s l o c a t i o n i n the outer canopy and understory of an eastern deciduous f o r e s t . For. S c i . 27:505-518. Malkonen, E. 1975. Annual primary production and nutrient cycle i n some Scots pine stands. Comm. I n s t i t u t i For. Fenniae. 84.5. M e l l i l o , J . 1981. Nitrogen c y c l i n g i n deciduous f o r e s t s , i n F.E. Clark and T. Rosswall, eds. T e r r e s t r i a l nitrogen cycles. E c o l . B u l l . 33:427-442. Mengel, K. 1980. E f f e c t of potassium on assimilate conduction to storage t i s s u e . Ber. Deutsch Bot. Ges. 93:353-362. 84 M i l l e r , H.G., J.M. Cooper and J.D. M i l l e r . 1976a. E f f e c t of nitrogen supply on nutrients i n l i t t e r f a l l and crown leaching i n a stand of Corsican pine. J. of Appl. E c o l . 13:233-248. M i l l e r , H.G., J.D. M i l l e r and O.J. Pauline. 1976b. Effect of nitrogen supply on nutrient uptake i n Corsican pine. .,J. Appl. E c o l . 13:955-963. Mooney, H.A. and P.W. Rundel. 1979. Nutrient r e l a t i o n s of the evergreen shrub, Adenostoma fasciculatum, i n the C a l i f o r n i a chaparral. Bot. Gaz. 140:109-113. Moore, P. 1980. The advantages of being evergreen. Nature 285:535. Ostman, N.L. 1979. Retranslocation: an i n t e r n a l recycling mechanism to r e t a i n nutrients on windswept ridges of pure chestnut oak (Quercus prinus L.) stands i n southern I l l i n o i s . MSc. Thesis, Southern I l l i n o i s U n i versity. Ostman, N.L. and G.T. Weaver. 1982. Autumnal nutrient transfers by re t r a n s l o c a t i o n , leaching and l i t t e r f a l l i n a chestnut oak forest i n southern I l l i n o i s . Can. J . For. Res. 12:40-51. Rapp, M., M.C. LeClerc and P. Loissant. 1979. The nitrogen economy i n a Pinus pinea L. stand. For. E c o l . and Management 22:221-231. Rodin, L.E. and N.I. B a z i l e v i c h . 1967. Production and mineral c y c l i n g i n t e r r r e s t r i a l vegetation. (Trans, ed. by G.E. Fogg) O l i v e r and Boyd, Edinburgh. 288pp. Rundel, P.W. and D.J. Parsons. 1980. Nutrient changes i n two chaparral shrubs along a fire-induced gradient. Amer. J. Bot. 67:51-58. Ryan, D.F. and F.H. Bormann. 1982. Nutrient resorption i n a northern hardwood forest. Bioscience 32:29-32. Ryan, D.F. 1979. Nutrient resorption from senescing leaves: a mechanism of biogeochemical c y c l i n g i n a northern hardwood forest ecosystem. PhD Thesis, Yale U. Schlesinger, W.H. 1978. Community structure, dynamics and nutrient c y c l i n g i n the Okefenokee cypress swamp-forest. E c o l . Monogr. 44:43-65. S i l v e r , G.T. 1962. The d i s t r i b u t i o n of Douglas-fir f o l i a g e by age. For. Chron. 38:433-438. Small, E. 1972. Photosynthetic rates i n r e l a t i o n to nitrogen r e c y c l i n g as an adaptation to nutrient deficiency In peat bog plants. Can. J . Bot. 50:2227-2233. 85 Smith, J.H.G. 1972. Persistance, s i z e and weight of needles on Douglas-fir and western hemlock branches. Can. J . For. Res. 2:173-178. Smith, R.B., R.H. Waring and D.A. Perry. 1981. Interpreting f o l i a r analyses of Douglas-fir as weight per unit of leaf area. Can. J . For. Res. 11:593-598. Sokal, R.R. and F.J. Rohlf. 1981. Biometry, 2nd e d i t i o n . W.H. Freeman & Co., San Francisco. 860 pp. S o l l i n s , P., K. Cromack, J r . , F.M. McCorison, R.H. Waring and R.D. Harr. 1981. Changes i n nitrogen c y c l i n g at an old-growth Douglas-fir s i t e a f t e r disturbance. J . Environ. Qual. 10:37-42. Specht, R.L. and R.H. Groves. 1966. A comparison of the phosphorus n u t r i t i o n of A u s t r a l i a n heath plants and introduced economic plants. Aust. J . Bot. 14:201-221. S p l i t t s t o e s s e r , W.E. and M.M. Meyer. 1971. Evergreen f o l i a g e contributions to the spring growth of Taxus. Physiol. Plant. 24:528-533. Staaf, H. 1982. Plant nutrient changes i n beech leaves during senescence as influenced by s i t e c h a r a c t e r i s t i c s . Oecol. Plant. 3:161-170. Stachurski, A. and J.R. Zimka. 1975. Methods of studying forest ecosystems: l e a f area, l e a f production and withdrawal of nutrients from leaves of trees. Ekol. Pol. 23:637-648. Switzer, G.L. and L.E. Nelson. 1972. Nutrient accumulation and c y c l i n g i n l o b l o l l y pine (Pinus taeda L.) plantation ecosystems: the f i r s t 20 years. S o i l Sci Soc. Am. Proc. 36:143-147. Taylor, R.L. and B. MacBryde, 1977. Vascular plants of B r i t i s h Columbia. Tech. B u l l . 4. Botanical Garden, U.B.C, University of B r i t i s h Columbia Press, Vancouver, B.C. Thimann, K.V. 1980. The senescence of leaves. Pages 86-109 i n K.V. Thimann, ed. Senescence i n plants. CRC Press, Boca Raton, F l o r i d a . Thomae, 0. 1981. The e f f e c t of s i t e quality on f o l i a r nutrient concentrations of Douglas-fir. unpublished BSF Thesis, U.B.C. Tukey, H.B. 1970. The leaching of substances from plants. Ann. Rev. Plant Physiol. 21:305-324. Turner, J . 1975. Nutrient c y c l i n g i n a Douglas-fir ecosystem with respect to age and nutrient status. PhD Thesis, University of Washington. 86 Turner, J . 1977. E f f e c t of nitrogen a v a i l a b i l i t y on nitrogen c y c l i n g i n a Douglas-fir stand. For. S c i . 23:307-316. Turner, J . and P.R. Olson. 1976. Nitrogen r e l a t i o n s i n a Douglas-fir plantation. Ann. Bot. 40:1185-1193. Turner, J . and M.J. Singer. 1976. Nutrient d i s t r i b u t i o n and cycling i n a sub-alpine coniferous forest ecosystem. J. Appl. E c o l . 13:295-301. Van den Driessche, R. 1974. Pred i c t i o n of mineral nutrient status of trees by f o l i a r a n a l y s i s . Bot. Rev. 40:347-394. Walmsley, M., G. Utzig, T. Void, D. Moon and J . van Barneveld. 1980. Describing ecosystems i n the f i e l d . Land Management Report No. 7. B.C. Mini s t r y of Forests, V i c t o r i a , B.C. Waring, R.H. and J.F. Franklin. 1979. Evergreen coniferous forests of the P a c i f i c Northwest. Science 204:1380-1385. Webber, B.D. 1974. S o i l and f o l i a r nutrient r e l a t i o n s h i p s for Douglas-fir on three d i f f e r e n t s i t e s . P a c i f i c For. Res. Centre Report BC-X-100. Wells, C.G. and L.J. Metz. 1963. V a r i a t i o n i n nutrient content of l o b l o l l y pine needles with season, age, s o i l and position on the crown. S o i l S c i . Soc. Amer. Proc. 27:90-93. Whittaker, R.H., G.E. Likens, F.H. Bormann, J.S. Eaton, and T.G. Siccama. 1979. The Hubbard Brook ecosystem study: Forest nutrient c y c l i n g and element behaviour. Ecology 60:203-220. Williams, R.F. 1955. R e d i s t r i b u t i o n of mineral elements during development. Ann. Rev. PI. Physiology 6:25-40. Woodwell, G.M. 1974. V a r i a t i o n i n the nutrient content of leaves of Quercus alba, Quercus coccinea and Pinus r i g i d a i n the Brookhaven Forest from bud-break to abscission. Amer. J . Bot. 61:749-753. Zinke, P.J. and A.G. Stangenberger. 1979. Ponderosa pine and Douglas-fir f o l i a g e a n alysis arrayed i n p r o b a b i l i t y d i s t r i b u t i o n s . Pages 221-225 i n Proc. forest f e r t i l i z a t i o n conference, Union, Washington. APPENDIX 1 Species L i s t Trees Douglas-fir Western red cedar Western hemlock Bigleaf maple Paper bir c h Cascara Dogwood Crab apple Shrubs S a l a l Red huckleberry Salmonberry T r a i l i n g blackberry Ocean spray False azalea Devils club Vine maple Oregon grape Twinflower Ferns Swordfern Lady fern Deer fern Bracken fern Herbs V a n i l l a l e a f Foam flower T r i l l i u m False bugbane Starflower Bedstraw Pinesap Pseudotsuga menziesii (Mirb.) Franco Thuja p l i c a t a Donn ex D. Don i n Lamb. Tsuga heterophylla (Raf.) Sarg. Acer macrophyllum Pursh. Betula papyrifera Marsh. Rhamnus purshianus DC Cornus n u t t a l l i Audubon ex. Torr.& Gray Malus fusca (Raf.) Schneid. Gaultheria shallon Pursh. Vaccinium parvifolium Smith i n Rees Rubus s p e c t a b i l i s Pursh. Rubus ursinus Cham. & Schlect. Holodiscus d i s c o l o r (Pursh.) Maxim. Menziesia ferruginea Smith Oplopanax horridus (Smith) Mi quel Acer circinatum Pursh. Mahonia nervosa (Pursh.) Nutt. Linnaea bo r e a l i s L. Polystichum muniturn (Kaulf.) Pres. Athyrium felix-femina (L.) Roth. Blechnum spicant (L.) Roth. Pteridium aquilinum (L.) Kuhn i n Decken Achlys t r i p h y l l a (Smith) DC T i a r e l l a t r i f o l i a t a L. T r i l l i u m ovatum Pursh. T r a u t v e t t e r i a c a r o l i n i e n s i s (Walt.) V a i l T r i e n t a l i s l a t i f o l i a Hook. Galium sp. L. Hypopitys monotropa Crantz Hylocomium splendens (Hedw.) B.S.G. Plagiothecium undulatum (Hedw.) B.S.G. Rhytidiadelphus loreus (Hedw.) Warnst. Rhyzomnium glabrescens (Kindb) Koponen Plagiomnium inslgne (Mitt.) Koponen S t o k e s i e l l a oregana ( S u l l . ) Robins Polytrichum juniperum 89 APPENDIX 2 S i t e Descriptions S i t e descriptions follow the outline i n Walmsley et a l . (1980). Basal area was estimated from one prism cruise per plot. Volume was estimated from basal area and height of sample trees using B.C. Forest Service volume tables. Humus c l a s s i f i c a t i o n i s a f t e r Klinka jet a l . (1981). Site indices for Douglas-fir at 100 years were estimated from Hegyi et^ aT. (1979) using height and approximate age of sample trees (Appendix 3). The age of trees on the hygric plots was assumed to be about 100 years. The vegetation d e s c r i p t i o n contains species l i s t e d i n decreasing order of contribution to % coverage for each layer. Where one species dominates a layer, i t s percentage cover i s given i n brackets. S c i e n t i f i c names for species are found i n Appendix 1. 90 Hygric 1 (HI) Slope: 25% Elevation: 140 m P o s i t i o n : lower slope Aspect: southwest Surface Shape: concave Microtopography: s l i g h t l y mounded Moisture Regime: hygric Nutrient Regime: subeutrophic S i t e Index: 52 m at 100 years B.A. and Volume m^  per ha m^  per ha Total 64 1152 Douglas-fir 40 686 Western redcedar 8 333 Western hemlock 16 133 S o i l organic layers cm Total 11-14 L 1.0 H 2.0 Ah 8-11 Humus c l a s s i f i c a t i o n : mullmoder Comments: discontinuous Ae over B layer of sandy loam. Vegetation % coverage Trees (Douglas-fir, western redcedar, western hemlock) 40 T a l l Shrubs (vine maple, western hemlock) 15 Low Shrubs (huckleberry, western redcedar, western hemlock d e v i l s club, salmonberry) 5 Herbs (sword fern (30%), v a n i l l a l e a f , wood fern, lady fern, 33 foamflower, deerfern, starflower, t r i l l i u m , bedstraw, t r a i l i n g blackberry, bracken fern) Mosses (Hylocomlum splendens) 1 91 Hygrlc 2 (H2) Slope: 25% Elevation: 175m P o s i t i o n : lower slope Aspect: southwest Surface Shape: concave Microtopography: s l i g h t l y mounded Moisture Regime: hygric Nutrient Regime: subeutrophic S i t e Index: 56m at 100 years B.A. and Volume m^  per ha m3 per ha Total 56 1075 Douglas-fir 16 296 Western hemlock 24 510 Western redcedar 16 269 S o i l organic layers cm Total 15-17 L .5-2 H 1-1.5 Ah 12-16 Humus c l a s s i f i c a t i o n : Mullmoder Comments: Gradual change to mineral s o i l , texture of B layer i s sandy lo am. Vegetation % coverage Trees (Douglas-fir, western hemlock, western redcedar, 40 b i g l e a f maple) T a l l Shrubs (vine maple, western redcedar, dogwood, 17 western hemlock) Low Shrubs (salmonberry, huckleberry, t r a i l i n g blackberry) 8 Herbs (sword fern, lady f e r n , v a n i l l a l e a f , wood fern, 63 foamflower, deerfern, starflower, t r i l l i u m , bedstraw, bugbane) Mosses (Rhizomnium glabrescens, Hylocomium splendens, 1 Rhytidiadelphus loreus) 92 Hygric 3 (H3) Slope: 21% Elevation: 100 m Aspect: west Po s i t i o n : lower slope Surface Shape: s t r a i g h t Microtopography: moderately mounded Moisture Regime: hygric Nutrient Regime: eutrophic S i t e Index: 65 m at 100 years B.A. and Volume m per ha m per ha Total 72 1468 Douglas-fir 32 676 Western hemlock 20 486 Western redcedar 16 307 Bigleaf maple 4 S o i l organic layers cm Total 7.0 L . 5-2 H 0.0-1.0 Ah 5-10 Humus c l a s s i f i c a t i o n : vermimull Comments: Gradual change to mineral s o i l . B layer i s well-sorted sandy loam. Vegetation % coverage Trees (Douglas-fir, western hemlock, western redcedar, 50 b i g l e a f maple) T a l l Shrubs (vine maple (10%), western redcedar, dogwood, 13 western hemlock) Low shrubs (salmonberry, huckleberry, t r a i l i n g blackberry) 5 Herbs (sword fern (30%), lady f e r n , v a n i l l a l e a f , wood fern, 45 foamflower, deerfern, starflower, t r i l l i u m , bedstraw, bugbane) Mosses (Rhizomnium glabrescens (10%), Hylocomium splendens, 12 Rhytidiadelphus loreus) 93 Mesic 1 (Ml) Slope: 17% Elevation: 265 m P o s i t i o n : midslope Aspect: southwest Surface Shape: concave Microtopography: s l i g h t l y mounded Moisture Regime: submesic Nutrient Regime: mesotrophic S i t e Index: 45 m at 100 years B.A. and Volume m^  per ha m^  per ha Total 66 1180 Douglas-fir 24 356 Western hemlock 30 608 Western redcedar 12 216 S o i l organic layers cm Total 6.0 L 0.5 F 1.0 H 4-5 Humus c l a s s i f i c a t i o n : humimor Comments: discontinuous Ae up to .5 cm thick, B layer i s a coarse sandy loam Vegetation % coverage Trees (Douglas-fir, western hemlock, western redcedar) 80 T a l l Shrubs (western hemlock) 15 Low Shrubs ( s a l a l , huckleberry, western hemlock, Oregon 10 grape) Herbs (sword fern, twinflower, bracken fern) 2 Mosses (Plagiothecium undulatum, Hylocomium splendens 35 S t o k e s i e l l a oregana, Rhytidiadelphus loreus) 94 Mesic 2 (M2) Slope: 16% Elevation: 230 P o s i t i o n : midslope Aspect: south Surface Shape: s t r a i g h t Microtopography: micromounded Moisture Regime: mesic Nutrient Regime: mesotrophic S i t e Index: 50 m at 100 years B.A. and Volume Total Douglas-fir Western hemlock Western redcedar S o i l organic layers T o t a l L F H nr per ha 66 48 6 12 cm 7.0 2- 3 0.5 3- 4 m^  per ha 1110 792 120 198 Humus c l a s s i f i c a t i o n : humimor Comments: discontinuous Ae up to .5 cm thick, B layer - sandy loam Vegetation % coverage Trees (Douglas-fir, western redcedar, western hemlock, 70 T a l l Shrubs (vine maple) 10 Low Shrubs (vine maple, huckleberry, western hemlock) 16 Herbs (sword fern, bracken fern) 1 Mosses (Rhizomnium glabrescens) 1 95 Mesic 3 (M3) Slope: 20 % Elevation: 165 m P o s i t i o n : midslope Aspect: southwest Surface Shape: convex Microtopography: s l i g h t l y mounded Moisture Regime: mesic Nutrient Regime: mesic S i t e Index: 48 m at 100 years B.A. and Volume m^  per ha m3 per ha Total 84 1370 Douglas-fir 72 1140 Western hemlock 6 130 Western redcedar 6 100 S o i l organic layer cm Tot a l 6-7 L 0.5-1.0 F 0.5-1.0 H 4-5 Humus c l a s s i f i c a t i o n : humimor Comments: discontinuous Ae of up to .5 cm over a B layer of sandy loam Vegetation % coverage Trees (Douglas-fir, western hemlock, western redcedar) 80 Low Shrubs (Oregon grape, s a l a l , huckleberry, f a l s e 4 azalea) Herbs (pinesap, bracken fern) 1 Mosses (Plagiothecium undulatum, S t o k e s i e l l a oregana) 1 96 Xeric 1 (XI) Slope: 33% Elevation: 110 m P o s i t i o n : upper slope of ridge Aspect: west Surface Shape: convex Microtopography: moderately mounded Moisture Regime: x e r i c Nutrient Regime: submesotrophic S i t e Index: 22 m at 100 years B.A. and Volume nr per ha m per ha Total 28 236 Douglas-fir 24 202 Western redcedar 4 34 S o i l organic layer thickness cm Total 8-9 L 1.0 F 1-1.5 H 5-7 Humus c l a s s i f i c a t i o n : humimor Comments: B l a y e r - sandy loam with high content of coarse fragments (40%) Vegetation % coverage Trees (Douglas-fir, western redcedar, paper birch) 40 T a l l Shrubs (ocean spray, western hemlock, crab apple) 5 Low Shrubs ( s a l a l (70%), huckleberry, t r a i l i n g blackberry) 76 Mosses (Hylocomium splendens, S t o k e s i e l l a oregana) 10 97 Xeric 2 (X2) Slope: 24% Elevation: 110 m P o s i t i o n : upper slope of ridge Aspect: south Surface Shape: convex Microtopography: moderately mounded Moisture Regime: x e r i c Nutrient Regime: submesotrophic S i t e Index: 23 m at 100 years B.A. and Volume xar per ha m per ha Total 32 269 Douglas-fir 32 269 S o i l organic layer cm Total 5-6 L 0.5 F 0.5-1.0 H 4.0 Humus c l a s s i f i c a t i o n : humimor Comments: i n some areas, organic layers are d i r e c t l y over bedrock, i n hollows they overlay a f a i n t Ae and a B layer composed of sandy loam Vegetation % coverage Trees (Douglas-fir) 30 T a l l Shrubs (western redcedar, cascara, paper birch) 13 Low Shrubs ( s a l a l (70%), huckleberry, t r a i l i n g blackberry 76 western redcedar) Herbs (bracken fern, sword fern) 4 Mosses ( S t o k e s i e l l a oregana, Hylocomium splendens) 6 98 X e r i c 3 (X3) Slope: 14% Elevation: 130 m P o s i t i o n : upper slope of ridge Aspect: south Surface Shape: convex Microtopography: s l i g h t l y mounded Moisture Regime: x e r i c Nutrient Regime: submesotrophic S i t e Index: 28 m at 100 years B.A. and Volume m per ha m per ha Total 52 507 Douglas-fir 40 378 Western hemlock 4 43 Western redcedar 8 86 S o i l organic layer cm Tot a l 8.0 L 1-1.5 F 1-2 H 4-5 Humus c l a s s i f i c a t i o n : humimor Comments: B layer i s sandy loam Vegetation % coverage Trees (Douglas-fir, western redcedar, western hemlock) 50 T a l l Shrubs (western redcedar, western hemlock) 5 Low Shrubs ( s a l a l (30%), huckleberry, f a l s e azalea) 37 Herbs (sword fern) 1 Mosses (Hylocomium splendens (20%), S t o k e s i e l l a oregana, 26 Dicranum fuscescens, Polytrichum juniperinum) 99 APPENDIX 3 Description of Sample Trees Hygrotope Site Tree Height d.b.h. Age* Sapwood Width (m) (cm) (Years) ' (cm) Xeric 1 1 22.9 Xeric 1 2 22.0 Xeric 1 3 18.3 Xeric 2 1 23.2 Xeric 2 2 16.6 Xeric 2 3 25.6 Xeric 3 1 25.8 Xeric 3 2 27.4 Xeric 3 3 29.0 Mesic 1 1 47.2 Mesic 1 2 42.7 Mesic 1 3 45.7 Mesic 2 1 53.3 Mesic 2 2 47.2 Mesic 2 3 50.3 Mesic 3 1 48.8 Mesic 3 2 48.8 Mesic 3 3 47.2 Hygric 1 1 50.3 Hygric 1 2 54.9 Hygric 1 3 50.3 Hygric 2 1 61.0 Hygric 2 2 57.9 Hygric 2 3 48.8 Hygric 3 1 67.1 Hygric 3 2 64.0 Hygric 3 3 64.0 18.5 80 0.7 22.8 85 0.8 28.6 80 4.5 38.8 87 3.5 17.2 87 1.8 27.6 85 3.2 32.5 85 4.5 26.1 86 2.0 30.9 86 3.1 65.9 - 6.8 36.9 102 2.6 57.9 102 4.1 62.1 90 3.6 43.9 110 4.2 55.7 101 4.1 33.1 97 1.2 59.2 96 5.3 49.7 96 4.2 70.0 - 5.8 121.0 - 11.3 58.3 - 4.0 80.5 - 4.9 87.5 - 6.3 56.3 - 6.9 90.1 - 5.1 79.9 - 9.7 80.5 - 5.1 Age estimated from increment cores taken at 1.2m height plus 12 years on x e r i c and plus 6 years on mesic plots ( c o r r e c t i o n factors from Walmsley et a l . , 1980). 100 APPENDIX 4 F o l i a r Data (May, 1981) Column 1 I d e n t i f i c a t i o n Code #1,2 P l o t number ( p l o t H3 was not sampled i n the s p r i n g ) #3 Tree number (1, 2 o r 3) #4 Crown l e v e l (T = t o p , C = c e n t e r , B = bottom) #5 Le a f age (N = new, 1 = 1 - y e a r - o l d , e t c . ) - 1 - y e a r - o l d and o l d e s t n e e d l e s sampled f o r a l l b r a n c h e s . - n e e d l e l e n g t h and weight were not measured f o r new f o l i a g e . - d a t a f o r new f o l i a g e I s m i s s i n g on branches f o r which f l u s h i n g had not y e t taken p l a c e . #6 Sample time (1 = s p r i n g ) Column 2 Weight per 100 n e e d l e s (g) Column 3 Length per 100 n e e d l e s (cm) Column 4 N c o n c e n t r a t i o n (%) Column 5 N per 10 n e e d l e s (mg/10) Column 6 N p e r u n i t l e n g t h (mg/m X 10) Column 7 P c o n c e n t r a t i o n (%) Column 8 P p e r 10 n e e d l e s (mg/10) Column 9 P p e r u n i t l e n g t h (mg/m X 10) 101 1 X11TN1 1 787 0. 338 2 X11T11 0 48 300. 1 302 0 625 20. 833 0. 236 0. 113 3. 770 3 X1 1T41 0 52 192. 1 092 0 947 28. 491 0. 200 0. 104 5. 413 4 X11CN1 1 762 0. 325 9 X11C11 0 22 150. 1 240 0 273 18 188 0. 227 0. 050 3. 328 6 X1 1C51 0 38 178. 1 090 0 399 22 420 0. 286 0. 109 6. 105 7 X118 1 1 0 08 1 16. 1 070 0 086 7 381 0. 422 0. 034 2. 914 a X11B51 0 24 172. 1 067 0 296 14 892 0. 501 0. 120 6 995 9 X12TN1 1 647 0. 340 10 X12T11 0 56 190. 0 993 0 596 29 255 0. 150 0. 084 4 433 11 X12T51 0 68 200. 0 822 0 559 27 938 0 139 0. 092 4 597 12 X12CN1 1 448 0 326 13 X12C11 0 54 202. 0 913 0 493 24 416 0. 212 0. 115 5 678 14 X12C61 0 58 182. 0 773 0 449 24 648 0 170 0 099 5 423 15 X12B11 0 30 180. 0 927 0 278 15 443 0 160 0 048 2 660 16 X12B61 0 64 222. 0 869 0 554 24 942 0. 232 0. 148 6 681 17 X13TN1 1 990 0 418 18 X13T11 0 68 250. 1 326 0 902 36.067 0 313 0 213 8 510 19 X13T51 0 64 220. 0 836 0 535 24 318 0 235 0 150 6 840 20 X13CN1 2 091 0 421 21 X13C 1 1 0 44 224. 1 163 0 512 22 850 0 229 0 101 4 507 22 X13C41 0 46 20". 0 882 0 406 19 879 0 164 0 075 3 698 23 X138N1 2 007 0 437 24 X13B11 0 50 250. 1 102 0 551 22 030 0 238 0 119 4 763 29 X13B41 0 58 184. 0 994 0 576 31 328 0 263 0 153 8 302 26 X21TN1 2 537 0 473 27 X21T11 0 48 196. 1 929 0 734 37 435 0 229 0 110 5 609 28 X21T41 0 54 212. 1 195 0 624 29 416 0 145 0 078 3 693 29 X21CN1 2 999 0 480 30 X21C11 0 48 194. 1 388 0 666 34 346 0 259 0 124 6 408 31 X21C41 0 42 182. 1 140 0 479 26 311 0 151 0 063 3 477 32 X21BN1 2 201 0 415 33 X21B11 0 42 218. 1 489 0 625 28 690 0 318 0 134 6 134 34 X21B31 0 48 224. 1 167 0 560 25 014 0 319 0 153 6 832 35 X22T11 0 26 178. 1 073 0 279 IS 675 0 260 0 068 3 805 36 X22T41 0 40 192. 0 974 0 390 20 296 0 258 0 103 5 369 37 X22C.1 1 0 28 192. 1 032 0 289 15 043 0 227 0 063 3 306 38 X22C41 0 24 150. 0 945 0 227 15 119 0 254 0 06 t 4 071 39 X22B11 0 44 190. 1 148 0 505 26 575 0 273 0 120 6 327 40 X22B51 0 36 202. 1 1 1 1 0 400 19 793 0 370 0 133 6 598 41 X23TN1 2 416 0 458 42 X23T11 0 62 226. 1 123 0 696 30 797 0 313 0 194 8 578 43 X23T41 0 76 234. 0 802 0 610 26 058 0 192 0 146 6 235 44 X23CN1 2 418 0 444 45 X23C11 0 58 240. 1 103 0 b40 26 651 0 276 0 160 6 663 46 X23C51 0 74 230. 0 713 0 528 22 954 0 139 0 103 4 463 47 X23BN1 2 170 0 408 48 X23B11 0 54 234. 0 968 0 523 22 336 0 224 0 121 5 173 49 X23B51 0 56 214. 0 838 0 469 21 929 0 271 0 152 7 083 50 X31T11 0 68 236. 1 153 0 784 33 225 0 245 0 167 7 069 51 X31T41 0 84 220. 1 023 0 860 39 078 0 197 0 166 7 538 52 X31C11 0 64 214. 1 486 0 951 44 434 0 261 0 167 7 801 53 X31C41 0 88 220. 0 876 0 771 35 031 0 224 0 197 8 971 54 X31B11 0 46 230. 1 150 0 529 22 993 0 290 0 133 5 797 55 X31B31 0 48 200. 1 153 0 553 27 662 0 391 0 188 9 377 56 X32TN1 1 820 0 366 57 X32T11 0 46 224. 1 435 0 660 29 469 0 330 0 152 6 777 58 X32T51 0 64 226. 0 915 0 586 25 926 0 176 0 113 4 991 59 X32CN1 1 612 0.385 60 X32C11 0 40 222. 1 033 0 413 18 616 0 357 0 143 6 433 61 X32C51 0 68 262. 0 962 0 654 24 967 0 293 0 200 7 617 62 X32B11 0 24 196. 0 968 0 232 1 1 858 0 428 0 103 5 .237 63 X32B31 0 30 200. 1 016 0 305 15 233 0 493 0 148 7 388 64 X33TN1 1 271 0 341 65 X33T11 0 44 208. 1 056 0 465 22 334 0 318 0 140 6 .732 66 X33T41 0 74 218. 1 022 0 756 34 701 0 295 0 218 10 .013 67 X33CN1 1 171 0 363 68 X33C11 0 32 184. 0 885 0 283 15 389 0 373 0 119 6 489 69 X33CN1 1 248 0 321 70 X33C11 0 34 190. 1 025 0 348 18 338 0 350 0 119 6 262 71 X33C41 0 60 240. 1 140 0 684 28 493 0 515 0 309 12 .877 72 X33BN1 1 337 0 341 73 X33B11 0 24 214. 1 096 0 263 12 289 0 303 0 073 3 .394 74 X33B4 1 0 46 222. 1 138 0 523 23 574 0 391 0 180 8 .097 75 X33EN1 1 166 0 332 76 X33E11 0 28 168. 0 907 0 254 15 1 14 0 233 0 065 3 .882 77 X33E51 0 38 172. 0 996 0 379 22 008 0 360 0 137 7 .953 78 X33FN1 1 246 0 326 79 X33F 1 1 0 30 188. 1 009 0 303 16 104 0 278 0 083 4 . 429 80 X33F41 0 44 200. 1 115 0 491 24 539 0 357 0 157 7 .852 81 M11T1 1 0 58 218. 1 212 0 703 32 233 0 296 0 172 7 .888 82 Ml1T31 0 40 162. 1 094 0 438 27 008 0 292 0 117 7 .202 83 M11C1 1 0 42 200. 1 113 0 467 23 368 0 287 0 120 6 .024 84 M11C31 0 30 144. 1 030 0 309 21 456 0 233 0 070 4 .848 85 M11C41 0 36 168. 0 888 0 320 19 024 0 180 0.065 3 .848 86 HI1B11 0 46 246. 0 997 0 459 18 651 0 283 0 130 5 .289 87 M11B51 0 36 196. 1 013 0 365 18 598 0 297 0. 107 5 .454 88 M12T11 0 44 210. 1 105 0 486 23 154 0 .235 0. 103 4 .915 89 M12T51 0 36 162. 0 824 0 297 18 313 0 193 0.070 4 .296 90 M12C1 1 0 38 210. 0 907 0 345 16 412 0 222 0 084 4 .012 91 M12C61 0 48 192. 0 788 0 378 19 697 0 176 0 085 4 .406 92 M12B1 1 0 20 172. 1 112 0 222 12 925 0 .205 0 041 2 .383 93 M12B61 0 38 192. 0 940 0 357 18 610 0 219 0 083 4 .339 94 M12B71 0 40 188. 0 888 0 355 18 890 0 202 0 081 4 .303 95 M13T1 1 0 56 162. 0 925 0 518 31 965 0 .221 0 124 7 636 96 M13T11 0 .42 184. 0 .926 0 .389 21 . 144 0 . 190 0 .080 4 .343 97 M13T51 0 .32 194. 0 .985 0 .315 16 .240 0 312 0 . 100 5 , 143 98 M13C11 0.26 212. 1 .023 0 .266 12 .549 0. . 186 0 .048 2 .282 99 M13CS1 0 .74 186. 0 .765 0 .566 30 .446 0. .088 0 .065 3 .491 100 M13811 0 .60 204. 1 .034 0 .620 30 .405 0 . 192 0 .115 5 .660 101 M13B61 0.62 186. 0 .756 0 .468 25 . 186 0 .091 0 .057 3 .043 102 M21T11 0 .93 240. 1 .251 1 . 163 48 .478 0 .258 0 .240 9 .981 103 M21T11 0 .56 220. 1 .314 0 .736 33 .458 0 .240 0 . 134 6 . 107 104 M21T61 0 .72 220. 0 .942 0 .678 30 .823 0, . 141 0 . 102 4 .623 105 M21C11 0 34 184. 1 .045 0 .355 19 .309 0 .264 0 .090 4 .874 106 M21CS1 0 48 204. 0 .900 0 .432 21 . 183 0 .213 0 . 102 5 .020 107 M21B11 0 .24 166. 1 .019 0 .245 14 .736 0 .275 0 .066 3 .979 108 M21B41 0. 42 206. 0 .859 0 .361 17 .514 0. .236 0 .099 4 .804 109 M22TN1 1 .949 0 .264 110 M22T11 0. 50 220. 1 .335 0. .668 30 .345 0 228 0 . 114 5 . 192 111 M22T61 0 .52 206. 0 .742 0 .386 18 .724 0 099 0 .051 2 .488 112 M22CN1 1 .801 0. .260 113 M22C11 0 .42 232. 1 .231 0 .517 22 .290 0 . 197 0 .083 3 .559 114 M22C61 0 .40 178. 0 .833 0 .333 18 .725 0 . 151 0 .060 3 .394 115 M22BN1 1 .638 0 .361 116 M22B11 0 .44 236. 1 . 119 0 .492 20 .866 0 . 192 0 .084 3 S77 117 M22B41 0 .42 196. 0 .847 0 .356 18 . 160 0 . 234 0 .098 5 .010 118 M23T11 0 .30 166. 1 .206 0 .362 21 .803 0 .225 0 .068 4 .074 119 M23T41 0 .52 120. 0 .913 0 .475 39 . 544 0 . 148 0 .077 6 .400 120 M23C11 0 .56 224. 1 .253 0 .702 31 .329 0 .213 0 . 1 19 5 . 322 121 M23C11 0 .52 208. 1 .450 0 .754 36 .262 0 .243 0 . 126 6 .067 122 M23C41 0 .52 208. 1 .048 0 .545 26 . 189 0 . 186 0 .097 4 .659 123 M23C51 0 .28 184 . 1 .030 0 .288 15 .668 0 . 151 0 .042 2 , 293 124 M23B11 0 .32 200. 1 .075 0 .344 17 . 198 0 .207 0 .066 3 .317 125 M23B11 0 .36 208. 1 .090 0 .392 18 .864 0 .210 0 .076 3 .635 126 M23B41 0. .28 150. 0 .994 0 .278 18 .555 0 .202 0 .057 3 , 772 127 M24T11 0 .76 364. 1 . 162 0 .883 24 .258 0 .226 0 . 172 4 .723 128 M24T11 0 .54 188. 1 . 153 0 .623 33 . 130 0 . 197 0 . 106 5 .545 129 M24T41 0. 68 180. 1 .043 0 .710 39 .418 0 . 134 0 .091 5 .068 130 M24C11 0. .70 194. t .314 0 .920 47 .414 0 .287 0 .201 10 . 372 131 M24C41 0. .72 360. 0 .896 0 .645 17 .914 0 .212 0 . 153 4 246 132 M24B11 0 . 32 183. 1 .220 0 .390 20 .760 0 .210 0 .067 3 .576 133 M24B4 1 0. .60 204. 0 .989 0 .593 29 .092 0 . 188 0 . 113 5 .527 134 M31T11 0. 28 220. 1 .038 0 .291 13 .215 0 .251 0 .070 3 . 192 135 M31T41 0. 36 202. 1 .061 0 .382 18 .916 0 .340 0 . 123 6 .067 136 M31C11 0. 34 228. 0 .951 0 .323 14 . 182 0 .246 0 .084 3 674 137 M31C41 0, .36 174. 0 .991 0 .357 20 .498 0 .269 0 .097 5 .571 138 M31BN1 1.843 0 .436 139 M31B11 0. 26 238. 1 . 1 18 0 .291 12 .211 0 .254 0 .066 2 .775 140 M31B31 0. 40 236. 1 .087 0 .435 18 .431 0 .278 0 .111 4 .719 141 M32TN1 1 .639 0 .333 142 M32T11 0. 32 190. 1 . 100 0 .352 18 .530 0 .212 0 .068 3 .567 143 M32T4 1 0. 36 196. 0 .905 0 .326 16 .618 0 . 161 0 .058 2 .957 144 M32CN1 1 .560 0 .329 145 M32C11 0. 32 204. 1 .022 0 327 16 .035 0 . 254 0 .081 3 .988 146 M32C51 0. 30 158 . 0 .964 0 289 18 .308 0 450 0 . 135 8 .537 147 M32B11 0. 44 274. 1 .322 0 .582 21 .236 0 .368 0 . 162 5 .917 148 M32B21 0. 42 216. 1 . 281 0 538 24 .911 0 .467 0 . 196 9 .076 149 M32EN1 1 .725 0 . 345 1S0 M32E11 0. 34 186. 0 976 0. 332 17 .842 0 . 181 0 .061 3 . 300 151 M32E61 0. 56 190. 0. .914 0 512 26 .940 0 .236 0 . 132 6 .962 152 M32FN1 1 .593 0 .330 153 M32F11 0. 32 182. 0 .857 0 274 15 .060 0 .242 0 .077 4 . 252 154 M32F41 0. 40 184. 0. .927 0. .371 20 . 142 0 .246 0 .098 5 .350 155 M33TN1 1. . 193 0 .295 156 M33T11 0. 26 148. 0. 955 0. 248 16 .782 0 320 0 .083 5 .624 157 M33T31 0. 24 132. 1. .067 0. 256 19 .395 0 341 0 .082 6 . 192 158 M33TN1 1. .520 0 .286 159 M33T11 0. 40 170. 1. 088 0. 435 25 .611 0 .240 0 .096 5 .639 160 M33T41 0. 52 182. 0. 858 0. 446 24 .514 0 . 159 0 .083 4 . 545 161 M33C11 0. 18 132. 0. 857 0. 154 1 1 . .688 0. .202 0 .036 2 .754 162 M33C41 0. 28 158. 0. 860 0. 241 15 .248 0 395 0 .111 7 .003 163 M33B11 0. 20 138. 0. 862 0. 172 12 .486 0. 258 0 .052 3 .738 164 M33B41 0. 30 152. 0. 879 0. 264 17 .347 0. 473 0 . 142 9 .333 165 H11TN1 1. 984 0 .274 166 H11T11 0. 34 196. t. 446 0. 492 25 077 0 113 0 .038 1 .963 167 HI1T41 0. 68 2 10. 1. 082 0. 736 35 042 0 070 0 .047 2 .261 168 H11CN1 1. 950 0, .260 169 H11C11 0. 44 202. 1. 475 0. 649 32 . 138 0. 128 0 .056 2 .790 170 H11C51 0. 54 194. 1. 003 0. 541 27. .905 0. 082 0 .044 2 .292 171 H11BN1 1. 888 0. 308 172 H11B11 0. 12 134. 1. 138 0. 137 10. . 191 0. 255 0 .031 2 . 279 173 H11B41 0. 32 208. 0. 916 0. 293 14. 085 0. 111 0 .036 1 .712 174 H12TN1 2. 041 0. 296 175 H12T11 0. 54 188. 1. 478 0. 798 42. 448 0. 140 0 .076 4 . 029 176 H12T31 0. 86 210. 1. 137 0. 978 46. 575 0. 091 0 ,079 3. 743 177 H12CN1 1. 788 0. 275 178 H12C1 1 0. 54 220. 1. 379 0. 744 33. 839 0. 154 0. 083 3. 774 179 H12C41 0. 64 200. 1. 108 0. 709 35. 470 0. 105 0. 067 3. 355 180 H12C41 0. 96 232. 1. 040 0. 998 43. 036 0. 100 0. 096 4 . 143 181 H12BN1 1. 498 0. 277 182 H12B11 0. 44 218. 1. 134 0. 499 22. 895 0. 159 0. 070 3. 199 183 H12B41 0. 66 256. 1. 172 0. 774 30. 226 0. 1 14 0. 075 2. 929 184 H13TN1 2. 107 0. 360 . 185 H13T11 0. 54 200. 1. 415 0. 764 38. 200 0. 188 0. 101 5. 066 186 H13T51 0. 58 190. 0. 771 0. 447 23. 522 0. 086 0. 050 2. 630 187 H13CN1 1. 895 0. 359 188 H13CN1 2. 003 0. 378 189 H13C1 1 0. 38 184. 1. 291 0. 490 26. 654 0. 204 0. 077 4. 209 190 H13C11 0. 38 182. 1. 253 0. 476 26. 159 0. 208 0. 079 4 . 343 191 H13C51 0. .42 188. 1 , .077 0. 452 24 .061 0. 141 0. ,059 3 160 192 H13BN1 1 .778 0. 327 193 H13BM 0 .32 162. 1. 197 0. 383 23 .646 0. 203 0 065 4 011 194 H13B61 0. .48 176. 0. .860 0. 413 23 .444 0. 098 0. 047 2. 671 195 H21T11 0. ,74 220. 1 .590 1 . 177 53 .495 0. 241 0 179 8. 121 196 H21T31 0. 92 172. 1 . .232 0. 641 37 .254 0. 204 0 106 6 159 197 H21C11 0. 30 178. 1 . . 162 0. 349 19 .583 0. 190 0. ,057 3 206 198 H21C41 0. 34 158. 1 .017 0. 346 21 .885 0. 150 0 051 3 225 199 H21B11 0. 38 210. 1 .225 0. 465 22 . 163 0. 190 0. ,072 3 445 200 H21BS1 0. 40 186. 1 092 0. 437 23 .477 0. 160 0 .064 3 433 201 H22TN1 2. 324 0. 387 202 H22T1 1 0. 86 202. 1 . .243 1 . 069 52 .907 0. 141 0 , 121 5. 998 203 H22T31 0. 82 198. 1 , 036 0. 850 42 .922 0. . 113 0 .093 4 698 204 H22CN1 1 .819 0. 330 20S H22C11 0. 62 206. 1 171 0 726 35 .247 0. 273 0 169 8 .214 206 H22C51 0. 68 200. 0 787 0. 535 26 .773 0 . 104 0 .071 3 536 207 H22BN1 1 ,748 0. 323 208 H22B11 0. 48 208. 1 , .073 0. 515 24 .767 0. . 189 0 .091 4 .357 209 H22B51 0 60 216. 0. ,877 0. 526 24 .351 0 128 0 .077 3 .560 210 H23TN1 1 .530 0. 279 211 H23T11 0. 44 190. 1 293 0. 569 29 .946 0 . 161 0 .071 3 728 212 H23T41 0. 64 220. 0 .927 0 593 26 972 0. 108 0 .069 3 . 129 213 H23T51 0. 72 208. 0 .841 0. 606 29 .111 0 .093 0 .067 3 .216 214 H23CN1 1 . 404 0 .272 21S H23C11 0. 34 204. 1. .013 0 344 16 .878 0. 175 0 .060 2 921 216 H23C41 0 28 210. 0 .829 0 232 11 .050 0 . 166 0 .046 2 .210 217 H23BN1 1. .536 0. 256 218 H23B11 0. 22 174. 1. .041 0. 229 13 . 157 0 . 137 0 .030 1 733 219 H23B51 0. 46 226. 0 .942 0. 433 19 . 170 0 . 105 0 .048 2 . 130 104 APPENDIX 5 F o l i a r Data (November, 1981) Column 1 Column Column Column Column Column Column Column 8 Column 9 Column 10 I d e n t i f i c a t i o n Code #1,2 Plot number #3 Tree number (1, 2 or 3) #4 Crown l e v e l (T = top, C = center, B = bottom) #5 Branch number (1 or 2) #6 Needle age (1 = current, 2 = 1-year-old, e t c . ) Length of internode (cm) Weight per 100 needles (mg) Length per 100 needles (cm) N concentration (%) N per 100 needles (mg/100) N per unit length (mg/m) P concentration (%) P per 100 needles (mg/100) P per unit length (mg/m X 10) 105 1 H11T11 1 1 0 211 90 0 45805 1 .6998 7 7857 3 6742 0 1767 8 0952 3 8202 2 H11T12 13 5 190 48 0 43667 1.7230 7 5238 3 9500 0 1472 6 4286 3 3750 3 H11T13 10 5 195 24 0 45595 1.4621 6 6667 3 4146 0 1201 5 4762 2 8049 4 H11T14 13 0 200 0 0 0 53872 1 .5108 8 1389 4 0694 0 1237 6 6667 3 3333 5 H11T15 13 5 200 00 0 53912 1.2657 6 8235 3 4118 0 0927 5 0000 2 5000 6 H11T21 10 0 202 38 0 44119 1.7269 7 6190 3 7647 0 1835 8 0952 4 OOOO 7 H11T22 9 5 213 64 0 44450 1.7333 7 7045 3 6064 0 1534 6 8182 3 1915 8 H11T23 10 0 187 50 0 45580 1.6784 7 6500 4 0800 0 1426 6 5000 3 4667 9 H11T24 12 5 213 89 0 53072 1.5650 8 3056 3 8831 0 1308 6 9444 3 2468 10 H11T25 13 5 194 74 0 50237 1.2624 6 3421 3 2568 0 1048 5 2632 2 7027 11 H11T26 13 5 192 11 0 53205 1.2761 6 7895 3 5342 0 0940 5 OOOO 7 RO?7 12 H11T27 15 0 194 44 0 53217 1.2945 6 8889 3 5429 0 1 148 6 1111 3 1429 13 H11C11 10 0 230 0 0 0 42728 1 .6102 6 8800 2 9913 0 1685 7 20O0 3 1304 14 H11C12 5 0 223 81 0 50771 1.6038 8 1429 3 6383 0 1360 6 9048 3 0851 15 H11C13 7 5 222 92 0 441 13 1.5632 6 8958 3 0935 0 1 181 5 2083 2 3364 16 H11C14 1 1 5 204 76 0 49490 1.6309 8 07 14 3 9419 0 1299 6 4286 3 1395 17 H11C15 12 0 215 38 0 55385 1 .2708 7 0385 3 2679 0 0903 5 0000 2 3214 18 H11C16 11 5 175 86 0 41841 1.2156 5 0862 2 8922 0 0907 3 7931 2 1569 19 H11C21 12 5 219 05 0 44648 1.7491 7 8095 3 5652 0 1920 8 5714 3 9130 20 H11C22 12 0 207 14 0 45657 1.7678 8 0714 3 8966 0 1617 7 3810 3 5632 21 H11C23 8 5 188 10 0 45429 1.6352 7 4286 3 9494 0 1363 6 1905 3 291 1 22 H11C24 12 5 208 82 0 54029 1.4970 8 0882 3 8732 0 1198 6 4706 3 0986 23 H11C25 12 5 205 88 0 54841 1.2871 7 0588 3 4286 0 1019 5 5882 2 7143 24 H11C26 13 5 200 00 0 52528 1.2586 6 611 1 3 3056 0 0952 5 0000 2 5000 25 H11B11 4 5 154 41 0 14753 1.7344 2 5588 1 657 1 0 2492 3 6765 2 3810 26 H11B12 4 0 170 93 0 22893 1 .6304 3 7326 2 1837 0 2032 4 6512 2 721 1 27 H11813 5 0 141 13 0 15329 1.5835 2 4274 1 7200 0 1736 2 6613 1 8857 28 H11B14 5 5 204 69 0 32303 1 5382 4 9687 2 4275 0 1596 5 1562 2 5191 29 H11B15 5 0 183 33 0 28403 1.4474 4 1111 2 2424 0 1565 4 4444 2 4242 30 H11B16 8 0 187 50 0 32956 1.5172 5 0000 2 6667 0 1612 5 3125 2 8333 31 H11B17 9 0 183 33 0 36087 1.5380 5 5500 3 0273 0 1616 5 8333 3 1818 32 H11B18 9 5 219 57 0 42383 1 .4875 6 304 3 2 8713 0 1795 7 6087 3 4653 33 H11B21 4 0 189 53 0 23219 2.1284 4 9419 2 6074 0 2855 6 6279 3 4969 34 H11822 3 0 211 76 0 30679 1.8934 5 8088 2 7431 0 2828 8 6765 4 0972 35 H11B23 2 5 175 71 0 24686 1.6898 4 1714 2 3740 0 2315 5 7143 3 2520 36 H11B25 2 5 166 25 0 27810 1.4878 4 1375 2 4887 0 1843 5 1250 3 0827 37 H11B27 7 0 198 21 0 40061 1.3907 5 5714 2 8108 0 1605 6 4286 3 2432 38 H12T11 16 5 221 43 0 69043 1.8053 12 4643 5 6290 0 2224 15 357 1 6 9355 39 H12T12 11 0 188 24 0 57406 1.6651 9 5588 5 0781 0 1793 10 294 1 5 4687 4 0 H12T13 9 5 206 25 0 58844 1.7419 10 2500 4 9697 0 1593 9 3750 4 5455 41 H12T21 9 0 216 67 0 62473 1.7394 10 8667 5 0154 0 1974 12 3333 5 6923 42 H12T22 8 0 200 0 0 0 58737 1.6440 9 6562 4 8281 0 1543 9 0625 4 5312 43 H12T23 5 5 180 95 0 45567 1.7034 7 7619 4 2895 0 1568 7 1429 3 9474 44 H12C11 11 0 233 93 0 66429 1.7043 1 1 3214 4 8397 0 1909 12 6786 5 4 198 45 H12C12 10 0 217 86 0 67007 1.6150 10 8214 4 9672 0 1599 10 7143 4 9180 46 H12C14 6 5 194 44 0 51367 1.6007 8 2222 4 2286 0 1460 7 50OO 3 857 1 47 H12C15 1 1 0 212 50 0 81425 1.4814 12 0625 5 6765 0 1382 1 1 2500 5 2941 48 H12C21 18 5 251 85 0 72963 1.6269 1 1 8704 4 7132 0 1853 13 5185 5 3676 49 H12C22 18 0 216 67 0 63087 1.5270 9 6333 4 4462 0 1479 9 3333 4 3077 50 H12C23 17 5 234 62 0 75000 1.5026 1 1 2692 4 8033 0 1308 9 8077 4 1803 51 H12B11 5 0 230 0 0 0 32317 0 .1444 0 4667 0 2029 0 0103 0 3333 0 1449 52 H12B12 5 5 248 08 0 40731 1.5675 6 3846 2 5736 0 1653 6 7308 2 7132 53 H12B15 5 0 252 94 0 58424 1.4297 8 3529 3 3023 0 1410 8 2353 3 2558 54 H12B21 5 0 184 15 0 23773 1.5800 3 7561 2 0397 0 2001 4 7561 2 5828 55 H12B22 3 5 252 50 0 464 15 1.5835 7 3500 2 9109 0 1939 9 0000 3 5644 56 H12B26 9 5 206 82 0 48286 1.4262 6 8864 3 3297 0 1647 7 9545 3 8462 57 H13T11 13 5 208 33 0 53389 1.7274 9 2222 4 4267 0 2445 13 0556 6 2667 58 H13T12 15 5 197 06 0 57424 1.7261 9 9118 5 0298 0 1793 10 294 1 5 2239 59 H13T16 16 0 186 84 0 54153 1.1323 6 1316 3 2817 0 1021 5 5263 2 9577 60 H13T21 12 5 202 50 0 52240 1.6989 8 8750 4 3827 0 2393 12 500O 6 1728 61 H13T22 14 0 183 33 0 52639 1.7309 9 1111 4 9697 0 1900 10 0000 5 4545 62 H13T27 10 0 182 35 0 56459 1.0679 6 0294 3 3065 0 1146 6 4706 3 5484 63 H13C11 11 0 207 14 0 48495 1.6938 8 2143 3 9655 0 2553 12 3810 5 9770 64 H13C12 11 5 197 06 0 54565 1.7195 9 3823 4 7612 0 2048 1 1 1765 5 67 16 65 H13C17 9 0 171 05 0 51153 1.034 1 5 2895 3 0923 0 1029 5 2632 3 0769 66 H13C21 13 5 205 88 0 53782 1.7718 9 5294 4 6286 0 2516 13 5294 6 57 14 67 H13C22 12 5 197 06 0 55824 1.6913 9 4412 4 7910 0 2055 1 1 4 706 5 8209 68 H13C27 10 0 200 00 0 59573 1.0351 6 1667 3 0833 0 1007 6 OOOO 3 OOOO 69 H13B11 5 0 225 61 0 25366 1.2067 3 0610 1 3568 0 1779 4 5122 2 OOOO 70 H13B12 5 5 225 76 0 32121 1.2642 4 0606 1 7987 0 1840 5 9091 2 6174 71 H13B15 7 0 203 57 0 40357 0 .9823 3 9643 1 9474 0 1372 5 5357 2 7 193 72 H13B21 5 5 217 74 0 30300 1.6076 4 8710 2 2370 0 2874 8 7097 4 OOOU 73 H13B22 5 5 201 92 0 35000 1.7527 6 1346 3 0381 0 '2692 9 4231 4 6667 74 H13B27 13 0 207 69 0 36788 1.1709 4 3077 2 0741 0 2196 8 0769 3 8889 75 H21T11 9 4 217 86 0 65014 1.5381 10 0000 4 5902 0 3186 20 7143 9 5082 76 H21T 12 18 0 228 85 0 70000 1.4725 10 3077 4 5042 0 2720 19 0385 8 3193 77 H21T13 15 0 209 38 0 58437 1.2540 7 3281 3 5000 0 1925 11 2500 5 3731 78 H21T21 17 5 206 25 0 56413 1.5677 8 8437 4 2879 0 2991 16 8750 8 1818 79 H21T22 17 3 210 0 0 0 63667 1.4555 9 2667 4 4127 0 2644 16 8333 8 0159 80 H21T23 15 5 200 0 0 0 58056 1.2380 7 1875 3 5937 0 2153 12 5000 6 2500 81 H21C11 9 0 196 OO 0 36228 1.2421 4 5000 2 2959 0 1987 7 20OO 3 6735 82 H21C12 8 8 166 67 0 32863 1.5046 4 9444 2 9667 0 1860 6 1111 3 6667 83 H21C13 7 5 191 30 0 39017 1.4598 5 6956 2 9773 0 1727 6 7391 3 5227 84 H21C14 7 4 179 17 0 36450 1.4803 5 3958 3 01 16 0 1600 5 8333 3 2558 85 H21C1S 8 0 158 33 0 37796 1.1630 4 3958 2 7763 0 1323 5 0000 3 1579 86 H21C16 8 0 178 57 0 43014 1.0904 4 6905 2 6267 0 1218 5 2381 2 9333 87 H21C17 9 3 193 75 0 54244 1.0485 5 6875 2 9355 0 1095 5 9375 3 0645 88 H21C21 9 3 175 00 0 32443 1 .1173 3 6250 2 0714 0 1541 5 0000 2 8571 89 H21C22 8 4 207 14 0 41890 1.3812 5 7857 2 7931 0 1591 6 6667 3 2184 90 H21C25 9 3 187 50 0 43285 1.2706 5 5000 2 9333 0 1328 5 7500 3 0667 91 H21B11 8 4 198 72 0 26682 1.1244 3 0000 1 5097 0 1826 4 8718 2 4516 92 H21B12 9 7 209 38 0 32166 1.3990 4 5000 2 1493 0 1846 5 9375 2 8358 93 H21B16 10 0 18B 89 0 33804 1.2107 4 0926 2 1667 0 1370 4 6296 2 4510 94 H21B21 5 3 165 67 0 15472 1.1528 1 7836 1 0766 0 2219 3 4328 2 0721 95 H21B22 5 8 195 0 0 0 24807 1.4260 3 5375 1 8141 0 2267 5 6250 2 8846 106 96 H21B2C • 4 193 10 0 36645 1.2656 4 6379 2 4018 0 160O 5 8621 3 0357 97 H22T11 16 0 222 00 0 87720 1.2927 11 3400 5 1081 0 1733 15 2000 6 8468 88 M22T12 20 0 210 00 1 00320 1.1663 1 1 7000 5 5714 0 1146 1 1 5000 5 4762 99 M22T14 14 5 205 00 0 97240 0 .9461 9 2000 4 487B 0 0977 9 5000 4 6341 100 H22T21 12 5 213 33 0 67647 1.2270 a 3000 3 8906 0 1774 12 0000 5 6250 101 H22T22 • a 223 33 0 66867 1.1715 7 8333 3 5075 0 1396 9 3333 4 1791 103 H22T2S 12 0 192 86 0 70529 0 8254 5 8214 3 0185 0 091 1 6 4286 3 3333 103 H22C 11 • 0 195 71 0 50857 1.3287 c 7571 3 4526 0 2163 11 0000 5 6204 104 H22C12 a c 200 0 0 0 52383 1.6174 a 4722 4 2361 0 2015 10 5556 5 3778 10S H22C15 a 0 204 69 0 62812 1.2015 7 5469 3 6870 0 1517 9 5312 4 6565 106 H22C16 a 5 220 0 0 0 61587 1.1204 6 90O0 3 1364 0 1245 7 6667 3 4848 107 H22C21 s 5 196 74 0 41522 1.5550 6 4565 3 2818 0 2173 9 0217 4 5656 108 H22C22 7 0 176 04 0 38542 1.6324 6 2917 3 5740 0 1838 7 0833 4 0237 109 H22C26 a 0 194 12 0 54047 1.1482 6 2059 3 1970 0 1306 7 0588 3 6364 110 H22B11 3 0 137 25 0 17955 0 .9883 1 7745 1 2929 0 2075 3 7255 2 7143 111 H22B12 4 a 174 29 0 26674 1.2639 3 3714 1 9344 0 1928 5 1429 2 9S08 112 H22B16 5 4 170 69 0 34169 0 . 9436 3 2241 1 8889 0 1665 5 6897 3 3333 113 H22B21 a 5 210 98 0 23015 1.5526 3 5732 1 6936 0 2490 5 7317 2 7168 114 H22B22 a 5 256 0 0 0 35824 1.8200 6 5200 2 5469 0 2512 9 0000 3 5156 115 H22B2S 10 0 252 27 0 47300 1.4895 7 0455 2 7928 0 2162 10 2273 4 054 1 116 H22B27 14 0 190 63 0 55913 0 . 9725 5 4375 2 8525 0 1341 7 5000 3 9344 117 H23T11 15 0 235 00 0 63333 1.4737 9 3333 3 9716 0 2132 13 5000 5 7447 118 H23T12 17 5 226 67 0 64060 1.5090 9 6667 4 2647 0 1769 11 3333 5 OOOO 119 H23T15 18 0 241 67 0 77408 1.0765 a 3333 3 4483 0 1292 10 oooo 4 1379 120 H23T21 a 5 186 00 0 38732 1.3426 5 2000 2 7957 0 2014 7 8000 4 1935 121 H23T22 9 0 202 33 0 43953 1.4153 6 2209 3 0747 0 2011 8 8372. 4 3678 122 H23T25 10 0 213 33 0 61693 1.1346 7 0000 3 2812 0 1405 a 6667 4 0625 123 H23C11 11 5 224 0 0 0 39496 1.7217 6 8000 3 0357 0 2026 8 OOOO 3 5714 124 H23C12 11 5 210 42 0 40083 1.9231 7 7083 3 6634 0 1819 7 2917 3 4653 125 H23C17 13 0 217 65 0 54912 1.4462 7 9412 3 64B6 0 1607 8 8235 4 054 1 126 H23C21 4 0 175 76 0 28273 1 .5005 4 2424 2 4138 0 1876 5 3030 3 0172 127 H23C22 4 5 190 74 0 35430 1.4112 5 0000 2 6214 0 1673 5 9259 3 1068 128 H23C26 8 5 213 16 0 45447 1.3897 6 3158 2 9630 0 1853 8 421 1 3 9506 129 H23B11 6 0 116 67 0 25351 1.4666 3 7179 3 1868 0 2529 6 4103 5 4945 130 H23B12 a 0 158 97 0 24644 1.7168 4 2308 2 6613 0 2081 5 1282 3 2258 131 H23B18 12 5 195 65 0 42487 1.3303 5 6522 2 8889 0 1995 8 4783 4 3333 132 H23B21 4 5 183 75 0 22340 1.4548 3 2600 1 7687 0 2238 5 OOOO 2 7211 133 H23B22 5 0 169 05 0 22967 1.5550 3 5714 2 1127 0 2695 6 1905 3 6620 134 H23B25 7 0 197 92 0 39033 1.441 1 5 6250 2 8421 0 2989 11 6667 5 8947 135 H31T11 23 5 210 0 0 0 62820 1.4963 9 4000 4 4762 0 2122 13 3333 6 3492 136 H31T12 19 5 219 23 0 75769 1.3452 10 1923 4 6491 0 1675 12 6923 5 7895 137 H31T13 11 0 211 29 0 65606 1.3015 8 5645 4 0534 0 1152 7 5806 3 5878 138 H31T21 22 0 221 43 0 72500 1.4778 10 7143 4 8387 0 1773 12 857 1 5 8065 139 H31T22 20 5 231 03 0 77241 1.4844 11 4655 4 9627 0 1473 1 1 3793 4 9254 140 H31T23 14 0 212 50 0 65357 1.3770 9 0000 4 2353 0 1 148 7 5000 3 5294 141 H31C11 19 0 227 42 0 66774 1.4734 9 8387 4 3262 0 2126 14 1935 6 24 1 1 142 H31C12 15 0 213 33 0 63667 1 . 4084 8 9667 4 2031 0 1780 1 1 3333 5 3125 143 H31C14 13 5 212 07 0 68621 1.2462 8 5517 4 0325 0 1080 7 4138 3 4959 144 H31C21 4 0 139 S3 0 23491 t .2771 3 0000 2 1500 0 1931 4 5349 3 2500 145 H31C22 2 5 163 33 0 30813 1.2657 3 9000 2 3878 0 1623 5 OOOO 3 0612 146 H31C24 6 0 200 0 0 0 42662 1.0646 4 5417 2 2708 0 1758 7 5000 3 7500 147 H31B1 1 7 0 215 00 0 32197 1.4028 4 5167 2 1008 0 1967 6 3333 2 9457 148 H31B12 6 0 247 62 0 46438 1.5279 7 0952 2 8654 0 1897 8 8095 3 5577 149 H31B15 8 5 206 82 0 43995 1.2295 5 4091 2 6154 0 1395 6 1364 2 9670 150 H31B21 16 0 233 33 0 56364 1.4758 8 3182 3 5649 0 2097 11 8182 5 0649 151 H31B22 14 0 189 47 0 48658 1.4657 7 1316 3 7639 0 1731 8 4211 4 4444 152 H31B26 13 0 210 53 0 58247 1.0572 6 1579 2 9250 0 1084 6 3158 3 OOOO 153 H32T11 17 0 177 50 0 50755 1.6452 8 3500 4 7042 0 2167 1 1 OOOO 6 1972 154 H32T12 16 5 192 1 1 0 58158 1.6199 9 42 11 4 904 1 0 1900 1 1 0526 5 7534 155 H32T14 19 5 186 84 0 59937 1.3567 8 1316 4 3521 0 1537 9 2105 4 9296 156 H32T21 17 0 186 84 0 53868 1.6023 8 6316 4 6197 0 2198 1 1 8421 6 3380 157 H32T22 15 0 193 75 0 58569 1.5687 9 1875 4 7419 0 1814 10 6250 5 4839 158 H32T24 17 5 187 50 0 56290 1.3102 7 3750 3 9333 0 1643 9 2500 4 9333 159 H32C11 14 0 190 48 0 49086 1.5619 7 6667 4 0250 0 2425 1 1 9048 6 2500 160 H32C12 1 1 5 177 50 0 47475 1.6640 7 9000 4 4507 0 2159 10 2500 5 7746 161 H32C15 12 0 188 89 0 56839 1.2560 7 1389 3 7794 0 1466 8 3333 4 4 1 18 162 H32C21 17 0 194 74 0 52805 1.5698 8 2895 4 2568 0 2392 12 6316 6 4865 163 H32C22 14 5 211 76 0 60765 1.6554 10 0588 4 7500 0 2227 13 5294 6 3889 164 H32C24 1 1 0 172 73 0 46164 1.4967 6 9091 4 0000 0 1772 8 1818 4 7368 165 H32B11 9 0 209 38 0 32741 1 .4413 4 7187 2 2537 0 2100 6 8750 3 2836 166 H32B12 10 0 179 69 0 29400 1.5784 4 6406 2 5826 0 2073 6 0937 3 3913 167 H32B14 a 5 190 38 0 41373 1.5013 6 2115 3 2626 0 1766 7 3077 3 8384 168 H32B21 7 5 2O0 00 0 30391 1.5194 4 6176 2 3088 0 2129 6 4706 3 2353 169 H32B22 a 0 211 54 0 35135 1.6913 5 9423 2 8091 0 2299 8 0769 3 8182 170 H32B27 9 0 221 74 0 44422 1.2822 5 6956 2 5686 0 1713 7 6087 3 4314 171 H33T11 16 7 214 29 0 63721 1.6422 10 4643 4 8833 0 2522 16 07 14 7 5000 172 H33T12 12 8 207 14 0 63864 1.4931 9 5357 4 6034 0 1901 12 1429 5 8621 173 H33T13 11 5 182 35 0 52512 1.3498 7 0882 3 8871 0 1792 9 4118 5 1613 174 H33T21 9 5 200 00 0 50263 1.6257 a 1711 4 0655 0 3403 17 1053 8 5526 175 H33T22 4 5 194 44 0 50950 1.4611 7 4444 3 8286 0 2999 15 2778 7 857 1 176 H33T23 6 5 169 05 0 43814 1.3585 5 9524 3 5211 0 2337 10 2381 6 0563 177 H33T24 8 5 183 33 0 51767 1.2771 6 6111 3 6061 0 1985 10 2778 5 6061 178 H33C1 1 8 0 198 65 0 50541 1.5294 7 7287 3 8912 0 3102 15 6757 7 8912 179 H33C12 9 5 203 13 0 61025 1.4748 9 0000 4 4308 0 2714 16 5625 8 1538 180 H33C13 8 0 188 24 0 54035 1.2900 6 9706 3 7031 0 2232 12 0588 6 4062 181 H33C14 10 0 205 36 0 67857 1 . 1605 7 8750 3 8348 0 1579 10 7143 5 2174 182 H33C21 10 0 202 63 0 48732 1.3986 6 8158 3 3636 0 2916 14 2105 7 0130 183 H33C22 10 0 200 0 0 0 70000 1.2031 a 4219 4 2109 0 2299 16 0938 8 0469 184 H33C23 7 5 172 37 0 48684 1.2216 5 9474 3 4504 0 2270 11 0526 6 4122 185 H33B11 5 a 200 0 0 0 24422 1.2118 2 9595 1 4797 0 2047 5 OOOO 2 5000 186 H33B12 5 7 214 29 0 32836 1.3922 4 5714 2 1333 0 2284 7 5000 3 5000 187 H33B15 9 4 252 94 0 53965 1.2808 6 9118 2 7326 0 2017 10 8823 4 3023 188 H33B21 4 5 182 22 0 21316 1.1885 2 5333 1 3902 0 2606 5 5556 3 0488 189 H33B22 7 0 226 67 0 32723 1.2733 4 1667 1 8382 0 2954 9 6667 4 2647 190 H33B23 8 0 200 0 0 0 28866 1.3587 3 9219 1 9609 0 30B5 a 9062 4 4531 191 H33B24 10 .0 231 .25 0 39008 1.3245 8 1667 2 2342 0 3151 12 2917 5 3153 192 H33B25 8 .5 202 .63 0. 36474 1 .2698 4. .6316 2. 2857 0. 2958 10. 7895 5. 3247 193 Ml IT 1 1 3 .5 201 .25 0, 47750 1 . .4974 7, . 1500 3. 5528 0. 5340 25. 5000 12. 6708 194 M11T12 18 .0 208 .82 0. 55971 1 .4819 B. .2941 3. 9718 0. 4992 27. 9412 13. 3803 195 M11T13 13 .0 173 .81 0, 51395 1 . .3157 6. 7619 3. 8904 0. 4262 21 . 9048 12 . 6027 196 M11T21 5 .5 190 .32 0. 32487 1 .5192 4. ,9355 2. 5932 0. 4865 15. 8065 8 3051 197 H11T22 8 .0 182 .76 0, 32128 1 . .3202 4 . 2414 2. 3208 0. 5420 17 . 4138 9 . 5283 198 M11T23 6 .5 206 .00 0. .40232 1 .3621 5. .4800 2. 6602 0. 3927 15. 8000 7 . 6699 199 M11C11 6 .0 193 . 10 0, 31624 1 .3684 4. .3276 2. 2411 0. 4089 12. 9310 6. 6964 200 M11C12 6 .5 227 .27 0. .42732 1 . .4413 6. , 1591 2. 7100 0. 4521 19. 3182 8 5000 201 M11C13 5 .5 212 .50 0. .40637 1 .3944 5 .6667 2. 6667 0. 4306 17. 5000 8 2353 202 M11C14 4 .5 192 .00 0. 40492 1 .2447 5 .0400 2. 6250 0. 3803 15. 4000 8 .0208 203 M11C21 3 .5 187 .50 0. 32134 1 .2545 4. .0312 2. 1500 0. 3161 10. 1562 5. .4167 204 M11C22 4 .0 196 . 15 0. 36627 1 . .3914 5. .0962 2. 5980 0. 4043 14 . 8077 7. 5490 205 M11C23 3 .0 181 .03 0. 32524 1 . .3995 4. ,5517 2. 5143 0. 3764 12. 2414 6. .7619 206 M11C24 4 5 184 .48 0. 38976 1 . .2652 4. ,9310 2. 6729 0. 3273 12. 7586 6. 9159 207 M11C25 4 .0 182 . 14 0. 39318 1 . 1672 4 .5893 2. .5196 0. 2680 10. 5357 5. .7843 208 M11B11 5 .5 179 .73 0. 25578 1 .3419 3 .4324 1 . 9098 0. 2906 7 . 4324 4 1353 209 M11B12 5 .5 171 .43 0. 31364 1 .4120 4. .4286 2. 5833 0. 3245 10. 1786. 5 9375 210 M11B13 6 .0 188 .89 0, .34341 1 .3428 4 .6111 2. .4412 0. 3667 12. 5926 6 6667 211 M11B14 5 .5 178 .57 0. 34475 1 .3053 4. .5000 2. .5200 0. 3056 10. 5357 5 .9000 212 M11B15 5. .0 168 .33 0. 32370 1 . 1636 3 .7667 2. 2376 0. 2420 7. 8333 4 6535 213 M11B21 4 .0 234 .48 0. 34000 1 .5669 5 .3276 2. .2721 0. 3195 10. 8621 4 .6324 214 M11B22 3 .0 185 .71 0. 26929 1 .5066 4 .0571 2. . 1846 0. 3448 9. 2857 5. .0000 215 M11B23 3 .5 180 .00 0. 32157 1 .3890 4. .4667 2. .4815 0. 3110 10. OOOO 5 .5556 216 M11B24 4 .5 158 .82 0. 27694 1 .2638 3 .5000 2 .2037 0. 2708 7. 5000 4 . 7222 217 M11B25 5. .0 179 .63 0. 34748 1 .2151 4 .2222 2. .3505 0. . 1652 5. 7407 3 . 1959 218 M11B26 6 .0 163 .64 0. 31409 1 .2590 3 .9545 2 .4167 0. . 1954 6. 1364 3 .7500 219 M12T11 5 .5 181 .25 0. .33214 1 .4758 4 .9018 2 .7044 0, 3011 10. OOOO 5 .5172 220 M12T12 7 .0 181 .48 0. 34026 1 .4804 5 .0370 2. .7755 0. .3102 10. .5556 5 .8163 221 M12T16 6. .5 175 .00 0. 39913 1 . 1275 4 .5000 2 .5714 0. 1775 7. 0833 4 .0476 222 M12T21 10. .5 161 .36 0, .45536 1 .4524 6 .6136 4. .0986 0. .2545 1 1 . .5909 7 . 1831 223 M12T22 11. .5 200 .00 0. 48337 1 .3665 6 .6053 3 .3026 0. .2123 10 .2632 5 . 1316 224 M12T25 8. .0 183 .33 0, 45329 1 . 1214 5 .0833 2 .7727 0. . 1287 5. .8333 3 . 1818 225 M12C11 3. 5 170 . 19 0. , 17763 1 .2125 2 . 1538 1 .2655 0. .2869 5 0962 2 .9943 226 M12C12 4. .0 211. .29 0. 30055 1 .4758 4 .4355 2 .0992 0. .4401 13. .2258 6 .2595 227 M12C15 1 1 .0 189 .58 0. 38108 1 .3995 5 .3333 2 .8132 0. .4866 18 .5417 9 .7802 228 M12C21 6 .0 189 .47 0. 25355 1 .3337 3 .3816 1 .7847 0. .3062 7. .7632 4 .0972 229 M12C22 3 .0 187 .50 0. 37337 1 .3559 5 .0625 2 .7000 0 .3292 12 .2917 6 .5556 230 M12C24 8 ,5 186 .00 0. 40468 1 .4777 5 .9800 3 .2151 0. .3262 13 .2000 7 .0968 231 M12C25 6 .5 180 .00 0. .38492 1 .5328 5 .9000 3 . 2778 0 .2546 9 .8000 5 . 4444 232 M12B11 3 .5 164 .41 0. . 14469 1 .3471 1 .9492 1 . 1856 0 .3163 4 .5763 2 .7835 233 M12B15 4 .5 191 .89 0. .25605 1 .3405 3 .4324 1 .7887 0 .4064 10 .4054 5 .4225 234 M12B21 2 .0 145 .24 0. .13590 1 .0774 1 .4643 1 .0082 0 .3066 4 . 1667 2 .8689 235 M12B22 3 .5 195 .24 0. .21160 1 .4178 3 .0000 1 .5366 0 . 3319 7 .0238 3 . 5976 236 M12B25 2 .5 130 .91 0. 13769 1 .3271 1 .8273 1 .3958 0 .3895 5 . 3636 4 .0972 237 M13T1 1 1 1 . .0 218 .75 0. .58837 1 .5562 9 . 1562 4 . 1857 0 .2815 16 .5625 7 .5714 238 M13T12 1 1 .0 200 .00 0. .59643 1 .3892 8 .2857 4 . 1429 0 .2595 15 .4762 7 .7381 239 M13T15 9 .5 226 .32 0. .70479 1 .0978 7 . 7368 3 .4186 0 . 1 157 8 . 1579 3 .6047 240 M13T21 10 .5 213 .33 0. 62253 1 .6278 10 . 1333 4 .7500 0 .3159 19 .6667 9 .2187 241 M13T22 13 .0 214 .29 0. .65929 1 .5222 10 .0357 4 .6833 0 .2654 17 .5000 8 . 1667 242 M13T25 12 .0 229 . 17 0. 81 167 1 .2628 10 .2500 4 .4727 0 . 1283 10 .4167 4 .5455 243 M13T26 16 .5 206 .25 0. 67050 1 . 1465 7 .6875 3 .7273 0 . 1398 9 .3750 4 .5455 244 M13C11 4 .0 172 .41 0. .32731 1 .3327 4 .3621 2 .5300 0 .2423 7 .9310 4 60O0 245 M13C12 4 .5 2O0 .00 0. 44273 1 .5041 6 .6591 3 .3295 0 .2875 12 .7273 6 .3636 246 M13C14 5 .5 166 .00 0. 37372 1 .2951 4 .8400 2 .9157 0 .3693 13 .8000 8 .3133 247 M13C21 10 .0 193 .48 o. 42474 1 . 2847 5 .4565 2 .8202 0 .2508 10 .6522 5 .5056 248 M13C22 6 .0 205 .88 0. 56259 1 .3174 7 .4118 3 .6000 0 .2509 14 . 1 176 6 .8571 249 M13C26 9. .0 203 . 13 0. 68475 0 .9675 6 .6250 3 .2615 0 . 1369 9 .3750 4 .6154 250 M13B11 7 .0 207 .50 0. .44565 1 .4024 6 .2500 3 .0120 0 .2917 13 .0000 6 .2651 251 M13B12 6 .5 185 .42 0. 39321 0 .5669 2 .2292 1 .2022 0 . 1907 7 .5000 4 .0449 252 M13B16 6 .5 193 .33 0 .60680 1 .0327 6 .2667 3 .2414 0 . 1758 10 .6667 5 .5172 253 M13B21 4 .0 171 .05 0 .25108 1 . 1058 2 .7763 1 .6231 0 .241 1 6 .0526 3 .5385 254 M13B22 5 .5 194 .23 0 .35612 1 .3122 4 .6731 2 .4059 0 .3078 10 .9615 5 .6436 255 M13B25 5 .0 181 .82 0 .41645 1 .2388 5 . 1591 2 .8375 0 . 3929 16 .3636 9 OOOO 256 M13B26 5 .5 155 .77 0 .35858 1 . 1 102 3 .9808 2 .5556 0 .2896 10 . 3846 6 .6667 257 M21T1 1 14 .5 233 . 33 0 .76717 1 .2818 9 . 8333 4 . 2 143 0 .4 128 31 .6667 13 .5714 258 M21T12 15 .0 207 .69 0. .71108 1 .21 16 8 .6154 4 . 1481 0 .3516 25 .0000 12 .0370 259 M21T15 16 .5 236 .36 0 88473 1 .0789 9 .5455 4 .0385 0 . 2466 2 1 .8182 9 . 2308 260 M21T21 1 1 .0 240 .63 0. .59325 1 .4486 8 .5937 3 .57 14 0 .3845 22 .8125 9 .4805 261 M21T22 1 1 .5 239 .29 0. 7092 1 1 .3597 9 .6429 4 .0298 0 .3021 21 .4286 8 .9552 262 M21T26 12 .0 254 .55 0. 84309 1 .0783 9 .0909 3 .5714 0. .2157 18 1818 7 . 1429 263 M21C11 5. .0 202 . 17 0. 38991 1 . 1374 4 .4348 2 . 1935 0. 20O7 7 . 8261 3 .8710 264 M21C12 4 . 7 188 .46 0. 34373 1 .2924 4 .4423 2 .3571 0. 2462 8 . 4615 4 .4898 265 M21C15 5. .9 192 .50 0. 45380 1 .0963 4. .9750 2. SB44 0. 2038 9. 2500 4 .8052 266 M21C21 6. 0 218. 48 0. 419S6 1 . 1451 4 .8043 2. . 1990 . 0. 2850 11 . 9565 5 .4726 267 M21C22 6. 0 210. .87 0. 41552 1 .4126 5 .8696 2. .7835 0. 3715 15. 4348 7 .3196 268 M21C26 8. .5 221 . OS 0. 46726 1 .0137 4 .7368 2. . 1429 0. 2309 10. 7895 4 .8810 269 M21B1 1 7. 0 220. .83 0. 38379 1 .2756 4. .8958 2. 2170 0. 2986 1 1 . 4583 5. . 1887 270 M21B12 7. .5 200. .00 0. 34670 1. .4689 5. 0926 2. 5463 0. 3739 12. 9630 6 4815 271 M21B16 10. 0 221 . ,05 0. 50226 1, , 1527 5. .7895 2. 6190 0. 3668 18. 4210 8 3333 272 M21B21 5. 5 222. 22 0. 35726 1. .4928 5. .3333 2. 4000 0. 3369 12. 0370 5. 4167 273 M21B22 4 . 5 214. 81 0. 34830 1. 7439 6. 0741 2. 8276 0. 4254 14 . 8148 6. 8966 274 M21B25 4. 5 219. 05 0. 43995 1. 3800 6. 0714 2. 7717 0. 4113 18. 0952 8. 2609 275 M22T1 1 5. 5 194. 44 0. 35189 1. .5262 5. .3704 2. 7619 0. 2631 9. 2593 4 . 7619 276 M22T12 6. 0 202 . 17 0. 42239 1. 7499 7 . 3913 3. 6559 0. 2831 11 . 9565 5. 9140 277 M22T13 4. 5 147. 14 0. 26871 1. 5949 4. 2857 2. 9126 0. 2658 7 . 1429 4 . 8544 278 M22T14 6. 0 175. 00 0. 39679 1. 6276 6. 4583 3. 6905 0. 2363 9. 3750 5. 3571 279 M22T15 5. 0 200. 00 0. 40083 1. 4033 5. 6250 2. 8125 0. 1923 7. 7083 3. 8542 280 M22T16 4 . 0 166. 67 0. 34633 1. 2833 4 . 4444 2. 6667 0. 1871 6. 4815 3. 8889 281 M22T17 6. 0 177. 27 0. 44423 1. 2790 5. 6818 3. 2051 0. 1842 8. 1818 4 . 6154 282 M22T18 9. 5 184. 21 0. 51579 1. 1735 6. 0526 3. 2857 0. 1531 7. 8947 4 . 2857 283 M22T19 7. 5 209. 38 0. 59269 1. 2654 7. 50O0 3. 5821 0. 1582 9. 3750 4 . 4776 284 M22T21 1 1 . 0 215. 00 0. 48260 1. 8131 8. 7500 4. 0698 0. 3056 14 . 7SO0 6. 8605 285 M22T22 14. 0 219. 44 0. 53200 1. 7753 9. 4444 4 . 3038 0. 2872 15. 2778 6 . 9620 286 M22T23 1 1 . 5 200. 00 0. 49605 1. 51 19 7. 5000 3. 7500 0. 2520 12. 5000 6. 2500 2 8 7 M 2 2 T 2 4 1 9 . 0 1 9 4 . 7 4 0 . 5 1 7 5 8 1 . 2 7 1 1 6 . 5 7 8 9 3 . 3 7 8 4 0 . 1 7 8 0 9 . 2 1 0 5 4 . 7 2 9 7 2 8 8 M 2 2 C 1 1 3 . 0 1 7 9 . 4 1 0 . 2 7 3 8 2 1 . 2 0 3 0 3 . 2 9 4 1 1 . 8 3 6 1 0 . 2 6 8 5 7 . 3 5 2 9 4 . 0 9 8 4 2 8 9 M 2 2 C 1 2 4 . 5 2 0 8 . 9 3 0 . 3 4 1 1 8 1 . 1 2 5 3 3 . 8 3 9 3 1 . 8 3 7 6 0 . 2 9 3 1 1 0 . 0 0 0 0 4 . 7 8 6 3 2 9 0 M 2 2 C 1 4 5 . 5 2 0 9 . 6 2 0 . 3 6 7 0 4 0 . 9 9 5 5 3 . 6 5 3 8 1 . 7 4 3 1 0 . 3 0 3 9 11 . 1 5 3 8 5 . 3 2 1 1 2 9 1 M 2 2 C 1 5 6 . 0 2 1 2 . 5 0 0 . 4 0 2 4 2 0 . 9 8 3 6 3 . 9 5 8 3 1 . 8 6 2 7 0 . 3 1 0 6 12 . 5 0 0 0 5 . 8 8 2 4 2 9 2 M 2 2 C 2 1 7 . 5 2 1 5 . 0 0 0 • 3 7 6 0 O 1 . 1 1 9 7 4 . 2 1 0 0 1 . 9 5 8 1 0 . 1 8 6 2 7 . OOOO 3 . 2 5 5 8 2 9 3 M 2 2 C 2 2 7 . 5 2 1 2 . 7 5 0 . 3 6 4 7 1 1 . 2 7 9 6 4 . 6 6 6 7 2 . 1 9 3 5 0 . 2 2 5 8 8 . 2 3 5 3 3 . 8 7 1 0 2 9 4 M 2 2 C 2 3 7 . 0 1 9 6 . 1 5 0 . 3 6 4 8 8 1 . 1 9 6 4 4 . 3 6 5 4 2 . 2 2 5 5 0 . 2 4 2 4 8 . 8 4 6 2 4 . 5 0 9 8 2 9 5 M 2 2 C 2 4 8 . 0 2 0 0 . 0 0 0 . 3 7 2 5 6 1 . 1 6 4 9 4 . 3 4 0 0 2 . 1 7 0 0 0 . 1 9 3 3 7 . 2 0 0 0 3 . 6 0 0 0 2 9 6 M 2 2 C 2 5 9 . 0 2 3 3 . 3 3 0 . 5 0 3 2 8 1 . 0 9 2 8 5 . 5 0 0 0 2 . 3 5 7 1 0 . 2 0 9 7 1 0 . 5 5 5 6 4 . 5 2 3 8 2 9 7 M 2 2 B 1 1 9 . 5 2 1 3 . 3 3 0 . 3 2 2 1 7 1 . 7 0 7 2 5 . 5 0 0 0 2 . 5 7 8 1 0 . 2 8 4 5 9 . 1 6 6 7 4 . 2 9 6 9 2 9 8 M 2 2 B 1 2 9 . 0 2 1 1 . 11 0 . 3 4 4 5 6 1 . 8 8 1 1 6 . 4 8 1 5 3 . 0 7 0 2 0 . 3 0 1 0 1 0 . 3 7 0 4 4 . 9 1 2 3 2 9 9 M 2 2 B 1 3 7 . 5 2 0 1 . 7 9 0 . 3 4 3 1 8 1 . 6 1 3 1 5 . 5 3 5 7 2 . 7 4 3 4 0 . 2 9 1 4 1 0 . 0 0 0 0 4 . 9 5 5 8 3 0 0 M 2 2 B 1 4 8 . 0 2 0 7 . 4 1 0 . 3 6 3 8 9 1 . 6 2 8 5 5 . 9 2 5 9 2 . 8 5 7 1 0 . 2 7 4 8 1 0 . 0 0 0 0 4 . 8 2 1 4 3 0 1 M 2 2 B 1 5 8 . 0 2 1 7 . 3 9 0 . 4 0 4 0 4 1 . 3 4 5 1 5 . 4 3 4 8 2 . 5 0 0 0 0 . 2 1 5 2 8 . 6 9 5 7 4 . 0 0 0 0 3 0 2 M 2 2 B 2 1 9 . 0 2 1 5 . 3 8 0 . 3 6 7 3 5 1 . 3 7 6 8 5 . 0 5 7 7 2 . 3 4 8 2 0 . 2 6 7 0 9 . 8 0 7 7 4 . 5 5 3 6 3 0 3 M 2 2 B 2 2 9 . 5 2 2 8 . 2 6 0 . 4 1 0 7 8 1 . 3 7 0 7 5 . 6 3 0 4 2 . 4 6 6 7 0 . 2 7 5 2 1 1 . 3 0 4 3 4 . 9 5 2 4 3 0 4 M 2 2 B 2 5 7 . 5 2 2 5 . 0 0 0 . 4 6 1 8 0 1 . 0 1 2 3 4 . 6 7 5 0 2 . 0 7 7 8 0 . 2 0 0 3 9 . 2 5 0 0 4 . 1 1 1 1 3 0 5 M 2 3 T 1 1 1 0 . 5 2 0 0 . 0 0 0 . 5 6 7 8 3 1 . 6 2 4 1 9 . 2 2 2 2 4 . 6 1 1 1 0 . 2 9 8 4 16 . 9 4 4 4 8 . 4 7 2 2 3 0 6 M 2 3 T 1 2 12 . 0 1 9 3 . 7 5 0 . 5 9 9 1 9 1 . 5 7 5 0 9 . 4 3 7 5 4 . 8 7 1 0 0 . 2 4 5 1 ) 4 . 6 8 7 5 7 . 5 8 0 6 3 0 7 M 2 3 T 1 4 1 5 . 0 191 . 18 0 . 6 6 4 8 8 1 . 2 3 8 6 8 . 2 3 5 3 4 . 3 0 7 7 0 . 1 5 9 2 1 0 . 5 8 8 2 5 . 5 3 8 5 3 0 8 M 2 3 T 2 1 12 . 0 1 9 4 . 4 4 0 . 5 4 3 7 2 1 . 6 9 1 0 9 . 1 9 4 4 4 . 7 2 8 6 0 . 2 8 6 1 15 . 5 5 5 6 8 . 0 0 0 0 3 0 9 M 2 3 T 2 2 1 3 . 5 2 0 0 . 0 0 0 . 6 4 3 2 5 1 . 5 6 9 2 1 0 . 0 9 3 7 5 . 0 4 6 9 0 . 2 3 8 0 15 . 3 1 2 5 7 . 6 5 6 2 3 1 0 M 2 3 T 2 4 14 . 0 1 8 0 . 5 6 0 . 5 9 4 0 0 1 . 1 9 2 5 7 . 0 8 3 3 3 . 9 2 3 1 0 . 1 6 3 7 9 . 7 2 2 2 5 . 3 8 4 6 3 1 1 M 2 3 C 1 1 4 . 5 1 7 0 . 3 7 0 . 3 4 3 4 1 1 . 3 2 1 2 4 . 5 3 7 0 2 . 6 6 3 0 0 . 2 2 6 5 7 . 7 7 7 8 4 . 5 6 5 2 3 1 2 M 2 3 C 1 2 6 . 5 1 7 2 . 0 0 0 . 3 8 5 3 6 1 . 5 0 5 1 5 . 8 0 0 0 3 . 3 7 2 1 0 , . 2 3 3 5 9 . 0 0 0 0 5 . 2 3 2 6 3 1 3 M 2 3 C 1 7 a . 0 1 6 8 . 4 2 0 . 5 1 8 8 9 0 . 9 9 9 1 5 . 1 8 4 2 3 . 0 7 8 1 0 . 1 2 6 8 6 . 5 7 8 9 3 . 9 0 6 2 3 1 4 M 2 3 C 2 1 5 . 5 1 9 3 . 2 7 0 . 3 6 7 3 1 1 . 3 9 7 9 5 . 1 3 4 6 2 . 6 5 6 7 0 . 2 3 0 4 8 . 4 6 1 5 4 . 3 7 8 1 3 1 5 M 2 3 C 2 2 6 . 5 1 8 9 . 13 0 . 4 2 0 0 4 1 . 3 9 7 4 5 . 8 6 9 6 3 . 1 0 3 4 0 . 2 3 8 1 10 . 0 0 0 0 5 . 2 8 7 4 3 1 6 M 2 3 C 2 5 7 . 0 1 6 4 . 0 0 0 . 4 2 9 7 2 1 . 2 1 9 4 5 . 2 4 0 0 3 . 1 9 5 1 0 . 1 8 1 5 7 . 8 0 0 0 4 . 7 5 6 1 3 1 7 M 2 3 B 1 1 8 . 0 1 9 6 . 0 0 0 . 3 8 4 0 0 1 . 4 3 7 5 5 . 5 2 0 0 2 . 8 1 6 3 0 . 2 4 4 8 9 . 4 0 0 0 4 . 7 9 5 9 3 1 8 M 2 3 B 1 2 9 . 0 1 9 5 . 2 4 0 . 4 5 1 5 2 1 . 6 3 4 7 7 . 3 8 1 0 3 . 7 8 0 5 0 . 2 6 8 9 12 . 1 4 2 9 6 . 2 1 9 5 3 1 9 M 2 3 B 1 6 14 . 5 1 8 6 . 3 6 0 . 4 8 1 4 1 1 . 1 4 2 5 5 . 5 0 0 0 2 . 9 5 1 2 0 , . 1 4 1 6 6 . 8 1 8 2 3 . 6 5 8 5 3 2 0 M 2 3 B 2 1 6 . 0 1 9 6 . 5 5 0 . 3 2 4 5 9 1 . 2 6 9 5 4 . 1 2 0 7 2 . 0 9 6 5 0 . 2 8 1 5 9 . 1 3 7 9 4 . 6 4 9 1 3 2 1 M 2 3 B 2 2 7 . 5 2 2 3 . 8 1 0 . 4 5 8 5 7 1 . 5 9 9 2 7 . 3 3 3 3 3 . 2 7 6 6 0 . 3 2 1 9 14 . 7 6 1 9 6 . 5 9 5 7 3 2 2 M 2 3 B 2 5 7 . 0 2 1 1 . 7 6 0 , . 5 0 6 4 7 1 . 4 2 2 8 7 . 2 0 5 9 3 . 4 0 2 8 0 . 2 6 7 1 13 . 5 2 9 4 6 . 3 8 8 9 3 2 3 M 3 1 T 1 1 13 . 5 2 0 0 . 0 0 0 , , 5 4 7 5 3 1 . 4 2 8 9 7 . 8 2 3 5 3 . 9 1 1 8 0 . 3 0 6 2 16 . 7 6 4 7 8 . 3 8 2 4 3 2 4 M 3 1 T 1 2 12 . 8 1 5 0 . 0 0 0 4 9 8 5 6 1 . . 3 2 6 1 6 . 6 1 1 1 4 . 4 0 7 4 0 . 3 2 8 7 16 . 3 8 8 9 10 . 9 2 5 9 3 2 5 M 3 1 T 1 4 14 . 0 1 3 9 . 4 7 0 , . 5 3 6 0 5 1 . . 0 1 13 5 . 4 2 1 1 3 . 8 8 6 8 0 , . 3 2 4 0 17 . 3 6 8 4 12 . 4 5 2 8 3 2 6 M 3 1 T 2 1 1 0 . 0 1 9 7 . 2 2 0 . 5 0 8 7 2 1 . . 4 1 9 7 7 . 2 2 2 2 3 . 6 6 2 0 0 , . 3 2 7 6 16 . 6 6 6 7 8 . 4 5 0 7 3 2 7 M 3 1 T 2 2 8 . 8 1 8 8 . 2 4 0 , . 5 3 8 3 5 1 . . 1 3 6 4 6 . 1 1 7 6 3 . 2 5 0 0 0 . 3 3 8 7 18 . 2 3 5 3 9 . 6 8 7 5 3 2 8 M 3 1 T 2 5 15 . 5 1 8 4 . 6 2 0 , . 6 7 0 9 2 0 . 9 4 0 2 6 . 3 0 7 7 3 . 4 1 6 7 0 , . 2 6 9 4 18 . 0 7 6 9 9 . 7 9 1 7 3 2 9 M 3 1 C 1 1 4 . 5 171 . 8 8 0 , . 2 9 6 0 9 1 . 0 5 5 4 3 . 1 2 5 0 1 . 8 1 8 2 0 . 2 9 0 2 8 . 5 9 3 7 5 . 0 0 0 0 3 3 0 M 3 1 C 1 2 6 . 0 1 8 4 . 0 0 0 , . 3 5 9 0 4 1 . 2 9 7 9 4 . 6 6 0 0 2 . 5 3 2 6 0 , . 3 7 8 8 13 . 6 0 0 0 7 . 3 9 1 3 3 3 1 M 3 1 C 1 5 6 . 5 1 8 0 . 5 6 0 , . 5 4 3 6 1 1. . 1 5 9 9 6 . 3 0 5 6 3 . 4 9 2 3 0 . . 3 6 7 9 2 0 . 0 0 0 0 1 1 . 0 7 6 9 3 3 2 M 3 1 C 2 1 5 . 5 1 7 8 . 8 5 0 , . 3 7 6 3 8 1. . 2 0 0 7 4 . 5 1 9 2 2 . 5 2 6 9 0 . 2 8 1 0 10 . 5 7 6 9 5 . 9 1 4 0 3 3 3 M 3 1 C 2 2 7 . 0 1 7 5 . 0 0 0 . 3 8 4 0 8 1. . 4 6 4 5 5 . 6 2 5 0 3 . 2 1 4 3 0 , . 3 7 4 3 14 . 3 7 5 0 8 . 2 1 4 3 3 3 4 M 3 1 C 2 4 7 . 4 2 0 0 . 0 0 0 , 5 3 6 8 2 1 . 3 7 5 2 7 . 3 8 2 4 3 . 6 9 1 2 0 . 3 3 9 7 18 . 2 3 5 3 9 . 1 1 7 6 3 3 5 M 3 1 C 2 5 8 . 5 1 8 0 . 0 0 0 . 3 6 9 4 0 1 . . 3 5 3 5 5 OOOO 2 . 7 7 7 8 0 , . 4 0 6 1 15 . 0 0 0 0 8 . 3 3 3 3 3 3 6 M 3 1 B 1 1 4 . . 5 1 4 2 . 2 2 o . 2 1 2 0 7 1 , . 1 2 6 5 2 . 3 8 8 9 1 . 6 7 9 7 0 . . 2 8 2 9 6 OOOO 4 . 2 1 8 7 3 3 7 M 3 1 B 1 2 2 . 9 1 4 0 , . 9 1 0 , 2 5 5 1 8 1 , . 2 4 6 9 3 . 1 8 1 8 2 . 2 5 8 1 0 , . 3 2 0 6 8 . 1 8 1 8 5 . 8 0 6 5 3 3 8 M 3 1 B 1 6 8 . 0 1 6 8 . 0 0 0 . 4 0 4 3 6 1 , . 2 2 6 6 4 . 9 6 0 0 2 . 9 5 2 4 0 . , 3 6 1 1 14 . 6 0 0 0 8 . 6 9 0 5 3 3 9 M 3 1 B 1 7 6 . 5 1 5 7 . 8 9 0 . 4 5 5 7 4 1 , . 0 5 6 7 4 . 8 1 5 8 3 . 0 5 0 0 0 , 3 2 9 1 15 . 0 0 0 0 9 . 5 0 0 0 3 4 0 M 3 1 B 2 1 6 . . 3 1 7 1 . 8 8 0 . 2 7 9 1 2 1 , . 0 6 3 6 2 . 9 6 8 7 1 . 7 2 7 3 0 . 2 2 3 9 6 . 2 5 0 0 3 . 6 3 6 4 3 4 1 M 3 1 B 2 2 7 . . 2 191 , , 3 0 0 . 3 7 8 7 0 1 , . 2 6 8 7 4 . 8 0 4 3 2 . 5 1 14 0 , 2 8 1 3 10 . 6 5 2 2 5 , 5 6 8 2 3 4 2 M 3 1 B 2 7 9 . , 0 1 8 8 . . 2 4 0 . 5 2 7 8 8 0 , . 9 9 7 3 5 . 2 6 4 7 2 . 7 9 6 9 0 2 6 1 9 13 . 8 2 3 5 7 , 3 4 3 7 3 4 3 M 3 2 T 1 1 9 . , 5 2 4 2 . . 8 6 0 . 7 4 2 8 6 1 . 2 7 6 4 9 . 4 8 2 1 3 . 9 0 4 4 0 , 1 9 9 5 14 . 8 2 1 4 6 . 1 0 2 9 3 4 4 M 3 2 T 1 2 1 3 , 0 2 4 0 . 7 4 0 . 7 4 8 1 5 1 . 2 9 9 5 9 . 7 2 2 2 4 . 0 3 8 5 0 . 1 4 8 5 1 1 . 1 1 1 1 4 , 6 1 5 4 3 4 5 M 3 2 T 1 5 0 . 0 2 2 2 . 2 2 0 . 7 7 7 7 8 0 . 9 4 2 9 7 , . 3 3 3 3 3 . 3 0 0 O 0 . 1 1 4 3 8 . 8 8 8 9 4 OOOO 3 4 6 M 3 2 T 2 1 1 0 , 5 2 2 3 . , 0 8 0 . 7 1 6 2 3 1 . 4 4 4 5 1 0 , , 3 4 6 1 4 . 6 3 7 9 0 . 2 5 2 4 18 . 0 7 6 9 8 , 1 0 3 4 3 4 7 M 3 2 T 2 2 1 5 . 0 1 8 4 , 2 1 0 . 5 1 2 3 7 1 . 2 5 8 3 6 . . 4 4 7 4 3 . 5 0 0 0 0 . 1 9 0 0 9 . 7 3 6 8 5 , , 2 8 5 7 3 4 8 M 3 2 T 2 4 1 5 . 0 2 0 0 . 0 0 0 . 6 3 7 3 3 1 . 2 134 7 , , 7 3 3 3 3 , 8 6 6 7 0 . 1 6 7 4 10 . 6 6 6 7 5 3 3 3 3 3 4 9 M 3 2 C 1 1 1 3 . 5 2 3 6 . , 5 4 0 . 7 4 6 1 5 1 . 3 6 8 6 1 0 , . 2 1 1 5 4 . 3 1 7 1 0 . 3 9 9 5 2 9 . 8 0 7 7 1 2 . 6 0 1 6 3 5 0 M 3 2 C 1 2 2 0 , 0 2 1 9 . 2 3 0 . 7 0 4 3 8 1 . 2 8 3 2 9 . . 0 3 8 5 4 . 1 2 2 8 0 . 31 12 21 . . 9 2 3 1 1 0 , OOOO 3 5 1 M 3 2 C 1 3 14 . 0 2 0 0 . 0 0 0 . 6 5 9 2 1 1 . 2 3 5 2 8 . 1 4 2 9 4 . 0 7 1 4 0 . 2 3 3 0 1 S . 3 5 7 1 7 . 6 7 8 6 3 5 2 M 3 2 C 2 1 1 0 . 5 2 0 4 , 6 9 0 . 5 7 8 1 3 1 . 3 8 6 5 8 . . 0 1 5 6 3 . . 9 1 6 0 0 . 3 7 5 7 21 . 7 1 8 7 1 0 . 6 1 0 7 3 5 3 M 3 2 C 2 2 1 1 . 5 1 8 3 . 3 3 0 . 5 3 3 3 3 1 . 4 4 2 7 7 . 6 9 4 4 4 . . 1 9 7 0 0 . 3 7 7 6 2 0 . 1 3 8 9 1 0 . 9 8 4 8 3 5 4 M 3 2 C 2 3 9 . 5 1 7 2 , 5 0 0 . 4 8 1 4 5 1 . 3 4 4 9 6 . . 4 7 5 0 3 . . 7 5 3 6 0 . 3 2 7 1 1 5 . 7 5 0 0 9 . 1 3 0 4 3 5 5 M 3 2 B 1 1 4 . , 0 1 6 5 . 5 6 0 . 2 0 3 3 1 1 . 0 4 9 3 2 . 1 3 3 3 1 . . 2 8 8 6 0 . 2 4 5 9 5 . OOOO 3 . 0 2 0 1 3 5 6 M 3 2 B 1 2 5 . 0 1 4 7 . 8 3 0 . 2 0 0 4 3 1 . 2 7 4 4 2 . 5 5 4 3 1 . . 7 2 7 9 0 . 2 7 1 1 5 . 4 3 4 8 3 . 6 7 6 5 3 5 7 M 3 2 B 1 8 6 . 0 1 7 6 . 19 0 . 4 5 9 9 5 1 . 1 2 3 3 5 . 1 6 6 7 2 . . 9 3 2 4 0 . 3 3 6 5 1 5 . 4 7 6 2 8 . 7 8 3 8 3 5 8 M 3 2 B 2 1 4 . 5 1 8 2 . 8 6 0 . 2 7 2 2 3 0 . 9 6 0 3 2 . 6 1 4 3 1 . , 4 2 9 7 0 . 2 3 0 9 6 . 2 8 5 7 3 . 4 3 7 5 3 5 9 M 3 2 B 2 2 5 . 0 171 . 4 3 0 . 3 3 4 2 1 1 . 5 1 2 1 5 . 0 5 3 6 2 . 9 4 7 9 0 . 3 2 5 9 1 0 . 8 9 2 9 6 . 3 5 4 2 3 6 0 M 3 2 B 2 6 0 . 0 161 . 7 6 0 . 3 2 6 4 7 0 . 8 5 5 9 2 . 7 9 4 1 1 . 7 2 7 3 0 . 4 0 9 9 1 3 . 3 8 2 4 8 . 2 7 2 7 3 6 1 M 3 2 B 2 7 4 . 5 1 4 5 . 16 0 . 3 0 5 3 5 0 . 9 9 8 3 3 . 0 4 8 4 2 . 1 0 0 0 0 . 6 0 7 4 1 8 . 5 4 8 4 1 2 . 7 7 7 8 3 6 2 M 3 3 T 1 1 1 6 . 0 2 0 1 . 5 2 0 . 5 6 6 6 7 1 . 4 9 4 7 8 . 4 6 9 7 4 . 2 0 3 0 0 . 2 0 3 2 1 1 . 5 1 5 2 5 . 7 1 4 3 3 6 3 M 3 3 T 1 2 1 3 . 0 191 . 18 0 . 5 5 6 4 1 1 . 3 2 1 5 7 . 3 5 2 9 3 . 8 4 6 2 0 . 1 6 9 2 9 . 4 1 18 4 . 9 2 3 1 3 6 4 M 3 3 T 1 4 1 5 . 5 1 6 5 . 7 9 0 . 4 9 6 8 4 1 . 2 0 7 6 6 . OOOO 3 . 6 1 9 0 0 . 1 5 3 6 7 . 6 3 1 6 4 . 6 0 3 2 3 6 5 M 3 3 T 2 1 2 0 . 5 2 0 4 . 8 4 0 . 6 1 6 1 3 1 . 5 7 8 5 9 . 7 2 5 8 4 . 7 4 8 0 0 . 1 9 6 3 1 2 . 0 9 6 8 5 . 9 0 5 5 3 6 6 M 3 3 T 2 2 2 2 . 5 2 0 0 . 0 0 0 . 6 1 2 4 0 1 . 4 5 3 3 8 . 9 0 0 0 4 . 4 5 0 0 0 . 1 6 3 3 1 0 . OOOO 5 . OOOO 3 6 7 M 3 3 T 2 4 2 0 . 0 181 . 2 5 0 . 5 8 0 8 1 1 . 1 5 1 4 6 . 6 8 7 5 3 . 6 8 9 7 0 . 1 9 3 7 1 1 . 2 5 0 0 6 . 2 0 6 9 3 6 8 M 3 3 C 1 1 8 . 5 1 7 7 . 0 8 0 . 3 9 7 4 2 1 . 3 3 6 8 5 . 3 1 2 5 3 . OOOO 0 . 3 0 4 0 1 2 . 0 8 3 3 6 . 8 2 3 5 3 6 9 M 3 3 C 1 2 8 . 5 1 7 5 . 0 0 0 . 3 8 8 6 2 1 . 3 4 0 2 5 . 2 0 8 3 2 . 9 7 6 2 0 . 3 0 0 2 1 1 . 6 6 6 7 6 . 6 6 6 7 3 7 0 M 3 3 C 1 3 5 . 5 1 7 6 . 19 0 . 4 5 6 4 8 1 . 2 7 7 9 5 . 8 3 3 3 3 . 3 1 0 8 0 . 2 9 7 3 1 3 . 5 7 1 4 7 . 7 0 2 7 3 7 1 M 3 3 C 2 1 7 . 0 1 7 0 . 3 7 0 . 3 5 3 7 8 1 . 4 6 0 4 5 . 1 6 6 7 3 . 0 3 2 6 0 . 2 3 0 3 8 . 1 4 8 1 4 . 7 8 2 6 3 7 2 M 3 3 C 2 2 8 . 5 1 7 8 . 2 6 0 . 4 0 2 3 5 1 . 3 9 9 4 5 . 6 3 0 4 3 . . 1 5 8 5 0 . 3 0 2 6 1 2 . 1 7 3 9 6 . 8 2 9 3 3 7 3 M 3 3 C 2 3 6 . , 0 1 6 9 . 2 3 0 . 3 6 1 0 4 1 . 3 4 7 6 4 . 8 6 5 4 2 . 8 7 5 0 0 . 2 7 7 0 1 0 . OOOO 5 . 9 0 9 1 3 7 4 M 3 3 C 2 4 8 . 0 1 3 5 . OO 0 . 3 0 3 3 0 1 . 2 5 2 9 3 . 8 0 0 O 2 . 8 1 4 8 0 . 2 3 6 3 7 . 1 6 6 7 5 . 3 0 8 6 3 7 5 M 3 3 B 1 1 5 . , 5 1 6 1 . 2 9 0 . 2 9 3 8 1 1 . 2 6 8 1 3 . 7 2 5 8 2 . 3 1 0 0 0 . 2 8 0 0 8 . 2 2 5 8 5 . 1 0 0 0 3 7 6 M 3 3 B 1 2 6 . 5 1 7 2 . 2 2 0 . 3 4 7 5 9 1 . 3 3 1 9 4 . 6 2 9 6 2 . 6 8 8 2 0 . 3 2 5 0 1 1 . 2 9 6 3 6 . 5 5 9 1 3 7 7 M 3 3 B 1 6 1 0 . 5 1 8 0 . 9 5 0 . 4 5 8 4 8 1 . 1 2 1 7 5 . 1 4 2 9 2 . 8 4 2 1 0 . 2 8 5 6 1 3 . 0 9 5 2 7 . 2 3 6 8 3 7 8 M 3 3 B 2 1 4 . 0 1 3 2 , 0 8 0 . 1 8 2 7 2 1 . 1 5 6 5 2 . 1 1 3 2 1 . 6 0 0 0 0 . 2 8 9 1 5 . 2 8 3 0 4 . OOOO 3 7 9 M 3 3 B 2 2 3 . 0 1 3 9 , 4 7 0 . 2 3 0 8 9 1 . 2 9 3 6 2 . 9 8 6 8 2 . 1 4 1 5 0 . 3 6 4 7 8 . 4 2 1 1 6 . 0 3 7 7 3 8 0 M 3 3 B 2 8 8 . 5 1 8 4 . 7 8 0 . 4 2 2 5 2 1 . 0 1 8 7 4 . 3 0 4 3 2 . 3 2 9 4 0 . 2 7 2 7 1 1 . 5 2 1 7 6 . 2 3 5 3 3 8 1 X 1 1 T 1 1 1 4 . 5 2 0 0 . 0 0 6. 4 5 6 5 0 1 . 6 5 9 4 7 . 5 7 5 0 3 . 7 8 7 5 0 . 2 9 0 3 1 3 . 2 5 0 0 6 . 6 2 5 0 3 8 2 X 1 1 T 1 2 2 0 . , 0 1 9 8 . 6 1 0 . 3 1 1 1 1 1 . 5 2 7 2 7 . 8 0 5 6 3 . 9 3 0 1 0 . 2 3 6 4 1 2 . 0 8 3 3 6 . 0 8 3 9 3 8 3 X 1 1 T 1 4 1 9 . . 0 1 9 4 . . 4 4 0 . 5 4 1 6 7 1 . 2 9 7 4 7 . 0 2 7 8 3 . 6 1 4 3 0 . 2 2 5 6 1 2 . 2 2 2 2 6 . 2 8 5 7 3 8 4 X 1 1 T 2 1 1 2 . . 0 2 0 2 . . 2 7 0 . 4 0 9 1 8 1 . 7 7 7 4 7 . 2 7 2 7 3 . 5 9 5 5 0 . 3 5 5 5 14 . 5 4 5 5 7 . 1 9 1 0 3 8 5 X 1 1 T 2 2 1 2 . 0 1 8 2 . . 0 0 0 . 3 7 8 7 6 1 . 5 4 1 9 5 . 8 4 0 0 3 . 2 0 8 8 0 . 3 3 2 7 1 2 . 6 0 0 0 6 9 2 3 1 3 8 6 X 1 1 T 2 5 1 9 . 0 2 0 5 . 8 8 0 . 5 5 4 6 5 1 . 2 8 3 3 7 . 1 1 7 6 3 . 4 5 7 1 0 . 2 5 4 5 14 . 1 1 7 6 6 . 8 5 7 1 3 8 7 X 1 1 C 1 1 6 . 0 1 7 2 . 6 2 0 . 2 6 9 0 5 1 . 1 4 6 0 3 . 0 8 3 3 1 . 7 8 6 2 0 . 1 9 4 7 5 . 2 3 8 1 3 . 0 3 4 5 3 8 8 X 1 I C 1 2 7 . s 1 6 7 . 14 0 . 2 9 7 1 4 1 . 1 8 7 5 3 . 5 2 8 6 2 . 1 1 1 1 0 . 2 2 1 2 6 . 5 7 1 4 3 9 3 1 6 3 8 9 X 1 1 C 1 4 0 . 0 1 8 5 . , 1 9 0 . 4 1 8 5 2 1 . 0 7 5 2 4 . 5 0 0 0 2 . 4 3 0 0 0 . 2 3 0 1 9 . 6 2 9 6 5 . 2 0 0 0 3 9 0 X 1 1 C 2 1 6 . 0 1 9 4 . 4 4 0 . 2 8 6 1 1 1 . 0 7 2 8 3 . 0 6 9 4 1 . 5 7 8 6 0 . 1 4 0 8 4 . 0 2 7 8 2 . 0 7 1 4 3 9 1 X 1 1 C 2 2 8 . . 0 1 8 3 . . 8 5 0 . 3 0 3 0 8 1 , 3 3 5 0 4 . 0 4 6 2 2 . 2 0 0 8 0 . 2 3 1 0 7 . OOOO 3 . 8 0 7 5 3 9 2 X 1 1 C 2 4 8 . . 5 1 7 8 , . 2 6 0 . 4 1 5 3 9 1 . 4 4 4 4 6 . . 0 0 0 0 3 . 3 6 5 9 0 . 3 3 4 9 1 3 . 9 1 3 0 7 . 8 0 4 9 3 9 3 X 1 1 C 2 5 8 . . 5 1 8 3 . 3 3 0 . 3 5 6 6 7 1 , . 0 9 3 5 3 . . 9 0 0 0 2 . 1 2 7 3 0 . 2 1 5 0 7 . 6 6 6 7 4 . 1 8 1 8 3 9 4 X 1 1 B 1 1 5 . 0 1 6 3 . . 2 7 0 . 1 9 8 4 3 1 , . 5 5 3 0 3 . . 0 8 1 6 1 . 8 8 7 5 0 . 3 3 4 3 6 . 6 3 2 7 4 0 6 2 5 3 9 5 X 1 1 B 1 5 3 . . 5 1 3 8 9 8 0 . 1 5 8 6 6 1 . 4 8 4 9 2 . 3 5 5 9 1 . 6 9 5 1 0 . 2 8 8 4 4 . 5 7 6 3 3 . 2 9 2 7 3 9 6 X 1 2 T 1 1 1 1 . 0 2 0 0 0 0 0 . 4 5 8 5 4 1 . 4 6 0 1 6 . . 6 9 5 1 3 . 3 4 7 6 0 . 2 3 6 7 1 0 . 8 5 3 7 5 . 4 2 6 8 3 9 7 X 1 2 T 1 2 1 2 . 5 2 0 1 . 5 6 0 . 5 8 1 2 5 1 . 2 7 4 2 7 . 4 0 6 2 3 . 6 7 4 4 0 . 2 0 1 6 1 1 . 7 1 8 7 5 . 8 1 4 0 3 9 8 X 1 2 T 1 6 1 5 . 5 1 9 1 . 6 7 0 . 6 1 3 3 3 1 . 0 1 0 9 6 . . 2 0 0 0 3 . 2 3 4 8 0 . 1 7 1 2 1 0 . 5 0 0 0 5 . 4 7 8 3 3 9 9 X 1 2 T 2 1 1 0 . 0 1 9 3 . 18 0 . 4 5 0 6 4 1 . 3 6 1 7 6 . 1 3 6 4 3 . 1 7 6 5 - 0 . 2 3 2 0 1 0 . 4 5 4 5 5 . 4 1 1 8 4 0 0 X 1 2 T 2 2 1 2 . 0 2 1 1 . . 2 9 0 . 6 0 3 2 3 1 . 2 1 9 3 7 . . 3 5 4 8 3 . 4 8 0 9 0 . 1 8 4 5 1 1 . 1 2 9 0 5 . 2 6 7 2 4 0 1 X 1 2 T 2 6 1 3 . 5 1 9 3 . . 5 5 0 . 6 2 9 0 3 0 , . 9 8 7 2 6 . . 2 0 9 7 3 . 2 0 8 3 0 . 1 4 6 2 9 . 1 9 3 5 4 . 7 5 0 0 4 0 2 X 1 2 C 1 1 1 0 . . 0 2 0 7 . , 5 0 0 . 4 6 7 8 5 1. . 4 3 2 1 6 . . 7 0 0 0 3 . 2 2 8 9 0 . 2 4 5 8 11 . 5 0 0 0 5 5 4 2 2 4 0 3 X 1 2 C 1 2 11 . 0 2 1 1 . . 7 6 0 . 5 4 2 8 8 1. . 3 5 9 8 7 . 3 8 2 4 3 . 4 8 6 1 0 . 2 4 3 8 1 3 . 2 3 5 3 6 2 5 0 0 4 0 4 X 1 2 C 1 6 11 . 0 1 8 0 . 0 0 0 . 6 1 2 5 3 1. . 0 8 8 4 6 . . 6 6 6 7 3 . 7 0 3 7 0 . 2 0 6 8 1 2 . 6 6 6 7 7 . . 0 3 7 0 4 0 5 X 1 2 C 2 1 3 . 0 2 0 5 . 3 6 0 . 3 4 3 5 4 1 . . 2 7 3 5 4 . 3 7 5 0 2 . 1 3 0 4 0 . 2 4 4 3 8 . 3 9 2 9 4 . . 0 8 7 0 4 0 6 X 1 2 C 2 2 3 , 5 1 8 3 . 3 3 0 . 2 8 7 0 3 1 . . 3 0 9 1 3 . . 7 5 7 6 2 . 0 4 9 6 0 . 2 0 5 9 5 . 9 0 9 1 3 . . 2 2 3 1 4 0 7 X 1 2 C 2 8 8 . 0 1 9 7 . . 2 2 0 . 5 9 6 6 1 1, , 0 1 5 0 6 . . 0 5 5 6 3 . . 0 7 0 4 0 . 1 7 2 3 1 0 . 2 7 7 8 5 2 1 1 3 4 0 8 X 1 2 B 1 1 7 . , 0 1 9 4 . . 4 4 0 . 3 4 7 3 0 1. . 2 1 0 4 4 . . 2 0 3 7 2 . . 1 6 1 9 0 . 2 1 8 6 7 . 5 9 2 6 3 9 0 4 8 4 0 9 X 1 2 B 1 2 6 . . 5 1 8 7 . . 5 0 0 . 3 9 4 6 7 1. . 1 4 5 5 4 . 5 2 0 8 2 . 4 1 1 1 0 . 2 4 2 8 9 . 5 8 3 3 5 . 1 1 1 1 4 1 0 X 1 2 B 1 8 1 1 . 0 191 . 6 7 0 . 5 7 4 9 4 0 . 9 8 0 8 5 . 6 3 8 9 2 . . 9 4 2 0 0 . 2 1 2 6 1 2 . 2 2 2 2 6 . 3 7 6 8 4 1 1 X 1 2 B 2 1 6 . . 0 2 0 3 . . 7 0 0 . 4 1 1 5 2 1 . 1 4 3 0 4 . 7 0 3 7 2 . . 3 0 9 1 0 . 2 2 9 5 9 . 4 4 4 4 4 6 3 6 4 4 1 2 X 1 2 B 2 2 9 . 0 191 . 3 0 0 . 4 2 1 4 8 1. . 1 5 0 2 4 . . 8 4 7 8 2 . . 5 3 4 1 • 0 . 2 6 3 0 1 1 . 0 8 7 0 5 . 7 9 5 5 4 1 3 X 1 2 B 2 5 7 . 5 1 9 7 . 3 7 0 . 4 9 9 7 9 1. 0 4 2 5 5 . . 2 1 0 5 2 . . 6 4 0 0 0 . 2 0 5 3 1 0 . 2 6 3 2 5 . 2 0 0 0 4 1 4 X 1 3 T 1 1 1 9 . 5 2 5 0 . 0 0 0 . 6 5 5 1 7 1 . . 6 4 2 1 1 0 . . 7 5 8 6 4 . 3 0 3 4 0 . 3 2 1 1 2 1 . 0 3 4 5 8 . 4 1 3 8 4 1 5 X 1 3 T 1 2 1 7 . 5 2 4 0 . 6 3 0 . 6 5 0 2 5 1 . . 4 8 9 8 9 . 6 8 7 5 4 . 0 2 6 0 0 . 3 0 7 6 2 0 . OOOO 8 . 3 1 17 4 1 6 X 1 3 T 1 3 1 6 . 0 2 2 1 . 8 8 0 . 6 3 2 6 3 1 . 3 5 3 5 8 . 5 6 2 5 3 . 8 5 9 2 0 . 2 4 2 0 15 3 1 2 5 6 . 9 0 1 4 4 1 7 X 1 3 T 1 4 1 3 . 0 2 0 8 . . 8 2 0 . 5 4 1 0 0 1 . 1 5 2 6 6 . 2 3 5 3 2 . . 9 8 5 9 0 . 2 1 7 5 1 1 . 7 6 4 7 5 . 6 3 3 8 4 1 S X 1 3 T 2 1 1 3 . 0 2 2 8 . 5 7 0 . 5 5 7 1 4 1 . 6 6 1 5 9 . 2 5 7 1 4 0 5 0 0 0 . 3 1 0 3 17 . 2 8 5 7 7 . 5 6 2 5 4 1 9 X 1 3 T 2 2 14 . 5 2 5 3 . , 5 7 0 . 6 8 6 9 3 1 . 4 5 0 6 9 . 9 6 4 3 3 . . 9 2 9 6 0 . 3 2 2 3 2 2 . 1 4 2 9 8 . 7 3 2 4 4 2 0 X 1 3 T 2 3 1 4 . . 0 2 1 8 . 7 5 0 . 5 8 8 0 0 1 . 3 2 3 3 7 7 8 1 2 3 5 5 7 1 0 . 2 7 1 0 1 5 , 9 3 7 5 7 . 2 8 5 7 4 2 1 X 1 3 T 2 4 1 5 . 5 2 0 2 . , 7 8 0 . 5 6 2 8 3 1 . . 2 2 8 9 6 . 9 1 6 7 3 . 4 1 1 0 0 . 1 9 7 4 11 , 1 1 1 1 5 . 4 7 9 5 4 2 2 X 1 3 C 1 1 1 1 . 0 2 2 9 . 4 1 0 . 5 6 6 8 8 1 . 4 8 3 9 8 . 4 1 1 8 3 6 6 6 7 0 . 3 3 7 2 1 9 , 1 1 7 6 8 . 3 3 3 3 4 2 3 X 1 3 C 1 2 1 2 . 0 2 2 9 . 4 1 0 . 5 9 9 4 1 1. . 3 9 8 4 8 . 3 8 2 3 3 . 6 5 3 8 0 . 3 4 8 4 2 0 , 8 8 2 3 9 . 1 0 2 6 4 2 4 X 1 3 C 1 3 1 4 . 5 2 0 4 . , 0 5 0 . 5 2 9 7 3 1. . 2 8 0 6 6 . 7 8 3 8 3 . . 3 2 4 5 0 . 2 4 7 4 1 3 , 1 0 8 1 6 . 4 2 3 8 4 2 5 X 1 3 C 1 4 1 3 . 0 2 1 1 . , 7 6 0 . 5 9 4 5 3 1 . 1 5 7 6 6 . 8 8 2 3 3 . . 2 5 0 0 0 . 1 8 3 0 1 0 , . 8 8 2 3 5 . 1 3 8 9 4 2 6 X 1 3 C 1 5 1 3 . . 0 2 1 7 . . 6 5 0 . 5 7 6 4 7 1 . 0 8 9 3 6 . 2 7 9 4 2 . 8 8 5 1 0 . 2 1 9 4 1 2 , . 6 4 7 1 5 . 8 1 0 8 4 2 7 X 1 3 C 2 1 11 . . 0 2 2 8 . 9 5 0 . 5 2 1 4 2 1 . 5 4 4 4 8 . 0 5 2 6 3 5 1 7 2 0 . 3 6 3 4 18 . 9 4 7 4 8 . 2 7 5 9 4 2 8 X 1 3 C 2 2 14 . . 5 2 3 6 . . 8 4 0 . 6 4 9 2 6 1 ; . 4 3 8 9 9 . 3 4 2 1 3 . 9 4 4 4 0 . 3 7 6 9 2 4 . 4 7 3 7 1 0 . 3 3 3 3 4 2 9 X 1 3 C 2 3 1 0 . 5 2 1 7 . 5 0 0 . 5 2 9 3 0 1 . 3 4 14 7 . . 1 0 0 0 3 . . 2 6 4 4 0 . 2 8 3 4 15 . 0 0 0 0 6 . 8 9 6 6 4 3 0 X 1 3 C 2 4 1 1 5 2 1 1 . . 11 0 . 5 6 2 3 9 1 . . 1 9 5 3 6 . . 7 2 2 2 3 . 1 8 4 2 0 . 2 1 2 4 1 1 , . 9 4 4 4 5 6 5 7 9 4 3 1 X 1 3 C 2 5 1 1 . 5 2 1 0 . 2 9 0 . 5 9 1 1 8 1 . 0 3 4 8 6 . 1 1 7 6 2 9 0 9 1 0 . 1 7 6 6 1 0 , . 4 4 1 2 4 . 9 6 5 0 4 3 2 X 1 3 B 1 1 9 . 0 2 2 7 . 5 9 0 . 3 3 3 5 2 1 . 1 7 8 7 3 . 9 3 1 0 1 . 7 2 7 3 0 . 3 0 5 0 10 . 1 7 2 4 4 . 4 6 9 7 4 3 3 X 1 3 B 1 2 1 0 . 0 2 2 1 . 15 0 , , 3 7 9 0 4 1 . 3 5 4 6 5 . 1 3 4 6 2 . 3 2 1 7 0 . . 3 2 4 7 12 . 3 0 7 7 5 . 5 6 5 2 4 3 4 X 1 3 B 1 3 1 0 . 0 2 5 7 . 14 0 . 4 5 7 2 4 1 . 2 8 6 2 5 . 8 8 0 9 2 . 2 8 7 0 0 . . 2 7 0 8 12 . 3 8 1 0 4 . 8 1 4 8 4 3 5 X 1 3 B 1 4 1 0 . 5 2 3 4 . 0 9 0 , 4 5 3 1 4 1 . 1 9 8 7 5 . 4 3 1 8 2 . 3 2 0 4 0 . . 2 1 5 7 9 . 7 7 2 7 4 . 1 7 4 8 4 3 6 X 1 3 B 1 5 12 . 0 2 8 6 . 6 7 0 , , 6 3 8 4 7 1 . 0 4 4 2 6 . 6 6 6 7 2 . 3 2 5 6 0 . . 1 9 8 4 12 . 6 6 6 7 4 . 4 1 8 6 4 3 7 X 1 3 B 2 1 8 . 0 2 3 1 . 2 5 0 . 3 9 5 2 1 1 . 3 B 6 4 5 . 4 7 9 2 2 . 3 6 9 4 0 . . 3 3 7 4 13 . 3 3 3 3 5 . 7 6 5 8 4 3 8 X 1 3 B 2 2 8 . 0 2 1 7 . 3 1 0 3 6 7 5 0 1 . 2 0 3 6 4 . 4 2 3 1 2 . 0 3 5 4 0 . . 2 1 4 5 7 . 8 8 4 6 3 . 6 2 8 3 4 3 9 X 1 3 B 2 4 8 . 0 2 2 3 . 8 1 0 . 4 5 1 0 0 1 . 1 9 8 4 5 . 4 0 4 8 2 . 4 1 4 9 0 . . 2 3 7 6 10 . 7 1 4 3 4 . 7 8 7 2 4 4 0 X 1 3 B 2 5 1 0 . 0 2 2 0 . 0 0 0 . 4 7 4 1 5 1 . 0 2 8 2 4 . 8 7 5 0 2 . 2 1 5 9 0 . . 1 6 8 7 8 . 0 0 0 0 3 . 6 3 6 4 4 4 1 X 2 1 T 1 1 2 0 . 0 1 6 0 . 5 3 0 5 1 9 5 3 1 . 8 2 3 5 9 . 4 7 3 7 5 . 9 0 1 6 0 , 2 9 8 9 15 . 5 2 6 3 9 . 6 7 2 1 4 4 2 X 2 1 T 1 2 1 6 . 0 1 7 0 . 5 9 0 . . 5 5 5 7 1 1 . 6 9 3 7 9 . 4 1 1 8 5 . 5 1 7 2 0 . . 3 1 7 6 17 . 6 4 7 0 10 . 3 4 4 B 4 4 3 X 2 1 T 1 3 9 . 0 1 7 6 . 19 0 , . 4 5 3 3 3 1 . 5 7 5 6 7 . 1 4 2 9 4 . 0 5 4 1 0 . . 2 6 2 6 1 1 . 9 0 4 8 6 . 7 5 6 8 4 4 4 X 2 1 T 1 4 12 . 0 2 3 3 . 3 3 0 . . 7 7 8 2 5 1 . 3 3 8 5 1 0 . 4 1 6 7 4 . 4 6 4 3 0 . . 2 6 2 3 2 0 . 4 1 6 7 8 . 7 5 0 0 4 4 5 X 2 1 T 2 1 16 . 5 2 3 2 . 14 0 , . 6 8 9 5 7 1 . 9 1 6 3 13 . 2 1 4 3 5 . 6 9 2 3 0 . 3 0 5 6 2 1 . 0 7 1 4 9 0 7 6 9 4 4 6 X 2 1 T 2 2 I O . 5 2 6 2 . 5 0 0 , 8 2 2 3 3 1 . 7 7 3 4 14 . 5 8 3 3 5 . 5 5 5 6 0 . 3 4 9 6 2 8 . 7 5 0 0 10 . 9 5 2 4 4 4 7 X 2 1 T 2 3 6 . 0 161 . 5 4 0 . 3 8 0 1 9 1 . 5 1 7 5 5 . 7 6 9 2 3 . 5 7 1 4 0 . 2 9 8 4 1 1 . 3 4 6 2 7 . 0 2 3 8 4 4 8 X 2 1 T 2 4 1 0 . 0 2 1 6 . 6 7 0 . 6 3 6 6 7 1 . 3 8 7 4 8 . 8 3 3 3 4 . 0 7 6 9 0 . 3 5 0 8 2 2 . 3 3 3 3 10 . 3 0 7 7 4 4 9 X 2 1 T 2 5 15 . 0 2 4 1 . 6 7 0 , . 7 9 7 5 8 1 . 2 5 3 8 1 0 . 0 0 0 0 4 . 1 3 7 9 0 . . 1 8 2 8 14 . 5 8 3 3 6 . 0 3 4 5 4 5 0 X 2 1 C 1 1 8 . 5 2 2 8 . 5 7 0 . 4 5 5 9 5 1 . 7 7 5 5 8 . 0 9 5 2 3 . 5 4 1 7 0 . 3 1 3 3 14 . 2 8 5 7 6 . 2 5 0 0 4 5 1 X 2 1 C 1 2 1 0 . 0 2 2 3 . 6 8 0 5 0 5 6 8 1 . 7 1 7 3 8 . 6 8 4 2 3 . 8 8 2 4 0 . 4 1 6 3 21 . 0 5 2 6 9 . 4 1 1 8 4 5 2 X 2 1 C 1 3 6 . 0 1 8 2 . 6 1 0 . 4 2 7 1 3 1 . 5 2 6 9 6 . 5 2 1 7 3 . 5 7 1 4 0 . 4 0 7 2 17 . 3 9 1 3 9 . 5 2 3 8 4 5 3 X 2 1 C 1 4 6 . 0 2 3 8 . 2 4 0 . 5 5 7 5 3 1 . 5 8 2 6 8 . 8 2 3 5 3 . 7 0 3 7 0 . . 3 5 8 7 2 0 . 0 0 0 0 8 . 3 9 5 1 4 5 4 X 2 1 C 1 5 1 0 . 0 2 1 8 . 7 5 0 . 5 8 8 1 9 1 . 3 8 1 4 8 . 1 2 5 0 3 . 7 1 4 3 0 . 2 6 5 6 15 . 6 2 5 0 7 . 1 4 2 9 4 5 5 X 2 1 C 2 1 15 . 0 2 5 0 . 0 0 0 . 6 6 5 1 4 1 . 8 7 9 3 12 . 5 0 0 0 5 . OOOO 0 , 3 2 2 2 2 1 . 4 2 8 6 8 . 5 7 1 4 4 5 6 X 2 1 C 2 2 1 0 . 5 2 6 4 . 2 9 0 . 6 8 5 7 9 1 . 7 7 0 6 12 . 1 4 2 9 4 . 5 9 4 6 0 . 3 6 9 8 2 5 . 3 5 7 1 9 . 5 9 4 6 4 3 7 X 2 1 C 2 3 8 . 0 2 1 4 . 2 9 0 . 6 7 2 1 4 1 . 4 3 4 6 9 . 6 4 2 9 4 . 5 0 0 0 0 . . 3 0 8 2 2 0 . 7 1 4 3 9 . 6 6 6 7 4 5 8 X 2 1 C 2 4 17 . 5 2 3 3 . 3 3 0 . 8 0 0 1 7 1 . 3 0 1 8 1 0 . 4 1 6 7 4 . 4 6 4 3 0 . . 2 3 4 3 18 . 7 5 0 0 8 . 0 3 5 7 4 5 9 X 2 1 B 1 1 8 . 5 2 2 3 . 2 1 0 . 3 3 0 2 5 1 . 5 1 4 0 5 . 0 0 0 0 2 . 2 4 0 0 0 . . 2 7 0 4 8 . 9 2 8 6 4 .OOOO 4 6 0 X 2 1 B 1 2 8 . 5 1 9 8 . 15 0 . 3 4 8 3 3 1 . 5 4 1 7 5 . 3 7 0 4 2 . 7 1 0 3 0 . . 3 7 7 5 13 . 1 4 8 1 6 . 6 3 5 5 4 6 1 X 2 1 B 1 3 7 . 0 1 7 6 . 4 7 0 . 2 8 4 3 5 1 . 6 0 3 2 4 . 5 5 8 8 2 . 5 8 3 3 0 , 4 7 5 8 13 . 5 2 9 4 7 . 6 6 6 7 4 6 2 X 2 1 B 1 4 7 . 0 1 8 9 . 6 6 0 . 3 2 5 8 3 1 . 5 8 7 5 5 . 1 7 2 4 2 . 7 2 7 3 0 . 4 2 8 6 13 . 9 6 5 5 7 . 3 6 3 6 4 6 3 X 2 1 B 1 5 1 0 . 5 2 4 1 . 18 0 . 5 4 5 2 9 1 . 4 5 6 3 7 . 9 4 1 2 3 . 2 9 2 7 0 . . 3 2 9 0 17 . 9 4 1 2 7 . 4 3 9 0 4 6 4 X 2 1 B 2 1 11 . 0 2 3 7 . 5 0 0 . 3 9 7 2 1 1 . 5 2 1 0 6 . 0 4 1 7 2 . 5 4 3 9 0 . , 2 7 8 0 1 1 . 0 4 1 7 4 . 6 4 9 1 4 6 5 X 2 1 B 2 2 1 1 . 5 2 5 5 . 2 6 0 . 4 8 2 2 1 1 . 5 8 2 6 7 . 6 3 1 6 2 . 9 8 9 7 0 . . 3 1 6 5 15 . 2 6 3 2 5 . 9 7 9 4 4 6 6 X 2 1 B 2 5 1 0 . 0 2 0 6 . 8 2 0 . 4 4 7 3 6 1 . 4 2 2 5 6 . 3 6 3 6 3 . 0 7 6 9 0 . . 3 3 0 2 14 . 7 7 2 7 7 . 1 4 2 9 4 6 7 X 2 2 T 1 1 6 ' . 5 171 . 2 1 0 . 2 8 9 1 2 1 . 3 8 3 5 4 . 0 0 0 0 2 . 3 3 6 3 0 . . 4 0 3 5 1 1 . 6 6 6 7 6 . 8 1 4 2 4 6 8 X 2 2 T 1 2 7 . 5 1 8 4 . 6 2 0 . 3 6 5 5 4 1 . 5 0 4 6 5 . 5 0 0 0 2 . 9 7 9 2 0 . . 3 8 4 0 14 . 0 3 8 5 7 . 6 0 4 2 4 6 9 X 2 2 T 1 5 9 . 5 1 6 4 . 0 0 0 . 3 7 0 6 0 1 . 1 3 8 7 4 . 2 2 0 0 2 . 5 7 3 2 0 . , 2 1 5 9 8 . 0 0 0 0 4 . 8 7 8 0 4 7 0 X 2 2 T 2 1 4 . 0 1 4 6 . 0 3 0 . 1 4 8 9 2 1 . 3 3 7 7 1 . 9 9 2 1 1 . 3 6 4 1 0 . . 3 6 7 7 5 . 4 7 6 2 3 . 7 5 0 0 4 7 1 X 2 2 T 2 2 5 . 5 1 9 3 . 5 5 0 . 3 0 4 1 3 1 . 3 8 9 5 4 . 2 2 5 8 2 . 1 8 3 3 0 . 3 9 7 8 12 . 0 9 6 8 6 2 5 0 0 4 7 2 X 2 2 T 2 3 5 . 5 1 6 2 . 16 0 . 2 4 8 6 8 1 . 3 2 0 5 3 . 2 8 3 8 2 . 0 2 5 0 0 . 3 4 2 4 8 . 5 1 3 5 5 . 2 5 0 0 4 7 3 X 2 2 T 2 4 7 . 5 1 8 4 . 0 0 0 . 3 7 7 2 8 1 . 3 6 2 4 5 . 1 4 0 0 2 . 7 9 3 5 0 . . 4 1 3 5 15 . 6 0 0 0 a 4 7 8 3 4 7 4 X 2 2 T 2 5 6 . 5 2 2 7 . 7 8 0 . 5 1 6 6 1 1 . 1 8 8 3 6 . 1 3 8 9 2 . 6 9 5 1 0 . . 3 6 5 6 18 . 8 8 8 9 8 . 2 9 2 7 4 7 5 X 2 2 C 1 1 5 . 5 1 8 7 . 14 0 . 2 6 9 1 4 1 . 1 6 7 7 3 . 1 4 2 9 1 . 6 7 9 4 0 . . 2 9 1 9 7 . 8 5 7 1 4 . 1 9 8 5 4 7 6 X 2 2 C 1 2 6 . 0 1 8 5 . 2 9 0 . 2 7 5 4 1 1 . 3 3 4 9 3 . 6 7 6 5 1 . 9 8 4 1 0 . . 3 8 4 3 1 0 . 5 8 8 2 5 . 7 1 4 3 477 X22C16 8. 5 182. 61 0. 42361 1 . 1803 5. OOOO 2. 7381 0: •2771 1 1 . 7391 6. 4286 478 X22C21 7. 5 187. . 14 0. 27814 1 2327 3. 4286 1 . 8321 0. 3133 8. 7143 4 . 6565 479 X22C22 9. 5 205. 56 0. 34681 1 . .3883 4 . 8148 2. 3423 0. 3951 13. 7037 6. 6667 480 X22C25 4 . 5 188. 10 0. 40238 1 . 3018 5. 2381 2. 7848 0. 3195 12. 8571 6. 8354 481 X22B11 3. 0 181 . 71 0. 20837 1 . 2291 2. 5610 1 . 4094 0. 3512 7. 3171 4 . 0268 482 X22B12 5. 0 208. 57 0. 27906 1 . 3822 3. 8571 1. 8493 0. 4607 12. 8571 6. 1644 483 X22B16 5. 0 173. 44 0. 27859 1 . .2339 3. 4375 1 . 9820 0. 4992 13. 9062 8. 0180 484 X22B21 3. 0 95. 05 0. 08230 1 . .3234 1 . 0891 1 , . 1458 0. 4451 3. 6634 3 . 8542 483 X22B22 7. 5 177. . 14 0. 27314 1 .0983 3. OOOO 1 , 6935 0. 3661 10. OOOO 5. 6452 486 X22B23 7 , 5 188. 89 0. 33804 1 .0409 3. 5185 1 , 8627 0. 4163 14 . 0741 7 4510 487 X23T11 IS. 0 219. 44 0. 53094 1 . 4597 7. 7500 3. 5316 0. 2616 13. 8889 6 3291 488 X23T12 7. 5 156. 90 0. 32317 1 , .3871 4 . 4828 2. 8571 0. 2294 7. 4138 4 . 7253 489 X23T14 8. 0 197. 22 0. 52867 1 . .2715 6. 7222 3 4085 0. 1524 8. 0556 4 . 0845 490 X23T21 15. 5 223. 53 0. 57871 1 .4180 8. 2059 3. .671 1 0. 2440 14 . 1176 6. .3158 491 X23T22 12. 5 190. 48 0. 50295 1 .2734 6. 4048 3. 3625 0. 1846 9. 2857 4 . 8750 492 X23T24 9. 0 189. .47 0. 56763 1 .0756 6. 1053 3 2222 0. 1252 7. , 1053 3 .7500 493 X23C11 9. 0 220. .45 0. 41936 1 .4958 6. .2727 2 .8454 0. 2872 12 0455 5 .4639 494 X23C12 8. .0 177. .50 0. 46745 1 .5082 7 . 05O0 3 .9718 0. 3851 IB OOOO 10 . 1408 495 X23C14 8. 0 222. .22 0. 51972 1 .2293 6 3889 2 .8750 0. 2191 1 1 . 3889 5 1250 496 X23C21 7 0 210. 00 0. 37344 1 . .4353 5. 3600 2 5524 0. 2785 10. 4000 4 .9524 497 X23C22 8 0 257. . 14 0. 44357 1 .5083 6. 6905 2 .6019 0. 3489 15. 4762 6 .0185 498 X23C25 9. 0 216 67 0. 53978 1 .0704 5. 7778 2 .6667 0. 1801 9. 7222 4 .4872 499 X23B11 5. 5 203. . 13 0. 28931 1 .4258 4 . 1250 2 0308 0. 3510 10. 1562 5 .0000 500 X23B12 4 . 5 221 .05 0. 48900 1 .4423 7 . 0526 3 . 1905 0. 3659 17 8947 8 .0952 501 X23B13 6. .5 231 . 58 0. 50505 1 .2922 6. ,5263 2 .8182 0. 3074 15 .5263 6 .7045 502 X23B21 5. 5 213 .79 0. 33003 1 .4628 4 .8276 2 .2581 0. 2612 8 6207 4 .0323 503 X23B22 S. 5 188. 33 0. 31380 1 .5827 4 . 9667 2 .6372 0. 3027 9. 5000 5 .0442 504 X23B24 6. 0 225. .00 0. 455S5 1 .3006 5 9250 2 .6333 0. 3073 14. OOOO 6 .2222 505 X31T11 18. .0 213. .89 0. 52128 1 .8544 9. .6667 4 .5195 0. 2718 14 . . 1667 6 6234 506 X31T12 18. .0 223. .53 0. 54929 1 .5100 8 .2941 3 .7105 0. 2195 12. .0588 5 . 3947 507 X31T13 10. 5 188. , 10 b. 45338 1 .4389 6 .5238 3 .4684 0. 1943 8 .8095 4 .6835 508 X31T14 9. .5 184. .78 0. 46035 1 .3695 6. .3043 3 .4118 0. 1936 8 .9130 4 8235 509 X31T15 10. .5 214. .71 0. 57576 1 .2362 7. . 1 176 3 .3151 0. 1532 8 .8235 4 . 1096 510 X31T21 12. .0 208 .33 0. 40583 1 .6273 6 .6042 3 . 1700 0. 2823 1 1 4583 5 .5000 51 1 X31T22 13. ,0 234, .21 0. 51705 1 .4454 7 4737 3 . 1910 0 2545 13. .1579' 5 .6180 512 X31T23 9. .5 192 86 0. 46100 1 .4048 6. .4762 3 .3580 0. 2014 9 .2857 4 .8148 513 X31T24 8 .5 202, .38 0. 48976 1 .3709 6 .7143 3 .3176 0. 1750 8 .5714 4 .2353 514 X31T25 14 .5 213 89 0, 52972 1 . 1432 6 .0556 2 .8312 0. 1311 6 .9444 3 .2468 515 X31C11 5 .5 209 .68 0, 30845 1 .4798 4 .5645 2 . 1769 0. 3556 10 .9677 5 .2308 516 X31C12 6 .0 226 .09 0. 41630 1 .4830 6 . 1739 2 .7308 0. .3916 16 .3043 7 .2t15 517 X31C13 6 0 208 .33 0. 40825 1 .4952 6 . 1042 2 .9300 0. .4082 16 .6667 a .0000 518 X31C14 7 .0 200 .00 0 43782 1 .4743 6 4545 3 .2273 0. 3218 14 .0909 7 .0455 519 X31C15 1 1 .5 220 .00 0 50630 1 . 2394 6 . 27S0 2 .8523 0. 2074 10 . 50O0 4 . 7727 520 X31C16 13 .5 241 . 38 0. 65862 1 .0890 7 . 1724 2 .97 14 0. 1649 10. .8621 4 .5000 521 X31C21 4 .5 197 .30 0. .26051 1 .4057 3 .6622 1 .8562 0. 3787 9 .8649 5 . 0 0 0 0 522 X31C22 5. .5 220 .00 0. 37568 1 .5013 5 .6400 2 .5636 0. .4525 17 . 0 0 0 0 7 .7273 523 X31C23 4 .0 184 .85 0. 29430 1 .4518 4 .2727 2 .3115 0. .4942 14 .5455 7 .8689 524 X31C24 6 .0 206 .00 0. 39892 1 .3988 5 .5800 2 .7087 0. .4913 19 .6000 9 .5146 525 X31C25 9 .0 240 .00 0. .48505 1 .2782 6 .2000 2 .5833 0. .3556 17 .2500 7 . 1875 526 X31C26 8 .5 235 .29 0 57000 1 . 1455 6 .5294 2 .7750 0 .3044 17 .3529 7 .3750 527 X31B11 4 . ,0 217. .24 0. 31186 1 .5535 4 .8448 2 .2302 0. 3317 10 .3448 4 . 7619 528 X31B12 5 .0 180 .56 0 24778 1 .6536 4. .0972 2 .2692 0. 5157 12 .7778 7 .0769 529 X31B13 5. .5 204 . 17 0 38892 1 .5749 6 . 1250 3 . OOOO 0. 5410 21 .0417 10 . 3061 530 X31B14 7. .0 230 .95 0. 44629 1 .5792 7 .0476 3 .0515 0. 5495 24 .5238 10 .6186 531 X31B15 8 .5 222 .50 0. 4770O 1 .4308 6 .8250 3 .0674 0 .4193 20 . 0 0 0 0 8 .9888 532 X31B16 9 0 243 .75 0. 66150 1 .2188 8 .0625 3 .3077 0. .2882 19 .0625 7 .8205 533 X31B21 4 .0 197 .56 0. 23376 1 .4138 3 . 3049 1 .6728 0 .3548 8 .2927 4 . 1975 534 X31B22 5 .5 209 .62 0. 38296 1 .4964 5 .7308 2 .7339 0 .4519 17 .3077 8 . 2569 535 X31827 1 1 O 214. .71 0. 58529 1 .0955 6 41 18 2 .9863 0 2362 13 8235 6 . 4384 536 X32T11 21 .5 257 .69 0 74OO0 1 .5281 1 1 .3077 4 .3881 0. 3326 24 .6154 9 .5522 537 X32T12 24 .5 234 .62 0. 74615 1 .5284 1 1 .4038 4 .8607 0. .3170 23 .6538 10 .0820 538' X32T14 24 .0 234 .62 0. 78915 1 .2867 10 . 1538 4 . 3279 0. .2583 20 . 3846 8 .6885 539 X32T21 21 .5 201 .56 0. 60625 1 .6443 9 .9688 4 .9457 0. .3454 20 .9375 10 .3876 540 X32T22 26 .0 225 .93 0. .76667 1 .5362 1 1 .7778 5 .2131 0 .3237 24 .8148 10 .9836 541 X32T24 28 .0 230 .77 0. .79192 1 .2239 9 .6923 4 .2000 0. .2380 18 .8461 8 . 1667 542 X32C11 17 .0 250 .00 0 .61927 1 .4856 9 .2000 3 .6800 0 .3660 22 .6667 9 .0667 543 X32C12 19 .0 238 .46 0. .70723 1 .6152 1 1 .4231 4 .7903 0. .4133 29 . 2308 12 .2581 544 X32C14 24 .0 229 . 17 0. .78625 1 .4202 1 1 . 1667 4 .8727 0. .3869 30 .4167 13 .2727 545 X32C21 10 .0 210 .87 0 .43843 1 . 3338 5 .8478 2 .7732 0. .3570 15 .6522 7 .4227 546 X32C22 10 .5 211 . 1 1 0. .52839 1 .6507 8 .7222 4 . 1316 0. .4469 23 .6111 1 1 . 1842 547 X32C25 19 .5 223 .08 0. .71985 1 .2663 9 . 1 154 4 .0862 0. .3900 28 .0769 12 .5862 548 X32B11 5 .5 235 .00 0. .37600 1 .2527 4 .7100 2 .0043 0, .3431 12 .9000 5 .4894 549 X32B12 7 .0 196 .77 0 .31187 1 .5050 4 .6935 2 .3852 0. .5327 16 .6129- 8 .4426 550 X32B13 5 .5 196 .30 0 .349O0 1 .5229 5 .3148 2 .7075 0 .557 1 19 .4444 9 .9057 551 X32B21 6 .0 235 .71 0 .34004 1 .2866 4 .3750 , 1 .8561 0 .3519 1 1 .9643 5 .0758 552 X32B22 7 .0 203 .03 0 .28358 1 .5495 4 .3939 2 . 1642 0. 4702 13 . 3333 6 .5672 553 X32B23 7 .5 201 .92 0. 36977 1 .404 2 5 . 1923 2 .5714 o. 4785 17 .6923 8 .7619 554 X33T11 21 .5 253 .85 0 .78069 1 .6159 12 .6154 4 .9697 0. 2365 18 .4615 7 .2727 555 X33T12 12 .0 239 .29 0. .68629 1 .6080 11 .0357 4 .6119 0. .2550 17. .5000 7 .3134 556 X33T14 12 .5 200 .00 0. .74000 1 .3243 9 .8000 4 .9000 0. .2072 15 .3333 7 .6667 557 X33T21 17 .5 225 .00 0. .67333 1 .6015 10 .7833 4 .7926 0. .2302 15 .5000 6 .8889 558 X33T22 10 .0 208 .82 0 ,57129 1 .5548 8 .8824 4 .2535 0. .2420 13 .8235 6 .6197 559 X33T25 15 .5 243 . 18 0. .94091 1 .3116 12 .3409 5 .0748 0. .2101 19 .7727 8 . 1308 560 X33C11 17 .0 174 .39 0. .47561 1 .6026 7 .6219 4 .3706 0. 2974 14 . 1463 8 .1119 561 X33C12 12 .0 223 .53 0 .58306 1 .5839 9 .2353 4 . 1316 0. 2926 17. .0588 7 .6316 562 X33C14 12 .0 207 . 14 0 .73214 1 .3463 9 .8571 4 .7586 0. 2780 20 .3571 9 .8276 563 X33C21 6 .0 168 .75 0 24302 1 .5019 3 .6500 2 . 1630 0. 3189 7. .7500 4 .5926 564 X33C22 3 .0 186 .00 0 .39952 1 .4117 5 .6400 3 .0323 0. 4055 16 .2000 8 .7097 565 X33B11 6 .0 201 .72 0 34810 1 .4710 5 . 1207 2 .5385 0. 3120 10 .8621 5 3846 566 X33B12 6 .5 206 .52 0 .43043 1 .6641 7 . 1630 3 .4684 0. 4293 18. .4783 8 .9474 567 X33B14 7 .0 202 .78 0 .52478 1 .6144 8 .4722 4 . 1781 0. 5240 27. .5000 13 .5616 568 X33B21 6 .0 193 .75 0 .31691 1 .2967 4. . 1094 2 . 1210 0. 2219 7. 0312 3 6290 569 X33B22 10 .0 218 .75 0. .43458 1 .5149 6. .5833 3 .0095 0. 3164 13. 7500 6 .2857 570 X33B25 11 .5 208 .33 0. .61811 1 .3976 8 .6389 4. . 1467 0. 3775 23. 3333 11 .2000 I l l APPENDIX 6 ANOVA Results for F o l i a r Nutrients These analyses were ca r r i e d out for current, 1-year-old and oldest needles from a subset of the data i n Appendix 5. This subset was randomly selected by taking four samples from the six available for each crown l e v e l (3 trees X 2 branches). Symbols NCONC N concentration (%) NPER100 N per 1000 needles (mg/100) NPERM N per unit length (mg/m) PCONC P concentration (%) PPER100 P per 1000 needles (mg/100) PPERM P per unit length (mg/m) NPRATIO N/P r a t i o Part 1 ANOVA Sources of V a r i a t i o n : Site Plots within hygrotopes Age Needle age (current, 1-year-old, oldest) Crown Crown l e v e l (top, center, bottom) Part 2 Averages by plot Sources of V a r i a t i o n : A Hygrotope (1 = hygric, 2 = mesic, 3 = xeric) B Plot (1, 2, 3) C Crown l e v e l (1 = top, 2 = center, 3 = bottom) D Needle age (1 = current, 2 = 1-year-old, 3 = oldest) 112 ANALYSIS OF VARIANCE/COVARIANCE FOR VARIABLE NCONC SRC. SUM OF MEAN TESTED NO. SOURCE D.F. SQUARES SOUARE F VALUE F PROB AGAINST 1 HYCRTOPE 2 S.496860E-01 4 .24B430E-01 1.5063 0.2954 2 2 SITE S 1.692211 2 8203S2E-01 10.8892 0.0000 12 3 CROWN 2 3.619627E-01 1 .BO9813E-01 3.1774 0.0771 5 4 HC 4 2.27354SE-02 5 683858E-03 0.0998 0.9775 5 B SC 12 6.B349B6E-01 9 695822E-02 3.1991 0.0124 12 6 AGE 2 3.918315 1.959157 60.7628 0.0000 8 7 HA 4 1.592257E-01 3 9B0643E-02 1.2346 0.3478 8 a SA 12 3.B69124E-01 3 224270E-02 1.2449 0.2525 12 9 CA 4 5.02B111E-01 1 .257027E-01 7.6567 0.0004 11 10 HCA a 2.325662E-01 2 .907077E-02 1.7707 0.1327 11 11 SCA 24 3.940166E-01 1 641736E-02 0 6339 0.9082 12 12 ERROR 243 6.293820 2 590049E-02 13 TOTAL 323 15.497762 ANALYSIS OF VARIANCE/COVARIANCE FOR VARIABLE NPER100 SRC. SUM OF MEAN TESTED NO. SOURCE D.F. SQUARES SOUARE F VALUE F PROB AGAINST 1 HYCRTOPE 3 64.035932 32.017960 2.1160 0.2012 2 2 SITE 6 90.767215 15. 131202 5.5646 0.0000 12 3 CROWN 2 691.620238 345.810059 SI.1450 0.0000 5 4 HC 4 40.787500 10. 196875 1.5081 0.2609 5 5 SC 12 81.136425 6.761368 2.4866 0.0044 12 6 AGE 2 3.744720 1.872359 0.7312 0.5053 8 T HA 4 6.00B5T7 1 502144 0.5866 0.6805 6 a SA 12 30.728887 2.560740 0.9417 0.5O63. 12 9 CA 4 68.973952 17.243484 7.7695 0.0004 11 10 HCA a 19.666655 2.458331 1.1077 0.3927 11 11 SCA 24 53.265079 2.219378 0.8162 0.7153 12 12 ERROR 243 660.759641 2.719175 13 TOTAL 323 1811.514821 ANALYSIS OF VARIANCE/C0VAR1ANCE FOR VARIABLE NPERM SRC. SUM OF MEAN TESTED NO. SOURCE D.F . SOUARES SOUARE F VALUE F PROB AGAINST 1 HYCRTOPE 2 9.259025 4.629512 1.9184 0.2267 2 2 SITE 6 14.478959 2.413159 5.7408 O.OOOO 12 3 CROWN 2 142.895380 71.447678 91.6299 0.0000 5 4 HC 4 7.047941 1.761985 2.2597 0.1227 5 5 SC 12 9.356909 7 797424E-01 1.8550 0.O4O5 12 6 AGE 2 6.665315E-01 3 332657E-01 0.9537 0.4149 8 7 HA 4 1.268286 3 170715E-01 0.9073 0.4915 8 8 SA 12 4.193554 3 494628E-01 0.8314 0.6188 12 9 CA 4 11.463630 2.865907 8.6474 0.0002 11 10 HCA 8 4.218889 5 273612E-01 1.5912 0.1794 11 11 SCA 24 7.954026 3 314177E-01 0.7884 0.7506 12 12 ERROR 243 102.144919 4 203494E-01 13 TOTAL 323 314.948050 ANALYSIS OF VARIANCE/COVARIANCE FOR VARIABLE PCONC SRC. SUM OF MEAN TESTEO NO. SOURCE D.F. SOUARES SOUARE F VALUE F PROB AGAINST 1 HYCRTOPE 2 T.316S27E-01 3 658263E-01 10.2719 0.0122 2 2 SITE 6 2. 136858E-01 3 S61430E-02 9.3384 0.0000 12 3 CROWN 2 1.252228E-01 6 261134E-02 4. 1270 0.0427 5 4 HC 4 T.711669E-02 1 927917E-02 1 .2708 0.3348 5 s SC 12 1.820326E-01 1 517104E-02 3.9780 0.0000 12 « AGE 2 2.063322E-01 1 031660E-01 24.S775 0.0001 8 7 HA 4 4.366511E-02 1 091627E-02 2.6006 0.0B91 8 a SA 12 5.037109E-02 4 197590E-03 1. 1006 0.3600 12 9 CA 4 8 300013E-02 2 O75O03E-O2 8.4906 0.0002 11 10 HCA a 5 684140E-02 7 105172E-03 2.9073 0.0204 11 11 SCA 24 S.86S349E-02 2 443895E-03 0.6408 0.9028 12 12 ERROR 243 9.267447E-01 3 813764E-03 13 TOTAL 323 2.759339 ANALYSIS OF VARIANCE/COVARIANCE FOR VARIABLE PPER100 SRC. SUM OF MEAN TESTED NO. SOURCE D.F. SQUARES SOUARE F VALUE F PROB AGAINST 1 HYCRTOPE 2 12.440118 6.220058 7. 1213 0.0265 2 2 SITE 6 5.240632 a 734385E-01 5.6379 0.0000 12 3 CROWN 2 8.291776 4.145887 8.4319 0.0053 5 4 HC 4 1.991514 4 9T878SE-01 1.0126 0.4400 5 B SC 12 B.900297 4 916914E-01 3.1738 0.0003 12 6 AGE 2 B.433321E-01 2 T1S760E-01 1. 1440 0.3521 8 7 HA 4 2.081194 B 202985E-O1 2. 1909 0.1311 8 a SA 12 2.849728 2 374773E-01 1.6329 0.1125 12 9 CA 4 S.798752 1.449688 11.8052 0.0000 11 10 HCA a 1.122151 1 402689E-01 1.1432 0.3723 11 11 SCA 24 2.947224 1 32S009E-01 0.7927 0.7453 12 12 ERROR 243 37.846019 1 S4B218E-01 13 TOTAL 323 86.8S2TB6 ANALYSIS OF VARIANCE/COVARIANCE FOR VARIABLE PPERM SRC. SUM OF MEAN NO. SOURCE D. F. SOUARES SQUARE 1 HYGRTOPE 2 2.7752B9 1.387644 2 SITE 6 1.074186 1 •790310E-01 3 CROWN 2 1.445226 7 .226132E-01 4 HC 4 2 .845710E-01 7 .114273E-02 S SC 12 1.236380 1 .030316E-01 6 AGE 2 6 .894640E-02 3 .447320E-02 7 HA 4 4 .991332E-01 1 .247833E-01 8 SA 12 5 .250S72E-01 4 375476E-02 9 CA 4 1.161883 2 904707E-01 10 HCA 8 2 .634226E-01 3 .292783E-02 11 SCA 24 9 .039097E-01 2. 099624E-02 12 ERROR 243 6.987173 2 •875379E-02 13 TOTAL 323 16.829177 ANALYSIS OF VARIANCE/COVARIANCE FOR VARIABLE NPRATIO SRC. SUM OF MEAN NO. SOURCE O.F. SOUARES SOUARE 1 HYGRTOPE 2 604.067306 302.033447 2 SITE 6 99.393381 16.5655S2 3 CROWN 2 124.371874 62.185928 4 HC 4 29.896139 6.474033 S SC 12 87.486775 7.290565 6 AGE 2 44.006325 22.003159 7 HA 4 52.350887 13.087721 8 SA 12 11.259075 9 .382562E-01 9 CA 4 16.892845 4.223210 10 HCA 8 11.476798 1.434599 11 SCA 24 18.073598 7 .530665E-01 12 ERROR 243 342.438567 1.409212 13 TOTAL 323 1437.713565 TESTED F VALUE F PROB AGAINST 7.7509 0. .0223 2 6.2263 0. OOOO 12 7.0135 0 .0096 5 0.6905 0 .6144 5 3.5832 0. .0001 12 0.7879 0 .4803 8 2.8519 0 .0710 8 1.5217 0 . 1163 12 13.8344 0 .0000 11 1.5683 0 . 1864 11 0.7302 0. .8188 12 TESTED F VALUE F PROB AGAINST 18.2326 0. .0033 2 11.7552 0, .0000 12 8.5296 0. .0051 5 0.8880 0. 5016 5 5.1735 0 .0000 12 23.4511 0. oooi • 8 13.9490 0. OO02. 8 0.6658 0 .7843 12 5.6080 0. .0025- 11 1.9050 0. . 1059 11 0.5344 0 .9650 12 M E A N S FOR S O U R C E * S C A F A C T O R L E V E L S NCONC P P E R I O O A 8 C • D I V I S O R F R E O M E A N S T D O E V t 1 1 1 4 4 1 . 7 5 0 0 . 0 3 7 1 . 2 2 1 0 . 3 0 3 1 i 1 2 4 4 1 . 6 9 1 0 . 0 4 4 0 . 8 1 5 0 . 184 1 i 1 3 4 4 1 . 5 0 1 0 . 2 5 6 0 . 6 9 1 0 . 1 8 6 1 1 2 1 4 4 1 . 6 9 9 0 . 0 5 9 1 . 3 0 3 0 . 0 5 9 1 1 2 2 4 4 1 . 6 2 8 0 . 101 0 . 8 5 8 0 . 1 7 7 1 « 2 3 4 4 1 . ( 9 7 0 . 2 2 1 0 . 6 2 2 0 . 2 5 6 1 t 3 1 4 4 1 . 6 6 9 0 . 3 8 0 0 . 5 8 8 0 . 2 2 6 1 t 3 2 4 4 1 6 3 5 0 . 2 7 0 0 . 7 1 6 0 . 2 2 6 t t 3 3 4 4 1 . 2 5 8 0 . 2 2 6 0 . 6 9 1 0 . 1 1 5 1 2 t t 4 4 1 . 4 5 2 0 . 1 5 5 1 . 5 7 7 0 . 3 8 7 1 2 1 2 4 4 1 . 3 9 2 0 . 1 5 2 1 . 2 1 4 0 . 4 7 3 1 2 1 3 4 4 1 . 0 9 9 0 . 1 2 2 1 . 0 1 7 0 . 1 6 5 1 2 2 1 4 4 1 . 3 1 1 0 . 1 8 4 0 . 8 0 6 0 . 2 5 6 i 2 2 2 4 4 1 . 5 5 5 0 . 2 5 1 0 . 6 S 0 0 . 0 6 2 1 2 2 3 4 4 1 . 1 7 7 0 . 1 4 8 0 . 7 2 7 0 . 1 0 5 i 2 3 1 4 4 1 . 3 6 6 0 . 2 5 5 0 . 5 2 2 0 . 1 1 5 i 2 3 2 4 4 1 . 4 9 0 0 . 1 9 2 0 . 5 5 2 0 . 0 5 0 1 2 3 3 4 4 1 . 1 9 5 0 . 1 5 6 0 . 6 6 2 0 . 171 i 3 1 1 4 4 1 . 5 6 0 0 . 0 8 5 1 . 4 8 4 0 . 2 0 7 1 3 1 2 1 . 4 9 9 1 . 2 4 1 0 . 1 2 2 0 . 2 1 1 P P E R M M E A N S T O O E V 1 0 0 4 3 2 0 8 9 0 5 7 2 0 1 2 6 8 6 1 1 1 154 0 4 1 4 0 1 0 7 7 9 3 1 . 1 6 0 4 0 3 5 3 0 0 9 0 1 0 . 2 3 4 1 6 7 7 0 5 8 3 0 0 5 6 9 1 6 7 1 3 1 7 0 3 9 7 0 0 8 1 6 9 5 3 2 9 1 5 0 3 1 0 0 0 8 3 3 8 5 8 1 2 2 8 0 2 9 7 0 0 9 4 4 9 3 4 1 2 1 3 0 3 5 3 0 1 0 2 5 0 3 7 1 0 9 2 0 3 3 3 0 0 4 9 9 1 1 9 0 7 2 3 0 7 2 6 0 1 9 0 8 5 0 7 1 8 5 0 0 5 4 7 0 1 9 3 7 9 3 0 1 . 0 3 1 0 4 7 7 0 1 0 2 5 3 3 5 1 5 1 7 0 4 1 8 0 . 1 19 5 8 6 0 , 2 9 1 0 3 3 6 0 . 0 2 5 6 2 7 7 0 . 4 9 7 0 3 5 3 0 . 0 3 7 3 0 7 9 0 . 8 9 1 0 . 3 4 1 0 . 1 3 9 3 . 6 7 8 0 . 3 7 9 0 . 3 1 8 0 . 0 3 5 4 . 9 5 5 0 . 7 2 2 0 . 3 4 4 0 . OB 5 9 . 6 8 7 1 . 1 6 0 0 . 7 0 5 0 . 1 2 2 9 . 0 6 1 1 . 1 6 0 0 . 6 2 2 0 . 1 1 0 N P E R M N P R A T I O M E A N S T D D E V 4 7 0 9 0 7 9 8 8 3 5 1 1 0 0 8 4 3 6 6 0 7 0 0 10 7 3 6 1 0 5 9 4 0 5 3 0 7 2 3 11 . 6 8 0 1 3 2 3 4 5 3 7 0 3 9 1 7 8 4 7 1 1 7 8 4 2 3 7 0 5 9 2 1 0 7 8 7 0 7 5 8 3 4 6 8 0 8 9 5 11 3 0 7 » 5 3 7 1 9 6 5 0 5 6 3 6 6 9 8 0 7 9 0 2 4 4 1 0 5 5 6 7 0 2 5 0 6 8 3 2 4 2 6 0 4 8 3 7 3 6 2 1 4 9 6 4 1 8 5 0 3 2 0 5 9 7 5 1 0 9 9 3 8 3 8 0 6 6 3 7 3 4 4 1 4 5 2 3 7 0 3 0 5 3 9 7 9 6 1 1 6 3 4 2 7 7 5 0 6 9 3 6 7 0 0 0 5 8 4 3 0 1 1 0 4 5 7 8 9 4 5 1 111 3 0 5 8 0 1 2 8 8 7 1 8 0 8 7 7 1 9 8 S 0 8 2 8 5 8 2 4 0 7 6 4 2 131 0 3 7 4 6 7 1 6 1 0 7 4 2 5 7 7 0 3 5 2 7 6 6 7 0 9 3 3 4 5 7 1 0 . 3 7 1 6 6 6 8 1 4 7 4 4 . 5 3 1 0 . 4 8 0 7 . 5 1 8 1 . 7 8 4 P C O N C M E A N S T D D E V 0 . 2 1 2 0 . 0 2 7 0 . 1 5 9 0 . 0 1 4 0 . 1 3 1 0 . 0 3 3 0 . 2 2 1 0 . 0 3 8 0 . 1 5 1 0 0 1 2 O . 1 0 6 0 0 1 7 0 . 2 5 0 0 . 0 5 1 0 . 2 3 5 0 . 0 4 9 0 . 1 7 4 0 . 0 3 5 0 . 2 5 2 0 . 0 6 8 0 . 1 9 7 0 . 0 5 6 0 . 1 4 6 0 . 0 5 0 0 . 1 9 7 0 . 0 3 0 O . 174 0 . 0 1 3 0 . 1 3 7 0 . 0 3 3 0 . 2 3 3 0 . 0 2 1 0 . 2 2 4 0 . 0 3 3 0 . 1 5 8 0 . 0 3 0 0 . 2 4 5 0 . 0 7 0 0 . 2 1 0 0 . 0 6 1 1 3 1 3 1 3 2 1 1 3 2 2 1 3 2 3 1 3 3 1 1 3 3 2 1 3 3 3 2 1 1 1 2 1 1 2 2 1 1 3 2 1 2 1 2 1 2 2 2 1 2 3 2 1 3 1 2 1 3 2 2 1 3 3 2 2 1 1 2 2 1 2 2 2 1 3 2 2 2 1 2 2 2 2 1.340 0.044 0.910 0.116 1.515 0.079 1.361 0.16S 1.385 0.205 1.067 0.455 1.244 0.185 0.904 0.210 1.320 0.142 0.718 0.314 1.471 0.180 0.851 0.094 1.268 0.183 0.684 0.073 1.545 0.064 1.551 0.403 1.440 0.074 1.779 0.742 1.178 0.093 1.105 0.738 1.330 0.034 0.982 0.246 1.432 0.070 1.326 0.110 1.349 0.155 1.317 0.398 1.233 0.165 0.695 0.411 1.226 0.441 0.850 0.148 1.218 0.102 0.869 0.209 1.487 0.170 1.982 0.964 1.480 0.247 1.910 0.498 1.194 0.083 1.197 0.417 1.237 0.094 0.765 0.063 1.331 0.165 1.067 0.326 7.708 0.481 7.625 0.691 7.297 0.555 6.616 0.470 4.582 0.339 9.444 0.379 9.869 0.331 7.282 0.765 8.305 0.860 6.008 0.609 4 .382 0.522 9.313 0.668 9. 166 0.733 3. 110 0.386 3.429 0.464 3.784 0.512 8.248 0.895 9.285 0.888 7.977 0.564 4.207 0.407 5.044 0.530 1 .070 0.090 0.608 0.073 2.306 0.204 1.443 0.091 2.633 0. 114 1 .338 0.035 0.384 0.041 2.758 0. 158 1 .401 0.34S 1 .474 0.438 0.848 0. 114 0.947 0.059 0.579 0.207 2. 162 0. 164 1 .003 0. 104 0.253 0. 124 1 .984 0.366 0.456 0.226 0.882 0. 111 0.653 0.058 0.974 0. 146 4.020 8.698 3.884 5.682 3.813 7. 163 3.471 7.388 2. 134 6. 162 2.411 6.454 2.843 8.638 3.558 4.676 4.025 5. 123 3.240 6.5B9 2.344 4.581 2.682 4.036 2.882 4. 190 1.707 4.292 1 .877 3.991 2.250 4.596 3.819 4.646 4.338 5. 138 3.846 7.016 2.234 5.497 2.547 4.938 0.339 2.409 0.378 0.948 0.957 1 .289 0.806 1 .303 1.005 1.202 0.507 1.643 0.321 0.934 1 .076 1.067 0.569 1.505 0.669 2.545 0.442 0.951 0.505 0.867 0.313 1.363 0.907 0.569 0.623 0.680 0.334 1.382 0.849 1 .423 0.373 1 .416 0.348 1.377 0.399 0.693 0.675 1.329 0. 162 0.271 0. 197 0.170 0.218 0.236 0. 149 0.346 0.309 0 218 0.302 0.365 0.349 0.289 0.298 0.283 0.337 0.296 0. 174 0.228 0.281 0.036 0.036 0.032 0.015 0.029 0.044 0.032 0.099 0. 129 0. 140 0.077 0.069 0. 108 0.033 0.072 0.091 0.073 0.044 0.028 0.034 0.067 2 2 2 3 2 2 3 1 2 2 3 2 2 2 3 3 2 3 1 1 2 3 1 2 2 3 1 3 2 3 2 1 2 3 2 2 2 3 2 3 2 3 3 1 2 3 3 2 2 3 3 3 3 1 1 1 3 1 1 2 3 1 1 3 3 1 2 1 3 1 2 2 3 1 2 3 3 1 3 1 3 1 3 2 1 . 0 9 8 0 . 0 9 6 1 . 0 0 3 0 . 2 0 0 1 . 4 6 3 0 . 1 8 5 1 . 0 6 2 0 . 1 3 5 1 . 5 5 9 0 . 1 6 7 1 . 2 8 1 0 . 1 5 0 1 . 2 2 0 0 . 1 7 4 1 . 0 7 1 0 . 5 0 3 1 . 4 8 7 0 . 0 6 7 1 . 4 6 1 0 . 3 2 9 1 3 3 4 0 . 0 8 4 1 181 0 . 3 1 1 1 1 2 9 0 . 1 2 7 0 . 9 6 1 0 . 1 6 6 1 2 9 3 0 . 1 7 7 1 7 0 7 1 . 0 5 7 1 3 6 1 0 . 0 8 6 1 5 5 2 0 . 4 3 7 1 2 5 9 0 . 0 7 7 1 4 1 2 0 . S 3 S 1 1 0 5 0 . 1 2 9 0 6 6 9 0 . 1 0 3 1 2 7 1 0 . 0 1 9 0 8 1 7 0 . 2 1 4 1 0 4 9 0 . 0 5 5 1 3 9 6 0 . 1 7 6 i 5 8 1 0 . 1 4 7 1 5 5 1 0 . 4 6 3 1 3 7 7 0 . 1 8 7 1 I B S 0 . 0 6 2 1 131 0 . 1 5 5 1 0 7 6 0 . 1 2 6 1 3 6 2 0 . 1 8 5 1 2 9 2 0 . 7 1 7 1 3 3 3 0 . 111 1 4 4 6 0 . 9 6 1 1 0 5 7 0 . 0 3 8 1 151 0 . 1 3 3 1 3 2 3 0 . 184 0 9 2 5 0 . 2 9 6 1 2 1 3 0 . 0 9 8 1 0 2 2 0 . 191 4 . 9 1 8 0 . 4 9 9 9 . 1 9 7 0 . 4 8 6 6 . 0 4 9 0 . 6 1 4 5 . 4 2 0 0 . 5 0 1 9 . 0 9 1 0 . 7 0 3 7 . 9 2 0 0 . 6 4 6 6 . 9 3 9 0 . 5 0 4 6 . 4 4 2 0 . 8 2 5 6 . 2 3 8 0 . 8 1 1 5 . 6 0 3 0 . 8 3 0 2 . 9 2 4 0 . 4 1 0 3 . 3 8 2 0 . 5 2 7 4 . 8 8 8 0 . 7 9 7 8 . 4 3 2 0 . 7 0 0 7 . 0 2 1 0 . 6 0 2 6 . 5 8 9 0 . 5 5 0 5 . 9 8 1 0 . 5 9 3 6 . 2 5 3 0 . 6 6 5 6 . 2 8 0 0 . 9 7 6 4 . 3 6 7 0 . 4 5 9 4 . 7 3 2 0 . 5 0 2 0 . 6 7 5 0 . 0 6 1 0 . 2 7 1 0 . 0 5 3 0 . 9 7 7 0 . 0 8 4 0 . 5 7 3 0 . 2 1 8 1 . 1 5 0 0 . 141 1 . 6 4 2 0 . 2 9 9 0 . 7 6 0 0 . 0 9 5 2 . 8 4 2 0 . 3 9 6 1 . 9 2 2 O . 1 3 8 1 . 2 3 3 0 . 2 4 3 0 . 5 8 5 0 . 0 7 5 0 . 9 8 4 0 . 1 0 8 0 . 4 3 4 0 . 1 4 6 2 . 0 0 8 O . 1 2 9 0 . 8 4 8 0 . 0 6 9 0 . 4 4 5 0 . 0 6 3 2 . 6 5 7 0 . 2 7 7 3 . 0 4 0 0 . 3 5 9 0 . 2 7 5 0 . 0 9 2 1 . 0 0 5 0 . 0 8 4 0 . 3 2 4 0 . 0 9 7 2 . 5 0 0 9 . 1 1 8 2 . 3 8 6 4 . 9 6 5 2 . 9 0 9 4 . 7 7 2 2 . 9 7 5 5 . 6 8 2 4 . 3 7 5 6 . 4 4 6 4 . 0 9 9 7 . 0 7 6 3 . 6 1 9 7 . 3 2 7 3 . 1 9 2 4 . 2 1 1 3 . 2 5 7 4 . 0 2 2 3 . 3 4 3 4 . 2 1 6 1 . 7 8 7 4 . 3 5 5 2 . 1 6 0 4 . 161 2 . 7 7 7 3 . 5 2 3 3 . 8 2 9 5 . 5 1 4 3 . 5 3 5 5 . 9 3 3 3 . 3 6 7 6 . 1 5 9 2 . 7 7 5 4 . 9 3 7 2 . 9 4 0 4 . 8 9 0 3 . 1 4 2 5 . 4 9 5 2 . 1 8 2 4 . 8 1 8 2 . 3 2 6 4 . 7 1 8 0 . 5 5 3 1 . 4 6 6 O . 1 5 0 0 . 7 9 0 0 . 6 0 4 0 . 9 8 9 0 . 3 8 0 1 . 9 8 9 0 . 3 8 8 1 . 5 3 4 0 . 4 4 0 ' 2 . 2 8 0 0 . 2 3 7 1 . 0 0 9 1 . 0 1 5 1 . 4 3 9 0 . 6 5 9 0 . 4 9 7 0 . 3 9 6 0 . 8 8 1 0 . 3 7 3 0 . 3 4 B 0 . 3 2 7 0 . 5 3 7 0 . 3 1 6 0 . 2 9 4 0 4 8 4 0 . 3 4 3 0 . 3 2 9 0 . 8 6 8 O . 1 8 8 0 . 4 4 4 0 . 9 5 6 0 . 7 6 1 1 . 0 0 0 1 . 1 9 8 0 . 3 8 3 0 . 4 5 6 0 . 2 1 5 0 . 5 9 8 0 . 2 1 2 0 . 6 3 6 0 . 2 2 6 0 . 2 9 7 0 . 3 3 6 0 . 2 4 2 0 . 2 4 0 0 . 7 0 8 O . 1 5 7 0 . 3 2 4 0 . 3 4 2 0 . 3 0 7 0 . 2 5 4 0 . 3 0 9 0 . 3 0 0 0 . 2 8 8 0 . 2 3 9 0 . 1 8 5 0 . 2 8 5 0 . 2 8 8 O . 1 9 4 0 . 2 8 0 0 . 2 6 1 0 . 0 9 7 0 . 0 3 0 0 . 0 7 7 O . 1 1 T 0 . 0 9 1 0 . 0 8 3 0 . 0 3 3 0 . 0 7 8 0 . 0 4 0 0 . 0 9 9 0 . 0 3 1 0 . 0 4 3 0 . 0 3 8 0 . 0 4 0 0 . 0 6 6 0 . 0 3 4 0 . 0 7 9 0 . 0 8 7 0 . 0 2 3 0 . 0 6 9 0 . 0 4 7 H § 3 It I s l a § 2 ** I s s s s H i s I i I s s s ^ ! I I s I s O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O S S S S S3 S S S3 S3 S2 fir 35 So SS gb |S JSS 28 S8 S3 i i i s Ii as i i i i i i i i ii i i i i i i i i i i i i i i < i i i i ii h Ii i i i s ii i i ii H |jj i s i i is i i Is l» \\ H H ii i i ii i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i O O O O O O O O O O O O - O O O O O - O — O - O O O O - O - M O - O - - O O £ s u i s i s n ii iz s§ s i §a §» s§ i s s i is s » n ii S s I i i i i i s i i i i I i . i i i i i i i i i i i i i i i i i i i I i I i i i 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0096114/manifest

Comment

Related Items